
1 Appendix A

In this appendix we show that when using feature functions in Eqs.(3) and (1)
the CCNF distribution is actually that of a multi-variate Gaussian.

In our discussion we will use the following notation: x = {x(q)
1 ,x

(q)
2 , · · · ,x(q)

n }
is a set of input variables that are observed and {y(q)

1 , y
(q)
2 , · · · , y(q)

n } a set of out-

put variables that we wish to predict, x
(q)
i ∈ Rm and y

(q)
i ∈ R, here q indicates

the qth sequence of interest, it is omitted in some equation for clarity (when
there is no ambiguity).

In our work we use the following vertex and edge feature functions:

gk(yi, yj) = −1

2
S

(gk)
i,j (yi − yj)2 (1)

lk(yi, yj) = −1

2
S

(lk)
i,j (yi + yj)

2 (2)

Above S
(gk)
i,j is the similarity metric associated with that edge, and serves

as a way to join up the edges (so if Si,j = Sj,i = 1 it means that node i is
connected to node j). Similarly for S(lk).

fk(yi,x,θk) = −(yi − h(θTk xi))
2 (3)

Above h is an activation function (we use a sigmoid h(x) = 1
1+e−x , and θk

is a vector of weights for the particular gate (neural network).
When using the vertex and edge feature functions defined in Eqs.(3), (2) and

(1), the probability distribution of CCNF for a particular sequence is as follows:

P (y|x) =
exp(Ψ)∫∞

−∞ exp(Ψ)dy
(4)

Ψ =
∑
i

K1∑
k=1

αkfk(yi,x) +
∑
i,j

K2∑
k=1

βkgk(yi, yj) +
∑
i,j

K3∑
k=1

γklk(yi, yj) (5)

is in fact a multivariate Gaussian with the following distribution:

P (y|x) =
1

(2π)
n
2 |Σ| 12

exp(−1

2
(y − µ)TΣ−1(y − µ)), (6)

where
Σ−1 = 2(A+B + C) (7)

The diagonal matrix A represents the contribution of α terms (vertex features)
to the covariance matrix, and the symmetric B represents the contribution of
the β and γ terms (similarity and sparsity edge features).

Ai,j =

{ ∑K1
k=1 αk, i = j

0, i 6= j
(8)

Bi,j =

 (
∑K2
k=1 βk

∑n
r=1 S

(gk)
i,r )− (

∑K2
k=1 βkS

(gk)
i,j ), i = j

−
∑K2
k=1 βkS

(gk)
i,j , i 6= j

(9)

1



Ci,j =

 (
∑K2
k=1 γk

∑n
r=1 S

(lk)
i,r ) + (

∑K2
k=1 γkS

(lk)
i,j ), i = j∑K2

k=1 γkS
(lk)
i,j , i 6= j

(10)

We also define a further vector d:

di = 2

K1∑
k=1

αkh(θTk xi) (11)

d = 2αTh(ΘX) (12)

Above X is a matrix where the ith column represents xi, and Θ represents
the combined neural network weights (k-th row represents the weights of the
k-th gate), and (through a slight abuse of notation) h(M), is an element-wise
application of h on each element of M , and thus h(ΘX) represents the response
of each of the gates at each xi (frame/time step).

We can now define another useful term µ, which will be our mean values in
the multivariate Gaussian distribution:

µ = Σd (13)

Defining A, B and d in such a way allows us to rewrite the factors of Eq.(4) in
terms of matrix multiplications making the derivation of the partition function
and the partial derivatives easier.

Having defined all the necessary variables we can start showing the equiv-
alence between probability density in Eq.(4) and the multivariate Gaussian in
Eq.(6). First we plug in the feature functions in Eqs.(3) and (1) into Eq.(5)

Ψ =
∑
i

∑K1
k=1 αkfk(yi,x,θk) +

∑
i,j

∑K2
k=1 βkgk(yi, yj ,x)

= −
∑
i

∑K1
k=1 αk(yi − h(θTk xi))

2 − 1
2

∑
i,j

∑K2
k=1 βkS

gk
i,j(yi − yj)2

− 1
2

∑
i,j

∑K3
k=1 γkS

(lk)
i,j (yi + yj)

2

(14)

Now we can express the factor Ψ in terms of A, B and d. We do this in parts
starting with terms containing α parameters in Eq.(14).

