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Performance Issues with

General Packet Radio Service

Rajiv Chakravorty and Ian Pratt

Abstract: The General Packet Radio Service (GPRS)
is being deployed by GSM network operators world-wide,
and promises to provide users with “always-on” data access
at bandwidths comparable to that of conventional fixed-wire
telephone modems. However, many users have found the
reality to be rather different, experiencing very disappoint-
ing performance when, for example, browsing the web over
GPRS.

In this paper, we examine the causes, and show how un-
fortunate interactions between the GPRS link characteristics
and TCP/IP protocols lead to poor performance. A perfor-
mance characterisation of the GPRS link-layer is presented,
determined through extensive measurements taken over pro-
duction networks. We present measurements of packet loss
rates, bandwidth availability, link stability, and round-trip
time.

The effect these characteristics have on TCP behaviour are
examined, demonstrating how they can result in poor link
utilization, excessive packet queueing, and slow recovery from
packet losses. Further, we show that the HTTP protocol can
compound these issues, leading to dire WWW performance.
We go on to show how the use of a transparent proxy inter-
posed near the wired-wireless border can be used to alleviate
many of these performance issues without requiring changes
to either client or server end systems.

Index Terms: GPRS, Wireless, HTTP, TCP, Proxy

I. INTRODUCTION

Throughout the world, GSM cellular mobile networks
are being upgraded to support the General Packet Radio
Service (GPRS). GPRS offers an “always on” connectiv-
ity to mobile users, with wide-area geographical coverage
and data rates comparable to that of conventional fixed-
line telephone modems. This holds the promise of making
ubiquitous mobile access to IP-based applications and ser-
vices a reality.

However, despite the momentum behind GPRS, surpris-
ingly little has been done to evaluate TCP and HTTP per-
formance over GPRS. There are some interesting simula-
tion studies [1], [4], but we have found actual deployed
network performance to be somewhat different.

Practical performance issues observed over GPRS can
be shared to some extent with wireless LANs like 802.11b
[21], satellite systems, and other wide-area wireless schemes
such as Metricom Ricochet [24] and Cellular Digital Packet
Data (CDPD) [33]. However, GPRS presents a particu-
larly challenging environment for achieving good applica-
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tion performance. Take for instance TCP - The Internet’s
de-facto transport protocol tuned to detect congestion and
avoid overload. Unfortunately, TCP performance degrades
over wireless links where losses are mostly non-congestive,
predominantly due to external environmental factors such
as fading, interference etc. Our link characterization mea-
surements reveal that GPRS links have very high RTTs
(>1000ms), fluctuating bandwidths along with occasional
link outages. Hence TCP performance suffers in several
ways:

o A slow-start phase that takes many seconds (due to high
RTTs) for the window to ramp-up and fully utilize the link,
o Excess queuing over the downlink that can result in gross
unfairness to other TCP flows, and a high probability of
timeouts during intial connection request,

o Spurious TCP timeouts due to occasional link ‘stalls’,

« Slow recovery (many seconds) after timeouts.

At least theoritically, GPRS can achieve a much higher
data rate (>100kb/s) when compared to a single GSM cir-
cuit switched line (9.6kb/s). This makes it particularly
suitable for bursty applications like the World Wide Web
(WWW). However, WWW (or HT'TP’s) dependence on
TCP presents a set of pressing performance issues. As we
show how large HTTP transfers can lead to excess queue-
ing over the downlink. This can harm other existing, or
new flows, with the potential to cause gross unfairness.

Web browser behaviour also has a substantial effect on
page download times over GPRS. In an effort to improve re-
sponse times on wired-Internet links, client browsers open
several concurrent TCP connections. We show that such
behaviour on the part of the web clients may result in sat-
uration of the downlink buffers, and increased control over-
head that can negatively impact page download times over
GPRS. We attempt to answer questions like:

o What is the “typical” GPRS link behaviour, and how does
TCP peform over GPRS?

o How fair is TCP over GPRS? Can the unfairness affect
Web performace?

e How does browser behaviour influence page download
times?

o What is the quantitative benefit achievable when requests
are pipelined?

To answer these questions, we performed a number of
experiments over Vodafone UK’s GPRS infrastructure. To
support the underpinnings of the experiments, we con-
ducted similar, but less thorough performance measure-
ments on several other European GPRS networks, and
found performance to be very similar. From analysis of ex-
periments conducted over our test bed, we have determined
why TCP and HTTP can under-perform over GPRS. We
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Fig. 1. The GSM-GPRS network

then introduce a number of simple yet effective ways to
overcome many of the problems. These are implemented
in an interposed ‘transparent proxy’ that improves perfor-
mance without requiring changes to either client or server
end-systems. We demonstrate that significant performance
improvements are possible with such an approach.

The paper is structured as follows: The next section pro-
vides a brief overview on GPRS. Section III presents our
GPRS link characterization experiements. Section IV ex-
amines HTTP /TCP problems over GPRS. In section V, we
describe our transparent proxy-based scheme to improve
protocol performance, and demonstrate its effectiveness.
Section VI discusses related work, while the final section
summarises our findings and suggests directions for future
research.

II. THE GPRS OVERVIEW

Shown in figure 1 is a GSM network with GPRS exten-
sions. As part of the transition towards GPRS, new com-
ponents have been added in the network subystem (NSS)
to the traditional GSM network. The two new nodes -
SGSN (Serving GPRS Support Node) and GGSN (Gate-
way GPRS Suport Node) are used for GPRS that will
be later upgraded for third generation Universal Mobile
Telecommunication Network (3G-UMTS). The SGSN node
acts as a packet switch that performs signalling similar to
a mobile switching center (MSC) in GSM, along with cell
selection, routing and handovers between different Base
Switching Centers (BSCs). It controls the mobile termi-
nal’s access to the GPRS network and routes packets to
the appropriate BSC. When migrating to UMTS, SGSN
will be enhanced to replace the MSC altogether, where it
will switch packets to the correct UMTS terrestrial radio
network (UTRAN) [7]. The GGSN is the last “port of
call” that acts as a gateway between the mobile packet
routing of GPRS, and the IP routing of the Internet. The
MSC/visitor location register (VLR), Home Location Reg-
ister (HLR), and short message service (SMS) center are
functional entities tied to the circuit-switched GSM. To ex-
change GPRS subscriber information with the SGSN, the

HLR is extended by a GPRS register (GR).

A mobile terminal (MT) wishing to use GPRS will first
attach itself to the network through a signalling procedure.
The attach procedure can be performed either when the
MT is switched on or when the user wishes to transfer
packet data. Depending upon the MT device class, it can
connect to either circuit switched or to packet switched
services, or both simultaneously [1]. Mobile terminals are
classified according to the number of time slots they are
capable of operating on simultaneously. For example, many
current GPRS devices are classified as ‘3+1’ meaning that
at any given time they can listen to 3 downlink channels
(from base station to mobile), but can only transmit on 1
uplink channel to the base station.

A reliable RLC (radio link control) mode ensures that
packets are delivered in order, while a selective repeat ARQ
(automatic repeat request) coupled with the modulo-128
numbering of data blocks using temporary RLC flow iden-
tifiers (TFT) helps to recover from packets received in error.
In this scheme, the sender transmits blocks within a win-
dow of 64 blocks, and the receiver side periodically sends
ACK/NACK messages. While every ACK acknowledges
all correctly received RLC blocks indicated upto a block
sequence number (BSN), the NACKs act as a bitmap to
selectively request erroneously received RLC data blocks
for re-transmission [4]. The sender then just re-transmits
the erroneous RLC data blocks advancing the sending win-
dow. However, all this happens at the expense of variable
throughput and higher delay due to retransmissions [15].

