
University of Cambridge
Computer Laboratory
DJG November 2006

Safety Checks
in a domain of collaborating(?)

applications

Dr David Greaves

Systems Research

Group
djg@cl.cam.ac.uk

University of Cambridge
Computer Laboratory
DJG November 2006

Project

CMI Pebbles and Goals

Groups

Cambridge: AutoHAN (SRG)
MIT CSAIL: Oxygen

Local People

David Greaves
Tope Omitola
Daniel Gordon

Atif Alvi

University of Cambridge
Computer Laboratory
DJG November 2006

Computer Laboratory
• Staf

– 30 academic staf,

– 20 support staf, and

– 25 affiliated research staf.

• Students
– 100 research students (PhD),

– 20 Diploma Students,

– 20 Mphil in Speech and Language,

– 3x90 Undergraduates.

University of Cambridge
Computer Laboratory
DJG November 2006

Talk Overview

• Reliable Computing (historical)
• The new environment (ubicomp)
• RBC / Pushlogic project

University of Cambridge
Computer Laboratory
DJG November 2006

Highly-reliable Computer
Systems

• Pre-1970, hardware used to cause the
problems.

• “A common view of software reliability is
that it is ensured by solely ensuring it is
free from bugs.

...software errors are seen as design
errors and cannot arise from component
ageing.” -- Randell 1971

University of Cambridge
Computer Laboratory
DJG November 2006

Traditional Reliability
Dimensions

• High availability (many 9's)
• Graceful failure
• Automatic recover after reboot
• Hardware interlocks
• Safe defaults
• Voting

University of Cambridge
Computer Laboratory
DJG November 2006

Use a good language
• C/C++ (eg. MISRA profile)

– Popular, ANSI reformed, but...
– Space station dereferences constants!

• ADA plus coding standard (eg.
Ravenscar).

• Erlang
• Esterel
• Modellica, Statecharts, SysML.
• Pushlogic

University of Cambridge
Computer Laboratory
DJG November 2006

Coding Standards

• MISRA-C
– 127 rules
– R104: “Non-constant pointers to functions

should not be used”
• ADA Ravenscar 97

– Standard templates for timing/threading
– No use of asynchronous select
– No use of dynamic priorities
– many other rules

University of Cambridge
Computer Laboratory
DJG November 2006

Erlang

University of Cambridge
Computer Laboratory
DJG November 2006

Esterel

University of Cambridge
Computer Laboratory
DJG November 2006

StateCharts
SysML

University of Cambridge
Computer Laboratory
DJG November 2006

stategraph graph_name()
{
 state statename0 (subgraph_name, subgraph_entry_state), ... :

 entry: statement;
 exit: statement;
 body: statement;

 statement;
 ... // implied 'body:' statements
 statement;

 c1 -> statename1: statement;
 c2 -> statename2: statement;
 c3 -> exit(good);
 ...
 exit(good) -> statename3: statement;
 exit(bad) -> statename4: statement;
 ...
 endstate

state statename1:
 ...
 endstate
...
}

Hierarchical
Stategraph

Syntax

(SysML/
Pushlogic)

University of Cambridge
Computer Laboratory
DJG November 2006

Reliable Toolchain
• Validated compiler

– Hard to find one
– User's program could be wrong

• Validate the object code at point of use
– Easy to understand code, or
– Proof carrying code

University of Cambridge
Computer Laboratory
DJG November 2006

System Validation

• Simulation/emulation/exercising
– Hours of switching switches according to

printed script
– Output as expected: yes/no ?
– Run-time assertion monitors.

• Code coverage.
• Static checking with formal methods.

University of Cambridge
Computer Laboratory
DJG November 2006

Automatic(?) Error Recovery
• BPEL4WS and STAC provide

– exceptions
– roll back contexts

• New language constructs:
– Enter a new named context
– Add a rollback command to the context
– Pop to named context (forget associated

rollbacks)
– Abandon to named context (unwind,

executing rollbacks in reverse order)

University of Cambridge
Computer Laboratory
DJG November 2006

New Environment

• Many concurrent applications sharing
resources,

• Dynamic population of applications and
resources,

• Multiple, overlapping domains,
• Dynamic disconnection and

reconnection,
• Device API evolves (new models).

University of Cambridge
Computer Laboratory
DJG November 2006

Es wurde ein neues
Gerat gefunden.

