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Chapter 1

Preface

1.1 Introduction

This document contains the automatically generated listings of the Isabelle sources for uJava.
pudJava is a reduced model of JavaCard, dedicated to the study of the interaction of the source
language, byte code, the byte code verifier and the compiler. In order to make the Isabelle
sources more accessible, this introduction provides a brief survey of the main concepts of
pJava.

The pJava source language (see Chapter 2) only comprises a part of the original JavaCard
language. It models features such as:

e The basic “primitive types” of Java

o Object orientation, in particular classes, and relevant relations on classes (subclass,
widening)

e Methods and method signatures
e Inheritance and overriding of methods, dynamic binding
o Representatives of “relevant” expressions and statements
e Generation and propagation of system exceptions
However, the following features are missing in pJava wrt. JavaCard:
o Some primitive types (byte, short)
o Interfaces and related concepts, arrays
o Most numeric operations, syntactic variants of statements (do-loop, for-loop)
e Complex block structure, method bodies with multiple returns
o Abrupt termination (break, continue)
o Class and method modifiers (such as static and public/private access modifiers)

o User-defined exception classes and an explicit throw-statement. Exceptions cannot be
caught.



e A “definite assignment” check

In addition, features are missing that are not part of the JavaCard language, such as mul-
tithreading and garbage collection. No attempt has been made to model peculiarities of
JavaCard such as the applet firewall or the transaction mechanism.

For a more complete Isabelle model of JavaCard, the reader should consult the Bali formal-
ization (https://isabelle.in.tum.de/verificard/Bali/document.pdf), which models most of the
source language features of JavaCard, however without describing the bytecode level.

The central topics of the source language formalization are:

e Description of the structure of the “runtime environment”, in particular structure of
classes and the program state

e Definition of syntax, typing rules and operational semantics of statements and expres-
sions

o Definition of “conformity” (characterizing type safety) and a type safety proof

The pJava virtual machine (see Chapter 3) corresponds rather directly to the source level,
in the sense that the same data types are supported and bytecode instructions required for
emulating the source level operations are provided. Again, only one representative of different
variants of instructions has been selected; for example, there is only one comparison operator.
The formalization of the bytecode level is purely descriptive (“no theorems”) and rather brief
as compared to the source level; all questions related to type systems for and type correctness
of bytecode are dealt with in chapter on bytecode verification.

The problem of bytecode verification (see Chapter 4) is dealt with in several stages:

e First, the notion of “method type” is introduced, which corresponds to the notion of
“type” on the source level.

o Well-typedness of instructions wrt. a method type is defined (see Section 4.19). Roughly
speaking, determining well-typedness is type checking.

o It is shown that bytecode that is well-typed in this sense can be safely executed — a type
soundness proof on the bytecode level (Section 4.23).

o Given raw bytecode, one of the purposes of bytecode verification is to determine a method
type that is well-typed according to the above definition. Roughly speaking, this is type
inference. The Isabelle formalization presents bytecode verification as an instance of an
abstract dataflow algorithm (Kildall’s algorithm, see Sections 4.8 to 4.25).

Bytecode verification in pJava so far takes into account:

e Operations and branching instructions

o Exceptions

Initialization during object creation is not accounted for in the present document (see the
formalization in https://isabelle.in.tum.de/verificard /obj-init/document.pdf), neither is the
jsr instruction.


https://isabelle.in.tum.de/verificard/Bali/document.pdf
https://isabelle.in.tum.de/verificard/obj-init/document.pdf

1.2 Theory Dependencies

Figure 1.1 shows the dependencies between the Isabelle theories in the following sections.
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Chapter 2

Java Source Language

2.1 Some Auxiliary Definitions

theory JBasis

imports
Main
"HOL-Library.Transitive_Closure_Table"
"HOL-Eisbach.Eisbach"

begin

lemmas [simp] = Let_def

2.1.1 unique

definition unique :: "(’a X ’b) list => bool" where
"unique == distinct o map fst"

lemma fst_in_set_lemma: "(x, y) € set xys —> x € fst ¢ set xys"
by (induct xys) auto

lemma unique_Nil [simp]: "unique []"
by (simp add: unique_def)

lemma unique_Cons [simp]: "unique ((x,y)#1) = (unique 1 & (Vy. (x,y) ¢ set 1))"
by (auto simp: unique_def dest: fst_in_set_lemma)

lemma unique_append: "unique 1’ — unique 1 —>
WV (x,y) € set 1. V(x’,y’) € set 1°. x’ # x) = unique (1 @ 1’)"
by (induct 1) (auto dest: fst_in_set_lemma)

lemma unique_map_inj: "unique 1 ==> inj f ==> unique (map (%(k,x). (f k, g k x)) 1)"
by (induct 1) (auto dest: fst_in_set_lemma simp add: inj_eq)

2.1.2 More about Maps

lemma map_of_SomeI: "unique 1 = (k, x) € set 1 = map_of 1 k = Some x"
by (induct 1) auto

lemma Ball_set_table: "(V (x,y)€set 1. P x y) ==> (Vx. Vy. map_of 1 x = Some y --> P
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X y) n
by (induct 1) auto

lemma table_of_remap_SomeD:
"map_of (map (A((k,k’),x). (k,(k’,x))) t) k = Some (k’,x) ==>
map_of t (k, k’) = Some x"
by (atomize (full), induct t) auto

end

2.2 Java types

theory Type imports JBasis begin

typedecl cnam

instantiation cnam :: equal
begin
definition "HOL.equal (cn :: cnam) cn’ <— cn = cn’"

instance by standard (simp add: equal_cnam_def)
end

These instantiations only ensure that the merge in theory MicroJava succeeds. FIXME

instantiation cnam :: typerep

begin

definition "typerep_class.typerep = A_ :: cnam itself. Typerep.Typerep (STR ’’Type.cnam’’)
[ n

instance ..
end

instantiation cnam :: term_of
begin

definition "term_of_class.term_of (C :: cnam) =
Code_Evaluation.Const (STR ’’dummy_cnam’’) (Typerep.Typerep (STR ’’Type.cnam’’) [])"
instance ..

end

instantiation cnam :: partial_term_of

begin

definition "partial term_of_class.partial_term_of (C :: cnam itself) n = undefined"
instance ..

end

— exceptions

datatype
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xcpt

= NullPointer
| ClassCast

| OutOfMemory

— class names
datatype cname
= Object
| Xcpt xcpt
| Cname cnam

typedecl vnam — variable or field name

instantiation vnam :: equal

begin

definition "HOL.equal (vn :: vnam) vn’ <— vn = vn’"

instance by standard (simp add: equal_vnam_def)
end

instantiation vnam :: typerep
begin

definition "typerep_class.typerep = A_ :: vnam itself. Typerep.Typerep (STR ’’Type.vnam’’)
[ n
instance ..

end

instantiation vnam :: term_of
begin

definition "term_of_class.term_of (V :: vnam) =
Code_Evaluation.Const (STR ’’dummy_vnam’’) (Typerep.Typerep (STR ’’Type.vnam’’) [])"
instance ..

end

instantiation vnam :: partial_term_of
begin

definition "partial_term_of_class.partial_term_of (V :: vnam itself) n = undefined"
instance ..

end
typedecl mname — method name

instantiation mname :: equal
begin

definition "HOL.equal (M :: mname) M’ <— M = M’"
instance by standard (simp add: equal_mname_def)
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end

instantiation mname :: typerep
begin

definition "typerep_class.typerep = A_ :: mname itself. Typerep.Typerep (STR ’’Type.mname’’)
[ n

instance ..
end

instantiation mname :: term_of
begin

definition "term_of_class.term_of (M :: mname) =
Code_Evaluation.Const (STR ’’dummy_mname’’) (Typerep.Typerep (STR ’’Type.mname’’) [])"
instance ..

end

instantiation mname :: partial_term_of
begin

definition "partial_ term_of_class.partial_term_of (M :: mname itself) n = undefined"
instance .

end

— names for This pointer and local/field variables
datatype vname

= This

| VName vnam

— primitive type, cf. 4.2

datatype prim_ty
= Void — ’result type’ of void methods
| Boolean
| Integer

— reference type, cf. 4.3

datatype ref_ty
= NullT — null type, cf. 4.1
| ClassT cname — class type

— any type, cf. 4.1

datatype ty
= PrimT prim_ty — primitive type
| RefT ref_ty — reference type

abbreviation NT :: ty
where "NT == RefT NullT"

abbreviation Class :: "cname => ty"
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where "Class C == RefT (ClassT C)"

end

2.3 Class Declarations and Programs
theory Decl imports Type begin

type__synonym
fdecl = "vname X ty" — field declaration, cf. 8.3 (, 9.3)

type__synonym
sig = "mname X ty list" — signature of a method, cf. 8.4.2

type__synonym
’c mdecl = "sig X ty X ’c" — method declaration in a class

type__synonym
’c "class" = "cname Xx fdecl list X ’c mdecl list"
— class = superclass, fields, methods

type__synonym
’c cdecl = "cname X ’c class" — class declaration, cf. 8.1

type_ synonym
’c prog = "’c cdecl list" — program

translations
(type) "fdecl" <= (type) "vname X ty"
(type) "sig" <= (type) "mname X ty list"
(type) "’c mdecl" <= (type) "sig X ty X ’c
(type) "’c class" <= (type) "cname X fdecl list X (’c mdecl) list"
(type) "’c cdecl" <= (type) "cname X (’c class)"
(type) "’c prog" <= (type) "(’c cdecl) list"

n

definition "class" :: "’c prog => (cname — ’c class)" where
"class = map_of"
definition is_class :: "’c prog => cname => bool" where

"is_class G C = class G C # None"

lemma finite_is_class: "finite {C. is_class G C}"
apply (unfold is_class_def class_def)

apply (fold dom_def)

apply (rule finite_dom_map_of)

done

primrec is_type :: "’c prog => ty => bool" where
"is_type G (PrimT pt) = True"

| "is_type G (RefT t) = (case t of NullT => True | ClassT C => is_class G C)"

13
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end

2.4 Relations between Java Types
theory TypeRel

imports Decl

begin

— direct subclass, cf. 8.1.3

inductive__set

subclsl :: "’c prog => (cname X cname) set"
and subclsl’ :: "’c prog => cname = cname => bool" (<_+ _ <C1 _> [71,71,71] 70)
for G :: "’c prog"

where

"G - C <C1 D = (C, D) € subclsl G"
| subclsiI: "[class G C = Some (D,rest); C # Object] = G + C <C1 D"

abbreviation
subcls :: "’c prog => cname = cname => bool" (<_F _ XC _> [71,71,71] 70)
where "G - ¢ XC D = (C, D) € (subclsl G)*"

lemma subclsiD:
"GFC<C1D = C # Object A (Ifs ms. class G C = Some (D,fs,ms))"
apply (erule subclsl.cases)
apply auto
done

lemma subclsl_def2:
"subclsl P =
(SIGMA C:{C. is_class P C}. {D. C#0Object A fst (the (class P C))=D})"
by (auto simp add: is_class_def dest: subclslD intro: subclslI)

lemma finite_subclsl: "finite (subclsl G)"

apply (simp add: subclsl_def2 del: mem_Sigma_iff)

apply (rule finite_Sigmal [OF finite_is_class])

apply (rule_tac B = "{fst (the (class G C))}" in finite_subset)
apply auto

done

lemma subcls_is_class: "(C, D) € (subclsl G)* = is_class G C"
apply (unfold is_class_def)

apply (erule trancl_trans_induct)

apply (auto dest!: subclsiD)

done

lemma subcls_is_class2 [rule_format (no_asm)]:
"G-C<XC D = is_class G D — is_class G C"

apply (unfold is_class_def)

apply (erule rtrancl_induct)

apply (drule_tac [2] subclslD)

apply auto
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done
definition class_rec :: "’c prog = cname = ’a =
(cname = fdecl list = ’c mdecl list = ’a = ’a) = ’a" where
"class_rec G == wfrec ((subclsl G)~1)

(Ar C t f. case class G C of
None =- undefined
| Some (D,fs,ms) =
f C fs ms (if C = Object then t else r D t £))"

lemma class_rec_lemma:
assumes wf: "wf ((subclsl G)~ L)
and cls: "class G C = Some (D, fs, ms)"

15

shows "class_rec G C t f = £ C fs ms (if C=Object then t else class_rec GD t £f)"

by (subst wfrec_def_adm[OF class_rec_def])
(auto simp: assms adm_wf_def fun_eq_iff subclslI split: option.split)

definition
"yf_class G = wf ((subclsl G)~1)"

Code generator setup

code_ pred
(modes: i = i = o = bool, i = i = i = bool)
subclsip

declare subclsl_def [code_pred_def]

code_ pred
(modes: i = i X o = bool, i = i X i = bool)
[inductify]
subclsl

definition subcls’ where "subcls’ G = (subclslp G)**"

code_ pred
(modes: i = i = i = bool, i = i = o = bool)
[inductify]
subcls’

lemma subcls_conv_subcls’ [code_unfold]:
"(subclsl G)* = {(C, D). subcls’ G C D}"
by (simp add: subcls’_def subclsl_def rtrancl_def)

lemma class_rec_code [code]:
"class_rec G Ct f =
(if wf_class G then
(case class G C of
None = class_rec G C t f
| Some (D, fs, ms) =

if C = Object then f Object fs ms t else f C fs ms (class_rec GD t £))

else class_rec G C t f)"
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apply (cases "wf_class G")
apply (unfold class_rec_def wf_class_def)
apply (subst wfrec, assumption)
apply (cases "class G C")
apply (simp add: wfrec)
apply clarsimp
apply (rename_tac D fs ms)
apply (rule_tac f="f C fs ms" in arg_cong)
apply (clarsimp simp add: cut_def)
apply (blast intro: subclslI)
apply simp
done

lemma wf_class_code [code]:
"wf_class G +— (V(C, rest) € set G. C # Object — — G F fst (the (class G C)) <C
c"
proof
assume "wf_class G"
hence wf: "wf (((subclsl G)*)~!)" unfolding wf_class_def by (rule wf_converse_trancl)
hence acyc: "acyclic ((subclsl G)T)" by (auto dest: wf_acyclic)
show "V (C, rest) € set G. C # Object — — G b fst (the (class G C)) <XC C"
proof(safe)
fix C D fs ms
assume "(C, D, fs, ms) € set G"
and "C # Object"
and subcls: "G F fst (the (class G C)) =<C C"
from <(C, D, fs, ms) € set G> obtain D’ fs’ ms’
where "class": "class G C = Some (D’, fs’, ms’)"
unfolding class_def by (auto dest!: weak_map_of_SomeI)
hence "G  C <C1 D’" using <C # Object> .
hence *: "(C, D’) € (subclsl G)*T" ..
also from * acyc have "C # D’" by (auto simp add: acyclic_def)
with subcls "class" have "(D’, C) € (subclsl G)*t" by(auto dest: rtranclD)
finally show False using acyc by (auto simp add: acyclic_def)
qed
next
assume rhs[rule_format]: "V (C, rest) € set G. C # Object — — G F fst (the (class
G C)) xCc"
have "acyclic (subclsl G)"
proof(intro acyclicI strip notI)
fix C
assume "(C, C) € (subcls1l ¢)*t"
thus False
proof(cases)
case base
then obtain rest where "class G C = Some (C, rest)"
and "C # Object" by cases
from <class G C = Some (C, rest)> have "(C, C, rest) € set G"
unfolding class_def by (rule map_of_SomeD)
with <C # Object> <class G C = Some (C, rest)>
have "- G - C <C C" by (auto dest: rhs)
thus False by simp
next
case (step D)



Theory TypeRel

from <G F D <C1 C> obtain rest where "class G D = Some (C, rest)"
and "D # Object" by cases
from <class G D = Some (C, rest)> have "(D, C, rest) € set G"
unfolding class_def by (rule map_of_SomeD)
with <D # Object> <class G D = Some (C, rest)>
have "= G + C <C D" by (auto dest: rhs)
moreover from <(C, D) € (subclsl G)t>
have "G - C <XC D" by (rule trancl_into_rtrancl)
ultimately show False by contradiction
qed
qged
thus "wf_class G" unfolding wf_class_def
by (rule finite_acyclic_wf_converse[OF finite_subcls1])
qed

definition "method" :: "’c prog X cname => (sig — cname X ty X ’c)"
— methods of a class, with inheritance, overriding and hiding, cf. 8.4.6
where [code]: "method = A(G,C). class_rec G C Map.empty (AC fs ms ts.
ts ++ map_of (map (A(s,m). (s,(C,m))) ms))"

definition fields :: "’c prog x cname => ((vname X cname) X ty) list"
— list of fields of a class, including inherited and hidden ones
where [code]: "fields = A(G,C). class_rec G C [] (\C fs ms ts.
map (A(fn,ft). ((fn,C),ft)) fs @ ts)"

definition field :: "’c prog X cname => (vname — cname X ty)"
where [code]: "field == map_of o (map (A((fn,fd),ft). (fn,(fd,ft)))) o fields"

lemma method_rec_lemma: "[|class G C = Some (D,fs,ms); wf ((subclsl G)™1)|] ==
method (G,C) = (if C = Object then Map.empty else method (G,D)) ++
map_of (map (A(s,m). (s,(C,m))) ms)"

apply (unfold method_def)

apply (simp split del: if_split)

apply (erule (1) class_rec_lemma [THEN trans])

apply auto

done

lemma fields_rec_lemma: "[|class G C = Some (D,fs,ms); wf ((subclsl G)~1')|] ==>
fields (G,C) =
map (A(fn,ft). ((fn,C),ft)) fs @ (if C = Object then [] else fields (G,D))"
apply (unfold fields_def)
apply (simp split del: if_split)
apply (erule (1) class_rec_lemma [THEN trans])
apply auto
done

lemma field fields:

"field (G,C) fn = Some (fd, fT) = map_of (fields (G,C)) (fn, fd) = Some fT"
apply (unfold field_def)

apply (rule table_of_remap_SomeD)

apply simp

done

17
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— widening, viz. method invocation conversion,cf. 5.3 i.e. sort of syntactic subtyping

inductive
widen :: "’c prog => [ty , ty ] => bool" (<_F _ X > [71,71,71] 70)
for G :: "’c prog"

where
refl [intro!, simp]: "G T <X T" — identity conv., cf. 5.1.1

| subcls : "GHFC=XC D ==> GHClass C =< Class D"

| null [intro!]: "GH NT < RefT R"

code_ pred widen .

lemmas refl = HOL.refl

— casting conversion, cf. 5.5 / 5.1.5

— left out casts on primitve types

inductive
cast :: "¢ prog => [ty , ty 1 => bool" (<_F _ =7 > [71,71,71] 70)
for G :: "’c prog"

where

widen: "G+ C< D ==> G-C <X? D"
| subcls: "GF DXC C ==> GFClass C <7 Class D"

lemma widen_PrimT RefT [iff]: "(G-PrimT pT<RefT rT) = False"

apply (rule iffI)

apply (erule widen.cases)
apply auto

done

lemma widen_RefT: "GF-RefT R=T ==> Jt. T=RefT t"
apply (ind_cases "GF-RefT R=<T")

apply auto

done

lemma widen_RefT2: "G-S—<RefT R ==> Jt. S=RefT t"
apply (ind_cases "G-S=<RefT R")

apply auto

done

lemma widen_Class: "GFClass C=<T ==> 3D. T=Class D"
apply (ind_cases "GFClass C=<T")

apply auto

done

lemma widen_Class_NullT [iff]: "(GFClass C<NT) = False"

apply (rule iffI)

apply (ind_cases "GFClass C=<NT")
apply auto

done

lemma widen_Class_Class [iff]: "(GFClass C=< Class D) = (GFC=<C D)"

apply (rule iffI)

apply (ind_cases "GFClass C = Class D")
apply (auto elim: widen.subcls)

done
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lemma widen_NT Class [simp]: "G W T X NT — G + T < Class D"
by (ind_cases "G F T =< NT", auto)

lemma cast_PrimT RefT [iff]: "(GFPrimT pTX? RefT rT) = False"
apply (rule iffI)

apply (erule cast.cases)

apply auto

done

lemma cast_RefT: "G - C <? Class D —> 3 rT. C = RefT rT"
apply (erule cast.cases)

apply simp apply (erule widen.cases)

apply auto

done

theorem widen_trans[trans]: "[GFS=U; GFUXT] = GFS<T"
proof -
assume "GFS=U" thus "AT. GFUXT — GFSXT"
proof induct
case (refl T T’) thus "GFTXT’" .
next
case (subcls C D T)
then obtain E where "T = Class E" by (blast dest: widen_Class)
with subcls show "GFClass C<T" by auto
next
case (null R RT)
then obtain rt where "RT = RefT rt" by (blast dest: widen_RefT)
thus "GFNT=<RT" by auto
qged
qed

end

2.5 Java Values

theory Value imports Type begin
typedecl loc’ — locations, i.e. abstract references on objects
datatype loc
= XcptRef xcpt — special locations for pre-allocated system exceptions

| Loc loc’ — usual locations (references on objects)

datatype val

= Unit — dummy result value of void methods
| Null — null reference
| Bool bool — Boolean value
| Intg int — integer value, name Intg instead of Int because of clash with HOL/Set.thy
| Addr loc — addresses, i.e. locations of objects
primrec the_Bool :: "val => bool" where

"the_Bool (Bool b) = b"

19
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primrec the_Intg :: "val => int" where
"the_Intg (Intg i) = i"

primrec the_Addr :: "val => loc" where
"the_Addr (Addr a) = a"

primrec defpval :: "prim_ty => val" — default value for primitive types where
"defpval Void = Unit"

| "defpval Boolean = Bool False"

| "defpval Integer = Intg 0"

primrec default_val :: "ty => val" — default value for all types where

"default_val (PrimT pt) = defpval pt"
| "default_val (RefT r ) = Null"

end

2.6 Program State
theory State

imports TypeRel Value
begin

type_ synonym
fields’ = "(vname X cname — val)" — field name, defining class, value

type__synonym

obj = "cname X fields’" — class instance with class name and fields
definition obj_ty :: "obj => ty" where

"obj_ty obj == Class (fst obj)"
definition init_vars :: "(’a x ty) list => (’a — val)" where

"init_vars == map_of o map (A(n,T). (n,default_val T))"

type_synonym aheap = "loc — obj" — "heap" used in a translation below
type__synonym locals = "vname — val" — simple state, i.e. variable contents
type_synonym state = "aheap X locals" — heap, local parameter including This
type__synonym xstate = "val option X state" — state including exception information

abbreviation (input)
heap :: "state => aheap"
where "heap == fst"

abbreviation (input)

locals :: "state => locals"
where "locals == snd"
abbreviation "Norm s == (None, s)"

abbreviation (input)
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abrupt :: "xstate = val option"
where "abrupt == fst"

abbreviation (input)

store :: "xstate = state"
where "store == snd"
abbreviation
Jlookup_obj :: "state = val = obj"

where "lookup_obj s a’ == the (heap s (the_Addr a’))"

definition raise_if :: "bool = xcpt = val option = val option" where
"raise_if b x xo = if b A (xo = None) then Some (Addr (XcptRef x)) else xo0"

Make new_Addr completely specified (at least for the code generator)

consts nat_to_loc’ :: "nat => loc’"

code__datatype nat_to_loc’

definition new_Addr :: "aheap => loc X val option" where
"new_Addr h =

if dn. h (Loc (nat_to_loc’ n)) = None
then (Loc (nmat_to_loc’ (LEAST n. h (Loc (mat_to_loc’ n)) = None)), None)
else (Loc (nat_to_loc’ 0), Some (Addr (XcptRef OutOfMemory)))"

definition np :: "val => val option => val option" where
"np v == raise_if (v = Null) NullPointer"

definition c¢_hupd :: "aheap => xstate => xstate" where
"c¢_hupd h’== A(x0, (h,1)). if xo = None then (None, (h’,1)) else (xo,(h,1))"

definition cast_ok :: "’c prog => cname => aheap => val => bool" where
"cast_ok G C h v == v = Null V Globj_ty (the (h (the_Addr v)))= Class C"

lemma obj_ty_def2 [simp]: "obj_ty (C,fs) = Class C"
apply (unfold obj_ty_def)

apply (simp (no_asm))

done

lemma new_AddrD: "new_Addr hp = (ref, xcp) —
hp ref = None A xcp = None V xcp = Some (Addr (XcptRef OutOfMemory))"
apply (drule sym)
apply (unfold new_Addr_def)
apply (simp split: if_split_asm)
apply (erule LeastI)
done

lemma raise_if_True [simp]: "raise_if True x y # None"
apply (unfold raise_if_def)

apply auto

done

lemma raise_if_False [simp]: "raise_if False x y = y"
apply (unfold raise_if_def)
apply auto

21
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done

lemma raise_if_Some [simp]: "raise_if c x (Some y) # None"
apply (unfold raise_if_def)

apply auto

done

lemma raise_if_Some2 [simp]:
"raise_if ¢ z (if x = None then Some y else x) #* None"
unfolding raise_if_def by (induct x) auto

lemma raise_if_SomeD [rule_format (no_asm)]:
"raise_if ¢ x y = Some z — ¢ A Some z = Some (Addr (XcptRef x)) | y = Some
apply (unfold raise_if_def)
apply auto
done

lemma raise_if_NoneD [rule_format (no_asm)]:
"raise_if ¢ x y = None --=> - ¢ A y = None"

apply (unfold raise_if_def)

apply auto

done

lemma np_NoneD [rule_format (no_asm)]:
"np a’ x’ = None --> x’ = None A a’ # Null"
apply (unfold np_def raise_if_def)
apply auto
done

lemma np_None [rule_format (no_asm), simp]: "a’ # Null --> np a’ x’ = x’"
apply (unfold np_def raise_if_def)

apply auto

done

lemma np_Some [simp]: "np a’ (Some xc) = Some xc"
apply (unfold np_def raise_if_def)

apply auto

done

lemma np_Null [simp]: "np Null None = Some (Addr (XcptRef NullPointer))"
apply (unfold np_def raise_if_def)

apply auto

done

lemma np_Addr [simp]: "np (Addr a) None = None"
apply (unfold np_def raise_if_def)

apply auto

done

lemma np_raise_if [simp]: "(np Null (raise_if c¢ xc Nome)) =
Some (Addr (XcptRef (if ¢ then xc else NullPointer)))"

apply (unfold raise_if_def)

apply (simp (no_asm))

done
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lemma c_hupd_fst [simp]: "fst (c_hupd h (x, s)) = x"
by (simp add: c_hupd_def split_beta)

Naive implementation for new_Addr by exhaustive search

definition gen_new_Addr :: "aheap => nat = loc X val option" where
"gen_new_Addr h n =
if da. a > n A h (Loc (nat_to_loc’ a)) = None
then (Loc (nat_to_loc’ (LEAST a. a > n AN h (Loc (nat_to_loc’ a)) = Nome)), None)
else (Loc (mat_to_loc’ 0), Some (Addr (XcptRef OutOfMemory)))"

lemma new_Addr_code_code [code]:
"new_Addr h = gen_new_Addr h 0"
by (simp only: new_Addr_def gen_new_Addr_def split: if_split) simp

lemma gen_new_Addr_code [code]:
"gen_new_Addr h n = (if h (Loc (nat_to_loc’ n)) = None then (Loc (nat_to_loc’ n), None)
else gen_new_Addr h (Suc n))"
apply (simp add: gen_new_Addr_def)
apply (rule impI)
apply (rule conjI)
apply safe[1]
apply (auto intro: arg_cong[where f=nat_to_loc’] Least_equality)[1]
apply (rule arg_cong[where f=nat_to_loc’])
apply (rule arg_cong[where f=Least])
apply (rule ext)
apply (safe, simp_all)[1]
apply (rename_tac "n’")
apply (case_tac "n = n’", simp_all)[1]
apply clarify
apply (subgoal_tac "a = n")
apply (auto intro: Least_equality arg_cong[where f=nat_to_loc’])[1]
apply (rule ccontr)
apply (erule_tac x="a" in allE)
apply simp
done

instantiation loc’ :: equal
begin

definition "HOL.equal (1 :: loc’) 1’ +— 1 =1""
instance by standard (simp add: equal_loc’_def)

end

end

2.7 Expressions and Statements
theory Term imports Value begin

datatype binop = Eq | Add — function codes for binary operation
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datatype expr

FAcc cname expr vname {_}_.._> [10,90,99]190) — field access
FAss cname expr vname

= NewC cname — class instance creation

| Cast cname expr — type cast

| Lit val — literal value, also references

| BinOp binop expr expr — binary operation

| LAcc vname — local (incl. parameter) access

| LAss vname expr (<_::=_> [90,90190) — local assign
l

l

expr G{_}_ .._:=_> [10,90,99,90]90) — field ass.
| Call cname expr mname
"ty list" "expr list" L F_.._°CAL_})> [10,90,99,10,10] 90) — method call

datatype_compat expr

datatype stmt

= Skip — empty statement

| Expr expr — expression statement

| Comp stmt stmt _;; o> [61,60]60)

| Cond expr stmt stmt (<If °(_°’) _ Else _> [80,79,79]70)
| Loop expr stmt (<While °(_’) _> [80,79170)

end

2.8 System Classes
theory SystemClasses imports Decl begin

This theory provides definitions for the Object class, and the system exceptions.

definition ObjectC :: "’c cdecl" where
[code_unfold]: "ObjectC = (Object, (undefined,[],[]))"

definition NullPointerC :: "’c cdecl" where
[code_unfold]: "NullPointerC = (Xcpt NullPointer, (Object,[],[]1))"

definition ClassCastC :: "’c cdecl" where
[code_unfold]: "ClassCastC = (Xcpt ClassCast, (Object,[],[]1))"

definition OutOfMemoryC :: "’c cdecl" where
[code_unfold]: "OutOfMemoryC = (Xcpt OutOfMemory, (Object,[],[]1))"

definition SystemClasses :: "’c cdecl list" where
[code_unfold]: "SystemClasses = [ObjectC, NullPointerC, ClassCastC, OutOfMemoryC]"

end

2.9 Well-formedness of Java programs

theory WellForm
imports TypeRel SystemClasses
begin

for static checks on expressions and statements, see Well Type.



Theory WellForm 25

improvements over Java Specification 1.0 (cf. 8.4.6.3, 8.4.6.4, 9.4.1):

o a method implementing or overwriting another method may have a result type that
widens to the result type of the other method (instead of identical type)

simplifications:

e for uniformity, Object is assumed to be declared like any other class

type_synonym ’c wf_mb = "’c prog => cname => ’c mdecl => bool"

definition wf_syscls :: "’c prog => bool" where
"wf_syscls G == let c¢s = set G in Object € fst ‘ ¢cs N (Vx. Xcpt x € fst ¢ cs)"

definition wf_fdecl :: "’c prog => fdecl => bool" where
"wf_fdecl G == \(fn,ft). is_type G ft"

definition wf_mhead :: "’c prog => sig => ty => bool" where
"wf_mhead G == \(mn,pTs) rT. (VTeset pTs. is_type G T) A is_type G rT"

definition ws_cdecl :: "’c prog => ’c cdecl => bool" where
"ws_cdecl G ==
A(C, (D,fs,ms)).
(Vfeset fs. wf_fdecl G f) A unique fs A
(V (sig,rT,mb)Eset ms. wf_mhead G sig rT) A unique ms A
(C # Object — is_class G D A —GFD=C C)"

definition ws_prog :: "’c prog => bool" where
"ws_prog G ==
wf_syscls G N (VcEset G. ws_cdecl G ¢) A unique G"

definition wf_mrT :: "’c prog => ’c cdecl => bool" where
"wf_mrT G ==
A(, (D,fs,ms)).
(C # Object — (V (sig,rT,b)Eset ms. VD’ rT’ b’.
method(G,D) sig = Some(D’,rT’,b’) --> GFrT=rT’))"

definition wf_cdecl_mdecl :: "’c wf_mb => ’c prog => ’c cdecl => bool" where
"wf_cdecl_mdecl wf_mb G ==
A(C, (D,fs,ms)). (VmE€set ms. wf_mb G C m)"

definition wf_prog :: "’c wf_mb => ’c prog => bool" where
"wf_prog wf_mb G ==
ws_prog G N (Vce& set G. wf_mrT G ¢ N\ wf_cdecl_mdecl wf_mb G c)"

definition wf_mdecl :: "’c wf_mb => ’c wf_mb" where
"wf_mdecl wf_mb G C == A\(sig,rT,mb). wf_mhead G sig rT A wf_mb G C (sig,rT,mb)"

definition wf_cdecl :: "’c wf_mb => ’c prog => ’c cdecl => bool" where
"wf_cdecl wf_mb ==

A(C, (D,fs,ms)).

(Vfeset fs. wf_fdecl G f) A unique fs A



26

(Vmeset ms. wf_mdecl wf_mb G C m) N\ unique ms A
(C # Object —» is_class G D A —GFD=C C A
(V (sig,rT,b)€set ms. VD’ rT’ b’.
method(G,D) sig = Some(D’,rT’,b’) --> GrFrT=rT’))"

lemma wf_cdecl_mrT cdecl_mdecl:
"(wf_cdecl wf_mb G ¢) = (ws_cdecl G ¢ AN wf_mrT G ¢ N wf_cdecl_mdecl wf_mb G c)"
apply (rule iffI)
apply (simp add: wf_cdecl_def ws_cdecl_def wf_mrT_def wf_cdecl_mdecl_def
wf_mdecl_def wf_mhead_def split_beta)+
done

lemma wf_cdecl_ws_cdecl [intro]: "wf_cdecl wf_mb G cd —> ws_cdecl G cd"
by (simp add: wf_cdecl_mrT cdecl_mdecl)

lemma wf_prog_ws_prog [intro]: "wf_prog wf_mb G = ws_prog G"
by (simp add: wf_prog_def ws_prog_def)

lemma wf_prog wf_mdecl:
"[ wf_prog wf_mb G; (C,S,fs,mdecls) € set G; ((mn,pTs),rT,code) € set mdecls]
—> wf_mdecl wf_mb G C ((mn,pTs),rT,code)"

by (auto simp add: wf_prog_def ws_prog_def wf_mdecl_def
wf_cdecl_mdecl_def ws_cdecl_def)

lemma class_wf:
"[lclass G C = Some c; wf_prog wf_mb G|]
==> wf_cdecl wf_mb G (C,c) A wf_mrT G (C,c)"
apply (unfold wf_prog_def ws_prog_def wf_cdecl_def class_def)
apply clarify
apply (drule_tac x="(C,c)" in bspec, fast dest: map_of_SomeD)
apply (drule_tac x="(C,c)" in bspec, fast dest: map_of_SomeD)
apply (simp add: wf_cdecl_def ws_cdecl_def wf_mdecl_def
wf_cdecl_mdecl_def wf_mrT_def split_beta)
done

lemma class_wf_struct:
"[|class G C = Some c; ws_prog Gl]
==> ws_cdecl G (C,c)"
apply (unfold ws_prog_def class_def)
apply (fast dest: map_of_SomeD)
done

lemma class_0Object [simp]:
"ws_prog G ==> 3X fs ms. class G Object = Some (X,fs,ms)"
apply (unfold ws_prog_def wf_syscls_def class_def)
apply (auto simp: map_of_SomeI)
done

lemma class_0Object_syscls [simp]:
"wf_syscls G ==> unique G = 3X fs ms. class G Object = Some (X,fs,ms)"
apply (unfold wf_syscls_def class_def)
apply (auto simp: map_of_SomeI)
done
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lemma is_class_Object [simp]: "ws_prog G ==> is_class G Object"
by (simp add: is_class_def)

lemma is_class_xcpt [simp]: "ws_prog G = is_class G (Xcpt x)"
apply (simp add: ws_prog_def wf_syscls_def)
apply (simp add: is_class_def class_def)
apply clarify
apply (erule_tac x = x in allE)
apply clarify
apply (auto intro!: map_of_Somel)
done

lemma subclsl_wfD: "[|GFC<C1D; ws_prog G|] ==>D # C A (D, C) ¢ (subclsl G)*"
apply ( frule trancl.r_into_trancl [where r="subclsl G"])

apply ( drule subclslD)

apply (clarify)

apply ( drule (1) class_wf_struct)

apply ( unfold ws_cdecl_def)

apply (force simp add: reflcl_trancl [symmetric] simp del: reflcl_trancl)

done

lemma wf_cdecl_supD:

"!1r. [ws_cdecl G (C,D,r); C # Object] = is_class G D"
apply (unfold ws_cdecl_def)

apply (auto split: option.split_asm)

done

lemma subcls_asym: "[|ws_prog G; (C, D) € (subclsl G)*|] ==> (D, C) ¢ (subclsl G)T"
apply (erule trancl.cases)

apply (fast dest!: subclsl_wfD )

apply (fast dest!: subclsl_wfD intro: trancl_trans)

done

lemma subcls_irrefl: "[|ws_prog G; (C, D) € (subclsl G)T[] ==>C # D"
apply (erule trancl_trans_induct)

apply (auto dest: subclsl_wfD subcls_asym)

done

lemma acyclic_subclsl: "ws_prog G ==> acyclic (subclsl G)"
apply (simp add: acyclic_def)

apply (fast dest: subcls_irrefl)

done

lemma wf_subclsl: "ws_prog G ==> wf ((subclsi G)~1)"
apply (rule finite_acyclic_wf)

apply ( subst finite_converse)

apply ( rule finite_subclsl)

apply (subst acyclic_converse)

apply (erule acyclic_subclsl)

done

lemma subcls_induct_struct:
"[lws_prog G; !!C. ¥D. (C, D) € (subclsl G)* --> P D ==> P C|] ==> P C"
(is "?7A — PROP 7P — _")
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proof -

assume p: "PROP 7P"

assume 74 thus 7?thesis apply -
apply (drule wf_subclsl)
apply (drule wf_trancl)
apply (simp only: trancl_converse)
apply (erule_tac a = C in wf_induct)
apply (rule p)
apply (auto)
done
qed

lemma subcls_induct:

"[|wf_prog wf_mb G; !!C. VD. (C, D) € (subclsl G)* --> P D ==>P C|] ==> P C"
(is "?7A = PROP 7P — _")

by (fact subcls_induct_struct [OF wf_prog_ws_progl)

lemma subclsi_induct:
"[lis_class G C; wf_prog wf_mb G; P Object;
11C D fs ms. [|IC # Object; is_class G C; class G C = Some (D,fs,ms) A
wf_cdecl wf_mb G (C,D,fs,ms) N GHC<CID A is_class G D A P D|] ==> P C
|] ==>PpPC"
(is "?7A4 =— ?B —> ?C — PROP 7P — _")
proof -
assume p: "PROP 7P"
assume 7A 7B 7C thus 7thesis apply -
apply (unfold is_class_def)
apply ( rule impE)
prefer 2
apply(  assumption)
prefer 2
apply ( assumption)
apply ( erule thin_rl)
apply ( rule subcls_induct)
apply ( assumption)
apply ( rule impI)
apply ( case_tac "C = Object")
apply ( fast)
apply auto
apply ( frule (1) class_wf) apply (erule conjE)+
apply (frule wf_cdecl_ws_cdecl)
apply ( frule (1) wf_cdecl_supD)

apply ( subgoal_tac "GFC—<Cla")
apply ( erule_tac [2] subclslI)
apply ( rule p)

apply (unfold is_class_def)
apply auto

done

qed

lemma subclsl_induct_struct:
"[lis_class G C; ws_prog G; P Object;
11C D fs ms. [|C # Object; is_class G C; class G C = Some (D,fs,ms) A
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ws_cdecl G (C,D,fs,ms) N GFC<CID A is_class GD AN P D|] ==> P C

|] ==> P C"

(is "?7A = 7B = 7?C = PROP 7P — _")

proof -

assume p: "PROP 7P"
assume ?A 7B ?C thus 7thesis apply -
apply (unfold is_class_def)

apply ( rule impE)
prefer 2

apply (  assumption)
prefer 2

apply ( assumption)

apply ( erule thin_rl)

apply ( rule subcls_induct_struct)

apply ( assumption)
apply ( rule impI)
apply ( case_tac "C =
apply ( fast)

apply auto

Object")

apply ( frule (1) class_wf_struct)
apply ( frule (1) wf_cdecl_supD)

apply ( subgoal_tac "G-C<Cla")

apply ( erule_tac [2]
apply ( rule p)

subclsiI)

apply (unfold is_class_def)

apply auto
done
qed

lemmas method_rec =

lemmas fields_rec =

wf_subclsl [THEN [2] method_rec_lemma]

wf_subclsl [THEN [2] fields_rec_lemma]

lemma field rec: "[class G C = Some (D, fs, ms); ws_prog G]

= field (G, C) =

(if C = Object then Map.empty else field (G, D)) ++
map_of (map (A(s, f). (s, C, f)) fs)"

apply (simp only: field_def)

apply (frule fields_rec, assumption)

apply (rule HOL.trans)

apply (simp add: o_def)

apply (simp (no_asm_use) add: split_beta split_def o_def)

done

lemma method_Object [simp]:

"method (G, Object) sig = Some (D, mh, code) = ws_prog G = D = Object"
apply (frule class_

Object, clarify)

apply (drule method_rec, assumption)
apply (auto dest: map_of_SomeD)

done

29

lemma fields_Object [simpl: "[ ((vn, C), T) € set (fields (G, Object)); ws_prog G ]



30

= C = Object”
apply (frule class_0Object)
apply clarify
apply (subgoal_tac "fields (G, Object) = map (A(fn,ft). ((fn,Object),ft)) fs")
apply (simp add: image_iff split_beta)
apply auto
apply (rule trans)
apply (rule fields_rec, assumption+)
apply simp
done

lemma subcls_C_Object: "[|is_class G C; ws_prog G|] ==> GFCXC Object"
apply (erule subclsl_induct_struct)

apply ( assumption)

apply ( fast)

apply (auto dest!: wf_cdecl_supD)

done

lemma is_type_rTI: "wf_mhead G sig rT ==> is_type G rT"
apply (unfold wf_mhead_def)

apply auto

done

lemma widen_fields_defpl’: "[|is_class G C; ws_prog G|] ==>
V ((fn,fd) ,fT)€set (fields (G,C)). GFC=C fd"

apply ( erule subclsl_induct_struct)

apply (  assumption)

apply ( frule class_Object)

apply ( clarify)

apply( frule fields_rec, assumption)

apply ( fastforce)

apply ( tactic "safe_tac (put_claset HOL_cs context)")

apply ( subst fields_rec)

apply(  assumption)

apply ( assumption)

apply ( simp (no_asm) split del: if_split)

apply ( rule balll)

apply ( simp (no_asm_simp) only: split_tupled_all)

apply ( simp (no_asm))

apply ( erule UnE)

apply ( force)

apply ( erule r_into_rtrancl [THEN rtrancl_trans])

apply auto

done

lemma widen_fields_defpl:
"[|((fn,fd),fT) € set (fields (G,C)); ws_prog G; is_class G C|] ==>
GHC=<C fd"

apply ( drule (1) widen_fields_defpl’)

apply (fast)

done

lemma unique_fields:
"[lis_class G C; ws_prog G|] ==> unique (fields (G,C))"



Theory WellForm

apply ( erule subclsl_induct_struct)
apply (  assumption)

apply ( frule class_Object)

apply ( clarify)

apply ( frule fields_rec, assumption)
apply ( drule class_wf_struct, assumption)
apply ( simp add: ws_cdecl_def)
apply ( rule unique_map_inj)

apply (  simp)

apply ( rule inj_onI)

apply (  simp)

apply ( safe dest!: wf_cdecl_supD)
apply ( drule subclsl_wfD)

apply ( assumption)

apply ( subst fields_rec)

apply auto

apply ( rotate_tac -1)

apply ( frule class_wf_struct)

apply auto

apply ( simp add: ws_cdecl_def)
apply ( erule unique_append)

apply ( rule unique_map_inj)

apply (  clarsimp)

apply (rule inj_onI)

apply (  simp)

apply (auto dest!: widen_fields_defpl)
done

lemma fields_mono_lemma [rule_format (no_asm)]:
"[lws_prog G; (C’, C) € (subclsl G)*[|] ==>
x € set (fields (G,C)) --> x € set (fields (G,C’))"

apply (erule converse_rtrancl_induct)

apply ( safe dest!: subclsiD)

apply (subst fields_rec)

apply ( auto)

done

lemma fields_mono:

"[map_of (fields (G,C)) fn = Some f; GFD=C C; is_class G D; ws_prog G]

= map_of (fields (G,D)) fn = Some f"
apply (rule map_of_SomeI)
apply (erule (1) unique_fields)
apply (erule (1) fields_mono_lemma)
apply (erule map_of_SomeD)
done

lemma widen_cfs_fields:

"[/|field (G,C) fn = Some (fd, fT); GFDXC C; ws_prog G|]==>
map_of (fields (G,D)) (fn, fd) = Some fT"

apply (drule field_fields)

apply (drule rtranclD)

apply safe

apply (frule subcls_is_class)

apply (drule trancl_into_rtrancl)
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apply (fast dest: fields_mono)
done

lemma method_wf_mdecl [rule_format (no_asm)]:
"wf_prog wf_mb G ==> is_class G C —>
method (G,C) sig = Some (md,mh,m)
--> GFC=C md A wf_mdecl wf_mb G md (sig, (mh,m))"

apply (frule wf_prog_ws_prog)

apply ( erule subclsl_induct)

apply (  assumption)

apply ( clarify)

apply ( frule class_Object)

apply ( clarify)

apply ( frule method_rec, assumption)

apply ( drule class_wf, assumption)

apply ( simp add: wf_cdecl_def)

apply ( drule map_of_SomeD)

apply ( subgoal_tac "md = Object")

apply (  fastforce)

apply ( fastforce)

apply ( clarify)

apply ( frule_tac C = C in method_rec)

apply ( assumption)

apply ( rotate_tac -1)

apply ( simp)

apply ( drule map_add_SomeD)

apply ( erule disjE)

apply ( erule_tac V = "P --> Q" for P  in thin_rl)

apply (frule map_of_SomeD)

apply (clarsimp simp add: wf_cdecl_def)

apply ( clarify)

apply ( rule rtrancl_trans)

prefer 2

apply ( assumption)

apply ( rule r_into_rtrancl)

apply ( fast intro: subclsiI)

done

lemma method_wf_mhead [rule_format (no_asm)]:
"ws_prog G ==> is_class G C —
method (G,C) sig = Some (md,rT,mb)
--> GFCXC md A wf_mhead G sig rT"
apply ( erule subclsl_induct_struct)
apply(  assumption)
apply ( clarify)
apply ( frule class_0Object)
apply ( clarify)
apply ( frule method_rec, assumption)
apply ( drule class_wf_struct, assumption)
apply ( simp add: ws_cdecl_def)
apply ( drule map_of_SomeD)
apply ( subgoal_tac "md = Object")
apply(  fastforce)
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apply ( fastforce)

apply ( clarify)

apply ( frule_tac C = C in method_rec)
apply ( assumption)

apply ( rotate_tac -1)

apply ( simp)

apply ( drule map_add_SomeD)

apply ( erule disjE)

apply( erule_tac V = "P --> Q" for P @ in thin_rl)
apply (frule map_of_SomeD)

apply (clarsimp simp add: ws_cdecl_def)
apply blast

apply clarify

apply ( rule rtrancl_trans)

prefer 2

apply ( assumption)

apply ( rule r_into_rtrancl)

apply ( fast intro: subclslI)

done

lemma subcls_widen_methd [rule_format (no_asm)]:
"[|G-T’<C T; wf_prog wf_mb G|] ==>
VD rT b. method (G,T) sig = Some (D,rT ,b) -->
(3D’ rT’ b’. method (G,T’) sig = Some (D’,rT’,b’) N GFD’XC D A GrrT’=XrT)"
apply ( drule rtranclD)
apply ( erule disjE)
apply ( fast)
apply ( erule conjE)
apply ( erule trancl_trans_induct)
prefer 2
apply ( clarify)
apply ( drule spec, drule spec, drule spec, erule (1) impE)
apply ( fast elim: widen_trans rtrancl_trans)
apply ( clarify)
apply ( drule subclslD)
apply ( clarify)
apply ( subst method_rec)
apply ( assumption)
apply ( unfold map_add_def)
apply ( simp (no_asm_simp) add: wf_prog_ws_prog del: split_paired_Ex)
apply ( case_tac "Jz. map_of(map (A(s,m). (s, C, m)) ms) sig = Some z" for C)
apply ( erule exE)
apply ( rotate_tac -1, frule ssubst, erule_tac [2] asm_rl)
prefer 2
apply ( rotate_tac -1, frule ssubst, erule_tac [2] asm_rl)
apply ( tactic "asm_full_simp_tac
(put_simpset HOL_ss context addsimps [@{thm not_None_eq} RS sym]) 1")
apply ( simp_all (no_asm_simp) del: split_paired_Ex)
apply ( frule (1) class_wf)
apply ( simp (no_asm_simp) only: split_tupled_all)
apply ( unfold wf_cdecl_def)
apply ( drule map_of_SomeD)
apply (auto simp add: wf_mrT_def)
apply (rule rtrancl_trans)
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defer

apply (rule method_wf_mhead [THEN conjunctl])
apply (simp only: wf_prog def)

apply (simp add: is_class_def)

apply assumption

apply (auto intro: subclslI)

done

lemma subtype_widen_methd:
"[| G- CXC D; wf_prog wf_mb G;
method (G,D) sig = Some (md, rT, b) ]
==> dmD’ rT’ b’. method (G,C) sig= Some(wD’,rT’,b’) A GFrT’<rT"
apply (auto dest: subcls_widen_methd
simp add: wf_mdecl_def wf_mhead_def split_def)
done

lemma method_in_md [rule_format (no_asm)]:
"ws_prog G ==> is_class G C = VD. method (G,C) sig = Some(D,mh,code)
--> is_class G D A method (G,D) sig = Some(D,mh,code)"

apply (erule (1) subclsl_induct_struct)

apply clarify

apply (frule method_Object, assumption)

apply hypsubst

apply simp

apply (erule conjE)

apply (simplesubst method_rec, assumption+)

apply (clarify)

apply (erule_tac x = "Da" in allE)

apply (clarsimp)

apply (simp add: map_of_map)

apply (subst method_rec, assumption+)

apply (simp add: map_add_def map_of_map split: option.split)

done

lemma method_in_md_struct [rule_format (no_asm)]:
"ws_prog G ==> is_class G C => VD. method (G,C) sig = Some(D,mh,code)
--> is_class G D A method (G,D) sig = Some(D,mh,code)"

apply (erule (1) subclsl_induct_struct)

apply clarify

apply (frule method_Object, assumption)

apply hypsubst

apply simp

apply (erule conjE)

apply (simplesubst method_rec, assumption+)

apply (clarify)

apply (erule_tac x = "Da" in allE)

apply (clarsimp)

apply (simp add: map_of_map)

apply (subst method_rec, assumption+)

apply (simp add: map_add_def map_of_map split: option.split)

done
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lemma fields_in_fd [rule_format (no_asm)]: "[ wf_prog wf_mb G; is_class G C]

=
—

apply

apply
apply
apply
apply

apply
apply
apply

apply
apply

apply
apply
apply
apply

apply
done

V va D T. (((vn,D),T) € set (fields (G,C))
(is_class G D N ((vn,D),T) € set (fields (G,D))))"
(erule (1) subclsl_induct)

clarify

(frule wf_prog ws_prog)

(frule fields_Object, assumption+)
(simp only: is_class_Object)

clarify
(frule fields_rec)
(simp (no_asm_simp) add: wf_prog_ws_prog)

(case_tac "Da=C")
blast

(subgoal_tac "((vn, Da), T) € set (fields (G, D))") apply blast
(erule thin_rl)

(rotate_tac 1)

(erule thin_rl, erule thin_rl, erule thin_rl,

erule thin_rl, erule thin_rl, erule thin_rl)

auto

lemma field_in_fd [rule_format (no_asm)]: "[ wf_prog wf_mb G; is_class G C]
— VY vn D T. (field (G,C) vn = Some(D,T)

— is_class G D A field (G,D) vn = Some(D,T))"
apply (erule (1) subclsl_induct)
apply clarify
apply (frule field_fields)
apply (drule map_of_SomeD)
apply (frule wf_prog ws_prog)
apply (drule fields_Object, assumption+)
apply simp
apply clarify
apply (subgoal_tac "((field (G, D)) ++ map_of (map (A(s, f). (s, C, f)) fs)) vn = Some
(Da, T)")
apply (simp (no_asm_use) only: map_add_Some_iff)
apply (erule disjE)
apply (simp (no_asm_use) add: map_of_map) apply blast
apply (rule trans [symmetric], rule sym, assumption)
apply (rule_tac x=vn in fun_cong)
apply (rule trans, rule field_rec, assumption+)
apply (simp (no_asm_simp) add: wf_prog_ws_prog)
apply (simp (no_asm_use)) apply blast
done

lemma widen_methd:
"[| method (G,C) sig = Some (md,rT,b); wf_prog wf_mb G; G-T’’=<C C|]
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==> dmd’ rT’ b’. method (G,T’’) sig = Some (md’,rT’,b’) A GFrT’=<rT"
apply ( drule subcls_widen_methd)
apply auto
done

lemma widen_field: "[ (field (G,C) fn) = Some (fd, fT); wf_prog wf_mb G; is_class G C
I
= GHC=XC fd"
apply (rule widen_fields_defpl)
apply (simp add: field_def)
apply (rule map_of_SomeD)
apply (rule table_of_remap_SomeD)
apply assumption+
apply (simp (no_asm_simp) add: wf_prog ws_prog)+
done

lemma Call_lemma:

"[|method (G,C) sig = Some (md,rT,b); GHT’’=XC C; wf_prog wf_mb G;
class G C = Some y|] ==> 3T’ rT’ b. method (G,T’’) sig = Some (T’,rT’,b) A
GFrT’<rT A GFT’’XC T’ N wf_mhead G sig rT’ AN wf_mb G T’ (sig,rT’,b)"

apply ( drule (2) widen_methd)

apply ( clarify)

apply ( frule subcls_is_class2)

apply (unfold is_class_def)

apply (simp (no_asm_simp))

apply ( drule method_wf_mdecl)

apply ( unfold wf_mdecl_def)

apply ( unfold is_class_def)

apply auto

done

lemma fields_is_type_lemma [rule_format (no_asm)]:
"[lis_class G C; ws_prog Gl|] ==
Vfeset (fields (G,C)). is_type G (snd f)"
apply ( erule (1) subclsl_induct_struct)
apply ( frule class_0Object)
apply ( clarify)
apply ( frule fields_rec, assumption)
apply ( drule class_wf_struct, assumption)
apply ( simp add: ws_cdecl_def wf_fdecl_def)
apply ( fastforce)
apply ( subst fields_rec)
apply (  fast)
apply ( assumption)
apply ( clarsimp)
apply ( safe)
prefer 2
apply ( force)
apply ( drule (1) class_wf_struct)
apply ( unfold ws_cdecl_def)
apply ( clarsimp)
apply ( drule (1) bspec)
apply ( unfold wf_fdecl_def)
apply auto
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done

lemma fields_is_type:
"[Imap_of (fields (G,C)) fn = Some f; ws_prog G; is_class G C[]
is_type G f"

apply (drule map_of_SomeD)

apply (drule (2) fields_is_type_lemma)

apply (auto)

done

1]
U
\4

lemma field_is_type: "[ ws_prog G; is_class G C; field (G, C) fn = Some (fd, fT) |
—> is_type G fT"

apply (frule_tac f="((fn, fd), fT)" in fields_is_type_lemma)

apply (auto simp add: field_def dest: map_of_SomeD)

done

lemma methd:
"[| ws_prog G; (C,S,fs,mdecls) € set G; (sig,rT,code) € set mdecls []
==> method (G,C) sig = Some(C,rT,code) N is_class G C"
proof -
assume wf: "ws_prog G" and C: "(C,S,fs,mdecls) € set G" and
m: "(sig,rT,code) € set mdecls"
moreover
from wf C have "class G C = Some (S,fs,mdecls)"
by (auto simp add: ws_prog_def class_def is_class_def intro: map_of_SomeI)
moreover
from wf C
have "unique mdecls" by (unfold ws_prog_def ws_cdecl_def) auto
hence "unique (map (A(s,m). (s,C,m)) mdecls)" by (induct mdecls, auto)
with m
have "map_of (map (A(s,m). (s,C,m)) mdecls) sig = Some (C,rT,code)"
by (force intro: map_of_SomeI)
ultimately
show ?thesis by (auto simp add: is_class_def dest: method_rec)
qed

lemma wf_mb’E:
"[ wf_prog wf_mb G; AC S fs ms m.[(C,S,fs,ms) € set G; m € set ms] = wf_mb’ G C m
I

— wf_prog wf_mb’ G"
apply (simp only: wf_prog_def)

apply auto

apply (simp add: wf_cdecl_mdecl_def)
apply safe

apply (drule bspec, assumption) apply simp
done

lemma fst_mono: "A C B —> fst ‘ A C fst ¢ B" by fast
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lemma wf_syscls:
"set SystemClasses C set G — wf_syscls G"
apply (drule fst_mono)
apply (simp add: SystemClasses_def wf_syscls_def)
apply (simp add: ObjectC_def)
apply (rule alll, case_tac x)
apply (auto simp add: NullPointerC_def ClassCastC_def OutOfMemoryC_def)
done

end

2.10 Well-typedness Constraints

theory WellType imports Term WellForm begin

the formulation of well-typedness of method calls given below (as well as the Java Specification
1.0) is a little too restrictive: Is does not allow methods of class Object to be called upon
references of interface type.

simplifications:

e the type rules include all static checks on expressions and statements, e.g. defined-
ness of names (of parameters, locals, fields, methods)

local variables, including method parameters and This:
type__synonym lenv = "vname — ty"

type__synonym ’c env = "’c prog X lenv"

abbreviation (input)
prg :: "’c env => ’c prog"
where "prg == fst"

abbreviation (input)

localT :: "’c env => (vname — ty)"
where "localT == snd"
definition more_spec :: "’c prog = (ty X ’x) X ty list = (ty X ’x) X ty list = bool"

where "more_spec G == A((d,h),pTs). A((d’,h’),pTs’). GFd=d’ A
list_all2 (AT T’. GFT=T’) pTs pTs’"

definition appl_methds :: "’c prog = cname = sig = ((ty X ty) X ty list) set"
— applicable methods, cf. 15.11.2.1
where "appl_methds G C == A(mn, pTs).
{((Class md,rT),pTs’) |md rT mb pTs’.
method (G,C) (mn, pTs’) = Some (md,rT,mb) A
list_all2 (AT T’. GFTXT’) pTs pTs’}"

definition max_spec :: "’c prog = cname = sig = ((ty X ty) X ty list) set"
— maximally specific methods, cf. 15.11.2.2
where "max_spec G C sig == {m. m €appl_methds G C sig A
(Vm’€cappl_methds G C sig.
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more_spec G m’ m -=> m’ = m)}"

lemma max_spec2appl_meths:
"x € max_spec G C sig ==> x € appl_methds G C sig"
apply (unfold max_spec_def)
apply (fast)
done

lemma appl_methsD:

"((md,rT),pTs’)€appl_methds G C (mn, pTs) ==>
3D b. md = Class D A method (G,C) (mn, pTs’) = Some (D,rT,b)
A list_all2 (AT T’. GFTXT’) pTs pTs’"

apply (unfold appl_methds_def)

apply (fast)

done

lemmas max_specZmheads = insertIl [THEN [2] equalityD2 [THEN subsetD],
THEN max_spec2appl_meths, THEN appl_methsD]

primrec typeof :: "(loc => ty option) => val => ty option"
where

"typeof dt Unit = Some (PrimT Void)"

"typeof dt Null = Some NT"

"typeof dt (Bool b) = Some (PrimT Boolean)"
"typeof dt (Intg i) = Some (PrimT Integer)"
"typeof dt (Addr a) = dt a"

—_—— — —

lemma is_type_typeof [rule_format (no_asm), simp]:
"(Wa. v # Addr a) --> (3T. typeof t v = Some T A is_type G T)"
apply (rule val.induct)
apply auto
done

lemma typeof_empty_is_type [rule_format (no_asm)]:
"typeof (\a. None) v = Some T — is_type G T"

apply (rule val.induct)

apply auto

done

lemma typeof_default_val: "3T. (typeof dt (default_val ty) = Some T) A G- T <X ty"
apply (case_tac ty)

apply (rename_tac prim_ty, case_tac prim_ty)

apply auto

done

type__synonym

java_mb = "vname list X (vname X ty) list X stmt X expr"
— method body with parameter names, local variables, block, result expression.
— local variables might include This, which is hidden anyway

inductive
ty_expr :: "’c env => expr => ty => bool" (<_ F _ :: _> [561, 51, 51] 50)
and ty_exprs :: "’c env => expr list => ty list => bool" (<_+ _ [::] _> [51, 51, 51]
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50)
and wt_stmt :: "’c env => stmt => bool" (<_ + _ /> [51, 51] 50)
where

NewC: "[| is_class (prg E) C [|] ==>
EFNewC C::Class C" — cf. 15.8

—cf. 15.15
| Cast: "[| Ere::C; is_class (prg E) D;
prg EFC<? Class D |] ==>
E-Cast D e:: Class D"

—cf. 15.7.1
| Lit: "[| typeof (Av. None) x = Some T |] ==>
EFLit x::T"
— cf. 15.13.1
| LAcc: "[| localT E v = Some T; is_type (prg E) T |] ==>
EFLAcc v::T"

| BinOp:"[| Erel::T;
Ele2::T;
if bop = Eq then T’ PrimT Boolean
else T = T AN T = PrimT Integer|] ==>
EFBinOp bop el e2::T°"

— cf. 15.25, 15.25.1
| LAss: "[| v ~= This;
EFLAcc v::T;
Ete::T’;
prg EFT’XT [] ==>
Ebv::i=e::T’"

— cf. 15.10.1
| FAcc: "[| Ela::Class C;
field (prg E,C) fn = Some (fd,fT) [] ==>
E-{fd}a..fn::fT"

— cf. 15.25, 15.25.1
| FAss: "[| E-{fd}a..fn::T;
Ebv T
prg EFT’XT |] ==>
E-{fd}a..fn:=v::T’"

— cf. 15.11.1, 15.11.2, 15.11.3
| Call: "[| EFa::Class C;
EFps[::]1pTs;
max_spec (prg E) C (mn, pTs) = {((md,rT),pTs’)} |] ==>
EF{C}a..mn({pTs’}ps)::rT"

— well-typed expression lists
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— cf. 15.11.777
| Nil: "ER[]J[::]7[]"

— cf. 15.11.777
| Cons:"[| Ete::T;
Etes[::]Ts |] ==>
Elet#tes[::]T#Ts"
— well-typed statements

| Skip:"ErSkip/"

| Expr:"[| Ere::T |] ==>

EFExpr e /"
| Comp:"[| EFs1y/;
EFs2y/ |1 ==>
Ebs1;; s2y/"
—cf. 14.8
| Cond:"[| Ele::PrimT Boolean;
EFsiy/;
Els2y/ 1] ==>
Er-If(e) s1 Else s2./"
— cf. 14.10
| Loop:"[| EFe::PrimT Boolean;
Ersy/ 1] ==>

Er-While(e) s4/"

definition wf_java_mdecl :: "’c prog => cname => java_mb mdecl => bool" where
"wf_java_mdecl G C == A((mn,pTs),rT, (pns,lvars,blk,res)).

length pTs = length pns A

distinct pns A

unique lvars A

This ¢ set pns A This ¢ set (map fst lvars) A

(Vpn€Eset pns. map_of lvars pn = None) A

(Y (vn,T)Eset lvars. is_type G T) &

(let E = (G, (map_of lvars) (pns[—]pTs, This—Class C)) in

Erblky/ A (3T. Etres::T A GFT=rT))"

abbreviation "wf_java_prog == wf_prog wf_java_mdecl"

lemma wf_java_prog wf_java_mdecl: "[[
wf_java_prog G; (C, D, fds, mths) € set G; jmdcl € set mths |
— wf_java_mdecl G C jmdcl"

apply (simp only: wf_prog_def)

apply (erule conjE)+

apply (drule bspec, assumption)

apply (simp add: wf_cdecl_mdecl_def split_beta)

done



42

lemma wt_is_type: "(Etle::T — ws_prog (prg E) — is_type (prg E) T) A
(E--es[::]1Ts — ws_prog (prg E) — Ball (set Ts) (is_type (prg E))) A
(Ekc / — True)"

apply (rule ty_expr_ty_exprs_wt_stmt.induct)

apply auto

apply ( erule typeof_empty_is_type)

apply ( simp split: if_split_asm)

apply ( drule field_fields)

apply ( drule (1) fields_is_type)

apply ( simp (no_asm_simp))

apply (assumption)

apply (auto dest!: max_specZmheads method_wf_mhead is_type_rTI

simp add: wf_mdecl_def)
done

lemmas ty_expr_is_type = wt_is_type [THEN conjunctl,THEN mp, rule_format]

lemma expr class_is_class: "
[ws_prog (prg E); E + e :: Class C] — is_class (prg E) C"

by (frule ty_expr_is_type, assumption, simp)

end

2.11 Operational Evaluation (big step) Semantics

theory Eval imports State WellType begin

— Auxiliary notions

definition fits :: "java_mb prog = state = val = ty = bool" (<_,_+_ fits _>[61,61,61,61]160)
where

"G,sta’ fits T = case T of PrimT T’ = False | RefT T’ = a’=Null V Globj_ty(lookup_obj

s a’)jT"

definition catch :: "java_mb prog = xstate =- cname =- bool" (<_,_lcatch _>[61,61,61]60)
where
"G,skcatch C= case abrupt s of None = False | Some a = G,store sk a fits Class C"

definition lupd :: "vname = val = state = state" (<lupd’(_~—_’)>[10,10]1000) where
"lupd vo v = A (hp,loc). (hp, (loc(vmn—v)))"

definition new_xcpt_var :: "vname = xstate = xstate" where
"new_xcpt_var vo = A(x,s). Norm (lupd(vn—the x) s)"

— Evaluation relations

inductive
eval :: ”[java_mb prog,xstate,expr,val,xstate] => bool "
(<_F _ -_»_->_> [51,82,60,82,82] 81)
and evals :: "[java_mb prog,xstate,expr list,
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val list,xstate] => bool "

(< F _ - [~] -> > [51,82,60,51,82] 81)

and exec :: "[java_mb prog,xstate,stmt, xstate] => bool "
(<_ F _ -_->_> [51,82,60,82] 81)

for G :: "java_mb prog"

where
— evaluation of expressions
XcptE: "Gk (Some xc,s) -e>undefined-> (Some xc,s)" — cf. 15.5

—cf. 15.8.1
| NewC: "[| h = heap s; (a,x) = new_Addr h;
h’= h(a—(C,init_vars (fields (G,C)))) |] ==>
G-Norm s -NewC C>Addr a-> c_hupd h’ (x,s)"

— cf. 15.15
| Cast: "[| GFNorm sO -e=v-> (x1,s1);
x2 = raise_if (- cast_ok G C (heap s1) v) ClassCast x1 [|] ==
GFNorm s0 -Cast C e~v—> (x2,s1)"

—cf. 15.7.1
| Lit: "G-Norm s -Lit v>=v-> Norm s"

| BinOp:"[| G-Norm s -el>vl-> si;
Ghs1 -e2>v2-> s82;
v = (case bop of Eq => Bool (vl = v2)
| Add => Intg (the_Intg vl + the_Intg v2)) [] ==>
G-Norm s -BinOp bop el e2>v-> s2"

— cf. 15.13.1, 15.2
| LAcc: "GFNorm s -LAcc v>the (locals s v)-> Norm s"

—cf. 15.25.1
| LAss: "[| GFNorm s -e>v-> (x,(h,1));
1> = (if x = None then 1(varsv) else 1) [] ==>
G-Norm s -va::=e>v-> (x,(h,1°))"

— cf. 15.10.1, 15.2
| FAcc: "[| GFNorm sO -e=a’-> (x1,s1);
v = the (snd (the (heap s1 (the_Addr a’))) (fn,T)) |] ==>
G-Norm sO -{T}e..fn>v-> (np a’ x1,s1)"

—cf. 15.25.1
| FAss: "[| G+ Norm sO -el=a’-> (x1,s1); a = the_Addr a’;
GH(np a’ x1,s1) -e2>v -> (x2,s2);
h = heap s2; (c,fs) = the (h a);
h’ = h(a—(c, (fs((fn,TD—v)))) |1 ==>
G-Norm sO -{T}el..fn:=e2>v-> c_hupd h’ (x2,s2)"

—cf. 15.11.4.1, 15.11.4.2, 15.11.4.4, 15.11.4.5, 14.15
| Call: "[| GFNorm sO -e=a’-> sl; a = the_Addr a’;
Gks1 -ps[>J1pvs-> (x,(h,1)); dynT = fst (the (h a));
(md,rT,pns,lvars,blk,res) = the (method (G,dynT) (mn,pTs));

43
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G+ (np a’ x, (h, (init_vars lvars) (pns[—]pvs, This+—a’))) -blk-> s3;
G s3 -res>-v -> (x4,s4) |] ==>
GFNorm s0 -{C}e..mn({pTs}tps)>v-> (x4, (heap s4,1))"

— evaluation of expression lists

—cf. 15.5
| XcptEs:"GF (Some xc,s) -e[>]undefined-> (Some xc,s)"

—cf. 15.11.777
| Nil: "GFNorm sO -[][>][]-> Norm sO"

—cf. 15.6.4
| Cons: "[| GHNorm sO -e = v -> s1;
G s1 -es[~]Jvs-> s2 |] ==>
GHNorm s0 -e#es[-]v#vs-> s2"

— execution of statements

—cf. 14.1
| XcptS: "G (Some xc,s) -c-> (Some xc,s)"

—cf. 14.5
| Skip: "GF-Norm s -Skip-> Norm s"

—cf. 14.7
| Expr: "[| GF-Norm sO -e>v-> s1 [|] ==
G-Norm sO -Expr e-> s1"

—cf. 14.2
| Comp: "[| GFNorm sO -c1-> si;
GH sl -c2-> s2|] ==>
GHNorm s0 -cl1;; c2-> s2"

— cf. 14.8.2
| Cond: "[| GFNorm sO -e=v-> si1;
GH s1 -(if the_Bool v then c1 else c2)-> s2]|] ==
GHNorm s0 -If(e) cl1 Else c2-> s2"

— cf. 14.10, 14.10.1
| LoopF:"[| GFNorm sO -e>v-> s1; —the_Bool v [] ==
GHNorm s0 -While(e) c-> s1"
| LoopT:"[| GF-Norm sO -e>v-> s1; the_Bool v;
Gks1 -c-> s2; GFs2 -While(e) c-> s3 |] ==>
GHNorm s0 -While(e) c-> s3"

lemmas eval_evals_exec_induct = eval_evals_exec.induct [split_format (complete)]
lemma NewCI: "[[new_Addr (heap s) = (a,x);

s’ = c_hupd ((heap s)(a—(C,init_vars (fields (G,C))))) (x,s)|] ==>
GHNorm s -NewC C»>Addr a-> s’"
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apply simp

apply (rule eval_evals_exec.NewC)
apply auto

done

lemma eval_evals_exec_no_xcpt:
"Is s’. (GH(x,s8) -e = v -> (x’,8’) --> x’=None —--> x=None) A

(G- (x,s8) -es[-]vs-> (x’,s’) --> x’=None --> x=Nomne) A
(GF(x,s) -c -> (x’,s’) --> x’=None --> x=None)"

apply (simp only: split_tupled_all)

apply (rule eval_evals_exec_induct)

apply (unfold c_hupd_def)

apply (simp_all)

done

lemma eval_no_xcpt: "G (x,s) -e>v-> (None,s’) ==> x=None"
apply (drule eval_evals_exec_no_xcpt [THEN conjunctl, THEN mp])
apply (fast)

done

lemma evals_no_xcpt: "G+ (x,s) -e[>]v-> (None,s’) ==> x=None"

apply (drule eval_evals_exec_no_xcpt [THEN conjunct2, THEN conjunctl, THEN mp])
apply (fast)

done

lemma exec_no_xcpt: "G + (x, s) -c-> (None, s’)

—> x = None"

apply (drule eval_evals_exec_no_xcpt [THEN conjunct2 [THEN conjunct2], rule_format])
apply simp+

done

lemma eval_evals_exec_xcpt:

"lls s’. (GH(x,s8) -e = v -> (x’,s8’) —-—> x=Some xc —--> x’=Some xc N s’=s) A
(G- (x,s8) -es[-]vs-> (x’,s’) —--> x=Some xc --> x’=Some xc A s’=s) A
(GF(x,s) -c -> (x’,8’) --> x=Some xc --> x’=Some xc N s’=s)"

apply (simp only: split_tupled_all)

apply (rule eval_evals_exec_induct)

apply (unfold c_hupd_def)

apply (simp_all)

done

lemma eval_xcpt: "Gk (Some xc,s) -e>v-> (x’,s’) ==> x’=Some xc N s’=s"
apply (drule eval_evals_exec_xcpt [THEN conjunctl, THEN mp])

apply (fast)

done

lemma exec_xcpt: "Gk (Some xc,s) -s0-> (x’,s’) ==> x’=Some xc A s’=s"
apply (drule eval_evals_exec_xcpt [THEN conjunct2, THEN conjunct2, THEN mp])
apply (fast)

done

lemma eval_ LAcc_code: "GHNorm (h, 1) -LAcc v>=the (1 v)-> Norm (h, 1)"
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using LAcc[of G "(h, 1)" v] by simp

lemma eval_Call_code:
"[| G-Norm sO -e>a’-> s1; a = the_Addr a’;
GrFs1 -ps[>]pvs-> (x,(h,1)); dynT = fst (the (h a));
(md,rT,pns,lvars,blk,res) = the (method (G,dynT) (mn,pTs));
G-(np a’ x, (h, (init_vars lvars) (pns[—]pvs, This+a’))) -blk-> s3;
G- 83 -res>v -> (x4, (h4, 14)) |] ==>
GHNorm sO0 -{C}e..mn({pTs}ps)>v-> (x4, (h4,1))"
using Call[of G sO e a’ s1 a ps pvs x h 1 dynT md rT pns lvars blk res mn pTs s3 v x4
"(h4, 14)" C]
by simp

lemmas [code_pred_intro] = XcptE NewC Cast Lit BinOp

lemmas [code_pred_intro LAcc_codel] = eval_LAcc_code

lemmas [code_pred_intro] = LAss FAcc FAss

lemmas [code_pred_intro Call_code] = eval_Call_code

lemmas [code_pred_intro] = XcptEs Nil Cons XcptS Skip Expr Comp Cond LoopF
lemmas [code_pred_intro LoopT_code] = LoopT

code_ pred
(modes:
eval: 1 = 1 = i1 = o = o = bool
and
evals: 1 = i = i1 = o = o = bool
and
exec: i = i = i = o = bool)
eval
proof -
case eval
from eval.prems show thesis
proof(cases (no_simp))
case LAcc with eval.LAcc_code show 7thesis by auto
next
case (Call abcdefghijklmnopgqrstuv s4)
with eval.Call_code show ?thesis
by (cases "s4") auto
qged (erule (3) eval.that[OF refl]|assumption)+
next
case evals
from evals.prems show thesis
by (cases (no_simp)) (erule (3) evals.that[OF refl]|assumption)+
next
case exec
from exec.prems show thesis
proof(cases (no_simp))
case LoopT thus 7thesis by (rule exec.LoopT_code[OF refl])
qed (erule (2) exec.that[OF refl]|assumption)+
qed

end

theory Exceptions imports State begin
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a new, blank object with default values in all fields:

definition blank :: "’c prog = cname = obj" where
"blank G C = (C,init_vars (fields(G,C)))"

definition start_heap :: "’c prog = aheap" where
"start_heap G = Map.empty (XcptRef NullPointer + blank G (Xcpt NullPointer),
XcptRef ClassCast +— blank G (Xcpt ClassCast),
XcptRef OutOfMemory — blank G (Xcpt OutOfMemory))"

abbreviation
cname_of :: "aheap = val = cname"
where "cname_of hp v == fst (the (hp (the_Addr v)))"

definition preallocated :: "aheap = bool" where
"preallocated hp = Vx. dfs. hp (XcptRef x) = Some (Xcpt x, fs)"

lemma preallocatedD:
"preallocated hp = Jfs. hp (XcptRef x) = Some (Xcpt x, fs)"
by (unfold preallocated_def) fast

lemma preallocatedE [elim?]:
"preallocated hp —> (/\fs. hp (XcptRef x) = Some (Xcpt x, fs) —> P hp) —> P hp"
by (fast dest: preallocatedD)

lemma cname_of_xcp:
"raise_if b x None = Some xcp — preallocated hp
— cname_of (hp::aheap) xcp = Xcpt x"
proof -
assume "raise_if b x None = Some xcp"
hence "xcp = Addr (XcptRef x)"
by (simp add: raise_if_def split: if_split_asm)
moreover
assume "preallocated hp"
then obtain fs where "hp (XcptRef x) = Some (Xcpt x, fs)" ..
ultimately
show ?thesis by simp
qed

lemma preallocated_start:
"preallocated (start_heap G)"
apply (unfold preallocated_def)
apply (unfold start_heap_def)
apply (rule alll)
apply (case_tac x)
apply (auto simp add: blank_def)
done

end
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2.12 Conformity Relations for Type Soundness Proof
theory Conform imports State WellType Exceptions begin
type_synonym ’c env’ = "’c prog x (vname — ty)" — same as env of WellType.thy

definition hext :: "aheap => aheap => bool" (<_ <| _> [51,51] 50) where
"hW<|h’ ==Va C fs. h a = Some(C,fs) --> (dfs’. h’ a = Some(C,fs’))"

definition conf :: "’c prog => aheap => val => ty => bool"
(<_,_F _ ::2%_> [51,51,51,51] 50) where
"G,htv::=T == 3T’. typeof (map_option obj_ty o h) v = Some T’ A G-T’=T"

definition lconf :: "’c prog => aheap => (’a — val) => (’a — ty) => bool"
(<_,_F _ [::=] _> [51,51,51,51] 50) where
"G,htvs[::=X]Ts ==Vn T. Ts n = Some T --> (dv. vs n = Some v A G,htv::=<T)"

definition oconf :: "’c prog => aheap => obj => bool" (<_,_F _ /> [51,51,51] 50) where
"G,htobj / == G,hFsnd obj[::=<Imap_of (fields (G,fst obj))"

definition hconf :: "’c prog => aheap => bool" (<_ th _ /> [51,51] 50) where
"GFh h +/ == VYa obj. h a = Some obj --> G,htobj /"
definition xconf :: "aheap = val option = bool" where
"xconf hp vo == preallocated hp A (V v. (vo = Some v) — (3 xc. v = (Addr (XcptRef
xc))))"
definition conforms :: "xstate => java_mb env’ => bool" (<_ ::=X _> [51,51] 50) where

"s::=<E == prg EFh heap (store s) i/ A
prg E,heap (store s)-locals (store s)[::=X]localT E A
xconf (heap (store s)) (abrupt s)"

2.12.1 hext

lemma hextI:
"VaCfs . h a= Some (C,fs) -->
(dfs’. h’ a = Some (C,fs’)) ==> h<|h’"
apply (unfold hext_def)
apply auto
done

lemma hext_objD: "[|h<|h’; h a = Some (C,fs) |] ==> 3fs’. h’ a = Some (C,fs’)"
apply (unfold hext_def)

apply (force)

done

lemma hext_refl [simp]: "h</[h"
apply (rule hextI)

apply (fast)

done

lemma hext_new [simp]: "h a = None ==> h</|h(arx)"
apply (rule hextI)
apply auto
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done

lemma hext_trans: "[|h<|h’; h’<[|h’’|] ==> h<[|h’’"
apply (rule hextI)

apply (fast dest: hext_objD)

done
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lemma hext_upd_obj: "h a = Some (C,fs) ==> h<|h(a—(C,fs’))"

apply (rule hextI)

apply auto
done
2.12.2 conf

lemma conf_Null [simp]: "G,hFNull::=<T = GFRefT NullT=<T"

apply (unfold conf_def)
apply (simp (no_asm))
done

lemma conf_litval [rule_format (no_asm), simp]:
"typeof (Av. None) v = Some T --> G,htv::xXT"

apply (unfold conf_def)

apply (rule val.induct)

apply auto

done

lemma conf AddrI: "[|h a = Some obj; GFobj_ty obj=T/[]
apply (unfold conf_def)

apply (simp)

done

lemma conf_obj_AddrI: "[|h a = Some (C,fs); GFC=C D/]
apply (unfold conf_def)

apply (simp)

done

lemma defval_conf [rule_format (no_asm)]:
"is_type G T --> G,h-default_val T::=<XT"

apply (unfold conf_def)

apply (rule_tac y = "T" in ty.exhaust)

apply (erule ssubst)

==> G,htAddr a::=<T"

==> G,htAddr a::=< Class D"

apply (rename_tac prim_ty, rule_tac y = "prim_ty" in prim_ty.exhaust)

apply (auto simp add: widen.null)
done

lemma conf_upd_obj:

"h a = Some (C,fs) ==> (G,h(a—~(C,fs’))Fx::=<T) = (G,htx::=T)"

apply (unfold conf_def)
apply (rule val.induct)
apply auto

done

lemma conf_widen [rule_format (no_asm)]:

"wf_prog wf_mb G ==> G,htx::XT --> GFT=XT’ --> G,htx::T""
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apply (unfold conf_def)

apply (rule val.induct)

apply (auto intro: widen_trans)
done

lemma conf_hext [rule_format (no_asm)]: "h<|h’ ==> G,htv::=<XT —-—=> G,h’Fv::=XT"
apply (unfold conf_def)

apply (rule val.induct)

apply (auto dest: hext_objD)

done

lemma new_locD: "[|h a = None; G,htAddr t::=<T|] ==> t#a"
apply (unfold conf_def)

apply auto

done

lemma conf_RefTD [rule_format]:

"G,ht-a’::<RefT T —> a’ = Null V

(3a obj T’. a’ = Addr a A h a = Some obj A obj_ty obj = T’ A GFT’<RefT T)"
unfolding conf_def by (induct a’) auto

lemma conf_NullTD: "G,hta’::=<RefT NullT ==> a’ = Null"
apply (drule conf_RefTD)

apply auto

done

lemma non_npD: "[|a’ # Null; G,hla’::=RefT t|] ==
da C fs. a’ = Addr a A h a = Some (C,fs) A GFClass C=RefT t"
apply (drule conf_RefTD)
apply auto
done

lemma non_np_objD: "!!G. [|a’ # Null; G,hla’::=X Class C|] ==
(da C’ fs. a’ = Addr a A h a = Some (C’,fs) N GFC’XC C)"

apply (fast dest: non_npD)

done

lemma non_np_objD’ [rule_format (no_asm)]:
"a’ # Null ==> wf_prog wf_mb G ==> G,hla’::=<RefT t -->
(da C fs. a’ = Addr a A h a = Some (C,fs) AN GHClass C<RefT t)"
apply (rule_tac y = "t" in ref_ty.exhaust)
apply (fast dest: conf_NullTD)
apply (fast dest: non_np_objD)
done

lemma conf_list_gext_widen [rule_format (no_asm)]:
"wf_prog wf_mb G ==> ¥V Ts Ts’. list_all2 (conf G h) vs Ts -->
list_all2 (AT T’. GFT=XT’) Ts Ts’ --> 1list_all2 (conf G h) vs Ts’"

apply (induct_tac "vs")

apply (clarsimp)

apply (clarsimp)

apply (frule list_all2_lengthD [symmetric])

apply (simp (no_asm_use) add: length_Suc_conv)

apply (safe)
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apply (frule list_all2 lengthD [symmetric])
apply (simp (no_asm_use) add: length_Suc_conv)
apply (clarify)

apply (fast elim: conf_widen)

done

2.12.3 lconf

lemma IconfD: "[| G,htvs[::=X]Ts; Ts n = Some T |] ==> G,ht (the (vs n))::=XT"
apply (unfold lconf_def)

apply (force)

done

lemma lconf_hext [elim]: "[| G,h+1[::<]JL; h<|h’ |] ==> G,h’F1[::=<]JL"
apply (unfold lconf_def)

apply (fast elim: conf_hext)

done

lemma lconf_upd: "!!X. [| G,hF1[::=X]1T;
G,htv::=<T; 1T va = Some T |] ==> G,ht+1(var—v)[::=<]J1T"
apply (unfold lconf_def)
apply auto
done

lemma lconf_init_vars_lemma [rule_format (no_asm)]:
"Wx. Px --> R (dv x) x ==> (Vx. map_of fs f = Some x --> P x) -->
(VT. map_of fs f = Some T -->
(Iv. map_of (map (A(f,ft). (f, dv ft)) fs) f = Some v A R v T))"
apply ( induct_tac "fs")
apply auto
done

lemma lconf_init_vars [intro!]:

