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Abstract. In this paper we study the structural evolution of the AS
topology as inferred from two different datasets over a period of seven
years. We use a variety of topological metrics to analyze the structural
differences revealed in the AS topologies inferred from the two different
datasets. In particular, to focus on the evolution of the relationship be-
tween the core and the periphery, we make use of a recently introduced
topological metric, the weighted spectral distribution.
We find that the traceroute dataset has increasing difficulty in sampling
the periphery of the AS topology, largely due to limitations inherent to
active probing. Such a dataset has too limited a view to properly observe
topological changes at the AS-level compared to a dataset largely based
on BGP data. We also highlight limitations in current measurements
that require a better sampling of particular topological properties of the
Internet. Our results indicate that the Internet is changing from a core-
centered, strongly customer-provider oriented, disassortative network, to
a soft-hierarchical, peering-oriented, assortative network.

1 Introduction

The Internet continuously evolves: new networks are created, old ones disap-
pear, and existing ones grow or merge. At the same time, business dynamics
cause interconnections between networks to change. Both these effects cause the
underlying topology of the Internet to be in a constant state of flux. Studying the
evolution of this topology is important as it impacts a variety of factors relevant
to network users and application designers, such as scalability and performance.
For example, different network structures affect the speed of propagation of both
legitimate (e.g., routing) and illegitimate (e.g., hijacked prefixes) information.

Most efforts to understand the structure of the Internet have focused on
the Autonomous System (AS) topology. There are over 30,000 ASes today, each
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representing a single administrative authority with its own network and peer-
ing policies. Thus, the AS topology is a graph reflecting the interconnections
between the networks that compose the Internet. Relationships between ASes
are typically classified as either customer-provider, sibling-sibling or peer-peer.
Note that as the Internet has grown, many larger networks have come to be
represented as more than one AS (i.e., to advertise more than one AS number).
As a result, the AS topology may contain edges that do not directly represent
a business relationship between two distinct networks. However, the AS topol-
ogy serves as an available, albeit approximate, measure of the complexity of the
Internet’s structure at the network level.

Characterizing the structure of the AS topology has proven to be difficult,
but it is usually simplified to identifying a richly connected core, including the
fully meshed tier-1 Internet Service Providers (ISPs), providing connectivity for
the large number of smaller ISPs and customer networks at the periphery of
the network. These edge ISPs may connect to only a single upstream provider,
or may connect to many for resilience, performance and cost reasons. Recent
work has shown that the trend is for networks to try to connect directly in
the periphery of the Internet, rather than to the core, bypassing the largest
providers [8]. However, no direct evidence of a corresponding large-scale change
in the topological structure had been shown.

In this paper we analyze the evolution of the AS topology using two signifi-
cant datasets, each generated by a different measurement technique: the Skitter
dataset using traceroute, and the UCLA dataset using BGP. We are aware that
there are problems with biased measurements in both data sets and one of the
aims of this paper is to highlight such differences and biases, which could poten-
tially affect many simulations, protocol designs and publications based on these
datasets. However, we still aim to draw conclusions mindful of these drawbacks
in this paper. We focus on the overall structure of the topology, rather than
local features such as node degree, using a recently introduced metric called the
weighted spectral distribution (WSD) [7]. This allows us to distinguish topologies
with different mixing properties, i.e., how much the core can be differentiated
from the periphery of the topology. A clear distinction between the core and
the periphery is believed to be one of the strongest features of the Internet
topology [19, 20].

This paper makes three contributions. First, we explain how the WSD depicts
the mixing between core and periphery in the AS topology (Section 2). Second,
we find that the AS topology has evolved from a highly hierarchical graph with
a clearly distinct core towards a “softer” hierarchy where the core and non-core
parts of the topology are less distinct (Section 3). Third, we show how the two
different measurement techniques, traceroute and BGP, both provide limited
but complementary coverage of the AS topology: the traceroute dataset has
increasing difficulty sampling the periphery, while the BGP dataset can improve
its sampling of the transit part of the Internet (Section 4). Section 3.1 studies
the evolution of the AS topology seen in the Skitter dataset, and Section 3.2
then studies the evolution of the AS topology seen in the UCLA dataset. We



compare these views of the AS topology in Section 4, where we also discuss the
likely evolution of the ”real” AS topology.

