
Measure and Probability Theory

January 18, 2026

Contents
1 Probability measure 3

1.1 Introduce binder for probability 8
1.2 Distributions . 15

2 Distribution Functions 32
2.1 Properties of cdf’s . 32
2.2 Uniqueness . 36

3 Weak Convergence of Functions and Distributions 38

4 Weak Convergence of Functions 39

5 Weak Convergence of Distributions 39

6 Skorohod’s theorem 39

7 The Giry monad 47
7.1 Sub-probability spaces . 48
7.2 Properties of “return” . 59
7.3 Join . 64
7.4 Giry monad on probability spaces 82

8 Projective Family 88

9 Infinite Product Measure 103
9.1 Sequence space . 109

10 Independent families of events, event sets, and random vari-
ables 114

11 Convolution Measure 145

1

2

12 Information theory 150
12.1 Information theory . 150
12.2 Kullback−Leibler divergence 150
12.3 Finite Entropy . 156
12.4 Mutual Information . 158
12.5 Entropy . 166
12.6 Conditional Mutual Information 169
12.7 Conditional Entropy . 182
12.8 Equalities . 186

13 Properties of Various Distributions 192
13.1 Erlang . 194
13.2 Exponential distribution . 200
13.3 Uniform distribution . 206
13.4 Normal distribution . 210

14 Characteristic Functions 224
14.1 Application of the FTC: integrating eix 225
14.2 The Characteristic Function of a Real Measure. 225
14.3 Independence . 226
14.4 Approximations to eix . 227
14.5 Calculation of the Characteristic Function of the Standard

Distribution . 235

15 Helly’s selection theorem 237

16 Integral of sinc 243
16.1 Various preparatory integrals 244

17 The sinc function, and the sine integral (Si) 246
17.1 The final theorems: boundedness and scalability 251

18 The Levy inversion theorem, and the Levy continuity theo-
rem. 253
18.1 The Levy inversion theorem 253
18.2 The Levy continuity theorem 259

19 The Central Limit Theorem 265

20 Probability mass function 270
20.1 PMF as measure . 271
20.2 Monad Interpretation . 277
20.3 PMFs as function . 286
20.4 Conditional Probabilities . 295
20.5 Relator . 297

3

20.6 Distributions . 308
20.6.1 Bernoulli Distribution 308
20.6.2 Geometric Distribution 309
20.6.3 Uniform Multiset Distribution 311
20.6.4 Uniform Distribution 312
20.6.5 Poisson Distribution 315
20.6.6 Binomial Distribution 315

20.7 Negative Binomial distribution 318
20.8 PMFs from association lists 323

21 Code generation for PMFs 327
21.1 General code generation setup 327
21.2 Code abbreviations for integrals and probabilities 337

22 Finite Maps 339
22.1 Domain and Application . 340
22.2 Constructor of Finite Maps 340
22.3 Product set of Finite Maps 341

22.3.1 Basic Properties of Pi ′ 341
22.4 Topological Space of Finite Maps 342
22.5 Metric Space of Finite Maps 345
22.6 Complete Space of Finite Maps 349
22.7 Second Countable Space of Finite Maps 351
22.8 Polish Space of Finite Maps 353
22.9 Product Measurable Space of Finite Maps 353
22.10Isomorphism between Functions and Finite Maps 365

23 Projective Limit 369
23.1 Sequences of Finite Maps in Compact Sets 369
23.2 Daniell-Kolmogorov Theorem 371

24 Random Permutations 379

25 Discrete subprobability distribution 384
25.1 Auxiliary material . 384

25.1.1 More about extended reals 384
25.1.2 More about ′a option 385
25.1.3 A relator for sets that treats sets like predicates 387
25.1.4 Monotonicity rules . 388
25.1.5 Bijections . 388

25.2 Subprobability mass function 389
25.3 Support . 392
25.4 Functorial structure . 394
25.5 Monad operations . 395

4

25.5.1 Return . 395
25.5.2 Bind . 396

25.6 Relator . 399
25.7 From ′a pmf to ′a spmf . 402
25.8 Weight of a subprobability . 403
25.9 From density to spmfs . 405
25.10Ordering on spmfs . 407
25.11CCPO structure for the flat ccpo ord-option (=) 412

25.11.1 Admissibility of rel-spmf 423
25.12Restrictions on spmfs . 426
25.13Subprobability distributions of sets 428
25.14Losslessness . 432
25.15Scaling . 434
25.16Conditional spmfs . 440
25.17Product spmf . 441
25.18Assertions . 445
25.19Try . 445
25.20Miscellaneous . 448

26 Indexed products of PMFs 449
26.1 Preliminaries . 449
26.2 Definition . 449
26.3 Dependent product sets with a default 452
26.4 Common PMF operations on products 455
26.5 Merging and splitting PMF products 459
26.6 Additional properties . 463
26.7 Applications . 467

27 Hoeffding’s Lemma and Hoeffding’s Inequality 468
27.1 Hoeffding’s Lemma . 468
27.2 Hoeffding’s Inequality . 473
27.3 Hoeffding’s inequality for i.i.d. bounded random variables . . 476
27.4 Hoeffding’s Inequality for the Binomial distribution 479
27.5 Tail bounds for the negative binomial distribution 481

28 Conditional Expectation 512
28.1 Restricting a measure to a sub-sigma-algebra 512
28.2 Nonnegative conditional expectation 516
28.3 Real conditional expectation 522

29 The essential supremum 545

30 Stopping times 548
30.1 Stopping Time . 548

5

31 Filtration 549
31.1 σ-algebra of a Stopping Time 549

6

Central_Limit_Theorem

Characteristic_Functions

Conditional_Expectation

Convolution

Discrete_Topology

Distribution_Functions

Distributions

Essential_Supremum Fin_Map

Giry_Monad

Helly_Selection

Hoeffding

Independent_Family

Infinite_Product_Measure

Information

Levy

PMF_Impl

Probability

Probability_Mass_Function

Probability_Measure

Product_PMF

Projective_Family

Projective_Limit

Random_Permutations SPMF

Sinc_Integral

Stopping_Time

Stream_Space

Tree_Space

Weak_Convergence

[HOL-Analysis]

[HOL-Combinatorics] [HOL-Computational_Algebra]

[HOL-Library]

[HOL-Real_Asymp]

[HOL]

[Pure]

[Tools]

THEORY “Probability-Measure” 7

1 Probability measure
theory Probability-Measure

imports HOL−Analysis.Analysis
begin

locale prob-space = finite-measure +
assumes emeasure-space-1 : emeasure M (space M) = 1

lemma prob-spaceI [Pure.intro!]:
assumes ∗: emeasure M (space M) = 1
shows prob-space M
by (simp add: assms finite-measureI prob-space-axioms.intro prob-space-def)

lemma prob-space-imp-sigma-finite: prob-space M =⇒ sigma-finite-measure M
unfolding prob-space-def finite-measure-def by simp

abbreviation (in prob-space) events ≡ sets M
abbreviation (in prob-space) prob ≡ measure M
abbreviation (in prob-space) random-variable M ′ X ≡ X ∈ measurable M M ′

abbreviation (in prob-space) expectation ≡ integralL M
abbreviation (in prob-space) variance X ≡ integralL M (λx. (X x − expectation
X)2)

lemma (in prob-space) finite-measure [simp]: finite-measure M
by unfold-locales

lemma (in prob-space) prob-space-distr :
assumes f : f ∈ measurable M M ′ shows prob-space (distr M M ′ f)

proof (rule prob-spaceI)
have f −‘ space M ′ ∩ space M = space M using f by (auto dest: measur-

able-space)
with f show emeasure (distr M M ′ f) (space (distr M M ′ f)) = 1

by (auto simp: emeasure-distr emeasure-space-1)
qed

lemma prob-space-distrD:
assumes f : f ∈ measurable M N and M : prob-space (distr M N f) shows

prob-space M
proof

interpret M : prob-space distr M N f by fact
have f −‘ space N ∩ space M = space M

using f [THEN measurable-space] by auto
then show emeasure M (space M) = 1

using M .emeasure-space-1 by (simp add: emeasure-distr [OF f])
qed

lemma (in prob-space) prob-space: prob (space M) = 1
by (simp add: emeasure-space-1 measure-eq-emeasure-eq-ennreal)

THEORY “Probability-Measure” 8

lemma (in prob-space) prob-le-1 [simp, intro]: prob A ≤ 1
using bounded-measure[of A] by (simp add: prob-space)

lemma (in prob-space) not-empty: space M 6= {}
using prob-space by auto

lemma (in prob-space) emeasure-eq-1-AE :
S ∈ sets M =⇒ AE x in M . x ∈ S =⇒ emeasure M S = 1
by (subst emeasure-eq-AE [where B=space M]) (auto simp: emeasure-space-1)

lemma (in prob-space) emeasure-le-1 : emeasure M S ≤ 1
unfolding ennreal-1 [symmetric] emeasure-eq-measure by (subst ennreal-le-iff)

auto

lemma (in prob-space) emeasure-ge-1-iff : emeasure M A ≥ 1 ←→ emeasure M A
= 1

by (rule iffI , intro antisym emeasure-le-1) simp-all

lemma (in prob-space) AE-iff-emeasure-eq-1 :
assumes [measurable]: Measurable.pred M P
shows (AE x in M . P x) ←→ emeasure M {x∈space M . P x} = 1

proof −
have ∗: {x ∈ space M . ¬ P x} = space M − {x∈space M . P x}

by auto
show ?thesis

by (auto simp add: ennreal-minus-eq-0 ∗ emeasure-compl emeasure-space-1
AE-iff-measurable[OF - refl]

intro: antisym emeasure-le-1)
qed

lemma (in prob-space) measure-le-1 : emeasure M X ≤ 1
using emeasure-space[of M X] by (simp add: emeasure-space-1)

lemma (in prob-space) measure-ge-1-iff : measure M A ≥ 1 ←→ measure M A =
1

by (auto intro!: antisym)

lemma (in prob-space) AE-I-eq-1 :
assumes emeasure M {x∈space M . P x} = 1 {x∈space M . P x} ∈ sets M
shows AE x in M . P x

proof (rule AE-I)
show emeasure M (space M − {x ∈ space M . P x}) = 0

using assms emeasure-space-1 by (simp add: emeasure-compl)
qed (insert assms, auto)

lemma prob-space-restrict-space:
S ∈ sets M =⇒ emeasure M S = 1 =⇒ prob-space (restrict-space M S)
by (intro prob-spaceI)

THEORY “Probability-Measure” 9

(simp add: emeasure-restrict-space space-restrict-space)

lemma (in prob-space) prob-compl:
assumes A: A ∈ events
shows prob (space M − A) = 1 − prob A
using finite-measure-compl[OF A] by (simp add: prob-space)

lemma (in prob-space) AE-in-set-eq-1 :
assumes A[measurable]: A ∈ events shows (AE x in M . x ∈ A) ←→ prob A =

1
proof −

have ∗: {x∈space M . x ∈ A} = A
using A[THEN sets.sets-into-space] by auto

show ?thesis
by (subst AE-iff-emeasure-eq-1) (auto simp: emeasure-eq-measure ∗)

qed

lemma (in prob-space) AE-False: (AE x in M . False) ←→ False
proof

assume AE x in M . False
then have AE x in M . x ∈ {} by simp
then show False

by (subst (asm) AE-in-set-eq-1) auto
qed simp

lemma (in prob-space) AE-prob-1 :
assumes prob A = 1 shows AE x in M . x ∈ A

proof −
from ‹prob A = 1 › have A ∈ events

by (metis measure-notin-sets zero-neq-one)
with AE-in-set-eq-1 assms show ?thesis by simp

qed

lemma (in prob-space) AE-const[simp]: (AE x in M . P) ←→ P
by (cases P) (auto simp: AE-False)

lemma (in prob-space) ae-filter-bot: ae-filter M 6= bot
by (simp add: trivial-limit-def)

lemma (in prob-space) AE-contr :
assumes ae: AE ω in M . P ω AE ω in M . ¬ P ω
shows False

proof −
from ae have AE ω in M . False by eventually-elim auto
then show False by auto

qed

lemma (in prob-space) integral-ge-const:
fixes c :: real

THEORY “Probability-Measure” 10

shows integrable M f =⇒ (AE x in M . c ≤ f x) =⇒ c ≤ (
∫

x. f x ∂M)
using integral-mono-AE [of M λx. c f] prob-space by simp

lemma (in prob-space) integral-le-const:
fixes c :: real
shows integrable M f =⇒ (AE x in M . f x ≤ c) =⇒ (

∫
x. f x ∂M) ≤ c

using integral-mono-AE [of M f λx. c] prob-space by simp

lemma (in prob-space) nn-integral-ge-const:
(AE x in M . c ≤ f x) =⇒ c ≤ (

∫
+x. f x ∂M)

using nn-integral-mono-AE [of λx. c f M] emeasure-space-1
by (simp split: if-split-asm)

lemma (in prob-space) expectation-less:
fixes X :: - ⇒ real
assumes [simp]: integrable M X
assumes gt: AE x in M . X x < b
shows expectation X < b

proof −
have expectation X < expectation (λx. b)

using gt emeasure-space-1
by (intro integral-less-AE-space) auto

then show ?thesis using prob-space by simp
qed

lemma (in prob-space) expectation-greater :
fixes X :: - ⇒ real
assumes [simp]: integrable M X
assumes gt: AE x in M . a < X x
shows a < expectation X

proof −
have expectation (λx. a) < expectation X

using gt emeasure-space-1
by (intro integral-less-AE-space) auto

then show ?thesis using prob-space by simp
qed

lemma (in prob-space) jensens-inequality:
fixes q :: real ⇒ real
assumes X : integrable M X AE x in M . X x ∈ I
assumes I : I = {a <..< b} ∨ I = {a <..} ∨ I = {..< b} ∨ I = UNIV
assumes q: integrable M (λx. q (X x)) convex-on I q
shows q (expectation X) ≤ expectation (λx. q (X x))

proof −
let ?F = λx. Inf ((λt. (q x − q t) / (x − t)) ‘ ({x<..} ∩ I))
from X(2) AE-False have I 6= {} by auto

from I have open I by auto

THEORY “Probability-Measure” 11

note I
moreover
{ assume I ⊆ {a <..}

with X have a < expectation X
by (intro expectation-greater) auto }

moreover
{ assume I ⊆ {..< b}

with X have expectation X < b
by (intro expectation-less) auto }

ultimately have expectation X ∈ I
by (elim disjE) (auto simp: subset-eq)

moreover
{ fix y assume y: y ∈ I

with q(2) ‹open I › have Sup ((λx. q x + ?F x ∗ (y − x)) ‘ I) = q y
by (auto intro!: cSup-eq-maximum convex-le-Inf-differential image-eqI [OF -

y] simp: interior-open) }
ultimately have q (expectation X) = Sup ((λx. q x + ?F x ∗ (expectation X −

x)) ‘ I)
by simp

also have . . . ≤ expectation (λw. q (X w))
proof (rule cSup-least)

show (λx. q x + ?F x ∗ (expectation X − x)) ‘ I 6= {}
using ‹I 6= {}› by auto

next
fix k assume k ∈ (λx. q x + ?F x ∗ (expectation X − x)) ‘ I
then obtain x

where x: k = q x + (INF t∈{x<..} ∩ I . (q x − q t) / (x − t)) ∗ (expectation
X − x) x ∈ I ..

have q x + ?F x ∗ (expectation X − x) = expectation (λw. q x + ?F x ∗ (X
w − x))

using prob-space by (simp add: X)
also have . . . ≤ expectation (λw. q (X w))

using ‹x ∈ I › ‹open I › X(2)
apply (intro integral-mono-AE Bochner-Integration.integrable-add Bochner-Integration.integrable-mult-right

Bochner-Integration.integrable-diff
integrable-const X q)

apply (elim eventually-mono)
apply (intro convex-le-Inf-differential)
apply (auto simp: interior-open q)
done

finally show k ≤ expectation (λw. q (X w)) using x by auto
qed
finally show q (expectation X) ≤ expectation (λx. q (X x)) .

qed

lemma (in prob-space) finite-borel-measurable-integrable:
assumes f∈ borel-measurable M
and finite (f‘(space M))
shows integrable M f

THEORY “Probability-Measure” 12

proof −
have simple-function M f using assms by (simp add: simple-function-borel-measurable)
moreover have emeasure M {y ∈ space M . f y 6= 0} 6= ∞ by simp
ultimately have Bochner-Integration.simple-bochner-integrable M f

using Bochner-Integration.simple-bochner-integrable.simps by blast
hence has-bochner-integral M f (Bochner-Integration.simple-bochner-integral M

f)
using has-bochner-integral-simple-bochner-integrable by auto

thus ?thesis using integrable.simps by auto
qed

1.1 Introduce binder for probability
syntax

-prob :: pttrn ⇒ logic ⇒ logic ⇒ logic (‹(′P ′((/- in -./ -) ′))›)
syntax-consts

-prob == measure
translations
P(x in M . P) => CONST measure M {x ∈ CONST space M . P}

print-translation ‹
let

fun to-pattern (Const (const-syntax ‹Pair›, -) $ l $ r) =
Syntax.const const-syntax ‹Pair› :: to-pattern l @ to-pattern r
| to-pattern (t as (Const (syntax-const ‹-bound›, -)) $ -) = [t]

fun mk-pattern ((t, n) :: xs) = mk-patterns n xs |>> curry list-comb t
and mk-patterns 0 xs = ([], xs)
| mk-patterns n xs =

let
val (t, xs ′) = mk-pattern xs
val (ts, xs ′′) = mk-patterns (n − 1) xs ′

in
(t :: ts, xs ′′)

end

fun unnest-tuples
(Const (syntax-const ‹-pattern›, -) $

t1 $
(t as (Const (syntax-const ‹-pattern›, -) $ - $ -)))

= let
val (- $ t2 $ t3) = unnest-tuples t

in
Syntax.const syntax-const ‹-pattern› $

unnest-tuples t1 $
(Syntax.const syntax-const ‹-patterns› $ t2 $ t3)

end
| unnest-tuples pat = pat

THEORY “Probability-Measure” 13

fun tr ′ ctxt [sig-alg, Const (const-syntax ‹Collect›, -) $ t] =
let

val bound-dummyT = Const (syntax-const ‹-bound›, dummyT)

fun go pattern elem
(Const (const-syntax ‹conj›, -) $

(Const (const-syntax ‹Set.member›, -) $ elem ′ $ (Const (const-syntax ‹space›,
-) $ sig-alg ′)) $

u)
= let

val - = if sig-alg aconv sig-alg ′ andalso to-pattern elem ′ = rev elem then
() else raise Match;

val (pat, rest) = mk-pattern (rev pattern);
val - = case rest of [] => () | - => raise Match

in
Syntax.const syntax-const ‹-prob› $ unnest-tuples pat $ sig-alg $ u

end
| go pattern elem (Abs abs) =

let
val (x as (- $ tx), t) = Syntax-Trans.atomic-abs-tr ′ ctxt abs

in
go ((x, 0) :: pattern) (bound-dummyT $ tx :: elem) t

end
| go pattern elem (Const (const-syntax ‹case-prod›, -) $ t) =

go
((Syntax.const syntax-const ‹-pattern›, 2) :: pattern)
(Syntax.const const-syntax ‹Pair› :: elem)
t

in
go [] [] t

end
in
[(const-syntax ‹Sigma-Algebra.measure›, tr ′)]

end
›

definition
cond-prob M P Q = P(ω in M . P ω ∧ Q ω) / P(ω in M . Q ω)

syntax
-conditional-prob :: pttrn ⇒ logic ⇒ logic ⇒ logic ⇒ logic (‹(′P ′(- in -. - |/ - ′))›)

syntax-consts
-conditional-prob == cond-prob

translations
P(x in M . P | Q) => CONST cond-prob M (λx. P) (λx. Q)

lemma (in prob-space) AE-E-prob:
assumes ae: AE x in M . P x
obtains S where S ⊆ {x ∈ space M . P x} S ∈ events prob S = 1

THEORY “Probability-Measure” 14

proof −
from ae[THEN AE-E] obtain N

where {x ∈ space M . ¬ P x} ⊆ N emeasure M N = 0 N ∈ events by auto
then show thesis

by (intro that[of space M − N])
(auto simp: prob-compl prob-space emeasure-eq-measure measure-nonneg)

qed

lemma (in prob-space) prob-neg: {x∈space M . P x} ∈ events =⇒ P(x in M . ¬ P
x) = 1 − P(x in M . P x)

by (auto intro!: arg-cong[where f=prob] simp add: prob-compl[symmetric])

lemma (in prob-space) prob-eq-AE :
(AE x in M . P x ←→ Q x) =⇒ {x∈space M . P x} ∈ events =⇒ {x∈space M . Q

x} ∈ events =⇒ P(x in M . P x) = P(x in M . Q x)
by (rule finite-measure-eq-AE) auto

lemma (in prob-space) prob-eq-0-AE :
assumes not: AE x in M . ¬ P x shows P(x in M . P x) = 0

proof cases
assume {x∈space M . P x} ∈ events
with not have P(x in M . P x) = P(x in M . False)

by (intro prob-eq-AE) auto
then show ?thesis by simp

qed (simp add: measure-notin-sets)

lemma (in prob-space) prob-Collect-eq-0 :
{x ∈ space M . P x} ∈ sets M =⇒ P(x in M . P x) = 0 ←→ (AE x in M . ¬ P x)
using AE-iff-measurable[OF - refl, of M λx. ¬ P x] by (simp add: emea-

sure-eq-measure measure-nonneg)

lemma (in prob-space) prob-Collect-eq-1 :
{x ∈ space M . P x} ∈ sets M =⇒ P(x in M . P x) = 1 ←→ (AE x in M . P x)
using AE-in-set-eq-1 [of {x∈space M . P x}] by simp

lemma (in prob-space) prob-eq-0 :
A ∈ sets M =⇒ prob A = 0 ←→ (AE x in M . x /∈ A)
using AE-iff-measurable[OF - refl, of M λx. x /∈ A]
by (auto simp add: emeasure-eq-measure Int-def [symmetric] measure-nonneg)

lemma (in prob-space) prob-eq-1 :
A ∈ sets M =⇒ prob A = 1 ←→ (AE x in M . x ∈ A)
using AE-in-set-eq-1 [of A] by simp

lemma (in prob-space) prob-sums:
assumes P:

∧
n. {x∈space M . P n x} ∈ events

assumes Q: {x∈space M . Q x} ∈ events
assumes ae: AE x in M . (∀n. P n x −→ Q x) ∧ (Q x −→ (∃ !n. P n x))
shows (λn. P(x in M . P n x)) sums P(x in M . Q x)

THEORY “Probability-Measure” 15

proof −
from ae[THEN AE-E-prob] obtain S

where S :
S ⊆ {x ∈ space M . (∀n. P n x −→ Q x) ∧ (Q x −→ (∃ !n. P n x))}
S ∈ events
prob S = 1

by auto
then have disj: disjoint-family (λn. {x∈space M . P n x} ∩ S)

by (auto simp: disjoint-family-on-def)
from S have ae-S :

AE x in M . x ∈ {x∈space M . Q x} ←→ x ∈ (
⋃

n. {x∈space M . P n x} ∩ S)∧
n. AE x in M . x ∈ {x∈space M . P n x} ←→ x ∈ {x∈space M . P n x} ∩ S

using ae by (auto dest!: AE-prob-1)
from ae-S have ∗:
P(x in M . Q x) = prob (

⋃
n. {x∈space M . P n x} ∩ S)

using P Q S by (intro finite-measure-eq-AE) auto
from ae-S have ∗∗:∧

n. P(x in M . P n x) = prob ({x∈space M . P n x} ∩ S)
using P Q S by (intro finite-measure-eq-AE) auto

show ?thesis
unfolding ∗ ∗∗ using S P disj
by (intro finite-measure-UNION) auto

qed

lemma (in prob-space) prob-sum:
assumes [simp, intro]: finite I
assumes P:

∧
n. n ∈ I =⇒ {x∈space M . P n x} ∈ events

assumes Q: {x∈space M . Q x} ∈ events
assumes ae: AE x in M . (∀n∈I . P n x −→ Q x) ∧ (Q x −→ (∃ !n∈I . P n x))
shows P(x in M . Q x) = (

∑
n∈I . P(x in M . P n x))

proof −
from ae[THEN AE-E-prob] obtain S

where S :
S ⊆ {x ∈ space M . (∀n∈I . P n x −→ Q x) ∧ (Q x −→ (∃ !n. n ∈ I ∧ P n

x))}
S ∈ events
prob S = 1

by auto
then have disj: disjoint-family-on (λn. {x∈space M . P n x} ∩ S) I

by (auto simp: disjoint-family-on-def)
from S have ae-S :

AE x in M . x ∈ {x∈space M . Q x} ←→ x ∈ (
⋃

n∈I . {x∈space M . P n x} ∩ S)∧
n. n ∈ I =⇒ AE x in M . x ∈ {x∈space M . P n x} ←→ x ∈ {x∈space M . P

n x} ∩ S
using ae by (auto dest!: AE-prob-1)

from ae-S have ∗:
P(x in M . Q x) = prob (

⋃
n∈I . {x∈space M . P n x} ∩ S)

using P Q S by (intro finite-measure-eq-AE) (auto intro!: sets.Int)
from ae-S have ∗∗:

THEORY “Probability-Measure” 16

∧
n. n ∈ I =⇒ P(x in M . P n x) = prob ({x∈space M . P n x} ∩ S)

using P Q S by (intro finite-measure-eq-AE) auto
show ?thesis

using S P disj
by (auto simp add: ∗ ∗∗ simp del: UN-simps intro!: finite-measure-finite-Union)

qed

lemma (in prob-space) prob-EX-countable:
assumes sets:

∧
i. i ∈ I =⇒ {x∈space M . P i x} ∈ sets M and I : countable I

assumes disj: AE x in M . ∀ i∈I . ∀ j∈I . P i x −→ P j x −→ i = j
shows P(x in M . ∃ i∈I . P i x) = (

∫
+i. P(x in M . P i x) ∂count-space I)

proof −
let ?N= λx. ∃ !i∈I . P i x
have ennreal (P(x in M . ∃ i∈I . P i x)) = P(x in M . (∃ i∈I . P i x ∧ ?N x))

unfolding ennreal-inj[OF measure-nonneg measure-nonneg]
proof (rule prob-eq-AE)

show AE x in M . (∃ i∈I . P i x) = (∃ i∈I . P i x ∧ ?N x)
using disj by eventually-elim blast

qed (auto intro!: sets.sets-Collect-countable-Ex ′ sets.sets-Collect-conj sets.sets-Collect-countable-Ex1 ′

I sets)+
also have P(x in M . (∃ i∈I . P i x ∧ ?N x)) = emeasure M (

⋃
i∈I . {x∈space

M . P i x ∧ ?N x})
unfolding emeasure-eq-measure by (auto intro!: arg-cong[where f=prob] simp:

measure-nonneg)
also have . . . = (

∫
+i. emeasure M {x∈space M . P i x ∧ ?N x} ∂count-space I)

by (rule emeasure-UN-countable)
(auto intro!: sets.sets-Collect-countable-Ex ′ sets.sets-Collect-conj sets.sets-Collect-countable-Ex1 ′

I sets
simp: disjoint-family-on-def)

also have . . . = (
∫

+i. P(x in M . P i x) ∂count-space I)
unfolding emeasure-eq-measure using disj
by (intro nn-integral-cong ennreal-inj[THEN iffD2] prob-eq-AE)
(auto intro!: sets.sets-Collect-countable-Ex ′ sets.sets-Collect-conj sets.sets-Collect-countable-Ex1 ′

I sets measure-nonneg)+
finally show ?thesis .

qed

lemma (in prob-space) cond-prob-eq-AE :
assumes P: AE x in M . Q x −→ P x ←→ P ′ x {x∈space M . P x} ∈ events
{x∈space M . P ′ x} ∈ events

assumes Q: AE x in M . Q x ←→ Q ′ x {x∈space M . Q x} ∈ events {x∈space
M . Q ′ x} ∈ events

shows cond-prob M P Q = cond-prob M P ′ Q ′

using P Q
by (auto simp: cond-prob-def intro!: arg-cong2 [where f=(/)] prob-eq-AE sets.sets-Collect-conj)

lemma (in prob-space) joint-distribution-Times-le-fst:
random-variable MX X =⇒ random-variable MY Y =⇒ A ∈ sets MX =⇒ B ∈

THEORY “Probability-Measure” 17

sets MY
=⇒ emeasure (distr M (MX

⊗
M MY) (λx. (X x, Y x))) (A × B) ≤ emeasure

(distr M MX X) A
by (auto simp: emeasure-distr measurable-pair-iff comp-def intro!: emeasure-mono

measurable-sets)

lemma (in prob-space) joint-distribution-Times-le-snd:
random-variable MX X =⇒ random-variable MY Y =⇒ A ∈ sets MX =⇒ B ∈

sets MY
=⇒ emeasure (distr M (MX

⊗
M MY) (λx. (X x, Y x))) (A × B) ≤ emeasure

(distr M MY Y) B
by (auto simp: emeasure-distr measurable-pair-iff comp-def intro!: emeasure-mono

measurable-sets)

lemma (in prob-space) variance-eq:
fixes X :: ′a ⇒ real
assumes [simp]: integrable M X
assumes [simp]: integrable M (λx. (X x)2)
shows variance X = expectation (λx. (X x)2) − (expectation X)2

by (simp add: field-simps prob-space power2-diff power2-eq-square[symmetric])

lemma (in prob-space) variance-positive: 0 ≤ variance (X :: ′a ⇒ real)
by (intro integral-nonneg-AE) (auto intro!: integral-nonneg-AE)

lemma (in prob-space) variance-mean-zero:
expectation X = 0 =⇒ variance X = expectation (λx. (X x)^2)
by simp

theorem (in prob-space) Chebyshev-inequality:
assumes [measurable]: random-variable borel f
assumes integrable M (λx. f x ^ 2)
defines µ ≡ expectation f
assumes a > 0
shows prob {x∈space M . |f x − µ| ≥ a} ≤ variance f / a2

unfolding µ-def
proof (rule second-moment-method)

have integrable: integrable M f
using assms by (blast dest: square-integrable-imp-integrable)

show integrable M (λx. (f x − expectation f)2)
using assms integrable unfolding power2-eq-square ring-distribs
by (intro Bochner-Integration.integrable-diff) auto

qed (use assms in auto)

locale pair-prob-space = pair-sigma-finite M1 M2 + M1 : prob-space M1 + M2 :
prob-space M2 for M1 M2

sublocale pair-prob-space ⊆ P?: prob-space M1
⊗

M M2
proof

show emeasure (M1
⊗

M M2) (space (M1
⊗

M M2)) = 1

THEORY “Probability-Measure” 18

by (simp add: M2 .emeasure-pair-measure-Times M1 .emeasure-space-1 M2 .emeasure-space-1
space-pair-measure)
qed

locale product-prob-space = product-sigma-finite M for M :: ′i ⇒ ′a measure +
fixes I :: ′i set
assumes prob-space:

∧
i. prob-space (M i)

sublocale product-prob-space ⊆ M?: prob-space M i for i
by (rule prob-space)

locale finite-product-prob-space = finite-product-sigma-finite M I + product-prob-space
M I for M I

sublocale finite-product-prob-space ⊆ prob-space ΠM i∈I . M i
proof

show emeasure (ΠM i∈I . M i) (space (ΠM i∈I . M i)) = 1
by (simp add: measure-times M .emeasure-space-1 prod.neutral-const space-PiM)

qed

lemma (in finite-product-prob-space) prob-times:
assumes X :

∧
i. i ∈ I =⇒ X i ∈ sets (M i)

shows prob (ΠE i∈I . X i) = (
∏

i∈I . M .prob i (X i))
proof −

have ennreal (measure (ΠM i∈I . M i) (ΠE i∈I . X i)) = emeasure (ΠM i∈I . M
i) (ΠE i∈I . X i)

using X by (simp add: emeasure-eq-measure)
also have . . . = (

∏
i∈I . emeasure (M i) (X i))

using measure-times X by simp
also have . . . = ennreal (

∏
i∈I . measure (M i) (X i))

using X by (simp add: M .emeasure-eq-measure prod-ennreal measure-nonneg)
finally show ?thesis by (simp add: measure-nonneg prod-nonneg)

qed

lemma product-prob-spaceI :
assumes

∧
i. prob-space (M i)

shows product-prob-space M
unfolding product-prob-space-def product-prob-space-axioms-def product-sigma-finite-def

proof safe
fix i
interpret prob-space M i

by (rule assms)
show sigma-finite-measure (M i) prob-space (M i)

by unfold-locales
qed

THEORY “Probability-Measure” 19

1.2 Distributions
definition distributed :: ′a measure ⇒ ′b measure ⇒ (′a ⇒ ′b) ⇒ (′b ⇒ ennreal)
⇒ bool
where

distributed M N X f ←→
distr M N X = density N f ∧ f ∈ borel-measurable N ∧ X ∈ measurable M N

lemma
assumes distributed M N X f
shows distributed-distr-eq-density: distr M N X = density N f

and distributed-measurable: X ∈ measurable M N
and distributed-borel-measurable: f ∈ borel-measurable N

using assms by (simp-all add: distributed-def)

lemma
assumes D: distributed M N X f
shows distributed-measurable ′[measurable-dest]:

g ∈ measurable L M =⇒ (λx. X (g x)) ∈ measurable L N
and distributed-borel-measurable ′[measurable-dest]:

h ∈ measurable L N =⇒ (λx. f (h x)) ∈ borel-measurable L
using distributed-measurable[OF D] distributed-borel-measurable[OF D]
by simp-all

lemma distributed-real-measurable:
(
∧

x. x ∈ space N =⇒ 0 ≤ f x) =⇒ distributed M N X (λx. ennreal (f x)) =⇒ f
∈ borel-measurable N

by (simp-all add: distributed-def)

lemma distributed-real-measurable ′:
(
∧

x. x ∈ space N =⇒ 0 ≤ f x) =⇒ distributed M N X (λx. ennreal (f x)) =⇒
h ∈ measurable L N =⇒ (λx. f (h x)) ∈ borel-measurable L

using distributed-real-measurable[measurable] by simp

lemma joint-distributed-measurable1 :
distributed M (S

⊗
M T) (λx. (X x, Y x)) f =⇒ h1 ∈ measurable N M =⇒ (λx.

X (h1 x)) ∈ measurable N S
by simp

lemma joint-distributed-measurable2 :
distributed M (S

⊗
M T) (λx. (X x, Y x)) f =⇒ h2 ∈ measurable N M =⇒ (λx.

Y (h2 x)) ∈ measurable N T
by simp

lemma distributed-count-space:
assumes X : distributed M (count-space A) X P and a: a ∈ A and A: finite A
shows P a = emeasure M (X −‘ {a} ∩ space M)

proof −
have emeasure M (X −‘ {a} ∩ space M) = emeasure (distr M (count-space A)

X) {a}

THEORY “Probability-Measure” 20

using X a A by (simp add: emeasure-distr)
also have . . . = emeasure (density (count-space A) P) {a}

using X by (simp add: distributed-distr-eq-density)
also have . . . = (

∫
+x. P a ∗ indicator {a} x ∂count-space A)

using X a by (auto simp add: emeasure-density distributed-def indicator-def
intro!: nn-integral-cong)

also have . . . = P a
using X a by (subst nn-integral-cmult-indicator) (auto simp: distributed-def

one-ennreal-def [symmetric] AE-count-space)
finally show ?thesis ..

qed

lemma distributed-cong-density:
(AE x in N . f x = g x) =⇒ g ∈ borel-measurable N =⇒ f ∈ borel-measurable N

=⇒
distributed M N X f ←→ distributed M N X g

by (auto simp: distributed-def intro!: density-cong)

lemma (in prob-space) distributed-imp-emeasure-nonzero:
assumes X : distributed M MX X Px
shows emeasure MX {x ∈ space MX . Px x 6= 0} 6= 0

proof
note Px = distributed-borel-measurable[OF X]
interpret X : prob-space distr M MX X

using distributed-measurable[OF X] by (rule prob-space-distr)

assume emeasure MX {x ∈ space MX . Px x 6= 0} = 0
with Px have AE x in MX . Px x = 0

by (intro AE-I [OF subset-refl]) (auto simp: borel-measurable-ennreal-iff)
moreover
from X .emeasure-space-1 have (

∫
+x. Px x ∂MX) = 1

unfolding distributed-distr-eq-density[OF X] using Px
by (subst (asm) emeasure-density)
(auto simp: borel-measurable-ennreal-iff intro!: integral-cong cong: nn-integral-cong)

ultimately show False
by (simp add: nn-integral-cong-AE)

qed

lemma subdensity:
assumes T : T ∈ measurable P Q
assumes f : distributed M P X f
assumes g: distributed M Q Y g
assumes Y : Y = T ◦ X
shows AE x in P. g (T x) = 0 −→ f x = 0

proof −
have {x∈space Q. g x = 0} ∈ null-sets (distr M Q (T ◦ X))

using g Y by (auto simp: null-sets-density-iff distributed-def)
also have distr M Q (T ◦ X) = distr (distr M P X) Q T

using T f [THEN distributed-measurable] by (rule distr-distr [symmetric])

THEORY “Probability-Measure” 21

finally have T −‘ {x∈space Q. g x = 0} ∩ space P ∈ null-sets (distr M P X)
using T by (subst (asm) null-sets-distr-iff) auto

also have T −‘ {x∈space Q. g x = 0} ∩ space P = {x∈space P. g (T x) = 0}
using T by (auto dest: measurable-space)

finally show ?thesis
using f g by (auto simp add: null-sets-density-iff distributed-def)

qed

lemma subdensity-real:
fixes g :: ′a ⇒ real and f :: ′b ⇒ real
assumes T : T ∈ measurable P Q
assumes f : distributed M P X f
assumes g: distributed M Q Y g
assumes Y : Y = T ◦ X
shows (AE x in P. 0 ≤ g (T x)) =⇒ (AE x in P. 0 ≤ f x) =⇒ AE x in P. g (T

x) = 0 −→ f x = 0
using subdensity[OF T , of M X λx. ennreal (f x) Y λx. ennreal (g x)] assms
by auto

lemma distributed-emeasure:
distributed M N X f =⇒ A ∈ sets N =⇒ emeasure M (X −‘ A ∩ space M) =

(
∫

+x. f x ∗ indicator A x ∂N)
by (auto simp: distributed-distr-eq-density[symmetric] emeasure-density[symmetric]

emeasure-distr)

lemma distributed-nn-integral:
distributed M N X f =⇒ g ∈ borel-measurable N =⇒ (

∫
+x. f x ∗ g x ∂N) =

(
∫

+x. g (X x) ∂M)
by (auto simp: distributed-distr-eq-density[symmetric] nn-integral-density[symmetric]

nn-integral-distr)

lemma distributed-integral:
distributed M N X f =⇒ g ∈ borel-measurable N =⇒ (

∧
x. x ∈ space N =⇒ 0 ≤

f x) =⇒
(
∫

x. f x ∗ g x ∂N) = (
∫

x. g (X x) ∂M)
supply distributed-real-measurable[measurable]
by (auto simp: distributed-distr-eq-density[symmetric] integral-real-density[symmetric]

integral-distr)

lemma distributed-transform-integral:
assumes Px: distributed M N X Px

∧
x. x ∈ space N =⇒ 0 ≤ Px x

assumes distributed M P Y Py
∧

x. x ∈ space P =⇒ 0 ≤ Py x
assumes Y : Y = T ◦ X and T : T ∈ measurable N P and f : f ∈ borel-measurable

P
shows (

∫
x. Py x ∗ f x ∂P) = (

∫
x. Px x ∗ f (T x) ∂N)

proof −
have (

∫
x. Py x ∗ f x ∂P) = (

∫
x. f (Y x) ∂M)

by (rule distributed-integral) fact+
also have . . . = (

∫
x. f (T (X x)) ∂M)

THEORY “Probability-Measure” 22

using Y by simp
also have . . . = (

∫
x. Px x ∗ f (T x) ∂N)

using measurable-comp[OF T f] Px by (intro distributed-integral[symmetric])
(auto simp: comp-def)

finally show ?thesis .
qed

lemma (in prob-space) distributed-unique:
assumes Px: distributed M S X Px
assumes Py: distributed M S X Py
shows AE x in S . Px x = Py x

proof −
interpret X : prob-space distr M S X

using Px by (intro prob-space-distr) simp
have sigma-finite-measure (distr M S X) ..
with sigma-finite-density-unique[of Px S Py] Px Py
show ?thesis

by (auto simp: distributed-def)
qed

lemma (in prob-space) distributed-jointI :
assumes sigma-finite-measure S sigma-finite-measure T
assumes X [measurable]: X ∈ measurable M S and Y [measurable]: Y ∈ measur-

able M T
assumes [measurable]: f ∈ borel-measurable (S

⊗
M T) and f : AE x in S

⊗
M

T . 0 ≤ f x
assumes eq:

∧
A B. A ∈ sets S =⇒ B ∈ sets T =⇒

emeasure M {x ∈ space M . X x ∈ A ∧ Y x ∈ B} = (
∫

+x. (
∫

+y. f (x, y) ∗
indicator B y ∂T) ∗ indicator A x ∂S)

shows distributed M (S
⊗

M T) (λx. (X x, Y x)) f
unfolding distributed-def

proof safe
interpret S : sigma-finite-measure S by fact
interpret T : sigma-finite-measure T by fact
interpret ST : pair-sigma-finite S T ..

from ST .sigma-finite-up-in-pair-measure-generator
obtain F :: nat ⇒ (′b × ′c) set

where F : range F ⊆ {A × B |A B. A ∈ sets S ∧ B ∈ sets T} ∧ incseq F ∧⋃
(range F) = space S × space T ∧ (∀ i. emeasure (S

⊗
M T) (F i) 6= ∞) ..

let ?E = {a × b |a b. a ∈ sets S ∧ b ∈ sets T}
let ?P = S

⊗
M T

show distr M ?P (λx. (X x , Y x)) = density ?P f (is ?L = ?R)
proof (rule measure-eqI-generator-eq[OF Int-stable-pair-measure-generator [of S

T]])
show ?E ⊆ Pow (space ?P)
using sets.space-closed[of S] sets.space-closed[of T] by (auto simp: space-pair-measure)
show sets ?L = sigma-sets (space ?P) ?E

by (simp add: sets-pair-measure space-pair-measure)

THEORY “Probability-Measure” 23

then show sets ?R = sigma-sets (space ?P) ?E
by simp

next
interpret L: prob-space ?L

by (rule prob-space-distr) (auto intro!: measurable-Pair)
show range F ⊆ ?E (

⋃
i. F i) = space ?P

∧
i. emeasure ?L (F i) 6= ∞

using F by (auto simp: space-pair-measure)
next

fix E assume E ∈ ?E
then obtain A B where E [simp]: E = A × B

and A[measurable]: A ∈ sets S and B[measurable]: B ∈ sets T by auto
have emeasure ?L E = emeasure M {x ∈ space M . X x ∈ A ∧ Y x ∈ B}

by (auto intro!: arg-cong[where f=emeasure M] simp add: emeasure-distr
measurable-Pair)

also have . . . = (
∫

+x. (
∫

+y. (f (x, y) ∗ indicator B y) ∗ indicator A x ∂T)
∂S)

using f by (auto simp add: eq nn-integral-multc intro!: nn-integral-cong)
also have . . . = emeasure ?R E

by (auto simp add: emeasure-density T .nn-integral-fst[symmetric]
intro!: nn-integral-cong split: split-indicator)

finally show emeasure ?L E = emeasure ?R E .
qed

qed (auto simp: f)

lemma (in prob-space) distributed-swap:
assumes sigma-finite-measure S sigma-finite-measure T
assumes Pxy: distributed M (S

⊗
M T) (λx. (X x , Y x)) Pxy

shows distributed M (T
⊗

M S) (λx. (Y x, X x)) (λ(x, y). Pxy (y, x))
proof −

interpret S : sigma-finite-measure S by fact
interpret T : sigma-finite-measure T by fact
interpret ST : pair-sigma-finite S T ..
interpret TS : pair-sigma-finite T S ..

note Pxy[measurable]
show ?thesis

apply (subst TS .distr-pair-swap)
unfolding distributed-def

proof safe
let ?D = distr (S

⊗
M T) (T

⊗
M S) (λ(x, y). (y, x))

show 1 : (λ(x, y). Pxy (y, x)) ∈ borel-measurable ?D
by auto

show 2 : random-variable (distr (S
⊗

M T) (T
⊗

M S) (λ(x, y). (y, x))) (λx.
(Y x, X x))

using Pxy by auto
{ fix A assume A: A ∈ sets (T

⊗
M S)

let ?B = (λ(x, y). (y, x)) −‘ A ∩ space (S
⊗

M T)
from sets.sets-into-space[OF A]
have emeasure M ((λx. (Y x, X x)) −‘ A ∩ space M) =

THEORY “Probability-Measure” 24

emeasure M ((λx. (X x , Y x)) −‘ ?B ∩ space M)
by (auto intro!: arg-cong2 [where f=emeasure] simp: space-pair-measure)

also have . . . = (
∫

+ x. Pxy x ∗ indicator ?B x ∂(S
⊗

M T))
using Pxy A by (intro distributed-emeasure) auto

finally have emeasure M ((λx. (Y x, X x)) −‘ A ∩ space M) =
(
∫

+ x. Pxy x ∗ indicator A (snd x, fst x) ∂(S
⊗

M T))
by (auto intro!: nn-integral-cong split: split-indicator) }

note ∗ = this
show distr M ?D (λx. (Y x, X x)) = density ?D (λ(x, y). Pxy (y, x))

apply (intro measure-eqI)
apply (simp-all add: emeasure-distr [OF 2] emeasure-density[OF 1])
apply (subst nn-integral-distr)
apply (auto intro!: ∗ simp: comp-def split-beta)
done

qed
qed

lemma (in prob-space) distr-marginal1 :
assumes sigma-finite-measure S sigma-finite-measure T
assumes Pxy: distributed M (S

⊗
M T) (λx. (X x , Y x)) Pxy

defines Px ≡ λx. (
∫

+z. Pxy (x, z) ∂T)
shows distributed M S X Px
unfolding distributed-def

proof safe
interpret S : sigma-finite-measure S by fact
interpret T : sigma-finite-measure T by fact
interpret ST : pair-sigma-finite S T ..

note Pxy[measurable]
show X : X ∈ measurable M S by simp

show borel: Px ∈ borel-measurable S
by (auto intro!: T .nn-integral-fst simp: Px-def)

interpret Pxy: prob-space distr M (S
⊗

M T) (λx. (X x , Y x))
by (intro prob-space-distr) simp

show distr M S X = density S Px
proof (rule measure-eqI)

fix A assume A: A ∈ sets (distr M S X)
with X measurable-space[of Y M T]
have emeasure (distr M S X) A = emeasure (distr M (S

⊗
M T) (λx. (X x,

Y x))) (A × space T)
by (auto simp add: emeasure-distr intro!: arg-cong[where f=emeasure M])

also have . . . = emeasure (density (S
⊗

M T) Pxy) (A × space T)
using Pxy by (simp add: distributed-def)

also have . . . =
∫

+ x.
∫

+ y. Pxy (x, y) ∗ indicator (A × space T) (x, y) ∂T
∂S

using A borel Pxy

THEORY “Probability-Measure” 25

by (simp add: emeasure-density T .nn-integral-fst[symmetric])
also have . . . =

∫
+ x. Px x ∗ indicator A x ∂S

proof (rule nn-integral-cong)
fix x assume x ∈ space S
moreover have eq:

∧
y. y ∈ space T =⇒ indicator (A × space T) (x, y) =

indicator A x
by (auto simp: indicator-def)

ultimately have (
∫

+ y. Pxy (x, y) ∗ indicator (A × space T) (x, y) ∂T) =
(
∫

+ y. Pxy (x, y) ∂T) ∗ indicator A x
by (simp add: eq nn-integral-multc cong: nn-integral-cong)

also have (
∫

+ y. Pxy (x, y) ∂T) = Px x
by (simp add: Px-def)

finally show (
∫

+ y. Pxy (x, y) ∗ indicator (A × space T) (x, y) ∂T) = Px
x ∗ indicator A x .

qed
finally show emeasure (distr M S X) A = emeasure (density S Px) A

using A borel Pxy by (simp add: emeasure-density)
qed simp

qed

lemma (in prob-space) distr-marginal2 :
assumes S : sigma-finite-measure S and T : sigma-finite-measure T
assumes Pxy: distributed M (S

⊗
M T) (λx. (X x , Y x)) Pxy

shows distributed M T Y (λy. (
∫

+x. Pxy (x, y) ∂S))
using distr-marginal1 [OF T S distributed-swap[OF S T]] Pxy by simp

lemma (in prob-space) distributed-marginal-eq-joint1 :
assumes T : sigma-finite-measure T
assumes S : sigma-finite-measure S
assumes Px: distributed M S X Px
assumes Pxy: distributed M (S

⊗
M T) (λx. (X x , Y x)) Pxy

shows AE x in S . Px x = (
∫

+y. Pxy (x, y) ∂T)
using Px distr-marginal1 [OF S T Pxy] by (rule distributed-unique)

lemma (in prob-space) distributed-marginal-eq-joint2 :
assumes T : sigma-finite-measure T
assumes S : sigma-finite-measure S
assumes Py: distributed M T Y Py
assumes Pxy: distributed M (S

⊗
M T) (λx. (X x , Y x)) Pxy

shows AE y in T . Py y = (
∫

+x. Pxy (x, y) ∂S)
using Py distr-marginal2 [OF S T Pxy] by (rule distributed-unique)

lemma (in prob-space) distributed-joint-indep ′:
assumes S : sigma-finite-measure S and T : sigma-finite-measure T
assumes X [measurable]: distributed M S X Px and Y [measurable]: distributed

M T Y Py
assumes indep: distr M S X

⊗
M distr M T Y = distr M (S

⊗
M T) (λx. (X

x, Y x))
shows distributed M (S

⊗
M T) (λx. (X x, Y x)) (λ(x, y). Px x ∗ Py y)

THEORY “Probability-Measure” 26

unfolding distributed-def
proof safe

interpret S : sigma-finite-measure S by fact
interpret T : sigma-finite-measure T by fact
interpret ST : pair-sigma-finite S T ..

interpret X : prob-space density S Px
unfolding distributed-distr-eq-density[OF X , symmetric]
by (rule prob-space-distr) simp

have sf-X : sigma-finite-measure (density S Px) ..

interpret Y : prob-space density T Py
unfolding distributed-distr-eq-density[OF Y , symmetric]
by (rule prob-space-distr) simp

have sf-Y : sigma-finite-measure (density T Py) ..

show distr M (S
⊗

M T) (λx. (X x, Y x)) = density (S
⊗

M T) (λ(x, y). Px
x ∗ Py y)

unfolding indep[symmetric] distributed-distr-eq-density[OF X] distributed-distr-eq-density[OF
Y]

using distributed-borel-measurable[OF X]
using distributed-borel-measurable[OF Y]
by (rule pair-measure-density[OF - - T sf-Y])

show random-variable (S
⊗

M T) (λx. (X x , Y x)) by auto

show Pxy: (λ(x, y). Px x ∗ Py y) ∈ borel-measurable (S
⊗

M T) by auto
qed

lemma distributed-integrable:
distributed M N X f =⇒ g ∈ borel-measurable N =⇒ (

∧
x. x ∈ space N =⇒ 0 ≤

f x) =⇒
integrable N (λx. f x ∗ g x) ←→ integrable M (λx. g (X x))

supply distributed-real-measurable[measurable]
by (auto simp: distributed-distr-eq-density[symmetric] integrable-real-density[symmetric]

integrable-distr-eq)

lemma distributed-transform-integrable:
assumes Px: distributed M N X Px

∧
x. x ∈ space N =⇒ 0 ≤ Px x

assumes distributed M P Y Py
∧

x. x ∈ space P =⇒ 0 ≤ Py x
assumes Y : Y = (λx. T (X x)) and T : T ∈ measurable N P and f : f ∈

borel-measurable P
shows integrable P (λx. Py x ∗ f x) ←→ integrable N (λx. Px x ∗ f (T x))

proof −
have integrable P (λx. Py x ∗ f x) ←→ integrable M (λx. f (Y x))

by (rule distributed-integrable) fact+
also have . . . ←→ integrable M (λx. f (T (X x)))

using Y by simp
also have . . . ←→ integrable N (λx. Px x ∗ f (T x))

THEORY “Probability-Measure” 27

using measurable-comp[OF T f] Px by (intro distributed-integrable[symmetric])
(auto simp: comp-def)

finally show ?thesis .
qed

lemma distributed-integrable-var :
fixes X :: ′a ⇒ real
shows distributed M lborel X (λx. ennreal (f x)) =⇒ (

∧
x. 0 ≤ f x) =⇒

integrable lborel (λx. f x ∗ x) =⇒ integrable M X
using distributed-integrable[of M lborel X f λx. x] by simp

lemma (in prob-space) distributed-variance:
fixes f ::real ⇒ real
assumes D: distributed M lborel X f and [simp]:

∧
x. 0 ≤ f x

shows variance X = (
∫

x. x2 ∗ f (x + expectation X) ∂lborel)
proof (subst distributed-integral[OF D, symmetric])

show (
∫

x. f x ∗ (x − expectation X)2 ∂lborel) = (
∫

x. x2 ∗ f (x + expectation
X) ∂lborel)

by (subst lborel-integral-real-affine[where c=1 and t=expectation X]) (auto
simp: ac-simps)
qed simp-all

lemma (in prob-space) variance-affine:
fixes f ::real ⇒ real
assumes [arith]: b 6= 0
assumes D[intro]: distributed M lborel X f
assumes [simp]: prob-space (density lborel f)
assumes I [simp]: integrable M X
assumes I2 [simp]: integrable M (λx. (X x)2)
shows variance (λx. a + b ∗ X x) = b2 ∗ variance X
by (subst variance-eq)
(auto simp: power2-sum power-mult-distrib prob-space variance-eq right-diff-distrib)

definition
simple-distributed M X f ←→
(∀ x. 0 ≤ f x) ∧
distributed M (count-space (X‘space M)) X (λx. ennreal (f x)) ∧
finite (X‘space M)

lemma simple-distributed-nonneg[dest]: simple-distributed M X f =⇒ 0 ≤ f x
by (auto simp: simple-distributed-def)

lemma simple-distributed:
simple-distributed M X Px =⇒ distributed M (count-space (X‘space M)) X Px
unfolding simple-distributed-def by auto

lemma simple-distributed-finite[dest]: simple-distributed M X P =⇒ finite (X‘space
M)

by (simp add: simple-distributed-def)

THEORY “Probability-Measure” 28

lemma (in prob-space) distributed-simple-function-superset:
assumes X : simple-function M X

∧
x. x ∈ X ‘ space M =⇒ P x = measure M

(X −‘ {x} ∩ space M)
assumes A: X‘space M ⊆ A finite A
defines S ≡ count-space A and P ′ ≡ (λx. if x ∈ X‘space M then P x else 0)
shows distributed M S X P ′

unfolding distributed-def
proof safe

show (λx. ennreal (P ′ x)) ∈ borel-measurable S unfolding S-def by simp
show distr M S X = density S P ′

proof (rule measure-eqI-finite)
show sets (distr M S X) = Pow A sets (density S P ′) = Pow A

using A unfolding S-def by auto
show finite A by fact
fix a assume a: a ∈ A
then have a /∈ X‘space M =⇒ X −‘ {a} ∩ space M = {} by auto
with A a X have emeasure (distr M S X) {a} = P ′ a

by (subst emeasure-distr)
(auto simp add: S-def P ′-def simple-functionD emeasure-eq-measure mea-

surable-count-space-eq2
intro!: arg-cong[where f=prob])

also have . . . = (
∫

+x. ennreal (P ′ a) ∗ indicator {a} x ∂S)
using A X a
by (subst nn-integral-cmult-indicator)

(auto simp: S-def P ′-def simple-distributed-def simple-functionD mea-
sure-nonneg)

also have . . . = (
∫

+x. ennreal (P ′ x) ∗ indicator {a} x ∂S)
by (auto simp: indicator-def intro!: nn-integral-cong)

also have . . . = emeasure (density S P ′) {a}
using a A by (intro emeasure-density[symmetric]) (auto simp: S-def)

finally show emeasure (distr M S X) {a} = emeasure (density S P ′) {a} .
qed
show random-variable S X

using X(1) A by (auto simp: measurable-def simple-functionD S-def)
qed

lemma (in prob-space) simple-distributedI :
assumes X : simple-function M X∧

x. 0 ≤ P x∧
x. x ∈ X ‘ space M =⇒ P x = measure M (X −‘ {x} ∩ space M)

shows simple-distributed M X P
unfolding simple-distributed-def

proof (safe intro!: X)
have distributed M (count-space (X ‘ space M)) X (λx. ennreal (if x ∈ X‘space

M then P x else 0))
(is ?A)

using simple-functionD[OF X(1)] by (intro distributed-simple-function-superset[OF
X(1 ,3)]) auto

THEORY “Probability-Measure” 29

also have ?A ←→ distributed M (count-space (X ‘ space M)) X (λx. ennreal (P
x))

by (rule distributed-cong-density) auto
finally show

qed (rule simple-functionD[OF X(1)])

lemma simple-distributed-joint-finite:
assumes X : simple-distributed M (λx. (X x , Y x)) Px
shows finite (X ‘ space M) finite (Y ‘ space M)

proof −
have finite ((λx. (X x , Y x)) ‘ space M)

using X by (auto simp: simple-distributed-def simple-functionD)
then have finite (fst ‘ (λx. (X x, Y x)) ‘ space M) finite (snd ‘ (λx. (X x, Y x))

‘ space M)
by auto

then show fin: finite (X ‘ space M) finite (Y ‘ space M)
by (auto simp: image-image)

qed

lemma simple-distributed-joint2-finite:
assumes X : simple-distributed M (λx. (X x , Y x , Z x)) Px
shows finite (X ‘ space M) finite (Y ‘ space M) finite (Z ‘ space M)

proof −
have finite ((λx. (X x , Y x , Z x)) ‘ space M)

using X by (auto simp: simple-distributed-def simple-functionD)
then have finite (fst ‘ (λx. (X x, Y x , Z x)) ‘ space M)

finite ((fst ◦ snd) ‘ (λx. (X x, Y x , Z x)) ‘ space M)
finite ((snd ◦ snd) ‘ (λx. (X x , Y x, Z x)) ‘ space M)
by auto

then show fin: finite (X ‘ space M) finite (Y ‘ space M) finite (Z ‘ space M)
by (auto simp: image-image)

qed

lemma simple-distributed-simple-function:
simple-distributed M X Px =⇒ simple-function M X
unfolding simple-distributed-def distributed-def
by (auto simp: simple-function-def measurable-count-space-eq2)

lemma simple-distributed-measure:
simple-distributed M X P =⇒ a ∈ X‘space M =⇒ P a = measure M (X −‘ {a}
∩ space M)

using distributed-count-space[of M X‘space M X P a, symmetric]
by (auto simp: simple-distributed-def measure-def)

lemma (in prob-space) simple-distributed-joint:
assumes X : simple-distributed M (λx. (X x , Y x)) Px
defines S ≡ count-space (X‘space M)

⊗
M count-space (Y‘space M)

defines P ≡ (λx. if x ∈ (λx. (X x, Y x))‘space M then Px x else 0)
shows distributed M S (λx. (X x, Y x)) P

THEORY “Probability-Measure” 30

proof −
from simple-distributed-joint-finite[OF X , simp]
have S-eq: S = count-space (X‘space M × Y‘space M)

by (simp add: S-def pair-measure-count-space)
show ?thesis

unfolding S-eq P-def
proof (rule distributed-simple-function-superset)

show simple-function M (λx. (X x , Y x))
using X by (rule simple-distributed-simple-function)

fix x assume x ∈ (λx. (X x , Y x)) ‘ space M
from simple-distributed-measure[OF X this]
show Px x = prob ((λx. (X x , Y x)) −‘ {x} ∩ space M) .

qed auto
qed

lemma (in prob-space) simple-distributed-joint2 :
assumes X : simple-distributed M (λx. (X x , Y x , Z x)) Px
defines S ≡ count-space (X‘space M)

⊗
M count-space (Y‘space M)

⊗
M

count-space (Z‘space M)
defines P ≡ (λx. if x ∈ (λx. (X x, Y x , Z x))‘space M then Px x else 0)
shows distributed M S (λx. (X x, Y x , Z x)) P

proof −
from simple-distributed-joint2-finite[OF X , simp]
have S-eq: S = count-space (X‘space M × Y‘space M × Z‘space M)

by (simp add: S-def pair-measure-count-space)
show ?thesis

unfolding S-eq P-def
proof (rule distributed-simple-function-superset)

show simple-function M (λx. (X x , Y x, Z x))
using X by (rule simple-distributed-simple-function)

fix x assume x ∈ (λx. (X x , Y x, Z x)) ‘ space M
from simple-distributed-measure[OF X this]
show Px x = prob ((λx. (X x , Y x , Z x)) −‘ {x} ∩ space M) .

qed auto
qed

lemma (in prob-space) simple-distributed-sum-space:
assumes X : simple-distributed M X f
shows sum f (X‘space M) = 1

proof −
from X have sum f (X‘space M) = prob (

⋃
i∈X‘space M . X −‘ {i} ∩ space M)

by (subst finite-measure-finite-Union)
(auto simp add: disjoint-family-on-def simple-distributed-measure simple-distributed-simple-function

simple-functionD
intro!: sum.cong arg-cong[where f=prob])

also have . . . = prob (space M)
by (auto intro!: arg-cong[where f=prob])

finally show ?thesis
using emeasure-space-1 by (simp add: emeasure-eq-measure)

THEORY “Probability-Measure” 31

qed

lemma (in prob-space) distributed-marginal-eq-joint-simple:
assumes Px: simple-function M X
assumes Py: simple-distributed M Y Py
assumes Pxy: simple-distributed M (λx. (X x , Y x)) Pxy
assumes y: y ∈ Y‘space M
shows Py y = (

∑
x∈X‘space M . if (x, y) ∈ (λx. (X x , Y x)) ‘ space M then Pxy

(x, y) else 0)
proof −

note Px = simple-distributedI [OF Px measure-nonneg refl]
have AE y in count-space (Y ‘ space M). ennreal (Py y) =∫

+ x. ennreal (if (x, y) ∈ (λx. (X x , Y x)) ‘ space M then Pxy (x, y) else
0) ∂count-space (X ‘ space M)

using sigma-finite-measure-count-space-finite sigma-finite-measure-count-space-finite
simple-distributed[OF Py] simple-distributed-joint[OF Pxy]

by (rule distributed-marginal-eq-joint2)
(auto intro: Py Px simple-distributed-finite)

then have ennreal (Py y) =
(
∑

x∈X‘space M . ennreal (if (x, y) ∈ (λx. (X x, Y x)) ‘ space M then Pxy (x,
y) else 0))

using y Px[THEN simple-distributed-finite]
by (auto simp: AE-count-space nn-integral-count-space-finite)

also have . . . = (
∑

x∈X‘space M . if (x, y) ∈ (λx. (X x, Y x)) ‘ space M then
Pxy (x, y) else 0)

using Pxy by (intro sum-ennreal) auto
finally show ?thesis

using simple-distributed-nonneg[OF Py] simple-distributed-nonneg[OF Pxy]
by (subst (asm) ennreal-inj) (auto intro!: sum-nonneg)

qed

lemma distributedI-real:
fixes f :: ′a ⇒ real
assumes gen: sets M1 = sigma-sets (space M1) E and Int-stable E

and A: range A ⊆ E (
⋃

i::nat. A i) = space M1
∧

i. emeasure (distr M M1 X)
(A i) 6= ∞

and X : X ∈ measurable M M1
and f : f ∈ borel-measurable M1 AE x in M1 . 0 ≤ f x
and eq:

∧
A. A ∈ E =⇒ emeasure M (X −‘ A ∩ space M) = (

∫
+ x. f x ∗

indicator A x ∂M1)
shows distributed M M1 X f
unfolding distributed-def

proof (intro conjI)
show distr M M1 X = density M1 f
proof (rule measure-eqI-generator-eq[where A=A])

{ fix A assume A: A ∈ E
then have A ∈ sigma-sets (space M1) E by auto
then have A ∈ sets M1

using gen by simp

THEORY “Probability-Measure” 32

with f A eq[of A] X show emeasure (distr M M1 X) A = emeasure (density
M1 f) A

by (auto simp add: emeasure-distr emeasure-density ennreal-indicator
intro!: nn-integral-cong split: split-indicator) }

note eq-E = this
show Int-stable E by fact
{ fix e assume e ∈ E

then have e ∈ sigma-sets (space M1) E by auto
then have e ∈ sets M1 unfolding gen .
then have e ⊆ space M1 by (rule sets.sets-into-space) }

then show E ⊆ Pow (space M1) by auto
show sets (distr M M1 X) = sigma-sets (space M1) E

sets (density M1 (λx. ennreal (f x))) = sigma-sets (space M1) E
unfolding gen[symmetric] by auto

qed fact+
qed (insert X f , auto)

lemma distributedI-borel-atMost:
fixes f :: real ⇒ real
assumes [measurable]: X ∈ borel-measurable M

and [measurable]: f ∈ borel-measurable borel and f [simp]: AE x in lborel. 0 ≤
f x

and g-eq:
∧

a. (
∫

+x. f x ∗ indicator {..a} x ∂lborel) = ennreal (g a)
and M-eq:

∧
a. emeasure M {x∈space M . X x ≤ a} = ennreal (g a)

shows distributed M lborel X f
proof (rule distributedI-real)

show sets (lborel::real measure) = sigma-sets (space lborel) (range atMost)
by (simp add: borel-eq-atMost)

show Int-stable (range atMost :: real set set)
by (auto simp: Int-stable-def)

have vimage-eq:
∧

a. (X −‘ {..a} ∩ space M) = {x∈space M . X x ≤ a} by auto
define A where A i = {.. real i} for i :: nat
then show range A ⊆ range atMost (

⋃
i. A i) = space lborel∧

i. emeasure (distr M lborel X) (A i) 6= ∞
by (auto simp: real-arch-simple emeasure-distr vimage-eq M-eq)

fix A :: real set assume A ∈ range atMost
then obtain a where A: A = {..a} by auto
show emeasure M (X −‘ A ∩ space M) = (

∫
+x. f x ∗ indicator A x ∂lborel)

unfolding vimage-eq A M-eq g-eq ..
qed auto

lemma (in prob-space) uniform-distributed-params:
assumes X : distributed M MX X (λx. indicator A x / measure MX A)
shows A ∈ sets MX measure MX A 6= 0

proof −
interpret X : prob-space distr M MX X

using distributed-measurable[OF X] by (rule prob-space-distr)

THEORY “Probability-Measure” 33

show measure MX A 6= 0
proof

assume measure MX A = 0
with X .emeasure-space-1 X .prob-space distributed-distr-eq-density[OF X]
show False

by (simp add: emeasure-density zero-ennreal-def [symmetric])
qed
with measure-notin-sets[of A MX] show A ∈ sets MX

by blast
qed

lemma prob-space-uniform-measure:
assumes A: emeasure M A 6= 0 emeasure M A 6= ∞
shows prob-space (uniform-measure M A)

proof
show emeasure (uniform-measure M A) (space (uniform-measure M A)) = 1

using emeasure-uniform-measure[OF emeasure-neq-0-sets[OF A(1)], of space
M]

using sets.sets-into-space[OF emeasure-neq-0-sets[OF A(1)]] A
by (simp add: Int-absorb2 less-top)

qed

lemma prob-space-uniform-count-measure: finite A =⇒ A 6= {} =⇒ prob-space
(uniform-count-measure A)
by standard (auto simp: emeasure-uniform-count-measure space-uniform-count-measure

one-ennreal-def)

lemma (in prob-space) measure-uniform-measure-eq-cond-prob:
assumes [measurable]: Measurable.pred M P Measurable.pred M Q
shows P(x in uniform-measure M {x∈space M . Q x}. P x) = P(x in M . P x |

Q x)
proof cases

assume Q: measure M {x∈space M . Q x} = 0
then have ∗: AE x in M . ¬ Q x

by (simp add: prob-eq-0)
then have density M (λx. indicator {x ∈ space M . Q x} x / emeasure M {x ∈

space M . Q x}) = density M (λx. 0)
by (intro density-cong) auto

with ∗ show ?thesis
unfolding uniform-measure-def
by (simp add: emeasure-density measure-def cond-prob-def emeasure-eq-0-AE)

next
assume Q: measure M {x∈space M . Q x} 6= 0
then show P(x in uniform-measure M {x ∈ space M . Q x}. P x) = cond-prob

M P Q
by (subst measure-uniform-measure)
(auto simp: emeasure-eq-measure cond-prob-def measure-nonneg intro!: arg-cong[where

f=prob])
qed

THEORY “Probability-Measure” 34

lemma prob-space-point-measure:
finite S =⇒ (

∧
s. s ∈ S =⇒ 0 ≤ p s) =⇒ (

∑
s∈S . p s) = 1 =⇒ prob-space

(point-measure S p)
by (rule prob-spaceI) (simp add: space-point-measure emeasure-point-measure-finite)

lemma (in prob-space) distr-pair-fst: distr (N
⊗

M M) N fst = N
proof (intro measure-eqI)

fix A assume A: A ∈ sets (distr (N
⊗

M M) N fst)
from A have emeasure (distr (N

⊗
M M) N fst) A = emeasure (N

⊗
M M)

(A × space M)
by (auto simp add: emeasure-distr space-pair-measure dest: sets.sets-into-space

intro!: arg-cong2 [where f=emeasure])
with A show emeasure (distr (N

⊗
M M) N fst) A = emeasure N A

by (simp add: emeasure-pair-measure-Times emeasure-space-1)
qed simp

lemma (in product-prob-space) distr-reorder :
assumes inj-on t J t ∈ J → K finite K
shows distr (PiM K M) (PiM J (λx. M (t x))) (λω. λn∈J . ω (t n)) = PiM J

(λx. M (t x))
proof (rule product-sigma-finite.PiM-eqI)

show product-sigma-finite (λx. M (t x)) ..
have t‘J ⊆ K using assms by auto
then show [simp]: finite J

by (rule finite-imageD[OF finite-subset]) fact+
fix A assume A:

∧
i. i ∈ J =⇒ A i ∈ sets (M (t i))

moreover have ((λω. λn∈J . ω (t n)) −‘ PiE J A ∩ space (PiM K M)) =
(ΠE i∈K . if i ∈ t‘J then A (the-inv-into J t i) else space (M i))
using A A[THEN sets.sets-into-space] ‹t ∈ J → K › ‹inj-on t J ›

by (subst prod-emb-Pi[symmetric]) (auto simp: space-PiM PiE-iff the-inv-into-f-f
prod-emb-def)

ultimately show distr (PiM K M) (PiM J (λx. M (t x))) (λω. λn∈J . ω (t n))
(PiE J A) = (

∏
i∈J . M (t i) (A i))

using assms
apply (subst emeasure-distr)
apply (auto intro!: sets-PiM-I-finite simp: Pi-iff)
apply (subst emeasure-PiM)
apply (auto simp: the-inv-into-f-f ‹inj-on t J › prod.reindex[OF ‹inj-on t J ›]
if-distrib[where f=emeasure (M -)] prod.If-cases emeasure-space-1 Int-absorb1

‹t‘J ⊆ K ›)
done

qed simp

lemma (in product-prob-space) distr-restrict:
J ⊆ K =⇒ finite K =⇒ (ΠM i∈J . M i) = distr (ΠM i∈K . M i) (ΠM i∈J . M

i) (λf . restrict f J)
using distr-reorder [of λx. x J K] by (simp add: Pi-iff subset-eq)

THEORY “Probability-Measure” 35

lemma (in product-prob-space) emeasure-prod-emb[simp]:
assumes L: J ⊆ L finite L and X : X ∈ sets (PiM J M)
shows emeasure (PiM L M) (prod-emb L M J X) = emeasure (PiM J M) X
by (subst distr-restrict[OF L])
(simp add: prod-emb-def space-PiM emeasure-distr measurable-restrict-subset L

X)

lemma emeasure-distr-restrict:
assumes I ⊆ K and Q[measurable-cong]: sets Q = sets (PiM K M) and

A[measurable]: A ∈ sets (PiM I M)
shows emeasure (distr Q (PiM I M) (λω. restrict ω I)) A = emeasure Q

(prod-emb K M I A)
using ‹I⊆K › sets-eq-imp-space-eq[OF Q]
by (subst emeasure-distr)

(auto simp: measurable-cong-sets[OF Q] prod-emb-def space-PiM [symmetric]
intro!: measurable-restrict)

lemma (in prob-space) prob-space-completion: prob-space (completion M)
by (rule prob-spaceI) (simp add: emeasure-space-1)

lemma distr-PiM-finite-prob-space:
assumes fin: finite I
assumes product-prob-space M
assumes product-prob-space M ′

assumes [measurable]:
∧

i. i ∈ I =⇒ f ∈ measurable (M i) (M ′ i)
shows distr (PiM I M) (PiM I M ′) (compose I f) = PiM I (λi. distr (M i)

(M ′ i) f)
proof −

interpret M : product-prob-space M by fact
interpret M ′: product-prob-space M ′ by fact
define N where N = (λi. if i ∈ I then distr (M i) (M ′ i) f else M ′ i)
have [intro]: prob-space (N i) for i

by (auto simp: N-def intro!: M .M .prob-space-distr M ′.prob-space)

interpret N : product-prob-space N
by (intro product-prob-spaceI) (auto simp: N-def M ′.prob-space intro: M .M .prob-space-distr)

have distr (PiM I M) (PiM I M ′) (compose I f) = PiM I N
proof (rule N .PiM-eqI)

have N-events-eq: sets (PiM I N) = sets (PiM I M ′)
unfolding N-def by (intro sets-PiM-cong) auto

also have . . . = sets (distr (PiM I M) (PiM I M ′) (compose I f))
by simp

finally show sets (distr (PiM I M) (PiM I M ′) (compose I f)) = sets (PiM I
N) ..

fix A assume A:
∧

i. i ∈ I =⇒ A i ∈ N .M .events i
have emeasure (distr (PiM I M) (PiM I M ′) (compose I f)) (PiE I A) =

emeasure (PiM I M) (compose I f −‘ PiE I A ∩ space (PiM I M))

THEORY “Distribution-Functions” 36

proof (intro emeasure-distr)
show compose I f ∈ PiM I M →M PiM I M ′

unfolding compose-def by measurable
show PiE I A ∈ sets (PiM I M ′)

unfolding N-events-eq [symmetric] by (intro sets-PiM-I-finite fin A)
qed
also have compose I f −‘ PiE I A ∩ space (PiM I M) = PiE I (λi. f −‘ A i

∩ space (M i))
using A by (auto simp: space-PiM PiE-def Pi-def extensional-def N-def

compose-def)
also have emeasure (PiM I M) (PiE I (λi. f −‘ A i ∩ space (M i))) =

(
∏

i∈I . emeasure (M i) (f −‘ A i ∩ space (M i)))
using A by (intro M .emeasure-PiM fin) (auto simp: N-def)

also have . . . = (
∏

i∈I . emeasure (distr (M i) (M ′ i) f) (A i))
using A by (intro prod.cong emeasure-distr [symmetric]) (auto simp: N-def)

also have . . . = (
∏

i∈I . emeasure (N i) (A i))
unfolding N-def by (intro prod.cong) (auto simp: N-def)

finally show emeasure (distr (PiM I M) (PiM I M ′) (compose I f)) (PiE I
A) =

qed fact+
also have PiM I N = PiM I (λi. distr (M i) (M ′ i) f)

by (intro PiM-cong) (auto simp: N-def)
finally show ?thesis .

qed

end

2 Distribution Functions

Shows that the cumulative distribution function (cdf) of a distribution (a
measure on the reals) is nondecreasing and right continuous, which tends to
0 and 1 in either direction.
Conversely, every such function is the cdf of a unique distribution. This
direction defines the measure in the obvious way on half-open intervals, and
then applies the Caratheodory extension theorem.
theory Distribution-Functions

imports Probability-Measure
begin

lemma UN-Ioc-eq-UNIV : (
⋃

n. { −real n <.. real n}) = UNIV
by auto

(metis le-less-trans minus-minus neg-less-iff-less not-le real-arch-simple
of-nat-0-le-iff reals-Archimedean2)

2.1 Properties of cdf’s
definition

THEORY “Distribution-Functions” 37

cdf :: real measure ⇒ real ⇒ real
where

cdf M ≡ λx. measure M {..x}

lemma cdf-def2 : cdf M x = measure M {..x}
by (simp add: cdf-def)

locale finite-borel-measure = finite-measure M for M :: real measure +
assumes M-is-borel: sets M = sets borel

begin

lemma sets-M [intro]: a ∈ sets borel =⇒ a ∈ sets M
using M-is-borel by auto

lemma cdf-diff-eq:
assumes x < y
shows cdf M y − cdf M x = measure M {x<..y}

proof −
from assms have ∗: {..x} ∪ {x<..y} = {..y} by auto
have measure M {..y} = measure M {..x} + measure M {x<..y}

by (subst finite-measure-Union [symmetric], auto simp add: ∗)
thus ?thesis

unfolding cdf-def by auto
qed

lemma cdf-nondecreasing: x ≤ y =⇒ cdf M x ≤ cdf M y
unfolding cdf-def by (auto intro!: finite-measure-mono)

lemma borel-UNIV : space M = UNIV
by (metis in-mono sets.sets-into-space space-in-borel top-le M-is-borel)

lemma cdf-nonneg: cdf M x ≥ 0
unfolding cdf-def by (rule measure-nonneg)

lemma cdf-bounded: cdf M x ≤ measure M (space M)
unfolding cdf-def by (intro bounded-measure)

lemma cdf-lim-infty:
((λi. cdf M (real i)) −−−−→ measure M (space M))

proof −
have (λi. cdf M (real i)) −−−−→ measure M (

⋃
i::nat. {..real i})

unfolding cdf-def by (rule finite-Lim-measure-incseq) (auto simp: incseq-def)
also have (

⋃
i::nat. {..real i}) = space M

by (auto simp: borel-UNIV intro: real-arch-simple)
finally show ?thesis .

qed

lemma cdf-lim-at-top: (cdf M −−−→ measure M (space M)) at-top
by (rule tendsto-at-topI-sequentially-real)

THEORY “Distribution-Functions” 38

(simp-all add: mono-def cdf-nondecreasing cdf-lim-infty)

lemma cdf-lim-neg-infty: ((λi. cdf M (− real i)) −−−−→ 0)
proof −

have (λi. cdf M (− real i)) −−−−→ measure M (
⋂

i::nat. {.. − real i })
unfolding cdf-def by (rule finite-Lim-measure-decseq) (auto simp: decseq-def)

also have (
⋂

i::nat. {..− real i}) = {}
by auto (metis leD le-minus-iff reals-Archimedean2)

finally show ?thesis
by simp

qed

lemma cdf-lim-at-bot: (cdf M −−−→ 0) at-bot
proof −

have ∗: ((λx :: real. − cdf M (− x)) −−−→ 0) at-top
by (intro tendsto-at-topI-sequentially-real monoI)
(auto simp: cdf-nondecreasing cdf-lim-neg-infty tendsto-minus-cancel-left[symmetric])

from filterlim-compose [OF ∗, OF filterlim-uminus-at-top-at-bot]
show ?thesis

unfolding tendsto-minus-cancel-left[symmetric] by simp
qed

lemma cdf-is-right-cont: continuous (at-right a) (cdf M)
unfolding continuous-within

proof (rule tendsto-at-right-sequentially[where b=a + 1])
fix f :: nat ⇒ real and x assume f : decseq f f −−−−→ a
then have (λn. cdf M (f n)) −−−−→ measure M (

⋂
i. {.. f i})

using ‹decseq f › unfolding cdf-def
by (intro finite-Lim-measure-decseq) (auto simp: decseq-def)

also have (
⋂

i. {.. f i}) = {.. a}
using decseq-ge[OF f] by (auto intro: order-trans LIMSEQ-le-const[OF f (2)])

finally show (λn. cdf M (f n)) −−−−→ cdf M a
by (simp add: cdf-def)

qed simp

lemma cdf-at-left: (cdf M −−−→ measure M {..<a}) (at-left a)
proof (rule tendsto-at-left-sequentially[of a − 1])

fix f :: nat ⇒ real and x assume f : incseq f f −−−−→ a
∧

x. f x < a
∧

x. a − 1
< f x

then have (λn. cdf M (f n)) −−−−→ measure M (
⋃

i. {.. f i})
using ‹incseq f › unfolding cdf-def
by (intro finite-Lim-measure-incseq) (auto simp: incseq-def)

also have (
⋃

i. {.. f i}) = {..<a}
by (auto dest!: order-tendstoD(1)[OF f (2)] eventually-happens ′[OF sequen-

tially-bot]
intro: less-imp-le le-less-trans f (3))

finally show (λn. cdf M (f n)) −−−−→ measure M {..<a}
by (simp add: cdf-def)

qed auto

THEORY “Distribution-Functions” 39

lemma isCont-cdf : isCont (cdf M) x ←→ measure M {x} = 0
proof −

have isCont (cdf M) x ←→ cdf M x = measure M {..<x}
by (auto simp: continuous-at-split cdf-is-right-cont continuous-within[where

s={..< -}]
cdf-at-left tendsto-unique[OF - cdf-at-left])

also have cdf M x = measure M {..<x} ←→ measure M {x} = 0
unfolding cdf-def ivl-disj-un(2)[symmetric]
by (subst finite-measure-Union) auto

finally show ?thesis .
qed

lemma countable-atoms: countable {x. measure M {x} > 0}
using countable-support unfolding zero-less-measure-iff .

end

locale real-distribution = prob-space M for M :: real measure +
assumes events-eq-borel [simp, measurable-cong]: sets M = sets borel

begin

lemma finite-borel-measure-M : finite-borel-measure M
by standard auto

sublocale finite-borel-measure M
by (rule finite-borel-measure-M)

lemma space-eq-univ [simp]: space M = UNIV
using events-eq-borel[THEN sets-eq-imp-space-eq] by simp

lemma cdf-bounded-prob:
∧

x. cdf M x ≤ 1
by (subst prob-space [symmetric], rule cdf-bounded)

lemma cdf-lim-infty-prob: (λi. cdf M (real i)) −−−−→ 1
by (subst prob-space [symmetric], rule cdf-lim-infty)

lemma cdf-lim-at-top-prob: (cdf M −−−→ 1) at-top
by (subst prob-space [symmetric], rule cdf-lim-at-top)

lemma measurable-finite-borel [simp]:
f ∈ borel-measurable borel =⇒ f ∈ borel-measurable M
by (rule borel-measurable-subalgebra[where N=borel]) auto

end

lemma (in prob-space) real-distribution-distr [intro, simp]:
random-variable borel X =⇒ real-distribution (distr M borel X)
unfolding real-distribution-def real-distribution-axioms-def by (auto intro!: prob-space-distr)

THEORY “Distribution-Functions” 40

2.2 Uniqueness
lemma (in finite-borel-measure) emeasure-Ioc:

assumes a ≤ b shows emeasure M {a <.. b} = cdf M b − cdf M a
proof −

have {a <.. b} = {..b} − {..a}
by auto

moreover have {..x} ∈ sets M for x
using atMost-borel[of x] M-is-borel by auto

moreover note ‹a ≤ b›
ultimately show ?thesis

by (simp add: emeasure-eq-measure finite-measure-Diff cdf-def)
qed

lemma cdf-unique ′:
fixes M1 M2
assumes finite-borel-measure M1 and finite-borel-measure M2
assumes cdf M1 = cdf M2
shows M1 = M2

proof (rule measure-eqI-generator-eq[where Ω=UNIV])
fix X assume X ∈ range (λ(a, b). {a<..b::real})
then obtain a b where Xeq: X = {a<..b} by auto
then show emeasure M1 X = emeasure M2 X

by (cases a ≤ b)
(simp-all add: assms(1 ,2)[THEN finite-borel-measure.emeasure-Ioc] assms(3))

next
show (

⋃
i. {− real (i::nat)<..real i}) = UNIV

by (rule UN-Ioc-eq-UNIV)
qed (auto simp: finite-borel-measure.emeasure-Ioc[OF assms(1)]

assms(1 ,2)[THEN finite-borel-measure.M-is-borel] borel-sigma-sets-Ioc
Int-stable-def)

lemma cdf-unique:
real-distribution M1 =⇒ real-distribution M2 =⇒ cdf M1 = cdf M2 =⇒ M1 =

M2
using cdf-unique ′[of M1 M2] by (simp add: real-distribution.finite-borel-measure-M)

lemma
fixes F :: real ⇒ real
assumes nondecF :

∧
x y. x ≤ y =⇒ F x ≤ F y

and right-cont-F :
∧

a. continuous (at-right a) F
and lim-F-at-bot : (F −−−→ 0) at-bot
and lim-F-at-top : (F −−−→ m) at-top
and m: 0 ≤ m

shows interval-measure-UNIV : emeasure (interval-measure F) UNIV = m
and finite-borel-measure-interval-measure: finite-borel-measure (interval-measure

F)
proof −

let ?F = interval-measure F
{ have ennreal (m − 0) = (SUP i. ennreal (F (real i) − F (− real i)))

THEORY “Distribution-Functions” 41

by (intro LIMSEQ-unique[OF - LIMSEQ-SUP] tendsto-ennrealI tendsto-intros
lim-F-at-bot[THEN filterlim-compose] lim-F-at-top[THEN filter-

lim-compose]
lim-F-at-bot[THEN filterlim-compose] filterlim-real-sequentially
filterlim-uminus-at-top[THEN iffD1])

(auto simp: incseq-def nondecF intro!: diff-mono)
also have . . . = (SUP i. emeasure ?F {− real i<..real i})
by (subst emeasure-interval-measure-Ioc) (simp-all add: nondecF right-cont-F)

also have . . . = emeasure ?F (
⋃

i::nat. {− real i<..real i})
by (rule SUP-emeasure-incseq) (auto simp: incseq-def)

also have (
⋃

i. {− real (i::nat)<..real i}) = space ?F
by (simp add: UN-Ioc-eq-UNIV)

finally have emeasure ?F (space ?F) = m
by simp }

note ∗ = this
then show emeasure (interval-measure F) UNIV = m

by simp

interpret finite-measure ?F
proof

show emeasure ?F (space ?F) 6= ∞
using ∗ by simp

qed
show finite-borel-measure (interval-measure F)

proof qed simp-all
qed

lemma real-distribution-interval-measure:
fixes F :: real ⇒ real
assumes nondecF :

∧
x y. x ≤ y =⇒ F x ≤ F y and

right-cont-F :
∧

a. continuous (at-right a) F and
lim-F-at-bot : (F −−−→ 0) at-bot and
lim-F-at-top : (F −−−→ 1) at-top

shows real-distribution (interval-measure F)
proof −

let ?F = interval-measure F
interpret prob-space ?F

proof qed (use interval-measure-UNIV [OF assms] in simp)
show ?thesis

proof qed simp-all
qed

lemma
fixes F :: real ⇒ real
assumes nondecF :

∧
x y. x ≤ y =⇒ F x ≤ F y and

right-cont-F :
∧

a. continuous (at-right a) F and
lim-F-at-bot : (F −−−→ 0) at-bot

shows emeasure-interval-measure-Iic: emeasure (interval-measure F) {.. x} = F
x

THEORY “Weak-Convergence” 42

and measure-interval-measure-Iic: measure (interval-measure F) {.. x} = F x
unfolding cdf-def

proof −
have F-nonneg[simp]: 0 ≤ F y for y
using lim-F-at-bot by (rule tendsto-upperbound) (auto simp: eventually-at-bot-linorder

nondecF intro!: exI [of - y])

have emeasure (interval-measure F) (
⋃

i::nat. {−real i <.. x}) = F x − ennreal
0

proof (intro LIMSEQ-unique[OF Lim-emeasure-incseq])
have (λi. F x − F (− real i)) −−−−→ F x − 0
by (intro tendsto-intros lim-F-at-bot[THEN filterlim-compose] filterlim-real-sequentially

filterlim-uminus-at-top[THEN iffD1])
from tendsto-ennrealI [OF this]
show (λi. emeasure (interval-measure F) {− real i<..x}) −−−−→ F x − ennreal

0
apply (rule filterlim-cong[THEN iffD1 , rotated 3])

apply simp
apply simp

apply (rule eventually-sequentiallyI [where c=nat (ceiling (− x))])
apply (simp add: emeasure-interval-measure-Ioc right-cont-F nondecF)
done

qed (auto simp: incseq-def)
also have (

⋃
i::nat. {−real i <.. x}) = {..x}

by auto (metis minus-minus neg-less-iff-less reals-Archimedean2)
finally show emeasure (interval-measure F) {..x} = F x

by simp
then show measure (interval-measure F) {..x} = F x

by (simp add: measure-def)
qed

lemma cdf-interval-measure:
(
∧

x y. x ≤ y =⇒ F x ≤ F y) =⇒ (
∧

a. continuous (at-right a) F) =⇒ (F −−−→
0) at-bot =⇒ cdf (interval-measure F) = F

by (simp add: cdf-def fun-eq-iff measure-interval-measure-Iic)

end

3 Weak Convergence of Functions and Distribu-
tions

Properties of weak convergence of functions and measures, including the
portmanteau theorem.
theory Weak-Convergence

imports Distribution-Functions
begin

THEORY “Weak-Convergence” 43

4 Weak Convergence of Functions
definition

weak-conv :: (nat ⇒ (real ⇒ real)) ⇒ (real ⇒ real) ⇒ bool
where

weak-conv F-seq F ≡ ∀ x. isCont F x −→ (λn. F-seq n x) −−−−→ F x

5 Weak Convergence of Distributions
definition

weak-conv-m :: (nat ⇒ real measure) ⇒ real measure ⇒ bool
where

weak-conv-m M-seq M ≡ weak-conv (λn. cdf (M-seq n)) (cdf M)

6 Skorohod’s theorem
locale right-continuous-mono =

fixes f :: real ⇒ real and a b :: real
assumes cont:

∧
x. continuous (at-right x) f

assumes mono: mono f
assumes bot: (f −−−→ a) at-bot
assumes top: (f −−−→ b) at-top

begin

abbreviation I :: real ⇒ real where
I ω ≡ Inf {x. ω ≤ f x}

lemma pseudoinverse: assumes a < ω ω < b shows ω ≤ f x ←→ I ω ≤ x
proof

let ?F = {x. ω ≤ f x}
obtain y where f y < ω
by (metis eventually-happens ′ trivial-limit-at-bot-linorder order-tendstoD(2) bot

‹a < ω›)
with mono have bdd: bdd-below ?F

by (auto intro!: bdd-belowI [of - y] elim: mono-invE [OF - less-le-trans])

have ne: ?F 6= {}
using order-tendstoD(1)[OF top ‹ω < b›]

by (auto dest!: eventually-happens ′[OF trivial-limit-at-top-linorder] intro: less-imp-le)

show ω ≤ f x =⇒ I ω ≤ x
by (auto intro!: cInf-lower bdd)

{ assume ∗: I ω ≤ x
have ω ≤ (INF s∈{x. ω ≤ f x}. f s)

by (rule cINF-greatest[OF ne]) auto
also have . . . = f (I ω)

using continuous-at-Inf-mono[OF mono cont ne bdd] ..

THEORY “Weak-Convergence” 44

also have . . . ≤ f x
using ∗ by (rule monoD[OF ‹mono f ›])

finally show ω ≤ f x . }
qed

lemma pseudoinverse ′: ∀ω∈{a<..<b}. ∀ x. ω ≤ f x ←→ I ω ≤ x
by (intro ballI allI impI pseudoinverse) auto

lemma mono-I : mono-on {a <..< b} I
unfolding mono-on-def by (metis order .trans order .refl pseudoinverse ′)

end

locale cdf-distribution = real-distribution
begin

abbreviation C ≡ cdf M

sublocale right-continuous-mono C 0 1
by standard
(auto intro: cdf-nondecreasing cdf-is-right-cont cdf-lim-at-top-prob cdf-lim-at-bot

monoI)

lemma measurable-C [measurable]: C ∈ borel-measurable borel
by (intro borel-measurable-mono mono)

lemma measurable-CI [measurable]: I ∈ borel-measurable (restrict-space borel {0<..<1})
by (intro borel-measurable-mono-on-fnc mono-I)

lemma emeasure-distr-I : emeasure (distr (restrict-space lborel {0<..<1 ::real}) borel
I) UNIV = 1

by (simp add: emeasure-distr space-restrict-space emeasure-restrict-space)

lemma distr-I-eq-M : distr (restrict-space lborel {0<..<1 ::real}) borel I = M (is
?I = -)
proof (intro cdf-unique ext)

let ?Ω = restrict-space lborel {0<..<1}::real measure
interpret Ω: prob-space ?Ω
by (auto simp add: emeasure-restrict-space space-restrict-space intro!: prob-spaceI)

show real-distribution ?I
by auto

fix x
have cdf ?I x = measure lborel {ω∈{0<..<1}. ω ≤ C x}

by (subst cdf-def)
(auto simp: pseudoinverse[symmetric] measure-distr space-restrict-space mea-

sure-restrict-space
intro!: arg-cong2 [where f=measure])

also have . . . = measure lborel {0 <..< C x}

THEORY “Weak-Convergence” 45

using cdf-bounded-prob[of x] AE-lborel-singleton[of C x]
by (auto intro!: arg-cong[where f=enn2real] emeasure-eq-AE simp: measure-def)

also have . . . = C x
by (simp add: cdf-nonneg)

finally show cdf (distr ?Ω borel I) x = C x .
qed standard

end

context
fixes µ :: nat ⇒ real measure

and M :: real measure
assumes µ:

∧
n. real-distribution (µ n)

assumes M : real-distribution M
assumes µ-to-M : weak-conv-m µ M

begin

theorem Skorohod:
∃ (Ω :: real measure) (Y-seq :: nat ⇒ real ⇒ real) (Y :: real ⇒ real).

prob-space Ω ∧
(∀n. Y-seq n ∈ measurable Ω borel) ∧
(∀n. distr Ω borel (Y-seq n) = µ n) ∧
Y ∈ measurable Ω lborel ∧
distr Ω borel Y = M ∧
(∀ x ∈ space Ω. (λn. Y-seq n x) −−−−→ Y x)

proof −
interpret µ: cdf-distribution µ n for n

unfolding cdf-distribution-def by (rule µ)
interpret M : cdf-distribution M

unfolding cdf-distribution-def by (rule M)

have conv: measure M {x} = 0 =⇒ (λn. µ.C n x) −−−−→ M .C x for x
using µ-to-M M .isCont-cdf by (auto simp: weak-conv-m-def weak-conv-def)

let ?Ω = restrict-space lborel {0<..<1} :: real measure
have prob-space ?Ω

by (auto simp: space-restrict-space emeasure-restrict-space intro!: prob-spaceI)
interpret Ω: prob-space ?Ω

by fact

have Y-distr : distr ?Ω borel M .I = M
by (rule M .distr-I-eq-M)

have Y-cts-cnv: (λn. µ.I n ω) −−−−→ M .I ω
if ω: ω ∈ {0<..<1} isCont M .I ω for ω :: real

proof (intro limsup-le-liminf-real)
show liminf (λn. µ.I n ω) ≥ M .I ω

unfolding le-Liminf-iff

THEORY “Weak-Convergence” 46

proof safe
fix B :: ereal assume B: B < M .I ω
then show ∀ F n in sequentially. B < µ.I n ω
proof (cases B)

case (real r)
with B have r : r < M .I ω

by simp
then obtain x where x: r < x x < M .I ω measure M {x} = 0

using open-minus-countable[OF M .countable-support, of {r<..<M .I ω}]
by auto

then have Fx-less: M .C x < ω
using M .pseudoinverse ′ ω not-less by blast

have ∀ F n in sequentially. µ.C n x < ω
using order-tendstoD(2)[OF conv[OF x(3)] Fx-less] .

then have ∀ F n in sequentially. x < µ.I n ω
by eventually-elim (insert ω µ.pseudoinverse[symmetric], simp add:

not-le[symmetric])
then show ?thesis

by eventually-elim (insert x(1), simp add: real)
qed auto

qed

have ∗: limsup (λn. µ.I n ω) ≤ M .I ω ′

if ω ′: 0 < ω ′ ω ′ < 1 ω < ω ′ for ω ′ :: real
proof (rule dense-ge-bounded)

fix B ′ assume ereal (M .I ω ′) < B ′ B ′ < ereal (M .I ω ′ + 1)
then obtain B where M .I ω ′ < B and [simp]: B ′ = ereal B

by (cases B ′) auto
then obtain y where y: M .I ω ′ < y y < B measure M {y} = 0

using open-minus-countable[OF M .countable-support, of {M .I ω ′<..<B}]
by auto

then have ω ′ ≤ M .C (M .I ω ′)
using M .pseudoinverse ′ ω ′ by (metis greaterThanLessThan-iff order-refl)

also have ... ≤ M .C y
using M .mono y unfolding mono-def by auto

finally have Fy-gt: ω < M .C y
using ω ′(3) by simp

have ∀ F n in sequentially. ω ≤ µ.C n y
using order-tendstoD(1)[OF conv[OF y(3)] Fy-gt] by eventually-elim (rule

less-imp-le)
then have 2 : ∀ F n in sequentially. µ.I n ω ≤ ereal y

by simp (subst µ.pseudoinverse ′[rule-format, OF ω(1), symmetric])
then show limsup (λn. µ.I n ω) ≤ B ′

using ‹y < B›
by (intro Limsup-bounded[rotated]) (auto intro: le-less-trans elim: eventu-

ally-mono)
qed simp

THEORY “Weak-Convergence” 47

have ∗∗: (M .I −−−→ ereal (M .I ω)) (at-right ω)
using ω(2) by (auto intro: tendsto-within-subset simp: continuous-at)

show limsup (λn. µ.I n ω) ≤ M .I ω
using ω
by (intro tendsto-lowerbound[OF ∗∗])

(auto intro!: exI [of - 1] ∗ simp: eventually-at-right[of - 1])
qed

let ?D = {ω∈{0<..<1}. ¬ isCont M .I ω}
have D-countable: countable ?D

using mono-on-ctble-discont[OF M .mono-I] by (simp add: at-within-open[of -
{0 <..< 1}] cong: conj-cong)

hence D: emeasure ?Ω ?D = 0
using emeasure-lborel-countable[OF D-countable]
by (subst emeasure-restrict-space) auto

define Y ′ where Y ′ ω = (if ω ∈ ?D then 0 else M .I ω) for ω
have Y ′-AE : AE ω in ?Ω. Y ′ ω = M .I ω

by (rule AE-I [OF - D]) (auto simp: space-restrict-space sets-restrict-space-iff
Y ′-def)

define Y-seq ′ where Y-seq ′ n ω = (if ω ∈ ?D then 0 else µ.I n ω) for n ω
have Y-seq ′-AE :

∧
n. AE ω in ?Ω. Y-seq ′ n ω = µ.I n ω

by (rule AE-I [OF - D]) (auto simp: space-restrict-space sets-restrict-space-iff
Y-seq ′-def)

have Y ′-cnv: ∀ω∈{0<..<1}. (λn. Y-seq ′ n ω) −−−−→ Y ′ ω
by (auto simp: Y ′-def Y-seq ′-def Y-cts-cnv)

have [simp]: Y-seq ′ n ∈ borel-measurable ?Ω for n
by (rule measurable-discrete-difference[of µ.I n - - ?D])

(insert µ.measurable-CI [of n] D-countable, auto simp: sets-restrict-space
Y-seq ′-def)

moreover have distr ?Ω borel (Y-seq ′ n) = µ n for n
using µ.distr-I-eq-M [of n] Y-seq ′-AE [of n]
by (subst distr-cong-AE [where f = Y-seq ′ n and g = µ.I n], auto)

moreover have [simp]: Y ′ ∈ borel-measurable ?Ω
by (rule measurable-discrete-difference[of M .I - - ?D])

(insert M .measurable-CI D-countable, auto simp: sets-restrict-space Y ′-def)
moreover have distr ?Ω borel Y ′ = M

using M .distr-I-eq-M Y ′-AE
by (subst distr-cong-AE [where f = Y ′ and g = M .I], auto)

ultimately have prob-space ?Ω ∧ (∀n. Y-seq ′ n ∈ borel-measurable ?Ω) ∧
(∀n. distr ?Ω borel (Y-seq ′ n) = µ n) ∧ Y ′ ∈ measurable ?Ω lborel ∧ distr ?Ω

borel Y ′ = M ∧
(∀ x∈space ?Ω. (λn. Y-seq ′ n x) −−−−→ Y ′ x)
using Y ′-cnv ‹prob-space ?Ω› by (auto simp: space-restrict-space)

thus ?thesis by metis

THEORY “Weak-Convergence” 48

qed

The Portmanteau theorem, that is, the equivalence of various definitions of
weak convergence.
theorem weak-conv-imp-bdd-ae-continuous-conv:

fixes
f :: real ⇒ ′a::{banach, second-countable-topology}

assumes
discont-null: M ({x. ¬ isCont f x}) = 0 and
f-bdd:

∧
x. norm (f x) ≤ B and

[measurable]: f ∈ borel-measurable borel
shows
(λ n. integralL (µ n) f) −−−−→ integralL M f

proof −
have 0 ≤ B

using norm-ge-zero f-bdd by (rule order-trans)
note Skorohod
then obtain Omega Y-seq Y where

ps-Omega [simp]: prob-space Omega and
Y-seq-measurable [measurable]:

∧
n. Y-seq n ∈ borel-measurable Omega and

distr-Y-seq:
∧

n. distr Omega borel (Y-seq n) = µ n and
Y-measurable [measurable]: Y ∈ borel-measurable Omega and
distr-Y : distr Omega borel Y = M and
YnY :

∧
x :: real. x ∈ space Omega =⇒ (λn. Y-seq n x) −−−−→ Y x by force

interpret prob-space Omega by fact
have ∗: emeasure Omega (Y −‘ {x. ¬ isCont f x} ∩ space Omega) = 0

by (subst emeasure-distr [symmetric, where N=borel]) (auto simp: distr-Y
discont-null)

have ∗: AE x in Omega. (λn. f (Y-seq n x)) −−−−→ f (Y x)
by (rule AE-I [OF - ∗]) (auto intro: isCont-tendsto-compose YnY)

show ?thesis
by (auto intro!: integral-dominated-convergence[where w=λx. B]

simp: f-bdd ∗ integral-distr distr-Y-seq [symmetric] distr-Y [symmetric])
qed

theorem weak-conv-imp-integral-bdd-continuous-conv:
fixes f :: real ⇒ ′a::{banach, second-countable-topology}
assumes∧

x. isCont f x and∧
x. norm (f x) ≤ B

shows
(λ n. integralL (µ n) f) −−−−→ integralL M f

using assms
by (intro weak-conv-imp-bdd-ae-continuous-conv)
(auto intro!: borel-measurable-continuous-onI continuous-at-imp-continuous-on)

theorem weak-conv-imp-continuity-set-conv:
fixes f :: real ⇒ real
assumes [measurable]: A ∈ sets borel and M (frontier A) = 0

THEORY “Weak-Convergence” 49

shows (λn. measure (µ n) A) −−−−→ measure M A
proof −

interpret M : real-distribution M by fact
interpret µ: real-distribution µ n for n by fact

have (λn. (
∫

x. indicator A x ∂µ n) :: real) −−−−→ (
∫

x. indicator A x ∂M)
by (intro weak-conv-imp-bdd-ae-continuous-conv[where B=1])

(auto intro: assms simp: isCont-indicator)
then show ?thesis

by simp
qed

end

definition
cts-step :: real ⇒ real ⇒ real ⇒ real

where
cts-step a b x ≡ if x ≤ a then 1 else if x ≥ b then 0 else (b − x) / (b − a)

lemma cts-step-uniformly-continuous:
assumes [arith]: a < b
shows uniformly-continuous-on UNIV (cts-step a b)
unfolding uniformly-continuous-on-def

proof clarsimp
fix e :: real assume [arith]: 0 < e
let ?d = min (e ∗ (b − a)) (b − a)
have ?d > 0

by (auto simp add: field-simps)
moreover have dist x ′ x < ?d =⇒ dist (cts-step a b x ′) (cts-step a b x) < e for

x x ′

by (auto simp: dist-real-def divide-simps cts-step-def)
ultimately show ∃ d > 0 . ∀ x x ′. dist x ′ x < d −→ dist (cts-step a b x ′) (cts-step

a b x) < e
by blast

qed

lemma (in real-distribution) integrable-cts-step: a < b =⇒ integrable M (cts-step
a b)

by (rule integrable-const-bound [of - 1]) (auto simp: cts-step-def [abs-def])

lemma (in real-distribution) cdf-cts-step:
assumes [arith]: x < y
shows cdf M x ≤ integralL M (cts-step x y) and integralL M (cts-step x y) ≤

cdf M y
proof −

have cdf M x = integralL M (indicator {..x})
by (simp add: cdf-def)

also have . . . ≤ expectation (cts-step x y)
by (intro integral-mono integrable-cts-step)

THEORY “Weak-Convergence” 50

(auto simp: cts-step-def less-top[symmetric] split: split-indicator)
finally show cdf M x ≤ expectation (cts-step x y) .

next
have expectation (cts-step x y) ≤ integralL M (indicator {..y})

by (intro integral-mono integrable-cts-step)
(auto simp: cts-step-def less-top[symmetric] split: split-indicator)

also have . . . = cdf M y
by (simp add: cdf-def)

finally show expectation (cts-step x y) ≤ cdf M y .
qed

context
fixes M-seq :: nat ⇒ real measure

and M :: real measure
assumes distr-M-seq [simp]:

∧
n. real-distribution (M-seq n)

assumes distr-M [simp]: real-distribution M
begin

theorem continuity-set-conv-imp-weak-conv:
fixes f :: real ⇒ real
assumes ∗:

∧
A. A ∈ sets borel =⇒ M (frontier A) = 0 =⇒ (λ n. (measure

(M-seq n) A)) −−−−→ measure M A
shows weak-conv-m M-seq M

proof −
interpret real-distribution M by simp
show ?thesis

by (auto intro!: ∗ simp: frontier-real-atMost isCont-cdf emeasure-eq-measure
weak-conv-m-def weak-conv-def cdf-def2)
qed

theorem integral-cts-step-conv-imp-weak-conv:
assumes integral-conv:

∧
x y. x < y =⇒ (λn. integralL (M-seq n) (cts-step x y))

−−−−→ integralL M (cts-step x y)
shows weak-conv-m M-seq M
unfolding weak-conv-m-def weak-conv-def

proof (clarsimp)
interpret real-distribution M by (rule distr-M)
fix x assume isCont (cdf M) x
hence left-cont: continuous (at-left x) (cdf M)

unfolding continuous-at-split ..
{ fix y :: real assume [arith]: x < y

have limsup (λn. cdf (M-seq n) x) ≤ limsup (λn. integralL (M-seq n) (cts-step
x y))

by (auto intro!: Limsup-mono always-eventually real-distribution.cdf-cts-step)
also have . . . = integralL M (cts-step x y)

by (intro lim-imp-Limsup) (auto intro: integral-conv)
also have . . . ≤ cdf M y

by (simp add: cdf-cts-step)
finally have limsup (λn. cdf (M-seq n) x) ≤ cdf M y .

THEORY “Giry-Monad” 51

} note ∗ = this
{ fix y :: real assume [arith]: x > y

have cdf M y ≤ ereal (integralL M (cts-step y x))
by (simp add: cdf-cts-step)

also have . . . = liminf (λn. integralL (M-seq n) (cts-step y x))
by (intro lim-imp-Liminf [symmetric]) (auto intro: integral-conv)

also have . . . ≤ liminf (λn. cdf (M-seq n) x)
by (auto intro!: Liminf-mono always-eventually real-distribution.cdf-cts-step)

finally have liminf (λn. cdf (M-seq n) x) ≥ cdf M y .
} note ∗∗ = this

have limsup (λn. cdf (M-seq n) x) ≤ cdf M x
proof (rule tendsto-lowerbound)

show ∀ F i in at-right x. limsup (λxa. ereal (cdf (M-seq xa) x)) ≤ ereal (cdf M
i)

by (subst eventually-at-right[of - x + 1]) (auto simp: ∗ intro: exI [of - x+1])
qed (insert cdf-is-right-cont, auto simp: continuous-within)
moreover have cdf M x ≤ liminf (λn. cdf (M-seq n) x)
proof (rule tendsto-upperbound)

show ∀ F i in at-left x. ereal (cdf M i) ≤ liminf (λxa. ereal (cdf (M-seq xa) x))
by (subst eventually-at-left[of x − 1]) (auto simp: ∗∗ intro: exI [of - x−1])

qed (insert left-cont, auto simp: continuous-within)
ultimately show (λn. cdf (M-seq n) x) −−−−→ cdf M x

by (elim limsup-le-liminf-real)
qed

theorem integral-bdd-continuous-conv-imp-weak-conv:
assumes∧

f . (
∧

x. isCont f x) =⇒ (
∧

x. abs (f x) ≤ 1) =⇒ (λn. integralL (M-seq n)
f ::real) −−−−→ integralL M f

shows
weak-conv-m M-seq M

apply (rule integral-cts-step-conv-imp-weak-conv [OF assms])
apply (rule continuous-on-interior)
apply (rule uniformly-continuous-imp-continuous)
apply (rule cts-step-uniformly-continuous)
apply (auto simp: cts-step-def)
done

end

end

7 The Giry monad
theory Giry-Monad

imports Probability-Measure HOL−Library.Monad-Syntax
begin

THEORY “Giry-Monad” 52

7.1 Sub-probability spaces
locale subprob-space = finite-measure +

assumes emeasure-space-le-1 : emeasure M (space M) ≤ 1
assumes subprob-not-empty: space M 6= {}

lemma subprob-spaceI [Pure.intro!]:
assumes ∗: emeasure M (space M) ≤ 1
assumes space M 6= {}
shows subprob-space M

proof −
interpret finite-measure M
proof

show emeasure M (space M) 6= ∞ using ∗ by (auto simp: top-unique)
qed
show subprob-space M by standard fact+

qed

lemma (in subprob-space) emeasure-subprob-space-less-top: emeasure M A 6= top
by simp

lemma prob-space-imp-subprob-space:
prob-space M =⇒ subprob-space M
by (rule subprob-spaceI) (simp-all add: prob-space.emeasure-space-1 prob-space.not-empty)

lemma subprob-space-imp-sigma-finite: subprob-space M =⇒ sigma-finite-measure
M

unfolding subprob-space-def finite-measure-def by simp

sublocale prob-space ⊆ subprob-space
by (rule subprob-spaceI) (simp-all add: emeasure-space-1 not-empty)

lemma subprob-space-sigma [simp]: Ω 6= {} =⇒ subprob-space (sigma Ω X)
by(rule subprob-spaceI)(simp-all add: emeasure-sigma space-measure-of-conv)

lemma subprob-space-null-measure: space M 6= {} =⇒ subprob-space (null-measure
M)

by(simp add: null-measure-def)

lemma (in subprob-space) subprob-space-distr :
assumes f : f ∈ measurable M M ′ and space M ′ 6= {} shows subprob-space (distr

M M ′ f)
proof (rule subprob-spaceI)

have f −‘ space M ′ ∩ space M = space M using f by (auto dest: measur-
able-space)

with f show emeasure (distr M M ′ f) (space (distr M M ′ f)) ≤ 1
by (auto simp: emeasure-distr emeasure-space-le-1)

show space (distr M M ′ f) 6= {} by (simp add: assms)
qed

THEORY “Giry-Monad” 53

lemma (in subprob-space) subprob-emeasure-le-1 : emeasure M X ≤ 1
by (rule order .trans[OF emeasure-space emeasure-space-le-1])

lemma (in subprob-space) subprob-measure-le-1 : measure M X ≤ 1
using subprob-emeasure-le-1 [of X] by (simp add: emeasure-eq-measure)

lemma (in subprob-space) nn-integral-le-const:
assumes 0 ≤ c AE x in M . f x ≤ c
shows (

∫
+x. f x ∂M) ≤ c

proof −
have (

∫
+ x. f x ∂M) ≤ (

∫
+ x. c ∂M)

by(rule nn-integral-mono-AE) fact
also have . . . ≤ c ∗ emeasure M (space M)

using ‹0 ≤ c› by simp
also have . . . ≤ c ∗ 1 using emeasure-space-le-1 ‹0 ≤ c› by(rule mult-left-mono)
finally show ?thesis by simp

qed

lemma emeasure-density-distr-interval:
fixes h :: real ⇒ real and g :: real ⇒ real and g ′ :: real ⇒ real
assumes [simp]: a ≤ b
assumes Mf [measurable]: f ∈ borel-measurable borel
assumes Mg[measurable]: g ∈ borel-measurable borel
assumes Mg ′[measurable]: g ′ ∈ borel-measurable borel
assumes Mh[measurable]: h ∈ borel-measurable borel
assumes prob: subprob-space (density lborel f)
assumes nonnegf :

∧
x. f x ≥ 0

assumes derivg:
∧

x. x ∈ {a..b} =⇒ (g has-real-derivative g ′ x) (at x)
assumes contg ′: continuous-on {a..b} g ′

assumes mono: strict-mono-on {a..b} g and inv:
∧

x. h x ∈ {a..b} =⇒ g (h x)
= x

assumes range: {a..b} ⊆ range h
shows emeasure (distr (density lborel f) lborel h) {a..b} =

emeasure (density lborel (λx. f (g x) ∗ g ′ x)) {a..b}
proof (cases a < b)

assume a < b
from mono have inj: inj-on g {a..b} by (rule strict-mono-on-imp-inj-on)
from mono have mono ′: mono-on {a..b} g by (rule strict-mono-on-imp-mono-on)
from mono ′ derivg have

∧
x. x ∈ {a<..<b} =⇒ g ′ x ≥ 0

by (rule mono-on-imp-deriv-nonneg) auto
from contg ′ this have derivg-nonneg:

∧
x. x ∈ {a..b} =⇒ g ′ x ≥ 0

by (rule continuous-ge-on-Ioo) (simp-all add: ‹a < b›)

from derivg have contg: continuous-on {a..b} g by (rule has-real-derivative-imp-continuous-on)
have A: h −‘ {a..b} = {g a..g b}
proof (intro equalityI subsetI)

fix x assume x: x ∈ h −‘ {a..b}
hence g (h x) ∈ {g a..g b} by (auto intro: mono-onD[OF mono ′])
with inv and x show x ∈ {g a..g b} by simp

THEORY “Giry-Monad” 54

next
fix y assume y: y ∈ {g a..g b}
with IVT ′[OF - - - contg, of y] obtain x where x ∈ {a..b} y = g x by auto
with range and inv show y ∈ h −‘ {a..b} by auto

qed

have prob ′: subprob-space (distr (density lborel f) lborel h)
by (rule subprob-space.subprob-space-distr [OF prob]) (simp-all add: Mh)

have B: emeasure (distr (density lborel f) lborel h) {a..b} =∫
+x. f x ∗ indicator (h −‘ {a..b}) x ∂lborel

by (subst emeasure-distr) (simp-all add: emeasure-density Mf Mh measur-
able-sets-borel[OF Mh])

also note A
also have emeasure (distr (density lborel f) lborel h) {a..b} ≤ 1

by (rule subprob-space.subprob-emeasure-le-1) (rule prob ′)
hence emeasure (distr (density lborel f) lborel h) {a..b} 6= ∞ by (auto simp:

top-unique)
with assms have (

∫
+x. f x ∗ indicator {g a..g b} x ∂lborel) =

(
∫

+x. f (g x) ∗ g ′ x ∗ indicator {a..b} x ∂lborel)
by (intro nn-integral-substitution-aux)

(auto simp: derivg-nonneg A B emeasure-density mult.commute ‹a < b›)
also have ... = emeasure (density lborel (λx. f (g x) ∗ g ′ x)) {a..b}

by (simp add: emeasure-density)
finally show ?thesis .

next
assume ¬a < b
with ‹a ≤ b› have [simp]: b = a by (simp add: not-less del: ‹a ≤ b›)
from inv and range have h −‘ {a} = {g a} by auto
thus ?thesis by (simp-all add: emeasure-distr emeasure-density measurable-sets-borel[OF

Mh])
qed

locale pair-subprob-space =
pair-sigma-finite M1 M2 + M1 : subprob-space M1 + M2 : subprob-space M2 for

M1 M2

sublocale pair-subprob-space ⊆ P?: subprob-space M1
⊗

M M2
proof

from mult-le-one[OF M1 .emeasure-space-le-1 - M2 .emeasure-space-le-1]
show emeasure (M1

⊗
M M2) (space (M1

⊗
M M2)) ≤ 1

by (simp add: M2 .emeasure-pair-measure-Times space-pair-measure)
from M1 .subprob-not-empty and M2 .subprob-not-empty show space (M1

⊗
M

M2) 6= {}
by (simp add: space-pair-measure)

qed

lemma subprob-space-null-measure-iff :
subprob-space (null-measure M) ←→ space M 6= {}

by (auto intro!: subprob-spaceI dest: subprob-space.subprob-not-empty)

THEORY “Giry-Monad” 55

lemma subprob-space-restrict-space:
assumes M : subprob-space M
and A: A ∩ space M ∈ sets M A ∩ space M 6= {}
shows subprob-space (restrict-space M A)

proof(rule subprob-spaceI)
have emeasure (restrict-space M A) (space (restrict-space M A)) = emeasure M

(A ∩ space M)
using A by(simp add: emeasure-restrict-space space-restrict-space)

also have . . . ≤ 1 by(rule subprob-space.subprob-emeasure-le-1)(rule M)
finally show emeasure (restrict-space M A) (space (restrict-space M A)) ≤ 1 .

next
show space (restrict-space M A) 6= {}

using A by(simp add: space-restrict-space)
qed

definition subprob-algebra :: ′a measure ⇒ ′a measure measure where
subprob-algebra K =
(SUP A ∈ sets K . vimage-algebra {M . subprob-space M ∧ sets M = sets K}

(λM . emeasure M A) borel)

lemma space-subprob-algebra: space (subprob-algebra A) = {M . subprob-space M
∧ sets M = sets A}

by (auto simp add: subprob-algebra-def space-Sup-eq-UN)

lemma subprob-algebra-cong: sets M = sets N =⇒ subprob-algebra M = sub-
prob-algebra N

by (simp add: subprob-algebra-def)

lemma measurable-emeasure-subprob-algebra[measurable]:
a ∈ sets A =⇒ (λM . emeasure M a) ∈ borel-measurable (subprob-algebra A)
by (auto intro!: measurable-Sup1 measurable-vimage-algebra1 simp: subprob-algebra-def)

lemma measurable-measure-subprob-algebra[measurable]:
a ∈ sets A =⇒ (λM . measure M a) ∈ borel-measurable (subprob-algebra A)
unfolding measure-def by measurable

lemma subprob-measurableD:
assumes N : N ∈ measurable M (subprob-algebra S) and x: x ∈ space M
shows space (N x) = space S

and sets (N x) = sets S
and measurable (N x) K = measurable S K
and measurable K (N x) = measurable K S

using measurable-space[OF N x]
by (auto simp: space-subprob-algebra intro!: measurable-cong-sets dest: sets-eq-imp-space-eq)

ML ‹

fun subprob-cong thm ctxt = (

THEORY “Giry-Monad” 56

let
val thm ′ = Thm.transfer ′ ctxt thm
val free = thm ′ |> Thm.concl-of |> HOLogic.dest-Trueprop |> dest-comb |> fst

|>
dest-comb |> snd |> strip-abs-body |> head-of |> is-Free

in
if free then ([], Measurable.add-local-cong (thm ′ RS @{thm subprob-measurableD(2)})

ctxt)
else ([], ctxt)

end
handle THM - => ([], ctxt) | TERM - => ([], ctxt))

›

setup ‹
Context.theory-map (Measurable.add-preprocessor subprob-cong subprob-cong)

›

context
fixes K M N assumes K : K ∈ measurable M (subprob-algebra N)

begin

lemma subprob-space-kernel: a ∈ space M =⇒ subprob-space (K a)
using measurable-space[OF K] by (simp add: space-subprob-algebra)

lemma sets-kernel: a ∈ space M =⇒ sets (K a) = sets N
using measurable-space[OF K] by (simp add: space-subprob-algebra)

lemma measurable-emeasure-kernel[measurable]:
A ∈ sets N =⇒ (λa. emeasure (K a) A) ∈ borel-measurable M

using measurable-compose[OF K measurable-emeasure-subprob-algebra] .

end

lemma measurable-subprob-algebra:
(
∧

a. a ∈ space M =⇒ subprob-space (K a)) =⇒
(
∧

a. a ∈ space M =⇒ sets (K a) = sets N) =⇒
(
∧

A. A ∈ sets N =⇒ (λa. emeasure (K a) A) ∈ borel-measurable M) =⇒
K ∈ measurable M (subprob-algebra N)
by (auto intro!: measurable-Sup2 measurable-vimage-algebra2 simp: subprob-algebra-def)

lemma measurable-submarkov:
K ∈ measurable M (subprob-algebra M) ←→
(∀ x∈space M . subprob-space (K x) ∧ sets (K x) = sets M) ∧
(∀A∈sets M . (λx. emeasure (K x) A) ∈ measurable M borel)

proof
assume (∀ x∈space M . subprob-space (K x) ∧ sets (K x) = sets M) ∧
(∀A∈sets M . (λx. emeasure (K x) A) ∈ borel-measurable M)

then show K ∈ measurable M (subprob-algebra M)

THEORY “Giry-Monad” 57

by (intro measurable-subprob-algebra) auto
next

assume K ∈ measurable M (subprob-algebra M)
then show (∀ x∈space M . subprob-space (K x) ∧ sets (K x) = sets M) ∧
(∀A∈sets M . (λx. emeasure (K x) A) ∈ borel-measurable M)
by (auto dest: subprob-space-kernel sets-kernel)

qed

lemma measurable-subprob-algebra-generated:
assumes eq: sets N = sigma-sets Ω G and Int-stable G G ⊆ Pow Ω
assumes subsp:

∧
a. a ∈ space M =⇒ subprob-space (K a)

assumes sets:
∧

a. a ∈ space M =⇒ sets (K a) = sets N
assumes

∧
A. A ∈ G =⇒ (λa. emeasure (K a) A) ∈ borel-measurable M

assumes Ω: (λa. emeasure (K a) Ω) ∈ borel-measurable M
shows K ∈ measurable M (subprob-algebra N)

proof (rule measurable-subprob-algebra)
fix a assume a ∈ space M then show subprob-space (K a) sets (K a) = sets N

by fact+
next

interpret G: sigma-algebra Ω sigma-sets Ω G
using ‹G ⊆ Pow Ω› by (rule sigma-algebra-sigma-sets)

fix A assume A ∈ sets N with assms(2 ,3) show (λa. emeasure (K a) A) ∈
borel-measurable M

unfolding ‹sets N = sigma-sets Ω G›
proof (induction rule: sigma-sets-induct-disjoint)

case (basic A) then show ?case by fact
next

case empty then show ?case by simp
next

case (compl A)
have (λa. emeasure (K a) (Ω − A)) ∈ borel-measurable M ←→
(λa. emeasure (K a) Ω − emeasure (K a) A) ∈ borel-measurable M

using G.top G.sets-into-space sets eq compl subprob-space.emeasure-subprob-space-less-top[OF
subsp]

by (intro measurable-cong emeasure-Diff) auto
with compl Ω show ?case

by simp
next

case (union F)
moreover have (λa. emeasure (K a) (

⋃
i. F i)) ∈ borel-measurable M ←→

(λa.
∑

i. emeasure (K a) (F i)) ∈ borel-measurable M
using sets union eq
by (intro measurable-cong suminf-emeasure[symmetric]) auto

ultimately show ?case
by auto

qed
qed

lemma space-subprob-algebra-empty-iff :

THEORY “Giry-Monad” 58

space (subprob-algebra N) = {} ←→ space N = {}
proof

have
∧

x. x ∈ space N =⇒ density N (λ-. 0) ∈ space (subprob-algebra N)
by (auto simp: space-subprob-algebra emeasure-density intro!: subprob-spaceI)

then show space (subprob-algebra N) = {} =⇒ space N = {}
by auto

next
assume space N = {}
hence sets N = {{}} by (simp add: space-empty-iff)
moreover have

∧
M . subprob-space M =⇒ sets M 6= {{}}

by (simp add: subprob-space.subprob-not-empty space-empty-iff [symmetric])
ultimately show space (subprob-algebra N) = {} by (auto simp: space-subprob-algebra)

qed

lemma nn-integral-measurable-subprob-algebra[measurable]:
assumes f : f ∈ borel-measurable N
shows (λM . integralN M f) ∈ borel-measurable (subprob-algebra N) (is - ∈ ?B)
using f

proof induct
case (cong f g)
moreover have (λM ′.

∫
+M ′′. f M ′′ ∂M ′) ∈ ?B ←→ (λM ′.

∫
+M ′′. g M ′′ ∂M ′)

∈ ?B
by (intro measurable-cong nn-integral-cong cong)

(auto simp: space-subprob-algebra dest!: sets-eq-imp-space-eq)
ultimately show ?case by simp

next
case (set B)
then have (λM ′.

∫
+M ′′. indicator B M ′′ ∂M ′) ∈ ?B ←→ (λM ′. emeasure M ′

B) ∈ ?B
by (intro measurable-cong nn-integral-indicator) (simp add: space-subprob-algebra)

with set show ?case
by (simp add: measurable-emeasure-subprob-algebra)

next
case (mult f c)
then have (λM ′.

∫
+M ′′. c ∗ f M ′′ ∂M ′) ∈ ?B ←→ (λM ′. c ∗

∫
+M ′′. f M ′′

∂M ′) ∈ ?B
by (intro measurable-cong nn-integral-cmult) (auto simp add: space-subprob-algebra)

with mult show ?case
by simp

next
case (add f g)
then have (λM ′.

∫
+M ′′. f M ′′ + g M ′′ ∂M ′) ∈ ?B ←→ (λM ′. (

∫
+M ′′. f M ′′

∂M ′) + (
∫

+M ′′. g M ′′ ∂M ′)) ∈ ?B
by (intro measurable-cong nn-integral-add) (auto simp add: space-subprob-algebra)

with add show ?case
by (simp add: ac-simps)

next
case (seq F)
then have (λM ′.

∫
+M ′′. (SUP i. F i) M ′′ ∂M ′) ∈ ?B ←→ (λM ′. SUP i.

THEORY “Giry-Monad” 59

(
∫

+M ′′. F i M ′′ ∂M ′)) ∈ ?B
unfolding SUP-apply
by (intro measurable-cong nn-integral-monotone-convergence-SUP) (auto simp

add: space-subprob-algebra)
with seq show ?case

by (simp add: ac-simps)
qed

lemma measurable-distr :
assumes [measurable]: f ∈ measurable M N
shows (λM ′. distr M ′ N f) ∈ measurable (subprob-algebra M) (subprob-algebra

N)
proof (cases space N = {})

case False
show ?thesis
proof (rule measurable-subprob-algebra)

fix A assume A: A ∈ sets N
then have (λM ′. emeasure (distr M ′ N f) A) ∈ borel-measurable (subprob-algebra

M) ←→
(λM ′. emeasure M ′ (f −‘ A ∩ space M)) ∈ borel-measurable (subprob-algebra

M)
by (intro measurable-cong)

(auto simp: emeasure-distr space-subprob-algebra
intro!: arg-cong2 [where f=emeasure] sets-eq-imp-space-eq arg-cong2 [where

f=(∩)])
also have . . .

using A by (intro measurable-emeasure-subprob-algebra) simp
finally show (λM ′. emeasure (distr M ′ N f) A) ∈ borel-measurable (subprob-algebra

M) .
qed (auto intro!: subprob-space.subprob-space-distr simp: space-subprob-algebra

False cong: measurable-cong-sets)
qed (use assms in ‹auto simp: measurable-empty-iff space-subprob-algebra-empty-iff ›)

lemma emeasure-space-subprob-algebra[measurable]:
(λa. emeasure a (space a)) ∈ borel-measurable (subprob-algebra N)

proof−
have (λa. emeasure a (space N)) ∈ borel-measurable (subprob-algebra N) (is ?f
∈ ?M)

by (rule measurable-emeasure-subprob-algebra) simp
also have ?f ∈ ?M ←→ (λa. emeasure a (space a)) ∈ ?M
by (rule measurable-cong) (auto simp: space-subprob-algebra dest: sets-eq-imp-space-eq)

finally show ?thesis .
qed

lemma integrable-measurable-subprob-algebra[measurable]:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes [measurable]: f ∈ borel-measurable N
shows Measurable.pred (subprob-algebra N) (λM . integrable M f)

proof (rule measurable-cong[THEN iffD2])

THEORY “Giry-Monad” 60

show M ∈ space (subprob-algebra N) =⇒ integrable M f ←→ (
∫

+x. norm (f x)
∂M) < ∞ for M

by (auto simp: space-subprob-algebra integrable-iff-bounded)
qed measurable

lemma integral-measurable-subprob-algebra[measurable]:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes f [measurable]: f ∈ borel-measurable N
shows (λM . integralL M f) ∈ subprob-algebra N →M borel

proof −
from borel-measurable-implies-sequence-metric[OF f , of 0]
obtain F where F :

∧
i. simple-function N (F i)∧

x. x ∈ space N =⇒ (λi. F i x) −−−−→ f x∧
i x. x ∈ space N =⇒ norm (F i x) ≤ 2 ∗ norm (f x)

unfolding norm-conv-dist by blast

have [measurable]: F i ∈ N →M count-space UNIV for i
using F(1) by (rule measurable-simple-function)

define F ′ where [abs-def]:
F ′ M i = (if integrable M f then integralL M (F i) else 0) for M i

have (λM . F ′ M i) ∈ subprob-algebra N →M borel for i
proof (rule measurable-cong[THEN iffD2])

fix M assume M ∈ space (subprob-algebra N)
then have [simp]: sets M = sets N space M = space N subprob-space M

by (auto simp: space-subprob-algebra intro!: sets-eq-imp-space-eq)
interpret subprob-space M by fact

have F ′ M i = (if integrable M f then Bochner-Integration.simple-bochner-integral
M (F i) else 0)

using F(1)
by (subst simple-bochner-integrable-eq-integral)

(auto simp: simple-bochner-integrable.simps simple-function-def F ′-def)
then show F ′ M i = (if integrable M f then

∑
y∈F i ‘ space N . measure M

{x∈space N . F i x = y} ∗R y else 0)
unfolding simple-bochner-integral-def by simp

qed measurable
moreover
have F ′ M −−−−→ integralL M f if M : M ∈ space (subprob-algebra N) for M
proof cases

from M have [simp]: sets M = sets N space M = space N
by (auto simp: space-subprob-algebra intro!: sets-eq-imp-space-eq)

assume integrable M f then show ?thesis
unfolding F ′-def using F(1)[THEN borel-measurable-simple-function] F
by (auto intro!: integral-dominated-convergence[where w=λx. 2 ∗ norm (f x)]

cong: measurable-cong-sets)
qed (auto simp: F ′-def not-integrable-integral-eq)
ultimately show ?thesis

by (rule borel-measurable-LIMSEQ-metric)

THEORY “Giry-Monad” 61

qed

lemma measurable-pair-measure:
assumes f : f ∈ measurable M (subprob-algebra N)
assumes g: g ∈ measurable M (subprob-algebra L)
shows (λx. f x

⊗
M g x) ∈ measurable M (subprob-algebra (N

⊗
M L))

proof (rule measurable-subprob-algebra)
{ fix x assume x ∈ space M

with measurable-space[OF f] measurable-space[OF g]
have fx: f x ∈ space (subprob-algebra N) and gx: g x ∈ space (subprob-algebra

L)
by auto

interpret F : subprob-space f x
using fx by (simp add: space-subprob-algebra)

interpret G: subprob-space g x
using gx by (simp add: space-subprob-algebra)

interpret pair-subprob-space f x g x ..
show subprob-space (f x

⊗
M g x) by unfold-locales

show sets-eq: sets (f x
⊗

M g x) = sets (N
⊗

M L)
using fx gx by (simp add: space-subprob-algebra)

have 1 :
∧

A B. A ∈ sets N =⇒ B ∈ sets L =⇒ emeasure (f x
⊗

M g x) (A ×
B) = emeasure (f x) A ∗ emeasure (g x) B

using fx gx by (intro G.emeasure-pair-measure-Times) (auto simp: space-subprob-algebra)
have emeasure (f x

⊗
M g x) (space (f x

⊗
M g x)) =

emeasure (f x) (space (f x)) ∗ emeasure (g x) (space (g x))
by (subst G.emeasure-pair-measure-Times[symmetric]) (simp-all add: space-pair-measure)
hence 2 :

∧
A. A ∈ sets (N

⊗
M L) =⇒ emeasure (f x

⊗
M g x) (space N ×

space L − A) =
... − emeasure (f x

⊗
M g x) A

using emeasure-compl[simplified, OF - P.emeasure-finite]
unfolding sets-eq
unfolding sets-eq-imp-space-eq[OF sets-eq]
by (simp add: space-pair-measure G.emeasure-pair-measure-Times)

note 1 2 sets-eq }
note Times = this(1) and Compl = this(2) and sets-eq = this(3)

fix A assume A: A ∈ sets (N
⊗

M L)
show (λa. emeasure (f a

⊗
M g a) A) ∈ borel-measurable M

using Int-stable-pair-measure-generator pair-measure-closed A
unfolding sets-pair-measure

proof (induct A rule: sigma-sets-induct-disjoint)
case (basic A) then show ?case

by (auto intro!: borel-measurable-times-ennreal simp: Times cong: measur-
able-cong)

(auto intro!: measurable-emeasure-kernel f g)
next

THEORY “Giry-Monad” 62

case (compl A)
then have A: A ∈ sets (N

⊗
M L)

by (auto simp: sets-pair-measure)
have (λx. emeasure (f x) (space (f x)) ∗ emeasure (g x) (space (g x)) −

emeasure (f x
⊗

M g x) A) ∈ borel-measurable M (is ?f ∈ ?M)
using compl(2) f g by measurable

thus ?case by (simp add: Compl A cong: measurable-cong)
next

case (union A)
then have range A ⊆ sets (N

⊗
M L) disjoint-family A

by (auto simp: sets-pair-measure)
then have (λa. emeasure (f a

⊗
M g a) (

⋃
i. A i)) ∈ borel-measurable M ←→

(λa.
∑

i. emeasure (f a
⊗

M g a) (A i)) ∈ borel-measurable M
by (intro measurable-cong suminf-emeasure[symmetric])

(auto simp: sets-eq)
also have . . .

using union by auto
finally show ?case .

qed simp
qed

lemma restrict-space-measurable:
assumes X : X 6= {} X ∈ sets K
assumes N : N ∈ measurable M (subprob-algebra K)
shows (λx. restrict-space (N x) X) ∈ measurable M (subprob-algebra (restrict-space

K X))
proof (rule measurable-subprob-algebra)

fix a assume a: a ∈ space M
from N [THEN measurable-space, OF this]
have subprob-space (N a) and [simp]: sets (N a) = sets K space (N a) = space

K
by (auto simp add: space-subprob-algebra dest: sets-eq-imp-space-eq)

then interpret subprob-space N a
by simp

show subprob-space (restrict-space (N a) X)
proof

show space (restrict-space (N a) X) 6= {}
using X by (auto simp add: space-restrict-space)

show emeasure (restrict-space (N a) X) (space (restrict-space (N a) X)) ≤ 1
using X by (simp add: emeasure-restrict-space space-restrict-space sub-

prob-emeasure-le-1)
qed
show sets (restrict-space (N a) X) = sets (restrict-space K X)

by (intro sets-restrict-space-cong) fact
next

fix A assume A: A ∈ sets (restrict-space K X)
show (λa. emeasure (restrict-space (N a) X) A) ∈ borel-measurable M
proof (subst measurable-cong)

fix a assume a ∈ space M

THEORY “Giry-Monad” 63

from N [THEN measurable-space, OF this]
have [simp]: sets (N a) = sets K space (N a) = space K

by (auto simp add: space-subprob-algebra dest: sets-eq-imp-space-eq)
show emeasure (restrict-space (N a) X) A = emeasure (N a) (A ∩ X)
using X A by (subst emeasure-restrict-space) (auto simp add: sets-restrict-space

ac-simps)
next

show (λw. emeasure (N w) (A ∩ X)) ∈ borel-measurable M
using A X
by (intro measurable-compose[OF N measurable-emeasure-subprob-algebra])

(auto simp: sets-restrict-space)
qed

qed

7.2 Properties of “return”
definition return :: ′a measure ⇒ ′a ⇒ ′a measure where

return R x = measure-of (space R) (sets R) (λA. indicator A x)

lemma space-return[simp]: space (return M x) = space M
by (simp add: return-def)

lemma sets-return[simp]: sets (return M x) = sets M
by (simp add: return-def)

lemma measurable-return1 [simp]: measurable (return N x) L = measurable N L
by (simp cong: measurable-cong-sets)

lemma measurable-return2 [simp]: measurable L (return N x) = measurable L N
by (simp cong: measurable-cong-sets)

lemma return-sets-cong: sets M = sets N =⇒ return M = return N
by (auto dest: sets-eq-imp-space-eq simp: fun-eq-iff return-def)

lemma return-cong: sets A = sets B =⇒ return A x = return B x
by (auto simp add: return-def dest: sets-eq-imp-space-eq)

lemma emeasure-return[simp]:
assumes A ∈ sets M
shows emeasure (return M x) A = indicator A x

proof (rule emeasure-measure-of [OF return-def])
show sets M ⊆ Pow (space M) by (rule sets.space-closed)
show positive (sets (return M x)) (λA. indicator A x) by (simp add: positive-def)
from assms show A ∈ sets (return M x) unfolding return-def by simp
show countably-additive (sets (return M x)) (λA. indicator A x)

by (auto intro!: countably-additiveI suminf-indicator)
qed

lemma prob-space-return: x ∈ space M =⇒ prob-space (return M x)

THEORY “Giry-Monad” 64

by rule simp

lemma subprob-space-return: x ∈ space M =⇒ subprob-space (return M x)
by (intro prob-space-return prob-space-imp-subprob-space)

lemma subprob-space-return-ne:
assumes space M 6= {} shows subprob-space (return M x)
by (metis assms emeasure-return indicator-simps(2) sets.top space-return sub-

prob-spaceI subprob-space-return zero-le)

lemma measure-return: assumes X : X ∈ sets M shows measure (return M x) X
= indicator X x
unfolding measure-def emeasure-return[OF X , of x] by (simp split: split-indicator)

lemma AE-return:
assumes [simp]: x ∈ space M and [measurable]: Measurable.pred M P
shows (AE y in return M x . P y) ←→ P x

proof −
have (AE y in return M x. y /∈ {x∈space M . ¬ P x}) ←→ P x
by (subst AE-iff-null-sets[symmetric]) (simp-all add: null-sets-def split: split-indicator)

also have (AE y in return M x. y /∈ {x∈space M . ¬ P x}) ←→ (AE y in return
M x. P y)

by (rule AE-cong) auto
finally show ?thesis .

qed

lemma nn-integral-return:
assumes x ∈ space M g ∈ borel-measurable M
shows (

∫
+ a. g a ∂return M x) = g x

proof−
interpret prob-space return M x by (rule prob-space-return[OF ‹x ∈ space M ›])
have (

∫
+ a. g a ∂return M x) = (

∫
+ a. g x ∂return M x) using assms

by (intro nn-integral-cong-AE) (auto simp: AE-return)
also have ... = g x

using nn-integral-const[of return M x] emeasure-space-1 by simp
finally show ?thesis .

qed

lemma integral-return:
fixes g :: - ⇒ ′a :: {banach, second-countable-topology}
assumes x ∈ space M g ∈ borel-measurable M
shows (

∫
a. g a ∂return M x) = g x

proof−
interpret prob-space return M x by (rule prob-space-return[OF ‹x ∈ space M ›])
have (

∫
a. g a ∂return M x) = (

∫
a. g x ∂return M x) using assms

by (intro integral-cong-AE) (auto simp: AE-return)
then show ?thesis

using prob-space by simp
qed

THEORY “Giry-Monad” 65

lemma return-measurable[measurable]: return N ∈ measurable N (subprob-algebra
N)

by (rule measurable-subprob-algebra) (auto simp: subprob-space-return)

lemma distr-return:
assumes f ∈ measurable M N and x ∈ space M
shows distr (return M x) N f = return N (f x)
using assms by (intro measure-eqI) (simp-all add: indicator-def emeasure-distr)

lemma return-restrict-space:
Ω ∈ sets M =⇒ return (restrict-space M Ω) x = restrict-space (return M x) Ω
by (auto intro!: measure-eqI simp: sets-restrict-space emeasure-restrict-space)

lemma measurable-distr2 :
assumes f [measurable]: case-prod f ∈ measurable (L

⊗
M M) N

assumes g[measurable]: g ∈ measurable L (subprob-algebra M)
shows (λx. distr (g x) N (f x)) ∈ measurable L (subprob-algebra N)

proof −
have (λx. distr (g x) N (f x)) ∈ measurable L (subprob-algebra N)
←→ (λx. distr (return L x

⊗
M g x) N (case-prod f)) ∈ measurable L (subprob-algebra

N)
proof (rule measurable-cong)

fix x assume x: x ∈ space L
have gx: g x ∈ space (subprob-algebra M)

using measurable-space[OF g x] .
then have [simp]: sets (g x) = sets M

by (simp add: space-subprob-algebra)
then have [simp]: space (g x) = space M

by (rule sets-eq-imp-space-eq)
let ?R = return L x
from measurable-compose-Pair1 [OF x f] have f-M ′: f x ∈ measurable M N

by simp
interpret subprob-space g x

using gx by (simp add: space-subprob-algebra)
have space-pair-M ′[simp]:

∧
X . space (X

⊗
M g x) = space (X

⊗
M M)

by (simp add: space-pair-measure)
show distr (g x) N (f x) = distr (?R

⊗
M g x) N (case-prod f) (is ?l = ?r)

proof (rule measure-eqI)
show sets ?l = sets ?r

by simp
next

fix A assume A ∈ sets ?l
then have A[measurable]: A ∈ sets N

by simp
then have emeasure ?r A = emeasure (?R

⊗
M g x) ((λ(x, y). f x y) −‘ A

∩ space (?R
⊗

M g x))
by (auto simp add: emeasure-distr f-M ′ cong: measurable-cong-sets)

also have . . . = (
∫

+M ′′. emeasure (g x) (f M ′′ −‘ A ∩ space M) ∂?R)

THEORY “Giry-Monad” 66

apply (subst emeasure-pair-measure-alt)
apply (force simp add: f-M ′ cong: measurable-cong-sets intro!: measur-

able-sets[OF - A])
apply (intro nn-integral-cong arg-cong[where f=emeasure (g x)])
apply (auto simp: space-subprob-algebra space-pair-measure)
done

also have . . . = emeasure (g x) (f x −‘ A ∩ space M)
by (subst nn-integral-return)

(auto simp: x intro!: measurable-emeasure)
also have . . . = emeasure ?l A

by (simp add: emeasure-distr f-M ′ cong: measurable-cong-sets)
finally show emeasure ?l A = emeasure ?r A ..

qed
qed
also have . . .
proof (intro measurable-compose[OF measurable-pair-measure measurable-distr])

show return L ∈ L →M subprob-algebra L
by (rule return-measurable)

qed measurable
finally show ?thesis .

qed

lemma nn-integral-measurable-subprob-algebra2 :
assumes f [measurable]: (λ(x, y). f x y) ∈ borel-measurable (M

⊗
M N)

assumes N [measurable]: L ∈ measurable M (subprob-algebra N)
shows (λx. integralN (L x) (f x)) ∈ borel-measurable M

proof −
note nn-integral-measurable-subprob-algebra[measurable]
note measurable-distr2 [measurable]
have (λx. integralN (distr (L x) (M

⊗
M N) (λy. (x, y))) (λ(x, y). f x y)) ∈

borel-measurable M
by measurable

then show (λx. integralN (L x) (f x)) ∈ borel-measurable M
by (rule measurable-cong[THEN iffD1 , rotated])

(simp add: nn-integral-distr)
qed

lemma emeasure-measurable-subprob-algebra2 :
assumes A[measurable]: (SIGMA x:space M . A x) ∈ sets (M

⊗
M N)

assumes L[measurable]: L ∈ measurable M (subprob-algebra N)
shows (λx. emeasure (L x) (A x)) ∈ borel-measurable M

proof −
{ fix x assume x ∈ space M

then have Pair x −‘ Sigma (space M) A = A x
by auto

with sets-Pair1 [OF A, of x] have A x ∈ sets N
by auto }

note ∗∗ = this

THEORY “Giry-Monad” 67

have ∗:
∧

x. fst x ∈ space M =⇒ snd x ∈ A (fst x) ←→ x ∈ (SIGMA x:space M .
A x)

by (auto simp: fun-eq-iff)
have MN : Measurable.pred (M

⊗
M N) (λw. w ∈ Sigma (space M) A)

by auto
then have (λ(x, y). indicator (A x) y::ennreal) ∈ borel-measurable (M

⊗
M N)

apply measurable
by (smt (verit, best) MN measurable-cong mem-Sigma-iff prod.collapse space-pair-measure)

then have (λx. integralN (L x) (indicator (A x))) ∈ borel-measurable M
by (intro nn-integral-measurable-subprob-algebra2 [where N=N] L)

then show (λx. emeasure (L x) (A x)) ∈ borel-measurable M
by (smt (verit) ∗∗ L measurable-cong-simp nn-integral-indicator sets-kernel)

qed

lemma measure-measurable-subprob-algebra2 :
assumes A[measurable]: (SIGMA x:space M . A x) ∈ sets (M

⊗
M N)

assumes L[measurable]: L ∈ measurable M (subprob-algebra N)
shows (λx. measure (L x) (A x)) ∈ borel-measurable M
unfolding measure-def
by (intro borel-measurable-enn2real emeasure-measurable-subprob-algebra2 [OF assms])

definition select-sets M = (SOME N . sets M = sets (subprob-algebra N))

lemma select-sets1 :
sets M = sets (subprob-algebra N) =⇒ sets M = sets (subprob-algebra (select-sets

M))
unfolding select-sets-def by (rule someI)

lemma sets-select-sets[simp]:
assumes sets: sets M = sets (subprob-algebra N)
shows sets (select-sets M) = sets N
unfolding select-sets-def

proof (rule someI2)
show sets M = sets (subprob-algebra N)

by fact
next

fix L assume sets M = sets (subprob-algebra L)
with sets have eq: space (subprob-algebra N) = space (subprob-algebra L)

by (intro sets-eq-imp-space-eq) simp
show sets L = sets N
proof cases

assume space (subprob-algebra N) = {}
with space-subprob-algebra-empty-iff [of N] space-subprob-algebra-empty-iff [of

L]
show ?thesis

by (simp add: eq space-empty-iff)
next

assume space (subprob-algebra N) 6= {}
with eq show ?thesis

THEORY “Giry-Monad” 68

by (smt (verit) equals0I mem-Collect-eq space-subprob-algebra)
qed

qed

lemma space-select-sets[simp]:
sets M = sets (subprob-algebra N) =⇒ space (select-sets M) = space N
by (intro sets-eq-imp-space-eq sets-select-sets)

7.3 Join
definition join :: ′a measure measure ⇒ ′a measure where

join M = measure-of (space (select-sets M)) (sets (select-sets M)) (λB.
∫

+ M ′.
emeasure M ′ B ∂M)

lemma
shows space-join[simp]: space (join M) = space (select-sets M)

and sets-join[simp]: sets (join M) = sets (select-sets M)
by (simp-all add: join-def)

lemma emeasure-join:
assumes M [simp, measurable-cong]: sets M = sets (subprob-algebra N) and A:

A ∈ sets N
shows emeasure (join M) A = (

∫
+ M ′. emeasure M ′ A ∂M)

proof (rule emeasure-measure-of [OF join-def])
show countably-additive (sets (join M)) (λB.

∫
+ M ′. emeasure M ′ B ∂M)

proof (rule countably-additiveI)
fix A :: nat ⇒ ′a set assume A: range A ⊆ sets (join M) disjoint-family A
have (

∑
i.

∫
+ M ′. emeasure M ′ (A i) ∂M) = (

∫
+M ′. (

∑
i. emeasure M ′ (A

i)) ∂M)
using A by (subst nn-integral-suminf) (auto simp: measurable-emeasure-subprob-algebra)
also have . . . = (

∫
+M ′. emeasure M ′ (

⋃
i. A i) ∂M)

proof (rule nn-integral-cong)
fix M ′ assume M ′ ∈ space M
then show (

∑
i. emeasure M ′ (A i)) = emeasure M ′ (

⋃
i. A i)

using A sets-eq-imp-space-eq[OF M] by (simp add: suminf-emeasure
space-subprob-algebra)

qed
finally show (

∑
i.

∫
+M ′. emeasure M ′ (A i) ∂M) = (

∫
+M ′. emeasure M ′

(
⋃

i. A i) ∂M) .
qed

qed (auto simp: A sets.space-closed positive-def)

lemma measurable-join:
join ∈ measurable (subprob-algebra (subprob-algebra N)) (subprob-algebra N)

proof (cases space N 6= {}, rule measurable-subprob-algebra)
fix A assume A ∈ sets N
let ?B = borel-measurable (subprob-algebra (subprob-algebra N))
have (λM ′. emeasure (join M ′) A) ∈ ?B ←→ (λM ′. (

∫
+ M ′′. emeasure M ′′ A

∂M ′)) ∈ ?B

THEORY “Giry-Monad” 69

proof (rule measurable-cong)
fix M ′ assume M ′ ∈ space (subprob-algebra (subprob-algebra N))
then show emeasure (join M ′) A = (

∫
+ M ′′. emeasure M ′′ A ∂M ′)

by (intro emeasure-join) (auto simp: space-subprob-algebra ‹A∈sets N ›)
qed
also have (λM ′.

∫
+M ′′. emeasure M ′′ A ∂M ′) ∈ ?B

using measurable-emeasure-subprob-algebra[OF ‹A∈sets N ›]
by (rule nn-integral-measurable-subprob-algebra)

finally show (λM ′. emeasure (join M ′) A) ∈ borel-measurable (subprob-algebra
(subprob-algebra N)) .
next

assume [simp]: space N 6= {}
fix M assume M : M ∈ space (subprob-algebra (subprob-algebra N))
then have (

∫
+M ′. emeasure M ′ (space N) ∂M) ≤ (

∫
+M ′. 1 ∂M)

proof (intro nn-integral-mono)
show

∧
x. [[M ∈ space (subprob-algebra (subprob-algebra N)); x ∈ space M]]

=⇒ emeasure x (space N) ≤ 1
by (smt (verit) mem-Collect-eq sets-eq-imp-space-eq space-subprob-algebra

subprob-space.subprob-emeasure-le-1)
qed
with M show subprob-space (join M)

by (intro subprob-spaceI)
(auto simp: emeasure-join space-subprob-algebra M dest: subprob-space.emeasure-space-le-1)

next
assume ¬(space N 6= {})
thus ?thesis by (simp add: measurable-empty-iff space-subprob-algebra-empty-iff)

qed (auto simp: space-subprob-algebra)

lemma nn-integral-join:
assumes f : f ∈ borel-measurable N

and M [measurable-cong]: sets M = sets (subprob-algebra N)
shows (

∫
+x. f x ∂join M) = (

∫
+M ′.

∫
+x. f x ∂M ′ ∂M)

using f
proof induct

case (cong f g)
moreover have integralN (join M) f = integralN (join M) g

by (intro nn-integral-cong cong) (simp add: M)
moreover from M have (

∫
+ M ′. integralN M ′ f ∂M) = (

∫
+ M ′. integralN

M ′ g ∂M)
by (intro nn-integral-cong cong)

(auto simp add: space-subprob-algebra dest!: sets-eq-imp-space-eq)
ultimately show ?case

by simp
next

case (set A)
with M have (

∫
+ M ′. integralN M ′ (indicator A) ∂M) = (

∫
+ M ′. emeasure

M ′ A ∂M)
by (intro nn-integral-cong nn-integral-indicator)

(auto simp: space-subprob-algebra dest!: sets-eq-imp-space-eq)

THEORY “Giry-Monad” 70

with set show ?case
using M by (simp add: emeasure-join)

next
case (mult f c)
have (

∫
+ M ′.

∫
+ x. c ∗ f x ∂M ′ ∂M) = (

∫
+ M ′. c ∗

∫
+ x. f x ∂M ′ ∂M)

using mult M M [THEN sets-eq-imp-space-eq]
by (intro nn-integral-cong nn-integral-cmult) (auto simp add: space-subprob-algebra)

also have . . . = c ∗ (
∫

+ M ′.
∫

+ x. f x ∂M ′ ∂M)
using nn-integral-measurable-subprob-algebra[OF mult(2)]
by (intro nn-integral-cmult mult) (simp add: M)

also have . . . = c ∗ (integralN (join M) f)
by (simp add: mult)

also have . . . = (
∫

+ x. c ∗ f x ∂join M)
using mult(2 ,3) by (intro nn-integral-cmult[symmetric] mult) (simp add: M

cong: measurable-cong-sets)
finally show ?case by simp

next
case (add f g)
have (

∫
+ M ′.

∫
+ x. f x + g x ∂M ′ ∂M) = (

∫
+ M ′. (

∫
+ x. f x ∂M ′) + (

∫
+

x. g x ∂M ′) ∂M)
using add M M [THEN sets-eq-imp-space-eq]

by (intro nn-integral-cong nn-integral-add) (auto simp add: space-subprob-algebra)
also have . . . = (

∫
+ M ′.

∫
+ x. f x ∂M ′ ∂M) + (

∫
+ M ′.

∫
+ x. g x ∂M ′ ∂M)

using nn-integral-measurable-subprob-algebra[OF add(1)]
using nn-integral-measurable-subprob-algebra[OF add(4)]
by (intro nn-integral-add add) (simp-all add: M)

also have . . . = (integralN (join M) f) + (integralN (join M) g)
by (simp add: add)

also have . . . = (
∫

+ x. f x + g x ∂join M)
using add by (intro nn-integral-add[symmetric] add) (simp-all add: M cong:

measurable-cong-sets)
finally show ?case by (simp add: ac-simps)

next
case (seq F)
have (

∫
+ M ′.

∫
+ x. (SUP i. F i) x ∂M ′ ∂M) = (

∫
+ M ′. (SUP i.

∫
+ x. F i x

∂M ′) ∂M)
using seq M M [THEN sets-eq-imp-space-eq] unfolding SUP-apply
by (intro nn-integral-cong nn-integral-monotone-convergence-SUP)

(auto simp add: space-subprob-algebra)
also have . . . = (SUP i.

∫
+ M ′.

∫
+ x. F i x ∂M ′ ∂M)

using nn-integral-measurable-subprob-algebra[OF seq(1)] seq
by (intro nn-integral-monotone-convergence-SUP)

(simp-all add: M incseq-nn-integral incseq-def le-fun-def nn-integral-mono)
also have . . . = (SUP i. integralN (join M) (F i))

by (simp add: seq)
also have . . . = (

∫
+ x. (SUP i. F i x) ∂join M)

using seq by (intro nn-integral-monotone-convergence-SUP[symmetric] seq)
(simp-all add: M cong: measurable-cong-sets)

finally show ?case by (simp add: ac-simps image-comp)

THEORY “Giry-Monad” 71

qed

lemma measurable-join1 :
[[f ∈ measurable N K ; sets M = sets (subprob-algebra N)]]
=⇒ f ∈ measurable (join M) K
by(simp add: measurable-def)

lemma
fixes f :: - ⇒ real
assumes f-measurable [measurable]: f ∈ borel-measurable N
and f-bounded:

∧
x. x ∈ space N =⇒ |f x| ≤ B

and M [measurable-cong]: sets M = sets (subprob-algebra N)
and fin: finite-measure M
and M-bounded: AE M ′ in M . emeasure M ′ (space M ′) ≤ ennreal B ′

shows integrable-join: integrable (join M) f (is ?integrable)
and integral-join: integralL (join M) f =

∫
M ′. integralL M ′ f ∂M (is ?integral)

proof(case-tac [!] space N = {})
assume ∗: space N = {}
show ?integrable

using M ∗ by(simp add: real-integrable-def measurable-def nn-integral-empty)
have (

∫
M ′. integralL M ′ f ∂M) = (

∫
M ′. 0 ∂M)

proof(rule Bochner-Integration.integral-cong)
fix M ′

assume M ′ ∈ space M
with sets-eq-imp-space-eq[OF M] have space M ′ = space N

by(auto simp add: space-subprob-algebra dest: sets-eq-imp-space-eq)
with ∗ show (

∫
x. f x ∂M ′) = 0 by(simp add: Bochner-Integration.integral-empty)

qed simp
then show ?integral

using M ∗ by(simp add: Bochner-Integration.integral-empty)
next

assume ∗: space N 6= {}

from ∗ have B [simp]: 0 ≤ B by(auto dest: f-bounded)

have [measurable]: f ∈ borel-measurable (join M) using f-measurable M
by(rule measurable-join1)

{ fix f M ′

assume [measurable]: f ∈ borel-measurable N
and f-bounded:

∧
x. x ∈ space N =⇒ f x ≤ B

and M ′ ∈ space M emeasure M ′ (space M ′) ≤ ennreal B ′

have AE x in M ′. ennreal (f x) ≤ ennreal B
proof(rule AE-I2)

fix x
assume x ∈ space M ′

with ‹M ′ ∈ space M › sets-eq-imp-space-eq[OF M]
have x ∈ space N by(auto simp add: space-subprob-algebra dest: sets-eq-imp-space-eq)

from f-bounded[OF this] show ennreal (f x) ≤ ennreal B by simp

THEORY “Giry-Monad” 72

qed
then have (

∫
+ x. ennreal (f x) ∂M ′) ≤ (

∫
+ x. ennreal B ∂M ′)

by(rule nn-integral-mono-AE)
also have . . . = ennreal B ∗ emeasure M ′ (space M ′) by(simp)
also have . . . ≤ ennreal B ∗ ennreal B ′ by(rule mult-left-mono)(fact, simp)
also have . . . ≤ ennreal B ∗ ennreal |B ′| by(rule mult-left-mono)(simp-all)
finally have (

∫
+ x. ennreal (f x) ∂M ′) ≤ ennreal (B ∗ |B ′|) by (simp add:

ennreal-mult) }
note bounded1 = this

have bounded:∧
f . [[f ∈ borel-measurable N ;

∧
x. x ∈ space N =⇒ f x ≤ B]]

=⇒ (
∫

+ x. ennreal (f x) ∂join M) 6= top
proof −

fix f
assume [measurable]: f ∈ borel-measurable N

and f-bounded:
∧

x. x ∈ space N =⇒ f x ≤ B
have (

∫
+ x. ennreal (f x) ∂join M) = (

∫
+ M ′.

∫
+ x. ennreal (f x) ∂M ′ ∂M)

by(rule nn-integral-join[OF - M]) simp
also have . . . ≤

∫
+ M ′. B ∗ |B ′| ∂M

using bounded1 [OF ‹f ∈ borel-measurable N › f-bounded]
by(rule nn-integral-mono-AE [OF AE-mp[OF M-bounded AE-I2], rule-format])
also have . . . = B ∗ |B ′| ∗ emeasure M (space M) by simp
also have . . . < ∞

using finite-measure.finite-emeasure-space[OF fin]
by(simp add: ennreal-mult-less-top less-top)

finally show ?thesis f by simp
qed
have f-pos: (

∫
+ x. ennreal (f x) ∂join M) 6= ∞

and f-neg: (
∫

+ x. ennreal (− f x) ∂join M) 6= ∞
using f-bounded by(auto del: notI intro!: bounded simp add: abs-le-iff)

show ?integrable using f-pos f-neg by(simp add: real-integrable-def)

note [measurable] = nn-integral-measurable-subprob-algebra

have int-f : (
∫

+ x. f x ∂join M) =
∫

+ M ′.
∫

+ x. f x ∂M ′ ∂M
by(simp add: nn-integral-join[OF - M])

have int-mf : (
∫

+ x. − f x ∂join M) = (
∫

+ M ′.
∫

+ x. − f x ∂M ′ ∂M)
by(simp add: nn-integral-join[OF - M])

have pos-finite: AE M ′ in M . (
∫

+ x. f x ∂M ′) 6= ∞
using AE-space M-bounded

proof eventually-elim
fix M ′ assume M ′ ∈ space M emeasure M ′ (space M ′) ≤ ennreal B ′

then have (
∫

+ x. ennreal (f x) ∂M ′) ≤ ennreal (B ∗ |B ′|)
using f-measurable by(auto intro!: bounded1 dest: f-bounded)

then show (
∫

+ x. ennreal (f x) ∂M ′) 6= ∞
by (auto simp: top-unique)

THEORY “Giry-Monad” 73

qed
hence [simp]: (

∫
+ M ′. ennreal (enn2real (

∫
+ x. f x ∂M ′)) ∂M) = (

∫
+ M ′.

∫
+

x. f x ∂M ′ ∂M)
by (rule nn-integral-cong-AE [OF AE-mp]) (simp add: less-top)

from f-pos have [simp]: integrable M (λM ′. enn2real (
∫

+ x. f x ∂M ′))
by(simp add: int-f real-integrable-def nn-integral-0-iff-AE [THEN iffD2] en-

nreal-neg enn2real-nonneg)

have neg-finite: AE M ′ in M . (
∫

+ x. − f x ∂M ′) 6= ∞
using AE-space M-bounded

proof eventually-elim
fix M ′ assume M ′ ∈ space M emeasure M ′ (space M ′) ≤ ennreal B ′

then have (
∫

+ x. ennreal (− f x) ∂M ′) ≤ ennreal (B ∗ |B ′|)
using f-measurable by(auto intro!: bounded1 dest: f-bounded)

then show (
∫

+ x. ennreal (− f x) ∂M ′) 6= ∞
by (auto simp: top-unique)

qed
hence [simp]: (

∫
+ M ′. ennreal (enn2real (

∫
+ x. − f x ∂M ′)) ∂M) = (

∫
+ M ′.∫

+ x. − f x ∂M ′ ∂M)
by (rule nn-integral-cong-AE [OF AE-mp]) (simp add: less-top)

from f-neg have [simp]: integrable M (λM ′. enn2real (
∫

+ x. − f x ∂M ′))
by(simp add: int-mf real-integrable-def nn-integral-0-iff-AE [THEN iffD2] en-

nreal-neg enn2real-nonneg)

have (
∫

x. f x ∂join M) = enn2real (
∫

+ N .
∫

+x. f x ∂N ∂M) − enn2real (
∫

+

N .
∫

+x. − f x ∂N ∂M)
unfolding real-lebesgue-integral-def [OF ‹?integrable›] by (simp add: nn-integral-join[OF

- M])
also have . . . = (

∫
N . enn2real (

∫
+x. f x ∂N) ∂M) − (

∫
N . enn2real (

∫
+x. −

f x ∂N) ∂M)
using pos-finite neg-finite by (subst (1 2) integral-eq-nn-integral) (auto simp:

enn2real-nonneg)
also have . . . = (

∫
N . enn2real (

∫
+x. f x ∂N) − enn2real (

∫
+x. − f x ∂N)

∂M)
by simp

also have . . . =
∫

M ′.
∫

x. f x ∂M ′ ∂M
proof (rule integral-cong-AE)

show AE x in M .
enn2real (

∫
+ x. ennreal (f x) ∂x) − enn2real (

∫
+ x. ennreal (− f x) ∂x) =

integralL x f
using AE-space M-bounded

proof eventually-elim
fix M ′ assume M ′ ∈ space M emeasure M ′ (space M ′) ≤ B ′

then interpret subprob-space M ′

by (auto simp: M [THEN sets-eq-imp-space-eq] space-subprob-algebra)

from ‹M ′ ∈ space M › sets-eq-imp-space-eq[OF M]
have [measurable-cong]: sets M ′ = sets N by(simp add: space-subprob-algebra)
hence [simp]: space M ′ = space N by(rule sets-eq-imp-space-eq)

THEORY “Giry-Monad” 74

have integrable M ′ f
by(rule integrable-const-bound[where B=B])(auto simp add: f-bounded)

then show enn2real (
∫

+ x. f x ∂M ′) − enn2real (
∫

+ x. − f x ∂M ′) =
∫

x.
f x ∂M ′

by(simp add: real-lebesgue-integral-def)
qed

qed simp-all
finally show ?integral by simp

qed

lemma join-assoc:
assumes M [measurable-cong]: sets M = sets (subprob-algebra (subprob-algebra

N))
shows join (distr M (subprob-algebra N) join) = join (join M)

proof (rule measure-eqI)
fix A assume A ∈ sets (join (distr M (subprob-algebra N) join))
then have A: A ∈ sets N by simp
show emeasure (join (distr M (subprob-algebra N) join)) A = emeasure (join

(join M)) A
using measurable-join[of N]

by (auto simp: M A nn-integral-distr emeasure-join measurable-emeasure-subprob-algebra
sets-eq-imp-space-eq[OF M] space-subprob-algebra nn-integral-join[OF

- M]
intro!: nn-integral-cong emeasure-join)

qed (simp add: M)

lemma join-return:
assumes sets M = sets N and subprob-space M
shows join (return (subprob-algebra N) M) = M
by (rule measure-eqI)

(simp-all add: emeasure-join space-subprob-algebra
measurable-emeasure-subprob-algebra nn-integral-return assms)

lemma join-return ′:
assumes sets N = sets M
shows join (distr M (subprob-algebra N) (return N)) = M

proof (rule measure-eqI)
fix A
have return N ∈ measurable M (subprob-algebra N)

using assms by auto
moreover
assume A ∈ sets (join (distr M (subprob-algebra N) (return N)))
ultimately show emeasure (join (distr M (subprob-algebra N) (return N))) A

= emeasure M A
by (simp add: emeasure-join nn-integral-distr measurable-emeasure-subprob-algebra

assms)
qed (simp add: assms)

lemma join-distr-distr :

THEORY “Giry-Monad” 75

fixes f :: ′a ⇒ ′b and M :: ′a measure measure and N :: ′b measure
assumes sets M = sets (subprob-algebra R) and f ∈ measurable R N
shows join (distr M (subprob-algebra N) (λM . distr M N f)) = distr (join M)

N f (is ?r = ?l)
proof (rule measure-eqI)

fix A assume A ∈ sets ?r
hence A-in-N : A ∈ sets N by simp

from assms have f ∈ measurable (join M) N
by (simp cong: measurable-cong-sets)

moreover from assms and A-in-N have f−‘A ∩ space R ∈ sets R
by (intro measurable-sets) simp-all

ultimately have emeasure (distr (join M) N f) A =
∫

+M ′. emeasure M ′ (f−‘A
∩ space R) ∂M

by (simp-all add: A-in-N emeasure-distr emeasure-join assms)

also have ... =
∫

+ x. emeasure (distr x N f) A ∂M using A-in-N
proof (intro nn-integral-cong, subst emeasure-distr)

fix M ′ assume M ′ ∈ space M
from assms have space M = space (subprob-algebra R)

using sets-eq-imp-space-eq by blast
with ‹M ′ ∈ space M › have [simp]: sets M ′= sets R using space-subprob-algebra

by blast
show f ∈ measurable M ′ N by (simp cong: measurable-cong-sets add: assms)
have space M ′ = space R by (rule sets-eq-imp-space-eq) simp
thus emeasure M ′ (f −‘ A ∩ space R) = emeasure M ′ (f −‘ A ∩ space M ′) by

simp
qed

also have (λM . distr M N f) ∈ measurable M (subprob-algebra N)
by (simp cong: measurable-cong-sets add: assms measurable-distr)

hence (
∫

+ x. emeasure (distr x N f) A ∂M) =
emeasure (join (distr M (subprob-algebra N) (λM . distr M N f))) A

by (simp-all add: emeasure-join assms A-in-N nn-integral-distr measur-
able-emeasure-subprob-algebra)

finally show emeasure ?r A = emeasure ?l A ..
qed simp

definition bind :: ′a measure ⇒ (′a ⇒ ′b measure) ⇒ ′b measure where
bind M f = (if space M = {} then count-space {} else

join (distr M (subprob-algebra (f (SOME x. x ∈ space M))) f))

adhoc-overloading Monad-Syntax.bind
 bind

lemma bind-empty:
space M = {} =⇒ bind M f = count-space {}
by (simp add: bind-def)

lemma bind-nonempty:

THEORY “Giry-Monad” 76

space M 6= {} =⇒ bind M f = join (distr M (subprob-algebra (f (SOME x. x ∈
space M))) f)

by (simp add: bind-def)

lemma sets-bind-empty: sets M = {} =⇒ sets (bind M f) = {{}}
by auto

lemma space-bind-empty: space M = {} =⇒ space (bind M f) = {}
by (simp add: bind-def)

lemma sets-bind[simp, measurable-cong]:
assumes f :

∧
x. x ∈ space M =⇒ sets (f x) = sets N and M : space M 6= {}

shows sets (bind M f) = sets N
using f [of SOME x. x ∈ space M] by (simp add: bind-nonempty M some-in-eq)

lemma space-bind[simp]:
assumes

∧
x. x ∈ space M =⇒ sets (f x) = sets N and space M 6= {}

shows space (bind M f) = space N
using assms by (intro sets-eq-imp-space-eq sets-bind)

lemma bind-cong-All:
assumes ∀ x ∈ space M . f x = g x
shows bind M f = bind M g

proof (cases space M = {})
assume space M 6= {}
hence (SOME x. x ∈ space M) ∈ space M by (rule-tac someI-ex) blast
with assms have f (SOME x. x ∈ space M) = g (SOME x. x ∈ space M) by

blast
with ‹space M 6= {}› and assms show ?thesis by (simp add: bind-nonempty

cong: distr-cong)
qed (simp add: bind-empty)

lemma bind-cong:
M = N =⇒ (

∧
x. x ∈ space M =⇒ f x = g x) =⇒ bind M f = bind N g

using bind-cong-All[of M f g] by auto

lemma bind-nonempty ′:
assumes f ∈ measurable M (subprob-algebra N) x ∈ space M
shows bind M f = join (distr M (subprob-algebra N) f)

proof −
have join (distr M (subprob-algebra (f (SOME x. x ∈ space M))) f) = join (distr

M (subprob-algebra N) f)
by (metis assms someI-ex subprob-algebra-cong subprob-measurableD(2))

with assms show ?thesis
by (metis bind-nonempty empty-iff)

qed

lemma bind-nonempty ′′:
assumes f ∈ measurable M (subprob-algebra N) space M 6= {}

THEORY “Giry-Monad” 77

shows bind M f = join (distr M (subprob-algebra N) f)
using assms by (auto intro: bind-nonempty ′)

lemma emeasure-bind:
[[space M 6= {}; f ∈ measurable M (subprob-algebra N);X ∈ sets N]]
=⇒ emeasure (M >>= f) X =

∫
+x. emeasure (f x) X ∂M

by (simp add: bind-nonempty ′′ emeasure-join nn-integral-distr measurable-emeasure-subprob-algebra)

lemma nn-integral-bind:
assumes f : f ∈ borel-measurable B
assumes N : N ∈ measurable M (subprob-algebra B)
shows (

∫
+x. f x ∂(M >>= N)) = (

∫
+x.

