
The Supplemental Isabelle/HOL Library

January 18, 2026

Contents
1 Implementation of Association Lists 21

1.1 update and updates . 21
1.2 delete . 23
1.3 update-with-aux and delete-aux 24
1.4 restrict . 26
1.5 clearjunk . 27
1.6 map-ran . 28
1.7 merge . 29
1.8 compose . 30
1.9 map-entry . 32
1.10 map-default . 32

2 Axiomatic Declaration of Bounded Natural Functors 33

3 Generalized Corecursor Sugar (corec and friends) 33
3.1 Coinduction . 34

4 A general “while” combinator 36
4.1 while-option . 37
4.2 while . 38
4.3 Termination, lfp and gfp . 38
4.4 while-Some and while-saturate 40
4.5 Reflexive, transitive closure 41

5 The Bourbaki-Witt tower construction for transfinite itera-
tion 42
5.1 Connect with the while combinator for executability on chain-

finite lattices. 45

6 Division with modulus centered towards zero. 47

7 Order on characters 50

1

2

8 A generic phantom type 51

9 Cardinality of types 51
9.1 Preliminary lemmas . 51
9.2 Cardinalities of types . 52
9.3 Classes with at least 1 and 2 53
9.4 A type class for deciding finiteness of types 53
9.5 A type class for computing the cardinality of types 53
9.6 Instantiations for card-UNIV 54

10 Code setup for sets with cardinality type information 57

11 Eliminating pattern matches 60

12 Lazy types in generated code 60
12.1 The type lazy . 61
12.2 Implementation . 63

13 Test infrastructure for the code generator 63
13.1 YXML encoding for term . 63
13.2 Test engine and drivers . 65

14 A combinator to build partial equivalence relations from a
predicate and an equivalence relation 66

15 Formalisation of chain-complete partial orders, continuity
and admissibility 67
15.1 Continuity . 69

15.1.1 Theorem collection cont-intro 70
15.2 Admissibility . 76
15.3 (=) as order . 80
15.4 ccpo for products . 81
15.5 Complete lattices as ccpo . 85
15.6 Parallel fixpoint induction . 88

16 Confluence 92

17 Old Datatype package: constructing datatypes from Carte-
sian Products and Disjoint Sums 95
17.1 The datatype universe . 95
17.2 Freeness: Distinctness of Constructors 97
17.3 Set Constructions . 100

3

18 Bijections between natural numbers and other types 104
18.1 Type nat × nat . 105
18.2 Type nat + nat . 106
18.3 Type int . 107
18.4 Type nat list . 108
18.5 Finite sets of naturals . 109

18.5.1 Preliminaries . 109
18.5.2 From sets to naturals 109
18.5.3 From naturals to sets 109
18.5.4 Proof of isomorphism 110

19 Encoding (almost) everything into natural numbers 110
19.1 The class of countable types 110
19.2 Conversion functions . 111
19.3 Finite types are countable . 111
19.4 Automatically proving countability of old-style datatypes . . 111
19.5 Automatically proving countability of datatypes 112
19.6 More Countable types . 112
19.7 The rationals are countably infinite 113

20 Infinite Sets and Related Concepts 114
20.1 The set of natural numbers is infinite 114
20.2 The set of integers is also infinite 115
20.3 Infinitely Many and Almost All 115
20.4 Enumeration of an Infinite Set 118
20.5 Properties of wellorder-class.enumerate on finite sets 120

21 Countable sets 121
21.1 Predicate for countable sets 121
21.2 Enumerate a countable set . 122
21.3 Closure properties of countability 125
21.4 Misc lemmas . 127
21.5 Uncountable . 129

22 Countable Complete Lattices 129
22.0.1 Instances of countable complete lattices 135

23 Type of (at Most) Countable Sets 135
23.1 Cardinal stuff . 135
23.2 The type of countable sets . 136
23.3 Additional lemmas . 142

23.3.1 cempty . 142
23.3.2 cinsert . 142
23.3.3 cimage . 143

4

23.3.4 bounded quantification 143
23.3.5 cUnion . 143

23.4 Setup for Lifting/Transfer . 143
23.4.1 Relator and predicator properties 143
23.4.2 Transfer rules for the Transfer package 144

23.5 Registration as BNF . 145

24 Debugging facilities for code generated towards Isabelle/ML146

25 Sequence of Properties on Subsequences 147

26 Common discrete functions 149
26.1 Discrete logarithm . 149
26.2 Discrete square root . 150

27 Pi and Function Sets 153
27.1 Basic Properties of Pi . 154
27.2 Composition With a Restricted Domain: compose 156
27.3 Bounded Abstraction: restrict 156
27.4 Bijections Between Sets . 157
27.5 Extensionality . 158
27.6 Cardinality . 159
27.7 Extensional Function Spaces 159

27.7.1 Injective Extensional Function Spaces 162
27.7.2 Misc properties of functions, composition and restric-

tion from HOL Light 162
27.7.3 Cardinality . 163

27.8 The pigeonhole principle . 163
27.9 Products of sums . 164

28 Partitions and Disjoint Sets 164
28.1 Set of Disjoint Sets . 164

28.1.1 Family of Disjoint Sets 165
28.2 Construct Disjoint Sequences 167
28.3 Partitions . 168
28.4 Constructions of partitions 168
28.5 Finiteness of partitions . 169
28.6 Equivalence of partitions and equivalence classes 169
28.7 Refinement of partitions . 170
28.8 The coarsest common refinement of a set of partitions 171

29 Type of finite sets defined as a subtype of sets 171
29.1 Definition of the type . 172
29.2 Basic operations and type class instantiations 172
29.3 Other operations . 175

5

29.4 Transferred lemmas from Set.thy 177
29.5 Additional lemmas . 193

29.5.1 ffUnion . 193
29.5.2 fbind . 193
29.5.3 fsingleton . 193
29.5.4 femepty . 193
29.5.5 fset . 194
29.5.6 ffilter . 194
29.5.7 fset-of-list . 194
29.5.8 finsert . 195
29.5.9 fimage . 195
29.5.10 bounded quantification 195
29.5.11 fcard . 196
29.5.12 sorted-list-of-fset . 198
29.5.13 ffold . 198
29.5.14 (|⊂|) . 199
29.5.15 Group operations . 199
29.5.16 Semilattice operations 200

29.6 Choice in fsets . 202
29.7 Induction and Cases rules for fsets 202
29.8 Lemmas depending on induction 202
29.9 Setup for Lifting/Transfer . 203

29.9.1 Relator and predicator properties 203
29.9.2 Transfer rules for the Transfer package 203

29.10BNF setup . 205
29.11Size setup . 206
29.12Advanced relator customization 206

29.12.1 Countability . 206
29.13Quickcheck setup . 207
29.14Code Generation Setup . 208

30 Type of finite maps defined as a subtype of maps 209
30.1 Auxiliary constants and lemmas over map 209
30.2 Abstract characterisation . 210
30.3 Operations . 211
30.4 BNF setup . 224
30.5 size setup . 228
30.6 Additional operations . 228
30.7 Additional properties . 230
30.8 Lifting/transfer setup . 230
30.9 View as datatype . 230
30.10Code setup . 231
30.11Instances . 232
30.12Tests . 233

6

31 Disjoint FSets 233

32 Lists with elements distinct as canonical example for datatype
invariants 234
32.1 The type of distinct lists . 235
32.2 Executable version obeying invariant 237
32.3 Induction principle and case distinction 238
32.4 Functorial structure . 238
32.5 Quickcheck generators . 238
32.6 BNF instance . 238

33 Type of dual ordered lattices 239
33.1 Pointwise ordering . 241
33.2 Binary infimum and supremum 242
33.3 Top and bottom elements . 243
33.4 Complement . 244
33.5 Complete lattice operations 245

34 Equipollence and Other Relations Connected with Cardi-
nality 246
34.1 Eqpoll . 246
34.2 The strict relation . 249
34.3 Mapping by an injection . 250
34.4 Inserting elements into sets 250
34.5 Binary sums and unions . 251
34.6 Binary Cartesian products . 251
34.7 General Unions . 252
34.8 General Cartesian products (Pi) 253
34.9 Misc other resultd . 254

35 Continuity and iterations 258
35.1 Continuity for complete lattices 259

35.1.1 Least fixed points in countable complete lattices . . . 261

36 Extended natural numbers (i.e. with infinity) 262
36.1 Type definition . 262
36.2 Constructors and numbers . 263
36.3 Addition . 265
36.4 Multiplication . 265
36.5 Numerals . 266
36.6 Subtraction . 266
36.7 Ordering . 267
36.8 Cancellation simprocs . 270
36.9 Well-ordering . 271

7

36.10Complete Lattice . 271
36.11Traditional theorem names 272

37 Liminf and Limsup on conditionally complete lattices 272
37.0.1 Liminf and Limsup 274

37.1 More Limits . 278

38 Extended real number line 279
38.1 Definition and basic properties 281

38.1.1 Addition . 283
38.1.2 Linear order on ereal 285
38.1.3 Multiplication . 291
38.1.4 Power . 297
38.1.5 Subtraction . 297
38.1.6 Division . 301

38.2 Complete lattice . 305
38.3 Extended real intervals . 307
38.4 Topological space . 309
38.5 Relation to enat . 315
38.6 Limits on ereal . 316

38.6.1 Convergent sequences 318
38.6.2 Sums . 322
38.6.3 Continuity . 328
38.6.4 liminf and limsup . 330
38.6.5 Tests for code generator 333

39 Indicator Function 333

40 The type of non-negative extended real numbers 336
40.1 Defining the extended non-negative reals 339
40.2 Cancellation simprocs . 342
40.3 Order with top . 342
40.4 Arithmetic . 345
40.5 Coercion from real to ennreal 349
40.6 Coercion from ennreal to real 353
40.7 Coercion from enat to ennreal 354
40.8 Topology on ennreal . 355
40.9 Approximation lemmas . 362
40.10ennreal theorems . 363

41 Logarithm of Natural Numbers 367
41.1 Preliminaries . 367
41.2 Floorlog . 367
41.3 . 369

8

41.4 Bitlen . 370

42 Various algebraic structures combined with a lattice 372
42.1 Positive Part, Negative Part, Absolute Value 373

43 Floating-Point Numbers 377
43.1 Real operations preserving the representation as floating point

number . 377
43.2 Arithmetic operations on floating point numbers 379
43.3 Quickcheck . 381
43.4 Represent floats as unique mantissa and exponent 382
43.5 Compute arithmetic operations 384
43.6 Lemmas for types real, nat, int 385
43.7 Rounding Real Numbers . 385
43.8 Rounding Floats . 387
43.9 Truncating Real Numbers . 388
43.10Truncating Floats . 390
43.11Approximation of positive rationals 392
43.12Division . 394
43.13Approximate Addition . 394
43.14Approximate Multiplication 397
43.15Approximate Power . 398
43.16Lemmas needed by Approximate 400

44 Pointwise instantiation of functions to algebra type classes 404

45 Pointwise instantiation of functions to division 408
45.1 Syntactic with division . 408

46 Lexicographic order on functions 409

47 The going-to filter 410

48 Big sum and product over function bodies 412
48.1 Abstract product . 413
48.2 Concrete sum . 414
48.3 Concrete product . 415

49 Infinite Type Class 416

50 Algebraic operations on sets 417

51 Interval Type 423
51.1 Membership . 428
51.2 Quickcheck . 435

9

52 Approximate Operations on Intervals of Floating Point Num-
bers 436
52.1 Intervals with Floating Point Bounds 437
52.2 intros for real-interval . 438
52.3 bounds for lists . 439
52.4 constants for code generation 442

53 Immutable Arrays with Code Generation 442
53.1 Fundamental operations . 442
53.2 Generic code equations . 443
53.3 Auxiliary operations for code generation 444
53.4 Code Generation for SML . 445
53.5 Code Generation for Haskell 445

54 Definition of Landau symbols 446
54.1 Definition of Landau symbols 447
54.2 Landau symbols and limits 460
54.3 Flatness of real functions . 466
54.4 Asymptotic Equivalence . 467

55 Values extended by a bottom element 474
55.1 Values extended by a top element 476
55.2 Values extended by a top and a bottom element 478

56 Infinite Streams 480
56.1 prepend list to stream . 481
56.2 set of streams with elements in some fixed set 482
56.3 nth, take, drop for streams . 483
56.4 unary predicates lifted to streams 485
56.5 recurring stream out of a list 486
56.6 iterated application of a function 487
56.7 stream repeating a single element 487
56.8 stream of natural numbers . 488
56.9 flatten a stream of lists . 488
56.10merge a stream of streams . 488
56.11product of two streams . 489
56.12interleave two streams . 489
56.13zip . 489
56.14zip via function . 490

57 List prefixes, suffixes, and homeomorphic embedding 491
57.1 Prefix order on lists . 491
57.2 Basic properties of prefixes 492
57.3 Prefixes . 494

10

57.4 Longest Common Prefix . 495
57.5 Parallel lists . 497
57.6 Suffix order on lists . 497
57.7 Suffixes . 501
57.8 Homeomorphic embedding on lists 503
57.9 Subsequences (special case of homeomorphic embedding) . . . 504
57.10Appending elements . 506
57.11Relation to standard list operations 506
57.12Contiguous sublists . 507

57.12.1 sublist . 507
57.12.2 sublists . 509

57.13Parametricity . 509

58 Linear Temporal Logic on Streams 511

59 Preliminaries 511

60 Linear temporal logic 511

61 Weak vs. strong until (contributed by Michael Foster, Uni-
versity of Sheffield) 521

62 Lists as vectors 522
62.1 + and − . 523
62.2 Inner product . 524

63 Definitions of Least Upper Bounds and Greatest Lower Bounds525
63.1 Rules for the Relations ∗<= and <=∗ 525
63.2 Rules about the Operators leastP, ub and lub 526
63.3 Rules about the Operators greatestP, isLb and isGlb 527

64 An abstract view on maps for code generation. 530
64.1 Parametricity transfer rules 530
64.2 Type definition and primitive operations 532
64.3 Functorial structure . 533
64.4 Derived operations . 533
64.5 Properties . 535

64.5.1 entries, ordered-entries, and fold 542
64.6 Code generator setup . 545

65 Monad notation for arbitrary types 545

66 Less common functions on lists 547

11

67 (Finite) Multisets 554
67.1 The type of multisets . 554
67.2 Representing multisets . 555
67.3 Basic operations . 556

67.3.1 Conversion to set and membership 556
67.3.2 Union . 558
67.3.3 Difference . 559
67.3.4 Min and Max . 561
67.3.5 Equality of multisets 561
67.3.6 Pointwise ordering induced by count 563
67.3.7 Intersection and bounded union 566
67.3.8 Additional intersection facts 567
67.3.9 Additional bounded union facts 569

67.4 Replicate and repeat operations 570
67.4.1 Simprocs . 571
67.4.2 Conditionally complete lattice 572
67.4.3 Filter (with comprehension syntax) 574
67.4.4 Size . 576

67.5 Induction and case splits . 578
67.5.1 Strong induction and subset induction for multisets . 579

67.6 Least and greatest elements 579
67.7 The fold combinator . 580
67.8 Image . 581
67.9 Further conversions . 584
67.10More properties of the replicate, repeat, and image operations 589
67.11Big operators . 591
67.12Multiset as order-ignorant lists 598
67.13The multiset order . 600

67.13.1 Well-foundedness . 601
67.13.2 Closure-free presentation 602
67.13.3 Monotonicity . 602
67.13.4 The multiset extension is cancellative for multiset union603
67.13.5 Strict partial-order properties 604
67.13.6 Strict total-order properties 605

67.14Quasi-executable version of the multiset extension 606
67.14.1 Monotonicity of multiset union 607
67.14.2 Termination proofs with multiset orders 607

67.15Legacy theorem bindings . 608
67.16Naive implementation using lists 609
67.17BNF setup . 612
67.18Size setup . 614
67.19Lemmas about Size . 614
67.20The set of multisets of a given size 615

12

68 More Theorems about the Multiset Order 617
68.1 Alternative Characterizations 617

68.1.1 The Dershowitz–Manna Ordering 617
68.1.2 The Huet–Oppen Ordering 617
68.1.3 Monotonicity . 618
68.1.4 Properties of Orders 618
68.1.5 Simplifications . 622

68.2 Simprocs . 623
68.3 Additional facts and instantiations 623

69 Fixed Length Lists 625

70 Non-negative, non-positive integers and reals 627
70.1 Non-positive integers . 627
70.2 Non-negative reals . 629
70.3 Non-positive reals . 630

71 Numeral Syntax for Types 633
71.1 Numeral Types . 633
71.2 num1 . 633
71.3 Locales for for modular arithmetic subtypes 635
71.4 Ring class instances . 637
71.5 Order instances . 638
71.6 Code setup and type classes for code generation 639
71.7 Syntax . 641
71.8 Examples . 641

72 ω-words 641
72.1 Type declaration and elementary operations 642
72.2 Subsequence, Prefix, and Suffix 643
72.3 Prepending . 645
72.4 The limit set of an ω-word . 645
72.5 Index sequences and piecewise definitions 648

73 Combinator syntax for generic, open state monads (single-
threaded monads) 650
73.1 Motivation . 650
73.2 State transformations and combinators 650
73.3 Monad laws . 651
73.4 Do-syntax . 651

74 Canonical order on option type 652

13

75 Futures and parallel lists for code generated towards Is-
abelle/ML 656
75.1 Futures . 656
75.2 Parallel lists . 657

76 Input syntax for pattern aliases (or “as-patterns” in Haskell)657
76.1 Definition . 658
76.2 Usage . 659

77 Periodic Functions 659

78 Polynomial mapping: combination of almost everywhere
zero functions with an algebraic view 662
78.1 Preliminary: auxiliary operations for almost everywhere zero . 662
78.2 Type definition . 665
78.3 Additive structure . 667
78.4 Multiplicative structure . 669
78.5 Single-point mappings . 670
78.6 Integral domains . 672
78.7 Mapping order . 672
78.8 Fundamental mapping notions 673
78.9 Degree . 675
78.10Inductive structure . 676
78.11Quasi-functorial structure . 676
78.12Canonical dense representation of nat ⇒0

′a 677
78.13Canonical sparse representation of ′a ⇒0

′b 679
78.14Size estimation . 680
78.15Further mapping operations and properties 681
78.16Free Abelian Groups Over a Type 681

79 Exponentiation by Squaring 685

80 Preorders with explicit equivalence relation 685

81 Additive group operations on product types 687
81.1 Operations . 687
81.2 Class instances . 688

82 Roots of real quadratics 689

83 Pretty syntax for Quotient operations 691

84 Quotient infrastructure for the set type 691
84.1 Contravariant set map (vimage) and set relator, rules for the

Quotient package . 691

14

85 Quotient infrastructure for the product type 693
85.1 Rules for the Quotient package 693

86 Quotient infrastructure for the option type 695
86.1 Rules for the Quotient package 695

87 Quotient infrastructure for the list type 696
87.1 Rules for the Quotient package 696

88 Quotient infrastructure for the sum type 700
88.1 Rules for the Quotient package 700

89 Quotient types 701
89.1 Equivalence relations and quotient types 701
89.2 Equality on quotients . 702
89.3 Picking representing elements 703

90 Ramsey’s Theorem 703
90.1 Preliminary definitions . 703

90.1.1 The n-element subsets of a set A 704
90.1.2 Further properties, involving equipollence 706
90.1.3 Partition predicates 706

90.2 Finite versions of Ramsey’s theorem 707
90.2.1 The Erds–Szekeres theorem exhibits an upper bound

for Ramsey numbers 707
90.2.2 Trivial cases . 708
90.2.3 Ramsey’s theorem with TWO colours and arbitrary

exponents (hypergraph version) 708
90.2.4 Full Ramsey’s theorem with multiple colours and ar-

bitrary exponents . 709
90.2.5 Simple graph version 709

90.3 Preliminaries for the infinitary version 709
90.3.1 “Axiom” of Dependent Choice 709
90.3.2 Partition functions . 710

90.4 Ramsey’s Theorem: Infinitary Version 710
90.5 Disjunctive Well-Foundedness 711

91 Modulo and congruence on the reals 711

92 Generic reflection and reification 716

93 Assigning lengths to types by type classes 717

15

94 Saturated arithmetic 719
94.1 The type of saturated naturals 719
94.2 Enumeration . 723

95 Set Idioms 723
95.1 Idioms for being a suitable union/intersection of something . 724
95.2 The “Relative to” operator 728

96 Signed division: negative results rounded towards zero rather
than minus infinity. 731

97 State monad 735

98 Comparators on linear quasi-orders 739
98.1 Basic properties . 739
98.2 Fundamental comparator combinators 743
98.3 Direct implementations for linear orders on selected types . . 744

99 Stably sorted lists 745

100Alternative sorting algorithms 748
100.1Quicksort . 748
100.2Mergesort . 749
100.3Lexicographic products . 750

101A decision procedure for universal multivariate real arith-
metic with addition, multiplication and ordering using semidef-
inite programming 751

102Time functions for various standard library operations. Also
defines itrev. 752

103A table-based implementation of the reflexive transitive clo-
sure 754

104Binary Tree 756
104.1map-tree . 758
104.2size . 758
104.3set-tree . 759
104.4subtrees . 759
104.5height and min-height . 759
104.6complete . 760
104.7acomplete . 760
104.8wbalanced . 761
104.9ipl . 761

16

104.10List of entries . 761
104.11Binary Search Tree . 762
104.12heap . 762
104.13mirror . 762

105Multiset of Elements of Binary Tree 763

106Unordered pairs 765

107A type of finite bit strings 768
107.1Preliminaries . 769
107.2Fundamentals . 769

107.2.1 Type definition . 769
107.2.2 Basic arithmetic . 769
107.2.3 Basic tool setup . 770
107.2.4 Basic code generation setup 771
107.2.5 Basic conversions . 772

107.3Elementary case distinctions 778
107.3.1 Basic ordering . 778

107.4Enumeration . 781
107.5Bit-wise operations . 781
107.6Conversions including casts 786

107.6.1 Generic unsigned conversion 786
107.6.2 Generic signed conversion 788
107.6.3 More . 789

107.7Arithmetic operations . 794
107.8Ordering . 796
107.9Bit-wise operations . 798
107.10More shift operations . 800
107.11Single-bit operations . 800
107.12Rotation . 801
107.13Split and cat operations . 802
107.14More on conversions . 803
107.15Testing bits . 806
107.16Word Arithmetic . 809
107.17Transferring goals from words to ints 813
107.18Order on fixed-length words 815
107.19Conditions for the addition (etc) of two words to overflow . . 816
107.20Some proof tool support . 818
107.21More on overflows and monotonicity 819
107.22Arithmetic type class instantiations 823
107.23Word and nat . 823
107.24Cardinality, finiteness of set of words 827
107.25Bitwise Operations on Words 827

17

107.25.1shift functions in terms of lists of bools 832
107.25.2Mask . 834
107.25.3Slices . 836
107.25.4Revcast . 837

107.26Split and cat . 838
107.26.1Split and slice . 838

107.27Rotation . 839
107.27.1"Word rotation commutes with bit-wise operations . . 840

107.28Maximum machine word . 841
107.29Recursion combinator for words 844
107.30Some more naive computations rules 845
107.31Executable intervals . 846
107.32Tool support . 846

108The Field of Integers mod 2 847

109Pointwise order on product types 851
109.1Pointwise ordering . 851
109.2Binary infimum and supremum 852
109.3Top and bottom elements . 853
109.4Complete lattice operations 854
109.5Complete distributive lattices 855
109.6Bekic’s Theorem . 855

110Finite Lattices 856
110.1Finite Complete Lattices . 856
110.2Finite Distributive Lattices 858
110.3Linear Orders . 859
110.4Finite Linear Orders . 860

111Lexicographic order on lists 860

112Lexicographic order on lists 862

113Prefix order on lists as order class instance 863

114Lexicographic order on product types 864

115Subsequence Ordering 866
115.1Definitions and basic lemmas 866

116Records based on BNF/datatype machinery 868

117Implementation of mappings with Association Lists 869

18

118Avoidance of pattern matching on natural numbers 874
118.1Case analysis . 874
118.2Preprocessors . 874
118.3Candidates which need special treatment 875

119Implementation of natural numbers as binary numerals 875
119.1Representation . 875
119.2Basic arithmetic . 876
119.3Conversions . 877

120Code generation of prolog programs 878

121Setup for Numerals 878

122Implementation of integer numbers by target-language in-
tegers 878

123Implementation of natural numbers by target-language in-
tegers 886
123.1Implementation for nat . 886

124Implementation of natural and integer numbers by target-
language integers 891

125Preprocessor setup for floats implemented by target lan-
guage numerals 891

126Abstract type of association lists with unique keys 892
126.1Preliminaries . 892
126.2Type (′key, ′value) alist . 892
126.3Primitive operations . 893
126.4Abstract operation properties 893
126.5Further operations . 894

126.5.1 Equality . 894
126.5.2 Size . 894

126.6Quickcheck generators . 894

127alist is a BNF 896

128Multisets partially implemented by association lists 896

129Implementation of Red-Black Trees 901
129.1Datatype of RB trees . 901
129.2Tree properties . 902

129.2.1 Content of a tree . 902
129.2.2 Search tree properties 902

19

129.2.3 Tree lookup . 903
129.2.4 Red-black properties 905

129.3Insertion . 906
129.4Deletion . 909
129.5Modifying existing entries . 915
129.6Mapping all entries . 915
129.7Folding over entries . 916
129.8Bulkloading a tree . 916
129.9Building a RBT from a sorted list 917
129.10union and intersection of sorted associative lists 923
129.11Code generator setup . 940

130Abstract type of RBT trees 941
130.1Type definition . 942
130.2Primitive operations . 942
130.3Derived operations . 943
130.4Abstract lookup properties 943
130.5Quickcheck generators . 946
130.6Hide implementation details 946

131Implementation of mappings with Red-Black Trees 947
131.1Data type and invariant . 947
131.2Operations . 947
131.3Invariant preservation . 948
131.4Map Semantics . 948

132Implementation of sets using RBT trees 949

133Definition of code datatype constructors 949

134Lemmas 949
134.1Auxiliary lemmas . 949
134.2fold and filter . 949
134.3foldi and Ball . 950
134.4foldi and Bex . 950
134.5folding over non empty trees and selecting the minimal and

maximal element . 950
134.5.1 concrete . 950
134.5.2 abstract . 953

135Code equations 954

136Introduction 960

137Termination 961

20

138Partial Functions 961

139Higher-Order Functions 961
139.1Limitations . 962

140Predefined Functions 963

141Locales 963

142Fine Points 964

143Common constants 966

144Pairs 966

145Filters 966

146Bounded quantifiers 966

147Operations on Predicates 966

148Setup for Numerals 967

149Arithmetic operations 967
149.1Arithmetic on naturals and integers 967
149.2Inductive definitions for ordering on naturals 967

150Alternative list definitions 968
150.1Alternative rules for length 968
150.2Alternative rules for list-all2 968
150.3Alternative rules for membership in lists 968

151Setup for String.literal 969

152Simplification rules for optimisation 969

153A Prototype of Quickcheck based on the Predicate Com-
piler 969

154TFL: recursive function definitions 969
154.1Lemmas for TFL . 969
154.2Rule setup . 970

155Program extraction from proofs involving datatypes and in-
ductive predicates 971

156Refute 971

THEORY “AList” 21

1 Implementation of Association Lists
theory AList

imports Main
begin

context
begin

The operations preserve distinctness of keys and function clearjunk dis-
tributes over them. Since clearjunk enforces distinctness of keys it can be
used to establish the invariant, e.g. for inductive proofs.

1.1 update and updates
qualified primrec update :: ′key ⇒ ′val ⇒ (′key × ′val) list ⇒ (′key × ′val) list

where
update k v [] = [(k, v)]
| update k v (p # ps) = (if fst p = k then (k, v) # ps else p # update k v ps)

lemma update-conv ′: map-of (update k v al) = (map-of al)(k 7→v)
〈proof 〉

corollary update-conv: map-of (update k v al) k ′ = ((map-of al)(k 7→v)) k ′

〈proof 〉

lemma dom-update: fst ‘ set (update k v al) = {k} ∪ fst ‘ set al
〈proof 〉

lemma update-keys:
map fst (update k v al) =
(if k ∈ set (map fst al) then map fst al else map fst al @ [k])
〈proof 〉

lemma distinct-update:
assumes distinct (map fst al)
shows distinct (map fst (update k v al))
〈proof 〉

lemma update-filter :
a 6= k =⇒ update k v [q←ps. fst q 6= a] = [q←update k v ps. fst q 6= a]
〈proof 〉

lemma update-triv: map-of al k = Some v =⇒ update k v al = al
〈proof 〉

lemma update-nonempty [simp]: update k v al 6= []
〈proof 〉

THEORY “AList” 22

lemma update-eqD: update k v al = update k v ′ al ′ =⇒ v = v ′

〈proof 〉

lemma update-last [simp]: update k v (update k v ′ al) = update k v al
〈proof 〉

Note that the lists are not necessarily the same: update k v (update k ′ v ′

[]) = [(k ′, v ′), (k, v)] and update k ′ v ′ (update k v []) = [(k, v), (k ′, v ′)].
lemma update-swap:

k 6= k ′ =⇒ map-of (update k v (update k ′ v ′ al)) = map-of (update k ′ v ′ (update
k v al))
〈proof 〉

lemma update-Some-unfold:
map-of (update k v al) x = Some y ←→

x = k ∧ v = y ∨ x 6= k ∧ map-of al x = Some y
〈proof 〉

lemma image-update [simp]: x /∈ A =⇒ map-of (update x y al) ‘ A = map-of al ‘
A
〈proof 〉 definition updates ::

′key list ⇒ ′val list ⇒ (′key × ′val) list ⇒ (′key × ′val) list
where updates ks vs = fold (case-prod update) (zip ks vs)

lemma updates-simps [simp]:
updates [] vs ps = ps
updates ks [] ps = ps
updates (k#ks) (v#vs) ps = updates ks vs (update k v ps)
〈proof 〉

lemma updates-key-simp [simp]:
updates (k # ks) vs ps =
(case vs of [] ⇒ ps | v # vs ⇒ updates ks vs (update k v ps))
〈proof 〉

lemma updates-conv ′: map-of (updates ks vs al) = (map-of al)(ks[7→]vs)
〈proof 〉

lemma updates-conv: map-of (updates ks vs al) k = ((map-of al)(ks[7→]vs)) k
〈proof 〉

lemma distinct-updates:
assumes distinct (map fst al)
shows distinct (map fst (updates ks vs al))
〈proof 〉

lemma updates-append1 [simp]: size ks < size vs =⇒
updates (ks@[k]) vs al = update k (vs!size ks) (updates ks vs al)
〈proof 〉

THEORY “AList” 23

lemma updates-list-update-drop[simp]:
size ks ≤ i =⇒ i < size vs =⇒

updates ks (vs[i:=v]) al = updates ks vs al
〈proof 〉

lemma update-updates-conv-if :
map-of (updates xs ys (update x y al)) =

map-of
(if x ∈ set (take (length ys) xs)
then updates xs ys al
else (update x y (updates xs ys al)))

〈proof 〉

lemma updates-twist [simp]:
k /∈ set ks =⇒

map-of (updates ks vs (update k v al)) = map-of (update k v (updates ks vs al))
〈proof 〉

lemma updates-apply-notin [simp]:
k /∈ set ks =⇒ map-of (updates ks vs al) k = map-of al k
〈proof 〉

lemma updates-append-drop [simp]:
size xs = size ys =⇒ updates (xs @ zs) ys al = updates xs ys al
〈proof 〉

lemma updates-append2-drop [simp]:
size xs = size ys =⇒ updates xs (ys @ zs) al = updates xs ys al
〈proof 〉

1.2 delete
qualified definition delete :: ′key ⇒ (′key × ′val) list ⇒ (′key × ′val) list

where delete-eq: delete k = filter (λ(k ′, -). k 6= k ′)

lemma delete-simps [simp]:
delete k [] = []
delete k (p # ps) = (if fst p = k then delete k ps else p # delete k ps)
〈proof 〉

lemma delete-conv ′: map-of (delete k al) = (map-of al)(k := None)
〈proof 〉

corollary delete-conv: map-of (delete k al) k ′ = ((map-of al)(k := None)) k ′

〈proof 〉

lemma delete-keys: map fst (delete k al) = removeAll k (map fst al)
〈proof 〉

THEORY “AList” 24

lemma distinct-delete:
assumes distinct (map fst al)
shows distinct (map fst (delete k al))
〈proof 〉

lemma delete-id [simp]: k /∈ fst ‘ set al =⇒ delete k al = al
〈proof 〉

lemma delete-idem: delete k (delete k al) = delete k al
〈proof 〉

lemma map-of-delete [simp]: k ′ 6= k =⇒ map-of (delete k al) k ′ = map-of al k ′

〈proof 〉

lemma delete-notin-dom: k /∈ fst ‘ set (delete k al)
〈proof 〉

lemma dom-delete-subset: fst ‘ set (delete k al) ⊆ fst ‘ set al
〈proof 〉

lemma delete-update-same: delete k (update k v al) = delete k al
〈proof 〉

lemma delete-update: k 6= l =⇒ delete l (update k v al) = update k v (delete l al)
〈proof 〉

lemma delete-twist: delete x (delete y al) = delete y (delete x al)
〈proof 〉

lemma length-delete-le: length (delete k al) ≤ length al
〈proof 〉

1.3 update-with-aux and delete-aux
qualified primrec update-with-aux ::

′val ⇒ ′key ⇒ (′val ⇒ ′val) ⇒ (′key × ′val) list ⇒ (′key × ′val) list
where

update-with-aux v k f [] = [(k, f v)]
| update-with-aux v k f (p # ps) =

(if (fst p = k) then (k, f (snd p)) # ps else p # update-with-aux v k f ps)

The above delete traverses all the list even if it has found the key. This
one does not have to keep going because is assumes the invariant that keys
are distinct.
qualified fun delete-aux :: ′key ⇒ (′key × ′val) list ⇒ (′key × ′val) list

where
delete-aux k [] = []
| delete-aux k ((k ′, v) # xs) = (if k = k ′ then xs else (k ′, v) # delete-aux k xs)

THEORY “AList” 25

lemma map-of-update-with-aux ′:
map-of (update-with-aux v k f ps) k ′ =
((map-of ps)(k 7→ (case map-of ps k of None ⇒ f v | Some v ⇒ f v))) k ′

〈proof 〉

lemma map-of-update-with-aux:
map-of (update-with-aux v k f ps) =
(map-of ps)(k 7→ (case map-of ps k of None ⇒ f v | Some v ⇒ f v))
〈proof 〉

lemma dom-update-with-aux: fst ‘ set (update-with-aux v k f ps) = {k} ∪ fst ‘ set
ps
〈proof 〉

lemma distinct-update-with-aux [simp]:
distinct (map fst (update-with-aux v k f ps)) = distinct (map fst ps)
〈proof 〉

lemma set-update-with-aux:
distinct (map fst xs) =⇒

set (update-with-aux v k f xs) =
(set xs − {k} × UNIV ∪ {(k, f (case map-of xs k of None ⇒ v | Some v ⇒

v))})
〈proof 〉

lemma set-delete-aux: distinct (map fst xs) =⇒ set (delete-aux k xs) = set xs −
{k} × UNIV
〈proof 〉

lemma dom-delete-aux: distinct (map fst ps) =⇒ fst ‘ set (delete-aux k ps) = fst
‘ set ps − {k}
〈proof 〉

lemma distinct-delete-aux [simp]: distinct (map fst ps) =⇒ distinct (map fst (delete-aux
k ps))
〈proof 〉

lemma map-of-delete-aux ′:
distinct (map fst xs) =⇒ map-of (delete-aux k xs) = (map-of xs)(k := None)
〈proof 〉

lemma map-of-delete-aux:
distinct (map fst xs) =⇒ map-of (delete-aux k xs) k ′ = ((map-of xs)(k := None))

k ′

〈proof 〉

lemma delete-aux-eq-Nil-conv: delete-aux k ts = [] ←→ ts = [] ∨ (∃ v. ts = [(k,
v)])

THEORY “AList” 26

〈proof 〉

1.4 restrict
qualified definition restrict :: ′key set ⇒ (′key × ′val) list ⇒ (′key × ′val) list

where restrict-eq: restrict A = filter (λ(k, v). k ∈ A)

lemma restr-simps [simp]:
restrict A [] = []
restrict A (p#ps) = (if fst p ∈ A then p # restrict A ps else restrict A ps)
〈proof 〉

lemma restr-conv ′: map-of (restrict A al) = ((map-of al)|‘ A)
〈proof 〉

corollary restr-conv: map-of (restrict A al) k = ((map-of al)|‘ A) k
〈proof 〉

lemma distinct-restr : distinct (map fst al) =⇒ distinct (map fst (restrict A al))
〈proof 〉

lemma restr-empty [simp]:
restrict {} al = []
restrict A [] = []
〈proof 〉

lemma restr-in [simp]: x ∈ A =⇒ map-of (restrict A al) x = map-of al x
〈proof 〉

lemma restr-out [simp]: x /∈ A =⇒ map-of (restrict A al) x = None
〈proof 〉

lemma dom-restr [simp]: fst ‘ set (restrict A al) = fst ‘ set al ∩ A
〈proof 〉

lemma restr-upd-same [simp]: restrict (−{x}) (update x y al) = restrict (−{x}) al
〈proof 〉

lemma restr-restr [simp]: restrict A (restrict B al) = restrict (A∩B) al
〈proof 〉

lemma restr-update[simp]:
map-of (restrict D (update x y al)) =

map-of ((if x ∈ D then (update x y (restrict (D−{x}) al)) else restrict D al))
〈proof 〉

lemma restr-delete [simp]:
delete x (restrict D al) = (if x ∈ D then restrict (D − {x}) al else restrict D al)
〈proof 〉

THEORY “AList” 27

lemma update-restr :
map-of (update x y (restrict D al)) = map-of (update x y (restrict (D − {x})

al))
〈proof 〉

lemma update-restr-conv [simp]:
x ∈ D =⇒

map-of (update x y (restrict D al)) = map-of (update x y (restrict (D − {x})
al))
〈proof 〉

lemma restr-updates [simp]:
length xs = length ys =⇒ set xs ⊆ D =⇒

map-of (restrict D (updates xs ys al)) =
map-of (updates xs ys (restrict (D − set xs) al))

〈proof 〉

lemma restr-delete-twist: (restrict A (delete a ps)) = delete a (restrict A ps)
〈proof 〉

1.5 clearjunk
qualified function clearjunk :: (′key × ′val) list ⇒ (′key × ′val) list

where
clearjunk [] = []
| clearjunk (p#ps) = p # clearjunk (delete (fst p) ps)
〈proof 〉

termination
〈proof 〉

lemma map-of-clearjunk: map-of (clearjunk al) = map-of al
〈proof 〉

lemma clearjunk-keys-set: set (map fst (clearjunk al)) = set (map fst al)
〈proof 〉

lemma dom-clearjunk: fst ‘ set (clearjunk al) = fst ‘ set al
〈proof 〉

lemma distinct-clearjunk [simp]: distinct (map fst (clearjunk al))
〈proof 〉

lemma ran-clearjunk: ran (map-of (clearjunk al)) = ran (map-of al)
〈proof 〉

lemma ran-map-of : ran (map-of al) = snd ‘ set (clearjunk al)
〈proof 〉

THEORY “AList” 28

lemma graph-map-of : Map.graph (map-of al) = set (clearjunk al)
〈proof 〉

lemma clearjunk-update: clearjunk (update k v al) = update k v (clearjunk al)
〈proof 〉

lemma clearjunk-updates: clearjunk (updates ks vs al) = updates ks vs (clearjunk
al)
〈proof 〉

lemma clearjunk-delete: clearjunk (delete x al) = delete x (clearjunk al)
〈proof 〉

lemma clearjunk-restrict: clearjunk (restrict A al) = restrict A (clearjunk al)
〈proof 〉

lemma distinct-clearjunk-id [simp]: distinct (map fst al) =⇒ clearjunk al = al
〈proof 〉

lemma clearjunk-idem: clearjunk (clearjunk al) = clearjunk al
〈proof 〉

lemma length-clearjunk: length (clearjunk al) ≤ length al
〈proof 〉

lemma delete-map:
assumes

∧
kv. fst (f kv) = fst kv

shows delete k (map f ps) = map f (delete k ps)
〈proof 〉

lemma clearjunk-map:
assumes

∧
kv. fst (f kv) = fst kv

shows clearjunk (map f ps) = map f (clearjunk ps)
〈proof 〉

1.6 map-ran
definition map-ran :: (′key ⇒ ′val1 ⇒ ′val2) ⇒ (′key × ′val1) list ⇒ (′key ×
′val2) list

where map-ran f = map (λ(k, v). (k, f k v))

lemma map-ran-simps [simp]:
map-ran f [] = []
map-ran f ((k, v) # ps) = (k, f k v) # map-ran f ps
〈proof 〉

lemma map-ran-Cons-sel: map-ran f (p # ps) = (fst p, f (fst p) (snd p)) #
map-ran f ps
〈proof 〉

THEORY “AList” 29

lemma length-map-ran[simp]: length (map-ran f al) = length al
〈proof 〉

lemma map-fst-map-ran[simp]: map fst (map-ran f al) = map fst al
〈proof 〉

lemma dom-map-ran: fst ‘ set (map-ran f al) = fst ‘ set al
〈proof 〉

lemma map-ran-conv: map-of (map-ran f al) k = map-option (f k) (map-of al k)
〈proof 〉

lemma distinct-map-ran: distinct (map fst al) =⇒ distinct (map fst (map-ran f
al))
〈proof 〉

lemma map-ran-filter : map-ran f [p←ps. fst p 6= a] = [p←map-ran f ps. fst p 6=
a]
〈proof 〉

lemma clearjunk-map-ran: clearjunk (map-ran f al) = map-ran f (clearjunk al)
〈proof 〉

1.7 merge
qualified definition merge :: (′key × ′val) list ⇒ (′key × ′val) list ⇒ (′key ×
′val) list

where merge qs ps = foldr (λ(k, v). update k v) ps qs

lemma merge-simps [simp]:
merge qs [] = qs
merge qs (p#ps) = update (fst p) (snd p) (merge qs ps)
〈proof 〉

lemma merge-updates: merge qs ps = updates (rev (map fst ps)) (rev (map snd
ps)) qs
〈proof 〉

lemma dom-merge: fst ‘ set (merge xs ys) = fst ‘ set xs ∪ fst ‘ set ys
〈proof 〉

lemma distinct-merge: distinct (map fst xs) =⇒ distinct (map fst (merge xs ys))
〈proof 〉

lemma clearjunk-merge: clearjunk (merge xs ys) = merge (clearjunk xs) ys
〈proof 〉

lemma merge-conv ′: map-of (merge xs ys) = map-of xs ++ map-of ys

THEORY “AList” 30

〈proof 〉

corollary merge-conv: map-of (merge xs ys) k = (map-of xs ++ map-of ys) k
〈proof 〉

lemma merge-empty: map-of (merge [] ys) = map-of ys
〈proof 〉

lemma merge-assoc [simp]: map-of (merge m1 (merge m2 m3)) = map-of (merge
(merge m1 m2) m3)
〈proof 〉

lemma merge-Some-iff :
map-of (merge m n) k = Some x ←→

map-of n k = Some x ∨ map-of n k = None ∧ map-of m k = Some x
〈proof 〉

lemmas merge-SomeD [dest!] = merge-Some-iff [THEN iffD1]

lemma merge-find-right [simp]: map-of n k = Some v =⇒ map-of (merge m n) k
= Some v
〈proof 〉

lemma merge-None [iff]: (map-of (merge m n) k = None) = (map-of n k = None
∧ map-of m k = None)
〈proof 〉

lemma merge-upd [simp]: map-of (merge m (update k v n)) = map-of (update k
v (merge m n))
〈proof 〉

lemma merge-updatess [simp]:
map-of (merge m (updates xs ys n)) = map-of (updates xs ys (merge m n))
〈proof 〉

lemma merge-append: map-of (xs @ ys) = map-of (merge ys xs)
〈proof 〉

1.8 compose
qualified function compose :: (′key × ′a) list ⇒ (′a × ′b) list ⇒ (′key × ′b) list

where
compose [] ys = []
| compose (x # xs) ys =

(case map-of ys (snd x) of
None ⇒ compose (delete (fst x) xs) ys
| Some v ⇒ (fst x, v) # compose xs ys)

〈proof 〉
termination

THEORY “AList” 31

〈proof 〉

lemma compose-first-None [simp]: map-of xs k = None =⇒ map-of (compose xs
ys) k = None
〈proof 〉

lemma compose-conv: map-of (compose xs ys) k = (map-of ys ◦m map-of xs) k
〈proof 〉

lemma compose-conv ′: map-of (compose xs ys) = (map-of ys ◦m map-of xs)
〈proof 〉

lemma compose-first-Some [simp]: map-of xs k = Some v =⇒ map-of (compose
xs ys) k = map-of ys v
〈proof 〉

lemma dom-compose: fst ‘ set (compose xs ys) ⊆ fst ‘ set xs
〈proof 〉

lemma distinct-compose:
assumes distinct (map fst xs)
shows distinct (map fst (compose xs ys))
〈proof 〉

lemma compose-delete-twist: compose (delete k xs) ys = delete k (compose xs ys)
〈proof 〉

lemma compose-clearjunk: compose xs (clearjunk ys) = compose xs ys
〈proof 〉

lemma clearjunk-compose: clearjunk (compose xs ys) = compose (clearjunk xs) ys
〈proof 〉

lemma compose-empty [simp]: compose xs [] = []
〈proof 〉

lemma compose-Some-iff :
(map-of (compose xs ys) k = Some v) ←→
(∃ k ′. map-of xs k = Some k ′ ∧ map-of ys k ′ = Some v)
〈proof 〉

lemma map-comp-None-iff :
map-of (compose xs ys) k = None ←→
(map-of xs k = None ∨ (∃ k ′. map-of xs k = Some k ′ ∧ map-of ys k ′ = None))
〈proof 〉

THEORY “BNF-Axiomatization” 32

1.9 map-entry
qualified fun map-entry :: ′key ⇒ (′val ⇒ ′val) ⇒ (′key × ′val) list ⇒ (′key ×
′val) list

where
map-entry k f [] = []
| map-entry k f (p # ps) =

(if fst p = k then (k, f (snd p)) # ps else p # map-entry k f ps)

lemma map-of-map-entry:
map-of (map-entry k f xs) =
(map-of xs)(k := case map-of xs k of None ⇒ None | Some v ′⇒ Some (f v ′))
〈proof 〉

lemma dom-map-entry: fst ‘ set (map-entry k f xs) = fst ‘ set xs
〈proof 〉

lemma distinct-map-entry:
assumes distinct (map fst xs)
shows distinct (map fst (map-entry k f xs))
〈proof 〉

1.10 map-default
fun map-default :: ′key ⇒ ′val ⇒ (′val ⇒ ′val) ⇒ (′key × ′val) list ⇒ (′key ×
′val) list

where
map-default k v f [] = [(k, v)]
| map-default k v f (p # ps) =

(if fst p = k then (k, f (snd p)) # ps else p # map-default k v f ps)

lemma map-of-map-default:
map-of (map-default k v f xs) =
(map-of xs)(k := case map-of xs k of None ⇒ Some v | Some v ′⇒ Some (f v ′))
〈proof 〉

lemma dom-map-default: fst ‘ set (map-default k v f xs) = insert k (fst ‘ set xs)
〈proof 〉

lemma distinct-map-default:
assumes distinct (map fst xs)
shows distinct (map fst (map-default k v f xs))
〈proof 〉

end

end

THEORY “BNF-Corec” 33

2 Axiomatic Declaration of Bounded Natural Func-
tors

theory BNF-Axiomatization
imports Main
keywords

bnf-axiomatization :: thy-decl
begin

〈ML〉

end

3 Generalized Corecursor Sugar (corec and friends)
theory BNF-Corec
imports Main
keywords

corec :: thy-defn and
corecursive :: thy-goal-defn and
friend-of-corec :: thy-goal-defn and
coinduction-upto :: thy-decl

begin

lemma obj-distinct-prems: P −→ P −→ Q =⇒ P =⇒ Q
〈proof 〉

lemma inject-refine: g (f x) = x =⇒ g (f y) = y =⇒ f x = f y ←→ x = y
〈proof 〉

lemma convol-apply: BNF-Def .convol f g x = (f x, g x)
〈proof 〉

lemma Grp-UNIV-id: BNF-Def .Grp UNIV id = (=)
〈proof 〉

lemma sum-comp-cases:
assumes f ◦ Inl = g ◦ Inl and f ◦ Inr = g ◦ Inr
shows f = g
〈proof 〉

lemma case-sum-Inl-Inr-L: case-sum (f ◦ Inl) (f ◦ Inr) = f
〈proof 〉

lemma eq-o-InrI : [[g ◦ Inl = h; case-sum h f = g]] =⇒ f = g ◦ Inr
〈proof 〉

lemma id-bnf-o: BNF-Composition.id-bnf ◦ f = f

THEORY “BNF-Corec” 34

〈proof 〉

lemma o-id-bnf : f ◦ BNF-Composition.id-bnf = f
〈proof 〉

lemma if-True-False:
(if P then True else Q) ←→ P ∨ Q
(if P then False else Q) ←→ ¬ P ∧ Q
(if P then Q else True) ←→ ¬ P ∨ Q
(if P then Q else False) ←→ P ∧ Q
〈proof 〉

lemma if-distrib-fun: (if c then f else g) x = (if c then f x else g x)
〈proof 〉

3.1 Coinduction
lemma eq-comp-compI : a ◦ b = f ◦ x =⇒ x ◦ c = id =⇒ f = a ◦ (b ◦ c)
〈proof 〉

lemma self-bounded-weaken-left: (a :: ′a :: semilattice-inf) ≤ inf a b =⇒ a ≤ b
〈proof 〉

lemma self-bounded-weaken-right: (a :: ′a :: semilattice-inf) ≤ inf b a =⇒ a ≤ b
〈proof 〉

lemma symp-iff : symp R ←→ R = R−1−1

〈proof 〉

lemma equivp-inf : [[equivp R; equivp S]] =⇒ equivp (inf R S)
〈proof 〉

lemma vimage2p-rel-prod:
(λx y. rel-prod R S (BNF-Def .convol f1 g1 x) (BNF-Def .convol f2 g2 y)) =
(inf (BNF-Def .vimage2p f1 f2 R) (BNF-Def .vimage2p g1 g2 S))
〈proof 〉

lemma predicate2I-obj: (∀ x y. P x y −→ Q x y) =⇒ P ≤ Q
〈proof 〉

lemma predicate2D-obj: P ≤ Q =⇒ P x y −→ Q x y
〈proof 〉

locale cong =
fixes rel :: (′a ⇒ ′a ⇒ bool) ⇒ (′b ⇒ ′b ⇒ bool)

and eval :: ′b ⇒ ′a
and retr :: (′a ⇒ ′a ⇒ bool) ⇒ (′a ⇒ ′a ⇒ bool)

assumes rel-mono:
∧

R S . R ≤ S =⇒ rel R ≤ rel S
and equivp-retr :

∧
R. equivp R =⇒ equivp (retr R)

THEORY “BNF-Corec” 35

and retr-eval:
∧

R x y. [[(rel-fun (rel R) R) eval eval; rel (inf R (retr R)) x y]]
=⇒

retr R (eval x) (eval y)
begin

definition cong :: (′a ⇒ ′a ⇒ bool) ⇒ bool where
cong R ≡ equivp R ∧ (rel-fun (rel R) R) eval eval

lemma cong-retr : cong R =⇒ cong (inf R (retr R))
〈proof 〉

lemma cong-equivp: cong R =⇒ equivp R
〈proof 〉

definition gen-cong :: (′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ ′a ⇒ bool where
gen-cong R j1 j2 ≡ ∀R ′. R ≤ R ′ ∧ cong R ′ −→ R ′ j1 j2

lemma gen-cong-reflp[intro, simp]: x = y =⇒ gen-cong R x y
〈proof 〉

lemma gen-cong-symp[intro]: gen-cong R x y =⇒ gen-cong R y x
〈proof 〉

lemma gen-cong-transp[intro]: gen-cong R x y =⇒ gen-cong R y z =⇒ gen-cong
R x z
〈proof 〉

lemma equivp-gen-cong: equivp (gen-cong R)
〈proof 〉

lemma leq-gen-cong: R ≤ gen-cong R
〈proof 〉

lemmas imp-gen-cong[intro] = predicate2D[OF leq-gen-cong]

lemma gen-cong-minimal: [[R ≤ R ′; cong R ′]] =⇒ gen-cong R ≤ R ′

〈proof 〉

lemma congdd-base-gen-congdd-base-aux:
rel (gen-cong R) x y =⇒ R ≤ R ′ =⇒ cong R ′ =⇒ R ′ (eval x) (eval y)
〈proof 〉

lemma cong-gen-cong: cong (gen-cong R)
〈proof 〉

lemma gen-cong-eval-rel-fun:
(rel-fun (rel (gen-cong R)) (gen-cong R)) eval eval
〈proof 〉

THEORY “While-Combinator” 36

lemma gen-cong-eval:
rel (gen-cong R) x y =⇒ gen-cong R (eval x) (eval y)
〈proof 〉

lemma gen-cong-idem: gen-cong (gen-cong R) = gen-cong R
〈proof 〉

lemma gen-cong-rho:
% = eval ◦ f =⇒ rel (gen-cong R) (f x) (f y) =⇒ gen-cong R (% x) (% y)
〈proof 〉

lemma coinduction:
assumes coind: ∀R. R ≤ retr R −→ R ≤ (=)
assumes cih: R ≤ retr (gen-cong R)
shows R ≤ (=)
〈proof 〉

end

lemma rel-sum-case-sum:
rel-fun (rel-sum R S) T (case-sum f1 g1) (case-sum f2 g2) = (rel-fun R T f1 f2
∧ rel-fun S T g1 g2)
〈proof 〉

context
fixes rel eval rel ′ eval ′ retr emb
assumes base: cong rel eval retr
and step: cong rel ′ eval ′ retr
and emb: eval ′ ◦ emb = eval
and emb-transfer : rel-fun (rel R) (rel ′ R) emb emb

begin

interpretation base: cong rel eval retr 〈proof 〉
interpretation step: cong rel ′ eval ′ retr 〈proof 〉

lemma gen-cong-emb: base.gen-cong R ≤ step.gen-cong R
〈proof 〉

end

named-theorems friend-of-corec-simps

〈ML〉

end

4 A general “while” combinator
theory While-Combinator
imports Main

THEORY “While-Combinator” 37

begin

Defining partial functions in HOL is tricky. This theory provides a
while-combinator that facilitates the definition of (potentially) partial tail-
recursive functions.

The theory provides the function while-option b f s that iterates f on
s while b is true. If iteration terminates with t, Some t is returned, None
otherwise. Thus termination can be shown by proving that Some is always
returned (for some subset of inputs).

Convenient variations include while-Some (for more efficient code) and
while-saturate (for saturating a set).

4.1 while-option
definition while-option :: (′a ⇒ bool) ⇒ (′a ⇒ ′a) ⇒ ′a ⇒ ′a option where
while-option b c s = (if (∃ k. ¬ b ((c ^^ k) s))

then Some ((c ^^ (LEAST k. ¬ b ((c ^^ k) s))) s)
else None)

theorem while-option-unfold[code]:
while-option b c s = (if b s then while-option b c (c s) else Some s)
〈proof 〉

lemma while-option-stop2 :
while-option b c s = Some t =⇒ ∃ k. t = (c^^k) s ∧ ¬ b t
〈proof 〉

lemma while-option-stop: while-option b c s = Some t =⇒ ¬ b t
〈proof 〉

theorem while-option-rule:
assumes step:

∧
s. P s =⇒ b s =⇒ P (c s)

and result: while-option b c s = Some t
and init: P s

shows P t
〈proof 〉

lemma funpow-commute:
[[∀ k ′ < k. f (c ((c^^k ′) s)) = c ′ (f ((c^^k ′) s))]] =⇒ f ((c^^k) s) = (c ′̂ ^k) (f s)
〈proof 〉

lemma while-option-commute-invariant:
assumes Invariant:

∧
s. P s =⇒ b s =⇒ P (c s)

assumes TestCommute:
∧

s. P s =⇒ b s = b ′ (f s)
assumes BodyCommute:

∧
s. P s =⇒ b s =⇒ f (c s) = c ′ (f s)

assumes Initial: P s
shows map-option f (while-option b c s) = while-option b ′ c ′ (f s)
〈proof 〉

THEORY “While-Combinator” 38

lemma while-option-commute:
assumes

∧
s. b s = b ′ (f s)

∧
s. [[b s]] =⇒ f (c s) = c ′ (f s)

shows map-option f (while-option b c s) = while-option b ′ c ′ (f s)
〈proof 〉

4.2 while
definition while :: (′a ⇒ bool) ⇒ (′a ⇒ ′a) ⇒ ′a ⇒ ′a
where while b c s = the (while-option b c s)

lemma while-unfold [code]:
while b c s = (if b s then while b c (c s) else s)
〈proof 〉

lemma def-while-unfold:
assumes fdef : f == while test do
shows f x = (if test x then f (do x) else x)
〈proof 〉

The proof rule for while, where P is the invariant.
theorem while-rule-lemma:

assumes invariant:
∧

s. P s =⇒ b s =⇒ P (c s)
and terminate:

∧
s. P s =⇒ ¬ b s =⇒ Q s

and wf : wf {(t, s). P s ∧ b s ∧ t = c s}
shows P s =⇒ Q (while b c s)
〈proof 〉

theorem while-rule:
[[P s;∧

s. [[P s; b s]] =⇒ P (c s);∧
s. [[P s; ¬ b s]] =⇒ Q s;

wf r ;∧
s. [[P s; b s]] =⇒ (c s, s) ∈ r]] =⇒

Q (while b c s)
〈proof 〉

Combine invariant preservation and variant decrease in one goal:
theorem while-rule2 :
[[P s;∧

s. [[P s; b s]] =⇒ P (c s) ∧ (c s, s) ∈ r ;∧
s. [[P s; ¬ b s]] =⇒ Q s;

wf r]] =⇒
Q (while b c s)

〈proof 〉

4.3 Termination, lfp and gfp
theorem wf-while-option-Some:

assumes wf {(t, s). (P s ∧ b s) ∧ t = c s}
and

∧
s. P s =⇒ b s =⇒ P(c s) and P s

THEORY “While-Combinator” 39

shows ∃ t. while-option b c s = Some t
〈proof 〉

lemma wf-rel-while-option-Some:
assumes wf : wf R
assumes smaller :

∧
s. P s ∧ b s =⇒ (c s, s) ∈ R

assumes inv:
∧

s. P s ∧ b s =⇒ P(c s)
assumes init: P s
shows ∃ t. while-option b c s = Some t
〈proof 〉

theorem measure-while-option-Some: fixes f :: ′s ⇒ nat
shows (

∧
s. P s =⇒ b s =⇒ P(c s) ∧ f (c s) < f s)

=⇒ P s =⇒ ∃ t. while-option b c s = Some t
〈proof 〉

Kleene iteration starting from the empty set and assuming some finite
bounding set:
lemma while-option-finite-subset-Some: fixes C :: ′a set

assumes mono f and
∧

X . X ⊆ C =⇒ f X ⊆ C and finite C
shows ∃P. while-option (λA. f A 6= A) f {} = Some P
〈proof 〉

lemma lfp-the-while-option:
assumes mono f and

∧
X . X ⊆ C =⇒ f X ⊆ C and finite C

shows lfp f = the(while-option (λA. f A 6= A) f {})
〈proof 〉

lemma lfp-while:
assumes mono f and

∧
X . X ⊆ C =⇒ f X ⊆ C and finite C

shows lfp f = while (λA. f A 6= A) f {}
〈proof 〉

lemma wf-finite-less:
assumes finite (C :: ′a::order set)
shows wf {(x, y). {x, y} ⊆ C ∧ x < y}
〈proof 〉

lemma wf-finite-greater :
assumes finite (C :: ′a::order set)
shows wf {(x, y). {x, y} ⊆ C ∧ y < x}
〈proof 〉

lemma while-option-finite-increasing-Some:
fixes f :: ′a::order ⇒ ′a
assumes mono f and finite (UNIV :: ′a set) and s ≤ f s
shows ∃P. while-option (λA. f A 6= A) f s = Some P
〈proof 〉

THEORY “While-Combinator” 40

lemma lfp-the-while-option-lattice:
fixes f :: ′a::complete-lattice ⇒ ′a
assumes mono f and finite (UNIV :: ′a set)
shows lfp f = the (while-option (λA. f A 6= A) f bot)
〈proof 〉

lemma lfp-while-lattice:
fixes f :: ′a::complete-lattice ⇒ ′a
assumes mono f and finite (UNIV :: ′a set)
shows lfp f = while (λA. f A 6= A) f bot
〈proof 〉

lemma while-option-finite-decreasing-Some:
fixes f :: ′a::order ⇒ ′a
assumes mono f and finite (UNIV :: ′a set) and f s ≤ s
shows ∃P. while-option (λA. f A 6= A) f s = Some P
〈proof 〉

lemma gfp-the-while-option-lattice:
fixes f :: ′a::complete-lattice ⇒ ′a
assumes mono f and finite (UNIV :: ′a set)
shows gfp f = the(while-option (λA. f A 6= A) f top)
〈proof 〉

lemma gfp-while-lattice:
fixes f :: ′a::complete-lattice ⇒ ′a
assumes mono f and finite (UNIV :: ′a set)
shows gfp f = while (λA. f A 6= A) f top
〈proof 〉

4.4 while-Some and while-saturate
A variation intended for efficient code. The problem with while-option b c:
the computations of b and c may share subcomputations but they need to
be performed twice.
definition while-Some :: (′s ⇒ ′s option) ⇒ ′s ⇒ ′s option where
while-Some f = while-option (λs. f s 6= None) (the o f)

lemma while-Some-rec[code]:
while-Some f x = (case f x of None ⇒ Some x | Some y ⇒ while-Some f y)
〈proof 〉

A frequent special case: saturation of a set.
definition while-saturate :: (′a set ⇒ ′a set) ⇒ ′a set ⇒ ′a set option where
while-saturate f = while-option (λM . ¬ f M ⊆ M) (λM . M ∪ f M)

lemma while-option-cong: (
∧

s. b s =⇒ c s = c ′ s) =⇒ while-option b c s =
while-option b c ′ s

THEORY “While-Combinator” 41

〈proof 〉

lemma while-saturate-code[code]: while-saturate f M =
while-Some (λM . let M ′ = f M in if M ′ ⊆ M then None else Some (M ∪ M ′)) M
〈proof 〉

Termination:
lemma while-option-sat-finite-subset-Some: fixes C :: ′a set

assumes mono f and
∧

X . X ⊆ C =⇒ f X ⊆ C and finite C and M ⊆ C
shows ∃S . while-option (λM . ¬ f M ⊆ M) (λM . M ∪ f M) M = Some S
〈proof 〉

corollary while-saturate-finite-subset-Some:
assumes mono f and

∧
X . X ⊆ C =⇒ f X ⊆ C and finite C and M ⊆ C

shows ∃S . while-saturate f M = Some S
〈proof 〉

Correctness: finds the least saturated/closed set above M
lemma while-option-sat-prefix: assumes mono f
and while-option (λM . ¬ f M ⊆ M) (λM . M ∪ f M) M = Some S
and M ⊆ P and f P ⊆ P
shows S ⊆ P
〈proof 〉

corollary while-saturate-prefix:
[[mono f ; while-saturate f M = Some S ; M ⊆ P; f P ⊆ P]] =⇒ S ⊆ P
〈proof 〉

4.5 Reflexive, transitive closure
Computing the reflexive, transitive closure by iterating a successor function.
Stops when an element is found that dos not satisfy the test.

More refined (and hence more efficient) versions can be found in ITP 2011
paper by Nipkow (the theories are in the AFP entry Flyspeck by Nipkow)
and the AFP article Executable Transitive Closures by René Thiemann.
context

fixes p :: ′a ⇒ bool
and f :: ′a ⇒ ′a list
and x :: ′a

begin

qualified fun rtrancl-while-test :: ′a list × ′a set ⇒ bool
where rtrancl-while-test (ws,-) = (ws 6= [] ∧ p(hd ws))

qualified fun rtrancl-while-step :: ′a list × ′a set ⇒ ′a list × ′a set
where rtrancl-while-step (ws, Z) =
(let x = hd ws; new = remdups (filter (λy. y /∈ Z) (f x))
in (new @ tl ws, set new ∪ Z))

THEORY “Bourbaki-Witt-Fixpoint” 42

definition rtrancl-while :: (′a list ∗ ′a set) option
where rtrancl-while = while-option rtrancl-while-test rtrancl-while-step ([x],{x})

qualified fun rtrancl-while-invariant :: ′a list × ′a set ⇒ bool
where rtrancl-while-invariant (ws, Z) =

(x ∈ Z ∧ set ws ⊆ Z ∧ distinct ws ∧ {(x,y). y ∈ set(f x)} ‘‘ (Z − set ws) ⊆ Z
∧

Z ⊆ {(x,y). y ∈ set(f x)}∗ ‘‘ {x} ∧ (∀ z∈Z − set ws. p z))

qualified lemma rtrancl-while-invariant:
assumes inv: rtrancl-while-invariant st and test: rtrancl-while-test st
shows rtrancl-while-invariant (rtrancl-while-step st)
〈proof 〉

lemma rtrancl-while-Some:
assumes rtrancl-while = Some(ws,Z)
shows if ws = []

then Z = {(x,y). y ∈ set(f x)}∗ ‘‘ {x} ∧ (∀ z∈Z . p z)
else ¬p(hd ws) ∧ hd ws ∈ {(x,y). y ∈ set(f x)}∗ ‘‘ {x}

〈proof 〉

lemma rtrancl-while-finite-Some:
assumes finite ({(x, y). y ∈ set (f x)}∗ ‘‘ {x}) (is finite ?Cl)
shows ∃ y. rtrancl-while = Some y
〈proof 〉

end

end

5 The Bourbaki-Witt tower construction for trans-
finite iteration

theory Bourbaki-Witt-Fixpoint
imports While-Combinator

begin

lemma ChainsI [intro?]:
(
∧

a b. [[a ∈ Y ; b ∈ Y]] =⇒ (a, b) ∈ r ∨ (b, a) ∈ r) =⇒ Y ∈ Chains r
〈proof 〉

lemma in-Chains-subset: [[M ∈ Chains r ; M ′ ⊆ M]] =⇒ M ′ ∈ Chains r
〈proof 〉

lemma in-ChainsD: [[M ∈ Chains r ; x ∈ M ; y ∈ M]] =⇒ (x, y) ∈ r ∨ (y, x) ∈ r
〈proof 〉

THEORY “Bourbaki-Witt-Fixpoint” 43

lemma Chains-FieldD: [[M ∈ Chains r ; x ∈ M]] =⇒ x ∈ Field r
〈proof 〉

lemma in-Chains-conv-chain: M ∈ Chains r ←→ Complete-Partial-Order .chain
(λx y. (x, y) ∈ r) M
〈proof 〉

lemma partial-order-on-trans:
[[partial-order-on A r ; (x, y) ∈ r ; (y, z) ∈ r]] =⇒ (x, z) ∈ r
〈proof 〉

locale bourbaki-witt-fixpoint =
fixes lub :: ′a set ⇒ ′a
and leq :: (′a × ′a) set
and f :: ′a ⇒ ′a
assumes po: Partial-order leq
and lub-least: [[M ∈ Chains leq; M 6= {};

∧
x. x ∈ M =⇒ (x, z) ∈ leq]] =⇒ (lub

M , z) ∈ leq
and lub-upper : [[M ∈ Chains leq; x ∈ M]] =⇒ (x, lub M) ∈ leq
and lub-in-Field: [[M ∈ Chains leq; M 6= {}]] =⇒ lub M ∈ Field leq
and increasing:

∧
x. x ∈ Field leq =⇒ (x, f x) ∈ leq

begin

lemma leq-trans: [[(x, y) ∈ leq; (y, z) ∈ leq]] =⇒ (x, z) ∈ leq
〈proof 〉

lemma leq-refl: x ∈ Field leq =⇒ (x, x) ∈ leq
〈proof 〉

lemma leq-antisym: [[(x, y) ∈ leq; (y, x) ∈ leq]] =⇒ x = y
〈proof 〉

inductive-set iterates-above :: ′a ⇒ ′a set
for a

where
base: a ∈ iterates-above a
| step: x ∈ iterates-above a =⇒ f x ∈ iterates-above a
| Sup: [[M ∈ Chains leq; M 6= {};

∧
x. x ∈ M =⇒ x ∈ iterates-above a]] =⇒ lub

M ∈ iterates-above a

definition fixp-above :: ′a ⇒ ′a
where fixp-above a = (if a ∈ Field leq then lub (iterates-above a) else a)

lemma fixp-above-outside: a /∈ Field leq =⇒ fixp-above a = a
〈proof 〉

lemma fixp-above-inside: a ∈ Field leq =⇒ fixp-above a = lub (iterates-above a)
〈proof 〉

THEORY “Bourbaki-Witt-Fixpoint” 44

context
notes leq-refl [intro!, simp]
and base [intro]
and step [intro]
and Sup [intro]
and leq-trans [trans]

begin

lemma iterates-above-le-f : [[x ∈ iterates-above a; a ∈ Field leq]] =⇒ (x, f x) ∈ leq
〈proof 〉

lemma iterates-above-Field: [[x ∈ iterates-above a; a ∈ Field leq]] =⇒ x ∈ Field
leq
〈proof 〉

lemma iterates-above-ge:
assumes y: y ∈ iterates-above a
and a: a ∈ Field leq
shows (a, y) ∈ leq
〈proof 〉

lemma iterates-above-lub:
assumes M : M ∈ Chains leq
and nempty: M 6= {}
and upper :

∧
y. y ∈ M =⇒ ∃ z ∈ M . (y, z) ∈ leq ∧ z ∈ iterates-above a

shows lub M ∈ iterates-above a
〈proof 〉

lemma iterates-above-successor :
assumes y: y ∈ iterates-above a
and a: a ∈ Field leq
shows y = a ∨ y ∈ iterates-above (f a)
〈proof 〉

lemma iterates-above-Sup-aux:
assumes M : M ∈ Chains leq M 6= {}
and M ′: M ′ ∈ Chains leq M ′ 6= {}
and comp:

∧
x. x ∈ M =⇒ x ∈ iterates-above (lub M ′) ∨ lub M ′ ∈ iterates-above

x
shows (lub M , lub M ′) ∈ leq ∨ lub M ∈ iterates-above (lub M ′)
〈proof 〉

lemma iterates-above-triangle:
assumes x: x ∈ iterates-above a
and y: y ∈ iterates-above a
and a: a ∈ Field leq
shows x ∈ iterates-above y ∨ y ∈ iterates-above x
〈proof 〉

THEORY “Bourbaki-Witt-Fixpoint” 45

lemma chain-iterates-above:
assumes a: a ∈ Field leq
shows iterates-above a ∈ Chains leq (is ?C ∈ -)
〈proof 〉

lemma fixp-iterates-above: fixp-above a ∈ iterates-above a
〈proof 〉

lemma fixp-above-Field: a ∈ Field leq =⇒ fixp-above a ∈ Field leq
〈proof 〉

lemma fixp-above-unfold:
assumes a: a ∈ Field leq
shows fixp-above a = f (fixp-above a) (is ?a = f ?a)
〈proof 〉

end

lemma fixp-above-induct [case-names adm base step]:
assumes adm: ccpo.admissible lub (λx y. (x, y) ∈ leq) P
and base: P a
and step:

∧
x. P x =⇒ P (f x)

shows P (fixp-above a)
〈proof 〉

end

5.1 Connect with the while combinator for executability on
chain-finite lattices.

context bourbaki-witt-fixpoint begin

lemma in-Chains-finite: — Translation from [[Complete-Partial-Order .chain (≤)
?A; finite ?A; ?A 6= {}]] =⇒ Sup ?A ∈ ?A.

assumes M ∈ Chains leq
and M 6= {}
and finite M
shows lub M ∈ M
〈proof 〉

lemma fun-pow-iterates-above: (f ^^ k) a ∈ iterates-above a
〈proof 〉

lemma chfin-iterates-above-fun-pow:
assumes x ∈ iterates-above a
assumes ∀M ∈ Chains leq. finite M
shows ∃ j. x = (f ^^ j) a
〈proof 〉

THEORY “Bourbaki-Witt-Fixpoint” 46

lemma Chain-finite-iterates-above-fun-pow-iff :
assumes ∀M ∈ Chains leq. finite M
shows x ∈ iterates-above a ←→ (∃ j. x = (f ^^ j) a)
〈proof 〉

lemma fixp-above-Kleene-iter-ex:
assumes (∀M ∈ Chains leq. finite M)
obtains k where fixp-above a = (f ^^ k) a
〈proof 〉

context fixes a assumes a: a ∈ Field leq begin

lemma funpow-Field-leq: (f ^^ k) a ∈ Field leq
〈proof 〉

lemma funpow-prefix: j < k =⇒ ((f ^^ j) a, (f ^^ k) a) ∈ leq
〈proof 〉

lemma funpow-suffix: (f ^^ Suc k) a = (f ^^ k) a =⇒ ((f ^^ (j + k)) a, (f ^^ k)
a) ∈ leq
〈proof 〉

lemma funpow-stability: (f ^^ Suc k) a = (f ^^ k) a =⇒ ((f ^^ j) a, (f ^^ k) a)
∈ leq
〈proof 〉

lemma funpow-in-Chains: {(f ^^ k) a |k. True} ∈ Chains leq
〈proof 〉

lemma fixp-above-Kleene-iter :
assumes ∀M ∈ Chains leq. finite M — convenient but surely not necessary
assumes (f ^^ Suc k) a = (f ^^ k) a
shows fixp-above a = (f ^^ k) a
〈proof 〉

context assumes chfin: ∀M ∈ Chains leq. finite M begin

lemma Chain-finite-wf : wf {(f ((f ^^ k) a), (f ^^ k) a) |k. f ((f ^^ k) a) 6= (f ^^
k) a}
〈proof 〉

lemma while-option-finite-increasing: ∃P. while-option (λA. f A 6= A) f a = Some
P
〈proof 〉

lemma fixp-above-the-while-option: fixp-above a = the (while-option (λA. f A 6=
A) f a)
〈proof 〉

THEORY “Centered-Division” 47

lemma fixp-above-conv-while: fixp-above a = while (λA. f A 6= A) f a
〈proof 〉

end

end

end

lemma bourbaki-witt-fixpoint-complete-latticeI :
fixes f :: ′a::complete-lattice ⇒ ′a
assumes

∧
x. x ≤ f x

shows bourbaki-witt-fixpoint Sup {(x, y). x ≤ y} f
〈proof 〉

end

6 Division with modulus centered towards zero.
theory Centered-Division

imports Main
begin

lemma off-iff-abs-mod-2-eq-one:
‹odd l ←→ |l| mod 2 = 1 › for l :: int
〈proof 〉

The following specification of division on integers centers the modulus around
zero. This is useful e.g. to define division on Gauss numbers. N.b.: This is
not mentioned [2].
definition centered-divide :: ‹int ⇒ int ⇒ int› (infixl ‹cdiv› 70)

where ‹k cdiv l = sgn l ∗ ((k + |l| div 2) div |l|)›

definition centered-modulo :: ‹int ⇒ int ⇒ int› (infixl ‹cmod› 70)
where ‹k cmod l = (k + |l| div 2) mod |l| − |l| div 2 ›

Example: k cmod 5 ∈ {− 2 , − 1 , 0 , 1 , 2}
lemma signed-take-bit-eq-cmod:

‹signed-take-bit n k = k cmod (2 ^ Suc n)›
〈proof 〉

Property signed-take-bit n k = k cmod 2 Suc n is the key to generalize cen-
tered division to arbitrary structures satisfying ring-bit-operations, but so
far it is not clear what practical relevance that would have.
lemma cdiv-mult-cmod-eq:

‹k cdiv l ∗ l + k cmod l = k›
〈proof 〉

THEORY “Centered-Division” 48

lemma mult-cdiv-cmod-eq:
‹l ∗ (k cdiv l) + k cmod l = k›
〈proof 〉

lemma cmod-cdiv-mult-eq:
‹k cmod l + k cdiv l ∗ l = k›
〈proof 〉

lemma cmod-mult-cdiv-eq:
‹k cmod l + l ∗ (k cdiv l) = k›
〈proof 〉

lemma minus-cdiv-mult-eq-cmod:
‹k − k cdiv l ∗ l = k cmod l›
〈proof 〉

lemma minus-mult-cdiv-eq-cmod:
‹k − l ∗ (k cdiv l) = k cmod l›
〈proof 〉

lemma minus-cmod-eq-cdiv-mult:
‹k − k cmod l = k cdiv l ∗ l›
〈proof 〉

lemma minus-cmod-eq-mult-cdiv:
‹k − k cmod l = l ∗ (k cdiv l)›
〈proof 〉

lemma cdiv-0-eq [simp]:
‹k cdiv 0 = 0 ›
〈proof 〉

lemma cmod-0-eq [simp]:
‹k cmod 0 = k›
〈proof 〉

lemma cdiv-1-eq [simp]:
‹k cdiv 1 = k›
〈proof 〉

lemma cmod-1-eq [simp]:
‹k cmod 1 = 0 ›
〈proof 〉

lemma zero-cdiv-eq [simp]:
‹0 cdiv k = 0 ›
〈proof 〉

lemma zero-cmod-eq [simp]:

THEORY “Centered-Division” 49

‹0 cmod k = 0 ›
〈proof 〉

lemma cdiv-minus-eq:
‹k cdiv − l = − (k cdiv l)›
〈proof 〉

lemma cmod-minus-eq [simp]:
‹k cmod − l = k cmod l›
〈proof 〉

lemma cdiv-abs-eq:
‹k cdiv |l| = sgn l ∗ (k cdiv l)›
〈proof 〉

lemma cmod-abs-eq [simp]:
‹k cmod |l| = k cmod l›
〈proof 〉

lemma nonzero-mult-cdiv-cancel-right:
‹k ∗ l cdiv l = k› if ‹l 6= 0 ›
〈proof 〉

lemma cdiv-self-eq [simp]:
‹k cdiv k = 1 › if ‹k 6= 0 ›
〈proof 〉

lemma cmod-self-eq [simp]:
‹k cmod k = 0 ›
〈proof 〉

lemma cmod-less-divisor :
‹k cmod l < |l| − |l| div 2 › if ‹l 6= 0 ›
〈proof 〉

lemma cmod-less-equal-divisor :
‹k cmod l ≤ |l| div 2 › if ‹l 6= 0 ›
〈proof 〉

lemma divisor-less-equal-cmod ′:
‹|l| div 2 − |l| ≤ k cmod l› if ‹l 6= 0 ›
〈proof 〉

lemma divisor-less-equal-cmod:
‹− (|l| div 2) ≤ k cmod l› if ‹l 6= 0 ›
〈proof 〉

lemma abs-cmod-less-equal:
‹|k cmod l| ≤ |l| div 2 › if ‹l 6= 0 ›

THEORY “Char-ord” 50

〈proof 〉

end

7 Order on characters
theory Char-ord

imports Main
begin

instantiation char :: linorder
begin

definition less-eq-char :: ‹char ⇒ char ⇒ bool›
where ‹c1 ≤ c2 ←→ of-char c1 ≤ (of-char c2 :: nat)›

definition less-char :: ‹char ⇒ char ⇒ bool›
where ‹c1 < c2 ←→ of-char c1 < (of-char c2 :: nat)›

instance
〈proof 〉

end

lemma less-eq-char-simp [simp, code]:
‹Char b0 b1 b2 b3 b4 b5 b6 b7 ≤ Char c0 c1 c2 c3 c4 c5 c6 c7
←→ lexordp-eq [b7 , b6 , b5 , b4 , b3 , b2 , b1 , b0] [c7 , c6 , c5 , c4 , c3 , c2 , c1 , c0]›
〈proof 〉

lemma less-char-simp [simp, code]:
‹Char b0 b1 b2 b3 b4 b5 b6 b7 < Char c0 c1 c2 c3 c4 c5 c6 c7
←→ ord-class.lexordp [b7 , b6 , b5 , b4 , b3 , b2 , b1 , b0] [c7 , c6 , c5 , c4 , c3 , c2 ,

c1 , c0]›
〈proof 〉

instantiation char :: distrib-lattice
begin

definition ‹(inf :: char ⇒ -) = min›
definition ‹(sup :: char ⇒ -) = max›

instance
〈proof 〉

end

code-identifier
code-module Char-ord ⇀

THEORY “Phantom-Type” 51

(SML) Str and (OCaml) Str and (Haskell) Str and (Scala) Str

end

8 A generic phantom type
theory Phantom-Type
imports Main
begin

datatype (′a, ′b) phantom = phantom (of-phantom: ′b)

lemma type-definition-phantom ′: type-definition of-phantom phantom UNIV
〈proof 〉

lemma phantom-comp-of-phantom [simp]: phantom ◦ of-phantom = id
and of-phantom-comp-phantom [simp]: of-phantom ◦ phantom = id
〈proof 〉

syntax -Phantom :: type⇒ logic (‹(‹indent=1 notation=‹mixfix Phantom››Phantom/(1 ′(- ′)))›)
syntax-consts -Phantom == phantom
translations

Phantom(′t) => CONST phantom :: - ⇒ (′t, -) phantom

〈ML〉

lemma of-phantom-inject [simp]:
of-phantom x = of-phantom y ←→ x = y
〈proof 〉

end

9 Cardinality of types
theory Cardinality
imports Phantom-Type
begin

9.1 Preliminary lemmas
lemma (in type-definition) univ:

UNIV = Abs ‘ A
〈proof 〉

lemma (in type-definition) card: card (UNIV :: ′b set) = card A
〈proof 〉

THEORY “Cardinality” 52

9.2 Cardinalities of types
syntax -type-card :: type => nat (‹(‹indent=1 notation=‹mixfix CARD››CARD/(1 ′(- ′)))›)

syntax-consts -type-card == card

translations CARD(′t) => CONST card (CONST UNIV :: ′t set)

〈ML〉

lemma card-prod [simp]: CARD(′a × ′b) = CARD(′a) ∗ CARD(′b)
〈proof 〉

lemma card-UNIV-sum: CARD(′a + ′b) = (if CARD(′a) 6= 0 ∧ CARD(′b) 6= 0
then CARD(′a) + CARD(′b) else 0)
〈proof 〉

lemma card-sum [simp]: CARD(′a + ′b) = CARD(′a::finite) + CARD(′b::finite)
〈proof 〉

lemma card-UNIV-option: CARD(′a option) = (if CARD(′a) = 0 then 0 else
CARD(′a) + 1)
〈proof 〉

lemma card-option [simp]: CARD(′a option) = Suc CARD(′a::finite)
〈proof 〉

lemma card-UNIV-set: CARD(′a set) = (if CARD(′a) = 0 then 0 else 2 ^ CARD(′a))
〈proof 〉

lemma card-set [simp]: CARD(′a set) = 2 ^ CARD(′a::finite)
〈proof 〉

lemma card-nat [simp]: CARD(nat) = 0
〈proof 〉

lemma card-fun: CARD(′a ⇒ ′b) = (if CARD(′a) 6= 0 ∧ CARD(′b) 6= 0 ∨
CARD(′b) = 1 then CARD(′b) ^ CARD(′a) else 0)
〈proof 〉

corollary finite-UNIV-fun:
finite (UNIV :: (′a ⇒ ′b) set) ←→
finite (UNIV :: ′a set) ∧ finite (UNIV :: ′b set) ∨ CARD(′b) = 1
(is ?lhs ←→ ?rhs)
〈proof 〉

lemma card-literal: CARD(String.literal) = 0
〈proof 〉

THEORY “Cardinality” 53

9.3 Classes with at least 1 and 2
Class finite already captures "at least 1"
lemma zero-less-card-finite [simp]: 0 < CARD(′a::finite)
〈proof 〉

lemma one-le-card-finite [simp]: Suc 0 ≤ CARD(′a::finite)
〈proof 〉

class CARD-1 =
assumes CARD-1 : CARD (′a) = 1

begin

subclass finite
〈proof 〉

end

Class for cardinality "at least 2"
class card2 = finite +

assumes two-le-card: 2 ≤ CARD(′a)

lemma one-less-card: Suc 0 < CARD(′a::card2)
〈proof 〉

lemma one-less-int-card: 1 < int CARD(′a::card2)
〈proof 〉

9.4 A type class for deciding finiteness of types
type-synonym ′a finite-UNIV = (′a, bool) phantom

class finite-UNIV =
fixes finite-UNIV :: (′a, bool) phantom
assumes finite-UNIV : finite-UNIV = Phantom(′a) (finite (UNIV :: ′a set))

lemma finite-UNIV-code [code-unfold]:
finite (UNIV :: ′a :: finite-UNIV set)
←→ of-phantom (finite-UNIV :: ′a finite-UNIV)
〈proof 〉

9.5 A type class for computing the cardinality of types
definition is-list-UNIV :: ′a list ⇒ bool
where is-list-UNIV xs = (let c = CARD(′a) in if c = 0 then False else size
(remdups xs) = c)

lemma is-list-UNIV-iff : is-list-UNIV xs ←→ set xs = UNIV
〈proof 〉

THEORY “Cardinality” 54

type-synonym ′a card-UNIV = (′a, nat) phantom

class card-UNIV = finite-UNIV +
fixes card-UNIV :: ′a card-UNIV
assumes card-UNIV : card-UNIV = Phantom(′a) CARD(′a)

9.6 Instantiations for card-UNIV
instantiation nat :: card-UNIV begin
definition finite-UNIV = Phantom(nat) False
definition card-UNIV = Phantom(nat) 0
instance 〈proof 〉
end

instantiation int :: card-UNIV begin
definition finite-UNIV = Phantom(int) False
definition card-UNIV = Phantom(int) 0
instance 〈proof 〉
end

instantiation natural :: card-UNIV begin
definition finite-UNIV = Phantom(natural) False
definition card-UNIV = Phantom(natural) 0
instance
〈proof 〉

end

instantiation integer :: card-UNIV begin
definition finite-UNIV = Phantom(integer) False
definition card-UNIV = Phantom(integer) 0
instance
〈proof 〉

end

instantiation list :: (type) card-UNIV begin
definition finite-UNIV = Phantom(′a list) False
definition card-UNIV = Phantom(′a list) 0
instance 〈proof 〉
end

instantiation unit :: card-UNIV begin
definition finite-UNIV = Phantom(unit) True
definition card-UNIV = Phantom(unit) 1
instance 〈proof 〉
end

instantiation bool :: card-UNIV begin
definition finite-UNIV = Phantom(bool) True

THEORY “Cardinality” 55

definition card-UNIV = Phantom(bool) 2
instance 〈proof 〉
end

instantiation char :: card-UNIV begin
definition finite-UNIV = Phantom(char) True
definition card-UNIV = Phantom(char) 256
instance 〈proof 〉
end

instantiation prod :: (finite-UNIV , finite-UNIV) finite-UNIV begin
definition finite-UNIV = Phantom(′a × ′b)
(of-phantom (finite-UNIV :: ′a finite-UNIV) ∧ of-phantom (finite-UNIV :: ′b

finite-UNIV))
instance 〈proof 〉
end

instantiation prod :: (card-UNIV , card-UNIV) card-UNIV begin
definition card-UNIV = Phantom(′a × ′b)
(of-phantom (card-UNIV :: ′a card-UNIV) ∗ of-phantom (card-UNIV :: ′b card-UNIV))

instance 〈proof 〉
end

instantiation sum :: (finite-UNIV , finite-UNIV) finite-UNIV begin
definition finite-UNIV = Phantom(′a + ′b)
(of-phantom (finite-UNIV :: ′a finite-UNIV) ∧ of-phantom (finite-UNIV :: ′b

finite-UNIV))
instance
〈proof 〉

end

instantiation sum :: (card-UNIV , card-UNIV) card-UNIV begin
definition card-UNIV = Phantom(′a + ′b)
(let ca = of-phantom (card-UNIV :: ′a card-UNIV);

cb = of-phantom (card-UNIV :: ′b card-UNIV)
in if ca 6= 0 ∧ cb 6= 0 then ca + cb else 0)

instance 〈proof 〉
end

instantiation fun :: (finite-UNIV , card-UNIV) finite-UNIV begin
definition finite-UNIV = Phantom(′a ⇒ ′b)
(let cb = of-phantom (card-UNIV :: ′b card-UNIV)
in cb = 1 ∨ of-phantom (finite-UNIV :: ′a finite-UNIV) ∧ cb 6= 0)

instance
〈proof 〉

end

instantiation fun :: (card-UNIV , card-UNIV) card-UNIV begin
definition card-UNIV = Phantom(′a ⇒ ′b)

THEORY “Cardinality” 56

(let ca = of-phantom (card-UNIV :: ′a card-UNIV);
cb = of-phantom (card-UNIV :: ′b card-UNIV)

in if ca 6= 0 ∧ cb 6= 0 ∨ cb = 1 then cb ^ ca else 0)
instance 〈proof 〉
end

instantiation option :: (finite-UNIV) finite-UNIV begin
definition finite-UNIV = Phantom(′a option) (of-phantom (finite-UNIV :: ′a fi-
nite-UNIV))
instance 〈proof 〉
end

instantiation option :: (card-UNIV) card-UNIV begin
definition card-UNIV = Phantom(′a option)
(let c = of-phantom (card-UNIV :: ′a card-UNIV) in if c 6= 0 then Suc c else 0)

instance 〈proof 〉
end

instantiation String.literal :: card-UNIV begin
definition finite-UNIV = Phantom(String.literal) False
definition card-UNIV = Phantom(String.literal) 0
instance
〈proof 〉

end

instantiation set :: (finite-UNIV) finite-UNIV begin
definition finite-UNIV = Phantom(′a set) (of-phantom (finite-UNIV :: ′a fi-
nite-UNIV))
instance 〈proof 〉
end

instantiation set :: (card-UNIV) card-UNIV begin
definition card-UNIV = Phantom(′a set)
(let c = of-phantom (card-UNIV :: ′a card-UNIV) in if c = 0 then 0 else 2 ^ c)

instance 〈proof 〉
end

lemma UNIV-finite-1 : UNIV = set [finite-1 .a1]
〈proof 〉

lemma UNIV-finite-2 : UNIV = set [finite-2 .a1, finite-2 .a2]
〈proof 〉

lemma UNIV-finite-3 : UNIV = set [finite-3 .a1, finite-3 .a2, finite-3 .a3]
〈proof 〉

lemma UNIV-finite-4 : UNIV = set [finite-4 .a1, finite-4 .a2, finite-4 .a3, finite-4 .a4]
〈proof 〉

THEORY “Code-Cardinality” 57

lemma UNIV-finite-5 :
UNIV = set [finite-5 .a1, finite-5 .a2, finite-5 .a3, finite-5 .a4, finite-5 .a5]
〈proof 〉

instantiation Enum.finite-1 :: card-UNIV begin
definition finite-UNIV = Phantom(Enum.finite-1) True
definition card-UNIV = Phantom(Enum.finite-1) 1
instance
〈proof 〉

end

instantiation Enum.finite-2 :: card-UNIV begin
definition finite-UNIV = Phantom(Enum.finite-2) True
definition card-UNIV = Phantom(Enum.finite-2) 2
instance
〈proof 〉

end

instantiation Enum.finite-3 :: card-UNIV begin
definition finite-UNIV = Phantom(Enum.finite-3) True
definition card-UNIV = Phantom(Enum.finite-3) 3
instance
〈proof 〉

end

instantiation Enum.finite-4 :: card-UNIV begin
definition finite-UNIV = Phantom(Enum.finite-4) True
definition card-UNIV = Phantom(Enum.finite-4) 4
instance
〈proof 〉

end

instantiation Enum.finite-5 :: card-UNIV begin
definition finite-UNIV = Phantom(Enum.finite-5) True
definition card-UNIV = Phantom(Enum.finite-5) 5
instance
〈proof 〉

end

end

10 Code setup for sets with cardinality type infor-
mation

theory Code-Cardinality imports Cardinality begin

Implement CARD(′a) via card-UNIV-class.card-UNIV and provide im-
plementations for finite, card, (⊆), and (=)if the calling context already

THEORY “Code-Cardinality” 58

provides finite-UNIV and card-UNIV instances. If we implemented the lat-
ter always via card-UNIV-class.card-UNIV, we would require instances of
essentially all element types, i.e., a lot of instantiation proofs and – at run
time – possibly slow dictionary constructions.
context
begin

qualified definition card-UNIV ′ :: ′a card-UNIV
where card-UNIV ′ = Phantom(′a) CARD(′a)

lemma CARD-code [code-unfold]:
CARD(′a) = of-phantom (card-UNIV ′ :: ′a card-UNIV)
〈proof 〉

lemma card-UNIV ′-code [code]:
card-UNIV ′ = card-UNIV
〈proof 〉

end

lemma card-Compl:
finite A =⇒ card (− A) = card (UNIV :: ′a set) − card (A :: ′a set)
〈proof 〉

context fixes xs :: ′a :: finite-UNIV list
begin

qualified definition finite ′ :: ′a set ⇒ bool
where [simp, code-abbrev]: finite ′ = finite

lemma finite ′-code [code]:
finite ′ (set xs) ←→ True
finite ′ (List.coset xs) ←→ of-phantom (finite-UNIV :: ′a finite-UNIV)
〈proof 〉

end

context fixes xs :: ′a :: card-UNIV list
begin

qualified definition card ′ :: ′a set ⇒ nat
where [simp, code-abbrev]: card ′ = card

lemma card ′-code [code]:
card ′ (set xs) = length (remdups xs)
card ′ (List.coset xs) = of-phantom (card-UNIV :: ′a card-UNIV) − length (remdups

xs)
〈proof 〉 definition subset ′ :: ′a set ⇒ ′a set ⇒ bool
where [simp, code-abbrev]: subset ′ = (⊆)

THEORY “Code-Cardinality” 59

lemma subset ′-code [code]:
subset ′ A (List.coset ys) ←→ (∀ y ∈ set ys. y /∈ A)
subset ′ (set ys) B ←→ (∀ y ∈ set ys. y ∈ B)
subset ′ (List.coset xs) (set ys) ←→ (let n = CARD(′a) in n > 0 ∧ card(set (xs

@ ys)) = n)
〈proof 〉 definition eq-set :: ′a set ⇒ ′a set ⇒ bool
where [simp, code-abbrev]: eq-set = (=)

lemma eq-set-code [code]:
fixes ys
defines rhs ≡
let n = CARD(′a)
in if n = 0 then False else

let xs ′ = remdups xs; ys ′ = remdups ys
in length xs ′ + length ys ′ = n ∧ (∀ x ∈ set xs ′. x /∈ set ys ′) ∧ (∀ y ∈ set ys ′.

y /∈ set xs ′)
shows eq-set (List.coset xs) (set ys) ←→ rhs
and eq-set (set ys) (List.coset xs) ←→ rhs
and eq-set (set xs) (set ys) ←→ (∀ x ∈ set xs. x ∈ set ys) ∧ (∀ y ∈ set ys. y ∈

set xs)
and eq-set (List.coset xs) (List.coset ys) ←→ (∀ x ∈ set xs. x ∈ set ys) ∧ (∀ y ∈

set ys. y ∈ set xs)
〈proof 〉

end

Provide more informative exceptions than Match for non-rewritten cases.
If generated code raises one these exceptions, then a code equation calls the
mentioned operator for an element type that is not an instance of card-UNIV
and is therefore not implemented via card-UNIV-class.card-UNIV. Constrain
the element type with sort card-UNIV to change this.
lemma card-code [code]:

card (set xs) = length (remdups xs)
card (List.coset xs) =
Code.abort (STR ′′card (List.coset -) requires type class instance card-UNIV ′′)
(λ-. card (List.coset xs))

〈proof 〉

lemma coset-subseteq-set-code [code]:
set xs ⊆ B = list-all (λx. x ∈ B) xs
A ⊆ List.coset ys = list-all (λy. y /∈ A) ys
List.coset xs ⊆ set ys ←→
(if xs = [] ∧ ys = [] then False
else Code.abort
(STR ′′subset-eq (List.coset -) (List.set -) requires type class instance card-UNIV ′′)
(λ-. List.coset xs ⊆ set ys))

〈proof 〉

THEORY “Case-Converter” 60

notepad begin — test code setup
〈proof 〉

end

end

11 Eliminating pattern matches
theory Case-Converter

imports Main
begin

definition missing-pattern-match :: String.literal ⇒ (unit ⇒ ′a) ⇒ ′a where
[code del]: missing-pattern-match m f = f ()

lemma missing-pattern-match-cong [cong]:
m = m ′ =⇒ missing-pattern-match m f = missing-pattern-match m ′ f
〈proof 〉

lemma missing-pattern-match-code [code-unfold]:
missing-pattern-match = Code.abort
〈proof 〉

〈ML〉

end

12 Lazy types in generated code
theory Code-Lazy
imports Case-Converter
keywords

code-lazy-type
activate-lazy-type
deactivate-lazy-type
activate-lazy-types
deactivate-lazy-types
print-lazy-types :: thy-decl

begin

This theory and the CodeLazy tool described in [3].
It hooks into Isabelle’s code generator such that the generated code eval-

uates a user-specified set of type constructors lazily, even in target languages
with eager evaluation. The lazy type must be algebraic, i.e., values must be
built from constructors and a corresponding case operator decomposes them.
Every datatype and codatatype is algebraic and thus eligible for lazification.

THEORY “Code-Lazy” 61

12.1 The type lazy
typedef ′a lazy = UNIV :: ′a set 〈proof 〉
setup-lifting type-definition-lazy
lift-definition delay :: (unit ⇒ ′a) ⇒ ′a lazy is λf . f () 〈proof 〉
lift-definition force :: ′a lazy ⇒ ′a is λx. x 〈proof 〉

code-datatype delay
lemma force-delay [code]: force (delay f) = f () 〈proof 〉
lemma delay-force: delay (λ-. force s) = s 〈proof 〉

definition termify-lazy2 :: ′a :: typerep lazy ⇒ term
where termify-lazy2 x =
Code-Evaluation.App (Code-Evaluation.Const (STR ′′Code-Lazy.delay ′′) (TYPEREP((unit
⇒ ′a) ⇒ ′a lazy)))

(Code-Evaluation.Const (STR ′′Pure.dummy-pattern ′′) (TYPEREP((unit ⇒
′a))))

definition termify-lazy ::
(String.literal ⇒ ′typerep ⇒ ′term) ⇒
(′term ⇒ ′term ⇒ ′term) ⇒
(String.literal ⇒ ′typerep ⇒ ′term ⇒ ′term) ⇒
′typerep ⇒ (′typerep ⇒ ′typerep ⇒ ′typerep) ⇒ (′typerep ⇒ ′typerep) ⇒
(′a ⇒ ′term) ⇒ ′typerep ⇒ ′a :: typerep lazy ⇒ ′term ⇒ term

where termify-lazy - - - - - - - - x - = termify-lazy2 x

declare [[code drop: Code-Evaluation.term-of :: - lazy ⇒ -]]

lemma term-of-lazy-code [code]:
Code-Evaluation.term-of x ≡
termify-lazy

Code-Evaluation.Const Code-Evaluation.App Code-Evaluation.Abs
TYPEREP(unit) (λT U . typerep.Typerep (STR ′′fun ′′) [T , U]) (λT . type-

rep.Typerep (STR ′′Code-Lazy.lazy ′′) [T])
Code-Evaluation.term-of TYPEREP(′a) x (Code-Evaluation.Const (STR ′′′′)

(TYPEREP(unit)))
for x :: ′a :: {typerep, term-of } lazy
〈proof 〉

The implementations of - lazy using language primitives cache forced
values.

Term reconstruction for lazy looks into the lazy value and reconstructs
it to the depth it has been evaluated. This is not done for Haskell as we
do not know of any portable way to inspect whether a lazy value has been
evaluated to or not.
code-printing code-module Lazy ⇀ (SML) file ∼∼/src/HOL/Library/Tools/lazy.ML

for type-constructor lazy constant delay force termify-lazy
| type-constructor lazy ⇀ (SML) - Lazy.lazy
| constant delay ⇀ (SML) Lazy.lazy

THEORY “Code-Lazy” 62

| constant force ⇀ (SML) Lazy.force
| constant termify-lazy ⇀ (SML) Lazy.termify ′-lazy

code-reserved (SML) Lazy

code-printing — For code generation within the Isabelle environment, we reuse
the thread-safe implementation of lazy from ~~/src/Pure/Concurrent/lazy.ML

code-module Lazy ⇀ (Eval) ‹› for constant undefined
| type-constructor lazy ⇀ (Eval) - Lazy.lazy
| constant delay ⇀ (Eval) Lazy.lazy
| constant force ⇀ (Eval) Lazy.force
| code-module Termify-Lazy ⇀ (Eval) file ∼∼/src/HOL/Library/Tools/termify-lazy.ML

for constant termify-lazy
| constant termify-lazy ⇀ (Eval) Termify ′-Lazy.termify ′-lazy

code-reserved (Eval) Termify-Lazy

code-printing
type-constructor lazy ⇀ (OCaml) - Lazy.t
| constant delay ⇀ (OCaml) Lazy.from ′-fun
| constant force ⇀ (OCaml) Lazy.force
| code-module Termify-Lazy ⇀ (OCaml) file ∼∼/src/HOL/Library/Tools/termify-lazy.ocaml

for constant termify-lazy
| constant termify-lazy ⇀ (OCaml) Termify ′-Lazy.termify ′-lazy

code-reserved (OCaml) Lazy Termify-Lazy

code-printing
code-module Lazy ⇀ (Haskell) file ∼∼/src/HOL/Library/Tools/lazy.hs

for type-constructor lazy constant delay force
| type-constructor lazy ⇀ (Haskell) Lazy.Lazy -
| constant delay ⇀ (Haskell) Lazy.delay
| constant force ⇀ (Haskell) Lazy.force

code-reserved (Haskell) Lazy

code-printing
code-module Lazy ⇀ (Scala) file ∼∼/src/HOL/Library/Tools/lazy.scala

for type-constructor lazy constant delay force termify-lazy
| type-constructor lazy ⇀ (Scala) Lazy.Lazy[-]
| constant delay ⇀ (Scala) Lazy.delay
| constant force ⇀ (Scala) Lazy.force
| constant termify-lazy ⇀ (Scala) Lazy.termify ′-lazy

code-reserved (Scala) Lazy

Make evaluation with the simplifier respect delays.
lemma delay-lazy-cong: delay f = delay f 〈proof 〉
〈ML〉

THEORY “Code-Test” 63

12.2 Implementation
〈ML〉

end

13 Test infrastructure for the code generator
theory Code-Test
imports Main
keywords test-code :: diag
begin

13.1 YXML encoding for term
datatype (plugins del: code size quickcheck) yxml-of-term = YXML

lemma yot-anything: x = (y :: yxml-of-term)
〈proof 〉

definition yot-empty :: yxml-of-term where [code del]: yot-empty = YXML
definition yot-literal :: String.literal ⇒ yxml-of-term

where [code del]: yot-literal - = YXML
definition yot-append :: yxml-of-term ⇒ yxml-of-term ⇒ yxml-of-term

where [code del]: yot-append - - = YXML
definition yot-concat :: yxml-of-term list ⇒ yxml-of-term

where [code del]: yot-concat - = YXML

Serialise yxml-of-term to native string of target language
code-printing type-constructor yxml-of-term
⇀ (SML) string
and (OCaml) string
and (Haskell) String
and (Scala) String
| constant yot-empty
⇀ (SML)
and (OCaml)
and (Haskell)
and (Scala)
| constant yot-literal
⇀ (SML) -
and (OCaml) -
and (Haskell) -
and (Scala) -
| constant yot-append
⇀ (SML) String.concat [(-), (-)]
and (OCaml) String.concat [(-); (-)]
and (Haskell) infixr 5 ++
and (Scala) infixl 5 +

THEORY “Code-Test” 64

| constant yot-concat
⇀ (SML) String.concat
and (OCaml) String.concat
and (Haskell) Prelude.concat
and (Scala) -.mkString()

Stripped-down implementations of Isabelle’s XML tree with YXML en-
coding as defined in ~~/src/Pure/PIDE/xml.ML, ~~/src/Pure/PIDE/yxml.ML
sufficient to encode term as in ~~/src/Pure/term_xml.ML.
datatype (plugins del: code size quickcheck) xml-tree = XML-Tree

lemma xml-tree-anything: x = (y :: xml-tree)
〈proof 〉

context begin
〈ML〉

type-synonym attributes = (String.literal × String.literal) list
type-synonym body = xml-tree list

definition Elem :: String.literal ⇒ attributes ⇒ xml-tree list ⇒ xml-tree
where [code del]: Elem - - - = XML-Tree

definition Text :: String.literal ⇒ xml-tree
where [code del]: Text - = XML-Tree

definition node :: xml-tree list ⇒ xml-tree
where node ts = Elem (STR ′′: ′′) [] ts

definition tagged :: String.literal ⇒ String.literal option ⇒ xml-tree list ⇒ xml-tree
where tagged tag x ts = Elem tag (case x of None ⇒ [] | Some x ′ ⇒ [(STR ′′0 ′′,
x ′)]) ts

definition list where list f xs = map (node ◦ f) xs

definition X :: yxml-of-term where X = yot-literal (STR 0x05)
definition Y :: yxml-of-term where Y = yot-literal (STR 0x06)
definition XY :: yxml-of-term where XY = yot-append X Y
definition XYX :: yxml-of-term where XYX = yot-append XY X

end

code-datatype xml.Elem xml.Text

definition yxml-string-of-xml-tree :: xml-tree ⇒ yxml-of-term ⇒ yxml-of-term
where [code del]: yxml-string-of-xml-tree - - = YXML

lemma yxml-string-of-xml-tree-code [code]:
yxml-string-of-xml-tree (xml.Elem name atts ts) rest =

THEORY “Combine-PER” 65

yot-append xml.XY (
yot-append (yot-literal name) (
foldr (λ(a, x) rest.

yot-append xml.Y (
yot-append (yot-literal a) (
yot-append (yot-literal (STR ′′= ′′)) (
yot-append (yot-literal x) rest)))) atts (

foldr yxml-string-of-xml-tree ts (
yot-append xml.XYX rest))))

yxml-string-of-xml-tree (xml.Text s) rest = yot-append (yot-literal s) rest
〈proof 〉

definition yxml-string-of-body :: xml.body ⇒ yxml-of-term
where yxml-string-of-body ts = foldr yxml-string-of-xml-tree ts yot-empty

Encoding term into XML trees as defined in ~~/src/Pure/term_xml.ML.
definition xml-of-typ :: Typerep.typerep ⇒ xml.body
where [code del]: xml-of-typ - = [XML-Tree]

definition xml-of-term :: Code-Evaluation.term ⇒ xml.body
where [code del]: xml-of-term - = [XML-Tree]

lemma xml-of-typ-code [code]:
xml-of-typ (typerep.Typerep t args) = [xml.tagged (STR ′′0 ′′) (Some t) (xml.list

xml-of-typ args)]
〈proof 〉

lemma xml-of-term-code [code]:
xml-of-term (Code-Evaluation.Const x ty) = [xml.tagged (STR ′′0 ′′) (Some x)

(xml-of-typ ty)]
xml-of-term (Code-Evaluation.App t1 t2) = [xml.tagged (STR ′′5 ′′) None [xml.node

(xml-of-term t1), xml.node (xml-of-term t2)]]
xml-of-term (Code-Evaluation.Abs x ty t) = [xml.tagged (STR ′′4 ′′) (Some x)

[xml.node (xml-of-typ ty), xml.node (xml-of-term t)]]
— FIXME: Code-Evaluation.Free is used only in HOL.Quickcheck-Narrowing to

represent uninstantiated parameters in constructors. Here, we always translate
them to Free variables.

xml-of-term (Code-Evaluation.Free x ty) = [xml.tagged (STR ′′1 ′′) (Some x)
(xml-of-typ ty)]
〈proof 〉

definition yxml-string-of-term :: Code-Evaluation.term ⇒ yxml-of-term
where yxml-string-of-term = yxml-string-of-body ◦ xml-of-term

13.2 Test engine and drivers
〈ML〉

end

THEORY “Complete-Partial-Order2” 66

14 A combinator to build partial equivalence re-
lations from a predicate and an equivalence re-
lation

theory Combine-PER
imports Main

begin

unbundle lattice-syntax

definition combine-per :: (′a ⇒ bool) ⇒ (′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ ′a ⇒ bool
where combine-per P R = (λx y. P x ∧ P y) u R

lemma combine-per-simp [simp]:
combine-per P R x y ←→ P x ∧ P y ∧ x ≈ y for R (infixl ‹≈› 50)
〈proof 〉

lemma combine-per-top [simp]: combine-per > R = R
〈proof 〉

lemma combine-per-eq [simp]: combine-per P HOL.eq = HOL.eq u (λx y. P x)
〈proof 〉

lemma symp-combine-per : symp R =⇒ symp (combine-per P R)
〈proof 〉

lemma transp-combine-per : transp R =⇒ transp (combine-per P R)
〈proof 〉

lemma combine-perI : P x =⇒ P y =⇒ x ≈ y =⇒ combine-per P R x y for R
(infixl ‹≈› 50)
〈proof 〉

lemma symp-combine-per-symp: symp R =⇒ symp (combine-per P R)
〈proof 〉

lemma transp-combine-per-transp: transp R =⇒ transp (combine-per P R)
〈proof 〉

lemma equivp-combine-per-part-equivp [intro?]:
fixes R (infixl ‹≈› 50)
assumes ∃ x. P x and equivp R
shows part-equivp (combine-per P R)
〈proof 〉

end

THEORY “Complete-Partial-Order2” 67

15 Formalisation of chain-complete partial orders,
continuity and admissibility

theory Complete-Partial-Order2
imports Main

begin

unbundle lattice-syntax

lemma chain-transfer [transfer-rule]:
includes lifting-syntax
shows ((A ===> A ===> (=)) ===> rel-set A ===> (=)) Complete-Partial-Order .chain

Complete-Partial-Order .chain
〈proof 〉

lemma linorder-chain [simp, intro!]:
fixes Y :: - :: linorder set
shows Complete-Partial-Order .chain (≤) Y
〈proof 〉

lemma fun-lub-apply:
∧

Sup. fun-lub Sup Y x = Sup ((λf . f x) ‘ Y)
〈proof 〉

lemma fun-lub-empty [simp]: fun-lub lub {} = (λ-. lub {})
〈proof 〉

lemma chain-fun-ordD:
assumes Complete-Partial-Order .chain (fun-ord le) Y
shows Complete-Partial-Order .chain le ((λf . f x) ‘ Y)
〈proof 〉

lemma chain-Diff :
Complete-Partial-Order .chain ord A
=⇒ Complete-Partial-Order .chain ord (A − B)
〈proof 〉

lemma chain-rel-prodD1 :
Complete-Partial-Order .chain (rel-prod orda ordb) Y
=⇒ Complete-Partial-Order .chain orda (fst ‘ Y)
〈proof 〉

lemma chain-rel-prodD2 :
Complete-Partial-Order .chain (rel-prod orda ordb) Y
=⇒ Complete-Partial-Order .chain ordb (snd ‘ Y)
〈proof 〉

context ccpo begin

THEORY “Complete-Partial-Order2” 68

lemma ccpo-fun: class.ccpo (fun-lub Sup) (fun-ord (≤)) (mk-less (fun-ord (≤)))
〈proof 〉

lemma ccpo-Sup-below-iff : Complete-Partial-Order .chain (≤) Y =⇒ Sup Y ≤ x
←→ (∀ y∈Y . y ≤ x)
〈proof 〉

lemma Sup-minus-bot:
assumes chain: Complete-Partial-Order .chain (≤) A
shows

⊔
(A − {

⊔
{}}) =

⊔
A

(is ?lhs = ?rhs)
〈proof 〉

lemma mono-lub:
fixes le-b (infix ‹v› 60)
assumes chain: Complete-Partial-Order .chain (fun-ord (≤)) Y
and mono:

∧
f . f ∈ Y =⇒ monotone le-b (≤) f

shows monotone (v) (≤) (fun-lub Sup Y)
〈proof 〉

context
fixes le-b (infix ‹v› 60) and Y f
assumes chain: Complete-Partial-Order .chain le-b Y
and mono1 :

∧
y. y ∈ Y =⇒ monotone le-b (≤) (λx. f x y)

and mono2 :
∧

x a b. [[x ∈ Y ; a v b; a ∈ Y ; b ∈ Y]] =⇒ f x a ≤ f x b
begin

lemma Sup-mono:
assumes le: x v y and x: x ∈ Y and y: y ∈ Y
shows

⊔
(f x ‘ Y) ≤

⊔
(f y ‘ Y) (is - ≤ ?rhs)

〈proof 〉

lemma diag-Sup:
⊔
((λx.

⊔
(f x ‘ Y)) ‘ Y) =

⊔
((λx. f x x) ‘ Y) (is ?lhs = ?rhs)

〈proof 〉

end

lemma Sup-image-mono-le:
fixes le-b (infix ‹v› 60) and Sup-b (‹

∨
›)

assumes ccpo: class.ccpo Sup-b (v) lt-b
assumes chain: Complete-Partial-Order .chain (v) Y
and mono:

∧
x y. [[x v y; x ∈ Y]] =⇒ f x ≤ f y

shows Sup (f ‘ Y) ≤ f (
∨

Y)
〈proof 〉

lemma swap-Sup:
fixes le-b (infix ‹v› 60)
assumes Y : Complete-Partial-Order .chain (v) Y

THEORY “Complete-Partial-Order2” 69

and Z : Complete-Partial-Order .chain (fun-ord (≤)) Z
and mono:

∧
f . f ∈ Z =⇒ monotone (v) (≤) f

shows
⊔
((λx.

⊔
(x ‘ Y)) ‘ Z) =

⊔
((λx.

