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Abstract

These theories define NanoJava, a very small fragment of the programming language Java (with
essentially just classes) derived from the one given in [1]. For NanoJava, an operational semantics
is given as well as a Hoare logic, which is proved both sound and (relatively) complete. The Hoare
logic supports side-effecting expressions and implements a new approach for handling auxiliary
variables. A more complex Hoare logic covering a much larger subset of Java is described in [3].
See also the homepage of project Bali at https://isabelle.in.tum.de/Bali/ and the confer-
ence version of this document [2].
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1 Statements and expression emulations
theory Term imports Main begin

typedecl cname — class name
typedecl mname — method name
typedecl fname — field name
typedecl vname — variable name

axiomatization
This — This pointer
Par — method parameter
Res :: vname — method result

— Inequality axioms are not required for the meta theory.

datatype stmt
= Skip — empty statement
| Comp stmt stmt (‹_;; _› [91,90 ] 90)
| Cond expr stmt stmt (‹If ’(_’) _ Else _› [ 3,91,91] 91)
| Loop vname stmt (‹While ’(_’) _› [ 3,91 ] 91)
| LAss vname expr (‹_ :== _› [99, 95] 94) — local assignment
| FAss expr fname expr (‹_.._:==_› [95,99,95] 94) — field assignment
| Meth "cname × mname" — virtual method
| Impl "cname × mname" — method implementation

and expr
= NewC cname (‹new _› [ 99] 95) — object creation
| Cast cname expr — type cast
| LAcc vname — local access
| FAcc expr fname (‹_.._› [95,99] 95) — field access
| Call cname expr mname expr

(‹{_}_.._’(_’)› [99,95,99,95] 95) — method call

end

2 Types, class Declarations, and whole programs
theory Decl imports Term begin

datatype ty
= NT — null type
| Class cname — class type

Field declaration
type_synonym fdecl

= "fname × ty"

record methd
= par :: ty

res :: ty
lcl ::"(vname × ty) list"
bdy :: stmt

Method declaration
type_synonym mdecl

= "mname × methd"

record "class"
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= super :: cname
flds ::"fdecl list"
methods ::"mdecl list"

Class declaration
type_synonym cdecl

= "cname × class"

type_synonym prog
= "cdecl list"

translations
(type) "fdecl" ↽ (type) "fname × ty"
(type) "mdecl" ↽ (type) "mname × ty × ty × stmt"
(type) "class" ↽ (type) "cname × fdecl list × mdecl list"
(type) "cdecl" ↽ (type) "cname × class"
(type) "prog " ↽ (type) "cdecl list"

axiomatization
Prog :: prog — program as a global value

and
Object :: cname — name of root class

definition "class" :: "cname ⇀ class" where
"class ≡ map_of Prog"

definition is_class :: "cname => bool" where
"is_class C ≡ class C 6= None"

lemma finite_is_class: "finite {C. is_class C}"
apply (unfold is_class_def class_def)
apply (fold dom_def)
apply (rule finite_dom_map_of)
done

end

3 Type relations
theory TypeRel
imports Decl
begin

Direct subclass relation
definition subcls1 :: "(cname × cname) set"
where

"subcls1 ≡ {(C,D). C 6=Object ∧ (∃ c. class C = Some c ∧ super c=D)}"

abbreviation
subcls1_syntax :: "[cname, cname] => bool" (‹_ ≺C1 _› [71,71] 70)
where "C ≺C1 D == (C,D) ∈ subcls1"

abbreviation
subcls_syntax :: "[cname, cname] => bool" (‹_ �C _› [71,71] 70)
where "C �C D ≡ (C,D) ∈ subcls1∗"
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3.1 Declarations and properties not used in the meta theory

Widening, viz. method invocation conversion
inductive

widen :: "ty => ty => bool" (‹_ � _› [71,71] 70)
where

refl [intro!, simp]: "T � T"
| subcls: "C�C D =⇒ Class C � Class D"
| null [intro!]: "NT � R"

lemma subcls1D:
"C≺C1D =⇒ C 6= Object ∧ (∃ c. class C = Some c ∧ super c=D)"

apply (unfold subcls1_def)
apply auto
done

lemma subcls1I: " [[class C = Some m; super m = D; C 6= Object ]] =⇒ C≺C1D"
apply (unfold subcls1_def)
apply auto
done

lemma subcls1_def2:
"subcls1 =

(SIGMA C: {C. is_class C} . {D. C 6=Object ∧ super (the (class C)) = D})"
apply (unfold subcls1_def is_class_def)
apply (auto split:if_split_asm)
done

lemma finite_subcls1: "finite subcls1"
apply(subst subcls1_def2)
apply(rule finite_SigmaI [OF finite_is_class])
apply(rule_tac B = "{super (the (class C))}" in finite_subset)
apply auto
done

definition ws_prog :: "bool" where
"ws_prog ≡ ∀ (C,c)∈set Prog. C 6=Object −→

is_class (super c) ∧ (super c,C)/∈subcls1+"

lemma ws_progD: " [[class C = Some c; C 6=Object; ws_prog ]] =⇒
is_class (super c) ∧ (super c,C)/∈subcls1+"

apply (unfold ws_prog_def class_def)
apply (drule_tac map_of_SomeD)
apply auto
done

lemma subcls1_irrefl_lemma1: "ws_prog =⇒ subcls1−1 ∩ subcls1+ = {}"
by (fast dest: subcls1D ws_progD)

lemma irrefl_tranclI’: "r−1 ∩ r+ = {} =⇒ ∀ x. (x, x) /∈ r+"
by(blast elim: tranclE dest: trancl_into_rtrancl)

lemmas subcls1_irrefl_lemma2 = subcls1_irrefl_lemma1 [THEN irrefl_tranclI’]

lemma subcls1_irrefl: " [[(x, y) ∈ subcls1; ws_prog ]] =⇒ x 6= y"
apply (rule irrefl_trancl_rD)
apply (rule subcls1_irrefl_lemma2)
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apply auto
done

lemmas subcls1_acyclic = subcls1_irrefl_lemma2 [THEN acyclicI]

lemma wf_subcls1: "ws_prog =⇒ wf (subcls1−1)"
by (auto intro: finite_acyclic_wf_converse finite_subcls1 subcls1_acyclic)

definition class_rec ::"cname ⇒ (class ⇒ (’a × ’b) list) ⇒ (’a ⇀ ’b)"
where

"class_rec ≡ wfrec (subcls1−1) (λrec C f.
case class C of None ⇒ undefined
| Some m ⇒ (if C = Object then Map.empty else rec (super m) f) ++ map_of (f m))"

lemma class_rec: " [[class C = Some m; ws_prog ]] =⇒
class_rec C f = (if C = Object then Map.empty else class_rec (super m) f) ++

map_of (f m)"
apply (drule wf_subcls1)
apply (subst def_wfrec[OF class_rec_def], auto)
apply (subst cut_apply, auto intro: subcls1I)
done