∫
+y. f y ∂N x ∂M)

proof cases
assume M : space M 6= {} show ?thesis

unfolding bind-nonempty ′′[OF N M] nn-integral-join[OF f sets-distr]
by (rule nn-integral-distr [OF N])

(simp add: f nn-integral-measurable-subprob-algebra)
qed (simp add: bind-empty space-empty[of M] nn-integral-count-space)

lemma AE-bind:
assumes N [measurable]: N ∈ measurable M (subprob-algebra B)
assumes P[measurable]: Measurable.pred B P
shows (AE x in M >>= N . P x) ←→ (AE x in M . AE y in N x. P y)

proof cases
assume M : space M = {} show ?thesis

unfolding bind-empty[OF M] unfolding space-empty[OF M] by (simp add:
AE-count-space)
next

assume M : space M 6= {}
note sets-kernel[OF N , simp]
have ∗: (

∫
+x. indicator {x. ¬ P x} x ∂(M >>= N)) = (

∫
+x. indicator {x∈space

B. ¬ P x} x ∂(M >>= N))
by (intro nn-integral-cong) (simp add: space-bind[OF - M] split: split-indicator)

have (AE x in M >>= N . P x) ←→ (
∫

+ x. integralN (N x) (indicator {x ∈ space
B. ¬ P x}) ∂M) = 0

by (simp add: AE-iff-nn-integral sets-bind[OF - M] space-bind[OF - M] ∗
nn-integral-bind[where B=B]

del: nn-integral-indicator)
also have ... = (AE x in M . integralN (N x) (indicator {x ∈ space B. ¬ P x})

= 0)
proof (rule nn-integral-0-iff-AE)
show (λx. integralN (N x) (indicator {x ∈ space B. ¬ P x})) ∈ borel-measurable

M
apply (rule measurable-compose[OF N nn-integral-measurable-subprob-algebra])

by measurable
qed
also have . . . = (AE x in M . AE y in N x. P y)

apply (intro eventually-subst AE-I2)

THEORY “Giry-Monad” 78

by (auto simp add: subprob-measurableD(1)[OF N] intro!: AE-iff-measurable[symmetric])
finally show ?thesis .

qed

lemma measurable-bind ′:
assumes M1 : f ∈ measurable M (subprob-algebra N) and

M2 : case-prod g ∈ measurable (M
⊗

M N) (subprob-algebra R)
shows (λx. bind (f x) (g x)) ∈ measurable M (subprob-algebra R)

proof (subst measurable-cong)
fix x assume x-in-M : x ∈ space M
with assms have space (f x) 6= {}

by (blast dest: subprob-space-kernel subprob-space.subprob-not-empty)
moreover from M2 x-in-M have g x ∈ measurable (f x) (subprob-algebra R)

by (subst measurable-cong-sets[OF sets-kernel[OF M1 x-in-M] refl])
(auto dest: measurable-Pair2)

ultimately show bind (f x) (g x) = join (distr (f x) (subprob-algebra R) (g x))
by (simp-all add: bind-nonempty ′′)

next
show (λw. join (distr (f w) (subprob-algebra R) (g w))) ∈ measurable M (subprob-algebra

R)
apply (rule measurable-compose[OF - measurable-join])
apply (rule measurable-distr2 [OF M2 M1])
done

qed

lemma measurable-bind[measurable (raw)]:
assumes M1 : f ∈ measurable M (subprob-algebra N) and

M2 : (λx. g (fst x) (snd x)) ∈ measurable (M
⊗

M N) (subprob-algebra R)
shows (λx. bind (f x) (g x)) ∈ measurable M (subprob-algebra R)
using assms by (auto intro: measurable-bind ′ simp: measurable-split-conv)

lemma measurable-bind2 :
assumes f ∈ measurable M (subprob-algebra N) and g ∈ measurable N (subprob-algebra

R)
shows (λx. bind (f x) g) ∈ measurable M (subprob-algebra R)

using assms by (intro measurable-bind ′ measurable-const) auto

lemma subprob-space-bind:
assumes subprob-space M f ∈ measurable M (subprob-algebra N)
shows subprob-space (M >>= f)

proof (rule subprob-space-kernel[of λx. x >>= f])
show (λx. x >>= f) ∈ measurable (subprob-algebra M) (subprob-algebra N)

by (rule measurable-bind, rule measurable-ident-sets, rule refl,
rule measurable-compose[OF measurable-snd assms(2)])

from assms(1) show M ∈ space (subprob-algebra M)
by (simp add: space-subprob-algebra)

qed

lemma

THEORY “Giry-Monad” 79

fixes f :: - ⇒ real
assumes f-measurable [measurable]: f ∈ borel-measurable K
and f-bounded:

∧
x. x ∈ space K =⇒ |f x| ≤ B

and N [measurable]: N ∈ measurable M (subprob-algebra K)
and fin: finite-measure M
and M-bounded: AE x in M . emeasure (N x) (space (N x)) ≤ ennreal B ′

shows integrable-bind: integrable (bind M N) f (is ?integrable)
and integral-bind: integralL (bind M N) f =

∫
x. integralL (N x) f ∂M (is

?integral)
proof(case-tac [!] space M = {})

assume [simp]: space M 6= {}
interpret finite-measure M by(rule fin)

have integrable (join (distr M (subprob-algebra K) N)) f
using f-measurable f-bounded

by(rule integrable-join[where B ′=B ′])(simp-all add: finite-measure-distr AE-distr-iff
M-bounded)

then show ?integrable by(simp add: bind-nonempty ′′[where N=K])

have integralL (join (distr M (subprob-algebra K) N)) f =
∫

M ′. integralL M ′

f ∂distr M (subprob-algebra K) N
using f-measurable f-bounded

by(rule integral-join[where B ′=B ′])(simp-all add: finite-measure-distr AE-distr-iff
M-bounded)

also have . . . =
∫

x. integralL (N x) f ∂M
by(rule integral-distr)(simp-all add: integral-measurable-subprob-algebra[OF -])

finally show ?integral by(simp add: bind-nonempty ′′[where N=K])
qed(simp-all add: bind-def integrable-count-space lebesgue-integral-count-space-finite
Bochner-Integration.integral-empty)

lemma (in prob-space) prob-space-bind:
assumes ae: AE x in M . prob-space (N x)

and N [measurable]: N ∈ measurable M (subprob-algebra S)
shows prob-space (M >>= N)

proof
have emeasure (M >>= N) (space (M >>= N)) = (

∫
+x. emeasure (N x) (space

(N x)) ∂M)
by (subst emeasure-bind[where N=S])

(auto simp: not-empty space-bind[OF sets-kernel] subprob-measurableD[OF
N] intro!: nn-integral-cong)

also have . . . = (
∫

+x. 1 ∂M)
using ae by (intro nn-integral-cong-AE , eventually-elim) (rule prob-space.emeasure-space-1)

finally show emeasure (M >>= N) (space (M >>= N)) = 1
by (simp add: emeasure-space-1)

qed

lemma (in subprob-space) bind-in-space:
A ∈ measurable M (subprob-algebra N) =⇒ (M >>= A) ∈ space (subprob-algebra

N)

THEORY “Giry-Monad” 80

by (auto simp add: space-subprob-algebra subprob-not-empty sets-kernel intro!:
subprob-space-bind)

unfold-locales

lemma (in subprob-space) measure-bind:
assumes f : f ∈ measurable M (subprob-algebra N) and X : X ∈ sets N
shows measure (M >>= f) X =

∫
x. measure (f x) X ∂M

proof −
interpret Mf : subprob-space M >>= f

by (rule subprob-space-bind[OF - f]) unfold-locales

{ fix x assume x ∈ space M
from f [THEN measurable-space, OF this] interpret subprob-space f x

by (simp add: space-subprob-algebra)
have emeasure (f x) X = ennreal (measure (f x) X) measure (f x) X ≤ 1

by (auto simp: emeasure-eq-measure subprob-measure-le-1) }
note this[simp]

have emeasure (M >>= f) X =
∫

+x. emeasure (f x) X ∂M
using subprob-not-empty f X by (rule emeasure-bind)

also have . . . =
∫

+x. ennreal (measure (f x) X) ∂M
by (intro nn-integral-cong) simp

also have . . . =
∫

x. measure (f x) X ∂M
by (intro nn-integral-eq-integral integrable-const-bound[where B=1]

measure-measurable-subprob-algebra2 [OF - f] pair-measureI X)
(auto simp: measure-nonneg)

finally show ?thesis
by (simp add: Mf .emeasure-eq-measure measure-nonneg integral-nonneg)

qed

lemma emeasure-bind-const:
space M 6= {} =⇒ X ∈ sets N =⇒ subprob-space N =⇒

emeasure (M >>= (λx. N)) X = emeasure N X ∗ emeasure M (space M)
by (simp add: bind-nonempty emeasure-join nn-integral-distr

space-subprob-algebra measurable-emeasure-subprob-algebra)

lemma emeasure-bind-const ′:
assumes subprob-space M subprob-space N
shows emeasure (M >>= (λx. N)) X = emeasure N X ∗ emeasure M (space M)

using assms
proof (case-tac X ∈ sets N)

fix X assume X ∈ sets N
thus emeasure (M >>= (λx. N)) X = emeasure N X ∗ emeasure M (space M)

using assms
by (subst emeasure-bind-const)
(simp-all add: subprob-space.subprob-not-empty subprob-space.emeasure-space-le-1)

next
fix X assume X /∈ sets N
with assms show emeasure (M >>= (λx. N)) X = emeasure N X ∗ emeasure M

THEORY “Giry-Monad” 81

(space M)
by (simp add: sets-bind[of - - N] subprob-space.subprob-not-empty

space-subprob-algebra emeasure-notin-sets)
qed

lemma emeasure-bind-const-prob-space:
assumes prob-space M subprob-space N
shows emeasure (M >>= (λx. N)) X = emeasure N X
using assms by (simp add: emeasure-bind-const ′ prob-space-imp-subprob-space

prob-space.emeasure-space-1)

lemma bind-return:
assumes f ∈ measurable M (subprob-algebra N) and x ∈ space M
shows bind (return M x) f = f x
using sets-kernel[OF assms] assms
by (simp-all add: distr-return join-return subprob-space-kernel bind-nonempty ′

cong: subprob-algebra-cong)

lemma bind-return ′:
shows bind M (return M) = M
by (cases space M = {})

(simp-all add: bind-empty space-empty[symmetric] bind-nonempty join-return ′

cong: subprob-algebra-cong)

lemma distr-bind:
assumes N : N ∈ measurable M (subprob-algebra K) space M 6= {}
assumes f : f ∈ measurable K R
shows distr (M >>= N) R f = (M >>= (λx. distr (N x) R f))

proof −
have distr (join (distr M (subprob-algebra K) N)) R f =

join (distr M (subprob-algebra R) (λx. distr (N x) R f))
by (simp add: assms distr-distr [OF measurable-distr] comp-def flip: join-distr-distr)

with assms show ?thesis
unfolding bind-nonempty ′′[OF N]
by (smt (verit) bind-nonempty sets-distr subprob-algebra-cong)

qed

lemma bind-distr :
assumes f [measurable]: f ∈ measurable M X
assumes N [measurable]: N ∈ measurable X (subprob-algebra K) and space M 6=
{}

shows (distr M X f >>= N) = (M >>= (λx. N (f x)))
proof −

have space X 6= {} space M 6= {}
using ‹space M 6= {}› f [THEN measurable-space] by auto

then show ?thesis
by (simp add: bind-nonempty ′′[where N=K] distr-distr comp-def)

qed

THEORY “Giry-Monad” 82

lemma bind-count-space-singleton:
assumes subprob-space (f x)
shows count-space {x} >>= f = f x

proof−
have A:

∧
A. A ⊆ {x} =⇒ A = {} ∨ A = {x} by auto

have count-space {x} = return (count-space {x}) x
by (intro measure-eqI) (auto dest: A)

also have ... >>= f = f x
by (subst bind-return[of - - f x]) (auto simp: space-subprob-algebra assms)

finally show ?thesis .
qed

lemma restrict-space-bind:
assumes N : N ∈ measurable M (subprob-algebra K)
assumes space M 6= {}
assumes X [simp]: X ∈ sets K X 6= {}
shows restrict-space (bind M N) X = bind M (λx. restrict-space (N x) X)

proof (rule measure-eqI)
note N-sets = sets-bind[OF sets-kernel[OF N] assms(2), simp]
note N-space = sets-eq-imp-space-eq[OF N-sets, simp]
show sets (restrict-space (bind M N) X) = sets (bind M (λx. restrict-space (N

x) X))
by (simp add: sets-restrict-space assms(2) sets-bind[OF sets-kernel[OF re-

strict-space-measurable[OF assms(4 ,3 ,1)]]])
fix A assume A ∈ sets (restrict-space (M >>= N) X)
with X have A: A ∈ sets K A ⊆ X

by (auto simp: sets-restrict-space)
then have emeasure (restrict-space (M >>= N) X) A = emeasure (M >>= N) A

by (simp add: emeasure-restrict-space)
also have . . . =

∫
+ x. emeasure (N x) A ∂M

by (metis ‹A ∈ sets K › N ‹space M 6= {}› emeasure-bind)
also have ... =

∫
+ x. emeasure (restrict-space (N x) X) A ∂M

using A assms by (smt (verit, best) emeasure-restrict-space nn-integral-cong
sets.Int-space-eq2 subprob-measurableD(2))

also have . . . = emeasure (M >>= (λx. restrict-space (N x) X)) A
using A assms
apply (subst emeasure-bind[OF - restrict-space-measurable])
apply (auto simp: sets-restrict-space)
done

finally show emeasure (restrict-space (M >>= N) X) A = emeasure (M >>= (λx.
restrict-space (N x) X)) A .
qed

lemma bind-restrict-space:
assumes A: A ∩ space M 6= {} A ∩ space M ∈ sets M
and f : f ∈ measurable (restrict-space M A) (subprob-algebra N)
shows restrict-space M A >>= f = M >>= (λx. if x ∈ A then f x else null-measure

(f (SOME x. x ∈ A ∧ x ∈ space M)))
(is ?lhs = ?rhs is - = M >>= ?f)

THEORY “Giry-Monad” 83

proof −
let ?P = λx. x ∈ A ∧ x ∈ space M
let ?x = Eps ?P
let ?c = null-measure (f ?x)
from A have ?P ?x by−(rule someI-ex, blast)
hence ?x ∈ space (restrict-space M A) by(simp add: space-restrict-space)
with f have f ?x ∈ space (subprob-algebra N) by(rule measurable-space)
hence sps: subprob-space (f ?x)

and sets: sets (f ?x) = sets N
by(simp-all add: space-subprob-algebra)

have space (f ?x) 6= {} using sps by(rule subprob-space.subprob-not-empty)
moreover have sets ?c = sets N by(simp add: null-measure-def)(simp add:

sets)
ultimately have c: ?c ∈ space (subprob-algebra N)

by(simp add: space-subprob-algebra subprob-space-null-measure)
from f A c have f ′: ?f ∈ measurable M (subprob-algebra N)

by(simp add: measurable-restrict-space-iff)

from A have [simp]: space M 6= {} by blast

have ?lhs = join (distr (restrict-space M A) (subprob-algebra N) f)
using assms by(simp add: space-restrict-space bind-nonempty ′′)

also have . . . = join (distr M (subprob-algebra N) ?f)
by(rule measure-eqI)(auto simp add: emeasure-join nn-integral-distr nn-integral-restrict-space

f f ′ A intro: nn-integral-cong)
also have . . . = ?rhs using f ′ by(simp add: bind-nonempty ′′)
finally show ?thesis .

qed

lemma bind-const ′: [[prob-space M ; subprob-space N]] =⇒ M >>= (λx. N) = N
by (intro measure-eqI)
(simp-all add: space-subprob-algebra prob-space.not-empty emeasure-bind-const-prob-space)

lemma bind-return-distr :
assumes space M 6= {} f ∈ measurable M N
shows bind M (return N ◦ f) = distr M N f

proof −
have bind M (return N ◦ f)

= join (distr M (subprob-algebra (return N (f (SOME x. x ∈ space M))))
(return N ◦ f))

by (simp add: Giry-Monad.bind-def assms)
also have . . . = join (distr M (subprob-algebra N) (return N ◦ f))

by (metis sets-return subprob-algebra-cong)
also have . . . = distr M N f

by (metis assms(2) distr-distr join-return ′ return-measurable sets-distr)
finally show ?thesis .

qed

lemma bind-return-distr ′:

THEORY “Giry-Monad” 84

space M 6= {} =⇒ f ∈ measurable M N =⇒ bind M (λx. return N (f x)) = distr
M N f

using bind-return-distr [of M f N] by (simp add: comp-def)

lemma bind-assoc:
fixes f :: ′a ⇒ ′b measure and g :: ′b ⇒ ′c measure
assumes M1 : f ∈ measurable M (subprob-algebra N) and M2 : g ∈ measurable

N (subprob-algebra R)
shows bind (bind M f) g = bind M (λx. bind (f x) g)

proof (cases space M = {})
assume [simp]: space M 6= {}
from assms have [simp]: space N 6= {} space R 6= {}

by (auto simp: measurable-empty-iff space-subprob-algebra-empty-iff)
from assms have sets-fx[simp]:

∧
x. x ∈ space M =⇒ sets (f x) = sets N

by (simp add: sets-kernel)
have ex-in:

∧
A. A 6= {} =⇒ ∃ x. x ∈ A by blast

note sets-some[simp] = sets-kernel[OF M1 someI-ex[OF ex-in[OF ‹space M 6=
{}›]]]

sets-kernel[OF M2 someI-ex[OF ex-in[OF ‹space N 6= {}›]]]
note space-some[simp] = sets-eq-imp-space-eq[OF this(1)] sets-eq-imp-space-eq[OF

this(2)]

have ∗: (λx. distr x (subprob-algebra R) g) ◦ f ∈M →M subprob-algebra (subprob-algebra
R)

using M1 M2 measurable-comp measurable-distr by blast
have bind M (λx. bind (f x) g) =

join (distr M (subprob-algebra R) (join ◦ (λx. (distr x (subprob-algebra R)
g)) ◦ f))

by (simp add: sets-eq-imp-space-eq[OF sets-fx] bind-nonempty o-def
cong: subprob-algebra-cong distr-cong)

also have distr M (subprob-algebra R) (join ◦ (λx. (distr x (subprob-algebra R)
g)) ◦ f) =

distr (distr (distr M (subprob-algebra N) f)
(subprob-algebra (subprob-algebra R))
(λx. distr x (subprob-algebra R) g))

(subprob-algebra R) join
by (simp add: distr-distr M1 M2 measurable-distr measurable-join fun.map-comp

∗)
also have join ... = bind (bind M f) g

by (simp add: join-assoc join-distr-distr M2 bind-nonempty cong: subprob-algebra-cong)
finally show ?thesis ..

qed (simp add: bind-empty)

lemma double-bind-assoc:
assumes Mg: g ∈ measurable N (subprob-algebra N ′)
assumes Mf : f ∈ measurable M (subprob-algebra M ′)
assumes Mh: case-prod h ∈ measurable (M

⊗
M M ′) N

shows do {x ← M ; y ← f x; g (h x y)} = do {x ← M ; y ← f x; return N (h x

THEORY “Giry-Monad” 85

y)} >>= g
proof−

have do {x ← M ; y ← f x; return N (h x y)} >>= g =
do {x ← M ; do {y ← f x; return N (h x y)} >>= g}

using Mh by (auto intro!: bind-assoc measurable-bind ′[OF Mf] Mf Mg
measurable-compose[OF - return-measurable] simp: measur-

able-split-conv)
also from Mh have

∧
x. x ∈ space M =⇒ h x ∈ measurable M ′ N by measurable

hence do {x ← M ; do {y ← f x; return N (h x y)} >>= g} =
do {x ← M ; y ← f x; return N (h x y) >>= g}

apply (intro ballI bind-cong refl bind-assoc)
apply (subst measurable-cong-sets[OF sets-kernel[OF Mf] refl], simp)
apply (rule measurable-compose[OF - return-measurable], auto intro: Mg)
done

also have
∧

x. x ∈ space M =⇒ space (f x) = space M ′

by (intro sets-eq-imp-space-eq sets-kernel[OF Mf])
with measurable-space[OF Mh]

have do {x ← M ; y ← f x ; return N (h x y) >>= g} = do {x ← M ; y ← f x; g
(h x y)}

by (intro ballI bind-cong bind-return[OF Mg]) (auto simp: space-pair-measure)
finally show ?thesis ..

qed

lemma (in prob-space) M-in-subprob[measurable (raw)]: M ∈ space (subprob-algebra
M)

by (simp add: space-subprob-algebra) unfold-locales

lemma (in pair-prob-space) pair-measure-eq-bind:
(M1

⊗
M M2) = (M1 >>= (λx. M2 >>= (λy. return (M1

⊗
M M2) (x, y))))

proof (rule measure-eqI)
have ps-M2 : prob-space M2 by unfold-locales
note return-measurable[measurable]
show sets (M1

⊗
M M2) = sets (M1 >>= (λx. M2 >>= (λy. return (M1

⊗
M

M2) (x, y))))
by (simp-all add: M1 .not-empty M2 .not-empty)

fix A assume [measurable]: A ∈ sets (M1
⊗

M M2)
show emeasure (M1

⊗
M M2) A = emeasure (M1 >>= (λx. M2 >>= (λy. return

(M1
⊗

M M2) (x, y)))) A
by (auto simp: M2 .emeasure-pair-measure M1 .not-empty M2 .not-empty emea-

sure-bind[where N=M1
⊗

M M2]
intro!: nn-integral-cong)

qed

lemma (in pair-prob-space) bind-rotate:
assumes C [measurable]: (λ(x, y). C x y) ∈ measurable (M1

⊗
M M2) (subprob-algebra

N)
shows (M1 >>= (λx. M2 >>= (λy. C x y))) = (M2 >>= (λy. M1 >>= (λx. C x

y)))
proof −

THEORY “Giry-Monad” 86

interpret swap: pair-prob-space M2 M1 by unfold-locales
note measurable-bind[where N=M2 , measurable]
note measurable-bind[where N=M1 , measurable]
have [simp]: M1 ∈ space (subprob-algebra M1) M2 ∈ space (subprob-algebra M2)

by (auto simp: space-subprob-algebra) unfold-locales
have (M1 >>= (λx. M2 >>= (λy. C x y))) =
(M1 >>= (λx. M2 >>= (λy. return (M1

⊗
M M2) (x, y)))) >>= (λ(x, y). C x y)

by (auto intro!: bind-cong simp: bind-return[where N=N] space-pair-measure
bind-assoc[where N=M1

⊗
M M2 and R=N])

also have . . . = (distr (M2
⊗

M M1) (M1
⊗

M M2) (λ(x, y). (y, x))) >>=
(λ(x, y). C x y)

unfolding pair-measure-eq-bind[symmetric] distr-pair-swap[symmetric] ..
also have . . . = (M2 >>= (λx. M1 >>= (λy. return (M2

⊗
M M1) (x, y)))) >>=

(λ(y, x). C x y)
unfolding swap.pair-measure-eq-bind[symmetric]

by (auto simp add: space-pair-measure M1 .not-empty M2 .not-empty bind-distr [OF
- C] intro!: bind-cong)

also have . . . = (M2 >>= (λy. M1 >>= (λx. C x y)))
by (auto intro!: bind-cong simp: bind-return[where N=N] space-pair-measure

bind-assoc[where N=M2
⊗

M M1 and R=N])
finally show ?thesis .

qed

lemma bind-return ′′: sets M = sets N =⇒ M >>= return N = M
by (cases space M = {})
(simp-all add: bind-empty space-empty[symmetric] bind-nonempty join-return ′

cong: subprob-algebra-cong)

lemma (in prob-space) distr-const[simp]:
c ∈ space N =⇒ distr M N (λx. c) = return N c
by (rule measure-eqI) (auto simp: emeasure-distr emeasure-space-1)

lemma return-count-space-eq-density:
return (count-space M) x = density (count-space M) (indicator {x})

by (rule measure-eqI)
(auto simp: indicator-inter-arith[symmetric] emeasure-density split: split-indicator)

lemma null-measure-in-space-subprob-algebra [simp]:
null-measure M ∈ space (subprob-algebra M) ←→ space M 6= {}

by(simp add: space-subprob-algebra subprob-space-null-measure-iff)

7.4 Giry monad on probability spaces
definition prob-algebra :: ′a measure ⇒ ′a measure measure where

prob-algebra K = restrict-space (subprob-algebra K) {M . prob-space M}

lemma space-prob-algebra: space (prob-algebra M) = {N . sets N = sets M ∧
prob-space N}
unfolding prob-algebra-def by (auto simp: space-subprob-algebra space-restrict-space

THEORY “Giry-Monad” 87

prob-space-imp-subprob-space)

lemma measurable-measure-prob-algebra[measurable]:
a ∈ sets A =⇒ (λM . Sigma-Algebra.measure M a) ∈ prob-algebra A →M borel
unfolding prob-algebra-def by (intro measurable-restrict-space1 measurable-measure-subprob-algebra)

lemma measurable-prob-algebraD:
f ∈ N →M prob-algebra M =⇒ f ∈ N →M subprob-algebra M
unfolding prob-algebra-def measurable-restrict-space2-iff by auto

lemma measure-measurable-prob-algebra2 :
Sigma (space M) A ∈ sets (M

⊗
M N) =⇒ L ∈ M →M prob-algebra N =⇒

(λx. Sigma-Algebra.measure (L x) (A x)) ∈ borel-measurable M
using measure-measurable-subprob-algebra2 [of M A N L] by (auto intro: mea-

surable-prob-algebraD)

lemma measurable-prob-algebraI :
(
∧

x. x ∈ space N =⇒ prob-space (f x)) =⇒ f ∈ N →M subprob-algebra M =⇒
f ∈ N →M prob-algebra M

unfolding prob-algebra-def by (intro measurable-restrict-space2) auto

lemma measurable-distr-prob-space:
assumes f : f ∈ M →M N
shows (λM ′. distr M ′ N f) ∈ prob-algebra M →M prob-algebra N
unfolding prob-algebra-def measurable-restrict-space2-iff

proof (intro conjI measurable-restrict-space1 measurable-distr f)
show (λM ′. distr M ′ N f) ∈ space (restrict-space (subprob-algebra M) (Collect

prob-space)) → Collect prob-space
using f by (auto simp: space-restrict-space space-subprob-algebra intro!: prob-space.prob-space-distr)

qed

lemma measurable-return-prob-space[measurable]: return N ∈ N →M prob-algebra
N

by (rule measurable-prob-algebraI) (auto simp: prob-space-return)

lemma measurable-distr-prob-space2 [measurable (raw)]:
assumes f : g ∈ L →M prob-algebra M (λ(x, y). f x y) ∈ L

⊗
M M →M N

shows (λx. distr (g x) N (f x)) ∈ L →M prob-algebra N
unfolding prob-algebra-def measurable-restrict-space2-iff

proof (intro conjI measurable-restrict-space1 measurable-distr2 [where M=M] f
measurable-prob-algebraD)

show (λx. distr (g x) N (f x)) ∈ space L → Collect prob-space
using f subprob-measurableD[OF measurable-prob-algebraD[OF f (1)]]
by (auto simp: measurable-restrict-space2-iff prob-algebra-def

intro!: prob-space.prob-space-distr)
qed

lemma measurable-bind-prob-space:
assumes f : f ∈ M →M prob-algebra N and g: g ∈ N →M prob-algebra R

THEORY “Giry-Monad” 88

shows (λx. bind (f x) g) ∈ M →M prob-algebra R
unfolding prob-algebra-def measurable-restrict-space2-iff

proof (intro conjI measurable-restrict-space1 measurable-bind2 [where N=N] f g
measurable-prob-algebraD)

show (λx. f x >>= g) ∈ space M → Collect prob-space
using g f subprob-measurableD[OF measurable-prob-algebraD[OF f]]
by (auto simp: measurable-restrict-space2-iff prob-algebra-def

intro!: prob-space.prob-space-bind[where S=R] AE-I2)
qed

lemma measurable-bind-prob-space2 [measurable (raw)]:
assumes f : f ∈ M →M prob-algebra N and g: (λ(x, y). g x y) ∈ (M

⊗
M N)

→M prob-algebra R
shows (λx. bind (f x) (g x)) ∈ M →M prob-algebra R
unfolding prob-algebra-def measurable-restrict-space2-iff

proof (intro conjI measurable-restrict-space1 measurable-bind[where N=N] f g
measurable-prob-algebraD)

show (λx. f x >>= g x) ∈ space M → Collect prob-space
using g f subprob-measurableD[OF measurable-prob-algebraD[OF f]]

using measurable-space[OF g]
by (auto simp: measurable-restrict-space2-iff prob-algebra-def space-pair-measure

Pi-iff
intro!: prob-space.prob-space-bind[where S=R] AE-I2)

qed (use g in simp)

lemma measurable-prob-algebra-generated:
assumes eq: sets N = sigma-sets Ω G and Int-stable G G ⊆ Pow Ω
assumes subsp:

∧
a. a ∈ space M =⇒ prob-space (K a)

assumes sets:
∧

a. a ∈ space M =⇒ sets (K a) = sets N
assumes

∧
A. A ∈ G =⇒ (λa. emeasure (K a) A) ∈ borel-measurable M

shows K ∈ measurable M (prob-algebra N)
unfolding measurable-restrict-space2-iff prob-algebra-def

proof
show K ∈ M →M subprob-algebra N
proof (rule measurable-subprob-algebra-generated[OF assms(1 ,2 ,3) - assms(5 ,6)])

fix a assume a ∈ space M then show subprob-space (K a)
using subsp[of a] by (intro prob-space-imp-subprob-space)

next
have (λa. emeasure (K a) Ω) ∈ borel-measurable M ←→ (λa. 1 ::ennreal) ∈

borel-measurable M
using sets-eq-imp-space-eq[of sigma Ω G N] ‹G ⊆ Pow Ω› eq sets-eq-imp-space-eq[OF

sets]
prob-space.emeasure-space-1 [OF subsp]

by (intro measurable-cong) auto
then show (λa. emeasure (K a) Ω) ∈ borel-measurable M by simp

qed
qed (use subsp in auto)

THEORY “Giry-Monad” 89

lemma in-space-prob-algebra:
x ∈ space (prob-algebra M) =⇒ emeasure x (space M) = 1
unfolding prob-algebra-def space-restrict-space space-subprob-algebra
by (auto dest!: prob-space.emeasure-space-1 sets-eq-imp-space-eq)

lemma prob-space-pair :
assumes prob-space M prob-space N shows prob-space (M

⊗
M N)

by (metis assms measurable-fst prob-space.distr-pair-fst prob-space-distrD)

lemma measurable-pair-prob[measurable]:
f ∈ M →M prob-algebra N =⇒ g ∈ M →M prob-algebra L =⇒ (λx. f x

⊗
M g

x) ∈ M →M prob-algebra (N
⊗

M L)
unfolding prob-algebra-def measurable-restrict-space2-iff
by (auto intro!: measurable-pair-measure prob-space-pair)

lemma emeasure-bind-prob-algebra:
assumes A: A ∈ space (prob-algebra N)
assumes B: B ∈ N →M prob-algebra L
assumes X : X ∈ sets L
shows emeasure (bind A B) X = (

∫
+x. emeasure (B x) X ∂A)

using A B
by (intro emeasure-bind[OF - - X])
(auto simp: space-prob-algebra measurable-prob-algebraD cong: measurable-cong-sets

intro!: prob-space.not-empty)

lemma prob-space-bind ′:
assumes A: A ∈ space (prob-algebra M) and B: B ∈ M →M prob-algebra N

shows prob-space (A >>= B)
using measurable-bind-prob-space[OF measurable-const, OF A B, THEN measur-

able-space, of undefined count-space UNIV]
by (simp add: space-prob-algebra)

lemma sets-bind ′:
assumes A: A ∈ space (prob-algebra M) and B: B ∈ M →M prob-algebra N

shows sets (A >>= B) = sets N
using measurable-bind-prob-space[OF measurable-const, OF A B, THEN measur-

able-space, of undefined count-space UNIV]
by (simp add: space-prob-algebra)

lemma bind-cong-AE ′:
assumes M : M ∈ space (prob-algebra L)

and f : f ∈ L →M prob-algebra N and g: g ∈ L →M prob-algebra N
and ae: AE x in M . f x = g x

shows bind M f = bind M g
proof (rule measure-eqI)

show sets (M >>= f) = sets (M >>= g)
unfolding sets-bind ′[OF M f] sets-bind ′[OF M g] ..

show A ∈ sets (M >>= f) =⇒ emeasure (M >>= f) A = emeasure (M >>= g) A
for A

THEORY “Giry-Monad” 90

unfolding sets-bind ′[OF M f]
using emeasure-bind-prob-algebra[OF M f , of A] emeasure-bind-prob-algebra[OF

M g, of A] ae
by (auto intro: nn-integral-cong-AE)

qed

lemma density-discrete:
countable A =⇒ sets N = Set.Pow A =⇒ (

∧
x. f x ≥ 0) =⇒ (

∧
x. x ∈ A =⇒ f

x = emeasure N {x}) =⇒
density (count-space A) f = N

by (rule measure-eqI-countable[of - A]) (auto simp: emeasure-density)

lemma distr-density-discrete:
fixes f ′

assumes countable A
assumes f ′ ∈ borel-measurable M
assumes g ∈ measurable M (count-space A)
defines f ≡ λx.

∫
+t. (if g t = x then 1 else 0) ∗ f ′ t ∂M

assumes
∧

x. x ∈ space M =⇒ g x ∈ A
shows density (count-space A) (λx. f x) = distr (density M f ′) (count-space A) g

proof (rule density-discrete)
fix x assume x: x ∈ A
have f x =

∫
+t. indicator (g −‘ {x} ∩ space M) t ∗ f ′ t ∂M (is - = ?I)

unfolding f-def
by (intro nn-integral-cong) (simp split: split-indicator)

also from x have in-sets: g −‘ {x} ∩ space M ∈ sets M
by (intro measurable-sets[OF assms(3)]) simp

have ?I = emeasure (density M f ′) (g −‘ {x} ∩ space M) unfolding f-def
by (subst emeasure-density[OF assms(2) in-sets], subst mult.commute) (rule

refl)
also from assms(3) x have ... = emeasure (distr (density M f ′) (count-space A)

g) {x}
by (subst emeasure-distr) simp-all

finally show f x = emeasure (distr (density M f ′) (count-space A) g) {x} .
qed (use assms in auto)

lemma bind-cong-AE :
assumes M = N
assumes f : f ∈ measurable N (subprob-algebra B)
assumes g: g ∈ measurable N (subprob-algebra B)
assumes ae: AE x in N . f x = g x
shows bind M f = bind N g

proof cases
assume space N = {} then show ?thesis

using ‹M = N › by (simp add: bind-empty)
next

assume space N 6= {}
show ?thesis unfolding ‹M = N ›
proof (rule measure-eqI)

THEORY “Giry-Monad” 91

have ∗: sets (N >>= f) = sets B
using sets-bind[OF sets-kernel[OF f] ‹space N 6= {}›] by simp

then show sets (N >>= f) = sets (N >>= g)
using sets-bind[OF sets-kernel[OF g] ‹space N 6= {}›] by auto

fix A assume A ∈ sets (N >>= f)
then have A ∈ sets B

unfolding ∗ .
with ae f g ‹space N 6= {}› show emeasure (N >>= f) A = emeasure (N >>=

g) A
by (subst (1 2) emeasure-bind[where N=B]) (auto intro!: nn-integral-cong-AE)

qed
qed

lemma bind-cong-simp: M = N =⇒ (
∧

x. x∈space M =simp=> f x = g x) =⇒
bind M f = bind N g

by (auto simp: simp-implies-def intro!: bind-cong)

lemma sets-bind-measurable:
assumes f : f ∈ measurable M (subprob-algebra B)
assumes M : space M 6= {}
shows sets (M >>= f) = sets B
using M by (intro sets-bind[OF sets-kernel[OF f]]) auto

lemma space-bind-measurable:
assumes f : f ∈ measurable M (subprob-algebra B)
assumes M : space M 6= {}
shows space (M >>= f) = space B
using M by (intro space-bind[OF sets-kernel[OF f]]) auto

lemma bind-distr-return:
f ∈ M →M N =⇒ g ∈ N →M L =⇒ space M 6= {} =⇒

distr M N f >>= (λx. return L (g x)) = distr M L (λx. g (f x))
by (subst bind-distr [OF - measurable-compose[OF - return-measurable]])

(auto intro!: bind-return-distr ′)

lemma (in prob-space) AE-eq-constD:
assumes AE x in M . x = y
shows M = return M y y ∈ space M

proof −
have AE x in M . x ∈ space M

by auto
with assms have AE x in M . y ∈ space M

by eventually-elim auto
thus y ∈ space M

by simp
show M = return M y
proof (rule measure-eqI)

fix X assume X : X ∈ sets M
have AE x in M . (x ∈ X) = (x ∈ (if y ∈ X then space M else {}))

THEORY “Projective-Family” 92

using assms by eventually-elim (use X ‹y ∈ space M › in auto)
hence emeasure M X = emeasure M (if y ∈ X then space M else {})

using X by (intro emeasure-eq-AE) auto
also have . . . = emeasure (return M y) X

using X by (auto simp: emeasure-space-1)
finally show emeasure M X =

qed auto
qed

end

8 Projective Family
theory Projective-Family
imports Giry-Monad
begin

lemma vimage-restrict-preserve-mono:
assumes J : J ⊆ I
and sets: A ⊆ (ΠE i∈J . S i) B ⊆ (ΠE i∈J . S i) and ne: (ΠE i∈I . S i) 6= {}
and eq: (λx. restrict x J) −‘ A ∩ (ΠE i∈I . S i) ⊆ (λx. restrict x J) −‘ B ∩ (ΠE

i∈I . S i)
shows A ⊆ B

proof (intro subsetI)
fix x assume x ∈ A
from ne obtain y where y:

∧
i. i ∈ I =⇒ y i ∈ S i by auto

have J ∩ (I − J) = {} by auto
show x ∈ B
proof cases

assume x: x ∈ (ΠE i∈J . S i)
have merge J (I − J) (x,y) ∈ (λx. restrict x J) −‘ A ∩ (ΠE i∈I . S i)

using y x ‹J ⊆ I › PiE-cancel-merge[of J I − J x y S] ‹x∈A›
by (auto simp del: PiE-cancel-merge simp add: Un-absorb1)

also have . . . ⊆ (λx. restrict x J) −‘ B ∩ (ΠE i∈I . S i) by fact
finally show x ∈ B

using y x ‹J ⊆ I › PiE-cancel-merge[of J I − J x y S] ‹x∈A› eq
by (auto simp del: PiE-cancel-merge simp add: Un-absorb1)

qed (insert ‹x∈A› sets, auto)
qed

locale projective-family =
fixes I :: ′i set and P :: ′i set ⇒ (′i ⇒ ′a) measure and M :: ′i ⇒ ′a measure
assumes P:

∧
J H . J ⊆ H =⇒ finite H =⇒ H ⊆ I =⇒ P J = distr (P H) (PiM

J M) (λf . restrict f J)
assumes prob-space-P:

∧
J . finite J =⇒ J ⊆ I =⇒ prob-space (P J)

begin

THEORY “Projective-Family” 93

lemma sets-P: finite J =⇒ J ⊆ I =⇒ sets (P J) = sets (PiM J M)
by (subst P[of J J]) simp-all

lemma space-P: finite J =⇒ J ⊆ I =⇒ space (P J) = space (PiM J M)
using sets-P by (rule sets-eq-imp-space-eq)

lemma not-empty-M : i ∈ I =⇒ space (M i) 6= {}
using prob-space-P[THEN prob-space.not-empty] by (auto simp: space-PiM space-P)

lemma not-empty: space (PiM I M) 6= {}
by (simp add: not-empty-M)

abbreviation
emb L K ≡ prod-emb L M K

lemma emb-preserve-mono:
assumes J ⊆ L L ⊆ I and sets: X ∈ sets (PiM J M) Y ∈ sets (PiM J M)
assumes emb L J X ⊆ emb L J Y
shows X ⊆ Y

proof (rule vimage-restrict-preserve-mono)
show X ⊆ (ΠE i∈J . space (M i)) Y ⊆ (ΠE i∈J . space (M i))

using sets[THEN sets.sets-into-space] by (auto simp: space-PiM)
show (ΠE i∈L. space (M i)) 6= {}

using ‹L ⊆ I › by (auto simp add: not-empty-M space-PiM [symmetric])
show (λx. restrict x J) −‘ X ∩ (ΠE i∈L. space (M i)) ⊆ (λx. restrict x J) −‘ Y
∩ (ΠE i∈L. space (M i))

using ‹prod-emb L M J X ⊆ prod-emb L M J Y › by (simp add: prod-emb-def)
qed fact

lemma emb-injective:
assumes L: J ⊆ L L ⊆ I and X : X ∈ sets (PiM J M) and Y : Y ∈ sets (PiM

J M)
shows emb L J X = emb L J Y =⇒ X = Y
by (intro antisym emb-preserve-mono[OF L X Y] emb-preserve-mono[OF L Y

X]) auto

lemma emeasure-P: J ⊆ K =⇒ finite K =⇒ K ⊆ I =⇒ X ∈ sets (PiM J M)
=⇒ P K (emb K J X) = P J X

by (auto intro!: emeasure-distr-restrict[symmetric] simp: P sets-P)

inductive-set generator :: (′i ⇒ ′a) set set where
finite J =⇒ J ⊆ I =⇒ X ∈ sets (PiM J M) =⇒ emb I J X ∈ generator

lemma algebra-generator : algebra (space (PiM I M)) generator
unfolding algebra-iff-Int

proof (safe elim!: generator .cases)
fix J X assume J : finite J J ⊆ I and X : X ∈ sets (PiM J M)

from X [THEN sets.sets-into-space] J show x ∈ emb I J X =⇒ x ∈ space (PiM

THEORY “Projective-Family” 94

I M) for x
by (auto simp: prod-emb-def space-PiM)

have emb I J (space (PiM J M) − X) ∈ generator
by (intro generator .intros J sets.Diff sets.top X)

with J show space (PiM I M) − emb I J X ∈ generator
by (simp add: space-PiM prod-emb-PiE)

fix K Y assume K : finite K K ⊆ I and Y : Y ∈ sets (PiM K M)
have emb I (J ∪ K) (emb (J ∪ K) J X) ∩ emb I (J ∪ K) (emb (J ∪ K) K Y)
∈ generator

unfolding prod-emb-Int[symmetric]
by (intro generator .intros sets.Int measurable-prod-emb) (auto intro!: J K X Y)

with J K X Y show emb I J X ∩ emb I K Y ∈ generator
by simp

qed (force simp: generator .simps prod-emb-empty[symmetric])

interpretation generator : algebra space (PiM I M) generator
by (rule algebra-generator)

lemma sets-PiM-generator : sets (PiM I M) = sigma-sets (space (PiM I M)) gen-
erator
proof (intro antisym sets.sigma-sets-subset)

show sets (PiM I M) ⊆ sigma-sets (space (PiM I M)) generator
unfolding sets-PiM-single space-PiM [symmetric]

proof (intro sigma-sets-mono ′, safe)
fix i A assume i ∈ I and A: A ∈ sets (M i)
then have {f ∈ space (PiM I M). f i ∈ A} = emb I {i} (ΠE j∈{i}. A)

by (auto simp: prod-emb-def space-PiM restrict-def Pi-iff PiE-iff exten-
sional-def)

with ‹i∈I › A show {f ∈ space (PiM I M). f i ∈ A} ∈ generator
by (auto intro!: generator .intros sets-PiM-I-finite)

qed
qed (auto elim!: generator .cases)

definition mu-G (‹µG›) where
µG A = (THE x . ∀ J⊆I . finite J −→ (∀X∈sets (PiM J M). A = emb I J X −→

x = emeasure (P J) X))

definition lim :: (′i ⇒ ′a) measure where
lim = extend-measure (space (PiM I M)) generator (λx. x) µG

lemma space-lim[simp]: space lim = space (PiM I M)
using generator .space-closed
unfolding lim-def by (intro space-extend-measure) simp

lemma sets-lim[simp, measurable]: sets lim = sets (PiM I M)
using generator .space-closed by (simp add: lim-def sets-PiM-generator sets-extend-measure)

THEORY “Projective-Family” 95

lemma mu-G-spec:
assumes J : finite J J ⊆ I X ∈ sets (PiM J M)
shows µG (emb I J X) = emeasure (P J) X
unfolding mu-G-def

proof (intro the-equality allI impI ballI)
fix K Y assume K : finite K K ⊆ I Y ∈ sets (PiM K M)

and [simp]: emb I J X = emb I K Y
have emeasure (P K) Y = emeasure (P (K ∪ J)) (emb (K ∪ J) K Y)

using K J by (simp add: emeasure-P)
also have emb (K ∪ J) K Y = emb (K ∪ J) J X

using K J by (simp add: emb-injective[of K ∪ J I])
also have emeasure (P (K ∪ J)) (emb (K ∪ J) J X) = emeasure (P J) X

using K J by (subst emeasure-P) simp-all
finally show emeasure (P J) X = emeasure (P K) Y ..

qed (insert J , force)

lemma positive-mu-G: positive generator µG
proof −

show ?thesis
proof (safe intro!: positive-def [THEN iffD2])

obtain J where finite J J ⊆ I by auto
then have µG (emb I J {}) = 0

by (subst mu-G-spec) auto
then show µG {} = 0 by simp

qed
qed

lemma additive-mu-G: additive generator µG
proof (safe intro!: additive-def [THEN iffD2] elim!: generator .cases)

fix J X K Y assume J : finite J J ⊆ I X ∈ sets (PiM J M)
and K : finite K K ⊆ I Y ∈ sets (PiM K M)
and emb I J X ∩ emb I K Y = {}

then have JK-disj: emb (J ∪ K) J X ∩ emb (J ∪ K) K Y = {}
by (intro emb-injective[of J ∪ K I - {}]) (auto simp: sets.Int prod-emb-Int)

have µG (emb I J X ∪ emb I K Y) = µG (emb I (J ∪ K) (emb (J ∪ K) J X
∪ emb (J ∪ K) K Y))

using J K by simp
also have . . . = emeasure (P (J ∪ K)) (emb (J ∪ K) J X ∪ emb (J ∪ K) K

Y)
using J K by (simp add: mu-G-spec sets.Un del: prod-emb-Un)

also have . . . = µG (emb I J X) + µG (emb I K Y)
using J K JK-disj by (simp add: plus-emeasure[symmetric] mu-G-spec emea-

sure-P sets-P)
finally show µG (emb I J X ∪ emb I K Y) = µG (emb I J X) + µG (emb I K

Y) .
qed

lemma emeasure-lim:
assumes JX : finite J J ⊆ I X ∈ sets (PiM J M)

THEORY “Projective-Family” 96

assumes cont:
∧

J X . (
∧

i. J i ⊆ I) =⇒ incseq J =⇒ (
∧

i. finite (J i)) =⇒ (
∧

i.
X i ∈ sets (PiM (J i) M)) =⇒

decseq (λi. emb I (J i) (X i)) =⇒ 0 < (INF i. P (J i) (X i)) =⇒ (
⋂

i. emb I
(J i) (X i)) 6= {}

shows emeasure lim (emb I J X) = P J X
proof −

have ∃µ. (∀ s∈generator . µ s = µG s) ∧
measure-space (space (PiM I M)) (sigma-sets (space (PiM I M)) generator) µ

proof (rule generator .caratheodory-empty-continuous[OF positive-mu-G addi-
tive-mu-G])

show
∧

A. A ∈ generator =⇒ µG A 6= ∞
proof (clarsimp elim!: generator .cases simp: mu-G-spec del: notI)

fix J assume finite J J ⊆ I
then interpret prob-space P J by (rule prob-space-P)
show

∧
X . X ∈ sets (PiM J M) =⇒ emeasure (P J) X 6= top

by simp
qed

next
fix A assume range A ⊆ generator and decseq A (

⋂
i. A i) = {}

then have ∀ i. ∃ J X . A i = emb I J X ∧ finite J ∧ J ⊆ I ∧ X ∈ sets (PiM
J M)

unfolding image-subset-iff generator .simps by blast
then obtain J X where A:

∧
i. A i = emb I (J i) (X i)

and ∗:
∧

i. finite (J i)
∧

i. J i ⊆ I
∧

i. X i ∈ sets (PiM (J i) M)
by metis

have (INF i. P (J i) (X i)) = 0
proof (rule ccontr)

assume INF-P: (INF i. P (J i) (X i)) 6= 0
have (

⋂
i. emb I (

⋃
n≤i. J n) (emb (

⋃
n≤i. J n) (J i) (X i))) 6= {}

proof (rule cont)
show decseq (λi. emb I (

⋃
n≤i. J n) (emb (

⋃
n≤i. J n) (J i) (X i)))

using ∗ ‹decseq A› by (subst prod-emb-trans) (auto simp: A[abs-def])
show 0 < (INF i. P (

⋃
n≤i. J n) (emb (

⋃
n≤i. J n) (J i) (X i)))

using ∗ INF-P by (subst emeasure-P) (auto simp: less-le intro!:
INF-greatest)

show incseq (λi.
⋃

n≤i. J n)
by (force simp: incseq-def)

qed (insert ∗, auto)
with ‹(

⋂
i. A i) = {}› ∗ show False

by (subst (asm) prod-emb-trans) (auto simp: A[abs-def])
qed
moreover have (λi. P (J i) (X i)) −−−−→ (INF i. P (J i) (X i))
proof (intro LIMSEQ-INF antimonoI)

fix x y :: nat assume x ≤ y
have P (J y ∪ J x) (emb (J y ∪ J x) (J y) (X y)) ≤ P (J y ∪ J x) (emb (J

y ∪ J x) (J x) (X x))
using ‹decseq A›[THEN decseqD, OF ‹x≤y›] ∗
by (auto simp: A sets-P del: subsetI intro!: emeasure-mono ‹x ≤ y›

emb-preserve-mono[of J y ∪ J x I , where X=emb (J y ∪ J x) (J y)

THEORY “Projective-Family” 97

(X y)])
then show P (J y) (X y) ≤ P (J x) (X x)

using ∗ by (simp add: emeasure-P)
qed
ultimately show (λi. µG (A i)) −−−−→ 0

by (auto simp: A[abs-def] mu-G-spec ∗)
qed
then obtain µ where eq: ∀ s∈generator . µ s = µG s

and ms: measure-space (space (PiM I M)) (sets (PiM I M)) µ
by (metis sets-PiM-generator)

show ?thesis
proof (subst emeasure-extend-measure[OF lim-def])

show A ∈ generator =⇒ µ A = µG A for A
using eq by simp

show positive (sets lim) µ countably-additive (sets lim) µ
using ms by (auto simp add: measure-space-def)

show (λx. x) ‘ generator ⊆ Pow (space (PiM I M))
using generator .space-closed by simp

show emb I J X ∈ generator µG (emb I J X) = emeasure (P J) X
using JX by (auto intro: generator .intros simp: mu-G-spec)

qed
qed

end

sublocale product-prob-space ⊆ projective-family I λJ . PiM J M M
unfolding projective-family-def

proof (intro conjI allI impI distr-restrict)
show

∧
J . finite J =⇒ prob-space (PiM J M)

by (intro prob-spaceI) (simp add: space-PiM emeasure-PiM emeasure-space-1)
qed auto

Proof due to Ionescu Tulcea.

locale Ionescu-Tulcea =
fixes P :: nat ⇒ (nat ⇒ ′a) ⇒ ′a measure and M :: nat ⇒ ′a measure
assumes P[measurable]:

∧
i. P i ∈ measurable (PiM {0 ..<i} M) (subprob-algebra

(M i))
assumes prob-space-P:

∧
i x. x ∈ space (PiM {0 ..<i} M) =⇒ prob-space (P i

x)
begin

lemma non-empty[simp]: space (M i) 6= {}
proof (induction i rule: less-induct)

case (less i)
then obtain x where

∧
j. j < i =⇒ x j ∈ space (M j)

unfolding ex-in-conv[symmetric] by metis
then have ∗: restrict x {0 ..<i} ∈ space (PiM {0 ..<i} M)

by (auto simp: space-PiM PiE-iff)
then interpret prob-space P i (restrict x {0 ..<i})

THEORY “Projective-Family” 98

by (rule prob-space-P)
show ?case

using not-empty subprob-measurableD(1)[OF P, OF ∗] by simp
qed

lemma space-PiM-not-empty[simp]: space (PiM UNIV M) 6= {}
unfolding space-PiM-empty-iff by auto

lemma space-P: x ∈ space (PiM {0 ..<n} M) =⇒ space (P n x) = space (M n)
by (simp add: P[THEN subprob-measurableD(1)])

lemma sets-P[measurable-cong]: x ∈ space (PiM {0 ..<n} M) =⇒ sets (P n x) =
sets (M n)

by (simp add: P[THEN subprob-measurableD(2)])

definition eP :: nat ⇒ (nat ⇒ ′a) ⇒ (nat ⇒ ′a) measure where
eP n ω = distr (P n ω) (PiM {0 ..<Suc n} M) (fun-upd ω n)

lemma measurable-eP[measurable]:
eP n ∈ measurable (PiM {0 ..< n} M) (subprob-algebra (PiM {0 ..<Suc n} M))
by (auto simp: eP-def [abs-def] measurable-split-conv

intro!: measurable-fun-upd[where J={0 ..<n}] measurable-distr2 [OF - P])

lemma space-eP:
x ∈ space (PiM {0 ..<n} M) =⇒ space (eP n x) = space (PiM {0 ..<Suc n} M)
by (simp add: eP-def)

lemma sets-eP[measurable]:
x ∈ space (PiM {0 ..<n} M) =⇒ sets (eP n x) = sets (PiM {0 ..<Suc n} M)
by (simp add: eP-def)

lemma prob-space-eP: x ∈ space (PiM {0 ..<n} M) =⇒ prob-space (eP n x)
unfolding eP-def
by (intro prob-space.prob-space-distr prob-space-P measurable-fun-upd[where J={0 ..<n}])

auto

lemma nn-integral-eP:
ω ∈ space (PiM {0 ..<n} M) =⇒ f ∈ borel-measurable (PiM {0 ..<Suc n} M)

=⇒
(
∫

+x. f x ∂eP n ω) = (
∫

+x. f (fun-upd ω n x) ∂P n ω)
unfolding eP-def
by (subst nn-integral-distr) (auto intro!: measurable-fun-upd[where J={0 ..<n}]

simp: space-PiM PiE-iff)

lemma emeasure-eP:
assumes ω[simp]: ω ∈ space (PiM {0 ..<n} M) and A[measurable]: A ∈ sets

(PiM {0 ..<Suc n} M)
shows eP n ω A = P n ω ((λx. fun-upd ω n x) −‘ A ∩ space (M n))
using nn-integral-eP[of ω n indicator A]

THEORY “Projective-Family” 99

apply (simp add: sets-eP nn-integral-indicator [symmetric] sets-P del: nn-integral-indicator)
apply (subst nn-integral-indicator [symmetric])
using measurable-sets[OF measurable-fun-upd[OF - measurable-const[OF ω] mea-

surable-id] A, of n]
apply (auto simp add: sets-P atLeastLessThanSuc space-P simp del: nn-integral-indicator

intro!: nn-integral-cong split: split-indicator)
done

primrec C :: nat ⇒ nat ⇒ (nat ⇒ ′a) ⇒ (nat ⇒ ′a) measure where
C n 0 ω = return (PiM {0 ..<n} M) ω
| C n (Suc m) ω = C n m ω >>= eP (n + m)

lemma measurable-C [measurable]:
C n m ∈ measurable (PiM {0 ..<n} M) (subprob-algebra (PiM {0 ..<n + m} M))
by (induction m) auto

lemma space-C :
x ∈ space (PiM {0 ..<n} M) =⇒ space (C n m x) = space (PiM {0 ..<n + m}

M)
by (simp add: measurable-C [THEN subprob-measurableD(1)])

lemma sets-C [measurable-cong]:
x ∈ space (PiM {0 ..<n} M) =⇒ sets (C n m x) = sets (PiM {0 ..<n + m} M)
by (simp add: measurable-C [THEN subprob-measurableD(2)])

lemma prob-space-C : x ∈ space (PiM {0 ..<n} M) =⇒ prob-space (C n m x)
proof (induction m)

case (Suc m) then show ?case
by (auto intro!: prob-space.prob-space-bind[where S=PiM {0 ..<Suc (n + m)}

M]
simp: space-C prob-space-eP)

qed (auto intro!: prob-space-return simp: space-PiM)

lemma split-C :
assumes ω: ω ∈ space (PiM {0 ..<n} M) shows (C n m ω >>= C (n + m) l) =

C n (m + l) ω
proof (induction l)

case 0
with ω show ?case

by (simp add: bind-return-distr ′ prob-space-C [THEN prob-space.not-empty]
distr-cong[OF refl sets-C [symmetric, OF ω]])

next
case (Suc l) with ω show ?case
by (simp add: bind-assoc[symmetric, OF - measurable-eP]) (simp add: ac-simps)

qed

lemma nn-integral-C :
assumes m ≤ m ′ and f [measurable]: f ∈ borel-measurable (PiM {0 ..<n+m}

THEORY “Projective-Family” 100

M)
and nonneg:

∧
x. x ∈ space (PiM {0 ..<n+m} M) =⇒ 0 ≤ f x

and x: x ∈ space (PiM {0 ..<n} M)
shows (

∫
+x. f x ∂C n m x) = (

∫
+x. f (restrict x {0 ..<n+m}) ∂C n m ′ x)

using ‹m ≤ m ′›
proof (induction rule: dec-induct)

case (step i)
let ?E = λx. f (restrict x {0 ..<n + m}) and ?C = λi f .

∫
+x. f x ∂C n i x

from ‹m≤i› x have ?C i ?E = ?C (Suc i) ?E
by (auto simp: nn-integral-bind[where B=PiM {0 ..< Suc (n + i)} M] space-C

nn-integral-eP
intro!: nn-integral-cong)

(simp add: space-PiM PiE-iff nonneg prob-space.emeasure-space-1 [OF
prob-space-P])

with step show ?case by (simp del: restrict-apply)
qed (auto simp: space-PiM space-C [OF x] simp del: restrict-apply intro!: nn-integral-cong)

lemma emeasure-C :
assumes m ≤ m ′ and A[measurable]: A ∈ sets (PiM {0 ..<n+m} M) and [simp]:

x ∈ space (PiM {0 ..<n} M)
shows emeasure (C n m ′ x) (prod-emb {0 ..<n + m ′} M {0 ..<n+m} A) =

emeasure (C n m x) A
using assms
by (subst (1 2) nn-integral-indicator [symmetric])
(auto intro!: nn-integral-cong split: split-indicator simp del: nn-integral-indicator

simp: nn-integral-C [of m m ′ - n] prod-emb-iff space-PiM PiE-iff sets-C
space-C)

lemma distr-C :
assumes m ≤ m ′ and [simp]: x ∈ space (PiM {0 ..<n} M)
shows C n m x = distr (C n m ′ x) (PiM {0 ..<n+m} M) (λx. restrict x

{0 ..<n+m})
proof (rule measure-eqI)

fix A assume A ∈ sets (C n m x)
with ‹m ≤ m ′› show emeasure (C n m x) A = emeasure (distr (C n m ′ x) (PiM
{0 ..<n + m} M) (λx. restrict x {0 ..<n + m})) A

by (subst emeasure-C [symmetric, OF ‹m ≤ m ′›]) (auto intro!: emeasure-distr-restrict[symmetric]
simp: sets-C)
qed (simp add: sets-C)

definition up-to :: nat set ⇒ nat where
up-to J = (LEAST n. ∀ i≥n. i /∈ J)

lemma up-to-less: finite J =⇒ i ∈ J =⇒ i < up-to J
unfolding up-to-def
by (rule LeastI2 [of - Suc (Max J)]) (auto simp: Suc-le-eq not-le[symmetric])

lemma up-to-iff : finite J =⇒ up-to J ≤ n ←→ (∀ i∈J . i < n)
proof safe

THEORY “Projective-Family” 101

show finite J =⇒ up-to J ≤ n =⇒ i ∈ J =⇒ i < n for i
using up-to-less[of J i] by auto

qed (auto simp: up-to-def intro!: Least-le)

lemma up-to-iff-Ico: finite J =⇒ up-to J ≤ n ←→ J ⊆ {0 ..<n}
by (auto simp: up-to-iff)

lemma up-to: finite J =⇒ J ⊆ {0 ..< up-to J}
by (auto simp: up-to-less)

lemma up-to-mono: J ⊆ H =⇒ finite H =⇒ up-to J ≤ up-to H
by (auto simp add: up-to-iff finite-subset up-to-less)

definition CI :: nat set ⇒ (nat ⇒ ′a) measure where
CI J = distr (C 0 (up-to J) (λx. undefined)) (PiM J M) (λf . restrict f J)

sublocale PF : projective-family UNIV CI
unfolding projective-family-def

proof safe
show finite J =⇒ prob-space (CI J) for J

using up-to[of J] unfolding CI-def
by (intro prob-space.prob-space-distr prob-space-C measurable-restrict) auto

note measurable-cong-sets[OF sets-C , simp]
have [simp]: J ⊆ H =⇒ (λf . restrict f J) ∈ measurable (PiM H M) (PiM J M)

for H J
by (auto intro!: measurable-restrict)

show J ⊆ H =⇒ finite H =⇒ CI J = distr (CI H) (PiM J M) (λf . restrict f
J) for J H

by (simp add: CI-def distr-C [OF up-to-mono[of J H]] up-to up-to-mono distr-distr
comp-def

inf .absorb2 finite-subset)
qed

lemma emeasure-CI ′:
finite J =⇒ X ∈ sets (PiM J M) =⇒ CI J X = C 0 (up-to J) (λ-. undefined)

(PF .emb {0 ..<up-to J} J X)
unfolding CI-def using up-to[of J] by (rule emeasure-distr-restrict) (auto simp:

sets-C)

lemma emeasure-CI :
J ⊆ {0 ..<n} =⇒ X ∈ sets (PiM J M) =⇒ CI J X = C 0 n (λ-. undefined)

(PF .emb {0 ..<n} J X)
apply (subst emeasure-CI ′, simp-all add: finite-subset)
apply (subst emeasure-C [symmetric, of up-to J n])
apply (auto simp: finite-subset up-to-iff-Ico up-to-less)
apply (subst prod-emb-trans)
apply (auto simp: up-to-less finite-subset up-to-iff-Ico)
done

THEORY “Projective-Family” 102

lemma lim:
assumes J : finite J and X : X ∈ sets (PiM J M)
shows emeasure PF .lim (PF .emb UNIV J X) = emeasure (CI J) X

proof (rule PF .emeasure-lim[OF J subset-UNIV X])
fix J X ′ assume J [simp]:

∧
i. finite (J i) and X ′[measurable]:

∧
i. X ′ i ∈ sets

(PiM (J i) M)
and dec: decseq (λi. PF .emb UNIV (J i) (X ′ i))

define X where X n =
(
⋂

i∈{i. J i ⊆ {0 ..< n}}. PF .emb {0 ..<n} (J i) (X ′ i)) ∩ space (PiM {0 ..<n}
M) for n

have sets-X [measurable]: X n ∈ sets (PiM {0 ..<n} M) for n
by (cases {i. J i ⊆ {0 ..< n}} = {})

(simp-all add: X-def , auto intro!: sets.countable-INT ′ sets.Int)

have dec-X : n ≤ m =⇒ X m ⊆ PF .emb {0 ..<m} {0 ..<n} (X n) for n m
unfolding X-def using ivl-subset[of 0 n 0 m]
by (cases {i. J i ⊆ {0 ..< n}} = {})

(auto simp add: prod-emb-Int prod-emb-PiE space-PiM simp del: ivl-subset)

have dec-X ′: PF .emb {0 ..<n} (J j) (X ′ j) ⊆ PF .emb {0 ..<n} (J i) (X ′ i)
if [simp]: J i ⊆ {0 ..<n} J j ⊆ {0 ..<n} i ≤ j for n i j
by (rule PF .emb-preserve-mono[of {0 ..<n} UNIV]) (auto del: subsetI intro:

dec[THEN antimonoD])

assume 0 < (INF i. CI (J i) (X ′ i))
also have . . . ≤ (INF i. C 0 i (λx. undefined) (X i))
proof (intro INF-greatest)

fix n
interpret C : prob-space C 0 n (λx. undefined)

by (rule prob-space-C) simp
show (INF i. CI (J i) (X ′ i)) ≤ C 0 n (λx. undefined) (X n)
proof cases

assume {i. J i ⊆ {0 ..< n}} = {} with C .emeasure-space-1 show ?thesis
by (auto simp add: X-def space-C intro!: INF-lower2 [of 0] prob-space.measure-le-1

PF .prob-space-P)
next

assume ∗: {i. J i ⊆ {0 ..< n}} 6= {}
have (INF i. CI (J i) (X ′ i)) ≤

(INF i∈{i. J i ⊆ {0 ..<n}}. C 0 n (λ-. undefined) (PF .emb {0 ..<n} (J i)
(X ′ i)))

by (intro INF-superset-mono) (auto simp: emeasure-CI)
also have . . . = C 0 n (λ-. undefined) (

⋂
i∈{i. J i ⊆ {0 ..<n}}. (PF .emb

{0 ..<n} (J i) (X ′ i)))
using ∗ by (intro emeasure-INT-decseq-subset[symmetric]) (auto intro!:

dec-X ′ del: subsetI simp: sets-C)
also have . . . = C 0 n (λ-. undefined) (X n)

using ∗ by (auto simp add: X-def INT-extend-simps)

THEORY “Projective-Family” 103

finally show (INF i. CI (J i) (X ′ i)) ≤ C 0 n (λ-. undefined) (X n) .
qed

qed
finally have pos: 0 < (INF i. C 0 i (λx. undefined) (X i)) .
from less-INF-D[OF this, of 0] have X 0 6= {}

by auto

{ fix ω n assume ω: ω ∈ space (PiM {0 ..<n} M)
let ?C = λi. emeasure (C n i ω) (X (n + i))
let ?C ′ = λi x. emeasure (C (Suc n) i (fun-upd ω n x)) (X (Suc n + i))
have M :

∧
i. ?C ′ i ∈ borel-measurable (P n ω)

using ω[measurable, simp] measurable-fun-upd[where J={0 ..<n}] by mea-
surable auto

assume 0 < (INF i. ?C i)
also have . . . ≤ (INF i. emeasure (C n (1 + i) ω) (X (n + (1 + i))))

by (intro INF-greatest INF-lower) auto
also have . . . = (INF i.

∫
+x. ?C ′ i x ∂P n ω)

using ω measurable-C [of Suc n]
apply (intro INF-cong refl)
apply (subst split-C [symmetric, OF ω])
apply (subst emeasure-bind[OF - - sets-X])
apply (simp-all del: C .simps add: space-C)
apply measurable
apply simp
apply (simp add: bind-return[OF measurable-eP] nn-integral-eP)
done

also have . . . = (
∫

+x. (INF i. ?C ′ i x) ∂P n ω)
proof (rule nn-integral-monotone-convergence-INF-AE [symmetric])

have (
∫

+x. ?C ′ 0 x ∂P n ω) ≤ (
∫

+x. 1 ∂P n ω)
by (intro nn-integral-mono) (auto split: split-indicator)

also have . . . < ∞
using prob-space-P[OF ω, THEN prob-space.emeasure-space-1] by simp

finally show (
∫

+x. ?C ′ 0 x ∂P n ω) < ∞ .
next

show AE x in P n ω. ?C ′ (Suc i) x ≤ ?C ′ i x for i
proof (rule AE-I2)

fix x assume x ∈ space (P n ω)
with ω have ω ′: fun-upd ω n x ∈ space (PiM {0 ..<Suc n} M)

by (auto simp: space-P[OF ω] space-PiM PiE-iff extensional-def)
with ω show ?C ′ (Suc i) x ≤ ?C ′ i x

apply (subst emeasure-C [symmetric, of i Suc i])
apply (auto intro!: emeasure-mono[OF dec-X] del: subsetI

simp: sets-C space-P)
apply (subst sets-bind[OF sets-eP])
apply (simp-all add: space-C space-P)
done

qed
qed fact

THEORY “Projective-Family” 104

finally have (
∫

+x. (INF i. ?C ′ i x) ∂P n ω) 6= 0
by simp

with M have ∃ F x in ae-filter (P n ω). 0 < (INF i. ?C ′ i x)
by (subst (asm) nn-integral-0-iff-AE)

(auto intro!: borel-measurable-INF simp: Filter .not-eventually not-le
zero-less-iff-neq-zero)

then have ∃ F x in ae-filter (P n ω). x ∈ space (M n) ∧ 0 < (INF i. ?C ′ i x)
by (rule frequently-mp[rotated]) (auto simp: space-P ω)

then obtain x where x ∈ space (M n) 0 < (INF i. ?C ′ i x)
by (auto dest: frequently-ex)

from this(2)[THEN less-INF-D, of 0] this(2)
have ∃ x. fun-upd ω n x ∈ X (Suc n) ∧ 0 < (INF i. ?C ′ i x)

by (intro exI [of - x]) (simp split: split-indicator-asm) }
note step = this

let ?ω = λω n x. (restrict ω {0 ..<n})(n := x)
let ?L = λω n r . INF i. emeasure (C (Suc n) i (?ω ω n r)) (X (Suc n + i))
have ∗: (

∧
i. i < n =⇒ ?ω ω i (ω i) ∈ X (Suc i)) =⇒

restrict ω {0 ..<n} ∈ space (PiM {0 ..<n} M) for ω n
using sets.sets-into-space[OF sets-X , of n]
by (cases n) (auto simp: atLeastLessThanSuc restrict-def [of - {}])

have ∃ω. ∀n. ?ω ω n (ω n) ∈ X (Suc n) ∧ 0 < ?L ω n (ω n)
proof (rule dependent-wellorder-choice)

fix n ω assume IH :
∧

i. i < n =⇒ ?ω ω i (ω i) ∈ X (Suc i) ∧ 0 < ?L ω i (ω
i)

show ∃ r . ?ω ω n r ∈ X (Suc n) ∧ 0 < ?L ω n r
proof (rule step)

show restrict ω {0 ..<n} ∈ space (PiM {0 ..<n} M)
using IH [THEN conjunct1] by (rule ∗)

show 0 < (INF i. emeasure (C n i (restrict ω {0 ..<n})) (X (n + i)))
proof (cases n)

case 0 with pos show ?thesis
by (simp add: CI-def restrict-def)

next
case (Suc i) then show ?thesis

using IH [of i, THEN conjunct2] by (simp add: atLeastLessThanSuc)
qed

qed
qed (simp cong: restrict-cong)
then obtain ω where ω:

∧
n. ?ω ω n (ω n) ∈ X (Suc n)

by auto
from this[THEN ∗] have ω-space: ω ∈ space (PiM UNIV M)

by (auto simp: space-PiM PiE-iff Ball-def)
have ∗: ω ∈ PF .emb UNIV {0 ..<n} (X n) for n
proof (cases n)

case 0 with ω-space ‹X 0 6= {}› sets.sets-into-space[OF sets-X , of 0] show
?thesis

by (auto simp add: space-PiM prod-emb-def restrict-def PiE-iff)
next

THEORY “Projective-Family” 105

case (Suc i) then show ?thesis
using ω[of i] ω-space by (auto simp: prod-emb-def space-PiM PiE-iff atLeast-

LessThanSuc)
qed
have ∗∗: {i. J i ⊆ {0 ..<up-to (J n)}} 6= {} for n

by (auto intro!: exI [of - n] up-to J)
have ω ∈ PF .emb UNIV (J n) (X ′ n) for n
using ∗[of up-to (J n)] up-to[of J n] by (simp add: X-def prod-emb-Int prod-emb-INT [OF

∗∗])
then show (

⋂
i. PF .emb UNIV (J i) (X ′ i)) 6= {}

by auto
qed

lemma distr-lim: assumes J [simp]: finite J shows distr PF .lim (PiM J M) (λx.
restrict x J) = CI J

apply (rule measure-eqI)
apply (simp add: CI-def)
apply (simp add: emeasure-distr measurable-cong-sets[OF PF .sets-lim] lim[symmetric]

prod-emb-def space-PiM)
done

end

lemma (in product-prob-space) emeasure-lim-emb:
assumes ∗: finite J J ⊆ I X ∈ sets (PiM J M)
shows emeasure lim (emb I J X) = emeasure (PiM J M) X

proof (rule emeasure-lim[OF ∗], goal-cases)
case (1 J X)

have ∃Q. (∀ i. sets Q = PiM (
⋃

i. J i) M ∧ distr Q (PiM (J i) M) (λx. restrict
x (J i)) = PiM (J i) M)

proof cases
assume finite (

⋃
i. J i)

then have distr (PiM (
⋃

i. J i) M) (PiM (J i) M) (λx. restrict x (J i)) =
PiM (J i) M for i

by (intro distr-restrict[symmetric]) auto
then show ?thesis

by auto
next

assume inf : infinite (
⋃

i. J i)
moreover have count: countable (

⋃
i. J i)

using 1 (3) by (auto intro: countable-finite)
define f where f = from-nat-into (

⋃
i. J i)

define t where t = to-nat-on (
⋃

i. J i)
have ft[simp]: x ∈ J i =⇒ f (t x) = x for x i
unfolding f-def t-def using inf count by (intro from-nat-into-to-nat-on) auto

have tf [simp]: t (f i) = i for i
unfolding t-def f-def by (intro to-nat-on-from-nat-into-infinite inf count)

have inj-t: inj-on t (
⋃

i. J i)

THEORY “Projective-Family” 106

using count by (auto simp: t-def)
then have inj-t-J : inj-on t (J i) for i

by (rule inj-on-subset) auto
interpret IT : Ionescu-Tulcea λi ω. M (f i) λi. M (f i)

by standard auto
interpret Mf : product-prob-space λx. M (f x) UNIV

by standard
have C-eq-PiM : IT .C 0 n (λ-. undefined) = PiM {0 ..<n} (λx. M (f x)) for n
proof (induction n)

case 0 then show ?case
by (auto simp: PiM-empty intro!: measure-eqI dest!: subset-singletonD)

next
case (Suc n) then show ?case

apply (auto intro!: measure-eqI simp: sets-bind[OF IT .sets-eP] emea-
sure-bind[OF - IT .measurable-eP])

apply (auto simp: Mf .product-nn-integral-insert nn-integral-indicator [symmetric]
atLeastLessThanSuc IT .emeasure-eP space-PiM

split: split-indicator simp del: nn-integral-indicator intro!:
nn-integral-cong)

done
qed
have CI-eq-PiM : IT .CI X = PiM X (λx. M (f x)) if X : finite X for X
by (auto simp: IT .up-to-less X IT .CI-def C-eq-PiM intro!: Mf .distr-restrict[symmetric])

let ?Q = distr IT .PF .lim (PiM (
⋃

i. J i) M) (λω. λx∈
⋃

i. J i. ω (t x))
{ fix i

have distr ?Q (PiM (J i) M) (λx. restrict x (J i)) =
distr IT .PF .lim (PiM (J i) M) ((λω. λn∈J i. ω (t n)) ◦ (λω. restrict ω (t‘J

i)))
proof (subst distr-distr)

have (λω. ω (t x)) ∈ measurable (PiM UNIV (λx. M (f x))) (M x) if x: x
∈ J i for x i

using measurable-component-singleton[of t x UNIV λx. M (f x)] unfolding
ft[OF x] by simp

then show (λω. λx∈
⋃

i. J i. ω (t x)) ∈ measurable IT .PF .lim (PiM (
⋃
(J

‘ UNIV)) M)
by (auto intro!: measurable-restrict simp: measurable-cong-sets[OF IT .PF .sets-lim

refl])
qed (auto intro!: distr-cong measurable-restrict measurable-component-singleton)

also have . . . = distr (distr IT .PF .lim (PiM (t‘J i) (λx. M (f x))) (λω.
restrict ω (t‘J i))) (PiM (J i) M) (λω. λn∈J i. ω (t n))

proof (intro distr-distr [symmetric])
have (λω. ω (t x)) ∈ measurable (PiM (t‘J i) (λx. M (f x))) (M x) if x: x

∈ J i for x
using measurable-component-singleton[of t x t‘J i λx. M (f x)] x unfolding

ft[OF x] by auto
then show (λω. λn∈J i. ω (t n)) ∈ measurable (PiM (t ‘ J i) (λx. M (f

x))) (PiM (J i) M)
by (auto intro!: measurable-restrict)

THEORY “Infinite-Product-Measure” 107

qed (auto intro!: measurable-restrict simp: measurable-cong-sets[OF IT .PF .sets-lim
refl])

also have . . . = distr (PiM (t‘J i) (λx. M (f x))) (PiM (J i) M) (λω. λn∈J
i. ω (t n))

using ‹finite (J i)› by (subst IT .distr-lim) (auto simp: CI-eq-PiM)
also have . . . = PiM (J i) M

using Mf .distr-reorder [of t J i] by (simp add: 1 inj-t-J cong: PiM-cong)
finally have distr ?Q (PiM (J i) M) (λx. restrict x (J i)) = PiM (J i) M . }

then show ∃Q. ∀ i. sets Q = PiM (
⋃

i. J i) M ∧ distr Q (PiM (J i) M) (λx.
restrict x (J i)) = PiM (J i) M

by (intro exI [of - ?Q]) auto
qed
then obtain Q where sets-Q: sets Q = PiM (

⋃
i. J i) M

and Q:
∧

i. distr Q (PiM (J i) M) (λx. restrict x (J i)) = PiM (J i) M by
blast

from 1 interpret Q: prob-space Q
by (intro prob-space-distrD[of λx. restrict x (J 0) Q PiM (J 0) M])

(auto simp: Q measurable-cong-sets[OF sets-Q]
intro!: prob-space-P measurable-restrict measurable-component-singleton)

have 0 < (INF i. emeasure (PiM (J i) M) (X i)) by fact
also have . . . = (INF i. emeasure Q (emb (

⋃
i. J i) (J i) (X i)))

by (simp add: emeasure-distr-restrict[OF - sets-Q 1 (4), symmetric] SUP-upper
Q)

also have . . . = emeasure Q (
⋂

i. emb (
⋃

i. J i) (J i) (X i))
proof (rule INF-emeasure-decseq)

from 1 show decseq (λn. emb (
⋃

i. J i) (J n) (X n))
by (intro antimonoI emb-preserve-mono[where X=emb (

⋃
i. J i) (J n) (X

n) and L=I and J=
⋃

i. J i for n]
measurable-prod-emb)
(auto simp: SUP-least SUP-upper antimono-def)

qed (insert 1 , auto simp: sets-Q)
finally have (

⋂
i. emb (

⋃
i. J i) (J i) (X i)) 6= {}

by auto
moreover have (

⋂
i. emb I (J i) (X i)) = {} =⇒ (

⋂
i. emb (

⋃
i. J i) (J i) (X

i)) = {}
using 1 by (intro emb-injective[of

⋃
i. J i I - {}] sets.countable-INT) (auto

simp: SUP-least SUP-upper)
ultimately show ?case by auto

qed

end

9 Infinite Product Measure
theory Infinite-Product-Measure

imports Probability-Measure Projective-Family
begin

THEORY “Infinite-Product-Measure” 108

lemma (in product-prob-space) distr-PiM-restrict-finite:
assumes finite J J ⊆ I
shows distr (PiM I M) (PiM J M) (λx. restrict x J) = PiM J M

proof (rule PiM-eqI)
fix X assume X :

∧
i. i ∈ J =⇒ X i ∈ sets (M i)

{ fix J X assume J : J 6= {} ∨ I = {} finite J J ⊆ I and X :
∧

i. i ∈ J =⇒ X
i ∈ sets (M i)

have emeasure (PiM I M) (emb I J (PiE J X)) = (
∏

i∈J . M i (X i))
proof (subst emeasure-extend-measure-Pair [OF PiM-def , where µ ′=lim], goal-cases)

case 1 then show ?case
by (simp add: M .emeasure-space-1 emeasure-PiM Pi-iff sets-PiM-I-finite

emeasure-lim-emb)
next

case (2 J X)
then have emb I J (PiE J X) ∈ sets (PiM I M)

by (intro measurable-prod-emb sets-PiM-I-finite) auto
from this[THEN sets.sets-into-space] show ?case

by (simp add: space-PiM)
qed (insert assms J X , simp-all del: sets-lim

add: M .emeasure-space-1 sets-lim[symmetric] emeasure-countably-additive
emeasure-positive) }

note ∗ = this

have emeasure (PiM I M) (emb I J (PiE J X)) = (
∏

i∈J . M i (X i))
proof (cases J 6= {} ∨ I = {})

case False
then obtain i where i: J = {} i ∈ I by auto
then have emb I {} {λx. undefined} = emb I {i} (ΠE i∈{i}. space (M i))

by (auto simp: space-PiM prod-emb-def)
with i show ?thesis

by (simp add: ∗ M .emeasure-space-1)
next

case True
then show ?thesis

by (simp add: ∗[OF - assms X])
qed
with assms show emeasure (distr (PiM I M) (PiM J M) (λx. restrict x J))

(PiE J X) = (
∏

i∈J . emeasure (M i) (X i))
by (subst emeasure-distr-restrict[OF - refl]) (auto intro!: sets-PiM-I-finite X)

qed (insert assms, auto)

lemma (in product-prob-space) emeasure-PiM-emb ′:
J ⊆ I =⇒ finite J =⇒ X ∈ sets (PiM J M) =⇒ emeasure (PiM I M) (emb I J

X) = PiM J M X
by (subst distr-PiM-restrict-finite[symmetric, of J])

(auto intro!: emeasure-distr-restrict[symmetric])

lemma (in product-prob-space) emeasure-PiM-emb:

THEORY “Infinite-Product-Measure” 109

J ⊆ I =⇒ finite J =⇒ (
∧

i. i ∈ J =⇒ X i ∈ sets (M i)) =⇒
emeasure (PiM I M) (emb I J (PiE J X)) = (

∏
i∈J . emeasure (M i) (X i))

by (subst emeasure-PiM-emb ′) (auto intro!: emeasure-PiM)

sublocale product-prob-space ⊆ P?: prob-space PiM I M
proof

have ∗: emb I {} {λx. undefined} = space (PiM I M)
by (auto simp: prod-emb-def space-PiM)

show emeasure (PiM I M) (space (PiM I M)) = 1
using emeasure-PiM-emb[of {} λ-. {}] by (simp add: ∗)

qed

lemma prob-space-PiM :
assumes M :

∧
i. i ∈ I =⇒ prob-space (M i) shows prob-space (PiM I M)

proof −
let ?M = λi. if i ∈ I then M i else count-space {undefined}
interpret M ′: prob-space ?M i for i

using M by (cases i ∈ I) (auto intro!: prob-spaceI)
interpret product-prob-space ?M I

by unfold-locales
have prob-space (ΠM i∈I . ?M i)

by unfold-locales
also have (ΠM i∈I . ?M i) = (ΠM i∈I . M i)

by (intro PiM-cong) auto
finally show ?thesis .

qed

lemma (in product-prob-space) emeasure-PiM-Collect:
assumes X : J ⊆ I finite J

∧
i. i ∈ J =⇒ X i ∈ sets (M i)

shows emeasure (PiM I M) {x∈space (PiM I M). ∀ i∈J . x i ∈ X i} = (
∏

i∈J .
emeasure (M i) (X i))
proof −

have {x∈space (PiM I M). ∀ i∈J . x i ∈ X i} = emb I J (PiE J X)
unfolding prod-emb-def using assms by (auto simp: space-PiM Pi-iff)

with emeasure-PiM-emb[OF assms] show ?thesis by simp
qed

lemma (in product-prob-space) emeasure-PiM-Collect-single:
assumes X : i ∈ I A ∈ sets (M i)
shows emeasure (PiM I M) {x∈space (PiM I M). x i ∈ A} = emeasure (M i) A
using emeasure-PiM-Collect[of {i} λi. A] assms
by simp

lemma (in product-prob-space) measure-PiM-emb:
assumes J ⊆ I finite J

∧
i. i ∈ J =⇒ X i ∈ sets (M i)

shows measure (PiM I M) (emb I J (PiE J X)) = (
∏

i∈J . measure (M i) (X
i))

using emeasure-PiM-emb[OF assms]
unfolding emeasure-eq-measure M .emeasure-eq-measure

THEORY “Infinite-Product-Measure” 110

by (simp add: prod-ennreal measure-nonneg prod-nonneg)

lemma sets-Collect-single ′:
i ∈ I =⇒ {x∈space (M i). P x} ∈ sets (M i) =⇒ {x∈space (PiM I M). P (x i)}
∈ sets (PiM I M)

by auto

lemma (in finite-product-prob-space) finite-measure-PiM-emb:
(
∧

i. i ∈ I =⇒ A i ∈ sets (M i)) =⇒ measure (PiM I M) (PiE I A) = (
∏

i∈I .
measure (M i) (A i))

by (rule prob-times)

lemma (in product-prob-space) PiM-component:
assumes i ∈ I
shows distr (PiM I M) (M i) (λω. ω i) = M i

proof (rule measure-eqI [symmetric])
fix A assume A ∈ sets (M i)
moreover have ((λω. ω i) −‘ A ∩ space (PiM I M)) = {x∈space (PiM I M). x

i ∈ A}
by auto

ultimately show emeasure (M i) A = emeasure (distr (PiM I M) (M i) (λω.
ω i)) A

by (auto simp: ‹i∈I › emeasure-distr measurable-component-singleton emea-
sure-PiM-Collect-single)
qed simp

lemma (in product-prob-space) PiM-eq:
assumes M ′: sets M ′ = sets (PiM I M)
assumes eq:

∧
J F . finite J =⇒ J ⊆ I =⇒ (

∧
j. j ∈ J =⇒ F j ∈ sets (M j)) =⇒

emeasure M ′ (prod-emb I M J (ΠE j∈J . F j)) = (
∏

j∈J . emeasure (M j) (F
j))

shows M ′ = (PiM I M)
proof (rule measure-eqI-PiM-infinite[symmetric, OF refl M ′])

show finite-measure (PiM I M)
by standard (simp add: P.emeasure-space-1)

qed (simp add: eq emeasure-PiM-emb)

lemma (in product-prob-space) AE-component: i ∈ I =⇒ AE x in M i. P x =⇒
AE x in PiM I M . P (x i)

apply (rule AE-distrD[of λω. ω i PiM I M M i P])
apply simp
apply (subst PiM-component)
apply simp-all
done

lemma emeasure-PiM-emb:
assumes M :

∧
i. i ∈ I =⇒ prob-space (M i)

assumes J : J ⊆ I finite J and A:
∧

i. i ∈ J =⇒ A i ∈ sets (M i)
shows emeasure (PiM I M) (prod-emb I M J (PiE J A)) = (

∏
i∈J . emeasure

THEORY “Infinite-Product-Measure” 111

(M i) (A i))
proof −

let ?M = λi. if i ∈ I then M i else count-space {undefined}
interpret M ′: prob-space ?M i for i

using M by (cases i ∈ I) (auto intro!: prob-spaceI)
interpret P: product-prob-space ?M I

by unfold-locales
have emeasure (PiM I M) (prod-emb I M J (PiE J A)) = emeasure (PiM I ?M)

(P.emb I J (PiE J A))
by (auto simp: prod-emb-def PiE-iff intro!: arg-cong2 [where f=emeasure]

PiM-cong)
also have . . . = (

∏
i∈J . emeasure (M i) (A i))

using J A by (subst P.emeasure-PiM-emb[OF J]) (auto intro!: prod.cong)
finally show ?thesis .

qed

lemma distr-pair-PiM-eq-PiM :
fixes i ′ :: ′i and I :: ′i set and M :: ′i ⇒ ′a measure
assumes M :

∧
i. i ∈ I =⇒ prob-space (M i) prob-space (M i ′)

shows distr (M i ′
⊗

M (ΠM i∈I . M i)) (ΠM i∈insert i ′ I . M i) (λ(x, X). X(i ′
:= x)) =

(ΠM i∈insert i ′ I . M i) (is ?L = -)
proof (rule measure-eqI-PiM-infinite[symmetric, OF refl])

interpret M ′: prob-space M i ′ by fact
interpret I : prob-space (ΠM i∈I . M i)

using M by (intro prob-space-PiM) auto
interpret I ′: prob-space (ΠM i∈insert i ′ I . M i)

using M by (intro prob-space-PiM) auto
show finite-measure (ΠM i∈insert i ′ I . M i)

by unfold-locales
fix J A assume J : finite J J ⊆ insert i ′ I and A:

∧
i. i ∈ J =⇒ A i ∈ sets (M

i)
let ?X = prod-emb (insert i ′ I) M J (PiE J A)
have PiM (insert i ′ I) M ?X = (

∏
i∈J . M i (A i))

using M J A by (intro emeasure-PiM-emb) auto
also have . . . = M i ′ (if i ′ ∈ J then (A i ′) else space (M i ′)) ∗ (

∏
i∈J−{i ′}. M

i (A i))
using prod.insert-remove[of J λi. M i (A i) i ′] J M ′.emeasure-space-1
by (cases i ′ ∈ J) (auto simp: insert-absorb)

also have (
∏

i∈J−{i ′}. M i (A i)) = PiM I M (prod-emb I M (J − {i ′}) (PiE
(J − {i ′}) A))

using M J A by (intro emeasure-PiM-emb[symmetric]) auto
also have M i ′ (if i ′ ∈ J then (A i ′) else space (M i ′)) ∗ . . . =
(M i ′

⊗
M PiM I M) ((if i ′ ∈ J then (A i ′) else space (M i ′)) × prod-emb I M

(J − {i ′}) (PiE (J − {i ′}) A))
using J A by (intro I .emeasure-pair-measure-Times[symmetric] sets-PiM-I)

auto
also have ((if i ′ ∈ J then (A i ′) else space (M i ′)) × prod-emb I M (J − {i ′})

(PiE (J − {i ′}) A)) =

THEORY “Infinite-Product-Measure” 112

(λ(x, X). X(i ′ := x)) −‘ ?X ∩ space (M i ′
⊗

M PiM I M)
using A[of i ′, THEN sets.sets-into-space] unfolding set-eq-iff

by (simp add: prod-emb-def space-pair-measure space-PiM PiE-fun-upd ac-simps
cong: conj-cong)

(auto simp add: Pi-iff Ball-def all-conj-distrib)
finally show PiM (insert i ′ I) M ?X = ?L ?X

using J A by (simp add: emeasure-distr)
qed simp

lemma distr-PiM-reindex:
assumes M :

∧
i. i ∈ K =⇒ prob-space (M i)

assumes f : inj-on f I f ∈ I → K
shows distr (PiM K M) (ΠM i∈I . M (f i)) (λω. λn∈I . ω (f n)) = (ΠM i∈I . M

(f i))
(is distr ?K ?I ?t = ?I)

proof (rule measure-eqI-PiM-infinite[symmetric, OF refl])
interpret prob-space ?I

using f M by (intro prob-space-PiM) auto
show finite-measure ?I

by unfold-locales
fix A J assume J : finite J J ⊆ I and A:

∧
i. i ∈ J =⇒ A i ∈ sets (M (f i))

have [simp]: i ∈ J =⇒ the-inv-into I f (f i) = i for i
using J f by (intro the-inv-into-f-f) auto

have ?I (prod-emb I (λi. M (f i)) J (PiE J A)) = (
∏

j∈J . M (f j) (A j))
using f J A by (intro emeasure-PiM-emb M) auto

also have . . . = (
∏

j∈f‘J . M j (A (the-inv-into I f j)))
using f J by (subst prod.reindex) (auto intro!: prod.cong intro: inj-on-subset

simp: the-inv-into-f-f)
also have . . . = ?K (prod-emb K M (f‘J) (ΠE j∈f‘J . A (the-inv-into I f j)))
using f J A by (intro emeasure-PiM-emb[symmetric] M) (auto simp: the-inv-into-f-f)

also have prod-emb K M (f‘J) (ΠE j∈f‘J . A (the-inv-into I f j)) = ?t −‘ prod-emb
I (λi. M (f i)) J (PiE J A) ∩ space ?K

using f J A by (auto simp: prod-emb-def space-PiM Pi-iff PiE-iff Int-absorb1)
also have ?K . . . = distr ?K ?I ?t (prod-emb I (λi. M (f i)) J (PiE J A))
using f J A by (intro emeasure-distr [symmetric] sets-PiM-I) (auto simp: Pi-iff)
finally show ?I (prod-emb I (λi. M (f i)) J (PiE J A)) = distr ?K ?I ?t

(prod-emb I (λi. M (f i)) J (PiE J A)) .
qed simp

lemma distr-PiM-component:
assumes M :

∧
i. i ∈ I =⇒ prob-space (M i)

assumes i ∈ I
shows distr (PiM I M) (M i) (λω. ω i) = M i

proof −
have ∗: (λω. ω i) −‘ A ∩ space (PiM I M) = prod-emb I M {i} (ΠE i ′∈{i}. A)

for A
by (auto simp: prod-emb-def space-PiM)

show ?thesis
apply (intro measure-eqI)

THEORY “Infinite-Product-Measure” 113

apply (auto simp add: emeasure-distr ‹i∈I › ∗ emeasure-PiM-emb M)
apply (subst emeasure-PiM-emb)
apply (simp-all add: M ‹i∈I ›)
done

qed

lemma AE-PiM-component:
(
∧

i. i ∈ I =⇒ prob-space (M i)) =⇒ i ∈ I =⇒ AE x in M i. P x =⇒ AE x in
PiM I M . P (x i)

using AE-distrD[of λx. x i PiM I M M i]
by (subst (asm) distr-PiM-component[of I - i]) (auto intro: AE-distrD[of λx. x i

- - P])

lemma decseq-emb-PiE :
incseq J =⇒ decseq (λi. prod-emb I M (J i) (ΠE j∈J i. X j))
by (fastforce simp: decseq-def prod-emb-def incseq-def Pi-iff)

9.1 Sequence space
definition comb-seq :: nat ⇒ (nat ⇒ ′a) ⇒ (nat ⇒ ′a) ⇒ (nat ⇒ ′a) where

comb-seq i ω ω ′ j = (if j < i then ω j else ω ′ (j − i))

lemma split-comb-seq: P (comb-seq i ω ω ′ j) ←→ (j < i −→ P (ω j)) ∧ (∀ k. j =
i + k −→ P (ω ′ k))

by (auto simp: comb-seq-def not-less)

lemma split-comb-seq-asm: P (comb-seq i ω ω ′ j) ←→ ¬ ((j < i ∧ ¬ P (ω j)) ∨
(∃ k. j = i + k ∧ ¬ P (ω ′ k)))

by (auto simp: comb-seq-def)

lemma measurable-comb-seq:
(λ(ω, ω ′). comb-seq i ω ω ′) ∈ measurable ((ΠM i∈UNIV . M)

⊗
M (ΠM i∈UNIV .

M)) (ΠM i∈UNIV . M)
proof (rule measurable-PiM-single)
show (λ(ω, ω ′). comb-seq i ω ω ′) ∈ space ((ΠM i∈UNIV . M)

⊗
M (ΠM i∈UNIV .

M)) → (UNIV →E space M)
by (auto simp: space-pair-measure space-PiM PiE-iff split: split-comb-seq)

fix j :: nat and A assume A: A ∈ sets M
then have ∗: {ω ∈ space ((ΠM i∈UNIV . M)

⊗
M (ΠM i∈UNIV . M)). case-prod

(comb-seq i) ω j ∈ A} =
(if j < i then {ω ∈ space (ΠM i∈UNIV . M). ω j ∈ A} × space (ΠM i∈UNIV .

M)
else space (ΠM i∈UNIV . M) × {ω ∈ space (ΠM i∈UNIV . M). ω (j −

i) ∈ A})
by (auto simp: space-PiM space-pair-measure comb-seq-def dest: sets.sets-into-space)
show {ω ∈ space ((ΠM i∈UNIV . M)

⊗
M (ΠM i∈UNIV . M)). case-prod

(comb-seq i) ω j ∈ A} ∈ sets ((ΠM i∈UNIV . M)
⊗

M (ΠM i∈UNIV . M))
unfolding ∗ by (auto simp: A intro!: sets-Collect-single)

qed

THEORY “Infinite-Product-Measure” 114

lemma measurable-comb-seq ′[measurable (raw)]:
assumes f : f ∈ measurable N (ΠM i∈UNIV . M) and g: g ∈ measurable N (ΠM

i∈UNIV . M)
shows (λx. comb-seq i (f x) (g x)) ∈ measurable N (ΠM i∈UNIV . M)
using measurable-compose[OF measurable-Pair [OF f g] measurable-comb-seq] by

simp

lemma comb-seq-0 : comb-seq 0 ω ω ′ = ω ′

by (auto simp add: comb-seq-def)

lemma comb-seq-Suc: comb-seq (Suc n) ω ω ′ = comb-seq n ω (case-nat (ω n) ω ′)
by (auto simp add: comb-seq-def not-less less-Suc-eq le-imp-diff-is-add intro!: ext

split: nat.split)

lemma comb-seq-Suc-0 [simp]: comb-seq (Suc 0) ω = case-nat (ω 0)
by (intro ext) (simp add: comb-seq-Suc comb-seq-0)

lemma comb-seq-less: i < n =⇒ comb-seq n ω ω ′ i = ω i
by (auto split: split-comb-seq)

lemma comb-seq-add: comb-seq n ω ω ′ (i + n) = ω ′ i
by (auto split: nat.split split-comb-seq)

lemma case-nat-comb-seq: case-nat s ′ (comb-seq n ω ω ′) (i + n) = case-nat
(case-nat s ′ ω n) ω ′ i

by (auto split: nat.split split-comb-seq)

lemma case-nat-comb-seq ′:
case-nat s (comb-seq i ω ω ′) = comb-seq (Suc i) (case-nat s ω) ω ′

by (auto split: split-comb-seq nat.split)

locale sequence-space = product-prob-space λi. M UNIV :: nat set for M
begin

abbreviation S ≡ ΠM i∈UNIV ::nat set. M

lemma infprod-in-sets[intro]:
fixes E :: nat ⇒ ′a set assumes E :

∧
i. E i ∈ sets M

shows Pi UNIV E ∈ sets S
proof −

have Pi UNIV E = (
⋂

i. emb UNIV {..i} (ΠE j∈{..i}. E j))
using E E [THEN sets.sets-into-space]
by (auto simp: prod-emb-def Pi-iff extensional-def)

with E show ?thesis by auto
qed

lemma measure-PiM-countable:
fixes E :: nat ⇒ ′a set assumes E :

∧
i. E i ∈ sets M

THEORY “Infinite-Product-Measure” 115

shows (λn.
∏

i≤n. measure M (E i)) −−−−→ measure S (Pi UNIV E)
proof −

let ?E = λn. emb UNIV {..n} (PiE {.. n} E)
have

∧
n. (

∏
i≤n. measure M (E i)) = measure S (?E n)

using E by (simp add: measure-PiM-emb)
moreover have Pi UNIV E = (

⋂
n. ?E n)

using E E [THEN sets.sets-into-space]
by (auto simp: prod-emb-def extensional-def Pi-iff)

moreover have range ?E ⊆ sets S
using E by auto

moreover have decseq ?E
by (auto simp: prod-emb-def Pi-iff decseq-def)

ultimately show ?thesis
by (simp add: finite-Lim-measure-decseq)

qed

lemma nat-eq-diff-eq:
fixes a b c :: nat
shows c ≤ b =⇒ a = b − c ←→ a + c = b
by auto

lemma PiM-comb-seq:
distr (S

⊗
M S) S (λ(ω, ω ′). comb-seq i ω ω ′) = S (is ?D = -)

proof (rule PiM-eq)
let ?I = UNIV ::nat set and ?M = λn. M
let distr - - ?f = ?D

fix J E assume J : finite J J ⊆ ?I
∧

j. j ∈ J =⇒ E j ∈ sets M
let ?X = prod-emb ?I ?M J (ΠE j∈J . E j)
have

∧
j x. j ∈ J =⇒ x ∈ E j =⇒ x ∈ space M

using J (3)[THEN sets.sets-into-space] by (auto simp: space-PiM Pi-iff sub-
set-eq)

with J have ?f −‘ ?X ∩ space (S
⊗

M S) =
(prod-emb ?I ?M (J ∩ {..<i}) (ΠE j∈J ∩ {..<i}. E j)) ×
(prod-emb ?I ?M (((+) i) −‘ J) (ΠE j∈((+) i) −‘ J . E (i + j))) (is - = ?E ×

?F)
by (auto simp: space-pair-measure space-PiM prod-emb-def all-conj-distrib PiE-iff

split: split-comb-seq split-comb-seq-asm)
then have emeasure ?D ?X = emeasure (S

⊗
M S) (?E × ?F)

by (subst emeasure-distr [OF measurable-comb-seq])
(auto intro!: sets-PiM-I simp: split-beta ′ J)

also have . . . = emeasure S ?E ∗ emeasure S ?F
using J by (intro P.emeasure-pair-measure-Times) (auto intro!: sets-PiM-I

finite-vimageI simp: inj-on-def)
also have emeasure S ?F = (

∏
j∈((+) i) −‘ J . emeasure M (E (i + j)))

using J by (intro emeasure-PiM-emb) (simp-all add: finite-vimageI inj-on-def)
also have . . . = (

∏
j∈J − (J ∩ {..<i}). emeasure M (E j))

by (rule prod.reindex-cong [of λx. x − i])
(auto simp: image-iff ac-simps nat-eq-diff-eq cong: conj-cong intro!: inj-onI)

THEORY “Infinite-Product-Measure” 116

also have emeasure S ?E = (
∏

j∈J ∩ {..<i}. emeasure M (E j))
using J by (intro emeasure-PiM-emb) simp-all

also have (
∏

j∈J ∩ {..<i}. emeasure M (E j)) ∗ (
∏

j∈J − (J ∩ {..<i}).
emeasure M (E j)) = (

∏
j∈J . emeasure M (E j))

by (subst mult.commute) (auto simp: J prod.subset-diff [symmetric])
finally show emeasure ?D ?X = (

∏
j∈J . emeasure M (E j)) .

qed simp-all

lemma PiM-iter :
distr (M

⊗
M S) S (λ(s, ω). case-nat s ω) = S (is ?D = -)

proof (rule PiM-eq)
let ?I = UNIV ::nat set and ?M = λn. M
let distr - - ?f = ?D

fix J E assume J : finite J J ⊆ ?I
∧

j. j ∈ J =⇒ E j ∈ sets M
let ?X = prod-emb ?I ?M J (ΠE j∈J . E j)
have

∧
j x. j ∈ J =⇒ x ∈ E j =⇒ x ∈ space M

using J (3)[THEN sets.sets-into-space] by (auto simp: space-PiM Pi-iff sub-
set-eq)

with J have ?f −‘ ?X ∩ space (M
⊗

M S) = (if 0 ∈ J then E 0 else space M)
×

(prod-emb ?I ?M (Suc −‘ J) (ΠE j∈Suc −‘ J . E (Suc j))) (is - = ?E × ?F)
by (auto simp: space-pair-measure space-PiM PiE-iff prod-emb-def all-conj-distrib

split: nat.split nat.split-asm)
then have emeasure ?D ?X = emeasure (M

⊗
M S) (?E × ?F)

by (subst emeasure-distr)
(auto intro!: sets-PiM-I simp: split-beta ′ J)

also have . . . = emeasure M ?E ∗ emeasure S ?F
using J by (intro P.emeasure-pair-measure-Times) (auto intro!: sets-PiM-I

finite-vimageI)
also have emeasure S ?F = (

∏
j∈Suc −‘ J . emeasure M (E (Suc j)))

using J by (intro emeasure-PiM-emb) (simp-all add: finite-vimageI)
also have . . . = (

∏
j∈J − {0}. emeasure M (E j))

by (rule prod.reindex-cong [of λx. x − 1])
(auto simp: image-iff nat-eq-diff-eq ac-simps cong: conj-cong intro!: inj-onI)

also have emeasure M ?E ∗ (
∏

j∈J − {0}. emeasure M (E j)) = (
∏

j∈J .
emeasure M (E j))

by (auto simp: M .emeasure-space-1 prod.remove J)
finally show emeasure ?D ?X = (

∏
j∈J . emeasure M (E j)) .

qed simp-all

end

lemma PiM-return:
assumes finite I
assumes [measurable]:

∧
i. i ∈ I =⇒ {a i} ∈ sets (M i)

shows PiM I (λi. return (M i) (a i)) = return (PiM I M) (restrict a I)
proof −

have [simp]: a i ∈ space (M i) if i ∈ I for i

THEORY “Independent-Family” 117

using assms(2)[OF that] by (meson insert-subset sets.sets-into-space)
interpret prob-space PiM I (λi. return (M i) (a i))

by (intro prob-space-PiM prob-space-return) auto
have AE x in PiM I (λi. return (M i) (a i)). ∀ i∈I . x i = restrict a I i
by (intro eventually-ball-finite ballI AE-PiM-component prob-space-return assms)

(auto simp: AE-return)
moreover have AE x in PiM I (λi. return (M i) (a i)). x ∈ space (PiM I (λi.

return (M i) (a i)))
by simp

ultimately have AE x in PiM I (λi. return (M i) (a i)). x = restrict a I
by eventually-elim (auto simp: fun-eq-iff space-PiM)

hence PiM I (λi. return (M i) (a i)) = return (PiM I (λi. return (M i) (a i)))
(restrict a I)

by (rule AE-eq-constD)
also have . . . = return (PiM I M) (restrict a I)

by (intro return-cong sets-PiM-cong) auto
finally show ?thesis .

qed

lemma distr-PiM-finite-prob-space ′:
assumes fin: finite I
assumes

∧
i. i ∈ I =⇒ prob-space (M i)

assumes
∧

i. i ∈ I =⇒ prob-space (M ′ i)
assumes [measurable]:

∧
i. i ∈ I =⇒ f ∈ measurable (M i) (M ′ i)

shows distr (PiM I M) (PiM I M ′) (compose I f) = PiM I (λi. distr (M i)
(M ′ i) f)
proof −

define N where N = (λi. if i ∈ I then M i else return (count-space UNIV)
undefined)

define N ′ where N ′ = (λi. if i ∈ I then M ′ i else return (count-space UNIV)
undefined)

have [simp]: PiM I N = PiM I M PiM I N ′ = PiM I M ′

by (intro PiM-cong; simp add: N-def N ′-def)+

have distr (PiM I N) (PiM I N ′) (compose I f) = PiM I (λi. distr (N i) (N ′ i)
f)

proof (rule distr-PiM-finite-prob-space)
show product-prob-space N
by (rule product-prob-spaceI) (auto simp: N-def intro!: prob-space-return assms)
show product-prob-space N ′

by (rule product-prob-spaceI) (auto simp: N ′-def intro!: prob-space-return
assms)

qed (auto simp: N-def N ′-def fin)
also have PiM I (λi. distr (N i) (N ′ i) f) = PiM I (λi. distr (M i) (M ′ i) f)

by (intro PiM-cong) (simp-all add: N-def N ′-def)
finally show ?thesis by simp

qed

end

THEORY “Independent-Family” 118

10 Independent families of events, event sets, and
random variables

theory Independent-Family
imports Infinite-Product-Measure

begin

definition (in prob-space)
indep-sets F I ←→ (∀ i∈I . F i ⊆ events) ∧
(∀ J⊆I . J 6= {} −→ finite J −→ (∀A∈Pi J F . prob (

⋂
j∈J . A j) = (

∏
j∈J .

prob (A j))))

definition (in prob-space)
indep-set A B ←→ indep-sets (case-bool A B) UNIV

definition (in prob-space)
indep-events-def-alt: indep-events A I ←→ indep-sets (λi. {A i}) I

lemma (in prob-space) indep-events-def :
indep-events A I ←→ (A‘I ⊆ events) ∧
(∀ J⊆I . J 6= {} −→ finite J −→ prob (

⋂
j∈J . A j) = (

∏
j∈J . prob (A j)))

unfolding indep-events-def-alt indep-sets-def
apply (simp add: Ball-def Pi-iff image-subset-iff-funcset)
apply (intro conj-cong refl arg-cong[where f=All] ext imp-cong)
apply auto
done

lemma (in prob-space) indep-eventsI :
(
∧

i. i ∈ I =⇒ F i ∈ sets M) =⇒ (
∧

J . J ⊆ I =⇒ finite J =⇒ J 6= {} =⇒ prob
(
⋂

i∈J . F i) = (
∏

i∈J . prob (F i))) =⇒ indep-events F I
by (auto simp: indep-events-def)

definition (in prob-space)
indep-event A B ←→ indep-events (case-bool A B) UNIV

lemma (in prob-space) indep-sets-cong:
I = J =⇒ (

∧
i. i ∈ I =⇒ F i = G i) =⇒ indep-sets F I ←→ indep-sets G J

by (simp add: indep-sets-def , intro conj-cong all-cong imp-cong ball-cong) blast+

lemma (in prob-space) indep-events-finite-index-events:
indep-events F I ←→ (∀ J⊆I . J 6= {} −→ finite J −→ indep-events F J)
by (auto simp: indep-events-def)

lemma (in prob-space) indep-sets-finite-index-sets:
indep-sets F I ←→ (∀ J⊆I . J 6= {} −→ finite J −→ indep-sets F J)

proof (intro iffI allI impI)
assume ∗: ∀ J⊆I . J 6= {} −→ finite J −→ indep-sets F J
show indep-sets F I unfolding indep-sets-def
proof (intro conjI ballI allI impI)

THEORY “Independent-Family” 119

fix i assume i ∈ I
with ∗[THEN spec, of {i}] show F i ⊆ events

by (auto simp: indep-sets-def)
qed (insert ∗, auto simp: indep-sets-def)

qed (auto simp: indep-sets-def)

lemma (in prob-space) indep-sets-mono-index:
J ⊆ I =⇒ indep-sets F I =⇒ indep-sets F J
unfolding indep-sets-def by auto

lemma (in prob-space) indep-sets-mono-sets:
assumes indep: indep-sets F I
assumes mono:

∧
i. i∈I =⇒ G i ⊆ F i

shows indep-sets G I
proof −

have (∀ i∈I . F i ⊆ events) =⇒ (∀ i∈I . G i ⊆ events)
using mono by auto

moreover have
∧

A J . J ⊆ I =⇒ A ∈ (Π j∈J . G j) =⇒ A ∈ (Π j∈J . F j)
using mono by (auto simp: Pi-iff)

ultimately show ?thesis
using indep by (auto simp: indep-sets-def)

qed

lemma (in prob-space) indep-sets-mono:
assumes indep: indep-sets F I
assumes mono: J ⊆ I

∧
i. i∈J =⇒ G i ⊆ F i

shows indep-sets G J
apply (rule indep-sets-mono-sets)
apply (rule indep-sets-mono-index)
apply (fact +)
done

lemma (in prob-space) indep-setsI :
assumes

∧
i. i ∈ I =⇒ F i ⊆ events

and
∧

A J . J 6= {} =⇒ J ⊆ I =⇒ finite J =⇒ (∀ j∈J . A j ∈ F j) =⇒ prob
(
⋂

j∈J . A j) = (
∏

j∈J . prob (A j))
shows indep-sets F I
using assms unfolding indep-sets-def by (auto simp: Pi-iff)

lemma (in prob-space) indep-setsD:
assumes indep-sets F I and J ⊆ I J 6= {} finite J ∀ j∈J . A j ∈ F j
shows prob (

⋂
j∈J . A j) = (

∏
j∈J . prob (A j))

using assms unfolding indep-sets-def by auto

lemma (in prob-space) indep-setI :
assumes ev: A ⊆ events B ⊆ events

and indep:
∧

a b. a ∈ A =⇒ b ∈ B =⇒ prob (a ∩ b) = prob a ∗ prob b
shows indep-set A B
unfolding indep-set-def

THEORY “Independent-Family” 120

proof (rule indep-setsI)
fix F J assume J 6= {} J ⊆ UNIV

and F : ∀ j∈J . F j ∈ (case j of True ⇒ A | False ⇒ B)
have J ∈ Pow UNIV by auto
with F ‹J 6= {}› indep[of F True F False]
show prob (

⋂
j∈J . F j) = (

∏
j∈J . prob (F j))

unfolding UNIV-bool Pow-insert by (auto simp: ac-simps)
qed (auto split: bool.split simp: ev)

lemma (in prob-space) indep-setD:
assumes indep: indep-set A B and ev: a ∈ A b ∈ B
shows prob (a ∩ b) = prob a ∗ prob b
using indep[unfolded indep-set-def , THEN indep-setsD, of UNIV case-bool a b]

ev
by (simp add: ac-simps UNIV-bool)

lemma (in prob-space)
assumes indep: indep-set A B
shows indep-setD-ev1 : A ⊆ events

and indep-setD-ev2 : B ⊆ events
using indep unfolding indep-set-def indep-sets-def UNIV-bool by auto

lemma (in prob-space) indep-sets-Dynkin:
assumes indep: indep-sets F I
shows indep-sets (λi. Dynkin (space M) (F i)) I
(is indep-sets ?F I)

proof (subst indep-sets-finite-index-sets, intro allI impI ballI)
fix J assume finite J J ⊆ I J 6= {}
with indep have indep-sets F J

by (subst (asm) indep-sets-finite-index-sets) auto
{ fix J K assume indep-sets F K

let ?G = λS i. if i ∈ S then ?F i else F i
assume finite J J ⊆ K
then have indep-sets (?G J) K
proof induct

case (insert j J)
moreover define G where G = ?G J
ultimately have G: indep-sets G K

∧
i. i ∈ K =⇒ G i ⊆ events and j ∈ K

by (auto simp: indep-sets-def)
let ?D = {E∈events. indep-sets (G(j := {E})) K }
{ fix X assume X : X ∈ events
assume indep:

∧
J A. J 6= {} =⇒ J ⊆ K =⇒ finite J =⇒ j /∈ J =⇒ (∀ i∈J .

A i ∈ G i)
=⇒ prob ((

⋂
i∈J . A i) ∩ X) = prob X ∗ (

∏
i∈J . prob (A i))

have indep-sets (G(j := {X})) K
proof (rule indep-setsI)

fix i assume i ∈ K then show (G(j:={X})) i ⊆ events
using G X by auto

next

THEORY “Independent-Family” 121

fix A J assume J : J 6= {} J ⊆ K finite J ∀ i∈J . A i ∈ (G(j := {X})) i
show prob (

⋂
j∈J . A j) = (

∏
j∈J . prob (A j))

proof cases
assume j ∈ J
with J have A j = X by auto
show ?thesis
proof cases

assume J = {j} then show ?thesis by simp
next

assume J 6= {j}
have prob (

⋂
i∈J . A i) = prob ((

⋂
i∈J−{j}. A i) ∩ X)

using ‹j ∈ J › ‹A j = X› by (auto intro!: arg-cong[where f=prob]
split: if-split-asm)

also have . . . = prob X ∗ (
∏

i∈J−{j}. prob (A i))
proof (rule indep)

show J − {j} 6= {} J − {j} ⊆ K finite (J − {j}) j /∈ J − {j}
using J ‹J 6= {j}› ‹j ∈ J › by auto

show ∀ i∈J − {j}. A i ∈ G i
using J by auto

qed
also have . . . = prob (A j) ∗ (

∏
i∈J−{j}. prob (A i))

using ‹A j = X› by simp
also have . . . = (

∏
i∈J . prob (A i))

unfolding prod.insert-remove[OF ‹finite J ›, symmetric, of λi. prob
(A i)]

using ‹j ∈ J › by (simp add: insert-absorb)
finally show ?thesis .

qed
next

assume j /∈ J
with J have ∀ i∈J . A i ∈ G i by (auto split: if-split-asm)
with J show ?thesis

by (intro indep-setsD[OF G(1)]) auto
qed

qed }
note indep-sets-insert = this
have Dynkin-system (space M) ?D
proof (rule Dynkin-systemI ′, simp-all cong del: indep-sets-cong, safe)

show indep-sets (G(j := {{}})) K
by (rule indep-sets-insert) auto

next
fix X assume X : X ∈ events and G ′: indep-sets (G(j := {X})) K
show indep-sets (G(j := {space M − X})) K
proof (rule indep-sets-insert)

fix J A assume J : J 6= {} J ⊆ K finite J j /∈ J and A: ∀ i∈J . A i ∈ G i
then have A-sets:

∧
i. i∈J =⇒ A i ∈ events

using G by auto
have prob ((

⋂
j∈J . A j) ∩ (space M − X)) =

prob ((
⋂

j∈J . A j) − (
⋂

i∈insert j J . (A(j := X)) i))

THEORY “Independent-Family” 122

using A-sets sets.sets-into-space[of - M] X ‹J 6= {}›
by (auto intro!: arg-cong[where f=prob] split: if-split-asm)

also have . . . = prob (
⋂

j∈J . A j) − prob (
⋂

i∈insert j J . (A(j := X)) i)
using J ‹J 6= {}› ‹j /∈ J › A-sets X sets.sets-into-space
by (auto intro!: finite-measure-Diff sets.finite-INT split: if-split-asm)

finally have prob ((
⋂

j∈J . A j) ∩ (space M − X)) =
prob (

⋂
j∈J . A j) − prob (

⋂
i∈insert j J . (A(j := X)) i) .

moreover {
have prob (

⋂
j∈J . A j) = (

∏
j∈J . prob (A j))

using J A ‹finite J › by (intro indep-setsD[OF G(1)]) auto
then have prob (

⋂
j∈J . A j) = prob (space M) ∗ (

∏
i∈J . prob (A i))

using prob-space by simp }
moreover {

have prob (
⋂

i∈insert j J . (A(j := X)) i) = (
∏

i∈insert j J . prob ((A(j
:= X)) i))

using J A ‹j ∈ K › by (intro indep-setsD[OF G ′]) auto
then have prob (

⋂
i∈insert j J . (A(j := X)) i) = prob X ∗ (

∏
i∈J .

prob (A i))
using ‹finite J › ‹j /∈ J › by (auto intro!: prod.cong) }

ultimately have prob ((
⋂

j∈J . A j) ∩ (space M − X)) = (prob (space
M) − prob X) ∗ (

∏
i∈J . prob (A i))

by (simp add: field-simps)
also have . . . = prob (space M − X) ∗ (

∏
i∈J . prob (A i))

using X A by (simp add: finite-measure-compl)
finally show prob ((

⋂
j∈J . A j) ∩ (space M − X)) = prob (space M −

X) ∗ (
∏

i∈J . prob (A i)) .
qed (insert X , auto)

next
fix F :: nat ⇒ ′a set assume disj: disjoint-family F and range F ⊆ ?D
then have F :

∧
i. F i ∈ events

∧
i. indep-sets (G(j:={F i})) K by auto

show indep-sets (G(j := {
⋃

k. F k})) K
proof (rule indep-sets-insert)

fix J A assume J : j /∈ J J 6= {} J ⊆ K finite J and A: ∀ i∈J . A i ∈ G i
then have A-sets:

∧
i. i∈J =⇒ A i ∈ events

using G by auto
have prob ((

⋂
j∈J . A j) ∩ (

⋃
k. F k)) = prob (

⋃
k. (

⋂
i∈insert j J . (A(j

:= F k)) i))
using ‹J 6= {}› ‹j /∈ J › ‹j ∈ K › by (auto intro!: arg-cong[where f=prob]

split: if-split-asm)
moreover have (λk. prob (

⋂
i∈insert j J . (A(j := F k)) i)) sums prob

(
⋃

k. (
⋂

i∈insert j J . (A(j := F k)) i))
proof (rule finite-measure-UNION)

show disjoint-family (λk.
⋂

i∈insert j J . (A(j := F k)) i)
using disj by (rule disjoint-family-on-bisimulation) auto

show range (λk.
⋂

i∈insert j J . (A(j := F k)) i) ⊆ events
using A-sets F ‹finite J › ‹J 6= {}› ‹j /∈ J › by (auto intro!: sets.Int)

qed
moreover { fix k

from J A ‹j ∈ K › have prob (
⋂

i∈insert j J . (A(j := F k)) i) = prob

THEORY “Independent-Family” 123

(F k) ∗ (
∏

i∈J . prob (A i))
by (subst indep-setsD[OF F(2)]) (auto intro!: prod.cong split: if-split-asm)
also have . . . = prob (F k) ∗ prob (

⋂
i∈J . A i)

using J A ‹j ∈ K › by (subst indep-setsD[OF G(1)]) auto
finally have prob (

⋂
i∈insert j J . (A(j := F k)) i) = prob (F k) ∗ prob

(
⋂

i∈J . A i) . }
ultimately have (λk. prob (F k) ∗ prob (

⋂
i∈J . A i)) sums (prob ((

⋂
j∈J .

A j) ∩ (
⋃

k. F k)))
by simp

moreover
have (λk. prob (F k) ∗ prob (

⋂
i∈J . A i)) sums (prob (

⋃
k. F k) ∗ prob

(
⋂

i∈J . A i))
using disj F(1) by (intro finite-measure-UNION sums-mult2) auto

then have (λk. prob (F k) ∗ prob (
⋂

i∈J . A i)) sums (prob (
⋃

k. F k) ∗
(
∏

i∈J . prob (A i)))
using J A ‹j ∈ K › by (subst indep-setsD[OF G(1), symmetric]) auto

ultimately
show prob ((

⋂
j∈J . A j) ∩ (

⋃
k. F k)) = prob (

⋃
k. F k) ∗ (

∏
j∈J . prob

(A j))
by (auto dest!: sums-unique)

qed (insert F , auto)
qed (insert sets.sets-into-space, auto)
then have mono: Dynkin (space M) (G j) ⊆ {E ∈ events. indep-sets (G(j

:= {E})) K}
proof (rule Dynkin-system.Dynkin-subset, safe)

fix X assume X ∈ G j
then show X ∈ events using G ‹j ∈ K › by auto
from ‹indep-sets G K ›
show indep-sets (G(j := {X})) K

by (rule indep-sets-mono-sets) (insert ‹X ∈ G j›, auto)
qed
have indep-sets (G(j:=?D)) K
proof (rule indep-setsI)

fix i assume i ∈ K then show (G(j := ?D)) i ⊆ events
using G(2) by auto

next
fix A J assume J : J 6={} J ⊆ K finite J and A: ∀ i∈J . A i ∈ (G(j := ?D))

i
show prob (

⋂
j∈J . A j) = (

∏
j∈J . prob (A j))

proof cases
assume j ∈ J
with A have indep: indep-sets (G(j := {A j})) K by auto
from J A show ?thesis

by (intro indep-setsD[OF indep]) auto
next

assume j /∈ J
with J A have ∀ i∈J . A i ∈ G i by (auto split: if-split-asm)
with J show ?thesis

by (intro indep-setsD[OF G(1)]) auto

THEORY “Independent-Family” 124

qed
qed
then have indep-sets (G(j := Dynkin (space M) (G j))) K

by (rule indep-sets-mono-sets) (insert mono, auto)
then show ?case

by (rule indep-sets-mono-sets) (insert ‹j ∈ K › ‹j /∈ J ›, auto simp: G-def)
qed (insert ‹indep-sets F K ›, simp) }

from this[OF ‹indep-sets F J › ‹finite J › subset-refl]
show indep-sets ?F J

by (rule indep-sets-mono-sets) auto
qed

lemma (in prob-space) indep-sets-sigma:
assumes indep: indep-sets F I
assumes stable:

∧
i. i ∈ I =⇒ Int-stable (F i)

shows indep-sets (λi. sigma-sets (space M) (F i)) I
proof −

from indep-sets-Dynkin[OF indep]
show ?thesis
proof (rule indep-sets-mono-sets, subst sigma-eq-Dynkin, simp-all add: stable)

fix i assume i ∈ I
with indep have F i ⊆ events by (auto simp: indep-sets-def)
with sets.sets-into-space show F i ⊆ Pow (space M) by auto

qed
qed

lemma (in prob-space) indep-sets-sigma-sets-iff :
assumes

∧
i. i ∈ I =⇒ Int-stable (F i)

shows indep-sets (λi. sigma-sets (space M) (F i)) I ←→ indep-sets F I
proof

assume indep-sets F I then show indep-sets (λi. sigma-sets (space M) (F i)) I
by (rule indep-sets-sigma) fact

next
assume indep-sets (λi. sigma-sets (space M) (F i)) I then show indep-sets F I

by (rule indep-sets-mono-sets) (intro subsetI sigma-sets.Basic)
qed

definition (in prob-space)
indep-vars-def2 : indep-vars M ′ X I ←→
(∀ i∈I . random-variable (M ′ i) (X i)) ∧
indep-sets (λi. { X i −‘ A ∩ space M | A. A ∈ sets (M ′ i)}) I

definition (in prob-space)
indep-var Ma A Mb B ←→ indep-vars (case-bool Ma Mb) (case-bool A B) UNIV

lemma (in prob-space) indep-vars-def :
indep-vars M ′ X I ←→
(∀ i∈I . random-variable (M ′ i) (X i)) ∧
indep-sets (λi. sigma-sets (space M) { X i −‘ A ∩ space M | A. A ∈ sets (M ′

THEORY “Independent-Family” 125

i)}) I
unfolding indep-vars-def2
apply (rule conj-cong[OF refl])
apply (rule indep-sets-sigma-sets-iff [symmetric])
apply (auto simp: Int-stable-def)
apply (rule-tac x=A ∩ Aa in exI)
apply auto
done

lemma (in prob-space) indep-var-eq:
indep-var S X T Y ←→
(random-variable S X ∧ random-variable T Y) ∧
indep-set
(sigma-sets (space M) { X −‘ A ∩ space M | A. A ∈ sets S})
(sigma-sets (space M) { Y −‘ A ∩ space M | A. A ∈ sets T})

unfolding indep-var-def indep-vars-def indep-set-def UNIV-bool
by (intro arg-cong2 [where f=(∧)] arg-cong2 [where f=indep-sets] ext)

(auto split: bool.split)

lemma (in prob-space) indep-sets2-eq:
indep-set A B ←→ A ⊆ events ∧ B ⊆ events ∧ (∀ a∈A. ∀ b∈B. prob (a ∩ b) =

prob a ∗ prob b)
unfolding indep-set-def

proof (intro iffI ballI conjI)
assume indep: indep-sets (case-bool A B) UNIV
{ fix a b assume a ∈ A b ∈ B

with indep-setsD[OF indep, of UNIV case-bool a b]
show prob (a ∩ b) = prob a ∗ prob b

unfolding UNIV-bool by (simp add: ac-simps) }
from indep show A ⊆ events B ⊆ events

unfolding indep-sets-def UNIV-bool by auto
next

assume ∗: A ⊆ events ∧ B ⊆ events ∧ (∀ a∈A. ∀ b∈B. prob (a ∩ b) = prob a ∗
prob b)

show indep-sets (case-bool A B) UNIV
proof (rule indep-setsI)

fix i show (case i of True ⇒ A | False ⇒ B) ⊆ events
using ∗ by (auto split: bool.split)

next
fix J X assume J 6= {} J ⊆ UNIV and X : ∀ j∈J . X j ∈ (case j of True ⇒ A

| False ⇒ B)
then have J = {True} ∨ J = {False} ∨ J = {True,False}

by (auto simp: UNIV-bool)
then show prob (

⋂
j∈J . X j) = (

∏
j∈J . prob (X j))

using X ∗ by auto
qed

qed

lemma (in prob-space) indep-set-sigma-sets:

THEORY “Independent-Family” 126

assumes indep-set A B
assumes A: Int-stable A and B: Int-stable B
shows indep-set (sigma-sets (space M) A) (sigma-sets (space M) B)

proof −
have indep-sets (λi. sigma-sets (space M) (case i of True ⇒ A | False ⇒ B))

UNIV
proof (rule indep-sets-sigma)

show indep-sets (case-bool A B) UNIV
by (rule ‹indep-set A B›[unfolded indep-set-def])

fix i show Int-stable (case i of True ⇒ A | False ⇒ B)
using A B by (cases i) auto

qed
then show ?thesis

unfolding indep-set-def
by (rule indep-sets-mono-sets) (auto split: bool.split)

qed

lemma (in prob-space) indep-eventsI-indep-vars:
assumes indep: indep-vars N X I
assumes P:

∧
i. i ∈ I =⇒ {x∈space (N i). P i x} ∈ sets (N i)

shows indep-events (λi. {x∈space M . P i (X i x)}) I
proof −

have indep-sets (λi. {X i −‘ A ∩ space M |A. A ∈ sets (N i)}) I
using indep unfolding indep-vars-def2 by auto

then show ?thesis
unfolding indep-events-def-alt

proof (rule indep-sets-mono-sets)
fix i assume i ∈ I
then have {{x ∈ space M . P i (X i x)}} = {X i −‘ {x∈space (N i). P i x} ∩

space M}
using indep by (auto simp: indep-vars-def dest: measurable-space)

also have . . . ⊆ {X i −‘ A ∩ space M |A. A ∈ sets (N i)}
using P[OF ‹i ∈ I ›] by blast

finally show {{x ∈ space M . P i (X i x)}} ⊆ {X i −‘ A ∩ space M |A. A ∈
sets (N i)} .

qed
qed

lemma (in prob-space) indep-sets-collect-sigma:
fixes I :: ′j ⇒ ′i set and J :: ′j set and E :: ′i ⇒ ′a set set
assumes indep: indep-sets E (

⋃
j∈J . I j)

assumes Int-stable:
∧

i j. j ∈ J =⇒ i ∈ I j =⇒ Int-stable (E i)
assumes disjoint: disjoint-family-on I J
shows indep-sets (λj. sigma-sets (space M) (

⋃
i∈I j. E i)) J

proof −
let ?E = λj. {

⋂
k∈K . E ′ k| E ′ K . finite K ∧ K 6= {} ∧ K ⊆ I j ∧ (∀ k∈K . E ′

k ∈ E k) }

from indep have E :
∧

j i. j ∈ J =⇒ i ∈ I j =⇒ E i ⊆ events

THEORY “Independent-Family” 127

unfolding indep-sets-def by auto
{ fix j

let ?S = sigma-sets (space M) (
⋃

i∈I j. E i)
assume j ∈ J
from E [OF this] interpret S : sigma-algebra space M ?S

using sets.sets-into-space[of - M] by (intro sigma-algebra-sigma-sets) auto

have sigma-sets (space M) (
⋃

i∈I j. E i) = sigma-sets (space M) (?E j)
proof (rule sigma-sets-eqI)

fix A assume A ∈ (
⋃

i∈I j. E i)
then obtain i where i ∈ I j A ∈ E i ..
then show A ∈ sigma-sets (space M) (?E j)

by (auto intro!: sigma-sets.intros(2−) exI [of - {i}] exI [of - λi. A])
next

fix A assume A ∈ ?E j
then obtain E ′ K where finite K K 6= {} K ⊆ I j

∧
k. k ∈ K =⇒ E ′ k ∈

E k
and A: A = (

⋂
k∈K . E ′ k)

by auto
then have A ∈ ?S unfolding A

by (safe intro!: S .finite-INT) auto
then show A ∈ sigma-sets (space M) (

⋃
i∈I j. E i)

by simp
qed }

moreover have indep-sets (λj. sigma-sets (space M) (?E j)) J
proof (rule indep-sets-sigma)

show indep-sets ?E J
proof (intro indep-setsI)
fix j assume j ∈ J with E show ?E j ⊆ events by (force intro!: sets.finite-INT)
next

fix K A assume K : K 6= {} K ⊆ J finite K
and ∀ j∈K . A j ∈ ?E j

then have ∀ j∈K . ∃E ′ L. A j = (
⋂

l∈L. E ′ l) ∧ finite L ∧ L 6= {} ∧ L ⊆ I
j ∧ (∀ l∈L. E ′ l ∈ E l)

by simp
from bchoice[OF this] obtain E ′

where ∀ x∈K . ∃L. A x =
⋂

(E ′ x ‘ L) ∧ finite L ∧ L 6= {} ∧ L ⊆ I x ∧
(∀ l∈L. E ′ x l ∈ E l)

..
from bchoice[OF this] obtain L

where A:
∧

j. j∈K =⇒ A j = (
⋂

l∈L j. E ′ j l)
and L:

∧
j. j∈K =⇒ finite (L j)

∧
j. j∈K =⇒ L j 6= {}

∧
j. j∈K =⇒ L j

⊆ I j
and E ′:

∧
j l. j∈K =⇒ l ∈ L j =⇒ E ′ j l ∈ E l

by auto
{ fix k l j assume k ∈ K j ∈ K l ∈ L j l ∈ L k

have k = j
proof (rule ccontr)

assume k 6= j

THEORY “Independent-Family” 128

with disjoint ‹K ⊆ J › ‹k ∈ K › ‹j ∈ K › have I k ∩ I j = {}
unfolding disjoint-family-on-def by auto

with L(2 ,3)[OF ‹j ∈ K ›] L(2 ,3)[OF ‹k ∈ K ›]
show False using ‹l ∈ L k› ‹l ∈ L j› by auto

qed }
note L-inj = this

define k where k l = (SOME k. k ∈ K ∧ l ∈ L k) for l
{ fix x j l assume ∗: j ∈ K l ∈ L j

have k l = j unfolding k-def
proof (rule some-equality)

fix k assume k ∈ K ∧ l ∈ L k
with ∗ L-inj show k = j by auto

qed (insert ∗, simp) }
note k-simp[simp] = this
let ?E ′ = λl. E ′ (k l) l
have prob (

⋂
j∈K . A j) = prob (

⋂
l∈(

⋃
k∈K . L k). ?E ′ l)

by (auto simp: A intro!: arg-cong[where f=prob])
also have . . . = (

∏
l∈(

⋃
k∈K . L k). prob (?E ′ l))

using L K E ′ by (intro indep-setsD[OF indep]) (simp-all add: UN-mono)
also have . . . = (

∏
j∈K .

∏
l∈L j. prob (E ′ j l))

using K L L-inj by (subst prod.UNION-disjoint) auto
also have . . . = (

∏
j∈K . prob (A j))

using K L E ′ by (auto simp add: A intro!: prod.cong indep-setsD[OF indep,
symmetric]) blast

finally show prob (
⋂

j∈K . A j) = (
∏

j∈K . prob (A j)) .
qed

next
fix j assume j ∈ J
show Int-stable (?E j)
proof (rule Int-stableI)

fix a assume a ∈ ?E j then obtain Ka Ea
where a: a = (

⋂
k∈Ka. Ea k) finite Ka Ka 6= {} Ka ⊆ I j

∧
k. k∈Ka =⇒

Ea k ∈ E k by auto
fix b assume b ∈ ?E j then obtain Kb Eb

where b: b = (
⋂

k∈Kb. Eb k) finite Kb Kb 6= {} Kb ⊆ I j
∧

k. k∈Kb =⇒
Eb k ∈ E k by auto

let ?f = λk. (if k ∈ Ka ∩ Kb then Ea k ∩ Eb k else if k ∈ Kb then Eb k else
if k ∈ Ka then Ea k else {})

have Ka ∪ Kb = (Ka ∩ Kb) ∪ (Kb − Ka) ∪ (Ka − Kb)
by blast

moreover have (
⋂

x∈Ka ∩ Kb. Ea x ∩ Eb x) ∩
(
⋂

x∈Kb − Ka. Eb x) ∩ (
⋂

x∈Ka − Kb. Ea x) = (
⋂

k∈Ka. Ea k) ∩ (
⋂

k∈Kb.
Eb k)

by auto
ultimately have (

⋂
k∈Ka ∪ Kb. ?f k) = (

⋂
k∈Ka. Ea k) ∩ (

⋂
k∈Kb. Eb k)

(is ?lhs = ?rhs)
by (simp only: image-Un Inter-Un-distrib) simp

then have a ∩ b = (
⋂

k∈Ka ∪ Kb. ?f k)

THEORY “Independent-Family” 129

by (simp only: a(1) b(1))
with a b ‹j ∈ J › Int-stableD[OF Int-stable] show a ∩ b ∈ ?E j

by (intro CollectI exI [of - Ka ∪ Kb] exI [of - ?f]) auto
qed

qed
ultimately show ?thesis

by (simp cong: indep-sets-cong)
qed

lemma (in prob-space) indep-vars-restrict:
assumes ind: indep-vars M ′ X I and K :

∧
j. j ∈ L =⇒ K j ⊆ I and J :

disjoint-family-on K L
shows indep-vars (λj. PiM (K j) M ′) (λj ω. restrict (λi. X i ω) (K j)) L
unfolding indep-vars-def

proof safe
fix j assume j ∈ L then show random-variable (PiM (K j) M ′) (λω. λi∈K j.

X i ω)
using K ind by (auto simp: indep-vars-def intro!: measurable-restrict)

next
have X :

∧
i. i ∈ I =⇒ X i ∈ measurable M (M ′ i)

using ind by (auto simp: indep-vars-def)
let ?proj = λj S . {(λω. λi∈K j. X i ω) −‘ A ∩ space M |A. A ∈ S}
let ?UN = λj. sigma-sets (space M) (

⋃
i∈K j. { X i −‘ A ∩ space M | A. A ∈

sets (M ′ i) })
show indep-sets (λi. sigma-sets (space M) (?proj i (sets (PiM (K i) M ′)))) L
proof (rule indep-sets-mono-sets)

fix j assume j: j ∈ L
have sigma-sets (space M) (?proj j (sets (PiM (K j) M ′))) =
sigma-sets (space M) (sigma-sets (space M) (?proj j (prod-algebra (K j) M ′)))
using j K X [THEN measurable-space] unfolding sets-PiM
by (subst sigma-sets-vimage-commute) (auto simp add: Pi-iff)

also have . . . = sigma-sets (space M) (?proj j (prod-algebra (K j) M ′))
by (rule sigma-sets-sigma-sets-eq) auto

also have . . . ⊆ ?UN j
proof (rule sigma-sets-mono, safe del: disjE elim!: prod-algebraE)

fix J E assume J : finite J J 6= {} ∨ K j = {} J ⊆ K j and E : ∀ i. i ∈ J
−→ E i ∈ sets (M ′ i)

show (λω. λi∈K j. X i ω) −‘ prod-emb (K j) M ′ J (PiE J E) ∩ space M ∈
?UN j

proof cases
assume K j = {} with J show ?thesis

by (auto simp add: sigma-sets-empty-eq prod-emb-def)
next

assume K j 6= {} with J have J 6= {}
by auto

{ interpret sigma-algebra space M ?UN j
by (rule sigma-algebra-sigma-sets) auto

have
∧

A. (
∧

i. i ∈ J =⇒ A i ∈ ?UN j) =⇒
⋂

(A ‘ J) ∈ ?UN j
using ‹finite J › ‹J 6= {}› by (rule finite-INT) blast }

THEORY “Independent-Family” 130

note INT = this

from ‹J 6= {}› J K E [rule-format, THEN sets.sets-into-space] j
have (λω. λi∈K j. X i ω) −‘ prod-emb (K j) M ′ J (PiE J E) ∩ space M
= (

⋂
i∈J . X i −‘ E i ∩ space M)

apply (subst prod-emb-PiE [OF -])
apply auto []
apply auto []
apply (auto simp add: Pi-iff intro!: X [THEN measurable-space])
apply (erule-tac x=i in ballE)
apply auto
done

also have . . . ∈ ?UN j
apply (rule INT)
apply (rule sigma-sets.Basic)
using ‹J ⊆ K j› E
apply auto
done

finally show ?thesis .
qed

qed
finally show sigma-sets (space M) (?proj j (sets (PiM (K j) M ′))) ⊆ ?UN j .

next
show indep-sets ?UN L
proof (rule indep-sets-collect-sigma)

show indep-sets (λi. {X i −‘ A ∩ space M |A. A ∈ sets (M ′ i)}) (
⋃

j∈L. K
j)

proof (rule indep-sets-mono-index)
show indep-sets (λi. {X i −‘ A ∩ space M |A. A ∈ sets (M ′ i)}) I

using ind unfolding indep-vars-def2 by auto
show (

⋃
l∈L. K l) ⊆ I

using K by auto
qed

next
fix l i assume l ∈ L i ∈ K l
show Int-stable {X i −‘ A ∩ space M |A. A ∈ sets (M ′ i)}

apply (auto simp: Int-stable-def)
apply (rule-tac x=A ∩ Aa in exI)
apply auto
done

qed fact
qed

qed

lemma (in prob-space) indep-var-restrict:
assumes ind: indep-vars M ′ X I and AB: A ∩ B = {} A ⊆ I B ⊆ I
shows indep-var (PiM A M ′) (λω. restrict (λi. X i ω) A) (PiM B M ′) (λω.

restrict (λi. X i ω) B)
proof −

THEORY “Independent-Family” 131

have ∗:
case-bool (PiM A M ′) (PiM B M ′) = (λb. PiM (case-bool A B b) M ′)
case-bool (λω. λi∈A. X i ω) (λω. λi∈B. X i ω) = (λb ω. λi∈case-bool A B b.

X i ω)
by (simp-all add: fun-eq-iff split: bool.split)

show ?thesis
unfolding indep-var-def ∗ using AB
by (intro indep-vars-restrict[OF ind]) (auto simp: disjoint-family-on-def split:

bool.split)
qed

lemma (in prob-space) indep-vars-subset:
assumes indep-vars M ′ X I J ⊆ I
shows indep-vars M ′ X J
using assms unfolding indep-vars-def indep-sets-def
by auto

lemma (in prob-space) indep-vars-cong:
I = J =⇒ (

∧
i. i ∈ I =⇒ X i = Y i) =⇒ (

∧
i. i ∈ I =⇒ M ′ i = N ′ i) =⇒

indep-vars M ′ X I ←→ indep-vars N ′ Y J
unfolding indep-vars-def2 by (intro conj-cong indep-sets-cong) auto

definition (in prob-space) tail-events where
tail-events A = (

⋂
n. sigma-sets (space M) (

⋃
(A ‘ {n..})))

lemma (in prob-space) tail-events-sets:
assumes A:

∧
i::nat. A i ⊆ events

shows tail-events A ⊆ events
proof

fix X assume X : X ∈ tail-events A
let ?A = (

⋂
n. sigma-sets (space M) (

⋃
(A ‘ {n..})))

from X have
∧

n::nat. X ∈ sigma-sets (space M) (
⋃

(A ‘ {n..})) by (auto simp:
tail-events-def)

from this[of 0] have X ∈ sigma-sets (space M) (
⋃

(A ‘ UNIV)) by simp
then show X ∈ events

by induct (insert A, auto)
qed

lemma (in prob-space) sigma-algebra-tail-events:
assumes

∧
i::nat. sigma-algebra (space M) (A i)

shows sigma-algebra (space M) (tail-events A)
unfolding tail-events-def

proof (simp add: sigma-algebra-iff2 , safe)
let ?A = (

⋂
n. sigma-sets (space M) (

⋃
(A ‘ {n..})))

interpret A: sigma-algebra space M A i for i by fact
{ fix X x assume X ∈ ?A x ∈ X

then have
∧

n. X ∈ sigma-sets (space M) (
⋃

(A ‘ {n..})) by auto
from this[of 0] have X ∈ sigma-sets (space M) (

⋃
(A ‘ UNIV)) by simp

then have X ⊆ space M

THEORY “Independent-Family” 132

by induct (insert A.sets-into-space, auto)
with ‹x ∈ X› show x ∈ space M by auto }

{ fix F :: nat ⇒ ′a set and n assume range F ⊆ ?A
then show (

⋃
(F ‘ UNIV)) ∈ sigma-sets (space M) (

⋃
(A ‘ {n..}))

by (intro sigma-sets.Union) auto }
qed (auto intro!: sigma-sets.Compl sigma-sets.Empty)

lemma (in prob-space) kolmogorov-0-1-law:
fixes A :: nat ⇒ ′a set set
assumes

∧
i::nat. sigma-algebra (space M) (A i)

assumes indep: indep-sets A UNIV
and X : X ∈ tail-events A
shows prob X = 0 ∨ prob X = 1

proof −
have A:

∧
i. A i ⊆ events

using indep unfolding indep-sets-def by simp

let ?D = {D ∈ events. prob (X ∩ D) = prob X ∗ prob D}
interpret A: sigma-algebra space M A i for i by fact
interpret T : sigma-algebra space M tail-events A

by (rule sigma-algebra-tail-events) fact
have X ⊆ space M using T .space-closed X by auto

have X-in: X ∈ events
using tail-events-sets A X by auto

interpret D: Dynkin-system space M ?D
proof (rule Dynkin-systemI)

fix D assume D ∈ ?D then show D ⊆ space M
using sets.sets-into-space by auto

next
show space M ∈ ?D

using prob-space ‹X ⊆ space M › by (simp add: Int-absorb2)
next

fix A assume A: A ∈ ?D
have prob (X ∩ (space M − A)) = prob (X − (X ∩ A))

using ‹X ⊆ space M › by (auto intro!: arg-cong[where f=prob])
also have . . . = prob X − prob (X ∩ A)

using X-in A by (intro finite-measure-Diff) auto
also have . . . = prob X ∗ prob (space M) − prob X ∗ prob A

using A prob-space by auto
also have . . . = prob X ∗ prob (space M − A)

using X-in A sets.sets-into-space
by (subst finite-measure-Diff) (auto simp: field-simps)

finally show space M − A ∈ ?D
using A ‹X ⊆ space M › by auto

next
fix F :: nat ⇒ ′a set assume dis: disjoint-family F and range F ⊆ ?D
then have F : range F ⊆ events

∧
i. prob (X ∩ F i) = prob X ∗ prob (F i)

THEORY “Independent-Family” 133

by auto
have (λi. prob (X ∩ F i)) sums prob (

⋃
i. X ∩ F i)

proof (rule finite-measure-UNION)
show range (λi. X ∩ F i) ⊆ events

using F X-in by auto
show disjoint-family (λi. X ∩ F i)

using dis by (rule disjoint-family-on-bisimulation) auto
qed
with F have (λi. prob X ∗ prob (F i)) sums prob (X ∩ (

⋃
i. F i))

by simp
moreover have (λi. prob X ∗ prob (F i)) sums (prob X ∗ prob (

⋃
i. F i))

by (intro sums-mult finite-measure-UNION F dis)
ultimately have prob (X ∩ (

⋃
i. F i)) = prob X ∗ prob (

⋃
i. F i)

by (auto dest!: sums-unique)
with F show (

⋃
i. F i) ∈ ?D

by auto
qed

{ fix n
have indep-sets (λb. sigma-sets (space M) (

⋃
m∈case-bool {..n} {Suc n..} b.

A m)) UNIV
proof (rule indep-sets-collect-sigma)

have ∗: (
⋃

b. case b of True ⇒ {..n} | False ⇒ {Suc n..}) = UNIV (is ?U
= -)

by (simp split: bool.split add: set-eq-iff) (metis not-less-eq-eq)
with indep show indep-sets A ?U by simp
show disjoint-family (case-bool {..n} {Suc n..})

unfolding disjoint-family-on-def by (auto split: bool.split)
fix m
show Int-stable (A m)

unfolding Int-stable-def using A.Int by auto
qed
also have (λb. sigma-sets (space M) (

⋃
m∈case-bool {..n} {Suc n..} b. A m))

=
case-bool (sigma-sets (space M) (

⋃
m∈{..n}. A m)) (sigma-sets (space M)

(
⋃

m∈{Suc n..}. A m))
by (auto intro!: ext split: bool.split)

finally have indep: indep-set (sigma-sets (space M) (
⋃

m∈{..n}. A m)) (sigma-sets
(space M) (

⋃
m∈{Suc n..}. A m))

unfolding indep-set-def by simp

have sigma-sets (space M) (
⋃

m∈{..n}. A m) ⊆ ?D
proof (simp add: subset-eq, rule)

fix D assume D: D ∈ sigma-sets (space M) (
⋃

m∈{..n}. A m)
have X ∈ sigma-sets (space M) (

⋃
m∈{Suc n..}. A m)

using X unfolding tail-events-def by simp
from indep-setD[OF indep D this] indep-setD-ev1 [OF indep] D
show D ∈ events ∧ prob (X ∩ D) = prob X ∗ prob D

by (auto simp add: ac-simps)

THEORY “Independent-Family” 134

qed }
then have (

⋃
n. sigma-sets (space M) (

⋃
m∈{..n}. A m)) ⊆ ?D (is ?A ⊆ -)

by auto

note ‹X ∈ tail-events A›
also {

have
∧

n. sigma-sets (space M) (
⋃

i∈{n..}. A i) ⊆ sigma-sets (space M) ?A
by (intro sigma-sets-subseteq UN-mono) auto

then have tail-events A ⊆ sigma-sets (space M) ?A
unfolding tail-events-def by auto }

also have sigma-sets (space M) ?A = Dynkin (space M) ?A
proof (rule sigma-eq-Dynkin)

{ fix B n assume B ∈ sigma-sets (space M) (
⋃

m∈{..n}. A m)
then have B ⊆ space M

by induct (insert A sets.sets-into-space[of - M], auto) }
then show ?A ⊆ Pow (space M) by auto
show Int-stable ?A
proof (rule Int-stableI)

fix a b assume a ∈ ?A b ∈ ?A then obtain n m
where a: n ∈ UNIV a ∈ sigma-sets (space M) (

⋃
(A ‘ {..n}))

and b: m ∈ UNIV b ∈ sigma-sets (space M) (
⋃

(A ‘ {..m})) by auto
interpret Amn: sigma-algebra space M sigma-sets (space M) (

⋃
i∈{..max m

n}. A i)
using A sets.sets-into-space[of - M] by (intro sigma-algebra-sigma-sets) auto

have sigma-sets (space M) (
⋃

i∈{..n}. A i) ⊆ sigma-sets (space M) (
⋃

i∈{..max
m n}. A i)

by (intro sigma-sets-subseteq UN-mono) auto
with a have a ∈ sigma-sets (space M) (

⋃
i∈{..max m n}. A i) by auto

moreover
have sigma-sets (space M) (

⋃
i∈{..m}. A i) ⊆ sigma-sets (space M) (

⋃
i∈{..max

m n}. A i)
by (intro sigma-sets-subseteq UN-mono) auto

with b have b ∈ sigma-sets (space M) (
⋃

i∈{..max m n}. A i) by auto
ultimately have a ∩ b ∈ sigma-sets (space M) (

⋃
i∈{..max m n}. A i)

using Amn.Int[of a b] by simp
then show a ∩ b ∈ (

⋃
n. sigma-sets (space M) (

⋃
i∈{..n}. A i)) by auto

qed
qed
also have Dynkin (space M) ?A ⊆ ?D

using ‹?A ⊆ ?D› by (auto intro!: D.Dynkin-subset)
finally show ?thesis by auto

qed

lemma (in prob-space) borel-0-1-law:
fixes F :: nat ⇒ ′a set
assumes F2 : indep-events F UNIV
shows prob (

⋂
n.

⋃
m∈{n..}. F m) = 0 ∨ prob (

⋂
n.

⋃
m∈{n..}. F m) = 1

proof (rule kolmogorov-0-1-law[of λi. sigma-sets (space M) { F i }])
have F1 : range F ⊆ events

THEORY “Independent-Family” 135

using F2 by (simp add: indep-events-def subset-eq)
{ fix i show sigma-algebra (space M) (sigma-sets (space M) {F i})

using sigma-algebra-sigma-sets[of {F i} space M] F1 sets.sets-into-space
by auto }

show indep-sets (λi. sigma-sets (space M) {F i}) UNIV
proof (rule indep-sets-sigma)

show indep-sets (λi. {F i}) UNIV
unfolding indep-events-def-alt[symmetric] by fact

fix i show Int-stable {F i}
unfolding Int-stable-def by simp

qed
let ?Q = λn.

⋃
i∈{n..}. F i

show (
⋂

n.
⋃

m∈{n..}. F m) ∈ tail-events (λi. sigma-sets (space M) {F i})
unfolding tail-events-def

proof
fix j
interpret S : sigma-algebra space M sigma-sets (space M) (

⋃
i∈{j..}. sigma-sets

(space M) {F i})
using order-trans[OF F1 sets.space-closed]
by (intro sigma-algebra-sigma-sets) (simp add: sigma-sets-singleton subset-eq)

have (
⋂

n. ?Q n) = (
⋂

n∈{j..}. ?Q n)
by (intro decseq-SucI INT-decseq-offset UN-mono) auto

also have . . . ∈ sigma-sets (space M) (
⋃

i∈{j..}. sigma-sets (space M) {F i})
using order-trans[OF F1 sets.space-closed]
by (safe intro!: S .countable-INT S .countable-UN)

(auto simp: sigma-sets-singleton intro!: sigma-sets.Basic bexI)
finally show (

⋂
n. ?Q n) ∈ sigma-sets (space M) (

⋃
i∈{j..}. sigma-sets (space

M) {F i})
by simp

qed
qed

lemma (in prob-space) borel-0-1-law-AE :
fixes P :: nat ⇒ ′a ⇒ bool
assumes indep-events (λm. {x∈space M . P m x}) UNIV (is indep-events ?P -)
shows (AE x in M . infinite {m. P m x}) ∨ (AE x in M . finite {m. P m x})

proof −
have [measurable]:

∧
m. {x∈space M . P m x} ∈ sets M

using assms by (auto simp: indep-events-def)
have ∗: (

⋂
n.

⋃
m∈{n..}. {x ∈ space M . P m x}) ∈ events

by simp
from assms have prob (

⋂
n.

⋃
m∈{n..}. ?P m) = 0 ∨ prob (

⋂
n.

⋃
m∈{n..}.

?P m) = 1
by (rule borel-0-1-law)

also have prob (
⋂

n.
⋃

m∈{n..}. ?P m) = 1 ←→ (AE x in M . infinite {m. P
m x})

using ∗ by (simp add: prob-eq-1)
(simp add: Bex-def infinite-nat-iff-unbounded-le)

also have prob (
⋂

n.
⋃

m∈{n..}. ?P m) = 0 ←→ (AE x in M . finite {m. P m

THEORY “Independent-Family” 136

x})
using ∗ by (simp add: prob-eq-0)
(auto simp add: Ball-def finite-nat-iff-bounded not-less [symmetric])

finally show ?thesis
by blast

qed

lemma (in prob-space) indep-sets-finite:
assumes I : I 6= {} finite I

and F :
∧

i. i ∈ I =⇒ F i ⊆ events
∧

i. i ∈ I =⇒ space M ∈ F i
shows indep-sets F I ←→ (∀A∈Pi I F . prob (

⋂
j∈I . A j) = (

∏
j∈I . prob (A

j)))
proof

assume ∗: indep-sets F I
from I show ∀A∈Pi I F . prob (

⋂
j∈I . A j) = (

∏
j∈I . prob (A j))

by (intro indep-setsD[OF ∗] ballI) auto
next

assume indep: ∀A∈Pi I F . prob (
⋂

j∈I . A j) = (
∏

j∈I . prob (A j))
show indep-sets F I
proof (rule indep-setsI [OF F(1)])

fix A J assume J : J 6= {} J ⊆ I finite J
assume A: ∀ j∈J . A j ∈ F j
let ?A = λj. if j ∈ J then A j else space M
have prob (

⋂
j∈I . ?A j) = prob (

⋂
j∈J . A j)

using subset-trans[OF F(1) sets.space-closed] J A
by (auto intro!: arg-cong[where f=prob] split: if-split-asm) blast

also
from A F have (λj. if j ∈ J then A j else space M) ∈ Pi I F (is ?A ∈ -)

by (auto split: if-split-asm)
with indep have prob (

⋂
j∈I . ?A j) = (

∏
j∈I . prob (?A j))

by auto
also have . . . = (

∏
j∈J . prob (A j))

unfolding if-distrib prod.If-cases[OF ‹finite I ›]
using prob-space ‹J ⊆ I › by (simp add: Int-absorb1 prod.neutral-const)

finally show prob (
⋂

j∈J . A j) = (
∏

j∈J . prob (A j)) ..
qed

qed

lemma (in prob-space) indep-vars-finite:
fixes I :: ′i set
assumes I : I 6= {} finite I

and M ′:
∧

i. i ∈ I =⇒ sets (M ′ i) = sigma-sets (space (M ′ i)) (E i)
and rv:

∧
i. i ∈ I =⇒ random-variable (M ′ i) (X i)

and Int-stable:
∧

i. i ∈ I =⇒ Int-stable (E i)
and space:

∧
i. i ∈ I =⇒ space (M ′ i) ∈ E i and closed:

∧
i. i ∈ I =⇒ E i ⊆

Pow (space (M ′ i))
shows indep-vars M ′ X I ←→
(∀A∈(Π i∈I . E i). prob (

⋂
j∈I . X j −‘ A j ∩ space M) = (

∏
j∈I . prob (X j

−‘ A j ∩ space M)))

THEORY “Independent-Family” 137

proof −
from rv have X :

∧
i. i ∈ I =⇒ X i ∈ space M → space (M ′ i)

unfolding measurable-def by simp

{ fix i assume i∈I
from closed[OF ‹i ∈ I ›]
have sigma-sets (space M) {X i −‘ A ∩ space M |A. A ∈ sets (M ′ i)}
= sigma-sets (space M) {X i −‘ A ∩ space M |A. A ∈ E i}
unfolding sigma-sets-vimage-commute[OF X , OF ‹i ∈ I ›, symmetric] M ′[OF

‹i ∈ I ›]
by (subst sigma-sets-sigma-sets-eq) auto }

note sigma-sets-X = this

{ fix i assume i∈I
have Int-stable {X i −‘ A ∩ space M |A. A ∈ E i}
proof (rule Int-stableI)

fix a assume a ∈ {X i −‘ A ∩ space M |A. A ∈ E i}
then obtain A where a = X i −‘ A ∩ space M A ∈ E i by auto
moreover
fix b assume b ∈ {X i −‘ A ∩ space M |A. A ∈ E i}
then obtain B where b = X i −‘ B ∩ space M B ∈ E i by auto
moreover
have (X i −‘ A ∩ space M) ∩ (X i −‘ B ∩ space M) = X i −‘ (A ∩ B) ∩

space M by auto
moreover note Int-stable[OF ‹i ∈ I ›]
ultimately
show a ∩ b ∈ {X i −‘ A ∩ space M |A. A ∈ E i}

by (auto simp del: vimage-Int intro!: exI [of - A ∩ B] dest: Int-stableD)
qed }

note indep-sets-X = indep-sets-sigma-sets-iff [OF this]

{ fix i assume i ∈ I
{ fix A assume A ∈ E i

with M ′[OF ‹i ∈ I ›] have A ∈ sets (M ′ i) by auto
moreover
from rv[OF ‹i∈I ›] have X i ∈ measurable M (M ′ i) by auto
ultimately
have X i −‘ A ∩ space M ∈ sets M by (auto intro: measurable-sets) }

with X [OF ‹i∈I ›] space[OF ‹i∈I ›]
have {X i −‘ A ∩ space M |A. A ∈ E i} ⊆ events

space M ∈ {X i −‘ A ∩ space M |A. A ∈ E i}
by (auto intro!: exI [of - space (M ′ i)]) }

note indep-sets-finite-X = indep-sets-finite[OF I this]

have (∀A∈Π i∈I . {X i −‘ A ∩ space M |A. A ∈ E i}. prob (
⋂
(A ‘ I)) = (

∏
j∈I .

prob (A j))) =
(∀A∈Π i∈I . E i. prob ((

⋂
j∈I . X j −‘ A j) ∩ space M) = (

∏
x∈I . prob (X x

−‘ A x ∩ space M)))
(is ?L = ?R)

THEORY “Independent-Family” 138

proof safe
fix A assume ?L and A: A ∈ (Π i∈I . E i)
from ‹?L›[THEN bspec, of λi. X i −‘ A i ∩ space M] A ‹I 6= {}›
show prob ((

⋂
j∈I . X j −‘ A j) ∩ space M) = (

∏
x∈I . prob (X x −‘ A x ∩

space M))
by (auto simp add: Pi-iff)

next
fix A assume ?R and A: A ∈ (Π i∈I . {X i −‘ A ∩ space M |A. A ∈ E i})
from A have ∀ i∈I . ∃B. A i = X i −‘ B ∩ space M ∧ B ∈ E i by auto
from bchoice[OF this] obtain B where B: ∀ i∈I . A i = X i −‘ B i ∩ space M

B ∈ (Π i∈I . E i) by auto
from ‹?R›[THEN bspec, OF B(2)] B(1) ‹I 6= {}›
show prob (

⋂
(A ‘ I)) = (

∏
j∈I . prob (A j))

by simp
qed
then show ?thesis using ‹I 6= {}›

by (simp add: rv indep-vars-def indep-sets-X sigma-sets-X indep-sets-finite-X
cong: indep-sets-cong)
qed

lemma (in prob-space) indep-vars-compose:
assumes indep-vars M ′ X I
assumes rv:

∧
i. i ∈ I =⇒ Y i ∈ measurable (M ′ i) (N i)

shows indep-vars N (λi. Y i ◦ X i) I
unfolding indep-vars-def

proof
from rv ‹indep-vars M ′ X I ›
show ∀ i∈I . random-variable (N i) (Y i ◦ X i)

by (auto simp: indep-vars-def)

have indep-sets (λi. sigma-sets (space M) {X i −‘ A ∩ space M |A. A ∈ sets
(M ′ i)}) I

using ‹indep-vars M ′ X I › by (simp add: indep-vars-def)
then show indep-sets (λi. sigma-sets (space M) {(Y i ◦ X i) −‘ A ∩ space M
|A. A ∈ sets (N i)}) I

proof (rule indep-sets-mono-sets)
fix i assume i ∈ I
with ‹indep-vars M ′ X I › have X : X i ∈ space M → space (M ′ i)

unfolding indep-vars-def measurable-def by auto
{ fix A assume A ∈ sets (N i)

then have ∃B. (Y i ◦ X i) −‘ A ∩ space M = X i −‘ B ∩ space M ∧ B ∈
sets (M ′ i)

by (intro exI [of - Y i −‘ A ∩ space (M ′ i)])
(auto simp: vimage-comp intro!: measurable-sets rv ‹i ∈ I › funcset-mem[OF

X]) }
then show sigma-sets (space M) {(Y i ◦ X i) −‘ A ∩ space M |A. A ∈ sets

(N i)} ⊆
sigma-sets (space M) {X i −‘ A ∩ space M |A. A ∈ sets (M ′ i)}
by (intro sigma-sets-subseteq) (auto simp: vimage-comp)

THEORY “Independent-Family” 139

qed
qed

lemma (in prob-space) indep-vars-compose2 :
assumes indep-vars M ′ X I
assumes rv:

∧
i. i ∈ I =⇒ Y i ∈ measurable (M ′ i) (N i)

shows indep-vars N (λi x. Y i (X i x)) I
using indep-vars-compose [OF assms] by (simp add: comp-def)

lemma (in prob-space) indep-var-compose:
assumes indep-var M1 X1 M2 X2 Y1 ∈ measurable M1 N1 Y2 ∈ measurable

M2 N2
shows indep-var N1 (Y1 ◦ X1) N2 (Y2 ◦ X2)

proof −
have indep-vars (case-bool N1 N2) (λb. case-bool Y1 Y2 b ◦ case-bool X1 X2 b)

UNIV
using assms
by (intro indep-vars-compose[where M ′=case-bool M1 M2])

(auto simp: indep-var-def split: bool.split)
also have (λb. case-bool Y1 Y2 b ◦ case-bool X1 X2 b) = case-bool (Y1 ◦ X1)

(Y2 ◦ X2)
by (simp add: fun-eq-iff split: bool.split)

finally show ?thesis
unfolding indep-var-def .

qed

lemma (in prob-space) indep-vars-Min:
fixes X :: ′i ⇒ ′a ⇒ real
assumes I : finite I i /∈ I and indep: indep-vars (λ-. borel) X (insert i I)
shows indep-var borel (X i) borel (λω. Min ((λi. X i ω)‘I))

proof −
have indep-var

borel ((λf . f i) ◦ (λω. restrict (λi. X i ω) {i}))
borel ((λf . Min (f‘I)) ◦ (λω. restrict (λi. X i ω) I))

using I by (intro indep-var-compose[OF indep-var-restrict[OF indep]] borel-measurable-Min)
auto

also have ((λf . f i) ◦ (λω. restrict (λi. X i ω) {i})) = X i
by auto

also have ((λf . Min (f‘I)) ◦ (λω. restrict (λi. X i ω) I)) = (λω. Min ((λi. X i
ω)‘I))

by (auto cong: rev-conj-cong)
finally show ?thesis

unfolding indep-var-def .
qed

lemma (in prob-space) indep-vars-sum:
fixes X :: ′i ⇒ ′a ⇒ real
assumes I : finite I i /∈ I and indep: indep-vars (λ-. borel) X (insert i I)
shows indep-var borel (X i) borel (λω.

∑
i∈I . X i ω)

THEORY “Independent-Family” 140

proof −
have indep-var

borel ((λf . f i) ◦ (λω. restrict (λi. X i ω) {i}))
borel ((λf .

∑
i∈I . f i) ◦ (λω. restrict (λi. X i ω) I))

using I by (intro indep-var-compose[OF indep-var-restrict[OF indep]]) auto
also have ((λf . f i) ◦ (λω. restrict (λi. X i ω) {i})) = X i

by auto
also have ((λf .

∑
i∈I . f i) ◦ (λω. restrict (λi. X i ω) I)) = (λω.

∑
i∈I . X i ω)

by (auto cong: rev-conj-cong)
finally show ?thesis .

qed

lemma (in prob-space) indep-vars-prod:
fixes X :: ′i ⇒ ′a ⇒ real
assumes I : finite I i /∈ I and indep: indep-vars (λ-. borel) X (insert i I)
shows indep-var borel (X i) borel (λω.

∏
i∈I . X i ω)

proof −
have indep-var

borel ((λf . f i) ◦ (λω. restrict (λi. X i ω) {i}))
borel ((λf .

∏
i∈I . f i) ◦ (λω. restrict (λi. X i ω) I))

using I by (intro indep-var-compose[OF indep-var-restrict[OF indep]]) auto
also have ((λf . f i) ◦ (λω. restrict (λi. X i ω) {i})) = X i

by auto
also have ((λf .

∏
i∈I . f i) ◦ (λω. restrict (λi. X i ω) I)) = (λω.

∏
i∈I . X i ω)

by (auto cong: rev-conj-cong)
finally show ?thesis .

qed

lemma (in prob-space) indep-varsD-finite:
assumes X : indep-vars M ′ X I
assumes I : I 6= {} finite I

∧
i. i ∈ I =⇒ A i ∈ sets (M ′ i)

shows prob (
⋂

i∈I . X i −‘ A i ∩ space M) = (
∏

i∈I . prob (X i −‘ A i ∩ space
M))
proof (rule indep-setsD)

show indep-sets (λi. sigma-sets (space M) {X i −‘ A ∩ space M |A. A ∈ sets
(M ′ i)}) I

using X by (auto simp: indep-vars-def)
show I ⊆ I I 6= {} finite I using I by auto
show ∀ i∈I . X i −‘ A i ∩ space M ∈ sigma-sets (space M) {X i −‘ A ∩ space

M |A. A ∈ sets (M ′ i)}
using I by auto

qed

lemma (in prob-space) indep-varsD:
assumes X : indep-vars M ′ X I
assumes I : J 6= {} finite J J ⊆ I

∧
i. i ∈ J =⇒ A i ∈ sets (M ′ i)

shows prob (
⋂

i∈J . X i −‘ A i ∩ space M) = (
∏

i∈J . prob (X i −‘ A i ∩ space
M))
proof (rule indep-setsD)

THEORY “Independent-Family” 141

show indep-sets (λi. sigma-sets (space M) {X i −‘ A ∩ space M |A. A ∈ sets
(M ′ i)}) I

using X by (auto simp: indep-vars-def)
show ∀ i∈J . X i −‘ A i ∩ space M ∈ sigma-sets (space M) {X i −‘ A ∩ space

M |A. A ∈ sets (M ′ i)}
using I by auto

qed fact+

lemma (in prob-space) indep-vars-iff-distr-eq-PiM :
fixes I :: ′i set and X :: ′i ⇒ ′a ⇒ ′b
assumes I 6= {}
assumes rv:

∧
i. random-variable (M ′ i) (X i)

shows indep-vars M ′ X I ←→
distr M (ΠM i∈I . M ′ i) (λx. λi∈I . X i x) = (ΠM i∈I . distr M (M ′ i) (X i))

proof −
let ?P = ΠM i∈I . M ′ i
let ?X = λx. λi∈I . X i x
let ?D = distr M ?P ?X
have X : random-variable ?P ?X by (intro measurable-restrict rv)
interpret D: prob-space ?D by (intro prob-space-distr X)

let ?D ′ = λi. distr M (M ′ i) (X i)
let ?P ′ = ΠM i∈I . distr M (M ′ i) (X i)
interpret D ′: prob-space ?D ′ i for i by (intro prob-space-distr rv)
interpret P: product-prob-space ?D ′ I ..

show ?thesis
proof

assume indep-vars M ′ X I
show ?D = ?P ′

proof (rule measure-eqI-generator-eq)
show Int-stable (prod-algebra I M ′)

by (rule Int-stable-prod-algebra)
show prod-algebra I M ′ ⊆ Pow (space ?P)

using prod-algebra-sets-into-space by (simp add: space-PiM)
show sets ?D = sigma-sets (space ?P) (prod-algebra I M ′)

by (simp add: sets-PiM space-PiM)
show sets ?P ′ = sigma-sets (space ?P) (prod-algebra I M ′)

by (simp add: sets-PiM space-PiM cong: prod-algebra-cong)
let ?A = λi. ΠE i∈I . space (M ′ i)
show range ?A ⊆ prod-algebra I M ′ (

⋃
i. ?A i) = space (PiM I M ′)

by (auto simp: space-PiM intro!: space-in-prod-algebra cong: prod-algebra-cong)
{ fix i show emeasure ?D (ΠE i∈I . space (M ′ i)) 6= ∞ by auto }

next
fix E assume E : E ∈ prod-algebra I M ′

from prod-algebraE [OF E] obtain J Y
where J :

E = prod-emb I M ′ J (PiE J Y)
finite J

THEORY “Independent-Family” 142

J 6= {} ∨ I = {}
J ⊆ I∧

i. i ∈ J =⇒ Y i ∈ sets (M ′ i)
by auto

from E have E ∈ sets ?P by (auto simp: sets-PiM)
then have emeasure ?D E = emeasure M (?X −‘ E ∩ space M)

by (simp add: emeasure-distr X)
also have ?X −‘ E ∩ space M = (

⋂
i∈J . X i −‘ Y i ∩ space M)

using J ‹I 6= {}› measurable-space[OF rv] by (auto simp: prod-emb-def
PiE-iff split: if-split-asm)

also have emeasure M (
⋂

i∈J . X i −‘ Y i ∩ space M) = (
∏

i∈J . emeasure
M (X i −‘ Y i ∩ space M))

using ‹indep-vars M ′ X I › J ‹I 6= {}› using indep-varsD[of M ′ X I J]
by (auto simp: emeasure-eq-measure prod-ennreal measure-nonneg prod-nonneg)
also have . . . = (

∏
i∈J . emeasure (?D ′ i) (Y i))

using rv J by (simp add: emeasure-distr)
also have . . . = emeasure ?P ′ E

using P.emeasure-PiM-emb[of J Y] J by (simp add: prod-emb-def)
finally show emeasure ?D E = emeasure ?P ′ E .

qed
next

assume ?D = ?P ′

show indep-vars M ′ X I unfolding indep-vars-def
proof (intro conjI indep-setsI ballI rv)

fix i show sigma-sets (space M) {X i −‘ A ∩ space M |A. A ∈ sets (M ′ i)}
⊆ events

by (auto intro!: sets.sigma-sets-subset measurable-sets rv)
next

fix J Y ′ assume J : J 6= {} J ⊆ I finite J
assume Y ′: ∀ j∈J . Y ′ j ∈ sigma-sets (space M) {X j −‘ A ∩ space M |A. A

∈ sets (M ′ j)}
have ∀ j∈J . ∃Y . Y ′ j = X j −‘ Y ∩ space M ∧ Y ∈ sets (M ′ j)
proof

fix j assume j ∈ J
from Y ′[rule-format, OF this] rv[of j]
show ∃Y . Y ′ j = X j −‘ Y ∩ space M ∧ Y ∈ sets (M ′ j)

by (subst (asm) sigma-sets-vimage-commute[symmetric, of - - space (M ′

j)])
(auto dest: measurable-space simp: sets.sigma-sets-eq)

qed
from bchoice[OF this] obtain Y where

Y :
∧

j. j ∈ J =⇒ Y ′ j = X j −‘ Y j ∩ space M
∧

j. j ∈ J =⇒ Y j ∈ sets
(M ′ j) by auto

let ?E = prod-emb I M ′ J (PiE J Y)
from Y have (

⋂
j∈J . Y ′ j) = ?X −‘ ?E ∩ space M

using J ‹I 6= {}› measurable-space[OF rv] by (auto simp: prod-emb-def
PiE-iff split: if-split-asm)

then have emeasure M (
⋂

j∈J . Y ′ j) = emeasure M (?X −‘ ?E ∩ space M)
by simp

THEORY “Independent-Family” 143

also have . . . = emeasure ?D ?E
using Y J by (intro emeasure-distr [symmetric] X sets-PiM-I) auto

also have . . . = emeasure ?P ′ ?E
using ‹?D = ?P ′› by simp

also have . . . = (
∏

i∈J . emeasure (?D ′ i) (Y i))
using P.emeasure-PiM-emb[of J Y] J Y by (simp add: prod-emb-def)

also have . . . = (
∏

i∈J . emeasure M (Y ′ i))
using rv J Y by (simp add: emeasure-distr)

finally have emeasure M (
⋂

j∈J . Y ′ j) = (
∏

i∈J . emeasure M (Y ′ i)) .
then show prob (

⋂
j∈J . Y ′ j) = (

∏
i∈J . prob (Y ′ i))

by (auto simp: emeasure-eq-measure prod-ennreal measure-nonneg prod-nonneg)
qed

qed
qed

lemma (in prob-space) indep-vars-iff-distr-eq-PiM ′:
fixes I :: ′i set and X :: ′i ⇒ ′a ⇒ ′b
assumes I 6= {}
assumes rv:

∧
i. i ∈ I =⇒ random-variable (M ′ i) (X i)

shows indep-vars M ′ X I ←→
distr M (ΠM i∈I . M ′ i) (λx. λi∈I . X i x) = (ΠM i∈I . distr M (M ′ i)

(X i))
proof −

from assms obtain j where j: j ∈ I
by auto

define N ′ where N ′ = (λi. if i ∈ I then M ′ i else M ′ j)
define Y where Y = (λi. if i ∈ I then X i else X j)
have rv: random-variable (N ′ i) (Y i) for i

using j by (auto simp: N ′-def Y-def intro: assms)

have indep-vars M ′ X I = indep-vars N ′ Y I
by (intro indep-vars-cong) (auto simp: N ′-def Y-def)

also have . . . ←→ distr M (ΠM i∈I . N ′ i) (λx. λi∈I . Y i x) = (ΠM i∈I . distr
M (N ′ i) (Y i))

by (intro indep-vars-iff-distr-eq-PiM rv assms)
also have (ΠM i∈I . N ′ i) = (ΠM i∈I . M ′ i)

by (intro PiM-cong) (simp-all add: N ′-def)
also have (λx. λi∈I . Y i x) = (λx. λi∈I . X i x)

by (simp-all add: Y-def fun-eq-iff)
also have (ΠM i∈I . distr M (N ′ i) (Y i)) = (ΠM i∈I . distr M (M ′ i) (X i))

by (intro PiM-cong distr-cong) (simp-all add: N ′-def Y-def)
finally show ?thesis .

qed

lemma (in prob-space) indep-varD:
assumes indep: indep-var Ma A Mb B
assumes sets: Xa ∈ sets Ma Xb ∈ sets Mb
shows prob ((λx. (A x, B x)) −‘ (Xa × Xb) ∩ space M) =

prob (A −‘ Xa ∩ space M) ∗ prob (B −‘ Xb ∩ space M)

THEORY “Independent-Family” 144

proof −
have prob ((λx. (A x , B x)) −‘ (Xa × Xb) ∩ space M) =

prob (
⋂

i∈UNIV . (case-bool A B i −‘ case-bool Xa Xb i ∩ space M))
by (auto intro!: arg-cong[where f=prob] simp: UNIV-bool)

also have . . . = (
∏

i∈UNIV . prob (case-bool A B i −‘ case-bool Xa Xb i ∩ space
M))

using indep unfolding indep-var-def
by (rule indep-varsD) (auto split: bool.split intro: sets)

also have . . . = prob (A −‘ Xa ∩ space M) ∗ prob (B −‘ Xb ∩ space M)
unfolding UNIV-bool by simp

finally show ?thesis .
qed

lemma (in prob-space) prob-indep-random-variable:
assumes ind[simp]: indep-var N X N Y
assumes [simp]: A ∈ sets N B ∈ sets N
shows P(x in M . X x ∈ A ∧ Y x ∈ B) = P(x in M . X x ∈ A) ∗ P(x in M . Y x
∈ B)
proof−

have P(x in M . (X x)∈A ∧ (Y x)∈ B) = prob ((λx. (X x, Y x)) −‘ (A × B)
∩ space M)

by (auto intro!: arg-cong[where f= prob])
also have ...= prob (X −‘ A ∩ space M) ∗ prob (Y −‘ B ∩ space M)

by (auto intro!: indep-varD[where Ma=N and Mb=N])
also have ... = P(x in M . X x ∈ A) ∗ P(x in M . Y x ∈ B)

by (auto intro!: arg-cong2 [where f= (∗)] arg-cong[where f= prob])
finally show ?thesis .

qed

lemma (in prob-space)
assumes indep-var S X T Y
shows indep-var-rv1 : random-variable S X

and indep-var-rv2 : random-variable T Y
proof −

have ∀ i∈UNIV . random-variable (case-bool S T i) (case-bool X Y i)
using assms unfolding indep-var-def indep-vars-def by auto

then show random-variable S X random-variable T Y
unfolding UNIV-bool by auto

qed

lemma (in prob-space) indep-var-distribution-eq:
indep-var S X T Y ←→ random-variable S X ∧ random-variable T Y ∧

distr M S X
⊗

M distr M T Y = distr M (S
⊗

M T) (λx. (X x, Y x)) (is -
←→ - ∧ - ∧ ?S

⊗
M ?T = ?J)

proof safe
assume indep-var S X T Y
then show rvs: random-variable S X random-variable T Y

by (blast dest: indep-var-rv1 indep-var-rv2)+
then have XY : random-variable (S

⊗
M T) (λx. (X x , Y x))

THEORY “Independent-Family” 145

by (rule measurable-Pair)

interpret X : prob-space ?S by (rule prob-space-distr) fact
interpret Y : prob-space ?T by (rule prob-space-distr) fact
interpret XY : pair-prob-space ?S ?T ..
show ?S

⊗
M ?T = ?J

proof (rule pair-measure-eqI)
show sigma-finite-measure ?S ..
show sigma-finite-measure ?T ..

fix A B assume A: A ∈ sets ?S and B: B ∈ sets ?T
have emeasure ?J (A × B) = emeasure M ((λx. (X x, Y x)) −‘ (A × B) ∩

space M)
using A B by (intro emeasure-distr [OF XY]) auto

also have . . . = emeasure M (X −‘ A ∩ space M) ∗ emeasure M (Y −‘ B ∩
space M)

using indep-varD[OF ‹indep-var S X T Y ›, of A B] A B
by (simp add: emeasure-eq-measure measure-nonneg ennreal-mult)

also have . . . = emeasure ?S A ∗ emeasure ?T B
using rvs A B by (simp add: emeasure-distr)

finally show emeasure ?S A ∗ emeasure ?T B = emeasure ?J (A × B) by
simp

qed simp
next

assume rvs: random-variable S X random-variable T Y
then have XY : random-variable (S

⊗
M T) (λx. (X x , Y x))

by (rule measurable-Pair)

let ?S = distr M S X and ?T = distr M T Y
interpret X : prob-space ?S by (rule prob-space-distr) fact
interpret Y : prob-space ?T by (rule prob-space-distr) fact
interpret XY : pair-prob-space ?S ?T ..

assume ?S
⊗

M ?T = ?J

{ fix S and X
have Int-stable {X −‘ A ∩ space M |A. A ∈ sets S}
proof (safe intro!: Int-stableI)

fix A B assume A ∈ sets S B ∈ sets S
then show ∃C . (X −‘ A ∩ space M) ∩ (X −‘ B ∩ space M) = (X −‘ C ∩

space M) ∧ C ∈ sets S
by (intro exI [of - A ∩ B]) auto

qed }
note Int-stable = this

show indep-var S X T Y unfolding indep-var-eq
proof (intro conjI indep-set-sigma-sets Int-stable rvs)

show indep-set {X −‘ A ∩ space M |A. A ∈ sets S} {Y −‘ A ∩ space M |A.
A ∈ sets T}

THEORY “Independent-Family” 146

proof (safe intro!: indep-setI)
{ fix A assume A ∈ sets S then show X −‘ A ∩ space M ∈ sets M

using ‹X ∈ measurable M S› by (auto intro: measurable-sets) }
{ fix A assume A ∈ sets T then show Y −‘ A ∩ space M ∈ sets M

using ‹Y ∈ measurable M T › by (auto intro: measurable-sets) }
next

fix A B assume ab: A ∈ sets S B ∈ sets T
then have prob ((X −‘ A ∩ space M) ∩ (Y −‘ B ∩ space M)) = emeasure

?J (A × B)
using XY by (auto simp add: emeasure-distr emeasure-eq-measure mea-

sure-nonneg intro!: arg-cong[where f=prob])
also have . . . = emeasure (?S

⊗
M ?T) (A × B)

unfolding ‹?S
⊗

M ?T = ?J › ..
also have . . . = emeasure ?S A ∗ emeasure ?T B

using ab by (simp add: Y .emeasure-pair-measure-Times)
finally show prob ((X −‘ A ∩ space M) ∩ (Y −‘ B ∩ space M)) =

prob (X −‘ A ∩ space M) ∗ prob (Y −‘ B ∩ space M)
using rvs ab by (simp add: emeasure-eq-measure emeasure-distr mea-

sure-nonneg ennreal-mult[symmetric])
qed

qed
qed

lemma (in prob-space) distributed-joint-indep:
assumes S : sigma-finite-measure S and T : sigma-finite-measure T
assumes X : distributed M S X Px and Y : distributed M T Y Py
assumes indep: indep-var S X T Y
shows distributed M (S

⊗
M T) (λx. (X x, Y x)) (λ(x, y). Px x ∗ Py y)

using indep-var-distribution-eq[of S X T Y] indep
by (intro distributed-joint-indep ′[OF S T X Y]) auto

lemma (in prob-space) indep-vars-nn-integral:
assumes I : finite I indep-vars (λ-. borel) X I

∧
i ω. i ∈ I =⇒ 0 ≤ X i ω

shows (
∫

+ω. (
∏

i∈I . X i ω) ∂M) = (
∏

i∈I .
∫

+ω. X i ω ∂M)
proof cases

assume I 6= {}
define Y where [abs-def]: Y i ω = (if i ∈ I then X i ω else 0) for i ω
{ fix i have i ∈ I =⇒ random-variable borel (X i)

using I (2) by (cases i∈I) (auto simp: indep-vars-def) }
note rv-X = this

{ fix i have random-variable borel (Y i)
using I (2) by (cases i∈I) (auto simp: Y-def rv-X) }

note rv-Y = this[measurable]

interpret Y : prob-space distr M borel (Y i) for i
using I (2) by (cases i ∈ I) (auto intro!: prob-space-distr simp: indep-vars-def

prob-space-return)
interpret product-sigma-finite λi. distr M borel (Y i)

THEORY “Independent-Family” 147

..

have indep-Y : indep-vars (λi. borel) Y I
by (rule indep-vars-cong[THEN iffD1 , OF - - - I (2)]) (auto simp: Y-def)

have (
∫

+ω. (
∏

i∈I . X i ω) ∂M) = (
∫

+ω. (
∏

i∈I . Y i ω) ∂M)
using I (3) by (auto intro!: nn-integral-cong prod.cong simp add: Y-def max-def)

also have . . . = (
∫

+ω. (
∏

i∈I . ω i) ∂distr M (PiM I (λi. borel)) (λx. λi∈I . Y
i x))

by (subst nn-integral-distr) auto
also have . . . = (

∫
+ω. (

∏
i∈I . ω i) ∂PiM I (λi. distr M borel (Y i)))

unfolding indep-vars-iff-distr-eq-PiM [THEN iffD1 , OF ‹I 6= {}› rv-Y indep-Y]
..

also have . . . = (
∏

i∈I . (
∫

+ω. ω ∂distr M borel (Y i)))
by (rule product-nn-integral-prod) (auto intro: ‹finite I ›)

also have . . . = (
∏

i∈I .
∫

+ω. X i ω ∂M)
by (intro prod.cong nn-integral-cong) (auto simp: nn-integral-distr Y-def rv-X)

finally show ?thesis .
qed (simp add: emeasure-space-1)

lemma (in prob-space)
fixes X :: ′i ⇒ ′a ⇒ ′b::{real-normed-field, banach, second-countable-topology}
assumes I : finite I indep-vars (λ-. borel) X I

∧
i. i ∈ I =⇒ integrable M (X i)

shows indep-vars-lebesgue-integral: (
∫
ω. (

∏
i∈I . X i ω) ∂M) = (

∏
i∈I .

