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Abstract

Numerous applications require a robust metric that can

predict whether image differences are visible or not. How-

ever, the accuracy of existing white-box visibility metrics,

such as HDR-VDP, is often not good enough. CNN-based

black-box visibility metrics have proven to be more accu-

rate, but they cannot account for differences in viewing

conditions, such as display brightness and viewing dis-

tance. In this paper, we propose a CNN-based visibility

metric, which maintains the accuracy of deep network so-

lutions and accounts for viewing conditions. To achieve

this, we extend the existing dataset of locally visible dif-

ferences (LocVis) with a new set of measurements, collected

considering aforementioned viewing conditions. Then, we

develop a hybrid model that combines white-box process-

ing stages for modeling the effects of luminance masking

and contrast sensitivity, with a black-box deep neural net-

work. We demonstrate that the novel hybrid model can han-

dle the change of viewing conditions correctly and outper-

forms state-of-the-art metrics.

1. Introduction

A number of applications in computer vision, computer

graphics and image processing can benefit from the knowl-

edge whether introduced changes in images are visible to

the human eye, or not. For example, we could use such a

metric to determine the maximum image compression level

for visually lossless compression, the best resolution or

compression method for textures used in computer graph-

ics rendering, or to evaluate image reconstruction methods.

Different from (full reference) image quality or similar-

ity metrics, which predict a single value that represents an

overall image quality, visibility metrics predict a visibility

map which provides local information about probability of

perceiving the difference between a pair of images. Visibil-

ity metrics tend to offer higher accuracy for near-threshold

distortions, which are crucial for the applications in which

no visible artifacts can be tolerated. Visibility metrics can

also predict the location of visible artifacts in images. In

contrast, image quality metrics are better at estimating the

distortion magnitude for supra-threshold distortions.

Most existing image visibility metrics, such as Sarnoff

Visual Discrimination model (VDM) [16], Visual Differ-

ence Predictor (VDP) [8], and High Dynamic Range VDP

(HDR-VDP) [18] are white-box models, which are de-

signed to model the low-level perception mechanisms of

human visual system (HVS). Because of their white-box

nature, these models can generalize well to new conditions,

such as different viewing distances or absolute luminance

levels. However, because of the limited number of trainable

parameters and their complexity, they cannot be trained to

fit complex multi-modal data distributions as effectively as

black-box machine learning-based models. The work done

in [24] demonstrated that CNN-based visibility predictor

achieves higher performance than the existing white-box

metrics. However, this deep learning solution was trained

for and could predict visibility only for a fixed viewing con-

dition: a display with the peak luminance of 110 cd/m2 and

the angular resolution of 40 pixels per visual degree (ppd).

In this work, we extend the work of Wolski et al. [24] so

that the proposed visibility metric can account for a range

of display brightness levels and angular resolutions. We

achieve this by combining white-box models of luminance

masking and spatial resampling with a black-box CNN-
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based model, based on the architecture from [24].

To obtain sufficient data for training under different

absolute luminance levels and viewing distances, we use

HDR-VDP[18], an existing white-box visibility metric, im-

proved by retraining from [24], to generate predictions for

a large number of images affected by JPEG and WebP im-

age compression. Then we use a human-labeled dataset to

fine-tune the metric and validate the results. The human-

labeled dataset consists of both existing local visibility

dataset (LocVis 1) and a newly-collected dataset of 264 im-

ages labeled under different viewing conditions. The com-

bined dataset (LocVisVC) is available online2. The code of

the visibility metric can be found in the GitHub repository3.

The main contributions of our paper are:

1. We provide a local visibility dataset that is measured

under varying luminance and viewing distance condi-

tions.

2. We propose a hybrid visibility metric that combines

white-box perceptual processing with a black-box neu-

ral network to account for absolute luminance and

viewing distance and achieves the best performance.

3. We find an efficient method to train the metric with a

limited dataset, in which we take advantage of existing

white-box metrics to label a large dataset used for pre-

training.

2. Related work

In this section, we provide background information on

modeling of basic HVS characteristics that are important

for image perception on displays with variable brightness

and observer distance. We also survey existing image qual-

ity and visibility metrics that attempt to model such HVS

characteristics. Finally, we discuss relatively rare attempts

to employ modern machine learning in visibility metrics.