"Vn. VT. map_of fs n = Some T --> is_type G T ==> G,htinit_vars fs[::=<]map_of fs"
apply (unfold lconf_def init_vars_def)

apply auto

apply ( rule lconf_init_vars_lemma)

apply( erule_tac [3] asm_rl)

apply ( intro strip)

apply ( erule defval_conf)

apply auto

done

lemma lconf_ext: "[|G,st1[::=<]L; G,stv::=XT|] ==> G,st1(var—>v)[::<X]L(vo—T)"
apply (unfold lconf_def)

apply auto

done

lemma lconf_ext_list [rule_format (no_asm)]:
"G,ht1[::=]JL ==> Vvs Ts. distinct vns --> length Ts = length vns -->
list_all2 (A\v T. G,htv::=XT) vs Ts --> G,h+1(vas[—]Jvs)[::=<]L(vas[—]Ts)"
apply (unfold lconf_def)
apply ( induct_tac "vns")
apply (  clarsimp)
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apply ( clarsimp)

apply ( frule list_all2_lengthD)
apply ( auto simp add: length_Suc_conv)
done

lemma Iconf_restr: "[1T vn = None; G, h = 1 [::=] 1T(va—T)] = G, h - 1 [::=] 1T"
apply (unfold lconf_def)

apply (intro strip)

apply (case_tac "mn = vn")

apply auto

done

2.12.4 oconf

lemma oconf_hext: "G,htFobjy/ ==> h<|h’ ==> G,h’Fobj./"
apply (unfold oconf_def)

apply (fast)

done

lemma oconf_obj: "G,ht(C,fs)/
(VT f. map_of(fields (G,C)) f = Some T --> (dv. fs £ = Some v A G,htv::=XT))"

apply (unfold oconf_def lconf_def)

apply auto

done

lemmas oconf_objD = oconf_obj [THEN iffD1, THEN spec, THEN spec, THEN mp]

2.12.5 hconf

lemma hconfD: "[|G+h hy/; h a = Some obj|] ==> G,hFobj./"
apply (unfold hconf_def)

apply (fast)

done

lemma hconfI: "Va obj. h a=Some obj --> G,htobj,/ ==> GFh h/"
apply (unfold hconf_def)

apply (fast)

done

2.12.6 xconf

lemma xconf raise_if: "xconf h x = xconf h (raise_if b xcn x)"
by (simp add: xconf_def raise_if_def)

2.12.7 conforms

lemma conforms_heapD: "(x, (h, 1))::=(G, 1T) ==> GFh h./"
apply (unfold conforms_def)

apply (simp)

done

lemma conforms_localD: "(x, (h, 1))::=%(G, 1T) ==> G,h-1[::=<]1T"
apply (unfold conforms_def)

apply (simp)

done
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lemma conforms_xcptD: "(x, (h, 1))::=X(G, 1T) ==> xconf h x"
apply (unfold conforms_def)

apply (simp)

done

lemma conformsI: "[|Gth hy/; G,hF1[::=]1T; xconf h x[|] ==> (x, (h, 1))::=<(G, 1T)"
apply (unfold conforms_def)

apply auto

done

lemma conforms_restr: "[1T van = None; s ::= (G, 1T(vo—T)) | = s ::=X (G, 1T)"
by (simp add: conforms_def, fast intro: lconf_restr)

lemma conforms_xcpt_change: "[ (x, (h,1))::= (G, 1T); xconf h x — xconf h x’ | =
(x?, (h,1))::=2 (G, 1"
by (simp add: conforms_def)

lemma preallocated_hext: "[ preallocated h; h<|h’] = preallocated h’"
by (simp add: preallocated_def hext_def)

lemma xconf_hext: "[ xconf h vo; h<|h’] = xconf h’ vo"
by (simp add: xconf_def preallocated_def hext_def)

lemma conforms_hext: "[|(x,(h,1))::=<(G,1T); h<|h’; GFh h’y/ []
==> (x,(h’,1))::2(G,1T)"
by (fast dest: conforms_localD conforms_xcptD elim!: conformsI xconf_hext)

lemma conforms_upd_obj:
"[l(x,(h,1))::=2(G, 1T); G,h(a—obj)tobj/; h<|h(arobj)|]
==> (x, (h(a—obj),1))::=2(G, 1T)"

apply (rule conforms_hext)

apply auto

apply (rule hconfI)

apply (drule conforms_heapD)

apply (auto elim: oconf_hext dest: hconfD)

done

lemma conforms_upd_local:

"[(x,h, 1))::=<(G, 1T); G,htv::=<T; 1T va = Some T/]
==> (x, (h, 1(varv)))::=(G, 1T)"

apply (unfold conforms_def)

apply ( auto elim: Iconf_upd)

done

end

2.13 Type Safety Proof

theory JTypeSafe imports Eval Conform begin
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declare split_beta [simp]

lemma NewC_conforms:

"[|h a = None; (x,(h, 1))::=2(G, 1T); wf_prog wf_mb G; is_class G C|] ==>
(x, (h(a—(C, (init_vars (fields (G,C))))), 1))::=(G, 1T)"

apply ( erule conforms_upd_obj)

apply ( unfold oconf_def)

apply ( auto dest!: fields_is_type simp add: wf_prog_ws_prog)

done

lemma Cast_conf:
"[| wf_prog wf_mb G; G,htv::=<CC; GFCC =<7 Class D; cast_ok G D h v/]
==> G,htv::=<Class D"

apply (case_tac "CC")

apply simp

apply (rename_tac ref_ty, case_tac "ref_ty")

apply (clarsimp simp add: conf_def)

apply simp

apply (ind_cases "G + Class cname =<7 Class D" for cname, simp)

apply (rule conf_widen, assumption+) apply (erule widen.subcls)

apply (unfold cast_ok_def)

apply ( case_tac "v = Null")

apply (  simp)

apply ( clarify)

apply ( drule (1) non_npD)

apply ( auto intro!: conf_AddrI simp add: obj_ty_def)
done

lemma FAcc_type_sound:

"[| wf_prog wf_mb G; field (G,C) fn = Some (fd, ft); (x,(h,1))::=2(G,1T);
x’ = None --> G,hta’::< Class C; np a’ x’ = None |] ==>
G,htthe (snd (the (h (the_Addr a’))) (fn, fd))::=<ft"

apply ( drule np_NoneD)

apply ( erule conjE)

apply ( erule (1) notE impE)

apply ( drule non_np_objD)

apply auto

apply ( drule conforms_heapD [THEN hconfD])

apply ( assumption)

apply (frule wf_prog_ws_prog)

apply ( drule (2) widen_cfs_fields)

apply ( drule (1) oconf_objD)

apply auto

done

lemma FAss_type_sound:
"[| wf_prog wf_mb G; a = the_Addr a’; (c, fs) = the (h a);
(G, 1T)Fv::T’; G-T’=<ft;
(G, 1T)laa::Class C;
field (G,C) fn = Some (fd, ft); h’’<|h’;
x’ = None --> G,h’ta’::=< Class C; h’<|h;
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Norm (h, 1)::=2(G, 1T); G,htx::=<T’; np a’ x’ = Nonel|] ==>
h’’<|h(ar (c, (fs((fn,fd)—x)))) A
Norm(h(ar (c, (fs((fn,fd)—x)))), 1)::=<(G, 1T) A
G,h(ar (c, (fs((fn,fd)—x))))Fx:: =T’ "

apply ( drule np_NoneD)

apply ( erule conjE)

apply ( simp)

apply ( drule non_np_objD)

apply ( assumption)

apply ( clarify)

apply ( simp (no_asm_use))

apply ( frule (1) hext_objD)

apply ( erule exE)

apply ( simp)

apply ( clarify)

apply ( rule conjI)

apply ( fast elim: hext_trans hext_upd_obj)
apply ( rule conjI)

prefer 2

apply ( fast elim: conf_upd_obj [THEN iffD2])

apply ( rule conforms_upd_obj)

apply auto

apply ( rule_tac [2] hextI)

prefer 2

apply ( force)

apply ( rule oconf_hext)

apply ( erule_tac [2] hext_upd_obj)
apply (frule wf_prog_ws_prog)

apply ( drule (2) widen_cfs_fields)
apply ( rule oconf_obj [THEN iffD2])
apply ( simp (no_asm))

apply ( intro strip)

apply ( case_tac "(ab, b) = (fn, fd)")
apply (  simp)

apply ( fast intro: conf_widen)
apply ( fast dest: conforms_heapD [THEN hconfD] oconf_objD)
done

lemma Call_lemma2: "[| wf_prog wf_mb G; list_all2 (conf G h) pvs pTs;
list_all2 (AT T’. GFTXT’) pTs pTs’; wf_mhead G (mn,pTs’) rT;
length pTs’ = length pns; distinct pns;
Ball (set lvars) (case_prod (Avn. is_type G))
|1 ==> G,ht (init_vars lvars) (pns[—]pvs)[::=<] (map_of lvars) (pns[—]pTs’)"

apply (unfold wf_mhead_def)

apply ( clarsimp)

apply ( rule lconf_ext_list)

apply ( rule Ball_set_table [THEN lconf_init_vars])

apply ( force)

apply (  assumption)

apply ( assumption)

apply ( erule (2) conf_list_gext_widen)
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done

lemma Call_type_sound:

"[| wf_java_prog G; a’ # Null; Norm (h, 1)::=<(G, 1T); class G C = Some y;
max_spec G C (mn,pTsa) = {((mda,rTa),pTs’)}; xc<|xh; xh<|h;
list_all2 (conf G h) pvs pTsa;

(md, rT, pns, lvars, blk, res) =
the (method (G,fst (the (h (the_Addr a’)))) (mn, pTs’));

V1T. (np a’ None, h, (init_vars lvars) (pns[—]pvs, This—a’))::=2(G, 1T) -->

(G, 1T)Fblky/ --> h<|xi A (xcptb, xi, x1)::=(G, 1T);

V1T. (xcptb,xi, x1)::=%(G, 1T) --> (VT. (G, 1T)tres::T -->

xi<[|h’ A (x’,h’, xj)::=2(G, 1T) A (x’ = None --> G,h’Fv::=T));

G,xhla’::=< Class C

11 ==>

xc<|h’ N (x’,(h’, 1))::=2(G, 1T) N (x’ = None --> G,h’Fv::=<rTa)"

apply ( drule max_spec2mheads)

apply ( clarify)

apply ( drule (2) non_np_objD’)

apply ( clarsimp)

apply ( frule (1) hext_objD)

apply ( clarsimp)

apply ( drule (3) Call_lemma)

apply ( clarsimp simp add: wf_java_mdecl_def)

apply ( erule_tac V = "method sig x = y" for sig x y in thin_rl)
apply ( drule spec, erule impE, erule_tac [2] notE impE, tactic "assume_tac context 2")
apply ( rule conformsI)

apply (  erule conforms_heapD)

apply ( rule Ilconf_ext)

apply(  force elim!: Call_lemma2)

apply ( erule conf_hext, erule (1) conf_obj_AddrI)

apply ( erule_tac V = "EFblk./" for E blk in thin_rl)

apply (simp add: conforms_def)

apply ( erule conjE)

apply ( drule spec, erule (1) impE)

apply ( drule spec, erule (1) impE)

apply ( erule_tac V = "Etres::rT" for E rT in thin_rl)
apply ( clarify)

apply ( rule conjI)

apply ( fast intro: hext_trans)

apply ( rule conjI)

apply ( rule_tac [2] impI)

apply ( erule_tac [2] notE impE, tactic "assume_tac context 2")
apply ( frule_tac [2] conf_widen)

apply ( tactic "assume_tac context 4")
apply( tactic "assume_tac context 2")
prefer 2

apply ( fast elim!: widen_trans)

apply (rule conforms_xcpt_change)

apply ( rule conforms_hext) apply assumption
apply ( erule (1) hext_trans)

apply ( erule conforms_heapD)

apply (simp add: conforms_def)

done
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declare if_split [split del]
declare fun_upd_apply [simp del]
declare fun_upd_same [simp]
declare wf_prog_ws_prog [simp]

ML«
fun forward_hyp_tac ctxt =
ALLGOALS (TRY o (EVERY’ [dresolve_tac ctxt [spec], mp_tac ctxt,
(mp_tac ctxt ORELSE’ (dresolve_tac ctxt [spec] THEN’ mp_tac ctxt)),
REPEAT o (eresolve_tac ctxt [conjE])]))

theorem eval_evals_exec_type_sound:
"wf_java_prog G ==>
(GH(x, (h,1)) -e »>v -> (x’, (h’,1°)) -—>
(V1T. (x,(h ,1))::2(G,1T) -—> (VT . (G,1Ttre :: T -—>
h<|/h’ N (x’,(h’,1°))::=2X(G,1T) N (x’=None --> G,h’Fv ::=X T )))) A
(G-(x, (h,1)) -es[~]Jvs—> (x’, (h’,1°)) ——>
(V1T. (x,( ,1))::2(G,1T) -—> (VTs. (G,1Tles[::]Ts ——>
h<|h’ N (x’,(h’,1°))::=(G,1T) N (x’=None --> list_all2 (A\v T. G,h’Fv::=T) vs Ts))))
N
(G- (x, (h,1)) -c -> (x’, (h’,17)) -->
(V1T. (x,(h ,1))::=(G,1T) -—> (G,1T)kc / -=>
h<|h’ AN (x?,(h’,17))::2(G,1T)))"
apply ( rule eval_evals_exec_induct)
apply ( unfold c_hupd_def)

— several simplifications, XcptE, XcptEs, XcptS, Skip, Nil??
apply ( simp_all)
apply ( tactic "ALLGOALS (REPEAT o resolve_tac context [impI, allI])")
apply ( tactic <ALLGOALS (eresolve_tac context [@{thm ty_expr.cases}, @{thm ty_exprs.cases},
©@{thm wt_stmt.cases}]
THEN_ALL_NEW (full_simp_tac (put_simpset (simpset_of theory _context<Conform>) con-
text)))>)
apply (tactic "ALLGOALS (EVERY’ [REPEAT o (eresolve_tac context [conjE]), REPEAT o hyp_subst_tac
context])")

— Level 7

— 15 NewC

apply (drule sym)

apply ( drule new_AddrD)

apply ( erule disjE)

prefer 2

apply ( simp (no_asm_simp))

apply (rule conforms_xcpt_change, assumption)
apply (simp (no_asm_simp) add: xconf_def)
apply ( clarsimp)

apply ( rule conjI)

apply ( force elim!: NewC_conforms)
apply ( rule conf_obj_AddrI)
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apply ( rule_tac [2] rtrancl.rtrancl_refl)
apply ( simp (no_asm))

— for Cast
defer 1

— 14 Lit
apply ( erule conf_litval)

— 13 BinOp

apply (tactic "forward_hyp_tac context")
apply (tactic "forward_hyp_tac context")
apply ( rule conjI, erule (1) hext_trans)
apply ( erule conjI)

apply ( clarsimp)

apply ( drule eval_no_xcpt)

apply ( simp split: binop.split)

— 12 LAcc

apply simp
apply ( fast elim: conforms_localD [THEN lconfD])

— for FAss
apply ( tactic <EVERY’[eresolve_tac context [@{thm ty_expr.cases}, @{thm ty_exprs.cases},
@{thm wt_stmt.cases}]

THEN_ALL_NEW (full_simp_tac context), REPEAT o (eresolve_tac context [conjE]),
hyp_subst_tac context] 3>)

— for if
apply ( tactic <(Induct_Tacs.case_tac context "the_Bool v" [] NONE THEN_ALL_NEW
(asm_full_simp_tac context)) 7>)

apply (tactic "forward_hyp_tac context")

— 1141 if
prefer 7
apply ( fast intro: hext_trans)
prefer 7
apply ( fast intro: hext_trans)

— 10 Expr
prefer 6
apply ( fast)

— 9777
apply ( simp_all)

— 8 Cast
prefer 8
apply (rule conjI)
apply (fast intro: conforms_xcpt_change xconf raise_if)

apply clarify
apply (drule raise_if_NoneD)
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apply (clarsimp)
apply (rule Cast_conf)
apply assumption+

— 7 LAss
apply (fold fun_upd_def)
apply ( tactic <(eresolve_tac context [@{thm ty_expr.cases}, @{thm ty_exprs.cases}, @{thm
wt_stmt.cases}]
THEN_ALL_NEW (full_simp_tac context)) 1>)
apply (intro strip)
apply (case_tac E)
apply (simp)
apply ( blast intro: conforms_upd_local conf_widen)

— 6 FAcc
apply (rule conjI)

apply (simp add: np_def)

apply (fast intro: conforms_xcpt_change xconf_raise_if)
apply ( fast elim!: FAcc_type_sound)

— 5 While

prefer 5

apply (erule_tac V = "a —» b" for a b in thin_rl)
apply (drule (1) ty_expr_ty_exprs_wt_stmt.Loop)
apply (force elim: hext_trans)

apply (tactic "forward_hyp_tac context")

— 4 Cond

prefer 4

apply (case_tac "the_Bool v")

apply simp

apply ( fast dest: evals_no_xcpt intro: conf_hext hext_trans)
apply simp

apply ( fast dest: evals_no_xcpt intro: conf_hext hext_trans)

35
prefer 3
apply ( fast dest: evals_no_xcpt intro: conf_hext hext_trans)

— 2 FAss
apply (subgoal_tac "(np a’ x1, aa, ba) ::= (G, 1T)")
prefer 2
apply (simp add: np_def)
apply (fast intro: conforms_xcpt_change xconf_raise_if)
apply ( case_tac "x2")
— x2 = None
apply (simp)
apply (tactic "forward_hyp_tac context", clarify)
apply ( drule eval_no_xcpt)
apply ( erule FAss_type_sound, rule HOL.refl, assumption+)
— x2 = Some a
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apply ( simp (no_asm_simp))
apply ( fast intro: hext_trans)

apply ( tactic "prune_params_tac context")
— Level 52

— 1 Call

apply ( case_tac "x")

prefer 2

apply ( clarsimp)

apply ( drule exec_xcpt)

apply (  simp)

apply ( drule_tac eval_xcpt)

apply (  simp)

apply ( fast elim: hext_trans)

apply ( clarify)

apply ( drule evals_no_xcpt)

apply ( simp)

apply ( case_tac "a’ = Null")

apply (  simp)

apply ( drule exec_xcpt)

apply (  simp)

apply ( drule eval_xcpt)

apply (  simp)

apply (rule conjI)
apply ( fast elim: hext_trans)
apply (rule conforms_xcpt_change, assumption)
apply (simp (no_asm_simp) add: xconf_def)

apply (clarsimp)

apply ( drule ty_expr_is_type, simp)
apply (clarsimp)

apply (unfold is_class_def)

apply (clarsimp)

apply (rule Call_type_sound)
prefer 11

apply blast

apply (simp (no_asm_simp))+

done

lemma eval_type_sound: "!!E s s’.
[| wf_java_prog G; GH(x,s) -e>v -> (x’,s’); (x,8)::=E; Etle::T; G=prg E |[]
==> (x’,s’)::2E A (x’=None --> G,heap s’tv::=XT) A heap s <[ heap s’"
apply (simp (no_asm_simp) only: split_tupled_all)
apply (drule eval_evals_exec_type_sound [THEN conjunctl, THEN mp, THEN spec, THEN mp])
apply auto
done

lemma evals_type_sound: "!!E s s’.
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[| wf_java_prog G; G+ (x,s) -es[>]vs -> (x’,s’); (x,s)::=E; Eres[::]Ts; G=prg E |]
==> (x’,8’)::=XE N (x’=None --> (list_all2 (Av T. G,heap s’rv::=T) vs Ts)) A heap s
<| heap s’"
apply (simp (no_asm_simp) only: split_tupled_all)
apply (drule eval_evals_exec_type_sound [THEN conjunct2, THEN conjunctl, THEN mp, THEN
spec, THEN mp])

apply auto
done
lemma exec_type_sound: "!!E s s’.

[ wf_java_prog G; GF(x,s) -sO0-> (x’,s’); (x,s)::=<E; Ebs0./; G=prg E |
= (x’,s’)::=2E A heap s </ heap s’"
apply ( simp (no_asm_simp) only: split_tupled_all)
apply (drule eval_evals_exec_type_sound
[THEN conjunct2, THEN conjunct2, THEN mp, THEN spec, THEN mp])
apply auto
done

theorem all_methods_understood:
"[|G=prg E; wf_java_prog G; G (x,s) -e>a’-> Norm s’; a’ # Null;
(x,8)::=E; EFe::Class C; method (G,C) sig # Nomel|] ==>

method (G,fst (the (heap s’ (the_Addr a’)))) sig # None"

apply (frule eval_type_sound, assumption+)

apply (clarsimp)

apply ( frule widen_methd)

apply assumption

prefer 2

apply ( fast)

apply ( drule non_npD)

apply auto

done

declare split_beta [simp del]
declare fun_upd_apply [simp]
declare wf_prog_ws_prog [simp del]

end

2.14 Example MicroJava Program
theory Example imports SystemClasses Eval begin

The following example MicroJava program includes: class declarations with inheritance, hiding
of fields, and overriding of methods (with refined result type), instance creation, local assign-
ment, sequential composition, method call with dynamic binding, literal values, expression
statement, local access, type cast, field assignment (in part), skip.

class Base {
boolean vee;
Base foo(Base x) {return x;}

3

class Ext extends Base {
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int vee;
Ext foo(Base x) {((Ext)x).vee=1; return null;}
}

class Example {
public static void main (String args[]) {
Base e=new Ext();
e.foo(null);
}
}

datatype cnam’ = Base’ | Ext’
datatype vnam’ = vee’ | x’ | e’

cnam’ and vnam’ are intended to be isomorphic to cnam and vnam

axiomatization cnam’ :: "cnam’ => cname"
where
inj_cnam’: "(cnam’ x = cnam’ y) = (x = y)" and

surj_cnam’: "dm. n = cnam’ m"

axiomatization vnam’ :: "vnam’ => vnam"
where
inj_vnam’: "(vnam’ x = vnam’ y) = (x = y)" and

surj_vnam’: "dm. n = vnam’ m"

declare inj_cnam’ [simp] inj_vnam’ [simp]

abbreviation Base :: cname

where "Base == cnam’ Base’"
abbreviation Ext :: cname

where "Ext == cnam’ Ext’"
abbreviation vee :: vname

where "vee == VName (vnam’ vee’)"
abbreviation x :: vname

where "x == VName (vnam’ x’)"
abbreviation e :: vname

where "e == VName (vnam’ e’)"

axiomatization where
Base_not_0Object: "Base # Object" and
Ext_not_Object: "Ext # Object" and

Base_not_Xcpt: "Base # Xcpt z" and
Ext_not_Xcpt: "Ext # Xcpt z" and
e_not_This: "e = This"

declare Base_not_Object [simp] Ext_not_Object [simp]
declare Base_not_Xcpt [simp] Ext_not_Xcpt [simp]
declare e_not_This [simp]

declare Base_not_Object [symmetric, simp]

declare Ext_not_Object [symmetric, simp]

declare Base_not_Xcpt [symmetric, simp]

declare Ext_not_Xcpt [symmetric, simp]
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definition foo_Base :: java_mb
where "foo_Base == ([x],[],Skip,LAcc x)"

definition foo_Ext :: java_mb

where "foo_Ext == ([x],[],Expr( {Ext}Cast Ext
(LAcc x)..vee:=Lit (Intg Numerall)),
Lit Null)"

consts foo ::

definition BaseC ::
where "BaseC =

mname

"java_mb cdecl"

= (Base, (Object,

[(vee, PrimT Boolean)],
[((foo, [Class Base]),Class Base,foo_Base)]))"

definition ExtC ::
where "ExtC

"java_mb cdecl"

== (Ext, (Base |,

[(vee, PrimT Integer)],
[((foo, [Class Base]),Class Ext,foo_Ext)]))"

definition test ::

stmt

where "test == Expr(e::=NewC Ext);;

consts
a :: loc
b :: loc

abbreviation

Expr ({Base}LAcc e..foo({[Class Base]}[Lit Null]))"

NP :: xcpt where
"NP == NullPointer"

abbreviation

tprg ::"java_mb prog" where

"tprg == [ObjectC, BaseC, ExtC, ClassCastC, NullPointerC, OutOfMemoryC]"

abbreviation

objl :: obj where
"objl == (Ext,

abbreviation
abbreviation
abbreviation
abbreviation

"s0
"s1
”52
"s3

Map.empty((vee, Base)—»Bool False, (vee, Ext )—Intg 0))"

== Norm (Map.empty, Map.empty)"
== Norm (Map.empty(ar—+obj1),Map.empty(e—Addr a))"

== Norm (Map.empty(ar+obj1),Map.empty(x+—Null, ThisrAddr a))"

== (Some NP, Map.empty(a+sobjl),Map.empty(e—Addr a))"

lemmas map_of_Cons = map_of.simps(2)

lemma map_of_Cons1 [simp]: "map_of ((aa,bb)#ps) aa = Some bb"
apply (simp (no_asm))

done

lemma map_of_Cons2 [simp]: "aa#k ==> map_of ((k,bb)#ps) aa = map_of ps aa"

apply (simp (no_asm_simp))

done

63
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declare map_of_Cons [simp del] — sic!

lemma class_tprg Object [simp]: "class tprg Object = Some (undefined, [], [])"
apply (unfold ObjectC_def class_def)

apply (simp (no_asm))

done

lemma class_tprg NP [simp]: "class tprg (Xcpt NP) = Some (Object, [1, [])"

apply (unfold ObjectC_def NullPointerC_def ClassCastC_def OutOfMemoryC_def BaseC_def ExtC_def
class_def)

apply (simp (no_asm))

done

lemma class_tprg OM [simp]: "class tprg (Xcpt OutOfMemory) = Some (Object, [1, [])"

apply (unfold ObjectC_def NullPointerC_def ClassCastC_def OutOfMemoryC_def BaseC_def ExtC_def
class_def)

apply (simp (no_asm))

done

lemma class_tprg CC [simp]: "class tprg (Xcpt ClassCast) = Some (Object, [], [])"

apply (unfold ObjectC_def NullPointerC_def ClassCastC_def OutOfMemoryC_def BaseC_def ExtC_def
class_def)

apply (simp (no_asm))

done

lemma class_tprg Base [simp]:
"class tprg Base = Some (Object,

[(vee, PrimT Boolean)],

[((foo, [Class Base]), Class Base, foo_Base)])"

apply (unfold ObjectC_def NullPointerC_def ClassCastC_def OutOfMemoryC_def BaseC_def ExtC_def
class_def)
apply (simp (no_asm))
done

lemma class_tprg Ext [simp]:
"class tprg Ext = Some (Base,
[(vee, PrimT Integer)],

[((foo, [Class Base]), Class Ext, foo_Ext)])"
apply (unfold ObjectC_def BaseC_def ExtC_def class_def)
apply (simp (no_asm))
done

lemma not_Object_subcls [elim!]: "(Object, C) € (subclsl tprg)t ==> R"
apply (auto dest!: tranclD subclsl1D)
done

lemma subcls_ObjectD [dest!]: "tprghkObject<C C ==> C = Object"
apply (erule rtrancl_induct)

apply auto

apply (drule subclslD)

apply auto

done

lemma not_Base_subcls_Ext [elim!]: "(Base, Ext) € (subclsl tprg)t ==> R"
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apply (auto dest!: tranclD subclsiD)

done

lemma class_tprgD:

"class tprg C = Some z ==> (C=0Object V (C=Base V C=Ext V C=Xcpt NP V C=Xcpt ClassCast
V C=Xcpt OutOfMemory"
apply (unfold ObjectC_def ClassCastC_def NullPointerC_def OutOfMemoryC_def BaseC_def ExtC_def

class_def)

apply (auto split: if_split_asm simp add: map_of_Cons)

done

lemma not_class_subcls_class [elim!]J: "(C, C) € (subclsl tprg)™ ==> R"
apply (auto dest!: tranclD subclsl1D)
apply (frule class_tprgD)

apply (auto dest!:)

apply (drule rtranclD)

apply auto
done

lemma unique_classes: "unique tprg"
apply (simp (no_asm) add: ObjectC_def BaseC_def ExtC_def NullPointerC_def ClassCastC_def

OutOfMemoryC_def)
done

lemmas subcls_direct

= subclslI [THEN r_into_rtrancl [where r="subclsl G"]] for G

lemma Ext_subcls_Base [simp]: "tprghExt<C Base"
apply (rule subcls_direct)

apply auto
done

lemma Ext_widen_Base [simp]: "tprghClass Ext= Class Base"
apply (rule widen.subcls)
apply (simp (no_asm))

done

declare ty_expr_ty_exprs_wt_stmt.intros [intro!]

lemma acyclic_subclsl’: "acyclic (subclsl tprg)"
apply (rule acyclicI)

apply safe
done

lemmas wf_subclsi’

lemmas fields_rec’

acyclic_subclsl’ [THEN finite_subclsl [THEN finite_acyclic_wf_converse]]

wf_subclsl’ [THEN [2] fields_rec_lemma]

lemma fields_Object [simp]: "fields (tprg, Object) = []"
apply (subst fields_rec’)

apply auto
done

declare is_class_def [simp]
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lemma fields_Base [simp]: "fields (tprg,Base) = [((vee, Base), PrimT Boolean)]"
apply (subst fields_rec’)

apply auto

done

lemma fields_Ext [simp]:
"fields (tprg, Ext) = [((vee, Ext ), PrimT Integer)] @ fields (tprg, Base)"
apply (rule trans)
apply (rule fields_rec’)
apply auto
done

lemmas method_rec’ = wf_subclsl’ [THEN [2] method_rec_lemma]

lemma method_Object [simp]: "method (tprg,Object) = map_of []"
apply (subst method_rec’)

apply auto

done

lemma method_Base [simp]: "method (tprg, Base) = map_of
[((foo, [Class Base]), Base, (Class Base, foo_Base))]"

apply (rule trans)

apply (rule method_rec’)

apply auto

done

lemma method_Ext [simp]: "method (tprg, Ext) = (method (tprg, Base) ++ map_of
[((foo, [Class Base]), Ext , (Class Ext, foo_Ext))])"

apply (rule trans)

apply (rule method_rec’)

apply auto

done

lemma wf_foo_Base:

"wf_mdecl wf_java_mdecl tprg Base ((foo, [Class Base]), (Class Base, foo_Base))"
apply (unfold wf_mdecl_def wf_mhead_def wf_java_mdecl_def foo_Base_def)

apply auto

done

lemma wf_foo_Ext:

"wf_mdecl wf_java_mdecl tprg Ext ((foo, [Class Base]), (Class Ext, foo_Ext))"
apply (unfold wf_mdecl_def wf_mhead_def wf_java_mdecl_def foo_Ext_def)
apply auto

apply (rule ty_expr_ty_exprs_wt_stmt.Cast)

prefer 2

apply (simp)

apply (rule_tac [2] cast.subcls)

apply  (unfold field_def)

apply auto

done

lemma wf_ObjectC:
"ws_cdecl tprg ObjectC A
wf_cdecl_mdecl wf_java_mdecl tprg ObjectC A wf_mrT tprg ObjectC"
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apply (unfold ws_cdecl_def wf_cdecl_mdecl_def
wf_mrT_def wf_fdecl_def ObjectC_def)

apply (simp (no_asm))

done

lemma wf_NP:
"ws_cdecl tprg NullPointerC A
wf_cdecl_mdecl wf_java_mdecl tprg NullPointerC A wf_mrT tprg NullPointerC"
apply (unfold ws_cdecl_def wf_cdecl_mdecl_def
wf_mrT_def wf_fdecl_def NullPointerC_def)
apply (simp add: class_def)
apply (fold NullPointerC_def class_def)
apply auto
done

lemma wf_0OM:
"ws_cdecl tprg OutOfMemoryC A
wf_cdecl_mdecl wf_java_mdecl tprg OutOfMemoryC A wf_mrT tprg OutOfMemoryC"
apply (unfold ws_cdecl_def wf_cdecl_mdecl_def
wf_mrT_def wf_fdecl_def OutOfMemoryC_def)
apply (simp add: class_def)
apply (fold OutOfMemoryC_def class_def)
apply auto
done

lemma wf_CC:
"ws_cdecl tprg ClassCastC A
wf_cdecl_mdecl wf_java_mdecl tprg ClassCastC A wf_mrT tprg ClassCastC"
apply (unfold ws_cdecl_def wf_cdecl_mdecl_def
wf_mrT_def wf_fdecl_def ClassCastC_def)
apply (simp add: class_def)
apply (fold ClassCastC_def class_def)
apply auto
done

lemma wf_BaseC:
"ws_cdecl tprg BaseC A
wf_cdecl_mdecl wf_java_mdecl tprg BaseC A wf_mrT tprg BaseC"
apply (unfold ws_cdecl_def wf_cdecl_mdecl_def
wf_mrT_def wf_fdecl_def BaseC_def)
apply (simp (no_asm))
apply (fold BaseC_def)
apply (rule mp) defer apply (rule wf_foo_Base)
apply (auto simp add: wf_mdecl_def)
done

lemma wf_ExtC:
"ws_cdecl tprg ExtC A
wf_cdecl_mdecl wf_java_mdecl tprg ExtC A wf_mrT tprg ExtC"
apply (unfold ws_cdecl_def wf_cdecl_mdecl_def
wf_mrT_def wf_fdecl_def ExtC_def)
apply (simp (no_asm))
apply (fold ExtC_def)
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apply (rule mp) defer apply (rule wf_foo_Ext)
apply (auto simp add: wf_mdecl_def)

apply (drule rtranclD)

apply auto

done

lemma [simp]: "fst ObjectC = Object" by (simp add: ObjectC_def)

lemma wf_tprg:

"wf_prog wf_java_mdecl tprg"

apply (unfold wf_prog_def ws_prog_def Let_def)

apply (simp add: wf_ObjectC wf_BaseC wf_ExtC wf_NP wf_OM wf_CC unique_classes)
apply (rule wf_syscls)

apply (simp add: SystemClasses_def)

done

lemma appl_methds_foo_Base:

"appl_methds tprg Base (foo, [NT]) =
{((Class Base, Class Base), [Class Base])}"

apply (unfold appl_methds_def)

apply (simp (no_asm))

done

lemma max_spec_foo_Base: "max_spec tprg Base (foo, [NT]) =
{((Class Base, Class Base), [Class Base])}"

apply (unfold max_spec_def)

apply (auto simp add: appl_methds_foo_Base)

done

lemmas t = ty_expr_ty_exprs_wt_stmt.intros

schematic__goal wt_test: "(tprg, Map.empty(e—>Class Base))t
Expr(e::=NewC Ext);; Expr({Base}LAcc e..foo({7pTs’}[Lit Nulll)),/"

apply (rule ty_expr_ ty_exprs_wt_stmt.intros) — ;;

apply (rule t) — Expr

apply (rule t) — LAss

apply simp — e # This

apply (rule t) — LAcc

apply (simp (no_asm))

apply (simp (no_asm))

apply  (rule t) — NewC

apply (simp (no_asm))

apply (simp (no_asm))

apply (rule t) — Expr

apply (rule t) — Call

apply (rule t) — LAcc

apply (simp (no_asm))

apply (simp (no_asm))

apply (rule t) — Cons

apply (rule t) — Lit

apply (simp (no_asm))

apply (rule t) — Nil

apply (simp (no_asm))

apply (rule max_spec_foo_Base)
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done

lemmas e = NewCI eval_evals_exec.intros

declare if_split [split del]

declare init_vars_def [simp] c_hupd_def [simp] cast_ok_def [simp]

schematic__goal exec_test:

" [|new_Addr (heap (snd s0)) = (a, Nome)|] ==>
tprghksO -test-> 7s"

apply (unfold test_def)

— 7s =83

apply (rule e) — ;;

apply (rule e) — Expr

apply (rule e) — LAss

apply (rule e) — NewC

apply force

apply force

apply (simp (no_asm))

apply (erule thin_rl)

apply (rule e) — Expr

apply (rule e) — Call

apply (rule e) — LAcc
apply force

apply (rule e) — Cons
apply (rule e) — Lit
apply (rule e) — Nil

apply (simp (no_asm))

apply (force simp add: foo_Ext_def)
apply (simp (no_asm))

apply (rule e) — Expr

apply (rule e) — FAss

apply (rule e) — Cast
apply (rule e) — LAcc
apply (simp (no_asm))
apply (simp (no_asm))
apply (simp (no_asm))
apply (rule e) — XcptE

apply (simp (no_asm))

apply  (rule surjective_pairing [symmetric, THEN[2]trans], subst prod.inject, force)
apply (simp (no_asm))

apply (simp (no_asm))

apply (rule e) — XcptE

done

end

2.15 Example for generating executable code from Java se-
mantics
theory JListExample

imports Eval
begin



70

declare [[syntax_ambiguity_warning = false]]

consts

list_nam :: cnam

append_name

axiomatization val_nam next_nam 1_nam 11 _nam 12_nam 13_nam 14_nam ::
where distinct_fields: "val_nam # next_nam"

and
and
and
and
and
and
and
and
and
and

distinct_varsl:
distinct_vars2:

distinct_vars3:
distinct_varsé4:
distinct_varsb:
distinct_varsé6:
distinct_vars7:
distinct_vars8:
distinct_vars9:
distinct_vars10: "13_nam # 14_nam"

lemmas distinct_vars

;. mname

"] _nam # 11_nam"
"1l_nam # 12_nam"
"1l _nam # 13_nam"
"1_nam # 14_nam"
"11_nam # 12_nam"
"]11_nam # 13_nam"
"11_nam # 14_nam"
"12 nam # 13_nam"
"12 nam # 14_nam"

distinct_varsl
distinct_vars2
distinct_vars3
distinct_vars4
distinct_varsb
distinct_vars6
distinct_vars7
distinct_vars8
distinct_vars9
distinct_varsl10

definition list_name
"list_name = Cname list_nam"

definition val_name
"val_name == VName val_nam"

definition next_name
"next_name == VName next_nam"

definition 1_name
"1_name

definition 11_name
"11 _name == VName 1

definition 12 _name

"12_name == VName

definition 13_name
"13_name == VName 1

definition 14 _name
"14_name == VName 1

cname where

vname where

vname where

vname where
== VName 1_nam"

vname where
1_nam"

vname where

12 nam"

vname where
3_nam"

vname where
4_nam"

vnam
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definition list_class :: "java_mb class" where

"list_class

(Object,
[(val_name, PrimT Integer), (next_name, RefT (ClassT list_name))],
[((append_name, [RefT (ClassT list_name)]), PrimT Void,

([1_name], [],

If(BinOp Eq ({list_name}(LAcc This)..next_name) (Lit Null))

Expr ({list_name}(LAcc This)..next_name:=LAcc 1_name)

Else

Expr ({list_name}({list_name}(LAcc This)..next_name)..
append_name ({ [RefT (ClassT list_name)]}[LAcc 1_name])),
Lit Unit))I)"

definition example_prg :: "java_mb prog" where
"example_prg == [ObjectC, (list_name, list_class)]"

code_ datatype list_nam

lemma equal_cnam_code [code]:
"HOL.equal list_nam list_nam <— True"
by (simp add: equal_cnam_def)

code__datatype append_name

lemma equal_mname_code [code]:
"HOL.equal append_name append_name <— ITrue"
by (simp add: equal_mname_def)

code__datatype val_nam next_nam 1_nam 11_nam 12_nam 13_nam 14_nam
lemma equal_vnam_code [code]:

"HOL

"HOL.
"HOL.
"HOL.
"HOL.

"HOL

"HOL.

"HOL.
"HOL.

"HOL.
"HOL.
"HOL.
"HOL.

"HOL.
"HOL.
"HOL.
"HOL.

"HOL.
"HOL.
"HOL.
"HOL.

.equal
equal
equal
equal
equal
.equal
equal

equal
equal

equal
equal
equal
equal

equal
equal
equal
equal

equal
equal
equal
equal

val_nam val_nam <— True"
next_nam next_nam <— True"
1 _nam 1_nam <— True"

11 _nam 11_nam <— True"

12 nam 12_nam <— True"

13 _nam 13_nam <— True"

14 _nam 14_nam <— True"

val_nam next_nam <— False"
next_nam val_nam <— False"

1 nam 11_nam <— False"
1 nam 12_nam <— False"
1 _nam 13_nam <— False"
1_nam 14_nam <— False"

11 nam 1_nam <— False"
11 _nam 12 nam <— False"
11_nam 13_nam <— False"
11_nam 14_nam <— False"

12 nam 1_nam <— False"
12 nam 11_nam <— False"
12 nam 13_nam <— False"
12 nam 14_nam <— False"
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"HOL.equal 13_nam 1_nam <— False"
"HOL.equal 13_nam 11_nam <— False"
"HOL.equal 13_nam 12_nam <— False"
"HOL.equal 13_nam 14_nam <— False"

"HOL.equal 14_nam 1_nam <— False"

"HOL.equal 14_nam 11_nam <— False"

"HOL.equal 14_nam 12_nam <— False"

"HOL.equal 14_nam 13_nam <— False"

by (simp_all add: distinct_fields distinct_fields[symmetric] distinct_vars distinct_vars[symme
equal_vnam_def)

axiomatization where
nat_to_loc’_inject: "mat_to_loc’ 1 = nat_to_loc’ 1’ +— 1 = 1"

lemma equal_loc’_code [code]:
"HOL.equal (nat_to_loc’ 1) (mat_to_loc’ 1°) <— 1 = 1°"
by (simp add: equal_loc’_def nat_to_loc’_inject)

definition undefined_cname :: cname

where [code del]: "undefined_cname = undefined"
declare undefined_cname_def [symmetric, code_unfold]
code__datatype Object Xcpt Cname undefined_cname

definition undefined_val :: val

where [code del]: "undefined_val = undefined"
declare undefined_val_def [symmetric, code_unfold]
code__datatype Unit Null Bool Intg Addr undefined_val

definition E where

"E = Expr (11_name::=NewC list_name);;
Expr ({list_name}(LAcc 11_name)..val_name:=Lit (Intg 1));;

Expr (12_name::=NewC list_name);;
Expr ({list_name}(LAcc 12 _name)..val_name:=Lit (Intg 2));;

Expr (13_name::=NewC list_name);;
Expr ({list_name}(LAcc 13_name)..val_name:=Lit (Intg 3));;

Expr (14_name::=NewC list_name);;
Expr ({list_name}(LAcc 14_name)..val_name:=Lit (Intg 4));;

Expr ({list_name}(LAcc 11_name)..
append_name ({ [RefT (ClassT list_name)]}[LAcc 12_name]));;

Expr ({list_name}(LAcc 11_name)..
append_name ({[RefT (ClassT list_name)]}[LAcc 13_name]));;

Expr ({list_name}(LAcc 11_name)..
append_name ({ [RefT (ClassT list_name)]}[LAcc 14_name]))"

definition test where
"test = Predicate.Pred (As. example_prghkNorm (Map.empty, Map.empty) -E-> s)"

lemma test_code [code]:
"test = exec_i_i_i_o example_prg (Norm (Map.empty, Map.empty)) E"

by (auto intro: exec_i_i_i_oI intro!: pred_eql elim: exec_i_i_i_oE simp add: test_def)

ML_ val <
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val SOME ((_, (heap, locs)), _) = Predicate.yield @{code test};
locs @{code 11_name};
locs @{code 12 _name};
locs @{code 13_name};
locs @{code 14_name};

fun list_fields n =
@{code snd} (@{code the} (heap (@{code Loc} (@{code "nat_to_loc’"} n))));
fun val_field n =
list_fields n (@{code val_name}, @{code "list_name"});
fun next_field n =
list_fields n (@{code next_name}, @{code "list_name"});
val Suc = @{code Suc};

val_field @{code "O :: nat"};
next_field @{code "O :: nat'"};

val_field @{code "1 :: nat"};
next_field @{code "1 :: nat"};

val_field (Suc (Suc @{code "O :: nat"}));
next_field (Suc (Suc @{code "0 :: mat"}));

val_field (Suc (Suc (Suc @{code "O :: nat"})));
next_field (Suc (Suc (Suc @{code "O :: mnat"})));

end
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Chapter 3

Java Virtual Machine

3.1 State of the JVM
theory JVMState

imports "../J/Conform"
begin

3.1.1 Frame Stack

type__synonym opstack "val list"
type__synonym locvars = "val list"
type__synonym p_count = nat

type__synonym

frame = "opstack X
locvars X
cname X
sig X
p_count”

— operand stack

— local variables (including this pointer and method parameters)
— name of class where current method is defined

— method name + parameter types

— program counter within frame

3.1.2 Exceptions
definition raise_system_xcpt :: "bool = xcpt = val option" where
"raise_system_xcpt b x = raise_if b x None"
3.1.3 Runtime State
type__synonym
jvm_state = "val option X aheap X frame list" — exception flag, heap, frames
3.1.4 Lemmas

lemma new_Addr_OutOfMemory:
"snd (new_Addr hp) = Some xcp = xcp = Addr (XcptRef OutOfMemory)"
proof -
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obtain ref xp where "new_Addr hp = (ref, xp)" by (cases "new_Addr hp")

moreover

assume "snd (new_Addr hp) = Some xcp"

ultimately

show 7thesis by (auto dest: new_AddrD)
qed

end

3.2 Instructions of the JVM

theory JVMInstructions imports JVMState begin

datatype

instr = Load nat — load from local variable
| Store nat — store into local variable
| LitPush val — push a literal (constant)
| New cname — create object
| Getfield vname cname — Fetch field from object
| Putfield vname cname — Set field in object
| Checkcast cname — Check whether object is of given type
| Invoke cname mname "(ty list)" — inv. instance meth of an object
| Return — return from method
| Pop — pop top element from opstack
| Dup — duplicate top element of opstack
| Dup_x1 — duplicate top element and push 2 down
| Dup_x2 — duplicate top element and push 3 down
| Swap — swap top and next to top element
| IAdd — integer addition
| Goto int — goto relative address
| Ifcmpeq int — branch if int/ref comparison succeeds
| Throw — throw top of stack as exception

type__synonym

bytecode = "instr list"
type__synonym
exception_entry = "p_count X p_count X p_count X cname"

— start-pc, end-pc, handler-pc, exception type
type__synonym

exception_table = "exception_entry list"
type__synonym
jvm_method = "nat X nat X bytecode X exception_table"

— max stacksize, size of register set, instruction sequence, handler table
type__synonym
jvm_prog = "jvm_method prog"

end

3.3 JVM Instruction Semantics

theory JVMExecInstr imports JVMInstructions JVMState begin
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primrec exec_instr :: "[instr, jvm_prog, aheap, opstack, locvars, cname, sig, p_count,

frame list] => jvm_state"
where
"exec_instr (Load idx) G hp stk vars Cl sig pc frs =
(None, hp, ((vars ! idx) # stk, vars, Cl, sig, pc+1)#frs)" |
"exec_instr (Store idx) G hp stk vars Cl sig pc frs =
(None, hp, (tl stk, vars[idx:=hd stk], Cl, sig, pc+1)#frs)" |
"exec_instr (LitPush v) G hp stk vars Cl sig pc frs =
(None, hp, (v # stk, vars, Cl, sig, pc+1)#frs)" |
"exec_instr (New C) G hp stk vars Cl sig pc frs =
(let (oref,xp’) = new_Addr hp;
fs = init_vars (fields(G,C));
hp’ if xp’=None then hp(oref ~— (C,fs)) else hp;
pc’ if xp’=None then pc+1 else pc
in
(xp’, hp’, (Addr oref#stk, vars, Cl, sig, pc’)#frs))" |

"exec_instr (Getfield F C) G hp stk vars Cl sig pc frs =
(let oref = hd stk;
xp’ raise_system_xcpt (oref=Null) NullPointer;
(oc,fs) = the(hp(the_Addr oref));
pc’ = if xp’=None then pc+1 else pc

in
(xp’, hp, (the(fs(F,C))#(tl stk), vars, Cl, sig, pc’)#frs))" |
"exec_instr (Putfield F C) G hp stk vars Cl sig pc frs =
(let (fval,oref)= (hd stk, hd(tl stk));
xp’ = raise_system_xcpt (oref=Null) NullPointer;
a the_Addr oref;
(oc,fs) = the(hp a);
hp’ = if xp’=None then hp(a + (oc, fs((F,C) — fval))) else hp;
pc’ = if xp’=None then pc+1 else pc

in
(xp’, hp’, (t1 (tl1 stk), vars, Cl, sig, pc’)#frs))" |

"exec_instr (Checkcast C) G hp stk vars Cl sig pc frs =

(let oref = hd stk;
xp’ = raise_system_xcpt (— cast_ok G C hp oref) ClassCast;
stk’ = if xp’=None then stk else tl stk;

pc’ = if xp’=None then pc+1 else pc
in

(xp’, hp, (stk’, vars, Cl, sig, pc’)#frs))" |

"exec_instr (Invoke C mn ps) G hp stk vars Cl sig pc frs =

(let n = length ps;

argsoref = take (n+1) stk;

oref = last argsoref;

xp’ = raise_system_xcpt (oref=Null) NullPointer;

dynT = fst(the(hp(the_Addr oref)));

(dc,mh,mxs,mx1,c)= the (method (G,dynT) (mn,ps));
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frs’ = if xp’=None then
[([],rev argsoref@replicate mxl undefined,dc, (mn,ps),0)]
else []
in
(xp’, hp, frs’@(stk, vars, Cl, sig, pc)#frs))" |
— Because exception handling needs the pc of the Invoke instruction,
— Invoke doesn’t change stk and pc yet (Return does that).

"exec_instr Return G hp stkO vars Cl1 sig0 pc frs =
(if frs=[] then
(None, hp, [1)
else
let val = hd stkO; (stk,loc,C,sig,pc) = hd frs;
(mn,pt) = sig0; n = length pt
in
(None, hp, (val#(drop (n+1) stk),loc,C,sig,pc+1)#tl frs))"
— Return drops arguments from the caller’s stack and increases
— the program counter in the caller [

"exec_instr Pop G hp stk vars Cl sig pc frs =
(None, hp, (tl1 stk, vars, Cl, sig, pc+1)#frs)" |

"exec_instr Dup G hp stk vars Cl sig pc frs =
(None, hp, (hd stk # stk, vars, Cl, sig, pc+1)#frs)" |

"exec_instr Dup_x1 G hp stk vars Cl sig pc frs =
(None, hp, (hd stk # hd (tl stk) # hd stk # (t1 (tl stk)),
vars, Cl, sig, pc+1)#frs)" |

"exec_instr Dup_x2 G hp stk vars Cl sig pc frs
(None, hp,

(hd stk # hd (tl1 stk) # (hd (t1 (tl1 stk))) # hd stk # (t1 (tl1 (tl1 stk))),

vars, Cl, sig, pc+1)#frs)" |

"exec_instr Swap G hp stk vars Cl sig pc frs =

(let (vall,val2) = (hd stk,hd (tl stk))
in
(None, hp, (val2#vali#(tl (tl stk)), vars, Cl, sig, pc+1)#frs))" |

"exec_instr IAdd G hp stk vars Cl sig pc frs =
(let (vall,val2) = (hd stk,hd (tl stk))
in
(None, hp, (Intg ((the_Intg vall)+(the_Intg val2))#(tl (tl stk)),
vars, Cl, sig, pc+1)#frs))" |

"exec_instr (Ifcmpeq i) G hp stk vars Cl sig pc frs =
(let (vall,val2) = (hd stk, hd (tl stk));
pc’ = if vall = val2 then nat(int pc+i) else pc+l
in
(None, hp, (tl1 (tl stk), vars, Cl, sig, pc’)#frs))" |

"exec_instr (Goto i) G hp stk vars Cl sig pc frs =
(None, hp, (stk, vars, Cl, sig, nat(int pc+i))#frs)" |
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"exec_instr Throw G hp stk vars Cl sig pc frs =
(let xcpt = raise_system_xcpt (hd stk = Null) NullPointer;
xcpt’ = if xcpt = None then Some (hd stk) else xcpt
in
(xcpt’, hp, (stk, vars, Cl, sig, pc)#frs))"

end

3.4 Exception handling in the JVM

theory JVMExceptions imports JVMInstructions begin

definition match_exception_entry :: "jvm_prog = cname = p_count = exception_entry =
bool" where
"match_exception_entry G cn pc ee ==
let (start_pc, end_pc, handler_pc, catch_type) = ee in
start_pc <= pc A pc < end_pc A G- cn =XC catch_type"

primrec match_exception_table :: "jvm_prog = cname = p_count = exception_table
= p_count option"
where
"match_exception_table G cn pc [] = None"

(if match_exception_entry G cn pc e
then Some (fst (snd (snd e)))
else match_exception_table G cn pc es)"

| "match_exception_table G cn pc (e#es)

abbreviation
ex_table_of :: "jvm_method = exception_table"
where "ex_table_of m == snd (snd (snd m))"
primrec find_handler :: "jvm_prog = val option = aheap = frame list
= jvm_state"
where

"find_handler G xcpt hp [] = (xcpt, hp, [1)"
| "find_handler G xcpt hp (fr#frs) =

(case xcpt of

None = (None, hp, fr#frs)
| Some xc =
let (stk,loc,C,sig,pc) = fr in
(case match_exception_table G (cname_of hp xc) pc

(ex_table_of (snd(snd(the(method (G,C) sig))))) of
None = find_handler G (Some xc) hp frs
| Some handler_pc = (None, hp, ([xc], loc, C, sig, handler_pc)#frs)))"

System exceptions are allocated in all heaps:

Only program counters that are mentioned in the exception table can be returned by match_exception_table:

lemma match_exception_table_in_et:
"match_exception_table G C pc et = Some pc’ = Je € set et. pc’ = fst (snd (snd e))"
by (induct et) (auto split: if_split_asm)
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end

3.5 Program Execution in the JVM

theory JVMExec imports JVMExecInstr JVMExceptions begin

fun

exec :: "jvm_prog X jvm_state => jvm_state option"
— exec is not recursive. fun is just used for pattern matching
where

"exec (G, xp, hp, []) = None"

| "exec (G, Nome, hp, (stk,loc,C,sig,pc)#frs) =
(let
i = fst(snd(snd(snd(snd(the (method (G,C) sig)))))) ! pc;
(xcpt’, hp’, frs’) = exec_instr i G hp stk loc C sig pc frs
in Some (find_handler G xcpt’ hp’ frs’))"

| "exec (G, Some xp, hp, frs) = None"

definition exec_all :: "[jvm_prog,jvm_state,jvm_state] => bool"
(<_+F _ —jvm— _> [61,61,61]160) where
"G - s —jvm— t == (s,t) € {(s,t). exec(G,s) = Some t}"

The start configuration of the JVM: in the start heap, we call a method m of class € in program
G. The this pointer of the frame is set to Null to simulate a static method invokation.

definition start_state :: "jvm_prog = cname = mname = jvm_state" where
"start_state G C m =
let (C’,rT,mxs,mx1,i,et) = the (method (G,C) (m,[])) in
(None, start_heap G, [([], Null # replicate mxl undefined, C, (m,[]), 0)])"

end

3.6 Example for generating executable code from JVM seman-
tics
theory JVMListExample

imports "../J/SystemClasses" JVMExec
begin

Since the types cnam, vnam, and mname are anonymous, we describe distinctness of names in
the example by axioms:
axiomatization list_nam test_nam :: cnam

where distinct_classes: "list_nam # test_nam"

axiomatization append_name makelist_name :: mname
where distinct_methods: "append_name # makelist_name"

axiomatization val_nam next_nam :: vnam
where distinct_fields: "val_nam # next_nam"



Theory JVMListExample

axiomatization
where nat_to_loc’_inject: "nat_to_loc’ 1 = nat_to_loc’ 1’ <— 1 =1""

definition list_name :: cname
where "list_name = Cname list_nam"

definition test_name :: cname
where "test_name = Cname test_nam"

definition val_name :: vname
where "val_name = VName val_nam"

definition next_name :: vname
where "next_name = VName next_nam"

definition append_ins :: bytecode where
"append_ins =
[Load O,
Getfield next_name list_name,
Dup,
LitPush Null,
Ifcmpeq 4,
Load 1,
Invoke list_name append_name [Class list_name],
Return,
Pop,
Load 0,
Load 1,
Putfield next_name list_name,
LitPush Unit,
Return]"

definition list_class :: "jvm_method class" where
"list_class =
(Object,
[(val_name, PrimT Integer), (next_name, Class list_name)],
[((append_name, [Class list_name]), PrimT Void,
(3, 0, append_ins, [(1,2,8,Xcpt NullPointer)]))])"

definition make_list_ins :: bytecode where
"make_list_ins =
[New list_name,
Dup,
Store O,
LitPush (Intg 1),
Putfield val_name list_name,
New list_name,
Dup,
Store 1,
LitPush (Intg 2),
Putfield val_name list_name,
New list_name,
Dup,
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Store 2,

LitPush (Intg 3),

Putfield val_name list_name,

Load O,

Load 1,

Invoke list_name append_name [Class list_name],
Pop,

Load O,

Load 2,

Invoke list_name append_name [Class list_name],
Return]"

definition test_class :: "jvm_method class" where
"test_class =
(Object, [1,
[((makelist_name, []), PrimT Void, (3, 2, make_list_ins,[]))])"

definition E :: jvm_prog where
"E = SystemClasses @ [(list_name, list_class), (test_name, test_class)]"

code__datatype list_nam test_nam
lemma equal_cnam_code [code]:
"HOL.equal list_nam list_nam <— True"
"HOL.equal test_nam test_nam <— True"
"HOL.equal list_nam test_nam <— False"
"HOL.equal test_nam list_nam <— False"
by (simp_all add: distinct_classes distinct_classes[symmetric] equal_cnam_def)

code__datatype append_name makelist_name
lemma equal_mname_code [code]:
"HOL.equal append_name append_name <— ITrue"
"HOL.equal makelist_name makelist_name <— True"
"HOL.equal append_name makelist_name <— False"
"HOL.equal makelist_name append_name <— False"
by (simp_all add: distinct_methods distinct_methods[symmetric] equal_mname_def)

code__datatype val_nam next_nam
lemma equal_vnam_code [code]:
"HOL.equal val_nam val_nam <— True"
"HOL.equal next_nam next_nam <— True"
"HOL.equal val_nam next_nam <— False"
"HOL.equal next_nam val_nam <— False"
by (simp_all add: distinct_fields distinct_fields[symmetric] equal_vnam_def)

lemma equal_loc’_code [code]:
"HOL.equal (nat_to_loc’ 1) (nat_to_loc’ 1°’) «— 1 = 1°"
by (simp add: equal_loc’_def nat_to_loc’_inject)

definition undefined_cname :: cname

where [code del]: "undefined_cname = undefined"
code__datatype Object Xcpt Cname undefined_cname
declare undefined_cname_def [symmetric, code_unfold]
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definition undefined_val :: val

where [code del]: "undefined_val = undefined"
declare undefined_val_def [symmetric, code_unfold]
code__datatype Unit Null Bool Intg Addr undefined_val

definition
"test = exec (E, start_state E test_name makelist_name)"

ML_ val <«

©@{code test};

@{code exec} (@{code E}, @{code the} it);
©@{code exec} (@{code E}, @{code the} it);
@{code exec} (@{code E}, @{code the} it);
©@{code exec} (@{code E}, @{code the} it);
@{code exec} (@{code E}, @{code the} it);
@{code exec} (@{code E}, ©@{code the} it);
@{code exec} (@{code E}, @{code the} it);
©@{code exec} (@{code E}, @{code the} it);
©@{code exec} (@{code E}, @{code the} it);
@{code exec} (@{code E}, @{code the} it);
@{code exec} (@{code E}, ©@{code the} it);
@{code exec} (@{code E}, @{code the} it);
©@{code exec} (@{code E}, @{code the} it);
@{code exec} (@{code E}, @{code the} it);
@{code exec} (@{code E}, ©@{code the} it);
@{code exec} (@{code E}, @{code the} it);
@{code exec} (@{code E}, @{code the} it);
@{code exec} (@{code E}, @{code the} it);
@{code exec} (@{code E}, @{code the} it);
©@{code exec} (@{code E}, @{code the} it);
@{code exec} (@{code E}, @{code the} it);
@{code exec} (@{code E}, ©@{code the} it);
©@{code exec} (@{code E}, @{code the} it);
©@{code exec} (@{code E}, @{code the} it);
©@{code exec} (@{code E}, @{code the} it);
@{code exec} (@{code E}, @{code the} it);
@{code exec} (@{code E}, ©@{code the} it);
@{code exec} (@{code E}, @{code the} it);
@{code exec} (@{code E}, @{code the} it);
@{code exec} (@{code E}, @{code the} it);
@{code exec} (@{code E}, ©@{code the} it);
@{code exec} (@{code E}, @{code the} it);
@{code exec} (@{code E}, @{code the} it);
©@{code exec} (@{code E}, @{code the} it);
@{code exec} (@{code E}, @{code the} it);
©@{code exec} (@{code E}, @{code the} it);
@{code exec} (@{code E}, @{code the} it);
@{code exec} (@{code E}, ©@{code the} it);
©@{code exec} (@{code E}, @{code the} it);
@{code exec} (@{code E}, @{code the} it);
@{code exec} (@{code E}, @{code the} it);
@{code exec} (@{code E}, ©@{code the} it);
@{code exec} (@{code E}, ©@{code the} it);
©@{code exec} (@{code E}, @{code the} it);
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©{code exec} (@{code E}, @{code the} it);
©{code exec} (@{code E}, @{code the} it);
©{code exec} (@{code E}, @{code the} it);
0{code exec} (@{code E}, ©{code the} it);
0{code exec} (@{code E}, @{code the} it);
©@{code exec} (@{code E}, @{code the} it);
©{code exec} (@{code E}, @{code the} it);
©{code exec} (@{code E}, @{code the} it);
0{code exec} (@{code E}, ©{code the} it);

end

3.7 A Defensive JVM

theory JVMDefensive
imports JVMExec
begin

Extend the state space by one element indicating a type error (or other abnormal termination)

datatype ’a type_error = TypeError | Normal ’a

abbreviation
fifth :: "’a X ’b X ’c X ’d X ’e x ’f = ’e"
where "fifth x == fst(snd(snd(snd(snd x))))"

fun isAddr :: "val = bool" where
"isAddr (Addr loc) = True"

| "isAddr v = False"

fun isIntg :: "val = bool" where
"isIntg (Intg i) = True"

| "isIntg v = False"

definition isRef :: "val = bool" where

"isRef v = v = Null V isAddr v"

primrec check_instr :: "[instr, jvm_prog, aheap, opstack, locvars,
cname, sig, p_count, nat, frame list] = bool" where
"check_instr (Load idx) G hp stk vars C sig pc mxs frs =
(idx < length vars A size stk < mxs)"

| "check_instr (Store idx) G hp stk vars Cl sig pc mxs frs
(0 < length stk A idx < length vars)"

| "check_instr (LitPush v) G hp stk vars Cl sig pc mxs frs
(—isAddr v A size stk < mxs)"

| "check_instr (New C) G hp stk vars Cl sig pc mxs frs =
(is_class G C A size stk < mxs)"

| "check_instr (Getfield F C) G hp stk vars Cl sig pc mxs frs =
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(0 < length stk A is_class G C A field (G,C) F # None A
(let (C’, T) = the (field (G,C) F); ref = hd stk in
C’ = C A isRef ref A (ref # Null —
hp (the_Addr ref) # Nome A
(let (D,vs) = the (hp (the_Addr ref)) in
GFDXCC A vs (F,C) # None A G,hp + the (vs (F,C)) ::= T))))"

| "check_instr (Putfield F C) G hp stk vars Cl sig pc mxs frs =
(1 < length stk A is_class G C A field (G,C) F # None A
(let (C’, T) = the (field (G,C) F); v = hd stk; ref = hd (tl stk) in
C’ = C A isRef ref N (ref # Null —
hp (the_Addr ref) # None A
(let (D,vs) = the (hp (the_Addr ref)) in
GFD=CCAGh F v ::< D))"

| "check_instr (Checkcast C) G hp stk vars Cl sig pc mxs frs =
(0 < length stk A is_class G C A isRef (hd stk))"

| "check_instr (Invoke C mn ps) G hp stk vars Cl sig pc mxs frs =
(length ps < length stk A
(let n = length ps; v = stk!n in
isRef v A (v # Null —
hp (the_Addr v) # Nome A
method (G,cname_of hp v) (mn,ps) # None A
list_all2 (Av T. G,hp F v ::=X T) (rev (take n stk)) ps)))"

| "check_instr Return G hp stkO vars Cl sig0 pc mxs frs =
(0 < length stkO A (0 < length frs —
method (G,Cl) sig0 # None A
(let v = hd stkO; (C, rT, body) = the (method (G,Cl) sig0) in
Cl=CAG,hp kv ::X1rT))"

| "check_instr Pop G hp stk vars Cl sig pc mxs frs
(0 < length stk)"

| "check_instr Dup G hp stk vars Cl sig pc mxs frs
(0 < length stk A size stk < mxs)"

| "check_instr Dup_x1 G hp stk vars Cl sig pc mxs frs
(1 < length stk A size stk < mxs)"

| "check_instr Dup_x2 G hp stk vars Cl sig pc mxs frs
(2 < length stk N size stk < mxs)"

| "check_instr Swap G hp stk vars Cl sig pc mxs frs
(1 < length stk)"

| "check_instr IAdd G hp stk vars Cl sig pc mxs frs =
(1 < length stk A isIntg (hd stk) A isIntg (hd (t1 stk)))"

| "check_instr (Ifcmpeq b) G hp stk vars Cl sig pc mxs frs =
(1 < length stk A 0 < int pc+b)"

| "check_instr (Goto b) G hp stk vars Cl sig pc mxs frs =
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(0 < int pc+b)"

| "check_instr Throw G hp stk vars Cl sig pc mxs frs =
(0 < length stk A isRef (hd stk))"

definition check :: "jvm_prog = jvm_state = bool" where
"check G s = let (xcpt, hp, frs) = s in
(case frs of [] = True | (stk,loc,C,sig,pc)#frs’ =
(let (C’,rt,mxs,mxl,ins,et) = the (method (G,C) sig); i = ins!pc in
pc < size ins A
check_instr i G hp stk loc C sig pc mxs frs’))"

definition exec_d :: "jvm_prog = jvm_state type_error = jvm_state option type_error"
where
"exec_d G s = case s of

TypeError = TypeError
| Normal s’ = if check G s’ then Normal (exec (G, s’)) else TypeError"

definition
exec_all_d :: "jvm_prog = jvm_state type_error = jvm_state type_error = bool"
(<_+F _ —jvmd— _> [61,61,61]60) where
"G F s —jvmd— t —
(s,t) € ({(s,t). exec_d G s = TypeError N t = TypeError} U
{(s,t). dt’. exec_d G s = Normal (Some t’) A t = Normal t’})*"

declare split_paired_All [simp del]
declare split_paired_Ex [simp del]

lemma [dest!]:
"(if P then A else B) # B — P"
by (cases P, auto)

lemma exec_d_no_errorI [intro]:
"check G s = exec_d G (Normal s) # TypeError"
by (unfold exec_d_def) simp

theorem no_ type_error_commutes:
"exec_d G (Normal s) # TypeError —
exec_d G (Normal s) = Normal (exec (G, s))"
by (unfold exec_d_def, auto)

lemma defensive_imp_aggressive:
"G - (Normal s) —jvmd— (Normal t) =— G - s —jvm— t"
proof -
have "Ax y. G - x —jvmd— y — Vs t. x = Normal s — y = Normal t — G F s —jvm—
t’l
apply (unfold exec_all_d_def)
apply (erule rtrancl_induct)
apply (simp add: exec_all_def)
apply (fold exec_all_d_def)
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apply
apply
apply
apply
apply
apply
apply
apply
done

simp

(intro alll impI)

(erule disjE, simp)

(elim exE conjE)

(erule allE, erule impE, assumption)

(simp add: exec_all_def exec_d_def split: type_error.splits if_split_asm)
(rule rtrancl_trans, assumption)

blast

moreover

assume "G ~ (Normal s) —jvmd— (Normal t)"
ultimately

show "G F s —jvm— t" by blast

qed

end
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Chapter 4

Bytecode Verifier

4.1 Semilattices

theory Semilat
imports Main "HOL-Library.While_Combinator"

begin

type_synonym ’a ord = "’a = ’a = bool"
type_synonym ’a binop = "’a = ’a = ’a"
type_synonym ’a sl = "’a set X ’a ord X ’a binop"
definition lesub :: "’a = ’a ord = ’a = bool"

where "lesub x r y «— r x y"

definition lesssub :: "’a = ’a ord = ’a = bool"
where "lesssub x r y <— lesub x ry AN x # y"

definition plussub :: "’a = (’a = ’b = ’c) = ’b = ’c"
where "plussub x f y = f x y"

notation (ASCII)
"lesub" (<(_ /<=’__ _)> [50, 1000, 51] 50) and
"lesssub" (<(_ /<’__ _)> [50, 1000, 51] 50) and
"plussub" (<(_ /+’__ _)> [65, 1000, 66] 65)

notation
"lesub" (< (_ /E_ _)> [50, 0, 51] 50) and
"lesssub" (<(_ /C_ _)> [50, 0, 51] 50) and
"plussub” (<(_ /U_ _)> [65, 0, 66] 65)

abbreviation (input)
lesubl :: "’a = ’a ord = ’a = bool" (<(_ /E_ _)> [50, 1000, 51] 50)
where "x C, y == x C, y"

abbreviation (input)
lesssubl :: "’a = ’a ord = ’a = bool" (<(_ /C_ _)> [50, 1000, 51] 50)

where "x C, y == x Cr y"

abbreviation (input)

89
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plussubl :: "’a = (a = ’b = ’c) = ’b = ’c¢" (<(_ /J_ _)> [65, 1000, 66] 65)
where "x Uy y == x Ur y"

definition ord :: "(’a X ’a) set = ’a ord" where
"ord r = Ax y. (x,y) € r"

definition order :: "’a ord = bool" where
"order r = (WVx. x C, x) N Vxy. xC, y ANy L, x — x=y) N Wxyz. xLC,y Ay
Crz —x 5, 2)"

definition top :: "’a ord = ’a = bool" where
"topr T =Vx. x C, T"

definition acc :: "’a ord = bool" where
"acc r = wf {(y,x). x C, y}"

definition closed :: "’a set = ’a binop = bool" where
"closed A f = Vx€A. VycAd. x Ly y € A"

definition semilat :: "’a sl = bool" where
"semilat = A(A,r,f). order r N closed A £ A
(Vxed. Vyeh. x G, x Uy y) A
(VxeA. VyeA. y T, x Uy y) A
(VxcA. VycA. Vzed. x L, z ANy 5, z — x Up y B, 2)"

definition is_ub :: "(’a X ’a) set = ’a = ’a = ’a = bool" where
"isubr xyu= (x,u)er A (y,u)er"

definition is_lub :: "(’a X ’a) set = ’a = ’a = ’a = bool" where
"is_Jubrxyu=1isubrxyuA (Vz. is_ubr xy z — (u,z)Er)”

definition some_lub :: "(’a X ’a) set = ’a = ’a = ’a" where
"some_lub r x y = SOME z. is_lubr x y z"

locale Semilat =

fixes A :: "’a set"
fixes r :: "’a ord"
fixes f :: "’a binop"

assumes semilat: "semilat (4, r, f)"
lemma order_refl [simp, intro]: "order r — x L, x"
lemma order_antisym: "[ order r; x C, y; y C, x | = x = y"

n

lemma order_trans: "[ order r; x C, y; y C, z | = x C, z
lemma order_less_irrefl [intro, simp]: "order r — — x [, x"
lemma order_less_trans: "[[ order r; x L, y; ¥y [, 2 ]] == x C, z"

lemma topD [simp, intro]: "top r T — x L, T"

lemma top_le_conv [simp]: "[ order r; topr T ] = (T C, x) = (x = T)"
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lemma semilat_Def:
"semilat (A,r,f) = order r N closed A f A
(Vxed. Vycd. x C, x Uy y) A
(Vx€A. VychA. y T, x Uy y) A
(Vx€hd. Vycd. VzeAd. x L, z Ny L, z — x Uy y

I

r Z)"
lemma (in Semilat) orderI [simp, intro]: "order r"

lemma (in Semilat) closedI [simp, intro]: "closed A f"

lemma closedD: “[[ closed A f; xcA; ycA ]] — x Uy y € A"

lemma closed_UNIV [simp]: "closed UNIV f"

lemma (in Semilat) closed_f [simp, intro]: "[x € A; y € A] = x Uy y € A"
lemma (in Semilat) refl_r [intro, simp]: "x L, x" by simp

lemma (in Semilat) antisym_r [intro?]: "[ x C, y; y C, x ] = x = y"
lemma (in Semilat) trans_r [trans, intro?]: "[x C, y; y C, z] = x C, z"
lemma (in Semilat) ubl [simp, intro?]: "[x € 4; y € A] = x C, x Uy y"
lemma (in Semilat) ub2 [simp, intro?]: "[ x € A; y € A ] = y C, x Uy y"

lemma (in Semilat) lub [simp, intro?]:
"TxChz; yC, z; x €A; yed;zeA] = xUpy L, z"

lemma (in Semilat) plus_le_conv [simp]:
"fx€eA yehd zeAd] = xUyLCo2z)=&LE zAy L, 2)"

lemma (in Semilat) le_iff_plus_unchanged: "[ x € A; y € A] = x C, y) = (x Uy ¥y

lemma (in Semilat) le_iff_plus_unchanged2: "[ x € A; y € A ] = (x T, y) = (y Uy x

lemma (in Semilat) plus_assoc [simp]:
assumes a: "a € A" and b: "b € A" and c: "c € A"
shows "a Uy (b Uy c) = a Uy b Uy c"
lemma (in Semilat) plus_com_lemma:
"la€4; be Al = alybC, blya"
lemma (in Semilat) plus_commutative:
"la € A; b € A] = a Uy b =b Uy a"

lemma is_lubD:
"is_ lubr xyu = is_ubrxyu A (Vz. isubr xyz — (u,z) € r)"

lemma is_ubI:
" (x,u) € r; (y,u) €r | = is_ubr x y u"

lemma is_ubD:
"isubrxyu = (x,u) €r A (y,u) € r"
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lemma is_lub_bigger1l [iff]:
"is_lub (r*) x y y = ((x,y)eEr*)"
lemma is_lub_bigger2 [iff]:
"is_lub (r*) x y x = ((y,x)er*)"
lemma extend_lub:
"[ single_valued r; is_lub (r*) x y u; (x’,x) € r |
= dv. is_lub (r*) x> y v"
lemma single_valued_has_lubs [rule_format]:
"[single_valued r; (x,u) € r*] = y. (y,u) € r* —
(z. is_lub (r*) x y z))"
lemma some_lub_conv:
"lacyclic r; is_lub (r*) x y u] = some_lub (r*) x y = u"
lemma is_lub_some_lub:
"[single_valued r; acyclic r; (x,uw)er*; (y,wer*]
— is_lub (r*) x y (some_lub (r*) x y)"

4.1.1 An executable lub-finder

definition exec_lub :: "(’a * ’a) set = (’a = ’a) = ’a binop" where
"exec_lub r f x y = while (\z. (x,z) ¢ r*) f y"

lemma exec_lub_refl: "exec_lub r f T T = T"
by (simp add: exec_lub_def while_unfold)

lemma acyclic_single_valued_finite:
"lacyclic r; single_valued r; (x,y) € r*]
= finite (r N {a. (x, a) € r*} x {b. (b, y) € r*P)"

lemma exec_lub_conv:
"[ acyclic r; Vx y. (x,y) € r — f x = y; is_lub (r*) xyu | =
exec_lubr f x y = u"
lemma is_lub_exec_lub:
"[ single_valued r; acyclic r; (x,wer*; (y,wer*; Vxy. (x,y) € r — fx =y ]
= is_lub (r*) x y (exec_lub r f x y)"

end

4.2 The Error Type
theory Err
imports Semilat

begin

datatype ’a err = Err | OK ’a

type_synonym ’a ebinop = "’a = ’a = ’a err"
type_synonym ’a esl = "’a set * ’a ord * ’a ebinop"
primrec ok_val :: "’a err = ’a" where

"ok_val (OK x) = x"

definition 1ift :: "(’a = ’b err) = (’a err = ’b err)" where
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"lift f e == case e of Err = Err | OK x = f x"

definition 1ift2 :: "(’a = ’b = ’c err) = ’a err = ’b err = ’c err" where
"1ift2 f el e2 ==
case el of Err = Err

| OK x = (case e2 of Err = Err | OKy = f x y)"

definition le :: "’a ord = ’a err ord" where
"le r el e2 ==
case e2 of Err = True |
0K y = (case el of Err = False | OK x = x <=_r y)"

definition sup :: "(’a = ’b = ’c) = (’a err = ’b err = ’c err)" where
"sup f == 1lift2(}x y. OK(x +_f y))"

definition err :: "’a set = ’a err set" where
"err A == insert Err {x . Jy€A. x = 0K y}"

definition esl :: "’a sl = ’a esl" where
"esl == }(A,r,f). (A,r, %x y. OK(f x y))"

definition s1 :: "’a esl = ’a err sl" where
"sl == J(A,r,f). (err A, le r, 1lift2 £)"

abbreviation
err_semilat :: "’a esl = bool"
where "err_semilat L == semilat(Err.sl L)"

primrec strict :: "(’a = ’b err) = (’a err = ’b err)" where
"strict f Err = Err"

| "strict f (0K x) = f x"

lemma strict_Some [simp]:
"(strict £ x =0Ky) = (3 z. x =0z N fz=0Ky"
by (cases x, auto)

lemma not_Err_eq:
"(x # Err) = (Ja. x = 0K a)"
by (cases x) auto

lemma not_O0K_eq:
"Wy. x # 0K y) = (x = Err)"
by (cases x) auto

lemma unfold_lesub_err:
"el <=_(le r) e2 == le r el e2"
by (simp add: lesub_def)

lemma le_err_refl:

"Wx. x <=_r x = e <=_(Err.le r) e"
apply (unfold lesub_def Err.le_def)
apply (simp split: err.split)
done
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lemma le_err_trans [rule_format]:
"order r =—> el <=_(le r) e2 — e2 <=_(le r) e3 — el <=_(le r) e3"
apply (unfold unfold_lesub_err le_def)
apply (simp split: err.split)
apply (blast intro: order_trans)
done

lemma le_err_antisym [rule_format]:
"order r = el <=_(le r) e2 — e2 <=_(le r) el — el=e2"
apply (unfold unfold_lesub_err le_def)
apply (simp split: err.split)
apply (blast intro: order_antisym)
done

lemma OK_le_err_OK:
"(OK x <=_(le r) OK y) = (x <=_r y)"
by (simp add: unfold_lesub_err le_def)

lemma order_le_err [iff]:
"order(le r) = order r"

apply (rule iffI)

apply (subst Semilat.order_def)

apply (blast dest: order_antisym OK_le_err OK [THEN iffD2]
intro: order_trans OK_le_err_OK [THEN iffD1])

apply (subst Semilat.order_def)

apply (blast intro: le_err_refl le_err_trans le_err_antisym
dest: order_refl)

done

lemma le Err [iff]: "e <=_(le r) Err"
by (simp add: unfold_lesub_err le_def)

lemma Err_le_conv [iff]:
"Err <= (le r) e = (e = Err)"

by (simp add: unfold_lesub_err le_def split: err.split)

lemma le_OK_conv [iff]:
"e <=_(ler) OKx = ([Qy. e=0y &y <=_r x)"

by (simp add: unfold_lesub_err le_def split: err.split)

lemma OK_le_conv:
"OK x <=_(ler) e = (e=Err | (Qy. e =0y & x <=_r y))"
by (simp add: unfold_lesub_err le_def split: err.split)

lemma top_Err [iff]: "top (le r) Err"
by (simp add: top_def)

lemma OK_less_conv [rule_format, iff]:
"OK x <_(ler) e =(e=Err | (Qy. e = 0Ky & x <r y))"
by (simp add: lesssub_def lesub_def le_def split: err.split)

lemma not_Err_less [rule_format, iff]:
"~(Err <_(le r) x)"
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by (simp add: lesssub_def lesub_def le_def split: err.split)

lemma semilat_errI [intro]:
assumes semilat: "semilat (A, r, f)"
shows "semilat(err A, Err.le r, 1lift2()x y. OK(f x y)))"
using semilat
apply (simp only: semilat_Def closed_def plussub_def lesub_def
1ift2 _def Err.le_def err_def)
apply (simp split: err.split)
done

lemma err_semilat_eslI_aux:
assumes semilat: "semilat (4, r, f)"
shows "err_semilat(esl(A,r,f))"
apply (unfold sl_def esl_def)
apply (simp add: semilat_errI[OF semilat])
done

lemma err_semilat_eslI [intro, simp]:
"AL. semilat L = err_semilat(esl L)"
by (simp add: err_semilat_eslI_aux split_tupled_all)

lemma acc_err [simp, intro!]: '"acc r = acc(le r)"
apply (unfold acc_def lesub_def le_def lesssub_def)
apply (simp add: wf_eq_minimal split: err.split)
apply clarify

apply (case_tac "Err € Q")

apply blast

apply (erule_tac x = "{a . OK a € Q}" in allE)

apply (case_tac "x")

apply fast
apply blast
done

lemma Err_in_err [iff]: "Err € err A"
by (simp add: err_def)

lemma Ok_in_err [iff]: "(0OK x € err A) = (x€A)"
by (auto simp add: err_def)

4.2.1 lift

lemma 1ift_in_errI:
"[ e € err S; Vx€S. e = 0K x — f x € err S | = 1ift f e € err S"
apply (unfold lift_def)
apply (simp split: err.split)
apply blast
done

lemma Err_lift2 [simp]:
"Err +_(1ift2 f) x = Err"
by (simp add: 1ift2_def plussub_def)

lemma 1ift2 Err [simp]:
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"x +_(1ift2 f) Err = Err"
by (simp add: 1ift2_def plussub_def split: err.split)

lemma O0K_1ift2 0K [simp]:
"OK x +_(1lift2 f) OKy = x +_f y"
by (simp add: 1ift2_def plussub_def split: err.split)

4.2.2 sup

lemma Err_sup_Err [simp]:
"Err +_(Err.sup f) x = Err"
by (simp add: plussub_def Err.sup_def Err.lift2 def)

lemma Err_sup_Err2 [simp]:
"x +_(Err.sup f) Err = Err"
by (simp add: plussub_def Err.sup_def Err.lift2_def split: err.split)

lemma Err_sup_OK [simp]:
"OK x +_(Err.sup f) OK y = OK(x +_f y)"
by (simp add: plussub_def Err.sup_def Err.lift2_def)

lemma Err_sup_eq OK_conv [iff]:
"(Err.sup f ex ey = 0K z) = (Ax y. ex = 0K x & ey =0Ky & fxy =2z)"
apply (unfold Err.sup_def 1ift2_def plussub_def)
apply (rule iffI)
apply (simp split: err.split_asm)
apply clarify
apply simp
done

lemma Err_sup_eq Err [iff]:

"(Err.sup f ex ey = Err) = (ex=Err | ey=Err)"
apply (unfold Err.sup_def 1ift2_def plussub_def)
apply (simp split: err.split)
done

4.2.3 semilat (err A) (ler) f

lemma semilat_le_err_ Err_plus [simp]:
"[ x € err A; semilat(err A, le r, f) | = Err +_f x = Err"
by (blast intro: Semilat.le_iff_plus_unchanged [OF Semilat.intro, THEN iffD1]
Semilat.le_iff_ plus_unchanged2 [OF Semilat.intro, THEN iffD1])

lemma semilat_le_err_plus_Err [simp]:
"[ x € err A; semilat(err A, le r, f) | = x +_f Err = Err"
by (blast intro: Semilat.le_iff_plus_unchanged [OF Semilat.intro, THEN iffD1]
Semilat.le_iff_ plus_unchanged2 [OF Semilat.intro, THEN iffD1])

lemma semilat_le_err_OK1:
"l x € A; y € A; semilat(err A, ler, £); OK x + f 0K y = OK z |
= x <=_r z"

apply (rule OK_le_err_OK [THEN iffD1])

apply (erule subst)

apply (simp add: Semilat.ubl [OF Semilat.intro])
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done

lemma semilat_le_err_O0K2:
"[ x € A; y € A; semilat(err A, ler, £f); OK x +_f 0K y = 0K z |
= y <=_r z"

apply (rule OK_le_err_OK [THEN iffD1])

apply (erule subst)

apply (simp add: Semilat.ub2 [OF Semilat.intro])

done

lemma eq_order_le:

"[ x=y; order r | = x <=_r y"
apply (unfold Semilat.order_def)
apply blast
done

lemma OK_plus_OK_eq Err_conv [simp]:
assumes "x € A" and "y € A" and "semilat(err A, le r, fe)"
shows "((0K x) +_fe (0K y) = Err) = (- (dz€A. x <= r z &y <=_r z))"
proof -
have plus_le_conv3: "NAx y z f r.
[ semilat (A,r,f); x +.f y<=r z; x € A; y € A; z € A ]
= x<=rz ANy<=_rz"
by (rule Semilat.plus_le_conv [OF Semilat.intro, THEN iffD1])
from assms show 7thesis
apply (rule_tac iffI)
apply clarify
apply (drule OK_le_err_OK [THEN iffD2])
apply (drule OK_le_err OK [THEN iffD2])
apply (drule Semilat.lub [OF Semilat.intro, of _ _ _ "OK x" _ "OK y"I)
apply assumption
apply assumption
apply simp
apply simp
apply simp
apply simp
apply (case_tac "(OK x) +_fe (0K y)")
apply assumption
apply (rename_tac z)
apply (subgoal_tac "OK z € err A")
apply (drule eq_order_le)
apply (erule Semilat.orderI [OF Semilat.intro])
apply (blast dest: plus_le_conv3)
apply (erule subst)
apply (blast intro: Semilat.closedI [OF Semilat.intro] closedD)
done
qed

4.2.4 semilat (err (Union AS))

lemma all_bex_swap_lemma [iff]:
"Wx. (Qy€A. x =f y) — Px) = (VycA. P(f y))"
by blast
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lemma closed_err Union_1ift2I:
"[ VAEAS. closed (err A) (1ift2 f); AS # {};
VAEAS. VBEAS. A#B —» (Va€A. VbeB. a +.f b = Err) |
= closed (err (|J4S)) (1ift2 £)"
apply (unfold closed_def err_def)
apply simp
apply clarify
apply simp
apply fast
done

If 48 = {} the thm collapses to order r A closed {Err} f A Err Uf Err = Err which may
not hold

lemma err_semilat_UnionI:
"[ VAEAS. err_semilat(A, r, f); AS # {};
VA€AS. VBEAS. A#B —» (VacA. VbeB. — a <=r b & a +.f b = Err) |
—> err_semilat (|JAS, r, £)"
apply (unfold semilat_def sl_def)
apply (simp add: closed_err_Union_lift2I)
apply (rule conjI)
apply blast
apply (simp add: err_def)
apply (rule conjI)
apply clarify
apply (rename_tac A a u B b)
apply (case_tac "A = B")
apply simp
apply simp
apply (rule conjI)
apply clarify
apply (rename_tac A a u B b)
apply (case_tac "A = B")
apply simp
apply simp
apply clarify
apply (rename_tac A ya yb Byd z C ¢ a b)
apply (case_tac "A = B")
apply (case_tac "A = C")
apply simp
apply (rotate_tac -1)
apply simp
apply (rotate_tac -1)
apply (case_tac "B = C")
apply simp
apply (rotate_tac -1)
apply simp
done

end

4.3 Fixed Length Lists

theory Listn
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imports Err
begin

definition list :: "nat = ’a set = ’a list set" where
"list n A == {xs. length xs = n & set xs <= A}"

definition le :: "’a ord = (’a list)ord" where
"le r == list_all2 (Jx y. x <=_r y)"

abbreviation
lesublist_syntax :: "’a list = ’a ord = ’a list = bool"
(«<(_ /<=[_]1 _)> [50, 0, 51] 50)
where "x <=[r] y == x <=_(le r) y"

abbreviation
lesssublist_syntax :: "’a list = ’a ord = ’a list = bool"
(<(_ /<[_] _)> [50, 0, 51] 50)
where "x <[r] y == x <_(le r) y"

definition map2 :: "(’a = ’b = ’c) = ’a list = ’b list = ’c list" where
"map2 f == (Jxs ys. map (case_prod f) (zip xs ys))"

abbreviation
plussublist_syntax :: "’a list = (’a = ’b = ’c) = ’b list = ’c list"
(<(_ /+[_1 _)> [65, 0, 66] 65)
where "x +[f] y == x +_(map2 f) y"

primrec coalesce :: "’a err list = ’a list err" where
"coalesce [] = OK[]"
| "coalesce (ex#exs) = Err.sup (#) ex (coalesce exs)"

definition sl :: "nat = ’a sl = ’a list sl1" where
"sl n == J(A,r,f). (list n A, le r, map2 f)"

definition sup :: "(’a = ’b = ’c err) = ’a list = ’b list = ’c list err" where
"sup f == Jxs ys. if size xs = size ys then coalesce(xs +[f] ys) else Err"
definition upto_esl :: "nat = ’a esl = ’a list esl" where

"upto_esl m == }(A,r,f). ((J{list n A |n. n <= m}, le r, sup £f)"
lemmas [simp] = set_update_subsetI

lemma unfold_lesub_list:
"xs <=[r] ys == Listn.le r xs ys"
by (simp add: lesub_def)

lemma Nil_le_conv [iff]:
"([1 <=[r] ys) = (ys = [1)"
apply (unfold lesub_def Listn.le_def)
apply simp
done

lemma Cons_notle_Nil [iff]:
"~ x#txs <=[r] []"



100

apply (unfold lesub_def Listn.le_def)

apply simp
done

lemma Cons_le_Cons [iff]:
"x#xs <=[r] y#ys = (x <=_r y & xs <=[r] ys)"
apply (unfold lesub_def Listn.le_def)
apply simp
done

lemma Cons_less_Conss [simp]:
"order r —
x#xs <_(Listn.le r) y#ys =
(x<ryé&zxs<=[rl ys | x=y & xs <_(Listn.le r) ys)"
apply (unfold lesssub_def)
apply blast
done

lemma list_update_le_cong:
"[ i<size xs; xs <=[r] ys; x <=_r y | = xs[i:=x] <=[r] ys[i:=y]"
apply (unfold unfold_lesub_list)
apply (unfold Listn.le_def)
apply (simp add: list_all2 conv_all_nth nth_list_update)
done

lemma le_listD:
"[ xs <=[r] ys; p < size xs | = xs!p <=_r ys!p"
apply (unfold Listn.le_def lesub_def)
apply (simp add: list_all2 conv_all_nth)
done

lemma le_list_refl:
"Wx. x <=_r x = xs <=[r] xs"
apply (unfold unfold_lesub_list)
apply (simp add: Listn.le_def list_all2_conv_all_nth)
done

lemma le_list_trans:
"[ order r; xs <=[r] ys; ys <=[r] zs | = xs <=[r] zs"
apply (unfold unfold_lesub_list)
apply (simp add: Listn.le_def list_all2_conv_all_nth)
apply clarify
apply simp
apply (blast intro: order_trans)
done

lemma le_list_antisym:

"[ order r; xs <=[r] ys; ys <=[r] xs | = xs = ys
apply (unfold unfold_lesub_list)
apply (simp add: Listn.le_def list_all2 conv_all_nth)
apply (rule nth_equalityI)
apply blast

n
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apply clarify

apply simp

apply (blast intro: order_antisym)
done

lemma order_listI [simp, intro!]:
"order r —> order(Listn.le r)"
apply (subst Semilat.order_def)
apply (blast intro: le_list_refl le_list_trans le_list_antisym
dest: order_refl)
done

lemma lesub_list_impl_same_size [simp]:

"xs <=[r] ys = size ys = size xs"
apply (unfold Listn.le_def lesub_def)
apply (simp add: list_all2 conv_all_nth)
done

lemma lesssub_list_impl_same_size:
"xs <_(Listn.le r) ys = size ys = size xs"
apply (unfold lesssub_def)
apply auto
done

lemma le_list_appendI:
"Ab ¢ d. a <=[r] b = ¢ <=[r] d = a@c <=[r] bed"
apply (induct a)
apply simp
apply (case_tac b)
apply auto
done

lemma le_listI:
"length a = length b =— (An. n < length a = al!n <=_r b!n) — a <=[r] b"
apply (unfold lesub_def Listn.le_def)
apply (simp add: list_all2 conv_all_nth)
done

lemma 1istI:
"[ length xs = n; set xs <= A | = xs € list n A"
apply (unfold list_def)
apply blast
done

lemma 1listE_length [simp]:
"xs € list n A — length xs = n"
apply (unfold list_def)
apply blast
done

lemma less_lengthI:
"[ xs € list n A; p <n | = p < length xs"
by simp
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lemma listE_set [simp]:
"xs € list n A = set xs <= A"
apply (unfold list_def)
apply blast
done

lemma 1list_0 [simp]:
"list 0 A = {[1}"

apply (unfold list_def)

apply auto

done

lemma in_list_Suc_iff:
"(xs € list (Suc n) A) = (3y€ A. dyse list n A. xs = y#ys)"
apply (unfold list_def)
apply (case_tac "xs")
apply auto
done

lemma Cons_in_list_Suc [iff]:

"(x#xs € list (Suc n) A) = (x€ A & xs € list n A)"
apply (simp add: in_list_Suc_iff)
done

lemma list_not_empty:

"Ja. a€ A = dxs. xs € list n A"
apply (induct "n")
apply simp
apply (simp add: in_list_Suc_iff)
apply blast
done

lemma nth_in [rule_format, simp]:
"Vi n. length xs =n — set xs <= A — i <n — (xs!i) € A"
apply (induct "xs")

apply simp
apply (simp add: nth_Cons split: nat.split)
done

lemma listE_nth_in:
"[ xs € list n A; i <n | = (xs!i) € A"
by auto

lemma listn_Cons_Suc [elim!]:
"l#xs € list n A = (An’. n =Sucn’ = 1 € A = xs € list n’ A = P) = P"
by (cases n) auto

lemma listn_appendE [elim!]:

"a@b € list n A = (An1 n2. n=ni1+n2 = a € list n1 A = b € list n2 A = P) =
P”
proof -
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have "An. a@b € list n A = Jnl n2. n=ni1+n2 A a € list n1 A A b € list n2 A"
(is "An. ?list a n = Jn1 n2. 7P a n nl1 n2")
proof (induct a)
fix n assume "?7list [] n"
hence "?P [] n 0 n" by simp
thus "dn1 n2. ?P [] n nl1 n2" by fast
next
fix n 1 1s
assume "7list (1#ls) n"
then obtain n’ where n: "n = Suc n’" "1 € A" and list_n’: "ls@b € list n’ A" by
fastforce
assume "An. 1s @ b € list n A = dnl n2. n =nl +n2 A 1s € list n1 A A b € list
n2 A"
hence "dn1 n2. n’ = nl + n2 A 1s € list n1 A A b € list n2 A" by this (rule list_n’)
then obtain n1 n2 where "n’ = n1 + n2" "ls € list nl1 A" "b € list n2 A" by fast
with n have "?7P (1#ls) n (n1+1) n2" by simp
thus "dni1 n2. ?P (1#ls) n nl n2" by fastforce
qed
moreover
assume "a@b € list n A" "Anl n2. n=nl+n2 — a € list n1 A = b € list n2 A =
P”
ultimately
show ?thesis by blast
qed

lemma listt_update_in_list [simp, intro!]:
"[ xs € list n A; x€ A | = xs[i := x] € list n A"
apply (unfold list_def)
apply simp
done

lemma plus_list_Nil [simp]:

"[1 +[£f] xs = [I"
apply (unfold plussub_def map2_def)
apply simp
done

lemma plus_list_Cons [simp]:
"(x#xs) +[f] ys = (case ys of [1 = [] | y#ys = (x +_f y)#(xs +[f] ys))"
by (simp add: plussub_def map2_def split: list.split)

lemma length_plus_list [rule_format, simp]:
"Vys. length(xs +[f] ys) = min(length xs) (length ys)"
apply (induct xs)
apply simp
apply clarify
apply (simp (no_asm_simp) split: list.split)
done

lemma nth_plus_list [rule_format, simp]:
"VYxs ys i. length xs = n —> length ys = n — i<n —
(xs +[f] ys)!i = (xs!i) +_f (ys!i)"

apply (induct n)
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apply simp

apply clarify

apply (case_tac xs)

apply simp

apply (force simp add: nth_Cons split: list.split nat.split)
done

lemma (in Semilat) plus_list_ubl [rule_format]:
"[ set xs <= A; set ys <= A; size xs = size ys |
= xs <=[r] xs +[f] ys"
apply (unfold unfold_lesub_list)
apply (simp add: Listn.le_def list_all2 conv_all_nth)
done

lemma (in Semilat) plus_list_ub2:
"[set xs <= A; set ys <= A; size xs = size ys |
= ys <=[r] xs +[f] ys"
apply (unfold unfold_lesub_list)
apply (simp add: Listn.le_def list_all2 conv_all_nth)
done

lemma (in Semilat) plus_list_lub [rule_format]:

shows "Vxs ys zs. set xs <= A — set ys <= A — set zs <= A
— size xs = n & size ys = n —
xs <=[r] zs & ys <=[r] zs — xs +[f] ys <=[r] zs"

apply (unfold unfold_lesub_list)

apply (simp add: Listn.le_def list_all2 conv_all_nth)

done

lemma (in Semilat) list_update_incr [rule_format]:
"x€ A = set xs <= A —
(Vi. i<size xs — xs <=[r] xs[i := x +_f xs!i])"
apply (unfold unfold_lesub_list)
apply (simp add: Listn.le_def list_all2 conv_all_nth)
apply (induct xs)
apply simp
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp add: nth_Cons split: nat.split)
done

lemma acc_le_listI [intro!]:
"[ order r; acc r | = acc(Listn.le r)"
apply (unfold acc_def)
apply (subgoal_tac
"wf(UN n. {(ys,xs). size xs = n A size ys = n A xs <_(Listn.le r) ys})")
apply (erule wf_subset)
apply (blast intro: lesssub_list_impl_same_size)
apply (rule wf_UN)
prefer 2
apply (rename_tac m n)
apply (case_tac "m=n")
apply simp
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apply (fast intro!: equalsOI dest: not_sym)
apply (rename_tac n)
apply (induct_tac n)
apply (simp add: lesssub_def cong: conj_cong)
apply (rename_tac k)
apply (simp add: wf_eq_minimal)
apply (simp (no_asm) add: length_Suc_conv cong: conj_cong)
apply clarify
apply (rename_tac M m)
apply (case_tac "dx xs. size xs = k A x#xs € M")
prefer 2
apply (erule thin_rl)
apply (erule thin_rl)
apply blast
apply (erule_tac x = "{a. dxs. size xs = k A a#xs € M} in allE)
apply (erule impE)
apply blast
apply (thin_tac "dx xs. P x xs" for P)
apply clarify
apply (rename_tac maxA xs)
apply (erule_tac x = "{ys. size ys = size xs A maxA#ys € M}" in allE)
apply (erule impE)
apply blast
apply clarify
apply (thin_tac "m € M")
apply (thin_tac "maxA#xs € M")
apply (rule bexI)
prefer 2
apply assumption
apply clarify
apply simp
apply blast
done

lemma closed_listI:
"closed S f = closed (list n S) (map2 f)"
apply (unfold closed_def)
apply (induct n)
apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply simp
done

lemma Listn_sl_aux:
assumes '"semilat (A, r, f)" shows "semilat (Listn.sl n (A,r,f))"
proof -
interpret Semilat A r f using assms by (rule Semilat.intro)
show ?thesis
apply (unfold Listn.sl_def)
apply (simp (no_asm) only: semilat_Def split_conv)
apply (rule conjI)
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apply simp

apply (rule conjI)

apply (simp only: closedI closed_listI)

apply (simp (no_asm) only: list_def)

apply (simp (no_asm_simp) add: plus_list_ubl plus_list_ub2 plus_list_lub)
done

qed

lemma Listn_sl: "/AL. semilat L = semilat (Listn.sl n L)"
by (simp add: Listn_sl_aux split_tupled_all)

lemma coalesce_in_err_list [rule_format]:
"V xes. xes € list n (err A) — coalesce xes € err(list n A)"
apply (induct n)
apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp (no_asm) add: plussub_def Err.sup_def 1ift2 def split: err.split)
apply force
done

lemma lem: "Ax xs. x +_(#) xs = x#xs"
by (simp add: plussub_def)

lemma coalesce_eq_0K1_D [rule_format]:
"semilat (err A, Err.le r, 1lift2 f) —
Vxs. xs € list n A — (Vys. ys € list n 4 —
(Vzs. coalesce (xs +[f] ys) = OK zs — xs <=[r] zs))"
apply (induct n)
apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp split: err.split_asm add: lem Err.sup_def 1ift2_def)
apply (force simp add: semilat_le_err_0OK1)
done

lemma coalesce_eq_0K2_D [rule_format]:
"semilat (err A, Err.le r, 1lift2 f) —
Vxs. xs € list n A — (Vys. ys € list n A —
(Vzs. coalesce (xs +[f] ys) = OK zs — ys <=[r] zs))"
apply (induct n)
apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp split: err.split_asm add: lem Err.sup_def 1ift2_def)
apply (force simp add: semilat_le_err_0K2)
done

lemma 1ift2 le_ub:
"l semilat(err A, Err.le r, 1ift2 f); x€ A; y€ A; x +_f = 0K z;
[ y y
u€ A; x <=ru; y<=ru] = z <=r u"
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apply (unfold semilat_Def plussub_def err_def)
apply (simp add: 1ift2_def)

apply clarify

apply (rotate_tac -3)

apply (erule thin_rl)

apply (erule thin_rl)

apply force

done

lemma coalesce_eq_OK_ub_D [rule_format]:
"semilat(err A, Err.le r, 1ift2 f) —
Vxs. xs € list n A — (Vys. ys € list n A —
(Vzs us. coalesce (xs +[f] ys) = OK zs A xs <=[r] us A ys <=[r] us
A us € list n A — zs <=[r] us))"
apply (induct n)
apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp (no_asm_use) split: err.split_asm add: lem Err.sup_def 1ift2_def)
apply clarify
apply (rule conjI)
apply (blast intro: 1ift2_le_ub)
apply blast
done

lemma 1ift2_eq_ErrD:
"[ x +_f y = Err; semilat(err A, Err.le r, lift2 f); x€ A; y€ A ]
= ~(Ju€ A. x <=ru &y <=_r uw"
by (simp add: OK_plus_OK_eq_ Err_conv [THEN iffD1])

lemma coalesce_eq Err_D [rule_format]:
"[ semilat(err A, Err.le r, 1ift2 f) |
= Vxs. xs € list n A — (Vys. ys € list n A —
coalesce (xs +[f] ys) = Err —
~(Jzs€ list n A. xs <=[r] zs N ys <=[r] zs))"
apply (induct n)
apply simp
apply clarify
apply (simp add: in_list_Suc_iff)
apply clarify
apply (simp split: err.split_asm add: lem Err.sup_def 1ift2_def)
apply (blast dest: 1ift2_eq_ErrD)
done

lemma closed_err_lift2_conv:
"closed (err A) (1lift2 f) = (Vx€ A. Vye A. x +_fy € err A)"
apply (unfold closed_def)
apply (simp add: err_def)
done

lemma closed_map2_list [rule_format]:
"closed (err A) (1ift2 f) —
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Vxs. xs € list n A — (Vys. ys € list n 4 —
map2 f xs ys € list n (err A))"

apply (unfold map2_def)

apply (induct n)

apply simp

apply clarify

apply (simp add: in_list_Suc_iff)

apply clarify

apply (simp add: plussub_def closed_err_lift2 conv)

done

lemma closed_lift2_sup:
"closed (err A) (1ift2 f) —
closed (err (list n A)) (1ift2 (sup f))"
by (fastforce simp add: closed_def plussub_def sup_def 1ift2_def
coalesce_in_err_list closed_map2_list
split: err.split)

lemma err_semilat_sup:
"err_semilat (A,r,f) —
err_semilat (list n A, Listn.le r, sup f)"
apply (unfold Err.sl_def)
apply (simp only: split_conv)
apply (simp (no_asm) only: semilat_Def plussub_def)
apply (simp (no_asm_simp) only: Semilat.closedI [OF Semilat.intro] closed_lift2_ sup)
apply (rule conjI)
apply (drule Semilat.orderI [OF Semilat.intro])
apply simp
apply (simp (no_asm) only: unfold_lesub_err Err.le_def err_def sup_def 1ift2_def)
apply (simp (no_asm_simp) add: coalesce_eq_0K1_D coalesce_eq OK2 D split: err.split)
apply (blast intro: coalesce_eq_OK_ub_D dest: coalesce_eq_Err_D)
done

lemma err_semilat_upto_esl:
"AL. err_semilat L —> err_semilat(upto_esl m L)"

apply (unfold Listn.upto_esl_def)

apply (simp (no_asm_simp) only: split_tupled_all)

apply simp

apply (fastforce intro!: err_semilat_Unionl err_semilat_sup
dest: lesub_list_impl_same_size
simp add: plussub_def Listn.sup_der)

done

end

4.4 Typing and Dataflow Analysis Framework

theory Typing_Framework
imports Listn
begin

The relationship between dataflow analysis and a welltyped-instruction predicate.

type_synonym ’s step_type = "nat = ’s = (nat X ’s) list"
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definition stable :: "’s ord = ’s step_type = ’s list = nat = bool" where
"stable r step ss p == V (q,s’)€set(step p (ss!p)). s’ <=_r ss!q"

definition stables :: "’s ord = ’s step_type = ’s list = bool" where
"stables r step ss == Vp<size ss. stable r step ss p"

definition wt_step ::

"’s ord = ’s = ’s step_type = ’s list = bool" where
"wt_step r T step ts ==

Vp<size(ts). ts!p ~= T & stable r step ts p"

definition is_bcv :: "’s ord = ’s = ’s step_type
= nat = ’s set = (’s list = ’s list) = bool" where
"is_bcv r T step n A bcv == Vss € list n A.
(Vp<n. (bcv ss)!p ~=T) =
(dts € list n A. ss <=[r] ts & wt_step r T step ts)"

end

4.5 Products as Semilattices

theory Product
imports Err
begin

definition le :: "’a ord = ’b ord = (’a * ’b) ord" where
"le rA rB == J(a,b) (a’,b’). a <=_rA a’ & b <=_rB b’"

definition sup :: "’a ebinop = ’b ebinop = (’a * ’b)ebinop" where
"sup f g == )(al,bl) (a2,b2). Err.sup Pair (al +_f a2) (bl +_g b2)"

definition esl :: "’a esl = ’b esl = (’a * ’b ) esl" where
"esl == J)(A,rA,fA) (B,rB,fB). (A X B, le rA rB, sup fA fB)"

abbreviation
lesubprod_sntax :: "’a * ’b = ’a ord = ’b ord = ’a * ’b = bool"
(«(_ /<=7(_,_") _)» [50, 0, 0, 51] 50)
where "p <=(rA,rB) q == p <=_(le rA rB) q"

lemma unfold_lesub_prod:
"p <=(rA,rB) q == le rA rB p q"
by (simp add: lesub_def)

lemma le_prod_Pair_conv [iff]:
"((al,bl) <=(rA,rB) (a2,b2)) = (al <=_rA a2 & bl <=_rB b2)"
by (simp add: lesub_def le_def)

lemma less_prod_Pair_conv:

"((al1,bl) <_(Product.le rA rB) (a2,b2)) =

(al <_rA a2 & bl <=_rB b2 | al <=_rA a2 & bl <_rB b2)"
apply (unfold lesssub_def)
apply simp
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apply blast
done

lemma order_le_prod [iff]:
"order (Product.le rA rB) = (order rA & order rB)"
apply (unfold Semilat.order_def)
apply simp
apply meson
done

lemma acc_le_prodI [intro!]:
"[ acc ra; acc rp | = acc(Product.le ry rp)"
apply (unfold acc_def)
apply (rule wf_subset)
apply (erule wf_lex_prod)
apply assumption
apply (auto simp add: lesssub_def less_prod_Pair_ conv lex_prod_def)
done

lemma closed_lift2_sup:
"[ closed (err A) (1ift2 f); closed (err B) (1lift2 g) | =
closed (err(AxB)) (lift2(sup f g))"
apply (unfold closed_def plussub_def 1ift2 def err_def sup_def)
apply (simp split: err.split)
apply blast
done

lemma unfold_plussub_lift2:
"el +_(1ift2 f) e2 == 1ift2 f el e2"
by (simp add: plussub_def)

lemma plus_eq Err_conv [simp]:
assumes "x € A" and "y € A"
and "semilat(err A, Err.le r, 1lift2 f)"
shows "(x +_f y = Err) = (—-(dz€A. x <= rz &y <=_r z))"
proof -
have plus_le_conv2:
"/\r f z. [[z € err A; semilat (err A, r, f); OK x € err A; OK 'y € err A;
OK x + f 0Ky <=_r z] = 0K x <=_r z AN OK y <=_r z"
by (rule Semilat.plus_le_conv [OF Semilat.intro, THEN iffD1])
from assms show 7thesis
apply (rule_tac iffI)
apply clarify
apply (drule OK_le_err OK [THEN iffD2])
apply (drule OK_le_err OK [THEN iffD2])
apply (drule Semilat.lub [OF Semilat.intro, of _ _ _ "OK x" _ "OK y"I)
apply assumption
apply assumption
apply simp
apply simp
apply simp
apply simp
apply (case_tac "x +_f y")
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apply assumption

apply (rename_tac "z")

apply (subgoal_tac "OK z € err A")
apply (frule plus_le_conv2)

apply assumption

apply simp
apply blast

apply simp
apply (blast dest: Semilat.orderI [OF Semilat.intro] order_refl)
apply blast
apply (erule subst)
apply (unfold semilat_def err_def closed_def)
apply simp
done

qed

lemma err_semilat_Product_esl:
"AL1 L2. [ err_semilat L1; err_semilat L2 | = err_semilat(Product.esl L1 L2)"

apply
apply
apply
apply
apply
apply
apply

apply
apply

apply
apply
apply
apply
apply
apply
apply
apply

apply
apply
apply
apply
apply
apply
apply
apply
done

end

4.6

(unfold esl_def Err.sl_def)

(simp (no_asm_simp) only: split_tupled_all)
simp
(simp (no_asm) only: semilat_Def)
(simp (no_asm_simp) only: Semilat.closedI [OF Semilat.intro] closed_lift2_sup)
(simp (no_asm) only: unfold_lesub_err Err.le_def unfold_plussub_lift2 sup_def)
(auto elim: semilat_le_err_ OK1 semilat_le_err_ OK2
simp add: 1ift2_def split: err.split)
(blast dest: Semilat.orderI [OF Semilat.intro])
(blast dest: Semilat.orderI [OF Semilat.intro])
(rule OK_le_err OK [THEN iffD1])
(erule subst, subst OK_lift2 OK [symmetric], rule Semilat.lub [OF Semilat.intro])
simp
simp
simp
simp
simp
simp
(rule OK_le_err OK [THEN iffD1])
(erule subst, subst OK_lift2 OK [symmetric], rule Semilat.lub [OF Semilat.intro])
simp
simp
simp
simp
simp
simp
More on Semilattices

theory SemilatAlg
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imports Typing_Framework Product
begin

definition lesubstep_type :: "(nat X ’s) list = ’s ord = (nat X ’s) list = bool"
(«<C_ /<I_1 _)> [50, 0, 51] 50) where
"x <|r|l y =V (p,s) € set x. ds’. (p,s’) € set y AN s <=_r s’"

primrec plusplussub :: "’a list = (’a = ’a = ’a) = ’a = ’a" (<(_ /++’__ _)> [65,
1000, 66] 65) where

"[1 ++_fy=y"
| "(x#xs) ++_ f y =xs ++ f (x +_f y)"

definition bounded :: "’s step_type = nat = bool" where
"bounded step n == Vp<n. Vs. VY (q,t)Eset(step p s). g<n"

definition pres_type :: "’s step_type = nat = ’s set = bool" where
"pres_type step n A == Vs€A. Vp<n. V (q,s’)Eset (step p s). s’ € A"

definition mono :: "’s ord = ’s step_type = nat = ’s set = bool" where
"mono r step n A ==
Vspt.s €A ANp<nAs<=rt — stepps <|r|/ stepp t"

lemma pres_typeD:
"[ pres_type step n A; s€A; p<n; (q,s’)Eset (step p 5) | = s’ € A"
by (unfold pres_type_def, blast)

lemma monoD:
"[ mono r step n A; p < n; s€A; s <=.rt ] = step p s <|r| step p t"
by (unfold mono_def, blast)

lemma boundedD:
"[ bounded step n; p < n; (q,t) € set (step p xs) | = q < n"
by (unfold bounded_def, blast)

lemma lesubstep_type_refl [simp, intro]:
"(Ax. x <=_r x) = x <|r| x"
by (unfold lesubstep_type_def) auto

lemma lesub_step_typeD:
"a <|r| b = (x,y) € set a = Jy’. (x, y’) € set b A y <=r y’"
by (unfold lesubstep_type_def) blast

lemma list_update_le_listI [rule_format]:
"set xs <= A — set ys <= A — xs <=[r] ys — p < size xs —>
x <=_r ys!p — semilat(A,r,f) — x€A —>
xsl[p := x +_f xs!p] <=[r] ys"
apply (unfold Listn.le_def lesub_def semilat_def)
apply (simp add: list_all2 conv_all_nth nth_list_update)
done

lemma plusplus_closed: assumes "semilat (A, r, f)" shows
"Ay. [ set x C A; y € A] = x ++_f y € A" (is "PROP ?7P")
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proof -
interpret Semilat A r f using assms by (rule Semilat.intro)
show "PROP 7P" proof (induct x)
show "Ay. y € A = [] ++_.f y € A" by simp
fix y x xs
assume y: "y € A" and xs: "set (x#xs) C A"
assume IH: "Ay. [ set xs C A; y € A] = xs ++_f y € A"
from xs obtain x: "x € A" and xs’: "set xs C A" by simp
from x y have "(x +_f y) € A" ..
with xs’ have "xs ++_f (x +_f y) € A" by (rule IH)
thus "(x#xs) ++_ f y € A" by simp
qged
qed

lemma (in Semilat) pp_ub2:

"Ay. [ set x C A; y € A] = y <=_r x ++_f y"
proof (induct x)

from semilat show "Ay. y <=_r [] ++_f y" by simp

fix yal

assume y: "y € A"

assume "set (a#l) C A"

then obtain a: "a € A" and x: "set 1 C A" by simp
assume "Ay. [set 1 C A; y € A] = y <=_r 1 ++_f y"
hence IH: "A\y. y € A = y <=_r 1 ++_f y" using x .

from a y have "y <=_r a +_f y" ..
also from a y have "a +_f y € A" ..
hence "(a +_f y) <=_r 1 ++_f (a +_f y)" by (rule IH)
finally have "y <=_r 1 ++_f (a +_f y)" .
thus "y <=_r (a#l) ++_f y" by simp
qed

lemma (in Semilat) pp_ubl:
shows "Ay. [set 1s C A; y € A; x € set 1s] = x <=_r 1s ++_f y"
proof (induct 1s)

show "Ay. x € set [] = x <=_r [] ++_f y" by simp

fix y s 1s

assume "set (s#ls) C A"

then obtain s: "s € A" and 1s: "set 1ls C A" by simp
assume y: "y € A"

assume
"Ay. [set 1s C A; y € 4; x € set 1s] = x <=_r 1s ++_f y"
hence IH: "Ay. x € set 1s = y € A = x <=_r 1ls ++_f y" using 1s .

assume "x € set (s#ls)"
then obtain xIs: "x = s V x € set 1s" by simp
moreover {

assume xs: "x = s"

from s y have "s <=_r s +_f y" ..

also from s y have "s +_.f y € A" ..
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with 1s have "(s +_f y) <=_r 1s ++_f (s +_f y)" by (rule pp_ub2)
finally have "s <=_r 1s ++_f (s +_f y)" .
with xs have "x <=_r 1Is ++_ f (s +_f y)" by simp

}

moreover {
assume "x € set 1s"
hence "A\y. y € A = x <=_r 1s ++_f y" by (rule IH)
moreover from s y have "s +. f y € A" ..
ultimately have "x <=_r 1s ++_ f (s +_f y)" .

}

ultimately

have "x <=_r 1s ++_f (s +_f y)" by blast

thus "x <=_r (s#ls) ++_f y" by simp

qed

lemma (in Semilat) pp_lub:
assumes z: "z € A"
shows
"Ay. y € A = set xs C A = Vx € set xs. x <=r z — y <=r z —> xS ++_f y <=_r
Z”
proof (induct xs)
fix y assume "y <=_r z" thus "[] ++_f y <=_r z" by simp
next
fix y 1 1s assume y: "y € A" and "set (1#ls) C A"
then obtain 1: "1 € A" and 1s: "set 1s C A" by auto
assume "Vx € set (1#ls). x <=_r z"
then obtain 1z: "1 <=_r z" and lsz: "Vx € set 1s. x <=_r z" by auto
assume "y <=_r z" with 1z have "1 + f y <= r z" using 1 y z ..
moreover
from 1 y have "1 +_f y € A" ..
moreover
assume "Ay. y € A = set 1s C A — Vx € set 1s. x <=rz — y <=r z
= 1ls ++_f y <=_r z"
ultimately
have "ls ++_f (1 +_f y) <=_r z" using 1s 1lsz by -
thus "(1#ls) ++_f y <=_r z" by simp
qged

lemma ub1’:
assumes '"semilat (A, r, f)"
shows "[V (p,s) € set S. s € A; y € A; (a,b) € set S]
= b <=_r map snd [(p’, t’)<S. p’ = a] ++_f y"
proof -
interpret Semilat A r f using assms by (rule Semilat.intro)

let "b <=_r 7map ++_f y" = 7thesis

assume "y € A"

moreover

assume "V (p,s) € set S. s € A"
hence "set 7map C A" by auto
moreover
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assume "(a,b) € set S"
hence "b € set 7map" by (induct S, auto)
ultimately
show ?thesis by - (rule pp_ubl)
qed

lemma plusplus_empty:
"Vs’. (g, s’) € set S — s’ + fss ! q=s8s! q =
(map snd [(p’, t’) < S. p’ =q] ++. fss ! q) =ss ! q"
by (induct S) auto

end

4.7 Lifting the Typing Framework to err, app, and eff

theory Typing Framework_err
imports Typing_Framework SemilatAlg
begin

definition wt_err_step :: "’s ord = ’s err step_type = ’s err list = bool" where
"wt_err_step r step ts = wt_step (Err.le r) Err step ts"

definition wt_app_eff :: "’s ord = (nat = ’s = bool) = ’s step_type = ’s list = bool"
where
"wt_app_eff r app step ts =

Vp < size ts. app p (ts!p) A (V(q,t) € set (step p (ts!p)). t <=_r tsl!q)"

definition map_snd :: "(’b = ’c) = (’a X ’b) list = (’a x ’c) list" where
"map_snd f = map (A (x,y). (x, £ y))"

definition error :: "nat = (nat X ’a err) list" where
"error n = map (A\x. (x,Err)) [0..<n]"

definition err_step :: "nat = (nat = ’s = bool) = ’s step_type = ’s err step_type"
where
"err_step n app step p t =

case t of

Err = error n
| OK t’ = if app p t’ then map_snd OK (step p t’) else error n"

definition app_mono :: "’s ord = (nat = ’s = bool) = nat = ’s set = bool" where
"app_mono r app n A =
Vspt.s €A ANp<nANs<=rt —apppt — appp s"

lemmas err_step_defs = err_step_def map_snd_def error_def

lemma bounded_err_stepD:
"bounded (err_step n app step) n —
p<n—=— apppa — (q,b) € set (step p a) —
qg<n"
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apply (simp add: bounded_def err_step_def)

apply (erule allE, erule impE, assumption)

apply (erule_tac x = "OK a" in allE, drule bspec)
apply (simp add: map_snd_def)

apply fast
apply simp
done

lemma in_map_sndD: "(a,b) € set (map_snd f xs) =— db’. (a,b’) € set xs"
apply (induct xs)
apply (auto simp add: map_snd_def)
done

lemma bounded_err_stepl:
"Yp. p<n — (Vs. app s — (V(q,s’) € set (step p s). q < n))
= bounded (err_step n ap step) n"
apply (clarsimp simp: bounded_def err_step_def split: err.splits)
apply (simp add: error_def image_def)
apply (blast dest: in_map_sndD)
done

lemma bounded_lift:
"bounded step n = bounded (err_step n app step) n"
apply (unfold bounded_def err_step_def error_def)
apply clarify
apply (erule allE, erule impE, assumption)
apply (case_tac s)
apply (auto simp add: map_snd_def split: if_split_asm)
done

lemma le_list_map_OK [simp]:
"Ab. map OK a <=[Err.le r] map OK b = (a <=[r] b)"
apply (induct a)
apply simp
apply simp
apply (case_tac b)
apply simp
apply simp
done

lemma map_snd_lessI:
"x <|r| y = map_snd OK x <|Err.le r| map_snd OK y"
apply (induct x)
apply (unfold lesubstep_type_def map_snd_def)
apply auto
done

lemma mono_lift:
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"order r =—> app_mono r app n A —> bounded (err_step n app step) n —
Vspt.s € AANp<n A ANs<=s=rt — apppt — stepps <|r|] stepp t =

mono (Err.le r) (err_step n app step) n (err A)"
apply (simp only: app_mono_def mono_def err_step_def)
apply clarify
apply (case_tac s)

apply simp
apply simp
apply (case_tac t)

apply simp

apply clarify

apply (simp add: lesubstep_type_def error_def)

apply clarify

apply (drule in_map_sndD)

apply clarify

apply (drule bounded_err_stepD, assumption+)

apply (rule exI [of _ Err])

apply simp
apply simp
apply (erule allE, erule allE, erule allE, erule impE)

apply (rule conjI, assumption)
apply (rule conjI, assumption)
apply assumption
apply (rule conjI)
apply clarify
apply (erule allE, erule allE, erule allE, erule impE)
apply (rule conjI, assumption)
apply (rule conjI, assumption)
apply assumption
apply (erule impE, assumption)
apply (rule map_snd_lessI, assumption)
apply clarify
apply (simp add: lesubstep_type_def error_def)
apply clarify
apply (drule in_map_sndD)
apply clarify
apply (drule bounded_err_stepD, assumption+)
apply (rule exI [of _ Err])
apply simp
done

lemma in_errorD:
"(x,y) € set (error n) — y = Err"

by (auto simp add: error_def)

lemma pres_type_lift:

"VYs€A. Vp. p<n — appp s — (V(q, s’)eset (step p s). s’ € 4)

—> pres_type (err_step n app step) n (err A)"
apply (unfold pres_type_def err_step_def)
apply clarify
apply (case_tac b)
apply simp
apply (case_tac s)
apply simp

117
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apply (drule in_errorD)

apply simp

apply (simp add: map_snd_def split: if_split_asm)
apply fast

apply (drule in_errorD)

apply simp

done

There used to be a condition here that each instruction must have a successor. This is not
needed any more, because the definition of error trivially ensures that there is a successor for
the critical case where app does not hold.

lemma wt_err_imp_wt_app_eff:
assumes wt: "wt_err_step r (err_step (size ts) app step) ts"
assumes b: "bounded (err_step (size ts) app step) (size ts)"
shows "wt_app_eff r app step (map ok_val ts)"
proof (unfold wt_app_eff_def, intro strip, rule conjI)
fix p assume "p < size (map ok_val ts)"
hence 1p: "p < size ts" by simp
hence ts: "0 < size ts" by (cases p) auto
hence err: "(0,Err) € set (error (size ts))" by (simp add: error_def)

from wt Ip
have [intro?]: "Ap. p < size ts =—> ts ! p # Err"
by (unfold wt_err_step_def wt_step_def) simp

show app: "app p (map ok_val ts ! p)"
proof (rule ccontr)
from wt Ip obtain s where
OKp: "ts ! p = 0K s" and
less: "V (q,t) € set (err_step (size ts) app step p (ts!p)). t <=_(Err.le r) ts!q"
by (unfold wt_err_step_def wt_step_def stable_def)
(auto iff: not_Err_eq)
assume "— app p (map ok_val ts ! p)"
with OKp 1p have "— app p s" by simp
with OKp have "err_step (size ts) app step p (ts!p) = error (size ts)"
by (simp add: err_step_def)
with err ts obtain g where
"(q,Err) € set (err_step (size ts) app step p (ts!p))" and
q: "q < size ts" by auto
with less have "ts!q = Err" by auto
moreover from q have "ts!q # Err" ..
ultimately show False by blast
qed

show "V (q,t)€set(step p (map ok_val ts ! p)). t <=_r map ok_val ts ! q"
proof clarify
fix g t assume q: "(q,t) € set (step p (map ok_val ts ! p))"

from wt 1p q
obtain s where
OKp: "ts ! p = 0K s" and
less: "V (q,t) € set (err_step (size ts) app step p (ts!p)). t <=_(Err.le r) ts!q"
by (unfold wt_err_step_def wt_step_def stable_def)
(auto iff: not_Err_eq)
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from b 1p app q have 1q: "q < size ts" by (rule bounded_err_stepD)
hence "ts!q # Err" ..
then obtain s’ where 0Kq: "ts ! q = OK s’" by (auto iff: not_Err_eq)

from 1p 1q OKp OKq app less q
show "t <=_r map ok_val ts ! g
by (auto simp add: err_step_def map_snd_def)
qged
qed

n

lemma wt_app_eff_imp_wt_err:
assumes app_eff: "wt_app_eff r app step ts"
assumes bounded: "bounded (err_step (size ts) app step) (size ts)"
shows "wt_err_step r (err_step (size ts) app step) (map OK ts)"
proof (unfold wt_err_step_def wt_step_def, intro strip, rule conjI)
fix p assume "p < size (map OK ts)"
hence p: "p < size ts" by simp
thus "map OK ts ! p # Err" by simp
{fixqgt
assume q: "(q,t) € set (err_step (size ts) app step p (map OK ts ! p))"
with p app_eff obtain
"app p (ts ! p)" "V (q,t) € set (step p (ts!p)). t <=_r ts!q"
by (unfold wt_app_eff_def) blast
moreover
from g p bounded have "q < size ts"
by - (rule boundedD)
hence "map OK ts ! q = OK (ts!q)" by simp
moreover
have "p < size ts" by (rule p)
moreover note q
ultimately
have "t <=_(Err.le r) map OK ts ! q"
by (auto simp add: err_step_def map_snd_def)
}

thus "stable (Err.le r) (err_step (size ts) app step) (map OK ts) p"
by (unfold stable_def) blast
qed

end

4.8 Kildall’s Algorithm

theory Kildall
imports SemilatAlg "HOL-Library.While_Combinator"

begin
primrec propa :: "’s binop = (nat x ’s) list = ’s list = nat set = ’s list * nat
set" where

"propa f [] ss w = (ss,w)"

| "propa f (q’#gs) ss w = (let (q,t) = q’;
u==t +_f sslq;
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w’ = (if u = ss!q then w else insert q w)
in propa f gs (ss[q := u]) w’)"

definition iter :: "’s binop = ’s step_type = ’s list = nat set = ’s list X nat set"
where
"iter f step ss w == while (J(ss,w). w # {})
(7i(ss,w). let p = SOME p. p € w
in propa f (step p (ss!p)) ss (w—-{p}))

(ss,w)"
definition unstables :: "’s ord = ’s step_type = ’s list = nat set" where
"unstables r step ss == {p. p < size ss A —stable r step ss p}"
definition kildall :: "’s ord = ’s binop = ’s step_type = ’s list = ’s list" where

"kildall r f step ss == fst(iter f step ss (unstables r step ss))"

primrec merges :: "’s binop = (nat X ’s) list = ’s list = ’s list" where
"merges f [] ss = ss"
| "merges f (p’#ps) ss = (let (p,s) = p’ in merges f ps (ss[p := s +_f ss!p]))"

lemmas [simp] = Let_def Semilat.le_iff_plus_unchanged [OF Semilat.intro, symmetric]

lemma (in Semilat) nth_merges:

"Ass. [p < length ss; ss € list n A; V (p,t)Eset ps. p<n A t€A | =
(merges f ps ss)!p = map snd [(p’,t’) < ps. p’=p] ++_f ss!p"
(is "Ass. [_; _; 7steptype ps] = 7P ss ps")

proof (induct ps)
show "Ass. ?P ss []" by simp

fix ss p’ ps’
assume ss: '"ss € list n A"
assume 1: "p < length ss"

assume "?steptype (p’#ps’)"
then obtain a b where
p’: "p’=(a,b)" and ab: "a<n" "b€A" and ps’: "?steptype ps’"
by (cases p’) auto
assume "Ass. p< length ss =—> ss € list n A —> ?steptype ps’ =—> 7P ss ps’"
from this [OF _ _ ps’] have IH: "Ass. ss € list n A = p < length ss —> 7P ss ps’"

from ss ab
have "ss[a := b +_f ss!a] € list n A" by (simp add: closedD)
moreover
from calculation 1
have "p < length (ss[a := b +_f ss!a])" by simp
ultimately
have "?P (ss[a := b +_f ss!a]) ps’" by (rule IH)
with p’ 1
show "?P ss (p’#ps’)" by simp
qed
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lemma length_merges [simp]: "size(merges f ps ss) = size ss"
by (induct ps arbitrary: ss) auto

lemma (in Semilat) merges_preserves_type_lemma:

shows "Vxs. xs € list n A — (VY (p,x) € set ps. p<n A x€A)
— merges f ps xs € list n A"

apply (insert closedI)

apply (unfold closed_def)

apply (induct_tac ps)

apply simp
apply clarsimp
done

lemma (in Semilat) merges_preserves_type [simp]:
"[ xs € list n A; V (p,x) € set ps. p<n A x€A |
— merges f ps xs € list n A"

by (simp add: merges_preserves_type_lemma)

lemma (in Semilat) merges_incr_lemma:
"Vxs. xs € list n A — (V (p,x)Eset ps. p<size xs AN x € A) —> xs <=[r] merges f ps
xs"
apply (induct_tac ps)
apply simp
apply simp
apply clarify
apply (rule order_trans)
apply simp
apply (erule list_update_incr)
apply simp
apply simp
apply (blast intro!: listE_set intro: closedD listE_length [THEN nth_in])
done

lemma (in Semilat) merges_incr:
"[ xs € list n A; V (p,x)Eset ps. p<size xs A x € A ]
= xs <=[r] merges f ps xs"
by (simp add: merges_incr_lemma)

lemma (in Semilat) merges_same_conv [rule_format]:
"(Wxs. xs € list n A — (V (p,x)Eset ps. p<size xs N x€hd) —
(merges f ps xs = xs) = (V (p,x)Eset ps. x <=_r xs!p))"
apply (induct_tac ps)
apply simp
apply clarsimp
apply (rename_tac p x ps xs)
apply (rule iffI)
apply (rule context_conjI)
apply (subgoal_tac "xs[p := x +_f xs!p] <=[r] xs")
apply (drule_tac p = p in le_listD)
apply simp
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apply simp
apply (erule subst, rule merges_incr)
apply (blast intro!: listE_set intro: closedD listE_length [THEN nth_in])
apply clarify
apply (rule conjI)
apply simp
apply (blast dest: boundedD)
apply blast
apply clarify
apply (erule allE)
apply (erule impE)
apply assumption
apply (drule bspec)
apply assumption
apply (simp add: le_iff_plus_unchanged [THEN iffD1] list_update_same_conv [THEN iffD2])
apply blast
apply clarify
apply (simp add: le_iff_plus_unchanged [THEN iffD1] list_update_same_conv [THEN iffD2])
done

lemma (in Semilat) list_update_le_listI [rule_format]:
"set xs <= A — set ys <= A — xs <=[r] ys — p < size xs —>
x <=_r ys!lp — x€A — xs[p := x +_f xs!p] <=[r] ys"
apply (insert semilat)
apply (unfold Listn.le_def lesub_def semilat_def)
apply (simp add: list_all2 conv_all_nth nth_list_update)
done

lemma (in Semilat) merges_pres_le_ub:

assumes "set ts <= A" and "set ss <= A"
and "V (p,t)Eset ps. t <=_r tslp At € A N p < size ts" and "ss <=[r] ts"

shows '"merges f ps ss <=[r] ts"

proof -

{ fix t ts ps
have
"Ags. [set ts <= A; V(p,t)Eset ps. t <=_r ts!lp ANt € A N\ p< size ts | =
set gs <= set ps —
(Vss. set ss <= A — ss <=[r] ts — merges f gs ss <=[r] ts)"
apply (induct_tac gs)
apply simp
apply (simp (no_asm_simp))
apply clarify
apply (rotate_tac -2)
apply simp
apply (erule allE, erule impE, erule_tac [2] mp)
apply (drule bspec, assumption)
apply (simp add: closedD)
apply (drule bspec, assumption)
apply (simp add: list_update_le_listI)
done

} note this [dest]

from assms show 7thesis by blast
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qed

lemma decomp_propa:
"Ass w. (V(q,t)Eset gs. q < size ss) —
propa f gs ss w =
(merges f gs ss, {q. dt. (q,t)€set gs N t +_f ss!q # ss!q} Un w)"
apply (induct gs)
apply simp
apply (simp (no_asm))
apply clarify
apply simp
apply (rule conjI)
apply blast
apply (simp add: nth_list_update)
apply blast
done

lemma (in Semilat) stable_pres_lemma:
shows "[pres_type step n A; bounded step n;
ss € list n A; p € w; VYq€w. q < n;
Vq. q <n — q ¢ w — stable r step ss q; q < n;
Vs’. (q,s’) € set (stepp (ss ! p)) — s’ +fss ! q=ss! q;
qg¢wVg=pl]
= stable r step (merges f (step p (ss!p)) ss) q"
apply (unfold stable_def)
apply (subgoal_tac "Vs’. (q,s’) € set (step p (ss!p)) — s’ € A")
prefer 2
apply clarify
apply (erule pres_typeD)
prefer 3 apply assumption
apply (rule listE_nth_in)
apply assumption
apply simp
apply simp
apply simp
apply clarify
apply (subst nth_merges)
apply simp
apply (blast dest: boundedD)
apply assumption
apply clarify
apply (rule conjI)
apply (blast dest: boundedD)
apply (erule pres_typeD)
prefer 3 apply assumption
apply simp
apply simp
apply (subgoal_tac "q < length ss")
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prefer 2 apply simp
apply (frule nth_merges [of q _ _ "step p (ss!p)"])
apply assumption
apply clarify
apply (zrule conjI)
apply (blast dest: boundedD)
apply (erule pres_typeD)
prefer 3 apply assumption
apply simp
apply simp
apply (drule_tac P = "Ax. (a, b) € set (step q x)" in subst)
apply assumption

apply (simp add: plusplus_empty)
apply (cases "q € w")
apply simp
apply (rule ubl’)
apply (rule semilat)
apply clarify
apply (rule pres_typeD)
apply assumption
prefer 3 apply assumption
apply (blast intro: listE _nth_in dest: boundedD)
apply (blast intro: pres_typeD dest: boundedD)
apply (blast intro: listE_nth_in dest: boundedD)
apply assumption

apply simp
apply (erule allE, erule impE, assumption, erule impE, assumption)
apply (rule order_trans)
apply simp
defer
apply (rule pp_ub2)
apply simp
apply clarify
apply simp
apply (rule pres_typeD)
apply assumption
prefer 3 apply assumption
apply (blast intro: listE_nth_in dest: boundedD)
apply (blast intro: pres_typeD dest: boundedD)
apply (blast intro: listE_nth_in dest: boundedD)
apply blast
done

lemma (in Semilat) merges_bounded_lemma:

"[ mono r step n A; bounded step n;
V (p’,s’) € set (step p (ss!p)). s’ € A; ss € list n A; ts € list n A; p < n;
ss <=[r] ts; Vp. p < n — stable r step ts p |

—> merges f (step p (ss!p)) ss <=[r] ts"

apply (unfold stable_def)

apply (rule merges_pres_le_ub)
apply simp
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apply simp
prefer 2 apply assumption

apply clarsimp

apply (drule boundedD, assumption+)

apply (erule allE, erule impE, assumption)
apply (drule bspec, assumption)

apply simp

apply (drule monoD [of _
apply assumption
apply simp

apply (simp add: le_listD)

- p Ilss!pll ”ts!p”J)

apply (drule lesub_step_typeD, assumption)
apply clarify

apply (drule bspec, assumption)

apply simp

apply (blast intro: order_trans)

done

lemma termination_lemma:
assumes semilat: "semilat (A, r, f)"
shows "[ ss € list n A; V(q,t)Eset gs. g<n N t€4; pew | =
ss <[r] merges f gs ss V
merges f gs ss = ss A {q. It. (q,t)Eset gs AN t +_f ss!q # ss!q} Un (w-{p}) < w" (is
"PROP 7P")
proof -
interpret Semilat A r f using assms by (rule Semilat.intro)
show "PROP 7P" apply (insert semilat)
apply (unfold lesssub_def)
apply (simp (no_asm_simp) add: merges_incr)
apply (rule impI)
apply (rule merges_same_conv [THEN iffD1, elim_format])
apply assumption+
defer
apply (rule sym, assumption)
defer apply simp
apply (subgoal_tac "Vq t. —((q, t) € set gs ANt +f ss ! q # ss ! q@")
apply (blast elim: equalityE)
apply clarsimp
apply (drule bspec, assumption)
apply (drule bspec, assumption)
apply clarsimp
done
qed

lemma iter_properties[rule_format]:
assumes semilat: "semilat (A, r, f)"
shows "[ acc r ; pres_type step n A; mono r step n A;
bounded step n; VpeEw0. p < n; ssO € list n A;
Vp<n. p ¢ w0 — stable r step ssO p | =
iter f step ssO w0 = (ss’,w’)
_>
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ss’ € list n A A stables r step ss’ A ss0 <=[r] ss’ A
(Vtselist n A. ssO <=[r] ts A stables r step ts — ss’ <=[r] ts)"
(is "PROP 7P")
proof -
interpret Semilat A r f using assms by (rule Semilat.intro)
show "PROP 7P" apply (insert semilat)
apply (unfold iter_def stables_def)
apply (rule_tac P = "J)(ss,w).
ss € list n A AN (Vp<n. p ¢ w — stable r step ss p) A ssO <=[r] ss A
(Vtselist n A. ss0 <=[r] ts A stables r step ts — ss <=[r] ts) A
(Vp€w. p < n)" and
r = "{(ss’,ss) . ss <[r] ss’} <xlex*> finite_psubset"
in while_rule)

— Invariant holds initially:
apply (simp add:stables_def)

— Invariant is preserved:
apply (simp add: stables_def split_paired_all)
apply (rename_tac ss w)
apply (subgoal_tac "(SOME p. p € w) € w")
prefer 2 apply (fast intro: somel)
apply (subgoal_tac "V (q,t) € set (step (SOME p. p € w) (ss ! (SOME p. p € w))). q < length
ss At € A")
prefer 2
apply clarify
apply (rule conjI)
apply (clarsimp, blast dest!: boundedD)
apply (erule pres_typeD)
prefer 3
apply assumption
apply (erule listE_nth_in)
apply simp
apply simp
apply (subst decomp_propa)
apply fast
apply simp
apply (rule conjI)
apply (rule merges_preserves_type)
apply blast
apply clarify
apply (rule conjI)
apply (clarsimp, fast dest!: boundedD)
apply (erule pres_typeD)
prefer 3
apply assumption
apply (erule listE_nth_in)
apply blast
apply blast
apply (rule conjI)
apply clarify
apply (blast intro!: stable_pres_lemma)
apply (rule conjI)
apply (blast intro!: merges_incr intro: le_list_trans)
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apply (rule conjI)

apply clarsimp

apply (blast intro!: merges_bounded_lemma)
apply (blast dest!: boundedD)

— Postcondition holds upon termination:
apply (clarsimp simp add: stables_def split_paired_all)

— Well-foundedness of the termination relation:

apply (rule wf_lex_prod)

apply (insert orderI [THEN acc_le_listI])

apply (simp add: acc_def lesssub_def wfp_wf_eq [symmetric])
apply (rule wf_finite_psubset)

— Loop decreases along termination relation:
apply (simp add: stables_def split_paired_all)
apply (rename_tac ss w)
apply (subgoal_tac "(SOME p. p € w) € w")
prefer 2 apply (fast intro: somel)
apply (subgoal_tac "V (q,t) € set (step (SOME p. p € w) (ss ! (SOME p. p € w))). q < length
ss At € A")

prefer 2

apply clarify

apply (rule conjI)

apply (clarsimp, blast dest!: boundedD)
apply (erule pres_typeD)

prefer 3

apply assumption

apply (erule listE_nth_in)

apply blast

apply blast
apply (subst decomp_propa)

apply blast
apply clarify
apply (simp del: listE_length

add: lex_prod_def finite_psubset_def
bounded_nat_set_is_finite)

apply (rule termination_lemma)
apply assumption+
defer
apply assumption
apply clarsimp
done

qed

lemma kildall_properties:
assumes semilat: "semilat (A, r, f)"
shows "[ acc r; pres_type step n A; mono r step n 4;
bounded step n; ssO € list n A | =
kildall r f step ssO € list n A A
stables r step (kildall r f step ss0) A
ss0 <=[r] kildall r f step ssO A
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(Vtse€list n A. ssO <=[r] ts A stables r step ts —
kildall r f step ssO <=[r] ts)"
(is "PROP 7P")
proof -
interpret Semilat A r f using assms by (rule Semilat.intro)
show "PROP 7P"
apply (unfold kildall_def)
apply (case_tac "iter f step ssO (unstables r step ss0)")
apply (simp)
apply (rule iter_properties)
apply (simp_all add: unstables_def stable_def)
apply (rule semilat)
done
qed

lemma is_bcv_kildall:
assumes semilat: "semilat (A, r, f)"
shows "[ acc r; top r T; pres_type step n A; bounded step n; mono r step n A |
= is_bcv r T step n A (kildall r f step)"
(is "PROP 7P")
proof -
interpret Semilat A r f using assms by (rule Semilat.intro)
show "PROP 7P"
apply (unfold is_bcv_def wt_step_def)
apply (insert semilat kildall_properties[of Al)
apply (simp add:stables_def)
apply clarify
apply (subgoal_tac "kildall r f step ss € list n A")
prefer 2 apply (simp(no_asm_simp))
apply (rule iffI)
apply (rule_tac x = "kildall r f step ss" in bexI)
apply (rule conjI)
apply (blast)
apply (simp (no_asm_simp))
apply (assumption)
apply clarify
apply (subgoal_tac "kildall r f step ss!p <=_r ts!p")

apply simp

apply (blast intro!: le_listD less_lengthI)
done

qed

end

4.9 More about Options

theory Opt

imports Err

begin

definition le :: "’a ord = ’a option ord" where
"le r ol 02 == case 02 of None = ol=None |

Some y = (case ol of None = True
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| Some x = x <=_r y)"

definition opt :: "’a set = ’a option set" where
"opt A == insert None {x. Jy€A. x = Some y}"

definition sup :: "’a ebinop = ’a option ebinop" where
"sup £ ol 02 ==
case ol of None = OK o2 | Some x = (case 02 of None = 0K ol
| Some y = (case f x y of Err = Err | OK z = 0K (Some z)))"

definition esl :: "’a esl = ’a option esl" where
"esl == Jj(A,r,f). (opt A, le r, sup £)"

lemma unfold_le_opt:
"ol <=_(le r) o2 =
(case 02 of None = ol=None |
Some y = (case ol of None = True | Some x = x <=_r y))"
apply (unfold lesub_def le_def)
apply (rule refl)
done

lemma le_opt_refl:
"order r —> o1 <=_(le r) o1"
by (simp add: unfold_le_opt split: option.split)

lemma le_opt_trans [rule_format]:
"order r =
01 <=_(ler) o2 — 02 <=_(ler) o3 — o0l <=_(le r) o3"
apply (simp add: unfold_le_opt split: option.split)
apply (blast intro: order_trans)
done

lemma le_opt_antisym [rule_format]:
"order r = 01 <=_(le r) 02 — 02 <=_(le r) ol — ol=02"
apply (simp add: unfold_le_opt split: option.split)
apply (blast intro: order_antisym)
done

lemma order_le_opt [intro!,simp]:
"order r = order(le r)"
apply (subst Semilat.order_def)
apply (blast intro: le_opt_refl le_opt_trans le_opt_antisym)
done

lemma None_bot [iff]:

"None <=_(le r) ox"
apply (unfold lesub_def le_def)
apply (simp split: option.split)
done

lemma Some_le [iff]:

"(Some x <=_(le r) ox) = (3y. ox = Some y N x <=_r y)"
apply (unfold lesub_def le_def)
apply (simp split: option.split)
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done

lemma le_None [iff]:

"(ox <=_(le r) None) = (ox = None)"
apply (unfold lesub_def le_def)
apply (simp split: option.split)
done

lemma OK_None_bot [iff]:
"OK None <=_(Err.le (le r)) x"
by (simp add: lesub_def Err.le_def le_def split: option.split err.split)

lemma sup_Nonel [iff]:
"x +_(sup f) None = OK x"
by (simp add: plussub_def sup_def split: option.split)

lemma sup_None2 [iff]:
"None +_(sup f) x = OK x"
by (simp add: plussub_def sup_def split: option.split)

lemma None_in_opt [iff]:
"None € opt A"
by (simp add: opt_def)

lemma Some_in_opt [iff]:
"(Some x € opt A) = (x€hA)"

apply (unfold opt_def)

apply auto

done

lemma semilat_opt [intro, simp]:
"AL. err_semilat L —> err_semilat (Opt.esl L)"
proof (unfold Opt.esl_def Err.sl_def, simp add: split_tupled_all)

fix Ar f
assume s: "semilat (err A, Err.le r, 1ift2 f)"

let 740 = "err A"
let ?r0 = "Err.le r"
let ?2f0 = "1ift2 £"

from s
obtain
ord: "order 7r0" and
clo: "closed 7A0 7f0" and
ubl: "Vx€?740. Vy€?A0. x <=_7r0 x +_7f0 y" and
ub2: "Vx€?A0. Vye€?A0. y <=_7r0 x +_7f0 y" and
lub: "Vx€?A0. Vy€e?A0. Vz€?40. x <=_710 z N y <=_7r0 z — x +_7f0 y <=_7r0 z"
by (unfold semilat_def) simp

let 74 = "err (opt A)"
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let ?r = "Err.le (Opt.le r)"
let ?f = "1ift2 (Opt.sup £)"
from ord
have "order 7r"

by simp
moreover

have "closed 7A 7f"
proof (unfold closed_def, intro strip)

fix x y

assume x: "x € 7A"
assume y: "y € 7A"
{fix ab

assume ab: "x = 0K a" "y = OK b"

with x
have a: "Ac. a = Some ¢ = ¢ € A"
by (clarsimp simp add: opt_def)

from ab y
have b: "Ad. b = Some d = d € A"
by (clarsimp simp add: opt_def)

{ fix ¢ d assume "a = Some c" "b = Some d"
with ab x y
have "c € A AN d € A"
by (simp add: err_def opt_def Bex_def)
with clo
have "f ¢ d € err A"
by (simp add: closed_def plussub_def err_def 1ift2_def)
moreover
fix z assume "f ¢ d = 0K z"
ultimately
have "z € A" by simp
} note f_closed = this

have "sup f a b € 74"
proof (cases a)
case None
thus 7thesis
by (simp add: sup_def opt_def) (cases b, simp, simp add: b Bex_def)
next
case Some
thus ?thesis
by (auto simp add: sup_def opt_def Bex_def a b f_closed split: err.split option.split)
qged
}

thus "x +_7f y € 74"
by (simp add: plussub_def 1ift2_def split: err.split)
ged
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moreover

{fixabc
assume "a € opt A" "b € opt A" "a +_(sup f) b = 0K c"
moreover
from ord have "order r" by simp
moreover
{fixxyz
assume "x € A" "y € A"
hence "OK x € exr A AN OK y € err A" by simp
with ubl ub2
have "(0K x) <=_(Err.le r) (0K x) +_(lift2 f) (OK y) A
(0K y) <=_(Err.le r) (OK x) +_(1ift2 £) (0K y)"
by blast
moreover
assume "x +_f y = 0K z"
ultimately
have "x <=r z N y <=_r z"
by (auto simp add: plussub_def 1ift2 def Err.le_def lesub_def)
}

ultimately
have "a <=_(le r) ¢ A b <=_(le r) c"
by (auto simp add: sup_def le_def lesub_def plussub_def
dest: order_refl split: option.splits err.splits)

}

hence "(Vxe€?A. Vyc?A. x <=_7r x +_7f y) N (Vx€?A. Vy€e?A. y <=_7r x +_7f y)"
by (auto simp add: lesub_def plussub_def Err.le_def 1ift2_def split: err.split)

moreover

have "Vx€?A. Vy€?A. Vz€?A. x <=_7r z N y <=_7r z — x +_7f y <=_7r z"
proof (intro strip, elim conjE)

fix xy z

assume xyz: "x € 7A" "y € PA" "z € ?A"

assume xz: "x <=_7r z"

assume yz: "y <=_7r z"

{fix abec
assume ok: "x = 0K a" "y = OK b" "z = OK c"

{fixdeg

assume some: "a = Some d" "b = Some e" "c = Some g"

with ok xyz

obtain "OK d € err A" "OK e € err A" "OK g € err A"
by simp

with Iub

have "[ (0K d) <=_(Err.le r) (OK g); (OK e) <=_(Err.le r) (0K g) |
= (0K d) +_(1ift2 f) (0K e) <=_(Err.le r) (OK g)"
by blast

hence "[ d <=r g; e<=rg] = Jy. d+fe=0y ANy<=_rg"
by simp
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with ok some xyz xz yz
have "x +_7?f y <=_7r z"
by (auto simp add: sup_def le_def lesub_def 1ift2_def plussub_def Err.le_def)
} note this [intro!]

from ok xyz xz yz
have "x +_7?f y <=_7r z"
by - (cases a, simp, cases b, simp, cases c, simp, blast)

with xyz xz yz
show "x +_7f y <=_7r z"
by - (cases x, simp, cases y, simp, cases z, simp+)
qed

ultimately

show "semilat (74,7r,?f)"
by (unfold semilat_def) simp
qed

lemma top_le_opt_Some [iff]:
"top (le r) (Some T) = top r T"

apply (unfold top_def)

apply (rule iffI)

apply blast

apply (rule alll)

apply (case_tac "x")

apply simp+

done

lemma Top_le_conv:
"[ order r; top r T]|] = (T<=rx) = (x =T)"
apply (unfold top_def)
apply (blast intro: order_antisym)
done

lemma acc_le_optI [intro!]:
"acc r = acc(le r)"
apply (unfold acc_def lesub_def le_def lesssub_def)
apply (simp add: wf_eq_minimal split: option.split)
apply clarify
apply (case_tac "Ja. Some a € Q")
apply (erule_tac x = "{a. Some a € @}" in allE)
apply blast
apply (case_tac "x")
apply blast
apply blast
done

lemma option_map_in_optionI:
"[ ox € opt S; Vx€S. ox = Some x — f x € S |
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— map_option f ox € opt S"
apply (unfold map_option_case)
apply (simp split: option.split)
apply blast
done

end

4.10 The Lightweight Bytecode Verifier

theory LBVSpec
imports SemilatAlg Opt

begin
type__synonym ’s certificate = "’s list"
primrec merge :: "’s certificate = ’s binop = ’s ord = ’s = nat = (nat x ’s) list
= ’s = ’s" where
"merge cert £ r T pc [] x =x"

| "merge cert £ r T pc (s#ss) x = merge cert f r T pc ss (let (pc’,s’) = s in
if pc’=pc+1 then s’ +_f x
else if s’ <=_r (cert!pc’) then x
else T)"

definition wtl_inst :: "’s certificate = ’s binop = ’s ord = ’s =
’s step_type = nat = ’s = ’s" where
"wtl_inst cert f r T step pc s = merge cert £ r T pc (step pc s) (cert!(pc+1))"

definition wtl_cert :: "’s certificate = ’s binop = ’s ord = ’s = ’s =
’s step_type = nat = ’s = ’s" where
"wtl_cert cert £ r T B step pc s =
if cert!pc = B then
wtl_inst cert f r T step pc s
else
if s <=_r (cert!pc) then wtl_inst cert f r T step pc (cert!pc) else T"

primrec wtl_inst_list :: "’a list = ’s certificate = ’s binop = ’s ord = ’s = ’s
=
’s step_type = nat = ’s = ’s" where
"wtl_inst_list [] cert f r T B step pc s = 8"
| "wtl_inst_list (i#is) cert f r T B step pc s
(let s’ = wtl_cert cert £ r T B step pc s in
if s> =T V s =T then T else wtl_inst_list is cert £ r T B step (pc+1) s’)"

definition cert_ok :: "’s certificate = nat = ’s = ’s = ’s set = bool" where
"cert_ok cert n TBA = (Vi < n. cert!i € A A cert!i # T) A (cert!n = B)"

definition bottom :: "’a ord = ’a = bool" where
"bottom r B = Vx. B <=_r x"

locale 1bv = Semilat +
fixes T :: "’a" (<T>)
fixes B :: "’a" (<1>)
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fixes step :: "’a step_type"
assumes top: "top r T"
assumes T_A: "T € A"
assumes bot: "bottom r L"
assumes B_A: "1 € A"

fixes merge :: "’a certificate = nat = (nat x ’a) list = ’a = ’a"
defines mrg_def: "merge cert = LBVSpec.merge cert f r T"

fixes wti :: "’a certificate = nat = ’a = ’a"
defines wti_def: "wti cert = wtl_inst cert £ r T step"
fixes wtc :: "’a certificate = nat = ’a = ’a"

defines wtc_def: "wtc cert = wtl_cert cert f r T L1 step"

fixes wtl :: "’b list = ’a certificate = nat = ’a = ’a"
defines wtl_def: "wtl ins cert = wtl_inst_list ins cert f r T 1 step"

lemma (in 1bv) wti:
"wti ¢ pc s = merge ¢ pc (step pc s) (c!(pc+1))"
by (simp add: wti_def mrg_def wtl_inst_def)

lemma (in 1bv) wtc:
"wtc ¢ pc s = if clpc = L then wti ¢ pc s else if s <=_r cl!pc then wti ¢ pc (c!pc)
else T"

by (unfold wtc_def wti_def wtl_cert_def)

lemma cert_okD1 [intro?]:
"cert_ ok cn TBA — pc <n — clpc € A"
by (unfold cert_ok_def) fast

lemma cert_okD2 [intro?]:
"cert_ ok cn TBA = cln = B"
by (simp add: cert_ok_def)

lemma cert_okD3 [intro?]:
"cert_ ok cn TBA — B € A = pc <n = cl!Suc pc € A"
by (drule Suc_leI) (auto simp add: le_eq_less_or_eq dest: cert_okD1 cert_okD2)

lemma cert_okD4 [intro?]:
"cert_ok ¢cn TBA = pc <n = clpc # T"
by (simp add: cert_ok_def)

declare Let_def [simp]

4.10.1 more semilattice lemmas

lemma (in 1bv) sup_top [simp, elim]:
assumes x: "x € A"
shows "x + f T = T"

proof -
from top have "x + f T <=_r T" ..
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moreover from x T A have "T <=r x + f T" ..
ultimately show ?thesis ..
qed

lemma (in 1bv) plusplussup_top [simp, elim]:
"set xs C A = xs ++_f T =T"
by (induct xs) auto

lemma (in Semilat) pp_ubl’:

assumes S: "snd‘set S C A"

assumes y: "y € A" and ab: "(a, b) € set S"

shows "b <=_r map snd [(p’, t’) < S . p’ = a] ++_f y"
proof -

from S have "V (x,y) € set S. y € A" by auto

with semilat y ab show ?thesis by - (rule ubl’)
qed

lemma (in 1bv) bottom_le [simp, intro]:
" <=_r x"
using bot by (simp add: bottom_def)

lemma (in 1bv) le_bottom [simp]:
"x <=r 1L = (x=1)"
by (blast intro: antisym_r)

4.10.2 merge

lemma (in 1bv) merge_Nil [simp]:
"merge ¢ pc [] x = x" by (simp add: mrg_def)

lemma (in 1bv) merge_Cons [simp]:
"merge ¢ pc (1#ls) x = merge c¢ pc ls (if fst l=pc+1 then snd 1 +_f x
else if snd 1 <=_r (c!fst 1) then x
else T)"
by (simp add: mrg_def split_beta)

lemma (in 1bv) merge_Err [simp]:
"snd‘set ss C A = merge c pc ss | = T"
by (induct ss) auto

lemma (in 1bv) merge_not_top:
"Ax. snd‘set ss C A —> merge c pc ss x # 1T —
YV (pc’,s’) € set ss. (pc’ # pctl — s’ <=_r (c!pc’))"
(is "A\x. ?set ss — ?merge ss x —> 7P ss")
proof (induct ss)
show "7?P []" by simp
next
fix x 1s 1
assume "7set (1#ls)" then obtain set: "snd‘set 1s C A" by simp
assume merge: "7merge (l#ls) x"
moreover
obtain pc’ s’ where 1: "1 = (pc’,s’)" by (cases 1)
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ultimately
obtain x’ where merge’: "?merge 1s x’" by simp
assume "Ax. ?set 1s —> ?7merge ls x —> 7P 1s" hence "7P 1s" using set merge’ .
moreover
from merge set
have "pc’ # pc+tl — s’ <=_r (c!pc’)" by (simp add: 1 split: if_split_asm)
ultimately
show "7P (1#l1s)" by (simp add: 1)
qed

lemma (in 1bv) merge_def:
shows
"Ax. x € A = snd‘set ss C 4 =
merge ¢ pc Ss x =
(if V (pc’,s’) € set ss. pc’#pc+tl — s’ <=_r clpc’ then
map snd [(p’,t’) < ss. p’=pc+1l] ++_f x
else T)"
(is "Ax. _ = _ = 7merge ss x = 7if ss x" is "Ax. _ = _ = ?P ss x")
proof (induct ss)
fix x show "?P [] x" by simp
next
fix x assume x: "x € A"
fix 1::"nat x ’a" and 1ls
assume "snd‘set (1#ls) C A"
then obtain 1: "snd 1 € A" and 1s: "snd‘set 1ls C A" by auto
assume "Ax. x € A = snd‘set 1s C A = 7P 1ls x"
hence IH: "Ax. x € A = 7P 1s x" using 1s by iprover
obtain pc’ s’ where [simp]: "1 = (pc’,s’)" by (cases 1)
hence "7merge (1#ls) x = 7merge 1s
(if pc’=pc+1 then s’ +_f x else if s’ <=_r c!pc’ then x else T)"
(is "?merge (1#ls) x = Pmerge 1ls 7if’")
by simp
also have "... = 7if 1s 7if’"
proof -
from 1 have "s’ € A" by simp
with x have "s’ +_f x € A" by simp
with x T_A have "7if’ € A" by auto
hence "7?P 1s 7if’" by (rule IH) thus ?thesis by simp

qged
also have "... = 7if (1#ls) x"
proof (cases "V (pc’, s’)€set (1#ls). pc’#pc+l — s’ <=_r clpc’")
case True
hence "V (pc’, s’)E€set 1ls. pc’#pc+l — s’ <=_r c!pc’" by auto
moreover

from True have
"map snd [(p’,t’)<1ls . p’=pc+l] ++_f ?7if’ =
(map snd [(p’,t’)«1#ls . p’=pc+1] ++_f x)"
by simp

ultimately

show ?thesis using True by simp

next
case False
moreover
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from 1s have "set (map snd [(p’, t’)<1s . p’ = Suc pc]) C A" by auto
ultimately show ?thesis by auto

qed
finally show "7?P (1#l1s) x" .
qed
lemma (in 1bv) merge_not_top_s:
assumes x: "x € A" and ss: "snd‘set ss C A"
assumes m: ‘"merge c pc ss x #* 1"

shows "merge c¢ pc ss x = (map snd [(p’,t’) < ss. p’=pc+1] ++_f x)"
proof -
from ss m have "V (pc’,s’) € set ss. (pc’ # pc+tl — s’ <=_r clpc’)"
by (rule merge_not_top)
with x ss m show ?thesis by - (drule merge_def, auto split: if_split_asm)
qed

4.10.3 wtl-inst-list

lemmas [iff] = not_Err_eq

lemma (in 1bv) wtl_Nil [simp]: "wtl [] ¢ pc s = s"
by (simp add: wtl_def)

lemma (in 1bv) wtl_Cons [simp]:
"wtl (i#is) c pc s =
(let s’ = wtc ¢ pc s in if s’ = T V s = T then T else wtl is ¢ (pc+1) s’)"
by (simp add: wtl_def wtc_def)

lemma (in 1bv) wtl_Cons_not_top:
"wtl (i#is) c pc s # T =
(wtc cpcs # T AN s # T A wtl is ¢ (pc+l) (wtc ¢ pc s) # T)"
by (auto simp del: split_paired_Ex)

lemma (in 1bv) wtl_top [simp]: "wtl ls c pc T =T"
by (cases 1s) auto

lemma (in 1bv) wtl_not_top:
"wtl 1s c pc s # T = s # T"
by (cases "s=T") auto

lemma (in 1bv) wtl_append [simp]:
"Apc s. wtl (a@b) c pc s = wtl b ¢ (pc+length a) (wtl a ¢ pc s)"
by (induct a) auto

lemma (in 1bv) wtl_take:

"wtl is ¢ pc s # T = wtl (take pc’ is) c pc s # T"

(is "?7wtl is # _ = _")
proof -

assume "?wtl is # T"

hence "7wtl (take pc’ is @ drop pc’ is) # T" by simp

thus 7thesis by (auto dest!: wtl_not_top simp del: append_take_drop_id)
qed

lemma take_Suc:
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"Vn. n < length 1 — take (Suc n) 1 = (take n 1)@[1!n]" (is "7P 1")
proof (induct 1)
show "7P []" by simp
next
fix x xs assume IH: "?7P xs"
show "7P (x#xs)"
proof (intro strip)
fix n assume "n < length (x#xs)"
with IH show "take (Suc n) (x # xs) = take n (x # xs) @ [(x # xs) ! n]"
by (cases n, auto)
qged
qed

lemma (in 1bv) wtl_Suc:

assumes suc: "pc+l < length is"

assumes wtl: "wtl (take pc is) ¢ 0 s # T"

shows "wtl (take (pc+1) is) ¢ 0 s = wtc ¢ pc (wtl (take pc is) ¢ 0 s)"
proof -

from suc have "take (pc+1) is=(take pc is)@[is!pc]" by (simp add: take_Suc)

with suc wtl show ?7thesis by (simp add: min.absorb2)
qed

lemma (in 1bv) wtl_all:
assumes all: "wtl is ¢ 0 s # T" (is "?wtl is # _")

assumes pc: '"pc < length is"
shows '"wtc ¢ pc (wtl (take pc is) ¢ 0 s) # T"
proof -

from pc have "0 < length (drop pc is)" by simp
then obtain i r where Cons: "drop pc is = i#r"
by (auto simp add: neq_Nil_conv simp del: length_drop drop_eq Nil)
hence "i#r = drop pc is" .
with all have take: "?wtl (take pc is@i#r) # T" by simp
from pc have "is!pc = drop pc is ! 0" by simp
with Cons have "is!pc = i" by simp
with take pc show 7thesis by (auto simp add: min.absorb2)
qed

4.10.4 preserves-type

lemma (in 1bv) merge_pres:
assumes s0: "snd‘set ss C A" and x: "x € A"
shows "merge c pc ss x € A"
proof -
from sO have "set (map snd [(p’, t’)<—ss . p’=pc+1]) C A" by auto
with x have "(map snd [(p’, t’)<-ss . p’=pc+1l] ++_f x) € A"
by (auto intro!: plusplus_closed semilat)
with sO x show 7thesis by (simp add: merge_def T_A)
qed

lemma pres_typeD2:
"pres_type step n A = s € A = p < n —> snd‘set (step p s) C A"
by auto (drule pres_typeD)