∫
ω. X

i ω ∂M) (is ?eq)
and indep-vars-integrable: integrable M (λω. (

∏
i∈I . X i ω)) (is ?int)

proof (induct rule: case-split)
assume I 6= {}
define Y where [abs-def]: Y i ω = (if i ∈ I then X i ω else 0) for i ω
{ fix i have i ∈ I =⇒ random-variable borel (X i)

using I (2) by (cases i∈I) (auto simp: indep-vars-def) }
note rv-X = this[measurable]

{ fix i have random-variable borel (Y i)
using I (2) by (cases i∈I) (auto simp: Y-def rv-X) }

note rv-Y = this[measurable]

{ fix i have integrable M (Y i)
using I (3) by (cases i∈I) (auto simp: Y-def) }

note int-Y = this

interpret Y : prob-space distr M borel (Y i) for i
using I (2) by (cases i ∈ I) (auto intro!: prob-space-distr simp: indep-vars-def

prob-space-return)
interpret product-sigma-finite λi. distr M borel (Y i)

..

have indep-Y : indep-vars (λi. borel) Y I
by (rule indep-vars-cong[THEN iffD1 , OF - - - I (2)]) (auto simp: Y-def)

THEORY “Independent-Family” 148

have (
∫
ω. (

∏
i∈I . X i ω) ∂M) = (

∫
ω. (

∏
i∈I . Y i ω) ∂M)

using I (3) by (simp add: Y-def)
also have . . . = (

∫
ω. (

∏
i∈I . ω i) ∂distr M (PiM I (λi. borel)) (λx. λi∈I . Y i

x))
by (subst integral-distr) auto

also have . . . = (
∫
ω. (

∏
i∈I . ω i) ∂PiM I (λi. distr M borel (Y i)))

unfolding indep-vars-iff-distr-eq-PiM [THEN iffD1 , OF ‹I 6= {}› rv-Y indep-Y]
..

also have . . . = (
∏

i∈I . (
∫
ω. ω ∂distr M borel (Y i)))

by (rule product-integral-prod) (auto intro: ‹finite I › simp: integrable-distr-eq
int-Y)

also have . . . = (
∏

i∈I .
∫
ω. X i ω ∂M)

by (intro prod.cong integral-cong)
(auto simp: integral-distr Y-def rv-X)

finally show ?eq .

have integrable (distr M (PiM I (λi. borel)) (λx. λi∈I . Y i x)) (λω. (
∏

i∈I . ω
i))

unfolding indep-vars-iff-distr-eq-PiM [THEN iffD1 , OF ‹I 6= {}› rv-Y indep-Y]
by (intro product-integrable-prod[OF ‹finite I ›])

(simp add: integrable-distr-eq int-Y)
then show ?int

by (simp add: integrable-distr-eq Y-def)
qed (simp-all add: prob-space)

lemma (in prob-space)
fixes X1 X2 :: ′a ⇒ ′b::{real-normed-field, banach, second-countable-topology}
assumes indep-var borel X1 borel X2 integrable M X1 integrable M X2
shows indep-var-lebesgue-integral: (

∫
ω. X1 ω ∗ X2 ω ∂M) = (

∫
ω. X1 ω ∂M)

∗ (
∫
ω. X2 ω ∂M) (is ?eq)

and indep-var-integrable: integrable M (λω. X1 ω ∗ X2 ω) (is ?int)
unfolding indep-var-def
proof −

have ∗: (λω. X1 ω ∗ X2 ω) = (λω.
∏

i∈UNIV . (case-bool X1 X2 i ω))
by (simp add: UNIV-bool mult.commute)

have ∗∗: (λ -. borel) = case-bool borel borel
by (rule ext, metis (full-types) bool.simps(3) bool.simps(4))

show ?eq
apply (subst ∗)
apply (subst indep-vars-lebesgue-integral)
apply (auto)
apply (subst ∗∗, subst indep-var-def [symmetric], rule assms)
apply (simp split: bool.split add: assms)
by (simp add: UNIV-bool mult.commute)

show ?int
apply (subst ∗)
apply (rule indep-vars-integrable)
apply auto

THEORY “Convolution” 149

apply (subst ∗∗, subst indep-var-def [symmetric], rule assms)
by (simp split: bool.split add: assms)

qed

end

11 Convolution Measure
theory Convolution

imports Independent-Family
begin

lemma (in finite-measure) sigma-finite-measure: sigma-finite-measure M
..

definition convolution :: (′a :: ordered-euclidean-space) measure ⇒ ′a measure ⇒
′a measure (infix ‹?› 50) where

convolution M N = distr (M
⊗

M N) borel (λ(x, y). x + y)

lemma
shows space-convolution[simp]: space (convolution M N) = space borel

and sets-convolution[simp]: sets (convolution M N) = sets borel
and measurable-convolution1 [simp]: measurable A (convolution M N) = mea-

surable A borel
and measurable-convolution2 [simp]: measurable (convolution M N) B = mea-

surable borel B
by (simp-all add: convolution-def)

lemma nn-integral-convolution:
assumes finite-measure M finite-measure N
assumes [measurable-cong]: sets N = sets borel sets M = sets borel
assumes [measurable]: f ∈ borel-measurable borel
shows (

∫
+x. f x ∂convolution M N) = (

∫
+x.

∫
+y. f (x + y) ∂N ∂M)

proof −
interpret M : finite-measure M by fact
interpret N : finite-measure N by fact
interpret pair-sigma-finite M N ..
show ?thesis

unfolding convolution-def
by (simp add: nn-integral-distr N .nn-integral-fst[symmetric])

qed

lemma convolution-emeasure:
assumes A ∈ sets borel finite-measure M finite-measure N
assumes [simp]: sets N = sets borel sets M = sets borel
assumes [simp]: space M = space N space N = space borel
shows emeasure (M ? N) A =

∫
+x. (emeasure N {a. a + x ∈ A}) ∂M

using assms by (auto intro!: nn-integral-cong simp del: nn-integral-indicator
simp: nn-integral-convolution

THEORY “Convolution” 150

nn-integral-indicator [symmetric] ac-simps split:split-indicator)

lemma convolution-emeasure ′:
assumes [simp]:A ∈ sets borel
assumes [simp]: finite-measure M finite-measure N
assumes [simp]: sets N = sets borel sets M = sets borel
shows emeasure (M ? N) A =

∫
+x.

∫
+y. (indicator A (x + y)) ∂N ∂M

by (auto simp del: nn-integral-indicator simp: nn-integral-convolution
nn-integral-indicator [symmetric] borel-measurable-indicator)

lemma convolution-finite:
assumes [simp]: finite-measure M finite-measure N
assumes [measurable-cong]: sets N = sets borel sets M = sets borel
shows finite-measure (M ? N)
unfolding convolution-def
by (intro finite-measure-pair-measure finite-measure.finite-measure-distr) auto

lemma convolution-emeasure-3 :
assumes [simp, measurable]: A ∈ sets borel
assumes [simp]: finite-measure M finite-measure N finite-measure L
assumes [simp]: sets N = sets borel sets M = sets borel sets L = sets borel
shows emeasure (L ? (M ? N)) A =

∫
+x.

∫
+y.

∫
+z. indicator A (x + y + z)

∂N ∂M ∂L
apply (subst nn-integral-indicator [symmetric], simp)
apply (subst nn-integral-convolution,

auto intro!: borel-measurable-indicator borel-measurable-indicator ′ convolu-
tion-finite)+

by (rule nn-integral-cong)+ (auto simp: semigroup-add-class.add.assoc)

lemma convolution-emeasure-3 ′:
assumes [simp, measurable]:A ∈ sets borel
assumes [simp]: finite-measure M finite-measure N finite-measure L
assumes [measurable-cong, simp]: sets N = sets borel sets M = sets borel sets L

= sets borel
shows emeasure ((L ? M) ? N) A =

∫
+x.

∫
+y.

∫
+z. indicator A (x + y + z)

∂N ∂M ∂L
apply (subst nn-integral-indicator [symmetric], simp)+
apply (subst nn-integral-convolution)
apply (simp-all add: convolution-finite)
apply (subst nn-integral-convolution)
apply (simp-all add: finite-measure.sigma-finite-measure sigma-finite-measure.borel-measurable-nn-integral)
done

lemma convolution-commutative:
assumes [simp]: finite-measure M finite-measure N
assumes [measurable-cong, simp]: sets N = sets borel sets M = sets borel
shows (M ? N) = (N ? M)

proof (rule measure-eqI)
interpret M : finite-measure M by fact

THEORY “Convolution” 151

interpret N : finite-measure N by fact
interpret pair-sigma-finite M N ..

show sets (M ? N) = sets (N ? M) by simp

fix A assume A ∈ sets (M ? N)
then have 1 [measurable]:A ∈ sets borel by simp
have emeasure (M ? N) A =

∫
+x.

∫
+y. indicator A (x + y) ∂N ∂M by (auto

intro!: convolution-emeasure ′)
also have ... =

∫
+x.

∫
+y. (λ(x,y). indicator A (x + y)) (x, y) ∂N ∂M by (auto

intro!: nn-integral-cong)
also have ... =

∫
+y.

∫
+x. (λ(x,y). indicator A (x + y)) (x, y) ∂M ∂N by (rule

Fubini[symmetric]) simp
also have ... = emeasure (N ? M) A by (auto intro!: nn-integral-cong simp:

add.commute convolution-emeasure ′)
finally show emeasure (M ? N) A = emeasure (N ? M) A by simp

qed

lemma convolution-associative:
assumes [simp]: finite-measure M finite-measure N finite-measure L
assumes [simp]: sets N = sets borel sets M = sets borel sets L = sets borel
shows (L ? (M ? N)) = ((L ? M) ? N)
by (auto intro!: measure-eqI simp: convolution-emeasure-3 convolution-emeasure-3 ′)

lemma (in prob-space) sum-indep-random-variable:
assumes ind: indep-var borel X borel Y
assumes [simp, measurable]: random-variable borel X
assumes [simp, measurable]: random-variable borel Y
shows distr M borel (λx. X x + Y x) = convolution (distr M borel X) (distr M

borel Y)
using ind unfolding indep-var-distribution-eq convolution-def
by (auto simp: distr-distr intro!:arg-cong[where f = distr M borel])

lemma (in prob-space) sum-indep-random-variable-lborel:
assumes ind: indep-var borel X borel Y
assumes [simp, measurable]: random-variable lborel X
assumes [simp, measurable]:random-variable lborel Y
shows distr M lborel (λx. X x + Y x) = convolution (distr M lborel X) (distr

M lborel Y)
using ind unfolding indep-var-distribution-eq convolution-def
by (auto simp: distr-distr o-def intro!: arg-cong[where f = distr M borel] cong:

distr-cong)

lemma convolution-density:
fixes f g :: real ⇒ ennreal
assumes [measurable]: f ∈ borel-measurable borel g ∈ borel-measurable borel
assumes [simp]:finite-measure (density lborel f) finite-measure (density lborel g)
shows density lborel f ? density lborel g = density lborel (λx.

∫
+y. f (x − y) ∗

g y ∂lborel)

THEORY “Convolution” 152

(is ?l = ?r)
proof (intro measure-eqI)

fix A assume A ∈ sets ?l
then have [measurable]: A ∈ sets borel

by simp

have (
∫

+x. f x ∗ (
∫

+y. g y ∗ indicator A (x + y) ∂lborel) ∂lborel) =
(
∫

+x. (
∫

+y. g y ∗ (f x ∗ indicator A (x + y)) ∂lborel) ∂lborel)
proof (intro nn-integral-cong-AE , eventually-elim)

fix x
have f x ∗ (

∫
+ y. g y ∗ indicator A (x + y) ∂lborel) =

(
∫

+ y. f x ∗ (g y ∗ indicator A (x + y)) ∂lborel)
by (intro nn-integral-cmult[symmetric]) auto

then show f x ∗ (
∫

+ y. g y ∗ indicator A (x + y) ∂lborel) =
(
∫

+ y. g y ∗ (f x ∗ indicator A (x + y)) ∂lborel)
by (simp add: ac-simps)

qed
also have . . . = (

∫
+y. (

∫
+x. g y ∗ (f x ∗ indicator A (x + y)) ∂lborel) ∂lborel)

by (intro lborel-pair .Fubini ′) simp
also have . . . = (

∫
+y. (

∫
+x. f (x − y) ∗ g y ∗ indicator A x ∂lborel) ∂lborel)

proof (intro nn-integral-cong-AE , eventually-elim)
fix y
have (

∫
+x. g y ∗ (f x ∗ indicator A (x + y)) ∂lborel) =

g y ∗ (
∫

+x. f x ∗ indicator A (x + y) ∂lborel)
by (intro nn-integral-cmult) auto

also have . . . = g y ∗ (
∫

+x. f (x − y) ∗ indicator A x ∂lborel)
by (subst nn-integral-real-affine[where c=1 and t=−y])

(auto simp add: one-ennreal-def [symmetric])
also have . . . = (

∫
+x. g y ∗ (f (x − y) ∗ indicator A x) ∂lborel)

by (intro nn-integral-cmult[symmetric]) auto
finally show (

∫
+ x. g y ∗ (f x ∗ indicator A (x + y)) ∂lborel) =

(
∫

+ x. f (x − y) ∗ g y ∗ indicator A x ∂lborel)
by (simp add: ac-simps)

qed
also have . . . = (

∫
+x. (

∫
+y. f (x − y) ∗ g y ∗ indicator A x ∂lborel) ∂lborel)

by (intro lborel-pair .Fubini ′) simp
finally show emeasure ?l A = emeasure ?r A

by (auto simp: convolution-emeasure ′ nn-integral-density emeasure-density
nn-integral-multc)

qed simp

lemma (in prob-space) distributed-finite-measure-density:
distributed M N X f =⇒ finite-measure (density N f)
using finite-measure-distr [of X N] distributed-distr-eq-density[of M N X f] by

simp

lemma (in prob-space) distributed-convolution:
fixes f :: real ⇒ -

THEORY “Convolution” 153

fixes g :: real ⇒ -
assumes indep: indep-var borel X borel Y
assumes X : distributed M lborel X f
assumes Y : distributed M lborel Y g
shows distributed M lborel (λx. X x + Y x) (λx.

∫
+y. f (x − y) ∗ g y ∂lborel)

unfolding distributed-def
proof safe

have fg[measurable]: f ∈ borel-measurable borel g ∈ borel-measurable borel
using distributed-borel-measurable[OF X] distributed-borel-measurable[OF Y]

by simp-all

show (λx.
∫

+ xa. f (x − xa) ∗ g xa ∂lborel) ∈ borel-measurable lborel
by measurable

have distr M borel (λx. X x + Y x) = (distr M borel X ? distr M borel Y)
using distributed-measurable[OF X] distributed-measurable[OF Y]
by (intro sum-indep-random-variable) (auto simp: indep)

also have . . . = (density lborel f ? density lborel g)
using distributed-distr-eq-density[OF X] distributed-distr-eq-density[OF Y]
by (simp cong: distr-cong)

also have . . . = density lborel (λx.
∫

+ y. f (x − y) ∗ g y ∂lborel)
proof (rule convolution-density)

show finite-measure (density lborel f)
using X by (rule distributed-finite-measure-density)

show finite-measure (density lborel g)
using Y by (rule distributed-finite-measure-density)

qed fact+
finally show distr M lborel (λx. X x + Y x) = density lborel (λx.

∫
+ y. f (x −

y) ∗ g y ∂lborel)
by (simp cong: distr-cong)

show random-variable lborel (λx. X x + Y x)
using distributed-measurable[OF X] distributed-measurable[OF Y] by simp

qed

lemma prob-space-convolution-density:
fixes f :: real ⇒ -
fixes g:: real ⇒ -
assumes [measurable]: f∈ borel-measurable borel
assumes [measurable]: g∈ borel-measurable borel
assumes gt-0 [simp]:

∧
x. 0 ≤ f x

∧
x. 0 ≤ g x

assumes prob-space (density lborel f) (is prob-space ?F)
assumes prob-space (density lborel g) (is prob-space ?G)
shows prob-space (density lborel (λx.

∫
+y. f (x − y) ∗ g y ∂lborel)) (is prob-space

?D)
proof (subst convolution-density[symmetric])

interpret F : prob-space ?F by fact
show finite-measure ?F by unfold-locales
interpret G: prob-space ?G by fact
show finite-measure ?G by unfold-locales

THEORY “Information” 154

interpret FG: pair-prob-space ?F ?G ..

show prob-space (density lborel f ? density lborel g)
unfolding convolution-def by (rule FG.prob-space-distr) simp

qed simp-all

end

12 Information theory
theory Information
imports

Independent-Family
begin

12.1 Information theory
locale information-space = prob-space +

fixes b :: real assumes b-gt-1 : 1 < b

Introduce some simplification rules for logarithm of base b.
lemmas log-simps = log-mult log-inverse log-divide

12.2 Kullback−Leibler divergence

The Kullback−Leibler divergence is also known as relative entropy or Kullback−Leibler
distance.
definition

entropy-density b M N = log b ◦ enn2real ◦ RN-deriv M N

definition
KL-divergence b M N = integralL N (entropy-density b M N)

lemma measurable-entropy-density[measurable]: entropy-density b M N ∈ borel-measurable
M

unfolding entropy-density-def by auto

lemma (in sigma-finite-measure) KL-density:
fixes f :: ′a ⇒ real
assumes 1 < b
assumes f [measurable]: f ∈ borel-measurable M and nn: AE x in M . 0 ≤ f x
shows KL-divergence b M (density M f) = (

∫
x. f x ∗ log b (f x) ∂M)

unfolding KL-divergence-def
proof (subst integral-real-density)
show [measurable]: entropy-density b M (density M (λx. ennreal (f x))) ∈ borel-measurable

M
using f
by (auto simp: comp-def entropy-density-def)

THEORY “Information” 155

have density M (RN-deriv M (density M f)) = density M f
using f nn by (intro density-RN-deriv-density) auto

then have eq: AE x in M . RN-deriv M (density M f) x = f x
using f nn by (intro density-unique) auto

have AE x in M . f x ∗ entropy-density b M (density M (λx. ennreal (f x))) x =
f x ∗ log b (f x)

using eq nn by (auto simp: entropy-density-def)
then show (

∫
x. f x ∗ entropy-density b M (density M (λx. ennreal (f x))) x

∂M) = (
∫

x. f x ∗ log b (f x) ∂M)
by (intro integral-cong-AE) measurable

qed fact+

lemma (in sigma-finite-measure) KL-density-density:
fixes f g :: ′a ⇒ real
assumes 1 < b
assumes f : f ∈ borel-measurable M AE x in M . 0 ≤ f x
assumes g: g ∈ borel-measurable M AE x in M . 0 ≤ g x
assumes ac: AE x in M . f x = 0 −→ g x = 0
shows KL-divergence b (density M f) (density M g) = (

∫
x. g x ∗ log b (g x / f

x) ∂M)
proof −

interpret Mf : sigma-finite-measure density M f
using f by (subst sigma-finite-iff-density-finite) auto

have KL-divergence b (density M f) (density M g) =
KL-divergence b (density M f) (density (density M f) (λx. g x / f x))
using f g ac by (subst density-density-divide) simp-all

also have . . . = (
∫

x. (g x / f x) ∗ log b (g x / f x) ∂density M f)
using f g ‹1 < b› by (intro Mf .KL-density) (auto simp: AE-density)

also have . . . = (
∫

x. g x ∗ log b (g x / f x) ∂M)
using ac f g ‹1 < b› by (subst integral-density) (auto intro!: integral-cong-AE)

finally show ?thesis .
qed

lemma (in information-space) KL-gt-0 :
fixes D :: ′a ⇒ real
assumes prob-space (density M D)
assumes D: D ∈ borel-measurable M AE x in M . 0 ≤ D x
assumes int: integrable M (λx. D x ∗ log b (D x))
assumes A: density M D 6= M
shows 0 < KL-divergence b M (density M D)

proof −
interpret N : prob-space density M D by fact

obtain A where A ∈ sets M emeasure (density M D) A 6= emeasure M A
using measure-eqI [of density M D M] ‹density M D 6= M › by auto

let ?D-set = {x∈space M . D x 6= 0}
have [simp, intro]: ?D-set ∈ sets M

using D by auto

THEORY “Information” 156

have D-neg: (
∫

+ x. ennreal (− D x) ∂M) = 0
using D by (subst nn-integral-0-iff-AE) (auto simp: ennreal-neg)

have (
∫

+ x. ennreal (D x) ∂M) = emeasure (density M D) (space M)
using D by (simp add: emeasure-density cong: nn-integral-cong)

then have D-pos: (
∫

+ x. ennreal (D x) ∂M) = 1
using N .emeasure-space-1 by simp

have integrable M D
using D D-pos D-neg unfolding real-integrable-def real-lebesgue-integral-def by

simp-all
then have integralL M D = 1

using D D-pos D-neg by (simp add: real-lebesgue-integral-def)

have 0 ≤ 1 − measure M ?D-set
using prob-le-1 by (auto simp: field-simps)

also have . . . = (
∫

x. D x − indicator ?D-set x ∂M)
using ‹integrable M D› ‹integralL M D = 1 ›
by (simp add: emeasure-eq-measure)

also have . . . < (
∫

x. D x ∗ (ln b ∗ log b (D x)) ∂M)
proof (rule integral-less-AE)

show integrable M (λx. D x − indicator ?D-set x)
using ‹integrable M D› by (auto simp: less-top[symmetric])

next
from integrable-mult-left(1)[OF int, of ln b]
show integrable M (λx. D x ∗ (ln b ∗ log b (D x)))

by (simp add: ac-simps)
next

show emeasure M {x∈space M . D x 6= 1 ∧ D x 6= 0} 6= 0
proof

assume eq-0 : emeasure M {x∈space M . D x 6= 1 ∧ D x 6= 0} = 0
then have disj: AE x in M . D x = 1 ∨ D x = 0

using D(1) by (auto intro!: AE-I [OF subset-refl] sets.sets-Collect)

have emeasure M {x∈space M . D x = 1} = (
∫

+ x. indicator {x∈space M .
D x = 1} x ∂M)

using D(1) by auto
also have . . . = (

∫
+ x. ennreal (D x) ∂M)

using disj by (auto intro!: nn-integral-cong-AE simp: indicator-def one-ennreal-def)
finally have AE x in M . D x = 1

using D D-pos by (intro AE-I-eq-1) auto
then have (

∫
+x. indicator A x∂M) = (

∫
+x. ennreal (D x) ∗ indicator A

x∂M)
by (intro nn-integral-cong-AE) (auto simp: one-ennreal-def [symmetric])

also have . . . = density M D A
using ‹A ∈ sets M › D by (simp add: emeasure-density)
finally show False using ‹A ∈ sets M › ‹emeasure (density M D) A 6=

emeasure M A› by simp

THEORY “Information” 157

qed
show {x∈space M . D x 6= 1 ∧ D x 6= 0} ∈ sets M

using D(1) by (auto intro: sets.sets-Collect-conj)

have False
if Dt: t ∈ space M D t 6= 1 D t 6= 0 0 ≤ D t

and eq: D t − indicator ?D-set t = D t ∗ (ln b ∗ log b (D t)) for t
proof −

have D t − 1 = D t − indicator ?D-set t
using Dt by simp

also note eq
also have D t ∗ (ln b ∗ log b (D t)) = − D t ∗ ln (1 / D t)

using b-gt-1 ‹D t 6= 0 › ‹0 ≤ D t›
by (simp add: log-def ln-div less-le)

finally have ln (1 / D t) = 1 / D t − 1
using ‹D t 6= 0 › by (auto simp: field-simps)

from ln-eq-minus-one[OF - this] ‹D t 6= 0 › ‹0 ≤ D t› ‹D t 6= 1 ›
show False by auto

qed
with D(2)
show AE t in M . t ∈ {x∈space M . D x 6= 1 ∧ D x 6= 0} −→

D t − indicator ?D-set t 6= D t ∗ (ln b ∗ log b (D t))
by fastforce

show AE t in M . D t − indicator ?D-set t ≤ D t ∗ (ln b ∗ log b (D t))
using D(2) AE-space

proof eventually-elim
fix t assume t ∈ space M 0 ≤ D t
show D t − indicator ?D-set t ≤ D t ∗ (ln b ∗ log b (D t))
proof cases

assume asm: D t 6= 0
then have 0 < D t using ‹0 ≤ D t› by auto
then have 0 < 1 / D t by auto
have D t − indicator ?D-set t ≤ − D t ∗ (1 / D t − 1)

using asm ‹t ∈ space M › by (simp add: field-simps)
also have − D t ∗ (1 / D t − 1) ≤ − D t ∗ ln (1 / D t)

using ln-le-minus-one ‹0 < 1 / D t› by (intro mult-left-mono-neg) auto
also have . . . = D t ∗ (ln b ∗ log b (D t))

using ‹0 < D t› b-gt-1
by (simp-all add: log-def ln-div)

finally show ?thesis by simp
qed simp

qed
qed
also have . . . = (

∫
x. ln b ∗ (D x ∗ log b (D x)) ∂M)

by (simp add: ac-simps)
also have . . . = ln b ∗ (

∫
x. D x ∗ log b (D x) ∂M)

using int by simp
finally show ?thesis

THEORY “Information” 158

using b-gt-1 D by (subst KL-density) (auto simp: zero-less-mult-iff)
qed

lemma (in sigma-finite-measure) KL-same-eq-0 : KL-divergence b M M = 0
proof −

have AE x in M . 1 = RN-deriv M M x
proof (rule RN-deriv-unique)

show density M (λx. 1) = M
by (simp add: density-1)

qed auto
then have AE x in M . log b (enn2real (RN-deriv M M x)) = 0

by (elim AE-mp) simp
from integral-cong-AE [OF - - this]
have integralL M (entropy-density b M M) = 0

by (simp add: entropy-density-def comp-def)
then show KL-divergence b M M = 0

unfolding KL-divergence-def
by auto

qed

lemma (in information-space) KL-eq-0-iff-eq:
fixes D :: ′a ⇒ real
assumes prob-space (density M D)
assumes D: D ∈ borel-measurable M AE x in M . 0 ≤ D x
assumes int: integrable M (λx. D x ∗ log b (D x))
shows KL-divergence b M (density M D) = 0 ←→ density M D = M
using KL-same-eq-0 [of b] KL-gt-0 [OF assms]
by (auto simp: less-le)

lemma (in information-space) KL-eq-0-iff-eq-ac:
fixes D :: ′a ⇒ real
assumes prob-space N
assumes ac: absolutely-continuous M N sets N = sets M
assumes int: integrable N (entropy-density b M N)
shows KL-divergence b M N = 0 ←→ N = M

proof −
interpret N : prob-space N by fact
have finite-measure N by unfold-locales
from real-RN-deriv[OF this ac] obtain D

where D:
random-variable borel D
AE x in M . RN-deriv M N x = ennreal (D x)
AE x in N . 0 < D x∧

x. 0 ≤ D x
by this auto

have N = density M (RN-deriv M N)
using ac by (rule density-RN-deriv[symmetric])

also have . . . = density M D

THEORY “Information” 159

using D by (auto intro!: density-cong)
finally have N : N = density M D .

from absolutely-continuous-AE [OF ac(2 ,1) D(2)] D b-gt-1 ac measurable-entropy-density
have integrable N (λx. log b (D x))

by (intro integrable-cong-AE [THEN iffD2 , OF - - - int])
(auto simp: N entropy-density-def)

with D b-gt-1 have integrable M (λx. D x ∗ log b (D x))
by (subst integrable-real-density[symmetric]) (auto simp: N [symmetric] comp-def)

with ‹prob-space N › D show ?thesis
unfolding N
by (intro KL-eq-0-iff-eq) auto

qed

lemma (in information-space) KL-nonneg:
assumes prob-space (density M D)
assumes D: D ∈ borel-measurable M AE x in M . 0 ≤ D x
assumes int: integrable M (λx. D x ∗ log b (D x))
shows 0 ≤ KL-divergence b M (density M D)
using KL-gt-0 [OF assms] by (cases density M D = M) (auto simp: KL-same-eq-0)

lemma (in sigma-finite-measure) KL-density-density-nonneg:
fixes f g :: ′a ⇒ real
assumes 1 < b
assumes f : f ∈ borel-measurable M AE x in M . 0 ≤ f x prob-space (density M

f)
assumes g: g ∈ borel-measurable M AE x in M . 0 ≤ g x prob-space (density M

g)
assumes ac: AE x in M . f x = 0 −→ g x = 0
assumes int: integrable M (λx. g x ∗ log b (g x / f x))
shows 0 ≤ KL-divergence b (density M f) (density M g)

proof −
interpret Mf : prob-space density M f by fact
interpret Mf : information-space density M f b by standard fact
have eq: density (density M f) (λx. g x / f x) = density M g (is ?DD = -)

using f g ac by (subst density-density-divide) simp-all

have 0 ≤ KL-divergence b (density M f) (density (density M f) (λx. g x / f x))
proof (rule Mf .KL-nonneg)

show prob-space ?DD unfolding eq by fact
from f g show (λx. g x / f x) ∈ borel-measurable (density M f)

by auto
show AE x in density M f . 0 ≤ g x / f x

using f g by (auto simp: AE-density)
show integrable (density M f) (λx. g x / f x ∗ log b (g x / f x))

using ‹1 < b› f g ac
by (subst integrable-density)

(auto intro!: integrable-cong-AE [THEN iffD2 , OF - - - int] measurable-If)
qed

THEORY “Information” 160

also have . . . = KL-divergence b (density M f) (density M g)
using f g ac by (subst density-density-divide) simp-all

finally show ?thesis .
qed

12.3 Finite Entropy
definition (in information-space) finite-entropy :: ′b measure ⇒ (′a ⇒ ′b) ⇒ (′b
⇒ real) ⇒ bool
where

finite-entropy S X f ←→
distributed M S X f ∧
integrable S (λx. f x ∗ log b (f x)) ∧
(∀ x∈space S . 0 ≤ f x)

lemma (in information-space) finite-entropy-simple-function:
assumes X : simple-function M X
shows finite-entropy (count-space (X‘space M)) X (λa. measure M {x ∈ space

M . X x = a})
unfolding finite-entropy-def

proof safe
have [simp]: finite (X ‘ space M)

using X by (auto simp: simple-function-def)
then show integrable (count-space (X ‘ space M))
(λx. prob {xa ∈ space M . X xa = x} ∗ log b (prob {xa ∈ space M . X xa = x}))
by (rule integrable-count-space)

have d: distributed M (count-space (X ‘ space M)) X (λx. ennreal (if x ∈ X‘space
M then prob {xa ∈ space M . X xa = x} else 0))

by (rule distributed-simple-function-superset[OF X]) (auto intro!: arg-cong[where
f=prob])

show distributed M (count-space (X ‘ space M)) X (λx. ennreal (prob {xa ∈
space M . X xa = x}))

by (rule distributed-cong-density[THEN iffD1 , OF - - - d]) auto
qed (rule measure-nonneg)

lemma ac-fst:
assumes sigma-finite-measure T
shows absolutely-continuous S (distr (S

⊗
M T) S fst)

proof −
interpret sigma-finite-measure T by fact
{ fix A assume A: A ∈ sets S emeasure S A = 0

then have fst −‘ A ∩ space (S
⊗

M T) = A × space T
by (auto simp: space-pair-measure dest!: sets.sets-into-space)

with A have emeasure (S
⊗

M T) (fst −‘ A ∩ space (S
⊗

M T)) = 0
by (simp add: emeasure-pair-measure-Times) }

then show ?thesis
unfolding absolutely-continuous-def

by (metis emeasure-distr measurable-fst null-setsD1 null-setsD2 null-setsI sets-distr
subsetI)

THEORY “Information” 161

qed

lemma ac-snd:
assumes sigma-finite-measure T
shows absolutely-continuous T (distr (S

⊗
M T) T snd)

proof −
interpret sigma-finite-measure T by fact
{ fix A assume A: A ∈ sets T emeasure T A = 0

then have snd −‘ A ∩ space (S
⊗

M T) = space S × A
by (auto simp: space-pair-measure dest!: sets.sets-into-space)

with A have emeasure (S
⊗

M T) (snd −‘ A ∩ space (S
⊗

M T)) = 0
by (simp add: emeasure-pair-measure-Times) }

then show ?thesis
unfolding absolutely-continuous-def

by (metis emeasure-distr measurable-snd null-setsD1 null-setsD2 null-setsI
sets-distr subsetI)
qed

lemma (in information-space) finite-entropy-integrable:
finite-entropy S X Px =⇒ integrable S (λx. Px x ∗ log b (Px x))
unfolding finite-entropy-def by auto

lemma (in information-space) finite-entropy-distributed:
finite-entropy S X Px =⇒ distributed M S X Px
unfolding finite-entropy-def by auto

lemma (in information-space) finite-entropy-nn:
finite-entropy S X Px =⇒ x ∈ space S =⇒ 0 ≤ Px x
by (auto simp: finite-entropy-def)

lemma (in information-space) finite-entropy-measurable:
finite-entropy S X Px =⇒ Px ∈ S →M borel
using distributed-real-measurable[of S Px M X]

finite-entropy-nn[of S X Px] finite-entropy-distributed[of S X Px] by auto

lemma (in information-space) subdensity-finite-entropy:
fixes g :: ′b ⇒ real and f :: ′c ⇒ real
assumes T : T ∈ measurable P Q
assumes f : finite-entropy P X f
assumes g: finite-entropy Q Y g
assumes Y : Y = T ◦ X
shows AE x in P. g (T x) = 0 −→ f x = 0
using subdensity[OF T , of M X λx. ennreal (f x) Y λx. ennreal (g x)]

finite-entropy-distributed[OF f] finite-entropy-distributed[OF g]
finite-entropy-nn[OF f] finite-entropy-nn[OF g]
assms

by auto

lemma (in information-space) finite-entropy-integrable-transform:

THEORY “Information” 162

finite-entropy S X Px =⇒ distributed M T Y Py =⇒ (
∧

x. x ∈ space T =⇒ 0 ≤
Py x) =⇒

X = (λx. f (Y x)) =⇒ f ∈ measurable T S =⇒ integrable T (λx. Py x ∗ log b
(Px (f x)))

using distributed-transform-integrable[of M T Y Py S X Px f λx. log b (Px x)]
using distributed-real-measurable[of S Px M X]
by (auto simp: finite-entropy-def)

12.4 Mutual Information
definition (in prob-space)

mutual-information b S T X Y =
KL-divergence b (distr M S X

⊗
M distr M T Y) (distr M (S

⊗
M T) (λx.

(X x, Y x)))

lemma (in information-space) mutual-information-indep-vars:
fixes S T X Y
defines P ≡ distr M S X

⊗
M distr M T Y

defines Q ≡ distr M (S
⊗

M T) (λx. (X x, Y x))
shows indep-var S X T Y ←→
(random-variable S X ∧ random-variable T Y ∧

absolutely-continuous P Q ∧ integrable Q (entropy-density b P Q) ∧
mutual-information b S T X Y = 0)

unfolding indep-var-distribution-eq
proof safe

assume rv[measurable]: random-variable S X random-variable T Y

interpret X : prob-space distr M S X
by (rule prob-space-distr) fact

interpret Y : prob-space distr M T Y
by (rule prob-space-distr) fact

interpret XY : pair-prob-space distr M S X distr M T Y by standard
interpret P: information-space P b unfolding P-def by standard (rule b-gt-1)

interpret Q: prob-space Q unfolding Q-def
by (rule prob-space-distr) simp

{ assume distr M S X
⊗

M distr M T Y = distr M (S
⊗

M T) (λx. (X x, Y
x))

then have [simp]: Q = P unfolding Q-def P-def by simp

show ac: absolutely-continuous P Q by (simp add: absolutely-continuous-def)
then have ed: entropy-density b P Q ∈ borel-measurable P

by simp

have AE x in P. 1 = RN-deriv P Q x
proof (rule P.RN-deriv-unique)

show density P (λx. 1) = Q
unfolding ‹Q = P› by (intro measure-eqI) (auto simp: emeasure-density)

THEORY “Information” 163

qed auto
then have ae-0 : AE x in P. entropy-density b P Q x = 0

by (auto simp: entropy-density-def)
then have integrable P (entropy-density b P Q) ←→ integrable Q (λx. 0 ::real)

using ed unfolding ‹Q = P› by (intro integrable-cong-AE) auto
then show integrable Q (entropy-density b P Q) by simp

from ae-0 have mutual-information b S T X Y = (
∫

x. 0 ∂P)
unfolding mutual-information-def KL-divergence-def P-def [symmetric] Q-def [symmetric]

‹Q = P›
by (intro integral-cong-AE) auto

then show mutual-information b S T X Y = 0
by simp }

{ assume ac: absolutely-continuous P Q
assume int: integrable Q (entropy-density b P Q)
assume I-eq-0 : mutual-information b S T X Y = 0

have eq: Q = P
proof (rule P.KL-eq-0-iff-eq-ac[THEN iffD1])

show prob-space Q by unfold-locales
show absolutely-continuous P Q by fact
show integrable Q (entropy-density b P Q) by fact
show sets Q = sets P by (simp add: P-def Q-def sets-pair-measure)
show KL-divergence b P Q = 0
using I-eq-0 unfolding mutual-information-def by (simp add: P-def Q-def)

qed
then show distr M S X

⊗
M distr M T Y = distr M (S

⊗
M T) (λx. (X x,

Y x))
unfolding P-def Q-def .. }

qed

abbreviation (in information-space)
mutual-information-Pow (‹I ′(- ; - ′)›) where
I(X ; Y) ≡ mutual-information b (count-space (X‘space M)) (count-space (Y‘space

M)) X Y

lemma (in information-space)
fixes Pxy :: ′b × ′c ⇒ real and Px :: ′b ⇒ real and Py :: ′c ⇒ real
assumes S : sigma-finite-measure S and T : sigma-finite-measure T
assumes Fx: finite-entropy S X Px and Fy: finite-entropy T Y Py
assumes Fxy: finite-entropy (S

⊗
M T) (λx. (X x , Y x)) Pxy

defines f ≡ λx. Pxy x ∗ log b (Pxy x / (Px (fst x) ∗ Py (snd x)))
shows mutual-information-distr ′: mutual-information b S T X Y = integralL (S⊗
M T) f (is ?M = ?R)
and mutual-information-nonneg ′: 0 ≤ mutual-information b S T X Y

proof −
have Px: distributed M S X Px and Px-nn:

∧
x. x ∈ space S =⇒ 0 ≤ Px x

using Fx by (auto simp: finite-entropy-def)

THEORY “Information” 164

have Py: distributed M T Y Py and Py-nn:
∧

x. x ∈ space T =⇒ 0 ≤ Py x
using Fy by (auto simp: finite-entropy-def)

have Pxy: distributed M (S
⊗

M T) (λx. (X x , Y x)) Pxy
and Pxy-nn:

∧
x. x ∈ space (S

⊗
M T) =⇒ 0 ≤ Pxy x∧

x y. x ∈ space S =⇒ y ∈ space T =⇒ 0 ≤ Pxy (x, y)
using Fxy by (auto simp: finite-entropy-def space-pair-measure)

have [measurable]: Px ∈ S →M borel
using Px Px-nn by (intro distributed-real-measurable)

have [measurable]: Py ∈ T →M borel
using Py Py-nn by (intro distributed-real-measurable)

have measurable-Pxy[measurable]: Pxy ∈ (S
⊗

M T) →M borel
using Pxy Pxy-nn by (intro distributed-real-measurable) (auto simp: space-pair-measure)

have X [measurable]: random-variable S X
using Px by auto

have Y [measurable]: random-variable T Y
using Py by auto

interpret S : sigma-finite-measure S by fact
interpret T : sigma-finite-measure T by fact
interpret ST : pair-sigma-finite S T ..
interpret X : prob-space distr M S X using X by (rule prob-space-distr)
interpret Y : prob-space distr M T Y using Y by (rule prob-space-distr)
interpret XY : pair-prob-space distr M S X distr M T Y ..
let ?P = S

⊗
M T

let ?D = distr M ?P (λx. (X x, Y x))

{ fix A assume A ∈ sets S
with X [THEN measurable-space] Y [THEN measurable-space]
have emeasure (distr M S X) A = emeasure ?D (A × space T)

by (auto simp: emeasure-distr intro!: arg-cong[where f=emeasure M]) }
note marginal-eq1 = this
{ fix A assume A ∈ sets T

with X [THEN measurable-space] Y [THEN measurable-space]
have emeasure (distr M T Y) A = emeasure ?D (space S × A)

by (auto simp: emeasure-distr intro!: arg-cong[where f=emeasure M]) }
note marginal-eq2 = this

have distr-eq: distr M S X
⊗

M distr M T Y = density ?P (λx. ennreal (Px (fst
x) ∗ Py (snd x)))

unfolding Px(1)[THEN distributed-distr-eq-density] Py(1)[THEN distributed-distr-eq-density]
proof (subst pair-measure-density)

show (λx. ennreal (Px x)) ∈ borel-measurable S (λy. ennreal (Py y)) ∈
borel-measurable T

using Px Py by (auto simp: distributed-def)
show sigma-finite-measure (density T Py) unfolding Py(1)[THEN distributed-distr-eq-density,

symmetric] ..
show density (S

⊗
M T) (λ(x, y). ennreal (Px x) ∗ ennreal (Py y)) =

density (S
⊗

M T) (λx. ennreal (Px (fst x) ∗ Py (snd x)))

THEORY “Information” 165

using Px-nn Py-nn by (auto intro!: density-cong simp: distributed-def en-
nreal-mult space-pair-measure)

qed fact

have M : ?M = KL-divergence b (density ?P (λx. ennreal (Px (fst x) ∗ Py (snd
x)))) (density ?P (λx. ennreal (Pxy x)))

unfolding mutual-information-def distr-eq Pxy(1)[THEN distributed-distr-eq-density]
..

from Px Py have f : (λx. Px (fst x) ∗ Py (snd x)) ∈ borel-measurable ?P
by (intro borel-measurable-times) (auto intro: distributed-real-measurable mea-

surable-fst ′′ measurable-snd ′′)
have PxPy-nonneg: AE x in ?P. 0 ≤ Px (fst x) ∗ Py (snd x)

using Px-nn Py-nn by (auto simp: space-pair-measure)

have A: (AE x in ?P. Px (fst x) = 0 −→ Pxy x = 0)
by (rule subdensity-real[OF measurable-fst Pxy Px]) (insert Px-nn Pxy-nn, auto

simp: space-pair-measure)
moreover
have B: (AE x in ?P. Py (snd x) = 0 −→ Pxy x = 0)

by (rule subdensity-real[OF measurable-snd Pxy Py]) (insert Py-nn Pxy-nn,
auto simp: space-pair-measure)

ultimately have ac: AE x in ?P. Px (fst x) ∗ Py (snd x) = 0 −→ Pxy x = 0
by auto

show ?M = ?R
unfolding M f-def using Pxy-nn Px-nn Py-nn

by (intro ST .KL-density-density b-gt-1 f PxPy-nonneg ac) (auto simp: space-pair-measure)

have X : X = fst ◦ (λx. (X x , Y x)) and Y : Y = snd ◦ (λx. (X x, Y x))
by auto

have integrable (S
⊗

M T) (λx. Pxy x ∗ log b (Pxy x) − Pxy x ∗ log b (Px (fst
x)) − Pxy x ∗ log b (Py (snd x)))

using finite-entropy-integrable[OF Fxy]
using finite-entropy-integrable-transform[OF Fx Pxy, of fst]
using finite-entropy-integrable-transform[OF Fy Pxy, of snd]
by (simp add: Pxy-nn)

moreover have f ∈ borel-measurable (S
⊗

M T)
unfolding f-def using Px Py Pxy
by (auto intro: distributed-real-measurable measurable-fst ′′ measurable-snd ′′

intro!: borel-measurable-times borel-measurable-log borel-measurable-divide)
ultimately have int: integrable (S

⊗
M T) f

proof (rule integrable-cong-AE-imp)
show AE x in S

⊗
M

T . Pxy x ∗ log b (Pxy x) − Pxy x ∗ log b (Px (fst x)) − Pxy x ∗ log b
(Py (snd x))

= f x
using A B

THEORY “Information” 166

by (auto simp: f-def field-simps space-pair-measure log-mult log-divide)
qed

show 0 ≤ ?M unfolding M
proof (intro ST .KL-density-density-nonneg)

show prob-space (density (S
⊗

M T) (λx. ennreal (Pxy x)))
unfolding distributed-distr-eq-density[OF Pxy, symmetric]
using distributed-measurable[OF Pxy] by (rule prob-space-distr)

show prob-space (density (S
⊗

M T) (λx. ennreal (Px (fst x) ∗ Py (snd x))))
unfolding distr-eq[symmetric] by unfold-locales

show integrable (S
⊗

M T) (λx. Pxy x ∗ log b (Pxy x / (Px (fst x) ∗ Py (snd
x))))

using int unfolding f-def .
qed (insert ac, auto simp: b-gt-1 Px-nn Py-nn Pxy-nn space-pair-measure)

qed

lemma (in information-space)
fixes Pxy :: ′b × ′c ⇒ real and Px :: ′b ⇒ real and Py :: ′c ⇒ real
assumes sigma-finite-measure S sigma-finite-measure T
assumes Px: distributed M S X Px and Px-nn:

∧
x. x ∈ space S =⇒ 0 ≤ Px x

and Py: distributed M T Y Py and Py-nn:
∧

y. y ∈ space T =⇒ 0 ≤ Py y
and Pxy: distributed M (S

⊗
M T) (λx. (X x , Y x)) Pxy

and Pxy-nn:
∧

x y. x ∈ space S =⇒ y ∈ space T =⇒ 0 ≤ Pxy (x, y)
defines f ≡ λx. Pxy x ∗ log b (Pxy x / (Px (fst x) ∗ Py (snd x)))
shows mutual-information-distr : mutual-information b S T X Y = integralL (S⊗
M T) f (is ?M = ?R)
and mutual-information-nonneg: integrable (S

⊗
M T) f =⇒ 0 ≤ mutual-information

b S T X Y
proof −

have X [measurable]: random-variable S X
using Px by (auto simp: distributed-def)

have Y [measurable]: random-variable T Y
using Py by (auto simp: distributed-def)

have [measurable]: Px ∈ S →M borel
using Px Px-nn by (intro distributed-real-measurable)

have [measurable]: Py ∈ T →M borel
using Py Py-nn by (intro distributed-real-measurable)

have measurable-Pxy[measurable]: Pxy ∈ (S
⊗

M T) →M borel
using Pxy Pxy-nn by (intro distributed-real-measurable) (auto simp: space-pair-measure)

interpret S : sigma-finite-measure S by fact
interpret T : sigma-finite-measure T by fact
interpret ST : pair-sigma-finite S T ..
interpret X : prob-space distr M S X using X by (rule prob-space-distr)
interpret Y : prob-space distr M T Y using Y by (rule prob-space-distr)
interpret XY : pair-prob-space distr M S X distr M T Y ..
let ?P = S

⊗
M T

let ?D = distr M ?P (λx. (X x, Y x))

THEORY “Information” 167

{ fix A assume A ∈ sets S
with X [THEN measurable-space] Y [THEN measurable-space]
have emeasure (distr M S X) A = emeasure ?D (A × space T)

by (auto simp: emeasure-distr intro!: arg-cong[where f=emeasure M]) }
note marginal-eq1 = this
{ fix A assume A ∈ sets T

with X [THEN measurable-space] Y [THEN measurable-space]
have emeasure (distr M T Y) A = emeasure ?D (space S × A)

by (auto simp: emeasure-distr intro!: arg-cong[where f=emeasure M]) }
note marginal-eq2 = this

have distr-eq: distr M S X
⊗

M distr M T Y = density ?P (λx. ennreal (Px (fst
x) ∗ Py (snd x)))

unfolding Px(1)[THEN distributed-distr-eq-density] Py(1)[THEN distributed-distr-eq-density]
proof (subst pair-measure-density)

show (λx. ennreal (Px x)) ∈ borel-measurable S (λy. ennreal (Py y)) ∈
borel-measurable T

using Px Py by (auto simp: distributed-def)
show sigma-finite-measure (density T Py) unfolding Py(1)[THEN distributed-distr-eq-density,

symmetric] ..
show density (S

⊗
M T) (λ(x, y). ennreal (Px x) ∗ ennreal (Py y)) =

density (S
⊗

M T) (λx. ennreal (Px (fst x) ∗ Py (snd x)))
using Px-nn Py-nn by (auto intro!: density-cong simp: distributed-def en-

nreal-mult space-pair-measure)
qed fact

have M : ?M = KL-divergence b (density ?P (λx. ennreal (Px (fst x) ∗ Py (snd
x)))) (density ?P (λx. ennreal (Pxy x)))

unfolding mutual-information-def distr-eq Pxy(1)[THEN distributed-distr-eq-density]
..

from Px Py have f : (λx. Px (fst x) ∗ Py (snd x)) ∈ borel-measurable ?P
by (intro borel-measurable-times) (auto intro: distributed-real-measurable mea-

surable-fst ′′ measurable-snd ′′)
have PxPy-nonneg: AE x in ?P. 0 ≤ Px (fst x) ∗ Py (snd x)

using Px-nn Py-nn by (auto simp: space-pair-measure)

have (AE x in ?P. Px (fst x) = 0 −→ Pxy x = 0)
by (rule subdensity-real[OF measurable-fst Pxy Px]) (insert Px-nn Pxy-nn, auto

simp: space-pair-measure)
moreover
have (AE x in ?P. Py (snd x) = 0 −→ Pxy x = 0)

by (rule subdensity-real[OF measurable-snd Pxy Py]) (insert Py-nn Pxy-nn,
auto simp: space-pair-measure)

ultimately have ac: AE x in ?P. Px (fst x) ∗ Py (snd x) = 0 −→ Pxy x = 0
by auto

show ?M = ?R
unfolding M f-def

THEORY “Information” 168

using b-gt-1 f PxPy-nonneg ac Pxy-nn
by (intro ST .KL-density-density) (auto simp: space-pair-measure)

assume int: integrable (S
⊗

M T) f
show 0 ≤ ?M unfolding M
proof (intro ST .KL-density-density-nonneg)

show prob-space (density (S
⊗

M T) (λx. ennreal (Pxy x)))
unfolding distributed-distr-eq-density[OF Pxy, symmetric]
using distributed-measurable[OF Pxy] by (rule prob-space-distr)

show prob-space (density (S
⊗

M T) (λx. ennreal (Px (fst x) ∗ Py (snd x))))
unfolding distr-eq[symmetric] by unfold-locales

show integrable (S
⊗

M T) (λx. Pxy x ∗ log b (Pxy x / (Px (fst x) ∗ Py (snd
x))))

using int unfolding f-def .
qed (insert ac, auto simp: b-gt-1 Px-nn Py-nn Pxy-nn space-pair-measure)

qed

lemma (in information-space)
fixes Pxy :: ′b × ′c ⇒ real and Px :: ′b ⇒ real and Py :: ′c ⇒ real
assumes sigma-finite-measure S sigma-finite-measure T
assumes Px[measurable]: distributed M S X Px and Px-nn:

∧
x. x ∈ space S =⇒

0 ≤ Px x
and Py[measurable]: distributed M T Y Py and Py-nn:

∧
x. x ∈ space T =⇒

0 ≤ Py x
and Pxy[measurable]: distributed M (S

⊗
M T) (λx. (X x, Y x)) Pxy

and Pxy-nn:
∧

x. x ∈ space (S
⊗

M T) =⇒ 0 ≤ Pxy x
assumes ae: AE x in S . AE y in T . Pxy (x, y) = Px x ∗ Py y
shows mutual-information-eq-0 : mutual-information b S T X Y = 0

proof −
interpret S : sigma-finite-measure S by fact
interpret T : sigma-finite-measure T by fact
interpret ST : pair-sigma-finite S T ..
note

distributed-real-measurable[OF Px-nn Px, measurable]
distributed-real-measurable[OF Py-nn Py, measurable]
distributed-real-measurable[OF Pxy-nn Pxy, measurable]

have AE x in S
⊗

M T . Px (fst x) = 0 −→ Pxy x = 0
by (rule subdensity-real[OF measurable-fst Pxy Px]) (auto simp: Px-nn Pxy-nn

space-pair-measure)
moreover
have AE x in S

⊗
M T . Py (snd x) = 0 −→ Pxy x = 0

by (rule subdensity-real[OF measurable-snd Pxy Py]) (auto simp: Py-nn Pxy-nn
space-pair-measure)

moreover
have AE x in S

⊗
M T . Pxy x = Px (fst x) ∗ Py (snd x)

by (intro ST .AE-pair-measure) (auto simp: ae intro!: measurable-snd ′′ measur-
able-fst ′′)

ultimately have AE x in S
⊗

M T . Pxy x ∗ log b (Pxy x / (Px (fst x) ∗ Py

THEORY “Information” 169

(snd x))) = 0
by eventually-elim simp

then have (
∫

x. Pxy x ∗ log b (Pxy x / (Px (fst x) ∗ Py (snd x))) ∂(S
⊗

M T))
= (

∫
x. 0 ∂(S

⊗
M T))

by (intro integral-cong-AE) auto
then show ?thesis
by (subst mutual-information-distr [OF assms(1−8)]) (auto simp add: space-pair-measure)

qed

lemma (in information-space) mutual-information-simple-distributed:
assumes X : simple-distributed M X Px and Y : simple-distributed M Y Py
assumes XY : simple-distributed M (λx. (X x , Y x)) Pxy
shows I(X ; Y) = (

∑
(x, y)∈(λx. (X x, Y x))‘space M . Pxy (x, y) ∗ log b (Pxy

(x, y) / (Px x ∗ Py y)))
proof (subst mutual-information-distr [OF - - simple-distributed[OF X] - simple-distributed[OF
Y] - simple-distributed-joint[OF XY]])

note fin = simple-distributed-joint-finite[OF XY , simp]
show sigma-finite-measure (count-space (X ‘ space M))

by (simp add: sigma-finite-measure-count-space-finite)
show sigma-finite-measure (count-space (Y ‘ space M))

by (simp add: sigma-finite-measure-count-space-finite)
let ?Pxy = λx. (if x ∈ (λx. (X x, Y x)) ‘ space M then Pxy x else 0)
let ?f = λx. ?Pxy x ∗ log b (?Pxy x / (Px (fst x) ∗ Py (snd x)))
have

∧
x. ?f x = (if x ∈ (λx. (X x, Y x)) ‘ space M then Pxy x ∗ log b (Pxy x /

(Px (fst x) ∗ Py (snd x))) else 0)
by auto

with fin show (
∫

x. ?f x ∂(count-space (X ‘ space M)
⊗

M count-space (Y ‘
space M))) =

(
∑

(x, y)∈(λx. (X x, Y x)) ‘ space M . Pxy (x, y) ∗ log b (Pxy (x, y) / (Px x ∗
Py y)))

by (auto simp add: pair-measure-count-space lebesgue-integral-count-space-finite
sum.If-cases split-beta ′

intro!: sum.cong)
qed (insert X Y XY , auto simp: simple-distributed-def)

lemma (in information-space)
fixes Pxy :: ′b × ′c ⇒ real and Px :: ′b ⇒ real and Py :: ′c ⇒ real
assumes Px: simple-distributed M X Px and Py: simple-distributed M Y Py
assumes Pxy: simple-distributed M (λx. (X x , Y x)) Pxy
assumes ae: ∀ x∈space M . Pxy (X x , Y x) = Px (X x) ∗ Py (Y x)
shows mutual-information-eq-0-simple: I(X ; Y) = 0

proof (subst mutual-information-simple-distributed[OF Px Py Pxy])
have (

∑
(x, y)∈(λx. (X x, Y x)) ‘ space M . Pxy (x, y) ∗ log b (Pxy (x, y) / (Px

x ∗ Py y))) =
(
∑

(x, y)∈(λx. (X x , Y x)) ‘ space M . 0)
by (intro sum.cong) (auto simp: ae)

then show (
∑

(x, y)∈(λx. (X x , Y x)) ‘ space M .
Pxy (x, y) ∗ log b (Pxy (x, y) / (Px x ∗ Py y))) = 0 by simp

qed

THEORY “Information” 170

12.5 Entropy
definition (in prob-space) entropy :: real ⇒ ′b measure ⇒ (′a ⇒ ′b)⇒ real where

entropy b S X = − KL-divergence b S (distr M S X)

abbreviation (in information-space)
entropy-Pow (‹H ′(- ′)›) where
H(X) ≡ entropy b (count-space (X‘space M)) X

lemma (in prob-space) distributed-RN-deriv:
assumes X : distributed M S X Px
shows AE x in S . RN-deriv S (density S Px) x = Px x

proof −
have distributed M S X (RN-deriv S (density S Px))

by (metis RN-derivI assms borel-measurable-RN-deriv distributed-def)
then show ?thesis

using assms distributed-unique by blast
qed

lemma (in information-space)
fixes X :: ′a ⇒ ′b
assumes X [measurable]: distributed M MX X f and nn:

∧
x. x ∈ space MX =⇒

0 ≤ f x
shows entropy-distr : entropy b MX X = − (

∫
x. f x ∗ log b (f x) ∂MX) (is ?eq)

proof −
note D = distributed-measurable[OF X] distributed-borel-measurable[OF X]
note ae = distributed-RN-deriv[OF X]
note distributed-real-measurable[OF nn X , measurable]

have ae-eq: AE x in distr M MX X . log b (enn2real (RN-deriv MX (distr M MX
X) x)) = log b (f x)

unfolding distributed-distr-eq-density[OF X]
using D ae by (auto simp: AE-density)

have int-eq: (
∫

x. f x ∗ log b (f x) ∂MX) = (
∫

x. log b (f x) ∂distr M MX X)
unfolding distributed-distr-eq-density[OF X]
using D
by (subst integral-density) (auto simp: nn)

show ?eq
unfolding entropy-def KL-divergence-def entropy-density-def comp-def int-eq

neg-equal-iff-equal
using ae-eq by (intro integral-cong-AE) (auto simp: nn)

qed

lemma (in information-space) entropy-le:
fixes Px :: ′b ⇒ real and MX :: ′b measure
assumes X [measurable]: distributed M MX X Px and Px-nn[simp]:

∧
x. x ∈

space MX =⇒ 0 ≤ Px x
and fin: emeasure MX {x ∈ space MX . Px x 6= 0} 6= top

THEORY “Information” 171

and int: integrable MX (λx. − Px x ∗ log b (Px x))
shows entropy b MX X ≤ log b (measure MX {x ∈ space MX . Px x 6= 0})

proof −
note Px = distributed-borel-measurable[OF X]
interpret X : prob-space distr M MX X

using distributed-measurable[OF X] by (rule prob-space-distr)

have − log b (measure MX {x ∈ space MX . Px x 6= 0}) =
− log b (

∫
x. indicator {x ∈ space MX . Px x 6= 0} x ∂MX)

using Px Px-nn fin by (auto simp: measure-def)
also have − log b (

∫
x. indicator {x ∈ space MX . Px x 6= 0} x ∂MX) = − log

b (
∫

x. 1 / Px x ∂distr M MX X)
proof −

have integralL MX (indicator {x ∈ space MX . Px x 6= 0}) = LINT x|MX . Px
x ∗R (1 / Px x)

by (rule Bochner-Integration.integral-cong) auto
also have ... = LINT x|density MX (λx. ennreal (Px x)). 1 / Px x

by (rule integral-density [symmetric]) (use Px Px-nn in auto)
finally show ?thesis

unfolding distributed-distr-eq-density[OF X] by simp
qed
also have . . . ≤ (

∫
x. − log b (1 / Px x) ∂distr M MX X)

proof (rule X .jensens-inequality[of λx. 1 / Px x {0<..} 0 1 λx. − log b x])
show AE x in distr M MX X . 1 / Px x ∈ {0<..}

unfolding distributed-distr-eq-density[OF X]
using Px by (auto simp: AE-density)

have [simp]:
∧

x. x ∈ space MX =⇒ ennreal (if Px x = 0 then 0 else 1) =
indicator {x ∈ space MX . Px x 6= 0} x

by (auto simp: one-ennreal-def)
have (

∫
+ x. ennreal (− (if Px x = 0 then 0 else 1)) ∂MX) = (

∫
+ x. 0 ∂MX)

by (intro nn-integral-cong) (auto simp: ennreal-neg)
then show integrable (distr M MX X) (λx. 1 / Px x)

unfolding distributed-distr-eq-density[OF X] using Px
by (auto simp: nn-integral-density real-integrable-def fin ennreal-neg en-

nreal-mult[symmetric]
cong: nn-integral-cong)

have integrable MX (λx. Px x ∗ log b (1 / Px x)) =
integrable MX (λx. − Px x ∗ log b (Px x))
using Px
by (intro integrable-cong-AE) (auto simp: log-divide-pos log-recip)

then show integrable (distr M MX X) (λx. − log b (1 / Px x))
unfolding distributed-distr-eq-density[OF X]
using Px int
by (subst integrable-real-density) auto

qed (auto simp: minus-log-convex[OF b-gt-1])
also have . . . = (

∫
x. log b (Px x) ∂distr M MX X)

unfolding distributed-distr-eq-density[OF X] using Px
by (intro integral-cong-AE) (auto simp: AE-density log-divide-pos)

also have . . . = − entropy b MX X

THEORY “Information” 172

unfolding distributed-distr-eq-density[OF X] using Px
by (subst entropy-distr [OF X]) (auto simp: integral-density)

finally show ?thesis
by simp

qed

lemma (in information-space) entropy-le-space:
fixes Px :: ′b ⇒ real and MX :: ′b measure
assumes X : distributed M MX X Px and Px-nn[simp]:

∧
x. x ∈ space MX =⇒

0 ≤ Px x
and fin: finite-measure MX
and int: integrable MX (λx. − Px x ∗ log b (Px x))
shows entropy b MX X ≤ log b (measure MX (space MX))

proof −
note Px = distributed-borel-measurable[OF X]
interpret finite-measure MX by fact
have entropy b MX X ≤ log b (measure MX {x ∈ space MX . Px x 6= 0})

using int X by (intro entropy-le) auto
also have . . . ≤ log b (measure MX (space MX))

using Px distributed-imp-emeasure-nonzero[OF X]
by (intro Transcendental.log-mono)

(auto intro!: finite-measure-mono b-gt-1 less-le[THEN iffD2]
simp: emeasure-eq-measure cong: conj-cong)

finally show ?thesis .
qed

lemma (in information-space) entropy-uniform:
assumes X : distributed M MX X (λx. indicator A x / measure MX A) (is

distributed - - - ?f)
shows entropy b MX X = log b (measure MX A)

proof (subst entropy-distr [OF X])
have [simp]: emeasure MX A 6= ∞

using uniform-distributed-params[OF X] by (auto simp add: measure-def)
have eq: (

∫
x. indicator A x / measure MX A ∗ log b (indicator A x / measure

MX A) ∂MX) =
(
∫

x. (− log b (measure MX A) / measure MX A) ∗ indicator A x ∂MX)
using uniform-distributed-params[OF X]
by (intro Bochner-Integration.integral-cong) (auto split: split-indicator simp:

log-divide-pos zero-less-measure-iff)
show − (

∫
x. indicator A x / measure MX A ∗ log b (indicator A x / measure

MX A) ∂MX) =
log b (measure MX A)
unfolding eq using uniform-distributed-params[OF X]

by (subst Bochner-Integration.integral-mult-right) (auto simp: measure-def less-top[symmetric]
intro!: integrable-real-indicator)
qed simp

lemma (in information-space) entropy-simple-distributed:
simple-distributed M X f =⇒ H(X) = − (

∑
x∈X‘space M . f x ∗ log b (f x))

THEORY “Information” 173

by (subst entropy-distr [OF simple-distributed])
(auto simp add: lebesgue-integral-count-space-finite)

lemma (in information-space) entropy-le-card-not-0 :
assumes X : simple-distributed M X f
shows H(X) ≤ log b (card (X ‘ space M ∩ {x. f x 6= 0}))

proof −
let ?X = count-space (X‘space M)
have H(X) ≤ log b (measure ?X {x ∈ space ?X . f x 6= 0})

by (rule entropy-le[OF simple-distributed[OF X]])
(insert X , auto simp: simple-distributed-finite[OF X] subset-eq integrable-count-space

emeasure-count-space)
also have measure ?X {x ∈ space ?X . f x 6= 0} = card (X ‘ space M ∩ {x. f x
6= 0})

by (simp-all add: simple-distributed-finite[OF X] subset-eq emeasure-count-space
measure-def Int-def)

finally show ?thesis .
qed

lemma (in information-space) entropy-le-card:
assumes X : simple-distributed M X f
shows H(X) ≤ log b (real (card (X ‘ space M)))

proof −
let ?X = count-space (X‘space M)
have H(X) ≤ log b (measure ?X (space ?X))

by (rule entropy-le-space[OF simple-distributed[OF X]])
(insert X , auto simp: simple-distributed-finite[OF X] subset-eq integrable-count-space

emeasure-count-space finite-measure-count-space)
also have measure ?X (space ?X) = card (X ‘ space M)
by (simp-all add: simple-distributed-finite[OF X] subset-eq emeasure-count-space

measure-def)
finally show ?thesis .

qed

12.6 Conditional Mutual Information
definition (in prob-space)

conditional-mutual-information b MX MY MZ X Y Z ≡
mutual-information b MX (MY

⊗
M MZ) X (λx. (Y x , Z x)) −

mutual-information b MX MZ X Z

abbreviation (in information-space)
conditional-mutual-information-Pow (‹I ′(- ; - | - ′)›) where
I(X ; Y | Z) ≡ conditional-mutual-information b
(count-space (X ‘ space M)) (count-space (Y ‘ space M)) (count-space (Z ‘ space

M)) X Y Z

lemma (in information-space)
assumes S : sigma-finite-measure S and T : sigma-finite-measure T and P:

THEORY “Information” 174

sigma-finite-measure P
assumes Px[measurable]: distributed M S X Px

and Px-nn[simp]:
∧

x. x ∈ space S =⇒ 0 ≤ Px x
assumes Pz[measurable]: distributed M P Z Pz

and Pz-nn[simp]:
∧

z. z ∈ space P =⇒ 0 ≤ Pz z
assumes Pyz[measurable]: distributed M (T

⊗
M P) (λx. (Y x, Z x)) Pyz

and Pyz-nn[simp]:
∧

y z. y ∈ space T =⇒ z ∈ space P =⇒ 0 ≤ Pyz (y, z)
assumes Pxz[measurable]: distributed M (S

⊗
M P) (λx. (X x , Z x)) Pxz

and Pxz-nn[simp]:
∧

x z. x ∈ space S =⇒ z ∈ space P =⇒ 0 ≤ Pxz (x, z)
assumes Pxyz[measurable]: distributed M (S

⊗
M T

⊗
M P) (λx. (X x, Y x, Z

x)) Pxyz
and Pxyz-nn[simp]:

∧
x y z. x ∈ space S =⇒ y ∈ space T =⇒ z ∈ space P =⇒

0 ≤ Pxyz (x, y, z)
assumes I1 : integrable (S

⊗
M T

⊗
M P) (λ(x, y, z). Pxyz (x, y, z) ∗ log b

(Pxyz (x, y, z) / (Px x ∗ Pyz (y, z))))
assumes I2 : integrable (S

⊗
M T

⊗
M P) (λ(x, y, z). Pxyz (x, y, z) ∗ log b

(Pxz (x, z) / (Px x ∗ Pz z)))
shows conditional-mutual-information-generic-eq: conditional-mutual-information

b S T P X Y Z
= (

∫
(x, y, z). Pxyz (x, y, z) ∗ log b (Pxyz (x, y, z) / (Pxz (x, z) ∗ (Pyz (y,z)

/ Pz z))) ∂(S
⊗

M T
⊗

M P)) (is ?eq)
and conditional-mutual-information-generic-nonneg: 0 ≤ conditional-mutual-information

b S T P X Y Z (is ?nonneg)
proof −

have [measurable]: Px ∈ S →M borel
using Px Px-nn by (intro distributed-real-measurable)

have [measurable]: Pz ∈ P →M borel
using Pz Pz-nn by (intro distributed-real-measurable)

have measurable-Pyz[measurable]: Pyz ∈ (T
⊗

M P) →M borel
using Pyz Pyz-nn by (intro distributed-real-measurable) (auto simp: space-pair-measure)

have measurable-Pxz[measurable]: Pxz ∈ (S
⊗

M P) →M borel
using Pxz Pxz-nn by (intro distributed-real-measurable) (auto simp: space-pair-measure)

have measurable-Pxyz[measurable]: Pxyz ∈ (S
⊗

M T
⊗

M P) →M borel
using Pxyz Pxyz-nn by (intro distributed-real-measurable) (auto simp: space-pair-measure)

interpret S : sigma-finite-measure S by fact
interpret T : sigma-finite-measure T by fact
interpret P: sigma-finite-measure P by fact
interpret TP: pair-sigma-finite T P ..
interpret SP: pair-sigma-finite S P ..
interpret ST : pair-sigma-finite S T ..
interpret SPT : pair-sigma-finite S

⊗
M P T ..

interpret STP: pair-sigma-finite S T
⊗

M P ..
interpret TPS : pair-sigma-finite T

⊗
M P S ..

have TP: sigma-finite-measure (T
⊗

M P) ..
have SP: sigma-finite-measure (S

⊗
M P) ..

have YZ : random-variable (T
⊗

M P) (λx. (Y x , Z x))
using Pyz by (simp add: distributed-measurable)

THEORY “Information” 175

from Pxz Pxyz have distr-eq: distr M (S
⊗

M P) (λx. (X x , Z x)) =
distr (distr M (S

⊗
M T

⊗
M P) (λx. (X x, Y x, Z x))) (S

⊗
M P) (λ(x, y,

z). (x, z))
by (simp add: comp-def distr-distr)

have mutual-information b S P X Z =
(
∫

x. Pxz x ∗ log b (Pxz x / (Px (fst x) ∗ Pz (snd x))) ∂(S
⊗

M P))
by (rule mutual-information-distr [OF S P Px Px-nn Pz Pz-nn Pxz Pxz-nn])

also have . . . = (
∫
(x,y,z). Pxyz (x,y,z) ∗ log b (Pxz (x,z) / (Px x ∗ Pz z)) ∂(S⊗

M T
⊗

M P))
using b-gt-1 Pxz Px Pz
by (subst distributed-transform-integral[OF Pxyz - Pxz -, where T=λ(x, y, z).

(x, z)])
(auto simp: split-beta ′ space-pair-measure)

finally have mi-eq:
mutual-information b S P X Z = (

∫
(x,y,z). Pxyz (x,y,z) ∗ log b (Pxz (x,z) /

(Px x ∗ Pz z)) ∂(S
⊗

M T
⊗

M P)) .

have ae1 : AE x in S
⊗

M T
⊗

M P. Px (fst x) = 0 −→ Pxyz x = 0
by (intro subdensity-real[of fst, OF - Pxyz Px]) (auto simp: space-pair-measure)

moreover have ae2 : AE x in S
⊗

M T
⊗

M P. Pz (snd (snd x)) = 0 −→ Pxyz
x = 0

by (intro subdensity-real[of λx. snd (snd x), OF - Pxyz Pz]) (auto simp:
space-pair-measure)

moreover have ae3 : AE x in S
⊗

M T
⊗

M P. Pxz (fst x, snd (snd x)) = 0
−→ Pxyz x = 0

by (intro subdensity-real[of λx. (fst x , snd (snd x)), OF - Pxyz Pxz]) (auto
simp: space-pair-measure)

moreover have ae4 : AE x in S
⊗

M T
⊗

M P. Pyz (snd x) = 0 −→ Pxyz x
= 0

by (intro subdensity-real[of snd, OF - Pxyz Pyz]) (auto simp: space-pair-measure)
ultimately have ae: AE x in S

⊗
M T

⊗
M P.

Pxyz x ∗ log b (Pxyz x / (Px (fst x) ∗ Pyz (snd x))) −
Pxyz x ∗ log b (Pxz (fst x, snd (snd x)) / (Px (fst x) ∗ Pz (snd (snd x)))) =
Pxyz x ∗ log b (Pxyz x ∗ Pz (snd (snd x)) / (Pxz (fst x , snd (snd x)) ∗ Pyz

(snd x)))
using AE-space

proof eventually-elim
case (elim x)
show ?case
proof cases

assume Pxyz x 6= 0
with elim have 0 < Px (fst x) 0 < Pz (snd (snd x)) 0 < Pxz (fst x, snd

(snd x))
0 < Pyz (snd x) 0 < Pxyz x
by (auto simp: space-pair-measure less-le)

then show ?thesis
using b-gt-1 by (simp add: log-simps less-imp-le field-simps)

qed simp

THEORY “Information” 176

qed
with I1 I2 show ?eq

unfolding conditional-mutual-information-def
apply (subst mi-eq)
apply (subst mutual-information-distr [OF S TP Px Px-nn Pyz - Pxyz])
apply (auto simp: space-pair-measure)
apply (subst Bochner-Integration.integral-diff [symmetric])

apply (auto intro!: integral-cong-AE simp: split-beta ′ simp del: Bochner-Integration.integral-diff)
done

let ?P = density (S
⊗

M T
⊗

M P) Pxyz
interpret P: prob-space ?P

unfolding distributed-distr-eq-density[OF Pxyz , symmetric]
by (rule prob-space-distr) simp

let ?Q = density (T
⊗

M P) Pyz
interpret Q: prob-space ?Q

unfolding distributed-distr-eq-density[OF Pyz , symmetric]
by (rule prob-space-distr) simp

let ?f = λ(x, y, z). Pxz (x, z) ∗ (Pyz (y, z) / Pz z) / Pxyz (x, y, z)

from subdensity-real[of snd, OF - Pyz Pz - AE-I2 AE-I2]
have aeX1 : AE x in T

⊗
M P. Pz (snd x) = 0 −→ Pyz x = 0

by (auto simp: comp-def space-pair-measure)
have aeX2 : AE x in T

⊗
M P. 0 ≤ Pz (snd x)

using Pz by (intro TP.AE-pair-measure) (auto simp: comp-def)

have aeX3 : AE y in T
⊗

M P. (
∫

+ x. ennreal (Pxz (x, snd y)) ∂S) = ennreal
(Pz (snd y))

using Pz distributed-marginal-eq-joint2 [OF P S Pz Pxz]
by (intro TP.AE-pair-measure) auto

have (
∫

+ x. ?f x ∂?P) ≤ (
∫

+ (x, y, z). Pxz (x, z) ∗ (Pyz (y, z) / Pz z) ∂(S⊗
M T

⊗
M P))

by (subst nn-integral-density)
(auto intro!: nn-integral-mono simp: space-pair-measure ennreal-mult[symmetric])

also have . . . = (
∫

+(y, z). (
∫

+ x. ennreal (Pxz (x, z)) ∗ ennreal (Pyz (y, z) /
Pz z) ∂S) ∂(T

⊗
M P))

by (subst STP.nn-integral-snd[symmetric])
(auto simp add: split-beta ′ ennreal-mult[symmetric] space-pair-measure intro!:

nn-integral-cong)
also have . . . = (

∫
+x. ennreal (Pyz x) ∗ 1 ∂T

⊗
M P)

proof −
have D: (

∫
+ x. ennreal (Pxz (x, b)) ∗ ennreal (Pyz (a, b) / Pz b) ∂S) =

ennreal (Pyz (a, b))
if Pz b = 0 −→ Pyz (a, b) = 0 a ∈ space T ∧ b ∈ space P
(
∫

+ x. ennreal (Pxz (x, b)) ∂S) = ennreal (Pz b)
for a b

THEORY “Information” 177

using that by (subst nn-integral-multc) (auto split: prod.split simp: en-
nreal-mult[symmetric])

show ?thesis
apply (rule nn-integral-cong-AE)
using aeX1 aeX3
by (force simp add: space-pair-measure D)

qed
also have . . . = 1

using Q.emeasure-space-1 distributed-distr-eq-density[OF Pyz]
by (subst nn-integral-density[symmetric]) auto

finally have le1 : (
∫

+ x. ?f x ∂?P) ≤ 1 .
also have . . . < ∞ by simp
finally have fin: (

∫
+ x. ?f x ∂?P) 6= ∞ by simp

have (
∫

+ x. ennreal (Pxyz x) ∗
ennreal (Pxz (fst x, snd (snd x)) ∗ Pyz (snd x) / (Pz (snd (snd x)) ∗

Pxyz x))
∂(S

⊗
M T

⊗
M P)) 6= 0

proof
let ?g = λx. ennreal (Pxyz x) ∗ (Pxz (fst x, snd (snd x)) ∗ Pyz (snd x) / (Pz

(snd (snd x)) ∗ Pxyz x))
assume (

∫
+x. ?g x ∂(S

⊗
M T

⊗
M P)) = 0

then have AE x in S
⊗

M T
⊗

M P. ?g x = 0
by (intro nn-integral-0-iff-AE [THEN iffD1]) auto

then have AE x in S
⊗

M T
⊗

M P. Pxyz x = 0
using ae2 ae3 ae4

by (auto split: if-split-asm simp: mult-le-0-iff divide-le-0-iff space-pair-measure)
then have (

∫
+ x. ennreal (Pxyz x) ∂S

⊗
M T

⊗
M P) = 0

by (subst nn-integral-cong-AE [of - λx. 0]) auto
with P.emeasure-space-1 show False

by (subst (asm) emeasure-density) (auto cong: nn-integral-cong)
qed
then have pos: (

∫
+x. ?f x ∂?P) 6= 0

by (subst nn-integral-density) (simp-all add: split-beta ′)

have neg: (
∫

+ x. − ?f x ∂?P) = 0
by (subst nn-integral-0-iff-AE) (auto simp: space-pair-measure ennreal-neg)

have I3 : integrable (S
⊗

M T
⊗

M P) (λ(x, y, z). Pxyz (x, y, z) ∗ log b (Pxyz
(x, y, z) / (Pxz (x, z) ∗ (Pyz (y,z) / Pz z))))

apply (rule integrable-cong-AE [THEN iffD1 , OF - - - Bochner-Integration.integrable-diff [OF
I1 I2]])

using ae
apply (auto simp: split-beta ′)
done

have − log b 1 ≤ − log b (integralL ?P ?f)
proof (intro le-imp-neg-le Transcendental.log-mono[OF b-gt-1])

have If : integrable ?P ?f

THEORY “Information” 178

unfolding real-integrable-def
proof (intro conjI)

from neg show (
∫

+ x. − ?f x ∂?P) 6= ∞
by simp

from fin show (
∫

+ x. ?f x ∂?P) 6= ∞
by simp

qed simp
then have (

∫
+ x. ?f x ∂?P) = (

∫
x. ?f x ∂?P)

apply (rule nn-integral-eq-integral)
apply (auto simp: space-pair-measure ennreal-neg)
done

with pos le1
show 0 < (

∫
x. ?f x ∂?P) (

∫
x. ?f x ∂?P) ≤ 1

by (simp-all add: one-ennreal.rep-eq zero-less-iff-neq-zero[symmetric])
qed
also have − log b (integralL ?P ?f) ≤ (

∫
x. − log b (?f x) ∂?P)

proof (rule P.jensens-inequality[where a=0 and b=1 and I={0<..}])
show AE x in ?P. ?f x ∈ {0<..}

unfolding AE-density[OF distributed-borel-measurable[OF Pxyz]]
using ae1 ae2 ae3 ae4
by (auto simp: space-pair-measure less-le)

show integrable ?P ?f
unfolding real-integrable-def
using fin neg by (auto simp: split-beta ′)

have integrable (S
⊗

M T
⊗

M P) (λx. Pxyz x ∗ − log b (?f x))
apply (rule integrable-cong-AE [THEN iffD1 , OF - - - I3])
by (auto simp: log-mult log-divide field-simps)

then
show integrable ?P (λx. − log b (?f x))

by (subst integrable-real-density) (auto simp: space-pair-measure)
qed (auto simp: b-gt-1 minus-log-convex)
also have . . . = conditional-mutual-information b S T P X Y Z

unfolding ‹?eq›
apply (subst integral-real-density)

apply simp
apply (force simp: space-pair-measure)

apply simp
apply (intro integral-cong-AE)
by (auto simp: field-simps log-divide)

finally show ?nonneg
by simp

qed

lemma (in information-space)
fixes Px :: - ⇒ real
assumes S : sigma-finite-measure S and T : sigma-finite-measure T and P:

sigma-finite-measure P
assumes Fx: finite-entropy S X Px
assumes Fz: finite-entropy P Z Pz

THEORY “Information” 179

assumes Fyz: finite-entropy (T
⊗

M P) (λx. (Y x, Z x)) Pyz
assumes Fxz: finite-entropy (S

⊗
M P) (λx. (X x , Z x)) Pxz

assumes Fxyz: finite-entropy (S
⊗

M T
⊗

M P) (λx. (X x , Y x, Z x)) Pxyz
shows conditional-mutual-information-generic-eq ′: conditional-mutual-information

b S T P X Y Z
= (

∫
(x, y, z). Pxyz (x, y, z) ∗ log b (Pxyz (x, y, z) / (Pxz (x, z) ∗ (Pyz (y,z)

/ Pz z))) ∂(S
⊗

M T
⊗

M P)) (is ?eq)
and conditional-mutual-information-generic-nonneg ′: 0 ≤ conditional-mutual-information

b S T P X Y Z (is ?nonneg)
proof −

note Px = Fx[THEN finite-entropy-distributed, measurable]
note Pz = Fz[THEN finite-entropy-distributed, measurable]
note Pyz = Fyz[THEN finite-entropy-distributed, measurable]
note Pxz = Fxz[THEN finite-entropy-distributed, measurable]
note Pxyz = Fxyz[THEN finite-entropy-distributed, measurable]

note Px-nn = Fx[THEN finite-entropy-nn]
note Pz-nn = Fz[THEN finite-entropy-nn]
note Pyz-nn = Fyz[THEN finite-entropy-nn]
note Pxz-nn = Fxz[THEN finite-entropy-nn]
note Pxyz-nn = Fxyz[THEN finite-entropy-nn]

note Px ′ = Fx[THEN finite-entropy-measurable, measurable]
note Pz ′ = Fz[THEN finite-entropy-measurable, measurable]
note Pyz ′ = Fyz[THEN finite-entropy-measurable, measurable]
note Pxz ′ = Fxz[THEN finite-entropy-measurable, measurable]
note Pxyz ′ = Fxyz[THEN finite-entropy-measurable, measurable]

interpret S : sigma-finite-measure S by fact
interpret T : sigma-finite-measure T by fact
interpret P: sigma-finite-measure P by fact
interpret TP: pair-sigma-finite T P ..
interpret SP: pair-sigma-finite S P ..
interpret ST : pair-sigma-finite S T ..
interpret SPT : pair-sigma-finite S

⊗
M P T ..

interpret STP: pair-sigma-finite S T
⊗

M P ..
interpret TPS : pair-sigma-finite T

⊗
M P S ..

have TP: sigma-finite-measure (T
⊗

M P) ..
have SP: sigma-finite-measure (S

⊗
M P) ..

from Pxz Pxyz have distr-eq: distr M (S
⊗

M P) (λx. (X x , Z x)) =
distr (distr M (S

⊗
M T

⊗
M P) (λx. (X x, Y x, Z x))) (S

⊗
M P) (λ(x, y,

z). (x, z))
by (simp add: distr-distr comp-def)

have mutual-information b S P X Z =
(
∫

x. Pxz x ∗ log b (Pxz x / (Px (fst x) ∗ Pz (snd x))) ∂(S
⊗

M P))
using Px Px-nn Pz Pz-nn Pxz Pxz-nn
by (rule mutual-information-distr [OF S P]) (auto simp: space-pair-measure)

THEORY “Information” 180

also have . . . = (
∫
(x,y,z). Pxyz (x,y,z) ∗ log b (Pxz (x,z) / (Px x ∗ Pz z)) ∂(S⊗

M T
⊗

M P))
using b-gt-1 Pxz Pxz-nn Pxyz Pxyz-nn
by (subst distributed-transform-integral[OF Pxyz - Pxz, where T=λ(x, y, z).

(x, z)])
(auto simp: split-beta ′)

finally have mi-eq:
mutual-information b S P X Z = (

∫
(x,y,z). Pxyz (x,y,z) ∗ log b (Pxz (x,z) /

(Px x ∗ Pz z)) ∂(S
⊗

M T
⊗

M P)) .

have ae1 : AE x in S
⊗

M T
⊗

M P. Px (fst x) = 0 −→ Pxyz x = 0
by (intro subdensity-finite-entropy[of fst, OF - Fxyz Fx]) auto

moreover have ae2 : AE x in S
⊗

M T
⊗

M P. Pz (snd (snd x)) = 0 −→ Pxyz
x = 0

by (intro subdensity-finite-entropy[of λx. snd (snd x), OF - Fxyz Fz]) auto
moreover have ae3 : AE x in S

⊗
M T

⊗
M P. Pxz (fst x, snd (snd x)) = 0

−→ Pxyz x = 0
by (intro subdensity-finite-entropy[of λx. (fst x, snd (snd x)), OF - Fxyz Fxz])

auto
moreover have ae4 : AE x in S

⊗
M T

⊗
M P. Pyz (snd x) = 0 −→ Pxyz x

= 0
by (intro subdensity-finite-entropy[of snd, OF - Fxyz Fyz]) auto

ultimately have ae: AE x in S
⊗

M T
⊗

M P.
Pxyz x ∗ log b (Pxyz x / (Px (fst x) ∗ Pyz (snd x))) −
Pxyz x ∗ log b (Pxz (fst x, snd (snd x)) / (Px (fst x) ∗ Pz (snd (snd x)))) =
Pxyz x ∗ log b (Pxyz x ∗ Pz (snd (snd x)) / (Pxz (fst x , snd (snd x)) ∗ Pyz

(snd x)))
using AE-space

proof eventually-elim
case (elim x)
show ?case
proof cases

assume Pxyz x 6= 0
with elim have 0 < Px (fst x) 0 < Pz (snd (snd x)) 0 < Pxz (fst x, snd

(snd x))
0 < Pyz (snd x) 0 < Pxyz x
using Px-nn Pz-nn Pxz-nn Pyz-nn Pxyz-nn
by (auto simp: space-pair-measure less-le)

then show ?thesis
using b-gt-1 by (simp add: log-simps less-imp-le field-simps)

qed simp
qed

have integrable (S
⊗

M T
⊗

M P)
(λx. Pxyz x ∗ log b (Pxyz x) − Pxyz x ∗ log b (Px (fst x)) − Pxyz x ∗ log b (Pyz

(snd x)))
using finite-entropy-integrable[OF Fxyz]
using finite-entropy-integrable-transform[OF Fx Pxyz Pxyz-nn, of fst]
using finite-entropy-integrable-transform[OF Fyz Pxyz Pxyz-nn, of snd]

THEORY “Information” 181

by simp
moreover have (λ(x, y, z). Pxyz (x, y, z) ∗ log b (Pxyz (x, y, z) / (Px x ∗ Pyz

(y, z)))) ∈ borel-measurable (S
⊗

M T
⊗

M P)
using Pxyz Px Pyz by simp

ultimately have I1 : integrable (S
⊗

M T
⊗

M P) (λ(x, y, z). Pxyz (x, y, z) ∗
log b (Pxyz (x, y, z) / (Px x ∗ Pyz (y, z))))

apply (rule integrable-cong-AE-imp)
using ae1 ae4 Px-nn Pyz-nn Pxyz-nn
by (auto simp: log-divide log-mult field-simps)

have integrable (S
⊗

M T
⊗

M P)
(λx. Pxyz x ∗ log b (Pxz (fst x, snd (snd x))) − Pxyz x ∗ log b (Px (fst x)) −

Pxyz x ∗ log b (Pz (snd (snd x))))
using finite-entropy-integrable-transform[OF Fxz Pxyz Pxyz-nn, of λx. (fst x,

snd (snd x))]
using finite-entropy-integrable-transform[OF Fx Pxyz Pxyz-nn, of fst]
using finite-entropy-integrable-transform[OF Fz Pxyz Pxyz-nn, of snd ◦ snd]
by simp

moreover have (λ(x, y, z). Pxyz (x, y, z) ∗ log b (Pxz (x, z) / (Px x ∗ Pz z)))
∈ borel-measurable (S

⊗
M T

⊗
M P)

using Pxyz Px Pz
by auto

ultimately have I2 : integrable (S
⊗

M T
⊗

M P) (λ(x, y, z). Pxyz (x, y, z) ∗
log b (Pxz (x, z) / (Px x ∗ Pz z)))

apply (rule integrable-cong-AE-imp)
using ae1 ae2 ae3 ae4 Px-nn Pz-nn Pxz-nn Pyz-nn Pxyz-nn
apply(auto simp: field-simps log-divide log-mult)
done

from ae I1 I2 show ?eq
unfolding conditional-mutual-information-def mi-eq
apply (subst mutual-information-distr [OF S TP Px Px-nn Pyz Pyz-nn Pxyz

Pxyz-nn]; simp add: space-pair-measure)
apply (subst Bochner-Integration.integral-diff [symmetric])
apply (auto intro!: integral-cong-AE simp: split-beta ′ simp del: Bochner-Integration.integral-diff)
done

let ?P = density (S
⊗

M T
⊗

M P) Pxyz
interpret P: prob-space ?P
unfolding distributed-distr-eq-density[OF Pxyz, symmetric] by (rule prob-space-distr)

simp

let ?Q = density (T
⊗

M P) Pyz
interpret Q: prob-space ?Q
unfolding distributed-distr-eq-density[OF Pyz, symmetric] by (rule prob-space-distr)

simp

let ?f = λ(x, y, z). Pxz (x, z) ∗ (Pyz (y, z) / Pz z) / Pxyz (x, y, z)

from subdensity-finite-entropy[of snd, OF - Fyz Fz]
have aeX1 : AE x in T

⊗
M P. Pz (snd x) = 0 −→ Pyz x = 0 by (auto simp:

THEORY “Information” 182

comp-def)
have aeX2 : AE x in T

⊗
M P. 0 ≤ Pz (snd x)

using Pz by (intro TP.AE-pair-measure) (auto intro: Pz-nn)

have aeX3 : AE y in T
⊗

M P. (
∫

+ x. ennreal (Pxz (x, snd y)) ∂S) = ennreal
(Pz (snd y))

using Pz distributed-marginal-eq-joint2 [OF P S Pz Pxz]
by (intro TP.AE-pair-measure) (auto)

have (
∫

+ x. ?f x ∂?P) ≤ (
∫

+ (x, y, z). Pxz (x, z) ∗ (Pyz (y, z) / Pz z) ∂(S⊗
M T

⊗
M P))

using Px-nn Pz-nn Pxz-nn Pyz-nn Pxyz-nn
by (subst nn-integral-density)
(auto intro!: nn-integral-mono simp: space-pair-measure ennreal-mult[symmetric])

also have . . . = (
∫

+(y, z).
∫

+ x. ennreal (Pxz (x, z)) ∗ ennreal (Pyz (y, z) /
Pz z) ∂S ∂T

⊗
M P)

using Px-nn Pz-nn Pxz-nn Pyz-nn Pxyz-nn
by (subst STP.nn-integral-snd[symmetric])
(auto simp add: split-beta ′ ennreal-mult[symmetric] space-pair-measure intro!:

nn-integral-cong)
also have . . . = (

∫
+x. ennreal (Pyz x) ∗ 1 ∂T

⊗
M P)

proof −
have ∗: (

∫
+ x. ennreal (Pxz (x, b)) ∗ ennreal (Pyz (a, b) / Pz b) ∂S) = ennreal

(Pyz (a, b))
if Pz b = 0 −→ Pyz (a, b) = 0 0 ≤ Pz b a ∈ space T ∧ b ∈ space P
(
∫

+ x. ennreal (Pxz (x, b)) ∂S) = ennreal (Pz b) for a b
using Pyz-nn[of (a,b)] that

by (subst nn-integral-multc) (auto simp: space-pair-measure ennreal-mult[symmetric])
show ?thesis

using aeX1 aeX2 aeX3 AE-space
by (force simp: ∗ space-pair-measure intro: nn-integral-cong-AE)

qed
also have . . . = 1

using Q.emeasure-space-1 Pyz-nn distributed-distr-eq-density[OF Pyz]
by (subst nn-integral-density[symmetric]) auto

finally have le1 : (
∫

+ x. ?f x ∂?P) ≤ 1 .
also have . . . < ∞ by simp
finally have fin: (

∫
+ x. ?f x ∂?P) 6= ∞ by simp

have (
∫

+ x. ?f x ∂?P) 6= 0
using Pxyz-nn
apply (subst nn-integral-density)

apply (simp-all add: split-beta ′ ennreal-mult ′[symmetric] cong: nn-integral-cong)
proof

let ?g = λx. ennreal (if Pxyz x = 0 then 0 else Pxz (fst x, snd (snd x)) ∗ Pyz
(snd x) / Pz (snd (snd x)))

assume (
∫

+ x. ?g x ∂(S
⊗

M T
⊗

M P)) = 0
then have AE x in S

⊗
M T

⊗
M P. ?g x = 0

by (intro nn-integral-0-iff-AE [THEN iffD1]) auto
then have AE x in S

⊗
M T

⊗
M P. Pxyz x = 0

THEORY “Information” 183

using ae1 ae2 ae3 ae4
by (insert Px-nn Pz-nn Pxz-nn Pyz-nn,

auto split: if-split-asm simp: mult-le-0-iff divide-le-0-iff space-pair-measure)
then have (

∫
+ x. ennreal (Pxyz x) ∂S

⊗
M T

⊗
M P) = 0

by (subst nn-integral-cong-AE [of - λx. 0]) auto
with P.emeasure-space-1 show False

by (subst (asm) emeasure-density) (auto cong: nn-integral-cong)
qed
then have pos: 0 < (

∫
+ x. ?f x ∂?P)

by (simp add: zero-less-iff-neq-zero)

have neg: (
∫

+ x. − ?f x ∂?P) = 0
using Pz-nn Pxz-nn Pyz-nn Pxyz-nn
by (intro nn-integral-0-iff-AE [THEN iffD2])

(auto simp: split-beta ′ AE-density space-pair-measure intro!: AE-I2 en-
nreal-neg)

have I3 : integrable (S
⊗

M T
⊗

M P) (λ(x, y, z). Pxyz (x, y, z) ∗ log b (Pxyz
(x, y, z) / (Pxz (x, z) ∗ (Pyz (y,z) / Pz z))))

apply (rule integrable-cong-AE [THEN iffD1 , OF - - - Bochner-Integration.integrable-diff [OF
I1 I2]])

using ae
by (auto simp: split-beta ′)

have − log b 1 ≤ − log b (integralL ?P ?f)
proof (intro le-imp-neg-le Transcendental.log-mono[OF b-gt-1])

have If : integrable ?P ?f
using neg fin by (force simp add: real-integrable-def)

then have (
∫

+ x. ?f x ∂?P) = (
∫

x. ?f x ∂?P)
using Pz-nn Pxz-nn Pyz-nn Pxyz-nn
by (intro nn-integral-eq-integral)

(auto simp: AE-density space-pair-measure)
with pos le1
show 0 < (

∫
x. ?f x ∂?P) (

∫
x. ?f x ∂?P) ≤ 1

by (simp-all add:)
qed
also have − log b (integralL ?P ?f) ≤ (

∫
x. − log b (?f x) ∂?P)

proof (rule P.jensens-inequality[where a=0 and b=1 and I={0<..}])
show AE x in ?P. ?f x ∈ {0<..}

unfolding AE-density[OF distributed-borel-measurable[OF Pxyz]]
using ae1 ae2 ae3 ae4

by (insert Pxyz-nn Pyz-nn Pz-nn Pxz-nn, auto simp: space-pair-measure
less-le)

show integrable ?P ?f
unfolding real-integrable-def
using fin neg by (auto simp: split-beta ′)

have integrable (S
⊗

M T
⊗

M P) (λx. Pxyz x ∗ − log b (?f x))
apply (rule integrable-cong-AE [THEN iffD1 , OF - - - I3])
using Pz-nn Pxz-nn Pyz-nn Pxyz-nn ae2 ae3 ae4

THEORY “Information” 184

by (auto simp: log-divide field-simps)
then show integrable ?P (λx. − log b (?f x))

using Pxyz-nn by (auto simp: integrable-real-density)
qed (auto simp: b-gt-1 minus-log-convex)
also have . . . = conditional-mutual-information b S T P X Y Z

unfolding ‹?eq›
using Pz-nn Pxz-nn Pyz-nn Pxyz-nn
apply (subst integral-real-density)
apply simp
apply simp
apply simp
apply (intro integral-cong-AE)
using ae1 ae2 ae3 ae4
by (auto simp: log-divide zero-less-mult-iff field-simps)

finally show ?nonneg
by simp

qed

lemma (in information-space) conditional-mutual-information-eq:
assumes Pz: simple-distributed M Z Pz
assumes Pyz: simple-distributed M (λx. (Y x, Z x)) Pyz
assumes Pxz: simple-distributed M (λx. (X x , Z x)) Pxz
assumes Pxyz: simple-distributed M (λx. (X x , Y x , Z x)) Pxyz
shows I(X ; Y | Z) =
(
∑

(x, y, z)∈(λx. (X x, Y x, Z x))‘space M . Pxyz (x, y, z) ∗ log b (Pxyz (x, y,
z) / (Pxz (x, z) ∗ (Pyz (y,z) / Pz z))))
proof (subst conditional-mutual-information-generic-eq[OF - - - - -

simple-distributed[OF Pz] - simple-distributed-joint[OF Pyz] - simple-distributed-joint[OF
Pxz] -

simple-distributed-joint2 [OF Pxyz]])
note simple-distributed-joint2-finite[OF Pxyz , simp]
show sigma-finite-measure (count-space (X ‘ space M))

by (simp add: sigma-finite-measure-count-space-finite)
show sigma-finite-measure (count-space (Y ‘ space M))

by (simp add: sigma-finite-measure-count-space-finite)
show sigma-finite-measure (count-space (Z ‘ space M))

by (simp add: sigma-finite-measure-count-space-finite)
have count-space (X ‘ space M)

⊗
M count-space (Y ‘ space M)

⊗
M count-space

(Z ‘ space M) =
count-space (X‘space M × Y‘space M × Z‘space M)

(is ?P = ?C)
by (simp add: pair-measure-count-space)

let ?Px = λx. measure M (X −‘ {x} ∩ space M)
have (λx. (X x, Z x)) ∈ measurable M (count-space (X ‘ space M)

⊗
M count-space

(Z ‘ space M))
using simple-distributed-joint[OF Pxz] by (rule distributed-measurable)

from measurable-comp[OF this measurable-fst]
have random-variable (count-space (X ‘ space M)) X

THEORY “Information” 185

by (simp add: comp-def)
then have simple-function M X

unfolding simple-function-def by (auto simp: measurable-count-space-eq2)
then have simple-distributed M X ?Px

by (rule simple-distributedI) (auto simp: measure-nonneg)
then show distributed M (count-space (X ‘ space M)) X ?Px

by (rule simple-distributed)

let ?f = (λx. if x ∈ (λx. (X x , Y x , Z x)) ‘ space M then Pxyz x else 0)
let ?g = (λx. if x ∈ (λx. (Y x , Z x)) ‘ space M then Pyz x else 0)
let ?h = (λx. if x ∈ (λx. (X x , Z x)) ‘ space M then Pxz x else 0)
show

integrable ?P (λ(x, y, z). ?f (x, y, z) ∗ log b (?f (x, y, z) / (?Px x ∗ ?g (y,
z))))

integrable ?P (λ(x, y, z). ?f (x, y, z) ∗ log b (?h (x, z) / (?Px x ∗ Pz z)))
by (auto intro!: integrable-count-space simp: pair-measure-count-space)

let ?i = λx y z. ?f (x, y, z) ∗ log b (?f (x, y, z) / (?h (x, z) ∗ (?g (y, z) / Pz
z)))

let ?j = λx y z. Pxyz (x, y, z) ∗ log b (Pxyz (x, y, z) / (Pxz (x, z) ∗ (Pyz (y,z)
/ Pz z)))

have (λ(x, y, z). ?i x y z) = (λx. if x ∈ (λx. (X x, Y x, Z x)) ‘ space M then ?j
(fst x) (fst (snd x)) (snd (snd x)) else 0)

by (auto intro!: ext)
then show (

∫
(x, y, z). ?i x y z ∂?P) = (

∑
(x, y, z)∈(λx. (X x, Y x, Z x)) ‘

space M . ?j x y z)
by (auto intro!: sum.cong simp add: ‹?P = ?C › lebesgue-integral-count-space-finite

simple-distributed-finite sum.If-cases split-beta ′)
qed (insert Pz Pyz Pxz Pxyz, auto intro: measure-nonneg)

lemma (in information-space) conditional-mutual-information-nonneg:
assumes X : simple-function M X and Y : simple-function M Y and Z : sim-

ple-function M Z
shows 0 ≤ I(X ; Y | Z)

proof −
have [simp]: count-space (X ‘ space M)

⊗
M count-space (Y ‘ space M)

⊗
M

count-space (Z ‘ space M) =
count-space (X‘space M × Y‘space M × Z‘space M)

by (simp add: pair-measure-count-space X Y Z simple-functionD)
note sf = sigma-finite-measure-count-space-finite[OF simple-functionD(1)]
note sd = simple-distributedI [OF - - refl]
note sp = simple-function-Pair
show ?thesis
apply (rule conditional-mutual-information-generic-nonneg[OF sf [OF X] sf [OF

Y] sf [OF Z]])
apply (force intro: simple-distributed[OF sd[OF X]])

apply simp
apply (force intro: simple-distributed[OF sd[OF Z]])

apply simp
apply (force intro: simple-distributed-joint[OF sd[OF sp[OF Y Z]]])

THEORY “Information” 186

apply simp
apply (force intro: simple-distributed-joint[OF sd[OF sp[OF X Z]]])

apply simp
apply (fastforce intro: simple-distributed-joint2 [OF sd[OF sp[OF X sp[OF

Y Z]]]])
apply (auto intro!: integrable-count-space simp: X Y Z simple-functionD)

done
qed

12.7 Conditional Entropy
definition (in prob-space)

conditional-entropy b S T X Y = − (
∫
(x, y). log b (enn2real (RN-deriv (S

⊗
M

T) (distr M (S
⊗

M T) (λx. (X x , Y x))) (x, y)) /
enn2real (RN-deriv T (distr M T Y) y)) ∂distr M (S

⊗
M T) (λx. (X x, Y

x)))

abbreviation (in information-space)
conditional-entropy-Pow (‹H ′(- | - ′)›) where
H(X | Y) ≡ conditional-entropy b (count-space (X‘space M)) (count-space (Y‘space

M)) X Y

lemma (in information-space) conditional-entropy-generic-eq:
fixes Pxy :: - ⇒ real and Py :: ′c ⇒ real
assumes S : sigma-finite-measure S and T : sigma-finite-measure T
assumes Py[measurable]: distributed M T Y Py and Py-nn[simp]:

∧
x. x ∈ space

T =⇒ 0 ≤ Py x
assumes Pxy[measurable]: distributed M (S

⊗
M T) (λx. (X x, Y x)) Pxy

and Pxy-nn[simp]:
∧

x y. x ∈ space S =⇒ y ∈ space T =⇒ 0 ≤ Pxy (x, y)
shows conditional-entropy b S T X Y = − (

∫
(x, y). Pxy (x, y) ∗ log b (Pxy (x,

y) / Py y) ∂(S
⊗

M T))
proof −

interpret S : sigma-finite-measure S by fact
interpret T : sigma-finite-measure T by fact
interpret ST : pair-sigma-finite S T ..

have [measurable]: Py ∈ T →M borel
using Py Py-nn by (intro distributed-real-measurable)

have measurable-Pxy[measurable]: Pxy ∈ (S
⊗

M T) →M borel
using Pxy Pxy-nn by (intro distributed-real-measurable) (auto simp: space-pair-measure)

have AE x in density (S
⊗

M T) (λx. ennreal (Pxy x)). Pxy x = enn2real
(RN-deriv (S

⊗
M T) (distr M (S

⊗
M T) (λx. (X x , Y x))) x)

unfolding AE-density[OF distributed-borel-measurable, OF Pxy]
unfolding distributed-distr-eq-density[OF Pxy]
using distributed-RN-deriv[OF Pxy]
by auto

moreover
have AE x in density (S

⊗
M T) (λx. ennreal (Pxy x)). Py (snd x) = enn2real

THEORY “Information” 187

(RN-deriv T (distr M T Y) (snd x))
unfolding AE-density[OF distributed-borel-measurable, OF Pxy]
unfolding distributed-distr-eq-density[OF Py]
using distributed-RN-deriv[OF Py]
by (force intro: ST .AE-pair-measure)

ultimately
have conditional-entropy b S T X Y = − (

∫
x. Pxy x ∗ log b (Pxy x / Py (snd

x)) ∂(S
⊗

M T))
unfolding conditional-entropy-def neg-equal-iff-equal
apply (subst integral-real-density[symmetric])
apply (auto simp: distributed-distr-eq-density[OF Pxy] space-pair-measure

intro!: integral-cong-AE)
done

then show ?thesis by (simp add: split-beta ′)
qed

lemma (in information-space) conditional-entropy-eq-entropy:
fixes Px :: ′b ⇒ real and Py :: ′c ⇒ real
assumes S : sigma-finite-measure S and T : sigma-finite-measure T
assumes Py[measurable]: distributed M T Y Py

and Py-nn[simp]:
∧

x. x ∈ space T =⇒ 0 ≤ Py x
assumes Pxy[measurable]: distributed M (S

⊗
M T) (λx. (X x, Y x)) Pxy

and Pxy-nn[simp]:
∧

x y. x ∈ space S =⇒ y ∈ space T =⇒ 0 ≤ Pxy (x, y)
assumes I1 : integrable (S

⊗
M T) (λx. Pxy x ∗ log b (Pxy x))

assumes I2 : integrable (S
⊗

M T) (λx. Pxy x ∗ log b (Py (snd x)))
shows conditional-entropy b S T X Y = entropy b (S

⊗
M T) (λx. (X x, Y x))

− entropy b T Y
proof −

interpret S : sigma-finite-measure S by fact
interpret T : sigma-finite-measure T by fact
interpret ST : pair-sigma-finite S T ..

have [measurable]: Py ∈ T →M borel
using Py Py-nn by (intro distributed-real-measurable)

have measurable-Pxy[measurable]: Pxy ∈ (S
⊗

M T) →M borel
using Pxy Pxy-nn by (intro distributed-real-measurable) (auto simp: space-pair-measure)

have entropy b T Y = − (
∫

y. Py y ∗ log b (Py y) ∂T)
by (rule entropy-distr [OF Py Py-nn])

also have . . . = − (
∫
(x,y). Pxy (x,y) ∗ log b (Py y) ∂(S

⊗
M T))

using b-gt-1
by (subst distributed-transform-integral[OF Pxy - Py, where T=snd])

(auto intro!: Bochner-Integration.integral-cong simp: space-pair-measure)
finally have e-eq: entropy b T Y = − (

∫
(x,y). Pxy (x,y) ∗ log b (Py y) ∂(S⊗

M T)) .

have ∗∗:
∧

x. x ∈ space (S
⊗

M T) =⇒ 0 ≤ Pxy x
by (auto simp: space-pair-measure)

THEORY “Information” 188

have ae2 : AE x in S
⊗

M T . Py (snd x) = 0 −→ Pxy x = 0
by (intro subdensity-real[of snd, OF - Pxy Py])

(auto intro: measurable-Pair simp: space-pair-measure)
moreover have ae4 : AE x in S

⊗
M T . 0 ≤ Py (snd x)

using Py by (intro ST .AE-pair-measure) (auto simp: comp-def intro!: measur-
able-snd ′′)

ultimately have AE x in S
⊗

M T . 0 ≤ Pxy x ∧ 0 ≤ Py (snd x) ∧
(Pxy x = 0 ∨ (Pxy x 6= 0 −→ 0 < Pxy x ∧ 0 < Py (snd x)))
by (auto simp: space-pair-measure less-le)

then have ae: AE x in S
⊗

M T .
Pxy x ∗ log b (Pxy x) − Pxy x ∗ log b (Py (snd x)) = Pxy x ∗ log b (Pxy x /

Py (snd x))
by (auto simp: log-simps field-simps b-gt-1)

have conditional-entropy b S T X Y =
− (

∫
x. Pxy x ∗ log b (Pxy x) − Pxy x ∗ log b (Py (snd x)) ∂(S

⊗
M T))

unfolding conditional-entropy-generic-eq[OF S T Py Py-nn Pxy Pxy-nn, sim-
plified] neg-equal-iff-equal

using ae by (force intro: integral-cong-AE)
also have . . . = − (

∫
x. Pxy x ∗ log b (Pxy x) ∂(S

⊗
M T)) − − (

∫
x. Pxy x

∗ log b (Py (snd x)) ∂(S
⊗

M T))
by (simp add: Bochner-Integration.integral-diff [OF I1 I2])

finally show ?thesis
using conditional-entropy-generic-eq[OF S T Py Py-nn Pxy Pxy-nn, simplified]

entropy-distr [OF Pxy ∗∗, simplified] e-eq
by (simp add: split-beta ′)

qed

lemma (in information-space) conditional-entropy-eq-entropy-simple:
assumes X : simple-function M X and Y : simple-function M Y
shows H(X | Y) = entropy b (count-space (X‘space M)

⊗
M count-space (Y‘space

M)) (λx. (X x , Y x)) − H(Y)
proof −

have count-space (X ‘ space M)
⊗

M count-space (Y ‘ space M) = count-space
(X‘space M × Y‘space M)

(is ?P = ?C) using X Y by (simp add: simple-functionD pair-measure-count-space)
show ?thesis

by (rule conditional-entropy-eq-entropy sigma-finite-measure-count-space-finite
simple-functionD X Y simple-distributed simple-distributedI [OF - - refl]

simple-distributed-joint simple-function-Pair integrable-count-space
measure-nonneg)+

(auto simp: ‹?P = ?C › measure-nonneg intro!: integrable-count-space sim-
ple-functionD X Y)
qed

lemma (in information-space) conditional-entropy-eq:
assumes Y : simple-distributed M Y Py
assumes XY : simple-distributed M (λx. (X x , Y x)) Pxy

shows H(X | Y) = − (
∑

(x, y)∈(λx. (X x, Y x)) ‘ space M . Pxy (x, y) ∗ log
b (Pxy (x, y) / Py y))

THEORY “Information” 189

proof (subst conditional-entropy-generic-eq[OF - -
simple-distributed[OF Y] - simple-distributed-joint[OF XY]])
have finite ((λx. (X x , Y x))‘space M)

using XY unfolding simple-distributed-def by auto
from finite-imageI [OF this, of fst]
have [simp]: finite (X‘space M)

by (simp add: image-comp comp-def)
note Y [THEN simple-distributed-finite, simp]
show sigma-finite-measure (count-space (X ‘ space M))

by (simp add: sigma-finite-measure-count-space-finite)
show sigma-finite-measure (count-space (Y ‘ space M))

by (simp add: sigma-finite-measure-count-space-finite)
let ?f = (λx. if x ∈ (λx. (X x , Y x)) ‘ space M then Pxy x else 0)
have count-space (X ‘ space M)

⊗
M count-space (Y ‘ space M) = count-space

(X‘space M × Y‘space M)
(is ?P = ?C)
using Y by (simp add: simple-distributed-finite pair-measure-count-space)

have eq: (λ(x, y). ?f (x, y) ∗ log b (?f (x, y) / Py y)) =
(λx. if x ∈ (λx. (X x, Y x)) ‘ space M then Pxy x ∗ log b (Pxy x / Py (snd x))

else 0)
by auto

from Y show − (
∫

(x, y). ?f (x, y) ∗ log b (?f (x, y) / Py y) ∂?P) =
− (

∑
(x, y)∈(λx. (X x, Y x)) ‘ space M . Pxy (x, y) ∗ log b (Pxy (x, y) / Py

y))
by (auto intro!: sum.cong simp add: ‹?P = ?C › lebesgue-integral-count-space-finite

simple-distributed-finite eq sum.If-cases split-beta ′)
qed (use Y XY in auto)

lemma (in information-space) conditional-mutual-information-eq-conditional-entropy:
assumes X : simple-function M X and Y : simple-function M Y
shows I(X ; X | Y) = H(X | Y)

proof −
define Py where Py x = (if x ∈ Y‘space M then measure M (Y −‘ {x} ∩ space

M) else 0) for x
define Pxy where Pxy x =

(if x ∈ (λx. (X x , Y x))‘space M then measure M ((λx. (X x , Y x)) −‘ {x} ∩
space M) else 0)

for x
define Pxxy where Pxxy x =

(if x ∈ (λx. (X x , X x , Y x))‘space M then measure M ((λx. (X x , X x , Y x))
−‘ {x} ∩ space M)

else 0)
for x

let ?M = X‘space M × X‘space M × Y‘space M

note XY = simple-function-Pair [OF X Y]
note XXY = simple-function-Pair [OF X XY]
have Py: simple-distributed M Y Py

using Y by (rule simple-distributedI) (auto simp: Py-def measure-nonneg)

THEORY “Information” 190

have Pxy: simple-distributed M (λx. (X x , Y x)) Pxy
using XY by (rule simple-distributedI) (auto simp: Pxy-def measure-nonneg)

have Pxxy: simple-distributed M (λx. (X x , X x, Y x)) Pxxy
using XXY by (rule simple-distributedI) (auto simp: Pxxy-def measure-nonneg)

have eq: (λx. (X x, X x , Y x)) ‘ space M = (λ(x, y). (x, x, y)) ‘ (λx. (X x , Y
x)) ‘ space M

by auto
have inj:

∧
A. inj-on (λ(x, y). (x, x, y)) A

by (auto simp: inj-on-def)
have Pxxy-eq:

∧
x y. Pxxy (x, x, y) = Pxy (x, y)

by (auto simp: Pxxy-def Pxy-def intro!: arg-cong[where f=prob])
have AE x in count-space ((λx. (X x, Y x))‘space M). Py (snd x) = 0 −→ Pxy

x = 0
using Py Pxy
by (intro subdensity-real[of snd, OF - Pxy[THEN simple-distributed] Py[THEN

simple-distributed]])
(auto intro: measurable-Pair simp: AE-count-space)

then show ?thesis
apply (subst conditional-mutual-information-eq[OF Py Pxy Pxy Pxxy])
apply (subst conditional-entropy-eq[OF Py Pxy])

apply (auto intro!: sum.cong simp: Pxxy-eq sum-negf [symmetric] eq sum.reindex[OF
inj]

log-simps zero-less-mult-iff zero-le-mult-iff field-simps mult-less-0-iff
AE-count-space)

done
qed

lemma (in information-space) conditional-entropy-nonneg:
assumes X : simple-function M X and Y : simple-function M Y shows 0 ≤ H(X
| Y)
using conditional-mutual-information-eq-conditional-entropy[OF X Y] conditional-mutual-information-nonneg[OF

X X Y]
by simp

12.8 Equalities
lemma (in information-space) mutual-information-eq-entropy-conditional-entropy-distr :

fixes Px :: ′b ⇒ real and Py :: ′c ⇒ real and Pxy :: (′b × ′c) ⇒ real
assumes S : sigma-finite-measure S and T : sigma-finite-measure T
assumes Px[measurable]: distributed M S X Px

and Px-nn[simp]:
∧

x. x ∈ space S =⇒ 0 ≤ Px x
and Py[measurable]: distributed M T Y Py
and Py-nn[simp]:

∧
x. x ∈ space T =⇒ 0 ≤ Py x

and Pxy[measurable]: distributed M (S
⊗

M T) (λx. (X x, Y x)) Pxy
and Pxy-nn[simp]:

∧
x y. x ∈ space S =⇒ y ∈ space T =⇒ 0 ≤ Pxy (x, y)

assumes Ix: integrable(S
⊗

M T) (λx. Pxy x ∗ log b (Px (fst x)))
assumes Iy: integrable(S

⊗
M T) (λx. Pxy x ∗ log b (Py (snd x)))

assumes Ixy: integrable(S
⊗

M T) (λx. Pxy x ∗ log b (Pxy x))
shows mutual-information b S T X Y = entropy b S X + entropy b T Y −

THEORY “Information” 191

entropy b (S
⊗

M T) (λx. (X x , Y x))
proof −

have [measurable]: Px ∈ S →M borel
using Px Px-nn by (intro distributed-real-measurable)

have [measurable]: Py ∈ T →M borel
using Py Py-nn by (intro distributed-real-measurable)

have measurable-Pxy[measurable]: Pxy ∈ (S
⊗

M T) →M borel
using Pxy Pxy-nn by (intro distributed-real-measurable) (auto simp: space-pair-measure)

have X : entropy b S X = − (
∫

x. Pxy x ∗ log b (Px (fst x)) ∂(S
⊗

M T))
using b-gt-1
apply (subst entropy-distr [OF Px Px-nn], simp)
apply (subst distributed-transform-integral[OF Pxy - Px, where T=fst])
apply (auto intro!: integral-cong simp: space-pair-measure)
done

have Y : entropy b T Y = − (
∫

x. Pxy x ∗ log b (Py (snd x)) ∂(S
⊗

M T))
using b-gt-1
apply (subst entropy-distr [OF Py Py-nn], simp)
apply (subst distributed-transform-integral[OF Pxy - Py, where T=snd])
apply (auto intro!: integral-cong simp: space-pair-measure)
done

interpret S : sigma-finite-measure S by fact
interpret T : sigma-finite-measure T by fact
interpret ST : pair-sigma-finite S T ..
have ST : sigma-finite-measure (S

⊗
M T) ..

have XY : entropy b (S
⊗

M T) (λx. (X x, Y x)) = − (
∫

x. Pxy x ∗ log b (Pxy
x) ∂(S

⊗
M T))

by (subst entropy-distr [OF Pxy]) (auto intro!: integral-cong simp: space-pair-measure)

have AE x in S
⊗

M T . Px (fst x) = 0 −→ Pxy x = 0
by (intro subdensity-real[of fst, OF - Pxy Px]) (auto intro: measurable-Pair

simp: space-pair-measure)
moreover have AE x in S

⊗
M T . Py (snd x) = 0 −→ Pxy x = 0

by (intro subdensity-real[of snd, OF - Pxy Py]) (auto intro: measurable-Pair
simp: space-pair-measure)

moreover have AE x in S
⊗

M T . 0 ≤ Px (fst x)
using Px by (intro ST .AE-pair-measure) (auto simp: comp-def intro!: measur-

able-fst ′′)
moreover have AE x in S

⊗
M T . 0 ≤ Py (snd x)

using Py by (intro ST .AE-pair-measure) (auto simp: comp-def intro!: measur-
able-snd ′′)

ultimately have AE x in S
⊗

M T . Pxy x ∗ log b (Pxy x) − Pxy x ∗ log b (Px
(fst x)) − Pxy x ∗ log b (Py (snd x)) =

Pxy x ∗ log b (Pxy x / (Px (fst x) ∗ Py (snd x)))
(is AE x in -. ?f x = ?g x)
using AE-space

THEORY “Information” 192

proof eventually-elim
case (elim x)
show ?case
proof cases

assume Pxy x 6= 0
with elim have 0 < Px (fst x) 0 < Py (snd x) 0 < Pxy x

by (auto simp: space-pair-measure less-le)
then show ?thesis

using b-gt-1 by (simp add: log-simps less-imp-le field-simps)
qed simp

qed

have entropy b S X + entropy b T Y − entropy b (S
⊗

M T) (λx. (X x, Y x))
= integralL (S

⊗
M T) ?f

unfolding X Y XY
apply (subst Bochner-Integration.integral-diff)
apply (intro Bochner-Integration.integrable-diff Ixy Ix Iy)+
apply (subst Bochner-Integration.integral-diff)
apply (intro Ixy Ix Iy)+
apply (simp add: field-simps)
done

also have . . . = integralL (S
⊗

M T) ?g
using ‹AE x in -. ?f x = ?g x› by (intro integral-cong-AE) auto

also have . . . = mutual-information b S T X Y
by (rule mutual-information-distr [OF S T Px - Py - Pxy - , symmetric])

(auto simp: space-pair-measure)
finally show ?thesis ..

qed

lemma (in information-space) mutual-information-eq-entropy-conditional-entropy ′:
fixes Px :: ′b ⇒ real and Py :: ′c ⇒ real and Pxy :: (′b × ′c) ⇒ real
assumes S : sigma-finite-measure S and T : sigma-finite-measure T
assumes Px: distributed M S X Px

∧
x. x ∈ space S =⇒ 0 ≤ Px x

and Py: distributed M T Y Py
∧

x. x ∈ space T =⇒ 0 ≤ Py x
assumes Pxy: distributed M (S

⊗
M T) (λx. (X x , Y x)) Pxy∧

x. x ∈ space (S
⊗

M T) =⇒ 0 ≤ Pxy x
assumes Ix: integrable(S

⊗
M T) (λx. Pxy x ∗ log b (Px (fst x)))

assumes Iy: integrable(S
⊗

M T) (λx. Pxy x ∗ log b (Py (snd x)))
assumes Ixy: integrable(S

⊗
M T) (λx. Pxy x ∗ log b (Pxy x))

shows mutual-information b S T X Y = entropy b S X − conditional-entropy b
S T X Y

using
mutual-information-eq-entropy-conditional-entropy-distr [OF S T Px Py Pxy Ix

Iy Ixy]
conditional-entropy-eq-entropy[OF S T Py Pxy Ixy Iy]

by (simp add: space-pair-measure)

lemma (in information-space) mutual-information-eq-entropy-conditional-entropy:
assumes sf-X : simple-function M X and sf-Y : simple-function M Y

THEORY “Information” 193

shows I(X ; Y) = H(X) − H(X | Y)
proof −

have X : simple-distributed M X (λx. measure M (X −‘ {x} ∩ space M))
using sf-X by (rule simple-distributedI) (auto simp: measure-nonneg)

have Y : simple-distributed M Y (λx. measure M (Y −‘ {x} ∩ space M))
using sf-Y by (rule simple-distributedI) (auto simp: measure-nonneg)

have sf-XY : simple-function M (λx. (X x , Y x))
using sf-X sf-Y by (rule simple-function-Pair)

then have XY : simple-distributed M (λx. (X x, Y x)) (λx. measure M ((λx. (X
x, Y x)) −‘ {x} ∩ space M))

by (rule simple-distributedI) (auto simp: measure-nonneg)
from simple-distributed-joint-finite[OF this, simp]
have eq: count-space (X ‘ space M)

⊗
M count-space (Y ‘ space M) = count-space

(X ‘ space M × Y ‘ space M)
by (simp add: pair-measure-count-space)

have I(X ; Y) = H(X) + H(Y) − entropy b (count-space (X‘space M)
⊗

M

count-space (Y‘space M)) (λx. (X x , Y x))
using sigma-finite-measure-count-space-finite

sigma-finite-measure-count-space-finite
simple-distributed[OF X] measure-nonneg simple-distributed[OF Y] mea-

sure-nonneg simple-distributed-joint[OF XY]
by (rule mutual-information-eq-entropy-conditional-entropy-distr)

(auto simp: eq integrable-count-space measure-nonneg)
then show ?thesis

unfolding conditional-entropy-eq-entropy-simple[OF sf-X sf-Y] by simp
qed

lemma (in information-space) mutual-information-nonneg-simple:
assumes sf-X : simple-function M X and sf-Y : simple-function M Y
shows 0 ≤ I(X ; Y)

proof −
have X : simple-distributed M X (λx. measure M (X −‘ {x} ∩ space M))

using sf-X by (rule simple-distributedI) (auto simp: measure-nonneg)
have Y : simple-distributed M Y (λx. measure M (Y −‘ {x} ∩ space M))

using sf-Y by (rule simple-distributedI) (auto simp: measure-nonneg)

have sf-XY : simple-function M (λx. (X x , Y x))
using sf-X sf-Y by (rule simple-function-Pair)

then have XY : simple-distributed M (λx. (X x, Y x)) (λx. measure M ((λx. (X
x, Y x)) −‘ {x} ∩ space M))

by (rule simple-distributedI) (auto simp: measure-nonneg)

from simple-distributed-joint-finite[OF this, simp]
have eq: count-space (X ‘ space M)

⊗
M count-space (Y ‘ space M) = count-space

(X ‘ space M × Y ‘ space M)
by (simp add: pair-measure-count-space)

show ?thesis

THEORY “Information” 194

by (rule mutual-information-nonneg[OF - - simple-distributed[OF X] - sim-
ple-distributed[OF Y] - simple-distributed-joint[OF XY]])

(simp-all add: eq integrable-count-space sigma-finite-measure-count-space-finite
measure-nonneg)
qed

lemma (in information-space) conditional-entropy-less-eq-entropy:
assumes X : simple-function M X and Z : simple-function M Z
shows H(X | Z) ≤ H(X)

proof −
have 0 ≤ I(X ; Z) using X Z by (rule mutual-information-nonneg-simple)
also have I(X ; Z) = H(X) − H(X | Z) using mutual-information-eq-entropy-conditional-entropy[OF

assms] .
finally show ?thesis by auto

qed

lemma (in information-space)
fixes Px :: ′b ⇒ real and Py :: ′c ⇒ real and Pxy :: (′b × ′c) ⇒ real
assumes S : sigma-finite-measure S and T : sigma-finite-measure T
assumes Px: finite-entropy S X Px and Py: finite-entropy T Y Py
assumes Pxy: finite-entropy (S

⊗
M T) (λx. (X x , Y x)) Pxy

shows conditional-entropy b S T X Y ≤ entropy b S X
proof −

have 0 ≤ mutual-information b S T X Y
by (rule mutual-information-nonneg ′) fact+

also have . . . = entropy b S X − conditional-entropy b S T X Y
proof (intro mutual-information-eq-entropy-conditional-entropy ′)

show integrable (S
⊗

M T) (λx. Pxy x ∗ log b (Px (fst x)))
integrable (S

⊗
M T) (λx. Pxy x ∗ log b (Py (snd x)))

integrable (S
⊗

M T) (λx. Pxy x ∗ log b (Pxy x))
using assms
by (auto intro!: finite-entropy-integrable finite-entropy-distributed
finite-entropy-integrable-transform[OF Px] finite-entropy-integrable-transform[OF

Py]
intro: finite-entropy-nn)

qed (use assms Px Py Pxy finite-entropy-nn finite-entropy-distributed in auto)
finally show ?thesis by auto

qed

lemma (in information-space) entropy-chain-rule:
assumes X : simple-function M X and Y : simple-function M Y
shows H(λx. (X x, Y x)) = H(X) + H(Y |X)

proof −
note XY = simple-distributedI [OF simple-function-Pair [OF X Y] measure-nonneg

refl]
note YX = simple-distributedI [OF simple-function-Pair [OF Y X] measure-nonneg

refl]
note simple-distributed-joint-finite[OF this, simp]
let ?f = λx. prob ((λx. (X x , Y x)) −‘ {x} ∩ space M)

THEORY “Information” 195

let ?g = λx. prob ((λx. (Y x , X x)) −‘ {x} ∩ space M)
let ?h = λx. if x ∈ (λx. (Y x , X x)) ‘ space M then prob ((λx. (Y x, X x)) −‘
{x} ∩ space M) else 0

have H(λx. (X x, Y x)) = − (
∑

x∈(λx. (X x, Y x)) ‘ space M . ?f x ∗ log b (?f
x))

using XY by (rule entropy-simple-distributed)
also have . . . = − (

∑
x∈(λ(x, y). (y, x)) ‘ (λx. (X x, Y x)) ‘ space M . ?g x ∗

log b (?g x))
by (subst (2) sum.reindex) (auto simp: inj-on-def intro!: sum.cong arg-cong[where

f=λA. prob A ∗ log b (prob A)])
also have . . . = − (

∑
x∈(λx. (Y x , X x)) ‘ space M . ?h x ∗ log b (?h x))

by (auto intro!: sum.cong)
also have . . . = entropy b (count-space (Y ‘ space M)

⊗
M count-space (X ‘

space M)) (λx. (Y x , X x))
by (subst entropy-distr [OF simple-distributed-joint[OF YX]])

(auto simp: pair-measure-count-space sigma-finite-measure-count-space-finite
lebesgue-integral-count-space-finite

cong del: sum.cong-simp intro!: sum.mono-neutral-left measure-nonneg)
finally have H(λx. (X x, Y x)) = entropy b (count-space (Y ‘ space M)

⊗
M

count-space (X ‘ space M)) (λx. (Y x , X x)) .
then show ?thesis

unfolding conditional-entropy-eq-entropy-simple[OF Y X] by simp
qed

lemma (in information-space) entropy-partition:
assumes X : simple-function M X
shows H(X) = H(f ◦ X) + H(X |f ◦ X)

proof −
note fX = simple-function-compose[OF X , of f]
have eq: (λx. ((f ◦ X) x, X x)) ‘ space M = (λx. (f x, x)) ‘ X ‘ space M by auto
have inj:

∧
A. inj-on (λx. (f x, x)) A

by (auto simp: inj-on-def)

have H(X) = − (
∑

x∈X ‘ space M . prob (X −‘ {x} ∩ space M) ∗ log b (prob
(X −‘ {x} ∩ space M)))

by (simp add: entropy-simple-distributed[OF simple-distributedI [OF X mea-
sure-nonneg refl]])

also have . . . = − (
∑

x∈(λx. ((f ◦ X) x, X x)) ‘ space M .
prob ((λx. ((f ◦ X) x, X x)) −‘ {x} ∩ space M) ∗
log b (prob ((λx. ((f ◦ X) x, X x)) −‘ {x} ∩ space M)))

unfolding eq
apply (subst sum.reindex[OF inj])
apply (auto intro!: sum.cong arg-cong[where f=λA. prob A ∗ log b (prob A)])
done

also have ... = H(λx. ((f ◦ X) x, X x))
using entropy-simple-distributed[OF simple-distributedI [OF simple-function-Pair [OF

fX X] measure-nonneg refl]]
by fastforce

also have . . . = H(f ◦ X) + H(X |f ◦ X)

THEORY “Distributions” 196

using X entropy-chain-rule by blast
finally show ?thesis .

qed

corollary (in information-space) entropy-data-processing:
assumes simple-function M X shows H(f ◦ X) ≤ H(X)
by (smt (verit) assms conditional-entropy-nonneg entropy-partition simple-function-compose)

corollary (in information-space) entropy-of-inj:
assumes X : simple-function M X and inj: inj-on f (X‘space M)
shows H(f ◦ X) = H(X)

proof (rule antisym)
show H(f ◦ X) ≤ H(X) using entropy-data-processing[OF X] .

next
have sf : simple-function M (f ◦ X)

using X by auto
have H(X) = H(the-inv-into (X‘space M) f ◦ (f ◦ X))

unfolding o-assoc
apply (subst entropy-simple-distributed[OF simple-distributedI [OF X measure-nonneg

refl]])
apply (subst entropy-simple-distributed[OF simple-distributedI [OF simple-function-compose[OF

X]], where f=λx. prob (X −‘ {x} ∩ space M)])
apply (auto intro!: sum.cong arg-cong[where f=prob] image-eqI simp: the-inv-into-f-f [OF

inj] comp-def measure-nonneg)
done

also have ... ≤ H(f ◦ X)
using entropy-data-processing[OF sf] .

finally show H(X) ≤ H(f ◦ X) .
qed

end

13 Properties of Various Distributions
theory Distributions

imports Convolution Information
begin

lemma (in prob-space) distributed-affine:
fixes f :: real ⇒ ennreal
assumes f : distributed M lborel X f
assumes c: c 6= 0
shows distributed M lborel (λx. t + c ∗ X x) (λx. f ((x − t) / c) / |c|)
unfolding distributed-def

proof safe
have [measurable]: f ∈ borel-measurable borel

using f by (simp add: distributed-def)
have [measurable]: X ∈ borel-measurable M

using f by (simp add: distributed-def)

THEORY “Distributions” 197

show (λx. f ((x − t) / c) / |c|) ∈ borel-measurable lborel
by simp

show random-variable lborel (λx. t + c ∗ X x)
by simp

have eq: ennreal |c| ∗ (f x / ennreal |c|) = f x for x
using c
by (cases f x)

(auto simp: divide-ennreal ennreal-mult[symmetric] ennreal-top-divide en-
nreal-mult-top)

have density lborel f = distr M lborel X
using f by (simp add: distributed-def)

with c show distr M lborel (λx. t + c ∗ X x) = density lborel (λx. f ((x − t) /
c) / ennreal |c|)

by (subst (2) lborel-real-affine[where c=c and t=t])
(simp-all add: density-density-eq density-distr distr-distr field-simps eq cong:

distr-cong)
qed

lemma (in prob-space) distributed-affineI :
fixes f :: real ⇒ ennreal and c :: real
assumes f : distributed M lborel (λx. (X x − t) / c) (λx. |c| ∗ f (x ∗ c + t))
assumes c: c 6= 0
shows distributed M lborel X f

proof −
have eq: f x ∗ ennreal |c| / ennreal |c| = f x for x

using c by (simp add: ennreal-times-divide[symmetric])

show ?thesis
using distributed-affine[OF f c, where t=t] c
by (simp add: field-simps eq)

qed

lemma (in prob-space) distributed-AE2 :
assumes [measurable]: distributed M N X f Measurable.pred N P
shows (AE x in M . P (X x)) ←→ (AE x in N . 0 < f x −→ P x)

proof −
have (AE x in M . P (X x)) ←→ (AE x in distr M N X . P x)

by (simp add: AE-distr-iff)
also have . . . ←→ (AE x in density N f . P x)

unfolding distributed-distr-eq-density[OF assms(1)] ..
also have . . . ←→ (AE x in N . 0 < f x −→ P x)

by (rule AE-density) simp
finally show ?thesis .

qed

THEORY “Distributions” 198

13.1 Erlang
lemma nn-intergal-power-times-exp-Icc:

assumes [arith]: 0 ≤ a
shows (

∫
+x. ennreal (x^k ∗ exp (−x)) ∗ indicator {0 .. a} x ∂lborel) =

(1 − (
∑

n≤k. (a^n ∗ exp (−a)) / fact n)) ∗ fact k (is ?I = -)
proof −

let ?f = λk x. x^k ∗ exp (−x) / fact k
let ?F = λk x. − (

∑
n≤k. (x^n ∗ exp (−x)) / fact n)

have ?I ∗ (inverse (real-of-nat (fact k))) =
(
∫

+x. ennreal (x^k ∗ exp (−x)) ∗ indicator {0 .. a} x ∗ (inverse (real-of-nat
(fact k))) ∂lborel)

by (intro nn-integral-multc[symmetric]) auto
also have . . . = (

∫
+x. ennreal (?f k x) ∗ indicator {0 .. a} x ∂lborel)

by (intro nn-integral-cong)
(simp add: field-simps ennreal-mult ′[symmetric] indicator-mult-ennreal)

also have . . . = ennreal (?F k a − ?F k 0)
proof (rule nn-integral-FTC-Icc)

fix x assume x ∈ {0 ..a}
show DERIV (?F k) x :> ?f k x
proof(induction k)

case 0 show ?case by (auto intro!: derivative-eq-intros)
next

case (Suc k)
have DERIV (λx. ?F k x − (x^Suc k ∗ exp (−x)) / fact (Suc k)) x :>

?f k x − ((real (Suc k) − x) ∗ x ^ k ∗ exp (− x)) / (fact (Suc k))
by (intro DERIV-diff Suc)

(auto intro!: derivative-eq-intros simp del: fact-Suc power-Suc
simp add: field-simps power-Suc[symmetric])

also have (λx. ?F k x − (x^Suc k ∗ exp (−x)) / fact (Suc k)) = ?F (Suc k)
by simp

also have ?f k x − ((real (Suc k) − x) ∗ x ^ k ∗ exp (− x)) / (fact (Suc k))
= ?f (Suc k) x

by (auto simp: field-simps simp del: fact-Suc)
(simp-all add: of-nat-Suc field-simps)

finally show ?case .
qed

qed auto
also have . . . = ennreal (1 − (

∑
n≤k. (a^n ∗ exp (−a)) / fact n))

by (auto simp: power-0-left if-distrib[where f=λx. x / a for a] sum.If-cases)
also have . . . = ennreal ((1 − (

∑
n≤k. (a^n ∗ exp (−a)) / fact n)) ∗ fact k) ∗

ennreal (inverse (fact k))
by (subst ennreal-mult ′′[symmetric]) (auto intro!: arg-cong[where f=ennreal])

finally show ?thesis
by (auto simp add: mult-right-ennreal-cancel le-less)

qed

lemma nn-intergal-power-times-exp-Ici:
shows (

∫
+x. ennreal (x^k ∗ exp (−x)) ∗ indicator {0 ..} x ∂lborel) = real-of-nat

(fact k)

THEORY “Distributions” 199

proof (rule LIMSEQ-unique)
let ?X = λn.

∫
+ x. ennreal (x^k ∗ exp (−x)) ∗ indicator {0 .. real n} x ∂lborel

show ?X −−−−→ (
∫

+x. ennreal (x^k ∗ exp (−x)) ∗ indicator {0 ..} x ∂lborel)
apply (intro nn-integral-LIMSEQ)
apply (auto simp: incseq-def le-fun-def eventually-sequentially

split: split-indicator intro!: tendsto-eventually)
apply (metis nat-ceiling-le-eq)
done

have ((λx::real. (1 − (
∑

n≤k. (x ^ n / exp x) / (fact n))) ∗ fact k) −−−→
(1 − (

∑
n≤k. 0 / (fact n))) ∗ fact k) at-top

by (intro tendsto-intros tendsto-power-div-exp-0) simp
then show ?X −−−−→ real-of-nat (fact k)

by (subst nn-intergal-power-times-exp-Icc)
(auto simp: exp-minus field-simps intro!: filterlim-compose[OF - filterlim-real-sequentially])

qed

definition erlang-density :: nat ⇒ real ⇒ real ⇒ real where
erlang-density k l x = (if x < 0 then 0 else (l^(Suc k) ∗ x^k ∗ exp (− l ∗ x)) /

fact k)

definition erlang-CDF :: nat ⇒ real ⇒ real ⇒ real where
erlang-CDF k l x = (if x < 0 then 0 else 1 − (

∑
n≤k. ((l ∗ x)^n ∗ exp (− l ∗

x) / fact n)))

lemma erlang-density-nonneg[simp]: 0 ≤ l =⇒ 0 ≤ erlang-density k l x
by (simp add: erlang-density-def)

lemma borel-measurable-erlang-density[measurable]: erlang-density k l ∈ borel-measurable
borel

by (auto simp add: erlang-density-def [abs-def])

lemma erlang-CDF-transform: 0 < l =⇒ erlang-CDF k l a = erlang-CDF k 1 (l
∗ a)

by (auto simp add: erlang-CDF-def mult-less-0-iff)

lemma erlang-CDF-nonneg[simp]: assumes 0 < l shows 0 ≤ erlang-CDF k l x
unfolding erlang-CDF-def

proof (clarsimp simp: not-less)
assume 0 ≤ x
have (

∑
n≤k. (l ∗ x) ^ n ∗ exp (− (l ∗ x)) / fact n) =

exp (− (l ∗ x)) ∗ (
∑

n≤k. (l ∗ x) ^ n / fact n)
unfolding sum-distrib-left by (intro sum.cong) (auto simp: field-simps)

also have . . . = (
∑

n≤k. (l ∗ x) ^ n / fact n) / exp (l ∗ x)
by (simp add: exp-minus field-simps)

also have . . . ≤ 1
proof (subst divide-le-eq-1-pos)

show (
∑

n≤k. (l ∗ x) ^ n / fact n) ≤ exp (l ∗ x)
using ‹0 < l› ‹0 ≤ x› summable-exp-generic[of l ∗ x]

THEORY “Distributions” 200

by (auto simp: exp-def divide-inverse ac-simps intro!: sum-le-suminf)
qed simp
finally show (

∑
n≤k. (l ∗ x) ^ n ∗ exp (− (l ∗ x)) / fact n) ≤ 1 .

qed

lemma nn-integral-erlang-density:
assumes [arith]: 0 < l
shows (

∫
+ x. ennreal (erlang-density k l x) ∗ indicator {.. a} x ∂lborel) =

erlang-CDF k l a
proof (cases 0 ≤ a)

case [arith]: True
have eq:

∧
x. indicator {0 ..a} (x / l) = indicator {0 ..a∗l} x

by (simp add: field-simps split: split-indicator)
have (

∫
+x. ennreal (erlang-density k l x) ∗ indicator {.. a} x ∂lborel) =

(
∫

+x. (l/fact k) ∗ (ennreal ((l∗x)^k ∗ exp (− (l∗x))) ∗ indicator {0 .. a} x)
∂lborel)

by (intro nn-integral-cong)
(auto simp: erlang-density-def power-mult-distrib ennreal-mult[symmetric]

split: split-indicator)
also have . . . = (l/fact k) ∗ (

∫
+x. ennreal ((l∗x)^k ∗ exp (− (l∗x))) ∗ indicator

{0 .. a} x ∂lborel)
by (intro nn-integral-cmult) auto

also have . . . = ennreal (l/fact k) ∗ ((1/l) ∗ (
∫

+x. ennreal (x^k ∗ exp (− x))
∗ indicator {0 .. l ∗ a} x ∂lborel))

by (subst nn-integral-real-affine[where c=1 / l and t=0]) (auto simp: field-simps
eq)

also have . . . = (1 − (
∑

n≤k. ((l ∗ a)^n ∗ exp (−(l ∗ a))) / fact n))
by (subst nn-intergal-power-times-exp-Icc) (auto simp: ennreal-mult ′[symmetric])

also have . . . = erlang-CDF k l a
by (auto simp: erlang-CDF-def)

finally show ?thesis .
next

case False
then have (

∫
+ x. ennreal (erlang-density k l x) ∗ indicator {.. a} x ∂lborel) =

(
∫

+x. 0 ∂(lborel::real measure))
by (intro nn-integral-cong) (auto simp: erlang-density-def)

with False show ?thesis
by (simp add: erlang-CDF-def)

qed

lemma emeasure-erlang-density:
0 < l =⇒ emeasure (density lborel (erlang-density k l)) {.. a} = erlang-CDF k l

a
by (simp add: emeasure-density nn-integral-erlang-density)

lemma nn-integral-erlang-ith-moment:
fixes k i :: nat and l :: real
assumes [arith]: 0 < l
shows (

∫
+ x. ennreal (erlang-density k l x ∗ x ^ i) ∂lborel) = fact (k + i) /

THEORY “Distributions” 201

(fact k ∗ l ^ i)
proof −

have eq:
∧

x. indicator {0 ..} (x / l) = indicator {0 ..} x
by (simp add: field-simps split: split-indicator)

have (
∫

+ x. ennreal (erlang-density k l x ∗ x^i) ∂lborel) =
(
∫

+x. (l/(fact k ∗ l^i)) ∗ (ennreal ((l∗x)^(k+i) ∗ exp (− (l∗x))) ∗ indicator {0
..} x) ∂lborel)

by (intro nn-integral-cong)
(auto simp: erlang-density-def power-mult-distrib power-add ennreal-mult ′[symmetric]

split: split-indicator)
also have . . . = (l/(fact k ∗ l^i)) ∗ (

∫
+x. ennreal ((l∗x)^(k+i) ∗ exp (− (l∗x)))

∗ indicator {0 ..} x ∂lborel)
by (intro nn-integral-cmult) auto

also have . . . = ennreal (l/(fact k ∗ l^i)) ∗ ((1/l) ∗ (
∫

+x. ennreal (x^(k+i) ∗
exp (− x)) ∗ indicator {0 ..} x ∂lborel))

by (subst nn-integral-real-affine[where c=1 / l and t=0]) (auto simp: field-simps
eq)

also have . . . = fact (k + i) / (fact k ∗ l ^ i)
by (subst nn-intergal-power-times-exp-Ici) (auto simp: ennreal-mult ′[symmetric])

finally show ?thesis .
qed

lemma prob-space-erlang-density:
assumes l[arith]: 0 < l
shows prob-space (density lborel (erlang-density k l)) (is prob-space ?D)

proof
show emeasure ?D (space ?D) = 1

using nn-integral-erlang-ith-moment[OF l, where k=k and i=0] by (simp
add: emeasure-density)
qed

lemma (in prob-space) erlang-distributed-le:
assumes D: distributed M lborel X (erlang-density k l)
assumes [simp, arith]: 0 < l 0 ≤ a
shows P(x in M . X x ≤ a) = erlang-CDF k l a

proof −
have emeasure M {x ∈ space M . X x ≤ a } = emeasure (distr M lborel X) {..

a}
using distributed-measurable[OF D]
by (subst emeasure-distr) (auto intro!: arg-cong2 [where f=emeasure])

also have . . . = emeasure (density lborel (erlang-density k l)) {.. a}
unfolding distributed-distr-eq-density[OF D] ..

also have . . . = erlang-CDF k l a
by (auto intro!: emeasure-erlang-density)

finally show ?thesis
by (auto simp: emeasure-eq-measure measure-nonneg)

qed

lemma (in prob-space) erlang-distributed-gt:

THEORY “Distributions” 202

assumes D[simp]: distributed M lborel X (erlang-density k l)
assumes [arith]: 0 < l 0 ≤ a
shows P(x in M . a < X x) = 1 − (erlang-CDF k l a)

proof −
have 1 − (erlang-CDF k l a) = 1 − P(x in M . X x ≤ a) by (subst er-

lang-distributed-le) auto
also have . . . = prob (space M − {x ∈ space M . X x ≤ a })

using distributed-measurable[OF D] by (auto simp: prob-compl)
also have . . . = P(x in M . a < X x) by (auto intro!: arg-cong[where f=prob]

simp: not-le)
finally show ?thesis by simp

qed

lemma erlang-CDF-at0 : erlang-CDF k l 0 = 0
by (induction k) (auto simp: erlang-CDF-def)

lemma erlang-distributedI :
assumes X [measurable]: X ∈ borel-measurable M and [arith]: 0 < l
and X-distr :

∧
a. 0 ≤ a =⇒ emeasure M {x∈space M . X x ≤ a} = erlang-CDF

k l a
shows distributed M lborel X (erlang-density k l)

proof (rule distributedI-borel-atMost)
fix a :: real
{ assume a ≤ 0

with X have emeasure M {x∈space M . X x ≤ a} ≤ emeasure M {x∈space M .
X x ≤ 0}

by (intro emeasure-mono) auto
also have ... = 0 by (auto intro!: erlang-CDF-at0 simp: X-distr [of 0])
finally have emeasure M {x∈space M . X x ≤ a} ≤ 0 by simp
then have emeasure M {x∈space M . X x ≤ a} = 0 by simp

}
note eq-0 = this

show (
∫

+ x. erlang-density k l x ∗ indicator {..a} x ∂lborel) = ennreal (erlang-CDF
k l a)

using nn-integral-erlang-density[of l k a]
by (simp add: ennreal-indicator ennreal-mult)

show emeasure M {x∈space M . X x ≤ a} = ennreal (erlang-CDF k l a)
using X-distr [of a] eq-0 by (auto simp: one-ennreal-def erlang-CDF-def)

qed simp-all

lemma (in prob-space) erlang-distributed-iff :
assumes [arith]: 0<l
shows distributed M lborel X (erlang-density k l) ←→
(X ∈ borel-measurable M ∧ 0 < l ∧ (∀ a≥0 . P(x in M . X x ≤ a) = erlang-CDF

k l a))
using

distributed-measurable[of M lborel X erlang-density k l]

THEORY “Distributions” 203

emeasure-erlang-density[of l]
erlang-distributed-le[of X k l]

by (auto intro!: erlang-distributedI simp: one-ennreal-def emeasure-eq-measure)

lemma (in prob-space) erlang-distributed-mult-const:
assumes erlX : distributed M lborel X (erlang-density k l)
assumes a-pos[arith]: 0 < α 0 < l
shows distributed M lborel (λx. α ∗ X x) (erlang-density k (l / α))

proof (subst erlang-distributed-iff , safe)
have [measurable]: random-variable borel X and [arith]: 0 < l
and [simp]:

∧
a. 0 ≤ a =⇒ prob {x ∈ space M . X x ≤ a} = erlang-CDF k l a

by(insert erlX , auto simp: erlang-distributed-iff)

show random-variable borel (λx. α ∗ X x) 0 < l / α 0 < l / α
by (auto simp:field-simps)

fix a:: real assume [arith]: 0 ≤ a
obtain b:: real where [simp, arith]: b = a/ α by blast

have [arith]: 0 ≤ b by (auto simp: divide-nonneg-pos)

have prob {x ∈ space M . α ∗ X x ≤ a} = prob {x ∈ space M . X x ≤ b}
by (rule arg-cong[where f= prob]) (auto simp:field-simps)

moreover have prob {x ∈ space M . X x ≤ b} = erlang-CDF k l b by auto
moreover have erlang-CDF k (l / α) a = erlang-CDF k l b unfolding er-

lang-CDF-def by auto
ultimately show prob {x ∈ space M . α ∗ X x ≤ a} = erlang-CDF k (l / α) a

by fastforce
qed

lemma (in prob-space) has-bochner-integral-erlang-ith-moment:
fixes k i :: nat and l :: real
assumes [arith]: 0 < l and D: distributed M lborel X (erlang-density k l)
shows has-bochner-integral M (λx. X x ^ i) (fact (k + i) / (fact k ∗ l ^ i))

proof (rule has-bochner-integral-nn-integral)
show AE x in M . 0 ≤ X x ^ i

by (subst distributed-AE2 [OF D]) (auto simp: erlang-density-def)
show (

∫
+ x. ennreal (X x ^ i) ∂M) = ennreal (fact (k + i) / (fact k ∗ l ^ i))

using nn-integral-erlang-ith-moment[of l k i]
by (subst distributed-nn-integral[symmetric, OF D]) (auto simp: ennreal-mult ′)

qed (insert distributed-measurable[OF D], auto)

lemma (in prob-space) erlang-ith-moment-integrable:
0 < l =⇒ distributed M lborel X (erlang-density k l) =⇒ integrable M (λx. X x

^ i)
by rule (rule has-bochner-integral-erlang-ith-moment)

lemma (in prob-space) erlang-ith-moment:

THEORY “Distributions” 204

0 < l =⇒ distributed M lborel X (erlang-density k l) =⇒
expectation (λx. X x ^ i) = fact (k + i) / (fact k ∗ l ^ i)

by (rule has-bochner-integral-integral-eq) (rule has-bochner-integral-erlang-ith-moment)

lemma (in prob-space) erlang-distributed-variance:
assumes [arith]: 0 < l and distributed M lborel X (erlang-density k l)
shows variance X = (k + 1) / l2

proof (subst variance-eq)
show integrable M X integrable M (λx. (X x)2)
using erlang-ith-moment-integrable[OF assms, of 1] erlang-ith-moment-integrable[OF

assms, of 2]
by auto

show expectation (λx. (X x)2) − (expectation X)2 = real (k + 1) / l2
using erlang-ith-moment[OF assms, of 1] erlang-ith-moment[OF assms, of 2]
by simp (auto simp: power2-eq-square field-simps of-nat-Suc)

qed

13.2 Exponential distribution
abbreviation exponential-density :: real ⇒ real ⇒ real where

exponential-density ≡ erlang-density 0

lemma exponential-density-def :
exponential-density l x = (if x < 0 then 0 else l ∗ exp (− x ∗ l))
by (simp add: fun-eq-iff erlang-density-def)

lemma erlang-CDF-0 : erlang-CDF 0 l a = (if 0 ≤ a then 1 − exp (− l ∗ a) else
0)

by (simp add: erlang-CDF-def)

lemma prob-space-exponential-density: 0 < l =⇒ prob-space (density lborel (exponential-density
l))

by (rule prob-space-erlang-density)

lemma (in prob-space) exponential-distributedD-le:
assumes D: distributed M lborel X (exponential-density l) and a: 0 ≤ a and l:

0 < l
shows P(x in M . X x ≤ a) = 1 − exp (− a ∗ l)
using erlang-distributed-le[OF D l a] a by (simp add: erlang-CDF-def)

lemma (in prob-space) exponential-distributedD-gt:
assumes D: distributed M lborel X (exponential-density l) and a: 0 ≤ a and l:

0 < l
shows P(x in M . a < X x) = exp (− a ∗ l)
using erlang-distributed-gt[OF D l a] a by (simp add: erlang-CDF-def)

lemma (in prob-space) exponential-distributed-memoryless:
assumes D: distributed M lborel X (exponential-density l) and a: 0 ≤ a and l:

THEORY “Distributions” 205

0 < l and t: 0 ≤ t
shows P(x in M . a + t < X x | a < X x) = P(x in M . t < X x)

proof −
have P(x in M . a + t < X x | a < X x) = P(x in M . a + t < X x) / P(x in

M . a < X x)
using ‹0 ≤ t› by (auto simp: cond-prob-def intro!: arg-cong[where f=prob]

arg-cong2 [where f=(/)])
also have . . . = exp (− (a + t) ∗ l) / exp (− a ∗ l)

using a t by (simp add: exponential-distributedD-gt[OF D - l])
also have . . . = exp (− t ∗ l)

using l by (auto simp: field-simps exp-add[symmetric])
finally show ?thesis

using t by (simp add: exponential-distributedD-gt[OF D - l])
qed

lemma exponential-distributedI :
assumes X [measurable]: X ∈ borel-measurable M and [arith]: 0 < l

and X-distr :
∧

a. 0 ≤ a =⇒ emeasure M {x∈space M . X x ≤ a} = 1 − exp
(− a ∗ l)

shows distributed M lborel X (exponential-density l)
proof (rule erlang-distributedI)

fix a :: real assume 0 ≤ a then show emeasure M {x ∈ space M . X x ≤ a} =
ennreal (erlang-CDF 0 l a)

using X-distr [of a] by (simp add: erlang-CDF-def ennreal-minus ennreal-1 [symmetric]
del: ennreal-1)
qed fact+

lemma (in prob-space) exponential-distributed-iff :
assumes 0 < l
shows distributed M lborel X (exponential-density l) ←→
(X ∈ borel-measurable M ∧ (∀ a≥0 . P(x in M . X x ≤ a) = 1 − exp (− a ∗ l)))

using assms erlang-distributed-iff [of l X 0] by (auto simp: erlang-CDF-0)

lemma (in prob-space) exponential-distributed-expectation:
0 < l =⇒ distributed M lborel X (exponential-density l) =⇒ expectation X = 1

/ l
using erlang-ith-moment[of l X 0 1] by simp

lemma exponential-density-nonneg: 0 < l =⇒ 0 ≤ exponential-density l x
by (auto simp: exponential-density-def)

lemma (in prob-space) exponential-distributed-min:
assumes 0 < l 0 < u
assumes expX : distributed M lborel X (exponential-density l)
assumes expY : distributed M lborel Y (exponential-density u)
assumes ind: indep-var borel X borel Y
shows distributed M lborel (λx. min (X x) (Y x)) (exponential-density (l + u))

proof (subst exponential-distributed-iff , safe)

THEORY “Distributions” 206

have randX : random-variable borel X
using expX ‹0 < l› by (simp add: exponential-distributed-iff)

moreover have randY : random-variable borel Y
using expY ‹0 < u› by (simp add: exponential-distributed-iff)

ultimately show random-variable borel (λx. min (X x) (Y x)) by auto

show 0 < l + u
using ‹0 < l› ‹0 < u› by auto

fix a::real assume a[arith]: 0 ≤ a
have gt1 [simp]: P(x in M . a < X x) = exp (− a ∗ l)

by (rule exponential-distributedD-gt[OF expX a]) fact
have gt2 [simp]: P(x in M . a < Y x) = exp (− a ∗ u)

by (rule exponential-distributedD-gt[OF expY a]) fact

have P(x in M . a < (min (X x) (Y x))) = P(x in M . a < (X x) ∧ a < (Y x))
by (auto intro!:arg-cong[where f=prob])

also have ... = P(x in M . a < (X x)) ∗ P(x in M . a< (Y x))
using prob-indep-random-variable[OF ind, of {a <..} {a <..}] by simp

also have ... = exp (− a ∗ (l + u)) by (auto simp:field-simps mult-exp-exp)
finally have indep-prob: P(x in M . a < (min (X x) (Y x))) = exp (− a ∗ (l +

u)) .

have {x ∈ space M . (min (X x) (Y x)) ≤a } = (space M − {x ∈ space M .
a<(min (X x) (Y x)) })

by auto
then have 1 − prob {x ∈ space M . a < (min (X x) (Y x))} = prob {x ∈ space

M . (min (X x) (Y x)) ≤ a}
using randX randY by (auto simp: prob-compl)

then show prob {x ∈ space M . (min (X x) (Y x)) ≤ a} = 1 − exp (− a ∗ (l +
u))

using indep-prob by auto
qed

lemma (in prob-space) exponential-distributed-Min:
assumes finI : finite I
assumes A: I 6= {}
assumes l:

∧
i. i ∈ I =⇒ 0 < l i

assumes expX :
∧

i. i ∈ I =⇒ distributed M lborel (X i) (exponential-density (l
i))

assumes ind: indep-vars (λi. borel) X I
shows distributed M lborel (λx. Min ((λi. X i x)‘I)) (exponential-density (

∑
i∈I .

l i))
using assms
proof (induct rule: finite-ne-induct)

case (singleton i) then show ?case by simp
next

case (insert i I)

THEORY “Distributions” 207

then have distributed M lborel (λx. min (X i x) (Min ((λi. X i x)‘I))) (exponential-density
(l i + (

∑
i∈I . l i)))

by (intro exponential-distributed-min indep-vars-Min insert)
(auto intro: indep-vars-subset sum-pos)

then show ?case
using insert by simp

qed

lemma (in prob-space) exponential-distributed-variance:
0 < l =⇒ distributed M lborel X (exponential-density l) =⇒ variance X = 1 / l2
using erlang-distributed-variance[of l X 0] by simp

lemma nn-integral-zero ′: AE x in M . f x = 0 =⇒ (
∫

+x. f x ∂M) = 0
by (simp cong: nn-integral-cong-AE)

lemma convolution-erlang-density:
fixes k1 k2 :: nat
assumes [simp, arith]: 0 < l
shows (λx.

∫
+y. ennreal (erlang-density k1 l (x − y)) ∗ ennreal (erlang-density

k2 l y) ∂lborel) =
(erlang-density (Suc k1 + Suc k2 − 1) l)
(is ?LHS = ?RHS)

proof
fix x :: real
have x ≤ 0 ∨ 0 < x

by arith
then show ?LHS x = ?RHS x
proof

assume x ≤ 0 then show ?thesis
apply (subst nn-integral-zero ′)
apply (rule AE-I [where N={0}])
apply (auto simp add: erlang-density-def not-less)
done

next
note zero-le-mult-iff [simp] zero-le-divide-iff [simp]

have I-eq1 : integralN lborel (erlang-density (Suc k1 + Suc k2 − 1) l) = 1
using nn-integral-erlang-ith-moment[of l Suc k1 + Suc k2 − 1 0] by (simp

del: fact-Suc)

have 1 : (
∫

+ x. ennreal (erlang-density (Suc k1 + Suc k2 − 1) l x ∗ indicator
{0<..} x) ∂lborel) = 1

apply (subst I-eq1 [symmetric])
unfolding erlang-density-def
by (auto intro!: nn-integral-cong split:split-indicator)

have prob-space (density lborel ?LHS)
by (intro prob-space-convolution-density)

(auto intro!: prob-space-erlang-density erlang-density-nonneg)

THEORY “Distributions” 208

then have 2 : integralN lborel ?LHS = 1
by (auto dest!: prob-space.emeasure-space-1 simp: emeasure-density)

let ?I = (integralN lborel (λy. ennreal ((1 − y)^ k1 ∗ y^k2 ∗ indicator {0 ..1}
y)))

let ?C = (fact (Suc (k1 + k2))) / ((fact k1) ∗ (fact k2))
let ?s = Suc k1 + Suc k2 − 1
let ?L = (λx.

∫
+y. ennreal (erlang-density k1 l (x− y) ∗ erlang-density k2 l y

∗ indicator {0 ..x} y) ∂lborel)

{ fix x :: real assume [arith]: 0 < x
have ∗:

∧
x y n. (x − y ∗ x::real)^n = x^n ∗ (1 − y)^n

unfolding power-mult-distrib[symmetric] by (simp add: field-simps)

have ?LHS x = ?L x
unfolding erlang-density-def
by (auto intro!: nn-integral-cong simp: ennreal-mult split:split-indicator)

also have ... = (λx. ennreal ?C ∗ ?I ∗ erlang-density ?s l x) x
apply (subst nn-integral-real-affine[where c=x and t = 0])

apply (simp-all add: nn-integral-cmult[symmetric] nn-integral-multc[symmetric]
del: fact-Suc)

apply (intro nn-integral-cong)
apply (auto simp add: erlang-density-def mult-less-0-iff exp-minus field-simps

exp-diff power-add ∗
ennreal-mult[symmetric]

simp del: fact-Suc split: split-indicator)
done

finally have (
∫

+y. ennreal (erlang-density k1 l (x − y) ∗ erlang-density k2

l y) ∂lborel) =
(λx. ennreal ?C ∗ ?I ∗ erlang-density ?s l x) x
by (simp add: ennreal-mult) }

note ∗ = this

assume [arith]: 0 < x
have 3 : 1 = integralN lborel (λxa. ?LHS xa ∗ indicator {0<..} xa)

by (subst 2 [symmetric])
(auto intro!: nn-integral-cong-AE AE-I [where N={0}]

simp: erlang-density-def nn-integral-multc[symmetric] indicator-def
split: if-split-asm)

also have ... = integralN lborel (λx. (ennreal (?C) ∗ ?I) ∗ ((erlang-density ?s
l x) ∗ indicator {0<..} x))

by (auto intro!: nn-integral-cong simp: ennreal-mult[symmetric] ∗ split: split-indicator)
also have ... = ennreal (?C) ∗ ?I

using 1
by (auto simp: nn-integral-cmult)

finally have ennreal (?C) ∗ ?I = 1 by presburger

then show ?thesis
using ∗ by (simp add: ennreal-mult)

THEORY “Distributions” 209

qed
qed

lemma (in prob-space) sum-indep-erlang:
assumes indep: indep-var borel X borel Y
assumes [simp, arith]: 0 < l
assumes erlX : distributed M lborel X (erlang-density k1 l)
assumes erlY : distributed M lborel Y (erlang-density k2 l)
shows distributed M lborel (λx. X x + Y x) (erlang-density (Suc k1 + Suc k2 −

1) l)
using assms
apply (subst convolution-erlang-density[symmetric, OF ‹0<l›])
apply (intro distributed-convolution)
apply auto
done

lemma (in prob-space) erlang-distributed-sum:
assumes finI : finite I
assumes A: I 6= {}
assumes [simp, arith]: 0 < l
assumes expX :

∧
i. i ∈ I =⇒ distributed M lborel (X i) (erlang-density (k i) l)

assumes ind: indep-vars (λi. borel) X I
shows distributed M lborel (λx.

∑
i∈I . X i x) (erlang-density ((

∑
i∈I . Suc (k

i)) − 1) l)
using assms
proof (induct rule: finite-ne-induct)

case (singleton i) then show ?case by auto
next

case (insert i I)
then have distributed M lborel (λx. (X i x) + (

∑
i∈ I . X i x)) (erlang-density

(Suc (k i) + Suc ((
∑

i∈I . Suc (k i)) − 1) − 1) l)
by(intro sum-indep-erlang indep-vars-sum) (auto intro!: indep-vars-subset)

also have (λx. (X i x) + (
∑

i∈ I . X i x)) = (λx.
∑

i∈insert i I . X i x)
using insert by auto

also have Suc(k i) + Suc ((
∑

i∈I . Suc (k i)) − 1) − 1 = (
∑

i∈insert i I .
Suc (k i)) − 1

using insert by (auto intro!: Suc-pred simp: ac-simps)
finally show ?case by fast

qed

lemma (in prob-space) exponential-distributed-sum:
assumes finI : finite I
assumes A: I 6= {}
assumes l: 0 < l
assumes expX :

∧
i. i ∈ I =⇒ distributed M lborel (X i) (exponential-density l)

assumes ind: indep-vars (λi. borel) X I
shows distributed M lborel (λx.

∑
i∈I . X i x) (erlang-density ((card I) − 1) l)

using erlang-distributed-sum[OF assms] by simp

THEORY “Distributions” 210

lemma (in information-space) entropy-exponential:
assumes l[simp, arith]: 0 < l
assumes D: distributed M lborel X (exponential-density l)
shows entropy b lborel X = log b (exp 1 / l)

proof −
have [simp]: integrable lborel (exponential-density l)

using distributed-integrable[OF D, of λ-. 1] by simp

have [simp]: integralL lborel (exponential-density l) = 1
using distributed-integral[OF D, of λ-. 1] by (simp add: prob-space)

have [simp]: integrable lborel (λx. exponential-density l x ∗ x)
using erlang-ith-moment-integrable[OF l D, of 1] distributed-integrable[OF D,

of λx. x] by simp

have [simp]: integralL lborel (λx. exponential-density l x ∗ x) = 1 / l
using erlang-ith-moment[OF l D, of 1] distributed-integral[OF D, of λx. x] by

simp

have entropy b lborel X = − (
∫

x. exponential-density l x ∗ log b (exponential-density
l x) ∂lborel)

using D by (rule entropy-distr) simp
also have (

∫
x. exponential-density l x ∗ log b (exponential-density l x) ∂lborel)

=
(
∫

x. (ln l ∗ exponential-density l x − l ∗ (exponential-density l x ∗ x)) / ln b
∂lborel)

by (intro Bochner-Integration.integral-cong) (auto simp: log-def ln-mult expo-
nential-density-def field-simps)

also have . . . = (ln l − 1) / ln b
by simp

finally show ?thesis
by (simp add: log-def ln-div) (simp add: field-split-simps)

qed

13.3 Uniform distribution
lemma uniform-distrI :

assumes X : X ∈ measurable M M ′

and A: A ∈ sets M ′ emeasure M ′ A 6= ∞ emeasure M ′ A 6= 0
assumes distr :

∧
B. B ∈ sets M ′ =⇒ emeasure M (X −‘ B ∩ space M) =

emeasure M ′ (A ∩ B) / emeasure M ′ A
shows distr M M ′ X = uniform-measure M ′ A
unfolding uniform-measure-def

proof (intro measure-eqI)
let ?f = λx. indicator A x / emeasure M ′ A
fix B assume B: B ∈ sets (distr M M ′ X)
with X have emeasure M (X −‘ B ∩ space M) = emeasure M ′ (A ∩ B) /

emeasure M ′ A
by (simp add: distr [of B] measurable-sets)

THEORY “Distributions” 211

also have . . . = (1 / emeasure M ′ A) ∗ emeasure M ′ (A ∩ B)
by (simp add: divide-ennreal-def ac-simps)

also have . . . = (
∫

+ x. (1 / emeasure M ′ A) ∗ indicator (A ∩ B) x ∂M ′)
using A B
by (intro nn-integral-cmult-indicator [symmetric]) (auto intro!:)

also have . . . = (
∫

+ x. ?f x ∗ indicator B x ∂M ′)
by (rule nn-integral-cong) (auto split: split-indicator)

finally show emeasure (distr M M ′ X) B = emeasure (density M ′ ?f) B
using A B X by (auto simp add: emeasure-distr emeasure-density)

qed simp

lemma uniform-distrI-borel:
fixes A :: real set
assumes X [measurable]: X ∈ borel-measurable M and A: emeasure lborel A =

ennreal r 0 < r
and [measurable]: A ∈ sets borel

assumes distr :
∧

a. emeasure M {x∈space M . X x ≤ a} = emeasure lborel (A ∩
{.. a}) / r

shows distributed M lborel X (λx. indicator A x / measure lborel A)
proof (rule distributedI-borel-atMost)

let ?f = λx. 1 / r ∗ indicator A x
fix a
have emeasure lborel (A ∩ {..a}) ≤ emeasure lborel A

using A by (intro emeasure-mono) auto
also have . . . < ∞

using A by simp
finally have fin: emeasure lborel (A ∩ {..a}) 6= top

by simp
from emeasure-eq-ennreal-measure[OF this]
have fin-eq: emeasure lborel (A ∩ {..a}) / r = ennreal (measure lborel (A ∩
{..a}) / r)

using A by (simp add: divide-ennreal measure-nonneg)
then show emeasure M {x∈space M . X x ≤ a} = ennreal (measure lborel (A ∩
{..a}) / r)

using distr by simp

have (
∫

+ x. ennreal (indicator A x / measure lborel A ∗ indicator {..a} x)
∂lborel) =

(
∫

+ x. ennreal (1 / measure lborel A) ∗ indicator (A ∩ {..a}) x ∂lborel)
by (auto intro!: nn-integral-cong split: split-indicator)

also have . . . = ennreal (1 / measure lborel A) ∗ emeasure lborel (A ∩ {..a})
using ‹A ∈ sets borel›
by (intro nn-integral-cmult-indicator) (auto simp: measure-nonneg)

also have . . . = ennreal (measure lborel (A ∩ {..a}) / r)
unfolding emeasure-eq-ennreal-measure[OF fin] using A
by (simp add: measure-def ennreal-mult ′[symmetric])

finally show (
∫

+ x. ennreal (indicator A x / measure lborel A ∗ indicator {..a}
x) ∂lborel) =

ennreal (measure lborel (A ∩ {..a}) / r) .