2.1. Contrast perception models

The visual sensitivity of HVS varies as a function of a

number of factors such as luminance, contrast, spatial fre-

quency, luminance adaptation, color, and spatial image con-

tent. In this work, we explicitly model the first two factors

in a white-box fashion, which we briefly discuss in this sec-

tion. We expect that color perception and more advanced

concepts of spatial vision, such as visual masking, can be

more efficiently learned by the network in a black-box man-

ner without any domain specific knowledge. Our strategy

is to explicitly model the easy-to-capture HVS characteris-

tics, while leaving the capture of more involved effects to

machine learning.

1https://doi.org/10.17863/CAM.21484
2https://doi.org/10.17863/CAM.37996
3https://github.com/ynyCL/DPVM

Luminance masking The human eye is not equally sen-

sitive to all luminance levels. In dark conditions, much

smaller luminance differences can be distinguished than in

bright conditions, but the sensitivity to contrast (∆L/L)

also gets worse at low light. This effect is often called lumi-

nance masking or luminance self-masking [25]. In terms of

distortion perception, this means that the same magnitude

of distortion can be differently perceived as a function sur-

rounding luminance. To make the luminance values more

perceptually uniform, luminance can be transformed into

the logarithmic domain. However, the logarithmic trans-

form, known as Fechner’s law, does not model precisely the

HVS sensitivity to light changes [17]. Typically the thresh-

old vs. intensity (t.v.i.) or contrast sensitivity function is

used to determine the smallest noticeable difference in lumi-

nance across the luminance range, and build a function that

maps physical luminance values into approximately percep-

tually uniform units [4, 19, 20]. Overall, luminance mask-

ing is well understood and easy to model [9, 19, 18, 1, 20],

so we include it explicitly into our visibility metric.

Contrast Sensitivity Function Perceived contrast de-

pends not only on its magnitude but also on the spatial fre-

quency of a contrast pattern. Contrast Sensitivity Function

(CSF) [2] specifies the detection threshold for a stimulus

as a function of its spatial frequencies that effectively are

projected on the retina and increase proportionally to the

observation distance. Due to the inverted “U” shape of the

CSF, image elements represented by low (high) spatial fre-

quencies might become visible (invisible) with the increase

of the observation distance. The concept of hybrid images

employed in arts and media [22], where the observer sees

completely different content as a function of his or her dis-

tance to the image, is a dramatic demonstration of immense

CSF impact on visual perception. This has strong conse-

quences in image distortion perception as well, where the

visibility of distortions varies as a function of the observa-

tion distance in an easy to model way [8, 19, 18]. As an

additional factor CSF changes as a function of luminance

adaptation, which means that artifacts visibility in darker

image regions might be further reduced [8, 19, 13].

2.2. Image metrics

Image quality metrics Quality metrics are intended to

estimate the magnitude of image distortion as a single mean

opinion score value. We recommend the readers more com-

plete surveys on quality metrics [15, 7], and this section we

discuss only sparse metric examples that attempt to model

the display brightness and observer distance. High Dy-

namic Range Video Quality Measure (HDR-VQM) [21] is

proposed to address the change of physical luminance in

the images. HDR-VQM employs the perceptual uniform

transformation [1] to convert the physical luminance to the
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perceptual uniform values and use log-Gabor filters [10]

to compute the subband difference. However, HDR-VQM

does not account for the observer distance.

Visibility metrics Visibility metrics are intended to pre-

dict the probability that a human observer detects a differ-

ence at a particular image location. Due to the limited size

of training datasets, the majority of existing visibility met-

rics are built using models of the HVS, which restrict the

number of tunable parameters that need to be trained. Early

visibility metrics model human’s sensitivity to spatial con-

trast, and typically properly account for changes in the dis-

play brightness and observer distance. The sCIELab metric

uses a spatio-chromatic CSF to filter the CIELab encoded

pixels for computing the visibility map [27]. A power func-

tion that is used in such luminance encoding models lumi-

nance masking. More complex examples of visibility met-

rics include VDM [16], VDP [8], and HDR-VDP [18] that

apart from luminance masking and CSF modeling, also ac-

count for visual contrast masking. However, the threshold

elevation or transducer models [23] used for this purpose

appear to be overly simplified for complex images, which

often leads to inaccuracies in the visibility prediction [6].

Recent machine learning models are more flexible in mod-

eling these important HVS characteristics [24], and in par-

ticular, their interactions as a function of complex image

content.