We are aware of the problems associated with traceroute sampling and we are
also aware of the efforts in DIMES project to remedy these issues7, however this
data is currently only available since January 2007 and hence not long enough
for a thorough comparison of Internet topology evolution.

2 Theoretical background

The weighted spectral distribution (WSD) is a graph theoretic metric based on
the random walk cycles in a graph. A random walk starts at a node, say u, with
degree du, and transitions to a connected node with probability 1/du. After
several such steps, say N , if the random walk returns to the starting node, then
this is called a random walk cycle of length N . The WSD takes the struture
of the graph to be all such random walk cycles as expressed via the normalised
Laplacian (roughly speaking, how the graph appears over short walks taken from
every node). The normalised Laplacian matrix of a graph, G, defined as:

L(G)(u, v) =















1, if u = v and dv 6= 0

− 1√
dudv

, if u and v are adjacent

0, otherwise

(1)

Expressing L using the eigenvalue decomposition,

L(G) =
∑

i

λieie
T

i (2)

where ei and λi are the eigenvalues and eigenvectors of L respectively8. The
WSD is based on the following theorem from [7]:

Theorem 1. The eigenvalues, λi, of the nomalised Lapacian matrix for an undi-

rected network are related to the random walk cycle probabilities as:

∑

i

(1 − λi)
N =

∑

C

1

du1
du2

. . . duN

(3)

where dui
is the degree of node u1 and u1 . . . un denotes a path from node u1 of

length n ending at node n, i.e. an n-cycle. The number of N-cycles is related to
various graph properties. The number of 2-cycles is just (twice) the number of
edges and the number of 3-cycles is (six times) the number of triangles. Hence
∑

i
(1 − λ)3 is related to the clustering coefficient9. An important graph property

7 http://www.netdimes.org
8 These are in general different from the eigenpairs of the walk Laplacian.
9 The clustering coefficient, γ(G), is defined as the average number of triangles divided

by the total number of possible triangles

γ(G) = 1/n
X

i

Ti

di(di − 1)/2
, di ≥ 2 (4)



is the number of 4-cycles. A graph which has the minimum number of 4-cycles,
for a graph of its density, is quasi-random, i.e., it shares many of the properties
of random graphs, including, typically, high connectivity, low diameter, having
edges distributed uniformly through the graph, and so on. For a proof see [7].
Theorem 1 states that the probability of taking a random walk of length N that
returns to the original node, is directly related to the weighted eigenvalues of
L. This probability is the ’local structure’ of a node, i.e. its local connecivity.
Noting that the λi are unique 10 to a graph it can be seen that the WSD gives a
”thumbprint” of the graph structure. In [7] the distribution of eigenvalues, f(λ =
k), rather than the eigenvalues themselves is used to form a graph metric (we
refer the reader to [7] for details). Specifically the weighted spectral distribution

is then defined as:

WSD : G → ℜ|K|{k ∈ K : ((1 − k)Nf(λ = k))} (5)

Where K is the set of bins used to estimate the distribution. Of interest in this
paper is the spectral clustering coefficient, ω(G, 3) defined as:

ω(G, 3) =
∑

K

((1 − k)3f(λ = k)) (6)

which gives a measure of the proportion of paths length 3 in the network which
form triangles. As shown in [7] the WSD and ω(G, 3) can be used for estimating
the parameters of a topology generator that produce graphs which are close (in
the WSD sense) to the target graph. It is also shown in [7](Section V.A) how the
WSD represents the core and periphery of a graph in terms of easily identifiable
peaks. However, in this paper we apply the technique for tracking the evolution
of the AS level graph. The WSD enables us to view the distinct features of the
core and periphery more clearly than in the past.

3 Evolution of the Internet

In this section we look at the evolution of the Internet seen through the two
datasets, over a total period of more than 7 years and 3 joint years of the two
datasets. We rely on a number of topological metrics presented in [10].

