
NanoJava

David von Oheimb
Tobias Nipkow

January 18, 2026

Abstract

These theories define NanoJava, a very small fragment of the programming language Java (with
essentially just classes) derived from the one given in [1]. For NanoJava, an operational semantics
is given as well as a Hoare logic, which is proved both sound and (relatively) complete. The Hoare
logic supports side-effecting expressions and implements a new approach for handling auxiliary
variables. A more complex Hoare logic covering a much larger subset of Java is described in [3].
See also the homepage of project Bali at https://isabelle.in.tum.de/Bali/ and the confer-
ence version of this document [2].

Contents
1 Statements and expression emulations 3

2 Types, class Declarations, and whole programs 3

3 Type relations 4
3.1 Declarations and properties not used in the meta theory 5

4 Program State 6
4.1 Properties not used in the meta theory . 8

5 Operational Evaluation Semantics 9

6 Axiomatic Semantics 11
6.1 Hoare Logic Rules . 11
6.2 Fully polymorphic variants, required for Example only 13
6.3 Derived Rules . 13

7 Equivalence of Operational and Axiomatic Semantics 15
7.1 Validity . 15
7.2 Soundness . 15
7.3 (Relative) Completeness . 17

8 Example 20
8.1 Program representation . 20
8.2 “atleast” relation for interpretation of Nat “values” 21
8.3 Proof(s) using the Hoare logic . 22

1

https://isabelle.in.tum.de/Bali/

2

AxSem

Decl

Equivalence

Example

OpSem

State

Term

TypeRel

[HOL]

[Pure]

[Tools]

3

1 Statements and expression emulations
theory Term imports Main begin

typedecl cname — class name
typedecl mname — method name
typedecl fname — field name
typedecl vname — variable name

axiomatization
This — This pointer
Par — method parameter
Res :: vname — method result

— Inequality axioms are not required for the meta theory.

datatype stmt
= Skip — empty statement
| Comp stmt stmt (‹_;; _› [91,90] 90)
| Cond expr stmt stmt (‹If ’(_’) _ Else _› [3,91,91] 91)
| Loop vname stmt (‹While ’(_’) _› [3,91] 91)
| LAss vname expr (‹_ :== _› [99, 95] 94) — local assignment
| FAss expr fname expr (‹_.._:==_› [95,99,95] 94) — field assignment
| Meth "cname × mname" — virtual method
| Impl "cname × mname" — method implementation

and expr
= NewC cname (‹new _› [99] 95) — object creation
| Cast cname expr — type cast
| LAcc vname — local access
| FAcc expr fname (‹_.._› [95,99] 95) — field access
| Call cname expr mname expr

(‹{_}_.._’(_’)› [99,95,99,95] 95) — method call

end

2 Types, class Declarations, and whole programs
theory Decl imports Term begin

datatype ty
= NT — null type
| Class cname — class type

Field declaration
type_synonym fdecl

= "fname × ty"

record methd
= par :: ty

res :: ty
lcl ::"(vname × ty) list"
bdy :: stmt

Method declaration
type_synonym mdecl

= "mname × methd"

record "class"

4

= super :: cname
flds ::"fdecl list"
methods ::"mdecl list"

Class declaration
type_synonym cdecl

= "cname × class"

type_synonym prog
= "cdecl list"

translations
(type) "fdecl" ↽ (type) "fname × ty"
(type) "mdecl" ↽ (type) "mname × ty × ty × stmt"
(type) "class" ↽ (type) "cname × fdecl list × mdecl list"
(type) "cdecl" ↽ (type) "cname × class"
(type) "prog " ↽ (type) "cdecl list"

axiomatization
Prog :: prog — program as a global value

and
Object :: cname — name of root class

definition "class" :: "cname ⇀ class" where
"class ≡ map_of Prog"

definition is_class :: "cname => bool" where
"is_class C ≡ class C 6= None"

lemma finite_is_class: "finite {C. is_class C}"
apply (unfold is_class_def class_def)
apply (fold dom_def)
apply (rule finite_dom_map_of)
done

end

3 Type relations
theory TypeRel
imports Decl
begin

Direct subclass relation
definition subcls1 :: "(cname × cname) set"
where

"subcls1 ≡ {(C,D). C 6=Object ∧ (∃ c. class C = Some c ∧ super c=D)}"

abbreviation
subcls1_syntax :: "[cname, cname] => bool" (‹_ ≺C1 _› [71,71] 70)
where "C ≺C1 D == (C,D) ∈ subcls1"

abbreviation
subcls_syntax :: "[cname, cname] => bool" (‹_ �C _› [71,71] 70)
where "C �C D ≡ (C,D) ∈ subcls1∗"

5

3.1 Declarations and properties not used in the meta theory

Widening, viz. method invocation conversion
inductive

widen :: "ty => ty => bool" (‹_ � _› [71,71] 70)
where

refl [intro!, simp]: "T � T"
| subcls: "C�C D =⇒ Class C � Class D"
| null [intro!]: "NT � R"

lemma subcls1D:
"C≺C1D =⇒ C 6= Object ∧ (∃ c. class C = Some c ∧ super c=D)"

apply (unfold subcls1_def)
apply auto
done

lemma subcls1I: " [[class C = Some m; super m = D; C 6= Object]] =⇒ C≺C1D"
apply (unfold subcls1_def)
apply auto
done

lemma subcls1_def2:
"subcls1 =

(SIGMA C: {C. is_class C} . {D. C 6=Object ∧ super (the (class C)) = D})"
apply (unfold subcls1_def is_class_def)
apply (auto split:if_split_asm)
done

lemma finite_subcls1: "finite subcls1"
apply(subst subcls1_def2)
apply(rule finite_SigmaI [OF finite_is_class])
apply(rule_tac B = "{super (the (class C))}" in finite_subset)
apply auto
done

definition ws_prog :: "bool" where
"ws_prog ≡ ∀ (C,c)∈set Prog. C 6=Object −→

is_class (super c) ∧ (super c,C)/∈subcls1+"

lemma ws_progD: " [[class C = Some c; C 6=Object; ws_prog]] =⇒
is_class (super c) ∧ (super c,C)/∈subcls1+"

apply (unfold ws_prog_def class_def)
apply (drule_tac map_of_SomeD)
apply auto
done

lemma subcls1_irrefl_lemma1: "ws_prog =⇒ subcls1−1 ∩ subcls1+ = {}"
by (fast dest: subcls1D ws_progD)

lemma irrefl_tranclI’: "r−1 ∩ r+ = {} =⇒ ∀ x. (x, x) /∈ r+"
by(blast elim: tranclE dest: trancl_into_rtrancl)

lemmas subcls1_irrefl_lemma2 = subcls1_irrefl_lemma1 [THEN irrefl_tranclI’]

lemma subcls1_irrefl: " [[(x, y) ∈ subcls1; ws_prog]] =⇒ x 6= y"
apply (rule irrefl_trancl_rD)
apply (rule subcls1_irrefl_lemma2)