Device:
Airbus A310

Soll die Auto
Konfguration

gestartet werden ?

University of Cambridge
Computer Laboratory
DJG November 2006

API Reflection (mature).
1. Early, wire protocol RPC APIs:

 Sun RPC, CORBA, HAVI, MOSTNET

2. Evolvable XML APIs with Reflection:
 UPnP, EDDL, (SNMP), XMLRPC, SOAP,

WSDL

3. Self-Assembling Directory Services
 UPnP, RDF, LDAP, SCP, SSDP, INS, …

4. Namespaces and Ontologies
 OWL, OWL-S, DAML, RDF

University of Cambridge
Computer Laboratory
DJG November 2006

1. The following separate devices, each of which can be
individually useful in a networked home:

Let's look at what a modern TV set contains:

A Device: A collection of Pebbles and a Canned App

2. A canned application that joins the components.

• RF Tuner

• Colour Display

• Ni-Cam Audio Decoder

• Power Amplifier

• Surround Sound
Decoder

• IR Receiver

• Teletext Decoder

• MPEG Decoder

• Programming Memory

• Front Panel User Interface

University of Cambridge
Computer Laboratory
DJG November 2006

Generic Device: Pebble View

University of Cambridge
Computer Laboratory
DJG November 2006

Definitions:Pebbles and
Applications

• Pebble:
– A passive network entity (hardware or software)

that implements a useful, reusable function and
can register and describe itself to its environment.

• Application:
– A proactive bundle of controlling code that

connects pebbles together to achieve some user
goal.

• Device:
– A hardware entity that encompasses some

pebbles and bundles

University of Cambridge
Computer Laboratory
DJG November 2006

Example User Scripts
• Record both Simpson’s shows tonight and charge to

Pam’s pay-per-view account.

• Create a video call to Peter of best quality.

• Whenever the doorbell is pressed during darkness turn
on the porch light for 10 minutes.

• Do not render dialog or other popups when video
recording is taking place.

University of Cambridge
Computer Laboratory
DJG November 2006

Benz C200 Interior Light

• Interior light rules:
– On when door open and auto mode (if not

night)
– On when manual mode,
– Slow fade out when has just been on,
– On for 15 seconds after remote door unlock

at night,
– On until engine started at night,
– Otherwise of.

• Darkness sensor should be ignored when
any interior light is on.

University of Cambridge
Computer Laboratory
DJG November 2006

Code Reflection (new)
• A device must expose the proactive

behaviour of its canned application(s)
– Actual source code (constrained language)
– Proof carrying actual source code
– Summary of behaviour

– E.G. I will not send control messages when I am in
standby mode.

– E.G. I am always of between 1:00 and 5:00.

• Device is banned for remote operations
unless proof obligations are met.

University of Cambridge
Computer Laboratory
DJG November 2006

Standing Rules (non-disjoint
domains).

• No rule should issue a command under the same
circumstances where another rule issues the
counter-rule.

• Jonny is not allowed to spend more than 2 pounds
per day on pay-per-listen.

• Fire Alarm sounding => all music sources muted.

• The front gates must always be remotely openable
by some method or other.

University of Cambridge
Computer Laboratory
DJG November 2006

Pushlogic

An easy-to-use programming language
that

integrates state, events and error recovery
and is amenable to automated checking,

for
Embedded Applications

and
User Scripting

University of Cambridge
Computer Laboratory
DJG November 2006

Pushlogic Aims
• Source language

– Familiar looking
– Easy to use (imperative, C-like)
– Automate error recovery
– Cleanly integrate state and event

• Do many new things in the compiler
• Carry much more into the object file
• Define a run-time environment for

evolvable systems

University of Cambridge
Computer Laboratory
DJG November 2006

Application Scenarios
• Consumer and Home Automation
• Automotive

– CAN car area network
– Rail: two sets of train carriages join

• Plant and Site Control
– Fire and intruder alarms
– Pump and tank monitor (brewery, refinery)

• System On Chip
– IP assembly and integration

University of Cambridge
Computer Laboratory
DJG November 2006

Pushlogic Restrictions

• All integrators must be inside
diferentiators:
 if (x != x_last) { sum := sum + 1; x_last := x }

• All pointer, arithmetic and time
calculations must be reduced to
undetermined boolean inputs.