— Methods of a class, with inheritance and hiding
definition "method" :: "cname => (mname ⇀ methd)" where

"method C ≡ class_rec C methods"

lemma method_rec: " [[class C = Some m; ws_prog ]] =⇒
method C = (if C=Object then Map.empty else method (super m)) ++ map_of (methods m)"
apply (unfold method_def)
apply (erule (1) class_rec [THEN trans])
apply simp
done

— Fields of a class, with inheritance and hiding
definition field :: "cname => (fname ⇀ ty)" where

"field C ≡ class_rec C flds"

lemma flds_rec: " [[class C = Some m; ws_prog ]] =⇒
field C = (if C=Object then Map.empty else field (super m)) ++ map_of (flds m)"
apply (unfold field_def)
apply (erule (1) class_rec [THEN trans])
apply simp
done

end

4 Program State
theory State imports TypeRel begin

definition body :: "cname × mname => stmt" where
"body ≡ λ(C,m). bdy (the (method C m))"

Locations, i.e. abstract references to objects
typedecl loc

datatype val
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= Null — null reference
| Addr loc — address, i.e. location of object

type_synonym fields
= "(fname ⇀ val)"

type_synonym
obj = "cname × fields"

translations
(type) "fields" ↽ (type) "fname => val option"
(type) "obj" ↽ (type) "cname × fields"

definition init_vars :: "(’a ⇀ ’b) => (’a ⇀ val)" where
"init_vars m == map_option (λT. Null) o m"

private:
type_synonym heap = "loc ⇀ obj"
type_synonym locals = "vname ⇀ val"

private:
record state

= heap :: heap
locals :: locals

translations
(type) "heap" ↽ (type) "loc => obj option"
(type) "locals" ↽ (type) "vname => val option"
(type) "state" ↽ (type) "(|heap :: heap, locals :: locals|)"

definition del_locs :: "state => state" where
"del_locs s ≡ s (| locals := Map.empty |)"

definition init_locs :: "cname => mname => state => state" where
"init_locs C m s ≡ s (| locals := locals s ++

init_vars (map_of (lcl (the (method C m)))) |)"

The first parameter of set_locs is of type state rather than locals in order to keep locals private.
definition set_locs :: "state => state => state" where
"set_locs s s’ ≡ s’ (| locals := locals s |)"

definition get_local :: "state => vname => val" (‹_<_>› [99,0] 99) where
"get_local s x ≡ the (locals s x)"

— local function:
definition get_obj :: "state => loc => obj" where
"get_obj s a ≡ the (heap s a)"

definition obj_class :: "state => loc => cname" where
"obj_class s a ≡ fst (get_obj s a)"

definition get_field :: "state => loc => fname => val" where
"get_field s a f ≡ the (snd (get_obj s a) f)"

— local function:
definition hupd :: "loc => obj => state => state" (‹hupd’(_7→_’)› [10,10] 1000) where
"hupd a obj s ≡ s (| heap := ((heap s)(a 7→obj))|)"
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definition lupd :: "vname => val => state => state" (‹lupd’(_7→_’)› [10,10] 1000) where
"lupd x v s ≡ s (| locals := ((locals s)(x 7→v ))|)"

definition new_obj :: "loc => cname => state => state" where
"new_obj a C ≡ hupd(a 7→(C,init_vars (field C)))"

definition upd_obj :: "loc => fname => val => state => state" where
"upd_obj a f v s ≡ let (C,fs) = the (heap s a) in hupd(a 7→(C,fs(f 7→v))) s"

definition new_Addr :: "state => val" where
"new_Addr s == SOME v. (∃ a. v = Addr a ∧ (heap s) a = None) | v = Null"

4.1 Properties not used in the meta theory
lemma locals_upd_id [simp]: "s(|locals := locals s |) = s"
by simp

lemma lupd_get_local_same [simp]: "lupd(x 7→v) s<x> = v"
by (simp add: lupd_def get_local_def)

lemma lupd_get_local_other [simp]: "x 6= y =⇒ lupd(x 7→v) s<y> = s<y>"
apply (drule not_sym)
by (simp add: lupd_def get_local_def)

lemma get_field_lupd [simp]:
"get_field (lupd(x 7→y) s) a f = get_field s a f"

by (simp add: lupd_def get_field_def get_obj_def)

lemma get_field_set_locs [simp]:
"get_field (set_locs l s) a f = get_field s a f"

by (simp add: lupd_def get_field_def set_locs_def get_obj_def)

lemma get_field_del_locs [simp]:
"get_field (del_locs s) a f = get_field s a f"

by (simp add: lupd_def get_field_def del_locs_def get_obj_def)

lemma new_obj_get_local [simp]: "new_obj a C s <x> = s<x>"
by (simp add: new_obj_def hupd_def get_local_def)

lemma heap_lupd [simp]: "heap (lupd(x 7→y) s) = heap s"
by (simp add: lupd_def)

lemma heap_hupd_same [simp]: "heap (hupd(a 7→obj) s) a = Some obj"
by (simp add: hupd_def)

lemma heap_hupd_other [simp]: "aa 6= a =⇒ heap (hupd(aa 7→obj) s) a = heap s a"
apply (drule not_sym)
by (simp add: hupd_def)

lemma hupd_hupd [simp]: "hupd(a 7→obj) (hupd(a 7→obj’) s) = hupd(a 7→obj) s"
by (simp add: hupd_def)

lemma heap_del_locs [simp]: "heap (del_locs s) = heap s"
by (simp add: del_locs_def)

lemma heap_set_locs [simp]: "heap (set_locs l s) = heap s"
by (simp add: set_locs_def)

lemma hupd_lupd [simp]:
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"hupd(a 7→obj) (lupd(x 7→y) s) = lupd(x 7→y) (hupd(a 7→obj) s)"
by (simp add: hupd_def lupd_def)