6

apply auto
done

lemmas subcls1_acyclic = subcls1_irrefl_lemma2 [THEN acyclicI]

lemma wf_subcls1: "ws_prog =⇒ wf (subcls1−1)"
by (auto intro: finite_acyclic_wf_converse finite_subcls1 subcls1_acyclic)

definition class_rec ::"cname ⇒ (class ⇒ (’a × ’b) list) ⇒ (’a ⇀ ’b)"
where

"class_rec ≡ wfrec (subcls1−1) (λrec C f.
case class C of None ⇒ undefined
| Some m ⇒ (if C = Object then Map.empty else rec (super m) f) ++ map_of (f m))"

lemma class_rec: " [[class C = Some m; ws_prog]] =⇒
class_rec C f = (if C = Object then Map.empty else class_rec (super m) f) ++

map_of (f m)"
apply (drule wf_subcls1)
apply (subst def_wfrec[OF class_rec_def], auto)
apply (subst cut_apply, auto intro: subcls1I)
done

— Methods of a class, with inheritance and hiding
definition "method" :: "cname => (mname ⇀ methd)" where

"method C ≡ class_rec C methods"

lemma method_rec: " [[class C = Some m; ws_prog]] =⇒
method C = (if C=Object then Map.empty else method (super m)) ++ map_of (methods m)"
apply (unfold method_def)
apply (erule (1) class_rec [THEN trans])
apply simp
done

— Fields of a class, with inheritance and hiding
definition field :: "cname => (fname ⇀ ty)" where

"field C ≡ class_rec C flds"

lemma flds_rec: " [[class C = Some m; ws_prog]] =⇒
field C = (if C=Object then Map.empty else field (super m)) ++ map_of (flds m)"
apply (unfold field_def)
apply (erule (1) class_rec [THEN trans])
apply simp
done

end

4 Program State
theory State imports TypeRel begin

definition body :: "cname × mname => stmt" where
"body ≡ λ(C,m). bdy (the (method C m))"

Locations, i.e. abstract references to objects
typedecl loc

datatype val

7

= Null — null reference
| Addr loc — address, i.e. location of object

type_synonym fields
= "(fname ⇀ val)"

type_synonym
obj = "cname × fields"

translations
(type) "fields" ↽ (type) "fname => val option"
(type) "obj" ↽ (type) "cname × fields"

definition init_vars :: "(’a ⇀ ’b) => (’a ⇀ val)" where
"init_vars m == map_option (λT. Null) o m"

private:
type_synonym heap = "loc ⇀ obj"
type_synonym locals = "vname ⇀ val"

private:
record state

= heap :: heap
locals :: locals

translations
(type) "heap" ↽ (type) "loc => obj option"
(type) "locals" ↽ (type) "vname => val option"
(type) "state" ↽ (type) "(|heap :: heap, locals :: locals|)"

definition del_locs :: "state => state" where
"del_locs s ≡ s (| locals := Map.empty |)"

definition init_locs :: "cname => mname => state => state" where
"init_locs C m s ≡ s (| locals := locals s ++

init_vars (map_of (lcl (the (method C m)))) |)"

The first parameter of set_locs is of type state rather than locals in order to keep locals private.
definition set_locs :: "state => state => state" where
"set_locs s s’ ≡ s’ (| locals := locals s |)"

definition get_local :: "state => vname => val" (‹_<_>› [99,0] 99) where
"get_local s x ≡ the (locals s x)"

— local function:
definition get_obj :: "state => loc => obj" where
"get_obj s a ≡ the (heap s a)"

definition obj_class :: "state => loc => cname" where
"obj_class s a ≡ fst (get_obj s a)"

definition get_field :: "state => loc => fname => val" where
"get_field s a f ≡ the (snd (get_obj s a) f)"

— local function:
definition hupd :: "loc => obj => state => state" (‹hupd’(_7→_’)› [10,10] 1000) where
"hupd a obj s ≡ s (| heap := ((heap s)(a 7→obj))|)"

8

definition lupd :: "vname => val => state => state" (‹lupd’(_7→_’)› [10,10] 1000) where
"lupd x v s ≡ s (| locals := ((locals s)(x 7→v))|)"

definition new_obj :: "loc => cname => state => state" where
"new_obj a C ≡ hupd(a 7→(C,init_vars (field C)))"

definition upd_obj :: "loc => fname => val => state => state" where
"upd_obj a f v s ≡ let (C,fs) = the (heap s a) in hupd(a 7→(C,fs(f 7→v))) s"

definition new_Addr :: "state => val" where
"new_Addr s == SOME v. (∃ a. v = Addr a ∧ (heap s) a = None) | v = Null"

4.1 Properties not used in the meta theory
lemma locals_upd_id [simp]: "s(|locals := locals s |) = s"
by simp

lemma lupd_get_local_same [simp]: "lupd(x 7→v) s<x> = v"
by (simp add: lupd_def get_local_def)

lemma lupd_get_local_other [simp]: "x 6= y =⇒ lupd(x 7→v) s<y> = s<y>"
apply (drule not_sym)
by (simp add: lupd_def get_local_def)

lemma get_field_lupd [simp]:
"get_field (lupd(x 7→y) s) a f = get_field s a f"

by (simp add: lupd_def get_field_def get_obj_def)

lemma get_field_set_locs [simp]:
"get_field (set_locs l s) a f = get_field s a f"

by (simp add: lupd_def get_field_def set_locs_def get_obj_def)

lemma get_field_del_locs [simp]:
"get_field (del_locs s) a f = get_field s a f"

by (simp add: lupd_def get_field_def del_locs_def get_obj_def)

lemma new_obj_get_local [simp]: "new_obj a C s <x> = s<x>"
by (simp add: new_obj_def hupd_def get_local_def)

lemma heap_lupd [simp]: "heap (lupd(x 7→y) s) = heap s"
by (simp add: lupd_def)

lemma heap_hupd_same [simp]: "heap (hupd(a 7→obj) s) a = Some obj"
by (simp add: hupd_def)

lemma heap_hupd_other [simp]: "aa 6= a =⇒ heap (hupd(aa 7→obj) s) a = heap s a"
apply (drule not_sym)
by (simp add: hupd_def)

lemma hupd_hupd [simp]: "hupd(a 7→obj) (hupd(a 7→obj’) s) = hupd(a 7→obj) s"
by (simp add: hupd_def)

lemma heap_del_locs [simp]: "heap (del_locs s) = heap s"
by (simp add: del_locs_def)

lemma heap_set_locs [simp]: "heap (set_locs l s) = heap s"
by (simp add: set_locs_def)

lemma hupd_lupd [simp]:

