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Abstract

Distributed writable storage systems typically provide
NFS-like semantics and unbounded persistence for files.
We claim that for planetary-scale distributed services
such facilities are unnecessary and impose an unwanted
overhead in complexity and ease of management. Fur-
thermore, wide-area services have requirements not met
by existing solutions, in particular capacity management
and a realistic model for billing and charging.

We argue for ephemeral storage systems which meet
these requirements, and present Palimpsest, an early ex-
ample being deployed on PlanetLab. Palimpsest is small
and simple, yet provides soft capacity, congestion-based
pricing, automatic reclamation of space, and a security
model suitable for a shared storage facility for wide-area
services. It does not “fill up” in the way that an ordinary
filing system does. In fact, Palimpsest does not arbitrate
resources—storage blocks—between clients at all.

1 The Need for Ephemeral Storage

In this paper we address the distributed storage needs
of wide-area services designed to run over the kind
of shared, planetary-scale computational infrastruc-
ture envisioned by the PlanetLab[12], Xenoservers[14],
WebOS[18] and Denali[20] projects. So-called “per-
sistent data” in such services consists of the (relatively
static) code and data which comprises the service, con-
figuration information, output in the form of log files
and transaction records, and system state such as check-
points and scoreboards. This is a different application
area than that addressed by filing systems intended for
human users.

We observe that almost all this data is either
ephemeral, or else a current copy of data which is or
will shortly be held or archived elsewhere. Neverthe-
less, it must be stored with high availability for some
period of time. For example, checkpoint state need only
be kept until the next checkpoint has been performed,
but before then is of high value. Similarly, transaction

records must be periodically copied offline for process-
ing, but until this happens it should be hard for a system
failure or malicious agent to delete the data or obtain
unauthorized access to it.

Current practice is to store such data on a disk directly
attached to its node, or use a distributed storage service.
The former fails to provide availability in the event of a
node failure, while the conventional examples of the lat-
ter implement unnecessarily strict semantics and fail to
address the resource issues involved in sharing the stor-
age resources between many independent wide-area ser-
vices.

Similarly, file system security requirements for such
services differ from traditional time-sharing systems.
Often it should be hard to delete the data or for unau-
thorized entities to access it, but there are no require-
ments for complex access control arrangements. Like-
wise, since the “users” of the storage service will be
software services themselves, the human factors issues
associated with key storage are largely obviated.

On the other hand, a shared, widely distributed en-
vironment imposes other requirements and in particular
the need to deal gracefully with a shortage of capac-
ity. While it is true that storage in conventional envi-
ronments (PCs, workstations, LANs) is generally under-
utilized, we point out that in these cases the storage is
administered by a single organization who has an inter-
est in limiting usage or buying new disks when needed.
This is not at all the case in a shared, distributed environ-
ment where multiple services must be given incentives to
release storage resources and share storage space among
each other, particularly when that storage is provided
by a third party. Furthermore, wide-area storage ser-
vices “in the wild” must be robust in the face of denial-
of-service attacks, including those that use up storage
space.

Distributed filing systems which aim at NFS-like se-
mantics or something similar (e.g. [11, 15]) do not meet
these requirements, and employ considerable complex-
ity and incur considerable overhead in providing behav-
ior which, while essential in a LAN environment with



human users, is inappropriate in our scenario. Further-
more, they do not address the capacity and denial-of-
service requirements mentioned above. Some recent
wide-area file systems[5, 17] have moved away from an
NFS-like model to, for instance, immutable and read-
only file service, neither of which is a requirement in
our case.

In the rest of this paper, we give an overview of
Palimpsest1, followed by more detail on the central al-
gorithms and architecture. Along the way we try to point
out engineering trade-offs and other areas for further in-
vestigation. We then discuss charging for storage based
on congestion pricing techniques, and end with compar-
ison of Palimpsest to other wide-area file systems.