−
∑
i

∑K1
k=1 αk(yi − h(θTk xi))

2

= −
∑
i

∑K1
k=1 αk(y2

i − 2yih(θTk xi) + h(θTk xi)
2)

= −
∑
i

∑K1
k=1 αky

2
i +

∑
i

∑K1
k=1 αk2yih(θTk xi)−

∑
i

∑K1
k=1 αkh(θTk xi)

2

= −yTAy + yTd−
∑
i

∑K1
k=1 αkh(θTk xi)

2

(15)

And now collecting terms with β parameters in Eq.(14). Here we use the as-
sumption that every S(k) is a symmetric matrix (which as a similarity matrix

2



it should be).

− 1
2

∑
i,j

∑K2
k=1 βkS

(gk)
i,j (yi − yj)2 − 1

2

∑
i,j

∑K3
k=1 γkS

(lk)
i,j (yi + yj)

2

= − 1
2

∑
i,j

∑K2
k=1 βkS

(gk)
i,j (y2

i − 2yiyj + y2
j )− 1

2

∑
i,j

∑K3
k=1 γkS

(lk)
i,j (y2

i + 2yiyj + y2
j )

= − 1
2

∑
i,j

∑K2
k=1 βkS

(gk)
i,j (y2

i + y2
j ) +

∑
i,j

∑K2
k=1 βkS

(gk)
i,j yiyj+

− 1
2

∑
i,j

∑K2
k=1 γkS

(lk)
i,j (y2

i + y2
j ) +

∑
i,j

∑K2
k=1 γkS

(lk)
i,j yiyj

= −
∑K2
k=1 βk

∑
i,j S

(gk)
i,j y2

i +
∑K2
k=1 βkS

(gk)
i,j

∑
i,j yiyj+

−
∑K2
k=1 γk

∑
i,j S

(lk)
i,j y

2
i +

∑K2
k=1 γkS

(lk)
i,j

∑
i,j yiyj

= −yTBy
(16)

Combining Eqs.(14), (15), and (16). We define e =
∑
i

∑K1
k=1 αkh(θTk xi)

2 for
brevity (it’s not necessary writing it out in full as it cancels out eventually). We
also use the fact from Eq.(13) that d = Σ−1µ.

Ψ = −yTAy + yTd− yTBy − e = −1

2
(yTΣ−1y) + yΣ−1µ− e (17)

Using Eq.(17) in Eq.(4) we get (As d does not depend on y, we can take it out
of the integral, leading to it canceling out):

P (y|x) = exp(Ψ)∫∞
−∞

exp(Ψ)dy
=

=
exp(− 1

2 (yTΣ−1y)+yΣ−1µ) exp(−d)∫∞
−∞
{exp(− 1

2 (yTΣ−1y)+yΣ−1µ) exp(−d)}dy

=
exp(− 1

2 (yTΣ−1y)+yΣ−1µ)∫∞
−∞
{exp(− 1

2 (yTΣ−1y)+yΣ−1µ)}dy

(18)

Now we need to find the integral of exp(− 1
2 (yTΣ−1y)+yΣ−1µ) with respect

to y, this can be achieved using the integral of a an expontial with square and
linear terms1.∫

y

{exp(−1

2
(yTΣ−1y) + yΣ−1µ)}dy =

(2π)
n
2

|Σ−1| 12
exp(

1

2
µΣ−1µ) (19)

Finally. plugging Eq.(17) and (19) into Eq.(4) we get:

P (y|x) =
exp(− 1

2y
TΣ−1y+yΣ−1µ)

(2π)
n
2

|Σ−1|
1
2

exp( 1
2µΣ−1µ)

=
exp(− 1

2y
TΣ−1y+yΣ−1µ) exp(− 1

2µΣ−1µ)

(2π)
n
2 |Σ|

1
2

=
exp(− 1

2y
TΣ−1y+yΣ−1µ− 1

2µΣ−1µ)

(2π)
n
2 |Σ|

1
2

= 1

(2π)
n
2 |Σ|

1
2

exp(− 1
2 (y − µ)TΣ−1(y − µ))

(20)

This is exactly what we set out to show.