Radio conditions change with time, and achievable data
rates over GPRS can vary, depending on other factors, pri-
marily on external environmental interference. Higher in-
terference will lead to higher block error rates over GPRS,
and consequently, longer data transfer times. The level of
interference is typically specified in channel-to-interference
(C/I) ratio of the radio environment. A low C/I (for e.g.
< 6-8dB) gives tough radio conditions (high block error
rates), a C/I of 13-18dB indicates moderate radio condi-
tions while a high C/T (e.g.> 25dB) gives good channel con-
ditions. GPRS copes with a wide range of radio/channel
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conditions by making use of 4 different coding schemes
(CS-1 To CS-4) [1][3] with varying levels of FEC (for-
ward error correction). Most of the currently deployed
GPRS networks support only CS-1 and CS-2 [40] — the
other two are not used as block error rates would be typ-
ically too high for the applications to be useful. While
CS-1 is meant for use during tough radio conditions (e.g.
< 7-8dB of C/I), CS-2 is useful during tough-to-moderate
channel conditions (e.g. < 15-18dB of C/I). GPRS network
operators usually determine that CS-1 and CS-2 are a good
compromise coding scheme for the moment. Later, when
applications become more error resilient then it should be
possible to use even CS-3 and CS-4. An other difficulty us-
ing CS-3 and CS-4 is that it cannot be supported by many
GPRS networks, since the ‘Abis’ and ‘Gb’ interface (see
figure 1) is currently capacity limited. The CS-4 scheme
removes FEC correcting capabilities altogether, while CS-
2 scheme employs a coding rate of approximately 2:3, to
obtains a transmission rate as high as 13.4 kbit/s per GSM
time slot [3]. The effective GPRS data rate is slightly less,
due to protocol header overhead and signalling messages.

Radio resources of a cell are shared between all GPRS
and GSM mobile stations located in the cell. Most net-
work operators typically configure the network to give GSM
(voice) calls strict priority over GPRS for time slot alloca-
tion. The time slots available for GPRS use, known as
packet data channels (PDCHs), are then dynamically allo-
cated (using the capacity on demand principle [3]) between
mobile terminals with data to send or receive. GPRS can
multiplex time slots between different users, and can also
allow multiple time slots to be used in parallel to increase
bandwidth to/from a particular mobile terminal.

When there is contention for GPRS resources, individual
PDCHs may be multiplexed between different users. When
this occurs, the specification allows for packets to be priori-
tised according to various Quality of Service (QoS) levels.
A user can request for a desired QoS profile during the
packet data protocol (PDP) context activation phase.

GPRS Release 99 defines several QoS parameters to meet
the application requirements for different levels of network
QoS. The release offers several benefits when compared to
its predecessor (Release 97/98) [5] - such as - BSS aware
QoS profile negotiation, MT and GGSN initiated QoS pro-
file (re)negotiation based on application or network require-
ments, and multiple PDP contexts per PDP address. Fur-
ther, four distinct GPRS traffic classes are specified: con-
versational, streaming, interactive and background [1], [5].
Applications that are delay sensitive belong to the conver-
sational class. The conversational class offers strict delay
and bandwidth gaurantees, while the background class of-
fers no quantitative or qualitative guarantees. It can be at
best referred to as the best-effort traffic class. Currently,
in the ‘phase one’ of GPRS deployment, operators only
support a single best-effort service class [40]. Further infor-
mation about GRPS network design and operation can be
found in [1-6].
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Fig. 2. Test Bed Set-Up for Link Characterization

III. GPRS NETWORK CHARACTERIZATION
A. Test Environment and Tools

Our experimental setup for characterizing GPRS links is
shown in figure 2. The measurements presented in this pa-
per were all performed over Vodafone UK’s national GPRS
network, though we have recorded similar results on a num-
ber of other European GPRS networks. A number of dif-
ferent handsets from different vendors have been tried; we
found no significant performance variation between hand-
sets of the same GPRS device class. Measurements have
been repeated at many different locations (typically in iso-
lated cells) resulting in a wide range of radio and network
conditions to try and gain a view of ‘typical’ performance
experienced by a user.

In an attempt to determine whether GSM time slot con-
tention was common, we repeated measurements at differ-
ent times of the day at locations we suspected of being
‘busy’. However, throughout our tests we saw little evi-
dence of network contention occurring. This is perhaps to
be expected due to the currently small number of GPRS
users and the generous time slot provisioning employed by
Vodafone.

In an example test set-up (figure 2), a laptop connects
to a Motorola T260 GPRS (3+1) (3 downlink, 1 uplink
channels) phone through a serial PPP (point-to-point) link
to act as a GPRS mobile terminal. Adhering to the usual
GPRS architecture, the base stations (BSs) are linked to
the SGSN which is then connected to a GGSN. In the cur-
rent Vodafone configuration, both SGSN and GGSN node
are co-located in a CGSN (Combined GPRS Support Node)
[40]. The test network used logical link control (LLC) layer
in an unacknowledged mode with protocol header com-
pression turned-off. Turning off header compression allevi-
ates the extra computation overhead at the core network,
and avoids additional performance problems arising from
packet losses [38].

Since we were unable to install equipment next to the
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CGSN we made use of a well provisioned IPSec (IP Se-
curity) VPN tunnel to route all traffic via the Computer
Laboratory. The measurement terminal (see figure 2) was
then located at the end of the tunnel, with routing config-
ured so that all packets flowing to and from the mobile host
are passed to it for processing. A RADIUS server was used
to authenticate mobile terminals and assign IP addresses.
All the characterization tests were performed using a
version of the ttcp program modified (ttcp+ [41]) to en-
able traffic streams to be generated at specified rates and
with particular burst characteristics. We also inserted time
stamps and sequence numbers in packets to track time-in-
flight between sender and receiver (using NTP synchro-
nized clocks) and to detect packet loss and re-ordering.

B. Results from Link Characterization

Tests were performed to measure up and downlink packet
latencies for different packet sizes, and up/downlink band-
width (both TCP and raw bandwidth). During all these
tests, any incidence of packet loss or re-ordering was noted.
In all cases, the mobile terminal was stationary, though a
number of locations were used during the bandwidth mea-
surements presented later.
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Fig. 3. Single packet time-in-flight delay distribution plots showing
(top-down) (a) downlink delay (b) uplink delay distribution. Mea-
surements involved transfer of 1000 packets with random intervals
> 4s between successive packet transfers.

The tests revealed that GPRS, like many other wide-area
wireless networks, exhibits many of the following charac-
teristics: low and fluctuating bandwidth, high and variable
latency, and occasional link ‘blackouts’ [18], [19]. A com-
prehensive report on GPRS link characterization is avail-
able in the form of a separate technical report [37]. We
discuss some key findings:

High and Variable Latency:- Figure 3 presents a his-
tograms of time-in-flight latency for one thousand 64 byte

UDP datagrams sent with a random spacing of between 5
and 10 seconds during good radio conditions. The RTT
experienced by a connection is equal to the sum of the
uplink and downlink distributions. As can be observed,
latencies are large and highly variable, particularly in the
downlink direction. RTTs of around a second are common-
place, making the service poor for interactive applications.

If the experiment was repeated by sending bursts of sev-
eral packets, it can be observed that it is only the first
packet in a burst that experiences the high jitter: following
packets tend to arrive with quite a tight jitter bound, un-
less there is evidence that the packet was retransmitted due
to loss signalled by ARQ. This indicates that a substantial
proportion of the latency is incurred when the link to a mo-
bile terminal transitions from previously being idle. Pack-
ets that are already queued for transmission can then follow
the first out over the radio link without incurring additional
jitter. The additional latency for the first packet is also typ-
ically due to allocation time of the temporary block flow
(TBF) [6], [38]. Since most current GPRS terminals allo-
cate and release TBF's immediately (implementation based
on GPRS 1997 release), applications (such as TCP) that
can transfer temporally-separated data (and ack) packets
may end up creating many small TBFs that can each add
some delay (approx. 100-200msec) during data transfer.
The latest release (GPRS 1999) does consider an extended
TBF life-time; however, this optimization could lead to in-
efficient scheduling at the base station controller (BSC),
with only some improvement (~ 100msec) in overall RTTs
[38].

