
Safe Hardware Access with the Xen Virtual Machine Monitor

Keir Fraser, Steven Hand, Rolf Neugebauer∗, Ian Pratt, Andrew Warfield, Mark Williamson∗

University of Cambridge Computer Laboratory, J J Thomson Avenue, Cambridge, UK
{firstname.lastname}@cl.cam.ac.uk

Abstract
The Xen virtual machine monitor allows multiple operating
systems to execute concurrently on commodity x86 hard-
ware, providing a solution for server consolidation and util-
ity computing. In our initial design, Xen itself contained
device-driver code and provided safe shared virtual device
access. In this paper we present our new Safe Hardware
Interface, an isolation architecture used within the latest
release of Xen which allows unmodified device drivers to
be shared across isolated operating system instances, while
protecting individual OSs, and the system as a whole, from
driver failure.

1 Introduction

We have recently developed Xen [1], an x86-based virtual
machine manager specifically targeting two utility-based
computing environments:

1. organizational compute/data centers, where a large
cluster of physical machines may be shared across dif-
ferent administrative units; and

2. global-scale compute utilities, such as our own
XenoServers [2] initiative, in which completely un-
related customers may lease a set of distributed re-
sources to deploy their own services.

In both of these situations, Xen must provide reliable exe-
cution of OS instances, hard isolation, and accounting and
management for the underlying physical resources.
This paper focuses on our work addressing dependability
on commodity hardware by isolating device driver code yet
retaining the ability to share devices across OS instances.
Device drivers are well known to be a major source of bugs
and system failures, and the sharing of devices raises the
stakes of driver dependability drastically. The wide variety
of hardware available for PCs and the desire to share device
access has led us to an architecture in which we execute
unmodified device drivers in isolated “driver domains”: in
essence, driver-specific virtual machines.
∗Intel Research Cambridge, UK

To achieve this robustly, we have developed a Safe Hard-
ware Interface which allows the containment of practi-
cally all driver failures by limiting the driver’s access to
the specific hardware resources (memory, interrupts, and
I/O ports) necessary for its operation. Our model, which
places device drivers in separate virtual OS instances, pro-
vides two principal benefits: First, drivers are isolated from
the rest of the system; they may crash or be intentionally
restarted with minimal impact on running OSes. Second, a
unified interface to each driver means that drivers may be
safely shared across many OSes at once, and that only a
single low-level driver implementation is required to sup-
port different paravirtualized operating systems.
While general approaches to partitioning and protecting
systems for reliability have been explored over the past
thirty years, they often depend on specific hardware sup-
port [3], or are unconcerned with enterprise-class perfor-
mance and dependability [4, 5]. Our work addresses the
problem of ensuring the reliability of shared device drivers
for enterprise services on the PC architecture without re-
quiring specialized hardware support.

2 Related Work

The current PC I/O architecture presents a multifaceted set
of challenging problems. This section attempts to summa-
rize the great breadth of previous work that has attempted
to tackle individual aspects of the problem. We have drawn
on many of these efforts in our own research. There are two
broad classes of work related to our own. First is a large set
of efforts both in systems software and hardware develop-
ment toward safe isolation. Second are attempts to better
structure the interfaces between devices and their software,
and the OSs and applications they interact with.

2.1 Safe Isolation
Researchers have long been concerned with the inclusion
of extension code in operating systems. Extensible oper-
ating systems [6, 7] explored a broad range of approaches

to support the incorporation of foreign, possibly untrusted
code in an existing OS. Swift et al [4] leverage the experi-
ences of extensibility, particularly that of interposition, to
improve the reliability of Linux device drivers. While their
work claims an improvement in system reliability it demon-
strates the risk of a narrow focus: their approach sacrifices
performance drastically in an attempt to add dependabil-
ity without modifying the existing OS. By addressing the
larger architectural problem and not fixating on a single
OS instance, we provide higher performance and solve a
broader set of issues, while still remaining compatible with
existing systems.
Our implementation, presented in Section 4, uses a virtu-
alization layer to achieve isolation between drivers and the
OS (or OSs) that use them. Providing a low-level systems
layer that is principally responsible for managing devices
was initially explored in Nemesis [8] and the Exokernel [9].
Our work refines these approaches by applying them to ex-
isting systems. Additionally, Whitaker et al [10] speculate
as to the potential uses of a virtualized approach to system
composition, drawing strongly on early microkernel efforts
in Mach [11] among others [12, 13]. Our work represents a
realization of these ideas, demonstrating that isolation can
be provided with a surprisingly low performance overhead.
Commercial offerings for virtualization, such as VMware
ESX Server [14], allow separate OSs to share devices.
While we have previously demonstrated [1] that our ap-
proach to virtualization provides higher performance, this
work moves to focus specifically on additional concerns
such as driver dependability; our implementation is now
not only faster but also accommodates a strictly higher level
of driver dependability.
Several research efforts have investigated hardware-
assisted approaches to providing isolation on the PC plat-
form. The Recovery-Oriented Computing [15] project,
whose goals are similar to our own, have used hardware
for system diagnostics [16], but defer to ‘standard mecha-
nisms’ for isolation. Intel’s SoftSDV [17], which is a de-
velopment environment for operating systems supporting
the IA-64 instruction set, uses PCI riser cards to proxy I/O
requests. While their concern is in mapping device inter-
rupts and DMA into the simulated 64-bit environment, the
same approach could be used to provide device isolation.
Intel has also announced that their new LaGrande architec-
ture [18] will protect memory from device DMA.

