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Abstract. As computers become faster and networks’ bandwidth becomes higher
it is increasingly important to consider the latency between nodes when selecting
where to deploy an application in a distributed computing system.

This paper describes a new algorithm for performing server selection for complex
multi-node tasks. Our major focus is on selecting several servers simultaneously,
with the location of the servers being constrained inter-dependently, for example
‘ far(near(S1; S2); near(S3; S4); C1)’ to request serverS1 near to serverS2,
serverS3 near toS4 and both pairs of chosen servers far from one another and far
from clientC1. Our system is built over a database of server locations determined
by a network location algorithm such as GNP.

We present results showing that the algorithm performs more accurate and faster
searches than a user could hope to achieve by selecting one server at a time. We
also show that the algorithm is many times faster than a brute-force search for the
best possible solution, without a drop in accuracy. Further analysis is presented
regarding the best parameter settings for the heuristic algorithm, and investigating
the trade-offs between the dimensionality of the co-ordinate based location space,
the accuracy of the query results and query processing time.

1 Introduction

In the XenoServers [2, 14] project we are building a public infrastructure for wide-area
distributed computing, creating a world in which XenoServer execution platforms are
scattered across the globe at well-connected points in the network and available for use
by any organization and by any member of the public. The platform will host a diverse
range of networked tasks, but underpinning all of these is the expectation thatnetwork
locationis the key factor in deciding which XenoServer to use. This is because selecting
a suitable location allows the user to minimize the latency between the service that they
deploy and the systems with which it interacts: as computers become faster and network
bandwidths grow higher then latency will come come to dominate the performance of
distributed systems.

In a previous paper we introduced XenoSearch [29], a distributed system for se-
lecting a server that is close to a specified point in the network: XenoSearch uses a
network location service [30] to map servers to points in a multi-dimensional space
and then distributes parts of this space between a number ofXenoSearchnodes for
load-balancing and replication. XenoSearch is sufficient to deal with deploying simple
services in which only a single server needs to be selected – for instance placing an



interactive game server at a point which is equidistant between the players, or placing a
proxy for a mobile device close to its current point of attachment.

In this paper we look at the more complex problem of locating groups of machines
to host jobs which require multiple XenoServers on which to operate, such as hosting a
set of back-end and front-end components in a distributed web service. Network loca-
tion remains the key requirement in selecting the servers – for instance, in this example,
choosing widely distributed machines to host replicas of a web site.

We proceed, in Section 2, to introduce our query language. In outline, the user
provides an expression such as ‘far(near(S1; S2); near(S3; S4); C1)’ to indicate that
four servers are to be found (S1–S4), thatS1 should be located close toS2, S3 close
to S4 and that these two pairs should be far from one another and also far from a
specified clientC1. These two primitives, ‘near’ and ‘far’ aim to capture many of the
requirements which arise when deploying distributed systems: ‘near’ terms are used to
cause clustering (e.g. for low-latency communication), whereas ‘far’ terms are used to
encourage dispersion (e.g. to make replica-failures independent).

In Section 3 we present a new algorithm for selecting servers which match queries.
Rather than returning a single binding fromS1–S4 to actual servers we return a ranked
set of bindings suggesting a number of possibilities. As with Internet search engines,
this allows the user to select from the list, or to explore the options presented according
to some other metric – for instance, the cost that the server operators would charge.

In Section 4 we assess the performance of the new algorithm. We compare it against
two alternatives. The first is a brute-force approach which performs an exhaustive search
of all possible bindings – although impracticable, this lets us compare the performance
of our algorithm against an ‘optimal’ server selection. Our second comparison is with a
server-by-server approach, representing the best that a client could achieve by making
a series of invocations on our original single-server-selection XenoSearch system. Our
results show that (i) we can achieve search qualities comparable with the brute-force
approach while using only a fraction of the computational time, and that (ii) results
obtained by the server-by-server approach are substantially poorer, confirming the need
for co-allocation of multiple servers.

Section 5 details related work drawn from the Grid computing, resource discovery
and spatial databases communities, highlighting in particular the differences between
the kinds of query that our language can express and the kinds of query that can be
performed using extensions to SQL. The key difference is that existing spatial query
languages tend to search for data which meets boolean criteria, such as “find two points
within 10 units of one another”, whereas our system tries to capture the user’s goals at
a higher level and to allow effective ranking of results.

Finally, Section 6 concludes with an implementation status report and describes our
plans for future work in this area.

