
EyeTab: Model-based gaze estimation on unmodified tablet computers

Erroll Wood∗

University of Cambridge
Cambridge, United Kingdom

Andreas Bulling†

Max Planck Institute for Informatics
Saarbrücken, Germany

Abstract

Despite the widespread use of mobile phones and tablets, hand-
held portable devices were only recently identified as a promising
platform for gaze-aware applications. Estimating gaze on portable
devices is challenging given the limited computational resources,
the low quality of the integrated front-facing RGB camera, and the
small screen to which gaze is mapped. In this paper we present
EyeTab, a model-based approach for binocular gaze estimation that
runs entirely on an unmodified tablet. EyeTab builds on set of estab-
lished image processing and computer vision algorithms and adapts
them for robust and near-realtime gaze estimation. A technical pro-
totype evaluation with eight participants in a normal indoors office
setting shows that EyeTab achieves an average gaze estimation ac-
curacy of 6.88◦ of visual angle at 12 frames per second.

Keywords: gaze estimation, eye tracking, attentive user interfaces,
gaze-based interfaces, portable devices

1 Introduction

Portable devices, such as mobile phones and tablets, have become
daily life companions for billions of people. With fewer and fewer
users actually making calls with their phones, gaze has become the
second most important human sense at the phone/user interface,
following touch. The way we visually interact with portable de-
vices can reveal a lot about our visual and physical context [Bulling
et al. 2011] but also the usability of the mobile user interface itself.
Portable devices therefore have considerable potential as the first
mainstream attentive user interface and promise a variety of gaze-
aware applications, such as mobile user experience testing, enhanc-
ing the reading experience [Biedert et al. 2010], monitoring and
understanding reading behaviour [Kunze et al. 2013], or simply se-
lection of out-of-reach content on the screen.

Despite their potential, hand-held portable devices have so far still
remained a niche platform for gaze-aware applications. This is
mainly because estimating users’ gaze on portable devices in mo-
bile settings is significantly more challenging than “classical” eye
tracking. Current eye trackers can rely on infrared illumination,
high quality video cameras, substantial computational power, as
well as a relatively stable position of the tracker relative to the
users’ eyes. In contrast, gaze estimation on portable devices has
to deal with limited computational resources, low resolution im-
ages recorded using the integrated front-facing RGB camera and is
further impacted by adverse lighting conditions, small screen sizes
and UI elements to which gaze has to be mapped, short interaction
spans [Oulasvirta et al. 2005], as well as head movements.

∗e-mail: eww23@cam.ac.uk
†e-mail: andreas.bulling@acm.org

Figure 1: EyeTab enables gaze-based interaction with unmodified
tablet computers in near realtime using a model-based approach
for binocular gaze estimation.

In this work we present a model-based approach for binocular gaze
estimation that runs entirely on an unmodified tablet. Our system,
EyeTab, does not require any external cameras or infrared illumi-
nation but extends and adapts different image processing and com-
puter vision techniques to track gaze using a portable device’s front-
facing camera (see Figure 1). In a technical prototype evaluation we
show that the system can estimate gaze on a screen of 1920× 1080
pixels with an accuracy of 6.88◦ of visual angle at 12 frames per
second (fps). While this performance is still inferior to state-of-
the-art remote and head-mounted eye trackers, we believe it rep-
resents a significant step towards the ultimate goal of developing
a robust, fast and accurate gaze estimation system for portable de-
vices. For the benefit of the research community, EyeTab’s source
code is available under an open source license [Wood 2013].

2 Related work

2.1 Gaze estimation from RGB images

Most commercially available eye trackers require specialised hard-
ware and infrared light sources for gaze estimation. In contrast,
appearance-based approaches work under visible light and use im-
age processing and machine learning techniques to estimate gaze
directly from video images. For example, Sesma et al. performed a
study to evaluate the pupil centre eye corner (PC-EC) vector as an
alternative to the well-established pupil corneal reflection method
for low-cost gaze estimation [Sesma et al. 2012]. Their results
show that PC-EC significantly reduced the accuracy of the gaze
estimation under standard working conditions to 2 − 3◦ of visual
angle. Valenti et al. describe a system for accurately tracking head-
pose and eye positions using a low resolution webcam [Valenti et al.
2012]. The authors determine a point of gaze using a simple regres-
sion mapping of eye-features after an initial calibration. Our ap-
proach builds on the model-based “one-circle” algorithm presented
in [Wang et al. 2003] which tracks gaze in RGB images using the



