MV-MAX

Which would you prefer: Fairness or Throughput for Multi-Vehicular Communication

> David Hadaller Srinivasan Keshav Tim Brecht

> > University of Waterloo

David R. Cheriton School of Computer Science University of Waterloo, Ontario, Canada

Application Scenario

Multiple vehicles in range of a roadside access point

David Hadaller Clean Slate Network Design, MSR, Intel, U of Cambridge, September 2006

Is fairness all it's cracked up to be?

David Hadaller Clean Slate Network Design, MSR, Intel, U of Cambridge, September 2006

Application Scenario

Extreme case of mobile Internet access:

- Vehicular users (passengers) on the highway
- Applications
 - Rich media (e.g. football highlights)
 - Location-specific travel information
 - Catered to user preferences
 - "Welcome to Cambridge" mp3 advertisement
 - Unload digital camera

Bulk Data on the Road? Waterloo

- These needs can be met by a mix of:
 - Faster cell service (3G, 4G)
 - WiFi on the road
- WiFi is cheap and fast but small coverage
 - Can be used to supplement "always-on" cell service
 - Requires new opportunistic mode of access
 - Users batch requests
 - Access point acts as a cache

WiFi Potential

Single vehicle experiments:

I5 MB of bulk TCP data per pass at 100 km/h using 802.11b [Hadaller 2005]

8.5 MB with no external antenna [Gass 2006]

70 MB using 802.11g [Ott 2005]

[Hadaller2005] D. Hadaller, H. Li, and L. G.A. Sung. Drive By Downloads: Studying Characteristics of Opportunistic Connections. In USENIX NSDI Poster Session, 2005.

[Ott2005] J. Ott and D. Kutscher. A Disconnection-Tolerant Transport for Drive-thru Internet Environments. In IEEE INFOCOM, 2005.

[Gass2006] R. Gass, J. Scott, and C. Diot. Measurements of In-Motion 802.11 Networking. In IEEE Workshop on Mobile Computing System and Applications (HOTMOBILE), 2006.

David Hadaller

Clean Slate Network Design, MSR, Intel, U of Cambridge, September 2006

David Hadaller Clean Slate Network Design, MSR, Intel, U of Cambridge, September 2006

MV-MAX

- MV-MAX assigns the wireless medium to the user experiencing the best signal quality
 - Intuition: take full advantage of periods of good signal quality
 - Maximizes system throughput
 - But at what cost to user fairness?
 - Premise: all users will eventually experience good signal quality on the highway

Example Scenario: MV-MAX

David Hadaller Clean Slate Network Design, MSR, Intel, U of Cambridge, September 2006

Simulations

Is fairness worth it?

David Hadaller Clean Slate Network Design, MSR, Intel, U of Cambridge, September 2006

12

David Hadaller

System Throughput (Our Data)

Waterloo

System Throughput

16

Fairness

17

- Do some vehicles take a large performance hit?
 - Are some vehicles starved?

User Experience =~ Amount of Data Transferred

Per-Vehicle Improvement Ratio = Data transferred vs 802.11

Improvement vs. 802.11

Using either MV-MAX or Time Fairness, compared to 802.11, every vehicle is able to transfer more data. (dense vehicle traffic)

University of Waterloo

Lorenz Fairness Curve

MV-MAX is only marginally less fair. (dense vehicle traffic)

Why be fair if every vehicle improves?

University of

Waterloo

Sneak Peak: Testing MV-MAX

Two Vehicles using 802.11b

Clean Slate Network Design, MSR, Intel, U of Cambridge, September 2006

Two Vehicles using MV-MAX

University of Waterloo

Aggregate Goodput

MV-MAX

802.11

University of Waterloo

23

Conclusion

24

Attempting to achieve perfect fairness in the multi-vehicular reduces performance

- Significant scheduling gain can be achieved due to repeatable signal patterns
 - MV-MAX improves throughput by up to 4x vs.
 802.11, and up to 2x vs. Time Fairness