THEORY “Distributions” 212

qed (auto simp: measure-nonneg)

lemma (in prob-space) uniform-distrI-borel-atLeastAtMost:
fixes a b :: real
assumes X : X ∈ borel-measurable M and a < b
assumes distr :

∧
t. a ≤ t =⇒ t ≤ b =⇒ P(x in M . X x ≤ t) = (t − a) / (b −

a)
shows distributed M lborel X (λx. indicator {a..b} x / measure lborel {a..b})

proof (rule uniform-distrI-borel)
fix t
have t < a ∨ (a ≤ t ∧ t ≤ b) ∨ b < t

by auto
then show emeasure M {x∈space M . X x ≤ t} = emeasure lborel ({a .. b} ∩
{..t}) / (b − a)

proof (elim disjE conjE)
assume t < a
then have emeasure M {x∈space M . X x ≤ t} ≤ emeasure M {x∈space M . X

x ≤ a}
using X by (auto intro!: emeasure-mono measurable-sets)

also have . . . = 0
using distr [of a] ‹a < b› by (simp add: emeasure-eq-measure)

finally have emeasure M {x∈space M . X x ≤ t} = 0
by (simp add: antisym measure-nonneg)

with ‹t < a› show ?thesis by simp
next

assume bnds: a ≤ t t ≤ b
have {a..b} ∩ {..t} = {a..t}

using bnds by auto
then show ?thesis using ‹a ≤ t› ‹a < b›

using distr [OF bnds] by (simp add: emeasure-eq-measure divide-ennreal)
next

assume b < t
have 1 = emeasure M {x∈space M . X x ≤ b}
using distr [of b] ‹a < b› by (simp add: one-ennreal-def emeasure-eq-measure)

also have . . . ≤ emeasure M {x∈space M . X x ≤ t}
using X ‹b < t› by (auto intro!: emeasure-mono measurable-sets)

finally have emeasure M {x∈space M . X x ≤ t} = 1
by (simp add: antisym emeasure-eq-measure)

with ‹b < t› ‹a < b› show ?thesis by (simp add: measure-def divide-ennreal)
qed

qed (insert X ‹a < b›, auto)

lemma (in prob-space) uniform-distributed-measure:
fixes a b :: real
assumes D: distributed M lborel X (λx. indicator {a .. b} x / measure lborel {a

.. b})
assumes t: a ≤ t t ≤ b
shows P(x in M . X x ≤ t) = (t − a) / (b − a)

proof −

THEORY “Distributions” 213

have emeasure M {x ∈ space M . X x ≤ t} = emeasure (distr M lborel X) {.. t}
using distributed-measurable[OF D]
by (subst emeasure-distr) (auto intro!: arg-cong2 [where f=emeasure])

also have . . . = (
∫

+x. ennreal (1 / (b − a)) ∗ indicator {a .. t} x ∂lborel)
using distributed-borel-measurable[OF D] ‹a ≤ t› ‹t ≤ b›
unfolding distributed-distr-eq-density[OF D]
by (subst emeasure-density)

(auto intro!: nn-integral-cong simp: measure-def split: split-indicator)
also have . . . = ennreal (1 / (b − a)) ∗ (t − a)

using ‹a ≤ t› ‹t ≤ b›
by (subst nn-integral-cmult-indicator) auto

finally show ?thesis
using t by (simp add: emeasure-eq-measure ennreal-mult ′′[symmetric] mea-

sure-nonneg)
qed

lemma (in prob-space) uniform-distributed-bounds:
fixes a b :: real
assumes D: distributed M lborel X (λx. indicator {a .. b} x / measure lborel {a

.. b})
shows a < b

proof (rule ccontr)
assume ¬ a < b
then have {a .. b} = {} ∨ {a .. b} = {a .. a} by simp
with uniform-distributed-params[OF D] show False

by (auto simp: measure-def)
qed

lemma (in prob-space) uniform-distributed-iff :
fixes a b :: real
shows distributed M lborel X (λx. indicator {a..b} x / measure lborel {a..b})←→
(X ∈ borel-measurable M ∧ a < b ∧ (∀ t∈{a .. b}. P(x in M . X x ≤ t)= (t −

a) / (b − a)))
using

uniform-distributed-bounds[of X a b]
uniform-distributed-measure[of X a b]
distributed-measurable[of M lborel X]

by (auto intro!: uniform-distrI-borel-atLeastAtMost simp del: content-real-if)

lemma (in prob-space) uniform-distributed-expectation:
fixes a b :: real
assumes D: distributed M lborel X (λx. indicator {a .. b} x / measure lborel {a

.. b})
shows expectation X = (a + b) / 2

proof (subst distributed-integral[OF D, of λx. x, symmetric])
have a < b

using uniform-distributed-bounds[OF D] .

have (
∫

x. indicator {a .. b} x / measure lborel {a .. b} ∗ x ∂lborel) =

THEORY “Distributions” 214

(
∫

x. (x / measure lborel {a .. b}) ∗ indicator {a .. b} x ∂lborel)
by (intro Bochner-Integration.integral-cong) auto

also have (
∫

x. (x / measure lborel {a .. b}) ∗ indicator {a .. b} x ∂lborel) =
(a + b) / 2

proof (subst integral-FTC-Icc-real)
fix x
show DERIV (λx. x2 / (2 ∗ measure lborel {a..b})) x :> x / measure lborel

{a..b}
using uniform-distributed-params[OF D]
by (auto intro!: derivative-eq-intros simp del: content-real-if)

show isCont (λx. x / Sigma-Algebra.measure lborel {a..b}) x
using uniform-distributed-params[OF D]
by (auto intro!: isCont-divide)

have ∗: b2 / (2 ∗ measure lborel {a..b}) − a2 / (2 ∗ measure lborel {a..b}) =
(b∗b − a ∗ a) / (2 ∗ (b − a))
using ‹a < b›
by (auto simp: measure-def power2-eq-square diff-divide-distrib[symmetric])

show b2 / (2 ∗ measure lborel {a..b}) − a2 / (2 ∗ measure lborel {a..b}) = (a
+ b) / 2

using ‹a < b›
unfolding ∗ square-diff-square-factored by (auto simp: field-simps)

qed (insert ‹a < b›, simp)
finally show (

∫
x. indicator {a .. b} x / measure lborel {a .. b} ∗ x ∂lborel) =

(a + b) / 2 .
qed (auto simp: measure-nonneg)

lemma (in prob-space) uniform-distributed-variance:
fixes a b :: real
assumes D: distributed M lborel X (λx. indicator {a .. b} x / measure lborel {a

.. b})
shows variance X = (b − a)2 / 12

proof (subst distributed-variance)
have [arith]: a < b using uniform-distributed-bounds[OF D] .
let ?µ = expectation X let ?D = λx. indicator {a..b} (x + ?µ) / measure lborel
{a..b}

have (
∫

x. x2 ∗ (?D x) ∂lborel) = (
∫

x. x2 ∗ (indicator {a − ?µ .. b − ?µ} x) /
measure lborel {a .. b} ∂lborel)

by (intro Bochner-Integration.integral-cong) (auto split: split-indicator)
also have . . . = (b − a)2 / 12

by (simp add: integral-power uniform-distributed-expectation[OF D])
(simp add: eval-nat-numeral field-simps)

finally show (
∫

x. x2 ∗ ?D x ∂lborel) = (b − a)2 / 12 .
qed (auto intro: D simp del: content-real-if)

13.4 Normal distribution
definition normal-density :: real ⇒ real ⇒ real ⇒ real where

normal-density µ σ x = 1 / sqrt (2 ∗ pi ∗ σ2) ∗ exp (−(x − µ)2/ (2 ∗ σ2))

THEORY “Distributions” 215

abbreviation std-normal-density :: real ⇒ real where
std-normal-density ≡ normal-density 0 1

lemma std-normal-density-def : std-normal-density x = (1 / sqrt (2 ∗ pi)) ∗ exp
(− x2 / 2)

unfolding normal-density-def by simp

lemma normal-density-nonneg[simp]: 0 ≤ normal-density µ σ x
by (auto simp: normal-density-def)

lemma normal-density-pos: 0 < σ =⇒ 0 < normal-density µ σ x
by (auto simp: normal-density-def)

lemma borel-measurable-normal-density[measurable]: normal-density µ σ ∈ borel-measurable
borel

by (auto simp: normal-density-def [abs-def])

lemma gaussian-moment-0 :
has-bochner-integral lborel (λx. indicator {0 ..} x ∗R exp (− x2)) (sqrt pi / 2)

proof −
let ?pI = λf . (

∫
+s. f (s::real) ∗ indicator {0 ..} s ∂lborel)

let ?gauss = λx. exp (− x2)

let ?I = indicator {0<..} :: real ⇒ real
let ?ff= λx s. x ∗ exp (− x2 ∗ (1 + s2)) :: real

have ∗: ?pI ?gauss = (
∫

+x. ?gauss x ∗ ?I x ∂lborel)
by (intro nn-integral-cong-AE AE-I [where N={0}]) (auto split: split-indicator)

have ?pI ?gauss ∗ ?pI ?gauss = (
∫

+x.
∫

+s. ?gauss x ∗ ?gauss s ∗ ?I s ∗ ?I x
∂lborel ∂lborel)

by (auto simp: nn-integral-cmult[symmetric] nn-integral-multc[symmetric] ∗
ennreal-mult[symmetric]

intro!: nn-integral-cong split: split-indicator)
also have . . . = (

∫
+x.

∫
+s. ?ff x s ∗ ?I s ∗ ?I x ∂lborel ∂lborel)

proof (rule nn-integral-cong, cases)
fix x :: real assume x 6= 0
then show (

∫
+s. ?gauss x ∗ ?gauss s ∗ ?I s ∗ ?I x ∂lborel) = (

∫
+s. ?ff x s ∗

?I s ∗ ?I x ∂lborel)
by (subst nn-integral-real-affine[where t=0 and c=x])
(auto simp: mult-exp-exp nn-integral-cmult[symmetric] field-simps zero-less-mult-iff

ennreal-mult[symmetric]
intro!: nn-integral-cong split: split-indicator)

qed simp
also have ... =

∫
+s.

∫
+x. ?ff x s ∗ ?I s ∗ ?I x ∂lborel ∂lborel

by (rule lborel-pair .Fubini ′[symmetric]) auto
also have ... = ?pI (λs. ?pI (λx. ?ff x s))

by (rule nn-integral-cong-AE)
(auto intro!: nn-integral-cong-AE AE-I [where N={0}] split: split-indicator-asm)

THEORY “Distributions” 216

also have . . . = ?pI (λs. ennreal (1 / (2 ∗ (1 + s2))))
proof (intro nn-integral-cong ennreal-mult-right-cong)

fix s :: real show ?pI (λx. ?ff x s) = ennreal (1 / (2 ∗ (1 + s2)))
proof (subst nn-integral-FTC-atLeast)

have ((λa. − (exp (− (a2 ∗ (1 + s2))) / (2 + 2 ∗ s2))) −−−→ (− (0 / (2 +
2 ∗ s2)))) at-top

apply (intro tendsto-intros filterlim-compose[OF exp-at-bot] filterlim-compose[OF
filterlim-uminus-at-bot-at-top])

apply (subst mult.commute)
apply (auto intro!: filterlim-tendsto-pos-mult-at-top

filterlim-at-top-mult-at-top[OF filterlim-ident filterlim-ident]
simp: add-pos-nonneg power2-eq-square add-nonneg-eq-0-iff)

done
then show ((λa. − (exp (− a2 − s2 ∗ a2) / (2 + 2 ∗ s2))) −−−→ 0) at-top

by (simp add: field-simps)
qed (auto intro!: derivative-eq-intros simp: field-simps add-nonneg-eq-0-iff)

qed
also have ... = ennreal (pi / 4)
proof (subst nn-integral-FTC-atLeast)

show ((λa. arctan a / 2) −−−→ (pi / 2) / 2) at-top
by (intro tendsto-intros) (simp-all add: tendsto-arctan-at-top)

qed (auto intro!: derivative-eq-intros simp: add-nonneg-eq-0-iff field-simps power2-eq-square)
finally have ?pI ?gauss^2 = pi / 4

by (simp add: power2-eq-square)
then have ?pI ?gauss = sqrt (pi / 4)

using power-eq-iff-eq-base[of 2 enn2real (?pI ?gauss) sqrt (pi / 4)]
by (cases ?pI ?gauss) (auto simp: power2-eq-square ennreal-mult[symmetric]

ennreal-top-mult)
also have ?pI ?gauss = (

∫
+x. indicator {0 ..} x ∗R exp (− x2) ∂lborel)

by (intro nn-integral-cong) (simp split: split-indicator)
also have sqrt (pi / 4) = sqrt pi / 2

by (simp add: real-sqrt-divide)
finally show ?thesis

by (rule has-bochner-integral-nn-integral[rotated 3])
auto

qed

lemma gaussian-moment-1 :
has-bochner-integral lborel (λx::real. indicator {0 ..} x ∗R (exp (− x2) ∗ x)) (1 /

2)
proof −

have (
∫

+x. indicator {0 ..} x ∗R (exp (− x2) ∗ x) ∂lborel) =
(
∫

+x. ennreal (x ∗ exp (− x2)) ∗ indicator {0 ..} x ∂lborel)
by (intro nn-integral-cong)

(auto simp: ac-simps split: split-indicator)
also have . . . = ennreal (0 − (− exp (− 0 2) / 2))
proof (rule nn-integral-FTC-atLeast)

have ((λx::real. − exp (− x2) / 2) −−−→ − 0 / 2) at-top
by (intro tendsto-divide tendsto-minus filterlim-compose[OF exp-at-bot]

THEORY “Distributions” 217

filterlim-compose[OF filterlim-uminus-at-bot-at-top]
filterlim-pow-at-top filterlim-ident)

auto
then show ((λa::real. − exp (− a2) / 2) −−−→ 0) at-top

by simp
qed (auto intro!: derivative-eq-intros)
also have . . . = ennreal (1 / 2)

by simp
finally show ?thesis

by (rule has-bochner-integral-nn-integral[rotated 3])
(auto split: split-indicator)

qed

lemma
fixes k :: nat
shows gaussian-moment-even-pos:

has-bochner-integral lborel (λx::real. indicator {0 ..} x ∗R (exp (−x2)∗x^(2 ∗
k)))

((sqrt pi / 2) ∗ (fact (2 ∗ k) / (2 ^ (2 ∗ k) ∗ fact k)))
(is ?even)

and gaussian-moment-odd-pos:
has-bochner-integral lborel (λx::real. indicator {0 ..} x ∗R (exp (−x2)∗x^(2 ∗

k + 1))) (fact k / 2)
(is ?odd)

proof −
let ?M = λk x. exp (− x2) ∗ x^k :: real

{ fix k I assume Mk: has-bochner-integral lborel (λx. indicator {0 ..} x ∗R ?M k
x) I

have 2 6= (0 ::real)
by linarith

let ?f = λb.
∫

x. indicator {0 ..} x ∗R ?M (k + 2) x ∗ indicator {..b} x ∂lborel
have ((λb. (k + 1) / 2 ∗ (

∫
x. indicator {..b} x ∗R (indicator {0 ..} x ∗R ?M

k x) ∂lborel) − ?M (k + 1) b / 2) −−−→
(k + 1) / 2 ∗ (

∫
x. indicator {0 ..} x ∗R ?M k x ∂lborel) − 0 / 2) at-top

(is ?tendsto)
proof (intro tendsto-intros ‹2 6= 0 › tendsto-integral-at-top sets-lborel Mk[THEN

integrable.intros])
show (?M (k + 1) −−−→ 0) at-top
proof cases

assume even k
have ((λx. ((x2)^(k div 2 + 1) / exp (x2)) ∗ (1 / x) :: real) −−−→ 0 ∗ 0)

at-top
by (intro tendsto-intros tendsto-divide-0 [OF tendsto-const] filterlim-compose[OF

tendsto-power-div-exp-0]
filterlim-at-top-imp-at-infinity filterlim-ident filterlim-pow-at-top

filterlim-ident)
auto

also have (λx. ((x2)^(k div 2 + 1) / exp (x2)) ∗ (1 / x) :: real) = ?M (k

THEORY “Distributions” 218

+ 1)
using ‹even k› by (auto simp: fun-eq-iff exp-minus field-simps power2-eq-square

power-mult elim: evenE)
finally show ?thesis by simp

next
assume odd k
have ((λx. ((x2)^((k − 1) div 2 + 1) / exp (x2)) :: real) −−−→ 0) at-top

by (intro filterlim-compose[OF tendsto-power-div-exp-0] filterlim-at-top-imp-at-infinity
filterlim-ident filterlim-pow-at-top)

auto
also have (λx. ((x2)^((k − 1) div 2 + 1) / exp (x2)) :: real) = ?M (k + 1)
using ‹odd k› by (auto simp: fun-eq-iff exp-minus field-simps power2-eq-square

power-mult elim: oddE)
finally show ?thesis by simp

qed
qed
also have ?tendsto ←→ ((?f −−−→ (k + 1) / 2 ∗ (

∫
x. indicator {0 ..} x ∗R

?M k x ∂lborel) − 0 / 2) at-top)
proof (intro filterlim-cong refl eventually-at-top-linorder [THEN iffD2] exI [of -

0] allI impI)
fix b :: real assume b: 0 ≤ b
have Suc k ∗ (

∫
x. indicator {0 ..b} x ∗R ?M k x ∂lborel) = (

∫
x. indicator

{0 ..b} x ∗R (exp (− x2) ∗ ((Suc k) ∗ x ^ k)) ∂lborel)
unfolding integral-mult-right-zero[symmetric] by (intro Bochner-Integration.integral-cong)

auto
also have . . . = exp (− b2) ∗ b ^ (Suc k) − exp (− 0 2) ∗ 0 ^ (Suc k) −

(
∫

x. indicator {0 ..b} x ∗R (− 2 ∗ x ∗ exp (− x2) ∗ x ^ (Suc k)) ∂lborel)
by (rule integral-by-parts ′)

(auto intro!: derivative-eq-intros b
simp: diff-Suc of-nat-Suc field-simps split: nat.split)

also have ... = exp (− b2) ∗ b ^ (Suc k) − (
∫

x. indicator {0 ..b} x ∗R (− 2
∗ (exp (− x2) ∗ x ^ (k + 2))) ∂lborel)

by (auto simp: intro!: Bochner-Integration.integral-cong)
also have ... = exp (− b2) ∗ b ^ (Suc k) + 2 ∗ (

∫
x. indicator {0 ..b} x ∗R

?M (k + 2) x ∂lborel)
unfolding Bochner-Integration.integral-mult-right-zero [symmetric]
by (simp del: real-scaleR-def)

finally have Suc k ∗ (
∫

x. indicator {0 ..b} x ∗R ?M k x ∂lborel) =
exp (− b2) ∗ b ^ (Suc k) + 2 ∗ (

∫
x. indicator {0 ..b} x ∗R ?M (k + 2) x

∂lborel) .
then show (k + 1) / 2 ∗ (

∫
x. indicator {..b} x ∗R (indicator {0 ..} x ∗R ?M

k x)∂lborel) − exp (− b2) ∗ b ^ (k + 1) / 2 = ?f b
by (simp add: field-simps atLeastAtMost-def indicator-inter-arith)

qed
finally have int-M-at-top: ((?f −−−→ (k + 1) / 2 ∗ (

∫
x. indicator {0 ..} x ∗R

?M k x ∂lborel)) at-top)
by simp

have has-bochner-integral lborel (λx. indicator {0 ..} x ∗R ?M (k + 2) x) ((k

THEORY “Distributions” 219

+ 1) / 2 ∗ I)
proof (rule has-bochner-integral-monotone-convergence-at-top)

fix y :: real
have ∗: (λx. indicator {0 ..} x ∗R ?M (k + 2) x ∗ indicator {..y} x::real) =

(λx. indicator {0 ..y} x ∗R ?M (k + 2) x)
by rule (simp split: split-indicator)

show integrable lborel (λx. indicator {0 ..} x ∗R (?M (k + 2) x) ∗ indicator
{..y} x::real)

unfolding ∗ by (rule borel-integrable-compact) (auto intro!: continu-
ous-intros)

show ((?f −−−→ (k + 1) / 2 ∗ I) at-top)
using int-M-at-top has-bochner-integral-integral-eq[OF Mk] by simp

qed (auto split: split-indicator) }
note step = this

show ?even
proof (induct k)

case (Suc k)
note step[OF this]

also have (real (2 ∗ k + 1) / 2 ∗ (sqrt pi / 2 ∗ ((fact (2 ∗ k)) / ((2 ::real)^(2∗k)
∗ fact k)))) =

sqrt pi / 2 ∗ ((fact (2 ∗ Suc k)) / ((2 ::real)^(2 ∗ Suc k) ∗ fact (Suc k)))
apply (simp add: field-simps del: fact-Suc)
apply (simp add: of-nat-mult field-simps)
done

finally show ?case
by simp

qed (insert gaussian-moment-0 , simp)

show ?odd
proof (induct k)

case (Suc k)
note step[OF this]
also have (real (2 ∗ k + 1 + 1) / (2 ::real) ∗ ((fact k) / 2)) = (fact (Suc k))

/ 2
by (simp add: field-simps of-nat-Suc field-split-simps del: fact-Suc) (simp add:

field-simps)
finally show ?case

by simp
qed (insert gaussian-moment-1 , simp)

qed

context
fixes k :: nat and µ σ :: real assumes [arith]: 0 < σ

begin

lemma normal-moment-even:
has-bochner-integral lborel (λx. normal-density µ σ x ∗ (x − µ) ^ (2 ∗ k)) (fact

(2 ∗ k) / ((2 / σ2)^k ∗ fact k))

THEORY “Distributions” 220

proof −
have eq:

∧
x::real. x2^k = (x^k)2

by (simp add: power-mult[symmetric] ac-simps)

have has-bochner-integral lborel (λx. exp (−x2)∗x^(2 ∗ k))
(sqrt pi ∗ (fact (2 ∗ k) / (2 ^ (2 ∗ k) ∗ fact k)))

using has-bochner-integral-even-function[OF gaussian-moment-even-pos[where
k=k]] by simp

then have has-bochner-integral lborel (λx. (exp (−x2)∗x^(2 ∗ k)) ∗ ((2∗σ2)^k /
sqrt (2 ∗ pi ∗ σ2)))

((sqrt pi ∗ (fact (2 ∗ k) / (2 ^ (2 ∗ k) ∗ fact k))) ∗ ((2∗σ2)^k / sqrt (2 ∗ pi
∗ σ2)))

by (rule has-bochner-integral-mult-left)
also have (λx. (exp (−x2)∗x^(2 ∗ k)) ∗ ((2∗σ2)^k / sqrt (2 ∗ pi ∗ σ2))) =
(λx. exp (− ((sqrt 2 ∗ σ) ∗ x)2 / (2∗σ2)) ∗ ((sqrt 2 ∗ σ) ∗ x) ^ (2 ∗ k) / sqrt

(2 ∗ pi ∗ σ2))
by (auto simp: fun-eq-iff field-simps real-sqrt-power [symmetric] real-sqrt-mult

real-sqrt-divide power-mult eq)
also have ((sqrt pi ∗ (fact (2 ∗ k) / (2 ^ (2 ∗ k) ∗ fact k))) ∗ ((2∗σ2)^k / sqrt

(2 ∗ pi ∗ σ2))) =
(inverse (sqrt 2 ∗ σ) ∗ ((fact (2 ∗ k))) / ((2/σ2) ^ k ∗ (fact k)))

by (auto simp: fun-eq-iff power-mult field-simps real-sqrt-power [symmetric]
real-sqrt-mult

power2-eq-square)
finally show ?thesis

unfolding normal-density-def
by (subst lborel-has-bochner-integral-real-affine-iff [where c=sqrt 2 ∗ σ and

t=µ]) simp-all
qed

lemma normal-moment-abs-odd:
has-bochner-integral lborel (λx. normal-density µ σ x ∗ |x − µ|^(2 ∗ k + 1)) (2^k
∗ σ^(2 ∗ k + 1) ∗ fact k ∗ sqrt (2 / pi))
proof −

have has-bochner-integral lborel (λx::real. indicator {0 ..} x ∗R (exp (−x2)∗|x|^(2
∗ k + 1))) (fact k / 2)

by (rule has-bochner-integral-cong[THEN iffD1 , OF - - - gaussian-moment-odd-pos[of
k]]) auto

from has-bochner-integral-even-function[OF this]
have has-bochner-integral lborel (λx::real. exp (−x2)∗|x|^(2 ∗ k + 1)) (fact k)

by simp
then have has-bochner-integral lborel (λx. (exp (−x2)∗|x|^(2 ∗ k + 1)) ∗ (2^k
∗ σ^(2 ∗ k + 1) / sqrt (pi ∗ σ2)))

(fact k ∗ (2^k ∗ σ^(2 ∗ k + 1) / sqrt (pi ∗ σ2)))
by (rule has-bochner-integral-mult-left)

also have (λx. (exp (−x2)∗|x|^(2 ∗ k + 1)) ∗ (2^k ∗ σ^(2 ∗ k + 1) / sqrt (pi
∗ σ2))) =

(λx. exp (− (((sqrt 2 ∗ σ) ∗ x)2 / (2 ∗ σ2))) ∗ |sqrt 2 ∗ σ ∗ x| ^ (2 ∗ k + 1)
/ sqrt (2 ∗ pi ∗ σ2))

THEORY “Distributions” 221

by (simp add: field-simps abs-mult real-sqrt-power [symmetric] power-mult real-sqrt-mult)
also have (fact k ∗ (2^k ∗ σ^(2 ∗ k + 1) / sqrt (pi ∗ σ2))) =
(inverse (sqrt 2) ∗ inverse σ ∗ (2 ^ k ∗ (σ ∗ σ ^ (2 ∗ k)) ∗ (fact k) ∗ sqrt (2 /

pi)))
by (auto simp: fun-eq-iff power-mult field-simps real-sqrt-power [symmetric]

real-sqrt-divide
real-sqrt-mult)

finally show ?thesis
unfolding normal-density-def
by (subst lborel-has-bochner-integral-real-affine-iff [where c=sqrt 2 ∗ σ and

t=µ])
simp-all

qed

lemma normal-moment-odd:
has-bochner-integral lborel (λx. normal-density µ σ x ∗ (x − µ)^(2 ∗ k + 1)) 0

proof −
have has-bochner-integral lborel (λx. exp (− x2) ∗ x^(2 ∗ k + 1)::real) 0

using gaussian-moment-odd-pos by (rule has-bochner-integral-odd-function)
simp
then have has-bochner-integral lborel (λx. (exp (−x2)∗x^(2 ∗ k + 1)) ∗ (2^k∗σ^(2∗k)/sqrt

pi))
(0 ∗ (2^k∗σ^(2∗k)/sqrt pi))

by (rule has-bochner-integral-mult-left)
also have (λx. (exp (−x2)∗x^(2 ∗ k + 1)) ∗ (2^k∗σ^(2∗k)/sqrt pi)) =
(λx. exp (− ((sqrt 2 ∗ σ ∗ x)2 / (2 ∗ σ2))) ∗

(sqrt 2 ∗ σ ∗ x ∗ (sqrt 2 ∗ σ ∗ x) ^ (2 ∗ k)) /
sqrt (2 ∗ pi ∗ σ2))

unfolding real-sqrt-mult
by (simp add: field-simps abs-mult real-sqrt-power [symmetric] power-mult fun-eq-iff)

finally show ?thesis
unfolding normal-density-def
by (subst lborel-has-bochner-integral-real-affine-iff [where c=sqrt 2 ∗ σ and

t=µ]) simp-all
qed

lemma integral-normal-moment-even:
integralL lborel (λx. normal-density µ σ x ∗ (x − µ)^(2 ∗ k)) = fact (2 ∗ k) /

((2 / σ2)^k ∗ fact k)
using normal-moment-even by (rule has-bochner-integral-integral-eq)

lemma integral-normal-moment-abs-odd:
integralL lborel (λx. normal-density µ σ x ∗ |x − µ|^(2 ∗ k + 1)) = 2 ^ k ∗ σ

^ (2 ∗ k + 1) ∗ fact k ∗ sqrt (2 / pi)
using normal-moment-abs-odd by (rule has-bochner-integral-integral-eq)

lemma integral-normal-moment-odd:
integralL lborel (λx. normal-density µ σ x ∗ (x − µ)^(2 ∗ k + 1)) = 0
using normal-moment-odd by (rule has-bochner-integral-integral-eq)

THEORY “Distributions” 222

end

context
fixes σ :: real
assumes σ-pos[arith]: 0 < σ

begin

lemma normal-moment-nz-1 : has-bochner-integral lborel (λx. normal-density µ σ
x ∗ x) µ
proof −

note normal-moment-even[OF σ-pos, of µ 0]
note normal-moment-odd[OF σ-pos, of µ 0] has-bochner-integral-mult-left[of µ,

OF this]
note has-bochner-integral-add[OF this]
then show ?thesis

by (simp add: power2-eq-square field-simps)
qed

lemma integral-normal-moment-nz-1 :
integralL lborel (λx. normal-density µ σ x ∗ x) = µ
using normal-moment-nz-1 by (rule has-bochner-integral-integral-eq)

lemma integrable-normal-moment-nz-1 : integrable lborel (λx. normal-density µ σ
x ∗ x)

using normal-moment-nz-1 by rule

lemma integrable-normal-moment: integrable lborel (λx. normal-density µ σ x ∗
(x − µ)^k)
proof cases

assume even k then show ?thesis
using integrable.intros[OF normal-moment-even] by (auto elim: evenE)

next
assume odd k then show ?thesis

using integrable.intros[OF normal-moment-odd] by (auto elim: oddE)
qed

lemma integrable-normal-moment-abs: integrable lborel (λx. normal-density µ σ x
∗ |x − µ|^k)
proof cases

assume even k then show ?thesis
using integrable.intros[OF normal-moment-even] by (auto simp add: power-even-abs

elim: evenE)
next

assume odd k then show ?thesis
using integrable.intros[OF normal-moment-abs-odd] by (auto elim: oddE)

qed

THEORY “Distributions” 223

lemma integrable-normal-density[simp, intro]: integrable lborel (normal-density µ
σ)

using integrable-normal-moment[of µ 0] by simp

lemma integral-normal-density[simp]: (
∫

x. normal-density µ σ x ∂lborel) = 1
using integral-normal-moment-even[of σ µ 0] by simp

lemma prob-space-normal-density:
prob-space (density lborel (normal-density µ σ))
proof qed (simp add: emeasure-density nn-integral-eq-integral normal-density-nonneg)

end

context
fixes k :: nat

begin

lemma std-normal-moment-even:
has-bochner-integral lborel (λx. std-normal-density x ∗ x ^ (2 ∗ k)) (fact (2 ∗ k)

/ (2^k ∗ fact k))
using normal-moment-even[of 1 0 k] by simp

lemma std-normal-moment-abs-odd:
has-bochner-integral lborel (λx. std-normal-density x ∗ |x|^(2 ∗ k + 1)) (sqrt

(2/pi) ∗ 2^k ∗ fact k)
using normal-moment-abs-odd[of 1 0 k] by (simp add: ac-simps)

lemma std-normal-moment-odd:
has-bochner-integral lborel (λx. std-normal-density x ∗ x^(2 ∗ k + 1)) 0
using normal-moment-odd[of 1 0 k] by simp

lemma integral-std-normal-moment-even:
integralL lborel (λx. std-normal-density x ∗ x^(2∗k)) = fact (2 ∗ k) / (2^k ∗ fact

k)
using std-normal-moment-even by (rule has-bochner-integral-integral-eq)

lemma integral-std-normal-moment-abs-odd:
integralL lborel (λx. std-normal-density x ∗ |x|^(2 ∗ k + 1)) = sqrt (2 / pi) ∗

2^k ∗ fact k
using std-normal-moment-abs-odd by (rule has-bochner-integral-integral-eq)

lemma integral-std-normal-moment-odd:
integralL lborel (λx. std-normal-density x ∗ x^(2 ∗ k + 1)) = 0
using std-normal-moment-odd by (rule has-bochner-integral-integral-eq)

lemma integrable-std-normal-moment-abs: integrable lborel (λx. std-normal-density
x ∗ |x|^k)

THEORY “Distributions” 224

using integrable-normal-moment-abs[of 1 0 k] by simp

lemma integrable-std-normal-moment: integrable lborel (λx. std-normal-density x
∗ x^k)

using integrable-normal-moment[of 1 0 k] by simp

end

lemma (in prob-space) normal-density-affine:
assumes X : distributed M lborel X (normal-density µ σ)
assumes [simp, arith]: 0 < σ α 6= 0
shows distributed M lborel (λx. β + α ∗ X x) (normal-density (β + α ∗ µ) (|α|
∗ σ))
proof −

have eq:
∧

x. |α| ∗ normal-density (β + α ∗ µ) (|α| ∗ σ) (x ∗ α + β) =
normal-density µ σ x
by (simp add: normal-density-def real-sqrt-mult field-simps)

(simp add: power2-eq-square field-simps)
show ?thesis

by (rule distributed-affineI [OF - ‹α 6= 0 ›, where t=β])
(simp-all add: eq X ennreal-mult ′[symmetric])

qed

lemma (in prob-space) normal-standard-normal-convert:
assumes pos-var [simp, arith]: 0 < σ
shows distributed M lborel X (normal-density µ σ) = distributed M lborel (λx.

(X x − µ) / σ) std-normal-density
proof auto

assume distributed M lborel X (λx. ennreal (normal-density µ σ x))
then have distributed M lborel (λx. −µ / σ + (1/σ) ∗ X x) (λx. ennreal

(normal-density (−µ / σ + (1/σ)∗ µ) (|1/σ| ∗ σ) x))
by(rule normal-density-affine) auto

then show distributed M lborel (λx. (X x − µ) / σ) (λx. ennreal (std-normal-density
x))

by (simp add: diff-divide-distrib[symmetric] field-simps)
next
assume ∗: distributed M lborel (λx. (X x − µ) / σ) (λx. ennreal (std-normal-density

x))
have distributed M lborel (λx. µ + σ ∗ ((X x − µ) / σ)) (λx. ennreal (normal-density
µ |σ| x))

using normal-density-affine[OF ∗, of σ µ] by simp
then show distributed M lborel X (λx. ennreal (normal-density µ σ x)) by simp

qed

lemma conv-normal-density-zero-mean:
assumes [simp, arith]: 0 < σ 0 < τ
shows (λx.

∫
+y. ennreal (normal-density 0 σ (x − y) ∗ normal-density 0 τ y)

∂lborel) =

THEORY “Distributions” 225

normal-density 0 (sqrt (σ2 + τ2)) (is ?LHS = ?RHS)
proof −

define σ ′ τ ′ where σ ′ = σ2 and τ ′ = τ2

then have [simp, arith]: 0 < σ ′ 0 < τ ′

by simp-all
let ?σ = sqrt ((σ ′ ∗ τ ′) / (σ ′ + τ ′))
have sqrt: (sqrt (2 ∗ pi ∗ (σ ′ + τ ′)) ∗ sqrt (2 ∗ pi ∗ (σ ′ ∗ τ ′) / (σ ′ + τ ′))) =
(sqrt (2 ∗ pi ∗ σ ′) ∗ sqrt (2 ∗ pi ∗ τ ′))
by (subst power-eq-iff-eq-base[symmetric, where n=2])

(simp-all add: real-sqrt-mult[symmetric] power2-eq-square)
have ?LHS =
(λx.

∫
+y. ennreal((normal-density 0 (sqrt (σ ′ + τ ′)) x) ∗ normal-density (τ ′

∗ x / (σ ′ + τ ′)) ?σ y) ∂lborel)
apply (intro ext nn-integral-cong)
apply (simp add: normal-density-def σ ′-def [symmetric] τ ′-def [symmetric] sqrt

mult-exp-exp)
apply (simp add: divide-simps power2-eq-square)
apply (simp add: algebra-simps)
done

also have ... =
(λx. (normal-density 0 (sqrt (σ2 + τ2)) x) ∗

∫
+y. ennreal(normal-density (τ2∗

x / (σ2 + τ2)) ?σ y) ∂lborel)
by (subst nn-integral-cmult[symmetric])

(auto simp: σ ′-def τ ′-def normal-density-def ennreal-mult ′[symmetric])

also have ... = (λx. (normal-density 0 (sqrt (σ2 + τ2)) x))
by (subst nn-integral-eq-integral) (auto simp: normal-density-nonneg)

finally show ?thesis by fast
qed

lemma conv-std-normal-density:
(λx.

∫
+y. ennreal (std-normal-density (x − y) ∗ std-normal-density y) ∂lborel)

=
(normal-density 0 (sqrt 2))
by (subst conv-normal-density-zero-mean) simp-all

lemma (in prob-space) add-indep-normal:
assumes indep: indep-var borel X borel Y
assumes pos-var [arith]: 0 < σ 0 < τ
assumes normalX [simp]: distributed M lborel X (normal-density µ σ)
assumes normalY [simp]: distributed M lborel Y (normal-density ν τ)
shows distributed M lborel (λx. X x + Y x) (normal-density (µ + ν) (sqrt (σ2

+ τ2)))
proof −

have ind[simp]: indep-var borel (λx. − µ + X x) borel (λx. − ν + Y x)
proof −

have indep-var borel ((λx. −µ + x) o X) borel ((λx. − ν + x) o Y)

THEORY “Distributions” 226

by (auto intro!: indep-var-compose assms)
then show ?thesis by (simp add: o-def)

qed

have distributed M lborel (λx. −µ + 1 ∗ X x) (normal-density (− µ + 1 ∗ µ)
(|1 | ∗ σ))

by(rule normal-density-affine[OF normalX pos-var(1), of 1 −µ]) simp
then have 1 [simp]: distributed M lborel (λx. − µ + X x) (normal-density 0 σ)

by simp

have distributed M lborel (λx. −ν + 1 ∗ Y x) (normal-density (− ν + 1 ∗ ν)
(|1 | ∗ τ))

by(rule normal-density-affine[OF normalY pos-var(2), of 1 −ν]) simp
then have 2 [simp]: distributed M lborel (λx. − ν + Y x) (normal-density 0 τ)

by simp

have ∗: distributed M lborel (λx. (− µ + X x) + (− ν + Y x)) (λx. ennreal
(normal-density 0 (sqrt (σ2 + τ2)) x))

using distributed-convolution[OF ind 1 2] conv-normal-density-zero-mean[OF
pos-var]

by (simp add: ennreal-mult ′[symmetric] normal-density-nonneg)

have distributed M lborel (λx. µ + ν + 1 ∗ (− µ + X x + (− ν + Y x)))
(λx. ennreal (normal-density (µ + ν + 1 ∗ 0) (|1 | ∗ sqrt (σ2 + τ2)) x))

by (rule normal-density-affine[OF ∗, of 1 µ + ν]) (auto simp: add-pos-pos)

then show ?thesis by auto
qed

lemma (in prob-space) diff-indep-normal:
assumes indep[simp]: indep-var borel X borel Y
assumes [simp, arith]: 0 < σ 0 < τ
assumes normalX [simp]: distributed M lborel X (normal-density µ σ)
assumes normalY [simp]: distributed M lborel Y (normal-density ν τ)
shows distributed M lborel (λx. X x − Y x) (normal-density (µ − ν) (sqrt (σ2

+ τ2)))
proof −

have distributed M lborel (λx. 0 + − 1 ∗ Y x) (λx. ennreal (normal-density (0
+ − 1 ∗ ν) (|− 1 | ∗ τ) x))

by(rule normal-density-affine, auto)
then have [simp]:distributed M lborel (λx. − Y x) (λx. ennreal (normal-density

(− ν) τ x)) by simp

have distributed M lborel (λx. X x + (− Y x)) (normal-density (µ + − ν) (sqrt
(σ2 + τ2)))

apply (rule add-indep-normal)
apply (rule indep-var-compose[unfolded comp-def , of borel - borel - λx. x - λx.

− x])
apply simp-all

THEORY “Distributions” 227

done
then show ?thesis by simp

qed

lemma (in prob-space) sum-indep-normal:
assumes finite I I 6= {} indep-vars (λi. borel) X I
assumes

∧
i. i ∈ I =⇒ 0 < σ i

assumes normal:
∧

i. i ∈ I =⇒ distributed M lborel (X i) (normal-density (µ i)
(σ i))

shows distributed M lborel (λx.
∑

i∈I . X i x) (normal-density (
∑

i∈I . µ i) (sqrt
(
∑

i∈I . (σ i)2)))
using assms

proof (induct I rule: finite-ne-induct)
case (singleton i) then show ?case by (simp add : abs-of-pos)

next
case (insert i I)

then have 1 : distributed M lborel (λx. (X i x) + (
∑

i∈I . X i x))
(normal-density (µ i + sum µ I) (sqrt ((σ i)2 + (sqrt (

∑
i∈I . (σ

i)2))2)))
apply (intro add-indep-normal indep-vars-sum insert real-sqrt-gt-zero)
apply (auto intro: indep-vars-subset intro!: sum-pos)
apply fastforce
done

have 2 : (λx. (X i x)+ (
∑

i∈I . X i x)) = (λx. (
∑

j∈insert i I . X j x))
µ i + sum µ I = sum µ (insert i I)

using insert by auto

have 3 : (sqrt ((σ i)2 + (sqrt (
∑

i∈I . (σ i)2))2)) = (sqrt (
∑

i∈insert i I . (σ
i)2))

using insert by (simp add: sum-nonneg)

show ?case using 1 2 3 by simp
qed

lemma (in prob-space) standard-normal-distributed-expectation:
assumes D: distributed M lborel X std-normal-density
shows expectation X = 0
using integral-std-normal-moment-odd[of 0]

distributed-integral[OF D, of λx. x, symmetric]
by auto

lemma (in prob-space) normal-distributed-expectation:
assumes σ[arith]: 0 < σ
assumes D: distributed M lborel X (normal-density µ σ)
shows expectation X = µ
using integral-normal-moment-nz-1 [OF σ, of µ] distributed-integral[OF D, of

λx. x, symmetric]
by (auto simp: field-simps)

THEORY “Characteristic-Functions” 228

lemma (in prob-space) normal-distributed-variance:
fixes a b :: real
assumes [simp, arith]: 0 < σ
assumes D: distributed M lborel X (normal-density µ σ)
shows variance X = σ2

using integral-normal-moment-even[of σ µ 1]
by (subst distributed-integral[OF D, symmetric])

(simp-all add: eval-nat-numeral normal-distributed-expectation[OF assms])

lemma (in prob-space) standard-normal-distributed-variance:
distributed M lborel X std-normal-density =⇒ variance X = 1
using normal-distributed-variance[of 1 X 0] by simp

lemma (in information-space) entropy-normal-density:
assumes [arith]: 0 < σ
assumes D: distributed M lborel X (normal-density µ σ)
shows entropy b lborel X = log b (2 ∗ pi ∗ exp 1 ∗ σ2) / 2

proof −
have entropy b lborel X = − (

∫
x. normal-density µ σ x ∗ log b (normal-density

µ σ x) ∂lborel)
using D by (rule entropy-distr) simp

also have . . . = − (
∫

x. normal-density µ σ x ∗ (− ln (2 ∗ pi ∗ σ2) − (x −
µ)2 / σ2) / (2 ∗ ln b) ∂lborel)

by (intro arg-cong[where f=uminus] Bochner-Integration.integral-cong)
(auto simp: normal-density-def field-simps ln-mult log-def ln-div ln-sqrt)

also have . . . = − (
∫

x. − (normal-density µ σ x ∗ (ln (2 ∗ pi ∗ σ2)) +
(normal-density µ σ x ∗ (x − µ)2) / σ2) / (2 ∗ ln b) ∂lborel)

by (intro arg-cong[where f=uminus] Bochner-Integration.integral-cong) (auto
simp: field-split-simps field-simps)
also have . . . = (

∫
x. normal-density µ σ x ∗ (ln (2 ∗ pi ∗ σ2)) + (normal-density

µ σ x ∗ (x − µ)2) / σ2 ∂lborel) / (2 ∗ ln b)
by (simp del: minus-add-distrib)

also have . . . = (ln (2 ∗ pi ∗ σ2) + 1) / (2 ∗ ln b)
using integral-normal-moment-even[of σ µ 1] by (simp add: integrable-normal-moment

fact-numeral)
also have . . . = log b (2 ∗ pi ∗ exp 1 ∗ σ2) / 2

by (simp add: log-def field-simps ln-mult)
finally show ?thesis .

qed

end

14 Characteristic Functions
theory Characteristic-Functions

imports Weak-Convergence Independent-Family Distributions
begin

lemma mult-min-right: a ≥ 0 =⇒ (a :: real) ∗ min b c = min (a ∗ b) (a ∗ c)

THEORY “Characteristic-Functions” 229

by (metis min.absorb-iff2 min-def mult-left-mono)

lemma sequentially-even-odd:
assumes E : eventually (λn. P (2 ∗ n)) sequentially and O: eventually (λn. P

(2 ∗ n + 1)) sequentially
shows eventually P sequentially

proof −
from E obtain n-e where [intro]:

∧
n. n ≥ n-e =⇒ P (2 ∗ n)

by (auto simp: eventually-sequentially)
moreover
from O obtain n-o where [intro]:

∧
n. n ≥ n-o =⇒ P (Suc (2 ∗ n))

by (auto simp: eventually-sequentially)
show ?thesis

unfolding eventually-sequentially
proof (intro exI allI impI)

fix n assume max (2 ∗ n-e) (2 ∗ n-o + 1) ≤ n then show P n
by (cases even n) (auto elim!: evenE oddE)

qed
qed

lemma limseq-even-odd:
assumes (λn. f (2 ∗ n)) −−−−→ (l :: ′a :: topological-space)

and (λn. f (2 ∗ n + 1)) −−−−→ l
shows f −−−−→ l
using assms by (auto simp: filterlim-iff intro: sequentially-even-odd)

14.1 Application of the FTC: integrating eix

abbreviation iexp :: real ⇒ complex where
iexp ≡ (λx. exp (i ∗ complex-of-real x))

lemma isCont-iexp [simp]: isCont iexp x
by (intro continuous-intros)

lemma has-vector-derivative-iexp[derivative-intros]:
(iexp has-vector-derivative i ∗ iexp x) (at x within s)
by (auto intro!: derivative-eq-intros simp: Re-exp Im-exp has-vector-derivative-complex-iff)

lemma interval-integral-iexp:
fixes a b :: real
shows (CLBINT x=a..b. iexp x) = i ∗ iexp a − i ∗ iexp b
by (subst interval-integral-FTC-finite [where F = λx. −i ∗ iexp x])

(auto intro!: derivative-eq-intros continuous-intros)

14.2 The Characteristic Function of a Real Measure.
definition

char :: real measure ⇒ real ⇒ complex
where char M t ≡ CLINT x |M . iexp (t ∗ x)

THEORY “Characteristic-Functions” 230

lemma (in real-distribution) char-zero: char M 0 = 1
unfolding char-def by (simp del: space-eq-univ add: prob-space)

lemma (in prob-space) integrable-iexp:
assumes f : f ∈ borel-measurable M

∧
x. Im (f x) = 0

shows integrable M (λx. exp (i ∗ (f x)))
proof (intro integrable-const-bound [of - 1])

from f have
∧

x. of-real (Re (f x)) = f x
by (simp add: complex-eq-iff)

then show AE x in M . cmod (exp (i ∗ f x)) ≤ 1
using norm-exp-i-times[of Re (f x) for x] by simp

qed (insert f , simp)

lemma (in real-distribution) cmod-char-le-1 : norm (char M t) ≤ 1
proof −

have norm (char M t) ≤ (
∫

x. norm (iexp (t ∗ x)) ∂M)
unfolding char-def by (intro integral-norm-bound)

also have . . . ≤ 1
by (simp del: of-real-mult)

finally show ?thesis .
qed

lemma (in real-distribution) isCont-char : isCont (char M) t
unfolding continuous-at-sequentially

proof safe
fix X assume X : X −−−−→ t
show (char M ◦ X) −−−−→ char M t

unfolding comp-def char-def
by (rule integral-dominated-convergence[where w=λ-. 1]) (auto intro!: tend-

sto-intros X)
qed

lemma (in real-distribution) char-measurable [measurable]: char M ∈ borel-measurable
borel
by (auto intro!: borel-measurable-continuous-onI continuous-at-imp-continuous-on

isCont-char)

14.3 Independence
lemma (in prob-space) char-distr-add:

fixes X1 X2 :: ′a ⇒ real and t :: real
assumes indep-var borel X1 borel X2
shows char (distr M borel (λω. X1 ω + X2 ω)) t =

char (distr M borel X1) t ∗ char (distr M borel X2) t
proof −
from assms have [measurable]: random-variable borel X1 by (elim indep-var-rv1)
from assms have [measurable]: random-variable borel X2 by (elim indep-var-rv2)

have char (distr M borel (λω. X1 ω + X2 ω)) t = (CLINT x |M . iexp (t ∗ (X1

THEORY “Characteristic-Functions” 231

x + X2 x)))
by (simp add: char-def integral-distr)

also have . . . = (CLINT x|M . iexp (t ∗ (X1 x)) ∗ iexp (t ∗ (X2 x)))
by (simp add: field-simps exp-add)

also have . . . = (CLINT x |M . iexp (t ∗ (X1 x))) ∗ (CLINT x |M . iexp (t ∗ (X2
x)))

by (intro indep-var-lebesgue-integral indep-var-compose[unfolded comp-def , OF
assms])

(auto intro!: integrable-iexp)
also have . . . = char (distr M borel X1) t ∗ char (distr M borel X2) t

by (simp add: char-def integral-distr)
finally show ?thesis .

qed

lemma (in prob-space) char-distr-sum:
indep-vars (λi. borel) X A =⇒

char (distr M borel (λω.
∑

i∈A. X i ω)) t = (
∏

i∈A. char (distr M borel (X
i)) t)
proof (induct A rule: infinite-finite-induct)

case (insert x F) with indep-vars-subset[of λ-. borel X insert x F F] show ?case
by (auto simp add: char-distr-add indep-vars-sum)

qed (simp-all add: char-def integral-distr prob-space del: distr-const)

14.4 Approximations to eix

Proofs from Billingsley, page 343.
lemma CLBINT-I0c-power-mirror-iexp:

fixes x :: real and n :: nat
defines f s m ≡ complex-of-real ((x − s) ^ m)
shows (CLBINT s=0 ..x. f s n ∗ iexp s) =

x^Suc n / Suc n + (i / Suc n) ∗ (CLBINT s=0 ..x. f s (Suc n) ∗ iexp s)
proof −

have 1 :
((λs. complex-of-real(−((x − s) ^ (Suc n) / (Suc n))) ∗ iexp s)

has-vector-derivative complex-of-real((x − s)^n) ∗ iexp s + (i ∗ iexp s) ∗
complex-of-real(−((x − s) ^ (Suc n) / (Suc n))))

(at s within A) for s A
by (intro derivative-eq-intros) auto

let ?F = λs. complex-of-real(−((x − s) ^ (Suc n) / (Suc n))) ∗ iexp s
have x^(Suc n) / (Suc n) = (CLBINT s=0 ..x. (f s n ∗ iexp s + (i ∗ iexp s) ∗
−(f s (Suc n) / (Suc n)))) (is ?LHS = ?RHS)

proof −
have ?RHS = (CLBINT s=0 ..x. (f s n ∗ iexp s + (i ∗ iexp s) ∗

complex-of-real(−((x − s) ^ (Suc n) / (Suc n)))))
by (cases 0 ≤ x) (auto intro!: simp: f-def [abs-def])

also have ... = ?F x − ?F 0
unfolding zero-ereal-def using 1
by (intro interval-integral-FTC-finite)

THEORY “Characteristic-Functions” 232

(auto simp: f-def add-nonneg-eq-0-iff complex-eq-iff
intro!: continuous-at-imp-continuous-on continuous-intros)

finally show ?thesis
by auto

qed
show ?thesis
unfolding ‹?LHS = ?RHS› f-def interval-lebesgue-integral-mult-right [symmetric]
by (subst interval-lebesgue-integral-add(2) [symmetric])

(auto intro!: interval-integrable-isCont continuous-intros simp: zero-ereal-def
complex-eq-iff)
qed

lemma iexp-eq1 :
fixes x :: real
defines f s m ≡ complex-of-real ((x − s) ^ m)
shows iexp x =
(
∑

k ≤ n. (i ∗ x)^k / (fact k)) + ((i ^ (Suc n)) / (fact n)) ∗ (CLBINT s=0 ..x.
(f s n) ∗ (iexp s)) (is ?P n)
proof (induction n)

show ?P 0
by (auto simp add: field-simps interval-integral-iexp f-def zero-ereal-def)

next
fix n assume ih: ?P n
have ∗∗:

∧
a b :: real. a = −b ←→ a + b = 0

by linarith
have ∗: of-nat n ∗ of-nat (fact n) 6= − (of-nat (fact n)::complex)

unfolding of-nat-mult[symmetric]
by (simp add: complex-eq-iff ∗∗ of-nat-add[symmetric] del: of-nat-mult of-nat-fact

of-nat-add)
show ?P (Suc n)

unfolding sum.atMost-Suc ih f-def CLBINT-I0c-power-mirror-iexp[of - n]
by (simp add: divide-simps add-eq-0-iff ∗) (simp add: field-simps)

qed

lemma iexp-eq2 :
fixes x :: real
defines f s m ≡ complex-of-real ((x − s) ^ m)
shows iexp x = (

∑
k≤Suc n. (i∗x)^k/fact k) + i^Suc n/fact n ∗ (CLBINT

s=0 ..x. f s n∗(iexp s − 1))
proof −

have isCont-f : isCont (λs. f s n) x for n x
by (auto simp: f-def)

let ?F = λs. complex-of-real (−((x − s) ^ (Suc n) / real (Suc n)))
have calc1 : (CLBINT s=0 ..x. f s n ∗ (iexp s − 1)) =
(CLBINT s=0 ..x. f s n ∗ iexp s) − (CLBINT s=0 ..x. f s n)
unfolding zero-ereal-def
by (subst interval-lebesgue-integral-diff (2) [symmetric])

(simp-all add: interval-integrable-isCont isCont-f field-simps)

THEORY “Characteristic-Functions” 233

have calc2 : (CLBINT s=0 ..x. f s n) = x^Suc n / Suc n
unfolding zero-ereal-def

proof (subst interval-integral-FTC-finite [where a = 0 and b = x and f = λs.
f s n and F = ?F])

show (?F has-vector-derivative f y n) (at y within {min 0 x..max 0 x}) for y
unfolding f-def
by (intro has-vector-derivative-of-real)
(auto intro!: derivative-eq-intros simp del: power-Suc simp add: add-nonneg-eq-0-iff)

qed (auto intro: continuous-at-imp-continuous-on isCont-f)

have calc3 : i ^ (Suc (Suc n)) / (fact (Suc n)) = (i ^ (Suc n) / (fact n)) ∗ (i /
(Suc n))

by (simp add: field-simps)

show ?thesis
unfolding iexp-eq1 [where n = Suc n and x=x] calc1 calc2 calc3 unfolding

f-def
by (subst CLBINT-I0c-power-mirror-iexp [where n = n]) auto

qed

lemma abs-LBINT-I0c-abs-power-diff :
|LBINT s=0 ..x. |(x − s)^n|| = |x ^ (Suc n) / (Suc n)|

proof −
have |LBINT s=0 ..x. |(x − s)^n|| = |LBINT s=0 ..x. (x − s)^n|
proof cases

assume 0 ≤ x ∨ even n
then have (LBINT s=0 ..x. |(x − s)^n|) = LBINT s=0 ..x. (x − s)^n

by (auto simp add: zero-ereal-def power-even-abs power-abs min-absorb1
max-absorb2

intro!: interval-integral-cong)
then show ?thesis by simp

next
assume ¬ (0 ≤ x ∨ even n)
then have (LBINT s=0 ..x. |(x − s)^n|) = LBINT s=0 ..x. −((x − s)^n)

by (auto simp add: zero-ereal-def power-abs min-absorb1 max-absorb2
ereal-min[symmetric] ereal-max[symmetric] power-minus-odd[symmetric]

simp del: ereal-min ereal-max intro!: interval-integral-cong)
also have . . . = − (LBINT s=0 ..x. (x − s)^n)

by (subst interval-lebesgue-integral-uminus, rule refl)
finally show ?thesis by simp

qed
also have LBINT s=0 ..x. (x − s)^n = x^Suc n / Suc n
proof −

let ?F = λt. − ((x − t)^(Suc n) / Suc n)
have LBINT s=0 ..x. (x − s)^n = ?F x − ?F 0

unfolding zero-ereal-def
by (intro interval-integral-FTC-finite continuous-at-imp-continuous-on

has-real-derivative-iff-has-vector-derivative[THEN iffD1])
(auto simp del: power-Suc intro!: derivative-eq-intros simp add: add-nonneg-eq-0-iff)

THEORY “Characteristic-Functions” 234

also have . . . = x ^ (Suc n) / (Suc n) by simp
finally show ?thesis .

qed
finally show ?thesis .

qed

lemma iexp-approx1 : cmod (iexp x − (
∑

k ≤ n. (i ∗ x)^k / fact k)) ≤ |x|^(Suc
n) / fact (Suc n)
proof −

have iexp x − (
∑

k ≤ n. (i ∗ x)^k / fact k) =
((i ^ (Suc n)) / (fact n)) ∗ (CLBINT s=0 ..x. (x − s)^n ∗ (iexp s)) (is ?t1 =

?t2)
by (subst iexp-eq1 [of - n], simp add: field-simps)

then have cmod (?t1) = cmod (?t2)
by simp

also have . . . = (1 / of-nat (fact n)) ∗ cmod (CLBINT s=0 ..x. (x − s)^n ∗
(iexp s))

by (simp add: norm-mult norm-divide norm-power)
also have . . . ≤ (1 / of-nat (fact n)) ∗ |LBINT s=0 ..x. cmod ((x − s)^n ∗ (iexp

s))|
by (intro mult-left-mono interval-integral-norm2)

(auto simp: zero-ereal-def intro: interval-integrable-isCont)
also have . . . ≤ (1 / of-nat (fact n)) ∗ |LBINT s=0 ..x. |(x − s)^n||

by (simp add: norm-mult del: of-real-diff of-real-power)
also have . . . ≤ (1 / of-nat (fact n)) ∗ |x ^ (Suc n) / (Suc n)|

by (simp add: abs-LBINT-I0c-abs-power-diff)
also have 1 / real-of-nat (fact n::nat) ∗ |x ^ Suc n / real (Suc n)| =
|x| ^ Suc n / fact (Suc n)

by (simp add: abs-mult power-abs)
finally show ?thesis .

qed

lemma iexp-approx2 : cmod (iexp x − (
∑

k ≤ n. (i ∗ x)^k / fact k)) ≤ 2 ∗ |x|^n
/ fact n
proof (induction n) — really cases

case (Suc n)
have ∗:

∧
a b. interval-lebesgue-integrable lborel a b f =⇒ interval-lebesgue-integrable

lborel a b g =⇒
|LBINT s=a..b. f s| ≤ |LBINT s=a..b. g s|

if f :
∧

s. 0 ≤ f s and g:
∧

s. f s ≤ g s for f g :: - ⇒ real
using order-trans[OF f g] f g

unfolding interval-lebesgue-integral-def interval-lebesgue-integrable-def set-lebesgue-integral-def
set-integrable-def

by (auto simp: integral-nonneg-AE [OF AE-I2] intro!: integral-mono mult-mono)

have iexp x − (
∑

k ≤ Suc n. (i ∗ x)^k / fact k) =
((i ^ (Suc n)) / (fact n)) ∗ (CLBINT s=0 ..x. (x − s)^n ∗ (iexp s − 1)) (is

?t1 = ?t2)
unfolding iexp-eq2 [of x n] by (simp add: field-simps)

THEORY “Characteristic-Functions” 235

then have cmod (?t1) = cmod (?t2)
by simp

also have . . . = (1 / (fact n)) ∗ cmod (CLBINT s=0 ..x. (x − s)^n ∗ (iexp s
− 1))

by (simp add: norm-mult norm-divide norm-power)
also have . . . ≤ (1 / (fact n)) ∗ |LBINT s=0 ..x. cmod ((x − s)^n ∗ (iexp s −

1))|
by (intro mult-left-mono interval-integral-norm2)

(auto intro!: interval-integrable-isCont simp: zero-ereal-def)
also have . . . = (1 / (fact n)) ∗ |LBINT s=0 ..x. abs ((x − s)^n) ∗ cmod((iexp

s − 1))|
by (simp add: norm-mult del: of-real-diff of-real-power)

also have . . . ≤ (1 / (fact n)) ∗ |LBINT s=0 ..x. abs ((x − s)^n) ∗ 2 |
by (intro mult-left-mono ∗ order-trans [OF norm-triangle-ineq4])

(auto simp: mult-ac zero-ereal-def intro!: interval-integrable-isCont)
also have . . . = (2 / (fact n)) ∗ |x ^ (Suc n) / (Suc n)|
by (simp add: abs-LBINT-I0c-abs-power-diff abs-mult)

also have 2 / fact n ∗ |x ^ Suc n / real (Suc n)| = 2 ∗ |x| ^ Suc n / (fact (Suc
n))

by (simp add: abs-mult power-abs)
finally show ?case .

qed (insert norm-triangle-ineq4 [of iexp x 1], simp)

lemma (in real-distribution) char-approx1 :
assumes integrable-moments:

∧
k. k ≤ n =⇒ integrable M (λx. x^k)

shows cmod (char M t − (
∑

k ≤ n. ((i ∗ t)^k / fact k) ∗ expectation (λx. x^k)))
≤

(2∗|t|^n / fact n) ∗ expectation (λx. |x|^n) (is cmod (char M t − ?t1) ≤ -)
proof −

have integ-iexp: integrable M (λx. iexp (t ∗ x))
by (intro integrable-const-bound) auto

define c where [abs-def]: c k x = (i ∗ t)^k / fact k ∗ complex-of-real (x^k) for
k x

have integ-c:
∧

k. k ≤ n =⇒ integrable M (λx. c k x)
unfolding c-def by (intro integrable-mult-right integrable-of-real integrable-moments)

have k ≤ n =⇒ expectation (c k) = (i∗t) ^ k ∗ (expectation (λx. x ^ k)) / fact
k for k

unfolding c-def integral-mult-right-zero integral-complex-of-real by simp
then have norm (char M t − ?t1) = norm (char M t − (CLINT x | M . (

∑
k

≤ n. c k x)))
by (simp add: integ-c)

also have . . . = norm ((CLINT x | M . iexp (t ∗ x) − (
∑

k ≤ n. c k x)))
unfolding char-def by (subst Bochner-Integration.integral-diff [OF integ-iexp])

(auto intro!: integ-c)
also have . . . ≤ expectation (λx. cmod (iexp (t ∗ x) − (

∑
k ≤ n. c k x)))

by (intro integral-norm-bound)
also have . . . ≤ expectation (λx. 2 ∗ |t| ^ n / fact n ∗ |x| ^ n)

THEORY “Characteristic-Functions” 236

proof (rule integral-mono)
show integrable M (λx. cmod (iexp (t ∗ x) − (

∑
k≤n. c k x)))

by (intro integrable-norm Bochner-Integration.integrable-diff integ-iexp Bochner-Integration.integrable-sum
integ-c) simp

show integrable M (λx. 2 ∗ |t| ^ n / fact n ∗ |x| ^ n)
unfolding power-abs[symmetric]
by (intro integrable-mult-right integrable-abs integrable-moments) simp

show cmod (iexp (t ∗ x) − (
∑

k≤n. c k x)) ≤ 2 ∗ |t| ^ n / fact n ∗ |x| ^ n
for x

using iexp-approx2 [of t ∗ x n] by (auto simp add: abs-mult field-simps c-def)
qed
finally show ?thesis

unfolding integral-mult-right-zero .
qed

lemma (in real-distribution) char-approx2 :
assumes integrable-moments:

∧
k. k ≤ n =⇒ integrable M (λx. x ^ k)

shows cmod (char M t − (
∑

k ≤ n. ((i ∗ t)^k / fact k) ∗ expectation (λx. x^k)))
≤

(|t|^n / fact (Suc n)) ∗ expectation (λx. min (2 ∗ |x|^n ∗ Suc n) (|t| ∗ |x|^Suc
n))

(is cmod (char M t − ?t1) ≤ -)
proof −

have integ-iexp: integrable M (λx. iexp (t ∗ x))
by (intro integrable-const-bound) auto

define c where [abs-def]: c k x = (i ∗ t)^k / fact k ∗ complex-of-real (x^k) for
k x

have integ-c:
∧

k. k ≤ n =⇒ integrable M (λx. c k x)
unfolding c-def by (intro integrable-mult-right integrable-of-real integrable-moments)

have ∗: min (2 ∗ |t ∗ x|^n / fact n) (|t ∗ x|^Suc n / fact (Suc n)) =
|t|^n / fact (Suc n) ∗ min (2 ∗ |x|^n ∗ real (Suc n)) (|t| ∗ |x|^(Suc n)) for x

apply (subst mult-min-right)
apply simp
apply (rule arg-cong2 [where f=min])
apply (simp-all add: field-simps abs-mult del: fact-Suc)
apply (simp-all add: field-simps)
done

have k ≤ n =⇒ expectation (c k) = (i∗t) ^ k ∗ (expectation (λx. x ^ k)) / fact
k for k

unfolding c-def integral-mult-right-zero integral-complex-of-real by simp
then have norm (char M t − ?t1) = norm (char M t − (CLINT x | M . (

∑
k

≤ n. c k x)))
by (simp add: integ-c)

also have . . . = norm ((CLINT x | M . iexp (t ∗ x) − (
∑

k ≤ n. c k x)))
unfolding char-def by (subst Bochner-Integration.integral-diff [OF integ-iexp])

(auto intro!: integ-c)

THEORY “Characteristic-Functions” 237

also have . . . ≤ expectation (λx. cmod (iexp (t ∗ x) − (
∑

k ≤ n. c k x)))
by (rule integral-norm-bound)

also have . . . ≤ expectation (λx. min (2 ∗ |t ∗ x|^n / fact n) (|t ∗ x|^(Suc n)
/ fact (Suc n)))

(is - ≤ expectation ?f)
proof (rule integral-mono)

show integrable M (λx. cmod (iexp (t ∗ x) − (
∑

k≤n. c k x)))
by (intro integrable-norm Bochner-Integration.integrable-diff integ-iexp Bochner-Integration.integrable-sum

integ-c) simp
show integrable M ?f

by (rule Bochner-Integration.integrable-bound[where f=λx. 2 ∗ |t ∗ x| ^ n /
fact n])

(auto simp: integrable-moments power-abs[symmetric] power-mult-distrib)
show cmod (iexp (t ∗ x) − (

∑
k≤n. c k x)) ≤ ?f x for x

using iexp-approx1 [of t ∗ x n] iexp-approx2 [of t ∗ x n]
by (auto simp add: abs-mult field-simps c-def intro!: min.boundedI)

qed
also have . . . = (|t|^n / fact (Suc n)) ∗ expectation (λx. min (2 ∗ |x|^n ∗ Suc

n) (|t| ∗ |x|^Suc n))
unfolding ∗

proof (rule Bochner-Integration.integral-mult-right)
show integrable M (λx. min (2 ∗ |x| ^ n ∗ real (Suc n)) (|t| ∗ |x| ^ Suc n))
by (rule Bochner-Integration.integrable-bound[where f=λx. 2 ∗ |x| ^ n ∗ real

(Suc n)])
(auto simp: integrable-moments power-abs[symmetric] power-mult-distrib)

qed
finally show ?thesis

unfolding integral-mult-right-zero .
qed

lemma (in real-distribution) char-approx3 :
fixes t
assumes

integrable-1 : integrable M (λx. x) and
integral-1 : expectation (λx. x) = 0 and
integrable-2 : integrable M (λx. x^2) and
integral-2 : variance (λx. x) = σ2

shows cmod (char M t − (1 − t^2 ∗ σ2 / 2)) ≤
(t^2 / 6) ∗ expectation (λx. min (6 ∗ x^2) (abs t ∗ (abs x)^3))

proof −
note real-distribution.char-approx2 [of M 2 t, simplified]
have [simp]: prob UNIV = 1 by (metis prob-space space-eq-univ)
from integral-2 have [simp]: expectation (λx. x ∗ x) = σ2

by (simp add: integral-1 numeral-eq-Suc)
have 1 : k ≤ 2 =⇒ integrable M (λx. x^k) for k

using assms by (auto simp: eval-nat-numeral le-Suc-eq)
note char-approx1
note 2 = char-approx1 [of 2 t, OF 1 , simplified]
have cmod (char M t − (

∑
k≤2 . (i ∗ t) ^ k ∗ (expectation (λx. x ^ k)) / (fact

THEORY “Characteristic-Functions” 238

k))) ≤
t2 ∗ expectation (λx. min (6 ∗ x2) (|t| ∗ |x| ^ 3)) / fact (3 ::nat)

using char-approx2 [of 2 t, OF 1] by simp
also have (

∑
k≤2 . (i ∗ t) ^ k ∗ expectation (λx. x ^ k) / (fact k)) = 1 − t^2

∗ σ2 / 2
by (simp add: complex-eq-iff numeral-eq-Suc integral-1 Re-divide Im-divide)

also have fact 3 = 6 by (simp add: eval-nat-numeral)
also have t2 ∗ expectation (λx. min (6 ∗ x2) (|t| ∗ |x| ^ 3)) / 6 =

t2 / 6 ∗ expectation (λx. min (6 ∗ x2) (|t| ∗ |x| ^ 3)) by (simp add: field-simps)
finally show ?thesis .

qed

This is a more familiar textbook formulation in terms of random variables,
but we will use the previous version for the CLT.
lemma (in prob-space) char-approx3 ′:

fixes µ :: real measure and X
assumes rv-X [simp]: random-variable borel X

and [simp]: integrable M X integrable M (λx. (X x)^2) expectation X = 0
and var-X : variance X = σ2
and µ-def : µ = distr M borel X

shows cmod (char µ t − (1 − t^2 ∗ σ2 / 2)) ≤
(t^2 / 6) ∗ expectation (λx. min (6 ∗ (X x)^2) (|t| ∗ |X x |^3))

using var-X unfolding µ-def
apply (subst integral-distr [symmetric, OF rv-X], simp)
apply (intro real-distribution.char-approx3)
apply (auto simp add: integrable-distr-eq integral-distr)
done

this is the formulation in the book – in terms of a random variable *with*
the distribution, rather the distribution itself. I don’t know which is more
useful, though in principal we can go back and forth between them.
lemma (in prob-space) char-approx1 ′:

fixes µ :: real measure and X
assumes integrable-moments :

∧
k. k ≤ n =⇒ integrable M (λx. X x ^ k)

and rv-X [measurable]: random-variable borel X
and µ-distr : distr M borel X = µ

shows cmod (char µ t − (
∑

k ≤ n. ((i ∗ t)^k / fact k) ∗ expectation (λx. (X
x)^k))) ≤

(2 ∗ |t|^n / fact n) ∗ expectation (λx. |X x |^n)
unfolding µ-distr [symmetric]
apply (subst (1 2) integral-distr [symmetric, OF rv-X], simp, simp)
apply (intro real-distribution.char-approx1 [of distr M borel X n t] real-distribution-distr

rv-X)
apply (auto simp: integrable-distr-eq integrable-moments)
done

THEORY “Characteristic-Functions” 239

14.5 Calculation of the Characteristic Function of the Stan-
dard Distribution

abbreviation
std-normal-distribution ≡ density lborel std-normal-density

lemma real-dist-normal-dist: real-distribution std-normal-distribution
using prob-space-normal-density by (auto simp: real-distribution-def real-distribution-axioms-def)

lemma std-normal-distribution-even-moments:
fixes k :: nat
shows (LINT x|std-normal-distribution. x^(2 ∗ k)) = fact (2 ∗ k) / (2^k ∗ fact

k)
and integrable std-normal-distribution (λx. x^(2 ∗ k))

using integral-std-normal-moment-even[of k]
by (subst integral-density)

(auto simp: normal-density-nonneg integrable-density
intro: integrable.intros std-normal-moment-even)

lemma integrable-std-normal-distribution-moment: integrable std-normal-distribution
(λx. x^k)
by (auto simp: normal-density-nonneg integrable-std-normal-moment integrable-density)

lemma integral-std-normal-distribution-moment-odd:
odd k =⇒ integralL std-normal-distribution (λx. x^k) = 0
using integral-std-normal-moment-odd[of (k − 1) div 2]
by (auto simp: integral-density normal-density-nonneg elim: oddE)

lemma std-normal-distribution-even-moments-abs:
fixes k :: nat
shows (LINT x|std-normal-distribution. |x|^(2 ∗ k)) = fact (2 ∗ k) / (2^k ∗ fact

k)
using integral-std-normal-moment-even[of k]
by (subst integral-density) (auto simp: normal-density-nonneg power-even-abs)

lemma std-normal-distribution-odd-moments-abs:
fixes k :: nat
shows (LINT x|std-normal-distribution. |x|^(2 ∗ k + 1)) = sqrt (2 / pi) ∗ 2 ^

k ∗ fact k
using integral-std-normal-moment-abs-odd[of k]
by (subst integral-density) (auto simp: normal-density-nonneg)

theorem char-std-normal-distribution:
char std-normal-distribution = (λt. complex-of-real (exp (− (t^2) / 2)))

proof (intro ext LIMSEQ-unique)
fix t :: real
let ?f ′ = λk. (i ∗ t)^k / fact k ∗ (LINT x | std-normal-distribution. x^k)
let ?f = λn. (

∑
k ≤ n. ?f ′ k)

show ?f −−−−→ exp (−(t^2) / 2)

THEORY “Characteristic-Functions” 240

proof (rule limseq-even-odd)
have (i ∗ complex-of-real t) ^ (2 ∗ a) / (2 ^ a ∗ fact a) = (− ((complex-of-real

t)2 / 2)) ^ a / fact a for a
by (subst power-mult) (simp add: field-simps uminus-power-if power-mult)

then have ∗: ?f (2 ∗ n) = complex-of-real (
∑

k < Suc n. (1 / fact k) ∗ (−
(t^2) / 2)^k) for n :: nat

unfolding of-real-sum
by (intro sum.reindex-bij-witness-not-neutral[symmetric, where

i=λn. n div 2 and j=λn. 2 ∗ n and T ′={i. i ≤ 2 ∗ n ∧ odd i} and
S ′={}])

(auto simp: integral-std-normal-distribution-moment-odd std-normal-distribution-even-moments)
show (λn. ?f (2 ∗ n)) −−−−→ exp (−(t^2) / 2)

unfolding ∗ using exp-converges[where ′a=real]
by (intro tendsto-of-real LIMSEQ-Suc) (auto simp: inverse-eq-divide sums-def

[symmetric])
have ∗∗: ?f (2 ∗ n + 1) = ?f (2 ∗ n) for n
proof −

have ?f (2 ∗ n + 1) = ?f (2 ∗ n) + ?f ′ (2 ∗ n + 1)
by simp

also have ?f ′ (2 ∗ n + 1) = 0
by (subst integral-std-normal-distribution-moment-odd) simp-all

finally show ?f (2 ∗ n + 1) = ?f (2 ∗ n)
by simp

qed
show (λn. ?f (2 ∗ n + 1)) −−−−→ exp (−(t^2) / 2)

unfolding ∗∗ by fact
qed

have ∗∗: (λn. x ^ n / fact n) −−−−→ 0 for x :: real
using summable-LIMSEQ-zero [OF summable-exp] by (auto simp add: in-

verse-eq-divide)

let ?F = λn. 2 ∗ |t| ^ n / fact n ∗ (LINT x|std-normal-distribution. |x| ^ n)

show ?f −−−−→ char std-normal-distribution t
proof (rule metric-tendsto-imp-tendsto[OF limseq-even-odd])

show (λn. ?F (2 ∗ n)) −−−−→ 0
proof (rule Lim-transform-eventually)

show ∀ F n in sequentially. 2 ∗ ((t^2 / 2)^n / fact n) = ?F (2 ∗ n)
unfolding std-normal-distribution-even-moments-abs by (simp add: power-mult

power-divide)
qed (intro tendsto-mult-right-zero ∗∗)

have ∗: ?F (2 ∗ n + 1) = (2 ∗ |t| ∗ sqrt (2 / pi)) ∗ ((2 ∗ t^2)^n ∗ fact n /
fact (2 ∗ n + 1)) for n

unfolding std-normal-distribution-odd-moments-abs
by (simp add: field-simps power-mult[symmetric] power-even-abs)

have norm ((2 ∗ t2) ^ n ∗ fact n / fact (2 ∗ n + 1)) ≤ (2 ∗ t2) ^ n / fact n
for n

THEORY “Helly-Selection” 241

using mult-mono[OF - square-fact-le-2-fact, of 1 1 + 2 ∗ real n n]
by (auto simp add: divide-simps intro!: mult-left-mono)

then show (λn. ?F (2 ∗ n + 1)) −−−−→ 0
unfolding ∗ by (intro tendsto-mult-right-zero Lim-null-comparison [OF - ∗∗

[of 2 ∗ t2]]) auto

show ∀ F n in sequentially. dist (?f n) (char std-normal-distribution t) ≤ dist
(?F n) 0

using real-distribution.char-approx1 [OF real-dist-normal-dist integrable-std-normal-distribution-moment]
by (auto simp: dist-norm integral-nonneg-AE norm-minus-commute)

qed
qed

end

15 Helly’s selection theorem

The set of bounded, monotone, right continuous functions is sequentially
compact
theory Helly-Selection

imports HOL−Library.Diagonal-Subsequence Weak-Convergence
begin

lemma minus-one-less: x − 1 < (x::real)
by simp

theorem Helly-selection:
fixes f :: nat ⇒ real ⇒ real
assumes rcont:

∧
n x. continuous (at-right x) (f n)

assumes mono:
∧

n. mono (f n)
assumes bdd:

∧
n x. |f n x| ≤ M

shows ∃ s. strict-mono (s::nat ⇒ nat) ∧ (∃F . (∀ x. continuous (at-right x) F) ∧
mono F ∧ (∀ x. |F x| ≤ M) ∧

(∀ x. continuous (at x) F −→ (λn. f (s n) x) −−−−→ F x))
proof −

obtain m :: real ⇒ nat where bij-betw m � UNIV
using countable-rat Rats-infinite by (erule countableE-infinite)

then obtain r :: nat ⇒ real where bij: bij-betw r UNIV �
using bij-betw-inv by blast

have dense-r :
∧

x y. x < y =⇒ ∃n. x < r n ∧ r n < y
by (metis Rats-dense-in-real bij f-the-inv-into-f bij-betw-def)

let ?P = λn. λs. convergent (λk. f (s k) (r n))
interpret nat: subseqs ?P
proof (unfold convergent-def , unfold subseqs-def , auto)

fix n :: nat and s :: nat ⇒ nat assume s: strict-mono s
have bounded {−M ..M}

THEORY “Helly-Selection” 242

using bounded-closed-interval by auto
moreover have

∧
k. f (s k) (r n) ∈ {−M ..M}

using bdd by (simp add: abs-le-iff minus-le-iff)
ultimately have ∃ l s ′. strict-mono s ′ ∧ ((λk. f (s k) (r n)) ◦ s ′) −−−−→ l

using compact-Icc compact-imp-seq-compact seq-compactE by metis
thus ∃ s ′. strict-mono (s ′::nat⇒nat) ∧ (∃ l. (λk. f (s (s ′ k)) (r n)) −−−−→ l)

by (auto simp: comp-def)
qed
define d where d = nat.diagseq
have subseq: strict-mono d

unfolding d-def using nat.subseq-diagseq by auto
have rat-cnv: ?P n d for n
proof −

have Pn-seqseq: ?P n (nat.seqseq (Suc n))
by (rule nat.seqseq-holds)

have 1 : (λk. f ((nat.seqseq (Suc n) ◦ (λk. nat.fold-reduce (Suc n) k
(Suc n + k))) k) (r n)) = (λk. f (nat.seqseq (Suc n) k) (r n)) ◦
(λk. nat.fold-reduce (Suc n) k (Suc n + k))
by auto

have 2 : ?P n (d ◦ ((+) (Suc n)))
unfolding d-def nat.diagseq-seqseq 1
by (intro convergent-subseq-convergent Pn-seqseq nat.subseq-diagonal-rest)

then obtain L where 3 : (λna. f (d (na + Suc n)) (r n)) −−−−→ L
by (auto simp: add.commute dest: convergentD)

then have (λk. f (d k) (r n)) −−−−→ L
by (rule LIMSEQ-offset)

then show ?thesis
by (auto simp: convergent-def)

qed
let ?f = λn. λk. f (d k) (r n)
have lim-f : ?f n −−−−→ lim (?f n) for n

using rat-cnv convergent-LIMSEQ-iff by auto
have lim-bdd: lim (?f n) ∈ {−M ..M} for n
proof −

have closed {−M ..M} using closed-real-atLeastAtMost by auto
hence (∀ i. ?f n i ∈ {−M ..M}) ∧ ?f n −−−−→ lim (?f n) −→ lim (?f n) ∈

{−M ..M}
unfolding closed-sequential-limits by (drule-tac x = λk. f (d k) (r n) in spec)

blast
moreover have ∀ i. ?f n i ∈ {−M ..M}

using bdd by (simp add: abs-le-iff minus-le-iff)
ultimately show lim (?f n) ∈ {−M ..M}

using lim-f by auto
qed
then have limset-bdd:

∧
x. {lim (?f n) |n. x < r n} ⊆ {−M ..M}

by auto
then have bdd-below: bdd-below {lim (?f n) |n. x < r n} for x

by (metis (mono-tags) bdd-below-Icc bdd-below-mono)
have r-unbdd: ∃n. x < r n for x

THEORY “Helly-Selection” 243

using dense-r [OF less-add-one, of x] by auto
then have nonempty: {lim (?f n) |n. x < r n} 6= {} for x

by auto

define F where F x = Inf {lim (?f n) |n. x < r n} for x
have F-eq: ereal (F x) = (INF n∈{n. x < r n}. ereal (lim (?f n))) for x

unfolding F-def by (subst ereal-Inf ′[OF bdd-below nonempty]) (simp add:
setcompr-eq-image image-comp)

have mono-F : mono F
using nonempty by (auto intro!: cInf-superset-mono simp: F-def bdd-below

mono-def)
moreover have

∧
x. continuous (at-right x) F

unfolding continuous-within order-tendsto-iff eventually-at-right[OF less-add-one]
proof safe

show F x < u =⇒ ∃ b>x. ∀ y>x. y < b −→ F y < u for x u
unfolding F-def cInf-less-iff [OF nonempty bdd-below] by auto

next
show ∃ b>x. ∀ y>x. y < b −→ l < F y if l: l < F x for x l
using less-le-trans[OF l mono-F [THEN monoD, of x]] by (auto intro: less-add-one)

qed
moreover
{ fix x

have F x ∈ {−M ..M}
unfolding F-def using limset-bdd bdd-below r-unbdd by (intro closed-subset-contains-Inf)

auto
then have |F x| ≤ M by auto }

moreover have (λn. f (d n) x) −−−−→ F x if cts: continuous (at x) F for x
proof (rule limsup-le-liminf-real)

show limsup (λn. f (d n) x) ≤ F x
proof (rule tendsto-lowerbound)

show (F −−−→ ereal (F x)) (at-right x)
using cts unfolding continuous-at-split by (auto simp: continuous-within)

show ∀ F i in at-right x. limsup (λn. f (d n) x) ≤ F i
unfolding eventually-at-right[OF less-add-one]

proof (rule, rule, rule less-add-one, safe)
fix y assume y: x < y
with dense-r obtain N where x < r N r N < y by auto
have ∗: y < r n ′ =⇒ lim (?f N) ≤ lim (?f n ′) for n ′

using ‹r N < y› by (intro LIMSEQ-le[OF lim-f lim-f]) (auto intro!:
mono[THEN monoD])

have limsup (λn. f (d n) x) ≤ limsup (?f N)
using ‹x < r N › by (auto intro!: Limsup-mono always-eventually

mono[THEN monoD])
also have . . . = lim (λn. ereal (?f N n))

using rat-cnv[of N] by (force intro!: convergent-limsup-cl simp: conver-
gent-def)

also have . . . ≤ F y
by (auto intro!: INF-greatest ∗ simp: convergent-real-imp-convergent-ereal

rat-cnv F-eq)

THEORY “Helly-Selection” 244

finally show limsup (λn. f (d n) x) ≤ F y .
qed

qed simp
show F x ≤ liminf (λn. f (d n) x)
proof (rule tendsto-upperbound)

show (F −−−→ ereal (F x)) (at-left x)
using cts unfolding continuous-at-split by (auto simp: continuous-within)

show ∀ F i in at-left x. F i ≤ liminf (λn. f (d n) x)
unfolding eventually-at-left[OF minus-one-less]

proof (rule, rule, rule minus-one-less, safe)
fix y assume y: y < x
with dense-r obtain N where y < r N r N < x by auto
have F y ≤ liminf (?f N)
using ‹y < r N › by (auto simp: F-eq convergent-real-imp-convergent-ereal

rat-cnv convergent-liminf-cl intro!: INF-lower2)
also have . . . ≤ liminf (λn. f (d n) x)

using ‹r N < x› by (auto intro!: Liminf-mono monoD[OF mono] al-
ways-eventually)

finally show F y ≤ liminf (λn. f (d n) x) .
qed

qed simp
qed
ultimately show ?thesis using subseq by auto

qed

definition
tight :: (nat ⇒ real measure) ⇒ bool

where
tight µ ≡ (∀n. real-distribution (µ n)) ∧ (∀ (ε::real)>0 . ∃ a b::real. a < b ∧ (∀n.

measure (µ n) {a<..b} > 1 − ε))

theorem tight-imp-convergent-subsubsequence:
assumes µ: tight µ strict-mono s
shows ∃ r M . strict-mono (r :: nat ⇒ nat) ∧ real-distribution M ∧ weak-conv-m

(µ ◦ s ◦ r) M
proof −

define f where f k = cdf (µ (s k)) for k
interpret µ: real-distribution µ k for k

using µ unfolding tight-def by auto

have rcont:
∧

x. continuous (at-right x) (f k)
and mono: mono (f k)
and top: (f k −−−→ 1) at-top
and bot: (f k −−−→ 0) at-bot for k
unfolding f-def mono-def

using µ.cdf-nondecreasing µ.cdf-is-right-cont µ.cdf-lim-at-top-prob µ.cdf-lim-at-bot

THEORY “Helly-Selection” 245

by auto
have bdd: |f k x| ≤ 1 for k x
by (auto simp add: abs-le-iff minus-le-iff f-def µ.cdf-nonneg µ.cdf-bounded-prob)

from Helly-selection[OF rcont mono bdd, of λx. x] obtain r F
where F : strict-mono r

∧
x. continuous (at-right x) F mono F

∧
x. |F x| ≤ 1

and lim-F :
∧

x. continuous (at x) F =⇒ (λn. f (r n) x) −−−−→ F x
by blast

have 0 ≤ f n x for n x
unfolding f-def by (rule µ.cdf-nonneg)

have F-nonneg: 0 ≤ F x for x
proof −

obtain y where y < x isCont F y
using open-minus-countable[OF mono-ctble-discont[OF ‹mono F›], of {..<

x}] by auto
then have 0 ≤ F y

by (intro LIMSEQ-le-const[OF lim-F]) (auto simp: f-def µ.cdf-nonneg)
also have . . . ≤ F x

using ‹y < x› by (auto intro!: monoD[OF ‹mono F›])
finally show 0 ≤ F x .

qed

have Fab: ∃ a b. (∀ x≥b. F x ≥ 1 − ε) ∧ (∀ x≤a. F x ≤ ε) if ε: 0 < ε for ε
proof auto

obtain a ′ b ′ where a ′b ′: a ′ < b ′ ∧k. measure (µ k) {a ′<..b ′} > 1 − ε
using ε µ by (auto simp: tight-def)

obtain a where a: a < a ′ isCont F a
using open-minus-countable[OF mono-ctble-discont[OF ‹mono F›], of {..<

a ′}] by auto
obtain b where b: b ′ < b isCont F b

using open-minus-countable[OF mono-ctble-discont[OF ‹mono F›], of {b ′

<..}] by auto
have a < b

using a b a ′b ′ by simp

let ?µ = λk. measure (µ (s (r k)))
have ab: ?µ k {a<..b} > 1 − ε for k
proof −

have ?µ k {a ′<..b ′} ≤ ?µ k {a<..b}
using a b by (intro µ.finite-measure-mono) auto

then show ?thesis
using a ′b ′(2) by (metis less-eq-real-def less-trans)

qed

have (λk. ?µ k {..b}) −−−−→ F b
using b(2) lim-F unfolding f-def cdf-def o-def by auto

then have 1 − ε ≤ F b
proof (rule tendsto-lowerbound, intro always-eventually allI)

THEORY “Helly-Selection” 246

fix k
have 1 − ε < ?µ k {a<..b}

using ab by auto
also have . . . ≤ ?µ k {..b}

by (auto intro!: µ.finite-measure-mono)
finally show 1 − ε ≤ ?µ k {..b}

by (rule less-imp-le)
qed (rule sequentially-bot)
then show ∃ b. ∀ x≥b. 1 − ε ≤ F x

using F unfolding mono-def by (metis order .trans)

have (λk. ?µ k {..a}) −−−−→ F a
using a(2) lim-F unfolding f-def cdf-def o-def by auto

then have Fa: F a ≤ ε
proof (rule tendsto-upperbound, intro always-eventually allI)

fix k
have ?µ k {..a} + ?µ k {a<..b} ≤ 1

by (subst µ.finite-measure-Union[symmetric]) auto
then show ?µ k {..a} ≤ ε

using ab[of k] by simp
qed (rule sequentially-bot)
then show ∃ a. ∀ x≤a. F x ≤ ε

using F unfolding mono-def by (metis order .trans)
qed

have (F −−−→ 1) at-top
proof (rule order-tendstoI)

show 1 < y =⇒ ∀ F x in at-top. F x < y for y
using ‹

∧
x. |F x| ≤ 1 › ‹

∧
x. 0 ≤ F x› by (auto intro: le-less-trans al-

ways-eventually)
fix y :: real assume y < 1
then obtain z where y < z z < 1

using dense[of y 1] by auto
with Fab[of 1 − z] show ∀ F x in at-top. y < F x

by (auto simp: eventually-at-top-linorder intro: less-le-trans)
qed
moreover
have (F −−−→ 0) at-bot
proof (rule order-tendstoI)

show y < 0 =⇒ ∀ F x in at-bot. y < F x for y
using ‹

∧
x. 0 ≤ F x› by (auto intro: less-le-trans always-eventually)

fix y :: real assume 0 < y
then obtain z where 0 < z z < y

using dense[of 0 y] by auto
with Fab[of z] show ∀ F x in at-bot. F x < y

by (auto simp: eventually-at-bot-linorder intro: le-less-trans)
qed
ultimately have M : real-distribution (interval-measure F) cdf (interval-measure

F) = F

THEORY “Sinc-Integral” 247

using F by (auto intro!: real-distribution-interval-measure cdf-interval-measure
simp: mono-def)
with lim-F LIMSEQ-subseq-LIMSEQ M have weak-conv-m (µ ◦ s ◦ r) (interval-measure

F)
by (auto simp: weak-conv-def weak-conv-m-def f-def comp-def)

then show ∃ r M . strict-mono (r :: nat ⇒ nat) ∧ (real-distribution M ∧ weak-conv-m
(µ ◦ s ◦ r) M)

using F M by auto
qed

corollary tight-subseq-weak-converge:
fixes µ :: nat ⇒ real measure and M :: real measure
assumes

∧
n. real-distribution (µ n) real-distribution M and tight: tight µ and

subseq:
∧

s ν. strict-mono s =⇒ real-distribution ν =⇒ weak-conv-m (µ ◦ s) ν
=⇒ weak-conv-m (µ ◦ s) M

shows weak-conv-m µ M
proof (rule ccontr)

define f where f n = cdf (µ n) for n
define F where F = cdf M

assume ¬ weak-conv-m µ M
then obtain x where x: isCont F x ¬ (λn. f n x) −−−−→ F x

by (auto simp: weak-conv-m-def weak-conv-def f-def F-def)
then obtain ε where ε > 0 and infinite {n. ¬ dist (f n x) (F x) < ε}
by (auto simp: tendsto-iff not-eventually INFM-iff-infinite cofinite-eq-sequentially[symmetric])
then obtain s :: nat ⇒ nat where s:

∧
n. ¬ dist (f (s n) x) (F x) < ε and

strict-mono s
using enumerate-in-set enumerate-mono by (fastforce simp: strict-mono-def)

then obtain r ν where r : strict-mono r real-distribution ν weak-conv-m (µ ◦ s
◦ r) ν

using tight-imp-convergent-subsubsequence[OF tight] by blast
then have weak-conv-m (µ ◦ (s ◦ r)) M
using ‹strict-mono s› r by (intro subseq strict-mono-o) (auto simp: comp-assoc)

then have (λn. f (s (r n)) x) −−−−→ F x
using x by (auto simp: weak-conv-m-def weak-conv-def F-def f-def)

then show False
using s ‹ε > 0 › by (auto dest: tendstoD)

qed

end

16 Integral of sinc
theory Sinc-Integral

imports Distributions
begin

THEORY “Sinc-Integral” 248

16.1 Various preparatory integrals

Naming convention The theorem name consists of the following parts:

• Kind of integral: has-bochner-integral / integrable / LBINT

• Interval: Interval (0 / infinity / open / closed) (infinity / open / closed)

• Name of the occurring constants: power, exp, m (for minus), scale, sin,
. . .

lemma has-bochner-integral-I0i-power-exp-m ′:
has-bochner-integral lborel (λx. x^k ∗ exp (−x) ∗ indicator {0 ..} x::real) (fact k)
using nn-intergal-power-times-exp-Ici[of k]
by (intro has-bochner-integral-nn-integral)

(auto simp: nn-integral-set-ennreal split: split-indicator)

lemma has-bochner-integral-I0i-power-exp-m:
has-bochner-integral lborel (λx. x^k ∗ exp (−x) ∗ indicator {0 <..} x::real) (fact

k)
using AE-lborel-singleton[of 0]
by (intro has-bochner-integral-cong-AE [THEN iffD1 , OF - - - has-bochner-integral-I0i-power-exp-m ′])

(auto split: split-indicator)

lemma integrable-I0i-exp-mscale: 0 < (u::real) =⇒ set-integrable lborel {0 <..}
(λx. exp (−(x ∗ u)))

using lborel-integrable-real-affine-iff [of u λx. indicator {0 <..} x ∗R exp (− x)
0]

has-bochner-integral-I0i-power-exp-m[of 0]
by (simp add: indicator-def zero-less-mult-iff mult-ac integrable.intros set-integrable-def)

lemma LBINT-I0i-exp-mscale: 0 < (u::real) =⇒ LBINT x=0 ..∞. exp (−(x ∗ u))
= 1 / u

using lborel-integral-real-affine[of u λx. indicator {0<..} x ∗R exp (− x) 0]
has-bochner-integral-I0i-power-exp-m[of 0]

by (auto simp: indicator-def zero-less-mult-iff interval-lebesgue-integral-0-infty
set-lebesgue-integral-def field-simps

dest!: has-bochner-integral-integral-eq)

lemma LBINT-I0c-exp-mscale-sin:
LBINT x=0 ..t. exp (−(u ∗ x)) ∗ sin x =
(1 / (1 + u^2)) ∗ (1 − exp (−(u ∗ t)) ∗ (u ∗ sin t + cos t)) (is - = ?F t)

unfolding zero-ereal-def
proof (subst interval-integral-FTC-finite)

show (?F has-vector-derivative exp (− (u ∗ x)) ∗ sin x) (at x within {min 0
t..max 0 t}) for x

by (auto intro!: derivative-eq-intros
simp: has-real-derivative-iff-has-vector-derivative[symmetric] power2-eq-square)

(simp-all add: field-simps add-nonneg-eq-0-iff)

THEORY “Sinc-Integral” 249

qed (auto intro: continuous-at-imp-continuous-on)

lemma LBINT-I0i-exp-mscale-sin:
assumes 0 < x
shows LBINT u=0 ..∞. |exp (−u ∗ x) ∗ sin x| = |sin x| / x

proof (subst interval-integral-FTC-nonneg)
let ?F = λu. 1 / x ∗ (1 − exp (− u ∗ x)) ∗ |sin x|
show

∧
t. (?F has-real-derivative |exp (− t ∗ x) ∗ sin x|) (at t)

using ‹0 < x› by (auto intro!: derivative-eq-intros simp: abs-mult)
show ((?F ◦ real-of-ereal) −−−→ 0) (at-right 0)

using ‹0 < x› by (auto simp: zero-ereal-def ereal-tendsto-simps intro!: tend-
sto-eq-intros)

have ∗: ((λt. exp (− t ∗ x)) −−−→ 0) at-top
using ‹0 < x›

by (auto intro!: exp-at-bot[THEN filterlim-compose] filterlim-tendsto-pos-mult-at-top
filterlim-ident

simp: filterlim-uminus-at-bot mult.commute[of - x])
show ((?F ◦ real-of-ereal) −−−→ |sin x| / x) (at-left ∞)

using ‹0 < x› unfolding ereal-tendsto-simps
by (intro filterlim-compose[OF - ∗]) (auto intro!: tendsto-eq-intros filterlim-ident)

qed auto

lemma
shows integrable-inverse-1-plus-square:

set-integrable lborel (einterval (−∞) ∞) (λx. inverse (1 + x^2))
and LBINT-inverse-1-plus-square:

LBINT x=−∞..∞. inverse (1 + x^2) = pi
proof −

have 1 : − (pi / 2) < x =⇒ x ∗ 2 < pi =⇒ (tan has-real-derivative 1 + (tan
x)2) (at x) for x

using cos-gt-zero-pi[of x] by (subst tan-sec) (auto intro!: DERIV-tan simp:
power-inverse)

have 2 : − (pi / 2) < x =⇒ x ∗ 2 < pi =⇒ isCont (λx. 1 + (tan x)2) x for x
using cos-gt-zero-pi[of x] by auto

have 3 : [[− (pi / 2) < x; x ∗ 2 < pi]] =⇒ isCont (λx. inverse (1 + x2)) (tan
x) for x

by (rule continuous-intros | simp add: add-nonneg-eq-0-iff)+
show LBINT x=−∞..∞. inverse (1 + x^2) = pi

by (subst interval-integral-substitution-nonneg[of −pi/2 pi/2 tan λx. 1 + (tan
x)^2])

(auto intro: derivative-eq-intros 1 2 3 filterlim-tan-at-right
simp add: ereal-tendsto-simps filterlim-tan-at-left add-nonneg-eq-0-iff

set-integrable-def)
show set-integrable lborel (einterval (−∞) ∞) (λx. inverse (1 + x^2))

by (subst interval-integral-substitution-nonneg[of −pi/2 pi/2 tan λx. 1 + (tan
x)^2])

(auto intro: derivative-eq-intros 1 2 3 filterlim-tan-at-right
simp add: ereal-tendsto-simps filterlim-tan-at-left add-nonneg-eq-0-iff

set-integrable-def)

THEORY “Sinc-Integral” 250

qed

lemma
shows integrable-I0i-1-div-plus-square:

interval-lebesgue-integrable lborel 0 ∞ (λx. 1 / (1 + x^2))
and LBINT-I0i-1-div-plus-square:

LBINT x=0 ..∞. 1 / (1 + x^2) = pi / 2
proof −

have 1 : 0 < x =⇒ x ∗ 2 < pi =⇒ (tan has-real-derivative 1 + (tan x)2) (at x)
for x

using cos-gt-zero-pi[of x] by (subst tan-sec) (auto intro!: DERIV-tan simp:
power-inverse)

have 2 : 0 < x =⇒ x ∗ 2 < pi =⇒ isCont (λx. 1 + (tan x)2) x for x
using cos-gt-zero-pi[of x] by auto

show LBINT x=0 ..∞. 1 / (1 + x^2) = pi / 2
by (subst interval-integral-substitution-nonneg[of 0 pi/2 tan λx. 1 + (tan x)^2])

(auto intro: derivative-eq-intros 1 2 tendsto-eq-intros
simp add: ereal-tendsto-simps filterlim-tan-at-left zero-ereal-def add-nonneg-eq-0-iff

set-integrable-def)
show interval-lebesgue-integrable lborel 0 ∞ (λx. 1 / (1 + x^2))

unfolding interval-lebesgue-integrable-def
by (subst interval-integral-substitution-nonneg[of 0 pi/2 tan λx. 1 + (tan x)^2])

(auto intro: derivative-eq-intros 1 2 tendsto-eq-intros
simp add: ereal-tendsto-simps filterlim-tan-at-left zero-ereal-def add-nonneg-eq-0-iff

set-integrable-def)
qed

17 The sinc function, and the sine integral (Si)
abbreviation sinc :: real ⇒ real where

sinc ≡ (λx. if x = 0 then 1 else sin x / x)

lemma sinc-at-0 : ((λx. sin x / x::real) −−−→ 1) (at 0)
using DERIV-sin [of 0] by (auto simp add: has-field-derivative-def field-has-derivative-at)

lemma isCont-sinc: isCont sinc x
proof cases

assume x = 0 then show ?thesis
using LIM-equal [where g = λx. sin x / x and a=0 and f=sinc and l=1]
by (auto simp: isCont-def sinc-at-0)

next
assume x 6= 0 show ?thesis

by (rule continuous-transform-within [where δ = abs x and f = λx. sin x /
x])

(auto simp add: dist-real-def ‹x 6= 0 ›)
qed

lemma continuous-on-sinc[continuous-intros]:
continuous-on S f =⇒ continuous-on S (λx. sinc (f x))

THEORY “Sinc-Integral” 251

using continuous-on-compose[of S f sinc, OF - continuous-at-imp-continuous-on]
by (auto simp: isCont-sinc)

lemma borel-measurable-sinc[measurable]: sinc ∈ borel-measurable borel
by (intro borel-measurable-continuous-onI continuous-at-imp-continuous-on ballI

isCont-sinc)

lemma sinc-AE : AE x in lborel. sin x / x = sinc x
by (rule AE-I [where N = {0}], auto)

definition Si :: real ⇒ real where Si t ≡ LBINT x=0 ..t. sin x / x

lemma sinc-neg [simp]: sinc (− x) = sinc x
by auto

lemma Si-alt-def : Si t = LBINT x=0 ..t. sinc x
proof cases

assume 0 ≤ t then show ?thesis
using AE-lborel-singleton[of 0]
by (auto simp: Si-def intro!: interval-lebesgue-integral-cong-AE)

next
assume ¬ 0 ≤ t then show ?thesis

unfolding Si-def using AE-lborel-singleton[of 0]
by (subst (1 2) interval-integral-endpoints-reverse)

(auto simp: Si-def intro!: interval-lebesgue-integral-cong-AE)
qed

lemma Si-neg:
assumes T ≥ 0 shows Si (− T) = − Si T

proof −
have LBINT x=ereal 0 ..T . −1 ∗R sinc (− x) = LBINT y= ereal (− 0)..ereal

(− T). sinc y
by (rule interval-integral-substitution-finite [OF assms])

(auto intro: derivative-intros continuous-at-imp-continuous-on isCont-sinc)
also have (LBINT x=ereal 0 ..T . −1 ∗R sinc (− x)) = −(LBINT x=ereal 0 ..T .

sinc x)
by (subst sinc-neg) (simp-all add: interval-lebesgue-integral-uminus)

finally have ∗: −(LBINT x=ereal 0 ..T . sinc x) = LBINT y= ereal 0 ..ereal (−
T). sinc y

by simp
show ?thesis

using assms unfolding Si-alt-def
by (subst zero-ereal-def)+ (auto simp add: ∗ [symmetric])

qed

lemma integrable-sinc ′:
interval-lebesgue-integrable lborel (ereal 0) (ereal T) (λt. sin (t ∗ ϑ) / t)

proof −

THEORY “Sinc-Integral” 252

have ∗: interval-lebesgue-integrable lborel (ereal 0) (ereal T) (λt. ϑ ∗ sinc (t ∗
ϑ))

by (intro interval-lebesgue-integrable-mult-right interval-integrable-isCont con-
tinuous-within-compose3 [OF isCont-sinc])

auto
have 0 /∈ einterval (min (ereal 0) (ereal T)) (max (ereal 0) (ereal T))

by (smt (verit, best) einterval-iff max-def min-def-raw order-less-le)
then show ?thesis

by (intro interval-lebesgue-integrable-cong-AE [THEN iffD1 , OF - - - ∗]) auto
qed

lemma DERIV-Si: (Si has-real-derivative sinc x) (at x)
proof −

have (at x within {min 0 (x − 1)..max 0 (x + 1)}) = at x
by (intro at-within-interior) auto

moreover have min 0 (x − 1) ≤ x x ≤ max 0 (x + 1)
by auto

ultimately show ?thesis
using interval-integral-FTC2 [of min 0 (x − 1) 0 max 0 (x + 1) sinc x]
by (auto simp: continuous-at-imp-continuous-on isCont-sinc Si-alt-def [abs-def]

zero-ereal-def
has-real-derivative-iff-has-vector-derivative

split del: if-split)
qed

lemma isCont-Si: isCont Si x
using DERIV-Si by (rule DERIV-isCont)

lemma borel-measurable-Si[measurable]: Si ∈ borel-measurable borel
by (auto intro: isCont-Si continuous-at-imp-continuous-on borel-measurable-continuous-onI)

lemma Si-at-top-LBINT :
((λt. (LBINT x=0 ..∞. exp (−(x ∗ t)) ∗ (x ∗ sin t + cos t) / (1 + x^2))) −−−→

0) at-top
proof −

let ?F = λx t. exp (− (x ∗ t)) ∗ (x ∗ sin t + cos t) / (1 + x2) :: real
have int: set-integrable lborel {0<..} (λx. exp (− x) ∗ (x + 1) :: real)

unfolding distrib-left
using has-bochner-integral-I0i-power-exp-m[of 0] has-bochner-integral-I0i-power-exp-m[of

1]
by (intro set-integral-add) (auto dest!: integrable.intros simp: ac-simps set-integrable-def)

have ((λt::real. LBINT x:{0<..}. ?F x t) −−−→ (LBINT x::real:{0<..}. 0)) at-top
unfolding set-lebesgue-integral-def

proof (rule integral-dominated-convergence-at-top[OF - - int [unfolded set-integrable-def]],

simp-all del: abs-divide split: split-indicator)
have ∗: 0 < x =⇒ |x ∗ sin t + cos t| / (1 + x2) ≤ (x ∗ 1 + 1) / 1 for x t ::

THEORY “Sinc-Integral” 253

real
by (intro frac-le abs-triangle-ineq[THEN order-trans] add-mono)

(auto simp add: abs-mult simp del: mult-1-right intro!: mult-mono)
then have 1 ≤ t =⇒ 0 < x =⇒ |?F x t| ≤ exp (− x) ∗ (x + 1) for x t :: real

by (auto simp add: abs-mult times-divide-eq-right[symmetric] simp del:
times-divide-eq-right

intro!: mult-mono)
then show ∀ F i in at-top. AE x in lborel. 0 < x −→ |?F x i| ≤ exp (− x) ∗

(x + 1)
by (auto intro: eventually-mono eventually-ge-at-top[of 1 ::real])

show AE x in lborel. 0 < x −→ (?F x −−−→ 0) at-top
proof (intro always-eventually impI allI)

fix x :: real assume 0 < x
show ((λt. exp (− (x ∗ t)) ∗ (x ∗ sin t + cos t) / (1 + x2)) −−−→ 0) at-top
proof (rule Lim-null-comparison)

show ∀ F t in at-top. norm (?F x t) ≤ exp (− (x ∗ t)) ∗ (x + 1)
using eventually-ge-at-top[of 1 ::real] ∗ ‹0 < x›

by (auto simp add: abs-mult times-divide-eq-right[symmetric] simp del:
times-divide-eq-right

intro!: mult-mono elim: eventually-mono)
show ((λt. exp (− (x ∗ t)) ∗ (x + 1)) −−−→ 0) at-top

by (auto simp: filterlim-uminus-at-top [symmetric]
intro!: filterlim-tendsto-pos-mult-at-top[OF tendsto-const] ‹0<x›

filterlim-ident
tendsto-mult-left-zero filterlim-compose[OF exp-at-bot])

qed
qed

qed
then show ((λt. (LBINT x=0 ..∞. exp (−(x ∗ t)) ∗ (x ∗ sin t + cos t) / (1 +

x^2))) −−−→ 0) at-top
by (simp add: interval-lebesgue-integral-0-infty set-lebesgue-integral-def)

qed

lemma Si-at-top-integrable:
assumes t ≥ 0
shows interval-lebesgue-integrable lborel 0 ∞ (λx. exp (− (x ∗ t)) ∗ (x ∗ sin t +

cos t) / (1 + x2))
using ‹0 ≤ t› unfolding le-less

proof
assume 0 = t then show ?thesis

using integrable-I0i-1-div-plus-square by simp
next

assume [arith]: 0 < t
have ∗: 0 ≤ a =⇒ 0 < x =⇒ a / (1 + x2) ≤ a for a x :: real

using zero-le-power2 [of x, arith] using divide-left-mono[of 1 1+x2 a] by auto
have set-integrable lborel {0<..} (λx. (exp (− x) ∗ x) ∗ (sin t/t) + exp (− x) ∗

cos t)
using has-bochner-integral-I0i-power-exp-m[of 0] has-bochner-integral-I0i-power-exp-m[of

1]

THEORY “Sinc-Integral” 254

by (intro set-integral-add set-integrable-mult-left)
(auto dest!: integrable.intros simp: ac-simps set-integrable-def)

from lborel-integrable-real-affine[OF this [unfolded set-integrable-def], of t 0]
show ?thesis

unfolding interval-lebesgue-integral-0-infty set-integrable-def
by (rule Bochner-Integration.integrable-bound) (auto simp: field-simps ∗ split:

split-indicator)
qed

lemma Si-at-top: (Si −−−→ pi / 2) at-top
proof −

have †: ∀ F t in at-top. pi / 2 − (LBINT u=0 ..∞. exp (−(u ∗ t)) ∗ (u ∗ sin t
+ cos t) / (1 + u^2)) = Si t

using eventually-ge-at-top[of 0]
proof eventually-elim

fix t :: real assume t ≥ 0
have Si t = LBINT x=0 ..t. sin x ∗ (LBINT u=0 ..∞. exp (−(u ∗ x)))

unfolding Si-def using ‹0 ≤ t›
by (intro interval-integral-discrete-difference[where X={0}]) (auto simp:

LBINT-I0i-exp-mscale)
also have . . . = (LBINT x. (LBINT u=ereal 0 ..∞. indicator {0 <..< t} x ∗R

sin x ∗ exp (−(u ∗ x))))
using ‹0≤t› by (simp add: zero-ereal-def interval-lebesgue-integral-le-eq

mult-ac set-lebesgue-integral-def)
also have . . . = (LBINT x . (LBINT u. indicator ({0<..} × {0 <..< t}) (u,

x) ∗R (sin x ∗ exp (−(u ∗ x)))))
apply (subst interval-integral-Ioi)
unfolding set-lebesgue-integral-def by(simp-all add: indicator-times ac-simps

)
also have . . . = (LBINT u. (LBINT x . indicator ({0<..} × {0 <..< t}) (u,

x) ∗R (sin x ∗ exp (−(u ∗ x)))))
proof (intro lborel-pair .Fubini-integral[symmetric] lborel-pair .Fubini-integrable)

show (λ(x, y). indicator ({0<..} × {0<..<t}) (y, x) ∗R (sin x ∗ exp (− (y
∗ x))))

∈ borel-measurable (lborel
⊗

M lborel) (is ?f ∈ borel-measurable -)
by measurable

have AE x in lborel. indicator {0 ..t} x ∗R abs (sinc x) = (LBINT y. norm
(?f (x, y)))

using AE-lborel-singleton[of 0] AE-lborel-singleton[of t]
proof eventually-elim

fix x :: real assume x: x 6= 0 x 6= t
have (LBINT y. |indicator ({0<..} × {0<..<t}) (y, x) ∗R (sin x ∗ exp (−

(y ∗ x)))|) =
(LBINT y. |sin x| ∗ exp (− (y ∗ x)) ∗ indicator {0<..} y ∗ indicator

{0<..<t} x)
by (intro Bochner-Integration.integral-cong) (auto split: split-indicator

simp: abs-mult)
also have . . . = |sin x| ∗ indicator {0<..<t} x ∗ (LBINT y=0 ..∞. exp (−

THEORY “Sinc-Integral” 255

(y ∗ x)))
by (cases x > 0)
(auto simp: field-simps interval-lebesgue-integral-0-infty set-lebesgue-integral-def

split: split-indicator)
also have . . . = |sin x| ∗ indicator {0<..<t} x ∗ (1 / x)

by (cases x > 0) (auto simp add: LBINT-I0i-exp-mscale)
also have . . . = indicator {0 ..t} x ∗R |sinc x|

using x by (simp add: field-simps split: split-indicator)
finally show indicator {0 ..t} x ∗R abs (sinc x) = (LBINT y. norm (?f (x,

y)))
by simp

qed
moreover have integrable lborel (λx. indicat-real {0 ..t} x ∗R |sinc x|)
by (auto intro!: borel-integrable-compact continuous-intros simp del: real-scaleR-def)
ultimately show integrable lborel (λx. LBINT y. norm (?f (x, y)))

by (rule integrable-cong-AE-imp[rotated 2]) simp

have 0 < x =⇒ set-integrable lborel {0<..} (λy. sin x ∗ exp (− (y ∗ x))) for
x :: real

by (intro set-integrable-mult-right integrable-I0i-exp-mscale)
then show AE x in lborel. integrable lborel (λy. ?f (x, y))
by (intro AE-I2) (auto simp: indicator-times set-integrable-def split: split-indicator)

qed
also have ... = (LBINT u=0 ..∞. (LBINT x=0 ..t. exp (−(u ∗ x)) ∗ sin x))

using ‹0≤t›
by (auto simp: interval-lebesgue-integral-def set-lebesgue-integral-def zero-ereal-def

ac-simps
split: split-indicator intro!: Bochner-Integration.integral-cong)

also have . . . = (LBINT u=0 ..∞. 1 / (1 + u2) − 1 / (1 + u2) ∗ (exp (− (u
∗ t)) ∗ (u ∗ sin t + cos t)))

by (auto simp: divide-simps LBINT-I0c-exp-mscale-sin intro!: interval-integral-cong)
also have ... = pi / 2 − (LBINT u=0 ..∞. exp (− (u ∗ t)) ∗ (u ∗ sin t + cos

t) / (1 + u^2))
using Si-at-top-integrable[OF ‹0≤t›] by (simp add: integrable-I0i-1-div-plus-square

LBINT-I0i-1-div-plus-square)
finally show pi / 2 − (LBINT u=0 ..∞. exp (−(u ∗ t)) ∗ (u ∗ sin t + cos t)

/ (1 + u^2)) = Si t ..
qed
show ?thesis

by (rule Lim-transform-eventually [OF - †])
(auto intro!: tendsto-eq-intros Si-at-top-LBINT)

qed

17.1 The final theorems: boundedness and scalability
lemma bounded-Si: ∃B. ∀T . |Si T | ≤ B
proof −

have ∗: 0 ≤ y =⇒ dist x y < z =⇒ abs x ≤ y + z for x y z :: real
by (simp add: dist-real-def)

THEORY “Sinc-Integral” 256

have eventually (λT . dist (Si T) (pi / 2) < 1) at-top
using Si-at-top by (elim tendstoD) simp

then have eventually (λT . 0 ≤ T ∧ |Si T | ≤ pi / 2 + 1) at-top
using eventually-ge-at-top[of 0] by eventually-elim (insert ∗[of pi/2 Si - 1],

auto)
then have ∃T . 0 ≤ T ∧ (∀ t ≥ T . |Si t| ≤ pi / 2 + 1)

by (auto simp add: eventually-at-top-linorder)
then obtain T where T : 0 ≤ T

∧
t. t ≥ T =⇒ |Si t| ≤ pi / 2 + 1

by auto
moreover have t ≤ − T =⇒ |Si t| ≤ pi / 2 + 1 for t

using T (1) T (2)[of −t] Si-neg[of − t] by simp
moreover have ∃M . ∀ t. −T ≤ t ∧ t ≤ T −→ |Si t| ≤ M

by (rule isCont-bounded) (auto intro!: isCont-Si continuous-intros ‹0 ≤ T ›)
then obtain M where M :

∧
t. −T ≤ t ∧ t ≤ T =⇒ |Si t| ≤ M

by auto
ultimately show ?thesis

by (intro exI [of - max M (pi/2 + 1)]) (meson le-max-iff-disj linorder-not-le
order-le-less)
qed

lemma LBINT-I0c-sin-scale-divide:
assumes T ≥ 0
shows LBINT t=0 ..T . sin (t ∗ ϑ) / t = sgn ϑ ∗ Si (T ∗ |ϑ|)

proof −
{ assume 0 < ϑ

have (LBINT t=ereal 0 ..T . sin (t ∗ ϑ) / t) = (LBINT t=ereal 0 ..T . ϑ ∗R sinc
(t ∗ ϑ))

by (rule interval-integral-discrete-difference[of {0}]) auto
also have . . . = (LBINT t=ereal (0 ∗ ϑ)..T ∗ ϑ. sinc t)

apply (rule interval-integral-substitution-finite [OF assms])
apply (subst mult.commute, rule DERIV-subset)

by (auto intro!: derivative-intros continuous-at-imp-continuous-on isCont-sinc)
also have . . . = (LBINT t=ereal (0 ∗ ϑ)..T ∗ ϑ. sin t / t)

by (rule interval-integral-discrete-difference[of {0}]) auto
finally have (LBINT t=ereal 0 ..T . sin (t ∗ ϑ) / t) = (LBINT t=ereal 0 ..T ∗

ϑ. sin t / t)
by simp

hence (LBINT x. indicator {0<..<T} x ∗ sin (x ∗ ϑ) / x) = (LBINT x.
indicator {0<..<T ∗ ϑ} x ∗ sin x / x)

using assms ‹0 < ϑ› unfolding interval-lebesgue-integral-def einterval-eq
zero-ereal-def

by (auto simp: ac-simps set-lebesgue-integral-def)
} note aux1 = this
{ assume 0 > ϑ

have [simp]: integrable lborel (λx. sin (x ∗ ϑ) ∗ indicator {0<..<T} x / x)
using integrable-sinc ′ [of T ϑ] assms
by (simp add: interval-lebesgue-integrable-def set-integrable-def ac-simps)

have (LBINT t=ereal 0 ..T . sin (t ∗ −ϑ) / t) = (LBINT t=ereal 0 ..T . −ϑ ∗R

THEORY “Levy” 257

sinc (t ∗ −ϑ))
by (rule interval-integral-discrete-difference[of {0}]) auto

also have . . . = (LBINT t=ereal (0 ∗ −ϑ)..T ∗ −ϑ. sinc t)
apply (rule interval-integral-substitution-finite [OF assms])
apply (subst mult.commute, rule DERIV-subset)

by (auto intro!: derivative-intros continuous-at-imp-continuous-on isCont-sinc)
also have . . . = (LBINT t=ereal (0 ∗ −ϑ)..T ∗ −ϑ. sin t / t)

by (rule interval-integral-discrete-difference[of {0}]) auto
finally have (LBINT t=ereal 0 ..T . sin (t ∗ −ϑ) / t) = (LBINT t=ereal 0 ..T

∗ −ϑ. sin t / t)
by simp

hence (LBINT x. indicator {0<..<T} x ∗ sin (x ∗ ϑ) / x) =
− (LBINT x . indicator {0<..<− (T ∗ ϑ)} x ∗ sin x / x)
using assms ‹0 > ϑ› unfolding interval-lebesgue-integral-def einterval-eq

zero-ereal-def
by (auto simp add: field-simps mult-le-0-iff set-lebesgue-integral-def split:

if-split-asm)
} note aux2 = this
show ?thesis
using assms unfolding Si-def interval-lebesgue-integral-def set-lebesgue-integral-def

sgn-real-def einterval-eq zero-ereal-def
by (auto simp: aux1 aux2)

qed

end

18 The Levy inversion theorem, and the Levy con-
tinuity theorem.

theory Levy
imports Characteristic-Functions Helly-Selection Sinc-Integral

begin

18.1 The Levy inversion theorem
lemma Levy-Inversion-aux1 :

fixes a b :: real
assumes a ≤ b
shows ((λt. (iexp (−(t ∗ a)) − iexp (−(t ∗ b))) / (i ∗ t)) −−−→ b − a) (at 0)
(is (?F −−−→ -) (at -))

proof −
have 1 : cmod (?F t − (b − a)) ≤ a^2 / 2 ∗ abs t + b^2 / 2 ∗ abs t if t 6= 0

for t
proof −

have cmod (?F t − (b − a)) = cmod (
(iexp (−(t ∗ a)) − (1 + i ∗ −(t ∗ a))) / (i ∗ t) −
(iexp (−(t ∗ b)) − (1 + i ∗ −(t ∗ b))) / (i ∗ t))

(is - = cmod (?one / (i ∗ t) − ?two / (i ∗ t)))

THEORY “Levy” 258

using ‹t 6= 0 › by (intro arg-cong[where f=norm]) (simp add: field-simps)
also have . . . ≤ cmod (?one / (i ∗ t)) + cmod (?two / (i ∗ t))

by (rule norm-triangle-ineq4)
also have cmod (?one / (i ∗ t)) = cmod ?one / abs t

by (simp add: norm-divide norm-mult)
also have cmod (?two / (i ∗ t)) = cmod ?two / abs t

by (simp add: norm-divide norm-mult)
also have cmod ?one / abs t + cmod ?two / abs t ≤

((− (a ∗ t))^2 / 2) / abs t + ((− (b ∗ t))^2 / 2) / abs t
using iexp-approx1 [of −(t ∗ -) 1]

by (intro add-mono divide-right-mono abs-ge-zero) (auto simp: field-simps
eval-nat-numeral)

also have . . . = a^2 / 2 ∗ abs t + b^2 / 2 ∗ abs t
using ‹t 6= 0 › apply (case-tac t ≥ 0 , simp add: field-simps power2-eq-square)

using ‹t 6= 0 › by (subst (1 2) abs-of-neg, auto simp add: field-simps
power2-eq-square)

finally show cmod (?F t − (b − a)) ≤ a^2 / 2 ∗ abs t + b^2 / 2 ∗ abs t .
qed
show ?thesis

apply (rule LIM-zero-cancel)
apply (rule tendsto-norm-zero-cancel)
apply (rule real-LIM-sandwich-zero [OF - - 1])
apply (auto intro!: tendsto-eq-intros)
done

qed

lemma Levy-Inversion-aux2 :
fixes a b t :: real
assumes a ≤ b and t 6= 0
shows cmod ((iexp (t ∗ b) − iexp (t ∗ a)) / (i ∗ t)) ≤ b − a (is ?F ≤ -)

proof −
have ?F = cmod (iexp (t ∗ a) ∗ (iexp (t ∗ (b − a)) − 1) / (i ∗ t))

using ‹t 6= 0 › by (intro arg-cong[where f=norm]) (simp add: field-simps
exp-diff exp-minus)

also have . . . = cmod (iexp (t ∗ (b − a)) − 1) / abs t
unfolding norm-divide norm-mult norm-exp-i-times using ‹t 6= 0 ›
by (simp add: complex-eq-iff norm-mult)

also have . . . ≤ abs (t ∗ (b − a)) / abs t
using iexp-approx1 [of t ∗ (b − a) 0]
by (intro divide-right-mono) (auto simp add: field-simps eval-nat-numeral)

also have . . . = b − a
using assms by (auto simp add: abs-mult)

finally show ?thesis .
qed

theorem (in real-distribution) Levy-Inversion:
fixes a b :: real
assumes a ≤ b

THEORY “Levy” 259

defines µ ≡ measure M and ϕ ≡ char M
assumes µ {a} = 0 and µ {b} = 0
shows (λT . 1 / (2 ∗ pi) ∗ (CLBINT t=−T ..T . (iexp (−(t ∗ a)) − iexp (−(t ∗

b))) / (i ∗ t) ∗ ϕ t))
−−−−→ µ {a<..b}
(is (λT . 1 / (2 ∗ pi) ∗ (CLBINT t=−T ..T . ?F t ∗ ϕ t)) −−−−→ of-real (µ

{a<..b}))
proof −

interpret P: pair-sigma-finite lborel M ..
from bounded-Si obtain B where Bprop:

∧
T . abs (Si T) ≤ B by auto

from Bprop [of 0] have [simp]: B ≥ 0 by auto
let ?f = λt x :: real. (iexp (t ∗ (x − a)) − iexp(t ∗ (x − b))) / (i ∗ t)
{ fix T :: real

assume T ≥ 0
let ?f ′ = λ(t, x). indicator {−T<..<T} t ∗R ?f t x
{ fix x

have int: interval-lebesgue-integrable lborel (ereal 0) (ereal T) (λt. 2 ∗ (sin
(t ∗ (x−w)) / t)) for w

using integrable-sinc ′ interval-lebesgue-integrable-mult-right by blast
have 1 : complex-interval-lebesgue-integrable lborel u v (λt. ?f t x) for u v ::

real
using Levy-Inversion-aux2 [of x − b x − a]

apply (simp add: interval-lebesgue-integrable-def set-integrable-def del:
times-divide-eq-left)

apply (intro integrableI-bounded-set-indicator [where B=b − a] conjI impI)
apply (auto intro!: AE-I [of - - {0}] simp: assms)
done

have (CLBINT t. ?f ′ (t, x)) = (CLBINT t=−T ..T . ?f t x)
using ‹T ≥ 0 › by (simp add: interval-lebesgue-integral-def set-lebesgue-integral-def)
also have . . . = (CLBINT t=−T ..(0 :: real). ?f t x) + (CLBINT t=(0 ::

real)..T . ?f t x)
(is - = - + ?t)

using 1 by (intro interval-integral-sum[symmetric]) (simp add: min-absorb1
max-absorb2 ‹T ≥ 0 ›)

also have (CLBINT t=−T ..(0 :: real). ?f t x) = (CLBINT t=(0 ::real)..T .
?f (−t) x)

by (subst interval-integral-reflect) auto
also have . . . + ?t = (CLBINT t=(0 ::real)..T . ?f (−t) x + ?f t x)

using 1
by (intro interval-lebesgue-integral-add(2) [symmetric] interval-integrable-mirror [THEN

iffD2]) simp-all
also have . . . = (CLBINT t=(0 ::real)..T . ((iexp(t ∗ (x − a)) − iexp (−(t ∗

(x − a)))) −
(iexp(t ∗ (x − b)) − iexp (−(t ∗ (x − b))))) / (i ∗ t))

using ‹T ≥ 0 › by (intro interval-integral-cong) (auto simp add: field-split-simps)
also have . . . = (CLBINT t=(0 ::real)..T . complex-of-real(

2 ∗ (sin (t ∗ (x − a)) / t) − 2 ∗ (sin (t ∗ (x − b)) / t)))
using ‹T ≥ 0 ›

by (intro interval-integral-cong) (simp add: divide-simps Im-divide Re-divide

THEORY “Levy” 260

Im-exp Re-exp complex-eq-iff)
also have . . . = complex-of-real (LBINT t=(0 ::real)..T .

2 ∗ (sin (t ∗ (x − a)) / t) − 2 ∗ (sin (t ∗ (x − b)) / t))
by (rule interval-lebesgue-integral-of-real)

also have . . . = complex-of-real ((LBINT t=ereal 0 ..ereal T . 2 ∗ (sin (t ∗ (x
− a)) / t)) −

(LBINT t=ereal 0 ..ereal T . 2 ∗ (sin (t ∗ (x − b))
/ t)))

unfolding interval-lebesgue-integral-diff
using int by auto

also have . . . = complex-of-real (2 ∗ (sgn (x − a) ∗ Si (T ∗ abs (x − a)) −
sgn (x − b) ∗ Si (T ∗ abs (x − b))))

unfolding interval-lebesgue-integral-mult-right
by (simp add: zero-ereal-def [symmetric] LBINT-I0c-sin-scale-divide[OF ‹T

≥ 0 ›])
finally have (CLBINT t. ?f ′ (t, x)) =

2 ∗ (sgn (x − a) ∗ Si (T ∗ abs (x − a)) − sgn (x − b) ∗ Si (T ∗ abs (x
− b))) .

} note main-eq = this
have (CLBINT t=−T ..T . ?F t ∗ ϕ t) =
(CLBINT t. (CLINT x | M . ?F t ∗ iexp (t ∗ x) ∗ indicator {−T<..<T} t))

using ‹T ≥ 0 › unfolding ϕ-def char-def interval-lebesgue-integral-def set-lebesgue-integral-def
by (auto split: split-indicator intro!: Bochner-Integration.integral-cong)

also have . . . = (CLBINT t. (CLINT x | M . ?f ′ (t, x)))
by (auto intro!: Bochner-Integration.integral-cong simp: field-simps exp-diff

exp-minus split: split-indicator)
also have . . . = (CLINT x | M . (CLBINT t. ?f ′ (t, x)))
proof (intro P.Fubini-integral [symmetric] integrableI-bounded-set [where B=b

− a])
show emeasure (lborel

⊗
M M) ({− T<..<T} × space M) < ∞

using ‹T ≥ 0 ›
by (subst emeasure-pair-measure-Times)

(auto simp: ennreal-mult-less-top not-less top-unique)
show AE x∈{− T<..<T} × space M in lborel

⊗
M M . cmod (case x of (t,

x) ⇒ ?f ′ (t, x)) ≤ b − a
using Levy-Inversion-aux2 [of x − b x − a for x] ‹a ≤ b›

by (intro AE-I [of - - {0} × UNIV]) (force simp: emeasure-pair-measure-Times)+
qed (auto split: split-indicator split-indicator-asm)
also have . . . = (CLINT x | M . (complex-of-real (2 ∗ (sgn (x − a) ∗

Si (T ∗ abs (x − a)) − sgn (x − b) ∗ Si (T ∗ abs (x − b))))))
using main-eq by (intro Bochner-Integration.integral-cong, auto)

also have . . . = complex-of-real (LINT x | M . (2 ∗ (sgn (x − a) ∗
Si (T ∗ abs (x − a)) − sgn (x − b) ∗ Si (T ∗ abs (x − b)))))

by (rule integral-complex-of-real)
finally have (CLBINT t=−T ..T . ?F t ∗ ϕ t) =

complex-of-real (LINT x | M . (2 ∗ (sgn (x − a) ∗
Si (T ∗ abs (x − a)) − sgn (x − b) ∗ Si (T ∗ abs (x − b))))) .

} note main-eq2 = this

THEORY “Levy” 261

have (λT :: nat. LINT x | M . (2 ∗ (sgn (x − a) ∗
Si (T ∗ abs (x − a)) − sgn (x − b) ∗ Si (T ∗ abs (x − b))))) −−−−→

(LINT x | M . 2 ∗ pi ∗ indicator {a<..b} x)
proof (rule integral-dominated-convergence [where w=λx. 4 ∗ B])

show integrable M (λx. 4 ∗ B)
by (rule integrable-const-bound [of - 4 ∗ B]) auto

next
let ?S = λn::nat. λx. sgn (x − a) ∗ Si (n ∗ |x − a|) − sgn (x − b) ∗ Si (n ∗

|x − b|)
{ fix n x

have norm (?S n x) ≤ norm (sgn (x − a) ∗ Si (n ∗ |x − a|)) + norm (sgn
(x − b) ∗ Si (n ∗ |x − b|))

by (rule norm-triangle-ineq4)
also have . . . ≤ B + B

using Bprop by (intro add-mono) (auto simp: abs-mult abs-sgn-eq)
finally have norm (2 ∗ ?S n x) ≤ 4 ∗ B

by simp }
then show

∧
n. AE x in M . norm (2 ∗ ?S n x) ≤ 4 ∗ B

by auto
have AE x in M . x 6= a AE x in M . x 6= b

using prob-eq-0 [of {a}] prob-eq-0 [of {b}] ‹µ {a} = 0 › ‹µ {b} = 0 › by (auto
simp: µ-def)

then show AE x in M . (λn. 2 ∗ ?S n x) −−−−→ 2 ∗ pi ∗ indicator {a<..b} x
proof eventually-elim

fix x assume x: x 6= a x 6= b
then have (λn. 2 ∗ (sgn (x − a) ∗ Si (|x − a| ∗ n) − sgn (x − b) ∗ Si (|x

− b| ∗ n)))
−−−−→ 2 ∗ (sgn (x − a) ∗ (pi / 2) − sgn (x − b) ∗ (pi / 2))

by (intro tendsto-intros filterlim-compose[OF Si-at-top]
filterlim-tendsto-pos-mult-at-top[OF tendsto-const] filterlim-real-sequentially)

auto
also have (λn. 2 ∗ (sgn (x − a) ∗ Si (|x − a| ∗ n) − sgn (x − b) ∗ Si (|x −

b| ∗ n))) = (λn. 2 ∗ ?S n x)
by (auto simp: ac-simps)

also have 2 ∗ (sgn (x − a) ∗ (pi / 2) − sgn (x − b) ∗ (pi / 2)) = 2 ∗ pi ∗
indicator {a<..b} x

using x ‹a ≤ b› by (auto split: split-indicator)
finally show (λn. 2 ∗ ?S n x) −−−−→ 2 ∗ pi ∗ indicator {a<..b} x .

qed
qed simp-all
also have (LINT x | M . 2 ∗ pi ∗ indicator {a<..b} x) = 2 ∗ pi ∗ µ {a<..b}

by (simp add: µ-def)
finally have (λT . LINT x | M . (2 ∗ (sgn (x − a) ∗

Si (T ∗ abs (x − a)) − sgn (x − b) ∗ Si (T ∗ abs (x − b))))) −−−−→
2 ∗ pi ∗ µ {a<..b} .

with main-eq2 show ?thesis
by (auto intro!: tendsto-eq-intros)

qed

THEORY “Levy” 262

theorem Levy-uniqueness:
fixes M1 M2 :: real measure
assumes real-distribution M1 real-distribution M2 and

char M1 = char M2
shows M1 = M2

proof −
interpret M1 : real-distribution M1 by (rule assms)
interpret M2 : real-distribution M2 by (rule assms)
have countable ({x. measure M1 {x} 6= 0} ∪ {x. measure M2 {x} 6= 0})

by (intro countable-Un M2 .countable-support M1 .countable-support)
then have count: countable {x. measure M1 {x} 6= 0 ∨ measure M2 {x} 6= 0}

by (simp add: Un-def)

have cdf M1 = cdf M2
proof (rule ext)

fix x
let ?D = λx. |cdf M1 x − cdf M2 x|

{ fix ε :: real
assume ε > 0
have (?D −−−→ 0) at-bot

using M1 .cdf-lim-at-bot M2 .cdf-lim-at-bot by (intro tendsto-eq-intros) auto
then have eventually (λy. ?D y < ε / 2 ∧ y ≤ x) at-bot

using ‹ε > 0 › by (simp only: tendsto-iff dist-real-def diff-0-right eventu-
ally-conj eventually-le-at-bot abs-idempotent)

then obtain M where
∧

y. y ≤ M =⇒ ?D y < ε / 2 M ≤ x
unfolding eventually-at-bot-linorder by auto

with open-minus-countable[OF count, of {..< M}] obtain a where
measure M1 {a} = 0 measure M2 {a} = 0 a < M a ≤ x and 1 : ?D a < ε

/ 2
by auto

have (?D −−−→ ?D x) (at-right x)
using M1 .cdf-is-right-cont [of x] M2 .cdf-is-right-cont [of x]
by (intro tendsto-intros) (auto simp add: continuous-within)

then have eventually (λy. |?D y − ?D x| < ε / 2) (at-right x)
using ‹ε > 0 › by (simp only: tendsto-iff dist-real-def eventually-conj even-

tually-at-right-less)
then obtain N where N > x

∧
y. x < y =⇒ y < N =⇒ |?D y − ?D x| <

ε / 2
by (auto simp add: eventually-at-right[OF less-add-one])

with open-minus-countable[OF count, of {x <..< N}] obtain b where x <
b b < N

measure M1 {b} = 0 measure M2 {b} = 0 and 2 : |?D b − ?D x | < ε / 2
by (auto simp: abs-minus-commute)

from ‹a ≤ x› ‹x < b› have a < b a ≤ b by auto

from ‹char M1 = char M2 ›
M1 .Levy-Inversion [OF ‹a ≤ b› ‹measure M1 {a} = 0 › ‹measure M1 {b}

THEORY “Levy” 263

= 0 ›]
M2 .Levy-Inversion [OF ‹a ≤ b› ‹measure M2 {a} = 0 › ‹measure M2 {b}

= 0 ›]
have complex-of-real (measure M1 {a<..b}) = complex-of-real (measure M2

{a<..b})
by (intro LIMSEQ-unique) auto

then have ?D a = ?D b
unfolding of-real-eq-iff M1 .cdf-diff-eq [OF ‹a < b›, symmetric] M2 .cdf-diff-eq

[OF ‹a < b›, symmetric] by simp
then have ?D x = |(?D b − ?D x) − ?D a|

by simp
also have . . . ≤ |?D b − ?D x| + |?D a|

by (rule abs-triangle-ineq4)
also have . . . ≤ ε / 2 + ε / 2

using 1 2 by (intro add-mono) auto
finally have ?D x ≤ ε by simp }

then show cdf M1 x = cdf M2 x
by (metis abs-le-zero-iff dense-ge eq-iff-diff-eq-0)

qed
thus ?thesis

by (rule cdf-unique [OF ‹real-distribution M1 › ‹real-distribution M2 ›])
qed

18.2 The Levy continuity theorem
theorem levy-continuity1 :

fixes M :: nat ⇒ real measure and M ′ :: real measure
assumes

∧
n. real-distribution (M n) real-distribution M ′ weak-conv-m M M ′

shows (λn. char (M n) t) −−−−→ char M ′ t
unfolding char-def using assms by (rule weak-conv-imp-integral-bdd-continuous-conv)

auto

theorem levy-continuity:
fixes M :: nat ⇒ real measure and M ′ :: real measure
assumes real-distr-M :

∧
n. real-distribution (M n)

and real-distr-M ′: real-distribution M ′

and char-conv:
∧

t. (λn. char (M n) t) −−−−→ char M ′ t
shows weak-conv-m M M ′

proof −
interpret Mn: real-distribution M n for n by fact
interpret M ′: real-distribution M ′ by fact

have ∗:
∧

u x. u > 0 =⇒ x 6= 0 =⇒ (CLBINT t:{−u..u}. 1 − iexp (t ∗ x)) =
2 ∗ (u − sin (u ∗ x) / x)

proof −
fix u :: real and x :: real
assume u > 0 and x 6= 0
hence (CLBINT t:{−u..u}. 1 − iexp (t ∗ x)) = (CLBINT t=−u..u. 1 − iexp

(t ∗ x))

THEORY “Levy” 264

by (subst interval-integral-Icc, auto)
also have . . . = (CLBINT t=−u..ereal 0 . 1 − iexp (t ∗ x)) + (CLBINT t=

ereal 0 ..u. 1 − iexp (t ∗ x))
using ‹u > 0 ›
by (subst interval-integral-sum; force simp add: interval-integrable-isCont)

also have . . . = (CLBINT t=ereal 0 ..u. 1 − iexp (t ∗ −x)) + (CLBINT t=ereal
0 ..u. 1 − iexp (t ∗ x))

by (subst interval-integral-reflect, auto)
also have ... = CLBINT xa=ereal 0 ..ereal u. 1 − iexp (xa ∗ − x) + (1 − iexp

(xa ∗ x))
by (subst interval-lebesgue-integral-add (2) [symmetric]) (auto simp: inter-

val-integrable-isCont)
also have . . . = (LBINT t=ereal 0 ..u. 2 − 2 ∗ cos (t ∗ x))
unfolding exp-Euler cos-of-real by (simp flip: interval-lebesgue-integral-of-real)
also have . . . = 2 ∗ u − 2 ∗ sin (u ∗ x) / x

by (subst interval-lebesgue-integral-diff)
(auto intro!: interval-integrable-isCont

simp: interval-lebesgue-integral-of-real integral-cos [OF ‹x 6= 0 ›]
mult.commute[of - x])

finally show (CLBINT t:{−u..u}. 1 − iexp (t ∗ x)) = 2 ∗ (u − sin (u ∗ x)
/ x)

by (simp add: field-simps)
qed
have main-bound:

∧
u n. u > 0 =⇒ Re (CLBINT t:{−u..u}. 1 − char (M n) t)

≥
u ∗ measure (M n) {x. abs x ≥ 2 / u}

proof −
fix u :: real and n
assume u > 0
interpret P: pair-sigma-finite M n lborel ..

have Mn1 [simp]: measure (M n) UNIV = 1 by (metis Mn.prob-space Mn.space-eq-univ)

have Mn2 [simp]:
∧

x. complex-integrable (M n) (λt. exp (i ∗ complex-of-real
(x ∗ t)))

by (rule Mn.integrable-const-bound [where B = 1], auto)
have Mn3 : set-integrable (M n

⊗
M lborel) (UNIV × {− u..u}) (λa. 1 − exp

(i ∗ complex-of-real (snd a ∗ fst a)))
using ‹0 < u›
unfolding set-integrable-def
by (intro integrableI-bounded-set-indicator [where B=2])
(auto simp: lborel.emeasure-pair-measure-Times ennreal-mult-less-top not-less

top-unique
split: split-indicator
intro!: order-trans [OF norm-triangle-ineq4])

have (CLBINT t:{−u..u}. 1 − char (M n) t) =
(CLBINT t:{−u..u}. (CLINT x | M n. 1 − iexp (t ∗ x)))

unfolding char-def by (rule set-lebesgue-integral-cong, auto simp del: of-real-mult)
also have . . . = (CLBINT t. (CLINT x | M n. indicator {−u..u} t ∗R (1 −

THEORY “Levy” 265

iexp (t ∗ x))))
unfolding set-lebesgue-integral-def
by (rule Bochner-Integration.integral-cong) (auto split: split-indicator)

also have . . . = (CLINT x | M n. (CLBINT t:{−u..u}. 1 − iexp (t ∗ x)))
using Mn3 by (subst P.Fubini-integral) (auto simp: indicator-times split-beta ′

set-integrable-def set-lebesgue-integral-def)
also have . . . = (CLINT x | M n. (if x = 0 then 0 else 2 ∗ (u − sin (u ∗ x)

/ x)))
using ‹u > 0 › by (intro Bochner-Integration.integral-cong, auto simp add: ∗

simp del: of-real-mult)
also have . . . = (LINT x | M n. (if x = 0 then 0 else 2 ∗ (u − sin (u ∗ x) /

x)))
by (rule integral-complex-of-real)

finally have Re (CLBINT t:{−u..u}. 1 − char (M n) t) =
(LINT x | M n. (if x = 0 then 0 else 2 ∗ (u − sin (u ∗ x) / x))) by simp

also have . . . ≥ (LINT x : {x. abs x ≥ 2 / u} | M n. u)
proof −

have complex-integrable (M n) (λx. CLBINT t:{−u..u}. 1 − iexp (snd (x, t)
∗ fst (x, t)))

using Mn3 unfolding set-integrable-def set-lebesgue-integral-def
by (intro P.integrable-fst) (simp add: indicator-times split-beta ′)

hence complex-integrable (M n) (λx. if x = 0 then 0 else 2 ∗ (u − sin (u ∗
x) / x))

using ‹u > 0 ›
unfolding set-integrable-def
by (subst Bochner-Integration.integrable-cong) (auto simp add: ∗ simp del:

of-real-mult)
hence ∗∗: integrable (M n) (λx. if x = 0 then 0 else 2 ∗ (u − sin (u ∗ x) /

x))
unfolding complex-of-real-integrable-eq .

have 2 ∗ sin x ≤ x if 2 ≤ x for x :: real
by (rule order-trans[OF - ‹2 ≤ x›]) auto

moreover have x ≤ 2 ∗ sin x if x ≤ − 2 for x :: real
by (rule order-trans[OF ‹x ≤ − 2 ›]) auto

moreover have x < 0 =⇒ x ≤ sin x for x :: real
using sin-x-le-x[of −x] by simp

ultimately show ?thesis
using ‹u > 0 › unfolding set-lebesgue-integral-def
by (intro integral-mono [OF - ∗∗])

(auto simp: divide-simps sin-x-le-x mult.commute[of u] mult-neg-pos
top-unique less-top[symmetric]

split: split-indicator)
qed
also (xtrans) have (LINT x : {x. abs x ≥ 2 / u} | M n. u) = u ∗ measure (M

n) {x. abs x ≥ 2 / u}
unfolding set-lebesgue-integral-def
by (simp add: Mn.emeasure-eq-measure)

finally show Re (CLBINT t:{−u..u}. 1 − char (M n) t) ≥ u ∗ measure (M
n) {x. abs x ≥ 2 / u} .

THEORY “Levy” 266

qed

have tight-aux:
∧
ε. ε > 0 =⇒ ∃ a b. a < b ∧ (∀n. 1 − ε < measure (M n)

{a<..b})
proof −

fix ε :: real
assume ε > 0
with M ′.isCont-char [of 0]
obtain d where d0 : d>0 and ∀ x ′. dist x ′ 0 < d −→ dist (char M ′ x ′) (char

M ′ 0) < ε/4
unfolding continuous-at-eps-delta by (metis ‹0 < ε› divide-pos-pos zero-less-numeral)
then have d1 :

∧
t. abs t < d =⇒ cmod (char M ′ t − 1) < ε / 4

by (simp add: M ′.char-zero dist-norm)
have 1 :

∧
x. cmod (1 − char M ′ x) ≤ 2

by (rule order-trans [OF norm-triangle-ineq4], auto simp add: M ′.cmod-char-le-1)
then have 2 :

∧
u v. complex-set-integrable lborel {u..v} (λx. 1 − char M ′ x)

unfolding set-integrable-def
by (intro integrableI-bounded-set-indicator [where B=2]) (auto simp: emea-

sure-lborel-Icc-eq)
have 3 :

∧
u v. integrable lborel (λx. indicat-real {u..v} x ∗R cmod (1 − char

M ′ x))
by (intro borel-integrable-compact[OF compact-Icc] continuous-at-imp-continuous-on

continuous-intros ballI M ′.isCont-char continuous-intros)
have cmod (CLBINT t:{−d/2 ..d/2}. 1 − char M ′ t) ≤ (LBINT t:{−d/2 ..d/2}.

cmod (1 − char M ′ t))
unfolding set-lebesgue-integral-def
using integral-norm-bound[of - λx. indicator {u..v} x ∗R (1 − char M ′ x)

for u v] by simp
also have 4 : . . . ≤ (LBINT t:{−d/2 ..d/2}. ε / 4)

unfolding set-lebesgue-integral-def
proof (rule integral-mono [OF 3])

show indicat-real {− d / 2 ..d / 2} x ∗R cmod (1 − char M ′ x)
≤ indicat-real {− d / 2 ..d / 2} x ∗R (ε / 4)

if x ∈ space lborel for x
proof (cases x ∈ {−d/2 ..d/2})

case True
show ?thesis

using d0 d1 that True [simplified]
by (smt (verit, best) field-sum-of-halves minus-diff-eq norm-minus-cancel

indicator-pos-le scaleR-left-mono)
qed auto

qed (simp add: emeasure-lborel-Icc-eq)
also from d0 4 have . . . = d ∗ ε / 4

unfolding set-lebesgue-integral-def by simp
finally have bound: cmod (CLBINT t:{−d/2 ..d/2}. 1 − char M ′ t) ≤ d ∗ ε

/ 4 .
have cmod (1 − char (M n) x) ≤ 2 for n x
by (rule order-trans [OF norm-triangle-ineq4], auto simp add: Mn.cmod-char-le-1)

THEORY “Levy” 267

then have (λn. CLBINT t:{−d/2 ..d/2}. 1 − char (M n) t) −−−−→ (CLBINT
t:{−d/2 ..d/2}. 1 − char M ′ t)

unfolding set-lebesgue-integral-def
apply (intro integral-dominated-convergence[where w=λx. indicator {−d/2 ..d/2}

x ∗R 2])
apply (auto intro!: char-conv tendsto-intros

simp: emeasure-lborel-Icc-eq
split: split-indicator)

done
hence eventually (λn. cmod ((CLBINT t:{−d/2 ..d/2}. 1 − char (M n) t) −

(CLBINT t:{−d/2 ..d/2}. 1 − char M ′ t)) < d ∗ ε / 4) sequentially
using d0 ‹ε > 0 › apply (subst (asm) tendsto-iff)
by (subst (asm) dist-complex-def , drule spec, erule mp, auto)

hence ∃N . ∀n ≥ N . cmod ((CLBINT t:{−d/2 ..d/2}. 1 − char (M n) t) −
(CLBINT t:{−d/2 ..d/2}. 1 − char M ′ t)) < d ∗ ε / 4 by (simp add:

eventually-sequentially)
then obtain N

where ∀n≥N . cmod ((CLBINT t:{− d / 2 ..d / 2}. 1 − char (M n) t) −
(CLBINT t:{− d / 2 ..d / 2}. 1 − char M ′ t)) < d ∗ ε / 4 ..

hence N :
∧

n. n ≥ N =⇒ cmod ((CLBINT t:{−d/2 ..d/2}. 1 − char (M n)
t) −

(CLBINT t:{−d/2 ..d/2}. 1 − char M ′ t)) < d ∗ ε / 4 by auto
{ fix n

assume n ≥ N
have cmod (CLBINT t:{−d/2 ..d/2}. 1 − char (M n) t) =
cmod ((CLBINT t:{−d/2 ..d/2}. 1 − char (M n) t) − (CLBINT t:{−d/2 ..d/2}.

1 − char M ′ t)
+ (CLBINT t:{−d/2 ..d/2}. 1 − char M ′ t)) by simp

also have . . . ≤ cmod ((CLBINT t:{−d/2 ..d/2}. 1 − char (M n) t) −
(CLBINT t:{−d/2 ..d/2}. 1 − char M ′ t)) + cmod(CLBINT t:{−d/2 ..d/2}.

1 − char M ′ t)
by (rule norm-triangle-ineq)

also have . . . < d ∗ ε / 4 + d ∗ ε / 4
by (rule add-less-le-mono [OF N [OF ‹n ≥ N ›] bound])

also have . . . = d ∗ ε / 2 by auto
finally have cmod (CLBINT t:{−d/2 ..d/2}. 1 − char (M n) t) < d ∗ ε /

2 .
hence d ∗ ε / 2 > Re (CLBINT t:{−d/2 ..d/2}. 1 − char (M n) t)

by (rule order-le-less-trans [OF complex-Re-le-cmod])
hence d ∗ ε / 2 > Re (CLBINT t:{−(d/2)..d/2}. 1 − char (M n) t) (is -

> ?lhs) by simp
also have ?lhs ≥ (d / 2) ∗ measure (M n) {x. abs x ≥ 2 / (d / 2)}

using d0 by (intro main-bound, simp)
finally (xtrans) have d ∗ ε / 2 > (d / 2) ∗ measure (M n) {x. abs x ≥ 2 /

(d / 2)} .
with d0 ‹ε > 0 › have ε > measure (M n) {x. abs x ≥ 2 / (d / 2)} by (simp

add: field-simps)
hence ε > 1 − measure (M n) (UNIV − {x. abs x ≥ 2 / (d / 2)})

apply (subst Mn.borel-UNIV [symmetric])

THEORY “Levy” 268

by (subst Mn.prob-compl, auto)
also have UNIV − {x. abs x ≥ 2 / (d / 2)} = {x. −(4 / d) < x ∧ x < (4

/ d)}
using d0 by (simp add: set-eq-iff divide-simps abs-if) (smt (verit, best)

mult-less-0-iff)
finally have measure (M n) {x. −(4 / d) < x ∧ x < (4 / d)} > 1 − ε

by auto
} note 6 = this
{ fix n :: nat

have ∗: (UN (k :: nat). {− real k<..real k}) = UNIV
by (auto, metis leI le-less-trans less-imp-le minus-less-iff reals-Archimedean2)
have (λk. measure (M n) {− real k<..real k}) −−−−→

measure (M n) (UN (k :: nat). {− real k<..real k})
by (rule Mn.finite-Lim-measure-incseq, auto simp add: incseq-def)

hence (λk. measure (M n) {− real k<..real k}) −−−−→ 1
using Mn.prob-space unfolding ∗ Mn.borel-UNIV by simp

hence eventually (λk. measure (M n) {− real k<..real k} > 1 − ε) sequentially
using ‹ε > 0 › order-tendstoD by fastforce

} note 7 = this
{ fix n :: nat

have eventually (λk. ∀m < n. measure (M m) {− real k<..real k} > 1 − ε)
sequentially

(is ?P n)
proof (induct n)

case (Suc n) with 7 [of n] show ?case
by eventually-elim (auto simp add: less-Suc-eq)

qed simp
} note 8 = this
from 8 [of N] have ∃K :: nat. ∀ k ≥ K . ∀m<N . 1 − ε <

Sigma-Algebra.measure (M m) {− real k<..real k}
by (auto simp add: eventually-sequentially)

hence ∃K :: nat. ∀m<N . 1 − ε < Sigma-Algebra.measure (M m) {− real
K<..real K} by auto

then obtain K :: nat where
∀m<N . 1 − ε < Sigma-Algebra.measure (M m) {− real K<..real K} ..

hence K :
∧

m. m < N =⇒ 1 − ε < Sigma-Algebra.measure (M m) {− real
K<..real K}

by auto
let ?K ′ = max K (4 / d)
have 1 − ε < measure (M n) {− max (real K) (4 / d)<..max (real K) (4 /

d)} for n
proof (cases n < N)

case True
then show ?thesis

by (force intro: order-less-le-trans [OF K Mn.finite-measure-mono])
next

case False
then show ?thesis

by (force intro: order-less-le-trans [OF 6 Mn.finite-measure-mono])

THEORY “Central-Limit-Theorem” 269

qed
then have −?K ′ < ?K ′ ∧ (∀n. 1 − ε < measure (M n) {−?K ′<..?K ′})

using d0 by (simp add: less-max-iff-disj minus-less-iff)
thus ∃ a b. a < b ∧ (∀n. 1 − ε < measure (M n) {a<..b}) by (intro exI)

qed
have tight: tight M

by (auto simp: tight-def intro: assms tight-aux)
show ?thesis
proof (rule tight-subseq-weak-converge [OF real-distr-M real-distr-M ′ tight])

fix s ν
assume s: strict-mono (s :: nat ⇒ nat)
assume nu: weak-conv-m (M ◦ s) ν
assume ∗: real-distribution ν
have 2 :

∧
n. real-distribution ((M ◦ s) n) unfolding comp-def by (rule assms)

have 3 :
∧

t. (λn. char ((M ◦ s) n) t) −−−−→ char ν t by (intro levy-continuity1
[OF 2 ∗ nu])

have 4 :
∧

t. (λn. char ((M ◦ s) n) t) = ((λn. char (M n) t) ◦ s) by (rule ext,
simp)

have 5 :
∧

t. (λn. char ((M ◦ s) n) t) −−−−→ char M ′ t
by (subst 4 , rule LIMSEQ-subseq-LIMSEQ [OF - s], rule assms)

hence char ν = char M ′ by (intro ext, intro LIMSEQ-unique [OF 3 5])
hence ν = M ′ by (rule Levy-uniqueness [OF ∗ ‹real-distribution M ′›])
thus weak-conv-m (M ◦ s) M ′

by (elim subst) (rule nu)
qed

qed

end

19 The Central Limit Theorem
theory Central-Limit-Theorem

imports Levy
begin

theorem (in prob-space) central-limit-theorem-zero-mean:
fixes X :: nat ⇒ ′a ⇒ real

and µ :: real measure
and σ :: real
and S :: nat ⇒ ′a ⇒ real

assumes X-indep: indep-vars (λi. borel) X UNIV
and X-mean-0 :

∧
n. expectation (X n) = 0

and σ-pos: σ > 0
and X-square-integrable:

∧
n. integrable M (λx. (X n x)2)

and X-variance:
∧

n. variance (X n) = σ2

and X-distrib:
∧

n. distr M borel (X n) = µ
defines S n ≡ λx.