lemma hupd_del_locs [simp]:
"hupd(a 7→obj) (del_locs s) = del_locs (hupd(a 7→obj) s)"

by (simp add: hupd_def del_locs_def)

lemma new_obj_lupd [simp]:
"new_obj a C (lupd(x 7→y) s) = lupd(x 7→y) (new_obj a C s)"

by (simp add: new_obj_def)

lemma new_obj_del_locs [simp]:
"new_obj a C (del_locs s) = del_locs (new_obj a C s)"

by (simp add: new_obj_def)

lemma upd_obj_lupd [simp]:
"upd_obj a f v (lupd(x 7→y) s) = lupd(x 7→y) (upd_obj a f v s)"

by (simp add: upd_obj_def Let_def split_beta)

lemma upd_obj_del_locs [simp]:
"upd_obj a f v (del_locs s) = del_locs (upd_obj a f v s)"

by (simp add: upd_obj_def Let_def split_beta)

lemma get_field_hupd_same [simp]:
"get_field (hupd(a 7→(C, fs)) s) a = the ◦ fs"

apply (rule ext)
by (simp add: get_field_def get_obj_def)

lemma get_field_hupd_other [simp]:
"aa 6= a =⇒ get_field (hupd(aa 7→obj) s) a = get_field s a"

apply (rule ext)
by (simp add: get_field_def get_obj_def)

lemma new_AddrD:
"new_Addr s = v =⇒ (∃ a. v = Addr a ∧ heap s a = None) | v = Null"
apply (unfold new_Addr_def)
apply (erule subst)
apply (rule someI)
apply (rule disjI2)
apply (rule HOL.refl)
done

end

5 Operational Evaluation Semantics
theory OpSem imports State begin

inductive
exec :: "[state,stmt, nat,state] => bool" (‹_ -_-_→ _› [98,90, 65,98] 89)
and eval :: "[state,expr,val,nat,state] => bool" (‹_ -_�_-_→ _›[98,95,99,65,98] 89)

where
Skip: " s -Skip-n→ s"

| Comp: "[| s0 -c1-n→ s1; s1 -c2-n→ s2 |] ==>
s0 -c1;; c2-n→ s2"

| Cond: "[| s0 -e�v-n→ s1; s1 -(if v 6=Null then c1 else c2)-n→ s2 |] ==>
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s0 -If(e) c1 Else c2-n→ s2"

| LoopF:" s0<x> = Null ==>
s0 -While(x) c-n→ s0"

| LoopT:"[| s0<x> 6= Null; s0 -c-n→ s1; s1 -While(x) c-n→ s2 |] ==>
s0 -While(x) c-n→ s2"

| LAcc: " s -LAcc x�s<x>-n→ s"

| LAss: " s -e�v-n→ s’ ==>
s -x:==e-n→ lupd(x 7→v) s’"

| FAcc: " s -e�Addr a-n→ s’ ==>
s -e..f�get_field s’ a f-n→ s’"

| FAss: "[| s0 -e1�Addr a-n→ s1; s1 -e2�v-n→ s2 |] ==>
s0 -e1..f:==e2-n→ upd_obj a f v s2"

| NewC: " new_Addr s = Addr a ==>
s -new C�Addr a-n→ new_obj a C s"

| Cast: "[| s -e�v-n→ s’;
case v of Null => True | Addr a => obj_class s’ a �C C |] ==>
s -Cast C e�v-n→ s’"

| Call: "[| s0 -e1�a-n→ s1; s1 -e2�p-n→ s2;
lupd(This 7→a)(lupd(Par 7→p)(del_locs s2)) -Meth (C,m)-n→ s3

|] ==> s0 -{C}e1..m(e2)�s3<Res>-n→ set_locs s2 s3"

| Meth: "[| s<This> = Addr a; D = obj_class s a; D�C C;
init_locs D m s -Impl (D,m)-n→ s’ |] ==>
s -Meth (C,m)-n→ s’"

| Impl: " s -body Cm- n→ s’ ==>
s -Impl Cm-Suc n→ s’"

inductive_cases exec_elim_cases’:
"s -Skip -n→ t"
"s -c1;; c2 -n→ t"
"s -If(e) c1 Else c2-n→ t"
"s -While(x) c -n→ t"
"s -x:==e -n→ t"
"s -e1..f:==e2 -n→ t"

inductive_cases Meth_elim_cases: "s -Meth Cm -n→ t"
inductive_cases Impl_elim_cases: "s -Impl Cm -n→ t"
lemmas exec_elim_cases = exec_elim_cases’ Meth_elim_cases Impl_elim_cases
inductive_cases eval_elim_cases:

"s -new C �v-n→ t"
"s -Cast C e �v-n→ t"
"s -LAcc x �v-n→ t"
"s -e..f �v-n→ t"
"s -{C}e1..m(e2) �v-n→ t"

lemma exec_eval_mono [rule_format]:
"(s -c -n→ t −→ (∀ m. n ≤ m −→ s -c -m→ t)) ∧
(s -e�v-n→ t −→ (∀ m. n ≤ m −→ s -e�v-m→ t))"

apply (rule exec_eval.induct)
prefer 14



11

apply clarify
apply (rename_tac n)
apply (case_tac n)
apply (blast intro:exec_eval.intros)+
done
lemmas exec_mono = exec_eval_mono [THEN conjunct1, rule_format]
lemmas eval_mono = exec_eval_mono [THEN conjunct2, rule_format]

lemma exec_exec_max: " [[s1 -c1- n1 → t1 ; s2 -c2- n2→ t2]] =⇒
s1 -c1-max n1 n2→ t1 ∧ s2 -c2-max n1 n2→ t2"

by (fast intro: exec_mono max.cobounded1 max.cobounded2)

lemma eval_exec_max: " [[s1 -c- n1 → t1 ; s2 -e�v- n2→ t2]] =⇒
s1 -c-max n1 n2→ t1 ∧ s2 -e�v-max n1 n2→ t2"

by (fast intro: eval_mono exec_mono max.cobounded1 max.cobounded2)

lemma eval_eval_max: " [[s1 -e1�v1- n1 → t1 ; s2 -e2�v2- n2→ t2]] =⇒
s1 -e1�v1-max n1 n2→ t1 ∧ s2 -e2�v2-max n1 n2→ t2"

by (fast intro: eval_mono max.cobounded1 max.cobounded2)

