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Abstract This paper examines the e�ectiveness of

adaptive algorithms for estimation of e�ective bandwidth

in ATM networks. Large deviations results for constant

capacity single server queues are used to derive a basic

e�ective bandwidth result which is applied to a linear rep-

resentation of the input process giving the e�ective band-

width as a function of the cumulant generating function

of the innovations, QoS, mean arrival rate and bu�er

size. The algorithm is tested by simulation using the least

squares lattice algorithm for estimating the linear process

coe�cients for a range of input processes. The e�ective-

ness of blocking and truncation of the input process on the

algorithm is investigated.

1 Introduction
ATM (asynchronous transfer mode) networks provide
multiservice capability whereby tra�c sources with dif-
ferent characteristics share network resources through the
statistical multiplexing of �xed-size 53 byte cells with
bu�ers used to absorb temporary overloads in tra�c 
ow.
To provide quality of service (QoS) guarantees to users,
such as for cell loss and delay, switch input tra�c 
ows
need to controlled. This is a congestion control problem
of which an important component is call admission where
network resources, such as bu�er space and link capacity,
are allocated and the decision to accept a new call is made.
The concept of e�ective bandwidth simpli�es resource al-
location because it does not include interaction between
calls. It associates a bandwidth value with a connec-
tion, independent of other connections in a switch, that is
greater than the mean rate but less than the peak rate of
the connection, that can be used to estimate the link ca-
pacity required to support the connection at the required
QoS, given the amount of available bu�er space. Early
work on e�ective bandwidths was by [6]. More recently
by [7] on unbu�ered systems and slotted batch models, [5]
on the uniform arrival and service (UAS) model, [4] on
continuous time Markov modulated 
uid sources, [9] on
discrete-time and Markov 
uid sources and [2] on Gaus-
sian tra�c models.

The paper presents adaptive algorithms for estimating
e�ective bandwidth allowing real-time estimates of re-
sources to be made and is an extension of [10] where the
underlying theory was introduced using large deviations
results for single server queues to obtain an e�ective band-
width formula that was applied to a linear representation
of the input process. This paper develops the results of

[10] to derive a recursive formula for e�ective bandwidth
that involves computing the cumulant generating func-
tion of the innovations and the sum of the linear process
coe�cients. Algorithm e�ectiveness was tested by simula-
tion using the least squares lattice algorithm to adaptively
estimate the linear process coe�cients and innovations
with four di�erent types of input process: Poisson, slot-
ted batch, autoregressive (AR(1)) and ON-OFF, whose
e�ective bandwidth could be calculated. Two enhance-
ments to the algorithm, blocking and truncation of the
input process, were examined to improve stability. The
outline of the paper is as follows. Section 2 presents the
underlying theory developed by [10]; Section 3 describes
the e�ective bandwidth algorithm; Section 4 presents the
algorithm for determining the linear process coe�cients;
Section 5 describes the tra�c models used; and, Section
6 presents the simulation results.

2 Underlying theory
An ATM switch is modelled by a single server queue
whose inputs are cells. Time is discretised into intervals
of duration � (not necessarily corresponding to an ATM
cell slot) such that the capacity of the queue server is c
cells per time interval. De�ne the cell input process so
that �Nk cells arrive in time interval k corresponding to
((k � 1)�; k� ]. The arrival counting process is given by

Nk =
Pk

r=1 �Nr = number of cells in (0; k� ]. The queue
length is given by the re
ection map

Qn
D
= sup

1�k�n

Ek; Ek = Nk � kc

where
D
= means equality in distribution. To obtain cell

loss probabilities, the probability of bu�er over
ow at
bu�er level b is given by P (Qn > b) = P (supkEk > b).
A large deviations approximation for this is found using
the Gartner-Ellis theorem ([4] and [10]), which gives

P (Qn > b) ' sup
1�k�n

e�kIN (c+b=k)

= e� infk kIN (c+b=k)

where IN (x) is the rate function

IN (x) = sup
�

(x� �KN (�))

and KN (�) is the pseudo cumulant generating function

KN (x) = lim
n!1

n�1 logE(e
�
P

n

k=1
�Nk ):
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Suppose that it is desired to attain a QoS specifed by
P (Qn > b) � e�
 = e�b� for large bu�er sizes b, � = 
=b

is the cell loss slope. An expresson for e�ective bandwidth
�(�) is obtained by determining the service capacity c
which gives

�(�) � c () P (Qn > b) � e�b� = e�
 :

In fact �(�) is given by �(�) = KN (�)=� (see [10] for
details). If �Nk is stationary with mean m the following
theorem is obtained [10].