9

"hupd(a 7→obj) (lupd(x 7→y) s) = lupd(x 7→y) (hupd(a 7→obj) s)"
by (simp add: hupd_def lupd_def)

lemma hupd_del_locs [simp]:
"hupd(a 7→obj) (del_locs s) = del_locs (hupd(a 7→obj) s)"

by (simp add: hupd_def del_locs_def)

lemma new_obj_lupd [simp]:
"new_obj a C (lupd(x 7→y) s) = lupd(x 7→y) (new_obj a C s)"

by (simp add: new_obj_def)

lemma new_obj_del_locs [simp]:
"new_obj a C (del_locs s) = del_locs (new_obj a C s)"

by (simp add: new_obj_def)

lemma upd_obj_lupd [simp]:
"upd_obj a f v (lupd(x 7→y) s) = lupd(x 7→y) (upd_obj a f v s)"

by (simp add: upd_obj_def Let_def split_beta)

lemma upd_obj_del_locs [simp]:
"upd_obj a f v (del_locs s) = del_locs (upd_obj a f v s)"

by (simp add: upd_obj_def Let_def split_beta)

lemma get_field_hupd_same [simp]:
"get_field (hupd(a 7→(C, fs)) s) a = the ◦ fs"

apply (rule ext)
by (simp add: get_field_def get_obj_def)

lemma get_field_hupd_other [simp]:
"aa 6= a =⇒ get_field (hupd(aa 7→obj) s) a = get_field s a"

apply (rule ext)
by (simp add: get_field_def get_obj_def)

lemma new_AddrD:
"new_Addr s = v =⇒ (∃ a. v = Addr a ∧ heap s a = None) | v = Null"
apply (unfold new_Addr_def)
apply (erule subst)
apply (rule someI)
apply (rule disjI2)
apply (rule HOL.refl)
done

end

5 Operational Evaluation Semantics
theory OpSem imports State begin

inductive
exec :: "[state,stmt, nat,state] => bool" (‹_ -_-_→ _› [98,90, 65,98] 89)
and eval :: "[state,expr,val,nat,state] => bool" (‹_ -_�_-_→ _›[98,95,99,65,98] 89)

where
Skip: " s -Skip-n→ s"

| Comp: "[| s0 -c1-n→ s1; s1 -c2-n→ s2 |] ==>
s0 -c1;; c2-n→ s2"

| Cond: "[| s0 -e�v-n→ s1; s1 -(if v 6=Null then c1 else c2)-n→ s2 |] ==>

10

s0 -If(e) c1 Else c2-n→ s2"

| LoopF:" s0<x> = Null ==>
s0 -While(x) c-n→ s0"

| LoopT:"[| s0<x> 6= Null; s0 -c-n→ s1; s1 -While(x) c-n→ s2 |] ==>
s0 -While(x) c-n→ s2"

| LAcc: " s -LAcc x�s<x>-n→ s"

| LAss: " s -e�v-n→ s’ ==>
s -x:==e-n→ lupd(x 7→v) s’"

| FAcc: " s -e�Addr a-n→ s’ ==>
s -e..f�get_field s’ a f-n→ s’"

| FAss: "[| s0 -e1�Addr a-n→ s1; s1 -e2�v-n→ s2 |] ==>
s0 -e1..f:==e2-n→ upd_obj a f v s2"

| NewC: " new_Addr s = Addr a ==>
s -new C�Addr a-n→ new_obj a C s"

| Cast: "[| s -e�v-n→ s’;
case v of Null => True | Addr a => obj_class s’ a �C C |] ==>
s -Cast C e�v-n→ s’"

| Call: "[| s0 -e1�a-n→ s1; s1 -e2�p-n→ s2;
lupd(This 7→a)(lupd(Par 7→p)(del_locs s2)) -Meth (C,m)-n→ s3

|] ==> s0 -{C}e1..m(e2)�s3<Res>-n→ set_locs s2 s3"

| Meth: "[| s<This> = Addr a; D = obj_class s a; D�C C;
init_locs D m s -Impl (D,m)-n→ s’ |] ==>
s -Meth (C,m)-n→ s’"

| Impl: " s -body Cm- n→ s’ ==>
s -Impl Cm-Suc n→ s’"

inductive_cases exec_elim_cases’:
"s -Skip -n→ t"
"s -c1;; c2 -n→ t"
"s -If(e) c1 Else c2-n→ t"
"s -While(x) c -n→ t"
"s -x:==e -n→ t"
"s -e1..f:==e2 -n→ t"

inductive_cases Meth_elim_cases: "s -Meth Cm -n→ t"
inductive_cases Impl_elim_cases: "s -Impl Cm -n→ t"
lemmas exec_elim_cases = exec_elim_cases’ Meth_elim_cases Impl_elim_cases
inductive_cases eval_elim_cases:

"s -new C �v-n→ t"
"s -Cast C e �v-n→ t"
"s -LAcc x �v-n→ t"
"s -e..f �v-n→ t"
"s -{C}e1..m(e2) �v-n→ t"

lemma exec_eval_mono [rule_format]:
"(s -c -n→ t −→ (∀ m. n ≤ m −→ s -c -m→ t)) ∧
(s -e�v-n→ t −→ (∀ m. n ≤ m −→ s -e�v-m→ t))"

apply (rule exec_eval.induct)
prefer 14

11

apply clarify
apply (rename_tac n)
apply (case_tac n)
apply (blast intro:exec_eval.intros)+
done
lemmas exec_mono = exec_eval_mono [THEN conjunct1, rule_format]
lemmas eval_mono = exec_eval_mono [THEN conjunct2, rule_format]

lemma exec_exec_max: " [[s1 -c1- n1 → t1 ; s2 -c2- n2→ t2]] =⇒
s1 -c1-max n1 n2→ t1 ∧ s2 -c2-max n1 n2→ t2"

by (fast intro: exec_mono max.cobounded1 max.cobounded2)

lemma eval_exec_max: " [[s1 -c- n1 → t1 ; s2 -e�v- n2→ t2]] =⇒
s1 -c-max n1 n2→ t1 ∧ s2 -e�v-max n1 n2→ t2"

by (fast intro: eval_mono exec_mono max.cobounded1 max.cobounded2)

lemma eval_eval_max: " [[s1 -e1�v1- n1 → t1 ; s2 -e2�v2- n2→ t2]] =⇒
s1 -e1�v1-max n1 n2→ t1 ∧ s2 -e2�v2-max n1 n2→ t2"