lemma eval_eval_exec_max:
" [[s1 -e1�v1-n1→ t1; s2 -e2�v2-n2→ t2; s3 -c-n3→ t3]] =⇒

s1 -e1�v1-max (max n1 n2) n3→ t1 ∧
s2 -e2�v2-max (max n1 n2) n3→ t2 ∧
s3 -c -max (max n1 n2) n3→ t3"

apply (drule (1) eval_eval_max, erule thin_rl)
by (fast intro: exec_mono eval_mono max.cobounded1 max.cobounded2)

lemma Impl_body_eq: "(λt. ∃ n. Z -Impl M-n→ t) = (λt. ∃ n. Z -body M-n→ t)"
apply (rule ext)
apply (fast elim: exec_elim_cases intro: exec_eval.Impl)
done

end

6 Axiomatic Semantics
theory AxSem imports State begin

type_synonym assn = "state => bool"
type_synonym vassn = "val => assn"
type_synonym triple = "assn × stmt × assn"
type_synonym etriple = "assn × expr × vassn"
translations

(type) "assn" ↽ (type) "state => bool"
(type) "vassn" ↽ (type) "val => assn"
(type) "triple" ↽ (type) "assn × stmt × assn"
(type) "etriple" ↽ (type) "assn × expr × vassn"

6.1 Hoare Logic Rules
inductive
hoare :: "[triple set, triple set] => bool" (‹_ |`/ _› [61, 61] 60)
and ehoare :: "[triple set, etriple] => bool" (‹_ |`e/ _› [61, 61] 60)
and hoare1 :: "[triple set, assn,stmt,assn] => bool"

(‹_ `/ ({(1_)}/ (_)/ {(1_)})› [61, 3, 90, 3] 60)
and ehoare1 :: "[triple set, assn,expr,vassn]=> bool"

(‹_ `e/ ({(1_)}/ (_)/ {(1_)})› [61, 3, 90, 3] 60)
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where

"A ` {P}c{Q} ≡ A |` {(P,c,Q)}"
| "A `e {P}e{Q} ≡ A |`e (P,e,Q)"

| Skip: "A ` {P} Skip {P}"

| Comp: "[| A ` {P} c1 {Q}; A ` {Q} c2 {R} |] ==> A ` {P} c1;;c2 {R}"

| Cond: "[| A `e {P} e {Q};
∀ v. A ` {Q v} (if v 6= Null then c1 else c2) {R} |] ==>
A ` {P} If(e) c1 Else c2 {R}"

| Loop: "A ` {λs. P s ∧ s<x> 6= Null} c {P} ==>
A ` {P} While(x) c {λs. P s ∧ s<x> = Null}"

| LAcc: "A `e {λs. P (s<x>) s} LAcc x {P}"

| LAss: "A `e {P} e {λv s. Q (lupd(x 7→v) s)} ==>
A ` {P} x:==e {Q}"

| FAcc: "A `e {P} e {λv s. ∀ a. v=Addr a --> Q (get_field s a f) s} ==>
A `e {P} e..f {Q}"

| FAss: "[| A `e {P} e1 {λv s. ∀ a. v=Addr a --> Q a s};
∀ a. A `e {Q a} e2 {λv s. R (upd_obj a f v s)} |] ==>

A ` {P} e1..f:==e2 {R}"

| NewC: "A `e {λs. ∀ a. new_Addr s = Addr a --> P (Addr a) (new_obj a C s)}
new C {P}"

| Cast: "A `e {P} e {λv s. (case v of Null => True
| Addr a => obj_class s a �C C) --> Q v s} ==>

A `e {P} Cast C e {Q}"

| Call: "[| A `e {P} e1 {Q}; ∀ a. A `e {Q a} e2 {R a};
∀ a p ls. A ` {λs’. ∃ s. R a p s ∧ ls = s ∧

s’ = lupd(This 7→a)(lupd(Par 7→p)(del_locs s))}
Meth (C,m) {λs. S (s<Res>) (set_locs ls s)} |] ==>

A `e {P} {C}e1..m(e2) {S}"

| Meth: "∀ D. A ` {λs’. ∃ s a. s<This> = Addr a ∧ D = obj_class s a ∧ D �C C ∧
P s ∧ s’ = init_locs D m s}

Impl (D,m) {Q} ==>
A ` {P} Meth (C,m) {Q}"

—
⋃

Z instead of ∀ Z in the conclusion and
Z restricted to type state due to limitations of the inductive package
| Impl: "∀ Z::state. A∪ (

⋃
Z. (λCm. (P Z Cm, Impl Cm, Q Z Cm))‘Ms) |`
(λCm. (P Z Cm, body Cm, Q Z Cm))‘Ms ==>

A |` (λCm. (P Z Cm, Impl Cm, Q Z Cm))‘Ms"

— structural rules

| Asm: " a ∈ A ==> A |` {a}"

| ConjI: " ∀ c ∈ C. A |` {c} ==> A |` C"

| ConjE: "[|A |` C; c ∈ C |] ==> A |` {c}"
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— Z restricted to type state due to limitations of the inductive package
| Conseq:"[| ∀ Z::state. A ` {P’ Z} c {Q’ Z};

∀ s t. (∀ Z. P’ Z s --> Q’ Z t) --> (P s --> Q t) |] ==>
A ` {P} c {Q }"

— Z restricted to type state due to limitations of the inductive package
| eConseq:"[| ∀ Z::state. A `e {P’ Z} e {Q’ Z};

∀ s v t. (∀ Z. P’ Z s --> Q’ Z v t) --> (P s --> Q v t) |] ==>
A `e {P} e {Q }"

6.2 Fully polymorphic variants, required for Example only
axiomatization where

Conseq:"[| ∀ Z. A ` {P’ Z} c {Q’ Z};
∀ s t. (∀ Z. P’ Z s --> Q’ Z t) --> (P s --> Q t) |] ==>

A ` {P} c {Q }"

axiomatization where
eConseq:"[| ∀ Z. A `e {P’ Z} e {Q’ Z};

∀ s v t. (∀ Z. P’ Z s --> Q’ Z v t) --> (P s --> Q v t) |] ==>
A `e {P} e {Q }"

axiomatization where
Impl: "∀ Z. A∪ (

⋃
Z. (λCm. (P Z Cm, Impl Cm, Q Z Cm))‘Ms) |`

(λCm. (P Z Cm, body Cm, Q Z Cm))‘Ms ==>
A |` (λCm. (P Z Cm, Impl Cm, Q Z Cm))‘Ms"