⊔
((λf . f x) ‘ Z)) ‘ Y)

(is ?lhs = ?rhs)
〈proof 〉

lemma fixp-mono:
assumes fg: fun-ord (≤) f g
and f : monotone (≤) (≤) f
and g: monotone (≤) (≤) g
shows ccpo-class.fixp f ≤ ccpo-class.fixp g
〈proof 〉

context fixes ordb :: ′b ⇒ ′b ⇒ bool (infix ‹v› 60) begin

lemma iterates-mono:
assumes f : f ∈ ccpo.iterates (fun-lub Sup) (fun-ord (≤)) F

and mono:
∧

f . monotone (v) (≤) f =⇒ monotone (v) (≤) (F f)
shows monotone (v) (≤) f
〈proof 〉

lemma fixp-preserves-mono:
assumes mono:

∧
x. monotone (fun-ord (≤)) (≤) (λf . F f x)

and mono2 :
∧

f . monotone (v) (≤) f =⇒ monotone (v) (≤) (F f)
shows monotone (v) (≤) (ccpo.fixp (fun-lub Sup) (fun-ord (≤)) F)
(is monotone - - ?fixp)
〈proof 〉

end

end

lemma monotone2monotone:
assumes 2 :

∧
x. monotone ordb ordc (λy. f x y)

and t: monotone orda ordb (λx. t x)
and 1 :

∧
y. monotone orda ordc (λx. f x y)

and trans: transp ordc
shows monotone orda ordc (λx. f x (t x))
〈proof 〉

15.1 Continuity
definition cont :: (′a set ⇒ ′a) ⇒ (′a ⇒ ′a ⇒ bool) ⇒ (′b set ⇒ ′b) ⇒ (′b ⇒ ′b
⇒ bool) ⇒ (′a ⇒ ′b) ⇒ bool
where

cont luba orda lubb ordb f ←→
(∀Y . Complete-Partial-Order .chain orda Y −→ Y 6= {} −→ f (luba Y) = lubb

(f ‘ Y))

THEORY “Complete-Partial-Order2” 70

definition mcont :: (′a set ⇒ ′a) ⇒ (′a ⇒ ′a ⇒ bool) ⇒ (′b set ⇒ ′b) ⇒ (′b ⇒
′b ⇒ bool) ⇒ (′a ⇒ ′b) ⇒ bool
where

mcont luba orda lubb ordb f ←→
monotone orda ordb f ∧ cont luba orda lubb ordb f

15.1.1 Theorem collection cont-intro
named-theorems cont-intro continuity and admissibility intro rules
〈ML〉

lemmas [cont-intro] =
call-mono
let-mono
if-mono
option.const-mono
tailrec.const-mono
bind-mono

experiment begin

The following proof by simplification diverges if variables are not handled
properly.
lemma (

∧
f . monotone R S f =⇒ thesis) =⇒ monotone R S g =⇒ thesis

〈proof 〉

end

declare if-mono[simp]

lemma monotone-id ′ [cont-intro]: monotone ord ord (λx. x)
〈proof 〉

lemma monotone-applyI :
monotone orda ordb F =⇒ monotone (fun-ord orda) ordb (λf . F (f x))
〈proof 〉

lemma monotone-if-fun [partial-function-mono]:
[[monotone (fun-ord orda) (fun-ord ordb) F ; monotone (fun-ord orda) (fun-ord

ordb) G]]
=⇒ monotone (fun-ord orda) (fun-ord ordb) (λf n. if c n then F f n else G f n)
〈proof 〉

lemma monotone-fun-apply-fun [partial-function-mono]:
monotone (fun-ord (fun-ord ord)) (fun-ord ord) (λf n. f t (g n))
〈proof 〉

lemma monotone-fun-ord-apply:
monotone orda (fun-ord ordb) f ←→ (∀ x. monotone orda ordb (λy. f y x))

THEORY “Complete-Partial-Order2” 71

〈proof 〉

context preorder begin

declare transp-on-le[cont-intro]

lemma monotone-const [simp, cont-intro]: monotone ord (≤) (λ-. c)
〈proof 〉

end

lemma transp-le [cont-intro, simp]:
class.preorder ord (mk-less ord) =⇒ transp ord
〈proof 〉

context partial-function-definitions begin

declare const-mono [cont-intro, simp]

lemma transp-le [cont-intro, simp]: transp leq
〈proof 〉

lemma preorder [cont-intro, simp]: class.preorder leq (mk-less leq)
〈proof 〉

declare ccpo[cont-intro, simp]

end

lemma contI [intro?]:
(
∧

Y . [[Complete-Partial-Order .chain orda Y ; Y 6= {}]] =⇒ f (luba Y) = lubb
(f ‘ Y))
=⇒ cont luba orda lubb ordb f
〈proof 〉

lemma contD:
[[cont luba orda lubb ordb f ; Complete-Partial-Order .chain orda Y ; Y 6= {}]]
=⇒ f (luba Y) = lubb (f ‘ Y)
〈proof 〉

lemma cont-id [simp, cont-intro]:
∧

Sup. cont Sup ord Sup ord id
〈proof 〉

lemma cont-id ′ [simp, cont-intro]:
∧

Sup. cont Sup ord Sup ord (λx. x)
〈proof 〉

lemma cont-applyI [cont-intro]:
assumes cont: cont luba orda lubb ordb g
shows cont (fun-lub luba) (fun-ord orda) lubb ordb (λf . g (f x))

THEORY “Complete-Partial-Order2” 72

〈proof 〉

lemma call-cont: cont (fun-lub lub) (fun-ord ord) lub ord (λf . f t)
〈proof 〉

lemma cont-if [cont-intro]:
[[cont luba orda lubb ordb f ; cont luba orda lubb ordb g]]
=⇒ cont luba orda lubb ordb (λx. if c then f x else g x)
〈proof 〉

lemma mcontI [intro?]:
[[monotone orda ordb f ; cont luba orda lubb ordb f]] =⇒ mcont luba orda lubb

ordb f
〈proof 〉

lemma mcont-mono: mcont luba orda lubb ordb f =⇒ monotone orda ordb f
〈proof 〉

lemma mcont-cont [simp]: mcont luba orda lubb ordb f =⇒ cont luba orda lubb
ordb f
〈proof 〉

lemma mcont-monoD:
[[mcont luba orda lubb ordb f ; orda x y]] =⇒ ordb (f x) (f y)
〈proof 〉

lemma mcont-contD:
[[mcont luba orda lubb ordb f ; Complete-Partial-Order .chain orda Y ; Y 6= {}]]
=⇒ f (luba Y) = lubb (f ‘ Y)
〈proof 〉

lemma mcont-call [cont-intro, simp]:
mcont (fun-lub lub) (fun-ord ord) lub ord (λf . f t)
〈proof 〉

lemma mcont-id ′ [cont-intro, simp]: mcont lub ord lub ord (λx. x)
〈proof 〉

lemma mcont-applyI :
mcont luba orda lubb ordb (λx. F x) =⇒ mcont (fun-lub luba) (fun-ord orda) lubb

ordb (λf . F (f x))
〈proof 〉

lemma mcont-if [cont-intro, simp]:
[[mcont luba orda lubb ordb (λx. f x); mcont luba orda lubb ordb (λx. g x)]]
=⇒ mcont luba orda lubb ordb (λx. if c then f x else g x)
〈proof 〉

lemma cont-fun-lub-apply:

THEORY “Complete-Partial-Order2” 73

cont luba orda (fun-lub lubb) (fun-ord ordb) f ←→ (∀ x. cont luba orda lubb ordb
(λy. f y x))
〈proof 〉

lemma mcont-fun-lub-apply:
mcont luba orda (fun-lub lubb) (fun-ord ordb) f ←→ (∀ x. mcont luba orda lubb

ordb (λy. f y x))
〈proof 〉

context ccpo begin

lemma cont-const [simp, cont-intro]: cont luba orda Sup (≤) (λx. c)
〈proof 〉

lemma mcont-const [cont-intro, simp]:
mcont luba orda Sup (≤) (λx. c)
〈proof 〉

lemma cont-apply:
assumes 2 :

∧
x. cont lubb ordb Sup (≤) (λy. f x y)

and t: cont luba orda lubb ordb (λx. t x)
and 1 :

∧
y. cont luba orda Sup (≤) (λx. f x y)

and mono: monotone orda ordb (λx. t x)
and mono2 :

∧
x. monotone ordb (≤) (λy. f x y)

and mono1 :
∧

y. monotone orda (≤) (λx. f x y)
shows cont luba orda Sup (≤) (λx. f x (t x))
〈proof 〉

lemma mcont2mcont ′:
[[
∧

x. mcont lub ′ ord ′ Sup (≤) (λy. f x y);∧
y. mcont lub ord Sup (≤) (λx. f x y);

mcont lub ord lub ′ ord ′ (λy. t y)]]
=⇒ mcont lub ord Sup (≤) (λx. f x (t x))
〈proof 〉

lemma mcont2mcont:
[[mcont lub ′ ord ′ Sup (≤) (λx. f x); mcont lub ord lub ′ ord ′ (λx. t x)]]
=⇒ mcont lub ord Sup (≤) (λx. f (t x))
〈proof 〉

context
fixes ord :: ′b ⇒ ′b ⇒ bool (infix ‹v› 60)

and lub :: ′b set ⇒ ′b (‹
∨

›)
begin

lemma cont-fun-lub-Sup:
assumes chainM : Complete-Partial-Order .chain (fun-ord (≤)) M
and mcont [rule-format]: ∀ f∈M . mcont lub (v) Sup (≤) f
shows cont lub (v) Sup (≤) (fun-lub Sup M)

THEORY “Complete-Partial-Order2” 74

〈proof 〉

lemma mcont-fun-lub-Sup:
[[Complete-Partial-Order .chain (fun-ord (≤)) M ;
∀ f∈M . mcont lub ord Sup (≤) f]]

=⇒ mcont lub (v) Sup (≤) (fun-lub Sup M)
〈proof 〉

lemma iterates-mcont:
assumes f : f ∈ ccpo.iterates (fun-lub Sup) (fun-ord (≤)) F
and mono:

∧
f . mcont lub (v) Sup (≤) f =⇒ mcont lub (v) Sup (≤) (F f)

shows mcont lub (v) Sup (≤) f
〈proof 〉

lemma fixp-preserves-mcont:
assumes mono:

∧
x. monotone (fun-ord (≤)) (≤) (λf . F f x)

and mcont:
∧

f . mcont lub (v) Sup (≤) f =⇒ mcont lub (v) Sup (≤) (F f)
shows mcont lub (v) Sup (≤) (ccpo.fixp (fun-lub Sup) (fun-ord (≤)) F)
(is mcont - - - - ?fixp)
〈proof 〉

end

context
fixes F :: ′c ⇒ ′c and U :: ′c ⇒ ′b ⇒ ′a and C :: (′b ⇒ ′a) ⇒ ′c and f
assumes mono:

∧
x. monotone (fun-ord (≤)) (≤) (λf . U (F (C f)) x)

and eq: f ≡ C (ccpo.fixp (fun-lub Sup) (fun-ord (≤)) (λf . U (F (C f))))
and inverse:

∧
f . U (C f) = f

begin

lemma fixp-preserves-mono-uc:
assumes mono2 :

∧
f . monotone ord (≤) (U f) =⇒ monotone ord (≤) (U (F f))

shows monotone ord (≤) (U f)
〈proof 〉

lemma fixp-preserves-mcont-uc:
assumes mcont:

∧
f . mcont lubb ordb Sup (≤) (U f) =⇒ mcont lubb ordb Sup

(≤) (U (F f))
shows mcont lubb ordb Sup (≤) (U f)
〈proof 〉

end

lemmas fixp-preserves-mono1 = fixp-preserves-mono-uc[of λx. x - λx. x, OF - -
refl]
lemmas fixp-preserves-mono2 =
fixp-preserves-mono-uc[of case-prod - curry, unfolded case-prod-curry curry-case-prod,

OF - - refl]
lemmas fixp-preserves-mono3 =

THEORY “Complete-Partial-Order2” 75

fixp-preserves-mono-uc[of λf . case-prod (case-prod f) - λf . curry (curry f), un-
folded case-prod-curry curry-case-prod, OF - - refl]
lemmas fixp-preserves-mono4 =

fixp-preserves-mono-uc[of λf . case-prod (case-prod (case-prod f)) - λf . curry
(curry (curry f)), unfolded case-prod-curry curry-case-prod, OF - - refl]

lemmas fixp-preserves-mcont1 = fixp-preserves-mcont-uc[of λx. x - λx. x, OF - -
refl]
lemmas fixp-preserves-mcont2 =
fixp-preserves-mcont-uc[of case-prod - curry, unfolded case-prod-curry curry-case-prod,

OF - - refl]
lemmas fixp-preserves-mcont3 =

fixp-preserves-mcont-uc[of λf . case-prod (case-prod f) - λf . curry (curry f), un-
folded case-prod-curry curry-case-prod, OF - - refl]
lemmas fixp-preserves-mcont4 =

fixp-preserves-mcont-uc[of λf . case-prod (case-prod (case-prod f)) - λf . curry
(curry (curry f)), unfolded case-prod-curry curry-case-prod, OF - - refl]

end

lemma (in preorder) monotone-if-bot:
fixes bot
assumes mono:

∧
x y. [[x ≤ y; ¬ (x ≤ bound)]] =⇒ ord (f x) (f y)

and bot:
∧

x. ¬ x ≤ bound =⇒ ord bot (f x) ord bot bot
shows monotone (≤) ord (λx. if x ≤ bound then bot else f x)
〈proof 〉

lemma (in ccpo) mcont-if-bot:
fixes bot and lub (‹

∨
›) and ord (infix ‹v› 60)

assumes ccpo: class.ccpo lub (v) lt
and mono:

∧
x y. [[x ≤ y; ¬ x ≤ bound]] =⇒ f x v f y

and cont:
∧

Y . [[Complete-Partial-Order .chain (≤) Y ; Y 6= {};
∧

x. x ∈ Y =⇒
¬ x ≤ bound]] =⇒ f (

⊔
Y) =

∨
(f ‘ Y)

and bot:
∧

x. ¬ x ≤ bound =⇒ bot v f x
shows mcont Sup (≤) lub (v) (λx. if x ≤ bound then bot else f x) (is mcont - -

- - ?g)
〈proof 〉

context partial-function-definitions begin

lemma mcont-const [cont-intro, simp]:
mcont luba orda lub leq (λx. c)
〈proof 〉

lemmas [cont-intro, simp] =
ccpo.cont-const[OF Partial-Function.ccpo[OF partial-function-definitions-axioms]]

lemma mono2mono:
assumes monotone ordb leq (λy. f y) monotone orda ordb (λx. t x)

THEORY “Complete-Partial-Order2” 76

shows monotone orda leq (λx. f (t x))
〈proof 〉

lemmas mcont2mcont ′ = ccpo.mcont2mcont ′[OF Partial-Function.ccpo[OF par-
tial-function-definitions-axioms]]
lemmas mcont2mcont = ccpo.mcont2mcont[OF Partial-Function.ccpo[OF partial-function-definitions-axioms]]

lemmas fixp-preserves-mono1 = ccpo.fixp-preserves-mono1 [OF Partial-Function.ccpo[OF
partial-function-definitions-axioms]]
lemmas fixp-preserves-mono2 = ccpo.fixp-preserves-mono2 [OF Partial-Function.ccpo[OF
partial-function-definitions-axioms]]
lemmas fixp-preserves-mono3 = ccpo.fixp-preserves-mono3 [OF Partial-Function.ccpo[OF
partial-function-definitions-axioms]]
lemmas fixp-preserves-mono4 = ccpo.fixp-preserves-mono4 [OF Partial-Function.ccpo[OF
partial-function-definitions-axioms]]
lemmas fixp-preserves-mcont1 = ccpo.fixp-preserves-mcont1 [OF Partial-Function.ccpo[OF
partial-function-definitions-axioms]]
lemmas fixp-preserves-mcont2 = ccpo.fixp-preserves-mcont2 [OF Partial-Function.ccpo[OF
partial-function-definitions-axioms]]
lemmas fixp-preserves-mcont3 = ccpo.fixp-preserves-mcont3 [OF Partial-Function.ccpo[OF
partial-function-definitions-axioms]]
lemmas fixp-preserves-mcont4 = ccpo.fixp-preserves-mcont4 [OF Partial-Function.ccpo[OF
partial-function-definitions-axioms]]

lemma monotone-if-bot:
fixes bot
assumes g:

∧
x. g x = (if leq x bound then bot else f x)

and mono:
∧

x y. [[leq x y; ¬ leq x bound]] =⇒ ord (f x) (f y)
and bot:

∧
x. ¬ leq x bound =⇒ ord bot (f x) ord bot bot

shows monotone leq ord g
〈proof 〉

lemma mcont-if-bot:
fixes bot
assumes ccpo: class.ccpo lub ′ ord (mk-less ord)
and bot:

∧
x. ¬ leq x bound =⇒ ord bot (f x)

and g:
∧

x. g x = (if leq x bound then bot else f x)
and mono:

∧
x y. [[leq x y; ¬ leq x bound]] =⇒ ord (f x) (f y)

and cont:
∧

Y . [[Complete-Partial-Order .chain leq Y ; Y 6= {};
∧

x. x ∈ Y =⇒
¬ leq x bound]] =⇒ f (lub Y) = lub ′ (f ‘ Y)

shows mcont lub leq lub ′ ord g
〈proof 〉

end

15.2 Admissibility
lemma admissible-subst:

assumes adm: ccpo.admissible luba orda (λx. P x)

THEORY “Complete-Partial-Order2” 77

and mcont: mcont lubb ordb luba orda f
shows ccpo.admissible lubb ordb (λx. P (f x))
〈proof 〉

lemmas [simp, cont-intro] =
admissible-all
admissible-ball
admissible-const
admissible-conj

lemma admissible-disj ′ [simp, cont-intro]:
[[class.ccpo lub ord (mk-less ord); ccpo.admissible lub ord P; ccpo.admissible lub

ord Q]]
=⇒ ccpo.admissible lub ord (λx. P x ∨ Q x)
〈proof 〉

lemma admissible-imp ′ [cont-intro]:
[[class.ccpo lub ord (mk-less ord);

ccpo.admissible lub ord (λx. ¬ P x);
ccpo.admissible lub ord (λx. Q x)]]

=⇒ ccpo.admissible lub ord (λx. P x −→ Q x)
〈proof 〉

lemma admissible-imp [cont-intro]:
(Q =⇒ ccpo.admissible lub ord (λx. P x))
=⇒ ccpo.admissible lub ord (λx. Q −→ P x)
〈proof 〉

lemma admissible-not-mem ′ [THEN admissible-subst, cont-intro, simp]:
shows admissible-not-mem: ccpo.admissible Union (⊆) (λA. x /∈ A)
〈proof 〉

lemma admissible-eqI :
assumes f : cont luba orda lub ord (λx. f x)

and g: cont luba orda lub ord (λx. g x)
shows ccpo.admissible luba orda (λx. f x = g x)
〈proof 〉

corollary admissible-eq-mcontI [cont-intro]:
[[mcont luba orda lub ord (λx. f x);

mcont luba orda lub ord (λx. g x)]]
=⇒ ccpo.admissible luba orda (λx. f x = g x)
〈proof 〉

lemma admissible-iff [cont-intro, simp]:
[[ccpo.admissible lub ord (λx. P x −→ Q x); ccpo.admissible lub ord (λx. Q x −→

P x)]]
=⇒ ccpo.admissible lub ord (λx. P x ←→ Q x)
〈proof 〉

THEORY “Complete-Partial-Order2” 78

context ccpo begin

lemma admissible-leI :
assumes f : mcont luba orda Sup (≤) (λx. f x)
and g: mcont luba orda Sup (≤) (λx. g x)
shows ccpo.admissible luba orda (λx. f x ≤ g x)
〈proof 〉

end

lemma admissible-leI :
fixes ord (infix ‹v› 60) and lub (‹

∨
›)

assumes class.ccpo lub (v) (mk-less (v))
and mcont luba orda lub (v) (λx. f x)
and mcont luba orda lub (v) (λx. g x)
shows ccpo.admissible luba orda (λx. f x v g x)
〈proof 〉

declare ccpo-class.admissible-leI [cont-intro]

context ccpo begin

lemma admissible-not-below: ccpo.admissible Sup (≤) (λx. ¬ (≤) x y)
〈proof 〉

end

lemma (in preorder) preorder [cont-intro, simp]: class.preorder (≤) (mk-less (≤))
〈proof 〉

context partial-function-definitions begin

lemmas [cont-intro, simp] =
admissible-leI [OF Partial-Function.ccpo[OF partial-function-definitions-axioms]]
ccpo.admissible-not-below[THEN admissible-subst, OF Partial-Function.ccpo[OF

partial-function-definitions-axioms]]

end

〈ML〉

inductive compact :: (′a set ⇒ ′a) ⇒ (′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ bool
for lub ord x

where compact:
[[ccpo.admissible lub ord (λy. ¬ ord x y);

ccpo.admissible lub ord (λy. x 6= y)]]
=⇒ compact lub ord x

THEORY “Complete-Partial-Order2” 79

〈ML〉

context ccpo begin

lemma compactI :
assumes ccpo.admissible Sup (≤) (λy. ¬ x ≤ y)
shows ccpo.compact Sup (≤) x
〈proof 〉

lemma compact-bot:
assumes x = Sup {}
shows ccpo.compact Sup (≤) x
〈proof 〉

end

lemma admissible-compact-neq ′ [THEN admissible-subst, cont-intro, simp]:
shows admissible-compact-neq: ccpo.compact lub ord k =⇒ ccpo.admissible lub

ord (λx. k 6= x)
〈proof 〉

lemma admissible-neq-compact ′ [THEN admissible-subst, cont-intro, simp]:
shows admissible-neq-compact: ccpo.compact lub ord k =⇒ ccpo.admissible lub

ord (λx. x 6= k)
〈proof 〉

context partial-function-definitions begin

lemmas [cont-intro, simp] = ccpo.compact-bot[OF Partial-Function.ccpo[OF par-
tial-function-definitions-axioms]]

end

context ccpo begin

lemma fixp-strong-induct:
assumes [cont-intro]: ccpo.admissible Sup (≤) P
and mono: monotone (≤) (≤) f
and bot: P (

⊔
{})

and step:
∧

x. [[x ≤ ccpo-class.fixp f ; P x]] =⇒ P (f x)
shows P (ccpo-class.fixp f)
〈proof 〉

end

context partial-function-definitions begin

lemma fixp-strong-induct-uc:
fixes F :: ′c ⇒ ′c

THEORY “Complete-Partial-Order2” 80

and U :: ′c ⇒ ′b ⇒ ′a
and C :: (′b ⇒ ′a) ⇒ ′c
and P :: (′b ⇒ ′a) ⇒ bool

assumes mono:
∧

x. mono-body (λf . U (F (C f)) x)
and eq: f ≡ C (fixp-fun (λf . U (F (C f))))
and inverse:

∧
f . U (C f) = f

and adm: ccpo.admissible lub-fun le-fun P
and bot: P (λ-. lub {})
and step:

∧
f ′. [[P (U f ′); le-fun (U f ′) (U f)]] =⇒ P (U (F f ′))

shows P (U f)
〈proof 〉

end

15.3 (=) as order
definition lub-singleton :: (′a set ⇒ ′a) ⇒ bool

where lub-singleton lub ←→ (∀ a. lub {a} = a)

definition the-Sup :: ′a set ⇒ ′a
where the-Sup A = (THE a. a ∈ A)

lemma lub-singleton-the-Sup [cont-intro, simp]: lub-singleton the-Sup
〈proof 〉

lemma (in ccpo) lub-singleton: lub-singleton Sup
〈proof 〉

lemma (in partial-function-definitions) lub-singleton [cont-intro, simp]: lub-singleton
lub
〈proof 〉

lemma preorder-eq [cont-intro, simp]:
class.preorder (=) (mk-less (=))
〈proof 〉

lemma monotone-eqI [cont-intro]:
assumes class.preorder ord (mk-less ord)
shows monotone (=) ord f
〈proof 〉

lemma cont-eqI [cont-intro]:
fixes f :: ′a ⇒ ′b
assumes lub-singleton lub
shows cont the-Sup (=) lub ord f
〈proof 〉

lemma mcont-eqI [cont-intro, simp]:
[[class.preorder ord (mk-less ord); lub-singleton lub]]

THEORY “Complete-Partial-Order2” 81

=⇒ mcont the-Sup (=) lub ord f
〈proof 〉

15.4 ccpo for products
definition prod-lub :: (′a set ⇒ ′a) ⇒ (′b set ⇒ ′b) ⇒ (′a × ′b) set ⇒ ′a × ′b

where prod-lub Sup-a Sup-b Y = (Sup-a (fst ‘ Y), Sup-b (snd ‘ Y))

lemma lub-singleton-prod-lub [cont-intro, simp]:
[[lub-singleton luba; lub-singleton lubb]] =⇒ lub-singleton (prod-lub luba lubb)
〈proof 〉

lemma prod-lub-empty [simp]: prod-lub luba lubb {} = (luba {}, lubb {})
〈proof 〉

lemma preorder-rel-prodI [cont-intro, simp]:
assumes class.preorder orda (mk-less orda)

and class.preorder ordb (mk-less ordb)
shows class.preorder (rel-prod orda ordb) (mk-less (rel-prod orda ordb))
〈proof 〉

lemma order-rel-prodI :
assumes a: class.order orda (mk-less orda)

and b: class.order ordb (mk-less ordb)
shows class.order (rel-prod orda ordb) (mk-less (rel-prod orda ordb))
(is class.order ?ord ?ord ′)

〈proof 〉

lemma monotone-rel-prodI :
assumes mono2 :

∧
a. monotone ordb ordc (λb. f (a, b))

and mono1 :
∧

b. monotone orda ordc (λa. f (a, b))
and a: class.preorder orda (mk-less orda)
and b: class.preorder ordb (mk-less ordb)
and c: class.preorder ordc (mk-less ordc)

shows monotone (rel-prod orda ordb) ordc f
〈proof 〉

lemma monotone-rel-prodD1 :
assumes mono: monotone (rel-prod orda ordb) ordc f

and preorder : class.preorder ordb (mk-less ordb)
shows monotone orda ordc (λa. f (a, b))
〈proof 〉

lemma monotone-rel-prodD2 :
assumes mono: monotone (rel-prod orda ordb) ordc f

and preorder : class.preorder orda (mk-less orda)
shows monotone ordb ordc (λb. f (a, b))
〈proof 〉

THEORY “Complete-Partial-Order2” 82

lemma monotone-case-prodI :
[[
∧

a. monotone ordb ordc (f a);
∧

b. monotone orda ordc (λa. f a b);
class.preorder orda (mk-less orda); class.preorder ordb (mk-less ordb);
class.preorder ordc (mk-less ordc)]]

=⇒ monotone (rel-prod orda ordb) ordc (case-prod f)
〈proof 〉

lemma monotone-case-prodD1 :
assumes mono: monotone (rel-prod orda ordb) ordc (case-prod f)

and preorder : class.preorder ordb (mk-less ordb)
shows monotone orda ordc (λa. f a b)
〈proof 〉

lemma monotone-case-prodD2 :
assumes mono: monotone (rel-prod orda ordb) ordc (case-prod f)

and preorder : class.preorder orda (mk-less orda)
shows monotone ordb ordc (f a)
〈proof 〉

context
fixes orda ordb ordc
assumes a: class.preorder orda (mk-less orda)

and b: class.preorder ordb (mk-less ordb)
and c: class.preorder ordc (mk-less ordc)

begin

lemma monotone-rel-prod-iff :
monotone (rel-prod orda ordb) ordc f ←→
(∀ a. monotone ordb ordc (λb. f (a, b))) ∧
(∀ b. monotone orda ordc (λa. f (a, b)))
〈proof 〉

lemma monotone-case-prod-iff [simp]:
monotone (rel-prod orda ordb) ordc (case-prod f) ←→
(∀ a. monotone ordb ordc (f a)) ∧ (∀ b. monotone orda ordc (λa. f a b))
〈proof 〉

end

lemma monotone-case-prod-apply-iff :
monotone orda ordb (λx. (case-prod f x) y) ←→ monotone orda ordb (case-prod

(λa b. f a b y))
〈proof 〉

lemma monotone-case-prod-applyD:
monotone orda ordb (λx. (case-prod f x) y)
=⇒ monotone orda ordb (case-prod (λa b. f a b y))
〈proof 〉

THEORY “Complete-Partial-Order2” 83

lemma monotone-case-prod-applyI :
monotone orda ordb (case-prod (λa b. f a b y))
=⇒ monotone orda ordb (λx. (case-prod f x) y)
〈proof 〉

lemma cont-case-prod-apply-iff :
cont luba orda lubb ordb (λx. (case-prod f x) y) ←→ cont luba orda lubb ordb

(case-prod (λa b. f a b y))
〈proof 〉

lemma cont-case-prod-applyI :
cont luba orda lubb ordb (case-prod (λa b. f a b y))
=⇒ cont luba orda lubb ordb (λx. (case-prod f x) y)
〈proof 〉

lemma cont-case-prod-applyD:
cont luba orda lubb ordb (λx. (case-prod f x) y)
=⇒ cont luba orda lubb ordb (case-prod (λa b. f a b y))
〈proof 〉

lemma mcont-case-prod-apply-iff [simp]:
mcont luba orda lubb ordb (λx. (case-prod f x) y) ←→
mcont luba orda lubb ordb (case-prod (λa b. f a b y))

〈proof 〉

lemma cont-prodD1 :
assumes cont: cont (prod-lub luba lubb) (rel-prod orda ordb) lubc ordc f
and class.preorder orda (mk-less orda)
and luba: lub-singleton luba
shows cont lubb ordb lubc ordc (λy. f (x, y))
〈proof 〉

lemma cont-prodD2 :
assumes cont: cont (prod-lub luba lubb) (rel-prod orda ordb) lubc ordc f
and class.preorder ordb (mk-less ordb)
and lubb: lub-singleton lubb
shows cont luba orda lubc ordc (λx. f (x, y))
〈proof 〉

lemma cont-case-prodD1 :
assumes cont (prod-lub luba lubb) (rel-prod orda ordb) lubc ordc (case-prod f)
and class.preorder orda (mk-less orda)
and lub-singleton luba
shows cont lubb ordb lubc ordc (f x)
〈proof 〉

lemma cont-case-prodD2 :
assumes cont (prod-lub luba lubb) (rel-prod orda ordb) lubc ordc (case-prod f)

THEORY “Complete-Partial-Order2” 84

and class.preorder ordb (mk-less ordb)
and lub-singleton lubb
shows cont luba orda lubc ordc (λx. f x y)
〈proof 〉

context ccpo begin

lemma cont-prodI :
assumes mono: monotone (rel-prod orda ordb) (≤) f
and cont1 :

∧
x. cont lubb ordb Sup (≤) (λy. f (x, y))

and cont2 :
∧

y. cont luba orda Sup (≤) (λx. f (x, y))
and class.preorder orda (mk-less orda)
and class.preorder ordb (mk-less ordb)
shows cont (prod-lub luba lubb) (rel-prod orda ordb) Sup (≤) f
〈proof 〉

lemma cont-case-prodI :
assumes monotone (rel-prod orda ordb) (≤) (case-prod f)
and

∧
x. cont lubb ordb Sup (≤) (λy. f x y)

and
∧

y. cont luba orda Sup (≤) (λx. f x y)
and class.preorder orda (mk-less orda)
and class.preorder ordb (mk-less ordb)
shows cont (prod-lub luba lubb) (rel-prod orda ordb) Sup (≤) (case-prod f)
〈proof 〉

lemma cont-case-prod-iff :
[[monotone (rel-prod orda ordb) (≤) (case-prod f);

class.preorder orda (mk-less orda); lub-singleton luba;
class.preorder ordb (mk-less ordb); lub-singleton lubb]]

=⇒ cont (prod-lub luba lubb) (rel-prod orda ordb) Sup (≤) (case-prod f) ←→
(∀ x. cont lubb ordb Sup (≤) (λy. f x y)) ∧ (∀ y. cont luba orda Sup (≤) (λx. f x

y))
〈proof 〉

end

context partial-function-definitions begin

lemma mono2mono2 :
assumes f : monotone (rel-prod ordb ordc) leq (λ(x, y). f x y)
and t: monotone orda ordb (λx. t x)
and t ′: monotone orda ordc (λx. t ′ x)
shows monotone orda leq (λx. f (t x) (t ′ x))
〈proof 〉

lemma cont-case-prodI [cont-intro]:
[[monotone (rel-prod orda ordb) leq (case-prod f);∧

x. cont lubb ordb lub leq (λy. f x y);∧
y. cont luba orda lub leq (λx. f x y);

THEORY “Complete-Partial-Order2” 85

class.preorder orda (mk-less orda);
class.preorder ordb (mk-less ordb)]]

=⇒ cont (prod-lub luba lubb) (rel-prod orda ordb) lub leq (case-prod f)
〈proof 〉

lemma cont-case-prod-iff :
[[monotone (rel-prod orda ordb) leq (case-prod f);

class.preorder orda (mk-less orda); lub-singleton luba;
class.preorder ordb (mk-less ordb); lub-singleton lubb]]

=⇒ cont (prod-lub luba lubb) (rel-prod orda ordb) lub leq (case-prod f) ←→
(∀ x. cont lubb ordb lub leq (λy. f x y)) ∧ (∀ y. cont luba orda lub leq (λx. f x y))
〈proof 〉

lemma mcont-case-prod-iff [simp]:
[[class.preorder orda (mk-less orda); lub-singleton luba;

class.preorder ordb (mk-less ordb); lub-singleton lubb]]
=⇒ mcont (prod-lub luba lubb) (rel-prod orda ordb) lub leq (case-prod f) ←→
(∀ x. mcont lubb ordb lub leq (λy. f x y)) ∧ (∀ y. mcont luba orda lub leq (λx. f x

y))
〈proof 〉

end

lemma mono2mono-case-prod [cont-intro]:
assumes

∧
x y. monotone orda ordb (λf . pair f x y)

shows monotone orda ordb (λf . case-prod (pair f) x)
〈proof 〉

15.5 Complete lattices as ccpo
context complete-lattice begin

lemma complete-lattice-ccpo: class.ccpo Sup (≤) (<)
〈proof 〉

lemma complete-lattice-ccpo ′: class.ccpo Sup (≤) (mk-less (≤))
〈proof 〉

lemma complete-lattice-partial-function-definitions:
partial-function-definitions (≤) Sup
〈proof 〉

lemma complete-lattice-partial-function-definitions-dual:
partial-function-definitions (≥) Inf
〈proof 〉

lemmas [cont-intro, simp] =
Partial-Function.ccpo[OF complete-lattice-partial-function-definitions]
Partial-Function.ccpo[OF complete-lattice-partial-function-definitions-dual]

THEORY “Complete-Partial-Order2” 86

lemma mono2mono-inf :
assumes f : monotone ord (≤) (λx. f x)

and g: monotone ord (≤) (λx. g x)
shows monotone ord (≤) (λx. f x u g x)
〈proof 〉

lemma mcont-const [simp]: mcont lub ord Sup (≤) (λ-. c)
〈proof 〉

lemma mono2mono-sup:
assumes f : monotone ord (≤) (λx. f x)

and g: monotone ord (≤) (λx. g x)
shows monotone ord (≤) (λx. f x t g x)
〈proof 〉

lemma Sup-image-sup:
assumes Y 6= {}
shows

⊔
((t) x ‘ Y) = x t

⊔
Y

〈proof 〉

lemma mcont-sup1 : mcont Sup (≤) Sup (≤) (λy. x t y)
〈proof 〉

lemma mcont-sup2 : mcont Sup (≤) Sup (≤) (λx. x t y)
〈proof 〉

lemma mcont2mcont-sup [cont-intro, simp]:
[[mcont lub ord Sup (≤) (λx. f x);

mcont lub ord Sup (≤) (λx. g x)]]
=⇒ mcont lub ord Sup (≤) (λx. f x t g x)
〈proof 〉

end

lemmas [cont-intro] = admissible-leI [OF complete-lattice-ccpo ′]

context complete-distrib-lattice begin

lemma mcont-inf1 : mcont Sup (≤) Sup (≤) (λy. x u y)
〈proof 〉

lemma mcont-inf2 : mcont Sup (≤) Sup (≤) (λx. x u y)
〈proof 〉

lemma mcont2mcont-inf [cont-intro, simp]:
[[mcont lub ord Sup (≤) (λx. f x);

mcont lub ord Sup (≤) (λx. g x)]]
=⇒ mcont lub ord Sup (≤) (λx. f x u g x)

THEORY “Complete-Partial-Order2” 87

〈proof 〉

end

interpretation lfp: partial-function-definitions (≤) :: - :: complete-lattice ⇒ - Sup
〈proof 〉

〈ML〉

interpretation gfp: partial-function-definitions (≥) :: - :: complete-lattice ⇒ - Inf
〈proof 〉

〈ML〉

lemma insert-mono [partial-function-mono]:
monotone (fun-ord (⊆)) (⊆) A =⇒ monotone (fun-ord (⊆)) (⊆) (λy. insert x (A

y))
〈proof 〉

lemma mono2mono-insert [THEN lfp.mono2mono, cont-intro, simp]:
shows monotone-insert: monotone (⊆) (⊆) (insert x)
〈proof 〉

lemma mcont2mcont-insert[THEN lfp.mcont2mcont, cont-intro, simp]:
shows mcont-insert: mcont Union (⊆) Union (⊆) (insert x)
〈proof 〉

lemma mono2mono-image [THEN lfp.mono2mono, cont-intro, simp]:
shows monotone-image: monotone (⊆) (⊆) ((‘) f)
〈proof 〉

lemma cont-image: cont Union (⊆) Union (⊆) ((‘) f)
〈proof 〉

lemma mcont2mcont-image [THEN lfp.mcont2mcont, cont-intro, simp]:
shows mcont-image: mcont Union (⊆) Union (⊆) ((‘) f)
〈proof 〉

context complete-lattice begin

lemma monotone-Sup [cont-intro, simp]:
monotone ord (⊆) f =⇒ monotone ord (≤) (λx.

⊔
f x)

〈proof 〉

lemma cont-Sup:
assumes cont lub ord Union (⊆) f
shows cont lub ord Sup (≤) (λx.

⊔
f x)

〈proof 〉

THEORY “Complete-Partial-Order2” 88

lemma mcont-Sup: mcont lub ord Union (⊆) f =⇒ mcont lub ord Sup (≤) (λx.⊔
f x)
〈proof 〉

lemma monotone-SUP:
[[monotone ord (⊆) f ;

∧
y. monotone ord (≤) (λx. g x y)]] =⇒ monotone ord

(≤) (λx.
⊔

y∈f x. g x y)
〈proof 〉

lemma monotone-SUP2 :
(
∧

y. y ∈ A =⇒ monotone ord (≤) (λx. g x y)) =⇒ monotone ord (≤) (λx.⊔
y∈A. g x y)
〈proof 〉

lemma cont-SUP:
assumes f : mcont lub ord Union (⊆) f
and g:

∧
y. mcont lub ord Sup (≤) (λx. g x y)

shows cont lub ord Sup (≤) (λx.
⊔

y∈f x. g x y)
〈proof 〉

lemma mcont-SUP [cont-intro, simp]:
[[mcont lub ord Union (⊆) f ;

∧
y. mcont lub ord Sup (≤) (λx. g x y)]]

=⇒ mcont lub ord Sup (≤) (λx.
⊔

y∈f x. g x y)
〈proof 〉

end

lemma admissible-Ball [cont-intro, simp]:
[[
∧

x. ccpo.admissible lub ord (λA. P A x);
mcont lub ord Union (⊆) f ;
class.ccpo lub ord (mk-less ord)]]

=⇒ ccpo.admissible lub ord (λA. ∀ x∈f A. P A x)
〈proof 〉

lemma admissible-Bex ′[THEN admissible-subst, cont-intro, simp]:
shows admissible-Bex: ccpo.admissible Union (⊆) (λA. ∃ x∈A. P x)
〈proof 〉

15.6 Parallel fixpoint induction
context

fixes luba :: ′a set ⇒ ′a
and orda :: ′a ⇒ ′a ⇒ bool
and lubb :: ′b set ⇒ ′b
and ordb :: ′b ⇒ ′b ⇒ bool
assumes a: class.ccpo luba orda (mk-less orda)
and b: class.ccpo lubb ordb (mk-less ordb)

begin

THEORY “Complete-Partial-Order2” 89

interpretation a: ccpo luba orda mk-less orda 〈proof 〉
interpretation b: ccpo lubb ordb mk-less ordb 〈proof 〉

lemma ccpo-rel-prodI :
class.ccpo (prod-lub luba lubb) (rel-prod orda ordb) (mk-less (rel-prod orda ordb))
(is class.ccpo ?lub ?ord ?ord ′)
〈proof 〉

interpretation ab: ccpo prod-lub luba lubb rel-prod orda ordb mk-less (rel-prod orda
ordb)
〈proof 〉

lemma monotone-map-prod [simp]:
monotone (rel-prod orda ordb) (rel-prod ordc ordd) (map-prod f g) ←→
monotone orda ordc f ∧ monotone ordb ordd g

〈proof 〉

lemma parallel-fixp-induct:
assumes adm: ccpo.admissible (prod-lub luba lubb) (rel-prod orda ordb) (λx. P

(fst x) (snd x))
and f : monotone orda orda f
and g: monotone ordb ordb g
and bot: P (luba {}) (lubb {})
and step:

∧
x y. P x y =⇒ P (f x) (g y)

shows P (ccpo.fixp luba orda f) (ccpo.fixp lubb ordb g)
〈proof 〉

end

lemma parallel-fixp-induct-uc:
assumes a: partial-function-definitions orda luba
and b: partial-function-definitions ordb lubb
and F :

∧
x. monotone (fun-ord orda) orda (λf . U1 (F (C1 f)) x)

and G:
∧

y. monotone (fun-ord ordb) ordb (λg. U2 (G (C2 g)) y)
and eq1 : f ≡ C1 (ccpo.fixp (fun-lub luba) (fun-ord orda) (λf . U1 (F (C1 f))))
and eq2 : g ≡ C2 (ccpo.fixp (fun-lub lubb) (fun-ord ordb) (λg. U2 (G (C2 g))))
and inverse:

∧
f . U1 (C1 f) = f

and inverse2 :
∧

g. U2 (C2 g) = g
and adm: ccpo.admissible (prod-lub (fun-lub luba) (fun-lub lubb)) (rel-prod (fun-ord

orda) (fun-ord ordb)) (λx. P (fst x) (snd x))
and bot: P (λ-. luba {}) (λ-. lubb {})
and step:

∧
f g. P (U1 f) (U2 g) =⇒ P (U1 (F f)) (U2 (G g))

shows P (U1 f) (U2 g)
〈proof 〉

lemmas parallel-fixp-induct-1-1 = parallel-fixp-induct-uc[
of - - - - λx. x - λx. x λx. x - λx. x,
OF - - - - - - refl refl]

THEORY “Complete-Partial-Order2” 90

lemmas parallel-fixp-induct-2-2 = parallel-fixp-induct-uc[
of - - - - case-prod - curry case-prod - curry,
where P=λf g. P (curry f) (curry g),
unfolded case-prod-curry curry-case-prod curry-K ,
OF - - - - - - refl refl]
for P

lemma monotone-fst: monotone (rel-prod orda ordb) orda fst
〈proof 〉

lemma mcont-fst: mcont (prod-lub luba lubb) (rel-prod orda ordb) luba orda fst
〈proof 〉

lemma mcont2mcont-fst [cont-intro, simp]:
mcont lub ord (prod-lub luba lubb) (rel-prod orda ordb) t
=⇒ mcont lub ord luba orda (λx. fst (t x))
〈proof 〉

lemma monotone-snd: monotone (rel-prod orda ordb) ordb snd
〈proof 〉

lemma mcont-snd: mcont (prod-lub luba lubb) (rel-prod orda ordb) lubb ordb snd
〈proof 〉

lemma mcont2mcont-snd [cont-intro, simp]:
mcont lub ord (prod-lub luba lubb) (rel-prod orda ordb) t
=⇒ mcont lub ord lubb ordb (λx. snd (t x))
〈proof 〉

lemma monotone-Pair :
[[monotone ord orda f ; monotone ord ordb g]]
=⇒ monotone ord (rel-prod orda ordb) (λx. (f x, g x))
〈proof 〉

lemma cont-Pair :
[[cont lub ord luba orda f ; cont lub ord lubb ordb g]]
=⇒ cont lub ord (prod-lub luba lubb) (rel-prod orda ordb) (λx. (f x, g x))
〈proof 〉

lemma mcont-Pair :
[[mcont lub ord luba orda f ; mcont lub ord lubb ordb g]]
=⇒ mcont lub ord (prod-lub luba lubb) (rel-prod orda ordb) (λx. (f x, g x))
〈proof 〉

context partial-function-definitions
begin

Specialised versions of mcont-call for admissibility proofs for parallel
fixpoint inductions

THEORY “Conditional-Parametricity” 91

lemmas mcont-call-fst [cont-intro] = mcont-call[THEN mcont2mcont, OF mcont-fst]
lemmas mcont-call-snd [cont-intro] = mcont-call[THEN mcont2mcont, OF mcont-snd]
end

lemma map-option-mono [partial-function-mono]:
mono-option B =⇒ mono-option (λf . map-option g (B f))
〈proof 〉

lemma compact-flat-lub [cont-intro]: ccpo.compact (flat-lub x) (flat-ord x) y
〈proof 〉

end

theory Conditional-Parametricity
imports Main
keywords parametric-constant :: thy-decl
begin

context includes lifting-syntax begin

qualified definition Rel-match :: (′a ⇒ ′b ⇒ bool) ⇒ ′a ⇒ ′b ⇒ bool where
Rel-match R x y = R x y

named-theorems parametricity-preprocess

lemma bi-unique-Rel-match [parametricity-preprocess]:
bi-unique A = Rel-match (A ===> A ===> (=)) (=) (=)
〈proof 〉

lemma bi-total-Rel-match [parametricity-preprocess]:
bi-total A = Rel-match ((A ===> (=)) ===> (=)) All All
〈proof 〉

lemma is-equality-Rel: is-equality A =⇒ Transfer .Rel A t t
〈proof 〉

lemma Rel-Rel-match: Transfer .Rel R x y =⇒ Rel-match R x y
〈proof 〉

lemma Rel-match-Rel: Rel-match R x y =⇒ Transfer .Rel R x y
〈proof 〉

lemma Rel-Rel-match-eq: Transfer .Rel R x y = Rel-match R x y
〈proof 〉

lemma Rel-match-app:
assumes Rel-match (A ===> B) f g and Transfer .Rel A x y
shows Rel-match B (f x) (g y)

THEORY “Confluence” 92

〈proof 〉

end

〈ML〉

end
theory Confluence imports

Main
begin

16 Confluence
definition semiconfluentp :: (′a ⇒ ′a ⇒ bool) ⇒ bool where

semiconfluentp r ←→ r−1−1 OO r∗∗ ≤ r∗∗ OO r−1−1∗∗

definition confluentp :: (′a ⇒ ′a ⇒ bool) ⇒ bool where
confluentp r ←→ r−1−1∗∗ OO r∗∗ ≤ r∗∗ OO r−1−1∗∗

definition strong-confluentp :: (′a ⇒ ′a ⇒ bool) ⇒ bool where
strong-confluentp r ←→ r−1−1 OO r ≤ r∗∗ OO (r−1−1)==

lemma semiconfluentpI [intro?]:
semiconfluentp r if

∧
x y z. [[r x y; r∗∗ x z]] =⇒ ∃ u. r∗∗ y u ∧ r∗∗ z u

〈proof 〉

lemma semiconfluentpD: ∃ u. r∗∗ y u ∧ r∗∗ z u if semiconfluentp r r x y r∗∗ x z
〈proof 〉

lemma confluentpI :
confluentp r if

∧
x y z. [[r∗∗ x y; r∗∗ x z]] =⇒ ∃ u. r∗∗ y u ∧ r∗∗ z u

〈proof 〉

lemma confluentpD: ∃ u. r∗∗ y u ∧ r∗∗ z u if confluentp r r∗∗ x y r∗∗ x z
〈proof 〉

lemma strong-confluentpI [intro?]:
strong-confluentp r if

∧
x y z. [[r x y; r x z]] =⇒ ∃ u. r∗∗ y u ∧ r== z u

〈proof 〉

lemma strong-confluentpD: ∃ u. r∗∗ y u ∧ r== z u if strong-confluentp r r x y r x
z
〈proof 〉

lemma semiconfluentp-imp-confluentp: confluentp r if r : semiconfluentp r
〈proof 〉

lemma confluentp-imp-semiconfluentp: semiconfluentp r if confluentp r
〈proof 〉

THEORY “Confluent-Quotient” 93

lemma confluentp-eq-semiconfluentp: confluentp r ←→ semiconfluentp r
〈proof 〉

lemma confluentp-conv-strong-confluentp-rtranclp:
confluentp r ←→ strong-confluentp (r∗∗)
〈proof 〉

lemma strong-confluentp-into-semiconfluentp:
semiconfluentp r if r : strong-confluentp r
〈proof 〉

lemma strong-confluentp-imp-confluentp: confluentp r if strong-confluentp r
〈proof 〉

lemma semiconfluentp-equivclp: equivclp r = r∗∗ OO r−1−1∗∗ if r : semiconfluentp
r
〈proof 〉

end
theory Confluent-Quotient imports

Confluence
begin

Functors with finite setters preserve wide intersection for any equivalence
relation that respects the mapper.
lemma Inter-finite-subset:

assumes ∀A ∈ A. finite A
shows ∃B⊆A. finite B ∧ (

⋂
B) = (

⋂
A)

〈proof 〉

locale wide-intersection-finite =
fixes E :: ′Fa ⇒ ′Fa ⇒ bool

and mapFa :: (′a ⇒ ′a) ⇒ ′Fa ⇒ ′Fa
and setFa :: ′Fa ⇒ ′a set

assumes equiv: equivp E
and map-E : E x y =⇒ E (mapFa f x) (mapFa f y)
and map-id: mapFa id x = x
and map-cong: ∀ a∈setFa x. f a = g a =⇒ mapFa f x = mapFa g x
and set-map: setFa (mapFa f x) = f ‘ setFa x
and finite: finite (setFa x)

begin

lemma binary-intersection:
assumes E y z and y: setFa y ⊆ Y and z: setFa z ⊆ Z and a: a ∈ Y a ∈ Z
shows ∃ x. E x y ∧ setFa x ⊆ Y ∧ setFa x ⊆ Z
〈proof 〉

lemma finite-intersection:

THEORY “Confluent-Quotient” 94

assumes E : ∀ y∈A. E y z
and fin: finite A
and sub: ∀ y∈A. setFa y ⊆ Y y ∧ a ∈ Y y

shows ∃ x. E x z ∧ (∀ y∈A. setFa x ⊆ Y y)
〈proof 〉

lemma wide-intersection:
assumes inter-nonempty:

⋂
Ss 6= {}

shows (
⋂

As ∈ Ss. {(x, x ′). E x x ′} ‘‘ {x. setFa x ⊆ As}) ⊆ {(x, x ′). E x x ′} ‘‘
{x. setFa x ⊆

⋂
Ss} (is ?lhs ⊆ ?rhs)

〈proof 〉

end

Subdistributivity for quotients via confluence
lemma rtranclp-transp-reflp: R∗∗ = R if transp R reflp R
〈proof 〉

lemma rtranclp-equivp: R∗∗ = R if equivp R
〈proof 〉

locale confluent-quotient =
fixes Rb :: ′Fb ⇒ ′Fb ⇒ bool

and Ea :: ′Fa ⇒ ′Fa ⇒ bool
and Eb :: ′Fb ⇒ ′Fb ⇒ bool
and Ec :: ′Fc ⇒ ′Fc ⇒ bool
and Eab :: ′Fab ⇒ ′Fab ⇒ bool
and Ebc :: ′Fbc ⇒ ′Fbc ⇒ bool
and π-Faba :: ′Fab ⇒ ′Fa
and π-Fabb :: ′Fab ⇒ ′Fb
and π-Fbcb :: ′Fbc ⇒ ′Fb
and π-Fbcc :: ′Fbc ⇒ ′Fc
and rel-Fab :: (′a ⇒ ′b ⇒ bool) ⇒ ′Fa ⇒ ′Fb ⇒ bool
and rel-Fbc :: (′b ⇒ ′c ⇒ bool) ⇒ ′Fb ⇒ ′Fc ⇒ bool
and rel-Fac :: (′a ⇒ ′c ⇒ bool) ⇒ ′Fa ⇒ ′Fc ⇒ bool
and set-Fab :: ′Fab ⇒ (′a × ′b) set
and set-Fbc :: ′Fbc ⇒ (′b × ′c) set

assumes confluent: confluentp Rb
and retract1-ab:

∧
x y. Rb (π-Fabb x) y =⇒ ∃ z. Eab x z ∧ y = π-Fabb z ∧

set-Fab z ⊆ set-Fab x
and retract1-bc:

∧
x y. Rb (π-Fbcb x) y =⇒ ∃ z. Ebc x z ∧ y = π-Fbcb z ∧

set-Fbc z ⊆ set-Fbc x
and generated-b: Eb ≤ equivclp Rb
and transp-a: transp Ea
and transp-c: transp Ec
and equivp-ab: equivp Eab
and equivp-bc: equivp Ebc
and in-rel-Fab:

∧
A x y. rel-Fab A x y ←→ (∃ z. z ∈ {x. set-Fab x ⊆ {(x, y). A

x y}} ∧ π-Faba z = x ∧ π-Fabb z = y)

THEORY “Old-Datatype” 95

and in-rel-Fbc:
∧

B x y. rel-Fbc B x y ←→ (∃ z. z ∈ {x. set-Fbc x ⊆ {(x, y). B
x y}} ∧ π-Fbcb z = x ∧ π-Fbcc z = y)

and rel-compp:
∧

A B. rel-Fac (A OO B) = rel-Fab A OO rel-Fbc B
and π-Faba-respect: rel-fun Eab Ea π-Faba π-Faba
and π-Fbcc-respect: rel-fun Ebc Ec π-Fbcc π-Fbcc

begin

lemma retract-ab: Rb∗∗ (π-Fabb x) y =⇒ ∃ z. Eab x z ∧ y = π-Fabb z ∧ set-Fab
z ⊆ set-Fab x
〈proof 〉

lemma retract-bc: Rb∗∗ (π-Fbcb x) y =⇒ ∃ z. Ebc x z ∧ y = π-Fbcb z ∧ set-Fbc z
⊆ set-Fbc x
〈proof 〉

lemma subdistributivity: rel-Fab A OO Eb OO rel-Fbc B ≤ Ea OO rel-Fac (A OO
B) OO Ec
〈proof 〉

end

end

17 Old Datatype package: constructing datatypes
from Cartesian Products and Disjoint Sums

theory Old-Datatype
imports Main
begin

17.1 The datatype universe
definition Node = {p. ∃ f x k. p = (f :: nat => ′b + nat, x :: ′a + nat) ∧ f k =
Inr 0}

typedef (′a, ′b) node = Node :: ((nat => ′b + nat) ∗ (′a + nat)) set
morphisms Rep-Node Abs-Node
〈proof 〉

Datatypes will be represented by sets of type node
type-synonym ′a item = (′a, unit) node set
type-synonym (′a, ′b) dtree = (′a, ′b) node set

definition Push :: [(′b + nat), nat => (′b + nat)] => (nat => (′b + nat))

where Push == (%b h. case-nat b h)

definition Push-Node :: [(′b + nat), (′a, ′b) node] => (′a, ′b) node

THEORY “Old-Datatype” 96

where Push-Node == (%n x. Abs-Node (apfst (Push n) (Rep-Node x)))

definition Atom :: (′a + nat) => (′a, ′b) dtree
where Atom == (%x. {Abs-Node((%k. Inr 0 , x))})

definition Scons :: [(′a, ′b) dtree, (′a, ′b) dtree] => (′a, ′b) dtree
where Scons M N == (Push-Node (Inr 1) ‘ M) Un (Push-Node (Inr (Suc 1))

‘ N)

definition Leaf :: ′a => (′a, ′b) dtree
where Leaf == Atom ◦ Inl

definition Numb :: nat => (′a, ′b) dtree
where Numb == Atom ◦ Inr

definition In0 :: (′a, ′b) dtree => (′a, ′b) dtree
where In0 (M) == Scons (Numb 0) M

definition In1 :: (′a, ′b) dtree => (′a, ′b) dtree
where In1 (M) == Scons (Numb 1) M

definition Lim :: (′b => (′a, ′b) dtree) => (′a, ′b) dtree
where Lim f ==

⋃
{z. ∃ x. z = Push-Node (Inl x) ‘ (f x)}

definition ndepth :: (′a, ′b) node => nat
where ndepth(n) == (%(f ,x). LEAST k. f k = Inr 0) (Rep-Node n)

definition ntrunc :: [nat, (′a, ′b) dtree] => (′a, ′b) dtree
where ntrunc k N == {n. n∈N ∧ ndepth(n)<k}

definition uprod :: [(′a, ′b) dtree set, (′a, ′b) dtree set]=> (′a, ′b) dtree set
where uprod A B == UN x :A. UN y:B. { Scons x y }

definition usum :: [(′a, ′b) dtree set, (′a, ′b) dtree set]=> (′a, ′b) dtree set
where usum A B == In0‘A Un In1‘B

definition Split :: [[(′a, ′b) dtree, (′a, ′b) dtree]=> ′c, (′a, ′b) dtree] => ′c
where Split c M == THE u. ∃ x y. M = Scons x y ∧ u = c x y

definition Case :: [[(′a, ′b) dtree]=> ′c, [(′a, ′b) dtree]=> ′c, (′a, ′b) dtree] => ′c
where Case c d M == THE u. (∃ x . M = In0 (x) ∧ u = c(x)) ∨ (∃ y . M =

In1 (y) ∧ u = d(y))

THEORY “Old-Datatype” 97

definition dprod :: [((′a, ′b) dtree ∗ (′a, ′b) dtree)set, ((′a, ′b) dtree ∗ (′a, ′b)
dtree)set]

=> ((′a, ′b) dtree ∗ (′a, ′b) dtree)set
where dprod r s == UN (x,x ′):r . UN (y,y ′):s. {(Scons x y, Scons x ′ y ′)}

definition dsum :: [((′a, ′b) dtree ∗ (′a, ′b) dtree)set, ((′a, ′b) dtree ∗ (′a, ′b)
dtree)set]

=> ((′a, ′b) dtree ∗ (′a, ′b) dtree)set
where dsum r s == (UN (x,x ′):r . {(In0 (x),In0 (x ′))}) Un (UN (y,y ′):s. {(In1 (y),In1 (y ′))})

lemma apfst-convE :
[| q = apfst f p; !!x y. [| p = (x,y); q = (f (x),y) |] ==> R
|] ==> R

〈proof 〉

lemma Push-inject1 : Push i f = Push j g ==> i=j
〈proof 〉

lemma Push-inject2 : Push i f = Push j g ==> f=g
〈proof 〉

lemma Push-inject:
[| Push i f =Push j g; [| i=j; f=g |] ==> P |] ==> P

〈proof 〉

lemma Push-neq-K0 : Push (Inr (Suc k)) f = (%z. Inr 0) ==> P
〈proof 〉

lemmas Abs-Node-inj = Abs-Node-inject [THEN [2] rev-iffD1]

lemma Node-K0-I : (λk. Inr 0 , a) ∈ Node
〈proof 〉

lemma Node-Push-I : p ∈ Node =⇒ apfst (Push i) p ∈ Node
〈proof 〉

17.2 Freeness: Distinctness of Constructors
lemma Scons-not-Atom [iff]: Scons M N 6= Atom(a)
〈proof 〉

THEORY “Old-Datatype” 98

lemmas Atom-not-Scons [iff] = Scons-not-Atom [THEN not-sym]

lemma inj-Atom: inj(Atom)
〈proof 〉
lemmas Atom-inject = inj-Atom [THEN injD]

lemma Atom-Atom-eq [iff]: (Atom(a)=Atom(b)) = (a=b)
〈proof 〉

lemma inj-Leaf : inj(Leaf)
〈proof 〉

lemmas Leaf-inject [dest!] = inj-Leaf [THEN injD]

lemma inj-Numb: inj(Numb)
〈proof 〉

lemmas Numb-inject [dest!] = inj-Numb [THEN injD]

lemma Push-Node-inject:
[| Push-Node i m =Push-Node j n; [| i=j; m=n |] ==> P
|] ==> P

〈proof 〉

lemma Scons-inject-lemma1 : Scons M N <= Scons M ′ N ′ ==> M<=M ′

〈proof 〉

lemma Scons-inject-lemma2 : Scons M N <= Scons M ′ N ′ ==> N<=N ′

〈proof 〉

lemma Scons-inject1 : Scons M N = Scons M ′ N ′ ==> M=M ′

〈proof 〉

lemma Scons-inject2 : Scons M N = Scons M ′ N ′ ==> N=N ′

〈proof 〉

lemma Scons-inject:
[| Scons M N = Scons M ′ N ′; [| M=M ′; N=N ′ |] ==> P |] ==> P

THEORY “Old-Datatype” 99

〈proof 〉

lemma Scons-Scons-eq [iff]: (Scons M N = Scons M ′ N ′) = (M=M ′ ∧ N=N ′)
〈proof 〉

lemma Scons-not-Leaf [iff]: Scons M N 6= Leaf (a)
〈proof 〉

lemmas Leaf-not-Scons [iff] = Scons-not-Leaf [THEN not-sym]

lemma Scons-not-Numb [iff]: Scons M N 6= Numb(k)
〈proof 〉

lemmas Numb-not-Scons [iff] = Scons-not-Numb [THEN not-sym]

lemma Leaf-not-Numb [iff]: Leaf (a) 6= Numb(k)
〈proof 〉

lemmas Numb-not-Leaf [iff] = Leaf-not-Numb [THEN not-sym]

lemma ndepth-K0 : ndepth (Abs-Node(%k. Inr 0 , x)) = 0
〈proof 〉

lemma ndepth-Push-Node-aux:
case-nat (Inr (Suc i)) f k = Inr 0 −→ Suc(LEAST x . f x = Inr 0) ≤ k

〈proof 〉

lemma ndepth-Push-Node:
ndepth (Push-Node (Inr (Suc i)) n) = Suc(ndepth(n))

〈proof 〉

lemma ntrunc-0 [simp]: ntrunc 0 M = {}
〈proof 〉

THEORY “Old-Datatype” 100

lemma ntrunc-Atom [simp]: ntrunc (Suc k) (Atom a) = Atom(a)
〈proof 〉

lemma ntrunc-Leaf [simp]: ntrunc (Suc k) (Leaf a) = Leaf (a)
〈proof 〉

lemma ntrunc-Numb [simp]: ntrunc (Suc k) (Numb i) = Numb(i)
〈proof 〉

lemma ntrunc-Scons [simp]:
ntrunc (Suc k) (Scons M N) = Scons (ntrunc k M) (ntrunc k N)

〈proof 〉

lemma ntrunc-one-In0 [simp]: ntrunc (Suc 0) (In0 M) = {}
〈proof 〉

lemma ntrunc-In0 [simp]: ntrunc (Suc(Suc k)) (In0 M) = In0 (ntrunc (Suc k)
M)
〈proof 〉

lemma ntrunc-one-In1 [simp]: ntrunc (Suc 0) (In1 M) = {}
〈proof 〉

lemma ntrunc-In1 [simp]: ntrunc (Suc(Suc k)) (In1 M) = In1 (ntrunc (Suc k)
M)
〈proof 〉

17.3 Set Constructions
lemma uprodI [intro!]: [[M∈A; N∈B]] =⇒ Scons M N ∈ uprod A B
〈proof 〉

lemma uprodE [elim!]:
[[c ∈ uprod A B;∧

x y. [[x ∈ A; y ∈ B; c = Scons x y]] =⇒ P
]] =⇒ P

〈proof 〉

lemma uprodE2 : [[Scons M N ∈ uprod A B; [[M ∈ A; N ∈ B]] =⇒ P]] =⇒ P
〈proof 〉

THEORY “Old-Datatype” 101

lemma usum-In0I [intro]: M ∈ A =⇒ In0 (M) ∈ usum A B
〈proof 〉

lemma usum-In1I [intro]: N ∈ B =⇒ In1 (N) ∈ usum A B
〈proof 〉

lemma usumE [elim!]:
[[u ∈ usum A B;∧

x. [[x ∈ A; u=In0 (x)]] =⇒ P;∧
y. [[y ∈ B; u=In1 (y)]] =⇒ P

]] =⇒ P
〈proof 〉

lemma In0-not-In1 [iff]: In0 (M) 6= In1 (N)
〈proof 〉

lemmas In1-not-In0 [iff] = In0-not-In1 [THEN not-sym]

lemma In0-inject: In0 (M) = In0 (N) ==> M=N
〈proof 〉

lemma In1-inject: In1 (M) = In1 (N) ==> M=N
〈proof 〉

lemma In0-eq [iff]: (In0 M = In0 N) = (M=N)
〈proof 〉

lemma In1-eq [iff]: (In1 M = In1 N) = (M=N)
〈proof 〉

lemma inj-In0 : inj In0
〈proof 〉

lemma inj-In1 : inj In1
〈proof 〉

lemma Lim-inject: Lim f = Lim g ==> f = g
〈proof 〉

THEORY “Old-Datatype” 102

lemma ntrunc-subsetI : ntrunc k M <= M
〈proof 〉

lemma ntrunc-subsetD: (!!k. ntrunc k M <= N) ==> M<=N
〈proof 〉

lemma ntrunc-equality: (!!k. ntrunc k M = ntrunc k N) ==> M=N
〈proof 〉

lemma ntrunc-o-equality:
[| !!k. (ntrunc(k) ◦ h1) = (ntrunc(k) ◦ h2) |] ==> h1=h2

〈proof 〉

lemma uprod-mono: [| A<=A ′; B<=B ′ |] ==> uprod A B <= uprod A ′ B ′

〈proof 〉

lemma usum-mono: [| A<=A ′; B<=B ′ |] ==> usum A B <= usum A ′ B ′

〈proof 〉

lemma Scons-mono: [| M<=M ′; N<=N ′ |] ==> Scons M N <= Scons M ′ N ′

〈proof 〉

lemma In0-mono: M<=N ==> In0 (M) <= In0 (N)
〈proof 〉

lemma In1-mono: M<=N ==> In1 (M) <= In1 (N)
〈proof 〉

lemma Split [simp]: Split c (Scons M N) = c M N
〈proof 〉

lemma Case-In0 [simp]: Case c d (In0 M) = c(M)
〈proof 〉

lemma Case-In1 [simp]: Case c d (In1 N) = d(N)
〈proof 〉

THEORY “Old-Datatype” 103

lemma ntrunc-UN1 : ntrunc k (UN x . f (x)) = (UN x. ntrunc k (f x))
〈proof 〉

lemma Scons-UN1-x: Scons (UN x. f x) M = (UN x. Scons (f x) M)
〈proof 〉

lemma Scons-UN1-y: Scons M (UN x. f x) = (UN x . Scons M (f x))
〈proof 〉

lemma In0-UN1 : In0 (UN x. f (x)) = (UN x . In0 (f (x)))
〈proof 〉

lemma In1-UN1 : In1 (UN x. f (x)) = (UN x . In1 (f (x)))
〈proof 〉

lemma dprodI [intro!]:
[[(M ,M ′) ∈ r ; (N ,N ′) ∈ s]] =⇒ (Scons M N , Scons M ′ N ′) ∈ dprod r s

〈proof 〉

lemma dprodE [elim!]:
[[c ∈ dprod r s;∧

x y x ′ y ′. [[(x,x ′) ∈ r ; (y,y ′) ∈ s;
c = (Scons x y, Scons x ′ y ′)]] =⇒ P

]] =⇒ P
〈proof 〉

lemma dsum-In0I [intro]: (M ,M ′) ∈ r =⇒ (In0 (M), In0 (M ′)) ∈ dsum r s
〈proof 〉

lemma dsum-In1I [intro]: (N ,N ′) ∈ s =⇒ (In1 (N), In1 (N ′)) ∈ dsum r s
〈proof 〉

lemma dsumE [elim!]:
[[w ∈ dsum r s;∧

x x ′. [[(x,x ′) ∈ r ; w = (In0 (x), In0 (x ′))]] =⇒ P;∧
y y ′. [[(y,y ′) ∈ s; w = (In1 (y), In1 (y ′))]] =⇒ P

]] =⇒ P
〈proof 〉

THEORY “Nat-Bijection” 104

lemma dprod-mono: [| r<=r ′; s<=s ′ |] ==> dprod r s <= dprod r ′ s ′

〈proof 〉

lemma dsum-mono: [| r<=r ′; s<=s ′ |] ==> dsum r s <= dsum r ′ s ′

〈proof 〉

lemma dprod-Sigma: (dprod (A × B) (C × D)) <= (uprod A C) × (uprod B D)
〈proof 〉

lemmas dprod-subset-Sigma = subset-trans [OF dprod-mono dprod-Sigma]

lemma dprod-subset-Sigma2 :
(dprod (Sigma A B) (Sigma C D)) <= Sigma (uprod A C) (Split (%x y. uprod

(B x) (D y)))
〈proof 〉

lemma dsum-Sigma: (dsum (A × B) (C × D)) <= (usum A C) × (usum B D)
〈proof 〉

lemmas dsum-subset-Sigma = subset-trans [OF dsum-mono dsum-Sigma]

lemma Domain-dprod [simp]: Domain (dprod r s) = uprod (Domain r) (Domain
s)
〈proof 〉

lemma Domain-dsum [simp]: Domain (dsum r s) = usum (Domain r) (Domain
s)
〈proof 〉

hides popular names
hide-type (open) node item
hide-const (open) Push Node Atom Leaf Numb Lim Split Case

〈ML〉

end

18 Bijections between natural numbers and other
types

theory Nat-Bijection

THEORY “Nat-Bijection” 105

imports Main
begin

18.1 Type nat × nat
Triangle numbers: 0, 1, 3, 6, 10, 15, ...
definition triangle :: nat ⇒ nat

where triangle n = (n ∗ Suc n) div 2

lemma triangle-0 [simp]: triangle 0 = 0
〈proof 〉

lemma triangle-Suc [simp]: triangle (Suc n) = triangle n + Suc n
〈proof 〉

definition prod-encode :: nat × nat ⇒ nat
where prod-encode = (λ(m, n). triangle (m + n) + m)

In this auxiliary function, triangle k + m is an invariant.
fun prod-decode-aux :: nat ⇒ nat ⇒ nat × nat

where prod-decode-aux k m =
(if m ≤ k then (m, k − m) else prod-decode-aux (Suc k) (m − Suc k))

declare prod-decode-aux.simps [simp del]

definition prod-decode :: nat ⇒ nat × nat
where prod-decode = prod-decode-aux 0

lemma prod-encode-prod-decode-aux: prod-encode (prod-decode-aux k m) = triangle
k + m
〈proof 〉

lemma prod-decode-inverse [simp]: prod-encode (prod-decode n) = n
〈proof 〉

lemma prod-decode-triangle-add: prod-decode (triangle k + m) = prod-decode-aux
k m
〈proof 〉

lemma prod-encode-inverse [simp]: prod-decode (prod-encode x) = x
〈proof 〉

lemma inj-prod-encode: inj-on prod-encode A
〈proof 〉

lemma inj-prod-decode: inj-on prod-decode A
〈proof 〉

THEORY “Nat-Bijection” 106

lemma surj-prod-encode: surj prod-encode
〈proof 〉

lemma surj-prod-decode: surj prod-decode
〈proof 〉

lemma bij-prod-encode: bij prod-encode
〈proof 〉

lemma bij-prod-decode: bij prod-decode
〈proof 〉

lemma prod-encode-eq [simp]: prod-encode x = prod-encode y ←→ x = y
〈proof 〉

lemma prod-decode-eq [simp]: prod-decode x = prod-decode y ←→ x = y
〈proof 〉

Ordering properties
lemma le-prod-encode-1 : a ≤ prod-encode (a, b)
〈proof 〉

lemma le-prod-encode-2 : b ≤ prod-encode (a, b)
〈proof 〉

18.2 Type nat + nat
definition sum-encode :: nat + nat ⇒ nat

where sum-encode x = (case x of Inl a ⇒ 2 ∗ a | Inr b ⇒ Suc (2 ∗ b))

definition sum-decode :: nat ⇒ nat + nat
where sum-decode n = (if even n then Inl (n div 2) else Inr (n div 2))

lemma sum-encode-inverse [simp]: sum-decode (sum-encode x) = x
〈proof 〉

lemma sum-decode-inverse [simp]: sum-encode (sum-decode n) = n
〈proof 〉

lemma inj-sum-encode: inj-on sum-encode A
〈proof 〉

lemma inj-sum-decode: inj-on sum-decode A
〈proof 〉

lemma surj-sum-encode: surj sum-encode
〈proof 〉

lemma surj-sum-decode: surj sum-decode
〈proof 〉

THEORY “Nat-Bijection” 107

lemma bij-sum-encode: bij sum-encode
〈proof 〉

lemma bij-sum-decode: bij sum-decode
〈proof 〉

lemma sum-encode-eq: sum-encode x = sum-encode y ←→ x = y
〈proof 〉

lemma sum-decode-eq: sum-decode x = sum-decode y ←→ x = y
〈proof 〉

18.3 Type int
definition int-encode :: int ⇒ nat

where int-encode i = sum-encode (if 0 ≤ i then Inl (nat i) else Inr (nat (− i −
1)))

definition int-decode :: nat ⇒ int
where int-decode n = (case sum-decode n of Inl a ⇒ int a | Inr b ⇒ − int b −

1)

lemma int-encode-inverse [simp]: int-decode (int-encode x) = x
〈proof 〉

lemma int-decode-inverse [simp]: int-encode (int-decode n) = n
〈proof 〉

lemma inj-int-encode: inj-on int-encode A
〈proof 〉

lemma inj-int-decode: inj-on int-decode A
〈proof 〉

lemma surj-int-encode: surj int-encode
〈proof 〉

lemma surj-int-decode: surj int-decode
〈proof 〉

lemma bij-int-encode: bij int-encode
〈proof 〉

lemma bij-int-decode: bij int-decode
〈proof 〉

lemma int-encode-eq: int-encode x = int-encode y ←→ x = y
〈proof 〉

THEORY “Nat-Bijection” 108

lemma int-decode-eq: int-decode x = int-decode y ←→ x = y
〈proof 〉

18.4 Type nat list
fun list-encode :: nat list ⇒ nat

where
list-encode [] = 0
| list-encode (x # xs) = Suc (prod-encode (x, list-encode xs))

function list-decode :: nat ⇒ nat list
where

list-decode 0 = []
| list-decode (Suc n) = (case prod-decode n of (x, y) ⇒ x # list-decode y)
〈proof 〉

termination list-decode
〈proof 〉

lemma list-encode-inverse [simp]: list-decode (list-encode x) = x
〈proof 〉

lemma list-decode-inverse [simp]: list-encode (list-decode n) = n
〈proof 〉

lemma inj-list-encode: inj-on list-encode A
〈proof 〉

lemma inj-list-decode: inj-on list-decode A
〈proof 〉

lemma surj-list-encode: surj list-encode
〈proof 〉

lemma surj-list-decode: surj list-decode
〈proof 〉

lemma bij-list-encode: bij list-encode
〈proof 〉

lemma bij-list-decode: bij list-decode
〈proof 〉

lemma list-encode-eq: list-encode x = list-encode y ←→ x = y
〈proof 〉

lemma list-decode-eq: list-decode x = list-decode y ←→ x = y
〈proof 〉

THEORY “Nat-Bijection” 109

18.5 Finite sets of naturals
18.5.1 Preliminaries
lemma finite-vimage-Suc-iff : finite (Suc −‘ F) ←→ finite F
〈proof 〉

lemma vimage-Suc-insert-0 : Suc −‘ insert 0 A = Suc −‘ A
〈proof 〉

lemma vimage-Suc-insert-Suc: Suc −‘ insert (Suc n) A = insert n (Suc −‘ A)
〈proof 〉

lemma div2-even-ext-nat:
fixes x y :: nat
assumes x div 2 = y div 2

and even x ←→ even y
shows x = y
〈proof 〉

18.5.2 From sets to naturals
definition set-encode :: nat set ⇒ nat

where set-encode = sum ((^) 2)

lemma set-encode-empty [simp]: set-encode {} = 0
〈proof 〉

lemma set-encode-inf : ¬ finite A =⇒ set-encode A = 0
〈proof 〉

lemma set-encode-insert [simp]: finite A =⇒ n /∈ A =⇒ set-encode (insert n A)
= 2^n + set-encode A
〈proof 〉

lemma even-set-encode-iff : finite A =⇒ even (set-encode A) ←→ 0 /∈ A
〈proof 〉

lemma set-encode-vimage-Suc: set-encode (Suc −‘ A) = set-encode A div 2
〈proof 〉

lemmas set-encode-div-2 = set-encode-vimage-Suc [symmetric]

18.5.3 From naturals to sets
definition set-decode :: nat ⇒ nat set

where set-decode x = {n. odd (x div 2 ^ n)}

lemma set-decode-0 [simp]: 0 ∈ set-decode x ←→ odd x
〈proof 〉

THEORY “Countable” 110

lemma set-decode-Suc [simp]: Suc n ∈ set-decode x ←→ n ∈ set-decode (x div 2)
〈proof 〉

lemma set-decode-zero [simp]: set-decode 0 = {}
〈proof 〉

lemma set-decode-div-2 : set-decode (x div 2) = Suc −‘ set-decode x
〈proof 〉

lemma set-decode-plus-power-2 :
n /∈ set-decode z =⇒ set-decode (2 ^ n + z) = insert n (set-decode z)
〈proof 〉

lemma finite-set-decode [simp]: finite (set-decode n)
〈proof 〉

18.5.4 Proof of isomorphism
lemma set-decode-inverse [simp]: set-encode (set-decode n) = n
〈proof 〉

lemma set-encode-inverse [simp]: finite A =⇒ set-decode (set-encode A) = A
〈proof 〉

lemma inj-on-set-encode: inj-on set-encode (Collect finite)
〈proof 〉

lemma set-encode-eq: finite A =⇒ finite B =⇒ set-encode A = set-encode B ←→
A = B
〈proof 〉

lemma subset-decode-imp-le:
assumes set-decode m ⊆ set-decode n
shows m ≤ n
〈proof 〉

end

19 Encoding (almost) everything into natural num-
bers

theory Countable
imports Old-Datatype HOL.Rat Nat-Bijection
begin

19.1 The class of countable types
class countable =

THEORY “Countable” 111

assumes ex-inj: ∃ to-nat :: ′a ⇒ nat. inj to-nat

lemma countable-classI :
fixes f :: ′a ⇒ nat
assumes

∧
x y. f x = f y =⇒ x = y

shows OFCLASS(′a, countable-class)
〈proof 〉

19.2 Conversion functions
definition to-nat :: ′a::countable ⇒ nat where

to-nat = (SOME f . inj f)

definition from-nat :: nat ⇒ ′a::countable where
from-nat = inv (to-nat :: ′a ⇒ nat)

lemma inj-to-nat [simp]: inj to-nat
〈proof 〉

lemma inj-on-to-nat[simp, intro]: inj-on to-nat S
〈proof 〉

lemma surj-from-nat [simp]: surj from-nat
〈proof 〉

lemma to-nat-split [simp]: to-nat x = to-nat y ←→ x = y
〈proof 〉

lemma from-nat-to-nat [simp]:
from-nat (to-nat x) = x
〈proof 〉

19.3 Finite types are countable
subclass (in finite) countable
〈proof 〉

19.4 Automatically proving countability of old-style datatypes
context
begin

qualified inductive finite-item :: ′a Old-Datatype.item ⇒ bool where
undefined: finite-item undefined
| In0 : finite-item x =⇒ finite-item (Old-Datatype.In0 x)
| In1 : finite-item x =⇒ finite-item (Old-Datatype.In1 x)
| Leaf : finite-item (Old-Datatype.Leaf a)
| Scons: [[finite-item x; finite-item y]] =⇒ finite-item (Old-Datatype.Scons x y)

qualified function nth-item :: nat ⇒ (′a::countable) Old-Datatype.item

THEORY “Countable” 112

where
nth-item 0 = undefined
| nth-item (Suc n) =
(case sum-decode n of

Inl i ⇒
(case sum-decode i of

Inl j ⇒ Old-Datatype.In0 (nth-item j)
| Inr j ⇒ Old-Datatype.In1 (nth-item j))
| Inr i ⇒
(case sum-decode i of

Inl j ⇒ Old-Datatype.Leaf (from-nat j)
| Inr j ⇒
(case prod-decode j of
(a, b) ⇒ Old-Datatype.Scons (nth-item a) (nth-item b))))

〈proof 〉

lemma le-sum-encode-Inl: x ≤ y =⇒ x ≤ sum-encode (Inl y)
〈proof 〉

lemma le-sum-encode-Inr : x ≤ y =⇒ x ≤ sum-encode (Inr y)
〈proof 〉 termination
〈proof 〉

lemma nth-item-covers: finite-item x =⇒ ∃n. nth-item n = x
〈proof 〉

theorem countable-datatype:
fixes Rep :: ′b ⇒ (′a::countable) Old-Datatype.item
fixes Abs :: (′a::countable) Old-Datatype.item ⇒ ′b
fixes rep-set :: (′a::countable) Old-Datatype.item ⇒ bool
assumes type: type-definition Rep Abs (Collect rep-set)
assumes finite-item:

∧
x. rep-set x =⇒ finite-item x

shows OFCLASS(′b, countable-class)
〈proof 〉

〈ML〉

end

19.5 Automatically proving countability of datatypes
〈ML〉

19.6 More Countable types
Naturals
instance nat :: countable
〈proof 〉

Pairs

THEORY “Countable” 113

instance prod :: (countable, countable) countable
〈proof 〉

Sums
instance sum :: (countable, countable) countable
〈proof 〉

Integers
instance int :: countable
〈proof 〉

Options
instance option :: (countable) countable
〈proof 〉

Lists
instance list :: (countable) countable
〈proof 〉

String literals
instance String.literal :: countable
〈proof 〉

Functions
instance fun :: (finite, countable) countable
〈proof 〉

Typereps
instance typerep :: countable
〈proof 〉

19.7 The rationals are countably infinite
definition nat-to-rat-surj :: nat ⇒ rat where

nat-to-rat-surj n = (let (a, b) = prod-decode n in Fract (int-decode a) (int-decode
b))

lemma surj-nat-to-rat-surj: surj nat-to-rat-surj
〈proof 〉

lemma Rats-eq-range-nat-to-rat-surj: � = range nat-to-rat-surj
〈proof 〉

context field-char-0
begin

lemma Rats-eq-range-of-rat-o-nat-to-rat-surj:
� = range (of-rat ◦ nat-to-rat-surj)
〈proof 〉

THEORY “Infinite-Set” 114

lemma surj-of-rat-nat-to-rat-surj:
r ∈ � =⇒ ∃n. r = of-rat (nat-to-rat-surj n)
〈proof 〉

end

instance rat :: countable
〈proof 〉

theorem rat-denum: ∃ f :: nat ⇒ rat. surj f
〈proof 〉

end

20 Infinite Sets and Related Concepts
theory Infinite-Set

imports Main
begin

20.1 The set of natural numbers is infinite
lemma infinite-nat-iff-unbounded-le: infinite S ←→ (∀m. ∃n≥m. n ∈ S)

for S :: nat set
〈proof 〉

lemma infinite-nat-iff-unbounded: infinite S ←→ (∀m. ∃n>m. n ∈ S)
for S :: nat set
〈proof 〉

lemma finite-nat-iff-bounded: finite S ←→ (∃ k. S ⊆ {..<k})
for S :: nat set
〈proof 〉

lemma finite-nat-iff-bounded-le: finite S ←→ (∃ k. S ⊆ {.. k})
for S :: nat set
〈proof 〉

lemma finite-nat-bounded: finite S =⇒ ∃ k. S ⊆ {..<k}
for S :: nat set
〈proof 〉

For a set of natural numbers to be infinite, it is enough to know that
for any number larger than some k, there is some larger number that is an
element of the set.
lemma unbounded-k-infinite: ∀m>k. ∃n>m. n ∈ S =⇒ infinite (S ::nat set)
〈proof 〉

THEORY “Infinite-Set” 115

lemma nat-not-finite: finite (UNIV ::nat set) =⇒ R
〈proof 〉

lemma range-inj-infinite:
fixes f :: nat ⇒ ′a
assumes inj f
shows infinite (range f)
〈proof 〉

20.2 The set of integers is also infinite
lemma infinite-int-iff-infinite-nat-abs: infinite S ←→ infinite ((nat ◦ abs) ‘ S)

for S :: int set
〈proof 〉

proposition infinite-int-iff-unbounded-le: infinite S ←→ (∀m. ∃n. |n| ≥ m ∧ n ∈
S)

for S :: int set
〈proof 〉

proposition infinite-int-iff-unbounded: infinite S ←→ (∀m. ∃n. |n| > m ∧ n ∈
S)

for S :: int set
〈proof 〉

proposition finite-int-iff-bounded: finite S ←→ (∃ k. abs ‘ S ⊆ {..<k})
for S :: int set
〈proof 〉

proposition finite-int-iff-bounded-le: finite S ←→ (∃ k. abs ‘ S ⊆ {.. k})
for S :: int set
〈proof 〉

lemma infinite-split: — courtesy of Michael Schmidt
fixes S :: ′a set
assumes infinite S
obtains A B

where A ⊆ S B ⊆ S infinite A infinite B A ∩ B = {}
〈proof 〉

20.3 Infinitely Many and Almost All
We often need to reason about the existence of infinitely many (resp., all
but finitely many) objects satisfying some predicate, so we introduce corre-
sponding binders and their proof rules.
lemma not-INFM [simp]: ¬ (INFM x . P x) ←→ (MOST x . ¬ P x)
〈proof 〉

lemma not-MOST [simp]: ¬ (MOST x. P x) ←→ (INFM x. ¬ P x)

THEORY “Infinite-Set” 116

〈proof 〉

lemma INFM-const [simp]: (INFM x :: ′a. P) ←→ P ∧ infinite (UNIV :: ′a set)
〈proof 〉

lemma MOST-const [simp]: (MOST x:: ′a. P) ←→ P ∨ finite (UNIV :: ′a set)
〈proof 〉

lemma INFM-imp-distrib: (INFM x. P x −→ Q x) ←→ ((MOST x. P x) −→
(INFM x. Q x))
〈proof 〉

lemma MOST-imp-iff : MOST x. P x =⇒ (MOST x. P x −→ Q x) ←→ (MOST
x. Q x)
〈proof 〉

lemma INFM-conjI : INFM x. P x =⇒ MOST x . Q x =⇒ INFM x . P x ∧ Q x
〈proof 〉

Properties of quantifiers with injective functions.
lemma INFM-inj: INFM x . P (f x) =⇒ inj f =⇒ INFM x . P x
〈proof 〉

lemma MOST-inj: MOST x. P x =⇒ inj f =⇒ MOST x . P (f x)
〈proof 〉

Properties of quantifiers with singletons.
lemma not-INFM-eq [simp]:
¬ (INFM x. x = a)
¬ (INFM x. a = x)
〈proof 〉

lemma MOST-neq [simp]:
MOST x . x 6= a
MOST x . a 6= x
〈proof 〉

lemma INFM-neq [simp]:
(INFM x :: ′a. x 6= a) ←→ infinite (UNIV :: ′a set)
(INFM x :: ′a. a 6= x) ←→ infinite (UNIV :: ′a set)
〈proof 〉

lemma MOST-eq [simp]:
(MOST x :: ′a. x = a) ←→ finite (UNIV :: ′a set)
(MOST x :: ′a. a = x) ←→ finite (UNIV :: ′a set)
〈proof 〉

lemma MOST-eq-imp:
MOST x . x = a −→ P x

THEORY “Infinite-Set” 117

MOST x . a = x −→ P x
〈proof 〉

Properties of quantifiers over the naturals.
lemma MOST-nat: (∀∞n. P n) ←→ (∃m. ∀n>m. P n)

for P :: nat ⇒ bool
〈proof 〉

lemma MOST-nat-le: (∀∞n. P n) ←→ (∃m. ∀n≥m. P n)
for P :: nat ⇒ bool
〈proof 〉

lemma INFM-nat: (∃∞n. P n) ←→ (∀m. ∃n>m. P n)
for P :: nat ⇒ bool
〈proof 〉

lemma INFM-nat-le: (∃∞n. P n) ←→ (∀m. ∃n≥m. P n)
for P :: nat ⇒ bool
〈proof 〉

lemma MOST-INFM : infinite (UNIV :: ′a set) =⇒ MOST x:: ′a. P x =⇒ INFM
x:: ′a. P x
〈proof 〉

lemma MOST-Suc-iff : (MOST n. P (Suc n)) ←→ (MOST n. P n)
〈proof 〉

lemma MOST-SucI : MOST n. P n =⇒ MOST n. P (Suc n)
and MOST-SucD: MOST n. P (Suc n) =⇒ MOST n. P n
〈proof 〉

lemma MOST-ge-nat: MOST n::nat. m ≤ n
〈proof 〉

lemma Inf-many-def : Inf-many P ←→ infinite {x. P x} 〈proof 〉
lemma Alm-all-def : Alm-all P ←→ ¬ (INFM x . ¬ P x) 〈proof 〉
lemma INFM-iff-infinite: (INFM x . P x) ←→ infinite {x. P x} 〈proof 〉
lemma MOST-iff-cofinite: (MOST x . P x) ←→ finite {x. ¬ P x} 〈proof 〉
lemma INFM-EX : (∃∞x. P x) =⇒ (∃ x. P x) 〈proof 〉
lemma ALL-MOST : ∀ x. P x =⇒ ∀∞x. P x 〈proof 〉
lemma INFM-mono: ∃∞x. P x =⇒ (

∧
x. P x =⇒ Q x) =⇒ ∃∞x. Q x 〈proof 〉

lemma MOST-mono: ∀∞x. P x =⇒ (
∧

x. P x =⇒ Q x) =⇒ ∀∞x. Q x 〈proof 〉
lemma INFM-disj-distrib: (∃∞x. P x ∨ Q x) ←→ (∃∞x. P x) ∨ (∃∞x. Q x)
〈proof 〉
lemma MOST-rev-mp: ∀∞x. P x =⇒ ∀∞x. P x −→ Q x =⇒ ∀∞x. Q x 〈proof 〉
lemma MOST-conj-distrib: (∀∞x. P x ∧ Q x) ←→ (∀∞x. P x) ∧ (∀∞x. Q x)
〈proof 〉
lemma MOST-conjI : MOST x. P x =⇒ MOST x. Q x =⇒ MOST x. P x ∧ Q x
〈proof 〉
lemma INFM-finite-Bex-distrib: finite A =⇒ (INFM y. ∃ x∈A. P x y)←→ (∃ x∈A.

THEORY “Infinite-Set” 118

INFM y. P x y) 〈proof 〉
lemma MOST-finite-Ball-distrib: finite A =⇒ (MOST y. ∀ x∈A. P x y) ←→
(∀ x∈A. MOST y. P x y) 〈proof 〉
lemma INFM-E : INFM x . P x =⇒ (

∧
x. P x =⇒ thesis) =⇒ thesis 〈proof 〉

lemma MOST-I : (
∧

x. P x) =⇒ MOST x . P x 〈proof 〉
lemmas MOST-iff-finiteNeg = MOST-iff-cofinite

20.4 Enumeration of an Infinite Set
The set’s element type must be wellordered (e.g. the natural numbers).

Could be generalized to enumerate ′ S n = (SOME t. t ∈ s ∧ finite {s ∈
S . s < t} ∧ card {s ∈ S . s < t} = n).
primrec (in wellorder) enumerate :: ′a set ⇒ nat ⇒ ′a

where
enumerate-0 : enumerate S 0 = (LEAST n. n ∈ S)
| enumerate-Suc: enumerate S (Suc n) = enumerate (S − {LEAST n. n ∈ S}) n

lemma enumerate-Suc ′: enumerate S (Suc n) = enumerate (S − {enumerate S
0}) n
〈proof 〉

lemma enumerate-in-set: infinite S =⇒ enumerate S n ∈ S
〈proof 〉

declare enumerate-0 [simp del] enumerate-Suc [simp del]

lemma enumerate-step: infinite S =⇒ enumerate S n < enumerate S (Suc n)
〈proof 〉

lemma enumerate-mono: m < n =⇒ infinite S =⇒ enumerate S m < enumerate
S n
〈proof 〉

lemma enumerate-mono-iff [simp]:
infinite S =⇒ enumerate S m < enumerate S n ←→ m < n
〈proof 〉

lemma enumerate-mono-le-iff [simp]:
infinite S =⇒ enumerate S m ≤ enumerate S n ←→ m ≤ n
〈proof 〉

lemma le-enumerate:
assumes S : infinite S
shows n ≤ enumerate S n
〈proof 〉

lemma infinite-enumerate:
assumes fS : infinite S

THEORY “Infinite-Set” 119

shows ∃ r ::nat⇒nat. strict-mono r ∧ (∀n. r n ∈ S)
〈proof 〉

lemma enumerate-Suc ′′:
fixes S :: ′a::wellorder set
assumes infinite S
shows enumerate S (Suc n) = (LEAST s. s ∈ S ∧ enumerate S n < s)
〈proof 〉

lemma enumerate-Ex:
fixes S :: nat set
assumes S : infinite S

and s: s ∈ S
shows ∃n. enumerate S n = s
〈proof 〉

lemma inj-enumerate:
fixes S :: ′a::wellorder set
assumes S : infinite S
shows inj (enumerate S)
〈proof 〉

To generalise this, we’d need a condition that all initial segments were
finite
lemma bij-enumerate:

fixes S :: nat set
assumes S : infinite S
shows bij-betw (enumerate S) UNIV S
〈proof 〉

lemma
fixes S :: nat set
assumes S : infinite S
shows range-enumerate: range (enumerate S) = S

and strict-mono-enumerate: strict-mono (enumerate S)
〈proof 〉

A pair of weird and wonderful lemmas from HOL Light.
lemma finite-transitivity-chain:

assumes finite A
and R:

∧
x. ¬ R x x

∧
x y z. [[R x y; R y z]] =⇒ R x z

and A:
∧

x. x ∈ A =⇒ ∃ y. y ∈ A ∧ R x y
shows A = {}
〈proof 〉

corollary Union-maximal-sets:
assumes finite F
shows

⋃
{T ∈ F . ∀U∈F . ¬ T ⊂ U} =

⋃
F

(is ?lhs = ?rhs)
〈proof 〉

THEORY “Infinite-Set” 120

20.5 Properties of wellorder-class.enumerate on finite sets
lemma finite-enumerate-in-set: [[finite S ; n < card S]] =⇒ enumerate S n ∈ S
〈proof 〉

lemma finite-enumerate-step: [[finite S ; Suc n < card S]] =⇒ enumerate S n <
enumerate S (Suc n)
〈proof 〉

lemma finite-enumerate-mono: [[m < n; finite S ; n < card S]] =⇒ enumerate S m
< enumerate S n
〈proof 〉

lemma finite-enumerate-mono-iff [simp]:
[[finite S ; m < card S ; n < card S]] =⇒ enumerate S m < enumerate S n ←→ m

< n
〈proof 〉

lemma finite-le-enumerate:
assumes finite S n < card S
shows n ≤ enumerate S n
〈proof 〉

lemma finite-enumerate:
assumes fS : finite S
shows ∃ r ::nat⇒nat. strict-mono-on {..<card S} r ∧ (∀n<card S . r n ∈ S)
〈proof 〉

lemma finite-enumerate-Suc ′′:
fixes S :: ′a::wellorder set
assumes finite S Suc n < card S
shows enumerate S (Suc n) = (LEAST s. s ∈ S ∧ enumerate S n < s)
〈proof 〉

lemma finite-enumerate-initial-segment:
fixes S :: ′a::wellorder set
assumes finite S and n: n < card (S ∩ {..<s})
shows enumerate (S ∩ {..<s}) n = enumerate S n
〈proof 〉

lemma finite-enumerate-Ex:
fixes S :: ′a::wellorder set
assumes S : finite S

and s: s ∈ S
shows ∃n<card S . enumerate S n = s
〈proof 〉

lemma finite-enum-subset:
assumes

∧
i. i < card X =⇒ enumerate X i = enumerate Y i and finite X finite

Y card X ≤ card Y

THEORY “Countable-Set” 121

shows X ⊆ Y
〈proof 〉

lemma finite-enum-ext:
assumes

∧
i. i < card X =⇒ enumerate X i = enumerate Y i and finite X finite

Y card X = card Y
shows X = Y
〈proof 〉

lemma finite-bij-enumerate:
fixes S :: ′a::wellorder set
assumes S : finite S
shows bij-betw (enumerate S) {..<card S} S
〈proof 〉

lemma ex-bij-betw-strict-mono-card:
fixes M :: ′a::wellorder set
assumes finite M
obtains h where bij-betw h {..<card M} M and strict-mono-on {..<card M} h
〈proof 〉

end

21 Countable sets
theory Countable-Set
imports Countable Infinite-Set
begin

21.1 Predicate for countable sets
definition countable :: ′a set ⇒ bool where

countable S ←→ (∃ f :: ′a ⇒ nat. inj-on f S)

lemma countable-as-injective-image-subset: countable S ←→ (∃ f . ∃K ::nat set. S
= f ‘ K ∧ inj-on f K)
〈proof 〉

lemma countableE :
assumes S : countable S obtains f :: ′a ⇒ nat where inj-on f S
〈proof 〉

lemma countableI : inj-on (f :: ′a ⇒ nat) S =⇒ countable S
〈proof 〉

lemma countableI ′: inj-on (f :: ′a ⇒ ′b::countable) S =⇒ countable S
〈proof 〉

lemma countableE-bij:

THEORY “Countable-Set” 122

assumes S : countable S obtains f :: nat ⇒ ′a and C :: nat set where bij-betw
f C S
〈proof 〉

lemma countableI-bij: bij-betw f (C ::nat set) S =⇒ countable S
〈proof 〉

lemma countable-finite: finite S =⇒ countable S
〈proof 〉

lemma countableI-bij1 : bij-betw f A B =⇒ countable A =⇒ countable B
〈proof 〉

lemma countableI-bij2 : bij-betw f B A =⇒ countable A =⇒ countable B
〈proof 〉

lemma countable-iff-bij[simp]: bij-betw f A B =⇒ countable A ←→ countable B
〈proof 〉

lemma countable-subset: A ⊆ B =⇒ countable B =⇒ countable A
〈proof 〉

lemma countableI-type[intro, simp]: countable (A:: ′a :: countable set)
〈proof 〉

21.2 Enumerate a countable set
lemma countableE-infinite:

assumes countable S infinite S
obtains e :: ′a ⇒ nat where bij-betw e S UNIV
〈proof 〉

lemma countable-infiniteE ′:
assumes countable A infinite A
obtains g where bij-betw g (UNIV :: nat set) A
〈proof 〉

lemma countable-enum-cases:
assumes countable S
obtains (finite) f :: ′a ⇒ nat where finite S bij-betw f S {..<card S}

| (infinite) f :: ′a ⇒ nat where infinite S bij-betw f S UNIV
〈proof 〉

definition to-nat-on :: ′a set ⇒ ′a ⇒ nat where
to-nat-on S = (SOME f . if finite S then bij-betw f S {..< card S} else bij-betw f

S UNIV)

definition from-nat-into :: ′a set ⇒ nat ⇒ ′a where
from-nat-into S n = (if n ∈ to-nat-on S ‘ S then inv-into S (to-nat-on S) n else

THEORY “Countable-Set” 123

SOME s. s∈S)

lemma to-nat-on-finite: finite S =⇒ bij-betw (to-nat-on S) S {..< card S}
〈proof 〉

lemma to-nat-on-infinite: countable S =⇒ infinite S =⇒ bij-betw (to-nat-on S) S
UNIV
〈proof 〉

lemma bij-betw-from-nat-into-finite: finite S =⇒ bij-betw (from-nat-into S) {..<
card S} S
〈proof 〉

lemma bij-betw-from-nat-into: countable S =⇒ infinite S =⇒ bij-betw (from-nat-into
S) UNIV S
〈proof 〉

The sum/product over the enumeration of a finite set equals simply the
sum/product over the set
context comm-monoid-set
begin

lemma card-from-nat-into:
F (λi. h (from-nat-into A i)) {..<card A} = F h A
〈proof 〉

end

lemma countable-as-injective-image:
assumes countable A infinite A
obtains f :: nat ⇒ ′a where A = range f inj f
〈proof 〉

lemma inj-on-to-nat-on[intro]: countable A =⇒ inj-on (to-nat-on A) A
〈proof 〉

lemma to-nat-on-inj[simp]:
countable A =⇒ a ∈ A =⇒ b ∈ A =⇒ to-nat-on A a = to-nat-on A b ←→ a = b
〈proof 〉

lemma from-nat-into-to-nat-on[simp]: countable A =⇒ a ∈ A =⇒ from-nat-into
A (to-nat-on A a) = a
〈proof 〉

lemma subset-range-from-nat-into: countable A =⇒ A ⊆ range (from-nat-into A)
〈proof 〉

lemma from-nat-into: A 6= {} =⇒ from-nat-into A n ∈ A
〈proof 〉

THEORY “Countable-Set” 124

lemma range-from-nat-into-subset: A 6= {} =⇒ range (from-nat-into A) ⊆ A
〈proof 〉

lemma range-from-nat-into[simp]: A 6= {} =⇒ countable A =⇒ range (from-nat-into
A) = A
〈proof 〉

lemma image-to-nat-on: countable A =⇒ infinite A =⇒ to-nat-on A ‘ A = UNIV
〈proof 〉

lemma to-nat-on-surj: countable A =⇒ infinite A =⇒ ∃ a∈A. to-nat-on A a = n
〈proof 〉

lemma to-nat-on-from-nat-into[simp]: n ∈ to-nat-on A ‘ A =⇒ to-nat-on A (from-nat-into
A n) = n
〈proof 〉

lemma to-nat-on-from-nat-into-infinite[simp]:
countable A =⇒ infinite A =⇒ to-nat-on A (from-nat-into A n) = n
〈proof 〉

lemma from-nat-into-inj:
countable A =⇒ m ∈ to-nat-on A ‘ A =⇒ n ∈ to-nat-on A ‘ A =⇒

from-nat-into A m = from-nat-into A n ←→ m = n
〈proof 〉

lemma from-nat-into-inj-infinite[simp]:
countable A =⇒ infinite A =⇒ from-nat-into A m = from-nat-into A n ←→ m

= n
〈proof 〉

lemma eq-from-nat-into-iff :
countable A =⇒ x ∈ A =⇒ i ∈ to-nat-on A ‘ A =⇒ x = from-nat-into A i ←→

i = to-nat-on A x
〈proof 〉

lemma from-nat-into-surj: countable A =⇒ a ∈ A =⇒ ∃n. from-nat-into A n =
a
〈proof 〉

lemma from-nat-into-inject[simp]:
A 6= {} =⇒ countable A =⇒ B 6= {} =⇒ countable B =⇒ from-nat-into A =

from-nat-into B ←→ A = B
〈proof 〉

lemma inj-on-from-nat-into: inj-on from-nat-into ({A. A 6= {} ∧ countable A})
〈proof 〉

THEORY “Countable-Set” 125

21.3 Closure properties of countability
lemma countable-SIGMA[intro, simp]:

countable I =⇒ (
∧

i. i ∈ I =⇒ countable (A i)) =⇒ countable (SIGMA i : I . A
i)
〈proof 〉

lemma countable-image[intro, simp]:
assumes countable A
shows countable (f‘A)
〈proof 〉

lemma countable-image-inj-on: countable (f ‘ A) =⇒ inj-on f A =⇒ countable A
〈proof 〉

lemma countable-image-inj-Int-vimage:
[[inj-on f S ; countable A]] =⇒ countable (S ∩ f −‘ A)
〈proof 〉

lemma countable-image-inj-gen:
[[inj-on f S ; countable A]] =⇒ countable {x ∈ S . f x ∈ A}
〈proof 〉

lemma countable-image-inj-eq:
inj-on f S =⇒ countable(f ‘ S) ←→ countable S
〈proof 〉

lemma countable-image-inj:
[[countable A; inj f]] =⇒ countable {x. f x ∈ A}
〈proof 〉

lemma countable-UN [intro, simp]:
fixes I :: ′i set and A :: ′i => ′a set
assumes I : countable I
assumes A:

∧
i. i ∈ I =⇒ countable (A i)

shows countable (
⋃

i∈I . A i)
〈proof 〉

lemma countable-Un[intro]: countable A =⇒ countable B =⇒ countable (A ∪ B)
〈proof 〉

lemma countable-Un-iff [simp]: countable (A ∪ B) ←→ countable A ∧ countable B
〈proof 〉

lemma countable-Plus[intro, simp]:
countable A =⇒ countable B =⇒ countable (A <+> B)
〈proof 〉

lemma countable-empty[intro, simp]: countable {}
〈proof 〉

THEORY “Countable-Set” 126

lemma countable-insert[intro, simp]: countable A =⇒ countable (insert a A)
〈proof 〉

lemma countable-Int1 [intro, simp]: countable A =⇒ countable (A ∩ B)
〈proof 〉

lemma countable-Int2 [intro, simp]: countable B =⇒ countable (A ∩ B)
〈proof 〉

lemma countable-INT [intro, simp]: i ∈ I =⇒ countable (A i) =⇒ countable (
⋂

i∈I .
A i)
〈proof 〉

lemma countable-Diff [intro, simp]: countable A =⇒ countable (A − B)
〈proof 〉

lemma countable-insert-eq [simp]: countable (insert x A) = countable A
〈proof 〉

lemma countable-vimage: B ⊆ range f =⇒ countable (f −‘ B) =⇒ countable B
〈proof 〉

lemma surj-countable-vimage: surj f =⇒ countable (f −‘ B) =⇒ countable B
〈proof 〉

lemma countable-Collect[simp]: countable A =⇒ countable {a ∈ A. ϕ a}
〈proof 〉

lemma countable-Image:
assumes

∧
y. y ∈ Y =⇒ countable (X ‘‘ {y})

assumes countable Y
shows countable (X ‘‘ Y)
〈proof 〉

lemma countable-relpow:
fixes X :: ′a rel
assumes Image-X :

∧
Y . countable Y =⇒ countable (X ‘‘ Y)

assumes Y : countable Y
shows countable ((X ^^ i) ‘‘ Y)
〈proof 〉

lemma countable-funpow:
fixes f :: ′a set ⇒ ′a set
assumes

∧
A. countable A =⇒ countable (f A)

and countable A
shows countable ((f ^^ n) A)
〈proof 〉

THEORY “Countable-Set” 127

lemma countable-rtrancl:
(
∧

Y . countable Y =⇒ countable (X ‘‘ Y)) =⇒ countable Y =⇒ countable (X∗

‘‘ Y)
〈proof 〉

lemma countable-lists[intro, simp]:
assumes A: countable A shows countable (lists A)
〈proof 〉

lemma Collect-finite-eq-lists: Collect finite = set ‘ lists UNIV
〈proof 〉

lemma countable-Collect-finite: countable (Collect (finite:: ′a::countable set⇒bool))
〈proof 〉

lemma countable-int: countable �
〈proof 〉

lemma countable-rat: countable �
〈proof 〉

lemma Collect-finite-subset-eq-lists: {A. finite A ∧ A ⊆ T} = set ‘ lists T
〈proof 〉

lemma countable-Collect-finite-subset:
countable T =⇒ countable {A. finite A ∧ A ⊆ T}
〈proof 〉

lemma countable-Fpow: countable S =⇒ countable (Fpow S)
〈proof 〉

lemma countable-set-option [simp]: countable (set-option x)
〈proof 〉

21.4 Misc lemmas
lemma countable-subset-image:

countable B ∧ B ⊆ (f ‘ A) ←→ (∃A ′. countable A ′ ∧ A ′ ⊆ A ∧ (B = f ‘ A ′))
(is ?lhs = ?rhs)

〈proof 〉

lemma ex-subset-image-inj:
(∃T . T ⊆ f ‘ S ∧ P T) ←→ (∃T . T ⊆ S ∧ inj-on f T ∧ P (f ‘ T))
〈proof 〉

lemma all-subset-image-inj:
(∀T . T ⊆ f ‘ S −→ P T) ←→ (∀T . T ⊆ S ∧ inj-on f T −→ P(f ‘ T))
〈proof 〉

THEORY “Countable-Set” 128

lemma ex-countable-subset-image-inj:
(∃T . countable T ∧ T ⊆ f ‘ S ∧ P T) ←→
(∃T . countable T ∧ T ⊆ S ∧ inj-on f T ∧ P (f ‘ T))
〈proof 〉

lemma all-countable-subset-image-inj:
(∀T . countable T ∧ T ⊆ f ‘ S −→ P T) ←→ (∀T . countable T ∧ T ⊆ S ∧

inj-on f T −→P(f ‘ T))
〈proof 〉

lemma ex-countable-subset-image:
(∃T . countable T ∧ T ⊆ f ‘ S ∧ P T) ←→ (∃T . countable T ∧ T ⊆ S ∧ P (f

‘ T))
〈proof 〉

lemma all-countable-subset-image:
(∀T . countable T ∧ T ⊆ f ‘ S −→ P T) ←→ (∀T . countable T ∧ T ⊆ S −→

P(f ‘ T))
〈proof 〉

lemma countable-image-eq:
countable(f ‘ S) ←→ (∃T . countable T ∧ T ⊆ S ∧ f ‘ S = f ‘ T)
〈proof 〉

lemma countable-image-eq-inj:
countable(f ‘ S) ←→ (∃T . countable T ∧ T ⊆ S ∧ f ‘ S = f ‘ T ∧ inj-on f T)
〈proof 〉

lemma infinite-countable-subset ′:
assumes X : infinite X shows ∃C⊆X . countable C ∧ infinite C
〈proof 〉

lemma countable-all:
assumes S : countable S
shows (∀ s∈S . P s) ←→ (∀n::nat. from-nat-into S n ∈ S −→ P (from-nat-into

S n))
〈proof 〉

lemma finite-sequence-to-countable-set:
assumes countable X
obtains F where

∧
i. F i ⊆ X

∧
i. F i ⊆ F (Suc i)

∧
i. finite (F i) (

⋃
i. F i)

= X
〈proof 〉

lemma transfer-countable[transfer-rule]:
bi-unique R =⇒ rel-fun (rel-set R) (=) countable countable
〈proof 〉

THEORY “Countable-Complete-Lattices” 129

21.5 Uncountable
abbreviation uncountable where

uncountable A ≡ ¬ countable A

lemma uncountable-def : uncountable A ←→ A 6= {} ∧ ¬ (∃ f ::(nat ⇒ ′a). range f
= A)
〈proof 〉

lemma uncountable-bij-betw: bij-betw f A B =⇒ uncountable B =⇒ uncountable A
〈proof 〉

lemma uncountable-infinite: uncountable A =⇒ infinite A
〈proof 〉

lemma uncountable-minus-countable:
uncountable A =⇒ countable B =⇒ uncountable (A − B)
〈proof 〉

lemma countable-Diff-eq [simp]: countable (A − {x}) = countable A
〈proof 〉

Every infinite set can be covered by a pairwise disjoint family of infinite
sets. This version doesn’t achieve equality, as it only covers a countable
subset
lemma infinite-infinite-partition:

assumes infinite A
obtains C :: nat ⇒ ′a set

where pairwise (λi j. disjnt (C i) (C j)) UNIV (
⋃

i. C i) ⊆ A
∧

i. infinite (C
i)
〈proof 〉

end

22 Countable Complete Lattices
theory Countable-Complete-Lattices

imports Main Countable-Set
begin

lemma UNIV-nat-eq: UNIV = insert 0 (range Suc)
〈proof 〉

class countable-complete-lattice = lattice + Inf + Sup + bot + top +
assumes ccInf-lower : countable A =⇒ x ∈ A =⇒ Inf A ≤ x
assumes ccInf-greatest: countable A =⇒ (

∧
x. x ∈ A =⇒ z ≤ x) =⇒ z ≤ Inf A

assumes ccSup-upper : countable A =⇒ x ∈ A =⇒ x ≤ Sup A
assumes ccSup-least: countable A =⇒ (

∧
x. x ∈ A =⇒ x ≤ z) =⇒ Sup A ≤ z

assumes ccInf-empty [simp]: Inf {} = top

THEORY “Countable-Complete-Lattices” 130

assumes ccSup-empty [simp]: Sup {} = bot
begin

subclass bounded-lattice
〈proof 〉

lemma ccINF-lower : countable A =⇒ i ∈ A =⇒ (INF i ∈ A. f i) ≤ f i
〈proof 〉

lemma ccINF-greatest: countable A =⇒ (
∧

i. i ∈ A =⇒ u ≤ f i) =⇒ u ≤ (INF i
∈ A. f i)
〈proof 〉

lemma ccSUP-upper : countable A =⇒ i ∈ A =⇒ f i ≤ (SUP i ∈ A. f i)
〈proof 〉

lemma ccSUP-least: countable A =⇒ (
∧

i. i ∈ A =⇒ f i ≤ u) =⇒ (SUP i ∈ A. f
i) ≤ u
〈proof 〉

lemma ccInf-lower2 : countable A =⇒ u ∈ A =⇒ u ≤ v =⇒ Inf A ≤ v
〈proof 〉

lemma ccINF-lower2 : countable A =⇒ i ∈ A =⇒ f i ≤ u =⇒ (INF i ∈ A. f i) ≤
u
〈proof 〉

lemma ccSup-upper2 : countable A =⇒ u ∈ A =⇒ v ≤ u =⇒ v ≤ Sup A
〈proof 〉

lemma ccSUP-upper2 : countable A =⇒ i ∈ A =⇒ u ≤ f i =⇒ u ≤ (SUP i ∈ A.
f i)
〈proof 〉

lemma le-ccInf-iff : countable A =⇒ b ≤ Inf A ←→ (∀ a∈A. b ≤ a)
〈proof 〉

lemma le-ccINF-iff : countable A =⇒ u ≤ (INF i ∈ A. f i) ←→ (∀ i∈A. u ≤ f i)
〈proof 〉

lemma ccSup-le-iff : countable A =⇒ Sup A ≤ b ←→ (∀ a∈A. a ≤ b)
〈proof 〉

lemma ccSUP-le-iff : countable A =⇒ (SUP i ∈ A. f i) ≤ u ←→ (∀ i∈A. f i ≤ u)
〈proof 〉

lemma ccInf-insert [simp]: countable A =⇒ Inf (insert a A) = inf a (Inf A)
〈proof 〉

THEORY “Countable-Complete-Lattices” 131

lemma ccINF-insert [simp]: countable A =⇒ (INF x∈insert a A. f x) = inf (f a)
(Inf (f ‘ A))
〈proof 〉

lemma ccSup-insert [simp]: countable A =⇒ Sup (insert a A) = sup a (Sup A)
〈proof 〉

lemma ccSUP-insert [simp]: countable A =⇒ (SUP x∈insert a A. f x) = sup (f a)
(Sup (f ‘ A))
〈proof 〉

lemma ccINF-empty [simp]: (INF x∈{}. f x) = top
〈proof 〉

lemma ccSUP-empty [simp]: (SUP x∈{}. f x) = bot
〈proof 〉

lemma ccInf-superset-mono: countable A =⇒ B ⊆ A =⇒ Inf A ≤ Inf B
〈proof 〉

lemma ccSup-subset-mono: countable B =⇒ A ⊆ B =⇒ Sup A ≤ Sup B
〈proof 〉

lemma ccInf-mono:
assumes [intro]: countable B countable A
assumes

∧
b. b ∈ B =⇒ ∃ a∈A. a ≤ b

shows Inf A ≤ Inf B
〈proof 〉

lemma ccINF-mono:
countable A =⇒ countable B =⇒ (

∧
m. m ∈ B =⇒ ∃n∈A. f n ≤ g m) =⇒ (INF

n∈A. f n) ≤ (INF n∈B. g n)
〈proof 〉

lemma ccSup-mono:
assumes [intro]: countable B countable A
assumes

∧
a. a ∈ A =⇒ ∃ b∈B. a ≤ b

shows Sup A ≤ Sup B
〈proof 〉

lemma ccSUP-mono:
countable A =⇒ countable B =⇒ (

∧
n. n ∈ A =⇒ ∃m∈B. f n ≤ g m) =⇒ (SUP

n∈A. f n) ≤ (SUP n∈B. g n)
〈proof 〉

lemma ccINF-superset-mono:
countable A =⇒ B ⊆ A =⇒ (

∧
x. x ∈ B =⇒ f x ≤ g x) =⇒ (INF x∈A. f x) ≤

(INF x∈B. g x)
〈proof 〉

THEORY “Countable-Complete-Lattices” 132

lemma ccSUP-subset-mono:
countable B =⇒ A ⊆ B =⇒ (

∧
x. x ∈ A =⇒ f x ≤ g x) =⇒ (SUP x∈A. f x) ≤

(SUP x∈B. g x)
〈proof 〉

lemma less-eq-ccInf-inter : countable A =⇒ countable B =⇒ sup (Inf A) (Inf B)
≤ Inf (A ∩ B)
〈proof 〉

lemma ccSup-inter-less-eq: countable A =⇒ countable B =⇒ Sup (A ∩ B) ≤ inf
(Sup A) (Sup B)
〈proof 〉

lemma ccInf-union-distrib: countable A =⇒ countable B =⇒ Inf (A ∪ B) = inf
(Inf A) (Inf B)
〈proof 〉

lemma ccINF-union:
countable A =⇒ countable B =⇒ (INF i∈A ∪ B. M i) = inf (INF i∈A. M i)

(INF i∈B. M i)
〈proof 〉

lemma ccSup-union-distrib: countable A =⇒ countable B =⇒ Sup (A ∪ B) = sup
(Sup A) (Sup B)
〈proof 〉

lemma ccSUP-union:
countable A =⇒ countable B =⇒ (SUP i∈A ∪ B. M i) = sup (SUP i∈A. M i)

(SUP i∈B. M i)
〈proof 〉

lemma ccINF-inf-distrib: countable A =⇒ inf (INF a∈A. f a) (INF a∈A. g a) =
(INF a∈A. inf (f a) (g a))
〈proof 〉

lemma ccSUP-sup-distrib: countable A =⇒ sup (SUP a∈A. f a) (SUP a∈A. g a)
= (SUP a∈A. sup (f a) (g a))
〈proof 〉

lemma ccINF-const [simp]: A 6= {} =⇒ (INF i ∈ A. f) = f
〈proof 〉

lemma ccSUP-const [simp]: A 6= {} =⇒ (SUP i ∈ A. f) = f
〈proof 〉

lemma ccINF-top [simp]: (INF x∈A. top) = top
〈proof 〉

THEORY “Countable-Complete-Lattices” 133

lemma ccSUP-bot [simp]: (SUP x∈A. bot) = bot
〈proof 〉

lemma ccINF-commute: countable A =⇒ countable B =⇒ (INF i∈A. INF j∈B. f
i j) = (INF j∈B. INF i∈A. f i j)
〈proof 〉

lemma ccSUP-commute: countable A =⇒ countable B =⇒ (SUP i∈A. SUP j∈B.
f i j) = (SUP j∈B. SUP i∈A. f i j)
〈proof 〉

end

context
fixes a :: ′a::{countable-complete-lattice, linorder}

begin

lemma less-ccSup-iff : countable S =⇒ a < Sup S ←→ (∃ x∈S . a < x)
〈proof 〉

lemma less-ccSUP-iff : countable A =⇒ a < (SUP i∈A. f i) ←→ (∃ x∈A. a < f x)
〈proof 〉

lemma ccInf-less-iff : countable S =⇒ Inf S < a ←→ (∃ x∈S . x < a)
〈proof 〉

lemma ccINF-less-iff : countable A =⇒ (INF i∈A. f i) < a ←→ (∃ x∈A. f x < a)
〈proof 〉

end

class countable-complete-distrib-lattice = countable-complete-lattice +
assumes sup-ccInf : countable B =⇒ sup a (Inf B) = (INF b∈B. sup a b)
assumes inf-ccSup: countable B =⇒ inf a (Sup B) = (SUP b∈B. inf a b)

begin

lemma sup-ccINF :
countable B =⇒ sup a (INF b∈B. f b) = (INF b∈B. sup a (f b))
〈proof 〉

lemma inf-ccSUP:
countable B =⇒ inf a (SUP b∈B. f b) = (SUP b∈B. inf a (f b))
〈proof 〉

subclass distrib-lattice
〈proof 〉

lemma ccInf-sup:

THEORY “Countable-Complete-Lattices” 134

countable B =⇒ sup (Inf B) a = (INF b∈B. sup b a)
〈proof 〉

lemma ccSup-inf :
countable B =⇒ inf (Sup B) a = (SUP b∈B. inf b a)
〈proof 〉

lemma ccINF-sup:
countable B =⇒ sup (INF b∈B. f b) a = (INF b∈B. sup (f b) a)
〈proof 〉

lemma ccSUP-inf :
countable B =⇒ inf (SUP b∈B. f b) a = (SUP b∈B. inf (f b) a)
〈proof 〉

lemma ccINF-sup-distrib2 :
countable A =⇒ countable B =⇒ sup (INF a∈A. f a) (INF b∈B. g b) = (INF

a∈A. INF b∈B. sup (f a) (g b))
〈proof 〉

lemma ccSUP-inf-distrib2 :
countable A =⇒ countable B =⇒ inf (SUP a∈A. f a) (SUP b∈B. g b) = (SUP

a∈A. SUP b∈B. inf (f a) (g b))
〈proof 〉

context
fixes f :: ′a ⇒ ′b::countable-complete-lattice
assumes mono f

begin

lemma mono-ccInf :
countable A =⇒ f (Inf A) ≤ (INF x∈A. f x)
〈proof 〉

lemma mono-ccSup:
countable A =⇒ (SUP x∈A. f x) ≤ f (Sup A)
〈proof 〉

lemma mono-ccINF :
countable I =⇒ f (INF i ∈ I . A i) ≤ (INF x ∈ I . f (A x))
〈proof 〉

lemma mono-ccSUP:
countable I =⇒ (SUP x ∈ I . f (A x)) ≤ f (SUP i ∈ I . A i)
〈proof 〉

end

end

THEORY “Countable-Set-Type” 135

22.0.1 Instances of countable complete lattices
instance fun :: (type, countable-complete-lattice) countable-complete-lattice
〈proof 〉

subclass (in complete-lattice) countable-complete-lattice
〈proof 〉

subclass (in complete-distrib-lattice) countable-complete-distrib-lattice
〈proof 〉

end

23 Type of (at Most) Countable Sets
theory Countable-Set-Type
imports Countable-Set
begin

23.1 Cardinal stuff
context

includes cardinal-syntax
begin

lemma countable-card-of-nat: countable A ←→ |A| ≤o |UNIV ::nat set|
〈proof 〉

lemma countable-card-le-natLeq: countable A ←→ |A| ≤o natLeq
〈proof 〉

lemma countable-or-card-of :
assumes countable A
shows (finite A ∧ |A| <o |UNIV ::nat set|) ∨

(infinite A ∧ |A| =o |UNIV ::nat set|)
〈proof 〉

lemma countable-cases-card-of [elim]:
assumes countable A
obtains (Fin) finite A |A| <o |UNIV ::nat set|

| (Inf) infinite A |A| =o |UNIV ::nat set|
〈proof 〉

lemma countable-or :
countable A =⇒ (∃ f :: ′a⇒nat. finite A ∧ inj-on f A) ∨ (∃ f :: ′a⇒nat. infinite A
∧ bij-betw f A UNIV)
〈proof 〉

lemma countable-cases[elim]:

THEORY “Countable-Set-Type” 136

assumes countable A
obtains (Fin) f :: ′a⇒nat where finite A inj-on f A

| (Inf) f :: ′a⇒nat where infinite A bij-betw f A UNIV
〈proof 〉

lemma countable-ordLeq:
assumes |A| ≤o |B| and countable B
shows countable A
〈proof 〉

lemma countable-ordLess:
assumes AB: |A| <o |B| and B: countable B
shows countable A
〈proof 〉

end

23.2 The type of countable sets
typedef ′a cset = {A :: ′a set. countable A} morphisms rcset acset
〈proof 〉

setup-lifting type-definition-cset

declare
rcset-inverse[simp]
acset-inverse[Transfer .transferred, unfolded mem-Collect-eq, simp]
acset-inject[Transfer .transferred, unfolded mem-Collect-eq, simp]
rcset[Transfer .transferred, unfolded mem-Collect-eq, simp]

instantiation cset :: (type) {bounded-lattice-bot, distrib-lattice, minus}
begin

lift-definition bot-cset :: ′a cset is {} parametric empty-transfer 〈proof 〉

lift-definition less-eq-cset :: ′a cset ⇒ ′a cset ⇒ bool
is subset-eq parametric subset-transfer 〈proof 〉

definition less-cset :: ′a cset ⇒ ′a cset ⇒ bool
where xs < ys ≡ xs ≤ ys ∧ xs 6= (ys:: ′a cset)

lemma less-cset-transfer [transfer-rule]:
includes lifting-syntax
assumes [transfer-rule]: bi-unique A
shows ((pcr-cset A) ===> (pcr-cset A) ===> (=)) (⊂) (<)
〈proof 〉

lift-definition sup-cset :: ′a cset ⇒ ′a cset ⇒ ′a cset
is union parametric union-transfer 〈proof 〉

THEORY “Countable-Set-Type” 137

lift-definition inf-cset :: ′a cset ⇒ ′a cset ⇒ ′a cset
is inter parametric inter-transfer 〈proof 〉

lift-definition minus-cset :: ′a cset ⇒ ′a cset ⇒ ′a cset
is minus parametric Diff-transfer 〈proof 〉

instance 〈proof 〉

end

abbreviation cempty :: ′a cset where cempty ≡ bot
abbreviation csubset-eq :: ′a cset ⇒ ′a cset ⇒ bool where csubset-eq xs ys ≡ xs
≤ ys
abbreviation csubset :: ′a cset ⇒ ′a cset ⇒ bool where csubset xs ys ≡ xs < ys
abbreviation cUn :: ′a cset ⇒ ′a cset ⇒ ′a cset where cUn xs ys ≡ sup xs ys
abbreviation cInt :: ′a cset ⇒ ′a cset ⇒ ′a cset where cInt xs ys ≡ inf xs ys
abbreviation cDiff :: ′a cset ⇒ ′a cset ⇒ ′a cset where cDiff xs ys ≡ minus xs
ys

lift-definition cin :: ′a ⇒ ′a cset ⇒ bool is (∈) parametric member-transfer
〈proof 〉

lift-definition cinsert :: ′a⇒ ′a cset ⇒ ′a cset is insert parametric Lifting-Set.insert-transfer
〈proof 〉

abbreviation csingle :: ′a ⇒ ′a cset where csingle x ≡ cinsert x cempty
lift-definition cimage :: (′a ⇒ ′b) ⇒ ′a cset ⇒ ′b cset is (‘) parametric im-
age-transfer
〈proof 〉

lift-definition cBall :: ′a cset ⇒ (′a⇒ bool)⇒ bool is Ball parametric Ball-transfer
〈proof 〉
lift-definition cBex :: ′a cset ⇒ (′a⇒ bool)⇒ bool is Bex parametric Bex-transfer
〈proof 〉
lift-definition cUnion :: ′a cset cset ⇒ ′a cset is Union parametric Union-transfer
〈proof 〉

abbreviation (input) cUNION :: ′a cset ⇒ (′a ⇒ ′b cset) ⇒ ′b cset
where cUNION A f ≡ cUnion (cimage f A)

lemma Union-conv-UNION :
⋃

A =
⋃
(id ‘ A)

〈proof 〉

lemmas cset-eqI = set-eqI [Transfer .transferred]
lemmas cset-eq-iff [no-atp] = set-eq-iff [Transfer .transferred]
lemmas cBallI [intro!] = ballI [Transfer .transferred]
lemmas cbspec[dest?] = bspec[Transfer .transferred]
lemmas cBallE [elim] = ballE [Transfer .transferred]
lemmas cBexI [intro] = bexI [Transfer .transferred]
lemmas rev-cBexI [intro?] = rev-bexI [Transfer .transferred]
lemmas cBexCI = bexCI [Transfer .transferred]
lemmas cBexE [elim!] = bexE [Transfer .transferred]

THEORY “Countable-Set-Type” 138

lemmas cBall-triv[simp] = ball-triv[Transfer .transferred]
lemmas cBex-triv[simp] = bex-triv[Transfer .transferred]
lemmas cBex-triv-one-point1 [simp] = bex-triv-one-point1 [Transfer .transferred]
lemmas cBex-triv-one-point2 [simp] = bex-triv-one-point2 [Transfer .transferred]
lemmas cBex-one-point1 [simp] = bex-one-point1 [Transfer .transferred]
lemmas cBex-one-point2 [simp] = bex-one-point2 [Transfer .transferred]
lemmas cBall-one-point1 [simp] = ball-one-point1 [Transfer .transferred]
lemmas cBall-one-point2 [simp] = ball-one-point2 [Transfer .transferred]
lemmas cBall-conj-distrib = ball-conj-distrib[Transfer .transferred]
lemmas cBex-disj-distrib = bex-disj-distrib[Transfer .transferred]
lemmas cBall-cong = ball-cong[Transfer .transferred]
lemmas cBex-cong = bex-cong[Transfer .transferred]
lemmas csubsetI [intro!] = subsetI [Transfer .transferred]
lemmas csubsetD[elim, intro?] = subsetD[Transfer .transferred]
lemmas rev-csubsetD[no-atp,intro?] = rev-subsetD[Transfer .transferred]
lemmas csubsetCE [no-atp,elim] = subsetCE [Transfer .transferred]
lemmas csubset-eq[no-atp] = subset-eq[Transfer .transferred]
lemmas contra-csubsetD[no-atp] = contra-subsetD[Transfer .transferred]
lemmas csubset-refl = subset-refl[Transfer .transferred]
lemmas csubset-trans = subset-trans[Transfer .transferred]
lemmas cset-rev-mp = rev-subsetD[Transfer .transferred]
lemmas cset-mp = subsetD[Transfer .transferred]
lemmas csubset-not-fsubset-eq[code] = subset-not-subset-eq[Transfer .transferred]
lemmas eq-cmem-trans = eq-mem-trans[Transfer .transferred]
lemmas csubset-antisym[intro!] = subset-antisym[Transfer .transferred]
lemmas cequalityD1 = equalityD1 [Transfer .transferred]
lemmas cequalityD2 = equalityD2 [Transfer .transferred]
lemmas cequalityE = equalityE [Transfer .transferred]
lemmas cequalityCE [elim] = equalityCE [Transfer .transferred]
lemmas eqcset-imp-iff = eqset-imp-iff [Transfer .transferred]
lemmas eqcelem-imp-iff = eqelem-imp-iff [Transfer .transferred]
lemmas cempty-iff [simp] = empty-iff [Transfer .transferred]
lemmas cempty-fsubsetI [iff] = empty-subsetI [Transfer .transferred]
lemmas equals-cemptyI = equals0I [Transfer .transferred]
lemmas equals-cemptyD = equals0D[Transfer .transferred]
lemmas cBall-cempty[simp] = ball-empty[Transfer .transferred]
lemmas cBex-cempty[simp] = bex-empty[Transfer .transferred]
lemmas cInt-iff [simp] = Int-iff [Transfer .transferred]
lemmas cIntI [intro!] = IntI [Transfer .transferred]
lemmas cIntD1 = IntD1 [Transfer .transferred]
lemmas cIntD2 = IntD2 [Transfer .transferred]
lemmas cIntE [elim!] = IntE [Transfer .transferred]
lemmas cUn-iff [simp] = Un-iff [Transfer .transferred]
lemmas cUnI1 [elim?] = UnI1 [Transfer .transferred]
lemmas cUnI2 [elim?] = UnI2 [Transfer .transferred]
lemmas cUnCI [intro!] = UnCI [Transfer .transferred]
lemmas cuUnE [elim!] = UnE [Transfer .transferred]
lemmas cDiff-iff [simp] = Diff-iff [Transfer .transferred]
lemmas cDiffI [intro!] = DiffI [Transfer .transferred]

THEORY “Countable-Set-Type” 139

lemmas cDiffD1 = DiffD1 [Transfer .transferred]
lemmas cDiffD2 = DiffD2 [Transfer .transferred]
lemmas cDiffE [elim!] = DiffE [Transfer .transferred]
lemmas cinsert-iff [simp] = insert-iff [Transfer .transferred]
lemmas cinsertI1 = insertI1 [Transfer .transferred]
lemmas cinsertI2 = insertI2 [Transfer .transferred]
lemmas cinsertE [elim!] = insertE [Transfer .transferred]
lemmas cinsertCI [intro!] = insertCI [Transfer .transferred]
lemmas csubset-cinsert-iff = subset-insert-iff [Transfer .transferred]
lemmas cinsert-ident = insert-ident[Transfer .transferred]
lemmas csingletonI [intro!,no-atp] = singletonI [Transfer .transferred]
lemmas csingletonD[dest!,no-atp] = singletonD[Transfer .transferred]
lemmas fsingletonE = csingletonD [elim-format]
lemmas csingleton-iff = singleton-iff [Transfer .transferred]
lemmas csingleton-inject[dest!] = singleton-inject[Transfer .transferred]
lemmas csingleton-finsert-inj-eq[iff ,no-atp] = singleton-insert-inj-eq[Transfer .transferred]
lemmas csingleton-finsert-inj-eq ′[iff ,no-atp] = singleton-insert-inj-eq ′[Transfer .transferred]
lemmas csubset-csingletonD = subset-singletonD[Transfer .transferred]
lemmas cDiff-single-cinsert = Diff-single-insert[Transfer .transferred]
lemmas cdoubleton-eq-iff = doubleton-eq-iff [Transfer .transferred]
lemmas cUn-csingleton-iff = Un-singleton-iff [Transfer .transferred]
lemmas csingleton-cUn-iff = singleton-Un-iff [Transfer .transferred]
lemmas cimage-eqI [simp, intro] = image-eqI [Transfer .transferred]
lemmas cimageI = imageI [Transfer .transferred]
lemmas rev-cimage-eqI = rev-image-eqI [Transfer .transferred]
lemmas cimageE [elim!] = imageE [Transfer .transferred]
lemmas Compr-cimage-eq = Compr-image-eq[Transfer .transferred]
lemmas cimage-cUn = image-Un[Transfer .transferred]
lemmas cimage-iff = image-iff [Transfer .transferred]
lemmas cimage-csubset-iff [no-atp] = image-subset-iff [Transfer .transferred]
lemmas cimage-csubsetI = image-subsetI [Transfer .transferred]
lemmas cimage-ident[simp] = image-ident[Transfer .transferred]
lemmas if-split-cin1 = if-split-mem1 [Transfer .transferred]
lemmas if-split-cin2 = if-split-mem2 [Transfer .transferred]
lemmas cpsubsetI [intro!,no-atp] = psubsetI [Transfer .transferred]
lemmas cpsubsetE [elim!,no-atp] = psubsetE [Transfer .transferred]
lemmas cpsubset-finsert-iff = psubset-insert-iff [Transfer .transferred]
lemmas cpsubset-eq = psubset-eq[Transfer .transferred]
lemmas cpsubset-imp-fsubset = psubset-imp-subset[Transfer .transferred]
lemmas cpsubset-trans = psubset-trans[Transfer .transferred]
lemmas cpsubsetD = psubsetD[Transfer .transferred]
lemmas cpsubset-csubset-trans = psubset-subset-trans[Transfer .transferred]
lemmas csubset-cpsubset-trans = subset-psubset-trans[Transfer .transferred]
lemmas cpsubset-imp-ex-fmem = psubset-imp-ex-mem[Transfer .transferred]
lemmas csubset-cinsertI = subset-insertI [Transfer .transferred]
lemmas csubset-cinsertI2 = subset-insertI2 [Transfer .transferred]
lemmas csubset-cinsert = subset-insert[Transfer .transferred]
lemmas cUn-upper1 = Un-upper1 [Transfer .transferred]
lemmas cUn-upper2 = Un-upper2 [Transfer .transferred]

THEORY “Countable-Set-Type” 140

lemmas cUn-least = Un-least[Transfer .transferred]
lemmas cInt-lower1 = Int-lower1 [Transfer .transferred]
lemmas cInt-lower2 = Int-lower2 [Transfer .transferred]
lemmas cInt-greatest = Int-greatest[Transfer .transferred]
lemmas cDiff-csubset = Diff-subset[Transfer .transferred]
lemmas cDiff-csubset-conv = Diff-subset-conv[Transfer .transferred]
lemmas csubset-cempty[simp] = subset-empty[Transfer .transferred]
lemmas not-cpsubset-cempty[iff] = not-psubset-empty[Transfer .transferred]
lemmas cinsert-is-cUn = insert-is-Un[Transfer .transferred]
lemmas cinsert-not-cempty[simp] = insert-not-empty[Transfer .transferred]
lemmas cempty-not-cinsert = empty-not-insert[Transfer .transferred]
lemmas cinsert-absorb = insert-absorb[Transfer .transferred]
lemmas cinsert-absorb2 [simp] = insert-absorb2 [Transfer .transferred]
lemmas cinsert-commute = insert-commute[Transfer .transferred]
lemmas cinsert-csubset[simp] = insert-subset[Transfer .transferred]
lemmas cinsert-cinter-cinsert[simp] = insert-inter-insert[Transfer .transferred]
lemmas cinsert-disjoint[simp,no-atp] = insert-disjoint[Transfer .transferred]
lemmas disjoint-cinsert[simp,no-atp] = disjoint-insert[Transfer .transferred]
lemmas cimage-cempty[simp] = image-empty[Transfer .transferred]
lemmas cimage-cinsert[simp] = image-insert[Transfer .transferred]
lemmas cimage-constant = image-constant[Transfer .transferred]
lemmas cimage-constant-conv = image-constant-conv[Transfer .transferred]
lemmas cimage-cimage = image-image[Transfer .transferred]
lemmas cinsert-cimage[simp] = insert-image[Transfer .transferred]
lemmas cimage-is-cempty[iff] = image-is-empty[Transfer .transferred]
lemmas cempty-is-cimage[iff] = empty-is-image[Transfer .transferred]
lemmas cimage-cong = image-cong[Transfer .transferred]
lemmas cimage-cInt-csubset = image-Int-subset[Transfer .transferred]
lemmas cimage-cDiff-csubset = image-diff-subset[Transfer .transferred]
lemmas cInt-absorb = Int-absorb[Transfer .transferred]
lemmas cInt-left-absorb = Int-left-absorb[Transfer .transferred]
lemmas cInt-commute = Int-commute[Transfer .transferred]
lemmas cInt-left-commute = Int-left-commute[Transfer .transferred]
lemmas cInt-assoc = Int-assoc[Transfer .transferred]
lemmas cInt-ac = Int-ac[Transfer .transferred]
lemmas cInt-absorb1 = Int-absorb1 [Transfer .transferred]
lemmas cInt-absorb2 = Int-absorb2 [Transfer .transferred]
lemmas cInt-cempty-left = Int-empty-left[Transfer .transferred]
lemmas cInt-cempty-right = Int-empty-right[Transfer .transferred]
lemmas disjoint-iff-cnot-equal = disjoint-iff-not-equal[Transfer .transferred]
lemmas cInt-cUn-distrib = Int-Un-distrib[Transfer .transferred]
lemmas cInt-cUn-distrib2 = Int-Un-distrib2 [Transfer .transferred]
lemmas cInt-csubset-iff [no-atp, simp] = Int-subset-iff [Transfer .transferred]
lemmas cUn-absorb = Un-absorb[Transfer .transferred]
lemmas cUn-left-absorb = Un-left-absorb[Transfer .transferred]
lemmas cUn-commute = Un-commute[Transfer .transferred]
lemmas cUn-left-commute = Un-left-commute[Transfer .transferred]
lemmas cUn-assoc = Un-assoc[Transfer .transferred]
lemmas cUn-ac = Un-ac[Transfer .transferred]

THEORY “Countable-Set-Type” 141

lemmas cUn-absorb1 = Un-absorb1 [Transfer .transferred]
lemmas cUn-absorb2 = Un-absorb2 [Transfer .transferred]
lemmas cUn-cempty-left = Un-empty-left[Transfer .transferred]
lemmas cUn-cempty-right = Un-empty-right[Transfer .transferred]
lemmas cUn-cinsert-left[simp] = Un-insert-left[Transfer .transferred]
lemmas cUn-cinsert-right[simp] = Un-insert-right[Transfer .transferred]
lemmas cInt-cinsert-left = Int-insert-left[Transfer .transferred]
lemmas cInt-cinsert-left-if0 [simp] = Int-insert-left-if0 [Transfer .transferred]
lemmas cInt-cinsert-left-if1 [simp] = Int-insert-left-if1 [Transfer .transferred]
lemmas cInt-cinsert-right = Int-insert-right[Transfer .transferred]
lemmas cInt-cinsert-right-if0 [simp] = Int-insert-right-if0 [Transfer .transferred]
lemmas cInt-cinsert-right-if1 [simp] = Int-insert-right-if1 [Transfer .transferred]
lemmas cUn-cInt-distrib = Un-Int-distrib[Transfer .transferred]
lemmas cUn-cInt-distrib2 = Un-Int-distrib2 [Transfer .transferred]
lemmas cUn-cInt-crazy = Un-Int-crazy[Transfer .transferred]
lemmas csubset-cUn-eq = subset-Un-eq[Transfer .transferred]
lemmas cUn-cempty[iff] = Un-empty[Transfer .transferred]
lemmas cUn-csubset-iff [no-atp, simp] = Un-subset-iff [Transfer .transferred]
lemmas cUn-cDiff-cInt = Un-Diff-Int[Transfer .transferred]
lemmas cDiff-cInt2 = Diff-Int2 [Transfer .transferred]
lemmas cUn-cInt-assoc-eq = Un-Int-assoc-eq[Transfer .transferred]
lemmas cBall-cUn = ball-Un[Transfer .transferred]
lemmas cBex-cUn = bex-Un[Transfer .transferred]
lemmas cDiff-eq-cempty-iff [simp,no-atp] = Diff-eq-empty-iff [Transfer .transferred]
lemmas cDiff-cancel[simp] = Diff-cancel[Transfer .transferred]
lemmas cDiff-idemp[simp] = Diff-idemp[Transfer .transferred]
lemmas cDiff-triv = Diff-triv[Transfer .transferred]
lemmas cempty-cDiff [simp] = empty-Diff [Transfer .transferred]
lemmas cDiff-cempty[simp] = Diff-empty[Transfer .transferred]
lemmas cDiff-cinsert0 [simp,no-atp] = Diff-insert0 [Transfer .transferred]
lemmas cDiff-cinsert = Diff-insert[Transfer .transferred]
lemmas cDiff-cinsert2 = Diff-insert2 [Transfer .transferred]
lemmas cinsert-cDiff-if = insert-Diff-if [Transfer .transferred]
lemmas cinsert-cDiff1 [simp] = insert-Diff1 [Transfer .transferred]
lemmas cinsert-cDiff-single[simp] = insert-Diff-single[Transfer .transferred]
lemmas cinsert-cDiff = insert-Diff [Transfer .transferred]
lemmas cDiff-cinsert-absorb = Diff-insert-absorb[Transfer .transferred]
lemmas cDiff-disjoint[simp] = Diff-disjoint[Transfer .transferred]
lemmas cDiff-partition = Diff-partition[Transfer .transferred]
lemmas double-cDiff = double-diff [Transfer .transferred]
lemmas cUn-cDiff-cancel[simp] = Un-Diff-cancel[Transfer .transferred]
lemmas cUn-cDiff-cancel2 [simp] = Un-Diff-cancel2 [Transfer .transferred]
lemmas cDiff-cUn = Diff-Un[Transfer .transferred]
lemmas cDiff-cInt = Diff-Int[Transfer .transferred]
lemmas cUn-cDiff = Un-Diff [Transfer .transferred]
lemmas cInt-cDiff = Int-Diff [Transfer .transferred]
lemmas cDiff-cInt-distrib = Diff-Int-distrib[Transfer .transferred]
lemmas cDiff-cInt-distrib2 = Diff-Int-distrib2 [Transfer .transferred]
lemmas cset-eq-csubset = set-eq-subset[Transfer .transferred]

