Pebbles and Jess: A Marriage of Convenience?

Atif Alvi

Computer Laboratory, University of Cambridge
atif.alvi@l.cam ac. uk

Abstract

We study the feasibility of using Jess (Java Expert System Shell) as a building block in our rule-based
architecture for home environment [1]. Jess is an attractive candidate: it is a rule engine written in Java;
can process a large number of rules quickly;, and is a stable software product. The outstanding but
resolvable issues for this integration are: Jess's appetite for memory; distributing Jess; rule validation;
allowing communication or conversion between application programs and rules; and making Jess plug 'n’

play with respect to devices.

1. Introduction

We are developing a functionally monolithic rule-
based controller for the home environment where
a changing population of devices is governed by a
rule-set of variable cardinality. More than one
system design is under consideration and this
writeup refers to the framework described in [1].
The major components of this design are registry,
rulebase, rule validator and execution engine. We
are looking for ways to implement these
components suitably.

Jess is an expert system shell and scripting
language written entirely in Java. It is a
programmer's library in Java that serves as an
interpreter for another language called the Jess
language. The Jess language is very similar to the
language defined by the CLIPS (C Language
Integrated Production System) expert system shell
[5], which in turn is a highly specialized form of
LISP. Jess supports the development of rule-based
expert systems which can be tightly coupled to
code written in Java. At its heart is the Rete
algorithm [2] — a time-efficient method for
matching objects and patterns — that can be used
to find all the rules with satisfied conditions (the
if's) after an event and then to fire those rules (the
then's).

Instead of writing a system from scratch, we seek
to intelligently blend already available software
components that have gone through extensive

development cycles to be assured of their
reliability and performance in such a sensitive
context as one's own home.

In Section 2 we discuss the overall requirements
for Pebbles. Section 3 overviews Jess' capabilities
and Section 4 analyzes the issues concerning Jess
deployment in Pebbles. We conclude in Section 5.

2. Pebbles Requirements

The Pebbles system is meant to control a multitude
of embedded devices in a home environment. [1]
achieves this by having a rule-based controller that
comprises: registry (holds device details and
current worldview), rulebase (stores rules), rule
validator (checks for consistency among rules),
and execution engine (responds to events by
taking appropriate actions). Communication with
the external world is done through an
asynchronous eventing protocol, such as GENA,
and an XML-style RPC protocol, such as XML
RPC or SOAP. Predicate calculus is used to define
rules and imperative style user applications either
need to be compiled into universally quantified
rules or they need to be executed remotely.

As Pebbles faces real life and real time scenarios,
its reaction time should be quick in the presence of
a large number of devices, applications and rules.
In addition, suitable prioritizing and conflict
resolution strategies must be at hand to model real
situations and consequent actions.

3. Jess Capabilities

With Jess come all the portability and security
advantages of Java along with the ability to write
Java applications or applets. However, this also
introduces Java's slower execution speed, but this
is more than compensated for by the fast Rete
algorithm it employs. The analytical time
complexity of a rule firing is at worst O(W**!) and
at best O(1), where W is the size of the working
memory (global database holding all the data or
facts) and P is the number of patterns (if's) in a
rule [2]. If we take the size of the memory taken
up by rules (rule memory) as a complexity
measure, then the time for one rule firing is at
worst O(R), where R is the total number of rules in
rule memory (the best case is O(log, R)). Results
from a practical study are also encouraging where
Jess was used to track the movements of 20 people
with approximately 2 events/sec (sample
frequency) generated. The response time was 0.20
sec on an 800MHz Intel Pentium III machine with
128MB RAM. This was almost ten times faster
than the BAT tracking system in the Technology
Group (LCE). In the same study, the speed was
estimated to be linear in the number of facts and
quadratic in the number of conjunctions in the
rules.

Jess offers a range of possibilities in terms of the
amount of Java code and pure Jess language
scripts that the user wants to employ. At one end
of the spectrum there can be pure Jess language
scripts and at the other end pure Java code;
usually, a mix of both is utilized.

Jess uses first order logic and supports both
forward and backward chaining, unlike Prolog that
uses only backward chaining. Backward chaining
lends the system a 'goal seeking' behaviour
whereas forward chaining looks for satisfied rules
on its own after a fact is known.

Jess can also be used in a multithreaded
environment. The jess.Rete class internally
synchronizes itself using several synchronization
locks.

4. Embedding Jess in Pebbles

Jess can be integrated into Pebbles with slight
changes in the internals of the architecture

proposed in [1]. The rule base and execution
engine are already integrated into Jess. It also acts
as a registry by registering devices and other
entities as Java objects. The rule validator will still
have to be written, modified for use with the Jess
scripting language. RPC (SOAP) and eventing
(GENA) can easily interact with Jess.

The problem of distributing the rulebase for
efficient execution as the number of rules
increases can be tackled by using, say, CORBA to
enable different cooperating incarnations of Jess
residing on different servers. However, this would
not be necessary until the number of devices or
rules grows very large because Jess works
efficiently with several hundred objects with each
object typically having between ten and one
hundred attribute-value pairs.

A compiler for converting imperative-styled user
applications into the Jess scripting language style
of rules will have to be written. Some user
applications can use the javax.rules API to hook
directly into Jess.

The idea of assigning priorities to different rules is
supported in Jess [4] in the form of salience of a
rule. Salience values can be integers, global
variables, or function calls. In the case of a tie in
the salience values of rules, two different conflict
resolution strategies are currently available
(CLIPS has seven [5]): depth (LIFO) and breadth
(FIFO). In either case, if several rules are
activated simultaneously (i.e. by the same fact-
assertion event) the order in which these several
rules fire is unspecified, implementation-
dependent and subject to change. More built-in
strategies may be added to Jess in future. One can
(perhaps) also implement one's own strategies in
Jess [4].

To discover new devices in a plug 'n' play manner,
Java code will have to be written that conforms to
the UPnP standard for discovery and description.

Also, complete rule removal seems unsupported at
this time although rules can be modified to
anything in Jess.

5. Conclusions and Future Work

The analysis in this report shows that Jess, with a
manageable amount of work, can be incorporated

into the Pebbles architecture. Further investigation
needs to be carried out into the issues of
distributing Jess and writing a compiler for
converting application programs into Jess rules.
Moreover, the tightness and ease of validation of
Jess rules has to be compared with the pure logic
approach of [1].

6. References

[1] D. J. Greaves and T. Omitola. Ideas for a Predicate
Calculus, Rule-Based Controller. Unfinished Drafft,
2005.

[2] C. L. Forgy. Rete: A Fast Algorithm for the
ManyPattern/Many Object Pattern Match Problem.
Artificial Intellignce, 19 (1982), pp. 17-37.

[3] E. Katsiri. Middleware Support for Context-
Awareness in Sensor-Driven Systems. Ph.D.
Dissertation, Computer Laboratory, University of
Cambridge, to be submitted.

[4] E. J. Friedman-Hill. Jess, The Rule Engine for Java
Platform. http://herzberg.ca.sandia.gov/jess/docs/70/,
Version 7.0a5, Draft, February 2™ 2005

[5] CLIPS Reference Manual, Volume I, Basic
Programming Guide.
www.ghg.net/clips/download/documentation/bpg.pdf,
Version 6.23, January 31* 2005.