6.3 Derived Rules
lemma Conseq1: " [[A ` {P’} c {Q}; ∀ s. P s −→ P’ s ]] =⇒ A ` {P} c {Q}"
apply (rule hoare_ehoare.Conseq)
apply (rule allI, assumption)
apply fast
done

lemma Conseq2: " [[A ` {P} c {Q’}; ∀ t. Q’ t −→ Q t ]] =⇒ A ` {P} c {Q}"
apply (rule hoare_ehoare.Conseq)
apply (rule allI, assumption)
apply fast
done

lemma eConseq1: " [[A `e {P’} e {Q}; ∀ s. P s −→ P’ s ]] =⇒ A `e {P} e {Q}"
apply (rule hoare_ehoare.eConseq)
apply (rule allI, assumption)
apply fast
done

lemma eConseq2: " [[A `e {P} e {Q’}; ∀ v t. Q’ v t −→ Q v t ]] =⇒ A `e {P} e {Q}"
apply (rule hoare_ehoare.eConseq)
apply (rule allI, assumption)
apply fast
done

lemma Weaken: " [[A |` C’; C ⊆ C’]] =⇒ A |` C"
apply (rule hoare_ehoare.ConjI)
apply clarify
apply (drule hoare_ehoare.ConjE)
apply fast
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apply assumption
done

lemma Thin_lemma:
"(A’ |` C −→ (∀ A. A’ ⊆ A −→ A |` C )) ∧
(A’ `e {P} e {Q} −→ (∀ A. A’ ⊆ A −→ A `e {P} e {Q}))"

apply (rule hoare_ehoare.induct)
apply (tactic "ALLGOALS(EVERY’[clarify_tac context , REPEAT o smp_tac context 1])")
apply (blast intro: hoare_ehoare.Skip)
apply (blast intro: hoare_ehoare.Comp)
apply (blast intro: hoare_ehoare.Cond)
apply (blast intro: hoare_ehoare.Loop)
apply (blast intro: hoare_ehoare.LAcc)
apply (blast intro: hoare_ehoare.LAss)
apply (blast intro: hoare_ehoare.FAcc)
apply (blast intro: hoare_ehoare.FAss)
apply (blast intro: hoare_ehoare.NewC)
apply (blast intro: hoare_ehoare.Cast)
apply (erule hoare_ehoare.Call)
apply (rule, drule spec, erule conjE, tactic "smp_tac context 1 1", assumption)
apply blast
apply (blast intro!: hoare_ehoare.Meth)
apply (blast intro!: hoare_ehoare.Impl)
apply (blast intro!: hoare_ehoare.Asm)
apply (blast intro: hoare_ehoare.ConjI)
apply (blast intro: hoare_ehoare.ConjE)
apply (rule hoare_ehoare.Conseq)
apply (rule, drule spec, erule conjE, tactic "smp_tac context 1 1", assumption+)
apply (rule hoare_ehoare.eConseq)
apply (rule, drule spec, erule conjE, tactic "smp_tac context 1 1", assumption+)
done

lemma cThin: " [[A’ |` C; A’ ⊆ A ]] =⇒ A |` C"
by (erule (1) conjunct1 [OF Thin_lemma, rule_format])

lemma eThin: " [[A’ `e {P} e {Q}; A’ ⊆ A ]] =⇒ A `e {P} e {Q}"
by (erule (1) conjunct2 [OF Thin_lemma, rule_format])

lemma Union: "A |` (
⋃

Z. C Z) = (∀ Z. A |` C Z)"
by (auto intro: hoare_ehoare.ConjI hoare_ehoare.ConjE)

lemma Impl1’:
" [[∀ Z::state. A∪ (

⋃
Z. (λCm. (P Z Cm, Impl Cm, Q Z Cm))‘Ms) |`

(λCm. (P Z Cm, body Cm, Q Z Cm))‘Ms;
Cm ∈ Ms ]] =⇒

A ` {P Z Cm} Impl Cm {Q Z Cm}"
apply (drule AxSem.Impl)
apply (erule Weaken)
apply (auto del: image_eqI intro: rev_image_eqI)
done

lemmas Impl1 = AxSem.Impl [of _ _ _ "{Cm}", simplified] for Cm

end
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7 Equivalence of Operational and Axiomatic Semantics
theory Equivalence imports OpSem AxSem begin

7.1 Validity
definition valid :: "[assn,stmt, assn] => bool" (‹|= {(1_)}/ (_)/ {(1_)}› [3,90,3] 60) where
" |= {P} c {Q} ≡ ∀ s t. P s --> (∃ n. s -c -n→ t) --> Q t"

definition evalid :: "[assn,expr,vassn] => bool" (‹|=e {(1_)}/ (_)/ {(1_)}› [3,90,3] 60) where
" |=e {P} e {Q} ≡ ∀ s v t. P s --> (∃ n. s -e�v-n→ t) --> Q v t"

definition nvalid :: "[nat, triple ] => bool" (‹|=_: _› [61,61] 60) where
" |=n: t ≡ let (P,c,Q) = t in ∀ s t. s -c -n→ t --> P s --> Q t"

definition envalid :: "[nat,etriple ] => bool" (‹|=_:e _› [61,61] 60) where
" |=n:e t ≡ let (P,e,Q) = t in ∀ s v t. s -e�v-n→ t --> P s --> Q v t"

definition nvalids :: "[nat, triple set] => bool" (‹||=_: _› [61,61] 60) where
"||=n: T ≡ ∀ t∈T. |=n: t"

definition cnvalids :: "[triple set,triple set] => bool" (‹_ ||=/ _› [61,61] 60) where
"A ||= C ≡ ∀ n. ||=n: A --> ||=n: C"

definition cenvalid :: "[triple set,etriple ] => bool" (‹_ ||=e/ _›[61,61] 60) where
"A ||=e t ≡ ∀ n. ||=n: A --> |=n:e t"

lemma nvalid_def2: " |=n: (P,c,Q) ≡ ∀ s t. s -c-n→ t −→ P s −→ Q t"
by (simp add: nvalid_def Let_def)

lemma valid_def2: " |= {P} c {Q} = (∀ n. |=n: (P,c,Q))"
apply (simp add: valid_def nvalid_def2)
apply blast
done

lemma envalid_def2: " |=n:e (P,e,Q) ≡ ∀ s v t. s -e�v-n→ t −→ P s −→ Q v t"
by (simp add: envalid_def Let_def)

lemma evalid_def2: " |=e {P} e {Q} = (∀ n. |=n:e (P,e,Q))"
apply (simp add: evalid_def envalid_def2)
apply blast
done

lemma cenvalid_def2:
"A||=e (P,e,Q) = (∀ n. ||=n: A −→ (∀ s v t. s -e�v-n→ t −→ P s −→ Q v t))"

by(simp add: cenvalid_def envalid_def2)