THEORY “Countable-Set-Type” 142

lemmas csubset-iff [no-atp] = subset-iff [Transfer .transferred]
lemmas csubset-iff-pfsubset-eq = subset-iff-psubset-eq[Transfer .transferred]
lemmas all-not-cin-conv[simp] = all-not-in-conv[Transfer .transferred]
lemmas ex-cin-conv = ex-in-conv[Transfer .transferred]
lemmas cimage-mono = image-mono[Transfer .transferred]
lemmas cinsert-mono = insert-mono[Transfer .transferred]
lemmas cunion-mono = Un-mono[Transfer .transferred]
lemmas cinter-mono = Int-mono[Transfer .transferred]
lemmas cminus-mono = Diff-mono[Transfer .transferred]
lemmas cin-mono = in-mono[Transfer .transferred]
lemmas cLeast-mono = Least-mono[Transfer .transferred]
lemmas cequalityI = equalityI [Transfer .transferred]
lemmas cUN-iff [simp] = UN-iff [Transfer .transferred]
lemmas cUN-I [intro] = UN-I [Transfer .transferred]
lemmas cUN-E [elim!] = UN-E [Transfer .transferred]
lemmas cUN-upper = UN-upper [Transfer .transferred]
lemmas cUN-least = UN-least[Transfer .transferred]
lemmas cUN-cinsert-distrib = UN-insert-distrib[Transfer .transferred]
lemmas cUN-empty [simp] = UN-empty[Transfer .transferred]
lemmas cUN-empty2 [simp] = UN-empty2 [Transfer .transferred]
lemmas cUN-absorb = UN-absorb[Transfer .transferred]
lemmas cUN-cinsert [simp] = UN-insert[Transfer .transferred]
lemmas cUN-cUn [simp] = UN-Un[Transfer .transferred]
lemmas cUN-cUN-flatten = UN-UN-flatten[Transfer .transferred]
lemmas cUN-csubset-iff = UN-subset-iff [Transfer .transferred]
lemmas cUN-constant [simp] = UN-constant[Transfer .transferred]
lemmas cimage-cUnion = image-Union[Transfer .transferred]
lemmas cUNION-cempty-conv [simp] = UNION-empty-conv[Transfer .transferred]
lemmas cBall-cUN = ball-UN [Transfer .transferred]
lemmas cBex-cUN = bex-UN [Transfer .transferred]
lemmas cUn-eq-cUN = Un-eq-UN [Transfer .transferred]
lemmas cUN-mono = UN-mono[Transfer .transferred]
lemmas cimage-cUN = image-UN [Transfer .transferred]
lemmas cUN-csingleton [simp] = UN-singleton[Transfer .transferred]

23.3 Additional lemmas
23.3.1 cempty
lemma cemptyE [elim!]: cin a cempty =⇒ P 〈proof 〉

23.3.2 cinsert
lemma countable-insert-iff : countable (insert x A) ←→ countable A
〈proof 〉

lemma set-cinsert:
assumes cin x A
obtains B where A = cinsert x B and ¬ cin x B
〈proof 〉

THEORY “Countable-Set-Type” 143

lemma mk-disjoint-cinsert: cin a A =⇒ ∃B. A = cinsert a B ∧ ¬ cin a B
〈proof 〉

23.3.3 cimage
lemma subset-cimage-iff : csubset-eq B (cimage f A) ←→ (∃AA. csubset-eq AA A
∧ B = cimage f AA)
〈proof 〉

23.3.4 bounded quantification
lemma cBex-simps [simp, no-atp]:∧

A P Q. cBex A (λx. P x ∧ Q) = (cBex A P ∧ Q)∧
A P Q. cBex A (λx. P ∧ Q x) = (P ∧ cBex A Q)∧
P. cBex cempty P = False∧
a B P. cBex (cinsert a B) P = (P a ∨ cBex B P)∧
A P f . cBex (cimage f A) P = cBex A (λx. P (f x))∧
A P. (¬ cBex A P) = cBall A (λx. ¬ P x)

〈proof 〉

lemma cBall-simps [simp, no-atp]:∧
A P Q. cBall A (λx. P x ∨ Q) = (cBall A P ∨ Q)∧
A P Q. cBall A (λx. P ∨ Q x) = (P ∨ cBall A Q)∧
A P Q. cBall A (λx. P −→ Q x) = (P −→ cBall A Q)∧
A P Q. cBall A (λx. P x −→ Q) = (cBex A P −→ Q)∧
P. cBall cempty P = True∧
a B P. cBall (cinsert a B) P = (P a ∧ cBall B P)∧
A P f . cBall (cimage f A) P = cBall A (λx. P (f x))∧
A P. (¬ cBall A P) = cBex A (λx. ¬ P x)

〈proof 〉

lemma atomize-cBall:
(
∧

x. cin x A =⇒ P x) == Trueprop (cBall A (λx. P x))
〈proof 〉

23.3.5 cUnion
lemma cUNION-cimage: cUNION (cimage f A) g = cUNION A (g ◦ f)
〈proof 〉

23.4 Setup for Lifting/Transfer
23.4.1 Relator and predicator properties
lift-definition rel-cset :: (′a ⇒ ′b ⇒ bool) ⇒ ′a cset ⇒ ′b cset ⇒ bool

is rel-set parametric rel-set-transfer 〈proof 〉

lemma rel-cset-alt-def :
rel-cset R a b ←→

THEORY “Countable-Set-Type” 144

(∀ t ∈ rcset a. ∃ u ∈ rcset b. R t u) ∧
(∀ t ∈ rcset b. ∃ u ∈ rcset a. R u t)

〈proof 〉

lemma rel-cset-iff :
rel-cset R a b ←→
(∀ t. cin t a −→ (∃ u. cin u b ∧ R t u)) ∧
(∀ t. cin t b −→ (∃ u. cin u a ∧ R u t))

〈proof 〉

lemma rel-cset-cUNION :
[[rel-cset Q A B; rel-fun Q (rel-cset R) f g]]
=⇒ rel-cset R (cUnion (cimage f A)) (cUnion (cimage g B))
〈proof 〉

lemma rel-cset-csingle-iff [simp]: rel-cset R (csingle x) (csingle y) ←→ R x y
〈proof 〉

23.4.2 Transfer rules for the Transfer package

Unconditional transfer rules
context includes lifting-syntax
begin

lemmas cempty-parametric [transfer-rule] = empty-transfer [Transfer .transferred]

lemma cinsert-parametric [transfer-rule]:
(A ===> rel-cset A ===> rel-cset A) cinsert cinsert
〈proof 〉

lemma cUn-parametric [transfer-rule]:
(rel-cset A ===> rel-cset A ===> rel-cset A) cUn cUn
〈proof 〉

lemma cUnion-parametric [transfer-rule]:
(rel-cset (rel-cset A) ===> rel-cset A) cUnion cUnion
〈proof 〉

lemma cimage-parametric [transfer-rule]:
((A ===> B) ===> rel-cset A ===> rel-cset B) cimage cimage
〈proof 〉

lemma cBall-parametric [transfer-rule]:
(rel-cset A ===> (A ===> (=)) ===> (=)) cBall cBall
〈proof 〉

lemma cBex-parametric [transfer-rule]:
(rel-cset A ===> (A ===> (=)) ===> (=)) cBex cBex
〈proof 〉

THEORY “Countable-Set-Type” 145

lemma rel-cset-parametric [transfer-rule]:
((A ===> B ===> (=)) ===> rel-cset A ===> rel-cset B ===> (=))

rel-cset rel-cset
〈proof 〉

Rules requiring bi-unique, bi-total or right-total relations
lemma cin-parametric [transfer-rule]:

bi-unique A =⇒ (A ===> rel-cset A ===> (=)) cin cin
〈proof 〉

lemma cInt-parametric [transfer-rule]:
bi-unique A =⇒ (rel-cset A ===> rel-cset A ===> rel-cset A) cInt cInt
〈proof 〉

lemma cDiff-parametric [transfer-rule]:
bi-unique A =⇒ (rel-cset A ===> rel-cset A ===> rel-cset A) cDiff cDiff
〈proof 〉

lemma csubset-parametric [transfer-rule]:
bi-unique A =⇒ (rel-cset A ===> rel-cset A ===> (=)) csubset-eq csubset-eq
〈proof 〉

end

lifting-update cset.lifting
lifting-forget cset.lifting

23.5 Registration as BNF
context

includes cardinal-syntax
begin

lemma card-of-countable-sets-range:
fixes A :: ′a set
shows |{X . X ⊆ A ∧ countable X ∧ X 6= {}}| ≤o |{f ::nat ⇒ ′a. range f ⊆ A}|
〈proof 〉

lemma card-of-countable-sets-Func:
|{X . X ⊆ A ∧ countable X ∧ X 6= {}}| ≤o |A| ^c natLeq
〈proof 〉

lemma ordLeq-countable-subsets:
|A| ≤o |{X . X ⊆ A ∧ countable X}|
〈proof 〉

end

lemma finite-countable-subset:

THEORY “Debug” 146

finite {X . X ⊆ A ∧ countable X} ←→ finite A
〈proof 〉

lemma rcset-to-rcset: countable A =⇒ rcset (the-inv rcset A) = A
including cset.lifting
〈proof 〉

lemma Collect-Int-Times: {(x, y). R x y} ∩ A × B = {(x, y). R x y ∧ x ∈ A ∧
y ∈ B}
〈proof 〉

lemma rel-cset-aux:
(∀ t ∈ rcset a. ∃ u ∈ rcset b. R t u) ∧ (∀ t ∈ rcset b. ∃ u ∈ rcset a. R u t) ←→
((BNF-Def .Grp {x. rcset x ⊆ {(a, b). R a b}} (cimage fst))−1−1 OO

BNF-Def .Grp {x. rcset x ⊆ {(a, b). R a b}} (cimage snd)) a b (is ?L = ?R)
〈proof 〉 including cset.lifting
〈proof 〉

context
includes cardinal-syntax

begin

bnf ′a cset
map: cimage
sets: rcset
bd: card-suc natLeq
wits: cempty
rel: rel-cset
〈proof 〉 including cset.lifting 〈proof 〉 including cset.lifting 〈proof 〉 including
cset.lifting 〈proof 〉

end

end

24 Debugging facilities for code generated towards
Isabelle/ML

theory Debug
imports Main
begin

context
begin

qualified definition trace :: String.literal ⇒ unit where
[simp]: trace s = ()

THEORY “Diagonal-Subsequence” 147

qualified definition tracing :: String.literal ⇒ ′a ⇒ ′a where
[simp]: tracing s = id

lemma [code]:
tracing s = (let u = trace s in id)
〈proof 〉 definition flush :: ′a ⇒ unit where
[simp]: flush x = ()

qualified definition flushing :: ′a ⇒ ′b ⇒ ′b where
[simp]: flushing x = id

lemma [code, code-unfold]:
flushing x = (let u = flush x in id)
〈proof 〉 definition timing :: String.literal ⇒ (′a ⇒ ′b) ⇒ ′a ⇒ ′b where
[simp]: timing s f x = f x

end

code-printing
constant Debug.trace ⇀ (Eval) Output.tracing
| constant Debug.flush ⇀ (Eval) Output.tracing/ (@{make ′-string} -) — note
indirection via antiquotation
| constant Debug.timing ⇀ (Eval) Timing.timeap ′-msg

code-reserved (Eval) Output Timing

end

25 Sequence of Properties on Subsequences
theory Diagonal-Subsequence
imports Complex-Main
begin

locale subseqs =
fixes P::nat⇒(nat⇒nat)⇒bool
assumes ex-subseq:

∧
n s. strict-mono (s::nat⇒nat) =⇒ ∃ r ′. strict-mono r ′ ∧

P n (s ◦ r ′)
begin

definition reduce where reduce s n = (SOME r ′::nat⇒nat. strict-mono r ′ ∧ P n
(s ◦ r ′))

lemma subseq-reduce[intro, simp]:
strict-mono s =⇒ strict-mono (reduce s n)
〈proof 〉

lemma reduce-holds:

THEORY “Diagonal-Subsequence” 148

strict-mono s =⇒ P n (s ◦ reduce s n)
〈proof 〉

primrec seqseq :: nat ⇒ nat ⇒ nat where
seqseq 0 = id
| seqseq (Suc n) = seqseq n ◦ reduce (seqseq n) n

lemma subseq-seqseq[intro, simp]: strict-mono (seqseq n)
〈proof 〉

lemma seqseq-holds:
P n (seqseq (Suc n))
〈proof 〉

definition diagseq :: nat ⇒ nat where diagseq i = seqseq i i

lemma diagseq-mono: diagseq n < diagseq (Suc n)
〈proof 〉

lemma subseq-diagseq: strict-mono diagseq
〈proof 〉

primrec fold-reduce where
fold-reduce n 0 = id
| fold-reduce n (Suc k) = fold-reduce n k ◦ reduce (seqseq (n + k)) (n + k)

lemma subseq-fold-reduce[intro, simp]: strict-mono (fold-reduce n k)
〈proof 〉

lemma ex-subseq-reduce-index: seqseq (n + k) = seqseq n ◦ fold-reduce n k
〈proof 〉

lemma seqseq-fold-reduce: seqseq n = fold-reduce 0 n
〈proof 〉

lemma diagseq-fold-reduce: diagseq n = fold-reduce 0 n n
〈proof 〉

lemma fold-reduce-add: fold-reduce 0 (m + n) = fold-reduce 0 m ◦ fold-reduce m
n
〈proof 〉

lemma diagseq-add: diagseq (k + n) = (seqseq k ◦ (fold-reduce k n)) (k + n)
〈proof 〉

lemma diagseq-sub:
assumes m ≤ n shows diagseq n = (seqseq m ◦ (fold-reduce m (n − m))) n
〈proof 〉

THEORY “Discrete-Functions” 149

lemma subseq-diagonal-rest: strict-mono (λx. fold-reduce k x (k + x))
〈proof 〉

lemma diagseq-seqseq: diagseq ◦ ((+) k) = (seqseq k ◦ (λx. fold-reduce k x (k +
x)))
〈proof 〉

lemma diagseq-holds:
assumes subseq-stable:

∧
r s n. strict-mono r =⇒ P n s =⇒ P n (s ◦ r)

shows P k (diagseq ◦ ((+) (Suc k)))
〈proof 〉

end

end

26 Common discrete functions
theory Discrete-Functions
imports Complex-Main
begin

26.1 Discrete logarithm
fun floor-log :: nat ⇒ nat

where [simp del]: floor-log n = (if n < 2 then 0 else Suc (floor-log (n div 2)))

lemma floor-log-induct [consumes 1 , case-names one double]:
fixes n :: nat
assumes n > 0
assumes one: P 1
assumes double:

∧
n. n ≥ 2 =⇒ P (n div 2) =⇒ P n

shows P n
〈proof 〉

lemma floor-log-zero [simp]: floor-log 0 = 0
〈proof 〉

lemma floor-log-one [simp]: floor-log 1 = 0
〈proof 〉

lemma floor-log-Suc-zero [simp]: floor-log (Suc 0) = 0
〈proof 〉

lemma floor-log-rec: n ≥ 2 =⇒ floor-log n = Suc (floor-log (n div 2))
〈proof 〉

lemma floor-log-twice [simp]: n 6= 0 =⇒ floor-log (2 ∗ n) = Suc (floor-log n)
〈proof 〉

THEORY “Discrete-Functions” 150

lemma floor-log-half [simp]: floor-log (n div 2) = floor-log n − 1
〈proof 〉

lemma floor-log-power [simp]: floor-log (2 ^ n) = n
〈proof 〉

lemma floor-log-mono: mono floor-log
〈proof 〉

lemma floor-log-exp2-le:
assumes n > 0
shows 2 ^ floor-log n ≤ n
〈proof 〉

lemma floor-log-exp2-gt: 2 ∗ 2 ^ floor-log n > n
〈proof 〉

lemma floor-log-exp2-ge: 2 ∗ 2 ^ floor-log n ≥ n
〈proof 〉

lemma floor-log-le-iff : m ≤ n =⇒ floor-log m ≤ floor-log n
〈proof 〉

lemma floor-log-eqI :
assumes n > 0 2^k ≤ n n < 2 ∗ 2^k
shows floor-log n = k
〈proof 〉

lemma floor-log-altdef : floor-log n = (if n = 0 then 0 else nat blog 2 (real-of-nat
n)c)
〈proof 〉

26.2 Discrete square root
definition floor-sqrt :: nat ⇒ nat

where floor-sqrt n = Max {m. m2 ≤ n}

lemma floor-sqrt-aux:
fixes n :: nat
shows finite {m. m2 ≤ n} and {m. m2 ≤ n} 6= {}
〈proof 〉

lemma floor-sqrt-unique:
assumes m^2 ≤ n n < (Suc m)^2
shows floor-sqrt n = m
〈proof 〉

lemma floor-sqrt-inverse-power2 [simp]: floor-sqrt (n2) = n

THEORY “Discrete-Functions” 151

〈proof 〉

lemma floor-sqrt-zero [simp]: floor-sqrt 0 = 0
〈proof 〉

lemma floor-sqrt-one [simp]: floor-sqrt 1 = 1
〈proof 〉

lemma floor-sqrt-Suc-0 [simp]:
‹floor-sqrt (Suc 0) = 1 ›
〈proof 〉

lemma mono-floor-sqrt: mono floor-sqrt
〈proof 〉

lemma mono-floor-sqrt ′: m ≤ n =⇒ floor-sqrt m ≤ floor-sqrt n
〈proof 〉

lemma floor-sqrt-greater-zero-iff [simp]: floor-sqrt n > 0 ←→ n > 0
〈proof 〉

lemma floor-sqrt-power2-le [simp]: (floor-sqrt n)2 ≤ n
〈proof 〉

lemma floor-sqrt-le: floor-sqrt n ≤ n
〈proof 〉

Additional facts about the discrete square root, thanks to Julian Bien-
darra, Manuel Eberl
lemma Suc-floor-sqrt-power2-gt: n < (Suc (floor-sqrt n))^2
〈proof 〉

lemma le-floor-sqrt-iff : x ≤ floor-sqrt y ←→ x^2 ≤ y
〈proof 〉

lemma le-floor-sqrtI : x^2 ≤ y =⇒ x ≤ floor-sqrt y
〈proof 〉

lemma floor-sqrt-le-iff :
‹floor-sqrt y ≤ x ←→ (∀ z. z2 ≤ y −→ z ≤ x)›
〈proof 〉

lemma floor-sqrt-leI :
(
∧

z. z^2 ≤ y =⇒ z ≤ x) =⇒ floor-sqrt y ≤ x
〈proof 〉

lemma floor-sqrt-less-eq-half :
‹floor-sqrt n ≤ Suc n div 2 ›
〈proof 〉

THEORY “Discrete-Functions” 152

lemma floor-sqrt-Suc:
floor-sqrt (Suc n) = (if ∃m. Suc n = m^2 then Suc (floor-sqrt n) else floor-sqrt

n)
〈proof 〉

Computation by divide and conquer
definition floor-sqrt-between :: ‹nat ⇒ nat ⇒ nat ⇒ nat›

where floor-sqrt-between-eq:
‹floor-sqrt-between m q n =
(if floor-sqrt n ∈ {m..<m + q} then floor-sqrt n else 0)›

— The 0 is not for relevant regular computation and can be chosen arbitrarily.

lemma floor-sqrt-between-out-of-bounds:
‹floor-sqrt-between m 0 n = 0 ›
〈proof 〉

lemma floor-sqrt-between-singleton:
‹floor-sqrt-between m (Suc 0) n =
(if m2 ≤ n ∧ n < (Suc m)2 then m else 0)›
〈proof 〉

lemma floor-sqrt-between-rec:
‹floor-sqrt-between m q n = (

let
r = q div 2 ;
p = m + r ;
s = p2

in
if s = n
then p
else if s < n

then floor-sqrt-between (m + r) (q − r) n
else floor-sqrt-between m r n

)› if ‹q > 0 ›
〈proof 〉

lemma floor-sqrt-between-code [code]:
‹floor-sqrt-between m q n = (

if q = 0 then 0
else if q = 1
then if m2 ≤ n ∧ n < (Suc m)2

then m
else 0

else
let

r = q div 2 ;
p = m + r ;
s = p2

THEORY “FuncSet” 153

in
if s = n
then p
else if s < n

then floor-sqrt-between (m + r) (q − r) n
else floor-sqrt-between m r n

)›
〈proof 〉

lemma [code]:
‹floor-sqrt n = floor-sqrt-between 0 (Suc (Suc n div 2)) n›
〈proof 〉

end

27 Pi and Function Sets
theory FuncSet

imports Main
abbrevs PiE = PiE

and PIE = ΠE

begin

definition Pi :: ′a set ⇒ (′a ⇒ ′b set) ⇒ (′a ⇒ ′b) set
where Pi A B = {f . ∀ x. x ∈ A −→ f x ∈ B x}

definition extensional :: ′a set ⇒ (′a ⇒ ′b) set
where extensional A = {f . ∀ x. x /∈ A −→ f x = undefined}

definition restrict :: (′a ⇒ ′b) ⇒ ′a set ⇒ ′a ⇒ ′b
where restrict f A = (λx. if x ∈ A then f x else undefined)

abbreviation funcset :: ′a set ⇒ ′b set ⇒ (′a ⇒ ′b) set
where funcset A B ≡ Pi A (λ-. B)

open-bundle funcset-syntax
begin
notation funcset (infixr ‹→› 60)
end

syntax
-Pi :: pttrn ⇒ ′a set ⇒ ′b set ⇒ (′a ⇒ ′b) set
(‹(‹indent=3 notation=‹binder Π∈››Π -∈-./ -)› 10)

-lam :: pttrn ⇒ ′a set ⇒ (′a ⇒ ′b) ⇒ (′a ⇒ ′b)
(‹(‹indent=3 notation=‹binder λ∈››λ-∈-./ -)› [0 , 0 , 3] 3)

syntax-consts
-Pi
 Pi and
-lam
 restrict

translations

THEORY “FuncSet” 154

Π x∈A. B
 CONST Pi A (λx. B)
λx∈A. f
 CONST restrict (λx. f) A

definition compose :: ′a set ⇒ (′b ⇒ ′c) ⇒ (′a ⇒ ′b) ⇒ (′a ⇒ ′c)
where compose A g f = (λx∈A. g (f x))

27.1 Basic Properties of Pi
lemma Pi-I [intro!]: (

∧
x. x ∈ A =⇒ f x ∈ B x) =⇒ f ∈ Pi A B

〈proof 〉

lemma Pi-I ′[simp]: (
∧

x. x ∈ A −→ f x ∈ B x) =⇒ f ∈ Pi A B
〈proof 〉

lemma funcsetI : (
∧

x. x ∈ A =⇒ f x ∈ B) =⇒ f ∈ A → B
〈proof 〉

lemma Pi-mem: f ∈ Pi A B =⇒ x ∈ A =⇒ f x ∈ B x
〈proof 〉

lemma Pi-iff : f ∈ Pi I X ←→ (∀ i∈I . f i ∈ X i)
〈proof 〉

lemma PiE [elim]: f ∈ Pi A B =⇒ (f x ∈ B x =⇒ Q) =⇒ (x /∈ A =⇒ Q) =⇒ Q
〈proof 〉

lemma Pi-cong: (
∧

w. w ∈ A =⇒ f w = g w) =⇒ f ∈ Pi A B ←→ g ∈ Pi A B
〈proof 〉

lemma funcset-id [simp]: (λx. x) ∈ A → A
〈proof 〉

lemma funcset-mem: f ∈ A → B =⇒ x ∈ A =⇒ f x ∈ B
〈proof 〉

lemma funcset-image: f ∈ A → B =⇒ f ‘ A ⊆ B
〈proof 〉

lemma image-subset-iff-funcset: F ‘ A ⊆ B ←→ F ∈ A → B
〈proof 〉

lemma funcset-to-empty-iff : A → {} = (if A={} then UNIV else {})
〈proof 〉

lemma Pi-eq-empty[simp]: (Π x ∈ A. B x) = {} ←→ (∃ x∈A. B x = {})
〈proof 〉

lemma Pi-empty [simp]: Pi {} B = UNIV
〈proof 〉

THEORY “FuncSet” 155

lemma Pi-Int: Pi I E ∩ Pi I F = (Π i∈I . E i ∩ F i)
〈proof 〉

lemma Pi-UN :
fixes A :: nat ⇒ ′i ⇒ ′a set
assumes finite I

and mono:
∧

i n m. i ∈ I =⇒ n ≤ m =⇒ A n i ⊆ A m i
shows (

⋃
n. Pi I (A n)) = (Π i∈I .

⋃
n. A n i)

〈proof 〉

lemma Pi-UNIV [simp]: A → UNIV = UNIV
〈proof 〉

Covariance of Pi-sets in their second argument
lemma Pi-mono: (

∧
x. x ∈ A =⇒ B x ⊆ C x) =⇒ Pi A B ⊆ Pi A C

〈proof 〉

Contravariance of Pi-sets in their first argument
lemma Pi-anti-mono: A ′ ⊆ A =⇒ Pi A B ⊆ Pi A ′ B
〈proof 〉

lemma prod-final:
assumes 1 : fst ◦ f ∈ Pi A B

and 2 : snd ◦ f ∈ Pi A C
shows f ∈ (Π z ∈ A. B z × C z)
〈proof 〉

lemma Pi-split-domain[simp]: x ∈ Pi (I ∪ J) X ←→ x ∈ Pi I X ∧ x ∈ Pi J X
〈proof 〉

lemma Pi-split-insert-domain[simp]: x ∈ Pi (insert i I) X ←→ x ∈ Pi I X ∧ x i
∈ X i
〈proof 〉

lemma Pi-cancel-fupd-range[simp]: i /∈ I =⇒ x ∈ Pi I (B(i := b)) ←→ x ∈ Pi I
B
〈proof 〉

lemma Pi-cancel-fupd[simp]: i /∈ I =⇒ x(i := a) ∈ Pi I B ←→ x ∈ Pi I B
〈proof 〉

lemma Pi-fupd-iff : i ∈ I =⇒ f ∈ Pi I (B(i := A)) ←→ f ∈ Pi (I − {i}) B ∧ f i
∈ A
〈proof 〉

lemma fst-Pi: fst ∈ A × B → A and snd-Pi: snd ∈ A × B → B
〈proof 〉

THEORY “FuncSet” 156

27.2 Composition With a Restricted Domain: compose
lemma funcset-compose: f ∈ A → B =⇒ g ∈ B → C =⇒ compose A g f ∈ A →
C
〈proof 〉

lemma compose-assoc:
assumes f ∈ A → B
shows compose A h (compose A g f) = compose A (compose B h g) f
〈proof 〉

lemma compose-eq: x ∈ A =⇒ compose A g f x = g (f x)
〈proof 〉

lemma surj-compose: f ‘ A = B =⇒ g ‘ B = C =⇒ compose A g f ‘ A = C
〈proof 〉

27.3 Bounded Abstraction: restrict
lemma restrict-cong: I = J =⇒ (

∧
i. i ∈ J =simp=> f i = g i) =⇒ restrict f I

= restrict g J
〈proof 〉

lemma restrictI [intro!]: (
∧

x. x ∈ A =⇒ f x ∈ B x) =⇒ (λx∈A. f x) ∈ Pi A B
〈proof 〉

lemma restrict-apply[simp]: (λy∈A. f y) x = (if x ∈ A then f x else undefined)
〈proof 〉

lemma restrict-apply ′: x ∈ A =⇒ (λy∈A. f y) x = f x
〈proof 〉

lemma restrict-ext: (
∧

x. x ∈ A =⇒ f x = g x) =⇒ (λx∈A. f x) = (λx∈A. g x)
〈proof 〉

lemma restrict-UNIV : restrict f UNIV = f
〈proof 〉

lemma inj-on-restrict-eq [simp]: inj-on (restrict f A) A ←→ inj-on f A
〈proof 〉

lemma inj-on-restrict-iff : A ⊆ B =⇒ inj-on (restrict f B) A ←→ inj-on f A
〈proof 〉

lemma Id-compose: f ∈ A → B =⇒ f ∈ extensional A =⇒ compose A (λy∈B. y)
f = f
〈proof 〉

lemma compose-Id: g ∈ A → B =⇒ g ∈ extensional A =⇒ compose A g (λx∈A.
x) = g

THEORY “FuncSet” 157

〈proof 〉

lemma image-restrict-eq [simp]: (restrict f A) ‘ A = f ‘ A
〈proof 〉

lemma restrict-restrict[simp]: restrict (restrict f A) B = restrict f (A ∩ B)
〈proof 〉

lemma restrict-fupd[simp]: i /∈ I =⇒ restrict (f (i := x)) I = restrict f I
〈proof 〉

lemma restrict-upd[simp]: i /∈ I =⇒ (restrict f I)(i := y) = restrict (f (i := y))
(insert i I)
〈proof 〉

lemma restrict-Pi-cancel: restrict x I ∈ Pi I A ←→ x ∈ Pi I A
〈proof 〉

lemma sum-restrict ′ [simp]: sum ′ (λi∈I . g i) I = sum ′ (λi. g i) I
〈proof 〉

lemma prod-restrict ′ [simp]: prod ′ (λi∈I . g i) I = prod ′ (λi. g i) I
〈proof 〉

27.4 Bijections Between Sets
The definition of bij-betw is in Fun.thy, but most of the theorems belong
here, or need at least Hilbert-Choice.
lemma bij-betwI :

assumes f ∈ A → B
and g ∈ B → A
and g-f :

∧
x. x∈A =⇒ g (f x) = x

and f-g:
∧

y. y∈B =⇒ f (g y) = y
shows bij-betw f A B
〈proof 〉

lemma bij-betw-imp-funcset: bij-betw f A B =⇒ f ∈ A → B
〈proof 〉

lemma inj-on-compose: bij-betw f A B =⇒ inj-on g B =⇒ inj-on (compose A g f)
A
〈proof 〉

lemma bij-betw-compose: bij-betw f A B =⇒ bij-betw g B C =⇒ bij-betw (compose
A g f) A C
〈proof 〉

lemma bij-betw-restrict-eq [simp]: bij-betw (restrict f A) A B = bij-betw f A B
〈proof 〉

THEORY “FuncSet” 158

27.5 Extensionality
lemma extensional-empty[simp]: extensional {} = {λx. undefined}
〈proof 〉

lemma extensional-arb: f ∈ extensional A =⇒ x /∈ A =⇒ f x = undefined
〈proof 〉

lemma restrict-extensional [simp]: restrict f A ∈ extensional A
〈proof 〉

lemma compose-extensional [simp]: compose A f g ∈ extensional A
〈proof 〉

lemma extensionalityI :
assumes f ∈ extensional A

and g ∈ extensional A
and

∧
x. x ∈ A =⇒ f x = g x

shows f = g
〈proof 〉

lemma extensional-restrict: f ∈ extensional A =⇒ restrict f A = f
〈proof 〉

lemma extensional-subset: f ∈ extensional A =⇒ A ⊆ B =⇒ f ∈ extensional B
〈proof 〉

lemma inv-into-funcset: f ‘ A = B =⇒ (λx∈B. inv-into A f x) ∈ B → A
〈proof 〉

lemma compose-inv-into-id: bij-betw f A B =⇒ compose A (λy∈B. inv-into A f y)
f = (λx∈A. x)
〈proof 〉

lemma compose-id-inv-into: f ‘ A = B =⇒ compose B f (λy∈B. inv-into A f y)
= (λx∈B. x)
〈proof 〉

lemma extensional-insert[intro, simp]:
assumes a ∈ extensional (insert i I)
shows a(i := b) ∈ extensional (insert i I)
〈proof 〉

lemma extensional-Int[simp]: extensional I ∩ extensional I ′ = extensional (I ∩
I ′)
〈proof 〉

lemma extensional-UNIV [simp]: extensional UNIV = UNIV
〈proof 〉

THEORY “FuncSet” 159

lemma restrict-extensional-sub[intro]: A ⊆ B =⇒ restrict f A ∈ extensional B
〈proof 〉

lemma extensional-insert-undefined[intro, simp]:
a ∈ extensional (insert i I) =⇒ a(i := undefined) ∈ extensional I
〈proof 〉

lemma extensional-insert-cancel[intro, simp]:
a ∈ extensional I =⇒ a ∈ extensional (insert i I)
〈proof 〉

27.6 Cardinality
lemma card-inj: f ∈ A → B =⇒ inj-on f A =⇒ finite B =⇒ card A ≤ card B
〈proof 〉

lemma card-bij:
assumes f ∈ A → B inj-on f A

and g ∈ B → A inj-on g B
and finite A finite B

shows card A = card B
〈proof 〉

27.7 Extensional Function Spaces
definition PiE :: ′a set ⇒ (′a ⇒ ′b set) ⇒ (′a ⇒ ′b) set

where PiE S T = Pi S T ∩ extensional S

abbreviation PiE A B ≡ PiE A B

syntax
-PiE :: pttrn ⇒ ′a set ⇒ ′b set ⇒ (′a ⇒ ′b) set
(‹(‹indent=3 notation=‹binder ΠE∈››ΠE -∈-./ -)› 10)

syntax-consts
-PiE
 PiE

translations
ΠE x∈A. B
 CONST PiE A (λx. B)

abbreviation extensional-funcset :: ′a set ⇒ ′b set ⇒ (′a ⇒ ′b) set (infixr ‹→E›
60)

where A →E B ≡ (ΠE i∈A. B)

lemma extensional-funcset-def : extensional-funcset S T = (S → T) ∩ extensional
S
〈proof 〉

lemma PiE-empty-domain[simp]: PiE {} T = {λx. undefined}
〈proof 〉

lemma PiE-UNIV-domain: PiE UNIV T = Pi UNIV T

THEORY “FuncSet” 160

〈proof 〉

lemma PiE-empty-range[simp]: i ∈ I =⇒ F i = {} =⇒ (ΠE i∈I . F i) = {}
〈proof 〉

lemma PiE-eq-empty-iff : PiE I F = {} ←→ (∃ i∈I . F i = {})
〈proof 〉

lemma PiE-arb: f ∈ PiE S T =⇒ x /∈ S =⇒ f x = undefined
〈proof 〉

lemma PiE-mem: f ∈ PiE S T =⇒ x ∈ S =⇒ f x ∈ T x
〈proof 〉

lemma PiE-fun-upd: y ∈ T x =⇒ f ∈ PiE S T =⇒ f (x := y) ∈ PiE (insert x S)
T
〈proof 〉

lemma fun-upd-in-PiE : x /∈ S =⇒ f ∈ PiE (insert x S) T =⇒ f (x := undefined)
∈ PiE S T
〈proof 〉

lemma PiE-insert-eq: PiE (insert x S) T = (λ(y, g). g(x := y)) ‘ (T x × PiE S
T)
〈proof 〉

lemma PiE-Int: PiE I A ∩ PiE I B = PiE I (λx. A x ∩ B x)
〈proof 〉

lemma PiE-cong: (
∧

i. i∈I =⇒ A i = B i) =⇒ PiE I A = PiE I B
〈proof 〉

lemma PiE-E [elim]:
assumes f ∈ PiE A B
obtains x ∈ A and f x ∈ B x
| x /∈ A and f x = undefined
〈proof 〉

lemma PiE-I [intro!]:
(
∧

x. x ∈ A =⇒ f x ∈ B x) =⇒ (
∧

x. x /∈ A =⇒ f x = undefined) =⇒ f ∈ PiE
A B
〈proof 〉

lemma PiE-mono: (
∧

x. x ∈ A =⇒ B x ⊆ C x) =⇒ PiE A B ⊆ PiE A C
〈proof 〉

lemma PiE-iff : f ∈ PiE I X ←→ (∀ i∈I . f i ∈ X i) ∧ f ∈ extensional I
〈proof 〉

THEORY “FuncSet” 161

lemma restrict-PiE-iff : restrict f I ∈ PiE I X ←→ (∀ i ∈ I . f i ∈ X i)
〈proof 〉

lemma ext-funcset-to-sing-iff [simp]: A →E {a} = {λx∈A. a}
〈proof 〉

lemma PiE-restrict[simp]: f ∈ PiE A B =⇒ restrict f A = f
〈proof 〉

lemma restrict-PiE [simp]: restrict f I ∈ PiE I S ←→ f ∈ Pi I S
〈proof 〉

lemma PiE-eq-subset:
assumes ne:

∧
i. i ∈ I =⇒ F i 6= {}

∧
i. i ∈ I =⇒ F ′ i 6= {}

and eq: PiE I F = PiE I F ′

and i ∈ I
shows F i ⊆ F ′ i
〈proof 〉

lemma PiE-eq-iff-not-empty:
assumes ne:

∧
i. i ∈ I =⇒ F i 6= {}

∧
i. i ∈ I =⇒ F ′ i 6= {}

shows PiE I F = PiE I F ′←→ (∀ i∈I . F i = F ′ i)
〈proof 〉

lemma PiE-eq-iff : PiE I F = PiE I F ′←→ (∀ i∈I . F i = F ′ i) ∨ ((∃ i∈I . F i =
{}) ∧ (∃ i∈I . F ′ i = {}))
〈proof 〉

lemma extensional-funcset-fun-upd-restricts-rangeI :
∀ y ∈ S . f x 6= f y =⇒ f ∈ (insert x S) →E T =⇒ f (x := undefined) ∈ S →E

(T − {f x})
〈proof 〉

lemma extensional-funcset-fun-upd-extends-rangeI :
assumes a ∈ T f ∈ S →E (T − {a})
shows f (x := a) ∈ insert x S →E T
〈proof 〉

lemma subset-PiE :
PiE I S ⊆ PiE I T ←→ PiE I S = {} ∨ (∀ i ∈ I . S i ⊆ T i) (is ?lhs ←→ - ∨

?rhs)
〈proof 〉

lemma PiE-eq: PiE I S = PiE I T ←→ PiE I S = {} ∧ PiE I T = {} ∨ (∀ i ∈
I . S i = T i)
〈proof 〉

lemma PiE-UNIV [simp]: PiE UNIV (λi. UNIV) = UNIV
〈proof 〉

THEORY “FuncSet” 162

lemma image-projection-PiE :
(λf . f i) ‘ (PiE I S) = (if PiE I S = {} then {} else if i ∈ I then S i else
{undefined})
〈proof 〉

lemma PiE-singleton:
assumes f ∈ extensional A
shows PiE A (λx. {f x}) = {f }
〈proof 〉

lemma PiE-eq-singleton: (ΠE i∈I . S i) = {λi∈I . f i} ←→ (∀ i∈I . S i = {f i})
〈proof 〉

lemma PiE-over-singleton-iff : (ΠE x∈{a}. B x) = (
⋃

b ∈ B a. {λx ∈ {a}. b})
〈proof 〉

lemma all-PiE-elements:
(∀ z ∈ PiE I S . ∀ i ∈ I . P i (z i)) ←→ PiE I S = {} ∨ (∀ i ∈ I . ∀ x ∈ S i. P i x)
(is ?lhs = ?rhs)
〈proof 〉

lemma PiE-ext: [[x ∈ PiE k s; y ∈ PiE k s;
∧

i. i ∈ k =⇒ x i = y i]] =⇒ x = y
〈proof 〉

27.7.1 Injective Extensional Function Spaces
lemma extensional-funcset-fun-upd-inj-onI :

assumes f ∈ S →E (T − {a})
and inj-on f S

shows inj-on (f (x := a)) S
〈proof 〉

lemma extensional-funcset-extend-domain-inj-on-eq:
assumes x /∈ S
shows {f . f ∈ (insert x S) →E T ∧ inj-on f (insert x S)} =
(λ(y, g). g(x:=y)) ‘ {(y, g). y ∈ T ∧ g ∈ S →E (T − {y}) ∧ inj-on g S}

〈proof 〉

lemma extensional-funcset-extend-domain-inj-onI :
assumes x /∈ S
shows inj-on (λ(y, g). g(x := y)) {(y, g). y ∈ T ∧ g ∈ S →E (T − {y}) ∧

inj-on g S}
〈proof 〉

27.7.2 Misc properties of functions, composition and restriction
from HOL Light

lemma function-factors-left-gen:
(∀ x y. P x ∧ P y ∧ g x = g y −→ f x = f y) ←→ (∃ h. ∀ x. P x −→ f x = h(g x))

THEORY “FuncSet” 163

(is ?lhs = ?rhs)
〈proof 〉

lemma function-factors-left: (∀ x y. (g x = g y) −→ (f x = f y)) ←→ (∃ h. f = h
◦ g)
〈proof 〉

lemma function-factors-right-gen: (∀ x. P x −→ (∃ y. g y = f x)) ←→ (∃ h. ∀ x. P
x −→ f x = g(h x))
〈proof 〉

lemma function-factors-right: (∀ x. ∃ y. g y = f x) ←→ (∃ h. f = g ◦ h)
〈proof 〉

lemma restrict-compose-right: restrict (g ◦ restrict f S) S = restrict (g ◦ f) S
〈proof 〉

lemma restrict-compose-left: f ‘ S ⊆ T =⇒ restrict (restrict g T ◦ f) S = restrict
(g ◦ f) S
〈proof 〉

27.7.3 Cardinality
lemma finite-PiE : finite S =⇒ (

∧
i. i ∈ S =⇒ finite (T i)) =⇒ finite (ΠE i ∈ S .

T i)
〈proof 〉

lemma inj-combinator : x /∈ S =⇒ inj-on (λ(y, g). g(x := y)) (T x × PiE S T)
〈proof 〉

lemma card-PiE : finite S =⇒ card (ΠE i ∈ S . T i) = (
∏

i∈S . card (T i))
〈proof 〉

lemma card-funcsetE : finite A =⇒ card (A →E B) = card B ^ card A
〈proof 〉

lemma card-inj-on-subset-funcset:
assumes finB: finite B

and finC : finite C
and AB: A ⊆ B

shows card {f ∈ B →E C . inj-on f A} =
card C^(card B − card A) ∗ prod ((−) (card C)) {0 ..< card A}

〈proof 〉

27.8 The pigeonhole principle
An alternative formulation of this is that for a function mapping a finite set
A of cardinality m to a finite set B of cardinality n, there exists an element
y ∈ B that is hit at least dmn e times. However, since we do not have real

THEORY “Disjoint-Sets” 164

numbers or rounding yet, we state it in the following equivalent form:
lemma pigeonhole-card:

assumes f ∈ A → B finite A finite B B 6= {}
shows ∃ y∈B. card (f −‘ {y} ∩ A) ∗ card B ≥ card A
〈proof 〉

27.9 Products of sums
lemma prod-sum-PiE :

fixes f :: ′a ⇒ ′b ⇒ ′c :: comm-semiring-1
assumes finite: finite A and finite:

∧
x. x ∈ A =⇒ finite (B x)

shows (
∏

x∈A.
∑

y∈B x. f x y) = (
∑

g∈PiE A B.
∏

x∈A. f x (g x))
〈proof 〉

end

28 Partitions and Disjoint Sets
theory Disjoint-Sets

imports FuncSet
begin

lemma mono-imp-UN-eq-last: mono A =⇒ (
⋃

i≤n. A i) = A n
〈proof 〉

28.1 Set of Disjoint Sets
abbreviation disjoint :: ′a set set ⇒ bool where disjoint ≡ pairwise disjnt

lemma disjoint-def : disjoint A ←→ (∀ a∈A. ∀ b∈A. a 6= b −→ a ∩ b = {})
〈proof 〉

lemma disjointI :
(
∧

a b. a ∈ A =⇒ b ∈ A =⇒ a 6= b =⇒ a ∩ b = {}) =⇒ disjoint A
〈proof 〉

lemma disjointD:
disjoint A =⇒ a ∈ A =⇒ b ∈ A =⇒ a 6= b =⇒ a ∩ b = {}
〈proof 〉

lemma disjoint-image: inj-on f (
⋃

A) =⇒ disjoint A =⇒ disjoint ((‘) f ‘ A)
〈proof 〉

lemma assumes disjoint (A ∪ B)
shows disjoint-unionD1 : disjoint A and disjoint-unionD2 : disjoint B

〈proof 〉

lemma disjoint-INT :
assumes ∗:

∧
i. i ∈ I =⇒ disjoint (F i)

THEORY “Disjoint-Sets” 165

shows disjoint {
⋂

i∈I . X i | X . ∀ i∈I . X i ∈ F i}
〈proof 〉

lemma diff-Union-pairwise-disjoint:
assumes pairwise disjnt A B ⊆ A
shows

⋃
A −

⋃
B =

⋃
(A − B)

〈proof 〉

lemma Int-Union-pairwise-disjoint:
assumes pairwise disjnt (A ∪ B)
shows

⋃
A ∩

⋃
B =

⋃
(A ∩ B)

〈proof 〉

lemma psubset-Union-pairwise-disjoint:
assumes B: pairwise disjnt B and A ⊂ B − {{}}
shows

⋃
A ⊂

⋃
B

〈proof 〉

28.1.1 Family of Disjoint Sets
definition disjoint-family-on :: (′i ⇒ ′a set) ⇒ ′i set ⇒ bool where

disjoint-family-on A S ←→ (∀m∈S . ∀n∈S . m 6= n −→ A m ∩ A n = {})

abbreviation disjoint-family A ≡ disjoint-family-on A UNIV

lemma disjoint-family-elem-disjnt:
assumes infinite A finite C

and df : disjoint-family-on B A
obtains x where x ∈ A disjnt C (B x)
〈proof 〉

lemma disjoint-family-onD:
disjoint-family-on A I =⇒ i ∈ I =⇒ j ∈ I =⇒ i 6= j =⇒ A i ∩ A j = {}
〈proof 〉

lemma disjoint-family-subset: disjoint-family A =⇒ (
∧

x. B x ⊆ A x) =⇒ dis-
joint-family B
〈proof 〉

lemma disjoint-family-on-insert:
i /∈ I =⇒ disjoint-family-on A (insert i I) ←→ A i ∩ (

⋃
i∈I . A i) = {} ∧

disjoint-family-on A I
〈proof 〉

lemma disjoint-family-on-bisimulation:
assumes disjoint-family-on f S
and

∧
n m. n ∈ S =⇒ m ∈ S =⇒ n 6= m =⇒ f n ∩ f m = {} =⇒ g n ∩ g m =

{}
shows disjoint-family-on g S

THEORY “Disjoint-Sets” 166

〈proof 〉

lemma disjoint-family-on-mono:
A ⊆ B =⇒ disjoint-family-on f B =⇒ disjoint-family-on f A
〈proof 〉

lemma disjoint-family-Suc:
(
∧

n. A n ⊆ A (Suc n)) =⇒ disjoint-family (λi. A (Suc i) − A i)
〈proof 〉

lemma disjoint-family-on-disjoint-image:
disjoint-family-on A I =⇒ disjoint (A ‘ I)
〈proof 〉

lemma disjoint-family-on-vimageI : disjoint-family-on F I =⇒ disjoint-family-on
(λi. f −‘ F i) I
〈proof 〉

lemma disjoint-image-disjoint-family-on:
assumes d: disjoint (A ‘ I) and i: inj-on A I
shows disjoint-family-on A I
〈proof 〉

lemma disjoint-family-on-iff-disjoint-image:
assumes

∧
i. i ∈ I =⇒ A i 6= {}

shows disjoint-family-on A I ←→ disjoint (A ‘ I) ∧ inj-on A I
〈proof 〉

lemma card-UN-disjoint ′:
assumes disjoint-family-on A I

∧
i. i ∈ I =⇒ finite (A i) finite I

shows card (
⋃

i∈I . A i) = (
∑

i∈I . card (A i))
〈proof 〉

lemma disjoint-UN :
assumes F :

∧
i. i ∈ I =⇒ disjoint (F i) and ∗: disjoint-family-on (λi.

⋃
(F i))

I
shows disjoint (

⋃
i∈I . F i)

〈proof 〉

lemma distinct-list-bind:
assumes distinct xs

∧
x. x ∈ set xs =⇒ distinct (f x)

disjoint-family-on (set ◦ f) (set xs)
shows distinct (List.bind xs f)
〈proof 〉

lemma bij-betw-UNION-disjoint:
assumes disj: disjoint-family-on A ′ I
assumes bij:

∧
i. i ∈ I =⇒ bij-betw f (A i) (A ′ i)

shows bij-betw f (
⋃

i∈I . A i) (
⋃

i∈I . A ′ i)

THEORY “Disjoint-Sets” 167

〈proof 〉

lemma disjoint-union: disjoint C =⇒ disjoint B =⇒
⋃

C ∩
⋃

B = {} =⇒ disjoint
(C ∪ B)
〈proof 〉

Sum/product of the union of a finite disjoint family
context comm-monoid-set
begin

lemma UNION-disjoint-family:
assumes finite I and ∀ i∈I . finite (A i)

and disjoint-family-on A I
shows F g (

⋃
(A ‘ I)) = F (λx. F g (A x)) I

〈proof 〉

lemma Union-disjoint-sets:
assumes ∀A∈C . finite A and disjoint C
shows F g (

⋃
C) = (F ◦ F) g C

〈proof 〉

end

The union of an infinite disjoint family of non-empty sets is infinite.
lemma infinite-disjoint-family-imp-infinite-UNION :

assumes ¬finite A
∧

x. x ∈ A =⇒ f x 6= {} disjoint-family-on f A
shows ¬finite (

⋃
(f ‘ A))

〈proof 〉

28.2 Construct Disjoint Sequences
definition disjointed :: (nat ⇒ ′a set) ⇒ nat ⇒ ′a set where

disjointed A n = A n − (
⋃

i∈{0 ..<n}. A i)

lemma finite-UN-disjointed-eq: (
⋃

i∈{0 ..<n}. disjointed A i) = (
⋃

i∈{0 ..<n}. A
i)
〈proof 〉

lemma UN-disjointed-eq: (
⋃

i. disjointed A i) = (
⋃

i. A i)
〈proof 〉

lemma less-disjoint-disjointed: m < n =⇒ disjointed A m ∩ disjointed A n = {}
〈proof 〉

lemma disjoint-family-disjointed: disjoint-family (disjointed A)
〈proof 〉

lemma disjointed-subset: disjointed A n ⊆ A n
〈proof 〉

THEORY “Disjoint-Sets” 168

lemma disjointed-0 [simp]: disjointed A 0 = A 0
〈proof 〉

lemma disjointed-mono: mono A =⇒ disjointed A (Suc n) = A (Suc n) − A n
〈proof 〉

28.3 Partitions
Partitions P of a set A. We explicitly disallow empty sets.
definition partition-on :: ′a set ⇒ ′a set set ⇒ bool
where

partition-on A P ←→
⋃

P = A ∧ disjoint P ∧ {} /∈ P

lemma partition-onI :⋃
P = A =⇒ (

∧
p q. p ∈ P =⇒ q ∈ P =⇒ p 6= q =⇒ disjnt p q) =⇒ {} /∈ P

=⇒ partition-on A P
〈proof 〉

lemma partition-onD1 : partition-on A P =⇒ A =
⋃

P
〈proof 〉

lemma partition-onD2 : partition-on A P =⇒ disjoint P
〈proof 〉

lemma partition-onD3 : partition-on A P =⇒ {} /∈ P
〈proof 〉

28.4 Constructions of partitions
lemma partition-on-empty: partition-on {} P ←→ P = {}
〈proof 〉

lemma partition-on-space: A 6= {} =⇒ partition-on A {A}
〈proof 〉

lemma partition-on-singletons: partition-on A ((λx. {x}) ‘ A)
〈proof 〉

lemma partition-on-transform:
assumes P: partition-on A P
assumes F-UN :

⋃
(F ‘ P) = F (

⋃
P) and F-disjnt:

∧
p q. p ∈ P =⇒ q ∈ P

=⇒ disjnt p q =⇒ disjnt (F p) (F q)
shows partition-on (F A) (F ‘ P − {{}})
〈proof 〉

lemma partition-on-restrict: partition-on A P =⇒ partition-on (B ∩ A) ((∩) B ‘
P − {{}})
〈proof 〉

THEORY “Disjoint-Sets” 169

lemma partition-on-vimage: partition-on A P =⇒ partition-on (f −‘ A) ((−‘) f ‘
P − {{}})
〈proof 〉

lemma partition-on-inj-image:
assumes P: partition-on A P and f : inj-on f A
shows partition-on (f ‘ A) ((‘) f ‘ P − {{}})
〈proof 〉

lemma partition-on-insert:
assumes disjnt p (

⋃
P)

shows partition-on A (insert p P) ←→ partition-on (A−p) P ∧ p ⊆ A ∧ p 6= {}
〈proof 〉

28.5 Finiteness of partitions
lemma finitely-many-partition-on:

assumes finite A
shows finite {P. partition-on A P}
〈proof 〉

lemma finite-elements: finite A =⇒ partition-on A P =⇒ finite P
〈proof 〉

lemma product-partition:
assumes partition-on A P and

∧
p. p ∈ P =⇒ finite p

shows card A = (
∑

p∈P. card p)
〈proof 〉

28.6 Equivalence of partitions and equivalence classes
lemma partition-on-quotient:

assumes r : equiv A r
shows partition-on A (A // r)
〈proof 〉

lemma equiv-partition-on:
assumes P: partition-on A P
shows equiv A {(x, y). ∃ p ∈ P. x ∈ p ∧ y ∈ p}
〈proof 〉

lemma partition-on-eq-quotient:
assumes P: partition-on A P
shows A // {(x, y). ∃ p ∈ P. x ∈ p ∧ y ∈ p} = P
〈proof 〉

lemma partition-on-alt: partition-on A P ←→ (∃ r . equiv A r ∧ P = A // r)
〈proof 〉

lemma (in comm-monoid-set) partition:

THEORY “Disjoint-Sets” 170

assumes finite X partition-on X A
shows F g X = F (λB. F g B) A
〈proof 〉

If h is an involution on X with no fixed points in X and f(h(x)) = −f(x)
then

∑
x∈X f(x) = 0.

This is easy to show in a ring with characteristic not equal to 2, since
then we can do ∑

x∈X
f(x) =

∑
x∈X

f(h(x)) = −
∑
x∈X

f(x)

and therefore 2
∑

x∈X f(x) = 0.
However, the following proof also works in rings of characteristic 2. The

idea is to simply partition X into a disjoint union of doubleton sets of the
form {x, h(x)}.
lemma sum-involution-eq-0 :

assumes f-h:
∧

x. x ∈ X =⇒ f (h x) + f x = 0
assumes h:

∧
x. x ∈ X =⇒ h x ∈ X

∧
x. x ∈ X =⇒ h (h x) = x

∧
x. x ∈ X

=⇒ h x 6= x
shows (

∑
x∈X . f x) = 0

〈proof 〉

28.7 Refinement of partitions
definition refines :: ′a set ⇒ ′a set set ⇒ ′a set set ⇒ bool

where refines A P Q ≡
partition-on A P ∧ partition-on A Q ∧ (∀X∈P. ∃Y∈Q. X ⊆ Y)

lemma refines-refl: partition-on A P =⇒ refines A P P
〈proof 〉

lemma refines-asym1 :
assumes refines A P Q refines A Q P
shows P ⊆ Q
〈proof 〉

lemma refines-asym: [[refines A P Q; refines A Q P]] =⇒ P=Q
〈proof 〉

lemma refines-trans: [[refines A P Q; refines A Q R]] =⇒ refines A P R
〈proof 〉

lemma refines-obtains-subset:
assumes refines A P Q q ∈ Q
shows partition-on q {p ∈ P. p ⊆ q}
〈proof 〉

THEORY “FSet” 171

28.8 The coarsest common refinement of a set of partitions
definition common-refinement :: ′a set set set ⇒ ′a set set

where common-refinement P ≡ (
⋃

f ∈ (ΠE P∈P. P). {
⋂

(f ‘ P)}) − {{}}

With non-extensional function space
lemma common-refinement: common-refinement P = (

⋃
f ∈ (Π P∈P. P). {

⋂
(f

‘ P)}) − {{}}
(is ?lhs = ?rhs)
〈proof 〉

lemma common-refinement-exists: [[X ∈ common-refinement P; P ∈ P]] =⇒ ∃R∈P.
X ⊆ R
〈proof 〉

lemma Union-common-refinement:
⋃

(common-refinement P) = (
⋂

P∈P.
⋃

P)
〈proof 〉

lemma partition-on-common-refinement:
assumes A:

∧
P. P ∈ P =⇒ partition-on A P and P 6= {}

shows partition-on A (common-refinement P)
〈proof 〉

lemma refines-common-refinement:
assumes

∧
P. P ∈ P =⇒ partition-on A P P ∈ P

shows refines A (common-refinement P) P
〈proof 〉

The common refinement is itself refined by any other
lemma common-refinement-coarsest:

assumes
∧

P. P ∈ P =⇒ partition-on A P partition-on A R
∧

P. P ∈ P =⇒
refines A R P P 6= {}

shows refines A R (common-refinement P)
〈proof 〉

lemma finite-common-refinement:
assumes finite P

∧
P. P ∈ P =⇒ finite P

shows finite (common-refinement P)
〈proof 〉

lemma card-common-refinement:
assumes finite P

∧
P. P ∈ P =⇒ finite P

shows card (common-refinement P) ≤ (
∏

P ∈ P. card P)
〈proof 〉

end

29 Type of finite sets defined as a subtype of sets
theory FSet

THEORY “FSet” 172

imports Main Countable
begin

29.1 Definition of the type
typedef ′a fset = {A :: ′a set. finite A} morphisms fset Abs-fset
〈proof 〉

setup-lifting type-definition-fset

29.2 Basic operations and type class instantiations
instantiation fset :: (finite) finite
begin
instance 〈proof 〉
end

instantiation fset :: (type) {bounded-lattice-bot, distrib-lattice, minus}
begin

lift-definition bot-fset :: ′a fset is {} parametric empty-transfer 〈proof 〉

lift-definition less-eq-fset :: ′a fset ⇒ ′a fset ⇒ bool is subset-eq parametric
subset-transfer
〈proof 〉

definition less-fset :: ′a fset ⇒ ′a fset ⇒ bool where xs < ys ≡ xs ≤ ys ∧ xs 6=
(ys:: ′a fset)

lemma less-fset-transfer [transfer-rule]:
includes lifting-syntax
assumes [transfer-rule]: bi-unique A
shows ((pcr-fset A) ===> (pcr-fset A) ===> (=)) (⊂) (<)
〈proof 〉

lift-definition sup-fset :: ′a fset ⇒ ′a fset ⇒ ′a fset is union parametric union-transfer
〈proof 〉

lift-definition inf-fset :: ′a fset ⇒ ′a fset ⇒ ′a fset is inter parametric in-
ter-transfer
〈proof 〉

lift-definition minus-fset :: ′a fset ⇒ ′a fset ⇒ ′a fset is minus parametric
Diff-transfer
〈proof 〉

instance
〈proof 〉

THEORY “FSet” 173

end

abbreviation fempty :: ′a fset (‹{||}›) where {||} ≡ bot
abbreviation fsubset-eq :: ′a fset ⇒ ′a fset ⇒ bool (infix ‹|⊆|› 50) where xs |⊆|
ys ≡ xs ≤ ys
abbreviation fsubset :: ′a fset ⇒ ′a fset ⇒ bool (infix ‹|⊂|› 50) where xs |⊂| ys
≡ xs < ys
abbreviation funion :: ′a fset ⇒ ′a fset ⇒ ′a fset (infixl ‹|∪|› 65) where xs |∪|
ys ≡ sup xs ys
abbreviation finter :: ′a fset ⇒ ′a fset ⇒ ′a fset (infixl ‹|∩|› 65) where xs |∩|
ys ≡ inf xs ys
abbreviation fminus :: ′a fset ⇒ ′a fset ⇒ ′a fset (infixl ‹|−|› 65) where xs |−|
ys ≡ minus xs ys

instantiation fset :: (equal) equal
begin
definition HOL.equal A B ←→ A |⊆| B ∧ B |⊆| A
instance 〈proof 〉
end

instantiation fset :: (type) conditionally-complete-lattice
begin

context includes lifting-syntax
begin

lemma right-total-Inf-fset-transfer :
assumes [transfer-rule]: bi-unique A and [transfer-rule]: right-total A
shows (rel-set (rel-set A) ===> rel-set A)
(λS . if finite (

⋂
S ∩ Collect (Domainp A)) then

⋂
S ∩ Collect (Domainp A)

else {})
(λS . if finite (Inf S) then Inf S else {})
〈proof 〉

lemma Inf-fset-transfer :
assumes [transfer-rule]: bi-unique A and [transfer-rule]: bi-total A
shows (rel-set (rel-set A) ===> rel-set A) (λA. if finite (Inf A) then Inf A else
{})

(λA. if finite (Inf A) then Inf A else {})
〈proof 〉

lift-definition Inf-fset :: ′a fset set ⇒ ′a fset is λA. if finite (Inf A) then Inf A
else {}
parametric right-total-Inf-fset-transfer Inf-fset-transfer 〈proof 〉

lemma Sup-fset-transfer :
assumes [transfer-rule]: bi-unique A
shows (rel-set (rel-set A) ===> rel-set A) (λA. if finite (Sup A) then Sup A

else {})

THEORY “FSet” 174

(λA. if finite (Sup A) then Sup A else {}) 〈proof 〉

lift-definition Sup-fset :: ′a fset set ⇒ ′a fset is λA. if finite (Sup A) then Sup A
else {}
parametric Sup-fset-transfer 〈proof 〉

lemma finite-Sup: ∃ z. finite z ∧ (∀ a. a ∈ X −→ a ≤ z) =⇒ finite (Sup X)
〈proof 〉

lemma transfer-bdd-below[transfer-rule]: (rel-set (pcr-fset (=)) ===> (=)) bdd-below
bdd-below
〈proof 〉

end

instance
〈proof 〉
end

instantiation fset :: (finite) complete-lattice
begin

lift-definition top-fset :: ′a fset is UNIV parametric right-total-UNIV-transfer
UNIV-transfer
〈proof 〉

instance
〈proof 〉

end

instantiation fset :: (finite) complete-boolean-algebra
begin

lift-definition uminus-fset :: ′a fset ⇒ ′a fset is uminus
parametric right-total-Compl-transfer Compl-transfer 〈proof 〉

instance
〈proof 〉

end

abbreviation fUNIV :: ′a::finite fset where fUNIV ≡ top
abbreviation fuminus :: ′a::finite fset ⇒ ′a fset (‹|−| -› [81] 80) where |−| x ≡
uminus x

declare top-fset.rep-eq[simp]

THEORY “FSet” 175

29.3 Other operations
lift-definition finsert :: ′a⇒ ′a fset ⇒ ′a fset is insert parametric Lifting-Set.insert-transfer
〈proof 〉

syntax
-fset :: args => ′a fset (‹(‹indent=2 notation=‹mixfix finite set enumeration››{|-|})›)

syntax-consts
-fset
 finsert

translations
{|x, xs|} == CONST finsert x {|xs|}
{|x|} == CONST finsert x {||}

abbreviation fmember :: ′a ⇒ ′a fset ⇒ bool (infix ‹|∈|› 50) where
x |∈| X ≡ x ∈ fset X

abbreviation not-fmember :: ′a ⇒ ′a fset ⇒ bool (infix ‹|/∈|› 50) where
x |/∈| X ≡ x /∈ fset X

context
begin

qualified abbreviation Ball :: ′a fset ⇒ (′a ⇒ bool) ⇒ bool where
Ball X ≡ Set.Ball (fset X)

alias fBall = FSet.Ball

qualified abbreviation Bex :: ′a fset ⇒ (′a ⇒ bool) ⇒ bool where
Bex X ≡ Set.Bex (fset X)

alias fBex = FSet.Bex

end

syntax (input)
-fBall :: pttrn ⇒ ′a fset ⇒ bool ⇒ bool (‹(‹indent=3 notation=‹binder finite !››!

(-/|:|-)./ -)› [0 , 0 , 10] 10)
-fBex :: pttrn ⇒ ′a fset ⇒ bool ⇒ bool (‹(‹indent=3 notation=‹binder finite

?››? (-/|:|-)./ -)› [0 , 0 , 10] 10)
-fBex1 :: pttrn ⇒ ′a fset ⇒ bool ⇒ bool (‹(‹indent=3 notation=‹binder finite

?!››?! (-/:-)./ -)› [0 , 0 , 10] 10)

syntax
-fBall :: pttrn ⇒ ′a fset ⇒ bool ⇒ bool (‹(‹indent=3 notation=‹binder finite
∀ ››∀ (-/|∈|-)./ -)› [0 , 0 , 10] 10)

-fBex :: pttrn ⇒ ′a fset ⇒ bool ⇒ bool (‹(‹indent=3 notation=‹binder finite
∃ ››∃ (-/|∈|-)./ -)› [0 , 0 , 10] 10)

-fBnex :: pttrn ⇒ ′a fset ⇒ bool ⇒ bool (‹(‹indent=3 notation=‹binder finite
@ ››@ (-/|∈|-)./ -)› [0 , 0 , 10] 10)

-fBex1 :: pttrn ⇒ ′a fset ⇒ bool ⇒ bool (‹(‹indent=3 notation=‹binder finite

THEORY “FSet” 176

∃ !››∃ !(-/|∈|-)./ -)› [0 , 0 , 10] 10)

syntax-consts
-fBall -fBnex
 fBall and
-fBex
 fBex and
-fBex1
 Ex1

translations
∀ x|∈|A. P
 CONST FSet.Ball A (λx. P)
∃ x|∈|A. P
 CONST FSet.Bex A (λx. P)
@ x|∈|A. P
 CONST fBall A (λx. ¬ P)
∃ !x|∈|A. P ⇀ ∃ !x. x |∈| A ∧ P

〈ML〉

syntax
-setlessfAll :: [idt, ′a, bool]⇒ bool (‹(‹indent=3 notation=‹binder finite ∀ ››∀ -|⊂|-./

-)› [0 , 0 , 10] 10)
-setlessfEx :: [idt, ′a, bool]⇒ bool (‹(‹indent=3 notation=‹binder finite ∃ ››∃ -|⊂|-./

-)› [0 , 0 , 10] 10)
-setlefAll :: [idt, ′a, bool]⇒ bool (‹(‹indent=3 notation=‹binder finite ∀ ››∀ -|⊆|-./

-)› [0 , 0 , 10] 10)
-setlefEx :: [idt, ′a, bool] ⇒ bool (‹(‹indent=3 notation=‹binder finite

∃ ››∃ -|⊆|-./ -)› [0 , 0 , 10] 10)

syntax-consts
-setlessfAll -setlefAll
 All and
-setlessfEx -setlefEx
 Ex

translations
∀A|⊂|B. P ⇀ ∀A. A |⊂| B −→ P
∃A|⊂|B. P ⇀ ∃A. A |⊂| B ∧ P
∀A|⊆|B. P ⇀ ∀A. A |⊆| B −→ P
∃A|⊆|B. P ⇀ ∃A. A |⊆| B ∧ P

context includes lifting-syntax
begin

lemma fmember-transfer0 [transfer-rule]:
assumes [transfer-rule]: bi-unique A
shows (A ===> pcr-fset A ===> (=)) (∈) (|∈|)
〈proof 〉

lemma fBall-transfer0 [transfer-rule]:
assumes [transfer-rule]: bi-unique A
shows (pcr-fset A ===> (A ===> (=)) ===> (=)) (Ball) (fBall)
〈proof 〉

THEORY “FSet” 177

lemma fBex-transfer0 [transfer-rule]:
assumes [transfer-rule]: bi-unique A
shows (pcr-fset A ===> (A ===> (=)) ===> (=)) (Bex) (fBex)
〈proof 〉

lift-definition ffilter :: (′a ⇒ bool) ⇒ ′a fset ⇒ ′a fset is Set.filter
parametric Lifting-Set.filter-transfer 〈proof 〉

lift-definition fPow :: ′a fset ⇒ ′a fset fset is Pow parametric Pow-transfer
〈proof 〉

lift-definition fcard :: ′a fset ⇒ nat is card parametric card-transfer 〈proof 〉

lift-definition fimage :: (′a ⇒ ′b) ⇒ ′a fset ⇒ ′b fset (infixr ‹|‘|› 90) is image
parametric image-transfer 〈proof 〉

lift-definition fthe-elem :: ′a fset ⇒ ′a is the-elem 〈proof 〉

lift-definition fbind :: ′a fset ⇒ (′a ⇒ ′b fset) ⇒ ′b fset is Set.bind parametric
bind-transfer
〈proof 〉

lift-definition ffUnion :: ′a fset fset ⇒ ′a fset is Union parametric Union-transfer
〈proof 〉

lift-definition ffold :: (′a ⇒ ′b⇒ ′b)⇒ ′b⇒ ′a fset ⇒ ′b is Finite-Set.fold 〈proof 〉

lift-definition fset-of-list :: ′a list ⇒ ′a fset is set 〈proof 〉

lift-definition sorted-list-of-fset :: ′a::linorder fset ⇒ ′a list is sorted-list-of-set
〈proof 〉

29.4 Transferred lemmas from Set.thy
lemma fset-eqI : (

∧
x. (x |∈| A) = (x |∈| B)) =⇒ A = B

〈proof 〉

lemma fset-eq-iff [no-atp]: (A = B) = (∀ x. (x |∈| A) = (x |∈| B))
〈proof 〉

lemma fBallI [no-atp]: (
∧

x. x |∈| A =⇒ P x) =⇒ fBall A P
〈proof 〉

lemma fbspec[no-atp]: fBall A P =⇒ x |∈| A =⇒ P x
〈proof 〉

lemma fBallE [no-atp]: fBall A P =⇒ (P x =⇒ Q) =⇒ (x |/∈| A =⇒ Q) =⇒ Q
〈proof 〉

THEORY “FSet” 178

lemma fBexI [no-atp]: P x =⇒ x |∈| A =⇒ fBex A P
〈proof 〉

lemma rev-fBexI [no-atp]: x |∈| A =⇒ P x =⇒ fBex A P
〈proof 〉

lemma fBexCI [no-atp]: (fBall A (λx. ¬ P x) =⇒ P a) =⇒ a |∈| A =⇒ fBex A P
〈proof 〉

lemma fBexE [no-atp]: fBex A P =⇒ (
∧

x. x |∈| A =⇒ P x =⇒ Q) =⇒ Q
〈proof 〉

lemma fBall-triv[no-atp]: fBall A (λx. P) = ((∃ x. x |∈| A) −→ P)
〈proof 〉

lemma fBex-triv[no-atp]: fBex A (λx. P) = ((∃ x. x |∈| A) ∧ P)
〈proof 〉

lemma fBex-triv-one-point1 [no-atp]: fBex A (λx. x = a) = (a |∈| A)
〈proof 〉

lemma fBex-triv-one-point2 [no-atp]: fBex A ((=) a) = (a |∈| A)
〈proof 〉

lemma fBex-one-point1 [no-atp]: fBex A (λx. x = a ∧ P x) = (a |∈| A ∧ P a)
〈proof 〉

lemma fBex-one-point2 [no-atp]: fBex A (λx. a = x ∧ P x) = (a |∈| A ∧ P a)
〈proof 〉

lemma fBall-one-point1 [no-atp]: fBall A (λx. x = a −→ P x) = (a |∈| A −→ P
a)
〈proof 〉

lemma fBall-one-point2 [no-atp]: fBall A (λx. a = x −→ P x) = (a |∈| A −→ P
a)
〈proof 〉

lemma fBall-conj-distrib: fBall A (λx. P x ∧ Q x) = (fBall A P ∧ fBall A Q)
〈proof 〉

lemma fBex-disj-distrib: fBex A (λx. P x ∨ Q x) = (fBex A P ∨ fBex A Q)
〈proof 〉

lemma fBall-cong[fundef-cong]: A = B =⇒ (
∧

x. x |∈| B =⇒ P x = Q x) =⇒
fBall A P = fBall B Q
〈proof 〉

lemma fBex-cong[fundef-cong]: A = B =⇒ (
∧

x. x |∈| B =⇒ P x = Q x) =⇒ fBex

THEORY “FSet” 179

A P = fBex B Q
〈proof 〉

lemma fsubsetI [intro!]: (
∧

x. x |∈| A =⇒ x |∈| B) =⇒ A |⊆| B
〈proof 〉

lemma fsubsetD[elim, intro?]: A |⊆| B =⇒ c |∈| A =⇒ c |∈| B
〈proof 〉

lemma rev-fsubsetD[no-atp,intro?]: c |∈| A =⇒ A |⊆| B =⇒ c |∈| B
〈proof 〉

lemma fsubsetCE [no-atp,elim]: A |⊆| B =⇒ (c |/∈| A =⇒ P) =⇒ (c |∈| B =⇒ P)
=⇒ P
〈proof 〉

lemma fsubset-eq[no-atp]: (A |⊆| B) = fBall A (λx. x |∈| B)
〈proof 〉

lemma contra-fsubsetD[no-atp]: A |⊆| B =⇒ c |/∈| B =⇒ c |/∈| A
〈proof 〉

lemma fsubset-refl: A |⊆| A
〈proof 〉

lemma fsubset-trans: A |⊆| B =⇒ B |⊆| C =⇒ A |⊆| C
〈proof 〉

lemma fset-rev-mp: c |∈| A =⇒ A |⊆| B =⇒ c |∈| B
〈proof 〉

lemma fset-mp: A |⊆| B =⇒ c |∈| A =⇒ c |∈| B
〈proof 〉

lemma fsubset-not-fsubset-eq[code]: (A |⊂| B) = (A |⊆| B ∧ ¬ B |⊆| A)
〈proof 〉

lemma eq-fmem-trans: a = b =⇒ b |∈| A =⇒ a |∈| A
〈proof 〉

lemma fsubset-antisym[intro!]: A |⊆| B =⇒ B |⊆| A =⇒ A = B
〈proof 〉

lemma fequalityD1 : A = B =⇒ A |⊆| B
〈proof 〉

lemma fequalityD2 : A = B =⇒ B |⊆| A
〈proof 〉

THEORY “FSet” 180

lemma fequalityE : A = B =⇒ (A |⊆| B =⇒ B |⊆| A =⇒ P) =⇒ P
〈proof 〉

lemma fequalityCE [elim]:
A = B =⇒ (c |∈| A =⇒ c |∈| B =⇒ P) =⇒ (c |/∈| A =⇒ c |/∈| B =⇒ P) =⇒ P
〈proof 〉

lemma eqfset-imp-iff : A = B =⇒ (x |∈| A) = (x |∈| B)
〈proof 〉

lemma eqfelem-imp-iff : x = y =⇒ (x |∈| A) = (y |∈| A)
〈proof 〉

lemma fempty-iff [simp]: (c |∈| {||}) = False
〈proof 〉

lemma fempty-fsubsetI [iff]: {||} |⊆| x
〈proof 〉

lemma equalsffemptyI : (
∧

y. y |∈| A =⇒ False) =⇒ A = {||}
〈proof 〉

lemma equalsffemptyD: A = {||} =⇒ a |/∈| A
〈proof 〉

lemma fBall-fempty[simp]: fBall {||} P = True
〈proof 〉

lemma fBex-fempty[simp]: fBex {||} P = False
〈proof 〉

lemma fPow-iff [iff]: (A |∈| fPow B) = (A |⊆| B)
〈proof 〉

lemma fPowI : A |⊆| B =⇒ A |∈| fPow B
〈proof 〉

lemma fPowD: A |∈| fPow B =⇒ A |⊆| B
〈proof 〉

lemma fPow-bottom: {||} |∈| fPow B
〈proof 〉

lemma fPow-top: A |∈| fPow A
〈proof 〉

lemma fPow-not-fempty: fPow A 6= {||}
〈proof 〉

THEORY “FSet” 181

lemma finter-iff [simp]: (c |∈| A |∩| B) = (c |∈| A ∧ c |∈| B)
〈proof 〉

lemma finterI [intro!]: c |∈| A =⇒ c |∈| B =⇒ c |∈| A |∩| B
〈proof 〉

lemma finterD1 : c |∈| A |∩| B =⇒ c |∈| A
〈proof 〉

lemma finterD2 : c |∈| A |∩| B =⇒ c |∈| B
〈proof 〉

lemma finterE [elim!]: c |∈| A |∩| B =⇒ (c |∈| A =⇒ c |∈| B =⇒ P) =⇒ P
〈proof 〉

lemma funion-iff [simp]: (c |∈| A |∪| B) = (c |∈| A ∨ c |∈| B)
〈proof 〉

lemma funionI1 [elim?]: c |∈| A =⇒ c |∈| A |∪| B
〈proof 〉

lemma funionI2 [elim?]: c |∈| B =⇒ c |∈| A |∪| B
〈proof 〉

lemma funionCI [intro!]: (c |/∈| B =⇒ c |∈| A) =⇒ c |∈| A |∪| B
〈proof 〉

lemma funionE [elim!]: c |∈| A |∪| B =⇒ (c |∈| A =⇒ P) =⇒ (c |∈| B =⇒ P)
=⇒ P
〈proof 〉

lemma fminus-iff [simp]: (c |∈| A |−| B) = (c |∈| A ∧ c |/∈| B)
〈proof 〉

lemma fminusI [intro!]: c |∈| A =⇒ c |/∈| B =⇒ c |∈| A |−| B
〈proof 〉

lemma fminusD1 : c |∈| A |−| B =⇒ c |∈| A
〈proof 〉

lemma fminusD2 : c |∈| A |−| B =⇒ c |∈| B =⇒ P
〈proof 〉

lemma fminusE [elim!]: c |∈| A |−| B =⇒ (c |∈| A =⇒ c |/∈| B =⇒ P) =⇒ P
〈proof 〉

lemma finsert-iff [simp]: (a |∈| finsert b A) = (a = b ∨ a |∈| A)
〈proof 〉

THEORY “FSet” 182

lemma finsertI1 : a |∈| finsert a B
〈proof 〉

lemma finsertI2 : a |∈| B =⇒ a |∈| finsert b B
〈proof 〉

lemma finsertE [elim!]: a |∈| finsert b A =⇒ (a = b =⇒ P) =⇒ (a |∈| A =⇒ P)
=⇒ P
〈proof 〉

lemma finsertCI [intro!]: (a |/∈| B =⇒ a = b) =⇒ a |∈| finsert b B
〈proof 〉

lemma fsubset-finsert-iff :
(A |⊆| finsert x B) = (if x |∈| A then A |−| {|x|} |⊆| B else A |⊆| B)
〈proof 〉

lemma finsert-ident: x |/∈| A =⇒ x |/∈| B =⇒ (finsert x A = finsert x B) = (A =
B)
〈proof 〉

lemma fsingletonI [intro!,no-atp]: a |∈| {|a|}
〈proof 〉

lemma fsingletonD[dest!,no-atp]: b |∈| {|a|} =⇒ b = a
〈proof 〉

lemma fsingleton-iff : (b |∈| {|a|}) = (b = a)
〈proof 〉

lemma fsingleton-inject[dest!]: {|a|} = {|b|} =⇒ a = b
〈proof 〉

lemma fsingleton-finsert-inj-eq[iff ,no-atp]: ({|b|} = finsert a A) = (a = b ∧ A |⊆|
{|b|})
〈proof 〉

lemma fsingleton-finsert-inj-eq ′[iff ,no-atp]: (finsert a A = {|b|}) = (a = b ∧ A |⊆|
{|b|})
〈proof 〉

lemma fsubset-fsingletonD: A |⊆| {|x|} =⇒ A = {||} ∨ A = {|x|}
〈proof 〉

lemma fminus-single-finsert: A |−| {|x|} |⊆| B =⇒ A |⊆| finsert x B
〈proof 〉

lemma fdoubleton-eq-iff : ({|a, b|} = {|c, d|}) = (a = c ∧ b = d ∨ a = d ∧ b =
c)

THEORY “FSet” 183

〈proof 〉

lemma funion-fsingleton-iff :
(A |∪| B = {|x|}) = (A = {||} ∧ B = {|x|} ∨ A = {|x|} ∧ B = {||} ∨ A = {|x|}
∧ B = {|x|})
〈proof 〉

lemma fsingleton-funion-iff :
({|x|} = A |∪| B) = (A = {||} ∧ B = {|x|} ∨ A = {|x|} ∧ B = {||} ∨ A = {|x|}
∧ B = {|x|})
〈proof 〉

lemma fimage-eqI [simp, intro]: b = f x =⇒ x |∈| A =⇒ b |∈| f |‘| A
〈proof 〉

lemma fimageI : x |∈| A =⇒ f x |∈| f |‘| A
〈proof 〉

lemma rev-fimage-eqI : x |∈| A =⇒ b = f x =⇒ b |∈| f |‘| A
〈proof 〉

lemma fimageE [elim!]: b |∈| f |‘| A =⇒ (
∧

x. b = f x =⇒ x |∈| A =⇒ thesis) =⇒
thesis
〈proof 〉

lemma Compr-fimage-eq: {x. x |∈| f |‘| A ∧ P x} = f ‘ {x. x |∈| A ∧ P (f x)}
〈proof 〉

lemma fimage-funion: f |‘| (A |∪| B) = f |‘| A |∪| f |‘| B
〈proof 〉

lemma fimage-iff : (z |∈| f |‘| A) = fBex A (λx. z = f x)
〈proof 〉

lemma fimage-fsubset-iff [no-atp]: (f |‘| A |⊆| B) = fBall A (λx. f x |∈| B)
〈proof 〉

lemma fimage-fsubsetI : (
∧

x. x |∈| A =⇒ f x |∈| B) =⇒ f |‘| A |⊆| B
〈proof 〉

lemma fimage-ident[simp]: (λx. x) |‘| Y = Y
〈proof 〉

lemma if-split-fmem1 : ((if Q then x else y) |∈| b) = ((Q −→ x |∈| b) ∧ (¬ Q −→
y |∈| b))
〈proof 〉

lemma if-split-fmem2 : (a |∈| (if Q then x else y)) = ((Q −→ a |∈| x) ∧ (¬ Q −→
a |∈| y))

THEORY “FSet” 184

〈proof 〉

lemma pfsubsetI [intro!,no-atp]: A |⊆| B =⇒ A 6= B =⇒ A |⊂| B
〈proof 〉

lemma pfsubsetE [elim!,no-atp]: A |⊂| B =⇒ (A |⊆| B =⇒ ¬ B |⊆| A =⇒ R) =⇒
R
〈proof 〉

lemma pfsubset-finsert-iff :
(A |⊂| finsert x B) =
(if x |∈| B then A |⊂| B else if x |∈| A then A |−| {|x|} |⊂| B else A |⊆| B)
〈proof 〉

lemma pfsubset-eq: (A |⊂| B) = (A |⊆| B ∧ A 6= B)
〈proof 〉

lemma pfsubset-imp-fsubset: A |⊂| B =⇒ A |⊆| B
〈proof 〉

lemma pfsubset-trans: A |⊂| B =⇒ B |⊂| C =⇒ A |⊂| C
〈proof 〉

lemma pfsubsetD: A |⊂| B =⇒ c |∈| A =⇒ c |∈| B
〈proof 〉

lemma pfsubset-fsubset-trans: A |⊂| B =⇒ B |⊆| C =⇒ A |⊂| C
〈proof 〉

lemma fsubset-pfsubset-trans: A |⊆| B =⇒ B |⊂| C =⇒ A |⊂| C
〈proof 〉

lemma pfsubset-imp-ex-fmem: A |⊂| B =⇒ ∃ b. b |∈| B |−| A
〈proof 〉

lemma fimage-fPow-mono: f |‘| A |⊆| B =⇒ (|‘|) f |‘| fPow A |⊆| fPow B
〈proof 〉

lemma fimage-fPow-surj: f |‘| A = B =⇒ (|‘|) f |‘| fPow A = fPow B
〈proof 〉

lemma fsubset-finsertI : B |⊆| finsert a B
〈proof 〉

lemma fsubset-finsertI2 : A |⊆| B =⇒ A |⊆| finsert b B
〈proof 〉

lemma fsubset-finsert: x |/∈| A =⇒ (A |⊆| finsert x B) = (A |⊆| B)
〈proof 〉

THEORY “FSet” 185

lemma funion-upper1 : A |⊆| A |∪| B
〈proof 〉

lemma funion-upper2 : B |⊆| A |∪| B
〈proof 〉

lemma funion-least: A |⊆| C =⇒ B |⊆| C =⇒ A |∪| B |⊆| C
〈proof 〉

lemma finter-lower1 : A |∩| B |⊆| A
〈proof 〉

lemma finter-lower2 : A |∩| B |⊆| B
〈proof 〉

lemma finter-greatest: C |⊆| A =⇒ C |⊆| B =⇒ C |⊆| A |∩| B
〈proof 〉

lemma fminus-fsubset: A |−| B |⊆| A
〈proof 〉

lemma fminus-fsubset-conv: (A |−| B |⊆| C) = (A |⊆| B |∪| C)
〈proof 〉

lemma fsubset-fempty[simp]: (A |⊆| {||}) = (A = {||})
〈proof 〉

lemma not-pfsubset-fempty[iff]: ¬ A |⊂| {||}
〈proof 〉

lemma finsert-is-funion: finsert a A = {|a|} |∪| A
〈proof 〉

lemma finsert-not-fempty[simp]: finsert a A 6= {||}
〈proof 〉

lemma fempty-not-finsert: {||} 6= finsert a A
〈proof 〉

lemma finsert-absorb: a |∈| A =⇒ finsert a A = A
〈proof 〉

lemma finsert-absorb2 [simp]: finsert x (finsert x A) = finsert x A
〈proof 〉

lemma finsert-commute: finsert x (finsert y A) = finsert y (finsert x A)
〈proof 〉

THEORY “FSet” 186

lemma finsert-fsubset[simp]: (finsert x A |⊆| B) = (x |∈| B ∧ A |⊆| B)
〈proof 〉

lemma finsert-inter-finsert[simp]: finsert a A |∩| finsert a B = finsert a (A |∩| B)
〈proof 〉

lemma finsert-disjoint[simp,no-atp]:
(finsert a A |∩| B = {||}) = (a |/∈| B ∧ A |∩| B = {||})
({||} = finsert a A |∩| B) = (a |/∈| B ∧ {||} = A |∩| B)
〈proof 〉

lemma disjoint-finsert[simp,no-atp]:
(B |∩| finsert a A = {||}) = (a |/∈| B ∧ B |∩| A = {||})
({||} = A |∩| finsert b B) = (b |/∈| A ∧ {||} = A |∩| B)
〈proof 〉

lemma fimage-fempty[simp]: f |‘| {||} = {||}
〈proof 〉

lemma fimage-finsert[simp]: f |‘| finsert a B = finsert (f a) (f |‘| B)
〈proof 〉

lemma fimage-constant: x |∈| A =⇒ (λx. c) |‘| A = {|c|}
〈proof 〉

lemma fimage-constant-conv: (λx. c) |‘| A = (if A = {||} then {||} else {|c|})
〈proof 〉

lemma fimage-fimage: f |‘| g |‘| A = (λx. f (g x)) |‘| A
〈proof 〉

lemma finsert-fimage[simp]: x |∈| A =⇒ finsert (f x) (f |‘| A) = f |‘| A
〈proof 〉

lemma fimage-is-fempty[iff]: (f |‘| A = {||}) = (A = {||})
〈proof 〉

lemma fempty-is-fimage[iff]: ({||} = f |‘| A) = (A = {||})
〈proof 〉

lemma fimage-cong: M = N =⇒ (
∧

x. x |∈| N =⇒ f x = g x) =⇒ f |‘| M = g |‘|
N
〈proof 〉

lemma fimage-finter-fsubset: f |‘| (A |∩| B) |⊆| f |‘| A |∩| f |‘| B
〈proof 〉

lemma fimage-fminus-fsubset: f |‘| A |−| f |‘| B |⊆| f |‘| (A |−| B)
〈proof 〉

THEORY “FSet” 187

lemma finter-absorb: A |∩| A = A
〈proof 〉

lemma finter-left-absorb: A |∩| (A |∩| B) = A |∩| B
〈proof 〉

lemma finter-commute: A |∩| B = B |∩| A
〈proof 〉

lemma finter-left-commute: A |∩| (B |∩| C) = B |∩| (A |∩| C)
〈proof 〉

lemma finter-assoc: A |∩| B |∩| C = A |∩| (B |∩| C)
〈proof 〉

lemma finter-ac:
A |∩| B |∩| C = A |∩| (B |∩| C)
A |∩| (A |∩| B) = A |∩| B
A |∩| B = B |∩| A
A |∩| (B |∩| C) = B |∩| (A |∩| C)
〈proof 〉

lemma finter-absorb1 : B |⊆| A =⇒ A |∩| B = B
〈proof 〉

lemma finter-absorb2 : A |⊆| B =⇒ A |∩| B = A
〈proof 〉

lemma finter-fempty-left: {||} |∩| B = {||}
〈proof 〉

lemma finter-fempty-right: A |∩| {||} = {||}
〈proof 〉

lemma disjoint-iff-fnot-equal: (A |∩| B = {||}) = fBall A (λx. fBall B ((6=) x))
〈proof 〉

lemma finter-funion-distrib: A |∩| (B |∪| C) = A |∩| B |∪| (A |∩| C)
〈proof 〉

lemma finter-funion-distrib2 : B |∪| C |∩| A = B |∩| A |∪| (C |∩| A)
〈proof 〉

lemma finter-fsubset-iff [no-atp, simp]: (C |⊆| A |∩| B) = (C |⊆| A ∧ C |⊆| B)
〈proof 〉

lemma funion-absorb: A |∪| A = A
〈proof 〉

THEORY “FSet” 188

lemma funion-left-absorb: A |∪| (A |∪| B) = A |∪| B
〈proof 〉

lemma funion-commute: A |∪| B = B |∪| A
〈proof 〉

lemma funion-left-commute: A |∪| (B |∪| C) = B |∪| (A |∪| C)
〈proof 〉

lemma funion-assoc: A |∪| B |∪| C = A |∪| (B |∪| C)
〈proof 〉

lemma funion-ac:
A |∪| B |∪| C = A |∪| (B |∪| C)
A |∪| (A |∪| B) = A |∪| B
A |∪| B = B |∪| A
A |∪| (B |∪| C) = B |∪| (A |∪| C)
〈proof 〉

lemma funion-absorb1 : A |⊆| B =⇒ A |∪| B = B
〈proof 〉

lemma funion-absorb2 : B |⊆| A =⇒ A |∪| B = A
〈proof 〉

lemma funion-fempty-left: {||} |∪| B = B
〈proof 〉

lemma funion-fempty-right: A |∪| {||} = A
〈proof 〉

lemma funion-finsert-left[simp]: finsert a B |∪| C = finsert a (B |∪| C)
〈proof 〉

lemma funion-finsert-right[simp]: A |∪| finsert a B = finsert a (A |∪| B)
〈proof 〉

lemma finter-finsert-left: finsert a B |∩| C = (if a |∈| C then finsert a (B |∩| C)
else B |∩| C)
〈proof 〉

lemma finter-finsert-left-ifffempty[simp]: a |/∈| C =⇒ finsert a B |∩| C = B |∩| C
〈proof 〉

lemma finter-finsert-left-if1 [simp]: a |∈| C =⇒ finsert a B |∩| C = finsert a (B
|∩| C)
〈proof 〉

THEORY “FSet” 189

lemma finter-finsert-right:
A |∩| finsert a B = (if a |∈| A then finsert a (A |∩| B) else A |∩| B)
〈proof 〉

lemma finter-finsert-right-ifffempty[simp]: a |/∈| A =⇒ A |∩| finsert a B = A |∩|
B
〈proof 〉

lemma finter-finsert-right-if1 [simp]: a |∈| A =⇒ A |∩| finsert a B = finsert a (A
|∩| B)
〈proof 〉

lemma funion-finter-distrib: A |∪| (B |∩| C) = A |∪| B |∩| (A |∪| C)
〈proof 〉

lemma funion-finter-distrib2 : B |∩| C |∪| A = B |∪| A |∩| (C |∪| A)
〈proof 〉

lemma funion-finter-crazy:
A |∩| B |∪| (B |∩| C) |∪| (C |∩| A) = A |∪| B |∩| (B |∪| C) |∩| (C |∪| A)
〈proof 〉

lemma fsubset-funion-eq: (A |⊆| B) = (A |∪| B = B)
〈proof 〉

lemma funion-fempty[iff]: (A |∪| B = {||}) = (A = {||} ∧ B = {||})
〈proof 〉

lemma funion-fsubset-iff [no-atp, simp]: (A |∪| B |⊆| C) = (A |⊆| C ∧ B |⊆| C)
〈proof 〉

lemma funion-fminus-finter : A |−| B |∪| (A |∩| B) = A
〈proof 〉

lemma ffunion-empty[simp]: ffUnion {||} = {||}
〈proof 〉

lemma ffunion-mono: A |⊆| B =⇒ ffUnion A |⊆| ffUnion B
〈proof 〉

lemma ffunion-insert[simp]: ffUnion (finsert a B) = a |∪| ffUnion B
〈proof 〉

lemma fminus-finter2 : A |∩| C |−| (B |∩| C) = A |∩| C |−| B
〈proof 〉

lemma funion-finter-assoc-eq: (A |∩| B |∪| C = A |∩| (B |∪| C)) = (C |⊆| A)
〈proof 〉

THEORY “FSet” 190

lemma fBall-funion: fBall (A |∪| B) P = (fBall A P ∧ fBall B P)
〈proof 〉

lemma fBex-funion: fBex (A |∪| B) P = (fBex A P ∨ fBex B P)
〈proof 〉

lemma fminus-eq-fempty-iff [simp,no-atp]: (A |−| B = {||}) = (A |⊆| B)
〈proof 〉

lemma fminus-cancel[simp]: A |−| A = {||}
〈proof 〉

lemma fminus-idemp[simp]: A |−| B |−| B = A |−| B
〈proof 〉

lemma fminus-triv: A |∩| B = {||} =⇒ A |−| B = A
〈proof 〉

lemma fempty-fminus[simp]: {||} |−| A = {||}
〈proof 〉

lemma fminus-fempty[simp]: A |−| {||} = A
〈proof 〉

lemma fminus-finsertffempty[simp,no-atp]: x |/∈| A =⇒ A |−| finsert x B = A |−|
B
〈proof 〉

lemma fminus-finsert: A |−| finsert a B = A |−| B |−| {|a|}
〈proof 〉

lemma fminus-finsert2 : A |−| finsert a B = A |−| {|a|} |−| B
〈proof 〉

lemma finsert-fminus-if : finsert x A |−| B = (if x |∈| B then A |−| B else finsert
x (A |−| B))
〈proof 〉

lemma finsert-fminus1 [simp]: x |∈| B =⇒ finsert x A |−| B = A |−| B
〈proof 〉

lemma finsert-fminus-single[simp]: finsert a (A |−| {|a|}) = finsert a A
〈proof 〉

lemma finsert-fminus: a |∈| A =⇒ finsert a (A |−| {|a|}) = A
〈proof 〉

lemma fminus-finsert-absorb: x |/∈| A =⇒ finsert x A |−| {|x|} = A
〈proof 〉

THEORY “FSet” 191

lemma fminus-disjoint[simp]: A |∩| (B |−| A) = {||}
〈proof 〉

lemma fminus-partition: A |⊆| B =⇒ A |∪| (B |−| A) = B
〈proof 〉

lemma double-fminus: A |⊆| B =⇒ B |⊆| C =⇒ B |−| (C |−| A) = A
〈proof 〉

lemma funion-fminus-cancel[simp]: A |∪| (B |−| A) = A |∪| B
〈proof 〉

lemma funion-fminus-cancel2 [simp]: B |−| A |∪| A = B |∪| A
〈proof 〉

lemma fminus-funion: A |−| (B |∪| C) = A |−| B |∩| (A |−| C)
〈proof 〉

lemma fminus-finter : A |−| (B |∩| C) = A |−| B |∪| (A |−| C)
〈proof 〉

lemma funion-fminus: A |∪| B |−| C = A |−| C |∪| (B |−| C)
〈proof 〉

lemma finter-fminus: A |∩| B |−| C = A |∩| (B |−| C)
〈proof 〉

lemma fminus-finter-distrib: C |∩| (A |−| B) = C |∩| A |−| (C |∩| B)
〈proof 〉

lemma fminus-finter-distrib2 : A |−| B |∩| C = A |∩| C |−| (B |∩| C)
〈proof 〉

lemma fUNIV-bool[no-atp]: fUNIV = {|False, True|}
〈proof 〉

lemma fPow-fempty[simp]: fPow {||} = {|{||}|}
〈proof 〉

lemma fPow-finsert: fPow (finsert a A) = fPow A |∪| finsert a |‘| fPow A
〈proof 〉

lemma funion-fPow-fsubset: fPow A |∪| fPow B |⊆| fPow (A |∪| B)
〈proof 〉

lemma fPow-finter-eq[simp]: fPow (A |∩| B) = fPow A |∩| fPow B
〈proof 〉

THEORY “FSet” 192

lemma fset-eq-fsubset: (A = B) = (A |⊆| B ∧ B |⊆| A)
〈proof 〉

lemma fsubset-iff [no-atp]: (A |⊆| B) = (∀ t. t |∈| A −→ t |∈| B)
〈proof 〉

lemma fsubset-iff-pfsubset-eq: (A |⊆| B) = (A |⊂| B ∨ A = B)
〈proof 〉

lemma all-not-fin-conv[simp]: (∀ x. x |/∈| A) = (A = {||})
〈proof 〉

lemma ex-fin-conv: (∃ x. x |∈| A) = (A 6= {||})
〈proof 〉

lemma fimage-mono: A |⊆| B =⇒ f |‘| A |⊆| f |‘| B
〈proof 〉

lemma fPow-mono: A |⊆| B =⇒ fPow A |⊆| fPow B
〈proof 〉

lemma finsert-mono: C |⊆| D =⇒ finsert a C |⊆| finsert a D
〈proof 〉

lemma funion-mono: A |⊆| C =⇒ B |⊆| D =⇒ A |∪| B |⊆| C |∪| D
〈proof 〉

lemma finter-mono: A |⊆| C =⇒ B |⊆| D =⇒ A |∩| B |⊆| C |∩| D
〈proof 〉

lemma fminus-mono: A |⊆| C =⇒ D |⊆| B =⇒ A |−| B |⊆| C |−| D
〈proof 〉

lemma fin-mono: A |⊆| B =⇒ x |∈| A −→ x |∈| B
〈proof 〉

lemma fthe-felem-eq[simp]: fthe-elem {|x|} = x
〈proof 〉

lemma fLeast-mono:
mono f =⇒ fBex S (λx. fBall S ((≤) x)) =⇒ (LEAST y. y |∈| f |‘| S) = f

(LEAST x . x |∈| S)
〈proof 〉

lemma fbind-fbind: fbind (fbind A B) C = fbind A (λx. fbind (B x) C)
〈proof 〉

lemma fempty-fbind[simp]: fbind {||} f = {||}
〈proof 〉

THEORY “FSet” 193

lemma nonfempty-fbind-const: A 6= {||} =⇒ fbind A (λ-. B) = B
〈proof 〉

lemma fbind-const: fbind A (λ-. B) = (if A = {||} then {||} else B)
〈proof 〉

lemma ffmember-filter [simp]: (x |∈| ffilter P A) = (x |∈| A ∧ P x)
〈proof 〉

lemma fequalityI : A |⊆| B =⇒ B |⊆| A =⇒ A = B
〈proof 〉

lemma fset-of-list-simps[simp]:
fset-of-list [] = {||}
fset-of-list (x21 # x22) = finsert x21 (fset-of-list x22)
〈proof 〉

lemma fset-of-list-append[simp]: fset-of-list (xs @ ys) = fset-of-list xs |∪| fset-of-list
ys
〈proof 〉

lemma fset-of-list-rev[simp]: fset-of-list (rev xs) = fset-of-list xs
〈proof 〉

lemma fset-of-list-map[simp]: fset-of-list (map f xs) = f |‘| fset-of-list xs
〈proof 〉

29.5 Additional lemmas
29.5.1 ffUnion
lemma ffUnion-funion-distrib[simp]: ffUnion (A |∪| B) = ffUnion A |∪| ffUnion
B
〈proof 〉

29.5.2 fbind
lemma fbind-cong[fundef-cong]: A = B =⇒ (

∧
x. x |∈| B =⇒ f x = g x) =⇒ fbind

A f = fbind B g
〈proof 〉

29.5.3 fsingleton
lemma fsingletonE : b |∈| {|a|} =⇒ (b = a =⇒ thesis) =⇒ thesis
〈proof 〉

29.5.4 femepty
lemma fempty-ffilter [simp]: ffilter (λ-. False) A = {||}

THEORY “FSet” 194

〈proof 〉

lemma femptyE [elim!]: a |∈| {||} =⇒ P
〈proof 〉

29.5.5 fset
lemma fset-simps[simp]:

fset {||} = {}
fset (finsert x X) = insert x (fset X)
〈proof 〉

lemma finite-fset [simp]:
shows finite (fset S)
〈proof 〉

lemmas fset-cong = fset-inject

lemma filter-fset [simp]:
shows fset (ffilter P xs) = Collect P ∩ fset xs
〈proof 〉

lemma inter-fset[simp]: fset (A |∩| B) = fset A ∩ fset B
〈proof 〉

lemma union-fset[simp]: fset (A |∪| B) = fset A ∪ fset B
〈proof 〉

lemma minus-fset[simp]: fset (A |−| B) = fset A − fset B
〈proof 〉

29.5.6 ffilter
lemma subset-ffilter :

ffilter P A |⊆| ffilter Q A = (∀ x. x |∈| A −→ P x −→ Q x)
〈proof 〉

lemma eq-ffilter :
(ffilter P A = ffilter Q A) = (∀ x. x |∈| A −→ P x = Q x)
〈proof 〉

lemma pfsubset-ffilter :
(
∧

x. x |∈| A =⇒ P x =⇒ Q x) =⇒ (x |∈| A ∧ ¬ P x ∧ Q x) =⇒
ffilter P A |⊂| ffilter Q A
〈proof 〉

29.5.7 fset-of-list
lemma fset-of-list-filter [simp]:

THEORY “FSet” 195

fset-of-list (filter P xs) = ffilter P (fset-of-list xs)
〈proof 〉

lemma fset-of-list-subset[intro]:
set xs ⊆ set ys =⇒ fset-of-list xs |⊆| fset-of-list ys
〈proof 〉

lemma fset-of-list-elem: (x |∈| fset-of-list xs) ←→ (x ∈ set xs)
〈proof 〉

29.5.8 finsert
lemma set-finsert:

assumes x |∈| A
obtains B where A = finsert x B and x |/∈| B
〈proof 〉

lemma mk-disjoint-finsert: a |∈| A =⇒ ∃B. A = finsert a B ∧ a |/∈| B
〈proof 〉

lemma finsert-eq-iff :
assumes a |/∈| A and b |/∈| B
shows (finsert a A = finsert b B) =
(if a = b then A = B else ∃C . A = finsert b C ∧ b |/∈| C ∧ B = finsert a C ∧

a |/∈| C)
〈proof 〉

29.5.9 fimage
lemma subset-fimage-iff : (B |⊆| f |‘|A) = (∃ AA. AA |⊆| A ∧ B = f |‘|AA)
〈proof 〉

lemma fimage-strict-mono:
assumes inj-on f (fset B) and A |⊂| B
shows f |‘| A |⊂| f |‘| B
— TODO: Configure transfer framework to lift [[inj-on ?f ?B; ?A ⊂ ?B]] =⇒ ?f

‘ ?A ⊂ ?f ‘ ?B.
〈proof 〉

29.5.10 bounded quantification
lemma bex-simps [simp, no-atp]:∧

A P Q. fBex A (λx. P x ∧ Q) = (fBex A P ∧ Q)∧
A P Q. fBex A (λx. P ∧ Q x) = (P ∧ fBex A Q)∧
P. fBex {||} P = False∧
a B P. fBex (finsert a B) P = (P a ∨ fBex B P)∧
A P f . fBex (f |‘| A) P = fBex A (λx. P (f x))∧
A P. (¬ fBex A P) = fBall A (λx. ¬ P x)

〈proof 〉

THEORY “FSet” 196

lemma ball-simps [simp, no-atp]:∧
A P Q. fBall A (λx. P x ∨ Q) = (fBall A P ∨ Q)∧
A P Q. fBall A (λx. P ∨ Q x) = (P ∨ fBall A Q)∧
A P Q. fBall A (λx. P −→ Q x) = (P −→ fBall A Q)∧
A P Q. fBall A (λx. P x −→ Q) = (fBex A P −→ Q)∧
P. fBall {||} P = True∧
a B P. fBall (finsert a B) P = (P a ∧ fBall B P)∧
A P f . fBall (f |‘| A) P = fBall A (λx. P (f x))∧
A P. (¬ fBall A P) = fBex A (λx. ¬ P x)

〈proof 〉

lemma atomize-fBall:
(
∧

x. x |∈| A ==> P x) == Trueprop (fBall A (λx. P x))
〈proof 〉

lemma fBall-mono[mono]: P ≤ Q =⇒ fBall S P ≤ fBall S Q
〈proof 〉

lemma fBex-mono[mono]: P ≤ Q =⇒ fBex S P ≤ fBex S Q
〈proof 〉

end

29.5.11 fcard
lemma fcard-fempty:

fcard {||} = 0
〈proof 〉

lemma fcard-finsert-disjoint:
x |/∈| A =⇒ fcard (finsert x A) = Suc (fcard A)
〈proof 〉

lemma fcard-finsert-if :
fcard (finsert x A) = (if x |∈| A then fcard A else Suc (fcard A))
〈proof 〉

lemma fcard-0-eq [simp, no-atp]:
fcard A = 0 ←→ A = {||}
〈proof 〉

lemma fcard-Suc-fminus1 :
x |∈| A =⇒ Suc (fcard (A |−| {|x|})) = fcard A
〈proof 〉

lemma fcard-fminus-fsingleton:
x |∈| A =⇒ fcard (A |−| {|x|}) = fcard A − 1
〈proof 〉

THEORY “FSet” 197

lemma fcard-fminus-fsingleton-if :
fcard (A |−| {|x|}) = (if x |∈| A then fcard A − 1 else fcard A)
〈proof 〉

lemma fcard-fminus-finsert[simp]:
assumes a |∈| A and a |/∈| B
shows fcard (A |−| finsert a B) = fcard (A |−| B) − 1
〈proof 〉

lemma fcard-finsert: fcard (finsert x A) = Suc (fcard (A |−| {|x|}))
〈proof 〉

lemma fcard-finsert-le: fcard A ≤ fcard (finsert x A)
〈proof 〉

lemma fcard-mono:
A |⊆| B =⇒ fcard A ≤ fcard B
〈proof 〉

lemma fcard-seteq: A |⊆| B =⇒ fcard B ≤ fcard A =⇒ A = B
〈proof 〉

lemma pfsubset-fcard-mono: A |⊂| B =⇒ fcard A < fcard B
〈proof 〉

lemma fcard-funion-finter :
fcard A + fcard B = fcard (A |∪| B) + fcard (A |∩| B)
〈proof 〉

lemma fcard-funion-disjoint:
A |∩| B = {||} =⇒ fcard (A |∪| B) = fcard A + fcard B
〈proof 〉

lemma fcard-funion-fsubset:
B |⊆| A =⇒ fcard (A |−| B) = fcard A − fcard B
〈proof 〉

lemma diff-fcard-le-fcard-fminus:
fcard A − fcard B ≤ fcard(A |−| B)
〈proof 〉

lemma fcard-fminus1-less: x |∈| A =⇒ fcard (A |−| {|x|}) < fcard A
〈proof 〉

lemma fcard-fminus2-less:
x |∈| A =⇒ y |∈| A =⇒ fcard (A |−| {|x|} |−| {|y|}) < fcard A
〈proof 〉

lemma fcard-fminus1-le: fcard (A |−| {|x|}) ≤ fcard A

THEORY “FSet” 198

〈proof 〉

lemma fcard-pfsubset: A |⊆| B =⇒ fcard A < fcard B =⇒ A < B
〈proof 〉

29.5.12 sorted-list-of-fset
lemma sorted-list-of-fset-simps[simp]:

set (sorted-list-of-fset S) = fset S
fset-of-list (sorted-list-of-fset S) = S
〈proof 〉

29.5.13 ffold
context comp-fun-commute
begin

lemma ffold-empty[simp]: ffold f z {||} = z
〈proof 〉

lemma ffold-finsert [simp]:
assumes x |/∈| A
shows ffold f z (finsert x A) = f x (ffold f z A)
〈proof 〉

lemma ffold-fun-left-comm:
f x (ffold f z A) = ffold f (f x z) A
〈proof 〉

lemma ffold-finsert2 :
x |/∈| A =⇒ ffold f z (finsert x A) = ffold f (f x z) A
〈proof 〉

lemma ffold-rec:
assumes x |∈| A
shows ffold f z A = f x (ffold f z (A |−| {|x|}))
〈proof 〉

lemma ffold-finsert-fremove:
ffold f z (finsert x A) = f x (ffold f z (A |−| {|x|}))
〈proof 〉

end

lemma ffold-fimage:
assumes inj-on g (fset A)
shows ffold f z (g |‘| A) = ffold (f ◦ g) z A
〈proof 〉

lemma ffold-cong:
assumes comp-fun-commute f comp-fun-commute g∧

x. x |∈| A =⇒ f x = g x

THEORY “FSet” 199

and s = t and A = B
shows ffold f s A = ffold g t B
〈proof 〉

context comp-fun-idem
begin

lemma ffold-finsert-idem:
ffold f z (finsert x A) = f x (ffold f z A)
〈proof 〉

declare ffold-finsert [simp del] ffold-finsert-idem [simp]

lemma ffold-finsert-idem2 :
ffold f z (finsert x A) = ffold f (f x z) A
〈proof 〉

end

29.5.14 (|⊂|)
lemma wfP-pfsubset: wfP (|⊂|)
〈proof 〉

29.5.15 Group operations
locale comm-monoid-fset = comm-monoid
begin

sublocale set: comm-monoid-set 〈proof 〉

lift-definition F :: (′b ⇒ ′a) ⇒ ′b fset ⇒ ′a is set.F 〈proof 〉

lemma cong[fundef-cong]: A = B =⇒ (
∧

x. x |∈| B =⇒ g x = h x) =⇒ F g A =
F h B
〈proof 〉

lemma cong-simp[cong]:
[[A = B;

∧
x. x |∈| B =simp=> g x = h x]] =⇒ F g A = F h B

〈proof 〉

end

context comm-monoid-add begin

sublocale fsum: comm-monoid-fset plus 0
rewrites comm-monoid-set.F plus 0 = sum
defines fsum = fsum.F
〈proof 〉

THEORY “FSet” 200

end

29.5.16 Semilattice operations
locale semilattice-fset = semilattice
begin

sublocale set: semilattice-set 〈proof 〉

lift-definition F :: ′a fset ⇒ ′a is set.F 〈proof 〉

lemma eq-fold: F (finsert x A) = ffold f x A
〈proof 〉

lemma singleton [simp]: F {|x|} = x
〈proof 〉

lemma insert-not-elem: x |/∈| A =⇒ A 6= {||} =⇒ F (finsert x A) = x ∗ F A
〈proof 〉

lemma in-idem: x |∈| A =⇒ x ∗ F A = F A
〈proof 〉

lemma insert [simp]: A 6= {||} =⇒ F (finsert x A) = x ∗ F A
〈proof 〉

end

locale semilattice-order-fset = binary?: semilattice-order + semilattice-fset
begin

end

context linorder begin

sublocale fMin: semilattice-order-fset min less-eq less
rewrites semilattice-set.F min = Min
defines fMin = fMin.F
〈proof 〉

sublocale fMax: semilattice-order-fset max greater-eq greater
rewrites semilattice-set.F max = Max
defines fMax = fMax.F
〈proof 〉

end

lemma mono-fMax-commute: mono f =⇒ A 6= {||} =⇒ f (fMax A) = fMax (f |‘|

THEORY “FSet” 201

A)
〈proof 〉

lemma mono-fMin-commute: mono f =⇒ A 6= {||} =⇒ f (fMin A) = fMin (f |‘|
A)
〈proof 〉

lemma fMax-in[simp]: A 6= {||} =⇒ fMax A |∈| A
〈proof 〉

lemma fMin-in[simp]: A 6= {||} =⇒ fMin A |∈| A
〈proof 〉

lemma fMax-ge[simp]: x |∈| A =⇒ x ≤ fMax A
〈proof 〉

lemma fMin-le[simp]: x |∈| A =⇒ fMin A ≤ x
〈proof 〉

lemma fMax-eqI : (
∧

y. y |∈| A =⇒ y ≤ x) =⇒ x |∈| A =⇒ fMax A = x
〈proof 〉

lemma fMin-eqI : (
∧

y. y |∈| A =⇒ x ≤ y) =⇒ x |∈| A =⇒ fMin A = x
〈proof 〉

lemma fMax-finsert[simp]: fMax (finsert x A) = (if A = {||} then x else max x
(fMax A))
〈proof 〉

lemma fMin-finsert[simp]: fMin (finsert x A) = (if A = {||} then x else min x
(fMin A))
〈proof 〉

context linorder begin

lemma fset-linorder-max-induct[case-names fempty finsert]:
assumes P {||}
and

∧
x S . [[∀ y. y |∈| S −→ y < x; P S]] =⇒ P (finsert x S)

shows P S
〈proof 〉

lemma fset-linorder-min-induct[case-names fempty finsert]:
assumes P {||}
and

∧
x S . [[∀ y. y |∈| S −→ y > x; P S]] =⇒ P (finsert x S)

shows P S
〈proof 〉

end

THEORY “FSet” 202

29.6 Choice in fsets
lemma fset-choice:

assumes ∀ x. x |∈| A −→ (∃ y. P x y)
shows ∃ f . ∀ x. x |∈| A −→ P x (f x)
〈proof 〉

29.7 Induction and Cases rules for fsets
lemma fset-exhaust [case-names empty insert, cases type: fset]:

assumes fempty-case: S = {||} =⇒ P
and finsert-case:

∧
x S ′. S = finsert x S ′ =⇒ P

shows P
〈proof 〉

lemma fset-induct [case-names empty insert]:
assumes fempty-case: P {||}
and finsert-case:

∧
x S . P S =⇒ P (finsert x S)

shows P S
〈proof 〉

lemma fset-induct-stronger [case-names empty insert, induct type: fset]:
assumes empty-fset-case: P {||}
and insert-fset-case:

∧
x S . [[x |/∈| S ; P S]] =⇒ P (finsert x S)

shows P S
〈proof 〉

lemma fset-card-induct:
assumes empty-fset-case: P {||}
and card-fset-Suc-case:

∧
S T . Suc (fcard S) = (fcard T) =⇒ P S =⇒ P T

shows P S
〈proof 〉

lemma fset-strong-cases:
obtains xs = {||}
| ys x where x |/∈| ys and xs = finsert x ys
〈proof 〉

lemma fset-induct2 :
P {||} {||} =⇒
(
∧

x xs. x |/∈| xs =⇒ P (finsert x xs) {||}) =⇒
(
∧

y ys. y |/∈| ys =⇒ P {||} (finsert y ys)) =⇒
(
∧

x xs y ys. [[P xs ys; x |/∈| xs; y |/∈| ys]] =⇒ P (finsert x xs) (finsert y ys)) =⇒
P xsa ysa
〈proof 〉

29.8 Lemmas depending on induction
lemma ffUnion-fsubset-iff : ffUnion A |⊆| B ←→ fBall A (λx. x |⊆| B)
〈proof 〉

THEORY “FSet” 203

29.9 Setup for Lifting/Transfer
29.9.1 Relator and predicator properties
lift-definition rel-fset :: (′a ⇒ ′b ⇒ bool) ⇒ ′a fset ⇒ ′b fset ⇒ bool is rel-set
parametric rel-set-transfer 〈proof 〉

lemma rel-fset-alt-def : rel-fset R = (λA B. (∀ x.∃ y. x|∈|A −→ y|∈|B ∧ R x y)
∧ (∀ y. ∃ x. y|∈|B −→ x|∈|A ∧ R x y))
〈proof 〉

lemma finite-rel-set:
assumes fin: finite X finite Z
assumes R-S : rel-set (R OO S) X Z
shows ∃Y . finite Y ∧ rel-set R X Y ∧ rel-set S Y Z
〈proof 〉

29.9.2 Transfer rules for the Transfer package

Unconditional transfer rules
context includes lifting-syntax
begin

lemma fempty-transfer [transfer-rule]:
rel-fset A {||} {||}
〈proof 〉

lemma finsert-transfer [transfer-rule]:
(A ===> rel-fset A ===> rel-fset A) finsert finsert
〈proof 〉

lemma funion-transfer [transfer-rule]:
(rel-fset A ===> rel-fset A ===> rel-fset A) funion funion
〈proof 〉

lemma ffUnion-transfer [transfer-rule]:
(rel-fset (rel-fset A) ===> rel-fset A) ffUnion ffUnion
〈proof 〉

lemma fimage-transfer [transfer-rule]:
((A ===> B) ===> rel-fset A ===> rel-fset B) fimage fimage
〈proof 〉

lemma fBall-transfer [transfer-rule]:
(rel-fset A ===> (A ===> (=)) ===> (=)) fBall fBall
〈proof 〉

lemma fBex-transfer [transfer-rule]:
(rel-fset A ===> (A ===> (=)) ===> (=)) fBex fBex
〈proof 〉

THEORY “FSet” 204

lemma fPow-transfer [transfer-rule]:
(rel-fset A ===> rel-fset (rel-fset A)) fPow fPow
〈proof 〉

lemma rel-fset-transfer [transfer-rule]:
((A ===> B ===> (=)) ===> rel-fset A ===> rel-fset B ===> (=))

rel-fset rel-fset
〈proof 〉

lemma bind-transfer [transfer-rule]:
(rel-fset A ===> (A ===> rel-fset B) ===> rel-fset B) fbind fbind
〈proof 〉

Rules requiring bi-unique, bi-total or right-total relations
lemma fmember-transfer [transfer-rule]:

assumes bi-unique A
shows (A ===> rel-fset A ===> (=)) (|∈|) (|∈|)
〈proof 〉

lemma finter-transfer [transfer-rule]:
assumes bi-unique A
shows (rel-fset A ===> rel-fset A ===> rel-fset A) finter finter
〈proof 〉

lemma fminus-transfer [transfer-rule]:
assumes bi-unique A
shows (rel-fset A ===> rel-fset A ===> rel-fset A) (|−|) (|−|)
〈proof 〉

lemma fsubset-transfer [transfer-rule]:
assumes bi-unique A
shows (rel-fset A ===> rel-fset A ===> (=)) (|⊆|) (|⊆|)
〈proof 〉

lemma fSup-transfer [transfer-rule]:
bi-unique A =⇒ (rel-set (rel-fset A) ===> rel-fset A) Sup Sup
〈proof 〉

lemma fInf-transfer [transfer-rule]:
assumes bi-unique A and bi-total A
shows (rel-set (rel-fset A) ===> rel-fset A) Inf Inf
〈proof 〉

lemma ffilter-transfer [transfer-rule]:
assumes bi-unique A

THEORY “FSet” 205

shows ((A ===> (=)) ===> rel-fset A ===> rel-fset A) ffilter ffilter
〈proof 〉

lemma card-transfer [transfer-rule]:
bi-unique A =⇒ (rel-fset A ===> (=)) fcard fcard
〈proof 〉

end

lifting-update fset.lifting
lifting-forget fset.lifting

29.10 BNF setup
context
includes fset.lifting
begin

lemma rel-fset-alt:
rel-fset R a b ←→ (∀ t ∈ fset a. ∃ u ∈ fset b. R t u) ∧ (∀ t ∈ fset b. ∃ u ∈ fset a.

R u t)
〈proof 〉

lemma fset-to-fset: finite A =⇒ fset (the-inv fset A) = A
〈proof 〉

lemma rel-fset-aux:
(∀ t ∈ fset a. ∃ u ∈ fset b. R t u) ∧ (∀ u ∈ fset b. ∃ t ∈ fset a. R t u) ←→
((BNF-Def .Grp {a. fset a ⊆ {(a, b). R a b}} (fimage fst))−1−1 OO
BNF-Def .Grp {a. fset a ⊆ {(a, b). R a b}} (fimage snd)) a b (is ?L = ?R)
〈proof 〉

bnf ′a fset
map: fimage
sets: fset
bd: natLeq
wits: {||}
rel: rel-fset
〈proof 〉

lemma rel-fset-fset: rel-set χ (fset A1) (fset A2) = rel-fset χ A1 A2
〈proof 〉

end

declare
fset.map-comp[simp]
fset.map-id[simp]
fset.set-map[simp]

THEORY “FSet” 206

29.11 Size setup
context includes fset.lifting
begin
lift-definition size-fset :: (′a ⇒ nat)⇒ ′a fset ⇒ nat is λf . sum (Suc ◦ f) 〈proof 〉
end

instantiation fset :: (type) size
begin
definition size-fset where

size-fset-overloaded-def : size-fset = FSet.size-fset (λ-. 0)
instance 〈proof 〉
end

lemma size-fset-simps[simp]: size-fset f X = (
∑

x ∈ fset X . Suc (f x))
〈proof 〉

lemma size-fset-overloaded-simps[simp]: size X = (
∑

x ∈ fset X . Suc 0)
〈proof 〉

lemma fset-size-o-map: inj f =⇒ size-fset g ◦ fimage f = size-fset (g ◦ f)
〈proof 〉

〈ML〉

lifting-update fset.lifting
lifting-forget fset.lifting

29.12 Advanced relator customization
Set vs. sum relators:
lemma rel-set-rel-sum[simp]:
rel-set (rel-sum χ ϕ) A1 A2 ←→
rel-set χ (Inl −‘ A1) (Inl −‘ A2) ∧ rel-set ϕ (Inr −‘ A1) (Inr −‘ A2)
(is ?L ←→ ?Rl ∧ ?Rr)
〈proof 〉

29.12.1 Countability
lemma exists-fset-of-list: ∃ xs. fset-of-list xs = S

including fset.lifting
〈proof 〉

lemma fset-of-list-surj[simp, intro]: surj fset-of-list
〈proof 〉

instance fset :: (countable) countable
〈proof 〉

THEORY “FSet” 207

29.13 Quickcheck setup
Setup adapted from sets.
notation Quickcheck-Exhaustive.orelse (infixr ‹orelse› 55)

context
includes term-syntax

begin

definition [code-unfold]:
valterm-femptyset = Code-Evaluation.valtermify ({||} :: (′a :: typerep) fset)

definition [code-unfold]:
valtermify-finsert x s = Code-Evaluation.valtermify finsert {·} (x :: (′a :: typerep ∗
-)) {·} s

end

instantiation fset :: (exhaustive) exhaustive
begin

fun exhaustive-fset where
exhaustive-fset f i = (if i = 0 then None else (f {||} orelse exhaustive-fset (λA. f
A orelse Quickcheck-Exhaustive.exhaustive (λx. if x |∈| A then None else f (finsert
x A)) (i − 1)) (i − 1)))

instance 〈proof 〉

end

instantiation fset :: (full-exhaustive) full-exhaustive
begin

fun full-exhaustive-fset where
full-exhaustive-fset f i = (if i = 0 then None else (f valterm-femptyset orelse
full-exhaustive-fset (λA. f A orelse Quickcheck-Exhaustive.full-exhaustive (λx. if
fst x |∈| fst A then None else f (valtermify-finsert x A)) (i − 1)) (i − 1)))

instance 〈proof 〉

end

no-notation Quickcheck-Exhaustive.orelse (infixr ‹orelse› 55)

instantiation fset :: (random) random
begin

context
includes state-combinator-syntax

THEORY “Finite-Map” 208

begin

fun random-aux-fset :: natural ⇒ natural ⇒ natural × natural ⇒ (′a fset × (unit
⇒ term)) × natural × natural where
random-aux-fset 0 j = Quickcheck-Random.collapse (Random.select-weight [(1 , Pair
valterm-femptyset)]) |
random-aux-fset (Code-Numeral.Suc i) j =

Quickcheck-Random.collapse (Random.select-weight
[(1 , Pair valterm-femptyset),
(Code-Numeral.Suc i,

Quickcheck-Random.random j ◦→ (λx. random-aux-fset i j ◦→ (λs. Pair
(valtermify-finsert x s))))])

lemma [code]:
random-aux-fset i j =
Quickcheck-Random.collapse (Random.select-weight [(1 , Pair valterm-femptyset),
(i, Quickcheck-Random.random j ◦→ (λx. random-aux-fset (i − 1) j ◦→ (λs.