2.2 Better Interfaces
Our goal of providing more rigid OS–device interfaces
is hardly new. Most notably, corporate efforts such as
UDI [19] have attempted to do just this. There are two key
limitations of UDI that we directly address. Firstly, we en-
force isolation whereas UDI-compliant drivers still execute
in the same protection domain as the operating system, and
thus there is no mitigation of the risks posed by erroneous

Hardware
Software

Safe Hardware Interface

D
e

v
ice

 M
a

n
a

g
e

r
Device

Driver

Device

Driver

Device

Driver

DeviceDevice Device

I/O Space A I/O Space B I/O Space C

Operating

System A

(e.g. Windows XP)

Operating

System B

(e.g. Linux)

Device Channels:
Safe and efficient
interdomain messaging

Unified Interfaces:
Single driver source
Drivers may be shared

Legacy Interfaces:
Original OS driver
Still isolated for safety
No driver sharing or restart

I/O Spaces:
Provide strong vertical
isolation for driver/device
instances

HardwareHardwareHardwareHardwareHardware

Figure 1: Design of the safe hardware model.

drivers. Secondly, our external perspective avoids the trap
to which vendor consortiums such as UDI often fall vic-
tim: that of ‘interface unioning’. Rather than providing the
aggregate interface present in all existing drivers, we set-
tle on a narrower, idealized interface. While we provide
mechanisms to directly (and safely) expose the hardware
should our interface be too constrictive, we have not found
this to be a problem in our experiences with a large number
of network and storage devices—most relevant for server-
class machines—and several OSs.
Novel OS architectures have long struggled with a lack of
device driver support. The vast number of available de-
vices has compounded this problem, making the adoption
of an existing driver interface attractive for fledgling sys-
tems. Microkernel systems such as Fluke [20] and L4 [21]
have investigated wrapping Linux device drivers in cus-
tomized interfaces [22, 23]. Although the structure of our
architecture is not entirely unlike a microkernel, our intent
is to solve the driver interface issue for all operating sys-
tems on the PC architecture, rather than make a small set
of existing drivers work for a single experimental OS.
Perhaps most closely related to our work are recent at-
tempts by researchers to use a microkernel approach to al-
low the reuse of unmodified device drivers within newer
operating systems [24, 25]. We are less concerned with us-
ing legacy drivers in modern operating systems than with
providing shared access to isolated device drivers.

3 Design

This section presents the high-level design issues that have
driven our work. We begin by discussing the issues in-
volved in achieving isolation between virtualized OS in-
stances, device driver code, and physical devices. In the
second half of this section, we go on to discuss design con-
cerns for unified interfaces.
As illustrated by Figure 1, our architecture comprises three
parts. Firstly, we introduce I/O Spaces which arrange that
devices perform their work in isolation from the rest of the

Requirement 1: Driver Isolation
Memory: execute in logical fault domain
CPU: schedule to prevent excessive consumption
Privilege: limit access to instruction set
Requirement 2: Driver→ Device Isolation
I/O Registers: restrict access to permitted ranges
Interrupts: allow to mask/receive only device’s interrupt
Requirement 3: Device Isolation
Memory: prevent DMA to arbitrary host memory
Other Devices: prevent access to arbitrary other devices

Table 1: Requirements for Safe Hardware

system. This increases reliability by restricting the possible
harm inflicted by device faults. Secondly, we define a set of
per-class unified interfaces that are implemented by all de-
vices of a particular type. This provides driver portability,
avoiding the need to reimplement identical functionality for
a range of different OS interfaces. Finally, our device man-
ager provides a consistent control and management inter-
face for all devices, simplifying system configuration and
diagnosis and treatment of device problems.

3.1 Isolation
One reason for the catastrophic effect of driver failure on
system stability is the total lack of isolation that pervades
device interactions on commodity systems. The issues that
must be addressed to achieve full isolation are outlined in
Table 1. The concerns are divided into three requirements:
isolating the execution of driver code from other software
components, ensuring that drivers may only access the de-
vice they manage, and enforcing safe device behavior.
Previous attempts at driver isolation [4] have placed driver
code in a separate logical fault domain, essentially provid-
ing virtual memory protection between the driver and the
rest of the system. However, this is only a partial solution
as it primarily protects memory; a logical isolation layer
must be used to provide isolation of scheduling and access
to privileged instructions.
The implementation that we present in Section 4 uses a vir-
tual machine monitor (VMM) to achieve the required log-
ical isolation between driver and OS code, as identified by
Requirement 1 in Table 1. By tracking and retaining full
control of each driver’s CPU and memory use, the VMM
provides isolation guarantees analogous to an OS and its
application processes. For example, if a faulty driver at-
tempts to write to a memory location outside its heap, the
damage is contained to the VM that the driver is execut-
ing within. Furthermore, by containing driver and OS in
an isolated virtual machine, misbehaving drivers may be
restarted with a minimal impact on the rest of the system.
The complete isolation of device access is a fundamental
problem on the x86 architecture, which provides no spe-
cific hardware support to limit access to specific devices, or

to limit device access to system memory. Over the course
of our design and implementation, we have developed the
notion of an I/O Space to describe the underlying mecha-
nism required to achieve complete isolation. An I/O Space
is a vertical protection domain that can be assigned a set
of physical resources for a specific device and driver inter-
action, including memory, device registers, and interrupts.
The intent of an I/O Space is to make the set of accesses
between a driver (or ideally even a specific client) and a
physical device a first-class entity on the system.
A complete realization of our I/O Spaces would require
chipset support, in that they would address the concerns
outlined in Requirement 3 above. Providing protection
against malicious or erroneous device DMA, and arbi-
trating device access to shared buses simply cannot be
achieved without hardware support.
However, as the implementation that we present in Sec-
tion 4 uses virtualization, we have been able to address the
physical isolation problems of host-to-device access, Re-
quirement 2 above, by implementing within the VMM the
I/O-Space functionality of a next-generation chipset. We
believe that the isolation we have achieved is the strongest
possible without hardware modifications. Although our
current implementation cannot protect against unsafe de-
vice DMA, we describe the minor modifications that would
be necessary to take advantage of a safe DMA controller.
Emerging hardware research [16, 17, 18] indicates that
these hardware improvements may soon be incorporated
into the PC platform.