2 Query Language

Here we define our query language for the specification of spatial queries. Location re-
quirements are defined recursively using the primitives of disjunction (_), conjunction



far(near((C1; C2; S1); near(S3; S4)) ^
far(near(C1; C3; S2); near(S3; S4)) ^

far(near(S5); near(S3; S4))
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Fig. 1. An example query, used for our running example, and the graph generated from it. In the
example, clientC1 is located at(1:5; 1:5), C2 at (0:0; 1:5) andC3 at (1:5; 0:0).

(^), proximity (near(A1; : : : ; An)), distribution (far(A1; : : : ; An)) and terms repre-
senting fixed locations (e.g. clients’ positions in the network –Ci) and free servers to
locate (Si). These queries are preprocessed before the evaluation by our algorithm into
a disjunctive normal form, with each disjunction giving an alternative way to satisfy the
original query.

As a running example we use a simple query which gives only one disjunction. This
is shown in Figure 1 along with a correspondinggraphwhich summaries it. Each of the
nodes in the graph (A : : : D) is known as acluster, these encode thenear(A1; : : : ; An)
terms. Clusters can contain any number offixed locations(e.g. the first two items in
cluster A) andserversto be found (e.g. last item in cluster A). If the cluster contains
fixed locations then it is called aconstrained clusterotherwise afree cluster. The links
between the various clusters arefar relationships, encoding thefar(A1; : : : ; An) terms.
The conjunction (̂ ) operator is encoded by simply combining the graphs that are pro-
duced in each of its branches into a single graph.

The algorithm takes a set of these graphs and tries to assign realmachinesfrom
its index to the free servers, returning a ranked list of various possible configurations.
The algorithm aims (i) to minimize the distance between the selected machines and the
fixed locations in each cluster, while (ii) maximizing the distance between each pair of
clusters separated by afar(: : :) relationship. We return to the exact nature of the ranking
function used in the next section.

In this paper we concentrate on location-based server selection and therefore ex-
clude the discussion of how additional conditions on machine attributes are handled –
this can be incorporated by simply filtering the set of machines considered for assign-
ment. We refer the interested reader to our exposition in XenoSearch [29].
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3 The Algorithm

The algorithm consists of three stages, which are performed for each graph. Stages
one and two deal with coarse-grained assignment of clusters to spatial regions, with
stage one dealing with the constrained clusters and stage two the free clusters. These
stages try to maximize the distance between clusters which are supposed to be far apart.
The third stage deals with the detailed assignment of servers to machines and seeks to
minimize the distances within each cluster.

3.1 Spatial Data Structure

The algorithm works over a data structure that decomposes the location space at a num-
ber of differentlevelsinto 2ld identicalblocksof equal hyper-volume, withl the level
andd the dimensionality of the co-ordinate based location space. For instance, the cur-
rent implementation uses a quad-tree-based data structure [16] to store the locations of
machines within this space. Level 0 summarizes the whole index, level 1 splits each
of the dimensions into two equal halves, level 2 splits each of the dimensions into half
again and so on. An example of a two-dimensional index is shown in Figure 2.

As well as storing the machines’ locations, the data structure can provide sum-
mary information about the number of blocks at each level that are non-empty. These
summaries are used during the initial coarse-grained search in order to ensure that the
selected blocks contain sufficient servers to match the query.

The data structure provides two operations for selecting individual servers:sin-
gleServerNear andsingleServerFar . These take as arguments the number of
servers required, a list of blocks to search and a list of any points we wish the servers
to be near to or far from. These methods are used in the final stage to create the assign-
ments from servers to machines.

3.2 Algorithm Parameters

There are two main parameters which control the results returned by a search. The first
of these,totalTimes, sets the number of separate coarse-grained placements to consider.
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and servers) and FR is the set of far relations, between the clusters in C

Increasing this parameter leads to more possible server assignments being tested at the
expense of a longer running time. The second parameter,numberPerNearGroup, sets
the maximum number of machines to consider when performing fine-grained placement
within each cluster.

The cost function we use to rank the possible assignments is shown in Figure 3. This
aims to give a high cost to assignments in which machines in the same cluster cannot
be placed close together, or in which clusters separated by a far relationship cannot
actually be placed far apart.

The first term calculates the mean distance between the contents of each cluster.
The second term calculates the mean distance between each pair of clusters which are
supposed to be far apart. The scaling factors, such asjFRj, allow costs to be compared
between different graphs, independently of the number of clusters or far relationships
involved. The quantity

p
d is the maximum distance possible between two points if all

co-ordinates are normalized to the range[0 : : : 1]. The functiondistance() calculates
the distance between two points (fixed locations or machines satisfying servers).