• Dynamic allocation only performed at
bundle load time (SPL1).

• All assertions are in CTL.

University of Cambridge
Computer Laboratory
DJG November 2006

Event versus State (level)

• Diferentiation:
– If we change state we have an event

• Integration:
– If we record the last event received we have

a state

• Networks are better at carrying events ?
• Safety assertions are best written about

state ?

University of Cambridge
Computer Laboratory
DJG November 2006

Level and Event Expressions

• Level expressions are functions of state
variables using the normal operators

• Event expressions are
– event variables
– diferentiations
– disjunctions of event expressions
– certain conjunctions of level and event

expressions
– certainly not negated event expressions

• Actually defined by elaboration and not
syntax

University of Cambridge
Computer Laboratory
DJG November 2006

Embedded Assertions

• Three forms:
– always <level expression>
– never <expression>
– live <expression>

• Might add `a until b' and other CTL
operators?

• Assertions are carried though object file
for domain manager use.

University of Cambridge
Computer Laboratory
DJG November 2006

Pushlogic Restrictions (2)

• Restricted
assignments
between
state and
event
expressions

University of Cambridge
Computer Laboratory
DJG November 2006

Emit Statement

University of Cambridge
Computer Laboratory
DJG November 2006

Emit Statement (2)

University of Cambridge
Computer Laboratory
DJG November 2006

Values
• All values are string constants or integers
• Variables may be

– level, with safe value(s)

– event

– fuse

– lock

• Variables are currently implemented as
part of a global distributed tuple space.

pebble heatingpump = tup://128.232.7.22:1080#device;

input heatingpump#status#temp : { unk 273..1000 };

inout heatingpump#status#command : { off: 0..9 };

University of Cambridge
Computer Laboratory
DJG November 2006

Mechanism View of Pushlogic

• Controlled devices can fail or self-
reset to a safe value.

• Controlling scripts are reversible, so
that a failure feeds back to the
control source in a defined way.

• Feedback form is intrinsic or explicit.
• System behaves like a ‘mechanism’:

both the controller and the controlled
can push on each other.

University of Cambridge
Computer Laboratory
DJG November 2006

Reversible Operation
(Pushbacks)

University of Cambridge
Computer Laboratory
DJG November 2006

Using a Fuse for protection

University of Cambridge
Computer Laboratory
DJG November 2006

Objec
t

bundl
e

Sourc
e

Form
1

Compiler 1

Re-
Hydration

Sourc
e

Form
1

Sourc
e

Form
1

Objec
t

bundl
e

Object
bundle

Objec
t

bundl
e

Sourc
e

Form
2

Compiler 2

Sourc
e

Form
2

Source
Form 2

Object
bundle

Object
bundle

Re-
Hydration

Re-
Hydration

Re-
Hydration

Bound
bundle

Bound
bundle

Bound
bundle

Bound
bundle

Executio
n

Platform

Execution
Platform

Executio
n

Platform

Compil
e

Time
Checke

r

Bundle
Checke

r

Load
Time

Checke
r

(Run
Time

Checke
r)

Domain of
participation

network

Device bindings

Semantic Web

Push Logic
Compile/bind/
execute
Flow diagram

University of Cambridge
Computer Laboratory
DJG November 2006

Compilation Method

• Parse input file(s).
• Break threads into arcs at blocking primitives.
• Guard each arc by a runtime program counter being

set to a label constant and create rules to update
the program counters.

• Repeated symbolic evaluation of arc set until fixed
point reached.

• Perform bundle checks using internal model checker.
• Generate declarative bytecode bundle, containing a

mix of
– Executable rules (v:= e, …)
– CTL assertions (always, live, until, …).

University of Cambridge
Computer Laboratory
DJG November 2006

Compiler
Internal

Flow
Diagram

University of Cambridge
Computer Laboratory
DJG November 2006

World and Plant Models

University of Cambridge
Computer Laboratory
DJG November 2006

World and Plant Models (2)

University of Cambridge
Computer Laboratory
DJG November 2006

Dynamic Participation Issues

• Monotonicity over bundles present
• Monotonicity over expansion of variable

range
– recorder#quality : { hi : low medium };

• Domain create, refine, merge, divide...