2 An Overview of Palimpsest

Palimpsest is not a mainstream, traditional distributed
filing system. It does not implement NFS semantics,
does not provide unbounded persistence of data, and im-
plements a security model different from that tradition-
ally derived from multi-user timesharing environments.
It does not “fill up” in the way that an ordinary fil-
ing system does. In fact, Palimpsest does not arbitrate
resources—storage blocks—between clients at all.

Instead, Palimpsest delivers storage with true, decen-
tralized soft-capacity (clients get a share of the overall
storage resource based on the current total number of
users, and how much each is prepared to pay), and re-
moves the burden of garbage collection and resource ar-
bitration from storage service providers. Data stored by
clients in Palimpsest is secure, and persists with high
availability for a limited period of time which is dynam-
ically changing but nevertheless predictable by clients.
In addition, Palimpsest provides a novel, financially-
viable charging model analogous to congestion pricing
in networks and highly appropriate for anonymous mi-
crobilling, further reducing administrative overhead.

In Palimpsest, writers store data by writing erasure-
coded fragments of data chunks into an approximation
of a distributed FIFO queue, implemented by a network
of block stores. Over time, as more writes come in, frag-
ments move to the end of the queue and are discarded.
A reader requests fragments from the nearest set of stor-
age nodes according to some desirable metric, such as
latency. The combination of a distributed store and era-
sure coding provides high availability.

Storage nodes don’t care who writes blocks, but in-
stead charge for each operation. Billing can thus be per-
formed using digital cash, and Palimpsest doesn’t need
to retain any metadata related to user identity at all.

Each storage node maintains a value called its time
constant, which is a measure of how fast new data is be-

ing written to the store and old data discarded. By sam-
pling the time constant from a series of storage nodes
(an operation which can be piggybacked on reads and
writes), a writer can obtain good estimates of how long
its data will persist, even though this value changes over
time.

Consequently, Palimpsest does not “fill up”—in nor-
mal use, it’s always full. Instead, as the load (in writes)
increases, the time over which data persists decreases.
The problem of space allocation or reclamation thus
never arises. Instead, Palimpsest introduces a new trade-
off between storage capacity and data persistence. This
trade-off allows the application of techniques originally
developed for congestion pricing of network bandwidth
to be applied to storage, a concept we explore below.

3 The Design of Palimpsest

The basic functionality provided by Palimpsest clients
is the storage or retrieval of a chunk of data. This is
a variable length sequence of bytes up to some maxi-
mum value (128kB in our current prototype). To store a
chunk, it is first erasure-coded (using Rabin’s Informa-
tion Dispersal Algorithm[13]) into a set of m fixed-size
fragments (currently 8kB), any n of which suffice to re-
construct the chunk. n is simply the chunk size divided
by the fragment size; m can be chosen by the client to
give the desired dispersion factor — the trade-off here is
between resilience to the loss of fragments versus stor-
age cost and network bandwidth.

The fragments are then authentically encrypted (us-
ing the AES in Offset Codebook Mode[16]) to produce
a set of fixed size blocks which are then stored at a
pseudo-random sequence of locations within a 256-bit
virtual address space; a distributed hash table maps the
256-bit virtual block numbers to block identifiers on one
of a peer-to-peer network of block stores. To recover
the chunk, the pseudo-random sequence is reconstructed
and requests made for sufficiently many blocks to recon-
stitute the chunk.

The pseudo-random sequence is generated by succes-
sive encryption under our secret key of a per-chunk ini-
tial value, and so provide statistical load-balancing over
the storage nodes in the system. It also makes it hard
for an adversary to selectively overwrite a file since the
block identifiers are unpredictable without the key. Data
is already protected against tampering or unauthorized
reading by the encryption and MAC. A blanket attempt
to overwrite all data is rendered prohibitively expensive
by the fact that Palimpsest charges when a block write
transaction takes place (see below).

The use of the IDA also means that Palimpsest will
tolerate the loss of a fraction of block servers, and also



the loss of individual write operations or the failure of a
fraction of read operations.