3.3 First Stage

The algorithm proceeds in three stages, repeated for each of the graphs that make up
the query. The first stage places the constrained clusters. For each constrained clusters
we find a hyper-cube such that its center is the average point of all the fixed locations in
the cluster and it is exactly large enough to contain all the fixed locations in that cluster.
The blocks that intersect this hyper-cube are considered for assignment to the cluster.
Sometimes one of these blocks will have already been assigned to another cluster; if
that block contains fixed locations from both clusters then we must assign the block to
both clusters. However if it only contains fixed locations from one of the clusters we
assign the block to that cluster and otherwise we assign the block to neither cluster. This
is demonstrated in Figure 4.

3.4 Second Stage

In the second stage of the algorithm we performsimulated annealing[20] with the goal
of minimizing the cost function shown in Figure 3 (estimating server positions, at this
stage, by the center of the block within which they may be placed). At all times, both
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in the initial arbitrary placement and the perturbation steps, we cannot assign a cluster
to a block also assigned to a cluster to which it has a far relation, or to a block with no
machines in the index.

The two transformations which are applied at random in each round are shown in
Figure 5. As is normal for simulated annealing, if a change increases the cost func-

tion by Æf then it is accepted with probabilitye(�
Æf
T ), if it does not increase it then it

is always accepted. We perform this step a number of times for each graph to obtain a
number of graph assignments and run stage three on each of these assignments. We do a
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Fig. 6. The output from stage 2: coarse-grained placement of free clusters with two simulated
annealing runs. Each of the two coarse-grained placements shows the blocks A, B, C, D from
within which machines for those four clusters will be selected.

Stage 3, step 1: CallsingleServerNear/Far for detailed placement

A: S1 ! [M4; M9] B: S2 ! [M6; M4; M5] A: S1 ! [M4; M9] B: S2 ! [M6; M4; M5]
C: S3 ! [M7; M8; M11] D: S5 ! [M2; M1; M10] C: S3 ! [M2; M1; M10] D: S5 ! [M3; M12]

S4 ! [M7; M8; M11] S4 ! [M2; M1; M10]

Stage 3, step 2: Form Server Clusters
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Stage 3, step 3: Form Search Results

�
S1 !M4; S2 !M6; S3 !M7; S4 !M8; S5 !M2

S1 !M9; S2 !M4; S3 !M8; S4 !M11; S5 !M1

�

Fig. 7. The output from stage 3: detailed Server placement, using the two coarse-grained place-
ments from Figure 6

total of totalT imes of graph assignments spread across the different sub-queries to ob-
tain several (hopefully very different) graph assignments. The output, for our example,
of stage 2 is shown in Figure 6.

3.5 Third Stage

The third stage of the algorithm is concerned with mapping the servers to machines in
the index. This is done one cluster at a time (in decreasing number of fixed servers in the



cluster) and initially involves one call tosingleServerNear or singleServer-
Far for the whole cluster. We restrict the blocks searched to the ones assigned to that
cluster by coarse-grained placement. As well as drastically cutting the running time
by never forming the cross product of the server-to-machine assignments, this design
returns a wide variety of alternatives.

We usesingleServerNear for constrained clusters (supplying the co-ordinates
of the fixed locations) andsingleServerFar for free clusters (supplying the centers
of all the other clusters with a far relation to the current one). If there are no results for
a particular server then we hope that a different graph assignment will give a result for
free clusters, for constrained clusters a nearest-neighbor search can be used.

For each cluster we then make maps from servers to machines. The maps are simply
made by making a map of the highest ranked machine, then the second highest and so
on. These are then ranked on total intra-near set distance, making sure we have no
duplicate machines in a map.

Finally, these lists are combined in the same way over all the clusters and ranked us-
ing the global cost function, returning the required number of maps. The third algorithm
stage is demonstrated in Figure 7.

4 Results

This section presents some initial results from this algorithm, using the simplified quad-
tree data-representation described in Section 3.1. The data-set used for realistic distri-
bution of servers is the GNP [21] data-set holding the location of 869 internet hosts
calculated using the GNP network location algorithm using 19 tracers, with up to 18
dimensions.

We compare our algorithm to two other algorithms: thebrute-forcealgorithm, tries
every possible assignment, using the “Ranking Function” described below and so re-
turns the best possible assignments. Thesingle-serveralgorithm attempts to emulate
how a user would best possibly use thesingleServerNear/Far calls and so com-
pares our server co-allocation algorithm to a server-at-a-time approach.