University of Cambridge
Computer Laboratory
DJG November 2006

Compile-Time Checks

• Safe Value Check
– There exists a setting of the variables where each

is in a safe state and all executable rules hold.
• Rule Consistency

– No two rules will try to set the same variable to
diferent values at any one time.

• Idempotency Check
– No ring of rules exists that causes an observable

output to oscillate when rules are obeyed more
than once with the same input settings.

University of Cambridge
Computer Laboratory
DJG November 2006

Compile-Time Checks(2)
• Hazard/Race Check

– All inter-leavings of parallel statements must
lead to the same result.

University of Cambridge
Computer Laboratory
DJG November 2006

Compile-Time Checks(3)
• Push Back Check

– For any unilateral change in any output, to any
safe value of that output, internal variables or
inputs to the bundle can be changed, again to
safe values, so that all rules hold

• User’s Embedded and Imported CTL Expressions
– Safety, liveness and until assertions may be

embedded in the source.

• Monotonicity Check
– Rules cannot cease to hold when an un-

associated (separate) bundle or device leaves.

University of Cambridge
Computer Laboratory
DJG November 2006

Load-Time Checks
• All the compile-time checks are repeated but over

the union of participating bundles and wold/plant
models

• Re-synchronisation constraint:
– A liveness assertion that any supposedly-

coupled systems will re-synch after a network
error.

• Oscillation
test

University of Cambridge
Computer Laboratory
DJG November 2006

Practical Work Complete

• Have built various hard and soft Pebbles
• Have a compiler
• Don't have a domain manager
• Don't have a re-hydrator
• We use the compiler as the domain

checker for inter-bundle checking.

University of Cambridge
Computer Laboratory
DJG November 2006

CD Player – Pebble Decomposition

University of Cambridge
Computer Laboratory
DJG November 2006

CD Player: Tuple Space View

University of Cambridge
Computer Laboratory
DJG November 2006

Heating Controller

University of Cambridge
Computer Laboratory
DJG November 2006

Heating Controller Prototype

University of Cambridge
Computer Laboratory
DJG November 2006

GUI
Example

University of Cambridge
Computer Laboratory
DJG November 2006

University of Cambridge
Computer Laboratory
DJG November 2006

Pebbles Alarm Clock

University of Cambridge
Computer Laboratory
DJG November 2006

Non-Real-Time Applications:

• EDA: components are brought together:
– As IP and devices from many suppliers
– Meta-info ranging from data-sheets to

machine-readable formal specs
– Often a rapid time-to-market requirement
– Sometimes a live-insertion requirement

• Bringing a new production line online
– Start the checking the day before!

University of Cambridge
Computer Laboratory
DJG November 2006

Future Work

• Compilation of bytecode to ROM-able machine code (PIC)
 and integrate with CAN car node checking project.

• Some larger examples need exploration.

• Talks with industrial collaborators who might use it ?

• Bundle format optimised for incremental model checking.

• Further work on eventing (GENA) and SOAP integration.

• Complete formal semantics and reference manual

• Further work on disconnection and merging.

• Further HCI and multi-view editing projects.

University of Cambridge
Computer Laboratory
DJG November 2006

Questions ?

• David.Greaves@cl.cam.ac.uk

• www.cl.cam.ac.uk/Research/SRG/HAN/Pebbles

mailto:David.Greaves@cl.cam.ac.uk
http://www.cl.cam.ac.uk/Research/SRG/HAN/Pebbles

University of Cambridge
Computer Laboratory
DJG November 2006

Typical Plant Control Stack

Network: LAN or FIELDBUS

DEVICE INVENTORY
DESCRIPTIONS DATABASE

STATUS
DATABASE

CONTROLLING
APPLICATIONS

SYSTEM
LIVE/SAFE

CONSTRAINTS

PLANT DEVICES
(Sensors, Valves, Pumps...)

PLANT MODEL
(Known Sensor/Actuator Feedback Paths,

Autonomous Controller Behaviour)

VIEWER
TOOLS

DOMAIN-SPECIFIC APPLICATION SCRIPTING
GUI

University of Cambridge
Computer Laboratory
DJG November 2006

Problems Doing This Today

• The main technique (so far) is symbolic
model checking.

• Model checking is slow and does not
scale.

• Can we do anything in real time ?
• How much can be pre-computed ?
• Can we use type-based checks?
• What about non-real time applications ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