139
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lemma (in 1bv) wti_pres [intro?]:
assumes pres: '"pres_type step n A"
assumes cert: "c!(pc+1l) € A"
assumes s_pc: "s € A" "pc < n"
shows "wti ¢ pc s € A"
proof -
from pres s_pc have '"snd‘set (step pc s) C A" by (rule pres_typeD2)
with cert show 7thesis by (simp add: wti merge_pres)
qed

lemma (in 1bv) wtc_pres:
assumes pres: '"pres_type step n A"
assumes cert: "clpc € A" and cert’: "c!(pc+1) € A"
assumes s: "s € A" and pc: "pc < n"
shows "wtc ¢ pc s € A"
proof -
have "wti ¢ pc s € A" using pres cert’ s pc ..
moreover have "wti ¢ pc (c!pc) € A" using pres cert’ cert pc ..
ultimately show ?thesis using T_A by (simp add: wtc)
qged

lemma (in 1bv) wtl_pres:
assumes pres: "pres_type step (length is) A"
assumes cert: "cert_ok c¢ (length is) T L A"
assumes s: "s € A"
assumes all: "wtl is c O s # T"
shows "pc < length is = wtl (take pc is) ¢ 0 s € A"
(is "?len pc = ?wtl pc € A")
proof (induct pc)
from s show "?wtl 0 € A" by simp
next
fix n assume IH: "Suc n < length is"
then have n: "n < length is" by simp
from IH have ni: "n+1 < length is" by simp
assume prem: "n < length is =— ?7wtl n € A"
have "wtc ¢ n (?wtl n) € A"
using pres _ _ _ n
proof (rule wtc_pres)
from prem n show "?wtl n € A" .
from cert n show '"c!n € A" by (rule cert_okD1)
from cert n1 show "c!(n+1) € A" by (rule cert_okD1)
qed
also
from all n have "?wtl n #* T" by - (rule wtl_take)
with n1 have "wtc ¢ n (?wtl n) = ?wtl (n+1)" by (rule wtl_Suc [symmetric])
finally show "?wtl (Suc n) € A" by simp
qed

end
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4.11 Correctness of the LBV

theory LBVCorrect
imports LBVSpec Typing_Framework

begin
locale 1bvs = 1bv +
fixes s0 :: ’a (<sg>)
fixes ¢ :: "a list"
fixes ins :: "’b list"
fixes phi :: "’a list" (<p>)

defines phi_def:
"o = map (Apc. if c!pc = | then wtl (take pc ins) c 0 sO else c!pc)
[0..<length ins]"

assumes bounded: "bounded step (length ins)"
assumes cert: "cert_ok c (length ins) T L1 A"
assumes pres: "pres_type step (length ins) A"

lemma (in 1bvs) phi_None [intro?]:
"[ pc < length ins; clpc = L | = ¢ ! pc = wtl (take pc ins) c 0 sO"
by (simp add: phi_def)

lemma (in 1bvs) phi_Some [intro?]:
"[ pc < length ims; clpc # L ] = ¢ ! pc = ¢ ! pc"
by (simp add: phi_def)

lemma (in 1bvs) phi_len [simp]:
"length ¢ = length ins"
by (simp add: phi_def)

lemma (in 1bvs) wtl_suc_pc:
assumes all: "wtl ins ¢ 0 sg # T"

assumes pc: '"pc+l < length ins"
shows "wtl (take (pc+1) ins) ¢ 0 s0 C, ¢! (pc+1)"
proof -

from all pc

have "wtc ¢ (pc+1) (wtl (take (pc+1) ins) c¢ 0 s0) # T" by (rule wtl_all)

with pc show ?thesis by (simp add: phi_def wtc split: if_split_asm)
qed

lemma (in 1bvs) wtl_stable:
assumes wtl: "wtl ins ¢ 0 sO # T"
assumes s0: "s0 € A"
assumes pc: "pc < length ins"
shows "stable r step ¢ pc"
proof (unfold stable_def, clarify)
fix pc’ s’ assume step: "(pc’,s’) € set (step pc (p ! pc))"
(is "(pc’,s’) € set (?step pc)")

from bounded pc step have pc’: "pc’ < length ins" by (rule boundedD)
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from
from

from

have
by
from

from
have
by

from
with
have
with
have

wtl have tkpc: "wtl (take pc ins) c 0 sO # T" (is "?s1 # _") by (rule wtl_take)
wtl have s2: "wtl (take (pc+1) ins) c¢ 0 sO # T" (is "?s2 # _") by (rule wtl_take)

wtl pc have wt_s1: "wtc ¢ pc 7?s1 # T" by (rule wtl_all)

c_Some: "Vpc t. pc < length ins — clpc # L — @lpc = clpc"
(simp add: phi_def)
pc have c_None: '"clpc = 1L = ¢!pc = ?s1" ..

wt_s1 pc c_None c_Some
inst: "wtc ¢ pc ?s1 = wti ¢ pc (p!pc)"
(simp add: wtc split: if_split_asm)

pres cert sO wtl pc have "?s1 € A" by (rule wtl_pres)

pc c_Some cert c_None

"plpc € A" by (cases "c!pc = L") (auto dest: cert_okD1)

pc pres

step_in_A: "snd‘set (7step pc) C A" by (auto dest: pres_typeD2)

show "s’ <=_r @!pc’"
proof (cases "pc’ = pc+1")
case True
with pc’ cert
have cert_in_A: "c!(pc+1) € A" by (auto dest: cert_okD1)
from True pc’ have pcl: "pc+l < length ins" by simp
with tkpc have "?s2 = wtc ¢ pc 7s1" by - (rule wtl_Suc)
with inst
have merge: "7s2 = merge c pc (7step pc) (c!(pc+1))" by (simp add: wti)
also
from s2 merge have "... # T" (is "?merge # _") by simp
with cert_in_A step_in_A
have "?merge = (map snd [(p’,t’) < ?step pc. p’=pc+1] ++_f (c!(pc+1)))"
by (rule merge_not_top_s)
finally
have "s’ <=_r 7s2" using step_in_A cert_in_A True step
by (auto intro: pp_ubl’)
also
from wtl pcl have "?s2 <=_r p!(pc+1)" by (rule wtl_suc_pc)
also note True [symmetric]
finally show ?thesis by simp

next

case False

from wt_s1 inst

have "merge c pc (?step pc) (c!(pc+1)) # T" by (simp add: wti)

with step_in_A

have "V (pc’, s’)€set (?step pc). pc’#pc+l — s’ <=_r clpc’"
by - (rule merge_not_top)

with step False

have ok: "s’ <=_r c!pc’" by blast

moreover

from ok

have "clpc’ = L = s’ = 1" by simp

moreover
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from c_Some pc’
have "clpc’ # L = @l!pc’ = clpc’" by auto
ultimately
show ?thesis by (cases "c!pc’ = L") auto
qed
qed

lemma (in 1bvs) phi_not_top:
assumes wtl: "wtl ins ¢ 0 sO # T"
assumes pc: "pc < length ins"
shows "plpc # T"
proof (cases "cl!pc = L")
case False with pc
have "p!pc = clpc" ..
also from cert pc have "... # T" by (rule cert_okD4)
finally show ?thesis .
next
case True with pc
have "p!pc = wtl (take pc ins) c 0 sO0" ..
also from wtl have "... # T" by (rule wtl_take)
finally show ?thesis .
qed

lemma (in 1bvs) phi_in_A:
assumes wtl: "wtl ins ¢ 0 sO # T"

assumes s0: "s0 € A"
shows "¢ € list (length ins) A"
proof -

{ fix x assume "x € set "
then obtain xs ys where "¢ = xs @ x # ys"
by (auto simp add: in_set_conv_decomp)
then obtain pc where pc: "pc < length ¢" and x: "@!pc = x"
by (simp add: that [of "length xs"] nth_append)

from pres cert wtl sO pc
have "wtl (take pc ins) ¢ 0 sO € A" by (auto intro!: wtl_pres)
moreover
from pc have "pc < length ins" by simp
with cert have "c!pc € A" ..
ultimately
have "p!pc € A" using pc by (simp add: phi_def)
hence "x € A" using x by simp

}

hence "set ¢ C A" .

thus 7thesis by (unfold list_def) simp

qed

lemma (in 1bvs) phiO:
assumes wtl: "wtl ins ¢ 0 sO # T"
assumes 0: "0 < length ins"
shows "sO <=_r p!0"

proof (cases "c!0 = L")

143



144

case True
with 0 have "¢!0 = wtl (take 0 ins) c 0 sO0" ..
moreover have "wtl (take 0 ins) c 0 sO = s0" by simp
ultimately have "¢!0 = s0" by simp
thus ?thesis by simp
next
case False
with 0 have "phi!0 = c!0" ..
moreover
from wtl have "wtl (take 1 ins) c 0 sO # T" by (rule wtl_take)
with 0 False
have "s0 <=_r c!0" by (auto simp add: neq_Nil_conv wtc split: if_split_asm)
ultimately
show ?7thesis by simp
qed

theorem (in 1bvs) wtl_sound:
assumes wtl: "wtl ins ¢ 0 sO # T"
assumes s0: "s0 € A"
shows "Jdts. wt_step r T step ts"
proof -
have "wt_step r T step ¢"
proof (unfold wt_step_def, intro strip conjI)
fix pc assume "pc < length "
then have pc: "pc < length ins" by simp
with wtl show "¢!pc # T" by (rule phi_not_top)
from wtl sO pc show "stable r step ¢ pc" by (rule wtl_stable)
qed
thus ?thesis ..
qed

theorem (in 1bvs) wtl_sound_strong:
assumes wtl: "wtl ins ¢ 0 sO # T"
assumes s0: "s0 € A"
assumes nz: "0 < length ins"
shows "dts € list (length ins) A. wt_step r T step ts A sO <=_r ts!0"
proof -
from wtl sO0 have "¢ € list (length ins) A" by (rule phi_in_A)
moreover
have "wt_step r T step ¢"
proof (unfold wt_step_def, intro strip conjI)
fix pc assume "pc < length ¢"
then have pc: "pc < length ins" by simp
with wtl show "¢!pc # T" by (rule phi_not_top)
from wtl sO pc show "stable r step ¢ pc" by (rule wtl_stable)
qed
moreover
from wtl nz have "sO <=_r ¢!0" by (rule phi0)
ultimately
show 7thesis by fast
qed
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end

4.12 Completeness of the LBV

theory LBVComplete
imports LBVSpec Typing Framework
begin

definition is_target :: "[’s step_type, ’s list, nat] = bool" where
"is_target step phi pc’ <—
(3pc s’. pc’ # pc+tl A pc < length phi A (pc’,s’) € set (step pc (philpc)))"

definition make_cert :: "[’s step_type, ’s list, ’s] = ’s certificate" where
"make_cert step phi B =
map (Apc. if is_target step phi pc then phi!pc else B) [0..<length phi] @ [B]"

lemma [code]:
"is_target step phi pc’ =
list_ex (Apc. pc’ # pc+l A List.member (map fst (step pc (phil!pc))) pc’) [0..<length
phi]"
by (force simp: list_ex_iff is_target_def)

locale 1bvc = 1bv +
fixes phi :: "’a list" (<p>)
fixes ¢ :: "’a list"
defines cert_def: "c = make_cert step ¢ L"
assumes mono: "mono r step (length ¢) A"
assumes pres: "pres_type step (length @) A"
assumes phi: "Vpc < length ¢. @l!pc € A A ¢lpc # T"
assumes bounded: "bounded step (length )"

assumes B_neq T: "1 # T"

lemma (in 1bvc) cert: "cert_ok c (length @) T L A"
proof (unfold cert_ok_def, intro strip conjI)
note [simp] = make_cert_def cert_def nth_append

show "c!length ¢ = 1" by simp

fix pc assume pc: "pc < length "

from pc phi B_A show "c!pc € A" by simp

from pc phi B_neq T show "c!pc # T" by simp
qed

lemmas [simp del] = split_paired_Ex
lemma (in 1bvc) cert_target [intro?]:

"[ (pc’,s’) € set (step pc (p!pc));
pc’ # pc+l; pc < length ¢; pc’ < length ¢ |
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= clpc’ = ¢lpc’”
by (auto simp add: cert_def make_cert_def nth_append is_target_def)

lemma (in 1bvc) cert_approx [intro?]:
"[ pc < length ¢; clpc # L]
= c!pc = p!pc”
by (auto simp add: cert_def make_cert_def nth_append)

lemma (in 1bv) le_top [simp, intro]:
"x <=_r T"
using top by simp

lemma (in 1bv) merge_mono:

assumes less: '"ss2 <|r| ss1"
assumes Xx: "x € A"

assumes ssi1: "snd‘set ss1 C A"
assumes ss2: "snd‘set ss2 C A"

shows "merge c pc ss2 x <=_r merge c pc ssl x" (is "?s2 <=_r 7s1")
proof-
have "?s1 = T = 7thesis" by simp
moreover {
assume merge: "7s1 # T"
from x ssi1 have "?s1 =
(if V (pc’, s’)€set ssl. pc’ # pc + 1 — s’ <=_r clpc’
then (map snd [(p’, t’) ¢ ssl . p’=pc+1]) ++_f x
else T)"
by (rule merge_def)
with merge obtain
app: "V (pc’,s’)€Eset ssl. pc’ # pc+l — s’ <=_r clpc’"
(is "?app ss1") and
sum: "(map snd [(p’,t’) < ssl . p’ = pc+l] ++_f x) = 7s1"
(is "?map ss1 ++_f x = _" is "?sum ss1 = _")
by (simp split: if_split_asm)
from app less
have "7app ss2" by (blast dest: trans_r lesub_step_typeD)
moreover {
from ss1 have mapl: "set (7map ss1) C A" by auto
with x have "7sum ss1 € A" by (auto intro!: plusplus_closed semilat)
with sum have "7s1 € A" by simp
moreover
have mapD: "Ax ss. x € set (Pmap ss) =— Jp. (p,x) € set ss A p=pc+1" by auto
from x map1
have "Vx € set (Pmap ss1). x <=_r 7sum ss1"
by clarify (rule pp_ubl)
with sum have "Vx € set (7map ss1). x <=_r ?7s1" by simp
with less have "Vx € set (Pmap ss2). x <=_r 7s1"
by (fastforce dest!: mapD lesub_step_typeD intro: trans_r)
moreover
from map! x have "x <=_r (?sum ss1)" by (rule pp_ub2)
with sum have "x <=_r ?7s1" by simp
moreover
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from ss2 have "set (7map ss2) C A" by auto
ultimately
have "?sum ss2 <=_r ?s1" using x by - (rule pp_lub)
}
moreover
from x ss2 have
"?s2 =
(if V (pc’, s’)€Eset ss2. pc’ # pc + 1 — s’ <=_r clpc’
then map snd [(p’, t’) < ss2 . p’ =pc + 1] ++_f x
else T)"
by (rule merge_def)
ultimately have ?thesis by simp
}
ultimately show ?thesis by (cases "?s1 = T") auto
qed

lemma (in 1bvc) wti_mono:
assumes less: "s2 <=_r s1"

assumes pc: "pc < length ¢"

assumes s1: "s1 € A"

assumes s2: "s2 € A"

shows "wti ¢ pc s2 <=_r wti ¢ pc s1" (is "7s2’ <=_r 7s1’")
proof -

from mono pc s2 less have "step pc s2 <|r| step pc s1" by (rule monoD)
moreover
from cert B_A pc have "c!Suc pc € A" by (rule cert_okD3)
moreover
from pres s1 pc
have "snd‘set (step pc s1) C A" by (rule pres_typeD2)
moreover
from pres s2 pc
have "snd‘set (step pc s2) C A" by (rule pres_typeD2)
ultimately
show ?thesis by (simp add: wti merge_mono)

qed

lemma (in 1bvc) wtc_mono:
assumes less: "s2 <=_r s1"

assumes pc: "pc < length ¢"
assumes s1: "s1 € A"
assumes s2: "s2 € A"

shows "wtc ¢ pc 82 <=_r wtc ¢ pc s1" (is "?s2’ <=_r 7s1’")
proof (cases "cl!pc = L")
case True
moreover from less pc sl s2 have "wti ¢ pc s2 <=_r wti ¢ pc s1" by (rule wti_mono)
ultimately show ?thesis by (simp add: wtc)
next
case False
have "?s1’ = T = ?thesis" by simp
moreover {
assume "?s1’ # T"
with False have c: "sl1 <=_r cl!pc" by (simp add: wtc split: if_split_asm)
with less have "s2 <=_r clpc" ..
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with False ¢ have 7thesis by (simp add: wtc)

}

ultimately show ?thesis by (cases "?s1’ = T") auto
qed

lemma (in 1bv) top_le_conv [simp]:
"T <= rx=(x=T)"
using semilat by (simp add: top)

lemma (in 1bv) neq_top [simp, elim]:

"NMx<=ry; y#T] = x#T"
by (cases "x = T") auto

lemma (in Ibvc) stable_wti:

assumes stable: '"stable r step ¢ pc"
assumes pc: "pc < length "
shows "wti ¢ pc (pl!pc) # T"

proof -

let ?step = "step pc (p!pc)"
from stable
have less: "V (q,s’)Eset 7step. s’ <=_r !q" by (simp add: stable_def)

from cert B_A pc
have cert_suc: "c!Suc pc € A" by (rule cert_okD3)
moreover
from phi pc have "¢!pc € A" by simp
from pres this pc
have stepA: "snd‘set 7step C A" by (rule pres_typeD2)
ultimately
have "merge c pc 7step (c!Suc pc) =
(if V (pc’,s’)Eset 7step. pc’#pc+l — s’ <=_r clpc’
then map snd [(p’,t’) < 7step.p’=pc+1] ++_f c!Suc pc
else T)" unfolding mrg def by (rule lbv.merge_def [OF lbvc.axioms(1), OF lbvc_axioms])
moreover {
fix pc’ s’ assume s’: "(pc’, s’) € set 7step" and suc_pc: "pc’ # pc+i"
with less have "s’ <=_r ¢!pc’" by auto
also
from bounded pc s’ have "pc’ < length ¢" by (rule boundedD)
with s’ suc_pc pc have "clpc’ = plpc’" ..
hence "¢!pc’ = clpc’" .
finally have "s’ <=_r c!pc’" .
} hence "V (pc’,s’)Eset ?step. pc’#pc+l — s’ <=_r clpc’" by auto
moreover
from pc have "Suc pc = length ¢ V Suc pc < length ¢" by auto
hence "map snd [(p’,t’) « 7step.p’=pc+1] ++_f c!Suc pc # T"
(is "?map ++_f _ # _")
proof (rule disjE)
assume pc’: "Suc pc = length ¢"
with cert have "c!Suc pc = 1" by (simp add: cert_okD2)
moreover
from pc’ bounded pc
have "V (p’,t’)Eset 7step. p’#pc+l" by clarify (drule boundedD, auto)
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hence "[(p’,t’) < 7step.p’=pc+1] = []" by (blast intro: filter_False)
hence "?map = []" by simp
ultimately show ?thesis by (simp add: B_neq_T)

next
assume pc’: "Suc pc < length "
from pc’ phi have "¢!Suc pc € A" by simp
moreover note cert_suc
moreover from stepA
have "set 7map C A" by auto
moreover
have "As. s € set Pmap — 3Jt. (Suc pc, t) € set ?step" by auto
with less have "Vs’ € set 7map. s’ <=_r @!Suc pc" by auto
moreover
from pc’ have "c!Suc pc <=_r ¢!Suc pc"

by (cases "c!Suc pc = L") (auto dest: cert_approx)

ultimately
have "?map ++_f c!Suc pc <=_r @!Suc pc" by (rule pp_lub)
moreover
from pc’ phi have "@!Suc pc # T" by simp
ultimately
show 7thesis by auto

qged

ultimately

have "merge ¢ pc 7step (c!Suc pc) # T" by simp

thus 7thesis by (simp add: wti)

qed

lemma (in 1bvc) wti_less:

assumes stable: '"stable r step ¢ pc"

assumes suc_pc: "Suc pc < length ¢"

shows "wti ¢ pc (p!pc) <=_r @!Suc pc" (is "?wti <=_r _")
proof -

let 7?step = "step pc (p!pc)"

from stable
have less: "V (q,s’)Eset 7step. s’ <=_r @!q" by (simp add: stable_def)

from suc_pc have pc: "pc < length ¢" by simp
with cert B_A have cert_suc: "c!Suc pc € A" by (rule cert_okD3)
moreover
from phi pc have "p!pc € A" by simp
with pres pc have stepA: "snd‘set 7step C A" by - (rule pres_typeD2)
moreover
from stable pc have "?wti # T" by (rule stable_wti)
hence "merge c¢ pc 7step (c!Suc pc) # T" by (simp add: wti)
ultimately
have "merge c pc 7step (c!Suc pc) =
map snd [(p’,t’)« 7step.p’=pc+1] ++_f c!Suc pc" by (rule merge_not_top_s)
hence "7wti = ..." (s "_ = (Pmap ++_f _)" is "_ = 7sum") by (simp add: wti)
also {
from suc_pc phi have "¢!Suc pc € A" by simp
moreover note cert_suc
moreover from stepA have "set 7map C A" by auto
moreover
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have "As. s € set 7map — 3Jt. (Suc pc, t) € set ?step" by auto
with less have "Vs’ € set 7map. s’ <=_r @!Suc pc" by auto
moreover
from suc_pc have "c!Suc pc <=_r ¢!Suc pc"
by (cases "c!Suc pc = L") (auto dest: cert_approx)

ultimately
have "7sum <=_r ¢!Suc pc" by (rule pp_lub)

}

finally show 7thesis .

qed

lemma (in 1bvc) stable_wtc:

assumes stable: '"stable r step phi pc"
assumes pc: "pc < length ¢"
shows "wtc ¢ pc (pl!pc) # T"

proof -

from stable pc have wti: "wti ¢ pc (pl!pc) # T" by (rule stable_wti)
show ?thesis
proof (cases "clpc = L")
case True with wti show ?7thesis by (simp add: wtc)
next
case False
with pc have '"c!pc = p!pc" ..
with False wti show ?thesis by (simp add: wtc)
qed
qed

lemma (in 1bvc) wtc_less:
assumes stable: "stable r step ¢ pc"
assumes suc_pc: "Suc pc < length ¢"
shows "wtc ¢ pc (p!pc) <=_r p!Suc pc" (is "?wtc <=_r _")
proof (cases "c!pc = 1")
case True
moreover from stable suc_pc have "wti ¢ pc (p!pc) <=_r @!Suc pc"
by (rule wti_less)
ultimately show ?thesis by (simp add: wtc)
next
case False
from suc_pc have pc: "pc < length ¢" by simp
with stable have "?wtc # T" by (rule stable_wtc)
with False have "7wtc = wti ¢ pc (c!pc)"
by (unfold wtc) (simp split: if_split_asm)
also from pc False have "c!pc = pl!pc" ..
finally have "?wtc = wti c pc (p!pc)" .
also from stable suc_pc have "wti ¢ pc (¢p!pc) <=_r ¢!Suc pc" by (rule wti_less)
finally show ?thesis .
qed

lemma (in 1bvc) wt_step_wtl_lemma:
assumes wt_step: "wt_step r T step "
shows "Apc s. pctlength 1s = length ¢ = s <=_r @!pc = s € A — s#T =
wtl 1s ¢ pc s # T"
(is "Apcs. .= _ = _ = _ = 7wtl 1s pc s # _")
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proof (induct 1s)
fix pc s assume "s#T" thus "?wtl [] pc s # T" by simp
next
fix pc s i 1s
assume "Apc s. pc+length ls=length ¢ — s <=_r @lpc = s € A = s#£T —
?wtl 1s pc s # T"
moreover
assume pc_l: "pc + length (i#ls) = length "
hence suc_pc_1: "Suc pc + length 1ls = length ¢" by simp
ultimately
have IH: "As. s <=_r ¢!Suc pc = s € A = s # T = ?wtl 1s (Suc pc) s # T" .

from pc_1 obtain pc: "pc < length ¢" by simp
with wt_step have stable: "stable r step ¢ pc" by (simp add: wt_step_def)
from this pc have wt_phi: "wtc ¢ pc (pl!pc) # T" by (rule stable_wtc)
assume s_phi: "s <=_r ¢l!pc"
from phi pc have phi_pc: "p!pc € A" by simp
assume s: "s € A"
with s_phi pc phi_pc have wt_s_phi: "wtc ¢ pc s <=_r wtc ¢ pc (p!pc)" by (rule wtc_mono)
with wt_phi have wt_s: "wtc ¢ pc s # T" by simp
moreover
assume s’: "s #* T"
ultimately
have "ls = [] = 7wtl (i#ls) pc s # T" by simp
moreover {
assume "ls # []"
with pc_1 have suc_pc: "Suc pc < length ¢" by (auto simp add: neq_Nil_conv)
with stable have "wtc ¢ pc (phi!pc) <=_r @!Suc pc" by (rule wtc_less)
with wt_s_phi have "wtc ¢ pc s <=_r ¢!Suc pc" by (rule trans_r)
moreover
from cert suc_pc have "c!pc € A" "c!(pc+1l) € A"
by (auto simp add: cert_ok_def)
from pres this s pc have "wtc ¢ pc s € A" by (rule wtc_pres)
ultimately
have "7wtl 1s (Suc pc) (wtc c pc s) # T" using IH wt_s by blast
with s’ wt_s have "?wtl (i#ls) pc s # T" by simp
}
ultimately show "7wtl (i#ls) pc s # T" by (cases 1ls) blast+
qed

theorem (in 1bvc) wtl_complete:
assumes wt: "wt_step r T step "
and s: "s <=_r @l!l0" "s € A" "s #£ T"
and len: "length ins = length phi"
shows "wtl ins ¢ 0s # T"
proof -
from len have "O+length ins = length phi" by simp
from wt this s show 7thesis by (rule wt_step_wtl_lemma)
qed

end
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4.13 Abstract Bytecode Verifier
4.14 Semilattices

4.15 The Java Type System as Semilattice

theory JType

imports "../DFA/Semilattices" "../J/WellForm"
begin
definition super :: "’a prog = cname = cname" where

"super G C == fst (the (class G C))"

lemma superI:
"G + C <C1 D = super G C = D"
by (unfold super_def) (auto dest: subclslD)

definition is_ref :: "ty = bool" where
"is_ref T == case T of PrimT t = False | RefT r = True"
definition sup :: "’c prog = ty = ty = ty err" where
"sup G T1 T2 ==

case T1 of PrimT P1 = (case T2 of PrimT P2 =
(if P1 = P2 then OK (PrimT P1) else Err) | RefT R = Err)
| RefT R1 = (case T2 of PrimT P = Err | RefT R2 =
(case R1 of NullT = (case R2 of NullT = 0K NT | ClassT C = 0K (Class C))
| ClassT C = (case R2 of NullT = 0K (Class C)
| ClassT D = 0K (Class (exec_lub (subclsl G) (super G) C D)))))"

definition subtype :: "’c prog = ty = ty = bool" where
"subtype G T1 T2 == G - T1 <X T2"

definition is_ty :: "’c prog = ty = bool" where
"is_ty G T == case T of PrimT P = True | RefT R =
(case R of NullT = True | ClassT C = (C, Object) € (subclsl G)*)"

abbreviation "types G == Collect (is_type G)"

definition esl :: "’c prog = ty esl" where
"esl G == (types G, subtype G, sup G)"

lemma PrimT PrimT: "(G + xb =< PrimT p) = (xb = PrimT p)"
by (auto elim: widen.cases)

lemma PrimT PrimT2: "(G + PrimT p <X xb) = (xb = PrimT p)"
by (auto elim: widen.cases)

lemma is_tyI:
"[ is_type G T; ws_prog G | = is_ty G T"
by (auto simp add: is_ty_def intro: subcls_C_Object
split: ty.splits ref_ty.splits)

lemma is_type_conv:
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"ws_prog G — is_type G T = is_ty G T"
proof

assume "is_type G T" "ws_prog G"

thus "is_ty G T"

by (rule is_tyI)

next

assume wf: "ws_prog G" and

ty: "is_ty G T"

show "is_type G T"
proof (cases T)

case PrimT

thus ?thesis by simp

next
fix R assume R: "T = RefT R"
with wf
have "R = ClassT Object —> 7thesis" by simp
moreover

from R wf ty

have "R # ClassT Object = 7thesis"

by (auto simp add: is_ty_def is_class_def split_tupled_all
elim!: subclsl.cases
elim: converse_rtranclE
split: ref_ty.splits)

ultimately

show 7thesis by blast

qed
qed

lemma order_widen:
"acyclic (subclsl G) = order (subtype G)"
apply (unfold Semilat.order_def lesub_def subtype_def)
apply (auto intro: widen_trans)
apply (case_tac x)
apply (case_tac y)
apply (auto simp add: PrimT_ PrimT)
apply (case_tac y)
apply simp
apply simp
apply (rename_tac ref_ty ref_tya, case_tac ref_ty)
apply (case_tac ref_tya)
apply simp
apply simp
apply (case_tac ref_tya)
apply simp
apply simp
apply (auto dest: acyclic_impl_antisym_rtrancl antisymD)
done

lemma wf_converse_subclsl_impl_acc_subtype:
"wf ((subclsl G)~') = acc (subtype G)"
apply (unfold Semilat.acc_def lesssub_def)
apply (drule_tac p = "((subclsl G)~!) - Id" in wf_subset)
apply auto
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apply (drule wf_trancl)
apply (simp add: wf_eq_minimal)
apply clarify
apply (unfold lesub_def subtype_def)
apply (rename_tac M T)
apply (case_tac "dC. Class C € M")
prefer 2
apply (case_tac T)
apply (fastforce simp add: PrimT_PrimT2)
apply simp
apply (rename_tac ref_ty)
apply (subgoal_tac "ref_ty = NullT")
apply simp
apply (rule_tac x = NT in bexI)
apply (rule alll)
apply (rule impI, erule conjE)
apply (drule widen_RefT)
apply clarsimp
apply (case_tac t)
apply simp
apply simp
apply simp
apply (case_tac ref_ty)
apply simp
apply simp
apply (erule_tac x = "{C. Class C € M}' in allE)
apply auto
apply (rename_tac D)
apply (rule_tac x = "Class D" in bexI)
prefer 2
apply assumption
apply clarify
apply (frule widen_RefT)
apply (erule exE)
apply (case_tac t)
apply simp
apply simp
apply (insert rtrancl_r_diff_Id [symmetric, of "subclsl G"])
apply simp
apply (erule rtrancl.cases)
apply blast
apply (drule rtrancl_conversel)
apply (subgoal_tac "(subclsl G - Id)~! = (subclsi G)~! - Id")
prefer 2
apply (simp add: converse_Int) apply safe[1]
apply simp
apply (blast intro: rtrancl_into_trancl2)
done

lemma closed_err_types:
"[ ws_prog G; single_valued (subclsl G); acyclic (subclsl G) |
= closed (err (types G)) (1ift2 (sup G))"
apply (unfold closed_def plussub_def 1ift2_def sup_def)
apply (auto split: err.split)
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apply (drule is_tyI, assumption)

apply (auto simp add: is_ty_def is_type_conv simp del: is_type.simps
split: ty.split ref_ty.split)

apply (blast dest!: is_lub_exec_lub is_lubD is_ubD intro!: is_ubI superI)

done

lemma sup_subtype_greater:
"[ ws_prog G; single_valued (subclsl G); acyclic (subclsl G);
is_type G t1; is_type G t2; sup G t1 t2 = 0K s |
— subtype G t1 s A subtype G t2 s"

proof -
assume ws_prog: "ws_prog G"
assume single_valued: "single_valued (subclsl G)"
assume acyclic: "acyclic (subclsl G)"
{ fix c1 c2

assume is_class: "is_class G cl1" "is_class G c2"
with ws_prog
obtain
"G F c1 =C Object"
"G | c2 <C Object"
by (blast intro: subcls_C_Object)
with ws_prog single_valued
obtain u where
"is_lub ((subclsl G)*) cl1 c2 u"
by (blast dest: single_valued_has_lubs)
moreover
note acyclic
moreover
have "Vx y. G - x <C1 y — super G x = y"
by (blast intro: superI)
ultimately
have "G I c1 =<C exec_lub (subclsl G) (super G) cl c2 A
G F c2 =<C exec_lub (subclsl G) (super G) cl c2"
by (simp add: exec_lub_conv) (blast dest: is_lubD is_ubD)
} note this [simp]

assume "is_type G tl1" "is_type G t2" "sup G tl1 t2 = 0K s"
thus ?thesis
apply (unfold sup_def subtype_def)
apply (cases s)
apply (auto split: ty.split_asm ref_ty.split_asm if_split_asm)
done
qed

lemma sup_subtype_smallest:
"[ ws_prog G; single_valued (subclsl G); acyclic (subclsl G);
is_type G a; is_type G b; is_type G c;
subtype G a c¢; subtype G b c; sup Ga b = 0K d ]
— subtype G d c"
proof -
assume ws_prog: "ws_prog G"
assume single_valued: "single_valued (subclsl G)"
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assume acyclic: "acyclic (subclsl G)"

{ fix c1 c2 D
assume is_class: "is_class G cl1" "is_class G c2"
assume le: "G F ¢c1 XC D" "G F ¢c2 <C D"
from ws_prog is_class
obtain
"G - c1 <C Object"
"G - c2 <C Object"
by (blast intro: subcls_C_Object)
with ws_prog single_valued
obtain u where
lub: "is_lub ((subclsl G)*) c1 c2 u"
by (blast dest: single_valued_has_lubs)
with acyclic
have "exec_lub (subclsl G) (super G) c1 c2 = u"
by (blast intro: superl exec_lub_conv)
moreover
from Iub le
have "G - u <XC D"
by (simp add: is_lub_def is_ub_def)
ultimately
have "G + exec_lub (subclsl G) (super G) c1 c2 =<C D"
by blast
} note this [intro]

have [dest!]:
"AC T. G F Class C < T = 3D. T=Class D A G + C =<C D"
by (frule widen_Class, auto)

assume "is_type G a" "is_type G b" "is_type G c"
"subtype G a c" "subtype G b c" "sup G a b = 0K d"
thus ?thesis
by (auto simp add: subtype_def sup_def
split: ty.split_asm ref_ty.split_asm if_split_asm)
qed

lemma sup_exists:
"[ subtype G a c; subtype G b c; sup G a b = Err | = False"
by (auto simp add: PrimT PrimT PrimT PrimT2 sup_def subtype_def
split: ty.splits ref_ty.splits)

lemma err_semilat_JType_esl_lemma:
"[ ws_prog G; single_valued (subclsl G); acyclic (subclsl G) |
—> err_semilat (esl G)"

proof -
assume ws_prog: "ws_prog G"
assume single_valued: "single_valued (subclsl G)"
assume acyclic: "acyclic (subclsl G)"

hence "order (subtype G)"
by (rule order_widen)
moreover
from ws_prog single_valued acyclic
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have "closed (err (types G)) (1ift2 (sup G))"
by (rule closed_err_types)
moreover

from ws_prog single_valued acyclic
have
"(Vxcerr (types G). Vycerr (types G). x <=_(Err.le (subtype G)) x +_(lift2 (sup G))
y) A
(Vxecerr (types G). Vycerr (types G). y <=_(Err.le (subtype G)) x +_(1ift2 (sup G))
y) n
by (auto simp add: lesub_def plussub_def Err.le_def lift2_def sup_subtype_greater
split: err.split)

moreover

from ws_prog single_valued acyclic
have
"V x€cerr (types G). Vycerr (types G). Vzecerr (types G).
x <=_(Err.le (subtype G)) z A y <=_(Err.le (subtype G)) z — x +_(1ift2 (sup G))
y <=_(Err.le (subtype G)) z"
by (unfold 1ift2_def plussub_def lesub_def Err.le_def)
(auto intro: sup_subtype_smallest sup_exists split: err.split)

ultimately

show 7thesis
by (unfold esl_def semilat_def Err.sl_def) auto
qed

lemma single_valued_subclsl:
"ws_prog G = single_valued (subclsl G)"
by (auto simp add: ws_prog_def unique_def single_valued_def
intro: subclslI elim!: subclsl.cases)

theorem err_semilat_JType_esl:
"ws_prog G = err_semilat (esl G)"
by (frule acyclic_subclsl, frule single_valued_subclsl, rule err_semilat_JType_esl_lemma)

end

4.16 The JVM Type System as Semilattice

theory JVMType
imports JType
begin

type_synonym locvars_type = "ty err list"

type__synonym opstack_type = "ty list"

type__synonym state_type = "opstack_type X locvars_type"
type_synonym state = "state_type option err" — for Kildall
type__synonym method_type = "state_type option list" — for BVSpec
type_synonym class_type = "sig = method_type"

type_synonym prog type = "cname = class_type"
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definition stk_esl :: "’c prog = nat = ty list esl" where
"stk_esl S maxs == upto_esl maxs (JType.esl S)"

definition reg_sl :: "’c prog = nat = ty err list sl" where
"reg_sl S maxr == Listn.sl maxr (Err.sl (JType.esl S))"

definition s1 :: "’c prog = nat = nat = state sl" where
"sl S maxs maxr ==
Err.s1(0Opt.esl(Product.esl (stk_esl S maxs) (Err.esl(reg_sl S maxr))))"

definition states :: "’c prog = nat = nat = state set" where
"states S maxs maxr == fst(sl S maxs maxr)"

definition le :: "’c prog = nat = nat = state ord" where
"le S maxs maxr == fst(snd(sl S maxs maxr))"

definition sup :: "’c prog = nat = nat = state binop" where
"sup S maxs maxr == snd(snd(sl S maxs maxr))"

definition sup_ty_opt :: "[’code prog,ty err,ty err] = bool"

(<_ F _ <=0 _> [71,71] 70) where
"sup_ty_opt G == Err.le (subtype G)"

definition sup_loc :: "[’code prog,locvars_type,locvars_type]l = bool"
(<_F _ <=1 _> [71,71] 70) where
"sup_loc G == Listn.le (sup_ty_opt G)"

definition sup_state :: "[’code prog,state_type,state_type] = bool"
(<t _ <=s > [71,71] 70) where
"sup_state G == Product.le (Listn.le (subtype G)) (sup_loc G)"

definition sup_state_opt :: "[’code prog,state_type option,state_type option] =- bool"

(< _ <=2 > [71,71] 70) where
"sup_state_opt G == Opt.le (sup_state G)"

lemma JVM_states_unfold:
"states S maxs maxr == err(opt((|J{list n (types S) [n. n <= maxs}) X
list maxr (err(types S))))"
apply (unfold states_def sl_def Opt.esl_def Err.sl_def
stk_esl_def reg_sl_def Product.esl_def
Listn.sl_def upto_esl_def JType.esl_def Err.esl_def)
by simp

lemma JVM_le_unfold:
"le Smn ==
Err.le(Opt.le(Product.le(Listn.le(subtype S)) (Listn.le(Err.le(subtype S)))))"
apply (unfold le_def sl_def Opt.esl_def Err.sl_def
stk_esl_def reg_sl_def Product.esl_def
Listn.sl_def upto_esl_def JType.esl_def Err.esl_def)
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by simp

lemma JVM_le_convert:
"le Gmn (0K t1) (0K t2) = G F t1 <=7 t2"
by (simp add: JVM_le_unfold Err.le_def lesub_def sup_state_opt_def
sup_state_def sup_loc_def sup_ty_opt_def)

lemma JVM_le_Err_conv:
"le G mn = Err.le (sup_state_opt G)"
by (unfold sup_state_opt_def sup_state_def sup_loc_def
sup_ty_opt_def JVM_le_unfold) simp

lemma zip_map [rule_format]:
"Va. length a = length b —
zip (map f a) (map g b) = map (A (x,y). (f x, g y)) (zip a b)"
apply (induct b)
apply simp
apply clarsimp
apply (case_tac aa)
apply simp_all
done

lemma [simp]: "Err.le r (0K a) (0K b) = r a b"
by (simp add: Err.le_def lesub_def)

lemma stk_convert:

"Listn.le (subtype G) a b = G - map 0K a <=1 map OK b"
proof

assume "Listn.le (subtype G) a b"

hence le: "list_all2 (subtype G) a b"
by (unfold Listn.le_def lesub_def)

{ fix x? y’
assume "length a = length b"
"(x’,y’) € set (zip (map OK a) (map OK b))"
then
obtain x y where 0K:
"x’ = 0K x" "y’ = OK y" "(x,y) € set (zip a b)"
by (auto simp add: zip_map)
with Ie
have "subtype G x y"
by (simp add: list_all2_iff Ball_def)
with 0K
have "G F x’ <=0 y’"
by (simp add: sup_ty_opt_def)
}

with le
show "G + map OK a <=1 map OK b"
by (unfold sup_loc_def Listn.le_def lesub_def list_all2 iff) auto
next
assume "G F map OK a <=1 map OK b"
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thus "Listn.le (subtype G) a b"
apply (unfold sup_loc_def list_all2 iff Listn.le_def lesub_def)
apply (clarsimp simp add: zip_map)
apply (drule bspec, assumption)
apply (auto simp add: sup_ty_opt_def subtype_def)
done
qed

lemma sup_state_conv:
"(G F s1 <=s s2) ==
(G + map OK (fst s1) <=1 map 0K (fst s2)) A (G  snd sl <=1 snd s2)"
by (auto simp add: sup_state_def stk_convert lesub_def Product.le_def split_beta)

lemma subtype_refl [simp]:
"subtype G t t"
by (simp add: subtype_def)

theorem sup_ty_opt_refl [simp]:
"Gkt <=0 t"
by (simp add: sup_ty_opt_def Err.le_def lesub_def split: err.split)

lemma le_list_refl2 [simp]:
"(Axs. r xs xs) => Listn.le r xs xs"
by (induct xs, auto simp add: Listn.le_def lesub_def)

theorem sup_loc_refl [simp]:
"G F t <=1t"
by (simp add: sup_loc_def)

theorem sup_state_refl [simp]:
"G F s <=5 8"
by (auto simp add: sup_state_def Product.le_def lesub_def)

theorem sup_state_opt_refl [simp]:
nG l_ s <=’ g"
by (simp add: sup_state_opt_def Opt.le_def lesub_def split: option.split)

theorem anyConvErr [simp]:
"(G + Err <=o any) = (any = Err)"
by (simp add: sup_ty_opt_def Err.le_def split: err.split)

theorem OKanyConvOK [simp]:
"(G + (0K ty’) <=o (0K ty)) = (G F ty’ <X ty)"
by (simp add: sup_ty_opt_def Err.le_def lesub_def subtype_def)

theorem sup_ty_opt_OK:
"G - a <=0 (0K b) = 3 x. a = 0K x"
by (clarsimp simp add: sup_ty_opt_def Err.le_def split: err.splits)

lemma widen_PrimT _convl [simp]:
" 6 v S < T; 8= PrinT x] = T = PrimT x"
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by (auto elim: widen.cases)

theorem sup_PTS eq:
"(G + OK (PrimT p) <=o X) = (X=Err V X = 0K (PrimT p))"
by (auto simp add: sup_ty_opt_def Err.le_def lesub_def subtype_def
split: err.splits)

theorem sup_loc_Nil [iff]:
"(G = [1 <=1 XT) = (XT=[])"
by (simp add: sup_loc_def Listn.le_def)

theorem sup_loc_Cons [iff]:
"(G b (Y#YT) <=1 XT) = (X XT’. XT=X#XT’ A (G + Y <=0 X) A (G F YT <=1 XT’))"
by (simp add: sup_loc_def Listn.le_def lesub_def list_all2 Cons1)

theorem sup_loc_Cons2:
"(G F YT <=1 (X#XT)) = (AY YT’. YT=Y#YT’ A (G F Y <=0 X) AN (G F YT’ <=1 XT))"
by (simp add: sup_loc_def Listn.le_def lesub_def list_all2 Cons2)

lemma sup_state_Cons:
"(G + (x#xt, a) <=s (y#yt, b)) =
(G Fx =<y) A (GF (xt,a) <=s (yt,b)))"
by (auto simp add: sup_state_def stk_convert lesub_def Product.le_def)

theorem sup_loc_length:
"G - a <=1 b = length a = length b"
proof -
assume G: "G - a <=1 b"
have "Vb. (G F a <=1 b) — length a = length b"
by (induct a, auto)
with G
show ?thesis by blast
qed

theorem sup_loc_nth:
" G F a<=1b; n<lengtha | = G F (aln) <=o (b!n)"
proof -
assume a: "G F a <=1 b" "n < length a"
have "V n b. (G + a <=1 b) — n < length a — (G + (a!n) <=o (b!n))"
(is "?P a")
proof (induct a)
show "7P []" by simp

fix x xs assume IH: "7P xs"

show "7P (x#xs)"
proof (intro strip)
fix n b
assume "G F (x # xs) <=1 b" "n < length (x # xs)"
with IH
show "G F ((x # xs) ! n) <=0 (b ! n)"
by (cases n) auto
qged
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qed

with a

show 7thesis by blast
qed

theorem all_nth_sup_loc:
"Vb. length a = length b — (V n. n < length a — (G + (a!n) <=0 (b!n)))
— (G F a <=1 b)" (is "?P a")

proof (induct a)
show "7P []" by simp

fix 1 1s assume IH: "7P 1s"

show "7P (1#1s)"

proof (intro strip)
fix b
assume f: "Vn. n < length (1 # 1s) — (G ((1 # 1s) ! n) <=o (b ! n))"
assume 1: "length (1#ls) = length b"

then obtain b’ bs where b: "b = b’#bs"
by (cases b) (simp, simp add: neq_Nil_conv)

with f
have "Vn. n < length 1s — (G + (Is!n) <=0 (bs!n))"
by auto

with f b 1 IH
show "G F (1 # 1s) <=1 b"
by auto
qed
qed

theorem sup_loc_append:
"length a = length b —
(G F (a@x) <=1 (b@y)) = ((GF a<=1b) AN (GF x<=1y))"
proof -
assume 1: "length a = length b"

have "Vb. length a = length b — (G F (a@x) <=1 (b@y)) = ((G F a <=1 b) A
(G x<=1y))" (is "?P a")
proof (induct a)
show "7P []" by simp

fix 1 1s assume IH: "7P 1s"
show "7P (1#1s)"
proof (intro strip)
fix b
assume "length (1#ls) = length (b::ty err list)"
with IH
show "(G F ((1#ls)@x) <=1 (b@y)) = ((G F (1#ls) <=1 b) N (G F x <=1 y))"
by (cases b) auto
qed
qed
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with 1
show ?thesis by blast
qed

theorem sup_loc_rev [simp]:
"(G F (rev a) <=1 rev b) = (G F a <=1 b)"
proof -
have "Vb. (G F (rev a) <=1 rev b) = (G F a <=1 b)" (is "Vb. ?Q a b" is "?P a")
proof (induct a)
show "7P []" by simp

fix 1 1s assume IH: "7P 1s"

fix b
have "?Q (1#l1s) b"
proof (cases b)
case Nil
thus ?thesis by (auto dest: sup_loc_length)
next
case (Cons a list)
show ?thesis
proof
assume "G - (1 # 1s) <=1 b"
thus "G + rev (1 # 1s) <=1 rev b"
by (clarsimp simp add: Cons IH sup_loc_length sup_loc_append)
next
assume "G F rev (1 # 1ls) <=1 rev b"
hence G: "G + (rev 1s @ [1]) <=1 (rev list @ [a])"
by (simp add: Cons)

hence "length (rev 1s) = length (rev list)"
by (auto dest: sup_loc_length)

from this G
obtain "G F rev 1s <=1 rev list" "G F 1 <=0 a"
by (simp add: sup_loc_append)

thus "G - (1 # 1s) <=1 b"
by (simp add: Cons IH)
qed
qed
}
thus "?P (1#ls)" by blast
qed

thus ?thesis by blast
qed

theorem sup_loc_update [rule_format]:
"V ny. (GFa<=ob) — n<lengthy — (GF x<=1y) —
(G F x[n :=a] <=1 y[n := b])" (is "7P x")
proof (induct x)
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show "7P []" by simp

fix 1 1s assume IH: "7P 1s"
show "?P (1#ls)"
proof (intro strip)
fix ny
assume "G tFa <=o b" "G - (1 # 1s) <=1 y" "n < length y"
with IH
show "G F (1 # 1s)[n := a] <=1 y[n := b]"
by (cases n) (auto simp add: sup_loc_Cons2 list_all2 Cons1)
qed
qed

theorem sup_state_length [simp]:
"G F 82 <=5 s1 —
length (fst s2) = length (fst s1) A length (snd s2) = length (snd s1)"
by (auto dest: sup_loc_length simp add: sup_state_def stk_convert lesub_def Product.le_def)

theorem sup_state_append_snd:
"length a = length b —
(G + (i,a0x) <=s (j,b@y)) = ((G + (i,a) <=s (j,b)) N (G F (i,x) <=s (j,y)))"
by (auto simp add: sup_state_def stk_convert lesub_def Product.le_def sup_loc_append)

theorem sup_state_append_fst:
"length a = length b —
(G + (a@x,i) <=s (b@y,j)) = ((G F (a,i) <=s (b,j)) N (G = (x,i) <=s (y,j)))"
by (auto simp add: sup_state_def stk_convert lesub_def Product.le_def sup_loc_append)

theorem sup_state_Cons1:
"(G F (x#xt, a) <=s (yt, b)) =
Ay yt’. yt=y#yt’ A (G F x X y) AN (G + (xt,a) <=s (yt’,b)))"
by (auto simp add: sup_state_def stk_convert lesub_def Product.le_def)

theorem sup_state_Cons2:
"(G F (xt, a) <=s (y#yt, b)) =
(Ax xt’. xt=x#xt’ A (G Fx <X y) A (GF (xt?,a) <=s (yt,b)))"
by (auto simp add: sup_state_def stk_convert lesub_def Product.le_def sup_loc_Cons2)

theorem sup_state_ignore_fst:
"G F (a, x) <=s (b, y) = G F (c, x) <=s (c, y)"
by (simp add: sup_state_def lesub_def Product.le_def)

theorem sup_state_rev_fst:

"(G + (rev a, x) <=s (rev b, y)) = (G F (a, x) <=s (b, y))"
proof -

have m: "Af x. map f (rev x) = rev (map £ x)" by (simp add: rev_map)

show ?7thesis by (simp add: m sup_state_def stk_convert lesub_def Product.le_def)
qed

lemma sup_state_opt_None_any [iff]:
"(G + None <=’ any) = True"
by (simp add: sup_state_opt_def Opt.le_def split: option.split)
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lemma sup_state_opt_any None [iff]:
"(G + any <=’ None) = (any = None)"
by (simp add: sup_state_opt_def Opt.le_def split: option.split)

lemma sup_state_opt_Some_Some [iff]:
"(G + (Some a) <=’ (Some b)) = (G F a <=s b)"
by (simp add: sup_state_opt_def Opt.le_def lesub_def del: split_paired_Ex)

lemma sup_state_opt_any_Some [iff]:
"(G F (Some a) <=’ any) = (Ib. any = Some b AN G I a <=s b)"
by (simp add: sup_state_opt_def Opt.le_def lesub_def split: option.split)

lemma sup_state_opt_Some_any:
"(G F any <=’ (Some b)) = (any = None V (da. any = Some a A G - a <=s b))"
by (simp add: sup_state_opt_def Opt.le_def lesub_def split: option.split)

theorem sup_ty_opt_trans [trans]:
"[G F a<=0b; GF b<=oc] = GF a<=oc"
by (auto intro: widen_trans
simp add: sup_ty_opt_def Err.le_def lesub_def subtype_def
split: err.splits)

theorem sup_loc_trans [trans]:

"[6 Fa<=1b; GFb<=lc|]= GF a<=1c"
proof -

assume G: "G F a <=1 b" "G + b <=1 c"

hence "V n. n < length a — (G F (a!n) <=o (c!n))"
proof (intro strip)
fix n
assume n: "n < length a"
with G(1)
have "G F (a!n) <=0 (b!n)"
by (rule sup_loc_nth)
also
from n G
have "G F ... <=0 (c!n)"
by - (rule sup_loc_nth, auto dest: sup_loc_length)
finally
show "G F (a'n) <=0 (c!'n)" .
qed

with G
show ?thesis

by (auto intro!: all_nth_sup_loc [rule_format] dest!: sup_loc_length)
qed

theorem sup_state_trans [trans]:
"[G F a<=sb; GFb<=sc] = GF a<=sc"
by (auto intro: sup_loc_trans simp add: sup_state_def stk_convert Product.le_def lesub_def)
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theorem sup_state_opt_trans [trans]:
"[G F a<="b; GF b<="c] = GF ac<=c"
by (auto intro: sup_state_trans
simp add: sup_state_opt_def Opt.le_def lesub_def
split: option.splits)

end

4.17 Effect of Instructions on the State Type

theory Effect
imports JVMType "../JVM/JVMExceptions"
begin

type__synonym succ_type = "(p_count X state_type option) list"

Program counter of successor instructions:

primrec succs :: "instr = p_count = p_count list" where
"succs (Load idx) pc = [pc+1]"

| "succs (Store idx) pc = [pc+1]"

| "succs (LitPush v) pc = [pc+1]"

| "succs (Getfield F C) pc = [pc+1]"

| "succs (Putfield F C) pc = [pc+1]"

| "succs (New C) pc = [pc+1]"

| "succs (Checkcast C) pc = [pc+1]"

| "succs Pop pc = [pc+1]"

| "succs Dup pc = [pc+1]"

| "succs Dup_x1 pc = [pc+1]"

| "succs Dup_x2 pc = [pc+1]"

| "succs Swap pc = [pc+1]"

| "succs IAdd pc = [pc+1]"

| "succs (Ifcmpeq b) pc = [pc+1, nat (int pc + b)]"

| "succs (Goto b) pc = [nat (int pc + b)]"

| "succs Return pc = [pc]"

| "succs (Invoke C mn fpTs) pc = [pc+1]"

| "succs Throw pc = [pc]"

Effect of instruction on the state type:

fun eff’ :: "instr X jvm_prog X state_type = state_type"
where

"eff’ (Load idx, G, (ST, LT))
"eff’ (Store idx, G, (ts#ST, LT))

(ok_val (LT ! idx) # ST, LT)" |
(ST, LT[idx:= OK ts])" |

"eff’ (LitPush v, G, (ST, LT)) = (the (typeof (Av. Nome) v) # ST, LT)" |
"eff’ (Getfield F C, G, (oT#ST, LT)) = (snd (the (field (G,C) F)) # ST, LT)" |
"eff’ (Putfield F C, G, (vT#oT#ST, LT)) = (ST,LT)" |

"eff’ (New C, G, (ST,LT)) = (Class C # ST, LT)" |

"eff’ (Checkcast C, G, (RefT rt#ST,LT)) = (Class C # ST,LT)" |

"eff’ (Pop, G, (ts#ST,LT)) = (ST,LT)" |

"eff’ (Dup, G, (ts#ST,LT)) = (ts#ts#ST,LT)" |

"eff’ (Dup_x1, G, (ts1#ts2#ST,LT)) = (tsl#ts2#ts1#ST,LT)" |

"eff’ (Dup_x2, G, (tsl#ts2#ts3#ST,LT)) = (tsl#ts2#ts3#ts1#ST,LT)" |
"eff’ (Swap, G, (ts1#ts2#ST,LT)) (ts2#ts1#ST,LT)" |
"eff’ (IAdd, G, (PrimT Integer#PrimT Integer#ST,LT))
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= (PrimT Integer#ST,LT)" |

"eff’ (Ifcmpeq b, G, (tsi#ts2#ST,LT)) = (ST,LT)" |
"eff’ (Goto b, G, s) =g" |
— Return has no successor instruction in the same method
"eff’ (Return, G, s) =g" |
— Throw always terminates abruptly
"eff’ (Throw, G, s) =3s" |
"eff’ (Invoke C mn fpTs, G, (ST,LT)) = (let ST’ = drop (length fpTs) ST

in (fst (snd (the (method (G,C) (mn,fpTs))))#(tl ST’),LT))"

primrec match_any :: "jvm_prog = p_count => exception_table = cname list" where
"match_any G pc [] = []"
| "match_any G pc (e#es) = (let (start_pc, end_pc, handler_pc, catch_type) = e;
es’ = match_any G pc es
in
if start_pc <= pc A pc < end_pc then catch_type#es’ else es’)"

primrec match :: "jvm_prog = xcpt = p_count = exception_table = cname list" where
"match G X pc [1 = []"

| "match G X pc (e#es) =
(if match_exception_entry G (Xcpt X) pc e then [Xcpt X] else match G X pc es)"

lemma match_some_entry:

"match G X pc et = (if de € set et. match_exception_entry G (Xcpt X) pc e then [Xcpt
X] else [1)"

by (induct et) auto

fun

xcpt_names :: "instr X jvm_prog X p_count X exception_table => cname list"
where
"xcpt_names (Getfield F C, G, pc, et) = match G NullPointer pc et"
"xcpt_names (Putfield F C, G, pc, et) = match G NullPointer pc et"

|

| "xcpt_names (New C, G, pc, et) = match G OutOfMemory pc et"

| "xcpt_names (Checkcast C, G, pc, et) = match G ClassCast pc et"

| "xcpt_names (Throw, G, pc, et) = match_any G pc et"

| "xcpt_names (Invoke C m p, G, pc, et) = match_any G pc et"

| "xcpt_names (i, G, pc, et) = []"

definition xcpt_eff :: "instr = jvm_prog = p_count = state_type option = exception_table

= succ_type" where
"xcpt_eff i G pc s et ==
map (AC. (the (match_exception_table G C pc et), case s of None = None | Some s’ =
Some ([Class C], snd s’)))
(xcpt_names (i,G,pc,et))"

definition norm_eff :: "instr = jvm_prog = state_type option =- state_type option" where
"norm_eff i G == map_option (As. eff’ (i,G,s))"

definition eff :: "instr = jvm_prog = p_count = exception_table = state_type option
= succ_type" where
"eff i G pc et s == (map (Apc’. (pc’,norm_eff i G s)) (succs i pc)) @ (xcpt_eff i G
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pc s et)"

definition isPrimT :: "ty = bool" where
"isPrimT T == case T of PrimT T’ = True | RefT T’ = False"

definition isRefT :: "ty = bool" where
"isRefT T == case T of PrimT T’ = False | RefT T’ = True"

lemma isPrimT [simp]:
"isPrimT T = (3T’. T = PrimT T’)" by (simp add: isPrimT_def split: ty.splits)

lemma isRefT [simp]:
"isRefT T = (AT’. T = RefT T’)" by (simp add: isRefT def split: ty.splits)

lemma "list_all2 P a b = V (x,y) € set (zip a b). P x y"
by (simp add: list_all2 iff)

Conditions under which eff is applicable:

fun
app’ :: "instr X jvm_prog X p_count X nat X ty X state_type = bool"
where
"app’ (Load idx, G, pc, maxs, rT, s) =
(idx < length (snd s) A (snd s) ! idx # Err A length (fst s) < maxs)" |
"app’ (Store idx, G, pc, maxs, rT, (ts#ST, LT)) =
(idx < length LT)" |
"app’ (LitPush v, G, pc, maxs, rT, s) =
(length (fst s) < maxs A typeof (At. Nome) v # Nonme)" |
"app’ (Getfield F C, G, pc, maxs, rT, (oT#ST, LT)) =

(is_class G C A field (G,C) F # None A fst (the (field (G,C) F)) = C A
G oT < (Class C))" |

"app’ (Putfield F C, G, pc, maxs, rT, (vT#oT#ST, LT)) =
(is_class G C A field (G,C) F # None A fst (the (field (G,C) F)) = C A

G F oT < (Class C) AN G F vT < (snd (the (field (G,C) F))))" |
"app’ (New C, G, pc, maxs, rT, s) =
(is_class G C A length (fst s) < maxs)" |
"app’ (Checkcast C, G, pc, maxs, rT, (RefT rt#ST,LT)) =
(is_class G C)" |
"app’ (Pop, G, pc, maxs, rT, (ts#ST,LT))
True" |
"app’ (Dup, G, pc, maxs, rT, (ts#ST,LT))
(1+length ST < maxs)" |
"app’ (Dup_x1, G, pc, maxs, rT, (tsl#ts2#ST,LT)) =
(2+length ST < maxs)" |
"app’ (Dup_x2, G, pc, maxs, rT, (tsl#ts2#ts3#ST,LT)) =
(3+length ST < maxs)" |
"app’ (Swap, G, pc, maxs, rT, (tsi#ts2#ST,LT)) =
True" |
"app’ (IAdd, G, pc, maxs, rT, (PrimT Integer#PrimT Integer#ST,LT)) =
True" |
"app’ (Ifcmpeq b, G, pc, maxs, rT, (ts#ts’#ST,LT)) =
(0 < int pc + b A (isPrimT ts A ts’ = ts V isRefT ts A isRefT ts’))" |
"app’ (Goto b, G, pc, maxs, rT, s) =
(0 < int pc + b)" |
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"app’ (Return, G, pc, maxs, rT, (T#ST,LT)) =
GFT=<XrD" |

"app’ (Throw, G, pc, maxs, rT, (T#ST,LT)) =
isRefT T" |

"app’ (Invoke C mn fpTs, G, pc, maxs, rT, s) =
(length fpTs < length (fst s) A
(let apTs = rev (take (length fpTs) (fst s));

X = hd (drop (length fpTs) (fst s))

in

G F X X Class C A is_class G C A method (G,C) (mn,fpTs) # None A

list_all2 (Ax y. G F x = y) apTs fpTs))" |

"app’ (i,G, pc,maxs,rT,s) = False"

"instr = jvm_prog = nat = exception_table = bool" where

definition xcpt_app ::
V Ceset (xcpt_names (i,G,pc,et)). is_class G C"

"xcpt_app i G pc et =

= jvm_prog = nat = ty = nat = exception_table = state_type

definition app :: "instr
option = bool" where
"app i G maxs rT pc et s == case s of None = True | Some t = app’ (i,G,pc,maxs,rT,t)

N xcpt_app 1 G pc et

lemma match_any_match_table:
"C € set (match_any G pc et) = match_exception_table G C pc et # None"
apply (induct et)
apply simp
apply simp
apply clarify
apply (simp split: if_split_asm)
apply (auto simp add: match_exception_entry_def)

done

lemma match_X_match_table:
"C € set (match G X pc et) = match_exception_table G C pc et # None"

apply (induct et)

apply simp
apply (simp split: if_split_asm)
done

lemma xcpt_names_in_et:
"C € set (xcpt_names (i,G,pc,et)) —
Je € set et. the (match_exception_table G C pc et) = fst (snd (snd e))"

apply (cases i)
apply (auto dest!: match_any_match_table match_X_match_table

dest: match_exception_table_in_et)

done

lemma 1: "2 < length a = (31 1’ 1°’ 1ls. a = 1#1’#1’°#1s)"

proof (cases a)
fix x xs assume "a = x#xs" "2 < length a"
thus 7thesis by - (cases xs, simp, cases "tl xs", auto)

ged auto
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lemma 2: "—=(2 < length a) = a =[]V (3 1. a=1[1])Vv (311’ a=[1,1’])"
proof -
assume "—(2 < length a)"
hence "length a < (Suc (Suc (Suc 0)))" by simp
hence * : "length a = 0 V length a = Suc 0 V length a = Suc (Suc 0)"
by (auto simp add: less_Suc_eq)

{

fix x

assume "length x = Suc 0"

hence "4 1. x = [1]" by (cases x) auto
} note 0 = this

have "length a = Suc (Suc 0) = 31 1’. a = [1,1°’]" by (cases a) (auto dest: 0)
with * show ?thesis by (auto dest: 0)
qed

lemmas [simp] = app_def xcpt_app_def

simp rules for app

lemma appNone[simp]: "app i G maxs rT pc et None = True" by simp

lemma appLoad[simp] :
"(app (Load idx) G maxs rT pc et (Some s)) = (ST LT. s = (ST,LT) A idx < length LT A
LT!idx # Err A length ST < maxs)"

by (cases s, simp)

lemma appStore[simp]:
"(app (Store idx) G maxs rT pc et (Some s)) = (Its ST LT. s = (ts#ST,LT) N idx < length
Lm"

by (cases s, cases "2 < length (fst s)", auto dest: 1 2)

lemma appLitPush[simp]:
"(app (LitPush v) G maxs rT pc et (Some s)) = (3ST LT. s = (ST,LT) A length ST < maxs
A typeof (Av. None) v # None)"

by (cases s, simp)

lemma appGetField[simp]:
"(app (Getfield F C) G maxs rT pc et (Some s)) =

(3 oT vT ST LT. s = (oT#ST, LT) A is_class G C A

field (G,C) F = Some (C,vT) N G F oT =X (Class C) N (Wx € set (match G NullPointer
pc et). is_class G x))"

by (cases s, cases "2 <length (fst s)", auto dest!: 1 2)

lemma appPutField[simp]:
"(app (Putfield F C) G maxs rT pc et (Some s)) =
(3 vT vT’ oT ST LT. s = (vT#oT#ST, LT) A is_class G C A
field (G,C) F = Some (C, vI’) AN G F oT =X (Class C) AN G - vT =X v’ A
(Vx € set (match G NullPointer pc et). is_class G x))"
by (cases s, cases "2 <length (fst s)", auto dest!: 1 2)

lemma appNew[simp] :
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"(app (New C) G maxs rT pc et (Some s)) =

(ST LT. s=(ST,LT) A is_class G C A length ST < maxs A
(Vx € set (match G OutOfMemory pc et). is_class G x))"
by (cases s, simp)

lemma appCheckcast [simp] :
"(app (Checkcast C) G maxs rT pc et (Some s)) =
(3rT ST LT. s = (RefT rT#ST,LT) AN is_class G C A
(Vx € set (match G ClassCast pc et). is_class G x))"
by (cases s, cases "fst s", simp) (cases "hd (fst s)", auto)

lemma appPop[simp] :
"(app Pop G maxs rT pc et (Some s)) = (dts ST LT. s = (ts#ST,LT))"
by (cases s, cases "2 <length (fst s)", auto dest: 1 2)

lemma appDup[simp] :
"(app Dup G maxs rT pc et (Some s)) = (Its ST LT. s = (ts#ST,LT) A 1+length ST < maxs)"

by (cases s, cases "2 <length (fst s)", auto dest: 1 2)

lemma appDup_x1[simp] :
"(app Dup_x1 G maxs rT pc et (Some s)) = (Jtsl ts2 ST LT. s = (tsi1#ts2#ST,LT) N 2+length
ST < maxs)"

by (cases s, cases "2 <length (fst s)", auto dest: 1 2)

lemma appDup_x2[simp] :
"(app Dup_x2 G maxs rT pc et (Some s)) = (Jtsl ts2 ts3 ST LT. s = (tsl#ts2#ts3#ST,LT)
A 3+length ST < maxs)"

by (cases s, cases "2 <length (fst s)", auto dest: 1 2)

lemma appSwap[simp] :
"app Swap G maxs rT pc et (Some s) = (Itsl ts2 ST LT. s = (tsi#ts2#ST,LT))"
by (cases s, cases "2 <length (fst s)") (auto dest: 1 2)

lemma appIAdd[simp]:
"app IAdd G maxs rT pc et (Some s) = (3 ST LT. s = (PrimT Integer#PrimT Integer#ST,LT))"
(is "?app s = 7P s8")
proof (cases s)
case (Pair a b)
have "?7app (a,b) = 7P (a,b)"
proof (cases a)
fix t ts assume a: "a = t#ts"
show ?thesis
proof (cases t)
fix p assume p: "t = PrimT p"
show ?thesis
proof (cases p)
assume ip: "p = Integer"
show ?thesis
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proof (cases ts)
fix t’ ts’ assume t’: "ts = t’ # ts’"
show ?thesis
proof (cases t’)
fix p’ assume "t’ = PrimT p’"
with t’ ip p a
show ?thesis by (cases p’) auto
qed (auto simp add: a p ip t’)
qged (auto simp add: a p ip)
qed (auto simp add: a p)
qged (auto simp add: a)
qed auto
with Pair show 7thesis by simp
qed

lemma appIfcmpeq[simp] :

"app (Ifcmpeq b) G maxs rT pc et (Some s) =
(Its1 ts2 ST LT. s = (tsi1#ts2#ST,LT) N 0 < int pc + b A
((3 p. ts1 = PrimT p A ts2 = PrimT p) V (Ir r’. tsl = RefT r A ts2 = RefT r’)))"
by (cases s, cases "2 <length (fst s)", auto dest!: 1 2)

lemma appReturn[simp]:
"app Return G maxs rT pc et (Some s) = (3T ST LT. s = (T#ST,LT) AN (G- T <X rT))"
by (cases s, cases "2 <length (fst s)", auto dest: 1 2)

lemma appGoto[simp] :
"app (Goto b) G maxs rT pc et (Some s) = (0 < int pc + b)"
by simp

lemma appThrow[simp] :

"app Throw G maxs rT pc et (Some s) =

(3T ST LT r. s=(T#ST,LT) N T = RefT r N (VC € set (match_any G pc et). is_class G
PR

by (cases s, cases "2 < length (fst s)", auto dest: 1 2)

lemma appInvoke[simp]:

"app (Invoke C mn fpTs) G maxs rT pc et (Some s) = (JapTs X ST LT mD’ rT’ b’.
s = ((rev apTs) @ (X # ST), LT) A length apTs = length fpTs A is_class G C A
G F X <X Class C AN (VY (aT,fT)€set(zip apTs fpTs). G + aT < fT) A
method (G,C) (mn,fpTs) = Some (mD’, rT’, b’) A
(VC € set (match_any G pc et). is_class G C))" (is "?app s = 7P s")

proof (cases s)
note list_all2 iff [simp]
case (Pair a b)
have "?7app (a,b) = 7P (a,b)"
proof -

assume app: "7app (a,b)"
hence "a = (rev (rev (take (length fpTs) a))) @ (drop (length fpTs) a) A
length fpTs < length a" (is "?a A 71")
by auto
hence "7a A 0 < length (drop (length fpTs) a)" (is "?a A 71")
by auto
hence "7a A 71 A length (rev (take (length fpTs) a)) = length fpTs"
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by (auto)

hence "dapTs ST. a = rev apTs @ ST A length apTs = length fpTs A O < length ST"
by blast

hence "dapTs ST. a = rev apTs @ ST A length apTs = length fpTs A ST #* []"
by blast

hence "dapTs ST. a = rev apTs @ ST A length apTs = length fpTs A
(3X ST’. ST = X#ST’)"
by (simp add: neq Nil_conv)
hence "dapTs X ST. a = rev apTs @ X # ST N length apTs = length fpTs"
by blast
with app
show ?thesis by clarsimp blast
qed
with Pair
have "?app s = 7P s" by (simp only:)

moreover
have "?P s = 7app s" by (clarsimp simp add: min.absorb2)
ultimately
show ?7thesis by (rule iffI)

qed

lemma effNone:
"(pc’, s’) € set (eff i G pc et None) = s’ = None"
by (auto simp add: eff_def xcpt_eff_def norm_eff_def)

lemma xcpt_app_lemma [code]:
"xcpt_app i G pc et = list_all (is_class G) (xcpt_names (i, G, pc, et))"
by (simp add: list_all_iff)

lemmas [simp del] = app_def xcpt_app_def

end

4.18 Monotonicity of eff and app

theory EffectMono
imports Effect
begin

lemma PrimT PrimT: "(G + xb =< PrimT p) = (xb
by (auto elim: widen.cases)

PrimT p)"

lemma sup_loc_some [rule_format]:
"Wy n. (GFb<=1ly) — n<lengthy — yln=01t —
(3t. bln =0kt A (G + (b!n) <=0 (y!n)))"
proof (induct b)
case Nil
show ?case by simp
next
case (Cons a list)
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show 7case
proof (clarsimp simp add: list_all2 Consl sup_loc_def Listn.le_def lesub_def)
fix z zs n
assume *:
"G - a <=0 z" "list_all2 (sup_ty_opt G) list zs"
"n < Suc (length list)" "(z # zs) ! n = OK t"

show "(dt. (a # 1list) ! n = 0K t) N G F(a # list) ! n <=0 OK t"
proof (cases n)
case 0
with * show 7thesis by (simp add: sup_ty_opt_OK)
next
case Suc
with Cons *
show ?7thesis by (simp add: sup_loc_def Listn.le_def lesub_def)
qed
qed
qed

lemma all_widen_is_sup_loc:
"Vb. length a = length b —
VWV (x, y)eset (zip ab). G F x X y) = (G F (map OK a) <=1 (map OK b))"
(is "Vb. length a = length b — 7Q a b" is "7P a")
proof (induct "a")
show "7P []" by simp

fix 1 1s assume Cons: "7P 1s"

show "?7P (1#1s)"
proof (intro alll impI)

fix b
assume "length (1 # 1s) = length (b::ty list)"
with Cons
show "7Q (1 # 1s) b" by (cases b) auto
qed

qed

lemma append_length_n [rule_format]:
"Vn. n < length x — (Ja b. x = a@b A length a = n)"
proof (induct x)

case Nil
show ?case by simp
next

case (Cons 1 1s)

show 7case
proof (intro alll impI)
fix n
assume 1: "n < length (1 # 1s)"

show "dJa b. 1 # 1s =a @ b A length a = n"
proof (cases n)
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assume "n=0" thus ?thesis by simp

next
fix n’ assume s: "n = Suc n’"
with 1 have "n’ < length 1s" by simp
hence "da b. 1s = a @ b A length a = n’" by (rule Cons [rule_format])
then obtain a b where "1s = a @ b" "length a = n’" by iprover
with s have "1 # 1s = (1#a) @ b A length (1#a) = n" by simp
thus ?thesis by blast

qed

qed
qed

lemma rev_append_cons:
"n < length x = Ja b c. x = (reva) @b # c A length a =n
proof -
assume n: "n < length x"
hence "n < length x" by simp
hence "da b. x = a @ b A length a = n" by (rule append_length_n)
then obtain r d where x: "x = r@d" "length r = n" by iprover
with n have "db c¢. d = b#c" by (simp add: neq_Nil_conv)
then obtain b ¢ where "d = b#c" by iprover
with x have "x = (rev (revr)) @ b # ¢ N length (rev r) = n" by simp
thus ?7thesis by blast
qed

n

lemma sup_loc_length_map:
"G - map f a <=1 map g b = length a = length b"
proof -
assume "G - map f a <=1 map g b"
hence "length (map f a) = length (map g b)" by (rule sup_loc_length)
thus 7thesis by simp
qed

lemmas [iff] = not_Err_eq

lemma app_mono:
"[G F s <=’ s’; app 1 G m rT pc et s’] = app i G m rT pc et s"
proof -

{ fix s1 s2
assume G: "G F s2 <=s s1"
assume app: "app i G m rT pc et (Some s1)"

note [simp] = sup_loc_length sup_loc_length_map
have "app i G m rT pc et (Some s2)"
proof (cases i)

case Load

from G Load app
have "G  snd s2 <=1 snd s1" by (auto simp add: sup_state_conv)

with G Load app show ?thesis
by (cases s2) (auto simp add: sup_state_conv dest: sup_loc_some)
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next
case Store
with G app show ?thesis
by (cases s2) (auto simp add: sup_loc_Cons2 sup_state_conv)
next
case LitPush
with G app show ?thesis by (cases s2) (auto simp add: sup_state_conv)
next
case New
with G app show 7thesis by (cases s2) (auto simp add: sup_state_conv)
next
case Getfield
with app G show ?thesis
by (cases s2) (clarsimp simp add: sup_state_Cons2, rule widen_trans)
next
case (Putfield vname cname)

with app
obtain vT oT ST LT b
where s1: "s1 = (vT # oT # ST, LT)" and
"field (G, cname) vname = Some (cname, b)"
"is_class G cname" and
oT: "G+ oT< (Class cname)" and
vT: "G+ vT< b" and
xc: "Ball (set (match G NullPointer pc et)) (is_class G)"
by force
moreover
from s1 G
obtain vT’ oT’ ST’ LT’
where s2: "s2 = (vT’ # oT’ # ST’, LT’)" and
oT’: "Gk oT’ <X oT" and
vl’: "G+ vT’ < vT"
by - (cases s2, simp add: sup_state_Cons2, elim exE conjE, simp)
moreover
from vT’> vT
have "G + vT’ < b" by (rule widen_trans)
moreover
from oT’ oT
have "GF oT’ < (Class cname)" by (rule widen_trans)
ultimately
show ?thesis by (auto simp add: Putfield xc)
next
case Checkcast
with app G show ?thesis
by (cases s2) (auto intro!: widen_RefT2 simp add: sup_state_Cons2)
next
case Return
with app G show ?thesis
by (cases s2) (auto simp add: sup_state_Cons2, rule widen_trans)
next
case Pop
with app G show ?thesis
by (cases s2) (clarsimp simp add: sup_state_Cons2)
next
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case Dup
with app G show ?thesis
by (cases s2) (clarsimp simp add: sup_state_Cons2,
auto dest: sup_state_length)
next
case Dup_x1
with app G show ?thesis
by (cases s2) (clarsimp simp add: sup_state_Cons2,
auto dest: sup_state_length)
next
case Dup_x2
with app G show ?thesis
by (cases s2) (clarsimp simp add: sup_state_Cons2,
auto dest: sup_state_length)
next
case Swap
with app G show ?thesis
by (cases s2) (auto simp add: sup_state_Cons2)
next
case IAdd
with app G show ?thesis
by (cases s2) (auto simp add: sup_state_Cons2 PrimT_PrimT)
next
case Goto
with app show ?thesis by simp
next
case Ifcmpeq
with app G show ?thesis
by (cases s2) (auto simp add: sup_state_Cons2 PrimT_PrimT widen_RefT2)
next
case (Invoke cname mname list)

with app
obtain apTs X ST LT mD’ rT’ b’ where
sl: "s1 = (rev apTs @ X # ST, LT)" and
"length apTs = length list" and
"is_class G cname" and
"G - X < Class cname" and
"V (x, y) € set (zip apTs list). G - x =< y" and
"method (G, cname) (mname, list) = Some (mD’, rT’, b’)" and
"YC € set (match_any G pc et). is_class G C"
by (simp del: not_None_eq, elim exE conjE) (rule that)

ol B g Qo+~

obtain apTs’ X’ ST’ LT’ where
s2: "s2 = (rev apTs’ @ X’ # ST’, LT’)" and
1’: "length apTs’ = length list"
proof -
from 1 s1 G
have "length list < length (fst s2)"
by simp
hence "Ja b c. (fst s2) =reva @b # c N length a = length list"
by (rule rev_append_cons [rule_format])
thus ?thesis
by (cases s2) (elim exE conjE, simp, rule that)
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qed

from 1 1°
have "length (rev apTs’) = length (rev apTs)" by simp

from this s1 s2 G
obtain
G’: "G + (apTs’,LT’) <=s (apTs,LT)" and
X: "6+ X’ < X" and "G + (ST’,LT’) <=s (ST,LT)"
by (simp add: sup_state_rev_fst sup_state_append_fst sup_state_Cons1)

with C
have C’: "G + X’ < Class cname"
by - (rule widen_trans, auto)

from G’

have "G + map OK apTs’ <=1 map OK apTs"
by (simp add: sup_state_conv)

also

from 1 w

have "G + map OK apTs <=1 map OK list"
by (simp add: all_widen_is_sup_loc)

finally

have "G + map OK apTs’ <=1 map OK list" .

with 1’
have w’: "V (x, y) € set (zip apTs’ list). G - x X y"
by (simp add: all_widen_is_sup_loc)

from Invoke s2 1’ w’ C’ m ¢ x
show ?thesis
by (simp del: split_paired_Ex) blast
next
case Throw
with app G show ?thesis
by (cases s2, clarsimp simp add: sup_state_Cons2 widen_RefT2)
qed
} note this [simp]

assume "G - s <=’ s’" "app i G m rT pc et s’"
thus ?thesis by (cases s, cases s’, auto)
qed

lemmas [simp del] = split_paired_Ex

lemma eff’_mono:

"[ app 1 G m rT pc et (Some s2); G F s1 <=s 52 | =
G + eff’ (i,G,sl) <=s eff’ (i,G,s2)"

proof (cases s1, cases s2)
fix a1 b1 a2 b2
assume s: "s1 = (al,b1)" "s2 = (a2,b2)"
assume app2: "app i G m rT pc et (Some s2)"
assume G: "G - s1 <=s s2"
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note [simp] = eff_def

with G have "G  (Some s1) <=’ (Some s2)" by simp
from this app2
have appl: "app i G m rT pc et (Some s1)" by (rule app_mono)

show ?7thesis
proof (cases i)
case (Load n)

with s app1
obtain y where
y: "n < length bl1" "bl ! n = OK y" by clarsimp

from Load s app2
obtain y’ where
y’: "n < length b2" "b2 ! n = 0K y’" by clarsimp

from G s
have "G b1 <=1 b2" by (simp add: sup_state_conv)

with y y’
have "¢ -y <X y’"
by - (drule sup_loc_some, simp+)

with Load G y y’ s appl app2
show ?thesis by (clarsimp simp add: sup_state_conv)
next
case Store
with G s appl app2
show ?thesis
by (clarsimp simp add: sup_state_conv sup_loc_update)
next
case LitPush
with G s appl app2
show ?thesis
by (clarsimp simp add: sup_state_Cons1)
next
case New
with G s appl app2
show ?thesis
by (clarsimp simp add: sup_state_Cons1)
next
case Getfield
with G s appl app2
show ?thesis
by (clarsimp simp add: sup_state_Cons1)
next
case Putfield
with G s appl app2
show ?thesis
by (clarsimp simp add: sup_state_Cons1)
next
case Checkcast
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with G s appl app2
show ?thesis
by (clarsimp simp add: sup_state_Cons1)
next
case (Invoke cname mname 1ist)

with s app1
obtain a X ST where
s1: "s1 = (a @ X # ST, b1)" and
1: "length a = length list"
by (simp, elim exE conjE, simp (no_asm_simp))

from Invoke s app2
obtain a’ X’ ST’ where
s2: "s2 = (a’ @ X’ # ST’, b2)" and
1’: "length a’ = length list"
by (simp, elim exE conjE, simp (no_asm_simp))

from 1 1°
have 1r: "length a = length a’" by simp

from 1r G s1 s2
have "G + (ST, b1) <=s (ST’, b2)"
by (simp add: sup_state_append_fst sup_state_Cons1)

moreover
obtain b1’ b2’ where eff’:

"b1’ snd (eff’ (i,G,s1))"
"b2’ = snd (eff’ (i,G,s2))" by simp

from Invoke G s eff’ appl app2
obtain "b1 = b1’" "b2 = b2’" by simp

ultimately
have "G + (ST, b1’) <=s (ST’, b2’)" by simp

with Invoke G s appl app2 eff’ s1 s2 1 1’
show ?thesis
by (clarsimp simp add: sup_state_conv)
next
case Return
with G
show ?thesis
by simp
next
case Pop
with G s appl app2
show ?thesis
by (clarsimp simp add: sup_state_Cons1)
next
case Dup
with G s appl app2
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show ?thesis
by (clarsimp simp add: sup_state_Cons1)
next
case Dup_x1
with G s appl app2
show ?thesis
by (clarsimp simp add: sup_state_Cons1)
next
case Dup_x2
with G s appl app2
show ?7thesis
by (clarsimp simp add: sup_state_Cons1)
next
case Swap
with G s appl app2
show ?thesis
by (clarsimp simp add: sup_state_Cons1)
next
case IAdd
with G s appl app2
show ?thesis
by (clarsimp simp add: sup_state_Cons1)
next
case Goto
with G s appl app2
show ?thesis by simp
next
case Ifcmpeq
with G s appl app2
show ?thesis
by (clarsimp simp add: sup_state_Cons1)
next
case Throw
with G
show ?thesis
by simp
qed
qed

lemmas [iff del] = not_Err_eq

end

4.19 The Bytecode Verifier

theory BVSpec
imports Effect
begin

This theory contains a specification of the BV. The specification describes correct typings of
method bodies; it corresponds to type checking.

definition
— The program counter will always be inside the method:



182

check_bounded :: "instr list = exception_table = bool" where

"check_bounded ins et <+—

(Vpc < length ins. Vpc’ € set (succs (ins!pc) pc). pc’ < length ins) A
(Ve € set et. fst (snd (snd e)) < length ins)"

definition
— The method type only contains declared classes:
check_types :: "jvm_prog = nat = nat = JVMType.state list = bool" where

"check_types G mxs mxr phi <— set phi C states G mxs mxr"

definition
— An instruction is welltyped if it is applicable and its effect
— is compatible with the type at all successor instructions:
wt_instr :: "[instr,jvm_prog,ty,method_type,nat,p_count,
exception_table,p_count] = bool" where
"wt_instr i G rT phi mxs max_pc et pc <—
app i G mxs rT pc et (philpc) A
vV (pc’,s’) € set (eff i G pc et (philpc)). pc’ < max_pc N G F s’ <=’ phil!pc’)"

definition
— The type at pc=0 conforms to the method calling convention:
wt_start :: "[jvm_prog,cname,ty list,nat,method_type] = bool" where

"wt_start G C pTs mxl phi <—
G + Some ([1,(0K (Class C))#((map OK pTs))@(replicate mx1l Err)) <=’ phil!0O"

definition

— A method is welltyped if the body is not empty, if execution does not

— leave the body, if the method type covers all instructions and mentions

— declared classes only, if the method calling convention is respected, and

— if all instructions are welltyped.

wt_method :: "[jvm_prog,cname,ty list,ty,nat,nat,instr list,
exception_table,method_type] = bool" where

"wt_method G C pTs rT mxs mxl ins et phi <+—

(let max_pc = length ins in

0 < max_pc A

length phi = length ins A

check_bounded ins et A

check_types G mxs (1+length pTs+mx1l) (map OK phi) A

wt_start G C pTs mxl phi A

(Vpc. pc<max_pc — wt_instr (ins!pc) G rT phi mxs max_pc et pc))"

definition
— A program is welltyped if it is wellformed and all methods are welltyped
wt_jvm_prog :: "[jvm_prog,prog_type] = bool" where