3.2 Unified Interfaces
Although the PC has standardized hardware interfaces
there is no such accepted standard for the interface to sys-
tem software, despite industry efforts [19]. Our solution
is to define a set of idealized high-level interfaces tai-
lored for each class of device. OS vendors then need im-
plement only a single, small driver per device class that
communicates via the unified interface: this can be de-
veloped in-house by developers with intimate knowledge
of the OS, and subjected to appropriate quality-control
checks. By implementing the unified interface, hardware
vendors automatically support every PC system. Further-
more, they may arbitrarily choose how the implementation
is divided between hardware and software, perhaps incor-
porating more functionality into higher-cost products that
include advanced features such as I/O processors [26].
Our unified device interfaces are based on those provided
by the Xen VMM which, as we have previously demon-
strated [1], provides low-overhead access to common de-
vice classes. The essential features required for efficient
data-path communication are to avoid data copies, to pro-
vide back pressure to the data source, and to use a flex-
ible and asynchronous notification primitive. Within our
architecture we incorporate these principles into device

channels, linking the unified interfaces exported by device
drivers to the operating systems using them. We provide
details of a software implementation of device channels in
Section 5. However, we are careful in our design not to
exclude the possibility of a hardware implementation.
Concerns regarding the feasibility of adopting standardized
device interfaces are very relevant, as acceptance is more
of a political problem than a technical one. Our efforts to
date have had a great deal of success in allowing a vari-
ety of networking and storage devices to function through
a common interface to Linux, NetBSD, and Windows XP.
We have focused on these classes of device as we believe
that network and disk are the two most crucial device in-
terfaces in a server environment. We do not presume that
the interfaces we have identified are complete, and expect
them to evolve over time. However, experience so far has
shown that our model is valid; other groups (e.g. [27]) have
independently ported new devices to our architecture with
minimal effort.
While we believe that unified interfaces provide consider-
able benefit, we must also acknowledge that it is likely im-
possible to effectively model all devices: emerging devices
and special-purpose applications must be considered. In
these situations, we allow device access to be exposed di-
rectly, and it is through this mechanism that we address
video and sound devices in our current implementation.
Note that even when we do not use a unified virtualized de-
vice interface, the architecture still provides isolation and
safety. This transitional approach allows our architectural
benefits to be realized in the short term, while we move
to focus on the challenging problems of sound and video
interfaces in the future.
It is additionally worth observing that organizations con-
tinue to move toward OS virtualization as a means of
making better use of server hardware. Unified interfaces
are particularly advantageous in a virtualized environment
where they can enable device sharing.
An example of unified interfaces, legacy support, and de-
vice sharing was shown in Figure 1 in which two operat-
ing systems and three device drivers all run on a single
machine. The two leftmost device drivers present a uni-
fied interface which ‘wraps’ existing driver code. Using
this interface means that device drivers may be individually
scheduled, shared between operating systems, and restarted
in case of error. The rightmost operating system contains
a legacy driver; although this prevents separate scheduling
or sharing, the safe hardware interface can still be used to
limit the driver’s privileges.

3.3 Control and Management
The final concern addressed by our architecture is that of
device control and configuration — an area that has been
particularly neglected during the PC’s evolution. The lack
of standardized platform-wide control interfaces has led to

the implementation of unique and proprietary configuration
interfaces for each OS and device1. A significant disad-
vantage of this ad hoc approach is that system administra-
tors require additional training for each OS environment
and machine setup that they support, simply to understand
multiple different configuration interfaces that ultimately
provide identical functionality.
The transition of the PC platform into the server room
means that manageability is now more important than ever.
The current jumble of configuration tools is inappropriate
for configuring and managing the large-scale clusters that
are common in enterprise environments. Console-based in-
terfaces, although suitable for configuring small numbers
of desktop machines, are a major hindrance when configu-
ration changes must be applied to hundreds of machines at
a time. The growing problem of remote management is a
primary motivation for the LinuxBIOS project [28].
This final aspect of our architecture is handled by a device
manager — essentially an extension to the system BIOS
that provides a common set of management interfaces for
all devices. The device manager is responsible for boot-
strapping isolated device drivers, announcing device avail-
ability to OSs, and exporting configuration and control in-
terfaces to either a local OS or to a remote manager.

4 I/O Spaces

Our safe hardware interface enforces isolation of device
drivers by restricting the hardware resources that they can
access: we call such a restricted environment an I/O Space.
To achieve this, we restrict access privileges to device I/O
registers (whether memory-mapped or accessed via explicit
I/O ports) and interrupt lines. Furthermore, where it is pos-
sible within the constraints of existing hardware, we protect
against device misbehavior by isolating device-to-host in-
teractions. Finally, we virtualize the PC’s hardware config-
uration space, allowing the system controller unfettered ac-
cess so that it can determine each device’s resources, while
restricting each driver’s view of the system so that it cannot
see resources that it cannot access.

4.1 I/O Registers
Xen ensures memory isolation amongst domains by check-
ing the validity of address-space updates. Access to a
memory-mapped hardware device is permitted by extend-
ing these checks to allow access to non-RAM page frames
that contain memory-mapped registers belonging to the de-
vice. Page-level protection is sufficient to provide isolation
because register blocks belonging to different devices are
conventionally aligned on no less than a page boundary.
In addition to memory-mapped I/O, many processor fam-
ilies provide an explicit I/O-access primitive. For exam-

1Some common device classes do enjoy a consistent control interface,
but even this consistency is not carried across different OSs.

ple, the x86 architecture provides a 16-bit I/O port space
to which access may be restricted on a per-port basis, as
specified by an access bitmap that is interpreted by the pro-
cessor on each port-access attempt. Xen uses this hard-
ware protection by rewriting the port-access bitmap when
context-switching between domains.