7.2 Soundness
declare exec_elim_cases [elim!] eval_elim_cases [elim!]

lemma Impl_nvalid_0: " |=0: (P,Impl M,Q)"
by (clarsimp simp add: nvalid_def2)

lemma Impl_nvalid_Suc: " |=n: (P,body M,Q) =⇒ |=Suc n: (P,Impl M,Q)"
by (clarsimp simp add: nvalid_def2)

lemma nvalid_SucD: "
∧

t. |=Suc n:t =⇒ |=n:t"
by (force simp add: split_paired_all nvalid_def2 intro: exec_mono)
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lemma nvalids_SucD: "Ball A (nvalid (Suc n)) =⇒ Ball A (nvalid n)"
by (fast intro: nvalid_SucD)

lemma Loop_sound_lemma [rule_format (no_asm)]:
"∀ s t. s -c-n→ t −→ P s ∧ s<x> 6= Null −→ P t =⇒

(s -c0-n0→ t −→ P s −→ c0 = While (x) c −→ n0 = n −→ P t ∧ t<x> = Null)"
apply (rule_tac ?P2.1="%s e v n t. True" in exec_eval.induct [THEN conjunct1])
apply clarsimp+
done

lemma Impl_sound_lemma:
" [[∀ z n. Ball (A ∪ B) (nvalid n) −→ Ball (f z ‘ Ms) (nvalid n);

Cm∈Ms; Ball A (nvalid na); Ball B (nvalid na)]] =⇒ nvalid na (f z Cm)"
by blast

lemma all_conjunct2: "∀ l. P’ l ∧ P l =⇒ ∀ l. P l"
by fast

lemma all3_conjunct2:
"∀ a p l. (P’ a p l ∧ P a p l) =⇒ ∀ a p l. P a p l"

by fast

lemma cnvalid1_eq:
"A ||= {(P,c,Q)} ≡ ∀ n. ||=n: A −→ (∀ s t. s -c-n→ t −→ P s −→ Q t)"

by(simp add: cnvalids_def nvalids_def nvalid_def2)

lemma hoare_sound_main:"
∧

t. (A |` C −→ A ||= C) ∧ (A |`e t −→ A ||=e t)"
apply (tactic "split_all_tac context 1", rename_tac P e Q)
apply (rule hoare_ehoare.induct)

apply (tactic ‹ALLGOALS (REPEAT o dresolve_tac context [@{thm all_conjunct2}, @{thm all3_conjunct2}])›)
apply (tactic ‹ALLGOALS (REPEAT o Rule_Insts.thin_tac context "hoare _ _" [])›)
apply (tactic ‹ALLGOALS (REPEAT o Rule_Insts.thin_tac context "ehoare _ _" [])›)
apply (simp_all only: cnvalid1_eq cenvalid_def2)

apply fast
apply fast

apply fast
apply (clarify,tactic "smp_tac context 1 1",erule(2) Loop_sound_lemma,(rule HOL.refl)+)

apply fast
apply fast

apply fast
apply fast

apply fast
apply fast

apply (clarsimp del: Meth_elim_cases)
apply (force del: Impl_elim_cases)

defer
prefer 4 apply blast

prefer 4 apply blast
apply (simp_all (no_asm_use) only: cnvalids_def nvalids_def)
apply blast

apply blast
apply blast

apply (rule allI)
apply (rule_tac x=Z in spec)
apply (induct_tac "n")
apply (clarify intro!: Impl_nvalid_0)

apply (clarify intro!: Impl_nvalid_Suc)
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apply (drule nvalids_SucD)
apply (simp only: HOL.all_simps)
apply (erule (1) impE)
apply (drule (2) Impl_sound_lemma)
apply blast

apply assumption
done

theorem hoare_sound: "{} ` {P} c {Q} =⇒ |= {P} c {Q}"
apply (simp only: valid_def2)
apply (drule hoare_sound_main [THEN conjunct1, rule_format])
apply (unfold cnvalids_def nvalids_def)
apply fast
done

theorem ehoare_sound: "{} `e {P} e {Q} =⇒ |=e {P} e {Q}"
apply (simp only: evalid_def2)
apply (drule hoare_sound_main [THEN conjunct2, rule_format])
apply (unfold cenvalid_def nvalids_def)
apply fast
done

7.3 (Relative) Completeness
definition MGT :: "stmt => state => triple" where

"MGT c Z ≡ (λs. Z = s, c, λ t. ∃ n. Z -c- n→ t)"

definition MGT e :: "expr => state => etriple" where
"MGT e e Z ≡ (λs. Z = s, e, λv t. ∃ n. Z -e�v-n→ t)"

lemma MGF_implies_complete:
"∀ Z. {} |` { MGT c Z} =⇒ |= {P} c {Q} =⇒ {} ` {P} c {Q}"

apply (simp only: valid_def2)
apply (unfold MGT_def)
apply (erule hoare_ehoare.Conseq)
apply (clarsimp simp add: nvalid_def2)
done

lemma eMGF_implies_complete:
"∀ Z. {} |`e MGT e e Z =⇒ |=e {P} e {Q} =⇒ {} `e {P} e {Q}"

apply (simp only: evalid_def2)
apply (unfold MGT e_def)
apply (erule hoare_ehoare.eConseq)
apply (clarsimp simp add: envalid_def2)
done

declare exec_eval.intros[intro!]