Fluctuating Bandwidth:- We observe that signal quality
leads to significant (often sudden) variations in bandwidth
perceived by the receiver. Sudden signal quality fluctua-
tions (good or bad) commensurately impacts GPRS link
performance. Using a “3+1” GPRS phone such as the Er-
icsson T39 (3 downlink channels, 1 uplink), we observed
a maximum raw downlink throughput of about 4.15 KB/s
(33.2 kb/s), and an uplink throughput of 1.4 KB/s (11.2
kb/s). Using a “4+1” phone, the Motorola T280, we mea-
sured an improved maximum bandwidth of 5.5 KB/s (44
kb/s) in the downlink direction. If CS-2 coding scheme
was used, then using a “34+1” and “4+41” phone, we could
achieve a theoritical maximum of 40.2 kb/s and 53.6 kb/s
respectively. A number of other factors contribute to
throughput values lower than the maximum possible, for
more description here, see [4].

Raw UDP bandwidth was measured using ttcp [41] to
send a continuous stream of 1024 byte packets at a rate just
above what the radio link is capable of carrying. Band-
width measurements taken at the receiver averaged over
fixed intervals enable variations in raw link bandwidth to
be observed (packet losses in this experiment were ignored
as they are most likely due to packet discard at the CGSN).

As discussed in section II, the achievable data through-
put over GPRS will critically depend on the carrier-to-
interference ratio (C/I) of the radio environment [4]. De-
pending on the C/I of the radio environment and corre-
sponding coding scheme used, will result in different block
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Fig. 4. Raw throughput measurements using Mototola (3+1) GPRS
phone for the case of (top-down) (a) uplink and (b) downlink.

error rates that will consequently impact application data
throughput. Figure 4 shows raw UDP bandwidth traces for
the uplink and downlink directions taken under a number
of different radio (C/I) conditions. Note how the available
bandwidth often varies with time with changing radio con-
ditions (we believe there was no contention for time slots).

Packet Loss:- The radio link control (RLC) layer in
GPRS uses an automatic repeat request (ARQ) scheme
that works aggressively to recover from link layer losses.
Thus, higher-level protocols (like IP) rarely experience non-
congestive losses in stationary conditions. However, pack-
ets can still be lost, mainly for two reasons: (1) deep fad-
ing (and/or interference, shadowing etc.) leading to bursty
radio losses that persist for longer than the link-layer is
prepared to keep retransmitting a packet, and (2) during
cell reselections due to cell update procedure (or even rout-
ing area update) that can lead to a link black-out from few
to several seconds. In both cases, consecutive packets in a
window are usually lost. Most current GPRS mobile termi-
nals (based on GPRS 97 release) perform cell-reselections
based on signal-strength. Thus in overlapping-cells, cell-
reselections may happen even during mobile-hosts’ station-
ary conditions. Unfortunately, this can have implications
on application performance, hence network-assisted cell up-
dates are being considered [38].

Link Outages:- Shown in figure 4, a case when bandwidth
available on the downlink channel drops to zero for a period
of 30 seconds in the middle of one of the traces. Unfortu-
nately, such link ‘blackouts’ are not uncommon, particu-
larly when the mobile terminal is on the move in a car or
train and during cell-handoffs. Link outages that were ob-
served, typically last for 5-30s. However, due to the RLC’s
ARQ protocol packets are rarely lost, just grossly delayed.

We have noticed outages during stationary conditions,
though the outage interval in this case is small. Sudden
signal quality degradation, prolonged fades and intra-zone
handovers (cell-reselections) can lead to such link black-
outs. When link outages are of small duration, packets are
just delayed and are lost only in few cases. In contrast,
when outages are of higher duration there tend to be burst
losses.

Additionally, we also observed downlink transfers to stop
altogether during transfers. We believe this to be a specific
case of link-reset, where a mobile terminal would stall and
stop listening to its TBF. We currently believe this to be
due to inconsistent timer implementations within mobile
terminals and base station subsystem (BSS). In such cases,
it is necessary to terminate and restart the point-to-point
(PPP) session.

IV. TCP PERFORMANCE OVER GPRS

As well as the link characterization measurements, we
also performed separate tests to gain a better insight into
TCP performance over GPRS, specifically over the down-
link channels. We targeted the downlink channel because
of its importance in current mobile applications such as
web browsing, reading email etc.
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Fig. 5. Plot (top-down) (a) shows the 600KB transfer progressing under
three different radio conditions. Plot (b) shows how bandwidth can
change during the course of a transfer

In this experiment, file transfer tests were performed dur-
ing different radio conditions, and traces of the transfer
collected using tcpdump [41] run at both ends: the sending
host in the Lab, and the mobile receiver laptop connected
via a GPRS phone. Both hosts used Linux version 2.4,
which employs a modern TCP implementation supporting
Selective ACKnowledgements (SACKs) [9].

The traces were analysed using tcptrace [41]. To under-
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Fig. 6. Plot (top-down) (a) shows the characteristic exponential con-
gestion window growth due to slow-start (SS). Plot (b) shows out-
standing data in case of timeout due to a dupack(sack).

stand steady-state link behaviour, we selected a reasonably
large file transfer size of 600KB. Figure 5(a) shows through-
put measured at the receiver averaged over 10 packets for
three different file transfer runs performed under different
radio conditions. As can be seen, there are wide variations
in throughput and hence download completion time. In
figure 5(b) we observe a sudden improvement in available
link bandwidth. In this case, there are sufficient packets al-
ready queued at the GPRS router that the TCP connection
is able to seamlessly utilize the extra bandwidth without
having to grow the congestion window further.

In the following sections, we look at more detailed traces
to describe some of the specific performance issues observed
during TCP transfers over GPRS.

A. TCP Start-up Performance

Figure 6 (b) shows a close up of the first few seconds of
the connection, alongside another connection under slightly
worse radio conditions. An estimate of the link bandwidth
delay product (BDP) is also marked, approximately 10KB.
The estimate is approximately correct under both good
and bad radio conditions, as although the link bandwidth
drops under poor conditions the RTT tends to rise. For
a TCP connection to fully utilize the link bandwidth, its
congestion window must be equal or exceed the BDP of
the link. We can observe that in the case of good radio
conditions, it takes over 6 seconds to ramp the congestion
window up to the link BDP, measured from when the intial
connect request (TCP’s SYN) was made. Hence, for trans-
fers shorter than about 18KB, TCP fails to exploit even
the meagre bandwidth that GPRS makes available to it.
Since many HTTP objects are smaller than this, the effect
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Fig. 7. Case of timeout due to a dupack(sack). Plot (top-down) (a)
shows the sender sequence trace and plot (b) shows corresponding
outstanding data.

on web browsing performance can be dire.

A further point to note about figure 6(a) is that the
sender releases packets in bursts in response to groups
of four ACKs arriving in quick succession. Receiver-side
traces show that the ACKs are generated in a ‘smooth’
fashion, hence it is surmised that the ack compression [25]
occurs as a result of the GPRS uplink (since the wired net-
work is well provisioned). This effect is not uncommon,
and appears to be an unfortunate interaction that can oc-
cur when the mobile terminal has data to send and receive
concurrently. The ‘bunching’ on the uplink can be due to
the GPRS link layer. In GPRS the size of a single LLC
frame structure may vary from a minimum of 140 bytes to
a maximum of 1520 bytes. The RLC layer then operates on
small blocks of user data (usually 20-50 bytes, depending
upon coding scheme in use [38]) before it is finally transmit-
ted. Thus even if one minimum size LLC frame is buffered
for transmission, it can generate at least 3 back-to-back
TCP ACKs resulting in bunching.