For test purposes we generate a series of example queries, parameterised by a num-
ber of servers to include and a “width” (number of top level near/far terms) of the query.
At the top-level of the query is either a conjunction or a disjunction with two conjunc-
tions below. The number of terms in this logical expression, either near terms or far
terms, is equal to width. Far terms have either a fixed term and one or two free servers
or near terms or just two or three free servers or near terms. Near terms are similar but
only contain fixed terms and servers. A fixed term is a disjunction of one or two fixed
locations. Where we do not give a single query type, the generator picks uniformly
parameters in the range of widths 2 to 4 and servers 1 to 3.

We also define a ranking function, used to compare the algorithms, which given an
assignment of servers to machines and the original query (specified in the first form
given in Section 2 so as to also test the pre-processing stage), gives the total distance
scaled to the range[0; 1). The function works over the structure of the original query,
conjunctions becoming the minimum operator, disjunction the sum operator, near the
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Fig. 8.How changing the numberPerNearGroup parameter affects the accuracy and running time

sum plus the distance between each pair of branches’ average position and far the sum
minus the distance between each pair of branches’ average position.

There are many environments and parameters we may care to test our algorithm
with, these include the actual number of machines in the index (for example the num-
ber of known XenoServers), the dimensionality of the index space, the form of the
queries; particularly the number of servers (free variables) in the query and its exact
shape and the parameters of the algorithm; especiallynumberPerNearGroup and
totalTimes . Each of these we seek to experiment in these results.

Unless otherwise stated we use an index with 200 items in it and average the re-
sults over 1000 different queries generated by the query generator (mixed queries as
described above). The dimensionality of the index space is three dimensions,num-
berPerNearGroup is set to 30 andtotalTimes to 10.

4.1 Algorithm Parameters

Figure 8 shows how the performance and running time of the heuristic algorithm varies
with the numberPerNearGroup parameter. Using the distance function above we
compare both the distance for the highest-ranked result (“first”) and the average over
all of the returned results (“all”) to the same query using the brute-force algorithm. The
results suggest that increasing thenumberPerNearGroup parameter reduces the gap
between the heuristic and ideal algorithm, with diminishing results, at the expense of
the processing time taken.

We also looked at how changing thetotalTimes parameter affects algorithm
performance. As expected there is a direct linear relationship between it and processing
time and increasingtotalTimes gives small drop in in the relative error.

4.2 Query Type

The next area we investigated was how the type of query affected the results. To achieve
this we tried queries with one to three servers and with query widths from one to five.
For each of these we processed 100 queries in an index of 100 items, this is different
than in our other experiments as we needed to cut them down to run in an acceptable



time . These parameters had to be chosen carefully due to theO(Ns) (s = number of
(free) servers in the query) nature of the brute-force algorithm, that we use to compare
to.

The graphs in Figure 9 present the results, the first graph demonstrates that the
“first” results are largely constant in their relative error, whereas the “all” results are
widely differing.

Where there are a low number of servers the “all” results are better than the “first”
results. This is because we are searching for few servers, we only have one far or near.
The placement of this will be quite simple, so each of thetotalTimes attempts will
choose the same assignment of near groups. This means that the algorithm will work
much more like the brute-force algorithm. Normally the heuristic algorithm tries to
produce many varying solutions, whereas the brute-force always picks the most optimal,
but these tend to differ only slightly. In this case the assignment of near groups to the
same place means that we will have the same behaviour in both, so we expect the “all”
results to be good.

For high number of servers and low width we have very constrained queries, with
widths of one and two with three servers. These are inherently hard to process, but at
the same time will often allow many varied solutions of similar distance, so in this case
we have high average relative error in “all”. Finally for high number of servers and high
width we have queries of medium constraint and so we have results that on average only
vary by around 10% from the ideal results.
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Fig. 9. How the error and time per query are affected by the query type

The second graph in Figure 9 looks at how the running time of the new algorithm
is affected by the query type. The heuristic algorithm has linear complexity in both the
width of query and the number of servers. The value for three servers in a single width
query is anomalous – these are very hard queries which take longer as it is hard for the
simulated annealing part of the algorithm to find suitable swaps. We also looked at how
the brute-force algorithm running time scales, this was as expected a linear increase
in running time as the width of the query increases and exponential for the number
of servers, the dominating factor is theO(Ns) term. Further the processing time is
generally hundred of times slower than the heuristic algorithm.



