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ABSTRACT

Whether or not emotion in music can change over time is not
a question that requires discussion. As the interest in con-
tinuous emotion prediction grows, there is a greater need for
tools that are suitable for dimensional emotion tracking. In
this paper, we propose a novel Continuous Conditional Neu-
ral Fields model that is designed specifically for such a prob-
lem. We compare our approach with a similar Continuous
Conditional Random Fields model and Support Vector Re-
gression showing a great improvement over the baseline. Our
new model is especially well suited for hierarchical models
such as model-level feature fusion, which we explore in this
paper. We also investigate how well it performs with relative
feature representation in addition to the standard representa-
tion.

Index Terms— Music emotion recognition, dimensional
representation, continuous tracking, machine learning

1. INTRODUCTION

Music surrounds us every day, and people’s interaction with
it is becoming increasingly digitized—buying digital music
albums, streaming music, etc[1]. This introduces the need
to develop better tools for music search, playlist generation
and the general management of music libraries. People use
a number of different descriptors for songs, and emotion has
been shown to be one of them [2].

The field of emotion recognition in music started off fo-
cusing on assigning a single categorical label to an entire
piece of music. Since then it has been slowly moving to-
wards more complex techniques, with an increasing focus on
dimensional representation of emotion, and continuous emo-
tion tracking. Both of these, especially when combined, re-
quire more advanced machine learning techniques. However,
until recently, only few of them have been used in the field
(see Section 2).

In this paper we introduce a new Continuous Conditional
Neural Fields (CCNF) model (Section 3.3) and apply it to the

problem of continuous dimensional emotion tracking in mu-
sic. We compare the performance of this model with Sup-
port Vector Regression (SVR), a standard baseline, and with
a more advanced technique—continuous conditional random
fields (CCRF). We show that our model outperforms the other
two in most cases. We also explore the effect of using the rel-
ative feature representation and compare model-fusion with
feature-fusion.

The code for CCNF and test-scripts that allow easy repro-
duction of our results are available on our website'.

2. BACKGROUND

Dimensional emotion representation describes emotion using
several axes. In the field of emotion in music, the most com-
monly used dimensions are arousal and valence (AV). Arousal
describes how active/passive, and valence describes how pos-
itive/negative an emotion is. Adding other axes (such as ex-
pectancy, power) has also been considered, but it has repeat-
edly been shown that they add little, if anything, to the de-
scription or the recognition of emotion in music [3].

Most of the approaches to dimensional continuous emo-
tion tracking have focused on inferring the emotion label over
a time window, which is independent of the surrounding mu-
sic (bag-of-frames approach) (Korhonen et al. [4], Panda and
Paiva [5], Schmidt and Kim [6], Schmidt er al. [7], etc.).
Since each second in a song is not independent from the mu-
sic preceding it, this approach fails to exploit the temporal
properties of music. Some research has been done on trying
to incorporate temporal information in to the feature vector—
either by using features extracted over varying window length
for each second/sample [8], or by using machine learning
techniques that are adapted for sequential learning (e.g. se-
quential stacking algorithm used by Carvalho and Chao [9],
Kalman filtering or Conditional Random Fields (CRF) used
by Schmidt and Kim [10, 11]).

Uhttp://www.cl.cam.ac.uk/research/rainbow/projects/ccnf/



2.1. Continuous Conditional Random Fields

Continuous Conditional Random Fields have shown promise
for continuous variable modeling when extra context is re-
quired (be it temporal or spatial information). They have been
used to model emotions (both in music [12] and from human
behaviour [13]), global ranking [14], remote sensing [15].
They are an extension of the Conditional Random Fields [16]
to the continuous case, and have shown promise in these ap-
plications.

However, CCRFs face the problem that the model requires
an initial prediction of the value being modeled, for example
a local ranking for a global ranking problem, or a prediction
from a single frame/time step regressor in the case of emo-
tion tracking. The need to train multiple models complicates
training, and might lead to a sub-optimal solution due to the
regressors not being optimised jointly. Our approach attempts
to ameliorate this problem.