B. Excess Queuing

Due to its low bandwidth, the GPRS link is the bot-
tleneck link in most connections, and so packets destined
for the downlink get queued up at the GPRS CGSN. We
found that the existing GPRS infrastructure offers sub-
stantial buffering: UDP burst tests indicate over 120KB of
buffering. Therefore for a long enough session, TCP’s con-
gestion control algorithm could fill the entire router buffer
before incurring packet loss and reducing its window. In
practise, the window is typically not allowed to become
quite so excessive due to the receiver’s flow control win-
dow, which in most TCP implementation is limited to un-
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der 64KB unless window scaling is explicitly enabled. Even
o, this still amounts to several times the BDP of unnec-
essary buffering, leading to grossly inflated RTTs due to
queuing delay. Figure 7 shows a TCP connection in such
a state, where there is 40KB of outstanding data leading
to a measured RTT of around 30 seconds. Excess queuing
complicates a number of issues:

o RTT Inflation:- Higher queuing delays can severely de-
grade TCP performance [20]. A second TCP connection
established over the same link is likely to have its initial
connection request timed-out [15].

¢ Inflated Retransmit Timer Value:- RTT inflation re-
sults in an inflated retransmit timer value that impacts
TCP performance, for instance, in cases of multiple loss of
the same packet [15].

o Problems of Leftover (Stale) Data:- For downlink
channels, the data in the pipe may become obsolete when
a user aborts a web download and abnormally terminates
the connection. Draining leftover data from such a link
may take on the order of several seconds.

o Higher Recovery Time:- Recovery time from timeouts
due to dupacks (or sacks) or coarse timeouts in TCP over
a saturated GPRS link is high.

C. Recovery over GPRS

Shown in figure 7 is the TCP’s performance during a
packet loss due to dupack (in this case SACKs). The point
to note is the large time (30 seconds) it takes TCP to re-
cover from the loss, on account of the excess quantity of
outstanding data. Fortunately, use of SACKSs ensures that
packets transferred during the recovery period are not dis-
carded, and the effect on throughput is minimal. This em-
phasises the importance of the use SACKs in the GPRS
environment: without SACKs 40KB of correctly received
data would have been discarded.

D. Fairness between flows

Excess queuing can lead to gross unfairness between com-
peting flows. Figure 8 shows a file transfer (f2) initiated
10 seconds after transfer (f1). When TCP transfer (f2) is
initiated, it struggles to get going. In fact it times out
twice on initial connection setup (SYN) before being able
to send data. Even after establishing the connection, the
few initial data packets of f2 are queued at the CGSN node
behind a large number of f1 packets. As a result, packets
of f2 perceive very high RTTs (16-20 seconds) and bear
the full brunt of excess queuing delays due to fl. Flow 2
continues to badly underperform until f1 terminates.

Flow fairness turns out to be an important issue for web
browsing performance, since most browsers open multiple
concurrent HTTP connections [27]. The implicit favour-
ing of long-lived flows often has the effect of delaying the
“important” objects that the browser needs to be able to
start displaying the partially downloaded page, leading to
decreased user perception of performance.

12000

700000 100000

Sequence Offset
g &

Receiver Adv. Window

£

Sequence Offset

| L J
00 0100 000 0300 0400 1500
Time (min)

Fig. 8. Close-up of time sequence plots for two concurrent file transfers
over GPRS, where £2 was initiated 10 seconds after £f1 .

V. WEB CLIENT PERFORMANCE

The inherent nature of TCP’s congestion control algo-
rithm implies that N connections will be N times more
aggressive when compared to a single TCP connection.
Typically, by opening more connections, browsers exhibit
greater aggressiveness to get a higher share of the link
bandwdith. Also, with more connections, browsers implic-
itly avoid head-of-line (HOL) [12] blocking problems. An
aggressive browser will obviously reap benefits over con-
ventional high bandwidth links shared by many users. In
contrast, the approach can be deleterious over GPRS links.

Using multiple connections over ‘long-thin” GPRS links
has a number of drawbacks: First, protocol control
(SYNs/ACKs/FINs) overhead associated with higher num-
bers of connections is high. This is further exacer-
bated by the overhead of the protocol headers (i.e.
TCP+IP+SNDCP+LLC=55 bytes, as in [40]) even for
data packets that are exchanged over the link. Second,
every TCP connection is associated with a transaction or
connection set-up (3-way TCP handshake) overhead. The
delay this introduces is very significant due to the high la-
tency of GPRS links. Further, it can take only a few RTTs
for multiple concurrent connections to exceed the GPRS
CGSN router downlink BDP value. The exponential na-
ture of the slow-start phase combined with packets from
multiple flows can quickly lead to excess queuing over the
downlink. As a result, any subsequent new TCP connec-
tion will have a high chance of timing out during its initial
connection request phase. New connections will endure
high RTTs, causing them to severely underperform, with
an additional probability of spurious timeouts.

Many of the widely deployed web browsers continue to
use non-persistent connections (HTTP/1.0), employing a
new TCP connection for every object downloaded [28]. Use
of HTTP/1.1 persistent connections, where the browser
and server employ the same TCP connection for transfer of
multiple objects is gradually becoming more widespread.
However, use of HTTP/1.1 pipelined-persistent connec-
tions (where multiple outstanding requests are permitted
on the same connection) is currently almost non existent.
The use of persistent and pipelined connections can elim-
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inate a substantial amount of control and connection set-
up overhead, thereby resulting in higher utilization over
GPRS. In the following sections, we evaluate the pipelining
benefits analytically and in a section later validate the ben-
efits that can be achieved through experiments conducted
over the GPRS test-bed.

A. Pipelining Incentives over GPRS

Persistent connections allow multiple requests to be is-
sued on the same TCP connection. However, a new request
can only be issued after receiving a complete response from
the server. HTTP/1.1 pipelined connections allow multi-
ple requests to be kept outstanding before a response is
received. Thus, the server is able to overlap processing
of requests. Often, this means that the server is able to
maintain the congestion window when transferring data to
the client, avoiding the need to re-enter slow-start between
each object as is required for non-pipelined connections.
Previous studies have demonstrated substantial improve-
ment in page download times using pipelined connections
[10], [11]. However, none of the earlier literatures appear to
quantify benefits associated with the degree of pipelining
i.e. pipelining effectiveness. If we assume that a web client
could pipeline its requests as aggressively as possible over
a given connection, then how do we measure pipelining ef-
fectiveness? We introduce a new term Pipeline Factor (®).
Pipeline factor typically represents pipelining aggressive-
ness of a web-client. A high value of ‘®’ indicates that a
web client is able to keep more requests outstanding during
a connection’s lifetime.

We define ¢ for a connection ‘4’ as:

n
S Sy X0 "
n

where n corresponds to the total number of requests
made on a connection. Here §,(t) is the pipeline index
calculated separately for each request as the total number
of requests (including the request ‘z’) minus the responses
received before request ‘2z’ was made. The maximum pos-

n

z
z=1

sible ® for a connection is (®00= ), which happens
when all the requests are pipelined before a response is re-
ceived. Pipeline factor ® can achieve a minimum value of 1,
when a connection is effectively persistent with no pipelin-
ing; there is only ever one request outstanding during the
connection lifetime. Notice equation 1 gives higher weight
to connections that can keep more requests outstanding.
Having more requests outstanding (high ®) means a server
(or proxy) is more likely to keep the downlink busy and
thus achieve high link utilization. Using a reduced number
of concurrent connections (to minimize protocol overhead)
and making aggressive use of pipelining is of particular ben-
efit on high latency links such as GPRS. We revisit this
topic, when we discuss our experimental test results later.