Pair (valtermify-finsert x s))))])
〈proof 〉

definition random-fset i = random-aux-fset i i

instance 〈proof 〉

end

end

29.14 Code Generation Setup
The following code-unfold lemmas are so the pre-processor of the code gen-
erator will perform conversions like, e.g., (x |∈| f |‘| fset-of-list xs) = (x ∈ f
‘ set xs).
declare

ffilter .rep-eq[code-unfold]
fimage.rep-eq[code-unfold]
finsert.rep-eq[code-unfold]
fset-of-list.rep-eq[code-unfold]
inf-fset.rep-eq[code-unfold]
minus-fset.rep-eq[code-unfold]
sup-fset.rep-eq[code-unfold]
uminus-fset.rep-eq[code-unfold]

end

THEORY “Finite-Map” 209

30 Type of finite maps defined as a subtype of
maps

theory Finite-Map
imports FSet AList Conditional-Parametricity
abbrevs (= = ⊆f

begin

30.1 Auxiliary constants and lemmas over map
parametric-constant map-add-transfer [transfer-rule]: map-add-def
parametric-constant map-of-transfer [transfer-rule]: map-of-def

context includes lifting-syntax begin

abbreviation rel-map :: (′b ⇒ ′c ⇒ bool)⇒ (′a ⇀ ′b)⇒ (′a ⇀ ′c)⇒ bool where
rel-map f ≡ (=) ===> rel-option f

lemma ran-transfer [transfer-rule]: (rel-map A ===> rel-set A) ran ran
〈proof 〉

lemma ran-alt-def : ran m = (the ◦ m) ‘ dom m
〈proof 〉

parametric-constant dom-transfer [transfer-rule]: dom-def

definition map-upd :: ′a ⇒ ′b ⇒ (′a ⇀ ′b) ⇒ (′a ⇀ ′b) where
map-upd k v m = m(k 7→ v)

parametric-constant map-upd-transfer [transfer-rule]: map-upd-def

definition map-filter :: (′a ⇒ bool) ⇒ (′a ⇀ ′b) ⇒ (′a ⇀ ′b) where
map-filter P m = (λx. if P x then m x else None)

parametric-constant map-filter-transfer [transfer-rule]: map-filter-def

lemma map-filter-map-of [simp]: map-filter P (map-of m) = map-of [(k, -) ← m.
P k]
〈proof 〉

lemma map-filter-finite[intro]:
assumes finite (dom m)
shows finite (dom (map-filter P m))
〈proof 〉

definition map-drop :: ′a ⇒ (′a ⇀ ′b) ⇒ (′a ⇀ ′b) where
map-drop a = map-filter (λa ′. a ′ 6= a)

parametric-constant map-drop-transfer [transfer-rule]: map-drop-def

THEORY “Finite-Map” 210

definition map-drop-set :: ′a set ⇒ (′a ⇀ ′b) ⇒ (′a ⇀ ′b) where
map-drop-set A = map-filter (λa. a /∈ A)

parametric-constant map-drop-set-transfer [transfer-rule]: map-drop-set-def

definition map-restrict-set :: ′a set ⇒ (′a ⇀ ′b) ⇒ (′a ⇀ ′b) where
map-restrict-set A = map-filter (λa. a ∈ A)

parametric-constant map-restrict-set-transfer [transfer-rule]: map-restrict-set-def

definition map-pred :: (′a ⇒ ′b ⇒ bool) ⇒ (′a ⇀ ′b) ⇒ bool where
map-pred P m ←→ (∀ x. case m x of None ⇒ True | Some y ⇒ P x y)

parametric-constant map-pred-transfer [transfer-rule]: map-pred-def

definition rel-map-on-set :: ′a set ⇒ (′b ⇒ ′c ⇒ bool) ⇒ (′a ⇀ ′b) ⇒ (′a ⇀ ′c)
⇒ bool where
rel-map-on-set S P = eq-onp (λx. x ∈ S) ===> rel-option P

definition set-of-map :: (′a ⇀ ′b) ⇒ (′a × ′b) set where
set-of-map m = {(k, v)|k v. m k = Some v}

lemma set-of-map-alt-def : set-of-map m = (λk. (k, the (m k))) ‘ dom m
〈proof 〉

lemma set-of-map-finite: finite (dom m) =⇒ finite (set-of-map m)
〈proof 〉

lemma set-of-map-inj: inj set-of-map
〈proof 〉

lemma dom-comp: dom (m ◦m n) ⊆ dom n
〈proof 〉

lemma dom-comp-finite: finite (dom n) =⇒ finite (dom (map-comp m n))
〈proof 〉

parametric-constant map-comp-transfer [transfer-rule]: map-comp-def

end

30.2 Abstract characterisation
typedef (′a, ′b) fmap = {m. finite (dom m)} :: (′a ⇀ ′b) set

morphisms fmlookup Abs-fmap
〈proof 〉

setup-lifting type-definition-fmap

THEORY “Finite-Map” 211

lemma dom-fmlookup-finite[intro, simp]: finite (dom (fmlookup m))
〈proof 〉

lemma fmap-ext:
assumes

∧
x. fmlookup m x = fmlookup n x

shows m = n
〈proof 〉

30.3 Operations
context

includes fset.lifting
begin

lift-definition fmran :: (′a, ′b) fmap ⇒ ′b fset
is ran
parametric ran-transfer
〈proof 〉

lemma fmlookup-ran-iff : y |∈| fmran m ←→ (∃ x. fmlookup m x = Some y)
〈proof 〉

lemma fmranI : fmlookup m x = Some y =⇒ y |∈| fmran m 〈proof 〉

lemma fmranE [elim]:
assumes y |∈| fmran m
obtains x where fmlookup m x = Some y
〈proof 〉

lift-definition fmdom :: (′a, ′b) fmap ⇒ ′a fset
is dom
parametric dom-transfer
〈proof 〉

lemma fmlookup-dom-iff : x |∈| fmdom m ←→ (∃ a. fmlookup m x = Some a)
〈proof 〉

lemma fmdom-notI : fmlookup m x = None =⇒ x |/∈| fmdom m 〈proof 〉
lemma fmdomI : fmlookup m x = Some y =⇒ x |∈| fmdom m 〈proof 〉
lemma fmdom-notD[dest]: x |/∈| fmdom m =⇒ fmlookup m x = None 〈proof 〉

lemma fmdomE [elim]:
assumes x |∈| fmdom m
obtains y where fmlookup m x = Some y
〈proof 〉

lift-definition fmdom ′ :: (′a, ′b) fmap ⇒ ′a set
is dom

THEORY “Finite-Map” 212

parametric dom-transfer
〈proof 〉

lemma fmlookup-dom ′-iff : x ∈ fmdom ′ m ←→ (∃ a. fmlookup m x = Some a)
〈proof 〉

lemma fmdom ′-notI : fmlookup m x = None =⇒ x /∈ fmdom ′ m 〈proof 〉
lemma fmdom ′I : fmlookup m x = Some y =⇒ x ∈ fmdom ′ m 〈proof 〉
lemma fmdom ′-notD[dest]: x /∈ fmdom ′ m =⇒ fmlookup m x = None 〈proof 〉

lemma fmdom ′E [elim]:
assumes x ∈ fmdom ′ m
obtains x y where fmlookup m x = Some y
〈proof 〉

lemma fmdom ′-alt-def : fmdom ′ m = fset (fmdom m)
〈proof 〉

lemma finite-fmdom ′[simp]: finite (fmdom ′ m)
〈proof 〉

lemma dom-fmlookup[simp]: dom (fmlookup m) = fmdom ′ m
〈proof 〉

lift-definition fmempty :: (′a, ′b) fmap
is Map.empty
〈proof 〉

lemma fmempty-lookup[simp]: fmlookup fmempty x = None
〈proof 〉

lemma fmdom-empty[simp]: fmdom fmempty = {||} 〈proof 〉
lemma fmdom ′-empty[simp]: fmdom ′ fmempty = {} 〈proof 〉
lemma fmran-empty[simp]: fmran fmempty = fempty 〈proof 〉

lift-definition fmupd :: ′a ⇒ ′b ⇒ (′a, ′b) fmap ⇒ (′a, ′b) fmap
is map-upd
parametric map-upd-transfer
〈proof 〉

lemma fmupd-lookup[simp]: fmlookup (fmupd a b m) a ′ = (if a = a ′ then Some b
else fmlookup m a ′)
〈proof 〉

lemma fmdom-fmupd[simp]: fmdom (fmupd a b m) = finsert a (fmdom m) 〈proof 〉
lemma fmdom ′-fmupd[simp]: fmdom ′ (fmupd a b m) = insert a (fmdom ′ m) 〈proof 〉

lemma fmupd-reorder-neq:
assumes a 6= b

THEORY “Finite-Map” 213

shows fmupd a x (fmupd b y m) = fmupd b y (fmupd a x m)
〈proof 〉

lemma fmupd-idem[simp]: fmupd a x (fmupd a y m) = fmupd a x m
〈proof 〉

lift-definition fmfilter :: (′a ⇒ bool) ⇒ (′a, ′b) fmap ⇒ (′a, ′b) fmap
is map-filter
parametric map-filter-transfer
〈proof 〉

lemma fmdom-filter [simp]: fmdom (fmfilter P m) = ffilter P (fmdom m)
〈proof 〉

lemma fmdom ′-filter [simp]: fmdom ′ (fmfilter P m) = Set.filter P (fmdom ′ m)
〈proof 〉

lemma fmlookup-filter [simp]: fmlookup (fmfilter P m) x = (if P x then fmlookup
m x else None)
〈proof 〉

lemma fmfilter-empty[simp]: fmfilter P fmempty = fmempty
〈proof 〉

lemma fmfilter-true[simp]:
assumes

∧
x y. fmlookup m x = Some y =⇒ P x

shows fmfilter P m = m
〈proof 〉

lemma fmfilter-false[simp]:
assumes

∧
x y. fmlookup m x = Some y =⇒ ¬ P x

shows fmfilter P m = fmempty
〈proof 〉

lemma fmfilter-comp[simp]: fmfilter P (fmfilter Q m) = fmfilter (λx. P x ∧ Q x)
m
〈proof 〉

lemma fmfilter-comm: fmfilter P (fmfilter Q m) = fmfilter Q (fmfilter P m)
〈proof 〉

lemma fmfilter-cong[cong]:
assumes

∧
x y. fmlookup m x = Some y =⇒ P x = Q x

shows fmfilter P m = fmfilter Q m
〈proof 〉

lemma fmfilter-cong ′[fundef-cong]:
assumes m = n

∧
x. x ∈ fmdom ′ m =⇒ P x = Q x

shows fmfilter P m = fmfilter Q n

THEORY “Finite-Map” 214

〈proof 〉

lemma fmfilter-upd[simp]:
fmfilter P (fmupd x y m) = (if P x then fmupd x y (fmfilter P m) else fmfilter P

m)
〈proof 〉

lift-definition fmdrop :: ′a ⇒ (′a, ′b) fmap ⇒ (′a, ′b) fmap
is map-drop
parametric map-drop-transfer
〈proof 〉

lemma fmdrop-lookup[simp]: fmlookup (fmdrop a m) a = None
〈proof 〉

lift-definition fmdrop-set :: ′a set ⇒ (′a, ′b) fmap ⇒ (′a, ′b) fmap
is map-drop-set
parametric map-drop-set-transfer
〈proof 〉

lift-definition fmdrop-fset :: ′a fset ⇒ (′a, ′b) fmap ⇒ (′a, ′b) fmap
is map-drop-set
parametric map-drop-set-transfer
〈proof 〉

lift-definition fmrestrict-set :: ′a set ⇒ (′a, ′b) fmap ⇒ (′a, ′b) fmap
is map-restrict-set
parametric map-restrict-set-transfer
〈proof 〉

lift-definition fmrestrict-fset :: ′a fset ⇒ (′a, ′b) fmap ⇒ (′a, ′b) fmap
is map-restrict-set
parametric map-restrict-set-transfer
〈proof 〉

lemma fmfilter-alt-defs:
fmdrop a = fmfilter (λa ′. a ′ 6= a)
fmdrop-set A = fmfilter (λa. a /∈ A)
fmdrop-fset B = fmfilter (λa. a |/∈| B)
fmrestrict-set A = fmfilter (λa. a ∈ A)
fmrestrict-fset B = fmfilter (λa. a |∈| B)
〈proof 〉

lemma fmdom-drop[simp]: fmdom (fmdrop a m) = fmdom m − {|a|} 〈proof 〉
lemma fmdom ′-drop[simp]: fmdom ′ (fmdrop a m) = fmdom ′ m − {a} 〈proof 〉
lemma fmdom ′-drop-set[simp]: fmdom ′ (fmdrop-set A m) = fmdom ′ m − A 〈proof 〉
lemma fmdom-drop-fset[simp]: fmdom (fmdrop-fset A m) = fmdom m − A 〈proof 〉
lemma fmdom ′-restrict-set: fmdom ′ (fmrestrict-set A m) ⊆ A 〈proof 〉
lemma fmdom-restrict-fset: fmdom (fmrestrict-fset A m) |⊆| A 〈proof 〉

THEORY “Finite-Map” 215

lemma fmdrop-fmupd: fmdrop x (fmupd y z m) = (if x = y then fmdrop x m else
fmupd y z (fmdrop x m))
〈proof 〉

lemma fmdrop-idle: x |/∈| fmdom B =⇒ fmdrop x B = B
〈proof 〉

lemma fmdrop-idle ′: x /∈ fmdom ′ B =⇒ fmdrop x B = B
〈proof 〉

lemma fmdrop-fmupd-same: fmdrop x (fmupd x y m) = fmdrop x m
〈proof 〉

lemma fmdom ′-restrict-set-precise: fmdom ′ (fmrestrict-set A m) = fmdom ′ m ∩
A
〈proof 〉

lemma fmdom ′-restrict-fset-precise: fmdom (fmrestrict-fset A m) = fmdom m |∩|
A
〈proof 〉

lemma fmdom ′-drop-fset[simp]: fmdom ′ (fmdrop-fset A m) = fmdom ′ m − fset A
〈proof 〉

lemma fmdom ′-restrict-fset: fmdom ′ (fmrestrict-fset A m) ⊆ fset A
〈proof 〉

lemma fmlookup-drop[simp]:
fmlookup (fmdrop a m) x = (if x 6= a then fmlookup m x else None)
〈proof 〉

lemma fmlookup-drop-set[simp]:
fmlookup (fmdrop-set A m) x = (if x /∈ A then fmlookup m x else None)
〈proof 〉

lemma fmlookup-drop-fset[simp]:
fmlookup (fmdrop-fset A m) x = (if x |/∈| A then fmlookup m x else None)
〈proof 〉

lemma fmlookup-restrict-set[simp]:
fmlookup (fmrestrict-set A m) x = (if x ∈ A then fmlookup m x else None)
〈proof 〉

lemma fmlookup-restrict-fset[simp]:
fmlookup (fmrestrict-fset A m) x = (if x |∈| A then fmlookup m x else None)
〈proof 〉

lemma fmrestrict-set-dom[simp]: fmrestrict-set (fmdom ′ m) m = m

THEORY “Finite-Map” 216

〈proof 〉

lemma fmrestrict-fset-dom[simp]: fmrestrict-fset (fmdom m) m = m
〈proof 〉

lemma fmdrop-empty[simp]: fmdrop a fmempty = fmempty
〈proof 〉

lemma fmdrop-set-empty[simp]: fmdrop-set A fmempty = fmempty
〈proof 〉

lemma fmdrop-fset-empty[simp]: fmdrop-fset A fmempty = fmempty
〈proof 〉

lemma fmdrop-fset-fmdom[simp]: fmdrop-fset (fmdom A) A = fmempty
〈proof 〉

lemma fmdrop-set-fmdom[simp]: fmdrop-set (fmdom ′ A) A = fmempty
〈proof 〉

lemma fmrestrict-set-empty[simp]: fmrestrict-set A fmempty = fmempty
〈proof 〉

lemma fmrestrict-fset-empty[simp]: fmrestrict-fset A fmempty = fmempty
〈proof 〉

lemma fmdrop-set-null[simp]: fmdrop-set {} m = m
〈proof 〉

lemma fmdrop-fset-null[simp]: fmdrop-fset {||} m = m
〈proof 〉

lemma fmdrop-set-single[simp]: fmdrop-set {a} m = fmdrop a m
〈proof 〉

lemma fmdrop-fset-single[simp]: fmdrop-fset {|a|} m = fmdrop a m
〈proof 〉

lemma fmrestrict-set-null[simp]: fmrestrict-set {} m = fmempty
〈proof 〉

lemma fmrestrict-fset-null[simp]: fmrestrict-fset {||} m = fmempty
〈proof 〉

lemma fmdrop-comm: fmdrop a (fmdrop b m) = fmdrop b (fmdrop a m)
〈proof 〉

lemma fmdrop-set-insert[simp]: fmdrop-set (insert x S) m = fmdrop x (fmdrop-set
S m)

THEORY “Finite-Map” 217

〈proof 〉

lemma fmdrop-fset-insert[simp]: fmdrop-fset (finsert x S) m = fmdrop x (fmdrop-fset
S m)
〈proof 〉

lemma fmrestrict-set-twice[simp]: fmrestrict-set S (fmrestrict-set T m) = fmre-
strict-set (S ∩ T) m
〈proof 〉

lemma fmrestrict-fset-twice[simp]: fmrestrict-fset S (fmrestrict-fset T m) = fmre-
strict-fset (S |∩| T) m
〈proof 〉

lemma fmrestrict-set-drop[simp]: fmrestrict-set S (fmdrop b m) = fmrestrict-set
(S − {b}) m
〈proof 〉

lemma fmrestrict-fset-drop[simp]: fmrestrict-fset S (fmdrop b m) = fmrestrict-fset
(S − {| b |}) m
〈proof 〉

lemma fmdrop-fmrestrict-set[simp]: fmdrop b (fmrestrict-set S m) = fmrestrict-set
(S − {b}) m
〈proof 〉

lemma fmdrop-fmrestrict-fset[simp]: fmdrop b (fmrestrict-fset S m) = fmrestrict-fset
(S − {| b |}) m
〈proof 〉

lemma fmdrop-idem[simp]: fmdrop a (fmdrop a m) = fmdrop a m
〈proof 〉

lemma fmdrop-set-twice[simp]: fmdrop-set S (fmdrop-set T m) = fmdrop-set (S ∪
T) m
〈proof 〉

lemma fmdrop-fset-twice[simp]: fmdrop-fset S (fmdrop-fset T m) = fmdrop-fset (S
|∪| T) m
〈proof 〉

lemma fmdrop-set-fmdrop[simp]: fmdrop-set S (fmdrop b m) = fmdrop-set (insert
b S) m
〈proof 〉

lemma fmdrop-fset-fmdrop[simp]: fmdrop-fset S (fmdrop b m) = fmdrop-fset (finsert
b S) m
〈proof 〉

THEORY “Finite-Map” 218

lift-definition fmadd :: (′a, ′b) fmap ⇒ (′a, ′b) fmap ⇒ (′a, ′b) fmap (infixl
‹++f › 100)

is map-add
parametric map-add-transfer
〈proof 〉

lemma fmlookup-add[simp]:
fmlookup (m ++f n) x = (if x |∈| fmdom n then fmlookup n x else fmlookup m

x)
〈proof 〉

lemma fmdom-add[simp]: fmdom (m ++f n) = fmdom m |∪| fmdom n 〈proof 〉
lemma fmdom ′-add[simp]: fmdom ′ (m ++f n) = fmdom ′ m ∪ fmdom ′ n 〈proof 〉

lemma fmadd-drop-left-dom: fmdrop-fset (fmdom n) m ++f n = m ++f n
〈proof 〉

lemma fmadd-restrict-right-dom: fmrestrict-fset (fmdom n) (m ++f n) = n
〈proof 〉

lemma fmfilter-add-distrib[simp]: fmfilter P (m ++f n) = fmfilter P m ++f fm-
filter P n
〈proof 〉

lemma fmdrop-add-distrib[simp]: fmdrop a (m ++f n) = fmdrop a m ++f fmdrop
a n
〈proof 〉

lemma fmdrop-set-add-distrib[simp]: fmdrop-set A (m ++f n) = fmdrop-set A m
++f fmdrop-set A n
〈proof 〉

lemma fmdrop-fset-add-distrib[simp]: fmdrop-fset A (m ++f n) = fmdrop-fset A
m ++f fmdrop-fset A n
〈proof 〉

lemma fmrestrict-set-add-distrib[simp]:
fmrestrict-set A (m ++f n) = fmrestrict-set A m ++f fmrestrict-set A n
〈proof 〉

lemma fmrestrict-fset-add-distrib[simp]:
fmrestrict-fset A (m ++f n) = fmrestrict-fset A m ++f fmrestrict-fset A n
〈proof 〉

lemma fmadd-empty[simp]: fmempty ++f m = m m ++f fmempty = m
〈proof 〉

lemma fmadd-idempotent[simp]: m ++f m = m
〈proof 〉

THEORY “Finite-Map” 219

lemma fmadd-assoc[simp]: m ++f (n ++f p) = m ++f n ++f p
〈proof 〉

lemma fmadd-fmupd[simp]: m ++f fmupd a b n = fmupd a b (m ++f n)
〈proof 〉

lift-definition fmpred :: (′a ⇒ ′b ⇒ bool) ⇒ (′a, ′b) fmap ⇒ bool
is map-pred
parametric map-pred-transfer
〈proof 〉

lemma fmpredI [intro]:
assumes

∧
x y. fmlookup m x = Some y =⇒ P x y

shows fmpred P m
〈proof 〉

lemma fmpredD[dest]: fmpred P m =⇒ fmlookup m x = Some y =⇒ P x y
〈proof 〉

lemma fmpred-iff : fmpred P m ←→ (∀ x y. fmlookup m x = Some y −→ P x y)
〈proof 〉

lemma fmpred-alt-def : fmpred P m ←→ fBall (fmdom m) (λx. P x (the (fmlookup
m x)))
〈proof 〉

lemma fmpred-mono-strong:
assumes

∧
x y. fmlookup m x = Some y =⇒ P x y =⇒ Q x y

shows fmpred P m =⇒ fmpred Q m
〈proof 〉

lemma fmpred-mono[mono]: P ≤ Q =⇒ fmpred P ≤ fmpred Q
〈proof 〉

lemma fmpred-empty[intro!, simp]: fmpred P fmempty
〈proof 〉

lemma fmpred-upd[intro]: fmpred P m =⇒ P x y =⇒ fmpred P (fmupd x y m)
〈proof 〉

lemma fmpred-updD[dest]: fmpred P (fmupd x y m) =⇒ P x y
〈proof 〉

lemma fmpred-add[intro]: fmpred P m =⇒ fmpred P n =⇒ fmpred P (m ++f n)
〈proof 〉

lemma fmpred-filter [intro]: fmpred P m =⇒ fmpred P (fmfilter Q m)
〈proof 〉

THEORY “Finite-Map” 220

lemma fmpred-drop[intro]: fmpred P m =⇒ fmpred P (fmdrop a m)
〈proof 〉

lemma fmpred-drop-set[intro]: fmpred P m =⇒ fmpred P (fmdrop-set A m)
〈proof 〉

lemma fmpred-drop-fset[intro]: fmpred P m =⇒ fmpred P (fmdrop-fset A m)
〈proof 〉

lemma fmpred-restrict-set[intro]: fmpred P m =⇒ fmpred P (fmrestrict-set A m)
〈proof 〉

lemma fmpred-restrict-fset[intro]: fmpred P m =⇒ fmpred P (fmrestrict-fset A m)
〈proof 〉

lemma fmpred-cases[consumes 1]:
assumes fmpred P m
obtains (none) fmlookup m x = None | (some) y where fmlookup m x = Some

y P x y
〈proof 〉

lift-definition fmsubset :: (′a, ′b) fmap ⇒ (′a, ′b) fmap ⇒ bool (infix ‹⊆f › 50)
is map-le
〈proof 〉

lemma fmsubset-alt-def : m ⊆f n ←→ fmpred (λk v. fmlookup n k = Some v) m
〈proof 〉

lemma fmsubset-pred: fmpred P m =⇒ n ⊆f m =⇒ fmpred P n
〈proof 〉

lemma fmsubset-filter-mono: m ⊆f n =⇒ fmfilter P m ⊆f fmfilter P n
〈proof 〉

lemma fmsubset-drop-mono: m ⊆f n =⇒ fmdrop a m ⊆f fmdrop a n
〈proof 〉

lemma fmsubset-drop-set-mono: m ⊆f n =⇒ fmdrop-set A m ⊆f fmdrop-set A n
〈proof 〉

lemma fmsubset-drop-fset-mono: m ⊆f n =⇒ fmdrop-fset A m ⊆f fmdrop-fset A
n
〈proof 〉

lemma fmsubset-restrict-set-mono: m ⊆f n =⇒ fmrestrict-set A m ⊆f fmre-
strict-set A n
〈proof 〉

THEORY “Finite-Map” 221

lemma fmsubset-restrict-fset-mono: m ⊆f n =⇒ fmrestrict-fset A m ⊆f fmre-
strict-fset A n
〈proof 〉

lemma fmfilter-subset[simp]: fmfilter P m ⊆f m
〈proof 〉

lemma fmsubset-drop[simp]: fmdrop a m ⊆f m
〈proof 〉

lemma fmsubset-drop-set[simp]: fmdrop-set S m ⊆f m
〈proof 〉

lemma fmsubset-drop-fset[simp]: fmdrop-fset S m ⊆f m
〈proof 〉

lemma fmsubset-restrict-set[simp]: fmrestrict-set S m ⊆f m
〈proof 〉

lemma fmsubset-restrict-fset[simp]: fmrestrict-fset S m ⊆f m
〈proof 〉

lift-definition fset-of-fmap :: (′a, ′b) fmap ⇒ (′a × ′b) fset is set-of-map
〈proof 〉

lemma fset-of-fmap-inj[intro, simp]: inj fset-of-fmap
〈proof 〉

lemma fset-of-fmap-iff [simp]: (a, b) |∈| fset-of-fmap m ←→ fmlookup m a = Some
b
〈proof 〉

lemma fset-of-fmap-iff ′: (a, b) ∈ fset (fset-of-fmap m) ←→ fmlookup m a = Some
b
〈proof 〉

lift-definition fmap-of-list :: (′a × ′b) list ⇒ (′a, ′b) fmap
is map-of
parametric map-of-transfer
〈proof 〉

lemma fmap-of-list-simps[simp]:
fmap-of-list [] = fmempty
fmap-of-list ((k, v) # kvs) = fmupd k v (fmap-of-list kvs)
〈proof 〉

lemma fmap-of-list-app[simp]: fmap-of-list (xs @ ys) = fmap-of-list ys ++f fmap-of-list
xs
〈proof 〉

THEORY “Finite-Map” 222

lemma fmupd-alt-def : fmupd k v m = m ++f fmap-of-list [(k, v)]
〈proof 〉

lemma fmpred-of-list[intro]:
assumes

∧
k v. (k, v) ∈ set xs =⇒ P k v

shows fmpred P (fmap-of-list xs)
〈proof 〉

lemma fmap-of-list-SomeD: fmlookup (fmap-of-list xs) k = Some v =⇒ (k, v) ∈
set xs
〈proof 〉

lemma fmdom-fmap-of-list[simp]: fmdom (fmap-of-list xs) = fset-of-list (map fst
xs)
〈proof 〉

lift-definition fmrel-on-fset :: ′a fset ⇒ (′b ⇒ ′c ⇒ bool) ⇒ (′a, ′b) fmap ⇒ (′a,
′c) fmap ⇒ bool

is rel-map-on-set
〈proof 〉

lemma fmrel-on-fset-alt-def : fmrel-on-fset S P m n ←→ fBall S (λx. rel-option P
(fmlookup m x) (fmlookup n x))
〈proof 〉

lemma fmrel-on-fsetI [intro]:
assumes

∧
x. x |∈| S =⇒ rel-option P (fmlookup m x) (fmlookup n x)

shows fmrel-on-fset S P m n
〈proof 〉

lemma fmrel-on-fset-mono[mono]: R ≤ Q =⇒ fmrel-on-fset S R ≤ fmrel-on-fset
S Q
〈proof 〉

lemma fmrel-on-fsetD: x |∈| S =⇒ fmrel-on-fset S P m n =⇒ rel-option P (fmlookup
m x) (fmlookup n x)
〈proof 〉

lemma fmrel-on-fsubset: fmrel-on-fset S R m n =⇒ T |⊆| S =⇒ fmrel-on-fset T
R m n
〈proof 〉

lemma fmrel-on-fset-unionI :
fmrel-on-fset A R m n =⇒ fmrel-on-fset B R m n =⇒ fmrel-on-fset (A |∪| B) R

m n
〈proof 〉

lemma fmrel-on-fset-updateI :

THEORY “Finite-Map” 223

assumes fmrel-on-fset S P m n P v1 v2

shows fmrel-on-fset (finsert k S) P (fmupd k v1 m) (fmupd k v2 n)
〈proof 〉

lift-definition fmimage :: (′a, ′b) fmap ⇒ ′a fset ⇒ ′b fset is λm S . {b|a b. m a
= Some b ∧ a ∈ S}
〈proof 〉

lemma fmimage-alt-def : fmimage m S = fmran (fmrestrict-fset S m)
〈proof 〉

lemma fmimage-empty[simp]: fmimage m fempty = fempty
〈proof 〉

lemma fmimage-subset-ran[simp]: fmimage m S |⊆| fmran m
〈proof 〉

lemma fmimage-dom[simp]: fmimage m (fmdom m) = fmran m
〈proof 〉

lemma fmimage-inter : fmimage m (A |∩| B) |⊆| fmimage m A |∩| fmimage m B
〈proof 〉

lemma fimage-inter-dom[simp]:
fmimage m (fmdom m |∩| A) = fmimage m A
fmimage m (A |∩| fmdom m) = fmimage m A
〈proof 〉

lemma fmimage-union[simp]: fmimage m (A |∪| B) = fmimage m A |∪| fmimage
m B
〈proof 〉

lemma fmimage-Union[simp]: fmimage m (ffUnion A) = ffUnion (fmimage m |‘|
A)
〈proof 〉

lemma fmimage-filter [simp]: fmimage (fmfilter P m) A = fmimage m (ffilter P A)
〈proof 〉

lemma fmimage-drop[simp]: fmimage (fmdrop a m) A = fmimage m (A − {|a|})
〈proof 〉

lemma fmimage-drop-fset[simp]: fmimage (fmdrop-fset B m) A = fmimage m (A
− B)
〈proof 〉

lemma fmimage-restrict-fset[simp]: fmimage (fmrestrict-fset B m) A = fmimage
m (A |∩| B)
〈proof 〉

THEORY “Finite-Map” 224

lemma fmfilter-ran[simp]: fmran (fmfilter P m) = fmimage m (ffilter P (fmdom
m))
〈proof 〉

lemma fmran-drop[simp]: fmran (fmdrop a m) = fmimage m (fmdom m − {|a|})
〈proof 〉

lemma fmran-drop-fset[simp]: fmran (fmdrop-fset A m) = fmimage m (fmdom m
− A)
〈proof 〉

lemma fmran-restrict-fset: fmran (fmrestrict-fset A m) = fmimage m (fmdom m
|∩| A)
〈proof 〉

lemma fmlookup-image-iff : y |∈| fmimage m A ←→ (∃ x. fmlookup m x = Some
y ∧ x |∈| A)
〈proof 〉

lemma fmimageI : fmlookup m x = Some y =⇒ x |∈| A =⇒ y |∈| fmimage m A
〈proof 〉

lemma fmimageE [elim]:
assumes y |∈| fmimage m A
obtains x where fmlookup m x = Some y x |∈| A
〈proof 〉

lift-definition fmcomp :: (′b, ′c) fmap ⇒ (′a, ′b) fmap ⇒ (′a, ′c) fmap (infixl
‹◦f › 55)

is map-comp
parametric map-comp-transfer
〈proof 〉

lemma fmlookup-comp[simp]: fmlookup (m ◦f n) x = Option.bind (fmlookup n x)
(fmlookup m)
〈proof 〉

end

30.4 BNF setup
lift-bnf (′a, fmran ′: ′b) fmap [wits: Map.empty]

for map: fmmap
rel: fmrel

〈proof 〉

declare fmap.pred-mono[mono]

THEORY “Finite-Map” 225

lemma fmran ′-alt-def : fmran ′ m = fset (fmran m)
including fset.lifting
〈proof 〉

lemma fmlookup-ran ′-iff : y ∈ fmran ′ m ←→ (∃ x. fmlookup m x = Some y)
〈proof 〉

lemma fmran ′I : fmlookup m x = Some y =⇒ y ∈ fmran ′ m
〈proof 〉

lemma fmran ′E [elim]:
assumes y ∈ fmran ′ m
obtains x where fmlookup m x = Some y
〈proof 〉

lemma fmrel-iff : fmrel R m n ←→ (∀ x. rel-option R (fmlookup m x) (fmlookup n
x))
〈proof 〉

lemma fmrelI [intro]:
assumes

∧
x. rel-option R (fmlookup m x) (fmlookup n x)

shows fmrel R m n
〈proof 〉

lemma fmrel-upd[intro]: fmrel P m n =⇒ P x y =⇒ fmrel P (fmupd k x m) (fmupd
k y n)
〈proof 〉

lemma fmrelD[dest]: fmrel P m n =⇒ rel-option P (fmlookup m x) (fmlookup n x)
〈proof 〉

lemma fmrel-addI [intro]:
assumes fmrel P m n fmrel P a b
shows fmrel P (m ++f a) (n ++f b)
〈proof 〉

lemma fmrel-cases[consumes 1]:
assumes fmrel P m n
obtains (none) fmlookup m x = None fmlookup n x = None

| (some) a b where fmlookup m x = Some a fmlookup n x = Some b P a b
〈proof 〉

lemma fmrel-filter [intro]: fmrel P m n =⇒ fmrel P (fmfilter Q m) (fmfilter Q n)
〈proof 〉

lemma fmrel-drop[intro]: fmrel P m n =⇒ fmrel P (fmdrop a m) (fmdrop a n)
〈proof 〉

THEORY “Finite-Map” 226

lemma fmrel-drop-set[intro]: fmrel P m n =⇒ fmrel P (fmdrop-set A m) (fmdrop-set
A n)
〈proof 〉

lemma fmrel-drop-fset[intro]: fmrel P m n =⇒ fmrel P (fmdrop-fset A m) (fmdrop-fset
A n)
〈proof 〉

lemma fmrel-restrict-set[intro]: fmrel P m n =⇒ fmrel P (fmrestrict-set A m)
(fmrestrict-set A n)
〈proof 〉

lemma fmrel-restrict-fset[intro]: fmrel P m n =⇒ fmrel P (fmrestrict-fset A m)
(fmrestrict-fset A n)
〈proof 〉

lemma fmrel-on-fset-fmrel-restrict:
fmrel-on-fset S P m n ←→ fmrel P (fmrestrict-fset S m) (fmrestrict-fset S n)
〈proof 〉

lemma fmrel-on-fset-refl-strong:
assumes

∧
x y. x |∈| S =⇒ fmlookup m x = Some y =⇒ P y y

shows fmrel-on-fset S P m m
〈proof 〉

lemma fmrel-on-fset-addI :
assumes fmrel-on-fset S P m n fmrel-on-fset S P a b
shows fmrel-on-fset S P (m ++f a) (n ++f b)
〈proof 〉

lemma fmrel-fmdom-eq:
assumes fmrel P x y
shows fmdom x = fmdom y
〈proof 〉

lemma fmrel-fmdom ′-eq: fmrel P x y =⇒ fmdom ′ x = fmdom ′ y
〈proof 〉

lemma fmrel-rel-fmran:
assumes fmrel P x y
shows rel-fset P (fmran x) (fmran y)
〈proof 〉

lemma fmrel-rel-fmran ′: fmrel P x y =⇒ rel-set P (fmran ′ x) (fmran ′ y)
〈proof 〉

lemma pred-fmap-fmpred[simp]: pred-fmap P = fmpred (λ-. P)
〈proof 〉

THEORY “Finite-Map” 227

lemma pred-fmap-id[simp]: pred-fmap id (fmmap f m) ←→ pred-fmap f m
〈proof 〉

lemma pred-fmapD: pred-fmap P m =⇒ x |∈| fmran m =⇒ P x
〈proof 〉

lemma fmlookup-map[simp]: fmlookup (fmmap f m) x = map-option f (fmlookup
m x)
〈proof 〉

lemma fmpred-map[simp]: fmpred P (fmmap f m) ←→ fmpred (λk v. P k (f v)) m
〈proof 〉

lemma fmpred-id[simp]: fmpred (λ-. id) (fmmap f m) ←→ fmpred (λ-. f) m
〈proof 〉

lemma fmmap-add[simp]: fmmap f (m ++f n) = fmmap f m ++f fmmap f n
〈proof 〉

lemma fmmap-empty[simp]: fmmap f fmempty = fmempty
〈proof 〉

lemma fmdom-map[simp]: fmdom (fmmap f m) = fmdom m
including fset.lifting
〈proof 〉

lemma fmdom ′-map[simp]: fmdom ′ (fmmap f m) = fmdom ′ m
〈proof 〉

lemma fmran-fmmap[simp]: fmran (fmmap f m) = f |‘| fmran m
including fset.lifting
〈proof 〉

lemma fmran ′-fmmap[simp]: fmran ′ (fmmap f m) = f ‘ fmran ′ m
〈proof 〉

lemma fmfilter-fmmap[simp]: fmfilter P (fmmap f m) = fmmap f (fmfilter P m)
〈proof 〉

lemma fmdrop-fmmap[simp]: fmdrop a (fmmap f m) = fmmap f (fmdrop a m)
〈proof 〉

lemma fmdrop-set-fmmap[simp]: fmdrop-set A (fmmap f m) = fmmap f (fmdrop-set
A m)
〈proof 〉

lemma fmdrop-fset-fmmap[simp]: fmdrop-fset A (fmmap f m) = fmmap f (fmdrop-fset
A m)
〈proof 〉

THEORY “Finite-Map” 228

lemma fmrestrict-set-fmmap[simp]: fmrestrict-set A (fmmap f m) = fmmap f (fmrestrict-set
A m)
〈proof 〉

lemma fmrestrict-fset-fmmap[simp]: fmrestrict-fset A (fmmap f m) = fmmap f
(fmrestrict-fset A m)
〈proof 〉

lemma fmmap-subset[intro]: m ⊆f n =⇒ fmmap f m ⊆f fmmap f n
〈proof 〉

lemma fmmap-fset-of-fmap: fset-of-fmap (fmmap f m) = (λ(k, v). (k, f v)) |‘|
fset-of-fmap m

including fset.lifting
〈proof 〉

lemma fmmap-fmupd: fmmap f (fmupd x y m) = fmupd x (f y) (fmmap f m)
〈proof 〉

30.5 size setup
definition size-fmap :: (′a ⇒ nat) ⇒ (′b ⇒ nat) ⇒ (′a, ′b) fmap ⇒ nat where
[simp]: size-fmap f g m = size-fset (λ(a, b). f a + g b) (fset-of-fmap m)

instantiation fmap :: (type, type) size begin

definition size-fmap where
size-fmap-overloaded-def : size-fmap = Finite-Map.size-fmap (λ-. 0) (λ-. 0)

instance 〈proof 〉

end

lemma size-fmap-overloaded-simps[simp]: size x = size (fset-of-fmap x)
〈proof 〉

lemma fmap-size-o-map: size-fmap f g ◦ fmmap h = size-fmap f (g ◦ h)
〈proof 〉

〈ML〉

30.6 Additional operations
lift-definition fmmap-keys :: (′a ⇒ ′b ⇒ ′c) ⇒ (′a, ′b) fmap ⇒ (′a, ′c) fmap is
λf m a. map-option (f a) (m a)
〈proof 〉

lemma fmpred-fmmap-keys[simp]: fmpred P (fmmap-keys f m) = fmpred (λa b. P
a (f a b)) m

THEORY “Finite-Map” 229

〈proof 〉

lemma fmdom-fmmap-keys[simp]: fmdom (fmmap-keys f m) = fmdom m
including fset.lifting
〈proof 〉

lemma fmlookup-fmmap-keys[simp]: fmlookup (fmmap-keys f m) x = map-option
(f x) (fmlookup m x)
〈proof 〉

lemma fmfilter-fmmap-keys[simp]: fmfilter P (fmmap-keys f m) = fmmap-keys f
(fmfilter P m)
〈proof 〉

lemma fmdrop-fmmap-keys[simp]: fmdrop a (fmmap-keys f m) = fmmap-keys f
(fmdrop a m)
〈proof 〉

lemma fmdrop-set-fmmap-keys[simp]: fmdrop-set A (fmmap-keys f m) = fmmap-keys
f (fmdrop-set A m)
〈proof 〉

lemma fmdrop-fset-fmmap-keys[simp]: fmdrop-fset A (fmmap-keys f m) = fmmap-keys
f (fmdrop-fset A m)
〈proof 〉

lemma fmrestrict-set-fmmap-keys[simp]: fmrestrict-set A (fmmap-keys f m) = fmmap-keys
f (fmrestrict-set A m)
〈proof 〉

lemma fmrestrict-fset-fmmap-keys[simp]: fmrestrict-fset A (fmmap-keys f m) =
fmmap-keys f (fmrestrict-fset A m)
〈proof 〉

lemma fmmap-keys-subset[intro]: m ⊆f n =⇒ fmmap-keys f m ⊆f fmmap-keys f
n
〈proof 〉

definition sorted-list-of-fmap :: (′a::linorder , ′b) fmap ⇒ (′a × ′b) list where
sorted-list-of-fmap m = map (λk. (k, the (fmlookup m k))) (sorted-list-of-fset

(fmdom m))

lemma list-all-sorted-list[simp]: list-all P (sorted-list-of-fmap m) = fmpred (curry
P) m
〈proof 〉

lemma map-of-sorted-list[simp]: map-of (sorted-list-of-fmap m) = fmlookup m
〈proof 〉
including fset.lifting

THEORY “Finite-Map” 230

〈proof 〉

30.7 Additional properties
lemma fmchoice ′:

assumes finite S ∀ x ∈ S . ∃ y. Q x y
shows ∃m. fmdom ′ m = S ∧ fmpred Q m
〈proof 〉

30.8 Lifting/transfer setup
context includes lifting-syntax begin

lemma fmempty-transfer [simp, intro, transfer-rule]: fmrel P fmempty fmempty
〈proof 〉

lemma fmadd-transfer [transfer-rule]:
(fmrel P ===> fmrel P ===> fmrel P) fmadd fmadd
〈proof 〉

lemma fmupd-transfer [transfer-rule]:
((=) ===> P ===> fmrel P ===> fmrel P) fmupd fmupd
〈proof 〉

end

lemma Quotient-fmap-bnf [quot-map]:
assumes Quotient R Abs Rep T
shows Quotient (fmrel R) (fmmap Abs) (fmmap Rep) (fmrel T)
〈proof 〉

30.9 View as datatype
lemma fmap-distinct[simp]:

fmempty 6= fmupd k v m
fmupd k v m 6= fmempty
〈proof 〉

lifting-update fmap.lifting

lemma fmap-exhaust[cases type: fmap]:
obtains (fmempty) m = fmempty

| (fmupd) x y m ′ where m = fmupd x y m ′ x |/∈| fmdom m ′

〈proof 〉 including fmap.lifting and fset.lifting
〈proof 〉

lemma fmap-induct[case-names fmempty fmupd, induct type: fmap]:
assumes P fmempty
assumes (

∧
x y m. P m =⇒ fmlookup m x = None =⇒ P (fmupd x y m))

shows P m

THEORY “Finite-Map” 231

〈proof 〉

30.10 Code setup
instantiation fmap :: (type, equal) equal begin

definition equal-fmap ≡ fmrel HOL.equal

instance 〈proof 〉

end

lemma fBall-alt-def : fBall S P ←→ (∀ x. x |∈| S −→ P x)
〈proof 〉

lemma fmrel-code:
fmrel R m n ←→

fBall (fmdom m) (λx. rel-option R (fmlookup m x) (fmlookup n x)) ∧
fBall (fmdom n) (λx. rel-option R (fmlookup m x) (fmlookup n x))

〈proof 〉

lemmas [code] =
fmrel-code
fmran ′-alt-def
fmdom ′-alt-def
fmfilter-alt-defs
pred-fmap-fmpred
fmsubset-alt-def
fmupd-alt-def
fmrel-on-fset-alt-def
fmpred-alt-def

code-datatype fmap-of-list
quickcheck-generator fmap constructors: fmap-of-list

context includes fset.lifting begin

lemma fmlookup-of-list[code]: fmlookup (fmap-of-list m) = map-of m
〈proof 〉

lemma fmempty-of-list[code]: fmempty = fmap-of-list []
〈proof 〉

lemma fmran-of-list[code]: fmran (fmap-of-list m) = snd |‘| fset-of-list (AList.clearjunk
m)
〈proof 〉

lemma fmdom-of-list[code]: fmdom (fmap-of-list m) = fst |‘| fset-of-list m

THEORY “Finite-Map” 232

〈proof 〉

lemma fmfilter-of-list[code]: fmfilter P (fmap-of-list m) = fmap-of-list (filter (λ(k,
-). P k) m)
〈proof 〉

lemma fmadd-of-list[code]: fmap-of-list m ++f fmap-of-list n = fmap-of-list (AList.merge
m n)
〈proof 〉

lemma fmmap-of-list[code]: fmmap f (fmap-of-list m) = fmap-of-list (map (apsnd
f) m)
〈proof 〉

lemma fmmap-keys-of-list[code]:
fmmap-keys f (fmap-of-list m) = fmap-of-list (map (λ(a, b). (a, f a b)) m)
〈proof 〉

lemma fmimage-of-list[code]:
fmimage (fmap-of-list m) A = fset-of-list (map snd (filter (λ(k, -). k |∈| A)

(AList.clearjunk m)))
〈proof 〉

lemma fmcomp-list[code]:
fmap-of-list m ◦f fmap-of-list n = fmap-of-list (AList.compose n m)
〈proof 〉

end

30.11 Instances
lemma exists-map-of :

assumes finite (dom m) shows ∃ xs. map-of xs = m
〈proof 〉

lemma exists-fmap-of-list: ∃ xs. fmap-of-list xs = m
〈proof 〉

lemma fmap-of-list-surj[simp, intro]: surj fmap-of-list
〈proof 〉

instance fmap :: (countable, countable) countable
〈proof 〉

instance fmap :: (finite, finite) finite
〈proof 〉

lifting-update fmap.lifting
lifting-forget fmap.lifting

THEORY “Disjoint-FSets” 233

30.12 Tests
export-code

Ball fset fmrel fmran fmran ′ fmdom fmdom ′ fmpred pred-fmap fmsubset fmupd
fmrel-on-fset

fmdrop fmdrop-set fmdrop-fset fmrestrict-set fmrestrict-fset fmimage fmlookup
fmempty

fmfilter fmadd fmmap fmmap-keys fmcomp
checking SML Scala Haskell? OCaml?

— lifting through fmap

experiment begin

context includes fset.lifting begin

lift-definition test1 :: (′a, ′b fset) fmap is fmempty :: (′a, ′b set) fmap
〈proof 〉

lift-definition test2 :: ′a ⇒ ′b ⇒ (′a, ′b fset) fmap is λa b. fmupd a {b} fmempty
〈proof 〉

end

end

end

31 Disjoint FSets
theory Disjoint-FSets

imports
HOL−Library.Finite-Map
Disjoint-Sets

begin

context
includes fset.lifting

begin

lift-definition fdisjnt :: ′a fset ⇒ ′a fset ⇒ bool is disjnt 〈proof 〉

lemma fdisjnt-alt-def : fdisjnt M N ←→ (M |∩| N = {||})
〈proof 〉

lemma fdisjnt-insert: x |/∈| N =⇒ fdisjnt M N =⇒ fdisjnt (finsert x M) N
〈proof 〉

lemma fdisjnt-subset-right: N ′ |⊆| N =⇒ fdisjnt M N =⇒ fdisjnt M N ′

THEORY “Dlist” 234

〈proof 〉

lemma fdisjnt-subset-left: N ′ |⊆| N =⇒ fdisjnt N M =⇒ fdisjnt N ′ M
〈proof 〉

lemma fdisjnt-union-right: fdisjnt M A =⇒ fdisjnt M B =⇒ fdisjnt M (A |∪| B)
〈proof 〉

lemma fdisjnt-union-left: fdisjnt A M =⇒ fdisjnt B M =⇒ fdisjnt (A |∪| B) M
〈proof 〉

lemma fdisjnt-swap: fdisjnt M N =⇒ fdisjnt N M
including fset.lifting 〈proof 〉

lemma distinct-append-fset:
assumes distinct xs distinct ys fdisjnt (fset-of-list xs) (fset-of-list ys)
shows distinct (xs @ ys)
〈proof 〉

lemma fdisjnt-contrI :
assumes

∧
x. x |∈| M =⇒ x |∈| N =⇒ False

shows fdisjnt M N
〈proof 〉

lemma fdisjnt-Union-left: fdisjnt (ffUnion S) T ←→ fBall S (λS . fdisjnt S T)
〈proof 〉

lemma fdisjnt-Union-right: fdisjnt T (ffUnion S) ←→ fBall S (λS . fdisjnt T S)
〈proof 〉

lemma fdisjnt-ge-max: fBall X (λx. x > fMax Y) =⇒ fdisjnt X Y
〈proof 〉

end

lemma fmadd-disjnt: fdisjnt (fmdom m) (fmdom n) =⇒ m ++f n = n ++f m
〈proof 〉
including fset.lifting and fmap.lifting
〈proof 〉

end

32 Lists with elements distinct as canonical exam-
ple for datatype invariants

theory Dlist
imports Confluent-Quotient

THEORY “Dlist” 235

begin

32.1 The type of distinct lists
typedef ′a dlist = {xs:: ′a list. distinct xs}

morphisms list-of-dlist Abs-dlist
〈proof 〉

context begin

qualified definition dlist-eq where dlist-eq = BNF-Def .vimage2p remdups remdups
(=)

qualified lemma equivp-dlist-eq: equivp dlist-eq
〈proof 〉 definition abs-dlist :: ′a list ⇒ ′a dlist where abs-dlist = Abs-dlist o

remdups

definition qcr-dlist :: ′a list ⇒ ′a dlist ⇒ bool where qcr-dlist x y ←→ y =
abs-dlist x

qualified lemma Quotient-dlist-remdups: Quotient dlist-eq abs-dlist list-of-dlist
qcr-dlist
〈proof 〉

end

locale Quotient-dlist begin
setup-lifting Dlist.Quotient-dlist-remdups Dlist.equivp-dlist-eq[THEN equivp-reflp2]
end

setup-lifting type-definition-dlist

lemma dlist-eq-iff :
dxs = dys ←→ list-of-dlist dxs = list-of-dlist dys
〈proof 〉

lemma dlist-eqI :
list-of-dlist dxs = list-of-dlist dys =⇒ dxs = dys
〈proof 〉

Formal, totalized constructor for ′a dlist:
definition Dlist :: ′a list ⇒ ′a dlist where

Dlist xs = Abs-dlist (remdups xs)

lemma distinct-list-of-dlist [simp, intro]:
distinct (list-of-dlist dxs)
〈proof 〉

lemma list-of-dlist-Dlist [simp]:
list-of-dlist (Dlist xs) = remdups xs

THEORY “Dlist” 236

〈proof 〉

lemma remdups-list-of-dlist [simp]:
remdups (list-of-dlist dxs) = list-of-dlist dxs
〈proof 〉

lemma Dlist-list-of-dlist [simp, code abstype]:
Dlist (list-of-dlist dxs) = dxs
〈proof 〉

Fundamental operations:
context
begin

qualified definition empty :: ′a dlist where
empty = Dlist []

qualified definition insert :: ′a ⇒ ′a dlist ⇒ ′a dlist where
insert x dxs = Dlist (List.insert x (list-of-dlist dxs))

qualified definition remove :: ′a ⇒ ′a dlist ⇒ ′a dlist where
remove x dxs = Dlist (remove1 x (list-of-dlist dxs))

qualified definition map :: (′a ⇒ ′b) ⇒ ′a dlist ⇒ ′b dlist where
map f dxs = Dlist (remdups (List.map f (list-of-dlist dxs)))

qualified definition filter :: (′a ⇒ bool) ⇒ ′a dlist ⇒ ′a dlist where
filter P dxs = Dlist (List.filter P (list-of-dlist dxs))

qualified definition rotate :: nat ⇒ ′a dlist ⇒ ′a dlist where
rotate n dxs = Dlist (List.rotate n (list-of-dlist dxs))

end

Derived operations:
context
begin

qualified definition null :: ′a dlist ⇒ bool where
null dxs = List.null (list-of-dlist dxs)

qualified definition member :: ′a dlist ⇒ ′a ⇒ bool where
member dxs = List.member (list-of-dlist dxs)

qualified definition length :: ′a dlist ⇒ nat where
length dxs = List.length (list-of-dlist dxs)

qualified definition fold :: (′a ⇒ ′b ⇒ ′b) ⇒ ′a dlist ⇒ ′b ⇒ ′b where
fold f dxs = List.fold f (list-of-dlist dxs)

THEORY “Dlist” 237

qualified definition foldr :: (′a ⇒ ′b ⇒ ′b) ⇒ ′a dlist ⇒ ′b ⇒ ′b where
foldr f dxs = List.foldr f (list-of-dlist dxs)

end

32.2 Executable version obeying invariant
lemma list-of-dlist-empty [simp, code abstract]:

list-of-dlist Dlist.empty = []
〈proof 〉

lemma list-of-dlist-insert [simp, code abstract]:
list-of-dlist (Dlist.insert x dxs) = List.insert x (list-of-dlist dxs)
〈proof 〉

lemma list-of-dlist-remove [simp, code abstract]:
list-of-dlist (Dlist.remove x dxs) = remove1 x (list-of-dlist dxs)
〈proof 〉

lemma list-of-dlist-map [simp, code abstract]:
list-of-dlist (Dlist.map f dxs) = remdups (List.map f (list-of-dlist dxs))
〈proof 〉

lemma list-of-dlist-filter [simp, code abstract]:
list-of-dlist (Dlist.filter P dxs) = List.filter P (list-of-dlist dxs)
〈proof 〉

lemma list-of-dlist-rotate [simp, code abstract]:
list-of-dlist (Dlist.rotate n dxs) = List.rotate n (list-of-dlist dxs)
〈proof 〉

Explicit executable conversion
definition dlist-of-list [simp]:

dlist-of-list = Dlist

lemma [code abstract]:
list-of-dlist (dlist-of-list xs) = remdups xs
〈proof 〉

Equality
instantiation dlist :: (equal) equal
begin

definition HOL.equal dxs dys ←→ HOL.equal (list-of-dlist dxs) (list-of-dlist dys)

instance
〈proof 〉

end

THEORY “Dlist” 238

declare equal-dlist-def [code]

lemma [code nbe]: HOL.equal (dxs :: ′a::equal dlist) dxs ←→ True
〈proof 〉

32.3 Induction principle and case distinction
lemma dlist-induct [case-names empty insert, induct type: dlist]:

assumes empty: P Dlist.empty
assumes insrt:

∧
x dxs. ¬ Dlist.member dxs x =⇒ P dxs =⇒ P (Dlist.insert x

dxs)
shows P dxs
〈proof 〉

lemma dlist-case [cases type: dlist]:
obtains (empty) dxs = Dlist.empty
| (insert) x dys where ¬ Dlist.member dys x and dxs = Dlist.insert x dys

〈proof 〉

32.4 Functorial structure
functor map: map
〈proof 〉

32.5 Quickcheck generators
quickcheck-generator dlist predicate: distinct constructors: Dlist.empty, Dlist.insert

32.6 BNF instance
context begin

qualified inductive double :: ′a list ⇒ ′a list ⇒ bool where
double (xs @ ys) (xs @ x # ys) if x ∈ set ys

qualified lemma strong-confluentp-double: strong-confluentp double
〈proof 〉 lemma double-Cons1 [simp]: double xs (x # xs) if x ∈ set xs
〈proof 〉 lemma double-Cons-same [simp]: double xs ys =⇒ double (x # xs) (x #

ys)
〈proof 〉 lemma doubles-Cons-same: double∗∗ xs ys =⇒ double∗∗ (x # xs) (x #

ys)
〈proof 〉 lemma remdups-into-doubles: double∗∗ (remdups xs) xs
〈proof 〉 lemma dlist-eq-into-doubles: Dlist.dlist-eq ≤ equivclp double
〈proof 〉 lemma factor-double-map: double (map f xs) ys =⇒ ∃ zs. Dlist.dlist-eq

xs zs ∧ ys = map f zs ∧ set zs ⊆ set xs
〈proof 〉 lemma dlist-eq-set-eq: Dlist.dlist-eq xs ys =⇒ set xs = set ys
〈proof 〉 lemma dlist-eq-map-respect: Dlist.dlist-eq xs ys =⇒ Dlist.dlist-eq (map

f xs) (map f ys)
〈proof 〉 lemma confluent-quotient-dlist:

THEORY “Dual-Ordered-Lattice” 239

confluent-quotient double Dlist.dlist-eq Dlist.dlist-eq Dlist.dlist-eq Dlist.dlist-eq
Dlist.dlist-eq

(map fst) (map snd) (map fst) (map snd) list-all2 list-all2 list-all2 set set
〈proof 〉

lifting-update dlist.lifting
lifting-forget dlist.lifting

end

context begin
interpretation Quotient-dlist: Quotient-dlist 〈proof 〉

lift-bnf (plugins del: code) ′a dlist
〈proof 〉 lemma list-of-dlist-transfer [transfer-rule]:
bi-unique R =⇒ (rel-fun (Quotient-dlist.pcr-dlist R) (list-all2 R)) remdups list-of-dlist
〈proof 〉

lemma list-of-dlist-map-dlist[simp]:
list-of-dlist (map-dlist f xs) = remdups (map f (list-of-dlist xs))
〈proof 〉

end

end

33 Type of dual ordered lattices
theory Dual-Ordered-Lattice
imports Main
begin

The dual of an ordered structure is an isomorphic copy of the underlying
type, with the ≤ relation defined as the inverse of the original one.

The class of lattices is closed under formation of dual structures. This
means that for any theorem of lattice theory, the dualized statement holds
as well; this important fact simplifies many proofs of lattice theory.
typedef ′a dual = UNIV :: ′a set

morphisms undual dual 〈proof 〉

setup-lifting type-definition-dual

code-datatype dual

lemma dual-eqI :
x = y if undual x = undual y
〈proof 〉

THEORY “Dual-Ordered-Lattice” 240

lemma dual-eq-iff :
x = y ←→ undual x = undual y
〈proof 〉

lemma eq-dual-iff [iff]:
dual x = dual y ←→ x = y
〈proof 〉

lemma undual-dual [simp, code]:
undual (dual x) = x
〈proof 〉

lemma dual-undual [simp]:
dual (undual x) = x
〈proof 〉

lemma undual-comp-dual [simp]:
undual ◦ dual = id
〈proof 〉

lemma dual-comp-undual [simp]:
dual ◦ undual = id
〈proof 〉

lemma inj-dual:
inj dual
〈proof 〉

lemma inj-undual:
inj undual
〈proof 〉

lemma surj-dual:
surj dual
〈proof 〉

lemma surj-undual:
surj undual
〈proof 〉

lemma bij-dual:
bij dual
〈proof 〉

lemma bij-undual:
bij undual
〈proof 〉

THEORY “Dual-Ordered-Lattice” 241

instance dual :: (finite) finite
〈proof 〉

instantiation dual :: (equal) equal
begin

lift-definition equal-dual :: ′a dual ⇒ ′a dual ⇒ bool
is HOL.equal 〈proof 〉

instance
〈proof 〉

end

33.1 Pointwise ordering
instantiation dual :: (ord) ord
begin

lift-definition less-eq-dual :: ′a dual ⇒ ′a dual ⇒ bool
is (≥) 〈proof 〉

lift-definition less-dual :: ′a dual ⇒ ′a dual ⇒ bool
is (>) 〈proof 〉

instance 〈proof 〉

end

lemma dual-less-eqI :
x ≤ y if undual y ≤ undual x
〈proof 〉

lemma dual-less-eq-iff :
x ≤ y ←→ undual y ≤ undual x
〈proof 〉

lemma less-eq-dual-iff [iff]:
dual x ≤ dual y ←→ y ≤ x
〈proof 〉

lemma dual-lessI :
x < y if undual y < undual x
〈proof 〉

lemma dual-less-iff :
x < y ←→ undual y < undual x
〈proof 〉

THEORY “Dual-Ordered-Lattice” 242

lemma less-dual-iff [iff]:
dual x < dual y ←→ y < x
〈proof 〉

instance dual :: (preorder) preorder
〈proof 〉

instance dual :: (order) order
〈proof 〉

33.2 Binary infimum and supremum
instantiation dual :: (sup) inf
begin

lift-definition inf-dual :: ′a dual ⇒ ′a dual ⇒ ′a dual
is sup 〈proof 〉

instance 〈proof 〉

end

lemma undual-inf-eq [simp]:
undual (inf x y) = sup (undual x) (undual y)
〈proof 〉

lemma dual-sup-eq [simp]:
dual (sup x y) = inf (dual x) (dual y)
〈proof 〉

instantiation dual :: (inf) sup
begin

lift-definition sup-dual :: ′a dual ⇒ ′a dual ⇒ ′a dual
is inf 〈proof 〉

instance 〈proof 〉

end

lemma undual-sup-eq [simp]:
undual (sup x y) = inf (undual x) (undual y)
〈proof 〉

lemma dual-inf-eq [simp]:
dual (inf x y) = sup (dual x) (dual y)
〈proof 〉

instance dual :: (semilattice-sup) semilattice-inf

THEORY “Dual-Ordered-Lattice” 243

〈proof 〉

instance dual :: (semilattice-inf) semilattice-sup
〈proof 〉

instance dual :: (lattice) lattice 〈proof 〉

instance dual :: (distrib-lattice) distrib-lattice
〈proof 〉

33.3 Top and bottom elements
instantiation dual :: (top) bot
begin

lift-definition bot-dual :: ′a dual
is top 〈proof 〉

instance 〈proof 〉

end

lemma undual-bot-eq [simp]:
undual bot = top
〈proof 〉

lemma dual-top-eq [simp]:
dual top = bot
〈proof 〉

instantiation dual :: (bot) top
begin

lift-definition top-dual :: ′a dual
is bot 〈proof 〉

instance 〈proof 〉

end

lemma undual-top-eq [simp]:
undual top = bot
〈proof 〉

lemma dual-bot-eq [simp]:
dual bot = top
〈proof 〉

instance dual :: (order-top) order-bot

THEORY “Dual-Ordered-Lattice” 244

〈proof 〉

instance dual :: (order-bot) order-top
〈proof 〉

instance dual :: (bounded-lattice-top) bounded-lattice-bot 〈proof 〉

instance dual :: (bounded-lattice-bot) bounded-lattice-top 〈proof 〉

instance dual :: (bounded-lattice) bounded-lattice 〈proof 〉

33.4 Complement
instantiation dual :: (uminus) uminus
begin

lift-definition uminus-dual :: ′a dual ⇒ ′a dual
is uminus 〈proof 〉

instance 〈proof 〉

end

lemma undual-uminus-eq [simp]:
undual (− x) = − undual x
〈proof 〉

lemma dual-uminus-eq [simp]:
dual (− x) = − dual x
〈proof 〉

instantiation dual :: (boolean-algebra) boolean-algebra
begin

lift-definition minus-dual :: ′a dual ⇒ ′a dual ⇒ ′a dual
is λx y. − (y − x) 〈proof 〉

instance
〈proof 〉

end

lemma undual-minus-eq [simp]:
undual (x − y) = − (undual y − undual x)
〈proof 〉

lemma dual-minus-eq [simp]:
dual (x − y) = − (dual y − dual x)
〈proof 〉

THEORY “Dual-Ordered-Lattice” 245

33.5 Complete lattice operations
The class of complete lattices is closed under formation of dual structures.
instantiation dual :: (Sup) Inf
begin

lift-definition Inf-dual :: ′a dual set ⇒ ′a dual
is Sup 〈proof 〉

instance 〈proof 〉

end

lemma undual-Inf-eq [simp]:
undual (Inf A) = Sup (undual ‘ A)
〈proof 〉

lemma dual-Sup-eq [simp]:
dual (Sup A) = Inf (dual ‘ A)
〈proof 〉

instantiation dual :: (Inf) Sup
begin

lift-definition Sup-dual :: ′a dual set ⇒ ′a dual
is Inf 〈proof 〉

instance 〈proof 〉

end

lemma undual-Sup-eq [simp]:
undual (Sup A) = Inf (undual ‘ A)
〈proof 〉

lemma dual-Inf-eq [simp]:
dual (Inf A) = Sup (dual ‘ A)
〈proof 〉

instance dual :: (complete-lattice) complete-lattice
〈proof 〉

context
fixes f :: ′a::complete-lattice ⇒ ′a

and g :: ′a dual ⇒ ′a dual
assumes mono f
defines g ≡ dual ◦ f ◦ undual

begin

THEORY “Equipollence” 246

private lemma mono-dual:
mono g
〈proof 〉

lemma lfp-dual-gfp:
lfp f = undual (gfp g) (is ?lhs = ?rhs)
〈proof 〉

lemma gfp-dual-lfp:
gfp f = undual (lfp g)
〈proof 〉

end

Finally
lifting-update dual.lifting
lifting-forget dual.lifting

end

34 Equipollence and Other Relations Connected
with Cardinality

theory Equipollence
imports FuncSet Countable-Set

begin

34.1 Eqpoll
definition eqpoll :: ′a set ⇒ ′b set ⇒ bool (infixl ‹≈› 50)

where eqpoll A B ≡ ∃ f . bij-betw f A B

definition lepoll :: ′a set ⇒ ′b set ⇒ bool (infixl ‹.› 50)
where lepoll A B ≡ ∃ f . inj-on f A ∧ f ‘ A ⊆ B

definition lesspoll :: ′a set ⇒ ′b set ⇒ bool (infixl ‹≺› 50)
where A ≺ B == A . B ∧ ∼(A ≈ B)

lemma lepoll-def ′: lepoll A B ≡ ∃ f . inj-on f A ∧ f ∈ A → B
〈proof 〉

lemma eqpoll-empty-iff-empty [simp]: A ≈ {} ←→ A={}
〈proof 〉

lemma lepoll-empty-iff-empty [simp]: A . {} ←→ A = {}
〈proof 〉

lemma not-lesspoll-empty: ¬ A ≺ {}

THEORY “Equipollence” 247

〈proof 〉

lemma lepoll-relational-full:
assumes

∧
y. y ∈ B =⇒ ∃ x. x ∈ A ∧ R x y

and
∧

x y y ′. [[x ∈ A; y ∈ B; y ′ ∈ B; R x y; R x y ′]] =⇒ y = y ′

shows B . A
〈proof 〉

lemma eqpoll-iff-card-of-ordIso: A ≈ B ←→ ordIso2 (card-of A) (card-of B)
〈proof 〉

lemma eqpoll-refl [iff]: A ≈ A
〈proof 〉

lemma eqpoll-finite-iff : A ≈ B =⇒ finite A ←→ finite B
〈proof 〉

lemma eqpoll-iff-card:
assumes finite A finite B
shows A ≈ B ←→ card A = card B
〈proof 〉

lemma eqpoll-singleton-iff : A ≈ {x} ←→ (∃ u. A = {u})
〈proof 〉

lemma eqpoll-doubleton-iff : A ≈ {x,y} ←→ (∃ u v. A = {u,v} ∧ (u=v ←→ x=y))
〈proof 〉

lemma lepoll-antisym:
assumes A . B B . A shows A ≈ B
〈proof 〉

lemma lepoll-trans [trans]:
assumes A . B B . C shows A . C
〈proof 〉

lemma lepoll-trans1 [trans]: [[A ≈ B; B . C]] =⇒ A . C
〈proof 〉

lemma lepoll-trans2 [trans]: [[A . B; B ≈ C]] =⇒ A . C
〈proof 〉

lemma eqpoll-sym: A ≈ B =⇒ B ≈ A
〈proof 〉

lemma eqpoll-trans [trans]: [[A ≈ B; B ≈ C]] =⇒ A ≈ C
〈proof 〉

THEORY “Equipollence” 248

lemma eqpoll-imp-lepoll: A ≈ B =⇒ A . B
〈proof 〉

lemma subset-imp-lepoll: A ⊆ B =⇒ A . B
〈proof 〉

lemma lepoll-refl [iff]: A . A
〈proof 〉

lemma lepoll-iff : A . B ←→ (∃ g. A ⊆ g ‘ B)
〈proof 〉

lemma empty-lepoll [iff]: {} . A
〈proof 〉

lemma subset-image-lepoll: B ⊆ f ‘ A =⇒ B . A
〈proof 〉

lemma image-lepoll: f ‘ A . A
〈proof 〉

lemma infinite-le-lepoll: infinite A ←→ (UNIV ::nat set) . A
〈proof 〉

lemma lepoll-Pow-self : A . Pow A
〈proof 〉

lemma eqpoll-iff-bijections:
A ≈ B ←→ (∃ f g. (∀ x ∈ A. f x ∈ B ∧ g(f x) = x) ∧ (∀ y ∈ B. g y ∈ A ∧ f (g

y) = y))
〈proof 〉

lemma lepoll-restricted-funspace:
{f . f ‘ A ⊆ B ∧ {x. f x 6= k x} ⊆ A ∧ finite {x. f x 6= k x}} . Fpow (A × B)

〈proof 〉

lemma singleton-lepoll: {x} . insert y A
〈proof 〉

lemma singleton-eqpoll: {x} ≈ {y}
〈proof 〉

lemma subset-singleton-iff-lepoll: (∃ x. S ⊆ {x}) ←→ S . {()}
〈proof 〉

lemma infinite-insert-lepoll:
assumes infinite A shows insert a A . A
〈proof 〉

THEORY “Equipollence” 249

lemma infinite-insert-eqpoll: infinite A =⇒ insert a A ≈ A
〈proof 〉

lemma finite-lepoll-infinite:
assumes infinite A finite B shows B . A
〈proof 〉

lemma countable-lepoll: [[countable A; B . A]] =⇒ countable B
〈proof 〉

lemma countable-eqpoll: [[countable A; B ≈ A]] =⇒ countable B
〈proof 〉

34.2 The strict relation
lemma lesspoll-not-refl [iff]: ∼ (i ≺ i)
〈proof 〉

lemma lesspoll-imp-lepoll: A ≺ B ==> A . B
〈proof 〉

lemma lepoll-iff-leqpoll: A . B ←→ A ≺ B | A ≈ B
〈proof 〉

lemma lesspoll-trans [trans]: [[X ≺ Y ; Y ≺ Z]] =⇒ X ≺ Z
〈proof 〉

lemma lesspoll-trans1 [trans]: [[X . Y ; Y ≺ Z]] =⇒ X ≺ Z
〈proof 〉

lemma lesspoll-trans2 [trans]: [[X ≺ Y ; Y . Z]] =⇒ X ≺ Z
〈proof 〉

lemma eq-lesspoll-trans [trans]: [[X ≈ Y ; Y ≺ Z]] =⇒ X ≺ Z
〈proof 〉

lemma lesspoll-eq-trans [trans]: [[X ≺ Y ; Y ≈ Z]] =⇒ X ≺ Z
〈proof 〉

lemma lesspoll-Pow-self : A ≺ Pow A
〈proof 〉

lemma finite-lesspoll-infinite:
assumes infinite A finite B shows B ≺ A
〈proof 〉

lemma countable-lesspoll: [[countable A; B ≺ A]] =⇒ countable B
〈proof 〉

THEORY “Equipollence” 250

lemma lepoll-iff-card-le: [[finite A; finite B]] =⇒ A . B ←→ card A ≤ card B
〈proof 〉

lemma lepoll-iff-finite-card: A . {..<n::nat} ←→ finite A ∧ card A ≤ n
〈proof 〉

lemma eqpoll-iff-finite-card: A ≈ {..<n::nat} ←→ finite A ∧ card A = n
〈proof 〉

lemma lesspoll-iff-finite-card: A ≺ {..<n::nat} ←→ finite A ∧ card A < n
〈proof 〉

34.3 Mapping by an injection
lemma inj-on-image-eqpoll-self : inj-on f A =⇒ f ‘ A ≈ A
〈proof 〉

lemma inj-on-image-lepoll-1 [simp]:
assumes inj-on f A shows f ‘ A . B ←→ A . B
〈proof 〉

lemma inj-on-image-lepoll-2 [simp]:
assumes inj-on f B shows A . f ‘ B ←→ A . B
〈proof 〉

lemma inj-on-image-lesspoll-1 [simp]:
assumes inj-on f A shows f ‘ A ≺ B ←→ A ≺ B
〈proof 〉

lemma inj-on-image-lesspoll-2 [simp]:
assumes inj-on f B shows A ≺ f ‘ B ←→ A ≺ B
〈proof 〉

lemma inj-on-image-eqpoll-1 [simp]:
assumes inj-on f A shows f ‘ A ≈ B ←→ A ≈ B
〈proof 〉

lemma inj-on-image-eqpoll-2 [simp]:
assumes inj-on f B shows A ≈ f ‘ B ←→ A ≈ B
〈proof 〉

34.4 Inserting elements into sets
lemma insert-lepoll-insertD:

assumes insert u A . insert v B u /∈ A v /∈ B shows A . B
〈proof 〉

lemma insert-eqpoll-insertD: [[insert u A ≈ insert v B; u /∈ A; v /∈ B]] =⇒ A ≈ B
〈proof 〉

THEORY “Equipollence” 251

lemma insert-lepoll-cong:
assumes A . B b /∈ B shows insert a A . insert b B
〈proof 〉

lemma insert-eqpoll-cong:
[[A ≈ B; a /∈ A; b /∈ B]] =⇒ insert a A ≈ insert b B

〈proof 〉

lemma insert-eqpoll-insert-iff :
[[a /∈ A; b /∈ B]] =⇒ insert a A ≈ insert b B ←→ A ≈ B

〈proof 〉

lemma insert-lepoll-insert-iff :
[[a /∈ A; b /∈ B]] =⇒ (insert a A . insert b B) ←→ (A . B)

〈proof 〉

lemma less-imp-insert-lepoll:
assumes A ≺ B shows insert a A . B
〈proof 〉

lemma finite-insert-lepoll: finite A =⇒ (insert a A . A) ←→ (a ∈ A)
〈proof 〉

34.5 Binary sums and unions
lemma Un-lepoll-mono:

assumes A . C B . D disjnt C D shows A ∪ B . C ∪ D
〈proof 〉

lemma Un-eqpoll-cong: [[A ≈ C ; B ≈ D; disjnt A B; disjnt C D]] =⇒ A ∪ B ≈ C
∪ D
〈proof 〉

lemma sum-lepoll-mono:
assumes A . C B . D shows A <+> B . C <+> D
〈proof 〉

lemma sum-eqpoll-cong: [[A ≈ C ; B ≈ D]] =⇒ A <+> B ≈ C <+> D
〈proof 〉

34.6 Binary Cartesian products
lemma times-square-lepoll: A . A × A
〈proof 〉

lemma times-commute-eqpoll: A × B ≈ B × A
〈proof 〉

lemma times-assoc-eqpoll: (A × B) × C ≈ A × (B × C)
〈proof 〉

THEORY “Equipollence” 252

lemma times-singleton-eqpoll: {a} × A ≈ A
〈proof 〉

lemma times-lepoll-mono:
assumes A . C B . D shows A × B . C × D
〈proof 〉

lemma times-eqpoll-cong: [[A ≈ C ; B ≈ D]] =⇒ A × B ≈ C × D
〈proof 〉

lemma
assumes B 6= {} shows lepoll-times1 : A . A × B and lepoll-times2 : A . B
× A
〈proof 〉

lemma times-0-eqpoll: {} × A ≈ {}
〈proof 〉

lemma Sigma-inj-lepoll-mono:
assumes h: inj-on h A h ‘ A ⊆ C and

∧
x. x ∈ A =⇒ B x . D (h x)

shows Sigma A B . Sigma C D
〈proof 〉

lemma Sigma-lepoll-mono:
assumes A ⊆ C

∧
x. x ∈ A =⇒ B x . D x shows Sigma A B . Sigma C D

〈proof 〉

lemma sum-times-distrib-eqpoll: (A <+> B) × C ≈ (A × C) <+> (B × C)
〈proof 〉

lemma Sigma-eqpoll-cong:
assumes h: bij-betw h A C and BD:

∧
x. x ∈ A =⇒ B x ≈ D (h x)

shows Sigma A B ≈ Sigma C D
〈proof 〉

lemma prod-insert-eqpoll:
assumes a /∈ A shows insert a A × B ≈ B <+> A × B
〈proof 〉

34.7 General Unions
lemma Union-eqpoll-Times:

assumes B:
∧

x. x ∈ A =⇒ F x ≈ B and disj: pairwise (λx y. disjnt (F x) (F
y)) A

shows (
⋃

x∈A. F x) ≈ A × B
〈proof 〉

lemma UN-lepoll-UN :

THEORY “Equipollence” 253

assumes A:
∧

x. x ∈ A =⇒ B x . C x
and disj: pairwise (λx y. disjnt (C x) (C y)) A

shows
⋃

(B‘A) .
⋃

(C‘A)
〈proof 〉

lemma UN-eqpoll-UN :
assumes A:

∧
x. x ∈ A =⇒ B x ≈ C x

and B: pairwise (λx y. disjnt (B x) (B y)) A
and C : pairwise (λx y. disjnt (C x) (C y)) A

shows (
⋃

x∈A. B x) ≈ (
⋃

x∈A. C x)
〈proof 〉

34.8 General Cartesian products (Pi)
lemma PiE-sing-eqpoll-self : ({a} →E B) ≈ B
〈proof 〉

lemma lepoll-funcset-right:
assumes B . B ′ shows A →E B . A →E B ′

〈proof 〉

lemma lepoll-funcset-left:
assumes B 6= {} A . A ′

shows A →E B . A ′→E B
〈proof 〉

lemma lepoll-funcset:
[[B 6= {}; A . A ′; B . B ′]] =⇒ A →E B . A ′→E B ′

〈proof 〉

lemma lepoll-PiE :
assumes

∧
i. i ∈ A =⇒ B i . C i

shows PiE A B . PiE A C
〈proof 〉

lemma card-le-PiE-subindex:
assumes A ⊆ A ′ PiE A ′ B 6= {}
shows PiE A B . PiE A ′ B
〈proof 〉

lemma finite-restricted-funspace:
assumes finite A finite B
shows finite {f . f ‘ A ⊆ B ∧ {x. f x 6= k x} ⊆ A} (is finite ?F)
〈proof 〉

proposition finite-PiE-iff :

THEORY “Simps-Case-Conv” 254

finite(PiE I S) ←→ PiE I S = {} ∨ finite {i ∈ I . ∼(∃ a. S i ⊆ {a})} ∧ (∀ i ∈
I . finite(S i))
(is ?lhs = ?rhs)
〈proof 〉

corollary finite-funcset-iff :
finite(I →E S) ←→ (∃ a. S ⊆ {a}) ∨ I = {} ∨ finite I ∧ finite S
〈proof 〉

34.9 Misc other resultd
lemma lists-lepoll-mono:

assumes A . B shows lists A . lists B
〈proof 〉

lemma lepoll-lists: A . lists A
〈proof 〉

Dedekind’s definition of infinite set
lemma infinite-iff-psubset: infinite A ←→ (∃B. B ⊂ A ∧ A≈B)
〈proof 〉

lemma infinite-iff-psubset-le: infinite A ←→ (∃B. B ⊂ A ∧ A . B)
〈proof 〉

end

theory Simps-Case-Conv
imports Case-Converter

keywords simps-of-case case-of-simps :: thy-decl
abbrevs simps-of-case case-of-simps =

begin

〈ML〉

end

theory Extended
imports Simps-Case-Conv

begin

datatype ′a extended = Fin ′a | Pinf (‹∞›) | Minf (‹−∞›)

instantiation extended :: (order)order
begin

THEORY “Extended” 255

fun less-eq-extended :: ′a extended ⇒ ′a extended ⇒ bool where
Fin x ≤ Fin y = (x ≤ y) |
- ≤ Pinf = True |
Minf ≤ - = True |
(-:: ′a extended) ≤ - = False

case-of-simps less-eq-extended-case: less-eq-extended.simps

definition less-extended :: ′a extended ⇒ ′a extended ⇒ bool where
((x:: ′a extended) < y) = (x ≤ y ∧ ¬ y ≤ x)

instance
〈proof 〉

end

instance extended :: (linorder)linorder
〈proof 〉

lemma Minf-le[simp]: Minf ≤ y
〈proof 〉
lemma le-Pinf [simp]: x ≤ Pinf
〈proof 〉
lemma le-Minf [simp]: x ≤ Minf ←→ x = Minf
〈proof 〉
lemma Pinf-le[simp]: Pinf ≤ x ←→ x = Pinf
〈proof 〉

lemma less-extended-simps[simp]:
Fin x < Fin y = (x < y)
Fin x < Pinf = True
Fin x < Minf = False
Pinf < h = False
Minf < Fin x = True
Minf < Pinf = True
l < Minf = False
〈proof 〉

lemma min-extended-simps[simp]:
min (Fin x) (Fin y) = Fin(min x y)
min xx Pinf = xx
min xx Minf = Minf
min Pinf yy = yy
min Minf yy = Minf
〈proof 〉

lemma max-extended-simps[simp]:
max (Fin x) (Fin y) = Fin(max x y)
max xx Pinf = Pinf

THEORY “Extended” 256

max xx Minf = xx
max Pinf yy = Pinf
max Minf yy = yy
〈proof 〉

instantiation extended :: (zero)zero
begin
definition 0 = Fin(0 :: ′a)
instance 〈proof 〉
end

declare zero-extended-def [symmetric, code-post]

instantiation extended :: (one)one
begin
definition 1 = Fin(1 :: ′a)
instance 〈proof 〉
end

declare one-extended-def [symmetric, code-post]

instantiation extended :: (plus)plus
begin

The following definition of of addition is totalized to make it asociative
and commutative. Normally the sum of plus and minus infinity is undefined.
fun plus-extended where
Fin x + Fin y = Fin(x+y) |
Fin x + Pinf = Pinf |
Pinf + Fin x = Pinf |
Pinf + Pinf = Pinf |
Minf + Fin y = Minf |
Fin x + Minf = Minf |
Minf + Minf = Minf |
Minf + Pinf = Pinf |
Pinf + Minf = Pinf

case-of-simps plus-case: plus-extended.simps

instance 〈proof 〉

end

instance extended :: (ab-semigroup-add)ab-semigroup-add
〈proof 〉

THEORY “Extended” 257

instance extended :: (ordered-ab-semigroup-add)ordered-ab-semigroup-add
〈proof 〉

instance extended :: (comm-monoid-add)comm-monoid-add
〈proof 〉

instantiation extended :: (uminus)uminus
begin

fun uminus-extended where
− (Fin x) = Fin (− x) |
− Pinf = Minf |
− Minf = Pinf

instance 〈proof 〉

end

instantiation extended :: (ab-group-add)minus
begin
definition x − y = x + −(y:: ′a extended)
instance 〈proof 〉
end

lemma minus-extended-simps[simp]:
Fin x − Fin y = Fin(x − y)
Fin x − Pinf = Minf
Fin x − Minf = Pinf
Pinf − Fin y = Pinf
Pinf − Minf = Pinf
Minf − Fin y = Minf
Minf − Pinf = Minf
Minf − Minf = Pinf
Pinf − Pinf = Pinf
〈proof 〉

Numerals:
instance extended :: ({ab-semigroup-add,one})numeral 〈proof 〉

lemma Fin-numeral[code-post]: Fin(numeral w) = numeral w
〈proof 〉

lemma Fin-neg-numeral[code-post]: Fin (− numeral w) = − numeral w
〈proof 〉

instantiation extended :: (lattice)bounded-lattice
begin

THEORY “Order-Continuity” 258

definition bot = Minf
definition top = Pinf

fun inf-extended :: ′a extended ⇒ ′a extended ⇒ ′a extended where
inf-extended (Fin i) (Fin j) = Fin (inf i j) |
inf-extended a Minf = Minf |
inf-extended Minf a = Minf |
inf-extended Pinf a = a |
inf-extended a Pinf = a

fun sup-extended :: ′a extended ⇒ ′a extended ⇒ ′a extended where
sup-extended (Fin i) (Fin j) = Fin (sup i j) |
sup-extended a Pinf = Pinf |
sup-extended Pinf a = Pinf |
sup-extended Minf a = a |
sup-extended a Minf = a

case-of-simps inf-extended-case: inf-extended.simps
case-of-simps sup-extended-case: sup-extended.simps

instance
〈proof 〉

end

end

35 Continuity and iterations
theory Order-Continuity
imports Complex-Main Countable-Complete-Lattices
begin

lemma SUP-nat-binary:
(sup A (SUP x∈Collect ((<) (0 ::nat)). B)) = (sup A B:: ′a::countable-complete-lattice)
〈proof 〉

lemma INF-nat-binary:
inf A (INF x∈Collect ((<) (0 ::nat)). B) = (inf A B:: ′a::countable-complete-lattice)
〈proof 〉

The name continuous is already taken in Complex-Main, so we use
sup-continuous and inf-continuous. These names appear sometimes in liter-
ature and have the advantage that these names are duals.
named-theorems order-continuous-intros

THEORY “Order-Continuity” 259

35.1 Continuity for complete lattices
definition

sup-continuous :: (′a::countable-complete-lattice ⇒ ′b::countable-complete-lattice)
⇒ bool
where

sup-continuous F ←→ (∀M ::nat ⇒ ′a. mono M −→ F (SUP i. M i) = (SUP i.
F (M i)))

lemma sup-continuousD: sup-continuous F =⇒ mono M =⇒ F (SUP i::nat. M
i) = (SUP i. F (M i))
〈proof 〉

lemma sup-continuous-mono:
mono F if sup-continuous F
〈proof 〉

lemma [order-continuous-intros]:
shows sup-continuous-const: sup-continuous (λx. c)

and sup-continuous-id: sup-continuous (λx. x)
and sup-continuous-apply: sup-continuous (λf . f x)
and sup-continuous-fun: (

∧
s. sup-continuous (λx. P x s)) =⇒ sup-continuous

P
and sup-continuous-If : sup-continuous F =⇒ sup-continuous G =⇒ sup-continuous

(λf . if C then F f else G f)
〈proof 〉

lemma sup-continuous-compose:
assumes f : sup-continuous f and g: sup-continuous g
shows sup-continuous (λx. f (g x))
〈proof 〉

lemma sup-continuous-sup[order-continuous-intros]:
sup-continuous f =⇒ sup-continuous g =⇒ sup-continuous (λx. sup (f x) (g x))
〈proof 〉

lemma sup-continuous-inf [order-continuous-intros]:
fixes P Q :: ′a :: countable-complete-lattice⇒ ′b :: countable-complete-distrib-lattice
assumes P: sup-continuous P and Q: sup-continuous Q
shows sup-continuous (λx. inf (P x) (Q x))
〈proof 〉

lemma sup-continuous-and[order-continuous-intros]:
sup-continuous P =⇒ sup-continuous Q =⇒ sup-continuous (λx. P x ∧ Q x)
〈proof 〉

lemma sup-continuous-or [order-continuous-intros]:
sup-continuous P =⇒ sup-continuous Q =⇒ sup-continuous (λx. P x ∨ Q x)
〈proof 〉

THEORY “Order-Continuity” 260

lemma sup-continuous-lfp:
assumes sup-continuous F shows lfp F = (SUP i. (F ^^ i) bot) (is lfp F = ?U)
〈proof 〉

lemma lfp-transfer-bounded:
assumes P: P bot

∧
x. P x =⇒ P (f x)

∧
M . (

∧
i. P (M i)) =⇒ P (SUP i::nat.

M i)
assumes α:

∧
M . mono M =⇒ (

∧
i::nat. P (M i)) =⇒ α (SUP i. M i) = (SUP

i. α (M i))
assumes f : sup-continuous f and g: sup-continuous g
assumes [simp]:

∧
x. P x =⇒ x ≤ lfp f =⇒ α (f x) = g (α x)

assumes g-bound:
∧

x. α bot ≤ g x
shows α (lfp f) = lfp g
〈proof 〉

lemma lfp-transfer :
sup-continuous α =⇒ sup-continuous f =⇒ sup-continuous g =⇒
(
∧

x. α bot ≤ g x) =⇒ (
∧

x. x ≤ lfp f =⇒ α (f x) = g (α x)) =⇒ α (lfp f) =
lfp g
〈proof 〉

definition
inf-continuous :: (′a::countable-complete-lattice ⇒ ′b::countable-complete-lattice)
⇒ bool
where

inf-continuous F ←→ (∀M ::nat ⇒ ′a. antimono M −→ F (INF i. M i) = (INF
i. F (M i)))

lemma inf-continuousD: inf-continuous F =⇒ antimono M =⇒ F (INF i::nat. M
i) = (INF i. F (M i))
〈proof 〉

lemma inf-continuous-mono:
mono F if inf-continuous F
〈proof 〉

lemma [order-continuous-intros]:
shows inf-continuous-const: inf-continuous (λx. c)

and inf-continuous-id: inf-continuous (λx. x)
and inf-continuous-apply: inf-continuous (λf . f x)
and inf-continuous-fun: (

∧
s. inf-continuous (λx. P x s)) =⇒ inf-continuous P

and inf-continuous-If : inf-continuous F =⇒ inf-continuous G =⇒ inf-continuous
(λf . if C then F f else G f)
〈proof 〉

lemma inf-continuous-inf [order-continuous-intros]:
inf-continuous f =⇒ inf-continuous g =⇒ inf-continuous (λx. inf (f x) (g x))
〈proof 〉

THEORY “Order-Continuity” 261

lemma inf-continuous-sup[order-continuous-intros]:
fixes P Q :: ′a :: countable-complete-lattice⇒ ′b :: countable-complete-distrib-lattice
assumes P: inf-continuous P and Q: inf-continuous Q
shows inf-continuous (λx. sup (P x) (Q x))
〈proof 〉

lemma inf-continuous-and[order-continuous-intros]:
inf-continuous P =⇒ inf-continuous Q =⇒ inf-continuous (λx. P x ∧ Q x)
〈proof 〉

lemma inf-continuous-or [order-continuous-intros]:
inf-continuous P =⇒ inf-continuous Q =⇒ inf-continuous (λx. P x ∨ Q x)
〈proof 〉

lemma inf-continuous-compose:
assumes f : inf-continuous f and g: inf-continuous g
shows inf-continuous (λx. f (g x))
〈proof 〉

lemma inf-continuous-gfp:
assumes inf-continuous F shows gfp F = (INF i. (F ^^ i) top) (is gfp F = ?U)
〈proof 〉

lemma gfp-transfer :
assumes α: inf-continuous α and f : inf-continuous f and g: inf-continuous g
assumes [simp]: α top = top

∧
x. α (f x) = g (α x)

shows α (gfp f) = gfp g
〈proof 〉

lemma gfp-transfer-bounded:
assumes P: P (f top)

∧
x. P x =⇒ P (f x)

∧
M . antimono M =⇒ (

∧
i. P (M

i)) =⇒ P (INF i::nat. M i)
assumes α:

∧
M . antimono M =⇒ (

∧
i::nat. P (M i)) =⇒ α (INF i. M i) =

(INF i. α (M i))
assumes f : inf-continuous f and g: inf-continuous g
assumes [simp]:

∧
x. P x =⇒ α (f x) = g (α x)

assumes g-bound:
∧

x. g x ≤ α (f top)
shows α (gfp f) = gfp g
〈proof 〉

35.1.1 Least fixed points in countable complete lattices
definition (in countable-complete-lattice) cclfp :: (′a ⇒ ′a) ⇒ ′a

where cclfp f = (SUP i. (f ^^ i) bot)

lemma cclfp-unfold:
assumes sup-continuous F shows cclfp F = F (cclfp F)
〈proof 〉

THEORY “Extended-Nat” 262

lemma cclfp-lowerbound: assumes f : mono f and A: f A ≤ A shows cclfp f ≤ A
〈proof 〉

lemma cclfp-transfer :
assumes sup-continuous α mono f
assumes α bot = bot

∧
x. α (f x) = g (α x)

shows α (cclfp f) = cclfp g
〈proof 〉

end

36 Extended natural numbers (i.e. with infinity)
theory Extended-Nat
imports Main Countable Order-Continuity
begin

class infinity =
fixes infinity :: ′a (‹∞›)

context
fixes f :: nat ⇒ ′a::{canonically-ordered-monoid-add, linorder-topology, com-

plete-linorder}
begin

lemma sums-SUP[simp, intro]: f sums (SUP n.
∑

i<n. f i)
〈proof 〉

lemma suminf-eq-SUP: suminf f = (SUP n.
∑

i<n. f i)
〈proof 〉

end

36.1 Type definition
We extend the standard natural numbers by a special value indicating in-
finity.
typedef enat = UNIV :: nat option set 〈proof 〉

TODO: introduce enat as coinductive datatype, enat is just of-nat
definition enat :: nat ⇒ enat where

enat n = Abs-enat (Some n)

instantiation enat :: infinity
begin

definition ∞ = Abs-enat None
instance 〈proof 〉

THEORY “Extended-Nat” 263

end

instance enat :: countable
〈proof 〉

old-rep-datatype enat ∞ :: enat
〈proof 〉

declare [[coercion enat::nat⇒enat]]

lemmas enat2-cases = enat.exhaust[case-product enat.exhaust]
lemmas enat3-cases = enat.exhaust[case-product enat.exhaust enat.exhaust]

lemma not-infinity-eq [iff]: (x 6= ∞) = (∃ i. x = enat i)
〈proof 〉

lemma not-enat-eq [iff]: (∀ y. x 6= enat y) = (x = ∞)
〈proof 〉

lemma enat-ex-split: (∃ c::enat. P c) ←→ P ∞ ∨ (∃ c::nat. P c)
〈proof 〉

primrec the-enat :: enat ⇒ nat
where the-enat (enat n) = n

36.2 Constructors and numbers
instantiation enat :: zero-neq-one
begin

definition
0 = enat 0

definition
1 = enat 1

instance
〈proof 〉

end

definition eSuc :: enat ⇒ enat where
eSuc i = (case i of enat n ⇒ enat (Suc n) | ∞ ⇒ ∞)

lemma enat-0 [code-post]: enat 0 = 0
〈proof 〉

lemma enat-1 [code-post]: enat 1 = 1

THEORY “Extended-Nat” 264

〈proof 〉

lemma enat-0-iff : enat x = 0 ←→ x = 0 0 = enat x ←→ x = 0
〈proof 〉

lemma enat-1-iff : enat x = 1 ←→ x = 1 1 = enat x ←→ x = 1
〈proof 〉

lemma one-eSuc: 1 = eSuc 0
〈proof 〉

lemma infinity-ne-i0 [simp]: (∞::enat) 6= 0
〈proof 〉

lemma i0-ne-infinity [simp]: 0 6= (∞::enat)
〈proof 〉

lemma zero-one-enat-neq:
¬ 0 = (1 ::enat)
¬ 1 = (0 ::enat)
〈proof 〉

lemma infinity-ne-i1 [simp]: (∞::enat) 6= 1
〈proof 〉

lemma i1-ne-infinity [simp]: 1 6= (∞::enat)
〈proof 〉

lemma eSuc-enat: eSuc (enat n) = enat (Suc n)
〈proof 〉

lemma eSuc-infinity [simp]: eSuc ∞ = ∞
〈proof 〉

lemma eSuc-ne-0 [simp]: eSuc n 6= 0
〈proof 〉

lemma zero-ne-eSuc [simp]: 0 6= eSuc n
〈proof 〉

lemma eSuc-inject [simp]: eSuc m = eSuc n ←→ m = n
〈proof 〉

lemma eSuc-enat-iff : eSuc x = enat y ←→ (∃n. y = Suc n ∧ x = enat n)
〈proof 〉

lemma enat-eSuc-iff : enat y = eSuc x ←→ (∃n. y = Suc n ∧ enat n = x)
〈proof 〉

THEORY “Extended-Nat” 265

36.3 Addition
instantiation enat :: comm-monoid-add
begin

definition [nitpick-simp]:
m + n = (case m of ∞ ⇒ ∞ | enat m ⇒ (case n of ∞ ⇒ ∞ | enat n ⇒ enat

(m + n)))

lemma plus-enat-simps [simp, code]:
fixes q :: enat
shows enat m + enat n = enat (m + n)

and ∞ + q = ∞
and q + ∞ = ∞
〈proof 〉

instance
〈proof 〉

end

lemma eSuc-plus-1 :
eSuc n = n + 1
〈proof 〉

lemma plus-1-eSuc:
1 + q = eSuc q
q + 1 = eSuc q
〈proof 〉

lemma iadd-Suc: eSuc m + n = eSuc (m + n)
〈proof 〉

lemma iadd-Suc-right: m + eSuc n = eSuc (m + n)
〈proof 〉

36.4 Multiplication
instantiation enat :: {comm-semiring-1 , semiring-no-zero-divisors}
begin

definition times-enat-def [nitpick-simp]:
m ∗ n = (case m of ∞ ⇒ if n = 0 then 0 else ∞ | enat m ⇒
(case n of ∞ ⇒ if m = 0 then 0 else ∞ | enat n ⇒ enat (m ∗ n)))

lemma times-enat-simps [simp, code]:
enat m ∗ enat n = enat (m ∗ n)
∞ ∗ ∞ = (∞::enat)
∞ ∗ enat n = (if n = 0 then 0 else ∞)
enat m ∗ ∞ = (if m = 0 then 0 else ∞)

THEORY “Extended-Nat” 266

〈proof 〉

instance
〈proof 〉

end

lemma mult-eSuc: eSuc m ∗ n = n + m ∗ n
〈proof 〉

lemma mult-eSuc-right: m ∗ eSuc n = m + m ∗ n
〈proof 〉

lemma of-nat-eq-enat: of-nat n = enat n
〈proof 〉

instance enat :: semiring-char-0
〈proof 〉

lemma imult-is-infinity: ((a::enat) ∗ b = ∞) = (a = ∞ ∧ b 6= 0 ∨ b = ∞ ∧ a 6=
0)
〈proof 〉

36.5 Numerals
lemma numeral-eq-enat:

numeral k = enat (numeral k)
〈proof 〉

lemma enat-numeral [code-abbrev]:
enat (numeral k) = numeral k
〈proof 〉

lemma infinity-ne-numeral [simp]: (∞::enat) 6= numeral k
〈proof 〉

lemma numeral-ne-infinity [simp]: numeral k 6= (∞::enat)
〈proof 〉

lemma eSuc-numeral [simp]: eSuc (numeral k) = numeral (k + Num.One)
〈proof 〉

36.6 Subtraction
instantiation enat :: minus
begin

definition diff-enat-def :
a − b = (case a of (enat x) ⇒ (case b of (enat y) ⇒ enat (x − y) | ∞ ⇒ 0)

| ∞ ⇒ ∞)

THEORY “Extended-Nat” 267

instance 〈proof 〉

end

lemma idiff-enat-enat [simp, code]: enat a − enat b = enat (a − b)
〈proof 〉

lemma idiff-infinity [simp, code]: ∞ − n = (∞::enat)
〈proof 〉

lemma idiff-infinity-right [simp, code]: enat a − ∞ = 0
〈proof 〉

lemma idiff-0 [simp]: (0 ::enat) − n = 0
〈proof 〉

lemmas idiff-enat-0 [simp] = idiff-0 [unfolded zero-enat-def]

lemma idiff-0-right [simp]: (n::enat) − 0 = n
〈proof 〉

lemmas idiff-enat-0-right [simp] = idiff-0-right [unfolded zero-enat-def]

lemma idiff-self [simp]: n 6= ∞ =⇒ (n::enat) − n = 0
〈proof 〉

lemma eSuc-minus-eSuc [simp]: eSuc n − eSuc m = n − m
〈proof 〉

lemma eSuc-minus-1 [simp]: eSuc n − 1 = n
〈proof 〉

36.7 Ordering
instantiation enat :: linordered-ab-semigroup-add
begin

definition [nitpick-simp]:
m ≤ n = (case n of enat n1 ⇒ (case m of enat m1 ⇒ m1 ≤ n1 | ∞ ⇒ False)
| ∞ ⇒ True)

definition [nitpick-simp]:
m < n = (case m of enat m1 ⇒ (case n of enat n1 ⇒ m1 < n1 | ∞ ⇒ True)
| ∞ ⇒ False)

lemma enat-ord-simps [simp]:
enat m ≤ enat n ←→ m ≤ n
enat m < enat n ←→ m < n

THEORY “Extended-Nat” 268

q ≤ (∞::enat)
q < (∞::enat) ←→ q 6= ∞
(∞::enat) ≤ q ←→ q = ∞
(∞::enat) < q ←→ False
〈proof 〉

lemma numeral-le-enat-iff [simp]:
shows numeral m ≤ enat n ←→ numeral m ≤ n
〈proof 〉

lemma numeral-less-enat-iff [simp]:
shows numeral m < enat n ←→ numeral m < n
〈proof 〉

lemma enat-ord-code [code]:
enat m ≤ enat n ←→ m ≤ n
enat m < enat n ←→ m < n
q ≤ (∞::enat) ←→ True
enat m < ∞ ←→ True
∞ ≤ enat n ←→ False
(∞::enat) < q ←→ False
〈proof 〉

instance
〈proof 〉

end

instance enat :: dioid
〈proof 〉

instance enat :: {linordered-nonzero-semiring, strict-ordered-comm-monoid-add}
〈proof 〉

lemma add-diff-assoc-enat: z ≤ y =⇒ x + (y − z) = x + y − (z::enat)
〈proof 〉

lemma enat-ord-number [simp]:
(numeral m :: enat) ≤ numeral n ←→ (numeral m :: nat) ≤ numeral n
(numeral m :: enat) < numeral n ←→ (numeral m :: nat) < numeral n
〈proof 〉

lemma infinity-ileE [elim!]: ∞ ≤ enat m =⇒ R
〈proof 〉

lemma infinity-ilessE [elim!]: ∞ < enat m =⇒ R
〈proof 〉

THEORY “Extended-Nat” 269

lemma eSuc-ile-mono [simp]: eSuc n ≤ eSuc m ←→ n ≤ m
〈proof 〉

lemma eSuc-mono [simp]: eSuc n < eSuc m ←→ n < m
〈proof 〉

lemma ile-eSuc [simp]: n ≤ eSuc n
〈proof 〉

lemma not-eSuc-ilei0 [simp]: ¬ eSuc n ≤ 0
〈proof 〉

lemma i0-iless-eSuc [simp]: 0 < eSuc n
〈proof 〉

lemma iless-eSuc0 [simp]: (n < eSuc 0) = (n = 0)
〈proof 〉

lemma ileI1 : m < n =⇒ eSuc m ≤ n
〈proof 〉

lemma Suc-ile-eq: enat (Suc m) ≤ n ←→ enat m < n
〈proof 〉

lemma iless-Suc-eq [simp]: enat m < eSuc n ←→ enat m ≤ n
〈proof 〉

lemma imult-infinity: (0 ::enat) < n =⇒ ∞ ∗ n = ∞
〈proof 〉

lemma imult-infinity-right: (0 ::enat) < n =⇒ n ∗ ∞ = ∞
〈proof 〉

lemma enat-0-less-mult-iff : (0 < (m::enat) ∗ n) = (0 < m ∧ 0 < n)
〈proof 〉

lemma mono-eSuc: mono eSuc
〈proof 〉

lemma min-enat-simps [simp]:
min (enat m) (enat n) = enat (min m n)
min q 0 = 0
min 0 q = 0
min q (∞::enat) = q
min (∞::enat) q = q
〈proof 〉

lemma max-enat-simps [simp]:

THEORY “Extended-Nat” 270

max (enat m) (enat n) = enat (max m n)
max q 0 = q
max 0 q = q
max q ∞ = (∞::enat)
max ∞ q = (∞::enat)
〈proof 〉

lemma enat-ile: n ≤ enat m =⇒ ∃ k. n = enat k
〈proof 〉

lemma enat-iless: n < enat m =⇒ ∃ k. n = enat k
〈proof 〉

lemma iadd-le-enat-iff :
x + y ≤ enat n ←→ (∃ y ′ x ′. x = enat x ′ ∧ y = enat y ′ ∧ x ′ + y ′ ≤ n)
〈proof 〉

lemma chain-incr : ∀ i. ∃ j. Y i < Y j =⇒ ∃ j. enat k < Y j
〈proof 〉

lemma eSuc-max: eSuc (max x y) = max (eSuc x) (eSuc y)
〈proof 〉

lemma eSuc-Max:
assumes finite A A 6= {}
shows eSuc (Max A) = Max (eSuc ‘ A)
〈proof 〉

instantiation enat :: {order-bot, order-top}
begin

definition bot-enat :: enat where bot-enat = 0
definition top-enat :: enat where top-enat = ∞

instance
〈proof 〉

end

lemma finite-enat-bounded:
assumes le-fin:

∧
y. y ∈ A =⇒ y ≤ enat n

shows finite A
〈proof 〉

36.8 Cancellation simprocs
lemma add-diff-cancel-enat[simp]: x 6= ∞ =⇒ x + y − x = (y::enat)
〈proof 〉

THEORY “Extended-Nat” 271

lemma enat-add-left-cancel: a + b = a + c ←→ a = (∞::enat) ∨ b = c
〈proof 〉

lemma enat-add-left-cancel-le: a + b ≤ a + c ←→ a = (∞::enat) ∨ b ≤ c
〈proof 〉

lemma enat-add-left-cancel-less: a + b < a + c ←→ a 6= (∞::enat) ∧ b < c
〈proof 〉

lemma plus-eq-infty-iff-enat: (m::enat) + n = ∞ ←→ m=∞ ∨ n=∞
〈proof 〉

〈ML〉

TODO: add regression tests for these simprocs

TODO: add simprocs for combining and cancelling numerals

36.9 Well-ordering
lemma less-enatE :
[[n < enat m;

∧
k. [[n = enat k; k < m]] =⇒ P]] =⇒ P

〈proof 〉

lemma less-infinityE :
[[n < ∞;

∧
k. n = enat k =⇒ P]] =⇒ P

〈proof 〉

lemma enat-less-induct:
assumes

∧
n. ∀m::enat. m < n −→ P m =⇒ P n

shows P n
〈proof 〉

instance enat :: wellorder
〈proof 〉

36.10 Complete Lattice
instantiation enat :: complete-lattice
begin

definition inf-enat :: enat ⇒ enat ⇒ enat where
inf-enat = min

definition sup-enat :: enat ⇒ enat ⇒ enat where
sup-enat = max

definition Inf-enat :: enat set ⇒ enat where
Inf-enat A = (if A = {} then ∞ else (LEAST x . x ∈ A))

THEORY “Liminf-Limsup” 272

definition Sup-enat :: enat set ⇒ enat where
Sup-enat A = (if A = {} then 0 else if finite A then Max A else ∞)

instance
〈proof 〉

end

instance enat :: complete-linorder 〈proof 〉

lemma eSuc-Sup: A 6= {} =⇒ eSuc (Sup A) = Sup (eSuc ‘ A)
〈proof 〉

lemma sup-continuous-eSuc: sup-continuous f =⇒ sup-continuous (λx. eSuc (f x))
〈proof 〉

36.11 Traditional theorem names
lemmas enat-defs = zero-enat-def one-enat-def eSuc-def

plus-enat-def less-eq-enat-def less-enat-def

lemma iadd-is-0 : (m + n = (0 ::enat)) = (m = 0 ∧ n = 0)
〈proof 〉

lemma i0-lb : (0 ::enat) ≤ n
〈proof 〉

lemma ile0-eq: n ≤ (0 ::enat) ←→ n = 0
〈proof 〉

lemma not-iless0 : ¬ n < (0 ::enat)
〈proof 〉

lemma i0-less[simp]: (0 ::enat) < n ←→ n 6= 0
〈proof 〉

lemma imult-is-0 : ((m::enat) ∗ n = 0) = (m = 0 ∨ n = 0)
〈proof 〉

end

37 Liminf and Limsup on conditionally complete
lattices

theory Liminf-Limsup
imports Complex-Main
begin

THEORY “Liminf-Limsup” 273

lemma (in conditionally-complete-linorder) le-cSup-iff :
assumes A 6= {} bdd-above A
shows x ≤ Sup A ←→ (∀ y<x. ∃ a∈A. y < a)
〈proof 〉

lemma (in conditionally-complete-linorder) le-cSUP-iff :
A 6= {} =⇒ bdd-above (f‘A) =⇒ x ≤ Sup (f ‘ A) ←→ (∀ y<x. ∃ i∈A. y < f i)
〈proof 〉

lemma le-cSup-iff-less:
fixes x :: ′a :: {conditionally-complete-linorder , dense-linorder}
shows A 6= {} =⇒ bdd-above (f‘A) =⇒ x ≤ (SUP i∈A. f i) ←→ (∀ y<x. ∃ i∈A.

y ≤ f i)
〈proof 〉

lemma le-Sup-iff-less:
fixes x :: ′a :: {complete-linorder , dense-linorder}
shows x ≤ (SUP i∈A. f i) ←→ (∀ y<x. ∃ i∈A. y ≤ f i) (is ?lhs = ?rhs)
〈proof 〉

lemma (in conditionally-complete-linorder) cInf-le-iff :
assumes A 6= {} bdd-below A
shows Inf A ≤ x ←→ (∀ y>x. ∃ a∈A. y > a)
〈proof 〉

lemma (in conditionally-complete-linorder) cINF-le-iff :
A 6= {} =⇒ bdd-below (f‘A) =⇒ Inf (f ‘ A) ≤ x ←→ (∀ y>x. ∃ i∈A. y > f i)
〈proof 〉

lemma cInf-le-iff-less:
fixes x :: ′a :: {conditionally-complete-linorder , dense-linorder}
shows A 6= {} =⇒ bdd-below (f‘A) =⇒ (INF i∈A. f i) ≤ x ←→ (∀ y>x. ∃ i∈A.

f i ≤ y)
〈proof 〉

lemma Inf-le-iff-less:
fixes x :: ′a :: {complete-linorder , dense-linorder}
shows (INF i∈A. f i) ≤ x ←→ (∀ y>x. ∃ i∈A. f i ≤ y)
〈proof 〉

lemma SUP-pair :
fixes f :: - ⇒ - ⇒ - :: complete-lattice
shows (SUP i ∈ A. SUP j ∈ B. f i j) = (SUP p ∈ A × B. f (fst p) (snd p))
〈proof 〉

lemma INF-pair :
fixes f :: - ⇒ - ⇒ - :: complete-lattice
shows (INF i ∈ A. INF j ∈ B. f i j) = (INF p ∈ A × B. f (fst p) (snd p))
〈proof 〉

THEORY “Liminf-Limsup” 274

lemma INF-Sigma:
fixes f :: - ⇒ - ⇒ - :: complete-lattice
shows (INF i ∈ A. INF j ∈ B i. f i j) = (INF p ∈ Sigma A B. f (fst p) (snd p))
〈proof 〉

37.0.1 Liminf and Limsup
definition Liminf :: ′a filter ⇒ (′a ⇒ ′b) ⇒ ′b :: complete-lattice where

Liminf F f = (SUP P∈{P. eventually P F}. INF x∈{x. P x}. f x)

definition Limsup :: ′a filter ⇒ (′a ⇒ ′b) ⇒ ′b :: complete-lattice where
Limsup F f = (INF P∈{P. eventually P F}. SUP x∈{x. P x}. f x)

abbreviation liminf ≡ Liminf sequentially

abbreviation limsup ≡ Limsup sequentially

lemma Liminf-eqI :
(
∧

P. eventually P F =⇒ Inf (f ‘ (Collect P)) ≤ x) =⇒
(
∧

y. (
∧

P. eventually P F =⇒ Inf (f ‘ (Collect P)) ≤ y) =⇒ x ≤ y) =⇒ Liminf
F f = x
〈proof 〉

lemma Limsup-eqI :
(
∧

P. eventually P F =⇒ x ≤ Sup (f ‘ (Collect P))) =⇒
(
∧

y. (
∧

P. eventually P F =⇒ y ≤ Sup (f ‘ (Collect P))) =⇒ y ≤ x) =⇒
Limsup F f = x
〈proof 〉

lemma liminf-SUP-INF : liminf f = (SUP n. INF m∈{n..}. f m)
〈proof 〉

lemma limsup-INF-SUP: limsup f = (INF n. SUP m∈{n..}. f m)
〈proof 〉

lemma mem-limsup-iff : x ∈ limsup A ←→ (∃ F n in sequentially. x ∈ A n)
〈proof 〉

lemma mem-liminf-iff : x ∈ liminf A ←→ (∀ F n in sequentially. x ∈ A n)
〈proof 〉

lemma Limsup-const:
assumes ntriv: ¬ trivial-limit F
shows Limsup F (λx. c) = c
〈proof 〉

lemma Liminf-const:
assumes ntriv: ¬ trivial-limit F

THEORY “Liminf-Limsup” 275

shows Liminf F (λx. c) = c
〈proof 〉

lemma Liminf-mono:
assumes ev: eventually (λx. f x ≤ g x) F
shows Liminf F f ≤ Liminf F g
〈proof 〉

lemma Liminf-eq:
assumes eventually (λx. f x = g x) F
shows Liminf F f = Liminf F g
〈proof 〉

lemma Limsup-mono:
assumes ev: eventually (λx. f x ≤ g x) F
shows Limsup F f ≤ Limsup F g
〈proof 〉

lemma Limsup-eq:
assumes eventually (λx. f x = g x) net
shows Limsup net f = Limsup net g
〈proof 〉

lemma Liminf-bot[simp]: Liminf bot f = top
〈proof 〉

lemma Limsup-bot[simp]: Limsup bot f = bot
〈proof 〉

lemma Liminf-le-Limsup:
assumes ntriv: ¬ trivial-limit F
shows Liminf F f ≤ Limsup F f
〈proof 〉

lemma Liminf-bounded:
assumes le: eventually (λn. C ≤ X n) F
shows C ≤ Liminf F X
〈proof 〉

lemma Limsup-bounded:
assumes le: eventually (λn. X n ≤ C) F
shows Limsup F X ≤ C
〈proof 〉

lemma le-Limsup:
assumes F : F 6= bot and x: ∀ F x in F . l ≤ f x
shows l ≤ Limsup F f
〈proof 〉

THEORY “Liminf-Limsup” 276

lemma Liminf-le:
assumes F : F 6= bot and x: ∀ F x in F . f x ≤ l
shows Liminf F f ≤ l
〈proof 〉

lemma le-Liminf-iff :
fixes X :: - ⇒ - :: complete-linorder
shows C ≤ Liminf F X ←→ (∀ y<C . eventually (λx. y < X x) F)
〈proof 〉

lemma Limsup-le-iff :
fixes X :: - ⇒ - :: complete-linorder
shows C ≥ Limsup F X ←→ (∀ y>C . eventually (λx. y > X x) F)
〈proof 〉

lemma less-LiminfD:
y < Liminf F (f :: - ⇒ ′a :: complete-linorder) =⇒ eventually (λx. f x > y) F
〈proof 〉

lemma Limsup-lessD:
y > Limsup F (f :: - ⇒ ′a :: complete-linorder) =⇒ eventually (λx. f x < y) F
〈proof 〉

lemma lim-imp-Liminf :
fixes f :: ′a ⇒ - :: {complete-linorder ,linorder-topology}
assumes ntriv: ¬ trivial-limit F
assumes lim: (f −−−→ f0) F
shows Liminf F f = f0
〈proof 〉

lemma lim-imp-Limsup:
fixes f :: ′a ⇒ - :: {complete-linorder ,linorder-topology}
assumes ntriv: ¬ trivial-limit F
assumes lim: (f −−−→ f0) F
shows Limsup F f = f0
〈proof 〉

lemma Liminf-eq-Limsup:
fixes f0 :: ′a :: {complete-linorder ,linorder-topology}
assumes ntriv: ¬ trivial-limit F

and lim: Liminf F f = f0 Limsup F f = f0
shows (f −−−→ f0) F
〈proof 〉

lemma tendsto-iff-Liminf-eq-Limsup:
fixes f0 :: ′a :: {complete-linorder ,linorder-topology}
shows ¬ trivial-limit F =⇒ (f −−−→ f0) F ←→ (Liminf F f = f0 ∧ Limsup F f

= f0)
〈proof 〉

THEORY “Liminf-Limsup” 277

lemma liminf-subseq-mono:
fixes X :: nat ⇒ ′a :: complete-linorder
assumes strict-mono r
shows liminf X ≤ liminf (X ◦ r)
〈proof 〉

lemma limsup-subseq-mono:
fixes X :: nat ⇒ ′a :: complete-linorder
assumes strict-mono r
shows limsup (X ◦ r) ≤ limsup X
〈proof 〉

lemma continuous-on-imp-continuous-within:
continuous-on s f =⇒ t ⊆ s =⇒ x ∈ s =⇒ continuous (at x within t) f
〈proof 〉

lemma Liminf-compose-continuous-mono:
fixes f :: ′a::{complete-linorder , linorder-topology} ⇒ ′b::{complete-linorder , linorder-topology}
assumes c: continuous-on UNIV f and am: mono f and F : F 6= bot
shows Liminf F (λn. f (g n)) = f (Liminf F g)
〈proof 〉

lemma Limsup-compose-continuous-mono:
fixes f :: ′a::{complete-linorder , linorder-topology} ⇒ ′b::{complete-linorder , linorder-topology}
assumes c: continuous-on UNIV f and am: mono f and F : F 6= bot
shows Limsup F (λn. f (g n)) = f (Limsup F g)
〈proof 〉

lemma Liminf-compose-continuous-antimono:
fixes f :: ′a::{complete-linorder ,linorder-topology} ⇒ ′b::{complete-linorder ,linorder-topology}
assumes c: continuous-on UNIV f

and am: antimono f
and F : F 6= bot

shows Liminf F (λn. f (g n)) = f (Limsup F g)
〈proof 〉

lemma Limsup-compose-continuous-antimono:
fixes f :: ′a::{complete-linorder , linorder-topology} ⇒ ′b::{complete-linorder , linorder-topology}
assumes c: continuous-on UNIV f and am: antimono f and F : F 6= bot
shows Limsup F (λn. f (g n)) = f (Liminf F g)
〈proof 〉

lemma Liminf-filtermap-le: Liminf (filtermap f F) g ≤ Liminf F (λx. g (f x))
〈proof 〉

lemma Limsup-filtermap-ge: Limsup (filtermap f F) g ≥ Limsup F (λx. g (f x))
〈proof 〉

THEORY “Liminf-Limsup” 278

lemma Liminf-least: (
∧

P. eventually P F =⇒ (INF x∈Collect P. f x) ≤ x) =⇒
Liminf F f ≤ x
〈proof 〉

lemma Limsup-greatest: (
∧

P. eventually P F =⇒ x ≤ (SUP x∈Collect P. f x))
=⇒ Limsup F f ≥ x
〈proof 〉

lemma Liminf-filtermap-ge: inj f =⇒ Liminf (filtermap f F) g ≥ Liminf F (λx.
g (f x))
〈proof 〉

lemma Limsup-filtermap-le: inj f =⇒ Limsup (filtermap f F) g ≤ Limsup F (λx.
g (f x))
〈proof 〉

lemma Liminf-filtermap-eq: inj f =⇒ Liminf (filtermap f F) g = Liminf F (λx.
g (f x))
〈proof 〉

lemma Limsup-filtermap-eq: inj f =⇒ Limsup (filtermap f F) g = Limsup F (λx.
g (f x))
〈proof 〉

37.1 More Limits
lemma convergent-limsup-cl:

fixes X :: nat ⇒ ′a::{complete-linorder ,linorder-topology}
shows convergent X =⇒ limsup X = lim X
〈proof 〉

lemma convergent-liminf-cl:
fixes X :: nat ⇒ ′a::{complete-linorder ,linorder-topology}
shows convergent X =⇒ liminf X = lim X
〈proof 〉

lemma lim-increasing-cl:
assumes

∧
n m. n ≥ m =⇒ f n ≥ f m

obtains l where f −−−−→ (l:: ′a::{complete-linorder ,linorder-topology})
〈proof 〉

lemma lim-decreasing-cl:
assumes

∧
n m. n ≥ m =⇒ f n ≤ f m

obtains l where f −−−−→ (l:: ′a::{complete-linorder ,linorder-topology})
〈proof 〉

lemma compact-complete-linorder :
fixes X :: nat ⇒ ′a::{complete-linorder ,linorder-topology}
shows ∃ l r . strict-mono r ∧ (X ◦ r) −−−−→ l

THEORY “Extended-Real” 279

〈proof 〉

lemma tendsto-Limsup:
fixes f :: - ⇒ ′a :: {complete-linorder ,linorder-topology}
shows F 6= bot =⇒ Limsup F f = Liminf F f =⇒ (f −−−→ Limsup F f) F
〈proof 〉

lemma tendsto-Liminf :
fixes f :: - ⇒ ′a :: {complete-linorder ,linorder-topology}
shows F 6= bot =⇒ Limsup F f = Liminf F f =⇒ (f −−−→ Liminf F f) F
〈proof 〉

end

38 Extended real number line
theory Extended-Real
imports Complex-Main Extended-Nat Liminf-Limsup
begin

This should be part of HOL−Library.Extended-Nat or HOL−Library.Order-Continuity,
but then the AFP-entry Jinja-Thread fails, as it does overload certain named
from Complex-Main.
lemma incseq-sumI2 :

fixes f :: ′i ⇒ nat ⇒ ′a::ordered-comm-monoid-add
shows (

∧
n. n ∈ A =⇒ mono (f n)) =⇒ mono (λi.

∑
n∈A. f n i)

〈proof 〉

lemma incseq-sumI :
fixes f :: nat ⇒ ′a::ordered-comm-monoid-add
assumes

∧
i. 0 ≤ f i

shows incseq (λi. sum f {..< i})
〈proof 〉

lemma continuous-at-left-imp-sup-continuous:
fixes f :: ′a::{complete-linorder , linorder-topology} ⇒ ′b::{complete-linorder , linorder-topology}
assumes mono f

∧
x. continuous (at-left x) f

shows sup-continuous f
〈proof 〉

lemma sup-continuous-at-left:
fixes f :: ′a::{complete-linorder , linorder-topology, first-countable-topology} ⇒

′b::{complete-linorder , linorder-topology}
assumes f : sup-continuous f
shows continuous (at-left x) f
〈proof 〉

lemma sup-continuous-iff-at-left:
fixes f :: ′a::{complete-linorder , linorder-topology, first-countable-topology} ⇒

THEORY “Extended-Real” 280

′b::{complete-linorder , linorder-topology}
shows sup-continuous f ←→ (∀ x. continuous (at-left x) f) ∧ mono f
〈proof 〉

lemma continuous-at-right-imp-inf-continuous:
fixes f :: ′a::{complete-linorder , linorder-topology} ⇒ ′b::{complete-linorder , linorder-topology}
assumes mono f

∧
x. continuous (at-right x) f

shows inf-continuous f
〈proof 〉

lemma inf-continuous-at-right:
fixes f :: ′a::{complete-linorder , linorder-topology, first-countable-topology} ⇒

′b::{complete-linorder , linorder-topology}
assumes f : inf-continuous f
shows continuous (at-right x) f
〈proof 〉

lemma inf-continuous-iff-at-right:
fixes f :: ′a::{complete-linorder , linorder-topology, first-countable-topology} ⇒

′b::{complete-linorder , linorder-topology}
shows inf-continuous f ←→ (∀ x. continuous (at-right x) f) ∧ mono f
〈proof 〉

instantiation enat :: linorder-topology
begin

definition open-enat :: enat set ⇒ bool where
open-enat = generate-topology (range lessThan ∪ range greaterThan)

instance
〈proof 〉

end

lemma open-enat: open {enat n}
〈proof 〉

lemma open-enat-iff :
fixes A :: enat set
shows open A ←→ (∞ ∈ A −→ (∃n::nat. {n <..} ⊆ A))
〈proof 〉

lemma nhds-enat: nhds x = (if x =∞ then INF i. principal {enat i..} else principal
{x})
〈proof 〉

instance enat :: topological-comm-monoid-add
〈proof 〉

For more lemmas about the extended real numbers see ~~/src/HOL/

THEORY “Extended-Real” 281

Analysis/Extended_Real_Limits.thy.