1http://www.weylmann.com/gaussian.pdf

3

http://www.weylmann.com/gaussian.pdf


2 Appendix B

This appendix deals with calculating the partial derivatives of the CCNF log-
likelihood with respect to the parameters α, β, and θ. First of all, we would
like to calculate the log-likelihood of Eq.(20)).

log(P (y|x)) = − 1
2 (y − µ)TΣ−1(y − µ)− log((2π)

n
2 |Σ| 12 )

= − 1
2 (y − µ)TΣ−1(y − µ)− (n2 log(2π) + 1

2 log |Σ|)

= − 1
2 (y − µ)TΣ−1(y − µ) + 1

2 log |Σ−1| − n
2 log(2π)

= − 1
2y

TΣ−1y + yTΣ−1µ− 1
2µ

TΣ−1µ+ 1
2 log |Σ−1| − n

2 log(2π)

= − 1
2y

TΣ−1y + yTd− 1
2µ

TΣ−1µ+ 1
2 log |Σ−1| − n

2 log(2π)

= − 1
2y

TΣ−1y + yTd− 1
2d

TΣd+ 1
2 log |Σ−1| − n

2 log(2π)
(21)

Above we use |Σ| = 1
|Σ−1| , where |Σ| denotes the determinant of the matrix Σ.

Furthermore, because Σ−1 is symmetric by construction, hence Σ−1 = (Σ−1)T

and Σ = ΣT .
Now we can derive all of the necessary partial derivatives, first we define the

partial derivatives of Σ−1 and d with respect to α, β, γ and θ as they will be
reused. I is the identity matrix of size n×n, where n is the number of elements
in a sequence. Remember that A is only dependent on α, and B on β and γ; d,
however, depends on both α and θ.

We will first show the partial derivatives of the likelihood for the alphas.

∂Σ−1

∂αk
=
∂2A+ 2B

∂αk
=
∂2A

∂αk
= 2I (22)

∂di
∂αk

= 2h(ΘX)k,i (23)

∂d

∂αk
= (2h(ΘX)k,∗)

T (24)

Here Xk,∗ notation refers to a row vector corresponding to the kth row of a
matrix X. For brevity we will use D = h(ΘX)

In the derivation below, we use the partial derivative of a matrix inverse

(∂M
−1

∂α = −M−1 ∂M
∂αM

−1) to get the partial derivative of Σ.

∂dTΣd
∂αk

= ∂dT

∂αk
Σd+ dT ∂Σd

∂αk
= 2Dk,∗µ+ dT ( ∂Σ

∂αk
d+ Σ ∂d

∂αk
)

= 2Dk,∗µ+ dT ∂Σ
∂αk

d+ dTΣ2(Dk,∗)
T = 4Dk,∗µ+ dT ∂Σ

∂αk
d

= 4Dk,∗µ+ dT (−Σ∂Σ−1

∂αk
Σ)d = 4Dk,∗µ− 2dTΣΣd

= 4Dk,∗µ− 2µTµ

(25)

Now for the normalisation (partition) function part:

∂ log |Σ−1|
∂αk

= 1
|Σ−1|

∂|Σ−1|
∂αk

= 1
|Σ−1| |Σ

−1| × trace(Σ∂Σ−1

αk
)

= 2× trace(ΣI) = 2× trace(Σ)
(26)

4



Now we can combine these to get

∂ log(P (y|x))