3.1 Skitter topology

The first dataset we study consists of 7 years of traceroute measurements, start-
ing in January 2001, collected by the CAIDA Skitter project [12]. Traceroutes
are initiated from several locations in the world toward a large range of destina-
tion IP addresses. The IP addresses reported in the traceroutes are mapped to

where Ti is the number of triangles for node i and di is the degree of node i.
10 This is not strictly true but the proportion of co-spectral graphs is thought to be

insignificant.



AS numbers using RouteViews BGP data. We use a monthly union of the set of
all unambiguous links collected on a daily basis by the project.11
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Fig. 1. Topological metrics for Skitter AS topology.

Figure 1 presents the evolution over the 7 years of a set of topological metrics
computed on the AS topology of the Skitter dataset.

The number of ASes seen by Skitter exhibits abrupt changes during the first
40 months. At the end of those 40 months, changes were made in the way probing
was performed.12 The large increases in the number of ASes, observed during
the first 40 months, are due to new monitors being added to the system. After
each increase in the number of ASes a smooth decrease follows, corresponding to
a subset of the IP addresses of the Skitter list that no longer respond to probes,
e.g., because a firewall starts blocking the probes. The variations in the number

11 A link may be ambiguous for a variety of reasons, principally due to problems re-
solving an IP address to an AS number. The Skitter IP address list includes some
IP addresses which matched a prefix with two or more origin ASes. This can happen
for a number of reasons such as a provider stripping the customer AS from the AS
path. Since it is not known which AS is the true origin, the dataset lists both ASes.
We filter out such instances as it is not possible to identify the authenticity of such
links.

12 These changes were subject to caveats and bugs affecting measurements, and, thus,
the values of the resulting metrics at month 40. For more information we refer to
http://www.caida.org/data/active/skitter aslinks dataset.xml/.



of ASes seen by Skitter are not caused by changes in the AS topology itself, but
are artifacts of the probing. Such artifacts should be reported and accounted for
in topological studies.

The number of AS edges and the average node degree both follow the behavior
of the number of ASes seen. We only observe a large increase in the number of
links during the first few months, during which new monitors are added resulting
in new regions of the Internet being covered by Skitter measurements. Given the
difficulty of building a list of destination IP addresses that will answer probes and
cover most of the ASes, especially at the edge [2], a new monitor will typically
discover new ASes close to its location.

The AS edges that Skitter no longer observes probably still exist but can no
longer be seen by Skitter due to its shrinking probing scope. To be effective in
observing topology dynamics, traceroute data collection must update destination
lists constantly to give optimal AS coverage. This limitation of Skitter is visible
in the decreasing average node degree. We would expect to see a net increase
in the average node degree as ASes tend to add rather than remove peering
links, and the results of the BGP data support this view. If the sample of the
AS topology of the Skitter measurements was not worsening, we should see an
increasing average node degree.

The lower three graphs of Figure 1 present the evolution of the clustering
coefficient, the assortativity coefficient, 13 and the weighted spectrum with N =
3, ω(G, 3) (related to the topology’s clustering)14. We observe that changes were
made to the way Skitter probes the Internet around month 40: the metrics take
an unusual value, very small for the clustering and very high for assortativity.
The values of the clustering and the assortativity coefficients fluctuate wildly
over the 7 years, as if the sampling of the AS topology by Skitter at the AS-
level is not stable. Neither the clustering nor the assortativity seem to decrease
or increase over the 7 years. The value of ω(G, 3) shows a long-term increasing
trend, similar to the decreasing trend in the average node degree. Although
related to the clustering, ω(G, 3) gives different weights to different parts of the
topology. The subset of the topology that corresponds to duplicated topological
structures, e.g. different ASes at the periphery that connect to the same set
of upstream providers, receives a smaller weight than the rest. The increasing
ω(G, 3) is likely to be caused by the shrinking network sampled by Skitter, that
contains more 3-cycles on average.

Figure 2(a) presents four WSDs sampling the entire duration of the Skitter
dataset. Notice the eigenvalues at zero, indicating the presence of several discon-
nected components. The WSD in January 2002 shows a single peak at λ = 0.4.
As time passes, a second peak appears around λ = 0.3. The WSD computed

13 Assortativity is a measure of the likelihood of connection of nodes of similar de-
grees [14]. This is usually expressed by means of the assortativity coefficient r: as-
sortative networks have r > 0 (disassortative have r < 0 resp.) and tend to have
nodes that are connected to nodes with similar (dissimilar resp.) degree.