38.1 Definition and basic properties
datatype ereal = ereal real | PInfty | MInfty

instantiation ereal :: uminus
begin

fun uminus-ereal where
− (ereal r) = ereal (− r)
| − PInfty = MInfty
| − MInfty = PInfty

instance 〈proof 〉

end

instantiation ereal :: infinity
begin

definition (∞::ereal) = PInfty
instance 〈proof 〉

end

declare [[coercion ereal :: real ⇒ ereal]]

lemma ereal-uminus-uminus[simp]:
fixes a :: ereal
shows − (− a) = a
〈proof 〉

lemma
shows PInfty-eq-infinity[simp]: PInfty = ∞

and MInfty-eq-minfinity[simp]: MInfty = −∞
and MInfty-neq-PInfty[simp]: ∞ 6= − (∞::ereal) −∞ 6= (∞::ereal)
and MInfty-neq-ereal[simp]: ereal r 6= −∞ −∞ 6= ereal r
and PInfty-neq-ereal[simp]: ereal r 6= ∞ ∞ 6= ereal r
and PInfty-cases[simp]: (case ∞ of ereal r ⇒ f r | PInfty ⇒ y | MInfty ⇒ z)

= y
and MInfty-cases[simp]: (case −∞ of ereal r ⇒ f r | PInfty ⇒ y | MInfty ⇒

z) = z
〈proof 〉

declare
PInfty-eq-infinity[code-post]
MInfty-eq-minfinity[code-post]

THEORY “Extended-Real” 282

lemma [code-unfold]:
∞ = PInfty
− PInfty = MInfty
〈proof 〉

lemma inj-ereal[simp]: inj-on ereal A
〈proof 〉

lemma ereal-cases[cases type: ereal]:
obtains (real) r where x = ereal r
| (PInf) x = ∞
| (MInf) x = −∞
〈proof 〉

lemmas ereal2-cases = ereal-cases[case-product ereal-cases]
lemmas ereal3-cases = ereal2-cases[case-product ereal-cases]

lemma ereal-all-split:
∧

P. (∀ x::ereal. P x) ←→ P ∞ ∧ (∀ x. P (ereal x)) ∧ P
(−∞)
〈proof 〉

lemma ereal-ex-split:
∧

P. (∃ x::ereal. P x) ←→ P ∞ ∨ (∃ x. P (ereal x)) ∨ P
(−∞)
〈proof 〉

lemma ereal-uminus-eq-iff [simp]:
fixes a b :: ereal
shows −a = −b ←→ a = b
〈proof 〉

function real-of-ereal :: ereal ⇒ real where
real-of-ereal (ereal r) = r
| real-of-ereal ∞ = 0
| real-of-ereal (−∞) = 0
〈proof 〉

termination 〈proof 〉

lemma real-of-ereal[simp]:
real-of-ereal (− x :: ereal) = − (real-of-ereal x)
〈proof 〉

lemma range-ereal[simp]: range ereal = UNIV − {∞, −∞}
〈proof 〉

lemma ereal-range-uminus[simp]: range uminus = (UNIV ::ereal set)
〈proof 〉

instantiation ereal :: abs
begin

THEORY “Extended-Real” 283

function abs-ereal where
|ereal r | = ereal |r |
| |−∞| = (∞::ereal)
| |∞| = (∞::ereal)
〈proof 〉
termination 〈proof 〉

instance 〈proof 〉

end

lemma abs-eq-infinity-cases[elim!]:
fixes x :: ereal
assumes |x| = ∞
obtains x = ∞ | x = −∞
〈proof 〉

lemma abs-neq-infinity-cases[elim!]:
fixes x :: ereal
assumes |x| 6= ∞
obtains r where x = ereal r
〈proof 〉

lemma abs-ereal-uminus[simp]:
fixes x :: ereal
shows |− x| = |x|
〈proof 〉

lemma ereal-infinity-cases:
fixes a :: ereal
shows a 6= ∞ =⇒ a 6= −∞ =⇒ |a| 6= ∞
〈proof 〉

38.1.1 Addition
instantiation ereal :: {one,comm-monoid-add,zero-neq-one}
begin

definition 0 = ereal 0
definition 1 = ereal 1

function plus-ereal where
ereal r + ereal p = ereal (r + p)
| ∞ + a = (∞::ereal)
| a + ∞ = (∞::ereal)
| ereal r + −∞ = −∞
| −∞ + ereal p = −(∞::ereal)
| −∞ + −∞ = −(∞::ereal)

THEORY “Extended-Real” 284

〈proof 〉
termination 〈proof 〉

lemma Infty-neq-0 [simp]:
(∞::ereal) 6= 0 0 6= (∞::ereal)
−(∞::ereal) 6= 0 0 6= −(∞::ereal)
〈proof 〉

lemma ereal-eq-0 [simp]:
ereal r = 0 ←→ r = 0
0 = ereal r ←→ r = 0
〈proof 〉

lemma ereal-eq-1 [simp]:
ereal r = 1 ←→ r = 1
1 = ereal r ←→ r = 1
〈proof 〉

instance
〈proof 〉

end

lemma ereal-0-plus [simp]: ereal 0 + x = x
and plus-ereal-0 [simp]: x + ereal 0 = x
〈proof 〉

instance ereal :: numeral 〈proof 〉

lemma real-of-ereal-0 [simp]: real-of-ereal (0 ::ereal) = 0
〈proof 〉

lemma abs-ereal-zero[simp]: |0 | = (0 ::ereal)
〈proof 〉

lemma ereal-uminus-zero[simp]: − 0 = (0 ::ereal)
〈proof 〉

lemma ereal-uminus-zero-iff [simp]:
fixes a :: ereal
shows −a = 0 ←→ a = 0
〈proof 〉

lemma ereal-plus-eq-PInfty[simp]:
fixes a b :: ereal
shows a + b = ∞ ←→ a = ∞ ∨ b = ∞
〈proof 〉

lemma ereal-plus-eq-MInfty[simp]:

THEORY “Extended-Real” 285

fixes a b :: ereal
shows a + b = −∞ ←→ (a = −∞ ∨ b = −∞) ∧ a 6= ∞ ∧ b 6= ∞
〈proof 〉

lemma ereal-add-cancel-left:
fixes a b :: ereal
assumes a 6= −∞
shows a + b = a + c ←→ a = ∞ ∨ b = c
〈proof 〉

lemma ereal-add-cancel-right:
fixes a b :: ereal
assumes a 6= −∞
shows b + a = c + a ←→ a = ∞ ∨ b = c
〈proof 〉

lemma ereal-real: ereal (real-of-ereal x) = (if |x| = ∞ then 0 else x)
〈proof 〉

lemma real-of-ereal-add:
fixes a b :: ereal
shows real-of-ereal (a + b) =

(if (|a| = ∞) ∧ (|b| = ∞) ∨ (|a| 6= ∞) ∧ (|b| 6= ∞) then real-of-ereal a +
real-of-ereal b else 0)
〈proof 〉

38.1.2 Linear order on ereal
instantiation ereal :: linorder
begin

function less-ereal
where

ereal x < ereal y ←→ x < y
| (∞::ereal) < a ←→ False
| a < −(∞::ereal) ←→ False
| ereal x < ∞ ←→ True
| −∞ < ereal r ←→ True
| −∞ < (∞::ereal) ←→ True
〈proof 〉
termination 〈proof 〉

definition x ≤ (y::ereal) ←→ x < y ∨ x = y

lemma ereal-infty-less[simp]:
fixes x :: ereal
shows x < ∞ ←→ (x 6= ∞)
−∞ < x ←→ (x 6= −∞)

〈proof 〉

THEORY “Extended-Real” 286

lemma ereal-infty-less-eq[simp]:
fixes x :: ereal
shows ∞ ≤ x ←→ x = ∞

and x ≤ −∞ ←→ x = −∞
〈proof 〉

lemma ereal-less[simp]:
ereal r < 0 ←→ (r < 0)
0 < ereal r ←→ (0 < r)
ereal r < 1 ←→ (r < 1)
1 < ereal r ←→ (1 < r)
0 < (∞::ereal)
−(∞::ereal) < 0
〈proof 〉

lemma ereal-less-eq[simp]:
x ≤ (∞::ereal)
−(∞::ereal) ≤ x
ereal r ≤ ereal p ←→ r ≤ p
ereal r ≤ 0 ←→ r ≤ 0
0 ≤ ereal r ←→ 0 ≤ r
ereal r ≤ 1 ←→ r ≤ 1
1 ≤ ereal r ←→ 1 ≤ r
〈proof 〉

lemma ereal-infty-less-eq2 :
a ≤ b =⇒ a = ∞ =⇒ b = (∞::ereal)
a ≤ b =⇒ b = −∞ =⇒ a = −(∞::ereal)
〈proof 〉

instance
〈proof 〉

end

lemma ereal-dense2 : x < y =⇒ ∃ z. x < ereal z ∧ ereal z < y
〈proof 〉

instance ereal :: dense-linorder
〈proof 〉

instance ereal :: ordered-comm-monoid-add
〈proof 〉

lemma ereal-one-not-less-zero-ereal[simp]: ¬ 1 < (0 ::ereal)
〈proof 〉

lemma real-of-ereal-positive-mono:

THEORY “Extended-Real” 287

fixes x y :: ereal
shows 0 ≤ x =⇒ x ≤ y =⇒ y 6= ∞ =⇒ real-of-ereal x ≤ real-of-ereal y
〈proof 〉

lemma ereal-MInfty-lessI [intro, simp]:
fixes a :: ereal
shows a 6= −∞ =⇒ −∞ < a
〈proof 〉

lemma ereal-less-PInfty[intro, simp]:
fixes a :: ereal
shows a 6= ∞ =⇒ a < ∞
〈proof 〉

lemma ereal-less-ereal-Ex:
fixes a b :: ereal
shows x < ereal r ←→ x = −∞ ∨ (∃ p. p < r ∧ x = ereal p)
〈proof 〉

lemma less-PInf-Ex-of-nat: x 6= ∞ ←→ (∃n::nat. x < ereal (real n))
〈proof 〉

lemma ereal-add-strict-mono2 :
fixes a b c d :: ereal
assumes a < b and c < d
shows a + c < b + d
〈proof 〉

lemma ereal-minus-le-minus[simp]:
fixes a b :: ereal
shows − a ≤ − b ←→ b ≤ a
〈proof 〉

lemma ereal-minus-less-minus[simp]:
fixes a b :: ereal
shows − a < − b ←→ b < a
〈proof 〉

lemma ereal-le-real-iff :
x ≤ real-of-ereal y ←→ (|y| 6= ∞ −→ ereal x ≤ y) ∧ (|y| = ∞ −→ x ≤ 0)
〈proof 〉

lemma real-le-ereal-iff :
real-of-ereal y ≤ x ←→ (|y| 6= ∞ −→ y ≤ ereal x) ∧ (|y| = ∞ −→ 0 ≤ x)
〈proof 〉

lemma ereal-less-real-iff :
x < real-of-ereal y ←→ (|y| 6= ∞ −→ ereal x < y) ∧ (|y| = ∞ −→ x < 0)
〈proof 〉

THEORY “Extended-Real” 288

lemma real-less-ereal-iff :
real-of-ereal y < x ←→ (|y| 6= ∞ −→ y < ereal x) ∧ (|y| = ∞ −→ 0 < x)
〈proof 〉

To help with inferences like [[a < ereal x ; x < y]] =⇒ a < ereal y, where
x and y are real.
lemma le-ereal-le: a ≤ ereal x =⇒ x ≤ y =⇒ a ≤ ereal y
〈proof 〉

lemma le-ereal-less: a ≤ ereal x =⇒ x < y =⇒ a < ereal y
〈proof 〉

lemma less-ereal-le: a < ereal x =⇒ x ≤ y =⇒ a < ereal y
〈proof 〉

lemma ereal-le-le: ereal y ≤ a =⇒ x ≤ y =⇒ ereal x ≤ a
〈proof 〉

lemma ereal-le-less: ereal y ≤ a =⇒ x < y =⇒ ereal x < a
〈proof 〉

lemma ereal-less-le: ereal y < a =⇒ x ≤ y =⇒ ereal x < a
〈proof 〉

lemma real-of-ereal-pos:
fixes x :: ereal
shows 0 ≤ x =⇒ 0 ≤ real-of-ereal x
〈proof 〉

lemmas real-of-ereal-ord-simps =
ereal-le-real-iff real-le-ereal-iff ereal-less-real-iff real-less-ereal-iff

lemma abs-ereal-ge0 [simp]: 0 ≤ x =⇒ |x :: ereal| = x
〈proof 〉

lemma abs-ereal-less0 [simp]: x < 0 =⇒ |x :: ereal| = −x
〈proof 〉

lemma abs-ereal-pos[simp]: 0 ≤ |x :: ereal|
〈proof 〉

lemma ereal-abs-leI :
fixes x y :: ereal
shows [[x ≤ y; −x ≤ y]] =⇒ |x| ≤ y
〈proof 〉

lemma ereal-abs-add:
fixes a b::ereal

THEORY “Extended-Real” 289

shows abs(a+b) ≤ abs a + abs b
〈proof 〉

lemma real-of-ereal-le-0 [simp]: real-of-ereal (x :: ereal) ≤ 0 ←→ x ≤ 0 ∨ x = ∞
〈proof 〉

lemma abs-real-of-ereal[simp]: |real-of-ereal (x :: ereal)| = real-of-ereal |x|
〈proof 〉

lemma zero-less-real-of-ereal:
fixes x :: ereal
shows 0 < real-of-ereal x ←→ 0 < x ∧ x 6= ∞
〈proof 〉

lemma ereal-0-le-uminus-iff [simp]:
fixes a :: ereal
shows 0 ≤ − a ←→ a ≤ 0
〈proof 〉

lemma ereal-uminus-le-0-iff [simp]:
fixes a :: ereal
shows − a ≤ 0 ←→ 0 ≤ a
〈proof 〉

lemma ereal-add-strict-mono:
fixes a b c d :: ereal
assumes a ≤ b

and 0 ≤ a
and a 6= ∞
and c < d

shows a + c < b + d
〈proof 〉

lemma ereal-less-add:
fixes a b c :: ereal
shows |a| 6= ∞ =⇒ c < b =⇒ a + c < a + b
〈proof 〉

lemma ereal-uminus-eq-reorder : − a = b ←→ a = (−b::ereal)
〈proof 〉

lemma ereal-uminus-less-reorder : − a < b ←→ −b < a
and ereal-less-uminus-reorder : a < − b ←→ b < − a
and ereal-uminus-le-reorder : − a ≤ b ←→ −b ≤ a for a::ereal
〈proof 〉

lemmas ereal-uminus-reorder =
ereal-uminus-eq-reorder ereal-uminus-less-reorder ereal-uminus-le-reorder

THEORY “Extended-Real” 290

lemma ereal-bot:
fixes x :: ereal
assumes

∧
B. x ≤ ereal B

shows x = −∞
〈proof 〉

lemma ereal-top:
fixes x :: ereal
assumes

∧
B. x ≥ ereal B

shows x = ∞
〈proof 〉

lemma
shows ereal-max[simp]: ereal (max x y) = max (ereal x) (ereal y)

and ereal-min[simp]: ereal (min x y) = min (ereal x) (ereal y)
〈proof 〉

lemma ereal-max-0 : max 0 (ereal r) = ereal (max 0 r)
〈proof 〉

lemma
fixes f :: nat ⇒ ereal
shows ereal-incseq-uminus[simp]: incseq (λx. − f x) ←→ decseq f

and ereal-decseq-uminus[simp]: decseq (λx. − f x) ←→ incseq f
〈proof 〉

lemma incseq-ereal: incseq f =⇒ incseq (λx. ereal (f x))
〈proof 〉

lemma sum-ereal[simp]: (
∑

x∈A. ereal (f x)) = ereal (
∑

x∈A. f x)
〈proof 〉

lemma sum-list-ereal [simp]: sum-list (map (λx. ereal (f x)) xs) = ereal (sum-list
(map f xs))
〈proof 〉

lemma sum-Pinfty:
fixes f :: ′a ⇒ ereal
shows (

∑
x∈P. f x) = ∞ ←→ finite P ∧ (∃ i∈P. f i = ∞)

〈proof 〉

lemma sum-Inf :
fixes f :: ′a ⇒ ereal
shows |sum f A| = ∞ ←→ finite A ∧ (∃ i∈A. |f i| = ∞)
〈proof 〉

lemma sum-real-of-ereal:
fixes f :: ′i ⇒ ereal
assumes

∧
x. x ∈ S =⇒ |f x| 6= ∞

THEORY “Extended-Real” 291

shows (
∑

x∈S . real-of-ereal (f x)) = real-of-ereal (sum f S)
〈proof 〉

38.1.3 Multiplication
instantiation ereal :: {comm-monoid-mult,sgn}
begin

function sgn-ereal :: ereal ⇒ ereal where
sgn (ereal r) = ereal (sgn r)
| sgn (∞::ereal) = 1
| sgn (−∞::ereal) = −1
〈proof 〉
termination 〈proof 〉

function times-ereal where
ereal r ∗ ereal p = ereal (r ∗ p)
| ereal r ∗ ∞ = (if r = 0 then 0 else if r > 0 then ∞ else −∞)
| ∞ ∗ ereal r = (if r = 0 then 0 else if r > 0 then ∞ else −∞)
| ereal r ∗ −∞ = (if r = 0 then 0 else if r > 0 then −∞ else ∞)
| −∞ ∗ ereal r = (if r = 0 then 0 else if r > 0 then −∞ else ∞)
| (∞::ereal) ∗ ∞ = ∞
| −(∞::ereal) ∗ ∞ = −∞
| (∞::ereal) ∗ −∞ = −∞
| −(∞::ereal) ∗ −∞ = ∞
〈proof 〉
termination 〈proof 〉

instance
〈proof 〉

end

lemma [simp]:
shows ereal-1-times: ereal 1 ∗ x = x
and times-ereal-1 : x ∗ ereal 1 = x
〈proof 〉

lemma one-not-le-zero-ereal[simp]: ¬ (1 ≤ (0 ::ereal))
〈proof 〉

lemma real-ereal-1 [simp]: real-of-ereal (1 ::ereal) = 1
〈proof 〉

lemma real-of-ereal-le-1 :
fixes a :: ereal
shows a ≤ 1 =⇒ real-of-ereal a ≤ 1
〈proof 〉

THEORY “Extended-Real” 292

lemma abs-ereal-one[simp]: |1 | = (1 ::ereal)
〈proof 〉

lemma ereal-mult-zero[simp]:
fixes a :: ereal
shows a ∗ 0 = 0
〈proof 〉

lemma ereal-zero-mult[simp]:
fixes a :: ereal
shows 0 ∗ a = 0
〈proof 〉

lemma ereal-m1-less-0 [simp]: −(1 ::ereal) < 0
〈proof 〉

lemma ereal-times[simp]:
1 6= (∞::ereal) (∞::ereal) 6= 1
1 6= −(∞::ereal) −(∞::ereal) 6= 1
〈proof 〉

lemma ereal-plus-1 [simp]:
1 + ereal r = ereal (r + 1)
ereal r + 1 = ereal (r + 1)
1 + −(∞::ereal) = −∞
−(∞::ereal) + 1 = −∞
〈proof 〉

lemma ereal-zero-times[simp]:
fixes a b :: ereal
shows a ∗ b = 0 ←→ a = 0 ∨ b = 0
〈proof 〉

lemma ereal-mult-eq-PInfty[simp]:
a ∗ b = (∞::ereal) ←→
(a = ∞ ∧ b > 0) ∨ (a > 0 ∧ b = ∞) ∨ (a = −∞ ∧ b < 0) ∨ (a < 0 ∧ b =

−∞)
〈proof 〉

lemma ereal-mult-eq-MInfty[simp]:
a ∗ b = −(∞::ereal) ←→
(a = ∞ ∧ b < 0) ∨ (a < 0 ∧ b = ∞) ∨ (a = −∞ ∧ b > 0) ∨ (a > 0 ∧ b =

−∞)
〈proof 〉

lemma ereal-abs-mult: |x ∗ y :: ereal| = |x| ∗ |y|
〈proof 〉

lemma ereal-0-less-1 [simp]: 0 < (1 ::ereal)

THEORY “Extended-Real” 293

〈proof 〉

lemma ereal-mult-minus-left[simp]:
fixes a b :: ereal
shows −a ∗ b = − (a ∗ b)
〈proof 〉

lemma ereal-mult-minus-right[simp]:
fixes a b :: ereal
shows a ∗ −b = − (a ∗ b)
〈proof 〉

lemma ereal-mult-infty[simp]:
a ∗ (∞::ereal) = (if a = 0 then 0 else if 0 < a then ∞ else −∞)
〈proof 〉

lemma ereal-infty-mult[simp]:
(∞::ereal) ∗ a = (if a = 0 then 0 else if 0 < a then ∞ else −∞)
〈proof 〉

lemma ereal-mult-strict-right-mono:
assumes a < b

and 0 < c
and c < (∞::ereal)

shows a ∗ c < b ∗ c
〈proof 〉

lemma ereal-mult-strict-left-mono:
a < b =⇒ 0 < c =⇒ c < (∞::ereal) =⇒ c ∗ a < c ∗ b
〈proof 〉

lemma ereal-mult-right-mono:
fixes a b c :: ereal
assumes a ≤ b 0 ≤ c
shows a ∗ c ≤ b ∗ c
〈proof 〉

lemma ereal-mult-left-mono:
fixes a b c :: ereal
shows a ≤ b =⇒ 0 ≤ c =⇒ c ∗ a ≤ c ∗ b
〈proof 〉

lemma ereal-mult-mono:
fixes a b c d::ereal
assumes b ≥ 0 c ≥ 0 a ≤ b c ≤ d
shows a ∗ c ≤ b ∗ d
〈proof 〉

lemma ereal-mult-mono ′:

THEORY “Extended-Real” 294

fixes a b c d::ereal
assumes a ≥ 0 c ≥ 0 a ≤ b c ≤ d
shows a ∗ c ≤ b ∗ d
〈proof 〉

lemma ereal-mult-mono-strict:
fixes a b c d::ereal
assumes b > 0 c > 0 a < b c < d
shows a ∗ c < b ∗ d
〈proof 〉

lemma ereal-mult-mono-strict ′:
fixes a b c d::ereal
assumes a > 0 c > 0 a < b c < d
shows a ∗ c < b ∗ d
〈proof 〉

lemma zero-less-one-ereal[simp]: 0 ≤ (1 ::ereal)
〈proof 〉

lemma ereal-0-le-mult[simp]: 0 ≤ a =⇒ 0 ≤ b =⇒ 0 ≤ a ∗ (b :: ereal)
〈proof 〉

lemma ereal-right-distrib:
fixes r a b :: ereal
shows 0 ≤ a =⇒ 0 ≤ b =⇒ r ∗ (a + b) = r ∗ a + r ∗ b
〈proof 〉

lemma ereal-left-distrib:
fixes r a b :: ereal
shows 0 ≤ a =⇒ 0 ≤ b =⇒ (a + b) ∗ r = a ∗ r + b ∗ r
〈proof 〉

lemma ereal-mult-le-0-iff :
fixes a b :: ereal
shows a ∗ b ≤ 0 ←→ (0 ≤ a ∧ b ≤ 0) ∨ (a ≤ 0 ∧ 0 ≤ b)
〈proof 〉

lemma ereal-zero-le-0-iff :
fixes a b :: ereal
shows 0 ≤ a ∗ b ←→ (0 ≤ a ∧ 0 ≤ b) ∨ (a ≤ 0 ∧ b ≤ 0)
〈proof 〉

lemma ereal-mult-less-0-iff :
fixes a b :: ereal
shows a ∗ b < 0 ←→ (0 < a ∧ b < 0) ∨ (a < 0 ∧ 0 < b)
〈proof 〉

lemma ereal-zero-less-0-iff :

THEORY “Extended-Real” 295

fixes a b :: ereal
shows 0 < a ∗ b ←→ (0 < a ∧ 0 < b) ∨ (a < 0 ∧ b < 0)
〈proof 〉

lemma ereal-left-mult-cong:
fixes a b c :: ereal
shows c = d =⇒ (d 6= 0 =⇒ a = b) =⇒ a ∗ c = b ∗ d
〈proof 〉

lemma ereal-right-mult-cong:
fixes a b c :: ereal
shows c = d =⇒ (d 6= 0 =⇒ a = b) =⇒ c ∗ a = d ∗ b
〈proof 〉

lemma ereal-distrib:
fixes a b c :: ereal
assumes a 6= ∞ ∨ b 6= −∞

and a 6= −∞ ∨ b 6= ∞
and |c| 6= ∞

shows (a + b) ∗ c = a ∗ c + b ∗ c
〈proof 〉

lemma numeral-eq-ereal [simp]: numeral w = ereal (numeral w)
〈proof 〉

lemma m1-ereal-less-iff [simp]:
((−1 ::ereal) < numeral a) ←→ ((−1 ::real) < numeral a)
〈proof 〉

lemma m1-ereal-le-iff [simp]:
((−1 ::ereal) ≤ numeral a) ←→ ((−1 ::real) ≤ numeral a)
〈proof 〉

lemma m1-ereal-eq-iff [simp]:
((−1 ::ereal) = numeral a) ←→ ((−1 ::real) = numeral a)
〈proof 〉

lemma ereal-less-m1-iff [simp]:
(numeral a < (−1 ::ereal)) ←→ (numeral a < (−1 ::real))
〈proof 〉

lemma ereal-le-m1-iff [simp]:
(numeral a ≤ (−1 ::ereal)) ←→ (numeral a ≤ (−1 ::real))
〈proof 〉

lemma ereal-eq-m1-iff [simp]:
(numeral a = (−1 ::ereal)) ←→ (numeral a = (−1 ::real))
〈proof 〉

THEORY “Extended-Real” 296

lemma distrib-left-ereal-nn:
c ≥ 0 =⇒ (x + y) ∗ ereal c = x ∗ ereal c + y ∗ ereal c
〈proof 〉

lemma sum-ereal-right-distrib:
fixes f :: ′a ⇒ ereal
shows (

∧
i. i ∈ A =⇒ 0 ≤ f i) =⇒ r ∗ sum f A = (

∑
n∈A. r ∗ f n)

〈proof 〉

lemma sum-ereal-left-distrib:
(
∧

i. i ∈ A =⇒ 0 ≤ f i) =⇒ sum f A ∗ r = (
∑

n∈A. f n ∗ r :: ereal)
〈proof 〉

lemma sum-distrib-right-ereal:
c ≥ 0 =⇒ sum f A ∗ ereal c = (

∑
x∈A. f x ∗ c :: ereal)

〈proof 〉

lemma ereal-le-epsilon:
fixes x y :: ereal
assumes

∧
e. 0 < e =⇒ x ≤ y + e

shows x ≤ y
〈proof 〉

lemma ereal-le-epsilon2 :
fixes x y :: ereal
assumes

∧
e::real. 0 < e =⇒ x ≤ y + ereal e

shows x ≤ y
〈proof 〉

lemma ereal-le-real:
fixes x y :: ereal
assumes

∧
z. x ≤ ereal z =⇒ y ≤ ereal z

shows y ≤ x
〈proof 〉

lemma prod-ereal-0 :
fixes f :: ′a ⇒ ereal
shows (

∏
i∈A. f i) = 0 ←→ finite A ∧ (∃ i∈A. f i = 0)

〈proof 〉

lemma prod-ereal-pos:
fixes f :: ′a ⇒ ereal
assumes

∧
i. i ∈ I =⇒ 0 ≤ f i

shows 0 ≤ (
∏

i∈I . f i)
〈proof 〉

lemma prod-PInf :
fixes f :: ′a ⇒ ereal
assumes

∧
i. i ∈ I =⇒ 0 ≤ f i

THEORY “Extended-Real” 297

shows (
∏

i∈I . f i) = ∞ ←→ finite I ∧ (∃ i∈I . f i = ∞) ∧ (∀ i∈I . f i 6= 0)
〈proof 〉

lemma prod-ereal: (
∏

i∈A. ereal (f i)) = ereal (prod f A)
〈proof 〉

38.1.4 Power
lemma ereal-power [simp]: (ereal x) ^ n = ereal (x^n)
〈proof 〉

lemma ereal-power-PInf [simp]: (∞::ereal) ^ n = (if n = 0 then 1 else ∞)
〈proof 〉

lemma ereal-power-uminus[simp]:
fixes x :: ereal
shows (− x) ^ n = (if even n then x ^ n else − (x^n))
〈proof 〉

lemma ereal-power-numeral[simp]:
(numeral num :: ereal) ^ n = ereal (numeral num ^ n)
〈proof 〉

lemma zero-le-power-ereal[simp]:
fixes a :: ereal
assumes 0 ≤ a
shows 0 ≤ a ^ n
〈proof 〉

38.1.5 Subtraction
lemma ereal-minus-minus-image[simp]:

fixes S :: ereal set
shows uminus ‘ uminus ‘ S = S
〈proof 〉

lemma ereal-uminus-lessThan[simp]:
fixes a :: ereal
shows uminus ‘ {..<a} = {−a<..}
〈proof 〉

lemma ereal-uminus-greaterThan[simp]: uminus ‘ {(a::ereal)<..} = {..<−a}
〈proof 〉

instantiation ereal :: minus
begin

definition x − y = x + −(y::ereal)
instance 〈proof 〉

THEORY “Extended-Real” 298

end

lemma ereal-minus[simp]:
ereal r − ereal p = ereal (r − p)
−∞ − ereal r = −∞
ereal r −∞ = −∞
(∞::ereal) − x = ∞
−(∞::ereal) −∞ = −∞
x − −y = x + y
x − 0 = x
0 − x = −x
〈proof 〉

lemma ereal-x-minus-x[simp]: x − x = (if |x| = ∞ then ∞ else 0 ::ereal)
〈proof 〉

lemma ereal-eq-minus-iff :
fixes x y z :: ereal
shows x = z − y ←→
(|y| 6= ∞ −→ x + y = z) ∧
(y = −∞ −→ x = ∞) ∧
(y = ∞ −→ z = ∞ −→ x = ∞) ∧
(y = ∞ −→ z 6= ∞ −→ x = −∞)
〈proof 〉

lemma ereal-eq-minus:
fixes x y z :: ereal
shows |y| 6= ∞ =⇒ x = z − y ←→ x + y = z
〈proof 〉

lemma ereal-less-minus-iff :
fixes x y z :: ereal
shows x < z − y ←→
(y = ∞ −→ z = ∞ ∧ x 6= ∞) ∧
(y = −∞ −→ x 6= ∞) ∧
(|y| 6= ∞−→ x + y < z)
〈proof 〉

lemma ereal-less-minus:
fixes x y z :: ereal
shows |y| 6= ∞ =⇒ x < z − y ←→ x + y < z
〈proof 〉

lemma ereal-le-minus-iff :
fixes x y z :: ereal
shows x ≤ z − y ←→ (y = ∞ −→ z 6= ∞ −→ x = −∞) ∧ (|y| 6= ∞ −→ x +

y ≤ z)
〈proof 〉

THEORY “Extended-Real” 299

lemma ereal-le-minus:
fixes x y z :: ereal
shows |y| 6= ∞ =⇒ x ≤ z − y ←→ x + y ≤ z
〈proof 〉

lemma ereal-minus-less-iff :
fixes x y z :: ereal
shows x − y < z ←→ y 6= −∞ ∧ (y = ∞ −→ x 6= ∞ ∧ z 6= −∞) ∧ (y 6= ∞
−→ x < z + y)
〈proof 〉

lemma ereal-minus-less:
fixes x y z :: ereal
shows |y| 6= ∞ =⇒ x − y < z ←→ x < z + y
〈proof 〉

lemma ereal-minus-le-iff :
fixes x y z :: ereal
shows x − y ≤ z ←→
(y = −∞ −→ z = ∞) ∧
(y = ∞ −→ x = ∞ −→ z = ∞) ∧
(|y| 6= ∞ −→ x ≤ z + y)
〈proof 〉

lemma ereal-minus-le:
fixes x y z :: ereal
shows |y| 6= ∞ =⇒ x − y ≤ z ←→ x ≤ z + y
〈proof 〉

lemma ereal-minus-eq-minus-iff :
fixes a b c :: ereal
shows a − b = a − c ←→

b = c ∨ a = ∞ ∨ (a = −∞ ∧ b 6= −∞ ∧ c 6= −∞)
〈proof 〉

lemma ereal-add-le-add-iff :
fixes a b c :: ereal
shows c + a ≤ c + b ←→

a ≤ b ∨ c = ∞ ∨ (c = −∞ ∧ a 6= ∞ ∧ b 6= ∞)
〈proof 〉

lemma ereal-add-le-add-iff2 :
fixes a b c :: ereal
shows a + c ≤ b + c ←→ a ≤ b ∨ c = ∞ ∨ (c = −∞ ∧ a 6= ∞ ∧ b 6= ∞)
〈proof 〉

lemma ereal-mult-le-mult-iff :
fixes a b c :: ereal
shows |c| 6= ∞ =⇒ c ∗ a ≤ c ∗ b ←→ (0 < c −→ a ≤ b) ∧ (c < 0 −→ b ≤ a)

THEORY “Extended-Real” 300

〈proof 〉

lemma ereal-minus-mono:
fixes A B C D :: ereal assumes A ≤ B D ≤ C
shows A − C ≤ B − D
〈proof 〉

lemma ereal-mono-minus-cancel:
fixes a b c :: ereal
shows c − a ≤ c − b =⇒ 0 ≤ c =⇒ c < ∞ =⇒ b ≤ a
〈proof 〉

lemma real-of-ereal-minus:
fixes a b :: ereal
shows real-of-ereal (a − b) = (if |a| = ∞ ∨ |b| = ∞ then 0 else real-of-ereal a
− real-of-ereal b)
〈proof 〉

lemma real-of-ereal-minus ′: |x| =∞←→ |y| =∞ =⇒ real-of-ereal x − real-of-ereal
y = real-of-ereal (x − y :: ereal)
〈proof 〉

lemma ereal-diff-positive:
fixes a b :: ereal shows a ≤ b =⇒ 0 ≤ b − a
〈proof 〉

lemma ereal-between:
fixes x e :: ereal
assumes |x| 6= ∞ and 0 < e
shows x − e < x

and x < x + e
〈proof 〉

lemma ereal-minus-eq-PInfty-iff :
fixes x y :: ereal
shows x − y = ∞ ←→ y = −∞ ∨ x = ∞
〈proof 〉

lemma ereal-diff-add-eq-diff-diff-swap:
fixes x y z :: ereal
shows |y| 6= ∞ =⇒ x − (y + z) = x − y − z
〈proof 〉

lemma ereal-diff-add-assoc2 :
fixes x y z :: ereal
shows x + y − z = x − z + y
〈proof 〉

lemma ereal-add-uminus-conv-diff : fixes x y z :: ereal shows − x + y = y − x

THEORY “Extended-Real” 301

〈proof 〉

lemma ereal-minus-diff-eq:
fixes x y :: ereal
shows [[x = ∞ −→ y 6= ∞; x = −∞ −→ y 6= −∞]] =⇒ − (x − y) = y − x
〈proof 〉

lemma ediff-le-self [simp]: x − y ≤ (x :: enat)
〈proof 〉

lemma ereal-abs-diff :
fixes a b::ereal
shows abs(a−b) ≤ abs a + abs b
〈proof 〉

38.1.6 Division
instantiation ereal :: inverse
begin

function inverse-ereal where
inverse (ereal r) = (if r = 0 then ∞ else ereal (inverse r))
| inverse (∞::ereal) = 0
| inverse (−∞::ereal) = 0
〈proof 〉

termination 〈proof 〉

definition x div y = x ∗ inverse (y :: ereal)

instance 〈proof 〉

end

lemma real-of-ereal-inverse[simp]:
fixes a :: ereal
shows real-of-ereal (inverse a) = 1 / real-of-ereal a
〈proof 〉

lemma ereal-inverse[simp]:
inverse (0 ::ereal) = ∞
inverse (1 ::ereal) = 1
〈proof 〉

lemma ereal-divide[simp]:
ereal r / ereal p = (if p = 0 then ereal r ∗ ∞ else ereal (r / p))
〈proof 〉

lemma ereal-divide-same[simp]:
fixes x :: ereal

THEORY “Extended-Real” 302

shows x / x = (if |x| = ∞ ∨ x = 0 then 0 else 1)
〈proof 〉

lemma ereal-inv-inv[simp]:
fixes x :: ereal
shows inverse (inverse x) = (if x 6= −∞ then x else ∞)
〈proof 〉

lemma ereal-inverse-minus[simp]:
fixes x :: ereal
shows inverse (− x) = (if x = 0 then ∞ else −inverse x)
〈proof 〉

lemma ereal-uminus-divide[simp]:
fixes x y :: ereal
shows − x / y = − (x / y)
〈proof 〉

lemma ereal-divide-Infty[simp]:
fixes x :: ereal
shows x / ∞ = 0 x / −∞ = 0
〈proof 〉

lemma ereal-divide-one[simp]: x / 1 = (x::ereal)
〈proof 〉

lemma ereal-divide-ereal[simp]: ∞ / ereal r = (if 0 ≤ r then ∞ else −∞)
〈proof 〉

lemma ereal-inverse-nonneg-iff : 0 ≤ inverse (x :: ereal) ←→ 0 ≤ x ∨ x = −∞
〈proof 〉

lemma inverse-ereal-ge0I : 0 ≤ (x :: ereal) =⇒ 0 ≤ inverse x
〈proof 〉

lemma zero-le-divide-ereal[simp]:
fixes a :: ereal
assumes 0 ≤ a and 0 ≤ b
shows 0 ≤ a / b
〈proof 〉

lemma ereal-le-divide-pos:
fixes x y z :: ereal
shows x > 0 =⇒ x 6= ∞ =⇒ y ≤ z / x ←→ x ∗ y ≤ z
〈proof 〉

lemma ereal-divide-le-pos:
fixes x y z :: ereal
shows x > 0 =⇒ x 6= ∞ =⇒ z / x ≤ y ←→ z ≤ x ∗ y

THEORY “Extended-Real” 303

〈proof 〉

lemma ereal-le-divide-neg:
fixes x y z :: ereal
shows x < 0 =⇒ x 6= −∞ =⇒ y ≤ z / x ←→ z ≤ x ∗ y
〈proof 〉

lemma ereal-divide-le-neg:
fixes x y z :: ereal
shows x < 0 =⇒ x 6= −∞ =⇒ z / x ≤ y ←→ x ∗ y ≤ z
〈proof 〉

lemma ereal-inverse-antimono-strict:
fixes x y :: ereal
shows 0 ≤ x =⇒ x < y =⇒ inverse y < inverse x
〈proof 〉

lemma ereal-inverse-antimono:
fixes x y :: ereal
shows 0 ≤ x =⇒ x ≤ y =⇒ inverse y ≤ inverse x
〈proof 〉

lemma inverse-inverse-Pinfty-iff [simp]:
fixes x :: ereal
shows inverse x = ∞ ←→ x = 0
〈proof 〉

lemma ereal-inverse-eq-0 :
fixes x :: ereal
shows inverse x = 0 ←→ x = ∞ ∨ x = −∞
〈proof 〉

lemma ereal-0-gt-inverse:
fixes x :: ereal
shows 0 < inverse x ←→ x 6= ∞ ∧ 0 ≤ x
〈proof 〉

lemma ereal-inverse-le-0-iff :
fixes x :: ereal
shows inverse x ≤ 0 ←→ x < 0 ∨ x = ∞
〈proof 〉

lemma ereal-divide-eq-0-iff : x / y = 0 ←→ x = 0 ∨ |y :: ereal| = ∞
〈proof 〉

lemma ereal-mult-less-right:
fixes a b c :: ereal
assumes b ∗ a < c ∗ a 0 < a a < ∞
shows b < c

THEORY “Extended-Real” 304

〈proof 〉

lemma ereal-mult-divide:
fixes a b :: ereal
shows 0 < b =⇒ b < ∞ =⇒ b ∗ (a / b) = a
〈proof 〉

lemma ereal-power-divide:
fixes x y :: ereal
shows y 6= 0 =⇒ (x / y) ^ n = x^n / y^n
〈proof 〉

lemma ereal-le-mult-one-interval:
fixes x y :: ereal
assumes y: y 6= −∞
assumes z:

∧
z. 0 < z =⇒ z < 1 =⇒ z ∗ x ≤ y

shows x ≤ y
〈proof 〉

lemma ereal-divide-right-mono[simp]:
fixes x y z :: ereal
assumes x ≤ y

and 0 < z
shows x / z ≤ y / z
〈proof 〉

lemma ereal-divide-left-mono[simp]:
fixes x y z :: ereal
assumes y ≤ x

and 0 < z
and 0 < x ∗ y

shows z / x ≤ z / y
〈proof 〉

lemma ereal-divide-zero-left[simp]:
fixes a :: ereal
shows 0 / a = 0
〈proof 〉

lemma ereal-times-divide-eq-left[simp]:
fixes a b c :: ereal
shows b / c ∗ a = b ∗ a / c
〈proof 〉

lemma ereal-times-divide-eq: a ∗ (b / c :: ereal) = a ∗ b / c
〈proof 〉

lemma ereal-inverse-real [simp]: |z| 6=∞ =⇒ z 6= 0 =⇒ ereal (inverse (real-of-ereal
z)) = inverse z

THEORY “Extended-Real” 305

〈proof 〉

lemma ereal-inverse-mult:
a 6= 0 =⇒ b 6= 0 =⇒ inverse (a ∗ (b::ereal)) = inverse a ∗ inverse b
〈proof 〉

lemma inverse-eq-infinity-iff-eq-zero [simp]:
1/(x::ereal) = ∞ ←→ x = 0
〈proof 〉

lemma ereal-distrib-left:
fixes a b c :: ereal
assumes a 6= ∞ ∨ b 6= −∞

and a 6= −∞ ∨ b 6= ∞
and |c| 6= ∞

shows c ∗ (a + b) = c ∗ a + c ∗ b
〈proof 〉

lemma ereal-distrib-minus-left:
fixes a b c :: ereal
assumes a 6= ∞ ∨ b 6= ∞

and a 6= −∞ ∨ b 6= −∞
and |c| 6= ∞

shows c ∗ (a − b) = c ∗ a − c ∗ b
〈proof 〉

lemma ereal-distrib-minus-right:
fixes a b c :: ereal
assumes a 6= ∞ ∨ b 6= ∞

and a 6= −∞ ∨ b 6= −∞
and |c| 6= ∞

shows (a − b) ∗ c = a ∗ c − b ∗ c
〈proof 〉

38.2 Complete lattice
instantiation ereal :: lattice
begin

definition [simp]: sup x y = (max x y :: ereal)
definition [simp]: inf x y = (min x y :: ereal)
instance 〈proof 〉

end

instantiation ereal :: complete-lattice
begin

definition bot = (−∞::ereal)

THEORY “Extended-Real” 306

definition top = (∞::ereal)

definition Sup S = (SOME x :: ereal. (∀ y∈S . y ≤ x) ∧ (∀ z. (∀ y∈S . y ≤ z) −→
x ≤ z))
definition Inf S = (SOME x :: ereal. (∀ y∈S . x ≤ y) ∧ (∀ z. (∀ y∈S . z ≤ y) −→
z ≤ x))

lemma ereal-complete-Sup:
fixes S :: ereal set
shows ∃ x. (∀ y∈S . y ≤ x) ∧ (∀ z. (∀ y∈S . y ≤ z) −→ x ≤ z)
〈proof 〉

lemma ereal-complete-uminus-eq:
fixes S :: ereal set
shows (∀ y∈uminus‘S . y ≤ x) ∧ (∀ z. (∀ y∈uminus‘S . y ≤ z) −→ x ≤ z)
←→ (∀ y∈S . −x ≤ y) ∧ (∀ z. (∀ y∈S . z ≤ y) −→ z ≤ −x)

〈proof 〉

lemma ereal-complete-Inf :
∃ x. (∀ y∈S ::ereal set. x ≤ y) ∧ (∀ z. (∀ y∈S . z ≤ y) −→ z ≤ x)
〈proof 〉

instance
〈proof 〉

end

instance ereal :: complete-linorder 〈proof 〉

instance ereal :: linear-continuum
〈proof 〉

lemma min-PInf [simp]: min (∞::ereal) x = x
〈proof 〉

lemma min-PInf2 [simp]: min x (∞::ereal) = x
〈proof 〉

lemma max-PInf [simp]: max (∞::ereal) x = ∞
〈proof 〉

lemma max-PInf2 [simp]: max x (∞::ereal) = ∞
〈proof 〉

lemma min-MInf [simp]: min (−∞::ereal) x = −∞
〈proof 〉

lemma min-MInf2 [simp]: min x (−∞::ereal) = −∞
〈proof 〉

THEORY “Extended-Real” 307

lemma max-MInf [simp]: max (−∞::ereal) x = x
〈proof 〉

lemma max-MInf2 [simp]: max x (−∞::ereal) = x
〈proof 〉

38.3 Extended real intervals
lemma real-greaterThanLessThan-infinity-eq:

real-of-ereal ‘ {N ::ereal<..<∞} =
(if N = ∞ then {} else if N = −∞ then UNIV else {real-of-ereal N<..})
〈proof 〉

lemma real-greaterThanLessThan-minus-infinity-eq:
real-of-ereal ‘ {−∞<..<N ::ereal} =
(if N = ∞ then UNIV else if N = −∞ then {} else {..<real-of-ereal N})

〈proof 〉

lemma real-greaterThanLessThan-inter :
real-of-ereal ‘ {N<..<M ::ereal} = real-of-ereal ‘ {−∞<..<M} ∩ real-of-ereal ‘
{N<..<∞}
〈proof 〉

lemma real-atLeastGreaterThan-eq: real-of-ereal ‘ {N<..<M ::ereal} =
(if N = ∞ then {} else
if N = −∞ then
(if M = ∞ then UNIV
else if M = −∞ then {}
else {..< real-of-ereal M})

else if M = −∞ then {}
else if M = ∞ then {real-of-ereal N<..}
else {real-of-ereal N <..< real-of-ereal M})
〈proof 〉

lemma real-image-ereal-ivl:
fixes a b::ereal
shows
real-of-ereal ‘ {a<..<b} =
(if a < b then (if a = −∞ then if b = ∞ then UNIV else {..<real-of-ereal b}
else if b = ∞ then {real-of-ereal a<..} else {real-of-ereal a <..< real-of-ereal b})

else {})
〈proof 〉

lemma fixes a b c::ereal
shows not-inftyI : a < b =⇒ b < c =⇒ abs b 6= ∞
〈proof 〉

context

THEORY “Extended-Real” 308

fixes r s t::real
begin

lemma interval-Ioo-neq-Ioi: {r<..<s} 6= {t<..}
〈proof 〉

lemma interval-Ioo-neq-Iio: {r<..<s} 6= {..<t}
〈proof 〉

lemma interval-neq-ioo-UNIV : {r<..<s} 6= UNIV
and interval-Ioi-neq-UNIV : {r<..} 6= UNIV
and interval-Iio-neq-UNIV : {..<r} 6= UNIV
〈proof 〉

lemma interval-Ioi-neq-Iio: {r<..} 6= {..<s}
〈proof 〉

lemma interval-empty-neq-Ioi: {} 6= {r<..}
and interval-empty-neq-Iio: {} 6= {..<r}
〈proof 〉

end

lemmas interval-neqs = interval-Ioo-neq-Ioi interval-Ioo-neq-Iio
interval-neq-ioo-UNIV interval-Ioi-neq-Iio
interval-Ioi-neq-UNIV interval-Iio-neq-UNIV
interval-empty-neq-Ioi interval-empty-neq-Iio

lemma greaterThanLessThan-eq-iff :
fixes r s t u::real
shows ({r<..<s} = {t<..<u}) = (r ≥ s ∧ u ≤ t ∨ r = t ∧ s = u)
〈proof 〉

lemma real-of-ereal-image-greaterThanLessThan-iff :
real-of-ereal ‘ {a <..< b} = real-of-ereal ‘ {c <..< d} ←→ (a ≥ b ∧ c ≥ d ∨ a

= c ∧ b = d)
〈proof 〉

lemma uminus-image-real-of-ereal-image-greaterThanLessThan:
uminus ‘ real-of-ereal ‘ {l <..< u} = real-of-ereal ‘ {−u <..< −l}
〈proof 〉

lemma add-image-real-of-ereal-image-greaterThanLessThan:
(+) c ‘ real-of-ereal ‘ {l <..< u} = real-of-ereal ‘ {c + l <..< c + u}
〈proof 〉

lemma add2-image-real-of-ereal-image-greaterThanLessThan:
(λx. x + c) ‘ real-of-ereal ‘ {l <..< u} = real-of-ereal ‘ {l + c <..< u + c}
〈proof 〉

THEORY “Extended-Real” 309

lemma minus-image-real-of-ereal-image-greaterThanLessThan:
(−) c ‘ real-of-ereal ‘ {l <..< u} = real-of-ereal ‘ {c − u <..< c − l}
(is ?l = ?r)
〈proof 〉

lemma real-ereal-bound-lemma-up:
assumes s ∈ real-of-ereal ‘ {a<..<b}
assumes t /∈ real-of-ereal ‘ {a<..<b}
assumes s ≤ t
shows b 6= ∞
〈proof 〉

lemma real-ereal-bound-lemma-down:
assumes s: s ∈ real-of-ereal ‘ {a<..<b}
and t: t /∈ real-of-ereal ‘ {a<..<b}
and t ≤ s

shows a 6= −∞
〈proof 〉

38.4 Topological space
instantiation ereal :: linear-continuum-topology
begin

definition open-ereal :: ereal set ⇒ bool where
open-ereal-generated: open-ereal = generate-topology (range lessThan ∪ range

greaterThan)

instance
〈proof 〉

end

lemma continuous-on-ereal[continuous-intros]:
assumes f : continuous-on s f shows continuous-on s (λx. ereal (f x))
〈proof 〉

lemma tendsto-ereal[tendsto-intros, simp, intro]: (f −−−→ x) F =⇒ ((λx. ereal (f
x)) −−−→ ereal x) F
〈proof 〉

lemma tendsto-uminus-ereal[tendsto-intros, simp, intro]:
assumes (f −−−→ x) F
shows ((λx. − f x::ereal) −−−→ − x) F
〈proof 〉

THEORY “Extended-Real” 310

lemma at-infty-ereal-eq-at-top: at ∞ = filtermap ereal at-top
〈proof 〉

lemma ereal-Lim-uminus: (f −−−→ f0) net ←→ ((λx. − f x::ereal) −−−→ − f0)
net
〈proof 〉

lemma ereal-divide-less-iff : 0 < (c::ereal) =⇒ c < ∞ =⇒ a / c < b ←→ a < b
∗ c
〈proof 〉

lemma ereal-less-divide-iff : 0 < (c::ereal) =⇒ c < ∞ =⇒ a < b / c ←→ a ∗ c <
b
〈proof 〉

lemma tendsto-cmult-ereal[tendsto-intros, simp, intro]:
assumes c: |c| 6= ∞ and f : (f −−−→ x) F
shows ((λx. c ∗ f x::ereal) −−−→ c ∗ x) F
〈proof 〉

lemma tendsto-cmult-ereal-not-0 [tendsto-intros, simp, intro]:
assumes x 6= 0 and f : (f −−−→ x) F
shows ((λx. c ∗ f x::ereal) −−−→ c ∗ x) F
〈proof 〉

lemma tendsto-cadd-ereal[tendsto-intros, simp, intro]:
assumes c: y 6= −∞ x 6= −∞ and f : (f −−−→ x) F
shows ((λx. f x + y::ereal) −−−→ x + y) F
〈proof 〉

lemma tendsto-add-left-ereal[tendsto-intros, simp, intro]:
assumes c: |y| 6= ∞ and f : (f −−−→ x) F
shows ((λx. f x + y::ereal) −−−→ x + y) F
〈proof 〉

lemma continuous-at-ereal[continuous-intros]: continuous F f =⇒ continuous F
(λx. ereal (f x))
〈proof 〉

lemma ereal-Sup:
assumes ∗: |SUP a∈A. ereal a| 6= ∞
shows ereal (Sup A) = (SUP a∈A. ereal a)
〈proof 〉

lemma ereal-SUP: |SUP a∈A. ereal (f a)| 6= ∞ =⇒ ereal (SUP a∈A. f a) = (SUP
a∈A. ereal (f a))
〈proof 〉

lemma ereal-Inf :

THEORY “Extended-Real” 311

assumes ∗: |INF a∈A. ereal a| 6= ∞
shows ereal (Inf A) = (INF a∈A. ereal a)
〈proof 〉

lemma ereal-Inf ′:
assumes ∗: bdd-below A A 6= {}
shows ereal (Inf A) = (INF a∈A. ereal a)
〈proof 〉

lemma ereal-INF : |INF a∈A. ereal (f a)| 6= ∞ =⇒ ereal (INF a∈A. f a) = (INF
a∈A. ereal (f a))
〈proof 〉

lemma ereal-Sup-uminus-image-eq: Sup (uminus ‘ S ::ereal set) = − Inf S
〈proof 〉

lemma ereal-SUP-uminus-eq:
fixes f :: ′a ⇒ ereal
shows (SUP x∈S . uminus (f x)) = − (INF x∈S . f x)
〈proof 〉

lemma ereal-inj-on-uminus[intro, simp]: inj-on uminus (A :: ereal set)
〈proof 〉

lemma ereal-Inf-uminus-image-eq: Inf (uminus ‘ S ::ereal set) = − Sup S
〈proof 〉

lemma ereal-INF-uminus-eq:
fixes f :: ′a ⇒ ereal
shows (INF x∈S . − f x) = − (SUP x∈S . f x)
〈proof 〉

lemma ereal-SUP-not-infty:
fixes f :: - ⇒ ereal
shows A 6= {} =⇒ l 6= −∞ =⇒ u 6= ∞ =⇒ ∀ a∈A. l ≤ f a ∧ f a ≤ u =⇒ |Sup

(f ‘ A)| 6= ∞
〈proof 〉

lemma ereal-INF-not-infty:
fixes f :: - ⇒ ereal
shows A 6= {} =⇒ l 6= −∞ =⇒ u 6= ∞ =⇒ ∀ a∈A. l ≤ f a ∧ f a ≤ u =⇒ |Inf

(f ‘ A)| 6= ∞
〈proof 〉

lemma ereal-image-uminus-shift:
fixes X Y :: ereal set
shows uminus ‘ X = Y ←→ X = uminus ‘ Y
〈proof 〉

THEORY “Extended-Real” 312

lemma Sup-eq-MInfty:
fixes S :: ereal set
shows Sup S = −∞ ←→ S = {} ∨ S = {−∞}
〈proof 〉

lemma Inf-eq-PInfty:
fixes S :: ereal set
shows Inf S = ∞ ←→ S = {} ∨ S = {∞}
〈proof 〉

lemma Inf-eq-MInfty:
fixes S :: ereal set
shows −∞ ∈ S =⇒ Inf S = −∞
〈proof 〉

lemma Sup-eq-PInfty:
fixes S :: ereal set
shows ∞ ∈ S =⇒ Sup S = ∞
〈proof 〉

lemma not-MInfty-nonneg[simp]: 0 ≤ (x::ereal) =⇒ x 6= −∞
〈proof 〉

lemma Sup-ereal-close:
fixes e :: ereal
assumes 0 < e

and S : |Sup S | 6= ∞ S 6= {}
shows ∃ x∈S . Sup S − e < x
〈proof 〉

lemma Inf-ereal-close:
fixes e :: ereal
assumes |Inf X | 6= ∞

and 0 < e
shows ∃ x∈X . x < Inf X + e
〈proof 〉

lemma SUP-PInfty:
(
∧

n::nat. ∃ i∈A. ereal (real n) ≤ f i) =⇒ (SUP i∈A. f i :: ereal) = ∞
〈proof 〉

lemma SUP-nat-Infty: (SUP i. ereal (real i)) = ∞
〈proof 〉

lemma SUP-ereal-add-left:
assumes I 6= {} c 6= −∞
shows (SUP i∈I . f i + c :: ereal) = (SUP i∈I . f i) + c
〈proof 〉

THEORY “Extended-Real” 313

lemma SUP-ereal-add-right:
fixes c :: ereal
shows I 6= {} =⇒ c 6= −∞ =⇒ (SUP i∈I . c + f i) = c + (SUP i∈I . f i)
〈proof 〉

lemma SUP-ereal-minus-right:
assumes I 6= {} c 6= −∞
shows (SUP i∈I . c − f i :: ereal) = c − (INF i∈I . f i)
〈proof 〉

lemma SUP-ereal-minus-left:
assumes I 6= {} c 6= ∞
shows (SUP i∈I . f i − c:: ereal) = (SUP i∈I . f i) − c
〈proof 〉

lemma INF-ereal-minus-right:
assumes I 6= {} and |c| 6= ∞
shows (INF i∈I . c − f i) = c − (SUP i∈I . f i::ereal)
〈proof 〉

lemma SUP-ereal-le-addI :
fixes f :: ′i ⇒ ereal
assumes

∧
i. f i + y ≤ z and y 6= −∞

shows Sup (f ‘ UNIV) + y ≤ z
〈proof 〉

lemma SUP-combine:
fixes f :: ′a::semilattice-sup ⇒ ′a::semilattice-sup ⇒ ′b::complete-lattice
assumes mono:

∧
a b c d. a ≤ b =⇒ c ≤ d =⇒ f a c ≤ f b d

shows (SUP i∈UNIV . SUP j∈UNIV . f i j) = (SUP i. f i i)
〈proof 〉

lemma SUP-ereal-add:
fixes f g :: nat ⇒ ereal
assumes inc: incseq f incseq g

and pos:
∧

i. f i 6= −∞
∧

i. g i 6= −∞
shows (SUP i. f i + g i) = Sup (f ‘ UNIV) + Sup (g ‘ UNIV)
〈proof 〉

lemma INF-eq-minf : (INF i∈I . f i::ereal) 6= −∞ ←→ (∃ b>−∞. ∀ i∈I . b ≤ f i)
〈proof 〉

lemma INF-ereal-add-left:
assumes I 6= {} c 6= −∞

∧
x. x ∈ I =⇒ 0 ≤ f x

shows (INF i∈I . f i + c :: ereal) = (INF i∈I . f i) + c
〈proof 〉

lemma INF-ereal-add-right:
assumes I 6= {} c 6= −∞

∧
x. x ∈ I =⇒ 0 ≤ f x

THEORY “Extended-Real” 314

shows (INF i∈I . c + f i :: ereal) = c + (INF i∈I . f i)
〈proof 〉

lemma INF-ereal-add-directed:
fixes f g :: ′a ⇒ ereal
assumes nonneg:

∧
i. i ∈ I =⇒ 0 ≤ f i

∧
i. i ∈ I =⇒ 0 ≤ g i

assumes directed:
∧

i j. i ∈ I =⇒ j ∈ I =⇒ ∃ k∈I . f i + g j ≥ f k + g k
shows (INF i∈I . f i + g i) = (INF i∈I . f i) + (INF i∈I . g i)
〈proof 〉

lemma INF-ereal-add:
fixes f :: nat ⇒ ereal
assumes decseq f decseq g

and fin:
∧

i. f i 6= ∞
∧

i. g i 6= ∞
shows (INF i. f i + g i) = Inf (f ‘ UNIV) + Inf (g ‘ UNIV)
〈proof 〉

lemma SUP-ereal-add-pos:
fixes f g :: nat ⇒ ereal
assumes incseq f incseq g

and
∧

i. 0 ≤ f i
∧

i. 0 ≤ g i
shows (SUP i. f i + g i) = Sup (f ‘ UNIV) + Sup (g ‘ UNIV)
〈proof 〉

lemma SUP-ereal-sum:
fixes f g :: ′a ⇒ nat ⇒ ereal
assumes

∧
n. n ∈ A =⇒ incseq (f n)

and pos:
∧

n i. n ∈ A =⇒ 0 ≤ f n i
shows (SUP i.

∑
n∈A. f n i) = (

∑
n∈A. Sup ((f n) ‘ UNIV))

〈proof 〉

lemma SUP-ereal-mult-left:
fixes f :: ′a ⇒ ereal
assumes I 6= {}
assumes f :

∧
i. i ∈ I =⇒ 0 ≤ f i and c: 0 ≤ c

shows (SUP i∈I . c ∗ f i) = c ∗ (SUP i∈I . f i)
〈proof 〉

lemma countable-approach:
fixes x :: ereal
assumes x 6= −∞
shows ∃ f . incseq f ∧ (∀ i::nat. f i < x) ∧ (f −−−−→ x)
〈proof 〉

lemma Sup-countable-SUP:
assumes A 6= {}
shows ∃ f ::nat ⇒ ereal. incseq f ∧ range f ⊆ A ∧ Sup A = (SUP i. f i)
〈proof 〉

THEORY “Extended-Real” 315

lemma Inf-countable-INF :
assumes A 6= {} shows ∃ f ::nat ⇒ ereal. decseq f ∧ range f ⊆ A ∧ Inf A =

(INF i. f i)
〈proof 〉

lemma SUP-countable-SUP:
A 6= {} =⇒ ∃ f ::nat ⇒ ereal. range f ⊆ g‘A ∧ Sup (g ‘ A) = Sup (f ‘ UNIV)
〈proof 〉

38.5 Relation to enat
definition ereal-of-enat n = (case n of enat n ⇒ ereal (real n) | ∞ ⇒ ∞)

declare [[coercion ereal-of-enat :: enat ⇒ ereal]]
declare [[coercion (λn. ereal (real n)) :: nat ⇒ ereal]]

lemma ereal-of-enat-simps[simp]:
ereal-of-enat (enat n) = ereal n
ereal-of-enat ∞ = ∞
〈proof 〉

lemma ereal-of-enat-le-iff [simp]: ereal-of-enat m ≤ ereal-of-enat n ←→ m ≤ n
〈proof 〉

lemma ereal-of-enat-less-iff [simp]: ereal-of-enat m < ereal-of-enat n ←→ m < n
〈proof 〉

lemma numeral-le-ereal-of-enat-iff [simp]: numeral m ≤ ereal-of-enat n ←→ nu-
meral m ≤ n
〈proof 〉

lemma numeral-less-ereal-of-enat-iff [simp]: numeral m < ereal-of-enat n ←→ nu-
meral m < n
〈proof 〉

lemma ereal-of-enat-ge-zero-cancel-iff [simp]: 0 ≤ ereal-of-enat n ←→ 0 ≤ n
〈proof 〉

lemma ereal-of-enat-gt-zero-cancel-iff [simp]: 0 < ereal-of-enat n ←→ 0 < n
〈proof 〉

lemma ereal-of-enat-zero[simp]: ereal-of-enat 0 = 0
〈proof 〉

lemma ereal-of-enat-inf [simp]: ereal-of-enat n = ∞ ←→ n = ∞
〈proof 〉

lemma ereal-of-enat-add: ereal-of-enat (m + n) = ereal-of-enat m + ereal-of-enat
n

THEORY “Extended-Real” 316

〈proof 〉

lemma ereal-of-enat-sub:
assumes n ≤ m
shows ereal-of-enat (m − n) = ereal-of-enat m − ereal-of-enat n
〈proof 〉

lemma ereal-of-enat-mult:
ereal-of-enat (m ∗ n) = ereal-of-enat m ∗ ereal-of-enat n
〈proof 〉

lemmas ereal-of-enat-pushin = ereal-of-enat-add ereal-of-enat-sub ereal-of-enat-mult
lemmas ereal-of-enat-pushout = ereal-of-enat-pushin[symmetric]

lemma ereal-of-enat-nonneg: ereal-of-enat n ≥ 0
〈proof 〉

lemma ereal-of-enat-Sup:
assumes A 6= {} shows ereal-of-enat (Sup A) = (SUP a ∈ A. ereal-of-enat a)
〈proof 〉

lemma ereal-of-enat-SUP:
A 6= {} =⇒ ereal-of-enat (SUP a∈A. f a) = (SUP a ∈ A. ereal-of-enat (f a))
〈proof 〉

38.6 Limits on ereal
lemma open-PInfty: open A =⇒ ∞ ∈ A =⇒ (∃ x. {ereal x<..} ⊆ A)
〈proof 〉

lemma open-MInfty: open A =⇒ −∞ ∈ A =⇒ (∃ x. {..<ereal x} ⊆ A)
〈proof 〉

lemma open-ereal-vimage: open S =⇒ open (ereal −‘ S)
〈proof 〉

lemma open-ereal: open S =⇒ open (ereal ‘ S)
〈proof 〉

lemma open-image-real-of-ereal:
fixes X ::ereal set
assumes open X
assumes infty: ∞ /∈ X −∞ /∈ X
shows open (real-of-ereal ‘ X)
〈proof 〉

lemma eventually-finite:
fixes x :: ereal
assumes |x| 6= ∞ (f −−−→ x) F

THEORY “Extended-Real” 317

shows eventually (λx. |f x| 6= ∞) F
〈proof 〉

lemma open-ereal-def :
open A ←→ open (ereal −‘ A) ∧ (∞ ∈ A −→ (∃ x. {ereal x <..} ⊆ A)) ∧ (−∞
∈ A −→ (∃ x. {..<ereal x} ⊆ A))
(is open A ←→ ?rhs)
〈proof 〉

lemma open-PInfty2 :
assumes open A and ∞ ∈ A
obtains x where {ereal x<..} ⊆ A
〈proof 〉

lemma open-MInfty2 :
assumes open A and −∞ ∈ A
obtains x where {..<ereal x} ⊆ A
〈proof 〉

lemma ereal-openE :
assumes open A
obtains x y where open (ereal −‘ A)

and ∞ ∈ A =⇒ {ereal x<..} ⊆ A
and −∞ ∈ A =⇒ {..<ereal y} ⊆ A
〈proof 〉

lemmas open-ereal-lessThan = open-lessThan[where ′a=ereal]
lemmas open-ereal-greaterThan = open-greaterThan[where ′a=ereal]
lemmas ereal-open-greaterThanLessThan = open-greaterThanLessThan[where ′a=ereal]
lemmas closed-ereal-atLeast = closed-atLeast[where ′a=ereal]
lemmas closed-ereal-atMost = closed-atMost[where ′a=ereal]
lemmas closed-ereal-atLeastAtMost = closed-atLeastAtMost[where ′a=ereal]
lemmas closed-ereal-singleton = closed-singleton[where ′a=ereal]

lemma ereal-open-cont-interval:
fixes S :: ereal set
assumes open S

and x ∈ S
and |x| 6= ∞

obtains e where e > 0 and {x−e <..< x+e} ⊆ S
〈proof 〉

lemma ereal-open-cont-interval2 :
fixes S :: ereal set
assumes open S and x ∈ S and |x| 6= ∞
obtains a b where a < x and x < b and {a <..< b} ⊆ S
〈proof 〉

THEORY “Extended-Real” 318

38.6.1 Convergent sequences
lemma lim-real-of-ereal[simp]:

assumes lim: (f −−−→ ereal x) net
shows ((λx. real-of-ereal (f x)) −−−→ x) net
〈proof 〉

lemma lim-ereal[simp]: ((λn. ereal (f n)) −−−→ ereal x) net ←→ (f −−−→ x) net
〈proof 〉

lemma convergent-real-imp-convergent-ereal:
assumes convergent a
shows convergent (λn. ereal (a n)) and lim (λn. ereal (a n)) = ereal (lim a)
〈proof 〉

lemma tendsto-PInfty: (f −−−→ ∞) F ←→ (∀ r . eventually (λx. ereal r < f x) F)
〈proof 〉

lemma tendsto-PInfty ′: (f −−−→ ∞) F = (∀ r>c. eventually (λx. ereal r < f x)
F)
〈proof 〉

lemma tendsto-PInfty-eq-at-top:
((λz. ereal (f z)) −−−→ ∞) F ←→ (LIM z F . f z :> at-top)
〈proof 〉

lemma tendsto-MInfty: (f −−−→ −∞) F ←→ (∀ r . eventually (λx. f x < ereal r)
F)
〈proof 〉

lemma tendsto-MInfty ′: (f −−−→ −∞) F = (∀ r<c. eventually (λx. ereal r > f x)
F)
〈proof 〉

lemma Lim-PInfty: f −−−−→ ∞ ←→ (∀B. ∃N . ∀n≥N . f n ≥ ereal B)
〈proof 〉

lemma Lim-MInfty: f −−−−→ −∞ ←→ (∀B. ∃N . ∀n≥N . ereal B ≥ f n)
〈proof 〉

lemma Lim-bounded-PInfty: f −−−−→ l =⇒ (
∧

n. f n ≤ ereal B) =⇒ l 6= ∞
〈proof 〉

lemma Lim-bounded-MInfty: f −−−−→ l =⇒ (
∧

n. ereal B ≤ f n) =⇒ l 6= −∞
〈proof 〉

lemma tendsto-zero-erealI :
assumes

∧
e. e > 0 =⇒ eventually (λx. |f x| < ereal e) F

shows (f −−−→ 0) F
〈proof 〉

THEORY “Extended-Real” 319

lemma Lim-bounded-PInfty2 : f −−−−→ l =⇒ ∀n≥N . f n ≤ ereal B =⇒ l 6= ∞
〈proof 〉

lemma real-of-ereal-mult[simp]:
fixes a b :: ereal
shows real-of-ereal (a ∗ b) = real-of-ereal a ∗ real-of-ereal b
〈proof 〉

lemma real-of-ereal-eq-0 :
fixes x :: ereal
shows real-of-ereal x = 0 ←→ x = ∞ ∨ x = −∞ ∨ x = 0
〈proof 〉

lemma tendsto-ereal-realD:
fixes f :: ′a ⇒ ereal
assumes x 6= 0

and tendsto: ((λx. ereal (real-of-ereal (f x))) −−−→ x) net
shows (f −−−→ x) net
〈proof 〉

lemma tendsto-ereal-realI :
fixes f :: ′a ⇒ ereal
assumes x: |x| 6= ∞ and tendsto: (f −−−→ x) net
shows ((λx. ereal (real-of-ereal (f x))) −−−→ x) net
〈proof 〉

lemma ereal-mult-cancel-left:
fixes a b c :: ereal
shows a ∗ b = a ∗ c ←→ (|a| = ∞ ∧ 0 < b ∗ c) ∨ a = 0 ∨ b = c
〈proof 〉

lemma tendsto-add-ereal:
fixes x y :: ereal
assumes x: |x| 6= ∞ and y: |y| 6= ∞
assumes f : (f −−−→ x) F and g: (g −−−→ y) F
shows ((λx. f x + g x) −−−→ x + y) F
〈proof 〉

lemma tendsto-add-ereal-nonneg:
fixes x y :: ereal
assumes x 6= −∞ y 6= −∞ (f −−−→ x) F (g −−−→ y) F
shows ((λx. f x + g x) −−−→ x + y) F
〈proof 〉

lemma ereal-inj-affinity:
fixes m t :: ereal
assumes |m| 6= ∞

and m 6= 0

THEORY “Extended-Real” 320

and |t| 6= ∞
shows inj-on (λx. m ∗ x + t) A
〈proof 〉

lemma ereal-PInfty-eq-plus[simp]:
fixes a b :: ereal
shows ∞ = a + b ←→ a = ∞ ∨ b = ∞
〈proof 〉

lemma ereal-MInfty-eq-plus[simp]:
fixes a b :: ereal
shows −∞ = a + b ←→ (a = −∞ ∧ b 6= ∞) ∨ (b = −∞ ∧ a 6= ∞)
〈proof 〉

lemma ereal-less-divide-pos:
fixes x y :: ereal
shows x > 0 =⇒ x 6= ∞ =⇒ y < z / x ←→ x ∗ y < z
〈proof 〉

lemma ereal-divide-less-pos:
fixes x y z :: ereal
shows x > 0 =⇒ x 6= ∞ =⇒ y / x < z ←→ y < x ∗ z
〈proof 〉

lemma ereal-divide-eq:
fixes a b c :: ereal
shows b 6= 0 =⇒ |b| 6= ∞ =⇒ a / b = c ←→ a = b ∗ c
〈proof 〉

lemma ereal-inverse-not-MInfty[simp]: inverse (a::ereal) 6= −∞
〈proof 〉

lemma ereal-mult-m1 [simp]: x ∗ ereal (−1) = −x
〈proof 〉

lemma ereal-real ′:
assumes |x| 6= ∞
shows ereal (real-of-ereal x) = x
〈proof 〉

lemma real-ereal-id: real-of-ereal ◦ ereal = id
〈proof 〉

lemma open-image-ereal: open(UNIV−{ ∞ , (−∞ :: ereal)})
〈proof 〉

lemma ereal-le-distrib:
fixes a b c :: ereal
shows c ∗ (a + b) ≤ c ∗ a + c ∗ b

THEORY “Extended-Real” 321

〈proof 〉

lemma ereal-pos-distrib:
fixes a b c :: ereal
assumes 0 ≤ c

and c 6= ∞
shows c ∗ (a + b) = c ∗ a + c ∗ b
〈proof 〉

lemma ereal-LimI-finite:
fixes x :: ereal
assumes |x| 6= ∞

and
∧

r . 0 < r =⇒ ∃N . ∀n≥N . u n < x + r ∧ x < u n + r
shows u −−−−→ x
〈proof 〉

lemma tendsto-obtains-N :
assumes f −−−−→ f0 open S f0 ∈ S
obtains N where ∀n≥N . f n ∈ S
〈proof 〉

lemma ereal-LimI-finite-iff :
fixes x :: ereal
assumes |x| 6= ∞
shows u −−−−→ x ←→ (∀ r . 0 < r −→ (∃N . ∀n≥N . u n < x + r ∧ x < u n

+ r))
(is ?lhs ←→ ?rhs)
〈proof 〉

lemma ereal-Limsup-uminus:
fixes f :: ′a ⇒ ereal
shows Limsup net (λx. − (f x)) = − Liminf net f
〈proof 〉

lemma liminf-bounded-iff :
fixes x :: nat ⇒ ereal
shows C ≤ liminf x ←→ (∀B<C . ∃N . ∀n≥N . B < x n)
(is ?lhs ←→ ?rhs)
〈proof 〉

lemma Liminf-add-le:
fixes f g :: - ⇒ ereal
assumes F : F 6= bot
assumes ev: eventually (λx. 0 ≤ f x) F eventually (λx. 0 ≤ g x) F
shows Liminf F f + Liminf F g ≤ Liminf F (λx. f x + g x)
〈proof 〉

lemma Sup-ereal-mult-right ′:
assumes nonempty: Y 6= {}

THEORY “Extended-Real” 322

and x: x ≥ 0
shows (SUP i∈Y . f i) ∗ ereal x = (SUP i∈Y . f i ∗ ereal x) (is ?lhs = ?rhs)
〈proof 〉

lemma Sup-ereal-mult-left ′:
[[Y 6= {}; x ≥ 0]] =⇒ ereal x ∗ (SUP i∈Y . f i) = (SUP i∈Y . ereal x ∗ f i)
〈proof 〉

lemma sup-continuous-add[order-continuous-intros]:
fixes f g :: ′a::complete-lattice ⇒ ereal
assumes nn:

∧
x. 0 ≤ f x

∧
x. 0 ≤ g x and cont: sup-continuous f sup-continuous

g
shows sup-continuous (λx. f x + g x)
〈proof 〉

lemma sup-continuous-mult-right[order-continuous-intros]:
0 ≤ c =⇒ c < ∞ =⇒ sup-continuous f =⇒ sup-continuous (λx. f x ∗ c :: ereal)
〈proof 〉

lemma sup-continuous-mult-left[order-continuous-intros]:
0 ≤ c =⇒ c < ∞ =⇒ sup-continuous f =⇒ sup-continuous (λx. c ∗ f x :: ereal)
〈proof 〉

lemma sup-continuous-ereal-of-enat[order-continuous-intros]:
assumes f : sup-continuous f
shows sup-continuous (λx. ereal-of-enat (f x))
〈proof 〉

38.6.2 Sums
lemma sums-ereal-positive:

fixes f :: nat ⇒ ereal
assumes

∧
i. 0 ≤ f i

shows f sums (SUP n.
∑

i<n. f i)
〈proof 〉

lemma summable-ereal-pos:
fixes f :: nat ⇒ ereal
assumes

∧
i. 0 ≤ f i

shows summable f
〈proof 〉

lemma sums-ereal: (λx. ereal (f x)) sums ereal x ←→ f sums x
〈proof 〉

lemma suminf-ereal-eq-SUP:
fixes f :: nat ⇒ ereal
assumes

∧
i. 0 ≤ f i

shows (
∑

x. f x) = (SUP n.
∑

i<n. f i)

THEORY “Extended-Real” 323

〈proof 〉

lemma suminf-bound:
fixes f :: nat ⇒ ereal
assumes ∀N . (

∑
n<N . f n) ≤ x

∧
n. 0 ≤ f n

shows suminf f ≤ x
〈proof 〉

lemma suminf-bound-add:
fixes f :: nat ⇒ ereal
assumes ∀N . (

∑
n<N . f n) + y ≤ x

and
∧

n. 0 ≤ f n
and y 6= −∞

shows suminf f + y ≤ x
〈proof 〉

lemma suminf-upper :
fixes f :: nat ⇒ ereal
assumes

∧
n. 0 ≤ f n

shows (
∑

n<N . f n) ≤ (
∑

n. f n)
〈proof 〉

lemma suminf-0-le:
fixes f :: nat ⇒ ereal
assumes

∧
n. 0 ≤ f n

shows 0 ≤ (
∑

n. f n)
〈proof 〉

lemma suminf-le-pos:
fixes f g :: nat ⇒ ereal
assumes

∧
N . f N ≤ g N

and
∧

N . 0 ≤ f N
shows suminf f ≤ suminf g
〈proof 〉

lemma suminf-half-series-ereal: (
∑

n. (1/2 :: ereal) ^ Suc n) = 1
〈proof 〉

lemma suminf-add-ereal:
fixes f g :: nat ⇒ ereal
assumes

∧
i. 0 ≤ f i

∧
i. 0 ≤ g i

shows (
∑

i. f i + g i) = suminf f + suminf g
〈proof 〉

lemma suminf-cmult-ereal:
fixes f g :: nat ⇒ ereal
assumes

∧
i. 0 ≤ f i and 0 ≤ a

shows (
∑

i. a ∗ f i) = a ∗ suminf f
〈proof 〉

THEORY “Extended-Real” 324

lemma suminf-PInfty:
fixes f :: nat ⇒ ereal
assumes

∧
i. 0 ≤ f i

and suminf f 6= ∞
shows f i 6= ∞
〈proof 〉

lemma suminf-PInfty-fun:
assumes

∧
i. 0 ≤ f i

and suminf f 6= ∞
shows ∃ f ′. f = (λx. ereal (f ′ x))
〈proof 〉

lemma summable-ereal:
assumes

∧
i. 0 ≤ f i

and (
∑

i. ereal (f i)) 6= ∞
shows summable f
〈proof 〉

lemma suminf-ereal:
assumes

∧
i. 0 ≤ f i

and (
∑

i. ereal (f i)) 6= ∞
shows (

∑
i. ereal (f i)) = ereal (suminf f)

〈proof 〉

lemma suminf-ereal-minus:
fixes f g :: nat ⇒ ereal
assumes ord:

∧
i. g i ≤ f i

∧
i. 0 ≤ g i

and fin: suminf f 6= ∞ suminf g 6= ∞
shows (

∑
i. f i − g i) = suminf f − suminf g

〈proof 〉

lemma suminf-ereal-PInf [simp]: (
∑

x. ∞::ereal) = ∞
〈proof 〉

lemma summable-real-of-ereal:
fixes f :: nat ⇒ ereal
assumes f :

∧
i. 0 ≤ f i

and fin: (
∑

i. f i) 6= ∞
shows summable (λi. real-of-ereal (f i))
〈proof 〉

lemma suminf-SUP-eq:
fixes f :: nat ⇒ nat ⇒ ereal
assumes

∧
i. incseq (λn. f n i)

and
∧

n i. 0 ≤ f n i
shows (

∑
i. SUP n. f n i) = (SUP n.

∑
i. f n i)

〈proof 〉

THEORY “Extended-Real” 325

lemma suminf-sum-ereal:
fixes f :: - ⇒ - ⇒ ereal
assumes nonneg:

∧
i a. a ∈ A =⇒ 0 ≤ f i a

shows (
∑

i.
∑

a∈A. f i a) = (
∑

a∈A.
∑

i. f i a)
〈proof 〉

lemma suminf-ereal-eq-0 :
fixes f :: nat ⇒ ereal
assumes nneg:

∧
i. 0 ≤ f i

shows (
∑

i. f i) = 0 ←→ (∀ i. f i = 0)
〈proof 〉

lemma suminf-ereal-offset-le:
fixes f :: nat ⇒ ereal
assumes f :

∧
i. 0 ≤ f i

shows (
∑

i. f (i + k)) ≤ suminf f
〈proof 〉

lemma sums-suminf-ereal: f sums x =⇒ (
∑

i. ereal (f i)) = ereal x
〈proof 〉

lemma suminf-ereal ′: summable f =⇒ (
∑

i. ereal (f i)) = ereal (
∑

i. f i)
〈proof 〉

lemma suminf-ereal-finite: summable f =⇒ (
∑

i. ereal (f i)) 6= ∞
〈proof 〉

lemma suminf-ereal-finite-neg:
assumes summable f
shows (

∑
x. ereal (f x)) 6= −∞

〈proof 〉

lemma SUP-ereal-add-directed:
fixes f g :: ′a ⇒ ereal
assumes nonneg:

∧
i. i ∈ I =⇒ 0 ≤ f i

∧
i. i ∈ I =⇒ 0 ≤ g i

assumes directed:
∧

i j. i ∈ I =⇒ j ∈ I =⇒ ∃ k∈I . f i + g j ≤ f k + g k
shows (SUP i∈I . f i + g i) = (SUP i∈I . f i) + (SUP i∈I . g i)
〈proof 〉

lemma SUP-ereal-sum-directed:
fixes f g :: ′a ⇒ ′b ⇒ ereal
assumes I 6= {}
assumes directed:

∧
N i j. N ⊆ A =⇒ i ∈ I =⇒ j ∈ I =⇒ ∃ k∈I . ∀n∈N . f n i

≤ f n k ∧ f n j ≤ f n k
assumes nonneg:

∧
n i. i ∈ I =⇒ n ∈ A =⇒ 0 ≤ f n i

shows (SUP i∈I .
∑

n∈A. f n i) = (
∑

n∈A. SUP i∈I . f n i)
〈proof 〉

THEORY “Extended-Real” 326

lemma suminf-SUP-eq-directed:
fixes f :: - ⇒ nat ⇒ ereal
assumes I 6= {}
assumes directed:

∧
N i j. i ∈ I =⇒ j ∈ I =⇒ finite N =⇒ ∃ k∈I . ∀n∈N . f i n

≤ f k n ∧ f j n ≤ f k n
assumes nonneg:

∧
n i. 0 ≤ f n i

shows (
∑

i. SUP n∈I . f n i) = (SUP n∈I .
∑

i. f n i)
〈proof 〉

lemma ereal-dense3 :
fixes x y :: ereal
shows x < y =⇒ ∃ r ::rat. x < real-of-rat r ∧ real-of-rat r < y
〈proof 〉

lemma continuous-within-ereal[intro, simp]: x ∈ A =⇒ continuous (at x within A)
ereal
〈proof 〉

lemma ereal-open-uminus:
fixes S :: ereal set
assumes open S
shows open (uminus ‘ S)
〈proof 〉

lemma ereal-uminus-complement:
fixes S :: ereal set
shows uminus ‘ (− S) = − uminus ‘ S
〈proof 〉

lemma ereal-closed-uminus:
fixes S :: ereal set
assumes closed S
shows closed (uminus ‘ S)
〈proof 〉

lemma ereal-open-affinity-pos:
fixes S :: ereal set
assumes open S

and m: m 6= ∞ 0 < m
and t: |t| 6= ∞

shows open ((λx. m ∗ x + t) ‘ S)
〈proof 〉

lemma ereal-open-affinity:
fixes S :: ereal set
assumes open S

and m: |m| 6= ∞ m 6= 0
and t: |t| 6= ∞

shows open ((λx. m ∗ x + t) ‘ S)

THEORY “Extended-Real” 327

〈proof 〉

lemma open-uminus-iff :
fixes S :: ereal set
shows open (uminus ‘ S) ←→ open S
〈proof 〉

lemma ereal-Liminf-uminus:
fixes f :: ′a ⇒ ereal
shows Liminf net (λx. − (f x)) = − Limsup net f
〈proof 〉

lemma Liminf-PInfty:
fixes f :: ′a ⇒ ereal
assumes ¬ trivial-limit net
shows (f −−−→ ∞) net ←→ Liminf net f = ∞
〈proof 〉

lemma Limsup-MInfty:
fixes f :: ′a ⇒ ereal
assumes ¬ trivial-limit net
shows (f −−−→ −∞) net ←→ Limsup net f = −∞
〈proof 〉

lemma convergent-ereal: — RENAME
fixes X :: nat ⇒ ′a :: {complete-linorder ,linorder-topology}
shows convergent X ←→ limsup X = liminf X
〈proof 〉

lemma limsup-le-liminf-real:
fixes X :: nat ⇒ real and L :: real
assumes 1 : limsup X ≤ L and 2 : L ≤ liminf X
shows X −−−−→ L
〈proof 〉

lemma liminf-PInfty:
fixes X :: nat ⇒ ereal
shows X −−−−→ ∞ ←→ liminf X = ∞
〈proof 〉

lemma limsup-MInfty:
fixes X :: nat ⇒ ereal
shows X −−−−→ −∞ ←→ limsup X = −∞
〈proof 〉

lemma SUP-eq-LIMSEQ:
assumes mono f
shows (SUP n. ereal (f n)) = ereal x ←→ f −−−−→ x
〈proof 〉

THEORY “Extended-Real” 328

lemma liminf-ereal-cminus:
fixes f :: nat ⇒ ereal
assumes c 6= −∞
shows liminf (λx. c − f x) = c − limsup f
〈proof 〉

38.6.3 Continuity
lemma continuous-at-of-ereal:
|x0 :: ereal| 6= ∞ =⇒ continuous (at x0) real-of-ereal
〈proof 〉

lemma nhds-ereal: nhds (ereal r) = filtermap ereal (nhds r)
〈proof 〉

lemma at-ereal: at (ereal r) = filtermap ereal (at r)
〈proof 〉

lemma at-left-ereal: at-left (ereal r) = filtermap ereal (at-left r)
〈proof 〉

lemma at-right-ereal: at-right (ereal r) = filtermap ereal (at-right r)
〈proof 〉

lemma
shows at-left-PInf : at-left ∞ = filtermap ereal at-top

and at-right-MInf : at-right (−∞) = filtermap ereal at-bot
〈proof 〉

lemma ereal-tendsto-simps1 :
((f ◦ real-of-ereal) −−−→ y) (at-left (ereal x)) ←→ (f −−−→ y) (at-left x)
((f ◦ real-of-ereal) −−−→ y) (at-right (ereal x)) ←→ (f −−−→ y) (at-right x)
((f ◦ real-of-ereal) −−−→ y) (at-left (∞::ereal)) ←→ (f −−−→ y) at-top
((f ◦ real-of-ereal) −−−→ y) (at-right (−∞::ereal)) ←→ (f −−−→ y) at-bot
〈proof 〉

lemma ereal-tendsto-simps2 :
((ereal ◦ f) −−−→ ereal a) F ←→ (f −−−→ a) F
((ereal ◦ f) −−−→ ∞) F ←→ (LIM x F . f x :> at-top)
((ereal ◦ f) −−−→ −∞) F ←→ (LIM x F . f x :> at-bot)
〈proof 〉

lemma inverse-infty-ereal-tendsto-0 : inverse −∞→ (0 ::ereal)
〈proof 〉

lemma inverse-ereal-tendsto-pos:
fixes x :: ereal assumes 0 < x
shows inverse −x→ inverse x

THEORY “Extended-Real” 329

〈proof 〉

lemma inverse-ereal-tendsto-at-right-0 : (inverse −−−→ ∞) (at-right (0 ::ereal))
〈proof 〉

lemmas ereal-tendsto-simps = ereal-tendsto-simps1 ereal-tendsto-simps2

lemma continuous-at-iff-ereal:
fixes f :: ′a::t2-space ⇒ real
shows continuous (at x0 within s) f ←→ continuous (at x0 within s) (ereal ◦ f)
〈proof 〉

lemma continuous-on-iff-ereal:
fixes f :: ′a::t2-space => real
assumes open A
shows continuous-on A f ←→ continuous-on A (ereal ◦ f)
〈proof 〉

lemma continuous-on-real: continuous-on (UNIV − {∞, −∞::ereal}) real-of-ereal
〈proof 〉

lemma continuous-on-iff-real:
fixes f :: ′a::t2-space ⇒ ereal
assumes

∧
x. x ∈ A =⇒ |f x| 6= ∞

shows continuous-on A f ←→ continuous-on A (real-of-ereal ◦ f)
〈proof 〉

lemma continuous-uminus-ereal [continuous-intros]: continuous-on (A :: ereal set)
uminus
〈proof 〉

lemma ereal-uminus-atMost [simp]: uminus ‘ {..(a::ereal)} = {−a..}
〈proof 〉

lemma continuous-on-inverse-ereal [continuous-intros]:
continuous-on {0 ::ereal ..} inverse
〈proof 〉

lemma continuous-inverse-ereal-nonpos: continuous-on ({..<0} :: ereal set) in-
verse
〈proof 〉

lemma tendsto-inverse-ereal:
assumes (f −−−→ (c :: ereal)) F
assumes eventually (λx. f x ≥ 0) F
shows ((λx. inverse (f x)) −−−→ inverse c) F
〈proof 〉

THEORY “Extended-Real” 330

38.6.4 liminf and limsup
lemma Limsup-ereal-mult-right:

assumes F 6= bot (c::real) ≥ 0
shows Limsup F (λn. f n ∗ ereal c) = Limsup F f ∗ ereal c
〈proof 〉

lemma Liminf-ereal-mult-right:
assumes F 6= bot (c::real) ≥ 0
shows Liminf F (λn. f n ∗ ereal c) = Liminf F f ∗ ereal c
〈proof 〉

lemma Liminf-ereal-mult-left:
assumes F 6= bot (c::real) ≥ 0

shows Liminf F (λn. ereal c ∗ f n) = ereal c ∗ Liminf F f
〈proof 〉

lemma Limsup-ereal-mult-left:
assumes F 6= bot (c::real) ≥ 0
shows Limsup F (λn. ereal c ∗ f n) = ereal c ∗ Limsup F f
〈proof 〉

lemma limsup-ereal-mult-right:
(c::real) ≥ 0 =⇒ limsup (λn. f n ∗ ereal c) = limsup f ∗ ereal c
〈proof 〉

lemma limsup-ereal-mult-left:
(c::real) ≥ 0 =⇒ limsup (λn. ereal c ∗ f n) = ereal c ∗ limsup f
〈proof 〉

lemma Limsup-add-ereal-right:
F 6= bot =⇒ abs c 6= ∞ =⇒ Limsup F (λn. g n + (c :: ereal)) = Limsup F g +

c
〈proof 〉

lemma Limsup-add-ereal-left:
F 6= bot =⇒ abs c 6= ∞ =⇒ Limsup F (λn. (c :: ereal) + g n) = c + Limsup F

g
〈proof 〉

lemma Liminf-add-ereal-right:
F 6= bot =⇒ abs c 6= ∞ =⇒ Liminf F (λn. g n + (c :: ereal)) = Liminf F g + c
〈proof 〉

lemma Liminf-add-ereal-left:
F 6= bot =⇒ abs c 6= ∞ =⇒ Liminf F (λn. (c :: ereal) + g n) = c + Liminf F g
〈proof 〉

lemma
assumes F 6= bot

THEORY “Extended-Real” 331

assumes nonneg: eventually (λx. f x ≥ (0 ::ereal)) F
shows Liminf-inverse-ereal: Liminf F (λx. inverse (f x)) = inverse (Limsup F

f)
and Limsup-inverse-ereal: Limsup F (λx. inverse (f x)) = inverse (Liminf F

f)
〈proof 〉

lemma ereal-diff-le-mono-left: [[x ≤ z; 0 ≤ y]] =⇒ x − y ≤ (z :: ereal)
〈proof 〉

lemma neg-0-less-iff-less-erea [simp]: 0 < − a ←→ (a :: ereal) < 0
〈proof 〉

lemma not-infty-ereal: |x| 6= ∞ ←→ (∃ x ′. x = ereal x ′)
〈proof 〉

lemma neq-PInf-trans: fixes x y :: ereal shows [[y 6= ∞; x ≤ y]] =⇒ x 6= ∞
〈proof 〉

lemma mult-2-ereal: ereal 2 ∗ x = x + x
〈proof 〉

lemma ereal-diff-le-self : 0 ≤ y =⇒ x − y ≤ (x :: ereal)
〈proof 〉

lemma ereal-le-add-self : 0 ≤ y =⇒ x ≤ x + (y :: ereal)
〈proof 〉

lemma ereal-le-add-self2 : 0 ≤ y =⇒ x ≤ y + (x :: ereal)
〈proof 〉

lemma ereal-diff-nonpos:
fixes a b :: ereal shows [[a ≤ b; a = ∞ =⇒ b 6= ∞; a = −∞ =⇒ b 6= −∞]]

=⇒ a − b ≤ 0
〈proof 〉

lemma minus-ereal-0 [simp]: x − ereal 0 = x
〈proof 〉

lemma ereal-diff-eq-0-iff : fixes a b :: ereal
shows (|a| = ∞ =⇒ |b| 6= ∞) =⇒ a − b = 0 ←→ a = b
〈proof 〉

lemma SUP-ereal-eq-0-iff-nonneg:
fixes f :: - ⇒ ereal and A
assumes nonneg: ∀ x∈A. f x ≥ 0

and A:A 6= {}
shows (SUP x∈A. f x) = 0 ←→ (∀ x∈A. f x = 0) (is ?lhs ←→ -)
〈proof 〉

THEORY “Extended-Real” 332

lemma ereal-divide-le-posI :
fixes x y z :: ereal
shows x > 0 =⇒ z 6= −∞ =⇒ z ≤ x ∗ y =⇒ z / x ≤ y
〈proof 〉

lemma add-diff-eq-ereal:
fixes x y z :: ereal
shows x + (y − z) = x + y − z
〈proof 〉

lemma ereal-diff-gr0 :
fixes a b :: ereal
shows a < b =⇒ 0 < b − a
〈proof 〉

lemma ereal-minus-minus:
fixes x y z :: ereal shows
(|y| = ∞ =⇒ |z| 6= ∞) =⇒ x − (y − z) = x + z − y
〈proof 〉

lemma diff-diff-commute-ereal:
fixes x y z :: ereal
shows x − y − z = x − z − y
〈proof 〉

lemma ereal-diff-eq-MInfty-iff :
fixes x y :: ereal
shows x − y = −∞ ←→ x = −∞ ∧ y 6= −∞ ∨ y = ∞ ∧ |x| 6= ∞
〈proof 〉

lemma ereal-diff-add-inverse:
fixes x y :: ereal
shows |x| 6= ∞ =⇒ x + y − x = y
〈proof 〉

lemma tendsto-diff-ereal:
fixes x y :: ereal
assumes x: |x| 6= ∞ and y: |y| 6= ∞
assumes f : (f −−−→ x) F and g: (g −−−→ y) F
shows ((λx. f x − g x) −−−→ x − y) F
〈proof 〉

lemma continuous-on-diff-ereal:
continuous-on A f =⇒ continuous-on A g =⇒ (

∧
x. x ∈ A =⇒ |f x| 6= ∞) =⇒

(
∧

x. x ∈ A =⇒ |g x| 6= ∞) =⇒ continuous-on A (λz. f z − g z::ereal)
〈proof 〉

THEORY “Indicator-Function” 333

38.6.5 Tests for code generator

A small list of simple arithmetic expressions.
value −∞ :: ereal
value |−∞| :: ereal
value 4 + 5 / 4 − ereal 2 :: ereal
value ereal 3 < ∞
value real-of-ereal (∞::ereal) = 0

end

39 Indicator Function
theory Indicator-Function
imports Complex-Main Disjoint-Sets
begin

definition indicator S x = of-bool (x ∈ S)

Type constrained version
abbreviation indicat-real :: ′a set ⇒ ′a ⇒ real where indicat-real S ≡ indicator
S

lemma indicator-simps[simp]:
x ∈ S =⇒ indicator S x = 1
x /∈ S =⇒ indicator S x = 0
〈proof 〉

lemma indicator-pos-le[intro, simp]: (0 :: ′a::linordered-semidom) ≤ indicator S x
and indicator-le-1 [intro, simp]: indicator S x ≤ (1 :: ′a::linordered-semidom)
〈proof 〉

lemma indicator-abs-le-1 : |indicator S x| ≤ (1 :: ′a::linordered-idom)
〈proof 〉

lemma indicator-eq-0-iff : indicator A x = (0 :: ′a::zero-neq-one) ←→ x /∈ A
〈proof 〉

lemma indicator-eq-1-iff : indicator A x = (1 :: ′a::zero-neq-one) ←→ x ∈ A
〈proof 〉

lemma indicator-UNIV [simp]: indicator UNIV = (λx. 1)
〈proof 〉

lemma indicator-leI :
(x ∈ A =⇒ y ∈ B) =⇒ (indicator A x :: ′a::linordered-nonzero-semiring) ≤

indicator B y
〈proof 〉

THEORY “Indicator-Function” 334

lemma split-indicator : P (indicator S x) ←→ ((x ∈ S −→ P 1) ∧ (x /∈ S −→ P
0))
〈proof 〉

lemma split-indicator-asm: P (indicator S x) ←→ (¬ (x ∈ S ∧ ¬ P 1 ∨ x /∈ S ∧
¬ P 0))
〈proof 〉

lemma indicator-inter-arith: indicator (A ∩ B) x = indicator A x ∗ (indicator B
x:: ′a::semiring-1)
〈proof 〉

lemma indicator-union-arith:
indicator (A ∪ B) x = indicator A x + indicator B x − indicator A x ∗ (indicator

B x :: ′a::ring-1)
〈proof 〉

lemma indicator-inter-min: indicator (A ∩ B) x = min (indicator A x) (indicator
B x:: ′a::linordered-semidom)

and indicator-union-max: indicator (A ∪ B) x = max (indicator A x) (indicator
B x:: ′a::linordered-semidom)
〈proof 〉

lemma indicator-disj-union:
A ∩ B = {} =⇒ indicator (A ∪ B) x = (indicator A x + indicator B x ::

′a::linordered-semidom)
〈proof 〉

lemma indicator-compl: indicator (− A) x = 1 − (indicator A x :: ′a::ring-1)
and indicator-diff : indicator (A − B) x = indicator A x ∗ (1 − indicator B x

:: ′a::ring-1)
〈proof 〉

lemma indicator-times:
indicator (A × B) x = indicator A (fst x) ∗ (indicator B (snd x) :: ′a::semiring-1)
〈proof 〉

lemma indicator-sum:
indicator (A <+> B) x = (case x of Inl x ⇒ indicator A x | Inr x ⇒ indicator

B x)
〈proof 〉

lemma indicator-image: inj f =⇒ indicator (f ‘ X) (f x) = (indicator X x ::-::zero-neq-one)
〈proof 〉

lemma indicator-vimage: indicator (f −‘ A) x = indicator A (f x)
〈proof 〉

lemma mult-indicator-cong:

THEORY “Indicator-Function” 335

fixes f g :: - ⇒ ′a :: semiring-1
shows (

∧
x. x ∈ A =⇒ f x = g x) =⇒ indicator A x ∗ f x = indicator A x ∗ g x

〈proof 〉

lemma
fixes f :: ′a ⇒ ′b::semiring-1
assumes finite A
shows sum-mult-indicator [simp]: (

∑
x ∈ A. f x ∗ indicator B x) = (

∑
x ∈ A ∩

B. f x)
and sum-indicator-mult[simp]: (

∑
x ∈ A. indicator B x ∗ f x) = (

∑
x ∈ A ∩

B. f x)
〈proof 〉

lemma sum-indicator-eq-card:
assumes finite A
shows (

∑
x ∈ A. indicator B x) = card (A Int B)

〈proof 〉

lemma sum-indicator-scaleR[simp]:
finite A =⇒
(
∑

x ∈ A. indicator (B x) (g x) ∗R f x) = (
∑

x ∈ {x∈A. g x ∈ B x}. f x ::
′a::real-vector)
〈proof 〉

lemma LIMSEQ-indicator-incseq:
assumes incseq A
shows (λi. indicator (A i) x :: ′a::{topological-space,zero-neq-one}) −−−−→ indi-

cator (
⋃

i. A i) x
〈proof 〉

lemma LIMSEQ-indicator-UN :
(λk. indicator (

⋃
i<k. A i) x :: ′a::{topological-space,zero-neq-one}) −−−−→ in-

dicator (
⋃

i. A i) x
〈proof 〉

lemma LIMSEQ-indicator-decseq:
assumes decseq A
shows (λi. indicator (A i) x :: ′a::{topological-space,zero-neq-one}) −−−−→ indi-

cator (
⋂

i. A i) x
〈proof 〉

lemma LIMSEQ-indicator-INT :
(λk. indicator (

⋂
i<k. A i) x :: ′a::{topological-space,zero-neq-one}) −−−−→ in-

dicator (
⋂

i. A i) x
〈proof 〉

lemma indicator-add:
A ∩ B = {} =⇒ (indicator A x::-::monoid-add) + indicator B x = indicator (A
∪ B) x

THEORY “Extended-Nonnegative-Real” 336

〈proof 〉

lemma of-real-indicator : of-real (indicator A x) = indicator A x
〈proof 〉

lemma real-of-nat-indicator : real (indicator A x :: nat) = indicator A x
〈proof 〉

lemma abs-indicator : |indicator A x :: ′a::linordered-idom| = indicator A x
〈proof 〉

lemma mult-indicator-subset:
A ⊆ B =⇒ indicator A x ∗ indicator B x = (indicator A x :: ′a::comm-semiring-1)
〈proof 〉

lemma indicator-times-eq-if :
fixes f :: ′a ⇒ ′b::comm-ring-1
shows indicator S x ∗ f x = (if x ∈ S then f x else 0) f x ∗ indicator S x = (if x
∈ S then f x else 0)
〈proof 〉

lemma indicator-scaleR-eq-if :
fixes f :: ′a ⇒ ′b::real-vector
shows indicator S x ∗R f x = (if x ∈ S then f x else 0)
〈proof 〉

lemma indicator-sums:
assumes

∧
i j. i 6= j =⇒ A i ∩ A j = {}

shows (λi. indicator (A i) x::real) sums indicator (
⋃

i. A i) x
〈proof 〉

The indicator function of the union of a disjoint family of sets is the sum
over all the individual indicators.
lemma indicator-UN-disjoint:
finite A =⇒ disjoint-family-on f A =⇒ indicator (

⋃
(f ‘ A)) x = (

∑
y∈A. indicator

(f y) x)
〈proof 〉

end

40 The type of non-negative extended real num-
bers

theory Extended-Nonnegative-Real
imports Extended-Real Indicator-Function

begin

lemma ereal-ineq-diff-add:

THEORY “Extended-Nonnegative-Real” 337

assumes b 6= (−∞::ereal) a ≥ b
shows a = b + (a−b)
〈proof 〉

lemma Limsup-const-add:
fixes c :: ′a::{complete-linorder , linorder-topology, topological-monoid-add, or-

dered-ab-semigroup-add}
shows F 6= bot =⇒ Limsup F (λx. c + f x) = c + Limsup F f
〈proof 〉

lemma Liminf-const-add:
fixes c :: ′a::{complete-linorder , linorder-topology, topological-monoid-add, or-

dered-ab-semigroup-add}
shows F 6= bot =⇒ Liminf F (λx. c + f x) = c + Liminf F f
〈proof 〉

lemma Liminf-add-const:
fixes c :: ′a::{complete-linorder , linorder-topology, topological-monoid-add, or-

dered-ab-semigroup-add}
shows F 6= bot =⇒ Liminf F (λx. f x + c) = Liminf F f + c
〈proof 〉

lemma sums-offset:
fixes f g :: nat ⇒ ′a :: {t2-space, topological-comm-monoid-add}
assumes (λn. f (n + i)) sums l shows f sums (l + (

∑
j<i. f j))

〈proof 〉

lemma suminf-offset:
fixes f g :: nat ⇒ ′a :: {t2-space, topological-comm-monoid-add}
shows summable (λj. f (j + i)) =⇒ suminf f = (

∑
j. f (j + i)) + (

∑
j<i. f j)

〈proof 〉

lemma eventually-at-left-1 : (
∧

z::real. 0 < z =⇒ z < 1 =⇒ P z) =⇒ eventually
P (at-left 1)
〈proof 〉

lemma mult-eq-1 :
fixes a b :: ′a :: {ordered-semiring, comm-monoid-mult}
shows 0 ≤ a =⇒ a ≤ 1 =⇒ b ≤ 1 =⇒ a ∗ b = 1 ←→ (a = 1 ∧ b = 1)
〈proof 〉

lemma ereal-add-diff-cancel:
fixes a b :: ereal
shows |b| 6= ∞ =⇒ (a + b) − b = a
〈proof 〉

lemma add-top:
fixes x :: ′a::{order-top, ordered-comm-monoid-add}
shows 0 ≤ x =⇒ x + top = top

THEORY “Extended-Nonnegative-Real” 338

〈proof 〉

lemma top-add:
fixes x :: ′a::{order-top, ordered-comm-monoid-add}
shows 0 ≤ x =⇒ top + x = top
〈proof 〉

lemma le-lfp: mono f =⇒ x ≤ lfp f =⇒ f x ≤ lfp f
〈proof 〉

lemma lfp-transfer :
assumes α: sup-continuous α and f : sup-continuous f and mg: mono g
assumes bot: α bot ≤ lfp g and eq:

∧
x. x ≤ lfp f =⇒ α (f x) = g (α x)

shows α (lfp f) = lfp g
〈proof 〉

lemma sup-continuous-applyD: sup-continuous f =⇒ sup-continuous (λx. f x h)
〈proof 〉

lemma sup-continuous-SUP[order-continuous-intros]:
fixes M :: - ⇒ - ⇒ ′a::complete-lattice
assumes M :

∧
i. i ∈ I =⇒ sup-continuous (M i)

shows sup-continuous (SUP i∈I . M i)
〈proof 〉

lemma sup-continuous-apply-SUP[order-continuous-intros]:
fixes M :: - ⇒ - ⇒ ′a::complete-lattice
shows (

∧
i. i ∈ I =⇒ sup-continuous (M i)) =⇒ sup-continuous (λx. SUP i∈I .

M i x)
〈proof 〉

lemma sup-continuous-lfp ′[order-continuous-intros]:
assumes 1 : sup-continuous f
assumes 2 :

∧
g. sup-continuous g =⇒ sup-continuous (f g)

shows sup-continuous (lfp f)
〈proof 〉

lemma sup-continuous-lfp ′′[order-continuous-intros]:
assumes 1 :

∧
s. sup-continuous (f s)

assumes 2 :
∧

g. sup-continuous g =⇒ sup-continuous (λs. f s (g s))
shows sup-continuous (λx. lfp (f x))
〈proof 〉

lemma mono-INF-fun:
(
∧

x y. mono (F x y)) =⇒ mono (λz x. INF y ∈ X x. F x y z :: ′a :: com-
plete-lattice)
〈proof 〉

lemma continuous-on-cmult-ereal:

THEORY “Extended-Nonnegative-Real” 339

|c::ereal| 6= ∞ =⇒ continuous-on A f =⇒ continuous-on A (λx. c ∗ f x)
〈proof 〉

lemma real-of-nat-Sup:
assumes A 6= {} bdd-above A
shows of-nat (Sup A) = (SUP a∈A. of-nat a :: real)
〈proof 〉

lemma (in complete-lattice) SUP-sup-const1 :
I 6= {} =⇒ (SUP i∈I . sup c (f i)) = sup c (SUP i∈I . f i)
〈proof 〉

lemma (in complete-lattice) SUP-sup-const2 :
I 6= {} =⇒ (SUP i∈I . sup (f i) c) = sup (SUP i∈I . f i) c
〈proof 〉

lemma one-less-of-natD:
assumes (1 :: ′a::linordered-semidom) < of-nat n shows 1 < n
〈proof 〉

40.1 Defining the extended non-negative reals
Basic definitions and type class setup
typedef ennreal = {x :: ereal. 0 ≤ x}

morphisms enn2ereal e2ennreal ′
〈proof 〉

definition e2ennreal x = e2ennreal ′ (max 0 x)

lemma enn2ereal-range: e2ennreal ‘ {0 ..} = UNIV
〈proof 〉

lemma type-definition-ennreal ′: type-definition enn2ereal e2ennreal {x. 0 ≤ x}
〈proof 〉

setup-lifting type-definition-ennreal ′

declare [[coercion e2ennreal]]

instantiation ennreal :: complete-linorder
begin

lift-definition top-ennreal :: ennreal is top 〈proof 〉
lift-definition bot-ennreal :: ennreal is 0 〈proof 〉
lift-definition sup-ennreal :: ennreal ⇒ ennreal ⇒ ennreal is sup 〈proof 〉
lift-definition inf-ennreal :: ennreal ⇒ ennreal ⇒ ennreal is inf 〈proof 〉

lift-definition Inf-ennreal :: ennreal set ⇒ ennreal is Inf
〈proof 〉

THEORY “Extended-Nonnegative-Real” 340

lift-definition Sup-ennreal :: ennreal set ⇒ ennreal is sup 0 ◦ Sup
〈proof 〉

lift-definition less-eq-ennreal :: ennreal ⇒ ennreal ⇒ bool is (≤) 〈proof 〉
lift-definition less-ennreal :: ennreal ⇒ ennreal ⇒ bool is (<) 〈proof 〉

instance
〈proof 〉

end

lemma pcr-ennreal-enn2ereal[simp]: pcr-ennreal (enn2ereal x) x
〈proof 〉

lemma rel-fun-eq-pcr-ennreal: rel-fun (=) pcr-ennreal f g ←→ f = enn2ereal ◦ g
〈proof 〉

instantiation ennreal :: infinity
begin

definition infinity-ennreal :: ennreal
where [simp]: ∞ = (top::ennreal)

instance 〈proof 〉

end

instantiation ennreal :: {semiring-1-no-zero-divisors, comm-semiring-1}
begin

lift-definition one-ennreal :: ennreal is 1 〈proof 〉
lift-definition zero-ennreal :: ennreal is 0 〈proof 〉
lift-definition plus-ennreal :: ennreal ⇒ ennreal ⇒ ennreal is (+) 〈proof 〉
lift-definition times-ennreal :: ennreal ⇒ ennreal ⇒ ennreal is (∗) 〈proof 〉

instance
〈proof 〉

end

instantiation ennreal :: minus
begin

lift-definition minus-ennreal :: ennreal ⇒ ennreal ⇒ ennreal is λa b. max 0 (a
− b)
〈proof 〉

instance 〈proof 〉

THEORY “Extended-Nonnegative-Real” 341

end

instance ennreal :: numeral 〈proof 〉

instantiation ennreal :: inverse
begin

lift-definition inverse-ennreal :: ennreal ⇒ ennreal is inverse
〈proof 〉

definition divide-ennreal :: ennreal ⇒ ennreal ⇒ ennreal
where x div y = x ∗ inverse (y :: ennreal)

instance 〈proof 〉

end

lemma ennreal-zero-less-one: 0 < (1 ::ennreal) — TODO: remove
〈proof 〉

instance ennreal :: dioid
〈proof 〉

instance ennreal :: ordered-comm-semiring
〈proof 〉

instance ennreal :: linordered-nonzero-semiring
〈proof 〉

instance ennreal :: strict-ordered-ab-semigroup-add
〈proof 〉

declare [[coercion of-nat :: nat ⇒ ennreal]]

lemma e2ennreal-neg: x ≤ 0 =⇒ e2ennreal x = 0
〈proof 〉

lemma e2ennreal-mono: x ≤ y =⇒ e2ennreal x ≤ e2ennreal y
〈proof 〉

lemma enn2ereal-nonneg[simp]: 0 ≤ enn2ereal x
〈proof 〉

lemma ereal-ennreal-cases:
obtains b where 0 ≤ a a = enn2ereal b | a < 0
〈proof 〉

lemma rel-fun-liminf [transfer-rule]: rel-fun (rel-fun (=) pcr-ennreal) pcr-ennreal

THEORY “Extended-Nonnegative-Real” 342

liminf liminf
〈proof 〉

lemma rel-fun-limsup[transfer-rule]: rel-fun (rel-fun (=) pcr-ennreal) pcr-ennreal
limsup limsup
〈proof 〉

lemma sum-enn2ereal[simp]: (
∧

i. i ∈ I =⇒ 0 ≤ f i) =⇒ (
∑

i∈I . enn2ereal (f i))
= enn2ereal (sum f I)
〈proof 〉

lemma transfer-e2ennreal-sum [transfer-rule]:
rel-fun (rel-fun (=) pcr-ennreal) (rel-fun (=) pcr-ennreal) sum sum
〈proof 〉

lemma enn2ereal-of-nat[simp]: enn2ereal (of-nat n) = ereal n
〈proof 〉

lemma enn2ereal-numeral[simp]: enn2ereal (numeral a) = numeral a
〈proof 〉

lemma transfer-numeral[transfer-rule]: pcr-ennreal (numeral a) (numeral a)
〈proof 〉

40.2 Cancellation simprocs
lemma ennreal-add-left-cancel: a + b = a + c ←→ a = (∞::ennreal) ∨ b = c
〈proof 〉

lemma ennreal-add-left-cancel-le: a + b ≤ a + c ←→ a = (∞::ennreal) ∨ b ≤ c
〈proof 〉

lemma ereal-add-left-cancel-less:
fixes a b c :: ereal
shows 0 ≤ a =⇒ 0 ≤ b =⇒ a + b < a + c ←→ a 6= ∞ ∧ b < c
〈proof 〉

lemma ennreal-add-left-cancel-less: a + b < a + c ←→ a 6= (∞::ennreal) ∧ b < c
〈proof 〉

〈ML〉

40.3 Order with top
lemma ennreal-zero-less-top[simp]: 0 < (top::ennreal)
〈proof 〉

lemma ennreal-one-less-top[simp]: 1 < (top::ennreal)
〈proof 〉

THEORY “Extended-Nonnegative-Real” 343

lemma ennreal-zero-neq-top[simp]: 0 6= (top::ennreal)
〈proof 〉

lemma ennreal-top-neq-zero[simp]: (top::ennreal) 6= 0
〈proof 〉

lemma ennreal-top-neq-one[simp]: top 6= (1 ::ennreal)
〈proof 〉

lemma ennreal-one-neq-top[simp]: 1 6= (top::ennreal)
〈proof 〉

lemma ennreal-add-less-top[simp]:
fixes a b :: ennreal
shows a + b < top ←→ a < top ∧ b < top
〈proof 〉

lemma ennreal-add-eq-top[simp]:
fixes a b :: ennreal
shows a + b = top ←→ a = top ∨ b = top
〈proof 〉

lemma ennreal-sum-less-top[simp]:
fixes f :: ′a ⇒ ennreal
shows finite I =⇒ (

∑
i∈I . f i) < top ←→ (∀ i∈I . f i < top)

〈proof 〉

lemma ennreal-sum-eq-top[simp]:
fixes f :: ′a ⇒ ennreal
shows finite I =⇒ (

∑
i∈I . f i) = top ←→ (∃ i∈I . f i = top)

〈proof 〉

lemma ennreal-mult-eq-top-iff :
fixes a b :: ennreal
shows a ∗ b = top ←→ (a = top ∧ b 6= 0) ∨ (b = top ∧ a 6= 0)
〈proof 〉

lemma ennreal-top-eq-mult-iff :
fixes a b :: ennreal
shows top = a ∗ b ←→ (a = top ∧ b 6= 0) ∨ (b = top ∧ a 6= 0)
〈proof 〉

lemma ennreal-mult-less-top:
fixes a b :: ennreal
shows a ∗ b < top ←→ (a = 0 ∨ b = 0 ∨ (a < top ∧ b < top))
〈proof 〉

lemma top-power-ennreal: top ^ n = (if n = 0 then 1 else top :: ennreal)
〈proof 〉

THEORY “Extended-Nonnegative-Real” 344

lemma ennreal-prod-eq-0 [simp]:
fixes f :: ′a ⇒ ennreal
shows (prod f A = 0) = (finite A ∧ (∃ i∈A. f i = 0))
〈proof 〉

lemma ennreal-prod-eq-top:
fixes f :: ′a ⇒ ennreal
shows (

∏
i∈I . f i) = top ←→ (finite I ∧ ((∀ i∈I . f i 6= 0) ∧ (∃ i∈I . f i = top)))

〈proof 〉

lemma ennreal-top-mult: top ∗ a = (if a = 0 then 0 else top :: ennreal)
〈proof 〉

lemma ennreal-mult-top: a ∗ top = (if a = 0 then 0 else top :: ennreal)
〈proof 〉

lemma enn2ereal-eq-top-iff [simp]: enn2ereal x = ∞ ←→ x = top
〈proof 〉

lemma enn2ereal-top[simp]: enn2ereal top = ∞
〈proof 〉

lemma e2ennreal-infty[simp]: e2ennreal ∞ = top
〈proof 〉

lemma ennreal-top-minus[simp]: top − x = (top::ennreal)
〈proof 〉

lemma minus-top-ennreal: x − top = (if x = top then top else 0 :: ennreal)
〈proof 〉

lemma bot-ennreal: bot = (0 ::ennreal)
〈proof 〉

lemma ennreal-of-nat-neq-top[simp]: of-nat i 6= (top::ennreal)
〈proof 〉

lemma numeral-eq-of-nat: (numeral a::ennreal) = of-nat (numeral a)
〈proof 〉

lemma of-nat-less-top: of-nat i < (top::ennreal)
〈proof 〉

lemma top-neq-numeral[simp]: top 6= (numeral i::ennreal)
〈proof 〉

lemma ennreal-numeral-less-top[simp]: numeral i < (top::ennreal)
〈proof 〉

THEORY “Extended-Nonnegative-Real” 345

lemma ennreal-add-bot[simp]: bot + x = (x::ennreal)
〈proof 〉

lemma add-top-right-ennreal [simp]: x + top = (top :: ennreal)
〈proof 〉

lemma add-top-left-ennreal [simp]: top + x = (top :: ennreal)
〈proof 〉

lemma ennreal-top-mult-left [simp]: x 6= 0 =⇒ x ∗ top = (top :: ennreal)
〈proof 〉

lemma ennreal-top-mult-right [simp]: x 6= 0 =⇒ top ∗ x = (top :: ennreal)
〈proof 〉

lemma power-top-ennreal [simp]: n > 0 =⇒ top ^ n = (top :: ennreal)
〈proof 〉

lemma power-eq-top-ennreal-iff : x ^ n = top ←→ x = (top :: ennreal) ∧ n > 0
〈proof 〉

lemma ennreal-mult-le-mult-iff : c 6= 0 =⇒ c 6= top =⇒ c ∗ a ≤ c ∗ b ←→ a ≤
(b :: ennreal)

including ennreal.lifting
〈proof 〉

lemma power-mono-ennreal: x ≤ y =⇒ x ^ n ≤ (y ^ n :: ennreal)
〈proof 〉

instance ennreal :: semiring-char-0
〈proof 〉

40.4 Arithmetic
lemma ennreal-minus-zero[simp]: a − (0 ::ennreal) = a
〈proof 〉

lemma ennreal-add-diff-cancel-right[simp]:
fixes x y z :: ennreal shows y 6= top =⇒ (x + y) − y = x
〈proof 〉

lemma ennreal-add-diff-cancel-left[simp]:
fixes x y z :: ennreal shows y 6= top =⇒ (y + x) − y = x
〈proof 〉

lemma
fixes a b :: ennreal

THEORY “Extended-Nonnegative-Real” 346

shows a − b = 0 =⇒ a ≤ b
〈proof 〉

lemma ennreal-minus-cancel:
fixes a b c :: ennreal
shows c 6= top =⇒ a ≤ c =⇒ b ≤ c =⇒ c − a = c − b =⇒ a = b
〈proof 〉

lemma sup-const-add-ennreal:
fixes a b c :: ennreal
shows sup (c + a) (c + b) = c + sup a b
〈proof 〉

lemma ennreal-diff-add-assoc:
fixes a b c :: ennreal
shows a ≤ b =⇒ c + b − a = c + (b − a)
〈proof 〉

lemma mult-divide-eq-ennreal:
fixes a b :: ennreal
shows b 6= 0 =⇒ b 6= top =⇒ (a ∗ b) / b = a
〈proof 〉

lemma divide-mult-eq: a 6= 0 =⇒ a 6= ∞ =⇒ x ∗ a / (b ∗ a) = x / (b::ennreal)
〈proof 〉

lemma ennreal-mult-divide-eq:
fixes a b :: ennreal
shows b 6= 0 =⇒ b 6= top =⇒ (a ∗ b) / b = a
〈proof 〉

lemma ennreal-add-diff-cancel:
fixes a b :: ennreal
shows b 6= ∞ =⇒ (a + b) − b = a
〈proof 〉

lemma ennreal-minus-eq-0 :
a − b = 0 =⇒ a ≤ (b::ennreal)
〈proof 〉

lemma ennreal-mono-minus-cancel:
fixes a b c :: ennreal
shows a − b ≤ a − c =⇒ a < top =⇒ b ≤ a =⇒ c ≤ a =⇒ c ≤ b
〈proof 〉

lemma ennreal-mono-minus:
fixes a b c :: ennreal
shows c ≤ b =⇒ a − b ≤ a − c
〈proof 〉

THEORY “Extended-Nonnegative-Real” 347

lemma ennreal-minus-pos-iff :
fixes a b :: ennreal
shows a < top ∨ b < top =⇒ 0 < a − b =⇒ b < a
〈proof 〉

lemma ennreal-inverse-top[simp]: inverse top = (0 ::ennreal)
〈proof 〉

lemma ennreal-inverse-zero[simp]: inverse 0 = (top::ennreal)
〈proof 〉

lemma ennreal-top-divide: top / (x::ennreal) = (if x = top then 0 else top)
〈proof 〉

lemma ennreal-zero-divide[simp]: 0 / (x::ennreal) = 0
〈proof 〉

lemma ennreal-divide-zero[simp]: x / (0 ::ennreal) = (if x = 0 then 0 else top)
〈proof 〉

lemma ennreal-divide-top[simp]: x / (top::ennreal) = 0
〈proof 〉

lemma ennreal-times-divide: a ∗ (b / c) = a ∗ b / (c::ennreal)
〈proof 〉

lemma ennreal-zero-less-divide: 0 < a / b ←→ (0 < a ∧ b < (top::ennreal))
〈proof 〉

lemma add-divide-distrib-ennreal: (a + b) / c = a / c + b / (c :: ennreal)
〈proof 〉

lemma divide-right-mono-ennreal:
fixes a b c :: ennreal
shows a ≤ b =⇒ a / c ≤ b / c
〈proof 〉

lemma ennreal-mult-strict-right-mono: (a::ennreal) < c =⇒ 0 < b =⇒ b < top
=⇒ a ∗ b < c ∗ b
〈proof 〉

lemma ennreal-indicator-less[simp]:
indicator A x ≤ (indicator B x::ennreal) ←→ (x ∈ A −→ x ∈ B)
〈proof 〉

lemma ennreal-inverse-positive: 0 < inverse x ←→ (x::ennreal) 6= top
〈proof 〉

THEORY “Extended-Nonnegative-Real” 348

lemma ennreal-inverse-mult ′: ((0 < b ∨ a < top) ∧ (0 < a ∨ b < top)) =⇒
inverse (a ∗ b::ennreal) = inverse a ∗ inverse b
〈proof 〉

lemma ennreal-inverse-mult: a < top =⇒ b < top =⇒ inverse (a ∗ b::ennreal) =
inverse a ∗ inverse b
〈proof 〉

lemma ennreal-inverse-1 [simp]: inverse (1 ::ennreal) = 1
〈proof 〉

lemma ennreal-inverse-eq-0-iff [simp]: inverse (a::ennreal) = 0 ←→ a = top
〈proof 〉

lemma ennreal-inverse-eq-top-iff [simp]: inverse (a::ennreal) = top ←→ a = 0
〈proof 〉

lemma ennreal-divide-eq-0-iff [simp]: (a::ennreal) / b = 0 ←→ (a = 0 ∨ b = top)
〈proof 〉

lemma ennreal-divide-eq-top-iff : (a::ennreal) / b = top ←→ ((a 6= 0 ∧ b = 0) ∨
(a = top ∧ b 6= top))
〈proof 〉

lemma one-divide-one-divide-ennreal[simp]: 1 / (1 / c) = (c::ennreal)
including ennreal.lifting
〈proof 〉

lemma ennreal-mult-left-cong:
((a::ennreal) 6= 0 =⇒ b = c) =⇒ a ∗ b = a ∗ c
〈proof 〉

lemma ennreal-mult-right-cong:
((a::ennreal) 6= 0 =⇒ b = c) =⇒ b ∗ a = c ∗ a
〈proof 〉

lemma ennreal-zero-less-mult-iff : 0 < a ∗ b ←→ 0 < a ∧ 0 < (b::ennreal)
〈proof 〉

lemma less-diff-eq-ennreal:
fixes a b c :: ennreal
shows b < top ∨ c < top =⇒ a < b − c ←→ a + c < b
〈proof 〉

lemma diff-add-cancel-ennreal:
fixes a b :: ennreal shows a ≤ b =⇒ b − a + a = b
〈proof 〉

lemma ennreal-diff-self [simp]: a 6= top =⇒ a − a = (0 ::ennreal)

THEORY “Extended-Nonnegative-Real” 349

〈proof 〉

lemma ennreal-minus-mono:
fixes a b c :: ennreal
shows a ≤ c =⇒ d ≤ b =⇒ a − b ≤ c − d
〈proof 〉

lemma ennreal-minus-eq-top[simp]: a − (b::ennreal) = top ←→ a = top
〈proof 〉

lemma ennreal-divide-self [simp]: a 6= 0 =⇒ a < top =⇒ a / a = (1 ::ennreal)
〈proof 〉

40.5 Coercion from real to ennreal
lift-definition ennreal :: real ⇒ ennreal is sup 0 ◦ ereal
〈proof 〉

declare [[coercion ennreal]]

lemma ennreal-cong: x = y =⇒ ennreal x = ennreal y
〈proof 〉

lemma ennreal-cases[cases type: ennreal]:
fixes x :: ennreal
obtains (real) r :: real where 0 ≤ r x = ennreal r | (top) x = top
〈proof 〉

lemmas ennreal2-cases = ennreal-cases[case-product ennreal-cases]
lemmas ennreal3-cases = ennreal-cases[case-product ennreal2-cases]

lemma ennreal-neq-top[simp]: ennreal r 6= top
〈proof 〉

lemma top-neq-ennreal[simp]: top 6= ennreal r
〈proof 〉

lemma ennreal-less-top[simp]: ennreal x < top
〈proof 〉

lemma ennreal-neg: x ≤ 0 =⇒ ennreal x = 0
〈proof 〉

lemma ennreal-inj[simp]:
0 ≤ a =⇒ 0 ≤ b =⇒ ennreal a = ennreal b ←→ a = b
〈proof 〉

lemma ennreal-le-iff [simp]: 0 ≤ y =⇒ ennreal x ≤ ennreal y ←→ x ≤ y
〈proof 〉

THEORY “Extended-Nonnegative-Real” 350

lemma le-ennreal-iff : 0 ≤ r =⇒ x ≤ ennreal r ←→ (∃ q≥0 . x = ennreal q ∧ q ≤
r)
〈proof 〉

lemma ennreal-less-iff : 0 ≤ r =⇒ ennreal r < ennreal q ←→ r < q
〈proof 〉

lemma ennreal-eq-zero-iff [simp]: 0 ≤ x =⇒ ennreal x = 0 ←→ x = 0
〈proof 〉

lemma ennreal-less-zero-iff [simp]: 0 < ennreal x ←→ 0 < x
〈proof 〉

lemma ennreal-lessI : 0 < q =⇒ r < q =⇒ ennreal r < ennreal q
〈proof 〉

lemma ennreal-leI : x ≤ y =⇒ ennreal x ≤ ennreal y
〈proof 〉

lemma enn2ereal-ennreal[simp]: 0 ≤ x =⇒ enn2ereal (ennreal x) = x
〈proof 〉

lemma e2ennreal-enn2ereal[simp]: e2ennreal (enn2ereal x) = x
〈proof 〉

lemma enn2ereal-e2ennreal: x ≥ 0 =⇒ enn2ereal (e2ennreal x) = x
〈proof 〉

lemma e2ennreal-ereal [simp]: e2ennreal (ereal x) = ennreal x
〈proof 〉

lemma ennreal-0 [simp]: ennreal 0 = 0
〈proof 〉

lemma ennreal-1 [simp]: ennreal 1 = 1
〈proof 〉

lemma ennreal-eq-0-iff : ennreal x = 0 ←→ x ≤ 0
〈proof 〉

lemma ennreal-le-iff2 : ennreal x ≤ ennreal y ←→ ((0 ≤ y ∧ x ≤ y) ∨ (x ≤ 0 ∧
y ≤ 0))
〈proof 〉

lemma ennreal-eq-1 [simp]: ennreal x = 1 ←→ x = 1
〈proof 〉

lemma ennreal-le-1 [simp]: ennreal x ≤ 1 ←→ x ≤ 1

THEORY “Extended-Nonnegative-Real” 351

〈proof 〉

lemma ennreal-ge-1 [simp]: ennreal x ≥ 1 ←→ x ≥ 1
〈proof 〉

lemma one-less-ennreal[simp]: 1 < ennreal x ←→ 1 < x
〈proof 〉

lemma ennreal-plus[simp]:
0 ≤ a =⇒ 0 ≤ b =⇒ ennreal (a + b) = ennreal a + ennreal b
〈proof 〉

lemma add-mono-ennreal: x < ennreal y =⇒ x ′< ennreal y ′ =⇒ x + x ′< ennreal
(y + y ′)
〈proof 〉

lemma sum-ennreal[simp]: (
∧

i. i ∈ I =⇒ 0 ≤ f i) =⇒ (
∑

i∈I . ennreal (f i)) =
ennreal (sum f I)
〈proof 〉

lemma sum-list-ennreal[simp]:
assumes

∧
x. x ∈ set xs =⇒ f x ≥ 0

shows sum-list (map (λx. ennreal (f x)) xs) = ennreal (sum-list (map f xs))
〈proof 〉

lemma ennreal-of-nat-eq-real-of-nat: of-nat i = ennreal (of-nat i)
〈proof 〉

lemma of-nat-le-ennreal-iff [simp]: 0 ≤ r =⇒ of-nat i ≤ ennreal r ←→ of-nat i ≤
r
〈proof 〉

lemma ennreal-le-of-nat-iff [simp]: ennreal r ≤ of-nat i ←→ r ≤ of-nat i
〈proof 〉

lemma ennreal-indicator : ennreal (indicator A x) = indicator A x
〈proof 〉

lemma ennreal-numeral[simp]: ennreal (numeral n) = numeral n
〈proof 〉

lemma ennreal-less-numeral-iff [simp]: ennreal n < numeral w ←→ n < numeral
w
〈proof 〉

lemma numeral-less-ennreal-iff [simp]: numeral w < ennreal n ←→ numeral w <
n
〈proof 〉

THEORY “Extended-Nonnegative-Real” 352

lemma numeral-le-ennreal-iff [simp]: numeral n ≤ ennreal m ←→ numeral n ≤ m
〈proof 〉

lemma min-ennreal: 0 ≤ x =⇒ 0 ≤ y =⇒ min (ennreal x) (ennreal y) = ennreal
(min x y)
〈proof 〉

lemma ennreal-half [simp]: ennreal (1/2) = inverse 2
〈proof 〉

lemma ennreal-minus: 0 ≤ q =⇒ ennreal r − ennreal q = ennreal (r − q)
〈proof 〉

lemma ennreal-minus-top[simp]: ennreal a − top = 0
〈proof 〉

lemma e2eenreal-enn2ereal-diff [simp]:
e2ennreal(enn2ereal x − enn2ereal y) = x − y for x y
〈proof 〉

lemma ennreal-mult: 0 ≤ a =⇒ 0 ≤ b =⇒ ennreal (a ∗ b) = ennreal a ∗ ennreal
b
〈proof 〉

lemma ennreal-mult ′: 0 ≤ a =⇒ ennreal (a ∗ b) = ennreal a ∗ ennreal b
〈proof 〉

lemma indicator-mult-ennreal: indicator A x ∗ ennreal r = ennreal (indicator A
x ∗ r)
〈proof 〉

lemma ennreal-mult ′′: 0 ≤ b =⇒ ennreal (a ∗ b) = ennreal a ∗ ennreal b
〈proof 〉

lemma numeral-mult-ennreal: 0 ≤ x =⇒ numeral b ∗ ennreal x = ennreal (numeral
b ∗ x)
〈proof 〉

lemma ennreal-power : 0 ≤ r =⇒ ennreal r ^ n = ennreal (r ^ n)
〈proof 〉

lemma power-eq-top-ennreal: x ^ n = top ←→ (n 6= 0 ∧ (x::ennreal) = top)
〈proof 〉

lemma inverse-ennreal: 0 < r =⇒ inverse (ennreal r) = ennreal (inverse r)
〈proof 〉

lemma divide-ennreal: 0 ≤ r =⇒ 0 < q =⇒ ennreal r / ennreal q = ennreal (r
/ q)

THEORY “Extended-Nonnegative-Real” 353

〈proof 〉

lemma ennreal-inverse-power : inverse (x ^ n :: ennreal) = inverse x ^ n
〈proof 〉

lemma power-divide-distrib-ennreal [algebra-simps]:
(x / y) ^ n = x ^ n / (y ^ n :: ennreal)
〈proof 〉

lemma ennreal-divide-numeral: 0 ≤ x =⇒ ennreal x / numeral b = ennreal (x /
numeral b)
〈proof 〉

lemma prod-ennreal: (
∧

i. i ∈ A =⇒ 0 ≤ f i) =⇒ (
∏

i∈A. ennreal (f i)) = ennreal
(prod f A)
〈proof 〉

lemma prod-mono-ennreal:
assumes

∧
x. x ∈ A =⇒ f x ≤ (g x :: ennreal)

shows prod f A ≤ prod g A
〈proof 〉

lemma mult-right-ennreal-cancel: a ∗ ennreal c = b ∗ ennreal c ←→ (a = b ∨ c
≤ 0)
〈proof 〉

lemma ennreal-le-epsilon:
(
∧

e::real. y < top =⇒ 0 < e =⇒ x ≤ y + ennreal e) =⇒ x ≤ y
〈proof 〉

lemma ennreal-rat-dense:
fixes x y :: ennreal
shows x < y =⇒ ∃ r ::rat. x < real-of-rat r ∧ real-of-rat r < y
〈proof 〉

lemma ennreal-Ex-less-of-nat: (x::ennreal) < top =⇒ ∃n. x < of-nat n
〈proof 〉

40.6 Coercion from ennreal to real
definition enn2real x = real-of-ereal (enn2ereal x)

lemma enn2real-nonneg[simp]: 0 ≤ enn2real x
〈proof 〉

lemma enn2real-mono: a ≤ b =⇒ b < top =⇒ enn2real a ≤ enn2real b
〈proof 〉

lemma enn2real-of-nat[simp]: enn2real (of-nat n) = n

THEORY “Extended-Nonnegative-Real” 354

〈proof 〉

lemma enn2real-ennreal[simp]: 0 ≤ r =⇒ enn2real (ennreal r) = r
〈proof 〉

lemma ennreal-enn2real[simp]: r < top =⇒ ennreal (enn2real r) = r
〈proof 〉

lemma real-of-ereal-enn2ereal[simp]: real-of-ereal (enn2ereal x) = enn2real x
〈proof 〉

lemma enn2real-top[simp]: enn2real top = 0
〈proof 〉

lemma enn2real-0 [simp]: enn2real 0 = 0
〈proof 〉

lemma enn2real-1 [simp]: enn2real 1 = 1
〈proof 〉

lemma enn2real-numeral[simp]: enn2real (numeral n) = (numeral n)
〈proof 〉

lemma enn2real-mult: enn2real (a ∗ b) = enn2real a ∗ enn2real b
〈proof 〉

lemma enn2real-leI : 0 ≤ B =⇒ x ≤ ennreal B =⇒ enn2real x ≤ B
〈proof 〉

lemma enn2real-positive-iff : 0 < enn2real x ←→ (0 < x ∧ x < top)
〈proof 〉

lemma enn2real-eq-posreal-iff [simp]: c > 0 =⇒ enn2real x = c ←→ x = c
〈proof 〉

lemma ennreal-enn2real-if : ennreal (enn2real r) = (if r = top then 0 else r)
〈proof 〉

40.7 Coercion from enat to ennreal
definition ennreal-of-enat :: enat ⇒ ennreal
where

ennreal-of-enat n = (case n of ∞ ⇒ top | enat n ⇒ of-nat n)

declare [[coercion ennreal-of-enat]]
declare [[coercion of-nat :: nat ⇒ ennreal]]

lemma ennreal-of-enat-infty[simp]: ennreal-of-enat ∞ = ∞
〈proof 〉

THEORY “Extended-Nonnegative-Real” 355

lemma ennreal-of-enat-enat[simp]: ennreal-of-enat (enat n) = of-nat n
〈proof 〉

lemma ennreal-of-enat-0 [simp]: ennreal-of-enat 0 = 0
〈proof 〉

lemma ennreal-of-enat-1 [simp]: ennreal-of-enat 1 = 1
〈proof 〉

lemma ennreal-top-neq-of-nat[simp]: (top::ennreal) 6= of-nat i
〈proof 〉

lemma ennreal-of-enat-inj[simp]: ennreal-of-enat i = ennreal-of-enat j ←→ i = j
〈proof 〉

lemma ennreal-of-enat-le-iff [simp]: ennreal-of-enat m ≤ ennreal-of-enat n ←→ m
≤ n
〈proof 〉

lemma of-nat-less-ennreal-of-nat[simp]: of-nat n ≤ ennreal-of-enat x ←→ of-nat
n ≤ x
〈proof 〉

lemma ennreal-of-enat-Sup: ennreal-of-enat (Sup X) = (SUP x∈X . ennreal-of-enat
x)
〈proof 〉

lemma ennreal-of-enat-eSuc[simp]: ennreal-of-enat (eSuc x) = 1 + ennreal-of-enat
x
〈proof 〉

lemma ennreal-of-enat-plus[simp]: ‹ennreal-of-enat (a+b) = ennreal-of-enat a +
ennreal-of-enat b›
〈proof 〉

lemma sum-ennreal-of-enat[simp]: (
∑

i∈I . ennreal-of-enat (f i)) = ennreal-of-enat
(sum f I)
〈proof 〉

40.8 Topology on ennreal
lemma enn2ereal-Iio: enn2ereal −‘ {..<a} = (if 0 ≤ a then {..< e2ennreal a} else
{})
〈proof 〉

lemma enn2ereal-Ioi: enn2ereal −‘ {a <..} = (if 0 ≤ a then {e2ennreal a <..}

THEORY “Extended-Nonnegative-Real” 356

else UNIV)
〈proof 〉

instantiation ennreal :: linear-continuum-topology
begin

definition open-ennreal :: ennreal set ⇒ bool
where (open :: ennreal set ⇒ bool) = generate-topology (range lessThan ∪ range

greaterThan)

instance
〈proof 〉

end

lemma continuous-on-e2ennreal: continuous-on A e2ennreal
〈proof 〉

lemma continuous-at-e2ennreal: continuous (at x within A) e2ennreal
〈proof 〉

lemma continuous-on-enn2ereal: continuous-on UNIV enn2ereal
〈proof 〉

lemma continuous-at-enn2ereal: continuous (at x within A) enn2ereal
〈proof 〉

lemma sup-continuous-e2ennreal[order-continuous-intros]:
assumes f : sup-continuous f shows sup-continuous (λx. e2ennreal (f x))
〈proof 〉

lemma sup-continuous-enn2ereal[order-continuous-intros]:
assumes f : sup-continuous f shows sup-continuous (λx. enn2ereal (f x))
〈proof 〉

lemma sup-continuous-mult-left-ennreal ′:
fixes c :: ennreal
shows sup-continuous (λx. c ∗ x)
〈proof 〉

lemma sup-continuous-mult-left-ennreal[order-continuous-intros]:
sup-continuous f =⇒ sup-continuous (λx. c ∗ f x :: ennreal)
〈proof 〉

lemma sup-continuous-mult-right-ennreal[order-continuous-intros]:
sup-continuous f =⇒ sup-continuous (λx. f x ∗ c :: ennreal)
〈proof 〉

lemma sup-continuous-divide-ennreal[order-continuous-intros]:

THEORY “Extended-Nonnegative-Real” 357

fixes f g :: ′a::complete-lattice ⇒ ennreal
shows sup-continuous f =⇒ sup-continuous (λx. f x / c)
〈proof 〉

lemma transfer-enn2ereal-continuous-on [transfer-rule]:
rel-fun (=) (rel-fun (rel-fun (=) pcr-ennreal) (=)) continuous-on continuous-on
〈proof 〉

lemma transfer-sup-continuous[transfer-rule]:
(rel-fun (rel-fun (=) pcr-ennreal) (=)) sup-continuous sup-continuous
〈proof 〉

lemma continuous-on-ennreal[tendsto-intros]:
continuous-on A f =⇒ continuous-on A (λx. ennreal (f x))
〈proof 〉

lemma tendsto-ennrealD:
assumes lim: ((λx. ennreal (f x)) −−−→ ennreal x) F
assumes ∗: ∀ F x in F . 0 ≤ f x and x: 0 ≤ x
shows (f −−−→ x) F
〈proof 〉

lemma tendsto-ennreal-iff [simp]:
‹((λx. ennreal (f x)) −−−→ ennreal x) F ←→ (f −−−→ x) F› (is ‹?P ←→ ?Q›)
if ‹∀ F x in F . 0 ≤ f x› ‹0 ≤ x›
〈proof 〉

lemma tendsto-enn2ereal-iff [simp]: ((λi. enn2ereal (f i)) −−−→ enn2ereal x) F ←→
(f −−−→ x) F
〈proof 〉

lemma ennreal-tendsto-0-iff : (
∧

n. f n ≥ 0) =⇒ ((λn. ennreal (f n)) −−−−→ 0)
←→ (f −−−−→ 0)
〈proof 〉

lemma continuous-on-add-ennreal:
fixes f g :: ′a::topological-space ⇒ ennreal
shows continuous-on A f =⇒ continuous-on A g =⇒ continuous-on A (λx. f x

+ g x)
〈proof 〉

lemma continuous-on-inverse-ennreal[continuous-intros]:
fixes f :: ′a::topological-space ⇒ ennreal
shows continuous-on A f =⇒ continuous-on A (λx. inverse (f x))
〈proof 〉

instance ennreal :: topological-comm-monoid-add
〈proof 〉

THEORY “Extended-Nonnegative-Real” 358

lemma sup-continuous-add-ennreal[order-continuous-intros]:
fixes f g :: ′a::complete-lattice ⇒ ennreal
shows sup-continuous f =⇒ sup-continuous g =⇒ sup-continuous (λx. f x + g

x)
〈proof 〉

lemma ennreal-suminf-lessD: (
∑

i. f i :: ennreal) < x =⇒ f i < x
〈proof 〉

lemma sums-ennreal[simp]: (
∧

i. 0 ≤ f i) =⇒ 0 ≤ x =⇒ (λi. ennreal (f i)) sums
ennreal x ←→ f sums x
〈proof 〉

lemma summable-suminf-not-top: (
∧

i. 0 ≤ f i) =⇒ (
∑

i. ennreal (f i)) 6= top =⇒
summable f
〈proof 〉

lemma suminf-ennreal[simp]:
(
∧

i. 0 ≤ f i) =⇒ (
∑

i. ennreal (f i)) 6= top =⇒ (
∑

i. ennreal (f i)) = ennreal
(
∑

i. f i)
〈proof 〉

lemma sums-enn2ereal[simp]: (λi. enn2ereal (f i)) sums enn2ereal x ←→ f sums
x
〈proof 〉

lemma suminf-enn2ereal[simp]: (
∑

i. enn2ereal (f i)) = enn2ereal (suminf f)
〈proof 〉

lemma transfer-e2ennreal-suminf [transfer-rule]: rel-fun (rel-fun (=) pcr-ennreal)
pcr-ennreal suminf suminf
〈proof 〉

lemma ennreal-suminf-cmult[simp]: (
∑

i. r ∗ f i) = r ∗ (
∑

i. f i::ennreal)
〈proof 〉

lemma ennreal-suminf-multc[simp]: (
∑

i. f i ∗ r) = (
∑

i. f i::ennreal) ∗ r
〈proof 〉

lemma ennreal-suminf-divide[simp]: (
∑

i. f i / r) = (
∑

i. f i::ennreal) / r
〈proof 〉

lemma ennreal-suminf-neq-top: summable f =⇒ (
∧

i. 0 ≤ f i) =⇒ (
∑

i. ennreal
(f i)) 6= top
〈proof 〉

lemma suminf-ennreal-eq:
(
∧

i. 0 ≤ f i) =⇒ f sums x =⇒ (
∑

i. ennreal (f i)) = ennreal x
〈proof 〉

THEORY “Extended-Nonnegative-Real” 359

lemma ennreal-suminf-bound-add:
fixes f :: nat ⇒ ennreal
shows (

∧
N . (

∑
n<N . f n) + y ≤ x) =⇒ suminf f + y ≤ x

〈proof 〉

lemma ennreal-suminf-SUP-eq-directed:
fixes f :: ′a ⇒ nat ⇒ ennreal
assumes ∗:

∧
N i j. i ∈ I =⇒ j ∈ I =⇒ finite N =⇒ ∃ k∈I . ∀n∈N . f i n ≤ f k

n ∧ f j n ≤ f k n
shows (

∑
n. SUP i∈I . f i n) = (SUP i∈I .