lemma MGF_Loop: "∀ Z. A ` {(=) Z} c {λt. ∃ n. Z -c-n→ t} =⇒
A ` {(=) Z} While (x) c {λt. ∃ n. Z -While (x) c-n→ t}"

apply (rule_tac P’ = "λZ s. (Z,s) ∈ ({(s,t). ∃ n. s<x> 6= Null ∧ s -c-n→ t})∗"
in hoare_ehoare.Conseq)

apply (rule allI)
apply (rule hoare_ehoare.Loop)
apply (erule hoare_ehoare.Conseq)
apply clarsimp
apply (blast intro:rtrancl_into_rtrancl)
apply (erule thin_rl)
apply clarsimp
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apply (erule_tac x = Z in allE)
apply clarsimp
apply (erule converse_rtrancl_induct)
apply blast
apply clarsimp
apply (drule (1) exec_exec_max)
apply (blast del: exec_elim_cases)
done

lemma MGF_lemma: "∀ M Z. A |` {MGT (Impl M) Z} =⇒
(∀ Z. A |` {MGT c Z}) ∧ (∀ Z. A |`e MGT e e Z)"

apply (simp add: MGT_def MGT e_def)
apply (rule stmt_expr.induct)
apply (rule_tac [!] allI)

apply (rule Conseq1 [OF hoare_ehoare.Skip])
apply blast

apply (rule hoare_ehoare.Comp)
apply (erule spec)
apply (erule hoare_ehoare.Conseq)
apply clarsimp
apply (drule (1) exec_exec_max)
apply blast

apply (erule thin_rl)
apply (rule hoare_ehoare.Cond)
apply (erule spec)
apply (rule allI)
apply (simp)
apply (rule conjI)
apply (rule impI, erule hoare_ehoare.Conseq, clarsimp, drule (1) eval_exec_max,

erule thin_rl, erule thin_rl, force)+

apply (erule MGF_Loop)

apply (erule hoare_ehoare.eConseq [THEN hoare_ehoare.LAss])
apply fast

apply (erule thin_rl)
apply (rename_tac expr1 u v Z, rule_tac Q = "λa s. ∃ n. Z -expr1�Addr a-n→ s" in hoare_ehoare.FAss)
apply (drule spec)
apply (erule eConseq2)
apply fast
apply (rule allI)
apply (erule hoare_ehoare.eConseq)
apply clarsimp
apply (drule (1) eval_eval_max)
apply blast

apply (simp only: split_paired_all)
apply (rule hoare_ehoare.Meth)
apply (rule allI)
apply (drule spec, drule spec, erule hoare_ehoare.Conseq)
apply blast

apply (simp add: split_paired_all)

apply (rule eConseq1 [OF hoare_ehoare.NewC])
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apply blast

apply (erule hoare_ehoare.eConseq [THEN hoare_ehoare.Cast])
apply fast

apply (rule eConseq1 [OF hoare_ehoare.LAcc])
apply blast

apply (erule hoare_ehoare.eConseq [THEN hoare_ehoare.FAcc])
apply fast

apply (rename_tac expr1 u expr2 Z)
apply (rule_tac R = "λa v s. ∃ n1 n2 t. Z -expr1�a-n1→ t ∧ t -expr2�v-n2→ s" in

hoare_ehoare.Call)
apply (erule spec)
apply (rule allI)
apply (erule hoare_ehoare.eConseq)
apply clarsimp
apply blast
apply (rule allI)+
apply (rule hoare_ehoare.Meth)
apply (rule allI)
apply (drule spec, drule spec, erule hoare_ehoare.Conseq)
apply (erule thin_rl, erule thin_rl)
apply (clarsimp del: Impl_elim_cases)
apply (drule (2) eval_eval_exec_max)
apply (force del: Impl_elim_cases)
done

lemma MGF_Impl: "{} |` {MGT (Impl M) Z}"
apply (unfold MGT_def)
apply (rule Impl1’)
apply (rule_tac [2] UNIV_I)
apply clarsimp
apply (rule hoare_ehoare.ConjI)
apply clarsimp
apply (rule ssubst [OF Impl_body_eq])
apply (fold MGT_def)
apply (rule MGF_lemma [THEN conjunct1, rule_format])
apply (rule hoare_ehoare.Asm)
apply force
done

theorem hoare_relative_complete: " |= {P} c {Q} =⇒ {} ` {P} c {Q}"
apply (rule MGF_implies_complete)
apply (erule_tac [2] asm_rl)
apply (rule allI)
apply (rule MGF_lemma [THEN conjunct1, rule_format])
apply (rule MGF_Impl)
done

theorem ehoare_relative_complete: " |=e {P} e {Q} =⇒ {} `e {P} e {Q}"
apply (rule eMGF_implies_complete)
apply (erule_tac [2] asm_rl)
apply (rule allI)
apply (rule MGF_lemma [THEN conjunct2, rule_format])
apply (rule MGF_Impl)
done
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lemma cFalse: "A ` {λs. False} c {Q}"
apply (rule cThin)
apply (rule hoare_relative_complete)
apply (auto simp add: valid_def)
done

lemma eFalse: "A `e {λs. False} e {Q}"
apply (rule eThin)
apply (rule ehoare_relative_complete)
apply (auto simp add: evalid_def)
done

end

8 Example
theory Example
imports Equivalence
begin

class Nat {

Nat pred;

Nat suc()
{ Nat n = new Nat(); n.pred = this; return n; }

Nat eq(Nat n)
{ if (this.pred != null) if (n.pred != null) return this.pred.eq(n.pred);

else return n.pred; // false
else if (n.pred != null) return this.pred; // false

else return this.suc(); // true
}

Nat add(Nat n)
{ if (this.pred != null) return this.pred.add(n.suc()); else return n; }

public static void main(String[] args) // test x+1=1+x
{

Nat one = new Nat().suc();
Nat x = new Nat().suc().suc().suc().suc();
Nat ok = x.suc().eq(x.add(one));
System.out.println(ok != null);

}
}

axiomatization where
This_neq_Par [simp]: "This 6= Par" and
Res_neq_This [simp]: "Res 6= This"

8.1 Program representation
axiomatization

N :: cname (‹Nat›)
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and pred :: fname
and suc add :: mname
and any :: vname

abbreviation
dummy :: expr (‹<>›)
where "<> == LAcc any"

abbreviation
one :: expr
where "one == {Nat}new Nat..suc(<>)"

The following properties could be derived from a more complete program model, which we leave out
for laziness.
axiomatization where Nat_no_subclasses [simp]: "D �C Nat = (D=Nat)"

axiomatization where method_Nat_add [simp]: "method Nat add = Some
(| par=Class Nat, res=Class Nat, lcl=[],
bdy= If((LAcc This..pred))