14 See [7] and [9] for a detailed explanation on the mathematical measures and different
datasets.
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Fig. 2. Clustering and spectral features of Skitter topology

from the Skitter data suggests an Internet moving from a less hierarchical to
more hierarchical topology, as if the core was becoming more dominant. This
contradicts current observations that the AS topology is becoming less hierar-
chical, with increasing numbers of ASes peering at public Internet Exchange
Points (IXPs) to bypass the core of the Internet [8].

To understand the unexpectedly dominant core seen in the Skitter dataset,
we rely on the k-core metric. A k-core is defined as the maximum connected sub-
graph, H, of a graph, G, with the property that dv ≥ k ∀v ∈ H. As pointed out
by [1] and [3] the k-core exposes the structure of a graph by pruning nodes with
successively higher degrees, k, and examining the maximum remaining subgraph;
note this is not the same as pruning all nodes with degree k or less. Figure 2(b)
shows the proportion of nodes in each k-core as a function of k. There are 84
plots shown, but as can be seen there is little difference between each of them,
demonstrating that the proportion of nodes in each k-core is not fundamentally
changing over time. The WSD on the Skitter data is therefore not really observ-
ing a more dominant core, but a less well-sampled edge of the AS topology. We
provide explicit evidence in Section 4 that Skitter has increasing problems over
time to sample the non-core part of the topology.

There is a practical explanation for the sampling bias of Skitter: the Skitter
dataset is composed of traceroutes rooted at a limited set of locations, so the
k-core is expected to be similar to peeling the layers from an onion [1]. From
a topology evolution point of view, Skitter’s view of the AS evolution is incon-
clusive, due to its sampling bias. Skitter is not sampling the periphery of the
Internet and so cannot see evolutionary changes in the whole AS topology. Based
on our evidence, we cannot make claims about the relative change of the core
compared to the edge, as we can with the UCLA dataset.

We insist on the fact that the purpose of this paper is not to blame the Skitter
dataset for its limited coverage of the AS topology, as it aims at sampling the
router-level topology. Datasets like Skitter that rely on active probing do provide



some topological information not visible from BGP data, as will be shown in
Section 4.

3.2 UCLA

We now examine the evolution of the AS topology using 52 snapshots, one per
month, from January 2004 to April 2008. This dataset, referred to in this paper
as the UCLA dataset, comes from the Internet topology collection15 maintained
by Oliviera et al. [16]. These topologies are updated daily using data sources
such as BGP routing tables and updates from RouteViews, RIPE,16 Abilene17

and LookingGlass servers. Each node and link is annotated with the times it was
first and last observed. Note that due to the multiple sources of data used by the
UCLA dataset, there is a risk of pollution and bias when combining such differing
data sources, which may contain inconsistencies or outdated information.
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Fig. 3. Topological metrics for UCLA AS topology.

Figure 3 presents the evolution of the same set of topological metrics as
Figure 1, over 4 years of AS topologies in the UCLA dataset.

15 http://irl.cs.ucla.edu/topology/
16 http://www.ripe.net/db/irr.html
17 http://abilene.internet2.edu/
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Fig. 4. Clustering and spectral features of UCLA topology

The UCLA AS topologies display a completely different evolution compared
to the Skitter dataset, more consistent with expectations. As the three upper
graphs of Figure 3 show, the number of ASes, AS edges, and the average node
degree are all increasing, as expected in a growing Internet.

The increasing assortativity coefficient indicates that ASes increasingly peer
with ASes of similar degree. The preferential attachment model seem to be less
dominant over time. This trend towards a less disassortative network is con-
sistent with more ASes bypassing the tier-1 providers through public IXPs [8],
hence connecting with nodes of similar degree. Another explanation for the in-
creasing assortativity is an improvement in the visibility of non-core edges in
BGP data. We will see in Section 4 that the sampling of core and non-core edges
by UCLA and Skitter biases the observed AS topology structure. Contrary to the
case of Skitter, ω(G, 3) for UCLA decreases over time. As a weighted clustering
metric, ω(G, 3) indicates that the transit part of the AS topology is actually be-
coming relatively sparser over time compared to the periphery. Increasing local
peering with small ASes in order to reduce the traffic sent to providers decreases
both the hierarchy induced by strict customer-provider relationships, and in turn
decreases the number of 3-cycles on which ω(G, 3) is based.