Block servers hold a FIFO queue of fragments which
is also indexed by the 256-bit block identifier. When a
write request for a block id b is received, b is looked up
in the index. If an existing block with id b is found, it
is discarded and the new block added to the tail. Oth-
erwise, the head of the queue is discarded and the new
block added to the tail. Block stores thus perform no ar-
bitration of resources — there is no “free list”, neither is
the block store interested in the identity of the writer of
any block.

Block servers also keep track of the arrival rate of
block write requests, expressed as a fraction of the size
of the server’s store2. This number is the time constant
of the server, and is sampled by clients as described be-
low.

This basic chunk storage is the only facility pro-
vided by Palimpsest. Filing systems can be implemented
above this using standard techniques, but the details of
this are entirely up to the application.

3.1 Persistence and the Time Constant

As new blocks are written to block stores, “older” blocks
are eventually discarded. This will ultimately make any
given chunk irretrievable; if this is not desired, clients
need to take steps to ensure their data remains live.

This persistence can be attained by refreshing chunks
from time to time. To aid clients in deciding when to
perform refresh operations, each block store keeps track
of its time constant, τ : the reciprocal of the rate at which
writes are arriving at the store as a fraction of the total
size of the store.

If our distributed hash table adequately approximates
a uniform distribution, each block store will tend to have
the same time constant. If the global load on Palimpsest
increases, or several block stores are removed from the
system, the time constants of remaining stores will de-
crease. Conversely, if new capacity (in the form of block
stores) is added to the system, or the total write load to
Palimpsest decreases, the time constants will increase.

Each read or write operation for which a response is
obtained includes the value of τ at the block store when
the response was sent. Clients use these values to main-
tain an exponentially weighted estimate of system τ , τs.
This quantity can then be used to determine the likely
expiration of particular blocks, which may then be used
to drive the refresh strategy.

The most straightforward refresh strategy would sim-
ply write a chunk, derive an estimated τs based on the
responses, wait almost that long, and then rewrite the
chunk. To handle unexpected changes in the value τ

after the chunk has been written, clients can periodi-

cally sample the block stores. Since blocks are mov-
ing through the FIFO queues in the block, τs and conse-
quently the refresh rate can be adjusted in a timely fash-
ion before data is lost.

More sophisticated refresh strategies are an area for
research, although we expect at least some will be
application-specific.

We note that the value of τ acts as a single, simple,
system-wide metric by which administrators may de-
cide to add more storage capacity. This contrasts with
the complex decision typically faced by operators of dis-
tributed storage systems.

3.2 Concurrent Reads and Writes

Reconstituting a chunk of data stored in Palimpsest in-
troduces some subtle challenges in the presence of con-
current reads and writes to the same chunk. Palimpsest
addresses this by guaranteeing that reads of a chunk will
always return a consistent chunk if one exists at the time.

When a Palimpsest client requests a block during
chunk retrieval, three outcomes are possible:

1. the block server returns the “correct” block (viz. the
one which was stored as part of the chunk);

2. the server is unavailable, or does not hold a block
with the requested identifier (resulting in an error
response or a timeout);

3. a block is returned, but it is not part of the chunk in
question.

The third case is not entirely detected by the use of the
MAC, since if a writer updates the chunk in place, us-
ing the same pseudo-random sequence to write the new
blocks, it becomes impossible to tell which version of a
chunk each block is from. This in turn leads to a situa-
tion where a chunk cannot be reconstituted in reasonable
time because, although enough valid blocks are theoreti-
cally available, a small number are from an older version
and “poison” the process of reversing the erasure code.

We could address this problem by attempting to re-
combine all combinations of fragments which pass the
MAC check until we get a reconstituted chunk which
passes some other, end-to-end integrity check. Apart
from being inelegant, this becomes computationally im-
practical even with modest chunk sizes and redundancy
in coding.