Figure 9 shows a sample & calculation for a pipelined
connection. As shown, the pipeline index for the the 37¢
and the 4" request is the same for both: 2 each. The index
value for the 4" request is 2 as its index gain is negated by
the reception of two responses (obtained as, 4 requests - 2

Pipeline Index — 1 1 2 2 3
Requests —_1 | | | |

Responses f f f r
H%}M -1.8

Pipeline Factor =

Fig. 9. Pipeline factor (®) calculation of a pipelined connection

responses = 2). The ® value comes out to about 1.8 from
a maximum possible ®,,,, of 3 for this connection.

B. Pipelining Efficiency

We introduce another term pipelining efficiency (n).
Browsers can in principle pipeline requests on more than
one connection — the pipelining efficiency in such a case
will be determined by how effectively requests are pipelined
across all connections. The overall pipelining efficiency for
‘“m’ connections can be given by:

1= S e - Z@Z&n_i) @

It is typically not possible to achieve 100% pipelining ef-
ficiency (1), as they would then have to know the URLs
of all objects that make up a page beforehand. Browsers
typically need at least one response (for non-frame based
static web-pages) to parse and make subsequent requests
for other inlined objects. For web sites offering dynamic
content, strict resource dependencies can further restrict
the level of pipelining, which lowers ‘@’ over a given connec-
tion. The simplest is for a web-site offering static content,
where after receiving the first response, all other requests
could be immediately pipelined. Using experiments con-
ducted over GPRS test bed, we discuss how ‘®’ for a web
client can effect web download performance.

The majority of current web browsers have yet to offer
any support for pipelining. Notable exceptions are mozilla
[44] and opera [45] where support for pipelining exists, but
the option needs to be explicitly enabled by the user. How-
ever, it is apparent that neither browser currently makes
particularly aggressive use of pipelining, missing out on
many potential occasions where it could be exploited.

VI. IMPROVING PERFORMANCE OVER GPRS

In previous sections, we identified causes of poor perfor-
mance over GPRS links, and here we report on our efforts
to make improvements. One fundamental constraint was
that we wished to improve performance without requiring
end-system software modifications: Experience shows that
the vast majority of schemes that require such end-system
changes never see widespread deployment.

Our scheme makes use of a modified HTTP proxy and
TCP protocol stack running on a machine located near the
wired-wireless border. Users may configure their browsers
to explicitly use the proxy, or transparent proxying [16]
may be employed, as is done by many fixed-wire Internet
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Service providers today. The objectives of our proxy are as
follows:

Better Utilization — A higher utilization over the wire-
less link, especially downlink, to benefit the usually ‘short’
web flows.

Faster Recovery — We wanted our proxy to quickly re-
cover from occasional link stalls during hand-offs and dur-
ing occurrence of burst losses.

Minimize Queuing — One important goal in the proxy
was to alleviate the problem of excessive queuing at the
wired-wireless gateway.

Restore Fairness — Allocate bandwidth fairly irrespec-
tive of the length of the flows.

To achieve these goals, we provide performance enhance-
ments in the proxy at two different layers - transport layer
(TCP) and application layer (HTTP). We refer to these
proxy enhancements independently as TL-E for transport
level enhancement, and AL-E to signify application level
enhancement. We discuss TL-E and AL-E further.

A. Transport Level Enhancement (TL-E)

A major cause of poor performance with TCP over
GPRS is link under utilization during the first 6-10 sec-
onds of a connection due to the pessimistic nature of the
slow start algorithm and high RTTs of the GPRS links.

Slow start is certainly an appropriate mechanism for the
Internet in general, but within the proxy, information is
available with which we can make a better decision about
the congestion window size.

Hence a substantial benefit can be offered to typically
short and bursty web sessions by avoiding slow-start and
instead making use of the full capacity of the downlink
during connection startup. In order to achieve this, our
proxy uses a modified TCP sender over the wireless link
that uses a fixed size congestion window (but remains com-
patible with unmodified receivers). The size is fixed to a
relatively static estimate of the Bandwidth Delay Product
(BDP) of the link. Thus, in the downlink direction, slow
start is eliminated and further unnecessary growth of the
congestion window beyond the BDP is avoided. We call
this TCP cwnd clamping.

Achieving the same optimisation in the uplink direction
can be achieved by re-writing the receive flow-control win-
dow of returning ACKs. However, due to the asymmetric
nature of most web transfers such optimisation is generally
not worthwhile.

The underlying GPRS network ensures that bandwidth
is shared fairly amongst different users, and hence there
is no need for TCP to be trying to do the same based on
less accurate information. Ideally, the CGSN could pro-
vide feedback to the proxy about current radio conditions
and time slot contention, enabling it to adjust the ‘fixed’
size congestion window, but in practice this is currently
unnecessary.

Once the proxy is successful in sending Ceiqmp of data it
goes into a self-clocking state in which one segment (from
whatever connection the scheduler has selected) is released
each time an ACK for an equivalent amount of data from

the receiver. With an ideal value of Cjgmp, the link should
never be under utilised if there is data to send, and there
should only ever be minimal queueing at the CGSN gate-
way. Typically, we find the optimal Cgiomp value to be
10-15% higher than the that calculated by multiplying the
maximum link bandwidth by the typical link RTT. This
excess is required due to link jitter, use of delayed ACKs
by the TCP receiver in the mobile host, and ACK com-
pression occurring due to the link layer.

The cwnd remains clamped even during times of poor
link performance i.e. during handoff’s, interference or fad-
ing. While starting with a fixed value of cwnd, the mobile
proxy needs to ensure that any initial packet burst does not
overrun link buffers. Since the bandwidth-delay product
(BDP) of current GPRS links is small (e.g. ~10KB), this
is not a significant problem at this time. For future GPRS
devices supporting more downlink channels, the proxy may
need to use traffic shaping to smooth the initial burst of
packets to a conservative estimate of the link bandwidth.

In the case of a packet loss, we preserve the cwnd value,
clocking out further packets only when ACKs are received.
RTO triggered retransmissions operate in the normal man-
ner.

A.1 Validating Transport Level Enhancements (TL-E)

In this section, we evaluate the efficacy of TL-E. The
TL-E in the proxy offers the following benefits:

e Reduced Queuing Delays:- Excessive queuing is re-
duced by limiting TCP data over the link. As a conse-
quence, RTT inflation and its impact on retransmit timer
values are also minimized.

¢ Faster Startup:- It avoids slow-start and instead makes
full use of the downlink capacity. This improves start-up
performance of short connections and reduces overall trans-
fer times.

e Quick Recovery from Losses:- TCP cwnd clamping
reduces drain time during losses leading to quick TCP re-
covery. By limiting data over the link, spurious retransmis-
sion cycles due to sudden delay fluctuations can be avoided.
This also reconciles with other negative effects such as stale
(or leftover) TCP data due to abnormal disconnections.

1. Minimizing Ercess Queuing using TCP clamp:- We
conducted a series of file download tests over GPRS, with
and without the presence of the mobile proxy implementing
our clamping strategy. For these tests we used fixed values
of the clamped window (Ceigmp)-

Transfer tests were performed with an initial value of
4KB and we increased this to 32KB in a number of steps.
Figure 10(a) shows typical traces for the 600KB file trans-
fers corresponding to different values of cwnd. It is evident
that the transfer times for all the runs except when cwnd =
4KB run (a case of link under utilization) are almost same.
A cwnd value of 10KB (corresponding to 9.5KB when inte-
ger numbers of segments are considered) or higher ensures
the link is fully utilized. An 8KB window typically yields
similar results, though we have observed circumstances in
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Fig. 10. Figures showing (top-down) (a) sender perceived RTTs and
(b) Outstanding (inflight) TCP data during 600KB file transfer.
Effects of queuing delays can be effectively reduced by clamping the
congestion window. A good selection of Ccjqmp ensures that link
is never underutilized. A choice of cwnd=10KB (reflecting BDP of
the link) was found to be appropriate for our GPRS mobile terminal.

which under utilization has occurred due to ACK compres-
sion; for clarity the line is omitted.