(Res :== {Nat}(LAcc This..pred)..add({Nat}LAcc Par..suc(<>)))
Else Res :== LAcc Par |)"

axiomatization where method_Nat_suc [simp]: "method Nat suc = Some
(| par=NT, res=Class Nat, lcl=[],
bdy= Res :== new Nat;; LAcc Res..pred :== LAcc This |)"

axiomatization where field_Nat [simp]: "field Nat = Map.empty(pred 7→Class Nat)"

lemma init_locs_Nat_add [simp]: "init_locs Nat add s = s"
by (simp add: init_locs_def init_vars_def)

lemma init_locs_Nat_suc [simp]: "init_locs Nat suc s = s"
by (simp add: init_locs_def init_vars_def)

lemma upd_obj_new_obj_Nat [simp]:
"upd_obj a pred v (new_obj a Nat s) = hupd(a 7→(Nat, Map.empty(pred 7→v))) s"

by (simp add: new_obj_def init_vars_def upd_obj_def Let_def)

8.2 “atleast” relation for interpretation of Nat “values”
primrec Nat_atleast :: "state ⇒ val ⇒ nat ⇒ bool" (‹_:_ ≥ _› [51, 51, 51] 50) where

"s:x≥0 = (x 6=Null)"
| "s:x≥Suc n = (∃ a. x=Addr a ∧ heap s a 6= None ∧ s:get_field s a pred≥n)"

lemma Nat_atleast_lupd [rule_format, simp]:
"∀ s v::val. lupd(x 7→y) s:v ≥ n = (s:v ≥ n)"

apply (induct n)
by auto

lemma Nat_atleast_set_locs [rule_format, simp]:
"∀ s v::val. set_locs l s:v ≥ n = (s:v ≥ n)"

apply (induct n)
by auto

lemma Nat_atleast_del_locs [rule_format, simp]:
"∀ s v::val. del_locs s:v ≥ n = (s:v ≥ n)"

apply (induct n)
by auto
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lemma Nat_atleast_NullD [rule_format]: "s:Null ≥ n −→ False"
apply (induct n)
by auto

lemma Nat_atleast_pred_NullD [rule_format]:
"Null = get_field s a pred =⇒ s:Addr a ≥ n −→ n = 0"
apply (induct n)
by (auto dest: Nat_atleast_NullD)

lemma Nat_atleast_mono [rule_format]:
"∀ a. s:get_field s a pred ≥ n −→ heap s a 6= None −→ s:Addr a ≥ n"
apply (induct n)
by auto

lemma Nat_atleast_newC [rule_format]:
"heap s aa = None =⇒ ∀ v::val. s:v ≥ n −→ hupd(aa 7→obj) s:v ≥ n"

apply (induct n)
apply auto
apply (case_tac "aa=a")
apply auto
apply (tactic "smp_tac context 1 1")
apply (case_tac "aa=a")
apply auto
done

8.3 Proof(s) using the Hoare logic
theorem add_homomorph_lb:

"{} ` {λs. s:s<This> ≥ X ∧ s:s<Par> ≥ Y} Meth(Nat,add) {λs. s:s<Res> ≥ X+Y}"
apply (rule hoare_ehoare.Meth)
apply clarsimp
apply (rule_tac P’= "λZ s. (s:s<This> ≥ fst Z ∧ s:s<Par> ≥ snd Z) ∧ D=Nat" and

Q’= "λZ s. s:s<Res> ≥ fst Z+snd Z" in AxSem.Conseq)
prefer 2
apply (clarsimp simp add: init_locs_def init_vars_def)
apply rule
apply (case_tac "D = Nat", simp_all, rule_tac [2] cFalse)
apply (rule_tac P = "λZ Cm s. s:s<This> ≥ fst Z ∧ s:s<Par> ≥ snd Z" in AxSem.Impl1)
apply (clarsimp simp add: body_def)
apply (rename_tac n m)
apply (rule_tac Q = "λv s. (s:s<This> ≥ n ∧ s:s<Par> ≥ m) ∧

(∃ a. s<This> = Addr a ∧ v = get_field s a pred)" in hoare_ehoare.Cond)
apply (rule hoare_ehoare.FAcc)
apply (rule eConseq1)
apply (rule hoare_ehoare.LAcc)
apply fast
apply auto
prefer 2
apply (rule hoare_ehoare.LAss)
apply (rule eConseq1)
apply (rule hoare_ehoare.LAcc)
apply (auto dest: Nat_atleast_pred_NullD)
apply (rule hoare_ehoare.LAss)
apply (rule_tac

Q = "λv s. (∀ m. n = Suc m −→ s:v ≥ m) ∧ s:s<Par> ≥ m" and
R = "λT P s. (∀ m. n = Suc m −→ s:T ≥ m) ∧ s:P ≥ Suc m"
in hoare_ehoare.Call)

apply (rule hoare_ehoare.FAcc)
apply (rule eConseq1)
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apply (rule hoare_ehoare.LAcc)
apply clarify
apply (drule sym, rotate_tac -1, frule (1) trans)
apply simp
prefer 2
apply clarsimp
apply (rule hoare_ehoare.Meth)
apply clarsimp
apply (case_tac "D = Nat", simp_all, rule_tac [2] cFalse)
apply (rule AxSem.Conseq)
apply rule
apply (rule hoare_ehoare.Asm)
apply (rule_tac a = "((case n of 0 ⇒ 0 | Suc m ⇒ m),m+1)" in UN_I, rule+)
apply (clarsimp split: nat.split_asm dest!: Nat_atleast_mono)
apply rule
apply (rule hoare_ehoare.Call)
apply (rule hoare_ehoare.LAcc)
apply rule
apply (rule hoare_ehoare.LAcc)
apply clarify
apply (rule hoare_ehoare.Meth)
apply clarsimp
apply (case_tac "D = Nat", simp_all, rule_tac [2] cFalse)
apply (rule AxSem.Impl1)
apply (clarsimp simp add: body_def)
apply (rule hoare_ehoare.Comp)
prefer 2
apply (rule hoare_ehoare.FAss)
prefer 2
apply rule
apply (rule hoare_ehoare.LAcc)
apply (rule hoare_ehoare.LAcc)
apply (rule hoare_ehoare.LAss)
apply (rule eConseq1)
apply (rule hoare_ehoare.NewC)
apply (auto dest!: new_AddrD elim: Nat_atleast_newC)
done

end
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