"wt_jvm_prog G phi <—
wf_prog (AG C (sig,rT, (maxs,maxl,b,et)).
wt_method G C (snd sig) rT maxs maxl b et (phi C sig)) G"

lemma check_boundedD:
"[ check_bounded ins et; pc < length ins;
(pc’,s’) € set (eff (ins!pc) G pc et s) | =
pc’ < length ins"
apply (unfold eff_def)
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apply simp

apply (unfold check_bounded_def)
apply clarify

apply (erule disjE)

apply blast

apply (erule allE, erule impE, assumption)
apply (unfold xcpt_eff_def)
apply clarsimp

apply (drule xcpt_names_in_et)
apply clarify

apply (drule bspec, assumption)
apply simp

done

lemma wt_jvm_progD:
"wt_jvm_prog G phi = (dwt. wf_prog wt G)"
by (unfold wt_jvm_prog_def, blast)

lemma wt_jvm_prog_impl_wt_instr:
"[ wt_jvm_prog G phi; is_class G C;
method (G,C) sig = Some (C,rT,maxs,maxl,ins,et); pc < length ins |
— wt_instr (ins!pc) G rT (phi C sig) maxs (length ins) et pc"
by (unfold wt_jvm_prog_def, drule method_wf_mdecl,
simp, simp, simp add: wf_mdecl_def wt_method_def)

We could leave out the check pc’ < max_pc in the definition of wt_instr in the context of
wt_method.

lemma wt_instr_def2:
"[ wt_jvm_prog G Phi; is_class G C;
method (G,C) sig = Some (C,rT,maxs,maxl,ins,et); pc < length ins;
i = ins!pc; phi = Phi C sig; max_pc = length ins |
— wt_instr i G rT phi maxs max_pc et pc =
(app i G maxs rT pc et (phil!pc) A
V (pc’,s’) € set (eff i G pc et (philpc)). G F s’ <=’ philpc’))"
apply (simp add: wt_instr_def)
apply (unfold wt_jvm_prog_def)
apply (drule method_wf_mdecl)
apply (simp, simp, simp add: wf_mdecl_def wt_method_def)
apply (auto dest: check_boundedD)
done

lemma wt_jvm_prog_impl_wt_start:
"[ wt_jvm_prog G phi; is_class G C;
method (G,C) sig = Some (C,rT,maxs,maxl,ins,et) | =
0 < (length ins) A wt_start G C (snd sig) maxl (phi C sig)"
by (unfold wt_jvm_prog_def, drule method_wf_mdecl,
simp, simp, simp add: wf_mdecl_def wt_method_def)

end

4.20 The Typing Framework for the JVM

theory Typing_Framework_JVM
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imports "../DFA/Abstract_BV" JVMType EffectMono BVSpec
begin

definition exec :: "jvm_prog = nat = ty = exception_table = instr list = JVMType.state
step_type" where

"exec G maxs rT et bs ==

err_step (size bs) (Apc. app (bs!pc) G maxs rT pc et) (Apc. eff (bs!pc) G pc et)"

definition opt_states :: "’c prog = nat = nat = (ty list X ty err list) option set"
where

"opt_states G maxs maxr = opt (|J{list n (types G) [n. n < maxs} x list maxr (err (types
@)

4.20.1 Executability of check_bounded

primrec list_all’_rec :: "(’a = nat = bool) = nat = ’a list = bool"
where
"list_all’_rec P n [] = True"

| "list_all’_rec P n (x#xs) = (P x n A list_all’_rec P (Suc n) xs)"

definition list_all’ :: "(’a = nat = bool) = ’a list = bool" where
"list_all’ P xs = list_all’_rec P 0 xs"

lemma list_all’_rec:
"list_all’_rec Pn xs = (Vp < size xs. P (xs!p) (p+n))"
apply (induct xs arbitrary: n)
apply auto
apply (case_tac p)
apply auto
done

lemma list_all’ [iff]:
"list_all’ P xs = (Vn < size xs. P (xs!n) n)"
by (unfold list_all’_def) (simp add: list_all’_rec)

lemma [code]:
"check_bounded ins et =
(list_all’ (Ai pc. list_all (Apc’. pc’ < length ins) (succs i pc)) ins A
list_all (Me. fst (snd (snd e)) < length ins) et)"
by (simp add: list_all_iff check_bounded_def)

4.20.2 Connecting JVM and Framework

lemma check_bounded_is_bounded:
"check_bounded ins et == bounded (Apc. eff (ins!pc) G pc et) (length ins)"
by (unfold bounded_def) (blast dest: check_boundedD)

lemma special_ex_swap_lemma [iff]:
"(dX. (An. X =An AN Pn) &QX) = (dn. Q(A n) N P n)"
by blast

lemmas [iff del] = not_None_eq

theorem exec_pres_type:
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"wf_prog wf_mb S —

pres_type (exec S maxs rT et bs) (size bs) (states S maxs maxr)"
apply (unfold exec_def JVM_states_unfold)

apply (rule pres_type_lift)

apply clarify

apply (case_tac s)

apply simp

apply (drule effNone)

apply simp

apply (simp add: eff_def xcpt_eff_def norm_eff_def)
apply (case_tac "bs!p")

apply clarsimp
apply (drule listE_nth_in, assumption)
apply fastforce

apply (fastforce simp add: not_None_eq)
apply (fastforce simp add: not_None_eq typeof_empty_is_type)

apply clarsimp

apply (erule disjE)

apply fastforce

apply clarsimp

apply (rule_tac x="1" in exI)
apply fastforce

apply clarsimp

apply (erule disjE)

apply (fastforce dest: field_fields fields_is_type)
apply (simp add: match_some_entry image_iff)

apply (rule_tac x=1 in exI)

apply fastforce

apply clarsimp

apply (erule disjE)

apply fastforce

apply (simp add: match_some_entry image_iff)
apply (rule_tac x=1 in exI)

apply fastforce

apply clarsimp

apply (erule disjE)

apply fastforce

apply clarsimp

apply (rule_tac x=1 in exI)
apply fastforce

defer

apply fastforce
apply fastforce

apply clarsimp



186

apply (rule_tac x="n’+2" in exI)
apply simp

apply clarsimp
apply (rule_tac x="Suc (Suc (Suc (length ST)))" in exI)
apply simp

apply clarsimp
apply (rule_tac x="Suc (Suc (Suc (Suc (length ST))))" in exI)
apply simp

apply fastforce
apply fastforce
apply fastforce
apply fastforce

apply clarsimp

apply (erule disjE)

apply fastforce

apply clarsimp

apply (rule_tac x=1 in exI)
apply fastforce

apply (erule disjE)

apply clarsimp

apply (drule method_wf_mdecl, assumption+)

apply (clarsimp simp add: wf_mdecl_def wf_mhead_def)
apply fastforce

apply clarsimp

apply (rule_tac x=1 in exI)

apply fastforce

done

lemmas [iff] = not_None_eq

lemma sup_state_opt_unfold:
"sup_state_opt G = Opt.le (Product.le (Listn.le (subtype G)) (Listn.le (Err.le (subtype

G))))"
by (simp add: sup_state_opt_def sup_state_def sup_loc_def sup_ty_opt_def)

lemma app_mono:

"app_mono (sup_state_opt G) (Apc. app (bs!pc) G maxs rT pc et) (length bs) (opt_states
G maxs maxr)"

by (unfold app_mono_def lesub_def) (blast intro: EffectMono.app_mono)

lemma list_appendI:
"la € list x A; b € list y A] = a @ b € list (x+y) A"
apply (unfold list_def)
apply (simp (no_asm))
apply blast
done
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lemma list_map [simp]:
"(map f xs € list (length xs) A) = (f ¢ set xs C A)"
apply (unfold list_def)
apply simp
done

lemma [iff]:
"(OK “ A C err B) = (A C B)"
apply (unfold err_def)
apply blast
done

lemma [intro]:
"x € A — replicate n x € list n A"
by (induct n, auto)

lemma lesubstep_type_simple:
"a <=[Product.le (=) r] b = a <|r| b"
apply (unfold lesubstep_type_def)
apply clarify
apply (simp add: set_conv_nth)
apply clarify
apply (drule le_listD, assumption)
apply (clarsimp simp add: lesub_def Product.le_def)
apply (rule exI)
apply (rule conjI)
apply (rule exI)
apply (rule conjI)
apply (rule sym)
apply assumption
apply assumption
apply assumption
done

lemma eff_mono:
"[p < length bs; s <=_(sup_state_opt G) t; app (bs!p) G maxs rT pc et t]
= eff (bs!p) G p et s <[sup_state_opt G| eff (bs!p) G p et t"
apply (unfold eff_def)
apply (rule lesubstep_type_simple)
apply (rule le_list_appendI)
apply (simp add: norm_eff_def)
apply (rule le_listI)
apply simp
apply simp
apply (simp add: lesub_def)
apply (case_tac s)
apply simp
apply (simp del: split_paired_All split_paired_Ex)
apply (elim exE conjE)
apply simp
apply (drule eff’_mono, assumption)
apply assumption
apply (simp add: xcpt_eff_def)
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apply (rule le_listI)
apply simp

apply simp

apply (simp add: lesub_def)

apply (case_tac s)

apply simp

apply simp

apply (case_tac t)

apply simp

apply (clarsimp simp add: sup_state_conv)

done

lemma order_sup_state_opt:
"ws_prog G == order (sup_state_opt G)"
by (unfold sup_state_opt_unfold) (blast dest: acyclic_subclsl order_widen)

theorem exec_mono:
"ws_prog G = bounded (exec G maxs rT et bs) (size bs) =
mono (JVMType.le G maxs maxr) (exec G maxs rT et bs) (size bs) (states G maxs maxr)"

apply (unfold exec_def JVM_le_unfold JVM_states_unfold)
apply (rule mono_lift)
apply (fold sup_state_opt_unfold opt_states_def)
apply (erule order_sup_state_opt)
apply (rule app_mono)
apply assumption
apply clarify
apply (rule eff_mono)
apply assumption+
done

theorem semilat_JVM_sl1I:
"ws_prog G —> semilat (JVMType.sl G maxs maxr)"
apply (unfold JVMType.sl_def stk_esl_def reg_sl_def)
apply (rule semilat_opt)
apply (rule err_semilat_Product_esl)
apply (rule err_semilat_upto_esl)
apply (rule err_semilat_JType_esl, assumption+)
apply (rule err_semilat_eslI)
apply (rule Listn_sl)
apply (rule err_semilat_JType_esl, assumption+)
done

lemma sl_triple_conv:
"JVMType.sl G maxs maxr ==
(states G maxs maxr, JVMType.le G maxs maxr, JVMType.sup G maxs maxr)"
by (simp (no_asm) add: states_def JVMType.le_def JVMType.sup_def)

lemma is_type_pTs:
"[ wf_prog wf_mb G; (C,S,fs,mdecls) € set G; ((mn,pTs),rT,code) € set mdecls |
= set pTs C types G"
proof
assume "wf_prog wf_mb G"
"(C,S,fs,mdecls) € set G"
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"((mn,pTs),rT,code) € set mdecls"
hence "wf_mdecl wf_mb G C ((mn,pTs),rT,code)"
by (rule wf_prog_wf_mdecl)
hence "Vt € set pTs. is_type G t"
by (unfold wf_mdecl_def wf_mhead_def) auto
moreover
fix t assume "t € set pTs"
ultimately
have "is_type G t" by blast
thus "t € types G" ..
qed

lemma jvm_prog lift:
assumes wf:
"wf_prog (AG C bd. P G C bd) G"

assumes rule:
"Awf_mb C mn pTs C rT maxs maxl b et bd.
wf_prog wf_mb G —
method (G,C) (mn,pTs) = Some (C,rT,maxs,maxl,b,et) —
is_class G C =
set pTs C types G —
bd = ((mn,pTs),rT,maxs,maxl,b,et) —>
PGCbd =
@ G C bd"

shows

"wf_prog (AG C bd. @ G C bd) G"

using wf

apply (unfold wf_prog_def wf_cdecl_def)

apply clarsimp

apply (drule bspec, assumption)

apply (unfold wf_cdecl_mdecl_def)

apply clarsimp

apply (drule bspec, assumption)

apply (frule methd [OF wf [THEN wf_prog ws_progll], assumption+)
apply (frule is_type_pTs [OF wf], assumption+)
apply clarify

apply (drule rule [OF wf], assumption+)

apply (rule HOL.refl)

apply assumption+

done

end

4.21 LBV for the JVM
theory LBVJVM

imports Typing_Framework_JVM
begin

type_synonym prog cert = "cname = sig = JVMType.state list"

189
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definition check_cert :: "jvm_prog = nat = nat = nat = JVMType.state list =- bool"
where
"check_cert G mxs mxr n cert = check_types G mxs mxr cert A length cert = n+l A

(Vi<n. cert!i # Err) A cert!n = OK None"

definition 1bvjvm :: "jvm_prog = nat = nat = ty = exception_table =
JVMType.state list = instr list = JVMType.state = JVMType.state" where
"lbvjvm G maxs maxr rT et cert bs =

wtl_inst_list bs cert (JVMType.sup G maxs maxr) (JVMType.le G maxs maxr) Err (OK None)
(exec G maxs rT et bs) 0"

definition wt_1bv :: "jvm_prog = cname = ty list = ty = nat = nat =
exception_table = JVMType.state list = instr list = bool" where
"wt_1bv G C pTs rT mxs mxl et cert ins =
check_bounded ins et A
check_cert G mxs (l+size pTs+mxl) (length ins) cert A
0 < size ins A
(let start = Some ([],(0K (Class C))#((map OK pTs))@(replicate mxl Err));

result = lbvjvm G mxs (1+size pTs+mxl) rT et cert ins (OK start)
in result # Err)"

definition wt_jvm_prog lbv :: "jvm_prog = prog_cert = bool" where
"wt_jvm_prog_lbv G cert =

wf_prog (AG C (sig,rT, (maxs,maxl,b,et)). wt_1lbv G C (snd sig) rT maxs maxl et (cert
C sig) b) G"

definition mk_cert :: "jvm_prog = nat = ty = exception_table = instr list
= method_type = JVMType.state list" where
"mk_cert G maxs rT et bs phi = make_cert (exec G maxs rT et bs) (map OK phi) (OK None)"

definition prg cert :: "jvm_prog = prog_type = prog_cert" where

"prg_cert G phi C sig = let (C,rT, (maxs,maxl,ins,et)) = the (method (G,C) sig) in
mk_cert G maxs rT et ins (phi C sig)"

lemma wt_method_def2:
fixes pTs and mxl and G and mxs and rT and et and bs and phi
defines [simp]: "mxr 1 + length pTs + mx1l"
defines [simp]: "r sup_state_opt G"
defines [simp]: "appO Apc. app (bs!pc) G mxs rT pc et"
defines [simp]: "stepO Apc. eff (bs!pc) G pc et"

shows

"wt_method G C pTs rT mxs mxl bs et phi =

(bs # [1 A

length phi = length bs A

check_bounded bs et A

check_types G mxs mxr (map OK phi) A

wt_start G C pTs mxl phi A

wt_app_eff r app0O stepO phi)"
by (auto simp add: wt_method_def wt_app_eff_def wt_instr_def lesub_def

dest: check_bounded_is_bounded boundedD)



Theory LBVJVM 191

lemma check_certD:
"check_cert G mxs mxr n cert —> cert_ok cert n Err (0K None) (states G mxs mxr)"
apply (unfold cert_ok_def check_cert_def check_types_def)
apply (auto simp add: list_all_iff)
done

lemma wt_lbv_wt_step:

assumes wf: "wf_prog wf_mb G"
assumes 1bv: "wt_1bv G C pTs rT mxs mxl et cert ins"
assumes C: "is_class G C"

assumes pTs: "set pTs C types G"
defines [simp]: "mxr = 1+length pTs+mxl1"

shows "dts € list (size ins) (states G mxs mxr).
wt_step (JVMType.le G mxs mxr) Err (exec G mxs rT et ins) ts
A OK (Some ([]1,(0K (Class C))#((map OK pTs))@(replicate mxl Err))) <=_(JVMType.le
G mxs mxr) ts!0"

proof -
let ?step = "exec G mxs rT et ins"
let 7r = "JVMType.le G mxs mxr"
let 7f = "JVMType.sup G mxs mxr"
let 74 = "states G mxs mxr"

have "semilat (JVMType.sl G mxs mxr)"
by (rule semilat_JVM_slI, rule wf_prog_ws_prog, rule wf)
hence "semilat (74, ?r, ?f)" by (unfold sl_triple_conv)

moreover
have "top ?r Err" by (simp add: JVM_le_unfold)
moreover

have "Err € 7A" by (simp add: JVM_states_unfold)
moreover

have "bottom ?r (0K None)"
by (simp add: JVM_le_unfold bottom_def)
moreover
have "OK None € 7A" by (simp add: JVM_states_unfold)
moreover
from Ibv
have "bounded 7step (length ins)"
by (clarsimp simp add: wt_lbv_def exec_def)
(intro bounded_lift check_bounded_is_bounded)
moreover
from Ibv
have "cert_ok cert (length ins) Err (OK None) 7A"
by (unfold wt_lbv_def) (auto dest: check_certD)
moreover
from wf have "pres_type ?step (length ins) 7A" by (rule exec_pres_type)
moreover
let ?start = "OK (Some ([], (0K (Class C))#(map OK pTs)@(replicate mxl Err)))"
from Ibv
have "wtl_inst_list ins cert ?f ?r Err (OK None) 7step 0 ?7start # Err"
by (simp add: wt_lbv_def lbvjvm_def)
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moreover
from C pTs have "?start € 74"
by (unfold JVM_states_unfold) (auto intro: list_appendI, force)

moreover

from 1bv have "0 < length ins" by (simp add: wt_lbv_def)

ultimately

show ?thesis by (rule 1bvs.wtl_sound_strong [OF lbvs.intro, OF lbv.intro lbvs_axioms.intro,
OF Semilat.intro 1bv_axioms.intro])
qed

lemma wt_1bv_wt_method:

assumes wf: "wf_prog wf_mb G"
assumes 1bv: "wt_1bv G C pTs rT mxs mxl et cert ins"
assumes C: "is_class G C"

assumes pTs: "set pTs C types G"

shows "Jphi. wt_method G C pTs rT mxs mxl ins et phi"

proof -
let ?mxr = "1 + length pTs + mx1"
let ?step = "exec G mxs rT et ins"
let 7r = "JVMType.le G mxs ?mxr"
let 7f = "JVMType.sup G mxs 7mxr"
let 74 = "states G mxs 7mxr"

let ?start

"OK (Some ([],(0K (Class C))#(map OK pTs)@(replicate mxl Err)))"

from 1bv have 1: "ins # []" by (simp add: wt_lbv_def)
moreover
from wf 1bv C pTs
obtain phi where

list: "phi € list (length ins) 7A" and

step: '"wt_step ?r Err 7step phi" and

start: "7start <=_7r phi!0"

by (blast dest: wt_lbv_wt_step)
from list have [simp]: "length phi = length ins" by simp
have "length (map ok_val phi) = length ins" by simp
moreover
from 1 have 0: "0 < length phi" by simp
with step obtain phi0 where "phi!O = OK phiO"

by (unfold wt_step_def) blast
with start 0
have "wt_start G C pTs mxl (map ok_val phi)"

by (simp add: wt_start_def JVM_le_Err_conv lesub_def)
moreover
from 1bv have chk_bounded: "check_bounded ins et"

by (simp add: wt_1lbv_def)
moreover {

from 1list

have "check_types G mxs ?mxr phi"

by (simp add: check_types_def)
also from step
have [symmetric]: "map OK (map ok_val phi) = phi"
by (auto intro!: nth_equalityl simp add: wt_step_def)
finally have "check_types G mxs ?mxr (map OK (map ok_val phi))" .
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moreover {
let 7app = "Apc. app (ins!pc) G mxs rT pc et"
let ?eff = "Apc. eff (ins!pc) G pc et"

from chk_bounded

have "bounded (err_step (length ins) 7app 7eff) (length ins)"
by (blast dest: check_bounded_is_bounded boundedD intro: bounded_err_stepI)

moreover

from step

have "wt_err_step (sup_state_opt G) 7step phi"
by (simp add: wt_err_step_def JVM_le_Err_conv)

ultimately

have "wt_app_eff (sup_state_opt G) 7app 7eff (map ok_val phi)"
by (auto intro: wt_err_imp_wt_app_eff simp add: exec_def)

}

ultimately
have "wt_method G C pTs rT mxs mxl ins et (map ok_val phi)"
by - (rule wt_method_def2 [THEN iffD2], simp)
thus ?thesis ..
qed

lemma wt_method_wt_l1bv:

assumes wf: "wf_prog wf_mb G"
assumes wt: "wt_method G C pTs rT mxs mxl ins et phi"
assumes C: "is_class G C"

assumes pTs: "set pTs C types G"
defines [simp]: "cert = mk_cert G mxs rT et ins phi"

shows "wt_1bv G C pTs rT mxs mxl et cert ins"

proof -
let ?mxr = "1 + length pTs + mx1"
let ?step = "exec G mxs rT et ins"
let ?app = "Apc. app (ins!pc) G mxs rT pc et"
let 7eff = "Apc. eff (ins!pc) G pc et”
let 7r = "JVMType.le G mxs ?mxr"
let 7f = "JVMType.sup G mxs 7mxr"
let 74 = "states G mxs 7mxr"
let ?phi = "map OK phi"

let ?cert = "make_cert 7step 7phi (OK None)"

from wt have

0: "0 < length ins" and

length: "length ins = length 7phi" and

ck_bounded: "check_bounded ins et" and

ck_types: "check_types G mxs 7mxr 7phi" and

wt_start: "wt_start G C pTs mxl phi" and

app_eff: "wt_app_eff (sup_state_opt G) 7app 7eff phi"

by (simp_all add: wt_method_def2)

have "semilat (JVMType.sl G mxs 7mxr)"
by (rule semilat_JVM_slI) (rule wf_prog ws_prog [OF wf])
hence "semilat (7A, ?r, ?f)" by (unfold sl_triple_conv)
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moreover
have "top ?r Err" by (simp add: JVM_le_unfold)
moreover

have "Err € 7A" by (simp add: JVM_states_unfold)
moreover

have "bottom ?r (OK None)"
by (simp add: JVM_le_unfold bottom_def)
moreover
have "OK None € 7A" by (simp add: JVM_states_unfold)
moreover
from ck_bounded
have bounded: "bounded ?step (length ins)"
by (clarsimp simp add: exec_def)
(intro bounded_lift check_bounded_is_bounded)
with wf
have "mono ?r ?step (length ins) 7A"
by (rule wf_prog_ws_prog [THEN exec_mono])
hence "mono ?r ?step (length 7phi) 7A" by (simp add: length)
moreover
from wf have "pres_type 7step (length ins) 7A" by (rule exec_pres_type)
hence "pres_type 7step (length 7phi) 7A" by (simp add: length)
moreover
from ck_types
have "set ?phi C ?7A" by (simp add: check_types_def)
hence "Vpc. pc < length 7phi —> ?philpc € 7A A ?philpc # Err" by auto
moreover
from bounded
have "bounded (exec G mxs rT et ins) (length ?phi)" by (simp add: length)
moreover
have "OK None # Err" by simp
moreover
from bounded length app_eff
have "wt_err_step (sup_state_opt G) 7step 7phi"
by (auto intro: wt_app_eff_ imp_ wt_err simp add: exec_def)
hence "wt_step ?r Err 7step 7phi"
by (simp add: wt_err_step_def JVM_le_Err_conv)
moreover
let 7?start = "OK (Some ([], (0K (Class C))#(map OK pTs)@(replicate mx1l Err)))"
from 0 length have "O < length phi" by auto
hence "?phi!0 = OK (phi!0)" by simp
with wt_start have "?7start <=_7r 7phi!0"
by (clarsimp simp add: wt_start_def lesub_def JVM_le_Err_conv)
moreover
from C pTs have "7start € 7A"
by (unfold JVM_states_unfold) (auto intro: list_appendI, force)
moreover
have "?start # Err" by simp
moreover
note length
ultimately
have "wtl_inst_list ins 7cert ?f ?r Err (OK None) 7step O ?start # Err"
by (rule lbvc.wtl_complete [OF lbvc.intro, OF lbv.intro lbvc_axioms.intro, OF Semilat.intre
1bv_axioms.intro])
moreover
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from 0 length have "phi # []" by auto
moreover
from ck_types
have "check_types G mxs 7mxr 7cert"
by (auto simp add: make_cert_def check_types_def JVM_states_unfold)
moreover
note ck_bounded 0 length
ultimately
show ?thesis
by (simp add: wt_1lbv_def lbvjvm_def mk_cert_def
check_cert_def make_cert_def nth_append)
qed

theorem jvm_lbv_correct:
"wt_jvm_prog_lbv G Cert —> JPhi. wt_jvm_prog G Phi"
proof -
let ?Phi = "AC sig. let (C,rT, (maxs,maxl,ins,et)) = the (method (G,C) sig) in
SOME phi. wt_method G C (snd sig) rT maxs maxl ins et phi"

assume "wt_jvm_prog_lbv G Cert"

hence "wt_jvm_prog G ?Phi"
apply (unfold wt_jvm_prog_def wt_jvm_prog_lbv_def)
apply (erule jvm_prog_lift)
apply (auto dest: wt_lbv_wt_method intro: somel)
done

thus ?7thesis by blast

qed

theorem jvm_lbv_complete:
"wt_jvm_prog G Phi = wt_jvm_prog_lbv G (prg_cert G Phi)"
apply (unfold wt_jvm_prog_def wt_jvm_prog_lbv_def)
apply (erule jvm_prog lift)
apply (auto simp add: prg_cert_def intro: wt_method_wt_1bv)
done

end

4.22 BV Type Safety Invariant

theory Correct
imports BVSpec "../JVM/JVMExec"
begin

definition approx_val :: "[jvm_prog,aheap,val,ty err] = bool" where
"approx_val G h v any == case any of Err = True | OK T = G,hkv::=<T"

definition approx_loc :: "[jvm_prog,aheap,val list,locvars_type] = bool" where
"approx_loc G hp loc LT == list_all2 (approx_val G hp) loc LT"

definition approx_stk :: "[jvm_prog,aheap,opstack,opstack_type]l = bool" where
"approx_stk G hp stk ST == approx_loc G hp stk (map OK ST)"
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definition correct_frame :: "[jvm_prog,aheap,state_type,nat,bytecode] = frame =- bool"
where
"correct_frame G hp == A(ST,LT) maxl ins (stk,loc,C,sig,pc).
approx_stk G hp stk ST A approx_loc G hp loc LT A
pc < length ins A length loc=length(snd sig)+maxl+1"

primrec correct_frames :: "[jvm_prog,aheap,prog_type,ty,sig,frame list] = bool" where
"correct_frames G hp phi rTO sig0 [] = True"
| "correct_frames G hp phi rTO sig0 (f#frs) =
(let (stk,loc,C,sig,pc) = f in
(3ST LT rT maxs maxl ins et.
phi C sig ! pc = Some (ST,LT) A is_class G C A
method (G,C) sig = Some(C,rT, (maxs,maxl,ins,et)) A
(3C° mn pTs. ins!pc = (Invoke C’ mn pTs) A
(mn,pTs) = sig0 A
(3apTs D ST’ LT’.
(phi C sig)!pc = Some ((rev apTs) @ (Class D) # ST’, LT’) A
length apTs = length pTs A
(3D’ rT’ maxs’ maxl’ ins’ et’.
method (G,D) sig0 = Some(D’,rT’, (maxs’,max1l’,ins’,et’)) A
G F rTO <X rT’) A
correct_frame G hp (ST, LT) maxl ins f A
correct_frames G hp phi rT sig frs))))"

definition correct_state :: "[jvm_prog,prog_type,jvm_state] = bool"
(<_,_ FJvwmM _ /> [51,51] 50) where
"correct_state G phi == A(xp,hp,frs).
case xp of
None = (case frs of
[] = True
| (f#fs) = GFh hp./ A preallocated hp A
(let (stk,loc,C,sig,pc) = f
in
JrT maxs maxl ins et s.
is_class G C A
method (G,C) sig = Some(C,rT, (maxs,maxl,ins,et)) A
phi C sig ! pc = Some s A
correct_frame G hp s maxl ins f A
correct_frames G hp phi rT sig fs))
| Some x = frs = []"

lemma sup_ty_opt_OK:
"(GF X<=0 (0K T’)) = dT. X=0KTANGHEFTXT)"
by (cases X) auto

4.22.1 approx-val

lemma approx_val_Err [simp,intro!]:
"approx_val G hp x Err"
by (simp add: approx_val_def)

lemma approx_val 0K [iff]:
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"approx_val G hp x (0K T) = (G,hp F x :: =2 )"
by (simp add: approx_val_def)

lemma approx_val_Null [simp,intro!]:
"approx_val G hp Null (OK (RefT x))"
by (auto simp add: approx_val_def)

lemma approx_val_sup_heap:
"[ approx_val G hp v T; hp <[ hp’ | = approx_val G hp’ v T"
by (cases T) (blast intro: conf_hext)+

lemma approx_val_heap_update:
"[ hp a = Some obj’; G,hpk v::=<T; obj_ty obj = obj_ty obj’]
= G,hp(a—obj)F v::=<T"
by (cases v) (auto simp add: obj_ty_def conf_def)

lemma approx_val_widen:
"[ approx_val G hp v T; G + T <=o T’; wf_prog wt G |
— approx_val G hp v T’"
by (cases T’) (auto simp add: sup_ty_opt_OK intro: conf_widen)

4.22.2 approx-loc

lemma approx_loc_Nil [simp,intro!]:
"approx_loc G hp [] []"
by (simp add: approx_loc_def)

lemma approx_loc_Cons [iff]:

"approx_loc G hp (1#ls) (L#LT) =

(approx_val G hp 1 L A approx_loc G hp 1s LT)"
by (simp add: approx_loc_def)

lemma approx_loc_nth:
"[ approx_loc G hp loc LT; n < length LT |
—> approx_val G hp (loc!n) (LT!n)"
by (simp add: approx_loc_def list_all2_conv_all_nth)

lemma approx_loc_imp_approx_val_sup:
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"lapprox_loc G hp loc LT; n < length LT; LT ! n = 0K T; G + T X T’; wf_prog wt G]

= G,hp F (loc!n) ::=X T’"

apply (drule approx_loc_nth, assumption)
apply simp

apply (erule conf_widen, assumption+)
done

lemma approx_loc_conv_all_nth:
"approx_loc G hp loc LT =

(length loc = length LT A (Vn < length loc. approx_val G hp (loc!n) (LT!n)))"

by (simp add: approx_loc_def list_all2_ conv_all_nth)

lemma approx_loc_sup_heap:
"[ approx_loc G hp loc LT; hp </ hp’ ]
— approx_loc G hp’ loc LT"
apply (clarsimp simp add: approx_loc_conv_all_nth)
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apply (blast intro: approx_val_sup_heap)
done

lemma approx_loc_widen:
"[ approx_loc G hp loc LT; G F LT <=1 LT’; wf_prog wt G ]
= approx_loc G hp loc LT’"

apply (unfold Listn.le_def lesub_def sup_loc_def)

apply (simp (no_asm_use) only: list_all2_conv_all_nth approx_loc_conv_all_nth)

apply (simp (no_asm_simp))

apply clarify

apply (erule allE, erule impE)

apply simp

apply (erule approx_val_widen)

apply simp

apply assumption

done

lemma loc_widen_Err [dest]:
"AXT. G b replicate n Err <=1 XT —> XT = replicate n Err"
by (induct n) auto

lemma approx_loc_Err [iff]:
"approx_loc G hp (replicate n v) (replicate n Err)"
by (induct n) auto

lemma approx_loc_subst:
"[ approx_loc G hp loc LT; approx_val G hp x X |
= approx_loc G hp (loc[idx:=x]) (LT[idx:=X])"
apply (unfold approx_loc_def list_all2 iff)
apply (auto dest: subsetD [OF set_update_subset_insert] simp add: zip_update)
done

lemma approx_loc_append:
"length 11=length L1 —
approx_loc G hp (11@12) (L1@L2) =
(approx_loc G hp 11 L1 A approx_loc G hp 12 L2)"
apply (unfold approx_loc_def list_all2_iff)
apply (simp cong: conj_cong)
apply blast
done

4.22.3 approx-stk

lemma approx_stk_rev_lem:
"approx_stk G hp (rev s) (rev t) = approx_stk G hp s t"
apply (unfold approx_stk_def approx_loc_def)
apply (simp add: rev_map [symmetric])
done

lemma approx_stk_rev:
"approx_stk G hp (rev s) t = approx_stk G hp s (rev t)"
by (auto intro: subst [OF approx_stk_rev_lem])

lemma approx_stk_sup_heap:
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"[ approx_stk G hp stk ST; hp <| hp’ | = approx_stk G hp’ stk ST"
by (auto intro: approx_loc_sup_heap simp add: approx_stk_def)

lemma approx_stk_widen:
"[ approx_stk G hp stk ST; G F map OK ST <=1 map OK ST’; wf_prog wt G |
— approx_stk G hp stk ST’"
by (auto elim: approx_loc_widen simp add: approx_stk_def)

lemma approx_stk_Nil [iff]:
"approx_stk G hp [] [1"
by (simp add: approx_stk_def)

lemma approx_stk_Cons [iff]:
"approx_stk G hp (x#stk) (S#ST) =
(approx_val G hp x (0K S) A approx_stk G hp stk ST)"
by (simp add: approx_stk_def)

lemma approx_stk_Cons_lemma [iff]:
"approx_stk G hp stk (S#ST’) =
(3s stk’. stk = s#stk’ N approx_val G hp s (0K S) A approx_stk G hp stk’ ST’)"
by (simp add: list_all2_Cons2 approx_stk_def approx_loc_def)

lemma approx_stk_append:
"approx_stk G hp stk (S0S’) —
(3s stk’. stk = s@stk’ A length s = length S A length stk’ = length S’ A
approx_stk G hp s S A approx_stk G hp stk’ S’)"
by (simp add: list_all2_ append2 approx_stk_def approx_loc_def)

lemma approx_stk_all_widen:
"[ approx_stk G hp stk ST; V (x, y) € set (zip ST ST’). G F x =X y; length ST = length
ST’; wf_prog wt G |
— approx_stk G hp stk ST’"
apply (unfold approx_stk_def)
apply (clarsimp simp add: approx_loc_conv_all_nth all_set_conv_all_nth)
apply (erule allE, erule impE, assumption)
apply (erule allE, erule impE, assumption)
apply (erule conf_widen, assumption+)
done

4.22.4 oconf

lemma oconf_field_update:
"[map_of (fields (G, oT)) FD = Some T; G,hptv::=<T; G,hpt (oT,fs)/ |
= G,hpt (0T, fs(FD~v))/"
by (simp add: oconf_def lconf_def)

lemma oconf_newref:
"[hp oref = None; G,hp + obj +/; G,hp F obj’ /] = G,hp(orefsobj’) F obj /"
apply (unfold oconf_def lconf_def)
apply simp
apply (blast intro: conf_hext hext_new)
done

lemma oconf_heap_update:
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"[ hp a = Some obj’; obj_ty obj’ = obj_ty obj’’; G,hptobj/ ]
= G,hp(arrobj’’)Fobj+/"

apply (unfold oconf_def lconf_def)

apply (fastforce intro: approx_val_heap_update)

done

4.22.5 hconf

lemma hconf_newref:
"[ hp oref = None; Gth hp./; G,hptobj+/ ] = GFh hp(oref—sobj)\/"
apply (simp add: hconf_def)
apply (fast intro: oconf_newref)
done

lemma hconf_field_update:
"[ map_of (fields (G, oT)) X = Some T; hp a = Some(oT,fs);
G,hptv::=<T; G-h hp+/ ]
= Gkh hp(a — (oT, fs(X—v)))/"
apply (simp add: hconf_def)
apply (fastforce intro: oconf_heap_update oconf_field_update
simp add: obj_ty_def)
done

4.22.6 preallocated

lemma preallocated_field_update:
"[ map_of (fields (G, oT)) X = Some T; hp a = Some(oT,fs);
Gkh hp./; preallocated hp |
= preallocated (hp(a — (oT, fs(X—v))))"
apply (unfold preallocated_def)
apply (rule alll)
apply (erule_tac x=x in allE)
apply simp
apply (rule ccontr)
apply (unfold hconf_def)
apply (erule allE, erule allE, erule impE, assumption)
apply (unfold oconf_def lconf_def)
apply (simp del: split_paired_All)
done

lemma
assumes none: "hp oref = None" and alloc: "preallocated hp"
shows preallocated_newref: "preallocated (hp(oref—obj))"
proof (cases oref)
case (XcptRef x)
with none alloc have False by (auto elim: preallocatedE [of _ x])
thus ?thesis ..
next
case (Loc 1)
with alloc show 7thesis by (simp add: preallocated_def)
qed
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4.22.7 correct-frames

lemmas [simp del] = fun_upd_apply

lemma correct_frames_field_update [rule_format]:
"YrT C sig.
correct_frames G hp phi rT sig frs —
hp a = Some (C,fs) —
map_of (fields (G, C)) fl1 = Some fd —
G,hptv::=<fd
— correct_frames G (hp(a — (C, fs(fl~v)))) phi rT sig frs"

apply (induct frs)

apply simp

apply clarify

apply (simp (no_asm_use))

apply clarify

apply (unfold correct_frame_def)

apply (simp (no_asm_use))

apply clarify

apply (intro exI conjI)

apply assumption+

apply (erule approx_stk_sup_heap)
apply (erule hext_upd_obj)
apply (erule approx_loc_sup_heap)
apply (erule hext_upd_obj)

apply assumption+

apply blast

done

lemma correct_frames_newref [rule_format]:
"VrT C sig.
hp x = None —
correct_frames G hp phi rT sig frs —
correct_frames G (hp(x +— obj)) phi rT sig frs"
apply (induct frs)
apply simp
apply clarify
apply (simp (no_asm_use))
apply clarify
apply (unfold correct_frame_def)
apply (simp (no_asm_use))
apply clarify
apply (intro exI conjI)
apply assumption+
apply (erule approx_stk_sup_heap)
apply (erule hext_new)
apply (erule approx_loc_sup_heap)
apply (erule hext_new)
apply assumption+
apply blast
done

end
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4.23 BV Type Safety Proof

theory BVSpecTypeSafe
imports Correct
begin

This theory contains proof that the specification of the bytecode verifier only admits type safe
programs.

4.23.1 Preliminaries

Simp and intro setup for the type safety proof:

lemmas defsl = sup_state_conv correct_state_def correct_frame_def
wt_instr_def eff_def norm_eff_ def

lemmas widen_rules[intro] = approx_val_widen approx_loc_widen approx_stk_widen

lemmas [simp del] = split_paired_All

If we have a welltyped program and a conforming state, we can directly infer that the current
instruction is well typed:

lemma wt_jvm_prog_impl_wt_instr_cor:
"[ wt_jvm_prog G phi; method (G,C) sig = Some (C,rT,maxs,maxl,ins,et);
G,phi FJVM (None, hp, (stk,loc,C,sig,pc)#frs)y/ |
= wt_instr (ins!pc) G rT (phi C sig) maxs (length ins) et pc"
apply (unfold correct_state_def Let_def correct_frame_def)
apply simp
apply (blast intro: wt_jvm_prog_impl_wt_instr)
done

4.23.2 Exception Handling

Exceptions don’t touch anything except the stack:

lemma exec_instr_ xcpt:
"(fst (exec_instr i G hp stk vars Cl sig pc frs) = Some xcp)
= (dstk’. exec_instr i G hp stk vars Cl sig pc frs =
(Some xcp, hp, (stk’, vars, Cl, sig, pc)#frs))"
by (cases i, auto simp add: split_beta split: if_split_asm)

Relates match_any from the Bytecode Verifier with match_exception_table from the opera-
tional semantics:

lemma in_match_any:

"match_exception_table G xcpt pc et = Some pc’ —>

3C. C € set (match_any G pc et) A G - xcpt XC C A

match_exception_table G C pc et = Some pc’"

(is "PROP 7P et" is "7match et =—> ?match_any et")
proof (induct et)

show "PROP 7P []"

by simp

fix e es
assume IH: "PROP 7P es"
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assume match: "7match (e#es)"

obtain start_pc end_pc handler_pc catch_type where
e [simp]: "e = (start_pc, end_pc, handler_pc, catch_type)"
by (cases e)

from IH match
show "7match_any (e#es)"
proof (cases "match_exception_entry G xcpt pc e')
case False
with match
have "match_exception_table G xcpt pc es = Some pc’" by simp
with IH
obtain C where
set: "C € set (match_any G pc es)" and

C: "G F xcpt <XC C" and
m: "match_exception_table G C pc es = Some pc’" by blast
from set
have "C € set (match_any G pc (e#es))" by simp
moreover
from False
have "— match_exception_entry G C pc e"

by (rule contrapos_nn) (use C in <auto simp add: match_exception_entry_def>)
with m
have "match_exception_table G C pc (e#es) = Some pc’" by simp
moreover note C
ultimately
show 7?thesis by blast
next
case True with match
have "match_exception_entry G catch_type pc e"
by (simp add: match_exception_entry_def)
moreover
from True match
obtain
"start_pc < pc'
"pc < end_pc"
"G + xcpt =<C catch_type"
"handler_pc = pc’"
by (simp add: match_exception_entry_def)
ultimately
show 7thesis by auto
qged
qed

lemma match_et_imp_match:
"match_exception_table G (Xcpt X) pc et = Some handler
— match G X pc et = [Xcpt X]"
apply (simp add: match_some_entry)
apply (induct et)
apply (auto split: if_split_asm)
done
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We can prove separately that the recursive search for exception handlers (find_handler) in
the frame stack results in a conforming state (if there was no matching exception handler in
the current frame). We require that the exception is a valid heap address, and that the state
before the exception occured conforms.

lemma uncaught_xcpt_correct:

"Af. [ wt_jvm_prog G phi; xcp = Addr adr; hp adr = Some T;

G,phi HJVM (None, hp, f#frs)y/ |

— G,phi FJVM (find_handler G (Some xcp) hp frs)./"

(is "Af. [ ?wt; ?adr; 7hp; ?correct (None, hp, f#frs) | — ?correct (?find frs)")
proof (induct frs)

— the base case is trivial, as it should be

show "7correct (?find [])" by (simp add: correct_state_def)

— we will need both forms wt_jvm_prog and wf_prog later
assume wt: 7wt
then obtain mb where wf: "wf_prog mb G" by (simp add: wt_jvm_prog_def)

— these two don’t change in the induction:
assume adr: 7adr
assume hp: ?hp

— the assumption for the cons case:
fix £ £’ frs’
assume cr: "?correct (None, hp, f#f’#frs’)"

— the induction hypothesis as produced by Isabelle, immediatly simplified with the fixed assumptions
above

assume "Af. [ ?wt; ?adr; ?hp; ?correct (None, hp, f#frs’) | = ?correct (?find frs’)"

with wt adr hp
have IH: "Af. ?correct (None, hp, f#frs’) —> ?correct (7?find frs’)" by blast

from cr
have cr’: "?correct (None, hp, f’#frs’)" by (auto simp add: correct_state_def)

obtain stk loc C sig pc where f’ [simp]: "f’ = (stk,loc,C,sig,pc)"
by (cases f’)

from cr

obtain rT maxs maxl ins et where
meth: "method (G,C) sig = Some (C,rT,maxs,maxl,ins,et)"
by (simp add: correct_state_def, blast)

hence [simp]: "ex_table_of (snd (snd (the (method (G, C) sig)))) = et"
by simp

show "?correct (?find (f’#frs’))"
proof (cases "match_exception_table G (cname_of hp xcp) pc et")
case None
with cr’ IH
show ?thesis by simp
next
fix handler_pc
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assume match: "match_exception_table G (cname_of hp xcp) pc et = Some handler_pc"
(is "?match (cname_of hp xcp) = _")

from wt meth cr’ [simplified]
have wti: "wt_instr (ins!pc) G rT (phi C sig) maxs (length ins) et pc"
by (rule wt_jvm_prog_impl_wt_instr_cor)

from cr meth

obtain C’ mn pts ST LT where
ins: "ins!pc = Invoke C’ mn pts" (is "_ = 7i") and
phi: "phi C sig ! pc = Some (ST, LT)"
by (simp add: correct_state_def) blast

from match

obtain D where
in_any: "D € set (match_any G pc et)" and
D: "G + cname_of hp xcp =<C D" and
match’: "?match D = Some handler_pc"
by (blast dest: in_match_any)

from ins wti phi have
"V Deset (match_any G pc et). the (?Pmatch D) < length ins A
G + Some ([Class D], LT) <=’ phi C sig!the (?match D)"
by (simp add: wt_instr_def eff_def xcpt_eff_def)

with in_any match’ obtain
pc: "handler_pc < length ins"
"G F Some ([Class D], LT) <=’ phi C sig ! handler_pc"
by auto

then obtain ST’ LT’ where
phi’: "phi C sig ! handler_pc = Some (ST’,LT’)" and
less: "G + ([Class D], LT) <=s (ST’,LT’)"
by auto

from cr’ phi meth f’
have "correct_frame G hp (ST, LT) maxl ins f’"
by (unfold correct_state_def) auto
then obtain
len: "length loc = 1+length (snd sig)+maxl" and
loc: "approx_loc G hp loc LT"
by (unfold correct_frame_def) auto

let ?f = "([xcpl, loc, C, sig, handler_pc)"
have "correct_frame G hp (ST’, LT’) maxl ins 7f"
proof -
from wf less loc
have "approx_loc G hp loc LT’" by (simp add: sup_state_conv) blast
moreover
from D adr hp
have "G,hp F xcp ::= Class D" by (simp add: conf_def obj_ty_def)
with wf less loc
have "approx_stk G hp [xcp] ST’"
by (auto simp add: sup_state_conv approx_stk_def approx_val_def
elim: conf_widen split: err.split)
moreover
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note len pc

ultimately

show ?thesis by (simp add: correct_frame_def)
qed

with cr’ match phi’ meth
show ?thesis by (unfold correct_state_def) auto
qed
qed

declare raise_if_def [simp]

The requirement of lemma uncaught_xcpt_correct (that the exception is a valid reference on
the heap) is always met for welltyped instructions and conformant states:

lemma exec_instr_xcpt_hp:
"[ fst (exec_instr (ins!pc) G hp stk vars Cl sig pc frs) = Some xcp;
wt_instr (ins!pc) G rT (phi C sig) maxs (length ins) et pc;
G,phi FJVM (Nome, hp, (stk,loc,C,sig,pc)#frs)/ |
= dadr T. xcp = Addr adr A hp adr = Some T"
(is "[ ?xcpt; ?wt; Pcorrect | = ?thesis")
proof -
note [simp] = split_beta raise_system_xcpt_def
note [split] = if _split_asm option.split_asm

assume wt: 7wt 7correct
hence pre: "preallocated hp" by (simp add: correct_state_def)

assume xcpt: 7xcpt with pre show ?thesis
proof (cases "ins!pc")
case New with xcpt pre
show ?thesis by (auto dest: new_Addr_OutOfMemory dest!: preallocatedD)
next
case Throw with xcpt wt
show ?thesis
by (auto simp add: wt_instr_def correct_state_def correct_frame_def
dest: non_npD dest!: preallocatedD)
qed (auto dest!: preallocatedD)
qed

lemma cname_of_xcp [intro]:
"[preallocated hp; xcp = Addr (XcptRef x)] —> cname_of hp xcp = Xcpt x"
by (auto elim: preallocatedE [of hp x])

Finally we can state that, whenever an exception occurs, the resulting next state always
conforms:

lemma xcpt_correct:

"[ wt_jvm_prog G phi;
method (G,C) sig = Some (C,rT,maxs,maxl,ins,et);
wt_instr (ins!pc) G rT (phi C sig) maxs (length ins) et pc;
fst (exec_instr (ins!pc) G hp stk loc C sig pc frs) = Some xcp;
Some state’ = exec (G, None, hp, (stk,loc,C,sig,pc)#frs);
G,phi FJVM (None, hp, (stk,loc,C,sig,pc)#frs)y/ |

= G,phi HJVM state’ /"
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proof -
assume wtp: "wt_jvm_prog G phi"
assume meth: "method (G,C) sig = Some (C,rT,maxs,maxl,ins,et)"
assume wt: "wt_instr (ins!pc) G rT (phi C sig) maxs (length ins) et pc"
assume xp: "fst (exec_instr (ins!pc) G hp stk loc C sig pc frs) = Some xcp"
assume s’: "Some state’ = exec (G, Nome, hp, (stk,loc,C,sig,pc)#frs)"
assume correct: "G,phi HJVM (None, hp, (stk,loc,C,sig,pc)#frs)/"

from wtp obtain wfmb where wf: "wf_prog wfmb G" by (simp add: wt_jvm_prog_def)
note xp’ = meth s’ xp

note wtp
moreover
from xp wt correct
obtain adr T where
adr: "xcp = Addr adr" "hp adr = Some T"
by (blast dest: exec_instr_xcpt_hp)
moreover
note correct
ultimately
have "G,phi +JVM find_handler G (Some xcp) hp frs /" by (rule uncaught_xcpt_correct)
with xp’
have "match_exception_table G (cname_of hp xcp) pc et = None =——> T7thesis"

(is "?m (cname_of hp xcp) = _ = _" is "7match = _ = _")
by (clarsimp simp add: exec_instr_xcpt split_beta)
moreover

{ fix handler
assume some_handler: "?match = Some handler"

from correct meth
obtain ST LT where
hp_ok: "G Fh hp /" and
prehp: ‘'"preallocated hp" and
"class": "is_class G C" and
phi_pc: "phi C sig ! pc = Some (ST, LT)" and
frame: ‘'"correct_frame G hp (ST, LT) maxl ins (stk, loc, C, sig, pc)" and
frames: "correct_frames G hp phi rT sig frs"
by (unfold correct_state_def) auto

from frame obtain
stk: "approx_stk G hp stk ST" and
loc: "approx_loc G hp loc LT" and
pc: "pc < length ins" and
len: "length loc = 1+length (snd sig)+maxl"
by (unfold correct_frame_def) auto

from wt obtain
eff: "V (pc’, s’)Eset (xcpt_eff (ins!pc) G pc (phi C sig!pc) et).
pc’ < length ins A G - s’ <=’ phi C sig!pc’"
by (simp add: wt_instr_def eff_def)

from some_handler xp’
have state’:
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"state’

= (None, hp, ([xcpl, loc, C, sig, handler)#frs)"

by (cases "ins!pc") (auto simp add: raise_system_xcpt_def split_beta

let 7’ =
from eff

split: if_split_asm)

"([xcpl, loc, C, sig, handler)"

obtain ST’ LT’ where

phi_pc’:
frame’:

"phi C sig ! handler = Some (ST’, LT’)" and
"correct_frame G hp (ST’,LT’) maxl ins 7f’"

proof (cases "ins!pc")
case Return — can’t generate exceptions:
with xp’ have False by (simp add: split_beta split: if_split_asm)
thus ?thesis .

next

case New
with some_handler xp’
have xcp: "xcp = Addr (XcptRef OutOfMemory)"
by (simp add: raise_system_xcpt_def split_beta new_Addr_OutOfMemory)
with prehp have "cname_of hp xcp = Xcpt OutOfMemory" .
with New some_handler phi_pc eff
obtain ST’ LT’ where

phi’: "phi C sig ! handler = Some (ST’, LT’)" and
less: "G F ([Class (Xcpt OutOfMemory)], LT) <=s (ST’, LT’)" and
pc’: "handler < length ins"
by (simp add: xcpt_eff_def match_et_imp_match) blast
note phi’
moreover

{ from xcp prehp

have '

'G,hp F xcp ::=X Class (Xcpt OutOfMemory)"

by (auto simp add: conf_def obj_ty_def dest!: preallocatedD)
moreover
from wf less loc

have '

'approx_loc G hp loc LT’"

by (simp add: sup_state_conv) blast
moreover
note wf less pc’ len
ultimately
have "correct_frame G hp (ST’,LT’) maxl ins 7f’"
by (unfold correct_frame_def) (auto simp add: sup_state_conv

}

ultimate

approx_stk_def approx_val_def split: err.split elim: conf_widen)

ly

show 7thesis by (rule that)

next

case Getfield
with some_handler xp’
have xcp: "xcp = Addr (XcptRef NullPointer)"
by (simp add: raise_system_xcpt_def split_beta split: if_split_asm)
with prehp have "cname_of hp xcp = Xcpt NullPointer" ..
with Getfield some_handler phi_pc eff

obtain S
phi’:
less:
pc’:

T’ LT’ where

"phi C sig ! handler = Some (ST’, LT’)" and

"G I ([Class (Xcpt NullPointer)], LT) <=s (ST’, LT’)" and
"handler < length ins"
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by (simp add: xcpt_eff_def match_et_imp_match) blast
note phi’
moreover
{ from xcp prehp
have "G,hp + xcp ::=X Class (Xcpt NullPointer)"
by (auto simp add: conf_def obj_ty_def dest!: preallocatedD)
moreover
from wf less loc
have "approx_loc G hp loc LT’"
by (simp add: sup_state_conv) blast
moreover
note wf less pc’ len
ultimately
have "correct_frame G hp (ST’,LT’) maxl ins 7f’"
by (unfold correct_frame_def) (auto simp add: sup_state_conv
approx_stk_def approx_val_def split: err.split elim: conf_widen)
}
ultimately
show ?thesis by (rule that)
next
case Putfield
with some_handler xp’
have xcp: "xcp = Addr (XcptRef NullPointer)"
by (simp add: raise_system_xcpt_def split_beta split: if_split_asm)
with prehp have "cname_of hp xcp = Xcpt NullPointer" ..
with Putfield some_handler phi_pc eff
obtain ST’ LT’ where
phi’: "phi C sig ! handler = Some (ST’, LT’)" and
less: "G + ([Class (Xcpt NullPointer)], LT) <=s (ST’, LT’)" and
pc’: '"handler < length ins"
by (simp add: xcpt_eff_def match_et_imp_match) blast
note phi’
moreover
{ from xcp prehp
have "G,hp + xcp ::=X Class (Xcpt NullPointer)"
by (auto simp add: conf_def obj_ty_def dest!: preallocatedD)
moreover
from wf less loc
have "approx_loc G hp loc LT’"
by (simp add: sup_state_conv) blast
moreover
note wf less pc’ len
ultimately
have "correct_frame G hp (ST’,LT’) maxl ins 7f’"
by (unfold correct_frame_def) (auto simp add: sup_state_conv
approx_stk_def approx_val_def split: err.split elim: conf_widen)
}
ultimately
show ?thesis by (rule that)
next
case Checkcast
with some_handler xp’
have xcp: "xcp = Addr (XcptRef ClassCast)"
by (simp add: raise_system_xcpt_def split_beta split: if_split_asm)
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with prehp have "cname_of hp xcp = Xcpt ClassCast" ..
with Checkcast some_handler phi_pc eff
obtain ST’ LT’ where
phi’: "phi C sig ! handler = Some (ST’, LT’)" and
less: "G + ([Class (Xcpt ClassCast)], LT) <=s (ST’, LT’)" and
pc’: '"handler < length ins"
by (simp add: xcpt_eff_def match_et_imp_match) blast
note phi’
moreover
{ from xcp prehp
have "G,hp F xcp ::= Class (Xcpt ClassCast)"
by (auto simp add: conf_def obj_ty_def dest!: preallocatedD)
moreover
from wf less loc
have "approx_loc G hp loc LT’"
by (simp add: sup_state_conv) blast
moreover
note wf less pc’ len
ultimately
have "correct_frame G hp (ST’,LT’) maxl ins 7f’"
by (unfold correct_frame_def) (auto simp add: sup_state_conv
approx_stk_def approx_val_def split: err.split elim: conf_widen)
}
ultimately
show 7thesis by (rule that)
next
case Invoke
with phi_pc eff
have
"YDeset (match_any G pc et).
the (?m D) < length ins A G - Some ([Class D], LT) <=’ phi C sig!the (?m D)"
by (simp add: xcpt_eff_def)
moreover
from some_handler
obtain D where
"D € set (match_any G pc et)" and
D: "G  cname_of hp xcp =XC D" and
"?m D = Some handler"
by (blast dest: in_match_any)
ultimately
obtain
pc’: "handler < length ins" and
"G - Some ([Class D], LT) <=’ phi C sig ! handler"
by auto
then
obtain ST’ LT’ where
phi’: "phi C sig ! handler = Some (ST’, LT’)" and
less: "G + ([Class D], LT) <=s (ST’, LT’)"
by auto
from xp wt correct
obtain addr T where
xcp: "xcp = Addr addr" "hp addr = Some T"
by (blast dest: exec_instr_xcpt_hp)
note phi’
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moreover
{ from xcp D
have "G,hp + xcp ::=X Class D"
by (simp add: conf_def obj_ty_def)
moreover
from wf less loc
have "approx_loc G hp loc LT’"
by (simp add: sup_state_conv) blast
moreover
note wf less pc’ len
ultimately
have "correct_frame G hp (ST’,LT’) maxl ins 7f’"
by (unfold correct_frame_def) (auto simp add: sup_state_conv
approx_stk_def approx_val_def split: err.split elim: conf_widen)
}
ultimately
show ?thesis by (rule that)
next
case Throw
with phi_pc eff
have
"YDeset (match_any G pc et).
the (?m D) < length ins A G F Some ([Class D], LT) <=’ phi C sig!the (?m D)"
by (simp add: xcpt_eff_def)
moreover
from some_handler
obtain D where
"D € set (match_any G pc et)" and
D: "G + cname_of hp xcp =<C D" and
"?m D = Some handler"
by (blast dest: in_match_any)
ultimately
obtain
pc’: "handler < length ins" and
"G I Some ([Class D], LT) <=’ phi C sig ! handler"
by auto
then
obtain ST’ LT’ where
phi’: "phi C sig ! handler = Some (ST’, LT’)" and
less: "G + ([Class D], LT) <=s (ST’, LT’)"
by auto
from xp wt correct
obtain addr T where
xcp: "xcp = Addr addr" "hp addr = Some T"
by (blast dest: exec_instr_xcpt_hp)
note phi’
moreover
{ from xcp D
have "G,hp + xcp ::=X Class D"
by (simp add: conf_def obj_ty_def)
moreover
from wf less loc
have "approx_loc G hp loc LT’"
by (simp add: sup_state_conv) blast



212

moreover
note wf less pc’ len
ultimately
have "correct_frame G hp (ST’,LT’) maxl ins 7f’"
by (unfold correct_frame_def) (auto simp add: sup_state_conv
approx_stk_def approx_val_def split: err.split elim: conf_widen)

}
ultimately
show 7thesis by (rule that)
qged (use xp’ in auto) — the other instructions don’t generate exceptions

from state’ meth hp_ok "class" frames phi_pc’ frame’ prehp
have ?thesis by (unfold correct_state_def) simp
}
ultimately
show 7thesis by (cases "7match") blast+
qed

4.23.3 Single Instructions

In this section we look at each single (welltyped) instruction, and prove that the state after
execution of the instruction still conforms. Since we have already handled exceptions above,
we can now assume, that on exception occurs for this (single step) execution.

lemmas [iff] = not_Err_eq

lemma Load_correct:

"[ wf_prog wt G;
method (G,C) sig = Some (C,rT,maxs,maxl,ins,et);
ins!pc = Load idx;
wt_instr (ins!pc) G rT (phi C sig) maxs (length ins) et pc;
Some state’ = exec (G, None, hp, (stk,loc,C,sig,pc)#frs);
G,phi FJVM (None, hp, (stk,loc,C,sig,pc)#frs)./ |

—> G,phi HJVM state’\/"

apply (clarsimp simp add: defsl)

apply (blast intro: approx_loc_imp_approx_val_sup)

done

lemma Store_correct:

"[ wf_prog wt G;
method (G,C) sig = Some (C,rT,maxs,maxl,ins,et);
ins!pc = Store idx;
wt_instr (ins!pc) G rT (phi C sig) maxs (length ins) et pc;
Some state’ = exec (G, Nome, hp, (stk,loc,C,sig,pc)#frs);
G,phi FJVM (Nome, hp, (stk,loc,C,sig,pc)#frs)./ |

= G,phi HJVM state’y/"

apply (clarsimp simp add: defs1)

apply (blast intro: approx_loc_subst)

done

lemma LitPush_correct:
"[ wf_prog wt G;
method (G,C) sig = Some (C,rT,maxs,maxl,ins,et);
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ins!pc = LitPush v;

wt_instr (ins!pc) G rT (phi C sig) maxs (length ins) et pc;

Some state’ = exec (G, None, hp, (stk,loc,C,sig,pc)#frs);
G,phi FJVM (Nome, hp, (stk,loc,C,sig,pc)#frs)y/ |

— G,phi FJVM state’y/"

apply (clarsimp simp add: defsl sup_PTS_eq)

apply (blast dest: conf_litval intro: conf_widen)

done

lemma Cast_conf2:
"[[ wf_prog ok G; G,htv::=<RefT rt; cast_ok G C h v;
GFClass C<T; is_class G C]
— G,htv::=<T"
apply (unfold cast_ok_def)
apply (frule widen_Class)
apply (elim exE disjE)
apply (simp add: null)
apply (clarsimp simp add: conf_def obj_ty_def)
apply (cases v)
apply auto
done

lemmas defs2 = defsl raise_system_xcpt_def

lemma Checkcast_correct:

"[ wt_jvm_prog G phi;
method (G,C) sig = Some (C,rT,maxs,maxl,ins,et);
ins!pc = Checkcast D;
wt_instr (ins!pc) G rT (phi C sig) maxs (length ins) et pc;
Some state’ = exec (G, None, hp, (stk,loc,C,sig,pc)#frs) ;
G,phi FJVM (None, hp, (stk,loc,C,sig,pc)#frs)/;

fst (exec_instr (ins!pc) G hp stk loc C sig pc frs) = None ]

= G,phi FJVM state’y/"

apply (clarsimp simp add: defs2 wt_jvm_prog_def split: if_split_asm)

apply (blast intro: Cast_conf2)
done

lemma Getfield_correct:
"[ wt_jvm_prog G phi;
method (G,C) sig = Some (C,rT,maxs,maxl,ins,et);
ins!pc = Getfield F D;
wt_instr (ins!pc) G rT (phi C sig) maxs (length ins) et pc;
Some state’ = exec (G, Nome, hp, (stk,loc,C,sig,pc)#frs) ;
G,phi FJVM (Nome, hp, (stk,loc,C,sig,pc)#frs)./;
fst (exec_instr (ins!pc) G hp stk loc C sig pc frs) = Nome |
— G,phi FJVM state’y/"
apply (clarsimp simp add: defs2 wt_jvm_prog_def split_beta
split: option.split if_split_asm)
apply (frule conf_ widen)
apply assumption+
apply (drule conf_ RefTD)
apply (clarsimp simp add: defs2)
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apply (rule conjI)

apply (drule widen_cfs_fields)
apply assumption+

apply (erule wf_prog ws_prog)
apply (erule conf_ widen)
prefer 2

apply assumption

apply (simp add: hconf_def oconf_def lconf_def)
apply (elim allE)

apply (erule impE, assumption)
apply simp

apply (elim allE)

apply (erule impE, assumption)
apply clarsimp
apply blast
done

lemma Putfield_correct:
"[ wf_prog wt G;
method (G,C) sig = Some (C,rT,maxs,maxl,ins,et);
ins!pc = Putfield F D;
wt_instr (ins!pc) G rT (phi C sig) maxs (length ins) et pc;
Some state’ = exec (G, Nome, hp, (stk,loc,C,sig,pc)#frs) ;
G,phi FJVM (None, hp, (stk,loc,C,sig,pc)#frs)./;
fst (exec_instr (ins!pc) G hp stk loc C sig pc frs) = Nome |
— G,phi HJVM state’y/"
apply (clarsimp simp add: defs2 split_beta split: option.split list.split if_split_asm)
apply (frule conf_widen)
prefer 2
apply assumption
apply assumption
apply (drule conf_RefTD)
apply clarsimp
apply (blast
intro:
hext_upd_obj approx_stk_sup_heap
approx_loc_sup_heap
hconf_field_update
preallocated_field_update
correct_frames_field_update conf_widen
dest:
widen_cfs_fields)
done

lemma New_correct:

"[ wf_prog wt G;
method (G,C) sig = Some (C,rT,maxs,maxl,ins,et);
ins!pc = New X;
wt_instr (ins!pc) G rT (phi C sig) maxs (length ins) et pc;
Some state’ = exec (G, None, hp, (stk,loc,C,sig,pc)#frs) ;
G,phi FJVM (Nome, hp, (stk,loc,C,sig,pc)#frs)/;
fst (exec_instr (ins!pc) G hp stk loc C sig pc frs) = None |
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— G,phi FJVM state’y/"

proof -
assume wf:
assume meth:
assume ins:
assume wt:
assume exec:
assume conf:
assume no_x:

"wf_prog wt G"

"method (G,C) sig = Some (C,rT,maxs,maxl,ins,et)"

"ins!pc = New X"

"wt_instr (ins!pc) G rT (phi C sig) maxs (length ins) et pc"
"Some state’ = exec (G, Nome, hp, (stk,loc,C,sig,pc)#frs)"
"G,phi FJVM (None, hp, (stk,loc,C,sig,pc)#frs)/"

"fst (exec_instr (ins!pc) G hp stk loc C sig pc frs) = None"

from ins conf meth
obtain ST LT where

heap_ok:
prealloc:
phi_pc:
is_class_C:
frame:
frames:

"Gkh hp+/" and

"preallocated hp" and

"phi C sig!pc = Some (ST,LT)" and
"is_class G C" and

"correct_frame G hp (ST,LT) maxl ins (stk, loc, C, sig, pc)" and

"correct_frames G hp phi rT sig frs"

by (auto simp add: correct_state_def iff del: not_None_eq)

from phi_pc ins wt
obtain ST’ LT’ where

is_class_X:
maxs:
suc_pc:
phi_suc:
less:

"is_class G X" and

"length ST < maxs" and

"Suc pc < length ins" and

"phi C sig ! Suc pc = Some (ST’, LT’)" and
"G + (Class X # ST, LT) <=s (ST’, LT’)"

by (unfold wt_instr_def eff_def norm_eff_def) auto

obtain oref xp’ where
new_Addr: "new_Addr hp = (oref,xp’)"
by (cases "new_Addr hp")

with ins no_x

obtain hp: "hp oref = None" and "xp’ = None"
by (auto dest: new_AddrD simp add: raise_system_xcpt_def)

with exec ins meth new_Addr

have state’:

"state’ = Norm (hp(oref— (X, init_vars (fields (G, X)))),
(Addr oref # stk, loc, C, sig, Suc pc) # frs)"
(is "state’ = Norm (7hp’, ?f # frs)")

by simp
moreover

from hp heap_ok
have hp’: "G Fh ?hp’ /"

by (rule hconf_newref) (use wf is_class_X in <auto simp add: oconf_def dest:

moreover
from hp

have sup: "hp <[ 7hp’" by (rule hext_new)

from hp frame less suc_pc wf

have "correct_frame G 7hp’ (ST’, LT’) maxl ins 7f"
apply (unfold correct_frame_def sup_state_conv)
apply (clarsimp simp add: conf_def fun_upd_apply approx_val_def)
apply (blast intro: approx_stk_sup_heap approx_loc_sup_heap sup)
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done
moreover
from hp frames
have "correct_frames G 7hp’ phi rT sig frs"
by (rule correct_frames_newref)
moreover
from hp prealloc have "preallocated 7hp’" by (rule preallocated_newref)
ultimately
show ?7thesis
by (simp add: is_class_C meth phi_suc correct_state_def del: not_None_eq)
qed

lemmas [simp del] = split_paired_Ex

lemma Invoke_correct:
"[ wt_jvm_prog G phi;
method (G,C) sig = Some (C,rT,maxs,maxl,ins,et);
ins ! pc = Invoke C’ mn pTs;
wt_instr (ins!pc) G rT (phi C sig) maxs (length ins) et pc;
Some state’ = exec (G, None, hp, (stk,loc,C,sig,pc)#frs) ;
G,phi FJVM (Nome, hp, (stk,loc,C,sig,pc)#frs)./;
fst (exec_instr (ins!pc) G hp stk loc C sig pc frs) = None |
= G,phi FJVM state’y/"

proof -
assume wtprog: "wt_jvm_prog G phi"
assume "method": "method (G,C) sig = Some (C,rT,maxs,maxl,ins,et)"
assume ins: "ins ! pc = Invoke C’ mn pTs"
assume wti: "wt_instr (ins!pc) G rT (phi C sig) maxs (length ins) et pc"

assume state’: "Some state’ = exec (G, None, hp, (stk,loc,C,sig,pc)#frs)"
assume approx: "G,phi FJVM (None, hp, (stk,loc,C,sig,pc)#frs)./"
assume no_xcp: "fst (exec_instr (ins!pc) G hp stk loc C sig pc frs) = None"

from wtprog
obtain wfmb where
wfprog: "wf_prog wfmb G"
by (simp add: wt_jvm_prog_def)

from ins "method" approx
obtain s where
heap_ok: "GFh hp./" and
prealloc: "preallocated hp" and
phi_pc: "phi C sig!pc = Some s" and
is_class_C: "is_class G C" and
frame: "correct_frame G hp s maxl ins (stk, loc, C, sig, pc)" and
frames: '"correct_frames G hp phi rT sig frs"
by (auto iff del: not_None_eq simp add: correct_state_def)

from ins wti phi_pc

obtain apTs X ST LT D’ rT body where
is_class: "is_class G C’" and
s: "s = (rev apTs @ X # ST, LT)" and
1: "length apTs = length pTs" and
X: "Gk X =X Class C’" and
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w: "V (x, y)e€set (zip apTs pTs). G - x < y" and
mC’ : "method (G, C’) (mn, pTs) = Some (D’, rT, body)" and
pc: "Suc pc < length ins" and
eff: "G - norm_eff (Invoke C’ mn pTs) G (Some s) <=’ phi C sig!Suc pc"
by (simp add: wt_instr_def eff_def del: not_None_eq)
(elim exE conjE, rule that)

from eff
obtain ST’ LT’ where
s’: "phi C sig ! Suc pc = Some (ST’, LT’)"
by (simp add: norm_eff_def split_paired_Ex) blast

from X obtain T where X _Ref: "X = RefT T"
by (blast dest: widen_RefT2)

from s ins frame

obtain
a_stk: "approx_stk G hp stk (rev apTs @ X # ST)" and
a_loc: "approx_loc G hp loc LT" and
suc_1l: "length loc = Suc (length (snd sig) + maxl)"
by (simp add: correct_frame_def)

from a_stk
obtain opTs stk’ oX where

opTs: "approx_stk G hp opTs (rev apTs)" and
oX: "approx_val G hp oX (0K X)" and
a_stk’: "approx_stk G hp stk’ ST" and

stk’: "stk = opTs @ oX # stk’" and

1_o: "length opTs = length apTs"

"length stk’ length ST"
by (auto dest: approx_stk_append)

from oX X_Ref
have oX_conf: "G,hp F oX ::< RefT T"
by (simp add: approx_val_def)

from stk’ 1 o 1
have oX_pos: "last (take (Suc (length pTs)) stk) = oX" by simp

with state’ "method" ins no_xcp oX_conf
obtain ref where oX_Addr: "oX = Addr ref"
by (auto simp add: raise_system_xcpt_def dest: conf_RefTD)

with oX_conf X_Ref
obtain obj D where

loc: "hp ref = Some obj" and
obj_ty: "obj_ty obj = Class D" and
D: "G F Class D < X"

by (auto simp add: conf_def)

with X _Ref obtain X’ where X’: "X = Class X’"
by (blast dest: widen_Class)

with X have X’_subcls: "G - X’ XC C’" by simp



218

with mC’> wfprog

obtain DO rTO maxsO max10 insO et0O where
mX: "method (G, X’) (mn, pTs) = Some (DO, rTO, maxsO, max1l0, ins0O, et0)" "GFrTO<rT"
by (auto dest: subtype_widen_methd intro: that)

from X’ D have D_subcls: "G F D <C X’" by simp

with wfprog mX
obtain D’’ rT’ mxs’ mxl’ ins’ et’ where
mD: "method (G, D) (mn, pTs) = Some (D’’, rT’, mxs’, mxl’, ins’, et’)"
"G b rT’ < rTO"
by (auto dest: subtype_widen_methd intro: that)

from mD(2) mX(2) have rT’: "G + rT’ < rT" by (rule widen_trans)

from is_class X’_subcls D_subcls
have is_class_D: "is_class G D" by (auto dest: subcls_is_class2)

with mD wfprog

obtain mD’’:
"method (G, D’’) (mn, pTs) = Some (D’’, rT’, mxs’, mx1’, ins’, et’)"
"is_class G D’’"
by (auto dest: wf_prog_ws_prog [THEN method_in_md])

from loc obj_ty have "fst (the (hp ref)) = D" by (simp add: obj_ty_def)

with oX_Addr oX_pos state’ "method" ins stk’ 1_o 1 loc obj_ty mD no_xcp
have state’_val:
"state’ =
Norm (hp, ([], Addr ref # rev opTs @ replicate mxl’ undefined,
D’’, (mn, pTs), 0) # (opTs @ Addr ref # stk’, loc, C, sig, pc) # frs)"
(is "state’ = Norm (hp, ?f # 7f’ # frs)")
by (simp add: raise_system_xcpt_def)

from wtprog mD’’
have start: "wt_start G D’’ pTs mxl’ (phi D’’ (mn, pTs)) A ins’ # []"
by (auto dest: wt_jvm_prog_ impl_wt_start)

then obtain LTO where
LTO: "phi D’’ (mn, pTs) ! O = Some ([], LTO)"
by (clarsimp simp add: wt_start_def sup_state_conv)

have c_f: "correct_frame G hp ([], LTO) mx1’ ins’ 7f"
proof -
from start LTO
have sup_loc:
"G - (0K (Class D’’) # map OK pTs @ replicate mxl’ Err) <=1 LTO"
(is "G + ?LT <=1 LTO")
by (simp add: wt_start_def sup_state_conv)

have r: "approx_loc G hp (replicate mx1l’ undefined) (replicate mxl’ Err)"
by (simp add: approx_loc_def list_all2_iff set_replicate_conv_if)
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from wfprog mD is_class_D

have "G + Class D < Class D’’"
by (auto dest: method_wf_mdecl)

with obj_ty loc

have a: "approx_val G hp (Addr ref) (0K (Class D’’))"
by (simp add: approx_val_def conf_def)

from opTs w 1 1_o wfprog
have "approx_stk G hp opTs (rev pTs)"
by (auto elim!: approx_stk_all_widen simp add: zip_rev)
hence "approx_stk G hp (rev opTs) pTs" by (subst approx_stk_rev)

with ra l ol

have "approx_loc G hp (Addr ref # rev opTs @ replicate mxl’ undefined) ?7LT"
(is "approx_loc G hp 71t 7LT")
by (auto simp add: approx_loc_append approx_stk_def)

from this sup_loc wfprog
have "approx_loc G hp 71t LTO" by (rule approx_loc_widen)
with start 1_o 1
show ?thesis by (simp add: correct_frame_def)
qged

from state’_val heap_ok mD’’ ins "method" phi_pc s X’ 1 mX
frames s’ LTO c_f is_class_C stk’ oX_Addr frame prealloc and 1
show ?thesis
apply (simp add: correct_state_def)
apply (intro exI conjI)
apply blast
apply (rule 1)
apply (rule mX)
apply (rule mD)
done
qed

lemmas [simp del] = map_append

lemma Return_correct:
"[ wt_jvm_prog G phi;
method (G,C) sig = Some (C,rT,maxs,maxl,ins,et);
ins ! pc = Return;
wt_instr (ins!pc) G rT (phi C sig) maxs (length ins) et pc;
Some state’ = exec (G, None, hp, (stk,loc,C,sig,pc)#frs) ;
G,phi FJVM (None, hp, (stk,loc,C,sig,pc)#frs)y/ |
= G,phi FJVM state’y/"
proof -
assume wt_prog: "wt_jvm_prog G phi"
assume meth: "method (G,C) sig = Some (C,rT,maxs,maxl,ins,et)"
assume ins: "ins ! pc = Return"
assume wt: "wt_instr (ins!pc) G rT (phi C sig) maxs (length ins) et pc"
assume s’: "Some state’ = exec (G, None, hp, (stk,loc,C,sig,pc)#frs)"
assume correct: "G,phi FJVM (None, hp, (stk,loc,C,sig,pc)#frs)/"

from wt_prog
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obtain wfmb where wf: "wf_prog wfmb G" by (simp add: wt_jvm_prog_def)

from meth ins s’
have "frs = [] = 7thesis" by (simp add: correct_state_def)
moreover

{

fix f frs’
assume frs’: "frs = f#frs’"
moreover
obtain stk’ loc’ C’ sig’ pc’ where
f: "f = (stk’,loc’,C’,sig’,pc’)" by (cases f)
moreover
obtain mn pt where
sig: "sig = (mn,pt)" by (cases sig)
moreover
note meth ins s’
ultimately
have state’:
"state’ = (None,hp, (hd stk#(drop (1+length pt) stk’),loc’,C’,sig’,pc’+1)#frs’)"
(is "state’ = (None,hp, ?f’#frs’)")
by simp

from correct meth
obtain ST LT where
hp_ok: "G Fh hp /" and
alloc: ‘"preallocated hp" and
phi_pc: "phi C sig ! pc = Some (ST, LT)" and
frame: '"correct_frame G hp (ST, LT) maxl ins (stk,loc,C,sig,pc)" and
frames: "correct_frames G hp phi rT sig frs"
by (simp add: correct_state_def, clarify, blast)

from phi_pc ins wt
obtain T ST’ where "ST = T # ST’" "G - T <X rT"
by (simp add: wt_instr_def) blast
with wf frame
have hd_stk: "G,hp + (hd stk) ::= rT"
by (auto simp add: correct_frame_def elim: conf_widen)

from f frs’ frames sig
obtain apTs ST0’ ST’ LT’ D D’ D’’ rT’ rT’’ maxs’ maxl’ ins’ et’ body where

phi’: "phi C’ sig’ ! pc’ = Some (ST’,LT’)" and

class’: "is_class G C’" and

meth’: ‘"method (G,C’) sig’ = Some (C’,rT’,maxs’,maxl’,ins’,et’)" and
ins’: "ins’ ! pc’ = Invoke D’ mn pt" and

frame’: "correct_frame G hp (ST’, LT’) maxl’ ins’ f" and
frames’:"correct_frames G hp phi rT’ sig’ frs’" and

rT’’: "G F rT X rT’’" and

meth’’: "method (G, D) sig = Some (D’’, rT’’, body)" and
STO’ : "ST’ = rev apTs @ Class D # STO’" and

len’: "length apTs = length pt"

by clarsimp

from f frame’
obtain
stk’: "approx_stk G hp stk’ ST’" and
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loc’: "approx_loc G hp loc’ LT’" and

pc’: '"pc’ < length ins’" and

lloc’:"length loc’ = Suc (length (snd sig’) + maxl’)"
by (simp add: correct_frame_def)

from wt_prog class’ meth’ pc’

have "wt_instr (ins’!pc’) G rT’ (phi C’ sig’) maxs’ (length ins’) et’ pc’"
by (rule wt_jvm_prog impl_wt_instr)

with ins’ phi’ sig

obtain apTs STO X ST’’ LT’’ body’ rTO mD where
phi_suc: "phi C’ sig’ ! Suc pc’ = Some (ST’’, LT’’)" and

STO: "ST’ = rev apTs @ X # STO" and
len: "length apTs = length pt" and
less: "G + (rTO # STO, LT’) <=s (ST’’, LT’’)" and

methD’: "method (G, D’) sig = Some (mD, rTO, body’)" and
lessD’: "G F X <X Class D’" and
suc_pc’: "Suc pc’ < length ins’"
by (clarsimp simp add: wt_instr_def eff_def norm_eff_def)

from len len’ STO STO’

have "X = Class D" by simp

with lessD’

have "G - D <XC D’" by simp

moreover

note wf meth’’ methD’

ultimately

have "G F rT’’ < rT0" by (auto dest: subcls_widen_methd)

with wf hd_stk rT’’

have hd_stk’: "G,hp F (hd stk) ::=< rT0" by (auto elim: conf_widen widen_trans)

have frame’’:

"correct_frame G hp (ST’’,LT’’) maxl’ ins’ 7f’"
proof -

from wf hd_stk’ len stk’ less STO

have "approx_stk G hp (hd stk # drop (1+length pt) stk’) ST’’"

by (auto simp add: sup_state_conv
dest!: approx_stk_append elim: conf_widen)

moreover

from wf loc’ less

have "approx_loc G hp loc’ LT’’" by (simp add: sup_state_conv) blast

moreover

note suc_pc’ lloc’

ultimately

show ?thesis by (simp add: correct_frame_def)
qed

with state’ frs’ f meth hp_ok hd_stk phi_suc frames’ meth’ phi’ class’ alloc
have 7thesis by (simp add: correct_state_def)
}
ultimately
show 7?thesis by (cases frs) blast+
qed

lemmas [simp] = map_append
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lemma Goto_correct:

"[ wf_prog wt G;
method (G,C) sig = Some (C,rT,maxs,maxl,ins,et);
ins ! pc = Goto branch;
wt_instr (ins!pc) G rT (phi C sig) maxs (length ins) et pc;
Some state’ = exec (G, Nome, hp, (stk,loc,C,sig,pc)#frs) ;
G,phi FJVM (None, hp, (stk,loc,C,sig,pc)#frs)/ |

—> G,phi HJVM state’\/"

apply (clarsimp simp add: defs2)

apply fast

done

lemma Ifcmpeq_correct:

"[ wf_prog wt G;
method (G,C) sig = Some (C,rT,maxs,maxl,ins,et);
ins ! pc = Ifcmpeq branch;
wt_instr (ins!pc) G rT (phi C sig) maxs (length ins) et pc;
Some state’ = exec (G, None, hp, (stk,loc,C,sig,pc)#frs) ;
G,phi FJVM (Nome, hp, (stk,loc,C,sig,pc)#frs)./ |

— G,phi FJVM state’ /"

apply (clarsimp simp add: defs2)

apply fast

done

lemma Pop_correct:

"[ wf_prog wt G;
method (G,C) sig = Some (C,rT,maxs,maxl,ins,et);
ins ! pc = Pop;
wt_instr (ins!pc) G rT (phi C sig) maxs (length ins) et pc;
Some state’ = exec (G, None, hp, (stk,loc,C,sig,pc)#frs) ;
G,phi FJVM (Nome, hp, (stk,loc,C,sig,pc)#frs)./ |

= G,phi FJVM state’y/"

apply (clarsimp simp add: defs2)

apply fast

done

lemma Dup_correct:

"[ wf_prog wt G;
method (G,C) sig = Some (C,rT,maxs,maxl,ins,et);
ins ! pc = Dup;
wt_instr (ins!pc) G rT (phi C sig) maxs (length ins) et pc;
Some state’ = exec (G, Nome, hp, (stk,loc,C,sig,pc)#frs) ;
G,phi FJVM (Nome, hp, (stk,loc,C,sig,pc)#frs)y/ |

—> G,phi HJVM state’ /"

apply (clarsimp simp add: defs2)

apply (blast intro: conf_widen)

done

lemma Dup_x1_correct:

