Metrics for temporal graphs

V. Nicosia^{1,2} J.K. Tang¹ C. Mascolo¹ V. Latora^{2,3,4} Liam McNamara⁵ Mirco Musolesi⁶

¹Computer Laboratory, University of Cambridge, UK
 ²Laboratorio sui Sistemi Complessi, Scuola Superiore di Catania, Italy
 ³School of Mathematical Sciences, Queen Mary College, University of London, UK
 ⁴Dipartimento di Fisica, Università di Catania, Italy
 ⁵IT Department, Communication Research Group, Uppsala Universitet, Sweden
 ⁵School of Computer Science, University of Birmingham, UK

Sep. 19 2012 – Cambridge

Nicosia et al. ()

Metrics for temporal graphs

19/09/2012 1 / 32

・ロン ・四 ・ ・ ヨン ・ ヨン

Overview

- 2 Connectedness and components
- Oistance and temporal small-world effect

1 st Unit	2 nd Unit	(Weight)
1	2	3
1	4	1
2	3	5
2	4	2
2	5	7
4	5	3

<ロ> (日) (日) (日) (日) (日)

1 st Unit	2 nd Unit	(Weight)
1	2	3
1	4	1
2	3	5
2	4	2
2	5	7
4	5	3

Nicosia et al. ()

 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓

<ロ> (日) (日) (日) (日) (日)

1 st Unit	2 nd Unit	(Weight)	
1	2	3	
1	4	1	
2	3	5	
2	4	2	
2	5	7	
4	5	3	

イロト イヨト イヨト イヨト

1 st Unit	2 nd Unit	(Weight)	2 -
1	2	3	3 2 5
1	4	1	
2	3	5	
2	4	2	
2	5	7	
4	5	3	5 3

<ロ> (日) (日) (日) (日) (日)

• Connectedness and components

- Connectedness and components
- Distance, average path length, clustering, efficiency

- Connectedness and components
- Distance, average path length, clustering, efficiency
- Node centrality

- Connectedness and components
- Distance, average path length, clustering, efficiency
- Node centrality
- Community structure

米田 とくほと くほど

- Connectedness and components
- Distance, average path length, clustering, efficiency
- Node centrality
- Community structure

 \implies Processes on networks

→ ∃ →

- Connectedness and components
- Distance, average path length, clustering, efficiency
- Node centrality
- Community structure

 \implies Processes on networks (percolation, communication, spreading, synchronisation, opinions, etc.)

- 4 週 ト - 4 三 ト - 4 三 ト

1 st Unit	2 nd Unit	Start	Length
2	4	0	40
2	5	50	10
2	3	70	20
4	5	60	50
1	2	130	15
1	4	140	35
2	3	220	20

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

1 st Unit	2 nd Unit	Start	Length	
2	4	0	40	
2	5	50	10	
2	3	70	20	
4	5	60	50	_ /
1	2	130	15	
1	4	140	35	
2	3	220	20	

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

1 st Unit	2 nd Unit	Start	Length	
2	4	0	40	
2	5	50	10	
2	3	70	20	
4	5	60	50	
1	2	130	15	
1	4	140	35	
2	3	220	20	

▲ ■ ● ■ つへへ 19/09/2012 5 / 32

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

3 19/09/2012 5 / 32

∃ →

A (10) A (10)

Shortcomings of aggregated graphs

Loss of temporal correlations and time-dependence

Nicosia et al. ()

Metrics for temporal graphs

3 19/09/2012 6 / 32

• • • • • • • • • • • •

Shortcomings of aggregated graphs

- Loss of temporal correlations and time-dependence
- Overestimation of the number of available walks and paths

Adjacency: how does it change

1 st Unit	2 nd Unit	Start	Length
2	4	0	40
2	5	50	10
2	3	70	20
4	5	60	50
1	2	130	15
1	4	140	35
2	3	220	20

<ロ> (日) (日) (日) (日) (日)

Adjacency: how does it change

Nicosia et al. ()