CNN-based visibility metrics The effectiveness of Con-

volutional Neural Network (CNN)-based methods has

widely been demonstrated in quality evaluation [5, 11, 3,

26] and more sparsely in visibility prediction [24]. The

latter visibility metric uses a convolutional-deconvolutional

architecture and its prediction correlates well with human

experiment results. However, this CNN-based visibility

metric cannot deal with the change of luminance or dis-

tance, which largely prohibits the practical use of this metric

as many barely-noticeable distortions can change their visi-

bility significantly with the change of luminance or distance

as we show in the next section.

3. Data collection

The aim of the experiment was to collect data on distor-

tion visibility under different viewing conditions: varying

display peak luminance and viewing distance.

Stimuli We randomly selected 66 images that from the

LocVis dataset [24]. The selected scenes covered many

types of distortions, such as compression, synthetic per-

ception patterns and artifacts from image-based rendering

methods. All the selected scenes had up to 3 levels of dis-

tortion, for example three different amplitudes of noise or

different JPEG compression levels).

Experimental Procedure The visibility of image differ-

ences can be measured with different experiment setups,

such as a side-by-side presentation, flickering between dis-

torted and reference images, and no-reference presentation

[6]. As the HVS is very sensitive to temporal changes,

the flicker mode results in overly conservative estimates.

Therefore, we selected the side-by-side presentation, which

avoids this problem, and is also more relevant for many ap-

plications.

Observers were asked to paint freely all the visible dis-

tortions using a custom painting interface. To speed up the

process and to increase the coherency of collected data mul-

tiple levels of distortion magnitude proposed in [24] were

used.

Display and viewing conditions The experiment took

place in a room with dimmed lights. The display was

positioned to minimize screen reflections. The images

were shown on a 23′′, 1920 × 1200 pixels resolution Acer

GD235HZ display set the the sRGB color profile. The

screen was calibrated using a Minolta LS100 luminance

meter to two different peak luminance conditions: 10 cd/m2

and 220 cd/m2. To achieve the luminance of 10 cd/m2, the

display was dimmed and a 0.6 Neutral Density (ND) filter,

reducing the light by a factor of 4, was put on the screen.

These two setups cover the luminance range found in most

of the displays 4. The observers viewed the display at two

distances, 40 cm and 86 cm, which correspond to angular

resolutions of 30 and 60 pixels per visual degree.

Observers In total, 46 observers, aged between 23 and 29

years old, were recruited among computer science and other

field students. All observers were paid for their participa-

tion and had normal or corrected-to-normal vision. They

were naı̈ve about the purpose of the experiment. To reduce

the effect of fatigue, the experiment was split into several

sessions, where each session lasted less than one hour.

Results Figure 1 illustrates the trends of visibility

changes under different luminance and distance conditions.

With the increase of luminance and the decrease of ppd (de-

creasing ppd is equivalent to decreasing distance), distor-

tions become more visible, which agrees with empirical ob-

servations and previous research [18]. This also confirms

the need for a visibility metric that accounts for both abso-

lute luminance and a viewing distance.

4https://www.laptopmag.com/benchmarks/display-brightness
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Figure 1. Examples of images and subjective data from LocVisVC dataset. Decreasing ppd (decreasing distance between the observer

and the display) for the same luminance condition increases the visibility of artifacts. When luminance is increased keeping the same ppd

condition the visibility of artifacts also increases.

Pre-training dataset As the manually labeled datasets

were insufficient for training, we also prepared a dataset

with synthetic labels, generated with the HDR-VDP visibil-

ity metric. We used 200 high-quality photographs obtained

directly from camera RAW files. All photographs were re-

sized to the maximum resolution of 1920×1080. The im-

ages were then distorted by encoding and decoding using

JPEG5 and WebP6 image compression at the quality set-

tings of 20, 50 and 90. We then randomly selected 50 im-

ages as the base scenes for our dataset. Each of these im-

ages was converted into linear colorimetric units using the

display model (explained in Section 4.1) assuming the peak

luminance of 10 cd/m2, 110 cd/m2 and 220 cd/m2. The vis-

ibility map for these images was then predicted for the an-

gular resolutions of 30, 40, 50 and 60 pixels per visual de-

gree, producing in total 600 labeled images. A summary of

the dataset can be found in Table 1.