4.2 Interrupts
Whenever a device’s interrupt line is asserted it triggers
execution of a stub routine within Xen rather than caus-
ing immediate entry into the domain that is managing that
device. In this way Xen retains tight control of the sys-
tem by scheduling execution of the domain’s interrupt ser-
vice routine (ISR). Taking the interrupt in Xen also allows
a timely acknowledgement response to the interrupt con-
troller (which is always managed by Xen) and allows the
necessary address-space switch if a different domain is cur-
rently executing. When the correct domain is scheduled
it is delivered an asynchronous event notification which
causes execution of the appropriate ISR.
Xen notifies each domain of asynchronous events, includ-
ing hardware interrupts, via a general-purpose mechanism
called event channels. Each domain can be allocated up
to 1024 event channels, each of which comprises a pair of
bit flags in a memory page shared between the domain and
Xen. The first flag is used by Xen to signal that an event is
pending. When an event becomes pending Xen schedules
an asynchronous upcall into the domain; if the domain is
blocked then it is moved to the run queue. Unnecessary up-
calls are avoided by triggering a notification only when an
event first becomes pending: further settings of the flag are
then ignored until after it is cleared by the domain.
The second event-channel flag is used by the domain to
mask the event. No notification is triggered when a masked
event becomes pending: no asynchronous upcall occurs
and a blocked domain is not woken. By setting the mask
before clearing the pending flag, a domain can prevent un-
necessary upcalls for partially-handled event sources.
To avoid unbounded reentrancy, a level-triggered interrupt
line must be masked at the interrupt controller until all rel-
evant devices have been serviced. After handling an event
relating to a level-triggered interrupt, the domain must call
down into Xen to unmask the interrupt line. However, if
an interrupt line is not shared by multiple devices then Xen
can usually safely reconfigure it as edge-triggering, obviat-
ing the need for unmask downcalls.
When an interrupt line is shared by multiple hardware
devices, Xen must delay unmasking the interrupt until a
downcall is received from every domain that is managing
one of the devices. Xen cannot guarantee perfect isolation
of a domain that is allocated a shared interrupt: if the do-
main never unmasks the interrupt then other domains can
be prevented from receiving device notifications. However,
shared interrupts are rare in server-class systems which typ-

ically contain IRQ-steering and interrupt-controller com-
ponents with enough pins for every device. The problem of
sharing is set to disappear completely with the introduction
of message-based interrupts as part of PCI Express [29].

4.3 Device-to-Host Interactions
As well as preventing a device driver from circumventing
its isolated environment, we must also protect against pos-
sible misbehavior of the hardware itself, whether due to in-
herent design flaws or misconfiguration by the driver soft-
ware. The two general types of device-to-host interaction
that we must consider are assertion of interrupt lines, and
accesses to host memory space.
Protecting against arbitrary interrupt assertion is not a sig-
nificant issue because, except for shared interrupt lines,
each hardware device has its own separately-wired connec-
tion to the interrupt controller. Thus it is physically im-
possible for a device to assert any interrupt line other than
the one that is assigned to it. Furthermore, Xen retains full
control over configuration of the interrupt controller and so
can guard against problems such as ‘IRQ storms’ that could
be caused by repeated cycling of a device’s interrupt line.
The main ‘protection gap’ for devices, then, is that they
may attempt to access arbitrary ranges of host memory. For
example, although a device driver is prevented from using
the CPU to write to a particular page of system memory
(perhaps because the page does not belong to the driver),
it may instead program its hardware device to perform a
DMA to the page. Unfortunately there is no good method
for protecting against this problem with current hardware
A full implementation of this aspect of our design requires
integration of an IOMMU into the PC chipset — a feature
that is expected to be included in commodity chipsets in
the very near future. Similar to the processor’s MMU, this
translates the addresses requested by a device into valid
host addresses. Inappropriate host addresses are not ac-
cessible to the device because no mapping is configured in
the IOMMU. In our design, Xen would be responsible for
configuring the IOMMU in response to requests from do-
mains. The required validation checks are identical to those
required for the processor’s MMU; for example, to ensure
that the requesting domain owns the page frame, and that it
is safe to permit arbitrary modification of its contents.

4.4 Hardware Configuration
The PCI standard defines a generic configuration space
through which PC hardware devices are detected and con-
figured. Xen restricts each domain’s access to this space so
that it can read and write registers belonging only to a de-
vice that it owns. This serves a dual purpose: not only does
it prevent cross-configuration of other domains’ devices,
but it also restricts the domain’s view so that a hardware
probe detects only devices that it is permitted to access.

The method of access to the configuration space is system-
dependent, and the most common methods are potentially
unsafe (either protected-mode BIOS calls, or a small I/O-
port ‘window’ that is shared amongst all device spaces).
Domains are therefore not permitted direct access to the
configuration space, but are forced to use a virtualized
interface provided by Xen. This has the advantage that
Xen can perform arbitrary validation and translation of ac-
cess requests. For example, Xen disallows any attempt to
change the base address of an I/O-register block, as the new
location may conflict with other devices.