Higher values of cwnd leads to higher values of resultant
RTTs. Using a cwnd of 10KB results in a low and rela-
tively stable RTT, similar to the 4KB case. Other values
progressively tend toward the large and very variable RTT
incurred in the absence of the mobile proxy.

2. Benefitting from slow-start elimination:- To quan-
tify the benefits of avoiding slow-start for short TCP ses-
sions, we used ttcp to perform a series of short (5KB-
30KB) downloads, primarily to reflect web sessions be-
haviour. Each transfer for a given size was repeated 25
times and traces recorded using tcpdump.

Figure 11 shows that transfer times for TCP as well as
TCP clamp with a 10KB window for a range of different
transfer sizes. Note that the transfer times shown also in-
clude the TCP connection establishment and termination
overhead. Given the high latency of the link, this overhead
can be quite large for short transfers.

TCP clamp does not perform quite as well as expected
due to the Linux 2.4.16 receiver offering an initial receive
window of just 5392 bytes. Normally, this small window
size is not a problem as the receiver rapidly opens the re-
ceive window as data starts to flow, and thus does not
impede slow-start. However, when using a clamped cwnd
the receive window is a limiting factor. Despite this, our
results demonstrate that TCP cwnd clamp provides clear
performance benefits for small downloads on GPRS links.
We have not found any other TCP stacks that exhibit this
initial receive window limitation.

This benefit will be maintained and even enhanced when
using HTTP/1.1 persistent TCP connections. When us-
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Fig. 11. Results of the ttcp download transfers conducted over GPRS
network. Plot shows the transfer times for different transfer sizes for
TCP clamp (cwnd=10KB) and standard TCP. The error bars cor-
respond to the standard deviation. Each transfer test was repeated
25 times for a given size.

ing persistent connections it is normally the case that the
server has to let the TCP connection go idle between ob-
ject transfers since pipelining is rarely supported. Normally
this results in the congestion window being set back to its
initial value. TCP clamp avoids this, and the benefit is
more pronounced due to the lack of connection establish-
ment and termination phases.

3. Recovery with TCP clamp:- As shown from the TCP
sender trace in figure 12(d), an RTO occurs during the file
transfer, resulting in packet re-transmission. In this case,
there are no data packets in the router buffers, so TCP
recovers quickly from the link loss after its first retransmis-
sion, and then proceeds with normal data transmission.
Without the proxy, there are likely to be a large number
of TCP packets queued up over the link before the time-
out. This is particularly unfortunate if either host does not
support SACKs, in which case the backlogged packets will
be needlessly retransmitted. Worse, acks of the retrans-
mitted segments could trigger further retransmissions due
to dupacks, leading to a cycle of spurious retransmissions.
By limiting the outstanding data over the link the recovery
phase is enhanced and occurrence of such spurious retrans-
mission cycles are avoided.

B. Application Level Enhancements (AL-E)

Extending it traditional role as a caching proxy, we have
modified squid (v2.4) to provide an additional application
level enhancement. The modification allows squid to accept
HTTP/1.1 pipelined connections from pipelined capable
web clients (browsers).

C. Quantifying the Benefits of our scheme

To evaluate the performance benefits of our scheme we
perform experimental downloads over GPRS using both
static and dynamic web content. For static web content
we make use of the a test web-site that we describe in a
later section. For the dynamic web-pages, we created a
mock-up of a popular news web-site, CNN www.cnn.com,
on a locally provisioned web server. This was done to avoid
the effects of fast changing web-content and to eliminate
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Fig. 12. Early recovery from TCP timeout during 600KB file transfer
with TCP clamp. Plots showing (top-left and clockwise) (a) RTT
plot of TCP timeout (b) Outstanding (inflight) data (c) receiver
perceived throughput and (d) sender trace. Reducing queued data
can help TCP to recover quickly. This approach also ameliorates
the problem of spurious retransmissions due to sudden delays.

measurement, ‘noise’ that could be introduced by changes
in Internet performance. We refer to our dynamic web-
site as local CNN, or in short LCNN, to reflect the locally
provisioned content from the CNN web-site.

C.1 Test Web Site offering Static Web Content

For the static test web-site, we adhere to a approach
very similar to the one used in [11], i.e. we compose a
number of objects from other web-sites. Simple web sites
typically have a base HTML documents along with many
embedded or inlined objects (gifs, CSS, scripts etc). We
have observed that popular sites often have a base page of
about 40-50KB with references to often over 50 embedded
objects. To offer better control over content presentation,
these web sites also often make use of cascading style sheets
(CSS) and scripts.

Resource Type || Size Range [ # of files |

index.html 40K 1
jpegs/gifs 200B-2KB 20
gifs 2KB-5KB 20
gifs 5KB-10KB 4
gifs >10KB 1

Table 1. Composition of our reference Test static content Web-Site

For the static test, we have synthesized pages based on
object type and size distributions observed in HTTP log
traces (for example, see table 1).

C.2 Browser Selection

To compare download performance of our scheme, we
chose mozilla [44]. The latest release from mozilla 5.2 (de-
veloper build version) also supports pipelining. However,
after analysing browser traces we found few instances where
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Fig. 13. Mozilla Connnection Timelines for our LCNN web-site, using

(top-bottom) (a) non-persistent connection mode, (b) persistent
connection mode and (c) pipelined connection mode.

the browser actually pipelined requests on persistent con-
nections, even when doing so was clearly possible. We ex-
pect future Mozilla versions will have a request scheduler
better optimised for pipelining.

In persistent connection mode, which is the default set-
ting, Mozilla makes use of a maximum of 6 simultaneous
connections to an intermediate proxy. In non-persistent
mode, it can use a maximum of 8 parallel connections via
a proxy.

C.3 Impediments in Measuring Browser Download Times

Measuring download times with a browser is not as easy
as it at first appears: Many browsers keep connections
open even after the complete page is downloaded. While
this makes little difference to a user surfing for some in-
formation, it impedes accurate measurements of web site
download times. To overcome this problem, we make use of
browser timelines. Browser timelines are plots that indicate
connection timelines made by a browser i.e. the number
of connections, connection start and end points (if a end
point exists), number of requests made, and data received
on each request-reponse exchange. We have developed a
tool (timeline [17]) that uses tcpdump and tcptrace infor-
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mation to plot browser connection timelines.

Figure 13 shows the sample browser timelines for LCNN
web-site using mozilla. The connection timelines are
shown for download of LCNN web-site using browser’s non-
persistent connection mode (figure 13(a)), persistent con-
nection mode (figure 13(b)) and pipelined connection mode
(figure 13(c)). The figure (b)-(c) show steps in connection
timelines indicating requests sent over an existing connec-
tion to be reused in persistent and pipelined connection
mode repectively for multiple request-response exchanges.
As shown in figure 13(b), some browser connections are
kept open even after the download completed.

In some cases, this is as a result of the browser hoping
it can re-use the connections to fetch the next page. Such
connections are usually timed out by the server after e.g.
60 seconds. In other cases, the connection is kept open as a
result of scripts periodically refreshing information (e.g. a
stock ticker). For all such cases, we simply measured the
download time with respect to connections that finished
successfully prior to those that were kept open. This is
shown in figure 13(b) with a dotted vertical line. Also,
shown in figure 13(c) is the close-up of a connection in
which requests were pipelined. The connection starts with
a persistent mode and then switches to pipeline requests
over the given connection. It is evident here that mozilla
pipelined requests only over selected connections from the
whole connection pool, giving a relatively poor pipelining
efficiency. The best-case browser pipelined-connection (the
one shown zoomed in 13(c)) had a ¢ of less than 3, with
overall pipelining efficiency (1) of the browser in this case
less than 9% (only marginally better than the persistent
case).
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C.4 Measurements over GPRS Test-Bed

We performed experimental downloads with mozilla us-
ing its three different modes: non-persistent mode, persis-
tent connection mode and pipelined connection mode. All
experiments were conducted seperately for the static test
web site as well as for our locally available LCNN web site
offering dynamic content.