αk
= −yTy + 2yTDT

k,∗ − 2D∗,kµ+ µTµ+ trace(Σ) (27)

We can now derive the partial derivatives of the likelihood with respect to β
and γ parameters (they are discussed together as they are so similar)

∂Σ−1

∂βk
= 2B(k) (28)

∂Σ−1

∂γk
= 2C(k) (29)

B(k) =

 (
∑n
r=1 S

(gk)
i,r )− S(gk)

i,j , i = j

−S(gk)
i,j , i 6= j

(30)

C(k) =

 (
∑n
r=1 S

(lk)
i,r ) + S

(lk)
i,j , i = j

S
(lk)
i,j , i 6= j

(31)

∂d

∂βk
= 0 (32)

∂d

∂γk
= 0 (33)

dTΣd

βk
= −dT (Σ

∂Σ−1

∂βk
Σ)d = −2dTΣB(k)Σd = −2µTB(k)µ (34)

dTΣd

γk
= −dT (Σ

∂Σ−1

∂γk
Σ)d = −2dTΣC(k)Σd = −2µTC(k)µ (35)

∂ log |Σ−1|
∂βk

= 1
|Σ−1|

∂|Σ−1|
∂βk

= 1
|Σ−1| |Σ

−1| × trace(Σ∂Σ−1

βk
)

= 2× trace(ΣB(k)) = 2×Vec(Σ)TVec(B(k))
(36)

∂ log |Σ−1|
∂γk

= 1
|Σ−1|

∂|Σ−1|
∂γk

= 1
|Σ−1| |Σ

−1| × trace(Σ∂Σ−1

γk
)

= 2× trace(ΣC(k)) = 2×Vec(Σ)TVec(C(k))
(37)

Here we use the matrix trace property trace(AB) = Vec(A)TVec(B), and
where Vec refers to the matrix vectorisation operation which stacks up colums
of a matrix together to form a single column matrix. We also use the derivative
of inverse matrix as in the case with αk version.

We can now combine these to get:

∂ log(P (y|x))

βk
= −yTB(k)y + µTB(k)µ+ Vec(Σ)TVec(B(k)) (38)

∂ log(P (y|x))

γk
= −yTC(k)y + µTC(k)µ+ Vec(Σ)TVec(C(k)) (39)

Finally, we will derive the partial derivatives of the likelihood with respect to
the θ parameters (the neural network weights). We abuse the notation slightly

5



for clarity and brevity, h(A) on a n×m size matrix A produces a n×m matrix
with the activation function applied on each element.

∂Σ−1

∂θi,j
= 0 (40)

If we use the sigmoid activation function h(z) = 1
1+e−z , and:

dh(z)

dz
= h(z)(1− h(z)) (41)

We can now define the partial derivatives with respect to θ parameters on
the parts of likelihood function:

br = 2

K1∑
k=1

αkh(θTk xr) (42)

∂br
∂θi,j

= 2αih(θTi xr)(1− h(θTi xr))xr,j (43)

∂d

∂θi,j
= 2αi{h(θTi X) ◦ (1− h(θTi X))}X∗,j (44)

Here ◦ is the Hadamard or element-wise product.

∂dTΣd
∂θi,j

= ∂dT

∂θi,j
Σd+ dT ∂Σd

∂θi,j
= ∂dT

∂θi,j
µ+ µT ∂d

∂θi,j

= 2µT ∂d
∂θi,j

(45)

We can now combine these to get

∂ log(P (y|x))

θi,j
= yT

∂d

∂θi,j
−µT ∂d

∂θi,j
= (y−µ)T (2αi{h(θTi X)◦(1−h(θTi X))}X∗,j)

(46)
Which is basically the update of a single layer neural network (back propa-

gation) with sigmoid activation where the current feed-forward prediction is µ
and error is (y−µ). The difference, however, is that different neurons are given
different weights (depending on the corresponding α values).

6


	Appendix A
	Appendix B