If we look closely at Figure 4(a), we see a spectrum with a large peak at
λ = 0.3 in January 2004, suggesting a strongly hierarchical topology. As time
passes, the WSD becomes flatter with a peak at λ = 0.4, consistent with a mixed
topology where core and non-core are not so easily distinguished.

Figure 4(b) shows the proportion of nodes in each k-core as a function of
k. There are 52 plots shown as a smooth transition between the first and last
plots, emphasized with bold curves. The distribution of k-cores moves to the
right over time, indicating that the proportion of nodes with higher connectivity
is increasing over time. This adds further weight to the conclusion that the



UCLA dataset shows a weakening hierarchy in the Internet, with more peering
connections between nodes on average.

4 Reconciling the Datasets

The respective evolutions of the AS topology visible in the Skitter and UCLA
datasets differ, as seen from topological metrics. Skitter shows an AS topology
that is becoming sparser and more hierarchical, while UCLA shows one that is
becoming denser and less hierarchical. Why do these two datasets show such
differences? The explanation lies in the way Skitter and UCLA sample different
parts of the AS topology: Skitter sees a far smaller fraction of the complete AS
topology than UCLA, and even UCLA does not see the whole AS topology [15].
A far larger number of vantage points than those currently available are likely to
be necessary in order to reach almost complete visibility of the AS topology [17].

To check how similar the AS topologies of Skitter and UCLA are, we com-
puted the intersection and the difference between the two datasets in terms of
AS edges and ASes. We used a two-year period from January 2006 until Decem-
ber 2007. In Table 1 we show the number of AS edges and ASes that Skitter and
UCLA have in common during some of these monthly periods (labeled “intersec-
tion”), as well as the number of AS edges and ASes contributed to the total and
coming from one of the two datasets only (labeled “Skit-only” or “UCLA-only”).
We observe a steady increase in number of total ASes and AS edges seen by the
union of the two datasets. At the same time, the intersection between the two
datasets decreases. In late 2007, Skitter had visibility of less than 25% of the
ASes and less than 10% of the AS edges seen by both datasets. As Skitter aims
at sampling the Internet at the router-level, we should not expect that it has a
wide coverage of the AS topology. Such a limited coverage is however surprising,
given the popularity of this dataset. Note that Skitter sees a small fraction of
all AS edges, which is not seen by the UCLA dataset. This indicates that there
is potential in active topology discovery to complement BGP data.

From Table 1, we may conclude that the Skitter dataset is uninteresting. To
the contrary, the relatively constant, albeit decreasing, sampling of the Internet
core by Skitter gives us a clue about which part of the Internet is responsible
for its structural evolution.

In Table 2 we show the number of AS edges belonging to the tier-118 mesh
(labeled “T1 mesh”) as well as other AS edges where a tier-1 appears. More than
30% of the AS edges sampled by Skitter cross at least a tier-1 AS, against about
15% for UCLA. Both dataset see almost all AS edges from the tier-1 mesh. Note
that the decrease in the number of AS edges in which a tier-1 appears in Skitter
is partly related to IP to AS mapping issues for multi-origin ASes [8].

The evolutions of the AS topology observed by the Skitter and UCLA datasets
are not inconsistent. Rather, the two datasets sample differently, the AS topol-

18 We rely on the currently accepted list of 12 tier-1 ASes that provide transit-only
service: AS174, AS209, AS701, AS1239, AS1668, AS2914, AS3356, AS3549, AS3561,
AS5511, AS6461, and AS7018.