We averaged download times from about 20 sucessful
runs and plot mean value of download time and corre-
sponding standard deviation. Figure 14 shows that mean
download time using morzilla for our test web-site. With
non-persistent connections, we found only a small advan-
tage in using the proposed transport level enhancement
(TL-E). It seems that for non-persistent connections, over-
all gains made by eliminating slow-start is negated by the
overhead due to large number of connections. Nevertheless,
there is still some modest improvement in download times
when using TL-E with persistent connections. The average
improvement in download times when switching from non-
persistent to persistent mode and using TCP cwnd clamp-
ing was more than 10%. As far as the number of connec-
tions are concerned (see figure 15) the reduction was more
than 80%. For pipelined connections, as evident from fig-
ure 14, we find that using TL-E can reduce mean download
time by about 20%.

However, we found that browser traces indicate only few
intances of connections over which requests were pipelined.
We believe that since the pipelining efficiency of the
browser was low (as indicated earlier from browser time-
lines in figure 13(c)), only meagre benefit could currently
be extracted using pipelined connections.

In contrast, observations for the LCNN web site are
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somewhat different. The use of TL-E with non-persistent
connections show very little performance gains. The same
is true for persistent connections that show only slight per-
formance improvement in mean download times when com-
pared to non-persistent connections. We believe that since
the number of connections made is relatively large for the
browser even with persistent mode (an average of more
than 40 connections, see figure 17) the gain offered by elim-
inating slow-start is again negated by a high connection
overhead.

However, using the browser’s pipelined mode with LCNN
lowers the number of connections utilized and also indi-
cates (using browser traces) a somewhat better pipelin-
ing efficiency when compared to the web site having static
web content. Figure 16 shows that an improvement with
pipelined mode was more evident when using the trans-
port level enhancement (TL-E). We found an average re-
duction of more than 15% in mean download times of the
web browser when using the pipelined mode with TL-E.
The average number of connections is reduced from 109 in
non-persistent mode to an average of just 24 (see figure
17).

An average 15-20% improvement in mean download
times for both static and dynamic content over GPRS with
pipelined connections is encouraging, taking into account
the low pipelining efficiency in mozilla. We believe that
greater benefit can be achieved if browsers pipeline their
requests more aggressively. Furthermore, these measure-
ments were taken under good radio conditions. The TCP-
layer enhancements result in faster recovery from packet
loss, which will provide additional improvement in typical
usage.

Further, we find that a reduction in the number of con-
nections is advantageous not only due to low-bandwidth
nature of the GPRS links but also because it mitigates
the overall control and associated transactional (3-way
TCP handshake) overhead with each additional connec-
tion. Thus we infer that aggressive pipelining of requests
over browser connections reduces overall connection (con-
trol and transactional) overhead, and combined with the
transport level enhancement (TL-E) can result in signifi-
cant improvement in web download times.

VII. RELATED WORK
A. Measurements of other Wide-area Wireless networks

Measurements taken from a number of other wide-area
wireless networks, including GPRS, are available (8], [14],
[15], [6], [38].

For GPRS-related measurements: A. Gurtov et al. [38]
show RTTs for an unloaded GPRS network in Finland to
be in the range of 500ms-1100ms with a typical value of
around 700ms. They claim an improvement of about 200ms
from measurements last conducted in [39]. They validate
presence of high amount of GPRS downlink buffering — of
about 50kbytes. P. Stuckmann et al. in [6] conduct similar
measurements in Libertel-Vodafone GSM/GPRS network
in Maastricht, The Netherlands. The tests, though not
extensive, indicate a very high initial RT'Ts (> 1s) by using
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pings that also substantiate our claim of high round-trips
in GPRS.

For other networks, P. Sinha et al. present measurements
for wide-area CDPD network [33]. They show that CDPD
links have high RTTs (800ms-4sec.) and low measured raw
throughputs (of about 19kb/s). Each CDPD channel can
be shared by 1-30 users, while effective throughput of a
channel would not exceed 12kb/s. Elan and Hari Bal-
akrishnan evaluated performance of Metricom Richochet
wide-area wireless network [24], where minimum RTTs of
the order of 280-300ms were found under lightly loaded
conditions. This could go as high as 300ms to 5s during
loaded condition (e.g. during bulk transfer). TCP through-
put was measured between 15kb/s and 30kb/s for various
packet sizes while raw (UDP) throughput was measured
between 50-58 kb/s (with no reverse channel contention).
TCP performance, in general, degrades due to reverse chan-
nel contention and large RTT variations (between 250 to
5000 ms).

T. Alanko et al. in [14] present link characterization
results for GSM networks. Their findings show that GSM
links have high RTTs (>1s) with transfer rates around 700-
900 bytes/s (without compression). GSM links were found
to be relatively stable and reliable but sensitive to external
noise and interference that could lead to long delays. When
affected by such environmental factors, file transfer pefor-
mance was hindered. A drawback with their measurement
was that it was made in a “normal office environment”,
hence results are susceptible to large deviations. Further-
more, measurements were made with a single active con-
nection over the GSM link, and performance with several
active connections was not evaluated.

G. Xylomenos et al. [8] measured RTTs (using ping
tests) for a number of GSM networks located in Berlin,
Oulu and Helsinki and found RTTs to be higher than 600ms
and standard deviation more than 20ms. Large file trans-
fer experiments revealed higher RTTs (up to 12s), which is
of similar order to that of GPRS. Typical link level (RLP-
level) disruptions in GSM (link level resets or some seri-
ous protocol violations) were shown to last for couple of
seconds, which disrupts TCP transfers for over 6-12 sec-
onds. To reduce link level resets, it claims that maximum
number of re-transmission rounds can be increased. An-
other interesting revelation in [8] was the evidence of out-
of-order packets released in GSM (which means GSM RLP
is not fully reliable), contrary to our experience with GPRS
where we have recorded no such occurance of packet-level
reordering. In [15], R. Lugwig et al. show that GSM RLP
usually recovers from losses before TCP timers can expire,
but suffer from high variability in RTT values. This con-
curs with our observation of GPRS networks. Evidence of
TCP spurious timeouts and spurious fast re-transmits were
also shown to occur over GSM.

B. TCP Performance over Wireless

In this section, we quickly review TCP enhancement
schemes over wireless. A plethora of solutions exists for ele-
vating TCP performance over wireless links; however, none
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Proposals SNOOP[22] M-TCP[32] & Freeze-TCP[34] FDA[36] WTCP[33] W-TCP[26]
I-TCP[31]
TCP change in
end-systems required no no yes no yes no
Avoids Excess Queuing
at Proxy/Base Station no no no yes yes no
Faster Start-up
for short flows no no no no yes no
Maintains TCP Fairness
for all types TCP flows no no no no no no
Handle variable bit
error environment yes yes yes no yes yes
Handle small
link “stalls” no yes no no yes yes
Quick Recovery from
Long Disconnections no yes yes no no yes
Maintains End-to-End
Protocol Semantics yes no yes yes yes yes

Table 2. TCP Enhancements over Wireless — A Comparision

of the schemes have attempted to improve start-up perfor-
mance for TCP flows. A careful examination of the existing
schemes suggests four broadly different approaches to im-
prove TCP performance: link-layer based schemes (both
TCP aware and unaware) (e.g. [22], [35]), split connection
based approaches (e.g. I'-TCP [31], W-TCP [26]) and early
warning based approaches (e.g. FreezeTCP [34]) and fi-
nally those necessitating end system changes (e.g. WTCP
[33], Freeze-TCP [34]).