"[ wf_prog wt G;
method (G,C) sig = Some (C,rT,maxs,maxl,ins,et);
ins ! pc = Dup_x1;
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wt_instr (ins!pc) G rT (phi C sig) maxs (length ins) et pc;
Some state’ = exec (G, Nome, hp, (stk,loc,C,sig,pc)#frs) ;
G,phi FJVM (Nome, hp, (stk,loc,C,sig,pc)#frs)y/ |

—> G,phi HJVM state’ /"

apply (clarsimp simp add: defs2)

apply (blast intro: conf_widen)

done

lemma Dup_x2_correct:

"[ wf_prog wt G;
method (G,C) sig = Some (C,rT,maxs,maxl,ins,et);
ins ! pc = Dup_x2;
wt_instr (ins!pc) G rT (phi C sig) maxs (length ins) et pc;
Some state’ = exec (G, None, hp, (stk,loc,C,sig,pc)#frs) ;
G,phi FJVM (Nome, hp, (stk,loc,C,sig,pc)#frs)./ |

— G,phi FJVM state’y/"

apply (clarsimp simp add: defs2)

apply (blast intro: conf_widen)

done

lemma Swap_correct:

"[ wf_prog wt G;
method (G,C) sig = Some (C,rT,maxs,maxl,ins,et);
ins ! pc = Swap;
wt_instr (ins!pc) G rT (phi C sig) maxs (length ins) et pc;
Some state’ = exec (G, None, hp, (stk,loc,C,sig,pc)#frs) ;
G,phi FJVM (Nome, hp, (stk,loc,C,sig,pc)#frs)./ |

— G,phi FJVM state’y/"

apply (clarsimp simp add: defs2)

apply (blast intro: conf_widen)

done

lemma IAdd_correct:
"[ wf_prog wt G;
method (G,C) sig = Some (C,rT,maxs,maxl,ins,et);
ins ! pc = IAdd;
wt_instr (ins!pc) G rT (phi C sig) maxs (length ins) et pc;
Some state’ = exec (G, Nome, hp, (stk,loc,C,sig,pc)#frs) ;
G,phi FJVM (None, hp, (stk,loc,C,sig,pc)#frs)y/ |
= G,phi FJVM state’ /"
apply (clarsimp simp add: defs2 approx_val_def conf_def)
apply blast
done

lemma Throw_correct:
"[ wf_prog wt G;
method (G,C) sig = Some (C,rT,maxs,maxl,ins,et);
ins ! pc = Throw;
Some state’ = exec (G, Nome, hp, (stk,loc,C,sig,pc)#frs) ;
G,phi FJVM (None, hp, (stk,loc,C,sig,pc)#frs)./;

fst (exec_instr (ins!pc) G hp stk loc C sig pc frs) = None |

— G,phi HJVM state’ /"
by simp

223
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The next theorem collects the results of the sections above, i.e. exception handling and the
execution step for each instruction. It states type safety for single step execution: in well-
typed programs, a conforming state is transformed into another conforming state when one
instruction is executed.

theorem instr_correct:
"[ wt_jvm_prog G phi;
method (G,C) sig = Some (C,rT,maxs,maxl,ins,et);
Some state’ = exec (G, None, hp, (stk,loc,C,sig,pc)#frs);
G,phi FJVM (Nome, hp, (stk,loc,C,sig,pc)#frs)y/ |
= G,phi FJVM state’y/"
apply (frule wt_jvm_prog_impl_wt_instr_cor)
apply assumption+
apply (cases "fst (exec_instr (ins!pc) G hp stk loc C sig pc frs)")
defer
apply (erule xcpt_correct, assumption+)
apply (cases "ins!pc")
prefer 8
apply (rule Invoke_correct, assumption+)
prefer 8
apply (rule Return_correct, assumption+)
prefer 5
apply (rule Getfield_correct, assumption+)
prefer 6
apply (rule Checkcast_correct, assumption+)

apply (unfold wt_jvm_prog_def)

apply (rule Load_correct, assumption+)
apply (rule Store_correct, assumption+)
apply (rule LitPush_correct, assumption+)
apply (rule New_correct, assumption+)
apply (rule Putfield_correct, assumption+)
apply (rule Pop_correct, assumption+)
apply (rule Dup_correct, assumption+)
apply (rule Dup_x1_correct, assumption+)
apply (rule Dup_x2_correct, assumption+)
apply (rule Swap_correct, assumption+)
apply (rule IAdd_correct, assumption+)
apply (rule Goto_correct, assumption+)
apply (rule Ifcmpeq_correct, assumption+)
apply (rule Throw_correct, assumption+)
done

4.23.4 Main

lemma correct_state_impl_Some_method:
"G,phi FJVM (Nome, hp, (stk,loc,C,sig,pc)#frs)./
— dmeth. method (G,C) sig = Some(C,meth)"

by (auto simp add: correct_state_def)

lemma BV_correct_1 [rule_format]:
"Astate. [ wt_jvm_prog G phi; G,phi FJVM state./]
—> exec (G,state) = Some state’ — G,phi FJVM state’y/"
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apply (simp only: split_tupled_all)
apply (rename_tac xp hp frs)
apply (case_tac xp)

apply (case_tac frs)

apply simp

apply (simp only: split_tupled_all)
apply hypsubst

apply (frule correct_state_impl_Some_method)
apply (force intro: instr_correct)
apply (case_tac frs)
apply simp_all
done

lemma LO:
"[ xp=None; frs#[] | = (Istate’. exec (G,xp,hp,frs) = Some state’)"
by (clarsimp simp add: neq Nil_conv split_beta)

lemma L1:
"[wt_jvm_prog G phi; G,phi HJVM (xp,hp,frs)./; xp=None; frs+#/[]]
— Jstate’. exec(G,xp,hp,frs) = Some state’ A G,phi FJVM state’\/"
apply (drule LO)
apply assumption
apply (fast intro: BV_correct_1)
done

theorem BV_correct [rule_format]:

"[ wt_jvm_prog G phi; G + s —jvm— t | = G,phi FJVM s/ — G,phi FJVM t./"
apply (unfold exec_all_def)

apply (erule rtrancl_induct)

apply simp
apply (auto intro: BV_correct_1)
done

theorem BV_correct_implies_approx:
"[ wt_jvm_prog G phi;

G - s0 —jvm— (None,hp, (stk,loc,C,sig,pc)#frs); G,phi FJVM sO /]
—> approx_stk G hp stk (fst (the (phi C sig ! pc))) A

approx_loc G hp loc (snd (the (phi C sig ! pc)))"
apply (drule BV_correct)
apply assumption+
apply (simp add: correct_state_def correct_frame_def split_def

split: option.splits)

done

lemma
fixes G :: jvm_prog (<I'>)
assumes wf: "wf_prog wf_mb I'"
shows hconf_start: "I' +h (start_heap I') /"
apply (unfold hconf_def start_heap_def)
apply (auto simp add: fun_upd_apply blank_def oconf_def split: if_split_asm)
apply (simp add: fields_is_type
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[OF _ wf [THEN wf_prog_ws_prog]
is_class_xcpt [OF wf [THEN wf_prog_ws_prog]l])+
done

lemma
fixes G :: jvm_prog (<I'>) and Phi :: prog_type (<®>)
shows BV_correct_initial:
"wt_jvm_prog I' ® — is_class I' C = method (I',C) (m,[]) = Some (C, b)
= I',® FJVM start_state G Cm +/"
apply (cases b)
apply (unfold start_state_def)
apply (unfold correct_state_def)
apply (auto simp add: preallocated_start)
apply (simp add: wt_jvm_prog_def hconf_start)
apply (drule wt_jvm_prog_impl_wt_start, assumption+)
apply (clarsimp simp add: wt_start_def)
apply (auto simp add: correct_frame_def)
apply (simp add: approx_stk_def sup_state_conv)
apply (auto simp add: sup_state_conv approx_val_def dest!: widen_RefT split: err.splits)
done

theorem typesafe:
fixes G :: jvm_prog (<I'>)
and Phi :: prog_type (<®>)
assumes welltyped: "wt_jvm_prog I' ®"
and main_method: "is_class I' C" "method (I',C) (m,[]) = Some (C, b)"
and exec_all: "G F start_state I' Cm —jvm— s"
shows "T',® FJVM s /"
proof -
from welltyped main_method have "I',® FJVM start_state I' Cm /"
by (rule BV_correct_initial)
with welltyped exec_all show "T',® FJVM s /"
by (rule BV_correct)
qed

end

4.24 Welltyped Programs produce no Type Errors

theory BVNoTypeError
imports "../JVM/JVMDefensive" BVSpecTypeSafe
begin

Some simple lemmas about the type testing functions of the defensive JVM:

lemma typeof_NoneD [simp,dest]:
"typeof (Av. Nomne) v = Some x —> —isAddr v"
by (cases v) auto

lemma isRef_def2:
"isRef v = (v = Null V (dloc. v = Addr loc))"
by (cases v) (auto simp add: isRef_def)

lemma app’Store[simp]:
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"app’ (Store idx, G, pc, maxs, rT, (ST,LT)) = (3T ST’. ST = T#ST’ A idx < length LT)"
by (cases ST) auto

lemma app’GetField[simp]:
"app’ (Getfield F C, G, pc, maxs, rT, (ST,LT)) =
(doT vT ST’. ST = oT#ST’ A is_class G C A
field (G,C) F = Some (C,vT) N G F oT = Class C)"
by (cases ST) auto

lemma app’PutField[simp]:

"app’ (Putfield F C, G, pc, maxs, rT, (ST,LT)) =
(3vT vT’ oT ST’. ST = vT#0T#ST’ N is_class G C A
field (G,C) F = Some (C, vT’) A
GF oT % Class C N G F vT <X vI’)"
apply rule
defer
apply clarsimp
apply (cases ST)
apply simp
apply (cases "tl1 ST")
apply auto
done

lemma app’Checkcast[simp]:

"app’ (Checkcast C, G, pc, maxs, rT, (ST,LT)) =
(drT ST’. ST = RefT rT#ST’ A is_class G C)"

apply rule

defer

apply clarsimp

apply (cases ST)

apply simp

apply (cases "hd ST")

defer

apply simp

apply simp

done

lemma app’Pop[simp]:
"app’ (Pop, G, pc, maxs, rT, (ST,LT))
by (cases ST) auto

(3T ST’. ST = T#ST’)"

lemma app’Dup[simp] :
"app’ (Dup, G, pc, maxs, rT, (ST,LT))
(3T ST’. ST = T#ST’ A length ST < maxs)"
by (cases ST) auto

lemma app’Dup_x1[simp]:
"app’ (Dup_x1, G, pc, maxs, rT, (ST,LT)) =
(3T1 T2 ST’. ST = T1#T2#ST’ A length ST < maxs)"
by (cases ST, simp, cases "tl ST", auto)
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lemma app’Dup_x2[simp] :
"app’ (Dup_x2, G, pc, maxs, rT, (ST,LT)) =
(3T1 T2 T3 ST’. ST = T1#T2#T3#ST’ A length ST < maxs)"
by (cases ST, simp, cases "tl1 ST", simp, cases "tl (tl ST)", auto)

lemma app’Swap [simp] :
"app’ (Swap, G, pc, maxs, rT, (ST,LT)) = (3T1 T2 ST’. ST = T1#T2#ST’)"
by (cases ST, simp, cases "tl ST", auto)

lemma app’IAdd[simp]:
"app’ (IAdd, G, pc, maxs, rT, (ST,LT)) =
(38T’. ST = PrimT Integer#PrimT Integer#ST’)"
apply (cases ST)
apply simp
apply simp
apply (case_tac a)
apply auto
apply (rename_tac prim_ty, case_tac prim_ty)
apply auto
apply (rename_tac prim_ty, case_tac prim_ty)
apply auto
apply (case_tac list)
apply auto
apply (case_tac a)
apply auto
apply (rename_tac prim_ty, case_tac prim_ty)
apply auto
done

lemma app’Ifcmpeq([simp]:
"app’ (Ifcmpeq b, G, pc, maxs, rT, (ST,LT)) =
(3T1 T2 ST’. ST = T1#T2#ST’ A 0 < b + int pc A
(@p. T1 = PrimT p A T1 = T2) V
(dr r’. T1 = RefT r N T2 = RefT r’)))"
apply auto
apply (cases ST)
apply simp
apply (cases "t1 ST")
apply (case_tac a)
apply auto
done

lemma app’Return[simp] :
"app’ (Return, G, pc, maxs, rT, (ST,LT)) =
(AT ST’. ST = T#ST’A G + T < rT)"
by (cases ST) auto

lemma app’Throw[simp] :
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"app’ (Throw, G, pc, maxs, rT, (ST,LT)) =
(ST’ r. ST = RefT r#ST’)"

apply (cases ST)

apply simp

apply (cases "hd ST")

apply auto

done

lemma app’Invoke[simp] :
"app’ (Invoke C mn fpTs, G, pc, maxs, rT, ST, LT) =
(3apTs X ST’ mD’ rT’ b’.
ST = (rev apTs) @ X # ST’ A
length apTs = length fpTs A is_class G C A
(V (aT,fT)E€set (zip apTs fpTs). G - aT =X £fT) A
method (G,C) (mn,fpTs) = Some (mD’, rT’, b’) AN G F X <X Class C)"
(is "?app ST LT = 7P ST LT")
proof
assume "7P ST LT" thus "7app ST LT" by (auto simp add: list_all2 iff)
next
assume app: "7app ST LT"
hence 1: "length fpTs < length ST" by simp
obtain xs ys where xs: "ST = xs @ ys" "length xs = length fpTs"
proof -
have "ST = take (length fpTs) ST @ drop (length fpTs) ST" by simp
moreover from 1 have "length (take (length fpTs) ST) = length fpTs"
by simp
ultimately show ?thesis ..
qed
obtain apTs where
"ST = (rev apTs) @ ys" and "length apTs = length fpTs"
proof -
from xs(1) have "ST = rev (rev xs) @ ys" by simp
then show thesis by (rule that) (simp add: xs(2))
qed
moreover
from 1 xs obtain X ST’ where "ys = X#ST’" by (auto simp add: neq_Nil_conv)
ultimately
have "ST = (rev apTs) @ X # ST’" "length apTs = length fpTs" by auto
with app
show "7P ST LT"
apply (clarsimp simp add: list_all2_iff)
apply (intro exI conjI)
apply auto
done
qed

lemma approx_loc_len [simp]:
"approx_loc G hp loc LT — length loc = length LT"
by (simp add: approx_loc_def list_all2_iff)

lemma approx_stk_len [simp]:
"approx_stk G hp stk ST — length stk = length ST"
by (simp add: approx_stk_def)
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lemma isRefI [intro, simp]: "G,hp + v ::=X RefT T —> isRef v"
apply (drule conf_ RefTD)
apply (auto simp add: isRef_def)
done

lemma isIntgI [intro, simp]: "G,hp + v ::< PrimT Integer —> isIntg v"
apply (unfold conf_def)
apply auto
apply (erule widen.cases)
apply auto
apply (cases v)
apply auto
done

lemma list_all2_approx:
"list_all2 (approx_val G hp) s (map OK S) = list_all2 (conf G hp) s S"
apply (induct S arbitrary: s)
apply (auto simp add: list_all2_Cons2 approx_val_def)
done

lemma list_all2_conf_widen:
"wf_prog mb G —
list_all2 (conf G hp) a b =
list_all2 (Ax y. G Fx 2 y) bc =
list_all2 (conf G hp) a c"
apply (rule list_all2_ trans)
defer
apply assumption
apply assumption
apply (drule conf_widen, assumption+)
done

The main theorem: welltyped programs do not produce type errors if they are started in a
conformant state.

theorem no_type_error:
assumes welltyped: "wt_jvm_prog G Phi" and conforms: "G,Phi FJVM s /"
shows "exec_d G (Normal s) # TypeError"
proof -
from welltyped obtain mb where wf: "wf_prog mb G" by (fast dest: wt_jvm_progD)

obtain xcp hp frs where s [simp]: "s = (xcp, hp, frs)" by (cases s)

from conforms have "xcp # None V frs = [] = check G s"
by (unfold correct_state_def check_def) auto
moreover {
assume "—(xcp # None V frs = [])"
then obtain stk loc C sig pc frs’ where
xcp [simp]: "xcp = None" and
frs [simp]: "frs (stk,loc,C,sig,pc)#frs’"
by (clarsimp simp add: neq_Nil_conv)

from conforms obtain ST LT rT maxs maxl ins et where
hconf: "G Fh hp /" and
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"class": "is_class G C" and
meth: "method (G, C) sig = Some (C, rT, maxs, maxl, ins, et)" and
phi: "Phi C sig ! pc = Some (ST,LT)" and

frame: ‘'"correct_frame G hp (ST,LT) maxl ins (stk,loc,C,sig,pc)" and
frames: '"correct_frames G hp Phi rT sig frs’"
by (auto simp add: correct_state_def)

from frame obtain
stk: "approx_stk G hp stk ST" and
loc: "approx_loc G hp loc LT" and
pc: '"pc < length ins" and
len: "length loc = length (snd sig) + maxl + 1"
by (auto simp add: correct_frame_def)

note approx_val_def [simp]

from welltyped meth conforms
have "wt_instr (ins!pc) G rT (Phi C sig) maxs (length ins) et pc"
by simp (rule wt_jvm_prog_impl_wt_instr_cor)
then obtain
app’: "app (ins!pc) G maxs rT pc et (Phi C sig!pc) " and
eff: "V (pc’, s’)eset (eff (ins ! pc) G pc et (Phi C sig ! pc)). pc’ < length ins"
by (simp add: wt_instr_def phi) blast

from eff
have pc’: "Vpc’ € set (succs (ins!pc) pc). pc’ < length ins"
by (simp add: eff_def) blast

from app’ phi

have app:
"xcpt_app (ins!pc) G pc et A app’ (ins!pc, G, pc, maxs, rT, (ST,LT))"
by (clarsimp simp add: app_def)

with eff stk loc pc’
have "check_instr (ins!pc) G hp stk loc C sig pc maxs frs’"
proof (cases "ins!pc")

case (Getfield F C)

with app stk loc phi obtain v vT stk’ where

"class": "is_class G C" and
field: "field (G, C) F = Some (C, vT)" and
stk: "stk = v # stk’" and

conf: "G,hp - v ::=X Class C"
apply clarsimp
apply (blast dest: conf_widen [OF wf])
done
from conf have isRef: "isRef v" ..
moreover {
assume "v # Null"
with conf field isRef wf
have "dD vs. hp (the_Addr v) = Some (D,vs) AN G - D <XC C"
by (auto dest!: non_np_objD)
}
ultimately show ?thesis using Getfield field '"class" stk hconf wf
apply clarsimp
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apply (fastforce dest!: hconfD widen_cfs_fields oconf_objD)
done
next
case (Putfield F C)
with app stk loc phi obtain v ref vT stk’ where

"class": "is_class G C" and
field: "field (G, C) F = Some (C, vT)" and
stk: "stk = v # ref # stk’" and

confv: "G,hp F v ::=X vT" and
confr: "G,hp + ref ::= Class C"
apply clarsimp
apply (blast dest: conf_widen [OF wf])
done
from confr have isRef: "isRef ref" ..
moreover {
assume "ref #* Null"
with confr field isRef wf
have "dD vs. hp (the_Addr ref) = Some (D,vs) A G - D <XC C"
by (auto dest: non_np_objD)
}

ultimately show ?thesis using Putfield field "class" stk confv

by clarsimp
next

case (Invoke C mn ps)

with app

obtain apTs X ST’ where
ST: "ST = rev apTs @ X # ST’" and
ps: "length apTs = length ps" and
W "V (x, y)€set (zip apTs ps). G - x = y" and
C: "G F X < Class C" and
mth: "method (G, C) (mn, ps) # None"
by (simp del: app’.simps) blast

from ST stk
obtain aps x stk’ where
stk’: "stk = aps @ x # stk’" and
aps: "approx_stk G hp aps (rev apTs)" and
x: "G,hp F x ::=X X" and
1: "length aps = length apTs"
by (auto dest!: approx_stk_append)

from stk’ 1 ps
have [simp]: "stk!length ps = x" by (simp add: nth_append)
from stk’ 1 ps
have [simp]: "take (length ps) stk = aps" by simp
from w ps
have widen: "list_all2 (Ax y. G - x = y) apTs ps"
by (simp add: list_all2 iff)

from stk’ 1 ps have "length ps < length stk" by simp
moreover

from wf x C

have x: "G,hp F x ::= Class C" by (rule conf_widen)
hence "isRef x" by simp
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moreover
{ assume "x #* Null"
with x
obtain D fs where
hp: "hp (the_Addr x) = Some (D,fs)" and
D: "G+ D XC "
by (auto dest: non_npD)
hence "hp (the_Addr x) # None" (is 7P1) by simp
moreover
from wf mth hp D
have "method (G, cname_of hp x) (mn, ps) # None" (is 7P2)
by (auto dest: subcls_widen_methd)
moreover
from aps have "list_all2 (conf G hp) aps (rev apTs)"
by (simp add: list_all2 approx approx_stk_def approx_loc_def)
hence "list_all2 (conf G hp) (rev aps) (rev (rev apTs))"
by (simp only: list_all2_rev)
hence "list_all2 (conf G hp) (rev aps) apTs" by simp
from wf this widen
have "list_all2 (conf G hp) (rev aps) ps" (is 7P3)
by (rule list_all2 conf_widen)
ultimately
have "7?P1 A ?P2 A 7P3" by blast
}
moreover
note Invoke
ultimately
show ?thesis by simp
next
case Return with stk app phi meth frames
show ?thesis
apply clarsimp
apply (drule conf_widen [OF wf], assumption)
apply (clarsimp simp add: neq_Nil_conv isRef_def2)
done
qed auto
hence '"check G s" by (simp add: check_def meth pc)
} ultimately
have "check G s" by blast
thus "exec_d G (Normal s) # TypeError" .
qed

The theorem above tells us that, in welltyped programs, the defensive machine reaches the
same result as the aggressive one (after arbitrarily many steps).

theorem welltyped_aggressive_imp_defensive:
"wt_jvm_prog G Phi —> G,Phi FJVM s / = G F s —jvm— t
— G + (Normal s) —jvmd— (Normal t)"
apply (unfold exec_all_def)
apply (erule rtrancl_induct)
apply (simp add: exec_all_d_def)
apply simp
apply (fold exec_all_def)
apply (frule BV_correct, assumption+)
apply (drule no_type_error, assumption, drule no_type_error_commutes, simp)
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apply (simp add: exec_all_d_def)
apply (rule rtrancl_trans, assumption)
apply blast

done

lemma neq_TypeError_eq [simp]: "s # TypeError = (ds’. s = Normal s’)"
by (cases s, auto)

theorem no_type_errors:
"wt_jvm_prog G Phi —> G,Phi HFJVM s ,/
= G + (Normal s) —jvmd— t = t # TypeError"
apply (unfold exec_all_d_def)
apply (erule rtrancl_induct)
apply simp
apply (fold exec_all_d_def)
apply (auto dest: defensive_imp_aggressive BV_correct no_type_error)
done

corollary no_type_errors_initial:
fixes G (<I'>) and Phi (<®>)
assumes wt: "wt_jvm_prog I' ®"
assumes is_class: "is_class I' C"
and "method": "method (I',C) (m,[]) = Some (C, b)"
and m: "m # init"
defines start: "s = start_state I' C m"

assumes s: "I' - (Normal s) —jvmd— t"
shows "t # TypeError"
proof -
from wt is_class "method" have "I',® FJVM s /"
unfolding start by (rule BV_correct_initial)
from wt this s show 7thesis by (rule no_type_errors)
qed

As corollary we get that the aggressive and the defensive machine are equivalent for welltyped
programs (if started in a conformant state or in the canonical start state)

corollary welltyped_commutes:
fixes G (<I'>) and Phi (<®>)
assumes wt: "wt_jvm_prog I' ®" and *: "I',® FJVM s /"
shows "I' = (Normal s) —jvmd— (Normal t) =T F s —jvm— t"
apply rule
apply (erule defensive_imp_aggressive, rule welltyped_aggressive_imp_defensive)
apply (rule wt)
apply (rule *)
apply assumption
done

corollary welltyped_initial_commutes:
fixes G (<I'>) and Phi (<®>)
assumes wt: "wt_jvm_prog I' "
assumes is_class: "is_class I' C"
and "method": "method (I',C) (m,[]) = Some (C, b)"
and m: "m # init"
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defines start: "s = start_state I' C m"
shows "I'  (Normal s) —jvmd— (Normal t) =T + s —jvm— t"
proof -

from wt is_class "method" have "I',® FJVM s /"
unfolding start by (rule BV_correct_initial)
with wt show ?7thesis by (rule welltyped_commutes)
qed

end

4.25 Kildall for the JVM

theory JVM

imports Typing Framework_JVM

begin

definition kiljvm :: "jvm_prog = nat = nat = ty = exception_table =

instr list = JVMType.state list = JVMType.state list" where
"kiljvm G maxs maxr rT et bs ==
kildall (JVMType.le G maxs maxr) (JVMType.sup G maxs maxr) (exec G maxs rT et bs)"

definition wt_kil :: "jvm_prog = cname = ty list = ty = nat = nat =
exception_table = instr list = bool" where

"wt_kil G C pTs rT mxs mxl et ins ==

check_bounded ins et AN 0 < size ins A

(let first = Some ([], (0K (Class C))#((map OK pTs))@(replicate mxl Err));
start OK first#(replicate (size ins - 1) (OK Nome));
result = kiljvm G mxs (1+size pTs+mxl) rT et ins start

in Vn < size ins. result!n # Err)"

definition wt_jvm_prog _kildall :: "jvm_prog = bool" where
"wt_jvm_prog_kildall G ==
wf_prog (AG C (sig,rT, (maxs,max1l,b,et)). wt_kil G C (snd sig) rT maxs maxl et b) G"

theorem is_bcv_kiljvm:
"[ wf_prog wf_mb G; bounded (exec G maxs rT et bs) (size bs) | =
is_bcv (JVMType.le G maxs maxr) Err (exec G maxs rT et bs)
(size bs) (states G maxs maxr) (kiljvm G maxs maxr rT et bs)"
apply (unfold kiljvm_def sl_triple_conv)
apply (rule is_bcv_kildall)
apply (simp (no_asm) add: sl_triple_conv [symmetric])
apply (force intro!: semilat_JVM_slI dest: wf_acyclic
simp add: symmetric sl_triple_conv)
apply (simp (no_asm) add: JVM_le_unfold)
apply (blast intro!: order_widen wf_converse_subclsl_impl_acc_subtype
dest: wf_subclsl wf_acyclic wf_prog_ws_prog)
apply (simp add: JVM_le_unfold)
apply (erule exec_pres_type)
apply assumption
apply (drule wf_prog_ws_prog, erule exec_mono, assumption)
done

lemma subset_replicate: "set (replicate n x) C {x}"
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by (induct n) auto

lemma in_set_replicate:
"x € set (replicate ny) — x =y"
proof -
assume "x € set (replicate n y)"
also have "set (replicate n y) C {y}" by (rule subset_replicate)
finally have "x € {y}" .
thus 7thesis by simp
qed

theorem wt_kil_correct:
assumes wf: "wf_prog wf_mb G"
assumes C: "is_class G C"
assumes pTs: "set pTs C types G"

assumes wtk: "wt_kil G C pTs rT maxs mxl et bs"

shows "dphi. wt_method G C pTs rT maxs mxl bs et phi"
proof -
let ?start = "OK (Some ([], (0K (Class C))#((map OK pTs))@(replicate mxl Err)))
#(replicate (size bs - 1) (OK None))"

from wtk obtain maxr r where
bounded: "check_bounded bs et" and

result: "r = kiljvm G maxs maxr rT et bs 7start"” and
success: "Vn < size bs. r!n # Err" and

instrs: "0 < size bs" and

maxr: "maxr = Suc (length pTs + mx1)"

by (unfold wt_kil_def) simp

from bounded have "bounded (exec G maxs rT et bs) (size bs)"

by (unfold exec_def) (intro bounded_lift check_bounded_is_bounded)
with wf have bcv:

"is_bcv (JVMType.le G maxs maxr) Err (exec G maxs rT et bs)

(size bs) (states G maxs maxr) (kiljvm G maxs maxr rT et bs)"

by (rule is_bcv_kiljvm)

from C pTs instrs maxr

have "7start € list (length bs) (states G maxs maxr)"
apply (unfold JVM_states_unfold)
apply (rule listI)
apply (auto intro: list_appendI dest!: in_set_replicate)
apply force
done

with bcv success result have
"Jtselist (length bs) (states G maxs maxr).
?start <=[JVMType.le G maxs maxr] ts A
wt_step (JVMType.le G maxs maxr) Err (exec G maxs rT et bs) ts"
by (unfold is_bcv_def) auto
then obtain phi’ where
phi’: "phi’ € list (length bs) (states G maxs maxr)" and
s: "?start <=[JVMType.le G maxs maxr] phi’" and
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w: "wt_step (JVMType.le G maxs maxr) Err (exec G maxs rT et bs) phi’"
by blast
hence wt_err_step:
"wt_err_step (sup_state_opt G) (exec G maxs rT et bs) phi’"
by (simp add: wt_err_step_def exec_def JVM_le_Err_conv)

from s have le: "JVMType.le G maxs maxr (?start ! 0) (phi’!0)"
by (drule_tac p=0 in le_listD) (simp add: lesub_def)+

from phi’ have 1: "size phi’ = size bs" by simp

with instrs w have "phi’ ! 0 # Err" by (unfold wt_step_def) simp

with instrs 1 have phiO: "OK (map ok_val phi’ ! 0) = phi’ ! 0"
by auto

from phi’ have "check_types G maxs maxr phi’" by (simp add: check_types_def)
also from w have "phi’ = map 0K (map ok_val phi’)"
by (auto simp add: wt_step_def intro!: nth_equalityI)
finally
have check_types:
"check_types G maxs maxr (map OK (map ok_val phi’))" .

from 1 bounded
have "bounded (Apc. eff (bs!pc) G pc et) (length phi’)"
by (simp add: exec_def check_bounded_is_bounded)
hence bounded’: "bounded (exec G maxs rT et bs) (length bs)"
by (auto intro: bounded_lift simp add: exec_def 1)
with wt_err_step
have "wt_app_eff (sup_state_opt G) (Apc. app (bs!pc) G maxs rT pc et)
(Apc. eff (bs!pc) G pc et) (map ok_val phi’)"
by (auto intro: wt_err_imp_wt_app_eff simp add: 1 exec_def)
with instrs 1 le bounded bounded’ check_types maxr
have "wt_method G C pTs rT maxs mxl bs et (map ok_val phi’)"
apply (unfold wt_method_def wt_app_eff_def)
apply simp
apply (rule conjI)
apply (unfold wt_start_def)
apply (rule JVM_le_convert [THEN iffD1])
apply (simp (no_asm) add: phiO)
apply clarify
apply (erule allE, erule impE, assumption)
apply (elim conjE)
apply (clarsimp simp add: lesub_def wt_instr_def)
apply (simp add: exec_def)
apply (drule bounded_err_stepD, assumption+)
apply blast
done

thus ?7thesis by blast
qed

theorem wt_kil_complete:
assumes wf: "wf_prog wf_mb G"
assumes C: "is_class G C"
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assumes pTs: "set pTs C types G"
assumes wtm: "wt_method G C pTs rT maxs mxl bs et phi"

shows "wt_kil G C pTs rT maxs mxl et bs"
proof -
let ?mxr = "l1+size pTs+mx1"

from wtm obtain
instrs: "0 < length bs" and
len: "length phi = length bs" and
bounded: '"check_bounded bs et" and
ck_types: "check_types G maxs 7mxr (map OK phi)" and
wt_start: "wt_start G C pTs mxl phi" and
wt_ins: "VYpc. pc < length bs —
wt_instr (bs ! pc) G rT phi maxs (length bs) et pc"
by (unfold wt_method_def) simp

from ck_types len

have istype_phi:
"map OK phi € list (length bs) (states G maxs (1+size pTs+mx1))"
by (auto simp add: check_types_def intro!: 1listI)

let ?eff = "Apc. eff (bs!pc) G pc et"
let ?7app = "Apc. app (bs!pc) G maxs rT pc et"

from bounded
have bounded_exec: "bounded (exec G maxs rT et bs) (size bs)"
by (unfold exec_def) (intro bounded_lift check_bounded_is_bounded)

from wt_ins
have "wt_app_eff (sup_state_opt G) 7app 7eff phi"
apply (unfold wt_app_eff_def wt_instr_def lesub_def)
apply (simp (no_asm) only: len)
apply blast
done
with bounded_exec
have "wt_err_step (sup_state_opt G) (err_step (size phi) 7app ?eff) (map OK phi)"
by - (erule wt_app_eff_imp_wt_err,simp add: exec_def len)
hence wt_err:
"wt_err_step (sup_state_opt G) (exec G maxs rT et bs) (map OK phi)"
by (unfold exec_def) (simp add: len)

from wf bounded_exec
have is_bcv:
"is_bcv (JVMType.le G maxs 7mxr) Err (exec G maxs rT et bs)
(size bs) (states G maxs 7mxr) (kiljvm G maxs ?mxr rT et bs)"
by (rule is_bcv_kiljvm)

let 7?start = "OK (Some ([], (0K (Class C))#((map OK pTs))@(replicate mxl Err)))
#(replicate (size bs - 1) (OK Nome))"

from C pTs instrs
have start: "?start € list (length bs) (states G maxs 7mxr)"
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apply (unfold JVM_states_unfold)

apply (rule listI)

apply (auto intro!: list_appendI dest!: in_set_replicate)
apply force

done

let 7?phi = "map OK phi"
have less_phi: "?start <=[JVMType.le G maxs ?7mxr] 7phi"
proof -
from len instrs
have "length 7start = length (map OK phi)" by simp
moreover
{ fix n
from wt_start
have "G - ok_val (7start!0) <=’ phi!0"
by (simp add: wt_start_def)
moreover
from instrs len
have "0 < length phi" by simp
ultimately
have "JVMType.le G maxs 7mxr (?start!0) (7phi!0)"
by (simp add: JVM_le_Err_conv Err.le_def lesub_def)
moreover
{ fix n’
have "JVMType.le G maxs Pmxr (0K None) (7phi!n)"
by (auto simp add: JVM_le_Err_conv Err.le_def lesub_def
split: err.splits)
hence "[ n = Suc n’; n < length 7start |
= JVMType.le G maxs 7mxr (7start!n) (7philn)"
by simp
}
ultimately
have "n < length 7start —> (?start!m) <=_(JVMType.le G maxs ?mxr) (?phil!n)"
by (unfold lesub_def) (cases n, blast+)
}

ultimately show ?thesis by (rule le_listI)
qed

from wt_err

have "wt_step (JVMType.le G maxs 7mxr) Err (exec G maxs rT et bs) 7phi"
by (simp add: wt_err_step_def JVM_le_Err_conv)

with start istype_phi less_phi is_bcv

have "Vp. p < length bs — kiljvm G maxs 7mxr rT et bs 7start ! p # Err"
by (unfold is_bcv_def) auto

with bounded instrs

show "wt_kil G C pTs rT maxs mxl et bs" by (unfold wt_kil_def) simp

qed

theorem jvm_kildall_sound_complete:
"wt_jvm_prog kildall G = (3Phi. wt_jvm_prog G Phi)"
proof
let ?Phi = "\C sig. let (C,rT, (maxs,maxl,ins,et)) = the (method (G,C) sig) in
SOME phi. wt_method G C (snd sig) rT maxs maxl ins et phi"
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assume "wt_jvm_prog_kildall G"
hence "wt_jvm_prog G ?Phi"
apply (unfold wt_jvm_prog_def wt_jvm_prog_kildall_def)
apply (erule jvm_prog_lift)
apply (auto dest!: wt_kil_correct intro: somel)
done
thus "JPhi. wt_jvm_prog G Phi" by fast
next
assume "I Phi. wt_jvm_prog G Phi"
thus "wt_jvm_prog_kildall G"
apply (clarify)
apply (unfold wt_jvm_prog_def wt_jvm_prog_kildall_def)
apply (erule jvm_prog_lift)
apply (auto intro: wt_kil_complete)
done
qed

end

4.26 Example Welltypings

theory BVExample

imports
"../JVM/JVMListExample"
BVSpecTypeSafe
JVM

begin

This theory shows type correctness of the example program in section 3.6 (p. 80) by explicitly
providing a welltyping. It also shows that the start state of the program conforms to the
welltyping; hence type safe execution is guaranteed.

4.26.1 Setup

Abbreviations for definitions we will have to use often in the proofs below:

lemmas name_defs = list_name_def test_name_def val_name_def next_name_def

lemmas system_defs = SystemClasses_def ObjectC_def NullPointerC_def
OutOfMemoryC_def ClassCastC_def

lemmas class_defs = list_class_def test_class_def

These auxiliary proofs are for efficiency: class lookup, subclass relation, method and field
lookup are computed only once:

lemma class_Object [simp]:
"class E Object = Some (undefined, [],[])"
by (simp add: class_def system_defs E_def)

lemma class_NullPointer [simp]:
"class E (Xcpt NullPointer) = Some (Object, [1, [I)"
by (simp add: class_def system_defs E_def)

lemma class_OutOfMemory [simp]:
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"class E (Xcpt OutOfMemory) = Some (Object, [1, [I)"
by (simp add: class_def system_defs E_def)

lemma class_ClassCast [simp]:
"class E (Xcpt ClassCast) = Some (Object, [1, [1)"
by (simp add: class_def system_defs E_def)

lemma class_list [simp]:
"class E list_name = Some list_class"
by (simp add: class_def system_defs E_def name_defs distinct_classes [symmetric])

lemma class_test [simp]:
"class E test_name = Some test_class"
by (simp add: class_def system_defs E_def name_defs distinct_classes [symmetric])

lemma E_classes [simp]:
"{C. is_class E C} = {list_name, test_name, Xcpt NullPointer,
Xcpt ClassCast, Xcpt OutOfMemory, Object}"
by (auto simp add: is_class_def class_def system_defs E_def name_defs class_defs)

The subclass releation spelled out:

lemma subclsi:
"subclsl E = {(list_name,Object), (test_name,0Object), (Xcpt NullPointer, Object),
(Xcpt ClassCast, Object), (Xcpt OutOfMemory, Object)}"
apply (simp add: subclsl_def2)
apply (simp add: name_defs class_defs system_defs E_def class_def)
apply (simp add: Sigma_def)
apply auto
done

The subclass relation is acyclic; hence its converse is well founded:

lemma notin_rtrancl:
"(a, b) € r* = a # b = (Ay. (a, y) ¢ r) — False"
by (auto elim: converse_rtranclE)

lemma acyclic_subclsl_E: "acyclic (subclsl E)"
apply (rule acyclicI)
apply (simp add: subclsl)
apply (auto dest!: tranclD)
apply (auto elim!: notin_rtrancl simp add: name_defs distinct_classes)
done

lemma wf_subclsi E: "wf ((subclsl E)~!')"
apply (rule finite_acyclic_wf_converse)
apply (simp add: subclsl del: insert_iff)
apply (rule acyclic_subclsl_E)
done

Method and field lookup:

lemma method_Object [simp]:
"method (E, Object) = Map.empty"
by (simp add: method_rec_lemma [OF class_Object wf_subclsl_E])
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lemma method_append [simp]:
"method (E, list_name) (append_name, [Class list_name]) =
Some (list_name, PrimT Void, 3, 0, append_ins, [(1, 2, 8, Xcpt NullPointer)])"
apply (insert class_list)
apply (unfold list_class_def)
apply (drule method_rec_lemma [OF _ wf_subclsl_E])
apply simp
done

lemma method_makelist [simp]:
"method (E, test_name) (makelist_name, []) =
Some (test_name, PrimT Void, 3, 2, make_list_ins, [])"
apply (insert class_test)
apply (unfold test_class_def)
apply (drule method_rec_lemma [OF _ wf_subclsl_E])
apply simp
done

lemma field_val [simp]:
"field (E, list_name) val_name = Some (list_name, PrimT Integer)"
apply (unfold TypeRel.field_def)
apply (insert class_list)
apply (unfold list_class_def)
apply (drule fields_rec_lemma [OF _ wf_subclsl_E])
apply simp
done

lemma field_next [simp]:
"field (E, list_name) next_name = Some (list_name, Class list_name)"
apply (unfold TypeRel.field_def)
apply (insert class_list)
apply (unfold list_class_def)
apply (drule fields_rec_lemma [OF _ wf_subclsl_E])
apply (simp add: name_defs distinct_fields [symmetric])
done

lemma [simp]: "fields (E, Object) = []"
by (simp add: fields_rec_lemma [OF class_0Object wf_subclsl_E])

lemma [simp]: "fields (E, Xcpt NullPointer) = []"
by (simp add: fields_rec_lemma [OF class_NullPointer wf_subclsl_E])

lemma [simp]: "fields (E, Xcpt ClassCast) = []"
by (simp add: fields_rec_lemma [OF class_ClassCast wf_subclsl_E])

lemma [simp]: "fields (E, Xcpt OutOfMemory) = []"
by (simp add: fields_rec_lemma [OF class_OutOfMemory wf_subclsl_E])

lemma [simp]: "fields (E, test_name) = []"
apply (insert class_test)
apply (unfold test_class_def)
apply (drule fields_rec_lemma [OF _ wf_subclsl_E])
apply simp
done
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lemmas [simp] = is_class_def

The next definition and three proof rules implement an algorithm to enumarate natural num-
bers. The command apply (elim pc_end pc_next pc_O transforms a goal of the form

pc <n — P pc
into a series of goals

PO

P (Suc 0)

Pn

definition intervall :: "nat = nat = nat = bool" (<_ € [_, _’)>) where
"x € [a, b) =a < x A x < b"

lemma pc_0: "x <n = (x € [0, n) = P x) = P x"
by (simp add: intervall_def)

lemma pc_next: "x € [n0, n) = P n0 = (x € [Suc n0, n) = P x) = P x"
apply (cases "x=n0")
apply (auto simp add: intervall_def)
done

lemma pc_end: "x € [n,n) = P x"
by (unfold intervall_def) arith

4.26.2 Program structure

The program is structurally wellformed:

lemma wf_struct:
"wf_prog (AG C mb. True) E" (is "wf_prog 7mb E")
proof -
have "unique E"
by (simp add: system_defs E_def class_defs name_defs distinct_classes)
moreover
have "set SystemClasses C set E" by (simp add: system_defs E_def)
hence "wf_syscls E" by (rule wf_syscls)
moreover
have "wf_cdecl 7mb E ObjectC" by (simp add: wf_cdecl_def ObjectC_def)
moreover
have "wf_cdecl ?mb E NullPointerC"
by (auto elim: notin_rtrancl
simp add: wf_cdecl_def name_defs NullPointerC def subclsl)
moreover
have "wf_cdecl 7mb E ClassCastC"
by (auto elim: notin_rtrancl
simp add: wf_cdecl_def name_defs ClassCastC_def subclsl)
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moreover
have "wf_cdecl 7mb E OutOfMemoryC"
by (auto elim: notin_rtrancl
simp add: wf_cdecl_def name_defs OutOfMemoryC_def subclsl)
moreover
have "wf_cdecl ?mb E (list_name, list_class)"
apply (auto elim!: notin_rtrancl
simp add: wf_cdecl_def wf_fdecl_def list_class_def
wf_mdecl_def wf_mhead_def subclsl)
apply (auto simp add: name_defs distinct_classes distinct_fields)
done
moreover
have "wf_cdecl ?mb E (test_name, test_class)"
apply (auto elim!: notin_rtrancl
simp add: wf_cdecl_def wf_fdecl_def test_class_def
wf_mdecl_def wf_mhead_def subclsl)
apply (auto simp add: name_defs distinct_classes distinct_fields)
done
ultimately
show 7thesis
by (simp add: wf_prog_def ws_prog_def wf_cdecl_mrT_cdecl_mdecl E_def SystemClasses_def)
qged

4.26.3 Welltypings

We show welltypings of the methods append_name in class list_name, and makelist_name in
class test_name:

lemmas eff_simps [simp] = eff_def norm_eff_def xcpt_eff_def
declare appInvoke [simp del]

definition phi_append :: method_type (<y,>) where

"o, = map (A(x,y). Some (x, map OK y)) [

( [], [Class list_name, Class list_name]),
( [Class list_name], [Class list_name, Class list_name]),
( [Class list_name], [Class list_name, Class list_name]),
( [Class list_name, Class list_name], [Class list_name, Class list_name]),
([NT, Class list_name, Class list_name], [Class list_name, Class list_name]),
( [Class list_name], [Class list_name, Class list_name]),
( [Class list_name, Class list_name], [Class list_name, Class list_name]),
( [PrimT Void], [Class list_name, Class list_name]),
( [Class Object], [Class list_name, Class list_name]),
( [], [Class list_name, Class list_name]),
( [Class list_name], [Class list_name, Class list_name]),
( [Class list_name, Class list_name], [Class list_name, Class list_name]),
( [], [Class list_name, Class list_name]),
( [PrimT Void], [Class list_name, Class list_name])]"

lemma bounded_append [simp]:
"check_bounded append_ins [(Suc 0, 2, 8, Xcpt NullPointer)]"
apply (simp add: check_bounded_def)
apply (simp add: eval_nat_numeral append_ins_def)
apply (rule alll, rule impI)
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apply
apply
done

(elim pc_end pc_next pc_O0)
auto

lemma types_append [simp]: "check_types E 3 (Suc (Suc 0)) (map OK p,)"

apply
apply
apply
done

(auto simp add: check_types_def phi_append_def JVM_states_unfold)
(unfold list_def)
auto

lemma wt_append [simp]:
"wt_method E list_name [Class list_name] (PrimT Void) 3 0 append_ins

apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
done

[(Suc 0, 2, 8, Xcpt NullPointer)] ¢,"
(simp add: wt_method_def wt_start_def wt_instr_def)
(simp add: phi_append_def append_ins_def)
clarify
(elim pc_end pc_next pc_O0)
simp
(fastforce simp add: match_exception_entry_def sup_state_conv subclsl)
simp
simp
(fastforce simp add: sup_state_conv subclsil)
simp
(simp add: app_def xcpt_app_der)
simp
simp
simp
(simp add: match_exception_entry_def)
(simp add: match_exception_entry_def)
simp
simp

Some abbreviations for readability

abbreviation Clist :: ty

where

"Clist == Class list_name"

abbreviation Ctest :: ty

where

"Ctest == Class test_name"

definition phi_makelist :: method_type (<¢,,>) where

n f—
Pm =

A A A A A A A A A A A

map (A(x,y). Some (x, y)) [

[1, [0K Ctest, Err , Err D,

[Clist], [OK Ctest, Err , Err 1),

[Clist, Clist], [OK Ctest, Err , Err 1),
[Clist], [OK Clist, Err , Err 1),

[PrimT Integer, Clist], [OK Clist, Err , Err 1),
[], [OK Clist, Err , Err 1D,

[Clist], [OK Clist, Err , Err 1),

[Clist, Clist], [OK Clist, Err , Err 1),
[Clist], [OK Clist, OK Clist, Err 1),

[PrimT Integer, Clist], [0OK Clist, OK Clist, Err 1),
[1, [0OK Cclist, OK Clist, Err D,

[Clist], [OK Clist, OK Clist, Err 1,

[Clist, Clist], [OK Clist, OK Clist, Err 1),

245
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[Clist], [0OK Clist, OK Clist, OK Clist]),
[PrimT Integer, Clist], [OK Clist, OK Clist, OK Clist]),
[], [0K Clist, OK Clist, OK Clist]),
[Clist], [0OK Clist, OK Clist, OK Clist]),
[Clist, Clist], [0K Clist, OK Clist, OK Clist]),
[PrimT Void], [0K Clist, OK Clist, OK Clist]),
[], [OK Clist, OK Clist, OK Clist]),
[Clist], [0OK Clist, OK Clist, OK Clist]),
[Clist, Clist], [0K Clist, OK Clist, OK Clist]),
[PrimT Void], [0K Clist, OK Clist, OK Clist])]"

NN AAAA~AAAAA

lemma bounded_makelist [simp]: "check_bounded make_list_ins []"
apply (simp add: check_bounded_def)
apply (simp add: eval_nat_numeral make_list_ins_def)
apply (rule alll, rule impI)
apply (elim pc_end pc_next pc_0)
apply auto
done

lemma types_makelist [simp]: "check_types E 3 (Suc (Suc (Suc 0))) (map OK @,)"
apply (auto simp add: check_types_def phi_makelist_def JVM_states_unfold)
apply (unfold list_def)
apply auto
done

lemma wt_makelist [simp]:
"wt_method E test_name [] (PrimT Void) 3 2 make_list_ins [] ¢.,"
apply (simp add: wt_method_def)
apply (simp add: make_list_ins_def phi_makelist_def)
apply (simp add: wt_start_def eval_nat_numeral)
apply (simp add: wt_instr_def)
apply clarify
apply (elim pc_end pc_next pc_0)
apply (simp add: match_exception_entry_def)
apply simp
apply simp
apply simp
apply (simp add: match_exception_entry_def)
apply (simp add: match_exception_entry_def)
apply simp
apply simp
apply simp
apply (simp add: match_exception_entry_def)
apply (simp add: match_exception_entry_def)
apply simp
apply simp
apply simp
apply (simp add: match_exception_entry_def)
apply (simp add: match_exception_entry_def)
apply simp
apply (simp add: app_def xcpt_app_def)
apply simp
apply simp
apply simp
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apply (simp add: app_def xcpt_app_def)

apply simp
done

The whole program is welltyped:

definition Phi :: prog type (<®>) where
"® C sg = if C = test_name A sg = (makelist_name, []) then ¢, else
if C = list_name A sg = (append_name, [Class list_name]) then ¢, else []"

lemma wf_prog:
"wt_jvm_prog E ®"
apply (unfold wt_jvm_prog_def)
apply (rule wf_mb’E [OF wf_struct])
apply (simp add: E_def)
apply clarify
apply (fold E_def)
apply (simp add: system_defs class_defs Phi_def)
apply auto
done

4.26.4 Conformance

Execution of the program will be typesafe, because its start state conforms to the welltyping;:

lemma "E,® FJVM start_state E test_name makelist_name /"
apply (rule BV_correct_initial)
apply (rule wf_prog)

apply simp
apply simp
done

4.26.5 Example for code generation: inferring method types

definition test_kil :: "jvm_prog = cname = ty list = ty = nat = nat =
exception_table = instr list = JVMType.state list" where
"test_kil G C pTs rT mxs mxl et instr =
(let first Some ([], (0K (Class C))#((map OK pTs))@(replicate mxl Err));
start = OK first#(replicate (size instr - 1) (OK None))
in kiljvm G mxs (1+size pTs+mxl) rT et instr start)"

lemma [code]:
"unstables r step ss =
fold (A\p A. if —stable r step ss p then insert p A else A) [0..<size ss] {}"
proof -
have "unstables r step ss = (UN p:{..<size ss}. if —stable r step ss p then {p} else
{H"
apply (unfold unstables_def)
apply (rule equalityI)
apply (rule subsetI)
apply (erule CollectE)
apply (erule conjE)
apply (rule UN_I)
apply simp
apply simp
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apply (rule subsetI)
apply (erule UN_E)
apply (case_tac "— stable r step ss p")
apply simp_all
done
also have "Af. (UN p:{..<size ss}. f p) = |J (set (map f [0..<size ss]))" by auto
also note Sup_set_fold also note fold_map
also have "(U) o (Ap. if — stable r step ss p then {p} else {}) =
(Ap A. if —stable r step ss p then insert p A else A)"
by (auto simp add: fun_eq_iff)
finally show ?7thesis .
qed

definition some_elem :: "’a set = ’a" where [code del]:
"some_elem = (AS. SOME x. x € S)"

code__printing
constant some_elem — (SML) "(case/ _ of/ Set/ xs/ =>/ hd/ xs)"

This code setup is just a demonstration and not sound!

lemma False

proof -
have "some_elem (set [False, True]) = False"
by eval
moreover have "some_elem (set [True, False]) = True"
by eval

ultimately show False
by (simp add: some_elem_def)
qed

lemma [code]:
"iter f step ss w = while (A(ss, w). — Set.is_empty w)
(\(ss, w).
let p = some_elem w in propa f (step p (ss ! p)) ss (w - {p}))
(ss, w"
by (simp add: iter_def some_elem_def)

lemma JVM_sup_unfold [code]:
"JVMType.sup S m n = 1ift2 (Opt.sup
(Product.sup (Listn.sup (JType.sup S))

(Ax y. 0K (map2 (1ift2 (JType.sup S)) x y))))"

apply (unfold JVMType.sup_def JVMType.sl_def Opt.esl_def Err.sl_def
stk_esl_def reg_sl_def Product.esl_def
Listn.sl_def upto_esl_def JType.esl_def Err.esl_def)

by simp

lemmas [code] =
JType.sup_def [unfolded exec_lub_def]
JVM_le_unfold
lesub_def
plussub_def
wf_class_code
widen.equation
match_exception_entry_def
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definition testl where
"testl = test_kil E list_name [Class list_name] (PrimT Void) 3 0
[(Suc 0, 2, 8, Xcpt NullPointer)] append_ins"
definition test2 where
"test2 = test_kil E test_name [] (PrimT Void) 3 2 [] make_list_ins"

ML_ val <«
@{code testl};
@{code test2};

end

theory AuxLemmas
imports "../J/JBasis"
begin

lemma app_nth_greater_len [simp]:
"length pre < ind = (pre @ a # post) ! (Suc ind) = (pre @ post) ! ind"
apply (induct pre arbitrary: ind)
apply clarsimp
apply (case_tac ind)
apply auto
done

lemma length_takeWhile: "v € set xs = length (takeWhile (A\z. z # v) xs) < length
Xs”

by (induct xs) auto

lemma nth_length_takeWhile [simp]:
"v € set xs = xs ! (length (takeWhile (Jjz. z~=v) xs)) = v"
by (induct xs) auto

lemma map_list_update [simp]:
"[ x € set xs; distinct xs] —
(map f xs) [length (takeWhile (Az. z # x) xs) := v] = map (f(x:=v)) xs"
apply (induct xs)
apply simp
apply (rename_tac a xs)
apply (case_tac "x=a")
apply auto
done
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lemma split_compose:
"(case_prod f) o (A (a,b). ((fa a), (fb b))) = (A (a,b). (f (fa a) (fb b)))"
by (simp add: split_def o_def)

lemma split_iter:

"(A (a,b,c). ((g1 a), (g2 b), (g3 c))) = (A (a,p). ((g1 a), (A (b, c). ((g2 b), (g3
c))) p))"

by (simp add: split_def o_def)

lemma singleton_in_set: "A = {a} = a € A" by simp

lemma the_map_upd: "(the o f(x+—v)) = (the o f)(x:=v)"
by (simp add: fun_eq_iff)

lemma map_of_in_set:
"(map_of xs x = None) = (x ¢ set (map fst xs))"
by (induct xs, auto)

lemma map_map_upd [simp]:
"y ¢ set xs —> map (the o f(y—v)) xs = map (the o f) xs"
by (simp add: the_map_upd)

lemma map_map_upds [simp]:
"(Wy€Eset ys. y ¢ set xs) —> map (the o f(ys[—]vs)) xs = map (the o f) xs"
by (induct xs arbitrary: f vs) auto

lemma map_upds_distinct [simp]:
"distinct ys — length ys = length vs —> map (the o f(ys[—]vs)) ys = vs"
apply (induct ys arbitrary: f vs)
apply simp
apply (case_tac vs)
apply simp_all
done

lemma map_of_map_as_map_upd:

"distinct (map f zs) = map_of (map (A p. (f p, g p)) zs) = Map.empty (map f zs [—]
map g zs)"

by (induct zs) auto
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lemma map_upds_SomeD:
"(m(xs[—1lys)) k = Some y = k € (set xs) V (m k = Some y)"
apply (induct xs arbitrary: m ys)
apply simp
apply (case_tac ys)
apply fastforce+
done

lemma map_of_upds_SomeD: "((map_of m) (xs[—]ys)) k = Some y
— k € (set (xs @ map fst m))"
by (auto dest: map_upds_SomeD map_of_SomeD fst_in_set_lemma)

lemma map_of_map_prop:

"[map_of (map f xs) k = Some v; Vx € set xs. P1 x; Vx. P1 x — P2 (f x)] = P2 (k,
v)"

by (induct xs) (auto split: if_split_asm)

lemma map_of_map2: "Vx € set xs. (fst (f x)) = (fst x) =
map_of (map f xs) a = map_option (A b. (snd (f (a, b)))) (map_of xs a)"
by (induct xs, auto)

end

theory DefsComp
imports "../JVM/JVMExec"
begin

definition method_rT :: "cname X ty x ’c = ty" where
"method_rT mtd == (fst (snd mtd))"

definition

gx :: "xstate = val option" where "gx = fst"
definition

gs :: "xstate = state" where "gs = snd"
definition

gh :: "xstate = aheap" where "gh = fstosnd"
definition

gl :: "xstate = State.locals" where "gl = sndosnd"
definition

gmb :: "’a prog = cname = sig = ’a"

where "gmb G cn si = snd(snd(the(method (G,cn) si)))"

definition
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gis :: "jvm_method = bytecode"
where "gis = fst o snd o snd"

definition

gjmb_pns :: "java_mb = vname list" where "gjmb_pns = fst"
definition

gjmb_lvs :: "java_mb = (vnameXxty)list" where "gjmb_lvs = fstosnd"
definition

gjmb_blk :: "java_mb = stmt" where "gjmb_blk = fstosndosnd"
definition

gjmb_res :: "java_mb = expr" where '"gjmb_res = sndosndosnd"
definition

gjmb_plns :: "java_mb =- vname list"

where ‘"gjmb_plns = Ajmb. gjmb_pns jmb @ map fst (gjmb_lvs jmb)"

definition
glvs :: "java_mb = State.locals = locvars'
where "glvs jmb loc = map (theoloc) (gjmb_plns jmb)"

lemmas gdefs = gx_def gh_def gl_def gmb_def gis_def glvs_def
lemmas gjmbdefs = gjmb_pns_def gjmb_lvs_def gjmb_blk_def gjmb_res_def gjmb_plns_def

lemmas galldefs = gdefs gjmbdefs

definition locvars_locals :: "java_mb prog = cname = sig = State.locals = locvars"
where

"locvars_locals G C S 1lvs == the (lvs This) # glvs (gmb G C S) 1lvs"
definition locals_locvars :: "java_mb prog = cname = sig = locvars = State.locals"
where

"locals_locvars G C S lvs ==

Map.empty ((gjmb_plns (gmb G C S))[—](tl 1lvs), This+—(hd 1lvs))"

definition locvars_xstate :: "java_mb prog = cname = sig = xstate = locvars" where
"locvars_xstate G C S xs == locvars_locals G C S (gl xs)"

lemma locvars_xstate_par_dep:

"lvl = 1v2 —

locvars_xstate G C S (xcptl, hpl, 1lvl) = locvars_xstate G C S (xcpt2, hp2, 1v2)"
by (simp add: locvars_xstate_def gl_def)
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lemma gx_conv [simp]: "gx (xcpt, s) = xcpt" by (simp add: gx_def)

lemma gh_conv [simp]: "gh (xcpt, h, 1) = h" by (simp add: gh_def)

end

theory Index
imports AuxLemmas DefsComp

begin

definition index :: "java_mb => vname => nat" where
"index == A (pn,lv,blk,res) v.
if v = This
then 0

else Suc (length (takeWhile (A z. z~=v) (pn @ map fst 1v)))"

n

lemma index_length_pns:
[ i = index (pns,lvars,blk,res) vn;
wf_java_mdecl G C ((mn,pTs),rT, (pns,lvars,blk,res));
vn € set pns]
= 0 < i A i < Suc (length pns)"
apply (simp add: wf_java_mdecl_def index_def)
apply (subgoal_tac "vn # This")
apply (auto intro: length_takeWhile)
done

lemma index_length_lvars: "
[ i = index (pmns,lvars,blk,res) vn;
wf_java_mdecl G C ((mn,pTs),rT, (pns,lvars,blk,res));
vn € set (map fst lvars)]
—> (length pns) < i A i < Suc((length pns) + (length lvars))"
apply (simp add: wf_java_mdecl_def index_def)
apply (subgoal_tac "vn # This")
apply simp
apply (subgoal_tac "V x € set pns. (A\z. z # vn) x")
apply simp
apply (subgoal_tac "length (takeWhile (Az. z # vn) (map fst lvars)) < length (map
fst lvars)")
apply simp
apply (rule length_takeWhile)
apply simp
apply (simp add: map_of_in_set)
apply (intro strip notI)
apply simp
apply blast
done
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lemma select_at_index :
"x € set (gjmb_plns (gmb G C S)) V x = This
=—> (the (loc This) # glvs (gmb G C S) loc) ! (index (gmb G C S) x) = the (loc x)"
apply (simp only: index_def gjmb_plns_def)
apply (case_tac "gmb G C S" rule: prod.exhaust)
apply (simp add: galldefs del: set_append map_append)
apply (rename_tac a b)
apply (case_tac b, simp add: gmb_def gjmb_lvs_def del: set_append map_append)
apply (intro strip)
apply (simp del: set_append map_append)
apply (frule length_takeWhile)
apply (frule_tac f = "(the o loc)" in nth_map)
apply simp
done

lemma 1ift_if: "(f (if b then t else e)) = (if b then (f t) else (f e))"
by auto

lemma update_at_index: "
[ distinct (gjmb_plns (gmb G C S));
x € set (gjmb_plns (gmb G C S)); x # This | =
(locvars_xstate G C S (Norm (h, 1)))[index (gmb G C S) x := val] =
locvars_xstate G C S (Norm (h, 1(x+>val)))"
apply (simp only: locvars_xstate_def locvars_locals_def index_def)
apply (case_tac "gmb G C S" rule: prod.exhaust, simp)
apply (rename_tac a b)
apply (case_tac b, simp)
apply (rule conjI)
apply (simp add: gl_def)
apply (simp add: galldefs del: set_append map_append)
done

lemma index_of_var: "[ xvar ¢ set pns; xvar ¢ set (map fst zs); xvar # This |

— index (pns, zs @ ((xvar, xval) # xys), blk, res) xvar = Suc (length pns + length
zs)"

apply (simp add: index_def)

apply (subgoal_tac "(Ax. ((x € (set pns)) — ((A\z. (z # xvar))x)))")

apply simp

apply (subgoal_tac "(takeWhile (Az. z # xvar) (map fst zs @ xvar # map fst xys)) =
map fst zs @ (takeWhile (A\z. z # xvar) (xvar # map fst xys))")

apply simp

apply (rule List.takeWhile_append2)

apply auto

done

definition disjoint_varnames :: "[vname list, (vmname X ty) list] = bool" where
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"disjoint_varnames pns lvars =
distinct pns A unique lvars A This ¢ set pns A This ¢ set (map fst lvars) A
(VpnEset pns. pn ¢ set (map fst lvars))"

lemma index_of_var2: "

disjoint_varnames pns (lvars_pre @ (vn, ty) # lvars_post)

= index (pns, lvars_pre @ (vn, ty) # lvars_post, blk, res) vn =

Suc (length pns + length lvars_pre)"

apply (simp add: disjoint_varnames_def index_def unique_def)

apply (subgoal_tac "vn #* This", simp)

apply (subgoal_tac
"takeWhile (A\z. z # vn) (map fst lvars_pre @ vn # map fst lvars_post) =
map fst lvars_pre @ takeWhile (A\z. z # vn) (vn # map fst lvars_post)")
apply simp

apply (rule List.takeWhile_append2)

apply auto

done

lemma wf_java_mdecl_disjoint_varnames:
"wf_java_mdecl G C (S,rT, (pns,lvars,blk,res))
=—> disjoint_varnames pns lvars"
apply (cases S)
apply (simp add: wf_java_mdecl_def disjoint_varnames_def map_of_in_set)
done

lemma wf_java_mdecl_length_pTs_pns:
"wf_java_mdecl G C ((mn, pTs), rT, pns, lvars, blk, res)
— length pTs = length pns"
by (simp add: wf_java_mdecl_def)

end

theory TranslCompTp
imports Index "../BV/JVMType"

begin

definition comb :: "[’a = ’b list X ’c, ’c = ’b list x ’d, ’al = ’b list x ’d"
(infixr <O> 55)

where

"comb == (A f1 f2 x0. let (xs1, x1) = f1 x0;
(xs2, x2) = f2 x1
in (xs1 @ xs2, x2))"

definition comb_nil :: "’a = ’b list X ’a" where
"comb_nil a == ([], a)"

lemma comb_nil_left [simp]: "comb_nil O f = f"
by (simp add: comb_def comb_nil_def split_beta)

lemma comb_nil_right [simp]: "f O comb_nil = f"
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by (simp add: comb_def comb_nil_def split_beta)

lemma comb_assoc [simp]: "(fa O fb) O fc = fa O (fb O fc)"
by (simp add: comb_def split_beta)

lemma comb_inv:
"(xs?, x’) = (f1 O f2) x0 —
dxs1 x1 xs2 x2. (xs1, x1) = (f1 x0) N (xs2, x2) = f2 x1 N xs’= xs1 @ xs2 N x’=x2"
by (case_tac "f1 x0") (simp add: comb_def split_beta)

abbreviation (input)
mt_of :: "method_type X state_type = method_type"
where "mt_of == fst"

abbreviation (input)
sttp_of :: "method_type X state_type = state_type"
where "sttp_of == snd"

definition nochangeST :: "state_type = method_type X state_type" where
"nochangeST sttp == ([Some sttpl], sttp)"
definition pushST :: "[ty list, state_type] = method_type X state_type" where

"pushST tps == (A (ST, LT). ([Some (ST, LT)], (tps @ ST, LT)))"

definition dupST :: "state_type = method_type X state_type" where
"dupST == (A (ST, LT). ([Some (ST, LT)], (hd ST # ST, LT)))"

definition dup_x1ST :: "state_type = method_type X state_type" where
"dup_x1ST == (A (ST, LT). ([Some (ST, LT)],
(hd ST # hd (t1 ST) # hd ST # (t1 (t1 ST)), LT)))"

definition popST :: "[nat, state_type] = method_type X state_type" where
"popST n == (A (ST, LT). ([Some (ST, LT)], (drop n ST, LT)))"

definition replST :: "[nat, ty, state_type] = method_type X state_type" where
"replST n tp == (A (ST, LT). ([Some (ST, LT)], (tp # (drop n ST), LT)))"

definition storeST :: "[nat, ty, state_type] = method_type X state_type" where
"storeST i tp == (A (ST, LT). ([Some (ST, LT)], (tl1 ST, LT [i:= OK tp])))"

primrec compTpExpr :: "java_mb = java_mb prog = expr =
state_type — method_type X state_type"
and compTpExprs :: "java_mb = java_mb prog = expr list =
state_type = method_type X state_type"
where

"compTpExpr jmb G (NewC c) = pushST [Class c]"
| "compTpExpr jmb G (Cast c e) = (compTpExpr jmb G e) O (replST 1 (Class c))"
| "compTpExpr jmb G (Lit val) = pushST [the (typeof (Av. None) val)l"
| "compTpExpr jmb G (BinOp bo el e2) =
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(compTpExpr jmb G el) O (compTpExpr jmb G e2) O
(case bo of
Eq => popST 2 O pushST [PrimT Boolean] O popST 1 O pushST [PrimT Boolean]
| Add => replST 2 (PrimT Integer))"
| "compTpExpr jmb G (LAcc vn) = (A (ST, LT).
pushST [ok_val (LT ! (index jmb vn))] (ST, LT))"
| "compTpExpr jmb G (vn::=e) =
(compTpExpr jmb G e) O dupST O (popST 1)"
| "compTpExpr jmb G ( {cn}e..fn ) =
(compTpExpr jmb G e) O replST 1 (snd (the (field (G,cn) fn)))"
| "compTpExpr jmb G (FAss cn el fn e2 ) =
(compTpExpr jmb G el) O (compTpExpr jmb G e2) O dup_x1ST O (popST 2)"
| "compTpExpr jmb G ({C}a..mn({fpTs}ps)) =
(compTpExpr jmb G a) O (compTpExprs jmb G ps) O
(replST ((length ps) + 1) (method_rT (the (method (G,C) (mn,fpTs)))))"
| "compTpExprs jmb G [] = comb_nil"
| "compTpExprs jmb G (e#es) = (compTpExpr jmb G e) O (compTpExprs jmb G es)"

primrec compTpStmt :: "java_mb = java_mb prog = stmt =
state_type = method_type X state_type"
where

"compTpStmt jmb G Skip = comb_nil"
| "compTpStmt jmb G (Expr e) = (compTpExpr jmb G e) O popST 1"
| "compTpStmt jmb G (cl;; c2) = (compTpStmt jmb G c1) O (compTpStmt jmb G c2)"
| "compTpStmt jmb G (If(e) cl Else c2) =
(pushST [PrimT Boolean]) O (compTpExpr jmb G e) O popST 2 O
(compTpStmt jmb G c1) O nochangeST O (compTpStmt jmb G c2)"
| "compTpStmt jmb G (While(e) c) =
(pushST [PrimT Boolean]) O (compTpExpr jmb G e) O popST 2 O
(compTpStmt jmb G c¢) O nochangeST"

definition compTpInit :: "java_mb = (vname * ty)
= state_type = method_type X state_type" where
"compTpInit jmb == (A (vn,ty). (pushST [ty]) O (storeST (index jmb vn) ty))"

primrec compTpInitLvars :: "[java_mb, (vname X ty) list] =
state_type = method_type X state_type"
where

"compTpInitLvars jmb [] = comb_nil"
| "compTpInitLvars jmb (lv#lvars) = (compTpInit jmb 1lv) O (compTpInitLvars jmb lvars)"

definition start_ST :: "opstack_type" where
"start ST == []"

definition start_LT :: "cname = ty list = nat = locvars_type" where
"start_LT C pTs n == (0K (Class C))#((map OK pTs))@(replicate n Err)"
definition compTpMethod :: "[java_mb prog, cname, java_mb mdecl] = method_type" where

"compTpMethod G C == A ((un,pTs),rT, jmb).
let (pms,lvars,blk,res) = jmb
in (mt_of
((compTpInitLvars jmb lvars O
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compTpStmt jmb G blk O
compTpExpr jmb G res U
nochangeST)
(start_ST, start_LT C pTs (length lvars))))"

definition compTp :: "java_mb prog => prog_type" where
"compTp G C sig == let (D, rT, jmb) = (the (method (G, C) sig))
in compTpMethod G C (sig, rT, jmb)"

definition ssize_sto :: "(state_type option) = nat" where
"ssize_sto sto == case sto of None = 0 | (Some (ST, LT)) = length ST"
definition max_of_list :: "mat list = nat" where
"max_of_list xs == foldr max xs 0"
definition max_ssize :: "method_type = nat" where
"max_ssize mt == max_of_list (map ssize_sto mt)"
end

theory TranslComp imports TranslCompTp begin

primrec compExpr :: "java_mb => expr => instr list"
and compExprs :: "java_mb => expr list => instr list"
where

"compExpr jmb (NewC c) = [New c]" |

"compExpr jmb (Cast c e) = compExpr jmb e @ [Checkcast c]" |

"compExpr jmb (Lit val) = [LitPush vall" |

"compExpr jmb (BinOp bo el e2) = compExpr jmb el @ compExpr jmb e2 @
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(case bo of Eq => [Ifcmpeq 3,LitPush(Bool False),Goto 2,LitPush(Bool True)]

| Add => [IAdd])" |

"compExpr jmb (LAcc vn) = [Load (index jmb vn)]" |

"compExpr jmb (vn::=e) = compExpr jmb e @ [Dup , Store (index jmb vn)]" |

"compExpr jmb ( {cn}e..fn ) = compExpr jmb e @ [Getfield fn cn]" |

"compExpr jmb (FAss cn el fn e2 ) =
compExpr jmb el @ compExpr jmb e2 @ [Dup_x1 , Putfield fn cn]" |

"compExpr jmb (Call cn el mn X ps) =
compExpr jmb el @ compExprs jmb ps @ [Invoke cn mn X]" |

"compExprs jmb [] = []" |

"compExprs jmb (e#es) = compExpr jmb e @ compExprs jmb es"

primrec compStmt :: "java_mb => stmt => instr list" where

"compStmt jmb Skip = []" |
"compStmt jmb (Expr e) = ((compExpr jmb e) @ [Popl)" |
"compStmt jmb (cl;; c2) = ((compStmt jmb c1) @ (compStmt jmb c2))" |

"compStmt jmb (If(e) cl1 Else c2) =
(let cnstf = LitPush (Bool False);

cnd = compExpr jmb e;
thn = compStmt jmb cli;
els = compStmt jmb c2;

test = Ifcmpeq (int(length thn +2));
thnex = Goto (int(length els +1))

in
[cnstf] @ cnd @ [test] @ thn @ [thnex] @ els)" |

"compStmt jmb (While(e) c) =
(let cnstf = LitPush (Bool False);
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cnd = compExpr jmb e;
bdy = compStmt jmb c;
test = Ifcmpeq (int(length bdy +2));

loop Goto (-(int((length bdy) + (length cnd) +2)))
in
[cnstf] @ cnd @ [test] @ bdy @ [loop])"

definition load_default_val :: "ty => instr" where
"load_default_val ty == LitPush (default_val ty)"

definition compInit :: "java_mb => (vname * ty) => instr list" where
"compInit jmb == A\ (vn,ty). [load_default_val ty, Store (index jmb vn)]"

definition compInitLvars :: "[java_mb, (vname X ty) list] = bytecode" where
"compInitLvars jmb lvars == concat (map (compInit jmb) lvars)"
definition compMethod :: "java_mb prog = cname = java_mb mdecl = jvm_method mdecl" where

"compMethod G C jmdl == let (sig, rT, jmb) = jmdl;
(pns,lvars,blk,res) = jmb;
mt = (compTpMethod G C jmdl);
bc = compInitLvars jmb lvars @
compStmt jmb blk @ compExpr jmb res @
[Return]
in (sig, rT, max_ssize mt, length lvars, bc, [])"

definition compClass :: "java_mb prog => java_mb cdecl=> jvm_method cdecl" where
"compClass G == \ (C,cno,fdls, jmdls). (C,cno,fdls, map (compMethod G C) jmdls)"

definition comp :: "java_mb prog => jvm_prog" where
"comp G == map (compClass G) G"

end

theory LemmasComp
imports TranslComp
begin

context
begin

declare split_paired_All [simp del]
declare split_paired_Ex [simp del]
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lemma c¢_hupd_conv:
"c_hupd h’ (xo0, (h,1)) = (x0, (if xo = None then h’ else h),1)"
by (simp add: c_hupd_def)

lemma gl_c_hupd [simp]: "(gl (c_hupd h xs)) = (gl xs)"
by (simp add: gl_def c_hupd_def split_beta)

lemma c_hupd_xcpt_invariant [simp]: "gx (c_hupd h’ (x0, st)) = xo"
by (cases st) (simp only: c_hupd_conv gx_conv)

lemma c_hupd_hp_invariant: "gh (c_hupd hp (None, st)) = hp"
by (cases st) (simp add: c_hupd_conv gh_def)

lemma unique_map_fst [rule_format]: "(V x € set xs. (fst x = fst (f x) )) —
unique (map f xs) = unique xs"
proof (induct xs)
case Nil show ?case by simp
next
case (Cons a list)
show ?case
proof
assume fst_eq: "Vx€Eset (a # list). fst x = fst (f x)"

have fst_set: "(fst a € fst ¢ set list) = (fst (f a) € fst ¢ f ¢ set list)"
proof
assume as: "fst a € fst ¢ set list"
then obtain x where fst_a_x: "x€set list A fst a = fst x"
by (auto simp add: image_iff)
then have "fst (f a) = fst (f x)" by (simp add: fst_eq)
with as show "(fst (f a) € fst ¢ f  set list)" by (simp add: fst_a_x)
next
assume as: "fst (f a) € fst ¢ f ¢ set list"
then obtain x where fst_a_x: "x€set list A fst (f a) = fst (f x)"
by (auto simp add: image_iff)
then have "fst a = fst x" by (simp add: fst_eq)
with as show "fst a € fst ¢ set list" by (simp add: fst_a_x)
qed

with fst_eq Cons
show "unique (map f (a # list)) = unique (a # list)"
by (simp add: unique_def fst_set image_comp)
qed
qed

lemma comp_unique: "unique (comp G) = unique G"
apply (simp add: comp_def)
apply (rule unique_map_fst)
apply (simp add: compClass_def split_beta)
done
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lemma comp_class_imp:
"(class G C = Some(D, fs, ms)) —>
(class (comp G) C = Some(D, fs, map (compMethod G C) ms))"
apply (simp add: class_def comp_def compClass_def)
apply (rule trans)
apply (rule map_of_map2)
apply auto
done

lemma comp_class_None:
"(class G C = None) = (class (comp G) C = None)"
apply (simp add: class_def comp_def compClass_def)
apply (simp add: map_of_in_set)
apply (simp add: image_comp [symmetric] o_def split_beta)
done

lemma comp_is_class: "is_class (comp G) C = is_class G C"
by (cases "class G C") (auto simp: is_class_def comp_class_None dest: comp_class_imp)

lemma comp_is_type: "is_type (comp G) T = is_type G T"
apply (cases T, simp)
apply (induct G)
apply simp
apply (simp only: comp_is_class)
apply (simp add: comp_is_class)
apply (simp only: comp_is_class)
done

lemma comp_classname:
"is_class G C = fst (the (class G C)) = fst (the (class (comp G) C))"

by (cases "class G C") (auto simp: is_class_def dest: comp_class_imp)

lemma comp_subclsl: "subclsl (comp G) = subclsl G"
by (auto simp add: subclsl_def2 comp_classname comp_is_class)

lemma comp_widen: "widen (comp G) = widen G"

apply (simp add: fun_eq_iff)
apply (intro alll iffI)
apply (erule widen.cases)

apply (simp_all add: comp_subclsl widen.null)
apply (erule widen.cases)

apply (simp_all add: comp_subclsl widen.null)
done

lemma comp_cast: "cast (comp G) = cast G"
apply (simp add: fun_eq iff)
apply (intro alll iffI)
apply (erule cast.cases)
apply (simp_all add: comp_subclsl cast.widen cast.subcls)
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apply (rule cast.widen)

apply (simp add: comp_widen)

apply (erule cast.cases)

apply (simp_all add: comp_subclsl cast.widen cast.subcls)
apply (rule cast.widen)

apply (simp add: comp_widen)

done

lemma comp_cast_ok: "cast_ok (comp G) = cast_ok G"
by (simp add: fun_eq_ iff cast_ok_def comp_widen)

lemma compClass_fst [simp]: "(fst (compClass G C)) = (fst C)"
by (simp add: compClass_def split_beta)

lemma compClass_fst_snd [simp]: "(fst (snd (compClass G C))) = (fst (snd C))"
by (simp add: compClass_def split_beta)

lemma compClass_fst_snd_snd [simp]: "(fst (snd (snd (compClass G C)))) = (fst (snd (snd
DL
by (simp add: compClass_def split_beta)

lemma comp_wf_fdecl [simp]: "wf_fdecl (comp G) fd = wf_fdecl G fd"
by (cases fd) (simp add: wf_fdecl_def comp_is_type)

lemma compClass_forall [simp]:
"(Vx€set (snd (snd (snd (compClass G C)))). P (fst x) (fst (snd x))) =
(Vxeset (snd (snd (snd C))). P (fst x) (fst (snd x)))"
by (simp add: compClass_def compMethod_def split_beta)

lemma comp_wf_mhead: "wf_mhead (comp G) S rT = wf_mhead G S rT"
by (simp add: wf_mhead_def split_beta comp_is_type)

lemma comp_ws_cdecl:
"ws_cdecl (TranslComp.comp G) (compClass G C) = ws_cdecl G C"
apply (simp add: ws_cdecl_def split_beta comp_is_class comp_subclsl)
apply (simp (no_asm_simp) add: comp_wf_mhead)
apply (simp add: compClass_def compMethod_def split_beta unique_map_fst)
done

lemma comp_wf_syscls: "wf_syscls (comp G) = wf_syscls G"
apply (simp add: wf_syscls_def comp_def compClass_def split_beta cong: image_cong_simp)
apply (simp add: image_comp cong: image_cong_simp)
done

lemma comp_ws_prog: "ws_prog (comp G) = ws_prog G"
apply (rule sym)
apply (simp add: ws_prog_def comp_ws_cdecl comp_unique)
apply (simp add: comp_wf_syscls)
apply (auto simp add: comp_ws_cdecl [symmetric] TranslComp.comp_def)
done
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lemma comp_class_rec:
"uf ((subclsl G)~!) —

class_rec (comp G) C t f =
class_rec G Ct (A C’ fs’ ms’ r’. f C’> fs’ (map (compMethod G C’) ms’) r’)"

apply (rule_tac a = C in wf_induct)

apply assumption

apply (subgoal_tac "wf ((subclsl (comp G))~')")

apply (subgoal_tac "(class G x = None) V (3 D fs ms. (class G x = Some (D, fs, ms)))")

apply (erule disjE)

apply (simp (no_asm_simp) add: class_rec_def comp_subclsl
wfrec [where R="(subclsl G)~ 1", simplified])

apply (simp add: comp_class_None)

apply (erule exE)+
apply (frule comp_class_imp)
apply (frule_tac G="comp G" and C=x and t=t and f=f in class_rec_lemma)
apply assumption
apply (frule_tac G=G and C=x and t=t
and f="(\C’ fs’ ms’. f C’ fs’ (map (compMethod G C’) ms’))" in class_rec_lemm
apply assumption
apply (simp only:)
apply (case_tac "x = Object")
apply simp
apply (frule subclslI, assumption)
apply (drule_tac x=D in spec, drule mp, simp)
apply simp

apply (case_tac "class G x")
apply auto

apply (simp add: comp_subclsil)
done

lemma comp_fields: "wf ((subclsl G)~!) —

fields (comp G,C) = fields (G,C)"
by (simp add: fields_def comp_class_rec)

lemma comp_field: "wf ((subclsl G)™!) =

field (comp G,C) = field (G,C)"
by (simp add: TypeRel.field_def comp_fields)

lemma class_rec_relation [rule_format (no_asm)]: "[ ws_prog G;

Vfs ms. R (f1 Object fs ms t1) (f2 Object fs ms t2);

VC fs ms r1 r2. (Rrl1 r2) — (R (f1 C fs ms r1) (f2 C fs ms r2)) |

= ((class G C) # None) — R (class_rec G C t1 f1) (class_rec G C t2 f2)"
apply (frule wf_subclsl)

apply (rule_tac a = C in wf_induct)

apply assumption
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apply (intro strip)

apply (subgoal_tac "(3D rT mb. class G x = Some (D, rT, mb))")
apply (erule exE)+

apply (frule_tac C=x and t=tl1 and f=f1 in class_rec_lemma)
apply assumption

apply (frule_tac C=x and t=t2 and f=f2 in class_rec_lemma)
apply assumption

apply (simp only:)

apply (case_tac "x = Object")

apply simp

apply (frule subclslI, assumption)

apply (drule_tac x=D in spec, drule mp, simp)

apply simp

apply (subgoal_tac "(3dD’ rT’ mb’. class G D = Some (D’, rT’, mb’))")
apply blast

apply (frule class_wf_struct, assumption)
apply (simp add: ws_cdecl_def is_class_def)
apply (simp add: subclsl_def2 is_class_def)
apply auto

done

abbreviation (input)
"mtd_mb == snd o snd"

lemma map_of_map:
"map_of (map (A(k, v). (k, £ v)) xs) k = map_option f (map_of xs k)"
by (simp add: map_of_map)

lemma map_of_map_fst:

"[ inj f; Vx€Eset xs. fst (f x) = fst x; VxE€set xs. fst (g x) = fst x |

—> map_of (map g xs) k = map_option (A e. (snd (g ((inv f) (k, e))))) (map_of (map
f xs) k)"

apply (induct xs)

apply simp

apply simp

apply (case_tac "k = fst a")

apply simp

apply (subgoal_tac "(inv f (fst a, snd (f a))) = a", simp)

apply (subgoal_tac "(fst a, snd (f a)) = f a", simp)

apply (erule conjE)+

apply (drule_tac s ="fst (f a)" and t="fst a" in sym)

apply simp
apply (simp add: surjective_pairing)
done

lemma comp_method [rule_format (no_asm)]:
"[ ws_prog G; is_class G C] =
((method (comp G, C) S) =
map_option (A (D,rT,b). (D, rT, mtd_mb (compMethod G D (S, rT, b))))
(method (G, C) S))"
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apply (simp add: method_def)

apply (frule wf_subclsl)

apply (simp add: comp_class_rec)

apply (simp add: split_iter split_compose map_map [symmetric] del: map_map)
apply (rule_tac R="Ax y. ((x S) = (map_option (A(D, rT, b).