Autonomous Systems AS Edges

Time Total Intersect. Skit-only UCLA-only Total Intersect. Skit-only UCLA-only

Jan. 2006 25,301 32.6% 0% 67.4% 114,847 15.4% 5.3% 79.3%
Mar. 2006 26,007 31.6% 0% 68.4% 118,786 14.9% 4.4% 80.7%
May. 2006 26,694 30.5% 0% 69.5% 124,052 13.8% 4.6% 81.5%
Jul. 2006 27,396 29.5% 0% 70.5% 128,624 13.2% 3.7% 83.1%
Sep. 2006 28,108 28.7% 0% 71.3% 133,813 12.6% 3.4% 84.0%
Nov. 2006 28,885 27.9% 0% 72.1% 139,447 12.4% 3.4% 84.2%
Jan. 2007 29,444 27.2% 0% 72.8% 144,721 11.6% 3.1% 85.3%
Mar. 2007 30,236 26.5% 0% 73.5% 151,380 11.2% 3.0% 85.8%
May. 2007 30,978 25.6% 0% 74.4% 157,392 10.5% 2.7% 86.8%
Jul. 2007 31,668 25.9% 0% 86.1% 166,057 10.0% 3.8% 86.2%
Sep. 2007 32,326 24.5% 0% 75.5% 168,876 9 .7% 2.5% 87.8%
Nov. 2007 33,001 23.9% 0% 76.1% 174,318 9 .5% 2.2% 88.3%
Table 1. Statistics on AS and AS edge counts in the intersection of both Skitter and
UCLA datasets, and for each dataset alone.

Skitter UCLA

Time Total T1 mesh Other T1 Total T1 mesh Other T1

Jan. 2006 23,805 66 7,498 108,720 64 19,149
Mar. 2006 22,917 66 7,289 113,555 64 19,674
May. 2006 22,888 64 7,504 118,331 64 20,143
Jul. 2006 21,740 65 7,192 123,842 64 20,580
Sep. 2006 21,400 65 6,974 129,228 64 21,059
Nov. 2006 22,034 66 7,159 134,636 65 21,581
Jan. 2007 21,345 65 6,898 140,216 65 22,531
Mar. 2007 21,366 65 6,774 147,000 65 23,194
May. 2007 20,738 65 6,694 153,156 65 23,769
Jul. 2007 22,972 65 6,838 159,792 65 24,310
Sep. 2007 20,570 64 6,510 164,770 65 24,888
Nov. 2007 20,466 64 6,430 170,431 65 25,480

Table 2. Coverage of tier-1 edges by Skitter and UCLA.

ogy, leading to different bias. A large fraction of the AS topology sampled by
Skitter relates to the core, i.e., edges containing at least a tier-1 AS. With its
wider coverage, UCLA observes a different evolution of the AS topology, with
a non-core part that grows more than the core. The evolution seen from the
UCLA dataset seems more likely to reflect the evolution of the periphery of the
AS topology. The non-core part of the Internet is growing and is becoming less
and less hierarchical. We wish to point out that, despite a common trend to-
wards making a union of datasets in our networking community, such simple
addition is not appropriate for the UCLA and Skitter datasets. Each dataset
has its own biases and measurement artifacts. Combining them blindly will only
add these biases together, potentially leading to poorer quality data. Further re-
search is required in order to devise a correct methodology that takes advantage
of different datasets obtained from different sampling processes.

The above observations suggests that the Internet, once seen as a tree-like,
disassortative network with strict power-law properties [6], is moving towards
an assortative and highly inter-connected network. Tier-1 providers have always



been well connected, but the biggest shift is seen at the Internet’s periphery
where content providers and small ISPs are aggressively adding peering links
among themselves using IXPs to avoid paying transit charges to tier-1 providers.
Content distribution networks are partly the reason behind such changes [13].

A different view of the Internet evolution can be obtained using the WSD,
shown in Figures 2(a) and 4(a). One possible cause for this behavior is increased
mixing of the core and periphery of the network, i.e. the strict tiered hierarchy is
becoming less important in the network structure. This is given further weight by
studies such as [15] which show that the level of peering between ASes in the In-
ternet has greatly increased during this period, leading to a less core-dominated
network. Given that a fraction of AS edges are not visible from current datasets
and that visibility is biased towards a better visibility of customer-provider peer-
ing relationships, we believe that our observations actually underestimate the
changes in the structure of the AS topology. Using a hierarchical and preferen-
tial attachment-based model to generate synthetic AS topologies is likely to be
less and less justified than ever. The AS topology structure is becoming more
complex than in the past.