Another approach is to use a different sequence of
block ids for each new version of the chunk. This ap-
proach was used in the Mnemosyne system due to its de-
sirable steganographic properties, and while effective for
small numbers of highly secure files, it has a major dis-
advantage for a typical Palimpsest scenario: it requires a



piece of metadata (the initial hash value of the “current”
version) to be held externally to the chunk, but which
changes whenever the chunk is updated. This causes a
“cascading” effect when one tries to build a hierarchical
filing system above Palimpsest’s chunk storage: updat-
ing a file requires the file’s metadata to change, which
causes an update to an inode or directory chunk, which
causes its metadata to change, and so on up to the root.

Consequently, Palimpsest adopts a third approach: in-
cluding a version identifier in each fragment. This al-
lows a valid chunk to be reconstituted if enough frag-
ments can be retrieved, but a new version of the chunk
to be written to the same block sequence without mod-
ifying the chunk metadata. Even if the chunk length
changes and an inode also needs to be updated, this tech-
nique prevents updates cascading up the directory tree.

Version identifiers for chunks need not be sequential,
or indeed monotonic. Palimpsest uses the upper 64 bits
of the AES-OCB nonce (which is stored with the block)
to denote the version of the chunk, and uses voting to de-
cide which fragments should be used to reconstitute the
chunk. To retrieve a chunk, some number of fragments is
requested and histogrammed according to version iden-
tifier. If any histogram bin contains enough fragments
to reconstitute the chunk, the algorithm succeeds. If no
more fragments can be requested, it fails. Otherwise
more fragments are requested.

The derivation of good schedules for retrieval of frag-
ments (how many to request at each stage, how to use
network knowledge to choose which fragments to re-
quest, etc.) is a field rich in possible trade-offs, and is
an open area of research.

How to behave when the above algorithm fails is ap-
plication specific. For example, if the reader believes the
data to be periodically updated, it can immediately retry
since the failure may be due to a concurrent write.

3.3 Charging and Billing

As we argue in Section 1, storage space is a scarce
resource in planetary-scale systems: the popular wis-
dom that storage is “free” only applies in local or small-
scale systems. Palimpsest must therefore induce clients
to moderate their use of storage capacity without any
knowledge of either the global set of clients, or the
amount of storage each is using.

We achieve this by using a micropayment scheme in
which every read and write operation must be accom-
panied by a digital token. A two-tier charging model is
used since while read operations have only a direct cost
to the provider (that of locating and serving the relevant
block), write operations have both direct and indirect
costs: in the steady-state, each write will displace ex-
actly one existing data block and with some probability

p will render a certain file inaccessible. Hence write

operations warrant a higher charge than reads.
Since a charge is imposed with each use of the system,

and since increased use by a user i adversely affects all
other users, we can make use of control algorithms based
on congestion pricing [9]. In general this means that we
ascribe to each user i a utility function ui(xi, Y ) where
xi is the number of write operations performed by user
i and Y is the “congestion” of the entire system. We
need ui to be a differentiable concave function of xi and
a decreasing concave function of Y ; this corresponds in-
tuitively to notion that storage in Palimpsest is “elastic”:
users always gain benefit from writing more frequently,
and from less competition from other users.

Of course the incentive to increase one’s write-rate
is balanced by the cost of paying for it. In traditional
congestion pricing schemes (designed for regulating use
of network resources), a spot-price is advertised at any
point in time; this price is computed so that an increase
in demand is balanced by the marginal cost of increas-
ing the resource. In Palimpsest, rather than explicitly
increasing the price, we simply advertise the new time
constant – for a given level of risk, this will result in a
rational client modifying their refresh rate so as maintain
the expected data lifetime they require. We believe this
improves on the scheme proposed in e.g. [8] since we
explicitly model the variation in τ and predict its future
values rather than relying on instantaneous feedback.

As an alternative, a storage service can advertise a
guaranteed time constant to its clients. It can then use the
time constant measurements made by the block stores
to perform the analogue of network traffic engineering:
working out when to provision extra capacity, and/or
change its advertised service. Note that, under this
model, denial of service attacks in Palimpsest are ac-
tually an expansion opportunity for the storage provider:
maintaining an appropriate τ can be achieved by increas-
ing the storage resources commensurate with the addi-
tional revenue obtained.