∑
i<n. X i x

shows weak-conv-m (λn. distr M borel (λx. S n x / sqrt (n ∗ σ2))) std-normal-distribution
proof −

THEORY “Central-Limit-Theorem” 270

let ?S ′ = λn x. S n x / sqrt (real n ∗ σ2)
define ϕ where ϕ n = char (distr M borel (?S ′ n)) for n
define ψ where ψ n t = char µ (t / sqrt (σ2 ∗ n)) for n t

have X-rv [simp, measurable]: random-variable borel (X n) for n
using X-indep unfolding indep-vars-def2 by simp

have X-integrable [simp, intro]: integrable M (X n) for n
by (rule square-integrable-imp-integrable[OF - X-square-integrable]) simp-all

interpret µ: real-distribution µ
by (subst X-distrib [symmetric, of 0], rule real-distribution-distr , simp)

have µ-integrable [simp]: integrable µ (λx. x)
and µ-mean-integrable [simp]: µ.expectation (λx. x) = 0
and µ-square-integrable [simp]: integrable µ (λx. x^2)
and µ-variance [simp]: µ.expectation (λx. x^2) = σ2

using assms by (simp-all add: X-distrib [symmetric, of 0] integrable-distr-eq
integral-distr)

have main: ∀ F n in sequentially.
cmod (ϕ n t − (1 + (−(t^2) / 2) / n)^n) ≤
t2 / (6 ∗ σ2) ∗ (LINT x|µ. min (6 ∗ x2) (|t / sqrt (σ2 ∗ n)| ∗ |x| ^ 3)) for t

proof (rule eventually-sequentiallyI)
fix n :: nat
assume n ≥ nat (ceiling (t^2 / 4))
hence n: n ≥ t^2 / 4 by (subst nat-ceiling-le-eq [symmetric])
let ?t = t / sqrt (σ2 ∗ n)

define ψ ′ where ψ ′ n i = char (distr M borel (λx. X i x / sqrt (σ2 ∗ n))) for
n i

have ∗:
∧

n i t. ψ ′ n i t = ψ n t
unfolding ψ-def ψ ′-def char-def
by (subst X-distrib [symmetric]) (auto simp: integral-distr)

have ϕ n t = char (distr M borel (λx.
∑

i<n. X i x / sqrt (σ2 ∗ real n))) t
by (auto simp: ϕ-def S-def sum-divide-distrib ac-simps)

also have . . . = (
∏

i < n. ψ ′ n i t)
unfolding ψ ′-def
apply (rule char-distr-sum)
apply (rule indep-vars-compose2 [where X=X])
apply (rule indep-vars-subset)
apply (rule X-indep)
apply auto
done

also have . . . = (ψ n t)^n
by (auto simp add: ∗ prod-constant)

finally have ϕ-eq: ϕ n t =(ψ n t)^n .

have norm (ψ n t − (1 − ?t^2 ∗ σ2 / 2)) ≤ ?t2 / 6 ∗ (LINT x|µ. min (6 ∗

THEORY “Central-Limit-Theorem” 271

x2) (|?t| ∗ |x| ^ 3))
unfolding ψ-def by (rule µ.char-approx3 , auto)

also have ?t^2 ∗ σ2 = t^2 / n
using σ-pos by (simp add: power-divide)

also have t^2 / n / 2 = (t^2 / 2) / n
by simp

finally have ∗∗: norm (ψ n t − (1 + (−(t^2) / 2) / n)) ≤
?t2 / 6 ∗ (LINT x|µ. min (6 ∗ x2) (|?t| ∗ |x| ^ 3)) by simp

have norm (ϕ n t − (complex-of-real (1 + (−(t^2) / 2) / n))^n) ≤
n ∗ norm (ψ n t − (complex-of-real (1 + (−(t^2) / 2) / n)))

using n
by (auto intro!: norm-power-diff µ.cmod-char-le-1 abs-leI

simp del: of-real-diff simp: of-real-diff [symmetric] divide-le-eq ϕ-eq
ψ-def)

also have . . . ≤ n ∗ (?t2 / 6 ∗ (LINT x|µ. min (6 ∗ x2) (|?t| ∗ |x| ^ 3)))
by (rule mult-left-mono [OF ∗∗], simp)

also have . . . = (t2 / (6 ∗ σ2) ∗ (LINT x |µ. min (6 ∗ x2) (|?t| ∗ |x| ^ 3)))
using σ-pos by (simp add: field-simps min-absorb2)

finally show norm (ϕ n t − (1 + (−(t^2) / 2) / n)^n) ≤
(t2 / (6 ∗ σ2) ∗ (LINT x |µ. min (6 ∗ x2) (|?t| ∗ |x| ^ 3)))

by simp
qed

show ?thesis
proof (rule levy-continuity)

fix t
let ?t = λn. t / sqrt (σ2 ∗ n)
have

∧
x. (λn. min (6 ∗ x2) (|t| ∗ |x| ^ 3 / |sqrt (σ2 ∗ real n)|)) −−−−→ 0

using σ-pos
by (auto simp: real-sqrt-mult min-absorb2

intro!: tendsto-min[THEN tendsto-eq-rhs] sqrt-at-top[THEN filter-
lim-compose]

filterlim-tendsto-pos-mult-at-top filterlim-at-top-imp-at-infinity
tendsto-divide-0 filterlim-real-sequentially)

then have (λn. LINT x|µ. min (6 ∗ x2) (|?t n| ∗ |x| ^ 3)) −−−−→ (LINT x|µ.
0)

by (intro integral-dominated-convergence [where w = λx. 6 ∗ x^2]) auto
then have ∗: (λn. t2 / (6 ∗ σ2) ∗ (LINT x|µ. min (6 ∗ x2) (|?t n| ∗ |x| ^ 3)))

−−−−→ 0
by (simp only: integral-zero tendsto-mult-right-zero)

have (λn. complex-of-real ((1 + (−(t^2) / 2) / n)^n)) −−−−→ complex-of-real
(exp (−(t^2) / 2))

by (rule isCont-tendsto-compose [OF - tendsto-exp-limit-sequentially]) auto
then have (λn. ϕ n t) −−−−→ complex-of-real (exp (−(t^2) / 2))

by (rule Lim-transform) (rule Lim-null-comparison [OF main ∗])
then show (λn. char (distr M borel (?S ′ n)) t) −−−−→ char std-normal-distribution

t

THEORY “Discrete-Topology” 272

by (simp add: ϕ-def char-std-normal-distribution)
qed (auto intro!: real-dist-normal-dist simp: S-def)

qed

theorem (in prob-space) central-limit-theorem:
fixes X :: nat ⇒ ′a ⇒ real

and µ :: real measure
and σ :: real
and S :: nat ⇒ ′a ⇒ real

assumes X-indep: indep-vars (λi. borel) X UNIV
and X-mean:

∧
n. expectation (X n) = m

and σ-pos: σ > 0
and X-square-integrable:

∧
n. integrable M (λx. (X n x)2)

and X-variance:
∧

n. variance (X n) = σ2

and X-distrib:
∧

n. distr M borel (X n) = µ
defines X ′ i x ≡ X i x − m
shows weak-conv-m (λn. distr M borel (λx. (

∑
i<n. X ′ i x) / sqrt (n∗σ2)))

std-normal-distribution
proof (intro central-limit-theorem-zero-mean)

show indep-vars (λi. borel) X ′ UNIV
unfolding X ′-def [abs-def] using X-indep by (rule indep-vars-compose2) auto

have X-rv [simp, measurable]: random-variable borel (X n) for n
using X-indep unfolding indep-vars-def2 by simp

have X-integrable [simp, intro]: integrable M (X n) for n
by (rule square-integrable-imp-integrable[OF - X-square-integrable]) simp-all

show expectation (X ′ n) = 0 for n
using X-mean by (auto simp: X ′-def [abs-def] prob-space)

show σ > 0 integrable M (λx. (X ′ n x)2) variance (X ′ n) = σ2 for n
using ‹0 < σ› X-integrable X-mean X-square-integrable X-variance unfolding

X ′-def
by (auto simp: prob-space power2-diff)

show distr M borel (X ′ n) = distr µ borel (λx. x − m) for n
unfolding X-distrib[of n, symmetric] using X-integrable
by (subst distr-distr) (auto simp: X ′-def [abs-def] comp-def)

qed

end

theory Discrete-Topology
imports HOL−Analysis.Analysis
begin

Copy of discrete types with discrete topology. This space is polish.
typedef ′a discrete = UNIV :: ′a set
morphisms of-discrete discrete
..

instantiation discrete :: (type) metric-space

THEORY “Discrete-Topology” 273

begin

definition dist-discrete :: ′a discrete ⇒ ′a discrete ⇒ real
where dist-discrete n m = (if n = m then 0 else 1)

definition uniformity-discrete :: (′a discrete × ′a discrete) filter where
(uniformity::(′a discrete × ′a discrete) filter) = (INF e∈{0 <..}. principal {(x,

y). dist x y < e})

definition open-discrete :: ′a discrete set ⇒ bool where
(open:: ′a discrete set ⇒ bool) U ←→ (∀ x∈U . eventually (λ(x ′, y). x ′ = x −→ y
∈ U) uniformity)

instance proof qed (auto simp: uniformity-discrete-def open-discrete-def dist-discrete-def
intro: exI [where x=1])
end

lemma open-discrete: open (S :: ′a discrete set)
unfolding open-dist dist-discrete-def by (auto intro!: exI [of - 1 / 2])

instance discrete :: (type) complete-space
proof

fix X ::nat⇒ ′a discrete
assume Cauchy X
then obtain n where ∀m≥n. X n = X m

by (force simp: dist-discrete-def Cauchy-def split: if-split-asm dest:spec[where
x=1])

thus convergent X
by (intro convergentI [where L=X n] tendstoI eventually-sequentiallyI [of n])

(simp add: dist-discrete-def)
qed

instance discrete :: (countable) countable
proof

have inj (λc:: ′a discrete. to-nat (of-discrete c))
by (simp add: inj-on-def of-discrete-inject)

thus ∃ f :: ′a discrete ⇒ nat. inj f by blast
qed

instance discrete :: (countable) second-countable-topology
proof

let ?B = range (λn:: ′a discrete. {n})
have

∧
S . generate-topology ?B (

⋃
x∈S . {x})

by (intro generate-topology-Union) (auto intro: generate-topology.intros)
then have open = generate-topology ?B

by (auto intro!: ext simp: open-discrete)
moreover have countable ?B by simp
ultimately show ∃B:: ′a discrete set set. countable B ∧ open = generate-topology

B by blast

THEORY “Probability-Mass-Function” 274

qed

instance discrete :: (countable) polish-space ..

end

20 Probability mass function
theory Probability-Mass-Function
imports

Giry-Monad
HOL−Library.Multiset

begin

Conflicting notation from HOL−Analysis.Infinite-Sum
no-notation Infinite-Sum.abs-summable-on (infixr ‹abs ′-summable ′-on› 46)

lemma AE-emeasure-singleton:
assumes x: emeasure M {x} 6= 0 and ae: AE x in M . P x shows P x

proof −
from x have x-M : {x} ∈ sets M

by (auto intro: emeasure-notin-sets)
from ae obtain N where N : {x∈space M . ¬ P x} ⊆ N emeasure M N = 0 N
∈ sets M

by (auto elim: AE-E)
{ assume ¬ P x

with x-M [THEN sets.sets-into-space] N have emeasure M {x} ≤ emeasure M
N

by (intro emeasure-mono) auto
with x N have False

by (auto simp:) }
then show P x by auto

qed

lemma AE-measure-singleton: measure M {x} 6= 0 =⇒ AE x in M . P x =⇒ P x
by (metis AE-emeasure-singleton measure-def emeasure-empty measure-empty)

lemma (in finite-measure) AE-support-countable:
assumes [simp]: sets M = UNIV
shows (AE x in M . measure M {x} 6= 0) ←→ (∃S . countable S ∧ (AE x in M .

x ∈ S))
proof

assume ∃S . countable S ∧ (AE x in M . x ∈ S)
then obtain S where S [intro]: countable S and ae: AE x in M . x ∈ S

by auto
then have emeasure M (

⋃
x∈{x∈S . emeasure M {x} 6= 0}. {x}) =

(
∫

+ x. emeasure M {x} ∗ indicator {x∈S . emeasure M {x} 6= 0} x ∂count-space
UNIV)

by (subst emeasure-UN-countable)

THEORY “Probability-Mass-Function” 275

(auto simp: disjoint-family-on-def nn-integral-restrict-space[symmetric] re-
strict-count-space)

also have . . . = (
∫

+ x. emeasure M {x} ∗ indicator S x ∂count-space UNIV)
by (auto intro!: nn-integral-cong split: split-indicator)

also have . . . = emeasure M (
⋃

x∈S . {x})
by (subst emeasure-UN-countable)

(auto simp: disjoint-family-on-def nn-integral-restrict-space[symmetric] re-
strict-count-space)

also have . . . = emeasure M (space M)
using ae by (intro emeasure-eq-AE) auto

finally have emeasure M {x ∈ space M . x∈S ∧ emeasure M {x} 6= 0} =
emeasure M (space M)

by (simp add: emeasure-single-in-space cong: rev-conj-cong)
with finite-measure-compl[of {x ∈ space M . x∈S ∧ emeasure M {x} 6= 0}]
have AE x in M . x ∈ S ∧ emeasure M {x} 6= 0
by (intro AE-I [OF order-refl]) (auto simp: emeasure-eq-measure measure-nonneg

set-diff-eq cong: conj-cong)
then show AE x in M . measure M {x} 6= 0

by (auto simp: emeasure-eq-measure)
qed (auto intro!: exI [of - {x. measure M {x} 6= 0}] countable-support)

20.1 PMF as measure
typedef ′a pmf = {M :: ′a measure. prob-space M ∧ sets M = UNIV ∧ (AE x in
M . measure M {x} 6= 0)}

morphisms measure-pmf Abs-pmf
by (intro exI [of - uniform-measure (count-space UNIV) {undefined}])

(auto intro!: prob-space-uniform-measure AE-uniform-measureI)

declare [[coercion measure-pmf]]

lemma prob-space-measure-pmf : prob-space (measure-pmf p)
using pmf .measure-pmf [of p] by auto

interpretation measure-pmf : prob-space measure-pmf M for M
by (rule prob-space-measure-pmf)

interpretation measure-pmf : subprob-space measure-pmf M for M
by (rule prob-space-imp-subprob-space) unfold-locales

lemma subprob-space-measure-pmf : subprob-space (measure-pmf x)
by unfold-locales

locale pmf-as-measure
begin

setup-lifting type-definition-pmf

end

THEORY “Probability-Mass-Function” 276

context
begin

interpretation pmf-as-measure .

lemma sets-measure-pmf [simp]: sets (measure-pmf p) = UNIV
by transfer blast

lemma sets-measure-pmf-count-space[measurable-cong]:
sets (measure-pmf M) = sets (count-space UNIV)
by simp

lemma space-measure-pmf [simp]: space (measure-pmf p) = UNIV
using sets-eq-imp-space-eq[of measure-pmf p count-space UNIV] by simp

lemma measure-pmf-UNIV [simp]: measure (measure-pmf p) UNIV = 1
using measure-pmf .prob-space[of p] by simp

lemma measure-pmf-in-subprob-algebra[measurable (raw)]: measure-pmf x ∈ space
(subprob-algebra (count-space UNIV))

by (simp add: space-subprob-algebra subprob-space-measure-pmf)

lemma measurable-pmf-measure1 [simp]: measurable (M :: ′a pmf) N = UNIV →
space N

by (auto simp: measurable-def)

lemma measurable-pmf-measure2 [simp]: measurable N (M :: ′a pmf) = measurable
N (count-space UNIV)

by (intro measurable-cong-sets) simp-all

lemma measurable-pair-restrict-pmf2 :
assumes countable A
assumes [measurable]:

∧
y. y ∈ A =⇒ (λx. f (x, y)) ∈ measurable M L

shows f ∈ measurable (M
⊗

M restrict-space (measure-pmf N) A) L (is f ∈
measurable ?M -)
proof −
have [measurable-cong]: sets (restrict-space (count-space UNIV) A) = sets (count-space

A)
by (simp add: restrict-count-space)

show ?thesis
by (intro measurable-compose-countable ′[where f=λa b. f (fst b, a) and g=snd

and I=A,
unfolded prod.collapse] assms)

measurable
qed

lemma measurable-pair-restrict-pmf1 :

THEORY “Probability-Mass-Function” 277

assumes countable A
assumes [measurable]:

∧
x. x ∈ A =⇒ (λy. f (x, y)) ∈ measurable N L

shows f ∈ measurable (restrict-space (measure-pmf M) A
⊗

M N) L
proof −
have [measurable-cong]: sets (restrict-space (count-space UNIV) A) = sets (count-space

A)
by (simp add: restrict-count-space)

show ?thesis
by (intro measurable-compose-countable ′[where f=λa b. f (a, snd b) and g=fst

and I=A,
unfolded prod.collapse] assms)

measurable
qed

lift-definition pmf :: ′a pmf ⇒ ′a ⇒ real is λM x. measure M {x} .

lift-definition set-pmf :: ′a pmf ⇒ ′a set is λM . {x. measure M {x} 6= 0} .
declare [[coercion set-pmf]]

lemma AE-measure-pmf : AE x in (M :: ′a pmf). x ∈ M
by transfer simp

lemma emeasure-pmf-single-eq-zero-iff :
fixes M :: ′a pmf
shows emeasure M {y} = 0 ←→ y /∈ M
unfolding set-pmf .rep-eq by (simp add: measure-pmf .emeasure-eq-measure)

lemma AE-measure-pmf-iff : (AE x in measure-pmf M . P x) ←→ (∀ y∈M . P y)
using AE-measure-singleton[of M] AE-measure-pmf [of M]
by (auto simp: set-pmf .rep-eq)

lemma AE-pmfI : (
∧

y. y ∈ set-pmf M =⇒ P y) =⇒ almost-everywhere (measure-pmf
M) P
by(simp add: AE-measure-pmf-iff)

lemma countable-set-pmf [simp]: countable (set-pmf p)
by transfer (metis prob-space.finite-measure finite-measure.countable-support)

lemma pmf-positive: x ∈ set-pmf p =⇒ 0 < pmf p x
by transfer (simp add: less-le)

lemma pmf-nonneg[simp]: 0 ≤ pmf p x
by transfer simp

lemma pmf-not-neg [simp]: ¬pmf p x < 0
by (simp add: not-less pmf-nonneg)

lemma pmf-pos [simp]: pmf p x 6= 0 =⇒ pmf p x > 0

THEORY “Probability-Mass-Function” 278

using pmf-nonneg[of p x] by linarith

lemma pmf-le-1 : pmf p x ≤ 1
by (simp add: pmf .rep-eq)

lemma set-pmf-not-empty: set-pmf M 6= {}
using AE-measure-pmf [of M] by (intro notI) simp

lemma set-pmf-iff : x ∈ set-pmf M ←→ pmf M x 6= 0
by transfer simp

lemma pmf-positive-iff : 0 < pmf p x ←→ x ∈ set-pmf p
unfolding less-le by (simp add: set-pmf-iff)

lemma set-pmf-eq: set-pmf M = {x. pmf M x 6= 0}
by (auto simp: set-pmf-iff)

lemma set-pmf-eq ′: set-pmf p = {x. pmf p x > 0}
proof safe

fix x assume x ∈ set-pmf p
hence pmf p x 6= 0 by (auto simp: set-pmf-eq)
with pmf-nonneg[of p x] show pmf p x > 0 by simp

qed (auto simp: set-pmf-eq)

lemma emeasure-pmf-single:
fixes M :: ′a pmf
shows emeasure M {x} = pmf M x
by transfer (simp add: finite-measure.emeasure-eq-measure[OF prob-space.finite-measure])

lemma measure-pmf-single: measure (measure-pmf M) {x} = pmf M x
using emeasure-pmf-single[of M x] by(simp add: measure-pmf .emeasure-eq-measure

pmf-nonneg measure-nonneg)

lemma emeasure-measure-pmf-finite: finite S =⇒ emeasure (measure-pmf M) S
= (

∑
s∈S . pmf M s)

by (subst emeasure-eq-sum-singleton) (auto simp: emeasure-pmf-single pmf-nonneg)

lemma measure-measure-pmf-finite: finite S =⇒ measure (measure-pmf M) S =
sum (pmf M) S

using emeasure-measure-pmf-finite[of S M]
by (simp add: measure-pmf .emeasure-eq-measure measure-nonneg sum-nonneg

pmf-nonneg)

lemma sum-pmf-eq-1 :
assumes finite A set-pmf p ⊆ A
shows (

∑
x∈A. pmf p x) = 1

proof −
have (

∑
x∈A. pmf p x) = measure-pmf .prob p A

by (simp add: measure-measure-pmf-finite assms)

THEORY “Probability-Mass-Function” 279

also from assms have . . . = 1
by (subst measure-pmf .prob-eq-1) (auto simp: AE-measure-pmf-iff)

finally show ?thesis .
qed

lemma nn-integral-measure-pmf-support:
fixes f :: ′a ⇒ ennreal
assumes f : finite A and nn:

∧
x. x ∈ A =⇒ 0 ≤ f x

∧
x. x ∈ set-pmf M =⇒ x

/∈ A =⇒ f x = 0
shows (

∫
+x. f x ∂measure-pmf M) = (

∑
x∈A. f x ∗ pmf M x)

proof −
have (

∫
+x. f x ∂M) = (

∫
+x. f x ∗ indicator A x ∂M)

using nn by (intro nn-integral-cong-AE) (auto simp: AE-measure-pmf-iff split:
split-indicator)

also have . . . = (
∑

x∈A. f x ∗ emeasure M {x})
using assms by (intro nn-integral-indicator-finite) auto

finally show ?thesis
by (simp add: emeasure-measure-pmf-finite)

qed

lemma nn-integral-measure-pmf-finite:
fixes f :: ′a ⇒ ennreal
assumes f : finite (set-pmf M) and nn:

∧
x. x ∈ set-pmf M =⇒ 0 ≤ f x

shows (
∫

+x. f x ∂measure-pmf M) = (
∑

x∈set-pmf M . f x ∗ pmf M x)
using assms by (intro nn-integral-measure-pmf-support) auto

lemma integrable-measure-pmf-finite:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
shows finite (set-pmf M) =⇒ integrable M f
by (auto intro!: integrableI-bounded simp: nn-integral-measure-pmf-finite ennreal-mult-less-top)

lemma integral-measure-pmf-real:
assumes [simp]: finite A and

∧
a. a ∈ set-pmf M =⇒ f a 6= 0 =⇒ a ∈ A

shows (
∫

x. f x ∂measure-pmf M) = (
∑

a∈A. f a ∗ pmf M a)
proof −

have (
∫

x. f x ∂measure-pmf M) = (
∫

x. f x ∗ indicator A x ∂measure-pmf M)
using assms(2) by (intro integral-cong-AE) (auto split: split-indicator simp:

AE-measure-pmf-iff)
also have . . . = (

∑
a∈A. f a ∗ pmf M a)

by (subst integral-indicator-finite-real)
(auto simp: measure-def emeasure-measure-pmf-finite pmf-nonneg)

finally show ?thesis .
qed

lemma integrable-pmf : integrable (count-space X) (pmf M)
proof −

have (
∫

+ x. pmf M x ∂count-space X) = (
∫

+ x. pmf M x ∂count-space (M ∩
X))

by (auto simp add: nn-integral-count-space-indicator set-pmf-iff intro!: nn-integral-cong

THEORY “Probability-Mass-Function” 280

split: split-indicator)
then have integrable (count-space X) (pmf M) = integrable (count-space (M ∩

X)) (pmf M)
by (simp add: integrable-iff-bounded pmf-nonneg)

then show ?thesis
by (simp add: pmf .rep-eq measure-pmf .integrable-measure disjoint-family-on-def)

qed

lemma integral-pmf : (
∫

x. pmf M x ∂count-space X) = measure M X
proof −

have (
∫

x. pmf M x ∂count-space X) = (
∫

+x. pmf M x ∂count-space X)
by (simp add: pmf-nonneg integrable-pmf nn-integral-eq-integral)

also have . . . = (
∫

+x. emeasure M {x} ∂count-space (X ∩ M))
by (auto intro!: nn-integral-cong-AE split: split-indicator

simp: pmf .rep-eq measure-pmf .emeasure-eq-measure nn-integral-count-space-indicator
AE-count-space set-pmf-iff)

also have . . . = emeasure M (X ∩ M)
by (rule emeasure-countable-singleton[symmetric]) (auto intro: countable-set-pmf)

also have . . . = emeasure M X
by (auto intro!: emeasure-eq-AE simp: AE-measure-pmf-iff)

finally show ?thesis
by (simp add: measure-pmf .emeasure-eq-measure measure-nonneg integral-nonneg

pmf-nonneg)
qed

lemma integral-pmf-restrict:
(f :: ′a ⇒ ′b::{banach, second-countable-topology}) ∈ borel-measurable (count-space

UNIV) =⇒
(
∫

x. f x ∂measure-pmf M) = (
∫

x. f x ∂restrict-space M M)
by (auto intro!: integral-cong-AE simp add: integral-restrict-space AE-measure-pmf-iff)

lemma emeasure-pmf : emeasure (M :: ′a pmf) M = 1
proof −

have emeasure (M :: ′a pmf) M = emeasure (M :: ′a pmf) (space M)
by (intro emeasure-eq-AE) (simp-all add: AE-measure-pmf)

then show ?thesis
using measure-pmf .emeasure-space-1 by simp

qed

lemma emeasure-pmf-UNIV [simp]: emeasure (measure-pmf M) UNIV = 1
using measure-pmf .emeasure-space-1 [of M] by simp

lemma in-null-sets-measure-pmfI :
A ∩ set-pmf p = {} =⇒ A ∈ null-sets (measure-pmf p)

using emeasure-eq-0-AE [where ?P=λx. x ∈ A and M=measure-pmf p]
by(auto simp add: null-sets-def AE-measure-pmf-iff)

lemma measure-subprob: measure-pmf M ∈ space (subprob-algebra (count-space
UNIV))

THEORY “Probability-Mass-Function” 281

by (simp add: space-subprob-algebra subprob-space-measure-pmf)

20.2 Monad Interpretation
lemma measurable-measure-pmf [measurable]:
(λx. measure-pmf (M x)) ∈ measurable (count-space UNIV) (subprob-algebra

(count-space UNIV))
by (auto simp: space-subprob-algebra intro!: prob-space-imp-subprob-space) un-

fold-locales

lemma bind-measure-pmf-cong:
assumes

∧
x. A x ∈ space (subprob-algebra N)

∧
x. B x ∈ space (subprob-algebra

N)
assumes

∧
i. i ∈ set-pmf x =⇒ A i = B i

shows bind (measure-pmf x) A = bind (measure-pmf x) B
proof (rule measure-eqI)

show sets (measure-pmf x >>= A) = sets (measure-pmf x >>= B)
using assms by (subst (1 2) sets-bind) (auto simp: space-subprob-algebra)

next
fix X assume X ∈ sets (measure-pmf x >>= A)
then have X : X ∈ sets N

using assms by (subst (asm) sets-bind) (auto simp: space-subprob-algebra)
show emeasure (measure-pmf x >>= A) X = emeasure (measure-pmf x >>= B) X

using assms
by (subst (1 2) emeasure-bind[where N=N , OF - - X])

(auto intro!: nn-integral-cong-AE simp: AE-measure-pmf-iff)
qed

lift-definition bind-pmf :: ′a pmf ⇒ (′a ⇒ ′b pmf) ⇒ ′b pmf is bind
proof (clarify, intro conjI)

fix f :: ′a measure and g :: ′a ⇒ ′b measure
assume prob-space f
then interpret f : prob-space f .
assume sets f = UNIV and ae-f : AE x in f . measure f {x} 6= 0
then have s-f [simp]: sets f = sets (count-space UNIV)

by simp
assume g:

∧
x. prob-space (g x) ∧ sets (g x) = UNIV ∧ (AE y in g x. measure

(g x) {y} 6= 0)
then have g:

∧
x. prob-space (g x) and s-g[simp]:

∧
x. sets (g x) = sets (count-space

UNIV)
and ae-g:

∧
x. AE y in g x. measure (g x) {y} 6= 0

by auto

have [measurable]: g ∈ measurable f (subprob-algebra (count-space UNIV))
by (auto simp: measurable-def space-subprob-algebra prob-space-imp-subprob-space

g)

show prob-space (f >>= g)
using g by (intro f .prob-space-bind[where S=count-space UNIV]) auto

THEORY “Probability-Mass-Function” 282

then interpret fg: prob-space f >>= g .
show [simp]: sets (f >>= g) = UNIV

using sets-eq-imp-space-eq[OF s-f]
by (subst sets-bind[where N=count-space UNIV]) auto

show AE x in f >>= g. measure (f >>= g) {x} 6= 0
apply (simp add: fg.prob-eq-0 AE-bind[where B=count-space UNIV])
using ae-f
apply eventually-elim
using ae-g
apply eventually-elim
apply (auto dest: AE-measure-singleton)
done

qed

adhoc-overloading Monad-Syntax.bind
 bind-pmf

lemma ennreal-pmf-bind: pmf (bind-pmf N f) i = (
∫

+x. pmf (f x) i ∂measure-pmf
N)

unfolding pmf .rep-eq bind-pmf .rep-eq
by (auto simp: measure-pmf .measure-bind[where N=count-space UNIV] mea-

sure-subprob measure-nonneg
intro!: nn-integral-eq-integral[symmetric] measure-pmf .integrable-const-bound[where

B=1])

lemma pmf-bind: pmf (bind-pmf N f) i = (
∫

x. pmf (f x) i ∂measure-pmf N)
using ennreal-pmf-bind[of N f i]
by (subst (asm) nn-integral-eq-integral)

(auto simp: pmf-nonneg pmf-le-1 pmf-nonneg integral-nonneg
intro!: nn-integral-eq-integral[symmetric] measure-pmf .integrable-const-bound[where

B=1])

lemma bind-pmf-const[simp]: bind-pmf M (λx. c) = c
by transfer (simp add: bind-const ′ prob-space-imp-subprob-space)

lemma set-bind-pmf [simp]: set-pmf (bind-pmf M N) = (
⋃

M∈set-pmf M . set-pmf
(N M))
proof −

have set-pmf (bind-pmf M N) = {x. ennreal (pmf (bind-pmf M N) x) 6= 0}
by (simp add: set-pmf-eq pmf-nonneg)

also have . . . = (
⋃

M∈set-pmf M . set-pmf (N M))
unfolding ennreal-pmf-bind
by (subst nn-integral-0-iff-AE) (auto simp: AE-measure-pmf-iff pmf-nonneg

set-pmf-eq)
finally show ?thesis .

qed

lemma bind-pmf-cong [fundef-cong]:
assumes p = q
shows (

∧
x. x ∈ set-pmf q =⇒ f x = g x) =⇒ bind-pmf p f = bind-pmf q g

THEORY “Probability-Mass-Function” 283

unfolding ‹p = q›[symmetric] measure-pmf-inject[symmetric] bind-pmf .rep-eq
by (auto simp: AE-measure-pmf-iff Pi-iff space-subprob-algebra subprob-space-measure-pmf

sets-bind[where N=count-space UNIV] emeasure-bind[where
N=count-space UNIV]

intro!: nn-integral-cong-AE measure-eqI)

lemma bind-pmf-cong-simp:
p = q =⇒ (

∧
x. x ∈ set-pmf q =simp=> f x = g x) =⇒ bind-pmf p f = bind-pmf

q g
by (simp add: simp-implies-def cong: bind-pmf-cong)

lemma measure-pmf-bind: measure-pmf (bind-pmf M f) = (measure-pmf M >>=
(λx. measure-pmf (f x)))

by transfer simp

lemma nn-integral-bind-pmf [simp]: (
∫

+x. f x ∂bind-pmf M N) = (
∫

+x.
∫

+y. f y
∂N x ∂M)

using measurable-measure-pmf [of N]
unfolding measure-pmf-bind
apply (intro nn-integral-bind[where B=count-space UNIV])
apply auto
done

lemma emeasure-bind-pmf [simp]: emeasure (bind-pmf M N) X = (
∫

+x. emeasure
(N x) X ∂M)

using measurable-measure-pmf [of N]
unfolding measure-pmf-bind
by (subst emeasure-bind[where N=count-space UNIV]) auto

lift-definition return-pmf :: ′a ⇒ ′a pmf is return (count-space UNIV)
by (auto intro!: prob-space-return simp: AE-return measure-return)

lemma bind-return-pmf : bind-pmf (return-pmf x) f = f x
by transfer

(auto intro!: prob-space-imp-subprob-space bind-return[where N=count-space
UNIV]

simp: space-subprob-algebra)

lemma set-return-pmf [simp]: set-pmf (return-pmf x) = {x}
by transfer (auto simp add: measure-return split: split-indicator)

lemma bind-return-pmf ′: bind-pmf N return-pmf = N
proof (transfer , clarify)
fix N :: ′a measure assume sets N = UNIV then show N >>= return (count-space

UNIV) = N
by (subst return-sets-cong[where N=N]) (simp-all add: bind-return ′)

qed

lemma bind-assoc-pmf : bind-pmf (bind-pmf A B) C = bind-pmf A (λx. bind-pmf

THEORY “Probability-Mass-Function” 284

(B x) C)
by transfer

(auto intro!: bind-assoc[where N=count-space UNIV and R=count-space
UNIV]

simp: measurable-def space-subprob-algebra prob-space-imp-subprob-space)

definition map-pmf f M = bind-pmf M (λx. return-pmf (f x))

lemma map-bind-pmf : map-pmf f (bind-pmf M g) = bind-pmf M (λx. map-pmf f
(g x))

by (simp add: map-pmf-def bind-assoc-pmf)

lemma bind-map-pmf : bind-pmf (map-pmf f M) g = bind-pmf M (λx. g (f x))
by (simp add: map-pmf-def bind-assoc-pmf bind-return-pmf)

lemma map-pmf-transfer [transfer-rule]:
rel-fun (=) (rel-fun cr-pmf cr-pmf) (λf M . distr M (count-space UNIV) f)

map-pmf
proof −

have rel-fun (=) (rel-fun pmf-as-measure.cr-pmf pmf-as-measure.cr-pmf)
(λf M . M >>= (return (count-space UNIV) o f)) map-pmf

unfolding map-pmf-def [abs-def] comp-def by transfer-prover
then show ?thesis

by (force simp: rel-fun-def cr-pmf-def bind-return-distr)
qed

lemma map-pmf-rep-eq:
measure-pmf (map-pmf f M) = distr (measure-pmf M) (count-space UNIV) f
unfolding map-pmf-def bind-pmf .rep-eq comp-def return-pmf .rep-eq
using bind-return-distr [of M f count-space UNIV] by (simp add: comp-def)

lemma map-pmf-id[simp]: map-pmf id = id
by (rule, transfer) (auto simp: emeasure-distr measurable-def intro!: measure-eqI)

lemma map-pmf-ident[simp]: map-pmf (λx. x) = (λx. x)
using map-pmf-id unfolding id-def .

lemma map-pmf-compose: map-pmf (f ◦ g) = map-pmf f ◦ map-pmf g
by (rule, transfer) (simp add: distr-distr [symmetric, where N=count-space UNIV]

measurable-def)

lemma map-pmf-comp: map-pmf f (map-pmf g M) = map-pmf (λx. f (g x)) M
using map-pmf-compose[of f g] by (simp add: comp-def)

lemma map-pmf-cong: p = q =⇒ (
∧

x. x ∈ set-pmf q =⇒ f x = g x) =⇒ map-pmf
f p = map-pmf g q

unfolding map-pmf-def by (rule bind-pmf-cong) auto

lemma pmf-set-map: set-pmf ◦ map-pmf f = (‘) f ◦ set-pmf

THEORY “Probability-Mass-Function” 285

by (auto simp add: comp-def fun-eq-iff map-pmf-def)

lemma set-map-pmf [simp]: set-pmf (map-pmf f M) = f‘set-pmf M
using pmf-set-map[of f] by (auto simp: comp-def fun-eq-iff)

lemma emeasure-map-pmf [simp]: emeasure (map-pmf f M) X = emeasure M (f
−‘ X)

unfolding map-pmf-rep-eq by (subst emeasure-distr) auto

lemma measure-map-pmf [simp]: measure (map-pmf f M) X = measure M (f −‘
X)
using emeasure-map-pmf [of f M X] by(simp add: measure-pmf .emeasure-eq-measure
measure-nonneg)

lemma nn-integral-map-pmf [simp]: (
∫

+x. f x ∂map-pmf g M) = (
∫

+x. f (g x)
∂M)

unfolding map-pmf-rep-eq by (intro nn-integral-distr) auto

lemma ennreal-pmf-map: pmf (map-pmf f p) x = (
∫

+ y. indicator (f −‘ {x}) y
∂measure-pmf p)
proof (transfer fixing: f x)

fix p :: ′b measure
presume prob-space p
then interpret prob-space p .
presume sets p = UNIV
then show ennreal (measure (distr p (count-space UNIV) f) {x}) = integralN

p (indicator (f −‘ {x}))
by(simp add: measure-distr measurable-def emeasure-eq-measure)

qed simp-all

lemma pmf-map: pmf (map-pmf f p) x = measure p (f −‘ {x})
proof (transfer fixing: f x)

fix p :: ′b measure
presume prob-space p
then interpret prob-space p .
presume sets p = UNIV
then show measure (distr p (count-space UNIV) f) {x} = measure p (f −‘ {x})

by(simp add: measure-distr measurable-def emeasure-eq-measure)
qed simp-all

lemma nn-integral-pmf : (
∫

+ x. pmf p x ∂count-space A) = emeasure (measure-pmf
p) A
proof −

have (
∫

+ x. pmf p x ∂count-space A) = (
∫

+ x. pmf p x ∂count-space (A ∩
set-pmf p))

by(auto simp add: nn-integral-count-space-indicator indicator-def set-pmf-iff
intro: nn-integral-cong)

also have . . . = emeasure (measure-pmf p) (
⋃

x∈A ∩ set-pmf p. {x})
by(subst emeasure-UN-countable)(auto simp add: emeasure-pmf-single disjoint-family-on-def)

THEORY “Probability-Mass-Function” 286

also have . . . = emeasure (measure-pmf p) ((
⋃

x∈A ∩ set-pmf p. {x}) ∪ {x. x
∈ A ∧ x /∈ set-pmf p})

by(rule emeasure-Un-null-set[symmetric])(auto intro: in-null-sets-measure-pmfI)
also have . . . = emeasure (measure-pmf p) A

by(auto intro: arg-cong2 [where f=emeasure])
finally show ?thesis .

qed

lemma integral-map-pmf [simp]:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
shows integralL (map-pmf g p) f = integralL p (λx. f (g x))
by (simp add: integral-distr map-pmf-rep-eq)

lemma integrable-map-pmf-eq [simp]:
fixes g :: ′a ⇒ ′b::{banach, second-countable-topology}
shows integrable (map-pmf f p) g ←→ integrable (measure-pmf p) (λx. g (f x))
by (subst map-pmf-rep-eq, subst integrable-distr-eq) auto

lemma integrable-map-pmf [intro]:
fixes g :: ′a ⇒ ′b::{banach, second-countable-topology}
shows integrable (measure-pmf p) (λx. g (f x)) =⇒ integrable (map-pmf f p) g
by (subst integrable-map-pmf-eq)

lemma pmf-abs-summable [intro]: pmf p abs-summable-on A
by (rule abs-summable-on-subset[OF - subset-UNIV])

(auto simp: abs-summable-on-def integrable-iff-bounded nn-integral-pmf)

lemma measure-pmf-conv-infsetsum: measure (measure-pmf p) A = infsetsum (pmf
p) A

unfolding infsetsum-def by (simp add: integral-eq-nn-integral nn-integral-pmf
measure-def)

lemma infsetsum-pmf-eq-1 :
assumes set-pmf p ⊆ A
shows infsetsum (pmf p) A = 1

proof −
have infsetsum (pmf p) A = lebesgue-integral (count-space UNIV) (pmf p)

using assms unfolding infsetsum-altdef set-lebesgue-integral-def
by (intro Bochner-Integration.integral-cong) (auto simp: indicator-def set-pmf-eq)

also have . . . = 1
by (subst integral-eq-nn-integral) (auto simp: nn-integral-pmf)

finally show ?thesis .
qed

lemma map-return-pmf [simp]: map-pmf f (return-pmf x) = return-pmf (f x)
by transfer (simp add: distr-return)

lemma map-pmf-const[simp]: map-pmf (λ-. c) M = return-pmf c
by transfer (auto simp: prob-space.distr-const)

THEORY “Probability-Mass-Function” 287

lemma pmf-return [simp]: pmf (return-pmf x) y = indicator {y} x
by transfer (simp add: measure-return)

lemma nn-integral-return-pmf [simp]: 0 ≤ f x =⇒ (
∫

+x. f x ∂return-pmf x) = f x
unfolding return-pmf .rep-eq by (intro nn-integral-return) auto

lemma emeasure-return-pmf [simp]: emeasure (return-pmf x) X = indicator X x
unfolding return-pmf .rep-eq by (intro emeasure-return) auto

lemma measure-return-pmf [simp]: measure-pmf .prob (return-pmf x) A = indica-
tor A x
proof −

have ennreal (measure-pmf .prob (return-pmf x) A) =
emeasure (measure-pmf (return-pmf x)) A

by (simp add: measure-pmf .emeasure-eq-measure)
also have . . . = ennreal (indicator A x) by (simp add: ennreal-indicator)
finally show ?thesis by simp

qed

lemma return-pmf-inj[simp]: return-pmf x = return-pmf y ←→ x = y
by (metis insertI1 set-return-pmf singletonD)

lemma map-pmf-eq-return-pmf-iff :
map-pmf f p = return-pmf x ←→ (∀ y ∈ set-pmf p. f y = x)

proof
assume map-pmf f p = return-pmf x
then have set-pmf (map-pmf f p) = set-pmf (return-pmf x) by simp
then show ∀ y ∈ set-pmf p. f y = x by auto

next
assume ∀ y ∈ set-pmf p. f y = x
then show map-pmf f p = return-pmf x

unfolding map-pmf-const[symmetric, of - p] by (intro map-pmf-cong) auto
qed

definition pair-pmf A B = bind-pmf A (λx. bind-pmf B (λy. return-pmf (x, y)))

lemma pmf-pair : pmf (pair-pmf M N) (a, b) = pmf M a ∗ pmf N b
unfolding pair-pmf-def pmf-bind pmf-return
apply (subst integral-measure-pmf-real[where A={b}])
apply (auto simp: indicator-eq-0-iff)
apply (subst integral-measure-pmf-real[where A={a}])
apply (auto simp: indicator-eq-0-iff sum-nonneg-eq-0-iff pmf-nonneg)
done

lemma set-pair-pmf [simp]: set-pmf (pair-pmf A B) = set-pmf A × set-pmf B
unfolding pair-pmf-def set-bind-pmf set-return-pmf by auto

lemma measure-pmf-in-subprob-space[measurable (raw)]:

THEORY “Probability-Mass-Function” 288

measure-pmf M ∈ space (subprob-algebra (count-space UNIV))
by (simp add: space-subprob-algebra) intro-locales

lemma nn-integral-pair-pmf ′: (
∫

+x. f x ∂pair-pmf A B) = (
∫

+a.
∫

+b. f (a, b)
∂B ∂A)
proof −

have (
∫

+x. f x ∂pair-pmf A B) = (
∫

+x. f x ∗ indicator (A × B) x ∂pair-pmf
A B)

by (auto simp: AE-measure-pmf-iff intro!: nn-integral-cong-AE)
also have . . . = (

∫
+a.

∫
+b. f (a, b) ∗ indicator (A × B) (a, b) ∂B ∂A)

by (simp add: pair-pmf-def)
also have . . . = (

∫
+a.

∫
+b. f (a, b) ∂B ∂A)

by (auto intro!: nn-integral-cong-AE simp: AE-measure-pmf-iff)
finally show ?thesis .

qed

lemma bind-pair-pmf :
assumes M [measurable]: M ∈ measurable (count-space UNIV

⊗
M count-space

UNIV) (subprob-algebra N)
shows measure-pmf (pair-pmf A B) >>= M = (measure-pmf A >>= (λx. mea-

sure-pmf B >>= (λy. M (x, y))))
(is ?L = ?R)

proof (rule measure-eqI)
have M ′[measurable]: M ∈ measurable (pair-pmf A B) (subprob-algebra N)

using M [THEN measurable-space] by (simp-all add: space-pair-measure)

note measurable-bind[where N=count-space UNIV , measurable]
note measure-pmf-in-subprob-space[simp]

have sets-eq-N : sets ?L = N
by (subst sets-bind[OF sets-kernel[OF M ′]]) auto

show sets ?L = sets ?R
using measurable-space[OF M]
by (simp add: sets-eq-N space-pair-measure space-subprob-algebra)

fix X assume X ∈ sets ?L
then have X [measurable]: X ∈ sets N

unfolding sets-eq-N .
then show emeasure ?L X = emeasure ?R X

apply (simp add: emeasure-bind[OF - M ′ X])
apply (simp add: nn-integral-bind[where B=count-space UNIV] pair-pmf-def

measure-pmf-bind[of A]
nn-integral-measure-pmf-finite)

apply (subst emeasure-bind[OF - - X])
apply measurable
apply (subst emeasure-bind[OF - - X])
apply measurable
done

qed

THEORY “Probability-Mass-Function” 289

lemma map-fst-pair-pmf : map-pmf fst (pair-pmf A B) = A
by (simp add: pair-pmf-def map-pmf-def bind-assoc-pmf bind-return-pmf bind-return-pmf ′)

lemma map-snd-pair-pmf : map-pmf snd (pair-pmf A B) = B
by (simp add: pair-pmf-def map-pmf-def bind-assoc-pmf bind-return-pmf bind-return-pmf ′)

lemma nn-integral-pmf ′:
inj-on f A =⇒ (

∫
+x. pmf p (f x) ∂count-space A) = emeasure p (f ‘ A)

by (subst nn-integral-bij-count-space[where g=f and B=f‘A])
(auto simp: bij-betw-def nn-integral-pmf)

lemma pmf-le-0-iff [simp]: pmf M p ≤ 0 ←→ pmf M p = 0
using pmf-nonneg[of M p] by arith

lemma min-pmf-0 [simp]: min (pmf M p) 0 = 0 min 0 (pmf M p) = 0
using pmf-nonneg[of M p] by arith+

lemma pmf-eq-0-set-pmf : pmf M p = 0 ←→ p /∈ set-pmf M
unfolding set-pmf-iff by simp

lemma pmf-map-inj: inj-on f (set-pmf M) =⇒ x ∈ set-pmf M =⇒ pmf (map-pmf
f M) (f x) = pmf M x

by (auto simp: pmf .rep-eq map-pmf-rep-eq measure-distr AE-measure-pmf-iff
inj-onD

intro!: measure-pmf .finite-measure-eq-AE)

lemma pair-return-pmf [simp]: pair-pmf (return-pmf x) (return-pmf y) = return-pmf
(x, y)

by (auto simp: pair-pmf-def bind-return-pmf)

lemma pmf-map-inj ′: inj f =⇒ pmf (map-pmf f M) (f x) = pmf M x
apply(cases x ∈ set-pmf M)
apply(simp add: pmf-map-inj[OF inj-on-subset])

apply(simp add: pmf-eq-0-set-pmf [symmetric])
apply(auto simp add: pmf-eq-0-set-pmf dest: injD)
done

lemma expectation-pair-pmf-fst [simp]:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
shows measure-pmf .expectation (pair-pmf p q) (λx. f (fst x)) = measure-pmf .expectation

p f
proof −

have measure-pmf .expectation (pair-pmf p q) (λx. f (fst x)) =
measure-pmf .expectation (map-pmf fst (pair-pmf p q)) f by simp

also have map-pmf fst (pair-pmf p q) = p
by (simp add: map-fst-pair-pmf)

finally show ?thesis .
qed

THEORY “Probability-Mass-Function” 290

lemma expectation-pair-pmf-snd [simp]:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
shows measure-pmf .expectation (pair-pmf p q) (λx. f (snd x)) = measure-pmf .expectation

q f
proof −

have measure-pmf .expectation (pair-pmf p q) (λx. f (snd x)) =
measure-pmf .expectation (map-pmf snd (pair-pmf p q)) f by simp

also have map-pmf snd (pair-pmf p q) = q
by (simp add: map-snd-pair-pmf)

finally show ?thesis .
qed

lemma pmf-map-outside: x /∈ f ‘ set-pmf M =⇒ pmf (map-pmf f M) x = 0
unfolding pmf-eq-0-set-pmf by simp

lemma measurable-set-pmf [measurable]: Measurable.pred (count-space UNIV) (λx.
x ∈ set-pmf M)

by simp

20.3 PMFs as function
context

fixes f :: ′a ⇒ real
assumes nonneg:

∧
x. 0 ≤ f x

assumes prob: (
∫

+x. f x ∂count-space UNIV) = 1
begin

lift-definition embed-pmf :: ′a pmf is density (count-space UNIV) (ennreal ◦ f)
proof (intro conjI)

have ∗[simp]:
∧

x y. ennreal (f y) ∗ indicator {x} y = ennreal (f x) ∗ indicator
{x} y

by (simp split: split-indicator)
show AE x in density (count-space UNIV) (ennreal ◦ f).

measure (density (count-space UNIV) (ennreal ◦ f)) {x} 6= 0
by (simp add: AE-density nonneg measure-def emeasure-density max-def)

show prob-space (density (count-space UNIV) (ennreal ◦ f))
by standard (simp add: emeasure-density prob)

qed simp

lemma pmf-embed-pmf : pmf embed-pmf x = f x
proof transfer

have ∗[simp]:
∧

x y. ennreal (f y) ∗ indicator {x} y = ennreal (f x) ∗ indicator
{x} y

by (simp split: split-indicator)
fix x show measure (density (count-space UNIV) (ennreal ◦ f)) {x} = f x

by transfer (simp add: measure-def emeasure-density nonneg max-def)
qed

lemma set-embed-pmf : set-pmf embed-pmf = {x. f x 6= 0}

THEORY “Probability-Mass-Function” 291

by(auto simp add: set-pmf-eq pmf-embed-pmf)

end

lemma embed-pmf-transfer :
rel-fun (eq-onp (λf . (∀ x. 0 ≤ f x) ∧ (

∫
+x. ennreal (f x) ∂count-space UNIV)

= 1)) pmf-as-measure.cr-pmf (λf . density (count-space UNIV) (ennreal ◦ f)) em-
bed-pmf

by (auto simp: rel-fun-def eq-onp-def embed-pmf .transfer)

lemma measure-pmf-eq-density: measure-pmf p = density (count-space UNIV)
(pmf p)
proof (transfer , elim conjE)

fix M :: ′a measure assume [simp]: sets M = UNIV and ae: AE x in M . measure
M {x} 6= 0

assume prob-space M then interpret prob-space M .
show M = density (count-space UNIV) (λx. ennreal (measure M {x}))
proof (rule measure-eqI)

fix A :: ′a set
have (

∫
+ x. ennreal (measure M {x}) ∗ indicator A x ∂count-space UNIV) =

(
∫

+ x. emeasure M {x} ∗ indicator (A ∩ {x. measure M {x} 6= 0}) x
∂count-space UNIV)

by (auto intro!: nn-integral-cong simp: emeasure-eq-measure split: split-indicator)
also have . . . = (

∫
+ x. emeasure M {x} ∂count-space (A ∩ {x. measure M

{x} 6= 0}))
by (subst nn-integral-restrict-space[symmetric]) (auto simp: restrict-count-space)
also have . . . = emeasure M (

⋃
x∈(A ∩ {x. measure M {x} 6= 0}). {x})

by (intro emeasure-UN-countable[symmetric] countable-Int2 countable-support)
(auto simp: disjoint-family-on-def)

also have . . . = emeasure M A
using ae by (intro emeasure-eq-AE) auto

finally show emeasure M A = emeasure (density (count-space UNIV) (λx.
ennreal (measure M {x}))) A

using emeasure-space-1 by (simp add: emeasure-density)
qed simp

qed

lemma td-pmf-embed-pmf :
type-definition pmf embed-pmf {f :: ′a ⇒ real. (∀ x. 0 ≤ f x) ∧ (

∫
+x. ennreal (f

x) ∂count-space UNIV) = 1}
unfolding type-definition-def

proof safe
fix p :: ′a pmf
have (

∫
+ x. 1 ∂measure-pmf p) = 1

using measure-pmf .emeasure-space-1 [of p] by simp
then show ∗: (

∫
+ x. ennreal (pmf p x) ∂count-space UNIV) = 1

by (simp add: measure-pmf-eq-density nn-integral-density pmf-nonneg del: nn-integral-const)

show embed-pmf (pmf p) = p

THEORY “Probability-Mass-Function” 292

by (intro measure-pmf-inject[THEN iffD1])
(simp add: ∗ embed-pmf .rep-eq pmf-nonneg measure-pmf-eq-density[of p]

comp-def)
next

fix f :: ′a ⇒ real assume ∀ x. 0 ≤ f x (
∫

+x. f x ∂count-space UNIV) = 1
then show pmf (embed-pmf f) = f

by (auto intro!: pmf-embed-pmf)
qed (rule pmf-nonneg)

end

lemma nn-integral-measure-pmf : (
∫

+ x. f x ∂measure-pmf p) =
∫

+ x. ennreal
(pmf p x) ∗ f x ∂count-space UNIV
by(simp add: measure-pmf-eq-density nn-integral-density pmf-nonneg)

lemma integral-measure-pmf :
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes A: finite A
shows (

∧
a. a ∈ set-pmf M =⇒ f a 6= 0 =⇒ a ∈ A) =⇒ (LINT x |M . f x) =

(
∑

a∈A. pmf M a ∗R f a)
unfolding measure-pmf-eq-density
apply (simp add: integral-density)
apply (subst lebesgue-integral-count-space-finite-support)
apply (auto intro!: finite-subset[OF - ‹finite A›] sum.mono-neutral-left simp:

pmf-eq-0-set-pmf)
done

lemma expectation-return-pmf [simp]:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
shows measure-pmf .expectation (return-pmf x) f = f x
by (subst integral-measure-pmf [of {x}]) simp-all

lemma pmf-expectation-bind:
fixes p :: ′a pmf and f :: ′a ⇒ ′b pmf

and h :: ′b ⇒ ′c::{banach, second-countable-topology}
assumes finite A

∧
x. x ∈ A =⇒ finite (set-pmf (f x)) set-pmf p ⊆ A

shows measure-pmf .expectation (p >>= f) h =
(
∑

a∈A. pmf p a ∗R measure-pmf .expectation (f a) h)
proof −

have measure-pmf .expectation (p >>= f) h = (
∑

a∈(
⋃

x∈A. set-pmf (f x)). pmf
(p >>= f) a ∗R h a)

using assms by (intro integral-measure-pmf) auto
also have . . . = (

∑
x∈(

⋃
x∈A. set-pmf (f x)). (

∑
a∈A. (pmf p a ∗ pmf (f a)

x) ∗R h x))
proof (intro sum.cong refl, goal-cases)

case (1 x)
thus ?case

by (subst pmf-bind, subst integral-measure-pmf [of A])
(insert assms, auto simp: scaleR-sum-left)

THEORY “Probability-Mass-Function” 293

qed
also have . . . = (

∑
j∈A. pmf p j ∗R (

∑
i∈(

⋃
x∈A. set-pmf (f x)). pmf (f j) i

∗R h i))
by (subst sum.swap) (simp add: scaleR-sum-right)

also have . . . = (
∑

j∈A. pmf p j ∗R measure-pmf .expectation (f j) h)
proof (intro sum.cong refl, goal-cases)

case (1 x)
thus ?case

by (subst integral-measure-pmf [of (
⋃

x∈A. set-pmf (f x))])
(insert assms, auto simp: scaleR-sum-left)

qed
finally show ?thesis .

qed

lemma continuous-on-LINT-pmf : — This is dominated convergence!?
fixes f :: ′i ⇒ ′a::topological-space ⇒ ′b::{banach, second-countable-topology}
assumes f :

∧
i. i ∈ set-pmf M =⇒ continuous-on A (f i)

and bnd:
∧

a i. a ∈ A =⇒ i ∈ set-pmf M =⇒ norm (f i a) ≤ B
shows continuous-on A (λa. LINT i|M . f i a)

proof cases
assume finite M with f show ?thesis

using integral-measure-pmf [OF ‹finite M ›]
by (subst integral-measure-pmf [OF ‹finite M ›])

(auto intro!: continuous-on-sum continuous-on-scaleR continuous-on-const)
next

assume infinite M
let ?f = λi x. pmf (map-pmf (to-nat-on M) M) i ∗R f (from-nat-into M i) x

show ?thesis
proof (rule uniform-limit-theorem)

show ∀ F n in sequentially. continuous-on A (λa.
∑

i<n. ?f i a)
by (intro always-eventually allI continuous-on-sum continuous-on-scaleR con-

tinuous-on-const f
from-nat-into set-pmf-not-empty)

show uniform-limit A (λn a.
∑

i<n. ?f i a) (λa. LINT i|M . f i a) sequentially
proof (subst uniform-limit-cong[where g=λn a.

∑
i<n. ?f i a])

fix a assume a ∈ A
have 1 : (LINT i|M . f i a) = (LINT i|map-pmf (to-nat-on M) M . f (from-nat-into

M i) a)
by (auto intro!: integral-cong-AE AE-pmfI)

have 2 : . . . = (LINT i|count-space UNIV . pmf (map-pmf (to-nat-on M) M)
i ∗R f (from-nat-into M i) a)

by (simp add: measure-pmf-eq-density integral-density)
have (λn. ?f n a) sums (LINT i|M . f i a)

unfolding 1 2
proof (intro sums-integral-count-space-nat)

have A: integrable M (λi. f i a)
using ‹a∈A› by (auto intro!: measure-pmf .integrable-const-bound AE-pmfI

bnd)

THEORY “Probability-Mass-Function” 294

have integrable (map-pmf (to-nat-on M) M) (λi. f (from-nat-into M i) a)
by (auto simp add: map-pmf-rep-eq integrable-distr-eq intro!: AE-pmfI

integrable-cong-AE-imp[OF A])
then show integrable (count-space UNIV) (λn. ?f n a)

by (simp add: measure-pmf-eq-density integrable-density)
qed
then show (LINT i|M . f i a) = (

∑
n. ?f n a)

by (simp add: sums-unique)
next

show uniform-limit A (λn a.
∑

i<n. ?f i a) (λa. (
∑

n. ?f n a)) sequentially
proof (rule Weierstrass-m-test)

fix n a assume a∈A
then show norm (?f n a) ≤ pmf (map-pmf (to-nat-on M) M) n ∗ B

using bnd by (auto intro!: mult-mono simp: from-nat-into set-pmf-not-empty)
next

have integrable (map-pmf (to-nat-on M) M) (λn. B)
by auto

then show summable (λn. pmf (map-pmf (to-nat-on (set-pmf M)) M) n ∗
B)

by (fastforce simp add: measure-pmf-eq-density integrable-density inte-
grable-count-space-nat-iff summable-mult2)

qed
qed simp

qed simp
qed

lemma continuous-on-LBINT :
fixes f :: real ⇒ real
assumes f :

∧
b. a ≤ b =⇒ set-integrable lborel {a..b} f

shows continuous-on UNIV (λb. LBINT x :{a..b}. f x)
proof (subst set-borel-integral-eq-integral)

{ fix b :: real assume a ≤ b
from f [OF this] have continuous-on {a..b} (λb. integral {a..b} f)

by (intro indefinite-integral-continuous-1 set-borel-integral-eq-integral) }
note ∗ = this

have continuous-on (
⋃

b∈{a..}. {a <..< b}) (λb. integral {a..b} f)
proof (intro continuous-on-open-UN)

show b ∈ {a..} =⇒ continuous-on {a<..<b} (λb. integral {a..b} f) for b
using ∗[of b] by (rule continuous-on-subset) auto

qed simp
also have (

⋃
b∈{a..}. {a <..< b}) = {a <..}

by (auto simp: lt-ex gt-ex less-imp-le) (simp add: Bex-def less-imp-le gt-ex cong:
rev-conj-cong)

finally have continuous-on {a+1 ..} (λb. integral {a..b} f)
by (rule continuous-on-subset) auto

moreover have continuous-on {a..a+1} (λb. integral {a..b} f)
by (rule ∗) simp

moreover

THEORY “Probability-Mass-Function” 295

have x ≤ a =⇒ {a..x} = (if a = x then {a} else {}) for x
by auto

then have continuous-on {..a} (λb. integral {a..b} f)
by (subst continuous-on-cong[OF refl, where g=λx. 0]) (auto intro!: continu-

ous-on-const)
ultimately have continuous-on ({..a} ∪ {a..a+1} ∪ {a+1 ..}) (λb. integral
{a..b} f)

by (intro continuous-on-closed-Un) auto
also have {..a} ∪ {a..a+1} ∪ {a+1 ..} = UNIV

by auto
finally show continuous-on UNIV (λb. integral {a..b} f)

by auto
next

show set-integrable lborel {a..b} f for b
using f by (cases a ≤ b) auto

qed

locale pmf-as-function
begin

setup-lifting td-pmf-embed-pmf

lemma set-pmf-transfer [transfer-rule]:
assumes bi-total A
shows rel-fun (pcr-pmf A) (rel-set A) (λf . {x. f x 6= 0}) set-pmf
using ‹bi-total A›
by (auto simp: pcr-pmf-def cr-pmf-def rel-fun-def rel-set-def bi-total-def Bex-def

set-pmf-iff)
metis+

end

context
begin

interpretation pmf-as-function .

lemma pmf-eqI : (
∧

i. pmf M i = pmf N i) =⇒ M = N
by transfer auto

lemma pmf-eq-iff : M = N ←→ (∀ i. pmf M i = pmf N i)
by (auto intro: pmf-eqI)

lemma pmf-neq-exists-less:
assumes M 6= N
shows ∃ x. pmf M x < pmf N x

proof (rule ccontr)
assume ¬(∃ x. pmf M x < pmf N x)
hence ge: pmf M x ≥ pmf N x for x by (auto simp: not-less)

THEORY “Probability-Mass-Function” 296

from assms obtain x where pmf M x 6= pmf N x by (auto simp: pmf-eq-iff)
with ge[of x] have gt: pmf M x > pmf N x by simp
have 1 = measure (measure-pmf M) UNIV by simp
also have . . . = measure (measure-pmf N) {x} + measure (measure-pmf N)

(UNIV − {x})
by (subst measure-pmf .finite-measure-Union [symmetric]) simp-all

also from gt have measure (measure-pmf N) {x} < measure (measure-pmf M)
{x}

by (simp add: measure-pmf-single)
also have measure (measure-pmf N) (UNIV − {x}) ≤ measure (measure-pmf

M) (UNIV − {x})
by (subst (1 2) integral-pmf [symmetric])

(intro integral-mono integrable-pmf , simp-all add: ge)
also have measure (measure-pmf M) {x} + . . . = 1

by (subst measure-pmf .finite-measure-Union [symmetric]) simp-all
finally show False by simp-all

qed

lemma bind-commute-pmf : bind-pmf A (λx. bind-pmf B (C x)) = bind-pmf B (λy.
bind-pmf A (λx. C x y))

unfolding pmf-eq-iff pmf-bind
proof

fix i
interpret B: prob-space restrict-space B B

by (intro prob-space-restrict-space measure-pmf .emeasure-eq-1-AE)
(auto simp: AE-measure-pmf-iff)

interpret A: prob-space restrict-space A A
by (intro prob-space-restrict-space measure-pmf .emeasure-eq-1-AE)

(auto simp: AE-measure-pmf-iff)

interpret AB: pair-prob-space restrict-space A A restrict-space B B
by unfold-locales

have (
∫

x.
∫

y. pmf (C x y) i ∂B ∂A) = (
∫

x. (
∫

y. pmf (C x y) i ∂restrict-space
B B) ∂A)

by (rule Bochner-Integration.integral-cong) (auto intro!: integral-pmf-restrict)
also have . . . = (

∫
x. (

∫
y. pmf (C x y) i ∂restrict-space B B) ∂restrict-space

A A)
by (intro integral-pmf-restrict B.borel-measurable-lebesgue-integral measurable-pair-restrict-pmf2

countable-set-pmf borel-measurable-count-space)
also have . . . = (

∫
y.

∫
x. pmf (C x y) i ∂restrict-space A A ∂restrict-space B

B)
by (rule AB.Fubini-integral[symmetric])
(auto intro!: AB.integrable-const-bound[where B=1] measurable-pair-restrict-pmf2

simp: pmf-nonneg pmf-le-1 measurable-restrict-space1)
also have . . . = (

∫
y.

∫
x. pmf (C x y) i ∂restrict-space A A ∂B)

by (intro integral-pmf-restrict[symmetric] A.borel-measurable-lebesgue-integral
measurable-pair-restrict-pmf2

countable-set-pmf borel-measurable-count-space)

THEORY “Probability-Mass-Function” 297

also have . . . = (
∫

y.
∫

x. pmf (C x y) i ∂A ∂B)
by (rule Bochner-Integration.integral-cong) (auto intro!: integral-pmf-restrict[symmetric])

finally show (
∫

x.
∫

y. pmf (C x y) i ∂B ∂A) = (
∫

y.
∫

x. pmf (C x y) i ∂A
∂B) .
qed

lemma pair-map-pmf1 : pair-pmf (map-pmf f A) B = map-pmf (apfst f) (pair-pmf
A B)
proof (safe intro!: pmf-eqI)

fix a :: ′a and b :: ′b
have [simp]:

∧
c d. indicator (apfst f −‘ {(a, b)}) (c, d) = indicator (f −‘ {a})

c ∗ (indicator {b} d::ennreal)
by (auto split: split-indicator)

have ennreal (pmf (pair-pmf (map-pmf f A) B) (a, b)) =
ennreal (pmf (map-pmf (apfst f) (pair-pmf A B)) (a, b))

unfolding pmf-pair ennreal-pmf-map
by (simp add: nn-integral-pair-pmf ′ max-def emeasure-pmf-single nn-integral-multc

pmf-nonneg
emeasure-map-pmf [symmetric] ennreal-mult del: emeasure-map-pmf)

then show pmf (pair-pmf (map-pmf f A) B) (a, b) = pmf (map-pmf (apfst f)
(pair-pmf A B)) (a, b)

by (simp add: pmf-nonneg)
qed

lemma pair-map-pmf2 : pair-pmf A (map-pmf f B) = map-pmf (apsnd f) (pair-pmf
A B)
proof (safe intro!: pmf-eqI)

fix a :: ′a and b :: ′b
have [simp]:

∧
c d. indicator (apsnd f −‘ {(a, b)}) (c, d) = indicator {a} c ∗

(indicator (f −‘ {b}) d::ennreal)
by (auto split: split-indicator)

have ennreal (pmf (pair-pmf A (map-pmf f B)) (a, b)) =
ennreal (pmf (map-pmf (apsnd f) (pair-pmf A B)) (a, b))

unfolding pmf-pair ennreal-pmf-map
by (simp add: nn-integral-pair-pmf ′ max-def emeasure-pmf-single nn-integral-cmult

nn-integral-multc pmf-nonneg
emeasure-map-pmf [symmetric] ennreal-mult del: emeasure-map-pmf)

then show pmf (pair-pmf A (map-pmf f B)) (a, b) = pmf (map-pmf (apsnd f)
(pair-pmf A B)) (a, b)

by (simp add: pmf-nonneg)
qed

lemma map-pair : map-pmf (λ(a, b). (f a, g b)) (pair-pmf A B) = pair-pmf (map-pmf
f A) (map-pmf g B)

by (simp add: pair-map-pmf2 pair-map-pmf1 map-pmf-comp split-beta ′)

end

THEORY “Probability-Mass-Function” 298

lemma pair-return-pmf1 : pair-pmf (return-pmf x) y = map-pmf (Pair x) y
by(simp add: pair-pmf-def bind-return-pmf map-pmf-def)

lemma pair-return-pmf2 : pair-pmf x (return-pmf y) = map-pmf (λx. (x, y)) x
by(simp add: pair-pmf-def bind-return-pmf map-pmf-def)

lemma pair-pair-pmf : pair-pmf (pair-pmf u v) w = map-pmf (λ(x, (y, z)). ((x,
y), z)) (pair-pmf u (pair-pmf v w))
by(simp add: pair-pmf-def bind-return-pmf map-pmf-def bind-assoc-pmf)

lemma pair-commute-pmf : pair-pmf x y = map-pmf (λ(x, y). (y, x)) (pair-pmf y
x)
unfolding pair-pmf-def by(subst bind-commute-pmf)(simp add: map-pmf-def bind-assoc-pmf
bind-return-pmf)

lemma set-pmf-subset-singleton: set-pmf p ⊆ {x} ←→ p = return-pmf x
proof(intro iffI pmf-eqI)

fix i
assume x: set-pmf p ⊆ {x}
hence ∗: set-pmf p = {x} using set-pmf-not-empty[of p] by auto
have ennreal (pmf p x) =

∫
+ i. indicator {x} i ∂p by(simp add: emeasure-pmf-single)

also have . . . =
∫

+ i. 1 ∂p by(rule nn-integral-cong-AE)(simp add: AE-measure-pmf-iff
∗)

also have . . . = 1 by simp
finally show pmf p i = pmf (return-pmf x) i using x

by(auto split: split-indicator simp add: pmf-eq-0-set-pmf)
qed auto

lemma bind-eq-return-pmf :
bind-pmf p f = return-pmf x ←→ (∀ y∈set-pmf p. f y = return-pmf x)
(is ?lhs ←→ ?rhs)

proof(intro iffI strip)
fix y
assume y: y ∈ set-pmf p
assume ?lhs
hence set-pmf (bind-pmf p f) = {x} by simp
hence (

⋃
y∈set-pmf p. set-pmf (f y)) = {x} by simp

hence set-pmf (f y) ⊆ {x} using y by auto
thus f y = return-pmf x by(simp add: set-pmf-subset-singleton)

next
assume ∗: ?rhs
show ?lhs
proof(rule pmf-eqI)

fix i
have ennreal (pmf (bind-pmf p f) i) =

∫
+ y. ennreal (pmf (f y) i) ∂p

by (simp add: ennreal-pmf-bind)
also have . . . =

∫
+ y. ennreal (pmf (return-pmf x) i) ∂p

by(rule nn-integral-cong-AE)(simp add: AE-measure-pmf-iff ∗)

THEORY “Probability-Mass-Function” 299

also have . . . = ennreal (pmf (return-pmf x) i)
by simp

finally show pmf (bind-pmf p f) i = pmf (return-pmf x) i
by (simp add: pmf-nonneg)

qed
qed

lemma pmf-False-conv-True: pmf p False = 1 − pmf p True
proof −

have pmf p False + pmf p True = measure p {False} + measure p {True}
by(simp add: measure-pmf-single)

also have . . . = measure p ({False} ∪ {True})
by(subst measure-pmf .finite-measure-Union) simp-all

also have {False} ∪ {True} = space p by auto
finally show ?thesis by simp

qed

lemma pmf-True-conv-False: pmf p True = 1 − pmf p False
by(simp add: pmf-False-conv-True)

20.4 Conditional Probabilities
lemma measure-pmf-zero-iff : measure (measure-pmf p) s = 0 ←→ set-pmf p ∩ s
= {}

by (subst measure-pmf .prob-eq-0) (auto simp: AE-measure-pmf-iff)

context
fixes p :: ′a pmf and s :: ′a set
assumes not-empty: set-pmf p ∩ s 6= {}

begin

interpretation pmf-as-measure .

lemma emeasure-measure-pmf-not-zero: emeasure (measure-pmf p) s 6= 0
proof

assume emeasure (measure-pmf p) s = 0
then have AE x in measure-pmf p. x /∈ s

by (rule AE-I [rotated]) auto
with not-empty show False

by (auto simp: AE-measure-pmf-iff)
qed

lemma measure-measure-pmf-not-zero: measure (measure-pmf p) s 6= 0
using emeasure-measure-pmf-not-zero by (simp add: measure-pmf .emeasure-eq-measure

measure-nonneg)

lift-definition cond-pmf :: ′a pmf is
uniform-measure (measure-pmf p) s

proof (intro conjI)

THEORY “Probability-Mass-Function” 300

show prob-space (uniform-measure (measure-pmf p) s)
by (intro prob-space-uniform-measure) (auto simp: emeasure-measure-pmf-not-zero)
show AE x in uniform-measure (measure-pmf p) s. measure (uniform-measure

(measure-pmf p) s) {x} 6= 0
by (simp add: emeasure-measure-pmf-not-zero measure-measure-pmf-not-zero

AE-uniform-measure
AE-measure-pmf-iff set-pmf .rep-eq less-top[symmetric])

qed simp

lemma pmf-cond: pmf cond-pmf x = (if x ∈ s then pmf p x / measure p s else 0)
by transfer (simp add: emeasure-measure-pmf-not-zero pmf .rep-eq)

lemma set-cond-pmf [simp]: set-pmf cond-pmf = set-pmf p ∩ s
by (auto simp add: set-pmf-iff pmf-cond measure-measure-pmf-not-zero split:

if-split-asm)

end

lemma measure-pmf-posI : x ∈ set-pmf p =⇒ x ∈ A =⇒ measure-pmf .prob p A >
0
using measure-measure-pmf-not-zero[of p A] by (subst zero-less-measure-iff) blast

lemma cond-map-pmf :
assumes set-pmf p ∩ f −‘ s 6= {}
shows cond-pmf (map-pmf f p) s = map-pmf f (cond-pmf p (f −‘ s))

proof −
have ∗: set-pmf (map-pmf f p) ∩ s 6= {}

using assms by auto
{ fix x

have ennreal (pmf (map-pmf f (cond-pmf p (f −‘ s))) x) =
emeasure p (f −‘ s ∩ f −‘ {x}) / emeasure p (f −‘ s)

unfolding ennreal-pmf-map cond-pmf .rep-eq[OF assms] by (simp add: nn-integral-uniform-measure)
also have f −‘ s ∩ f −‘ {x} = (if x ∈ s then f −‘ {x} else {})

by auto
also have emeasure p (if x ∈ s then f −‘ {x} else {}) / emeasure p (f −‘ s) =

ennreal (pmf (cond-pmf (map-pmf f p) s) x)
using measure-measure-pmf-not-zero[OF ∗]

by (simp add: pmf-cond[OF ∗] ennreal-pmf-map measure-pmf .emeasure-eq-measure
divide-ennreal pmf-nonneg measure-nonneg zero-less-measure-iff

pmf-map)
finally have ennreal (pmf (cond-pmf (map-pmf f p) s) x) = ennreal (pmf

(map-pmf f (cond-pmf p (f −‘ s))) x)
by simp }

then show ?thesis
by (intro pmf-eqI) (simp add: pmf-nonneg)

qed

lemma bind-cond-pmf-cancel:
assumes [simp]:

∧
x. x ∈ set-pmf p =⇒ set-pmf q ∩ {y. R x y} 6= {}

THEORY “Probability-Mass-Function” 301

assumes [simp]:
∧

y. y ∈ set-pmf q =⇒ set-pmf p ∩ {x. R x y} 6= {}
assumes [simp]:

∧
x y. x ∈ set-pmf p =⇒ y ∈ set-pmf q =⇒ R x y =⇒ measure

q {y. R x y} = measure p {x. R x y}
shows bind-pmf p (λx. cond-pmf q {y. R x y}) = q

proof (rule pmf-eqI)
fix i
have ennreal (pmf (bind-pmf p (λx. cond-pmf q {y. R x y})) i) =
(
∫

+x. ennreal (pmf q i / measure p {x. R x i}) ∗ ennreal (indicator {x. R x i}
x) ∂p)

by (auto simp add: ennreal-pmf-bind AE-measure-pmf-iff pmf-cond pmf-eq-0-set-pmf
pmf-nonneg measure-nonneg

intro!: nn-integral-cong-AE)
also have . . . = (pmf q i ∗ measure p {x. R x i}) / measure p {x. R x i}

by (simp add: pmf-nonneg measure-nonneg zero-ennreal-def [symmetric] en-
nreal-indicator

nn-integral-cmult measure-pmf .emeasure-eq-measure ennreal-mult[symmetric])
also have . . . = pmf q i

by (cases pmf q i = 0)
(simp-all add: pmf-eq-0-set-pmf measure-measure-pmf-not-zero pmf-nonneg)

finally show pmf (bind-pmf p (λx. cond-pmf q {y. R x y})) i = pmf q i
by (simp add: pmf-nonneg)

qed

20.5 Relator
inductive rel-pmf :: (′a ⇒ ′b ⇒ bool) ⇒ ′a pmf ⇒ ′b pmf ⇒ bool
for R p q
where
[[
∧

x y. (x, y) ∈ set-pmf pq =⇒ R x y;
map-pmf fst pq = p; map-pmf snd pq = q]]

=⇒ rel-pmf R p q

lemma rel-pmfI :
assumes R: rel-set R (set-pmf p) (set-pmf q)
assumes eq:

∧
x y. x ∈ set-pmf p =⇒ y ∈ set-pmf q =⇒ R x y =⇒

measure p {x. R x y} = measure q {y. R x y}
shows rel-pmf R p q

proof
let ?pq = bind-pmf p (λx. bind-pmf (cond-pmf q {y. R x y}) (λy. return-pmf (x,

y)))
have

∧
x. x ∈ set-pmf p =⇒ set-pmf q ∩ {y. R x y} 6= {}

using R by (auto simp: rel-set-def)
then show

∧
x y. (x, y) ∈ set-pmf ?pq =⇒ R x y

by auto
show map-pmf fst ?pq = p

by (simp add: map-bind-pmf bind-return-pmf ′)

show map-pmf snd ?pq = q
using R eq

THEORY “Probability-Mass-Function” 302

apply (simp add: bind-cond-pmf-cancel map-bind-pmf bind-return-pmf ′)
apply (rule bind-cond-pmf-cancel)
apply (auto simp: rel-set-def)
done

qed

lemma rel-pmf-imp-rel-set: rel-pmf R p q =⇒ rel-set R (set-pmf p) (set-pmf q)
by (force simp add: rel-pmf .simps rel-set-def)

lemma rel-pmfD-measure:
assumes rel-R: rel-pmf R p q and R:

∧
a b. R a b =⇒ R a y ←→ R x b

assumes x ∈ set-pmf p y ∈ set-pmf q
shows measure p {x. R x y} = measure q {y. R x y}

proof −
from rel-R obtain pq where pq:

∧
x y. (x, y) ∈ set-pmf pq =⇒ R x y

and eq: p = map-pmf fst pq q = map-pmf snd pq
by (auto elim: rel-pmf .cases)

have measure p {x. R x y} = measure pq {x. R (fst x) y}
by (simp add: eq map-pmf-rep-eq measure-distr)

also have . . . = measure pq {y. R x (snd y)}
by (intro measure-pmf .finite-measure-eq-AE)

(auto simp: AE-measure-pmf-iff R dest!: pq)
also have . . . = measure q {y. R x y}

by (simp add: eq map-pmf-rep-eq measure-distr)
finally show measure p {x. R x y} = measure q {y. R x y} .

qed

lemma rel-pmf-measureD:
assumes rel-pmf R p q
shows measure (measure-pmf p) A ≤ measure (measure-pmf q) {y. ∃ x∈A. R x

y} (is ?lhs ≤ ?rhs)
using assms
proof cases

fix pq
assume R:

∧
x y. (x, y) ∈ set-pmf pq =⇒ R x y

and p[symmetric]: map-pmf fst pq = p
and q[symmetric]: map-pmf snd pq = q

have ?lhs = measure (measure-pmf pq) (fst −‘ A) by(simp add: p)
also have . . . ≤ measure (measure-pmf pq) {y. ∃ x∈A. R x (snd y)}
by(rule measure-pmf .finite-measure-mono-AE)(auto 4 3 simp add: AE-measure-pmf-iff

dest: R)
also have . . . = ?rhs by(simp add: q)
finally show ?thesis .

qed

lemma rel-pmf-iff-measure:
assumes symp R transp R
shows rel-pmf R p q ←→

rel-set R (set-pmf p) (set-pmf q) ∧

THEORY “Probability-Mass-Function” 303

(∀ x∈set-pmf p. ∀ y∈set-pmf q. R x y −→ measure p {x. R x y} = measure q
{y. R x y})

by (safe intro!: rel-pmf-imp-rel-set rel-pmfI)
(auto intro!: rel-pmfD-measure dest: sympD[OF ‹symp R›] transpD[OF ‹transp

R›])

lemma quotient-rel-set-disjoint:
equivp R =⇒ C ∈ UNIV // {(x, y). R x y} =⇒ rel-set R A B =⇒ A ∩ C = {}
←→ B ∩ C = {}

using in-quotient-imp-closed[of UNIV {(x, y). R x y} C]
by (auto 0 0 simp: equivp-equiv rel-set-def set-eq-iff elim: equivpE)

(blast dest: equivp-symp)+

lemma quotientD: equiv X R =⇒ A ∈ X // R =⇒ x ∈ A =⇒ A = R ‘‘ {x}
by (metis Image-singleton-iff equiv-class-eq-iff quotientE)

lemma rel-pmf-iff-equivp:
assumes equivp R
shows rel-pmf R p q ←→ (∀C∈UNIV // {(x, y). R x y}. measure p C = measure

q C)
(is - ←→ (∀C∈-//?R. -))

proof (subst rel-pmf-iff-measure, safe)
show symp R transp R

using assms by (auto simp: equivp-reflp-symp-transp)
next

fix C assume C : C ∈ UNIV // ?R and R: rel-set R (set-pmf p) (set-pmf q)
assume eq: ∀ x∈set-pmf p. ∀ y∈set-pmf q. R x y −→ measure p {x. R x y} =

measure q {y. R x y}

show measure p C = measure q C
proof (cases p ∩ C = {})

case True
then have q ∩ C = {}

using quotient-rel-set-disjoint[OF assms C R] by simp
with True show ?thesis

unfolding measure-pmf-zero-iff [symmetric] by simp
next

case False
then have q ∩ C 6= {}

using quotient-rel-set-disjoint[OF assms C R] by simp
with False obtain x y where in-set: x ∈ set-pmf p y ∈ set-pmf q and in-C :

x ∈ C y ∈ C
by auto

then have R x y
using in-quotient-imp-in-rel[of UNIV ?R C x y] C assms
by (simp add: equivp-equiv)

with in-set eq have measure p {x. R x y} = measure q {y. R x y}
by auto

moreover have {y. R x y} = C

THEORY “Probability-Mass-Function” 304

using assms ‹x ∈ C › C quotientD[of UNIV ?R C x] by (simp add: equivp-equiv)
moreover have {x. R x y} = C

using assms ‹y ∈ C › C quotientD[of UNIV ?R C y] sympD[of R]
by (auto simp add: equivp-equiv elim: equivpE)

ultimately show ?thesis
by auto

qed
next

assume eq: ∀C∈UNIV // ?R. measure p C = measure q C
show rel-set R (set-pmf p) (set-pmf q)

unfolding rel-set-def
proof safe

fix x assume x: x ∈ set-pmf p
have {y. R x y} ∈ UNIV // ?R

by (auto simp: quotient-def)
with eq have ∗: measure q {y. R x y} = measure p {y. R x y}

by auto
have measure q {y. R x y} 6= 0

using x assms unfolding ∗ by (auto simp: measure-pmf-zero-iff set-eq-iff
dest: equivp-reflp)

then show ∃ y∈set-pmf q. R x y
unfolding measure-pmf-zero-iff by auto

next
fix y assume y: y ∈ set-pmf q
have {x. R x y} ∈ UNIV // ?R

using assms by (auto simp: quotient-def dest: equivp-symp)
with eq have ∗: measure p {x. R x y} = measure q {x. R x y}

by auto
have measure p {x. R x y} 6= 0

using y assms unfolding ∗ by (auto simp: measure-pmf-zero-iff set-eq-iff
dest: equivp-reflp)

then show ∃ x∈set-pmf p. R x y
unfolding measure-pmf-zero-iff by auto

qed

fix x y assume x ∈ set-pmf p y ∈ set-pmf q R x y
have {y. R x y} ∈ UNIV // ?R {x. R x y} = {y. R x y}
using assms ‹R x y› by (auto simp: quotient-def dest: equivp-symp equivp-transp)

with eq show measure p {x. R x y} = measure q {y. R x y}
by auto

qed

bnf pmf : ′a pmf map: map-pmf sets: set-pmf bd : card-suc natLeq rel: rel-pmf
proof −

show map-pmf id = id by (rule map-pmf-id)
show

∧
f g. map-pmf (f ◦ g) = map-pmf f ◦ map-pmf g by (rule map-pmf-compose)

show
∧

f g:: ′a ⇒ ′b.
∧

p. (
∧

x. x ∈ set-pmf p =⇒ f x = g x) =⇒ map-pmf f p =
map-pmf g p

by (intro map-pmf-cong refl)

THEORY “Probability-Mass-Function” 305

show
∧

f :: ′a ⇒ ′b. set-pmf ◦ map-pmf f = (‘) f ◦ set-pmf
by (rule pmf-set-map)

show card-order (card-suc natLeq) using natLeq-card-order by (rule card-order-card-suc)
show BNF-Cardinal-Arithmetic.cinfinite (card-suc natLeq)

using natLeq-Cinfinite natLeq-card-order Cinfinite-card-suc by blast
show regularCard (card-suc natLeq) using natLeq-card-order natLeq-Cinfinite

by (rule regularCard-card-suc)

show (card-of (set-pmf p), card-suc natLeq) ∈ ordLess for p :: ′s pmf
proof −

have (card-of (set-pmf p), card-of (UNIV :: nat set)) ∈ ordLeq
by (rule card-of-ordLeqI [where f=to-nat-on (set-pmf p)])

(auto intro: countable-set-pmf)
also have (card-of (UNIV :: nat set), natLeq) ∈ ordLeq

by (metis Field-natLeq card-of-least natLeq-Well-order)
finally show ?thesis using card-suc-greater natLeq-card-order ordLeq-ordLess-trans

by blast
qed

show
∧

R. rel-pmf R = (λx y. ∃ z. set-pmf z ⊆ {(x, y). R x y} ∧
map-pmf fst z = x ∧ map-pmf snd z = y)
by (auto simp add: fun-eq-iff rel-pmf .simps)

show rel-pmf R OO rel-pmf S ≤ rel-pmf (R OO S)
for R :: ′a ⇒ ′b ⇒ bool and S :: ′b ⇒ ′c ⇒ bool

proof −
{ fix p q r

assume pq: rel-pmf R p q
and qr :rel-pmf S q r

from pq obtain pq where pq:
∧

x y. (x, y) ∈ set-pmf pq =⇒ R x y
and p: p = map-pmf fst pq and q: q = map-pmf snd pq by cases auto

from qr obtain qr where qr :
∧

y z. (y, z) ∈ set-pmf qr =⇒ S y z
and q ′: q = map-pmf fst qr and r : r = map-pmf snd qr by cases auto

define pr where pr =
bind-pmf pq (λxy. bind-pmf (cond-pmf qr {yz. fst yz = snd xy})
(λyz. return-pmf (fst xy, snd yz)))

have pr-welldefined:
∧

y. y ∈ q =⇒ qr ∩ {yz. fst yz = y} 6= {}
by (force simp: q ′)

have rel-pmf (R OO S) p r
proof (rule rel-pmf .intros)

fix x z assume (x, z) ∈ pr
then have ∃ y. (x, y) ∈ pq ∧ (y, z) ∈ qr

by (auto simp: q pr-welldefined pr-def split-beta)
with pq qr show (R OO S) x z

by blast

THEORY “Probability-Mass-Function” 306

next
have map-pmf snd pr = map-pmf snd (bind-pmf q (λy. cond-pmf qr {yz. fst

yz = y}))
by (simp add: pr-def q split-beta bind-map-pmf map-pmf-def [symmetric]

map-bind-pmf map-pmf-comp)
then show map-pmf snd pr = r
unfolding r q ′ bind-map-pmf by (subst (asm) bind-cond-pmf-cancel) (auto

simp: eq-commute)
qed (simp add: pr-def map-bind-pmf split-beta map-pmf-def [symmetric] p

map-pmf-comp)
}
then show ?thesis

by(auto simp add: le-fun-def)
qed

qed

lemma map-pmf-idI : (
∧

x. x ∈ set-pmf p =⇒ f x = x) =⇒ map-pmf f p = p
by(simp cong: pmf .map-cong)

lemma rel-pmf-conj[simp]:
rel-pmf (λx y. P ∧ Q x y) x y ←→ P ∧ rel-pmf Q x y
rel-pmf (λx y. Q x y ∧ P) x y ←→ P ∧ rel-pmf Q x y
using set-pmf-not-empty by (fastforce simp: pmf .in-rel subset-eq)+

lemma rel-pmf-top[simp]: rel-pmf top = top
by (auto simp: pmf .in-rel[abs-def] fun-eq-iff map-fst-pair-pmf map-snd-pair-pmf

intro: exI [of - pair-pmf x y for x y])

lemma rel-pmf-return-pmf1 : rel-pmf R (return-pmf x) M ←→ (∀ a∈M . R x a)
proof safe

fix a assume a ∈ M rel-pmf R (return-pmf x) M
then obtain pq where ∗:

∧
a b. (a, b) ∈ set-pmf pq =⇒ R a b

and eq: return-pmf x = map-pmf fst pq M = map-pmf snd pq
by (force elim: rel-pmf .cases)

moreover have set-pmf (return-pmf x) = {x}
by simp

with ‹a ∈ M › have (x, a) ∈ pq
by (force simp: eq)

with ∗ show R x a
by auto

qed (auto intro!: rel-pmf .intros[where pq=pair-pmf (return-pmf x) M]
simp: map-fst-pair-pmf map-snd-pair-pmf)

lemma rel-pmf-return-pmf2 : rel-pmf R M (return-pmf x) ←→ (∀ a∈M . R a x)
by (subst pmf .rel-flip[symmetric]) (simp add: rel-pmf-return-pmf1)

lemma rel-return-pmf [simp]: rel-pmf R (return-pmf x1) (return-pmf x2) = R x1
x2

unfolding rel-pmf-return-pmf2 set-return-pmf by simp

THEORY “Probability-Mass-Function” 307

lemma rel-pmf-False[simp]: rel-pmf (λx y. False) x y = False
unfolding pmf .in-rel fun-eq-iff using set-pmf-not-empty by fastforce

lemma rel-pmf-rel-prod:
rel-pmf (rel-prod R S) (pair-pmf A A ′) (pair-pmf B B ′) ←→ rel-pmf R A B ∧

rel-pmf S A ′ B ′

proof safe
assume rel-pmf (rel-prod R S) (pair-pmf A A ′) (pair-pmf B B ′)
then obtain pq where pq:

∧
a b c d. ((a, c), (b, d)) ∈ set-pmf pq =⇒ R a b ∧

S c d
and eq: map-pmf fst pq = pair-pmf A A ′ map-pmf snd pq = pair-pmf B B ′

by (force elim: rel-pmf .cases)
show rel-pmf R A B
proof (rule rel-pmf .intros)

let ?f = λ(a, b). (fst a, fst b)
have [simp]: (λx. fst (?f x)) = fst o fst (λx. snd (?f x)) = fst o snd

by auto

show map-pmf fst (map-pmf ?f pq) = A
by (simp add: map-pmf-comp pmf .map-comp[symmetric] eq map-fst-pair-pmf)

show map-pmf snd (map-pmf ?f pq) = B
by (simp add: map-pmf-comp pmf .map-comp[symmetric] eq map-fst-pair-pmf)

fix a b assume (a, b) ∈ set-pmf (map-pmf ?f pq)
then obtain c d where ((a, c), (b, d)) ∈ set-pmf pq

by auto
from pq[OF this] show R a b ..

qed
show rel-pmf S A ′ B ′

proof (rule rel-pmf .intros)
let ?f = λ(a, b). (snd a, snd b)
have [simp]: (λx. fst (?f x)) = snd o fst (λx. snd (?f x)) = snd o snd

by auto

show map-pmf fst (map-pmf ?f pq) = A ′

by (simp add: map-pmf-comp pmf .map-comp[symmetric] eq map-snd-pair-pmf)
show map-pmf snd (map-pmf ?f pq) = B ′

by (simp add: map-pmf-comp pmf .map-comp[symmetric] eq map-snd-pair-pmf)

fix c d assume (c, d) ∈ set-pmf (map-pmf ?f pq)
then obtain a b where ((a, c), (b, d)) ∈ set-pmf pq

by auto
from pq[OF this] show S c d ..

qed
next

assume rel-pmf R A B rel-pmf S A ′ B ′

then obtain Rpq Spq
where Rpq:

∧
a b. (a, b) ∈ set-pmf Rpq =⇒ R a b

THEORY “Probability-Mass-Function” 308

map-pmf fst Rpq = A map-pmf snd Rpq = B
and Spq:

∧
a b. (a, b) ∈ set-pmf Spq =⇒ S a b

map-pmf fst Spq = A ′ map-pmf snd Spq = B ′

by (force elim: rel-pmf .cases)

let ?f = (λ((a, c), (b, d)). ((a, b), (c, d)))
let ?pq = map-pmf ?f (pair-pmf Rpq Spq)
have [simp]: (λx. fst (?f x)) = (λ(a, b). (fst a, fst b)) (λx. snd (?f x)) = (λ(a,

b). (snd a, snd b))
by auto

show rel-pmf (rel-prod R S) (pair-pmf A A ′) (pair-pmf B B ′)
by (rule rel-pmf .intros[where pq=?pq])

(auto simp: map-snd-pair-pmf map-fst-pair-pmf map-pmf-comp Rpq Spq
map-pair)

qed

lemma rel-pmf-reflI :
assumes

∧
x. x ∈ set-pmf p =⇒ P x x

shows rel-pmf P p p
by (rule rel-pmf .intros[where pq=map-pmf (λx. (x, x)) p])

(auto simp add: pmf .map-comp o-def assms)

lemma rel-pmf-bij-betw:
assumes f : bij-betw f (set-pmf p) (set-pmf q)
and eq:

∧
x. x ∈ set-pmf p =⇒ pmf p x = pmf q (f x)

shows rel-pmf (λx y. f x = y) p q
proof(rule rel-pmf .intros)

let ?pq = map-pmf (λx. (x, f x)) p
show map-pmf fst ?pq = p by(simp add: pmf .map-comp o-def)

have map-pmf f p = q
proof(rule pmf-eqI)

fix i
show pmf (map-pmf f p) i = pmf q i
proof(cases i ∈ set-pmf q)

case True
with f obtain j where i = f j j ∈ set-pmf p

by(auto simp add: bij-betw-def image-iff)
thus ?thesis using f by(simp add: bij-betw-def pmf-map-inj eq)

next
case False thus ?thesis

by(subst pmf-map-outside)(auto simp add: set-pmf-iff eq[symmetric])
qed

qed
then show map-pmf snd ?pq = q by(simp add: pmf .map-comp o-def)

qed auto

context

THEORY “Probability-Mass-Function” 309

begin

interpretation pmf-as-measure .

definition join-pmf M = bind-pmf M (λx. x)

lemma bind-eq-join-pmf : bind-pmf M f = join-pmf (map-pmf f M)
unfolding join-pmf-def bind-map-pmf ..

lemma join-eq-bind-pmf : join-pmf M = bind-pmf M id
by (simp add: join-pmf-def id-def)

lemma pmf-join: pmf (join-pmf N) i = (
∫

M . pmf M i ∂measure-pmf N)
unfolding join-pmf-def pmf-bind ..

lemma ennreal-pmf-join: ennreal (pmf (join-pmf N) i) = (
∫

+M . pmf M i ∂mea-
sure-pmf N)

unfolding join-pmf-def ennreal-pmf-bind ..

lemma set-pmf-join-pmf [simp]: set-pmf (join-pmf f) = (
⋃

p∈set-pmf f . set-pmf
p)

by (simp add: join-pmf-def)

lemma join-return-pmf : join-pmf (return-pmf M) = M
by (simp add: integral-return pmf-eq-iff pmf-join return-pmf .rep-eq)

lemma map-join-pmf : map-pmf f (join-pmf AA) = join-pmf (map-pmf (map-pmf
f) AA)

by (simp add: join-pmf-def map-pmf-def bind-assoc-pmf bind-return-pmf)

lemma join-map-return-pmf : join-pmf (map-pmf return-pmf A) = A
by (simp add: join-pmf-def map-pmf-def bind-assoc-pmf bind-return-pmf bind-return-pmf ′)

end

lemma rel-pmf-joinI :
assumes rel-pmf (rel-pmf P) p q
shows rel-pmf P (join-pmf p) (join-pmf q)

proof −
from assms obtain pq where p: p = map-pmf fst pq

and q: q = map-pmf snd pq
and P:

∧
x y. (x, y) ∈ set-pmf pq =⇒ rel-pmf P x y

by cases auto
from P obtain PQ

where PQ:
∧

x y a b. [[(x, y) ∈ set-pmf pq; (a, b) ∈ set-pmf (PQ x y)]] =⇒
P a b

and x:
∧

x y. (x, y) ∈ set-pmf pq =⇒ map-pmf fst (PQ x y) = x
and y:

∧
x y. (x, y) ∈ set-pmf pq =⇒ map-pmf snd (PQ x y) = y

by(metis rel-pmf .simps)

THEORY “Probability-Mass-Function” 310

let ?r = bind-pmf pq (λ(x, y). PQ x y)
have

∧
a b. (a, b) ∈ set-pmf ?r =⇒ P a b by (auto intro: PQ)

moreover have map-pmf fst ?r = join-pmf p map-pmf snd ?r = join-pmf q
by (simp-all add: p q x y join-pmf-def map-bind-pmf bind-map-pmf split-def

cong: bind-pmf-cong)
ultimately show ?thesis ..

qed

lemma rel-pmf-bindI :
assumes pq: rel-pmf R p q
and fg:

∧
x y. R x y =⇒ rel-pmf P (f x) (g y)

shows rel-pmf P (bind-pmf p f) (bind-pmf q g)
unfolding bind-eq-join-pmf
by (rule rel-pmf-joinI)

(auto simp add: pmf .rel-map intro: pmf .rel-mono[THEN le-funD, THEN
le-funD, THEN le-boolD, THEN mp, OF - pq] fg)

Proof that rel-pmf preserves orders. Antisymmetry proof follows Thm. 1
in N. Saheb-Djahromi, Cpo’s of measures for nondeterminism, Theoretical
Computer Science 12(1):19–37, 1980, https://doi.org/10.1016/0304-3975(80)
90003-1
lemma

assumes ∗: rel-pmf R p q
and refl: reflp R and trans: transp R
shows measure-Ici: measure p {y. R x y} ≤ measure q {y. R x y} (is ?thesis1)
and measure-Ioi: measure p {y. R x y ∧ ¬ R y x} ≤ measure q {y. R x y ∧ ¬

R y x} (is ?thesis2)
proof −

from ∗ obtain pq
where pq:

∧
x y. (x, y) ∈ set-pmf pq =⇒ R x y

and p: p = map-pmf fst pq
and q: q = map-pmf snd pq
by cases auto

show ?thesis1 ?thesis2 unfolding p q map-pmf-rep-eq using refl trans
by(auto 4 3 simp add: measure-distr reflpD AE-measure-pmf-iff intro!: mea-

sure-pmf .finite-measure-mono-AE dest!: pq elim: transpE)
qed

lemma rel-pmf-inf :
fixes p q :: ′a pmf
assumes 1 : rel-pmf R p q
assumes 2 : rel-pmf R q p
and refl: reflp R and trans: transp R
shows rel-pmf (inf R R−1−1) p q

proof (subst rel-pmf-iff-equivp, safe)
show equivp (inf R R−1−1)

using trans refl by (auto simp: equivp-reflp-symp-transp intro: sympI transpI
reflpI dest: transpD reflpD)

https://doi.org/10.1016/0304-3975(80)90003-1
https://doi.org/10.1016/0304-3975(80)90003-1

THEORY “Probability-Mass-Function” 311

fix C assume C ∈ UNIV // {(x, y). inf R R−1−1 x y}
then obtain x where C : C = {y. R x y ∧ R y x}

by (auto elim: quotientE)

let ?R = λx y. R x y ∧ R y x
let ?µR = λy. measure q {x. ?R x y}
have measure p {y. ?R x y} = measure p ({y. R x y} − {y. R x y ∧ ¬ R y x})

by(auto intro!: arg-cong[where f=measure p])
also have . . . = measure p {y. R x y} − measure p {y. R x y ∧ ¬ R y x}

by (rule measure-pmf .finite-measure-Diff) auto
also have measure p {y. R x y ∧ ¬ R y x} = measure q {y. R x y ∧ ¬ R y x}

using 1 2 refl trans by(auto intro!: Orderings.antisym measure-Ioi)
also have measure p {y. R x y} = measure q {y. R x y}

using 1 2 refl trans by(auto intro!: Orderings.antisym measure-Ici)
also have measure q {y. R x y} − measure q {y. R x y ∧ ¬ R y x} =

measure q ({y. R x y} − {y. R x y ∧ ¬ R y x})
by(rule measure-pmf .finite-measure-Diff [symmetric]) auto

also have . . . = ?µR x
by(auto intro!: arg-cong[where f=measure q])

finally show measure p C = measure q C
by (simp add: C conj-commute)

qed

lemma rel-pmf-antisym:
fixes p q :: ′a pmf
assumes 1 : rel-pmf R p q
assumes 2 : rel-pmf R q p
and refl: reflp R and trans: transp R and antisym: antisymp R
shows p = q

proof −
from 1 2 refl trans have rel-pmf (inf R R−1−1) p q by(rule rel-pmf-inf)
also have inf R R−1−1 = (=)

using refl antisym by (auto intro!: ext simp add: reflpD dest: antisympD)
finally show ?thesis unfolding pmf .rel-eq .

qed

lemma reflp-rel-pmf : reflp R =⇒ reflp (rel-pmf R)
by (fact pmf .rel-reflp)

lemma antisymp-rel-pmf :
[[reflp R; transp R; antisymp R]]
=⇒ antisymp (rel-pmf R)

by(rule antisympI)(blast intro: rel-pmf-antisym)

lemma transp-rel-pmf :
assumes transp R
shows transp (rel-pmf R)
using assms by (fact pmf .rel-transp)

THEORY “Probability-Mass-Function” 312

20.6 Distributions
context
begin

interpretation pmf-as-function .

20.6.1 Bernoulli Distribution
lift-definition bernoulli-pmf :: real ⇒ bool pmf is
λp b. ((λp. if b then p else 1 − p) ◦ min 1 ◦ max 0) p
by (auto simp: nn-integral-count-space-finite[where A={False, True}] UNIV-bool

split: split-max split-min)

lemma pmf-bernoulli-True[simp]: 0 ≤ p =⇒ p ≤ 1 =⇒ pmf (bernoulli-pmf p)
True = p

by transfer simp

lemma pmf-bernoulli-False[simp]: 0 ≤ p =⇒ p ≤ 1 =⇒ pmf (bernoulli-pmf p)
False = 1 − p

by transfer simp

lemma set-pmf-bernoulli[simp]: 0 < p =⇒ p < 1 =⇒ set-pmf (bernoulli-pmf p)
= UNIV

by (auto simp add: set-pmf-iff UNIV-bool)

lemma nn-integral-bernoulli-pmf [simp]:
assumes [simp]: 0 ≤ p p ≤ 1

∧
x. 0 ≤ f x

shows (
∫

+x. f x ∂bernoulli-pmf p) = f True ∗ p + f False ∗ (1 − p)
by (subst nn-integral-measure-pmf-support[of UNIV])

(auto simp: UNIV-bool field-simps)

lemma integral-bernoulli-pmf [simp]:
assumes [simp]: 0 ≤ p p ≤ 1
shows (

∫
x. f x ∂bernoulli-pmf p) = f True ∗ p + f False ∗ (1 − p)

by (subst integral-measure-pmf [of UNIV]) (auto simp: UNIV-bool)

lemma pmf-bernoulli-half [simp]: pmf (bernoulli-pmf (1 / 2)) x = 1 / 2
by(cases x) simp-all

lemma measure-pmf-bernoulli-half : measure-pmf (bernoulli-pmf (1 / 2)) = uni-
form-count-measure UNIV

by (rule measure-eqI)
(simp-all add: nn-integral-pmf [symmetric] emeasure-uniform-count-measure

ennreal-divide-numeral[symmetric]
nn-integral-count-space-finite sets-uniform-count-measure di-

vide-ennreal-def mult-ac
ennreal-of-nat-eq-real-of-nat)

THEORY “Probability-Mass-Function” 313

20.6.2 Geometric Distribution
context

fixes p :: real assumes p[arith]: 0 < p p ≤ 1
begin

lift-definition geometric-pmf :: nat pmf is λn. (1 − p)^n ∗ p
proof

have (
∑

i. ennreal (p ∗ (1 − p) ^ i)) = ennreal (p ∗ (1 / (1 − (1 − p))))
by (intro suminf-ennreal-eq sums-mult geometric-sums) auto

then show (
∫

+ x. ennreal ((1 − p)^x ∗ p) ∂count-space UNIV) = 1
by (simp add: nn-integral-count-space-nat field-simps)

qed simp

lemma pmf-geometric[simp]: pmf geometric-pmf n = (1 − p)^n ∗ p
by transfer rule

end

lemma geometric-pmf-1 [simp]: geometric-pmf 1 = return-pmf 0
by (intro pmf-eqI) (auto simp: indicator-def)

lemma set-pmf-geometric: 0 < p =⇒ p < 1 =⇒ set-pmf (geometric-pmf p) =
UNIV

by (auto simp: set-pmf-iff)

lemma geometric-sums-times-n:
fixes c:: ′a::{banach,real-normed-field}
assumes norm c < 1
shows (λn. c^n ∗ of-nat n) sums (c / (1 − c)2)

proof −
have (λn. c ∗ z ^ n) sums (c / (1 − z)) if norm z < 1 for z

using geometric-sums sums-mult that by fastforce
moreover have ((λz. c / (1 − z)) has-field-derivative (c / (1 − c)2)) (at c)

using assms by (auto intro!: derivative-eq-intros simp add: semiring-normalization-rules)
ultimately have (λn. diffs (λn. c) n ∗ c ^ n) sums (c / (1 − c)2)

using assms by (intro termdiffs-sums-strong)
then have (λn. of-nat (Suc n) ∗ c ^ (Suc n)) sums (c / (1 − c)2)

unfolding diffs-def by (simp add: power-eq-if mult.assoc)
then show ?thesis

by (subst (asm) sums-Suc-iff) (auto simp add: mult.commute)
qed

lemma geometric-sums-times-norm:
fixes c:: ′a::{banach,real-normed-field}
assumes norm c < 1
shows (λn. norm (c^n ∗ of-nat n)) sums (norm c / (1 − norm c)2)

proof −
have norm (c^n ∗ of-nat n) = (norm c) ^ n ∗ of-nat n for n::nat

by (simp add: norm-power norm-mult)

THEORY “Probability-Mass-Function” 314

then show ?thesis
using geometric-sums-times-n[of norm c] assms
by force

qed

lemma integrable-real-geometric-pmf :
assumes p ∈ {0<..1}
shows integrable (geometric-pmf p) real

proof −
have summable (λx. p ∗ ((1 − p) ^ x ∗ real x))

using geometric-sums-times-norm[of 1 − p] assms
by (intro summable-mult) (auto simp: sums-iff)

hence summable (λx. (1 − p) ^ x ∗ real x)
by (rule summable-mult-D) (use assms in auto)

thus ?thesis
unfolding measure-pmf-eq-density using assms
by (subst integrable-density)

(auto simp: integrable-count-space-nat-iff mult-ac)
qed

lemma expectation-geometric-pmf :
assumes p ∈ {0<..1}
shows measure-pmf .expectation (geometric-pmf p) real = (1 − p) / p

proof −
have (λn. p ∗ ((1 − p) ^ n ∗ n)) sums (p ∗ ((1 − p) / p^2))

using assms geometric-sums-times-n[of 1−p] by (intro sums-mult) auto
moreover have (λn. p ∗ ((1 − p) ^ n ∗ n)) = (λn. (1 − p) ^ n ∗ p ∗ real n)

by auto
ultimately have ∗: (λn. (1 − p) ^ n ∗ p ∗ real n) sums ((1 − p) / p)

using assms sums-subst by (auto simp add: power2-eq-square)
have measure-pmf .expectation (geometric-pmf p) real =

(
∫

n. pmf (geometric-pmf p) n ∗ real n ∂count-space UNIV)
unfolding measure-pmf-eq-density by (subst integral-density) auto

also have integrable (count-space UNIV) (λn. pmf (geometric-pmf p) n ∗ real
n)

using ∗ assms unfolding integrable-count-space-nat-iff by (simp add: sums-iff)
hence (

∫
n. pmf (geometric-pmf p) n ∗ real n ∂count-space UNIV) = (1 − p) /

p
using ∗ assms by (subst integral-count-space-nat) (simp-all add: sums-iff)

finally show ?thesis by auto
qed

lemma geometric-bind-pmf-unfold:
assumes p ∈ {0<..1}
shows geometric-pmf p =

do {b ← bernoulli-pmf p;
if b then return-pmf 0 else map-pmf Suc (geometric-pmf p)}

proof −
have ∗: (Suc −‘ {i}) = (if i = 0 then {} else {i − 1}) for i

THEORY “Probability-Mass-Function” 315

by force
have pmf (geometric-pmf p) i =

pmf (bernoulli-pmf p >>=
(λb. if b then return-pmf 0 else map-pmf Suc (geometric-pmf p)))
i for i

proof −
have pmf (geometric-pmf p) i =

(if i = 0 then p else (1 − p) ∗ pmf (geometric-pmf p) (i − 1))
using assms by (simp add: power-eq-if)

also have . . . = (if i = 0 then p else (1 − p) ∗ pmf (map-pmf Suc (geometric-pmf
p)) i)

by (simp add: pmf-map indicator-def measure-pmf-single ∗)
also have . . . = measure-pmf .expectation (bernoulli-pmf p)

(λx. pmf (if x then return-pmf 0 else map-pmf Suc (geometric-pmf p)) i)
using assms by (auto simp add: pmf-map ∗)

also have . . . = pmf (bernoulli-pmf p >>=
(λb. if b then return-pmf 0 else map-pmf Suc (geometric-pmf p)))
i

by (auto simp add: pmf-bind)
finally show ?thesis .

qed
then show ?thesis

using pmf-eqI by blast
qed

20.6.3 Uniform Multiset Distribution
context

fixes M :: ′a multiset assumes M-not-empty: M 6= {#}
begin

lift-definition pmf-of-multiset :: ′a pmf is λx. count M x / size M
proof

show (
∫

+ x. ennreal (real (count M x) / real (size M)) ∂count-space UNIV) =
1

using M-not-empty
by (simp add: zero-less-divide-iff nn-integral-count-space nonempty-has-size

sum-divide-distrib[symmetric])
(auto simp: size-multiset-overloaded-eq intro!: sum.cong)

qed simp

lemma pmf-of-multiset[simp]: pmf pmf-of-multiset x = count M x / size M
by transfer rule

lemma set-pmf-of-multiset[simp]: set-pmf pmf-of-multiset = set-mset M
by (auto simp: set-pmf-iff)

end

THEORY “Probability-Mass-Function” 316

20.6.4 Uniform Distribution
context

fixes S :: ′a set assumes S-not-empty: S 6= {} and S-finite: finite S
begin

lift-definition pmf-of-set :: ′a pmf is λx. indicator S x / card S
proof

show (
∫

+ x. ennreal (indicator S x / real (card S)) ∂count-space UNIV) = 1
using S-not-empty S-finite
by (subst nn-integral-count-space ′[of S])

(auto simp: ennreal-of-nat-eq-real-of-nat ennreal-mult[symmetric])
qed simp

lemma pmf-of-set[simp]: pmf pmf-of-set x = indicator S x / card S
by transfer rule

lemma set-pmf-of-set[simp]: set-pmf pmf-of-set = S
using S-finite S-not-empty by (auto simp: set-pmf-iff)

lemma emeasure-pmf-of-set-space[simp]: emeasure pmf-of-set S = 1
by (rule measure-pmf .emeasure-eq-1-AE) (auto simp: AE-measure-pmf-iff)

lemma nn-integral-pmf-of-set: nn-integral (measure-pmf pmf-of-set) f = sum f S
/ card S

by (subst nn-integral-measure-pmf-finite)
(simp-all add: sum-distrib-right[symmetric] card-gt-0-iff S-not-empty S-finite

divide-ennreal-def
divide-ennreal[symmetric] ennreal-of-nat-eq-real-of-nat[symmetric]

ennreal-times-divide)

lemma integral-pmf-of-set: integralL (measure-pmf pmf-of-set) f = sum f S / card
S

by (subst integral-measure-pmf [of S]) (auto simp: S-finite sum-divide-distrib)

lemma emeasure-pmf-of-set: emeasure (measure-pmf pmf-of-set) A = card (S ∩
A) / card S

by (subst nn-integral-indicator [symmetric], simp)
(simp add: S-finite S-not-empty card-gt-0-iff indicator-def sum.If-cases di-

vide-ennreal
ennreal-of-nat-eq-real-of-nat nn-integral-pmf-of-set)

lemma measure-pmf-of-set: measure (measure-pmf pmf-of-set) A = card (S ∩ A)
/ card S

using emeasure-pmf-of-set[of A]
by (simp add: measure-nonneg measure-pmf .emeasure-eq-measure)

end

lemma pmf-expectation-bind-pmf-of-set:

THEORY “Probability-Mass-Function” 317

fixes A :: ′a set and f :: ′a ⇒ ′b pmf
and h :: ′b ⇒ ′c::{banach, second-countable-topology}

assumes A 6= {} finite A
∧

x. x ∈ A =⇒ finite (set-pmf (f x))
shows measure-pmf .expectation (pmf-of-set A >>= f) h =

(
∑

a∈A. measure-pmf .expectation (f a) h /R real (card A))
using assms by (subst pmf-expectation-bind[of A]) (auto simp: field-split-simps)

lemma map-pmf-of-set:
assumes finite A A 6= {}
shows map-pmf f (pmf-of-set A) = pmf-of-multiset (image-mset f (mset-set

A))
(is ?lhs = ?rhs)

proof (intro pmf-eqI)
fix x
from assms have ennreal (pmf ?lhs x) = ennreal (pmf ?rhs x)

by (subst ennreal-pmf-map)
(simp-all add: emeasure-pmf-of-set mset-set-empty-iff count-image-mset

Int-commute)
thus pmf ?lhs x = pmf ?rhs x by simp

qed

lemma pmf-bind-pmf-of-set:
assumes A 6= {} finite A
shows pmf (bind-pmf (pmf-of-set A) f) x =

(
∑

xa∈A. pmf (f xa) x) / real-of-nat (card A) (is ?lhs = ?rhs)
proof −

from assms have card A > 0 by auto
with assms have ennreal ?lhs = ennreal ?rhs

by (subst ennreal-pmf-bind)
(simp-all add: nn-integral-pmf-of-set max-def pmf-nonneg divide-ennreal

[symmetric]
sum-nonneg ennreal-of-nat-eq-real-of-nat)

thus ?thesis by (subst (asm) ennreal-inj) (auto intro!: sum-nonneg divide-nonneg-nonneg)
qed

lemma pmf-of-set-singleton: pmf-of-set {x} = return-pmf x
by(rule pmf-eqI)(simp add: indicator-def)

lemma map-pmf-of-set-inj:
assumes f : inj-on f A
and [simp]: A 6= {} finite A
shows map-pmf f (pmf-of-set A) = pmf-of-set (f ‘ A) (is ?lhs = ?rhs)

proof(rule pmf-eqI)
fix i
show pmf ?lhs i = pmf ?rhs i
proof(cases i ∈ f ‘ A)

case True
then obtain i ′ where i = f i ′ i ′ ∈ A by auto
thus ?thesis using f by(simp add: card-image pmf-map-inj)

THEORY “Probability-Mass-Function” 318

next
case False
hence pmf ?lhs i = 0 by(simp add: pmf-eq-0-set-pmf set-map-pmf)
moreover have pmf ?rhs i = 0 using False by simp
ultimately show ?thesis by simp

qed
qed

lemma map-pmf-of-set-bij-betw:
assumes bij-betw f A B A 6= {} finite A
shows map-pmf f (pmf-of-set A) = pmf-of-set B

proof −
have map-pmf f (pmf-of-set A) = pmf-of-set (f ‘ A)

by (intro map-pmf-of-set-inj assms bij-betw-imp-inj-on[OF assms(1)])
also from assms have f ‘ A = B by (simp add: bij-betw-def)
finally show ?thesis .

qed

Choosing an element uniformly at random from the union of a disjoint family
of finite non-empty sets with the same size is the same as first choosing a
set from the family uniformly at random and then choosing an element from
the chosen set uniformly at random.
lemma pmf-of-set-UN :

assumes finite (
⋃
(f ‘ A)) A 6= {}

∧
x. x ∈ A =⇒ f x 6= {}∧

x. x ∈ A =⇒ card (f x) = n disjoint-family-on f A
shows pmf-of-set (

⋃
(f ‘ A)) = do {x ← pmf-of-set A; pmf-of-set (f x)}

(is ?lhs = ?rhs)
proof (intro pmf-eqI)

fix x
from assms have [simp]: finite A

using infinite-disjoint-family-imp-infinite-UNION [of A f] by blast
from assms have ereal (pmf (pmf-of-set (

⋃
(f ‘ A))) x) =

ereal (indicator (
⋃

x∈A. f x) x / real (card (
⋃

x∈A. f x)))
by (subst pmf-of-set) auto

also from assms have card (
⋃

x∈A. f x) = card A ∗ n
by (subst card-UN-disjoint) (auto simp: disjoint-family-on-def)

also from assms
have indicator (

⋃
x∈A. f x) x / real . . . =

indicator (
⋃

x∈A. f x) x / (n ∗ real (card A))
by (simp add: sum-divide-distrib [symmetric] mult-ac)

also from assms have indicator (
⋃

x∈A. f x) x = (
∑

y∈A. indicator (f y) x)
by (intro indicator-UN-disjoint) simp-all

also from assms have ereal ((
∑

y∈A. indicator (f y) x) / (real n ∗ real (card
A))) =

ereal (pmf ?rhs x)
by (subst pmf-bind-pmf-of-set) (simp-all add: sum-divide-distrib)

finally show pmf ?lhs x = pmf ?rhs x by simp
qed

THEORY “Probability-Mass-Function” 319

lemma bernoulli-pmf-half-conv-pmf-of-set: bernoulli-pmf (1 / 2) = pmf-of-set UNIV
by (rule pmf-eqI) simp-all

20.6.5 Poisson Distribution
context

fixes rate :: real assumes rate-pos: 0 < rate
begin

lift-definition poisson-pmf :: nat pmf is λk. rate ^ k / fact k ∗ exp (−rate)
proof

have summable: summable (λx::nat. rate ^ x / fact x) using summable-exp
by (simp add: field-simps divide-inverse [symmetric])

have (
∫

+(x::nat). rate ^ x / fact x ∗ exp (−rate) ∂count-space UNIV) =
exp (−rate) ∗ (

∫
+(x::nat). rate ^ x / fact x ∂count-space UNIV)

by (simp add: field-simps nn-integral-cmult[symmetric] ennreal-mult ′[symmetric])
also from rate-pos have (

∫
+(x::nat). rate ^ x / fact x ∂count-space UNIV) =

(
∑

x. rate ^ x / fact x)
by (simp-all add: nn-integral-count-space-nat suminf-ennreal summable en-

nreal-suminf-neq-top)
also have ... = exp rate unfolding exp-def

by (simp add: field-simps divide-inverse [symmetric])
also have ennreal (exp (−rate)) ∗ ennreal (exp rate) = 1

by (simp add: mult-exp-exp ennreal-mult[symmetric])
finally show (

∫
+ x. ennreal (rate ^ x / (fact x) ∗ exp (− rate)) ∂count-space

UNIV) = 1 .
qed (simp add: rate-pos[THEN less-imp-le])

lemma pmf-poisson[simp]: pmf poisson-pmf k = rate ^ k / fact k ∗ exp (−rate)
by transfer rule

lemma set-pmf-poisson[simp]: set-pmf poisson-pmf = UNIV
using rate-pos by (auto simp: set-pmf-iff)

end

20.6.6 Binomial Distribution
context

fixes n :: nat and p :: real assumes p-nonneg: 0 ≤ p and p-le-1 : p ≤ 1
begin

lift-definition binomial-pmf :: nat pmf is λk. (n choose k) ∗ p^k ∗ (1 − p)^(n −
k)
proof

have (
∫

+k. ennreal (real (n choose k) ∗ p ^ k ∗ (1 − p) ^ (n − k)) ∂count-space
UNIV) =

ennreal (
∑

k≤n. real (n choose k) ∗ p ^ k ∗ (1 − p) ^ (n − k))
using p-le-1 p-nonneg by (subst nn-integral-count-space ′) auto

THEORY “Probability-Mass-Function” 320

also have (
∑

k≤n. real (n choose k) ∗ p ^ k ∗ (1 − p) ^ (n − k)) = (p + (1 −
p)) ^ n

by (subst binomial-ring) (simp add: atLeast0AtMost)
finally show (

∫
+ x. ennreal (real (n choose x) ∗ p ^ x ∗ (1 − p) ^ (n − x))

∂count-space UNIV) = 1
by simp

qed (insert p-nonneg p-le-1 , simp)

lemma pmf-binomial[simp]: pmf binomial-pmf k = (n choose k) ∗ p^k ∗ (1 −
p)^(n − k)

by transfer rule

lemma set-pmf-binomial-eq: set-pmf binomial-pmf = (if p = 0 then {0} else if p
= 1 then {n} else {.. n})

using p-nonneg p-le-1 unfolding set-eq-iff set-pmf-iff pmf-binomial by (auto
simp: set-pmf-iff)

end

end

lemma set-pmf-binomial-0 [simp]: set-pmf (binomial-pmf n 0) = {0}
by (simp add: set-pmf-binomial-eq)

lemma set-pmf-binomial-1 [simp]: set-pmf (binomial-pmf n 1) = {n}
by (simp add: set-pmf-binomial-eq)

lemma set-pmf-binomial[simp]: 0 < p =⇒ p < 1 =⇒ set-pmf (binomial-pmf n p)
= {..n}

by (simp add: set-pmf-binomial-eq)

lemma finite-set-pmf-binomial-pmf [intro]: p ∈ {0 ..1} =⇒ finite (set-pmf (binomial-pmf
n p))

by (subst set-pmf-binomial-eq) auto

lemma expectation-binomial-pmf ′:
fixes f :: nat ⇒ ′a :: {banach, second-countable-topology}
assumes p: p ∈ {0 ..1}
shows measure-pmf .expectation (binomial-pmf n p) f =

(
∑

k≤n. (real (n choose k) ∗ p ^ k ∗ (1 − p) ^ (n − k)) ∗R f k)
using p by (subst integral-measure-pmf [where A = {..n}])

(auto simp: set-pmf-binomial-eq split: if-splits)

lemma integrable-binomial-pmf [simp, intro]:
fixes f :: nat ⇒ ′a :: {banach, second-countable-topology}
assumes p: p ∈ {0 ..1}
shows integrable (binomial-pmf n p) f
by (rule integrable-measure-pmf-finite) (use assms in auto)

THEORY “Probability-Mass-Function” 321

context includes lifting-syntax
begin

lemma bind-pmf-parametric [transfer-rule]:
(rel-pmf A ===> (A ===> rel-pmf B) ===> rel-pmf B) bind-pmf bind-pmf

by(blast intro: rel-pmf-bindI dest: rel-funD)

lemma return-pmf-parametric [transfer-rule]: (A ===> rel-pmf A) return-pmf
return-pmf
by(rule rel-funI) simp

end

primrec replicate-pmf :: nat ⇒ ′a pmf ⇒ ′a list pmf where
replicate-pmf 0 - = return-pmf []
| replicate-pmf (Suc n) p = do {x ← p; xs ← replicate-pmf n p; return-pmf (x#xs)}

lemma replicate-pmf-1 : replicate-pmf 1 p = map-pmf (λx. [x]) p
by (simp add: map-pmf-def bind-return-pmf)

lemma set-replicate-pmf :
set-pmf (replicate-pmf n p) = {xs∈lists (set-pmf p). length xs = n}
by (induction n) (auto simp: length-Suc-conv)

lemma replicate-pmf-distrib:
replicate-pmf (m + n) p =

do {xs ← replicate-pmf m p; ys ← replicate-pmf n p; return-pmf (xs @ ys)}
by (induction m) (simp-all add: bind-return-pmf bind-return-pmf ′ bind-assoc-pmf)

lemma power-diff ′:
assumes b ≤ a
shows x ^ (a − b) = (if x = 0 ∧ a = b then 1 else x ^ a / (x:: ′a::field) ^ b)

proof (cases x = 0)
case True
with assms show ?thesis by (cases a − b) simp-all

qed (insert assms, simp-all add: power-diff)

lemma binomial-pmf-Suc:
assumes p ∈ {0 ..1}
shows binomial-pmf (Suc n) p =

do {b ← bernoulli-pmf p;
k ← binomial-pmf n p;
return-pmf ((if b then 1 else 0) + k)} (is - = ?rhs)

proof (intro pmf-eqI)
fix k
have A: indicator {Suc a} (Suc b) = indicator {a} b for a b

by (simp add: indicator-def)

THEORY “Probability-Mass-Function” 322

show pmf (binomial-pmf (Suc n) p) k = pmf ?rhs k
by (cases k; cases k > n)

(insert assms, auto simp: pmf-bind measure-pmf-single A field-split-simps
algebra-simps

not-less less-eq-Suc-le [symmetric] power-diff ′)
qed

lemma binomial-pmf-0 : p ∈ {0 ..1} =⇒ binomial-pmf 0 p = return-pmf 0
by (rule pmf-eqI) (simp-all add: indicator-def)

lemma binomial-pmf-altdef :
assumes p ∈ {0 ..1}
shows binomial-pmf n p = map-pmf (length ◦ filter id) (replicate-pmf n

(bernoulli-pmf p))
by (induction n)

(insert assms, auto simp: binomial-pmf-Suc map-pmf-def bind-return-pmf
bind-assoc-pmf

bind-return-pmf ′ binomial-pmf-0 intro!: bind-pmf-cong)

20.7 Negative Binomial distribution

The negative binomial distribution counts the number of times a weighted
coin comes up tails before having come up heads n times. In other words:
how many failures do we see before seeing the n-th success?
An alternative view is that the negative binomial distribution is the sum of
n i.i.d. geometric variables (this is the definition that we use).
Note that there are sometimes different conventions for this distributions
in the literature; for instance, sometimes the number of attempts is counted
instead of the number of failures. This only shifts the entire distribution by a
constant number and is thus not a big difference. I think that the convention
we use is the most natural one since the support of the distribution starts
at 0, whereas for the other convention it starts at n.
primrec neg-binomial-pmf :: nat ⇒ real ⇒ nat pmf where

neg-binomial-pmf 0 p = return-pmf 0
| neg-binomial-pmf (Suc n) p =

map-pmf (λ(x,y). (x + y)) (pair-pmf (geometric-pmf p) (neg-binomial-pmf n
p))

lemma neg-binomial-pmf-Suc-0 [simp]: neg-binomial-pmf (Suc 0) p = geomet-
ric-pmf p
by (auto simp: pair-pmf-def bind-return-pmf map-pmf-def bind-assoc-pmf bind-return-pmf ′)

lemmas neg-binomial-pmf-Suc [simp del] = neg-binomial-pmf .simps(2)

lemma neg-binomial-prob-1 [simp]: neg-binomial-pmf n 1 = return-pmf 0
by (induction n) (simp-all add: neg-binomial-pmf-Suc)

THEORY “Probability-Mass-Function” 323

We can now show the aforementioned intuition about counting the failures
before the n-th success with the following recurrence:
lemma neg-binomial-pmf-unfold:

assumes p: p ∈ {0<..1}
shows neg-binomial-pmf (Suc n) p =

do {b ← bernoulli-pmf p;
if b then neg-binomial-pmf n p else map-pmf Suc (neg-binomial-pmf

(Suc n) p)}
(is - = ?rhs)
unfolding neg-binomial-pmf-Suc
by (subst geometric-bind-pmf-unfold[OF p])
(auto simp: map-pmf-def pair-pmf-def bind-assoc-pmf bind-return-pmf bind-return-pmf ′

intro!: bind-pmf-cong)

Next, we show an explicit formula for the probability mass function of the
negative binomial distribution:
lemma pmf-neg-binomial:

assumes p: p ∈ {0<..1}
shows pmf (neg-binomial-pmf n p) k = real ((k + n − 1) choose k) ∗ p ^ n ∗

(1 − p) ^ k
proof (induction n arbitrary: k)

case 0
thus ?case using assms by (auto simp: indicator-def)

next
case (Suc n)
show ?case
proof (cases n = 0)

case True
thus ?thesis using assms by auto

next
case False
let ?f = pmf (neg-binomial-pmf n p)
have pmf (neg-binomial-pmf (Suc n) p) k =

pmf (geometric-pmf p >>= (λx. map-pmf ((+) x) (neg-binomial-pmf n
p))) k

by (auto simp: pair-pmf-def bind-return-pmf map-pmf-def bind-assoc-pmf
neg-binomial-pmf-Suc)

also have . . . = measure-pmf .expectation (geometric-pmf p)
(λx. measure-pmf .prob (neg-binomial-pmf n p) ((+) x −‘ {k}))

by (simp add: pmf-bind pmf-map)
also have (λx. (+) x −‘ {k}) = (λx. if x ≤ k then {k − x} else {})

by (auto simp: fun-eq-iff)
also have (λx. measure-pmf .prob (neg-binomial-pmf n p) (. . . x)) =

(λx. if x ≤ k then ?f (k − x) else 0)
by (auto simp: fun-eq-iff measure-pmf-single)

also have measure-pmf .expectation (geometric-pmf p) . . . =
(
∑

i≤k. pmf (neg-binomial-pmf n p) (k − i) ∗ pmf (geometric-pmf
p) i)

by (subst integral-measure-pmf-real[where A = {..k}]) (auto split: if-splits)

THEORY “Probability-Mass-Function” 324

also have . . . = p^(n+1) ∗ (1−p)^k ∗ real (
∑

i≤k. (k − i + n − 1) choose
(k − i))

unfolding sum-distrib-left of-nat-sum
proof (intro sum.cong refl, goal-cases)

case (1 i)
have pmf (neg-binomial-pmf n p) (k − i) ∗ pmf (geometric-pmf p) i =

real ((k − i + n − 1) choose (k − i)) ∗ p^(n+1) ∗ ((1−p)^(k−i) ∗
(1−p)^i)

using assms Suc.IH by (simp add: mult-ac)
also have (1−p)^(k−i) ∗ (1−p)^i = (1−p)^k

using 1 by (subst power-add [symmetric]) auto
finally show ?case by simp

qed
also have (

∑
i≤k. (k − i + n − 1) choose (k − i)) = (

∑
i≤k. (n − 1 + i)

choose i)
by (intro sum.reindex-bij-witness[of - λi. k − i λi. k − i])

(use ‹n 6= 0 › in ‹auto simp: algebra-simps›)
also have . . . = (n + k) choose k

by (subst sum-choose-lower) (use ‹n 6= 0 › in auto)
finally show ?thesis

by (simp add: add-ac)
qed

qed

lemma gbinomial-0-left: 0 gchoose k = (if k = 0 then 1 else 0)
by (cases k) auto

The following alternative formula highlights why it is called ‘negative bino-
mial distribution’:
lemma pmf-neg-binomial ′:

assumes p: p ∈ {0<..1}
shows pmf (neg-binomial-pmf n p) k = (−1) ^ k ∗ ((−real n) gchoose k) ∗ p

^ n ∗ (1 − p) ^ k
proof (cases n > 0)

case n: True
have pmf (neg-binomial-pmf n p) k = real ((k + n − 1) choose k) ∗ p ^ n ∗ (1
− p) ^ k

by (rule pmf-neg-binomial) fact+
also have real ((k + n − 1) choose k) = ((real k + real n − 1) gchoose k)

using n by (subst binomial-gbinomial) (auto simp: of-nat-diff)
also have . . . = (−1) ^ k ∗ ((−real n) gchoose k)

by (subst gbinomial-negated-upper) auto
finally show ?thesis by simp

qed (auto simp: indicator-def gbinomial-0-left)

The cumulative distribution function of the negative binomial distribution
can be expressed in terms of that of the ‘normal’ binomial distribution.
lemma prob-neg-binomial-pmf-atMost:

THEORY “Probability-Mass-Function” 325

assumes p: p ∈ {0<..1}
shows measure-pmf .prob (neg-binomial-pmf n p) {..k} =

measure-pmf .prob (binomial-pmf (n + k) (1 − p)) {..k}
proof (cases n = 0)

case [simp]: True
have set-pmf (binomial-pmf (n + k) (1 − p)) ⊆ {..n+k}

using p by (subst set-pmf-binomial-eq) auto
hence measure-pmf .prob (binomial-pmf (n + k) (1 − p)) {..k} = 1

by (subst measure-pmf .prob-eq-1) (auto intro!: AE-pmfI)
thus ?thesis by simp

next
case False
hence n: n > 0 by auto
have measure-pmf .prob (binomial-pmf (n + k) (1 − p)) {..k} = (

∑
i≤k. pmf

(binomial-pmf (n + k) (1 − p)) i)
by (intro measure-measure-pmf-finite) auto

also have . . . = (
∑

i≤k. real ((n + k) choose i) ∗ p ^ (n + k − i) ∗ (1 − p) ^
i)

using p by (simp add: mult-ac)
also have . . . = p ^ n ∗ (

∑
i≤k. real ((n + k) choose i) ∗ (1 − p) ^ i ∗ p ^ (k

− i))
unfolding sum-distrib-left by (intro sum.cong) (auto simp: algebra-simps simp

flip: power-add)
also have (

∑
i≤k. real ((n + k) choose i) ∗ (1 − p) ^ i ∗ p ^ (k − i)) =

(
∑

i≤k. ((n + i − 1) choose i) ∗ (1 − p) ^ i)
using gbinomial-partial-sum-poly-xpos[of k real n 1 − p p] n
by (simp add: binomial-gbinomial add-ac of-nat-diff)

also have p ^ n ∗ . . . = (
∑

i≤k. pmf (neg-binomial-pmf n p) i)
using p unfolding sum-distrib-left by (simp add: pmf-neg-binomial alge-

bra-simps)
also have . . . = measure-pmf .prob (neg-binomial-pmf n p) {..k}

by (intro measure-measure-pmf-finite [symmetric]) auto
finally show ?thesis ..

qed

lemma prob-neg-binomial-pmf-lessThan:
assumes p: p ∈ {0<..1}
shows measure-pmf .prob (neg-binomial-pmf n p) {..<k} =

measure-pmf .prob (binomial-pmf (n + k − 1) (1 − p)) {..<k}
proof (cases k = 0)

case False
hence {..<k} = {..k−1}

by auto
thus ?thesis

using prob-neg-binomial-pmf-atMost[OF p, of n k − 1] False by simp
qed auto

The expected value of the negative binomial distribution is n(1− p)/p:
lemma nn-integral-neg-binomial-pmf-real:

THEORY “Probability-Mass-Function” 326

assumes p: p ∈ {0<..1}
shows nn-integral (measure-pmf (neg-binomial-pmf n p)) of-nat = ennreal (n ∗

(1 − p) / p)
proof (induction n)

case 0
thus ?case by auto

next
case (Suc n)
have nn-integral (measure-pmf (neg-binomial-pmf (Suc n) p)) of-nat =

nn-integral (measure-pmf (geometric-pmf p)) of-nat +
nn-integral (measure-pmf (neg-binomial-pmf n p)) of-nat

by (simp add: neg-binomial-pmf-Suc case-prod-unfold nn-integral-add nn-integral-pair-pmf ′)
also have nn-integral (measure-pmf (geometric-pmf p)) of-nat = ennreal ((1−p)
/ p)

unfolding ennreal-of-nat-eq-real-of-nat
using expectation-geometric-pmf [OF p] integrable-real-geometric-pmf [OF p]
by (subst nn-integral-eq-integral) auto

also have nn-integral (measure-pmf (neg-binomial-pmf n p)) of-nat = n ∗ (1 −
p) / p using p

by (subst Suc.IH)
(auto simp: ennreal-of-nat-eq-real-of-nat ennreal-mult simp flip: divide-ennreal

ennreal-minus)
also have ennreal ((1 − p) / p) + ennreal (real n ∗ (1 − p) / p) =

ennreal ((1−p) / p + real n ∗ (1 − p) / p)
by (intro ennreal-plus [symmetric] divide-nonneg-pos mult-nonneg-nonneg) (use

p in auto)
also have (1−p) / p + real n ∗ (1 − p) / p = real (Suc n) ∗ (1 − p) / p

using p by (auto simp: field-simps)
finally show ?case

by (simp add: ennreal-of-nat-eq-real-of-nat)
qed

lemma integrable-neg-binomial-pmf-real:
assumes p: p ∈ {0<..1}
shows integrable (measure-pmf (neg-binomial-pmf n p)) real
using nn-integral-neg-binomial-pmf-real[OF p, of n]
by (subst integrable-iff-bounded) (auto simp flip: ennreal-of-nat-eq-real-of-nat)

lemma expectation-neg-binomial-pmf :
assumes p: p ∈ {0<..1}
shows measure-pmf .expectation (neg-binomial-pmf n p) real = n ∗ (1 − p) / p

proof −
have nn-integral (measure-pmf (neg-binomial-pmf n p)) of-nat = ennreal (n ∗

(1 − p) / p)
by (intro nn-integral-neg-binomial-pmf-real p)

also have of-nat = (λx. ennreal (real x))
by (simp add: ennreal-of-nat-eq-real-of-nat fun-eq-iff)

finally show ?thesis
using p by (subst (asm) nn-integral-eq-integrable) auto

THEORY “Probability-Mass-Function” 327

qed

20.8 PMFs from association lists
definition pmf-of-list :: (′a × real) list ⇒ ′a pmf where

pmf-of-list xs = embed-pmf (λx. sum-list (map snd (filter (λz. fst z = x) xs)))

definition pmf-of-list-wf where
pmf-of-list-wf xs ←→ (∀ x∈set (map snd xs) . x ≥ 0) ∧ sum-list (map snd xs) =

1

lemma pmf-of-list-wfI :
(
∧

x. x ∈ set (map snd xs) =⇒ x ≥ 0) =⇒ sum-list (map snd xs) = 1 =⇒
pmf-of-list-wf xs

unfolding pmf-of-list-wf-def by simp

context
begin

private lemma pmf-of-list-aux:
assumes

∧
x. x ∈ set (map snd xs) =⇒ x ≥ 0

assumes sum-list (map snd xs) = 1
shows (

∫
+ x. ennreal (sum-list (map snd [z←xs . fst z = x])) ∂count-space

UNIV) = 1
proof −

have (
∫

+ x. ennreal (sum-list (map snd (filter (λz. fst z = x) xs))) ∂count-space
UNIV) =

(
∫

+ x. ennreal (sum-list (map (λ(x ′,p). indicator {x ′} x ∗ p) xs))
∂count-space UNIV)

apply (intro nn-integral-cong ennreal-cong, subst sum-list-map-filter ′)
apply (rule arg-cong[where f = sum-list])
apply (auto cong: map-cong)
done

also have . . . = (
∑

(x ′,p)←xs. (
∫

+ x. ennreal (indicator {x ′} x ∗ p) ∂count-space
UNIV))

using assms(1)
proof (induction xs)

case (Cons x xs)
from Cons.prems have snd x ≥ 0 by simp
moreover have b ≥ 0 if (a,b) ∈ set xs for a b

using Cons.prems[of b] that by force
ultimately have (

∫
+ y. ennreal (

∑
(x ′, p)←x # xs. indicator {x ′} y ∗ p)

∂count-space UNIV) =
(
∫

+ y. ennreal (indicator {fst x} y ∗ snd x) +
ennreal (

∑
(x ′, p)←xs. indicator {x ′} y ∗ p) ∂count-space UNIV)

by (intro nn-integral-cong, subst ennreal-plus [symmetric])
(auto simp: case-prod-unfold indicator-def intro!: sum-list-nonneg)

also have . . . = (
∫

+ y. ennreal (indicator {fst x} y ∗ snd x) ∂count-space
UNIV) +

THEORY “Probability-Mass-Function” 328

(
∫

+ y. ennreal (
∑

(x ′, p)←xs. indicator {x ′} y ∗ p) ∂count-space
UNIV)

by (intro nn-integral-add)
(force intro!: sum-list-nonneg AE-I2 intro: Cons simp: indicator-def)+

also have (
∫

+ y. ennreal (
∑

(x ′, p)←xs. indicator {x ′} y ∗ p) ∂count-space
UNIV) =

(
∑

(x ′, p)←xs. (
∫

+ y. ennreal (indicator {x ′} y ∗ p) ∂count-space
UNIV))

using Cons(1) by (intro Cons) simp-all
finally show ?case by (simp add: case-prod-unfold)

qed simp
also have . . . = (

∑
(x ′,p)←xs. ennreal p ∗ (

∫
+ x. indicator {x ′} x ∂count-space

UNIV))
using assms(1)

by (simp cong: map-cong only: case-prod-unfold, subst nn-integral-cmult [symmetric])
(auto intro!: assms(1) simp: max-def times-ereal.simps [symmetric] mult-ac

ereal-indicator
simp del: times-ereal.simps)+

also from assms have . . . = sum-list (map snd xs) by (simp add: case-prod-unfold
sum-list-ennreal)

also have . . . = 1 using assms(2) by simp
finally show ?thesis .

qed

lemma pmf-pmf-of-list:
assumes pmf-of-list-wf xs
shows pmf (pmf-of-list xs) x = sum-list (map snd (filter (λz. fst z = x) xs))
using assms pmf-of-list-aux[of xs] unfolding pmf-of-list-def pmf-of-list-wf-def
by (subst pmf-embed-pmf) (auto intro!: sum-list-nonneg)

end

lemma set-pmf-of-list:
assumes pmf-of-list-wf xs
shows set-pmf (pmf-of-list xs) ⊆ set (map fst xs)

proof clarify
fix x assume A: x ∈ set-pmf (pmf-of-list xs)
show x ∈ set (map fst xs)
proof (rule ccontr)

assume x /∈ set (map fst xs)
hence [z←xs . fst z = x] = [] by (auto simp: filter-empty-conv)
with A assms show False by (simp add: pmf-pmf-of-list set-pmf-eq)

qed
qed

lemma finite-set-pmf-of-list:
assumes pmf-of-list-wf xs
shows finite (set-pmf (pmf-of-list xs))
using assms by (rule finite-subset[OF set-pmf-of-list]) simp-all

THEORY “Probability-Mass-Function” 329

lemma emeasure-Int-set-pmf :
emeasure (measure-pmf p) (A ∩ set-pmf p) = emeasure (measure-pmf p) A
by (rule emeasure-eq-AE) (auto simp: AE-measure-pmf-iff)

lemma measure-Int-set-pmf :
measure (measure-pmf p) (A ∩ set-pmf p) = measure (measure-pmf p) A
using emeasure-Int-set-pmf [of p A] by (simp add: Sigma-Algebra.measure-def)

lemma measure-prob-cong-0 :
assumes

∧
x. x ∈ A − B =⇒ pmf p x = 0

assumes
∧

x. x ∈ B − A =⇒ pmf p x = 0
shows measure (measure-pmf p) A = measure (measure-pmf p) B

proof −
have measure-pmf .prob p A = measure-pmf .prob p (A ∩ set-pmf p)

by (simp add: measure-Int-set-pmf)
also have A ∩ set-pmf p = B ∩ set-pmf p

using assms by (auto simp: set-pmf-eq)
also have measure-pmf .prob p . . . = measure-pmf .prob p B

by (simp add: measure-Int-set-pmf)
finally show ?thesis .

qed

lemma emeasure-pmf-of-list:
assumes pmf-of-list-wf xs
shows emeasure (pmf-of-list xs) A = ennreal (sum-list (map snd (filter (λx. fst

x ∈ A) xs)))
proof −

have emeasure (pmf-of-list xs) A = nn-integral (measure-pmf (pmf-of-list xs))
(indicator A)

by simp
also from assms

have . . . = (
∑

x∈set-pmf (pmf-of-list xs) ∩ A. ennreal (sum-list (map snd
[z←xs . fst z = x])))

by (subst nn-integral-measure-pmf-finite) (simp-all add: finite-set-pmf-of-list
pmf-pmf-of-list Int-def)

also from assms
have . . . = ennreal (

∑
x∈set-pmf (pmf-of-list xs) ∩ A. sum-list (map snd [z←xs

. fst z = x]))
by (subst sum-ennreal) (auto simp: pmf-of-list-wf-def intro!: sum-list-nonneg)

also have . . . = ennreal (
∑

x∈set-pmf (pmf-of-list xs) ∩ A.
indicator A x ∗ pmf (pmf-of-list xs) x) (is - = ennreal ?S)

using assms by (intro ennreal-cong sum.cong) (auto simp: pmf-pmf-of-list)
also have ?S = (

∑
x∈set-pmf (pmf-of-list xs). indicator A x ∗ pmf (pmf-of-list

xs) x)
using assms by (intro sum.mono-neutral-left set-pmf-of-list finite-set-pmf-of-list)

auto
also have . . . = (

∑
x∈set (map fst xs). indicator A x ∗ pmf (pmf-of-list xs) x)

using assms by (intro sum.mono-neutral-left set-pmf-of-list) (auto simp: set-pmf-eq)

THEORY “Probability-Mass-Function” 330

also have . . . = (
∑

x∈set (map fst xs). indicator A x ∗
sum-list (map snd (filter (λz. fst z = x) xs)))

using assms by (simp add: pmf-pmf-of-list)
also have . . . = (

∑
x∈set (map fst xs). sum-list (map snd (filter (λz. fst z = x

∧ x ∈ A) xs)))
by (intro sum.cong) (auto simp: indicator-def)

also have . . . = (
∑

x∈set (map fst xs). (
∑

xa = 0 ..<length xs.
if fst (xs ! xa) = x ∧ x ∈ A then snd (xs ! xa) else 0))

by (intro sum.cong refl, subst sum-list-map-filter ′, subst sum-list-sum-nth) simp
also have . . . = (

∑
xa = 0 ..<length xs. (

∑
x∈set (map fst xs).

if fst (xs ! xa) = x ∧ x ∈ A then snd (xs ! xa) else 0))
by (rule sum.swap)

also have . . . = (
∑

xa = 0 ..<length xs. if fst (xs ! xa) ∈ A then
(
∑

x∈set (map fst xs). if x = fst (xs ! xa) then snd (xs ! xa) else
0) else 0)

by (auto intro!: sum.cong sum.neutral simp del: sum.delta)
also have . . . = (

∑
xa = 0 ..<length xs. if fst (xs ! xa) ∈ A then snd (xs ! xa)

else 0)
by (intro sum.cong refl) (simp-all add: sum.delta)

also have . . . = sum-list (map snd (filter (λx. fst x ∈ A) xs))
by (subst sum-list-map-filter ′, subst sum-list-sum-nth) simp-all

finally show ?thesis .
qed

lemma measure-pmf-of-list:
assumes pmf-of-list-wf xs
shows measure (pmf-of-list xs) A = sum-list (map snd (filter (λx. fst x ∈ A)

xs))
using assms unfolding pmf-of-list-wf-def Sigma-Algebra.measure-def
by (subst emeasure-pmf-of-list [OF assms], subst enn2real-ennreal) (auto intro!:

sum-list-nonneg)

lemma sum-list-nonneg-eq-zero-iff :
fixes xs :: ′a :: linordered-ab-group-add list
shows (

∧
x. x ∈ set xs =⇒ x ≥ 0) =⇒ sum-list xs = 0 ←→ set xs ⊆ {0}

proof (induction xs)
case (Cons x xs)
from Cons.prems have sum-list (x#xs) = 0 ←→ x = 0 ∧ sum-list xs = 0
unfolding sum-list-simps by (subst add-nonneg-eq-0-iff) (auto intro: sum-list-nonneg)

with Cons.IH Cons.prems show ?case by simp
qed simp-all

lemma sum-list-filter-nonzero:
sum-list (filter (λx. x 6= 0) xs) = sum-list xs
by (induction xs) simp-all

lemma set-pmf-of-list-eq:

THEORY “PMF-Impl” 331

assumes pmf-of-list-wf xs
∧

x. x ∈ snd ‘ set xs =⇒ x > 0
shows set-pmf (pmf-of-list xs) = fst ‘ set xs

proof
{

fix x assume A: x ∈ fst ‘ set xs and B: x /∈ set-pmf (pmf-of-list xs)
then obtain y where y: (x, y) ∈ set xs by auto
from B have sum-list (map snd [z←xs. fst z = x]) = 0

by (simp add: pmf-pmf-of-list[OF assms(1)] set-pmf-eq)
moreover from y have y ∈ snd ‘ {xa ∈ set xs. fst xa = x} by force
ultimately have y = 0 using assms(1)

by (subst (asm) sum-list-nonneg-eq-zero-iff) (auto simp: pmf-of-list-wf-def)
with assms(2) y have False by force

}
thus fst ‘ set xs ⊆ set-pmf (pmf-of-list xs) by blast

qed (insert set-pmf-of-list[OF assms(1)], simp-all)

lemma pmf-of-list-remove-zeros:
assumes pmf-of-list-wf xs
defines xs ′ ≡ filter (λz. snd z 6= 0) xs
shows pmf-of-list-wf xs ′ pmf-of-list xs ′ = pmf-of-list xs

proof −
have map snd [z←xs . snd z 6= 0] = filter (λx. x 6= 0) (map snd xs)

by (induction xs) simp-all
with assms(1) show wf : pmf-of-list-wf xs ′

by (auto simp: pmf-of-list-wf-def xs ′-def sum-list-filter-nonzero)
have sum-list (map snd [z←xs ′ . fst z = i]) = sum-list (map snd [z←xs . fst z

= i]) for i
unfolding xs ′-def by (induction xs) simp-all

with assms(1) wf show pmf-of-list xs ′ = pmf-of-list xs
by (intro pmf-eqI) (simp-all add: pmf-pmf-of-list)

qed

end

21 Code generation for PMFs
theory PMF-Impl
imports Probability-Mass-Function HOL−Library.AList-Mapping
begin

21.1 General code generation setup
definition pmf-of-mapping :: (′a, real) mapping ⇒ ′a pmf where

pmf-of-mapping m = embed-pmf (Mapping.lookup-default 0 m)

lemma nn-integral-lookup-default:
fixes m :: (′a, real) mapping
assumes finite (Mapping.keys m) All-mapping m (λ- x. x ≥ 0)
shows nn-integral (count-space UNIV) (λk. ennreal (Mapping.lookup-default 0

THEORY “PMF-Impl” 332

m k)) =
ennreal (

∑
k∈Mapping.keys m. Mapping.lookup-default 0 m k)

proof −
have nn-integral (count-space UNIV) (λk. ennreal (Mapping.lookup-default 0 m

k)) =
(
∑

x∈Mapping.keys m. ennreal (Mapping.lookup-default 0 m x)) using
assms

by (subst nn-integral-count-space ′[of Mapping.keys m])
(auto simp: Mapping.lookup-default-def keys-is-none-rep Option.is-none-def)

also from assms have . . . = ennreal (
∑

k∈Mapping.keys m. Mapping.lookup-default
0 m k)

by (intro sum-ennreal)
(auto simp: Mapping.lookup-default-def All-mapping-def split: option.splits)

finally show ?thesis .
qed

lemma pmf-of-mapping:
assumes finite (Mapping.keys m) All-mapping m (λ- p. p ≥ 0)
assumes (

∑
x∈Mapping.keys m. Mapping.lookup-default 0 m x) = 1

shows pmf (pmf-of-mapping m) x = Mapping.lookup-default 0 m x
unfolding pmf-of-mapping-def

proof (intro pmf-embed-pmf)
from assms show (

∫
+x. ennreal (Mapping.lookup-default 0 m x) ∂count-space

UNIV) = 1
by (subst nn-integral-lookup-default) (simp-all)

qed (insert assms, simp add: All-mapping-def Mapping.lookup-default-def split: op-
tion.splits)

lemma pmf-of-set-pmf-of-mapping:
assumes A 6= {} set xs = A distinct xs
shows pmf-of-set A = pmf-of-mapping (Mapping.tabulate xs (λ-. 1 / real (length

xs)))
(is ?lhs = ?rhs)

by (rule pmf-eqI , subst pmf-of-mapping)
(insert assms, auto intro!: All-mapping-tabulate

simp: Mapping.lookup-default-def lookup-tabulate distinct-card)

lift-definition mapping-of-pmf :: ′a pmf ⇒ (′a, real) mapping is
λp x. if pmf p x = 0 then None else Some (pmf p x) .

lemma lookup-default-mapping-of-pmf :
Mapping.lookup-default 0 (mapping-of-pmf p) x = pmf p x
by (simp add: mapping-of-pmf .abs-eq lookup-default-def Mapping.lookup.abs-eq)

context
begin

interpretation pmf-as-function .

THEORY “PMF-Impl” 333

lemma nn-integral-pmf-eq-1 : (
∫

+ x. ennreal (pmf p x) ∂count-space UNIV) = 1
by transfer simp-all

end

lemma pmf-of-mapping-mapping-of-pmf [code abstype]:
pmf-of-mapping (mapping-of-pmf p) = p

unfolding pmf-of-mapping-def
by (rule pmf-eqI , subst pmf-embed-pmf)

(insert nn-integral-pmf-eq-1 [of p],
auto simp: lookup-default-mapping-of-pmf split: option.splits)

lemma mapping-of-pmfI :
assumes

∧
x. x ∈ Mapping.keys m =⇒ Mapping.lookup m x = Some (pmf p x)

assumes Mapping.keys m = set-pmf p
shows mapping-of-pmf p = m
using assms by transfer (rule ext, auto simp: set-pmf-eq)

lemma mapping-of-pmfI ′:
assumes

∧
x. x ∈ Mapping.keys m =⇒ Mapping.lookup-default 0 m x = pmf p x

assumes Mapping.keys m = set-pmf p
shows mapping-of-pmf p = m
using assms unfolding Mapping.lookup-default-def
by transfer (rule ext, force simp: set-pmf-eq)

lemma return-pmf-code [code abstract]:
mapping-of-pmf (return-pmf x) = Mapping.update x 1 Mapping.empty
by (intro mapping-of-pmfI) (auto simp: lookup-update ′)

lemma pmf-of-set-code-aux:
assumes A 6= {} set xs = A distinct xs
shows mapping-of-pmf (pmf-of-set A) = Mapping.tabulate xs (λ-. 1 / real

(length xs))
using assms
by (intro mapping-of-pmfI , subst pmf-of-set)

(auto simp: lookup-tabulate distinct-card)

definition pmf-of-set-impl where
pmf-of-set-impl A = mapping-of-pmf (pmf-of-set A)

lemma pmf-of-set-impl-code-alt:
assumes A 6= {} finite A
shows pmf-of-set-impl A =

(let p = 1 / real (card A)
in Finite-Set.fold (λx. Mapping.update x p) Mapping.empty A)

proof −
define p where p = 1 / real (card A)
let ?m = Finite-Set.fold (λx. Mapping.update x p) Mapping.empty A

THEORY “PMF-Impl” 334

interpret comp-fun-idem λx. Mapping.update x p
by standard (transfer , force simp: fun-eq-iff)+

have keys: Mapping.keys ?m = A
using assms(2) by (induction A rule: finite-induct) simp-all

have lookup: Mapping.lookup ?m x = Some p if x ∈ A for x
using assms(2) that by (induction A rule: finite-induct) (auto simp: lookup-update ′)

from keys lookup assms show ?thesis unfolding pmf-of-set-impl-def
by (intro mapping-of-pmfI) (simp-all add: Let-def p-def)

qed

lemma pmf-of-set-impl-code [code]:
pmf-of-set-impl (set xs) =
(if xs = [] then

Code.abort (STR ′′pmf-of-set of empty set ′′) (λ-. mapping-of-pmf (pmf-of-set
(set xs)))

else let xs ′ = remdups xs; p = 1 / real (length xs ′) in
Mapping.tabulate xs ′ (λ-. p))

unfolding pmf-of-set-impl-def
using pmf-of-set-code-aux[of set xs remdups xs] by (simp add: Let-def)

lemma pmf-of-set-code [code abstract]:
mapping-of-pmf (pmf-of-set A) = pmf-of-set-impl A
by (simp add: pmf-of-set-impl-def)

lemma pmf-of-multiset-pmf-of-mapping:
assumes A 6= {#} set xs = set-mset A distinct xs
shows mapping-of-pmf (pmf-of-multiset A) = Mapping.tabulate xs (λx. count

A x / real (size A))
using assms by (intro mapping-of-pmfI) (auto simp: lookup-tabulate)

definition pmf-of-multiset-impl where
pmf-of-multiset-impl A = mapping-of-pmf (pmf-of-multiset A)

lemma pmf-of-multiset-impl-code-alt:
assumes A 6= {#}
shows pmf-of-multiset-impl A =

(let p = 1 / real (size A)
in fold-mset (λx. Mapping.map-default x 0 ((+) p)) Mapping.empty A)

proof −
define p where p = 1 / real (size A)
interpret comp-fun-commute λx. Mapping.map-default x 0 ((+) p)

unfolding Mapping.map-default-def [abs-def]
by (standard, intro mapping-eqI ext)

(simp-all add: o-def lookup-map-entry ′ lookup-default ′ lookup-default-def)
let ?m = fold-mset (λx. Mapping.map-default x 0 ((+) p)) Mapping.empty A
have keys: Mapping.keys ?m = set-mset A by (induction A) simp-all
have lookup: Mapping.lookup-default 0 ?m x = real (count A x) ∗ p for x

by (induction A)

THEORY “PMF-Impl” 335

(simp-all add: lookup-map-default ′ lookup-default-def lookup-empty ring-distribs)
from keys lookup assms show ?thesis unfolding pmf-of-multiset-impl-def

by (intro mapping-of-pmfI ′) (simp-all add: Let-def p-def)
qed

lemma pmf-of-multiset-impl-code [code]:
pmf-of-multiset-impl (mset xs) =

(if xs = [] then
Code.abort (STR ′′pmf-of-multiset of empty multiset ′′)
(λ-. mapping-of-pmf (pmf-of-multiset (mset xs)))

else let xs ′ = remdups xs; p = 1 / real (length xs) in
Mapping.tabulate xs ′ (λx. real (count (mset xs) x) ∗ p))

using pmf-of-multiset-pmf-of-mapping[of mset xs remdups xs]
by (simp add: pmf-of-multiset-impl-def)

lemma pmf-of-multiset-code [code abstract]:
mapping-of-pmf (pmf-of-multiset A) = pmf-of-multiset-impl A
by (simp add: pmf-of-multiset-impl-def)

lemma bernoulli-pmf-code [code abstract]:
mapping-of-pmf (bernoulli-pmf p) =

(if p ≤ 0 then Mapping.update False 1 Mapping.empty
else if p ≥ 1 then Mapping.update True 1 Mapping.empty
else Mapping.update False (1 − p) (Mapping.update True p Mapping.empty))

by (intro mapping-of-pmfI) (auto simp: bernoulli-pmf .rep-eq lookup-update ′ set-pmf-eq)

lemma pmf-code [code]: pmf p x = Mapping.lookup-default 0 (mapping-of-pmf p)
x

unfolding mapping-of-pmf-def Mapping.lookup-default-def
by (auto split: option.splits simp: id-def Mapping.lookup.abs-eq)

lemma set-pmf-code [code]: set-pmf p = Mapping.keys (mapping-of-pmf p)
by transfer (auto simp: dom-def set-pmf-eq)

lemma keys-mapping-of-pmf [simp]: Mapping.keys (mapping-of-pmf p) = set-pmf
p

by transfer (auto simp: dom-def set-pmf-eq)

definition fold-combine-plus where
fold-combine-plus = comm-monoid-set.F (Mapping.combine ((+) :: real ⇒ -))

Mapping.empty

context
begin

THEORY “PMF-Impl” 336

interpretation fold-combine-plus: combine-mapping-abel-semigroup (+) :: real ⇒
-

by unfold-locales (simp-all add: add-ac)

qualified lemma lookup-default-fold-combine-plus:
fixes A :: ′b set and f :: ′b ⇒ (′a, real) mapping
assumes finite A
shows Mapping.lookup-default 0 (fold-combine-plus f A) x =

(
∑

y∈A. Mapping.lookup-default 0 (f y) x)
unfolding fold-combine-plus-def using assms

by (induction A rule: finite-induct)
(simp-all add: lookup-default-empty lookup-default-neutral-combine)

qualified lemma keys-fold-combine-plus:
finite A =⇒ Mapping.keys (fold-combine-plus f A) = (

⋃
x∈A. Mapping.keys (f

x))
by (simp add: fold-combine-plus-def fold-combine-plus.keys-fold-combine)

qualified lemma fold-combine-plus-code [code]:
fold-combine-plus g (set xs) = foldr (λx. Mapping.combine (+) (g x)) (remdups

xs) Mapping.empty
by (simp add: fold-combine-plus-def fold-combine-plus.fold-combine-code)

private lemma lookup-default-0-map-values:
assumes f x 0 = 0
shows Mapping.lookup-default 0 (Mapping.map-values f m) x = f x (Mapping.lookup-default

0 m x)
unfolding Mapping.lookup-default-def
using assms by transfer (auto split: option.splits)

qualified lemma mapping-of-bind-pmf :
assumes finite (set-pmf p)
shows mapping-of-pmf (bind-pmf p f) =

fold-combine-plus (λx. Mapping.map-values (λ-. (∗) (pmf p x))
(mapping-of-pmf (f x))) (set-pmf p)

using assms
by (intro mapping-of-pmfI ′)

(auto simp: keys-fold-combine-plus lookup-default-fold-combine-plus
pmf-bind integral-measure-pmf lookup-default-0-map-values
lookup-default-mapping-of-pmf mult-ac)

lift-definition bind-pmf-aux :: ′a pmf ⇒ (′a ⇒ ′b pmf) ⇒ ′a set ⇒ (′b, real)
mapping is
λ(p :: ′a pmf) (f :: ′a ⇒ ′b pmf) (A:: ′a set) (x:: ′b).

if x ∈ (
⋃

y∈A. set-pmf (f y)) then
Some (measure-pmf .expectation p (λy. indicator A y ∗ pmf (f y) x))

else None .

lemma keys-bind-pmf-aux [simp]:

THEORY “PMF-Impl” 337

Mapping.keys (bind-pmf-aux p f A) = (
⋃

x∈A. set-pmf (f x))
by transfer (auto split: if-splits)

lemma lookup-default-bind-pmf-aux:
Mapping.lookup-default 0 (bind-pmf-aux p f A) x =

(if x ∈ (
⋃

y∈A. set-pmf (f y)) then
measure-pmf .expectation p (λy. indicator A y ∗ pmf (f y) x) else 0)

unfolding lookup-default-def by transfer ′ simp-all

lemma lookup-default-bind-pmf-aux ′ [simp]:
Mapping.lookup-default 0 (bind-pmf-aux p f (set-pmf p)) x = pmf (bind-pmf p f)

x
unfolding lookup-default-def
by transfer (auto simp: pmf-bind AE-measure-pmf-iff set-pmf-eq

intro!: integral-cong-AE integral-eq-zero-AE)

lemma bind-pmf-aux-correct:
mapping-of-pmf (bind-pmf p f) = bind-pmf-aux p f (set-pmf p)
by (intro mapping-of-pmfI ′) simp-all

lemma bind-pmf-aux-code-aux:
assumes finite A
shows bind-pmf-aux p f A =

fold-combine-plus (λx. Mapping.map-values (λ-. (∗) (pmf p x))
(mapping-of-pmf (f x))) A (is ?lhs = ?rhs)

proof (intro mapping-eqI ′[where d = 0])
fix x assume x ∈ Mapping.keys ?lhs
then obtain y where y: y ∈ A x ∈ set-pmf (f y) by auto
hence Mapping.lookup-default 0 ?lhs x =

measure-pmf .expectation p (λy. indicator A y ∗ pmf (f y) x)
by (auto simp: lookup-default-bind-pmf-aux)

also from assms have . . . = (
∑

y∈A. pmf p y ∗ pmf (f y) x)
by (subst integral-measure-pmf [of A])

(auto simp: set-pmf-eq indicator-def mult-ac split: if-splits)
also from assms have . . . = Mapping.lookup-default 0 ?rhs x

by (simp add: lookup-default-fold-combine-plus lookup-default-0-map-values
lookup-default-mapping-of-pmf)

finally show Mapping.lookup-default 0 ?lhs x = Mapping.lookup-default 0 ?rhs
x .
qed (insert assms, simp-all add: keys-fold-combine-plus)

lemma bind-pmf-aux-code [code]:
bind-pmf-aux p f (set xs) =

fold-combine-plus (λx. Mapping.map-values (λ-. (∗) (pmf p x))
(mapping-of-pmf (f x))) (set xs)

by (rule bind-pmf-aux-code-aux) simp-all

lemmas bind-pmf-code [code abstract] = bind-pmf-aux-correct

THEORY “PMF-Impl” 338

end

hide-const (open) fold-combine-plus

lift-definition cond-pmf-impl :: ′a pmf ⇒ ′a set ⇒ (′a, real) mapping option is
λp A. if A ∩ set-pmf p = {} then None else

Some (λx. if x ∈ A ∩ set-pmf p then Some (pmf p x / measure-pmf .prob p A)
else None) .

lemma cond-pmf-impl-code-alt:
assumes finite A
shows cond-pmf-impl p A = (

let C = A ∩ set-pmf p;
prob = (

∑
x∈C . pmf p x)

in if prob = 0 then
None

else
Some (Mapping.map-values (λ- y. y / prob)
(Mapping.filter (λk -. k ∈ C) (mapping-of-pmf p))))

proof −
define C where C = A ∩ set-pmf p
define prob where prob = (

∑
x∈C . pmf p x)

also note C-def
also from assms have (

∑
x∈A ∩ set-pmf p. pmf p x) = (

∑
x∈A. pmf p x)

by (intro sum.mono-neutral-left) (auto simp: set-pmf-eq)
finally have prob1 : prob = (

∑
x∈A. pmf p x) .

hence prob2 : prob = measure-pmf .prob p A
using assms by (subst measure-measure-pmf-finite) simp-all

have prob3 : prob = 0 ←→ A ∩ set-pmf p = {}
by (subst prob1 , subst sum-nonneg-eq-0-iff) (auto simp: set-pmf-eq assms)

from assms have prob4 : prob = measure-pmf .prob p C
unfolding prob-def by (intro measure-measure-pmf-finite [symmetric]) (simp-all

add: C-def)

show ?thesis
proof (cases prob = 0)

case True
hence A ∩ set-pmf p = {} by (subst (asm) prob3)

with True show ?thesis by (simp add: Let-def prob-def C-def cond-pmf-impl.abs-eq)
next

case False
hence A: C 6= {} unfolding C-def by (subst (asm) prob3) auto
with prob3 have prob-nz: prob 6= 0 by (auto simp: C-def)
fix x
have cond-pmf-impl p A =

Some (mapping.Mapping (λx. if x ∈ C then
Some (pmf p x / measure-pmf .prob p C) else None))

(is - = Some ?m)

THEORY “PMF-Impl” 339

using A prob2 prob4 unfolding C-def by transfer (auto simp: fun-eq-iff)
also have ?m = Mapping.map-values (λ- y. y / prob)

(Mapping.filter (λk -. k ∈ C) (mapping-of-pmf p))
using prob-nz prob4 assms unfolding C-def
by transfer (auto simp: fun-eq-iff set-pmf-eq)

finally show ?thesis using False by (simp add: Let-def prob-def C-def)
qed

qed

lemma cond-pmf-impl-code [code]:
cond-pmf-impl p (set xs) = (

let C = set xs ∩ set-pmf p;
prob = (

∑
x∈C . pmf p x)

in if prob = 0 then
None

else
Some (Mapping.map-values (λ- y. y / prob)
(Mapping.filter (λk -. k ∈ C) (mapping-of-pmf p))))

by (rule cond-pmf-impl-code-alt) simp-all

lemma cond-pmf-code [code abstract]:
mapping-of-pmf (cond-pmf p A) =

(case cond-pmf-impl p A of
None ⇒ Code.abort (STR ′′cond-pmf with set of probability 0 ′′)

(λ-. mapping-of-pmf (cond-pmf p A))
| Some m ⇒ m)

proof (cases cond-pmf-impl p A)
case (Some m)
hence A: set-pmf p ∩ A 6= {} by transfer (auto split: if-splits)
from Some have B: Mapping.keys m = set-pmf (cond-pmf p A)

by (subst set-cond-pmf [OF A], transfer) (auto split: if-splits)
with Some A have mapping-of-pmf (cond-pmf p A) = m
by (intro mapping-of-pmfI [OF - B], transfer) (auto split: if-splits simp: pmf-cond)

with Some show ?thesis by simp
qed simp-all

lemma binomial-pmf-code [code abstract]:
mapping-of-pmf (binomial-pmf n p) = (

if p < 0 ∨ p > 1 then
Code.abort (STR ′′binomial-pmf with invalid probability ′′)
(λ-. mapping-of-pmf (binomial-pmf n p))

else if p = 0 then Mapping.update 0 1 Mapping.empty
else if p = 1 then Mapping.update n 1 Mapping.empty
else Mapping.tabulate [0 ..<Suc n] (λk. real (n choose k) ∗ p ^ k ∗ (1 − p) ^

(n − k)))
by (cases p < 0 ∨ p > 1)

(simp, intro mapping-of-pmfI ,
auto simp: lookup-update ′ lookup-empty set-pmf-binomial-eq lookup-tabulate

THEORY “PMF-Impl” 340

split: if-splits)

lemma pred-pmf-code [code]:
pred-pmf P p = (∀ x∈set-pmf p. P x)
by (auto simp: pred-pmf-def)

lemma mapping-of-pmf-pmf-of-list:
assumes

∧
x. x ∈ snd ‘ set xs =⇒ x > 0 sum-list (map snd xs) = 1

shows mapping-of-pmf (pmf-of-list xs) =
Mapping.tabulate (remdups (map fst xs))
(λx. sum-list (map snd (filter (λz. fst z = x) xs)))

proof −
from assms have wf : pmf-of-list-wf xs by (intro pmf-of-list-wfI) force
with assms have set-pmf (pmf-of-list xs) = fst ‘ set xs

by (intro set-pmf-of-list-eq) auto
with wf show ?thesis

by (intro mapping-of-pmfI) (auto simp: lookup-tabulate pmf-pmf-of-list)
qed

lemma mapping-of-pmf-pmf-of-list ′:
assumes pmf-of-list-wf xs
defines xs ′ ≡ filter (λz. snd z 6= 0) xs
shows mapping-of-pmf (pmf-of-list xs) =

Mapping.tabulate (remdups (map fst xs ′))
(λx. sum-list (map snd (filter (λz. fst z = x) xs ′))) (is - = ?rhs)

proof −
have wf : pmf-of-list-wf xs ′ unfolding xs ′-def by (rule pmf-of-list-remove-zeros)

fact
have pos: ∀ x∈snd‘set xs ′. x > 0 using assms(1) unfolding xs ′-def

by (force simp: pmf-of-list-wf-def)
from assms have pmf-of-list xs = pmf-of-list xs ′

unfolding xs ′-def by (subst pmf-of-list-remove-zeros) simp-all
also from wf pos have mapping-of-pmf . . . = ?rhs

by (intro mapping-of-pmf-pmf-of-list) (auto simp: pmf-of-list-wf-def)
finally show ?thesis .

qed

lemma pmf-of-list-wf-code [code]:
pmf-of-list-wf xs ←→ list-all (λz. snd z ≥ 0) xs ∧ sum-list (map snd xs) = 1
by (auto simp add: pmf-of-list-wf-def list-all-def)

lemma pmf-of-list-code [code abstract]:
mapping-of-pmf (pmf-of-list xs) = (

if pmf-of-list-wf xs then
let xs ′ = filter (λz. snd z 6= 0) xs
in Mapping.tabulate (remdups (map fst xs ′))

(λx. sum-list (map snd (filter (λz. fst z = x) xs ′)))

THEORY “PMF-Impl” 341

else
Code.abort (STR ′′Invalid list for pmf-of-list ′′) (λ-. mapping-of-pmf (pmf-of-list

xs)))
using mapping-of-pmf-pmf-of-list ′[of xs] by (simp add: Let-def)

lemma mapping-of-pmf-eq-iff [simp]:
mapping-of-pmf p = mapping-of-pmf q ←→ p = (q :: ′a pmf)

proof (transfer , intro iffI pmf-eqI)
fix p q :: ′a pmf and x :: ′a
assume (λx. if pmf p x = 0 then None else Some (pmf p x)) =

(λx. if pmf q x = 0 then None else Some (pmf q x))
hence (if pmf p x = 0 then None else Some (pmf p x)) =

(if pmf q x = 0 then None else Some (pmf q x)) for x
by (simp add: fun-eq-iff)

from this[of x] show pmf p x = pmf q x by (auto split: if-splits)
qed (simp-all cong: if-cong)

21.2 Code abbreviations for integrals and probabilities

Integrals and probabilities are defined for general measures, so we cannot
give any code equations directly. We can, however, specialise these constants
them to PMFs, give code equations for these specialised constants, and tell
the code generator to unfold the original constants to the specialised ones
whenever possible.
definition pmf-integral where

pmf-integral p f = lebesgue-integral (measure-pmf p) (f :: - ⇒ real)

definition pmf-set-integral where
pmf-set-integral p f A = lebesgue-integral (measure-pmf p) (λx. indicator A x ∗ f

x :: real)

definition pmf-prob where
pmf-prob p A = measure-pmf .prob p A

lemma pmf-prob-compl: pmf-prob p (−A) = 1 − pmf-prob p A
using measure-pmf .prob-compl[of A p] by (simp add: pmf-prob-def Compl-eq-Diff-UNIV)

lemma pmf-integral-pmf-set-integral [code]:
pmf-integral p f = pmf-set-integral p f (set-pmf p)
unfolding pmf-integral-def pmf-set-integral-def
by (intro integral-cong-AE) (simp-all add: AE-measure-pmf-iff)

lemma pmf-prob-pmf-set-integral:
pmf-prob p A = pmf-set-integral p (λ-. 1) A
by (simp add: pmf-prob-def pmf-set-integral-def)

lemma pmf-set-integral-code-alt-finite:
finite A =⇒ pmf-set-integral p f A = (

∑
x∈A. pmf p x ∗ f x)

THEORY “PMF-Impl” 342

unfolding pmf-set-integral-def
by (subst integral-measure-pmf [of A]) (auto simp: indicator-def mult-ac split:

if-splits)

lemma pmf-set-integral-code [code]:
pmf-set-integral p f (set xs) = (

∑
x∈set xs. pmf p x ∗ f x)

by (rule pmf-set-integral-code-alt-finite) simp-all

lemma pmf-prob-code-alt-finite:
finite A =⇒ pmf-prob p A = (

∑
x∈A. pmf p x)

by (simp add: pmf-prob-pmf-set-integral pmf-set-integral-code-alt-finite)

lemma pmf-prob-code [code]:
pmf-prob p (set xs) = (

∑
x∈set xs. pmf p x)

pmf-prob p (List.coset xs) = 1 − (
∑

x∈set xs. pmf p x)
by (simp-all add: pmf-prob-code-alt-finite pmf-prob-compl)

lemma pmf-prob-code-unfold [code-abbrev]: pmf-prob p = measure-pmf .prob p
by (intro ext) (simp add: pmf-prob-def)

lemma pmf-integral-code-unfold [code-abbrev]: pmf-integral p = measure-pmf .expectation
p

by (intro ext) (simp add: pmf-integral-def)

definition pmf-of-alist xs = embed-pmf (λx. case map-of xs x of Some p ⇒ p |
None ⇒ 0)

lemma pmf-of-mapping-Mapping [code-post]:
pmf-of-mapping (Mapping xs) = pmf-of-alist xs

unfolding pmf-of-mapping-def Mapping.lookup-default-def [abs-def] pmf-of-alist-def
by transfer simp-all

instantiation pmf :: (equal) equal
begin

definition equal-pmf p q = (mapping-of-pmf p = mapping-of-pmf (q :: ′a pmf))

instance by standard (simp add: equal-pmf-def)
end

definition single :: ′a ⇒ ′a multiset where
single s = {#s#}

THEORY “Fin-Map” 343

instantiation pmf :: (random) random
begin

context
includes state-combinator-syntax and term-syntax

begin

definition
pmfify :: (′b::typerep multiset × (unit ⇒ Code-Evaluation.term)) ⇒

′b × (unit ⇒ Code-Evaluation.term) ⇒
′b pmf × (unit ⇒ Code-Evaluation.term) where

[code-unfold]: pmfify A x =
Code-Evaluation.valtermify pmf-of-multiset {·}
(Code-Evaluation.valtermify (+) {·} A {·}
(Code-Evaluation.valtermify single {·} x))

definition
Quickcheck-Random.random i =

Quickcheck-Random.random i ◦→ (λA.
Quickcheck-Random.random i ◦→ (λx. Pair (pmfify A x)))

instance ..

end

end

instantiation pmf :: (full-exhaustive) full-exhaustive
begin

definition full-exhaustive-pmf :: (′a pmf × (unit ⇒ term) ⇒ (bool × term list)
option) ⇒ natural ⇒ (bool × term list) option
where

full-exhaustive-pmf f i =
Quickcheck-Exhaustive.full-exhaustive (λA.