by (fast intro: eval_mono max.cobounded1 max.cobounded2)

lemma eval_eval_exec_max:
" [[s1 -e1�v1-n1→ t1; s2 -e2�v2-n2→ t2; s3 -c-n3→ t3]] =⇒

s1 -e1�v1-max (max n1 n2) n3→ t1 ∧
s2 -e2�v2-max (max n1 n2) n3→ t2 ∧
s3 -c -max (max n1 n2) n3→ t3"

apply (drule (1) eval_eval_max, erule thin_rl)
by (fast intro: exec_mono eval_mono max.cobounded1 max.cobounded2)

lemma Impl_body_eq: "(λt. ∃ n. Z -Impl M-n→ t) = (λt. ∃ n. Z -body M-n→ t)"
apply (rule ext)
apply (fast elim: exec_elim_cases intro: exec_eval.Impl)
done

end

6 Axiomatic Semantics
theory AxSem imports State begin

type_synonym assn = "state => bool"
type_synonym vassn = "val => assn"
type_synonym triple = "assn × stmt × assn"
type_synonym etriple = "assn × expr × vassn"
translations

(type) "assn" ↽ (type) "state => bool"
(type) "vassn" ↽ (type) "val => assn"
(type) "triple" ↽ (type) "assn × stmt × assn"
(type) "etriple" ↽ (type) "assn × expr × vassn"

6.1 Hoare Logic Rules
inductive
hoare :: "[triple set, triple set] => bool" (‹_ |`/ _› [61, 61] 60)
and ehoare :: "[triple set, etriple] => bool" (‹_ |`e/ _› [61, 61] 60)
and hoare1 :: "[triple set, assn,stmt,assn] => bool"

(‹_ `/ ({(1_)}/ (_)/ {(1_)})› [61, 3, 90, 3] 60)
and ehoare1 :: "[triple set, assn,expr,vassn]=> bool"

(‹_ `e/ ({(1_)}/ (_)/ {(1_)})› [61, 3, 90, 3] 60)

12

where

"A ` {P}c{Q} ≡ A |` {(P,c,Q)}"
| "A `e {P}e{Q} ≡ A |`e (P,e,Q)"

| Skip: "A ` {P} Skip {P}"

| Comp: "[| A ` {P} c1 {Q}; A ` {Q} c2 {R} |] ==> A ` {P} c1;;c2 {R}"

| Cond: "[| A `e {P} e {Q};
∀ v. A ` {Q v} (if v 6= Null then c1 else c2) {R} |] ==>
A ` {P} If(e) c1 Else c2 {R}"

| Loop: "A ` {λs. P s ∧ s<x> 6= Null} c {P} ==>
A ` {P} While(x) c {λs. P s ∧ s<x> = Null}"

| LAcc: "A `e {λs. P (s<x>) s} LAcc x {P}"

| LAss: "A `e {P} e {λv s. Q (lupd(x 7→v) s)} ==>
A ` {P} x:==e {Q}"

| FAcc: "A `e {P} e {λv s. ∀ a. v=Addr a --> Q (get_field s a f) s} ==>
A `e {P} e..f {Q}"

| FAss: "[| A `e {P} e1 {λv s. ∀ a. v=Addr a --> Q a s};
∀ a. A `e {Q a} e2 {λv s. R (upd_obj a f v s)} |] ==>

A ` {P} e1..f:==e2 {R}"

| NewC: "A `e {λs. ∀ a. new_Addr s = Addr a --> P (Addr a) (new_obj a C s)}
new C {P}"

| Cast: "A `e {P} e {λv s. (case v of Null => True
| Addr a => obj_class s a �C C) --> Q v s} ==>

A `e {P} Cast C e {Q}"

| Call: "[| A `e {P} e1 {Q}; ∀ a. A `e {Q a} e2 {R a};
∀ a p ls. A ` {λs’. ∃ s. R a p s ∧ ls = s ∧

s’ = lupd(This 7→a)(lupd(Par 7→p)(del_locs s))}
Meth (C,m) {λs. S (s<Res>) (set_locs ls s)} |] ==>

A `e {P} {C}e1..m(e2) {S}"

| Meth: "∀ D. A ` {λs’. ∃ s a. s<This> = Addr a ∧ D = obj_class s a ∧ D �C C ∧
P s ∧ s’ = init_locs D m s}

Impl (D,m) {Q} ==>
A ` {P} Meth (C,m) {Q}"

—
⋃

Z instead of ∀ Z in the conclusion and
Z restricted to type state due to limitations of the inductive package
| Impl: "∀ Z::state. A∪ (

⋃
Z. (λCm. (P Z Cm, Impl Cm, Q Z Cm))‘Ms) |`
(λCm. (P Z Cm, body Cm, Q Z Cm))‘Ms ==>

A |` (λCm. (P Z Cm, Impl Cm, Q Z Cm))‘Ms"

— structural rules

| Asm: " a ∈ A ==> A |` {a}"

| ConjI: " ∀ c ∈ C. A |` {c} ==> A |` C"

| ConjE: "[|A |` C; c ∈ C |] ==> A |` {c}"

13

— Z restricted to type state due to limitations of the inductive package
| Conseq:"[| ∀ Z::state. A ` {P’ Z} c {Q’ Z};

∀ s t. (∀ Z. P’ Z s --> Q’ Z t) --> (P s --> Q t) |] ==>
A ` {P} c {Q }"

— Z restricted to type state due to limitations of the inductive package
| eConseq:"[| ∀ Z::state. A `e {P’ Z} e {Q’ Z};

∀ s v t. (∀ Z. P’ Z s --> Q’ Z v t) --> (P s --> Q v t) |] ==>
A `e {P} e {Q }"

6.2 Fully polymorphic variants, required for Example only
axiomatization where

Conseq:"[| ∀ Z. A ` {P’ Z} c {Q’ Z};
∀ s t. (∀ Z. P’ Z s --> Q’ Z t) --> (P s --> Q t) |] ==>

A ` {P} c {Q }"

axiomatization where
eConseq:"[| ∀ Z. A `e {P’ Z} e {Q’ Z};

∀ s v t. (∀ Z. P’ Z s --> Q’ Z v t) --> (P s --> Q v t) |] ==>
A `e {P} e {Q }"

axiomatization where
Impl: "∀ Z. A∪ (

⋃
Z. (λCm. (P Z Cm, Impl Cm, Q Z Cm))‘Ms) |`

(λCm. (P Z Cm, body Cm, Q Z Cm))‘Ms ==>
A |` (λCm. (P Z Cm, Impl Cm, Q Z Cm))‘Ms"