2.2. Relative feature representation

Expectation has a substantial effect on our experience of lis-
tening to music. It is believed that violation of, or conformity
to expectations when listening to music is a (main) source
of musical emotion (proven by studies in neuroimaging [17],
experimental aesthetics [18], etc.). Based on that, Imbrasaité
et al.[12] introduced a relative feature representation. They
have shown that adjusting feature values relative to the aver-
age value of a song gives a substantial improvement over us-
ing the standard feature representation [19] and the improve-
ment gained is similar to that of introducing more advanced
machine learning techniques [12].

3. METHODOLOGY

3.1. Dataset

The dataset that we have used in our experiments is one of
the few publicly available emotion tracking dataset of mu-
sic extracts labeled on the arousal-valence dimensional space.
The data [20] has been collected using Mechanical Turk
(MTurk)?, asking paid participants to label 15-second long
excerpts with continuous emotion ratings on the AV space,
with another 15 seconds given as a practice for each song.
The songs in the dataset cover a wide range of genres—pop,
various types of rock, hip-hop/rap, etc, and are drawn from
the “uspop2002”3 data-base containing popular songs. The
dataset consists of 240 15-second clips (without the practice
run), with 16.9 + 2.7 ratings for each clip. In addition, the
dataset contains a standard set of features extracted from those
musical clips: MFCCs, octave-based spectral contrast, statis-

Zhttps://www.mturk.com/ - accessed May 2013
3http://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html - ac-
cessed May 2013

tical spectrum descriptors (SSD), chromagram, and a set of
EchoNest* features.

3.2. Design of the experiments

For the purpose of this study, we only used the non EchoNest
features provided in the MTurk dataset (Section 3.1). Features
were averaged over a 1s window and the average of the labels
for that second was used as the label. With all the machine
learning models used, we trained two models separately—one
for each axis.

3.2.1. Feature representation

Two types of feature representations are used in our work:
basic and relative. For the basic feature representation, the
features are concatenated into either a single vector (feature-
level fusion) or into 4 separate vectors: MFCC, chromagram,
spectral contrast and SSD (model-level fusion).

The relative feature representation we used in this paper
was introduced by Imbrasaité et al.[12, 19] (Section 2.2 for
more information). Each (original) feature is represented by
two numbers—the average of that feature over the whole du-
ration of the song and the difference between the original
value extracted from that frame and the average. As with the
basic feature representation, both feature- and model-fusion
were used.

3.2.2. Cross-validation

We used a 5-fold cross-validation for all the experiments.
The dataset was split into two parts—4/5 for training and 1/5
for testing, and this process was repeated S times. When split-
ting the dataset into folds, we made sure that all of the feature
vectors from a single song were in the same fold. The re-
ported results were averaged over 5 folds.

For SVR-based experiments, we used a 2-fold cross val-
idation (splitting into equal parts) on the training dataset to
choose the hyper-parameters. These were then used for train-
ing on the whole training dataset.

The process for the CCRF-based experiments contained
an extra step. The training dataset was split into two parts—
one for SVR and one for CCRF, and we performed a 2-
fold cross-validation on them individually to learn the hyper-
parameters in the same way we do for the SVR-based experi-
ments.

For CCNF-based experiments we again used a 2-fold
cross validation to pick the hyper-parameters, but the results
were averaged over 4 random seed initializations. We use the
chosen hyper-parameters for training on the whole dataset—
we randomly initialized the seed 20 times (using the best
hyper-parameters) and picked the model with the highest like-
lihood (Eq.(6)) for testing.

“http://developer.echonest.com/ - accessed May 2013



It is important to note that the same folds were used for all
of the experiments, and that the testing data was always kept
separate from the training process.

3.3. Continuous Conditional Neural Fields

Our CCNF model, shown in Figure 1, brings the nonlinearity
of Conditional Neural Fields [21] together with the flexibil-
ity and continuous output of Continuous Conditional Random
Fields [14].

3.3.1. Model definition

We present an undirected graphical model that can model the
conditional probability of a continuous valued vector y (for
example the emotion in valence space) depending on contin-
uous x (for example audio features).