Quickcheck-Exhaustive.full-exhaustive (λx. f (pmfify A x)) i) i

instance ..

end

end

22 Finite Maps
theory Fin-Map

imports HOL−Analysis.Finite-Product-Measure HOL−Library.Finite-Map
begin

THEORY “Fin-Map” 344

The fmap type can be instantiated to polish-space, needed for the proof of
projective limit. extensional functions are used for the representation in
order to stay close to the developments of (finite) products PiE and their
sigma-algebra PiM .
type-notation fmap (‹(‹notation=‹infix fmap››- ⇒F /-)› [22 , 21] 21)

unbundle fmap.lifting

22.1 Domain and Application
lift-definition domain::(′i ⇒F

′a) ⇒ ′i set is dom .

lemma finite-domain[simp, intro]: finite (domain P)
by transfer simp

lift-definition proj :: (′i ⇒F
′a) ⇒ ′i ⇒ ′a

(‹(‹indent=1 notation=‹mixfix proj›› ′(- ′)F)› [0] 1000) is
λf x. if x ∈ dom f then the (f x) else undefined .

declare [[coercion proj]]

lemma extensional-proj[simp, intro]: (P)F ∈ extensional (domain P)
by transfer (auto simp: extensional-def)

lemma proj-undefined[simp, intro]: i /∈ domain P =⇒ P i = undefined
using extensional-proj[of P] unfolding extensional-def by auto

lemma finmap-eq-iff : P = Q ←→ (domain P = domain Q ∧ (∀ i∈domain P. P i
= Q i))

apply transfer
apply (safe intro!: ext)
subgoal for P Q x

by (cases x ∈ dom P; cases P x) (auto dest!: bspec[where x=x])
done

22.2 Constructor of Finite Maps
lift-definition finmap-of :: ′i set ⇒ (′i ⇒ ′a) ⇒ (′i ⇒F

′a) is
λI f x. if x ∈ I ∧ finite I then Some (f x) else None
by (simp add: dom-def)

lemma proj-finmap-of [simp]:
assumes finite inds
shows (finmap-of inds f)F = restrict f inds
using assms
by transfer force

lemma domain-finmap-of [simp]:
assumes finite inds

THEORY “Fin-Map” 345

shows domain (finmap-of inds f) = inds
using assms
by transfer (auto split: if-splits)

lemma finmap-of-eq-iff [simp]:
assumes finite i finite j
shows finmap-of i m = finmap-of j n ←→ i = j ∧ (∀ k∈i. m k= n k)
using assms by (auto simp: finmap-eq-iff)

lemma finmap-of-inj-on-extensional-finite:
assumes finite K
assumes S ⊆ extensional K
shows inj-on (finmap-of K) S

proof (rule inj-onI)
fix x y:: ′a ⇒ ′b
assume finmap-of K x = finmap-of K y
hence (finmap-of K x)F = (finmap-of K y)F by simp
moreover
assume x ∈ S y ∈ S hence x ∈ extensional K y ∈ extensional K using assms

by auto
ultimately
show x = y using assms by (simp add: extensional-restrict)

qed

22.3 Product set of Finite Maps

This is Pi for Finite Maps, most of this is copied
definition Pi ′ :: ′i set ⇒ (′i ⇒ ′a set) ⇒ (′i ⇒F

′a) set where
Pi ′ I A = { P. domain P = I ∧ (∀ i. i ∈ I −→ (P)F i ∈ A i) }

syntax
-Pi ′ :: [pttrn, ′a set, ′b set] => (′a => ′b) set
(‹(‹indent=3 notation=‹binder Π ′››Π ′′ -∈-./ -)› 10)

syntax-consts
-Pi ′ == Pi ′

translations
Π ′ x∈A. B == CONST Pi ′ A (λx. B)

22.3.1 Basic Properties of Pi ′

lemma Pi ′-I [intro!]: domain f = A =⇒ (
∧

x. x ∈ A =⇒ f x ∈ B x) =⇒ f ∈ Pi ′
A B

by (simp add: Pi ′-def)

lemma Pi ′-I ′[simp]: domain f = A =⇒ (
∧

x. x ∈ A −→ f x ∈ B x) =⇒ f ∈ Pi ′
A B

by (simp add:Pi ′-def)

lemma Pi ′-mem: f∈ Pi ′ A B =⇒ x ∈ A =⇒ f x ∈ B x

THEORY “Fin-Map” 346

by (simp add: Pi ′-def)

lemma Pi ′-iff : f ∈ Pi ′ I X ←→ domain f = I ∧ (∀ i∈I . f i ∈ X i)
unfolding Pi ′-def by auto

lemma Pi ′E [elim]:
f ∈ Pi ′ A B =⇒ (f x ∈ B x =⇒ domain f = A =⇒ Q) =⇒ (x /∈ A =⇒ Q) =⇒

Q
by(auto simp: Pi ′-def)

lemma in-Pi ′-cong:
domain f = domain g =⇒ (

∧
w. w ∈ A =⇒ f w = g w) =⇒ f ∈ Pi ′ A B ←→ g

∈ Pi ′ A B
by (auto simp: Pi ′-def)

lemma Pi ′-eq-empty[simp]:
assumes finite A shows (Pi ′ A B) = {} ←→ (∃ x∈A. B x = {})
using assms
apply (simp add: Pi ′-def , auto)
apply (drule-tac x = finmap-of A (λu. SOME y. y ∈ B u) in spec, auto)
apply (cut-tac P= %y. y ∈ B i in some-eq-ex, auto)
done

lemma Pi ′-mono: (
∧

x. x ∈ A =⇒ B x ⊆ C x) =⇒ Pi ′ A B ⊆ Pi ′ A C
by (auto simp: Pi ′-def)

lemma Pi-Pi ′: finite A =⇒ (PiE A B) = proj ‘ Pi ′ A B
apply (auto simp: Pi ′-def Pi-def extensional-def)
apply (rule-tac x = finmap-of A (restrict x A) in image-eqI)
apply auto
done

22.4 Topological Space of Finite Maps
instantiation fmap :: (type, topological-space) topological-space
begin

definition open-fmap :: (′a ⇒F
′b) set ⇒ bool where

[code del]: open-fmap = generate-topology {Pi ′ a b|a b. ∀ i∈a. open (b i)}

lemma open-Pi ′I : (
∧

i. i ∈ I =⇒ open (A i)) =⇒ open (Pi ′ I A)
by (auto intro: generate-topology.Basis simp: open-fmap-def)

instance using topological-space-generate-topology
by intro-classes (auto simp: open-fmap-def class.topological-space-def)

end

lemma open-restricted-space:

THEORY “Fin-Map” 347

shows open {m. P (domain m)}
proof −

have {m. P (domain m)} = (
⋃

i ∈ Collect P. {m. domain m = i}) by auto
also have open . . .
proof (rule, safe, cases)

fix i:: ′a set
assume finite i
hence {m. domain m = i} = Pi ′ i (λ-. UNIV) by (auto simp: Pi ′-def)
also have open . . . by (auto intro: open-Pi ′I simp: ‹finite i›)
finally show open {m. domain m = i} .

next
fix i:: ′a set
assume ¬ finite i hence {m. domain m = i} = {} by auto
also have open . . . by simp
finally show open {m. domain m = i} .

qed
finally show ?thesis .

qed

lemma closed-restricted-space:
shows closed {m. P (domain m)}
using open-restricted-space[of λx. ¬ P x]
unfolding closed-def by (rule back-subst) auto

lemma tendsto-proj: ((λx. x) −−−→ a) F =⇒ ((λx. (x)F i) −−−→ (a)F i) F
unfolding tendsto-def

proof safe
fix S :: ′b set
let ?S = Pi ′ (domain a) (λx. if x = i then S else UNIV)
assume open S hence open ?S by (auto intro!: open-Pi ′I)
moreover assume ∀S . open S −→ a ∈ S −→ eventually (λx. x ∈ S) F a i ∈ S
ultimately have eventually (λx. x ∈ ?S) F by auto
thus eventually (λx. (x)F i ∈ S) F

by eventually-elim (insert ‹a i ∈ S›, force simp: Pi ′-iff split: if-split-asm)
qed

lemma continuous-proj:
shows continuous-on s (λx. (x)F i)
unfolding continuous-on-def by (safe intro!: tendsto-proj tendsto-ident-at)

instance fmap :: (type, first-countable-topology) first-countable-topology
proof

fix x:: ′a⇒F
′b

have ∀ i. ∃A. countable A ∧ (∀ a∈A. x i ∈ a) ∧ (∀ a∈A. open a) ∧
(∀S . open S ∧ x i ∈ S −→ (∃ a∈A. a ⊆ S)) ∧ (∀ a b. a ∈ A −→ b ∈ A −→ a

∩ b ∈ A) (is ∀ i. ?th i)
proof

fix i from first-countable-basis-Int-stableE [of x i]
obtain A where

THEORY “Fin-Map” 348

countable A∧
C . C ∈ A =⇒ (x)F i ∈ C∧
C . C ∈ A =⇒ open C∧
S . open S =⇒ (x)F i ∈ S =⇒ ∃A∈A. A ⊆ S∧
C D. C ∈ A =⇒ D ∈ A =⇒ C ∩ D ∈ A

by auto
thus ?th i by (intro exI [where x=A]) simp

qed
then obtain A

where A: ∀ i. countable (A i) ∧ Ball (A i) ((∈) ((x)F i)) ∧ Ball (A i) open ∧
(∀S . open S ∧ (x)F i ∈ S −→ (∃ a∈A i. a ⊆ S)) ∧ (∀ a b. a ∈ A i −→ b ∈

A i −→ a ∩ b ∈ A i)
by (auto simp: choice-iff)

hence open-sub:
∧

i S . i∈domain x =⇒ open (S i) =⇒ x i∈(S i) =⇒ (∃ a∈A i.
a⊆(S i)) by auto

have A-notempty:
∧

i. i ∈ domain x =⇒ A i 6= {} using open-sub[of - λ-. UNIV]
by auto

let ?A = (λf . Pi ′ (domain x) f) ‘ (PiE (domain x) A)
show ∃A::nat ⇒ (′a⇒F

′b) set. (∀ i. x ∈ (A i) ∧ open (A i)) ∧ (∀S . open S ∧
x ∈ S −→ (∃ i. A i ⊆ S))

proof (rule first-countableI [of ?A], safe)
show countable ?A using A by (simp add: countable-PiE)

next
fix S ::(′a ⇒F

′b) set assume open S x ∈ S
thus ∃ a∈?A. a ⊆ S unfolding open-fmap-def
proof (induct rule: generate-topology.induct)

case UNIV thus ?case by (auto simp add: ex-in-conv PiE-eq-empty-iff
A-notempty)

next
case (Int a b)
then obtain f g where

f ∈ PiE (domain x) A Pi ′ (domain x) f ⊆ a g ∈ PiE (domain x) A Pi ′
(domain x) g ⊆ b

by auto
thus ?case using A

by (auto simp: Pi ′-iff PiE-iff extensional-def Int-stable-def
intro!: bexI [where x=λi. f i ∩ g i])

next
case (UN B)
then obtain b where x ∈ b b ∈ B by auto
hence ∃ a∈?A. a ⊆ b using UN by simp
thus ?case using ‹b ∈ B› by (metis Sup-upper2)

next
case (Basis s)
then obtain a b where xs: x∈ Pi ′ a b s = Pi ′ a b

∧
i. i∈a =⇒ open (b i)

by auto
have ∀ i. ∃ a. (i ∈ domain x ∧ open (b i) ∧ (x)F i ∈ b i) −→ (a∈A i ∧ a ⊆

b i)
using open-sub[of - b] by auto

THEORY “Fin-Map” 349

then obtain b ′

where
∧

i. i ∈ domain x =⇒ open (b i) =⇒ (x)F i ∈ b i =⇒ (b ′ i ∈A i ∧
b ′ i ⊆ b i)

unfolding choice-iff by auto
with xs have

∧
i. i ∈ a =⇒ (b ′ i ∈A i ∧ b ′ i ⊆ b i) Pi ′ a b ′ ⊆ Pi ′ a b

by (auto simp: Pi ′-iff intro!: Pi ′-mono)
thus ?case using xs

by (intro bexI [where x=Pi ′ a b ′])
(auto simp: Pi ′-iff intro!: image-eqI [where x=restrict b ′ (domain x)])

qed
qed (insert A,auto simp: PiE-iff intro!: open-Pi ′I)

qed

22.5 Metric Space of Finite Maps
instantiation fmap :: (type, metric-space) dist
begin

definition dist-fmap where
dist P Q = Max (range (λi. dist ((P)F i) ((Q)F i))) + (if domain P = domain

Q then 0 else 1)

instance ..
end

instantiation fmap :: (type, metric-space) uniformity-dist
begin

definition [code del]:
(uniformity :: ((′a, ′b) fmap × (′a ⇒F

′b)) filter) =
(INF e∈{0 <..}. principal {(x, y). dist x y < e})

instance
by standard (rule uniformity-fmap-def)

end

declare uniformity-Abort[where ′a=(′a ⇒F
′b::metric-space), code]

instantiation fmap :: (type, metric-space) metric-space
begin

lemma finite-proj-image ′: x /∈ domain P =⇒ finite ((P)F ‘ S)
by (rule finite-subset[of - proj P ‘ (domain P ∩ S ∪ {x})]) auto

lemma finite-proj-image: finite ((P)F ‘ S)
by (cases ∃ x. x /∈ domain P) (auto intro: finite-proj-image ′ finite-subset[where

B=domain P])

lemma finite-proj-diag: finite ((λi. d ((P)F i) ((Q)F i)) ‘ S)

THEORY “Fin-Map” 350

proof −
have (λi. d ((P)F i) ((Q)F i)) ‘ S = (λ(i, j). d i j) ‘ ((λi. ((P)F i, (Q)F i)) ‘

S) by auto
moreover have ((λi. ((P)F i, (Q)F i)) ‘ S) ⊆ (λi. (P)F i) ‘ S × (λi. (Q)F i)

‘ S by auto
moreover have finite . . . using finite-proj-image[of P S] finite-proj-image[of Q

S]
by (intro finite-cartesian-product) simp-all

ultimately show ?thesis by (simp add: finite-subset)
qed

lemma dist-le-1-imp-domain-eq:
shows dist P Q < 1 =⇒ domain P = domain Q
by (simp add: dist-fmap-def finite-proj-diag split: if-split-asm)

lemma dist-proj:
shows dist ((x)F i) ((y)F i) ≤ dist x y

proof −
have dist (x i) (y i) ≤ Max (range (λi. dist (x i) (y i)))

by (simp add: Max-ge-iff finite-proj-diag)
also have . . . ≤ dist x y by (simp add: dist-fmap-def)
finally show ?thesis .

qed

lemma dist-finmap-lessI :
assumes domain P = domain Q
assumes 0 < e
assumes

∧
i. i ∈ domain P =⇒ dist (P i) (Q i) < e

shows dist P Q < e
proof −

have dist P Q = Max (range (λi. dist (P i) (Q i)))
using assms by (simp add: dist-fmap-def finite-proj-diag)

also have . . . < e
proof (subst Max-less-iff , safe)

fix i
show dist ((P)F i) ((Q)F i) < e using assms

by (cases i ∈ domain P) simp-all
qed (simp add: finite-proj-diag)
finally show ?thesis .

qed

instance
proof

fix S ::(′a ⇒F
′b) set

have ∗: open S = (∀ x∈S . ∃ e>0 . ∀ y. dist y x < e −→ y ∈ S) (is - = ?od)
proof

assume open S
thus ?od

unfolding open-fmap-def

THEORY “Fin-Map” 351

proof (induct rule: generate-topology.induct)
case UNIV thus ?case by (auto intro: zero-less-one)

next
case (Int a b)
show ?case
proof safe

fix x assume x: x ∈ a x ∈ b
with Int x obtain e1 e2 where

e1>0 ∀ y. dist y x < e1 −→ y ∈ a e2>0 ∀ y. dist y x < e2 −→ y ∈ b by
force

thus ∃ e>0 . ∀ y. dist y x < e −→ y ∈ a ∩ b
by (auto intro!: exI [where x=min e1 e2])

qed
next

case (UN K)
show ?case
proof safe

fix x X assume x ∈ X and X : X ∈ K
with UN obtain e where e>0

∧
y. dist y x < e −→ y ∈ X by force

with X show ∃ e>0 . ∀ y. dist y x < e −→ y ∈
⋃

K by auto
qed

next
case (Basis s) then obtain a b where s: s = Pi ′ a b and b:

∧
i. i∈a =⇒

open (b i) by auto
show ?case
proof safe

fix x assume x ∈ s
hence [simp]: finite a and a-dom: a = domain x using s by (auto simp:

Pi ′-iff)
obtain es where es: ∀ i ∈ a. es i > 0 ∧ (∀ y. dist y (proj x i) < es i −→ y

∈ b i)
using b ‹x ∈ s› by atomize-elim (intro bchoice, auto simp: open-dist s)

hence in-b:
∧

i y. i ∈ a =⇒ dist y (proj x i) < es i =⇒ y ∈ b i by auto
show ∃ e>0 . ∀ y. dist y x < e −→ y ∈ s
proof (cases, rule, safe)

assume a 6= {}
show 0 < min 1 (Min (es ‘ a)) using es by (auto simp: ‹a 6= {}›)
fix y assume d: dist y x < min 1 (Min (es ‘ a))
show y ∈ s unfolding s
proof

show domain y = a using d s ‹a 6= {}› by (auto simp: dist-le-1-imp-domain-eq
a-dom)

fix i assume i: i ∈ a
hence dist ((y)F i) ((x)F i) < es i using d
by (auto simp: dist-fmap-def ‹a 6= {}› intro!: le-less-trans[OF dist-proj])
with i show y i ∈ b i by (rule in-b)

qed
next

assume ¬a 6= {}

THEORY “Fin-Map” 352

thus ∃ e>0 . ∀ y. dist y x < e −→ y ∈ s
using s ‹x ∈ s› by (auto simp: Pi ′-def dist-le-1-imp-domain-eq intro!:

exI [where x=1])
qed

qed
qed

next
assume ∀ x∈S . ∃ e>0 . ∀ y. dist y x < e −→ y ∈ S
then obtain e where e-pos:

∧
x. x ∈ S =⇒ e x > 0 and

e-in:
∧

x y . x ∈ S =⇒ dist y x < e x =⇒ y ∈ S
unfolding bchoice-iff
by auto

have S-eq: S =
⋃
{Pi ′ a b| a b. ∃ x∈S . domain x = a ∧ b = (λi. ball (x i) (e

x))}
proof safe

fix x assume x ∈ S
thus x ∈

⋃
{Pi ′ a b| a b. ∃ x∈S . domain x = a ∧ b = (λi. ball (x i) (e x))}

using e-pos by (auto intro!: exI [where x=Pi ′ (domain x) (λi. ball (x i) (e
x))])

next
fix x y
assume y ∈ S
moreover
assume x ∈ (Π ′ i∈domain y. ball (y i) (e y))
hence dist x y < e y using e-pos ‹y ∈ S›

by (auto simp: dist-fmap-def Pi ′-iff finite-proj-diag dist-commute)
ultimately show x ∈ S by (rule e-in)

qed
also have open . . .

unfolding open-fmap-def
by (intro generate-topology.UN) (auto intro: generate-topology.Basis)

finally show open S .
qed
show open S = (∀ x∈S . ∀ F (x ′, y) in uniformity. x ′ = x −→ y ∈ S)

unfolding ∗ eventually-uniformity-metric
by (simp del: split-paired-All add: dist-fmap-def dist-commute eq-commute)

next
fix P Q:: ′a ⇒F

′b
have Max-eq-iff :

∧
A m. finite A =⇒ A 6= {} =⇒ (Max A = m) = (m ∈ A ∧

(∀ a∈A. a ≤ m))
by (auto intro: Max-in Max-eqI)

show dist P Q = 0 ←→ P = Q
by (auto simp: finmap-eq-iff dist-fmap-def Max-ge-iff finite-proj-diag Max-eq-iff

add-nonneg-eq-0-iff
intro!: Max-eqI image-eqI [where x=undefined])

next
fix P Q R:: ′a ⇒F

′b
let ?dists = λP Q i. dist ((P)F i) ((Q)F i)
let ?dpq = ?dists P Q and ?dpr = ?dists P R and ?dqr = ?dists Q R

THEORY “Fin-Map” 353

let ?dom = λP Q. (if domain P = domain Q then 0 else 1 ::real)
have dist P Q = Max (range ?dpq) + ?dom P Q

by (simp add: dist-fmap-def)
also obtain t where t ∈ range ?dpq t = Max (range ?dpq) by (simp add:

finite-proj-diag)
then obtain i where Max (range ?dpq) = ?dpq i by auto
also have ?dpq i ≤ ?dpr i + ?dqr i by (rule dist-triangle2)
also have ?dpr i ≤ Max (range ?dpr) by (simp add: finite-proj-diag)
also have ?dqr i ≤ Max (range ?dqr) by (simp add: finite-proj-diag)
also have ?dom P Q ≤ ?dom P R + ?dom Q R by simp
finally show dist P Q ≤ dist P R + dist Q R by (simp add: dist-fmap-def

ac-simps)
qed

end

22.6 Complete Space of Finite Maps
lemma tendsto-finmap:

fixes f ::nat ⇒ (′i ⇒F (′a::metric-space))
assumes ind-f :

∧
n. domain (f n) = domain g

assumes proj-g:
∧

i. i ∈ domain g =⇒ (λn. (f n) i) −−−−→ g i
shows f −−−−→ g
unfolding tendsto-iff

proof safe
fix e::real assume 0 < e
let ?dists = λx i. dist ((f x)F i) ((g)F i)
have eventually (λx. ∀ i∈domain g. ?dists x i < e) sequentially

using finite-domain[of g] proj-g
proof induct

case (insert i G)
with ‹0 < e› have eventually (λx. ?dists x i < e) sequentially by (auto simp

add: tendsto-iff)
moreover

from insert have eventually (λx. ∀ i∈G. dist ((f x)F i) ((g)F i) < e) sequentially
by simp

ultimately show ?case by eventually-elim auto
qed simp
thus eventually (λx. dist (f x) g < e) sequentially

by eventually-elim (auto simp add: dist-fmap-def finite-proj-diag ind-f ‹0 < e›)
qed

instance fmap :: (type, complete-space) complete-space
proof

fix P::nat ⇒ ′a ⇒F
′b

assume Cauchy P
then obtain Nd where Nd:

∧
n. n ≥ Nd =⇒ dist (P n) (P Nd) < 1

by (force simp: Cauchy-altdef2)
define d where d = domain (P Nd)

THEORY “Fin-Map” 354

with Nd have dim:
∧

n. n ≥ Nd =⇒ domain (P n) = d using dist-le-1-imp-domain-eq
by auto

have [simp]: finite d unfolding d-def by simp
define p where p i n = P n i for i n
define q where q i = lim (p i) for i
define Q where Q = finmap-of d q
have q:

∧
i. i ∈ d =⇒ q i = Q i by (auto simp add: Q-def Abs-fmap-inverse)

{
fix i assume i ∈ d
have Cauchy (p i) unfolding Cauchy-altdef2 p-def
proof safe

fix e::real assume 0 < e
with ‹Cauchy P› obtain N where N :

∧
n. n≥N =⇒ dist (P n) (P N) <

min e 1
by (force simp: Cauchy-altdef2 min-def)

hence
∧

n. n ≥ N =⇒ domain (P n) = domain (P N) using dist-le-1-imp-domain-eq
by auto

with dim have dim:
∧

n. n ≥ N =⇒ domain (P n) = d by (metis nat-le-linear)
show ∃N . ∀n≥N . dist ((P n) i) ((P N) i) < e
proof (safe intro!: exI [where x=N])

fix n assume N ≤ n have N ≤ N by simp
have dist ((P n) i) ((P N) i) ≤ dist (P n) (P N)

using dim[OF ‹N ≤ n›] dim[OF ‹N ≤ N ›] ‹i ∈ d›
by (auto intro!: dist-proj)

also have . . . < e using N [OF ‹N ≤ n›] by simp
finally show dist ((P n) i) ((P N) i) < e .

qed
qed
hence convergent (p i) by (metis Cauchy-convergent-iff)
hence p i −−−−→ q i unfolding q-def convergent-def by (metis limI)

} note p = this
have P −−−−→ Q
proof (rule metric-LIMSEQ-I)

fix e::real assume 0 < e
have ∃ni. ∀ i∈d. ∀n≥ni i. dist (p i n) (q i) < e
proof (safe intro!: bchoice)

fix i assume i ∈ d
from p[OF ‹i ∈ d›, THEN metric-LIMSEQ-D, OF ‹0 < e›]
show ∃no. ∀n≥no. dist (p i n) (q i) < e .

qed
then obtain ni where ni: ∀ i∈d. ∀n≥ni i. dist (p i n) (q i) < e ..
define N where N = max Nd (Max (ni ‘ d))
show ∃N . ∀n≥N . dist (P n) Q < e
proof (safe intro!: exI [where x=N])

fix n assume N ≤ n
hence dom: domain (P n) = d domain Q = d domain (P n) = domain Q

using dim by (simp-all add: N-def Q-def dim-def Abs-fmap-inverse)
show dist (P n) Q < e
proof (rule dist-finmap-lessI [OF dom(3) ‹0 < e›])

THEORY “Fin-Map” 355

fix i
assume i ∈ domain (P n)
hence ni i ≤ Max (ni ‘ d) using dom by simp
also have . . . ≤ N by (simp add: N-def)
finally show dist ((P n)F i) ((Q)F i) < e using ni ‹i ∈ domain (P n)› ‹N

≤ n› dom
by (auto simp: p-def q N-def less-imp-le)

qed
qed

qed
thus convergent P by (auto simp: convergent-def)

qed

22.7 Second Countable Space of Finite Maps
instantiation fmap :: (countable, second-countable-topology) second-countable-topology
begin

definition basis-proj:: ′b set set
where basis-proj = (SOME B. countable B ∧ topological-basis B)

lemma countable-basis-proj: countable basis-proj and basis-proj: topological-basis
basis-proj

unfolding basis-proj-def by (intro is-basis countable-basis)+

definition basis-finmap::(′a ⇒F
′b) set set

where basis-finmap = {Pi ′ I S |I S . finite I ∧ (∀ i ∈ I . S i ∈ basis-proj)}

lemma in-basis-finmapI :
assumes finite I assumes

∧
i. i ∈ I =⇒ S i ∈ basis-proj

shows Pi ′ I S ∈ basis-finmap
using assms unfolding basis-finmap-def by auto

lemma basis-finmap-eq:
assumes basis-proj 6= {}
shows basis-finmap = (λf . Pi ′ (domain f) (λi. from-nat-into basis-proj ((f)F

i))) ‘
(UNIV ::(′a ⇒F nat) set) (is - = ?f ‘ -)

unfolding basis-finmap-def
proof safe

fix I :: ′a set and S :: ′a ⇒ ′b set
assume finite I ∀ i∈I . S i ∈ basis-proj
hence Pi ′ I S = ?f (finmap-of I (λx. to-nat-on basis-proj (S x)))

by (force simp: Pi ′-def countable-basis-proj)
thus Pi ′ I S ∈ range ?f by simp

next
fix x and f :: ′a ⇒F nat
show ∃ I S . (Π ′ i∈domain f . from-nat-into basis-proj ((f)F i)) = Pi ′ I S ∧

finite I ∧ (∀ i∈I . S i ∈ basis-proj)

THEORY “Fin-Map” 356

using assms by (auto intro: from-nat-into)
qed

lemma basis-finmap-eq-empty: basis-proj = {} =⇒ basis-finmap = {Pi ′ {} unde-
fined}

by (auto simp: Pi ′-iff basis-finmap-def)

lemma countable-basis-finmap: countable basis-finmap
by (cases basis-proj = {}) (auto simp: basis-finmap-eq basis-finmap-eq-empty)

lemma finmap-topological-basis:
topological-basis basis-finmap

proof (subst topological-basis-iff , safe)
fix B ′ assume B ′ ∈ basis-finmap
thus open B ′

by (auto intro!: open-Pi ′I topological-basis-open[OF basis-proj]
simp: topological-basis-def basis-finmap-def Let-def)

next
fix O ′::(′a ⇒F

′b) set and x
assume O ′: open O ′ x ∈ O ′

then obtain a where a:
x ∈ Pi ′ (domain x) a Pi ′ (domain x) a ⊆ O ′ ∧i. i∈domain x =⇒ open (a i)
unfolding open-fmap-def

proof (atomize-elim, induct rule: generate-topology.induct)
case (Int a b)
let ?p=λa f . x ∈ Pi ′ (domain x) f ∧ Pi ′ (domain x) f ⊆ a ∧ (∀ i. i ∈ domain

x −→ open (f i))
from Int obtain f g where ?p a f ?p b g by auto
thus ?case by (force intro!: exI [where x=λi. f i ∩ g i] simp: Pi ′-def)

next
case (UN k)
then obtain kk a where x ∈ kk kk ∈ k x ∈ Pi ′ (domain x) a Pi ′ (domain x)

a ⊆ kk∧
i. i∈domain x =⇒ open (a i)

by force
thus ?case by blast

qed (auto simp: Pi ′-def)
have ∃B.
(∀ i∈domain x. x i ∈ B i ∧ B i ⊆ a i ∧ B i ∈ basis-proj)

proof (rule bchoice, safe)
fix i assume i ∈ domain x
hence open (a i) x i ∈ a i using a by auto
from topological-basisE [OF basis-proj this] obtain b ′

where b ′ ∈ basis-proj (x)F i ∈ b ′ b ′ ⊆ a i
by blast

thus ∃ y. x i ∈ y ∧ y ⊆ a i ∧ y ∈ basis-proj by auto
qed
then obtain B where B: ∀ i∈domain x. (x)F i ∈ B i ∧ B i ⊆ a i ∧ B i ∈

basis-proj

THEORY “Fin-Map” 357

by auto
define B ′ where B ′ = Pi ′ (domain x) (λi. (B i):: ′b set)
have B ′ ⊆ Pi ′ (domain x) a using B by (auto intro!: Pi ′-mono simp: B ′-def)
also note ‹. . . ⊆ O ′›
finally show ∃B ′∈basis-finmap. x ∈ B ′ ∧ B ′ ⊆ O ′ using B

by (auto intro!: bexI [where x=B ′] Pi ′-mono in-basis-finmapI simp: B ′-def)
qed

lemma range-enum-basis-finmap-imp-open:
assumes x ∈ basis-finmap
shows open x
using finmap-topological-basis assms by (auto simp: topological-basis-def)

instance proof qed (blast intro: finmap-topological-basis countable-basis-finmap
topological-basis-imp-subbasis)

end

22.8 Polish Space of Finite Maps
instance fmap :: (countable, polish-space) polish-space proof qed

22.9 Product Measurable Space of Finite Maps
definition PiF I M ≡

sigma (
⋃

J ∈ I . (Π ′ j∈J . space (M j))) {(Π ′ j∈J . X j) |X J . J ∈ I ∧ X ∈ (Π
j∈J . sets (M j))}

abbreviation
PiF I M ≡ PiF I M

syntax
-PiF :: pttrn ⇒ ′i set ⇒ ′a measure ⇒ (′i => ′a) measure
(‹(‹indent=3 notation=‹binder ΠF ››ΠF -∈-./ -)› 10)

syntax-consts
-PiF == PiF

translations
ΠF x∈I . M == CONST PiF I (%x. M)

lemma PiF-gen-subset: {(Π ′ j∈J . X j) |X J . J ∈ I ∧ X ∈ (Π j∈J . sets (M j))}
⊆

Pow (
⋃

J ∈ I . (Π ′ j∈J . space (M j)))
by (auto simp: Pi ′-def) (blast dest: sets.sets-into-space)

lemma space-PiF : space (PiF I M) = (
⋃

J ∈ I . (Π ′ j∈J . space (M j)))
unfolding PiF-def using PiF-gen-subset by (rule space-measure-of)

lemma sets-PiF :
sets (PiF I M) = sigma-sets (

⋃
J ∈ I . (Π ′ j∈J . space (M j)))

{(Π ′ j∈J . X j) |X J . J ∈ I ∧ X ∈ (Π j∈J . sets (M j))}

THEORY “Fin-Map” 358

unfolding PiF-def using PiF-gen-subset by (rule sets-measure-of)

lemma sets-PiF-singleton:
sets (PiF {I} M) = sigma-sets (Π ′ j∈I . space (M j))
{(Π ′ j∈I . X j) |X . X ∈ (Π j∈I . sets (M j))}

unfolding sets-PiF by simp

lemma in-sets-PiFI :
assumes X = (Pi ′ J S) J ∈ I

∧
i. i∈J =⇒ S i ∈ sets (M i)

shows X ∈ sets (PiF I M)
unfolding sets-PiF
using assms by blast

lemma product-in-sets-PiFI :
assumes J ∈ I

∧
i. i∈J =⇒ S i ∈ sets (M i)

shows (Pi ′ J S) ∈ sets (PiF I M)
unfolding sets-PiF
using assms by blast

lemma singleton-space-subset-in-sets:
fixes J
assumes J ∈ I
assumes finite J
shows space (PiF {J} M) ∈ sets (PiF I M)
using assms
by (intro in-sets-PiFI [where J=J and S=λi. space (M i)])

(auto simp: product-def space-PiF)

lemma singleton-subspace-set-in-sets:
assumes A: A ∈ sets (PiF {J} M)
assumes finite J
assumes J ∈ I
shows A ∈ sets (PiF I M)
using A[unfolded sets-PiF]
apply (induct A)
unfolding sets-PiF [symmetric] unfolding space-PiF [symmetric]
using assms
by (auto intro: in-sets-PiFI intro!: singleton-space-subset-in-sets)

lemma finite-measurable-singletonI :
assumes finite I
assumes

∧
J . J ∈ I =⇒ finite J

assumes MN :
∧

J . J ∈ I =⇒ A ∈ measurable (PiF {J} M) N
shows A ∈ measurable (PiF I M) N
unfolding measurable-def

proof safe
fix y assume y ∈ sets N
have A −‘ y ∩ space (PiF I M) = (

⋃
J∈I . A −‘ y ∩ space (PiF {J} M))

by (auto simp: space-PiF)

THEORY “Fin-Map” 359

also have . . . ∈ sets (PiF I M)
proof (rule sets.finite-UN)

show finite I by fact
fix J assume J ∈ I
with assms have finite J by simp
show A −‘ y ∩ space (PiF {J} M) ∈ sets (PiF I M)

by (rule singleton-subspace-set-in-sets[OF measurable-sets[OF assms(3)]])
fact+

qed
finally show A −‘ y ∩ space (PiF I M) ∈ sets (PiF I M) .

next
fix x assume x ∈ space (PiF I M) thus A x ∈ space N

using MN [of domain x]
by (auto simp: space-PiF measurable-space Pi ′-def)

qed

lemma countable-finite-comprehension:
fixes f :: ′a::countable set ⇒ -
assumes

∧
s. P s =⇒ finite s

assumes
∧

s. P s =⇒ f s ∈ sets M
shows

⋃
{f s|s. P s} ∈ sets M

proof −
have

⋃
{f s|s. P s} = (

⋃
n::nat. let s = set (from-nat n) in if P s then f s else

{})
proof safe

fix x X s assume ∗: x ∈ f s P s
with assms obtain l where s = set l using finite-list by blast
with ∗ show x ∈ (

⋃
n. let s = set (from-nat n) in if P s then f s else {}) using

‹P s›
by (auto intro!: exI [where x=to-nat l])

next
fix x n assume x ∈ (let s = set (from-nat n) in if P s then f s else {})
thus x ∈

⋃
{f s|s. P s} using assms by (auto simp: Let-def split: if-split-asm)

qed
hence

⋃
{f s|s. P s} = (

⋃
n. let s = set (from-nat n) in if P s then f s else {})

by simp
also have . . . ∈ sets M using assms by (auto simp: Let-def)
finally show ?thesis .

qed

lemma space-subset-in-sets:
fixes J :: ′a::countable set set
assumes J ⊆ I
assumes

∧
j. j ∈ J =⇒ finite j

shows space (PiF J M) ∈ sets (PiF I M)
proof −

have space (PiF J M) =
⋃
{space (PiF {j} M)|j. j ∈ J}

unfolding space-PiF by blast
also have . . . ∈ sets (PiF I M) using assms

THEORY “Fin-Map” 360

by (intro countable-finite-comprehension) (auto simp: singleton-space-subset-in-sets)
finally show ?thesis .

qed

lemma subspace-set-in-sets:
fixes J :: ′a::countable set set
assumes A: A ∈ sets (PiF J M)
assumes J ⊆ I
assumes

∧
j. j ∈ J =⇒ finite j

shows A ∈ sets (PiF I M)
using A[unfolded sets-PiF]
apply (induct A)
unfolding sets-PiF [symmetric] unfolding space-PiF [symmetric]
using assms
by (auto intro: in-sets-PiFI intro!: space-subset-in-sets)

lemma countable-measurable-PiFI :
fixes I :: ′a::countable set set
assumes MN :

∧
J . J ∈ I =⇒ finite J =⇒ A ∈ measurable (PiF {J} M) N

shows A ∈ measurable (PiF I M) N
unfolding measurable-def

proof safe
fix y assume y ∈ sets N
have A −‘ y = (

⋃
{A −‘ y ∩ {x. domain x = J}|J . finite J}) by auto

{ fix x:: ′a ⇒F
′b

from finite-list[of domain x] obtain xs where set xs = domain x by auto
hence ∃n. domain x = set (from-nat n)

by (intro exI [where x=to-nat xs]) auto }
hence A −‘ y ∩ space (PiF I M) = (

⋃
n. A −‘ y ∩ space (PiF ({set (from-nat

n)}∩I) M))
by (auto simp: space-PiF Pi ′-def)

also have . . . ∈ sets (PiF I M)
apply (intro sets.Int sets.countable-nat-UN subsetI , safe)
apply (case-tac set (from-nat i) ∈ I)
apply simp-all
apply (rule singleton-subspace-set-in-sets[OF measurable-sets[OF MN]])
using assms ‹y ∈ sets N ›
apply (auto simp: space-PiF)
done

finally show A −‘ y ∩ space (PiF I M) ∈ sets (PiF I M) .
next

fix x assume x ∈ space (PiF I M) thus A x ∈ space N
using MN [of domain x] by (auto simp: space-PiF measurable-space Pi ′-def)

qed

lemma measurable-PiF :
assumes f :

∧
x. x ∈ space N =⇒ domain (f x) ∈ I ∧ (∀ i∈domain (f x). (f x) i

∈ space (M i))
assumes S :

∧
J S . J ∈ I =⇒ (

∧
i. i ∈ J =⇒ S i ∈ sets (M i)) =⇒

THEORY “Fin-Map” 361

f −‘ (Pi ′ J S) ∩ space N ∈ sets N
shows f ∈ measurable N (PiF I M)
unfolding PiF-def
using PiF-gen-subset
apply (rule measurable-measure-of)
using f apply force
apply (insert S , auto)
done

lemma restrict-sets-measurable:
assumes A: A ∈ sets (PiF I M) and J ⊆ I
shows A ∩ {m. domain m ∈ J} ∈ sets (PiF J M)
using A[unfolded sets-PiF]

proof (induct A)
case (Basic a)
then obtain K S where S : a = Pi ′ K S K ∈ I (∀ i∈K . S i ∈ sets (M i))

by auto
show ?case
proof cases

assume K ∈ J
hence a ∩ {m. domain m ∈ J} ∈ {Pi ′ K X |X K . K ∈ J ∧ X ∈ (Π j∈K . sets

(M j))} using S
by (auto intro!: exI [where x=K] exI [where x=S] simp: Pi ′-def)

also have . . . ⊆ sets (PiF J M) unfolding sets-PiF by auto
finally show ?thesis .

next
assume K /∈ J
hence a ∩ {m. domain m ∈ J} = {} using S by (auto simp: Pi ′-def)
also have . . . ∈ sets (PiF J M) by simp
finally show ?thesis .

qed
next

case (Union a)
have

⋃
(a ‘ UNIV) ∩ {m. domain m ∈ J} = (

⋃
i. (a i ∩ {m. domain m ∈ J}))

by simp
also have . . . ∈ sets (PiF J M) using Union by (intro sets.countable-nat-UN)

auto
finally show ?case .

next
case (Compl a)
have (space (PiF I M) − a) ∩ {m. domain m ∈ J} = (space (PiF J M) − (a ∩
{m. domain m ∈ J}))

using ‹J ⊆ I › by (auto simp: space-PiF Pi ′-def)
also have . . . ∈ sets (PiF J M) using Compl by auto
finally show ?case by (simp add: space-PiF)

qed simp

lemma measurable-finmap-of :
assumes f :

∧
i. (∃ x ∈ space N . i ∈ J x) =⇒ (λx. f x i) ∈ measurable N (M i)

THEORY “Fin-Map” 362

assumes J :
∧

x. x ∈ space N =⇒ J x ∈ I
∧

x. x ∈ space N =⇒ finite (J x)
assumes JN :

∧
S . {x. J x = S} ∩ space N ∈ sets N

shows (λx. finmap-of (J x) (f x)) ∈ measurable N (PiF I M)
proof (rule measurable-PiF)

fix x assume x ∈ space N
with J [of x] measurable-space[OF f]
show domain (finmap-of (J x) (f x)) ∈ I ∧

(∀ i∈domain (finmap-of (J x) (f x)). (finmap-of (J x) (f x)) i ∈ space (M
i))

by auto
next

fix K S assume K ∈ I and ∗:
∧

i. i ∈ K =⇒ S i ∈ sets (M i)
with J have eq: (λx. finmap-of (J x) (f x)) −‘ Pi ′ K S ∩ space N =
(if ∃ x ∈ space N . K = J x ∧ finite K then if K = {} then {x ∈ space N . J x

= K}
else (

⋂
i∈K . (λx. f x i) −‘ S i ∩ {x ∈ space N . J x = K}) else {})

by (auto simp: Pi ′-def)
have r : {x ∈ space N . J x = K} = space N ∩ ({x. J x = K} ∩ space N) by

auto
show (λx. finmap-of (J x) (f x)) −‘ Pi ′ K S ∩ space N ∈ sets N

unfolding eq r
apply (simp del: INT-simps add:)
apply (intro conjI impI sets.finite-INT JN sets.Int[OF sets.top])
apply simp apply assumption
apply (subst Int-assoc[symmetric])
apply (rule sets.Int)
apply (intro measurable-sets[OF f] ∗) apply force apply assumption
apply (intro JN)
done

qed

lemma measurable-PiM-finmap-of :
assumes finite J
shows finmap-of J ∈ measurable (PiM J M) (PiF {J} M)
apply (rule measurable-finmap-of)
apply (rule measurable-component-singleton)
apply simp
apply rule
apply (rule ‹finite J ›)
apply simp
done

lemma proj-measurable-singleton:
assumes A ∈ sets (M i)
shows (λx. (x)F i) −‘ A ∩ space (PiF {I} M) ∈ sets (PiF {I} M)

proof cases
assume i ∈ I
hence (λx. (x)F i) −‘ A ∩ space (PiF {I} M) =

Pi ′ I (λx. if x = i then A else space (M x))

THEORY “Fin-Map” 363

using sets.sets-into-space[OF] ‹A ∈ sets (M i)› assms
by (auto simp: space-PiF Pi ′-def)

thus ?thesis using assms ‹A ∈ sets (M i)›
by (intro in-sets-PiFI) auto

next
assume i /∈ I
hence (λx. (x)F i) −‘ A ∩ space (PiF {I} M) =
(if undefined ∈ A then space (PiF {I} M) else {}) by (auto simp: space-PiF

Pi ′-def)
thus ?thesis by simp

qed

lemma measurable-proj-singleton:
assumes i ∈ I
shows (λx. (x)F i) ∈ measurable (PiF {I} M) (M i)
by (unfold measurable-def , intro CollectI conjI ballI proj-measurable-singleton

assms)
(insert ‹i ∈ I ›, auto simp: space-PiF)

lemma measurable-proj-countable:
fixes I :: ′a::countable set set
assumes y ∈ space (M i)
shows (λx. if i ∈ domain x then (x)F i else y) ∈ measurable (PiF I M) (M i)

proof (rule countable-measurable-PiFI)
fix J assume J ∈ I finite J
show (λx. if i ∈ domain x then x i else y) ∈ measurable (PiF {J} M) (M i)

unfolding measurable-def
proof safe

fix z assume z ∈ sets (M i)
have (λx. if i ∈ domain x then x i else y) −‘ z ∩ space (PiF {J} M) =
(λx. if i ∈ J then (x)F i else y) −‘ z ∩ space (PiF {J} M)
by (auto simp: space-PiF Pi ′-def)

also have . . . ∈ sets (PiF {J} M) using ‹z ∈ sets (M i)› ‹finite J ›
by (cases i ∈ J) (auto intro!: measurable-sets[OF measurable-proj-singleton])

finally show (λx. if i ∈ domain x then x i else y) −‘ z ∩ space (PiF {J} M) ∈
sets (PiF {J} M) .

qed (insert ‹y ∈ space (M i)›, auto simp: space-PiF Pi ′-def)
qed

lemma measurable-restrict-proj:
assumes J ∈ II finite J
shows finmap-of J ∈ measurable (PiM J M) (PiF II M)
using assms
by (intro measurable-finmap-of measurable-component-singleton) auto

lemma measurable-proj-PiM :
fixes J K :: ′a::countable set and I :: ′a set set
assumes finite J J ∈ I
assumes x ∈ space (PiM J M)

THEORY “Fin-Map” 364

shows proj ∈ measurable (PiF {J} M) (PiM J M)
proof (rule measurable-PiM-single)

show proj ∈ space (PiF {J} M) → (ΠE i ∈ J . space (M i))
using assms by (auto simp add: space-PiM space-PiF extensional-def sets-PiF

Pi ′-def)
next

fix A i assume A: i ∈ J A ∈ sets (M i)
show {ω ∈ space (PiF {J} M). (ω)F i ∈ A} ∈ sets (PiF {J} M)
proof

have {ω ∈ space (PiF {J} M). (ω)F i ∈ A} =
(λω. (ω)F i) −‘ A ∩ space (PiF {J} M) by auto

also have . . . ∈ sets (PiF {J} M)
using assms A by (auto intro: measurable-sets[OF measurable-proj-singleton]

simp: space-PiM)
finally show ?thesis .

qed simp
qed

lemma space-PiF-singleton-eq-product:
assumes finite I
shows space (PiF {I} M) = (Π ′ i∈I . space (M i))
by (auto simp: product-def space-PiF assms)

adapted from sets (PiM ?I ?M) = sigma-sets (ΠE i∈?I . space (?M i)) {{f
∈ ΠE i∈?I . space (?M i). f i ∈ A} |i A. i ∈ ?I ∧ A ∈ sets (?M i)}
lemma sets-PiF-single:

assumes finite I I 6= {}
shows sets (PiF {I} M) =

sigma-sets (Π ′ i∈I . space (M i))
{{f∈Π ′ i∈I . space (M i). f i ∈ A} | i A. i ∈ I ∧ A ∈ sets (M i)}

(is - = sigma-sets ?Ω ?R)
unfolding sets-PiF-singleton

proof (rule sigma-sets-eqI)
interpret R: sigma-algebra ?Ω sigma-sets ?Ω ?R by (rule sigma-algebra-sigma-sets)

auto
fix A assume A ∈ {Pi ′ I X |X . X ∈ (Π j∈I . sets (M j))}
then obtain X where X : A = Pi ′ I X X ∈ (Π j∈I . sets (M j)) by auto
show A ∈ sigma-sets ?Ω ?R
proof −

from ‹I 6= {}› X have A = (
⋂

j∈I . {f∈space (PiF {I} M). f j ∈ X j})
using sets.sets-into-space
by (auto simp: space-PiF product-def) blast

also have . . . ∈ sigma-sets ?Ω ?R
using X ‹I 6= {}› assms by (intro R.finite-INT) (auto simp: space-PiF)

finally show A ∈ sigma-sets ?Ω ?R .
qed

next
fix A assume A ∈ ?R
then obtain i B where A: A = {f∈Π ′ i∈I . space (M i). f i ∈ B} i ∈ I B ∈

THEORY “Fin-Map” 365

sets (M i)
by auto

then have A = (Π ′ j ∈ I . if j = i then B else space (M j))
using sets.sets-into-space[OF A(3)]
apply (auto simp: Pi ′-iff split: if-split-asm)
apply blast
done

also have . . . ∈ sigma-sets ?Ω {Pi ′ I X |X . X ∈ (Π j∈I . sets (M j))}
using A
by (intro sigma-sets.Basic)

(auto intro: exI [where x=λj. if j = i then B else space (M j)])
finally show A ∈ sigma-sets ?Ω {Pi ′ I X |X . X ∈ (Π j∈I . sets (M j))} .

qed

adapted from (
∧

i. i ∈ ?I =⇒ ?A i = ?B i) =⇒ PiE ?I ?A = PiE ?I ?B
lemma Pi ′-cong:

assumes finite I
assumes

∧
i. i ∈ I =⇒ f i = g i

shows Pi ′ I f = Pi ′ I g
using assms by (auto simp: Pi ′-def)

adapted from [[finite ?I ;
∧

i n m. [[i ∈ ?I ; n ≤ m]] =⇒ ?A n i ⊆ ?A m i]]
=⇒ (

⋃
n Pi ?I (?A n)) = (Π i∈?I .

⋃
n ?A n i)

lemma Pi ′-UN :
fixes A :: nat ⇒ ′i ⇒ ′a set
assumes finite I
assumes mono:

∧
i n m. i ∈ I =⇒ n ≤ m =⇒ A n i ⊆ A m i

shows (
⋃

n. Pi ′ I (A n)) = Pi ′ I (λi.
⋃

n. A n i)
proof (intro set-eqI iffI)

fix f assume f ∈ Pi ′ I (λi.
⋃

n. A n i)
then have ∀ i∈I . ∃n. f i ∈ A n i domain f = I by (auto simp: ‹finite I › Pi ′-def)
from bchoice[OF this(1)] obtain n where n:

∧
i. i ∈ I =⇒ f i ∈ (A (n i) i) by

auto
obtain k where k:

∧
i. i ∈ I =⇒ n i ≤ k

using ‹finite I › finite-nat-set-iff-bounded-le[of n‘I] by auto
have f ∈ Pi ′ I (λi. A k i)
proof

fix i assume i ∈ I
from mono[OF this, of n i k] k[OF this] n[OF this] ‹domain f = I › ‹i ∈ I ›
show f i ∈ A k i by (auto simp: ‹finite I ›)

qed (simp add: ‹domain f = I › ‹finite I ›)
then show f ∈ (

⋃
n. Pi ′ I (A n)) by auto

qed (auto simp: Pi ′-def ‹finite I ›)

adapted from [[
∧

i. i ∈ ?I =⇒ ∃S⊆?E i. countable S ∧ ?Ω i =
⋃

S ;
∧

i.
i ∈ ?I =⇒ ?E i ⊆ Pow (?Ω i);

∧
j. j ∈ ?J =⇒ finite j;

⋃
?J = ?I]] =⇒

sets (PiM ?I (λi. sigma (?Ω i) (?E i))) = sets (sigma (PiE ?I ?Ω) {{f ∈
PiE ?I ?Ω. ∀ i∈j. f i ∈ A i} |A j. j ∈ ?J ∧ A ∈ Pi j ?E})
lemma sigma-fprod-algebra-sigma-eq:

THEORY “Fin-Map” 366

fixes E :: ′i ⇒ ′a set set and S :: ′i ⇒ nat ⇒ ′a set
assumes [simp]: finite I I 6= {}

and S-union:
∧

i. i ∈ I =⇒ (
⋃

j. S i j) = space (M i)
and S-in-E :

∧
i. i ∈ I =⇒ range (S i) ⊆ E i

assumes E-closed:
∧

i. i ∈ I =⇒ E i ⊆ Pow (space (M i))
and E-generates:

∧
i. i ∈ I =⇒ sets (M i) = sigma-sets (space (M i)) (E i)

defines P == { Pi ′ I F | F . ∀ i∈I . F i ∈ E i }
shows sets (PiF {I} M) = sigma-sets (space (PiF {I} M)) P

proof
let ?P = sigma (space (PiF {I} M)) P
from ‹finite I ›[THEN ex-bij-betw-finite-nat] obtain T where bij-betw T I {0 ..<card

I} ..
then have T :

∧
i. i ∈ I =⇒ T i < card I

∧
i. i∈I =⇒ the-inv-into I T (T i) =

i
by (auto simp add: bij-betw-def set-eq-iff image-iff the-inv-into-f-f simp del:

‹finite I ›)
have P-closed: P ⊆ Pow (space (PiF {I} M))

using E-closed by (auto simp: space-PiF P-def Pi ′-iff subset-eq)
then have space-P: space ?P = (Π ′ i∈I . space (M i))

by (simp add: space-PiF)
have sets (PiF {I} M) =

sigma-sets (space ?P) {{f ∈ Π ′ i∈I . space (M i). f i ∈ A} |i A. i ∈ I ∧ A ∈
sets (M i)}

using sets-PiF-single[of I M] by (simp add: space-P)
also have . . . ⊆ sets (sigma (space (PiF {I} M)) P)
proof (safe intro!: sets.sigma-sets-subset)

fix i A assume i ∈ I and A: A ∈ sets (M i)
have (λx. (x)F i) ∈ measurable ?P (sigma (space (M i)) (E i))
proof (subst measurable-iff-measure-of)

show E i ⊆ Pow (space (M i)) using ‹i ∈ I › by fact
from space-P ‹i ∈ I › show (λx. (x)F i) ∈ space ?P → space (M i)

by auto
show ∀A∈E i. (λx. (x)F i) −‘ A ∩ space ?P ∈ sets ?P
proof

fix A assume A: A ∈ E i
from T have ∗: ∃ xs. length xs = card I
∧ (∀ j∈I . (g)F j ∈ (if i = j then A else S j (xs ! T j)))
if domain g = I and ∀ j∈I . (g)F j ∈ (if i = j then A else S j (f j)) for g f

using that by (auto intro!: exI [of - map (λn. f (the-inv-into I T n))
[0 ..<card I]])

from A have (λx. (x)F i) −‘ A ∩ space ?P = (Π ′ j∈I . if i = j then A else
space (M j))

using E-closed ‹i ∈ I › by (auto simp: space-P Pi-iff subset-eq split:
if-split-asm)

also have . . . = (Π ′ j∈I .
⋃

n. if i = j then A else S j n)
by (intro Pi ′-cong) (simp-all add: S-union)

also have . . . = {g. domain g = I ∧ (∃ f . ∀ j∈I . (g)F j ∈ (if i = j then A
else S j (f j)))}

by (rule set-eqI) (simp del: if-image-distrib add: Pi ′-iff bchoice-iff)

THEORY “Fin-Map” 367

also have . . . = (
⋃

xs∈{xs. length xs = card I}. Π ′ j∈I . if i = j then A else
S j (xs ! T j))

using ∗ by (auto simp add: Pi ′-iff split del: if-split)
also have . . . ∈ sets ?P
proof (safe intro!: sets.countable-UN)

fix xs show (Π ′ j∈I . if i = j then A else S j (xs ! T j)) ∈ sets ?P
using A S-in-E
by (simp add: P-closed)

(auto simp: P-def subset-eq intro!: exI [of - λj. if i = j then A else S j
(xs ! T j)])

qed
finally show (λx. (x)F i) −‘ A ∩ space ?P ∈ sets ?P

using P-closed by simp
qed

qed
from measurable-sets[OF this, of A] A ‹i ∈ I › E-closed
have (λx. (x)F i) −‘ A ∩ space ?P ∈ sets ?P

by (simp add: E-generates)
also have (λx. (x)F i) −‘ A ∩ space ?P = {f ∈ Π ′ i∈I . space (M i). f i ∈ A}

using P-closed by (auto simp: space-PiF)
finally show . . . ∈ sets ?P .

qed
finally show sets (PiF {I} M) ⊆ sigma-sets (space (PiF {I} M)) P

by (simp add: P-closed)
show sigma-sets (space (PiF {I} M)) P ⊆ sets (PiF {I} M)

using ‹finite I › ‹I 6= {}›
by (auto intro!: sets.sigma-sets-subset product-in-sets-PiFI simp: E-generates

P-def)
qed

lemma product-open-generates-sets-PiF-single:
assumes I 6= {}
assumes [simp]: finite I
shows sets (PiF {I} (λ-. borel:: ′b::second-countable-topology measure)) =

sigma-sets (space (PiF {I} (λ-. borel))) {Pi ′ I F |F . (∀ i∈I . F i ∈ Collect
open)}
proof −

from open-countable-basisE [OF open-UNIV] obtain S :: ′b set set
where S : S ⊆ (SOME B. countable B ∧ topological-basis B) UNIV =

⋃
S

by auto
show ?thesis
proof (rule sigma-fprod-algebra-sigma-eq)

show finite I by simp
show I 6= {} by fact
define S ′ where S ′ = from-nat-into S
show (

⋃
j. S ′ j) = space borel

using S
apply (auto simp add: from-nat-into countable-basis-proj S ′-def basis-proj-def)

apply (metis (lifting, mono-tags) UNIV-I UnionE basis-proj-def count-

THEORY “Fin-Map” 368

able-basis-proj countable-subset from-nat-into-surj)
done

show range S ′ ⊆ Collect open
using S
apply (auto simp add: from-nat-into countable-basis-proj S ′-def)
apply (metis UNIV-not-empty Union-empty from-nat-into subsetD topologi-

cal-basis-open[OF basis-proj] basis-proj-def)
done

show Collect open ⊆ Pow (space borel) by simp
show sets borel = sigma-sets (space borel) (Collect open)

by (simp add: borel-def)
qed

qed

lemma finmap-UNIV [simp]: (
⋃

J∈Collect finite. Π ′ j∈J . UNIV) = UNIV by
auto

lemma borel-eq-PiF-borel:
shows (borel :: (′i::countable ⇒F

′a::polish-space) measure) =
PiF (Collect finite) (λ-. borel :: ′a measure)

unfolding borel-def PiF-def
proof (rule measure-eqI , clarsimp, rule sigma-sets-eqI)

fix a::(′i ⇒F
′a) set assume a ∈ Collect open hence open a by simp

then obtain B ′ where B ′: B ′⊆basis-finmap a =
⋃

B ′

using finmap-topological-basis by (force simp add: topological-basis-def)
have a ∈ sigma UNIV {Pi ′ J X |X J . finite J ∧ X ∈ J → sigma-sets UNIV

(Collect open)}
unfolding ‹a =

⋃
B ′›

proof (rule sets.countable-Union)
from B ′ countable-basis-finmap show countable B ′ by (metis countable-subset)

next
show B ′ ⊆ sets (sigma UNIV
{Pi ′ J X |X J . finite J ∧ X ∈ J → sigma-sets UNIV (Collect open)}) (is -

⊆ sets ?s)
proof

fix x assume x ∈ B ′ with B ′ have x ∈ basis-finmap by auto
then obtain J X where x = Pi ′ J X finite J X ∈ J → sigma-sets UNIV

(Collect open)
by (auto simp: basis-finmap-def topological-basis-open[OF basis-proj])

thus x ∈ sets ?s by auto
qed

qed
thus a ∈ sigma-sets UNIV {Pi ′ J X |X J . finite J ∧ X ∈ J → sigma-sets UNIV

(Collect open)}
by simp

next
fix b::(′i ⇒F

′a) set
assume b ∈ {Pi ′ J X |X J . finite J ∧ X ∈ J → sigma-sets UNIV (Collect open)}
hence b ′: b ∈ sets (PiF (Collect finite) (λ-. borel)) by (auto simp: sets-PiF

THEORY “Fin-Map” 369

borel-def)
let ?b = λJ . b ∩ {x. domain x = J}
have b =

⋃
((λJ . ?b J) ‘ Collect finite) by auto

also have . . . ∈ sets borel
proof (rule sets.countable-Union, safe)

fix J :: ′i set assume finite J
{ assume ef : J = {}

have ?b J ∈ sets borel
proof cases

assume ?b J 6= {}
then obtain f where f ∈ b domain f = {} using ef by auto
hence ?b J = {f } using ‹J = {}›

by (auto simp: finmap-eq-iff)
also have {f } ∈ sets borel by simp
finally show ?thesis .

qed simp
} moreover {

assume J 6= ({}:: ′i set)
have (?b J) = b ∩ {m. domain m ∈ {J}} by auto
also have . . . ∈ sets (PiF {J} (λ-. borel))

using b ′ by (rule restrict-sets-measurable) (auto simp: ‹finite J ›)
also have . . . = sigma-sets (space (PiF {J} (λ-. borel)))
{Pi ′ (J) F |F . (∀ j∈J . F j ∈ Collect open)}
(is - = sigma-sets - ?P)

by (rule product-open-generates-sets-PiF-single[OF ‹J 6= {}› ‹finite J ›])
also have . . . ⊆ sigma-sets UNIV (Collect open)

by (intro sigma-sets-mono ′′) (auto intro!: open-Pi ′I simp: space-PiF)
finally have (?b J) ∈ sets borel by (simp add: borel-def)

} ultimately show (?b J) ∈ sets borel by blast
qed (simp add: countable-Collect-finite)
finally show b ∈ sigma-sets UNIV (Collect open) by (simp add: borel-def)

qed (simp add: emeasure-sigma borel-def PiF-def)

22.10 Isomorphism between Functions and Finite Maps
lemma measurable-finmap-compose:

shows (λm. compose J m f) ∈ measurable (PiM (f ‘ J) (λ-. M)) (PiM J (λ-.
M))

unfolding compose-def by measurable

lemma measurable-compose-inv:
assumes inj:

∧
j. j ∈ J =⇒ f ′ (f j) = j

shows (λm. compose (f ‘ J) m f ′) ∈ measurable (PiM J (λ-. M)) (PiM (f ‘ J)
(λ-. M))

unfolding compose-def by (rule measurable-restrict) (auto simp: inj)

locale function-to-finmap =
fixes J :: ′a set and f :: ′a ⇒ ′b::countable and f ′

assumes [simp]: finite J

THEORY “Fin-Map” 370

assumes inv: i ∈ J =⇒ f ′ (f i) = i
begin

to measure finmaps
definition fm = (finmap-of (f ‘ J)) o (λg. compose (f ‘ J) g f ′)

lemma domain-fm[simp]: domain (fm x) = f ‘ J
unfolding fm-def by simp

lemma fm-restrict[simp]: fm (restrict y J) = fm y
unfolding fm-def by (auto simp: compose-def inv intro: restrict-ext)

lemma fm-product:
assumes

∧
i. space (M i) = UNIV

shows fm −‘ Pi ′ (f ‘ J) S ∩ space (PiM J M) = (ΠE j ∈ J . S (f j))
using assms
by (auto simp: inv fm-def compose-def space-PiM Pi ′-def)

lemma fm-measurable:
assumes f ‘ J ∈ N
shows fm ∈ measurable (PiM J (λ-. M)) (PiF N (λ-. M))
unfolding fm-def

proof (rule measurable-comp, rule measurable-compose-inv)
show finmap-of (f ‘ J) ∈ measurable (PiM (f ‘ J) (λ-. M)) (PiF N (λ-. M))

using assms by (intro measurable-finmap-of measurable-component-singleton)
auto
qed (simp-all add: inv)

lemma proj-fm:
assumes x ∈ J
shows fm m (f x) = m x
using assms by (auto simp: fm-def compose-def o-def inv)

lemma inj-on-compose-f ′: inj-on (λg. compose (f ‘ J) g f ′) (extensional J)
proof (rule inj-on-inverseI)

fix x:: ′a ⇒ ′c assume x ∈ extensional J
thus (λx. compose J x f) (compose (f ‘ J) x f ′) = x

by (auto simp: compose-def inv extensional-def)
qed

lemma inj-on-fm:
assumes

∧
i. space (M i) = UNIV

shows inj-on fm (space (PiM J M))
using assms
apply (auto simp: fm-def space-PiM PiE-def)
apply (rule comp-inj-on)
apply (rule inj-on-compose-f ′)
apply (rule finmap-of-inj-on-extensional-finite)
apply simp

THEORY “Fin-Map” 371

apply (auto)
done

to measure functions
definition mf = (λg. compose J g f) o proj

lemma mf-fm:
assumes x ∈ space (PiM J (λ-. M))
shows mf (fm x) = x

proof −
have mf (fm x) ∈ extensional J

by (auto simp: mf-def extensional-def compose-def)
moreover
have x ∈ extensional J using assms sets.sets-into-space

by (force simp: space-PiM PiE-def)
moreover
{ fix i assume i ∈ J

hence mf (fm x) i = x i
by (auto simp: inv mf-def compose-def fm-def)

}
ultimately
show ?thesis by (rule extensionalityI)

qed

lemma mf-measurable:
assumes space M = UNIV
shows mf ∈ measurable (PiF {f ‘ J} (λ-. M)) (PiM J (λ-. M))
unfolding mf-def

proof (rule measurable-comp, rule measurable-proj-PiM)
show (λg. compose J g f) ∈ measurable (PiM (f ‘ J) (λx. M)) (PiM J (λ-. M))

by (rule measurable-finmap-compose)
qed (auto simp add: space-PiM extensional-def assms)

lemma fm-image-measurable:
assumes space M = UNIV
assumes X ∈ sets (PiM J (λ-. M))
shows fm ‘ X ∈ sets (PiF {f ‘ J} (λ-. M))

proof −
have fm ‘ X = (mf) −‘ X ∩ space (PiF {f ‘ J} (λ-. M))
proof safe

fix x assume x ∈ X
with mf-fm[of x] sets.sets-into-space[OF assms(2)] show fm x ∈ mf −‘ X by

auto
show fm x ∈ space (PiF {f ‘ J} (λ-. M)) by (simp add: space-PiF assms)

next
fix y x
assume x: mf y ∈ X
assume y: y ∈ space (PiF {f ‘ J} (λ-. M))
thus y ∈ fm ‘ X

THEORY “Fin-Map” 372

by (intro image-eqI [OF - x], unfold finmap-eq-iff)
(auto simp: space-PiF fm-def mf-def compose-def inv Pi ′-def)

qed
also have . . . ∈ sets (PiF {f ‘ J} (λ-. M))

using assms
by (intro measurable-sets[OF mf-measurable]) auto

finally show ?thesis .
qed

lemma fm-image-measurable-finite:
assumes space M = UNIV
assumes X ∈ sets (PiM J (λ-. M :: ′c measure))
shows fm ‘ X ∈ sets (PiF (Collect finite) (λ-. M :: ′c measure))
using fm-image-measurable[OF assms]
by (rule subspace-set-in-sets) (auto simp: finite-subset)

measure on finmaps
definition mapmeasure M N = distr M (PiF (Collect finite) N) (fm)

lemma sets-mapmeasure[simp]: sets (mapmeasure M N) = sets (PiF (Collect fi-
nite) N)

unfolding mapmeasure-def by simp

lemma space-mapmeasure[simp]: space (mapmeasure M N) = space (PiF (Collect
finite) N)

unfolding mapmeasure-def by simp

lemma mapmeasure-PiF :
assumes s1 : space M = space (PiM J (λ-. N))
assumes s2 : sets M = sets (PiM J (λ-. N))
assumes space N = UNIV
assumes X ∈ sets (PiF (Collect finite) (λ-. N))
shows emeasure (mapmeasure M (λ-. N)) X = emeasure M ((fm −‘ X ∩ exten-

sional J))
using assms
by (auto simp: measurable-cong-sets[OF s2 refl] mapmeasure-def emeasure-distr

fm-measurable space-PiM PiE-def)

lemma mapmeasure-PiM :
fixes N :: ′c measure
assumes s1 : space M = space (PiM J (λ-. N))
assumes s2 : sets M = (PiM J (λ-. N))
assumes N : space N = UNIV
assumes X : X ∈ sets M
shows emeasure M X = emeasure (mapmeasure M (λ-. N)) (fm ‘ X)
unfolding mapmeasure-def

proof (subst emeasure-distr , subst measurable-cong-sets[OF s2 refl], rule fm-measurable)
have X ⊆ space (PiM J (λ-. N)) using assms by (simp add: sets.sets-into-space)
from assms inj-on-fm[of λ-. N] subsetD[OF this] have fm −‘ fm ‘ X ∩ space

THEORY “Projective-Limit” 373

(PiM J (λ-. N)) = X
by (auto simp: vimage-image-eq inj-on-def)

thus emeasure M X = emeasure M (fm −‘ fm ‘ X ∩ space M) using s1
by simp

show fm ‘ X ∈ sets (PiF (Collect finite) (λ-. N))
by (rule fm-image-measurable-finite[OF N X [simplified s2]])

qed simp

end

end

23 Projective Limit
theory Projective-Limit
imports

Fin-Map
Infinite-Product-Measure
HOL−Library.Diagonal-Subsequence

begin

23.1 Sequences of Finite Maps in Compact Sets
locale finmap-seqs-into-compact =

fixes K ::nat ⇒ (nat ⇒F
′a::metric-space) set and f ::nat ⇒ (nat ⇒F

′a) and
M

assumes compact:
∧

n. compact (K n)
assumes f-in-K :

∧
n. K n 6= {}

assumes domain-K :
∧

n. k ∈ K n =⇒ domain k = domain (f n)
assumes proj-in-K :∧

t n m. m ≥ n =⇒ t ∈ domain (f n) =⇒ (f m)F t ∈ (λk. (k)F t) ‘ K n
begin

lemma proj-in-K ′: (∃n. ∀m ≥ n. (f m)F t ∈ (λk. (k)F t) ‘ K n)
using proj-in-K f-in-K

proof cases
obtain k where k ∈ K (Suc 0) using f-in-K by auto
assume ∀n. t /∈ domain (f n)
thus ?thesis

by (auto intro!: exI [where x=1] image-eqI [OF - ‹k ∈ K (Suc 0)›]
simp: domain-K [OF ‹k ∈ K (Suc 0)›])

qed blast

lemma proj-in-KE :
obtains n where

∧
m. m ≥ n =⇒ (f m)F t ∈ (λk. (k)F t) ‘ K n

using proj-in-K ′ by blast

lemma compact-projset:
shows compact ((λk. (k)F i) ‘ K n)

THEORY “Projective-Limit” 374

using continuous-proj compact by (rule compact-continuous-image)

end

lemma compactE ′:
fixes S :: ′a :: metric-space set
assumes compact S ∀n≥m. f n ∈ S
obtains l r where l ∈ S strict-mono (r ::nat⇒nat) ((f ◦ r) −−−→ l) sequentially

proof atomize-elim
have strict-mono ((+) m) by (simp add: strict-mono-def)
have ∀n. (f o (λi. m + i)) n ∈ S using assms by auto
from seq-compactE [OF ‹compact S›[unfolded compact-eq-seq-compact-metric] this]
obtain l r where l ∈ S strict-mono r (f ◦ (+) m ◦ r) −−−−→ l by blast
hence l ∈ S strict-mono ((λi. m + i) o r) ∧ (f ◦ ((λi. m + i) o r)) −−−−→ l

using strict-mono-o[OF ‹strict-mono ((+) m)› ‹strict-mono r›] by (auto simp:
o-def)

thus ∃ l r . l ∈ S ∧ strict-mono r ∧ (f ◦ r) −−−−→ l by blast
qed

sublocale finmap-seqs-into-compact ⊆ subseqs λn s. (∃ l. (λi. ((f o s) i)F n) −−−−→
l)
proof

fix n and s :: nat ⇒ nat
assume strict-mono s
from proj-in-KE [of n] obtain n0 where n0 :

∧
m. n0 ≤ m =⇒ (f m)F n ∈ (λk.

(k)F n) ‘ K n0
by blast

have ∀ i ≥ n0 . ((f ◦ s) i)F n ∈ (λk. (k)F n) ‘ K n0
proof safe

fix i assume n0 ≤ i
also have . . . ≤ s i by (rule seq-suble) fact
finally have n0 ≤ s i .
with n0 show ((f ◦ s) i)F n ∈ (λk. (k)F n) ‘ K n0

by auto
qed
then obtain ls rs
where ls ∈ (λk. (k)F n) ‘ K n0 strict-mono rs ((λi. ((f ◦ s) i)F n) ◦ rs) −−−−→

ls
by (rule compactE ′[OF compact-projset])

thus ∃ r ′. strict-mono r ′ ∧ (∃ l. (λi. ((f ◦ (s ◦ r ′)) i)F n) −−−−→ l) by (auto
simp: o-def)
qed

lemma (in finmap-seqs-into-compact) diagonal-tendsto: ∃ l. (λi. (f (diagseq i))F
n) −−−−→ l
proof −

obtain l where (λi. ((f o (diagseq o (+) (Suc n))) i)F n) −−−−→ l
proof (atomize-elim, rule diagseq-holds)

fix r s n

THEORY “Projective-Limit” 375

assume strict-mono (r :: nat ⇒ nat)
assume ∃ l. (λi. ((f ◦ s) i)F n) −−−−→ l
then obtain l where ((λi. (f i)F n) o s) −−−−→ l

by (auto simp: o-def)
hence ((λi. (f i)F n) o s o r) −−−−→ l using ‹strict-mono r›

by (rule LIMSEQ-subseq-LIMSEQ)
thus ∃ l. (λi. ((f ◦ (s ◦ r)) i)F n) −−−−→ l by (auto simp add: o-def)

qed
hence (λi. ((f (diagseq (i + Suc n))))F n) −−−−→ l by (simp add: ac-simps)
hence (λi. (f (diagseq i))F n) −−−−→ l by (rule LIMSEQ-offset)
thus ?thesis ..

qed

23.2 Daniell-Kolmogorov Theorem

Existence of Projective Limit
locale polish-projective = projective-family I P λ-. borel:: ′a::polish-space measure

for I :: ′i set and P
begin

lemma emeasure-lim-emb:
assumes X : J ⊆ I finite J X ∈ sets (ΠM i∈J . borel)
shows lim (emb I J X) = P J X

proof (rule emeasure-lim)
write mu-G (‹µG›)
interpret generator : algebra space (PiM I (λi. borel)) generator

by (rule algebra-generator)

fix J and B :: nat ⇒ (′i ⇒ ′a) set
assume J :

∧
n. finite (J n)

∧
n. J n ⊆ I

∧
n. B n ∈ sets (ΠM i∈J n. borel)

incseq J
and B: decseq (λn. emb I (J n) (B n))
and 0 < (INF i. P (J i) (B i)) (is 0 < ?a)

moreover have ?a ≤ 1
using J by (auto intro!: INF-lower2 [of 0] prob-space-P[THEN prob-space.measure-le-1])

ultimately obtain r where r : ?a = ennreal r 0 < r r ≤ 1
by (cases ?a) (auto simp: top-unique)

define Z where Z n = emb I (J n) (B n) for n
have Z-mono: n ≤ m =⇒ Z m ⊆ Z n for n m

unfolding Z-def using B[THEN antimonoD, of n m] .
have J-mono:

∧
n m. n ≤ m =⇒ J n ⊆ J m

using ‹incseq J › by (force simp: incseq-def)
note [simp] = ‹

∧
n. finite (J n)›

interpret prob-space P (J i) for i using J prob-space-P by simp

have P-eq[simp]:
sets (P (J i)) = sets (ΠM i∈J i. borel) space (P (J i)) = space (ΠM i∈J i.

borel) for i
using J by (auto simp: sets-P space-P)

THEORY “Projective-Limit” 376

have Z i ∈ generator for i
unfolding Z-def by (auto intro!: generator .intros J)

have countable-UN-J : countable (
⋃

n. J n) by (simp add: countable-finite)
define Utn where Utn = to-nat-on (

⋃
n. J n)

interpret function-to-finmap J n Utn from-nat-into (
⋃

n. J n) for n
by unfold-locales (auto simp: Utn-def intro: from-nat-into-to-nat-on[OF count-

able-UN-J])
have inj-on-Utn: inj-on Utn (

⋃
n. J n)

unfolding Utn-def using countable-UN-J by (rule inj-on-to-nat-on)
hence inj-on-Utn-J :

∧
n. inj-on Utn (J n) by (rule inj-on-subset) auto

define P ′ where P ′ n = mapmeasure n (P (J n)) (λ-. borel) for n
interpret P ′: prob-space P ′ n for n

unfolding P ′-def mapmeasure-def using J
by (auto intro!: prob-space-distr fm-measurable simp: measurable-cong-sets[OF

sets-P])

let ?SUP = λn. SUP K ∈ {K . K ⊆ fm n ‘ (B n) ∧ compact K}. emeasure (P ′

n) K
{ fix n

have emeasure (P (J n)) (B n) = emeasure (P ′ n) (fm n ‘ (B n))
using J by (auto simp: P ′-def mapmeasure-PiM space-P sets-P)

also
have . . . = ?SUP n
proof (rule inner-regular)

show sets (P ′ n) = sets borel by (simp add: borel-eq-PiF-borel P ′-def)
next

show fm n ‘ B n ∈ sets borel
unfolding borel-eq-PiF-borel by (auto simp: P ′-def fm-image-measurable-finite

sets-P J (3))
qed simp
finally have ∗: emeasure (P (J n)) (B n) = ?SUP n .
have ?SUP n 6= ∞

unfolding ∗[symmetric] by simp
note ∗ this

} note R = this
have ∀n. ∃K . emeasure (P (J n)) (B n) − emeasure (P ′ n) K ≤ 2 powr (−n)
∗ ?a ∧ compact K ∧ K ⊆ fm n ‘ B n

proof
fix n show ∃K . emeasure (P (J n)) (B n) − emeasure (P ′ n) K ≤ ennreal (2

powr − real n) ∗ ?a ∧
compact K ∧ K ⊆ fm n ‘ B n

unfolding R[of n]
proof (rule ccontr)

assume H : @K ′. ?SUP n − emeasure (P ′ n) K ′ ≤ ennreal (2 powr − real
n) ∗ ?a ∧

compact K ′ ∧ K ′ ⊆ fm n ‘ B n
have ?SUP n + 0 < ?SUP n + 2 powr (−n) ∗ ?a

THEORY “Projective-Limit” 377

using R[of n] unfolding ennreal-add-left-cancel-less ennreal-zero-less-mult-iff
by (auto intro: ‹0 < ?a›)

also have . . . = (SUP K∈{K . K ⊆ fm n ‘ B n ∧ compact K}. emeasure (P ′

n) K + 2 powr (−n) ∗ ?a)
by (rule ennreal-SUP-add-left[symmetric]) auto

also have . . . ≤ ?SUP n
proof (intro SUP-least)

fix K assume K ∈ {K . K ⊆ fm n ‘ B n ∧ compact K}
with H have 2 powr (−n) ∗ ?a < ?SUP n − emeasure (P ′ n) K

by auto
then show emeasure (P ′ n) K + (2 powr (−n)) ∗ ?a ≤ ?SUP n

by (subst (asm) less-diff-eq-ennreal) (auto simp: less-top[symmetric]
R(1)[symmetric] ac-simps)

qed
finally show False by simp

qed
qed
then obtain K ′ where K ′:∧

n. emeasure (P (J n)) (B n) − emeasure (P ′ n) (K ′ n) ≤ ennreal (2 powr −
real n) ∗ ?a∧

n. compact (K ′ n)
∧

n. K ′ n ⊆ fm n ‘ B n
unfolding choice-iff by blast

define K where K n = fm n −‘ K ′ n ∩ space (PiM (J n) (λ-. borel)) for n
have K-sets:

∧
n. K n ∈ sets (PiM (J n) (λ-. borel))

unfolding K-def
using compact-imp-closed[OF ‹compact (K ′ -)›]
by (intro measurable-sets[OF fm-measurable, of - Collect finite])

(auto simp: borel-eq-PiF-borel[symmetric])
have K-B:

∧
n. K n ⊆ B n

proof
fix x n assume x ∈ K n
then have fm-in: fm n x ∈ fm n ‘ B n

using K ′ by (force simp: K-def)
show x ∈ B n
using ‹x ∈ K n› K-sets sets.sets-into-space J (1 ,2 ,3)[of n] inj-on-image-mem-iff [OF

inj-on-fm]
by (metis (no-types) Int-iff K-def fm-in space-borel)

qed
define Z ′ where Z ′ n = emb I (J n) (K n) for n
have Z ′:

∧
n. Z ′ n ⊆ Z n

unfolding Z ′-def Z-def
proof (rule prod-emb-mono, safe)

fix n x assume x ∈ K n
hence fm n x ∈ K ′ n x ∈ space (PiM (J n) (λ-. borel))

by (simp-all add: K-def space-P)
note this(1)
also have K ′ n ⊆ fm n ‘ B n by (simp add: K ′)
finally have fm n x ∈ fm n ‘ B n .
thus x ∈ B n

THEORY “Projective-Limit” 378

proof safe
fix y assume y: y ∈ B n
hence y ∈ space (PiM (J n) (λ-. borel)) using J sets.sets-into-space[of B n

P (J n)]
by (auto simp add: space-P sets-P)

assume fm n x = fm n y
note inj-onD[OF inj-on-fm[OF space-borel],

OF ‹fm n x = fm n y› ‹x ∈ space -› ‹y ∈ space -›]
with y show x ∈ B n by simp

qed
qed
have

∧
n. Z ′ n ∈ generator using J K ′(2) unfolding Z ′-def

by (auto intro!: generator .intros measurable-sets[OF fm-measurable[of - Collect
finite]]

simp: K-def borel-eq-PiF-borel[symmetric] compact-imp-closed)
define Y where Y n = (

⋂
i∈{1 ..n}. Z ′ i) for n

hence
∧

n k. Y (n + k) ⊆ Y n by (induct-tac k) (auto simp: Y-def)
hence Y-mono:

∧
n m. n ≤ m =⇒ Y m ⊆ Y n by (auto simp: le-iff-add)

have Y-Z ′:
∧

n. n ≥ 1 =⇒ Y n ⊆ Z ′ n by (auto simp: Y-def)
hence Y-Z :

∧
n. n ≥ 1 =⇒ Y n ⊆ Z n using Z ′ by auto

have Y-notempty:
∧

n. n ≥ 1 =⇒ (Y n) 6= {}
proof −

fix n::nat assume n ≥ 1 hence Y n ⊆ Z n by fact
have Y n = (

⋂
i∈{1 ..n}. emb I (J n) (emb (J n) (J i) (K i))) using J J-mono

by (auto simp: Y-def Z ′-def)
also have . . . = prod-emb I (λ-. borel) (J n) (

⋂
i∈{1 ..n}. emb (J n) (J i) (K

i))
using ‹n ≥ 1 ›
by (subst prod-emb-INT) auto

finally
have Y-emb:

Y n = prod-emb I (λ-. borel) (J n) (
⋂

i∈{1 ..n}. prod-emb (J n) (λ-. borel)
(J i) (K i)) .

hence Y n ∈ generator using J J-mono K-sets ‹n ≥ 1 ›
by (auto simp del: prod-emb-INT intro!: generator .intros)

have ∗: µG (Z n) = P (J n) (B n)
unfolding Z-def using J by (intro mu-G-spec) auto

then have µG (Z n) 6= ∞ by auto
note ∗
moreover have ∗: µG (Y n) = P (J n) (

⋂
i∈{Suc 0 ..n}. prod-emb (J n) (λ-.

borel) (J i) (K i))
unfolding Y-emb using J J-mono K-sets ‹n ≥ 1 › by (subst mu-G-spec) auto

then have µG (Y n) 6= ∞ by auto
note ∗
moreover have µG (Z n − Y n) =

P (J n) (B n − (
⋂

i∈{Suc 0 ..n}. prod-emb (J n) (λ-. borel) (J i) (K i)))
unfolding Z-def Y-emb prod-emb-Diff [symmetric] using J J-mono K-sets ‹n

≥ 1 ›

THEORY “Projective-Limit” 379

by (subst mu-G-spec) (auto intro!: sets.Diff)
ultimately
have µG (Z n) − µG (Y n) = µG (Z n − Y n)

using J J-mono K-sets ‹n ≥ 1 ›
by (simp only: emeasure-eq-measure Z-def)
(auto dest!: bspec[where x=n] intro!: measure-Diff [symmetric] subsetD[OF

K-B]
intro!: arg-cong[where f=ennreal]

simp: extensional-restrict emeasure-eq-measure prod-emb-iff sets-P
space-P

ennreal-minus measure-nonneg)
also have subs: Z n − Y n ⊆ (

⋃
i∈{1 ..n}. (Z i − Z ′ i))

using ‹n ≥ 1 › unfolding Y-def UN-extend-simps(7) by (intro UN-mono
Diff-mono Z-mono order-refl) auto

have Z n − Y n ∈ generator (
⋃

i∈{1 ..n}. (Z i − Z ′ i)) ∈ generator
using ‹Z ′ - ∈ generator› ‹Z - ∈ generator› ‹Y - ∈ generator› by auto

hence µG (Z n − Y n) ≤ µG (
⋃

i∈{1 ..n}. (Z i − Z ′ i))
using subs generator .additive-increasing[OF positive-mu-G additive-mu-G]
unfolding increasing-def by auto

also have . . . ≤ (
∑

i∈{1 ..n}. µG (Z i − Z ′ i)) using ‹Z - ∈ generator› ‹Z ′

- ∈ generator›
by (intro generator .subadditive[OF positive-mu-G additive-mu-G]) auto

also have . . . ≤ (
∑

i∈{1 ..n}. 2 powr −real i ∗ ?a)
proof (rule sum-mono)

fix i assume i ∈ {1 ..n} hence i ≤ n by simp
have µG (Z i − Z ′ i) = µG (prod-emb I (λ-. borel) (J i) (B i − K i))

unfolding Z ′-def Z-def by simp
also have . . . = P (J i) (B i − K i)

using J K-sets by (subst mu-G-spec) auto
also have . . . = P (J i) (B i) − P (J i) (K i)

using K-sets J ‹K - ⊆ B -› by (simp add: emeasure-Diff)
also have . . . = P (J i) (B i) − P ′ i (K ′ i)

unfolding K-def P ′-def
by (auto simp: mapmeasure-PiF borel-eq-PiF-borel[symmetric]

compact-imp-closed[OF ‹compact (K ′ -)›] space-PiM PiE-def)
also have . . . ≤ ennreal (2 powr − real i) ∗ ?a using K ′(1)[of i] .
finally show µG (Z i − Z ′ i) ≤ (2 powr − real i) ∗ ?a .

qed
also have . . . = ennreal ((

∑
i∈{1 ..n}. (2 powr −enn2real i)) ∗ enn2real ?a)

using r by (simp add: sum-distrib-right ennreal-mult[symmetric])
also have . . . < ennreal (1 ∗ enn2real ?a)
proof (intro ennreal-lessI mult-strict-right-mono)

have (
∑

i = 1 ..n. 2 powr − real i) = (
∑

i = 1 ..<Suc n. (1/2) ^ i)
by (rule sum.cong) (auto simp: powr-realpow powr-divide power-divide

powr-minus-divide)
also have {1 ..<Suc n} = {..<Suc n} − {0} by auto
also have sum ((^) (1 / 2 ::real)) ({..<Suc n} − {0}) =

sum ((^) (1 / 2)) ({..<Suc n}) − 1 by (auto simp: sum-diff1)
also have . . . < 1 by (subst geometric-sum) auto

THEORY “Projective-Limit” 380

finally show (
∑

i = 1 ..n. 2 powr − enn2real i) < 1 by simp
qed (auto simp: r enn2real-positive-iff)
also have . . . = ?a by (auto simp: r)
also have . . . ≤ µG (Z n)

using J by (auto intro: INF-lower simp: Z-def mu-G-spec)
finally have µG (Z n) − µG (Y n) < µG (Z n) .
hence R: µG (Z n) < µG (Z n) + µG (Y n)

using ‹µG (Y n) 6= ∞› by (auto simp: zero-less-iff-neq-zero)
then have µG (Y n) > 0

by simp
thus Y n 6= {} using positive-mu-G by (auto simp add: positive-def)

qed
hence ∀n∈{1 ..}. ∃ y. y ∈ Y n by auto
then obtain y where y:

∧
n. n ≥ 1 =⇒ y n ∈ Y n unfolding bchoice-iff by

force
{

fix t and n m::nat
assume 1 ≤ n n ≤ m hence 1 ≤ m by simp
from Y-mono[OF ‹m ≥ n›] y[OF ‹1 ≤ m›] have y m ∈ Y n by auto
also have . . . ⊆ Z ′ n using Y-Z ′[OF ‹1 ≤ n›] .
finally
have fm n (restrict (y m) (J n)) ∈ K ′ n
unfolding Z ′-def K-def prod-emb-iff by (simp add: Z ′-def K-def prod-emb-iff)
moreover have finmap-of (J n) (restrict (y m) (J n)) = finmap-of (J n) (y

m)
using J by (simp add: fm-def)

ultimately have fm n (y m) ∈ K ′ n by simp
} note fm-in-K ′ = this
interpret finmap-seqs-into-compact λn. K ′ (Suc n) λk. fm (Suc k) (y (Suc k))

borel
proof

fix n show compact (K ′ n) by fact
next

fix n
from Y-mono[of n Suc n] y[of Suc n] have y (Suc n) ∈ Y (Suc n) by auto
also have . . . ⊆ Z ′ (Suc n) using Y-Z ′ by auto
finally
have fm (Suc n) (restrict (y (Suc n)) (J (Suc n))) ∈ K ′ (Suc n)
unfolding Z ′-def K-def prod-emb-iff by (simp add: Z ′-def K-def prod-emb-iff)

thus K ′ (Suc n) 6= {} by auto
fix k
assume k ∈ K ′ (Suc n)
with K ′[of Suc n] sets.sets-into-space have k ∈ fm (Suc n) ‘ B (Suc n) by

auto
then obtain b where k = fm (Suc n) b by auto
thus domain k = domain (fm (Suc n) (y (Suc n)))

by (simp-all add: fm-def)
next

fix t and n m::nat

THEORY “Projective-Limit” 381

assume n ≤ m hence Suc n ≤ Suc m by simp
assume t ∈ domain (fm (Suc n) (y (Suc n)))
then obtain j where j: t = Utn j j ∈ J (Suc n) by auto
hence j ∈ J (Suc m) using J-mono[OF ‹Suc n ≤ Suc m›] by auto
have img: fm (Suc n) (y (Suc m)) ∈ K ′ (Suc n) using ‹n ≤ m›

by (intro fm-in-K ′) simp-all
show (fm (Suc m) (y (Suc m)))F t ∈ (λk. (k)F t) ‘ K ′ (Suc n)

apply (rule image-eqI [OF - img])
using ‹j ∈ J (Suc n)› ‹j ∈ J (Suc m)›
unfolding j by (subst proj-fm, auto)+

qed
have ∀ t. ∃ z. (λi. (fm (Suc (diagseq i)) (y (Suc (diagseq i))))F t) −−−−→ z

using diagonal-tendsto ..
then obtain z where z:∧

t. (λi. (fm (Suc (diagseq i)) (y (Suc (diagseq i))))F t) −−−−→ z t
unfolding choice-iff by blast

{
fix n :: nat assume n ≥ 1
have

∧
i. domain (fm n (y (Suc (diagseq i)))) = domain (finmap-of (Utn ‘ J

n) z)
by simp

moreover
{

fix t
assume t: t ∈ domain (finmap-of (Utn ‘ J n) z)
hence t ∈ Utn ‘ J n by simp
then obtain j where j: t = Utn j j ∈ J n by auto
have (λi. (fm n (y (Suc (diagseq i))))F t) −−−−→ z t

apply (subst (2) tendsto-iff , subst eventually-sequentially)
proof safe

fix e :: real assume 0 < e
{ fix i and x :: ′i ⇒ ′a assume i: i ≥ n

assume t ∈ domain (fm n x)
hence t ∈ domain (fm i x) using J-mono[OF ‹i ≥ n›] by auto
with i have (fm i x)F t = (fm n x)F t

using j by (auto simp: proj-fm dest!: inj-onD[OF inj-on-Utn])
} note index-shift = this
have I :

∧
i. i ≥ n =⇒ Suc (diagseq i) ≥ n

apply (rule le-SucI)
apply (rule order-trans) apply simp
apply (rule seq-suble[OF subseq-diagseq])
done

from z
have ∃N . ∀ i≥N . dist ((fm (Suc (diagseq i)) (y (Suc (diagseq i))))F t) (z

t) < e
unfolding tendsto-iff eventually-sequentially using ‹0 < e› by auto

then obtain N where N :
∧

i. i ≥ N =⇒
dist ((fm (Suc (diagseq i)) (y (Suc (diagseq i))))F t) (z t) < e by auto

show ∃N . ∀na≥N . dist ((fm n (y (Suc (diagseq na))))F t) (z t) < e

THEORY “Projective-Limit” 382

proof (rule exI [where x=max N n], safe)
fix na assume max N n ≤ na
hence dist ((fm n (y (Suc (diagseq na))))F t) (z t) =

dist ((fm (Suc (diagseq na)) (y (Suc (diagseq na))))F t) (z t) using t
by (subst index-shift[OF I]) auto

also have . . . < e using ‹max N n ≤ na› by (intro N) simp
finally show dist ((fm n (y (Suc (diagseq na))))F t) (z t) < e .

qed
qed
hence (λi. (fm n (y (Suc (diagseq i))))F t) −−−−→ (finmap-of (Utn ‘ J n)

z)F t
by (simp add: tendsto-intros)

} ultimately
have (λi. fm n (y (Suc (diagseq i)))) −−−−→ finmap-of (Utn ‘ J n) z

by (rule tendsto-finmap)
hence ((λi. fm n (y (Suc (diagseq i)))) o (λi. i + n)) −−−−→ finmap-of (Utn

‘ J n) z
by (rule LIMSEQ-subseq-LIMSEQ) (simp add: strict-mono-def)

moreover
have (∀ i. ((λi. fm n (y (Suc (diagseq i)))) o (λi. i + n)) i ∈ K ′ n)

apply (auto simp add: o-def intro!: fm-in-K ′ ‹1 ≤ n› le-SucI)
apply (rule le-trans)
apply (rule le-add2)
using seq-suble[OF subseq-diagseq]
apply auto
done

moreover
from ‹compact (K ′ n)› have closed (K ′ n) by (rule compact-imp-closed)
ultimately
have finmap-of (Utn ‘ J n) z ∈ K ′ n

unfolding closed-sequential-limits by blast
also have finmap-of (Utn ‘ J n) z = fm n (λi. z (Utn i))

unfolding finmap-eq-iff
proof clarsimp

fix i assume i: i ∈ J n
hence from-nat-into (

⋃
n. J n) (Utn i) = i

unfolding Utn-def
by (subst from-nat-into-to-nat-on[OF countable-UN-J]) auto

with i show z (Utn i) = (fm n (λi. z (Utn i)))F (Utn i)
by (simp add: finmap-eq-iff fm-def compose-def)

qed
finally have fm n (λi. z (Utn i)) ∈ K ′ n .
moreover
let ?J =

⋃
n. J n

have (?J ∩ J n) = J n by auto
ultimately have restrict (λi. z (Utn i)) (?J ∩ J n) ∈ K n

unfolding K-def by (auto simp: space-P space-PiM)
hence restrict (λi. z (Utn i)) ?J ∈ Z ′ n unfolding Z ′-def

using J by (auto simp: prod-emb-def PiE-def extensional-def)

THEORY “Random-Permutations” 383

also have . . . ⊆ Z n using Z ′ by simp
finally have restrict (λi. z (Utn i)) ?J ∈ Z n .

} note in-Z = this
hence (

⋂
i∈{1 ..}. Z i) 6= {} by auto

thus (
⋂

i. Z i) 6= {}
using INT-decseq-offset[OF antimonoI [OF Z-mono]] by simp

qed fact+

lemma measure-lim-emb:
J ⊆ I =⇒ finite J =⇒ X ∈ sets (ΠM i∈J . borel) =⇒ measure lim (emb I J X)

= measure (P J) X
unfolding measure-def by (subst emeasure-lim-emb) auto

end

hide-const (open) PiF
hide-const (open) PiF
hide-const (open) Pi ′
hide-const (open) finmap-of
hide-const (open) proj
hide-const (open) domain
hide-const (open) basis-finmap

sublocale polish-projective ⊆ P: prob-space lim
proof

have ∗: emb I {} {λx. undefined} = space (ΠM i∈I . borel)
by (auto simp: prod-emb-def space-PiM)

interpret prob-space P {}
using prob-space-P by simp

show emeasure lim (space lim) = 1
using emeasure-lim-emb[of {} {λx. undefined}] emeasure-space-1
by (simp add: ∗ PiM-empty space-P)

qed

locale polish-product-prob-space =
product-prob-space λ-. borel::(′a::polish-space) measure I for I :: ′i set

sublocale polish-product-prob-space ⊆ P: polish-projective I λJ . PiM J (λ-. borel::(′a)
measure)

..

lemma (in polish-product-prob-space) limP-eq-PiM : lim = PiM I (λ-. borel)
by (rule PiM-eq) (auto simp: emeasure-PiM emeasure-lim-emb)

end

24 Random Permutations
theory Random-Permutations

THEORY “Random-Permutations” 384

imports
HOL−Combinatorics.Multiset-Permutations
Probability-Mass-Function

begin

Choosing a set permutation (i.e. a distinct list with the same elements as
the set) uniformly at random is the same as first choosing the first element
of the list and then choosing the rest of the list as a permutation of the
remaining set.
lemma random-permutation-of-set:

assumes finite A A 6= {}
shows pmf-of-set (permutations-of-set A) =

do {
x ← pmf-of-set A;
xs ← pmf-of-set (permutations-of-set (A − {x}));
return-pmf (x#xs)
} (is ?lhs = ?rhs)

proof −
from assms have permutations-of-set A = (

⋃
x∈A. (#) x ‘ permutations-of-set

(A − {x}))
by (simp add: permutations-of-set-nonempty)

also from assms have pmf-of-set . . . = ?rhs
by (subst pmf-of-set-UN [where n = fact (card A − 1)])

(auto simp: card-image disjoint-family-on-def map-pmf-def [symmetric]
map-pmf-of-set-inj)

finally show ?thesis .
qed

A generic fold function that takes a function, an initial state, and a set and
chooses a random order in which it then traverses the set in the same fashion
as a left fold over a list. We first give a recursive definition.
function fold-random-permutation :: (′a ⇒ ′b ⇒ ′b) ⇒ ′b ⇒ ′a set ⇒ ′b pmf
where

fold-random-permutation f x {} = return-pmf x
| ¬finite A =⇒ fold-random-permutation f x A = return-pmf x
| finite A =⇒ A 6= {} =⇒

fold-random-permutation f x A =
pmf-of-set A >>= (λa. fold-random-permutation f (f a x) (A − {a}))

by simp-all fastforce
termination proof (relation Wellfounded.measure (λ(-,-,A). card A))

fix A :: ′a set and f :: ′a ⇒ ′b ⇒ ′b and x :: ′b and y :: ′a
assume A: finite A A 6= {} y ∈ set-pmf (pmf-of-set A)
then have card A > 0 by (simp add: card-gt-0-iff)
with A show ((f , f y x, A − {y}), f , x, A) ∈ Wellfounded.measure (λ(-, -, A).

card A)
by simp

qed simp-all

We can now show that the above recursive definition is equivalent to choosing

THEORY “Random-Permutations” 385

a random set permutation and folding over it (in any direction).
lemma fold-random-permutation-foldl:

assumes finite A
shows fold-random-permutation f x A =

map-pmf (foldl (λx y. f y x) x) (pmf-of-set (permutations-of-set A))
using assms
proof (induction f x A rule: fold-random-permutation.induct [case-names empty
infinite remove])

case (remove A f x)
from remove

have fold-random-permutation f x A =
pmf-of-set A >>= (λa. fold-random-permutation f (f a x) (A − {a})) by

simp
also from remove

have . . . = pmf-of-set A >>= (λa. map-pmf (foldl (λx y. f y x) x)
(map-pmf ((#) a) (pmf-of-set (permutations-of-set (A − {a})))))

by (intro bind-pmf-cong) (simp-all add: pmf .map-comp o-def)
also from remove have . . . = map-pmf (foldl (λx y. f y x) x) (pmf-of-set

(permutations-of-set A))
by (simp-all add: random-permutation-of-set map-bind-pmf map-pmf-def [symmetric])

finally show ?case .
qed (simp-all add: pmf-of-set-singleton)

lemma fold-random-permutation-foldr :
assumes finite A
shows fold-random-permutation f x A =

map-pmf (λxs. foldr f xs x) (pmf-of-set (permutations-of-set A))
proof −

have fold-random-permutation f x A =
map-pmf (foldl (λx y. f y x) x ◦ rev) (pmf-of-set (permutations-of-set A))

using assms by (subst fold-random-permutation-foldl [OF assms])
(simp-all add: pmf .map-comp [symmetric] map-pmf-of-set-inj)

also have foldl (λx y. f y x) x ◦ rev = (λxs. foldr f xs x)
by (intro ext) (simp add: foldl-conv-foldr)

finally show ?thesis .
qed

lemma fold-random-permutation-fold:
assumes finite A
shows fold-random-permutation f x A =

map-pmf (λxs. fold f xs x) (pmf-of-set (permutations-of-set A))
by (subst fold-random-permutation-foldl [OF assms], intro map-pmf-cong)

(simp-all add: foldl-conv-fold)

lemma fold-random-permutation-code [code]:
fold-random-permutation f x (set xs) =

map-pmf (foldl (λx y. f y x) x) (pmf-of-set (permutations-of-set (set xs)))
by (simp add: fold-random-permutation-foldl)

THEORY “Random-Permutations” 386

We now introduce a slightly generalised version of the above fold operation
that does not simply return the result in the end, but applies a monadic bind
to it. This may seem somewhat arbitrary, but it is a common use case, e.g.
in the Social Decision Scheme of Random Serial Dictatorship, where voters
narrow down a set of possible winners in a random order and the winner is
chosen from the remaining set uniformly at random.
function fold-bind-random-permutation

:: (′a ⇒ ′b ⇒ ′b) ⇒ (′b ⇒ ′c pmf) ⇒ ′b ⇒ ′a set ⇒ ′c pmf where
fold-bind-random-permutation f g x {} = g x
| ¬finite A =⇒ fold-bind-random-permutation f g x A = g x
| finite A =⇒ A 6= {} =⇒

fold-bind-random-permutation f g x A =
pmf-of-set A >>= (λa. fold-bind-random-permutation f g (f a x) (A − {a}))

by simp-all fastforce
termination proof (relation Wellfounded.measure (λ(-,-,-,A). card A))

fix A :: ′a set and f :: ′a ⇒ ′b ⇒ ′b and x :: ′b
and y :: ′a and g :: ′b ⇒ ′c pmf

assume A: finite A A 6= {} y ∈ set-pmf (pmf-of-set A)
then have card A > 0 by (simp add: card-gt-0-iff)
with A show ((f , g, f y x , A − {y}), f , g, x, A) ∈ Wellfounded.measure (λ(-, -,

-, A). card A)
by simp

qed simp-all

We now show that the recursive definition is equivalent to a random fold
followed by a monadic bind.
lemma fold-bind-random-permutation-altdef [code]:

fold-bind-random-permutation f g x A = fold-random-permutation f x A >>= g
proof (induction f x A rule: fold-random-permutation.induct [case-names empty
infinite remove])

case (remove A f x)
from remove have pmf-of-set A >>= (λa. fold-bind-random-permutation f g (f a

x) (A − {a})) =
pmf-of-set A >>= (λa. fold-random-permutation f (f a x) (A −

{a}) >>= g)
by (intro bind-pmf-cong) simp-all

with remove show ?case by (simp add: bind-return-pmf bind-assoc-pmf)
qed (simp-all add: bind-return-pmf)

We can now derive the following nice monadic representations of the com-
bined fold-and-bind:
lemma fold-bind-random-permutation-foldl:

assumes finite A
shows fold-bind-random-permutation f g x A =

do {xs ← pmf-of-set (permutations-of-set A); g (foldl (λx y. f y x) x xs)}
using assms by (simp add: fold-bind-random-permutation-altdef bind-assoc-pmf

fold-random-permutation-foldl bind-return-pmf map-pmf-def)

THEORY “Random-Permutations” 387

lemma fold-bind-random-permutation-foldr :
assumes finite A
shows fold-bind-random-permutation f g x A =

do {xs ← pmf-of-set (permutations-of-set A); g (foldr f xs x)}
using assms by (simp add: fold-bind-random-permutation-altdef bind-assoc-pmf

fold-random-permutation-foldr bind-return-pmf map-pmf-def)

lemma fold-bind-random-permutation-fold:
assumes finite A
shows fold-bind-random-permutation f g x A =

do {xs ← pmf-of-set (permutations-of-set A); g (fold f xs x)}
using assms by (simp add: fold-bind-random-permutation-altdef bind-assoc-pmf

fold-random-permutation-fold bind-return-pmf map-pmf-def)

The following useful lemma allows us to swap partitioning a set w. r. t. a
predicate and drawing a random permutation of that set.
lemma partition-random-permutations:

assumes finite A
shows map-pmf (partition P) (pmf-of-set (permutations-of-set A)) =

pair-pmf (pmf-of-set (permutations-of-set {x∈A. P x}))
(pmf-of-set (permutations-of-set {x∈A. ¬P x})) (is ?lhs = ?rhs)

proof (rule pmf-eqI , clarify, goal-cases)
case (1 xs ys)
show ?case
proof (cases xs ∈ permutations-of-set {x∈A. P x} ∧ ys ∈ permutations-of-set
{x∈A. ¬P x})

case True
let ?n1 = card {x∈A. P x} and ?n2 = card {x∈A. ¬P x}
have card-eq: card A = ?n1 + ?n2
proof −

have ?n1 + ?n2 = card ({x∈A. P x} ∪ {x∈A. ¬P x})
using assms by (intro card-Un-disjoint [symmetric]) auto

also have {x∈A. P x} ∪ {x∈A. ¬P x} = A by blast
finally show ?thesis ..

qed

from True have lengths [simp]: length xs = ?n1 length ys = ?n2
by (auto intro!: length-finite-permutations-of-set)

have pmf ?lhs (xs, ys) =
real (card (permutations-of-set A ∩ partition P −‘ {(xs, ys)})) / fact

(card A)
using assms by (auto simp: pmf-map measure-pmf-of-set)

also have partition P −‘ {(xs, ys)} = shuffles xs ys
using True by (intro inv-image-partition) (auto simp: permutations-of-set-def)
also have permutations-of-set A ∩ shuffles xs ys = shuffles xs ys

using True distinct-disjoint-shuffles[of xs ys]
by (auto simp: permutations-of-set-def dest: set-shuffles)

also have card (shuffles xs ys) = length xs + length ys choose length xs
using True by (intro card-disjoint-shuffles) (auto simp: permutations-of-set-def)

THEORY “SPMF” 388

also have length xs + length ys = card A by (simp add: card-eq)
also have real (card A choose length xs) = fact (card A) / (fact ?n1 ∗ fact

(card A − ?n1))
by (subst binomial-fact) (auto intro!: card-mono assms)

also have . . . / fact (card A) = 1 / (fact ?n1 ∗ fact ?n2)
by (simp add: field-split-simps card-eq)

also have . . . = pmf ?rhs (xs, ys) using True assms by (simp add: pmf-pair)
finally show ?thesis .

next
case False

hence ∗: xs /∈ permutations-of-set {x∈A. P x} ∨ ys /∈ permutations-of-set {x∈A.
¬P x} by blast

hence eq: permutations-of-set A ∩ (partition P −‘ {(xs, ys)}) = {}
by (auto simp: o-def permutations-of-set-def)

from ∗ show ?thesis
by (elim disjE) (insert assms eq, simp-all add: pmf-pair pmf-map mea-

sure-pmf-of-set)
qed

qed

end

25 Discrete subprobability distribution
theory SPMF imports

Probability-Mass-Function
HOL−Library.Complete-Partial-Order2
HOL−Library.Rewrite

begin

25.1 Auxiliary material
lemma cSUP-singleton [simp]: (SUP x∈{x}. f x :: - :: conditionally-complete-lattice)
= f x

by (metis cSup-singleton image-empty image-insert)

25.1.1 More about extended reals
lemma [simp]:

shows ennreal-max-0 : ennreal (max 0 x) = ennreal x
and ennreal-max-0 ′: ennreal (max x 0) = ennreal x

by(simp-all add: max-def ennreal-eq-0-iff)

lemma e2ennreal-0 [simp]: e2ennreal 0 = 0
by(simp add: zero-ennreal-def)

lemma enn2real-bot [simp]: enn2real ⊥ = 0
by(simp add: bot-ennreal-def)

THEORY “SPMF” 389

lemma continuous-at-ennreal[continuous-intros]: continuous F f =⇒ continuous F
(λx. ennreal (f x))

unfolding continuous-def by auto

lemma ennreal-Sup:
assumes ∗: (SUP a∈A. ennreal a) 6= >
and A 6= {}
shows ennreal (Sup A) = (SUP a∈A. ennreal a)

proof (rule continuous-at-Sup-mono)
obtain r where r : ennreal r = (SUP a∈A. ennreal a) r ≥ 0

using ∗ by(cases (SUP a∈A. ennreal a)) simp-all
then show bdd-above A
by(auto intro!: SUP-upper bdd-aboveI [of - r] simp add: ennreal-le-iff [symmetric])

qed (auto simp: mono-def continuous-at-imp-continuous-at-within continuous-at-ennreal
ennreal-leI assms)

lemma ennreal-SUP:
[[(SUP a∈A. ennreal (f a)) 6= >; A 6= {}]] =⇒ ennreal (SUP a∈A. f a) = (SUP

a∈A. ennreal (f a))
using ennreal-Sup[of f ‘ A] by (auto simp: image-comp)

lemma ennreal-lt-0 : x < 0 =⇒ ennreal x = 0
by(simp add: ennreal-eq-0-iff)

25.1.2 More about ′a option
lemma None-in-map-option-image [simp]: None ∈ map-option f ‘ A ←→ None ∈
A

by auto

lemma Some-in-map-option-image [simp]: Some x ∈ map-option f ‘ A ←→ (∃ y.
x = f y ∧ Some y ∈ A)

by (smt (verit, best) imageE imageI map-option-eq-Some)

lemma case-option-collapse: case-option x (λ-. x) = (λ-. x)
by(simp add: fun-eq-iff split: option.split)

lemma case-option-id: case-option None Some = id
by(rule ext)(simp split: option.split)

inductive ord-option :: (′a ⇒ ′b ⇒ bool) ⇒ ′a option ⇒ ′b option ⇒ bool
for ord :: ′a ⇒ ′b ⇒ bool

where
None: ord-option ord None x
| Some: ord x y =⇒ ord-option ord (Some x) (Some y)

inductive-simps ord-option-simps [simp]:
ord-option ord None x
ord-option ord x None

THEORY “SPMF” 390

ord-option ord (Some x) (Some y)
ord-option ord (Some x) None

inductive-simps ord-option-eq-simps [simp]:
ord-option (=) None y
ord-option (=) (Some x) y

lemma ord-option-reflI : (
∧

y. y ∈ set-option x =⇒ ord y y) =⇒ ord-option ord x
x

by(cases x) simp-all

lemma reflp-ord-option: reflp ord =⇒ reflp (ord-option ord)
by(simp add: reflp-def ord-option-reflI)

lemma ord-option-trans:
[[ord-option ord x y; ord-option ord y z;∧

a b c. [[a ∈ set-option x; b ∈ set-option y; c ∈ set-option z; ord a b; ord b c
]] =⇒ ord a c]]
=⇒ ord-option ord x z
by(auto elim!: ord-option.cases)

lemma transp-ord-option: transp ord =⇒ transp (ord-option ord)
unfolding transp-def by(blast intro: ord-option-trans)

lemma antisymp-ord-option: antisymp ord =⇒ antisymp (ord-option ord)
by(auto intro!: antisympI elim!: ord-option.cases dest: antisympD)

lemma ord-option-chainD:
Complete-Partial-Order .chain (ord-option ord) Y
=⇒ Complete-Partial-Order .chain ord {x. Some x ∈ Y }
by(rule chainI)(auto dest: chainD)

definition lub-option :: (′a set ⇒ ′b) ⇒ ′a option set ⇒ ′b option
where lub-option lub Y = (if Y ⊆ {None} then None else Some (lub {x. Some

x ∈ Y }))

lemma map-lub-option: map-option f (lub-option lub Y) = lub-option (f ◦ lub) Y
by(simp add: lub-option-def)

lemma lub-option-upper :
assumes Complete-Partial-Order .chain (ord-option ord) Y x ∈ Y

and lub-upper :
∧

Y x. [[Complete-Partial-Order .chain ord Y ; x ∈ Y]] =⇒ ord
x (lub Y)

shows ord-option ord x (lub-option lub Y)
using assms(1−2)
by(cases x)(auto simp: lub-option-def intro: lub-upper [OF ord-option-chainD])

lemma lub-option-least:
assumes Y : Complete-Partial-Order .chain (ord-option ord) Y

THEORY “SPMF” 391

and upper :
∧

x. x ∈ Y =⇒ ord-option ord x y
assumes lub-least:

∧
Y y. [[Complete-Partial-Order .chain ord Y ;

∧
x. x ∈ Y =⇒

ord x y]] =⇒ ord (lub Y) y
shows ord-option ord (lub-option lub Y) y
using Y
by(cases y)(auto 4 3 simp add: lub-option-def intro: lub-least[OF ord-option-chainD]

dest: upper)

lemma lub-map-option: lub-option lub (map-option f ‘ Y) = lub-option (lub ◦ (‘)
f) Y
proof −

have
∧

u y. [[Some u ∈ Y ; y ∈ Y]] =⇒ {f y |y. Some y ∈ Y } = f ‘ {x. Some x
∈ Y }

by blast
then show ?thesis

by (auto simp: lub-option-def)
qed

lemma ord-option-mono: [[ord-option A x y;
∧

x y. A x y =⇒ B x y]] =⇒
ord-option B x y

by(auto elim: ord-option.cases)

lemma ord-option-mono ′ [mono]:
(
∧

x y. A x y −→ B x y) =⇒ ord-option A x y −→ ord-option B x y
by(blast intro: ord-option-mono)

lemma ord-option-compp: ord-option (A OO B) = ord-option A OO ord-option B
by(auto simp: fun-eq-iff elim!: ord-option.cases intro: ord-option.intros)

lemma ord-option-inf : inf (ord-option A) (ord-option B) = ord-option (inf A B)
(is ?lhs = ?rhs)
proof(rule antisym)

show ?lhs ≤ ?rhs by(auto elim!: ord-option.cases)
qed(auto elim: ord-option-mono)

lemma ord-option-map2 : ord-option ord x (map-option f y) = ord-option (λx y.
ord x (f y)) x y

by(auto elim: ord-option.cases)

lemma ord-option-map1 : ord-option ord (map-option f x) y = ord-option (λx y.
ord (f x) y) x y

by(auto elim: ord-option.cases)

lemma option-ord-Some1-iff : option-ord (Some x) y ←→ y = Some x
by(auto simp: flat-ord-def)

25.1.3 A relator for sets that treats sets like predicates
context includes lifting-syntax

THEORY “SPMF” 392

begin

definition rel-pred :: (′a ⇒ ′b ⇒ bool) ⇒ ′a set ⇒ ′b set ⇒ bool
where rel-pred R A B = (R ===> (=)) (λx. x ∈ A) (λy. y ∈ B)

lemma rel-predI : (R ===> (=)) (λx. x ∈ A) (λy. y ∈ B) =⇒ rel-pred R A B
by(simp add: rel-pred-def)

lemma rel-predD: [[rel-pred R A B; R x y]] =⇒ x ∈ A ←→ y ∈ B
by(simp add: rel-pred-def rel-fun-def)

lemma Collect-parametric: ((A ===> (=)) ===> rel-pred A) Collect Collect
— Declare this rule as transfer-rule only locally because it blows up the search

space for transfer (in combination with Collect-transfer)
by(simp add: rel-funI rel-predI)

end

25.1.4 Monotonicity rules
lemma monotone-gfp-eadd1 : monotone (≥) (≥) (λx. x + y :: enat)

by(auto intro!: monotoneI)

lemma monotone-gfp-eadd2 : monotone (≥) (≥) (λy. x + y :: enat)
by(auto intro!: monotoneI)

lemma mono2mono-gfp-eadd[THEN gfp.mono2mono2 , cont-intro, simp]:
shows monotone-eadd: monotone (rel-prod (≥) (≥)) (≥) (λ(x, y). x + y :: enat)
by(simp add: monotone-gfp-eadd1 monotone-gfp-eadd2)

lemma eadd-gfp-partial-function-mono [partial-function-mono]:
[[monotone (fun-ord (≥)) (≥) f ; monotone (fun-ord (≥)) (≥) g]]
=⇒ monotone (fun-ord (≥)) (≥) (λx. f x + g x :: enat)
by(rule mono2mono-gfp-eadd)

lemma mono2mono-ereal[THEN lfp.mono2mono]:
shows monotone-ereal: monotone (≤) (≤) ereal
by(rule monotoneI) simp

lemma mono2mono-ennreal[THEN lfp.mono2mono]:
shows monotone-ennreal: monotone (≤) (≤) ennreal
by(rule monotoneI)(simp add: ennreal-leI)

25.1.5 Bijections
lemma bi-unique-rel-set-bij-betw:

assumes unique: bi-unique R
and rel: rel-set R A B
shows ∃ f . bij-betw f A B ∧ (∀ x∈A. R x (f x))

proof −

THEORY “SPMF” 393

from assms obtain f where f :
∧

x. x ∈ A =⇒ R x (f x) and B:
∧

x. x ∈ A =⇒
f x ∈ B

by (metis bi-unique-rel-set-lemma image-eqI)
have inj-on f A

by (metis (no-types, lifting) bi-unique-def f inj-on-def unique)
moreover have f ‘ A = B using rel

by (smt (verit) bi-unique-def bi-unique-rel-set-lemma f image-cong unique)
ultimately have bij-betw f A B unfolding bij-betw-def ..
thus ?thesis using f by blast

qed

lemma bij-betw-rel-setD: bij-betw f A B =⇒ rel-set (λx y. y = f x) A B
by(rule rel-setI)(auto dest: bij-betwE bij-betw-imp-surj-on[symmetric])

25.2 Subprobability mass function
type-synonym ′a spmf = ′a option pmf
translations (type) ′a spmf ↽ (type) ′a option pmf

definition measure-spmf :: ′a spmf ⇒ ′a measure
where measure-spmf p = distr (restrict-space (measure-pmf p) (range Some))

(count-space UNIV) the

abbreviation spmf :: ′a spmf ⇒ ′a ⇒ real
where spmf p x ≡ pmf p (Some x)

lemma space-measure-spmf : space (measure-spmf p) = UNIV
by(simp add: measure-spmf-def)

lemma sets-measure-spmf [simp, measurable-cong]: sets (measure-spmf p) = sets
(count-space UNIV)

by(simp add: measure-spmf-def)

lemma measure-spmf-not-bot [simp]: measure-spmf p 6= ⊥
by (metis empty-not-UNIV space-bot space-measure-spmf)

lemma measurable-the-measure-pmf-Some [measurable, simp]:
the ∈ measurable (restrict-space (measure-pmf p) (range Some)) (count-space

UNIV)
by(auto simp: measurable-def sets-restrict-space space-restrict-space integral-restrict-space)

lemma measurable-spmf-measure1 [simp]: measurable (measure-spmf M) N = UNIV
→ space N

by(auto simp: measurable-def space-measure-spmf)

lemma measurable-spmf-measure2 [simp]: measurable N (measure-spmf M) = mea-
surable N (count-space UNIV)

by(intro measurable-cong-sets) simp-all

THEORY “SPMF” 394

lemma subprob-space-measure-spmf [simp, intro!]: subprob-space (measure-spmf p)
proof

show emeasure (measure-spmf p) (space (measure-spmf p)) ≤ 1
by(simp add: measure-spmf-def emeasure-distr emeasure-restrict-space space-restrict-space

measure-pmf .measure-le-1)
qed(simp add: space-measure-spmf)

interpretation measure-spmf : subprob-space measure-spmf p for p
by(rule subprob-space-measure-spmf)

lemma finite-measure-spmf [simp]: finite-measure (measure-spmf p)
by unfold-locales

lemma spmf-conv-measure-spmf : spmf p x = measure (measure-spmf p) {x}
by(auto simp: measure-spmf-def measure-distr measure-restrict-space pmf .rep-eq

space-restrict-space intro: arg-cong2 [where f=measure])

lemma emeasure-measure-spmf-conv-measure-pmf :
emeasure (measure-spmf p) A = emeasure (measure-pmf p) (Some ‘ A)
by(auto simp: measure-spmf-def emeasure-distr emeasure-restrict-space space-restrict-space

intro: arg-cong2 [where f=emeasure])

lemma measure-measure-spmf-conv-measure-pmf :
measure (measure-spmf p) A = measure (measure-pmf p) (Some ‘ A)
using emeasure-measure-spmf-conv-measure-pmf [of p A]
by(simp add: measure-spmf .emeasure-eq-measure measure-pmf .emeasure-eq-measure)

lemma emeasure-spmf-map-pmf-Some [simp]:
emeasure (measure-spmf (map-pmf Some p)) A = emeasure (measure-pmf p) A
by(auto simp: measure-spmf-def emeasure-distr emeasure-restrict-space space-restrict-space

intro: arg-cong2 [where f=emeasure])

lemma measure-spmf-map-pmf-Some [simp]:
measure (measure-spmf (map-pmf Some p)) A = measure (measure-pmf p) A
using emeasure-spmf-map-pmf-Some[of p A] by(simp add: measure-spmf .emeasure-eq-measure

measure-pmf .emeasure-eq-measure)

lemma nn-integral-measure-spmf : (
∫

+ x. f x ∂measure-spmf p) =
∫

+ x. ennreal
(spmf p x) ∗ f x ∂count-space UNIV
(is ?lhs = ?rhs)

proof −
have ?lhs =

∫
+ x. pmf p x ∗ f (the x) ∂count-space (range Some)

by(simp add: measure-spmf-def nn-integral-distr nn-integral-restrict-space nn-integral-measure-pmf
nn-integral-count-space-indicator ac-simps

flip: times-ereal.simps [symmetric])
also have . . . =

∫
+ x. ennreal (spmf p (the x)) ∗ f (the x) ∂count-space (range

Some)
by(rule nn-integral-cong) auto

also have . . . =
∫

+ x. spmf p (the (Some x)) ∗ f (the (Some x)) ∂count-space

THEORY “SPMF” 395

UNIV
by(rule nn-integral-bij-count-space[symmetric])(simp add: bij-betw-def)

also have . . . = ?rhs by simp
finally show ?thesis .

qed

lemma integral-measure-spmf :
assumes integrable (measure-spmf p) f
shows (

∫
x. f x ∂measure-spmf p) =

∫
x. spmf p x ∗ f x ∂count-space UNIV

proof −
have integrable (count-space UNIV) (λx. spmf p x ∗ f x)
using assms by(simp add: integrable-iff-bounded nn-integral-measure-spmf abs-mult

ennreal-mult ′′)
then show ?thesis using assms
by(simp add: real-lebesgue-integral-def nn-integral-measure-spmf ennreal-mult ′[symmetric])

qed

lemma emeasure-spmf-single: emeasure (measure-spmf p) {x} = spmf p x
by(simp add: measure-spmf .emeasure-eq-measure spmf-conv-measure-spmf)

lemma measurable-measure-spmf [measurable]:
(λx. measure-spmf (M x)) ∈ measurable (count-space UNIV) (subprob-algebra

(count-space UNIV))
by (auto simp: space-subprob-algebra)

lemma nn-integral-measure-spmf-conv-measure-pmf :
assumes [measurable]: f ∈ borel-measurable (count-space UNIV)
shows nn-integral (measure-spmf p) f = nn-integral (restrict-space (measure-pmf

p) (range Some)) (f ◦ the)
by(simp add: measure-spmf-def nn-integral-distr o-def)

lemma measure-spmf-in-space-subprob-algebra [simp]:
measure-spmf p ∈ space (subprob-algebra (count-space UNIV))
by(simp add: space-subprob-algebra)

lemma nn-integral-spmf-neq-top: (
∫

+ x. spmf p x ∂count-space UNIV) 6= >
using nn-integral-measure-spmf [where f=λ-. 1 , of p, symmetric]
by simp

lemma SUP-spmf-neq-top ′: (SUP p∈Y . ennreal (spmf p x)) 6= >
by (metis SUP-least ennreal-le-1 ennreal-one-neq-top neq-top-trans pmf-le-1)

lemma SUP-spmf-neq-top: (SUP i. ennreal (spmf (Y i) x)) 6= >
by (meson SUP-eq-top-iff ennreal-le-1 ennreal-one-less-top linorder-not-le pmf-le-1)

lemma SUP-emeasure-spmf-neq-top: (SUP p∈Y . emeasure (measure-spmf p) A)
6= >
by (metis ennreal-one-less-top less-SUP-iff linorder-not-le measure-spmf .subprob-emeasure-le-1)

THEORY “SPMF” 396

25.3 Support
definition set-spmf :: ′a spmf ⇒ ′a set

where set-spmf p = set-pmf p >>= set-option

lemma set-spmf-rep-eq: set-spmf p = {x. measure (measure-spmf p) {x} 6= 0}
proof −

have
∧

x :: ′a. the −‘ {x} ∩ range Some = {Some x} by auto
then show ?thesis

unfolding set-spmf-def measure-spmf-def
by(auto simp: set-pmf .rep-eq measure-distr measure-restrict-space space-restrict-space)

qed

lemma in-set-spmf : x ∈ set-spmf p ←→ Some x ∈ set-pmf p
by(simp add: set-spmf-def)

lemma AE-measure-spmf-iff [simp]: (AE x in measure-spmf p. P x)←→ (∀ x∈set-spmf
p. P x)

unfolding set-spmf-def measure-spmf-def
by(force simp: AE-distr-iff AE-restrict-space-iff AE-measure-pmf-iff cong del:

AE-cong)

lemma spmf-eq-0-set-spmf : spmf p x = 0 ←→ x /∈ set-spmf p
by(auto simp: pmf-eq-0-set-pmf set-spmf-def)

lemma in-set-spmf-iff-spmf : x ∈ set-spmf p ←→ spmf p x 6= 0
by(auto simp: set-spmf-def set-pmf-iff)

lemma set-spmf-return-pmf-None [simp]: set-spmf (return-pmf None) = {}
by(auto simp: set-spmf-def)

lemma countable-set-spmf [simp]: countable (set-spmf p)
by(simp add: set-spmf-def bind-UNION)

lemma spmf-eqI :
assumes

∧
i. spmf p i = spmf q i

shows p = q
proof(rule pmf-eqI)

fix i
show pmf p i = pmf q i
proof(cases i)

case (Some i ′)
thus ?thesis by(simp add: assms)

next
case None
have ennreal (pmf p i) = measure (measure-pmf p) {i} by(simp add: pmf-def)
also have {i} = space (measure-pmf p) − range Some

by(auto simp: None intro: ccontr)
also have measure (measure-pmf p) . . . = ennreal 1 − measure (measure-pmf

p) (range Some)

THEORY “SPMF” 397

by(simp add: measure-pmf .prob-compl ennreal-minus[symmetric] del: space-measure-pmf)
also have range Some = (

⋃
x∈set-spmf p. {Some x}) ∪ Some ‘ (− set-spmf p)

by auto
also have measure (measure-pmf p) . . . = measure (measure-pmf p) (

⋃
x∈set-spmf

p. {Some x})
by(rule measure-pmf .measure-zero-union)(auto simp: measure-pmf .prob-eq-0

AE-measure-pmf-iff in-set-spmf-iff-spmf set-pmf-iff)
also have ennreal . . . =

∫
+ x. measure (measure-pmf p) {Some x} ∂count-space

(set-spmf p)
unfolding measure-pmf .emeasure-eq-measure[symmetric]
by(simp-all add: emeasure-UN-countable disjoint-family-on-def)
also have . . . =

∫
+ x. spmf p x ∂count-space (set-spmf p) by(simp add:

pmf-def)
also have . . . =

∫
+ x. spmf q x ∂count-space (set-spmf p) by(simp add: assms)

also have set-spmf p = set-spmf q by(auto simp: in-set-spmf-iff-spmf assms)
also have (

∫
+ x. spmf q x ∂count-space (set-spmf q)) =

∫
+ x. measure

(measure-pmf q) {Some x} ∂count-space (set-spmf q)
by(simp add: pmf-def)

also have . . . = measure (measure-pmf q) (
⋃

x∈set-spmf q. {Some x})
unfolding measure-pmf .emeasure-eq-measure[symmetric]
by(simp-all add: emeasure-UN-countable disjoint-family-on-def)

also have . . . = measure (measure-pmf q) ((
⋃

x∈set-spmf q. {Some x}) ∪ Some
‘ (− set-spmf q))

by(rule ennreal-cong measure-pmf .measure-zero-union[symmetric])+(auto
simp: measure-pmf .prob-eq-0 AE-measure-pmf-iff in-set-spmf-iff-spmf set-pmf-iff)

also have ((
⋃

x∈set-spmf q. {Some x}) ∪ Some ‘ (− set-spmf q)) = range
Some by auto

also have ennreal 1 − measure (measure-pmf q) . . . = measure (measure-pmf
q) (space (measure-pmf q) − range Some)

by(simp add: one-ereal-def measure-pmf .prob-compl ennreal-minus[symmetric]
del: space-measure-pmf)

also have space (measure-pmf q) − range Some = {i}
by(auto simp: None intro: ccontr)

also have measure (measure-pmf q) . . . = pmf q i by(simp add: pmf-def)
finally show ?thesis by simp

qed
qed

lemma integral-measure-spmf-restrict:
fixes f :: ′a ⇒ ′b :: {banach, second-countable-topology}
shows (

∫
x. f x ∂measure-spmf M) = (

∫
x. f x ∂restrict-space (measure-spmf

M) (set-spmf M))
by(auto intro!: integral-cong-AE simp add: integral-restrict-space)

lemma nn-integral-measure-spmf ′:
(
∫

+ x. f x ∂measure-spmf p) =
∫

+ x. ennreal (spmf p x) ∗ f x ∂count-space
(set-spmf p)
by(auto simp: nn-integral-measure-spmf nn-integral-count-space-indicator in-set-spmf-iff-spmf

intro!: nn-integral-cong split: split-indicator)

THEORY “SPMF” 398

25.4 Functorial structure
abbreviation map-spmf :: (′a ⇒ ′b) ⇒ ′a spmf ⇒ ′b spmf

where map-spmf f ≡ map-pmf (map-option f)

context begin
local-setup ‹Local-Theory.map-background-naming (Name-Space.mandatory-path
spmf)›

lemma map-comp: map-spmf f (map-spmf g p) = map-spmf (f ◦ g) p
by(simp add: pmf .map-comp o-def option.map-comp)

lemma map-id0 : map-spmf id = id
by(simp add: pmf .map-id option.map-id0)

lemma map-id [simp]: map-spmf id p = p
by(simp add: map-id0)

lemma map-ident [simp]: map-spmf (λx. x) p = p
by(simp add: id-def [symmetric])

end

lemma set-map-spmf [simp]: set-spmf (map-spmf f p) = f ‘ set-spmf p
by(simp add: set-spmf-def image-bind bind-image o-def Option.option.set-map)

lemma map-spmf-cong:
[[p = q;

∧
x. x ∈ set-spmf q =⇒ f x = g x]] =⇒ map-spmf f p = map-spmf g q

by(auto intro: pmf .map-cong option.map-cong simp add: in-set-spmf)

lemma map-spmf-cong-simp:
[[p = q;

∧
x. x ∈ set-spmf q =simp=> f x = g x]]

=⇒ map-spmf f p = map-spmf g q
unfolding simp-implies-def by(rule map-spmf-cong)

lemma map-spmf-idI : (
∧

x. x ∈ set-spmf p =⇒ f x = x) =⇒ map-spmf f p = p
by(rule map-pmf-idI map-option-idI)+(simp add: in-set-spmf)

lemma emeasure-map-spmf :
emeasure (measure-spmf (map-spmf f p)) A = emeasure (measure-spmf p) (f −‘

A)
by(auto simp: measure-spmf-def emeasure-distr measurable-restrict-space1 space-restrict-space

emeasure-restrict-space intro: arg-cong2 [where f=emeasure])

lemma measure-map-spmf : measure (measure-spmf (map-spmf f p)) A = measure
(measure-spmf p) (f −‘ A)
using emeasure-map-spmf [of f p A] by(simp add: measure-spmf .emeasure-eq-measure)

lemma measure-map-spmf-conv-distr :
measure-spmf (map-spmf f p) = distr (measure-spmf p) (count-space UNIV) f

THEORY “SPMF” 399

by(rule measure-eqI)(simp-all add: emeasure-map-spmf emeasure-distr)

lemma spmf-map-pmf-Some [simp]: spmf (map-pmf Some p) i = pmf p i
by(simp add: pmf-map-inj ′)

lemma spmf-map-inj: [[inj-on f (set-spmf M); x ∈ set-spmf M]] =⇒ spmf (map-spmf
f M) (f x) = spmf M x
by (smt (verit) elem-set in-set-spmf inj-on-def option.inj-map-strong option.map(2)

pmf-map-inj)

lemma spmf-map-inj ′: inj f =⇒ spmf (map-spmf f M) (f x) = spmf M x
by(subst option.map(2)[symmetric, where f=f])(rule pmf-map-inj ′[OF option.inj-map])

lemma spmf-map-outside: x /∈ f ‘ set-spmf M =⇒ spmf (map-spmf f M) x = 0
unfolding spmf-eq-0-set-spmf by simp

lemma ennreal-spmf-map: ennreal (spmf (map-spmf f p) x) = emeasure (measure-spmf
p) (f −‘ {x})

by (metis emeasure-map-spmf emeasure-spmf-single)

lemma spmf-map: spmf (map-spmf f p) x = measure (measure-spmf p) (f −‘ {x})
using ennreal-spmf-map[of f p x] by(simp add: measure-spmf .emeasure-eq-measure)

lemma ennreal-spmf-map-conv-nn-integral:
ennreal (spmf (map-spmf f p) x) = integralN (measure-spmf p) (indicator (f −‘
{x}))

by (simp add: ennreal-spmf-map)

25.5 Monad operations
25.5.1 Return
abbreviation return-spmf :: ′a ⇒ ′a spmf

where return-spmf x ≡ return-pmf (Some x)

lemma pmf-return-spmf : pmf (return-spmf x) y = indicator {y} (Some x)
by(fact pmf-return)

lemma measure-spmf-return-spmf : measure-spmf (return-spmf x) = Giry-Monad.return
(count-space UNIV) x
by(rule measure-eqI)(simp-all add: measure-spmf-def emeasure-distr space-restrict-space

emeasure-restrict-space indicator-def)

lemma measure-spmf-return-pmf-None [simp]: measure-spmf (return-pmf None)
= null-measure (count-space UNIV)

by (simp add: emeasure-measure-spmf-conv-measure-pmf measure-eqI)

lemma set-return-spmf [simp]: set-spmf (return-spmf x) = {x}
by(auto simp: set-spmf-def)

THEORY “SPMF” 400

25.5.2 Bind
definition bind-spmf :: ′a spmf ⇒ (′a ⇒ ′b spmf) ⇒ ′b spmf

where bind-spmf x f = bind-pmf x (λa. case a of None ⇒ return-pmf None |
Some a ′⇒ f a ′)

adhoc-overloading Monad-Syntax.bind
 bind-spmf

lemma return-None-bind-spmf [simp]: return-pmf None >>= (f :: ′a ⇒ -) = re-
turn-pmf None

by(simp add: bind-spmf-def bind-return-pmf)

lemma return-bind-spmf [simp]: return-spmf x >>= f = f x
by(simp add: bind-spmf-def bind-return-pmf)

lemma bind-return-spmf [simp]: x >>= return-spmf = x
proof −

have
∧

a :: ′a option. (case a of None ⇒ return-pmf None | Some a ′ ⇒ re-
turn-spmf a ′) = return-pmf a

by(simp split: option.split)
then show ?thesis

by(simp add: bind-spmf-def bind-return-pmf ′)
qed

lemma bind-spmf-assoc [simp]:
fixes x :: ′a spmf and f :: ′a ⇒ ′b spmf and g :: ′b ⇒ ′c spmf
shows (x >>= f) >>= g = x >>= (λy. f y >>= g)
unfolding bind-spmf-def
by (smt (verit, best) bind-assoc-pmf bind-pmf-cong bind-return-pmf option.case-eq-if)

lemma pmf-bind-spmf-None: pmf (p >>= f) None = pmf p None +
∫

x. pmf (f
x) None ∂measure-spmf p
(is ?lhs = ?rhs)

proof −
let ?f = λx. pmf (case x of None ⇒ return-pmf None | Some x ⇒ f x) None
have ?lhs =

∫
x. ?f x ∂measure-pmf p

by(simp add: bind-spmf-def pmf-bind)
also have . . . =

∫
x. ?f None ∗ indicator {None} x + ?f x ∗ indicator (range

Some) x ∂measure-pmf p
by(rule Bochner-Integration.integral-cong)(auto simp: indicator-def)

also have . . . = (
∫

x. ?f None ∗ indicator {None} x ∂measure-pmf p) + (
∫

x.
?f x ∗ indicator (range Some) x ∂measure-pmf p)

by(rule Bochner-Integration.integral-add)(auto 4 3 intro: integrable-real-mult-indicator
measure-pmf .integrable-const-bound[where B=1] simp add: AE-measure-pmf-iff
pmf-le-1)

also have . . . = pmf p None +
∫

x. indicator (range Some) x ∗ pmf (f (the x))
None ∂measure-pmf p

by(auto simp: measure-measure-pmf-finite indicator-eq-0-iff intro!: Bochner-Integration.integral-cong)
also have . . . = ?rhs

unfolding measure-spmf-def

THEORY “SPMF” 401

by(subst integral-distr)(auto simp: integral-restrict-space)
finally show ?thesis .

qed

lemma spmf-bind: spmf (p >>= f) y =
∫

x. spmf (f x) y ∂measure-spmf p
proof −

have
∧

x. spmf (case x of None ⇒ return-pmf None | Some x ⇒ f x) y =
indicat-real (range Some) x ∗ spmf (f (the x)) y

by (simp add: split: option.split)
then show ?thesis

by (simp add: measure-spmf-def integral-distr bind-spmf-def pmf-bind inte-
gral-restrict-space)
qed

lemma ennreal-spmf-bind: ennreal (spmf (p >>= f) x) =
∫

+ y. spmf (f y) x ∂mea-
sure-spmf p
proof −

have
∧

y. ennreal (spmf (case y of None ⇒ return-pmf None | Some x ⇒ f x)
x) =

ennreal (spmf (f (the y)) x) ∗ indicator (range Some) y
by (simp add: split: option.split)

then show ?thesis
by (simp add: bind-spmf-def ennreal-pmf-bind nn-integral-measure-spmf-conv-measure-pmf

nn-integral-restrict-space)
qed

lemma measure-spmf-bind-pmf : measure-spmf (p >>= f) = measure-pmf p >>=
measure-spmf ◦ f
(is ?lhs = ?rhs)

proof(rule measure-eqI)
show sets ?lhs = sets ?rhs

by (simp add: Giry-Monad.bind-def)
next

fix A :: ′a set
have emeasure ?lhs A =

∫
+ x. emeasure (measure-spmf (f x)) A ∂measure-pmf

p
by(simp add: measure-spmf-def emeasure-distr space-restrict-space emeasure-restrict-space

bind-spmf-def)
also have . . . = emeasure ?rhs A
by(simp add: emeasure-bind[where N=count-space UNIV] space-measure-spmf

space-subprob-algebra)
finally show emeasure ?lhs A = emeasure ?rhs A .

qed

lemma measure-spmf-bind: measure-spmf (p >>= f) = measure-spmf p >>= mea-
sure-spmf ◦ f
(is ?lhs = ?rhs)

proof(rule measure-eqI)
show sets ?lhs = sets ?rhs

THEORY “SPMF” 402

by(simp add: sets-bind[where N=count-space UNIV] space-measure-spmf)
next

fix A :: ′a set
let ?A = the −‘ A ∩ range Some
have emeasure ?lhs A =

∫
+ x. emeasure (measure-pmf (case x of None ⇒

return-pmf None | Some x ⇒ f x)) ?A ∂measure-pmf p
by(simp add: measure-spmf-def emeasure-distr space-restrict-space emeasure-restrict-space

bind-spmf-def)
also have . . . =

∫
+ x. emeasure (measure-pmf (f (the x))) ?A ∗ indicator

(range Some) x ∂measure-pmf p
by(rule nn-integral-cong)(auto split: option.split simp add: indicator-def)

also have . . . =
∫

+ x. emeasure (measure-spmf (f x)) A ∂measure-spmf p
by(simp add: measure-spmf-def nn-integral-distr nn-integral-restrict-space emea-

sure-distr space-restrict-space emeasure-restrict-space)
also have . . . = emeasure ?rhs A
by(simp add: emeasure-bind[where N=count-space UNIV] space-measure-spmf

space-subprob-algebra)
finally show emeasure ?lhs A = emeasure ?rhs A .

qed

lemma map-spmf-bind-spmf : map-spmf f (bind-spmf p g) = bind-spmf p (map-spmf
f ◦ g)

by(auto simp: bind-spmf-def map-bind-pmf fun-eq-iff split: option.split intro:
arg-cong2 [where f=bind-pmf])

lemma bind-map-spmf : map-spmf f p >>= g = p >>= g ◦ f
by(simp add: bind-spmf-def bind-map-pmf o-def cong del: option.case-cong-weak)

lemma spmf-bind-leI :
assumes

∧
y. y ∈ set-spmf p =⇒ spmf (f y) x ≤ r

and 0 ≤ r
shows spmf (bind-spmf p f) x ≤ r

proof −
have ennreal (spmf (bind-spmf p f) x) =

∫
+ y. spmf (f y) x ∂measure-spmf p

by(rule ennreal-spmf-bind)
also have . . . ≤

∫
+ y. r ∂measure-spmf p

by(rule nn-integral-mono-AE)(simp add: assms)
also have . . . ≤ r

using assms measure-spmf .emeasure-space-le-1
by(auto simp: measure-spmf .emeasure-eq-measure intro!: mult-left-le)

finally show ?thesis using assms(2) by(simp)
qed

lemma map-spmf-conv-bind-spmf : map-spmf f p = (p >>= (λx. return-spmf (f x)))
by(simp add: map-pmf-def bind-spmf-def)(rule bind-pmf-cong, simp-all split: op-

tion.split)

lemma bind-spmf-cong:
[[p = q;

∧
x. x ∈ set-spmf q =⇒ f x = g x]] =⇒ bind-spmf p f = bind-spmf q g

THEORY “SPMF” 403

by(auto simp: bind-spmf-def in-set-spmf intro: bind-pmf-cong option.case-cong)

lemma bind-spmf-cong-simp:
[[p = q;

∧
x. x ∈ set-spmf q =simp=> f x = g x]]

=⇒ bind-spmf p f = bind-spmf q g
by(simp add: simp-implies-def cong: bind-spmf-cong)

lemma set-bind-spmf : set-spmf (M >>= f) = set-spmf M >>= (set-spmf ◦ f)
by(auto simp: set-spmf-def bind-spmf-def bind-UNION split: option.splits)

lemma bind-spmf-const-return-None [simp]: bind-spmf p (λ-. return-pmf None) =
return-pmf None

by(simp add: bind-spmf-def case-option-collapse)

lemma bind-commute-spmf :
bind-spmf p (λx. bind-spmf q (f x)) = bind-spmf q (λy. bind-spmf p (λx. f x y))
(is ?lhs = ?rhs)

proof −
let ?f = λx y. case x of None ⇒ return-pmf None | Some a ⇒ (case y of None
⇒ return-pmf None | Some b ⇒ f a b)

have ?lhs = p >>= (λx. q >>= ?f x)
unfolding bind-spmf-def by(rule bind-pmf-cong[OF refl])(simp split: option.split)

also have . . . = q >>= (λy. p >>= (λx. ?f x y)) by(rule bind-commute-pmf)
also have . . . = ?rhs unfolding bind-spmf-def
by(rule bind-pmf-cong[OF refl])(auto split: option.split, metis bind-spmf-const-return-None

bind-spmf-def)
finally show ?thesis .

qed

25.6 Relator
abbreviation rel-spmf :: (′a ⇒ ′b ⇒ bool) ⇒ ′a spmf ⇒ ′b spmf ⇒ bool

where rel-spmf R ≡ rel-pmf (rel-option R)

lemma rel-spmf-mono:
[[rel-spmf A f g;

∧
x y. A x y =⇒ B x y]] =⇒ rel-spmf B f g

by (metis option.rel-sel pmf .rel-mono-strong)

lemma rel-spmf-mono-strong:
[[rel-spmf A f g;

∧
x y. [[A x y; x ∈ set-spmf f ; y ∈ set-spmf g]] =⇒ B x y]] =⇒

rel-spmf B f g
by (metis elem-set in-set-spmf option.rel-mono-strong pmf .rel-mono-strong)

lemma rel-spmf-reflI : (
∧

x. x ∈ set-spmf p =⇒ P x x) =⇒ rel-spmf P p p
by (metis (mono-tags, lifting) option.rel-eq pmf .rel-eq rel-spmf-mono-strong)

lemma rel-spmfI [intro?]:
[[
∧

x y. (x, y) ∈ set-spmf pq =⇒ P x y; map-spmf fst pq = p; map-spmf snd pq
= q]]

THEORY “SPMF” 404

=⇒ rel-spmf P p q
by(rule rel-pmf .intros[where pq=map-pmf (λx. case x of None ⇒ (None, None)
| Some (a, b) ⇒ (Some a, Some b)) pq])
(auto simp: pmf .map-comp o-def in-set-spmf split: option.splits intro: pmf .map-cong)

lemma rel-spmfE [elim?, consumes 1 , case-names rel-spmf]:
assumes rel-spmf P p q
obtains pq where∧

x y. (x, y) ∈ set-spmf pq =⇒ P x y
p = map-spmf fst pq
q = map-spmf snd pq

using assms
proof(cases rule: rel-pmf .cases[consumes 1 , case-names rel-pmf])

case (rel-pmf pq)
let ?pq = map-pmf (λ(a, b). case (a, b) of (Some x, Some y) ⇒ Some (x, y) | -
⇒ None) pq

have
∧

x y. (x, y) ∈ set-spmf ?pq =⇒ P x y
by(auto simp: in-set-spmf split: option.split-asm dest: rel-pmf (1))

moreover
have

∧
x. (x, None) ∈ set-pmf pq =⇒ x = None by(auto dest!: rel-pmf (1))

then have p = map-spmf fst ?pq using rel-pmf (2)
by(auto simp: pmf .map-comp split-beta intro!: pmf .map-cong split: option.split)

moreover
have

∧
y. (None, y) ∈ set-pmf pq =⇒ y = None by(auto dest!: rel-pmf (1))

then have q = map-spmf snd ?pq using rel-pmf (3)
by(auto simp: pmf .map-comp split-beta intro!: pmf .map-cong split: option.split)

ultimately show thesis ..
qed

lemma rel-spmf-simps:
rel-spmf R p q ←→ (∃ pq. (∀ (x, y)∈set-spmf pq. R x y) ∧ map-spmf fst pq = p ∧

map-spmf snd pq = q)
by(auto intro: rel-spmfI elim!: rel-spmfE)

lemma spmf-rel-map:
shows spmf-rel-map1 :

∧
R f x . rel-spmf R (map-spmf f x) = rel-spmf (λx. R (f

x)) x
and spmf-rel-map2 :

∧
R x g y. rel-spmf R x (map-spmf g y) = rel-spmf (λx y.

R x (g y)) x y
by(simp-all add: fun-eq-iff pmf .rel-map option.rel-map[abs-def])

lemma spmf-rel-conversep: rel-spmf R−1−1 = (rel-spmf R)−1−1

by(simp add: option.rel-conversep pmf .rel-conversep)

lemma spmf-rel-eq: rel-spmf (=) = (=)
by(simp add: pmf .rel-eq option.rel-eq)

context includes lifting-syntax
begin

THEORY “SPMF” 405

lemma bind-spmf-parametric [transfer-rule]:
(rel-spmf A ===> (A ===> rel-spmf B) ===> rel-spmf B) bind-spmf bind-spmf
unfolding bind-spmf-def [abs-def] by transfer-prover

lemma return-spmf-parametric: (A ===> rel-spmf A) return-spmf return-spmf
by transfer-prover

lemma map-spmf-parametric: ((A ===> B) ===> rel-spmf A ===> rel-spmf
B) map-spmf map-spmf

by transfer-prover

lemma rel-spmf-parametric:
((A ===> B ===> (=)) ===> rel-spmf A ===> rel-spmf B ===> (=))

rel-spmf rel-spmf
by transfer-prover

lemma set-spmf-parametric [transfer-rule]:
(rel-spmf A ===> rel-set A) set-spmf set-spmf
unfolding set-spmf-def [abs-def] by transfer-prover

lemma return-spmf-None-parametric:
(rel-spmf A) (return-pmf None) (return-pmf None)
by simp

end

lemma rel-spmf-bindI :
[[rel-spmf R p q;

∧
x y. R x y =⇒ rel-spmf P (f x) (g y)]]

=⇒ rel-spmf P (p >>= f) (q >>= g)
by(fact bind-spmf-parametric[THEN rel-funD, THEN rel-funD, OF - rel-funI])

lemma rel-spmf-bind-reflI :
(
∧

x. x ∈ set-spmf p =⇒ rel-spmf P (f x) (g x)) =⇒ rel-spmf P (p >>= f) (p >>=
g)

by(rule rel-spmf-bindI [where R=λx y. x = y ∧ x ∈ set-spmf p])(auto intro:
rel-spmf-reflI)

lemma rel-pmf-return-pmfI : P x y =⇒ rel-pmf P (return-pmf x) (return-pmf y)
by simp

context includes lifting-syntax
begin

We do not yet have a relator for ′a measure, so we combine Sigma-Algebra.measure
and measure-pmf
lemma measure-pmf-parametric:
(rel-pmf A ===> rel-pred A ===> (=)) (λp. measure (measure-pmf p)) (λq.

measure (measure-pmf q))

THEORY “SPMF” 406

proof(rule rel-funI)+
fix p q X Y
assume rel-pmf A p q and rel-pred A X Y
from this(1) obtain pq where A:

∧
x y. (x, y) ∈ set-pmf pq =⇒ A x y

and p: p = map-pmf fst pq and q: q = map-pmf snd pq by cases auto
show measure p X = measure q Y unfolding p q measure-map-pmf
by(rule measure-pmf .finite-measure-eq-AE)(auto simp: AE-measure-pmf-iff dest!:

A rel-predD[OF ‹rel-pred - - -›])
qed

lemma measure-spmf-parametric:
(rel-spmf A ===> rel-pred A ===> (=)) (λp. measure (measure-spmf p)) (λq.

measure (measure-spmf q))
proof −

have
∧

x y xa ya. rel-pred A xa ya =⇒ rel-pred (rel-option A) (Some ‘ xa) (Some
‘ ya)

by(auto simp: rel-pred-def rel-fun-def elim: option.rel-cases)
then show ?thesis
unfolding measure-measure-spmf-conv-measure-pmf [abs-def]
by (intro rel-funI) (force elim!: measure-pmf-parametric[THEN rel-funD, THEN

rel-funD])
qed

end

25.7 From ′a pmf to ′a spmf
definition spmf-of-pmf :: ′a pmf ⇒ ′a spmf

where spmf-of-pmf = map-pmf Some

lemma set-spmf-spmf-of-pmf [simp]: set-spmf (spmf-of-pmf p) = set-pmf p
by(auto simp: spmf-of-pmf-def set-spmf-def bind-image o-def)

lemma spmf-spmf-of-pmf [simp]: spmf (spmf-of-pmf p) x = pmf p x
by(simp add: spmf-of-pmf-def)

lemma pmf-spmf-of-pmf-None [simp]: pmf (spmf-of-pmf p) None = 0
using ennreal-pmf-map[of Some p None] by(simp add: spmf-of-pmf-def)

lemma emeasure-spmf-of-pmf [simp]: emeasure (measure-spmf (spmf-of-pmf p))
A = emeasure (measure-pmf p) A
by(simp add: emeasure-measure-spmf-conv-measure-pmf spmf-of-pmf-def inj-vimage-image-eq)

lemma measure-spmf-spmf-of-pmf [simp]: measure-spmf (spmf-of-pmf p) = mea-
sure-pmf p

by(rule measure-eqI) simp-all

lemma map-spmf-of-pmf [simp]: map-spmf f (spmf-of-pmf p) = spmf-of-pmf (map-pmf
f p)

THEORY “SPMF” 407

by(simp add: spmf-of-pmf-def pmf .map-comp o-def)

lemma rel-spmf-spmf-of-pmf [simp]: rel-spmf R (spmf-of-pmf p) (spmf-of-pmf q)
= rel-pmf R p q

by(simp add: spmf-of-pmf-def pmf .rel-map)

lemma spmf-of-pmf-return-pmf [simp]: spmf-of-pmf (return-pmf x) = return-spmf
x

by(simp add: spmf-of-pmf-def)

lemma bind-spmf-of-pmf [simp]: bind-spmf (spmf-of-pmf p) f = bind-pmf p f
by(simp add: spmf-of-pmf-def bind-spmf-def bind-map-pmf)

lemma set-spmf-bind-pmf : set-spmf (bind-pmf p f) = Set.bind (set-pmf p) (set-spmf
◦ f)

unfolding bind-spmf-of-pmf [symmetric] by(subst set-bind-spmf) simp

lemma spmf-of-pmf-bind: spmf-of-pmf (bind-pmf p f) = bind-pmf p (λx. spmf-of-pmf
(f x))

by(simp add: spmf-of-pmf-def map-bind-pmf)

lemma bind-pmf-return-spmf : p >>= (λx. return-spmf (f x)) = spmf-of-pmf (map-pmf
f p)

by(simp add: map-pmf-def spmf-of-pmf-bind)

25.8 Weight of a subprobability
abbreviation weight-spmf :: ′a spmf ⇒ real

where weight-spmf p ≡ measure (measure-spmf p) (space (measure-spmf p))

lemma weight-spmf-def : weight-spmf p = measure (measure-spmf p) UNIV
by(simp add: space-measure-spmf)

lemma weight-spmf-le-1 : weight-spmf p ≤ 1
by(rule measure-spmf .subprob-measure-le-1)

lemma weight-return-spmf [simp]: weight-spmf (return-spmf x) = 1
by(simp add: measure-spmf-return-spmf measure-return)

lemma weight-return-pmf-None [simp]: weight-spmf (return-pmf None) = 0
by(simp)

lemma weight-map-spmf [simp]: weight-spmf (map-spmf f p) = weight-spmf p
by(simp add: weight-spmf-def measure-map-spmf)

lemma weight-spmf-of-pmf [simp]: weight-spmf (spmf-of-pmf p) = 1
by simp

lemma weight-spmf-nonneg: weight-spmf p ≥ 0

THEORY “SPMF” 408

by(fact measure-nonneg)

lemma (in finite-measure) integrable-weight-spmf [simp]:
(λx. weight-spmf (f x)) ∈ borel-measurable M =⇒ integrable M (λx. weight-spmf

(f x))
by(rule integrable-const-bound[where B=1])(simp-all add: weight-spmf-nonneg

weight-spmf-le-1)

lemma weight-spmf-eq-nn-integral-spmf : weight-spmf p =
∫

+ x. spmf p x ∂count-space
UNIV
by (metis NO-MATCH-def measure-spmf .emeasure-eq-measure nn-integral-count-space-indicator

nn-integral-indicator nn-integral-measure-spmf sets-UNIV sets-measure-spmf space-measure-spmf)

lemma weight-spmf-eq-nn-integral-support:
weight-spmf p =

∫
+ x. spmf p x ∂count-space (set-spmf p)

unfolding weight-spmf-eq-nn-integral-spmf
by(auto simp: nn-integral-count-space-indicator in-set-spmf-iff-spmf intro!: nn-integral-cong

split: split-indicator)

lemma pmf-None-eq-weight-spmf : pmf p None = 1 − weight-spmf p
proof −
have weight-spmf p =

∫
+ x. spmf p x ∂count-space UNIV by(rule weight-spmf-eq-nn-integral-spmf)

also have . . . =
∫

+ x. ennreal (pmf p x) ∗ indicator (range Some) x ∂count-space
UNIV

by(simp add: nn-integral-count-space-indicator [symmetric] embed-measure-count-space[symmetric]
nn-integral-embed-measure measurable-embed-measure1)

also have . . . + pmf p None =
∫

+ x. ennreal (pmf p x) ∗ indicator (range
Some) x + ennreal (pmf p None) ∗ indicator {None} x ∂count-space UNIV

by(subst nn-integral-add)(simp-all add: max-def)
also have . . . =

∫
+ x. pmf p x ∂count-space UNIV

by(rule nn-integral-cong)(auto split: split-indicator)
also have . . . = 1 by (simp add: nn-integral-pmf)
finally show ?thesis by(simp add: ennreal-plus[symmetric] del: ennreal-plus)

qed

lemma weight-spmf-conv-pmf-None: weight-spmf p = 1 − pmf p None
by(simp add: pmf-None-eq-weight-spmf)

lemma weight-spmf-lt-0 : ¬ weight-spmf p < 0
by(simp add: not-less weight-spmf-nonneg)

lemma spmf-le-weight: spmf p x ≤ weight-spmf p
by (simp add: measure-spmf .bounded-measure spmf-conv-measure-spmf)

lemma weight-spmf-eq-0 : weight-spmf p = 0 ←→ p = return-pmf None
by (metis measure-le-0-iff measure-spmf .bounded-measure spmf-conv-measure-spmf

spmf-eqI weight-return-pmf-None)

lemma weight-bind-spmf : weight-spmf (x >>= f) = lebesgue-integral (measure-spmf

THEORY “SPMF” 409

x) (weight-spmf ◦ f)
unfolding weight-spmf-def
by(simp add: measure-spmf-bind o-def measure-spmf .measure-bind[where N=count-space

UNIV])

lemma rel-spmf-weightD: rel-spmf A p q =⇒ weight-spmf p = weight-spmf q
by(erule rel-spmfE) simp

lemma rel-spmf-bij-betw:
assumes f : bij-betw f (set-spmf p) (set-spmf q)
and eq:

∧
x. x ∈ set-spmf p =⇒ spmf p x = spmf q (f x)

shows rel-spmf (λx y. f x = y) p q
proof −

let ?f = map-option f

have weq: ennreal (weight-spmf p) = ennreal (weight-spmf q)
unfolding weight-spmf-eq-nn-integral-support

by(subst nn-integral-bij-count-space[OF f , symmetric])(rule nn-integral-cong-AE ,
simp add: eq AE-count-space)

then have None ∈ set-pmf p ←→ None ∈ set-pmf q
by(simp add: pmf-None-eq-weight-spmf set-pmf-iff)

with f have bij-betw (map-option f) (set-pmf p) (set-pmf q)
apply(auto simp: bij-betw-def in-set-spmf inj-on-def intro: option.expand split:

option.split)
apply(rename-tac [!] x)
apply(case-tac [!] x)
apply(auto iff : in-set-spmf)
done

then have rel-pmf (λx y. ?f x = y) p q
proof (rule rel-pmf-bij-betw)

show pmf p x = pmf q (map-option f x) if x ∈ set-pmf p for x
proof (cases x)

case None
then show ?thesis
by (metis ennreal-inj measure-nonneg option.map-disc-iff pmf-None-eq-weight-spmf

weq)
qed (use eq in-set-spmf that in force)

qed
thus ?thesis

by (smt (verit, ccfv-SIG) None-eq-map-option-iff option.map-sel option.rel-sel
pmf .rel-mono-strong)
qed

25.9 From density to spmfs
context fixes f :: ′a ⇒ real begin

definition embed-spmf :: ′a spmf
where embed-spmf = embed-pmf (λx. case x of None ⇒ 1 − enn2real (

∫
+ x.

THEORY “SPMF” 410

ennreal (f x) ∂count-space UNIV) | Some x ′⇒ max 0 (f x ′))

context
assumes prob: (

∫
+ x. ennreal (f x) ∂count-space UNIV) ≤ 1

begin

lemma nn-integral-embed-spmf-eq-1 :
(
∫

+ x. ennreal (case x of None ⇒ 1 − enn2real (
∫

+ x. ennreal (f x) ∂count-space
UNIV) | Some x ′⇒ max 0 (f x ′)) ∂count-space UNIV) = 1
(is ?lhs = - is (

∫
+ x. ?f x ∂?M) = -)

proof −
have ?lhs =

∫
+ x. ?f x ∗ indicator {None} x + ?f x ∗ indicator (range Some)

x ∂?M
by(rule nn-integral-cong)(auto split: split-indicator)

also have . . . = (1 − enn2real (
∫

+ x. ennreal (f x) ∂count-space UNIV)) +∫
+ x. ?f x ∗ indicator (range Some) x ∂?M
(is - = ?None + ?Some)

by(subst nn-integral-add)(simp-all add: AE-count-space max-def le-diff-eq real-le-ereal-iff
one-ereal-def [symmetric] prob split: option.split)

also have ?Some =
∫

+ x. ?f x ∂count-space (range Some)
by(simp add: nn-integral-count-space-indicator)

also have count-space (range Some) = embed-measure (count-space UNIV) Some
by(simp add: embed-measure-count-space)

also have (
∫

+ x. ?f x ∂. . .) =
∫

+ x. ennreal (f x) ∂count-space UNIV
by(subst nn-integral-embed-measure)(simp-all add: measurable-embed-measure1)

also have ?None + . . . = 1 using prob
by(auto simp: ennreal-minus[symmetric] ennreal-1 [symmetric] ennreal-enn2real-if

top-unique simp del: ennreal-1)(simp add: diff-add-self-ennreal)
finally show ?thesis .

qed

lemma pmf-embed-spmf-None: pmf embed-spmf None = 1 − enn2real (
∫

+ x. en-
nreal (f x) ∂count-space UNIV)
unfolding embed-spmf-def
by (smt (verit, del-insts) enn2real-leI ennreal-1 nn-integral-cong nn-integral-embed-spmf-eq-1

option.case-eq-if pmf-embed-pmf prob)

lemma spmf-embed-spmf [simp]: spmf embed-spmf x = max 0 (f x)
unfolding embed-spmf-def
by (smt (verit, best) enn2real-leI ennreal-1 nn-integral-cong nn-integral-embed-spmf-eq-1

option.case-eq-if option.simps(5) pmf-embed-pmf prob)

end

end

lemma embed-spmf-K-0 [simp]: embed-spmf (λ-. 0) = return-pmf None
by(rule spmf-eqI)(simp add: zero-ereal-def [symmetric])

THEORY “SPMF” 411

25.10 Ordering on spmfs

rel-pmf does not preserve a ccpo structure. Counterexample by Saheb-
Djahromi: Take prefix order over bool llist and the set range (λn :: nat.
uniform (llist-n n)) where llist-n is the set of all llists of length n and
uniform returns a uniform distribution over the given set. The set forms
a chain in ord-pmf lprefix, but it has not an upper bound. Any upper
bound may contain only infinite lists in its support because otherwise it is
not greater than the n+1 -st element in the chain where n is the length of
the finite list. Moreover its support must contain all infinite lists, because
otherwise there is a finite list all of whose finite extensions are not in the
support - a contradiction to the upper bound property. Hence, the support
is uncountable, but pmf’s only have countable support.
However, if all chains in the ccpo are finite, then it should preserve the ccpo
structure.
abbreviation ord-spmf :: (′a ⇒ ′a ⇒ bool) ⇒ ′a spmf ⇒ ′a spmf ⇒ bool

where ord-spmf ord ≡ rel-pmf (ord-option ord)

locale ord-spmf-syntax begin
notation ord-spmf (infix ‹vı› 60)
end

lemma ord-spmf-map-spmf1 : ord-spmf R (map-spmf f p) = ord-spmf (λx. R (f x))
p

by(simp add: pmf .rel-map[abs-def] ord-option-map1 [abs-def])

lemma ord-spmf-map-spmf2 : ord-spmf R p (map-spmf f q) = ord-spmf (λx y. R
x (f y)) p q

by(simp add: pmf .rel-map ord-option-map2)

lemma ord-spmf-map-spmf12 : ord-spmf R (map-spmf f p) (map-spmf f q) = ord-spmf
(λx y. R (f x) (f y)) p q

by(simp add: pmf .rel-map ord-option-map1 [abs-def] ord-option-map2)

lemmas ord-spmf-map-spmf = ord-spmf-map-spmf1 ord-spmf-map-spmf2 ord-spmf-map-spmf12

context fixes ord :: ′a ⇒ ′a ⇒ bool (structure) begin
interpretation ord-spmf-syntax .

lemma ord-spmfI :
[[
∧

x y. (x, y) ∈ set-spmf pq =⇒ ord x y; map-spmf fst pq = p; map-spmf snd pq
= q]]
=⇒ p v q
by(rule rel-pmf .intros[where pq=map-pmf (λx. case x of None ⇒ (None, None)
| Some (a, b) ⇒ (Some a, Some b)) pq])

(auto simp: pmf .map-comp o-def in-set-spmf split: option.splits intro: pmf .map-cong)

THEORY “SPMF” 412

lemma ord-spmf-None [simp]: return-pmf None v x
by(rule rel-pmf .intros[where pq=map-pmf (Pair None) x])(auto simp: pmf .map-comp

o-def)

lemma ord-spmf-reflI : (
∧

x. x ∈ set-spmf p =⇒ ord x x) =⇒ p v p
by (metis elem-set in-set-spmf ord-option-reflI pmf .rel-refl-strong)

lemma rel-spmf-inf :
assumes p v q
and q v p
and refl: reflp ord
and trans: transp ord
shows rel-spmf (inf ord ord−1−1) p q

proof −
from ‹p v q› ‹q v p›
have rel-pmf (inf (ord-option ord) (ord-option ord)−1−1) p q
using local.refl local.trans reflp-ord-option rel-pmf-inf transp-ord-option by blast

also have inf (ord-option ord) (ord-option ord)−1−1 = rel-option (inf ord ord−1−1)
by(auto simp: fun-eq-iff elim: ord-option.cases option.rel-cases)

finally show ?thesis .
qed

end

lemma ord-spmf-return-spmf2 : ord-spmf R p (return-spmf y) ←→ (∀ x∈set-spmf
p. R x y)

by(auto simp: rel-pmf-return-pmf2 in-set-spmf ord-option.simps intro: ccontr)

lemma ord-spmf-mono: [[ord-spmf A p q;
∧

x y. A x y =⇒ B x y]] =⇒ ord-spmf
B p q

by(erule pmf .rel-mono-strong)(erule ord-option-mono)

lemma ord-spmf-compp: ord-spmf (A OO B) = ord-spmf A OO ord-spmf B
by(simp add: ord-option-compp pmf .rel-compp)

lemma ord-spmf-bindI :
assumes pq: ord-spmf R p q

and fg:
∧

x y. R x y =⇒ ord-spmf P (f x) (g y)
shows ord-spmf P (p >>= f) (q >>= g)
unfolding bind-spmf-def using pq
by(rule rel-pmf-bindI)(auto split: option.split intro: fg)

lemma ord-spmf-bind-reflI :
(
∧

x. x ∈ set-spmf p =⇒ ord-spmf R (f x) (g x)) =⇒ ord-spmf R (p >>= f) (p >>=
g)

by(rule ord-spmf-bindI [where R=λx y. x = y ∧ x ∈ set-spmf p])(auto intro:
ord-spmf-reflI)

lemma ord-pmf-increaseI :

THEORY “SPMF” 413

assumes le:
∧

x. spmf p x ≤ spmf q x
and refl:

∧
x. x ∈ set-spmf p =⇒ R x x

shows ord-spmf R p q
proof(rule rel-pmf .intros)

define pq where pq = embed-pmf
(λ(x, y). case x of Some x ′ ⇒ (case y of Some y ′ ⇒ if x ′ = y ′ then spmf p x ′

else 0 | None ⇒ 0)
| None ⇒ (case y of None ⇒ pmf q None | Some y ′ ⇒ spmf q y ′ − spmf p

y ′))
(is - = embed-pmf ?f)

have nonneg:
∧

xy. ?f xy ≥ 0
by(clarsimp simp add: le field-simps split: option.split)

have integral: (
∫

+ xy. ?f xy ∂count-space UNIV) = 1 (is nn-integral ?M - = -)
proof −

have (
∫

+ xy. ?f xy ∂count-space UNIV) =∫
+ xy. ennreal (?f xy) ∗ indicator {(None, None)} xy +

ennreal (?f xy) ∗ indicator (range (λx. (None, Some x))) xy +
ennreal (?f xy) ∗ indicator (range (λx. (Some x, Some x))) xy ∂?M

by(rule nn-integral-cong)(auto split: split-indicator option.splits if-split-asm)
also have . . . = (

∫
+ xy. ?f xy ∗ indicator {(None, None)} xy ∂?M) +

(
∫

+ xy. ennreal (?f xy) ∗ indicator (range (λx. (None, Some x))) xy ∂?M)
+

(
∫

+ xy. ennreal (?f xy) ∗ indicator (range (λx. (Some x, Some x))) xy ∂?M)
(is - = ?None + ?Some2 + ?Some)

by(subst nn-integral-add)(simp-all add: nn-integral-add AE-count-space le-diff-eq
le split: option.split)

also have ?None = pmf q None by simp
also have ?Some2 =

∫
+ x. ennreal (spmf q x) − spmf p x ∂count-space UNIV

by(simp add: nn-integral-count-space-indicator [symmetric] embed-measure-count-space[symmetric]
inj-on-def nn-integral-embed-measure measurable-embed-measure1 ennreal-minus)

also have . . . = (
∫

+ x. spmf q x ∂count-space UNIV) − (
∫

+ x. spmf p x
∂count-space UNIV)

(is - = ?Some2 ′ − ?Some2 ′′)
by(subst nn-integral-diff)(simp-all add: le nn-integral-spmf-neq-top)

also have ?Some =
∫

+ x. spmf p x ∂count-space UNIV
by(simp add: nn-integral-count-space-indicator [symmetric] embed-measure-count-space[symmetric]

inj-on-def nn-integral-embed-measure measurable-embed-measure1)
also have pmf q None + (?Some2 ′ − ?Some2 ′′) + . . . = pmf q None +

?Some2 ′

by(auto simp: diff-add-self-ennreal le intro!: nn-integral-mono)
also have . . . =

∫
+ x. ennreal (pmf q x) ∗ indicator {None} x + ennreal (pmf

q x) ∗ indicator (range Some) x ∂count-space UNIV
by(subst nn-integral-add)(simp-all add: nn-integral-count-space-indicator [symmetric]

embed-measure-count-space[symmetric] nn-integral-embed-measure measurable-embed-measure1)
also have . . . =

∫
+ x. pmf q x ∂count-space UNIV

by(rule nn-integral-cong)(auto split: split-indicator)
also have . . . = 1

by(simp add: nn-integral-pmf)
finally show ?thesis .

THEORY “SPMF” 414

qed
note f = nonneg integral

{ fix x y
assume (x, y) ∈ set-pmf pq
hence ?f (x, y) 6= 0 unfolding pq-def by(simp add: set-embed-pmf [OF f])
then show ord-option R x y

by(simp add: spmf-eq-0-set-spmf refl split: option.split-asm if-split-asm) }

have weight-le: weight-spmf p ≤ weight-spmf q
by(subst ennreal-le-iff [symmetric])(auto simp: weight-spmf-eq-nn-integral-spmf

intro!: nn-integral-mono le)

show map-pmf fst pq = p
proof(rule pmf-eqI)

fix i :: ′a option
have bi: bij-betw (Pair i) UNIV (fst −‘ {i})

by(auto simp: bij-betw-def inj-on-def)
have ennreal (pmf (map-pmf fst pq) i) = (

∫
+ y. pmf pq (i, y) ∂count-space

UNIV)
unfolding pq-def ennreal-pmf-map

apply (simp add: embed-pmf .rep-eq[OF f] o-def emeasure-density flip: nn-integral-count-space-indicator)
by (smt (verit, best) nn-integral-bij-count-space [OF bi] integral nn-integral-cong

nonneg pmf-embed-pmf)
also have . . . = pmf p i
proof(cases i)

case (Some x)
have (

∫
+ y. pmf pq (Some x, y) ∂count-space UNIV) =

∫
+ y. pmf p (Some

x) ∗ indicator {Some x} y ∂count-space UNIV
by(rule nn-integral-cong)(simp add: pq-def pmf-embed-pmf [OF f] split:

option.split)
then show ?thesis using Some by simp

next
case None
have (

∫
+ y. pmf pq (None, y) ∂count-space UNIV) =

(
∫

+ y. ennreal (pmf pq (None, Some (the y))) ∗ indicator (range Some)
y +

ennreal (pmf pq (None, None)) ∗ indicator {None} y ∂count-space
UNIV)

by(rule nn-integral-cong)(auto split: split-indicator)
also have . . . = (

∫
+ y. ennreal (pmf pq (None, Some (the y))) ∂count-space

(range Some)) + pmf pq (None, None)
by(subst nn-integral-add)(simp-all add: nn-integral-count-space-indicator)

also have . . . = (
∫

+ y. ennreal (spmf q y) − ennreal (spmf p y) ∂count-space
UNIV) + pmf q None

by(simp add: pq-def pmf-embed-pmf [OF f] embed-measure-count-space[symmetric]
nn-integral-embed-measure measurable-embed-measure1 ennreal-minus)

also have (
∫

+ y. ennreal (spmf q y) − ennreal (spmf p y) ∂count-space
UNIV) =

THEORY “SPMF” 415

(
∫

+ y. spmf q y ∂count-space UNIV) − (
∫

+ y. spmf p y ∂count-space
UNIV)

by(subst nn-integral-diff)(simp-all add: AE-count-space le nn-integral-spmf-neq-top
split: split-indicator)

also have . . . = pmf p None − pmf q None
by(simp add: pmf-None-eq-weight-spmf weight-spmf-eq-nn-integral-spmf [symmetric]

ennreal-minus)
also have . . . = ennreal (pmf p None) − ennreal (pmf q None) by(simp add:

ennreal-minus)
finally show ?thesis using None weight-le

by(auto simp: diff-add-self-ennreal pmf-None-eq-weight-spmf intro: en-
nreal-leI)

qed
finally show pmf (map-pmf fst pq) i = pmf p i by simp

qed

show map-pmf snd pq = q
proof(rule pmf-eqI)

fix i :: ′a option
have bi: bij-betw (λx. (x, i)) UNIV (snd −‘ {i})

by (auto simp: bij-betw-def inj-on-def)
have ennreal (pmf (map-pmf snd pq) i) = (

∫
+ x. pmf pq (x, i) ∂count-space

UNIV)
unfolding pq-def ennreal-pmf-map

apply(simp add: embed-pmf .rep-eq[OF f] o-def emeasure-density nn-integral-count-space-indicator [symmetric])
by (smt (verit, best) nn-integral-bij-count-space [OF bi] integral nn-integral-cong

nonneg pmf-embed-pmf)
also have . . . = ennreal (pmf q i)
proof(cases i)

case None
have (

∫
+ x. pmf pq (x, None) ∂count-space UNIV) =

∫
+ x. pmf q None ∗

indicator {None :: ′a option} x ∂count-space UNIV
by(rule nn-integral-cong)(simp add: pq-def pmf-embed-pmf [OF f] split:

option.split)
then show ?thesis using None by simp

next
case (Some y)
have (

∫
+ x. pmf pq (x, Some y) ∂count-space UNIV) =

(
∫

+ x. ennreal (pmf pq (x, Some y)) ∗ indicator (range Some) x +
ennreal (pmf pq (None, Some y)) ∗ indicator {None} x ∂count-space

UNIV)
by(rule nn-integral-cong)(auto split: split-indicator)
also have . . . = (

∫
+ x. ennreal (pmf pq (x, Some y)) ∗ indicator (range

Some) x ∂count-space UNIV) + pmf pq (None, Some y)
by(subst nn-integral-add)(simp-all)

also have . . . = (
∫

+ x. ennreal (spmf p y) ∗ indicator {Some y} x ∂count-space
UNIV) + (spmf q y − spmf p y)

by(auto simp: pq-def pmf-embed-pmf [OF f] one-ereal-def [symmetric] simp del:
nn-integral-indicator-singleton intro!: arg-cong2 [where f=(+)] nn-integral-cong split:

THEORY “SPMF” 416

option.split)
also have . . . = spmf q y by(simp add: ennreal-minus[symmetric] le)
finally show ?thesis using Some by simp

qed
finally show pmf (map-pmf snd pq) i = pmf q i by simp

qed
qed

lemma ord-spmf-eq-leD:
assumes ord-spmf (=) p q
shows spmf p x ≤ spmf q x

proof(cases x ∈ set-spmf p)
case False
thus ?thesis by(simp add: in-set-spmf-iff-spmf)

next
case True
from assms obtain pq

where pq:
∧

x y. (x, y) ∈ set-pmf pq =⇒ ord-option (=) x y
and p: p = map-pmf fst pq
and q: q = map-pmf snd pq by cases auto

have ennreal (spmf p x) = integralN pq (indicator (fst −‘ {Some x}))
using p by(simp add: ennreal-pmf-map)

also have . . . = integralN pq (indicator {(Some x, Some x)})
by(rule nn-integral-cong-AE)(auto simp: AE-measure-pmf-iff split: split-indicator

dest: pq)
also have . . . ≤ integralN pq (indicator (snd −‘ {Some x}))

by(rule nn-integral-mono) simp
also have . . . = ennreal (spmf q x) using q by(simp add: ennreal-pmf-map)
finally show ?thesis by simp

qed

lemma ord-spmf-eqD-set-spmf : ord-spmf (=) p q =⇒ set-spmf p ⊆ set-spmf q
by (metis ord-spmf-eq-leD pmf-le-0-iff spmf-eq-0-set-spmf subsetI)

lemma ord-spmf-eqD-emeasure:
ord-spmf (=) p q =⇒ emeasure (measure-spmf p) A ≤ emeasure (measure-spmf

q) A
by(auto intro!: nn-integral-mono split: split-indicator dest: ord-spmf-eq-leD simp

add: nn-integral-measure-spmf nn-integral-indicator [symmetric])

lemma ord-spmf-eqD-measure-spmf : ord-spmf (=) p q =⇒ measure-spmf p ≤ mea-
sure-spmf q

by (subst le-measure) (auto simp: ord-spmf-eqD-emeasure)

25.11 CCPO structure for the flat ccpo ord-option (=)

context fixes Y :: ′a spmf set begin

definition lub-spmf :: ′a spmf

THEORY “SPMF” 417

where lub-spmf = embed-spmf (λx. enn2real (SUP p ∈ Y . ennreal (spmf p x)))
— We go through ennreal to have a sensible definition even if Y is empty.

lemma lub-spmf-empty [simp]: SPMF .lub-spmf {} = return-pmf None
by(simp add: SPMF .lub-spmf-def bot-ereal-def)

context assumes chain: Complete-Partial-Order .chain (ord-spmf (=)) Y
begin

lemma chain-ord-spmf-eqD: Complete-Partial-Order .chain (≤) ((λp x. ennreal (spmf
p x)) ‘ Y)
(is Complete-Partial-Order .chain - (?f ‘ -))

proof(rule chainI)
fix f g
assume f ∈ ?f ‘ Y g ∈ ?f ‘ Y
then obtain p q where f : f = ?f p p ∈ Y and g: g = ?f q q ∈ Y by blast
from chain ‹p ∈ Y › ‹q ∈ Y › have ord-spmf (=) p q ∨ ord-spmf (=) q p by(rule

chainD)
thus f ≤ g ∨ g ≤ f

by (metis ennreal-leI f (1) g(1) le-funI ord-spmf-eq-leD)
qed

lemma ord-spmf-eq-pmf-None-eq:
assumes le: ord-spmf (=) p q
and None: pmf p None = pmf q None
shows p = q

proof(rule spmf-eqI)
fix i
from le have le ′:

∧
x. spmf p x ≤ spmf q x by(rule ord-spmf-eq-leD)

have (
∫

+ x. ennreal (spmf q x) − spmf p x ∂count-space UNIV) =
(
∫

+ x. spmf q x ∂count-space UNIV) − (
∫

+ x. spmf p x ∂count-space UNIV)
by(subst nn-integral-diff)(simp-all add: AE-count-space le ′ nn-integral-spmf-neq-top)

also have . . . = (1 − pmf q None) − (1 − pmf p None) unfolding pmf-None-eq-weight-spmf
by(simp add: weight-spmf-eq-nn-integral-spmf [symmetric] ennreal-minus)

also have . . . = 0 using None by simp
finally have

∧
x. spmf q x ≤ spmf p x

by(simp add: nn-integral-0-iff-AE AE-count-space ennreal-minus ennreal-eq-0-iff)
with le ′ show spmf p i = spmf q i by(rule antisym)

qed

lemma ord-spmf-eqD-pmf-None:
assumes ord-spmf (=) x y
shows pmf x None ≥ pmf y None
using assms
apply cases
apply(clarsimp simp only: ennreal-le-iff [symmetric, OF pmf-nonneg] ennreal-pmf-map)
apply(fastforce simp: AE-measure-pmf-iff intro!: nn-integral-mono-AE)
done

Chains on ′a spmf maintain countable support. Thanks to Johannes Hölzl

THEORY “SPMF” 418

for the proof idea.
lemma spmf-chain-countable: countable (

⋃
p∈Y . set-spmf p)

proof(cases Y = {})
case Y : False
show ?thesis
proof(cases ∃ x∈Y . ∀ y∈Y . ord-spmf (=) y x)

case True
then obtain x where x: x ∈ Y and upper :

∧
y. y ∈ Y =⇒ ord-spmf (=) y x

by blast
hence (

⋃
x∈Y . set-spmf x) ⊆ set-spmf x by(auto dest: ord-spmf-eqD-set-spmf)

thus ?thesis by(rule countable-subset) simp
next

case False
define N :: ′a option pmf ⇒ real where N p = pmf p None for p

have N-less-imp-le-spmf : [[x ∈ Y ; y ∈ Y ; N y < N x]] =⇒ ord-spmf (=) x y
for x y

using chainD[OF chain, of x y] ord-spmf-eqD-pmf-None[of x y] ord-spmf-eqD-pmf-None[of
y x]

by (auto simp: N-def)
have N-eq-imp-eq: [[x ∈ Y ; y ∈ Y ; N y = N x]] =⇒ x = y for x y
using chainD[OF chain, of x y] by(auto simp: N-def dest: ord-spmf-eq-pmf-None-eq)

have NC : N ‘ Y 6= {} bdd-below (N ‘ Y)
using ‹Y 6= {}› by(auto intro!: bdd-belowI [of - 0] simp: N-def)

have NC-less: Inf (N ‘ Y) < N x if x ∈ Y for x unfolding cInf-less-iff [OF
NC]

proof(rule ccontr)
assume ∗∗: ¬ (∃ y∈N ‘ Y . y < N x)
{ fix y

assume y ∈ Y
with ∗∗ consider N x < N y | N x = N y by(auto simp: not-less le-less)
hence ord-spmf (=) y x using ‹y ∈ Y › ‹x ∈ Y ›
by cases(auto dest: N-less-imp-le-spmf N-eq-imp-eq intro: ord-spmf-reflI) }

with False ‹x ∈ Y › show False by blast
qed

from NC have Inf (N ‘ Y) ∈ closure (N ‘ Y) by (intro closure-contains-Inf)
then obtain X ′ where

∧
n. X ′ n ∈ N ‘ Y and X ′: X ′ −−−−→ Inf (N ‘ Y)

unfolding closure-sequential by auto
then obtain X where X :

∧
n. X n ∈ Y and X ′ = (λn. N (X n)) unfolding

image-iff Bex-def by metis

with X ′ have seq: (λn. N (X n)) −−−−→ Inf (N ‘ Y) by simp
have (

⋃
x ∈ Y . set-spmf x) ⊆ (

⋃
n. set-spmf (X n))

proof(rule UN-least)
fix x
assume x ∈ Y
from order-tendstoD(2)[OF seq NC-less[OF ‹x ∈ Y ›]]

THEORY “SPMF” 419

obtain i where N (X i) < N x by (auto simp: eventually-sequentially)
thus set-spmf x ⊆ (

⋃
n. set-spmf (X n)) using X ‹x ∈ Y ›

by(blast dest: N-less-imp-le-spmf ord-spmf-eqD-set-spmf)
qed
thus ?thesis by(rule countable-subset) simp

qed
qed simp

lemma lub-spmf-subprob: (
∫

+ x. (SUP p ∈ Y . ennreal (spmf p x)) ∂count-space
UNIV) ≤ 1
proof(cases Y = {})

case True
thus ?thesis by(simp add: bot-ennreal)

next
case False
let ?B =

⋃
p∈Y . set-spmf p

have countable: countable ?B by(rule spmf-chain-countable)

have (
∫

+ x. (SUP p∈Y . ennreal (spmf p x)) ∂count-space UNIV) =
(
∫

+ x. (SUP p∈Y . ennreal (spmf p x) ∗ indicator ?B x) ∂count-space UNIV)
by (intro nn-integral-cong arg-cong [of - - Sup]) (auto split: split-indicator simp

add: spmf-eq-0-set-spmf)
also have . . . = (

∫
+ x. (SUP p∈Y . ennreal (spmf p x)) ∂count-space ?B)

unfolding ennreal-indicator [symmetric] using False
by(subst SUP-mult-right-ennreal[symmetric])(simp add: ennreal-indicator nn-integral-count-space-indicator)
also have . . . = (SUP p∈Y .

∫
+ x. spmf p x ∂count-space ?B) using False -

countable
by(rule nn-integral-monotone-convergence-SUP-countable)(rule chain-ord-spmf-eqD)

also have . . . ≤ 1
proof(rule SUP-least)

fix p
assume p ∈ Y
have (

∫
+ x. spmf p x ∂count-space ?B) =

∫
+ x. ennreal (spmf p x) ∗ indicator

?B x ∂count-space UNIV
by(simp add: nn-integral-count-space-indicator)

also have . . . =
∫

+ x. spmf p x ∂count-space UNIV
by(rule nn-integral-cong)(auto split: split-indicator simp add: spmf-eq-0-set-spmf

‹p ∈ Y ›)
also have . . . ≤ 1

by(simp add: weight-spmf-eq-nn-integral-spmf [symmetric] weight-spmf-le-1)
finally show (

∫
+ x. spmf p x ∂count-space ?B) ≤ 1 .

qed
finally show ?thesis .

qed

lemma spmf-lub-spmf :
assumes Y 6= {}
shows spmf lub-spmf x = (SUP p ∈ Y . spmf p x)

proof −

THEORY “SPMF” 420

from assms obtain p where p ∈ Y by auto
have spmf lub-spmf x = max 0 (enn2real (SUP p∈Y . ennreal (spmf p x)))

unfolding lub-spmf-def
by(rule spmf-embed-spmf)(simp del: SUP-eq-top-iff Sup-eq-top-iff add: en-

nreal-enn2real-if SUP-spmf-neq-top ′ lub-spmf-subprob)
also have . . . = enn2real (SUP p∈Y . ennreal (spmf p x))

by(rule max-absorb2)(simp)
also have . . . = enn2real (ennreal (SUP p ∈ Y . spmf p x)) using assms
by(subst ennreal-SUP[symmetric])(simp-all add: SUP-spmf-neq-top ′ del: SUP-eq-top-iff

Sup-eq-top-iff)
also have 0 ≤ (

⊔
p∈Y . spmf p x) using assms

by(auto intro!: cSUP-upper2 bdd-aboveI [where M=1] simp add: pmf-le-1)
then have enn2real (ennreal (SUP p ∈ Y . spmf p x)) = (SUP p ∈ Y . spmf p x)

by(rule enn2real-ennreal)
finally show ?thesis .

qed

lemma ennreal-spmf-lub-spmf : Y 6= {} =⇒ ennreal (spmf lub-spmf x) = (SUP
p∈Y . ennreal (spmf p x))

by (metis SUP-spmf-neq-top ′ ennreal-SUP spmf-lub-spmf)

lemma lub-spmf-upper :
assumes p: p ∈ Y
shows ord-spmf (=) p lub-spmf

proof(rule ord-pmf-increaseI)
fix x
from p have [simp]: Y 6= {} by auto
from p have ennreal (spmf p x) ≤ (SUP p∈Y . ennreal (spmf p x)) by(rule

SUP-upper)
also have . . . = ennreal (spmf lub-spmf x) using p

by(subst spmf-lub-spmf)(auto simp: ennreal-SUP SUP-spmf-neq-top ′ simp del:
SUP-eq-top-iff Sup-eq-top-iff)

finally show spmf p x ≤ spmf lub-spmf x by simp
qed simp

lemma lub-spmf-least:
assumes z:

∧
x. x ∈ Y =⇒ ord-spmf (=) x z

shows ord-spmf (=) lub-spmf z
proof(cases Y = {})

case nonempty: False
show ?thesis
proof(rule ord-pmf-increaseI)

fix x
from nonempty obtain p where p: p ∈ Y by auto
have ennreal (spmf lub-spmf x) = (SUP p∈Y . ennreal (spmf p x))
by(subst spmf-lub-spmf)(auto simp: ennreal-SUP SUP-spmf-neq-top ′ nonempty

simp del: SUP-eq-top-iff Sup-eq-top-iff)
also have . . . ≤ ennreal (spmf z x) by(rule SUP-least)(simp add: ord-spmf-eq-leD

z)

THEORY “SPMF” 421

finally show spmf lub-spmf x ≤ spmf z x by simp
qed simp

qed simp

lemma set-lub-spmf : set-spmf lub-spmf = (
⋃

p∈Y . set-spmf p) (is ?lhs = ?rhs)
proof(cases Y = {})

case [simp]: False
show ?thesis
proof(rule set-eqI)

fix x
have x ∈ ?lhs ←→ ennreal (spmf lub-spmf x) > 0

by(simp-all add: in-set-spmf-iff-spmf less-le)
also have . . . ←→ (∃ p∈Y . ennreal (spmf p x) > 0)

by(simp add: ennreal-spmf-lub-spmf less-SUP-iff)
also have . . . ←→ x ∈ ?rhs

by(auto simp: in-set-spmf-iff-spmf less-le)
finally show x ∈ ?lhs ←→ x ∈ ?rhs .

qed
qed simp

lemma emeasure-lub-spmf :
assumes Y : Y 6= {}
shows emeasure (measure-spmf lub-spmf) A = (SUP y∈Y . emeasure (measure-spmf

y) A)
(is ?lhs = ?rhs)

proof −
let ?M = count-space (set-spmf lub-spmf)
have ?lhs =

∫
+ x. ennreal (spmf lub-spmf x) ∗ indicator A x ∂?M

by(auto simp: nn-integral-indicator [symmetric] nn-integral-measure-spmf ′)
also have . . . =

∫
+ x. (SUP y∈Y . ennreal (spmf y x) ∗ indicator A x) ∂?M

unfolding ennreal-indicator [symmetric]
by(simp add: spmf-lub-spmf assms ennreal-SUP[OF SUP-spmf-neq-top ′] SUP-mult-right-ennreal)

also from assms have . . . = (SUP y∈Y .
∫

+ x. ennreal (spmf y x) ∗ indicator
A x ∂?M)

proof(rule nn-integral-monotone-convergence-SUP-countable)
have (λi x. ennreal (spmf i x) ∗ indicator A x) ‘ Y = (λf x. f x ∗ indicator A

x) ‘ (λp x. ennreal (spmf p x)) ‘ Y
by(simp add: image-image)

also have Complete-Partial-Order .chain (≤) . . . using chain-ord-spmf-eqD
by(rule chain-imageI)(auto simp: le-fun-def split: split-indicator)

finally show Complete-Partial-Order .chain (≤) ((λi x. ennreal (spmf i x) ∗
indicator A x) ‘ Y) .

qed simp
also have . . . = (SUP y∈Y .