6.3 Derived Rules
lemma Conseq1: " [[A ` {P’} c {Q}; ∀ s. P s −→ P’ s]] =⇒ A ` {P} c {Q}"
apply (rule hoare_ehoare.Conseq)
apply (rule allI, assumption)
apply fast
done

lemma Conseq2: " [[A ` {P} c {Q’}; ∀ t. Q’ t −→ Q t]] =⇒ A ` {P} c {Q}"
apply (rule hoare_ehoare.Conseq)
apply (rule allI, assumption)
apply fast
done

lemma eConseq1: " [[A `e {P’} e {Q}; ∀ s. P s −→ P’ s]] =⇒ A `e {P} e {Q}"
apply (rule hoare_ehoare.eConseq)
apply (rule allI, assumption)
apply fast
done

lemma eConseq2: " [[A `e {P} e {Q’}; ∀ v t. Q’ v t −→ Q v t]] =⇒ A `e {P} e {Q}"
apply (rule hoare_ehoare.eConseq)
apply (rule allI, assumption)
apply fast
done

lemma Weaken: " [[A |` C’; C ⊆ C’]] =⇒ A |` C"
apply (rule hoare_ehoare.ConjI)
apply clarify
apply (drule hoare_ehoare.ConjE)
apply fast

14

apply assumption
done

lemma Thin_lemma:
"(A’ |` C −→ (∀ A. A’ ⊆ A −→ A |` C)) ∧
(A’ `e {P} e {Q} −→ (∀ A. A’ ⊆ A −→ A `e {P} e {Q}))"

apply (rule hoare_ehoare.induct)
apply (tactic "ALLGOALS(EVERY’[clarify_tac context , REPEAT o smp_tac context 1])")
apply (blast intro: hoare_ehoare.Skip)
apply (blast intro: hoare_ehoare.Comp)
apply (blast intro: hoare_ehoare.Cond)
apply (blast intro: hoare_ehoare.Loop)
apply (blast intro: hoare_ehoare.LAcc)
apply (blast intro: hoare_ehoare.LAss)
apply (blast intro: hoare_ehoare.FAcc)
apply (blast intro: hoare_ehoare.FAss)
apply (blast intro: hoare_ehoare.NewC)
apply (blast intro: hoare_ehoare.Cast)
apply (erule hoare_ehoare.Call)
apply (rule, drule spec, erule conjE, tactic "smp_tac context 1 1", assumption)
apply blast
apply (blast intro!: hoare_ehoare.Meth)
apply (blast intro!: hoare_ehoare.Impl)
apply (blast intro!: hoare_ehoare.Asm)
apply (blast intro: hoare_ehoare.ConjI)
apply (blast intro: hoare_ehoare.ConjE)
apply (rule hoare_ehoare.Conseq)
apply (rule, drule spec, erule conjE, tactic "smp_tac context 1 1", assumption+)
apply (rule hoare_ehoare.eConseq)
apply (rule, drule spec, erule conjE, tactic "smp_tac context 1 1", assumption+)
done

lemma cThin: " [[A’ |` C; A’ ⊆ A]] =⇒ A |` C"
by (erule (1) conjunct1 [OF Thin_lemma, rule_format])

lemma eThin: " [[A’ `e {P} e {Q}; A’ ⊆ A]] =⇒ A `e {P} e {Q}"
by (erule (1) conjunct2 [OF Thin_lemma, rule_format])

lemma Union: "A |` (
⋃

Z. C Z) = (∀ Z. A |` C Z)"
by (auto intro: hoare_ehoare.ConjI hoare_ehoare.ConjE)

lemma Impl1’:
" [[∀ Z::state. A∪ (

⋃
Z. (λCm. (P Z Cm, Impl Cm, Q Z Cm))‘Ms) |`

(λCm. (P Z Cm, body Cm, Q Z Cm))‘Ms;
Cm ∈ Ms]] =⇒

A ` {P Z Cm} Impl Cm {Q Z Cm}"
apply (drule AxSem.Impl)
apply (erule Weaken)
apply (auto del: image_eqI intro: rev_image_eqI)
done

lemmas Impl1 = AxSem.Impl [of _ _ _ "{Cm}", simplified] for Cm

end

15

7 Equivalence of Operational and Axiomatic Semantics
theory Equivalence imports OpSem AxSem begin

7.1 Validity
definition valid :: "[assn,stmt, assn] => bool" (‹|= {(1_)}/ (_)/ {(1_)}› [3,90,3] 60) where
" |= {P} c {Q} ≡ ∀ s t. P s --> (∃ n. s -c -n→ t) --> Q t"

definition evalid :: "[assn,expr,vassn] => bool" (‹|=e {(1_)}/ (_)/ {(1_)}› [3,90,3] 60) where
" |=e {P} e {Q} ≡ ∀ s v t. P s --> (∃ n. s -e�v-n→ t) --> Q v t"

definition nvalid :: "[nat, triple] => bool" (‹|=_: _› [61,61] 60) where
" |=n: t ≡ let (P,c,Q) = t in ∀ s t. s -c -n→ t --> P s --> Q t"

definition envalid :: "[nat,etriple] => bool" (‹|=_:e _› [61,61] 60) where
" |=n:e t ≡ let (P,e,Q) = t in ∀ s v t. s -e�v-n→ t --> P s --> Q v t"

definition nvalids :: "[nat, triple set] => bool" (‹||=_: _› [61,61] 60) where
"||=n: T ≡ ∀ t∈T. |=n: t"

definition cnvalids :: "[triple set,triple set] => bool" (‹_ ||=/ _› [61,61] 60) where
"A ||= C ≡ ∀ n. ||=n: A --> ||=n: C"

definition cenvalid :: "[triple set,etriple] => bool" (‹_ ||=e/ _›[61,61] 60) where
"A ||=e t ≡ ∀ n. ||=n: A --> |=n:e t"

lemma nvalid_def2: " |=n: (P,c,Q) ≡ ∀ s t. s -c-n→ t −→ P s −→ Q t"
by (simp add: nvalid_def Let_def)

lemma valid_def2: " |= {P} c {Q} = (∀ n. |=n: (P,c,Q))"
apply (simp add: valid_def nvalid_def2)
apply blast
done

lemma envalid_def2: " |=n:e (P,e,Q) ≡ ∀ s v t. s -e�v-n→ t −→ P s −→ Q v t"
by (simp add: envalid_def Let_def)

lemma evalid_def2: " |=e {P} e {Q} = (∀ n. |=n:e (P,e,Q))"
apply (simp add: evalid_def envalid_def2)
apply blast
done

lemma cenvalid_def2:
"A||=e (P,e,Q) = (∀ n. ||=n: A −→ (∀ s v t. s -e�v-n→ t −→ P s −→ Q v t))"

by(simp add: cenvalid_def envalid_def2)