5 Device Channels

Although the safe hardware interface can be configured to
allow a guest OS to run its own device drivers, this misses
potential improvements in reliability, maintainability and
manageability. We therefore prefer to run each device
driver within an isolated driver domain (IDD) which lim-
its the impact of driver faults.
Guest OSs access devices via device channel links with
IDDs. The channel is a point-to-point communication link
through which each party can asynchronously send mes-
sages to the other. Channels are established by using the
system controller to introduce an IDD to a guest OS, and
vice versa. To facilitate this, the system controller auto-
matically establishes an initial control channel with each
domain that it creates. Figure 2 shows a guest OS request-
ing a data transfer through a device channel. The individual
steps involved are discussed later in this section.
Xen itself has no concrete notion of a control or device
channel. Messages are communicated via shared memory
pages that are allocated by the guest OS but are simultane-
ously mapped into the address space of the IDD or system
controller. For this purpose, Xen permits restricted sharing
of memory pages between domains.

5.1 Sharing Memory
The sharing mechanism provided by Xen differs from tradi-
tional application-level shared memory in two key respects:
shared mappings are asymmetric and transitory. Each page
of memory is owned by at most one domain at any time
and, with the assistance of Xen and the system controller,
that owner may force reclamation of mappings from within
other misbehaving domains.
To add a foreign mapping to its address space, a domain
must present a valid grant reference to Xen in lieu of the
page number. A grant reference comprises the identity of
the domain that is granting mapping permission, and an in-
dex into that domain’s private grant table. This table con-
tains tuples of the form (grant, D, P,R,U) which permit
domain D to map page P into its address space; asserting
the boolean flag R restricts D to read-only mappings. The
flag U is written by Xen to indicate whether D currently

Guest OS Isolated

Device Driver

(IDD)

Xen

DeviceDeviceDevice

Grant Table

P1 P2

Active Grant Table

P1 P2

GR GR

GR

1
2

3

4

5

6
7

Guest Requests DMA:
1. Grant Reference for Page P2 placed on device channel
2. IDD removes GR
3. Sends pin request to Xen

4. Xen looks up GR in active grant table
5. GR validated against Guest (if necessary)
6. Pinning is acknowledged to IDD
7. IDD sends DMA request to device

Device Channel

Figure 2: Using device channel to request a data transfer.

maps P (i.e., whether the grant tuple is in use).
When Xen is presented with a grant reference (A,G) by a
domainB, it first searches for indexG in domainA’s active
grant table (AGT), a table only accessible by Xen. If no
match is found, Xen reads the appropriate tuple from the
guest’s grant table and checks that T=grant and D=B, and
that R=false if B is requesting a writable mapping. Only if
the validation checks are successful will Xen copy the tuple
into the AGT and mark the grant tuple as in use.
Xen tracks grant references by associating a usage count
with each AGT entry. When a foreign mapping is created
with reference to an existing AGT entry, Xen increments its
count. The grant reference cannot be reallocated or reused
by the granting domain until the foreign domain destroys
all mappings that were created with reference to it.

5.2 Descriptor Rings
I/O descriptor rings are used for asynchronous trans-
fers between a guest OS and an IDD. Ring updates are
based around two pairs of producer-consumer indexes: the
guest OS places service requests onto the ring, advancing
a request-producer index, while the IDD removes these
requests for handling, advancing an associated request-
consumer index. Responses are queued onto the same
ring as requests, albeit with the IDD as producer and the
guest OS as consumer. A unique identifier on each re-
quest/response allows reordering if the IDD so desires.
The guest OS and IDD use a shared inter-domain event
channel to send asynchronous notifications of queued de-
scriptors. An inter-domain event channel is similar to the
interrupt-attached channels described in Section 4.2. The
main differences are that notifications are triggered by the
domain attached to the opposite end of the channel (rather
than Xen), and that the channel is bidirectional: each end
may independently notify or mask the other.

We decouple the production of requests or responses on
a descriptor ring from the notification of the other party.
For example, in the case of requests, a guest may enqueue
multiple entries before notifying the IDD; in the case of re-
sponses, a guest can defer delivery of a notification event
by specifying a threshold number of responses. This al-
lows each domain to independently balance its latency and
throughput requirements.

5.3 Data Transfer
Although storing I/O data directly within ring descriptors
is a suitable approach for low-bandwidth devices, it does
not scale to high-performance devices with DMA capabil-
ities. When communicating with this class of device, data
buffers are instead allocated out-of-band by the guest OS
and indirectly referenced within I/O descriptors.
When programming a DMA transfer directly to or from a
hardware device, the IDD must first pin the data buffer.
As described in Section 5.1, we enforce driver isolation
by requiring the guest OS to pass a grant reference in lieu
of the buffer address: the IDD specifies this grant refer-
ence when pinning the buffer. Xen applies the same val-
idation rules to pin requests as it does for address-space
mappings. These include ensuring that the memory page
belongs to the correct domain, and that it isn’t attempting
to circumvent memory-management checks (for example,
by requesting a device transfer directly into its page tables).
Returning to the example in Figure 2, the guest’s data-
transfer request includes a grant reference GR for a buffer
page P2. The request is dequeued by the IDD which sends
a pin request, incorporating GR, to Xen. Xen reads the
appropriate tuple from the guest’s grant table, checks that
P2 belongs to the guest, and copies the tuple into the AGT.
The IDD receives the address of P2 in the pin response, and
then programs the device’s DMA engine.
On systems with protection support in the chipset (Sec-
tion 4.3), pinning would trigger allocation of an entry in the
IOMMU. This is the only modification required to enforce
safe DMA. Moreover, this modification affects only Xen:
the IDDs are unaware of the presence of an IOMMU (in
either case pin requests return a bus address through which
the device can directly access the guest buffer).