X) H)

(D, rT, snd (snd (compMethod G D (S, rT, b))))) (y S)))"
in class_rec_relation)
apply assumption

apply (intro strip)
apply simp
apply (rule trans)

apply (rule_tac f="(\(s, m). (s, Object, m))" and
g="(Fun.comp (A(s, m). (s, Object, m)) (compMethod G Object))"
in map_of_map_fst)
defer
apply (simp add: inj_on_def split_beta)
apply (simp add: split_beta compMethod_def)
apply (simp add: map_of_map [symmetric])
apply (simp add: split_beta)
apply (simp add: Fun.comp_def split_beta)
apply (subgoal_tac "(Ax::(vname list X fdecl list X stmt X expr) mdecl.
(fst x, Object,
snd (compMethod G Object
(inv (A (s::sig, m::ty X vname list X fdecl list X stmt X expr).
(s, Object, m))
(S, Object, snd x)))))
= (Ax. (fst x, Object, fst (snd x),
snd (snd (compMethod G Object (S, snd x)))))")
apply (simp only:)
apply (simp add: fun_eq_iff)
apply (intro strip)
apply (subgoal_tac "(inv (A(s, m). (s, Object, m)) (S, Object, snd x)) = (S, snd

apply (simp only:)

apply (simp add: compMethod_def split_beta)
apply (rule inv_f_eq)

defer

defer

apply (intro strip)

apply (simp add: map_add_Some_iff map_of_map)

apply (simp add: map_add_def)

apply (subgoal_tac "inj (A(s, m). (s, Ca, m))")

apply (drule_tac g="(Fun.comp (A(s, m). (s, Ca, m)) (compMethod G Ca))" and xs=ms

and k=S in map_of_map_fst)

apply (simp add: split_beta)
apply (simp add: compMethod_def split_beta)

apply (case_tac "(map_of (map (A(s, m). (s, Ca, m)) ms) S)")
apply simp

apply (simp add: split_beta map_of_map)

apply (elim exE conjE)

apply (drule_tac t=a in sym)
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apply (subgoal_tac "(inv (A (s, m). (s, Ca, m)) (S, a)) = (S, snd a)")
apply simp
apply (subgoal_tac "Vxeset ms. fst ((Fun.comp (A(s, m). (s, Ca, m)) (compMethod
G Ca)) x) = fst x")
prefer 2 apply (simp (no_asm_simp) add: compMethod_def split_beta)
apply (simp add: map_of_map2)
apply (simp (no_asm_simp) add: compMethod_def split_beta)

— remaining subgoals
apply (auto intro: inv_f_eq simp add: inj_on_def is_class_def)
done

lemma comp_wf_mrT: "[ ws_prog G; is_class G D] =
wf_mrT (TranslComp.comp G) (C, D, fs, map (compMethod G a) ms) =
wf_mrT G (C, D, fs, ms)"
apply (simp add: wf_mrT def compMethod_def split_beta)
apply (simp add: comp_widen)
apply (rule iffI)
apply (intro strip)
apply simp
apply (drule (1) bspec)
apply (drule_tac x=D’ in spec)
apply (drule_tac x=rT’ in spec)
apply (drule mp)
prefer 2 apply assumption
apply (simp add: comp_method [of G DJ)
apply (erule exE)+
apply (simp add: split_paired_all)
apply (auto simp: comp_method)
done

lemma max_spec_preserves_length:
"max_spec G C (mn, pTs) = {((md,rT),pTs’)} = length pTs = length pTs’"
apply (frule max_spec2Zmheads)
apply (clarsimp simp: list_all2_iff)
done

lemma ty_exprs_length [simp]: "(Etes[::]Ts — length es = length Ts)"

apply (subgoal_tac "(Ere::T — True) A (Etes[::]Ts — length es = length Ts) A (Eks./
— True)")

apply blast

apply (rule ty_expr_ty_exprs_wt_stmt.induct, auto)

done

lemma max_spec_preserves_method_rT [simp]:
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"max_spec G C (mn, pTs) = {((md,rT),pTs’)}

—> method_rT (the (method (G, C) (mn, pTs’))) = rT"
apply (frule max_spec2mheads)

apply (clarsimp simp: method_rT_def)

done

end

declare compClass_fst [simp dell
declare compClass_fst_snd [simp del]
declare compClass_fst_snd_snd [simp del]

end

theory CorrComp
imports "../J/JTypeSafe" LemmasComp
begin

declare wf_prog_ws_prog [simp add]

lemma eval_evals_exec_xcpt:
"(G - xs -ex>val-> xs’ — gx xs’ = None — gx xs = None) A
(G + xs -exs[-]vals-> xs’ — gx xs’ = None — gx xs = None) A
(G + xs -st-> xs’ — gx xs’ = None — gx xs = None)"
by (induct rule: eval_evals_exec.induct) auto

lemma eval_xcpt: "G F xs -ex>val-> xs’ =—> gx xs’ = None —> gx xs = None"
(is "?H1 — 7H2 — 7T")
proof-
assume hl: 7H1
assume h2: ?7H2
from h1 h2 eval_evals_exec_xcpt show "?T" by simp
qed

lemma evals_xcpt: "G F xs -exs[>]vals-> xs’ —> gx xs’ = None —> gx xs = None"
(is "?H1 = ?H2 — 7T")
proof-
assume hl: 7H1
assume h2: 7H2
from h1 h2 eval_evals_exec_xcpt show "?T" by simp
qed

lemma exec_xcpt: "G - xs -st-> xs’ =—> gx xs’ = None — gx xs = None"
(is "?H1l = 7H2 =— 7T")
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proof-

assume hil: ?7H1

assume h2: ?7H2

from h1 h2 eval_evals_exec_xcpt show "?T" by simp
qed

theorem exec_all_trans: "[(exec_all G sO s1); (exec_all G s1 s2)] = (exec_all G s0 s2)"
by (auto simp: exec_all_def elim: Transitive_Closure.rtrancl_trans)

theorem exec_all_refl: "exec_all G s s"
by (simp only: exec_all_def)

theorem exec_instr_in_exec_all:
"[ exec_instr i G hp stk lvars C S pc frs = (None, hp’, frs’);
gis (gmb G C 8) ! pc = i] =
G + (None, hp, (stk, lvars, C, S, pc) # frs) —jvm— (None, hp’, frs’)"
apply (simp only: exec_all_def)
apply (rule rtrancl_refl [THEN rtrancl_into_rtrancl])
apply (simp add: gis_def gmb_def)
apply (case_tac frs’, simp+)
done

theorem exec_all_one_step: "
[ gis (gmb G C S) = pre @ (i # post); pcO = length pre;
(exec_instr i G hpO stkO lvarsO C S pcO frs) =
(None, hp1, (stki1,lvars1,C,S, Suc pcO)#frs) |
—
G + (None, hpO, (stk0,lvars0,C,S, pcO)#frs) —jvm—
(None, hpl, (stkil,lvarsi1,C,S, Suc pcO)#frs)"
apply (unfold exec_all_def)
apply (rule r_into_rtrancl)
apply (simp add: gis_def gmb_def split_beta)
done

definition progression :: "jvm_prog = cname = sig =
aheap = opstack = locvars =
bytecode =
aheap = opstack = locvars =
bool"
L, , Y4, _, }¥>-_—>4{, _, _» [61,61,61,61,61,61,90,61,61,61]60) where
"{G,C,S} + {hpO, 0s0, lvarsO} >- instrs — {hpl, osl, lvarsl} ==
V pre post frs.
(gis (gmb G C S) = pre @ instrs @ post) —
G + (None,hpO0, (0s0,1vars0,C,S,length pre)#frs) —jvm—
(None, hp1, (os1,1lvars1,C,S, (length pre) + (length instrs))#frs)"



270

lemma progression_call:
"[ Vpc frs.
exec_instr instr G hp0O os0 lvarsO C S pc frs =
(None, hp’, (os’, lvars’, C’, S’, 0) # (fr pc) # frs) A
gis (gmb G C’ S’) = instrs’ @ [Return] A
{G, ¢’, S’} + {hp’, os’, lvars’} >- instrs’ — {hp’’, os’’, lvars’’} A
exec_instr Return G hp’’ os’’ lvars’’ C’ S’ (length instrs’)
((fr pc) # frs) =
(None, hp2, (o0s2, lvars2, C, S, Suc pc) # frs) | =

{G, C, S} F {hp0, o0s0, lvarsO0} >-[instr]— {hp2,0s2,lvars2}"
apply (simp only: progression_def)
apply (intro strip)
apply (drule_tac x="length pre" in spec)
apply (drule_tac x="frs" in spec)
apply clarify
apply (rule exec_all_trans)

apply (rule exec_instr_in_exec_all)

apply simp

apply simp
apply (rule exec_all_trans)

apply (simp only: append_Nil)

apply (drule_tac x="[]" in spec)

apply (simp only: list.simps list.size)

apply blast
apply (rule exec_instr_in_exec_all)

apply auto
done

lemma progression_transitive:
”ﬂ instrs_comb = instrsO @ instrsi;
{G, C, S} F {hp0, o0s0, lvarsO} >- instrs0O — {hpl, osl, lvarsil};
{G, C, S} + {hpl, os1, lvarsi} >- instrsl — {hp2, o0s2, lvars2} |
_—
{G, C, S} {hp0O, 0s0, lvarsO} >- instrs_comb — {hp2, o0s2, lvars2}"
apply (simp only: progression_def)
apply (intro strip)
apply (rule_tac ?s1.0 = "Norm (hpl, (osl1, lvarsl, C, S,
length pre + length instrs0) # frs)"
in exec_all_trans)
apply (simp only: append_assoc)
apply (erule thin_rl, erule thin_rl)
apply (drule_tac x="pre @ instrs0" in spec)
apply (simp add: add.assoc)
done

lemma progression_refl:
"{G, ¢, S} F {hp0, o0s0, lvarsO} >- [] — {hpO, o0s0, lvarsO}"
apply (simp add: progression_def)
apply (intro strip)
apply (rule exec_all_refl)
done

lemma progression_one_step: "
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Vpc frs.

(exec_instr i G hpO 0s0 lvarsO C S pc frs) =

(None, hpl, (osl,lvars1,C,S, Suc pc)#frs)

= {G, C, S} F {hp0, o0s0, lvarsO} >- [i] — {hpl, osl, lvarsi}"
apply (unfold progression_def)

apply (intro strip)

apply simp
apply (rule exec_all_one_step)
apply auto
done
definition jump_fwd :: "jvm_prog = cname = sig =

aheap = locvars = opstack = opstack =
instr = bytecode = bool" where
"jump_fwd G C S hp lvars o0s0 osl instr instrs ==
V pre post frs.
(gis (gmb G C S) = pre @ instr # instrs @ post) —
exec_all G (None,hp, (0s0,1lvars,C,S, length pre)#frs)
(None, hp, (os1,1vars,C,S, (length pre) + (length instrs) + 1)#frs)"

lemma jump_fwd_one_step:
"Y' pc frs.
exec_instr instr G hp os0O lvars C S pc frs =
(None, hp, (osl, lvars, C, S, pc + (length instrs) + 1)#frs)
= jump_fwd G C S hp lvars osO osl instr instrs"
apply (unfold jump_fwd_def)
apply (intro strip)
apply (rule exec_instr_in_exec_all)
apply auto
done

lemma jump_ fwd_progression_aux:
”[[ instrs_comb = instr # instrsO @ instrsi;
jump_fwd G C S hp lvars o0s0 osl instr instrsO;
{G, C, S} + {hp, osl, lvars} >- instrsi — {hp2, o0s2, lvars2} ]
— {G, C, S} + {hp, o0s0, lvars} >- instrs_comb — {hp2, o0s2, lvars2}"
apply (simp only: progression_def jump_fwd_def)
apply (intro strip)
apply (rule_tac ?s1.0 = "Norm(hp, (osl, lvars, C, S, length pre + length instrsO + 1)
# frs)" in exec_all_trans)
apply (simp only: append_assoc)
apply (subgoal_tac "pre @ (instr # instrsO @ instrsl) @ post = pre @ instr # instrsoO
@ (instrsl @ post)")
apply blast
apply simp
apply (erule thin_rl, erule thin_rl)
apply (drule_tac x="pre @ instr # instrs0" in spec)
apply (simp add: add.assoc)
done
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lemma jump_fwd_progression:
"[[ instrs_comb = instr # instrsO @ instrsi;
V pc frs.
exec_instr instr G hp os0O lvars C S pc frs =
(None, hp, (osl1, lvars, C, S, pc + (length instrs0) + 1)#frs);
{G, C, S} + {hp, osil, lvars} >- instrsl — {hp2, o0s2, lvars2} |
— {G, C, S} F {hp, o0s0, lvars} >- instrs_comb — {hp2, o0s2, lvars2}"
apply (rule jump_fwd_progression_aux)
apply assumption
apply (rule jump_fwd_one_step, assumption+)
done

definition jump_bwd :: "jvm_prog = cname = sig =
aheap = locvars = opstack = opstack =
bytecode = instr = bool" where
"jump_bwd G C S hp lvars osO osl instrs instr ==
V pre post frs.
(gis (gmb G C S) = pre @ instrs @ instr # post) —
exec_all G (None,hp, (0s0,1vars,C,S, (length pre) + (length instrs))#frs)
(None, hp, (os1,1lvars,C,S, (length pre))#frs)"

lemma jump_bwd_one_step:
"V pc frs.
exec_instr instr G hp osO lvars C S (pc + (length instrs)) frs =
(None, hp, (osl, lvars, C, S, pc)#frs)
_—
jump_bwd G C S hp lvars os0 osl instrs instr"
apply (unfold jump_bwd_def)
apply (intro strip)
apply (rule exec_instr_in_exec_all)
apply auto
done

lemma jump_bwd_progression:
"[ instrs_comb = instrs @ [instr];
{G, C, S} + {hp0, o0s0, lvarsO} >- instrs — {hpl, osl, lvarsi};
jump_bwd G C S hpl lvarsl osl o0s2 instrs instr;
{G, C, S} + {hpl, o0s2, lvarsi} >- instrs_comb — {hp3, o0s3, lvars3} |
= {G, C, S} + {hp0, o0s0, lvarsO} >- instrs_comb — {hp3, o0s3, lvars3}"
apply (simp only: progression_def jump_bwd_def)
apply (intro strip)
apply (rule exec_all_trans, force)
apply (rule exec_all_trans, force)
apply (rule exec_all_trans, force)
apply simp
apply (rule exec_all_refl)
done
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definition class_sig defined :: "’c prog = cname = sig = bool" where
"class_sig_defined G C S ==
is_class G C AN (3 D rT mb. (method (G, C) S = Some (D, rT, mb)))"

definition env_of_jmb :: "java_mb prog = cname = sig = java_mb env" where
"env_of_jmb G C S ==
(let (mn,pTs) = S;
(D,rT, (pns,lvars,blk,res)) = the(method (G, C) S) in
(G, (map_of lvars) (pns[—]pTs, This+—»Class C)))"

lemma env_of_jmb_fst [simp]: "fst (env_of_jmb G C S) = G"
by (simp add: env_of_jmb_def split_beta)

lemma method_preserves [rule_format (no_asm)]:

"[ wf_prog wf_mb G; is_class G C;

V SrTmb. V cn € fst ¢ set G. wf_mdecl wf_mb G cn (S,rT,mb) — (P cn S (rT,mb))]
= V D.

method (G, C) S = Some (D, rT, mb) — (P D S (rT,mb))"

apply (frule wf_prog_ws_prog [THEN wf_subcls1])
apply (rule subclsl_induct, assumption, assumption)

apply (intro strip)
apply ((drule spec)+, drule_tac x="Object" in bspec)
apply (simp add: wf_prog_def ws_prog_def wf_syscls_def)
apply (subgoal_tac "D=0Object") apply simp
apply (drule mp)
apply (frule_tac C=Object in method_wf_mdecl)
apply simp
apply assumption
apply simp
apply assumption
apply simp

apply (simplesubst method_rec)
apply simp

apply force

apply simp

apply (simp only: map_add_def)

apply (split option.split)

apply (rule conjI)

apply force

apply (intro strip)

apply (frule_tac ?P1.0 = "wf_mdecl wf_mb G Ca" and

?P2.0 = "J(S, (Da, rT, mb)). P Da S (rT, mb)" in map_of_map_prop)

apply (force simp: wf_cdecl_def)
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apply clarify

apply (simp only: class_def)

apply (drule map_of_SomeD)+

apply (frule_tac A="set G" and f=fst in imageI, simp)
apply blast

apply simp

done

lemma method_preserves_length:
"[[ wf_java_prog G; is_class G C;
method (G, C) (mn,pTs) = Some (D, rT, pns, lvars, blk, res)]
—> length pns = length pTs"
apply (frule_tac P="JD (mn,pTs) (rT, pns, lvars, blk, res). length pns = length pTs"
in method_preserves)
apply (auto simp: wf_mdecl_def wf_java_mdecl_def)
done

definition wtpd_expr :: "java_mb env = expr = bool" where
"wtpd_expr E e == (4 T. EFe :: T)"

definition wtpd_exprs :: "java_mb env = (expr list) = bool" where
"wtpd_exprs E e == (3 T. Ekre [::] T)"

definition wtpd_stmt :: "java_mb env = stmt = bool" where
"wtpd_stmt E ¢ == (Ebc /)"

lemma wtpd_expr_newc: "wtpd_expr E (NewC C) = is_class (prg E) C"
by (simp only: wtpd_expr_def, erule exE, erule ty_expr.cases, auto)

lemma wtpd_expr_cast: "wtpd_expr E (Cast cn e) —> (wtpd_expr E e)"
by (simp only: wtpd_expr_def, erule exE, erule ty_expr.cases, auto)

lemma wtpd_expr_lacc:
"[ wtpd_expr (env_of_jmb G C S) (LAcc vn); class_sig _defined G C S ]|
= vn € set (gjmb_plns (gmb G C S)) V vn = This"
apply (clarsimp simp: wtpd_expr_def env_of_jmb_def class_sig_defined_def galldefs)
apply (case_tac S)
apply (erule ty_expr.cases; fastforce dest: map_upds_SomeD map_of_SomeD fst_in_set_lemma)
done

lemma wtpd_expr_lass: "wtpd_expr E (vn::=e)
= (vn # This) & (wtpd_expr E (LAcc vn)) & (wtpd_expr E e)"
by (simp only: wtpd_expr_def, erule exE, erule ty_expr.cases, auto)

lemma wtpd_expr_facc: "wtpd_expr E ({fd}a..fn)
— (wtpd_expr E a)"
by (simp only: wtpd_expr_def, erule exE, erule ty_expr.cases, auto)

lemma wtpd_expr_fass: "wtpd_expr E ({fd}a..fn:=v)
—> (wtpd_expr E ({fd}a..fn)) & (wtpd_expr E v)"
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by (simp only: wtpd_expr_def, erule exE, erule ty_expr.cases, auto)

lemma wtpd_expr_binop: "wtpd_expr E (BinOp bop el e2)
—> (wtpd_expr E el) & (wtpd_expr E e2)"
by (simp only: wtpd_expr_def, erule exE, erule ty_expr.cases, auto)

lemma wtpd_exprs_cons: "wtpd_exprs E (e # es)
— (wtpd_expr E e) & (wtpd_exprs E es)"
by (simp only: wtpd_exprs_def wtpd_expr_def, erule exE, erule ty_exprs.cases, auto)

lemma wtpd_stmt_expr: "wtpd_stmt E (Expr e) —> (wtpd_expr E e)"
by (simp only: wtpd_stmt_def wtpd_expr_def, erule wt_stmt.cases, auto)

lemma wtpd_stmt_comp: "wtpd_stmt E (s1;; s2) —
(wtpd_stmt E s1) & (wtpd_stmt E s2)"
by (simp only: wtpd_stmt_def wtpd_expr_def, erule wt_stmt.cases, auto)

lemma wtpd_stmt_cond: "wtpd_stmt E (If(e) sl Else s2) —>
(wtpd_expr E e) & (wtpd_stmt E s1) & (wtpd_stmt E s2)
& (EFe::PrimT Boolean)"
by (simp only: wtpd_stmt_def wtpd_expr_def, erule wt_stmt.cases, auto)

lemma wtpd_stmt_loop: "wtpd_stmt E (While(e) s) —
(wtpd_expr E e) & (wtpd_stmt E s) & (Ete::PrimT Boolean)"
by (simp only: wtpd_stmt_def wtpd_expr_def, erule wt_stmt.cases, auto)

lemma wtpd_expr_call: "wtpd_expr E ({Cla..mn({pTs’}ps))
= (wtpd_expr E a) & (wtpd_exprs E ps)
& (length ps = length pTs’) & (Eta::Class C)
& (3 pTs md rT.
EFps[::1pTs & max_spec (prg E) C (mn, pTs) = {((md,rT),pTs’)})"
apply (simp only: wtpd_expr_def wtpd_exprs_def)
apply (erule exE)
apply (ind_cases "E + {C}a..mn( {pTs’}ps) :: T" for T)
apply (auto simp: max_spec_preserves_length)
done

lemma wtpd_blk:

"[ method (G, D) (md, pTs) = Some (D, rT, (pns, lvars, blk, res));

wf_prog wf_java_mdecl G; is_class G D |

= wtpd_stmt (env_of_jmb G D (md, pTs)) blk"

apply (simp add: wtpd_stmt_def env_of_jmb_def)

apply (frule_tac P=")D (md, pTs) (T, (pns, lvars, blk, res)). (G, (map_of lvars) (pns[—]pTs,
This—Class D)) + blk 4/ " in method_preserves)

apply (auto simp: wf_mdecl_def wf_java_mdecl_def)
done

lemma wtpd_res:
"[ method (G, D) (md, pTs) = Some (D, rT, (pns, lvars, blk, res));
wf_prog wf_java_mdecl G; is_class G D |
= wtpd_expr (env_of_jmb G D (md, pTs)) res"
apply (simp add: wtpd_expr_def env_of_jmb_def)
apply (frule_tac P=")D (md, pTs) (zT, (pns, lvars, blk, res)). 3T. (G, (map_of lvars) (pns[—]pTs,
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This+>Class D)) F res :: T " in method_preserves)
apply (auto simp: wf_mdecl_def wf_java_mdecl_def)
done

lemma evals_preserves_length:
"GF xs -es[>]vs-> (None, s) — length es = length vs"
apply (subgoal_tac
"Y xs’. (G F xk -xj>xi-> xh — True) &
(G- xs -es[-]vs-> xs’ — (3 s. (xs’ = (None, s))) —>
length es = length vs) &
(G - xc -xb-> xa — True)")
apply blast
apply (rule alll)
apply (rule Eval.eval_evals_exec.induct; simp)
done

lemma progression_Eq : "{G, C, S} F
{hp, (v2 # v1 # os), lvars}
>- [Ifcmpeq 3, LitPush (Bool False), Goto 2, LitPush (Bool True)] —
{hp, (Bool (vl = v2) # os), lvars}"
apply (case_tac "vi = v2")

apply (rule_tac 7instrs1.0 = "[LitPush (Bool True)]" in jump_fwd_progression)
apply (auto simp: nat_add_distrib)

apply (rule progression_one_step)

apply simp

apply (rule progression_one_step [THEN HOL.refl [THEN progression_transitive], simplified])
apply auto
apply (rule progression_one_step [THEN HOL.refl [THEN progression_transitive], simplified])
apply auto
apply (rule_tac ?instrs1.0 = "[]" in jump_fwd_progression)

apply (auto simp: nat_add_distrib intro: progression_refl)
done

declare split_paired_All [simp del] split_paired_Ex [simp del]
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lemma distinct_method:

"[ wf_java_prog G; is_class G C; method (G, C) S = Some (D, rT, pns, lvars, blk, res)
] =

distinct (gjmb_plns (gmb G C S))"

apply (frule method_wf_mdecl [THEN conjunct2], assumption, assumption)

apply (case_tac S)

apply (simp add: wf_mdecl_def wf_java_mdecl_def galldefs)

apply (simp add: unique_def map_of_in_set)

apply blast

done

lemma distinct_method_if_class_sig_defined :
"[ wf_java_prog G; class_sig defined G C S | = distinct (gjmb_plns (gmb G C S))"
by (auto intro: distinct_method simp: class_sig_defined_def)

lemma method_yields_wf_java_mdecl: "[[ wf_java_prog G; is_class G C;
method (G, C) S = Some (D, rT, pns, lvars, blk, res) | —
wf_java_mdecl G D (S,rT, (pns,lvars,blk,res))"
apply (frule method_wf_mdecl)

apply (auto simp: wf_mdecl_def)
done

lemma progression_lvar_init_aux [rule_format (no_asm)]: "
V zs prfx lvals lvars0.
lvarsO = (zs @ lvars) —
(disjoint_varnames pns lvars0 —
(length lvars = length lvals) —
(Suc(length pns + length zs) = length prfx) —
({cG, D, S} F
{h, os, (prfx @ lvals)}
>- (concat (map (compInit (pns, lvarsO, blk, res)) lvars)) —
{h, os, (prfx @ (map (A\p. (default_val (snd p))) lvars))}))"
apply simp
apply (induct lvars)
apply (clarsimp, rule progression_refl)
apply (intro strip)
apply (case_tac lvals)
apply simp
apply (simp (no_asm_simp) )

apply (rule_tac ?lvars1.0 = "(prfx @ [default_val (snd a)]) @ list" in progression_transitive,
rule HOL.refl)
apply (case_tac a)
apply (simp (no_asm_simp) add: compInit_def)
apply (rule_tac ?instrs0.0 = "[load_default_val b]" in progression_transitive, simp)
apply (rule progression_one_step)
apply (simp (no_asm_simp) add: load_default_val_def)

apply (rule progression_one_step)
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apply (simp (no_asm_simp))

apply (rule conjI, simp)+

apply (simp add: index_of_var2)

apply (drule_tac x="zs @ [a]" in spec)

apply (drule mp, simp)

apply (drule_tac x="(prfx @ [default_val (snd a)])" in spec)
apply auto

done

lemma progression_lvar_init [rule_format (no_asm)]:
"[ wf_java_prog G; is_class G C;
method (G, C) S = Some (D, rT, pns, lvars, blk, res) | =
length pns = length pvs —
(V 1lvals.
length lvars = length lvals —
{cG, D, S} I
{h, os, (a’ # pvs @ lvals)}
>- (compInitLvars (pns, lvars, blk, res) lvars) —
{h, os, (locvars_xstate G C S (Norm (h, (init_vars lvars) (pns[—]pvs, This—a’))))})"
apply (simp only: compInitLvars_def)
apply (frule method_yields_wf_java_mdecl, assumption, assumption)

apply (simp only: wf_java_mdecl_def)

apply (subgoal_tac "(Vy€E€set pns. y ¢ set (map fst lvars))")

apply (simp add: init_vars_def locvars_xstate_def locvars_locals_def galldefs unique_def
split_def map_of_map_as_map_upd del: map_map)

apply (intro strip)

apply (simp (no_asm_simp) only: append_Cons [symmetric])

apply (rule progression_lvar_init_aux)

apply (auto simp: unique_def map_of_in_set disjoint_varnames_def)
done

lemma state_ok_eval:
"[xs::=E; wf_java_prog (prg E); wtpd_expr E e; (prg E)Fxs -e>v -> xs’] = xs’::<E"
apply (simp only: wtpd_expr_def)
apply (erule exE)
apply (case_tac xs’, case_tac xs)
apply (auto intro: eval_type_sound [THEN conjunctl])
done

lemma state_ok_evals:
"[|xs::=2E; wf_java_prog (prg E); wtpd_exprs E es; prg E b xs -es[-]Jvs-> xs’] = xs’::=<E"
apply (simp only: wtpd_exprs_def)
apply (erule exE)
apply (case_tac xs)
apply (case_tac xs’)
apply (auto intro: evals_type_sound [THEN conjunct1])
done
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lemma state_ok_exec:
"[xs::=E; wf_java_prog (prg E); wtpd_stmt E st; prg E - xs -st-> xs’] = xs’::=<E"
apply (simp only: wtpd_stmt_def)
apply (case_tac xs’, case_tac xs)
apply (auto dest: exec_type_sound)
done

lemma state_ok_init:
"[ wf_java_prog G; (x, h, 1)::=X(env_of_jmb G C S);
is_class G dynT;
method (G, dynT) (mn, pTs) = Some (md, rT, pns, lvars, blk, res);
list_all2 (conf G h) pvs pTs; G,h F a’ ::=< Class md]
_—
(np a’ x, h, (init_vars lvars) (pns[—]pvs, Thisr—a’))::=(env_of_jmb G md (mn, pTs))"
apply (frule wf_prog_ ws_prog)
apply (frule method_in_md [THEN conjunct2], assumption+)
apply (frule method_yields_wf_java_mdecl, assumption, assumption)
apply (simp add: env_of_jmb_def gs_def conforms_def split_beta)
apply (simp add: wf_java_mdecl_def)
apply (rule conjI)
apply (rule lconf_ext)
apply (rule lconf_ext_list)
apply (rule lconf_init_vars)
apply (auto dest: Ball_set_table)
apply (simp add: np_def xconf_raise_if)
done

lemma ty_exprs_list_all2 [rule_format (no_asm)]:
"W Ts. (E+F es [::] Ts) = list_all2 (Ae T. E+ e :: T) es Ts)"
apply (rule list.induct)
apply simp
apply (rule allIl)
apply (rule iffI)
apply (ind cases "E F [] [::] Ts" for Ts, assumption)
apply simp apply (rule WellType.Nil)
apply (simp add: list_all2 Cons1)
apply (rule alll)
apply (rule iffI)
apply (rename_tac a exs Ts)
apply (ind_cases "E  a # exs [::] Ts" for a exs Ts) apply blast
apply (auto intro: WellType.Cons)
done

lemma conf_bool: "G,h + v::=<PrimT Boolean —> 3 b. v = Bool b"
apply (simp add: conf_def)
apply (erule exE)
apply (case_tac v)
apply (auto elim: widen.cases)
done

lemma max_spec_widen: "max_spec G C (mn, pTs) = {((md,rT),pTs’)} —
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list_all2 (AT T’. G+ T =X T’) pTs pTs’"
by (blast dest: singleton_in_set max_spec2appl_meths appl_methsD)

lemma eval_conf: ”[[G F s -e-v-> s’; wf_java_prog G; s::=E;
Ele::T; gx s’ = None; prg E = G |
= G,gh s’tv::=<T"
apply (simp add: gh_def)
apply (rule_tac x3="fst s" and s3='"snd s"and x’3="fst s’"
in eval_type_sound [THEN conjunct2 [THEN conjunctl [THEN mp]], simplified])
apply assumption+
apply (simp (no_asm_use))
apply (simp only: surjective_pairing [symmetric])
apply (auto simp add: gs_def gx_def)
done

lemma evals_preserves_conf:
"[ G+ s -es[>]Jvs-> s’; G,gh s F t ::<X T; E Fes[::]Ts;
wf_java_prog G; s::=E;
prg E=G]) = G,gh s’ t :: =X T"
apply (subgoal_tac "gh s<| gh s’")
apply (frule conf_hext, assumption, assumption)
apply (frule eval_evals_exec_type_sound [THEN conjunct2 [THEN conjunctl [THEN mp]l])

apply (subgoal_tac "G F (gx s, (gh s, gl s)) -es[-]Jvs-> (gx s’, (gh s’, gl s’))")
apply assumption

apply (simp add: gx_def gh_def gl_def)

apply (case_tac E)

apply (simp add: gx_def gs_def gh_def gl_def)

done

lemma eval_of_class:
" G - s -e-a’->s’; E+ e :: Class C; wf_java_prog G; s::=E; gx s’=None; a’ # Null;

G=prg E]
= (3 lc. a’ = Addr 1c)"
apply (case_tac s, case_tac s’, simp)
apply (frule eval_type_sound, (simp add: gs_def)+)
apply (case_tac a’)
apply (auto simp: conf_def)
done

lemma dynT_subcls:
"[ a’ # Null; G,hta’::= Class C; dynT = fst (the (h (the_Addr a’)));

is_class G dynT; ws_prog G | = GkdynT <C C"
apply (case_tac "C = Object")

apply (simp, rule subcls_C_Object, assumption+)
apply simp

apply (frule non_np_objD, auto)

done

lemma method_defined: "|
m = the (method (G, dynT) (mn, pTs));
dynT = fst (the (h a)); is_class G dynT; wf_java_prog G;
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a’ # Null; G,hta’::< Class C; a = the_Addr a’;

JpTsa md rT. max_spec G C (mn, pTsa) = {((md, rT), pTs)} |
= (method (G, dynT) (mn, pTs)) = Some m"

apply (erule exE)+

apply (drule singleton_in_set, drule max_spec2appl_meths)

apply (simp add: appl_methds_def)

apply (elim exE conjE)

apply (drule widen_methd)

apply (auto intro!: dynT_subcls)

done

theorem compiler_correctness:
"wf_java_prog G —>
(G F xs -ex>val-> xs’ —
gx xs = None — gx xs’ = None —>
(Vv os CL S.
(class_sig_defined G CL S) —
(wtpd_expr (env_of_jmb G CL S) ex) —>
(xs ::= (env_of_jmb G CL S)) —
( {TranslComp.comp G, CL, S}
{gh xs, os, (locvars_xstate G CL S xs)}
>~ (compExpr (gmb G CL S) ex) —
{gh xs’, val#os, locvars_xstate G CL S xs’}))) A

(G F xs -exs[-]vals-> xs’ —
gx xs = None — gx xs’ = None —>
(V os CL S.
(class_sig_defined G CL S) —
(wtpd_exprs (env_of_jmb G CL S) exs) —
(xs::=(env_of_jmb G CL S)) —»
( {TranslComp.comp G, CL, S}
{gh xs, os, (locvars_xstate G CL S xs)}
>- (compExprs (gmb G CL S) exs) —
{gh xs’, (rev vals)@os, (locvars_xstate G CL S xs’)}))) A

(G F xs -st-> x5’ —>
gx xs = None — gx xs’ = None —>
(Vv os CL S.
(class_sig_defined G CL S) —
(wtpd_stmt (env_of_jmb G CL S) st) —
(xs::=<(env_of_jmb G CL S5)) —
( {TranslComp.comp G, CL, S} F
{gh xs, os, (locvars_xstate G CL S xs)}
>- (compStmt (gmb G CL S) st) —
{gh xs’, os, (locvars_xstate G CL S xs’)})))"
apply (rule Eval.eval_evals_exec.induct)
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apply simp

apply clarify

apply (frule wf_prog_ws_prog [THEN wf_subclsl])

apply (simp add: c_hupd_hp_invariant)

apply (rule progression_one_step)

apply (rotate_tac 1, drule sym)

apply (simp add: locvars_xstate_def locvars_locals_def comp_fields)

apply (intro allIl impI)

apply simp

apply (frule raise_if_NoneD)

apply (frule wtpd_expr_cast)

apply simp

apply (rule_tac ?instrs0.0 = "(compExpr (gmb G CL S) e)" in progression_trai
simp)

apply blast

apply (rule progression_one_step)

apply (simp add: raise_system_xcpt_def gh_def comp_cast_ok)

apply simp

apply (intro strip)

apply (rule progression_one_step)
apply simp

apply (intro alll impI)
apply (frule_tac xs=sl1 in eval_xcpt, assumption)
apply (frule wtpd_expr_binop)

apply (frule_tac e=el in state_ok_eval) apply (simp (no_asm_simp))
apply simp
apply (simp (no_asm_use) only: env_of_jmb_fst)

apply (simp (no_asm_use) only: compExpr.simps compExprs.simps)

apply (rule_tac ?instrs0.0 = "compExpr (gmb G CL S) el" in progression_transi
simp) apply blast

apply (rule_tac ?7instrs0.0 = "compExpr (gmb G CL S) e2" in progression_transit
simp) apply blast

apply (case_tac bop)

apply simp
apply (rule progression_Eq)

apply simp
apply (rule progression_one_step)
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apply simp

apply simp

apply (intro strip)

apply (rule progression_one_step)

apply (simp add: locvars_xstate_def locvars_locals_def)
apply (frule wtpd_expr_lacc)

apply assumption

apply (simp add: gl_def)

apply (erule select_at_index)

apply (intro alll impI)
apply (frule wtpd_expr_lass, erule conjE, erule conjE)
apply simp

apply (rule_tac ?7instrs0.0 = "(compExpr (gmb G CL S) e)" in progression_transitive,
rule HOL.refl)

apply blast

apply (rule_tac ?instrs0.0 = "[Dup]" in progression_transitive, simp)
apply (rule progression_one_step)

apply (simp add: gh_def)

apply simp

apply (rule progression_one_step)

apply (simp add: gh_def)

apply (frule wtpd_expr_lacc) apply assumption
apply (rule update_at_index)
apply (rule distinct_method_if_class_sig_defined)
apply assumption
apply assumption
apply simp
apply assumption

apply (intro alll impI)

apply (simp (no_asm_use) only: gx_conv, frule np_NoneD)
apply (frule wtpd_expr_facc)

apply (simp (no_asm_use) only: compExpr.simps compExprs.simps)

apply (rule_tac ?7instrs0.0 = "(compExpr (gmb G CL S) e)" in progression_transitive,
rule HOL.refl)

apply blast

apply (rule progression_one_step)

apply (simp add: gh_def)

apply (case_tac "(the (fst s1 (the_Addr a’)))")
apply (simp add: raise_system_xcpt_def)
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apply (intro alll impI)
apply (frule wtpd_expr_fass) apply (erule conjE) apply (frule wtpd_expr_facc)
apply (simp only: c_hupd_xcpt_invariant)

apply (frule_tac xs="(np a’ x1, s1)" in eval_xcpt)
apply (simp only: gx_conv, simp only: gx_conv, frule np_NoneD, erule conjE)

apply (frule_tac e=el in state_ok_eval)
apply (simp (no_asm_simp) only: env_of_jmb_fst)
apply assumption

apply (simp (no_asm_use) only: env_of_jmb_fst)

apply (simp only: compExpr.simps compEXprs.simps)

apply (rule_tac ?instrs0.0
rule HOL.refl)

apply fast

apply (rule_tac ?instrs0.0
rule HOL.refl)

apply fast

apply (rule_tac ?instrs0.0
in progression_transitive, simp)

"(compExpr (gmb G CL S) el)" in progression_transiti

"(compExpr (gmb G CL S) e2)" in progression_transitir

"[Dup_x1]" and ?instrs1.0 = "[Putfield fn T]"

apply (rule progression_one_step)
apply (simp add: gh_def)

apply (rule progression_one_step)

apply simp

apply (case_tac "(the (fst s2 (the_Addr a’)))")
apply (simp add: c_hupd_hp_invariant)

apply (case_tac s2)

apply (simp add: c_hupd_conv raise_system_xcpt_def)
apply (rule locvars_xstate_par_dep, rule HOL.refl)

defer

apply simp

apply simp
apply (intro strip)
apply (rule progression_refl)

apply (intro alll impI)
apply (frule_tac xs=s1 in evals_xcpt, simp only: gx_conv)
apply (frule wtpd_exprs_cons)
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apply (frule_tac e=e in state_ok_eval)
apply (simp (no_asm_simp) only: env_of_jmb_fst)
apply simp

apply (simp (no_asm_use) only: env_of_jmb_fst)

apply simp

apply (rule_tac ?instrs0.0 = "(compExpr (gmb G CL S) e)" in progression_transitive,
rule HOL.refl)

apply fast

apply fast

apply simp

apply (intro alll impI)
apply simp
apply (rule progression_refl)

apply (intro alll impI)

apply (frule wtpd_stmt_expr)

apply simp

apply (rule_tac 7instrs0.0 = "(compExpr (gmb G CL S) e)" in progression_transitive,
rule HOL.refl)

apply fast

apply (rule progression_one_step)

apply simp

apply (intro alll impI)
apply (frule_tac xs=sl1 in exec_xcpt, assumption)
apply (frule wtpd_stmt_comp)

apply (frule_tac st=cl in state_ok_exec)
apply (simp (no_asm_simp) only: env_of_jmb_fst)
apply simp apply (simp (no_asm_use) only: env_of_jmb_fst)

apply simp

apply (rule_tac ?7instrs0.0 = "(compStmt (gmb G CL S) c1)" in progression_transitive,
rule HOL.refl)

apply fast

apply fast

apply (intro alll impI)
apply (frule_tac xs=sl1 in exec_xcpt, assumption)
apply (frule wtpd_stmt_cond, (erule conjE)+)

apply (frule_tac e=e in state_ok_eval)
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simp

rule

apply (simp (no_asm_simp) only: env_of_jmb_fst)
apply assumption
apply (simp (no_asm_use) only: env_of_jmb_fst)

apply (frule eval_conf, assumption+, rule env_of_jmb_fst)
apply (frule conf_bool)
apply (erule exE)

apply simp

apply (rule_tac 7instrs0.0 = "[LitPush (Bool False)]" in progression_transitive,
(no_asm_simp))

apply (rule progression_one_step, simp)

apply (rule_tac ?7instrs0.0 = "compExpr (gmb G CL S) e" in progression_transitive,
HOL.refl)

apply fast

apply (case_tac b)

apply simp
apply (rule_tac ?instrs0.0 = "[Ifcmpeq (2 + int (length (compStmt (gmb G CL S) c1)))]"

in progression_transitive, simp)

apply (rule progression_one_step)

apply simp
apply (rule_tac 7instrs0.0 = "(compStmt (gmb G CL S) c1)" in progression_transitive,

simp)

apply fast

apply (rule_tac ?instrs1.0 = "[]" in jump_fwd_progression)
apply (simp)

apply simp

apply (rule conjI, simp)

apply (simp add: nat_add_distrib)

apply (rule progression_refl)

apply simp

apply (rule_tac ?7instrs1.0 = "compStmt (gmb G CL S) c2" in jump_fwd_progression)
apply (simp)

apply (simp, rule conjI, rule HOL.refl, simp add: nat_add_distrib)

apply fast

apply (intro alll impI)
apply (frule wtpd_stmt_loop, (erule conjE)+)

apply (frule eval_conf, assumption+, rule env_of_jmb_fst)
apply (frule conf_bool)

apply (erule exE)

apply (case_tac b)

apply simp
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apply simp

apply (rule_tac ?7instrs0.0 = "[LitPush (Bool False)]" in progression_transitive, simp
(no_asm_simp))

apply (rule progression_one_step)

apply simp

apply (rule_tac ?7instrs0.0 = "compExpr (gmb G CL S) e" in progression_transitive,
rule HOL.refl)
apply fast
apply (rule_tac ?instrs1.0 = "[]" in jump_fwd_progression)
apply (simp)
apply (simp, rule conjI, rule HOL.refl, simp add: nat_add_distrib)
apply (rule progression_refl)

apply (intro alll impI)

apply (frule_tac xs=s2 in exec_xcpt, assumption)
apply (frule_tac xs=s1 in exec_xcpt, assumption)
apply (frule wtpd_stmt_loop, (erule conjE)+)

apply (frule_tac e=e in state_ok_eval)
apply (simp (no_asm_simp) only: env_of_jmb_fst)
apply simp

apply (simp (no_asm_use) only: env_of_jmb_fst)

apply (frule_tac xs=s1 and st=c in state_ok_exec)
apply (simp (no_asm_simp) only: env_of_jmb_fst)
apply assumption

apply (simp (no_asm_use) only: env_of_jmb_fst)

apply (frule eval_conf, assumption+, rule env_of_jmb_fst)
apply (frule conf_bool)
apply (erule exE)

apply simp
apply (rule jump_bwd_progression)
apply simp
apply (rule_tac ?instrs0.0 = "[LitPush (Bool False)]" in progression_transitive,

simp (no_asm_simp))

apply (rule progression_one_step)

apply simp

apply (rule_tac ?instrs0.0 = "compExpr (gmb G CL S) e" in progression_transitive,
rule HOL.refl)

apply fast

apply (case_tac b)
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apply simp

apply (rule_tac ?instrs0.0 = "[Ifcmpeq (2 + int (length (compStmt (gmb G CL S) c)))]1"
in progression_transitive, simp)

apply (rule progression_one_step)

apply simp

apply fast

apply simp

apply (rule jump_bwd_one_step)

apply simp
apply blast

apply (intro alll impI)

apply (frule_tac xs=s3 in eval_xcpt, simp only: gx_conv)
apply (frule exec_xcpt, assumption, simp (no_asm_use) only: gx_conv, frule np_NoneD)

apply (frule evals_xcpt, simp only: gx_conv)

apply (frule wtpd_expr_call, (erule conjE)+)

apply (frule_tac xs="Norm s0" and e=e in state_ok_eval)
apply (simp (no_asm_simp) only: env_of_jmb_fst, assumption, simp (no_asm_use) only:
env_of_jmb_fst)

apply (frule_tac xs=s1 and xs’="(x, h, 1)" in state_ok_evals)
apply (simp (no_asm_simp) only: env_of_jmb_fst, assumption, simp only: env_of_jmb_fst)

apply (frule (5) eval_of_class, rule env_of_jmb_fst [symmetric])
apply (subgoal_tac "G,h + a’ ::=X Class C")
apply (subgoal_tac "is_class G dynT")

apply (drule method_defined, assumption+)
apply (simp only: env_of_jmb_fst)
apply ((erule exE)+, erule conjE, (rule exI)+, assumption)

apply (subgoal_tac "is_class G md")

apply (subgoal_tac "GFClass dynT = Class md")
apply (subgoal_tac " method (G, md) (mn, pTs) = Some (md, rT, pns, lvars, blk, res)")
apply (subgoal_tac "list_all2 (conf G h) pvs pTs")
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apply (subgoal_tac "G,h + a’ ::= Class dynT")
apply (frule (2) conf_widen)
apply (frule state_ok_init, assumption+)

apply (subgoal_tac "class_sig _defined G md (mn, pTs)")
apply (frule wtpd_blk, assumption, assumption)

apply (frule wtpd_res, assumption, assumption)

apply (subgoal_tac "s3::=X(env_of_jmb G md (mn, pTs))")

apply (subgoal_tac "method (TranslComp.comp G, md) (mn, pTs) =
Some (md, rT, snd (snd (compMethod G md ((mn, pTs), rT,
pns, lvars, blk, res))))")
prefer 2
apply (simp add: wf_prog_ws_prog [THEN comp_method])
apply (subgoal_tac "method (TranslComp.comp G, dynT) (mn, pTs) =
Some (md, rT, snd (snd (compMethod G md ((mn, pTs), rT,
pns, lvars, blk, res))))")
prefer 2
apply (simp add: wf_prog_ws_prog [THEN comp_method])
apply (simp only: fst_conv snd_conv)

apply (frule method_preserves_length, assumption, assumption)

apply (frule evals_preserves_length [symmetric])

apply (simp (no_asm_use) only: compExpr.simps compExprs.simps)

apply (rule_tac ?7instrs0.0 = "(compExpr (gmb G CL S) e)" in progression_transitive,
rule HOL.refl)

apply fast

apply (rule_tac 7instrs0.0 = "compExprs (gmb G CL S) ps" in progression_transitive,
rule HOL.refl)

apply fast
apply (rule progression_call)
apply (intro alll impI conjI)
apply (simp (no_asm_use) only: exec_instr.simps)

apply (erule thin_rl, erule thin_rl, erule thin_rl)
apply (simp add: compMethod_def raise_system_xcpt_def)

apply (simp (no_asm_simp) add: gis_def gmb_def compMethod_def)

apply (rule_tac ?7instrs0.0 = "(compInitLvars (pns, lvars, blk, res) lvars)"
in progression_transitive, rule HOL.refl)
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apply (rule_tac C=md in progression_lvar_init, assumption, assumption, assumption,
apply (simp (no_asm_simp))
apply (simp (no_asm_simp))

apply (rule_tac ?7instrs0.0 = "compStmt (pns, lvars, blk, res) blk" in progression_:
rule HOL.refl)
apply (subgoal_tac "(pns, lvars, blk, res) = gmb G md (mn, pTs)")
apply (simp (no_asm_simp))
apply (simp only: gh_conv)
apply (drule mp [OF _ TrueI])+
apply (erule allE, erule allE, erule allE, erule impE, assumption)+
apply ((erule impE, assumption)+, assumption)

apply (simp (no_asm_use))
apply (simp (no_asm_simp) add: gmb_def)

apply (subgoal_tac "(pns, lvars, blk, res) = gmb G md (mn, pTs)")

apply (simp (no_asm_simp))

apply (simp only: gh_conv)

apply ((drule mp, rule TrueI)+, (drule spec)+, (drule mp, assumption)+, assumptior
apply (simp (no_asm_use))

apply (simp (no_asm_simp) add: gmb_def)

apply (simp (no_asm_use) add: gh_def locvars_xstate_def gl_def del: drop_append)
apply (subgoal_tac "rev pvs @ a’ # os = (rev (a’ # pvs)) @ os")

apply (simp only: drop_append)

apply (simp (no_asm_simp))

apply (simp (no_asm_simp))

apply (rule_tac xs = "(np a’ x, h, (init_vars lvars) (pns[—]pvs, Thisrra’))"
and st=blk in state_ok_exec)
apply assumption
apply (simp (no_asm_simp) only: env_of_jmb_fst)
apply assumption
apply (simp (no_asm_use) only: env_of_jmb_fst)

apply (simp (no_asm_simp) add: class_sig_defined_def)

apply (frule non_npD)

apply assumption

apply (erule exE)+

apply simp

apply (rule conf_obj_AddrI)

apply simp

apply (rule widen_Class_Class [THEN iffD1], rule widen.refl)
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apply (erule exE)+ apply (erule conjE)+
apply (rule_tac Ts="pTsa" in conf_list_gext_widen)
apply assumption
apply (subgoal_tac "G F (gx s1, gs s1) -ps[>-I1pvs-> (x, h, 1)")
apply (frule_tac E="env_of_jmb G CL S" in evals_type_sound)
apply assumption+
apply (simp only: env_of_jmb_fst)
apply (simp add: conforms_def xconf_def gs_def)
apply simp
apply (simp (no_asm_use) only: gx_def gs_def surjective_pairing [symmetric])
apply (simp (no_asm_use) only: ty_exprs_list_all2)
apply simp
apply simp
apply (simp (no_asm_use) only: gx_def gs_def surjective_pairing [symmetric])

apply (rule max_spec_widen, simp only: env_of_jmb_fst)

apply (frule wf_prog_ws_prog [THEN method_in_md [THEN conjunct2]], assumption+)

apply (simp (no_asm_use) only: widen_Class_Class)
apply (rule method_wf_mdecl [THEN conjunctl], assumption+)

apply (rule wf_prog ws_prog [THEN method_in_md [THEN conjunct1]], assumption+)

apply (frule non_npD)

apply assumption

apply (erule exE)+

apply (erule conjE)+

apply simp

apply (rule subcls_is_class2)

apply assumption

apply (frule expr_class_is_class [rotated])
apply (simp only: env_of_jmb_fst)

apply (rule wf_prog_ws_prog, assumption)
apply (simp only: env_of_jmb_fst)

apply (simp only: wtpd_exprs_def, erule exE)
apply (frule evals_preserves_conf)
apply (rule eval_conf, assumption+)
apply (rule env_of_jmb_fst, assumption+)
apply (rule env_of_jmb_fst)
apply (simp only: gh_conv)
done

theorem compiler_correctness_eval: "
[[ G + (None,hp,loc) -ex > val-> (None,hp’,loc’);
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wf_java_prog G;
class_sig_defined G C S;
wtpd_expr (env_of_jmb G C S) ex;
(None,hp,loc) ::=X (env_of_jmb G C S) | =
{(TranslComp.comp G), C, S}
{hp, os, (locvars_locals G C S loc)}
>- (compExpr (gmb G C S) ex) —
{hp’, val#os, (locvars_locals G C S loc’)}"
apply (frule compiler_correctness [THEN conjunctl])
apply (auto simp: gh_def gx_def gs_def gl_def locvars_xstate_def)
done
theorem compiler correctness_exec: "
[ 6 F Norm (hp, loc) -st-> Norm (hp’, loc’);
wf_java_prog G;
class_sig _defined G C S;
wtpd_stmt (env_of_jmb G C S) st;
(None,hp,loc) ::=X (env_of_jmb G C S) | =
{(TranslComp.comp G), C, S} F
{hp, os, (locvars_locals G C S loc)}
>- (compStmt (gmb G C S) st) —
{hp’, os, (locvars_locals G C S loc’)}"
apply (frule compiler_correctness [THEN conjunct2 [THEN conjunct2]])
apply (auto simp: gh_def gx_def gs_def gl_def locvars_xstate_def)
done

declare split_paired_All [simp] split_paired_Ex [simp]
declare wf_prog_ws_prog [simp del]

end

theory TypeInf
imports "../J/WellType"
begin

lemma NewC_invers:
assumes "E-NewC C::T"
shows "T = Class C A is_class (prg E) C"
using assms by cases auto
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lemma Cast_invers:
assumes "EFCast D e::T"

shows "dC. T = Class D A EFe::C A is_class (prg E) D N prg EFCX?7 Class D"

using assms by cases auto

lemma Lit_invers:
assumes "EFLit x::T"
shows "typeof (Av. None) x = Some T"
using assms by cases auto

lemma LAcc_invers:
assumes "EFLAcc v::T"
shows "localT E v = Some T A is_type (prg E) T"
using assms by cases auto

lemma Bin0Op_invers:
assumes "EFBinOp bop el e2::T’"
shows "dT. ElFel::T A EFe2::T A
(if bop = Eq then T’ = PrimT Boolean
else T” = T AN T = PrimT Integer)"
using assms by cases auto

lemma LAss_invers:
assumes "Ebv::=e::T’"
shows "dT. v ~= This A EFLAcc v::T A Eke::T’ A prg EFT’XT"
using assms by cases auto

lemma FAcc_invers:
assumes "E-{fd}a..fn::fT"
shows "JC. Ela::Class C A field (prg E,C) fn = Some (fd, fT)"
using assms by cases auto

lemma FAss_invers:
assumes "E-{fd}a..fn:=v::T°"
shows "3 T. E-{fd}a..fn::T A EFv ::T’ A prg EFT’=XT"
using assms by cases auto

lemma Call_invers:
assumes "EF{Cla..mn({pTs’}ps)::rT"
shows "dpTs md.
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Eta::Class C N EbFps[::]pTs A max_spec (prg E) C (mn, pTs) = {((md,rT),pTs’)}"

using assms by cases auto

lemma Nil_invers:
assumes "E-[] [::] Ts"
shows "Ts = []"
using assms by cases auto

lemma Cons_invers:
assumes "Ele#es/[::]Ts"
shows "dT Ts’. Ts = T#Ts’ N E Fe::T AN E tFes[::]Ts’"
using assms by cases auto
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lemma Expr_invers:
assumes "EFExpr e./"
shows "3 T. Ele::T"
using assms by cases auto

lemma Comp_invers:
assumes "Elsi1;; s2,/"
shows "EbFs1,/ A EFs2y/"
using assms by cases auto

lemma Cond_invers:
assumes "EFIf(e) sl Else s2,/"
shows "Ete::PrimT Boolean A EFsl,/ A EFs2,/"

using assms by cases auto

lemma Loop_invers:
assumes "E-While(e) s./"
shows "Ete::PrimT Boolean A EFs,/"
using assms by cases auto

declare split_paired_All [simp del]
declare split_paired_Ex [simp del]

method ty_case_simp = ((erule ty_exprs.cases ty_expr.cases; simp)+)[]
method strip_case_simp = (intro strip, ty_case_simp)

lemma uniqueness_of_types: "

(V (E::’a prog x (vname = ty option)) T1 T2.
EFe :: T1 — EFe :: T2 — T1 =T2) A

(Vv (E::’a prog x (vname = ty option)) Ts1 Ts2.
Eres [::] Tsl — ElFes [::] Ts2 — Tsl = Ts2)"
apply (rule compat_expr_ expr_list.induct)

apply strip_case_simp
apply strip_case_simp
apply strip_case_simp
apply (intro strip)

apply (rename_tac binop x2 x3 E T1 T2, case_tac binop)

apply ty_case_simp
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apply ty_case_simp

apply (strip_case_simp)

apply (strip_case_simp)

apply (intro strip)
apply (drule FAcc_invers)+
apply fastforce

apply (intro strip)

apply (drule FAss_invers)+
apply (elim conjE exE)
apply (drule FAcc_invers)+
apply fastforce

apply (intro strip)
apply (drule Call_invers)+
apply fastforce

apply (strip_case_simp)

apply (strip_case_simp)
done

lemma uniqueness_of_types_expr [rule_format (no_asm)]: "
(WE T1 T2. Ete :: T1 — EFe :: T2 — T1 = T2)"
by (rule uniqueness_of_types [THEN conjunctl])

lemma uniqueness_of_types_exprs [rule_format (no_asm)]: "
(VE Ts1 Ts2. Etes [::] Ts1 — Eles [::] Ts2 — Ts1 = Ts2)"
by (rule uniqueness_of_types [THEN conjunct2])

definition inferred_tp :: "[java_mb env, expr] = ty" where
"inferred_tp E e == (SOME T. Etle :: T)"

definition inferred_tps :: "[java_mb env, expr list] = ty list" where
"inferred_tps E es == (SOME Ts. Etles [::] Ts)"

lemma inferred_tp_wt: "Ele :: T —> (inferred_tp E e) = T"

by (auto simp: inferred_tp_def intro: uniqueness_of_types_expr)

lemma inferred_tps_wt: "Etes [::] Ts —> (inferred_tps E es) = Ts"
by (auto simp: inferred_tps_def intro: uniqueness_of_types_exprs)
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end

4.27 Alternative definition of well-typing of bytecode, used in
compiler type correctness proof

theory Altern
imports BVSpec

begin

definition check_type :: "jvm_prog = nat = nat = JVMType.state = bool" where
"check_type G mxs mxr s = s € states G mxs mxr"

definition wt_instr_altern :: "[instr,jvm_prog,ty,method_type,nat,nat,p_count,

exception_table,p_count] = bool" where
"wt_instr_altern i G rT phi mxs mxr max_pc et pc =
app i G mxs rT pc et (philpc) A
check_type G mxs mxr (0K (phil!pc)) A
V (pc’,s’) € set (eff i G pc et (philpc)). pc’ < max_pc N G F s’ <=’ philpc’)"

definition wt_method_altern :: "[jvm_prog,cname,ty list,ty,nat,nat,instr list,
exception_table,method_type] = bool" where

"wt_method_altern G C pTs rT mxs mxl ins et phi =

let max_pc = length ins in

0 < max_pc A

length phi = length ins A

check_bounded ins et A

wt_start G C pTs mxl phi A

(Vpc. pc<max_pc — wt_instr_altern (ins!pc) G rT phi mxs (1+length pTs+mxl) max_pc
et pc)"

lemma wt_method_wt_method_altern :
"wt_method G C pTs rT mxs mxl ins et phi —— wt_method_altern G C pTs rT mxs mxl ins
et phi"
apply (simp add: wt_method_def wt_method_altern_def)
apply (intro strip)
apply clarify
apply (drule spec, drule mp, assumption)
apply (simp add: check_types_def wt_instr_def wt_instr_altern_def check_type_def)
apply (auto intro: imagel)
done

lemma check_type_check_types [rule_format]:
"(Wpc. pc < length phi — check_type G mxs mxr (0K (phi ! pc)))
— check_types G mxs mxr (map OK phi)"

apply (induct phi)

apply (simp add: check_types_def)

apply (simp add: check_types_def)

apply clarify

apply (frule_tac x=0 in spec)

apply (simp add: check_type_def)

apply auto
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done

lemma wt_method_altern_wt_method [rule_format]:
"wt_method_altern G C pTs rT mxs mxl ins et phi — wt_method G C pTs rT mxs mxl ins
et phi"
apply (simp add: wt_method_def wt_method_altern_def)
apply (intro strip)
apply clarify
apply (rule conjI)

apply (rule check_type_check_types)
apply (simp add: wt_instr_altern_def)

apply (intro strip)

apply (drule spec, drule mp, assumption)

apply (simp add: wt_instr_def wt_instr_altern_def)
done

end

theory CorrCompTp
imports LemmasComp TypeInf "../BV/JVM" "../BV/Altern"
begin

declare split_paired_All [simp del]
declare split_paired_Ex [simp del]

definition inited_LT :: "[cname, ty list, (vname X ty) list] = locvars_type" where
"inited_LT C pTs lvars == (0K (Class C))#((map OK pTs))@(map (Fun.comp OK snd) lvars)"

definition is_inited_LT :: "[cname, ty list, (vname X ty) list, locvars_type] = bool"
where
"is_inited_LT C pTs lvars LT == (LT = (inited_LT C pTs lvars))"

definition local_env :: "[java_mb prog, cname, sig, vname list, (vname X ty) list] = java_mb
env" where
"local_env G C S pns lvars ==
let (mn, pTs) = S in (G, (map_of lvars) (pns[—]pTs, This+—Class C))"

lemma local_env_fst [simp]: "fst (local_env G C S pns lvars) = G"
by (simp add: local_env_def split_beta)

lemma wt_class_expr_is_class:
"[ ws_prog G; E b expr :: Class cname; E = local_env G C (mn, pTs) pns lvars]
— 1is_class G cname "
apply (subgoal_tac "((fst E), (snd E)) + expr :: Class cname")
apply (frule ty_expr_is_type)
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apply simp

apply simp
apply (simp (no_asm_use))
done

4.27.1 index

lemma local_env_snd:
"snd (local_env G C (mn, pTs) pns lvars) = (map_of lvars) (pns[—]1pTs, This+>Class C)"

by (simp add: local_env_def)

lemma index_in_bounds:
"length pns = length pTs —
snd (local_env G C (mn, pTs) pns lvars) vname = Some T
—> index (pns, lvars, blk, res) vname < length (inited_LT C pTs lvars)"
apply (simp add: local_env_snd index_def split_beta)
apply (case_tac "vname = This")
apply (simp add: inited_LT_def)
apply simp
apply (drule map_of_upds_SomeD)
apply (drule length_takeWhile)
apply (simp add: inited_LT def)
done

lemma map_upds_append:
"length kl1s = length x1s = m(kls[—]x1s, k2s[—]1x2s) = m ((k1s@k2s) [—] (x1s@x2s))"

apply (induct kls arbitrary: xl1s m)

apply simp

apply (subgoal_tac "dx xr. xls = x # xr")
apply clarsimp

apply (case_tac x1s)
apply auto
done

lemma map_of_append:

"map_of ((rev xs) @ ys) = (map_of ys) ((map fst xs) [—] (map snd xs))"

apply (induct xs arbitrary: ys)

apply simp

apply (rename_tac a xs ys)

apply (drule_tac x="a # ys" in meta_spec)

apply (simp only: rev.simps append_assoc append_Cons append_Nil
list.map map_of.simps map_upds_Cons list.sel)

done

lemma map_of_as_map_upds: "map_of (rev xs) = Map.empty ((map fst xs) [—] (map snd xs))"
by (rule map_of_append [of _ "[]", simplified])

lemma map_of_rev: "unique xs = map_of (rev xs) = map_of xs"
apply (induct xs)
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apply simp
apply (simp add: unique_def map_of_append map_of_as_map_upds [symmetric]

Map.map_of_append [symmetric] del:Map.map_of_append)

done

lemma map_upds_rev:
"[ distinct ks; length ks = length xs | = m (rev ks [—] rev xs)

apply (induct ks arbitrary: xs)

apply simp

apply (subgoal_tac "dx xr. xs = x # xr")
apply clarify

apply (drule_tac x=xr in meta_spec)

apply (simp add: map_upds_append [symmetric])
apply (case_tac xs, auto)

done

=m (ks [—] xs)"

lemma map_upds_takeWhile [rule_format]:
"Vks. (Map.empty(rev ks[—]rev xs)) k = Some x — length ks
xs ! length (takeWhile (Az. z # k) ks) = x"
apply (induct xs)
apply simp
apply (intro strip)
apply (subgoal_tac "Jk’ kr. ks = k’ # kr")
apply (clarify)
apply (drule_tac x=kr in spec)
apply (simp only: rev.simps)

= length xs —

apply (subgoal_tac "(Map.empty(rev kr @ [k’][—]rev xs @ [a])) = Map.empty (rev kr[—]rev

xs, [k’][—]1[al)")
apply (simp split:if_split_asm)
apply (simp add: map_upds_append [symmetric])
apply (case_tac ks)
apply auto
done

lemma local_env_inited_LT:
"[ snd (local_env G C (mn, pTs) pns lvars) vname = Some T;
length pns = length pTs; distinct pns; unique lvars |
—> (inited_LT C pTs lvars ! index (pns, lvars, blk, res) vname) = OK T"
apply (simp add: local_env_snd index_def)
apply (case_tac "vname = This")
apply (simp add: inited_LT def)
apply (simp add: inited_LT def)
apply (simp (no_asm_simp) only: map_map [symmetric] map_append [symmetric] list.map
[symmetric])
apply (subgoal_tac "length (takeWhile (Az. z # vname) (pns @ map fst lvars)) < length
(pTs @ map snd lvars)")
apply (simp (no_asm_simp) only: List.nth_map ok_val.simps)
apply (subgoal_tac "map_of lvars = map_of (map (A p. (fst p, snd p)) lvars)")
apply (simp only:)
apply (subgoal_tac "distinct (map fst lvars)")
apply (frule_tac g=snd in AuxLemmas.map_of_map_as_map_upd)
apply (simp only:)
apply (simp add: map_upds_append)
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apply (frule map_upds_SomeD)

apply (rule map_upds_takeWhile)

apply (simp (no_asm_simp))

apply (simp add: map_upds_append [symmetric])
apply (simp add: map_upds_rev)

apply simp

apply (simp only: unique_def Fun.comp_def)

apply simp

apply (drule map_of_upds_SomeD)
apply (drule length_takeWhile)
apply simp

done

lemma inited LT _at_index_no_err:
"i < length (inited_LT C pTs lvars) —> inited_LT C pTs lvars ! i # Err"
apply (simp only: inited_LT def)
apply (simp only: map_map [symmetric] map_append [symmetric] list.map [symmetric] length_map.
apply (simp only: nth_map)
apply simp
done

lemma sup_loc_update_index: "
[[ GFT XT’; is_type G T’; length pns = length pTs; distinct pns; unique lvars;
snd (local_env G C (mn, pTs) pns lvars) vname = Some T’ |
N
comp G + (inited_LT C pTs lvars) [index (pns, lvars, blk, res) vname := 0K T] <=1
inited_LT C pTs lvars"
apply (subgoal_tac " index (pns, lvars, blk, res) vname < length (inited_LT C pTs lvars)")
apply (frule_tac blk=blk and res=res in local_env_inited_LT, assumption+)
apply (rule sup_loc_trans)
apply (rule_tac b="OK T’" in sup_loc_update)
apply (simp add: comp_widen)
apply assumption
apply (rule sup_loc_refl)
apply (simp add: list_update_same_conv [THEN iffD2])

apply (rule index_in_bounds)
apply simp+

done

4.27.2 Preservation of ST and LT by compTpExpr / compTpStmt

lemma sttp_of_comb_nil [simp]: "sttp_of (comb_nil sttp) = sttp"
by (simp add: comb_nil_def)
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lemma mt_of_comb_nil [simp]: "mt_of (comb_nil sttp) = [
by (simp add: comb_nil_def)

lemma sttp_of_comb [simp]: "sttp_of ((f1 O f2) sttp) = sttp_of (f2 (sttp_of (f1 sttp)))"
apply (case_tac "f1 sttp")
apply (case_tac "(f2 (sttp_of (f1 sttp)))")
apply (simp add: comb_def)
done

lemma mt_of_comb: "(mt_of ((£f1 O £f2) sttp)) =
(mt_of (f1 sttp)) @ (mt_of (£2 (sttp_of (f1 sttp))))"
by (simp add: comb_def split_beta)

lemma mt_of_comb_length [simp]: "[ nl = length (mt_of (f1 sttp)); n1 < n |
= (mt_of ((f1 O f2) sttp) ! n) = (mt_of (£f2 (sttp_of (f1 sttp))) ! (n - ni))"
by (simp add: comb_def nth_append split_beta)

lemma compTpExpr_Exprs_LT ST: "
[jmb = (pns, lvars, blk, res);
wf_prog wf_java_mdecl G;
wf_java_mdecl G C ((mn, pTs), rT, jmb);
E = local_env G C (mn, pTs) pns lvars |
—
(Vv ST LT T.
EFex :: T —
is_inited_LT C pTs lvars LT —>
sttp_of (compTpExpr jmb G ex (ST, LT)) = (T # ST, LT))
A
(V ST LT Ts.
EF exs [::] Ts —
is_inited_LT C pTs lvars LT —
sttp_of (compTpExprs jmb G exs (ST, LT)) = ((rev Ts) @ ST, LT))"

apply (rule compat_expr_expr_list.induct)

apply (intro strip)
apply (drule NewC_invers)
apply (simp add: pushST def)

apply (intro strip)

apply (drule Cast_invers, clarify)

apply ((drule_tac x=ST in spec), (drule spec)+, (drule mp, assumption)+)
apply (simp add: replST def split_beta)

apply (intro strip)
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apply (drule Lit_invers)
apply (simp add: pushST def)

apply (intro strip)

apply (drule BinOp_invers, clarify)

apply (drule_tac x=ST in spec)

apply (drule_tac x="Ta # ST" in spec)

apply ((drule spec)+, (drule mp, assumption)+)

apply (rename_tac binop x2 x3 ST LT T Ta, case_tac binop)
apply (simp (no_asm_simp))

apply (simp (no_asm_simp) add: popST_def pushST_def)
apply (simp)

apply (simp (no_asm_simp) add: replST_def)

apply (intro strip)

apply (drule LAcc_invers)

apply (simp add: pushST def is_inited_LT_def)
apply (simp add: wf_prog_def)

apply (frule wf_java_mdecl_disjoint_varnames)
apply (simp add: disjoint_varnames_def)

apply (frule wf_java_mdecl_length_pTs_pns)

apply (erule conjE)+

apply (simp (no_asm_simp) add: local_env_inited_LT)

apply (intro strip)

apply (drule LAss_invers, clarify)

apply (drule LAcc_invers)

apply ((drule_tac x=ST in spec), (drule spec)+, (drule mp, assumption)+)
apply (simp add: popST_def dupST_def)

apply (intro strip)

apply (drule FAcc_invers, clarify)

apply ((drule_tac x=ST in spec), (drule spec)+, (drule mp, assumption)+)
apply (simp add: replST def)

apply (subgoal_tac "is_class G Ca")
apply (rename_tac cname x2 vname ST LT T Ca, subgoal_tac "is_class G cname A field
(G, cname) vname = Some (cname, T)")
apply simp

apply (rule field_in_fd) apply assumption+

apply (fast intro: wt_class_expr_is_class)

apply (intro strip)
apply (drule FAss_invers, clarify)
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apply (drule FAcc_invers, clarify)

apply (drule_tac x=ST in spec)

apply (drule_tac x="Class Ca # ST" in spec)
apply ((drule spec)+, (drule mp, assumption)+)
apply (simp add: popST_def dup_x1ST_def)

apply (intro strip)

apply (drule Call_invers, clarify)

apply (drule_tac x=ST in spec)

apply (rename_tac cname x2 x3 x4 x5 ST LT T pTsa md, drule_tac x="Class cname # ST"
in spec)

apply ((drule spec)+, (drule mp, assumption)+)

apply (simp add: replST def)

apply (intro strip)
apply (drule Nil_invers)
apply (simp add: comb_nil_def)

apply (intro strip)

apply (drule Cons_invers, clarify)

apply (drule_tac x=ST in spec)

apply (drule_tac x="T # ST" in spec)

apply ((drule spec)+, (drule mp, assumption)+)
apply simp

done

lemmas compTpExpr_LT_ST [rule_format (no_asm)] =
compTpExpr_Exprs_LT_ST [THEN conjunct1]

lemmas compTpExprs_LT ST [rule_format (no_asm)] =
compTpExpr_Exprs_LT_ST [THEN conjunct2]

lemma compTpStmt_LT ST [rule_format (no_asm)]: "
[ jmb = (pns,lvars,blk,res);
wf_prog wf_java_mdecl G;
wf_java_mdecl G C ((mn, pTs), rT, jmb);
E = (local_env G C (mn, pTs) pns lvars)]
= (V ST LT.
EF sy —
(is_inited_LT C pTs lvars LT)
— sttp_of (compTpStmt jmb G s (ST, LT)) = (ST, LT))"

apply (rule stmt.induct)
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apply (intro strip)
apply simp

apply (intro strip)

apply (drule Expr_invers, erule exE)

apply (simp (no_asm_simp) add: compTpExpr_ LT _ST)

apply (frule_tac ST=ST in compTpExpr_ LT ST, assumption+)
apply (simp add: popST_def)

apply (intro strip)
apply (drule Comp_invers, clarify)
apply (simp (no_asm_use))

apply simp

apply (intro strip)

apply (drule Cond_invers)

apply (erule conjE)+

apply (drule_tac x=ST in spec)

apply (drule_tac x=ST in spec)

apply (drule spec)+ apply (drule mp, assumption)+

apply (drule_tac ST="PrimT Boolean # ST" in compTpExpr_LT_ST, assumption+)
apply (simp add: popST_def pushST_def nochangeST_def)

apply
apply
apply
apply
apply
apply
apply
done

(intro strip)

(drule Loop_invers)

(erule conjE)+

(drule_tac x=ST in spec)

(drule spec)+ apply (drule mp, assumption)+

(drule_tac ST="PrimT Boolean # ST" in compTpExpr LT ST, assumption+)
(simp add: popST_def pushST_def nochangeST_def)

lemma compTpInit_LT ST: "
sttp_of (compTpInit jmb (vn,ty) (ST, LT)) = (ST, LT[(index jmb vn):= OK ty])"
by (simp add: compTpInit_def storeST_def pushST_def)

lemma compTpInitLvars_LT_ST aux [rule_format (no_asm)]:
"V pre lvars_pre lvarsO.
jmb = (pns,lvarsO,blk,res) A

lvarsO

= (lvars_pre @ lvars) A

(length pns) + (length lvars_pre) + 1 = length pre A
disjoint_varnames pns (lvars_pre @ lvars)

—

sttp_of (compTpInitLvars jmb lvars (ST, pre @ replicate (length lvars) Err))
= (ST, pre @ map (Fun.comp OK snd) lvars)"
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supply [[simproc del: defined_all]]
apply (induct lvars)
apply simp

apply (intro strip)

apply (subgoal_tac "dvn ty. a = (vn, ty)")
prefer 2

apply (simp (no_asm_simp))

apply ((erule exE)+, simp (no_asm_simp))

apply (drule_tac x="pre @ [0K tyl]" in spec)
apply (drule_tac x="lvars_pre @ [a]" in spec)
apply (drule_tac x="lvarsO" in spec)

apply (simp add: compTpInit_LT ST index_of_var2)
done

lemma compTpInitLvars_LT_ST:
"[ jmb = (pns, lvars, blk, res); wf_java_mdecl G C ((mn, pTs), rT, jmb) |
= sttp_of (compTpInitLvars jmb lvars (ST, start_LT C pTs (length lvars)))
= (ST, inited_LT C pTs lvars)"
apply (simp add: start_LT_def inited_LT def)
apply (simp only: append_Cons [symmetric])
apply (rule compTpInitLvars_LT ST aux)
apply (auto dest: wf_java_mdecl_length_pTs_pns wf_java_mdecl_disjoint_varnames)
done

lemma max_of_list_elem: "x € set xs —> x < (max_of_list xs)"
by (induct xs, auto intro: max.coboundedl simp: le_max_iff_disj max_of_list_def)

lemma max_of_list_sublist: "set xs C set ys
—> (max_of_list xs) < (max_of_list ys)"
by (induct xs, auto dest: max_of_list_elem simp: max_of_list_def)

lemma max_of_list_append [simp]:
"max_of_list (xs @ ys) = max (max_of_list xs) (max_of_list ys)"
apply (simp add: max_of_list_def)
apply (induct xs)
apply simp_all
done

lemma app_mono_mxs: "[ app i G mxs rT pc et s; mxs < mxs’ |
— app i G mxs’ rT pc et s"
apply (case_tac s)
apply (simp add: app_def)
apply (case_tac i, auto intro: less_trans)
done
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lemma err_mono [simp]: "A C B = err A C err B"
by (auto simp: err_def)

lemma opt_mono [simp]: "A C B = opt A C opt B"
by (auto simp: opt_def)

lemma states_mono: "[ mxs < mxs’ |
— states G mxs mxr C states G mxs’ mxr"
apply (simp add: states_def JVMType.sl_def)
apply (simp add: Product.esl_def stk_esl_def reg_sl_def
upto_esl_def Listn.sl_def Err.sl_def JType.esl_def)
apply (simp add: Err.esl_def Err.le_def Listn.le_def)
apply (simp add: Product.le_def Product.sup_def Err.sup_def)
apply (simp add: Opt.esl_def Listn.sup_def)
apply (rule err_mono)
apply (rule opt_mono)
apply (rule Sigma_mono)
apply (rule Union_mono)
apply auto
done

lemma check_type_mono:
"[ check_type G mxs mxr s; mxs < mxs’ | = check_type G mxs’ mxr s"
apply (simp add: check_type_def)
apply (frule_tac G=G and mxr=mxr in states_mono)
apply auto
done

lemma wt_instr_prefix: "
[ wt_instr_altern (bc ! pc) c¢G rT mt mxs mxr max_pc et pc;
bc’ = bc @ bc_post; mt’ = mt @ mt_post;
mxs < mxs’; max_pc < max_pc’;
pc < length bc; pc < length mt;
max_pc = (length mt)]
— wt_instr_altern (bc’ ! pc) cG rT mt’ mxs’ mxr max_pc’ et pc"
apply (simp add: wt_instr_altern_def nth_append)
apply (auto intro: app_mono_mxs check_type_mono)
done

lemma pc_succs_shift:
"pc’eset (succs i (pc’’ + n)) — ((pc’ - n) €set (succs i pc’’))"
apply (induct i, simp_all)
apply arith
done
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lemma pc_succs_le:
"[ pc’ € set (succs i (pc’’ + n));
Vb. ((i = (Goto b) V i=(Ifcmpeq b)) — 0 < (int pc’’ + b)) |
= n < pc’"
apply (induct i, simp_all)
apply arith
done

definition offset_xcentry :: "[nat, exception_entry] = exception_entry" where
"offset_xcentry ==
A n (start_pc, end_pc, handler_pc, catch_type).
(start_pc + n, end_pc + n, handler_pc + n, catch_type)"

definition offset_xctable :: "[nat, exception_table] = exception_table" where
"offset_xctable n == (map (offset_xcentry n))"

lemma match_xcentry_offset [simp]: "
match_exception_entry G cn (pc + n) (offset_xcentry n ee) =

match_exception_entry G cn pc ee"
by (simp add: match_exception_entry_def offset_xcentry_def split_beta)

lemma match_xctable_offset: "
(match_exception_table G cn (pc + n) (offset_xctable n et)) =
(map_option (A pc’. pc’ + n) (match_exception_table G cn pc et))"
apply (induct et)
apply (simp add: offset_xctable_def)+
apply (case_tac "match_exception_entry G cn pc a'")
apply (simp add: offset_xcentry_def split_beta)+
done

lemma match_offset [simp]: "
match G cn (pc + n) (offset_xctable n et) = match G cn pc et"
apply (induct et)
apply (simp add: offset_xctable_def)+
done

lemma match_any_offset [simp]: "
match_any G (pc + n) (offset_xctable n et) = match_any G pc et”
apply (induct et)
apply (simp add: offset_xctable_def offset_xcentry_def split_beta)+
done

lemma app_mono_pc: "[ app i G mxs rT pc et s; pc’= pc + n |
— app i G mxs rT pc’ (offset_xctable n et) s"
apply (case_tac s)
apply (simp add: app_def)
apply (case_tac i, auto)
done
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abbreviation (input)
empty_et :: exception_table
where "empty et == []"

lemma xcpt_names_Nil [simp]: "(xcpt_names (i, G, pc, [1)) = [I"
by (induct i, simp_all)

lemma xcpt_eff_Nil [simp]: "(xcpt_eff i G pc s [1) = [1"
by (simp add: xcpt_eff_def)

lemma app_jumps_lem: "[ app i c¢G mxs rT pc empty_et s; s=(Some st) |
= V b. ((i = (Goto b) V i=(Ifcmpeq b)) — 0 < (int pc + b))"
by (induct i) auto

lemma wt_instr_offset: "
[V pc’’ < length mt.
wt_instr_altern ((bc@bc_post) ! pc’’) cG rT (mt@mt_post) mxs mxr max_pc empty_et pc’’;

bc’ = bc_pre @ bc @ bc_post; mt’ = mt_pre @ mt @ mt_post;
length bc_pre = length mt_pre; length bc = length mt;
length mt_pre < pc; pc < length (mt_pre @ mt);
mxs < mxs’; max_pc + length mt_pre < max_pc’ |
—> wt_instr_altern (bc’ ! pc) cG rT mt’ mxs’ mxr max_pc’ empty_et pc"
apply (simp add: wt_instr_altern_def)
apply (subgoal_tac "3 pc’’. pc = pc’’ + length mt_pre", erule exE)
prefer 2
apply (rule_tac x="pc - length mt_pre" in exI, arith)

apply (drule_tac x=pc’’ in spec)
apply (drule mp)

apply arith

apply clarify

apply (rule conjI)

apply (simp add: nth_append)
apply (rule app_mono_mxs)
apply (frule app_mono_pc)
apply (rule HOL.refl)
apply (simp add: offset_xctable_def)
apply assumption+

apply (rule conjI)



Theory CorrCompTp 309

apply (simp add: nth_append)
apply (rule check_type_mono)
apply assumption+

apply (intro balll)
apply (subgoal_tac "3 pc’ s’. x = (pc’, s’)", (erule exE)+, simp)

apply (case_tac s’)

apply (simp add: eff_def nth_append norm_eff_def)

apply (frule_tac x="(pc’, None)" and f=fst and b=pc’ in rev_image_eql)
apply (simp (no_asm_simp))

apply (simp add: image_comp Fun.comp_def)

apply (frule pc_succs_shift)

apply (drule bspec, assumption)

apply arith

apply (drule_tac x="(pc’ - length mt_pre, s’)" in bspec)

apply (simp add: eff_def)

apply (clarsimp simp: nth_append pc_succs_shift)

apply simp

apply (subgoal_tac "length mt_pre < pc’")
apply (simp add: nth_append)

apply arith

apply (simp add: eff_def xcpt_eff_def)

apply (clarsimp)

apply (rule pc_succs_le, assumption+)

apply (subgoal_tac "3 st. mt ! pc’’ = Some st", erule exE)

apply (rule_tac s="Some st" and st=st and cG=cG and mxs=mxs and rT=rT in app_jumps_lem)
apply (simp add: nth_append)+

apply (simp add: norm_eff def map_option_case nth_append)
apply (case_tac "mt ! pc’’")

apply simp+
done

definition start_sttp_resp_cons :: "[state_type = method_type X state_type]l = bool" where
"start_sttp_resp_cons f ==
(V sttp. let (mt’, sttp’) = (f sttp) in (Imt’_rest. mt’ = Some sttp # mt’_rest))"

definition start_sttp_resp :: "[state_type = method_type X state_type] = bool" where
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"start_sttp_resp f == (f = comb_nil) V (start_sttp_resp_cons f)"

lemma start_sttp_resp_comb_nil [simp]: "start_sttp_resp comb_nil"
by (simp add: start_sttp_resp_def)

lemma start_sttp_resp_cons_comb_cons [simp]: "start_sttp_resp_cons f
—> start_sttp_resp_cons (f O £’)"
apply (simp add: start_sttp_resp_cons_def comb_def split_beta)
apply (rule alll)
apply (drule_tac x=sttp in spec)
apply auto
done

lemma start_sttp_resp_cons_comb_cons_r: ”[[ start_sttp_resp f; start_sttp_resp_cons f’]]
—> start_sttp_resp_cons (f O f£’)"
by (auto simp: start_sttp_resp_def)

lemma start_sttp_resp_cons_comb [simp]: "start_sttp_resp_cons f
= start_sttp_resp (f O £’)"
by (simp add: start_sttp_resp_def)

lemma start_sttp_resp_comb: "[ start_sttp_resp f; start_sttp_resp f’ |
—> start_sttp_resp (f O f’)"
by (auto simp: start_sttp_resp_def)

lemma start_sttp_resp_cons_nochangeST [simp]: "start_sttp_resp_cons nochangeST"
by (simp add: start_sttp_resp_cons_def nochangeST_ def)

lemma start_sttp_resp_cons_pushST [simp]: "start_sttp_resp_cons (pushST Ts)"
by (simp add: start_sttp_resp_cons_def pushST_def split_beta)

lemma start_sttp_resp_cons_dupST [simp]: "start_sttp_resp_cons dupST"
by (simp add: start_sttp_resp_cons_def dupST _def split_beta)

lemma start_sttp_resp_cons_dup_x1ST [simp]: "start_sttp_resp_cons dup_x1ST"
by (simp add: start_sttp_resp_cons_def dup_x1ST def split_beta)

lemma start_sttp_resp_cons_popST [simp]: "start_sttp_resp_cons (popST n)"
by (simp add: start_sttp_resp_cons_def popST_def split_beta)

lemma start_sttp_resp_cons_replST [simp]: "start_sttp_resp_cons (replST n tp)"
by (simp add: start_sttp_resp_cons_def replST_def split_beta)

lemma start_sttp_resp_cons_storeST [simp]: "start_sttp_resp_cons (storeST i tp)"
by (simp add: start_sttp_resp_cons_def storeST def split_beta)

lemma start_sttp_resp_cons_compTpExpr [simp]: "start_sttp_resp_cons (compTpExpr jmb G
ex)"
apply (induct ex)
apply simp+
apply (simp add: start_sttp_resp_cons_def comb_def pushST def split_beta)
apply simp+
done
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lemma start_sttp_resp_cons_compTpInit [simp]: "start_sttp_resp_cons (compTpInit jmb 1v)"
by (simp add: compTpInit_def split_beta)

lemma start_sttp_resp_nochangeST [simp]: "start_sttp_resp nochangeST"
by (simp add: start_sttp_resp_def)

lemma start_sttp_resp_pushST [simp]: "start_sttp_resp (pushST Ts)"
by (simp add: start_sttp_resp_def)

lemma start_sttp_resp_dupST [simp]: "start_sttp_resp dupST"
by (simp add: start_sttp_resp_def)

lemma start_sttp_resp_dup_x1ST [simp]: "start_sttp_resp dup_x1ST"
by (simp add: start_sttp_resp_def)

lemma start_sttp_resp_popST [simp]: "start_sttp_resp (popST n)"
by (simp add: start_sttp_resp_def)

lemma start_sttp_resp_replST [simp]: "start_sttp_resp (replST n tp)"
by (simp add: start_sttp_resp_def)

lemma start_sttp_resp_storeST [simp]: "start_sttp_resp (storeST i tp)"
by (simp add: start_sttp_resp_der)

lemma start_sttp_resp_compTpExpr [simp]: "start_sttp_resp (compTpExpr jmb G ex)"
by (simp add: start_sttp_resp_def)

lemma start_sttp_resp_compTpExprs [simp]: "start_sttp_resp (compTpExprs jmb G exs)"
by (induct exs, (simp add: start_sttp_resp_comb)+)

lemma start_sttp_resp_compTpStmt [simp]: "start_sttp_resp (compTpStmt jmb G s)"
by (induct s, (simp add: start_sttp_resp_comb)+)

lemma start_sttp_resp_compTpInitLvars [simp]: "start_sttp_resp (compTpInitLvars jmb lvars)"
by (induct lvars, simp+)

4.27.3 length of compExpr/ compTpExprs

lemma length_comb [simp]: "length (mt_of ((£f1 O f2) sttp)) =
length (mt_of (f1 sttp)) + length (mt_of (f2 (sttp_of (f1 sttp))))"
by (simp add: comb_def split_beta)

lemma length_comb_nil [simp]: "length (mt_of (comb_nil sttp)) = 0"
by (simp add: comb_nil_def)

lemma length_nochangeST [simp]: "length (mt_of (nochangeST sttp)) = 1"
by (simp add: nochangeST def)

lemma length_pushST [simp]: "length (mt_of (pushST Ts sttp)) = 1"
by (simp add: pushST def split_beta)

lemma length_dupST [simp]: "length (mt_of (dupST sttp)) = 1"
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by (simp add: dupST_def split_beta)

lemma length_dup_x1ST [simp]: "length (mt_of (dup_x1ST sttp)) = 1"
by (simp add: dup_x1ST_def split_beta)

lemma length_popST [simp]: "length (mt_of (popST n sttp)) = 1"
by (simp add: popST_def split_beta)

lemma length_replST [simp]: "length (mt_of (replST n tp sttp)) = 1"
by (simp add: replST def split_beta)

lemma length_storeST [simp]: "length (mt_of (storeST i tp sttp)) = 1"
by (simp add: storeST def split_beta)

lemma length_compTpExpr_Exprs [rule_format]: "
(Vsttp. (length (mt_of (compTpExpr jmb G ex sttp)) = length (compExpr jmb ex)))
A (Vsttp. (length (mt_of (compTpExprs jmb G exs sttp)) = length (compExprs jmb exs)))"
apply (rule compat_expr_ expr_list.induct)
apply (simp_all)[3]

apply (rename_tac binop a b, case_tac binop)

apply (auto simp add: pushST def split_beta)
done

lemma length_compTpExpr: "length (mt_of (compTpExpr jmb G ex sttp)) = length (compExpr
jmb ex)"
by (rule length_compTpExpr_Exprs [THEN conjunctl [THEN spec]])

lemma length_compTpExprs: "length (mt_of (compTpExprs jmb G exs sttp)) = length (compExprs
jmb exs)"
by (rule length_compTpExpr_Exprs [THEN conjunct2 [THEN spec]])

lemma length_compTpStmt [rule_format]: "
(V sttp. (length (mt_of (compTpStmt jmb G s sttp)) = length (compStmt jmb s)))"
by (rule stmt.induct) (auto simp: length_compTpExpr)

lemma length_compTpInit: "length (mt_of (compTpInit jmb 1v sttp)) = length (compInit
jmb 1v)"
by (simp add: compTpInit_def compInit_def split_beta)

lemma length_compTpInitLvars [rule_format]:

"V sttp. length (mt_of (compTpInitLvars jmb lvars sttp)) = length (compInitLvars jmb
lvars)"

by (induct lvars, (simp add: compInitLvars_def length_compTpInit split_beta)+)

4.27.4 Correspondence bytecode - method types

abbreviation (input)
ST_of :: "state_type = opstack_type"
where "ST_of == fst"

abbreviation (input)
LT _of :: "state_type = locvars_type"
where "LT_of == snd"
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lemma states_lower:
"[ OK (Some (ST, LT)) € states cG mxs mxr; length ST < mxs]
—> 0K (Some (ST, LT)) € states cG (length ST) mxr"

apply
apply

apply
apply
apply
apply
apply
done

(simp add:
(simp add:

(simp add:
(simp add:
(simp add:

clarify
auto

states_def JVMType.sl_def)

Product.esl_def stk_esl_def reg_sl_def upto_esl_def Listn.sl_def Err.sl_def
JType.esl_def)

Err.esl_def Err.le_def Listn.le_def)

Product.le_def Product.sup_def Err.sup_def)

Opt.esl_def Listn.sup_def)

lemma check_type_lower:
"ﬂ check_type cG mxs mxr (0K (Some (ST, LT))); length ST < mxsﬂ
=>check_type cG (length ST) mxr (OK (Some (ST, LT)))"
by (simp add: check_type_def states_lower)

definition bc_mt_corresp ::

"

[bytecode, state_type = method_type X state_type, state_type, jvm_prog, ty, nat, p_count]
= bool" where

"bc_mt_corresp bc f sttp0 cG rT mxr idx ==
let (mt, sttp) = f sttpO in
(length bc = length mt A
((check_type cG (length (ST of sttp0)) mxr (OK (Some sttp0))) —

v

mxs

pc)
A

mxs.