4.3 Number of Dimensions

Figure 10 shows results of how the number of dimensions affects the running time and
the average relative error. While the brute-force algorithm suffers a linear time increase
with dimension, the heuristic algorithm suffers an exponential increase, but the time is
still two orders of magnitude less than for the brute-force algorithm. It is worth noting
that when we optimise the algorithm for one particular number of dimensions we get at
least ten times faster execution time.

Figure 10 also shows that there is a linear improvement in the relative error to the
ideal solution as the number of dimensions increases. There is a lot of variance in this
data, but as the experiments take days it is impractical to obtain more detailed results.
The improvement in results are probably due to the grid cells that are used in the heuris-
tic algorithm containing fewer items when the number of dimensions increases, mean-
ing greater choice in the assignment of the near groups and so the far relations can be
better serviced.

It would seem sensible to use as large a number of dimensions as possible but this
would mean a corresponding exponential increase in the index size and time for the
heuristic method. In reality the dimensionality of the location co-ordinates may be set
externally in the location system or through other considerations.

4.4 Number of Data Items

Two experiments were performed to investigate how the performance of the algorithms
varies with respect to the number of items in the index. The first compared the heuristic,
brute-force and single server algorithms using the GNP data. In this experiment we
varied the numbers of items in the index up to 700 and averaged over 25 queries – once
again to keep within a reasonable time.

The second experiment used a data-set derived from the Skitter measurements1 from
CAIDA. The Skitter data-set is a much larger data-set with around 20 tracers measuring
route and RTT information for between 100,000 and over 800,000 hosts. Hosts are
probed once per day and we take the minimum RTT over 20 days in October 2003
giving 34254 internet host locations in three dimensions. With this data we could obtain
results for up to 34000 items in the index, taking results only for heuristic and single
server, as the brute-force would take many hours per query. the results are averaged
over 100 queries (once again due to time considerations).

Unlike the previous sections we compare the average value of the ranking function,
rather than the average relative error in both these experiments.

In the first experiment we observed that the brute-force algorithm produces the best
results, followed by the heuristic then the single server. The differences remain fairly
constant, except in the first few results, so we do not show the graph. The difference
in the first item is about 9% of the range of scaled distances between brute-force and
heuristic and another 6%. to the single server. Therefore our algorithm is firmly placed
between the ideal algorithm and the best a user can do. An interesting point is that
on average the single server algorithm, for low number of items, has a higher “all”

1 http://www.caida.org/tools/measurement/skitter/



than “first”. This is an artifact that the heuristic and single server algorithms rank their
results using a different “distance” function to the one used to evaluate the results in
these experiments.
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Fig. 10.How the running time and error are affected by the number of dimensions

Figure 11 shows the results from the second experiments into how the number of
items affects running time and performance. With more items in their databases the
algorithms become further apart in terms of the distances of the results produced, the
heuristic algorithm being on average up to 13% better in the first result and 9% better
for all the results. Therefore the heuristic algorithm becomes even more favourable over
the single server algorithm when we have tens of thousands of items.

It is important to note that there will be a fair error in the approximation to the
positions of the hosts. In our location based co-ordinate scheme [30] we see average
relative errors of about 35%. Which numerically dwarfs the errors presented here. These
location errors though do not necessarily produce a 35% error in the results of these
algorithms, as the location systems may still produce coordinates that will produce a
correct ranking despite the error. The exact way these errors contribute to the higher-
level algorithm error is a matter of future research. Further the algorithm presented here
has wider applicability than this one area and in these areas the differences we see here
will be important.

We also compared the running time: both the algorithms seem to have a running
time ofO(N2). With few items the single server is much faster, but with over twenty
thousand items (the sort of numbers we expect to deal with) the heuristic algorithms
outperform the single server algorithm. So the heuristic algorithm seems to be at the
expected point in between the single server (fast but higher error) and the brute-force
algorithm (ideal solution, but impractical running time).

5 Related Work

There are two main areas of work related to our algorithm, Spatial Databases and Wide
Area Resource Discovery.
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Fig. 11.How the running time and error is affected by the number of items for heuristic and single
server algorithms (Skitter data)

5.1 Spatial Databases

There are many different metric space and multidimensional data indexing schemes in
the area of databases. These include those based on trees like the MVPTree [4], UB
tree [25] PR/PMR trees [16] and the R-tree [5]. Further methods are based on a grid-
like partitioning like the Grid file [22] and the BANG file [10]. The VA file [36] is very
similar to our scheme, approximating the multidimensional index by splitting into2b

cells, assigning each a unique bit-string and then creating a list of these approximations.
For a wider range of multi-dimensional indexes refer to a survey such as [3, 11]

A number of spatial databases have been designed using these methods for example
SAND [8] and a number of further papers have tried to provide a theoretical basis for
spatial database queries [?,23].