Detect rough eye 
positions

Precisely locate 
eye-centres

Detect limbus 
edge points

Fit an ellipse to 
the limbus

Back-project 2-D 
ellipse to 3-D circle

Infer smoothed 
gaze point

Coarse eye-ROIs Limbus feature
points

3-D limbal circle

Accurate
eye-ROIs

On-screen gaze point2-D limbal
ellipse

Figure 2: Components of the EyeTab system: Eye localisation us-
ing cascade classifiers and a shape-based approach, limbus ellipse
fitting to identify the 2D limbus positions, and point-of-gaze estima-
tion using limbus back projection and gaze smoothing.

iris-contour (limbus). However, they used high quality DLSR cam-
eras with zoom lenses, and only tested still images.

2.2 Gaze estimation on portable devices

Only a few previous works aim to enable gaze-based interaction
with portable devices using full on-device processing. Common to
all is the use of the front-facing camera integrated in most state-of-
the-art smartphones, and estimation of gaze directly from recorded
RGB video images. Miluzzo et al. present EyePhone, a system that
allows users to interact with their phone using their eyes [Miluzzo
et al. 2010]. While it doesn’t require any external equipment, their
system does not estimate gaze but rather uses the phone’s front-
facing camera to detect in which of nine grid areas overlaying the
video image the user’s eye is located. The user then performs a
blink to trigger a command associated with each of these areas.
Vaitukaitis and Bulling presented the first eye gesture recognition
system that run entirely on a mobile phone [Vaitukaitis and Bulling
2012]. Their system combines established methods for face and eye
detection with template matching on sequences of discrete gaze di-
rections to detect a set of six different eye gestures. They reported
an average gesture recognition accuracy of 60 % at about 4 fps.
In a recent work, Holland et al. describe an eye tracking system
for unmodified tablets [Holland et al. 2013]. Their system first de-
tects the face, eyes and irises in the video image, and then uses an
appearance-based approach in combination with a neural network
to estimate on-screen gaze location. The authors reported an av-
erage spatial accuracy of about 4◦ of visual angle but a temporal
resolution of only 0.65 Hz. Kunze et al. introduced a reading ap-
plication for smart phones and tablets [Kunze et al. 2013]. Their
system uses the approximate head angle and eye positions detected
in the video images to estimate if the user was looking at the screen.

3 The EyeTab system

Figure 2 provides an overview of EyeTab. We first extract rough
eye positions from the image using cascade classifiers and locate
eye-centres using a shape-based approach. We then detect possible
limbus edge points within the resulting eye regions of interest (ROI)
as maxima of the radial derivative, and determine the limbus’ ellip-
tical outline with robust model-fitting. The 2D ellipses are then
back-projected to 3D to locate the limbus centres and the circle’s
normal vectors – the eyes’ optical axes. Finally, we estimate a joint
point-of-gaze (POG) by averaging and smoothing both eyes’ POGs
using the intersections between the 3D optical axes and the screen.
In the following we describe each processing stage in more detail.

Detected eye-pair Coarse eye-ROIs Refined eye-ROIs

Figure 3: Multi-stage precise eye localisation: from the rough po-
sition of an eye-pair to refined eye regions-of-interest.

Figure 4: Coarse eye ROIs and their estimated eye-centres.

3.1 Eye localisation

EyeTab first determines the eyes’ ROIs, reducing the search space
for all subsequent processing stages, with a two-step approach (see
Figure 3): rapidly approximating a rough ROI within the entire im-
age and then refining ROI size and position to ensure they exhibit
eye-features predictably. For rough ROI extraction, we use Haar-
like feature based cascade classifiers to detect eye-pairs, and then
segment two coarse ROIs from the eye-pair region. We opted to de-
tect eye-pairs instead of faces because this approach is more robust
in cases where part of the face may fall out of image bounds.