∑
n. f i n)

〈proof 〉

lemma INF-ennreal-add-const:
fixes f g :: nat ⇒ ennreal
shows (INF i. f i + c) = (INF i. f i) + c
〈proof 〉

lemma INF-ennreal-const-add:
fixes f g :: nat ⇒ ennreal
shows (INF i. c + f i) = c + (INF i. f i)
〈proof 〉

lemma SUP-mult-left-ennreal: c ∗ (SUP i∈I . f i) = (SUP i∈I . c ∗ f i ::ennreal)
〈proof 〉

lemma SUP-mult-right-ennreal: (SUP i∈I . f i) ∗ c = (SUP i∈I . f i ∗ c ::ennreal)
〈proof 〉

lemma SUP-divide-ennreal: (SUP i∈I . f i) / c = (SUP i∈I . f i / c ::ennreal)
〈proof 〉

lemma ennreal-SUP-of-nat-eq-top: (SUP x . of-nat x :: ennreal) = top
〈proof 〉

lemma ennreal-SUP-eq-top:
fixes f :: ′a ⇒ ennreal
assumes

∧
n. ∃ i∈I . of-nat n ≤ f i

shows (SUP i ∈ I . f i) = top
〈proof 〉

lemma ennreal-INF-const-minus:
fixes f :: ′a ⇒ ennreal
shows I 6= {} =⇒ (SUP x∈I . c − f x) = c − (INF x∈I . f x)
〈proof 〉

lemma of-nat-Sup-ennreal:
assumes A 6= {} bdd-above A
shows of-nat (Sup A) = (SUP a∈A. of-nat a :: ennreal)

THEORY “Extended-Nonnegative-Real” 360

〈proof 〉

lemma ennreal-tendsto-const-minus:
fixes g :: ′a ⇒ ennreal
assumes ae: ∀ F x in F . g x ≤ c
assumes g: ((λx. c − g x) −−−→ 0) F
shows (g −−−→ c) F
〈proof 〉

lemma ennreal-SUP-add:
fixes f g :: nat ⇒ ennreal
shows incseq f =⇒ incseq g =⇒ (SUP i. f i + g i) = Sup (f ‘ UNIV) + Sup (g

‘ UNIV)
〈proof 〉

lemma ennreal-SUP-sum:
fixes f :: ′a ⇒ nat ⇒ ennreal
shows (

∧
i. i ∈ I =⇒ incseq (f i)) =⇒ (SUP n.

∑
i∈I . f i n) = (

∑
i∈I . SUP

n. f i n)
〈proof 〉

lemma ennreal-liminf-minus:
fixes f :: nat ⇒ ennreal
shows (

∧
n. f n ≤ c) =⇒ liminf (λn. c − f n) = c − limsup f

〈proof 〉

lemma ennreal-continuous-on-cmult:
(c::ennreal) < top =⇒ continuous-on A f =⇒ continuous-on A (λx. c ∗ f x)
〈proof 〉

lemma ennreal-tendsto-cmult:
(c::ennreal) < top =⇒ (f −−−→ x) F =⇒ ((λx. c ∗ f x) −−−→ c ∗ x) F
〈proof 〉

lemma tendsto-ennrealI [intro, simp, tendsto-intros]:
(f −−−→ x) F =⇒ ((λx. ennreal (f x)) −−−→ ennreal x) F
〈proof 〉

lemma tendsto-enn2erealI [tendsto-intros]:
assumes (f −−−→ l) F
shows ((λi. enn2ereal(f i)) −−−→ enn2ereal l) F
〈proof 〉

lemma tendsto-e2ennrealI [tendsto-intros]:
assumes (f −−−→ l) F
shows ((λi. e2ennreal(f i)) −−−→ e2ennreal l) F
〈proof 〉

lemma ennreal-suminf-minus:

THEORY “Extended-Nonnegative-Real” 361

fixes f g :: nat ⇒ ennreal
shows (

∧
i. g i ≤ f i) =⇒ suminf f 6= top =⇒ suminf g 6= top =⇒ (

∑
i. f i − g

i) = suminf f − suminf g
〈proof 〉

lemma ennreal-Sup-countable-SUP:
A 6= {} =⇒ ∃ f ::nat ⇒ ennreal. incseq f ∧ range f ⊆ A ∧ Sup A = (SUP i. f i)
〈proof 〉

lemma ennreal-Inf-countable-INF :
A 6= {} =⇒ ∃ f ::nat ⇒ ennreal. decseq f ∧ range f ⊆ A ∧ Inf A = (INF i. f i)
〈proof 〉

lemma ennreal-SUP-countable-SUP:
A 6= {} =⇒ ∃ f ::nat ⇒ ennreal. range f ⊆ g‘A ∧ Sup (g ‘ A) = Sup (f ‘ UNIV)
〈proof 〉

lemma of-nat-tendsto-top-ennreal: (λn::nat. of-nat n :: ennreal) −−−−→ top
〈proof 〉

lemma SUP-sup-continuous-ennreal:
fixes f :: ennreal ⇒ ′a::complete-lattice
assumes f : sup-continuous f and I 6= {}
shows (SUP i∈I . f (g i)) = f (SUP i∈I . g i)
〈proof 〉

lemma ennreal-suminf-SUP-eq:
fixes f :: nat ⇒ nat ⇒ ennreal
shows (

∧
i. incseq (λn. f n i)) =⇒ (

∑
i. SUP n. f n i) = (SUP n.

∑
i. f n i)

〈proof 〉

lemma ennreal-SUP-add-left:
fixes c :: ennreal
shows I 6= {} =⇒ (SUP i∈I . f i + c) = (SUP i∈I . f i) + c
〈proof 〉

lemma ennreal-SUP-const-minus:
fixes f :: ′a ⇒ ennreal
shows I 6= {} =⇒ c < top =⇒ (INF x∈I . c − f x) = c − (SUP x∈I . f x)
〈proof 〉

lemma isCont-ennreal[simp]: ‹isCont ennreal x›
〈proof 〉

lemma isCont-ennreal-of-enat[simp]: ‹isCont ennreal-of-enat x›
〈proof 〉

THEORY “Extended-Nonnegative-Real” 362

40.9 Approximation lemmas
lemma INF-approx-ennreal:

fixes x::ennreal and e::real
assumes e > 0
assumes x = (INF i ∈ A. f i)
assumes x 6= ∞
shows ∃ i ∈ A. f i < x + e
〈proof 〉

lemma SUP-approx-ennreal:
fixes x::ennreal and e::real
assumes e > 0 A 6= {}
assumes SUP: x = (SUP i ∈ A. f i)
assumes x 6= ∞
shows ∃ i ∈ A. x < f i + e
〈proof 〉

lemma ennreal-approx-SUP:
fixes x::ennreal
assumes f-bound:

∧
i. i ∈ A =⇒ f i ≤ x

assumes approx:
∧

e. (e::real) > 0 =⇒ ∃ i ∈ A. x ≤ f i + e
shows x = (SUP i ∈ A. f i)
〈proof 〉

lemma ennreal-approx-INF :
fixes x::ennreal
assumes f-bound:

∧
i. i ∈ A =⇒ x ≤ f i

assumes approx:
∧

e. (e::real) > 0 =⇒ ∃ i ∈ A. f i ≤ x + e
shows x = (INF i ∈ A. f i)
〈proof 〉

lemma ennreal-approx-unit:
(
∧

a::ennreal. 0 < a =⇒ a < 1 =⇒ a ∗ z ≤ y) =⇒ z ≤ y
〈proof 〉

lemma suminf-ennreal2 :
(
∧

i. 0 ≤ f i) =⇒ summable f =⇒ (
∑

i. ennreal (f i)) = ennreal (
∑

i. f i)
〈proof 〉

lemma less-top-ennreal: x < top ←→ (∃ r≥0 . x = ennreal r)
〈proof 〉

lemma enn2real-less-iff [simp]: x < top =⇒ enn2real x < c ←→ x < c
〈proof 〉

lemma enn2real-le-iff [simp]: [[x < top; c > 0]] =⇒ enn2real x ≤ c ←→ x ≤ c
〈proof 〉

lemma enn2real-less:

THEORY “Extended-Nonnegative-Real” 363

assumes enn2real e < r e 6= top shows e < ennreal r
〈proof 〉

lemma enn2real-le:
assumes enn2real e ≤ r e 6= top shows e ≤ ennreal r
〈proof 〉

lemma tendsto-top-iff-ennreal:
fixes f :: ′a ⇒ ennreal
shows (f −−−→ top) F ←→ (∀ l≥0 . eventually (λx. ennreal l < f x) F)
〈proof 〉

lemma ennreal-tendsto-top-eq-at-top:
((λz. ennreal (f z)) −−−→ top) F ←→ (LIM z F . f z :> at-top)
〈proof 〉

lemma tendsto-0-if-Limsup-eq-0-ennreal:
fixes f :: - ⇒ ennreal
shows Limsup F f = 0 =⇒ (f −−−→ 0) F
〈proof 〉

lemma diff-le-self-ennreal[simp]: a − b ≤ (a::ennreal)
〈proof 〉

lemma ennreal-ineq-diff-add: b ≤ a =⇒ a = b + (a − b::ennreal)
〈proof 〉

lemma ennreal-mult-strict-left-mono: (a::ennreal) < c =⇒ 0 < b =⇒ b < top =⇒
b ∗ a < b ∗ c
〈proof 〉

lemma ennreal-between: 0 < e =⇒ 0 < x =⇒ x < top =⇒ x − e < (x::ennreal)
〈proof 〉

lemma minus-less-iff-ennreal: b < top =⇒ b ≤ a =⇒ a − b < c ←→ a < c +
(b::ennreal)
〈proof 〉

lemma tendsto-zero-ennreal:
assumes ev:

∧
r . 0 < r =⇒ ∀ F x in F . f x < ennreal r

shows (f −−−→ 0) F
〈proof 〉

lifting-update ennreal.lifting
lifting-forget ennreal.lifting

40.10 ennreal theorems
lemma neq-top-trans: fixes x y :: ennreal shows [[y 6= top; x ≤ y]] =⇒ x 6= top

THEORY “Extended-Nonnegative-Real” 364

〈proof 〉

lemma diff-diff-ennreal: fixes a b :: ennreal shows a ≤ b =⇒ b 6= ∞ =⇒ b − (b
− a) = a
〈proof 〉

lemma ennreal-less-one-iff [simp]: ennreal x < 1 ←→ x < 1
〈proof 〉

lemma SUP-const-minus-ennreal:
fixes f :: ′a ⇒ ennreal shows I 6= {} =⇒ (SUP x∈I . c − f x) = c − (INF x∈I .

f x)
including ennreal.lifting
〈proof 〉

lemma zero-minus-ennreal[simp]: 0 − (a::ennreal) = 0
including ennreal.lifting
〈proof 〉

lemma diff-diff-commute-ennreal:
fixes a b c :: ennreal shows a − b − c = a − c − b
〈proof 〉

lemma diff-gr0-ennreal: b < (a::ennreal) =⇒ 0 < a − b
including ennreal.lifting 〈proof 〉

lemma divide-le-posI-ennreal:
fixes x y z :: ennreal
shows x > 0 =⇒ z ≤ x ∗ y =⇒ z / x ≤ y
〈proof 〉

lemma add-diff-eq-ennreal:
fixes x y z :: ennreal
shows z ≤ y =⇒ x + (y − z) = x + y − z
〈proof 〉

lemma add-diff-inverse-ennreal:
fixes x y :: ennreal shows x ≤ y =⇒ x + (y − x) = y
〈proof 〉

lemma add-diff-eq-iff-ennreal[simp]:
fixes x y :: ennreal shows x + (y − x) = y ←→ x ≤ y
〈proof 〉

lemma add-diff-le-ennreal: a + b − c ≤ a + (b − c::ennreal)
〈proof 〉

lemma diff-eq-0-ennreal: a < top =⇒ a ≤ b =⇒ a − b = (0 ::ennreal)
〈proof 〉

THEORY “Extended-Nonnegative-Real” 365

lemma diff-diff-ennreal ′: fixes x y z :: ennreal shows z ≤ y =⇒ y − z ≤ x =⇒
x − (y − z) = x + z − y
〈proof 〉

lemma diff-diff-ennreal ′′: fixes x y z :: ennreal
shows z ≤ y =⇒ x − (y − z) = (if y − z ≤ x then x + z − y else 0)
〈proof 〉

lemma power-less-top-ennreal: fixes x :: ennreal shows x ^ n < top ←→ x < top
∨ n = 0
〈proof 〉

lemma ennreal-divide-times: (a / b) ∗ c = a ∗ (c / b :: ennreal)
〈proof 〉

lemma diff-less-top-ennreal: a − b < top ←→ a < (top :: ennreal)
〈proof 〉

lemma divide-less-ennreal: b 6= 0 =⇒ b < top =⇒ a / b < c ←→ a < (c ∗ b ::
ennreal)
〈proof 〉

lemma one-less-numeral[simp]: 1 < (numeral n::ennreal) ←→ (num.One < n)
〈proof 〉

lemma divide-eq-1-ennreal: a / b = (1 ::ennreal) ←→ (b 6= top ∧ b 6= 0 ∧ b = a)
〈proof 〉

lemma ennreal-mult-cancel-left: (a ∗ b = a ∗ c) = (a = top ∧ b 6= 0 ∧ c 6= 0 ∨
a = 0 ∨ b = (c::ennreal))
〈proof 〉

lemma ennreal-minus-if : ennreal a − ennreal b = ennreal (if 0 ≤ b then (if b ≤
a then a − b else 0) else a)
〈proof 〉

lemma ennreal-plus-if : ennreal a + ennreal b = ennreal (if 0 ≤ a then (if 0 ≤ b
then a + b else a) else b)
〈proof 〉

lemma ennreal-diff-le-mono-left: a ≤ b =⇒ a − c ≤ (b::ennreal)
〈proof 〉

lemma ennreal-minus-le-iff : a − b ≤ c ←→ (a ≤ b + (c::ennreal) ∧ (a = top ∧
b = top −→ c = top))
〈proof 〉

lemma ennreal-le-minus-iff : a ≤ b − c ←→ (a + c ≤ (b::ennreal) ∨ (a = 0 ∧ b

THEORY “Extended-Nonnegative-Real” 366

≤ c))
〈proof 〉

lemma diff-add-eq-diff-diff-swap-ennreal: x − (y + z :: ennreal) = x − y − z
〈proof 〉

lemma diff-add-assoc2-ennreal: b ≤ a =⇒ (a − b + c::ennreal) = a + c − b
〈proof 〉

lemma diff-gt-0-iff-gt-ennreal: 0 < a − b←→ (a = top ∧ b = top ∨ b < (a::ennreal))
〈proof 〉

lemma diff-eq-0-iff-ennreal: (a − b::ennreal) = 0 ←→ (a < top ∧ a ≤ b)
〈proof 〉

lemma add-diff-self-ennreal: a + (b − a::ennreal) = (if a ≤ b then b else a)
〈proof 〉

lemma diff-add-self-ennreal: (b − a + a::ennreal) = (if a ≤ b then b else a)
〈proof 〉

lemma ennreal-minus-cancel-iff :
fixes a b c :: ennreal
shows a − b = a − c ←→ (b = c ∨ (a ≤ b ∧ a ≤ c) ∨ a = top)
〈proof 〉

The next lemma is wrong for a = top, for b = c = 1 for instance.
lemma ennreal-right-diff-distrib:

fixes a b c :: ennreal
assumes a 6= top
shows a ∗ (b − c) = a ∗ b − a ∗ c
〈proof 〉

lemma SUP-diff-ennreal:
c < top =⇒ (SUP i∈I . f i − c :: ennreal) = (SUP i∈I . f i) − c
〈proof 〉

lemma ennreal-SUP-add-right:
fixes c :: ennreal shows I 6= {} =⇒ c + (SUP i∈I . f i) = (SUP i∈I . c + f i)
〈proof 〉

lemma SUP-add-directed-ennreal:
fixes f g :: - ⇒ ennreal
assumes directed:

∧
i j. i ∈ I =⇒ j ∈ I =⇒ ∃ k∈I . f i + g j ≤ f k + g k

shows (SUP i∈I . f i + g i) = (SUP i∈I . f i) + (SUP i∈I . g i)
〈proof 〉

lemma enn2real-eq-0-iff : enn2real x = 0 ←→ x = 0 ∨ x = top

THEORY “Log-Nat” 367

〈proof 〉

lemma continuous-on-diff-ennreal:
continuous-on A f =⇒ continuous-on A g =⇒ (

∧
x. x ∈ A =⇒ f x 6= top) =⇒

(
∧

x. x ∈ A =⇒ g x 6= top) =⇒ continuous-on A (λz. f z − g z::ennreal)
including ennreal.lifting
〈proof 〉

lemma tendsto-diff-ennreal:
(f −−−→ x) F =⇒ (g −−−→ y) F =⇒ x 6= top =⇒ y 6= top =⇒ ((λz. f z − g

z::ennreal) −−−→ x − y) F
〈proof 〉

declare lim-real-of-ereal [tendsto-intros]

lemma tendsto-enn2real [tendsto-intros]:
assumes (u −−−→ ennreal l) F l ≥ 0
shows ((λn. enn2real (u n)) −−−→ l) F
〈proof 〉

end

41 Logarithm of Natural Numbers
theory Log-Nat
imports Complex-Main
begin

41.1 Preliminaries
lemma divide-nat-diff-div-nat-less-one:

real x / real b − real (x div b) < 1 for x b :: nat
〈proof 〉

41.2 Floorlog
definition floorlog :: nat ⇒ nat ⇒ nat

where floorlog b a = (if a > 0 ∧ b > 1 then nat blog b ac + 1 else 0)

lemma floorlog-mono: x ≤ y =⇒ floorlog b x ≤ floorlog b y
〈proof 〉

lemma floorlog-bounds:
b ^ (floorlog b x − 1) ≤ x ∧ x < b ^ (floorlog b x) if x > 0 b > 1
〈proof 〉

lemma floorlog-power [simp]:
floorlog b (a ∗ b ^ c) = floorlog b a + c if a > 0 b > 1
〈proof 〉

THEORY “Log-Nat” 368

lemma floor-log-add-eqI :
blog b (a + r)c = blog b ac if b > 1 a ≥ 1 0 ≤ r r < 1

for a b :: nat and r :: real
〈proof 〉

lemma floor-log-div:
blog b xc = blog b (x div b)c + 1 if b > 1 x > 0 x div b > 0

for b x :: nat
〈proof 〉

lemma compute-floorlog [code]:
floorlog b x = (if x > 0 ∧ b > 1 then floorlog b (x div b) + 1 else 0)
〈proof 〉

lemma floor-log-eq-if :
blog b xc = blog b yc if x div b = y div b b > 1 x > 0 x div b ≥ 1

for b x y :: nat
〈proof 〉

lemma floorlog-eq-if :
floorlog b x = floorlog b y if x div b = y div b b > 1 x > 0 x div b ≥ 1

for b x y :: nat
〈proof 〉

lemma floorlog-leD:
floorlog b x ≤ w =⇒ b > 1 =⇒ x < b ^ w
〈proof 〉

lemma floorlog-leI :
x < b ^ w =⇒ 0 ≤ w =⇒ b > 1 =⇒ floorlog b x ≤ w
〈proof 〉

lemma floorlog-eq-zero-iff :
floorlog b x = 0 ←→ b ≤ 1 ∨ x ≤ 0
〈proof 〉

lemma floorlog-le-iff :
floorlog b x ≤ w ←→ b ≤ 1 ∨ b > 1 ∧ 0 ≤ w ∧ x < b ^ w
〈proof 〉

lemma floorlog-ge-SucI :
Suc w ≤ floorlog b x if b ^ w ≤ x b > 1
〈proof 〉

lemma floorlog-geI :
w ≤ floorlog b x if b ^ (w − 1) ≤ x b > 1
〈proof 〉

THEORY “Log-Nat” 369

lemma floorlog-geD:
b ^ (w − 1) ≤ x if w ≤ floorlog b x w > 0
〈proof 〉

41.3
definition ceillog2 :: nat ⇒ nat where

ceillog2 n = (if n = 0 then 0 else nat dlog 2 (real n)e)

lemma ceillog2-0 [simp]: ceillog2 0 = 0
and ceillog2-Suc-0 [simp]: ceillog2 (Suc 0) = 0
and ceillog2-2 [simp]: ceillog2 2 = 1
〈proof 〉

lemma ceillog2-le1-eq-0 [simp]: n ≤ 1 =⇒ ceillog2 n = 0
〈proof 〉

lemma ceillog2-2-power [simp]: ceillog2 (2 ^ n) = n
〈proof 〉

lemma ceillog2-ge-log:
assumes n > 0
shows real (ceillog2 n) ≥ log 2 (real n)
〈proof 〉

lemma ceillog2-less-log:
assumes n > 0
shows real (ceillog2 n) < log 2 (real n) + 1
〈proof 〉

lemma ceillog2-le-iff :
assumes n > 0
shows ceillog2 n ≤ l ←→ n ≤ 2 ^ l
〈proof 〉

lemma ceillog2-ge-iff :
assumes n > 0
shows ceillog2 n ≥ l ←→ 2 ^ l < 2 ∗ n
〈proof 〉

lemma le-two-power-ceillog2 : n ≤ 2 ^ ceillog2 n
〈proof 〉

lemma two-power-ceillog2-gt:
assumes n > 0
shows 2 ∗ n > 2 ^ ceillog2 n
〈proof 〉

lemma ceillog2-eqI :

THEORY “Log-Nat” 370

assumes n ≤ 2 ^ l 2 ^ l < 2 ∗ n
shows ceillog2 n = l
〈proof 〉

lemma ceillog2-rec-even:
assumes k > 0
shows ceillog2 (2 ∗ k) = Suc (ceillog2 k)
〈proof 〉

lemma ceillog2-mono:
assumes m ≤ n
shows ceillog2 m ≤ ceillog2 n
〈proof 〉

lemma ceillog2-rec-odd:
assumes k > 0
shows ceillog2 (Suc (2 ∗ k)) = Suc (ceillog2 (Suc k))
〈proof 〉

lemma ceillog2-rec:
ceillog2 n = (if n ≤ 1 then 0 else 1 + ceillog2 ((n + 1) div 2))
〈proof 〉

lemma funpow-div2-ceillog2-le-1 :
((λn. (n + 1) div 2) ^^ ceillog2 n) n ≤ 1
〈proof 〉

fun ceillog2-aux :: nat ⇒ nat ⇒ nat where
ceillog2-aux acc n = (if n ≤ 1 then acc else ceillog2-aux (acc + 1) ((n + 1) div

2))

lemmas [simp del] = ceillog2-aux.simps

lemma ceillog2-aux-correct: ceillog2-aux acc n = ceillog2 n + acc
〈proof 〉

lemma ceillog2-code [code]: ceillog2 n = ceillog2-aux 0 n
〈proof 〉

41.4 Bitlen
definition bitlen :: int ⇒ int

where bitlen a = floorlog 2 (nat a)

lemma bitlen-alt-def :
bitlen a = (if a > 0 then blog 2 ac + 1 else 0)

THEORY “Log-Nat” 371

〈proof 〉

lemma bitlen-zero [simp]:
bitlen 0 = 0
〈proof 〉

lemma bitlen-nonneg:
0 ≤ bitlen x
〈proof 〉

lemma bitlen-bounds:
2 ^ nat (bitlen x − 1) ≤ x ∧ x < 2 ^ nat (bitlen x) if x > 0
〈proof 〉

lemma bitlen-pow2 [simp]:
bitlen (b ∗ 2 ^ c) = bitlen b + c if b > 0
〈proof 〉

lemma compute-bitlen [code]:
bitlen x = (if x > 0 then bitlen (x div 2) + 1 else 0)
〈proof 〉

lemma bitlen-eq-zero-iff :
bitlen x = 0 ←→ x ≤ 0
〈proof 〉

lemma bitlen-div:
1 ≤ real-of-int m / 2^nat (bitlen m − 1)

and real-of-int m / 2^nat (bitlen m − 1) < 2 if 0 < m
〈proof 〉

lemma bitlen-le-iff-floorlog:
bitlen x ≤ w ←→ w ≥ 0 ∧ floorlog 2 (nat x) ≤ nat w
〈proof 〉

lemma bitlen-le-iff-power :
bitlen x ≤ w ←→ w ≥ 0 ∧ x < 2 ^ nat w
〈proof 〉

lemma less-power-nat-iff-bitlen:
x < 2 ^ w ←→ bitlen (int x) ≤ w
〈proof 〉

lemma bitlen-ge-iff-power :
w ≤ bitlen x ←→ w ≤ 0 ∨ 2 ^ (nat w − 1) ≤ x
〈proof 〉

lemma bitlen-twopow-add-eq:
bitlen (2 ^ w + b) = w + 1 if 0 ≤ b b < 2 ^ w

THEORY “Lattice-Algebras” 372

〈proof 〉

end

42 Various algebraic structures combined with a
lattice

theory Lattice-Algebras
imports Complex-Main

begin

class semilattice-inf-ab-group-add = ordered-ab-group-add + semilattice-inf
begin

lemma add-inf-distrib-left: a + inf b c = inf (a + b) (a + c) (is ?L=?R)
〈proof 〉

lemma add-inf-distrib-right: inf a b + c = inf (a + c) (b + c)
〈proof 〉

end

class semilattice-sup-ab-group-add = ordered-ab-group-add + semilattice-sup
begin

lemma add-sup-distrib-left: a + sup b c = sup (a + b) (a + c) (is ?L = ?R)
〈proof 〉

lemma add-sup-distrib-right: sup a b + c = sup (a + c) (b + c)
〈proof 〉

end

class lattice-ab-group-add = ordered-ab-group-add + lattice
begin

subclass semilattice-inf-ab-group-add 〈proof 〉
subclass semilattice-sup-ab-group-add 〈proof 〉

lemmas add-sup-inf-distribs =
add-inf-distrib-right add-inf-distrib-left add-sup-distrib-right add-sup-distrib-left

lemma inf-eq-neg-sup: inf a b = − sup (− a) (− b)
〈proof 〉

lemma sup-eq-neg-inf : sup a b = − inf (− a) (− b)
〈proof 〉

THEORY “Lattice-Algebras” 373

lemma neg-inf-eq-sup: − inf a b = sup (− a) (− b)
〈proof 〉

lemma diff-inf-eq-sup: a − inf b c = a + sup (− b) (− c)
〈proof 〉

lemma neg-sup-eq-inf : − sup a b = inf (− a) (− b)
〈proof 〉

lemma diff-sup-eq-inf : a − sup b c = a + inf (− b) (− c)
〈proof 〉

lemma add-eq-inf-sup: a + b = sup a b + inf a b
〈proof 〉

42.1 Positive Part, Negative Part, Absolute Value
definition nprt :: ′a ⇒ ′a

where nprt x = inf x 0

definition pprt :: ′a ⇒ ′a
where pprt x = sup x 0

lemma pprt-neg: pprt (− x) = − nprt x
〈proof 〉

lemma nprt-neg: nprt (− x) = − pprt x
〈proof 〉

lemma prts: a = pprt a + nprt a
〈proof 〉

lemma zero-le-pprt[simp]: 0 ≤ pprt a
〈proof 〉

lemma nprt-le-zero[simp]: nprt a ≤ 0
〈proof 〉

lemma le-eq-neg: a ≤ − b ←→ a + b ≤ 0
(is ?lhs = ?rhs)
〈proof 〉

lemma pprt-0 [simp]: pprt 0 = 0 〈proof 〉
lemma nprt-0 [simp]: nprt 0 = 0 〈proof 〉

lemma pprt-eq-id [simp, no-atp]: 0 ≤ x =⇒ pprt x = x
〈proof 〉

lemma nprt-eq-id [simp, no-atp]: x ≤ 0 =⇒ nprt x = x

THEORY “Lattice-Algebras” 374

〈proof 〉

lemma pprt-eq-0 [simp, no-atp]: x ≤ 0 =⇒ pprt x = 0
〈proof 〉

lemma nprt-eq-0 [simp, no-atp]: 0 ≤ x =⇒ nprt x = 0
〈proof 〉

lemma sup-0-imp-0 :
assumes sup a (− a) = 0
shows a = 0
〈proof 〉

lemma inf-0-imp-0 : inf a (− a) = 0 =⇒ a = 0
〈proof 〉

lemma inf-0-eq-0 [simp]: inf a (− a) = 0 ←→ a = 0
〈proof 〉

lemma sup-0-eq-0 [simp]: sup a (− a) = 0 ←→ a = 0
〈proof 〉

lemma zero-le-double-add-iff-zero-le-single-add [simp]: 0 ≤ a + a ←→ 0 ≤ a
(is ?lhs ←→ ?rhs)
〈proof 〉

lemma double-zero [simp]: a + a = 0 ←→ a = 0
〈proof 〉

lemma zero-less-double-add-iff-zero-less-single-add [simp]: 0 < a + a ←→ 0 < a
〈proof 〉

lemma double-add-le-zero-iff-single-add-le-zero [simp]: a + a ≤ 0 ←→ a ≤ 0
〈proof 〉

lemma double-add-less-zero-iff-single-less-zero [simp]: a + a < 0 ←→ a < 0
〈proof 〉

declare neg-inf-eq-sup [simp]
and neg-sup-eq-inf [simp]
and diff-inf-eq-sup [simp]
and diff-sup-eq-inf [simp]

lemma le-minus-self-iff : a ≤ − a ←→ a ≤ 0
〈proof 〉

lemma minus-le-self-iff : − a ≤ a ←→ 0 ≤ a
〈proof 〉

THEORY “Lattice-Algebras” 375

lemma zero-le-iff-zero-nprt: 0 ≤ a ←→ nprt a = 0
〈proof 〉

lemma le-zero-iff-zero-pprt: a ≤ 0 ←→ pprt a = 0
〈proof 〉

lemma le-zero-iff-pprt-id: 0 ≤ a ←→ pprt a = a
〈proof 〉

lemma zero-le-iff-nprt-id: a ≤ 0 ←→ nprt a = a
〈proof 〉

lemma pprt-mono [simp, no-atp]: a ≤ b =⇒ pprt a ≤ pprt b
〈proof 〉

lemma nprt-mono [simp, no-atp]: a ≤ b =⇒ nprt a ≤ nprt b
〈proof 〉

end

lemmas add-sup-inf-distribs =
add-inf-distrib-right add-inf-distrib-left add-sup-distrib-right add-sup-distrib-left

class lattice-ab-group-add-abs = lattice-ab-group-add + abs +
assumes abs-lattice: |a| = sup a (− a)

begin

lemma abs-prts: |a| = pprt a − nprt a
〈proof 〉

subclass ordered-ab-group-add-abs
〈proof 〉

end

lemma sup-eq-if :
fixes a :: ′a::{lattice-ab-group-add,linorder}
shows sup a (− a) = (if a < 0 then − a else a)
〈proof 〉

lemma abs-if-lattice:
fixes a :: ′a::{lattice-ab-group-add-abs,linorder}
shows |a| = (if a < 0 then − a else a)
〈proof 〉

lemma estimate-by-abs:
fixes a b c :: ′a::lattice-ab-group-add-abs
assumes a + b ≤ c

THEORY “Float” 376

shows a ≤ c + |b|
〈proof 〉

class lattice-ring = ordered-ring + lattice-ab-group-add-abs
begin

subclass semilattice-inf-ab-group-add 〈proof 〉
subclass semilattice-sup-ab-group-add 〈proof 〉

end

lemma abs-le-mult:
fixes a b :: ′a::lattice-ring
shows |a ∗ b| ≤ |a| ∗ |b|
〈proof 〉

instance lattice-ring ⊆ ordered-ring-abs
〈proof 〉

lemma mult-le-prts:
fixes a b :: ′a::lattice-ring
assumes a1 ≤ a

and a ≤ a2
and b1 ≤ b
and b ≤ b2

shows a ∗ b ≤
pprt a2 ∗ pprt b2 + pprt a1 ∗ nprt b2 + nprt a2 ∗ pprt b1 + nprt a1 ∗ nprt

b1
〈proof 〉

lemma mult-ge-prts:
fixes a b :: ′a::lattice-ring
assumes a1 ≤ a

and a ≤ a2
and b1 ≤ b
and b ≤ b2

shows a ∗ b ≥
nprt a1 ∗ pprt b2 + nprt a2 ∗ nprt b2 + pprt a1 ∗ pprt b1 + pprt a2 ∗ nprt

b1
〈proof 〉

instance int :: lattice-ring
〈proof 〉

instance real :: lattice-ring
〈proof 〉

end

THEORY “Float” 377

43 Floating-Point Numbers
theory Float
imports Log-Nat Lattice-Algebras
begin

definition float = {m ∗ 2 powr e | (m :: int) (e :: int). True}

typedef float = float
morphisms real-of-float float-of
〈proof 〉

setup-lifting type-definition-float

declare real-of-float [code-unfold]

lemmas float-of-inject[simp]

declare [[coercion real-of-float :: float ⇒ real]]

lemma real-of-float-eq: f1 = f2 ←→ real-of-float f1 = real-of-float f2 for f1 f2 ::
float
〈proof 〉

declare real-of-float-inverse[simp] float-of-inverse [simp]
declare real-of-float [simp]

43.1 Real operations preserving the representation as float-
ing point number

lemma floatI : m ∗ 2 powr e = x =⇒ x ∈ float for m e :: int
〈proof 〉

lemma zero-float[simp]: 0 ∈ float
〈proof 〉

lemma one-float[simp]: 1 ∈ float
〈proof 〉

lemma numeral-float[simp]: numeral i ∈ float
〈proof 〉

lemma neg-numeral-float[simp]: − numeral i ∈ float
〈proof 〉

lemma real-of-int-float[simp]: real-of-int x ∈ float for x :: int
〈proof 〉

lemma real-of-nat-float[simp]: real x ∈ float for x :: nat

THEORY “Float” 378

〈proof 〉

lemma two-powr-int-float[simp]: 2 powr (real-of-int i) ∈ float for i :: int
〈proof 〉

lemma two-powr-nat-float[simp]: 2 powr (real i) ∈ float for i :: nat
〈proof 〉

lemma two-powr-minus-int-float[simp]: 2 powr − (real-of-int i) ∈ float for i :: int
〈proof 〉

lemma two-powr-minus-nat-float[simp]: 2 powr − (real i) ∈ float for i :: nat
〈proof 〉

lemma two-powr-numeral-float[simp]: 2 powr numeral i ∈ float
〈proof 〉

lemma two-powr-neg-numeral-float[simp]: 2 powr − numeral i ∈ float
〈proof 〉

lemma two-pow-float[simp]: 2 ^ n ∈ float
〈proof 〉

lemma plus-float[simp]: r ∈ float =⇒ p ∈ float =⇒ r + p ∈ float
〈proof 〉

lemma uminus-float[simp]: x ∈ float =⇒ −x ∈ float
〈proof 〉

lemma times-float[simp]: x ∈ float =⇒ y ∈ float =⇒ x ∗ y ∈ float
〈proof 〉

lemma minus-float[simp]: x ∈ float =⇒ y ∈ float =⇒ x − y ∈ float
〈proof 〉

lemma abs-float[simp]: x ∈ float =⇒ |x| ∈ float
〈proof 〉

lemma sgn-of-float[simp]: x ∈ float =⇒ sgn x ∈ float
〈proof 〉

lemma div-power-2-float[simp]: x ∈ float =⇒ x / 2^d ∈ float
〈proof 〉

lemma div-power-2-int-float[simp]: x ∈ float =⇒ x / (2 ::int)^d ∈ float
〈proof 〉

lemma div-numeral-Bit0-float[simp]:

THEORY “Float” 379

assumes x / numeral n ∈ float
shows x / (numeral (Num.Bit0 n)) ∈ float
〈proof 〉

lemma div-neg-numeral-Bit0-float[simp]:
assumes x / numeral n ∈ float
shows x / (− numeral (Num.Bit0 n)) ∈ float
〈proof 〉

lemma power-float[simp]:
assumes a ∈ float
shows a ^ b ∈ float
〈proof 〉

lift-definition Float :: int ⇒ int ⇒ float is λ(m::int) (e::int). m ∗ 2 powr e
〈proof 〉

declare Float.rep-eq[simp]

code-datatype Float

lemma compute-real-of-float[code]:
real-of-float (Float m e) = (if e ≥ 0 then m ∗ 2 ^ nat e else m / 2 ^ (nat (−e)))
〈proof 〉

43.2 Arithmetic operations on floating point numbers
instantiation float :: {ring-1 ,linorder ,linordered-ring,linordered-idom,numeral,equal}
begin

lift-definition zero-float :: float is 0 〈proof 〉
declare zero-float.rep-eq[simp]

lift-definition one-float :: float is 1 〈proof 〉
declare one-float.rep-eq[simp]

lift-definition plus-float :: float ⇒ float ⇒ float is (+) 〈proof 〉
declare plus-float.rep-eq[simp]

lift-definition times-float :: float ⇒ float ⇒ float is (∗) 〈proof 〉
declare times-float.rep-eq[simp]

lift-definition minus-float :: float ⇒ float ⇒ float is (−) 〈proof 〉
declare minus-float.rep-eq[simp]

lift-definition uminus-float :: float ⇒ float is uminus 〈proof 〉
declare uminus-float.rep-eq[simp]

lift-definition abs-float :: float ⇒ float is abs 〈proof 〉
declare abs-float.rep-eq[simp]

THEORY “Float” 380

lift-definition sgn-float :: float ⇒ float is sgn 〈proof 〉
declare sgn-float.rep-eq[simp]

lift-definition equal-float :: float ⇒ float ⇒ bool is (=) :: real ⇒ real ⇒ bool
〈proof 〉

lift-definition less-eq-float :: float ⇒ float ⇒ bool is (≤) 〈proof 〉
declare less-eq-float.rep-eq[simp]

lift-definition less-float :: float ⇒ float ⇒ bool is (<) 〈proof 〉
declare less-float.rep-eq[simp]

instance
〈proof 〉

end

lemma real-of-float [simp]: real-of-float (of-nat n) = of-nat n
〈proof 〉

lemma real-of-float-of-int-eq [simp]: real-of-float (of-int z) = of-int z
〈proof 〉

lemma Float-0-eq-0 [simp]: Float 0 e = 0
〈proof 〉

lemma real-of-float-power [simp]: real-of-float (f^n) = real-of-float f^n for f :: float
〈proof 〉

lemma real-of-float-min: real-of-float (min x y) = min (real-of-float x) (real-of-float
y)

and real-of-float-max: real-of-float (max x y) = max (real-of-float x) (real-of-float
y)

for x y :: float
〈proof 〉

instance float :: unbounded-dense-linorder
〈proof 〉

instantiation float :: lattice-ab-group-add
begin

definition inf-float :: float ⇒ float ⇒ float
where inf-float a b = min a b

definition sup-float :: float ⇒ float ⇒ float
where sup-float a b = max a b

THEORY “Float” 381

instance
〈proof 〉

end

lemma float-numeral[simp]: real-of-float (numeral x :: float) = numeral x
〈proof 〉

lemma transfer-numeral [transfer-rule]:
rel-fun (=) pcr-float (numeral :: - ⇒ real) (numeral :: - ⇒ float)
〈proof 〉

lemma float-neg-numeral[simp]: real-of-float (− numeral x :: float) = − numeral
x
〈proof 〉

lemma transfer-neg-numeral [transfer-rule]:
rel-fun (=) pcr-float (− numeral :: - ⇒ real) (− numeral :: - ⇒ float)
〈proof 〉

lemma float-of-numeral: numeral k = float-of (numeral k)
and float-of-neg-numeral: − numeral k = float-of (− numeral k)
〈proof 〉

43.3 Quickcheck
instantiation float :: exhaustive
begin

definition exhaustive-float where
exhaustive-float f d =

Quickcheck-Exhaustive.exhaustive (λx. Quickcheck-Exhaustive.exhaustive (λy. f
(Float x y)) d) d

instance 〈proof 〉

end

context
includes term-syntax

begin

definition [code-unfold]:
valtermify-float x y = Code-Evaluation.valtermify Float {·} x {·} y

end

instantiation float :: full-exhaustive
begin

THEORY “Float” 382

definition
full-exhaustive-float f d =

Quickcheck-Exhaustive.full-exhaustive
(λx. Quickcheck-Exhaustive.full-exhaustive (λy. f (valtermify-float x y)) d) d

instance 〈proof 〉

end

instantiation float :: random
begin

definition Quickcheck-Random.random i =
scomp (Quickcheck-Random.random (2 ^ nat-of-natural i))

(λman. scomp (Quickcheck-Random.random i) (λexp. Pair (valtermify-float
man exp)))

instance 〈proof 〉

end

43.4 Represent floats as unique mantissa and exponent
lemma int-induct-abs[case-names less]:

fixes j :: int
assumes H :

∧
n. (

∧
i. |i| < |n| =⇒ P i) =⇒ P n

shows P j
〈proof 〉

lemma int-cancel-factors:
fixes n :: int
assumes 1 < r
shows n = 0 ∨ (∃ k i. n = k ∗ r ^ i ∧ ¬ r dvd k)
〈proof 〉

lemma mult-powr-eq-mult-powr-iff-asym:
fixes m1 m2 e1 e2 :: int
assumes m1 : ¬ 2 dvd m1

and e1 ≤ e2
shows m1 ∗ 2 powr e1 = m2 ∗ 2 powr e2 ←→ m1 = m2 ∧ e1 = e2
(is ?lhs ←→ ?rhs)
〈proof 〉

lemma mult-powr-eq-mult-powr-iff :
¬ 2 dvd m1 =⇒ ¬ 2 dvd m2 =⇒ m1 ∗ 2 powr e1 = m2 ∗ 2 powr e2 ←→ m1 =

m2 ∧ e1 = e2
for m1 m2 e1 e2 :: int
〈proof 〉

THEORY “Float” 383

lemma floatE-normed:
assumes x: x ∈ float
obtains (zero) x = 0
| (powr) m e :: int where x = m ∗ 2 powr e ¬ 2 dvd m x 6= 0

〈proof 〉

lemma float-normed-cases:
fixes f :: float
obtains (zero) f = 0
| (powr) m e :: int where real-of-float f = m ∗ 2 powr e ¬ 2 dvd m f 6= 0

〈proof 〉

definition mantissa :: float ⇒ int
where mantissa f =

fst (SOME p::int × int. (f = 0 ∧ fst p = 0 ∧ snd p = 0) ∨
(f 6= 0 ∧ real-of-float f = real-of-int (fst p) ∗ 2 powr real-of-int (snd p) ∧ ¬

2 dvd fst p))

definition exponent :: float ⇒ int
where exponent f =

snd (SOME p::int × int. (f = 0 ∧ fst p = 0 ∧ snd p = 0) ∨
(f 6= 0 ∧ real-of-float f = real-of-int (fst p) ∗ 2 powr real-of-int (snd p) ∧ ¬

2 dvd fst p))

lemma exponent-0 [simp]: exponent 0 = 0 (is ?E)
and mantissa-0 [simp]: mantissa 0 = 0 (is ?M)
〈proof 〉

lemma mantissa-exponent: real-of-float f = mantissa f ∗ 2 powr exponent f (is
?E)

and mantissa-not-dvd: f 6= 0 =⇒ ¬ 2 dvd mantissa f (is - =⇒ ?D)
〈proof 〉

lemma mantissa-noteq-0 : f 6= 0 =⇒ mantissa f 6= 0
〈proof 〉

lemma mantissa-eq-zero-iff : mantissa x = 0 ←→ x = 0
(is ?lhs ←→ ?rhs)
〈proof 〉

lemma mantissa-pos-iff : 0 < mantissa x ←→ 0 < x
〈proof 〉

lemma mantissa-nonneg-iff : 0 ≤ mantissa x ←→ 0 ≤ x
〈proof 〉

lemma mantissa-neg-iff : 0 > mantissa x ←→ 0 > x
〈proof 〉

THEORY “Float” 384

lemma
fixes m e :: int
defines f ≡ float-of (m ∗ 2 powr e)
assumes dvd: ¬ 2 dvd m
shows mantissa-float: mantissa f = m (is ?M)

and exponent-float: m 6= 0 =⇒ exponent f = e (is - =⇒ ?E)
〈proof 〉

43.5 Compute arithmetic operations
lemma Float-mantissa-exponent: Float (mantissa f) (exponent f) = f
〈proof 〉

lemma Float-cases [cases type: float]:
fixes f :: float
obtains (Float) m e :: int where f = Float m e
〈proof 〉

lemma denormalize-shift:
assumes f-def : f = Float m e

and not-0 : f 6= 0
obtains i where m = mantissa f ∗ 2 ^ i e = exponent f − i
〈proof 〉

context
begin

qualified lemma compute-float-zero[code-unfold, code]: 0 = Float 0 0
〈proof 〉 lemma compute-float-one[code-unfold, code]: 1 = Float 1 0
〈proof 〉

lift-definition normfloat :: float ⇒ float is λx. x 〈proof 〉
lemma normloat-id[simp]: normfloat x = x 〈proof 〉 lemma compute-normfloat[code]:

normfloat (Float m e) =
(if m mod 2 = 0 ∧ m 6= 0 then normfloat (Float (m div 2) (e + 1))
else if m = 0 then 0 else Float m e)
〈proof 〉 lemma compute-float-numeral[code-abbrev]: Float (numeral k) 0 = nu-

meral k
〈proof 〉 lemma compute-float-neg-numeral[code-abbrev]: Float (− numeral k) 0

= − numeral k
〈proof 〉 lemma compute-float-uminus[code]: − Float m1 e1 = Float (− m1) e1
〈proof 〉 lemma compute-float-times[code]: Float m1 e1 ∗ Float m2 e2 = Float

(m1 ∗ m2) (e1 + e2)
〈proof 〉 lemma compute-float-plus[code]:
Float m1 e1 + Float m2 e2 =
(if m1 = 0 then Float m2 e2
else if m2 = 0 then Float m1 e1
else if e1 ≤ e2 then Float (m1 + m2 ∗ 2^nat (e2 − e1)) e1

THEORY “Float” 385

else Float (m2 + m1 ∗ 2^nat (e1 − e2)) e2)
〈proof 〉 lemma compute-float-minus[code]: f − g = f + (−g) for f g :: float
〈proof 〉 lemma compute-float-sgn[code]:
sgn (Float m1 e1) = (if 0 < m1 then 1 else if m1 < 0 then −1 else 0)
〈proof 〉

lift-definition is-float-pos :: float ⇒ bool is (<) 0 :: real ⇒ bool 〈proof 〉 lemma
compute-is-float-pos[code]: is-float-pos (Float m e) ←→ 0 < m
〈proof 〉

lift-definition is-float-nonneg :: float ⇒ bool is (≤) 0 :: real ⇒ bool 〈proof 〉
lemma compute-is-float-nonneg[code]: is-float-nonneg (Float m e) ←→ 0 ≤ m
〈proof 〉

lift-definition is-float-zero :: float ⇒ bool is (=) 0 :: real ⇒ bool 〈proof 〉 lemma
compute-is-float-zero[code]: is-float-zero (Float m e) ←→ 0 = m
〈proof 〉 lemma compute-float-abs[code]: |Float m e| = Float |m| e
〈proof 〉 lemma compute-float-eq[code]: equal-class.equal f g = is-float-zero (f −

g)
〈proof 〉

end

43.6 Lemmas for types real, nat, int
lemmas real-of-ints =

of-int-add
of-int-minus
of-int-diff
of-int-mult
of-int-power
of-int-numeral of-int-neg-numeral

lemmas int-of-reals = real-of-ints[symmetric]

43.7 Rounding Real Numbers
definition round-down :: int ⇒ real ⇒ real

where round-down prec x = bx ∗ 2 powr precc ∗ 2 powr −prec

definition round-up :: int ⇒ real ⇒ real
where round-up prec x = dx ∗ 2 powr prece ∗ 2 powr −prec

lemma round-down-float[simp]: round-down prec x ∈ float
〈proof 〉

lemma round-up-float[simp]: round-up prec x ∈ float
〈proof 〉

lemma round-up: x ≤ round-up prec x

THEORY “Float” 386

〈proof 〉

lemma round-down: round-down prec x ≤ x
〈proof 〉

lemma round-up-0 [simp]: round-up p 0 = 0
〈proof 〉

lemma round-down-0 [simp]: round-down p 0 = 0
〈proof 〉

lemma round-up-diff-round-down: round-up prec x − round-down prec x ≤ 2 powr
−prec
〈proof 〉

lemma round-down-shift: round-down p (x ∗ 2 powr k) = 2 powr k ∗ round-down
(p + k) x
〈proof 〉

lemma round-up-shift: round-up p (x ∗ 2 powr k) = 2 powr k ∗ round-up (p + k)
x
〈proof 〉

lemma round-up-uminus-eq: round-up p (−x) = − round-down p x
and round-down-uminus-eq: round-down p (−x) = − round-up p x
〈proof 〉

lemma round-up-mono: x ≤ y =⇒ round-up p x ≤ round-up p y
〈proof 〉

lemma round-up-le1 :
assumes x ≤ 1 prec ≥ 0
shows round-up prec x ≤ 1
〈proof 〉

lemma round-up-less1 :
assumes x < 1 / 2 p > 0
shows round-up p x < 1
〈proof 〉

lemma round-down-ge1 :
assumes x: x ≥ 1
assumes prec: p ≥ − log 2 x
shows 1 ≤ round-down p x
〈proof 〉

lemma round-up-le0 : x ≤ 0 =⇒ round-up p x ≤ 0
〈proof 〉

THEORY “Float” 387

43.8 Rounding Floats
definition div-twopow :: int ⇒ nat ⇒ int

where [simp]: div-twopow x n = x div (2 ^ n)

definition mod-twopow :: int ⇒ nat ⇒ int
where [simp]: mod-twopow x n = x mod (2 ^ n)

lemma compute-div-twopow[code]:
div-twopow x n = (if x = 0 ∨ x = −1 ∨ n = 0 then x else div-twopow (x div 2)

(n − 1))
〈proof 〉

lemma compute-mod-twopow[code]:
mod-twopow x n = (if n = 0 then 0 else x mod 2 + 2 ∗ mod-twopow (x div 2) (n
− 1))
〈proof 〉

lift-definition float-up :: int ⇒ float ⇒ float is round-up 〈proof 〉
declare float-up.rep-eq[simp]

lemma round-up-correct: round-up e f − f ∈ {0 ..2 powr −e}
〈proof 〉

lemma float-up-correct: real-of-float (float-up e f) − real-of-float f ∈ {0 ..2 powr
−e}
〈proof 〉

lift-definition float-down :: int ⇒ float ⇒ float is round-down 〈proof 〉
declare float-down.rep-eq[simp]

lemma round-down-correct: f − (round-down e f) ∈ {0 ..2 powr −e}
〈proof 〉

lemma float-down-correct: real-of-float f − real-of-float (float-down e f) ∈ {0 ..2
powr −e}
〈proof 〉

context
begin

qualified lemma compute-float-down[code]:
float-down p (Float m e) =
(if p + e < 0 then Float (div-twopow m (nat (−(p + e)))) (−p) else Float m e)

〈proof 〉

lemma abs-round-down-le: |f − (round-down e f)| ≤ 2 powr −e
〈proof 〉

lemma abs-round-up-le: |f − (round-up e f)| ≤ 2 powr −e

THEORY “Float” 388

〈proof 〉

lemma round-down-nonneg: 0 ≤ s =⇒ 0 ≤ round-down p s
〈proof 〉

lemma ceil-divide-floor-conv:
assumes b 6= 0
shows dreal-of-int a / real-of-int be =
(if b dvd a then a div b else breal-of-int a / real-of-int bc + 1)

〈proof 〉 lemma compute-float-up[code]: float-up p x = − float-down p (−x)
〈proof 〉

end

lemma bitlen-Float:
fixes m e
defines [THEN meta-eq-to-obj-eq]: f ≡ Float m e
shows bitlen |mantissa f | + exponent f = (if m = 0 then 0 else bitlen |m| + e)
〈proof 〉

lemma float-gt1-scale:
assumes 1 ≤ Float m e
shows 0 ≤ e + (bitlen m − 1)
〈proof 〉

43.9 Truncating Real Numbers
definition truncate-down::nat ⇒ real ⇒ real

where truncate-down prec x = round-down (prec − blog 2 |x|c) x

lemma truncate-down: truncate-down prec x ≤ x
〈proof 〉

lemma truncate-down-le: x ≤ y =⇒ truncate-down prec x ≤ y
〈proof 〉

lemma truncate-down-zero[simp]: truncate-down prec 0 = 0
〈proof 〉

lemma truncate-down-float[simp]: truncate-down p x ∈ float
〈proof 〉

definition truncate-up::nat ⇒ real ⇒ real
where truncate-up prec x = round-up (prec − blog 2 |x|c) x

lemma truncate-up: x ≤ truncate-up prec x
〈proof 〉

THEORY “Float” 389

lemma truncate-up-le: x ≤ y =⇒ x ≤ truncate-up prec y
〈proof 〉

lemma truncate-up-zero[simp]: truncate-up prec 0 = 0
〈proof 〉

lemma truncate-up-uminus-eq: truncate-up prec (−x) = − truncate-down prec x
and truncate-down-uminus-eq: truncate-down prec (−x) = − truncate-up prec x
〈proof 〉

lemma truncate-up-float[simp]: truncate-up p x ∈ float
〈proof 〉

lemma mult-powr-eq: 0 < b =⇒ b 6= 1 =⇒ 0 < x =⇒ x ∗ b powr y = b powr (y
+ log b x)
〈proof 〉

lemma truncate-down-pos:
assumes x > 0
shows truncate-down p x > 0
〈proof 〉

lemma truncate-down-nonneg: 0 ≤ y =⇒ 0 ≤ truncate-down prec y
〈proof 〉

lemma truncate-down-ge1 : 1 ≤ x =⇒ 1 ≤ truncate-down p x
〈proof 〉

lemma truncate-up-nonpos: x ≤ 0 =⇒ truncate-up prec x ≤ 0
〈proof 〉

lemma truncate-up-le1 :
assumes x ≤ 1
shows truncate-up p x ≤ 1
〈proof 〉

lemma truncate-down-shift-int:
truncate-down p (x ∗ 2 powr real-of-int k) = truncate-down p x ∗ 2 powr k
〈proof 〉

lemma truncate-down-shift-nat: truncate-down p (x ∗ 2 powr real k) = trun-
cate-down p x ∗ 2 powr k
〈proof 〉

lemma truncate-up-shift-int: truncate-up p (x ∗ 2 powr real-of-int k) = truncate-up
p x ∗ 2 powr k
〈proof 〉

lemma truncate-up-shift-nat: truncate-up p (x ∗ 2 powr real k) = truncate-up p x

THEORY “Float” 390

∗ 2 powr k
〈proof 〉

43.10 Truncating Floats
lift-definition float-round-up :: nat ⇒ float ⇒ float is truncate-up
〈proof 〉

lemma float-round-up: real-of-float x ≤ real-of-float (float-round-up prec x)
〈proof 〉

lemma float-round-up-zero[simp]: float-round-up prec 0 = 0
〈proof 〉

lift-definition float-round-down :: nat ⇒ float ⇒ float is truncate-down
〈proof 〉

lemma float-round-down: real-of-float (float-round-down prec x) ≤ real-of-float x
〈proof 〉

lemma float-round-down-zero[simp]: float-round-down prec 0 = 0
〈proof 〉

lemmas float-round-up-le = order-trans[OF - float-round-up]
and float-round-down-le = order-trans[OF float-round-down]

lemma minus-float-round-up-eq: − float-round-up prec x = float-round-down prec
(− x)

and minus-float-round-down-eq: − float-round-down prec x = float-round-up prec
(− x)
〈proof 〉

context
begin

qualified lemma compute-float-round-down[code]:
float-round-down prec (Float m e) =
(let d = bitlen |m| − int prec − 1 in

if 0 < d then Float (div-twopow m (nat d)) (e + d)
else Float m e)

〈proof 〉 lemma compute-float-round-up[code]:
float-round-up prec x = − float-round-down prec (−x)
〈proof 〉

end

lemma truncate-up-nonneg-mono:
assumes 0 ≤ x x ≤ y
shows truncate-up prec x ≤ truncate-up prec y

THEORY “Float” 391

〈proof 〉

lemma truncate-up-switch-sign-mono:
assumes x ≤ 0 0 ≤ y
shows truncate-up prec x ≤ truncate-up prec y
〈proof 〉

lemma truncate-down-switch-sign-mono:
assumes x ≤ 0

and 0 ≤ y
and x ≤ y

shows truncate-down prec x ≤ truncate-down prec y
〈proof 〉

lemma truncate-down-nonneg-mono:
assumes 0 ≤ x x ≤ y
shows truncate-down prec x ≤ truncate-down prec y
〈proof 〉

lemma truncate-down-eq-truncate-up: truncate-down p x = − truncate-up p (−x)
and truncate-up-eq-truncate-down: truncate-up p x = − truncate-down p (−x)
〈proof 〉

lemma truncate-down-mono: x ≤ y =⇒ truncate-down p x ≤ truncate-down p y
〈proof 〉

lemma truncate-up-mono: x ≤ y =⇒ truncate-up p x ≤ truncate-up p y
〈proof 〉

lemma truncate-up-nonneg: 0 ≤ truncate-up p x if 0 ≤ x
〈proof 〉

lemma truncate-up-pos: 0 < truncate-up p x if 0 < x
〈proof 〉

lemma truncate-up-less-zero-iff [simp]: truncate-up p x < 0 ←→ x < 0
〈proof 〉

lemma truncate-up-nonneg-iff [simp]: truncate-up p x ≥ 0 ←→ x ≥ 0
〈proof 〉

lemma truncate-down-less-zero-iff [simp]: truncate-down p x < 0 ←→ x < 0
〈proof 〉

lemma truncate-down-nonneg-iff [simp]: truncate-down p x ≥ 0 ←→ x ≥ 0
〈proof 〉

lemma truncate-down-eq-zero-iff [simp]: truncate-down prec x = 0 ←→ x = 0
〈proof 〉

THEORY “Float” 392

lemma truncate-up-eq-zero-iff [simp]: truncate-up prec x = 0 ←→ x = 0
〈proof 〉

43.11 Approximation of positive rationals
lemma div-mult-twopow-eq: a div ((2 ::nat) ^ n) div b = a div (b ∗ 2 ^ n) for a b
:: nat
〈proof 〉

lemma real-div-nat-eq-floor-of-divide: a div b = real-of-int ba / bc for a b :: nat
〈proof 〉

definition rat-precision prec x y =
(let d = bitlen x − bitlen y
in int prec − d + (if Float (abs x) 0 < Float (abs y) d then 1 else 0))

lemma floor-log-divide-eq:
assumes i > 0 j > 0 p > 1
shows blog p (i / j)c = floor (log p i) − floor (log p j) −
(if i ≥ j ∗ p powr (floor (log p i) − floor (log p j)) then 0 else 1)

〈proof 〉

lemma truncate-down-rat-precision:
truncate-down prec (real x / real y) = round-down (rat-precision prec x y) (real

x / real y)
and truncate-up-rat-precision:

truncate-up prec (real x / real y) = round-up (rat-precision prec x y) (real x /
real y)
〈proof 〉

lift-definition lapprox-posrat :: nat ⇒ nat ⇒ nat ⇒ float
is λprec (x::nat) (y::nat). truncate-down prec (x / y)
〈proof 〉

context
begin

qualified lemma compute-lapprox-posrat[code]:
lapprox-posrat prec x y =
(let

l = rat-precision prec x y;
d = if 0 ≤ l then x ∗ 2^nat l div y else x div 2^nat (− l) div y

in normfloat (Float d (− l)))
〈proof 〉

end

lift-definition rapprox-posrat :: nat ⇒ nat ⇒ nat ⇒ float

THEORY “Float” 393

is λprec (x::nat) (y::nat). truncate-up prec (x / y)
〈proof 〉

context
begin

qualified lemma compute-rapprox-posrat[code]:
fixes prec x y
defines l ≡ rat-precision prec x y
shows rapprox-posrat prec x y =
(let

l = l;
(r , s) = if 0 ≤ l then (x ∗ 2^nat l, y) else (x, y ∗ 2^nat(−l));
d = r div s;
m = r mod s

in normfloat (Float (d + (if m = 0 ∨ y = 0 then 0 else 1)) (− l)))
〈proof 〉

end

lemma rat-precision-pos:
assumes 0 ≤ x

and 0 < y
and 2 ∗ x < y

shows rat-precision n (int x) (int y) > 0
〈proof 〉

lemma rapprox-posrat-less1 :
0 ≤ x =⇒ 0 < y =⇒ 2 ∗ x < y =⇒ real-of-float (rapprox-posrat n x y) < 1
〈proof 〉

lift-definition lapprox-rat :: nat ⇒ int ⇒ int ⇒ float is
λprec (x::int) (y::int). truncate-down prec (x / y)
〈proof 〉

context
begin

qualified lemma compute-lapprox-rat[code]:
lapprox-rat prec x y =
(if y = 0 then 0
else if 0 ≤ x then
(if 0 < y then lapprox-posrat prec (nat x) (nat y)
else − (rapprox-posrat prec (nat x) (nat (−y))))
else
(if 0 < y
then − (rapprox-posrat prec (nat (−x)) (nat y))
else lapprox-posrat prec (nat (−x)) (nat (−y))))

〈proof 〉

THEORY “Float” 394

lift-definition rapprox-rat :: nat ⇒ int ⇒ int ⇒ float is
λprec (x::int) (y::int). truncate-up prec (x / y)
〈proof 〉

lemma rapprox-rat = rapprox-posrat
〈proof 〉

lemma lapprox-rat = lapprox-posrat
〈proof 〉 lemma compute-rapprox-rat[code]:
rapprox-rat prec x y = − lapprox-rat prec (−x) y
〈proof 〉 lemma compute-truncate-down[code]:
truncate-down p (Ratreal r) = (let (a, b) = quotient-of r in lapprox-rat p a b)
〈proof 〉 lemma compute-truncate-up[code]:
truncate-up p (Ratreal r) = (let (a, b) = quotient-of r in rapprox-rat p a b)
〈proof 〉

end

43.12 Division
definition real-divl prec a b = truncate-down prec (a / b)

definition real-divr prec a b = truncate-up prec (a / b)

lift-definition float-divl :: nat ⇒ float ⇒ float ⇒ float is real-divl
〈proof 〉

context
begin

qualified lemma compute-float-divl[code]:
float-divl prec (Float m1 s1) (Float m2 s2) = lapprox-rat prec m1 m2 ∗ Float 1

(s1 − s2)
〈proof 〉

lift-definition float-divr :: nat ⇒ float ⇒ float ⇒ float is real-divr
〈proof 〉 lemma compute-float-divr [code]:
float-divr prec x y = − float-divl prec (−x) y
〈proof 〉

end

43.13 Approximate Addition
definition plus-down prec x y = truncate-down prec (x + y)

definition plus-up prec x y = truncate-up prec (x + y)

THEORY “Float” 395

lemma float-plus-down-float[intro, simp]: x ∈ float =⇒ y ∈ float =⇒ plus-down p
x y ∈ float
〈proof 〉

lemma float-plus-up-float[intro, simp]: x ∈ float =⇒ y ∈ float =⇒ plus-up p x y
∈ float
〈proof 〉

lift-definition float-plus-down :: nat ⇒ float ⇒ float ⇒ float is plus-down 〈proof 〉

lift-definition float-plus-up :: nat ⇒ float ⇒ float ⇒ float is plus-up 〈proof 〉

lemma plus-down: plus-down prec x y ≤ x + y
and plus-up: x + y ≤ plus-up prec x y
〈proof 〉

lemma float-plus-down: real-of-float (float-plus-down prec x y) ≤ x + y
and float-plus-up: x + y ≤ real-of-float (float-plus-up prec x y)
〈proof 〉

lemmas plus-down-le = order-trans[OF plus-down]
and plus-up-le = order-trans[OF - plus-up]
and float-plus-down-le = order-trans[OF float-plus-down]
and float-plus-up-le = order-trans[OF - float-plus-up]

lemma compute-plus-up[code]: plus-up p x y = − plus-down p (−x) (−y)
〈proof 〉

lemma truncate-down-log2-eqI :
assumes blog 2 |x|c = blog 2 |y|c
assumes bx ∗ 2 powr (p − blog 2 |x|c)c = by ∗ 2 powr (p − blog 2 |x|c)c
shows truncate-down p x = truncate-down p y
〈proof 〉

lemma sum-neq-zeroI :
|a| ≥ k =⇒ |b| < k =⇒ a + b 6= 0
|a| > k =⇒ |b| ≤ k =⇒ a + b 6= 0
for a k :: real
〈proof 〉

lemma abs-real-le-2-powr-bitlen[simp]: |real-of-int m2 | < 2 powr real-of-int (bitlen
|m2 |)
〈proof 〉

lemma floor-sum-times-2-powr-sgn-eq:
fixes ai p q :: int

and a b :: real
assumes a ∗ 2 powr p = ai

and b-le-1 : |b ∗ 2 powr (p + 1)| ≤ 1

THEORY “Float” 396

and leqp: q ≤ p
shows b(a + b) ∗ 2 powr qc = b(2 ∗ ai + sgn b) ∗ 2 powr (q − p − 1)c
〈proof 〉

lemma log2-abs-int-add-less-half-sgn-eq:
fixes ai :: int

and b :: real
assumes |b| ≤ 1/2

and ai 6= 0
shows blog 2 |real-of-int ai + b|c = blog 2 |ai + sgn b / 2 |c
〈proof 〉

context
begin

qualified lemma compute-far-float-plus-down:
fixes m1 e1 m2 e2 :: int

and p :: nat
defines k1 ≡ Suc p − nat (bitlen |m1 |)
assumes H : bitlen |m2 | ≤ e1 − e2 − k1 − 2 m1 6= 0 m2 6= 0 e1 ≥ e2
shows float-plus-down p (Float m1 e1) (Float m2 e2) =

float-round-down p (Float (m1 ∗ 2 ^ (Suc (Suc k1)) + sgn m2) (e1 − int k1
− 2))
〈proof 〉

lemma compute-float-plus-down-naive: float-plus-down p x y = float-round-down
p (x + y)
〈proof 〉 lemma compute-float-plus-down[code]:
fixes p::nat and m1 e1 m2 e2 ::int
shows float-plus-down p (Float m1 e1) (Float m2 e2) =
(if m1 = 0 then float-round-down p (Float m2 e2)
else if m2 = 0 then float-round-down p (Float m1 e1)
else
(if e1 ≥ e2 then
(let k1 = Suc p − nat (bitlen |m1 |) in

if bitlen |m2 | > e1 − e2 − k1 − 2
then float-round-down p ((Float m1 e1) + (Float m2 e2))
else float-round-down p (Float (m1 ∗ 2 ^ (Suc (Suc k1)) + sgn m2) (e1

− int k1 − 2)))
else float-plus-down p (Float m2 e2) (Float m1 e1)))

〈proof 〉 lemma compute-float-plus-up[code]: float-plus-up p x y = − float-plus-down
p (−x) (−y)
〈proof 〉

lemma mantissa-zero: mantissa 0 = 0
〈proof 〉 lemma compute-float-less[code]: a < b ←→ is-float-pos (float-plus-down

0 b (− a))
〈proof 〉 lemma compute-float-le[code]: a ≤ b ←→ is-float-nonneg (float-plus-down

0 b (− a))

THEORY “Float” 397

〈proof 〉

end

lemma plus-down-mono: plus-down p a b ≤ plus-down p c d if a + b ≤ c + d
〈proof 〉

lemma plus-up-mono: plus-up p a b ≤ plus-up p c d if a + b ≤ c + d
〈proof 〉

43.14 Approximate Multiplication
lemma mult-mono-nonpos-nonneg: a ∗ b ≤ c ∗ d

if a ≤ c a ≤ 0 0 ≤ d d ≤ b for a b c d:: ′a::ordered-ring
〈proof 〉

lemma mult-mono-nonneg-nonpos: b ∗ a ≤ d ∗ c
if a ≤ c c ≤ 0 0 ≤ d d ≤ b for a b c d:: ′a::ordered-ring
〈proof 〉

lemma mult-mono-nonpos-nonpos: a ∗ b ≤ c ∗ d
if a ≥ c a ≤ 0 b ≥ d d ≤ 0 for a b c d::real
〈proof 〉

lemma mult-float-mono1 :
shows a ≤ b =⇒ ab ≤ bb =⇒

aa ≤ a =⇒
b ≤ ba =⇒
ac ≤ ab =⇒
bb ≤ bc =⇒
plus-down prec (nprt aa ∗ pprt bc)
(plus-down prec (nprt ba ∗ nprt bc)
(plus-down prec (pprt aa ∗ pprt ac)
(pprt ba ∗ nprt ac)))

≤ plus-down prec (nprt a ∗ pprt bb)
(plus-down prec (nprt b ∗ nprt bb)
(plus-down prec (pprt a ∗ pprt ab)
(pprt b ∗ nprt ab)))

〈proof 〉

lemma mult-float-mono2 :
shows a ≤ b =⇒

ab ≤ bb =⇒
aa ≤ a =⇒
b ≤ ba =⇒
ac ≤ ab =⇒
bb ≤ bc =⇒
plus-up prec (pprt b ∗ pprt bb)
(plus-up prec (pprt a ∗ nprt bb)

THEORY “Float” 398

(plus-up prec (nprt b ∗ pprt ab)
(nprt a ∗ nprt ab)))

≤ plus-up prec (pprt ba ∗ pprt bc)
(plus-up prec (pprt aa ∗ nprt bc)
(plus-up prec (nprt ba ∗ pprt ac)
(nprt aa ∗ nprt ac)))

〈proof 〉

43.15 Approximate Power
lemma div2-less-self [termination-simp]: odd n =⇒ n div 2 < n for n :: nat
〈proof 〉

fun power-down :: nat ⇒ real ⇒ nat ⇒ real
where

power-down p x 0 = 1
| power-down p x (Suc n) =

(if odd n then truncate-down (Suc p) ((power-down p x (Suc n div 2))2)
else truncate-down (Suc p) (x ∗ power-down p x n))

fun power-up :: nat ⇒ real ⇒ nat ⇒ real
where

power-up p x 0 = 1
| power-up p x (Suc n) =

(if odd n then truncate-up p ((power-up p x (Suc n div 2))2)
else truncate-up p (x ∗ power-up p x n))

lift-definition power-up-fl :: nat ⇒ float ⇒ nat ⇒ float is power-up
〈proof 〉

lift-definition power-down-fl :: nat ⇒ float ⇒ nat ⇒ float is power-down
〈proof 〉

lemma power-float-transfer [transfer-rule]:
(rel-fun pcr-float (rel-fun (=) pcr-float)) (^) (^)
〈proof 〉

lemma compute-power-up-fl[code]:
power-up-fl p x 0 = 1
power-up-fl p x (Suc n) =
(if odd n then float-round-up p ((power-up-fl p x (Suc n div 2))2)
else float-round-up p (x ∗ power-up-fl p x n))

and compute-power-down-fl[code]:
power-down-fl p x 0 = 1
power-down-fl p x (Suc n) =
(if odd n then float-round-down (Suc p) ((power-down-fl p x (Suc n div 2))2)
else float-round-down (Suc p) (x ∗ power-down-fl p x n))

〈proof 〉

THEORY “Float” 399

lemma power-down-pos: 0 < x =⇒ 0 < power-down p x n
〈proof 〉

lemma power-down-nonneg: 0 ≤ x =⇒ 0 ≤ power-down p x n
〈proof 〉

lemma power-down: 0 ≤ x =⇒ power-down p x n ≤ x ^ n
〈proof 〉

lemma power-up: 0 ≤ x =⇒ x ^ n ≤ power-up p x n
〈proof 〉

lemmas power-up-le = order-trans[OF - power-up]
and power-up-less = less-le-trans[OF - power-up]
and power-down-le = order-trans[OF power-down]

lemma power-down-fl: 0 ≤ x =⇒ power-down-fl p x n ≤ x ^ n
〈proof 〉

lemma power-up-fl: 0 ≤ x =⇒ x ^ n ≤ power-up-fl p x n
〈proof 〉

lemma real-power-up-fl: real-of-float (power-up-fl p x n) = power-up p x n
〈proof 〉

lemma real-power-down-fl: real-of-float (power-down-fl p x n) = power-down p x
n
〈proof 〉

lemmas [simp del] = power-down.simps(2) power-up.simps(2)

lemmas power-down-simp = power-down.simps(2)
lemmas power-up-simp = power-up.simps(2)

lemma power-down-even-nonneg: even n =⇒ 0 ≤ power-down p x n
〈proof 〉

lemma power-down-eq-zero-iff [simp]: power-down prec b n = 0 ←→ b = 0 ∧ n 6=
0
〈proof 〉

lemma power-down-nonneg-iff [simp]:
power-down prec b n ≥ 0 ←→ even n ∨ b ≥ 0
〈proof 〉

lemma power-down-neg-iff [simp]:
power-down prec b n < 0 ←→

b < 0 ∧ odd n
〈proof 〉

THEORY “Float” 400

lemma power-down-nonpos-iff [simp]:
notes [simp del] = power-down-neg-iff power-down-eq-zero-iff
shows power-down prec b n ≤ 0 ←→ b < 0 ∧ odd n ∨ b = 0 ∧ n 6= 0
〈proof 〉

lemma power-down-mono:
power-down prec a n ≤ power-down prec b n
if ((0 ≤ a ∧ a ≤ b)∨(odd n ∧ a ≤ b) ∨ (even n ∧ a ≤ 0 ∧ b ≤ a))
〈proof 〉

lemma power-up-even-nonneg: even n =⇒ 0 ≤ power-up p x n
〈proof 〉

lemma power-up-eq-zero-iff [simp]: power-up prec b n = 0 ←→ b = 0 ∧ n 6= 0
〈proof 〉

lemma power-up-nonneg-iff [simp]:
power-up prec b n ≥ 0 ←→ even n ∨ b ≥ 0
〈proof 〉

lemma power-up-neg-iff [simp]:
power-up prec b n < 0 ←→ b < 0 ∧ odd n
〈proof 〉

lemma power-up-nonpos-iff [simp]:
notes [simp del] = power-up-neg-iff power-up-eq-zero-iff
shows power-up prec b n ≤ 0 ←→ b < 0 ∧ odd n ∨ b = 0 ∧ n 6= 0
〈proof 〉

lemma power-up-mono:
power-up prec a n ≤ power-up prec b n
if ((0 ≤ a ∧ a ≤ b)∨(odd n ∧ a ≤ b) ∨ (even n ∧ a ≤ 0 ∧ b ≤ a))
〈proof 〉

43.16 Lemmas needed by Approximate
lemma Float-num[simp]:

real-of-float (Float 1 0) = 1
real-of-float (Float 1 1) = 2
real-of-float (Float 1 2) = 4
real-of-float (Float 1 (− 1)) = 1/2
real-of-float (Float 1 (− 2)) = 1/4
real-of-float (Float 1 (− 3)) = 1/8
real-of-float (Float (− 1) 0) = −1
real-of-float (Float (numeral n) 0) = numeral n
real-of-float (Float (− numeral n) 0) = − numeral n
〈proof 〉

THEORY “Float” 401

lemma real-of-Float-int[simp]: real-of-float (Float n 0) = real n
〈proof 〉

lemma float-zero[simp]: real-of-float (Float 0 e) = 0
〈proof 〉

lemma abs-div-2-less: a 6= 0 =⇒ a 6= −1 =⇒ |(a::int) div 2 | < |a|
〈proof 〉

lemma lapprox-rat: real-of-float (lapprox-rat prec x y) ≤ real-of-int x / real-of-int
y
〈proof 〉

lemma mult-div-le:
fixes a b :: int
assumes b > 0
shows a ≥ b ∗ (a div b)
〈proof 〉

lemma lapprox-rat-nonneg:
assumes 0 ≤ x and 0 ≤ y
shows 0 ≤ real-of-float (lapprox-rat n x y)
〈proof 〉

lemma rapprox-rat: real-of-int x / real-of-int y ≤ real-of-float (rapprox-rat prec x
y)
〈proof 〉

lemma rapprox-rat-le1 :
assumes 0 ≤ x 0 < y x ≤ y
shows real-of-float (rapprox-rat n x y) ≤ 1
〈proof 〉

lemma rapprox-rat-nonneg-nonpos: 0 ≤ x =⇒ y ≤ 0 =⇒ real-of-float (rapprox-rat
n x y) ≤ 0
〈proof 〉

lemma rapprox-rat-nonpos-nonneg: x ≤ 0 =⇒ 0 ≤ y =⇒ real-of-float (rapprox-rat
n x y) ≤ 0
〈proof 〉

lemma real-divl: real-divl prec x y ≤ x / y
〈proof 〉

lemma real-divr : x / y ≤ real-divr prec x y
〈proof 〉

lemma float-divl: real-of-float (float-divl prec x y) ≤ x / y
〈proof 〉

THEORY “Float” 402

lemma real-divl-lower-bound: 0 ≤ x =⇒ 0 ≤ y =⇒ 0 ≤ real-divl prec x y
〈proof 〉

lemma float-divl-lower-bound: 0 ≤ x =⇒ 0 ≤ y =⇒ 0 ≤ real-of-float (float-divl
prec x y)
〈proof 〉

lemma exponent-1 : exponent 1 = 0
〈proof 〉

lemma mantissa-1 : mantissa 1 = 1
〈proof 〉

lemma bitlen-1 : bitlen 1 = 1
〈proof 〉

lemma float-upper-bound: x ≤ 2 powr (bitlen |mantissa x| + exponent x)
〈proof 〉

lemma real-divl-pos-less1-bound:
assumes 0 < x x ≤ 1
shows 1 ≤ real-divl prec 1 x
〈proof 〉

lemma float-divl-pos-less1-bound:
0 < real-of-float x =⇒ real-of-float x ≤ 1 =⇒ prec ≥ 1 =⇒

1 ≤ real-of-float (float-divl prec 1 x)
〈proof 〉

lemma float-divr : real-of-float x / real-of-float y ≤ real-of-float (float-divr prec x
y)
〈proof 〉

lemma real-divr-pos-less1-lower-bound:
assumes 0 < x

and x ≤ 1
shows 1 ≤ real-divr prec 1 x
〈proof 〉

lemma float-divr-pos-less1-lower-bound: 0 < x =⇒ x ≤ 1 =⇒ 1 ≤ float-divr prec
1 x
〈proof 〉

lemma real-divr-nonpos-pos-upper-bound: x ≤ 0 =⇒ 0 ≤ y =⇒ real-divr prec x y
≤ 0
〈proof 〉

lemma float-divr-nonpos-pos-upper-bound:

THEORY “Float” 403

real-of-float x ≤ 0 =⇒ 0 ≤ real-of-float y =⇒ real-of-float (float-divr prec x y) ≤
0
〈proof 〉

lemma real-divr-nonneg-neg-upper-bound: 0 ≤ x =⇒ y ≤ 0 =⇒ real-divr prec x y
≤ 0
〈proof 〉

lemma float-divr-nonneg-neg-upper-bound:
0 ≤ real-of-float x =⇒ real-of-float y ≤ 0 =⇒ real-of-float (float-divr prec x y) ≤

0
〈proof 〉

lemma Float-le-zero-iff : Float a b ≤ 0 ←→ a ≤ 0
〈proof 〉

lemma real-of-float-pprt[simp]:
fixes a :: float
shows real-of-float (pprt a) = pprt (real-of-float a)
〈proof 〉

lemma real-of-float-nprt[simp]:
fixes a :: float
shows real-of-float (nprt a) = nprt (real-of-float a)
〈proof 〉

context
begin

lift-definition int-floor-fl :: float ⇒ int is floor 〈proof 〉 lemma compute-int-floor-fl[code]:
int-floor-fl (Float m e) = (if 0 ≤ e then m ∗ 2 ^ nat e else m div (2 ^ (nat

(−e))))
〈proof 〉

lift-definition floor-fl :: float ⇒ float is λx. real-of-int bxc
〈proof 〉 lemma compute-floor-fl[code]:
floor-fl (Float m e) = (if 0 ≤ e then Float m e else Float (m div (2 ^ (nat (−e))))

0)
〈proof 〉

end

lemma floor-fl: real-of-float (floor-fl x) ≤ real-of-float x
〈proof 〉

lemma int-floor-fl: real-of-int (int-floor-fl x) ≤ real-of-float x
〈proof 〉

lemma floor-pos-exp: exponent (floor-fl x) ≥ 0

THEORY “Function-Algebras” 404

〈proof 〉

lemma compute-mantissa[code]:
mantissa (Float m e) =
(if m = 0 then 0 else if 2 dvd m then mantissa (normfloat (Float m e)) else m)
〈proof 〉

lemma compute-exponent[code]:
exponent (Float m e) =
(if m = 0 then 0 else if 2 dvd m then exponent (normfloat (Float m e)) else e)
〈proof 〉

lifting-update Float.float.lifting
lifting-forget Float.float.lifting

end

44 Pointwise instantiation of functions to algebra
type classes

theory Function-Algebras
imports Main
begin

Pointwise operations
instantiation fun :: (type, plus) plus
begin

definition f + g = (λx. f x + g x)
instance 〈proof 〉

end

lemma plus-fun-apply [simp]:
(f + g) x = f x + g x
〈proof 〉

instantiation fun :: (type, zero) zero
begin

definition 0 = (λx. 0)
instance 〈proof 〉

end

lemma zero-fun-apply [simp]:
0 x = 0
〈proof 〉

THEORY “Function-Algebras” 405

instantiation fun :: (type, times) times
begin

definition f ∗ g = (λx. f x ∗ g x)
instance 〈proof 〉

end

lemma times-fun-apply [simp]:
(f ∗ g) x = f x ∗ g x
〈proof 〉

instantiation fun :: (type, one) one
begin

definition 1 = (λx. 1)
instance 〈proof 〉

end

lemma one-fun-apply [simp]:
1 x = 1
〈proof 〉

Additive structures
instance fun :: (type, semigroup-add) semigroup-add
〈proof 〉

instance fun :: (type, cancel-semigroup-add) cancel-semigroup-add
〈proof 〉

instance fun :: (type, ab-semigroup-add) ab-semigroup-add
〈proof 〉

instance fun :: (type, cancel-ab-semigroup-add) cancel-ab-semigroup-add
〈proof 〉

instance fun :: (type, monoid-add) monoid-add
〈proof 〉

instance fun :: (type, comm-monoid-add) comm-monoid-add
〈proof 〉

instance fun :: (type, cancel-comm-monoid-add) cancel-comm-monoid-add 〈proof 〉

instance fun :: (type, group-add) group-add
〈proof 〉

THEORY “Function-Algebras” 406

instance fun :: (type, ab-group-add) ab-group-add
〈proof 〉

Multiplicative structures
instance fun :: (type, semigroup-mult) semigroup-mult
〈proof 〉

instance fun :: (type, ab-semigroup-mult) ab-semigroup-mult
〈proof 〉

instance fun :: (type, monoid-mult) monoid-mult
〈proof 〉

instance fun :: (type, comm-monoid-mult) comm-monoid-mult
〈proof 〉

Misc
instance fun :: (type, Rings.dvd) Rings.dvd 〈proof 〉

instance fun :: (type, mult-zero) mult-zero
〈proof 〉

instance fun :: (type, zero-neq-one) zero-neq-one
〈proof 〉

Ring structures
instance fun :: (type, semiring) semiring
〈proof 〉

instance fun :: (type, comm-semiring) comm-semiring
〈proof 〉

instance fun :: (type, semiring-0) semiring-0 〈proof 〉

instance fun :: (type, comm-semiring-0) comm-semiring-0 〈proof 〉

instance fun :: (type, semiring-0-cancel) semiring-0-cancel 〈proof 〉

instance fun :: (type, comm-semiring-0-cancel) comm-semiring-0-cancel 〈proof 〉

instance fun :: (type, semiring-1) semiring-1 〈proof 〉

lemma numeral-fun:
‹numeral n = (λx:: ′a. numeral n)›
〈proof 〉

lemma numeral-fun-apply [simp]:
‹numeral n x = numeral n›
〈proof 〉

THEORY “Function-Algebras” 407

lemma of-nat-fun: of-nat n = (λx:: ′a. of-nat n)
〈proof 〉

lemma of-nat-fun-apply [simp]:
of-nat n x = of-nat n
〈proof 〉

instance fun :: (type, comm-semiring-1) comm-semiring-1 〈proof 〉

instance fun :: (type, semiring-1-cancel) semiring-1-cancel 〈proof 〉

instance fun :: (type, comm-semiring-1-cancel) comm-semiring-1-cancel
〈proof 〉

instance fun :: (type, semiring-char-0) semiring-char-0
〈proof 〉

instance fun :: (type, ring) ring 〈proof 〉

instance fun :: (type, comm-ring) comm-ring 〈proof 〉

instance fun :: (type, ring-1) ring-1 〈proof 〉

instance fun :: (type, comm-ring-1) comm-ring-1 〈proof 〉

instance fun :: (type, ring-char-0) ring-char-0 〈proof 〉

Ordered structures
instance fun :: (type, ordered-ab-semigroup-add) ordered-ab-semigroup-add
〈proof 〉

instance fun :: (type, ordered-cancel-ab-semigroup-add) ordered-cancel-ab-semigroup-add
〈proof 〉

instance fun :: (type, ordered-ab-semigroup-add-imp-le) ordered-ab-semigroup-add-imp-le
〈proof 〉

instance fun :: (type, ordered-comm-monoid-add) ordered-comm-monoid-add 〈proof 〉

instance fun :: (type, ordered-cancel-comm-monoid-add) ordered-cancel-comm-monoid-add
〈proof 〉

instance fun :: (type, ordered-ab-group-add) ordered-ab-group-add 〈proof 〉

instance fun :: (type, ordered-semiring) ordered-semiring
〈proof 〉

instance fun :: (type, dioid) dioid

THEORY “Function-Division” 408

〈proof 〉

instance fun :: (type, ordered-comm-semiring) ordered-comm-semiring
〈proof 〉

instance fun :: (type, ordered-cancel-semiring) ordered-cancel-semiring 〈proof 〉

instance fun :: (type, ordered-cancel-comm-semiring) ordered-cancel-comm-semiring
〈proof 〉

instance fun :: (type, ordered-ring) ordered-ring 〈proof 〉

instance fun :: (type, ordered-comm-ring) ordered-comm-ring 〈proof 〉

lemmas func-plus = plus-fun-def
lemmas func-zero = zero-fun-def
lemmas func-times = times-fun-def
lemmas func-one = one-fun-def

end

45 Pointwise instantiation of functions to division
theory Function-Division
imports Function-Algebras
begin

45.1 Syntactic with division
instantiation fun :: (type, inverse) inverse
begin

definition inverse f = inverse ◦ f

definition f div g = (λx. f x / g x)

instance 〈proof 〉

end

lemma inverse-fun-apply [simp]:
inverse f x = inverse (f x)
〈proof 〉

lemma divide-fun-apply [simp]:
(f / g) x = f x / g x
〈proof 〉

THEORY “Fun-Lexorder” 409

Unfortunately, we cannot lift this operations to algebraic type classes for
division: being different from the constant zero function f 6= 0 is too weak
as precondition. So we must introduce our own set of lemmas.
abbreviation zero-free :: (′b ⇒ ′a::field) ⇒ bool where

zero-free f ≡ ¬ (∃ x. f x = 0)

lemma fun-left-inverse:
fixes f :: ′b ⇒ ′a::field
shows zero-free f =⇒ inverse f ∗ f = 1
〈proof 〉

lemma fun-right-inverse:
fixes f :: ′b ⇒ ′a::field
shows zero-free f =⇒ f ∗ inverse f = 1
〈proof 〉

lemma fun-divide-inverse:
fixes f g :: ′b ⇒ ′a::field
shows f / g = f ∗ inverse g
〈proof 〉

Feel free to extend this.

Another possibility would be a reformulation of the division type classes
to user a zero-free predicate rather than a direct a 6= 0 condition.
end

46 Lexicographic order on functions
theory Fun-Lexorder
imports Main
begin

definition less-fun :: (′a::linorder ⇒ ′b::linorder) ⇒ (′a ⇒ ′b) ⇒ bool
where

less-fun f g ←→ (∃ k. f k < g k ∧ (∀ k ′ < k. f k ′ = g k ′))

lemma less-funI :
assumes ∃ k. f k < g k ∧ (∀ k ′ < k. f k ′ = g k ′)
shows less-fun f g
〈proof 〉

lemma less-funE :
assumes less-fun f g
obtains k where f k < g k and

∧
k ′. k ′ < k =⇒ f k ′ = g k ′

〈proof 〉

lemma less-fun-asym:

THEORY “Going-To-Filter” 410

assumes less-fun f g
shows ¬ less-fun g f
〈proof 〉

lemma less-fun-irrefl:
¬ less-fun f f
〈proof 〉

lemma less-fun-trans:
assumes less-fun f g and less-fun g h
shows less-fun f h
〈proof 〉

lemma order-less-fun:
class.order (λf g. less-fun f g ∨ f = g) less-fun
〈proof 〉

lemma less-fun-trichotomy:
assumes finite {k. f k 6= g k}
shows less-fun f g ∨ f = g ∨ less-fun g f
〈proof 〉

end

47 The going-to filter
theory Going-To-Filter

imports Complex-Main
begin

definition going-to-within :: (′a ⇒ ′b) ⇒ ′b filter ⇒ ′a set ⇒ ′a filter
(‹(‹open-block notation=‹mixfix going-to-within››(-)/ going ′-to (-)/ within (-))›

[1000 ,60 ,60] 60)
where f going-to F within A = inf (filtercomap f F) (principal A)

abbreviation going-to :: (′a ⇒ ′b) ⇒ ′b filter ⇒ ′a filter
(infix ‹going ′-to› 60)
where f going-to F ≡ f going-to F within UNIV

The going-to filter is, in a sense, the opposite of filtermap. It corresponds
to the intuition of, given a function f : A→ B and a filter F on the range of
B, looking at such values of x that f(x) approaches F . This can be written
as f going-to F.

A classic example is the at-infinity filter, which describes the neigbour-
hood of infinity (i. e. all values sufficiently far away from the zero). This can
also be written as norm going-to at-top.

Additionally, the going-to filter can be restricted with an optional ‘within’
parameter. For instance, if one would would want to consider the filter of

THEORY “Going-To-Filter” 411

complex numbers near infinity that do not lie on the negative real line, one
could write cmod going-to at-top within − complex-of-real ‘ {..0}.

A third, less mathematical example lies in the complexity analysis of
algorithms. Suppose we wanted to say that an algorithm on lists takes O(n2)
time where n is the length of the input list. We can write this using the
Landau symbols from the AFP, where the underlying filter is length going-to
sequentially. If, on the other hand, we want to look the complexity of the
algorithm on sorted lists, we could use the filter length going-to sequentially
within Collect sorted.
lemma going-to-def : f going-to F = filtercomap f F
〈proof 〉

lemma eventually-going-toI [intro]:
assumes eventually P F
shows eventually (λx. P (f x)) (f going-to F)
〈proof 〉

lemma filterlim-going-toI-weak [intro]: filterlim f F (f going-to F within A)
〈proof 〉

lemma going-to-mono: F ≤ G =⇒ A ⊆ B =⇒ f going-to F within A ≤ f going-to
G within B
〈proof 〉

lemma going-to-inf :
f going-to (inf F G) within A = inf (f going-to F within A) (f going-to G within

A)
〈proof 〉

lemma going-to-sup:
f going-to (sup F G) within A ≥ sup (f going-to F within A) (f going-to G within

A)
〈proof 〉

lemma going-to-top [simp]: f going-to top within A = principal A
〈proof 〉

lemma going-to-bot [simp]: f going-to bot within A = bot
〈proof 〉

lemma going-to-principal:
f going-to principal A within B = principal (f −‘ A ∩ B)
〈proof 〉

lemma going-to-within-empty [simp]: f going-to F within {} = bot
〈proof 〉

lemma going-to-within-union [simp]:

THEORY “Groups-Big-Fun” 412

f going-to F within (A ∪ B) = sup (f going-to F within A) (f going-to F within
B)
〈proof 〉

lemma eventually-going-to-at-top-linorder :
fixes f :: ′a ⇒ ′b :: linorder
shows eventually P (f going-to at-top within A) ←→ (∃C . ∀ x∈A. f x ≥ C −→

P x)
〈proof 〉

lemma eventually-going-to-at-bot-linorder :
fixes f :: ′a ⇒ ′b :: linorder
shows eventually P (f going-to at-bot within A) ←→ (∃C . ∀ x∈A. f x ≤ C −→

P x)
〈proof 〉

lemma eventually-going-to-at-top-dense:
fixes f :: ′a ⇒ ′b :: {linorder ,no-top}
shows eventually P (f going-to at-top within A) ←→ (∃C . ∀ x∈A. f x > C −→

P x)
〈proof 〉

lemma eventually-going-to-at-bot-dense:
fixes f :: ′a ⇒ ′b :: {linorder ,no-bot}
shows eventually P (f going-to at-bot within A) ←→ (∃C . ∀ x∈A. f x < C −→

P x)
〈proof 〉

lemma eventually-going-to-nhds:
eventually P (f going-to nhds a within A) ←→

(∃S . open S ∧ a ∈ S ∧ (∀ x∈A. f x ∈ S −→ P x))
〈proof 〉

lemma eventually-going-to-at:
eventually P (f going-to (at a within B) within A) ←→

(∃S . open S ∧ a ∈ S ∧ (∀ x∈A. f x ∈ B ∩ S − {a} −→ P x))
〈proof 〉

lemma norm-going-to-at-top-eq: norm going-to at-top = at-infinity
〈proof 〉

lemmas at-infinity-altdef = norm-going-to-at-top-eq [symmetric]

end

48 Big sum and product over function bodies
theory Groups-Big-Fun
imports

THEORY “Groups-Big-Fun” 413

Main
begin

48.1 Abstract product
locale comm-monoid-fun = comm-monoid
begin

definition G :: (′b ⇒ ′a) ⇒ ′a
where

expand-set: G g = comm-monoid-set.F f 1 g {a. g a 6= 1}

interpretation F : comm-monoid-set f 1
〈proof 〉

lemma expand-superset:
assumes finite A and {a. g a 6= 1} ⊆ A
shows G g = F .F g A
〈proof 〉

lemma conditionalize:
assumes finite A
shows F .F g A = G (λa. if a ∈ A then g a else 1)
〈proof 〉

lemma neutral [simp]:
G (λa. 1) = 1
〈proof 〉

lemma update [simp]:
assumes finite {a. g a 6= 1}
assumes g a = 1
shows G (g(a := b)) = b ∗ G g
〈proof 〉

lemma infinite [simp]:
¬ finite {a. g a 6= 1} =⇒ G g = 1
〈proof 〉

lemma cong [cong]:
assumes

∧
a. g a = h a

shows G g = G h
〈proof 〉

lemma not-neutral-obtains-not-neutral:
assumes G g 6= 1
obtains a where g a 6= 1
〈proof 〉

THEORY “Groups-Big-Fun” 414

lemma reindex-cong:
assumes bij l
assumes g ◦ l = h
shows G g = G h
〈proof 〉

lemma distrib:
assumes finite {a. g a 6= 1} and finite {a. h a 6= 1}
shows G (λa. g a ∗ h a) = G g ∗ G h
〈proof 〉

lemma swap:
assumes finite C
assumes subset: {a. ∃ b. g a b 6= 1} × {b. ∃ a. g a b 6= 1} ⊆ C (is ?A × ?B ⊆

C)
shows G (λa. G (g a)) = G (λb. G (λa. g a b))
〈proof 〉

lemma cartesian-product:
assumes finite C
assumes subset: {a. ∃ b. g a b 6= 1} × {b. ∃ a. g a b 6= 1} ⊆ C (is ?A × ?B ⊆

C)
shows G (λa. G (g a)) = G (λ(a, b). g a b)
〈proof 〉

lemma cartesian-product2 :
assumes fin: finite D
assumes subset: {(a, b). ∃ c. g a b c 6= 1} × {c. ∃ a b. g a b c 6= 1} ⊆ D (is

?AB × ?C ⊆ D)
shows G (λ(a, b). G (g a b)) = G (λ(a, b, c). g a b c)
〈proof 〉

lemma delta [simp]:
G (λb. if b = a then g b else 1) = g a
〈proof 〉

lemma delta ′ [simp]:
G (λb. if a = b then g b else 1) = g a
〈proof 〉

end

48.2 Concrete sum
context comm-monoid-add
begin

sublocale Sum-any: comm-monoid-fun plus 0

THEORY “Groups-Big-Fun” 415

rewrites comm-monoid-set.F plus 0 = sum
defines Sum-any = Sum-any.G
〈proof 〉

end

syntax (ASCII)
-Sum-any :: pttrn ⇒ ′a ⇒ ′a::comm-monoid-add (‹(‹indent=3 notation=‹binder

SUM ››SUM -. -)› [0 , 10] 10)
syntax
-Sum-any :: pttrn ⇒ ′a ⇒ ′a::comm-monoid-add (‹(‹indent=2 notation=‹binder∑

››
∑

-. -)› [0 , 10] 10)
syntax-consts

-Sum-any
 Sum-any
translations∑

a. b
 CONST Sum-any (λa. b)

lemma Sum-any-left-distrib:
fixes r :: ′a :: semiring-0
assumes finite {a. g a 6= 0}
shows Sum-any g ∗ r = (

∑
n. g n ∗ r)

〈proof 〉

lemma Sum-any-right-distrib:
fixes r :: ′a :: semiring-0
assumes finite {a. g a 6= 0}
shows r ∗ Sum-any g = (

∑
n. r ∗ g n)

〈proof 〉

lemma Sum-any-product:
fixes f g :: ′b ⇒ ′a::semiring-0
assumes finite {a. f a 6= 0} and finite {b. g b 6= 0}
shows Sum-any f ∗ Sum-any g = (

∑
a.