Lately there have been a number of efforts to distribute databases, in a Peer-to-Peer
fashion [1, 32] forsaking some of the strict database invariants to allow efficient wide-
area distributed databases.

5.2 Wide Area Resource Discovery

Historically Wide Area Resource Discovery has been built around searches for a sin-
gle object as shown in the work on SLP [34], which is a centralized object location
protocol, aimed at intranets. With server discovery it was based on the query “find the
server closest to me” as implemented in hierarchical resource discovery systems like
SSDS [17].

Many distributed approaches for single server resource discovery have been com-
pared by Guyton and Schwartz [13]. JXTA [35], an all-in peer-to-peer system, includes
a search mechanism for routing XML queries between “search consumers” and “search
information providers” on a publish/subscribe model with ‘hubs’ acting as search en-
gines. There is initially no method of linking these hubs together.

In their work on Astrolabe, van Renesseet al.use Bloom filters combined hierarchi-
cally to summarize interest in publish/subscribe groups [33]. Harrenet al. investigated,
in simulation, how to support an expressive set of queries over CAN [15]. However,



their focus was on a database-style of interface, for instance building ‘join’ operators
by the temporary creation of new DHT name-spaces.

Systems with the required search capabilities have traditionally not been distributed,
but there is a number of distributed search systems and recently much research has
started in this area. Pier [18] is a distributed query processing engine, an attempt to
combine database and peer to peer technology. Recently work done at Rutgers [28]
has looked at using a Hilbert Space Map over a Chord [31] network to perform Multi-
Dimensional Searches, although the searches proposed are not as flexible as the sort
proposed here. This work was similar to our previous work [29] on providing com-
plex queries over Pastry [26]. Further on-going developments include Iris [7] which
performs wide-area querying for sensor networks and Sophia2 which is a distributed
Prolog engine in which powerful distributed systems can be built.

Work at UCSB [12, 27] has centered on providing caches for range based database
searches, this assumes reasonably static and non-distributed data, whereas our scheme
looks to serve a situation in which the data is dynamic – although this first version
assumes static data.

We envision our resource discovery system to be considerably different to work in
Grid resource discovery, with wider types of Resource Discovery expected. Iamnichi
and Foster [19] look at Resource Discovery in the context of Grid environments. An
unstructured approach is taken, but this is still significantly different to the proposal
for topological routing. Condor’s Matchmaking system [6], has been widely used for
resource discovery in both cluster and Grid computing. It has aClassAdbased system,
representing job and server advertisements with a central matcher executing a policy
independent matching algorithm. This is the closest model to ours, although jobs are
matched with whole machines, rather than execution environments. Further we also
tackle a different area of the co-location problem than the extended Gangmatcher [24]
as we have location as our motivating factor.

Distributed Constraint Satisfaction [9, 37], is also a relevant area, looking to solve
the theoretical problem of Constraint Satisfaction in the wide-area, this is a similar
problem to our server resource discovery.

6 Conclusion

We presented an algorithm which allows complex resource requests from users to be
quickly serviced while at the same time not compromising on the quality of the results
that are returned. It was shown that the algorithm outperforms in time per query the
brute-force algorithm and is comparable to the single-server algorithm and even quicker
than it for large indexes. Further the heuristic algorithm produces results of a quality that
lies in between the heuristic and single-server algorithm. This means that in using this
algorithm over the underlying simple searches a user will be able to produce results that
are significantly better than by doing the searches himself.

2 seehttp://www.cs.princeton.edu/˜mhw/sophia



6.1 Future Work

We are currently working on a distributed implementation of the resource co-allocation
algorithm version based on our work on XenoSearch [29]. This will support dynamic
data, using a Hilbert Space index to map server locations to a single common index and
the idea of aggregation points to summarize regular ranges of the index space. Bloom
filters held at aggregation points will allow the search method from XenoSearch to be
used, although these are not obtainable from the map. Parts of the map can also sensibly
be widely replicated, e.g. by gossiping.

Once we have a distributed version of the algorithm we wish to perform a large
scale deployment as part of the XenoServer [2, 14] testbed roll-out.
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