This approach is fast, reliable and user-independent but not always
precise as coarse ROIs may be incorrectly centred and parts of the
iris may lie outside ROI bounds. To precisely localise the eye centre
we use a shape-based approach that exploits the predicted dark cir-
cular appearance of eye features [Timm and Barth 2011]. The cen-
tre of a circular pattern is defined as the point where the most image
gradient vectors intersect. This is calculated for all possible points
using an objective function to measure how well gradient vectors
and eye-centre displacement vectors are aligned. As the eye-centre
generally appears dark, we also weight each point by it’s inverse
intensity. As shown in Figure 4, the objective function can be accu-
mulated in a centre-map, showing the eye-centre likelihood of each
point. Once we know the precise positions of both a eyes in the
image, we reposition the ROIs about them and resize the ROIs to a
ratio of the screen-space interocular distance. This minimises them
while still capturing important eye-features within their bounds.

3.2 Limbus ellipse fitting

Once we obtained accurate eye ROIs, we determine the limbus’
elliptical outline. A popular iris boundary detector is Daugman’s
integro-differential operator which detects radial edges with an ex-
haustive search [Daugman 1993]. This approach is too computa-
tionally intensive for detecting ellipses in real-time. Instead, in Eye-
Tab we rapidly identify a set of possible limbus edge points and
robustly fit an ellipse model to them.

Detecting possible limbus points

We detect limbus boundary points as parts of radial edges by
analysing the ROI’s radial derivative. As shown in Figure 5, this is



Polar transformed eye ROI Radial derivative of eye ROI Cartesian ROI

Figure 5: Potential limbus points (red) within the search region
(blue), in both polar and Cartesian domains.

calculated using the vertical derivative of the ROI’s polar transform.
We take the maximum of each column of pixels in the radial deriva-
tive as a possible limbus point. We search between a minimum and
maximum radius to avoid mis-classifying a pupil/iris boundary as
a limbus point. The likelihood of an eyelid overlapping the iris is
greatest at its top and bottom so we ignore these extreme angles.

Unlike Canny-based techniques [Wang et al. 2003], our approach
does not use pre-defined thresholds. This makes it robust under a
range of eye appearances, both across users and lighting conditions.
It also supports out-of-focus images, as it does not require a strong
edge. The surface of the cornea is reflective so nearby light sources
can cause specular reflections that confound limbus detection. To
suppress these, we threshold out the darkest half of the image to ob-
tain a set of possible specularities. These appear in the thresholded
image as small connected components which we then inpaint. As
we only inpaint small regions this is not computationally expensive.

Unless eyes are extremely wide open, it is likely that the set of possi-
ble limbus points contains some that belong to eyelids or surround-
ing skin. Before fitting the ellipse, we remove erroneous points
by approximating the upper eyelid with a parabola, and discard-
ing exterior points. This parabola passes through three points: the
iris/eyelid boundary above the eye-centre, and two eye corners. The
iris/eyelid point is detected as a horizontal edge and we estimate
eye-corners using a ratio of the on-screen interocular displacement.

Robust ellipse fitting

The set of potential limbus points may contain outliers that ad-
versely affect ellipses fit using a direct least-squares method.
To handle these outliers we use a random sample consensus
(RANSAC) method (see Figure 6) with modifications specifically
designed for gaze tracking ellipse fitting [Świrski et al. 2012].
These include a modified support function which takes the image
into account, preferring ellipse models with geometric gradients
that match strong image gradients.

3.3 Gaze geometry

When a 3D circle is projected onto an image plane, it appears as
an ellipse. We reverse this process to locate the limbus centre in
3D space, and the 3D circle’s normal vector – the optical axis. We
use pinhole camera projective equations to determine the distance
between the camera and the limbus. This relies on pre-calculated
camera internal parameters and prior physiological knowledge of
the limbus’ size – we assume its radius to be roughly constant at
6mm. We then map the 2D ellipse’s centre into its 3D position
using knowledge of its distance and camera focal lengths.

We determine the optical axis by finding the 3D rotation which
maps a unit normal vector facing the screen into the 3D limbus’
position. While a closed form linear algebra solution exists [Wu
et al. 2004], we employ a trigonometric approximation for simplic-
ity. First we rotate the normal vector about the y-axis to account for
ellipse eccentricity, and then about the z-axis for ellipse orientation.

Figure 6: After three RANSAC iterations we choose the best model
(the rightmost). Yellow crosses: initial sample; green dots: inliers.

256mm

14
4m

m

P1

256mm

14
4m

m

P2

Figure 7: POG (black) and average estimated POG (red) for par-
ticipants P1 and P2. The on-screen grid position is shown.

We then correct for the displacement of the 3D limbus centre by
rotating the normal by the 3D limbus’ x and y angular offset.