5.4 Device Sharing
Since Xen can simultaneously host many guest OSs it is es-
sential to consider issues arising from device sharing. The
control mechanisms for managing device channels natu-
rally support multiple channels to the same IDD. We de-
scribe below how our block-device and network IDDs sup-
port multiplexing of service requests from different clients.
Within our block-device driver we service batches of re-
quests from competing guests in a simple round-robin fash-
ion; these are then passed to a standard elevator scheduler

before reaching the disc controller. This balances good
throughput with reasonably fair access. We take a similar
approach for network transmission, where we implement a
credit-based scheduler allowing each device channel to be
allocated a bandwidth share of the form x bytes every y
microseconds. When choosing a packet to queue for trans-
mission, we round-robin schedule amongst all the channels
that have sufficient credit.
A shared high-performance network-receive path requires
careful design because, without demultiplexing packets in
hardware [30], it is not possible to DMA directly into a
guest-supplied buffer. Instead of copying the packet into
a guest buffer after performing demultiplexing, we instead
exchange ownership of the page containing the packet with
an unused page provided by the guest OS. This avoids
copying but requires the IDD to queue page-sized buffers at
the network interface. When a packet is received, the IDD
immediately checks its demultiplexing rules to determine
the destination channel – if the guest has no pages queued
to receive the packet, it is dropped.

6 Starting and Restarting IDDs

Responsibility for device management resides with the sys-
tem controller: a small privileged management kernel that
is loaded from firmware when the system boots. During
bootstrap, the device manager probes device hardware and
creates an IDD, loaded with the appropriate driver, for each
detected device. The controller’s ongoing responsibilities
include per-guest device configuration, managing setup of
device channels, providing interfaces for hardware config-
uration, and reacting to driver failure.
There are several ways in which the controller may de-
termine that a driver has failed: for example, it may re-
ceive notification from Xen that the IDD has crashed, or a
wedged IDD may fail to unpin guest buffers within a spec-
ified time period. The subsequent recovery phase is greatly
simplified by the componentized design of our I/O archi-
tecture: the shared state associated with a device channel is
small and well-defined; and IDD-internal state is ‘soft’ and
therefore may simply be reinitialized when it restarts.
The recovery phase comprises several stages. First, the
controller destroys the offending IDD and replaces it with
a freshly-initialized instance. The controller then signals to
connected guest OSs that the IDD has restarted; each guest
is then responsible for connecting itself to the new device
channel. At this point, the guest may also reissue requests
that may have been affected by the failure (i.e., outstanding
requests for which no response has been received). Note
that in the case of more sophisticated “stateful” devices in
may be in addition necessary to reset the device to a known
state so as to ensure that all resources are released and that
all reissued requests act as if idempotent.

L

167

IO-S

180

IDD

182

Linux build time (s)

L

42.0

IO-S

41.7

IDD

40.0

PM (trans/s)

L

205

IO-S

203

IDD

212

OSDB-OLTP (tup/s)

L

393

IO-S

359

IDD

318

httperf (reqs/s)

L

609

IO-S

599

IDD

609

SpecWeb99 (score)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

R
el

at
iv

e
sc

or
e

to
 L

in
ux

Figure 3: Application-Level Benchmarks. (L=L-SMP, IO-S=IO-Space)

7 Evaluation

In this section we begin by evaluating the impact of our iso-
lation mechanisms on realistic application workloads us-
ing industry standard benchmarks such as Postmark, SPEC
WEB99 and OSDB. We next investigate the overhead of
using the safe hardware interface on network and disk sys-
tems, and finally we provoke a series of device-driver fail-
ures and measure system availability during recovery.
All experiments were performed on a Dell PowerEdge
2650 dual processor 3.06Ghz Intel Xeon server with 1GB
of RAM, two Broadcom Tigon 3 Gigabit Ethernet network
cards, and an Adaptec AIC-7899 Ultra160 SCSI controller
with two Fujitsu MAP3735NC 73GB 10K RPM SCSI
disks. Linux version 2.4.26 and RedHat 9.0 Linux were
used throughout, installed on an ext3 file-system. Identi-
cal device driver source code from Linux 2.4.26 is used in
all experiments, allowing us to measure only performance
variations caused by varying the I/O system configuration.
We compare the performance of our IDD prototype against
a number of other configurations, using a vanilla Linux
2.4.26 SMP kernel as our baseline (L-SMP). To establish
the overhead of implementing protected hardware access
we measure a version of Xen/Linux containing disk and
network drivers that access the hardware via the protected
interface (IO-Space). We also evaluate the performance
of our full-blown architecture using IDDs for each of the
network and disk devices, communicating with an instance
of Xen/Linux using device-channel I/O interfaces (IDD).
Each IDD and Xen/Linux instance runs in its own isolated
Xen domain on a separate physical CPU.

7.1 Application-Level Benchmarks
We subjected our test systems to a battery of application-
level benchmarks, the results of which are displayed in Fig-
ure 3. Our first benchmark measures the elapsed time to do
a complete build of the default configuration of a Linux
kernel tree stored on the local ext3 file system. The kernel