Theorem. If �Nk is represented as a linear process

�Nk =

1X
u=0

hu�k�u +m

where �k are independent identically distributed random
variables with zero mean and cumulant generating func-
tion K�(�) = logE(e�1�) then

(i) n�1 logE(e
�
P

n

k=1
�Nk=n) ! �M + K�(�H) where

H =
P1

u=0 hu. Thus the e�ective bandwidth is

�(�) = KN (�)� = m +K�(�H)=�:

(ii) The cell loss slope � corresponding to service rate c
is � = �=H where � is a scaled cell loss slope for �k
found by solving

K�(�)=� = (c�m)=H:

This theorem simpli�es the calculation of e�ective band-
width because it replaces the computation of the pseudo
cumulant generating function of �Nk with computation
of the cumulant generating function of the innovations.

3 Adaptive estimation of e�ective

bandwidth
The mean m can be estimated adaptively using

mk = mk�1 + �m(�Nk �mk�1)

where �m is the step size. H is estimated by �tting an AR
model of order p to the mean subtracted arrival process
i.e. de�ne � ~Nk = �Nk �m then

� ~Nk =

pX
r=1

ar� ~Nn�r:

Using an adaptive algorithm of the type given in Section
4, adaptive estimators âr;k; r = 1; : : : ; p of ar; r = 1; : : : ; p
can be obtained. The estimator for H is then

Hk =
1

1�
Pp

r=1 âr;k
k = 1; 2; : : :

To derive an estimator for K�(�) an estimator, Mk, for
the moment generating function M�(�) = E(e��) is �rst
obtained:

Mk = Mk�1 + �K(e
�k�k �Mk�1)

where �k = �Hk, �K is the step size and the innovations
are be estimated by

�k = � ~Nk �

pX
r=1

âr;k� ~Nk�r; k = 1; 2; : : :

Since K� = logM� and dK� = dM�=M an estimator Kk

for K�(�) is

�Kk = Kk �Kk�1 =
�Mk

Mk�1

=
Mk �Mk�1

Mk�1

=
�

Mk�1

�
e�k�k �Mk�1

�

= �K

�
e�k�k

Mk�1

� 1

�

= �K
�
e�k�k�Kk�1 � 1

�
:

An estimator for the e�ective bandwidth is then

�k = mk +KkHk:

3.1 Enhancements to algorithm
The presence of �k in the exponent can cause large 
uc-
tuations and instability in the estimator �k. �K can be
adjusted to control these 
uctuations and it must be kept
small to reduce the impact of e�k�k . However this means
that the e�ective bandwidth estimates decay slowly when
�k is small. To provide more 
exibility in the estimator,
but at the cost of delay in determining the estimator and
more memory in its computation, a block estimate can
be used. Divide the input sequence �k into blocks of size
B. A block estimate for the moment generating function
is obtained by averaging e�k�k over a block. The updated
estimates are obtained at the end of each block:

MB
k = MB

k�1 + �K

0
@ 1

B

BX
j=1

e�k�k(B�1)+j �MB
k�1

1
A :

Following the non-block case, de�ne

�KB
k = KB

k �KB
k�1 =

�MB
k

MB
k�1

=
MB

k �MB
k�1

MB
k�1

to give

�KB
k = �

0
@ 1

B

BX
j=1

e�k(B�1)+j�k�K
B
k�1 � 1

1
A :

The block e�ective bandwidth is then

�Bk = mkB +KB
k HkB:

In this estimator, B acts as a smoothing parameter that
can independently limit the e�ect of large values of �k
while �K can be used to control the ramp-down of the
estimator when �k is small.
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Figure 1: Performance of averaged system

3.2 Truncation
With blocking there is still the possibility of large values
�k causing instability. One method of limiting this is to
apply a threshold T and truncate the input process. In
an ATM network truncation of the input process will oc-
cur because of peak rate tra�c shaping. The e�ect of
truncation is examined in more detail in Section 6.