7.2 Soundness
declare exec_elim_cases [elim!] eval_elim_cases [elim!]

lemma Impl_nvalid_0: " |=0: (P,Impl M,Q)"
by (clarsimp simp add: nvalid_def2)

lemma Impl_nvalid_Suc: " |=n: (P,body M,Q) =⇒ |=Suc n: (P,Impl M,Q)"
by (clarsimp simp add: nvalid_def2)

lemma nvalid_SucD: "
∧

t. |=Suc n:t =⇒ |=n:t"
by (force simp add: split_paired_all nvalid_def2 intro: exec_mono)

16

lemma nvalids_SucD: "Ball A (nvalid (Suc n)) =⇒ Ball A (nvalid n)"
by (fast intro: nvalid_SucD)

lemma Loop_sound_lemma [rule_format (no_asm)]:
"∀ s t. s -c-n→ t −→ P s ∧ s<x> 6= Null −→ P t =⇒

(s -c0-n0→ t −→ P s −→ c0 = While (x) c −→ n0 = n −→ P t ∧ t<x> = Null)"
apply (rule_tac ?P2.1="%s e v n t. True" in exec_eval.induct [THEN conjunct1])
apply clarsimp+
done

lemma Impl_sound_lemma:
" [[∀ z n. Ball (A ∪ B) (nvalid n) −→ Ball (f z ‘ Ms) (nvalid n);

Cm∈Ms; Ball A (nvalid na); Ball B (nvalid na)]] =⇒ nvalid na (f z Cm)"
by blast

lemma all_conjunct2: "∀ l. P’ l ∧ P l =⇒ ∀ l. P l"
by fast

lemma all3_conjunct2:
"∀ a p l. (P’ a p l ∧ P a p l) =⇒ ∀ a p l. P a p l"

by fast

lemma cnvalid1_eq:
"A ||= {(P,c,Q)} ≡ ∀ n. ||=n: A −→ (∀ s t. s -c-n→ t −→ P s −→ Q t)"

by(simp add: cnvalids_def nvalids_def nvalid_def2)

lemma hoare_sound_main:"
∧

t. (A |` C −→ A ||= C) ∧ (A |`e t −→ A ||=e t)"
apply (tactic "split_all_tac context 1", rename_tac P e Q)
apply (rule hoare_ehoare.induct)

apply (tactic ‹ALLGOALS (REPEAT o dresolve_tac context [@{thm all_conjunct2}, @{thm all3_conjunct2}])›)
apply (tactic ‹ALLGOALS (REPEAT o Rule_Insts.thin_tac context "hoare _ _" [])›)
apply (tactic ‹ALLGOALS (REPEAT o Rule_Insts.thin_tac context "ehoare _ _" [])›)
apply (simp_all only: cnvalid1_eq cenvalid_def2)

apply fast
apply fast

apply fast
apply (clarify,tactic "smp_tac context 1 1",erule(2) Loop_sound_lemma,(rule HOL.refl)+)

apply fast
apply fast

apply fast
apply fast

apply fast
apply fast

apply (clarsimp del: Meth_elim_cases)
apply (force del: Impl_elim_cases)

defer
prefer 4 apply blast

prefer 4 apply blast
apply (simp_all (no_asm_use) only: cnvalids_def nvalids_def)
apply blast

apply blast
apply blast

apply (rule allI)
apply (rule_tac x=Z in spec)
apply (induct_tac "n")
apply (clarify intro!: Impl_nvalid_0)

apply (clarify intro!: Impl_nvalid_Suc)

17

apply (drule nvalids_SucD)
apply (simp only: HOL.all_simps)
apply (erule (1) impE)
apply (drule (2) Impl_sound_lemma)
apply blast

apply assumption
done

theorem hoare_sound: "{} ` {P} c {Q} =⇒ |= {P} c {Q}"
apply (simp only: valid_def2)
apply (drule hoare_sound_main [THEN conjunct1, rule_format])
apply (unfold cnvalids_def nvalids_def)
apply fast
done

theorem ehoare_sound: "{} `e {P} e {Q} =⇒ |=e {P} e {Q}"
apply (simp only: evalid_def2)
apply (drule hoare_sound_main [THEN conjunct2, rule_format])
apply (unfold cenvalid_def nvalids_def)
apply fast
done

7.3 (Relative) Completeness
definition MGT :: "stmt => state => triple" where

"MGT c Z ≡ (λs. Z = s, c, λ t. ∃ n. Z -c- n→ t)"

definition MGT e :: "expr => state => etriple" where
"MGT e e Z ≡ (λs. Z = s, e, λv t. ∃ n. Z -e�v-n→ t)"

lemma MGF_implies_complete:
"∀ Z. {} |` { MGT c Z} =⇒ |= {P} c {Q} =⇒ {} ` {P} c {Q}"

apply (simp only: valid_def2)
apply (unfold MGT_def)
apply (erule hoare_ehoare.Conseq)
apply (clarsimp simp add: nvalid_def2)
done

lemma eMGF_implies_complete:
"∀ Z. {} |`e MGT e e Z =⇒ |=e {P} e {Q} =⇒ {} `e {P} e {Q}"

apply (simp only: evalid_def2)
apply (unfold MGT e_def)
apply (erule hoare_ehoare.eConseq)
apply (clarsimp simp add: envalid_def2)
done

declare exec_eval.intros[intro!]

lemma MGF_Loop: "∀ Z. A ` {(=) Z} c {λt. ∃ n. Z -c-n→ t} =⇒
A ` {(=) Z} While (x) c {λt. ∃ n. Z -While (x) c-n→ t}"

apply (rule_tac P’ = "λZ s. (Z,s) ∈ ({(s,t). ∃ n. s<x> 6= Null ∧ s -c-n→ t})∗"
in hoare_ehoare.Conseq)

apply (rule allI)
apply (rule hoare_ehoare.Loop)
apply (erule hoare_ehoare.Conseq)
apply clarsimp
apply (blast intro:rtrancl_into_rtrancl)
apply (erule thin_rl)
apply clarsimp