∑
b. f a ∗ g b)

〈proof 〉

lemma Sum-any-eq-zero-iff [simp]:
fixes f :: ′a ⇒ nat
assumes finite {a. f a 6= 0}
shows Sum-any f = 0 ←→ f = (λ-. 0)
〈proof 〉

48.3 Concrete product
context comm-monoid-mult
begin

sublocale Prod-any: comm-monoid-fun times 1
rewrites comm-monoid-set.F times 1 = prod
defines Prod-any = Prod-any.G

THEORY “Infinite-Typeclass” 416

〈proof 〉

end

syntax (ASCII)
-Prod-any :: pttrn ⇒ ′a ⇒ ′a::comm-monoid-mult (‹(‹indent=4 notation=‹binder

PROD››PROD -. -)› [0 , 10] 10)
syntax
-Prod-any :: pttrn ⇒ ′a ⇒ ′a::comm-monoid-mult (‹(‹indent=2 notation=‹binder∏

››
∏

-. -)› [0 , 10] 10)
syntax-consts

-Prod-any == Prod-any
translations∏

a. b == CONST Prod-any (λa. b)

lemma Prod-any-zero:
fixes f :: ′b ⇒ ′a :: comm-semiring-1
assumes finite {a. f a 6= 1}
assumes f a = 0
shows (

∏
a. f a) = 0

〈proof 〉

lemma Prod-any-not-zero:
fixes f :: ′b ⇒ ′a :: comm-semiring-1
assumes finite {a. f a 6= 1}
assumes (

∏
a. f a) 6= 0

shows f a 6= 0
〈proof 〉

lemma power-Sum-any:
assumes finite {a. f a 6= 0}
shows c ^ (

∑
a. f a) = (

∏
a. c ^ f a)

〈proof 〉

end

49 Infinite Type Class
The type class of infinite sets (orginally from the Incredible Proof Machine)
theory Infinite-Typeclass

imports Complex-Main
begin

class infinite =
assumes infinite-UNIV : infinite (UNIV :: ′a set)

begin

THEORY “Set-Algebras” 417

lemma arb-element: finite Y =⇒ ∃ x :: ′a. x /∈ Y
〈proof 〉

lemma arb-finite-subset: finite Y =⇒ ∃X :: ′a set. Y ∩ X = {} ∧ finite X ∧ n
≤ card X
〈proof 〉

lemma arb-inj-on-finite-infinite: finite(A :: ′b set) =⇒ ∃ f :: ′b ⇒ ′a. inj-on f A
〈proof 〉

lemma arb-countable-map: finite Y =⇒ ∃ f :: (nat ⇒ ′a). inj f ∧ range f ⊆ UNIV
− Y
〈proof 〉

end

instance nat :: infinite
〈proof 〉

instance int :: infinite
〈proof 〉

instance rat :: infinite
〈proof 〉

instance real :: infinite
〈proof 〉

instance complex :: infinite
〈proof 〉

instance option :: (infinite) infinite
〈proof 〉

instance prod :: (infinite, type) infinite
〈proof 〉

instance list :: (type) infinite
〈proof 〉

end

50 Algebraic operations on sets
theory Set-Algebras

imports Main
begin

This library lifts operations like addition and multiplication to sets. It

THEORY “Set-Algebras” 418

was designed to support asymptotic calculations for the now-obsolete BigO
theory, but has other uses.
instantiation set :: (plus) plus
begin

definition plus-set :: ′a::plus set ⇒ ′a set ⇒ ′a set
where set-plus-def : A + B = {c. ∃ a∈A. ∃ b∈B. c = a + b}

instance 〈proof 〉

end

instantiation set :: (times) times
begin

definition times-set :: ′a::times set ⇒ ′a set ⇒ ′a set
where set-times-def : A ∗ B = {c. ∃ a∈A. ∃ b∈B. c = a ∗ b}

instance 〈proof 〉

end

instantiation set :: (zero) zero
begin

definition set-zero[simp]: (0 :: ′a::zero set) = {0}

instance 〈proof 〉

end

instantiation set :: (one) one
begin

definition set-one[simp]: (1 :: ′a::one set) = {1}

instance 〈proof 〉

end

definition elt-set-plus :: ′a::plus ⇒ ′a set ⇒ ′a set (infixl ‹+o› 70)
where a +o B = {c. ∃ b∈B. c = a + b}

definition elt-set-times :: ′a::times ⇒ ′a set ⇒ ′a set (infixl ‹∗o› 80)
where a ∗o B = {c. ∃ b∈B. c = a ∗ b}

abbreviation (input) elt-set-eq :: ′a ⇒ ′a set ⇒ bool (infix ‹=o› 50)
where x =o A ≡ x ∈ A

THEORY “Set-Algebras” 419

instance set :: (semigroup-add) semigroup-add
〈proof 〉

instance set :: (ab-semigroup-add) ab-semigroup-add
〈proof 〉

instance set :: (monoid-add) monoid-add
〈proof 〉

instance set :: (comm-monoid-add) comm-monoid-add
〈proof 〉

instance set :: (semigroup-mult) semigroup-mult
〈proof 〉

instance set :: (ab-semigroup-mult) ab-semigroup-mult
〈proof 〉

instance set :: (monoid-mult) monoid-mult
〈proof 〉

instance set :: (comm-monoid-mult) comm-monoid-mult
〈proof 〉

lemma sumset-empty [simp]: A + {} = {} {} + A = {}
〈proof 〉

lemma Un-set-plus: (A ∪ B) + C = (A+C) ∪ (B+C) and set-plus-Un: C + (A
∪ B) = (C+A) ∪ (C+B)
〈proof 〉

lemma
fixes A :: ′a::comm-monoid-add set
shows insert-set-plus: (insert a A) + B = (A+B) ∪ (((+)a) ‘ B) and set-plus-insert:

B + (insert a A) = (B+A) ∪ (((+)a) ‘ B)
〈proof 〉

lemma set-add-0 [simp]:
fixes A :: ′a::comm-monoid-add set
shows {0} + A = A
〈proof 〉

lemma set-add-0-right [simp]:
fixes A :: ′a::comm-monoid-add set
shows A + {0} = A
〈proof 〉

lemma card-plus-sing:
fixes A :: ′a::ab-group-add set

THEORY “Set-Algebras” 420

shows card (A + {a}) = card A
〈proof 〉

lemma set-plus-intro [intro]: a ∈ C =⇒ b ∈ D =⇒ a + b ∈ C + D
〈proof 〉

lemma set-plus-elim:
assumes x ∈ A + B
obtains a b where x = a + b and a ∈ A and b ∈ B
〈proof 〉

lemma set-plus-intro2 [intro]: b ∈ C =⇒ a + b ∈ a +o C
〈proof 〉

lemma set-plus-rearrange: (a +o C) + (b +o D) = (a + b) +o (C + D)
for a b :: ′a::comm-monoid-add
〈proof 〉

lemma set-plus-rearrange2 : a +o (b +o C) = (a + b) +o C
for a b :: ′a::semigroup-add
〈proof 〉

lemma set-plus-rearrange3 : (a +o B) + C = a +o (B + C)
for a :: ′a::semigroup-add
〈proof 〉

theorem set-plus-rearrange4 : C + (a +o D) = a +o (C + D)
for a :: ′a::comm-monoid-add
〈proof 〉

lemmas set-plus-rearranges = set-plus-rearrange set-plus-rearrange2
set-plus-rearrange3 set-plus-rearrange4

lemma set-plus-mono [intro!]: C ⊆ D =⇒ a +o C ⊆ a +o D
〈proof 〉

lemma set-plus-mono2 [intro]: C ⊆ D =⇒ E ⊆ F =⇒ C + E ⊆ D + F
for C D E F :: ′a::plus set
〈proof 〉

lemma set-plus-mono3 [intro]: a ∈ C =⇒ a +o D ⊆ C + D
〈proof 〉

lemma set-plus-mono4 [intro]: a ∈ C =⇒ a +o D ⊆ D + C
for a :: ′a::comm-monoid-add
〈proof 〉

lemma set-plus-mono5 : a ∈ C =⇒ B ⊆ D =⇒ a +o B ⊆ C + D
〈proof 〉

THEORY “Set-Algebras” 421

lemma set-plus-mono-b: C ⊆ D =⇒ x ∈ a +o C =⇒ x ∈ a +o D
〈proof 〉

lemma set-zero-plus [simp]: 0 +o C = C
for C :: ′a::comm-monoid-add set
〈proof 〉

lemma set-zero-plus2 : 0 ∈ A =⇒ B ⊆ A + B
for A B :: ′a::comm-monoid-add set
〈proof 〉

lemma set-plus-imp-minus: a ∈ b +o C =⇒ a − b ∈ C
for a b :: ′a::ab-group-add
〈proof 〉

lemma set-minus-imp-plus: a − b ∈ C =⇒ a ∈ b +o C
for a b :: ′a::ab-group-add
〈proof 〉

lemma set-minus-plus: a − b ∈ C ←→ a ∈ b +o C
for a b :: ′a::ab-group-add
〈proof 〉

lemma set-times-intro [intro]: a ∈ C =⇒ b ∈ D =⇒ a ∗ b ∈ C ∗ D
〈proof 〉

lemma set-times-elim:
assumes x ∈ A ∗ B
obtains a b where x = a ∗ b and a ∈ A and b ∈ B
〈proof 〉

lemma set-times-intro2 [intro!]: b ∈ C =⇒ a ∗ b ∈ a ∗o C
〈proof 〉

lemma set-times-rearrange: (a ∗o C) ∗ (b ∗o D) = (a ∗ b) ∗o (C ∗ D)
for a b :: ′a::comm-monoid-mult
〈proof 〉

lemma set-times-rearrange2 : a ∗o (b ∗o C) = (a ∗ b) ∗o C
for a b :: ′a::semigroup-mult
〈proof 〉

lemma set-times-rearrange3 : (a ∗o B) ∗ C = a ∗o (B ∗ C)
for a :: ′a::semigroup-mult
〈proof 〉

theorem set-times-rearrange4 : C ∗ (a ∗o D) = a ∗o (C ∗ D)
for a :: ′a::comm-monoid-mult

THEORY “Set-Algebras” 422

〈proof 〉

lemmas set-times-rearranges = set-times-rearrange set-times-rearrange2
set-times-rearrange3 set-times-rearrange4

lemma set-times-mono [intro]: C ⊆ D =⇒ a ∗o C ⊆ a ∗o D
〈proof 〉

lemma set-times-mono2 [intro]: C ⊆ D =⇒ E ⊆ F =⇒ C ∗ E ⊆ D ∗ F
for C D E F :: ′a::times set
〈proof 〉

lemma set-times-mono3 [intro]: a ∈ C =⇒ a ∗o D ⊆ C ∗ D
〈proof 〉

lemma set-times-mono4 [intro]: a ∈ C =⇒ a ∗o D ⊆ D ∗ C
for a :: ′a::comm-monoid-mult
〈proof 〉

lemma set-times-mono5 : a ∈ C =⇒ B ⊆ D =⇒ a ∗o B ⊆ C ∗ D
〈proof 〉

lemma set-one-times [simp]: 1 ∗o C = C
for C :: ′a::comm-monoid-mult set
〈proof 〉

lemma set-times-plus-distrib: a ∗o (b +o C) = (a ∗ b) +o (a ∗o C)
for a b :: ′a::semiring
〈proof 〉

lemma set-times-plus-distrib2 : a ∗o (B + C) = (a ∗o B) + (a ∗o C)
for a :: ′a::semiring
〈proof 〉

lemma set-times-plus-distrib3 : (a +o C) ∗ D ⊆ a ∗o D + C ∗ D
for a :: ′a::semiring
〈proof 〉

lemmas set-times-plus-distribs =
set-times-plus-distrib
set-times-plus-distrib2

lemma set-neg-intro: a ∈ (− 1) ∗o C =⇒ − a ∈ C
for a :: ′a::ring-1
〈proof 〉

lemma set-neg-intro2 : a ∈ C =⇒ − a ∈ (− 1) ∗o C
for a :: ′a::ring-1
〈proof 〉

THEORY “Interval” 423

lemma set-plus-image: S + T = (λ(x, y). x + y) ‘ (S × T)
〈proof 〉

lemma set-times-image: S ∗ T = (λ(x, y). x ∗ y) ‘ (S × T)
〈proof 〉

lemma finite-set-plus: finite s =⇒ finite t =⇒ finite (s + t)
〈proof 〉

lemma finite-set-times: finite s =⇒ finite t =⇒ finite (s ∗ t)
〈proof 〉

lemma set-sum-alt:
assumes fin: finite I
shows sum S I = {sum s I |s. ∀ i∈I . s i ∈ S i}
(is - = ?sum I)
〈proof 〉

lemma sum-set-cond-linear :
fixes f :: ′a::comm-monoid-add set ⇒ ′b::comm-monoid-add set
assumes [intro!]:

∧
A B. P A =⇒ P B =⇒ P (A + B) P {0}

and f :
∧

A B. P A =⇒ P B =⇒ f (A + B) = f A + f B f {0} = {0}
assumes all:

∧
i. i ∈ I =⇒ P (S i)

shows f (sum S I) = sum (f ◦ S) I
〈proof 〉

lemma sum-set-linear :
fixes f :: ′a::comm-monoid-add set ⇒ ′b::comm-monoid-add set
assumes

∧
A B. f (A) + f (B) = f (A + B) f {0} = {0}

shows f (sum S I) = sum (f ◦ S) I
〈proof 〉

lemma set-times-Un-distrib:
A ∗ (B ∪ C) = A ∗ B ∪ A ∗ C
(A ∪ B) ∗ C = A ∗ C ∪ B ∗ C
〈proof 〉

lemma set-times-UNION-distrib:
A ∗

⋃
(M ‘ I) = (

⋃
i∈I . A ∗ M i)⋃

(M ‘ I) ∗ A = (
⋃

i∈I . M i ∗ A)
〈proof 〉

end

51 Interval Type
theory Interval

imports

THEORY “Interval” 424

Complex-Main
Lattice-Algebras
Set-Algebras

begin

A type of non-empty, closed intervals.
typedef (overloaded) ′a interval =
{(a:: ′a::preorder , b). a ≤ b}
morphisms bounds-of-interval Interval
〈proof 〉

setup-lifting type-definition-interval

lift-definition lower ::(′a::preorder) interval ⇒ ′a is fst 〈proof 〉

lift-definition upper ::(′a::preorder) interval ⇒ ′a is snd 〈proof 〉

lemma interval-eq-iff : a = b ←→ lower a = lower b ∧ upper a = upper b
〈proof 〉

lemma interval-eqI : lower a = lower b =⇒ upper a = upper b =⇒ a = b
〈proof 〉

lemma lower-le-upper [simp]: lower i ≤ upper i
〈proof 〉

lift-definition set-of :: ′a::preorder interval ⇒ ′a set is λx. {fst x .. snd x} 〈proof 〉

lemma set-of-eq: set-of x = {lower x .. upper x}
〈proof 〉

context notes [[typedef-overloaded]] begin

lift-definition(code-dt) Interval ′:: ′a::preorder ⇒ ′a::preorder ⇒ ′a interval option
is λa b. if a ≤ b then Some (a, b) else None
〈proof 〉

lemma Interval ′-split:
P (Interval ′ a b) ←→
(∀ ivl. a ≤ b −→ lower ivl = a −→ upper ivl = b −→ P (Some ivl)) ∧ (¬a≤b

−→ P None)
〈proof 〉

lemma Interval ′-split-asm:
P (Interval ′ a b) ←→
¬((∃ ivl. a ≤ b ∧ lower ivl = a ∧ upper ivl = b ∧ ¬P (Some ivl)) ∨ (¬a≤b ∧

¬P None))
〈proof 〉

THEORY “Interval” 425

lemmas Interval ′-splits = Interval ′-split Interval ′-split-asm

lemma Interval ′-eq-Some: Interval ′ a b = Some i =⇒ lower i = a ∧ upper i = b
〈proof 〉

end

instantiation interval :: ({preorder ,equal}) equal
begin

definition equal-class.equal a b ≡ (lower a = lower b) ∧ (upper a = upper b)

instance 〈proof 〉
end

instantiation interval :: (preorder) ord begin

definition less-eq-interval :: ′a interval ⇒ ′a interval ⇒ bool
where less-eq-interval a b ←→ lower b ≤ lower a ∧ upper a ≤ upper b

definition less-interval :: ′a interval ⇒ ′a interval ⇒ bool
where less-interval x y = (x ≤ y ∧ ¬ y ≤ x)

instance 〈proof 〉
end

instantiation interval :: (lattice) semilattice-sup
begin

lift-definition sup-interval :: ′a interval ⇒ ′a interval ⇒ ′a interval
is λ(a, b) (c, d). (inf a c, sup b d)
〈proof 〉

lemma lower-sup[simp]: lower (sup A B) = inf (lower A) (lower B)
〈proof 〉

lemma upper-sup[simp]: upper (sup A B) = sup (upper A) (upper B)
〈proof 〉

instance 〈proof 〉
end

lemma set-of-interval-union: set-of A ∪ set-of B ⊆ set-of (sup A B) for A:: ′a::lattice
interval
〈proof 〉

lemma interval-union-commute: sup A B = sup B A for A:: ′a::lattice interval
〈proof 〉

THEORY “Interval” 426

lemma interval-union-mono1 : set-of a ⊆ set-of (sup a A) for A :: ′a::lattice in-
terval
〈proof 〉

lemma interval-union-mono2 : set-of A ⊆ set-of (sup a A) for A :: ′a::lattice in-
terval
〈proof 〉

lift-definition interval-of :: ′a::preorder ⇒ ′a interval is λx. (x, x)
〈proof 〉

lemma lower-interval-of [simp]: lower (interval-of a) = a
〈proof 〉

lemma upper-interval-of [simp]: upper (interval-of a) = a
〈proof 〉

definition width :: ′a::{preorder ,minus} interval ⇒ ′a
where width i = upper i − lower i

instantiation interval :: (ordered-ab-semigroup-add) ab-semigroup-add
begin

lift-definition plus-interval:: ′a interval ⇒ ′a interval ⇒ ′a interval
is λ(a, b). λ(c, d). (a + c, b + d)
〈proof 〉

lemma lower-plus[simp]: lower (plus A B) = plus (lower A) (lower B)
〈proof 〉

lemma upper-plus[simp]: upper (plus A B) = plus (upper A) (upper B)
〈proof 〉

instance 〈proof 〉
end

instance interval :: ({ordered-ab-semigroup-add, lattice}) ordered-ab-semigroup-add
〈proof 〉

instantiation interval :: ({preorder ,zero}) zero
begin

lift-definition zero-interval:: ′a interval is (0 , 0) 〈proof 〉
lemma lower-zero[simp]: lower 0 = 0
〈proof 〉

lemma upper-zero[simp]: upper 0 = 0
〈proof 〉

instance 〈proof 〉
end

THEORY “Interval” 427

instance interval :: ({ordered-comm-monoid-add}) comm-monoid-add
〈proof 〉

instance interval :: ({ordered-comm-monoid-add,lattice}) ordered-comm-monoid-add
〈proof 〉

instantiation interval :: ({ordered-ab-group-add}) uminus
begin

lift-definition uminus-interval:: ′a interval ⇒ ′a interval is λ(a, b). (−b, −a)
〈proof 〉
lemma lower-uminus[simp]: lower (− A) = − upper A
〈proof 〉

lemma upper-uminus[simp]: upper (− A) = − lower A
〈proof 〉

instance 〈proof 〉
end

instantiation interval :: ({ordered-ab-group-add}) minus
begin

definition minus-interval:: ′a interval ⇒ ′a interval ⇒ ′a interval
where minus-interval a b = a + − b

lemma lower-minus[simp]: lower (minus A B) = minus (lower A) (upper B)
〈proof 〉

lemma upper-minus[simp]: upper (minus A B) = minus (upper A) (lower B)
〈proof 〉

instance 〈proof 〉
end

instantiation interval :: ({times, linorder}) times
begin

lift-definition times-interval :: ′a interval ⇒ ′a interval ⇒ ′a interval
is λ(a1 , a2). λ(b1 , b2).
(let x1 = a1 ∗ b1 ; x2 = a1 ∗ b2 ; x3 = a2 ∗ b1 ; x4 = a2 ∗ b2
in (min x1 (min x2 (min x3 x4)), max x1 (max x2 (max x3 x4))))
〈proof 〉

lemma lower-times:
lower (times A B) = Min {lower A ∗ lower B, lower A ∗ upper B, upper A ∗

lower B, upper A ∗ upper B}
〈proof 〉

lemma upper-times:
upper (times A B) = Max {lower A ∗ lower B, lower A ∗ upper B, upper A ∗

lower B, upper A ∗ upper B}
〈proof 〉

THEORY “Interval” 428

instance 〈proof 〉
end

lemma interval-eq-set-of-iff : X = Y ←→ set-of X = set-of Y for X Y :: ′a::order
interval
〈proof 〉

51.1 Membership
abbreviation (in preorder) in-interval (‹(‹notation=‹infix ∈i››-/ ∈i -)› [51 , 51]
50)

where in-interval x X ≡ x ∈ set-of X

lemma in-interval-to-interval[intro!]: a ∈i interval-of a
〈proof 〉

lemma plus-in-intervalI :
fixes x y :: ′a :: ordered-ab-semigroup-add
shows x ∈i X =⇒ y ∈i Y =⇒ x + y ∈i X + Y
〈proof 〉

lemma connected-set-of [intro, simp]:
connected (set-of X) for X :: ′a::linear-continuum-topology interval
〈proof 〉

lemma ex-sum-in-interval-lemma: ∃ xa∈{la .. ua}. ∃ xb∈{lb .. ub}. x = xa + xb
if la ≤ ua lb ≤ ub la + lb ≤ x x ≤ ua + ub

ua − la ≤ ub − lb
for la b c d:: ′a::linordered-ab-group-add
〈proof 〉

lemma ex-sum-in-interval: ∃ xa≥la. xa ≤ ua ∧ (∃ xb≥lb. xb ≤ ub ∧ x = xa + xb)
if a: la ≤ ua and b: lb ≤ ub and x: la + lb ≤ x x ≤ ua + ub
for la b c d:: ′a::linordered-ab-group-add
〈proof 〉

lemma Icc-plus-Icc:
{a .. b} + {c .. d} = {a + c .. b + d}
if a ≤ b c ≤ d
for a b c d:: ′a::linordered-ab-group-add
〈proof 〉

lemma set-of-plus:
fixes A :: ′a::linordered-ab-group-add interval
shows set-of (A + B) = set-of A + set-of B
〈proof 〉

THEORY “Interval” 429

lemma plus-in-intervalE :
fixes xy :: ′a :: linordered-ab-group-add
assumes xy ∈i X + Y
obtains x y where xy = x + y x ∈i X y ∈i Y
〈proof 〉

lemma set-of-uminus: set-of (−X) = {− x | x. x ∈ set-of X}
for X :: ′a :: ordered-ab-group-add interval
〈proof 〉

lemma uminus-in-intervalI :
fixes x :: ′a :: ordered-ab-group-add
shows x ∈i X =⇒ −x ∈i −X
〈proof 〉

lemma uminus-in-intervalD:
fixes x :: ′a :: ordered-ab-group-add
shows x ∈i − X =⇒ − x ∈i X
〈proof 〉

lemma minus-in-intervalI :
fixes x y :: ′a :: ordered-ab-group-add
shows x ∈i X =⇒ y ∈i Y =⇒ x − y ∈i X − Y
〈proof 〉

lemma set-of-minus: set-of (X − Y) = {x − y | x y . x ∈ set-of X ∧ y ∈ set-of
Y }

for X Y :: ′a :: linordered-ab-group-add interval
〈proof 〉

lemma times-in-intervalI :
fixes x y:: ′a::linordered-ring
assumes x ∈i X y ∈i Y
shows x ∗ y ∈i X ∗ Y
〈proof 〉

lemma times-in-intervalE :
fixes xy :: ′a :: {linorder , real-normed-algebra, linear-continuum-topology}

— TODO: linear continuum topology is pretty strong
assumes xy ∈i X ∗ Y
obtains x y where xy = x ∗ y x ∈i X y ∈i Y
〈proof 〉
thm times-in-intervalE [of 1 ::real]
lemma set-of-times: set-of (X ∗ Y) = {x ∗ y | x y. x ∈ set-of X ∧ y ∈ set-of Y }

for X Y :: ′a :: {linordered-ring, real-normed-algebra, linear-continuum-topology}
interval
〈proof 〉

instance interval :: (linordered-idom) cancel-semigroup-add

THEORY “Interval” 430

〈proof 〉

lemma interval-mul-commute: A ∗ B = B ∗ A for A B:: ′a::linordered-idom in-
terval
〈proof 〉

lemma interval-times-zero-right[simp]: A ∗ 0 = 0 for A :: ′a::linordered-ring in-
terval
〈proof 〉

lemma interval-times-zero-left[simp]:
0 ∗ A = 0 for A :: ′a::linordered-ring interval
〈proof 〉

instantiation interval :: ({preorder ,one}) one
begin

lift-definition one-interval:: ′a interval is (1 , 1) 〈proof 〉
lemma lower-one[simp]: lower 1 = 1
〈proof 〉

lemma upper-one[simp]: upper 1 = 1
〈proof 〉

instance 〈proof 〉
end

instance interval :: ({one, preorder , linorder , times}) power
〈proof 〉

lemma set-of-one[simp]: set-of (1 :: ′a::{one, order} interval) = {1}
〈proof 〉

instance interval ::
({linordered-idom, real-normed-algebra, linear-continuum-topology}) monoid-mult
〈proof 〉

lemma one-times-ivl-left[simp]: 1 ∗ A = A for A :: ′a::linordered-idom interval
〈proof 〉

lemma one-times-ivl-right[simp]: A ∗ 1 = A for A :: ′a::linordered-idom interval
〈proof 〉

lemma set-of-power-mono: a^n ∈ set-of (A^n) if a ∈ set-of A
for a :: ′a::linordered-idom
〈proof 〉

lemma set-of-add-cong:
set-of (A + B) = set-of (A ′ + B ′)
if set-of A = set-of A ′ set-of B = set-of B ′

for A :: ′a::linordered-ab-group-add interval

THEORY “Interval” 431

〈proof 〉

lemma set-of-add-inc-left:
set-of (A + B) ⊆ set-of (A ′ + B)
if set-of A ⊆ set-of A ′

for A :: ′a::linordered-ab-group-add interval
〈proof 〉

lemma set-of-add-inc-right:
set-of (A + B) ⊆ set-of (A + B ′)
if set-of B ⊆ set-of B ′

for A :: ′a::linordered-ab-group-add interval
〈proof 〉

lemma set-of-add-inc:
set-of (A + B) ⊆ set-of (A ′ + B ′)
if set-of A ⊆ set-of A ′ set-of B ⊆ set-of B ′

for A :: ′a::linordered-ab-group-add interval
〈proof 〉

lemma set-of-neg-inc:
set-of (−A) ⊆ set-of (−A ′)
if set-of A ⊆ set-of A ′

for A :: ′a::ordered-ab-group-add interval
〈proof 〉

lemma set-of-sub-inc-left:
set-of (A − B) ⊆ set-of (A ′ − B)
if set-of A ⊆ set-of A ′

for A :: ′a::linordered-ab-group-add interval
〈proof 〉

lemma set-of-sub-inc-right:
set-of (A − B) ⊆ set-of (A − B ′)
if set-of B ⊆ set-of B ′

for A :: ′a::linordered-ab-group-add interval
〈proof 〉

lemma set-of-sub-inc:
set-of (A − B) ⊆ set-of (A ′ − B ′)
if set-of A ⊆ set-of A ′ set-of B ⊆ set-of B ′

for A :: ′a::linordered-idom interval
〈proof 〉

lemma set-of-mul-inc-right:
set-of (A ∗ B) ⊆ set-of (A ∗ B ′)
if set-of B ⊆ set-of B ′

for A :: ′a::linordered-ring interval
〈proof 〉

THEORY “Interval” 432

lemma set-of-distrib-left:
set-of (B ∗ (A1 + A2)) ⊆ set-of (B ∗ A1 + B ∗ A2)
for A1 :: ′a::linordered-ring interval
〈proof 〉

lemma set-of-distrib-right:
set-of ((A1 + A2) ∗ B) ⊆ set-of (A1 ∗ B + A2 ∗ B)
for A1 A2 B :: ′a::{linordered-ring, real-normed-algebra, linear-continuum-topology}

interval
〈proof 〉

lemma set-of-mul-inc-left:
set-of (A ∗ B) ⊆ set-of (A ′ ∗ B)
if set-of A ⊆ set-of A ′

for A :: ′a::{linordered-ring, real-normed-algebra, linear-continuum-topology} in-
terval
〈proof 〉

lemma set-of-mul-inc:
set-of (A ∗ B) ⊆ set-of (A ′ ∗ B ′)
if set-of A ⊆ set-of A ′ set-of B ⊆ set-of B ′

for A :: ′a::{linordered-ring, real-normed-algebra, linear-continuum-topology} in-
terval
〈proof 〉

lemma set-of-pow-inc:
set-of (A^n) ⊆ set-of (A ′̂ n)
if set-of A ⊆ set-of A ′

for A :: ′a::{linordered-idom, real-normed-algebra, linear-continuum-topology} in-
terval
〈proof 〉

lemma set-of-distrib-right-left:
set-of ((A1 + A2) ∗ (B1 + B2)) ⊆ set-of (A1 ∗ B1 + A1 ∗ B2 + A2 ∗ B1 +

A2 ∗ B2)
for A1 :: ′a::{linordered-idom, real-normed-algebra, linear-continuum-topology}

interval
〈proof 〉

lemma mult-bounds-enclose-zero1 :
min (la ∗ lb) (min (la ∗ ub) (min (lb ∗ ua) (ua ∗ ub))) ≤ 0
0 ≤ max (la ∗ lb) (max (la ∗ ub) (max (lb ∗ ua) (ua ∗ ub)))
if la ≤ 0 0 ≤ ua
for la lb ua ub:: ′a::linordered-idom
〈proof 〉

lemma mult-bounds-enclose-zero2 :
min (la ∗ lb) (min (la ∗ ub) (min (lb ∗ ua) (ua ∗ ub))) ≤ 0

THEORY “Interval” 433

0 ≤ max (la ∗ lb) (max (la ∗ ub) (max (lb ∗ ua) (ua ∗ ub)))
if lb ≤ 0 0 ≤ ub
for la lb ua ub:: ′a::linordered-idom
〈proof 〉

lemma set-of-mul-contains-zero:
0 ∈ set-of (A ∗ B)
if 0 ∈ set-of A ∨ 0 ∈ set-of B
for A :: ′a::linordered-idom interval
〈proof 〉

instance interval :: ({linordered-semiring, zero, times}) mult-zero
〈proof 〉

lift-definition min-interval:: ′a::linorder interval ⇒ ′a interval ⇒ ′a interval is
λ(l1 , u1). λ(l2 , u2). (min l1 l2 , min u1 u2)
〈proof 〉

lemma lower-min-interval[simp]: lower (min-interval x y) = min (lower x) (lower
y)
〈proof 〉

lemma upper-min-interval[simp]: upper (min-interval x y) = min (upper x) (upper
y)
〈proof 〉

lemma min-intervalI :
a ∈i A =⇒ b ∈i B =⇒ min a b ∈i min-interval A B
〈proof 〉

lift-definition max-interval:: ′a::linorder interval ⇒ ′a interval ⇒ ′a interval is
λ(l1 , u1). λ(l2 , u2). (max l1 l2 , max u1 u2)
〈proof 〉

lemma lower-max-interval[simp]: lower (max-interval x y) = max (lower x) (lower
y)
〈proof 〉

lemma upper-max-interval[simp]: upper (max-interval x y) = max (upper x) (upper
y)
〈proof 〉

lemma max-intervalI :
a ∈i A =⇒ b ∈i B =⇒ max a b ∈i max-interval A B
〈proof 〉

lift-definition abs-interval:: ′a::linordered-idom interval ⇒ ′a interval is
(λ(l,u). (if l < 0 ∧ 0 < u then 0 else min |l| |u|, max |l| |u|))
〈proof 〉

lemma lower-abs-interval[simp]:
lower (abs-interval x) = (if lower x < 0 ∧ 0 < upper x then 0 else min |lower x|
|upper x|)

THEORY “Interval” 434

〈proof 〉
lemma upper-abs-interval[simp]: upper (abs-interval x) = max |lower x| |upper x|
〈proof 〉

lemma in-abs-intervalI1 :
lx < 0 =⇒ 0 < ux =⇒ 0 ≤ xa =⇒ xa ≤ max (− lx) (ux) =⇒ xa ∈ abs ‘ {lx..ux}
for xa:: ′a::linordered-idom
〈proof 〉

lemma in-abs-intervalI2 :
min (|lx|) |ux| ≤ xa =⇒ xa ≤ max |lx| |ux| =⇒ lx ≤ ux =⇒ 0 ≤ lx ∨ ux ≤ 0

=⇒
xa ∈ abs ‘ {lx..ux}

for xa:: ′a::linordered-idom
〈proof 〉

lemma set-of-abs-interval: set-of (abs-interval x) = abs ‘ set-of x
〈proof 〉

fun split-domain :: (′a::preorder interval ⇒ ′a interval list) ⇒ ′a interval list ⇒
′a interval list list

where split-domain split [] = [[]]
| split-domain split (I#Is) = (

let S = split I ;
D = split-domain split Is

in concat (map (λd. map (λs. s # d) S) D)
)

context notes [[typedef-overloaded]] begin
lift-definition(code-dt) split-interval:: ′a::linorder interval ⇒ ′a ⇒ (′a interval ×
′a interval)

is λ(l, u) x. ((min l x, max l x), (min u x, max u x))
〈proof 〉

end

lemma split-domain-nonempty:
assumes

∧
I . split I 6= []

shows split-domain split I 6= []
〈proof 〉

lemma lower-split-interval1 : lower (fst (split-interval X m)) = min (lower X) m
and lower-split-interval2 : lower (snd (split-interval X m)) = min (upper X) m
and upper-split-interval1 : upper (fst (split-interval X m)) = max (lower X) m
and upper-split-interval2 : upper (snd (split-interval X m)) = max (upper X) m
〈proof 〉

lemma split-intervalD: split-interval X x = (A, B) =⇒ set-of X ⊆ set-of A ∪ set-of
B
〈proof 〉

THEORY “Interval” 435

instantiation interval :: ({topological-space, preorder}) topological-space
begin

definition open-interval-def [code del]: open (X :: ′a interval set) =
(∀ x∈X .
∃A B.

open A ∧
open B ∧
lower x ∈ A ∧ upper x ∈ B ∧ Interval ‘ (A × B) ⊆ X)

instance
〈proof 〉

end

51.2 Quickcheck
lift-definition Ivl:: ′a ⇒ ′a::preorder ⇒ ′a interval is λa b. (min a b, b)
〈proof 〉

instantiation interval :: ({exhaustive,preorder}) exhaustive
begin

definition exhaustive-interval::(′a interval ⇒ (bool × term list) option)
⇒ natural ⇒ (bool × term list) option

where
exhaustive-interval f d =
Quickcheck-Exhaustive.exhaustive (λx. Quickcheck-Exhaustive.exhaustive (λy. f

(Ivl x y)) d) d

instance 〈proof 〉

end

context
includes term-syntax

begin

definition [code-unfold]:
valtermify-interval x y = Code-Evaluation.valtermify (Ivl:: ′a::{preorder ,typerep}⇒-)
{·} x {·} y

end

instantiation interval :: ({full-exhaustive,preorder ,typerep}) full-exhaustive
begin

definition full-exhaustive-interval::

THEORY “Interval-Float” 436

(′a interval × (unit ⇒ term) ⇒ (bool × term list) option)
⇒ natural ⇒ (bool × term list) option where

full-exhaustive-interval f d =
Quickcheck-Exhaustive.full-exhaustive
(λx. Quickcheck-Exhaustive.full-exhaustive (λy. f (valtermify-interval x y)) d)

d

instance 〈proof 〉

end

instantiation interval :: ({random,preorder ,typerep}) random
begin

definition random-interval ::
natural
⇒ natural × natural
⇒ (′a interval × (unit ⇒ term)) × natural × natural where

random-interval i =
scomp (Quickcheck-Random.random i)
(λman. scomp (Quickcheck-Random.random i) (λexp. Pair (valtermify-interval

man exp)))

instance 〈proof 〉

end

lifting-update interval.lifting
lifting-forget interval.lifting

end

52 Approximate Operations on Intervals of Float-
ing Point Numbers

theory Interval-Float
imports

Interval
Float

begin

definition mid :: float interval ⇒ float
where mid i = (lower i + upper i) ∗ Float 1 (−1)

lemma mid-in-interval: mid i ∈i i
〈proof 〉

lemma mid-le: lower i ≤ mid i mid i ≤ upper i

THEORY “Interval-Float” 437

〈proof 〉

definition centered :: float interval ⇒ float interval
where centered i = i − interval-of (mid i)

definition split-float-interval x = split-interval x ((lower x + upper x) ∗ Float 1
(−1))

lemma split-float-intervalD: split-float-interval X = (A, B) =⇒ set-of X ⊆ set-of
A ∪ set-of B
〈proof 〉

lemma split-float-interval-bounds:
shows

lower-split-float-interval1 : lower (fst (split-float-interval X)) = lower X
and lower-split-float-interval2 : lower (snd (split-float-interval X)) = mid X
and upper-split-float-interval1 : upper (fst (split-float-interval X)) = mid X
and upper-split-float-interval2 : upper (snd (split-float-interval X)) = upper X
〈proof 〉

lemmas float-round-down-le[intro] = order-trans[OF float-round-down]
and float-round-up-ge[intro] = order-trans[OF - float-round-up]

TODO: many of the lemmas should move to theories Float or Approxi-
mation (the latter should be based on type interval.

52.1 Intervals with Floating Point Bounds
context includes interval.lifting begin

lift-definition round-interval :: nat ⇒ float interval ⇒ float interval
is λp. λ(l, u). (float-round-down p l, float-round-up p u)
〈proof 〉

lemma lower-round-ivl[simp]: lower (round-interval p x) = float-round-down p
(lower x)
〈proof 〉

lemma upper-round-ivl[simp]: upper (round-interval p x) = float-round-up p (upper
x)
〈proof 〉

lemma round-ivl-correct: set-of A ⊆ set-of (round-interval prec A)
〈proof 〉

lift-definition truncate-ivl :: nat ⇒ real interval ⇒ real interval
is λp. λ(l, u). (truncate-down p l, truncate-up p u)
〈proof 〉

lemma lower-truncate-ivl[simp]: lower (truncate-ivl p x) = truncate-down p (lower
x)

THEORY “Interval-Float” 438

〈proof 〉
lemma upper-truncate-ivl[simp]: upper (truncate-ivl p x) = truncate-up p (upper
x)
〈proof 〉

lemma truncate-ivl-correct: set-of A ⊆ set-of (truncate-ivl prec A)
〈proof 〉

lift-definition real-interval::float interval ⇒ real interval
is λ(l, u). (real-of-float l, real-of-float u)
〈proof 〉

lemma lower-real-interval[simp]: lower (real-interval x) = lower x
〈proof 〉

lemma upper-real-interval[simp]: upper (real-interval x) = upper x
〈proof 〉

definition set-of ′ x = (case x of None ⇒ UNIV | Some i ⇒ set-of (real-interval
i))

lemma real-interval-min-interval[simp]:
real-interval (min-interval a b) = min-interval (real-interval a) (real-interval b)
〈proof 〉

lemma real-interval-max-interval[simp]:
real-interval (max-interval a b) = max-interval (real-interval a) (real-interval b)
〈proof 〉

lemma in-intervalI :
x ∈i X if lower X ≤ x x ≤ upper X
〈proof 〉

abbreviation in-real-interval (‹(‹notation=‹infix ∈r››-/ ∈r -)› [51 , 51] 50)
where x ∈r X ≡ x ∈i real-interval X

lemma in-real-intervalI :
x ∈r X if lower X ≤ x x ≤ upper X for x::real and X ::float interval
〈proof 〉

52.2 intros for real-interval
lemma in-round-intervalI : x ∈r A =⇒ x ∈r (round-interval prec A)
〈proof 〉

lemma zero-in-float-intervalI : 0 ∈r 0
〈proof 〉

lemma plus-in-float-intervalI : a + b ∈r A + B if a ∈r A b ∈r B
〈proof 〉

THEORY “Interval-Float” 439

lemma minus-in-float-intervalI : a − b ∈r A − B if a ∈r A b ∈r B
〈proof 〉

lemma uminus-in-float-intervalI : −a ∈r −A if a ∈r A
〈proof 〉

lemma real-interval-times: real-interval (A ∗ B) = real-interval A ∗ real-interval
B
〈proof 〉

lemma times-in-float-intervalI : a ∗ b ∈r A ∗ B if a ∈r A b ∈r B
〈proof 〉

lemma real-interval-abs: real-interval (abs-interval A) = abs-interval (real-interval
A)
〈proof 〉

lemma abs-in-float-intervalI : abs a ∈r abs-interval A if a ∈r A
〈proof 〉

lemma interval-of [intro,simp]: x ∈r interval-of x
〈proof 〉

lemma split-float-interval-realD: split-float-interval X = (A, B) =⇒ x ∈r X =⇒
x ∈r A ∨ x ∈r B
〈proof 〉

52.3 bounds for lists
lemma lower-Interval: lower (Interval x) = fst x

and upper-Interval: upper (Interval x) = snd x
if fst x ≤ snd x
〈proof 〉

definition all-in-i :: ′a::preorder list ⇒ ′a interval list ⇒ bool
(infix ‹(all ′-ini)› 50)
where x all-ini I = (length x = length I ∧ (∀ i < length I . x ! i ∈i I ! i))

definition all-in :: real list ⇒ float interval list ⇒ bool
(infix ‹(all ′-in)› 50)
where x all-in I = (length x = length I ∧ (∀ i < length I . x ! i ∈r I ! i))

definition all-subset :: ′a::order interval list ⇒ ′a interval list ⇒ bool
(infix ‹(all ′-subset)› 50)
where I all-subset J = (length I = length J ∧ (∀ i < length I . set-of (I !i) ⊆

set-of (J !i)))

lemmas [simp] = all-in-def all-subset-def

THEORY “Interval-Float” 440

lemma all-subsetD:
assumes I all-subset J
assumes x all-in I
shows x all-in J
〈proof 〉

lemma round-interval-mono: set-of (round-interval prec X) ⊆ set-of (round-interval
prec Y)

if set-of X ⊆ set-of Y
〈proof 〉

lemma Ivl-simps[simp]: lower (Ivl a b) = min a b upper (Ivl a b) = b
〈proof 〉

lemma set-of-subset-iff : set-of X ⊆ set-of Y ←→ lower Y ≤ lower X ∧ upper X
≤ upper Y

for X Y :: ′a::linorder interval
〈proof 〉

lemma set-of-subset-iff ′:
set-of a ⊆ set-of (b :: ′a :: linorder interval) ←→ a ≤ b
〈proof 〉

lemma bounds-of-interval-eq-lower-upper :
bounds-of-interval ivl = (lower ivl, upper ivl) if lower ivl ≤ upper ivl
〈proof 〉

lemma real-interval-Ivl: real-interval (Ivl a b) = Ivl a b
〈proof 〉

lemma set-of-mul-contains-real-zero:
0 ∈r (A ∗ B) if 0 ∈r A ∨ 0 ∈r B
〈proof 〉

fun subdivide-interval :: nat ⇒ float interval ⇒ float interval list
where subdivide-interval 0 I = [I]
| subdivide-interval (Suc n) I = (

let m = mid I
in (subdivide-interval n (Ivl (lower I) m)) @ (subdivide-interval n (Ivl m

(upper I)))
)

lemma subdivide-interval-length:
shows length (subdivide-interval n I) = 2^n
〈proof 〉

lemma lower-le-mid: lower x ≤ mid x real-of-float (lower x) ≤ mid x
and mid-le-upper : mid x ≤ upper x real-of-float (mid x) ≤ upper x

THEORY “Interval-Float” 441

〈proof 〉

lemma subdivide-interval-correct:
list-ex (λi. x ∈r i) (subdivide-interval n I) if x ∈r I for x::real
〈proof 〉

fun interval-list-union :: ′a::lattice interval list ⇒ ′a interval
where interval-list-union [] = undefined
| interval-list-union [I] = I
| interval-list-union (I#Is) = sup I (interval-list-union Is)

lemma interval-list-union-correct:
assumes S 6= []
assumes i < length S
shows set-of (S !i) ⊆ set-of (interval-list-union S)
〈proof 〉

lemma split-domain-correct:
fixes x :: real list
assumes x all-in I
assumes split-correct:

∧
x a I . x ∈r I =⇒ list-ex (λi::float interval. x ∈r i) (split

I)
shows list-ex (λs. x all-in s) (split-domain split I)
〈proof 〉

lift-definition(code-dt) inverse-float-interval::nat ⇒ float interval ⇒ float interval
option is
λprec (l, u). if (0 < l ∨ u < 0) then Some (float-divl prec 1 u, float-divr prec 1

l) else None
〈proof 〉

lemma inverse-float-interval-eq-Some-conv:
defines one ≡ (1 ::float)
shows

inverse-float-interval p X = Some R ←→
(lower X > 0 ∨ upper X < 0) ∧
lower R = float-divl p one (upper X) ∧
upper R = float-divr p one (lower X)
〈proof 〉

lemma inverse-float-interval:
inverse ‘ set-of (real-interval X) ⊆ set-of (real-interval Y)
if inverse-float-interval p X = Some Y
〈proof 〉

lemma inverse-float-intervalI :
x ∈r X =⇒ inverse x ∈ set-of ′ (inverse-float-interval p X)
〈proof 〉

THEORY “IArray” 442

lemma inverse-float-interval-eqI : inverse-float-interval p X = Some IVL =⇒ x ∈r
X =⇒ inverse x ∈r IVL
〈proof 〉

lemma real-interval-abs-interval[simp]:
real-interval (abs-interval x) = abs-interval (real-interval x)
〈proof 〉

lift-definition floor-float-interval::float interval ⇒ float interval is
λ(l, u). (floor-fl l, floor-fl u)
〈proof 〉

lemma lower-floor-float-interval[simp]: lower (floor-float-interval x) = floor-fl (lower
x)
〈proof 〉

lemma upper-floor-float-interval[simp]: upper (floor-float-interval x) = floor-fl (upper
x)
〈proof 〉

lemma floor-float-intervalI : bxc ∈r floor-float-interval X if x ∈r X
〈proof 〉

end

52.4 constants for code generation
definition lowerF ::float interval ⇒ float where lowerF = lower
definition upperF ::float interval ⇒ float where upperF = upper

end

53 Immutable Arrays with Code Generation
theory IArray
imports Main
begin

53.1 Fundamental operations
Immutable arrays are lists wrapped up in an additional constructor. There
are no update operations. Hence code generation can safely implement this
type by efficient target language arrays. Currently only SML is provided.
Could be extended to other target languages and more operations.
context
begin

THEORY “IArray” 443

datatype ′a iarray = IArray ′a list

qualified primrec list-of :: ′a iarray ⇒ ′a list where
list-of (IArray xs) = xs

qualified definition of-fun :: (nat ⇒ ′a) ⇒ nat ⇒ ′a iarray where
[simp]: of-fun f n = IArray (map f [0 ..<n])

qualified definition sub :: ′a iarray ⇒ nat ⇒ ′a (infixl ‹!!› 100) where
[simp]: as !! n = IArray.list-of as ! n

qualified definition length :: ′a iarray ⇒ nat where
[simp]: length as = List.length (IArray.list-of as)

qualified definition all :: (′a ⇒ bool) ⇒ ′a iarray ⇒ bool where
[simp]: all p as ←→ (∀ a ∈ set (list-of as). p a)

qualified definition exists :: (′a ⇒ bool) ⇒ ′a iarray ⇒ bool where
[simp]: exists p as ←→ (∃ a ∈ set (list-of as). p a)

lemma of-fun-nth:
IArray.of-fun f n !! i = f i if i < n
〈proof 〉

end

53.2 Generic code equations
lemma [code]:

size (as :: ′a iarray) = Suc (IArray.length as)
〈proof 〉

lemma [code]:
size-iarray f as = Suc (size-list f (IArray.list-of as))
〈proof 〉

lemma [code]:
rec-iarray f as = f (IArray.list-of as)
〈proof 〉

lemma [code]:
case-iarray f as = f (IArray.list-of as)
〈proof 〉

lemma [code]:
set-iarray as = set (IArray.list-of as)
〈proof 〉

lemma [code]:

THEORY “IArray” 444

map-iarray f as = IArray (map f (IArray.list-of as))
〈proof 〉

lemma [code]:
rel-iarray r as bs = list-all2 r (IArray.list-of as) (IArray.list-of bs)
〈proof 〉

lemma list-of-code [code]:
IArray.list-of as = map (λn. as !! n) [0 ..< IArray.length as]
〈proof 〉

lemma [code]:
HOL.equal as bs ←→ HOL.equal (IArray.list-of as) (IArray.list-of bs)
〈proof 〉

lemma [code]:
IArray.all p = Not ◦ IArray.exists (Not ◦ p)
〈proof 〉

context
includes term-syntax

begin

lemma [code]:
Code-Evaluation.term-of (as :: ′a::typerep iarray) =

Code-Evaluation.Const (STR ′′IArray.iarray.IArray ′′) (TYPEREP(′a list ⇒ ′a
iarray)) <·> (Code-Evaluation.term-of (IArray.list-of as))
〈proof 〉

end

53.3 Auxiliary operations for code generation
context
begin

qualified primrec tabulate :: integer × (integer ⇒ ′a) ⇒ ′a iarray where
tabulate (n, f) = IArray (map (f ◦ integer-of-nat) [0 ..<nat-of-integer n])

lemma [code]:
IArray.of-fun f n = IArray.tabulate (integer-of-nat n, f ◦ nat-of-integer)
〈proof 〉 primrec sub ′ :: ′a iarray × integer ⇒ ′a where
sub ′ (as, n) = as !! nat-of-integer n

lemma [code]:
IArray.sub ′ (IArray as, n) = as ! nat-of-integer n
〈proof 〉

lemma [code]:

THEORY “IArray” 445

as !! n = IArray.sub ′ (as, integer-of-nat n)
〈proof 〉 definition length ′ :: ′a iarray ⇒ integer where
[simp]: length ′ as = integer-of-nat (List.length (IArray.list-of as))

lemma [code]:
IArray.length ′ (IArray as) = integer-of-nat (List.length as)
〈proof 〉

lemma [code]:
IArray.length as = nat-of-integer (IArray.length ′ as)
〈proof 〉 definition exists-upto :: (′a ⇒ bool)⇒ integer ⇒ ′a iarray ⇒ bool where
[simp]: exists-upto p k as ←→ (∃ l. 0 ≤ l ∧ l < k ∧ p (sub ′ (as, l)))

lemma exists-upto-of-nat:
exists-upto p (of-nat n) as ←→ (∃m<n. p (as !! m))
including integer .lifting 〈proof 〉

lemma [code]:
exists-upto p k as ←→ (if k ≤ 0 then False else

let l = k − 1 in p (sub ′ (as, l)) ∨ exists-upto p l as)
〈proof 〉

including integer .lifting 〈proof 〉

lemma [code]:
IArray.exists p as ←→ exists-upto p (length ′ as) as
including integer .lifting 〈proof 〉

end

53.4 Code Generation for SML
Note that arrays cannot be printed directly but only by turning them into
lists first. Arrays could be converted back into lists for printing if they were
wrapped up in an additional constructor.
code-reserved (SML) Vector

code-printing
type-constructor iarray ⇀ (SML) - Vector .vector
| constant IArray ⇀ (SML) Vector .fromList
| constant IArray.all ⇀ (SML) Vector .all
| constant IArray.exists ⇀ (SML) Vector .exists
| constant IArray.tabulate ⇀ (SML) Vector .tabulate
| constant IArray.sub ′ ⇀ (SML) Vector .sub
| constant IArray.length ′ ⇀ (SML) Vector .length

53.5 Code Generation for Haskell
We map ′a iarrays in Isabelle/HOL to Data.Array.IArray.array in Haskell.
Performance mapping to Data.Array.Unboxed.Array and Data.Array.Array

THEORY “Landau-Symbols” 446

is similar.
code-printing

code-module IArray ⇀ (Haskell) ‹
module IArray(IArray, tabulate, of-list, sub, length) where {

import Prelude (Bool(True, False), not, Maybe(Nothing, Just),
Integer , (+), (−), (<), fromInteger , toInteger , map, seq, (.));

import qualified Prelude;
import qualified Data.Array.IArray;
import qualified Data.Array.Base;
import qualified Data.Ix;

newtype IArray e = IArray (Data.Array.IArray.Array Integer e);

tabulate :: (Integer , (Integer −> e)) −> IArray e;
tabulate (k, f) = IArray (Data.Array.IArray.array (0 , k − 1) (map (\i −> let

fi = f i in fi ‘seq‘ (i, fi)) [0 ..k − 1]));

of-list :: [e] −> IArray e;
of-list l = IArray (Data.Array.IArray.listArray (0 , (toInteger . Prelude.length) l
− 1) l);

sub :: (IArray e, Integer) −> e;
sub (IArray v, i) = v ‘Data.Array.Base.unsafeAt‘ fromInteger i;

length :: IArray e −> Integer ;
length (IArray v) = toInteger (Data.Ix.rangeSize (Data.Array.IArray.bounds v));

}› for type-constructor iarray constant IArray IArray.tabulate IArray.sub ′ IAr-
ray.length ′

code-reserved (Haskell) IArray-Impl

code-printing
type-constructor iarray ⇀ (Haskell) IArray.IArray -
| constant IArray ⇀ (Haskell) IArray.of ′-list
| constant IArray.tabulate ⇀ (Haskell) IArray.tabulate
| constant IArray.sub ′ ⇀ (Haskell) IArray.sub
| constant IArray.length ′ ⇀ (Haskell) IArray.length

end

54 Definition of Landau symbols
theory Landau-Symbols
imports

Complex-Main
begin

THEORY “Landau-Symbols” 447

lemma eventually-subst ′:
eventually (λx. f x = g x) F =⇒ eventually (λx. P x (f x)) F = eventually (λx.

P x (g x)) F
〈proof 〉

54.1 Definition of Landau symbols
Our Landau symbols are sign-oblivious, i.e. any function always has the
same growth as its absolute. This has the advantage of making some can-
celling rules for sums nicer, but introduces some problems in other places.
Nevertheless, we found this definition more convenient to work with.
definition bigo :: ′a filter ⇒ (′a ⇒ (′b :: real-normed-field)) ⇒ (′a ⇒ ′b) set

(‹(‹indent=1 notation=‹mixfix bigo››O[-] ′(- ′))›)
where bigo F g = {f . (∃ c>0 . eventually (λx. norm (f x) ≤ c ∗ norm (g x)) F)}

definition smallo :: ′a filter ⇒ (′a ⇒ (′b :: real-normed-field)) ⇒ (′a ⇒ ′b) set
(‹(‹indent=1 notation=‹mixfix smallo››o[-] ′(- ′))›)

where smallo F g = {f . (∀ c>0 . eventually (λx. norm (f x) ≤ c ∗ norm (g x))
F)}

definition bigomega :: ′a filter ⇒ (′a ⇒ (′b :: real-normed-field)) ⇒ (′a ⇒ ′b) set
(‹(‹indent=1 notation=‹mixfix bigomega››Ω[-] ′(- ′))›)

where bigomega F g = {f . (∃ c>0 . eventually (λx. norm (f x) ≥ c ∗ norm (g
x)) F)}

definition smallomega :: ′a filter ⇒ (′a ⇒ (′b :: real-normed-field)) ⇒ (′a ⇒ ′b)
set

(‹(‹indent=1 notation=‹mixfix smallomega››ω[-] ′(- ′))›)
where smallomega F g = {f . (∀ c>0 . eventually (λx. norm (f x) ≥ c ∗ norm (g

x)) F)}

definition bigtheta :: ′a filter ⇒ (′a ⇒ (′b :: real-normed-field)) ⇒ (′a ⇒ ′b) set
(‹(‹indent=1 notation=‹mixfix bigtheta››Θ[-] ′(- ′))›)

where bigtheta F g = bigo F g ∩ bigomega F g

abbreviation bigo-at-top (‹(‹indent=2 notation=‹mixfix bigo››O ′(- ′))›)
where O(g) ≡ bigo at-top g

abbreviation smallo-at-top (‹(‹indent=2 notation=‹mixfix smallo››o ′(- ′))›)
where o(g) ≡ smallo at-top g

abbreviation bigomega-at-top (‹(‹indent=2 notation=‹mixfix bigomega››Ω ′(- ′))›)
where Ω(g) ≡ bigomega at-top g

abbreviation smallomega-at-top (‹(‹indent=2 notation=‹mixfix smallomega››ω ′(- ′))›)
where ω(g) ≡ smallomega at-top g

abbreviation bigtheta-at-top (‹(‹indent=2 notation=‹mixfix bigtheta››Θ ′(- ′))›)

THEORY “Landau-Symbols” 448

where Θ(g) ≡ bigtheta at-top g

The following is a set of properties that all Landau symbols satisfy.
named-theorems landau-divide-simps

locale landau-symbol =
fixes L :: ′a filter ⇒ (′a ⇒ (′b :: real-normed-field)) ⇒ (′a ⇒ ′b) set
and L ′ :: ′c filter ⇒ (′c ⇒ (′b :: real-normed-field)) ⇒ (′c ⇒ ′b) set
and Lr :: ′a filter ⇒ (′a ⇒ real) ⇒ (′a ⇒ real) set
assumes bot ′: L bot f = UNIV
assumes filter-mono ′: F1 ≤ F2 =⇒ L F2 f ⊆ L F1 f
assumes in-filtermap-iff :

f ′ ∈ L (filtermap h ′ F ′) g ′←→ (λx. f ′ (h ′ x)) ∈ L ′ F ′ (λx. g ′ (h ′ x))
assumes filtercomap:

f ′ ∈ L F ′′ g ′ =⇒ (λx. f ′ (h ′ x)) ∈ L ′ (filtercomap h ′ F ′′) (λx. g ′ (h ′ x))
assumes sup: f ∈ L F1 g =⇒ f ∈ L F2 g =⇒ f ∈ L (sup F1 F2) g
assumes in-cong: eventually (λx. f x = g x) F =⇒ f ∈ L F (h) ←→ g ∈ L F

(h)
assumes cong: eventually (λx. f x = g x) F =⇒ L F (f) = L F (g)
assumes cong-bigtheta: f ∈ Θ[F](g) =⇒ L F (f) = L F (g)
assumes in-cong-bigtheta: f ∈ Θ[F](g) =⇒ f ∈ L F (h) ←→ g ∈ L F (h)
assumes cmult [simp]: c 6= 0 =⇒ L F (λx. c ∗ f x) = L F (f)
assumes cmult-in-iff [simp]: c 6= 0 =⇒ (λx. c ∗ f x) ∈ L F (g) ←→ f ∈ L F (g)
assumes mult-left [simp]: f ∈ L F (g) =⇒ (λx. h x ∗ f x) ∈ L F (λx. h x ∗ g x)
assumes inverse: eventually (λx. f x 6= 0) F =⇒ eventually (λx. g x 6= 0) F

=⇒
f ∈ L F (g) =⇒ (λx. inverse (g x)) ∈ L F (λx. inverse (f x))

assumes subsetI : f ∈ L F (g) =⇒ L F (f) ⊆ L F (g)
assumes plus-subset1 : f ∈ o[F](g) =⇒ L F (g) ⊆ L F (λx. f x + g x)
assumes trans: f ∈ L F (g) =⇒ g ∈ L F (h) =⇒ f ∈ L F (h)
assumes compose: f ∈ L F (g) =⇒ filterlim h ′ F G =⇒ (λx. f (h ′ x)) ∈ L ′ G

(λx. g (h ′ x))
assumes norm-iff [simp]: (λx. norm (f x)) ∈ Lr F (λx. norm (g x)) ←→ f ∈ L

F (g)
assumes abs [simp]: Lr Fr (λx. |fr x|) = Lr Fr fr
assumes abs-in-iff [simp]: (λx. |fr x|) ∈ Lr Fr gr ←→ fr ∈ Lr Fr gr

begin

lemma bot [simp]: f ∈ L bot g 〈proof 〉

lemma filter-mono: F1 ≤ F2 =⇒ f ∈ L F2 g =⇒ f ∈ L F1 g
〈proof 〉

lemma cong-ex:
eventually (λx. f1 x = f2 x) F =⇒ eventually (λx. g1 x = g2 x) F =⇒

f1 ∈ L F (g1) ←→ f2 ∈ L F (g2)
〈proof 〉

lemma cong-ex-bigtheta:

THEORY “Landau-Symbols” 449

f1 ∈ Θ[F](f2) =⇒ g1 ∈ Θ[F](g2) =⇒ f1 ∈ L F (g1) ←→ f2 ∈ L F (g2)
〈proof 〉

lemma bigtheta-trans1 :
f ∈ L F (g) =⇒ g ∈ Θ[F](h) =⇒ f ∈ L F (h)
〈proof 〉

lemma bigtheta-trans2 :
f ∈ Θ[F](g) =⇒ g ∈ L F (h) =⇒ f ∈ L F (h)
〈proof 〉

lemma cmult ′ [simp]: c 6= 0 =⇒ L F (λx. f x ∗ c) = L F (f)
〈proof 〉

lemma cmult-in-iff ′ [simp]: c 6= 0 =⇒ (λx. f x ∗ c) ∈ L F (g) ←→ f ∈ L F (g)
〈proof 〉

lemma cdiv [simp]: c 6= 0 =⇒ L F (λx. f x / c) = L F (f)
〈proof 〉

lemma cdiv-in-iff ′ [simp]: c 6= 0 =⇒ (λx. f x / c) ∈ L F (g) ←→ f ∈ L F (g)
〈proof 〉

lemma uminus [simp]: L F (λx. −g x) = L F (g) 〈proof 〉

lemma uminus-in-iff [simp]: (λx. −f x) ∈ L F (g) ←→ f ∈ L F (g)
〈proof 〉

lemma const: c 6= 0 =⇒ L F (λ-. c) = L F (λ-. 1)
〈proof 〉

lemma const ′ [simp]: NO-MATCH 1 c =⇒ c 6= 0 =⇒ L F (λ-. c) = L F (λ-. 1)
〈proof 〉

lemma const-in-iff : c 6= 0 =⇒ (λ-. c) ∈ L F (f) ←→ (λ-. 1) ∈ L F (f)
〈proof 〉

lemma const-in-iff ′ [simp]: NO-MATCH 1 c =⇒ c 6= 0 =⇒ (λ-. c) ∈ L F (f) ←→
(λ-. 1) ∈ L F (f)
〈proof 〉

lemma plus-subset2 : g ∈ o[F](f) =⇒ L F (f) ⊆ L F (λx. f x + g x)
〈proof 〉

lemma mult-right [simp]: f ∈ L F (g) =⇒ (λx. f x ∗ h x) ∈ L F (λx. g x ∗ h x)
〈proof 〉

lemma mult: f1 ∈ L F (g1) =⇒ f2 ∈ L F (g2) =⇒ (λx. f1 x ∗ f2 x) ∈ L F (λx.

THEORY “Landau-Symbols” 450

g1 x ∗ g2 x)
〈proof 〉

lemma inverse-cancel:
assumes eventually (λx. f x 6= 0) F
assumes eventually (λx. g x 6= 0) F
shows (λx. inverse (f x)) ∈ L F (λx. inverse (g x)) ←→ g ∈ L F (f)
〈proof 〉

lemma divide-right:
assumes eventually (λx. h x 6= 0) F
assumes f ∈ L F (g)
shows (λx. f x / h x) ∈ L F (λx. g x / h x)
〈proof 〉

lemma divide-right-iff :
assumes eventually (λx. h x 6= 0) F
shows (λx. f x / h x) ∈ L F (λx. g x / h x) ←→ f ∈ L F (g)
〈proof 〉

lemma divide-left:
assumes eventually (λx. f x 6= 0) F
assumes eventually (λx. g x 6= 0) F
assumes g ∈ L F(f)
shows (λx. h x / f x) ∈ L F (λx. h x / g x)
〈proof 〉

lemma divide-left-iff :
assumes eventually (λx. f x 6= 0) F
assumes eventually (λx. g x 6= 0) F
assumes eventually (λx. h x 6= 0) F
shows (λx. h x / f x) ∈ L F (λx. h x / g x) ←→ g ∈ L F (f)
〈proof 〉

lemma divide:
assumes eventually (λx. g1 x 6= 0) F
assumes eventually (λx. g2 x 6= 0) F
assumes f1 ∈ L F (f2) g2 ∈ L F (g1)
shows (λx. f1 x / g1 x) ∈ L F (λx. f2 x / g2 x)
〈proof 〉

lemma divide-eq1 :
assumes eventually (λx. h x 6= 0) F
shows f ∈ L F (λx. g x / h x) ←→ (λx. f x ∗ h x) ∈ L F (g)
〈proof 〉

lemma divide-eq2 :
assumes eventually (λx. h x 6= 0) F
shows (λx. f x / h x) ∈ L F (λx. g x) ←→ f ∈ L F (λx. g x ∗ h x)

THEORY “Landau-Symbols” 451

〈proof 〉

lemma inverse-eq1 :
assumes eventually (λx. g x 6= 0) F
shows f ∈ L F (λx. inverse (g x)) ←→ (λx. f x ∗ g x) ∈ L F (λ-. 1)
〈proof 〉

lemma inverse-eq2 :
assumes eventually (λx. f x 6= 0) F
shows (λx. inverse (f x)) ∈ L F (g) ←→ (λx. 1) ∈ L F (λx. f x ∗ g x)
〈proof 〉

lemma inverse-flip:
assumes eventually (λx. g x 6= 0) F
assumes eventually (λx. h x 6= 0) F
assumes (λx. inverse (g x)) ∈ L F (h)
shows (λx. inverse (h x)) ∈ L F (g)
〈proof 〉

lemma lift-trans:
assumes f ∈ L F (g)
assumes (λx. t x (g x)) ∈ L F (h)
assumes

∧
f g. f ∈ L F (g) =⇒ (λx. t x (f x)) ∈ L F (λx. t x (g x))

shows (λx. t x (f x)) ∈ L F (h)
〈proof 〉

lemma lift-trans ′:
assumes f ∈ L F (λx. t x (g x))
assumes g ∈ L F (h)
assumes

∧
g h. g ∈ L F (h) =⇒ (λx. t x (g x)) ∈ L F (λx. t x (h x))

shows f ∈ L F (λx. t x (h x))
〈proof 〉

lemma lift-trans-bigtheta:
assumes f ∈ L F (g)
assumes (λx. t x (g x)) ∈ Θ[F](h)
assumes

∧
f g. f ∈ L F (g) =⇒ (λx. t x (f x)) ∈ L F (λx. t x (g x))

shows (λx. t x (f x)) ∈ L F (h)
〈proof 〉

lemma lift-trans-bigtheta ′:
assumes f ∈ L F (λx. t x (g x))
assumes g ∈ Θ[F](h)
assumes

∧
g h. g ∈ Θ[F](h) =⇒ (λx. t x (g x)) ∈ Θ[F](λx. t x (h x))

shows f ∈ L F (λx. t x (h x))
〈proof 〉

lemma (in landau-symbol) mult-in-1 :
assumes f ∈ L F (λ-. 1) g ∈ L F (λ-. 1)

THEORY “Landau-Symbols” 452

shows (λx. f x ∗ g x) ∈ L F (λ-. 1)
〈proof 〉

lemma (in landau-symbol) of-real-cancel:
(λx. of-real (f x)) ∈ L F (λx. of-real (g x)) =⇒ f ∈ Lr F g
〈proof 〉

lemma (in landau-symbol) of-real-iff :
(λx. of-real (f x)) ∈ L F (λx. of-real (g x)) ←→ f ∈ Lr F g
〈proof 〉

lemmas [landau-divide-simps] =
inverse-cancel divide-left-iff divide-eq1 divide-eq2 inverse-eq1 inverse-eq2

end

The symbols O and o and Ω and ω are dual, so for many rules, replacing
O with Ω, o with ω, and ≤ with ≥ in a theorem yields another valid theorem.
The following locale captures this fact.
locale landau-pair =

fixes L l :: ′a filter ⇒ (′a ⇒ (′b :: real-normed-field)) ⇒ (′a ⇒ ′b) set
fixes L ′ l ′ :: ′c filter ⇒ (′c ⇒ (′b :: real-normed-field)) ⇒ (′c ⇒ ′b) set
fixes Lr lr :: ′a filter ⇒ (′a ⇒ real) ⇒ (′a ⇒ real) set
and R :: real ⇒ real ⇒ bool
assumes L-def : L F g = {f . ∃ c>0 . eventually (λx. R (norm (f x)) (c ∗ norm

(g x))) F}
and l-def : l F g = {f . ∀ c>0 . eventually (λx. R (norm (f x)) (c ∗ norm (g

x))) F}
and L ′-def : L ′ F ′ g ′ = {f . ∃ c>0 . eventually (λx. R (norm (f x)) (c ∗ norm

(g ′ x))) F ′}
and l ′-def : l ′ F ′ g ′ = {f . ∀ c>0 . eventually (λx. R (norm (f x)) (c ∗ norm

(g ′ x))) F ′}
and Lr-def : Lr F ′′ g ′′ = {f . ∃ c>0 . eventually (λx. R (norm (f x)) (c ∗ norm

(g ′′ x))) F ′′}
and lr-def : lr F ′′ g ′′ = {f . ∀ c>0 . eventually (λx. R (norm (f x)) (c ∗ norm

(g ′′ x))) F ′′}
and R: R = (≤) ∨ R = (≥)

interpretation landau-o:
landau-pair bigo smallo bigo smallo bigo smallo (≤)
〈proof 〉

interpretation landau-omega:
landau-pair bigomega smallomega bigomega smallomega bigomega smallomega

(≥)
〈proof 〉

context landau-pair

THEORY “Landau-Symbols” 453

begin

lemmas R-E = disjE [OF R, case-names le ge]

lemma bigI :
c > 0 =⇒ eventually (λx. R (norm (f x)) (c ∗ norm (g x))) F =⇒ f ∈ L F (g)
〈proof 〉

lemma bigE :
assumes f ∈ L F (g)
obtains c where c > 0 eventually (λx. R (norm (f x)) (c ∗ (norm (g x)))) F
〈proof 〉

lemma smallI :
(
∧

c. c > 0 =⇒ eventually (λx. R (norm (f x)) (c ∗ (norm (g x)))) F) =⇒ f ∈
l F (g)
〈proof 〉

lemma smallD:
f ∈ l F (g) =⇒ c > 0 =⇒ eventually (λx. R (norm (f x)) (c ∗ (norm (g x)))) F
〈proof 〉

lemma bigE-nonneg-real:
assumes f ∈ Lr F (g) eventually (λx. f x ≥ 0) F
obtains c where c > 0 eventually (λx. R (f x) (c ∗ |g x|)) F
〈proof 〉

lemma smallD-nonneg-real:
assumes f ∈ lr F (g) eventually (λx. f x ≥ 0) F c > 0
shows eventually (λx. R (f x) (c ∗ |g x|)) F
〈proof 〉

lemma small-imp-big: f ∈ l F (g) =⇒ f ∈ L F (g)
〈proof 〉

lemma small-subset-big: l F (g) ⊆ L F (g)
〈proof 〉

lemma R-refl [simp]: R x x 〈proof 〉

lemma R-linear : ¬R x y =⇒ R y x
〈proof 〉

lemma R-trans [trans]: R a b =⇒ R b c =⇒ R a c
〈proof 〉

lemma R-mult-left-mono: R a b =⇒ c ≥ 0 =⇒ R (c∗a) (c∗b)
〈proof 〉

THEORY “Landau-Symbols” 454

lemma R-mult-right-mono: R a b =⇒ c ≥ 0 =⇒ R (a∗c) (b∗c)
〈proof 〉

lemma big-trans:
assumes f ∈ L F (g) g ∈ L F (h)
shows f ∈ L F (h)
〈proof 〉

lemma big-small-trans:
assumes f ∈ L F (g) g ∈ l F (h)
shows f ∈ l F (h)
〈proof 〉

lemma small-big-trans:
assumes f ∈ l F (g) g ∈ L F (h)
shows f ∈ l F (h)
〈proof 〉

lemma small-trans:
f ∈ l F (g) =⇒ g ∈ l F (h) =⇒ f ∈ l F (h)
〈proof 〉

lemma small-big-trans ′:
f ∈ l F (g) =⇒ g ∈ L F (h) =⇒ f ∈ L F (h)
〈proof 〉

lemma big-small-trans ′:
f ∈ L F (g) =⇒ g ∈ l F (h) =⇒ f ∈ L F (h)
〈proof 〉

lemma big-subsetI [intro]: f ∈ L F (g) =⇒ L F (f) ⊆ L F (g)
〈proof 〉

lemma small-subsetI [intro]: f ∈ L F (g) =⇒ l F (f) ⊆ l F (g)
〈proof 〉

lemma big-refl [simp]: f ∈ L F (f)
〈proof 〉

lemma small-refl-iff : f ∈ l F (f) ←→ eventually (λx. f x = 0) F
〈proof 〉

lemma big-small-asymmetric: f ∈ L F (g) =⇒ g ∈ l F (f) =⇒ eventually (λx. f
x = 0) F
〈proof 〉

lemma small-big-asymmetric: f ∈ l F (g) =⇒ g ∈ L F (f) =⇒ eventually (λx. f
x = 0) F
〈proof 〉

THEORY “Landau-Symbols” 455

lemma small-asymmetric: f ∈ l F (g) =⇒ g ∈ l F (f) =⇒ eventually (λx. f x =
0) F
〈proof 〉

lemma plus-aux:
assumes f ∈ o[F](g)
shows g ∈ L F (λx. f x + g x)
〈proof 〉

end

lemma summable-comparison-test-bigo:
fixes f :: nat ⇒ real
assumes summable (λn. norm (g n)) f ∈ O(g)
shows summable f
〈proof 〉

lemma bigomega-iff-bigo: g ∈ Ω[F](f) ←→ f ∈ O[F](g)
〈proof 〉

lemma smallomega-iff-smallo: g ∈ ω[F](f) ←→ f ∈ o[F](g)
〈proof 〉

context landau-pair
begin

lemma big-mono:
eventually (λx. R (norm (f x)) (norm (g x))) F =⇒ f ∈ L F (g)
〈proof 〉

lemma big-mult:
assumes f1 ∈ L F (g1) f2 ∈ L F (g2)
shows (λx. f1 x ∗ f2 x) ∈ L F (λx. g1 x ∗ g2 x)
〈proof 〉

lemma small-big-mult:
assumes f1 ∈ l F (g1) f2 ∈ L F (g2)
shows (λx. f1 x ∗ f2 x) ∈ l F (λx. g1 x ∗ g2 x)
〈proof 〉

lemma big-small-mult:
f1 ∈ L F (g1) =⇒ f2 ∈ l F (g2) =⇒ (λx. f1 x ∗ f2 x) ∈ l F (λx. g1 x ∗ g2 x)
〈proof 〉

lemma small-mult: f1 ∈ l F (g1) =⇒ f2 ∈ l F (g2) =⇒ (λx. f1 x ∗ f2 x) ∈ l F
(λx. g1 x ∗ g2 x)

THEORY “Landau-Symbols” 456

〈proof 〉

lemmas mult = big-mult small-big-mult big-small-mult small-mult

lemma big-power :
assumes f ∈ L F (g)
shows (λx. f x ^ m) ∈ L F (λx. g x ^ m)
〈proof 〉

lemma (in landau-pair) small-power :
assumes f ∈ l F (g) m > 0
shows (λx. f x ^ m) ∈ l F (λx. g x ^ m)
〈proof 〉

lemma big-power-increasing:
assumes (λ-. 1) ∈ L F f m ≤ n
shows (λx. f x ^ m) ∈ L F (λx. f x ^ n)
〈proof 〉

lemma small-power-increasing:
assumes (λ-. 1) ∈ l F f m < n
shows (λx. f x ^ m) ∈ l F (λx. f x ^ n)
〈proof 〉

sublocale big: landau-symbol L L ′ Lr
〈proof 〉

sublocale small: landau-symbol l l ′ lr
〈proof 〉

These rules allow chaining of Landau symbol propositions in Isar with
"also".
lemma big-mult-1 : f ∈ L F (g) =⇒ (λ-. 1) ∈ L F (h) =⇒ f ∈ L F (λx. g x ∗
h x)

and big-mult-1 ′: (λ-. 1) ∈ L F (g) =⇒ f ∈ L F (h) =⇒ f ∈ L F (λx. g x ∗ h
x)

and small-mult-1 : f ∈ l F (g) =⇒ (λ-. 1) ∈ L F (h) =⇒ f ∈ l F (λx. g x ∗ h
x)

and small-mult-1 ′: (λ-. 1) ∈ L F (g) =⇒ f ∈ l F (h) =⇒ f ∈ l F (λx. g x ∗ h x)
and small-mult-1 ′′: f ∈ L F (g) =⇒ (λ-. 1) ∈ l F (h) =⇒ f ∈ l F (λx. g x ∗ h

x)
and small-mult-1 ′′′: (λ-. 1) ∈ l F (g) =⇒ f ∈ L F (h) =⇒ f ∈ l F (λx. g x ∗ h

x)
〈proof 〉

lemma big-1-mult: f ∈ L F (g) =⇒ h ∈ L F (λ-. 1) =⇒ (λx. f x ∗ h x) ∈ L F
(g)

and big-1-mult ′: h ∈ L F (λ-. 1) =⇒ f ∈ L F (g) =⇒ (λx. f x ∗ h x) ∈ L F
(g)

THEORY “Landau-Symbols” 457

and small-1-mult: f ∈ l F (g) =⇒ h ∈ L F (λ-. 1) =⇒ (λx. f x ∗ h x) ∈ l F (g)
and small-1-mult ′: h ∈ L F (λ-. 1) =⇒ f ∈ l F (g) =⇒ (λx. f x ∗ h x) ∈ l F (g)
and small-1-mult ′′: f ∈ L F (g) =⇒ h ∈ l F (λ-. 1) =⇒ (λx. f x ∗ h x) ∈ l F

(g)
and small-1-mult ′′′: h ∈ l F (λ-. 1) =⇒ f ∈ L F (g) =⇒ (λx. f x ∗ h x) ∈ l F

(g)
〈proof 〉

lemmas mult-1-trans =
big-mult-1 big-mult-1 ′ small-mult-1 small-mult-1 ′ small-mult-1 ′′ small-mult-1 ′′′

big-1-mult big-1-mult ′ small-1-mult small-1-mult ′ small-1-mult ′′ small-1-mult ′′′

lemma big-equal-iff-bigtheta: L F (f) = L F (g) ←→ f ∈ Θ[F](g)
〈proof 〉

lemma big-prod:
assumes

∧
x. x ∈ A =⇒ f x ∈ L F (g x)

shows (λy.
∏

x∈A. f x y) ∈ L F (λy.
∏

x∈A. g x y)
〈proof 〉

lemma big-prod-in-1 :
assumes

∧
x. x ∈ A =⇒ f x ∈ L F (λ-. 1)

shows (λy.
∏

x∈A. f x y) ∈ L F (λ-. 1)
〈proof 〉

end

context landau-symbol
begin

lemma plus-absorb1 :
assumes f ∈ o[F](g)
shows L F (λx. f x + g x) = L F (g)
〈proof 〉

lemma plus-absorb2 : g ∈ o[F](f) =⇒ L F (λx. f x + g x) = L F (f)
〈proof 〉

lemma diff-absorb1 : f ∈ o[F](g) =⇒ L F (λx. f x − g x) = L F (g)
〈proof 〉

lemma diff-absorb2 : g ∈ o[F](f) =⇒ L F (λx. f x − g x) = L F (f)
〈proof 〉

lemmas absorb = plus-absorb1 plus-absorb2 diff-absorb1 diff-absorb2

end

THEORY “Landau-Symbols” 458

lemma bigthetaI [intro]: f ∈ O[F](g) =⇒ f ∈ Ω[F](g) =⇒ f ∈ Θ[F](g)
〈proof 〉

lemma bigthetaD1 [dest]: f ∈ Θ[F](g) =⇒ f ∈ O[F](g)
and bigthetaD2 [dest]: f ∈ Θ[F](g) =⇒ f ∈ Ω[F](g)
〈proof 〉

lemma bigtheta-refl [simp]: f ∈ Θ[F](f)
〈proof 〉

lemma bigtheta-sym: f ∈ Θ[F](g) ←→ g ∈ Θ[F](f)
〈proof 〉

lemmas landau-flip =
bigomega-iff-bigo[symmetric] smallomega-iff-smallo[symmetric]
bigomega-iff-bigo smallomega-iff-smallo bigtheta-sym

interpretation landau-theta: landau-symbol bigtheta bigtheta bigtheta
〈proof 〉

lemmas landau-symbols =
landau-o.big.landau-symbol-axioms landau-o.small.landau-symbol-axioms
landau-omega.big.landau-symbol-axioms landau-omega.small.landau-symbol-axioms
landau-theta.landau-symbol-axioms

lemma bigoI [intro]:
assumes eventually (λx. (norm (f x)) ≤ c ∗ (norm (g x))) F
shows f ∈ O[F](g)
〈proof 〉

lemma smallomegaD [dest]:
assumes f ∈ ω[F](g)
shows eventually (λx. (norm (f x)) ≥ c ∗ (norm (g x))) F
〈proof 〉

lemma bigthetaI ′:
assumes c1 > 0 c2 > 0
assumes eventually (λx. c1 ∗ (norm (g x)) ≤ (norm (f x)) ∧ (norm (f x)) ≤ c2
∗ (norm (g x))) F

shows f ∈ Θ[F](g)
〈proof 〉

lemma bigthetaI-cong: eventually (λx. f x = g x) F =⇒ f ∈ Θ[F](g)
〈proof 〉

lemma (in landau-symbol) ev-eq-trans1 :

THEORY “Landau-Symbols” 459

f ∈ L F (λx. g x (h x)) =⇒ eventually (λx. h x = h ′ x) F =⇒ f ∈ L F (λx. g x
(h ′ x))
〈proof 〉

lemma (in landau-symbol) ev-eq-trans2 :
eventually (λx. f x = f ′ x) F =⇒ (λx. g x (f ′ x)) ∈ L F (h) =⇒ (λx. g x (f x))
∈ L F (h)
〈proof 〉

declare landau-o.smallI landau-omega.bigI landau-omega.smallI [intro]
declare landau-o.bigE landau-omega.bigE [elim]
declare landau-o.smallD

lemma (in landau-symbol) bigtheta-trans1 ′:
f ∈ L F (g) =⇒ h ∈ Θ[F](g) =⇒ f ∈ L F (h)
〈proof 〉

lemma (in landau-symbol) bigtheta-trans2 ′:
g ∈ Θ[F](f) =⇒ g ∈ L F (h) =⇒ f ∈ L F (h)
〈proof 〉

lemma bigo-bigomega-trans: f ∈ O[F](g) =⇒ h ∈ Ω[F](g) =⇒ f ∈ O[F](h)
and bigo-smallomega-trans: f ∈ O[F](g) =⇒ h ∈ ω[F](g) =⇒ f ∈ o[F](h)
and smallo-bigomega-trans: f ∈ o[F](g) =⇒ h ∈ Ω[F](g) =⇒ f ∈ o[F](h)
and smallo-smallomega-trans: f ∈ o[F](g) =⇒ h ∈ ω[F](g) =⇒ f ∈ o[F](h)
and bigomega-bigo-trans: f ∈ Ω[F](g) =⇒ h ∈ O[F](g) =⇒ f ∈ Ω[F](h)
and bigomega-smallo-trans: f ∈ Ω[F](g) =⇒ h ∈ o[F](g) =⇒ f ∈ ω[F](h)
and smallomega-bigo-trans: f ∈ ω[F](g) =⇒ h ∈ O[F](g) =⇒ f ∈ ω[F](h)
and smallomega-smallo-trans: f ∈ ω[F](g) =⇒ h ∈ o[F](g) =⇒ f ∈ ω[F](h)
〈proof 〉

lemmas landau-trans-lift [trans] =
landau-symbols[THEN landau-symbol.lift-trans]
landau-symbols[THEN landau-symbol.lift-trans ′]
landau-symbols[THEN landau-symbol.lift-trans-bigtheta]
landau-symbols[THEN landau-symbol.lift-trans-bigtheta ′]

lemmas landau-mult-1-trans [trans] =
landau-o.mult-1-trans landau-omega.mult-1-trans

lemmas landau-trans [trans] =
landau-symbols[THEN landau-symbol.bigtheta-trans1]
landau-symbols[THEN landau-symbol.bigtheta-trans2]
landau-symbols[THEN landau-symbol.bigtheta-trans1 ′]
landau-symbols[THEN landau-symbol.bigtheta-trans2 ′]
landau-symbols[THEN landau-symbol.ev-eq-trans1]
landau-symbols[THEN landau-symbol.ev-eq-trans2]

landau-o.big-trans landau-o.small-trans landau-o.small-big-trans landau-o.big-small-trans

THEORY “Landau-Symbols” 460

landau-omega.big-trans landau-omega.small-trans
landau-omega.small-big-trans landau-omega.big-small-trans

bigo-bigomega-trans bigo-smallomega-trans smallo-bigomega-trans smallo-smallomega-trans
bigomega-bigo-trans bigomega-smallo-trans smallomega-bigo-trans smallomega-smallo-trans

lemma bigtheta-inverse [simp]:
shows (λx. inverse (f x)) ∈ Θ[F](λx. inverse (g x)) ←→ f ∈ Θ[F](g)
〈proof 〉

lemma bigtheta-divide:
assumes f1 ∈ Θ(f2) g1 ∈ Θ(g2)
shows (λx. f1 x / g1 x) ∈ Θ(λx. f2 x / g2 x)
〈proof 〉

lemma eventually-nonzero-bigtheta:
assumes f ∈ Θ[F](g)
shows eventually (λx. f x 6= 0) F ←→ eventually (λx. g x 6= 0) F
〈proof 〉

54.2 Landau symbols and limits
lemma bigoI-tendsto-norm:

fixes f g
assumes ((λx. norm (f x / g x)) −−−→ c) F
assumes eventually (λx. g x 6= 0) F
shows f ∈ O[F](g)
〈proof 〉

lemma bigoI-tendsto:
assumes ((λx. f x / g x) −−−→ c) F
assumes eventually (λx. g x 6= 0) F
shows f ∈ O[F](g)
〈proof 〉

lemma bigomegaI-tendsto-norm:
assumes c-not-0 : (c::real) 6= 0
assumes lim: ((λx. norm (f x / g x)) −−−→ c) F
shows f ∈ Ω[F](g)
〈proof 〉

lemma bigomegaI-tendsto:
assumes c-not-0 : (c::real) 6= 0
assumes lim: ((λx. f x / g x) −−−→ c) F
shows f ∈ Ω[F](g)
〈proof 〉

lemma smallomegaI-filterlim-at-top-norm:
assumes lim: filterlim (λx. norm (f x / g x)) at-top F

THEORY “Landau-Symbols” 461

shows f ∈ ω[F](g)
〈proof 〉

lemma smallomegaI-filterlim-at-infinity:
assumes lim: filterlim (λx. f x / g x) at-infinity F
shows f ∈ ω[F](g)
〈proof 〉

lemma smallomegaD-filterlim-at-top-norm:
assumes f ∈ ω[F](g)
assumes eventually (λx. g x 6= 0) F
shows LIM x F . norm (f x / g x) :> at-top
〈proof 〉

lemma smallomegaD-filterlim-at-infinity:
assumes f ∈ ω[F](g)
assumes eventually (λx. g x 6= 0) F
shows LIM x F . f x / g x :> at-infinity
〈proof 〉

lemma smallomega-1-conv-filterlim: f ∈ ω[F](λ-. 1) ←→ filterlim f at-infinity F
〈proof 〉

lemma smalloI-tendsto:
assumes lim: ((λx. f x / g x) −−−→ 0) F
assumes eventually (λx. g x 6= 0) F
shows f ∈ o[F](g)
〈proof 〉

lemma smalloD-tendsto:
assumes f ∈ o[F](g)
shows ((λx. f x / g x) −−−→ 0) F
〈proof 〉

lemma bigthetaI-tendsto-norm:
assumes c-not-0 : (c::real) 6= 0
assumes lim: ((λx. norm (f x / g x)) −−−→ c) F
shows f ∈ Θ[F](g)
〈proof 〉

lemma bigthetaI-tendsto:
assumes c-not-0 : (c::real) 6= 0
assumes lim: ((λx. f x / g x) −−−→ c) F
shows f ∈ Θ[F](g)
〈proof 〉

lemma tendsto-add-smallo:
assumes (f1 −−−→ a) F
assumes f2 ∈ o[F](f1)

THEORY “Landau-Symbols” 462

shows ((λx. f1 x + f2 x) −−−→ a) F
〈proof 〉

lemma tendsto-diff-smallo:
shows (f1 −−−→ a) F =⇒ f2 ∈ o[F](f1) =⇒ ((λx. f1 x − f2 x) −−−→ a) F
〈proof 〉

lemma tendsto-add-smallo-iff :
assumes f2 ∈ o[F](f1)
shows (f1 −−−→ a) F ←→ ((λx. f1 x + f2 x) −−−→ a) F
〈proof 〉

lemma tendsto-diff-smallo-iff :
shows f2 ∈ o[F](f1) =⇒ (f1 −−−→ a) F ←→ ((λx. f1 x − f2 x) −−−→ a) F
〈proof 〉

lemma tendsto-divide-smallo:
assumes ((λx. f1 x / g1 x) −−−→ a) F
assumes f2 ∈ o[F](f1) g2 ∈ o[F](g1)
assumes eventually (λx. g1 x 6= 0) F
shows ((λx. (f1 x + f2 x) / (g1 x + g2 x)) −−−→ a) F (is (?f −−−→ -) -)
〈proof 〉

lemma bigo-powr :
fixes f :: ′a ⇒ real
assumes f ∈ O[F](g) p ≥ 0
shows (λx. |f x| powr p) ∈ O[F](λx. |g x| powr p)
〈proof 〉

lemma smallo-powr :
fixes f :: ′a ⇒ real
assumes f ∈ o[F](g) p > 0
shows (λx. |f x| powr p) ∈ o[F](λx. |g x| powr p)
〈proof 〉

lemma smallo-powr-nonneg:
fixes f :: ′a ⇒ real
assumes f ∈ o[F](g) p > 0 eventually (λx. f x ≥ 0) F eventually (λx. g x ≥ 0)

F
shows (λx. f x powr p) ∈ o[F](λx. g x powr p)
〈proof 〉

lemma bigtheta-powr :
fixes f :: ′a ⇒ real
shows f ∈ Θ[F](g) =⇒ (λx. |f x| powr p) ∈ Θ[F](λx. |g x| powr p)
〈proof 〉

lemma bigo-powr-nonneg:

THEORY “Landau-Symbols” 463

fixes f :: ′a ⇒ real
assumes f ∈ O[F](g) p ≥ 0 eventually (λx. f x ≥ 0) F eventually (λx. g x ≥ 0)

F
shows (λx. f x powr p) ∈ O[F](λx. g x powr p)
〈proof 〉

lemma zero-in-smallo [simp]: (λ-. 0) ∈ o[F](f)
〈proof 〉

lemma zero-in-bigo [simp]: (λ-. 0) ∈ O[F](f)
〈proof 〉

lemma in-bigomega-zero [simp]: f ∈ Ω[F](λx. 0)
〈proof 〉

lemma in-smallomega-zero [simp]: f ∈ ω[F](λx. 0)
〈proof 〉

lemma in-smallo-zero-iff [simp]: f ∈ o[F](λ-. 0) ←→ eventually (λx. f x = 0) F
〈proof 〉

lemma in-bigo-zero-iff [simp]: f ∈ O[F](λ-. 0) ←→ eventually (λx. f x = 0) F
〈proof 〉

lemma zero-in-smallomega-iff [simp]: (λ-. 0) ∈ ω[F](f) ←→ eventually (λx. f x
= 0) F
〈proof 〉

lemma zero-in-bigomega-iff [simp]: (λ-. 0) ∈ Ω[F](f) ←→ eventually (λx. f x =
0) F
〈proof 〉

lemma zero-in-bigtheta-iff [simp]: (λ-. 0) ∈ Θ[F](f) ←→ eventually (λx. f x = 0)
F
〈proof 〉

lemma in-bigtheta-zero-iff [simp]: f ∈ Θ[F](λx. 0) ←→ eventually (λx. f x = 0)
F
〈proof 〉

lemma cmult-in-bigo-iff [simp]: (λx. c ∗ f x) ∈ O[F](g) ←→ c = 0 ∨ f ∈
O[F](g)

and cmult-in-bigo-iff ′ [simp]: (λx. f x ∗ c) ∈ O[F](g) ←→ c = 0 ∨ f ∈ O[F](g)
and cmult-in-smallo-iff [simp]: (λx. c ∗ f x) ∈ o[F](g) ←→ c = 0 ∨ f ∈ o[F](g)
and cmult-in-smallo-iff ′ [simp]: (λx. f x ∗ c) ∈ o[F](g) ←→ c = 0 ∨ f ∈ o[F](g)
〈proof 〉

THEORY “Landau-Symbols” 464

lemma bigo-const [simp]: (λ-. c) ∈ O[F](λ-. 1) 〈proof 〉

lemma bigo-const-iff [simp]: (λ-. c1) ∈ O[F](λ-. c2) ←→ F = bot ∨ c1 = 0 ∨
c2 6= 0
〈proof 〉

lemma bigomega-const-iff [simp]: (λ-. c1) ∈ Ω[F](λ-. c2) ←→ F = bot ∨ c1 6= 0
∨ c2 = 0
〈proof 〉

lemma smallo-real-nat-transfer :
(f :: real ⇒ real) ∈ o(g) =⇒ (λx::nat. f (real x)) ∈ o(λx. g (real x))
〈proof 〉

lemma bigo-real-nat-transfer :
(f :: real ⇒ real) ∈ O(g) =⇒ (λx::nat. f (real x)) ∈ O(λx. g (real x))
〈proof 〉

lemma smallomega-real-nat-transfer :
(f :: real ⇒ real) ∈ ω(g) =⇒ (λx::nat. f (real x)) ∈ ω(λx. g (real x))
〈proof 〉

lemma bigomega-real-nat-transfer :
(f :: real ⇒ real) ∈ Ω(g) =⇒ (λx::nat. f (real x)) ∈ Ω(λx. g (real x))
〈proof 〉

lemma bigtheta-real-nat-transfer :
(f :: real ⇒ real) ∈ Θ(g) =⇒ (λx::nat. f (real x)) ∈ Θ(λx. g (real x))
〈proof 〉

lemmas landau-real-nat-transfer [intro] =
bigo-real-nat-transfer smallo-real-nat-transfer bigomega-real-nat-transfer
smallomega-real-nat-transfer bigtheta-real-nat-transfer

lemma landau-symbol-if-at-top-eq [simp]:
assumes landau-symbol L L ′ Lr
shows L at-top (λx:: ′a::linordered-semidom. if x = a then f x else g x) = L

at-top (g)
〈proof 〉

lemmas landau-symbols-if-at-top-eq [simp] = landau-symbols[THEN landau-symbol-if-at-top-eq]

lemma sum-in-smallo:
assumes f ∈ o[F](h) g ∈ o[F](h)
shows (λx. f x + g x) ∈ o[F](h) (λx. f x − g x) ∈ o[F](h)
〈proof 〉

THEORY “Landau-Symbols” 465

lemma big-sum-in-smallo:
assumes

∧
x. x ∈ A =⇒ f x ∈ o[F](g)

shows (λx. sum (λy. f y x) A) ∈ o[F](g)
〈proof 〉

lemma sum-in-bigo:
assumes f ∈ O[F](h) g ∈ O[F](h)
shows (λx. f x + g x) ∈ O[F](h) (λx. f x − g x) ∈ O[F](h)
〈proof 〉

lemma big-sum-in-bigo:
assumes

∧
x. x ∈ A =⇒ f x ∈ O[F](g)

shows (λx. sum (λy. f y x) A) ∈ O[F](g)
〈proof 〉

lemma smallo-multiples:
assumes f : f ∈ o(real) and k>0
shows (λn. f (k ∗ n)) ∈ o(real)
〈proof 〉

lemma maxmin-in-smallo:
assumes f ∈ o[F](h) g ∈ o[F](h)
shows (λk. max (f k) (g k)) ∈ o[F](h) (λk. min (f k) (g k)) ∈ o[F](h)
〈proof 〉

lemma le-imp-bigo-real:
assumes c ≥ 0 eventually (λx. f x ≤ c ∗ (g x :: real)) F eventually (λx. 0 ≤ f

x) F
shows f ∈ O[F](g)
〈proof 〉

context landau-symbol
begin

lemma mult-cancel-left:
assumes f1 ∈ Θ[F](g1) and eventually (λx. g1 x 6= 0) F
notes [trans] = bigtheta-trans1 bigtheta-trans2
shows (λx. f1 x ∗ f2 x) ∈ L F (λx. g1 x ∗ g2 x) ←→ f2 ∈ L F (g2)
〈proof 〉

lemma mult-cancel-right:
assumes f2 ∈ Θ[F](g2) and eventually (λx. g2 x 6= 0) F
shows (λx. f1 x ∗ f2 x) ∈ L F (λx. g1 x ∗ g2 x) ←→ f1 ∈ L F (g1)
〈proof 〉

lemma divide-cancel-right:
assumes f2 ∈ Θ[F](g2) and eventually (λx. g2 x 6= 0) F
shows (λx. f1 x / f2 x) ∈ L F (λx. g1 x / g2 x) ←→ f1 ∈ L F (g1)

THEORY “Landau-Symbols” 466

〈proof 〉

lemma divide-cancel-left:
assumes f1 ∈ Θ[F](g1) and eventually (λx. g1 x 6= 0) F
shows (λx. f1 x / f2 x) ∈ L F (λx. g1 x / g2 x) ←→

(λx. inverse (f2 x)) ∈ L F (λx. inverse (g2 x))
〈proof 〉

end

lemma powr-smallo-iff :
assumes filterlim g at-top F F 6= bot
shows (λx. g x powr p :: real) ∈ o[F](λx. g x powr q) ←→ p < q
〈proof 〉

lemma powr-bigo-iff :
assumes filterlim g at-top F F 6= bot
shows (λx. g x powr p :: real) ∈ O[F](λx. g x powr q) ←→ p ≤ q
〈proof 〉

lemma powr-bigtheta-iff :
assumes filterlim g at-top F F 6= bot
shows (λx. g x powr p :: real) ∈ Θ[F](λx. g x powr q) ←→ p = q
〈proof 〉

54.3 Flatness of real functions
Given two real-valued functions f and g, we say that f is flatter than g if any
power of f(x) is asymptotically dominated by any positive power of g(x).
This is a useful notion since, given two products of powers of functions sorted
by flatness, we can compare them asymptotically by simply comparing the
exponent lists lexicographically.

A simple sufficient criterion for flatness it that ln f(x) ∈ o(ln g(x)), which
we show now.
lemma ln-smallo-imp-flat:

fixes f g :: real ⇒ real
assumes lim-f : filterlim f at-top at-top
assumes lim-g: filterlim g at-top at-top
assumes ln-o-ln: (λx. ln (f x)) ∈ o(λx. ln (g x))
assumes q: q > 0
shows (λx. f x powr p) ∈ o(λx. g x powr q)
〈proof 〉

lemma ln-smallo-imp-flat ′:
fixes f g :: real ⇒ real
assumes lim-f : filterlim f at-top at-top
assumes lim-g: filterlim g at-top at-top

THEORY “Landau-Symbols” 467

assumes ln-o-ln: (λx. ln (f x)) ∈ o(λx. ln (g x))
assumes q: q < 0
shows (λx. g x powr q) ∈ o(λx. f x powr p)
〈proof 〉

54.4 Asymptotic Equivalence
named-theorems asymp-equiv-intros
named-theorems asymp-equiv-simps

definition asymp-equiv :: (′a ⇒ (′b :: real-normed-field)) ⇒ ′a filter ⇒ (′a ⇒ ′b)
⇒ bool
(‹(‹open-block notation=‹mixfix asymp-equiv››- ∼[-] -)› [51 , 10 , 51] 50)
where f ∼[F] g ←→ ((λx. if f x = 0 ∧ g x = 0 then 1 else f x / g x) −−−→ 1) F

abbreviation (input) asymp-equiv-at-top where
asymp-equiv-at-top f g ≡ f ∼[at-top] g

bundle asymp-equiv-syntax
begin
notation asymp-equiv-at-top (infix ‹∼› 50)
end

lemma asymp-equivI : ((λx. if f x = 0 ∧ g x = 0 then 1 else f x / g x) −−−→ 1)
F =⇒ f ∼[F] g
〈proof 〉

lemma asymp-equivD: f ∼[F] g =⇒ ((λx. if f x = 0 ∧ g x = 0 then 1 else f x /
g x) −−−→ 1) F
〈proof 〉

lemma asymp-equiv-filtermap-iff :
f ∼[filtermap h F] g ←→ (λx. f (h x)) ∼[F] (λx. g (h x))
〈proof 〉

lemma asymp-equiv-refl [simp, asymp-equiv-intros]: f ∼[F] f
〈proof 〉

lemma asymp-equiv-symI :
assumes f ∼[F] g
shows g ∼[F] f
〈proof 〉

lemma asymp-equiv-sym: f ∼[F] g ←→ g ∼[F] f
〈proof 〉

lemma asymp-equivI ′:
assumes ((λx. f x / g x) −−−→ 1) F
shows f ∼[F] g

THEORY “Landau-Symbols” 468

〈proof 〉

lemma tendsto-imp-asymp-equiv-const:
assumes (f −−−→ c) F c 6= 0
shows f ∼[F] (λ-. c)
〈proof 〉

lemma asymp-equiv-cong:
assumes eventually (λx. f1 x = f2 x) F eventually (λx. g1 x = g2 x) F
shows f1 ∼[F] g1 ←→ f2 ∼[F] g2
〈proof 〉

lemma asymp-equiv-eventually-zeros:
fixes f g :: ′a ⇒ ′b :: real-normed-field
assumes f ∼[F] g
shows eventually (λx. f x = 0 ←→ g x = 0) F
〈proof 〉

lemma asymp-equiv-transfer :
assumes f1 ∼[F] g1 eventually (λx. f1 x = f2 x) F eventually (λx. g1 x = g2 x)

F
shows f2 ∼[F] g2
〈proof 〉

lemma asymp-equiv-transfer-trans [trans]:
assumes (λx. f x (h1 x)) ∼[F] (λx. g x (h1 x))
assumes eventually (λx. h1 x = h2 x) F
shows (λx. f x (h2 x)) ∼[F] (λx. g x (h2 x))
〈proof 〉

lemma asymp-equiv-trans [trans]:
fixes f g h
assumes f ∼[F] g g ∼[F] h
shows f ∼[F] h
〈proof 〉

lemma asymp-equiv-trans-lift1 [trans]:
assumes a ∼[F] f b b ∼[F] c

∧
c d. c ∼[F] d =⇒ f c ∼[F] f d

shows a ∼[F] f c
〈proof 〉

lemma asymp-equiv-trans-lift2 [trans]:
assumes f a ∼[F] b a ∼[F] c

∧
c d. c ∼[F] d =⇒ f c ∼[F] f d

shows f c ∼[F] b
〈proof 〉

lemma asymp-equivD-const:
assumes f ∼[F] (λ-. c)
shows (f −−−→ c) F

THEORY “Landau-Symbols” 469

〈proof 〉

lemma asymp-equiv-refl-ev:
assumes eventually (λx. f x = g x) F
shows f ∼[F] g
〈proof 〉

lemma asymp-equiv-nhds-iff : f ∼[nhds (z :: ′a :: t1-space)] g ←→ f ∼[at z] g ∧ f
z = g z
〈proof 〉

lemma asymp-equiv-sandwich:
fixes f g h :: ′a ⇒ ′b :: {real-normed-field, order-topology, linordered-field}
assumes eventually (λx. f x ≥ 0) F
assumes eventually (λx. f x ≤ g x) F
assumes eventually (λx. g x ≤ h x) F
assumes f ∼[F] h
shows g ∼[F] f g ∼[F] h
〈proof 〉

lemma asymp-equiv-imp-eventually-same-sign:
fixes f g :: real ⇒ real
assumes f ∼[F] g
shows eventually (λx. sgn (f x) = sgn (g x)) F
〈proof 〉

lemma
fixes f g :: - ⇒ real
assumes f ∼[F] g
shows asymp-equiv-eventually-same-sign: eventually (λx. sgn (f x) = sgn (g

x)) F (is ?th1)
and asymp-equiv-eventually-neg-iff : eventually (λx. f x < 0 ←→ g x < 0)

F (is ?th2)
and asymp-equiv-eventually-pos-iff : eventually (λx. f x > 0 ←→ g x > 0)

F (is ?th3)
〈proof 〉

lemma asymp-equiv-tendsto-transfer :
assumes f ∼[F] g and (f −−−→ c) F
shows (g −−−→ c) F
〈proof 〉

lemma tendsto-asymp-equiv-cong:
assumes f ∼[F] g
shows (f −−−→ c) F ←→ (g −−−→ c) F
〈proof 〉

lemma smallo-imp-eventually-sgn:

THEORY “Landau-Symbols” 470

fixes f g :: real ⇒ real
assumes g ∈ o(f)
shows eventually (λx. sgn (f x + g x) = sgn (f x)) at-top
〈proof 〉

context
begin

private lemma asymp-equiv-add-rightI :
assumes f ∼[F] g h ∈ o[F](g)
shows (λx. f x + h x) ∼[F] g
〈proof 〉

lemma asymp-equiv-add-right [asymp-equiv-simps]:
assumes h ∈ o[F](g)
shows (λx. f x + h x) ∼[F] g ←→ f ∼[F] g
〈proof 〉

end

lemma asymp-equiv-add-left [asymp-equiv-simps]:
assumes h ∈ o[F](g)
shows (λx. h x + f x) ∼[F] g ←→ f ∼[F] g
〈proof 〉

lemma asymp-equiv-add-right ′ [asymp-equiv-simps]:
assumes h ∈ o[F](g)
shows g ∼[F] (λx. f x + h x) ←→ g ∼[F] f
〈proof 〉

lemma asymp-equiv-add-left ′ [asymp-equiv-simps]:
assumes h ∈ o[F](g)
shows g ∼[F] (λx. h x + f x) ←→ g ∼[F] f
〈proof 〉

lemma smallo-imp-asymp-equiv:
assumes (λx. f x − g x) ∈ o[F](g)
shows f ∼[F] g
〈proof 〉

lemma asymp-equiv-uminus [asymp-equiv-intros]:
f ∼[F] g =⇒ (λx. −f x) ∼[F] (λx. −g x)
〈proof 〉

lemma asymp-equiv-uminus-iff [asymp-equiv-simps]:
(λx. −f x) ∼[F] g ←→ f ∼[F] (λx. −g x)
〈proof 〉

lemma asymp-equiv-mult [asymp-equiv-intros]:

THEORY “Landau-Symbols” 471

fixes f1 f2 g1 g2 :: ′a ⇒ ′b :: real-normed-field
assumes f1 ∼[F] g1 f2 ∼[F] g2
shows (λx. f1 x ∗ f2 x) ∼[F] (λx. g1 x ∗ g2 x)
〈proof 〉

lemma asymp-equiv-power [asymp-equiv-intros]:
f ∼[F] g =⇒ (λx. f x ^ n) ∼[F] (λx. g x ^ n)
〈proof 〉

lemma asymp-equiv-inverse [asymp-equiv-intros]:
assumes f ∼[F] g
shows (λx. inverse (f x)) ∼[F] (λx. inverse (g x))
〈proof 〉

lemma asymp-equiv-inverse-iff [asymp-equiv-simps]:
(λx. inverse (f x)) ∼[F] (λx. inverse (g x)) ←→ f ∼[F] g
〈proof 〉

lemma asymp-equiv-divide [asymp-equiv-intros]:
assumes f1 ∼[F] g1 f2 ∼[F] g2
shows (λx. f1 x / f2 x) ∼[F] (λx. g1 x / g2 x)
〈proof 〉

lemma asymp-equivD-strong:
assumes f ∼[F] g eventually (λx. f x 6= 0 ∨ g x 6= 0) F
shows ((λx. f x / g x) −−−→ 1) F
〈proof 〉

lemma asymp-equiv-compose [asymp-equiv-intros]:
assumes f ∼[G] g filterlim h G F
shows f ◦ h ∼[F] g ◦ h
〈proof 〉

lemma asymp-equiv-compose ′:
assumes f ∼[G] g filterlim h G F
shows (λx. f (h x)) ∼[F] (λx. g (h x))
〈proof 〉

lemma asymp-equiv-powr-real [asymp-equiv-intros]:
fixes f g :: ′a ⇒ real
assumes f ∼[F] g eventually (λx. f x ≥ 0) F eventually (λx. g x ≥ 0) F
shows (λx. f x powr y) ∼[F] (λx. g x powr y)
〈proof 〉

lemma asymp-equiv-norm [asymp-equiv-intros]:
fixes f g :: ′a ⇒ ′b :: real-normed-field
assumes f ∼[F] g
shows (λx. norm (f x)) ∼[F] (λx. norm (g x))
〈proof 〉

THEORY “Landau-Symbols” 472

lemma asymp-equiv-abs-real [asymp-equiv-intros]:
fixes f g :: ′a ⇒ real
assumes f ∼[F] g
shows (λx. |f x|) ∼[F] (λx. |g x|)
〈proof 〉

lemma asymp-equiv-imp-eventually-le:
assumes f ∼[F] g c > 1
shows eventually (λx. norm (f x) ≤ c ∗ norm (g x)) F
〈proof 〉

lemma asymp-equiv-imp-eventually-ge:
assumes f ∼[F] g c < 1
shows eventually (λx. norm (f x) ≥ c ∗ norm (g x)) F
〈proof 〉

lemma asymp-equiv-imp-bigo:
assumes f ∼[F] g
shows f ∈ O[F](g)
〈proof 〉

lemma asymp-equiv-imp-bigomega:
f ∼[F] g =⇒ f ∈ Ω[F](g)
〈proof 〉

lemma asymp-equiv-imp-bigtheta:
f ∼[F] g =⇒ f ∈ Θ[F](g)
〈proof 〉

lemma asymp-equiv-at-infinity-transfer :
assumes f ∼[F] g filterlim f at-infinity F
shows filterlim g at-infinity F
〈proof 〉

lemma asymp-equiv-at-top-transfer :
fixes f g :: - ⇒ real
assumes f ∼[F] g filterlim f at-top F
shows filterlim g at-top F
〈proof 〉

lemma asymp-equiv-at-bot-transfer :
fixes f g :: - ⇒ real
assumes f ∼[F] g filterlim f at-bot F
shows filterlim g at-bot F
〈proof 〉

lemma asymp-equivI ′-const:
assumes ((λx. f x / g x) −−−→ c) F c 6= 0

THEORY “Lattice-Constructions” 473

shows f ∼[F] (λx. c ∗ g x)
〈proof 〉

lemma asymp-equivI ′-inverse-const:
assumes ((λx. f x / g x) −−−→ inverse c) F c 6= 0
shows (λx. c ∗ f x) ∼[F] g
〈proof 〉

lemma filterlim-at-bot-imp-at-infinity: filterlim f at-bot F =⇒ filterlim f at-infinity
F

for f :: - ⇒ real 〈proof 〉

lemma asymp-equiv-imp-diff-smallo:
assumes f ∼[F] g
shows (λx. f x − g x) ∈ o[F](g)
〈proof 〉

lemma asymp-equiv-altdef :
f ∼[F] g ←→ (λx. f x − g x) ∈ o[F](g)
〈proof 〉

lemma asymp-equiv-0-left-iff [simp]: (λ-. 0) ∼[F] f ←→ eventually (λx. f x = 0)
F

and asymp-equiv-0-right-iff [simp]: f ∼[F] (λ-. 0) ←→ eventually (λx. f x = 0)
F
〈proof 〉

lemma asymp-equiv-sandwich-real:
fixes f g l u :: ′a ⇒ real
assumes l ∼[F] g u ∼[F] g eventually (λx. f x ∈ {l x..u x}) F
shows f ∼[F] g
〈proof 〉

lemma asymp-equiv-sandwich-real ′:
fixes f g l u :: ′a ⇒ real
assumes f ∼[F] l f ∼[F] u eventually (λx. g x ∈ {l x..u x}) F
shows f ∼[F] g
〈proof 〉

lemma asymp-equiv-sandwich-real ′′:
fixes f g l u :: ′a ⇒ real
assumes l1 ∼[F] u1 u1 ∼[F] l2 l2 ∼[F] u2

eventually (λx. f x ∈ {l1 x..u1 x}) F eventually (λx. g x ∈ {l2 x..u2 x}) F
shows f ∼[F] g
〈proof 〉

end

THEORY “Lattice-Constructions” 474

55 Values extended by a bottom element
theory Lattice-Constructions
imports Main
begin

datatype ′a bot = Value ′a | Bot

instantiation bot :: (preorder) preorder
begin

definition less-eq-bot where
x ≤ y ←→ (case x of Bot ⇒ True | Value x ⇒ (case y of Bot ⇒ False | Value y
⇒ x ≤ y))

definition less-bot where
x < y ←→ (case y of Bot ⇒ False | Value y ⇒ (case x of Bot ⇒ True | Value x
⇒ x < y))

lemma less-eq-bot-Bot [simp]: Bot ≤ x
〈proof 〉

lemma less-eq-bot-Bot-code [code]: Bot ≤ x ←→ True
〈proof 〉

lemma less-eq-bot-Bot-is-Bot: x ≤ Bot =⇒ x = Bot
〈proof 〉

lemma less-eq-bot-Value-Bot [simp, code]: Value x ≤ Bot ←→ False
〈proof 〉

lemma less-eq-bot-Value [simp, code]: Value x ≤ Value y ←→ x ≤ y
〈proof 〉

lemma less-bot-Bot [simp, code]: x < Bot ←→ False
〈proof 〉

lemma less-bot-Bot-is-Value: Bot < x =⇒ ∃ z. x = Value z
〈proof 〉

lemma less-bot-Bot-Value [simp]: Bot < Value x
〈proof 〉

lemma less-bot-Bot-Value-code [code]: Bot < Value x ←→ True
〈proof 〉

lemma less-bot-Value [simp, code]: Value x < Value y ←→ x < y
〈proof 〉

THEORY “Lattice-Constructions” 475

instance
〈proof 〉

end

instance bot :: (order) order
〈proof 〉

instance bot :: (linorder) linorder
〈proof 〉

instantiation bot :: (order) bot
begin

definition bot = Bot
instance 〈proof 〉

end

instantiation bot :: (top) top
begin

definition top = Value top
instance 〈proof 〉

end

instantiation bot :: (semilattice-inf) semilattice-inf
begin

definition inf-bot
where

inf x y =
(case x of

Bot ⇒ Bot
| Value v ⇒

(case y of
Bot ⇒ Bot
| Value v ′⇒ Value (inf v v ′)))

instance
〈proof 〉

end

instantiation bot :: (semilattice-sup) semilattice-sup
begin

definition sup-bot
where

sup x y =
(case x of

Bot ⇒ y

THEORY “Lattice-Constructions” 476

| Value v ⇒
(case y of

Bot ⇒ x
| Value v ′⇒ Value (sup v v ′)))

instance
〈proof 〉

end

instance bot :: (lattice) bounded-lattice-bot
〈proof 〉

55.1 Values extended by a top element
datatype ′a top = Value ′a | Top

instantiation top :: (preorder) preorder
begin

definition less-eq-top where
x ≤ y ←→ (case y of Top ⇒ True | Value y ⇒ (case x of Top ⇒ False | Value x
⇒ x ≤ y))

definition less-top where
x < y ←→ (case x of Top ⇒ False | Value x ⇒ (case y of Top ⇒ True | Value y
⇒ x < y))

lemma less-eq-top-Top [simp]: x ≤ Top
〈proof 〉

lemma less-eq-top-Top-code [code]: x ≤ Top ←→ True
〈proof 〉

lemma less-eq-top-is-Top: Top ≤ x =⇒ x = Top
〈proof 〉

lemma less-eq-top-Top-Value [simp, code]: Top ≤ Value x ←→ False
〈proof 〉

lemma less-eq-top-Value-Value [simp, code]: Value x ≤ Value y ←→ x ≤ y
〈proof 〉

lemma less-top-Top [simp, code]: Top < x ←→ False
〈proof 〉

lemma less-top-Top-is-Value: x < Top =⇒ ∃ z. x = Value z
〈proof 〉

THEORY “Lattice-Constructions” 477

lemma less-top-Value-Top [simp]: Value x < Top
〈proof 〉

lemma less-top-Value-Top-code [code]: Value x < Top ←→ True
〈proof 〉

lemma less-top-Value [simp, code]: Value x < Value y ←→ x < y
〈proof 〉

instance
〈proof 〉

end

instance top :: (order) order
〈proof 〉

instance top :: (linorder) linorder
〈proof 〉

instantiation top :: (order) top
begin

definition top = Top
instance 〈proof 〉

end

instantiation top :: (bot) bot
begin

definition bot = Value bot
instance 〈proof 〉

end

instantiation top :: (semilattice-inf) semilattice-inf
begin

definition inf-top
where

inf x y =
(case x of

Top ⇒ y
| Value v ⇒

(case y of
Top ⇒ x
| Value v ′⇒ Value (inf v v ′)))

instance
〈proof 〉

end

THEORY “Lattice-Constructions” 478

instantiation top :: (semilattice-sup) semilattice-sup
begin

definition sup-top
where

sup x y =
(case x of

Top ⇒ Top
| Value v ⇒

(case y of
Top ⇒ Top
| Value v ′⇒ Value (sup v v ′)))

instance
〈proof 〉

end

instance top :: (lattice) bounded-lattice-top
〈proof 〉

55.2 Values extended by a top and a bottom element
datatype ′a flat-complete-lattice = Value ′a | Bot | Top

instantiation flat-complete-lattice :: (type) order
begin

definition less-eq-flat-complete-lattice
where

x ≤ y ≡
(case x of

Bot ⇒ True
| Value v1 ⇒

(case y of
Bot ⇒ False
| Value v2 ⇒ v1 = v2
| Top ⇒ True)

| Top ⇒ y = Top)

definition less-flat-complete-lattice
where

x < y =
(case x of

Bot ⇒ y 6= Bot
| Value v1 ⇒ y = Top
| Top ⇒ False)

THEORY “Lattice-Constructions” 479

lemma [simp]: Bot ≤ y
〈proof 〉

lemma [simp]: y ≤ Top
〈proof 〉

lemma greater-than-two-values:
assumes a 6= b Value a ≤ z Value b ≤ z
shows z = Top
〈proof 〉

lemma lesser-than-two-values:
assumes a 6= b z ≤ Value a z ≤ Value b
shows z = Bot
〈proof 〉

instance
〈proof 〉

end

instantiation flat-complete-lattice :: (type) bot
begin

definition bot = Bot
instance 〈proof 〉

end

instantiation flat-complete-lattice :: (type) top
begin

definition top = Top
instance 〈proof 〉

end

instantiation flat-complete-lattice :: (type) lattice
begin

definition inf-flat-complete-lattice
where

inf x y =
(case x of

Bot ⇒ Bot
| Value v1 ⇒

(case y of
Bot ⇒ Bot
| Value v2 ⇒ if v1 = v2 then x else Bot
| Top ⇒ x)

| Top ⇒ y)

definition sup-flat-complete-lattice

THEORY “Stream” 480

where
sup x y =
(case x of

Bot ⇒ y
| Value v1 ⇒

(case y of
Bot ⇒ x
| Value v2 ⇒ if v1 = v2 then x else Top
| Top ⇒ Top)

| Top ⇒ Top)

instance
〈proof 〉

end

instantiation flat-complete-lattice :: (type) complete-lattice
begin

definition Sup-flat-complete-lattice
where

Sup A =
(if A = {} ∨ A = {Bot} then Bot
else if ∃ v. A − {Bot} = {Value v} then Value (THE v. A − {Bot} = {Value

v})
else Top)

definition Inf-flat-complete-lattice
where

Inf A =
(if A = {} ∨ A = {Top} then Top
else if ∃ v. A − {Top} = {Value v} then Value (THE v. A − {Top} = {Value

v})
else Bot)

instance
〈proof 〉

end

end

56 Infinite Streams
theory Stream

imports Nat-Bijection
begin

codatatype (sset: ′a) stream =

THEORY “Stream” 481

SCons (shd: ′a) (stl: ′a stream) (infixr ‹##› 65)
for

map: smap
rel: stream-all2

context
begin

— for code generation only
qualified definition smember :: ′a ⇒ ′a stream ⇒ bool where
[code-abbrev]: smember x s ←→ x ∈ sset s

lemma smember-code[code, simp]: smember x (y ## s) = (if x = y then True else
smember x s)
〈proof 〉

end

lemmas smap-simps[simp] = stream.map-sel
lemmas shd-sset = stream.set-sel(1)
lemmas stl-sset = stream.set-sel(2)

theorem sset-induct[consumes 1 , case-names shd stl, induct set: sset]:
assumes y ∈ sset s and

∧
s. P (shd s) s and

∧
s y. [[y ∈ sset (stl s); P y (stl s)]]

=⇒ P y s
shows P y s
〈proof 〉

lemma smap-ctr : smap f s = x ## s ′←→ f (shd s) = x ∧ smap f (stl s) = s ′

〈proof 〉

56.1 prepend list to stream
primrec shift :: ′a list ⇒ ′a stream ⇒ ′a stream (infixr ‹@−› 65) where

shift [] s = s
| shift (x # xs) s = x ## shift xs s

lemma smap-shift[simp]: smap f (xs @− s) = map f xs @− smap f s
〈proof 〉

lemma shift-append[simp]: (xs @ ys) @− s = xs @− ys @− s
〈proof 〉

lemma shift-simps[simp]:
shd (xs @− s) = (if xs = [] then shd s else hd xs)
stl (xs @− s) = (if xs = [] then stl s else tl xs @− s)
〈proof 〉

lemma sset-shift[simp]: sset (xs @− s) = set xs ∪ sset s

THEORY “Stream” 482

〈proof 〉

lemma shift-left-inj[simp]: xs @− s1 = xs @− s2 ←→ s1 = s2
〈proof 〉

56.2 set of streams with elements in some fixed set
context

notes [[inductive-internals]]
begin

coinductive-set
streams :: ′a set ⇒ ′a stream set
for A :: ′a set

where
Stream[intro!, simp, no-atp]: [[a ∈ A; s ∈ streams A]] =⇒ a ## s ∈ streams A

end

lemma in-streams: stl s ∈ streams S =⇒ shd s ∈ S =⇒ s ∈ streams S
〈proof 〉

lemma streamsE : s ∈ streams A =⇒ (shd s ∈ A =⇒ stl s ∈ streams A =⇒ P)
=⇒ P
〈proof 〉

lemma Stream-image: x ## y ∈ ((##) x ′) ‘ Y ←→ x = x ′ ∧ y ∈ Y
〈proof 〉

lemma shift-streams: [[w ∈ lists A; s ∈ streams A]] =⇒ w @− s ∈ streams A
〈proof 〉

lemma streams-Stream: x ## s ∈ streams A ←→ x ∈ A ∧ s ∈ streams A
〈proof 〉

lemma streams-stl: s ∈ streams A =⇒ stl s ∈ streams A
〈proof 〉

lemma streams-shd: s ∈ streams A =⇒ shd s ∈ A
〈proof 〉

lemma sset-streams:
assumes sset s ⊆ A
shows s ∈ streams A
〈proof 〉

lemma streams-sset:
assumes s ∈ streams A
shows sset s ⊆ A

THEORY “Stream” 483

〈proof 〉

lemma streams-iff-sset: s ∈ streams A ←→ sset s ⊆ A
〈proof 〉

lemma streams-mono: s ∈ streams A =⇒ A ⊆ B =⇒ s ∈ streams B
〈proof 〉

lemma streams-mono2 : S ⊆ T =⇒ streams S ⊆ streams T
〈proof 〉

lemma smap-streams: s ∈ streams A =⇒ (
∧

x. x ∈ A =⇒ f x ∈ B) =⇒ smap f s
∈ streams B
〈proof 〉

lemma streams-empty: streams {} = {}
〈proof 〉

lemma streams-UNIV [simp]: streams UNIV = UNIV
〈proof 〉

56.3 nth, take, drop for streams
primrec snth :: ′a stream ⇒ nat ⇒ ′a (infixl ‹!!› 100) where

s !! 0 = shd s
| s !! Suc n = stl s !! n

lemma snth-Stream: (x ## s) !! Suc i = s !! i
〈proof 〉

lemma snth-smap[simp]: smap f s !! n = f (s !! n)
〈proof 〉

lemma shift-snth-less[simp]: p < length xs =⇒ (xs @− s) !! p = xs ! p
〈proof 〉

lemma shift-snth-ge[simp]: p ≥ length xs =⇒ (xs @− s) !! p = s !! (p − length xs)
〈proof 〉

lemma shift-snth: (xs @− s) !! n = (if n < length xs then xs ! n else s !! (n −
length xs))
〈proof 〉

lemma snth-sset[simp]: s !! n ∈ sset s
〈proof 〉

lemma sset-range: sset s = range (snth s)
〈proof 〉

THEORY “Stream” 484

lemma streams-iff-snth: s ∈ streams X ←→ (∀n. s !! n ∈ X)
〈proof 〉

lemma snth-in: s ∈ streams X =⇒ s !! n ∈ X
〈proof 〉

primrec stake :: nat ⇒ ′a stream ⇒ ′a list where
stake 0 s = []
| stake (Suc n) s = shd s # stake n (stl s)

lemma length-stake[simp]: length (stake n s) = n
〈proof 〉

lemma stake-smap[simp]: stake n (smap f s) = map f (stake n s)
〈proof 〉

lemma take-stake: take n (stake m s) = stake (min n m) s
〈proof 〉

primrec sdrop :: nat ⇒ ′a stream ⇒ ′a stream where
sdrop 0 s = s
| sdrop (Suc n) s = sdrop n (stl s)

lemma sdrop-simps[simp]:
shd (sdrop n s) = s !! n stl (sdrop n s) = sdrop (Suc n) s
〈proof 〉

lemma sdrop-smap[simp]: sdrop n (smap f s) = smap f (sdrop n s)
〈proof 〉

lemma sdrop-stl: sdrop n (stl s) = stl (sdrop n s)
〈proof 〉

lemma drop-stake: drop n (stake m s) = stake (m − n) (sdrop n s)
〈proof 〉

lemma stake-sdrop: stake n s @− sdrop n s = s
〈proof 〉

lemma id-stake-snth-sdrop:
s = stake i s @− s !! i ## sdrop (Suc i) s
〈proof 〉

lemma smap-alt: smap f s = s ′←→ (∀n. f (s !! n) = s ′ !! n) (is ?L = ?R)
〈proof 〉

lemma stake-invert-Nil[iff]: stake n s = [] ←→ n = 0
〈proof 〉

THEORY “Stream” 485

lemma sdrop-shift: sdrop i (w @− s) = drop i w @− sdrop (i − length w) s
〈proof 〉

lemma stake-shift: stake i (w @− s) = take i w @ stake (i − length w) s
〈proof 〉

lemma stake-add[simp]: stake m s @ stake n (sdrop m s) = stake (m + n) s
〈proof 〉

lemma sdrop-add[simp]: sdrop n (sdrop m s) = sdrop (m + n) s
〈proof 〉

lemma sdrop-snth: sdrop n s !! m = s !! (n + m)
〈proof 〉

partial-function (tailrec) sdrop-while :: (′a ⇒ bool) ⇒ ′a stream ⇒ ′a stream
where

sdrop-while P s = (if P (shd s) then sdrop-while P (stl s) else s)

lemma sdrop-while-SCons[code]:
sdrop-while P (a ## s) = (if P a then sdrop-while P s else a ## s)
〈proof 〉

lemma sdrop-while-sdrop-LEAST :
assumes ∃n. P (s !! n)
shows sdrop-while (Not ◦ P) s = sdrop (LEAST n. P (s !! n)) s
〈proof 〉

primcorec sfilter where
shd (sfilter P s) = shd (sdrop-while (Not ◦ P) s)
| stl (sfilter P s) = sfilter P (stl (sdrop-while (Not ◦ P) s))

lemma sfilter-Stream: sfilter P (x ## s) = (if P x then x ## sfilter P s else sfilter
P s)
〈proof 〉

56.4 unary predicates lifted to streams
definition stream-all P s = (∀ p. P (s !! p))

lemma stream-all-iff [iff]: stream-all P s ←→ Ball (sset s) P
〈proof 〉

lemma stream-all-shift[simp]: stream-all P (xs @− s) = (list-all P xs ∧ stream-all
P s)
〈proof 〉

lemma stream-all-Stream: stream-all P (x ## X) ←→ P x ∧ stream-all P X
〈proof 〉

THEORY “Stream” 486

56.5 recurring stream out of a list
primcorec cycle :: ′a list ⇒ ′a stream where

shd (cycle xs) = hd xs
| stl (cycle xs) = cycle (tl xs @ [hd xs])

lemma cycle-decomp: u 6= [] =⇒ cycle u = u @− cycle u
〈proof 〉

lemma cycle-Cons[code]: cycle (x # xs) = x ## cycle (xs @ [x])
〈proof 〉

lemma cycle-rotated: [[v 6= []; cycle u = v @− s]] =⇒ cycle (tl u @ [hd u]) = tl v
@− s
〈proof 〉

lemma stake-append: stake n (u @− s) = take (min (length u) n) u @ stake (n −
length u) s
〈proof 〉

lemma stake-cycle-le[simp]:
assumes u 6= [] n < length u
shows stake n (cycle u) = take n u
〈proof 〉

lemma stake-cycle-eq[simp]: u 6= [] =⇒ stake (length u) (cycle u) = u
〈proof 〉

lemma sdrop-cycle-eq[simp]: u 6= [] =⇒ sdrop (length u) (cycle u) = cycle u
〈proof 〉

lemma stake-cycle-eq-mod-0 [simp]: [[u 6= []; n mod length u = 0]] =⇒
stake n (cycle u) = concat (replicate (n div length u) u)
〈proof 〉

lemma sdrop-cycle-eq-mod-0 [simp]: [[u 6= []; n mod length u = 0]] =⇒
sdrop n (cycle u) = cycle u
〈proof 〉

lemma stake-cycle: u 6= [] =⇒
stake n (cycle u) = concat (replicate (n div length u) u) @ take (n mod length

u) u
〈proof 〉

lemma sdrop-cycle: u 6= [] =⇒ sdrop n (cycle u) = cycle (rotate (n mod length u)
u)
〈proof 〉

lemma sset-cycle[simp]:
assumes xs 6= []

THEORY “Stream” 487

shows sset (cycle xs) = set xs
〈proof 〉

56.6 iterated application of a function
primcorec siterate where

shd (siterate f x) = x
| stl (siterate f x) = siterate f (f x)

lemma stake-Suc: stake (Suc n) s = stake n s @ [s !! n]
〈proof 〉

lemma snth-siterate[simp]: siterate f x !! n = (f^^n) x
〈proof 〉

lemma sdrop-siterate[simp]: sdrop n (siterate f x) = siterate f ((f^^n) x)
〈proof 〉

lemma stake-siterate[simp]: stake n (siterate f x) = map (λn. (f^^n) x) [0 ..< n]
〈proof 〉

lemma sset-siterate: sset (siterate f x) = {(f^^n) x | n. True}
〈proof 〉

lemma smap-siterate: smap f (siterate f x) = siterate f (f x)
〈proof 〉

56.7 stream repeating a single element
abbreviation sconst ≡ siterate id

lemma shift-replicate-sconst[simp]: replicate n x @− sconst x = sconst x
〈proof 〉

lemma sset-sconst[simp]: sset (sconst x) = {x}
〈proof 〉

lemma sconst-alt: s = sconst x ←→ sset s = {x}
〈proof 〉

lemma sconst-cycle: sconst x = cycle [x]
〈proof 〉

lemma smap-sconst: smap f (sconst x) = sconst (f x)
〈proof 〉

lemma sconst-streams: x ∈ A =⇒ sconst x ∈ streams A
〈proof 〉

lemma streams-empty-iff : streams S = {} ←→ S = {}

THEORY “Stream” 488

〈proof 〉

56.8 stream of natural numbers
abbreviation fromN ≡ siterate Suc

abbreviation nats ≡ fromN 0

lemma sset-fromN [simp]: sset (fromN n) = {n ..}
〈proof 〉

lemma stream-smap-fromN : s = smap (λj. let i = j − n in s !! i) (fromN n)
〈proof 〉

lemma stream-smap-nats: s = smap (snth s) nats
〈proof 〉

56.9 flatten a stream of lists
primcorec flat where

shd (flat ws) = hd (shd ws)
| stl (flat ws) = flat (if tl (shd ws) = [] then stl ws else tl (shd ws) ## stl ws)

lemma flat-Cons[simp, code]: flat ((x # xs) ## ws) = x ## flat (if xs = [] then
ws else xs ## ws)
〈proof 〉

lemma flat-Stream[simp]: xs 6= [] =⇒ flat (xs ## ws) = xs @− flat ws
〈proof 〉

lemma flat-unfold: shd ws 6= [] =⇒ flat ws = shd ws @− flat (stl ws)
〈proof 〉

lemma flat-snth: ∀ xs ∈ sset s. xs 6= [] =⇒ flat s !! n = (if n < length (shd s) then
shd s ! n else flat (stl s) !! (n − length (shd s)))
〈proof 〉

lemma sset-flat[simp]: ∀ xs ∈ sset s. xs 6= [] =⇒
sset (flat s) = (

⋃
xs ∈ sset s. set xs) (is ?P =⇒ ?L = ?R)

〈proof 〉

56.10 merge a stream of streams
definition smerge :: ′a stream stream ⇒ ′a stream where

smerge ss = flat (smap (λn. map (λs. s !! n) (stake (Suc n) ss) @ stake n (ss !!
n)) nats)

lemma stake-nth[simp]: m < n =⇒ stake n s ! m = s !! m
〈proof 〉

THEORY “Stream” 489

lemma snth-sset-smerge: ss !! n !! m ∈ sset (smerge ss)
〈proof 〉

lemma sset-smerge: sset (smerge ss) =
⋃

(sset ‘ (sset ss))
〈proof 〉

56.11 product of two streams
definition sproduct :: ′a stream ⇒ ′b stream ⇒ (′a × ′b) stream where

sproduct s1 s2 = smerge (smap (λx. smap (Pair x) s2) s1)

lemma sset-sproduct: sset (sproduct s1 s2) = sset s1 × sset s2
〈proof 〉

56.12 interleave two streams
primcorec sinterleave where

shd (sinterleave s1 s2) = shd s1
| stl (sinterleave s1 s2) = sinterleave s2 (stl s1)

lemma sinterleave-code[code]:
sinterleave (x ## s1) s2 = x ## sinterleave s2 s1
〈proof 〉

lemma sinterleave-snth[simp]:
even n =⇒ sinterleave s1 s2 !! n = s1 !! (n div 2)
odd n =⇒ sinterleave s1 s2 !! n = s2 !! (n div 2)
〈proof 〉

lemma sset-sinterleave: sset (sinterleave s1 s2) = sset s1 ∪ sset s2
〈proof 〉

56.13 zip
primcorec szip where

shd (szip s1 s2) = (shd s1 , shd s2)
| stl (szip s1 s2) = szip (stl s1) (stl s2)

lemma szip-unfold[code]: szip (a ## s1) (b ## s2) = (a, b) ## (szip s1 s2)
〈proof 〉

lemma snth-szip[simp]: szip s1 s2 !! n = (s1 !! n, s2 !! n)
〈proof 〉

lemma stake-szip[simp]:
stake n (szip s1 s2) = zip (stake n s1) (stake n s2)
〈proof 〉

lemma sdrop-szip[simp]: sdrop n (szip s1 s2) = szip (sdrop n s1) (sdrop n s2)
〈proof 〉

THEORY “Sublist” 490

lemma smap-szip-fst:
smap (λx. f (fst x)) (szip s1 s2) = smap f s1
〈proof 〉

lemma smap-szip-snd:
smap (λx. g (snd x)) (szip s1 s2) = smap g s2
〈proof 〉

56.14 zip via function
primcorec smap2 where

shd (smap2 f s1 s2) = f (shd s1) (shd s2)
| stl (smap2 f s1 s2) = smap2 f (stl s1) (stl s2)

lemma smap2-unfold[code]:
smap2 f (a ## s1) (b ## s2) = f a b ## (smap2 f s1 s2)
〈proof 〉

lemma smap2-szip:
smap2 f s1 s2 = smap (case-prod f) (szip s1 s2)
〈proof 〉

lemma smap-smap2 [simp]:
smap f (smap2 g s1 s2) = smap2 (λx y. f (g x y)) s1 s2
〈proof 〉

lemma smap2-alt:
(smap2 f s1 s2 = s) = (∀n. f (s1 !! n) (s2 !! n) = s !! n)
〈proof 〉

lemma snth-smap2 [simp]:
smap2 f s1 s2 !! n = f (s1 !! n) (s2 !! n)
〈proof 〉

lemma stake-smap2 [simp]:
stake n (smap2 f s1 s2) = map (case-prod f) (zip (stake n s1) (stake n s2))
〈proof 〉

lemma sdrop-smap2 [simp]:
sdrop n (smap2 f s1 s2) = smap2 f (sdrop n s1) (sdrop n s2)
〈proof 〉

end

THEORY “Sublist” 491

57 List prefixes, suffixes, and homeomorphic em-
bedding

theory Sublist
imports Main
begin

57.1 Prefix order on lists
definition prefix :: ′a list ⇒ ′a list ⇒ bool

where prefix xs ys ←→ (∃ zs. ys = xs @ zs)

definition strict-prefix :: ′a list ⇒ ′a list ⇒ bool
where strict-prefix xs ys ←→ prefix xs ys ∧ xs 6= ys

global-interpretation prefix-order : ordering prefix strict-prefix
〈proof 〉

interpretation prefix-order : order prefix strict-prefix
〈proof 〉

global-interpretation prefix-bot: ordering-top ‹λxs ys. prefix ys xs› ‹λxs ys. strict-prefix
ys xs› ‹[]›
〈proof 〉

interpretation prefix-bot: order-bot Nil prefix strict-prefix
〈proof 〉

lemma prefixI [intro?]: ys = xs @ zs =⇒ prefix xs ys
〈proof 〉

lemma prefixE [elim?]:
assumes prefix xs ys
obtains zs where ys = xs @ zs
〈proof 〉

lemma strict-prefixI ′ [intro?]: ys = xs @ z # zs =⇒ strict-prefix xs ys
〈proof 〉

lemma strict-prefixE ′ [elim?]:
assumes strict-prefix xs ys
obtains z zs where ys = xs @ z # zs
〈proof 〉

lemma strict-prefixI [intro?]: prefix xs ys =⇒ xs 6= ys =⇒ strict-prefix xs ys
〈proof 〉

lemma strict-prefixE [elim?]:

THEORY “Sublist” 492

fixes xs ys :: ′a list
assumes strict-prefix xs ys
obtains prefix xs ys and xs 6= ys
〈proof 〉

57.2 Basic properties of prefixes
theorem Nil-prefix [simp]: prefix [] xs
〈proof 〉

theorem prefix-Nil [simp]: (prefix xs []) = (xs = [])
〈proof 〉

lemma prefix-snoc [simp]: prefix xs (ys @ [y]) ←→ xs = ys @ [y] ∨ prefix xs ys
〈proof 〉

lemma Cons-prefix-Cons [simp]: prefix (x # xs) (y # ys) = (x = y ∧ prefix xs ys)
〈proof 〉

lemma prefix-code [code]:
prefix [] xs ←→ True
prefix (x # xs) [] ←→ False
prefix (x # xs) (y # ys) ←→ x = y ∧ prefix xs ys
〈proof 〉

lemma same-prefix-prefix [simp]: prefix (xs @ ys) (xs @ zs) = prefix ys zs
〈proof 〉

lemma same-prefix-nil [simp]: prefix (xs @ ys) xs = (ys = [])
〈proof 〉

lemma prefix-prefix [simp]: prefix xs ys =⇒ prefix xs (ys @ zs)
〈proof 〉

lemma append-prefixD: prefix (xs @ ys) zs =⇒ prefix xs zs
〈proof 〉

theorem prefix-Cons: prefix xs (y # ys) = (xs = [] ∨ (∃ zs. xs = y # zs ∧ prefix
zs ys))
〈proof 〉

theorem prefix-append:
prefix xs (ys @ zs) = (prefix xs ys ∨ (∃ us. xs = ys @ us ∧ prefix us zs))
〈proof 〉

lemma append-one-prefix:
prefix xs ys =⇒ length xs < length ys =⇒ prefix (xs @ [ys ! length xs]) ys
〈proof 〉

THEORY “Sublist” 493

theorem prefix-length-le: prefix xs ys =⇒ length xs ≤ length ys
〈proof 〉

lemma prefix-same-cases:
prefix (xs1:: ′a list) ys =⇒ prefix xs2 ys =⇒ prefix xs1 xs2 ∨ prefix xs2 xs1
〈proof 〉

lemma prefix-length-prefix:
prefix ps xs =⇒ prefix qs xs =⇒ length ps ≤ length qs =⇒ prefix ps qs
〈proof 〉

lemma set-mono-prefix: prefix xs ys =⇒ set xs ⊆ set ys
〈proof 〉

lemma take-is-prefix: prefix (take n xs) xs
〈proof 〉

lemma takeWhile-is-prefix: prefix (takeWhile P xs) xs
〈proof 〉

lemma prefixeq-butlast: prefix (butlast xs) xs
〈proof 〉

lemma prefix-map-rightE :
assumes prefix xs (map f ys)
shows ∃ xs ′. prefix xs ′ ys ∧ xs = map f xs ′

〈proof 〉

lemma map-mono-prefix: prefix xs ys =⇒ prefix (map f xs) (map f ys)
〈proof 〉

lemma filter-mono-prefix: prefix xs ys =⇒ prefix (filter P xs) (filter P ys)
〈proof 〉

lemma sorted-antimono-prefix: prefix xs ys =⇒ sorted ys =⇒ sorted xs
〈proof 〉

lemma prefix-length-less: strict-prefix xs ys =⇒ length xs < length ys
〈proof 〉

lemma prefix-snocD: prefix (xs@[x]) ys =⇒ strict-prefix xs ys
〈proof 〉

lemma strict-prefix-simps [simp, code]:
strict-prefix xs [] ←→ False
strict-prefix [] (x # xs) ←→ True
strict-prefix (x # xs) (y # ys) ←→ x = y ∧ strict-prefix xs ys
〈proof 〉

THEORY “Sublist” 494

lemma take-strict-prefix: strict-prefix xs ys =⇒ strict-prefix (take n xs) ys
〈proof 〉

lemma prefix-takeWhile:
assumes prefix xs ys
shows prefix (takeWhile P xs) (takeWhile P ys)
〈proof 〉

lemma prefix-dropWhile:
assumes prefix xs ys
shows prefix (dropWhile P xs) (dropWhile P ys)
〈proof 〉

lemma prefix-remdups-adj:
assumes prefix xs ys
shows prefix (remdups-adj xs) (remdups-adj ys)
〈proof 〉

lemma not-prefix-cases:
assumes pfx: ¬ prefix ps ls
obtains
(c1) ps 6= [] and ls = []
| (c2) a as x xs where ps = a#as and ls = x#xs and x = a and ¬ prefix as xs
| (c3) a as x xs where ps = a#as and ls = x#xs and x 6= a
〈proof 〉

lemma not-prefix-induct [consumes 1 , case-names Nil Neq Eq]:
assumes np: ¬ prefix ps ls

and base:
∧

x xs. P (x#xs) []
and r1 :

∧
x xs y ys. x 6= y =⇒ P (x#xs) (y#ys)

and r2 :
∧

x xs y ys. [[x = y; ¬ prefix xs ys; P xs ys]] =⇒ P (x#xs) (y#ys)
shows P ps ls 〈proof 〉

57.3 Prefixes
primrec prefixes where

prefixes [] = [[]] |
prefixes (x#xs) = [] # map ((#) x) (prefixes xs)

lemma in-set-prefixes[simp]: xs ∈ set (prefixes ys) ←→ prefix xs ys
〈proof 〉

lemma length-prefixes[simp]: length (prefixes xs) = length xs+1
〈proof 〉

lemma distinct-prefixes [intro]: distinct (prefixes xs)
〈proof 〉

lemma prefixes-snoc [simp]: prefixes (xs@[x]) = prefixes xs @ [xs@[x]]

THEORY “Sublist” 495

〈proof 〉

lemma prefixes-not-Nil [simp]: prefixes xs 6= []
〈proof 〉

lemma hd-prefixes [simp]: hd (prefixes xs) = []
〈proof 〉

lemma last-prefixes [simp]: last (prefixes xs) = xs
〈proof 〉

lemma prefixes-append:
prefixes (xs @ ys) = prefixes xs @ map (λys ′. xs @ ys ′) (tl (prefixes ys))
〈proof 〉

lemma prefixes-eq-snoc:
prefixes ys = xs @ [x] ←→
(ys = [] ∧ xs = [] ∨ (∃ z zs. ys = zs@[z] ∧ xs = prefixes zs)) ∧ x = ys
〈proof 〉

lemma prefixes-tailrec [code]:
prefixes xs = rev (snd (foldl (λ(acc1 , acc2) x. (x#acc1 , rev (x#acc1)#acc2))

([],[[]]) xs))
〈proof 〉

lemma set-prefixes-eq: set (prefixes xs) = {ys. prefix ys xs}
〈proof 〉

lemma card-set-prefixes [simp]: card (set (prefixes xs)) = Suc (length xs)
〈proof 〉

lemma set-prefixes-append:
set (prefixes (xs @ ys)) = set (prefixes xs) ∪ {xs @ ys ′ |ys ′. ys ′ ∈ set (prefixes

ys)}
〈proof 〉

57.4 Longest Common Prefix
definition Longest-common-prefix :: ′a list set ⇒ ′a list where
Longest-common-prefix L = (ARG-MAX length ps. ∀ xs ∈ L. prefix ps xs)

lemma Longest-common-prefix-ex: L 6= {} =⇒
∃ ps. (∀ xs ∈ L. prefix ps xs) ∧ (∀ qs. (∀ xs ∈ L. prefix qs xs) −→ size qs ≤ size

ps)
(is - =⇒ ∃ ps. ?P L ps)
〈proof 〉

lemma Longest-common-prefix-unique:
‹∃ ! ps. (∀ xs ∈ L. prefix ps xs) ∧ (∀ qs. (∀ xs ∈ L. prefix qs xs) −→ length qs ≤