∫
+ x. ennreal (spmf y x) ∗ indicator A x ∂count-space

UNIV)
by(auto simp: nn-integral-count-space-indicator set-lub-spmf spmf-eq-0-set-spmf

split: split-indicator intro!: arg-cong [of - - Sup] image-cong nn-integral-cong)
also have . . . = ?rhs

by(auto simp: nn-integral-indicator [symmetric] nn-integral-measure-spmf)

THEORY “SPMF” 422

finally show ?thesis .
qed

lemma measure-lub-spmf :
assumes Y : Y 6= {}
shows measure (measure-spmf lub-spmf) A = (SUP y∈Y . measure (measure-spmf

y) A) (is ?lhs = ?rhs)
proof −

have ennreal ?lhs = ennreal ?rhs
using emeasure-lub-spmf [OF assms] SUP-emeasure-spmf-neq-top[of A Y] Y
unfolding measure-spmf .emeasure-eq-measure by(subst ennreal-SUP)

moreover have 0 ≤ ?rhs using Y
by(auto intro!: cSUP-upper2 bdd-aboveI [where M=1] measure-spmf .subprob-measure-le-1)

ultimately show ?thesis by(simp)
qed

lemma weight-lub-spmf :
assumes Y : Y 6= {}
shows weight-spmf lub-spmf = (SUP y∈Y . weight-spmf y)
by (smt (verit, best) SUP-cong assms measure-lub-spmf space-measure-spmf)

lemma measure-spmf-lub-spmf :
assumes Y : Y 6= {}
shows measure-spmf lub-spmf = (SUP p∈Y . measure-spmf p) (is ?lhs = ?rhs)

proof(rule measure-eqI)
from assms obtain p where p: p ∈ Y by auto
from chain have chain ′: Complete-Partial-Order .chain (≤) (measure-spmf ‘ Y)

by(rule chain-imageI)(rule ord-spmf-eqD-measure-spmf)
show sets ?lhs = sets ?rhs

using Y by (subst sets-SUP) auto
show emeasure ?lhs A = emeasure ?rhs A for A
using chain ′ Y p by (subst emeasure-SUP-chain) (auto simp: emeasure-lub-spmf)

qed

end

end

lemma partial-function-definitions-spmf : partial-function-definitions (ord-spmf (=))
lub-spmf
(is partial-function-definitions ?R -)

proof
fix x show ?R x x by(simp add: ord-spmf-reflI)

next
fix x y z
assume ?R x y ?R y z
with transp-ord-option[OF transp-on-equality] show ?R x z by(rule transp-rel-pmf [THEN

transpD])
next

THEORY “SPMF” 423

fix x y
assume ?R x y ?R y x
thus x = y

by(rule rel-pmf-antisym)(simp-all add: reflp-ord-option transp-ord-option anti-
symp-ord-option)
next

fix Y x
assume Complete-Partial-Order .chain ?R Y x ∈ Y
then show ?R x (lub-spmf Y)

by(rule lub-spmf-upper)
next

fix Y z
assume Complete-Partial-Order .chain ?R Y

∧
x. x ∈ Y =⇒ ?R x z

then show ?R (lub-spmf Y) z
by(cases Y = {})(simp-all add: lub-spmf-least)

qed

lemma ccpo-spmf : class.ccpo lub-spmf (ord-spmf (=)) (mk-less (ord-spmf (=)))
by(metis ccpo partial-function-definitions-spmf)

interpretation spmf : partial-function-definitions ord-spmf (=) lub-spmf
rewrites lub-spmf {} ≡ return-pmf None
by(rule partial-function-definitions-spmf) simp

declaration ‹Partial-Function.init spmf term ‹spmf .fixp-fun›
term ‹spmf .mono-body› @{thm spmf .fixp-rule-uc} @{thm spmf .fixp-induct-uc}
NONE›

declare spmf .leq-refl[simp]
declare admissible-leI [OF ccpo-spmf , cont-intro]

abbreviation mono-spmf ≡ monotone (fun-ord (ord-spmf (=))) (ord-spmf (=))

lemma lub-spmf-const [simp]: lub-spmf {p} = p
by(rule spmf-eqI)(simp add: spmf-lub-spmf [OF ccpo.chain-singleton[OF ccpo-spmf]])

lemma bind-spmf-mono ′:
assumes fg: ord-spmf (=) f g

and hk:
∧

x :: ′a. ord-spmf (=) (h x) (k x)
shows ord-spmf (=) (f >>= h) (g >>= k)
unfolding bind-spmf-def using assms(1)
by(rule rel-pmf-bindI)(auto split: option.split simp add: hk)

lemma bind-spmf-mono [partial-function-mono]:
assumes mf : mono-spmf B and mg:

∧
y. mono-spmf (λf . C y f)

shows mono-spmf (λf . bind-spmf (B f) (λy. C y f))
proof (rule monotoneI)

fix f g :: ′a ⇒ ′b spmf
assume fg: fun-ord (ord-spmf (=)) f g

THEORY “SPMF” 424

with mf have ord-spmf (=) (B f) (B g) by (rule monotoneD[of - - - f g])
moreover from mg have

∧
y ′. ord-spmf (=) (C y ′ f) (C y ′ g)

by (rule monotoneD) (rule fg)
ultimately show ord-spmf (=) (bind-spmf (B f) (λy. C y f)) (bind-spmf (B g)

(λy ′. C y ′ g))
by(rule bind-spmf-mono ′)

qed

lemma monotone-bind-spmf1 : monotone (ord-spmf (=)) (ord-spmf (=)) (λy. bind-spmf
y g)

by(rule monotoneI)(simp add: bind-spmf-mono ′ ord-spmf-reflI)

lemma monotone-bind-spmf2 :
assumes g:

∧
x. monotone ord (ord-spmf (=)) (λy. g y x)

shows monotone ord (ord-spmf (=)) (λy. bind-spmf p (g y))
by(rule monotoneI)(auto intro: bind-spmf-mono ′ monotoneD[OF g] ord-spmf-reflI)

lemma bind-lub-spmf :
assumes chain: Complete-Partial-Order .chain (ord-spmf (=)) Y
shows bind-spmf (lub-spmf Y) f = lub-spmf ((λp. bind-spmf p f) ‘ Y) (is ?lhs

= ?rhs)
proof(cases Y = {})

case Y : False
show ?thesis
proof(rule spmf-eqI)

fix i
have chain ′: Complete-Partial-Order .chain (≤) ((λp x. ennreal (spmf p x ∗

spmf (f x) i)) ‘ Y)
using chain by(rule chain-imageI)(auto simp: le-fun-def dest: ord-spmf-eq-leD

intro: mult-right-mono)
have chain ′′: Complete-Partial-Order .chain (ord-spmf (=)) ((λp. p >>= f) ‘ Y)

using chain by(rule chain-imageI)(auto intro!: monotoneI bind-spmf-mono ′

ord-spmf-reflI)
let ?M = count-space (set-spmf (lub-spmf Y))
have ennreal (spmf ?lhs i) =

∫
+ x. ennreal (spmf (lub-spmf Y) x) ∗ ennreal

(spmf (f x) i) ∂?M
by(auto simp: ennreal-spmf-lub-spmf ennreal-spmf-bind nn-integral-measure-spmf ′)
also have . . . =

∫
+ x. (SUP p∈Y . ennreal (spmf p x ∗ spmf (f x) i)) ∂?M

by(subst ennreal-spmf-lub-spmf [OF chain Y])(subst SUP-mult-right-ennreal,
simp-all add: ennreal-mult Y)

also have . . . = (SUP p∈Y .
∫

+ x. ennreal (spmf p x ∗ spmf (f x) i) ∂?M)
using Y chain ′ by(rule nn-integral-monotone-convergence-SUP-countable)

simp
also have . . . = (SUP p∈Y . ennreal (spmf (bind-spmf p f) i))
by(auto simp: ennreal-spmf-bind nn-integral-measure-spmf nn-integral-count-space-indicator

set-lub-spmf [OF chain] in-set-spmf-iff-spmf ennreal-mult intro!: arg-cong [of - -
Sup] image-cong nn-integral-cong split: split-indicator)

also have . . . = ennreal (spmf ?rhs i) using chain ′′ by(simp add: ennreal-spmf-lub-spmf
Y image-comp)

THEORY “SPMF” 425

finally show spmf ?lhs i = spmf ?rhs i by simp
qed

qed simp

lemma map-lub-spmf :
Complete-Partial-Order .chain (ord-spmf (=)) Y
=⇒ map-spmf f (lub-spmf Y) = lub-spmf (map-spmf f ‘ Y)
unfolding map-spmf-conv-bind-spmf [abs-def] by(simp add: bind-lub-spmf o-def)

lemma mcont-bind-spmf1 : mcont lub-spmf (ord-spmf (=)) lub-spmf (ord-spmf
(=)) (λy. bind-spmf y f)

using monotone-bind-spmf1
by(intro contI mcontI) (auto simp: bind-lub-spmf)

lemma bind-lub-spmf2 :
assumes chain: Complete-Partial-Order .chain ord Y

and g:
∧

y. monotone ord (ord-spmf (=)) (g y)
shows bind-spmf x (λy. lub-spmf (g y ‘ Y)) = lub-spmf ((λp. bind-spmf x (λy.

g y p)) ‘ Y)
(is ?lhs = ?rhs)

proof(cases Y = {})
case Y : False
show ?thesis
proof(rule spmf-eqI)

fix i
have chain ′:

∧
y. Complete-Partial-Order .chain (ord-spmf (=)) (g y ‘ Y)

using chain g[THEN monotoneD] by(rule chain-imageI)
have chain ′′: Complete-Partial-Order .chain (≤) ((λp y. ennreal (spmf x y ∗

spmf (g y p) i)) ‘ Y)
using chain by(rule chain-imageI)(auto simp: le-fun-def dest: ord-spmf-eq-leD

monotoneD[OF g] intro!: mult-left-mono)
have chain ′′′: Complete-Partial-Order .chain (ord-spmf (=)) ((λp. bind-spmf x

(λy. g y p)) ‘ Y)
using chain by(rule chain-imageI)(rule monotone-bind-spmf2 [OF g, THEN

monotoneD])

have ennreal (spmf ?lhs i) =
∫

+ y. (SUP p∈Y . ennreal (spmf x y ∗ spmf (g
y p) i)) ∂count-space (set-spmf x)

by(simp add: ennreal-spmf-bind ennreal-spmf-lub-spmf [OF chain ′] Y nn-integral-measure-spmf ′

SUP-mult-left-ennreal ennreal-mult image-comp)
also have . . . = (SUP p∈Y .

∫
+ y. ennreal (spmf x y ∗ spmf (g y p) i)

∂count-space (set-spmf x))
unfolding nn-integral-measure-spmf ′ using Y chain ′′

by(rule nn-integral-monotone-convergence-SUP-countable) simp
also have . . . = (SUP p∈Y . ennreal (spmf (bind-spmf x (λy. g y p)) i))

by(simp add: ennreal-spmf-bind nn-integral-measure-spmf ′ ennreal-mult)
also have . . . = ennreal (spmf ?rhs i) using chain ′′′

by(auto simp: ennreal-spmf-lub-spmf Y image-comp)
finally show spmf ?lhs i = spmf ?rhs i by simp

THEORY “SPMF” 426

qed
qed simp

lemma mcont-bind-spmf [cont-intro]:
assumes f : mcont luba orda lub-spmf (ord-spmf (=)) f
and g:

∧
y. mcont luba orda lub-spmf (ord-spmf (=)) (g y)

shows mcont luba orda lub-spmf (ord-spmf (=)) (λx. bind-spmf (f x) (λy. g y
x))
proof(rule spmf .mcont2mcont ′[OF - - f])

fix z
show mcont lub-spmf (ord-spmf (=)) lub-spmf (ord-spmf (=)) (λx. bind-spmf x

(λy. g y z))
by(rule mcont-bind-spmf1)

next
fix x
let ?f = λz. bind-spmf x (λy. g y z)
have monotone orda (ord-spmf (=)) ?f using mcont-mono[OF g] by(rule mono-

tone-bind-spmf2)
moreover have cont luba orda lub-spmf (ord-spmf (=)) ?f
proof(rule contI)

fix Y
assume chain: Complete-Partial-Order .chain orda Y and Y : Y 6= {}
have bind-spmf x (λy. g y (luba Y)) = bind-spmf x (λy. lub-spmf (g y ‘ Y))

by(rule bind-spmf-cong)(simp-all add: mcont-contD[OF g chain Y])
also have . . . = lub-spmf ((λp. x >>= (λy. g y p)) ‘ Y) using chain

by(rule bind-lub-spmf2)(rule mcont-mono[OF g])
finally show bind-spmf x (λy. g y (luba Y)) =

qed
ultimately show mcont luba orda lub-spmf (ord-spmf (=)) ?f by(rule mcontI)

qed

lemma bind-pmf-mono [partial-function-mono]:
(
∧

y. mono-spmf (λf . C y f)) =⇒ mono-spmf (λf . bind-pmf p (λx. C x f))
using bind-spmf-mono[of λ-. spmf-of-pmf p C] by simp

lemma map-spmf-mono [partial-function-mono]: mono-spmf B =⇒ mono-spmf (λg.
map-spmf f (B g))

unfolding map-spmf-conv-bind-spmf by(rule bind-spmf-mono) simp-all

lemma mcont-map-spmf [cont-intro]:
mcont luba orda lub-spmf (ord-spmf (=)) g
=⇒ mcont luba orda lub-spmf (ord-spmf (=)) (λx. map-spmf f (g x))
unfolding map-spmf-conv-bind-spmf by(rule mcont-bind-spmf) simp-all

lemma monotone-set-spmf : monotone (ord-spmf (=)) (⊆) set-spmf
by(rule monotoneI)(rule ord-spmf-eqD-set-spmf)

lemma cont-set-spmf : cont lub-spmf (ord-spmf (=)) Union (⊆) set-spmf
by(rule contI)(subst set-lub-spmf ; simp)

THEORY “SPMF” 427

lemma mcont2mcont-set-spmf [THEN mcont2mcont, cont-intro]:
shows mcont-set-spmf : mcont lub-spmf (ord-spmf (=)) Union (⊆) set-spmf
by(rule mcontI monotone-set-spmf cont-set-spmf)+

lemma monotone-spmf : monotone (ord-spmf (=)) (≤) (λp. spmf p x)
by(rule monotoneI)(simp add: ord-spmf-eq-leD)

lemma cont-spmf : cont lub-spmf (ord-spmf (=)) Sup (≤) (λp. spmf p x)
by(rule contI)(simp add: spmf-lub-spmf)

lemma mcont-spmf : mcont lub-spmf (ord-spmf (=)) Sup (≤) (λp. spmf p x)
by(metis mcontI monotone-spmf cont-spmf)

lemma cont-ennreal-spmf : cont lub-spmf (ord-spmf (=)) Sup (≤) (λp. ennreal
(spmf p x))

by(rule contI)(simp add: ennreal-spmf-lub-spmf)

lemma mcont2mcont-ennreal-spmf [THEN mcont2mcont, cont-intro]:
shows mcont-ennreal-spmf : mcont lub-spmf (ord-spmf (=)) Sup (≤) (λp. ennreal

(spmf p x))
by(metis mcontI mono2mono-ennreal monotone-spmf cont-ennreal-spmf)

lemma nn-integral-map-spmf [simp]: nn-integral (measure-spmf (map-spmf f p))
g = nn-integral (measure-spmf p) (g ◦ f)

by(force simp: measure-spmf-def nn-integral-distr nn-integral-restrict-space intro:
nn-integral-cong split: split-indicator)

25.11.1 Admissibility of rel-spmf
lemma rel-spmf-measureD:

assumes rel-spmf R p q
shows measure (measure-spmf p) A ≤ measure (measure-spmf q) {y. ∃ x∈A. R

x y} (is ?lhs ≤ ?rhs)
proof −
have ?lhs = measure (measure-pmf p) (Some ‘ A) by(simp add: measure-measure-spmf-conv-measure-pmf)
also have . . . ≤ measure (measure-pmf q) {y. ∃ x∈Some ‘ A. rel-option R x y}

using assms by(rule rel-pmf-measureD)
also have . . . = ?rhs unfolding measure-measure-spmf-conv-measure-pmf

by(rule arg-cong2 [where f=measure])(auto simp: option-rel-Some1)
finally show ?thesis .

qed

locale rel-spmf-characterisation =
assumes rel-pmf-measureI :∧

(R :: ′a option ⇒ ′b option ⇒ bool) p q.
(
∧

A. measure (measure-pmf p) A ≤ measure (measure-pmf q) {y. ∃ x∈A. R x
y})

=⇒ rel-pmf R p q

THEORY “SPMF” 428

— This assumption is shown to hold in general in the AFP entry MFMC-Countable.
begin

context fixes R :: ′a ⇒ ′b ⇒ bool begin

lemma rel-spmf-measureI :
assumes eq1 :

∧
A. measure (measure-spmf p) A ≤ measure (measure-spmf q)

{y. ∃ x∈A. R x y}
assumes eq2 : weight-spmf q ≤ weight-spmf p
shows rel-spmf R p q

proof(rule rel-pmf-measureI)
fix A :: ′a option set
define A ′ where A ′ = the ‘ (A ∩ range Some)
define A ′′ where A ′′ = A ∩ {None}
have A: A = Some ‘ A ′ ∪ A ′′ Some ‘ A ′ ∩ A ′′ = {}

unfolding A ′-def A ′′-def by(auto simp: image-iff)
have measure (measure-pmf p) A = measure (measure-pmf p) (Some ‘ A ′) +

measure (measure-pmf p) A ′′

by(simp add: A measure-pmf .finite-measure-Union)
also have measure (measure-pmf p) (Some ‘ A ′) = measure (measure-spmf p) A ′

by(simp add: measure-measure-spmf-conv-measure-pmf)
also have . . . ≤ measure (measure-spmf q) {y. ∃ x∈A ′. R x y} by(rule eq1)
also (ord-eq-le-trans[OF - add-right-mono])
have . . . = measure (measure-pmf q) {y. ∃ x∈A ′. rel-option R (Some x) y}

unfolding measure-measure-spmf-conv-measure-pmf
by(rule arg-cong2 [where f=measure])(auto simp: A ′-def option-rel-Some1)

also
{ have weight-spmf p ≤ measure (measure-spmf q) {y. ∃ x. R x y}

using eq1 [of UNIV] unfolding weight-spmf-def by simp
also have . . . ≤ weight-spmf q unfolding weight-spmf-def

by(rule measure-spmf .finite-measure-mono) simp-all
finally have weight-spmf p = weight-spmf q using eq2 by simp }

then have measure (measure-pmf p) A ′′ = measure (measure-pmf q) (if None ∈
A then {None} else {})

unfolding A ′′-def by(simp add: pmf-None-eq-weight-spmf measure-pmf-single)
also have measure (measure-pmf q) {y. ∃ x∈A ′. rel-option R (Some x) y} + . . .

= measure (measure-pmf q) {y. ∃ x∈A. rel-option R x y}
by(subst measure-pmf .finite-measure-Union[symmetric])

(auto 4 3 intro!: arg-cong2 [where f=measure] simp add: option-rel-Some1
option-rel-Some2 A ′-def intro: rev-bexI elim: option.rel-cases)

finally show measure (measure-pmf p) A ≤
qed

lemma admissible-rel-spmf :
ccpo.admissible (prod-lub lub-spmf lub-spmf) (rel-prod (ord-spmf (=)) (ord-spmf

(=))) (case-prod (rel-spmf R))
(is ccpo.admissible ?lub ?ord ?P)

proof(rule ccpo.admissibleI)
fix Y

THEORY “SPMF” 429

assume chain: Complete-Partial-Order .chain ?ord Y
and Y : Y 6= {}
and R: ∀ (p, q) ∈ Y . rel-spmf R p q

from R have R:
∧

p q. (p, q) ∈ Y =⇒ rel-spmf R p q by auto
have chain1 : Complete-Partial-Order .chain (ord-spmf (=)) (fst ‘ Y)

and chain2 : Complete-Partial-Order .chain (ord-spmf (=)) (snd ‘ Y)
using chain by(rule chain-imageI ; clarsimp)+

from Y have Y1 : fst ‘ Y 6= {} and Y2 : snd ‘ Y 6= {} by auto

have rel-spmf R (lub-spmf (fst ‘ Y)) (lub-spmf (snd ‘ Y))
proof(rule rel-spmf-measureI)

show weight-spmf (lub-spmf (snd ‘ Y)) ≤ weight-spmf (lub-spmf (fst ‘ Y))
by(auto simp: weight-lub-spmf chain1 chain2 Y rel-spmf-weightD[OF R, sym-

metric] intro!: cSUP-least intro: cSUP-upper2 [OF bdd-aboveI2 [OF weight-spmf-le-1]])

fix A
have measure (measure-spmf (lub-spmf (fst ‘ Y))) A = (SUP y∈fst ‘ Y . measure

(measure-spmf y) A)
using chain1 Y1 by(rule measure-lub-spmf)

also have . . . ≤ (SUP y∈snd ‘ Y . measure (measure-spmf y) {y. ∃ x∈A. R x
y}) using Y1

by(rule cSUP-least)(auto intro!: cSUP-upper2 [OF bdd-aboveI2 [OF measure-spmf .subprob-measure-le-1]]
rel-spmf-measureD R)

also have . . . = measure (measure-spmf (lub-spmf (snd ‘ Y))) {y. ∃ x∈A. R x
y}

using chain2 Y2 by(rule measure-lub-spmf [symmetric])
finally show measure (measure-spmf (lub-spmf (fst ‘ Y))) A ≤

qed
then show ?P (?lub Y) by(simp add: prod-lub-def)

qed

lemma admissible-rel-spmf-mcont [cont-intro]:
[[mcont lub ord lub-spmf (ord-spmf (=)) f ; mcont lub ord lub-spmf (ord-spmf

(=)) g]]
=⇒ ccpo.admissible lub ord (λx. rel-spmf R (f x) (g x))
by(rule admissible-subst[OF admissible-rel-spmf , where f=λx. (f x, g x), sim-

plified])(rule mcont-Pair)

context includes lifting-syntax
begin

lemma fixp-spmf-parametric ′:
assumes f :

∧
x. monotone (ord-spmf (=)) (ord-spmf (=)) F

and g:
∧

x. monotone (ord-spmf (=)) (ord-spmf (=)) G
and param: (rel-spmf R ===> rel-spmf R) F G

shows (rel-spmf R) (ccpo.fixp lub-spmf (ord-spmf (=)) F) (ccpo.fixp lub-spmf
(ord-spmf (=)) G)
by(rule parallel-fixp-induct[OF ccpo-spmf ccpo-spmf - f g])(auto intro: param[THEN

rel-funD])

THEORY “SPMF” 430

lemma fixp-spmf-parametric:
assumes f :

∧
x. mono-spmf (λf . F f x)

and g:
∧

x. mono-spmf (λf . G f x)
and param: ((A ===> rel-spmf R) ===> A ===> rel-spmf R) F G
shows (A ===> rel-spmf R) (spmf .fixp-fun F) (spmf .fixp-fun G)

using f g
proof(rule parallel-fixp-induct-1-1 [OF partial-function-definitions-spmf partial-function-definitions-spmf
- - reflexive reflexive, where P=(A ===> rel-spmf R)])

show ccpo.admissible (prod-lub (fun-lub lub-spmf) (fun-lub lub-spmf)) (rel-prod
(fun-ord (ord-spmf (=))) (fun-ord (ord-spmf (=)))) (λx. (A ===> rel-spmf R)
(fst x) (snd x))

unfolding rel-fun-def
by(fastforce intro: admissible-all admissible-imp admissible-rel-spmf-mcont)

show (A ===> rel-spmf R) (λ-. lub-spmf {}) (λ-. lub-spmf {})
by auto

show (A ===> rel-spmf R) (F f) (G g) if (A ===> rel-spmf R) f g for f g
using that by(rule rel-funD[OF param])

qed

end

end

end

25.12 Restrictions on spmfs
definition restrict-spmf :: ′a spmf ⇒ ′a set ⇒ ′a spmf (infixl ‹�› 110)

where p � A = map-pmf (λx. x >>= (λy. if y ∈ A then Some y else None)) p

lemma set-restrict-spmf [simp]: set-spmf (p � A) = set-spmf p ∩ A
by(fastforce simp: restrict-spmf-def set-spmf-def split: bind-splits if-split-asm)

lemma restrict-map-spmf : map-spmf f p � A = map-spmf f (p � (f −‘ A))
by(simp add: restrict-spmf-def pmf .map-comp o-def map-option-bind bind-map-option

if-distrib cong del: if-weak-cong)

lemma restrict-restrict-spmf [simp]: p � A � B = p � (A ∩ B)
by(auto simp: restrict-spmf-def pmf .map-comp o-def intro!: pmf .map-cong bind-option-cong)

lemma restrict-spmf-empty [simp]: p � {} = return-pmf None
by(simp add: restrict-spmf-def)

lemma restrict-spmf-UNIV [simp]: p � UNIV = p
by(simp add: restrict-spmf-def)

lemma spmf-restrict-spmf-outside [simp]: x /∈ A =⇒ spmf (p � A) x = 0
by(simp add: spmf-eq-0-set-spmf)

THEORY “SPMF” 431

lemma emeasure-restrict-spmf [simp]: emeasure (measure-spmf (p � A)) X =
emeasure (measure-spmf p) (X ∩ A)
proof −

have (λx. x >>= (λy. if y ∈ A then Some y else None)) −‘ the −‘ X ∩
(λx. x >>= (λy. if y ∈ A then Some y else None)) −‘ range Some =
the −‘ X ∩ the −‘ A ∩ range Some

by(auto split: bind-splits if-split-asm)
then show ?thesis
by (simp add: restrict-spmf-def measure-spmf-def emeasure-distr emeasure-restrict-space)

qed

lemma measure-restrict-spmf [simp]:
measure (measure-spmf (p � A)) X = measure (measure-spmf p) (X ∩ A)
using emeasure-restrict-spmf [of p A X]
by(simp only: measure-spmf .emeasure-eq-measure ennreal-inj measure-nonneg)

lemma spmf-restrict-spmf : spmf (p � A) x = (if x ∈ A then spmf p x else 0)
by(simp add: spmf-conv-measure-spmf)

lemma spmf-restrict-spmf-inside [simp]: x ∈ A =⇒ spmf (p � A) x = spmf p x
by(simp add: spmf-restrict-spmf)

lemma pmf-restrict-spmf-None: pmf (p � A) None = pmf p None + measure
(measure-spmf p) (− A)
proof −

have [simp]: None /∈ Some ‘ (− A) by auto
have (λx. x >>= (λy. if y ∈ A then Some y else None)) −‘ {None} = {None} ∪

(Some ‘ (− A))
by(auto split: bind-splits if-split-asm)

then show ?thesis unfolding ereal.inject[symmetric]
by(simp add: restrict-spmf-def ennreal-pmf-map emeasure-pmf-single del: ereal.inject)

(simp add: pmf .rep-eq measure-pmf .finite-measure-Union[symmetric] mea-
sure-measure-spmf-conv-measure-pmf measure-pmf .emeasure-eq-measure)
qed

lemma restrict-spmf-trivial: (
∧

x. x ∈ set-spmf p =⇒ x ∈ A) =⇒ p � A = p
by(rule spmf-eqI)(auto simp: spmf-restrict-spmf spmf-eq-0-set-spmf)

lemma restrict-spmf-trivial ′: set-spmf p ⊆ A =⇒ p � A = p
by(rule restrict-spmf-trivial) blast

lemma restrict-return-spmf : return-spmf x � A = (if x ∈ A then return-spmf x
else return-pmf None)

by(simp add: restrict-spmf-def)

lemma restrict-return-spmf-inside [simp]: x ∈ A =⇒ return-spmf x � A = re-
turn-spmf x

by(simp add: restrict-return-spmf)

THEORY “SPMF” 432

lemma restrict-return-spmf-outside [simp]: x /∈ A =⇒ return-spmf x � A = re-
turn-pmf None

by(simp add: restrict-return-spmf)

lemma restrict-spmf-return-pmf-None [simp]: return-pmf None � A = return-pmf
None

by(simp add: restrict-spmf-def)

lemma restrict-bind-pmf : bind-pmf p g � A = p >>= (λx. g x � A)
by(simp add: restrict-spmf-def map-bind-pmf o-def)

lemma restrict-bind-spmf : bind-spmf p g � A = p >>= (λx. g x � A)
by(auto simp: bind-spmf-def restrict-bind-pmf cong del: option.case-cong-weak

cong: option.case-cong intro!: bind-pmf-cong split: option.split)

lemma bind-restrict-pmf : bind-pmf (p � A) g = p >>= (λx. if x ∈ Some ‘ A then
g x else g None)

by(auto simp: restrict-spmf-def bind-map-pmf fun-eq-iff split: bind-split intro:
arg-cong2 [where f=bind-pmf])

lemma bind-restrict-spmf : bind-spmf (p � A) g = p >>= (λx. if x ∈ A then g x
else return-pmf None)

by(auto simp: bind-spmf-def bind-restrict-pmf fun-eq-iff intro: arg-cong2 [where
f=bind-pmf] split: option.split)

lemma spmf-map-restrict: spmf (map-spmf fst (p � (snd −‘ {y}))) x = spmf p (x,
y)
by(subst spmf-map)(auto intro: arg-cong2 [where f=measure] simp add: spmf-conv-measure-spmf)

lemma measure-eqI-restrict-spmf :
assumes rel-spmf R (restrict-spmf p A) (restrict-spmf q B)
shows measure (measure-spmf p) A = measure (measure-spmf q) B

proof −
from assms have weight-spmf (restrict-spmf p A) = weight-spmf (restrict-spmf

q B) by(rule rel-spmf-weightD)
thus ?thesis by(simp add: weight-spmf-def)

qed

25.13 Subprobability distributions of sets
definition spmf-of-set :: ′a set ⇒ ′a spmf
where

spmf-of-set A = (if finite A ∧ A 6= {} then spmf-of-pmf (pmf-of-set A) else
return-pmf None)

lemma spmf-of-set: spmf (spmf-of-set A) x = indicator A x / card A
by(auto simp: spmf-of-set-def)

THEORY “SPMF” 433

lemma pmf-spmf-of-set-None [simp]: pmf (spmf-of-set A) None = indicator {A.
infinite A ∨ A = {}} A

by(simp add: spmf-of-set-def)

lemma set-spmf-of-set: set-spmf (spmf-of-set A) = (if finite A then A else {})
by(simp add: spmf-of-set-def)

lemma set-spmf-of-set-finite [simp]: finite A =⇒ set-spmf (spmf-of-set A) = A
by(simp add: set-spmf-of-set)

lemma spmf-of-set-singleton: spmf-of-set {x} = return-spmf x
by(simp add: spmf-of-set-def pmf-of-set-singleton)

lemma map-spmf-of-set-inj-on [simp]:
inj-on f A =⇒ map-spmf f (spmf-of-set A) = spmf-of-set (f ‘ A)
by(auto simp: spmf-of-set-def map-pmf-of-set-inj dest: finite-imageD)

lemma spmf-of-pmf-pmf-of-set [simp]:
[[finite A; A 6= {}]] =⇒ spmf-of-pmf (pmf-of-set A) = spmf-of-set A
by(simp add: spmf-of-set-def)

lemma weight-spmf-of-set:
weight-spmf (spmf-of-set A) = (if finite A ∧ A 6= {} then 1 else 0)
by(auto simp only: spmf-of-set-def weight-spmf-of-pmf weight-return-pmf-None

split: if-split)

lemma weight-spmf-of-set-finite [simp]: [[finite A; A 6= {}]] =⇒ weight-spmf
(spmf-of-set A) = 1

by(simp add: weight-spmf-of-set)

lemma weight-spmf-of-set-infinite [simp]: infinite A =⇒ weight-spmf (spmf-of-set
A) = 0

by(simp add: weight-spmf-of-set)

lemma measure-spmf-spmf-of-set:
measure-spmf (spmf-of-set A) = (if finite A ∧ A 6= {} then measure-pmf (pmf-of-set

A) else null-measure (count-space UNIV))
by(simp add: spmf-of-set-def del: spmf-of-pmf-pmf-of-set)

lemma emeasure-spmf-of-set:
emeasure (measure-spmf (spmf-of-set S)) A = card (S ∩ A) / card S
by(auto simp: measure-spmf-spmf-of-set emeasure-pmf-of-set)

lemma measure-spmf-of-set:
measure (measure-spmf (spmf-of-set S)) A = card (S ∩ A) / card S
by(auto simp: measure-spmf-spmf-of-set measure-pmf-of-set)

lemma nn-integral-spmf-of-set: nn-integral (measure-spmf (spmf-of-set A)) f =
sum f A / card A

THEORY “SPMF” 434

by(cases finite A)(auto simp: spmf-of-set-def nn-integral-pmf-of-set card-gt-0-iff
simp del: spmf-of-pmf-pmf-of-set)

lemma integral-spmf-of-set: integralL (measure-spmf (spmf-of-set A)) f = sum f
A / card A

by (metis card.infinite div-0 division-ring-divide-zero integral-null-measure inte-
gral-pmf-of-set measure-spmf-spmf-of-set of-nat-0 sum.empty)

notepad begin — pmf-of-set is not fully parametric.
define R :: nat ⇒ nat ⇒ bool where R x y ←→ (x 6= 0 −→ y = 0) for x y
define A :: nat set where A = {0 , 1}
define B :: nat set where B = {0 , 1 , 2}
have rel-set R A B unfolding R-def [abs-def] A-def B-def rel-set-def by auto
have ¬ rel-pmf R (pmf-of-set A) (pmf-of-set B)
proof

assume rel-pmf R (pmf-of-set A) (pmf-of-set B)
then obtain pq where pq:

∧
x y. (x, y) ∈ set-pmf pq =⇒ R x y

and 1 : map-pmf fst pq = pmf-of-set A
and 2 : map-pmf snd pq = pmf-of-set B
by cases auto

have pmf (pmf-of-set B) 1 = 1 / 3 by(simp add: B-def)
have pmf (pmf-of-set B) 2 = 1 / 3 by(simp add: B-def)

have 2 / 3 = pmf (pmf-of-set B) 1 + pmf (pmf-of-set B) 2 by(simp add:
B-def)

also have . . . = measure (measure-pmf (pmf-of-set B)) ({1} ∪ {2})
by(subst measure-pmf .finite-measure-Union)(simp-all add: measure-pmf-single)
also have . . . = emeasure (measure-pmf pq) (snd −‘ {2 , 1})
unfolding 2 [symmetric] measure-pmf .emeasure-eq-measure[symmetric] by(simp)
also have . . . = emeasure (measure-pmf pq) {(0 , 2), (0 , 1)}

by(rule emeasure-eq-AE)(auto simp: AE-measure-pmf-iff R-def dest!: pq)
also have . . . ≤ emeasure (measure-pmf pq) (fst −‘ {0})

by(rule emeasure-mono) auto
also have . . . = emeasure (measure-pmf (pmf-of-set A)) {0}

unfolding 1 [symmetric] by simp
also have . . . = pmf (pmf-of-set A) 0

by(simp add: measure-pmf-single measure-pmf .emeasure-eq-measure)
also have pmf (pmf-of-set A) 0 = 1 / 2 by(simp add: A-def)
finally show False by(subst (asm) ennreal-le-iff ; simp)

qed
end

lemma rel-pmf-of-set-bij:
assumes f : bij-betw f A B
and A: A 6= {} finite A
and B: B 6= {} finite B
and R:

∧
x. x ∈ A =⇒ R x (f x)

shows rel-pmf R (pmf-of-set A) (pmf-of-set B)
proof(rule pmf .rel-mono-strong)

THEORY “SPMF” 435

define AB where AB = (λx. (x, f x)) ‘ A
define R ′ where R ′ x y ←→ (x, y) ∈ AB for x y
have (x, y) ∈ AB if (x, y) ∈ set-pmf (pmf-of-set AB) for x y

using that by(auto simp: AB-def A)
moreover have map-pmf fst (pmf-of-set AB) = pmf-of-set A
by(simp add: AB-def map-pmf-of-set-inj[symmetric] inj-on-def A pmf .map-comp

o-def)
moreover
from f have [simp]: inj-on f A by(rule bij-betw-imp-inj-on)
from f have [simp]: f ‘ A = B by(rule bij-betw-imp-surj-on)
have map-pmf snd (pmf-of-set AB) = pmf-of-set B
by(simp add: AB-def map-pmf-of-set-inj[symmetric] inj-on-def A pmf .map-comp

o-def)
(simp add: map-pmf-of-set-inj A)

ultimately show rel-pmf (λx y. (x, y) ∈ AB) (pmf-of-set A) (pmf-of-set B) ..
qed(auto intro: R)

lemma rel-spmf-of-set-bij:
assumes f : bij-betw f A B
and R:

∧
x. x ∈ A =⇒ R x (f x)

shows rel-spmf R (spmf-of-set A) (spmf-of-set B)
proof −

obtain finite A ←→ finite B A = {} ←→ B = {}
using bij-betw-empty1 bij-betw-empty2 bij-betw-finite f by blast

then show ?thesis
using assms
by (metis rel-pmf-of-set-bij rel-spmf-spmf-of-pmf return-spmf-None-parametric

spmf-of-set-def)
qed

context includes lifting-syntax
begin

lemma rel-spmf-of-set:
assumes bi-unique R
shows (rel-set R ===> rel-spmf R) spmf-of-set spmf-of-set

proof
fix A B
assume R: rel-set R A B
with assms obtain f where bij-betw f A B and f :

∧
x. x ∈ A =⇒ R x (f x)

by(auto dest: bi-unique-rel-set-bij-betw)
then show rel-spmf R (spmf-of-set A) (spmf-of-set B)

by(rule rel-spmf-of-set-bij)
qed

end

lemma map-mem-spmf-of-set:
assumes finite B B 6= {}

THEORY “SPMF” 436

shows map-spmf (λx. x ∈ A) (spmf-of-set B) = spmf-of-pmf (bernoulli-pmf
(card (A ∩ B) / card B))
(is ?lhs = ?rhs)

proof(rule spmf-eqI)
fix i
have ennreal (spmf ?lhs i) = card (B ∩ (λx. x ∈ A) −‘ {i}) / (card B)

by(subst ennreal-spmf-map)(simp add: measure-spmf-spmf-of-set assms emea-
sure-pmf-of-set)

also have . . . = (if i then card (B ∩ A) / card B else card (B − A) / card B)
by(auto intro: arg-cong[where f=card])

also have . . . = (if i then card (B ∩ A) / card B else (card B − card (B ∩ A))
/ card B)

by(auto simp: card-Diff-subset-Int assms)
also have . . . = ennreal (spmf ?rhs i)
by(simp add: assms card-gt-0-iff field-simps card-mono Int-commute of-nat-diff)

finally show spmf ?lhs i = spmf ?rhs i by simp
qed

abbreviation coin-spmf :: bool spmf
where coin-spmf ≡ spmf-of-set UNIV

lemma map-eq-const-coin-spmf : map-spmf ((=) c) coin-spmf = coin-spmf
proof −

have inj ((←→) c) range ((←→) c) = UNIV by(auto intro: inj-onI)
then show ?thesis by simp

qed

lemma bind-coin-spmf-eq-const: coin-spmf >>= (λx :: bool. return-spmf (b = x))
= coin-spmf

using map-eq-const-coin-spmf unfolding map-spmf-conv-bind-spmf by simp

lemma bind-coin-spmf-eq-const ′: coin-spmf >>= (λx :: bool. return-spmf (x = b))
= coin-spmf
by(rewrite in - = ◊ bind-coin-spmf-eq-const[symmetric, of b])(auto intro: bind-spmf-cong)

25.14 Losslessness
definition lossless-spmf :: ′a spmf ⇒ bool

where lossless-spmf p ←→ weight-spmf p = 1

lemma lossless-iff-pmf-None: lossless-spmf p ←→ pmf p None = 0
by(simp add: lossless-spmf-def pmf-None-eq-weight-spmf)

lemma lossless-return-spmf [iff]: lossless-spmf (return-spmf x)
by(simp add: lossless-iff-pmf-None)

lemma lossless-return-pmf-None [iff]: ¬ lossless-spmf (return-pmf None)
by(simp add: lossless-iff-pmf-None)

THEORY “SPMF” 437

lemma lossless-map-spmf [simp]: lossless-spmf (map-spmf f p) ←→ lossless-spmf
p

by(auto simp: lossless-iff-pmf-None pmf-eq-0-set-pmf)

lemma lossless-bind-spmf [simp]:
lossless-spmf (p >>= f) ←→ lossless-spmf p ∧ (∀ x∈set-spmf p. lossless-spmf (f

x))
by(simp add: lossless-iff-pmf-None pmf-bind-spmf-None add-nonneg-eq-0-iff inte-

gral-nonneg-AE integral-nonneg-eq-0-iff-AE measure-spmf .integrable-const-bound[where
B=1] pmf-le-1)

lemma lossless-weight-spmfD: lossless-spmf p =⇒ weight-spmf p = 1
by(simp add: lossless-spmf-def)

lemma lossless-iff-set-pmf-None:
lossless-spmf p ←→ None /∈ set-pmf p
by (simp add: lossless-iff-pmf-None pmf-eq-0-set-pmf)

lemma lossless-spmf-of-set [simp]: lossless-spmf (spmf-of-set A) ←→ finite A ∧ A
6= {}

by(auto simp: lossless-spmf-def weight-spmf-of-set)

lemma lossless-spmf-spmf-of-spmf [simp]: lossless-spmf (spmf-of-pmf p)
by(simp add: lossless-spmf-def)

lemma lossless-spmf-bind-pmf [simp]:
lossless-spmf (bind-pmf p f) ←→ (∀ x∈set-pmf p. lossless-spmf (f x))
by(simp add: lossless-iff-pmf-None pmf-bind integral-nonneg-AE integral-nonneg-eq-0-iff-AE

measure-pmf .integrable-const-bound[where B=1] AE-measure-pmf-iff pmf-le-1)

lemma lossless-spmf-conv-spmf-of-pmf : lossless-spmf p ←→ (∃ p ′. p = spmf-of-pmf
p ′)
proof

assume lossless-spmf p
hence ∗:

∧
y. y ∈ set-pmf p =⇒ ∃ x. y = Some x

by(case-tac y)(simp-all add: lossless-iff-set-pmf-None)

let ?p = map-pmf the p
have p = spmf-of-pmf ?p
proof(rule spmf-eqI)

fix i
have ennreal (pmf (map-pmf the p) i) =

∫
+ x. indicator (the −‘ {i}) x ∂p

by(simp add: ennreal-pmf-map)
also have . . . =

∫
+ x. indicator {i} x ∂measure-spmf p unfolding mea-

sure-spmf-def
by(subst nn-integral-distr)(auto simp: nn-integral-restrict-space AE-measure-pmf-iff

simp del: nn-integral-indicator intro!: nn-integral-cong-AE split: split-indicator dest!:
∗)

also have . . . = spmf p i by(simp add: emeasure-spmf-single)

THEORY “SPMF” 438

finally show spmf p i = spmf (spmf-of-pmf ?p) i by simp
qed
thus ∃ p ′. p = spmf-of-pmf p ′ ..

qed auto

lemma spmf-False-conv-True: lossless-spmf p =⇒ spmf p False = 1 − spmf p True
by(clarsimp simp add: lossless-spmf-conv-spmf-of-pmf pmf-False-conv-True)

lemma spmf-True-conv-False: lossless-spmf p =⇒ spmf p True = 1 − spmf p False
by(simp add: spmf-False-conv-True)

lemma bind-eq-return-spmf :
bind-spmf p f = return-spmf x ←→ (∀ y∈set-spmf p. f y = return-spmf x) ∧

lossless-spmf p
apply (simp add: bind-spmf-def bind-eq-return-pmf split: option.split)
by (metis in-set-spmf lossless-iff-set-pmf-None not-None-eq)

lemma rel-spmf-return-spmf2 :
rel-spmf R p (return-spmf x) ←→ lossless-spmf p ∧ (∀ a∈set-spmf p. R a x)
apply (simp add: lossless-iff-set-pmf-None rel-pmf-return-pmf2 option-rel-Some2

in-set-spmf)
by (metis in-set-spmf not-None-eq option.sel)

lemma rel-spmf-return-spmf1 :
rel-spmf R (return-spmf x) p ←→ lossless-spmf p ∧ (∀ a∈set-spmf p. R x a)
using rel-spmf-return-spmf2 [of R−1−1] by(simp add: spmf-rel-conversep)

lemma rel-spmf-bindI1 :
assumes f :

∧
x. x ∈ set-spmf p =⇒ rel-spmf R (f x) q

and p: lossless-spmf p
shows rel-spmf R (bind-spmf p f) q

proof −
fix x :: ′a
have rel-spmf R (bind-spmf p f) (bind-spmf (return-spmf x) (λ-. q))
by(rule rel-spmf-bindI [where R=λx -. x ∈ set-spmf p])(simp-all add: rel-spmf-return-spmf2

p f)
then show ?thesis by simp

qed

lemma rel-spmf-bindI2 :
[[
∧

x. x ∈ set-spmf q =⇒ rel-spmf R p (f x); lossless-spmf q]]
=⇒ rel-spmf R p (bind-spmf q f)
using rel-spmf-bindI1 [of q conversep R f p] by(simp add: spmf-rel-conversep)

25.15 Scaling
definition scale-spmf :: real ⇒ ′a spmf ⇒ ′a spmf
where

scale-spmf r p = embed-spmf (λx. min (inverse (weight-spmf p)) (max 0 r) ∗

THEORY “SPMF” 439

spmf p x)

lemma scale-spmf-le-1 :
(
∫

+ x. min (inverse (weight-spmf p)) (max 0 r) ∗ spmf p x ∂count-space UNIV)
≤ 1 (is ?lhs ≤ -)
proof −
have ?lhs = min (inverse (weight-spmf p)) (max 0 r) ∗

∫
+ x. spmf p x ∂count-space

UNIV
by(subst nn-integral-cmult[symmetric])(simp-all add: weight-spmf-nonneg max-def

min-def ennreal-mult)
also have . . . ≤ 1 unfolding weight-spmf-eq-nn-integral-spmf [symmetric]
by(simp add: min-def max-def weight-spmf-nonneg order .strict-iff-order field-simps

ennreal-mult[symmetric])
finally show ?thesis .

qed

lemma spmf-scale-spmf : spmf (scale-spmf r p) x = max 0 (min (inverse (weight-spmf
p)) r) ∗ spmf p x (is ?lhs = ?rhs)

unfolding scale-spmf-def
apply(subst spmf-embed-spmf [OF scale-spmf-le-1])
apply(simp add: max-def min-def measure-le-0-iff field-simps weight-spmf-nonneg

not-le order .strict-iff-order)
apply(metis antisym-conv order-trans weight-spmf-nonneg zero-le-mult-iff zero-le-one)
done

lemma real-inverse-le-1-iff : fixes x :: real
shows [[0 ≤ x; x ≤ 1]] =⇒ 1 / x ≤ 1 ←→ x = 1 ∨ x = 0
by auto

lemma spmf-scale-spmf ′: r ≤ 1 =⇒ spmf (scale-spmf r p) x = max 0 r ∗ spmf p
x

using real-inverse-le-1-iff [OF weight-spmf-nonneg weight-spmf-le-1 , of p]
by(auto simp: spmf-scale-spmf max-def min-def field-simps)(metis pmf-le-0-iff

spmf-le-weight)

lemma scale-spmf-neg: r ≤ 0 =⇒ scale-spmf r p = return-pmf None
by(rule spmf-eqI)(simp add: spmf-scale-spmf ′ max-def)

lemma scale-spmf-return-None [simp]: scale-spmf r (return-pmf None) = return-pmf
None

by(rule spmf-eqI)(simp add: spmf-scale-spmf)

lemma scale-spmf-conv-bind-bernoulli:
assumes r ≤ 1
shows scale-spmf r p = bind-pmf (bernoulli-pmf r) (λb. if b then p else return-pmf

None) (is ?lhs = ?rhs)
proof(rule spmf-eqI)

fix x
have [[weight-spmf p = 0]] =⇒ spmf p x = 0

THEORY “SPMF” 440

by (metis pmf-le-0-iff spmf-le-weight)
moreover have [[weight-spmf p 6= 0 ; 1 / weight-spmf p < 1]] =⇒ weight-spmf p

= 1
by (smt (verit) divide-less-eq-1 measure-spmf .subprob-measure-le-1 weight-spmf-lt-0)

ultimately have ennreal (spmf ?lhs x) = ennreal (spmf ?rhs x)
using assms

unfolding spmf-scale-spmf ennreal-pmf-bind nn-integral-measure-pmf UNIV-bool
bernoulli-pmf .rep-eq

by(auto simp: nn-integral-count-space-finite max-def min-def field-simps
real-inverse-le-1-iff [OF weight-spmf-nonneg weight-spmf-le-1] ennreal-mult[symmetric])

thus spmf ?lhs x = spmf ?rhs x by simp
qed

lemma nn-integral-spmf : (
∫

+ x. spmf p x ∂count-space A) = emeasure (measure-spmf
p) A
proof −

have bij-betw Some A (the −‘ A ∩ range Some)
by(auto simp: bij-betw-def)

then show ?thesis
by (metis bij-betw-def emeasure-measure-spmf-conv-measure-pmf nn-integral-pmf ′)

qed

lemma measure-spmf-scale-spmf : measure-spmf (scale-spmf r p) = scale-measure
(min (inverse (weight-spmf p)) r) (measure-spmf p)
by(rule measure-eqI ; simp add: spmf-scale-spmf ennreal-mult ′ flip: nn-integral-spmf

nn-integral-cmult)

lemma measure-spmf-scale-spmf ′:
assumes r ≤ 1
shows measure-spmf (scale-spmf r p) = scale-measure r (measure-spmf p)

proof(cases weight-spmf p > 0)
case True
with assms show ?thesis
by(simp add: measure-spmf-scale-spmf field-simps weight-spmf-le-1 mult-le-one)

next
case False
then show ?thesis

by (simp add: order-less-le weight-spmf-eq-0)
qed

lemma scale-spmf-1 [simp]: scale-spmf 1 p = p
by (simp add: spmf-eqI spmf-scale-spmf ′)

lemma scale-spmf-0 [simp]: scale-spmf 0 p = return-pmf None
by (simp add: scale-spmf-neg)

lemma bind-scale-spmf :
assumes r : r ≤ 1
shows bind-spmf (scale-spmf r p) f = bind-spmf p (λx. scale-spmf r (f x))

THEORY “SPMF” 441

(is ?lhs = ?rhs)
proof(rule spmf-eqI)

fix x
have ennreal (spmf ?lhs x) = ennreal (spmf ?rhs x)

using r
by(simp add: ennreal-spmf-bind measure-spmf-scale-spmf ′ nn-integral-scale-measure

spmf-scale-spmf ′

ennreal-mult nn-integral-cmult)
thus spmf ?lhs x = spmf ?rhs x by simp

qed

lemma scale-bind-spmf :
assumes r ≤ 1
shows scale-spmf r (bind-spmf p f) = bind-spmf p (λx. scale-spmf r (f x))
(is ?lhs = ?rhs)

proof(rule spmf-eqI)
fix x
have ennreal (spmf ?lhs x) = ennreal (spmf ?rhs x) using assms

unfolding spmf-scale-spmf ′[OF assms]
by(simp add: ennreal-mult ennreal-spmf-bind spmf-scale-spmf ′ nn-integral-cmult

max-def min-def)
thus spmf ?lhs x = spmf ?rhs x by simp

qed

lemma bind-spmf-const: bind-spmf p (λx. q) = scale-spmf (weight-spmf p) q (is
?lhs = ?rhs)
proof(rule spmf-eqI)

fix x
have ennreal (spmf ?lhs x) = ennreal (spmf ?rhs x)

using measure-spmf .subprob-measure-le-1 [of p space (measure-spmf p)]
by(subst ennreal-spmf-bind)(simp add: spmf-scale-spmf ′ weight-spmf-le-1 en-

nreal-mult mult.commute max-def min-def measure-spmf .emeasure-eq-measure)
thus spmf ?lhs x = spmf ?rhs x by simp

qed

lemma map-scale-spmf : map-spmf f (scale-spmf r p) = scale-spmf r (map-spmf f
p) (is ?lhs = ?rhs)
proof(rule spmf-eqI)

fix i
show spmf ?lhs i = spmf ?rhs i unfolding spmf-scale-spmf
by(subst (1 2) spmf-map)(auto simp: measure-spmf-scale-spmf max-def min-def

ennreal-lt-0)
qed

lemma set-scale-spmf : set-spmf (scale-spmf r p) = (if r > 0 then set-spmf p else
{})

apply(auto simp: in-set-spmf-iff-spmf spmf-scale-spmf)
apply(simp add: min-def weight-spmf-eq-0 split: if-split-asm)
done

THEORY “SPMF” 442

lemma set-scale-spmf ′ [simp]: 0 < r =⇒ set-spmf (scale-spmf r p) = set-spmf p
by(simp add: set-scale-spmf)

lemma rel-spmf-scaleI :
assumes r > 0 =⇒ rel-spmf A p q
shows rel-spmf A (scale-spmf r p) (scale-spmf r q)

proof(cases r > 0)
case True
from assms[OF True] show ?thesis

by(rule rel-spmfE)(auto simp: map-scale-spmf [symmetric] spmf-rel-map True
intro: rel-spmf-reflI)
qed(simp add: not-less scale-spmf-neg)

lemma weight-scale-spmf : weight-spmf (scale-spmf r p) = min 1 (max 0 r ∗
weight-spmf p)
proof −

have [[1 / weight-spmf p ≤ r ; ennreal r ∗ ennreal (weight-spmf p) < 1]] =⇒
weight-spmf p = 0

by (smt (verit) ennreal-less-one-iff ennreal-mult ′′ measure-le-0-iff mult-imp-less-div-pos)
moreover
have [[r < 1 / weight-spmf p; 1 ≤ ennreal r ∗ ennreal (weight-spmf p)]] =⇒

weight-spmf p = 0
by (smt (verit, ccfv-threshold) ennreal-ge-1 ennreal-mult ′′ mult-imp-div-pos-le

weight-spmf-lt-0)
ultimately
have ennreal (weight-spmf (scale-spmf r p)) = min 1 (max 0 r ∗ ennreal (weight-spmf

p))
unfolding weight-spmf-eq-nn-integral-spmf

apply(simp add: spmf-scale-spmf ennreal-mult zero-ereal-def [symmetric] nn-integral-cmult)
apply(auto simp: weight-spmf-eq-nn-integral-spmf [symmetric] field-simps min-def

max-def not-le weight-spmf-lt-0 ennreal-mult[symmetric])
done

thus ?thesis
by(auto simp: min-def max-def ennreal-mult[symmetric] split: if-split-asm)

qed

lemma weight-scale-spmf ′ [simp]:
[[0 ≤ r ; r ≤ 1]] =⇒ weight-spmf (scale-spmf r p) = r ∗ weight-spmf p
by(simp add: weight-scale-spmf max-def min-def)(metis antisym-conv mult-left-le

order-trans weight-spmf-le-1)

lemma pmf-scale-spmf-None:
pmf (scale-spmf k p) None = 1 − min 1 (max 0 k ∗ (1 − pmf p None))
unfolding pmf-None-eq-weight-spmf by(simp add: weight-scale-spmf)

lemma scale-scale-spmf :
scale-spmf r (scale-spmf r ′ p) = scale-spmf (r ∗ max 0 (min (inverse (weight-spmf

p)) r ′)) p

THEORY “SPMF” 443

(is ?lhs = ?rhs)
proof(cases weight-spmf p > 0)

case False
thus ?thesis

by (simp add: weight-spmf-eq-0 zero-less-measure-iff)
next

case True
show ?thesis
proof(rule spmf-eqI)

fix i
have ∗: max 0 (min (1 / weight-spmf p) r ′) ∗ max 0 (min (1 / min 1

(weight-spmf p ∗ max 0 r ′)) r) =
max 0 (min (1 / weight-spmf p) (r ∗ max 0 (min (1 / weight-spmf p) r ′)))

using True
by (simp add: max-def) (auto simp: min-def field-simps zero-le-mult-iff)

show spmf ?lhs i = spmf ?rhs i
by (simp add: spmf-scale-spmf) (metis ∗ inverse-eq-divide mult.commute

weight-scale-spmf)
qed

qed

lemma scale-scale-spmf ′ [simp]:
assumes 0 ≤ r r ≤ 1 0 ≤ r ′ r ′ ≤ 1
shows scale-spmf r (scale-spmf r ′ p) = scale-spmf (r ∗ r ′) p

proof(cases weight-spmf p > 0)
case True
with assms have r ′ = 1 if 1 ≤ r ′ ∗ weight-spmf p

by (smt (verit, best) measure-spmf .subprob-measure-le-1 mult-eq-1 mult-le-one
that)

with assms True show ?thesis
by (smt (verit, best) eq-divide-imp measure-le-0-iff mult.assoc mult-nonneg-nonneg

scale-scale-spmf weight-scale-spmf ′)
next

case False
with assms show ?thesis

by (simp add: weight-spmf-eq-0 zero-less-measure-iff)
qed

lemma scale-spmf-eq-same: scale-spmf r p = p ←→ weight-spmf p = 0 ∨ r = 1
∨ r ≥ 1 ∧ weight-spmf p = 1
(is ?lhs ←→ ?rhs)

proof
assume ?lhs
hence weight-spmf (scale-spmf r p) = weight-spmf p by simp
hence ∗: min 1 (max 0 r ∗ weight-spmf p) = weight-spmf p by(simp add:

weight-scale-spmf)
hence ∗∗: weight-spmf p = 0 ∨ r ≥ 1 by(auto simp: min-def max-def split:

if-split-asm)
show ?rhs

THEORY “SPMF” 444

proof(cases weight-spmf p = 0)
case False
with ∗∗ have r ≥ 1

by simp
with ∗ False have r = 1 ∨ weight-spmf p = 1

by(simp add: max-def min-def not-le split: if-split-asm)
with ‹r ≥ 1 › show ?thesis

by simp
qed simp

next
show weight-spmf p = 0 ∨ r = 1 ∨ 1 ≤ r ∧ weight-spmf p = 1 =⇒ scale-spmf

r p = p
by (smt (verit) div-by-1 inverse-eq-divide inverse-positive-iff-positive scale-scale-spmf

scale-spmf-1)
qed

lemma map-const-spmf-of-set:
[[finite A; A 6= {}]] =⇒ map-spmf (λ-. c) (spmf-of-set A) = return-spmf c
by(simp add: map-spmf-conv-bind-spmf bind-spmf-const)

25.16 Conditional spmfs
lemma set-pmf-Int-Some: set-pmf p ∩ Some ‘ A = {} ←→ set-spmf p ∩ A = {}

by(auto simp: in-set-spmf)

lemma measure-spmf-zero-iff : measure (measure-spmf p) A = 0 ←→ set-spmf p
∩ A = {}
unfolding measure-measure-spmf-conv-measure-pmf by(simp add: measure-pmf-zero-iff

set-pmf-Int-Some)

definition cond-spmf :: ′a spmf ⇒ ′a set ⇒ ′a spmf
where cond-spmf p A = (if set-spmf p ∩ A = {} then return-pmf None else

cond-pmf p (Some ‘ A))

lemma set-cond-spmf [simp]: set-spmf (cond-spmf p A) = set-spmf p ∩ A
by(auto 4 4 simp add: cond-spmf-def in-set-spmf iff : set-cond-pmf [THEN set-eq-iff [THEN

iffD1], THEN spec, rotated])

lemma cond-map-spmf [simp]: cond-spmf (map-spmf f p) A = map-spmf f (cond-spmf
p (f −‘ A))
proof −

have map-option f −‘ Some ‘ A = Some ‘ f −‘ A by auto
moreover have set-pmf p ∩ map-option f −‘ Some ‘ A 6= {} if Some x ∈ set-pmf

p f x ∈ A for x
using that by auto

ultimately show ?thesis by(auto simp: cond-spmf-def in-set-spmf cond-map-pmf)
qed

lemma spmf-cond-spmf [simp]:

THEORY “SPMF” 445

spmf (cond-spmf p A) x = (if x ∈ A then spmf p x / measure (measure-spmf p)
A else 0)
by(auto simp: cond-spmf-def pmf-cond set-pmf-Int-Some[symmetric] measure-measure-spmf-conv-measure-pmf

measure-pmf-zero-iff)

lemma bind-eq-return-pmf-None:
bind-spmf p f = return-pmf None ←→ (∀ x∈set-spmf p. f x = return-pmf None)
by(auto simp: bind-spmf-def bind-eq-return-pmf in-set-spmf split: option.splits)

lemma return-pmf-None-eq-bind:
return-pmf None = bind-spmf p f ←→ (∀ x∈set-spmf p. f x = return-pmf None)
using bind-eq-return-pmf-None[of p f] by auto

25.17 Product spmf
definition pair-spmf :: ′a spmf ⇒ ′b spmf ⇒ (′a × ′b) spmf
where pair-spmf p q = bind-pmf (pair-pmf p q) (λxy. case xy of (Some x, Some
y) ⇒ return-spmf (x, y) | - ⇒ return-pmf None)

lemma map-fst-pair-spmf [simp]: map-spmf fst (pair-spmf p q) = scale-spmf (weight-spmf
q) p

unfolding bind-spmf-const[symmetric]
apply(simp add: pair-spmf-def map-bind-pmf pair-pmf-def bind-assoc-pmf op-

tion.case-distrib)
apply(subst bind-commute-pmf)
apply(force intro!: bind-pmf-cong[OF refl] simp add: bind-return-pmf bind-spmf-def

bind-return-pmf ′ case-option-collapse
option.case-distrib[where h=map-spmf -] option.case-distrib[symmetric] case-option-id

split: option.split cong: option.case-cong)
done

lemma map-snd-pair-spmf [simp]: map-spmf snd (pair-spmf p q) = scale-spmf
(weight-spmf p) q

unfolding bind-spmf-const[symmetric]
apply(simp add: pair-spmf-def map-bind-pmf pair-pmf-def bind-assoc-pmf op-

tion.case-distrib
cong del: option.case-cong-weak)

apply(auto intro!: bind-pmf-cong[OF refl] simp add: bind-return-pmf bind-spmf-def
bind-return-pmf ′ case-option-collapse

option.case-distrib[where h=map-spmf -] option.case-distrib[symmetric] case-option-id
split: option.split cong del: option.case-cong-weak)

done

lemma set-pair-spmf [simp]: set-spmf (pair-spmf p q) = set-spmf p × set-spmf q
by(force simp add: pair-spmf-def set-spmf-bind-pmf bind-UNION in-set-spmf split:

option.splits)

lemma spmf-pair [simp]: spmf (pair-spmf p q) (x, y) = spmf p x ∗ spmf q y (is
?lhs = ?rhs)

THEORY “SPMF” 446

proof −
have ennreal ?lhs =

∫
+ a.

∫
+ b. indicator {(x, y)} (a, b) ∂measure-spmf q

∂measure-spmf p
unfolding measure-spmf-def pair-spmf-def ennreal-pmf-bind nn-integral-pair-pmf ′

by(auto simp: zero-ereal-def [symmetric] nn-integral-distr nn-integral-restrict-space
nn-integral-multc[symmetric] intro!: nn-integral-cong split: option.split split-indicator)

also have . . . =
∫

+ a. (
∫

+ b. indicator {y} b ∂measure-spmf q) ∗ indicator {x}
a ∂measure-spmf p

by(subst nn-integral-multc[symmetric])(auto intro!: nn-integral-cong split: split-indicator)
also have . . . = ennreal ?rhs by(simp add: emeasure-spmf-single max-def en-

nreal-mult mult.commute)
finally show ?thesis by simp

qed

lemma pair-map-spmf2 : pair-spmf p (map-spmf f q) = map-spmf (apsnd f) (pair-spmf
p q)

unfolding pair-spmf-def pair-map-pmf2 bind-map-pmf map-bind-pmf
by (intro bind-pmf-cong refl) (auto split: option.split)

lemma pair-map-spmf1 : pair-spmf (map-spmf f p) q = map-spmf (apfst f) (pair-spmf
p q)

unfolding pair-spmf-def pair-map-pmf1 bind-map-pmf map-bind-pmf
by (intro bind-pmf-cong refl) (auto split: option.split)

lemma pair-map-spmf : pair-spmf (map-spmf f p) (map-spmf g q) = map-spmf
(map-prod f g) (pair-spmf p q)

unfolding pair-map-spmf2 pair-map-spmf1 spmf .map-comp
by(simp add: apfst-def apsnd-def o-def prod.map-comp)

lemma pair-spmf-alt-def : pair-spmf p q = bind-spmf p (λx. bind-spmf q (λy. re-
turn-spmf (x, y)))
unfolding pair-spmf-def pair-pmf-def bind-spmf-def bind-assoc-pmf bind-return-pmf
by (intro bind-pmf-cong refl) (auto split: option.split)

lemma weight-pair-spmf [simp]: weight-spmf (pair-spmf p q) = weight-spmf p ∗
weight-spmf q

unfolding pair-spmf-alt-def by(simp add: weight-bind-spmf o-def)

lemma pair-scale-spmf1 :
r ≤ 1 =⇒ pair-spmf (scale-spmf r p) q = scale-spmf r (pair-spmf p q)
by(simp add: pair-spmf-alt-def scale-bind-spmf bind-scale-spmf)

lemma pair-scale-spmf2 :
r ≤ 1 =⇒ pair-spmf p (scale-spmf r q) = scale-spmf r (pair-spmf p q)
by(simp add: pair-spmf-alt-def scale-bind-spmf bind-scale-spmf)

lemma pair-spmf-return-None1 [simp]: pair-spmf (return-pmf None) p = return-pmf
None

by(rule spmf-eqI)(clarsimp)

THEORY “SPMF” 447

lemma pair-spmf-return-None2 [simp]: pair-spmf p (return-pmf None) = return-pmf
None

by(rule spmf-eqI)(clarsimp)

lemma pair-spmf-return-spmf1 : pair-spmf (return-spmf x) q = map-spmf (Pair
x) q

by(rule spmf-eqI)(auto split: split-indicator simp add: spmf-map-inj ′ inj-on-def
intro: spmf-map-outside)

lemma pair-spmf-return-spmf2 : pair-spmf p (return-spmf y) = map-spmf (λx. (x,
y)) p
by(rule spmf-eqI)(auto split: split-indicator simp add: inj-on-def intro!: spmf-map-outside

spmf-map-inj ′[symmetric])

lemma pair-spmf-return-spmf [simp]: pair-spmf (return-spmf x) (return-spmf y)
= return-spmf (x, y)

by(simp add: pair-spmf-return-spmf1)

lemma rel-pair-spmf-prod:
rel-spmf (rel-prod A B) (pair-spmf p q) (pair-spmf p ′ q ′) ←→
rel-spmf A (scale-spmf (weight-spmf q) p) (scale-spmf (weight-spmf q ′) p ′) ∧
rel-spmf B (scale-spmf (weight-spmf p) q) (scale-spmf (weight-spmf p ′) q ′)
(is ?lhs ←→ ?rhs is - ←→ ?A ∧ ?B is - ←→ rel-spmf - ?p ?p ′ ∧ rel-spmf - ?q

?q ′)
proof(intro iffI conjI)

assume ?rhs
then obtain pq pq ′ where p: map-spmf fst pq = ?p and p ′: map-spmf snd pq =

?p ′

and q: map-spmf fst pq ′ = ?q and q ′: map-spmf snd pq ′ = ?q ′

and ∗:
∧

x x ′. (x, x ′) ∈ set-spmf pq =⇒ A x x ′

and ∗∗:
∧

y y ′. (y, y ′) ∈ set-spmf pq ′ =⇒ B y y ′ by(auto elim!: rel-spmfE)
let ?f = λ((x, x ′), (y, y ′)). ((x, y), (x ′, y ′))
let ?r = 1 / (weight-spmf p ∗ weight-spmf q)
let ?pq = scale-spmf ?r (map-spmf ?f (pair-spmf pq pq ′))

{ fix p :: ′x spmf and q :: ′y spmf
assume weight-spmf q 6= 0

and weight-spmf p 6= 0
and 1 / (weight-spmf p ∗ weight-spmf q) ≤ weight-spmf p ∗ weight-spmf q

hence 1 ≤ (weight-spmf p ∗ weight-spmf q) ∗ (weight-spmf p ∗ weight-spmf q)
by(simp add: pos-divide-le-eq order .strict-iff-order weight-spmf-nonneg)

moreover have (weight-spmf p ∗ weight-spmf q) ∗ (weight-spmf p ∗ weight-spmf
q) ≤ (1 ∗ 1) ∗ (1 ∗ 1)

by(intro mult-mono)(simp-all add: weight-spmf-nonneg weight-spmf-le-1)
ultimately have (weight-spmf p ∗ weight-spmf q) ∗ (weight-spmf p ∗ weight-spmf

q) = 1 by simp
hence ∗: weight-spmf p ∗ weight-spmf q = 1
by(metis antisym-conv less-le mult-less-cancel-left1 weight-pair-spmf weight-spmf-le-1

THEORY “SPMF” 448

weight-spmf-nonneg)
hence ∗∗: weight-spmf p = 1 by(metis antisym-conv mult-left-le weight-spmf-le-1

weight-spmf-nonneg)
moreover from ∗ ∗∗ have weight-spmf q = 1 by simp
moreover note calculation }

note full = this

show ?lhs
proof

have [simp]: fst ◦ ?f = map-prod fst fst by(simp add: fun-eq-iff)
have map-spmf fst ?pq = scale-spmf ?r (pair-spmf ?p ?q)
by(simp add: pair-map-spmf [symmetric] p q map-scale-spmf spmf .map-comp)

also have . . . = pair-spmf p q using full[of p q]
by(simp add: pair-scale-spmf1 pair-scale-spmf2 weight-spmf-le-1 weight-spmf-nonneg)

(auto simp: scale-scale-spmf max-def min-def field-simps weight-spmf-nonneg
weight-spmf-eq-0)

finally show map-spmf fst ?pq =

have [simp]: snd ◦ ?f = map-prod snd snd by(simp add: fun-eq-iff)
from ‹?rhs› have eq: weight-spmf p ∗ weight-spmf q = weight-spmf p ′ ∗

weight-spmf q ′

by(auto dest!: rel-spmf-weightD simp add: weight-spmf-le-1 weight-spmf-nonneg)

have map-spmf snd ?pq = scale-spmf ?r (pair-spmf ?p ′ ?q ′)
by(simp add: pair-map-spmf [symmetric] p ′ q ′ map-scale-spmf spmf .map-comp)
also have . . . = pair-spmf p ′ q ′ using full[of p ′ q ′] eq
by(simp add: pair-scale-spmf1 pair-scale-spmf2 weight-spmf-le-1 weight-spmf-nonneg)

(auto simp: scale-scale-spmf max-def min-def field-simps weight-spmf-nonneg
weight-spmf-eq-0)

finally show map-spmf snd ?pq =
qed(auto simp: set-scale-spmf split: if-split-asm dest: ∗ ∗∗)

next
assume ?lhs
then obtain pq where pq: map-spmf fst pq = pair-spmf p q

and pq ′: map-spmf snd pq = pair-spmf p ′ q ′

and ∗:
∧

x y x ′ y ′. ((x, y), (x ′, y ′)) ∈ set-spmf pq =⇒ A x x ′ ∧ B y y ′

by(auto elim: rel-spmfE)

show ?A
proof

let ?f = (λ((x, y), (x ′, y ′)). (x, x ′))
let ?pq = map-spmf ?f pq
have [simp]: fst ◦ ?f = fst ◦ fst by(simp add: split-def o-def)
show map-spmf fst ?pq = scale-spmf (weight-spmf q) p using pq

by(simp add: spmf .map-comp)(simp add: spmf .map-comp[symmetric])

have [simp]: snd ◦ ?f = fst ◦ snd by(simp add: split-def o-def)
show map-spmf snd ?pq = scale-spmf (weight-spmf q ′) p ′ using pq ′

by(simp add: spmf .map-comp)(simp add: spmf .map-comp[symmetric])

THEORY “SPMF” 449

qed(auto dest: ∗)

show ?B
proof

let ?f = (λ((x, y), (x ′, y ′)). (y, y ′))
let ?pq = map-spmf ?f pq
have [simp]: fst ◦ ?f = snd ◦ fst by(simp add: split-def o-def)
show map-spmf fst ?pq = scale-spmf (weight-spmf p) q using pq

by(simp add: spmf .map-comp)(simp add: spmf .map-comp[symmetric])

have [simp]: snd ◦ ?f = snd ◦ snd by(simp add: split-def o-def)
show map-spmf snd ?pq = scale-spmf (weight-spmf p ′) q ′ using pq ′

by(simp add: spmf .map-comp)(simp add: spmf .map-comp[symmetric])
qed(auto dest: ∗)

qed

lemma pair-pair-spmf :
pair-spmf (pair-spmf p q) r = map-spmf (λ(x, (y, z)). ((x, y), z)) (pair-spmf p

(pair-spmf q r))
by(simp add: pair-spmf-alt-def map-spmf-conv-bind-spmf)

lemma pair-commute-spmf :
pair-spmf p q = map-spmf (λ(y, x). (x, y)) (pair-spmf q p)
unfolding pair-spmf-alt-def by(subst bind-commute-spmf)(simp add: map-spmf-conv-bind-spmf)

25.18 Assertions
definition assert-spmf :: bool ⇒ unit spmf

where assert-spmf b = (if b then return-spmf () else return-pmf None)

lemma assert-spmf-simps [simp]:
assert-spmf True = return-spmf ()
assert-spmf False = return-pmf None
by(simp-all add: assert-spmf-def)

lemma in-set-assert-spmf [simp]: x ∈ set-spmf (assert-spmf p) ←→ p
by(cases p) simp-all

lemma set-spmf-assert-spmf-eq-empty [simp]: set-spmf (assert-spmf b) = {} ←→
¬ b

by auto

lemma lossless-assert-spmf [iff]: lossless-spmf (assert-spmf b) ←→ b
by(cases b) simp-all

25.19 Try
definition try-spmf :: ′a spmf ⇒ ′a spmf ⇒ ′a spmf
(‹(‹open-block notation=‹mixfix try-spmf ››TRY - ELSE -)› [0 ,60] 59)

THEORY “SPMF” 450

where TRY p ELSE q = bind-pmf p (λx. case x of None ⇒ q | Some y ⇒ re-
turn-spmf y)

lemma try-spmf-lossless [simp]:
assumes lossless-spmf p
shows TRY p ELSE q = p

proof −
have TRY p ELSE q = bind-pmf p return-pmf unfolding try-spmf-def using

assms
by(auto simp: lossless-iff-set-pmf-None split: option.split intro: bind-pmf-cong)

thus ?thesis by(simp add: bind-return-pmf ′)
qed

lemma try-spmf-return-spmf1 : TRY return-spmf x ELSE q = return-spmf x
by simp

lemma try-spmf-return-None [simp]: TRY return-pmf None ELSE q = q
by(simp add: try-spmf-def bind-return-pmf)

lemma try-spmf-return-pmf-None2 [simp]: TRY p ELSE return-pmf None = p
by(simp add: try-spmf-def option.case-distrib[symmetric] bind-return-pmf ′ case-option-id)

lemma map-try-spmf : map-spmf f (try-spmf p q) = try-spmf (map-spmf f p)
(map-spmf f q)
by(simp add: try-spmf-def map-bind-pmf bind-map-pmf option.case-distrib[where

h=map-spmf f] o-def cong del: option.case-cong-weak)

lemma try-spmf-bind-pmf : TRY (bind-pmf p f) ELSE q = bind-pmf p (λx. TRY
(f x) ELSE q)

by(simp add: try-spmf-def bind-assoc-pmf)

lemma try-spmf-bind-spmf-lossless:
lossless-spmf p =⇒ TRY (bind-spmf p f) ELSE q = bind-spmf p (λx. TRY (f x)

ELSE q)
by (metis (mono-tags, lifting) bind-spmf-of-pmf lossless-spmf-conv-spmf-of-pmf

try-spmf-bind-pmf)

lemma try-spmf-bind-out:
lossless-spmf p =⇒ bind-spmf p (λx. TRY (f x) ELSE q) = TRY (bind-spmf p

f) ELSE q
by(simp add: try-spmf-bind-spmf-lossless)

lemma lossless-try-spmf [simp]:
lossless-spmf (TRY p ELSE q) ←→ lossless-spmf p ∨ lossless-spmf q
by(auto simp: try-spmf-def in-set-spmf lossless-iff-set-pmf-None split: option.splits)

context includes lifting-syntax
begin

THEORY “SPMF” 451

lemma try-spmf-parametric [transfer-rule]:
(rel-spmf A ===> rel-spmf A ===> rel-spmf A) try-spmf try-spmf
unfolding try-spmf-def [abs-def] by transfer-prover

end

lemma try-spmf-cong:
[[p = p ′; ¬ lossless-spmf p ′ =⇒ q = q ′]] =⇒ TRY p ELSE q = TRY p ′ ELSE q ′

unfolding try-spmf-def
by(rule bind-pmf-cong)(auto split: option.split simp add: lossless-iff-set-pmf-None)

lemma rel-spmf-try-spmf :
[[rel-spmf R p p ′; ¬ lossless-spmf p ′ =⇒ rel-spmf R q q ′]]
=⇒ rel-spmf R (TRY p ELSE q) (TRY p ′ ELSE q ′)
unfolding try-spmf-def
apply(rule rel-pmf-bindI [where R=λx y. rel-option R x y ∧ x ∈ set-pmf p ∧ y
∈ set-pmf p ′])

apply (simp add: pmf .rel-mono-strong)
apply(auto split: option.split simp add: lossless-iff-set-pmf-None)
done

lemma spmf-try-spmf :
spmf (TRY p ELSE q) x = spmf p x + pmf p None ∗ spmf q x

proof −
have ennreal (spmf (TRY p ELSE q) x) =

∫
+ y. ennreal (spmf q x) ∗ indicator

{None} y + indicator {Some x} y ∂measure-pmf p
unfolding try-spmf-def ennreal-pmf-bind by(rule nn-integral-cong)(simp split:

option.split split-indicator)
also have . . . = (

∫
+ y. ennreal (spmf q x) ∗ indicator {None} y ∂measure-pmf

p) +
∫

+ y. indicator {Some x} y ∂measure-pmf p
by(simp add: nn-integral-add)

also have . . . = ennreal (spmf q x) ∗ pmf p None + spmf p x by(simp add:
emeasure-pmf-single)

finally show ?thesis by(simp flip: ennreal-plus ennreal-mult)
qed

lemma try-scale-spmf-same [simp]: lossless-spmf p =⇒ TRY scale-spmf k p ELSE
p = p
by(rule spmf-eqI)(auto simp: spmf-try-spmf spmf-scale-spmf pmf-scale-spmf-None

lossless-iff-pmf-None weight-spmf-conv-pmf-None min-def max-def field-simps)

lemma pmf-try-spmf-None [simp]: pmf (TRY p ELSE q) None = pmf p None ∗
pmf q None (is ?lhs = ?rhs)
proof −

have ?lhs =
∫

x. pmf q None ∗ indicator {None} x ∂measure-pmf p
unfolding try-spmf-def pmf-bind by(rule Bochner-Integration.integral-cong)(simp-all

split: option.split)
also have . . . = ?rhs by(simp add: measure-pmf-single)
finally show ?thesis .

THEORY “SPMF” 452

qed

lemma try-bind-spmf-lossless2 :
lossless-spmf q =⇒ TRY (bind-spmf p f) ELSE q = TRY (p >>= (λx. TRY (f

x) ELSE q)) ELSE q
by(rule spmf-eqI)(simp add: spmf-try-spmf pmf-bind-spmf-None spmf-bind field-simps
measure-spmf .integrable-const-bound[where B=1] pmf-le-1 lossless-iff-pmf-None)

lemma try-bind-spmf-lossless2 ′:
fixes f :: ′a ⇒ ′b spmf shows
[[NO-MATCH (λx :: ′a. try-spmf (g x :: ′b spmf) (h x)) f ; lossless-spmf q]]
=⇒ TRY (bind-spmf p f) ELSE q = TRY (p >>= (λx :: ′a. TRY (f x) ELSE q))

ELSE q
by(rule try-bind-spmf-lossless2)

lemma try-bind-assert-spmf :
TRY (assert-spmf b >>= f) ELSE q = (if b then TRY (f ()) ELSE q else q)

by simp

25.20 Miscellaneous
lemma assumes rel-spmf (λx y. bad1 x = bad2 y ∧ (¬ bad2 y −→ A x ←→ B
y)) p q (is rel-spmf ?A - -)
shows fundamental-lemma-bad: measure (measure-spmf p) {x. bad1 x} = measure

(measure-spmf q) {y. bad2 y} (is ?bad)
and fundamental-lemma: |measure (measure-spmf p) {x. A x} − measure (measure-spmf

q) {y. B y}| ≤
measure (measure-spmf p) {x. bad1 x} (is ?fundamental)

proof −
have good: rel-fun ?A (=) (λx. A x ∧ ¬ bad1 x) (λy. B y ∧ ¬ bad2 y) by(auto

simp: rel-fun-def)
from assms have 1 : measure (measure-spmf p) {x. A x ∧ ¬ bad1 x} = measure

(measure-spmf q) {y. B y ∧ ¬ bad2 y}
by(rule measure-spmf-parametric[THEN rel-funD, THEN rel-funD])(rule Col-

lect-parametric[THEN rel-funD, OF good])

have bad: rel-fun ?A (=) bad1 bad2 by(simp add: rel-fun-def)
show 2 : ?bad using assms

by(rule measure-spmf-parametric[THEN rel-funD, THEN rel-funD])(rule Col-
lect-parametric[THEN rel-funD, OF bad])

let ?µp = measure (measure-spmf p) and ?µq = measure (measure-spmf q)
have {x. A x ∧ bad1 x} ∪ {x. A x ∧ ¬ bad1 x} = {x. A x}

and {y. B y ∧ bad2 y} ∪ {y. B y ∧ ¬ bad2 y} = {y. B y} by auto
then have |?µp {x. A x} − ?µq {x. B x}| = |?µp ({x. A x ∧ bad1 x} ∪ {x. A

x ∧ ¬ bad1 x}) − ?µq ({y. B y ∧ bad2 y} ∪ {y. B y ∧ ¬ bad2 y})|
by simp

also have . . . = |?µp {x. A x ∧ bad1 x} + ?µp {x. A x ∧ ¬ bad1 x} − ?µq {y.
B y ∧ bad2 y} − ?µq {y. B y ∧ ¬ bad2 y}|

THEORY “Product-PMF” 453

by(subst (1 2) measure-Union)(auto)
also have . . . = |?µp {x. A x ∧ bad1 x} − ?µq {y. B y ∧ bad2 y}| using 1 by

simp
also have . . . ≤ max (?µp {x. A x ∧ bad1 x}) (?µq {y. B y ∧ bad2 y})

by(rule abs-leI)(auto simp: max-def not-le, simp-all only: add-increasing mea-
sure-nonneg mult-2)

also have . . . ≤ max (?µp {x. bad1 x}) (?µq {y. bad2 y})
by(rule max.mono; rule measure-spmf .finite-measure-mono; auto)

also note 2 [symmetric]
finally show ?fundamental by simp

qed

end

26 Indexed products of PMFs
theory Product-PMF

imports Probability-Mass-Function Independent-Family
begin

Conflicting notation from HOL−Analysis.Infinite-Sum
no-notation Infinite-Sum.abs-summable-on (infixr ‹abs ′-summable ′-on› 46)

26.1 Preliminaries
lemma pmf-expectation-eq-infsetsum: measure-pmf .expectation p f = infsetsum
(λx. pmf p x ∗ f x) UNIV
unfolding infsetsum-def measure-pmf-eq-density by (subst integral-density) simp-all

lemma measure-pmf-prob-product:
assumes countable A countable B
shows measure-pmf .prob (pair-pmf M N) (A × B) = measure-pmf .prob M A ∗

measure-pmf .prob N B
proof −

have measure-pmf .prob (pair-pmf M N) (A × B) = (
∑

a(a, b)∈A × B. pmf M
a ∗ pmf N b)

by (auto intro!: infsetsum-cong simp add: measure-pmf-conv-infsetsum pmf-pair)
also have . . . = measure-pmf .prob M A ∗ measure-pmf .prob N B
using assms by (subst infsetsum-product) (auto simp add: measure-pmf-conv-infsetsum)

finally show ?thesis
by simp

qed

26.2 Definition

In analogy to PiM , we define an indexed product of PMFs. In the literature,
this is typically called taking a vector of independent random variables. Note
that the components do not have to be identically distributed.

THEORY “Product-PMF” 454

The operation takes an explicit index set A and a function f that maps
each element from A to a PMF and defines the product measure

⊗
i∈A f(i)

, which is represented as a (′a ⇒ ′b) pmf.
Note that unlike PiM , this only works for finite index sets. It could be
extended to countable sets and beyond, but the construction becomes some-
what more involved.
definition Pi-pmf :: ′a set ⇒ ′b ⇒ (′a ⇒ ′b pmf) ⇒ (′a ⇒ ′b) pmf where

Pi-pmf A dflt p =
embed-pmf (λf . if (∀ x. x /∈ A −→ f x = dflt) then

∏
x∈A. pmf (p x) (f x)

else 0)

A technical subtlety that needs to be addressed is this: Intuitively, the func-
tions in the support of a product distribution have domain A. However, since
HOL is a total logic, these functions must still return some value for inputs
outside A. The product measure PiM simply lets these functions return un-
defined in these cases. We chose a different solution here, which is to supply
a default value dflt that is returned in these cases.
As one possible application, one could model the result of n different inde-
pendent coin tosses as Pi-pmf {0 ..<n} False (λ-. bernoulli-pmf (1 / 2)).
This returns a function of type nat ⇒ bool that maps every natural number
below n to the result of the corresponding coin toss, and every other natural
number to False.
lemma pmf-Pi:

assumes A: finite A
shows pmf (Pi-pmf A dflt p) f =

(if (∀ x. x /∈ A −→ f x = dflt) then
∏

x∈A. pmf (p x) (f x) else 0)
unfolding Pi-pmf-def

proof (rule pmf-embed-pmf , goal-cases)
case 2
define S where S = {f . ∀ x. x /∈ A −→ f x = dflt}
define B where B = (λx. set-pmf (p x))

have neutral-left: (
∏

xa∈A. pmf (p xa) (f xa)) = 0
if f ∈ PiE A B − (λf . restrict f A) ‘ S for f

proof −
have restrict (λx. if x ∈ A then f x else dflt) A ∈ (λf . restrict f A) ‘ S

by (intro imageI) (auto simp: S-def)
also have restrict (λx. if x ∈ A then f x else dflt) A = f

using that by (auto simp: PiE-def Pi-def extensional-def fun-eq-iff)
finally show ?thesis using that by blast

qed
have neutral-right: (

∏
xa∈A. pmf (p xa) (f xa)) = 0

if f ∈ (λf . restrict f A) ‘ S − PiE A B for f
proof −

from that obtain f ′ where f ′: f = restrict f ′ A f ′ ∈ S by auto
moreover from this and that have restrict f ′ A /∈ PiE A B by simp

THEORY “Product-PMF” 455

then obtain x where x ∈ A pmf (p x) (f ′ x) = 0 by (auto simp: B-def
set-pmf-eq)

with f ′ and A show ?thesis by auto
qed

have (λf .
∏

x∈A. pmf (p x) (f x)) abs-summable-on PiE A B
by (intro abs-summable-on-prod-PiE A) (auto simp: B-def)

also have ?this ←→ (λf .
∏

x∈A. pmf (p x) (f x)) abs-summable-on (λf . restrict
f A) ‘ S

by (intro abs-summable-on-cong-neutral neutral-left neutral-right) auto
also have . . . ←→ (λf .

∏
x∈A. pmf (p x) (restrict f A x)) abs-summable-on S

by (rule abs-summable-on-reindex-iff [symmetric]) (force simp: inj-on-def fun-eq-iff
S-def)

also have . . . ←→ (λf . if ∀ x. x /∈ A −→ f x = dflt then
∏

x∈A. pmf (p x) (f
x) else 0)

abs-summable-on UNIV
by (intro abs-summable-on-cong-neutral) (auto simp: S-def)

finally have summable:

have 1 = (
∏

x∈A. 1 ::real) by simp
also have (

∏
x∈A. 1) = (

∏
x∈A.

∑
ay∈B x. pmf (p x) y)

unfolding B-def by (subst infsetsum-pmf-eq-1) auto
also have (

∏
x∈A.

∑
ay∈B x. pmf (p x) y) = (

∑
af∈PiE A B.

∏
x∈A. pmf (p

x) (f x))
by (intro infsetsum-prod-PiE [symmetric] A) (auto simp: B-def)

also have . . . = (
∑

af∈(λf . restrict f A) ‘ S .
∏

x∈A. pmf (p x) (f x)) using A
by (intro infsetsum-cong-neutral neutral-left neutral-right refl)

also have . . . = (
∑

af∈S .
∏

x∈A. pmf (p x) (restrict f A x))
by (rule infsetsum-reindex) (force simp: inj-on-def fun-eq-iff S-def)

also have . . . = (
∑

af∈S .
∏

x∈A. pmf (p x) (f x))
by (intro infsetsum-cong) (auto simp: S-def)

also have . . . = (
∑

af . if ∀ x. x /∈ A −→ f x = dflt then
∏

x∈A. pmf (p x) (f
x) else 0)

by (intro infsetsum-cong-neutral) (auto simp: S-def)
also have ennreal . . . = (

∫
+f . ennreal (if ∀ x. x /∈ A −→ f x = dflt

then
∏

x∈A. pmf (p x) (f x) else 0) ∂count-space UNIV)
by (intro nn-integral-conv-infsetsum [symmetric] summable) (auto simp: prod-nonneg)

finally show ?case by simp
qed (auto simp: prod-nonneg)

lemma Pi-pmf-cong:
assumes A = A ′ dflt = dflt ′ ∧x. x ∈ A =⇒ f x = f ′ x
shows Pi-pmf A dflt f = Pi-pmf A ′ dflt ′ f ′

proof −
have (λfa. if ∀ x. x /∈ A −→ fa x = dflt then

∏
x∈A. pmf (f x) (fa x) else 0) =

(λf . if ∀ x. x /∈ A ′ −→ f x = dflt ′ then
∏

x∈A ′. pmf (f ′ x) (f x) else 0)
using assms by (intro ext) (auto intro!: prod.cong)

thus ?thesis
by (simp only: Pi-pmf-def)

THEORY “Product-PMF” 456

qed

lemma pmf-Pi ′:
assumes finite A

∧
x. x /∈ A =⇒ f x = dflt

shows pmf (Pi-pmf A dflt p) f = (
∏

x∈A. pmf (p x) (f x))
using assms by (subst pmf-Pi) auto

lemma pmf-Pi-outside:
assumes finite A ∃ x. x /∈ A ∧ f x 6= dflt
shows pmf (Pi-pmf A dflt p) f = 0
using assms by (subst pmf-Pi) auto

lemma pmf-Pi-empty [simp]: Pi-pmf {} dflt p = return-pmf (λ-. dflt)
by (intro pmf-eqI , subst pmf-Pi) (auto simp: indicator-def)

lemma set-Pi-pmf-subset: finite A =⇒ set-pmf (Pi-pmf A dflt p) ⊆ {f . ∀ x. x /∈
A −→ f x = dflt}

by (auto simp: set-pmf-eq pmf-Pi)

26.3 Dependent product sets with a default

The following describes a dependent product of sets where the functions are
required to return the default value dflt outside their domain, in analogy to
PiE , which uses undefined.
definition PiE-dflt

where PiE-dflt A dflt B = {f . ∀ x. (x ∈ A −→ f x ∈ B x) ∧ (x /∈ A −→ f x =
dflt)}

lemma restrict-PiE-dflt: (λh. restrict h A) ‘ PiE-dflt A dflt B = PiE A B
proof (intro equalityI subsetI)

fix h assume h ∈ (λh. restrict h A) ‘ PiE-dflt A dflt B
thus h ∈ PiE A B

by (auto simp: PiE-dflt-def)
next

fix h assume h: h ∈ PiE A B
hence restrict (λx. if x ∈ A then h x else dflt) A ∈ (λh. restrict h A) ‘ PiE-dflt

A dflt B
by (intro imageI) (auto simp: PiE-def extensional-def PiE-dflt-def)

also have restrict (λx. if x ∈ A then h x else dflt) A = h
using h by (auto simp: fun-eq-iff)

finally show h ∈ (λh. restrict h A) ‘ PiE-dflt A dflt B .
qed

lemma dflt-image-PiE : (λh x. if x ∈ A then h x else dflt) ‘ PiE A B = PiE-dflt
A dflt B
(is ?f ‘ ?X = ?Y)

proof (intro equalityI subsetI)
fix h assume h ∈ ?f ‘ ?X
thus h ∈ ?Y

THEORY “Product-PMF” 457

by (auto simp: PiE-dflt-def PiE-def)
next

fix h assume h: h ∈ ?Y
hence ?f (restrict h A) ∈ ?f ‘ ?X

by (intro imageI) (auto simp: PiE-def extensional-def PiE-dflt-def)
also have ?f (restrict h A) = h

using h by (auto simp: fun-eq-iff PiE-dflt-def)
finally show h ∈ ?f ‘ ?X .

qed

lemma finite-PiE-dflt [intro]:
assumes finite A

∧
x. x ∈ A =⇒ finite (B x)

shows finite (PiE-dflt A d B)
proof −

have PiE-dflt A d B = (λf x. if x ∈ A then f x else d) ‘ PiE A B
by (rule dflt-image-PiE [symmetric])

also have finite . . .
by (intro finite-imageI finite-PiE assms)

finally show ?thesis .
qed

lemma card-PiE-dflt:
assumes finite A

∧
x. x ∈ A =⇒ finite (B x)

shows card (PiE-dflt A d B) = (
∏

x∈A. card (B x))
proof −

from assms have (
∏

x∈A. card (B x)) = card (PiE A B)
by (intro card-PiE [symmetric]) auto

also have PiE A B = (λf . restrict f A) ‘ PiE-dflt A d B
by (rule restrict-PiE-dflt [symmetric])

also have card . . . = card (PiE-dflt A d B)
by (intro card-image) (force simp: inj-on-def restrict-def fun-eq-iff PiE-dflt-def)

finally show ?thesis ..
qed

lemma PiE-dflt-empty-iff [simp]: PiE-dflt A dflt B = {} ←→ (∃ x∈A. B x = {})
by (simp add: dflt-image-PiE [symmetric] PiE-eq-empty-iff)

lemma set-Pi-pmf-subset ′:
assumes finite A
shows set-pmf (Pi-pmf A dflt p) ⊆ PiE-dflt A dflt (set-pmf ◦ p)
using assms by (auto simp: set-pmf-eq pmf-Pi PiE-dflt-def)

lemma set-Pi-pmf :
assumes finite A
shows set-pmf (Pi-pmf A dflt p) = PiE-dflt A dflt (set-pmf ◦ p)

proof (rule equalityI)
show PiE-dflt A dflt (set-pmf ◦ p) ⊆ set-pmf (Pi-pmf A dflt p)
proof safe

fix f assume f : f ∈ PiE-dflt A dflt (set-pmf ◦ p)

THEORY “Product-PMF” 458

hence pmf (Pi-pmf A dflt p) f = (
∏

x∈A. pmf (p x) (f x))
using assms by (auto simp: pmf-Pi PiE-dflt-def)

also have . . . > 0
using f by (intro prod-pos) (auto simp: PiE-dflt-def set-pmf-eq)

finally show f ∈ set-pmf (Pi-pmf A dflt p)
by (auto simp: set-pmf-eq)

qed
qed (use set-Pi-pmf-subset ′[OF assms, of dflt p] in auto)

The probability of an independent combination of events is precisely the
product of the probabilities of each individual event.
lemma measure-Pi-pmf-PiE-dflt:

assumes [simp]: finite A
shows measure-pmf .prob (Pi-pmf A dflt p) (PiE-dflt A dflt B) =

(
∏

x∈A. measure-pmf .prob (p x) (B x))
proof −

define B ′ where B ′ = (λx. B x ∩ set-pmf (p x))
have measure-pmf .prob (Pi-pmf A dflt p) (PiE-dflt A dflt B) =

(
∑

ah∈PiE-dflt A dflt B. pmf (Pi-pmf A dflt p) h)
by (rule measure-pmf-conv-infsetsum)

also have . . . = (
∑

ah∈PiE-dflt A dflt B.
∏

x∈A. pmf (p x) (h x))
by (intro infsetsum-cong, subst pmf-Pi ′) (auto simp: PiE-dflt-def)

also have . . . = (
∑

ah∈(λh. restrict h A) ‘ PiE-dflt A dflt B.
∏

x∈A. pmf (p
x) (h x))

by (subst infsetsum-reindex) (force simp: inj-on-def PiE-dflt-def fun-eq-iff)+
also have (λh. restrict h A) ‘ PiE-dflt A dflt B = PiE A B

by (rule restrict-PiE-dflt)
also have (

∑
ah∈PiE A B.

∏
x∈A. pmf (p x) (h x)) = (

∑
ah∈PiE A B ′.

∏
x∈A.

pmf (p x) (h x))
by (intro infsetsum-cong-neutral) (auto simp: B ′-def set-pmf-eq)

also have (
∑

ah∈PiE A B ′.
∏

x∈A. pmf (p x) (h x)) = (
∏

x∈A. infsetsum (pmf
(p x)) (B ′ x))

by (intro infsetsum-prod-PiE) (auto simp: B ′-def)
also have . . . = (

∏
x∈A. infsetsum (pmf (p x)) (B x))

by (intro prod.cong infsetsum-cong-neutral) (auto simp: B ′-def set-pmf-eq)
also have . . . = (

∏
x∈A. measure-pmf .prob (p x) (B x))

by (subst measure-pmf-conv-infsetsum) (rule refl)
finally show ?thesis .

qed

lemma measure-Pi-pmf-Pi:
fixes t::nat
assumes [simp]: finite A
shows measure-pmf .prob (Pi-pmf A dflt p) (Pi A B) =

(
∏

x∈A. measure-pmf .prob (p x) (B x)) (is ?lhs = ?rhs)
proof −

have ?lhs = measure-pmf .prob (Pi-pmf A dflt p) (PiE-dflt A dflt B)
by (intro measure-prob-cong-0)

(auto simp: PiE-dflt-def PiE-def intro!: pmf-Pi-outside)+

THEORY “Product-PMF” 459

also have . . . = ?rhs
using assms by (simp add: measure-Pi-pmf-PiE-dflt)

finally show ?thesis
by simp

qed

26.4 Common PMF operations on products

Pi-pmf distributes over the ‘bind’ operation in the Giry monad:
lemma Pi-pmf-bind:

assumes finite A
shows Pi-pmf A d (λx. bind-pmf (p x) (q x)) =

do {f ← Pi-pmf A d ′ p; Pi-pmf A d (λx. q x (f x))} (is ?lhs = ?rhs)
proof (rule pmf-eqI , goal-cases)

case (1 f)
show ?case
proof (cases ∃ x∈−A. f x 6= d)

case False
define B where B = (λx. set-pmf (p x))
have [simp]: countable (B x) for x by (auto simp: B-def)

{
fix x :: ′a
have (λa. pmf (p x) a ∗ 1) abs-summable-on B x

by (simp add: pmf-abs-summable)
moreover have norm (pmf (p x) a ∗ 1) ≥ norm (pmf (p x) a ∗ pmf (q x

a) (f x)) for a
unfolding norm-mult by (intro mult-left-mono) (auto simp: pmf-le-1)

ultimately have (λa. pmf (p x) a ∗ pmf (q x a) (f x)) abs-summable-on B x
by (rule abs-summable-on-comparison-test)

} note summable = this

have pmf ?rhs f = (
∑

ag. pmf (Pi-pmf A d ′ p) g ∗ (
∏

x∈A. pmf (q x (g x))
(f x)))

by (subst pmf-bind, subst pmf-Pi ′)
(insert assms False, simp-all add: pmf-expectation-eq-infsetsum)

also have . . . = (
∑

ag∈PiE-dflt A d ′ B.
pmf (Pi-pmf A d ′ p) g ∗ (

∏
x∈A. pmf (q x (g x)) (f x)))

unfolding B-def
using assms by (intro infsetsum-cong-neutral) (auto simp: pmf-Pi PiE-dflt-def

set-pmf-eq)
also have . . . = (

∑
ag∈PiE-dflt A d ′ B.

(
∏

x∈A. pmf (p x) (g x) ∗ pmf (q x (g x)) (f x)))
using assms by (intro infsetsum-cong) (auto simp: pmf-Pi PiE-dflt-def

prod.distrib)
also have . . . = (

∑
ag∈(λg. restrict g A) ‘ PiE-dflt A d ′ B.

(
∏

x∈A. pmf (p x) (g x) ∗ pmf (q x (g x)) (f x)))
by (subst infsetsum-reindex) (force simp: PiE-dflt-def inj-on-def fun-eq-iff)+

also have (λg. restrict g A) ‘ PiE-dflt A d ′ B = PiE A B

THEORY “Product-PMF” 460

by (rule restrict-PiE-dflt)
also have (

∑
ag∈. . . . (

∏
x∈A. pmf (p x) (g x) ∗ pmf (q x (g x)) (f x))) =

(
∏

x∈A.
∑

aa∈B x. pmf (p x) a ∗ pmf (q x a) (f x))
using assms summable by (subst infsetsum-prod-PiE) simp-all

also have . . . = (
∏

x∈A.
∑

aa. pmf (p x) a ∗ pmf (q x a) (f x))
by (intro prod.cong infsetsum-cong-neutral) (auto simp: B-def set-pmf-eq)

also have . . . = pmf ?lhs f
using False assms by (subst pmf-Pi ′) (simp-all add: pmf-bind pmf-expectation-eq-infsetsum)
finally show ?thesis ..

next
case True
have pmf ?rhs f =

measure-pmf .expectation (Pi-pmf A d ′ p) (λx. pmf (Pi-pmf A d (λxa. q
xa (x xa))) f)

using assms by (simp add: pmf-bind)
also have . . . = measure-pmf .expectation (Pi-pmf A d ′ p) (λx. 0)
using assms True by (intro Bochner-Integration.integral-cong pmf-Pi-outside)

auto
also have . . . = pmf ?lhs f

using assms True by (subst pmf-Pi-outside) auto
finally show ?thesis ..

qed
qed

lemma Pi-pmf-return-pmf [simp]:
assumes finite A
shows Pi-pmf A dflt (λx. return-pmf (f x)) = return-pmf (λx. if x ∈ A then f

x else dflt)
using assms by (intro pmf-eqI) (auto simp: pmf-Pi simp: indicator-def split:

if-splits)

Analogously any componentwise mapping can be pulled outside the product:
lemma Pi-pmf-map:

assumes [simp]: finite A and f dflt = dflt ′

shows Pi-pmf A dflt ′ (λx. map-pmf f (g x)) = map-pmf (λh. f ◦ h) (Pi-pmf A
dflt g)
proof −

have Pi-pmf A dflt ′ (λx. map-pmf f (g x)) =
Pi-pmf A dflt ′ (λx. g x >>= (λx. return-pmf (f x)))

using assms by (simp add: map-pmf-def Pi-pmf-bind)
also have . . . = Pi-pmf A dflt g >>= (λh. return-pmf (λx. if x ∈ A then f (h x)

else dflt ′))
by (subst Pi-pmf-bind[where d ′ = dflt]) auto

also have . . . = map-pmf (λh. f ◦ h) (Pi-pmf A dflt g)
unfolding map-pmf-def using set-Pi-pmf-subset ′[of A dflt g]
by (intro bind-pmf-cong refl arg-cong[of - - return-pmf])

(auto dest: simp: fun-eq-iff PiE-dflt-def assms(2))
finally show ?thesis .

qed

THEORY “Product-PMF” 461

We can exchange the default value in a product of PMFs like this:
lemma Pi-pmf-default-swap:

assumes finite A
shows map-pmf (λf x. if x ∈ A then f x else dflt ′) (Pi-pmf A dflt p) =

Pi-pmf A dflt ′ p (is ?lhs = ?rhs)
proof (rule pmf-eqI , goal-cases)

case (1 f)
let ?B = (λf x. if x ∈ A then f x else dflt ′) −‘ {f } ∩ PiE-dflt A dflt (λ-. UNIV)
show ?case
proof (cases ∃ x∈−A. f x 6= dflt ′)

case False
let ?f ′ = λx. if x ∈ A then f x else dflt
from False have pmf ?lhs f = measure-pmf .prob (Pi-pmf A dflt p) ?B

using assms unfolding pmf-map
by (intro measure-prob-cong-0) (auto simp: PiE-dflt-def pmf-Pi-outside)

also from False have ?B = {?f ′}
by (auto simp: fun-eq-iff PiE-dflt-def)

also have measure-pmf .prob (Pi-pmf A dflt p) {?f ′} = pmf (Pi-pmf A dflt p)
?f ′

by (simp add: measure-pmf-single)
also have . . . = pmf ?rhs f

using False assms by (subst (1 2) pmf-Pi) auto
finally show ?thesis .

next
case True
have pmf ?lhs f = measure-pmf .prob (Pi-pmf A dflt p) ?B

using assms unfolding pmf-map
by (intro measure-prob-cong-0) (auto simp: PiE-dflt-def pmf-Pi-outside)

also from True have ?B = {} by auto
also have measure-pmf .prob (Pi-pmf A dflt p) . . . = 0

by simp
also have 0 = pmf ?rhs f

using True assms by (intro pmf-Pi-outside [symmetric]) auto
finally show ?thesis .

qed
qed

The following rule allows reindexing the product:
lemma Pi-pmf-bij-betw:

assumes finite A bij-betw h A B
∧

x. x /∈ A =⇒ h x /∈ B
shows Pi-pmf A dflt (λ-. f) = map-pmf (λg. g ◦ h) (Pi-pmf B dflt (λ-. f))
(is ?lhs = ?rhs)

proof −
have B: finite B

using assms bij-betw-finite by auto
have pmf ?lhs g = pmf ?rhs g for g
proof (cases ∀ a. a /∈ A −→ g a = dflt)

case True
define h ′ where h ′ = the-inv-into A h

THEORY “Product-PMF” 462

have h ′: h ′ (h x) = x if x ∈ A for x
unfolding h ′-def using that assms by (auto simp add: bij-betw-def the-inv-into-f-f)
have h: h (h ′ x) = x if x ∈ B for x

unfolding h ′-def using that assms f-the-inv-into-f-bij-betw by fastforce
have pmf ?rhs g = measure-pmf .prob (Pi-pmf B dflt (λ-. f)) ((λg. g ◦ h) −‘

{g})
unfolding pmf-map by simp

also have . . . = measure-pmf .prob (Pi-pmf B dflt (λ-. f))
(((λg. g ◦ h) −‘ {g}) ∩ PiE-dflt B dflt (λ-. UNIV))

using B by (intro measure-prob-cong-0) (auto simp: PiE-dflt-def pmf-Pi-outside)
also have . . . = pmf (Pi-pmf B dflt (λ-. f)) (λx. if x ∈ B then g (h ′ x) else

dflt)
proof −

have (if h x ∈ B then g (h ′ (h x)) else dflt) = g x for x
using h ′ assms True by (cases x ∈ A) (auto simp add: bij-betwE)

then have (λg. g ◦ h) −‘ {g} ∩ PiE-dflt B dflt (λ-. UNIV) =
{(λx. if x ∈ B then g (h ′ x) else dflt)}

using assms h ′ h True unfolding PiE-dflt-def by auto
then show ?thesis

by (simp add: measure-pmf-single)
qed
also have . . . = pmf (Pi-pmf A dflt (λ-. f)) g

using B assms True h ′-def
by (auto simp add: pmf-Pi intro!: prod.reindex-bij-betw bij-betw-the-inv-into)

finally show ?thesis
by simp

next
case False
have pmf ?rhs g = infsetsum (pmf (Pi-pmf B dflt (λ-. f))) ((λg. g ◦ h) −‘ {g})

using assms by (auto simp add: measure-pmf-conv-infsetsum pmf-map)
also have . . . = infsetsum (λ-. 0) ((λg x. g (h x)) −‘ {g})

using B False assms by (intro infsetsum-cong pmf-Pi-outside) fastforce+
also have . . . = 0

by simp
finally show ?thesis

using assms False by (auto simp add: pmf-Pi pmf-map)
qed
then show ?thesis

by (rule pmf-eqI)
qed

A product of uniform random choices is again a uniform distribution.
lemma Pi-pmf-of-set:

assumes finite A
∧

x. x ∈ A =⇒ finite (B x)
∧

x. x ∈ A =⇒ B x 6= {}
shows Pi-pmf A d (λx. pmf-of-set (B x)) = pmf-of-set (PiE-dflt A d B) (is

?lhs = ?rhs)
proof (rule pmf-eqI , goal-cases)

case (1 f)
show ?case

THEORY “Product-PMF” 463

proof (cases ∃ x. x /∈ A ∧ f x 6= d)
case True
hence pmf ?lhs f = 0

using assms by (intro pmf-Pi-outside) (auto simp: PiE-dflt-def)
also from True have f /∈ PiE-dflt A d B

by (auto simp: PiE-dflt-def)
hence 0 = pmf ?rhs f

using assms by (subst pmf-of-set) auto
finally show ?thesis .

next
case False
hence pmf ?lhs f = (

∏
x∈A. pmf (pmf-of-set (B x)) (f x))

using assms by (subst pmf-Pi ′) auto
also have . . . = (

∏
x∈A. indicator (B x) (f x) / real (card (B x)))

by (intro prod.cong refl, subst pmf-of-set) (use assms False in auto)
also have . . . = (

∏
x∈A. indicator (B x) (f x)) / real (

∏
x∈A. card (B x))

by (subst prod-dividef) simp-all
also have (

∏
x∈A. indicator (B x) (f x) :: real) = indicator (PiE-dflt A d B) f

using assms False by (auto simp: indicator-def PiE-dflt-def)
also have (

∏
x∈A. card (B x)) = card (PiE-dflt A d B)

using assms by (intro card-PiE-dflt [symmetric]) auto
also have indicator (PiE-dflt A d B) f / . . . = pmf ?rhs f

using assms by (intro pmf-of-set [symmetric]) auto
finally show ?thesis .

qed
qed

26.5 Merging and splitting PMF products

The following lemma shows that we can add a single PMF to a product:
lemma Pi-pmf-insert:

assumes finite A x /∈ A
shows Pi-pmf (insert x A) dflt p = map-pmf (λ(y,f). f (x:=y)) (pair-pmf (p

x) (Pi-pmf A dflt p))
proof (intro pmf-eqI)

fix f
let ?M = pair-pmf (p x) (Pi-pmf A dflt p)
have pmf (map-pmf (λ(y, f). f (x := y)) ?M) f =

measure-pmf .prob ?M ((λ(y, f). f (x := y)) −‘ {f })
by (subst pmf-map) auto

also have ((λ(y, f). f (x := y)) −‘ {f }) = (
⋃

y ′. {(f x, f (x := y ′))})
by (auto simp: fun-upd-def fun-eq-iff)

also have measure-pmf .prob ?M . . . = measure-pmf .prob ?M {(f x, f (x := dflt))}
using assms by (intro measure-prob-cong-0) (auto simp: pmf-pair pmf-Pi split:

if-splits)
also have . . . = pmf (p x) (f x) ∗ pmf (Pi-pmf A dflt p) (f (x := dflt))

by (simp add: measure-pmf-single pmf-pair pmf-Pi)
also have . . . = pmf (Pi-pmf (insert x A) dflt p) f
proof (cases ∀ y. y /∈ insert x A −→ f y = dflt)

THEORY “Product-PMF” 464

case True
with assms have pmf (p x) (f x) ∗ pmf (Pi-pmf A dflt p) (f (x := dflt)) =

pmf (p x) (f x) ∗ (
∏

xa∈A. pmf (p xa) ((f (x := dflt)) xa))
by (subst pmf-Pi ′) auto

also have (
∏

xa∈A. pmf (p xa) ((f (x := dflt)) xa)) = (
∏

xa∈A. pmf (p xa) (f
xa))

using assms by (intro prod.cong) auto
also have pmf (p x) (f x) ∗ . . . = pmf (Pi-pmf (insert x A) dflt p) f

using assms True by (subst pmf-Pi ′) auto
finally show ?thesis .

qed (insert assms, auto simp: pmf-Pi)
finally show . . . = pmf (map-pmf (λ(y, f). f (x := y)) ?M) f ..

qed

lemma Pi-pmf-insert ′:
assumes finite A x /∈ A
shows Pi-pmf (insert x A) dflt p =

do {y ← p x; f ← Pi-pmf A dflt p; return-pmf (f (x := y))}
using assms
by (subst Pi-pmf-insert)

(auto simp add: map-pmf-def pair-pmf-def case-prod-beta ′ bind-return-pmf
bind-assoc-pmf)

lemma Pi-pmf-singleton:
Pi-pmf {x} dflt p = map-pmf (λa b. if b = x then a else dflt) (p x)

proof −
have Pi-pmf {x} dflt p = map-pmf (fun-upd (λ-. dflt) x) (p x)

by (subst Pi-pmf-insert) (simp-all add: pair-return-pmf2 pmf .map-comp o-def)
also have fun-upd (λ-. dflt) x = (λz y. if y = x then z else dflt)

by (simp add: fun-upd-def fun-eq-iff)
finally show ?thesis .

qed

Projecting a product of PMFs onto a component yields the expected result:
lemma Pi-pmf-component:

assumes finite A
shows map-pmf (λf . f x) (Pi-pmf A dflt p) = (if x ∈ A then p x else return-pmf

dflt)
proof (cases x ∈ A)

case True
define A ′ where A ′ = A − {x}
from assms and True have A ′: A = insert x A ′

by (auto simp: A ′-def)
from assms have map-pmf (λf . f x) (Pi-pmf A dflt p) = p x unfolding A ′

by (subst Pi-pmf-insert)
(auto simp: A ′-def pmf .map-comp o-def case-prod-unfold map-fst-pair-pmf)

with True show ?thesis by simp
next

case False

THEORY “Product-PMF” 465

have map-pmf (λf . f x) (Pi-pmf A dflt p) = map-pmf (λ-. dflt) (Pi-pmf A dflt
p)

using assms False set-Pi-pmf-subset[of A dflt p]
by (intro pmf .map-cong refl) (auto simp: set-pmf-eq pmf-Pi-outside)

with False show ?thesis by simp
qed

We can take merge two PMF products on disjoint sets like this:
lemma Pi-pmf-union:

assumes finite A finite B A ∩ B = {}
shows Pi-pmf (A ∪ B) dflt p =

map-pmf (λ(f ,g) x. if x ∈ A then f x else g x)
(pair-pmf (Pi-pmf A dflt p) (Pi-pmf B dflt p)) (is - = map-pmf (?h A)

(?q A))
using assms(1 ,3)

proof (induction rule: finite-induct)
case (insert x A)
have map-pmf (?h (insert x A)) (?q (insert x A)) =

do {v ← p x; (f , g) ← pair-pmf (Pi-pmf A dflt p) (Pi-pmf B dflt p);
return-pmf (λy. if y ∈ insert x A then (f (x := v)) y else g y)}

by (subst Pi-pmf-insert)
(insert insert.hyps insert.prems,

simp-all add: pair-pmf-def map-bind-pmf bind-map-pmf bind-assoc-pmf
bind-return-pmf)

also have . . . = do {v ← p x; (f , g) ← ?q A; return-pmf ((?h A (f ,g))(x := v))}
by (intro bind-pmf-cong refl) (auto simp: fun-eq-iff)

also have . . . = do {v ← p x; f ← map-pmf (?h A) (?q A); return-pmf (f (x :=
v))}

by (simp add: bind-map-pmf map-bind-pmf case-prod-unfold cong: if-cong)
also have . . . = do {v ← p x; f ← Pi-pmf (A ∪ B) dflt p; return-pmf (f (x :=

v))}
using insert.hyps and insert.prems by (intro bind-pmf-cong insert.IH [symmetric]

refl) auto
also have . . . = Pi-pmf (insert x (A ∪ B)) dflt p

by (subst Pi-pmf-insert)
(insert assms insert.hyps insert.prems, auto simp: pair-pmf-def map-bind-pmf)

also have insert x (A ∪ B) = insert x A ∪ B
by simp

finally show ?case ..
qed (simp-all add: case-prod-unfold map-snd-pair-pmf)

We can also project a product to a subset of the indices by mapping all the
other indices to the default value:
lemma Pi-pmf-subset:

assumes finite A A ′ ⊆ A
shows Pi-pmf A ′ dflt p = map-pmf (λf x . if x ∈ A ′ then f x else dflt) (Pi-pmf

A dflt p)
proof −

let ?P = pair-pmf (Pi-pmf A ′ dflt p) (Pi-pmf (A − A ′) dflt p)

THEORY “Product-PMF” 466

from assms have [simp]: finite A ′

by (blast dest: finite-subset)
from assms have A = A ′ ∪ (A − A ′)

by blast
also have Pi-pmf . . . dflt p = map-pmf (λ(f ,g) x. if x ∈ A ′ then f x else g x) ?P

using assms by (intro Pi-pmf-union) auto
also have map-pmf (λf x. if x ∈ A ′ then f x else dflt) . . . = map-pmf fst ?P

unfolding map-pmf-comp o-def case-prod-unfold
using set-Pi-pmf-subset[of A ′ dflt p] by (intro map-pmf-cong refl) (auto simp:

fun-eq-iff)
also have . . . = Pi-pmf A ′ dflt p

by (simp add: map-fst-pair-pmf)
finally show ?thesis ..

qed

lemma Pi-pmf-subset ′:
fixes f :: ′a ⇒ ′b pmf
assumes finite A B ⊆ A

∧
x. x ∈ A − B =⇒ f x = return-pmf dflt

shows Pi-pmf A dflt f = Pi-pmf B dflt f
proof −

have Pi-pmf (B ∪ (A − B)) dflt f =
map-pmf (λ(f , g) x. if x ∈ B then f x else g x)

(pair-pmf (Pi-pmf B dflt f) (Pi-pmf (A − B) dflt f))
using assms by (intro Pi-pmf-union) (auto dest: finite-subset)

also have Pi-pmf (A − B) dflt f = Pi-pmf (A − B) dflt (λ-. return-pmf dflt)
using assms by (intro Pi-pmf-cong) auto

also have . . . = return-pmf (λ-. dflt)
using assms by simp

also have map-pmf (λ(f , g) x. if x ∈ B then f x else g x)
(pair-pmf (Pi-pmf B dflt f) (return-pmf (λ-. dflt))) =

map-pmf (λf x. if x ∈ B then f x else dflt) (Pi-pmf B dflt f)
by (simp add: map-pmf-def pair-pmf-def bind-assoc-pmf bind-return-pmf bind-return-pmf ′)

also have . . . = Pi-pmf B dflt f
using assms by (intro Pi-pmf-default-swap) (auto dest: finite-subset)

also have B ∪ (A − B) = A
using assms by auto

finally show ?thesis .
qed

lemma Pi-pmf-if-set:
assumes finite A
shows Pi-pmf A dflt (λx. if b x then f x else return-pmf dflt) =

Pi-pmf {x∈A. b x} dflt f
proof −

have Pi-pmf A dflt (λx. if b x then f x else return-pmf dflt) =
Pi-pmf {x∈A. b x} dflt (λx. if b x then f x else return-pmf dflt)

using assms by (intro Pi-pmf-subset ′) auto
also have . . . = Pi-pmf {x∈A. b x} dflt f

by (intro Pi-pmf-cong) auto

THEORY “Product-PMF” 467

finally show ?thesis .
qed

lemma Pi-pmf-if-set ′:
assumes finite A
shows Pi-pmf A dflt (λx. if b x then return-pmf dflt else f x) =

Pi-pmf {x∈A. ¬b x} dflt f
proof −

have Pi-pmf A dflt (λx. if b x then return-pmf dflt else f x) =
Pi-pmf {x∈A. ¬b x} dflt (λx. if b x then return-pmf dflt else f x)

using assms by (intro Pi-pmf-subset ′) auto
also have . . . = Pi-pmf {x∈A. ¬b x} dflt f

by (intro Pi-pmf-cong) auto
finally show ?thesis .

qed

Lastly, we can delete a single component from a product:
lemma Pi-pmf-remove:

assumes finite A
shows Pi-pmf (A − {x}) dflt p = map-pmf (λf . f (x := dflt)) (Pi-pmf A dflt

p)
proof −

have Pi-pmf (A − {x}) dflt p =
map-pmf (λf xa. if xa ∈ A − {x} then f xa else dflt) (Pi-pmf A dflt p)

using assms by (intro Pi-pmf-subset) auto
also have . . . = map-pmf (λf . f (x := dflt)) (Pi-pmf A dflt p)

using set-Pi-pmf-subset[of A dflt p] assms
by (intro map-pmf-cong refl) (auto simp: fun-eq-iff)

finally show ?thesis .
qed

26.6 Additional properties
lemma nn-integral-prod-Pi-pmf :

assumes finite A
shows nn-integral (Pi-pmf A dflt p) (λy.

∏
x∈A. f x (y x)) = (

∏
x∈A.

nn-integral (p x) (f x))
using assms

proof (induction rule: finite-induct)
case (insert x A)
have nn-integral (Pi-pmf (insert x A) dflt p) (λy.

∏
z∈insert x A. f z (y z)) =

(
∫

+a.
∫

+b. f x a ∗ (
∏

z∈A. f z (if z = x then a else b z)) ∂Pi-pmf A dflt
p ∂p x)

using insert by (auto simp: Pi-pmf-insert case-prod-unfold nn-integral-pair-pmf ′

cong: if-cong)
also have (λa b.

∏
z∈A. f z (if z = x then a else b z)) = (λa b.

∏
z∈A. f z (b

z))
by (intro ext prod.cong) (use insert.hyps in auto)

also have (
∫

+a.
∫

+b. f x a ∗ (
∏

z∈A. f z (b z)) ∂Pi-pmf A dflt p ∂p x) =

THEORY “Product-PMF” 468

(
∫

+y. f x y ∂(p x)) ∗ (
∫

+y. (
∏

z∈A. f z (y z)) ∂(Pi-pmf A dflt p))
by (simp add: nn-integral-multc nn-integral-cmult)

also have (
∫

+y. (
∏

z∈A. f z (y z)) ∂(Pi-pmf A dflt p)) = (
∏

x∈A. nn-integral
(p x) (f x))

by (rule insert.IH)
also have (

∫
+y. f x y ∂(p x)) ∗ . . . = (

∏
x∈insert x A. nn-integral (p x) (f x))

using insert.hyps by simp
finally show ?case .

qed auto

lemma integrable-prod-Pi-pmf :
fixes f :: ′a ⇒ ′b ⇒ ′c :: {real-normed-field, second-countable-topology, banach}
assumes finite A and

∧
x. x ∈ A =⇒ integrable (measure-pmf (p x)) (f x)

shows integrable (measure-pmf (Pi-pmf A dflt p)) (λh.
∏

x∈A. f x (h x))
proof (intro integrableI-bounded)

have (
∫

+ x. ennreal (norm (
∏

xa∈A. f xa (x xa))) ∂measure-pmf (Pi-pmf A dflt
p)) =

(
∫

+ x. (
∏

y∈A. ennreal (norm (f y (x y)))) ∂measure-pmf (Pi-pmf A dflt
p))

by (simp flip: prod-norm prod-ennreal)
also have . . . = (

∏
x∈A.

∫
+ a. ennreal (norm (f x a)) ∂measure-pmf (p x))

by (intro nn-integral-prod-Pi-pmf) fact
also have (

∫
+a. ennreal (norm (f i a)) ∂measure-pmf (p i)) 6= top if i: i ∈ A

for i
using assms(2)[OF i] by (simp add: integrable-iff-bounded)

hence (
∏

x∈A.
∫

+ a. ennreal (norm (f x a)) ∂measure-pmf (p x)) 6= top
by (subst ennreal-prod-eq-top) auto

finally show (
∫

+ x. ennreal (norm (
∏

xa∈A. f xa (x xa))) ∂measure-pmf
(Pi-pmf A dflt p)) < ∞

by (simp add: top.not-eq-extremum)
qed auto

lemma expectation-prod-Pi-pmf :
fixes f :: - ⇒ - ⇒ real
assumes finite A
assumes

∧
x. x ∈ A =⇒ integrable (measure-pmf (p x)) (f x)

assumes
∧

x y. x ∈ A =⇒ y ∈ set-pmf (p x) =⇒ f x y ≥ 0
shows measure-pmf .expectation (Pi-pmf A dflt p) (λy.

∏
x∈A. f x (y x)) =

(
∏

x∈A. measure-pmf .expectation (p x) (λv. f x v))
proof −

have nonneg: measure-pmf .expectation (p x) (f x) ≥ 0 if x ∈ A for x
using that by (intro Bochner-Integration.integral-nonneg-AE AE-pmfI assms)

have nonneg ′: 0 ≤ measure-pmf .expectation (Pi-pmf A dflt p) (λy.
∏

x∈A. f x
(y x))

by (intro Bochner-Integration.integral-nonneg-AE AE-pmfI assms prod-nonneg)
(use assms in ‹auto simp: set-Pi-pmf PiE-dflt-def ›)

have ennreal (measure-pmf .expectation (Pi-pmf A dflt p) (λy.
∏

x∈A. f x (y x)))
=

THEORY “Product-PMF” 469

nn-integral (Pi-pmf A dflt p) (λy. ennreal (
∏

x∈A. f x (y x))) using assms
by (intro nn-integral-eq-integral [symmetric] assms integrable-prod-Pi-pmf)

(auto simp: AE-measure-pmf-iff set-Pi-pmf PiE-dflt-def prod-nonneg)
also have . . . = nn-integral (Pi-pmf A dflt p) (λy. (

∏
x∈A. ennreal (f x (y x))))

by (intro nn-integral-cong-AE AE-pmfI prod-ennreal [symmetric])
(use assms(1) in ‹auto simp: set-Pi-pmf PiE-dflt-def intro!: assms(3)›)

also have . . . = (
∏

x∈A.
∫

+ a. ennreal (f x a) ∂measure-pmf (p x))
by (rule nn-integral-prod-Pi-pmf) fact+

also have . . . = (
∏

x∈A. ennreal (measure-pmf .expectation (p x) (f x)))
by (intro prod.cong nn-integral-eq-integral assms AE-pmfI) auto

also have . . . = ennreal (
∏

x∈A. measure-pmf .expectation (p x) (f x))
by (intro prod-ennreal nonneg)

finally show ?thesis
using nonneg nonneg ′ by (subst (asm) ennreal-inj) (auto intro!: prod-nonneg)

qed

lemma indep-vars-Pi-pmf :
assumes fin: finite I
shows prob-space.indep-vars (measure-pmf (Pi-pmf I dflt p))

(λ-. count-space UNIV) (λx f . f x) I
proof (cases I = {})

case True
show ?thesis

by (subst prob-space.indep-vars-def [OF measure-pmf .prob-space-axioms],
subst prob-space.indep-sets-def [OF measure-pmf .prob-space-axioms]) (simp-all

add: True)
next

case [simp]: False
show ?thesis
proof (subst prob-space.indep-vars-iff-distr-eq-PiM ′)

show distr (measure-pmf (Pi-pmf I dflt p)) (PiM I (λi. count-space UNIV))
(λx. restrict x I) =

PiM I (λi. distr (measure-pmf (Pi-pmf I dflt p)) (count-space UNIV) (λf .
f i))

proof (rule product-sigma-finite.PiM-eqI , goal-cases)
case 1

interpret product-prob-space λi. distr (measure-pmf (Pi-pmf I dflt p))
(count-space UNIV) (λf . f i)

by (intro product-prob-spaceI prob-space.prob-space-distr measure-pmf .prob-space-axioms)
simp-all

show ?case by unfold-locales
next

case 3
have sets (PiM I (λi. distr (measure-pmf (Pi-pmf I dflt p)) (count-space

UNIV) (λf . f i))) =
sets (PiM I (λ-. count-space UNIV))

by (intro sets-PiM-cong) simp-all
thus ?case by simp

next

THEORY “Product-PMF” 470

case (4 A)
have PiE I A ∈ sets (PiM I (λi. count-space UNIV))

using 4 by (intro sets-PiM-I-finite fin) auto
hence emeasure (distr (measure-pmf (Pi-pmf I dflt p)) (PiM I (λi. count-space

UNIV))
(λx. restrict x I)) (PiE I A) =

emeasure (measure-pmf (Pi-pmf I dflt p)) ((λx. restrict x I) −‘ PiE I A)
using 4 by (subst emeasure-distr) (auto simp: space-PiM)

also have . . . = emeasure (measure-pmf (Pi-pmf I dflt p)) (PiE-dflt I dflt A)
by (intro emeasure-eq-AE AE-pmfI) (auto simp: PiE-dflt-def set-Pi-pmf fin)

also have . . . = (
∏

i∈I . emeasure (measure-pmf (p i)) (A i))
by (simp add: measure-pmf .emeasure-eq-measure measure-Pi-pmf-PiE-dflt

fin prod-ennreal)
also have . . . = (

∏
i∈I . emeasure (measure-pmf (map-pmf (λf . f i) (Pi-pmf

I dflt p))) (A i))
by (intro prod.cong refl, subst Pi-pmf-component) (auto simp: fin)

finally show ?case
by (simp add: map-pmf-rep-eq)

qed fact+
qed (simp-all add: measure-pmf .prob-space-axioms)

qed

lemma
fixes h :: ′a :: comm-monoid-add ⇒ ′b::{banach, second-countable-topology}
assumes fin: finite I
assumes integrable:

∧
i. i ∈ I =⇒ integrable (measure-pmf (D i)) h

shows integrable-sum-Pi-pmf : integrable (Pi-pmf I dflt D) (λg.
∑

i∈I . h (g i))
and expectation-sum-Pi-pmf :

measure-pmf .expectation (Pi-pmf I dflt D) (λg.
∑

i∈I . h (g i)) =
(
∑

i∈I . measure-pmf .expectation (D i) h)
proof −

have integrable ′: integrable (Pi-pmf I dflt D) (λg. h (g i)) if i: i ∈ I for i
proof −

have integrable (D i) h
using i by (rule assms)

also have D i = map-pmf (λg. g i) (Pi-pmf I dflt D)
by (subst Pi-pmf-component) (use fin i in auto)

finally show integrable (measure-pmf (Pi-pmf I dflt D)) (λx. h (x i))
by simp

qed
thus integrable (Pi-pmf I dflt D) (λg.

∑
i∈I . h (g i))

by (intro Bochner-Integration.integrable-sum)

have measure-pmf .expectation (Pi-pmf I dflt D) (λx.
∑

i∈I . h (x i)) =
(
∑

i∈I . measure-pmf .expectation (map-pmf (λx. x i) (Pi-pmf I dflt
D)) h)

using integrable ′ by (subst Bochner-Integration.integral-sum) auto
also have . . . = (

∑
i∈I . measure-pmf .expectation (D i) h)

by (intro sum.cong refl, subst Pi-pmf-component) (use fin in auto)

THEORY “Product-PMF” 471

finally show measure-pmf .expectation (Pi-pmf I dflt D) (λg.
∑

i∈I . h (g i)) =
(
∑

i∈I . measure-pmf .expectation (D i) h) .
qed

26.7 Applications

Choosing a subset of a set uniformly at random is equivalent to tossing a
fair coin independently for each element and collecting all the elements that
came up heads.
lemma pmf-of-set-Pow-conv-bernoulli:

assumes finite (A :: ′a set)
shows map-pmf (λb. {x∈A. b x}) (Pi-pmf A P (λ-. bernoulli-pmf (1/2))) =

pmf-of-set (Pow A)
proof −

have Pi-pmf A P (λ-. bernoulli-pmf (1/2)) = pmf-of-set (PiE-dflt A P (λx.
UNIV))

using assms by (simp add: bernoulli-pmf-half-conv-pmf-of-set Pi-pmf-of-set)
also have map-pmf (λb. {x∈A. b x}) . . . = pmf-of-set (Pow A)
proof −

have bij-betw (λb. {x ∈ A. b x}) (PiE-dflt A P (λ-. UNIV)) (Pow A)
by (rule bij-betwI [of - - - λB b. if b ∈ A then b ∈ B else P]) (auto simp add:

PiE-dflt-def)
then show ?thesis

using assms by (intro map-pmf-of-set-bij-betw) auto
qed
finally show ?thesis

by simp
qed

A binomial distribution can be seen as the number of successes in n inde-
pendent coin tosses.
lemma binomial-pmf-altdef ′:

fixes A :: ′a set
assumes finite A and card A = n and p: p ∈ {0 ..1}
shows binomial-pmf n p =

map-pmf (λf . card {x∈A. f x}) (Pi-pmf A dflt (λ-. bernoulli-pmf p)) (is
?lhs = ?rhs)
proof −

from assms have ?lhs = binomial-pmf (card A) p
by simp

also have . . . = ?rhs
using assms(1)
proof (induction rule: finite-induct)

case empty
with p show ?case by (simp add: binomial-pmf-0)

next
case (insert x A)
from insert.hyps have card (insert x A) = Suc (card A)

THEORY “Hoeffding” 472

by simp
also have binomial-pmf . . . p = do {

b ← bernoulli-pmf p;
f ← Pi-pmf A dflt (λ-. bernoulli-pmf p);

return-pmf ((if b then 1 else 0) + card {y ∈ A. f y})
}

using p by (simp add: binomial-pmf-Suc insert.IH bind-map-pmf)
also have . . . = do {

b ← bernoulli-pmf p;
f ← Pi-pmf A dflt (λ-. bernoulli-pmf p);
return-pmf (card {y ∈ insert x A. (f (x := b)) y})
}

proof (intro bind-pmf-cong refl, goal-cases)
case (1 b f)
have (if b then 1 else 0) + card {y∈A. f y} = card ((if b then {x} else {}) ∪

{y∈A. f y})
using insert.hyps by auto

also have (if b then {x} else {}) ∪ {y∈A. f y} = {y∈insert x A. (f (x := b))
y}

using insert.hyps by auto
finally show ?case by simp

qed
also have . . . = map-pmf (λf . card {y∈insert x A. f y})

(Pi-pmf (insert x A) dflt (λ-. bernoulli-pmf p))
using insert.hyps by (subst Pi-pmf-insert) (simp-all add: pair-pmf-def map-bind-pmf)
finally show ?case .

qed
finally show ?thesis .

qed

end

27 Hoeffding’s Lemma and Hoeffding’s Inequality
theory Hoeffding

imports Product-PMF Independent-Family
begin

Hoeffding’s inequality shows that a sum of bounded independent random
variables is concentrated around its mean, with an exponential decay of the
tail probabilities.

27.1 Hoeffding’s Lemma
lemma convex-on-exp:

fixes l :: real
assumes l ≥ 0
shows convex-on UNIV (λx. exp(l∗x))

THEORY “Hoeffding” 473

using assms
by (intro convex-on-realI [where f ′ = λx. l ∗ exp (l ∗ x)])

(auto intro!: derivative-eq-intros mult-left-mono)

lemma mult-const-minus-self-real-le:
fixes x :: real
shows x ∗ (c − x) ≤ c2 / 4

proof −
have x ∗ (c − x) = −(x − c / 2)2 + c2 / 4

by (simp add: field-simps power2-eq-square)
also have . . . ≤ 0 + c2 / 4

by (intro add-mono) auto
finally show ?thesis by simp

qed

lemma Hoeffdings-lemma-aux:
fixes h p :: real
assumes h ≥ 0 and p ≥ 0
defines L ≡ (λh. −h ∗ p + ln (1 + p ∗ (exp h − 1)))
shows L h ≤ h2 / 8

proof (cases h = 0)
case False
hence h: h > 0

using ‹h ≥ 0 › by simp
define L ′ where L ′ = (λh. −p + p ∗ exp h / (1 + p ∗ (exp h − 1)))
define L ′′ where L ′′ = (λh. −(p2) ∗ exp h ∗ exp h / (1 + p ∗ (exp h − 1))2 +

p ∗ exp h / (1 + p ∗ (exp h − 1)))
define Ls where Ls = (λn. [L, L ′, L ′′] ! n)

have [simp]: L 0 = 0 L ′ 0 = 0
by (auto simp: L-def L ′-def)

have L ′: (L has-real-derivative L ′ x) (at x) if x ∈ {0 ..h} for x
proof −

have 1 + p ∗ (exp x − 1) > 0
using ‹p ≥ 0 › that by (intro add-pos-nonneg mult-nonneg-nonneg) auto

thus ?thesis
unfolding L-def L ′-def by (auto intro!: derivative-eq-intros)

qed

have L ′′: (L ′ has-real-derivative L ′′ x) (at x) if x ∈ {0 ..h} for x
proof −

have ∗: 1 + p ∗ (exp x − 1) > 0
using ‹p ≥ 0 › that by (intro add-pos-nonneg mult-nonneg-nonneg) auto

show ?thesis
unfolding L ′-def L ′′-def

by (insert ∗, (rule derivative-eq-intros refl | simp)+) (auto simp: divide-simps;
algebra)

qed

THEORY “Hoeffding” 474

have diff : ∀m t. m < 2 ∧ 0 ≤ t ∧ t ≤ h −→ (Ls m has-real-derivative Ls (Suc
m) t) (at t)

using L ′ L ′′ by (auto simp: Ls-def nth-Cons split: nat.splits)
from Taylor [of 2 Ls L 0 h 0 h, OF - - diff]

obtain t where t: t ∈ {0<..<h} L h = L ′′ t ∗ h2 / 2
using ‹h > 0 › by (auto simp: Ls-def lessThan-nat-numeral)

define u where u = p ∗ exp t / (1 + p ∗ (exp t − 1))

have L ′′ t = u ∗ (1 − u)
by (simp add: L ′′-def u-def divide-simps; algebra)

also have . . . ≤ 1 / 4
using mult-const-minus-self-real-le[of u 1] by simp

finally have L ′′ t ≤ 1 / 4 .

note t(2)
also have L ′′ t ∗ h2 / 2 ≤ (1 / 4) ∗ h2 / 2

using ‹L ′′ t ≤ 1 / 4 › by (intro mult-right-mono divide-right-mono) auto
finally show L h ≤ h2 / 8 by simp

qed (auto simp: L-def)

locale interval-bounded-random-variable = prob-space +
fixes f :: ′a ⇒ real and a b :: real
assumes random-variable [measurable]: random-variable borel f
assumes AE-in-interval: AE x in M . f x ∈ {a..b}

begin

lemma integrable [intro]: integrable M f
proof (rule integrable-const-bound)

show AE x in M . norm (f x) ≤ max |a| |b|
by (intro eventually-mono[OF AE-in-interval]) auto

qed (fact random-variable)

We first show Hoeffding’s lemma for distributions whose expectation is 0.
The general case will easily follow from this later.
lemma Hoeffdings-lemma-nn-integral-0 :

assumes l > 0 and E0 : expectation f = 0
shows nn-integral M (λx. exp (l ∗ f x)) ≤ ennreal (exp (l2 ∗ (b − a)2 / 8))

proof (cases AE x in M . f x = 0)
case True
hence nn-integral M (λx. exp (l ∗ f x)) = nn-integral M (λx. ennreal 1)

by (intro nn-integral-cong-AE) auto
also have . . . = ennreal (expectation (λ-. 1))

by (intro nn-integral-eq-integral) auto
finally show ?thesis by (simp add: prob-space)

next
case False
have a < 0

THEORY “Hoeffding” 475

proof (rule ccontr)
assume a: ¬(a < 0)
have AE x in M . f x = 0
proof (subst integral-nonneg-eq-0-iff-AE [symmetric])

show AE x in M . f x ≥ 0
using AE-in-interval by eventually-elim (use a in auto)

qed (use E0 in ‹auto simp: id-def integrable›)
with False show False by contradiction

qed

have b > 0
proof (rule ccontr)

assume b: ¬(b > 0)
have AE x in M . −f x = 0
proof (subst integral-nonneg-eq-0-iff-AE [symmetric])

show AE x in M . −f x ≥ 0
using AE-in-interval by eventually-elim (use b in auto)

qed (use E0 in ‹auto simp: id-def integrable›)
with False show False by simp

qed

have a < b
using ‹a < 0 › ‹b > 0 › by linarith

define p where p = −a / (b − a)
define L where L = (λt. −t∗ p + ln (1 − p + p ∗ exp t))
define z where z = l ∗ (b − a)
have z > 0

unfolding z-def using ‹a < b› ‹l > 0 › by auto
have p > 0

using ‹a < 0 › ‹a < b› unfolding p-def by (intro divide-pos-pos) auto

have (
∫

+x. exp (l ∗ f x) ∂M) ≤
(
∫

+x. (b − f x) / (b − a) ∗ exp (l ∗ a) + (f x − a) / (b − a) ∗ exp (l ∗ b)
∂M)
proof (intro nn-integral-mono-AE eventually-mono[OF AE-in-interval] ennreal-leI)

fix x assume x: f x ∈ {a..b}
define y where y = (b − f x) / (b−a)
have y: y ∈ {0 ..1}

using x ‹a < b› by (auto simp: y-def)
have conv: convex-on UNIV (λx. exp(l∗x))

using ‹l > 0 › by (intro convex-on-exp) auto
have exp (l ∗ ((1 − y) ∗R b + y ∗R a)) ≤ (1 − y) ∗ exp (l ∗ b) + y ∗ exp (l

∗ a)
using y ‹l > 0 › by (intro convex-onD[OF convex-on-exp]) auto

also have (1 − y) ∗R b + y ∗R a = f x
using ‹a < b› by (simp add: y-def divide-simps) (simp add: algebra-simps)?

also have 1 − y = (f x − a) / (b − a)
using ‹a < b› by (simp add: field-simps y-def)

THEORY “Hoeffding” 476

finally show exp (l ∗ f x) ≤ (b − f x) / (b − a) ∗ exp (l∗a) + (f x − a)/(b−a)
∗ exp (l∗b)

by (simp add: y-def)
qed
also have . . . = (

∫
+x. ennreal (b − f x) ∗ exp (l ∗ a) / (b − a) +

ennreal (f x − a) ∗ exp (l ∗ b) / (b − a) ∂M)
using ‹a < 0 › ‹b > 0 ›
by (intro nn-integral-cong-AE eventually-mono[OF AE-in-interval])

(simp add: ennreal-plus ennreal-mult flip: divide-ennreal)
also have . . . = ((

∫
+ x. ennreal (b − f x) ∂M) ∗ ennreal (exp (l ∗ a)) +

(
∫

+ x. ennreal (f x − a) ∂M) ∗ ennreal (exp (l ∗ b))) / ennreal (b
− a)

by (simp add: nn-integral-add nn-integral-divide nn-integral-multc add-divide-distrib-ennreal)
also have (

∫
+ x. ennreal (b − f x) ∂M) = ennreal (expectation (λx. b − f x))

by (intro nn-integral-eq-integral Bochner-Integration.integrable-diff
eventually-mono[OF AE-in-interval] integrable-const integrable) auto

also have expectation (λx. b − f x) = b
using assms by (subst Bochner-Integration.integral-diff) (auto simp: prob-space)

also have (
∫

+ x. ennreal (f x − a) ∂M) = ennreal (expectation (λx. f x − a))
by (intro nn-integral-eq-integral Bochner-Integration.integrable-diff

eventually-mono[OF AE-in-interval] integrable-const integrable) auto
also have expectation (λx. f x − a) = (−a)
using assms by (subst Bochner-Integration.integral-diff) (auto simp: prob-space)

also have (ennreal b ∗ (exp (l ∗ a)) + ennreal (−a) ∗ (exp (l ∗ b))) / (b − a) =
ennreal (b ∗ exp (l ∗ a) − a ∗ exp (l ∗ b)) / ennreal (b − a)

using ‹a < 0 › ‹b > 0 ›
by (simp flip: ennreal-mult ennreal-plus add: mult-nonpos-nonneg divide-ennreal

mult-mono)
also have b ∗ exp (l ∗ a) − a ∗ exp (l ∗ b) = exp (L z) ∗ (b − a)
proof −

have pos: 1 − p + p ∗ exp z > 0
proof −

have exp z > 1 using ‹l > 0 › and ‹a < b›
by (subst one-less-exp-iff) (auto simp: z-def intro!: mult-pos-pos)

hence (exp z − 1) ∗ p ≥ 0
unfolding p-def using ‹a < 0 › and ‹a < b›
by (intro mult-nonneg-nonneg divide-nonneg-pos) auto

thus ?thesis
by (simp add: algebra-simps)

qed

have exp (L z) ∗ (b − a) = exp (−z ∗ p) ∗ (1 − p + p ∗ exp z) ∗ (b − a)
using pos by (simp add: exp-add L-def exp-diff exp-minus divide-simps)

also have . . . = b ∗ exp (l ∗ a) − a ∗ exp (l ∗ b) using ‹a < b›
by (simp add: p-def z-def divide-simps) (simp add: exp-diff algebra-simps)?

finally show ?thesis by simp
qed
also have ennreal (exp (L z) ∗ (b − a)) / ennreal (b − a) = ennreal (exp (L z))

using ‹a < b› by (simp add: divide-ennreal)

THEORY “Hoeffding” 477

also have L z = −z ∗ p + ln (1 + p ∗ (exp z − 1))
by (simp add: L-def algebra-simps)

also have . . . ≤ z2 / 8
unfolding L-def by (rule Hoeffdings-lemma-aux[where p = p]) (use ‹z > 0 ›

‹p > 0 › in simp-all)
hence ennreal (exp (−z ∗ p + ln (1 + p ∗ (exp z − 1)))) ≤ ennreal (exp (z2 /

8))
by (intro ennreal-leI) auto

finally show ?thesis
by (simp add: z-def power-mult-distrib)

qed

context
begin

interpretation shift: interval-bounded-random-variable M λx. f x − µ a − µ b −
µ

rewrites b − µ − (a − µ) ≡ b − a
by unfold-locales (auto intro!: eventually-mono[OF AE-in-interval])

lemma expectation-shift: expectation (λx. f x − expectation f) = 0
by (subst Bochner-Integration.integral-diff) (auto simp: integrable prob-space)

lemmas Hoeffdings-lemma-nn-integral = shift.Hoeffdings-lemma-nn-integral-0 [OF
- expectation-shift]

end

end

27.2 Hoeffding’s Inequality

Consider n independent real random variables X1, . . . , Xn that each almost
surely lie in a compact interval [ai, bi]. Hoeffding’s inequality states that the
distribution of the sum of the Xi is tightly concentrated around the sum of
the expected values: the probability of it being above or below the sum of
the expected values by more than some ε decreases exponentially with ε.
locale indep-interval-bounded-random-variables = prob-space +

fixes I :: ′b set and X :: ′b ⇒ ′a ⇒ real
fixes a b :: ′b ⇒ real
assumes fin: finite I
assumes indep: indep-vars (λ-. borel) X I
assumes AE-in-interval:

∧
i. i ∈ I =⇒ AE x in M . X i x ∈ {a i..b i}

begin

lemma random-variable [measurable]:
assumes i: i ∈ I
shows random-variable borel (X i)

THEORY “Hoeffding” 478

using i indep unfolding indep-vars-def by blast

lemma bounded-random-variable [intro]:
assumes i: i ∈ I
shows interval-bounded-random-variable M (X i) (a i) (b i)
by unfold-locales (use AE-in-interval[OF i] i in auto)

end

locale Hoeffding-ineq = indep-interval-bounded-random-variables +
fixes µ :: real
defines µ ≡ (

∑
i∈I . expectation (X i))

begin

theorem Hoeffding-ineq-ge:
assumes ε ≥ 0
assumes (

∑
i∈I . (b i − a i)2) > 0

shows prob {x∈space M . (
∑

i∈I . X i x) ≥ µ + ε} ≤ exp (−2 ∗ ε2 / (
∑

i∈I .
(b i − a i)2))
proof (cases ε = 0)

case [simp]: True
have prob {x∈space M . (

∑
i∈I . X i x) ≥ µ + ε} ≤ 1

by simp
thus ?thesis by simp

next
case False
with ‹ε ≥ 0 › have ε: ε > 0

by auto

define d where d = (
∑

i∈I . (b i − a i)2)
define l :: real where l = 4 ∗ ε / d
have d: d > 0

using assms by (simp add: d-def)
have l: l > 0

using ε d by (simp add: l-def)
define µ ′ where µ ′ = (λi. expectation (X i))

have {x∈space M . (
∑

i∈I . X i x) ≥ µ + ε} = {x∈space M . (
∑

i∈I . X i x) −
µ ≥ ε}

by (simp add: algebra-simps)
hence ennreal (prob {x∈space M . (

∑
i∈I . X i x) ≥ µ + ε}) = emeasure M . . .

by (simp add: emeasure-eq-measure)
also have . . . ≤ ennreal (exp (−l∗ε)) ∗ (

∫
+x∈space M . exp (l ∗ ((

∑
i∈I . X i

x) − µ)) ∂M)
by (intro Chernoff-ineq-nn-integral-ge l) auto

also have (λx. (
∑

i∈I . X i x) − µ) = (λx. (
∑

i∈I . X i x − µ ′ i))
by (simp add: µ-def sum-subtractf µ ′-def)

also have (
∫

+x∈space M . exp (l ∗ ((
∑

i∈I . X i x − µ ′ i))) ∂M) =

THEORY “Hoeffding” 479

(
∫

+x. (
∏

i∈I . ennreal (exp (l ∗ (X i x − µ ′ i)))) ∂M)
by (intro nn-integral-cong)
(simp-all add: sum-distrib-left ring-distribs exp-diff exp-sum fin prod-ennreal)

also have . . . = (
∏

i∈I .
∫

+x. ennreal (exp (l ∗ (X i x − µ ′ i))) ∂M)
by (intro indep-vars-nn-integral fin indep-vars-compose2 [OF indep]) auto

also have ennreal (exp (−l ∗ ε)) ∗ . . . ≤
ennreal (exp (−l ∗ ε)) ∗ (

∏
i∈I . ennreal (exp (l2 ∗ (b i − a i)2 / 8)))

proof (intro mult-left-mono prod-mono-ennreal)
fix i assume i: i ∈ I
from i interpret interval-bounded-random-variable M X i a i b i ..
show (

∫
+x. ennreal (exp (l ∗ (X i x − µ ′ i))) ∂M) ≤ ennreal (exp (l2 ∗ (b i

− a i)2 / 8))
unfolding µ ′-def by (rule Hoeffdings-lemma-nn-integral) fact+

qed auto
also have . . . = ennreal (exp (−l∗ε) ∗ (

∏
i∈I . exp (l2 ∗ (b i − a i)2 / 8)))

by (simp add: prod-ennreal prod-nonneg flip: ennreal-mult)
also have exp (−l∗ε) ∗ (

∏
i∈I . exp (l2 ∗ (b i − a i)2 / 8)) = exp (d ∗ l2 / 8 −

l ∗ ε)
by (simp add: exp-diff exp-minus sum-divide-distrib sum-distrib-left

sum-distrib-right exp-sum fin divide-simps mult-ac d-def)
also have d ∗ l2 / 8 − l ∗ ε = −2 ∗ ε2 / d

using d by (simp add: l-def field-simps power2-eq-square)
finally show ?thesis

by (subst (asm) ennreal-le-iff) (simp-all add: d-def)
qed

corollary Hoeffding-ineq-le:
assumes ε: ε ≥ 0
assumes (

∑
i∈I . (b i − a i)2) > 0

shows prob {x∈space M . (
∑

i∈I . X i x) ≤ µ − ε} ≤ exp (−2 ∗ ε2 / (
∑

i∈I .
(b i − a i)2))
proof −

interpret flip: Hoeffding-ineq M I λi x. −X i x λi. −b i λi. −a i −µ
proof unfold-locales

fix i assume i ∈ I
then interpret interval-bounded-random-variable M X i a i b i ..
show AE x in M . − X i x ∈ {− b i..− a i}

by (intro eventually-mono[OF AE-in-interval]) auto
qed (auto simp: fin µ-def sum-negf intro: indep-vars-compose2 [OF indep])

have prob {x∈space M . (
∑

i∈I . X i x) ≤ µ − ε} = prob {x∈space M . (
∑

i∈I .
−X i x) ≥ −µ + ε}

by (simp add: sum-negf algebra-simps)
also have . . . ≤ exp (− 2 ∗ ε2 / (

∑
i∈I . (b i − a i)2))

using flip.Hoeffding-ineq-ge[OF ε] assms(2) by simp
finally show ?thesis .

qed

corollary Hoeffding-ineq-abs-ge:

THEORY “Hoeffding” 480

assumes ε: ε ≥ 0
assumes (

∑
i∈I . (b i − a i)2) > 0

shows prob {x∈space M . |(
∑

i∈I . X i x) − µ| ≥ ε} ≤ 2 ∗ exp (−2 ∗ ε2 /
(
∑

i∈I . (b i − a i)2))
proof −

have {x∈space M . |(
∑

i∈I . X i x) − µ| ≥ ε} =
{x∈space M . (

∑
i∈I . X i x) ≥ µ + ε} ∪ {x∈space M . (

∑
i∈I . X i x) ≤ µ

− ε}
by auto

also have prob . . . ≤ prob {x∈space M . (
∑

i∈I . X i x) ≥ µ + ε} +
prob {x∈space M . (

∑
i∈I . X i x) ≤ µ − ε}

by (intro measure-Un-le) auto
also have . . . ≤ exp (−2 ∗ ε2 / (

∑
i∈I . (b i − a i)2)) + exp (−2 ∗ ε2 / (

∑
i∈I .

(b i − a i)2))
by (intro add-mono Hoeffding-ineq-ge Hoeffding-ineq-le assms)

finally show ?thesis by simp
qed

end

27.3 Hoeffding’s inequality for i.i.d. bounded random vari-
ables

If we have n even identically-distributed random variables, the statement of
Hoeffding’s lemma simplifies a bit more: it shows that the probability that
the average of the Xi is more than ε above the expected value is no greater

than e
−2ny2

(b−a)2 .
This essentially gives us a more concrete version of the weak law of large
numbers: the law states that the probability vanishes for n → ∞ for any ε
> 0. Unlike Hoeffding’s inequality, it does not assume the variables to have
bounded support, but it does not provide concrete bounds.
locale iid-interval-bounded-random-variables = prob-space +

fixes I :: ′b set and X :: ′b ⇒ ′a ⇒ real and Y :: ′a ⇒ real
fixes a b :: real
assumes fin: finite I
assumes indep: indep-vars (λ-. borel) X I
assumes distr-X : i ∈ I =⇒ distr M borel (X i) = distr M borel Y
assumes rv-Y [measurable]: random-variable borel Y
assumes AE-in-interval: AE x in M . Y x ∈ {a..b}

begin

lemma random-variable [measurable]:
assumes i: i ∈ I
shows random-variable borel (X i)
using i indep unfolding indep-vars-def by blast

sublocale X : indep-interval-bounded-random-variables M I X λ-. a λ-. b

THEORY “Hoeffding” 481

proof
fix i assume i: i ∈ I
have AE x in M . Y x ∈ {a..b}

by (fact AE-in-interval)
also have ?this ←→ (AE x in distr M borel Y . x ∈ {a..b})

by (subst AE-distr-iff) auto
also have distr M borel Y = distr M borel (X i)

using i by (simp add: distr-X)
also have (AE x in x ∈ {a..b}) ←→ (AE x in M . X i x ∈ {a..b})

using i by (subst AE-distr-iff) auto
finally show AE x in M . X i x ∈ {a..b} .

qed (simp-all add: fin indep)

lemma expectation-X [simp]:
assumes i: i ∈ I
shows expectation (X i) = expectation Y

proof −
have expectation (X i) = lebesgue-integral (distr M borel (X i)) (λx. x)

using i by (intro integral-distr [symmetric]) auto
also have distr M borel (X i) = distr M borel Y

using i by (rule distr-X)
also have lebesgue-integral . . . (λx. x) = expectation Y

by (rule integral-distr) auto
finally show expectation (X i) = expectation Y .

qed

end

locale Hoeffding-ineq-iid = iid-interval-bounded-random-variables +
fixes µ :: real
defines µ ≡ expectation Y

begin

sublocale X : Hoeffding-ineq M I X λ-. a λ-. b real (card I) ∗ µ
by unfold-locales (simp-all add: µ-def)

corollary
assumes ε: ε ≥ 0
assumes a < b I 6= {}
defines n ≡ card I
shows Hoeffding-ineq-ge:

prob {x∈space M . (
∑

i∈I . X i x) ≥ n ∗ µ + ε} ≤
exp (−2 ∗ ε2 / (n ∗ (b − a)2)) (is ?le)

and Hoeffding-ineq-le:
prob {x∈space M . (

∑
i∈I . X i x) ≤ n ∗ µ − ε} ≤

exp (−2 ∗ ε2 / (n ∗ (b − a)2)) (is ?ge)
and Hoeffding-ineq-abs-ge:

prob {x∈space M . |(
∑

i∈I . X i x) − n ∗ µ| ≥ ε} ≤

THEORY “Hoeffding” 482

2 ∗ exp (−2 ∗ ε2 / (n ∗ (b − a)2)) (is ?abs-ge)
proof −

have pos: (
∑

i∈I . (b − a)2) > 0
using ‹a < b› ‹I 6= {}› fin by (intro sum-pos) auto

show ?le
using X .Hoeffding-ineq-ge[OF ε pos] by (simp add: n-def)

show ?ge
using X .Hoeffding-ineq-le[OF ε pos] by (simp add: n-def)

show ?abs-ge
using X .Hoeffding-ineq-abs-ge[OF ε pos] by (simp add: n-def)

qed

lemma
assumes ε: ε ≥ 0
assumes a < b I 6= {}
defines n ≡ card I
shows Hoeffding-ineq-ge ′:

prob {x∈space M . (
∑

i∈I . X i x) / n ≥ µ + ε} ≤
exp (−2 ∗ n ∗ ε2 / (b − a)2) (is ?ge)

and Hoeffding-ineq-le ′:
prob {x∈space M . (

∑
i∈I . X i x) / n ≤ µ − ε} ≤

exp (−2 ∗ n ∗ ε2 / (b − a)2) (is ?le)
and Hoeffding-ineq-abs-ge ′:

prob {x∈space M . |(
∑

i∈I . X i x) / n − µ| ≥ ε} ≤
2 ∗ exp (−2 ∗ n ∗ ε2 / (b − a)2) (is ?abs-ge)

proof −
have n > 0

using assms fin by (auto simp: field-simps)
have ε ′: ε ∗ n ≥ 0

using ‹n > 0 › ‹ε ≥ 0 › by auto
have eq: − (2 ∗ (ε ∗ real n)2 / (real (card I) ∗ (b − a)2)) =

− (2 ∗ real n ∗ ε2 / (b − a)2)
using ‹n > 0 › by (simp add: power2-eq-square divide-simps n-def)

have {x∈space M . (
∑

i∈I . X i x) / n ≥ µ + ε} =
{x∈space M . (

∑
i∈I . X i x) ≥ µ ∗ n + ε ∗ n}

using ‹n > 0 › by (intro Collect-cong conj-cong refl) (auto simp: field-simps)
with Hoeffding-ineq-ge[OF ε ′ ‹a < b› ‹I 6= {}›] ‹n > 0 › eq show ?ge

by (simp add: n-def mult-ac)

have {x∈space M . (
∑

i∈I . X i x) / n ≤ µ − ε} =
{x∈space M . (

∑
i∈I . X i x) ≤ µ ∗ n − ε ∗ n}

using ‹n > 0 › by (intro Collect-cong conj-cong refl) (auto simp: field-simps)
with Hoeffding-ineq-le[OF ε ′ ‹a < b› ‹I 6= {}›] ‹n > 0 › eq show ?le

by (simp add: n-def mult-ac)

have {x∈space M . |(
∑

i∈I . X i x) / n − µ| ≥ ε} =
{x∈space M . |(

∑
i∈I . X i x) − µ ∗ n| ≥ ε ∗ n}

using ‹n > 0 › by (intro Collect-cong conj-cong refl) (auto simp: field-simps)

THEORY “Hoeffding” 483

with Hoeffding-ineq-abs-ge[OF ε ′ ‹a < b› ‹I 6= {}›] ‹n > 0 › eq show ?abs-ge
by (simp add: n-def mult-ac)

qed

end

27.4 Hoeffding’s Inequality for the Binomial distribution

We can now apply Hoeffding’s inequality to the Binomial distribution, which
can be seen as the sum of n i.i.d. coin flips (the support of each of which is
contained in [0, 1]).
locale binomial-distribution =

fixes n :: nat and p :: real
assumes p: p ∈ {0 ..1}

begin

context
fixes coins :: (nat ⇒ bool) pmf and µ
assumes n: n > 0
defines coins ≡ Pi-pmf {..<n} False (λ-. bernoulli-pmf p)

begin

lemma coins-component:
assumes i: i < n
shows distr (measure-pmf coins) borel (λf . if f i then 1 else 0) =

distr (measure-pmf (bernoulli-pmf p)) borel (λb. if b then 1 else 0)
proof −

have distr (measure-pmf coins) borel (λf . if f i then 1 else 0) =
distr (measure-pmf (map-pmf (λf . f i) coins)) borel (λb. if b then 1 else 0)

unfolding map-pmf-rep-eq by (subst distr-distr) (auto simp: o-def)
also have map-pmf (λf . f i) coins = bernoulli-pmf p

unfolding coins-def using i by (subst Pi-pmf-component) auto
finally show ?thesis

unfolding map-pmf-rep-eq .
qed

lemma prob-binomial-pmf-conv-coins:
measure-pmf .prob (binomial-pmf n p) {x. P (real x)} =
measure-pmf .prob coins {x. P (

∑
i<n. if x i then 1 else 0)}

proof −
have eq1 : (

∑
i<n. if x i then 1 else 0) = real (card {i∈{..<n}. x i}) for x

proof −
have (

∑
i<n. if x i then 1 else (0 ::real)) = (

∑
i∈{i∈{..<n}. x i}. 1)

by (intro sum.mono-neutral-cong-right) auto
thus ?thesis by simp

qed
have eq2 : binomial-pmf n p = map-pmf (λv. card {i∈{..<n}. v i}) coins

unfolding coins-def by (rule binomial-pmf-altdef ′) (use p in auto)
show ?thesis

THEORY “Hoeffding” 484

by (subst eq2) (simp-all add: eq1)
qed

interpretation Hoeffding-ineq-iid
coins {..<n} λi f . if f i then 1 else 0 λf . if f 0 then 1 else 0 0 1 p

proof unfold-locales
show prob-space.indep-vars (measure-pmf coins) (λ-. borel) (λi f . if f i then 1

else 0) {..<n}
unfolding coins-def
by (intro prob-space.indep-vars-compose2 [OF - indep-vars-Pi-pmf])

(auto simp: measure-pmf .prob-space-axioms)
next

have measure-pmf .expectation coins (λf . if f 0 then 1 else 0 :: real) =
measure-pmf .expectation (map-pmf (λf . f 0) coins) (λb. if b then 1 else 0 ::

real)
by (simp add: coins-def)

also have map-pmf (λf . f 0) coins = bernoulli-pmf p
using n by (simp add: coins-def Pi-pmf-component)

also have measure-pmf .expectation . . . (λb. if b then 1 else 0) = p
using p by simp

finally show p ≡ measure-pmf .expectation coins (λf . if f 0 then 1 else 0) by
simp
qed (auto simp: coins-component)

corollary
fixes ε :: real
assumes ε: ε ≥ 0
shows prob-ge: measure-pmf .prob (binomial-pmf n p) {x. x ≥ n ∗ p + ε} ≤ exp

(−2 ∗ ε2 / n)
and prob-le: measure-pmf .prob (binomial-pmf n p) {x. x ≤ n ∗ p − ε} ≤ exp

(−2 ∗ ε2 / n)
and prob-abs-ge:

measure-pmf .prob (binomial-pmf n p) {x. |x − n ∗ p| ≥ ε} ≤ 2 ∗ exp (−2
∗ ε2 / n)
proof −

have [simp]: {..<n} 6= {}
using n by auto

show measure-pmf .prob (binomial-pmf n p) {x. x ≥ n ∗ p + ε} ≤ exp (−2 ∗ ε2
/ n)

using Hoeffding-ineq-ge[of ε] by (subst prob-binomial-pmf-conv-coins) (use
assms in simp-all)

show measure-pmf .prob (binomial-pmf n p) {x. x ≤ n ∗ p − ε} ≤ exp (−2 ∗ ε2
/ n)

using Hoeffding-ineq-le[of ε] by (subst prob-binomial-pmf-conv-coins) (use
assms in simp-all)

show measure-pmf .prob (binomial-pmf n p) {x. |x − n ∗ p| ≥ ε} ≤ 2 ∗ exp (−2
∗ ε2 / n)

using Hoeffding-ineq-abs-ge[of ε]
by (subst prob-binomial-pmf-conv-coins) (use assms in simp-all)

THEORY “Hoeffding” 485

qed

corollary
fixes ε :: real
assumes ε: ε ≥ 0
shows prob-ge ′: measure-pmf .prob (binomial-pmf n p) {x. x / n ≥ p + ε} ≤ exp

(−2 ∗ n ∗ ε2)
and prob-le ′: measure-pmf .prob (binomial-pmf n p) {x. x / n ≤ p − ε} ≤ exp

(−2 ∗ n ∗ ε2)
and prob-abs-ge ′:

measure-pmf .prob (binomial-pmf n p) {x. |x / n − p| ≥ ε} ≤ 2 ∗ exp (−2
∗ n ∗ ε2)
proof −

have [simp]: {..<n} 6= {}
using n by auto

show measure-pmf .prob (binomial-pmf n p) {x. x / n ≥ p + ε} ≤ exp (−2 ∗ n
∗ ε2)

using Hoeffding-ineq-ge ′[of ε] by (subst prob-binomial-pmf-conv-coins) (use
assms in simp-all)

show measure-pmf .prob (binomial-pmf n p) {x. x / n ≤ p − ε} ≤ exp (−2 ∗ n
∗ ε2)

using Hoeffding-ineq-le ′[of ε] by (subst prob-binomial-pmf-conv-coins) (use
assms in simp-all)

show measure-pmf .prob (binomial-pmf n p) {x. |x / n − p| ≥ ε} ≤ 2 ∗ exp (−2
∗ n ∗ ε2)

using Hoeffding-ineq-abs-ge ′[of ε]
by (subst prob-binomial-pmf-conv-coins) (use assms in simp-all)

qed

end

end

27.5 Tail bounds for the negative binomial distribution

Since the tail probabilities of a negative Binomial distribution are equal
to the tail probabilities of some Binomial distribution, we can obtain tail
bounds for the negative Binomial distribution through the Hoeffding tail
bounds for the Binomial distribution.
context

fixes p q :: real
assumes p: p ∈ {0<..<1}
defines q ≡ 1 − p

begin

lemma prob-neg-binomial-pmf-ge-bound:
fixes n :: nat and k :: real
defines µ ≡ real n ∗ q / p

THEORY “Hoeffding” 486

assumes k: k ≥ 0
shows measure-pmf .prob (neg-binomial-pmf n p) {x. real x ≥ µ + k}

≤ exp (− 2 ∗ p ^ 3 ∗ k2 / (n + p ∗ k))
proof −

consider n = 0 | p = 1 | n > 0 p 6= 1
by blast

thus ?thesis
proof cases

assume [simp]: n = 0
show ?thesis using k

by (simp add: indicator-def µ-def)
next

assume [simp]: p = 1
show ?thesis using k

by (auto simp add: indicator-def µ-def q-def)
next

assume n: n > 0 and p 6= 1
from ‹p 6= 1 › and p have p: p ∈ {0<..<1}

by auto
from p have q: q ∈ {0<..<1}

by (auto simp: q-def)

define k1 where k1 = µ + k
have k1 : k1 ≥ µ

using k by (simp add: k1-def)
have k1 > 0

by (rule less-le-trans[OF - k1]) (use p n in ‹auto simp: q-def µ-def ›)

define k1 ′ where k1 ′ = nat (ceiling k1)
have µ ≥ 0 using p

by (auto simp: µ-def q-def)
have ¬(x < k1 ′) ←→ real x ≥ k1 for x

unfolding k1 ′-def by linarith
hence eq: UNIV − {..<k1 ′} = {x. x ≥ k1}

by auto
hence measure-pmf .prob (neg-binomial-pmf n p) {n. n ≥ k1} =

1 − measure-pmf .prob (neg-binomial-pmf n p) {..<k1 ′}
using measure-pmf .prob-compl[of {..<k1 ′} neg-binomial-pmf n p] by simp

also have measure-pmf .prob (neg-binomial-pmf n p) {..<k1 ′} =
measure-pmf .prob (binomial-pmf (n + k1 ′ − 1) q) {..<k1 ′}

unfolding q-def using p by (intro prob-neg-binomial-pmf-lessThan) auto
also have 1 − . . . = measure-pmf .prob (binomial-pmf (n + k1 ′ − 1) q) {n.

n ≥ k1}
using measure-pmf .prob-compl[of {..<k1 ′} binomial-pmf (n + k1 ′ − 1) q]

eq by simp
also have {x. real x ≥ k1} = {x. x ≥ real (n + k1 ′ − 1) ∗ q + (k1 − real (n

+ k1 ′ − 1) ∗ q)}
by simp

also have measure-pmf .prob (binomial-pmf (n + k1 ′ − 1) q) . . . ≤

THEORY “Hoeffding” 487

exp (−2 ∗ (k1 − real (n + k1 ′ − 1) ∗ q)2 / real (n + k1 ′ − 1))
proof (rule binomial-distribution.prob-ge)

show binomial-distribution q
by unfold-locales (use q in auto)

next
show n + k1 ′ − 1 > 0

using ‹k1 > 0 › n unfolding k1 ′-def by linarith
next

have real (n + nat dk1 e − 1) ≤ real n + k1
using ‹k1 > 0 › by linarith

hence real (n + k1 ′ − 1) ∗ q ≤ (real n + k1) ∗ q
unfolding k1 ′-def by (intro mult-right-mono) (use p in ‹simp-all add:

q-def ›)
also have . . . ≤ k1

using k1 p by (simp add: q-def field-simps µ-def)
finally show 0 ≤ k1 − real (n + k1 ′ − 1) ∗ q

by simp
qed
also have {x. real (n + k1 ′ − 1) ∗ q + (k1 − real (n + k1 ′ − 1) ∗ q) ≤ real

x} = {x. real x ≥ k1}
by simp

also have exp (−2 ∗ (k1 − real (n + k1 ′ − 1) ∗ q)2 / real (n + k1 ′ − 1)) ≤
exp (−2 ∗ (k1 − (n + k1) ∗ q)2 / (n + k1))

proof −
have real (n + k1 ′ − Suc 0) ≤ real n + k1

unfolding k1 ′-def using ‹k1 > 0 › by linarith
moreover have (real n + k1) ∗ q ≤ k1

using k1 p by (auto simp: q-def field-simps µ-def)
moreover have 1 < n + k1 ′

using n ‹k1 > 0 › unfolding k1 ′-def by linarith
ultimately have 2 ∗ (k1 − real (n + k1 ′ − 1) ∗ q)2 / real (n + k1 ′ − 1) ≥

2 ∗ (k1 − (n + k1) ∗ q)2 / (n + k1)
by (intro frac-le mult-left-mono power-mono mult-nonneg-nonneg mult-right-mono

diff-mono)
(use q in simp-all)

thus ?thesis
by simp

qed
also have . . . = exp (−2 ∗ (p ∗ k1 − q ∗ n)2 / (k1 + n))

by (simp add: q-def algebra-simps)
also have −2 ∗ (p ∗ k1 − q ∗ n)2 = −2 ∗ p2 ∗ (k1 − µ)2

using p by (auto simp: field-simps µ-def)
also have k1 − µ = k

by (simp add: k1-def µ-def)
also note k1-def
also have µ + k + real n = real n / p + k

using p by (simp add: µ-def q-def field-simps)
also have − 2 ∗ p2 ∗ k2 / (real n / p + k) = − 2 ∗ p ^ 3 ∗ k2 / (p ∗ k + n)

using p by (simp add: field-simps power3-eq-cube power2-eq-square)

THEORY “Hoeffding” 488

finally show ?thesis by (simp add: add-ac)
qed

qed

lemma prob-neg-binomial-pmf-le-bound:
fixes n :: nat and k :: real
defines µ ≡ real n ∗ q / p
assumes k: k ≥ 0
shows measure-pmf .prob (neg-binomial-pmf n p) {x. real x ≤ µ − k}

≤ exp (−2 ∗ p ^ 3 ∗ k2 / (n − p ∗ k))
proof −

consider n = 0 | p = 1 | k > µ | n > 0 p 6= 1 k ≤ µ
by force

thus ?thesis
proof cases

assume [simp]: n = 0
show ?thesis using k

by (simp add: indicator-def µ-def)
next

assume [simp]: p = 1
show ?thesis using k

by (auto simp add: indicator-def µ-def q-def)
next

assume k > µ
hence {x. real x ≤ µ − k} = {}

by auto
thus ?thesis by simp

next
assume n: n > 0 and p 6= 1 and k ≤ µ
from ‹p 6= 1 › and p have p: p ∈ {0<..<1}

by auto
from p have q: q ∈ {0<..<1}

by (auto simp: q-def)

define f :: real ⇒ real where f = (λx. (p ∗ x − q ∗ n)2 / (x + n))
have f-mono: f x ≥ f y if x ≥ 0 y ≤ n ∗ q / p x ≤ y for x y :: real

using that(3)
proof (rule DERIV-nonpos-imp-nonincreasing)

fix t assume t: t ≥ x t ≤ y
have x > −n

using n ‹x ≥ 0 › by linarith
hence (f has-field-derivative ((p ∗ t − q ∗ n) ∗ (n ∗ (1 + p) + p ∗ t) / (n +

t) ^ 2)) (at t)
unfolding f-def using t

by (auto intro!: derivative-eq-intros simp: algebra-simps q-def power2-eq-square)
moreover {

have p ∗ t ≤ p ∗ y
using p by (intro mult-left-mono t) auto

also have p ∗ y ≤ q ∗ n

THEORY “Hoeffding” 489

using ‹y ≤ n ∗ q / p› p by (simp add: field-simps)
finally have p ∗ t ≤ q ∗ n .