4 Adaptive AR estimation

Recursive algorithms that can be used to estimate the
weights âr;k in the linear representation include the
least mean squares (LMS), the gradient adaptive lattice
(GAL), the recursive least squares (RLS) and the least
squares (LSL) algorithms [1]. The one which was used in
the simulation experiments in Section 6 was the LSL al-
gorithm and is described in Chapter 10 of [1]. Compared
to the other algorithms it gives much faster convergence
since it uses conditional predication rather than uncon-
ditional prediction to update the estimated coe�cients.
The algorithm outputs forward and backward re
ection
coe�cients and these are transformed to AR coe�cients.
The reader is referred to [1] for a detailed description of
the algorithm.

5 Tra�c models

This section presents four tra�c models: Poisson, slotted-
batch, AR(1) and ON-OFF, which will be used to test the
adaptive e�ective bandwidth algorithms.

Although tra�c processes in ATM are rarely Poisson, the
Poisson process can be easily analysed to give results that
can be used to test the algorithms. For the Poisson pro-
cess, �k = �Nk � m where �Nk are i.i.d Poisson random
variables with mean m and h0 = 1 and hu = 0 (u > 0),
giving H =

P1
u=0 hu = 1. Since the cumulant generating

function of a Poisson random variable with mean m is
logE(e��Nk) = m(e� � 1) this gives,

K�(�) = logE(e�(�Nk�m))

= m(e� � 1� �)
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Figure 2: E�ective bandwidth of Poisson process (� =
0:02, B = 1)

and the e�ective bandwidth is

�(�) =
m

�

�
e� � 1

�
:

Kelly [8] examines a simple slotted batch model with
mean rate m and peak rate h, where the number of cells
in a slot are i.i.d with P (�Nk = 0) = 1 � m=h and
P (�Nk = h) = m=h. In this case the e�ective bandwidth
is

�(�) = ��1 log
h
1�

m

h
(e�h � 1)

i
:

An AR(1) model, which can be used to model videophone
tra�c, has been examined by [2] who derived an e�ective
bandwidth result using the index of dispersion of a Gaus-
sian linear process. Since H is related to the index of
dispersion, the same result as [2] can be obtained as fol-
lows. Suppose that the AR(1) process is given by

� ~Nk = a� ~Nk�1 + �k

then hu = au and H = 1=(1 � a). For innovations �k
which are Gaussian with mean 0 and variance �2 then
K�(�) = �2�2=2 giving

�(�) = m+
�2�

2(1� a)2
:

Two types of ON-OFF sources are examined: an Inter-
rupted Poisson Process (IPP) and an Interrupted Deter-
ministic Process (IDP). To obtain an exact form for the
e�ective bandwidth, K� is needed. However, in neither of
these cases is an exact form simple to obtain. As an ap-
proximation the 
uid model results of [4] are used where
an ON-OFF source can be considered as a special case
of a modelled as Markov modulated 
uid source. The
e�ective bandwidth is given by

�(�) =
1

2�
[�1� + q0 + q1]

�
1

2�

q
f�1� + q0 + q1g

2
� 4q0�1�:

where the mean ON time = 1=q1, the mean OFF time =
1=q0, and rate in the ON state is �1.
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width (� = 0:02, B = 1)

6 Simulation results
Initially, the Poisson process was used to test the viabil-
ity of the algorithms, then the other tra�c models were
examined and �nally the e�ect of truncation was exam-
ined. The mean rate chosen was m = 100 s�1. The initial
Poisson process simulations used the theoretical values
for H(= 1) and m in the algorithm. The loss probability
chosen was 10�4 and the bu�er size of b = 26:0 was cho-
sen to given an e�ective bandwidth of � = 120 s�1. This
gave a value of � = 0:3547 and � = 0:3547. The stability
of the algorithm can be studied via the stability of the
averaged system [10]

�Kk = �K

�
eK�(�)�Kk�1 � 1

�
:

It can be shown that this is globally stable if 0 < �K < 1.
Behaviour of the averaged system for �K = 0:02 for di�er-
ent starting points is shown in Figure 1, veryifying conver-
gence of the algorithm. To test the e�ective bandwidth
algorithm two values of �K(= 0:02; 0:1) and two block
values B(= 1; 10) were used. The selection of step sizes
and block sizes in adaptive algorithms is a topic of current
research which needs to be addressed further before these
types of algorithm can be fully utilised, and the values
chosen were on the basis of preliminary simulation stud-
ies. However, [3] gives a discussion of block sizes for a
non-adaptive algorithm.