= max_ssize (mt@[Some sttp]l) —
vV pc. pc < idx —
wt_instr_altern (bc ! pc) cG rT (mt@[Some sttp]) mxs mxr (length mt + 1) empty_et

check_type cG mxs mxr (0K ((mt@[Some sttp]) ! idx)))))"

lemma bc_mt_corresp_comb:

n

[ bc’ = (bci@bc2); 1’ = (length bc’);
bc_mt_corresp bcl f1 sttp0 cG rT mxr (length bcl);
bc_mt_corresp bc2 £f2 (sttp_of (f1 sttp0)) cG rT mxr (length bc2);
start_sttp_resp f2]

= bc_mt_corresp bc’ (f1 O f2) sttp0 c¢G rT mxr 1°"
apply (subgoal_tac "dmt1l sttpl. (f1 sttp0) = (mt1, sttpl)", (erule exE)+)
apply (subgoal_tac "dmt2 sttp2. (f2 sttpl) = (mt2, sttp2)", (erule exE)+)

apply (simp only: start_sttp_resp_def)
apply (erule disjE)

apply (simp add: bc_mt_corresp_def comb_nil_def start_sttp_resp_cons_def)
apply (erule conjE)+
apply (intro strip)
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apply simp

apply (simp add: bc_mt_corresp_def comb_def start_sttp_resp_cons_def del: all_simps)
apply (intro strip)

apply (erule conjE)+

apply (drule mp, assumption)

apply (subgoal_tac "check_type cG (length (fst sttpl)) mxr (0K (Some sttpl))")
apply (erule conjE)+

apply (drule mp, assumption)

apply (erule conjE)+

apply (rule conjI)

apply (drule_tac x=sttpl in spec, simp)
apply (erule exE)

apply (intro strip)

apply (case_tac "pc < length mt1")

apply (drule spec, drule mp, simp)
apply simp
apply (rule_tac mt="mtl @ [Some sttpl]" in wt_instr_prefix)
apply assumption+ apply (rule HOL.refl)
apply (simp (no_asm_simp))
apply (simp (no_asm_simp) add: max_ssize_def)
apply (simp add: max_of_list_def ac_simps)
apply arith
apply (simp (no_asm_simp))+

apply (rule_tac bc=bc2 and mt=mt2 and bc_post="[]" and mt_post="[Some sttp2]"
and mxr=mxr
in wt_instr_offset)

apply simp
apply (simp (no_asm_simp))+
apply simp

apply (simp add: max_ssize_def) apply (simp (no_asm_simp))

apply (subgoal_tac "((mt2 @ [Some sttp2]) ! length bc2) = Some sttp2")
apply (simp only:)

apply (rule check_type_mono) apply assumption

apply (simp (no_asm_simp) add: max_ssize_def ac_simps)

apply (simp add: nth_append)

apply (erule conjE)+

apply (case_tac sttpl)

apply (simp add: check_type_def)

apply (rule states_lower, assumption)

apply (simp (no_asm_simp) add: max_ssize_def)

apply (simp (no_asm_simp) add: max_of_list_def ssize_sto_def)
apply (simp (no_asm_simp))+
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done

lemma bc_mt_corresp_zero [simp]:
"[ length (mt_of (f sttp)) = length bc; start_sttp_resp f]
— bc_mt_corresp bc f sttp cG rT mxr 0"
apply (simp add: bc_mt_corresp_def start_sttp_resp_def split_beta)
apply (erule disjE)
apply (simp add: max_ssize_def max_of_list_def ssize_sto_def split: prod.split)
apply (intro strip)
apply (simp add: start_sttp_resp_cons_def split_beta)
apply (drule_tac x=sttp in spec, erule exE)
apply simp
apply (rule check_type_mono, assumption)
apply (simp add: max_ssize_def max_of_list_def ssize_sto_def split: prod.split)
done

definition mt_sttp_flatten :: "method_type X state_type = method_type" where
"mt_sttp_flatten mt_sttp == (mt_of mt_sttp) @ [Some (sttp_of mt_sttp)]"

lemma mt_sttp_flatten_length [simp]: "n = (length (mt_of (f sttp)))
—> (mt_sttp_flatten (f sttp)) ! n = Some (sttp_of (f sttp))"
by (simp add: mt_sttp_flatten_def)

lemma mt_sttp_flatten_comb: "(mt_sttp_flatten ((£f1 O £f2) sttp)) =
(mt_of (f1 sttp)) @ (mt_sttp_flatten (£2 (sttp_of (£f1 sttp))))"
by (simp add: mt_sttp_flatten_def comb_def split_beta)

lemma mt_sttp_flatten_comb_length [simp]: "[ n1 = length (mt_of (f1 sttp)); nl1 < n |
= (mt_sttp_flatten ((f1 O f2) sttp) ! n) = (mt_sttp_flatten (f2 (sttp_of (f1 sttp)))
! (n - n1))"
by (simp add: mt_sttp_flatten_comb nth_append)

lemma mt_sttp_flatten_comb_zero [simp]:
"start_sttp_resp f —> (mt_sttp_flatten (f sttp)) ! 0 = Some sttp"
apply (simp only: start_sttp_resp_def)
apply (erule disjE)
apply (simp add: comb_nil_def mt_sttp_flatten_def)
apply (simp add: start_sttp_resp_cons_def mt_sttp_flatten_def split_beta)
apply (drule_tac x=sttp in spec)
apply (erule exE)
apply simp
done

lemma int_outside_right: "0 < (m::int) = m + (int n) = int ((nat m) + n)"
by simp

lemma int_outside_left: "0 < (m::int) — (int n) + m = int (n + (nat m))"



316

by simp

lemma less_Suc [simp] : "n < k = (k < Suc n) = (k = n)"
by arith

lemmas check_type_simps = check_type_def states_def JVMType.sl_def
Product.esl_def stk_esl_def reg_sl_def upto_esl_def Listn.sl_def Err.sl_def
JType.esl_def Err.esl_def Err.le_def Listn.le_def Product.le_def Product.sup_def Err.sup_def
Opt.esl_def Listn.sup_def

lemma check_type_push:
"[ is_class cG cname; check_type cG (length ST) mxr (0K (Some (ST, LT))) ]
—> check_type cG (Suc (length ST)) mxr (0K (Some (Class cname # ST, LT)))"
apply (simp add: check_type_simps)
apply clarify
apply (rule_tac x="Suc (length ST)" in exI)
apply simp+
done

lemma bc_mt_corresp_New: "[is_class cG cname |
= bc_mt_corresp [New cname] (pushST [Class cname]) (ST, LT) cG rT mxr (Suc 0)"
apply (simp add: bc_mt_corresp_def pushST_def wt_instr_altern_def
max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def max.absorbZ
apply (intro strip)
apply (rule conjI)
apply (rule check_type_mono, assumption, simp)
apply (simp add: check_type_push)
done

lemma bc_mt_corresp_Pop: "
bc_mt_corresp [Pop] (popST (Suc 0)) (T # ST, LT) <G rT mxr (Suc 0)"
apply (simp add: bc_mt_corresp_def popST_def wt_instr_altern_def eff_def norm_eff_def)
apply (simp add: max_ssize_def ssize_sto_def max_of_list_def)
apply (simp add: check_type_simps max.absorbl)
apply clarify
apply (rule_tac x="(length ST)" in exI)
apply simp
done

lemma bc_mt_corresp_Checkcast: "[ is_class cG cname; sttp = (ST, LT);
(3rT STo. ST = RefT rT # STo) |
= bc_mt_corresp [Checkcast cname] (replST (Suc 0) (Class cname)) sttp cG rT mxr (Suc
0"
apply (erule exE)+
apply (simp add: bc_mt_corresp_def replST_def wt_instr_altern_def eff_def norm_eff_def)
apply (simp add: max_ssize_def max_of_list_def ssize_sto_def)
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apply (simp add: check_type_simps)

apply clarify

apply (rule_tac x="Suc (length STo)" in exI)
apply simp

done

lemma bc_mt_corresp_LitPush: "[ typeof (Av. None) val = Some T |
= bc_mt_corresp [LitPush val] (pushST [T]) sttp cG rT mxr (Suc 0)"
apply (subgoal_tac "3ST LT. sttp= (ST, LT)", (erule exE)+)
apply (simp add: bc_mt_corresp_def pushST_def wt_instr_altern_def
max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def max.absorb2)
apply (intro strip)
apply (rule conjI)
apply (rule check_type_mono, assumption, simp)
apply (simp add: check_type_simps)
apply clarify
apply (rule_tac x="Suc (length ST)" in exI)
apply simp
apply (drule sym)
apply (case_tac val)
apply simp+
done

lemma bc_mt_corresp_LitPush_CT:

"[ typeof (Av. None) val = Some T A ¢cG - T =< T’; is_type cG T’ ]

= bc_mt_corresp [LitPush val] (pushST [T’]) sttp c¢G rT mxr (Suc 0)"

apply (subgoal_tac "3ST LT. sttp= (ST, LT)", (erule exE)+)

apply (simp add: bc_mt_corresp_def pushST def wt_instr_altern_def max_ssize_def
max_of_list_def ssize_sto_def eff_def norm_eff_def max.absorb2)

apply (intro strip)

apply (rule conjI)

apply (rule check_type_mono, assumption, simp)

apply (simp add: check_type_simps)

apply (simp add: sup_state_Cons)

apply clarify

apply (rule_tac x="Suc (length ST)" in exI)

apply simp
apply simp
done

declare not_Err_eq [iff del]

lemma bc_mt_corresp_Load: "[ i < length LT; LT ! i # Err; mxr = length LT ]
=—> bc_mt_corresp [Load i]
(A(ST, LT). pushST [ok_val (LT ! i)] (ST, LT)) (ST, LT) cG rT mxr (Suc 0)"
apply (simp add: bc_mt_corresp_def pushST_def wt_instr_altern_def max_ssize_def max_of_list_def
ssize_sto_def eff_def norm_eff_def max.absorb2)
apply (intro strip)
apply (rule conjI)
apply (rule check_type_mono, assumption, simp)
apply (simp add: check_type_simps)
apply clarify
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apply (rule_tac x="Suc (length ST)" in exI)
apply (simp (no_asm_simp))

apply (simp only: err_def)

apply (frule listE_nth_in)

apply assumption

apply (subgoal_tac "LT ! i € {x. Jy€types cG. x = OK y}")
apply (drule CollectD)

apply (erule bexE)

apply (simp (no_asm_simp))

apply blast

apply blast

done

lemma bc_mt_corresp_Store_init:

"i < length LT = bc_mt_corresp [Store i] (storeST i T) (T # ST, LT) cG rT mxr (Suc
0) n

apply (simp add: bc_mt_corresp_def storeST def wt_instr_altern_def eff_def norm_eff_def)

apply (simp add: max_ssize_def max_of_list_def)

apply (simp add: ssize_sto_def)

apply (intro strip)

apply (simp add: check_type_simps max.absorbl)

apply clarify

apply (rule conjI)

apply (rule_tac x="(length ST)" in exI)

apply simp+

done

lemma bc_mt_corresp_Store:
”[[ i < length LT; ¢G + LT[i := OK T] <=1 LT ]]
= bc_mt_corresp [Store i] (popST (Suc 0)) (T # ST, LT) cG rT mxr (Suc 0)"
apply (simp add: bc_mt_corresp_def popST_def wt_instr_altern_def eff_def norm_eff_def)
apply (simp add: sup_state_conv)
apply (simp add: max_ssize_def max_of_list_def ssize_sto_def)
apply (intro strip)
apply (simp add: check_type_simps max.absorbl)
apply clarify
apply (rule_tac x="(length ST)" in exI)
apply simp
done

lemma bc_mt_corresp_Dup: "
bc_mt_corresp [Dup] dupST (T # ST, LT) cG rT mxr (Suc 0)"
apply (simp add: bc_mt_corresp_def dupST_def wt_instr_altern_def
max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def max.absorb’
apply (intro strip)
apply (rule conjI)
apply (rule check_type_mono, assumption, simp)
apply (simp add: check_type_simps)
apply clarify
apply (rule_tac x="Suc (Suc (length ST))" in exI)
apply simp
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done

lemma bc_mt_corresp_Dup_x1: "
bc_mt_corresp [Dup_x1] dup_x1ST (T1 # T2 # ST, LT) cG rT mxr (Suc 0)"
apply (simp add: bc_mt_corresp_def dup_x1ST_def wt_instr_altern_def
max_ssize_def max_of_list_def ssize_sto_def eff_def norm_eff_def max.absorb2)
apply (intro strip)
apply (rule conjI)
apply (rule check_type_mono, assumption, simp)
apply (simp add: check_type_simps)
apply clarify
apply (rule_tac x="Suc (Suc (Suc (length ST)))" in exI)
apply simp+
done

lemma bc_mt_corresp_IAdd: "
bc_mt_corresp [IAdd] (replST 2 (PrimT Integer))
(PrimT Integer # PrimT Integer # ST, LT) c¢G rT mxr (Suc 0)"
apply (simp add: bc_mt_corresp_def replST_def wt_instr_altern_def eff_def norm_eff_def)
apply (simp add: max_ssize_def max_of_list_def ssize_sto_def)
apply (simp add: check_type_simps max.absorbl)
apply clarify
apply (rule_tac x="Suc (length ST)" in exI)
apply simp
done

lemma bc_mt_corresp_Getfield: "[[ wf_prog wf_mb G;
field (G, C) vname = Some (cname, T); is_class G C |
=—> bc_mt_corresp [Getfield vname cname]
(replST (Suc 0) (snd (the (field (G, cname) vname))))
(Class C # ST, LT) (comp G) rT mxr (Suc 0)"

apply (frule wf_prog_ws_prog [THEN wf_subclsl])
apply (frule field_in_fd, assumption+)
apply (frule widen_field, assumption+)
apply (simp add: bc_mt_corresp_def replST_def wt_instr_altern_def eff_def norm_eff_def)
apply (simp add: comp_field comp_subclsl comp_widen comp_is_class)
apply (simp add: max_ssize_def max_of_list_def ssize_sto_def)
apply (intro strip)
apply (simp add: check_type_simps)
apply clarify
apply (rule_tac x="Suc (length ST)" in exI)
apply simp+
apply (simp only: comp_is_type)
apply (rule_tac C=cname in fields_is_type)

apply (simp add: TypeRel.field_def)

apply (drule JBasis.table_of_remap_SomeD)+

apply assumption+

apply (erule wf_prog_ws_prog)
apply assumption
done

lemma bc_mt_corresp_Putfield: "[ wf_prog wf_mb G;
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field (G, C) vname = Some (cname, Ta); G - T = Ta; is_class G C |
= bc_mt_corresp [Putfield vname cname] (popST 2) (T # Class C # T # ST, LT)
(comp G) rT mxr (Suc 0)"
apply (frule wf_prog ws_prog [THEN wf_subclsi1])
apply (frule field_in_fd, assumption+)
apply (frule widen_field, assumption+)
apply (simp add: bc_mt_corresp_def popST_def wt_instr_altern_def eff_def norm_eff_def)
apply (simp add: comp_field comp_subclsl comp_widen comp_is_class)
apply (simp add: max_ssize_def max_of_list_def ssize_sto_def)

apply (intro strip)

apply (simp add: check_type_simps max.absorbl)
apply clarify

apply (rule_tac x="Suc (length ST)" in exI)
apply simp+

done

lemma Call_app:
”[[ wf_prog wf_mb G; is_class G cname;
STs = rev pTsa @ Class cname # ST;
max_spec G cname (mname, pTsa) = {((md, T), pTs’)} |
= app (Invoke cname mname pTs’) (comp G) (length (T # ST)) rT O empty_et (Some (STs,
LTs))"
apply (subgoal_tac "(3mD’ rT’ comp_b.
method (comp G, cname) (mname, pTs’) = Some (mD’, rT’, comp_b))")
apply (simp add: comp_is_class)
apply (rule_tac x=pTsa in exI)
apply (rule_tac x="Class cname" in exI)
apply (simp add: max_spec_preserves_length comp_is_class)
apply (frule max_spec2mheads, (erule exE)+, (erule conjE)+)
apply (simp add: split_paired_all comp_widen list_all2_iff)
apply (frule max_specZmheads, (erule exE)+, (erule conjE)+)
apply (rule exI)+
apply (simp add: wf_prog_ws_prog [THEN comp_method])
done

lemma bc_mt_corresp_Invoke:
"| wf_prog wf_mb G;
max_spec G cname (mname, pTsa) = {((md, T), fpTs)};
is_class G cname |
=—> bc_mt_corresp [Invoke cname mname fpTs] (replST (Suc (length pTsa)) T)
(rev pTsa @ Class cname # ST, LT) (comp G) rT mxr (Suc 0)"
apply (simp add: bc_mt_corresp_def wt_instr_altern_def eff_def norm_eff_def)
apply (simp add: replST def del: appInvoke)
apply (intro strip)
apply (rule conjI)

—— app
apply (rule Call_app [THEN app_mono_mxs])
apply assumption+
apply (rule HOL.refl)
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apply assumption
apply (simp add: max_ssize_def max_of_list_elem ssize_sto_der)

— <=8

apply (frule max_specZmheads, (erule exE)+, (erule conjE)+)
apply (simp add: wf_prog_ws_prog [THEN comp_method])

apply (simp add: max_spec_preserves_length [symmetric])

— check_type

apply (simp add: max_ssize_def ssize_sto_def)

apply (simp add: max_of_list_def)

apply (subgoal_tac "(max (length pTsa + length ST) (length ST)) = (length pTsa + length
sT)")

apply simp

apply (simp add: check_type_simps)

apply clarify

apply (rule_tac x="Suc (length ST)" in exI)

apply simp+

apply (simp only: comp_is_type)

apply (frule method_wf_mdecl) apply assumption apply assumption

apply (simp add: wf_mdecl_def wf_mhead_def)

apply (simp)

done

lemma wt_instr_Ifcmpeq: "[Suc pc < max_pc;
0 < (int pc + i); mnat (int pc + i) < max_pc;
(mt_sttp_flatten f ! pc = Some (ts#ts’#ST,LT)) A
(3@p. ts = PrimT p A ts’ = PrimT p) V (dr r’. ts = RefT r N ts’ = RefT r’));
mt_sttp_flatten f ! Suc pc = Some (ST,LT);
mt_sttp_flatten f ! nat (int pc + i) = Some (ST,LT);
check_type (TranslComp.comp G) mxs mxr (0K (Some (ts # ts’ # ST, LT))) |
—> wt_instr_altern (Ifcmpeq i) (comp G) rT (mt_sttp_flatten f) mxs mxr max_pc empty_et

n

pc
by (simp add: wt_instr_altern_def eff_def norm_eff_def)

lemma wt_instr_Goto: "[ 0 < (int pc + i); nat (int pc + i) < max_pc;

mt_sttp_flatten f ! nat (int pc + i) = (mt_sttp_flatten f ! pc);

check_type (TranslComp.comp G) mxs mxr (0K (mt_sttp_flatten f ! pc)) |

—> wt_instr_altern (Goto i) (comp G) rT (mt_sttp_flatten f) mxs mxr max_pc empty_et
pc”

apply (case_tac "(mt_sttp_flatten f ! pc)")

apply (simp add: wt_instr_altern_def eff_def norm_eff_def app_def xcpt_app_def)+

done

lemma bc_mt_corresp_comb_inside: "
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[

bc_mt_corresp bc’ f’ sttp0 cG rT mxr 11;
bc’ = (bcl@bc20@bc3); f’= (f1 O f2 O £3);
11 = (length bc1); 112 = (length (bc1@bc2));
bc_mt_corresp bc2 £f2 (sttp_of (f1 sttp0)) cG rT mxr (length bc2);
length bcl = length (mt_of (f1 sttp0));
start_sttp_resp f2; start_sttp_resp f3]
—> bc_mt_corresp bc’ f’ sttp0O cG rT mxr 112"
apply (subgoal_tac "3 mtl sttpl. (f1 sttp0) = (mtl, sttpl)", (erule exE)+)
apply (subgoal_tac "3 mt2 sttp2. (f2 sttpl) = (mt2, sttp2)", (erule exE)+)
apply (subgoal_tac "d mt3 sttp3. (£f3 sttp2) = (mt3, sttp3)", (erule exE)+)

apply (simp only: start_sttp_resp_def)
apply (erule_tac Q="start_sttp_resp_cons f2" in disjE)

apply (simp add: bc_mt_corresp_def comb_nil_def start_sttp_resp_cons_def)

apply (simp add: bc_mt_corresp_def comb_def start_sttp_resp_cons_def)
apply (drule_tac x=sttpl in spec, simp, erule exE)
apply (intro strip, (erule conjE)+)

apply (subgoal_tac '"check_type cG (length (fst sttpl)) mxr (0K (Some sttpl))")
apply (subgoal_tac "check_type cG (max_ssize (mt2 @ [Some sttp2])) mxr (0K (Some
sttp2))")
apply (subgoal_tac "check_type cG (max_ssize (mtl @ mt2 @ mt3 @ [Some sttp3]))
mxr
(0K ((mt2 @ mt3 @ [Some sttp3]) ! length mt2))")

apply simp

apply (intro strip, (erule conjE)+)
apply (case_tac "pc < length mt1")

apply (drule spec, drule mp, assumption)
apply assumption

apply (erule_tac P="f3 = comb_nil" in disjE)

apply (subgoal_tac "mt3 = [] A sttp2 = sttp3") apply (erule conjE)+
apply (subgoal_tac "bc3=[]")

apply (rule_tac bc_pre=bcl and bc=bc2 and bc_post=bc3
and mt_pre=mtl and mt=mt2 and mt_post="mt3@ [Some sttp3]"
and mxs="(max_ssize (mt2 @ [(Some sttp2)]))"
and max_pc="(Suc (length mt2))"
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in wt_instr_offset)
apply simp
apply (rule HOL.refl)+
apply (simp (no_asm_simp))+

apply (simp (no_asm_simp) add: max_ssize_def del: max_of_list_append)
apply (rule max_of_list_sublist)
apply (simp (no_asm_simp) only: set_append list.set list.map) apply blast
apply (simp (no_asm_simp))

apply simp

apply (simp add: comb_nil_def)

apply (subgoal_tac "dmt3_rest. (mt3 = Some sttp2 # mt3_rest)", erule exE)
apply (rule_tac bc_pre=bcl and bc=bc2 and bc_post=bc3
and mt_pre=mtl1 and mt=mt2 and mt_post="mt3@ [Some sttp3]"
and mxs="(max_ssize (mt2 @ [Some sttp2]))"
and max_pc="(Suc (length mt2))"
in wt_instr_offset)
apply (intro strip)
apply (rule_tac bc=bc2 and mt="(mt2 @ [Some sttp2])"
and mxs="(max_ssize (mt2 @ [Some sttp2]))"
and max_pc="(Suc (length mt2))"
in wt_instr_ prefix)

apply simp
apply (rule HOL.refl)
apply (simp (no_asm_simp))+
apply simp+

apply (simp (no_asm_simp) add: max_ssize_def del: max_of_list_append)
apply (rule max_of_list_sublist)

apply (simp (no_asm_simp) only: set_append list.set list.map)

apply blast

apply (simp (no_asm_simp))

apply (drule_tac x=sttp2 in spec, simp)

apply simp

apply (erule_tac P="f3 = comb_nil" in disjE)

apply (subgoal_tac "mt3 = [] A sttp2 = sttp3") apply (erule conjE)+
apply simp

apply (rule check_type_mono, assumption)

apply (simp only: max_ssize_def)

apply (rule max_of_list_sublist)

apply (simp (no_asm_simp))

apply blast

apply simp
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apply (simp add: comb_nil_def)

apply (subgoal_tac "dmt3_rest. (mt3 = Some sttp2 # mt3_rest)", erule exE)
apply (simp (no_asm_simp) add: nth_append)

apply (erule conjE)+

apply (rule check_type_mono, assumption)

apply (simp only: max_ssize_def)

apply (rule max_of_list_sublist)

apply (simp (no_asm_simp))

apply blast

apply (drule_tac x=sttp2 in spec, simp)

apply (simp add: nth_append)

apply (simp add: nth_append)

apply (erule conjE)+

apply (case_tac "sttpl", simp)

apply (rule check_type_lower, assumption)

apply (simp (no_asm_simp) add: max_ssize_def ssize_sto_def)
apply (simp (no_asm_simp) add: max_of_list_def)

apply (rule surj_pair)+
done

definition contracting :: "(state_type = method_type X state_type) = bool" where
"contracting f == (V ST LT.

let (ST’, LT’)

in (length ST’

length LT’

sttp_of (£ (ST, LT))
length ST A set ST’ C set ST A
length LT A set LT’ C set LT))"

oA N

lemma set_drop_Suc [rule_format]: "Vxs. set (drop (Suc n) xs) C set (drop n xs)"
apply (induct n)
apply simp
apply (intro strip)
apply (rule list.induct)
apply simp
apply simp
apply blast
apply (intro strip)
apply (rule_tac P=")\ xs. set (drop (Suc (Suc n)) xs) C set (drop (Suc n) xs)" in list.induct
apply simp+
done

lemma set_drop_le [rule_format,simp]: "Vn xs. n < m —> set (drop m xs) C set (drop
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n xs)"
apply (induct m)
apply simp

apply (intro strip)

apply (subgoal_tac "n < m V n = Suc m")

apply (erule disjE)
apply (frule_tac x=n in spec, drule_tac x=xs in spec, drule mp, assumption)
apply (rule set_drop_Suc [THEN subset_trans], assumption)

apply auto

done

declare set_drop_subset [simp]

lemma contracting popST [simp]: "contracting (popST n)"
by (simp add: contracting_def popST_def)

lemma contracting nochangeST [simp]: "contracting nochangeST"
by (simp add: contracting_def nochangeST_def)

lemma check_type_contracting: "[ check_type cG mxs mxr (0K (Some sttp)); contracting
f]

— check_type cG mxs mxr (0K (Some (sttp_of (f sttp))))"

apply (subgoal_tac "3 ST LT. sttp = (ST, LT)", (erule exE)+)

apply (simp add: check_type_simps contracting def)

apply clarify

apply (drule_tac x=ST in spec, drule_tac x=LT in spec)

apply (case_tac "(sttp_of (£ (ST, LT)))")

apply simp

apply (erule conjE)+

apply (drule listE_set)+

apply (rule conjI)
apply (rule_tac x="length a" in exI)
apply simp
apply (rule listI)
apply simp
apply blast

apply (rule listI)
apply simp

apply blast

apply auto

done

lemma bc_mt_corresp_comb_wt_instr: "
[ bc_mt_corresp bc’ f’ sttp0 ¢G rT mxr 11;
bc’ = (bc1@[inst]@bc3); f’= (f1 O f2 O £3);
11 = (length bcl);
length bcl = length (mt_of (f1 sttp0));
length (mt_of (f2 (sttp_of (f1 sttp0)))) = 1;
start_sttp_resp_cons f1; start_sttp_resp_cons f2; start_sttp_resp f3;
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check_type cG (max_ssize (mt_sttp_flatten (f’ sttp0))) mxr
(0K ((mt_sttp_flatten (f’ sttp0)) ! (length bcl)))
H
wt_instr_altern inst cG rT
(mt_sttp_flatten (f’ sttp0))
(max_ssize (mt_sttp_flatten (f’ sttp0)))

mxr
(Suc (length bc’))
empty_et

(length bcl);
contracting f2

]

= bc_mt_corresp bc’ f’ sttp0 cG rT mxr (length (bcl@[inst]))"
apply (subgoal_tac "3 mtl sttpl. (f1 sttp0) = (mtl, sttpl)", (erule exE)+)
apply (subgoal_tac "3 mt2 sttp2. (f2 sttpl) = (mt2, sttp2)", (erule exE)+)
apply (subgoal_tac "3J mt3 sttp3. (f3 sttp2) = (mt3, sttp3)", (erule exE)+)

apply (simp add: bc_mt_corresp_def comb_def start_sttp_resp_cons_def
mt_sttp_flatten_def)

apply (intro strip, (erule conjE)+)
apply (drule mp, assumption)+
apply (erule conjE)+

apply (drule mp, assumption)

apply (rule conjI)

apply (intro strip)
apply (case_tac "pc < length mt1")

apply (drule spec, drule mp, assumption)
apply assumption

apply (subgoal_tac "pc = length mt1") prefer 2 apply arith
apply (simp only:)
apply (simp add: nth_append mt_sttp_flatten_def)

apply (simp add: start_sttp_resp_def)
apply (drule_tac x="sttp0" in spec, simp, erule exE)
apply (drule_tac x="sttpl" in spec, simp, erule exE)

apply (subgoal_tac "check_type cG (max_ssize (mtl @ mt2 @ mt3 @ [Some sttp3])) mxr
(0K (Some (sttp_of (f2 sttp1))))")

apply (simp only:)
apply (erule disjE)

apply (subgoal_tac "((mtl @ mt2 @ mt3 @ [Some sttp3]) ! Suc (length mt1l)) = (Some
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(snd (f2 sttp1)))")
apply (subgoal_tac "mt3 = [] A sttp2 = sttp3")
apply (erule conjE)+
apply (simp add: nth_append)
apply (simp add: comb_nil_def)
apply (simp add: nth_append comb_nil_def)

apply (simp add: start_sttp_resp_cons_def)
apply (drule_tac x="sttp2" in spec, simp, erule exE)
apply (simp add: nth_append)

apply (rule check_type_contracting)

apply (subgoal_tac "((mtl @ mt2 @ mt3 @ [Some sttp3]) ! length mtl) = (Some sttpl)")
apply (simp add: nth_append)

apply (simp add: nth_append)

apply assumption

apply (rule surj_pair)+
done

lemma compTpExpr_ LT ST rewr [simp]:
"[ wf_java_prog G; wf_java_mdecl G C ((mn, pTs), rT, (pns, lvars, blk, res));
local_env G C (mn, pTs) pns lvars F ex :: T;
is_inited_LT C pTs lvars LT]
= sttp_of (compTpExpr (pns, lvars, blk, res) G ex (ST, LT)) = (T # ST, LT)"
by (rule compTpExpr_LT_ST) auto

lemma wt_method_compTpExpr_ Exprs_corresp: "

[ jmb = (pns,lvars,blk,res);

wf_prog wf_java_mdecl G;

wf_java_mdecl G C ((mn, pTs), rT, jmb);

E = (local_env G C (mn, pTs) pns lvars)]
—

(W STLT T bc’ £°.

EFex :: T —

(is_inited_LT C pTs lvars LT) —

bc’ = (compExpr jmb ex) —

£’ = (compTpExpr jmb G ex)

— bc_mt_corresp bc’ £’ (ST, LT) (comp G) rT (length LT) (length bc’))
A

(Vv ST LT Ts.

ElF exs [::] Ts —

(is_inited_LT C pTs lvars LT)

— bc_mt_corresp (compExprs jmb exs) (compTpExprs jmb G exs) (ST, LT) (comp G) rT (length
LT) (length (compExprs jmb exs)))"

apply (rule compat_expr_expr_list.induct)
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apply (intro alll impI)

apply (simp only:)

apply (drule NewC_invers)
apply (simp (no_asm_use))
apply (rule bc_mt_corresp_New)
apply (simp add: comp_is_class)

apply (intro alll impI)
apply (simp only:)
apply (drule Cast_invers)
apply clarify
apply (simp (no_asm_use))
apply (rule bc_mt_corresp_comb)
apply (rule HOL.refl, simp (no_asm_simp), blast)
apply (simp (no_asm_simp), rule bc_mt_corresp_Checkcast)
apply (simp add: comp_is_class)
apply (simp only: compTpExpr_LT_ST)
apply (drule cast_RefT)
apply blast
apply (simp add: start_sttp_resp_def)

apply (intro alll impI)

apply (simp only:)

apply (drule Lit_invers)

apply simp

apply (rule bc_mt_corresp_LitPush)
apply assumption

apply (intro alll impI)

apply (simp (no_asm_simp) only:)

apply (drule BinOp_invers, erule exE, (erule conjE)+)

apply (rename_tac binop exprl expr2 ST LT T bc’ f’ Ta, case_tac binop)
apply (simp (no_asm_simp))

apply (subgoal_tac "bc_mt_corresp bc’ £’ (ST, LT) (comp G) rT (length LT) 0")
prefer 2
apply (rule bc_mt_corresp_zero)
apply (simp add: length_compTpExpr)
apply (simp (no_asm_simp))

apply (drule_tac 7bc1.0="[]" and 7bc2.0 = "compExpr jmb expril"
and 7f1.0=comb_nil and ?7f2.0 = "compTpExpr jmb G expril"
in bc_mt_corresp_comb_inside)
apply (simp (no_asm_simp))+
apply blast
apply (simp (no_asm_simp) add: length_compTpExpr)+
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apply (drule_tac ?bc2.0 = "compExpr jmb expr2" and ?7f2.0 = "compTpExpr jmb
G expr2"
in bc_mt_corresp_comb_inside)
apply (simp (no_asm_simp))+
apply (simp only: compTpExpr_ LT ST)

apply (simp (no_asm_simp) add: length_compTpExpr)

apply (simp (no_asm_simp))
apply (simp (no_asm_simp))

apply (drule_tac ?bc1.0 = "compExpr jmb exprl @ compExpr jmb expr2"

and inst = "Ifcmpeq 3" and 7bc3.0 = "[LitPush (Bool False),Goto
2, LitPush (Bool True)]"

and ?f1.0="compTpExpr jmb G exprl U compTpExpr jmb G expr2"

and ?7f2.0="popST 2" and ?7f3.0="pushST [PrimT Boolean] O popST
1 O pushST [PrimT Boolean]"

in bc_mt_corresp_comb_wt_instr)

apply (simp (no_asm_simp) add: length_compTpExpr)+

apply (intro strip)
apply (simp (no_asm_simp) add: wt_instr_altern_def length_compTpExpr eff_def)
apply (simp (no_asm_simp) add: norm_eff_def)
apply (simp (no_asm_simp) only: int_outside_left nat_int)
apply (simp (no_asm_simp) add: length_compTpExpr)
apply (simp only: compTpExpr_LT_ST)+
apply (simp add: eff_def norm_eff_def popST_def pushST_def mt_sttp_flatten_def)
apply (case_tac Ta)
apply (simp (no_asm_simp))
apply (simp (no_asm_simp))
apply (rule contracting popST)

apply (drule_tac 7bc1.0 = "compExpr jmb exprl @ compExpr jmb expr2 @ [Ifcmpeq

3] n

and ?bc2.0 = "[LitPush (Bool False)]"

and ?bc3.0 = "[Goto 2, LitPush (Bool True)]"

and ?f1.0 = "compTpExpr jmb G exprl O compTpExpr jmb G expr2 O
popST 2"

and ?7f2.0 = "pushST [PrimT Boolean]"

and ?f3.0 = "popST (Suc 0) O pushST [PrimT Boolean]"

in bc_mt_corresp_comb_inside)
apply (simp (no_asm_simp))+
apply simp
apply (rule_tac T="(PrimT Boolean)" in bc_mt_corresp_LitPush) apply (simp
(no_asm_simp))

apply (simp (no_asm_simp) add: length_compTpExpr)

apply (simp (no_asm_simp))
apply (simp (no_asm_simp) add: start_sttp_resp_def)

apply (drule_tac ?bc1.0 = "compExpr jmb exprl @ compExpr jmb expr2 @ [Ifcmpeq
3, LitPush (Bool False)]"
and inst = "Goto 2" and ?bc3.0 = "[LitPush (Bool True)]"
and ?f1.0="compTpExpr jmb G exprl O compTpExpr jmb G expr2 O popST



330

2 0O pushST [PrimT Boolean]"
and ?f2.0="popST 1" and ?f3.0="pushST [PrimT Boolean]"
in bc_mt_corresp_comb_wt_instr)
apply (simp (no_asm_simp) add: length_compTpExpr)+

apply (simp (no_asm_simp) add: wt_instr_altern_def length_compTpExpr)
apply (simp (no_asm_simp) add: eff_def norm_eff_def)

apply (simp (no_asm_simp) only: int_outside_right nat_int)

apply (simp (no_asm_simp) add: length_compTpExpr)

apply (simp only: compTpExpr_ LT_ST)+

apply (simp add: eff_def norm_eff_def popST_def pushST_def)

apply (rule contracting popST)

apply (drule_tac ?bc1.0 = "compExpr jmb exprl @ compExpr jmb expr2 @ [Ifcmpeq
3, LitPush (Bool False), Goto 2]"
and ?bc2.0 = "[LitPush (Bool True)]"
and 7bc3.0 = "[]"
and ?f1.0 = "compTpExpr jmb G exprl O compTpExpr jmb G expr2 O

popST 2 O
pushST [PrimT Boolean] O popST (Suc 0)"
and ?f2.0 = "pushST [PrimT Boolean]"
and ?f3.0 = "comb_nil"
in bc_mt_corresp_comb_inside)
apply (simp (no_asm_simp))+
apply simp
apply (rule_tac T="(PrimT Boolean)" in bc_mt_corresp_LitPush)
apply (simp (no_asm_simp))
apply (simp (no_asm_simp) add: length_compTpExpr)
apply (simp (no_asm_simp) add: start_sttp_resp_def)
apply (simp (no_asm_simp))

apply simp

apply simp
apply (rule bc_mt_corresp_comb)
apply (rule HOL.refl)
apply simp
apply blast
apply (rule bc_mt_corresp_comb, rule HOL.refl)
apply (simp only: compTpExpr_LT_ST)
apply (simp only: compTpExpr_ LT _ST)
apply blast

apply (simp only: compTpExpr_LT_ST)

apply simp

apply (rule bc_mt_corresp_IAdd)

apply (simp (no_asm_simp) add: start_sttp_resp_def)
apply (simp (no_asm_simp) add: start_sttp_resp_def)

apply (intro alll impI)
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apply
apply
apply
apply
apply
apply

(simp only:)

(drule LAcc_invers)

(frule wf_java_mdecl_length_pTs_pns)
clarify

(simp add: is_inited_LT_def)

(rule bc_mt_corresp_Load)

apply (rule index_in_bounds)
apply simp
apply assumption
apply (rule inited_LT_at_index_no_err)
apply (rule index_in_bounds)
apply simp
apply assumption

apply

apply
apply
apply
apply
apply
apply
apply
apply
apply

(rule HOL.refl)

(intro alll impI)

(simp only:)

(drule LAss_invers, erule exE, (erule conjE)+)

(drule LAcc_invers)

(frule wf_java_mdecl_disjoint_varnames, simp add: disjoint_varnames_def)
(frule wf_java_mdecl_length_pTs_pns)

clarify

(simp (no_asm_use))

(rule bc_mt_corresp_comb)

apply (rule HOL.refl, simp (no_asm_simp), blast)

apply
apply
vname)]"

(rename_tac vname x2 ST LT T Ta)
(rule_tac 7bcl.0="[Dup]" and 7bc2.0="[Store (index (pns, lvars, blk, res)

and ?f1.0="dupST" and ?7f2.0="popST (Suc 0)"
in bc_mt_corresp_comb)

apply (simp (no_asm_simp))+
apply (rule bc_mt_corresp_Dup)
apply (simp only: compTpExpr_LT_ST)
apply (simp add: dupST_def is_inited_LT def)
apply (rule bc_mt_corresp_Store)
apply (rule index_in_bounds)
apply simp
apply assumption
apply (rule sup_loc_update_index, assumption+)
apply simp
apply assumption+

apply
apply

(simp add: start_sttp_resp_def)
(simp add: start_sttp_resp_def)

apply (intro alll impI)
apply (simp only:)
apply (drule FAcc_invers)
apply clarify
apply (simp (no_asm_use))
apply (rule bc_mt_corresp_comb)
apply (rule HOL.refl, simp (no_asm_simp), blast)
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apply (simp (no_asm_simp))
apply (rule bc_mt_corresp_Getfield)
apply assumption+
apply (fast intro: wt_class_expr_is_class)
apply (simp (no_asm_simp) add: start_sttp_resp_def)

apply (intro allIl impI)
apply (simp only:)
apply (drule FAss_invers, erule exE, (erule conjE)+)
apply (drule FAcc_invers)
apply clarify
apply (simp (no_asm_use))
apply (rule bc_mt_corresp_comb)
apply (rule HOL.refl)
apply simp
apply blast
apply (simp only: compTpExpr_LT_ST)
apply (rule bc_mt_corresp_comb, (rule HOL.refl)+)
apply blast
apply (simp only: compTpExpr_LT ST)
apply (rename_tac cname x2 vname x4 ST LT T Ta Ca)
apply (rule_tac ?bcl.0="[Dup_x1]" and ?bc2.0="[Putfield vname cnamel]" in bc_mt_corresp_
apply (simp (no_asm_simp))+
apply (rule bc_mt_corresp_Dup_x1)
apply (simp (no_asm_simp) add: dup_x1ST_def)
apply (rule bc_mt_corresp_Putfield, assumption+)
apply (fast intro: wt_class_expr_is_class)
apply (simp (no_asm_simp) add: start_sttp_resp_def)
apply (simp (no_asm_simp) add: start_sttp_resp_def)
apply (simp (no_asm_simp) add: start_sttp_resp_def)

apply (intro allIl impI)
apply (simp only:)
apply (drule Call_invers)
apply clarify
apply (simp (no_asm_use))
apply (rule bc_mt_corresp_comb)
apply (rule HOL.refl)

apply simp

apply blast
apply (simp only: compTpExpr_ LT ST)
apply (rule bc_mt_corresp_comb, (rule HOL.refl)+)

apply blast

apply (simp only: compTpExprs_LT_ST)

apply (simp (no_asm_simp))

apply (rule bc_mt_corresp_Invoke)

apply assumption+

apply (fast intro: wt_class_expr_is_class)
apply (simp (no_asm_simp) add: start_sttp_resp_def)
apply (rule start_sttp_resp_comb)
apply (simp (no_asm_simp))
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apply (simp (no_asm_simp) add: start_sttp_resp_def)

apply (intro alll impI)
apply (drule Nil_invers)
apply simp

apply (intro alll impI)
apply (drule Cons_invers, (erule exE)+, (erule conjE)+)
apply clarify
apply (simp (no_asm_use))
apply (rule bc_mt_corresp_comb)
apply (rule HOL.refl)
apply simp
apply blast
apply (simp only: compTpExpr_LT_ST)
apply blast
apply simp

done

lemmas wt_method_compTpExpr_corresp [rule_format (no_asm)] =
wt_method_compTpExpr_Exprs_corresp [THEN conjunctl]

lemma wt_method_compTpStmt_corresp [rule_format (no_asm)]: "
[ jmb = (pns,lvars,blk,res);
wf_prog wf_java_mdecl G;
wf_java_mdecl G C ((mn, pTs), rT, jmb);
E = (local_env G C (mn, pTs) pns lvars)]

—
W STLT T bc’ £°.
Et sy —

(is_inited_LT C pTs lvars LT) —
bc’ = (compStmt jmb s) —>
£’ = (compTpStmt jmb G s)

— bc_mt_corresp bc’ f’ (ST, LT) (comp G) rT (length LT) (length bc’))"

apply (rule stmt.induct)

apply (intro alll impI)
apply simp

333
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stm

#

apply (intro alll impI)

apply (drule Expr_invers, erule exE)

apply (simp (no_asm_simp))

apply (rule bc_mt_corresp_comb) apply (rule HOL.refl, simp (no_asm_simp))
apply (rule wt_method_compTpExpr_corresp) apply assumption+
apply (simp add: compTpExpr_ LT ST [of _ pns lvars blk res])+

apply (rule bc_mt_corresp_Pop)

apply (simp add: start_sttp_resp_def)

apply (intro alll impI)

apply (drule Comp_invers)

apply clarify

apply (simp (no_asm_use))

apply (rule bc_mt_corresp_comb) apply (rule HOL.refl)
apply (simp (no_asm_simp)) apply blast

apply (simp only: compTpStmt_LT_ST)

apply (simp (no_asm_simp))

apply (intro alll impI)

apply (simp (no_asm_simp) only:)

apply (drule Cond_invers, (erule conjE)+)
apply (simp (no_asm_simp))

apply (subgoal_tac "bc_mt_corresp bc’ £’ (ST, LT) (comp G) rT (length LT) 0")
prefer 2
apply (rule bc_mt_corresp_zero)
apply (simp (no_asm_simp) add: length_compTpStmt length_compTpExpr)
apply (simp (no_asm_simp))

apply (rename_tac expr stmtl stmt2 ST LT bc’ £’)
apply (drule_tac ?bc1.0="[]" and ?bc2.0 = "[LitPush (Bool False)]"
and 7bc3.0="compExpr jmb expr @ Ifcmpeq (2 + int (length (compStmt jmb
t1))) #
compStmt jmb stmtl @ Goto (1 + int (length (compStmt jmb stmt2)))

compStmt jmb stmt2"
and ?f1.0=comb_nil and ?f2.0 = "pushST [PrimT Boolean]"
and 7£3.0="compTpExpr jmb G expr O popST 2 O compTpStmt jmb G stmtl O
nochangeST U compTpStmt jmb G stmt2"
in bc_mt_corresp_comb_inside)
apply (simp (no_asm_simp))+
apply (rule_tac T="(PrimT Boolean)" in bc_mt_corresp_LitPush)
apply (simp (no_asm_simp) add: start_sttp_resp_def)+

apply (drule_tac ?bcl.0="[LitPush (Bool False)]" and 7bc2.0 = "compExpr jmb expr"
and ?7bc3.0="Ifcmpeq (2 + int (length (compStmt jmb stmtl))) #
compStmt jmb stmtl @ Goto (1 + int (length (compStmt jmb stmt2)))
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compStmt jmb stmt2"
and 7f1.0="pushST [PrimT Boolean]" and ?7f2.0 = "compTpExpr jmb G expr"
and ?£3.0="popST 2 O compTpStmt jmb G stmtl O nochangeST O compTpStmt
jmb G stmt2"
in bc_mt_corresp_comb_inside)
apply (simp (no_asm_simp))+

apply (simp (no_asm_simp) add: pushST_def)

apply (rule wt_method_compTpExpr_corresp, assumption+)

apply (simp (no_asm_simp))+

apply (drule_tac 7bc1.0 = "[LitPush (Bool False)] @ compExpr jmb expr"
and inst = "Ifcmpeq (2 + int (length (compStmt jmb stmt1)))"
and ?bc3.0 = "compStmt jmb stmtl @ Goto (1 + int (length (compStmt jmb
stmt2))) #
compStmt jmb stmt2"
and 7f1.0="pushST [PrimT Boolean] O compTpExpr jmb G expr" and ?7f2.0
= "popST 2"

and ?f3.0="compTpStmt jmb G stmtl O nochangeST O compTpStmt jmb G stmt2"
in bc_mt_corresp_comb_wt_instr)
apply (simp (no_asm_simp) add: length_compTpExpr)+
apply (simp (no_asm_simp) add: start_sttp_resp_comb)

apply (intro strip)
apply (rule_tac ts="PrimT Boolean" and ts’="PrimT Boolean" and ST=ST and LT=LT
in wt_instr_Ifcmpeq)
apply (simp (no_asm_simp))
apply (simp (no_asm_simp) only: int_outside_right nat_int, simp (no_asm_simp))
apply (simp (no_asm_simp) only: int_outside_right nat_int, simp (no_asm_simp))

apply (simp add: length_compTpExpr pushST_def)
apply (simp only: compTpExpr_LT_ST)

apply (simp add: length_compTpExpr pushST def)
apply (simp add: popST_def start_sttp_resp_comb)

apply (simp (no_asm_simp) only: int_outside_right nat_int, simp (no_asm_simp))
apply (simp add: length_compTpExpr pushST_def)

apply (simp add: popST_def start_sttp_resp_comb length_compTpStmt)

apply (simp only: compTpStmt_LT_ST)

apply (simp add: nochangeST_def)

apply (subgoal_tac "
(mt_sttp_flatten (f’ (ST, LT)) ! length ([LitPush (Bool False)] @ compExpr jmb expr))

(Some (PrimT Boolean # PrimT Boolean # ST, LT))")
apply (simp only:)
apply (simp (no_asm_simp)) apply (rule trans, rule mt_sttp_flatten_comb_length)
apply (rule HOL.refl) apply (simp (no_asm_simp) add: length_compTpExpr)
apply (simp (no_asm_simp) add: length_compTpExpr pushST def)
apply (simp only: compTpExpr_LT_ST_ rewr)

apply (rule contracting popST)
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apply (drule_tac 7bc1l.0="[LitPush (Bool False)] @ compExpr jmb expr @
[Ifcmpeq (2 + int (length (compStmt jmb stmt1)))] "
and ?bc2.0 = "compStmt jmb stmtl"
and 7bc3.0="Goto (1 + int (length (compStmt jmb stmt2))) # compStmt jmb
stmt2"
and 7f1.0="pushST [PrimT Boolean] O compTpExpr jmb G expr O popST 2"
and ?f2.0 = "compTpStmt jmb G stmtl"
and ?f3.0="nochangeST O compTpStmt jmb G stmt2"
in bc_mt_corresp_comb_inside)
apply (simp (no_asm_simp))+

apply (simp (no_asm_simp) add: pushST_def popST_def compTpExpr_LT_ST)

apply (simp only: compTpExpr_LT_ST)

apply (simp (no_asm_simp))

apply (simp (no_asm_simp) add: length_compTpExpr)+

apply (drule_tac 7bc1.0 = "[LitPush (Bool False)] @ compExpr jmb expr @ [Ifcmpeq (2
+ int (length (compStmt jmb stmt1)))] @ compStmt jmb stmtl"
and inst = "Goto (1 + int (length (compStmt jmb stmt2)))"
and ?bc3.0 = "compStmt jmb stmt2"
and ?f1.0="pushST [PrimT Boolean] O compTpExpr jmb G expr O popST 2 O
compTpStmt jmb G stmt1"
and ?f2.0 = "nochangeST"
and ?f3.0="compTpStmt jmb G stmt2"
in bc_mt_corresp_comb_wt_instr)
apply (simp (no_asm_simp) add: length_compTpExpr length_compTpStmt)+
apply (intro strip)
apply (rule wt_instr_Goto)
apply (simp (no_asm_simp) only: int_outside_right nat_int, simp (no_asm_simp))
apply (simp (no_asm_simp) only: int_outside_right nat_int, simp (no_asm_simp))

apply (simp (no_asm_simp) add: length_compTpExpr length_compTpStmt)
apply (simp (no_asm_simp) add: pushST_def popST_def nochangeST_def)
apply (simp only: compTpExpr_LT_ST compTpStmt_LT_ST)
apply (simp (no_asm_simp) add: pushST_def popST_def nochangeST def)
apply (simp only: compTpExpr_LT_ST compTpStmt_LT_ST)

apply (simp only:)

apply (simp add: length_compTpExpr length_compTpStmt)

apply (rule contracting nochangeST)

apply (drule_tac
?bc1.0= "[LitPush (Bool False)] @ compExpr jmb expr @
[Ifcmpeq (2 + int (length (compStmt jmb stmt1)))] @
compStmt jmb stmtl @ [Goto (1 + int (length (compStmt jmb stmt2)))]"
and ?7bc2.0 = "compStmt jmb stmt2"
and ?bc3.0="[]"
and 7f1.0="pushST [PrimT Boolean] U compTpExpr jmb G expr O popST 2 O compTpStmt
jmb G stmtl U nochangeST"
and ?f2.0 = "compTpStmt jmb G stmt2"
and 7f3.0="comb_nil"
in bc_mt_corresp_comb_inside)
apply (simp (no_asm_simp))+
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apply (simp (no_asm_simp) add: pushST_def popST_def nochangeST_def compTpExpr_LT_ST)
apply (simp only: compTpExpr_LT_ST)

apply (simp (no_asm_simp))

apply (simp only: compTpStmt_LT_ST)

apply (simp (no_asm_simp) add: length_compTpExpr length_compTpStmt)+

apply simp

apply (intro alll impI)

apply (simp (no_asm_simp) only:)

apply (drule Loop_invers, (erule conjE)+)
apply (simp (no_asm_simp))

apply (subgoal_tac "bc_mt_corresp bc’ £’ (ST, LT) (comp G) rT (length LT) 0")
prefer 2
apply (rule bc_mt_corresp_zero)
apply (simp (no_asm_simp) add: length_compTpStmt length_compTpExpr)
apply (simp (no_asm_simp))

apply (rename_tac expr stmt ST LT bc’ £f’)
apply (drule_tac ?bc1.0="[]" and ?bc2.0 = "[LitPush (Bool False)]"
and ?bc3.0="compExpr jmb expr @ Ifcmpeq (2 + int (length (compStmt jmb
stmt))) #
compStmt jmb stmt @
[Goto (-2 + (- int (length (compStmt jmb stmt)) - int (length
(compExpr jmb expr))))]"
and ?f1.0=comb_nil and ?f2.0 = "pushST [PrimT Boolean]"
and ?f3.0="compTpExpr jmb G expr O popST 2 O compTpStmt jmb G stmt O
nochangeST"
in bc_mt_corresp_comb_inside)
apply (simp (no_asm_simp))+
apply (rule_tac T="(PrimT Boolean)" in bc_mt_corresp_LitPush)
apply (simp (no_asm_simp) add: start_sttp_resp_def)+

apply (drule_tac ?bcl.0="[LitPush (Bool False)]" and 7bc2.0 = "compExpr jmb expr"
and 7bc3.0="Ifcmpeq (2 + int (length (compStmt jmb stmt))) #
compStmt jmb stmt @
[Goto (-2 + (- int (length (compStmt jmb stmt)) - int (length
(compExpr jmb expr))))]"
and ?f1.0="pushST [PrimT Boolean]" and ?7f2.0 = "compTpExpr jmb G expr"
and ?f3.0="popST 2 O compTpStmt jmb G stmt O nochangeST"
in bc_mt_corresp_comb_inside)
apply (simp (no_asm_simp))+
apply (simp (no_asm_simp) add: pushST_def)
apply (rule wt_method_compTpExpr_corresp, assumption+)
apply (simp (no_asm_simp))+

apply (drule_tac ?bc1.0 = "[LitPush (Bool False)] @ compExpr jmb expr"
and inst = "Ifcmpeq (2 + int (length (compStmt jmb stmt)))"
and ?7bc3.0 = "compStmt jmb stmt @

[Goto (-2 + (- int (length (compStmt jmb stmt)) - int (length
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(compExpr jmb expr))))]"
and ?f1.0="pushST [PrimT Boolean] O compTpExpr jmb G expr" and ?7f2.0 =
"popST 2"
and ?7f3.0="compTpStmt jmb G stmt O nochangeST"
in bc_mt_corresp_comb_wt_instr)
apply (simp (no_asm_simp) add: length_compTpExpr)+
apply (simp (no_asm_simp) add: start_sttp_resp_comb)

apply (intro strip)
apply (rule_tac ts="PrimT Boolean" and ts’="PrimT Boolean"
and ST=ST and LT=LT
in wt_instr_ Ifcmpeq)
apply (simp (no_asm_simp))
apply (simp (no_asm_simp) only: int_outside_right nat_int, simp (no_asm_simp))
apply (simp (no_asm_simp) only: int_outside_right nat_int, simp (no_asm_simp))

apply (simp add: length_compTpExpr pushST_def)
apply (simp only: compTpExpr_LT_ST)

apply (simp add: length_compTpExpr pushST_def)
apply (simp add: popST_def start_sttp_resp_comb)

apply (simp (no_asm_simp) only: int_outside_right nat_int, simp (no_asm_simp))
apply (simp add: length_compTpExpr pushST def)

apply (simp add: popST_def start_sttp_resp_comb length_compTpStmt)

apply (simp only: compTpStmt_LT_ST)

apply (simp add: nochangeST_def)

apply (subgoal_tac "
(mt_sttp_flatten (£’ (ST, LT)) ! length ([LitPush (Bool False)] @ compExpr jmb expr))

(Some (PrimT Boolean # PrimT Boolean # ST, LT))")

apply (simp only:)

apply (simp (no_asm_simp)) apply (rule trans, rule mt_sttp_flatten_comb_length)
apply (rule HOL.refl) apply (simp (no_asm_simp) add: length_compTpExpr)

apply (simp (no_asm_simp) add: length_compTpExpr pushST_def)

apply (simp only: compTpExpr_LT ST _rewr)

apply (rule contracting popST)

apply (drule_tac
?bc1.0="[LitPush (Bool False)] @ compExpr jmb expr @
[Ifcmpeq (2 + int (length (compStmt jmb stmt)))] "
and ?7bc2.0 = "compStmt jmb stmt"
and ?7bc3.0="[Goto (-2 + (- int (length (compStmt jmb stmt)) - int (length (compExpr
jmb expr))))1"
and 7f1.0="pushST [PrimT Boolean] O compTpExpr jmb G expr O popST 2"
and 7f2.0 = "compTpStmt jmb G stmt"
and ?f3.0="nochangeST"
in bc_mt_corresp_comb_inside)
apply (simp (no_asm_simp))+
apply (simp (no_asm_simp) add: pushST_def popST_def compTpExpr_LT_ST)
apply (simp only: compTpExpr_ LT ST)
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apply (simp (no_asm_simp))
apply (simp (no_asm_simp) add: length_compTpExpr)+

apply (drule_tac ?bc1.0 = "[LitPush (Bool False)] @ compExpr jmb expr @ [Ifcmpeq (2
+ int (length (compStmt jmb stmt)))] @ compStmt jmb stmt"
and inst = "Goto (-2 + (- int (length (compStmt jmb stmt)) - int (length (compExpr
jmb expr))))"
and ?bc3.0 = "[]"
and ?f1.0="pushST [PrimT Boolean] O compTpExpr jmb G expr O popST 2 O compTpStmt
jmb G stmt"
and ?f2.0 = "nochangeST"
and ?f3.0="comb_nil"
in bc_mt_corresp_comb_wt_instr)
apply (simp (no_asm_simp) add: length_compTpExpr length_compTpStmt)+
apply (intro strip)
apply (rule wt_instr_Goto)
apply arith
apply arith

apply (simp (no_asm_simp))

apply (simp (no_asm_simp) add: length_compTpExpr length_compTpStmt)
apply (simp (no_asm_simp) add: pushST_def popST_def nochangeST def)
apply (simp only: compTpExpr_LT_ST compTpStmt_LT_ST)

apply (simp (no_asm_simp) add: length_compTpExpr length_compTpStmt)
apply (simp only: compTpExpr_LT_ST compTpStmt_LT_ST)

apply (simp (no_asm_simp) add: pushST_def popST_def nochangeST_def)
apply (simp (no_asm_simp) add: length_compTpExpr length_compTpStmt)
apply (simp only: compTpExpr_LT ST compTpStmt_LT_ST)

apply (simp add: length_compTpExpr length_compTpStmt)

apply (simp add: pushST_def popST_def compTpExpr_ LT ST compTpStmt_LT_ST)
apply (rule contracting nochangeST)
apply simp

done

lemma wt_method_compTpInit_corresp: "[ jmb = (pns,lvars,blk,res);
wf_java_mdecl G C ((mn, pTs), rT, jmb); mxr = length LT;
length LT = (length pns) + (length lvars) + 1; vn € set (map fst lvars);
bc = (compInit jmb (vn,ty)); f = (compTpInit jmb (vn,ty));
is_type G ty |
= bc_mt_corresp bc f (ST, LT) (comp G) rT mxr (length bc)"
apply (simp add: compInit_def compTpInit_def split_beta)
apply (rule_tac ?bcl.0="[load_default_val ty]" and 7bc2.0="[Store (index jmb vn)]"
in bc_mt_corresp_comb)
apply simp+
apply (simp add: load_default_val_def)
apply (rule typeof_default_val [THEN exE])
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apply (rule bc_mt_corresp_LitPush_CT, assumption)
apply (simp add: comp_is_type)

apply (simp add: pushST def)

apply (rule bc_mt_corresp_Store_init)

apply simp

apply (rule index_length_lvars [THEN conjunct2])
apply auto

done

lemma wt_method_compTpInitLvars_corresp_aux [rule_format (no_asm)]: "

V 1lvars_pre lvarsO ST LT.

jmb = (pns,lvars0,blk,res) A

lvarsO = (lvars_pre @ lvars) A

length LT = (length pns) + (length lvars0) + 1 A

wf_java_mdecl G C ((mn, pTs), rT, jmb)

— bc_mt_corresp (compInitLvars jmb lvars) (compTpInitLvars jmb lvars) (ST, LT) (comp
G) rT

(length LT) (length (compInitLvars jmb lvars))"
apply (induct lvars)
apply (simp add: compInitLvars_def)

apply (intro strip, (erule conjE)+)

apply (subgoal_tac "3 wvn ty. a = (vn, ty)")

prefer 2

apply (simp (no_asm_simp))

apply ((erule exE)+, simp (no_asm_simp))

apply (drule_tac x="lvars_pre @ [a]" in spec)

apply (drule_tac x="lvars0" in spec)

apply (simp (no_asm_simp) add: compInitLvars_def)

apply (rule_tac ?bcl.0="compInit jmb a" and 7bc2.0="compInitLvars jmb lvars"
in bc_mt_corresp_comb)
apply (simp (no_asm_simp) add: compInitLvars_def)+

apply (rule_tac vn=vn and ty=ty in wt_method_compTpInit_corresp)
apply assumption+
apply (simp (no_asm_simp))+
apply (simp add: wf_java_mdecl_def)
apply (simp add: compTpInit_def storeST def pushST_def)
apply simp
done

lemma wt_method_compTpInitLvars_corresp: "[ jmb = (pns,lvars,blk,res);
wf_java_mdecl G C ((mn, pTs), rT, jmb);
length LT = (length pns) + (length lvars) + 1; mxr = (length LT);
bc = (compInitLvars jmb lvars); f= (compTpInitLvars jmb lvars) |
= bc_mt_corresp bc f (ST, LT) (comp G) rT mxr (length bc)"
apply (simp only:)
apply (subgoal_tac "bc_mt_corresp (compInitLvars (pns, lvars, blk, res) lvars)
(compTpInitLvars (pns, lvars, blk, res) lvars) (ST, LT) (TranslComp.comp G)
rT
(length LT) (length (compInitLvars (pns, lvars, blk, res) lvars))")
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apply simp

apply (rule_tac lvars_pre="[]" in wt_method_compTpInitLvars_corresp_aux)
apply auto

done

lemma wt_method_comp_wo_return: ”[[ wf_prog wf_java_mdecl G;
wf_java_mdecl G C ((mn, pTs), rT, jmb);
bc = compInitLvars jmb lvars @ compStmt jmb blk @ compExpr jmb res;
jmb = (pmns,lvars,blk,res);
f = (compTpInitLvars jmb lvars O compTpStmt jmb G blk O compTpExpr jmb G res);
sttp = (start_ST, start_LT C pTs (length lvars));
1i = (length (inited_LT C pTs lvars))
]
= bc_mt_corresp bc f sttp (comp G) rT 1i (length bc)"
apply (subgoal_tac "JE. (E = (local_env G C (mn, pTs) pns lvars) A E b blk / A
(dT. Etres::T N GFT=rT))")
apply (erule exE, (erule conjE)+)+
apply (simp only:)
apply (rule bc_mt_corresp_comb, (rule HOL.refl)+)

apply (rule wt_method_compTpInitLvars_corresp)
apply assumption+
apply (simp only:)
apply (simp (no_asm_simp) add: start_LT def)
apply (rule wf_java_mdecl_length_pTs_pns, assumption)
apply (simp (no_asm_simp) only: start_LT_def)
apply (simp (no_asm_simp) add: inited_LT_def)+

apply (rule bc_mt_corresp_comb, (rule HOL.refl)+)
apply (simp (no_asm_simp) add: compTpInitLvars_LT_ST)

apply (simp only: compTpInitLvars_LT_ST)
apply (subgoal_tac "(Suc (length pTs + length lvars)) = (length (inited_LT C pTs
lvars))")
prefer 2 apply (simp (no_asm_simp) add: inited_LT def)
apply (simp only:)
apply (rule_tac s=blk in wt_method_compTpStmt_corresp)
apply assumption+
apply (simp only:)+
apply (simp (no_asm_simp) add: is_inited_LT_def)

apply (simp only:)+

apply (simp only: compTpInitLvars_LT ST compTpStmt_LT ST is_inited_LT def)

apply (subgoal_tac "(Suc (length pTs + length lvars)) = (length (inited_LT C pTs
lvars))")

prefer 2 apply (simp (no_asm_simp) add: inited_LT def)
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apply (simp only:)
apply (rule_tac ex=res in wt_method_compTpExpr_corresp)
apply assumption+
apply (simp only:)+
apply (simp (no_asm_simp) add: is_inited_LT_def)
apply (simp only:)+

apply (simp add: start_sttp_resp_comb)+

apply (simp add: wf_java_mdecl_def local_env_def)
done

lemma check_type_start:
"[ wf_mhead cG (mn, pTs) rT; is_class cG C]
— check_type cG (length start_ST) (Suc (length pTs + mx1))
(0K (Some (start_ST, start_LT C pTs mx1)))"
apply (simp add: check_type_def wf_mhead_def start_ST def start_LT_def)
apply (simp add: check_type_simps)
apply (simp only: list_def)
apply (auto simp: err_def)
done

lemma wt_method_comp_aux:
"[ bc’ = bc @ [Return]; f’ = (f O nochangeST);
bc_mt_corresp bc f sttp0 cG rT (1+length pTs+mxl) (length bc);
start_sttp_resp_cons f’;
sttp0 = (start_ST, start_LT C pTs mx1);
mxs = max_ssize (mt_of (f’ sttp0));
wf_mhead cG (mn, pTs) rT; is_class cG C;
sttp_of (f sttp0) = (T # ST, LT);

check_type cG mxs (1+length pTs+mxl) (0K (Some (T # ST, LT))) —
wt_instr_altern Return cG rT (mt_of (f’ sttp0)) mxs (1+length pTs+mx1)
(Suc (length bc)) empty_et (length bc)
I

—> wt_method_altern cG C pTs rT mxs mxl bc’ empty_et (mt_of (f’ sttp0))"
apply (subgoal_tac "check_type cG (length start_ST) (Suc (length pTs + mx1))
(0K (Some (start_ST, start_LT C pTs mx1)))")

apply (subgoal_tac "check_type cG mxs (1+length pTs+mxl) (0K (Some (T # ST, LT)))")
apply (simp add: wt_method_altern_def)

apply (rule conjI)
apply (simp add: bc_mt_corresp_def split_beta)
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apply (rule conjI)
apply (simp add: bc_mt_corresp_def split_beta check_bounded_def)
apply (erule conjE)+
apply (intro strip)
apply (subgoal_tac "pc < (length bc) V pc = length bc")
apply (erule disjE)

apply (subgoal_tac "(bc’ ! pc) = (bc ! pc)™")
apply (simp add: wt_instr_altern_def eff_def)

apply (simp add: nth_append)

apply (subgoal_tac "(bc’ ! pc) = Return")
apply (simp add: wt_instr_altern_def)

apply (simp add: nth_append)

apply arith

apply (rule conjI)

apply (simp add: wt_start_def start_sttp_resp_cons_def split_beta)
apply (drule_tac x=sttp0 in spec) apply (erule exE)

apply (simp add: mt_sttp_flatten_def start_ST def start_LT def)

apply (intro strip)
apply (subgoal_tac "pc < (length bc) V pc = length bc")
apply (erule disjE)

apply (simp (no_asm_use) add: bc_mt_corresp_def mt_sttp_flatten_def split_beta)
apply (erule conjE)+

apply (drule mp, assumption)+

apply (erule conjE)+

apply (drule spec, drule mp, assumption)

apply (simp add: nth_append)

apply (simp (no_asm_simp) add: comb_def split_beta nochangeST def)

apply (simp add: nth_append)

apply arith

apply (simp (no_asm_use) add: bc_mt_corresp_def split_beta)

apply (subgoal_tac "check_type cG (length (fst sttp0)) (Suc (length pTs + mxl1))
(0K (Some sttp0))")

apply ((erule conjE)+, drule mp, assumption)

apply (simp add: nth_append)

apply (simp (no_asm_simp) add: comb_def nochangeST_def split_beta)
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apply (simp (no_asm_simp))

apply (rule check_type_start, assumption+)
done

lemma wt_instr_Return: "[fst f ! pc = Some (T # ST, LT); (G + T = rT); pc < max_pc;
check_type (TranslComp.comp G) mxs mxr (OK (Some (T # ST, LT)))
]
— wt_instr_altern Return (comp G) rT (mt_of f) mxs mxr max_pc empty_et pc"
apply (case_tac "(mt_of f ! pc)")
apply (simp add: wt_instr_altern_def eff_def norm_eff_def app_def)+
apply (drule sym)
apply (simp add: comp_widen xcpt_app_def)
done

n

theorem wt_method_comp:
[ wf_java_prog G; (C, D, fds, mths) € set G; jmdcl € set mths;
jmdel = ((un,pTs), rT, jmb);
mt = (compTpMethod G C jmdcl);
(mxs, mxl, bc, et) = mtd_mb (compMethod G C jmdcl) |
—> wt_method (comp G) C pTs rT mxs mxl bc et mt"

apply (rule wt_method_altern_wt_method)

apply (subgoal_tac "wf_java_mdecl G C jmdcl")
apply (subgoal_tac "wf_mhead G (mn, pTs) rT")
apply (subgoal_tac "is_class G C")
apply (subgoal_tac "V jmb. 3 pns lvars blk res. jmb = (pns, lvars, blk, res)")
apply (drule_tac x=jmb in spec, (erule exE)+)
apply (subgoal_tac "JE. (E = (local_env G C (mn, pTs) pns lvars) A E F blk / A
(AT. Etres::T A GFT=rT))")
apply (erule exE, (erule conjE)+)+
apply (simp add: compMethod_def compTpMethod_def split_beta)
apply (rule_tac T=T and LT="inited_LT C pTs lvars" and ST=start_ST in wt_method_comp_a

apply (simp only: append_assoc [symmetric])
apply (simp only: comb_assoc [symmetric])

apply (rule wt_method_comp_wo_return)
apply assumption+
apply (simp (no_asm_use) only: append_assoc)
apply (rule HOL.refl)
apply (simp (no_asm_simp))+
apply (simp (no_asm_simp) add: inited_LT_def)

apply (simp add: start_sttp_resp_cons_comb_cons_r)+
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apply (simp add: wf_mhead_def comp_is_type)
apply (simp add: comp_is_class)

apply (simp (no_asm_simp) add: compTpInitLvars_LT_ ST compTpExpr_LT_ST compTpStmt_LT ST
is_inited_LT_def)
apply (subgoal_tac "(snd (compTpInitLvars (pns, lvars, blk, res) lvars
(start_ST, start_LT C pTs (length lvars))))
= (start_ST, inited_LT C pTs lvars)')
prefer 2
apply (rule compTpInitLvars_LT_ST)
apply (rule HOL.refl)
apply assumption
apply (subgoal_tac "(snd (compTpStmt (pns, lvars, blk, res) G blk
(start_ST, inited_LT C pTs lvars)))
= (start_ST, inited_LT C pTs lvars)")
prefer 2 apply (erule conjE)+
apply (rule compTpStmt_LT_ST)
apply (rule HOL.refl)
apply assumption+
apply (simp only:)+
apply (simp (no_asm_simp) add: is_inited_LT_def)
apply (simp (no_asm_simp) add: is_inited_LT_def)

apply (intro strip)

apply (rule_tac T=T and ST=start_ST and LT="inited_LT C pTs lvars" in wt_instr_ Return)
apply (simp (no_asm_simp) add: nth_append length_compTpInitLvars length_compTpStmt

length_compTpExpr)

apply (simp only: compTpInitLvars_LT_ST compTpStmt_LT ST compTpExpr_LT_ST nochangeST_def)
apply (simp only: is_inited_LT def compTpStmt_LT_ST compTpExpr_LT_ST)
apply (simp (no_asm_simp))+

apply simp

apply (simp add: wf_java_mdecl_def local_env_def)
apply (simp only: split_paired_All, simp)

apply (blast intro: methd [THEN conjunct2])
apply (frule wf_prog wf_mdecl, assumption+)
apply (simp only:)
apply (simp add: wf_mdecl_def)
apply (rule wf_java_prog_wf_java_mdecl, assumption+)
done

lemma comp_set_ms: "(C, D, fs, cms)Eset (comp G)
— 3 ms. (C, D, fs, ms) €set G A cms = map (compMethod G C) ms"
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by (auto simp: comp_def compClass_def)

4.27.5 Main Theorem

theorem wt_prog_comp: "wf_java_prog G —> wt_jvm_prog (comp G) (compTp G)"
apply (simp add: wf_prog_def)

apply (subgoal_tac "wf_java_prog G")

prefer 2

apply (simp add: wf_prog_def)

apply (simp (no_asm_simp) add: wf_prog_def wt_jvm_prog_def)
apply (simp add: comp_ws_prog)

apply (intro strip)

apply (subgoal_tac "3C D fs cms. ¢ = (C, D, fs, cms)")
apply clarify

apply (frule comp_set_ms)

apply clarify

apply (drule bspec, assumption)

apply (rule conjI)

apply (case_tac "C = Object")

apply (simp add: wf_mrT def)

apply (subgoal_tac "is_class G D")

apply (simp add: comp_wf_mrT)

apply (simp add: wf_prog_def ws_prog_def ws_cdecl_def)
apply blast

apply (simp add: wf_cdecl_mdecl_def)
apply (simp add: split_beta)
apply (intro strip)

apply (subgoal_tac "dsig rT mb. x = (sig, rT, mb)")
apply (erule exE)+
apply (simp (no_asm_simp) add: compMethod_def split_beta)
apply (erule conjE)+
apply (drule_tac x="(sig, rT, mb)" in bspec)
apply simp
apply (rule_tac mn="fst sig" and pTs="snd sig" in wt_method_comp)
apply assumption+
apply simp
apply (simp (no_asm_simp) add: compTp_def)
apply (simp (no_asm_simp) add: compMethod_def split_beta)
apply (frule WellForm.methd) apply assumption+
apply simp
apply simp
apply (simp add: compMethod_def split_beta)
apply auto
done
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declare split_paired_All [simp add]
declare split_paired_Ex [simp add]

end

theory MicroJava

imports
"J/JTypeSafe"
"J/Example"
"J/JListExample"
"JVM/JVMListExample"
"JVM/JVMDefensive"
"BV/LBVJVM"
"BV/BVNoTypeError"
"BV/BVExample"
"Comp/CorrComp"
"Comp/CorrCompTp"

begin

end
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