compile performs a moderate amount of disk I/O as well
as spending time in the OS kernel for process and memory
management, which typically introduces some additional
overhead when performed inside a virtual machine. The
results show that the I/O Space virtualized hardware inter-
face incurs a penalty of around 7%, whereas the full IDD
architecture exhibits a 9% overhead.
Postmark is a file system benchmark developed by Network
Appliance which emulates the workload of a mail server. It
initially creates a set of files with varying sizes (2000 files
with sizes ranging from 500B to 1MB) and then performs a
number of transactions (10000 in our configuration). Each
transaction comprises a variety of operations including file
creation, deletion, and appending-write. During each run
over 7GB of data is transferred to and from the disk. The
additional overhead incurred by I/O Spaces and the full
IDD architecture are just 1% and 5% respectively.
OSDB-OLTP is an Open Source database benchmark that
we use in conjunction with PostgreSQL 7.3.2. The bench-
mark creates and populates a database and then both
queries and updates tuples in the database. As the default
dataset of 40MB fits entirely into the buffer cache, we cre-
ated a dataset containing one million tuples per relation,
resulting in a 400MB database. We investigate the surpris-
ingly high result achieved by IDD in Section 7.3.
httperf-0.8 was used to generate requests to an Apache
2.0.40 server to retrieve a single 64kB static HTML docu-
ment. The benchmark was configured to maintain a single
outstanding HTTP request, thus effectively measuring the
response time of the server. The resulting network band-
width generated by the server is around 200Mb/s. The I/O
Space result exposes the overhead of virtualizing interrupts
in this latency-sensitive scenario in which there is no op-
portunity to amortise the overhead by pipelining requests.
Communicating with the IDD via the device channel inter-
face compounds the effect by requiring a significant num-
ber of inter-domain notifications. Despite this, the response
time is within 19% of that achieved by native L-SMP.

TCP MTU 1500 TCP MTU 552
TX RX TX RX

L-SMP 897 897 808 808
I/O Space 897 (0%) 898 (0%) 718 (-11%) 769 (-5%)
IDD 897 (0%) 898 (0%) 778 (-3%) 663 (-18%)

Table 2: ttcp: Bandwidth in Mb/s

SPEC WEB99 is a complex application-level benchmark
for evaluating web servers and the systems that host them.
The workload is a complex mix of page requests: 30% re-
quire dynamic content generation, 16% are HTTP POST
operations and 0.5% execute a CGI script. As the server
runs it generates access and POST logs, so the disk work-
load is not solely read-only. During the measurement pe-
riod there is up to 200Mb/s of TCP network traffic and con-
siderable disk read-write activity on a 2.7GB dataset. Un-
der this demanding workload we find that the overhead of
I/O Spaces and even full device driver isolation to be mini-
mal: just 1% and 2% respectively.

7.2 Network performance
We evaluated the network performance of our test config-
urations by using ttcp to measure TCP throughput over
Gigabit Ethernet to a second host running L-SMP. Both
hosts were configured with a socket buffer size of 128KB
as this is recommended practice for Gigabit networks. We
repeated the experiment using two different MTU sizes, the
default Ethernet MTU of 1500 bytes, and a smaller MTU
of 552 bytes. The latter was picked as it is commonly used
by dial-up PPP clients, and puts significantly higher stress
on the I/O system due to the higher packet rates generated
(190,000 packets a second at 800Mb/s).
Using a 1500 byte MTU all configurations achieve within a
few percent of the maximum throughput of the Gigabit Eth-
ernet card (Table 2). The 552 byte MTU provides a more
demanding test, exposing the different per-packet CPU
overheads between the configurations. The virtualized in-
terrupt dispatch used by I/O Spaces incurs an overhead of
11% on transmit and 5% on receive. Hence safe control
of interrupt dispatch and device access can be achieved at
reasonable cost even under high load.

7.3 Disk performance
Unlike networking, disk I/O typically does not impose
a significant strain on the CPU because data is typically
transferred in larger units and with less per-operation over-
head. We performed experiments using dd to repeatedly
write and then read a 4 GB file to and from the same ext3
file system (Table 3). Read performance is nearly identical
in all cases, but attempts to measure write performance are
hampered due to an oscillatory behaviour of the Linux 2.4
memory system when doing bulk writes. This leads to our
IDD configurations actually outperforming standard Linux

read write
L-SMP 66.01 47.36
I/O Space 65.78(-0%) 46.74(-1%)
IDD 65.16(-1%) 58.47(+23%)

Table 3: dd: Bandwidth in MB/s

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35 40

pa
ck

et
 in

te
r-

ar
riv

al
 la

te
nc

y
(m

s)

time (s)

Figure 4: Effect of driver restart on packet arrivals.

as the extra stage of queueing provided by the device chan-
nel interface leads to more stable throughput.

7.4 Device Driver Recovery
In these tests we provoked our network driver to perform
an illegal memory access, and then measured the effect on
system performance. In this scenario detection of the de-
vice driver failure is immediate, unlike internal deadlock
or infinite looping where there will be a detection delay de-
pendent on system timeouts.
To test driver recovery we caused an external machine to
send equally-spaced ping requests to our test system at a
rate of 200 packets per second. Figure 4 shows the inter-
arrival latencies of these packets at a guest OS as we inject
a failure into the network driver domain at 10-second in-
tervals. During the recovery period after each failure we
recorded network outages of around 275ms. Most of this
time is spent executing the device driver’s media detection
routines while determining the link status.

8 Conclusion

The safe hardware interface used by Xen places drivers
in isolated virtual machines, allowing the use of existing
driver code in enterprise computing environments where
dependability is paramount. Furthermore, a single driver
implementation may be instantiated once yet shared by a
number of OSs across a common interface.
Although the hardware required to fully enable our I/O ar-
chitecture is not yet available, we currently support nearly
all of the required features (a notable exception being pro-
tection against erroneous DMA). We achieve surprisingly

good performance—overhead is generally less than a few
percent—and restartability can be achieved within a few
hundred milliseconds. Furthermore, we believe that our
implementation can naturally incorporate and benefit from
emerging hardware support for protection.

References

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the Art of Virtualization. In Proceedings of the 19th ACM
SOSP, pages 164–177, October 2003.

[2] S. Hand, T. L. Harris, E. Kotsovinos, and I. Pratt. Control-
ling the XenoServer Open Platform. In Proceedings of the
6th OPENARCH, April 2003.