 ▲ ■ ▶ ■ ♡ ९ ○

 19/09/2012

 7 / 32

イロト イヨト イヨト イヨト

Contacts

- •
- •
- •

<ロ> (日) (日) (日) (日) (日)

Contacts

- $c = (i, j, t, \delta t)$ is a contact
- *i* and *j* are two nodes
- ۲
- ۲

<ロ> (日) (日) (日) (日) (日)

Contacts

- $c = (i, j, t, \delta t)$ is a contact
- *i* and *j* are two nodes
- t is the start time

イロト イヨト イヨト イヨト

Contacts

- $c = (i, j, t, \delta t)$ is a contact
- *i* and *j* are two nodes
- t is the start time
- δt is the contact duration

イロト イヨト イヨト イヨト

1 st Unit	2 nd Unit	(Weight)
1	2	3
1	4	1
2	3	5
2	4	2
2	5	7
4	5	3

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

1 st Unit	2 nd Unit	(Weight)
1	2	3
1	4	1
2	3	5
2	4	2
2	5	7
4	5	3

Nicosia et al. ()

Metrics for temporal graphs

19/09/2012 9 / 32

1 st Unit	2 nd Unit	(Weight)
1	2	3
1	4	1
2	3	5
2	4	2
2	5	7
4	5	3

<ロ> (日) (日) (日) (日) (日)

19/09/2012 9 / 32

E 990

1 st Unit	2 nd Unit	Start	Length
2	4	0	40
2	5	50	10
2	3	70	20
4	5	60	50
1	2	130	15
1	4	140	35
2	3	220	20

19/09/2012 10 / 32

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - のへの

1 st Unit	2 nd Unit	Start	Length	
2	4	0	40	
2	5	50	10	
2	3	70	20	
4	5	60	50	_ /
1	2	130	15	
1	4	140	35	
2	3	220	20	

19/09/2012 10 / 32

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - のへの

1 st Unit	2 nd Unit	Start	Length	
2	4	0	40	
2	5	50	10	
2	3	70	20	
4	5	60	50	
1	2	130	15	
1	4	140	35	
2	3	220	20	

Nicosia et al. ()

19/09/2012 10 / 32

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - のへの

• Choose a time-window of size Δt

イロト イ団ト イヨト イヨト

- Choose a time-window of size Δt
- $[t, t + \Delta t] \Longrightarrow G_t$ contains all the contacts $(\cdot, \cdot, \tau_i, \delta \tau_i)$ overlapping with $[t, t + \Delta t]$, i.e. such that:
 - $t \le au_i < t + \Delta t$ or (1)

$$t \le au_i + \delta au_i < t + \Delta t$$
 or (2)

$$au_i < t \quad \wedge \quad au_i + \delta au_i > t + \Delta t$$
(3)

(本部)と 本語 と 本語を

- Choose a time-window of size Δt
- $[t, t + \Delta t] \implies G_t$ contains all the contacts $(\cdot, \cdot, \tau_i, \delta \tau_i)$ overlapping with $[t, t + \Delta t]$, i.e. such that:
 - $t \le au_i < t + \Delta t$ or (1)
 - $t \le \tau_i + \delta \tau_i < t + \Delta t$ or (2)

$$au_i < t \quad \wedge \quad au_i + \delta au_i > t + \Delta t$$
(3)

• G_t is a snapshot of the system in $[t, t + \Delta t]$.

イロト イポト イヨト イヨト 二日

- Choose a time-window of size Δt
- $[t, t + \Delta t] \implies G_t$ contains all the contacts $(\cdot, \cdot, \tau_i, \delta \tau_i)$ overlapping with $[t, t + \Delta t]$, i.e. such that:
 - $t \le au_i < t + \Delta t$ or (1)

$$t \le \tau_i + \delta \tau_i < t + \Delta t$$
 or (2)

$$au_i < t \quad \wedge \quad au_i + \delta au_i > t + \Delta t$$
(3)

- G_t is a snapshot of the system in $[t, t + \Delta t]$.
- The sequence G_{0,T} = {G₀, G_{Δt}, ... G_T} of M snapshots over N nodes is a time-varying graph.