A trace of a typical simulation is shown in Figure 2 which
shows the in
uence of larger values in �k causing large
jumps in the estimate and the slow steady decay when
smaller values are present. To examine this variability,
100 simulations each were conducted for the four possible
combinations of �K and B. A typical histogram of the
estimate after 5000 samples for the case �K = 0:02 and
B = 1 is shown in Figure 3 and shows a general clustering
around the expected value of 120 but also the presence
signi�cant skewness and outliers. The descriptive statis-
tics for the 100 trials are shown in Table 1. The con�dence
intervals are based on a normal assumption but because
of skewness are only a guide. The results con�rm the in-
crease in variability by increasing �K and the reduction
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Figure 4: Mean and e�ective bandwidth of Truncated
process

in variability by increasing B.

6.1 Results with estimated mean and H
Table 2 shows the results of 100 experiments each when
the mean is known and H is estimated, the mean is es-
timated and H is known and when both the mean and
H are estimated. In estimating H is was found that al-
though convergence of the LSL was fast (the LMS, GAL,
RLS algorithms were also implemented) the estimate of
H could vary signi�cantly early on. The results presented
include a warm up priod of 200 samples before the mean
and/or H values were used to estimate the e�ective band-
width. The value of 200 was chosen as a conservative
estimate for ease of testing. The results are roughly con-
sistent with the simulations using the theoretical values,
taking into consideration the large variability, although
the cases where the mean is estimated give better results
than where H alone is estimated.

6.2 Non-Poisson models
The slotted batch, AR(1) (a = 0:8), IPP and IDP models
were examined using adaptive estimation of H but not
m. Model parameters in each case were set to give the
same theoretical e�ective bandwidth as the Poisson pro-
cess. The results support the overall e�ectiveness of the
algorithm but, as in the Poisson case, large values of �k
can case signi�cant variability. Bandwidth limited mod-
els (slotted/batch, IDP) have less variability. The AR(1)
model shows signi�cant variablity in the estimate even
though the innovations are smaller than the Poisson case
because of the magnifying e�ect of H(= 5).

6.3 Truncation
The a�ect of truncation on a Poisson process was exam-
ined through computation of the mean and e�ective band-
width of a truncated Poisson process for di�erent thresh-
olds (Figure 4). The mean converges to the untruncated
value faster than the e�ective bandwidth con�rming the
in
uence of large values. Simulation results in Table 4 for
a threshold of 130 indicate the improvement in stability
achieved throug truncation.
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Case Value Min Max Median

�K = 0:02; B = 1 789.4 (128.5, 1450.21) 111.1 26932 134

�K = 0:1; B = 1 5231.3 (201.7, 10260.9) 107.7 241689 301.9

�K = 0:02; B = 10 134.8 (122.8, 146.8) 113.9 600.6 118.7

�K = 0:1; B = 10 493.3 (57.2, 929.3) 111.8 21689 127. 9

Table 1. Poisson process results

Case Value Min Max Median

H estimated only 458.1 (268.7, 647.45) 137.6 5518.2 137.6

Mean estimated only 320.7 (210.2, 431.2) 109.5 4448.1 147.1

H and mean estimated 126.3 (120.9, 131.7) 109.5 278.9 118.3

Table 2. Poisson process with H and/or mean estimated (�K = 0:02 and B = 1)

Case Value Min Max Median

Slotted batch 120.0 (119.6, 120.0) 119.6 120.3 120.0

AR(1) 2160.7 (157.9, 4163.6) 122.3 100633 247.3

IPP 827.955 (75.1, 1580.8) 126.0 36931 170.7

IDP 122.0 (120.1, 124.0) 114.3 190.6 119.7

Table 3. Non-Poisson process results

Case Value Min Max Median

�K = 0:02; B = 1 120.4 (118.5, 122.3) 110.1 171.4 117.6

�K = 0:1; B = 1 231.6 (155.6, 307.6) 106.1 3772.3 140.1

�K = 0:02; B = 10 115.8 (115.6, 115.9) 113.5 117.9 115.7

�K = 0:1; B = 10 116.7 (116.2, 117.2) 112.4 125.0 116.3

Table 4. Truncated Poisson process results

7 Conclusion
This paper examined adaptive algorithms for e�ective
bandwidth estimation. The main di�culty is variabil-
ity in the estimate due to the exponential term in the
algorithm. It was found that blocking only partially al-
leviates this problem but truncation at a suitablly low
enough level can have a signi�cant e�ect. The selection
of suitable thresholds, step sizes and block sizes is the
subject of ongoing work.
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