4. Metric Architecture

Most NN-based metrics rely on existing architectures,

which are trained in an end-to-end manner. In our case, both

the viewing distance and the display peak brightness are

significant factors that affect predictions. Both parameters

could be fed to the network in a standard manner, hoping

that the network will learn the correct relationships. How-

5https://github.com/LuaDist/libjpeg
6https://developers.google.com/speed/webp

ever, such a solution requires a large quantity of subjective

data, which cannot be easily collected for our task in a rea-

sonable time. To address this challenge, we design a hybrid

architecture, in which the viewing distance and the display

peak luminance are modeled explicitly as a pre-processing

stage of the CNN-based metric. The architecture of the pro-

posed metric and the data pre-procossing are illustrated in

Figure 3 and described in the following sections.

4.1. Display model

Since modern displays differ substantially in their peak

brightness, it is important to model how much light their

emit. As an example, some mobile displays can reach the

peak luminance of 900 cd/m2 and can be dimmed to as low

light levels as 3 cd/m2. The visibility of image distortions

is very different between both cases. To model the amount

of the emitted light, we use the standard gain-gamma-offset

display model:

L = (Lpeak − Lblack)

(

I

255

)2.2

+ Lblack, (1)

where I is the input pixel value, Lpeak is the peak lumi-

nance of the display, and Lblack is the luminance of black

level (light emitted from pixels set to black). Each image

provided to the metric is first transformed from pixel values

to colorimetric red, green and blue values using the display

model from the equation above.
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Subset name Scenes Images Distortion levels Level generation method Peak luminance ppd

MIXED 20 59 2-3 blending 110 cd/m2 40

PERCEPTIONPATTERNS 12 34 1,3 blending 110 cd/m2 40

ALIASING 14 22 1-3 varying sample number 110 cd/m2 40

PETERPANNING 10 10 1 n/a 110 cd/m2 40

SHADOWACNE 9 9 1 n/a 110 cd/m2 40

DOWNSAMPLING 9 27 3 varying shadow map resolution 110 cd/m2 40

ZFIGHTING 10 10 1 n/a 110 cd/m2 40

COMPRESSION 25 71 2-3 varying bit-rates 110 cd/m2 60

DEGHOSTING 12 12 1 n/a 100 cd/m2 60

IBR 18 36 1,3 varying key frame distances 110 cd/m2 40

CGIBR 6 6 1 n/a 110 cd/m2 40

TID2013 25 261 n/a n/a 100 cd/m2 40

VIEWCOND 26 264 1-3 n/a 10, 200 cd/m2 30, 60

PRETRAIN 200 600 3 JPEG and WebP compression 10, 110, 200 cd/m2 30,40,50,60

Table 1. The subsets of the dataset used for training. VIEWCOND is the newly measured LocVisViewCond dataset. PRETRAIN is the

HDR-VDP generated synthetic dataset for pre-training. The other sets are from the original LocVis dataset.

4.2. Viewing distance

An intuitive way to account for the viewing distance is to

provide to the model an image with the fixed angular reso-

lution. As the contrast sensitivity of visual system is mostly

dependent on the spatial frequency content in cycles per vi-

sual degree (cpd), the constant angular resolution ensures

that spatial frequencies remain the same regardless of the

viewing distance. The angular resolution of an image can

be computed as:

r =
Nx

hdeg

[ppd] , (2)

where Ny is the display vertical resolution expressed in pix-

els and the display height in visual degrees is given by:

hdeg = 2 arctan

(

hmm

2 dmm

)

, (3)

where dmm is the viewing distance expressed in millime-

ters. The display height expressed in millimeters can be

found from:

hmm =

√

√

√

√

(25.4 sdiag)2

1 +
(

Nx

Ny

)2
, (4)

where sdiag is the display diagonal length expressed in

inches. Once we know the angular resolution of the input

image, we resample it so that it has the angular resolution

of 60 ppd. 60 ppd is the highest resolution in our dataset

and also a reasonable limit for most visual task, since the

sensitivity of visual system drops rapidly below 30 cpd [2].

Since resampling alone cannot account for all frequency-

dependent effects, such as the shift of peak sensitivity with

luminance, we also introduce the ppd parameter to the la-

tent code. This is achieved by concatenating a slice with

replicated ppd values to the feature maps generated by the

encoders (see Figure 3).

4.3. Luminance masking

Figure 2. PU and logarithmic transform functions, for converting

absolute light levels into approximately perceptually uniform val-

ues, which could be input to a CNN.