19/09/2012 11 / 32

Time scales (1)

19/09/2012 12 / 32

2

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Time scales (2)

Reachability

From node 5 to node 1

19/09/2012 14 / 32

æ

Reachability

From node 5 to node 1

19/09/2012 14 / 32

2

Reachability

From node 5 to node 1

19/09/2012 14 / 32

2

• A temporal walk from *i* to *j* is a temporally ordered sequence of *L* edges leading from *i* to *j*.

- A temporal walk from *i* to *j* is a temporally ordered sequence of *L* edges leading from *i* to *j*.
- A temporal path is a temporal walk for which each node is traversed exactly once.

- 4 同 6 4 日 6 4 日 6

- A temporal walk from *i* to *j* is a temporally ordered sequence of *L* edges leading from *i* to *j*.
- A temporal path is a temporal walk for which each node is traversed exactly once.
- The node *i* is temporally connected to *j* if there exists a temporal path leading from *i* to *j*

- 4 同 6 4 日 6 4 日 6

- A temporal walk from *i* to *j* is a temporally ordered sequence of *L* edges leading from *i* to *j*.
- A temporal path is a temporal walk for which each node is traversed exactly once.
- The node *i* is temporally connected to *j* if there exists a temporal path leading from *i* to *j*
- In this case, we say that *j* is temporally reachable from *i*.

(人間) トイヨト イヨト

- A temporal walk from *i* to *j* is a temporally ordered sequence of *L* edges leading from *i* to *j*.
- A temporal path is a temporal walk for which each node is traversed exactly once.
- The node *i* is temporally connected to *j* if there exists a temporal path leading from *i* to *j*
- In this case, we say that *j* is temporally reachable from *i*.
- Temporal connectedness IS NEITHER symmetric NOR transitive.

- 4 同 6 4 日 6 4 日 6

Given a node *i* we define:

• the temporal OUT-component of *i* (nodes *j* for which there is a TW from *i* to *j*)

Given a node *i* we define:

- the temporal OUT-component of *i* (nodes *j* for which there is a TW from *i* to *j*)
- the temporal IN-component of *i* (nodes *j* for which there is a TW from *j* to *i*)

- 4 回 ト - 4 回 ト

Given a node *i* we define:

- the temporal OUT-component of *i* (nodes *j* for which there is a TW from *i* to *j*)
- the temporal IN-component of *i* (nodes *j* for which there is a TW from *j* to *i*)
- the temporal strongly connected component of *i* (nodes *j* which are both in IN(*i*) and in OUT(*i*)

- 4 同 6 4 日 6 4 日 6

Given a node *i* we define:

- the temporal OUT-component of *i* (nodes *j* for which there is a TW from *i* to *j*)
- the temporal IN-component of *i* (nodes *j* for which there is a TW from *j* to *i*)
- the temporal strongly connected component of *i* (nodes *j* which are both in IN(*i*) and in OUT(*i*)
- *i* and *j* are strongly connected if $i \in IN(j)$ and $i \in OUT(j)$

• strongly connected component: a non-empty set of nodes S such that $\forall i, j \in S \ i$ and j are strongly connected

- strongly connected component: a non-empty set of nodes S such that $\forall i, j \in S \ i$ and j are strongly connected
- Affine graph: a static graph $G_{\mathcal{G}}$ having the same nodes of \mathcal{G} and such that (i, j) is an edge of $G_{\mathcal{G}}$ if *i* and *j* are strongly connected in \mathcal{G}

- strongly connected component: a non-empty set of nodes S such that $\forall i, j \in S \ i$ and j are strongly connected
- Affine graph: a static graph $G_{\mathcal{G}}$ having the same nodes of \mathcal{G} and such that (i, j) is an edge of $G_{\mathcal{G}}$ if i and j are strongly connected in \mathcal{G}
- The strongly connected components of *G* are the maximal-cliques of *G*_{*G*}