In our discussion we will use the following notation:
xr = {x1,X3,...,X,} is a set of observed input variables,
X is a matrix where the " column represents x;, y =
{y1,Y2,.-.,Yn} is a set of output variables that we wish to
predict, x; € R™ and y; € R (patch expert response), n is
the length of the sequence of interest.

Our model for a particular set of observations is a con-
ditional probability distribution with the probability density
function:

exp(¥)
[75 exp(¥)dy

Above [*_exp(¥)dy is partition function which forces the
probability distribution to sum to 1.

We define two types of features in our model: vertex fea-
tures fj and edge features g,. Our potential function is de-
fined as:

K1 K2
U= ZZakfk(yi,xi,Ok) + ZZﬁka(yivyj) @)

i k=1 ij k=1

P(ylz) = 0

In order to guarantee that our partition function is inte-
grable [14] we constrain ay, > 0 and 85 > 0, while @ is un-
constrained. The model parameters @ = {ay,as,...ak1},
e = {01, 92, e 6K1}, and ﬂ = {ﬁl,ﬁg, ce BKQ} are
learned and used for inference during testing

The vertex features fj, represent the mapping from the x;
to y; through a one layer neural network, where @y is the
weight vector for a particular neuron k.

Fe(yir xi,01) = —(yi — h(k,x,))” 3
1

1+ e 9"

The number of vertex features K1 is determined experi-

mentally during cross-validation, and in our experiments we
tried K'1 = {5, 10,20, 30}.

h(0,xi) = (4)

The edge features gj, represent the similarities between
observations y; and y;. This is also affected by the neighbor-
hood measure S*), which allows us to control the existence
of such connections.

1
9k (Yi, yj) = —551-(,];-) (yi —5). (5)

In our linear chain CCNF model, g, enforces smoothness
between neighboring nodes. We define a single edge feature,
i.e. K2 = 1. We define SV to be 1 only when the two nodes
1 and j are neighbors in a chain, otherwise it is 0.

3.3.2. Learning and Inference

We are given training data {2(9), y(Q)}gil of M song sam-
ples, together with their corresponding dimensional continu-
ous emotion labels. The dimensions are trained separately.
In this section we describe how to estimate the parameters
{a, B, O}, given the training data. It is important to note that
all of the parameters are optimised jointly.

In learning, we want to pick the o, 3 and © values that
optimise the conditional log-likelihood of our model on the
training sequences:

M

L(,3,0) = log P(y?[z?) 6)
q=1

(@, 3,0) = argmax(L(a, 3, ©)) @)
a,3,0

Similarly to Baltrusaitis et al. [13] and Radosavljevic et
al. [15], we convert the Eq.(1) into multivariate Gaussian
form. It helps with the derivation of the partial derivatives
of log-likelihood, and with the inference.

1 1
P R —(y—w) T Yy — 8
(ylx) i exp(—5(y — k) (y—m)), ®

w1 —2(A+ B) )

The diagonal matrix A represents the contribution of o terms
(vertex features) to the covariance matrix, and the symmetric
B represents the contribution of the 3 terms (edge features).
They are defined as follows:

K1
A= (> ap)l (10)
k=1

n

K2 K2
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Fig. 1. Our linear-chain CCNF model compared with the linear-chain CCRF one [12, 13]. The input vector x; is connected to
the relevant output scalar y; through the vertex features that combine the h; neural layers (gate functions) and the vertex weights

a. The outputs are further connected with edge features gy,

We also define ¢ = X>d which is the expected (mean)
value of the Gaussian CCNF distribution.

p=3d (12)

It is defined in terms of ¥ = (24 + 2B)~!, and a vector
d, that describes the linear terms in the Gaussian distribution:

d = 2a7h(0X) (13)

Above O represents the combined neural network weights
and h(©X), is an element-wise application of h on each ele-
ment of the resulting matrix. Intuitively d is the contribution
from the the vertex features towards y.