Since differences are less visible at lower absolute lumi-

nance levels, we need to account for this drop of visual sys-

tem sensitivity. Luminance masking can be modeled by a

transfer function derived from the contrast sensitivity func-

tion of visual system [18, 1]. The transfer function we use

is also known as Perceptually Uniform (PU) encoding [1],

as it transforms physical luminance into approximately per-

ceptually uniform units. The PU encoding is defined as an

integral of inverse of detection thresholds:

P (L) =

∫ L

Lmin

1

T (l)
dl (5)

where Lmin is the minimum luminance to be encoded. The

detection thresholds T (L) are modeled as a function of ab-

solute luminance L:

T (L) = S·

(

(

C1

L

)C2

+ 1

)C3

(6)
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Where S is the absolute sensitivity constant, L is the lumi-

nance, and C1, C2, C3 are parameters obtained by fitting to

contrast sensitivity measurements. We use the parameters

from [18].

For comparison, we also experiment with the logarithmic

encoding of luminance, as it is the first-order approximation

of the visual system response, which accounts for the Fech-

ner law. We show both perceptual encoding functions in

Figure 2.

4.4. CNN architecture

The CNN architecture of the proposed metric is based on

the one proposed in [24]. Although image metrics are of-

ten modeled using Siamese architectures [11], the CNN we

employ has two independent branches, which encode differ-

ent information: the first branch encodes the difference be-

tween test and reference images (after pre-processing steps)

and the second branch encodes the reference image. Such

independent branches, shown in Figure 3, are used to im-

prove detection of small image differences. In contrast to

CNN architectures used for classification or detection tasks,

which need to be robust to noise, our model needs to be par-

ticularly sensitive to small variations in input.

Each branch of the encoder uses two convolutional lay-

ers of the AlexNet [14]. Two branches and the ppd value

are concatenated together, as explained in Section 4.2. The

patch with predicted probability of detection map is gener-

ated by two deconvolution layers. More formally, we de-

note the perceptually encoded color images of difference

and reference patches as D and R, respectively. We also

define mapping functions Fwconvd and Fwconvr to repre-

sent the convolutional operations for two branches, in which

wconvd and wconvr are weights for the difference and ref-

erence encoding branches, respectively. We also denote

the wdec as the weights for deconvolutional operations with

skip connections. Our metric can then be expressed as:

Pw(D,R) =

Fwdec

(

Fw
convd

(D) q© Fwconvr (R) q© r
)

, (7)

where q© represents the concatenation operation of the out-

put of the difference branch, reference branch, and the slice

with the replicated ppd values r.

To predict a visibility map for an image of arbitrary size,

we slice the image into 48×48 pixel patches with 42-pixel

overlap, infer visibility for each patch and compute the final

visibility map by averaging the predictions from the over-

lapping patches. Predicting a visibility map usually takes 2-

4 seconds for 1920×1080 image using NVidia GTX 1080Ti

GPU.

5. Training

For training the new Deep Photometric Visibility Metric

(DPVM), we use the probabilistic loss function from [24],

as it provides a principled way of modeling the experimen-

tal data. The probabilistic loss function models the mark-

ing task as a stochastic process accounting for the mistakes,

lack of attention and limited number of observations. This

allows us to capture the uncertainty in the human-labeled

dataset. After the pre-processing steps, we split images

into 48×48 pixel non-overlapping patches. We remove the

patches where there is no difference between their distorted

and reference versions. We implement the CNN in Tensor-

flow 1.10.1 7. We use The adaptive momentum optimizer

(Adam) with a learning rate 1e−5 and a batch size of 48 is

used for optimization.

We split the training process into two stages.

Stage 1: Pre-training with HDR-VDP As the collected

dataset contains only limited variation in viewing distance

and display peak luminance levels, we supplement our

training with over 13 million patches that have been auto-

matically labeled by a white-box visibility metric — HDR-

VDP. The generation of this PRETRAIN dataset was ex-

plained in Section 3. The idea is inspired by the work of

Kim et al., who demonstrated that PSNR scores can be used

to pre-train CNN-based quality metrics [12]. Similarly, we

run 20000 iterations of training on the PRETRAIN dataset,

which is followed by fine-tuning in Stage 2. Although the

labels generated by HDR-VDP can be inaccurate, they cap-

ture general relationship between input and output patches

and therefore prime the CNN to capture the relationships,

which could be missing in manually labeled data.

Stage 2: Fine-tuning At this stage, we initialize the neu-

ral network with weights from the first stage and use the

manually labeled datasets for training.