- strongly connected component: a non-empty set of nodes S such that $\forall i, j \in S \ i$ and j are strongly connected
- Affine graph: a static graph $G_{\mathcal{G}}$ having the same nodes of \mathcal{G} and such that (i, j) is an edge of $G_{\mathcal{G}}$ if i and j are strongly connected in \mathcal{G}
- The strongly connected components of *G* are the maximal-cliques of *G*_{*G*}
- Finding the largest strongly connected component of a TVG takes exponential time in the number of edges of the affine graph!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Affine graphs

イロト イヨト イヨト イヨト

▶ ▲ 王 ▶ 王 ∽ ९ ୯ 19/09/2012 18 / 32

Affine graphs

イロト イヨト イヨト イヨト

▶ ▲ 王 ▶ 王 ∽ ९ ୯ 19/09/2012 18 / 32

Affine graphs

イロト イヨト イヨト イヨト

▶ ▲ 王 ▶ 王 ∽ ९ ୯ 19/09/2012 18 / 32

Application: Facebook

\sim 100.000 profiles in Santa Barbara (CA) (2009) 1 week of messages

- Friendship network (static graph)
- Communication network (TVG - $\Delta t = 1$ hour)

Week	K	S	С
1	43491	22	12000
2	48404	20	13998
3	43400	16	12773
4	60853	41	17933
5	65703	23	19973
6	70282	27	20976
7	60666	28	18537
8	73772	46	20256
9	79645	38	21990
10	66849	18	20425
11	55040	27	18266
12	51418	28	15667

A time-respecting path has many different "lengths", namely:

• a topological length: the number of edges traversed by the path

A time-respecting path has many different "lengths", namely:

- a topological length: the number of edges traversed by the path
- temporal length or duration: the time interval between the first and the last contact in the path.

(人間) トイヨト イヨト

A time-respecting path has many different "lengths", namely:

- a topological length: the number of edges traversed by the path
- temporal length or duration: the time interval between the first and the last contact in the path.

temporal shortest path: the temporal path connecting two nodes having minimum temporal length.

A time-respecting path has many different "lengths", namely:

- a topological length: the number of edges traversed by the path
- temporal length or duration: the time interval between the first and the last contact in the path.

temporal shortest path: the temporal path connecting two nodes having minimum temporal length.

temporal distance $d_{i,j}$ is the temporal length of the temporal shortest path from *i* to *j*.

•

Nicosia et al. ()

Metrics for temporal graphs

19/09/2012 21 / 32

▲ロト ▲掃 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ のへで

•

▶ ▲ ≣ ▶ ≣ ∽ ९ ୯ 19/09/2012 21 / 32

- Topological length: 2
- Temporal length: $3\Delta t$

Length-related metrics

Average temporal length

$$L=rac{1}{N(N-1)}\sum_{ij}d_{ij}$$

イロト イヨト イヨト イヨト

(4)

Length-related metrics

Average temporal length

$$L = \frac{1}{N(N-1)} \sum_{ij} d_{ij} \tag{4}$$

Temporal diamater:

$$D = max_{ij}d_{ij} \tag{5}$$

Length-related metrics

Average temporal length

$$L = \frac{1}{N(N-1)} \sum_{ij} d_{ij} \tag{4}$$

Temporal diamater:

$$D = max_{ij}d_{ij} \tag{5}$$

Temporal efficiency:

$$\mathcal{E} = \frac{1}{N(N-1)} \sum_{ij} \frac{1}{d_{ij}}$$
(6)

(日) (同) (三) (三)

▶ ▲ 王 ▶ 王 ∽ ९ ୯ 19/09/2012 22 / 32

Application: node percolation

• Damage: D% of the nodes are removed (percolated) from the network \implies new graph $\mathcal{G}_{\mathcal{D}}$

Application: node percolation

• Damage: D% of the nodes are removed (percolated) from the network \implies new graph $\mathcal{G}_{\mathcal{D}}$