18

apply (erule_tac x = Z in allE)
apply clarsimp
apply (erule converse_rtrancl_induct)
apply blast
apply clarsimp
apply (drule (1) exec_exec_max)
apply (blast del: exec_elim_cases)
done

lemma MGF_lemma: "∀ M Z. A |` {MGT (Impl M) Z} =⇒
(∀ Z. A |` {MGT c Z}) ∧ (∀ Z. A |`e MGT e e Z)"

apply (simp add: MGT_def MGT e_def)
apply (rule stmt_expr.induct)
apply (rule_tac [!] allI)

apply (rule Conseq1 [OF hoare_ehoare.Skip])
apply blast

apply (rule hoare_ehoare.Comp)
apply (erule spec)
apply (erule hoare_ehoare.Conseq)
apply clarsimp
apply (drule (1) exec_exec_max)
apply blast

apply (erule thin_rl)
apply (rule hoare_ehoare.Cond)
apply (erule spec)
apply (rule allI)
apply (simp)
apply (rule conjI)
apply (rule impI, erule hoare_ehoare.Conseq, clarsimp, drule (1) eval_exec_max,

erule thin_rl, erule thin_rl, force)+

apply (erule MGF_Loop)

apply (erule hoare_ehoare.eConseq [THEN hoare_ehoare.LAss])
apply fast

apply (erule thin_rl)
apply (rename_tac expr1 u v Z, rule_tac Q = "λa s. ∃ n. Z -expr1�Addr a-n→ s" in hoare_ehoare.FAss)
apply (drule spec)
apply (erule eConseq2)
apply fast
apply (rule allI)
apply (erule hoare_ehoare.eConseq)
apply clarsimp
apply (drule (1) eval_eval_max)
apply blast

apply (simp only: split_paired_all)
apply (rule hoare_ehoare.Meth)
apply (rule allI)
apply (drule spec, drule spec, erule hoare_ehoare.Conseq)
apply blast

apply (simp add: split_paired_all)

apply (rule eConseq1 [OF hoare_ehoare.NewC])

19

apply blast

apply (erule hoare_ehoare.eConseq [THEN hoare_ehoare.Cast])
apply fast

apply (rule eConseq1 [OF hoare_ehoare.LAcc])
apply blast

apply (erule hoare_ehoare.eConseq [THEN hoare_ehoare.FAcc])
apply fast

apply (rename_tac expr1 u expr2 Z)
apply (rule_tac R = "λa v s. ∃ n1 n2 t. Z -expr1�a-n1→ t ∧ t -expr2�v-n2→ s" in

hoare_ehoare.Call)
apply (erule spec)
apply (rule allI)
apply (erule hoare_ehoare.eConseq)
apply clarsimp
apply blast
apply (rule allI)+
apply (rule hoare_ehoare.Meth)
apply (rule allI)
apply (drule spec, drule spec, erule hoare_ehoare.Conseq)
apply (erule thin_rl, erule thin_rl)
apply (clarsimp del: Impl_elim_cases)
apply (drule (2) eval_eval_exec_max)
apply (force del: Impl_elim_cases)
done

lemma MGF_Impl: "{} |` {MGT (Impl M) Z}"
apply (unfold MGT_def)
apply (rule Impl1’)
apply (rule_tac [2] UNIV_I)
apply clarsimp
apply (rule hoare_ehoare.ConjI)
apply clarsimp
apply (rule ssubst [OF Impl_body_eq])
apply (fold MGT_def)
apply (rule MGF_lemma [THEN conjunct1, rule_format])
apply (rule hoare_ehoare.Asm)
apply force
done

theorem hoare_relative_complete: " |= {P} c {Q} =⇒ {} ` {P} c {Q}"
apply (rule MGF_implies_complete)
apply (erule_tac [2] asm_rl)
apply (rule allI)
apply (rule MGF_lemma [THEN conjunct1, rule_format])
apply (rule MGF_Impl)
done

theorem ehoare_relative_complete: " |=e {P} e {Q} =⇒ {} `e {P} e {Q}"
apply (rule eMGF_implies_complete)
apply (erule_tac [2] asm_rl)
apply (rule allI)
apply (rule MGF_lemma [THEN conjunct2, rule_format])
apply (rule MGF_Impl)
done

20

lemma cFalse: "A ` {λs. False} c {Q}"
apply (rule cThin)
apply (rule hoare_relative_complete)
apply (auto simp add: valid_def)
done

lemma eFalse: "A `e {λs. False} e {Q}"
apply (rule eThin)
apply (rule ehoare_relative_complete)
apply (auto simp add: evalid_def)
done

end

8 Example
theory Example
imports Equivalence
begin

class Nat {

Nat pred;

Nat suc()
{ Nat n = new Nat(); n.pred = this; return n; }

Nat eq(Nat n)
{ if (this.pred != null) if (n.pred != null) return this.pred.eq(n.pred);

else return n.pred; // false
else if (n.pred != null) return this.pred; // false

else return this.suc(); // true
}

Nat add(Nat n)
{ if (this.pred != null) return this.pred.add(n.suc()); else return n; }

public static void main(String[] args) // test x+1=1+x
{

Nat one = new Nat().suc();
Nat x = new Nat().suc().suc().suc().suc();
Nat ok = x.suc().eq(x.add(one));
System.out.println(ok != null);

}
}

axiomatization where
This_neq_Par [simp]: "This 6= Par" and
Res_neq_This [simp]: "Res 6= This"

8.1 Program representation
axiomatization

N :: cname (‹Nat›)

21

and pred :: fname
and suc add :: mname
and any :: vname

abbreviation
dummy :: expr (‹<>›)
where "<> == LAcc any"

abbreviation
one :: expr
where "one == {Nat}new Nat..suc(<>)"

The following properties could be derived from a more complete program model, which we leave out
for laziness.
axiomatization where Nat_no_subclasses [simp]: "D �C Nat = (D=Nat)"

axiomatization where method_Nat_add [simp]: "method Nat add = Some
(| par=Class Nat, res=Class Nat, lcl=[],
bdy= If((LAcc This..pred))

(Res :== {Nat}(LAcc This..pred)..add({Nat}LAcc Par..suc(<>)))
Else Res :== LAcc Par |)"

axiomatization where method_Nat_suc [simp]: "method Nat suc = Some
(| par=NT, res=Class Nat, lcl=[],
bdy= Res :== new Nat;; LAcc Res..pred :== LAcc This |)"

axiomatization where field_Nat [simp]: "field Nat = Map.empty(pred 7→Class Nat)"

lemma init_locs_Nat_add [simp]: "init_locs Nat add s = s"
by (simp add: init_locs_def init_vars_def)

lemma init_locs_Nat_suc [simp]: "init_locs Nat suc s = s"
by (simp add: init_locs_def init_vars_def)

lemma upd_obj_new_obj_Nat [simp]:
"upd_obj a pred v (new_obj a Nat s) = hupd(a 7→(Nat, Map.empty(pred 7→v))) s"

by (simp add: new_obj_def init_vars_def upd_obj_def Let_def)

8.2 “atleast” relation for interpretation of Nat “values”
primrec Nat_atleast :: "state ⇒ val ⇒ nat ⇒ bool" (‹_:_ ≥ _› [51, 51, 51] 50) where