5 Related work

In this section we outline related work, classified into three groups: evolution of
the AS topology, spectral graph analysis of the AS topology, and analysis of the
clustering features of the AS topology.

Dhamdhere and Dovrolis [4] rely on available estimation methods for type
of relationships between ASes in order to analyze the evolution of the Internet
ecosystem in last decade. They believe the available historic datasets from Route-
Views and RIPE are not sufficient to infer the evolution of peering links, and
so they restrict their focus to customer-provider links. They find that after an
exponential increase phase until 2001, the Internet now grows linearly in terms
of both ASes and inter-AS links. The growth is mostly due to enterprise net-
works and content/access providers at the periphery of the Internet. The average
path length remains almost constant mostly due to the increasing multi-homing
degree of transit and content/access providers. Relying on geo-location tools,
they find that the AS ecosystem is now larger and more dynamic in Europe
than in North America. In our paper we have relied on two datasets, covering
a more extensive set of links and nodes, in order to focus on structural growth
and evolution of the Internet. We use a large set of graph-theoretic measures in
order the focus on the behavior of the topology. Due to inherent issues involved
with inference of node locations and types of relationships [11], we treat the AS
topology as an undirected graph.

Shyu et al. [18] study the evolution of a set of topological metrics computed
on a set of observed AS topologies. The authors rely on monthly snapshots ex-
tracted from BGP RouteViews from 1999 to 2006. The topological metrics they
study are the average degree, average path length, node degree, expansion, re-
silience, distortion, link value, and the Normalized Laplacian Spectrum. They



find that the metrics are not stable over time, except for the Normalized Lapla-
cian Spectrum. We explore this metric further by using WSD.

Oliveira et al. [16] look at the evolution of the AS topology as observed from
BGP data. Note that they do not study the evolution of the AS topology struc-
ture, only the nodes and links. They propose a model aimed at distinguishing
real changes in ASes and AS edges from BGP routing observation artifacts. We
use the extended dataset made available by the authors, in addition to 7 years
of AS topology data from an alternative measurement method.

6 Conclusions

In this paper we presented a study of two views of the evolving Internet AS
topology, one inferred from traceroute data and the other from BGP data. We
exposed discrepancies between these two inferred AS topologies and their evo-
lution. We reconciled these discrepancies by showing that the topologies are not
directly comparable as neither method sees the entire Internet topology: BGP
data misses some peering links in the core which traceroute observes; traceroute
misses many more peering links than BGP in the periphery. However, traceroute
and BGP data do provide complementary views of the AS topology.

To remedy the problems of decreasing coverage by the Skitter traceroute
infrastructure and the lack of visibility of the core by UCLA BGP data, signif-
icant improvements in fidelity could be achieved with changes to the existing
measurement systems. The quality of data then collected by the traceroute in-
frastructure would benefit from greater AS coverage, while the BGP data would
benefit from data showing intra-core connectivity it misses today. We acknowl-
edge the challenges inherent in these improvements but emphasize that, without
such changes, the study of the AS topology will forever be subject to the va-
garies of imperfect and flawed data. Availability of traceroute data from a larger
number of vantage points, as attempted by the Dimes project, will hopefully
help remedy these issues. However, even such measurements have to be done on
a very large scale, and ideally performed both from the core of the network (like
Skitter), as well as the edge (like Dimes). Efforts in better assessment of the
biases inherent to the measurements are also necessary.

In an effort to provide a better perspective on the changing structure of the
AS topology, we used a wide range of topological metrics, including the newly
introduced weighted spectral distribution. Our analysis suggests that the core of
the Internet is becoming less dominant over time, and that edges at the periph-
ery are growing more relative to the core. The practice of content providers and
content distribution networks seeking connectivity to greater numbers of ISPs
at the periphery, and the rise of multi-homing, both support these observations.
Further, we observe a move away from a preferential attachment, tree-like disas-
sortative network, toward a network that is flatter, highly-interconnected, and
assortative. These findings are also indicative of the need for more detailed and
timely measurements of the Internet topology, in order to build up on works such



as [5], focusing on the economics of the structural changes such as institutional
mergers, multi-homing and increasing peering relationships.
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