ł

• Robustness:

$$R = \frac{E_{\mathcal{G}_D}}{E_{\mathcal{G}}} \tag{7}$$

Cabspotting: aggregated vs TVG

Cabspotting: TVG vs random models

Temporal Clustering

Topological overlap of the neighbourhood of *i* in $[t_m, t_{m+1}]$:

$$C_i(t_m, t_{m+1}) = \frac{\sum_j a_{ij}(t_m) a_{ij}(t_{m+1})}{\sqrt{\left[\sum_j a_{ij}(t_m)\right] \left[\sum_j a_{ij}(t_{m+1})\right]}}$$

(日) (周) (三) (三)

(8)

Temporal Clustering

Topological overlap of the neighbourhood of i in $[t_m, t_{m+1}]$:

$$C_i(t_m, t_{m+1}) = \frac{\sum_j a_{ij}(t_m) a_{ij}(t_{m+1})}{\sqrt{\left[\sum_j a_{ij}(t_m)\right] \left[\sum_j a_{ij}(t_{m+1})\right]}}$$

Average topological overlap:

$$C_i = \frac{1}{M-1} \sum_{m=1}^{M-1} C_i(t_m, t_{m+1})$$
(9)

(日) (周) (三) (三)

(8)
Temporal Clustering

Topological overlap of the neighbourhood of i in $[t_m, t_{m+1}]$:

$$C_i(t_m, t_{m+1}) = rac{\sum_j a_{ij}(t_m) a_{ij}(t_{m+1})}{\sqrt{\left[\sum_j a_{ij}(t_m)
ight]\left[\sum_j a_{ij}(t_{m+1})
ight]}}$$

Average topological overlap:

$$C_i = \frac{1}{M-1} \sum_{m=1}^{M-1} C_i(t_m, t_{m+1})$$
(9)

Temporal correlation coefficient

$$C = \frac{1}{N} \sum_{i} C_{i} \tag{10}$$

(日) (周) (三) (三)

(8)

3

26 / 32

19/09/2012

Temporal small-world effect

	С	C ^{rand}	L	L ^{rand}	Е	E ^{rand}
α	0.44	0.18 (0.03)	3.9	4.2	0.50	0.48
β	0.40	0.17 (0.002)	6.0	3.6	0.41	0.45
γ	0.48	0.13 (0.003)	12.2	8.7	0.39	0.37
δ	0.44	0.17 (0.003)	2.2	2.4	0.57	0.56
d1	0.80	0.44 (0.01)	8.84	6.00	0.192	0.209
d2	0.78	0.35 (0.01)	5.04	4.01	0.293	0.298
d3	0.81	0.38 (0.01)	9.06	6.76	0.134	0.141
d4	0.83	0.39 (0.01)	21.42	15.55	0.019	0.028
Mar	0.044	0.007 (0.0002)	456	451	0.000183	0.000210
Jun	0.046	0.006 (0.0002)	380	361	0.000047	0.000057
Sep	0.046	0.006 (0.0002)	414	415	0.000058	0.000074
Dec	0.049	0.006 (0.0002)	403	395	0.000047	0.000059

Nicosia et al. ()

▶ < ≧ ▶ ≧ ∽ < < 19/09/2012 27 / 32

< ロ > < 同 > < 三 > < 三

19/09/2012 28

3

• • = • • = •

28 / 32

Betweenness and closeness centrality

Temporal betweenness centrality of a node at time t_m :

$$C_{i}^{B}(t_{m}) = \frac{1}{(N-1)(N-2)} \sum_{j \neq i} \sum_{\substack{k \neq j \\ k \neq i}} \frac{U(i, t_{m}, j, k)}{\sigma_{jk}}$$
(11)

Image: A match a ma

Betweenness and closeness centrality

Temporal betweenness centrality of a node at time t_m :

$$C_{i}^{B}(t_{m}) = \frac{1}{(N-1)(N-2)} \sum_{j \neq i} \sum_{\substack{k \neq j \\ k \neq i}} \frac{U(i, t_{m}, j, k)}{\sigma_{jk}}$$
(11)

Average temporal betweenness of node *i*:

$$C_i^B = \frac{1}{M} \sum_m C_i^B(t_m) \tag{12}$$

Nicosia et al. ()