As in the case with network congestion pricing,
clients which require strong availability guarantees (or,
equivalently, predictable prices) can deal with interme-
diaries who charge a premium in exchange for taking on
the risk that a sudden burst of activity will force more
refreshes than expected. The provision of strong guar-
antees above Palimpset then becomes a futures market.

3.4 Status

Palimpsest is under active development, and we hope
to deploy it as a service on PlanetLab in the near fu-
ture. The Palimpsest client is implemented in C, while
the block server is written in Java and currently uses
Tapestry as its DHT.



4 Related Work

Palimpsest shares some philosophy with the Internet
Backplane Protocol[1], in that the conventional assump-
tion of unbounded duration of storage is discarded.
Palimpsest supports similar classes of application to IBP
while pushing the argument much further: all storage is
“soft capacity”, with no a priori guarantees on the dura-
tion of persistence. In this way, storage services avoid
performing any metadata management or resource ar-
bitration, resulting in substantially simpler implementa-
tions. Resource management is pushed out to end sys-
tems by means of transaction-based charging and peri-
odic sampling of the store’s time constant.

The notion of having no explicit delete operation and
relying on storage being “reclaimed” was perhaps first
observed in the Cambridge File System[2]. Palimpsest
shares the goal of avoiding reliance on users to remove
files, rather putting the onus on them to refresh what they
wish to retain. We avoid the need for an explicit asyn-
chronous garbage collector by simply allowing incom-
ing write operations to displace previous blocks.

A number of wide-area storage systems have recently
been developed in the peer-to-peer community. Early
systems supported read-only operation (e.g. CFS[5],
Past[17]) though with high availability. As with dis-
tributed publishing systems (e.g. Freenet[4], Free
Haven[6] or Publius[19]) we believe these systems com-
plement rather than compete with Palimpsest. Ironi-
cally, Palimpsest’s ephemeral storage service shares sev-
eral implementation techniques (such as the use of era-
sure codes) with very long-term archival schemes like
Intermemory[3].

More recently various efforts at Internet-scale read-
write storage systems have emerged including Pasta[10],
Oceanstore[15], and Ivy[11]. All are far more involved
than Palimpsest, with schemes for space allocation or
reclamation being either complex (in the first two cases)
or non-existent. Palimpsest by contrast incorporates sup-
port for storage management at its core but without re-
quiring intricate algorithms or centralized policies.

Some of the ideas in Palimpsest were inspired by
the Mnemosyne steganographic filing system[7], though
there are notable differences, since Palimpsest is tar-
geted at widely distributed Internet services rather than
individual security-conscious users. Palimpsest imple-
ments an approximate distributed FIFO queue rather
than the random virtual block store in Mnemosyne,
which increases both the effective capacity of the block
store and predictability of chunk lifetimes. Palimpsest’s
use of charging, choice of encoding scheme, and selec-
tion of block identifiers also reflects its goal of providing
a useful facility to planetary-scale services.

5 Conclusion

We have argued that emerging wide-area, planetary-
scale services have different requirements of distributed
storage than the existing models based on human users
of time-sharing systems, or network distribution of read-
only content. Highly general security policies and un-
bounded duration of file persistence come with consider-
able complexity and are largely not required in this area.
Furthermore, current systems lack effective mechanisms
for allocating scarce storage space among multiple com-
peting users, and a viable economic model for resource
provisioning.

We claim there is a role here for storage services
which offer bounded duration of files, but provide high
availability and security during that time, combined with
soft capacity and a congestion-based charging model.
Such a system is Palimpsest, which we have described
and are in the process of deploying on the PlanetLab in-
frastructure. The design of Palimpsest allows a number
of interesting design choices and lends itself to a light-
weight, flexible and secure implementation.

Notes

1A palimpsest is a manuscript on which an earlier text has been
effaced and the vellum or parchment reused for another.

2Currently, all block servers have the same size store, a decision
well-suited to the current PlanetLab hardware configurations. We pro-
pose the use of virtual servers as in CFS [5] to allow greater storage
capacity on some physical nodes.
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