}
hence (p ∗ t − q ∗ n) ∗ (n ∗ (1 + p) + p ∗ t) / (n + t) ^ 2 ≤ 0

using p ‹x ≥ 0 › t
by (intro mult-nonpos-nonneg divide-nonpos-nonneg add-nonneg-nonneg

mult-nonneg-nonneg) auto
ultimately show ∃ y. (f has-real-derivative y) (at t) ∧ y ≤ 0

by blast
qed

define k1 where k1 = µ − k
have k1 : k1 ≤ real n ∗ q / p

using assms by (simp add: µ-def k1-def)
have k1 ≥ 0

using k ‹k ≤ µ› by (simp add: µ-def k1-def)

define k1 ′ where k1 ′ = nat (floor k1)
have µ ≥ 0 using p

by (auto simp: µ-def q-def)
have (x ≤ k1 ′) ←→ real x ≤ k1 for x

unfolding k1 ′-def not-less using ‹k1 ≥ 0 › by linarith
hence eq: {n. n ≤ k1} = {..k1 ′}

by auto
hence measure-pmf .prob (neg-binomial-pmf n p) {n. n ≤ k1} =

measure-pmf .prob (neg-binomial-pmf n p) {..k1 ′}
by simp

also have measure-pmf .prob (neg-binomial-pmf n p) {..k1 ′} =
measure-pmf .prob (binomial-pmf (n + k1 ′) q) {..k1 ′}

unfolding q-def using p by (intro prob-neg-binomial-pmf-atMost) auto
also note eq [symmetric]
also have {x. real x ≤ k1} = {x. x ≤ real (n + k1 ′) ∗ q − (real (n + k1 ′) ∗

q − real k1 ′)}
using eq by auto

also have measure-pmf .prob (binomial-pmf (n + k1 ′) q) . . . ≤
exp (−2 ∗ (real (n + k1 ′) ∗ q − real k1 ′)2 / real (n + k1 ′))

proof (rule binomial-distribution.prob-le)
show binomial-distribution q

by unfold-locales (use q in auto)
next

show n + k1 ′ > 0
using ‹k1 ≥ 0 › n unfolding k1 ′-def by linarith

next
have p ∗ k1 ′ ≤ p ∗ k1

using p ‹k1 ≥ 0 › by (intro mult-left-mono) (auto simp: k1 ′-def)
also have . . . ≤ q ∗ n

using k1 p by (simp add: field-simps)
finally show 0 ≤ real (n + k1 ′) ∗ q − real k1 ′

by (simp add: algebra-simps q-def)

THEORY “Hoeffding” 490

qed
also have {x. real x ≤ real (n + k1 ′) ∗ q − (real (n + k1 ′) ∗ q − k1 ′)} =

{..k1 ′}
by auto

also have real (n + k1 ′) ∗ q − k1 ′ = −(p ∗ k1 ′ − q ∗ n)
by (simp add: q-def algebra-simps)

also have . . . ^ 2 = (p ∗ k1 ′ − q ∗ n) ^ 2
by algebra

also have − 2 ∗ (p ∗ real k1 ′ − q ∗ real n)2 / real (n + k1 ′) = −2 ∗ f (real
k1 ′)

by (simp add: f-def)
also have f (real k1 ′) ≥ f k1

by (rule f-mono) (use ‹k1 ≥ 0 › k1 in ‹auto simp: k1 ′-def ›)
hence exp (−2 ∗ f (real k1 ′)) ≤ exp (−2 ∗ f k1)

by simp
also have . . . = exp (−2 ∗ (p ∗ k1 − q ∗ n)2 / (k1 + n))

by (simp add: f-def)

also have −2 ∗ (p ∗ k1 − q ∗ n)2 = −2 ∗ p2 ∗ (k1 − µ)2

using p by (auto simp: field-simps µ-def)
also have (k1 − µ) ^ 2 = k ^ 2

by (simp add: k1-def µ-def)
also note k1-def
also have µ − k + real n = real n / p − k

using p by (simp add: µ-def q-def field-simps)
also have − 2 ∗ p2 ∗ k2 / (real n / p − k) = − 2 ∗ p ^ 3 ∗ k2 / (n − p ∗ k)

using p by (simp add: field-simps power3-eq-cube power2-eq-square)
also have {..k1 ′} = {x. real x ≤ µ − k}

using eq by (simp add: k1-def)
finally show ?thesis .

qed
qed

Due to the function exp(−l/x) being concave for x ≥ l
2 , the above two

bounds can be combined into the following one for moderate values of k.
(cf. https://math.stackexchange.com/questions/1565559)
lemma prob-neg-binomial-pmf-abs-ge-bound:

fixes n :: nat and k :: real
defines µ ≡ real n ∗ q / p
assumes k ≥ 0 and n-ge: n ≥ p ∗ k ∗ (p2 ∗ k + 1)
shows measure-pmf .prob (neg-binomial-pmf n p) {x. |real x − µ| ≥ k} ≤

2 ∗ exp (−2 ∗ p ^ 3 ∗ k ^ 2 / n)
proof (cases k = 0)

case False
with ‹k ≥ 0 › have k: k > 0

by auto
define l :: real where l = 2 ∗ p ^ 3 ∗ k ^ 2
have l: l > 0

using p k by (auto simp: l-def)

https://math.stackexchange.com/questions/1565559

THEORY “Hoeffding” 491

define f :: real ⇒ real where f = (λx. exp (−l / x))
define f ′ where f ′ = (λx. −l ∗ exp (−l / x) / x ^ 2)

have f ′-mono: f ′ x ≤ f ′ y if x ≥ l / 2 x ≤ y for x y :: real
using that(2)

proof (rule DERIV-nonneg-imp-nondecreasing)
fix t assume t: x ≤ t t ≤ y
have t > 0

using that l t by auto
have (f ′ has-field-derivative (l ∗ (2 ∗ t − l) / (exp (l / t) ∗ t ^ 4))) (at t)

unfolding f ′-def using t that ‹t > 0 ›
by (auto intro!: derivative-eq-intros simp: field-simps exp-minus simp flip:

power-Suc)
moreover have l ∗ (2 ∗ t − l) / (exp (l / t) ∗ t ^ 4) ≥ 0

using that t l by (intro divide-nonneg-pos mult-nonneg-nonneg) auto
ultimately show ∃ y. (f ′ has-real-derivative y) (at t) ∧ 0 ≤ y by blast

qed

have convex: convex-on {l/2 ..} (λx. −f x) unfolding f-def
proof (intro convex-on-realI [where f ′ = f ′])

show ((λx. − exp (− l / x)) has-real-derivative f ′ x) (at x) if x ∈ {l/2 ..} for x
using that l

by (auto intro!: derivative-eq-intros simp: f ′-def power2-eq-square algebra-simps)
qed (use l in ‹auto intro!: f ′-mono›)

have eq: {x. |real x − µ| ≥ k} = {x. real x ≤ µ − k} ∪ {x. real x ≥ µ + k}
by auto

have measure-pmf .prob (neg-binomial-pmf n p) {x. |real x − µ| ≥ k} ≤
measure-pmf .prob (neg-binomial-pmf n p) {x. real x ≤ µ − k} +
measure-pmf .prob (neg-binomial-pmf n p) {x. real x ≥ µ + k}

by (subst eq, rule measure-Un-le) auto
also have . . . ≤ exp (−2 ∗ p ^ 3 ∗ k2 / (n − p ∗ k)) + exp (−2 ∗ p ^ 3 ∗ k2 /

(n + p ∗ k))
unfolding µ-def

by (intro prob-neg-binomial-pmf-le-bound prob-neg-binomial-pmf-ge-bound add-mono
‹k ≥ 0 ›)

also have . . . = 2 ∗ (1/2 ∗ f (n − p ∗ k) + 1/2 ∗ f (n + p ∗ k))
by (simp add: f-def l-def)

also have 1/2 ∗ f (n − p ∗ k) + 1/2 ∗ f (n + p ∗ k) ≤ f (1/2 ∗ (n − p ∗ k)
+ 1/2 ∗ (n + p ∗ k))

proof −
let ?x = n − p ∗ k and ?y = n + p ∗ k
have le1 : l / 2 ≤ ?x using n-ge

by (simp add: l-def power2-eq-square power3-eq-cube algebra-simps)
also have . . . ≤ ?y

using p k by simp
finally have le2 : l / 2 ≤ ?y .
have −f ((1 − 1 / 2) ∗R ?x + (1 / 2) ∗R ?y) ≤ (1 − 1 / 2) ∗ − f ?x + 1 /

2 ∗ − f ?y

THEORY “Stream-Space” 492

using le1 le2 by (intro convex-onD[OF convex]) auto
thus ?thesis by simp

qed
also have 1/2 ∗ (n − p ∗ k) + 1/2 ∗ (n + p ∗ k) = n

by (simp add: algebra-simps)
also have 2 ∗ f n = 2 ∗ exp (−l / n)

by (simp add: f-def)
finally show ?thesis

by (simp add: l-def)
qed auto

end

end

theory Stream-Space
imports

Infinite-Product-Measure
HOL−Library.Stream
HOL−Library.Linear-Temporal-Logic-on-Streams

begin

lemma stream-eq-Stream-iff : s = x ## t ←→ (shd s = x ∧ stl s = t)
by (cases s) simp

lemma Stream-snth: (x ## s) !! n = (case n of 0 ⇒ x | Suc n ⇒ s !! n)
by (cases n) simp-all

definition to-stream :: (nat ⇒ ′a) ⇒ ′a stream where
to-stream X = smap X nats

lemma to-stream-nat-case: to-stream (case-nat x X) = x ## to-stream X
unfolding to-stream-def
by (subst siterate.ctr) (simp add: smap-siterate[symmetric] stream.map-comp

comp-def)

lemma to-stream-in-streams: to-stream X ∈ streams S ←→ (∀n. X n ∈ S)
by (simp add: to-stream-def streams-iff-snth)

definition stream-space :: ′a measure ⇒ ′a stream measure where
stream-space M =
distr (ΠM i∈UNIV . M) (vimage-algebra (streams (space M)) snth (ΠM i∈UNIV .

M)) to-stream

lemma space-stream-space: space (stream-space M) = streams (space M)
by (simp add: stream-space-def)

lemma streams-stream-space[intro]: streams (space M) ∈ sets (stream-space M)

THEORY “Stream-Space” 493

using sets.top[of stream-space M] by (simp add: space-stream-space)

lemma stream-space-Stream:
x ## ω ∈ space (stream-space M) ←→ x ∈ space M ∧ ω ∈ space (stream-space

M)
by (simp add: space-stream-space streams-Stream)

lemma stream-space-eq-distr : stream-space M = distr (ΠM i∈UNIV . M) (stream-space
M) to-stream

unfolding stream-space-def by (rule distr-cong) auto

lemma sets-stream-space-cong[measurable-cong]:
sets M = sets N =⇒ sets (stream-space M) = sets (stream-space N)
using sets-eq-imp-space-eq[of M N] by (simp add: stream-space-def vimage-algebra-def

cong: sets-PiM-cong)

lemma measurable-snth-PiM : (λω n. ω !! n) ∈ measurable (stream-space M) (ΠM

i∈UNIV . M)
by (auto intro!: measurable-vimage-algebra1

simp: space-PiM streams-iff-sset sset-range image-subset-iff stream-space-def)

lemma measurable-snth[measurable]: (λω. ω !! n) ∈ measurable (stream-space M)
M

using measurable-snth-PiM measurable-component-singleton by (rule measur-
able-compose) simp

lemma measurable-shd[measurable]: shd ∈ measurable (stream-space M) M
using measurable-snth[of 0] by simp

lemma measurable-stream-space2 :
assumes f-snth:

∧
n. (λx. f x !! n) ∈ measurable N M

shows f ∈ measurable N (stream-space M)
unfolding stream-space-def measurable-distr-eq2

proof (rule measurable-vimage-algebra2)
show f ∈ space N → streams (space M)
using f-snth[THEN measurable-space] by (auto simp add: streams-iff-sset sset-range)

show (λx. (!!) (f x)) ∈ measurable N (PiM UNIV (λi. M))
proof (rule measurable-PiM-single ′)

show (λx. (!!) (f x)) ∈ space N → UNIV →E space M
using f-snth[THEN measurable-space] by auto

qed (rule f-snth)
qed

lemma measurable-stream-coinduct[consumes 1 , case-names shd stl, coinduct set:
measurable]:

assumes F f
assumes h:

∧
f . F f =⇒ (λx. shd (f x)) ∈ measurable N M

assumes t:
∧

f . F f =⇒ F (λx. stl (f x))
shows f ∈ measurable N (stream-space M)

THEORY “Stream-Space” 494

proof (rule measurable-stream-space2)
fix n show (λx. f x !! n) ∈ measurable N M

using ‹F f › by (induction n arbitrary: f) (auto intro: h t)
qed

lemma measurable-sdrop[measurable]: sdrop n ∈ measurable (stream-space M) (stream-space
M)

by (rule measurable-stream-space2) (simp add: sdrop-snth)

lemma measurable-stl[measurable]: (λω. stl ω) ∈ measurable (stream-space M)
(stream-space M)
by (rule measurable-stream-space2) (simp del: snth.simps add: snth.simps[symmetric])

lemma measurable-to-stream[measurable]: to-stream ∈ measurable (ΠM i∈UNIV .
M) (stream-space M)

by (rule measurable-stream-space2) (simp add: to-stream-def)

lemma measurable-Stream[measurable (raw)]:
assumes f [measurable]: f ∈ measurable N M
assumes g[measurable]: g ∈ measurable N (stream-space M)
shows (λx. f x ## g x) ∈ measurable N (stream-space M)
by (rule measurable-stream-space2) (simp add: Stream-snth)

lemma measurable-smap[measurable]:
assumes X [measurable]: X ∈ measurable N M
shows smap X ∈ measurable (stream-space N) (stream-space M)
by (rule measurable-stream-space2) simp

lemma measurable-stake[measurable]:
stake i ∈ measurable (stream-space (count-space UNIV)) (count-space (UNIV ::

′a::countable list set))
by (induct i) auto

lemma measurable-shift[measurable]:
assumes f : f ∈ measurable N (stream-space M)
assumes [measurable]: g ∈ measurable N (stream-space M)
shows (λx. stake n (f x) @− g x) ∈ measurable N (stream-space M)
using f by (induction n arbitrary: f) simp-all

lemma measurable-case-stream-replace[measurable (raw)]:
(λx. f x (shd (g x)) (stl (g x))) ∈ measurable M N =⇒ (λx. case-stream (f x) (g

x)) ∈ measurable M N
unfolding stream.case-eq-if .

lemma measurable-ev-at[measurable]:
assumes [measurable]: Measurable.pred (stream-space M) P
shows Measurable.pred (stream-space M) (ev-at P n)
by (induction n) auto

THEORY “Stream-Space” 495

lemma measurable-alw[measurable]:
Measurable.pred (stream-space M) P =⇒ Measurable.pred (stream-space M) (alw

P)
unfolding alw-def
by (coinduction rule: measurable-gfp-coinduct) (auto simp: inf-continuous-def)

lemma measurable-ev[measurable]:
Measurable.pred (stream-space M) P =⇒ Measurable.pred (stream-space M) (ev

P)
unfolding ev-def
by (coinduction rule: measurable-lfp-coinduct) (auto simp: sup-continuous-def)

lemma measurable-until:
assumes [measurable]: Measurable.pred (stream-space M) ϕ Measurable.pred (stream-space

M) ψ
shows Measurable.pred (stream-space M) (ϕ until ψ)
unfolding UNTIL-def
by (coinduction rule: measurable-gfp-coinduct) (simp-all add: inf-continuous-def

fun-eq-iff)

lemma measurable-holds [measurable]: Measurable.pred M P =⇒ Measurable.pred
(stream-space M) (holds P)

unfolding holds.simps[abs-def]
by (rule measurable-compose[OF measurable-shd]) simp

lemma measurable-hld[measurable]: assumes [measurable]: t ∈ sets M shows
Measurable.pred (stream-space M) (HLD t)

unfolding HLD-def by measurable

lemma measurable-nxt[measurable (raw)]:
Measurable.pred (stream-space M) P =⇒ Measurable.pred (stream-space M) (nxt

P)
unfolding nxt.simps[abs-def] by simp

lemma measurable-suntil[measurable]:
assumes [measurable]: Measurable.pred (stream-space M) Q Measurable.pred

(stream-space M) P
shows Measurable.pred (stream-space M) (Q suntil P)
unfolding suntil-def by (coinduction rule: measurable-lfp-coinduct) (auto simp:

sup-continuous-def)

lemma measurable-szip:
(λ(ω1 , ω2). szip ω1 ω2) ∈ measurable (stream-space M

⊗
M stream-space N)

(stream-space (M
⊗

M N))
proof (rule measurable-stream-space2)

fix n
have (λx. (case x of (ω1 , ω2) ⇒ szip ω1 ω2) !! n) = (λ(ω1 , ω2). (ω1 !! n, ω2

!! n))
by auto

THEORY “Stream-Space” 496

also have . . . ∈ measurable (stream-space M
⊗

M stream-space N) (M
⊗

M N)
by measurable

finally show (λx. (case x of (ω1 , ω2) ⇒ szip ω1 ω2) !! n) ∈ measurable
(stream-space M

⊗
M stream-space N) (M

⊗
M N)

.
qed

lemma (in prob-space) prob-space-stream-space: prob-space (stream-space M)
proof −

interpret product-prob-space λ-. M UNIV ..
show ?thesis

by (subst stream-space-eq-distr) (auto intro!: P.prob-space-distr)
qed

lemma (in prob-space) nn-integral-stream-space:
assumes [measurable]: f ∈ borel-measurable (stream-space M)
shows (

∫
+X . f X ∂stream-space M) = (

∫
+x. (

∫
+X . f (x ## X) ∂stream-space

M) ∂M)
proof −

interpret S : sequence-space M ..
interpret P: pair-sigma-finite M ΠM i::nat∈UNIV . M ..

have (
∫

+X . f X ∂stream-space M) = (
∫

+X . f (to-stream X) ∂S .S)
by (subst stream-space-eq-distr) (simp add: nn-integral-distr)

also have . . . = (
∫

+X . f (to-stream ((λ(s, ω). case-nat s ω) X)) ∂(M
⊗

M

S .S))
by (subst S .PiM-iter [symmetric]) (simp add: nn-integral-distr)

also have . . . = (
∫

+x.
∫

+X . f (to-stream ((λ(s, ω). case-nat s ω) (x, X))) ∂S .S
∂M)

by (subst S .nn-integral-fst) simp-all
also have . . . = (

∫
+x.

∫
+X . f (x ## to-stream X) ∂S .S ∂M)

by (auto intro!: nn-integral-cong simp: to-stream-nat-case)
also have . . . = (

∫
+x.

∫
+X . f (x ## X) ∂stream-space M ∂M)

by (subst stream-space-eq-distr)
(simp add: nn-integral-distr cong: nn-integral-cong)

finally show ?thesis .
qed

lemma (in prob-space) emeasure-stream-space:
assumes X [measurable]: X ∈ sets (stream-space M)
shows emeasure (stream-space M) X = (

∫
+t. emeasure (stream-space M) {x∈space

(stream-space M). t ## x ∈ X } ∂M)
proof −

have eq:
∧

x xs. xs ∈ space (stream-space M) =⇒ x ∈ space M =⇒
indicator X (x ## xs) = indicator {xs∈space (stream-space M). x ## xs ∈

X } xs
by (auto split: split-indicator)

show ?thesis
using nn-integral-stream-space[of indicator X]

THEORY “Stream-Space” 497

apply (auto intro!: nn-integral-cong)
apply (subst nn-integral-cong)
apply (rule eq)
apply simp-all
done

qed

lemma (in prob-space) prob-stream-space:
assumes P[measurable]: {x∈space (stream-space M). P x} ∈ sets (stream-space

M)
shows P(x in stream-space M . P x) = (

∫
+t. P(x in stream-space M . P (t ##

x)) ∂M)
proof −

interpret S : prob-space stream-space M
by (rule prob-space-stream-space)

show ?thesis
unfolding S .emeasure-eq-measure[symmetric]

by (subst emeasure-stream-space) (auto simp: stream-space-Stream intro!: nn-integral-cong)
qed

lemma (in prob-space) AE-stream-space:
assumes [measurable]: Measurable.pred (stream-space M) P
shows (AE X in stream-space M . P X) = (AE x in M . AE X in stream-space

M . P (x ## X))
proof −

interpret stream: prob-space stream-space M
by (rule prob-space-stream-space)

have eq:
∧

x X . indicator {x. ¬ P x} (x ## X) = indicator {X . ¬ P (x ##
X)} X

by (auto split: split-indicator)
show ?thesis

apply (subst AE-iff-nn-integral, simp)
apply (subst nn-integral-stream-space, simp)
apply (subst eq)
apply (subst nn-integral-0-iff-AE , simp)
apply (simp add: AE-iff-nn-integral[symmetric])
done

qed

lemma (in prob-space) AE-stream-all:
assumes [measurable]: Measurable.pred M P and P: AE x in M . P x
shows AE x in stream-space M . stream-all P x

proof −
{ fix n have AE x in stream-space M . P (x !! n)

proof (induct n)
case 0 with P show ?case

by (subst AE-stream-space) (auto elim!: eventually-mono)
next

THEORY “Stream-Space” 498

case (Suc n) then show ?case
by (subst AE-stream-space) auto

qed }
then show ?thesis

unfolding stream-all-def by (simp add: AE-all-countable)
qed

lemma streams-sets:
assumes X [measurable]: X ∈ sets M shows streams X ∈ sets (stream-space M)

proof −
have streams X = {x∈space (stream-space M). x ∈ streams X}
using streams-mono[OF - sets.sets-into-space[OF X]] by (auto simp: space-stream-space)
also have . . . = {x∈space (stream-space M). gfp (λp x. shd x ∈ X ∧ p (stl x))

x}
apply (simp add: set-eq-iff streams-def streamsp-def)
apply (intro allI conj-cong refl arg-cong2 [where f=gfp] ext)
apply (case-tac xa)
apply auto
done

also have . . . ∈ sets (stream-space M)
apply (intro predE)
apply (coinduction rule: measurable-gfp-coinduct)
apply (auto simp: inf-continuous-def)
done

finally show ?thesis .
qed

lemma sets-stream-space-in-sets:
assumes space: space N = streams (space M)
assumes sets:

∧
i. (λx. x !! i) ∈ measurable N M

shows sets (stream-space M) ⊆ sets N
unfolding stream-space-def sets-distr
by (auto intro!: sets-image-in-sets measurable-Sup2 measurable-vimage-algebra2

del: subsetI equalityI
simp add: sets-PiM-eq-proj snth-in space sets cong: measurable-cong-sets)

lemma sets-stream-space-eq: sets (stream-space M) =
sets (SUP i∈UNIV . vimage-algebra (streams (space M)) (λs. s !! i) M)

by (auto intro!: sets-stream-space-in-sets sets-Sup-in-sets sets-image-in-sets
measurable-Sup1 snth-in measurable-vimage-algebra1 del: subsetI

simp: space-Sup-eq-UN space-stream-space)

lemma sets-restrict-stream-space:
assumes S [measurable]: S ∈ sets M
shows sets (restrict-space (stream-space M) (streams S)) = sets (stream-space

(restrict-space M S))
using S [THEN sets.sets-into-space]
apply (subst restrict-space-eq-vimage-algebra)
apply (simp add: space-stream-space streams-mono2)

THEORY “Stream-Space” 499

apply (subst vimage-algebra-cong[OF refl refl sets-stream-space-eq])
apply (subst sets-stream-space-eq)
apply (subst sets-vimage-Sup-eq[where Y=streams (space M)])
apply simp
apply auto []
apply (auto intro: streams-mono) []
apply auto []
apply (simp add: image-image space-restrict-space)
apply (simp add: vimage-algebra-cong[OF refl refl restrict-space-eq-vimage-algebra])
apply (subst (1 2) vimage-algebra-vimage-algebra-eq)
apply (auto simp: streams-mono snth-in)
done

primrec sstart :: ′a set ⇒ ′a list ⇒ ′a stream set where
sstart S [] = streams S
| [simp del]: sstart S (x # xs) = (##) x ‘ sstart S xs

lemma in-sstart[simp]: s ∈ sstart S (x # xs) ←→ shd s = x ∧ stl s ∈ sstart S xs
by (cases s) (auto simp: sstart.simps(2))

lemma sstart-in-streams: xs ∈ lists S =⇒ sstart S xs ⊆ streams S
by (induction xs) (auto simp: sstart.simps(2))

lemma sstart-eq: x ∈ streams S =⇒ x ∈ sstart S xs = (∀ i<length xs. x !! i = xs
! i)

by (induction xs arbitrary: x) (auto simp: nth-Cons streams-stl split: nat.splits)

lemma sstart-sets: sstart S xs ∈ sets (stream-space (count-space UNIV))
proof (induction xs)

case (Cons x xs)
note Cons[measurable]
have sstart S (x # xs) =
{s∈space (stream-space (count-space UNIV)). shd s = x ∧ stl s ∈ sstart S xs}
by (simp add: set-eq-iff space-stream-space)

also have . . . ∈ sets (stream-space (count-space UNIV))
by measurable

finally show ?case .
qed (simp add: streams-sets)

lemma sigma-sets-singletons:
assumes countable S
shows sigma-sets S ((λs. {s})‘S) = Pow S

proof safe
interpret sigma-algebra S sigma-sets S ((λs. {s})‘S)

by (rule sigma-algebra-sigma-sets) auto
fix A assume A ⊆ S
with assms have (

⋃
a∈A. {a}) ∈ sigma-sets S ((λs. {s})‘S)

by (intro countable-UN ′) (auto dest: countable-subset)
then show A ∈ sigma-sets S ((λs. {s})‘S)

THEORY “Stream-Space” 500

by simp
qed (auto dest: sigma-sets-into-sp[rotated])

lemma sets-count-space-eq-sigma:
countable S =⇒ sets (count-space S) = sets (sigma S ((λs. {s})‘S))
by (subst sets-measure-of) (auto simp: sigma-sets-singletons)

lemma sets-stream-space-sstart:
assumes S [simp]: countable S
shows sets (stream-space (count-space S)) = sets (sigma (streams S) (sstart

S‘lists S ∪ {{}}))
proof

have [simp]: sstart S ‘ lists S ⊆ Pow (streams S)
by (simp add: image-subset-iff sstart-in-streams)

let ?S = sigma (streams S) (sstart S ‘ lists S ∪ {{}})
{ fix i a assume a ∈ S

{ fix x have (x !! i = a ∧ x ∈ streams S) ←→ (∃ xs∈lists S . length xs = i ∧ x
∈ sstart S (xs @ [a]))

proof (induction i arbitrary: x)
case (Suc i) from this[of stl x] show ?case
by (simp add: length-Suc-conv Bex-def ex-simps[symmetric] del: ex-simps)

(metis stream.collapse streams-Stream)
qed (insert ‹a ∈ S›, auto intro: streams-stl in-streams) }

then have (λx. x !! i) −‘ {a} ∩ streams S = (
⋃

xs∈{xs∈lists S . length xs =
i}. sstart S (xs @ [a]))

by (auto simp add: set-eq-iff)
also have . . . ∈ sets ?S

using ‹a∈S› by (intro sets.countable-UN ′) (auto intro!: sigma-sets.Basic
image-eqI)

finally have (λx. x !! i) −‘ {a} ∩ streams S ∈ sets ?S . }
then show sets (stream-space (count-space S)) ⊆ sets (sigma (streams S) (sstart

S‘lists S ∪ {{}}))
by (intro sets-stream-space-in-sets) (auto simp: measurable-count-space-eq-countable

snth-in)

have sigma-sets (space (stream-space (count-space S))) (sstart S‘lists S ∪ {{}})
⊆ sets (stream-space (count-space S))

proof (safe intro!: sets.sigma-sets-subset)
fix xs assume ∀ x∈set xs. x ∈ S
then have sstart S xs = {x∈space (stream-space (count-space S)). ∀ i<length

xs. x !! i = xs ! i}
by (induction xs)

(auto simp: space-stream-space nth-Cons split: nat.split intro: in-streams
streams-stl)

also have . . . ∈ sets (stream-space (count-space S))
by measurable

finally show sstart S xs ∈ sets (stream-space (count-space S)) .
qed

THEORY “Stream-Space” 501

then show sets (sigma (streams S) (sstart S‘lists S ∪ {{}})) ⊆ sets (stream-space
(count-space S))

by (simp add: space-stream-space)
qed

lemma Int-stable-sstart: Int-stable (sstart S‘lists S ∪ {{}})
proof −

{ fix xs ys assume xs ∈ lists S ys ∈ lists S
then have sstart S xs ∩ sstart S ys ∈ sstart S ‘ lists S ∪ {{}}
proof (induction xs ys rule: list-induct2 ′)

case (4 x xs y ys)
show ?case
proof cases

assume x = y
then have sstart S (x # xs) ∩ sstart S (y # ys) = (##) x ‘ (sstart S xs ∩

sstart S ys)
by (auto simp: image-iff intro!: stream.collapse[symmetric])

also have . . . ∈ sstart S ‘ lists S ∪ {{}}
using 4 by (auto simp: sstart.simps(2)[symmetric] del: in-listsD)

finally show ?case .
qed auto

qed (simp-all add: sstart-in-streams inf .absorb1 inf .absorb2 image-eqI [where
x=[]]) }

then show ?thesis
by (auto simp: Int-stable-def)

qed

lemma stream-space-eq-sstart:
assumes S [simp]: countable S
assumes P: prob-space M prob-space N
assumes ae: AE x in M . x ∈ streams S AE x in N . x ∈ streams S
assumes sets-M : sets M = sets (stream-space (count-space UNIV))
assumes sets-N : sets N = sets (stream-space (count-space UNIV))
assumes ∗:

∧
xs. xs 6= [] =⇒ xs ∈ lists S =⇒ emeasure M (sstart S xs) =

emeasure N (sstart S xs)
shows M = N

proof (rule measure-eqI-restrict-generator [OF Int-stable-sstart])
have [simp]: sstart S ‘ lists S ⊆ Pow (streams S)

by (simp add: image-subset-iff sstart-in-streams)

interpret M : prob-space M by fact

show sstart S ‘ lists S ∪ {{}} ⊆ Pow (streams S)
by (auto dest: sstart-in-streams del: in-listsD)

{ fix M :: ′a stream measure assume M : sets M = sets (stream-space (count-space
UNIV))

have sets (restrict-space M (streams S)) = sigma-sets (streams S) (sstart S ‘
lists S ∪ {{}})

THEORY “Stream-Space” 502

by (subst sets-restrict-space-cong[OF M])
(simp add: sets-restrict-stream-space restrict-count-space sets-stream-space-sstart)

}
from this[OF sets-M] this[OF sets-N]
show sets (restrict-space M (streams S)) = sigma-sets (streams S) (sstart S ‘

lists S ∪ {{}})
sets (restrict-space N (streams S)) = sigma-sets (streams S) (sstart S ‘ lists

S ∪ {{}})
by auto

show {streams S} ⊆ sstart S ‘ lists S ∪ {{}}⋃
{streams S} = streams S

∧
s. s ∈ {streams S} =⇒ emeasure M s 6= ∞

using M .emeasure-space-1 space-stream-space[of count-space S] sets-eq-imp-space-eq[OF
sets-M]

by (auto simp add: image-eqI [where x=[]])
show sets M = sets N

by (simp add: sets-M sets-N)
next

fix X assume X ∈ sstart S ‘ lists S ∪ {{}}
then obtain xs where X = {} ∨ (xs ∈ lists S ∧ X = sstart S xs)

by auto
moreover have emeasure M (streams S) = 1

using ae by (intro prob-space.emeasure-eq-1-AE [OF P(1)]) (auto simp: sets-M
streams-sets)

moreover have emeasure N (streams S) = 1
using ae by (intro prob-space.emeasure-eq-1-AE [OF P(2)]) (auto simp: sets-N

streams-sets)
ultimately show emeasure M X = emeasure N X

using P[THEN prob-space.emeasure-space-1]
by (cases xs = []) (auto simp: ∗ space-stream-space del: in-listsD)

qed (auto simp: ∗ ae sets-M del: in-listsD intro!: streams-sets)

lemma sets-sstart[measurable]: sstart Ω xs ∈ sets (stream-space (count-space UNIV))
proof (induction xs)

case (Cons x xs)
note this[measurable]
have sstart Ω (x # xs) = {ω∈space (stream-space (count-space UNIV)). ω ∈

sstart Ω (x # xs)}
by (auto simp: space-stream-space)

also have . . . ∈ sets (stream-space (count-space UNIV))
unfolding in-sstart by measurable

finally show ?case .
qed (auto intro!: streams-sets)

primrec scylinder :: ′a set ⇒ ′a set list ⇒ ′a stream set
where

scylinder S [] = streams S
| scylinder S (A # As) = {ω∈streams S . shd ω ∈ A ∧ stl ω ∈ scylinder S As}

lemma scylinder-streams: scylinder S xs ⊆ streams S

THEORY “Stream-Space” 503

by (induction xs) auto

lemma sets-scylinder : (∀ x∈set xs. x ∈ sets S) =⇒ scylinder (space S) xs ∈ sets
(stream-space S)

by (induction xs) (auto simp: space-stream-space[symmetric])

lemma stream-space-eq-scylinder :
assumes P: prob-space M prob-space N
assumes Int-stable G and S : sets S = sets (sigma (space S) G)

and C : countable C C ⊆ G
⋃

C = space S and G: G ⊆ Pow (space S)
assumes sets-M : sets M = sets (stream-space S)
assumes sets-N : sets N = sets (stream-space S)
assumes ∗:

∧
xs. xs 6= [] =⇒ xs ∈ lists G =⇒ emeasure M (scylinder (space S)

xs) = emeasure N (scylinder (space S) xs)
shows M = N

proof (rule measure-eqI-generator-eq)
interpret M : prob-space M by fact
interpret N : prob-space N by fact

let ?G = scylinder (space S) ‘ lists G
show sc-Pow: ?G ⊆ Pow (streams (space S))

using scylinder-streams by auto

have sets (stream-space S) = sets (sigma (streams (space S)) ?G)
(is ?S = sets ?R)

proof (rule antisym)
let ?V = λi. vimage-algebra (streams (space S)) (λs. s !! i) S
show ?S ⊆ sets ?R

unfolding sets-stream-space-eq
proof (safe intro!: sets-Sup-in-sets del: subsetI equalityI)

fix i :: nat
show space (?V i) = space ?R

using scylinder-streams by (subst space-measure-of) auto
{ fix A assume A ∈ G

then have scylinder (space S) (replicate i (space S) @ [A]) = (λs. s !! i)
−‘ A ∩ streams (space S)

by (induction i) (auto simp add: streams-shd streams-stl cong: conj-cong)
also have scylinder (space S) (replicate i (space S) @ [A]) = (

⋃
xs∈{xs∈lists

C . length xs = i}. scylinder (space S) (xs @ [A]))
apply (induction i)
apply auto []

apply (simp add: length-Suc-conv set-eq-iff ex-simps(1 ,2)[symmetric] cong:
conj-cong del: ex-simps(1 ,2))

apply rule
subgoal for i x

apply (cases x)
apply (subst (2) C (3)[symmetric])
apply (simp del: ex-simps(1 ,2) add: ex-simps(1 ,2)[symmetric] ac-simps

Bex-def)

THEORY “Stream-Space” 504

apply auto
done

done
finally have (λs. s !! i) −‘ A ∩ streams (space S) = (

⋃
xs∈{xs∈lists C .

length xs = i}. scylinder (space S) (xs @ [A]))
..

also have . . . ∈ ?R
using C (2) ‹A∈G›
by (intro sets.countable-UN ′ countable-Collect countable-lists C)

(auto intro!: in-measure-of [OF sc-Pow] imageI)
finally have (λs. s !! i) −‘ A ∩ streams (space S) ∈ ?R . }

then show sets (?V i) ⊆ ?R
apply (subst vimage-algebra-cong[OF refl refl S])
apply (subst vimage-algebra-sigma[OF G])
apply (simp add: streams-iff-snth) []
apply (subst sigma-le-sets)
apply auto
done

qed
have G ⊆ sets S

unfolding S using G by auto
with C (2) show sets ?R ⊆ ?S

unfolding sigma-le-sets[OF sc-Pow] by (auto intro!: sets-scylinder)
qed
then show sets M = sigma-sets (streams (space S)) (scylinder (space S) ‘ lists

G)
sets N = sigma-sets (streams (space S)) (scylinder (space S) ‘ lists G)
unfolding sets-M sets-N by (simp-all add: sc-Pow)

show Int-stable ?G
proof (rule Int-stableI-image)

fix xs ys assume xs ∈ lists G ys ∈ lists G
then show ∃ zs∈lists G. scylinder (space S) xs ∩ scylinder (space S) ys =

scylinder (space S) zs
proof (induction xs arbitrary: ys)

case Nil then show ?case
by (auto simp add: Int-absorb1 scylinder-streams)

next
case xs: (Cons x xs)
show ?case
proof (cases ys)

case Nil with xs.hyps show ?thesis
by (auto simp add: Int-absorb2 scylinder-streams intro!: bexI [of - x#xs])

next
case ys: (Cons y ys ′)
with xs.IH [of ys ′] xs.prems obtain zs where

zs ∈ lists G and eq: scylinder (space S) xs ∩ scylinder (space S) ys ′ =
scylinder (space S) zs

by auto

THEORY “Stream-Space” 505

show ?thesis
proof (intro bexI [of - (x ∩ y)#zs])

show x ∩ y # zs ∈ lists G
using ‹zs∈lists G› ‹x∈G› ‹ys∈lists G› ys ‹Int-stable G›[THEN Int-stableD,

of x y] by auto
show scylinder (space S) (x # xs) ∩ scylinder (space S) ys = scylinder

(space S) (x ∩ y # zs)
by (auto simp add: eq[symmetric] ys)

qed
qed

qed
qed

show range (λ-::nat. streams (space S)) ⊆ scylinder (space S) ‘ lists G
(
⋃

i. streams (space S)) = streams (space S)
emeasure M (streams (space S)) 6= ∞
by (auto intro!: image-eqI [of - - []])

fix X assume X ∈ scylinder (space S) ‘ lists G
then obtain xs where xs: xs ∈ lists G and eq: X = scylinder (space S) xs

by auto
then show emeasure M X = emeasure N X
proof (cases xs = [])

assume xs = [] then show ?thesis
unfolding eq
using sets-M [THEN sets-eq-imp-space-eq] sets-N [THEN sets-eq-imp-space-eq]

M .emeasure-space-1 N .emeasure-space-1
by (simp add: space-stream-space[symmetric])

next
assume xs 6= [] with xs show ?thesis

unfolding eq by (intro ∗)
qed

qed

lemma stream-space-coinduct:
fixes R :: ′a stream measure ⇒ ′a stream measure ⇒ bool
assumes R A B
assumes R:

∧
A B. R A B =⇒ ∃K∈space (prob-algebra M).

∃A ′∈M →M prob-algebra (stream-space M). ∃B ′∈M →M prob-algebra (stream-space
M).

(AE y in K . R (A ′ y) (B ′ y) ∨ A ′ y = B ′ y) ∧
A = do { y ← K ; ω ← A ′ y; return (stream-space M) (y ## ω) } ∧
B = do { y ← K ; ω ← B ′ y; return (stream-space M) (y ## ω) }

shows A = B
proof (rule stream-space-eq-scylinder)

let ?step = λK L. do { y ← K ; ω ← L y; return (stream-space M) (y ## ω) }
{ fix K A A ′ assume K : K ∈ space (prob-algebra M)

and A ′[measurable]: A ′ ∈ M →M prob-algebra (stream-space M) and A-eq:
A = ?step K A ′

THEORY “Stream-Space” 506

have ps: prob-space A
unfolding A-eq by (rule prob-space-bind ′[OF K]) measurable

have sets A = sets (stream-space M)
unfolding A-eq by (rule sets-bind ′[OF K]) measurable

note ps this }
note ∗∗ = this

{ fix A B assume R A B
obtain K A ′ B ′ where K : K ∈ space (prob-algebra M)

and A ′: A ′ ∈ M →M prob-algebra (stream-space M) A = ?step K A ′

and B ′: B ′ ∈ M →M prob-algebra (stream-space M) B = ?step K B ′

using R[OF ‹R A B›] by blast
have prob-space A prob-space B sets A = sets (stream-space M) sets B = sets

(stream-space M)
using ∗∗[OF K A ′] ∗∗[OF K B ′] by auto }

note R-D = this

show prob-space A prob-space B sets A = sets (stream-space M) sets B = sets
(stream-space M)

using R-D[OF ‹R A B›] by auto

show Int-stable (sets M) sets M = sets (sigma (space M) (sets M)) countable
{space M}
{space M} ⊆ sets M

⋃
{space M} = space M sets M ⊆ Pow (space M)

using sets.space-closed[of M] by (auto simp: Int-stable-def)

{ fix A As L K assume K [measurable]: K ∈ space (prob-algebra M) and A: A
∈ sets M As ∈ lists (sets M)

and L[measurable]: L ∈ M →M prob-algebra (stream-space M)
from A have [measurable]: ∀ x∈set (A # As). x ∈ sets M ∀ x∈set As. x ∈ sets

M
by auto

have [simp]: space K = space M sets K = sets M
using K by (auto simp: space-prob-algebra intro!: sets-eq-imp-space-eq)

have [simp]: x ∈ space M =⇒ sets (L x) = sets (stream-space M) for x
using measurable-space[OF L] by (auto simp: space-prob-algebra)

note sets-scylinder [measurable]
have ∗: indicator (scylinder (space M) (A # As)) (x ## ω) =

(indicator A x ∗ indicator (scylinder (space M) As) ω :: ennreal) for ω x
using scylinder-streams[of space M As] ‹A ∈ sets M ›[THEN sets.sets-into-space]

by (auto split: split-indicator)
have emeasure (?step K L) (scylinder (space M) (A # As)) = (

∫
+y. L y

(scylinder (space M) As) ∗ indicator A y ∂K)
apply (subst emeasure-bind-prob-algebra[OF K])
apply measurable
apply (rule nn-integral-cong)
apply (subst emeasure-bind-prob-algebra[OF L[THEN measurable-space]])

apply (simp-all add: ac-simps ∗ nn-integral-cmult-indicator del: scylin-
der .simps)

THEORY “Tree-Space” 507

apply measurable
done }

note emeasure-step = this

fix Xs assume Xs ∈ lists (sets M)
from this ‹R A B› show emeasure A (scylinder (space M) Xs) = emeasure B

(scylinder (space M) Xs)
proof (induction Xs arbitrary: A B)

case (Cons X Xs)
obtain K A ′ B ′ where K : K ∈ space (prob-algebra M)

and A ′[measurable]: A ′ ∈ M →M prob-algebra (stream-space M) and A: A =
?step K A ′

and B ′[measurable]: B ′ ∈ M →M prob-algebra (stream-space M) and B: B =
?step K B ′

and AE-R: AE x in K . R (A ′ x) (B ′ x) ∨ A ′ x = B ′ x
using R[OF ‹R A B›] by blast

show ?case
unfolding A B emeasure-step[OF K Cons.hyps A ′] emeasure-step[OF K

Cons.hyps B ′]
apply (rule nn-integral-cong-AE)
using AE-R by eventually-elim (auto simp add: Cons.IH)

next
case Nil
note R-D[OF this]

from this(1 ,2)[THEN prob-space.emeasure-space-1] this(3 ,4)[THEN sets-eq-imp-space-eq]
show ?case

by (simp add: space-stream-space)
qed

qed

end

theory Tree-Space
imports HOL−Analysis.Analysis HOL−Library.Tree

begin

lemma countable-lfp:
assumes step:

∧
Y . countable Y =⇒ countable (F Y)

and cont: Order-Continuity.sup-continuous F
shows countable (lfp F)

by(subst sup-continuous-lfp[OF cont])(simp add: countable-funpow[OF step])

lemma countable-lfp-apply:
assumes step:

∧
Y x. (

∧
x. countable (Y x)) =⇒ countable (F Y x)

and cont: Order-Continuity.sup-continuous F
shows countable (lfp F x)

proof −

THEORY “Tree-Space” 508

{ fix n
have

∧
x. countable ((F ^^ n) bot x)

by(induct n)(auto intro: step) }
thus ?thesis using cont by(simp add: sup-continuous-lfp)

qed

inductive-set trees :: ′a set ⇒ ′a tree set for S :: ′a set where
[intro!]: Leaf ∈ trees S
| l ∈ trees S =⇒ r ∈ trees S =⇒ v ∈ S =⇒ Node l v r ∈ trees S

lemma Node-in-trees-iff [simp]: Node l v r ∈ trees S ←→ (l ∈ trees S ∧ v ∈ S ∧
r ∈ trees S)

by (subst trees.simps) auto

lemma trees-sub-lfp: trees S ⊆ lfp (λT . T ∪ {Leaf } ∪ (
⋃

l∈T . (
⋃

v∈S . (
⋃

r∈T .
{Node l v r}))))
proof

have mono: mono (λT . T ∪ {Leaf } ∪ (
⋃

l∈T . (
⋃

v∈S . (
⋃

r∈T . {Node l v r}))))
by (auto simp: mono-def)

fix t assume t ∈ trees S then show t ∈ lfp (λT . T ∪ {Leaf } ∪ (
⋃

l∈T . (
⋃

v∈S .
(
⋃

r∈T . {Node l v r}))))
proof induction

case 1 then show ?case
by (subst lfp-unfold[OF mono]) auto

next
case 2 then show ?case

by (subst lfp-unfold[OF mono]) auto
qed

qed

lemma countable-trees: countable A =⇒ countable (trees A)
proof (intro countable-subset[OF trees-sub-lfp] countable-lfp

sup-continuous-sup sup-continuous-const sup-continuous-id)
show sup-continuous (λT . (

⋃
l∈T .

⋃
v∈A.

⋃
r∈T . {〈l, v, r〉}))

unfolding sup-continuous-def
proof (intro allI impI equalityI subsetI , goal-cases)

case (1 M t)
then obtain i j :: nat and l x r where t = Node l x r x ∈ A l ∈ M i r ∈ M j

by auto
hence l ∈ M (max i j) r ∈ M (max i j)

using incseqD[OF ‹incseq M ›, of i max i j] incseqD[OF ‹incseq M ›, of j max
i j] by auto

with ‹t = Node l x r› and ‹x ∈ A› show ?case by auto
qed auto

qed auto

lemma trees-UNIV [simp]: trees UNIV = UNIV
proof −

have t ∈ trees UNIV for t :: ′a tree

THEORY “Tree-Space” 509

by (induction t) (auto intro: trees.intros(2))
then show ?thesis by auto

qed

instance tree :: (countable) countable
proof

have countable (UNIV :: ′a tree set)
by (subst trees-UNIV [symmetric]) (intro countable-trees[OF countableI-type])

then show ∃ to-nat:: ′a tree ⇒ nat. inj to-nat
by (auto simp: countable-def)

qed

lemma map-in-trees[intro]: (
∧

x. x ∈ set-tree t =⇒ f x ∈ S) =⇒ map-tree f t ∈
trees S

by (induction t) (auto intro: trees.intros(2))

primrec trees-cyl :: ′a set tree ⇒ ′a tree set where
trees-cyl Leaf = {Leaf }
| trees-cyl (Node l v r) = (

⋃
l ′∈trees-cyl l. (

⋃
v ′∈v. (

⋃
r ′∈trees-cyl r . {Node l ′ v ′

r ′})))

definition tree-sigma :: ′a measure ⇒ ′a tree measure
where

tree-sigma M = sigma (trees (space M)) (trees-cyl ‘ trees (sets M))

lemma Node-in-trees-cyl: Node l ′ v ′ r ′ ∈ trees-cyl t ←→
(∃ l v r . t = Node l v r ∧ l ′ ∈ trees-cyl l ∧ r ′ ∈ trees-cyl r ∧ v ′ ∈ v)
by (cases t) auto

lemma trees-cyl-sub-trees:
assumes t ∈ trees A A ⊆ Pow B shows trees-cyl t ⊆ trees B
using assms(1)

proof induction
case (2 l v r) with ‹A ⊆ Pow B› show ?case

by (auto intro!: trees.intros(2))
qed auto

lemma trees-cyl-sets-in-space: trees-cyl ‘ trees (sets M) ⊆ Pow (trees (space M))
using trees-cyl-sub-trees[OF - sets.space-closed, of - M] by auto

lemma space-tree-sigma: space (tree-sigma M) = trees (space M)
unfolding tree-sigma-def by (rule space-measure-of-conv)

lemma sets-tree-sigma-eq: sets (tree-sigma M) = sigma-sets (trees (space M))
(trees-cyl ‘ trees (sets M))

unfolding tree-sigma-def by (rule sets-measure-of) (rule trees-cyl-sets-in-space)

lemma Leaf-in-space-tree-sigma [measurable, simp, intro]: Leaf ∈ space (tree-sigma
M)

THEORY “Tree-Space” 510

by (auto simp: space-tree-sigma)

lemma Leaf-in-tree-sigma [measurable, simp, intro]: {Leaf } ∈ sets (tree-sigma M)
unfolding sets-tree-sigma-eq
by (rule sigma-sets.Basic) (auto intro: trees.intros(2) image-eqI [where x=Leaf])

lemma trees-cyl-map-treeI : t ∈ trees-cyl (map-tree (λx. A) t) if ∗: t ∈ trees A
using ∗ by induction auto

lemma trees-cyl-map-in-sets:
(
∧

x. x ∈ set-tree t =⇒ f x ∈ sets M) =⇒ trees-cyl (map-tree f t) ∈ sets (tree-sigma
M)

by (subst sets-tree-sigma-eq) auto

lemma Node-in-tree-sigma:
assumes L: X ∈ sets (M

⊗
M (tree-sigma M

⊗
M tree-sigma M))

shows {Node l v r | l v r . (v, l, r) ∈ X} ∈ sets (tree-sigma M)
proof −

let ?E = λs::unit tree. trees-cyl (map-tree (λ-. space M) s)
have 1 : countable (range ?E)

by (intro countable-image countableI-type)
have 2 : trees-cyl ‘ trees (sets M) ⊆ Pow (space (tree-sigma M))

using trees-cyl-sets-in-space[of M] by (simp add: space-tree-sigma)
have 3 : sets (tree-sigma M) = sigma-sets (space (tree-sigma M)) (trees-cyl ‘ trees

(sets M))
unfolding sets-tree-sigma-eq by (simp add: space-tree-sigma)

have 4 : (
⋃

s. ?E s) = space (tree-sigma M)
proof (safe; clarsimp simp: space-tree-sigma)

fix t s assume t ∈ trees-cyl (map-tree (λ-::unit. space M) s)
then show t ∈ trees (space M)

by (induction s arbitrary: t) auto
next

fix t assume t ∈ trees (space M)
then show ∃ t ′. t ∈ ?E t ′

by (intro exI [of - map-tree (λ-. ()) t])
(auto simp: tree.map-comp comp-def intro: trees-cyl-map-treeI)

qed
have 5 : range ?E ⊆ trees-cyl ‘ trees (sets M) by auto
let ?P = {A × B | A B. A ∈ trees-cyl ‘ trees (sets M) ∧ B ∈ trees-cyl ‘ trees

(sets M)}
have P: sets (tree-sigma M

⊗
M tree-sigma M) = sets (sigma (space (tree-sigma

M) × space (tree-sigma M)) ?P)
by (rule sets-pair-eq[OF 2 3 1 5 4 2 3 1 5 4])

have sets (M
⊗

M (tree-sigma M
⊗

M tree-sigma M)) =
sets (sigma (space M × space (tree-sigma M

⊗
M tree-sigma M)) {A × BC |

A BC . A ∈ sets M ∧ BC ∈ ?P})
proof (rule sets-pair-eq)

show sets M ⊆ Pow (space M) sets M = sigma-sets (space M) (sets M)

THEORY “Tree-Space” 511

by (auto simp: sets.sigma-sets-eq sets.space-closed)
show countable {space M} {space M} ⊆ sets M

⋃
{space M} = space M

by auto
show ?P ⊆ Pow (space (tree-sigma M

⊗
M tree-sigma M))

using trees-cyl-sets-in-space[of M]
by (auto simp: space-pair-measure space-tree-sigma subset-eq)

then show sets (tree-sigma M
⊗

M tree-sigma M) =
sigma-sets (space (tree-sigma M

⊗
M tree-sigma M)) ?P

by (subst P, subst sets-measure-of) (auto simp: space-tree-sigma space-pair-measure)
show countable ((λ(a, b). a × b) ‘ (range ?E × range ?E))

by (intro countable-image countable-SIGMA countableI-type)
show (λ(a, b). a × b) ‘ (range ?E × range ?E) ⊆ ?P

by auto
qed (insert 4 , auto simp: space-pair-measure space-tree-sigma set-eq-iff)
also have . . . = sigma-sets (space M × trees (space M) × trees (space M))

{A × BC |A BC . A ∈ sets M ∧ BC ∈ {A × B |A B.
A ∈ trees-cyl ‘ trees (sets M) ∧ B ∈ trees-cyl ‘ trees (sets M)}}

(is - = sigma-sets ?X ?Y) using sets.space-closed[of M] trees-cyl-sub-trees[of -
sets M space M]

by (subst sets-measure-of)
(auto simp: space-pair-measure space-tree-sigma)

also have ?Y = {A × trees-cyl B × trees-cyl C | A B C . A ∈ sets M ∧
B ∈ trees (sets M) ∧ C ∈ trees (sets M)} by blast

finally have X ∈ sigma-sets (space M × trees (space M) × trees (space M))
{A × trees-cyl B × trees-cyl C | A B C . A ∈ sets M ∧ B ∈ trees (sets M) ∧

C ∈ trees (sets M) }
using assms by blast

then show ?thesis
proof induction

case (Basic A ′)
then obtain A B C where A ′ = A × trees-cyl B × trees-cyl C

and ∗: A ∈ sets M B ∈ trees (sets M) C ∈ trees (sets M)
by auto

then have {Node l v r |l v r . (v, l, r) ∈ A ′} = trees-cyl (Node B A C)
by auto

then show ?case
by (auto simp del: trees-cyl.simps simp: sets-tree-sigma-eq intro!: sigma-sets.Basic

∗)
next

case Empty show ?case by auto
next

case (Compl A)
have {Node l v r |l v r . (v, l, r) ∈ space M × trees (space M) × trees (space

M) − A} =
(space (tree-sigma M) − {Node l v r |l v r . (v, l, r) ∈ A}) − {Leaf }
by (auto simp: space-tree-sigma elim: trees.cases)

also have . . . ∈ sets (tree-sigma M)
by (intro sets.Diff Compl) auto

finally show ?case .

THEORY “Tree-Space” 512

next
case (Union I)
have ∗: {Node l v r |l v r . (v, l, r) ∈

⋃
(I ‘ UNIV)} =

(
⋃

i. {Node l v r |l v r . (v, l, r) ∈ I i}) by auto
show ?case unfolding ∗ using Union(2) by (intro sets.countable-UN) auto

qed
qed

lemma measurable-left[measurable]: left ∈ tree-sigma M →M tree-sigma M
proof (rule measurableI)

show t ∈ space (tree-sigma M) =⇒ left t ∈ space (tree-sigma M) for t
by (cases t) (auto simp: space-tree-sigma)

fix A assume A: A ∈ sets (tree-sigma M)
from sets.sets-into-space[OF this]
have ∗: left −‘ A ∩ space (tree-sigma M) =
(if Leaf ∈ A then {Leaf } else {}) ∪
{Node a v r | a v r . (v, a, r) ∈ space M × A × space (tree-sigma M)}
by (auto simp: space-tree-sigma elim: trees.cases)

show left −‘ A ∩ space (tree-sigma M) ∈ sets (tree-sigma M)
unfolding ∗ using A by (intro sets.Un Node-in-tree-sigma pair-measureI) auto

qed

lemma measurable-right[measurable]: right ∈ tree-sigma M →M tree-sigma M
proof (rule measurableI)

show t ∈ space (tree-sigma M) =⇒ right t ∈ space (tree-sigma M) for t
by (cases t) (auto simp: space-tree-sigma)

fix A assume A: A ∈ sets (tree-sigma M)
from sets.sets-into-space[OF this]
have ∗: right −‘ A ∩ space (tree-sigma M) =
(if Leaf ∈ A then {Leaf } else {}) ∪
{Node l v a | l v a. (v, l, a) ∈ space M × space (tree-sigma M) × A}
by (auto simp: space-tree-sigma elim: trees.cases)

show right −‘ A ∩ space (tree-sigma M) ∈ sets (tree-sigma M)
unfolding ∗ using A by (intro sets.Un Node-in-tree-sigma pair-measureI) auto

qed

lemma measurable-value ′: value ∈ restrict-space (tree-sigma M) (−{Leaf }) →M

M
proof (rule measurableI)

show t ∈ space (restrict-space (tree-sigma M) (− {Leaf })) =⇒ value t ∈ space
M for t

by (cases t) (auto simp: space-restrict-space space-tree-sigma)
fix A assume A: A ∈ sets M
from sets.sets-into-space[OF this]
have value −‘ A ∩ space (restrict-space (tree-sigma M) (− {Leaf })) =
{Node l a r | l a r . (a, l, r) ∈ A × space (tree-sigma M) × space (tree-sigma

M)}
by (auto simp: space-tree-sigma space-restrict-space elim: trees.cases)

also have . . . ∈ sets (tree-sigma M)

THEORY “Tree-Space” 513

using A by (intro sets.Un Node-in-tree-sigma pair-measureI) auto
finally show value −‘ A ∩ space (restrict-space (tree-sigma M) (− {Leaf })) ∈

sets (restrict-space (tree-sigma M) (− {Leaf }))
by (auto simp: sets-restrict-space-iff space-restrict-space)

qed

lemma measurable-value[measurable (raw)]:
assumes f ∈ X →M tree-sigma M

and
∧

x. x ∈ space X =⇒ f x 6= Leaf
shows (λω. value (f ω)) ∈ X →M M

proof −
from assms have f ∈ X →M restrict-space (tree-sigma M) (− {Leaf })

by (intro measurable-restrict-space2) auto
from this and measurable-value ′ show ?thesis by (rule measurable-compose)

qed

lemma measurable-Node [measurable]:
(λ(l,x,r). Node l x r) ∈ tree-sigma M

⊗
M M

⊗
M tree-sigma M →M tree-sigma

M
proof (rule measurable-sigma-sets)

show sets (tree-sigma M) = sigma-sets (trees (space M)) (trees-cyl ‘ trees (sets
M))

by (simp add: sets-tree-sigma-eq)
show trees-cyl ‘ trees (sets M) ⊆ Pow (trees (space M))

by (rule trees-cyl-sets-in-space)
show (λ(l, x, r). 〈l, x, r〉) ∈ space (tree-sigma M

⊗
M M

⊗
M tree-sigma M)

→ trees (space M)
by (auto simp: space-pair-measure space-tree-sigma)

fix A assume t: A ∈ trees-cyl ‘ trees (sets M)
then obtain t where t: t ∈ trees (sets M) A = trees-cyl t by auto
show (λ(l, x, r). 〈l, x, r〉) −‘ A ∩

space (tree-sigma M
⊗

M M
⊗

M tree-sigma M)
∈ sets (tree-sigma M

⊗
M M

⊗
M tree-sigma M)

proof (cases t)
case Leaf
have (λ(l, x, r). 〈l, x, r〉) −‘ {Leaf :: ′a tree} = {} by auto
with Leaf show ?thesis using t by simp

next
case (Node l B r)

hence (λ(l, x, r). 〈l, x, r〉) −‘ A ∩ space (tree-sigma M
⊗

M M
⊗

M tree-sigma
M) =

trees-cyl l × B × trees-cyl r
using t and Node and trees-cyl-sub-trees[of - sets M space M]
by (auto simp: space-pair-measure space-tree-sigma

dest: sets.sets-into-space[of - M])
thus ?thesis using t and Node

by (auto intro!: pair-measureI simp: sets-tree-sigma-eq)
qed

THEORY “Tree-Space” 514

qed

lemma measurable-Node ′ [measurable (raw)]:
assumes [measurable]: l ∈ B →M tree-sigma A
assumes [measurable]: x ∈ B →M A
assumes [measurable]: r ∈ B →M tree-sigma A
shows (λy. Node (l y) (x y) (r y)) ∈ B →M tree-sigma A

proof −
have (λy. Node (l y) (x y) (r y)) = (λ(a,b,c). Node a b c) ◦ (λy. (l y, x y, r y))

by (simp add: o-def)
also have . . . ∈ B →M tree-sigma A

by (intro measurable-comp[OF - measurable-Node]) simp-all
finally show ?thesis .

qed

lemma measurable-rec-tree[measurable (raw)]:
assumes t: t ∈ B →M tree-sigma M
assumes l: l ∈ B →M A
assumes n: (λ(x, l, v, r , al, ar). n x l v r al ar) ∈
(B

⊗
M tree-sigma M

⊗
M M

⊗
M tree-sigma M

⊗
M A

⊗
M A) →M A (is

?N ∈ ?M →M A)
shows (λx. rec-tree (l x) (n x) (t x)) ∈ B →M A

proof (rule measurable-piecewise-restrict)
let ?C = λt. λs::unit tree. t −‘ trees-cyl (map-tree (λ-. space M) s)
show countable (range (?C t)) by (intro countable-image countableI-type)
show space B ⊆ (

⋃
s. ?C t s)

proof (safe; clarsimp)
fix x assume x: x ∈ space B have t x ∈ trees (space M)

using t[THEN measurable-space, OF x] by (simp add: space-tree-sigma)
then show ∃ xa::unit tree. t x ∈ trees-cyl (map-tree (λ-. space M) xa)

by (intro exI [of - map-tree (λ-. ()) (t x)])
(simp add: tree.map-comp comp-def trees-cyl-map-treeI)

qed
fix Ω assume Ω ∈ range (?C t)
then obtain s :: unit tree where Ω: Ω = ?C t s by auto
then show Ω ∩ space B ∈ sets B

by (safe intro!: measurable-sets[OF t] trees-cyl-map-in-sets)
show (λx. rec-tree (l x) (n x) (t x)) ∈ restrict-space B Ω →M A

unfolding Ω using t
proof (induction s arbitrary: t)

case Leaf
show ?case
proof (rule measurable-cong[THEN iffD2])

fix ω assume ω ∈ space (restrict-space B (?C t Leaf))
then show rec-tree (l ω) (n ω) (t ω) = l ω

by (auto simp: space-restrict-space)
next

show l ∈ restrict-space B (?C t Leaf) →M A
using l by (rule measurable-restrict-space1)

THEORY “Tree-Space” 515

qed
next

case (Node ls u rs)
let ?F = λω. ?N (ω, left (t ω), value (t ω), right (t ω),

rec-tree (l ω) (n ω) (left (t ω)), rec-tree (l ω) (n ω) (right (t ω)))
show ?case
proof (rule measurable-cong[THEN iffD2])

fix ω assume ω ∈ space (restrict-space B (?C t (Node ls u rs)))
then show rec-tree (l ω) (n ω) (t ω) = ?F ω

by (auto simp: space-restrict-space)
next

show ?F ∈ (restrict-space B (?C t (Node ls u rs))) →M A
apply (intro measurable-compose[OF - n] measurable-Pair [rotated])
subgoal

apply (rule measurable-restrict-mono[OF Node(2)])
apply (rule measurable-compose[OF Node(3) measurable-right])
by auto

subgoal
apply (rule measurable-restrict-mono[OF Node(1)])
apply (rule measurable-compose[OF Node(3) measurable-left])
by auto

subgoal
by (rule measurable-restrict-space1)

(rule measurable-compose[OF Node(3) measurable-right])
subgoal

apply (rule measurable-compose[OF - measurable-value ′])
apply (rule measurable-restrict-space3 [OF Node(3)])
by auto

subgoal
by (rule measurable-restrict-space1)

(rule measurable-compose[OF Node(3) measurable-left])
by (rule measurable-restrict-space1) auto

qed
qed

qed

lemma measurable-case-tree [measurable (raw)]:
assumes t ∈ B →M tree-sigma M
assumes l ∈ B →M A
assumes (λ(x, l, v, r). n x l v r)

∈ B
⊗

M tree-sigma M
⊗

M M
⊗

M tree-sigma M →M A
shows (λx. case-tree (l x) (n x) (t x)) ∈ B →M (A :: ′a measure)

proof −
define n ′ where n ′ = (λx l v r (-:: ′a) (-:: ′a). n x l v r)
have (λx. case-tree (l x) (n x) (t x)) = (λx. rec-tree (l x) (n ′ x) (t x))

(is - = (λx. rec-tree - (?n ′ x) -)) by (rule ext) (auto split: tree.splits simp:
n ′-def)

also have . . . ∈ B →M A
proof (rule measurable-rec-tree)

THEORY “Conditional-Expectation” 516

have (λ(x, l, v, r , al, ar). n ′ x l v r al ar) =
(λ(x,l,v,r). n x l v r) ◦ (λ(x,l,v,r ,al,ar). (x,l,v,r))

by (simp add: n ′-def o-def case-prod-unfold)
also have . . . ∈ B

⊗
M tree-sigma M

⊗
M M

⊗
M tree-sigma M

⊗
M A⊗

M A →M A
using assms(3) by measurable

finally show (λ(x, l, v, r , al, ar). n ′ x l v r al ar) ∈
qed (insert assms, simp-all)
finally show ?thesis .

qed

hide-const (open) left
hide-const (open) right

end

28 Conditional Expectation
theory Conditional-Expectation
imports Probability-Measure
begin

28.1 Restricting a measure to a sub-sigma-algebra
definition subalgebra:: ′a measure ⇒ ′a measure ⇒ bool where

subalgebra M F = ((space F = space M) ∧ (sets F ⊆ sets M))

lemma sub-measure-space:
assumes i: subalgebra M F
shows measure-space (space M) (sets F) (emeasure M)

proof −
have sigma-algebra (space M) (sets F)

by (metis i measure-space measure-space-def subalgebra-def)
moreover have positive (sets F) (emeasure M)

using Sigma-Algebra.positive-def by auto
moreover have countably-additive (sets F) (emeasure M)
by (meson countably-additive-def emeasure-countably-additive i order-trans sub-

algebra-def subsetCE)
ultimately show ?thesis unfolding measure-space-def by simp

qed

definition restr-to-subalg:: ′a measure ⇒ ′a measure ⇒ ′a measure where
restr-to-subalg M F = measure-of (space M) (sets F) (emeasure M)

lemma space-restr-to-subalg:
space (restr-to-subalg M F) = space M

unfolding restr-to-subalg-def by (simp add: space-measure-of-conv)

lemma sets-restr-to-subalg [measurable-cong]:

THEORY “Conditional-Expectation” 517

assumes subalgebra M F
shows sets (restr-to-subalg M F) = sets F

unfolding restr-to-subalg-def by (metis sets.sets-measure-of-eq assms subalgebra-def)

lemma emeasure-restr-to-subalg:
assumes subalgebra M F

A ∈ sets F
shows emeasure (restr-to-subalg M F) A = emeasure M A

unfolding restr-to-subalg-def
by (metis assms subalgebra-def emeasure-measure-of-conv sub-measure-space sets.sigma-sets-eq)

lemma null-sets-restr-to-subalg:
assumes subalgebra M F
shows null-sets (restr-to-subalg M F) = null-sets M ∩ sets F

proof
have x ∈ null-sets M ∩ sets F if x ∈ null-sets (restr-to-subalg M F) for x

by (metis that Int-iff assms emeasure-restr-to-subalg null-setsD1 null-setsD2
null-setsI

sets-restr-to-subalg subalgebra-def subsetD)
then show null-sets (restr-to-subalg M F) ⊆ null-sets M ∩ sets F by auto

next
have x ∈ null-sets (restr-to-subalg M F) if x ∈ null-sets M ∩ sets F for x

by (metis that Int-iff assms null-setsD1 null-setsI sets-restr-to-subalg emea-
sure-restr-to-subalg[OF assms])

then show null-sets M ∩ sets F ⊆ null-sets (restr-to-subalg M F) by auto
qed

lemma AE-restr-to-subalg:
assumes subalgebra M F

AE x in (restr-to-subalg M F). P x
shows AE x in M . P x

proof −
obtain A where A:

∧
x. x ∈ space (restr-to-subalg M F) − A =⇒ P x A ∈

null-sets (restr-to-subalg M F)
using AE-E3 [OF assms(2)] by auto

then have A ∈ null-sets M using null-sets-restr-to-subalg[OF assms(1)] by auto
moreover have

∧
x. x ∈ space M − A =⇒ P x

using space-restr-to-subalg A(1) by fastforce
ultimately show ?thesis

unfolding eventually-ae-filter by auto
qed

lemma AE-restr-to-subalg2 :
assumes subalgebra M F

AE x in M . P x and [measurable]: P ∈ measurable F (count-space UNIV)
shows AE x in (restr-to-subalg M F). P x

proof −
define U where U = {x ∈ space M . ¬(P x)}
then have ∗: U = {x ∈ space F . ¬(P x)} using assms(1) by (simp add:

THEORY “Conditional-Expectation” 518

subalgebra-def)
then have U ∈ sets F by simp
then have U ∈ sets M using assms(1) by (meson subalgebra-def subsetD)
then have U ∈ null-sets M unfolding U-def using assms(2) using AE-iff-measurable

by blast
then have U ∈ null-sets (restr-to-subalg M F) using null-sets-restr-to-subalg[OF

assms(1)] ‹U ∈ sets F› by auto
then show ?thesis using ∗ by (metis (no-types, lifting) Collect-mono U-def

eventually-ae-filter space-restr-to-subalg)
qed

lemma prob-space-restr-to-subalg:
assumes subalgebra M F

prob-space M
shows prob-space (restr-to-subalg M F)

by (metis (no-types, lifting) assms(1) assms(2) emeasure-restr-to-subalg prob-space.emeasure-space-1
prob-spaceI

sets.top space-restr-to-subalg subalgebra-def)

lemma finite-measure-restr-to-subalg:
assumes subalgebra M F

finite-measure M
shows finite-measure (restr-to-subalg M F)

by (metis (no-types, lifting) assms emeasure-restr-to-subalg finite-measure.finite-emeasure-space
finite-measureI sets.top space-restr-to-subalg subalgebra-def infinity-ennreal-def)

lemma measurable-in-subalg:
assumes subalgebra M F

f ∈ measurable F N
shows f ∈ measurable (restr-to-subalg M F) N

by (metis measurable-cong-sets assms(2) sets-restr-to-subalg[OF assms(1)])

lemma measurable-in-subalg ′:
assumes subalgebra M F

f ∈ measurable (restr-to-subalg M F) N
shows f ∈ measurable F N

by (metis measurable-cong-sets assms(2) sets-restr-to-subalg[OF assms(1)])

lemma measurable-from-subalg:
assumes subalgebra M F

f ∈ measurable F N
shows f ∈ measurable M N

using assms unfolding measurable-def subalgebra-def by auto

The following is the direct transposition of nn_integral_subalgebra (from
Nonnegative_Lebesgue_Integration) in the current notations, with the
removal of the useless assumption f ≥ 0.
lemma nn-integral-subalgebra2 :

assumes subalgebra M F and [measurable]: f ∈ borel-measurable F

THEORY “Conditional-Expectation” 519

shows (
∫

+ x. f x ∂(restr-to-subalg M F)) = (
∫

+ x. f x ∂M)
proof (rule nn-integral-subalgebra)

show f ∈ borel-measurable (restr-to-subalg M F)
by (rule measurable-in-subalg[OF assms(1)]) simp

show sets (restr-to-subalg M F) ⊆ sets M by (metis sets-restr-to-subalg[OF
assms(1)] assms(1) subalgebra-def)

fix A assume A ∈ sets (restr-to-subalg M F)
then show emeasure (restr-to-subalg M F) A = emeasure M A
by (metis sets-restr-to-subalg[OF assms(1)] emeasure-restr-to-subalg[OF assms(1)])

qed (auto simp add: assms space-restr-to-subalg sets-restr-to-subalg[OF assms(1)])

The following is the direct transposition of integral_subalgebra (from
Bochner_Integration) in the current notations.
lemma integral-subalgebra2 :

fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes subalgebra M F and
[measurable]: f ∈ borel-measurable F

shows (
∫

x. f x ∂(restr-to-subalg M F)) = (
∫

x. f x ∂M)
by (rule integral-subalgebra,

metis measurable-in-subalg[OF assms(1)] assms(2),
auto simp add: assms space-restr-to-subalg sets-restr-to-subalg emeasure-restr-to-subalg,
meson assms(1) subalgebra-def subset-eq)

lemma integrable-from-subalg:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes subalgebra M F

integrable (restr-to-subalg M F) f
shows integrable M f

proof (rule integrableI-bounded)
have [measurable]: f ∈ borel-measurable F using assms by auto
then show f ∈ borel-measurable M using assms(1) measurable-from-subalg by

blast

have (
∫

+ x. ennreal (norm (f x)) ∂M) = (
∫

+ x. ennreal (norm (f x)) ∂(restr-to-subalg
M F))

by (rule nn-integral-subalgebra2 [symmetric], auto simp add: assms)
also have ... < ∞ using integrable-iff-bounded assms by auto
finally show (

∫
+ x. ennreal (norm (f x)) ∂M) < ∞ by simp

qed

lemma integrable-in-subalg:
fixes f :: ′a ⇒ ′b::{banach, second-countable-topology}
assumes [measurable]: subalgebra M F

f ∈ borel-measurable F
integrable M f

shows integrable (restr-to-subalg M F) f
proof (rule integrableI-bounded)

show f ∈ borel-measurable (restr-to-subalg M F) using assms(2) assms(1) by
auto

THEORY “Conditional-Expectation” 520

have (
∫

+ x. ennreal (norm (f x)) ∂(restr-to-subalg M F)) = (
∫

+ x. ennreal
(norm (f x)) ∂M)

by (rule nn-integral-subalgebra2 , auto simp add: assms)
also have ... < ∞ using integrable-iff-bounded assms by auto
finally show (

∫
+ x. ennreal (norm (f x)) ∂(restr-to-subalg M F)) < ∞ by simp

qed

28.2 Nonnegative conditional expectation

The conditional expectation of a function f , on a measure space M , with re-
spect to a sub sigma algebra F , should be a function g which is F -measurable
whose integral on any F -set coincides with the integral of f . Such a func-
tion is uniquely defined almost everywhere. The most direct construction is
to use the measure fdM , restrict it to the sigma-algebra F , and apply the
Radon-Nikodym theorem to write it as gdM|F for some F -measurable func-
tion g. Another classical construction for L2 functions is done by orthogonal
projection on F -measurable functions, and then extending by density to L1.
The Radon-Nikodym point of view avoids the L2 machinery, and works for
all positive functions.
In this paragraph, we develop the definition and basic properties for non-
negative functions, as the basics of the general case. As in the definition of
integrals, the nonnegative case is done with ennreal-valued functions, with-
out any integrability assumption.
definition nn-cond-exp :: ′a measure ⇒ ′a measure ⇒ (′a ⇒ ennreal) ⇒ (′a ⇒
ennreal)
where

nn-cond-exp M F f =
(if f ∈ borel-measurable M ∧ subalgebra M F

then RN-deriv (restr-to-subalg M F) (restr-to-subalg (density M f) F)
else (λ-. 0))

lemma
shows borel-measurable-nn-cond-exp [measurable]: nn-cond-exp M F f ∈ borel-measurable

F
and borel-measurable-nn-cond-exp2 [measurable]: nn-cond-exp M F f ∈ borel-measurable

M
by (simp-all add: nn-cond-exp-def)
(metis borel-measurable-RN-deriv borel-measurable-subalgebra sets-restr-to-subalg

space-restr-to-subalg subalgebra-def)

The good setting for conditional expectations is the situation where the
subalgebra F gives rise to a sigma-finite measure space. To see what goes
wrong if it is not sigma-finite, think of R with the trivial sigma-algebra
{∅,R}. In this case, conditional expectations have to be constant functions,
so they have integral 0 or∞. This means that a positive integrable function
can have no meaningful conditional expectation.

THEORY “Conditional-Expectation” 521

locale sigma-finite-subalgebra =
fixes M F :: ′a measure
assumes subalg: subalgebra M F

and sigma-fin-subalg: sigma-finite-measure (restr-to-subalg M F)

lemma sigma-finite-subalgebra-is-sigma-finite:
assumes sigma-finite-subalgebra M F
shows sigma-finite-measure M

proof
have subalg: subalgebra M F
and sigma-fin-subalg: sigma-finite-measure (restr-to-subalg M F)
using assms unfolding sigma-finite-subalgebra-def by auto

obtain A where Ap: countable A ∧ A ⊆ sets (restr-to-subalg M F) ∧
⋃

A =
space (restr-to-subalg M F) ∧ (∀ a∈A. emeasure (restr-to-subalg M F) a 6= ∞)

using sigma-finite-measure.sigma-finite-countable[OF sigma-fin-subalg] by fast-
force

have A ⊆ sets F using Ap sets-restr-to-subalg[OF subalg] by fastforce
then have A ⊆ sets M using subalg subalgebra-def by force
moreover have

⋃
A = space M using Ap space-restr-to-subalg by simp

moreover have ∀ a∈A. emeasure M a 6=∞ by (metis subsetD emeasure-restr-to-subalg[OF
subalg] ‹A ⊆ sets F› Ap)

ultimately show ∃A. countable A ∧ A ⊆ sets M ∧
⋃

A = space M ∧ (∀ a∈A.
emeasure M a 6= ∞) using Ap by auto
qed

sublocale sigma-finite-subalgebra ⊆ sigma-finite-measure
using sigma-finite-subalgebra-is-sigma-finite sigma-finite-subalgebra-axioms by blast

Conditional expectations are very often used in probability spaces. This is
a special case of the previous one, as we prove now.
locale finite-measure-subalgebra = finite-measure +

fixes F :: ′a measure
assumes subalg: subalgebra M F

lemma finite-measure-subalgebra-is-sigma-finite:
assumes finite-measure-subalgebra M F
shows sigma-finite-subalgebra M F

proof −
interpret finite-measure-subalgebra M F using assms by simp
have finite-measure (restr-to-subalg M F)

using finite-measure-restr-to-subalg subalg finite-emeasure-space finite-measureI
unfolding infinity-ennreal-def by blast

then have sigma-finite-measure (restr-to-subalg M F)
unfolding finite-measure-def by simp

then show sigma-finite-subalgebra M F unfolding sigma-finite-subalgebra-def
using subalg by simp
qed

sublocale finite-measure-subalgebra ⊆ sigma-finite-subalgebra

THEORY “Conditional-Expectation” 522

proof −
have finite-measure (restr-to-subalg M F)

using finite-measure-restr-to-subalg subalg finite-emeasure-space finite-measureI
unfolding infinity-ennreal-def by blast

then have sigma-finite-measure (restr-to-subalg M F)
unfolding finite-measure-def by simp

then show sigma-finite-subalgebra M F unfolding sigma-finite-subalgebra-def
using subalg by simp
qed

context sigma-finite-subalgebra
begin

The next lemma is arguably the most fundamental property of conditional
expectation: when computing an expectation against an F -measurable func-
tion, it is equivalent to work with a function or with its F -conditional ex-
pectation.
This property (even for bounded test functions) characterizes conditional
expectations, as the second lemma below shows. From this point on, we
will only work with it, and forget completely about the definition using
Radon-Nikodym derivatives.
lemma nn-cond-exp-intg:

assumes [measurable]: f ∈ borel-measurable F g ∈ borel-measurable M
shows (

∫
+ x. f x ∗ nn-cond-exp M F g x ∂M) = (

∫
+ x. f x ∗ g x ∂M)

proof −
have [measurable]: f ∈ borel-measurable M

by (meson assms subalg borel-measurable-subalgebra subalgebra-def)
have ac: absolutely-continuous (restr-to-subalg M F) (restr-to-subalg (density M

g) F)
unfolding absolutely-continuous-def

proof −
have null-sets (restr-to-subalg M F) = null-sets M ∩ sets F by (rule null-sets-restr-to-subalg[OF

subalg])
moreover have null-sets M ⊆ null-sets (density M g)

by (rule absolutely-continuousI-density[unfolded absolutely-continuous-def])
auto

ultimately have null-sets (restr-to-subalg M F) ⊆ null-sets (density M g) ∩
sets F by auto

moreover have null-sets (density M g) ∩ sets F = null-sets (restr-to-subalg
(density M g) F)

by (rule null-sets-restr-to-subalg[symmetric]) (metis subalg sets-density space-density
subalgebra-def)

ultimately show null-sets (restr-to-subalg M F) ⊆ null-sets (restr-to-subalg
(density M g) F) by auto

qed

have (
∫

+ x. f x ∗ nn-cond-exp M F g x ∂M) = (
∫

+ x. f x ∗ nn-cond-exp M F
g x ∂(restr-to-subalg M F))

THEORY “Conditional-Expectation” 523

by (rule nn-integral-subalgebra2 [symmetric]) (simp-all add: assms subalg)
also have ... = (

∫
+ x. f x ∗ RN-deriv (restr-to-subalg M F) (restr-to-subalg

(density M g) F) x ∂(restr-to-subalg M F))
unfolding nn-cond-exp-def using assms subalg by simp

also have ... = (
∫

+ x. RN-deriv (restr-to-subalg M F) (restr-to-subalg (density
M g) F) x ∗ f x ∂(restr-to-subalg M F))

by (simp add: mult.commute)
also have ... = (

∫
+ x. f x ∂(restr-to-subalg (density M g) F))

proof (rule sigma-finite-measure.RN-deriv-nn-integral[symmetric])
show sets (restr-to-subalg (density M g) F) = sets (restr-to-subalg M F)

by (metis subalg restr-to-subalg-def sets.sets-measure-of-eq space-density sub-
algebra-def)

qed (auto simp add: assms measurable-restrict ac measurable-in-subalg subalg
sigma-fin-subalg)

also have ... = (
∫

+ x. f x ∂(density M g))
by (metis nn-integral-subalgebra2 subalg assms(1) sets-density space-density

subalgebra-def)
also have ... = (

∫
+ x. g x ∗ f x ∂M)

by (rule nn-integral-density) (simp-all add: assms)
also have ... = (

∫
+ x. f x ∗ g x ∂M)

by (simp add: mult.commute)
finally show ?thesis by simp

qed

lemma nn-cond-exp-charact:
assumes

∧
A. A ∈ sets F =⇒ (

∫
+ x ∈ A. f x ∂M) = (

∫
+ x ∈ A. g x ∂M) and

[measurable]: f ∈ borel-measurable M g ∈ borel-measurable F
shows AE x in M . g x = nn-cond-exp M F f x

proof −
let ?MF = restr-to-subalg M F
{

fix A assume A ∈ sets ?MF
then have [measurable]: A ∈ sets F using sets-restr-to-subalg[OF subalg] by

simp
have (

∫
+ x ∈ A. g x ∂ ?MF) = (

∫
+ x ∈ A. g x ∂M)

by (simp add: nn-integral-subalgebra2 subalg)
also have ... = (

∫
+ x ∈ A. f x ∂M) using assms(1) by simp

also have ... = (
∫

+ x. indicator A x ∗ f x ∂M) by (simp add: mult.commute)
also have ... = (

∫
+ x. indicator A x ∗ nn-cond-exp M F f x ∂M)

by (rule nn-cond-exp-intg[symmetric]) (auto simp add: assms)
also have ... = (

∫
+ x ∈ A. nn-cond-exp M F f x ∂M) by (simp add:

mult.commute)
also have ... = (

∫
+ x ∈ A. nn-cond-exp M F f x ∂ ?MF)

by (simp add: nn-integral-subalgebra2 subalg)
finally have (

∫
+ x ∈ A. g x ∂ ?MF) = (

∫
+ x ∈ A. nn-cond-exp M F f x ∂

?MF) by simp
} note ∗ = this
have AE x in ?MF . g x = nn-cond-exp M F f x

by (rule sigma-finite-measure.density-unique2)

THEORY “Conditional-Expectation” 524

(auto simp add: assms subalg sigma-fin-subalg AE-restr-to-subalg2 ∗)
then show ?thesis using AE-restr-to-subalg[OF subalg] by simp

qed

lemma nn-cond-exp-F-meas:
assumes f ∈ borel-measurable F
shows AE x in M . f x = nn-cond-exp M F f x

by (rule nn-cond-exp-charact) (auto simp add: assms measurable-from-subalg[OF
subalg])

lemma nn-cond-exp-prod:
assumes [measurable]: f ∈ borel-measurable F g ∈ borel-measurable M
shows AE x in M . f x ∗ nn-cond-exp M F g x = nn-cond-exp M F (λx. f x ∗ g

x) x
proof (rule nn-cond-exp-charact)

have [measurable]: f ∈ borel-measurable M by (rule measurable-from-subalg[OF
subalg assms(1)])

show (λx. f x ∗ g x) ∈ borel-measurable M by measurable

fix A assume A ∈ sets F
then have [measurable]: (λx. f x ∗ indicator A x) ∈ borel-measurable F by

measurable
have (

∫
+x∈A. (f x ∗ g x) ∂M) =

∫
+x. (f x ∗ indicator A x) ∗ g x ∂M

by (simp add: mult.commute mult.left-commute)
also have ... =

∫
+x. (f x ∗ indicator A x) ∗ nn-cond-exp M F g x ∂M

by (rule nn-cond-exp-intg[symmetric]) (auto simp add: assms)
also have ... = (

∫
+x∈A. (f x ∗ nn-cond-exp M F g x)∂M)

by (simp add: mult.commute mult.left-commute)
finally show (

∫
+x∈A. (f x ∗ g x) ∂M) = (

∫
+x∈A. (f x ∗ nn-cond-exp M F g

x)∂M) by simp
qed (auto simp add: assms)

lemma nn-cond-exp-sum:
assumes [measurable]: f ∈ borel-measurable M g ∈ borel-measurable M
shows AE x in M . nn-cond-exp M F f x + nn-cond-exp M F g x = nn-cond-exp

M F (λx. f x + g x) x
proof (rule nn-cond-exp-charact)

fix A assume [measurable]: A ∈ sets F
then have A ∈ sets M by (meson subalg subalgebra-def subsetD)
have (

∫
+x∈A. (nn-cond-exp M F f x + nn-cond-exp M F g x)∂M) = (

∫
+x∈A.

nn-cond-exp M F f x ∂M) + (
∫

+x∈A. nn-cond-exp M F g x ∂M)
by (rule nn-set-integral-add) (auto simp add: assms ‹A ∈ sets M ›)

also have ... = (
∫

+x. indicator A x ∗ nn-cond-exp M F f x ∂M) + (
∫

+x.
indicator A x ∗ nn-cond-exp M F g x ∂M)

by (metis (no-types, lifting) mult.commute nn-integral-cong)
also have ... = (

∫
+x. indicator A x ∗ f x ∂M) + (

∫
+x. indicator A x ∗ g x ∂M)

by (simp add: nn-cond-exp-intg)
also have ... = (

∫
+x∈A. f x ∂M) + (

∫
+x∈A. g x ∂M)

by (metis (no-types, lifting) mult.commute nn-integral-cong)

THEORY “Conditional-Expectation” 525

also have ... = (
∫

+x∈A. (f x + g x)∂M)
by (rule nn-set-integral-add[symmetric]) (auto simp add: assms ‹A ∈ sets M ›)

finally show (
∫

+x∈A. (f x + g x)∂M) = (
∫

+x∈A. (nn-cond-exp M F f x +
nn-cond-exp M F g x)∂M)

by simp
qed (auto simp add: assms)

lemma nn-cond-exp-cong:
assumes AE x in M . f x = g x

and [measurable]: f ∈ borel-measurable M g ∈ borel-measurable M
shows AE x in M . nn-cond-exp M F f x = nn-cond-exp M F g x

proof (rule nn-cond-exp-charact)
fix A assume [measurable]: A ∈ sets F
have (

∫
+x∈A. nn-cond-exp M F f x ∂M) =

∫
+x. indicator A x ∗ nn-cond-exp

M F f x ∂M
by (simp add: mult.commute)

also have ... =
∫

+x. indicator A x ∗ f x ∂M by (simp add: nn-cond-exp-intg
assms)

also have ... = (
∫

+x∈A. f x ∂M) by (simp add: mult.commute)
also have ... = (

∫
+x∈A. g x ∂M) by (rule nn-set-integral-cong[OF assms(1)])

finally show (
∫

+x∈A. g x ∂M) = (
∫

+x∈A. nn-cond-exp M F f x ∂M) by simp
qed (auto simp add: assms)

lemma nn-cond-exp-mono:
assumes AE x in M . f x ≤ g x

and [measurable]: f ∈ borel-measurable M g ∈ borel-measurable M
shows AE x in M . nn-cond-exp M F f x ≤ nn-cond-exp M F g x

proof −
define h where h = (λx. g x − f x)
have [measurable]: h ∈ borel-measurable M unfolding h-def by simp
have ∗: AE x in M . g x = f x + h x unfolding h-def using assms(1) by (auto

simp: ennreal-ineq-diff-add)
have AE x in M . nn-cond-exp M F g x = nn-cond-exp M F (λx. f x + h x) x

by (rule nn-cond-exp-cong) (auto simp add: ∗ assms)
moreover have AE x in M . nn-cond-exp M F f x + nn-cond-exp M F h x =

nn-cond-exp M F (λx. f x + h x) x
by (rule nn-cond-exp-sum) (auto simp add: assms)

ultimately have AE x in M . nn-cond-exp M F g x = nn-cond-exp M F f x +
nn-cond-exp M F h x by auto

then show ?thesis by force
qed

lemma nested-subalg-is-sigma-finite:
assumes subalgebra M G subalgebra G F
shows sigma-finite-subalgebra M G

unfolding sigma-finite-subalgebra-def
proof (auto simp add: assms)
have ∃A. countable A ∧ A ⊆ sets (restr-to-subalg M F) ∧

⋃
A = space (restr-to-subalg

M F) ∧ (∀ a∈A. emeasure (restr-to-subalg M F) a 6= ∞)

THEORY “Conditional-Expectation” 526

using sigma-fin-subalg sigma-finite-measure-def by auto
then obtain A where A:countable A ∧ A ⊆ sets (restr-to-subalg M F) ∧

⋃
A

= space (restr-to-subalg M F) ∧ (∀ a∈A. emeasure (restr-to-subalg M F) a 6= ∞)
by auto

have sets F ⊆ sets M
by (meson assms order-trans subalgebra-def)

then have countable A ∧ A ⊆ sets (restr-to-subalg M G) ∧
⋃

A = space
(restr-to-subalg M F) ∧ (∀ a∈A. emeasure (restr-to-subalg M G) a 6= ∞)

by (metis (no-types) A assms basic-trans-rules(31) emeasure-restr-to-subalg
order-trans sets-restr-to-subalg subalgebra-def)

then show sigma-finite-measure (restr-to-subalg M G)
by (metis sigma-finite-measure.intro space-restr-to-subalg)

qed

lemma nn-cond-exp-nested-subalg:
assumes subalgebra M G subalgebra G F

and [measurable]: f ∈ borel-measurable M
shows AE x in M . nn-cond-exp M F f x = nn-cond-exp M F (nn-cond-exp M G

f) x
proof (rule nn-cond-exp-charact, auto)
interpret G: sigma-finite-subalgebra M G by (rule nested-subalg-is-sigma-finite[OF

assms(1) assms(2)])
fix A assume [measurable]: A ∈ sets F
then have [measurable]: A ∈ sets G using assms(2) by (meson subsetD subal-

gebra-def)

have set-nn-integral M A (nn-cond-exp M G f) = (
∫

+ x. indicator A x ∗
nn-cond-exp M G f x∂M)

by (metis (no-types) mult.commute)
also have ... = (

∫
+ x. indicator A x ∗ f x ∂M) by (rule G.nn-cond-exp-intg,

auto simp add: assms)
also have ... = (

∫
+ x. indicator A x ∗ nn-cond-exp M F f x ∂M) by (rule

nn-cond-exp-intg[symmetric], auto simp add: assms)
also have ... = set-nn-integral M A (nn-cond-exp M F f) by (metis (no-types)

mult.commute)
finally show set-nn-integral M A (nn-cond-exp M G f) = set-nn-integral M A

(nn-cond-exp M F f).
qed

end

28.3 Real conditional expectation

Once conditional expectations of positive functions are defined, the defi-
nition for real-valued functions follows readily, by taking the difference of
positive and negative parts. One could also define a conditional expecta-
tion of vector-space valued functions, as in Bochner_Integral, but since
the real-valued case is the most important, and quicker to formalize, I con-

THEORY “Conditional-Expectation” 527

centrate on it. (It is also essential for the case of the most general Pettis
integral.)
definition real-cond-exp :: ′a measure ⇒ ′a measure ⇒ (′a ⇒ real) ⇒ (′a ⇒ real)
where

real-cond-exp M F f =
(λx. enn2real(nn-cond-exp M F (λx. ennreal (f x)) x) − enn2real(nn-cond-exp

M F (λx. ennreal (−f x)) x))

lemma
shows borel-measurable-cond-exp [measurable]: real-cond-exp M F f ∈ borel-measurable

F
and borel-measurable-cond-exp2 [measurable]: real-cond-exp M F f ∈ borel-measurable

M
unfolding real-cond-exp-def by auto

context sigma-finite-subalgebra
begin

lemma real-cond-exp-abs:
assumes [measurable]: f ∈ borel-measurable M
shows AE x in M . abs(real-cond-exp M F f x) ≤ nn-cond-exp M F (λx. ennreal

(abs(f x))) x
proof −

define fp where fp = (λx. ennreal (f x))
define fm where fm = (λx. ennreal (− f x))
have [measurable]: fp ∈ borel-measurable M fm ∈ borel-measurable M unfolding

fp-def fm-def by auto
have eq:

∧
x. ennreal |f x| = fp x + fm x unfolding fp-def fm-def by (simp add:

abs-real-def ennreal-neg)

{
fix x assume H : nn-cond-exp M F fp x + nn-cond-exp M F fm x = nn-cond-exp

M F (λx. fp x + fm x) x
have |real-cond-exp M F f x| ≤ |enn2real(nn-cond-exp M F fp x)| + |enn2real(nn-cond-exp

M F fm x)|
unfolding real-cond-exp-def fp-def fm-def by (auto intro: abs-triangle-ineq4

simp del: enn2real-nonneg)
from ennreal-leI [OF this]
have abs(real-cond-exp M F f x) ≤ nn-cond-exp M F fp x + nn-cond-exp M F

fm x
by simp (metis add.commute ennreal-enn2real le-iff-add not-le top-unique)

also have ... = nn-cond-exp M F (λx. fp x + fm x) x using H by simp
finally have abs(real-cond-exp M F f x) ≤ nn-cond-exp M F (λx. fp x + fm x)

x by simp
}
moreover have AE x in M . nn-cond-exp M F fp x + nn-cond-exp M F fm x =

nn-cond-exp M F (λx. fp x + fm x) x
by (rule nn-cond-exp-sum) (auto simp add: fp-def fm-def)

ultimately have AE x in M . abs(real-cond-exp M F f x) ≤ nn-cond-exp M F

THEORY “Conditional-Expectation” 528

(λx. fp x + fm x) x
by auto

then show ?thesis using eq by simp
qed

The next lemma shows that the conditional expectation is an F -measurable
function whose average against an F -measurable function f coincides with
the average of the original function against f . It is obtained as a consequence
of the same property for the positive conditional expectation, taking the
difference of the positive and the negative part. The proof is given first
assuming f ≥ 0 for simplicity, and then extended to the general case in
the subsequent lemma. The idea of the proof is essentially trivial, but the
implementation is slightly tedious as one should check all the integrability
properties of the different parts, and go back and forth between positive
integral and signed integrals, and between real-valued functions and ennreal-
valued functions.
Once this lemma is available, we will use it to characterize the conditional
expectation, and never come back to the original technical definition, as we
did in the case of the nonnegative conditional expectation.
lemma real-cond-exp-intg-fpos:

assumes integrable M (λx. f x ∗ g x) and f-pos[simp]:
∧

x. f x ≥ 0 and
[measurable]: f ∈ borel-measurable F g ∈ borel-measurable M

shows integrable M (λx. f x ∗ real-cond-exp M F g x)
(
∫

x. f x ∗ real-cond-exp M F g x ∂M) = (
∫

x. f x ∗ g x ∂M)
proof −

have [measurable]: f ∈ borel-measurable M by (rule measurable-from-subalg[OF
subalg assms(3)])

define gp where gp = (λx. ennreal (g x))
define gm where gm = (λx. ennreal (− g x))
have [measurable]: gp ∈ borel-measurable M gm ∈ borel-measurable M unfolding

gp-def gm-def by auto
define h where h = (λx. ennreal(abs(g x)))
have hgpgm:

∧
x. h x = gp x + gm x unfolding gp-def gm-def h-def by (simp

add: abs-real-def ennreal-neg)
have [measurable]: h ∈ borel-measurable M unfolding h-def by simp
have pos[simp]:

∧
x. h x ≥ 0

∧
x. gp x ≥ 0

∧
x. gm x ≥ 0 unfolding h-def gp-def

gm-def by simp-all
have gp-real:

∧
x. enn2real(gp x) = max (g x) 0

unfolding gp-def by (simp add: max-def ennreal-neg)
have gm-real:

∧
x. enn2real(gm x) = max (−g x) 0

unfolding gm-def by (simp add: max-def ennreal-neg)

have (
∫

+ x. norm(f x ∗ max (g x) 0) ∂M) ≤ (
∫

+ x. norm(f x ∗ g x) ∂M)
by (simp add: nn-integral-mono)

also have ... < ∞ using assms(1) by (simp add: integrable-iff-bounded)
finally have (

∫
+ x. norm(f x ∗ max (g x) 0) ∂M) < ∞ by simp

then have int1 : integrable M (λx. f x ∗ max (g x) 0) by (simp add: inte-

THEORY “Conditional-Expectation” 529

grableI-bounded)

have (
∫

+ x. norm(f x ∗ max (−g x) 0) ∂M) ≤ (
∫

+ x. norm(f x ∗ g x) ∂M)
by (simp add: nn-integral-mono)

also have ... < ∞ using assms(1) by (simp add: integrable-iff-bounded)
finally have (

∫
+ x. norm(f x ∗ max (−g x) 0) ∂M) < ∞ by simp

then have int2 : integrable M (λx. f x ∗ max (−g x) 0) by (simp add: inte-
grableI-bounded)

have (
∫

+x. f x ∗ nn-cond-exp M F h x ∂M) = (
∫

+x. f x ∗ h x ∂M)
by (rule nn-cond-exp-intg) auto

also have . . . =
∫

+ x. ennreal (f x ∗ max (g x) 0 + f x ∗ max (− g x) 0) ∂M
unfolding h-def
by (intro nn-integral-cong)(auto simp: ennreal-mult[symmetric] abs-mult split:

split-max)
also have ... < ∞

using Bochner-Integration.integrable-add[OF int1 int2 , THEN integrableD(2)]
by (auto simp add: less-top)

finally have ∗: (
∫

+x. f x ∗ nn-cond-exp M F h x ∂M) < ∞ by simp

have (
∫

+x. norm(f x ∗ real-cond-exp M F g x) ∂M) = (
∫

+x. f x ∗ abs(real-cond-exp
M F g x) ∂M)

by (simp add: abs-mult)
also have ... ≤ (

∫
+x. f x ∗ nn-cond-exp M F h x ∂M)

proof (rule nn-integral-mono-AE)
{

fix x assume ∗: abs(real-cond-exp M F g x) ≤ nn-cond-exp M F h x
have ennreal (f x ∗ |real-cond-exp M F g x|) = f x ∗ ennreal(|real-cond-exp M

F g x|)
by (simp add: ennreal-mult)

also have ... ≤ f x ∗ nn-cond-exp M F h x
using ∗ by (auto intro!: mult-left-mono)

finally have ennreal (f x ∗ |real-cond-exp M F g x|) ≤ f x ∗ nn-cond-exp M
F h x

by simp
}
then show AE x in M . ennreal (f x ∗ |real-cond-exp M F g x|) ≤ f x ∗

nn-cond-exp M F h x
using real-cond-exp-abs[OF assms(4)] h-def by auto

qed
finally have ∗∗: (

∫
+x. norm(f x ∗ real-cond-exp M F g x) ∂M) < ∞ using ∗

by auto
show integrable M (λx. f x ∗ real-cond-exp M F g x)

using ∗∗ by (intro integrableI-bounded) auto

have (
∫

+x. f x ∗ nn-cond-exp M F gp x ∂M) ≤ (
∫

+x. f x ∗ nn-cond-exp M F h
x ∂M)

proof (rule nn-integral-mono-AE)

THEORY “Conditional-Expectation” 530

have AE x in M . nn-cond-exp M F gp x ≤ nn-cond-exp M F h x
by (rule nn-cond-exp-mono) (auto simp add: hgpgm)

then show AE x in M . f x ∗ nn-cond-exp M F gp x ≤ f x ∗ nn-cond-exp M F
h x

by (auto simp: mult-left-mono)
qed
then have a: (

∫
+x. f x ∗ nn-cond-exp M F gp x ∂M) < ∞

using ∗ by auto
have ennreal(norm(f x ∗ enn2real(nn-cond-exp M F gp x))) ≤ f x ∗ nn-cond-exp

M F gp x for x
by (auto simp add: ennreal-mult intro!: mult-left-mono)

(metis enn2real-ennreal enn2real-nonneg le-cases le-ennreal-iff)
then have (

∫
+x. norm(f x ∗ enn2real(nn-cond-exp M F gp x)) ∂M) ≤ (

∫
+x. f

x ∗ nn-cond-exp M F gp x ∂M)
by (simp add: nn-integral-mono)

then have (
∫

+x. norm(f x ∗ enn2real(nn-cond-exp M F gp x)) ∂M) < ∞ using
a by auto

then have gp-int: integrable M (λx. f x ∗ enn2real(nn-cond-exp M F gp x)) by
(simp add: integrableI-bounded)

have gp-fin: AE x in M . f x ∗ nn-cond-exp M F gp x 6= ∞
apply (rule nn-integral-PInf-AE) using a by auto

have (
∫

x. f x ∗ enn2real(nn-cond-exp M F gp x) ∂M) = enn2real (
∫

+ x. f x ∗
enn2real(nn-cond-exp M F gp x) ∂M)

by (rule integral-eq-nn-integral) auto
also have ... = enn2real(

∫
+ x. ennreal(f x ∗ enn2real(gp x)) ∂M)

proof −
{

fix x assume f x ∗ nn-cond-exp M F gp x 6= ∞
then have ennreal (f x ∗ enn2real (nn-cond-exp M F gp x)) = ennreal (f x)

∗ nn-cond-exp M F gp x
by (auto simp add: ennreal-mult ennreal-mult-eq-top-iff less-top intro!:

ennreal-mult-left-cong)
}
then have AE x in M . ennreal (f x ∗ enn2real (nn-cond-exp M F gp x)) =

ennreal (f x) ∗ nn-cond-exp M F gp x
using gp-fin by auto

then have (
∫

+ x. f x ∗ enn2real(nn-cond-exp M F gp x) ∂M) = (
∫

+ x. f x ∗
nn-cond-exp M F gp x ∂M)

by (rule nn-integral-cong-AE)
also have ... = (

∫
+ x. f x ∗ gp x ∂M)

by (rule nn-cond-exp-intg) (auto simp add: gp-def)
also have ... = (

∫
+ x. ennreal(f x ∗ enn2real(gp x)) ∂M)

by (rule nn-integral-cong-AE) (auto simp: ennreal-mult gp-def)
finally have (

∫
+ x. f x ∗ enn2real(nn-cond-exp M F gp x) ∂M) = (

∫
+ x.

ennreal(f x ∗ enn2real(gp x)) ∂M) by simp
then show ?thesis by simp

qed
also have ... = (

∫
x. f x ∗ enn2real(gp x) ∂M)

THEORY “Conditional-Expectation” 531

by (rule integral-eq-nn-integral[symmetric]) (auto simp add: gp-def)
finally have gp-expr : (

∫
x. f x ∗ enn2real(nn-cond-exp M F gp x) ∂M) = (

∫
x.

f x ∗ enn2real(gp x) ∂M) by simp

have (
∫

+x. f x ∗ nn-cond-exp M F gm x ∂M) ≤ (
∫

+x. f x ∗ nn-cond-exp M F
h x ∂M)

proof (rule nn-integral-mono-AE)
have AE x in M . nn-cond-exp M F gm x ≤ nn-cond-exp M F h x

by (rule nn-cond-exp-mono) (auto simp add: hgpgm)
then show AE x in M . f x ∗ nn-cond-exp M F gm x ≤ f x ∗ nn-cond-exp M F

h x
by (auto simp: mult-left-mono)

qed
then have a: (

∫
+x. f x ∗ nn-cond-exp M F gm x ∂M) < ∞

using ∗ by auto
have

∧
x. ennreal(norm(f x ∗ enn2real(nn-cond-exp M F gm x))) ≤ f x ∗ nn-cond-exp

M F gm x
by (auto simp add: ennreal-mult intro!: mult-left-mono)

(metis enn2real-ennreal enn2real-nonneg le-cases le-ennreal-iff)
then have (

∫
+x. norm(f x ∗ enn2real(nn-cond-exp M F gm x)) ∂M) ≤ (

∫
+x.

f x ∗ nn-cond-exp M F gm x ∂M)
by (simp add: nn-integral-mono)

then have (
∫

+x. norm(f x ∗ enn2real(nn-cond-exp M F gm x)) ∂M) <∞ using
a by auto

then have gm-int: integrable M (λx. f x ∗ enn2real(nn-cond-exp M F gm x)) by
(simp add: integrableI-bounded)

have gm-fin: AE x in M . f x ∗ nn-cond-exp M F gm x 6= ∞
apply (rule nn-integral-PInf-AE) using a by auto

have (
∫

x. f x ∗ enn2real(nn-cond-exp M F gm x) ∂M) = enn2real (
∫

+ x. f x
∗ enn2real(nn-cond-exp M F gm x) ∂M)

by (rule integral-eq-nn-integral) auto
also have ... = enn2real(

∫
+ x. ennreal(f x ∗ enn2real(gm x)) ∂M)

proof −
{

fix x assume f x ∗ nn-cond-exp M F gm x 6= ∞
then have ennreal (f x ∗ enn2real (nn-cond-exp M F gm x)) = ennreal (f x)

∗ nn-cond-exp M F gm x
by (auto simp add: ennreal-mult ennreal-mult-eq-top-iff less-top intro!:

ennreal-mult-left-cong)
}
then have AE x in M . ennreal (f x ∗ enn2real (nn-cond-exp M F gm x)) =

ennreal (f x) ∗ nn-cond-exp M F gm x
using gm-fin by auto

then have (
∫

+ x. f x ∗ enn2real(nn-cond-exp M F gm x) ∂M) = (
∫

+ x. f x
∗ nn-cond-exp M F gm x ∂M)

by (rule nn-integral-cong-AE)
also have ... = (

∫
+ x. f x ∗ gm x ∂M)

THEORY “Conditional-Expectation” 532

by (rule nn-cond-exp-intg) (auto simp add: gm-def)
also have ... = (

∫
+ x. ennreal(f x ∗ enn2real(gm x)) ∂M)

by (rule nn-integral-cong-AE) (auto simp: ennreal-mult gm-def)
finally have (

∫
+ x. f x ∗ enn2real(nn-cond-exp M F gm x) ∂M) = (

∫
+ x.

ennreal(f x ∗ enn2real(gm x)) ∂M) by simp
then show ?thesis by simp

qed
also have ... = (

∫
x. f x ∗ enn2real(gm x) ∂M)

by (rule integral-eq-nn-integral[symmetric]) (auto simp add: gm-def)
finally have gm-expr : (

∫
x. f x ∗ enn2real(nn-cond-exp M F gm x) ∂M) = (

∫
x. f x ∗ enn2real(gm x) ∂M) by simp

have (
∫

x. f x ∗ real-cond-exp M F g x ∂M) = (
∫

x. f x ∗ enn2real(nn-cond-exp
M F gp x) − f x ∗ enn2real(nn-cond-exp M F gm x) ∂M)

unfolding real-cond-exp-def gp-def gm-def by (simp add: right-diff-distrib)
also have ... = (

∫
x. f x ∗ enn2real(nn-cond-exp M F gp x) ∂M) − (

∫
x. f x ∗

enn2real(nn-cond-exp M F gm x) ∂M)
by (rule Bochner-Integration.integral-diff) (simp-all add: gp-int gm-int)

also have ... = (
∫

x. f x ∗ enn2real(gp x) ∂M) − (
∫

x. f x ∗ enn2real(gm x)
∂M)

using gp-expr gm-expr by simp
also have ... = (

∫
x. f x ∗ max (g x) 0 ∂M) − (

∫
x. f x ∗ max (−g x) 0 ∂M)

using gp-real gm-real by simp
also have ... = (

∫
x. f x ∗ max (g x) 0 − f x ∗ max (−g x) 0 ∂M)

by (rule Bochner-Integration.integral-diff [symmetric]) (simp-all add: int1 int2)
also have ... = (

∫
x. f x ∗ g x ∂M)

by (metis (mono-tags, opaque-lifting) diff-0 diff-zero eq-iff max.cobounded2
max-def minus-minus neg-le-0-iff-le right-diff-distrib)

finally show (
∫

x. f x ∗ real-cond-exp M F g x ∂M) = (
∫

x. f x ∗ g x ∂M)
by simp

qed

lemma real-cond-exp-intg:
assumes integrable M (λx. f x ∗ g x) and

[measurable]: f ∈ borel-measurable F g ∈ borel-measurable M
shows integrable M (λx. f x ∗ real-cond-exp M F g x)

(
∫

x. f x ∗ real-cond-exp M F g x ∂M) = (
∫

x. f x ∗ g x ∂M)
proof −

have [measurable]: f ∈ borel-measurable M by (rule measurable-from-subalg[OF
subalg assms(2)])

define fp where fp = (λx. max (f x) 0)
define fm where fm = (λx. max (−f x) 0)
have [measurable]: fp ∈ borel-measurable M fm ∈ borel-measurable M

unfolding fp-def fm-def by simp-all
have [measurable]: fp ∈ borel-measurable F fm ∈ borel-measurable F

unfolding fp-def fm-def by simp-all

have (
∫

+ x. norm(fp x ∗ g x) ∂M) ≤ (
∫

+ x. norm(f x ∗ g x) ∂M)

THEORY “Conditional-Expectation” 533

by (simp add: fp-def nn-integral-mono)
also have ... < ∞ using assms(1) by (simp add: integrable-iff-bounded)
finally have (

∫
+ x. norm(fp x ∗ g x) ∂M) < ∞ by simp

then have intp: integrable M (λx. fp x ∗ g x) by (simp add: integrableI-bounded)
moreover have

∧
x. fp x ≥ 0 unfolding fp-def by simp

ultimately have Rp: integrable M (λx. fp x ∗ real-cond-exp M F g x)
(
∫

x. fp x ∗ real-cond-exp M F g x ∂M) = (
∫

x. fp x ∗ g x ∂M)
using real-cond-exp-intg-fpos by auto

have (
∫

+ x. norm(fm x ∗ g x) ∂M) ≤ (
∫

+ x. norm(f x ∗ g x) ∂M)
by (simp add: fm-def nn-integral-mono)

also have ... < ∞ using assms(1) by (simp add: integrable-iff-bounded)
finally have (

∫
+ x. norm(fm x ∗ g x) ∂M) < ∞ by simp

then have intm: integrable M (λx. fm x ∗ g x) by (simp add: integrableI-bounded)
moreover have

∧
x. fm x ≥ 0 unfolding fm-def by simp

ultimately have Rm: integrable M (λx. fm x ∗ real-cond-exp M F g x)
(
∫

x. fm x ∗ real-cond-exp M F g x ∂M) = (
∫

x. fm x ∗ g x ∂M)
using real-cond-exp-intg-fpos by auto

have integrable M (λx. fp x ∗ real-cond-exp M F g x − fm x ∗ real-cond-exp M
F g x)

using Rp(1) Rm(1) integrable-diff by simp
moreover have ∗:

∧
x. f x ∗ real-cond-exp M F g x = fp x ∗ real-cond-exp M F

g x − fm x ∗ real-cond-exp M F g x
unfolding fp-def fm-def by (simp add: max-def)

ultimately show integrable M (λx. f x ∗ real-cond-exp M F g x)
by simp

have (
∫

x. f x ∗ real-cond-exp M F g x ∂M) = (
∫

x. fp x ∗ real-cond-exp M F
g x − fm x ∗ real-cond-exp M F g x ∂M)

using ∗ by simp
also have ... = (

∫
x. fp x ∗ real-cond-exp M F g x ∂M) − (

∫
x. fm x ∗

real-cond-exp M F g x ∂M)
using Rp(1) Rm(1) by simp

also have ... = (
∫

x. fp x ∗ g x ∂M) − (
∫

x. fm x ∗ g x ∂M)
using Rp(2) Rm(2) by simp

also have ... = (
∫

x. fp x ∗ g x − fm x ∗ g x ∂M)
using intm intp by simp

also have ... = (
∫

x. f x ∗ g x ∂M)
unfolding fp-def fm-def by (metis (no-types, opaque-lifting) diff-0 diff-zero

max.commute
max-def minus-minus mult.commute neg-le-iff-le right-diff-distrib)

finally show (
∫

x. f x ∗ real-cond-exp M F g x ∂M) = (
∫

x. f x ∗ g x ∂M) by
simp
qed

lemma real-cond-exp-intA:
assumes [measurable]: integrable M f A ∈ sets F
shows (

∫
x ∈ A. f x ∂M) = (

∫
x ∈ A. real-cond-exp M F f x ∂M)

THEORY “Conditional-Expectation” 534

proof −
have A ∈ sets M by (meson assms(2) subalg subalgebra-def subsetD)
have integrable M (λx. indicator A x ∗ f x) using integrable-mult-indicator [OF

‹A ∈ sets M › assms(1)] by auto
then show ?thesis using real-cond-exp-intg(2)[where ?f = indicator A and ?g

= f , symmetric]
unfolding set-lebesgue-integral-def by auto

qed

lemma real-cond-exp-int [intro]:
assumes integrable M f
shows integrable M (real-cond-exp M F f) (

∫
x. real-cond-exp M F f x ∂M) =

(
∫

x. f x ∂M)
using real-cond-exp-intg[where ?f = λx. 1 and ?g = f] assms by auto

lemma real-cond-exp-charact:
assumes

∧
A. A ∈ sets F =⇒ (

∫
x ∈ A. f x ∂M) = (

∫
x ∈ A. g x ∂M)

and [measurable]: integrable M f integrable M g
g ∈ borel-measurable F

shows AE x in M . real-cond-exp M F f x = g x
proof −

let ?MF = restr-to-subalg M F
have AE x in ?MF . real-cond-exp M F f x = g x
proof (rule AE-symmetric[OF density-unique-real])

fix A assume A ∈ sets ?MF
then have [measurable]: A ∈ sets F using sets-restr-to-subalg[OF subalg] by

simp
then have a [measurable]: A ∈ sets M by (meson subalg subalgebra-def subsetD)
have (

∫
x ∈ A. g x ∂ ?MF) = (

∫
x ∈ A. g x ∂M)

unfolding set-lebesgue-integral-def by (simp add: integral-subalgebra2 subalg)
also have ... = (

∫
x ∈ A. f x ∂M) using assms(1) by simp

also have ... = (
∫

x. indicator A x ∗ f x ∂M) by (simp add: mult.commute
set-lebesgue-integral-def)

also have ... = (
∫

x. indicator A x ∗ real-cond-exp M F f x ∂M)
apply (rule real-cond-exp-intg(2)[symmetric]) using integrable-mult-indicator [OF

a assms(2)] by (auto simp add: assms)
also have ... = (

∫
x ∈ A. real-cond-exp M F f x ∂M) by (simp add: mult.commute

set-lebesgue-integral-def)
also have ... = (

∫
x ∈ A. real-cond-exp M F f x ∂ ?MF)

by (simp add: integral-subalgebra2 subalg set-lebesgue-integral-def)
finally show (

∫
x ∈ A. g x ∂ ?MF) = (

∫
x ∈ A. real-cond-exp M F f x ∂ ?MF)

by simp
next

have integrable M (real-cond-exp M F f) by (rule real-cond-exp-int(1)[OF
assms(2)])

then show integrable ?MF (real-cond-exp M F f) by (metis borel-measurable-cond-exp
integrable-in-subalg[OF subalg])

show integrable (restr-to-subalg M F) g by (simp add: assms(3) integrable-in-subalg[OF
subalg])

THEORY “Conditional-Expectation” 535

qed
then show ?thesis using AE-restr-to-subalg[OF subalg] by auto

qed

lemma real-cond-exp-F-meas [intro, simp]:
assumes integrable M f

f ∈ borel-measurable F
shows AE x in M . real-cond-exp M F f x = f x

by (rule real-cond-exp-charact, auto simp add: assms measurable-from-subalg[OF
subalg])

lemma real-cond-exp-mult:
assumes [measurable]:f ∈ borel-measurable F g ∈ borel-measurable M integrable

M (λx. f x ∗ g x)
shows AE x in M . real-cond-exp M F (λx. f x ∗ g x) x = f x ∗ real-cond-exp M

F g x
proof (rule real-cond-exp-charact)

fix A assume A ∈ sets F
then have [measurable]: (λx. f x ∗ indicator A x) ∈ borel-measurable F by

measurable
have [measurable]: A ∈ sets M using subalg by (meson ‹A ∈ sets F› subalge-

bra-def subsetD)
have (

∫
x∈A. (f x ∗ g x) ∂M) =

∫
x. (f x ∗ indicator A x) ∗ g x ∂M

by (simp add: mult.commute mult.left-commute set-lebesgue-integral-def)
also have ... =

∫
x. (f x ∗ indicator A x) ∗ real-cond-exp M F g x ∂M

apply (rule real-cond-exp-intg(2)[symmetric], auto simp add: assms)
using integrable-mult-indicator [OF ‹A ∈ sets M › assms(3)] by (simp add:

mult.commute mult.left-commute)
also have ... = (

∫
x∈A. (f x ∗ real-cond-exp M F g x)∂M)

by (simp add: mult.commute mult.left-commute set-lebesgue-integral-def)
finally show (

∫
x∈A. (f x ∗ g x) ∂M) = (

∫
x∈A. (f x ∗ real-cond-exp M F g

x)∂M) by simp
qed (auto simp add: real-cond-exp-intg(1) assms)

lemma real-cond-exp-add [intro]:
assumes [measurable]: integrable M f integrable M g
shows AE x in M . real-cond-exp M F (λx. f x + g x) x = real-cond-exp M F f x

+ real-cond-exp M F g x
proof (rule real-cond-exp-charact)

have integrable M (real-cond-exp M F f) integrable M (real-cond-exp M F g)
using real-cond-exp-int(1) assms by auto

then show integrable M (λx. real-cond-exp M F f x + real-cond-exp M F g x)
by auto

fix A assume [measurable]: A ∈ sets F
then have A ∈ sets M by (meson subalg subalgebra-def subsetD)
have intAf : integrable M (λx. indicator A x ∗ f x)

using integrable-mult-indicator [OF ‹A ∈ sets M › assms(1)] by auto
have intAg: integrable M (λx. indicator A x ∗ g x)

THEORY “Conditional-Expectation” 536

using integrable-mult-indicator [OF ‹A ∈ sets M › assms(2)] by auto

have (
∫

x∈A. (real-cond-exp M F f x + real-cond-exp M F g x)∂M) = (
∫

x∈A.
real-cond-exp M F f x ∂M) + (

∫
x∈A. real-cond-exp M F g x ∂M)

apply (rule set-integral-add, auto simp add: assms set-integrable-def)
using integrable-mult-indicator [OF ‹A ∈ sets M › real-cond-exp-int(1)[OF assms(1)]]

integrable-mult-indicator [OF ‹A ∈ sets M › real-cond-exp-int(1)[OF
assms(2)]] by simp-all

also have ... = (
∫

x. indicator A x ∗ real-cond-exp M F f x ∂M) + (
∫

x. indicator
A x ∗ real-cond-exp M F g x ∂M)

unfolding set-lebesgue-integral-def by auto
also have ... = (

∫
x. indicator A x ∗ f x ∂M) + (

∫
x. indicator A x ∗ g x ∂M)

using real-cond-exp-intg(2) assms ‹A ∈ sets F› intAf intAg by auto
also have ... = (

∫
x∈A. f x ∂M) + (

∫
x∈A. g x ∂M)

unfolding set-lebesgue-integral-def by auto
also have ... = (

∫
x∈A. (f x + g x)∂M)

by (rule set-integral-add(2)[symmetric]) (auto simp add: assms set-integrable-def
‹A ∈ sets M › intAf intAg)

finally show (
∫

x∈A. (f x + g x)∂M) = (
∫

x∈A. (real-cond-exp M F f x +
real-cond-exp M F g x)∂M)

by simp
qed (auto simp add: assms)

lemma real-cond-exp-cong:
assumes ae: AE x in M . f x = g x and [measurable]: f ∈ borel-measurable M g
∈ borel-measurable M

shows AE x in M . real-cond-exp M F f x = real-cond-exp M F g x
proof −

have AE x in M . nn-cond-exp M F (λx. ennreal (f x)) x = nn-cond-exp M F
(λx. ennreal (g x)) x

apply (rule nn-cond-exp-cong) using assms by auto
moreover have AE x in M . nn-cond-exp M F (λx. ennreal (−f x)) x = nn-cond-exp

M F (λx. ennreal(−g x)) x
apply (rule nn-cond-exp-cong) using assms by auto

ultimately show AE x in M . real-cond-exp M F f x = real-cond-exp M F g x
unfolding real-cond-exp-def by auto

qed

lemma real-cond-exp-cmult [intro, simp]:
fixes c::real
assumes integrable M f
shows AE x in M . real-cond-exp M F (λx. c ∗ f x) x = c ∗ real-cond-exp M F f

x
by (rule real-cond-exp-mult[where ?f = λx. c and ?g = f], auto simp add: assms
borel-measurable-integrable)

lemma real-cond-exp-cdiv [intro, simp]:
fixes c::real
assumes integrable M f

THEORY “Conditional-Expectation” 537

shows AE x in M . real-cond-exp M F (λx. f x / c) x = real-cond-exp M F f x /
c
using real-cond-exp-cmult[of - 1/c, OF assms] by (auto simp add: field-split-simps)

lemma real-cond-exp-diff [intro, simp]:
assumes [measurable]: integrable M f integrable M g
shows AE x in M . real-cond-exp M F (λx. f x − g x) x = real-cond-exp M F f x
− real-cond-exp M F g x
proof −

have AE x in M . real-cond-exp M F (λx. f x + (− g x)) x = real-cond-exp M F
f x + real-cond-exp M F (λx. −g x) x

using real-cond-exp-add[where ?f = f and ?g = λx. − g x] assms by auto
moreover have AE x in M . real-cond-exp M F (λx. −g x) x = − real-cond-exp

M F g x
using real-cond-exp-cmult[where ?f = g and ?c = −1] assms(2) by auto

ultimately show ?thesis by auto
qed

lemma real-cond-exp-pos [intro]:
assumes AE x in M . f x ≥ 0 and [measurable]: f ∈ borel-measurable M
shows AE x in M . real-cond-exp M F f x ≥ 0

proof −
define g where g = (λx. max (f x) 0)
have AE x in M . f x = g x using assms g-def by auto
then have ∗: AE x in M . real-cond-exp M F f x = real-cond-exp M F g x using

real-cond-exp-cong g-def by auto

have
∧

x. g x ≥ 0 unfolding g-def by simp
then have (λx. ennreal(−g x)) = (λx. 0)

by (simp add: ennreal-neg)
moreover have AE x in M . 0 = nn-cond-exp M F (λx. 0) x

by (rule nn-cond-exp-F-meas, auto)
ultimately have AE x in M . nn-cond-exp M F (λx. ennreal(−g x)) x = 0

by simp
then have AE x in M . real-cond-exp M F g x = enn2real(nn-cond-exp M F (λx.

ennreal (g x)) x)
unfolding real-cond-exp-def by auto

then have AE x in M . real-cond-exp M F g x ≥ 0 by auto
then show ?thesis using ∗ by auto

qed

lemma real-cond-exp-mono:
assumes AE x in M . f x ≤ g x and [measurable]: integrable M f integrable M g
shows AE x in M . real-cond-exp M F f x ≤ real-cond-exp M F g x

proof −
have AE x in M . real-cond-exp M F g x − real-cond-exp M F f x = real-cond-exp

M F (λx. g x − f x) x
by (rule AE-symmetric[OF real-cond-exp-diff], auto simp add: assms)

moreover have AE x in M . real-cond-exp M F (λx. g x − f x) x ≥ 0

THEORY “Conditional-Expectation” 538

by (rule real-cond-exp-pos, auto simp add: assms(1))
ultimately have AE x in M . real-cond-exp M F g x − real-cond-exp M F f x ≥

0 by auto
then show ?thesis by auto

qed

lemma (in −) measurable-P-restriction [measurable (raw)]:
assumes [measurable]: Measurable.pred M P A ∈ sets M
shows {x ∈ A. P x} ∈ sets M

proof −
have A ⊆ space M using sets.sets-into-space[OF assms(2)].
then have {x ∈ A. P x} = A ∩ {x ∈ space M . P x} by blast
then show ?thesis by auto

qed

lemma real-cond-exp-gr-c:
assumes [measurable]: integrable M f

and AE : AE x in M . f x > c
shows AE x in M . real-cond-exp M F f x > c

proof −
define X where X = {x ∈ space M . real-cond-exp M F f x ≤ c}
have [measurable]: X ∈ sets F

unfolding X-def apply measurable by (metis sets.top subalg subalgebra-def)
then have [measurable]: X ∈ sets M using sets-restr-to-subalg subalg subalge-

bra-def by blast
have emeasure M X = 0
proof (rule ccontr)

assume ¬(emeasure M X) = 0
have emeasure (restr-to-subalg M F) X = emeasure M X

by (simp add: emeasure-restr-to-subalg subalg)
then have emeasure (restr-to-subalg M F) X > 0

using ‹¬(emeasure M X) = 0 › gr-zeroI by auto
then obtain A where A ∈ sets (restr-to-subalg M F) A ⊆ X emeasure

(restr-to-subalg M F) A > 0 emeasure (restr-to-subalg M F) A < ∞
using sigma-fin-subalg by (metis emeasure-notin-sets ennreal-0 infinity-ennreal-def

le-less-linear neq-top-trans
not-gr-zero order-refl sigma-finite-measure.approx-PInf-emeasure-with-finite)

then have [measurable]: A ∈ sets F using subalg sets-restr-to-subalg by blast
then have [measurable]: A ∈ sets M using sets-restr-to-subalg subalg subalge-

bra-def by blast
have Ic: set-integrable M A (λx. c)

unfolding set-integrable-def
using ‹emeasure (restr-to-subalg M F) A <∞› emeasure-restr-to-subalg subalg

by fastforce
have If : set-integrable M A f

unfolding set-integrable-def
by (rule integrable-mult-indicator , auto simp add: ‹integrable M f ›)

have AE x in M . indicator A x ∗ c = indicator A x ∗ f x
proof (rule integral-ineq-eq-0-then-AE)

THEORY “Conditional-Expectation” 539

have (
∫

x∈A. c ∂M) = (
∫

x∈A. f x ∂M)
proof (rule antisym)

show (
∫

x∈A. c ∂M) ≤ (
∫

x∈A. f x ∂M)
apply (rule set-integral-mono-AE) using Ic If assms(2) by auto

have (
∫

x∈A. f x ∂M) = (
∫

x∈A. real-cond-exp M F f x ∂M)
by (rule real-cond-exp-intA, auto simp add: ‹integrable M f ›)

also have ... ≤ (
∫

x∈A. c ∂M)
apply (rule set-integral-mono)
unfolding set-integrable-def

apply (rule integrable-mult-indicator , simp, simp add: real-cond-exp-int(1)[OF
‹integrable M f ›])

using Ic X-def ‹A ⊆ X› by (auto simp: set-integrable-def)
finally show (

∫
x∈A. f x ∂M) ≤ (

∫
x∈A. c ∂M) by simp

qed
then have measure M A ∗ c = LINT x |M . indicat-real A x ∗ f x

by (auto simp: set-lebesgue-integral-def)
then show LINT x|M . indicat-real A x ∗ c = LINT x|M . indicat-real A x ∗

f x
by auto

show AE x in M . indicat-real A x ∗ c ≤ indicat-real A x ∗ f x
using AE unfolding indicator-def by auto

qed (use Ic If in ‹auto simp: set-integrable-def ›)
then have AE x∈A in M . c = f x by auto
then have AE x∈A in M . False using assms(2) by auto
have A ∈ null-sets M unfolding ae-filter-def by (meson AE-iff-null-sets ‹A

∈ sets M › ‹AE x∈A in M . False›)
then show False using ‹emeasure (restr-to-subalg M F) A > 0 ›

by (simp add: emeasure-restr-to-subalg null-setsD1 subalg)
qed
then show ?thesis using AE-iff-null-sets[OF ‹X ∈ sets M ›] unfolding X-def

by auto
qed

lemma real-cond-exp-less-c:
assumes [measurable]: integrable M f

and AE x in M . f x < c
shows AE x in M . real-cond-exp M F f x < c

proof −
have AE x in M . real-cond-exp M F f x = −real-cond-exp M F (λx. −f x) x

using real-cond-exp-cmult[OF ‹integrable M f ›, of −1] by auto
moreover have AE x in M . real-cond-exp M F (λx. −f x) x > −c

apply (rule real-cond-exp-gr-c) using assms by auto
ultimately show ?thesis by auto

qed

lemma real-cond-exp-ge-c:
assumes [measurable]: integrable M f

and AE x in M . f x ≥ c
shows AE x in M . real-cond-exp M F f x ≥ c

THEORY “Conditional-Expectation” 540

proof −
obtain u::nat ⇒ real where u:

∧
n. u n < c u −−−−→ c

using approx-from-below-dense-linorder [of c−1 c] by auto
have ∗: AE x in M . real-cond-exp M F f x > u n for n::nat

apply (rule real-cond-exp-gr-c) using assms ‹u n < c› by auto
have AE x in M . ∀n. real-cond-exp M F f x > u n

by (subst AE-all-countable, auto simp add: ∗)
moreover have real-cond-exp M F f x ≥ c if ∀n. real-cond-exp M F f x > u n

for x
proof −

have real-cond-exp M F f x ≥ u n for n using that less-imp-le by auto
then show ?thesis using u(2) LIMSEQ-le-const2 by metis

qed
ultimately show ?thesis by auto

qed

lemma real-cond-exp-le-c:
assumes [measurable]: integrable M f

and AE x in M . f x ≤ c
shows AE x in M . real-cond-exp M F f x ≤ c

proof −
have AE x in M . real-cond-exp M F f x = −real-cond-exp M F (λx. −f x) x

using real-cond-exp-cmult[OF ‹integrable M f ›, of −1] by auto
moreover have AE x in M . real-cond-exp M F (λx. −f x) x ≥ −c

apply (rule real-cond-exp-ge-c) using assms by auto
ultimately show ?thesis by auto

qed

lemma real-cond-exp-mono-strict:
assumes AE x in M . f x < g x and [measurable]: integrable M f integrable M g
shows AE x in M . real-cond-exp M F f x < real-cond-exp M F g x

proof −
have AE x in M . real-cond-exp M F g x − real-cond-exp M F f x = real-cond-exp

M F (λx. g x − f x) x
by (rule AE-symmetric[OF real-cond-exp-diff], auto simp add: assms)

moreover have AE x in M . real-cond-exp M F (λx. g x − f x) x > 0
by (rule real-cond-exp-gr-c, auto simp add: assms)

ultimately have AE x in M . real-cond-exp M F g x − real-cond-exp M F f x >
0 by auto

then show ?thesis by auto
qed

lemma real-cond-exp-nested-subalg [intro, simp]:
assumes subalgebra M G subalgebra G F

and [measurable]: integrable M f
shows AE x in M . real-cond-exp M F (real-cond-exp M G f) x = real-cond-exp

M F f x
proof (rule real-cond-exp-charact)
interpret G: sigma-finite-subalgebra M G by (rule nested-subalg-is-sigma-finite[OF

THEORY “Conditional-Expectation” 541

assms(1) assms(2)])
show integrable M (real-cond-exp M G f) by (auto simp add: assms G.real-cond-exp-int(1))

fix A assume [measurable]: A ∈ sets F
then have [measurable]: A ∈ sets G using assms(2) by (meson subsetD subal-

gebra-def)
have set-lebesgue-integral M A (real-cond-exp M G f) = set-lebesgue-integral M

A f
by (rule G.real-cond-exp-intA[symmetric], auto simp add: assms(3))

also have ... = set-lebesgue-integral M A (real-cond-exp M F f)
by (rule real-cond-exp-intA, auto simp add: assms(3))

finally show set-lebesgue-integral M A (real-cond-exp M G f) = set-lebesgue-integral
M A (real-cond-exp M F f) by auto
qed (auto simp add: assms real-cond-exp-int(1))

lemma real-cond-exp-sum [intro, simp]:
fixes f :: ′b ⇒ ′a ⇒ real
assumes [measurable]:

∧
i. integrable M (f i)

shows AE x in M . real-cond-exp M F (λx.
∑

i∈I . f i x) x = (
∑

i∈I . real-cond-exp
M F (f i) x)
proof (rule real-cond-exp-charact)

fix A assume [measurable]: A ∈ sets F
then have A-meas [measurable]: A ∈ sets M by (meson subsetD subalg subalge-

bra-def)
have ∗: integrable M (λx. indicator A x ∗ f i x) for i

using integrable-mult-indicator [OF ‹A ∈ sets M › assms(1)] by auto
have ∗∗: integrable M (λx. indicator A x ∗ real-cond-exp M F (f i) x) for i
using integrable-mult-indicator [OF ‹A ∈ sets M › real-cond-exp-int(1)[OF assms(1)]]

by auto
have inti: (

∫
x. indicator A x ∗ f i x ∂M) = (

∫
x. indicator A x ∗ real-cond-exp

M F (f i) x ∂M) for i
by (rule real-cond-exp-intg(2)[symmetric], auto simp add: ∗)

have (
∫

x∈A. (
∑

i∈I . f i x)∂M) = (
∫

x. (
∑

i∈I . indicator A x ∗ f i x)∂M)
by (simp add: sum-distrib-left set-lebesgue-integral-def)

also have ... = (
∑

i∈I . (
∫

x. indicator A x ∗ f i x ∂M))
by (rule Bochner-Integration.integral-sum, simp add: ∗)

also have ... = (
∑

i∈I . (
∫

x. indicator A x ∗ real-cond-exp M F (f i) x ∂M))
using inti by auto

also have ... = (
∫

x. (
∑

i∈I . indicator A x ∗ real-cond-exp M F (f i) x)∂M)
by (rule Bochner-Integration.integral-sum[symmetric], simp add: ∗∗)

also have ... = (
∫

x∈A. (
∑

i∈I . real-cond-exp M F (f i) x)∂M)
by (simp add: sum-distrib-left set-lebesgue-integral-def)

finally show (
∫

x∈A. (
∑

i∈I . f i x)∂M) = (
∫

x∈A. (
∑

i∈I . real-cond-exp M F
(f i) x)∂M) by auto
qed (auto simp add: assms real-cond-exp-int(1)[OF assms(1)])

Jensen’s inequality, describing the behavior of the integral under a convex
function, admits a version for the conditional expectation, as follows.

THEORY “Conditional-Expectation” 542

theorem real-cond-exp-jensens-inequality:
fixes q :: real ⇒ real
assumes X : integrable M X AE x in M . X x ∈ I
assumes I : I = {a <..< b} ∨ I = {a <..} ∨ I = {..< b} ∨ I = UNIV
assumes q: integrable M (λx. q (X x)) convex-on I q q ∈ borel-measurable borel
shows AE x in M . real-cond-exp M F X x ∈ I

AE x in M . q (real-cond-exp M F X x) ≤ real-cond-exp M F (λx. q (X x)) x
proof −

have open I using I by auto
then have interior I = I by (simp add: interior-eq)
have [measurable]: I ∈ sets borel using I by auto
define phi where phi = (λx. Inf ((λt. (q x − q t) / (x − t)) ‘ ({x<..} ∩ I)))
have ∗∗: q (X x) ≥ q (real-cond-exp M F X x) + phi (real-cond-exp M F X x) ∗

(X x − real-cond-exp M F X x)
if X x ∈ I real-cond-exp M F X x ∈ I for x

unfolding phi-def apply (rule convex-le-Inf-differential)
using ‹convex-on I q› that ‹interior I = I › by auto

It is not clear that the function φ is measurable. We replace it by a version
which is better behaved.

define psi where psi = (λx. phi x ∗ indicator I x)
have A: psi y = phi y if y ∈ I for y unfolding psi-def indicator-def using that

by auto
have ∗: q (X x) ≥ q (real-cond-exp M F X x) + psi (real-cond-exp M F X x) ∗

(X x − real-cond-exp M F X x)
if X x ∈ I real-cond-exp M F X x ∈ I for x

unfolding A[OF ‹real-cond-exp M F X x ∈ I ›] using ∗∗ that by auto

note I
moreover have AE x in M . real-cond-exp M F X x > a if I ⊆ {a <..} for a

apply (rule real-cond-exp-gr-c) using X that by auto
moreover have AE x in M . real-cond-exp M F X x < b if I ⊆ {..<b} for b

apply (rule real-cond-exp-less-c) using X that by auto
ultimately show AE x in M . real-cond-exp M F X x ∈ I

by (elim disjE) (auto simp: subset-eq)
then have main-ineq: AE x in M . q (X x) ≥ q (real-cond-exp M F X x) + psi

(real-cond-exp M F X x) ∗ (X x − real-cond-exp M F X x)
using ∗ X(2) by auto

Then, one wants to take the conditional expectation of this inequality. On
the left, one gets the conditional expectation of q ◦ X. On the right, the
last term vanishes, and one is left with q of the conditional expectation, as
desired. Unfortunately, this argument only works if ψ · X and q(E(X|F))
are integrable, and there is no reason why this should be true. The trick
is to multiply by a F -measurable function which is small enough to make
everything integrable.

obtain f :: ′a ⇒ real where [measurable]: f ∈ borel-measurable (restr-to-subalg M
F)

THEORY “Conditional-Expectation” 543

integrable (restr-to-subalg M F) f
and f :

∧
x. f x > 0

∧
x. f x ≤ 1

using sigma-finite-measure.obtain-positive-integrable-function[OF sigma-fin-subalg]
by metis

then have [measurable]: f ∈ borel-measurable F by (simp add: subalg)
then have [measurable]: f ∈ borel-measurable M using measurable-from-subalg[OF

subalg] by blast
define g where g = (λx. f x/(1+ |psi (real-cond-exp M F X x)| + |q (real-cond-exp

M F X x)|))
define G where G = (λx. g x ∗ psi (real-cond-exp M F X x))
have g: g x > 0 g x ≤ 1 for x unfolding G-def g-def using f [of x] by (auto

simp add: abs-mult)
have G: |G x| ≤ 1 for x unfolding G-def g-def using f [of x]
proof (auto simp add: abs-mult)

have f x ∗ |psi (real-cond-exp M F X x)| ≤ 1 ∗ |psi (real-cond-exp M F X x)|
apply (rule mult-mono) using f [of x] by auto

also have ... ≤ 1 + |psi (real-cond-exp M F X x)| + |q (real-cond-exp M F X
x)| by auto

finally show f x ∗ |psi (real-cond-exp M F X x)| ≤ 1 + |psi (real-cond-exp M
F X x)| + |q (real-cond-exp M F X x)|

by simp
qed
have AE x in M . g x ∗ q (X x) ≥ g x ∗ (q (real-cond-exp M F X x) + psi

(real-cond-exp M F X x) ∗ (X x − real-cond-exp M F X x))
using main-ineq g by (auto simp add: divide-simps)

then have main-G: AE x in M . g x ∗ q (X x) ≥ g x ∗ q (real-cond-exp M F X
x) + G x ∗ (X x − real-cond-exp M F X x)

unfolding G-def by (auto simp add: algebra-simps)

To proceed, we need to know that ψ is measurable.
have phi-mono: phi x ≤ phi y if x ≤ y x ∈ I y ∈ I for x y
proof (cases x < y)

case True
have q x + phi x ∗ (y−x) ≤ q y

unfolding phi-def apply (rule convex-le-Inf-differential) using ‹convex-on I
q› that ‹interior I = I › by auto

then have phi x ≤ (q x − q y) / (x − y)
using that ‹x < y› by (auto simp add: field-split-simps algebra-simps)

moreover have (q x − q y)/(x − y) ≤ phi y
unfolding phi-def proof (rule cInf-greatest, auto)

fix t assume t ∈ I y < t
have (q x − q y) / (x − y) ≤ (q x − q t) / (x − t)

apply (rule convex-on-slope-le[OF q(2)]) using ‹y < t› ‹x < y› ‹t ∈ I › ‹x
∈ I › by auto

also have ... ≤ (q y − q t) / (y − t)
apply (rule convex-on-slope-le[OF q(2)]) using ‹y < t› ‹x < y› ‹t ∈ I › ‹x

∈ I › by auto
finally show (q x − q y) / (x − y) ≤ (q y − q t) / (y − t) by simp

next

THEORY “Conditional-Expectation” 544

obtain e where 0 < e ball y e ⊆ I using ‹open I › ‹y ∈ I › openE by blast
then have y + e/2 ∈ {y<..} ∩ I by (auto simp: dist-real-def)
then show {y<..} ∩ I = {} =⇒ False by auto

qed
ultimately show phi x ≤ phi y by auto

next
case False
then have x = y using ‹x ≤ y› by auto
then show ?thesis by auto

qed
have [measurable]: psi ∈ borel-measurable borel

by (rule borel-measurable-piecewise-mono[of {I , −I}])
(auto simp add: psi-def indicator-def phi-mono intro: mono-onI)

have [measurable]: q ∈ borel-measurable borel using q by simp

have [measurable]: X ∈ borel-measurable M
real-cond-exp M F X ∈ borel-measurable F
g ∈ borel-measurable F g ∈ borel-measurable M
G ∈ borel-measurable F G ∈ borel-measurable M

using X measurable-from-subalg[OF subalg] unfolding G-def g-def by auto
have int1 : integrable (restr-to-subalg M F) (λx. g x ∗ q (real-cond-exp M F X x))

apply (rule Bochner-Integration.integrable-bound[of - f], auto simp add: subalg
‹integrable (restr-to-subalg M F) f ›)

unfolding g-def by (auto simp add: field-split-simps abs-mult algebra-simps)
have int2 : integrable M (λx. G x ∗ (X x − real-cond-exp M F X x))
apply (rule Bochner-Integration.integrable-bound[of - λx. |X x| + |real-cond-exp

M F X x|])
apply (auto intro!: Bochner-Integration.integrable-add integrable-abs real-cond-exp-int

‹integrable M X› AE-I2)
using G unfolding abs-mult by (meson abs-ge-zero abs-triangle-ineq4 dual-order .trans

mult-left-le-one-le)
have int3 : integrable M (λx. g x ∗ q (X x))

apply (rule Bochner-Integration.integrable-bound[of - λx. q(X x)], auto simp
add: q(1) abs-mult)

using g by (simp add: less-imp-le mult-left-le-one-le)

Taking the conditional expectation of the main convexity inequality main_G,
we get the following.

have AE x in M . real-cond-exp M F (λx. g x ∗ q (X x)) x ≥ real-cond-exp M F
(λx. g x ∗ q (real-cond-exp M F X x) + G x ∗ (X x − real-cond-exp M F X x)) x

apply (rule real-cond-exp-mono[OF main-G])
apply (rule Bochner-Integration.integrable-add[OF integrable-from-subalg[OF

subalg int1]])
using int2 int3 by auto

This reduces to the desired inequality thanks to the properties of conditional
expectation, i.e., the conditional expectation of an F -measurable function
is this function, and one can multiply an F -measurable function outside
of conditional expectations. Since all these equalities only hold almost ev-

THEORY “Conditional-Expectation” 545

erywhere, we formulate them separately, and then combine all of them to
simplify the above equation, again almost everywhere.

moreover have AE x in M . real-cond-exp M F (λx. g x ∗ q (X x)) x = g x ∗
real-cond-exp M F (λx. q (X x)) x

by (rule real-cond-exp-mult, auto simp add: int3)
moreover have AE x in M . real-cond-exp M F (λx. g x ∗ q (real-cond-exp M F

X x) + G x ∗ (X x − real-cond-exp M F X x)) x
= real-cond-exp M F (λx. g x ∗ q (real-cond-exp M F X x)) x + real-cond-exp

M F (λx. G x ∗ (X x − real-cond-exp M F X x)) x
by (rule real-cond-exp-add, auto simp add: integrable-from-subalg[OF subalg

int1] int2)
moreover have AE x in M . real-cond-exp M F (λx. g x ∗ q (real-cond-exp M F

X x)) x = g x ∗ q (real-cond-exp M F X x)
by (rule real-cond-exp-F-meas, auto simp add: integrable-from-subalg[OF subalg

int1])
moreover have AE x in M . real-cond-exp M F (λx. G x ∗ (X x − real-cond-exp

M F X x)) x = G x ∗ real-cond-exp M F (λx. (X x − real-cond-exp M F X x)) x
by (rule real-cond-exp-mult, auto simp add: int2)

moreover have AE x in M . real-cond-exp M F (λx. (X x − real-cond-exp M F
X x)) x = real-cond-exp M F X x − real-cond-exp M F (λx. real-cond-exp M F X
x) x

by (rule real-cond-exp-diff , auto intro!: real-cond-exp-int ‹integrable M X›)
moreover have AE x in M . real-cond-exp M F (λx. real-cond-exp M F X x) x

= real-cond-exp M F X x
by (rule real-cond-exp-F-meas, auto intro!: real-cond-exp-int ‹integrable M X›)

ultimately have AE x in M . g x ∗ real-cond-exp M F (λx. q (X x)) x ≥ g x ∗
q (real-cond-exp M F X x)

by auto
then show AE x in M . real-cond-exp M F (λx. q (X x)) x ≥ q (real-cond-exp M

F X x)
using g(1) by (auto simp add: field-split-simps)

qed

Jensen’s inequality does not imply that q(E(X|F)) is integrable, as it only
proves an upper bound for it. Indeed, this is not true in general, as the
following counterexample shows:
on [1,∞) with Lebesgue measure, let F be the sigma-algebra generated by
the intervals [n, n + 1) for integer n. Let q(x) = −

√
x for x ≥ 0. Define X

which is equal to 1/n over [n, n + 1/n) and 2−n on [n + 1/n, n + 1). Then
X is integrable as

∑
1/n2 < ∞, and q(X) is integrable as

∑
1/n3/2 < ∞.

On the other hand, E(X|F) is essentially equal to 1/n2 on [n, n + 1) (we
neglect the term 2−n, we only put it there because X should take its values
in I = (0,∞)). Hence, q(E(X|F)) is equal to −1/n on [n, n+1), hence it is
not integrable.
However, this counterexample is essentially the only situation where this
function is not integrable, as shown by the next lemma.
lemma integrable-convex-cond-exp:

THEORY “Conditional-Expectation” 546

fixes q :: real ⇒ real
assumes X : integrable M X AE x in M . X x ∈ I
assumes I : I = {a <..< b} ∨ I = {a <..} ∨ I = {..< b} ∨ I = UNIV
assumes q: integrable M (λx. q (X x)) convex-on I q q ∈ borel-measurable borel
assumes H : emeasure M (space M) = ∞ =⇒ 0 ∈ I
shows integrable M (λx. q (real-cond-exp M F X x))

proof −
have [measurable]: (λx. q (real-cond-exp M F X x)) ∈ borel-measurable M

q ∈ borel-measurable borel
X ∈ borel-measurable M

using X(1) q(3) by auto
have open I using I by auto
then have interior I = I by (simp add: interior-eq)

consider emeasure M (space M) = 0 | emeasure M (space M) > 0 ∧ emeasure
M (space M) < ∞ | emeasure M (space M) = ∞

by (metis infinity-ennreal-def not-gr-zero top.not-eq-extremum)
then show ?thesis
proof (cases)

case 1
show ?thesis by (subst integrable-cong-AE [of - - λx. 0], auto intro: emea-

sure-0-AE [OF 1])
next

case 2
interpret finite-measure M using 2 by (auto intro!: finite-measureI)

have I 6= {}
using ‹AE x in M . X x ∈ I › 2 eventually-mono integral-less-AE-space by

fastforce
then obtain z where z ∈ I by auto

define A where A = Inf ((λt. (q z − q t) / (z − t)) ‘ ({z<..} ∩ I))
have q y ≥ q z + A ∗ (y − z) if y ∈ I for y unfolding A-def apply (rule

convex-le-Inf-differential)
using ‹z ∈ I › ‹y ∈ I › ‹interior I = I › q(2) by auto

then have AE x in M . q (real-cond-exp M F X x) ≥ q z + A ∗ (real-cond-exp
M F X x − z)

using real-cond-exp-jensens-inequality(1)[OF X I q] by auto
moreover have AE x in M . q (real-cond-exp M F X x) ≤ real-cond-exp M F

(λx. q (X x)) x
using real-cond-exp-jensens-inequality(2)[OF X I q] by auto

moreover have |a| ≤ |b| + |c| if b ≤ a ∧ a ≤ c for a b c::real
using that by auto

ultimately have ∗: AE x in M . |q (real-cond-exp M F X x)|
≤ |real-cond-exp M F (λx. q (X x)) x| + |q z + A ∗ (real-cond-exp M F X

x − z)|
by auto

show integrable M (λx. q (real-cond-exp M F X x))

THEORY “Conditional-Expectation” 547

apply (rule Bochner-Integration.integrable-bound[of - λx. |real-cond-exp M F
(λx. q (X x)) x| + |q z + A ∗ (real-cond-exp M F X x − z)|])

apply (auto intro!: Bochner-Integration.integrable-add integrable-abs inte-
grable-mult-right Bochner-Integration.integrable-diff real-cond-exp-int(1))

using X(1) q(1) ∗ by auto
next

case 3
then have 0 ∈ I using H finite-measure.finite-emeasure-space by auto
have q(0) = 0
proof (rule ccontr)

assume ∗: ¬(q(0) = 0)
define e where e = |q(0)| / 2
then have e > 0 using ∗ by auto
have continuous (at 0) q

using q(2) ‹0 ∈ I › ‹open I › ‹interior I = I › continuous-on-interior con-
vex-on-continuous by blast

then obtain d where d: d > 0
∧

y. |y − 0 | < d =⇒ |q y − q 0 | < e using
‹e > 0 ›

by (metis continuous-at-real-range real-norm-def)
then have ∗: |q(y)| > e if |y| < d for y
proof −

have |q 0 | ≤ |q 0 − q y| + |q y| by auto
also have ... < e + |q y| using d(2) that by force
finally have |q y| > |q 0 | − e by auto
then show ?thesis unfolding e-def by simp

qed
have emeasure M {x ∈ space M . |X x| < d} ≤ emeasure M ({x ∈ space M .

1 ≤ ennreal(1/e) ∗ |q(X x)|})
by (rule emeasure-mono, auto simp add: ∗ ‹e>0 › less-imp-le ennreal-mult ′′[symmetric])
also have ... ≤ (1/e) ∗ (

∫
+x. ennreal(|q(X x)|) ∗ indicator (space M) x ∂M)

by (rule nn-integral-Markov-inequality, auto)
also have ... = (1/e) ∗ (

∫
+x. ennreal(|q(X x)|) ∂M) by auto

also have ... = (1/e) ∗ ennreal(
∫

x. |q(X x)| ∂M)
using nn-integral-eq-integral[OF integrable-abs[OF q(1)]] by auto

also have ... < ∞
by (simp add: ennreal-mult-less-top)

finally have A: emeasure M {x ∈ space M . |X x | < d} < ∞ by simp

have {x ∈ space M . |X x| ≥ d} = {x ∈ space M . 1 ≤ ennreal(1/d) ∗ |X x|}
∩ space M

by (auto simp add: ‹d>0 › ennreal-mult ′′[symmetric])
then have emeasure M {x ∈ space M . |X x| ≥ d} = emeasure M ({x ∈ space

M . 1 ≤ ennreal(1/d) ∗ |X x |})
by auto

also have ... ≤ (1/d) ∗ (
∫

+x. ennreal(|X x |) ∗ indicator (space M) x ∂M)
by (rule nn-integral-Markov-inequality, auto)

also have ... = (1/d) ∗ (
∫

+x. ennreal(|X x |) ∂M) by auto
also have ... = (1/d) ∗ ennreal(

∫
x. |X x | ∂M)

using nn-integral-eq-integral[OF integrable-abs[OF X(1)]] by auto

THEORY “Essential-Supremum” 548

also have ... < ∞
by (simp add: ennreal-mult-less-top)

finally have B: emeasure M {x ∈ space M . |X x| ≥ d} < ∞ by simp

have space M = {x ∈ space M . |X x| < d} ∪ {x ∈ space M . |X x| ≥ d} by
auto

then have emeasure M (space M) = emeasure M ({x ∈ space M . |X x| < d}
∪ {x ∈ space M . |X x | ≥ d})

by simp
also have ... ≤ emeasure M {x ∈ space M . |X x| < d} + emeasure M {x ∈

space M . |X x| ≥ d}
by (auto intro!: emeasure-subadditive)

also have ... < ∞ using A B by auto
finally show False using ‹emeasure M (space M) = ∞› by auto

qed

define A where A = Inf ((λt. (q 0 − q t) / (0 − t)) ‘ ({0<..} ∩ I))
have q y ≥ q 0 + A ∗ (y − 0) if y ∈ I for y unfolding A-def apply (rule

convex-le-Inf-differential)
using ‹0 ∈ I › ‹y ∈ I › ‹interior I = I › q(2) by auto

then have q y ≥ A ∗ y if y ∈ I for y using ‹q 0 = 0 › that by auto
then have AE x in M . q (real-cond-exp M F X x) ≥ A ∗ real-cond-exp M F X

x
using real-cond-exp-jensens-inequality(1)[OF X I q] by auto

moreover have AE x in M . q (real-cond-exp M F X x) ≤ real-cond-exp M F
(λx. q (X x)) x

using real-cond-exp-jensens-inequality(2)[OF X I q] by auto
moreover have |a| ≤ |b| + |c| if b ≤ a ∧ a ≤ c for a b c::real

using that by auto
ultimately have ∗: AE x in M . |q (real-cond-exp M F X x)|
≤ |real-cond-exp M F (λx. q (X x)) x| + |A ∗ real-cond-exp M F X x|

by auto

show integrable M (λx. q (real-cond-exp M F X x))
apply (rule Bochner-Integration.integrable-bound[of - λx. |real-cond-exp M F

(λx. q (X x)) x| + |A ∗ real-cond-exp M F X x |])
apply (auto intro!: Bochner-Integration.integrable-add integrable-abs inte-

grable-mult-right Bochner-Integration.integrable-diff real-cond-exp-int(1))
using X(1) q(1) ∗ by auto

qed
qed

end

end

theory Essential-Supremum
imports HOL−Analysis.Analysis

THEORY “Essential-Supremum” 549

begin

lemma ae-filter-eq-bot-iff : ae-filter M = bot ←→ emeasure M (space M) = 0
by (simp add: AE-iff-measurable trivial-limit-def)

29 The essential supremum

In this paragraph, we define the essential supremum and give its basic prop-
erties. The essential supremum of a function is its maximum value if one is
allowed to throw away a set of measure 0. It is convenient to define it to be
infinity for non-measurable functions, as it allows for neater statements in
general. This is a prerequisiste to define the space L∞.
definition esssup:: ′a measure⇒ (′a⇒ ′b::{second-countable-topology, dense-linorder ,
linorder-topology, complete-linorder}) ⇒ ′b

where esssup M f = (if f ∈ borel-measurable M then Limsup (ae-filter M) f else
top)

lemma esssup-non-measurable: f /∈ M →M borel =⇒ esssup M f = top
by (simp add: esssup-def)

lemma esssup-eq-AE :
assumes f : f ∈ M →M borel shows esssup M f = Inf {z. AE x in M . f x ≤ z}
unfolding esssup-def if-P[OF f] Limsup-def

proof (intro antisym INF-greatest Inf-greatest; clarsimp)
fix y assume AE x in M . f x ≤ y
then have (λx. f x ≤ y) ∈ {P. AE x in M . P x}

by simp
then show (INF P∈{P. AE x in M . P x}. SUP x∈Collect P. f x) ≤ y

by (rule INF-lower2) (auto intro: SUP-least)
next

fix P assume P: AE x in M . P x
show Inf {z. AE x in M . f x ≤ z} ≤ (SUP x∈Collect P. f x)
proof (rule Inf-lower ; clarsimp)

show AE x in M . f x ≤ (SUP x∈Collect P. f x)
using P by (auto elim: eventually-mono simp: SUP-upper)

qed
qed

lemma esssup-eq: f ∈ M →M borel =⇒ esssup M f = Inf {z. emeasure M {x ∈
space M . f x > z} = 0}
by (auto simp add: esssup-eq-AE not-less[symmetric] AE-iff-measurable[OF - refl]

intro!: arg-cong[where f=Inf])

lemma esssup-zero-measure:
emeasure M {x ∈ space M . f x > esssup M f } = 0

proof (cases esssup M f = top)
case True
then show ?thesis by auto

THEORY “Essential-Supremum” 550

next
case False
then have f [measurable]: f ∈ M →M borel unfolding esssup-def by meson
have esssup M f < top using False by (auto simp: less-top)
have ∗: {x ∈ space M . f x > z} ∈ null-sets M if z > esssup M f for z
proof −

have ∃w. w < z ∧ emeasure M {x ∈ space M . f x > w} = 0
using ‹z > esssup M f › f by (auto simp: esssup-eq Inf-less-iff)

then obtain w where w < z emeasure M {x ∈ space M . f x > w} = 0 by
auto

then have a: {x ∈ space M . f x > w} ∈ null-sets M by auto
have b: {x ∈ space M . f x > z} ⊆ {x ∈ space M . f x > w} using ‹w < z› by

auto
show ?thesis using null-sets-subset[OF a - b] by simp

qed
obtain u::nat ⇒ ′b where u:

∧
n. u n > esssup M f u −−−−→ esssup M f

using approx-from-above-dense-linorder [OF ‹esssup M f < top›] by auto
have {x ∈ space M . f x > esssup M f } = (

⋃
n. {x ∈ space M . f x > u n})

using u apply auto
apply (metis (mono-tags, lifting) order-tendsto-iff eventually-mono LIMSEQ-unique)
using less-imp-le less-le-trans by blast

also have ... ∈ null-sets M
using ∗[OF u(1)] by auto

finally show ?thesis by auto
qed

lemma esssup-AE : AE x in M . f x ≤ esssup M f
proof (cases f ∈ M →M borel)

case True then show ?thesis
by (intro AE-I [OF - esssup-zero-measure[of - f]]) auto

qed (simp add: esssup-non-measurable)

lemma esssup-pos-measure:
f ∈ borel-measurable M =⇒ z < esssup M f =⇒ emeasure M {x ∈ space M . f x

> z} > 0
using Inf-less-iff mem-Collect-eq not-gr-zero by (force simp: esssup-eq)

lemma esssup-I [intro]: f ∈ borel-measurable M =⇒ AE x in M . f x ≤ c =⇒
esssup M f ≤ c

unfolding esssup-def by (simp add: Limsup-bounded)

lemma esssup-AE-mono: f ∈ borel-measurable M =⇒ AE x in M . f x ≤ g x =⇒
esssup M f ≤ esssup M g

by (auto simp: esssup-def Limsup-mono)

lemma esssup-mono: f ∈ borel-measurable M =⇒ (
∧

x. f x ≤ g x) =⇒ esssup M
f ≤ esssup M g

by (rule esssup-AE-mono) auto

THEORY “Stopping-Time” 551

lemma esssup-AE-cong:
f ∈ borel-measurable M =⇒ g ∈ borel-measurable M =⇒ AE x in M . f x = g x

=⇒ esssup M f = esssup M g
by (auto simp: esssup-def intro!: Limsup-eq)

lemma esssup-const: emeasure M (space M) 6= 0 =⇒ esssup M (λx. c) = c
by (simp add: esssup-def Limsup-const ae-filter-eq-bot-iff)

lemma esssup-cmult: assumes c > (0 ::real) shows esssup M (λx. c ∗ f x::ereal)
= c ∗ esssup M f
proof −

have (λx. ereal c ∗ f x) ∈ M →M borel =⇒ f ∈ M →M borel
proof (subst measurable-cong)

fix ω show f ω = ereal (1/c) ∗ (ereal c ∗ f ω)
using ‹0 < c› by (cases f ω) auto

qed auto
then have (λx. ereal c ∗ f x) ∈ M →M borel ←→ f ∈ M →M borel

by(safe intro!: borel-measurable-ereal-times borel-measurable-const)
with ‹0<c› show ?thesis

by (cases ae-filter M = bot)
(auto simp: esssup-def bot-ereal-def top-ereal-def Limsup-ereal-mult-left)

qed

lemma esssup-add:
esssup M (λx. f x + g x::ereal) ≤ esssup M f + esssup M g

proof (cases f ∈ borel-measurable M ∧ g ∈ borel-measurable M)
case True
then have [measurable]: (λx. f x + g x) ∈ borel-measurable M by auto
have f x + g x ≤ esssup M f + esssup M g if f x ≤ esssup M f g x ≤ esssup M

g for x
using that add-mono by auto

then have AE x in M . f x + g x ≤ esssup M f + esssup M g
using esssup-AE [of f M] esssup-AE [of g M] by auto

then show ?thesis using esssup-I by auto
next

case False
then have esssup M f + esssup M g = ∞ unfolding esssup-def top-ereal-def

by auto
then show ?thesis by auto

qed

lemma esssup-zero-space:
emeasure M (space M) = 0 =⇒ f ∈ borel-measurable M =⇒ esssup M f = (−
∞::ereal)

by (simp add: esssup-def ae-filter-eq-bot-iff [symmetric] bot-ereal-def)

end

THEORY “Stopping-Time” 552

30 Stopping times
theory Stopping-Time

imports HOL−Analysis.Analysis
begin

30.1 Stopping Time

This is also called strong stopping time. Then stopping time is T with
alternative is T x < t measurable.
definition stopping-time :: (′t::linorder ⇒ ′a measure) ⇒ (′a ⇒ ′t) ⇒ bool
where

stopping-time F T = (∀ t. Measurable.pred (F t) (λx. T x ≤ t))

lemma stopping-time-cong: (
∧

t x. x ∈ space (F t) =⇒ T x = S x) =⇒ stop-
ping-time F T = stopping-time F S
unfolding stopping-time-def by (intro arg-cong[where f=All] ext measurable-cong)

simp

lemma stopping-timeD: stopping-time F T =⇒ Measurable.pred (F t) (λx. T x ≤
t)

by (auto simp: stopping-time-def)

lemma stopping-timeD2 : stopping-time F T =⇒ Measurable.pred (F t) (λx. t <
T x)
unfolding not-le[symmetric] by (auto intro: stopping-timeD Measurable.pred-intros-logic)

lemma stopping-timeI [intro?]: (
∧

t. Measurable.pred (F t) (λx. T x ≤ t)) =⇒
stopping-time F T

by (auto simp: stopping-time-def)

lemma measurable-stopping-time:
fixes T :: ′a ⇒ ′t::{linorder-topology, second-countable-topology}
assumes T : stopping-time F T

and M :
∧

t. sets (F t) ⊆ sets M
∧

t. space (F t) = space M
shows T ∈ M →M borel

proof (rule borel-measurableI-le)
show {x ∈ space M . T x ≤ t} ∈ sets M for t

using stopping-timeD[OF T] M by (auto simp: Measurable.pred-def)
qed

lemma stopping-time-const: stopping-time F (λx. c)
by (auto simp: stopping-time-def)

lemma stopping-time-min:
stopping-time F T =⇒ stopping-time F S =⇒ stopping-time F (λx. min (T x)

(S x))
by (auto simp: stopping-time-def min-le-iff-disj intro!: pred-intros-logic)

THEORY “Stopping-Time” 553

lemma stopping-time-max:
stopping-time F T =⇒ stopping-time F S =⇒ stopping-time F (λx. max (T x)

(S x))
by (auto simp: stopping-time-def intro!: pred-intros-logic)

31 Filtration
locale filtration =

fixes Ω :: ′a set and F :: ′t::{linorder-topology, second-countable-topology} ⇒ ′a
measure

assumes space-F :
∧

i. space (F i) = Ω
assumes sets-F-mono:

∧
i j. i ≤ j =⇒ sets (F i) ≤ sets (F j)

begin

31.1 σ-algebra of a Stopping Time
definition pre-sigma :: (′a ⇒ ′t) ⇒ ′a measure
where

pre-sigma T = sigma Ω {A. ∀ t. {ω∈A. T ω ≤ t} ∈ sets (F t)}

lemma space-pre-sigma: space (pre-sigma T) = Ω
unfolding pre-sigma-def using sets.space-closed[of F -]
by (intro space-measure-of) (auto simp: space-F)

lemma measure-pre-sigma[simp]: emeasure (pre-sigma T) = (λ-. 0)
by (simp add: pre-sigma-def emeasure-sigma)

lemma sigma-algebra-pre-sigma:
assumes T : stopping-time F T
shows sigma-algebra Ω {A. ∀ t. {ω∈A. T ω ≤ t} ∈ sets (F t)}
unfolding sigma-algebra-iff2

proof (intro sigma-algebra-iff2 [THEN iffD2] conjI ballI allI impI CollectI)
show {A. ∀ t. {ω ∈ A. T ω ≤ t} ∈ sets (F t)} ⊆ Pow Ω

using sets.space-closed[of F -] by (auto simp: space-F)
next

fix A t assume A ∈ {A. ∀ t. {ω ∈ A. T ω ≤ t} ∈ sets (F t)}
then have {ω ∈ space (F t). T ω ≤ t} − {ω ∈ A. T ω ≤ t} ∈ sets (F t)

using T stopping-timeD[measurable] by auto
also have {ω ∈ space (F t). T ω ≤ t} − {ω ∈ A. T ω ≤ t} = {ω ∈ Ω − A. T

ω ≤ t}
by (auto simp: space-F)

finally show {ω ∈ Ω − A. T ω ≤ t} ∈ sets (F t) .
next

fix AA :: nat ⇒ ′a set and t assume range AA ⊆ {A. ∀ t. {ω ∈ A. T ω ≤ t}
∈ sets (F t)}

then have (
⋃

i. {ω ∈ AA i. T ω ≤ t}) ∈ sets (F t) for t
by auto

also have (
⋃

i. {ω ∈ AA i. T ω ≤ t}) = {ω ∈
⋃
(AA ‘ UNIV). T ω ≤ t}

by auto

THEORY “Stopping-Time” 554

finally show {ω ∈
⋃
(AA ‘ UNIV). T ω ≤ t} ∈ sets (F t) .

qed auto

lemma sets-pre-sigma: stopping-time F T =⇒ sets (pre-sigma T) = {A. ∀ t. {ω∈A.
T ω ≤ t} ∈ sets (F t)}
unfolding pre-sigma-def by (rule sigma-algebra.sets-measure-of-eq[OF sigma-algebra-pre-sigma])

lemma sets-pre-sigmaI : stopping-time F T =⇒ (
∧

t. {ω∈A. T ω ≤ t} ∈ sets (F
t)) =⇒ A ∈ sets (pre-sigma T)

unfolding sets-pre-sigma by auto

lemma pred-pre-sigmaI :
assumes T : stopping-time F T
shows (

∧
t. Measurable.pred (F t) (λω. P ω ∧ T ω ≤ t)) =⇒ Measurable.pred

(pre-sigma T) P
unfolding pred-def space-F space-pre-sigma by (intro sets-pre-sigmaI [OF T])

simp

lemma sets-pre-sigmaD: stopping-time F T =⇒ A ∈ sets (pre-sigma T) =⇒ {ω∈A.
T ω ≤ t} ∈ sets (F t)

unfolding sets-pre-sigma by auto

lemma stopping-time-le-const: stopping-time F T =⇒ s ≤ t =⇒ Measurable.pred
(F t) (λω. T ω ≤ s)
using stopping-timeD[of F T] sets-F-mono[of - t] by (auto simp: pred-def space-F)

lemma measurable-stopping-time-pre-sigma:
assumes T : stopping-time F T shows T ∈ pre-sigma T →M borel

proof (intro borel-measurableI-le sets-pre-sigmaI [OF T])
fix t t ′

have {ω∈space (F (min t ′ t)). T ω ≤ min t ′ t} ∈ sets (F (min t ′ t))
using T unfolding pred-def [symmetric] by (rule stopping-timeD)

also have . . . ⊆ sets (F t)
by (rule sets-F-mono) simp

finally show {ω ∈ {x ∈ space (pre-sigma T). T x ≤ t ′}. T ω ≤ t} ∈ sets (F t)
by (simp add: space-pre-sigma space-F)

qed

lemma mono-pre-sigma:
assumes T : stopping-time F T and S : stopping-time F S

and le:
∧
ω. ω ∈ Ω =⇒ T ω ≤ S ω

shows sets (pre-sigma T) ⊆ sets (pre-sigma S)
unfolding sets-pre-sigma[OF S] sets-pre-sigma[OF T]

proof safe
interpret sigma-algebra Ω {A. ∀ t. {ω∈A. T ω ≤ t} ∈ sets (F t)}

using T by (rule sigma-algebra-pre-sigma)
fix A t assume A: ∀ t. {ω∈A. T ω ≤ t} ∈ sets (F t)
then have A ⊆ Ω

using sets-into-space by auto

THEORY “Stopping-Time” 555

from A have {ω∈A. T ω ≤ t} ∩ {ω∈space (F t). S ω ≤ t} ∈ sets (F t)
using stopping-timeD[OF S] by (auto simp: pred-def)

also have {ω∈A. T ω ≤ t} ∩ {ω∈space (F t). S ω ≤ t} = {ω∈A. S ω ≤ t}
using ‹A ⊆ Ω› sets-into-space[of A] le by (auto simp: space-F intro: order-trans)

finally show {ω∈A. S ω ≤ t} ∈ sets (F t)
by auto

qed

lemma stopping-time-less-const:
assumes T : stopping-time F T shows Measurable.pred (F t) (λω. T ω < t)

proof −
obtain D :: ′t set

where D: countable D
∧

X . open X =⇒ X 6= {} =⇒ ∃ d∈D. d ∈ X
using countable-dense-setE by auto
show ?thesis
proof cases

assume ∗: ∀ t ′<t. ∃ t ′′. t ′ < t ′′ ∧ t ′′ < t
{ fix t ′ assume t ′ < t

with ∗ have {t ′ <..< t} 6= {}
by fastforce

with D(2)[OF - this]
have ∃ d∈D. t ′< d ∧ d < t

by auto }
note ∗∗ = this

show ?thesis
proof (rule measurable-cong[THEN iffD2])

show T ω < t ←→ (∃ r∈{r∈D. r < t}. T ω ≤ r) for ω
by (auto dest: ∗∗ intro: less-imp-le)

show Measurable.pred (F t) (λw. ∃ r∈{r ∈ D. r < t}. T w ≤ r)
by (intro measurable-pred-countable stopping-time-le-const[OF T] count-

able-Collect D) auto
qed

next
assume ¬ (∀ t ′<t. ∃ t ′′. t ′ < t ′′ ∧ t ′′ < t)
then obtain t ′ where t ′: t ′ < t

∧
t ′′. t ′′ < t =⇒ t ′′ ≤ t ′

by (auto simp: not-less[symmetric])
show ?thesis
proof (rule measurable-cong[THEN iffD2])

show T ω < t ←→ T ω ≤ t ′ for ω
using t ′ by auto

show Measurable.pred (F t) (λw. T w ≤ t ′)
using ‹t ′<t› by (intro stopping-time-le-const[OF T]) auto

qed
qed

qed

lemma stopping-time-eq-const: stopping-time F T =⇒ Measurable.pred (F t) (λω.
T ω = t)

THEORY “Stopping-Time” 556

unfolding eq-iff using stopping-time-less-const[of T t]
by (intro pred-intros-logic stopping-time-le-const) (auto simp: not-less[symmetric]

)

lemma stopping-time-less:
assumes T : stopping-time F T and S : stopping-time F S
shows Measurable.pred (pre-sigma T) (λω. T ω < S ω)

proof (rule pred-pre-sigmaI [OF T])
fix t
obtain D :: ′t set

where [simp]: countable D and semidense-D:
∧

x y. x < y =⇒ (∃ b∈D. x ≤ b
∧ b < y)

using countable-separating-set-linorder2 by auto
show Measurable.pred (F t) (λω. T ω < S ω ∧ T ω ≤ t)
proof (rule measurable-cong[THEN iffD2])

let ?f = λω. if T ω = t then ¬ S ω ≤ t else ∃ s∈{s∈D. s ≤ t}. T ω ≤ s ∧ ¬
(S ω ≤ s)

{ fix ω assume T ω ≤ t T ω 6= t T ω < S ω
then have T ω < min t (S ω)

by auto
then obtain r where r ∈ D T ω ≤ r r < min t (S ω)

by (metis semidense-D)
then have ∃ s∈{s∈D. s ≤ t}. T ω ≤ s ∧ s < S ω

by auto }
then show (T ω < S ω ∧ T ω ≤ t) = ?f ω for ω

by (auto simp: not-le)
show Measurable.pred (F t) ?f

by (intro pred-intros-logic measurable-If measurable-pred-countable count-
able-Collect

stopping-time-le-const predE stopping-time-eq-const T S)
auto

qed
qed

end

lemma stopping-time-SUP-enat:
fixes T :: nat ⇒ (′a ⇒ enat)
shows (

∧
i. stopping-time F (T i)) =⇒ stopping-time F (SUP i. T i)

unfolding stopping-time-def SUP-apply SUP-le-iff by (auto intro!: pred-intros-countable)

lemma less-eSuc-iff : a < eSuc b ←→ (a ≤ b ∧ a 6= ∞)
by (cases a) auto

lemma stopping-time-Inf-enat:
fixes F :: enat ⇒ ′a measure
assumes F : filtration Ω F
assumes P:

∧
i. Measurable.pred (F i) (P i)

shows stopping-time F (λω. Inf {i. P i ω})

THEORY “Probability” 557

proof (rule stopping-timeI , cases)
fix t :: enat assume t = ∞ then show Measurable.pred (F t) (λω. Inf {i. P i

ω} ≤ t)
by auto

next
fix t :: enat assume t 6= ∞
moreover
{ fix i ω assume Inf {i. P i ω} ≤ t

with ‹t 6= ∞› have (∃ i≤t. P i ω)
unfolding Inf-le-iff by (cases t) (auto elim!: allE [of - eSuc t] simp: less-eSuc-iff)

}
ultimately have ∗:

∧
ω. Inf {i. P i ω} ≤ t ←→ (∃ i∈{..t}. P i ω)

by (auto intro!: Inf-lower2)
show Measurable.pred (F t) (λω. Inf {i. P i ω} ≤ t)

unfolding ∗ using filtration.sets-F-mono[OF F , of - t] P
by (intro pred-intros-countable-bounded) (auto simp: pred-def filtration.space-F [OF

F])
qed

lemma stopping-time-Inf-nat:
fixes F :: nat ⇒ ′a measure
assumes F : filtration Ω F
assumes P:

∧
i. Measurable.pred (F i) (P i) and wf :

∧
i ω. ω ∈ Ω =⇒ ∃n. P n

ω
shows stopping-time F (λω. Inf {i. P i ω})
unfolding stopping-time-def

proof (intro allI , subst measurable-cong)
fix t ω assume ω ∈ space (F t)
then have ω ∈ Ω

using filtration.space-F [OF F] by auto
from wf [OF this] have ((LEAST n. P n ω) ≤ t) = (∃ i≤t. P i ω)

by (rule LeastI2-wellorder-ex) auto
then show (Inf {i. P i ω} ≤ t) = (∃ i∈{..t}. P i ω)

by (simp add: Inf-nat-def Bex-def)
next

fix t from P show Measurable.pred (F t) (λw. ∃ i∈{..t}. P i w)
using filtration.sets-F-mono[OF F , of - t]

by (intro pred-intros-countable-bounded) (auto simp: pred-def filtration.space-F [OF
F])
qed

end

theory Probability
imports

Central-Limit-Theorem
Discrete-Topology
PMF-Impl

THEORY “Probability” 558

Projective-Limit
Random-Permutations
SPMF
Product-PMF
Hoeffding
Stream-Space
Tree-Space
Conditional-Expectation
Essential-Supremum
Stopping-Time

begin

end

	Probability measure
	Introduce binder for probability
	Distributions

	Distribution Functions
	Properties of cdf's
	Uniqueness

	Weak Convergence of Functions and Distributions
	Weak Convergence of Functions
	Weak Convergence of Distributions
	Skorohod's theorem
	The Giry monad
	Sub-probability spaces
	Properties of ``return''
	Join
	Giry monad on probability spaces

	Projective Family
	Infinite Product Measure
	Sequence space

	Independent families of events, event sets, and random variables
	Convolution Measure
	Information theory
	Information theory
	Kullback-Leibler divergence
	Finite Entropy
	Mutual Information
	Entropy
	Conditional Mutual Information
	Conditional Entropy
	Equalities

	Properties of Various Distributions
	Erlang
	Exponential distribution
	Uniform distribution
	Normal distribution

	Characteristic Functions
	Application of the FTC: integrating eix
	The Characteristic Function of a Real Measure.
	Independence
	Approximations to eix
	Calculation of the Characteristic Function of the Standard Distribution

	Helly's selection theorem
	Integral of sinc
	Various preparatory integrals

	The sinc function, and the sine integral (Si)
	The final theorems: boundedness and scalability

	The Levy inversion theorem, and the Levy continuity theorem.
	The Levy inversion theorem
	The Levy continuity theorem

	The Central Limit Theorem
	Probability mass function
	PMF as measure
	Monad Interpretation
	PMFs as function
	Conditional Probabilities
	Relator
	Distributions
	Bernoulli Distribution
	Geometric Distribution
	Uniform Multiset Distribution
	Uniform Distribution
	Poisson Distribution
	Binomial Distribution

	Negative Binomial distribution
	PMFs from association lists

	Code generation for PMFs
	General code generation setup
	Code abbreviations for integrals and probabilities

	Finite Maps
	Domain and Application
	Constructor of Finite Maps
	Product set of Finite Maps
	Basic Properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Pi2mu'-2mu

	Topological Space of Finite Maps
	Metric Space of Finite Maps
	Complete Space of Finite Maps
	Second Countable Space of Finite Maps
	Polish Space of Finite Maps
	Product Measurable Space of Finite Maps
	Isomorphism between Functions and Finite Maps

	Projective Limit
	Sequences of Finite Maps in Compact Sets
	Daniell-Kolmogorov Theorem

	Random Permutations
	Discrete subprobability distribution
	Auxiliary material
	More about extended reals
	More about 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 2mu'-2mua option
	A relator for sets that treats sets like predicates
	Monotonicity rules
	Bijections

	Subprobability mass function
	Support
	Functorial structure
	Monad operations
	Return
	Bind

	Relator
	From 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 2mu'-2mua pmf to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 2mu'-2mua spmf
	Weight of a subprobability
	From density to spmfs
	Ordering on spmfs
	CCPO structure for the flat ccpo 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ord-option (=)
	Admissibility of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 rel-spmf

	Restrictions on spmfs
	Subprobability distributions of sets
	Losslessness
	Scaling
	Conditional spmfs
	Product spmf
	Assertions
	Try
	Miscellaneous

	Indexed products of PMFs
	Preliminaries
	Definition
	Dependent product sets with a default
	Common PMF operations on products
	Merging and splitting PMF products
	Additional properties
	Applications

	Hoeffding's Lemma and Hoeffding's Inequality
	Hoeffding's Lemma
	Hoeffding's Inequality
	Hoeffding's inequality for i.i.d. bounded random variables
	Hoeffding's Inequality for the Binomial distribution
	Tail bounds for the negative binomial distribution

	Conditional Expectation
	Restricting a measure to a sub-sigma-algebra
	Nonnegative conditional expectation
	Real conditional expectation

	The essential supremum
	Stopping times
	Stopping Time

	Filtration
	-algebra of a Stopping Time