[3] T. Borden, J. Hennessy, and J.Rymarczyk. Multiple operat-
ing systems on one processor complex. IBM Systems Jour-
nal, 28(1):104–123, 1989.

[4] M. Swift, B. Bershad, and H. Levy. Improving the reliability
of commodity operating systems. In Proceedings of the 19th
ACM SOSP, pages 207–222, October 2003.

[5] J. Sugerman, G. Venkitachalam, and B. Lim. Virtualizing
I/O Devices on VMware Workstation’s Hosted Virtual Ma-
chine Monitor. In Proceedings of the 2001 USENIX Techni-
cal Conference, pages 1–14, 2001.

[6] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing
with disaster: Surviving misbehaved kernel extensions. In
Proceedings of the 2nd Symposium on Operating Systems
Design and Implementation, pages 213–227, October 1996.

[7] B. Bershad, S. Savage, P. Pardyak, E. Gün Sirer, M. Fi-
uczynski, D. Becker, S. Eggers, and C. Chambers. Extensi-
bility, safety and performance in the SPIN operating system.
In Proceedings of the 15th ACM Symposium on Operating
Systems Principles, pages 267–284, December 1995.

[8] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham,
D. Evers, R. Fairbairns, and E. Hyden. The design and im-
plementation of an operating system to support distributed
multimedia applications. IEEE Journal on Selected Areas
In Communications, 14(7):1280–1297, September 1996.

[9] D. Engler, Kaashoek F, and J. O’Toole Jr. Exokernel: an
operating system architecture for application-level resource
management. In Proceedings of the 15th ACM Symposium
on Operating Systems Principles, December 1995.

[10] A. Whitaker, R. Cox, M. Shaw, and S. Gribble. Constructing
services with interposable virtual hardware. In Proceedings
of the 1st Symposium on Networked Systems Design and Im-
plementation, pages 169–182, March 2004.

[11] R. Baron, R. Rashid, E. Siegel, A. Tevanian, and M. Young.
Mach-1: An Operating Environment for Large-Scale Multi-
processor Applications. IEEE Software, 2(4).

[12] D. Hildebrand. An Architectural Overview of QNX. In Pro-
ceedings of the Workshop on Micro-kernels and Other Ker-
nel Architectures, pages 113–126. USENIX Assoc., 1992.

[13] F. Armand. Give a process to your drivers. In Proceedings
of the EurOpen Autumn 1991 Conference, Budapest, 1991.

[14] C. A. Waldspurger. Memory resource management in
VMware ESX server. In Proceedings of the 5th Symposium
on Operating Systems Design and Implementation, pages
181–194, December 2002.

[15] A. Brown and D. Patterson. Embracing failure: A case for
Recovery-Oriented Computing (ROC). In Proceedings of
the 2001 High Performance Transaction Processing Sympo-
sium, Asilomar, CA, October 2001.

[16] D. Oppenheimer, A. Brown, J. Beck, D. Hettena, J. Kuroda,
N. Treuhaft, D.A. Patterson, and K. Yelick. Roc-1: Hard-
ware support for recovery-oriented computing. In IEEE
Transactions on Computers, vol. 51, no. 2, February 2002.

[17] R. Uhlig, R. Fishtein, O. Gershon, I. Hirsh, and H. Wang.
SoftSDV: A pre-silicon software development environment
for the IA-64 architecture. Intel Technology Journal,
3(Q4):14, November 1999.

[18] Intel Corp. Lagrande technology architectural
overview, September 2003. Order number 252491-
001, http://www.intel.com/technology/
security/downloads/LT Arch Overview.pdf.

[19] Introduction to UDI version 1.0. Project UDI, 1999. Tech-
nical white paper, http://www.projectudi.org/.

[20] B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back, and
S. Clawson. Microkernels meet recursive virtual machines.
In Proceedings of the 2nd USENIX Symposium on Oper-
ating Systems Design and Implementation, pages 137–151,
October 1996.

[21] J. Liedtke. On Micro-Kernel Construction. In Proceedings
of the 15th ACM Symposium on Operating Systems Princi-
ples, pages 237–250, December 1995.

[22] K. T. Van Maren. The Fluke device driver framework. Mas-
ter’s thesis, University of Utah, December 1999.

[23] C. Helmuth. Generische portierung von linux-gertetreibern
auf die drops-architektur, July 2001. Diploma Thesis, Tech-
nical University of Dresden.

[24] Joshua LeVassuer and Volkmar Uhlig. A Sledgehammer
Approach to Reuse of Legacy Device Drivers. In Proceeed-
ings of the 11th ACM SIGOPS European Workshop, Leuven,
Belgium, September 2004.

[25] Joshua LeVassuer and Volkmar Uhlig and Jan Stoess and
Stefan Goetz. Unmodified Device Driver Reuse and Im-
proved System Dependability via Virtual Machines. In Pro-
ceedings of the 6th Symposium on Operating Systems De-
sign and Implementation (OSDI 2004), December 2004.

[26] Intelligent I/O (I2O) architecture specification, Revision 2.0,
1999. I2O Special Interest Group.

[27] B. Clark, T. Deshane, E. Dow, S Evanchik, M. Finlayson,
J. Herne, and J.N. Matthews. Xen and the art of repeated re-
search. In Proceedings of the Usenix annual technical con-
ference, Freenix track, July 2004.

[28] R. Minnich, J. Hendricks, and D. Webster. The Linux BIOS.
In Proceedings of the 4th Annual Linux Showcase and Con-
ference, October 2000.

[29] PCI Express base specification 1.0a. PCI-SIG, 2002.
[30] I. Pratt and K. Fraser. Arsenic: A User-Accessible Gigabit

Ethernet Interface. In Proceedings of IEEE INFOCOM-01,
pages 67–76, April 2001.