Snoop [22] is a TCP aware link-layer scheme that ‘sniffs’
packets in the base station and buffers them. If duplicate
acknowledgements are detected, incoming packets from the
mobile host are retransmitted if they are present in a lo-
cal cache. On the wired side, dupacks are suppressed from
the sender, thus avoiding unnecessary fast retransmissions
and the consequent invocation of congestion control mecha-
nisms. The Snoop protocol scheme was originally designed
for wireless LANSs rather than ‘long-thin’ wide-area wireless
links. As such, it does not address the problems of excess
queueing at base stations or proxies. Jian-Hao et al. devel-
oped FDA [36], which uses a Snoop-like strategy, but uses a
novel flow-control scheme which goes some way to prevent
excess queueing. Delayed DupAcks [35] is a TCP unaware
link-layer scheme: during radio losses, it suppresses Du-
pAck’s for some interval d, which unfortunately is difficult
to determine.

The second broad approach is to split the TCP connec-
tion into two sections. This allows wireless losses to be
completely shielded from the wired ones. I-TCP [31] uses
TCP over the wireless link albeit with some modifications.
Since TCP is not tuned to the wireless link, it often leads to
timeouts eventually causing stalls on the wired side. Due to
the timeouts, valuable transmission time and bandwidth is
also wasted. I-TCP also lacks an appropriate flow control
scheme. M-TCP [32] is similar to I-TCP except it better
preserves end-to-end semantics. M-TCP uses a simple zero
window ACK scheme to throttle transmission of data from
the wired sender. This leads to stop-start-stop bursty traf-
fic on the wired connection, and the lack of buffering in the
proxy can lead to link under-utilization for want of packets
to send.

Ratnam and Matta propose W-TCP [26], which acknowl-
edges a packet to the sender only after receiving an ac-
knowledgement from the mobile host. W-TCP changes the
timestamp field in the packet to account for the time spent

idling at the base station. On the other hand, WTCP
[33] is an end-to-end scheme which primarily uses inter-
packet separation as the metric for rate control at the re-
ceiver. Congestion related loss detection is also provided
as a backup mechanism. The drawback in WTCP is that
it entails end-hosts TCP changes.

The third broad approach identified covers schemes that
use various kinds of early warning signals. Freeze TCP uses
Zero Window Probes (ZWP) like M-TCP, but is proactive
since the mobile host detects signal degradation and sends
a Zero Window Warning Probe. The warning period i.e.
the time before which actual degradation occurs should
be sufficient for the ZWP to reach the sender so that it
can freeze its window. The warning period is estimated
on the basis of RTT values. One pitfall is the reliability
of this calculation and Freeze-TCP’s inability to deal with
sudden random losses. Furthermore, Freeze-TCP requires
end-system changes.

C. Wireless Web Performance

A number of significant research studies have looked into
the web performance, in general [10], [11], [13], and more
specifically into wireless web performance [29], [23], [30].

J. C. Mogul et al. [10] discuss HTTP throughput and
latency problems and show that each document and inline
image requires a minimum of (2 x RTT) for transfer. They
also propose the use of persistent connections and pipelin-
ing to improve overall web performance. H. Nielsen et al.
in [11] clearly demonstrate benefits of pipelined implemen-
tations, while J. C. Mogul et al. in [13] show that use
of delta encoding and compression between client browser
and a proxy can ‘remarkably’ improve web performance.

M. Liljeberg et al. developed Mowgli system [30] for
use with GSM, which uses its own proprietary protocol
called Mowgli HTTP (MHTTP), to improve upon the lim-
itations of TCP and HTTP over GSM. The protocol opti-
mizes use of bandwidth using binary encoding in MHTTP,
compresses text and images and also uses selective filter-
ing for added optimization. T. B. Fleming et al. in [29]
use a similar scheme but also include prefetching schemes
in their wireless world wide web proxy server and proto-
col using their new Multiple Hypertext Stream Protocol
(MHSP). However, both the schemes necessitate a client
side software update. Explicit Loss Notification (ELN)
[23] improves web performance using a scheme by which
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senders are informed about the correct reason for a loss or
reasons unrelated to network congestion (e.g., due to wire-
less bit errors). Thus it decouples sender retransmissions
from congestion control.

Commercial products that improve upon the current
GPRS performance are also available. A GPRS Acceler-
ator launched by Firsthop [42] claims faster data transfers
over GPRS. Their approach is to reduce data exchange
and optimize protocols appropriately over the wireless link.
However, it is unclear how this data reduction is achieved
- using delta encoding and compression [13] or other so-
phisticated data (and header) compression techniques or
by simply filtering/transcoding at the proxy. Nevertheless,
either of these approaches would necessitate a client-side
software update. This approach is contrary to the one used
in our mobile proxy, which clearly obviates the need for any
client-side stack or software update. A client-side update
that makes use of delta compression over the wireless link
could prove highly useful to low bandwidth GPRS users.
In the same way, data transcoding proxies can also be ad-
vantageous to low-end devices.

It is questionable if pre-fetching schemes over GPRS
could be useful. However, a problem germane to predictive
prefetching as compared to the deterministic ones is that
the former operates on ‘guesses’ that might waste the lim-
ited wireless link bandwidth for needless downloads. This
is certainly an expensive proposition to the GPRS end-
users, since wireless bandwidth is costly and most pricing
schemes are volume based.

VIII. SUMMARY AND FUTURE RESEARCH

In this paper, we presented the results of GPRS link
characterization measurements over a real GPRS test bed.
These characterization results are based on the measure-
ments conducted over Vodafone UK’s national GPRS net-
work, and from measurements conducted over other GPRS
networks located in UK and other European countries, us-
ing a number of GPRS handsets from different vendors. We
have conducted experiments to examine the performance
of protocols like TCP and web performance (HT'TP) over
GPRS, and have suggested and evaluated improvements.
We summerize the results of this paper as follows:

o GPRS round-trip times are large and variable. When
packets are sent in a burst, only the first packet tends to
experience high jitter.

o the throughput available over GPRS is highly variable
and can fluctuate rapidly, depending upon the radio con-
ditions.

¢ brief link outages are a commonplace, even when the
mobile host is stationary.

» packet loss over GPRS is relatively rare, due to the robust
error recovery employed in the RLC (Radio Link Control)
layer. No packet re-ordering instances have been observed.
e TCP over GPRS achieves poor performance for short
connections due to the pessimistic nature of the slow-start
coupled with high link RTTs. TCP SACKs was found to be
highly effective over “long-thin” GPRS links, as it improves
link utilization by avoiding unnecessary re-transmissions of
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packets during loss recovery. The in-order nature of GPRS
RLC packet delivery makes it quite TCP friendly.

o Excess queuing at the GPRS CGSN node with long-lived
flows or multiple flows can result in a grossly unfair dis-
tribution of bandwidth. This can happen while using an
aggressive web browser, where a long flow might lead to ex-
cess queuing over the link, impeding transfer of ‘important’
objects over the link.

e An enhanced HTTP proxy located close to the wired-
wireless border improves Web performance without necessi-
tating any client-side software updates. A static congestion
window control technique in TCP was found to be fruitful,
and use of pipelined connections is certainly advantageous
to web performance over GPRS.

In the future, we intend to implement and evaluate
other optimization schemes such as delta encoding, data
transcoding/filtering as well as deterministic prefetching
to see what quantitative benefit could be achieved by us-
ing such schemes in order to improve web performance over
GPRS. These would require modifications to client soft-
ware.

We are also implementing our transport level enhance-
ments in a generic transparent TCP proxy that will pro-
vide benefit to all TCP flows (e.g. IMAP/POP3, FTP
etc) rather than just HTTP flows. We are investigating
improved error recovery mechanisms and flow control tech-
niques to use in this proxy.

An other issue crucial to WWW performance is how web
browsers be made to adapt to underlying network hetero-
geneity. As TCP connections continue to span a number of
disparate links — wired as well as wireless — user-perceived
performance will increasingly depend upon how browsers
can attune their performance to adapt to the underlying
network.
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