Metrics for temporal graphs

19/09/2012 29 / 32

Betweenness and closeness centrality

Temporal betweenness centrality of a node at time t_m :

$$C_{i}^{B}(t_{m}) = \frac{1}{(N-1)(N-2)} \sum_{j \neq i} \sum_{\substack{k \neq j \\ k \neq i}} \frac{U(i, t_{m}, j, k)}{\sigma_{jk}}$$
(11)

Average temporal betweenness of node *i*:

$$C_i^B = \frac{1}{M} \sum_m C_i^B(t_m) \tag{12}$$

Average temporal closeness of *i*:

$$C_i^C = \frac{N-1}{\sum_j d_{ij}} \tag{13}$$

Metrics for temporal graphs

19/09/2012 29 / 32

Application: information spreading & success

	1D	Name	Role
	9	Stephanie Panus	(Unknown)
	13	Marie Heard	Legal
	17	Mike Grigsby	Manager
	48	Tana Jones	Executive
I	53	John Lavorato	Trader
	-54	Greg Whalley	President
	67	Sara Shackleton	Vice President
_	73	Jeff Dasovich	Trader
Γ	75	Gerald Nemec	Director of Trading
ſ	107	Louise Kitchen	Trader
1	122	Sally Beck	Managing Director
	127	Kenneth Lay	Manager
	139	Mary Hain	Director
ſ	147	Carol Clair	Trader
	150	Liz Lavlor	Secretary

CON.com/LAWCENTER			
Γ	Top bonuses awarded		
	John Lavorato: \$5 million Louise Kitchen: \$2 million		
	Jeffrey McMahon: \$1.5 million James Fallon: \$1.5 million Raymond Bowen Jr.: \$750,000 Mark Haedicke: \$750,000 Gary Hickerson: \$700,000 Wesley Colwell: \$600,000 Richard Dimichele: seon ono		

(日) (同) (三) (三)

-

▶ < ≧ ▶ ≧ ∽ ९ ペ 19/09/2012 30 / 32

Application: mobile malware containment

Nicosia et al. ()

19/09/2012 31

・ 同 ト ・ ヨ ト ・ ヨ ト

31 / 32

Application: mobile malware containment

19/09/2012 31 / 32

References

- Tang, J., Scellato, S., Musolesi, M., Mascolo, C., and Latora, V. Small World behavior in temporal networks Phys. Rev. E 81,, 055101(2010).
- Nicosia, V., Tang, J., Musolesi, M., Russo, G., Mascolo, C., and Latora, V. Components in time-varying graphs. Chaos, 22,, 023101.
- Tang, J., Musolesi, M., Mascolo, C., and Latora, V. SIGCOMM Comput. Com- mun. Rev. 40(1), 118124.
- J. Tang, M. Musolesi, C. Mascolo, and V. Latora. *Temporal Distance Metrics for Social Network Analysis*. In Proceedings of WOSN '09, Barcelona, Spain, August 2009.
- S. Scellato, I. Leontiadis, C. Mascolo, P. Basu, and M. Zafer. *Evaluating Temporal Robustness of Mobile Networks*. IEEE Transactions on Mobile Computing.
- J. Tang, M. Musolesi, C. Mascolo, V. Latora, and V. Nicosia. Analysing information flows and key mediators through temporal centrality metrics. In Proceedings of ACM SNS '10, Paris, France, April 2010.
- J. Tang, H. Kim, C. Mascolo, M. Musolesi. *STOP: Socio-Temporal Opportunistic Patching of Short Range Mobile Malware.* In Proceedings of the 13th IEEE Symposium on a World of Wireless, Mobile and Multimedia Networks (WOWMOM'12).
- J. Tang, C. Mascolo, M. Musolesi, and V. Latora. Exploiting Temporal Complex Network Metrics in Mobile Malware Containment. In Proceedings of the 12th IEEE Interna- tional Symposium on a World of Wireless, Mobile and Multimedia Networks (WOWMOM'11),

イロト イポト イヨト イヨト