6. Results

To validate prediction performance, we randomly split

the LocVisVC dataset into 5 folds, ensuring that each scene

is in a single fold, and run a 5-fold cross-validation. We

report the mean and standard error of the likelihood used for

the loss function (the higher likelihood indicated the higher

accuracy).

PU vs. logarithmic encoding First, we compare per-

formance when either PU encoding or a logarithmic func-

tion is used to account for luminance masking. The likeli-

hood for the PU encoding (0.877±0.015) was substantially

higher than for logarithmic function (0.705±0.02). This

7https://www.tensorflow.org
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Figure 3. CNN visibility metric architecture.

suggests that luminance masking is a significant effect in

our dataset, which cannot be easily learned by the black-box

CNN. Given sufficient data, we could expect similar perfor-

mance for both luminance encodings. This results demon-

strates that when the data is limited, the combination white-

box preprocessing with black box learning is more efficient

strategy.

HDR-VDP pre-training Next, we investigate the effect

of pre-training on the metric performance. We run pre-

training for the number of iterations ranging from 10,000 to

50,000, followed by fine-tuning of 50,000 steps, and report

the results in Figure 4. The figure shows that pre-training

always resulted in higher accuracy, but the performance

dropped after about 20,000 iterations. This shows that the

amount of pre-training needs to be carefully controlled to

retain the ability of the network to effectively learn from

the human-labelled data. In the following experiments, we

use 20,000 iteration for pre-training.

10000 20000 30000 40000 50000
Pre-training iteration

0.87

0.88

0.89

0.90

0.91

Lik
el

ih
oo

d

Figure 4. The effect of pre-training iterations on the performance.

The red line denotes the result without pre-training. The error bars

denote standard errors. The higher likelihood, the better is accu-

racy.

Metric comparison Finally, we compare the proposed

DPVM metric to the HDR-VDP, which is the only visibility

metric that can account for the viewing conditions. For fair

comparison, we retrain HDR-VDP-2.2 on the same dataset

as used for the training the CNN-based metric. The result

of cross-validation is shown individually for each subset

in Figure 5. The likelihood of the proposed DPVM met-

ric is significantly higher for each subset, demonstrating the

CNN-based metric can be trained with higher accuracy.

all
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perceptionpatterns
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cgibr

deghosting

downsampling

ibr

mixed

peterpanning

shadowacne

zfighting

tid2013

view_cond
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Likelihood

HDR-VDP
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Figure 5. Metric cross-validation results for each subset and for

the entire dataset.

An examples of metric predictions and user markings

are shown in Figure 6. We can observe there that similar

to HDR-VDP, DPVM can account for the change of view-

ing distance and absolute luminance as shown in rows 1–3.

Pre-training with HDR-VDP also helps improve the gener-

alization performance for most cases.
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Figure 6. Distorted images, users’ markings and metrics’ predictions examples from the dataset. L is the likelihood, the higher the better.

No-pre prefix means without HDR-VDP pre-training.

7. Conclusions

In this work, we collect a visibility dataset under vary-

ing viewing conditions. We propose a hybrid architecture

that incorporates a simplified white-box model of visual

processing, followed by a black-box deep neural network.

Given limited data, we pre-train the our model on a dataset

generated with an existing, white-box visibility metric. We

demonstrate that the proposed deep visibility metric, com-

bined with our training strategy, can account for the change

of viewing conditions and can outperforms the state-of-the-

art metric in cross-validation on our new dataset.
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A. Effects of the additional ppd feature layer

To test whether adding the angular resolution (ppd) to the latent code can model the non-linear effects correctly, we

compare the performance of the architecture with or without the ppd feature layer. We denote the architectures as DPVM-

Vanilla or DPVM-PPD for the case without or with the ppd feature layer. The means and standard errors of likelihoods for

5-fold cross validation are shown in Table 2. From Table 2 we can observe that introducing the additional ppd feature layer

improves the performance. The reason for choosing the middle of the neural network for concatenating the ppd feature layer

is two fold: Firstly, concatenating the ppd feature layer in the middle will only introduce a 2X2 feature layer, which will not

increase the number of parameters to fit greatly. Secondly, there are three deconvolutional layers with ReLU activations that

can provide enough capacity to model the non-linear effects of the angular resolution.

Method Likelihood

DPVM-Vanilla 0.8556 ± 0.015

DPVM-PPD 0.8772 ± 0.016
Table 2. Effects of the additional ppd feature layer.
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