After calculating each eye’s 3D position and orientation, we esti-
mate its POG as the intersection between that eye’s optical axis and
the 3D screen. We assume the screen lies in-plane with the camera
origin, and obtain a joint POG by averaging both eyes’ POGs. The
raw output of gaze tracking systems typically contains noise, so as a
final step we smooth the joint POG using a triangle kernel over the
previous five gaze points [Špakov 2012], and discard any extreme
outliers beyond screen boundaries.

4 Technical evaluation

We evaluated EyeTab to investigate key performance parameters,
in particular gaze estimation accuracy and processing speed. To
this end we deployed EyeTab on an 11-inch (1920×1080 pixels)
commodity tablet computer with a quad-core 2 GHz processor and
8 GB of RAM running Windows 8. We recruited 8 participants (1
female) aged between 20 to 27. We asked each participant to look
at nine on-screen locations that were laid out in a 3×3 grid pattern.
At each location we recorded smoothed POG data over 30 video
frames. Gaze estimation accuracy was measured as the root-mean-
square error (RMSE) between all true and estimated gaze points.
Accuracy was measured across the full pattern, and for the top-half
of the screen only (six points). Because we approximate the di-
rection of gaze with the optical axis, no calibration procedure was
performed. Participants held the device themselves in a normal in-
doors office environment. The tablet was held in reverse-landscape
orientation, with the front-facing camera at the bottom. Though par-
ticipants were allowed free head movement, they were instructed to
hold the device at about 20 cm away from their eyes.

Results

The system processed camera frames of resolution 1280×720 pixels
at 12 fps and the average user distance was 21.6 cm. RMSE was
25.8 ± 6.79 mm (6.88 ± 1.80◦) for the full pattern, and 19.1 ±
6.21 mm (5.08 ± 1.65◦) for the top-half. Table 1 show RMSE
across participants, and Figure 7 visualises estimated POGs against
the true POG grid for P1 and P2. The system failed to track gaze
(RMSE >20◦) for P4 and P6, and failed to detect eyes for P8.



Table 1: Root-mean-square error of gaze estimation accuracy in
mm and degrees of visual angle for the full and top-half pattern.
Results not given for failure cases P4, P6, and P8.

full pattern top-half pattern
Participant mm degree mm degree

P1 15.7 3.83 10.9 2.68
P2 20.5 5.95 15.9 4.65
P3 32.3 7.52 27.1 6.32
P5 27.2 9.73 15.7 5.67
P7 33.3 7.74 25.5 5.94

5 Discussion

While EyeTab’s accuracy was slightly lower than that reported in
the most related previous work [Holland et al. 2013], in contrast
to that work, EyeTab provides gaze vectors at 12 fps calculated
with a full model-based approach that can handle head movement
more robustly [Hansen and Ji 2010]. Post-hoc profiling revealed
that precise eye-centre localisation was the bottleneck, accounting
for more than 50 % of the processing time – this could be alleviated
with a parallelized implementation.

The performance we achieved allows for basic interactions, e.g. dis-
missing “toast” notifications. The range of results (see Table 1) sug-
gests that performance can likely be improved with more sophisti-
cated algorithms. We believe an accuracy around 3◦ should be pos-
sible and would allow for UI-element interactions. The difference
between visual and optical axes currently prevents EyeTab from
achieving an accuracy comparable to fully calibrated commercial
eye trackers, so in future work we aim to perform per-user calibra-
tion to estimate this offset and improve accuracy. The system’s per-
formance depends on the spatial resolution of eye-images – more
limbus edge pixels would more accurate ellipse fitting. Though
20 cm may seem too close, different devices with higher resolution
cameras or better lenses would allow accurate ellipse fitting with
the device held further away.

For P8 coarse eye-pair detection failed completely, and for some
others it depended on how they held the tablet. Haar-like cascade
classifiers are generally reliable, but not rotationally invariant. We
found robustness could be improved by detecting eye-pairs at mul-
tiple angles; and in the rare situations where eye-pairs are not de-
tected under ideal head-pose, we found backing-off to a single-eye
detector helpled. Though coarse eye-localisation succeeded for P4,
eye-centre localisation failed systematically. This is because cer-
tain lighting conditions cause extremely dark shadows around deep
inset eyes, covering the limbus and confounding eye-centre localisa-
tion. We found that this can be avoided by combining the gradients
method with the more illumination-invariant circular pattern isocen-
tres technique [Valenti et al. 2012].