For learning we can use the constrained L-BFGS for find-
ing locally optimal model parameters. We use the standard
Matlab implementation of the algorithm. In order to make the
optimisation both more accurate and faster we used the par-
tial derivatives of the log P(y|x), which are straightforward
to derive and are similar to those of CCRF [13] (details omit-
ted here for brevity).

In order to avoid overfitting we add Lo norm regulari-
sation terms to the likelihood function for each of the pa-
rameters types (Ao ||c||3,25]|8]|3, Xo||®||3). The values of
Ao, Ag, Ao are determined during crossvalidation, as is the
number of neural layers.

For inference we need to find the value of y that max-
imises P(y|z). Because P(y|x) can be expressed as a mul-
tivariate Gaussian distribution (Eq.(8)) , the value of y that
maximises it is the mean value of the distribution, hence:

y" = argmax(P(y|z)) = p (14)
y

3.4. Feature-level and Model-level fusion

Our CCNF model can accommodate different types of fea-
ture fusion. For feature fusion we just use single vector x;

Table 1. Results comparing our CCNF approach to the CCRF
and SVR with linear and RBF kernels.

Experiment Ar. Val. Eucl.
RMS | Corr || RMS | Corr

SVR-Lin 0.196 | 0.634 || 0.222 | 0.173 || 0.130

SVR-RBF | 0.194 | 0.645 || 0.220 | 0.211 || 0.128

CCRF [12] || 0.204 | 0.721 || 0.223 | 0.247 || 0.136

CCNF 0.166 | 0.739 || 0.205 | 0.301 || 0.116

Table 2. Results (using short correlation and RMS) compar-
ing our CCNF approach to the CCRF and SVR with linear
and RBF kernels.

Experiment Ar. Val.
RMS | Corr || RMS | Corr
SVR-Lin 0.180 | 0.012 || 0.189 | 0.036
SVR-RBF || 0.178 | 0.011 || 0.186 | 0.007
CCRF [12] || 0.176 | 0.049 || 0.183 | 0.090
CCNF 0.143 | 0.072 || 0.170 | 0.019

containing all of the different modality features. For model-
level fusion we split the vector into different modalities lead-
ing to more feature functions, where each modality has its
own corresponding fi’s. We define separate vertex functions
for MFCC, chromagram, spectral contrast and SSD features.

For SVR-based model-level fusion, we train 4 separate
models—one for each class of features. Then a feature vector
composed of the predicted labels only is used for the final
model.

4. RESULTS

We use 3 different evaluation metrics for all of our experi-
ments: correlation, root-mean-square error (RMSE) and Eu-
clidean distance. Both the correlation coefficient and RMSE



Table 3. Results comparing our CCNF approach to the CCRF
and SVR with linear and RBF kernels using relative feature

representation.
Experiment Ar. Val. Eucl.
RMS | Corr || RMS | Corr
SVR-Lin 0.169 | 0.728 || 0.220 | 0.160 || 0.126
SVR-RBF || 0.167 | 0.735 || 0.209 | 0.297 | 0.117
CCRF [12] || 0.179 | 0.718 || 0.216 | 0.257 | 0.123
CCNF 0.167 | 0.733 || 0.207 | 0.281 || 0.120

Table 4. Results (using short correlation and RMS) compar-
ing our CCNF approach to the CCRF and SVR with linear
and RBF kernels using relative feature representation.

Experiment Ar. Val.
RMS | Corr || RMS | Corr
SVR-Lin 0.145 | 0.013 || 0.188 | 0.026
SVR-RBF || 0.143 | 0.046 || 0.170 | 0.035
CCRF [12] || 0.153 | 0.071 || 0.176 | 0.049
CCNF 0.145 | 0.058 || 0.169 | 0.064

are calculated in two modes, which we call short and long.
Long evaluation metrics are calculated over the span of the
whole dataset, essentially concatenating all of the songs into
one. Short evaluation metrics are calculated over each song
and then averaged over all of the songs. The short correlation
we report is non-squared, so as not to hide any potential nega-
tive correlation. We believe that short metrics are better suited
for evaluation of emotion recognition in music, as the perfor-
mance of our algorithms on a given song is what actually mat-
ters. We report long metrics since these are usually reported
in the literature. The average Euclidean distance is calculated
as the distance between the two-dimensional position of the
original label and our predicted labels in the normalized AV
space (each axis normalized to span between O and 1). Each
metric is calculated for each fold and the average over 5 folds
is reported.