"s:x≥0 = (x 6=Null)"
| "s:x≥Suc n = (∃ a. x=Addr a ∧ heap s a 6= None ∧ s:get_field s a pred≥n)"

lemma Nat_atleast_lupd [rule_format, simp]:
"∀ s v::val. lupd(x 7→y) s:v ≥ n = (s:v ≥ n)"

apply (induct n)
by auto

lemma Nat_atleast_set_locs [rule_format, simp]:
"∀ s v::val. set_locs l s:v ≥ n = (s:v ≥ n)"

apply (induct n)
by auto

lemma Nat_atleast_del_locs [rule_format, simp]:
"∀ s v::val. del_locs s:v ≥ n = (s:v ≥ n)"

apply (induct n)
by auto

22

lemma Nat_atleast_NullD [rule_format]: "s:Null ≥ n −→ False"
apply (induct n)
by auto

lemma Nat_atleast_pred_NullD [rule_format]:
"Null = get_field s a pred =⇒ s:Addr a ≥ n −→ n = 0"
apply (induct n)
by (auto dest: Nat_atleast_NullD)

lemma Nat_atleast_mono [rule_format]:
"∀ a. s:get_field s a pred ≥ n −→ heap s a 6= None −→ s:Addr a ≥ n"
apply (induct n)
by auto

lemma Nat_atleast_newC [rule_format]:
"heap s aa = None =⇒ ∀ v::val. s:v ≥ n −→ hupd(aa 7→obj) s:v ≥ n"

apply (induct n)
apply auto
apply (case_tac "aa=a")
apply auto
apply (tactic "smp_tac context 1 1")
apply (case_tac "aa=a")
apply auto
done

8.3 Proof(s) using the Hoare logic
theorem add_homomorph_lb:

"{} ` {λs. s:s<This> ≥ X ∧ s:s<Par> ≥ Y} Meth(Nat,add) {λs. s:s<Res> ≥ X+Y}"
apply (rule hoare_ehoare.Meth)
apply clarsimp
apply (rule_tac P’= "λZ s. (s:s<This> ≥ fst Z ∧ s:s<Par> ≥ snd Z) ∧ D=Nat" and

Q’= "λZ s. s:s<Res> ≥ fst Z+snd Z" in AxSem.Conseq)
prefer 2
apply (clarsimp simp add: init_locs_def init_vars_def)
apply rule
apply (case_tac "D = Nat", simp_all, rule_tac [2] cFalse)
apply (rule_tac P = "λZ Cm s. s:s<This> ≥ fst Z ∧ s:s<Par> ≥ snd Z" in AxSem.Impl1)
apply (clarsimp simp add: body_def)
apply (rename_tac n m)
apply (rule_tac Q = "λv s. (s:s<This> ≥ n ∧ s:s<Par> ≥ m) ∧

(∃ a. s<This> = Addr a ∧ v = get_field s a pred)" in hoare_ehoare.Cond)
apply (rule hoare_ehoare.FAcc)
apply (rule eConseq1)
apply (rule hoare_ehoare.LAcc)
apply fast
apply auto
prefer 2
apply (rule hoare_ehoare.LAss)
apply (rule eConseq1)
apply (rule hoare_ehoare.LAcc)
apply (auto dest: Nat_atleast_pred_NullD)
apply (rule hoare_ehoare.LAss)
apply (rule_tac

Q = "λv s. (∀ m. n = Suc m −→ s:v ≥ m) ∧ s:s<Par> ≥ m" and
R = "λT P s. (∀ m. n = Suc m −→ s:T ≥ m) ∧ s:P ≥ Suc m"
in hoare_ehoare.Call)

apply (rule hoare_ehoare.FAcc)
apply (rule eConseq1)

23

apply (rule hoare_ehoare.LAcc)
apply clarify
apply (drule sym, rotate_tac -1, frule (1) trans)
apply simp
prefer 2
apply clarsimp
apply (rule hoare_ehoare.Meth)
apply clarsimp
apply (case_tac "D = Nat", simp_all, rule_tac [2] cFalse)
apply (rule AxSem.Conseq)
apply rule
apply (rule hoare_ehoare.Asm)
apply (rule_tac a = "((case n of 0 ⇒ 0 | Suc m ⇒ m),m+1)" in UN_I, rule+)
apply (clarsimp split: nat.split_asm dest!: Nat_atleast_mono)
apply rule
apply (rule hoare_ehoare.Call)
apply (rule hoare_ehoare.LAcc)
apply rule
apply (rule hoare_ehoare.LAcc)
apply clarify
apply (rule hoare_ehoare.Meth)
apply clarsimp
apply (case_tac "D = Nat", simp_all, rule_tac [2] cFalse)
apply (rule AxSem.Impl1)
apply (clarsimp simp add: body_def)
apply (rule hoare_ehoare.Comp)
prefer 2
apply (rule hoare_ehoare.FAss)
prefer 2
apply rule
apply (rule hoare_ehoare.LAcc)
apply (rule hoare_ehoare.LAcc)
apply (rule hoare_ehoare.LAss)
apply (rule eConseq1)
apply (rule hoare_ehoare.NewC)
apply (auto dest!: new_AddrD elim: Nat_atleast_newC)
done

end

24

References

[1] T. Nipkow, D. v. Oheimb, and C. Pusch. µJava: Embedding a programming language in a the-
orem prover. In F. L. Bauer and R. Steinbrüggen, editors, Foundations of Secure Computation,
volume 175 of NATO Science Series F: Computer and Systems Sciences, pages 117–144. IOS
Press, 2000.

[2] D. v. Oheimb and T. Nipkow. Hoare logic for NanoJava: Auxiliary variables, side effects and
virtual methods revisited, 2002. Submitted for publication.

[3] D. von Oheimb. Hoare logic for Java in Isabelle/HOL. Concurrency: Practice and Experience,
598:??–??+43, 2001. https://isabelle.in.tum.de/Bali/papers/CPE01.html, to appear.

https://isabelle.in.tum.de/Bali/papers/CPE01.html

	Statements and expression emulations
	Types, class Declarations, and whole programs
	Type relations
	Declarations and properties not used in the meta theory

	Program State
	Properties not used in the meta theory

	Operational Evaluation Semantics
	Axiomatic Semantics
	Hoare Logic Rules
	Fully polymorphic variants, required for Example only
	Derived Rules

	Equivalence of Operational and Axiomatic Semantics
	Validity
	Soundness
	(Relative) Completeness

	Example
	Program representation
	``atleast'' relation for interpretation of Nat ``values''
	Proof(s) using the Hoare logic