Across all participants, a constant source of error was outliers in
the set of potential limbus points. When eyelid localisation fails,
a large number of incorrect feature points are passed to RANSAC
resulting in a poorly fit ellipse. This was especially problematic
for P6. This could be alleviated with a better eyelid localisation
technique, such as a parabolic Hough transform or active contours
at higher computational cost. This issue is aggravated when the user
looks downwards, as top and bottom eyelid/iris occlusion becomes
severe, so the number of true limbus points found is low. As no
edge points can be found for the top and bottom of the limbus, the
ellipse’s height is inaccurate. This explains the drop in accuracy
towards the bottom of the pattern. This limitation could be avoided

by designing gaze-interaction techniques around it, e.g. only using
gaze-based interfaces in the screen’s top-half.

6 Conclusion

We presented EyeTab, the first model-based binocular gaze estima-
tion system for unmodified tablet computers. A technical evalua-
tion showed that our prototype implementation estimates gaze with
an accuracy of about 7◦ at 12 frames per second. While gaze esti-
mation on portable devices still faces a number of significant chal-
lenges, these results are promising and open up new avenues for
research on mobile gaze-based and attentive user interfaces.

References

BIEDERT, R., BUSCHER, G., SCHWARZ, S., HEES, J., AND DEN-
GEL, A. 2010. Text 2.0. In Proc. CHI, 4003–4008.

BULLING, A., ROGGEN, D., AND TRÖSTER, G. 2011. What’s in
the eyes for context-awareness? IEEE Pervasive Computing.

DAUGMAN, J. G. 1993. High confidence visual recognition of
persons by a test of statistical independence. IEEE TPAMI.

HANSEN, D. W., AND JI, Q. 2010. In the eye of the beholder: A
survey of models for eyes and gaze. IEEE TPAMI.

HOLLAND, C., GARZA, A., KURTOVA, E., CRUZ, J., AND KO-
MOGORTSEV, O. 2013. Usability evaluation of eye tracking on
an unmodified common tablet. In Proc. CHI, 295–300.

KUNZE, K., ISHIMARU, S., UTSUMI, Y., AND KISE, K. 2013. My
reading life: towards utilizing eyetracking on unmodified tablets
and phones. In Proc. UbiComp, 283–286.

MILUZZO, E., WANG, T., AND CAMPBELL, A. T. 2010. Eye-
phone: activating mobile phones with your eyes. In Proc. Mobi-
Held, 15–20.

OULASVIRTA, A., TAMMINEN, S., ROTO, V., AND KUORE-
LAHTI, J. 2005. Interaction in 4-second bursts: the fragmented
nature of attentional resources in mobile hci. In Proc. CHI.

SESMA, L., VILLANUEVA, A., AND CABEZA, R. 2012. Evalua-
tion of pupil center-eye corner vector for gaze estimation using
a web cam. In Proc. ETRA, 217–220.

ŚWIRSKI, L., BULLING, A., AND DODGSON, N. 2012. Robust,
real-time pupil tracking in highly off-axis images. In Proc. ETRA,
173–176.

TIMM, F., AND BARTH, E. 2011. Accurate eye centre localisation
by means of gradients. In Proc. VISAPP, 125–130.

VAITUKAITIS, V., AND BULLING, A. 2012. Eye gesture recogni-
tion on portable devices. In Proc. PETMEI, 711–714.

VALENTI, R., SEBE, N., AND GEVERS, T. 2012. Combining head
pose and eye location information for gaze estimation. IEEE
Transactions on Image Processing 21, 2, 802–815.

ŠPAKOV, O. 2012. Comparison of eye movement filters used in
hci. In Proc. ETRA, 281–284.

WANG, J.-G., SUNG, E., AND VENKATESWARLU, R. 2003. Eye
gaze estimation from a single image of one eye. In Proc. ICCV.

WOOD, E., 2013. EyeTab source. http://www.cl.cam.ac.
uk/research/rainbow/projects/eyetab/.

WU, H., CHEN, Q., AND WADA, T. 2004. Conic-based algorithm
for visual line estimation from one image. In Proc. AFGR.

http://www.cl.cam.ac.uk/research/rainbow/projects/eyetab/
http://www.cl.cam.ac.uk/research/rainbow/projects/eyetab/