Please note that lower RMSE and Euclidean distance val-
ues correspond to better performance, while the opposite is

Table 5. Results comparing our CCNF approach to the SVR
with RBF kernels using model-level fusion, basic (B) and rel-
ative (R) representation.

Experiment Ar. Val. Eucl.
RMS | Corr || RMS | Corr

SVR-B 0.205 | 0.632 || 0.216 | 0.207 || 0.129

SVR-R 0.186 | 0.714 || 0.204 | 0.304 || 0.123

CCNF-B 0.168 | 0.737 || 0.209 | 0.263 | 0.118

CCNF-R 0.172 | 0.722 || 0.226 | 0.183 || 0.125

Table 6. Results (using short correlation and RMS) compar-
ing our CCNF approach to the SVR with RBF kernels using
model-level fusion, basic (B) and relative (R) representation.
relative-short

Experiment Ar. Val.
RMS | Corr RMS | Corr
SVR-B 0.182 | -0.003 || 0.182 | 0.058
SVR-R 0.159 | -0.001 || 0.167 | 0.032
CCNF-B 0.146 | 0.043 || 0.171 | 0.073
CCNF-R 0.148 | -0.014 || 0.183 | 0.001

true for correlation.

4.1. Standard feature representation

CCNF with the basic feature representation consistently out-
performs all of the other methods in all the evaluation metrics
except for short correlation for valence, where CCRF per-
forms better (Tables 1 and 2). Not only is the performance
improved, but it can be seen that the results achieved with
CCNF are substantially better than those of the other meth-
ods.

4.2. Relative feature representation

The results with the relative feature representation are less
consistent (Tables 3 and 4). Even though CCNF clearly out-
performs CCRF and SVR with the linear kernel, the results
are nearly identical to those achieved by the SVR model with
the RBF kernel. That is especially evident with long, rather
than short evaluation metrics.

4.3. Model-level fusion

Model-level fusion does not appear to have a strong posi-
tive effect, and it varies greatly depending on which machine
learning technique is used and which axis we are working
with. For valence, SVR model using relative feature repre-
sentation and the RBF kernel seems to achieve one of the best
results (Table 5). For arousal, CCNF with basic representa-
tion seems to be performing the best.

5. DISCUSSION

In this paper we introduced a new CCNF model that is partic-
ularly well suited for dimensional continuous emotion track-
ing. In addition to that, the model can easily incorporate
multi-modal features, or implement model-level fusion.

The results we achieved with this model are very encour-
aging. With the basic feature representation, it consistently
outperformed the other models we compared it to—both the
standard baseline used in the field (SVR) and the more ad-
vanced CCRF model. With the relative feature representation,



the results are more mixed—our model definitely outperforms
CCREF, but the performance is often matched by SVR with the
RBF kernel.

We have used the Euclidean distance in order to compare
our work to that of the state of the art. Schmidt et al.[10] used
the same dataset for their experiments that were based on a
similar experimental design. They reported mean Euclidean
of 0.160-0.169 which is within the same order of magnitude
as the best average Euclidean distance of 0.116 we achieved
in our experiments. This suggests that our model is at least
of a comparable quality as the state of the art and can most
likely achieve better performance.

We found the model-level fusion did not give the improve-
ment we expected. It seems that the improvement is larger
when a simpler machine learning technique is used. This
leads us to the hypothesis that there is a balance between the
complexity of a machine learning method used, and the com-
plexity of the feature vectors used. It seems that when us-
ing simpler machine learning techniques, the results can be
greatly improved by spending more time carefully designing
the features employed. On the other hand, when a more ad-
vanced method is used we get diminishing return from more
complex feature vectors. It would therefore appear that the re-
lationships we uncover by building complex features can also
be implicitly learned with more advanced techniques.
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