THEORY “Sublist” 496

length ps)›
if ‹L 6= {}›
〈proof 〉

lemma Longest-common-prefix-eq:
[[L 6= {}; ∀ xs ∈ L. prefix ps xs;
∀ qs. (∀ xs ∈ L. prefix qs xs) −→ size qs ≤ size ps]]

=⇒ Longest-common-prefix L = ps
〈proof 〉

lemma Longest-common-prefix-prefix:
xs ∈ L =⇒ prefix (Longest-common-prefix L) xs
〈proof 〉

lemma Longest-common-prefix-longest:
L 6= {} =⇒ ∀ xs∈L. prefix ps xs =⇒ length ps ≤ length(Longest-common-prefix

L)
〈proof 〉

lemma Longest-common-prefix-max-prefix:
L 6= {} =⇒ ∀ xs∈L. prefix ps xs =⇒ prefix ps (Longest-common-prefix L)
〈proof 〉

lemma Longest-common-prefix-Nil: [] ∈ L =⇒ Longest-common-prefix L = []
〈proof 〉

lemma Longest-common-prefix-image-Cons:
assumes L 6= {}
shows Longest-common-prefix ((#) x ‘ L) = x # Longest-common-prefix L
〈proof 〉

lemma Longest-common-prefix-eq-Cons: assumes L 6= {} [] /∈ L ∀ xs∈L. hd xs =
x
shows Longest-common-prefix L = x # Longest-common-prefix {ys. x#ys ∈ L}
〈proof 〉

lemma Longest-common-prefix-eq-Nil:
[[x#ys ∈ L; y#zs ∈ L; x 6= y]] =⇒ Longest-common-prefix L = []
〈proof 〉

fun longest-common-prefix :: ′a list ⇒ ′a list ⇒ ′a list where
longest-common-prefix (x#xs) (y#ys) =
(if x=y then x # longest-common-prefix xs ys else []) |
longest-common-prefix - - = []

lemma longest-common-prefix-prefix1 :
prefix (longest-common-prefix xs ys) xs
〈proof 〉

THEORY “Sublist” 497

lemma longest-common-prefix-prefix2 :
prefix (longest-common-prefix xs ys) ys
〈proof 〉

lemma longest-common-prefix-max-prefix:
[[prefix ps xs; prefix ps ys]]
=⇒ prefix ps (longest-common-prefix xs ys)
〈proof 〉

57.5 Parallel lists
definition parallel :: ′a list ⇒ ′a list ⇒ bool (infixl ‹‖› 50)

where (xs ‖ ys) = (¬ prefix xs ys ∧ ¬ prefix ys xs)

lemma parallelI [intro]: ¬ prefix xs ys =⇒ ¬ prefix ys xs =⇒ xs ‖ ys
〈proof 〉

lemma parallelE [elim]:
assumes xs ‖ ys
obtains ¬ prefix xs ys ∧ ¬ prefix ys xs
〈proof 〉

theorem prefix-cases:
obtains prefix xs ys | strict-prefix ys xs | xs ‖ ys
〈proof 〉

lemma parallel-cancel: a#xs ‖ a#ys =⇒ xs ‖ ys
〈proof 〉

theorem parallel-decomp:
xs ‖ ys =⇒ ∃ as b bs c cs. b 6= c ∧ xs = as @ b # bs ∧ ys = as @ c # cs
〈proof 〉

lemma parallel-append: a ‖ b =⇒ a @ c ‖ b @ d
〈proof 〉

lemma parallel-appendI : xs ‖ ys =⇒ x = xs @ xs ′ =⇒ y = ys @ ys ′ =⇒ x ‖ y
〈proof 〉

lemma parallel-commute: a ‖ b ←→ b ‖ a
〈proof 〉

57.6 Suffix order on lists
definition suffix :: ′a list ⇒ ′a list ⇒ bool

where suffix xs ys = (∃ zs. ys = zs @ xs)

definition strict-suffix :: ′a list ⇒ ′a list ⇒ bool
where strict-suffix xs ys ←→ suffix xs ys ∧ xs 6= ys

THEORY “Sublist” 498

global-interpretation suffix-order : ordering suffix strict-suffix
〈proof 〉

interpretation suffix-order : order suffix strict-suffix
〈proof 〉

global-interpretation suffix-bot: ordering-top ‹λxs ys. suffix ys xs› ‹λxs ys. strict-suffix
ys xs› ‹[]›
〈proof 〉

interpretation suffix-bot: order-bot Nil suffix strict-suffix
〈proof 〉

lemma suffixI [intro?]: ys = zs @ xs =⇒ suffix xs ys
〈proof 〉

lemma suffixE [elim?]:
assumes suffix xs ys
obtains zs where ys = zs @ xs
〈proof 〉

lemma suffix-tl [simp]: suffix (tl xs) xs
〈proof 〉

lemma strict-suffix-tl [simp]: xs 6= [] =⇒ strict-suffix (tl xs) xs
〈proof 〉

lemma Nil-suffix [simp]: suffix [] xs
〈proof 〉

lemma suffix-Nil [simp]: (suffix xs []) = (xs = [])
〈proof 〉

lemma suffix-ConsI : suffix xs ys =⇒ suffix xs (y # ys)
〈proof 〉

lemma suffix-ConsD: suffix (x # xs) ys =⇒ suffix xs ys
〈proof 〉

lemma suffix-appendI : suffix xs ys =⇒ suffix xs (zs @ ys)
〈proof 〉

lemma suffix-appendD: suffix (zs @ xs) ys =⇒ suffix xs ys
〈proof 〉

lemma strict-suffix-set-subset: strict-suffix xs ys =⇒ set xs ⊆ set ys
〈proof 〉

lemma set-mono-suffix: suffix xs ys =⇒ set xs ⊆ set ys

THEORY “Sublist” 499

〈proof 〉

lemma sorted-antimono-suffix: suffix xs ys =⇒ sorted ys =⇒ sorted xs
〈proof 〉

lemma suffix-ConsD2 : suffix (x # xs) (y # ys) =⇒ suffix xs ys
〈proof 〉

lemma suffix-to-prefix [code]: suffix xs ys ←→ prefix (rev xs) (rev ys)
〈proof 〉

lemma strict-suffix-to-prefix [code]: strict-suffix xs ys ←→ strict-prefix (rev xs) (rev
ys)
〈proof 〉

lemma distinct-suffix: distinct ys =⇒ suffix xs ys =⇒ distinct xs
〈proof 〉

lemma map-mono-suffix: suffix xs ys =⇒ suffix (map f xs) (map f ys)
〈proof 〉

lemma map-mono-strict-suffix: strict-suffix xs ys =⇒ strict-suffix (map f xs) (map
f ys)
〈proof 〉

lemma filter-mono-suffix: suffix xs ys =⇒ suffix (filter P xs) (filter P ys)
〈proof 〉

lemma suffix-drop: suffix (drop n as) as
〈proof 〉

lemma suffix-dropWhile: suffix (dropWhile P xs) xs
〈proof 〉

lemma suffix-take: suffix xs ys =⇒ ys = take (length ys − length xs) ys @ xs
〈proof 〉

lemma strict-suffix-reflclp-conv: strict-suffix== = suffix
〈proof 〉

lemma suffix-lists: suffix xs ys =⇒ ys ∈ lists A =⇒ xs ∈ lists A
〈proof 〉

lemma suffix-snoc [simp]: suffix xs (ys @ [y]) ←→ xs = [] ∨ (∃ zs. xs = zs @ [y] ∧
suffix zs ys)
〈proof 〉

lemma snoc-suffix-snoc [simp]: suffix (xs @ [x]) (ys @ [y]) = (x = y ∧ suffix xs
ys)

THEORY “Sublist” 500

〈proof 〉

lemma same-suffix-suffix [simp]: suffix (ys @ xs) (zs @ xs) = suffix ys zs
〈proof 〉

lemma same-suffix-nil [simp]: suffix (ys @ xs) xs = (ys = [])
〈proof 〉

theorem suffix-Cons: suffix xs (y # ys) ←→ xs = y # ys ∨ suffix xs ys
〈proof 〉

theorem suffix-append:
suffix xs (ys @ zs) ←→ suffix xs zs ∨ (∃ xs ′. xs = xs ′ @ zs ∧ suffix xs ′ ys)
〈proof 〉

theorem suffix-length-le: suffix xs ys =⇒ length xs ≤ length ys
〈proof 〉

lemma suffix-same-cases:
suffix (xs1:: ′a list) ys =⇒ suffix xs2 ys =⇒ suffix xs1 xs2 ∨ suffix xs2 xs1
〈proof 〉

lemma suffix-length-suffix:
suffix ps xs =⇒ suffix qs xs =⇒ length ps ≤ length qs =⇒ suffix ps qs
〈proof 〉

lemma suffix-length-less: strict-suffix xs ys =⇒ length xs < length ys
〈proof 〉

lemma suffix-ConsD ′: suffix (x#xs) ys =⇒ strict-suffix xs ys
〈proof 〉

lemma drop-strict-suffix: strict-suffix xs ys =⇒ strict-suffix (drop n xs) ys
〈proof 〉

lemma suffix-map-rightE :
assumes suffix xs (map f ys)
shows ∃ xs ′. suffix xs ′ ys ∧ xs = map f xs ′

〈proof 〉

lemma suffix-remdups-adj: suffix xs ys =⇒ suffix (remdups-adj xs) (remdups-adj
ys)
〈proof 〉

lemma not-suffix-cases:
assumes pfx: ¬ suffix ps ls
obtains
(c1) ps 6= [] and ls = []
| (c2) a as x xs where ps = as@[a] and ls = xs@[x] and x = a and ¬ suffix as

THEORY “Sublist” 501

xs
| (c3) a as x xs where ps = as@[a] and ls = xs@[x] and x 6= a
〈proof 〉

lemma not-suffix-induct [consumes 1 , case-names Nil Neq Eq]:
assumes np: ¬ suffix ps ls

and base:
∧

x xs. P (xs@[x]) []
and r1 :

∧
x xs y ys. x 6= y =⇒ P (xs@[x]) (ys@[y])

and r2 :
∧

x xs y ys. [[x = y; ¬ suffix xs ys; P xs ys]] =⇒ P (xs@[x]) (ys@[y])
shows P ps ls 〈proof 〉

lemma parallelD1 : x ‖ y =⇒ ¬ prefix x y
〈proof 〉

lemma parallelD2 : x ‖ y =⇒ ¬ prefix y x
〈proof 〉

lemma parallel-Nil1 [simp]: ¬ x ‖ []
〈proof 〉

lemma parallel-Nil2 [simp]: ¬ [] ‖ x
〈proof 〉

lemma Cons-parallelI1 : a 6= b =⇒ a # as ‖ b # bs
〈proof 〉

lemma Cons-parallelI2 : [[a = b; as ‖ bs]] =⇒ a # as ‖ b # bs
〈proof 〉

lemma not-equal-is-parallel:
assumes neq: xs 6= ys

and len: length xs = length ys
shows xs ‖ ys
〈proof 〉

57.7 Suffixes
primrec suffixes where

suffixes [] = [[]]
| suffixes (x#xs) = suffixes xs @ [x # xs]

lemma in-set-suffixes [simp]: xs ∈ set (suffixes ys) ←→ suffix xs ys
〈proof 〉

lemma distinct-suffixes [intro]: distinct (suffixes xs)
〈proof 〉

lemma length-suffixes [simp]: length (suffixes xs) = Suc (length xs)

THEORY “Sublist” 502

〈proof 〉

lemma suffixes-snoc [simp]: suffixes (xs @ [x]) = [] # map (λys. ys @ [x]) (suffixes
xs)
〈proof 〉

lemma suffixes-not-Nil [simp]: suffixes xs 6= []
〈proof 〉

lemma hd-suffixes [simp]: hd (suffixes xs) = []
〈proof 〉

lemma last-suffixes [simp]: last (suffixes xs) = xs
〈proof 〉

lemma suffixes-append:
suffixes (xs @ ys) = suffixes ys @ map (λxs ′. xs ′ @ ys) (tl (suffixes xs))
〈proof 〉

lemma suffixes-eq-snoc:
suffixes ys = xs @ [x] ←→

(ys = [] ∧ xs = [] ∨ (∃ z zs. ys = z#zs ∧ xs = suffixes zs)) ∧ x = ys
〈proof 〉

lemma suffixes-tailrec [code]:
suffixes xs = rev (snd (foldl (λ(acc1 , acc2) x. (x#acc1 , (x#acc1)#acc2)) ([],[[]])

(rev xs)))
〈proof 〉

lemma set-suffixes-eq: set (suffixes xs) = {ys. suffix ys xs}
〈proof 〉

lemma card-set-suffixes [simp]: card (set (suffixes xs)) = Suc (length xs)
〈proof 〉

lemma set-suffixes-append:
set (suffixes (xs @ ys)) = set (suffixes ys) ∪ {xs ′ @ ys |xs ′. xs ′ ∈ set (suffixes

xs)}
〈proof 〉

lemma suffixes-conv-prefixes: suffixes xs = map rev (prefixes (rev xs))
〈proof 〉

lemma prefixes-conv-suffixes: prefixes xs = map rev (suffixes (rev xs))
〈proof 〉

lemma prefixes-rev: prefixes (rev xs) = map rev (suffixes xs)
〈proof 〉

THEORY “Sublist” 503

lemma suffixes-rev: suffixes (rev xs) = map rev (prefixes xs)
〈proof 〉

57.8 Homeomorphic embedding on lists
inductive list-emb :: (′a ⇒ ′a ⇒ bool) ⇒ ′a list ⇒ ′a list ⇒ bool

for P :: (′a ⇒ ′a ⇒ bool)
where

list-emb-Nil [intro, simp]: list-emb P [] ys
| list-emb-Cons [intro] : list-emb P xs ys =⇒ list-emb P xs (y#ys)
| list-emb-Cons2 [intro]: P x y =⇒ list-emb P xs ys =⇒ list-emb P (x#xs) (y#ys)

lemma list-emb-mono:
assumes

∧
x y. P x y −→ Q x y

shows list-emb P xs ys −→ list-emb Q xs ys
〈proof 〉

lemma list-emb-Nil2 [simp]:
assumes list-emb P xs [] shows xs = []
〈proof 〉

lemma list-emb-refl:
assumes

∧
x. x ∈ set xs =⇒ P x x

shows list-emb P xs xs
〈proof 〉

lemma list-emb-Cons-Nil [simp]: list-emb P (x#xs) [] = False
〈proof 〉

lemma list-emb-append2 [intro]: list-emb P xs ys =⇒ list-emb P xs (zs @ ys)
〈proof 〉

lemma list-emb-prefix [intro]:
assumes list-emb P xs ys shows list-emb P xs (ys @ zs)
〈proof 〉

lemma list-emb-ConsD:
assumes list-emb P (x#xs) ys
shows ∃ us v vs. ys = us @ v # vs ∧ P x v ∧ list-emb P xs vs
〈proof 〉

lemma list-emb-appendD:
assumes list-emb P (xs @ ys) zs
shows ∃ us vs. zs = us @ vs ∧ list-emb P xs us ∧ list-emb P ys vs
〈proof 〉

lemma list-emb-strict-suffix:
assumes list-emb P xs ys and strict-suffix ys zs

THEORY “Sublist” 504

shows list-emb P xs zs
〈proof 〉

lemma list-emb-suffix:
assumes list-emb P xs ys and suffix ys zs
shows list-emb P xs zs
〈proof 〉

lemma list-emb-length: list-emb P xs ys =⇒ length xs ≤ length ys
〈proof 〉

lemma list-emb-trans:
assumes

∧
x y z. [[x ∈ set xs; y ∈ set ys; z ∈ set zs; P x y; P y z]] =⇒ P x z

shows [[list-emb P xs ys; list-emb P ys zs]] =⇒ list-emb P xs zs
〈proof 〉

lemma list-emb-set:
assumes list-emb P xs ys and x ∈ set xs
obtains y where y ∈ set ys and P x y
〈proof 〉

lemma list-emb-Cons-iff1 [simp]:
assumes P x y
shows list-emb P (x#xs) (y#ys) ←→ list-emb P xs ys
〈proof 〉

lemma list-emb-Cons-iff2 [simp]:
assumes ¬P x y
shows list-emb P (x#xs) (y#ys) ←→ list-emb P (x#xs) ys
〈proof 〉

lemma list-emb-code [code]:
list-emb P [] ys ←→ True
list-emb P (x#xs) [] ←→ False
list-emb P (x#xs) (y#ys) ←→ (if P x y then list-emb P xs ys else list-emb P

(x#xs) ys)
〈proof 〉

57.9 Subsequences (special case of homeomorphic embed-
ding)

abbreviation subseq :: ′a list ⇒ ′a list ⇒ bool
where subseq xs ys ≡ list-emb (=) xs ys

definition strict-subseq where strict-subseq xs ys ←→ xs 6= ys ∧ subseq xs ys

lemma subseq-Cons2 : subseq xs ys =⇒ subseq (x#xs) (x#ys) 〈proof 〉

lemma subseq-same-length:

THEORY “Sublist” 505

assumes subseq xs ys and length xs = length ys shows xs = ys
〈proof 〉

lemma not-subseq-length [simp]: length ys < length xs =⇒ ¬ subseq xs ys
〈proof 〉

lemma subseq-Cons ′: subseq (x#xs) ys =⇒ subseq xs ys
〈proof 〉

lemma subseq-Cons2 ′:
assumes subseq (x#xs) (x#ys) shows subseq xs ys
〈proof 〉

lemma subseq-Cons2-neq:
assumes subseq (x#xs) (y#ys)
shows x 6= y =⇒ subseq (x#xs) ys
〈proof 〉

lemma subseq-Cons2-iff [simp]:
subseq (x#xs) (y#ys) = (if x = y then subseq xs ys else subseq (x#xs) ys)
〈proof 〉

lemma subseq-append ′: subseq (zs @ xs) (zs @ ys) ←→ subseq xs ys
〈proof 〉

global-interpretation subseq-order : ordering subseq strict-subseq
〈proof 〉

interpretation subseq-order : order subseq strict-subseq
〈proof 〉

lemma in-set-subseqs [simp]: xs ∈ set (subseqs ys) ←→ subseq xs ys
〈proof 〉

lemma set-subseqs-eq: set (subseqs ys) = {xs. subseq xs ys}
〈proof 〉

lemma subseq-append-le-same-iff : subseq (xs @ ys) ys ←→ xs = []
〈proof 〉

lemma subseq-singleton-left: subseq [x] ys ←→ x ∈ set ys
〈proof 〉

lemma list-emb-append-mono:
[[list-emb P xs xs ′; list-emb P ys ys ′]] =⇒ list-emb P (xs@ys) (xs ′@ys ′)
〈proof 〉

lemma prefix-imp-subseq [intro]: prefix xs ys =⇒ subseq xs ys
〈proof 〉

THEORY “Sublist” 506

lemma suffix-imp-subseq [intro]: suffix xs ys =⇒ subseq xs ys
〈proof 〉

a subsequence of a sorted list
lemma sorted-subset-imp-subseq:

fixes xs :: ′a::order list
assumes set xs ⊆ set ys sorted-wrt (<) xs sorted-wrt (≤) ys
shows subseq xs ys
〈proof 〉

57.10 Appending elements
lemma subseq-append [simp]:

subseq (xs @ zs) (ys @ zs) ←→ subseq xs ys (is ?l = ?r)
〈proof 〉

lemma subseq-append-iff :
subseq xs (ys @ zs) ←→ (∃ xs1 xs2 . xs = xs1 @ xs2 ∧ subseq xs1 ys ∧ subseq xs2

zs)
(is ?lhs = ?rhs)
〈proof 〉

lemma subseq-appendE [case-names append]:
assumes subseq xs (ys @ zs)
obtains xs1 xs2 where xs = xs1 @ xs2 subseq xs1 ys subseq xs2 zs
〈proof 〉

lemma subseq-drop-many: subseq xs ys =⇒ subseq xs (zs @ ys)
〈proof 〉

lemma subseq-rev-drop-many: subseq xs ys =⇒ subseq xs (ys @ zs)
〈proof 〉

57.11 Relation to standard list operations
lemma subseq-map:

assumes subseq xs ys shows subseq (map f xs) (map f ys)
〈proof 〉

lemma subseq-filter-left [simp]: subseq (filter P xs) xs
〈proof 〉

lemma subseq-filter [simp]:
assumes subseq xs ys shows subseq (filter P xs) (filter P ys)
〈proof 〉

lemma subseq-conv-nths: subseq xs ys ←→ (∃N . xs = nths ys N)
(is ?L = ?R)
〈proof 〉

THEORY “Sublist” 507

57.12 Contiguous sublists
57.12.1 sublist
definition sublist :: ′a list ⇒ ′a list ⇒ bool where

sublist xs ys = (∃ ps ss. ys = ps @ xs @ ss)

definition strict-sublist :: ′a list ⇒ ′a list ⇒ bool where
strict-sublist xs ys ←→ sublist xs ys ∧ xs 6= ys

interpretation sublist-order : order sublist strict-sublist
〈proof 〉

lemma sublist-Nil-left [simp, intro]: sublist [] ys
〈proof 〉

lemma sublist-Cons-Nil [simp]: ¬sublist (x#xs) []
〈proof 〉

lemma sublist-Nil-right [simp]: sublist xs [] ←→ xs = []
〈proof 〉

lemma sublist-appendI [simp, intro]: sublist xs (ps @ xs @ ss)
〈proof 〉

lemma sublist-append-leftI [simp, intro]: sublist xs (ps @ xs)
〈proof 〉

lemma sublist-append-rightI [simp, intro]: sublist xs (xs @ ss)
〈proof 〉

lemma sublist-altdef : sublist xs ys ←→ (∃ ys ′. prefix ys ′ ys ∧ suffix xs ys ′)
〈proof 〉

lemma sublist-altdef ′: sublist xs ys ←→ (∃ ys ′. suffix ys ′ ys ∧ prefix xs ys ′)
〈proof 〉

lemma sublist-Cons-right: sublist xs (y # ys) ←→ prefix xs (y # ys) ∨ sublist xs
ys
〈proof 〉

lemma sublist-code [code]:
sublist [] ys ←→ True
sublist (x # xs) [] ←→ False
sublist (x # xs) (y # ys) ←→ prefix (x # xs) (y # ys) ∨ sublist (x # xs) ys
〈proof 〉

lemma sublist-append:
sublist xs (ys @ zs) ←→

sublist xs ys ∨ sublist xs zs ∨ (∃ xs1 xs2 . xs = xs1 @ xs2 ∧ suffix xs1 ys ∧

THEORY “Sublist” 508

prefix xs2 zs)
〈proof 〉

lemma map-mono-sublist:
assumes sublist xs ys
shows sublist (map f xs) (map f ys)
〈proof 〉

lemma sublist-length-le: sublist xs ys =⇒ length xs ≤ length ys
〈proof 〉

lemma set-mono-sublist: sublist xs ys =⇒ set xs ⊆ set ys
〈proof 〉

lemma prefix-imp-sublist [simp, intro]: prefix xs ys =⇒ sublist xs ys
〈proof 〉

lemma suffix-imp-sublist [simp, intro]: suffix xs ys =⇒ sublist xs ys
〈proof 〉

lemma sublist-take [simp, intro]: sublist (take n xs) xs
〈proof 〉

lemma sublist-takeWhile [simp, intro]: sublist (takeWhile P xs) xs
〈proof 〉

lemma sublist-drop [simp, intro]: sublist (drop n xs) xs
〈proof 〉

lemma sublist-dropWhile [simp, intro]: sublist (dropWhile P xs) xs
〈proof 〉

lemma sublist-tl [simp, intro]: sublist (tl xs) xs
〈proof 〉

lemma sublist-butlast [simp, intro]: sublist (butlast xs) xs
〈proof 〉

lemma sublist-rev [simp]: sublist (rev xs) (rev ys) = sublist xs ys
〈proof 〉

lemma sublist-rev-left: sublist (rev xs) ys = sublist xs (rev ys)
〈proof 〉

lemma sublist-rev-right: sublist xs (rev ys) = sublist (rev xs) ys
〈proof 〉

lemma snoc-sublist-snoc:
sublist (xs @ [x]) (ys @ [y]) ←→

THEORY “Sublist” 509

(x = y ∧ suffix xs ys ∨ sublist (xs @ [x]) ys)
〈proof 〉

lemma sublist-snoc:
sublist xs (ys @ [y]) ←→ suffix xs (ys @ [y]) ∨ sublist xs ys
〈proof 〉

lemma sublist-imp-subseq [intro]: sublist xs ys =⇒ subseq xs ys
〈proof 〉

lemma sublist-map-rightE :
assumes sublist xs (map f ys)
shows ∃ xs ′. sublist xs ′ ys ∧ xs = map f xs ′

〈proof 〉

lemma sublist-remdups-adj:
assumes sublist xs ys
shows sublist (remdups-adj xs) (remdups-adj ys)
〈proof 〉

57.12.2 sublists
primrec sublists :: ′a list ⇒ ′a list list where

sublists [] = [[]]
| sublists (x # xs) = sublists xs @ map ((#) x) (prefixes xs)

lemma in-set-sublists [simp]: xs ∈ set (sublists ys) ←→ sublist xs ys
〈proof 〉

lemma set-sublists-eq: set (sublists xs) = {ys. sublist ys xs}
〈proof 〉

lemma length-sublists [simp]: length (sublists xs) = Suc (length xs ∗ Suc (length
xs) div 2)
〈proof 〉

57.13 Parametricity
context includes lifting-syntax
begin

private lemma prefix-primrec:
prefix = rec-list (λxs. True) (λx xs xsa ys.

case ys of [] ⇒ False | y # ys ⇒ x = y ∧ xsa ys)
〈proof 〉 lemma sublist-primrec:

sublist = (λxs ys. rec-list (λxs. xs = []) (λy ys ysa xs. prefix xs (y # ys) ∨ ysa
xs) ys xs)
〈proof 〉 lemma list-emb-primrec:

list-emb = (λuu l ′ l. rec-list (λP xs. List.null xs) (λy ys ysa P xs. case xs of []
⇒ True

THEORY “Sublist” 510

| x # xs ⇒ if P x y then ysa P xs else ysa P (x # xs)) l uu l ′)
〈proof 〉

lemma prefix-transfer [transfer-rule]:
assumes [transfer-rule]: bi-unique A
shows (list-all2 A ===> list-all2 A ===> (=)) prefix prefix
〈proof 〉

lemma suffix-transfer [transfer-rule]:
assumes [transfer-rule]: bi-unique A
shows (list-all2 A ===> list-all2 A ===> (=)) suffix suffix
〈proof 〉

lemma sublist-transfer [transfer-rule]:
assumes [transfer-rule]: bi-unique A
shows (list-all2 A ===> list-all2 A ===> (=)) sublist sublist
〈proof 〉

lemma parallel-transfer [transfer-rule]:
assumes [transfer-rule]: bi-unique A
shows (list-all2 A ===> list-all2 A ===> (=)) parallel parallel
〈proof 〉

lemma list-emb-transfer [transfer-rule]:
((A ===> A ===> (=)) ===> list-all2 A ===> list-all2 A ===> (=))

list-emb list-emb
〈proof 〉

lemma strict-prefix-transfer [transfer-rule]:
assumes [transfer-rule]: bi-unique A
shows (list-all2 A ===> list-all2 A ===> (=)) strict-prefix strict-prefix
〈proof 〉

lemma strict-suffix-transfer [transfer-rule]:
assumes [transfer-rule]: bi-unique A
shows (list-all2 A ===> list-all2 A ===> (=)) strict-suffix strict-suffix
〈proof 〉

lemma strict-subseq-transfer [transfer-rule]:
assumes [transfer-rule]: bi-unique A
shows (list-all2 A ===> list-all2 A ===> (=)) strict-subseq strict-subseq
〈proof 〉

lemma strict-sublist-transfer [transfer-rule]:
assumes [transfer-rule]: bi-unique A
shows (list-all2 A ===> list-all2 A ===> (=)) strict-sublist strict-sublist
〈proof 〉

THEORY “Linear-Temporal-Logic-on-Streams” 511

lemma prefixes-transfer [transfer-rule]:
assumes [transfer-rule]: bi-unique A
shows (list-all2 A ===> list-all2 (list-all2 A)) prefixes prefixes
〈proof 〉

lemma suffixes-transfer [transfer-rule]:
assumes [transfer-rule]: bi-unique A
shows (list-all2 A ===> list-all2 (list-all2 A)) suffixes suffixes
〈proof 〉

lemma sublists-transfer [transfer-rule]:
assumes [transfer-rule]: bi-unique A
shows (list-all2 A ===> list-all2 (list-all2 A)) sublists sublists
〈proof 〉

end

end

58 Linear Temporal Logic on Streams
theory Linear-Temporal-Logic-on-Streams

imports Stream Sublist Extended-Nat Infinite-Set
begin

59 Preliminaries
lemma shift-prefix:
assumes xl @− xs = yl @− ys and length xl ≤ length yl
shows prefix xl yl
〈proof 〉

lemma shift-prefix-cases:
assumes xl @− xs = yl @− ys
shows prefix xl yl ∨ prefix yl xl
〈proof 〉

60 Linear temporal logic
Propositional connectives:
abbreviation (input) IMPL (infix ‹impl› 60)
where ϕ impl ψ ≡ λ xs. ϕ xs −→ ψ xs

abbreviation (input) OR (infix ‹or› 60)
where ϕ or ψ ≡ λ xs. ϕ xs ∨ ψ xs

THEORY “Linear-Temporal-Logic-on-Streams” 512

abbreviation (input) AND (infix ‹aand› 60)
where ϕ aand ψ ≡ λ xs. ϕ xs ∧ ψ xs

abbreviation (input) not where not ϕ ≡ λ xs. ¬ ϕ xs

abbreviation (input) true ≡ λ xs. True

abbreviation (input) false ≡ λ xs. False

lemma impl-not-or : ϕ impl ψ = (not ϕ) or ψ
〈proof 〉

lemma not-or : not (ϕ or ψ) = (not ϕ) aand (not ψ)
〈proof 〉

lemma not-aand: not (ϕ aand ψ) = (not ϕ) or (not ψ)
〈proof 〉

lemma non-not[simp]: not (not ϕ) = ϕ 〈proof 〉

Temporal (LTL) connectives:
fun holds where holds P xs ←→ P (shd xs)
fun nxt where nxt ϕ xs = ϕ (stl xs)

definition HLD s = holds (λx. x ∈ s)

abbreviation HLD-nxt (infixr ‹·› 65) where
s · P ≡ HLD s aand nxt P

context
notes [[inductive-internals]]

begin

inductive ev for ϕ where
base: ϕ xs =⇒ ev ϕ xs
|
step: ev ϕ (stl xs) =⇒ ev ϕ xs

coinductive alw for ϕ where
alw: [[ϕ xs; alw ϕ (stl xs)]] =⇒ alw ϕ xs

— weak until:
coinductive UNTIL (infix ‹until› 60) for ϕ ψ where
base: ψ xs =⇒ (ϕ until ψ) xs
|
step: [[ϕ xs; (ϕ until ψ) (stl xs)]] =⇒ (ϕ until ψ) xs

end

THEORY “Linear-Temporal-Logic-on-Streams” 513

lemma holds-mono:
assumes holds: holds P xs and 0 :

∧
x. P x =⇒ Q x

shows holds Q xs
〈proof 〉

lemma holds-aand:
(holds P aand holds Q) steps ←→ holds (λ step. P step ∧ Q step) steps 〈proof 〉

lemma HLD-iff : HLD s ω ←→ shd ω ∈ s
〈proof 〉

lemma HLD-Stream[simp]: HLD X (x ## ω) ←→ x ∈ X
〈proof 〉

lemma nxt-mono:
assumes nxt: nxt ϕ xs and 0 :

∧
xs. ϕ xs =⇒ ψ xs

shows nxt ψ xs
〈proof 〉

declare ev.intros[intro]
declare alw.cases[elim]

lemma ev-induct-strong[consumes 1 , case-names base step]:
ev ϕ x =⇒ (

∧
xs. ϕ xs =⇒ P xs) =⇒ (

∧
xs. ev ϕ (stl xs) =⇒ ¬ ϕ xs =⇒ P (stl

xs) =⇒ P xs) =⇒ P x
〈proof 〉

lemma alw-coinduct[consumes 1 , case-names alw stl]:
X x =⇒ (

∧
x. X x =⇒ ϕ x) =⇒ (

∧
x. X x =⇒ ¬ alw ϕ (stl x) =⇒ X (stl x))

=⇒ alw ϕ x
〈proof 〉

lemma ev-mono:
assumes ev: ev ϕ xs and 0 :

∧
xs. ϕ xs =⇒ ψ xs

shows ev ψ xs
〈proof 〉

lemma alw-mono:
assumes alw: alw ϕ xs and 0 :

∧
xs. ϕ xs =⇒ ψ xs

shows alw ψ xs
〈proof 〉

lemma until-monoL:
assumes until: (ϕ1 until ψ) xs and 0 :

∧
xs. ϕ1 xs =⇒ ϕ2 xs

shows (ϕ2 until ψ) xs
〈proof 〉

lemma until-monoR:
assumes until: (ϕ until ψ1) xs and 0 :

∧
xs. ψ1 xs =⇒ ψ2 xs

THEORY “Linear-Temporal-Logic-on-Streams” 514

shows (ϕ until ψ2) xs
〈proof 〉

lemma until-mono:
assumes until: (ϕ1 until ψ1) xs and
0 :

∧
xs. ϕ1 xs =⇒ ϕ2 xs

∧
xs. ψ1 xs =⇒ ψ2 xs

shows (ϕ2 until ψ2) xs
〈proof 〉

lemma until-false: ϕ until false = alw ϕ
〈proof 〉

lemma ev-nxt: ev ϕ = (ϕ or nxt (ev ϕ))
〈proof 〉

lemma alw-nxt: alw ϕ = (ϕ aand nxt (alw ϕ))
〈proof 〉

lemma ev-ev[simp]: ev (ev ϕ) = ev ϕ
〈proof 〉

lemma alw-alw[simp]: alw (alw ϕ) = alw ϕ
〈proof 〉

lemma ev-shift:
assumes ev ϕ xs
shows ev ϕ (xl @− xs)
〈proof 〉

lemma ev-imp-shift:
assumes ev ϕ xs shows ∃ xl xs2 . xs = xl @− xs2 ∧ ϕ xs2
〈proof 〉

lemma alw-ev-shift: alw ϕ xs1 =⇒ ev (alw ϕ) (xl @− xs1)
〈proof 〉

lemma alw-shift:
assumes alw ϕ (xl @− xs)
shows alw ϕ xs
〈proof 〉

lemma ev-ex-nxt:
assumes ev ϕ xs
shows ∃ n. (nxt ^^ n) ϕ xs
〈proof 〉

lemma alw-sdrop:
assumes alw ϕ xs shows alw ϕ (sdrop n xs)
〈proof 〉

THEORY “Linear-Temporal-Logic-on-Streams” 515

lemma nxt-sdrop: (nxt ^^ n) ϕ xs ←→ ϕ (sdrop n xs)
〈proof 〉

definition wait ϕ xs ≡ LEAST n. (nxt ^^ n) ϕ xs

lemma nxt-wait:
assumes ev ϕ xs shows (nxt ^^ (wait ϕ xs)) ϕ xs
〈proof 〉

lemma nxt-wait-least:
assumes ev: ev ϕ xs and nxt: (nxt ^^ n) ϕ xs shows wait ϕ xs ≤ n
〈proof 〉

lemma sdrop-wait:
assumes ev ϕ xs shows ϕ (sdrop (wait ϕ xs) xs)
〈proof 〉

lemma sdrop-wait-least:
assumes ev: ev ϕ xs and nxt: ϕ (sdrop n xs) shows wait ϕ xs ≤ n
〈proof 〉

lemma nxt-ev: (nxt ^^ n) ϕ xs =⇒ ev ϕ xs
〈proof 〉

lemma not-ev: not (ev ϕ) = alw (not ϕ)
〈proof 〉

lemma not-alw: not (alw ϕ) = ev (not ϕ)
〈proof 〉

lemma not-ev-not[simp]: not (ev (not ϕ)) = alw ϕ
〈proof 〉

lemma not-alw-not[simp]: not (alw (not ϕ)) = ev ϕ
〈proof 〉

lemma alw-ev-sdrop:
assumes alw (ev ϕ) (sdrop m xs)
shows alw (ev ϕ) xs
〈proof 〉

lemma ev-alw-imp-alw-ev:
assumes ev (alw ϕ) xs shows alw (ev ϕ) xs
〈proof 〉

lemma alw-aand: alw (ϕ aand ψ) = alw ϕ aand alw ψ
〈proof 〉

THEORY “Linear-Temporal-Logic-on-Streams” 516

lemma ev-or : ev (ϕ or ψ) = ev ϕ or ev ψ
〈proof 〉

lemma ev-alw-aand:
assumes ϕ: ev (alw ϕ) xs and ψ: ev (alw ψ) xs
shows ev (alw (ϕ aand ψ)) xs
〈proof 〉

lemma ev-alw-alw-impl:
assumes ev (alw ϕ) xs and alw (alw ϕ impl ev ψ) xs
shows ev ψ xs
〈proof 〉

lemma ev-alw-stl[simp]: ev (alw ϕ) (stl x) ←→ ev (alw ϕ) x
〈proof 〉

lemma alw-alw-impl-ev:
alw (alw ϕ impl ev ψ) = (ev (alw ϕ) impl alw (ev ψ)) (is ?A = ?B)
〈proof 〉

lemma ev-alw-impl:
assumes ev ϕ xs and alw (ϕ impl ψ) xs shows ev ψ xs
〈proof 〉

lemma ev-alw-impl-ev:
assumes ev ϕ xs and alw (ϕ impl ev ψ) xs shows ev ψ xs
〈proof 〉

lemma alw-mp:
assumes alw ϕ xs and alw (ϕ impl ψ) xs
shows alw ψ xs
〈proof 〉

lemma all-imp-alw:
assumes

∧
xs. ϕ xs shows alw ϕ xs

〈proof 〉

lemma alw-impl-ev-alw:
assumes alw (ϕ impl ev ψ) xs
shows alw (ev ϕ impl ev ψ) xs
〈proof 〉

lemma ev-holds-sset:
ev (holds P) xs ←→ (∃ x ∈ sset xs. P x) (is ?L ←→ ?R)
〈proof 〉

LTL as a program logic:
lemma alw-invar :
assumes ϕ xs and alw (ϕ impl nxt ϕ) xs

THEORY “Linear-Temporal-Logic-on-Streams” 517

shows alw ϕ xs
〈proof 〉

lemma variance:
assumes 1 : ϕ xs and 2 : alw (ϕ impl (ψ or nxt ϕ)) xs
shows (alw ϕ or ev ψ) xs
〈proof 〉

lemma ev-alw-imp-nxt:
assumes e: ev ϕ xs and a: alw (ϕ impl (nxt ϕ)) xs
shows ev (alw ϕ) xs
〈proof 〉

inductive ev-at :: (′a stream ⇒ bool)⇒ nat ⇒ ′a stream ⇒ bool for P :: ′a stream
⇒ bool where

base: P ω =⇒ ev-at P 0 ω
| step:¬ P ω =⇒ ev-at P n (stl ω) =⇒ ev-at P (Suc n) ω

inductive-simps ev-at-0 [simp]: ev-at P 0 ω
inductive-simps ev-at-Suc[simp]: ev-at P (Suc n) ω

lemma ev-at-imp-snth: ev-at P n ω =⇒ P (sdrop n ω)
〈proof 〉

lemma ev-at-HLD-imp-snth: ev-at (HLD X) n ω =⇒ ω !! n ∈ X
〈proof 〉

lemma ev-at-HLD-single-imp-snth: ev-at (HLD {x}) n ω =⇒ ω !! n = x
〈proof 〉

lemma ev-at-unique: ev-at P n ω =⇒ ev-at P m ω =⇒ n = m
〈proof 〉

lemma ev-iff-ev-at: ev P ω ←→ (∃n. ev-at P n ω)
〈proof 〉

lemma ev-at-shift: ev-at (HLD X) i (stake (Suc i) ω @− ω ′ :: ′s stream)←→ ev-at
(HLD X) i ω
〈proof 〉

lemma ev-iff-ev-at-unique: ev P ω ←→ (∃ !n. ev-at P n ω)
〈proof 〉

lemma alw-HLD-iff-streams: alw (HLD X) ω ←→ ω ∈ streams X
〈proof 〉

lemma not-HLD: not (HLD X) = HLD (− X)
〈proof 〉

THEORY “Linear-Temporal-Logic-on-Streams” 518

lemma not-alw-iff : ¬ (alw P ω) ←→ ev (not P) ω
〈proof 〉

lemma not-ev-iff : ¬ (ev P ω) ←→ alw (not P) ω
〈proof 〉

lemma ev-Stream: ev P (x ## s) ←→ P (x ## s) ∨ ev P s
〈proof 〉

lemma alw-ev-imp-ev-alw:
assumes alw (ev P) ω shows ev (P aand alw (ev P)) ω
〈proof 〉

lemma ev-False: ev (λx. False) ω ←→ False
〈proof 〉

lemma alw-False: alw (λx. False) ω ←→ False
〈proof 〉

lemma ev-iff-sdrop: ev P ω ←→ (∃m. P (sdrop m ω))
〈proof 〉

lemma alw-iff-sdrop: alw P ω ←→ (∀m. P (sdrop m ω))
〈proof 〉

lemma infinite-iff-alw-ev: infinite {m. P (sdrop m ω)} ←→ alw (ev P) ω
〈proof 〉

lemma alw-inv:
assumes stl:

∧
s. f (stl s) = stl (f s)

shows alw P (f s) ←→ alw (λx. P (f x)) s
〈proof 〉

lemma ev-inv:
assumes stl:

∧
s. f (stl s) = stl (f s)

shows ev P (f s) ←→ ev (λx. P (f x)) s
〈proof 〉

lemma alw-smap: alw P (smap f s) ←→ alw (λx. P (smap f x)) s
〈proof 〉

lemma ev-smap: ev P (smap f s) ←→ ev (λx. P (smap f x)) s
〈proof 〉

lemma alw-cong:
assumes P: alw P ω and eq:

∧
ω. P ω =⇒ Q1 ω ←→ Q2 ω

shows alw Q1 ω ←→ alw Q2 ω
〈proof 〉

THEORY “Linear-Temporal-Logic-on-Streams” 519

lemma ev-cong:
assumes P: alw P ω and eq:

∧
ω. P ω =⇒ Q1 ω ←→ Q2 ω

shows ev Q1 ω ←→ ev Q2 ω
〈proof 〉

lemma alwD: alw P x =⇒ P x
〈proof 〉

lemma alw-alwD: alw P ω =⇒ alw (alw P) ω
〈proof 〉

lemma alw-ev-stl: alw (ev P) (stl ω) ←→ alw (ev P) ω
〈proof 〉

lemma holds-Stream: holds P (x ## s) ←→ P x
〈proof 〉

lemma holds-eq1 [simp]: holds ((=) x) = HLD {x}
〈proof 〉

lemma holds-eq2 [simp]: holds (λy. y = x) = HLD {x}
〈proof 〉

lemma not-holds-eq[simp]: holds (− (=) x) = not (HLD {x})
〈proof 〉

Strong until
context

notes [[inductive-internals]]
begin

inductive suntil (infix ‹suntil› 60) for ϕ ψ where
base: ψ ω =⇒ (ϕ suntil ψ) ω
| step: ϕ ω =⇒ (ϕ suntil ψ) (stl ω) =⇒ (ϕ suntil ψ) ω

inductive-simps suntil-Stream: (ϕ suntil ψ) (x ## s)

end

lemma suntil-induct-strong[consumes 1 , case-names base step]:
(ϕ suntil ψ) x =⇒
(
∧
ω. ψ ω =⇒ P ω) =⇒

(
∧
ω. ϕ ω =⇒ ¬ ψ ω =⇒ (ϕ suntil ψ) (stl ω) =⇒ P (stl ω) =⇒ P ω) =⇒ P x

〈proof 〉

lemma ev-suntil: (ϕ suntil ψ) ω =⇒ ev ψ ω
〈proof 〉

THEORY “Linear-Temporal-Logic-on-Streams” 520

lemma suntil-inv:
assumes stl:

∧
s. f (stl s) = stl (f s)

shows (P suntil Q) (f s) ←→ ((λx. P (f x)) suntil (λx. Q (f x))) s
〈proof 〉

lemma suntil-smap: (P suntil Q) (smap f s) ←→ ((λx. P (smap f x)) suntil (λx.
Q (smap f x))) s
〈proof 〉

lemma hld-smap: HLD x (smap f s) = holds (λy. f y ∈ x) s
〈proof 〉

lemma suntil-mono:
assumes eq:

∧
ω. P ω =⇒ Q1 ω =⇒ Q2 ω

∧
ω. P ω =⇒ R1 ω =⇒ R2 ω

assumes ∗: (Q1 suntil R1) ω alw P ω shows (Q2 suntil R2) ω
〈proof 〉

lemma suntil-cong:
alw P ω =⇒ (

∧
ω. P ω =⇒ Q1 ω ←→ Q2 ω) =⇒ (

∧
ω. P ω =⇒ R1 ω ←→ R2

ω) =⇒
(Q1 suntil R1) ω ←→ (Q2 suntil R2) ω
〈proof 〉

lemma ev-suntil-iff : ev (P suntil Q) ω ←→ ev Q ω
〈proof 〉

lemma true-suntil: ((λ-. True) suntil P) = ev P
〈proof 〉

lemma suntil-lfp: (ϕ suntil ψ) = lfp (λP s. ψ s ∨ (ϕ s ∧ P (stl s)))
〈proof 〉

lemma sfilter-P[simp]: P (shd s) =⇒ sfilter P s = shd s ## sfilter P (stl s)
〈proof 〉

lemma sfilter-not-P[simp]: ¬ P (shd s) =⇒ sfilter P s = sfilter P (stl s)
〈proof 〉

lemma sfilter-eq:
assumes ev (holds P) s
shows sfilter P s = x ## s ′←→

P x ∧ (not (holds P) suntil (HLD {x} aand nxt (λs. sfilter P s = s ′))) s
〈proof 〉

lemma sfilter-streams:
alw (ev (holds P)) ω =⇒ ω ∈ streams A =⇒ sfilter P ω ∈ streams {x∈A. P x}
〈proof 〉

lemma alw-sfilter :

THEORY “Linear-Temporal-Logic-on-Streams” 521

assumes ∗: alw (ev (holds P)) s
shows alw Q (sfilter P s) ←→ alw (λx. Q (sfilter P x)) s
〈proof 〉

lemma ev-sfilter :
assumes ∗: alw (ev (holds P)) s
shows ev Q (sfilter P s) ←→ ev (λx. Q (sfilter P x)) s
〈proof 〉

lemma holds-sfilter :
assumes ev (holds Q) s shows holds P (sfilter Q s) ←→ (not (holds Q) suntil

(holds (Q aand P))) s
〈proof 〉

lemma suntil-aand-nxt:
(ϕ suntil (ϕ aand nxt ψ)) ω ←→ (ϕ aand nxt (ϕ suntil ψ)) ω
〈proof 〉

lemma alw-sconst: alw P (sconst x) ←→ P (sconst x)
〈proof 〉

lemma ev-sconst: ev P (sconst x) ←→ P (sconst x)
〈proof 〉

lemma suntil-sconst: (ϕ suntil ψ) (sconst x) ←→ ψ (sconst x)
〈proof 〉

lemma hld-smap ′: HLD x (smap f s) = HLD (f −‘ x) s
〈proof 〉

lemma pigeonhole-stream:
assumes alw (HLD s) ω
assumes finite s
shows ∃ x∈s. alw (ev (HLD {x})) ω
〈proof 〉

lemma ev-eq-suntil: ev P ω ←→ (not P suntil P) ω
〈proof 〉

61 Weak vs. strong until (contributed by Michael
Foster, University of Sheffield)

lemma suntil-implies-until: (ϕ suntil ψ) ω =⇒ (ϕ until ψ) ω
〈proof 〉

lemma alw-implies-until: alw ϕ ω =⇒ (ϕ until ψ) ω
〈proof 〉

THEORY “ListVector” 522

lemma until-ev-suntil: (ϕ until ψ) ω =⇒ ev ψ ω =⇒ (ϕ suntil ψ) ω
〈proof 〉

lemma suntil-as-until: (ϕ suntil ψ) ω = ((ϕ until ψ) ω ∧ ev ψ ω)
〈proof 〉

lemma until-not-relesased-now: (ϕ until ψ) ω =⇒ ¬ ψ ω =⇒ ϕ ω
〈proof 〉

lemma until-must-release-ev: (ϕ until ψ) ω =⇒ ev (not ϕ) ω =⇒ ev ψ ω
〈proof 〉

lemma until-as-suntil: (ϕ until ψ) ω = ((ϕ suntil ψ) or (alw ϕ)) ω
〈proof 〉

lemma alw-holds: alw (holds P) (h##t) = (P h ∧ alw (holds P) t)
〈proof 〉

lemma alw-holds2 : alw (holds P) ss = (P (shd ss) ∧ alw (holds P) (stl ss))
〈proof 〉

lemma alw-eq-sconst: (alw (HLD {h}) t) = (t = sconst h)
〈proof 〉

lemma sdrop-if-suntil: (p suntil q) ω =⇒ ∃ j. q (sdrop j ω) ∧ (∀ k < j. p (sdrop k
ω))
〈proof 〉

lemma not-suntil: (¬ (p suntil q) ω) = (¬ (p until q) ω ∨ alw (not q) ω)
〈proof 〉

lemma sdrop-until: q (sdrop j ω) =⇒ ∀ k<j. p (sdrop k ω) =⇒ (p until q) ω
〈proof 〉

lemma sdrop-suntil: q (sdrop j ω) =⇒ (∀ k < j. p (sdrop k ω)) =⇒ (p suntil q) ω
〈proof 〉

lemma suntil-iff-sdrop: (p suntil q) ω = (∃ j. q (sdrop j ω) ∧ (∀ k < j. p (sdrop k
ω)))
〈proof 〉

end

62 Lists as vectors
theory ListVector

imports Main
begin

THEORY “ListVector” 523

A vector-space like structure of lists and arithmetic operations on them. Is
only a vector space if restricted to lists of the same length.

Multiplication with a scalar:
abbreviation scale :: (′a::times) ⇒ ′a list ⇒ ′a list (infix ‹∗s› 70)

where x ∗s xs ≡ map ((∗) x) xs

lemma scale1 [simp]: (1 :: ′a::monoid-mult) ∗s xs = xs
〈proof 〉

62.1 + and −
fun zipwith0 :: (′a::zero ⇒ ′b::zero ⇒ ′c) ⇒ ′a list ⇒ ′b list ⇒ ′c list

where
zipwith0 f [] [] = [] |
zipwith0 f (x#xs) (y#ys) = f x y # zipwith0 f xs ys |
zipwith0 f (x#xs) [] = f x 0 # zipwith0 f xs [] |
zipwith0 f [] (y#ys) = f 0 y # zipwith0 f [] ys

instantiation list :: ({zero, plus}) plus
begin

definition
list-add-def : (+) = zipwith0 (+)

instance 〈proof 〉

end

instantiation list :: ({zero, uminus}) uminus
begin

definition
list-uminus-def : uminus = map uminus

instance 〈proof 〉

end

instantiation list :: ({zero,minus}) minus
begin

definition
list-diff-def : (−) = zipwith0 (−)

instance 〈proof 〉

end

THEORY “ListVector” 524

lemma zipwith0-Nil[simp]: zipwith0 f [] ys = map (f 0) ys
〈proof 〉

lemma list-add-Nil[simp]: [] + xs = (xs:: ′a::monoid-add list)
〈proof 〉

lemma list-add-Nil2 [simp]: xs + [] = (xs:: ′a::monoid-add list)
〈proof 〉

lemma list-add-Cons[simp]: (x#xs) + (y#ys) = (x+y)#(xs+ys)
〈proof 〉

lemma list-diff-Nil[simp]: [] − xs = −(xs:: ′a::group-add list)
〈proof 〉

lemma list-diff-Nil2 [simp]: xs − [] = (xs:: ′a::group-add list)
〈proof 〉

lemma list-diff-Cons-Cons[simp]: (x#xs) − (y#ys) = (x−y)#(xs−ys)
〈proof 〉

lemma list-uminus-Cons[simp]: −(x#xs) = (−x)#(−xs)
〈proof 〉

lemma self-list-diff :
xs − xs = replicate (length(xs:: ′a::group-add list)) 0
〈proof 〉

lemma list-add-assoc:
fixes xs :: ′a::monoid-add list
shows (xs+ys)+zs = xs+(ys+zs)
〈proof 〉

62.2 Inner product
definition iprod :: ′a::ring list ⇒ ′a list ⇒ ′a (‹(‹open-block notation=‹mixfix
iprod››〈-,-〉)›)

where 〈xs,ys〉 = (
∑

(x,y) ← zip xs ys. x∗y)

lemma iprod-Nil[simp]: 〈[],ys〉 = 0
〈proof 〉

lemma iprod-Nil2 [simp]: 〈xs,[]〉 = 0
〈proof 〉

lemma iprod-Cons[simp]: 〈x#xs,y#ys〉 = x∗y + 〈xs,ys〉
〈proof 〉

lemma iprod0-if-coeffs0 : ∀ c∈set cs. c = 0 =⇒ 〈cs,xs〉 = 0

THEORY “Lub-Glb” 525

〈proof 〉

lemma iprod-uminus[simp]: 〈−xs,ys〉 = −〈xs,ys〉
〈proof 〉

lemma iprod-left-add-distrib: 〈xs + ys,zs〉 = 〈xs,zs〉 + 〈ys,zs〉
〈proof 〉

lemma iprod-left-diff-distrib: 〈xs − ys, zs〉 = 〈xs,zs〉 − 〈ys,zs〉
〈proof 〉

lemma iprod-assoc: 〈x ∗s xs, ys〉 = x ∗ 〈xs,ys〉
〈proof 〉

end

63 Definitions of Least Upper Bounds and Great-
est Lower Bounds

theory Lub-Glb
imports Complex-Main
begin

Thanks to suggestions by James Margetson
definition setle :: ′a set ⇒ ′a::ord ⇒ bool (infixl ‹∗<=› 70)

where S ∗<= x = (∀ y∈S . y ≤ x)

definition setge :: ′a::ord ⇒ ′a set ⇒ bool (infixl ‹<=∗› 70)
where x <=∗ S = (∀ y∈S . x ≤ y)

63.1 Rules for the Relations ∗<= and <=∗
lemma setleI : ∀ y∈S . y ≤ x =⇒ S ∗<= x
〈proof 〉

lemma setleD: S ∗<= x =⇒ y∈S =⇒ y ≤ x
〈proof 〉

lemma setgeI : ∀ y∈S . x ≤ y =⇒ x <=∗ S
〈proof 〉

lemma setgeD: x <=∗ S =⇒ y∈S =⇒ x ≤ y
〈proof 〉

definition leastP :: (′a ⇒ bool) ⇒ ′a::ord ⇒ bool
where leastP P x = (P x ∧ x <=∗ Collect P)

THEORY “Lub-Glb” 526

definition isUb :: ′a set ⇒ ′a set ⇒ ′a::ord ⇒ bool
where isUb R S x = (S ∗<= x ∧ x ∈ R)

definition isLub :: ′a set ⇒ ′a set ⇒ ′a::ord ⇒ bool
where isLub R S x = leastP (isUb R S) x

definition ubs :: ′a set ⇒ ′a::ord set ⇒ ′a set
where ubs R S = Collect (isUb R S)

63.2 Rules about the Operators leastP, ub and lub
lemma leastPD1 : leastP P x =⇒ P x
〈proof 〉

lemma leastPD2 : leastP P x =⇒ x <=∗ Collect P
〈proof 〉

lemma leastPD3 : leastP P x =⇒ y ∈ Collect P =⇒ x ≤ y
〈proof 〉

lemma isLubD1 : isLub R S x =⇒ S ∗<= x
〈proof 〉

lemma isLubD1a: isLub R S x =⇒ x ∈ R
〈proof 〉

lemma isLub-isUb: isLub R S x =⇒ isUb R S x
〈proof 〉

lemma isLubD2 : isLub R S x =⇒ y ∈ S =⇒ y ≤ x
〈proof 〉

lemma isLubD3 : isLub R S x =⇒ leastP (isUb R S) x
〈proof 〉

lemma isLubI1 : leastP(isUb R S) x =⇒ isLub R S x
〈proof 〉

lemma isLubI2 : isUb R S x =⇒ x <=∗ Collect (isUb R S) =⇒ isLub R S x
〈proof 〉

lemma isUbD: isUb R S x =⇒ y ∈ S =⇒ y ≤ x
〈proof 〉

lemma isUbD2 : isUb R S x =⇒ S ∗<= x
〈proof 〉

lemma isUbD2a: isUb R S x =⇒ x ∈ R
〈proof 〉

THEORY “Lub-Glb” 527

lemma isUbI : S ∗<= x =⇒ x ∈ R =⇒ isUb R S x
〈proof 〉

lemma isLub-le-isUb: isLub R S x =⇒ isUb R S y =⇒ x ≤ y
〈proof 〉

lemma isLub-ubs: isLub R S x =⇒ x <=∗ ubs R S
〈proof 〉

lemma isLub-unique: [| isLub R S x; isLub R S y |] ==> x = (y:: ′a::linorder)
〈proof 〉

lemma isUb-UNIV-I : (
∧

y. y ∈ S =⇒ y ≤ u) =⇒ isUb UNIV S u
〈proof 〉

definition greatestP :: (′a ⇒ bool) ⇒ ′a::ord ⇒ bool
where greatestP P x = (P x ∧ Collect P ∗<= x)

definition isLb :: ′a set ⇒ ′a set ⇒ ′a::ord ⇒ bool
where isLb R S x = (x <=∗ S ∧ x ∈ R)

definition isGlb :: ′a set ⇒ ′a set ⇒ ′a::ord ⇒ bool
where isGlb R S x = greatestP (isLb R S) x

definition lbs :: ′a set ⇒ ′a::ord set ⇒ ′a set
where lbs R S = Collect (isLb R S)

63.3 Rules about the Operators greatestP, isLb and isGlb
lemma greatestPD1 : greatestP P x =⇒ P x
〈proof 〉

lemma greatestPD2 : greatestP P x =⇒ Collect P ∗<= x
〈proof 〉

lemma greatestPD3 : greatestP P x =⇒ y ∈ Collect P =⇒ x ≥ y
〈proof 〉

lemma isGlbD1 : isGlb R S x =⇒ x <=∗ S
〈proof 〉

lemma isGlbD1a: isGlb R S x =⇒ x ∈ R
〈proof 〉

lemma isGlb-isLb: isGlb R S x =⇒ isLb R S x
〈proof 〉

THEORY “Lub-Glb” 528

lemma isGlbD2 : isGlb R S x =⇒ y ∈ S =⇒ y ≥ x
〈proof 〉

lemma isGlbD3 : isGlb R S x =⇒ greatestP (isLb R S) x
〈proof 〉

lemma isGlbI1 : greatestP (isLb R S) x =⇒ isGlb R S x
〈proof 〉

lemma isGlbI2 : isLb R S x =⇒ Collect (isLb R S) ∗<= x =⇒ isGlb R S x
〈proof 〉

lemma isLbD: isLb R S x =⇒ y ∈ S =⇒ y ≥ x
〈proof 〉

lemma isLbD2 : isLb R S x =⇒ x <=∗ S
〈proof 〉

lemma isLbD2a: isLb R S x =⇒ x ∈ R
〈proof 〉

lemma isLbI : x <=∗ S =⇒ x ∈ R =⇒ isLb R S x
〈proof 〉

lemma isGlb-le-isLb: isGlb R S x =⇒ isLb R S y =⇒ x ≥ y
〈proof 〉

lemma isGlb-ubs: isGlb R S x =⇒ lbs R S ∗<= x
〈proof 〉

lemma isGlb-unique: [| isGlb R S x; isGlb R S y |] ==> x = (y:: ′a::linorder)
〈proof 〉

lemma bdd-above-setle: bdd-above A ←→ (∃ a. A ∗<= a)
〈proof 〉

lemma bdd-below-setge: bdd-below A ←→ (∃ a. a <=∗ A)
〈proof 〉

lemma isLub-cSup:
(S :: ′a :: conditionally-complete-lattice set) 6= {} =⇒ (∃ b. S ∗<= b) =⇒ isLub

UNIV S (Sup S)
〈proof 〉

lemma isGlb-cInf :
(S :: ′a :: conditionally-complete-lattice set) 6= {} =⇒ (∃ b. b <=∗ S) =⇒ isGlb

UNIV S (Inf S)
〈proof 〉

THEORY “Lub-Glb” 529

lemma cSup-le: (S :: ′a::conditionally-complete-lattice set) 6= {} =⇒ S ∗<= b =⇒
Sup S ≤ b
〈proof 〉

lemma cInf-ge: (S :: ′a :: conditionally-complete-lattice set) 6= {} =⇒ b <=∗ S =⇒
Inf S ≥ b
〈proof 〉

lemma cSup-bounds:
fixes S :: ′a :: conditionally-complete-lattice set
shows S 6= {} =⇒ a <=∗ S =⇒ S ∗<= b =⇒ a ≤ Sup S ∧ Sup S ≤ b
〈proof 〉

lemma cSup-unique: (S :: ′a :: {conditionally-complete-linorder , no-bot} set) ∗<=
b =⇒ (∀ b ′<b. ∃ x∈S . b ′ < x) =⇒ Sup S = b
〈proof 〉

lemma cInf-unique: b <=∗ (S :: ′a :: {conditionally-complete-linorder , no-top} set)
=⇒ (∀ b ′>b. ∃ x∈S . b ′ > x) =⇒ Inf S = b
〈proof 〉

Use completeness of reals (supremum property) to show that any bounded
sequence has a least upper bound
lemma reals-complete: ∃X . X ∈ S =⇒ ∃Y . isUb (UNIV ::real set) S Y =⇒ ∃ t.
isLub (UNIV :: real set) S t
〈proof 〉

lemma Bseq-isUb:
∧

X :: nat ⇒ real. Bseq X =⇒ ∃U . isUb (UNIV ::real set) {x.
∃n. X n = x} U
〈proof 〉

lemma Bseq-isLub:
∧

X :: nat ⇒ real. Bseq X =⇒ ∃U . isLub (UNIV ::real set)
{x. ∃n. X n = x} U
〈proof 〉

lemma isLub-mono-imp-LIMSEQ:
fixes X :: nat ⇒ real
assumes u: isLub UNIV {x. ∃n. X n = x} u
assumes X : ∀m n. m ≤ n −→ X m ≤ X n
shows X −−−−→ u
〈proof 〉

lemmas real-isGlb-unique = isGlb-unique[where ′a=real]

lemma real-le-inf-subset: t 6= {} =⇒ t ⊆ s =⇒ ∃ b. b <=∗ s =⇒ Inf s ≤ Inf
(t::real set)
〈proof 〉

lemma real-ge-sup-subset: t 6= {} =⇒ t ⊆ s =⇒ ∃ b. s ∗<= b =⇒ Sup s ≥ Sup

THEORY “Mapping” 530

(t::real set)
〈proof 〉

end

64 An abstract view on maps for code generation.
theory Mapping
imports Main AList
begin

64.1 Parametricity transfer rules
lemma map-of-foldr : map-of xs = foldr (λ(k, v) m. m(k 7→ v)) xs Map.empty
〈proof 〉

context includes lifting-syntax
begin

lemma empty-parametric: (A ===> rel-option B) Map.empty Map.empty
〈proof 〉

lemma lookup-parametric: ((A ===> B) ===> A ===> B) (λm k. m k) (λm
k. m k)
〈proof 〉

lemma update-parametric:
assumes [transfer-rule]: bi-unique A
shows (A ===> B ===> (A ===> rel-option B) ===> A ===> rel-option

B)
(λk v m. m(k 7→ v)) (λk v m. m(k 7→ v))
〈proof 〉

lemma delete-parametric:
assumes [transfer-rule]: bi-unique A
shows (A ===> (A ===> rel-option B) ===> A ===> rel-option B)
(λk m. m(k := None)) (λk m. m(k := None))
〈proof 〉

lemma is-none-parametric [transfer-rule]:
(rel-option A ===> HOL.eq) Option.is-none Option.is-none
〈proof 〉

lemma dom-parametric:
assumes [transfer-rule]: bi-total A
shows ((A ===> rel-option B) ===> rel-set A) dom dom
〈proof 〉

lemma graph-parametric:

THEORY “Mapping” 531

assumes bi-total A
shows ((A ===> rel-option B) ===> rel-set (rel-prod A B)) Map.graph Map.graph
〈proof 〉

lemma map-of-parametric [transfer-rule]:
assumes [transfer-rule]: bi-unique R1
shows (list-all2 (rel-prod R1 R2) ===> R1 ===> rel-option R2) map-of

map-of
〈proof 〉

lemma map-entry-parametric [transfer-rule]:
assumes [transfer-rule]: bi-unique A
shows (A ===> (B ===> B) ===> (A ===> rel-option B) ===> A

===> rel-option B)
(λk f m. (case m k of None ⇒ m
| Some v ⇒ m (k 7→ (f v)))) (λk f m. (case m k of None ⇒ m
| Some v ⇒ m (k 7→ (f v))))

〈proof 〉

lemma tabulate-parametric:
assumes [transfer-rule]: bi-unique A
shows (list-all2 A ===> (A ===> B) ===> A ===> rel-option B)
(λks f . (map-of (map (λk. (k, f k)) ks))) (λks f . (map-of (map (λk. (k, f k))

ks)))
〈proof 〉

lemma bulkload-parametric:
(list-all2 A ===> HOL.eq ===> rel-option A)
(λxs k. if k < length xs then Some (xs ! k) else None)
(λxs k. if k < length xs then Some (xs ! k) else None)

〈proof 〉

lemma map-parametric:
((A ===> B) ===> (C ===> D) ===> (B ===> rel-option C) ===> A

===> rel-option D)
(λf g m. (map-option g ◦ m ◦ f)) (λf g m. (map-option g ◦ m ◦ f))

〈proof 〉

lemma combine-with-key-parametric:
((A ===> B ===> B ===> B) ===> (A ===> rel-option B) ===> (A

===> rel-option B) ===>
(A ===> rel-option B)) (λf m1 m2 x. combine-options (f x) (m1 x) (m2 x))
(λf m1 m2 x. combine-options (f x) (m1 x) (m2 x))
〈proof 〉

lemma combine-parametric:
((B ===> B ===> B) ===> (A ===> rel-option B) ===> (A ===>

rel-option B) ===>
(A ===> rel-option B)) (λf m1 m2 x. combine-options f (m1 x) (m2 x))

THEORY “Mapping” 532

(λf m1 m2 x. combine-options f (m1 x) (m2 x))
〈proof 〉

end

64.2 Type definition and primitive operations
typedef (′a, ′b) mapping = UNIV :: (′a ⇀ ′b) set

morphisms rep Mapping 〈proof 〉

setup-lifting type-definition-mapping

lift-definition empty :: (′a, ′b) mapping
is Map.empty parametric empty-parametric 〈proof 〉

lift-definition lookup :: (′a, ′b) mapping ⇒ ′a ⇒ ′b option
is λm k. m k parametric lookup-parametric 〈proof 〉

definition lookup-default d m k = (case Mapping.lookup m k of None ⇒ d | Some
v ⇒ v)

lift-definition update :: ′a ⇒ ′b ⇒ (′a, ′b) mapping ⇒ (′a, ′b) mapping
is λk v m. m(k 7→ v) parametric update-parametric 〈proof 〉

lift-definition delete :: ′a ⇒ (′a, ′b) mapping ⇒ (′a, ′b) mapping
is λk m. m(k := None) parametric delete-parametric 〈proof 〉

lift-definition filter :: (′a ⇒ ′b ⇒ bool) ⇒ (′a, ′b) mapping ⇒ (′a, ′b) mapping
is λP m k. case m k of None ⇒ None | Some v ⇒ if P k v then Some v else None
〈proof 〉

lift-definition keys :: (′a, ′b) mapping ⇒ ′a set
is dom parametric dom-parametric 〈proof 〉

lift-definition entries :: (′a, ′b) mapping ⇒ (′a × ′b) set
is Map.graph parametric graph-parametric 〈proof 〉

lift-definition tabulate :: ′a list ⇒ (′a ⇒ ′b) ⇒ (′a, ′b) mapping
is λks f . (map-of (List.map (λk. (k, f k)) ks)) parametric tabulate-parametric
〈proof 〉

lift-definition bulkload :: ′a list ⇒ (nat, ′a) mapping
is λxs k. if k < length xs then Some (xs ! k) else None parametric bulk-

load-parametric 〈proof 〉

lift-definition map :: (′c⇒ ′a)⇒ (′b⇒ ′d)⇒ (′a, ′b) mapping ⇒ (′c, ′d) mapping
is λf g m. (map-option g ◦ m ◦ f) parametric map-parametric 〈proof 〉

lift-definition map-values :: (′c ⇒ ′a ⇒ ′b)⇒ (′c, ′a) mapping ⇒ (′c, ′b) mapping

THEORY “Mapping” 533

is λf m x. map-option (f x) (m x) 〈proof 〉

lift-definition combine-with-key ::
(′a ⇒ ′b ⇒ ′b ⇒ ′b) ⇒ (′a, ′b) mapping ⇒ (′a, ′b) mapping ⇒ (′a, ′b) mapping
is λf m1 m2 x. combine-options (f x) (m1 x) (m2 x) parametric combine-with-key-parametric
〈proof 〉

lift-definition combine ::
(′b ⇒ ′b ⇒ ′b) ⇒ (′a, ′b) mapping ⇒ (′a, ′b) mapping ⇒ (′a, ′b) mapping
is λf m1 m2 x. combine-options f (m1 x) (m2 x) parametric combine-parametric
〈proof 〉

definition All-mapping m P ←→
(∀ x. case Mapping.lookup m x of None ⇒ True | Some y ⇒ P x y)

declare [[code drop: map]]

64.3 Functorial structure
functor map: map
〈proof 〉

64.4 Derived operations
definition ordered-keys :: (′a::linorder , ′b) mapping ⇒ ′a list

where ordered-keys m = (if finite (keys m) then sorted-list-of-set (keys m) else
[])

definition ordered-entries :: (′a::linorder , ′b) mapping ⇒ (′a × ′b) list
where ordered-entries m = (if finite (entries m) then sorted-key-list-of-set fst

(entries m)
else [])

definition fold :: (′a::linorder ⇒ ′b ⇒ ′c ⇒ ′c) ⇒ (′a, ′b) mapping ⇒ ′c ⇒ ′c
where fold f m a = List.fold (case-prod f) (ordered-entries m) a

definition is-empty :: (′a, ′b) mapping ⇒ bool
where is-empty m ←→ keys m = {}

definition size :: (′a, ′b) mapping ⇒ nat
where size m = (if finite (keys m) then card (keys m) else 0)

definition replace :: ′a ⇒ ′b ⇒ (′a, ′b) mapping ⇒ (′a, ′b) mapping
where replace k v m = (if k ∈ keys m then update k v m else m)

definition default :: ′a ⇒ ′b ⇒ (′a, ′b) mapping ⇒ (′a, ′b) mapping
where default k v m = (if k ∈ keys m then m else update k v m)

Manual derivation of transfer rule is non-trivial

THEORY “Mapping” 534

lift-definition map-entry :: ′a ⇒ (′b ⇒ ′b)⇒ (′a, ′b) mapping ⇒ (′a, ′b) mapping
is
λk f m.
(case m k of

None ⇒ m
| Some v ⇒ m (k 7→ (f v))) parametric map-entry-parametric 〈proof 〉

lemma map-entry-code [code]:
map-entry k f m =
(case lookup m k of

None ⇒ m
| Some v ⇒ update k (f v) m)
〈proof 〉

definition map-default :: ′a ⇒ ′b ⇒ (′b ⇒ ′b) ⇒ (′a, ′b) mapping ⇒ (′a, ′b)
mapping

where map-default k v f m = map-entry k f (default k v m)

definition of-alist :: (′k × ′v) list ⇒ (′k, ′v) mapping
where of-alist xs = foldr (λ(k, v) m. update k v m) xs empty

instantiation mapping :: (type, type) equal
begin

definition HOL.equal m1 m2 ←→ (∀ k. lookup m1 k = lookup m2 k)

instance
〈proof 〉

end

context includes lifting-syntax
begin

lemma [transfer-rule]:
assumes [transfer-rule]: bi-total A

and [transfer-rule]: bi-unique B
shows (pcr-mapping A B ===> pcr-mapping A B ===> (=)) HOL.eq HOL.equal
〈proof 〉

lemma of-alist-transfer [transfer-rule]:
assumes [transfer-rule]: bi-unique R1
shows (list-all2 (rel-prod R1 R2) ===> pcr-mapping R1 R2) map-of of-alist
〈proof 〉

end

THEORY “Mapping” 535

64.5 Properties
lemma mapping-eqI : (

∧
x. lookup m x = lookup m ′ x) =⇒ m = m ′

〈proof 〉

lemma mapping-eqI ′:
assumes

∧
x. x ∈ Mapping.keys m =⇒ Mapping.lookup-default d m x = Map-

ping.lookup-default d m ′ x
and Mapping.keys m = Mapping.keys m ′

shows m = m ′

〈proof 〉

lemma lookup-update[simp]: lookup (update k v m) k = Some v
〈proof 〉

lemma lookup-update-neq[simp]: k 6= k ′ =⇒ lookup (update k v m) k ′ = lookup m
k ′

〈proof 〉

lemma lookup-update ′: lookup (update k v m) k ′ = (if k = k ′ then Some v else
lookup m k ′)
〈proof 〉

lemma lookup-empty[simp]: lookup empty k = None
〈proof 〉

lemma lookup-delete[simp]: lookup (delete k m) k = None
〈proof 〉

lemma lookup-delete-neq[simp]: k 6= k ′ =⇒ lookup (delete k m) k ′ = lookup m k ′

〈proof 〉

lemma lookup-filter :
lookup (filter P m) k =
(case lookup m k of

None ⇒ None
| Some v ⇒ if P k v then Some v else None)
〈proof 〉

lemma lookup-map-values: lookup (map-values f m) k = map-option (f k) (lookup
m k)
〈proof 〉

lemma lookup-default-empty: lookup-default d empty k = d
〈proof 〉

lemma lookup-default-update: lookup-default d (update k v m) k = v
〈proof 〉

lemma lookup-default-update-neq:

THEORY “Mapping” 536

k 6= k ′ =⇒ lookup-default d (update k v m) k ′ = lookup-default d m k ′

〈proof 〉

lemma lookup-default-update ′:
lookup-default d (update k v m) k ′ = (if k = k ′ then v else lookup-default d m k ′)
〈proof 〉

lemma lookup-default-filter :
lookup-default d (filter P m) k =

(if P k (lookup-default d m k) then lookup-default d m k else d)
〈proof 〉

lemma lookup-default-map-values:
lookup-default (f k d) (map-values f m) k = f k (lookup-default d m k)
〈proof 〉

lemma lookup-combine-with-key:
Mapping.lookup (combine-with-key f m1 m2) x =

combine-options (f x) (Mapping.lookup m1 x) (Mapping.lookup m2 x)
〈proof 〉

lemma combine-altdef : combine f m1 m2 = combine-with-key (λ-. f) m1 m2
〈proof 〉

lemma lookup-combine:
Mapping.lookup (combine f m1 m2) x =

combine-options f (Mapping.lookup m1 x) (Mapping.lookup m2 x)
〈proof 〉

lemma lookup-default-neutral-combine-with-key:
assumes

∧
x. f k d x = x

∧
x. f k x d = x

shows Mapping.lookup-default d (combine-with-key f m1 m2) k =
f k (Mapping.lookup-default d m1 k) (Mapping.lookup-default d m2 k)
〈proof 〉

lemma lookup-default-neutral-combine:
assumes

∧
x. f d x = x

∧
x. f x d = x

shows Mapping.lookup-default d (combine f m1 m2) x =
f (Mapping.lookup-default d m1 x) (Mapping.lookup-default d m2 x)
〈proof 〉

lemma lookup-map-entry: lookup (map-entry x f m) x = map-option f (lookup m
x)
〈proof 〉

lemma lookup-map-entry-neq: x 6= y =⇒ lookup (map-entry x f m) y = lookup m
y
〈proof 〉

THEORY “Mapping” 537

lemma lookup-map-entry ′:
lookup (map-entry x f m) y =

(if x = y then map-option f (lookup m y) else lookup m y)
〈proof 〉

lemma lookup-default: lookup (default x d m) x = Some (lookup-default d m x)
〈proof 〉

lemma lookup-default-neq: x 6= y =⇒ lookup (default x d m) y = lookup m y
〈proof 〉

lemma lookup-default ′:
lookup (default x d m) y =
(if x = y then Some (lookup-default d m x) else lookup m y)
〈proof 〉

lemma lookup-map-default: lookup (map-default x d f m) x = Some (f (lookup-default
d m x))
〈proof 〉

lemma lookup-map-default-neq: x 6= y =⇒ lookup (map-default x d f m) y = lookup
m y
〈proof 〉

lemma lookup-map-default ′:
lookup (map-default x d f m) y =
(if x = y then Some (f (lookup-default d m x)) else lookup m y)
〈proof 〉

lemma lookup-tabulate:
assumes distinct xs
shows Mapping.lookup (Mapping.tabulate xs f) x = (if x ∈ set xs then Some (f

x) else None)
〈proof 〉

lemma lookup-of-alist: lookup (of-alist xs) k = map-of xs k
〈proof 〉

lemma keys-is-none-rep [code-unfold]: k ∈ keys m ←→ ¬ (Option.is-none (lookup
m k))
〈proof 〉

lemma update-update:
update k v (update k w m) = update k v m
k 6= l =⇒ update k v (update l w m) = update l w (update k v m)
〈proof 〉

lemma update-delete [simp]: update k v (delete k m) = update k v m
〈proof 〉

THEORY “Mapping” 538

lemma delete-update:
delete k (update k v m) = delete k m
k 6= l =⇒ delete k (update l v m) = update l v (delete k m)
〈proof 〉

lemma delete-empty [simp]: delete k empty = empty
〈proof 〉

lemma Mapping-delete-if-notin-keys[simp]:
k /∈ keys m =⇒ delete k m = m
〈proof 〉

lemma replace-update:
k /∈ keys m =⇒ replace k v m = m
k ∈ keys m =⇒ replace k v m = update k v m
〈proof 〉

lemma map-values-update: map-values f (update k v m) = update k (f k v) (map-values
f m)
〈proof 〉

lemma size-mono: finite (keys m ′) =⇒ keys m ⊆ keys m ′ =⇒ size m ≤ size m ′

〈proof 〉

lemma size-empty [simp]: size empty = 0
〈proof 〉

lemma size-update:
finite (keys m) =⇒ size (update k v m) =
(if k ∈ keys m then size m else Suc (size m))
〈proof 〉

lemma size-delete: size (delete k m) = (if k ∈ keys m then size m − 1 else size m)
〈proof 〉

lemma size-tabulate [simp]: size (tabulate ks f) = length (remdups ks)
〈proof 〉

lemma keys-filter : keys (filter P m) ⊆ keys m
〈proof 〉

lemma size-filter : finite (keys m) =⇒ size (filter P m) ≤ size m
〈proof 〉

lemma bulkload-tabulate: bulkload xs = tabulate [0 ..<length xs] (nth xs)
〈proof 〉

lemma is-empty-empty [simp]: is-empty empty

THEORY “Mapping” 539

〈proof 〉

lemma is-empty-update [simp]: ¬ is-empty (update k v m)
〈proof 〉

lemma is-empty-delete: is-empty (delete k m) ←→ is-empty m ∨ keys m = {k}
〈proof 〉

lemma is-empty-replace [simp]: is-empty (replace k v m) ←→ is-empty m
〈proof 〉

lemma is-empty-default [simp]: ¬ is-empty (default k v m)
〈proof 〉

lemma is-empty-map-entry [simp]: is-empty (map-entry k f m) ←→ is-empty m
〈proof 〉

lemma is-empty-map-values [simp]: is-empty (map-values f m) ←→ is-empty m
〈proof 〉

lemma is-empty-map-default [simp]: ¬ is-empty (map-default k v f m)
〈proof 〉

lemma keys-dom-lookup: keys m = dom (Mapping.lookup m)
〈proof 〉

lemma keys-empty [simp]: keys empty = {}
〈proof 〉

lemma in-keysD: k ∈ keys m =⇒ ∃ v. lookup m k = Some v
〈proof 〉

lemma keys-update [simp]: keys (update k v m) = insert k (keys m)
〈proof 〉

lemma keys-delete [simp]: keys (delete k m) = keys m − {k}
〈proof 〉

lemma keys-replace [simp]: keys (replace k v m) = keys m
〈proof 〉

lemma keys-default [simp]: keys (default k v m) = insert k (keys m)
〈proof 〉

lemma keys-map-entry [simp]: keys (map-entry k f m) = keys m
〈proof 〉

lemma keys-map-default [simp]: keys (map-default k v f m) = insert k (keys m)
〈proof 〉

THEORY “Mapping” 540

lemma keys-map-values [simp]: keys (map-values f m) = keys m
〈proof 〉

lemma keys-combine-with-key [simp]:
Mapping.keys (combine-with-key f m1 m2) = Mapping.keys m1 ∪ Mapping.keys

m2
〈proof 〉

lemma keys-combine [simp]: Mapping.keys (combine f m1 m2) = Mapping.keys
m1 ∪ Mapping.keys m2
〈proof 〉

lemma keys-tabulate [simp]: keys (tabulate ks f) = set ks
〈proof 〉

lemma keys-of-alist [simp]: keys (of-alist xs) = set (List.map fst xs)
〈proof 〉

lemma keys-bulkload [simp]: keys (bulkload xs) = {0 ..<length xs}
〈proof 〉

lemma finite-keys-update[simp]:
finite (keys (update k v m)) = finite (keys m)
〈proof 〉

lemma set-ordered-keys[simp]:
finite (Mapping.keys m) =⇒ set (Mapping.ordered-keys m) = Mapping.keys m
〈proof 〉

lemma distinct-ordered-keys [simp]: distinct (ordered-keys m)
〈proof 〉

lemma ordered-keys-infinite [simp]: ¬ finite (keys m) =⇒ ordered-keys m = []
〈proof 〉

lemma ordered-keys-empty [simp]: ordered-keys empty = []
〈proof 〉

lemma sorted-ordered-keys[simp]: sorted (ordered-keys m)
〈proof 〉

lemma ordered-keys-update [simp]:
k ∈ keys m =⇒ ordered-keys (update k v m) = ordered-keys m
finite (keys m) =⇒ k /∈ keys m =⇒

ordered-keys (update k v m) = insort k (ordered-keys m)
〈proof 〉

lemma ordered-keys-delete [simp]: ordered-keys (delete k m) = remove1 k (ordered-keys

THEORY “Mapping” 541

m)
〈proof 〉

lemma ordered-keys-replace [simp]: ordered-keys (replace k v m) = ordered-keys m
〈proof 〉

lemma ordered-keys-default [simp]:
k ∈ keys m =⇒ ordered-keys (default k v m) = ordered-keys m
finite (keys m) =⇒ k /∈ keys m =⇒ ordered-keys (default k v m) = insort k

(ordered-keys m)
〈proof 〉

lemma ordered-keys-map-entry [simp]: ordered-keys (map-entry k f m) = ordered-keys
m
〈proof 〉

lemma ordered-keys-map-default [simp]:
k ∈ keys m =⇒ ordered-keys (map-default k v f m) = ordered-keys m
finite (keys m) =⇒ k /∈ keys m =⇒ ordered-keys (map-default k v f m) = insort

k (ordered-keys m)
〈proof 〉

lemma ordered-keys-tabulate [simp]: ordered-keys (tabulate ks f) = sort (remdups
ks)
〈proof 〉

lemma ordered-keys-bulkload [simp]: ordered-keys (bulkload ks) = [0 ..<length ks]
〈proof 〉

lemma tabulate-fold: tabulate xs f = List.fold (λk m. update k (f k) m) xs empty
〈proof 〉

lemma All-mapping-mono:
(
∧

k v. k ∈ keys m =⇒ P k v =⇒ Q k v) =⇒ All-mapping m P =⇒ All-mapping
m Q
〈proof 〉

lemma All-mapping-empty [simp]: All-mapping Mapping.empty P
〈proof 〉

lemma All-mapping-update-iff :
All-mapping (Mapping.update k v m) P ←→ P k v ∧ All-mapping m (λk ′ v ′. k

= k ′ ∨ P k ′ v ′)
〈proof 〉

lemma All-mapping-update:
P k v =⇒ All-mapping m (λk ′ v ′. k = k ′∨ P k ′ v ′) =⇒ All-mapping (Mapping.update

k v m) P
〈proof 〉

THEORY “Mapping” 542

lemma All-mapping-filter-iff : All-mapping (filter P m) Q ←→ All-mapping m (λk
v. P k v −→ Q k v)
〈proof 〉

lemma All-mapping-filter : All-mapping m Q =⇒ All-mapping (filter P m) Q
〈proof 〉

lemma All-mapping-map-values: All-mapping (map-values f m) P ←→ All-mapping
m (λk v. P k (f k v))
〈proof 〉

lemma All-mapping-tabulate: (∀ x∈set xs. P x (f x)) =⇒ All-mapping (Mapping.tabulate
xs f) P
〈proof 〉

lemma All-mapping-alist:
(
∧

k v. (k, v) ∈ set xs =⇒ P k v) =⇒ All-mapping (Mapping.of-alist xs) P
〈proof 〉

lemma combine-empty [simp]: combine f Mapping.empty y = y combine f y Map-
ping.empty = y
〈proof 〉

lemma (in abel-semigroup) comm-monoid-set-combine: comm-monoid-set (combine
f) Mapping.empty
〈proof 〉

locale combine-mapping-abel-semigroup = abel-semigroup
begin

sublocale combine: comm-monoid-set combine f Mapping.empty
〈proof 〉

lemma fold-combine-code:
combine.F g (set xs) = foldr (λx. combine f (g x)) (remdups xs) Mapping.empty
〈proof 〉

lemma keys-fold-combine: finite A =⇒ Mapping.keys (combine.F g A) = (
⋃

x∈A.
Mapping.keys (g x))
〈proof 〉

end

64.5.1 entries, ordered-entries, and fold
context linorder
begin

THEORY “Mapping” 543

sublocale folding-Map-graph: folding-insort-key (≤) (<) Map.graph m fst for m
〈proof 〉

end

lemma sorted-fst-list-of-set-insort-Map-graph[simp]:
assumes finite (dom m) fst x /∈ dom m
shows sorted-key-list-of-set fst (insert x (Map.graph m))

= insort-key fst x (sorted-key-list-of-set fst (Map.graph m))
〈proof 〉

lemma sorted-fst-list-of-set-insort-insert-Map-graph[simp]:
assumes finite (dom m) fst x /∈ dom m
shows sorted-key-list-of-set fst (insert x (Map.graph m))

= insort-insert-key fst x (sorted-key-list-of-set fst (Map.graph m))
〈proof 〉

lemma linorder-finite-Map-induct[consumes 1 , case-names empty update]:
fixes m :: ′a::linorder ⇀ ′b
assumes finite (dom m)
assumes P Map.empty
assumes

∧
k v m. [[finite (dom m); k /∈ dom m; (

∧
k ′. k ′ ∈ dom m =⇒ k ′ ≤ k);

P m]]
=⇒ P (m(k 7→ v))

shows P m
〈proof 〉

lemma delete-insort-fst[simp]: AList.delete k (insort-key fst (k, v) xs) = AL-
ist.delete k xs
〈proof 〉

lemma insort-fst-delete: [[fst x 6= k2 ; sorted (List.map fst xs)]]
=⇒ insort-key fst x (AList.delete k2 xs) = AList.delete k2 (insort-key fst x xs)
〈proof 〉

lemma sorted-fst-list-of-set-Map-graph-fun-upd-None[simp]:
sorted-key-list-of-set fst (Map.graph (m(k := None)))
= AList.delete k (sorted-key-list-of-set fst (Map.graph m))

〈proof 〉

lemma entries-empty[simp]: entries empty = {}
〈proof 〉

lemma entries-lookup: entries m = Map.graph (lookup m)
〈proof 〉

lemma in-entriesI : lookup m k = Some v =⇒ (k, v) ∈ entries m
〈proof 〉

THEORY “Mapping” 544

lemma in-entriesD: (k, v) ∈ entries m =⇒ lookup m k = Some v
〈proof 〉

lemma fst-image-entries-eq-keys[simp]: fst ‘ Mapping.entries m = Mapping.keys
m
〈proof 〉

lemma finite-entries-iff-finite-keys[simp]:
finite (entries m) = finite (keys m)
〈proof 〉

lemma entries-update:
entries (update k v m) = insert (k, v) (entries (delete k m))
〈proof 〉

lemma entries-delete:
entries (delete k m) = {e ∈ entries m. fst e 6= k}
〈proof 〉

lemma entries-of-alist[simp]:
distinct (List.map fst xs) =⇒ entries (of-alist xs) = set xs
〈proof 〉

lemma entries-keysD:
x ∈ entries m =⇒ fst x ∈ keys m
〈proof 〉

lemma set-ordered-entries[simp]:
finite (keys m) =⇒ set (ordered-entries m) = entries m
〈proof 〉

lemma distinct-ordered-entries[simp]: distinct (List.map fst (ordered-entries m))
〈proof 〉

lemma sorted-ordered-entries[simp]: sorted (List.map fst (ordered-entries m))
〈proof 〉

lemma ordered-entries-infinite[simp]:
¬ finite (Mapping.keys m) =⇒ ordered-entries m = []
〈proof 〉

lemma ordered-entries-empty[simp]: ordered-entries empty = []
〈proof 〉

lemma ordered-entries-update[simp]:
assumes finite (keys m)
shows ordered-entries (update k v m)
= insort-insert-key fst (k, v) (AList.delete k (ordered-entries m))

〈proof 〉

THEORY “Monad-Syntax” 545

lemma ordered-entries-delete[simp]:
ordered-entries (delete k m) = AList.delete k (ordered-entries m)
〈proof 〉

lemma map-fst-ordered-entries[simp]:
List.map fst (ordered-entries m) = ordered-keys m
〈proof 〉

lemma fold-empty[simp]: fold f empty a = a
〈proof 〉

lemma insort-key-is-snoc-if-sorted-and-distinct:
assumes sorted (List.map f xs) f y /∈ f ‘ set xs ∀ x ∈ set xs. f x ≤ f y
shows insort-key f y xs = xs @ [y]
〈proof 〉

lemma fold-update:
assumes finite (keys m)
assumes k /∈ keys m

∧
k ′. k ′ ∈ keys m =⇒ k ′ ≤ k

shows fold f (update k v m) a = f k v (fold f m a)
〈proof 〉

lemma linorder-finite-Mapping-induct[consumes 1 , case-names empty update]:
fixes m :: (′a::linorder , ′b) mapping
assumes finite (keys m)
assumes P empty
assumes

∧
k v m.

[[finite (keys m); k /∈ keys m; (
∧

k ′. k ′ ∈ keys m =⇒ k ′ ≤ k); P m]]
=⇒ P (update k v m)

shows P m
〈proof 〉

64.6 Code generator setup
hide-const (open) empty is-empty rep lookup lookup-default filter update delete
ordered-keys

keys size replace default map-entry map-default tabulate bulkload map map-values
combine of-alist

entries ordered-entries fold

end

65 Monad notation for arbitrary types
theory Monad-Syntax

imports Main
begin

THEORY “Monad-Syntax” 546

We provide a convenient do-notation for monadic expressions well-known
from Haskell. Let is printed specially in do-expressions.
consts

bind :: ′a ⇒ (′b ⇒ ′c) ⇒ ′d (infixl ‹>>=› 54)

notation (ASCII)
bind (infixl ‹>>=› 54)

abbreviation (do-notation)
bind-do :: ′a ⇒ (′b ⇒ ′c) ⇒ ′d
where bind-do ≡ bind

notation (output)
bind-do (infixl ‹>>=› 54)

notation (ASCII output)
bind-do (infixl ‹>>=› 54)

nonterminal do-binds and do-bind
syntax

-do-block :: do-binds ⇒ ′a
(‹(‹open-block notation=‹mixfix do block››do {//(2 -)//})› [12] 62)

-do-bind :: [pttrn, ′a] ⇒ do-bind
(‹(‹indent=2 notation=‹infix do bind››- ←/ -)› 13)

-do-let :: [pttrn, ′a] ⇒ do-bind
(‹(‹indent=2 notation=‹infix do let››let - =/ -)› [1000 , 13] 13)

-do-then :: ′a ⇒ do-bind (‹-› [14] 13)
-do-final :: ′a ⇒ do-binds (‹-›)
-do-cons :: [do-bind, do-binds] ⇒ do-binds
(‹(‹open-block notation=‹infix do next››-;//-)› [13 , 12] 12)

-thenM :: [′a, ′b] ⇒ ′c (infixl ‹>>› 54)

syntax (ASCII)
-do-bind :: [pttrn, ′a] ⇒ do-bind
(‹(‹indent=2 notation=‹infix do bind››- <−/ -)› 13)

-thenM :: [′a, ′b] ⇒ ′c (infixl ‹>>› 54)

syntax-consts
-do-block -do-cons -do-bind -do-then
 bind and
-do-let
 Let

translations
-do-block (-do-cons (-do-then t) (-do-final e))

 CONST bind-do t (λ-. e)

-do-block (-do-cons (-do-bind p t) (-do-final e))

 CONST bind-do t (λp. e)

-do-block (-do-cons (-do-let p t) bs)

THEORY “More-List” 547

 let p = t in -do-block bs
-do-block (-do-cons b (-do-cons c cs))

 -do-block (-do-cons b (-do-final (-do-block (-do-cons c cs))))

-do-cons (-do-let p t) (-do-final s)

 -do-final (let p = t in s)

-do-block (-do-final e) ⇀ e
(m >> n) ⇀ (m >>= (λ-. n))

adhoc-overloading
bind
 Set.bind Predicate.bind Option.bind List.bind

end

66 Less common functions on lists
theory More-List
imports Main
begin

definition strip-while :: (′a ⇒ bool) ⇒ ′a list ⇒ ′a list
where

strip-while P = rev ◦ dropWhile P ◦ rev

lemma strip-while-rev [simp]:
strip-while P (rev xs) = rev (dropWhile P xs)
〈proof 〉

lemma strip-while-Nil [simp]:
strip-while P [] = []
〈proof 〉

lemma strip-while-append [simp]:
¬ P x =⇒ strip-while P (xs @ [x]) = xs @ [x]
〈proof 〉

lemma strip-while-append-rec [simp]:
P x =⇒ strip-while P (xs @ [x]) = strip-while P xs
〈proof 〉

lemma strip-while-Cons [simp]:
¬ P x =⇒ strip-while P (x # xs) = x # strip-while P xs
〈proof 〉

lemma strip-while-eq-Nil [simp]:
strip-while P xs = [] ←→ (∀ x∈set xs. P x)
〈proof 〉

lemma strip-while-eq-Cons-rec:
strip-while P (x # xs) = x # strip-while P xs ←→ ¬ (P x ∧ (∀ x∈set xs. P x))

THEORY “More-List” 548

〈proof 〉

lemma split-strip-while-append:
fixes xs :: ′a list
obtains ys zs :: ′a list
where strip-while P xs = ys and ∀ x∈set zs. P x and xs = ys @ zs
〈proof 〉

lemma strip-while-snoc [simp]:
strip-while P (xs @ [x]) = (if P x then strip-while P xs else xs @ [x])
〈proof 〉

lemma strip-while-map:
strip-while P (map f xs) = map f (strip-while (P ◦ f) xs)
〈proof 〉

lemma strip-while-dropWhile-commute:
strip-while P (dropWhile Q xs) = dropWhile Q (strip-while P xs)
〈proof 〉

lemma dropWhile-strip-while-commute:
dropWhile P (strip-while Q xs) = strip-while Q (dropWhile P xs)
〈proof 〉

definition no-leading :: (′a ⇒ bool) ⇒ ′a list ⇒ bool
where

no-leading P xs ←→ (xs 6= [] −→ ¬ P (hd xs))

lemma no-leading-Nil [iff]:
no-leading P []
〈proof 〉

lemma no-leading-Cons [iff]:
no-leading P (x # xs) ←→ ¬ P x
〈proof 〉

lemma no-leading-append [simp]:
no-leading P (xs @ ys) ←→ no-leading P xs ∧ (xs = [] −→ no-leading P ys)
〈proof 〉

lemma no-leading-dropWhile [simp]:
no-leading P (dropWhile P xs)
〈proof 〉

lemma dropWhile-eq-obtain-leading:
assumes dropWhile P xs = ys
obtains zs where xs = zs @ ys and

∧
z. z ∈ set zs =⇒ P z and no-leading P

ys

THEORY “More-List” 549

〈proof 〉

lemma dropWhile-idem-iff :
dropWhile P xs = xs ←→ no-leading P xs
〈proof 〉

abbreviation no-trailing :: (′a ⇒ bool) ⇒ ′a list ⇒ bool
where

no-trailing P xs ≡ no-leading P (rev xs)

lemma no-trailing-unfold:
no-trailing P xs ←→ (xs 6= [] −→ ¬ P (last xs))
〈proof 〉

lemma no-trailing-Nil [iff]:
no-trailing P []
〈proof 〉

lemma no-trailing-Cons [simp]:
no-trailing P (x # xs) ←→ no-trailing P xs ∧ (xs = [] −→ ¬ P x)
〈proof 〉

lemma no-trailing-append:
no-trailing P (xs @ ys) ←→ no-trailing P ys ∧ (ys = [] −→ no-trailing P xs)
〈proof 〉

lemma no-trailing-append-Cons [simp]:
no-trailing P (xs @ y # ys) ←→ no-trailing P (y # ys)
〈proof 〉

lemma no-trailing-strip-while [simp]:
no-trailing P (strip-while P xs)
〈proof 〉

lemma strip-while-idem [simp]:
no-trailing P xs =⇒ strip-while P xs = xs
〈proof 〉

lemma strip-while-eq-obtain-trailing:
assumes strip-while P xs = ys
obtains zs where xs = ys @ zs and

∧
z. z ∈ set zs =⇒ P z and no-trailing P

ys
〈proof 〉

lemma strip-while-idem-iff :
strip-while P xs = xs ←→ no-trailing P xs
〈proof 〉

THEORY “More-List” 550

lemma no-trailing-map:
no-trailing P (map f xs) ←→ no-trailing (P ◦ f) xs
〈proof 〉

lemma no-trailing-drop [simp]:
no-trailing P (drop n xs) if no-trailing P xs
〈proof 〉

lemma no-trailing-upt [simp]:
no-trailing P [n..<m] ←→ (n < m −→ ¬ P (m − 1))
〈proof 〉

definition nth-default :: ′a ⇒ ′a list ⇒ nat ⇒ ′a
where

nth-default dflt xs n = (if n < length xs then xs ! n else dflt)

lemma nth-default-nth:
n < length xs =⇒ nth-default dflt xs n = xs ! n
〈proof 〉

lemma nth-default-beyond:
length xs ≤ n =⇒ nth-default dflt xs n = dflt
〈proof 〉

lemma nth-default-Nil [simp]:
nth-default dflt [] n = dflt
〈proof 〉

lemma nth-default-Cons:
nth-default dflt (x # xs) n = (case n of 0 ⇒ x | Suc n ′⇒ nth-default dflt xs n ′)
〈proof 〉

lemma nth-default-Cons-0 [simp]:
nth-default dflt (x # xs) 0 = x
〈proof 〉

lemma nth-default-Cons-Suc [simp]:
nth-default dflt (x # xs) (Suc n) = nth-default dflt xs n
〈proof 〉

lemma nth-default-replicate-dflt [simp]:
nth-default dflt (replicate n dflt) m = dflt
〈proof 〉

lemma nth-default-append:
nth-default dflt (xs @ ys) n =
(if n < length xs then nth xs n else nth-default dflt ys (n − length xs))
〈proof 〉

THEORY “More-List” 551

lemma nth-default-append-trailing [simp]:
nth-default dflt (xs @ replicate n dflt) = nth-default dflt xs
〈proof 〉

lemma nth-default-snoc-default [simp]:
nth-default dflt (xs @ [dflt]) = nth-default dflt xs
〈proof 〉

lemma nth-default-eq-dflt-iff :
nth-default dflt xs k = dflt ←→ (k < length xs −→ xs ! k = dflt)
〈proof 〉

lemma nth-default-take-eq:
nth-default dflt (take m xs) n =
(if n < m then nth-default dflt xs n else dflt)
〈proof 〉

lemma in-enumerate-iff-nth-default-eq:
x 6= dflt =⇒ (n, x) ∈ set (enumerate 0 xs) ←→ nth-default dflt xs n = x
〈proof 〉

lemma last-conv-nth-default:
assumes xs 6= []
shows last xs = nth-default dflt xs (length xs − 1)
〈proof 〉

lemma nth-default-map-eq:
f dflt ′ = dflt =⇒ nth-default dflt (map f xs) n = f (nth-default dflt ′ xs n)
〈proof 〉

lemma finite-nth-default-neq-default [simp]:
finite {k. nth-default dflt xs k 6= dflt}
〈proof 〉

lemma sorted-list-of-set-nth-default:
sorted-list-of-set {k. nth-default dflt xs k 6= dflt} = map fst (filter (λ(-, x). x 6=

dflt) (enumerate 0 xs))
〈proof 〉

lemma map-nth-default:
map (nth-default x xs) [0 ..<length xs] = xs
〈proof 〉

lemma range-nth-default [simp]:
range (nth-default dflt xs) = insert dflt (set xs)
〈proof 〉

lemma nth-strip-while:

THEORY “Cancellation” 552

assumes n < length (strip-while P xs)
shows strip-while P xs ! n = xs ! n
〈proof 〉

lemma length-strip-while-le:
length (strip-while P xs) ≤ length xs
〈proof 〉

lemma nth-default-strip-while-dflt [simp]:
nth-default dflt (strip-while ((=) dflt) xs) = nth-default dflt xs
〈proof 〉

lemma nth-default-eq-iff :
nth-default dflt xs = nth-default dflt ys
←→ strip-while (HOL.eq dflt) xs = strip-while (HOL.eq dflt) ys (is ?P ←→

?Q)
〈proof 〉

lemma nth-default-map2 :
‹nth-default d (map2 f xs ys) n = f (nth-default d1 xs n) (nth-default d2 ys n)›

if ‹length xs = length ys› and ‹f d1 d2 = d› for bs cs
〈proof 〉

end

theory Cancellation
imports Main
begin

named-theorems cancelation-simproc-pre ‹These theorems are here to normalise
the term. Special

handling of constructors should be here. Remark that only the simproc @{term
NO-MATCH} is also

included.›

named-theorems cancelation-simproc-post ‹These theorems are here to normalise
the term, after the

cancelation simproc. Normalisation of ‹iterate-add› back to the normale repre-
sentation

should be put here.›

named-theorems cancelation-simproc-eq-elim ‹These theorems are here to help
deriving contradiction
(e.g., ‹Suc - = 0 ›).›

definition iterate-add :: ‹nat ⇒ ′a::cancel-comm-monoid-add ⇒ ′a› where
‹iterate-add n a = (((+) a) ^^ n) 0 ›

THEORY “Cancellation” 553

lemma iterate-add-simps[simp]:
‹iterate-add 0 a = 0 ›
‹iterate-add (Suc n) a = a + iterate-add n a›
〈proof 〉

lemma iterate-add-empty[simp]: ‹iterate-add n 0 = 0 ›
〈proof 〉

lemma iterate-add-distrib[simp]: ‹iterate-add (m+n) a = iterate-add m a + iter-
ate-add n a›
〈proof 〉

lemma iterate-add-Numeral1 : ‹iterate-add n Numeral1 = of-nat n›
〈proof 〉

lemma iterate-add-1 : ‹iterate-add n 1 = of-nat n›
〈proof 〉

lemma iterate-add-eq-add-iff1 :
‹i ≤ j =⇒ (iterate-add j u + m = iterate-add i u + n) = (iterate-add (j − i) u

+ m = n)›
〈proof 〉

lemma iterate-add-eq-add-iff2 :
‹i ≤ j =⇒ (iterate-add i u + m = iterate-add j u + n) = (m = iterate-add (j

− i) u + n)›
〈proof 〉

lemma iterate-add-less-iff1 :
j ≤ (i::nat) =⇒ (iterate-add i (u:: ′a :: {cancel-comm-monoid-add, ordered-ab-semigroup-add-imp-le})

+ m < iterate-add j u + n) = (iterate-add (i−j) u + m < n)
〈proof 〉

lemma iterate-add-less-iff2 :
i ≤ (j::nat) =⇒ (iterate-add i (u:: ′a :: {cancel-comm-monoid-add, ordered-ab-semigroup-add-imp-le})

+ m < iterate-add j u + n) = (m <iterate-add (j − i) u + n)
〈proof 〉

lemma iterate-add-less-eq-iff1 :
j ≤ (i::nat) =⇒ (iterate-add i (u:: ′a :: {cancel-comm-monoid-add, ordered-ab-semigroup-add-imp-le})

+ m ≤ iterate-add j u + n) = (iterate-add (i−j) u + m ≤ n)
〈proof 〉

lemma iterate-add-less-eq-iff2 :
i ≤ (j::nat) =⇒ (iterate-add i (u:: ′a :: {cancel-comm-monoid-add, ordered-ab-semigroup-add-imp-le})

+ m ≤ iterate-add j u + n) = (m ≤ iterate-add (j − i) u + n)
〈proof 〉

lemma iterate-add-add-eq1 :

THEORY “Multiset” 554

j ≤ (i::nat) =⇒ ((iterate-add i u + m) − (iterate-add j u + n)) = ((iterate-add
(i−j) u + m) − n)
〈proof 〉

lemma iterate-add-diff-add-eq2 :
i ≤ (j::nat) =⇒ ((iterate-add i u + m) − (iterate-add j u + n)) = (m −

(iterate-add (j−i) u + n))
〈proof 〉

Simproc Set-Up
〈ML〉

end

67 (Finite) Multisets
theory Multiset

imports Cancellation
begin

67.1 The type of multisets
typedef ′a multiset = ‹{f :: ′a ⇒ nat. finite {x. f x > 0}}›

morphisms count Abs-multiset
〈proof 〉

setup-lifting type-definition-multiset

lemma count-Abs-multiset:
‹count (Abs-multiset f) = f › if ‹finite {x. f x > 0}›
〈proof 〉

lemma multiset-eq-iff : M = N ←→ (∀ a. count M a = count N a)
〈proof 〉

lemma multiset-eqI : (
∧

x. count A x = count B x) =⇒ A = B
〈proof 〉

Preservation of the representing set multiset.
lemma diff-preserves-multiset:

‹finite {x. 0 < M x − N x}› if ‹finite {x. 0 < M x}› for M N :: ‹ ′a ⇒ nat›
〈proof 〉

lemma filter-preserves-multiset:
‹finite {x. 0 < (if P x then M x else 0)}› if ‹finite {x. 0 < M x}› for M N ::

‹ ′a ⇒ nat›
〈proof 〉

lemmas in-multiset = diff-preserves-multiset filter-preserves-multiset

THEORY “Multiset” 555

67.2 Representing multisets
Multiset enumeration
instantiation multiset :: (type) cancel-comm-monoid-add
begin

lift-definition zero-multiset :: ‹ ′a multiset›
is ‹λa. 0 ›
〈proof 〉

abbreviation empty-mset :: ‹ ′a multiset› (‹{#}›)
where ‹empty-mset ≡ 0 ›

lift-definition plus-multiset :: ‹ ′a multiset ⇒ ′a multiset ⇒ ′a multiset›
is ‹λM N a. M a + N a›
〈proof 〉

lift-definition minus-multiset :: ‹ ′a multiset ⇒ ′a multiset ⇒ ′a multiset›
is ‹λM N a. M a − N a›
〈proof 〉

instance
〈proof 〉

end

context
begin

qualified definition is-empty :: ′a multiset ⇒ bool where
[code-abbrev]: is-empty A ←→ A = {#}

end

lemma add-mset-in-multiset:
‹finite {x. 0 < (if x = a then Suc (M x) else M x)}›
if ‹finite {x. 0 < M x}›
〈proof 〉

lift-definition add-mset :: ′a ⇒ ′a multiset ⇒ ′a multiset is
λa M b. if b = a then Suc (M b) else M b
〈proof 〉

syntax
-multiset :: args ⇒ ′a multiset (‹(‹indent=2 notation=‹mixfix multiset enumer-

ation››{#-#})›)
syntax-consts

-multiset
 add-mset
translations

THEORY “Multiset” 556

{#x, xs#} == CONST add-mset x {#xs#}
{#x#} == CONST add-mset x {#}

lemma count-empty [simp]: count {#} a = 0
〈proof 〉

lemma count-add-mset [simp]:
count (add-mset b A) a = (if b = a then Suc (count A a) else count A a)
〈proof 〉

lemma count-single: count {#b#} a = (if b = a then 1 else 0)
〈proof 〉

lemma
add-mset-not-empty [simp]: ‹add-mset a A 6= {#}› and
empty-not-add-mset [simp]: {#} 6= add-mset a A
〈proof 〉

lemma add-mset-add-mset-same-iff [simp]:
add-mset a A = add-mset a B ←→ A = B
〈proof 〉

lemma add-mset-commute:
add-mset x (add-mset y M) = add-mset y (add-mset x M)
〈proof 〉

67.3 Basic operations
67.3.1 Conversion to set and membership
definition set-mset :: ‹ ′a multiset ⇒ ′a set›

where ‹set-mset M = {x. count M x > 0}›

abbreviation member-mset :: ‹ ′a ⇒ ′a multiset ⇒ bool›
where ‹member-mset a M ≡ a ∈ set-mset M ›

notation
member-mset (‹ ′(∈# ′)›) and
member-mset (‹(‹notation=‹infix ∈#››-/ ∈# -)› [50 , 51] 50)

notation (ASCII)
member-mset (‹ ′(:# ′)›) and
member-mset (‹(‹notation=‹infix :#››-/ :# -)› [50 , 51] 50)

abbreviation not-member-mset :: ‹ ′a ⇒ ′a multiset ⇒ bool›
where ‹not-member-mset a M ≡ a /∈ set-mset M ›

notation
not-member-mset (‹ ′(/∈# ′)›) and
not-member-mset (‹(‹notation=‹infix /∈#››-/ /∈# -)› [50 , 51] 50)

THEORY “Multiset” 557

notation (ASCII)
not-member-mset (‹ ′(∼:# ′)›) and
not-member-mset (‹(‹notation=‹infix ∼:#››-/ ∼:# -)› [50 , 51] 50)

context
begin

qualified abbreviation Ball :: ′a multiset ⇒ (′a ⇒ bool) ⇒ bool
where Ball M ≡ Set.Ball (set-mset M)

qualified abbreviation Bex :: ′a multiset ⇒ (′a ⇒ bool) ⇒ bool
where Bex M ≡ Set.Bex (set-mset M)

end

syntax
-MBall :: pttrn ⇒ ′a set ⇒ bool ⇒ bool
(‹(‹indent=3 notation=‹binder ∀ ››∀ -∈#-./ -)› [0 , 0 , 10] 10)

-MBex :: pttrn ⇒ ′a set ⇒ bool ⇒ bool
(‹(‹indent=3 notation=‹binder ∃ ››∃ -∈#-./ -)› [0 , 0 , 10] 10)

syntax (ASCII)
-MBall :: pttrn ⇒ ′a set ⇒ bool ⇒ bool
(‹(‹indent=3 notation=‹binder ∀ ››∀ -:#-./ -)› [0 , 0 , 10] 10)

-MBex :: pttrn ⇒ ′a set ⇒ bool ⇒ bool
(‹(‹indent=3 notation=‹binder ∃ ››∃ -:#-./ -)› [0 , 0 , 10] 10)

syntax-consts
-MBall
 Multiset.Ball and
-MBex
 Multiset.Bex

translations
∀ x∈#A. P
 CONST Multiset.Ball A (λx. P)
∃ x∈#A. P
 CONST Multiset.Bex A (λx. P)

〈ML〉

lemma count-eq-zero-iff :
count M x = 0 ←→ x /∈# M
〈proof 〉

lemma not-in-iff :
x /∈# M ←→ count M x = 0
〈proof 〉

lemma count-greater-zero-iff [simp]:
count M x > 0 ←→ x ∈# M
〈proof 〉

lemma count-inI :
assumes count M x = 0 =⇒ False

THEORY “Multiset” 558

shows x ∈# M
〈proof 〉

lemma in-countE :
assumes x ∈# M
obtains n where count M x = Suc n
〈proof 〉

lemma count-greater-eq-Suc-zero-iff [simp]:
count M x ≥ Suc 0 ←→ x ∈# M
〈proof 〉

lemma count-greater-eq-one-iff [simp]:
count M x ≥ 1 ←→ x ∈# M
〈proof 〉

lemma set-mset-empty [simp]:
set-mset {#} = {}
〈proof 〉

lemma set-mset-single:
set-mset {#b#} = {b}
〈proof 〉

lemma set-mset-eq-empty-iff [simp]:
set-mset M = {} ←→ M = {#}
〈proof 〉

lemma finite-set-mset [iff]:
finite (set-mset M)
〈proof 〉

lemma set-mset-add-mset-insert [simp]: ‹set-mset (add-mset a A) = insert a (set-mset
A)›
〈proof 〉

lemma multiset-nonemptyE [elim]:
assumes A 6= {#}
obtains x where x ∈# A
〈proof 〉

lemma count-gt-imp-in-mset: count M x > n =⇒ x ∈# M
〈proof 〉

67.3.2 Union
lemma count-union [simp]:

count (M + N) a = count M a + count N a
〈proof 〉

THEORY “Multiset” 559

lemma set-mset-union [simp]:
set-mset (M + N) = set-mset M ∪ set-mset N
〈proof 〉

lemma union-mset-add-mset-left [simp]:
add-mset a A + B = add-mset a (A + B)
〈proof 〉

lemma union-mset-add-mset-right [simp]:
A + add-mset a B = add-mset a (A + B)
〈proof 〉

lemma add-mset-add-single: ‹add-mset a A = A + {#a#}›
〈proof 〉

67.3.3 Difference
instance multiset :: (type) comm-monoid-diff
〈proof 〉

lemma count-diff [simp]:
count (M − N) a = count M a − count N a
〈proof 〉

lemma add-mset-diff-bothsides:
‹add-mset a M − add-mset a A = M − A›
〈proof 〉

lemma in-diff-count:
a ∈# M − N ←→ count N a < count M a
〈proof 〉

lemma count-in-diffI :
assumes

∧
n. count N x = n + count M x =⇒ False

shows x ∈# M − N
〈proof 〉

lemma in-diff-countE :
assumes x ∈# M − N
obtains n where count M x = Suc n + count N x
〈proof 〉

lemma in-diffD:
assumes a ∈# M − N
shows a ∈# M
〈proof 〉

THEORY “Multiset” 560

lemma set-mset-diff :
set-mset (M − N) = {a. count N a < count M a}
〈proof 〉

lemma diff-empty [simp]: M − {#} = M ∧ {#} − M = {#}
〈proof 〉

lemma diff-cancel: A − A = {#}
〈proof 〉

lemma diff-union-cancelR: M + N − N = (M :: ′a multiset)
〈proof 〉

lemma diff-union-cancelL: N + M − N = (M :: ′a multiset)
〈proof 〉

lemma diff-right-commute:
fixes M N Q :: ′a multiset
shows M − N − Q = M − Q − N
〈proof 〉

lemma diff-add:
fixes M N Q :: ′a multiset
shows M − (N + Q) = M − N − Q
〈proof 〉

lemma insert-DiffM [simp]: x ∈# M =⇒ add-mset x (M − {#x#}) = M
〈proof 〉

lemma insert-DiffM2 : x ∈# M =⇒ (M − {#x#}) + {#x#} = M
〈proof 〉

lemma diff-union-swap: a 6= b =⇒ add-mset b (M − {#a#}) = add-mset b M −
{#a#}
〈proof 〉

lemma diff-add-mset-swap [simp]: b /∈# A =⇒ add-mset b M − A = add-mset b
(M − A)
〈proof 〉

lemma diff-union-swap2 [simp]: y ∈# M =⇒ add-mset x M − {#y#} = add-mset
x (M − {#y#})
〈proof 〉

lemma diff-diff-add-mset [simp]: (M :: ′a multiset) − N − P = M − (N + P)
〈proof 〉

lemma diff-union-single-conv:
a ∈# J =⇒ I + J − {#a#} = I + (J − {#a#})

THEORY “Multiset” 561

〈proof 〉

lemma mset-add [elim?]:
assumes a ∈# A
obtains B where A = add-mset a B
〈proof 〉

lemma union-iff :
a ∈# A + B ←→ a ∈# A ∨ a ∈# B
〈proof 〉

lemma count-minus-inter-lt-count-minus-inter-iff :
count (M2 − M1) y < count (M1 − M2) y ←→ y ∈# M1 − M2
〈proof 〉

lemma minus-inter-eq-minus-inter-iff :
(M1 − M2) = (M2 − M1) ←→ set-mset (M1 − M2) = set-mset (M2 − M1)
〈proof 〉

67.3.4 Min and Max
abbreviation Min-mset :: ′a::linorder multiset ⇒ ′a where
Min-mset m ≡ Min (set-mset m)

abbreviation Max-mset :: ′a::linorder multiset ⇒ ′a where
Max-mset m ≡ Max (set-mset m)

lemma
Min-in-mset: M 6= {#} =⇒ Min-mset M ∈# M and
Max-in-mset: M 6= {#} =⇒ Max-mset M ∈# M
〈proof 〉

67.3.5 Equality of multisets
lemma single-eq-single [simp]: {#a#} = {#b#} ←→ a = b
〈proof 〉

lemma union-eq-empty [iff]: M + N = {#} ←→ M = {#} ∧ N = {#}
〈proof 〉

lemma empty-eq-union [iff]: {#} = M + N ←→ M = {#} ∧ N = {#}
〈proof 〉

lemma multi-self-add-other-not-self [simp]: M = add-mset x M ←→ False
〈proof 〉

lemma add-mset-remove-trivial [simp]: ‹add-mset x M − {#x#} = M ›
〈proof 〉

lemma diff-single-trivial: ¬ x ∈# M =⇒ M − {#x#} = M

THEORY “Multiset” 562

〈proof 〉

lemma diff-single-eq-union: x ∈# M =⇒ M − {#x#} = N ←→ M = add-mset
x N
〈proof 〉

lemma union-single-eq-diff : add-mset x M = N =⇒ M = N − {#x#}
〈proof 〉

lemma union-single-eq-member : add-mset x M = N =⇒ x ∈# N
〈proof 〉

lemma add-mset-remove-trivial-If :
add-mset a (N − {#a#}) = (if a ∈# N then N else add-mset a N)
〈proof 〉

lemma add-mset-remove-trivial-eq: ‹N = add-mset a (N − {#a#}) ←→ a ∈#
N ›
〈proof 〉

lemma union-is-single:
M + N = {#a#} ←→ M = {#a#} ∧ N = {#} ∨ M = {#} ∧ N = {#a#}
(is ?lhs = ?rhs)
〈proof 〉

lemma single-is-union: {#a#} = M + N ←→ {#a#} = M ∧ N = {#} ∨ M =
{#} ∧ {#a#} = N
〈proof 〉

lemma add-eq-conv-diff :
add-mset a M = add-mset b N ←→ M = N ∧ a = b ∨ M = add-mset b (N −
{#a#}) ∧ N = add-mset a (M − {#b#})
(is ?lhs ←→ ?rhs)

〈proof 〉

lemma add-mset-eq-single [iff]: add-mset b M = {#a#} ←→ b = a ∧ M = {#}
〈proof 〉

lemma single-eq-add-mset [iff]: {#a#} = add-mset b M ←→ b = a ∧ M = {#}
〈proof 〉

lemma insert-noteq-member :
assumes BC : add-mset b B = add-mset c C
and bnotc: b 6= c

shows c ∈# B
〈proof 〉

lemma add-eq-conv-ex:

THEORY “Multiset” 563

(add-mset a M = add-mset b N) =
(M = N ∧ a = b ∨ (∃K . M = add-mset b K ∧ N = add-mset a K))
〈proof 〉

lemma multi-member-split: x ∈# M =⇒ ∃A. M = add-mset x A
〈proof 〉

lemma multiset-add-sub-el-shuffle:
assumes c ∈# B

and b 6= c
shows add-mset b (B − {#c#}) = add-mset b B − {#c#}
〈proof 〉

lemma add-mset-eq-singleton-iff [iff]:
add-mset x M = {#y#} ←→ M = {#} ∧ x = y
〈proof 〉

67.3.6 Pointwise ordering induced by count
definition subseteq-mset :: ′a multiset ⇒ ′a multiset ⇒ bool (infix ‹⊆#› 50)

where A ⊆# B ←→ (∀ a. count A a ≤ count B a)

definition subset-mset :: ′a multiset ⇒ ′a multiset ⇒ bool (infix ‹⊂#› 50)
where A ⊂# B ←→ A ⊆# B ∧ A 6= B

abbreviation (input) supseteq-mset :: ′a multiset ⇒ ′a multiset ⇒ bool (infix
‹⊇#› 50)

where supseteq-mset A B ≡ B ⊆# A

abbreviation (input) supset-mset :: ′a multiset ⇒ ′a multiset ⇒ bool (infix ‹⊃#›
50)

where supset-mset A B ≡ B ⊂# A

notation (input)
subseteq-mset (infix ‹≤#› 50) and
supseteq-mset (infix ‹≥#› 50)

notation (ASCII)
subseteq-mset (infix ‹<=#› 50) and
subset-mset (infix ‹<#› 50) and
supseteq-mset (infix ‹>=#› 50) and
supset-mset (infix ‹>#› 50)

global-interpretation subset-mset: ordering ‹(⊆#)› ‹(⊂#)›
〈proof 〉

interpretation subset-mset: ordered-ab-semigroup-add-imp-le ‹(+)› ‹(−)› ‹(⊆#)›
‹(⊂#)›
〈proof 〉

THEORY “Multiset” 564

interpretation subset-mset: ordered-ab-semigroup-monoid-add-imp-le (+) 0 (−)
(⊆#) (⊂#)
〈proof 〉

lemma mset-subset-eqI :
(
∧

a. count A a ≤ count B a) =⇒ A ⊆# B
〈proof 〉

lemma mset-subset-eq-count:
A ⊆# B =⇒ count A a ≤ count B a
〈proof 〉

lemma mset-subset-eq-exists-conv: (A:: ′a multiset) ⊆# B ←→ (∃C . B = A + C)
〈proof 〉

interpretation subset-mset: ordered-cancel-comm-monoid-diff (+) 0 (⊆#) (⊂#)
(−)
〈proof 〉

declare subset-mset.add-diff-assoc[simp] subset-mset.add-diff-assoc2 [simp]

lemma mset-subset-eq-mono-add-right-cancel: (A:: ′a multiset) + C ⊆# B + C
←→ A ⊆# B
〈proof 〉

lemma mset-subset-eq-mono-add-left-cancel: C + (A:: ′a multiset) ⊆# C + B ←→
A ⊆# B
〈proof 〉

lemma mset-subset-eq-mono-add: (A:: ′a multiset) ⊆# B =⇒ C ⊆# D =⇒ A +
C ⊆# B + D
〈proof 〉

lemma mset-subset-eq-add-left: (A:: ′a multiset) ⊆# A + B
〈proof 〉

lemma mset-subset-eq-add-right: B ⊆# (A:: ′a multiset) + B
〈proof 〉

lemma single-subset-iff [simp]:
{#a#} ⊆# M ←→ a ∈# M
〈proof 〉

lemma mset-subset-eq-single: a ∈# B =⇒ {#a#} ⊆# B
〈proof 〉

lemma mset-subset-eq-add-mset-cancel: ‹add-mset a A ⊆# add-mset a B ←→ A
⊆# B›

THEORY “Multiset” 565

〈proof 〉

lemma multiset-diff-union-assoc:
fixes A B C D :: ′a multiset
shows C ⊆# B =⇒ A + B − C = A + (B − C)
〈proof 〉

lemma mset-subset-eq-multiset-union-diff-commute:
fixes A B C D :: ′a multiset
shows B ⊆# A =⇒ A − B + C = A + C − B
〈proof 〉

lemma diff-subset-eq-self [simp]:
(M :: ′a multiset) − N ⊆# M
〈proof 〉

lemma mset-subset-eqD:
assumes A ⊆# B and x ∈# A
shows x ∈# B
〈proof 〉

lemma mset-subsetD:
A ⊂# B =⇒ x ∈# A =⇒ x ∈# B
〈proof 〉

lemma set-mset-mono:
A ⊆# B =⇒ set-mset A ⊆ set-mset B
〈proof 〉

lemma mset-subset-eq-insertD:
assumes add-mset x A ⊆# B
shows x ∈# B ∧ A ⊂# B
〈proof 〉

lemma mset-subset-insertD:
add-mset x A ⊂# B =⇒ x ∈# B ∧ A ⊂# B
〈proof 〉

lemma mset-subset-of-empty[simp]: A ⊂# {#} ←→ False
〈proof 〉

lemma empty-subset-add-mset[simp]: {#} ⊂# add-mset x M
〈proof 〉

lemma empty-le: {#} ⊆# A
〈proof 〉

lemma insert-subset-eq-iff :
add-mset a A ⊆# B ←→ a ∈# B ∧ A ⊆# B − {#a#}

THEORY “Multiset” 566

〈proof 〉

lemma insert-union-subset-iff :
add-mset a A ⊂# B ←→ a ∈# B ∧ A ⊂# B − {#a#}
〈proof 〉

lemma subset-eq-diff-conv:
A − C ⊆# B ←→ A ⊆# B + C
〈proof 〉

lemma multi-psub-of-add-self [simp]: A ⊂# add-mset x A
〈proof 〉

lemma multi-psub-self : A ⊂# A = False
〈proof 〉

lemma mset-subset-add-mset [simp]: add-mset x N ⊂# add-mset x M ←→ N ⊂#
M
〈proof 〉

lemma mset-subset-diff-self : c ∈# B =⇒ B − {#c#} ⊂# B
〈proof 〉

lemma Diff-eq-empty-iff-mset: A − B = {#} ←→ A ⊆# B
〈proof 〉

lemma add-mset-subseteq-single-iff [iff]: add-mset a M ⊆# {#b#} ←→ M = {#}
∧ a = b
〈proof 〉

lemma nonempty-subseteq-mset-eq-single: M 6= {#} =⇒ M ⊆# {#x#} =⇒ M
= {#x#}
〈proof 〉

lemma nonempty-subseteq-mset-iff-single: (M 6= {#} ∧ M ⊆# {#x#} ∧ P) ←→
M = {#x#} ∧ P
〈proof 〉

67.3.7 Intersection and bounded union
definition inter-mset :: ‹ ′a multiset ⇒ ′a multiset ⇒ ′a multiset› (infixl ‹∩#›
70)

where ‹A ∩# B = A − (A − B)›

lemma count-inter-mset [simp]:
‹count (A ∩# B) x = min (count A x) (count B x)›
〈proof 〉

THEORY “Multiset” 567

interpretation subset-mset: semilattice-inf ‹(∩#)› ‹(⊆#)› ‹(⊂#)›
〈proof 〉

definition union-mset :: ‹ ′a multiset ⇒ ′a multiset ⇒ ′a multiset› (infixl ‹∪#›
70)

where ‹A ∪# B = A + (B − A)›

lemma count-union-mset [simp]:
‹count (A ∪# B) x = max (count A x) (count B x)›
〈proof 〉

global-interpretation subset-mset: semilattice-neutr-order ‹(∪#)› ‹{#}› ‹(⊇#)›
‹(⊃#)›
〈proof 〉

interpretation subset-mset: semilattice-sup ‹(∪#)› ‹(⊆#)› ‹(⊂#)›
〈proof 〉

interpretation subset-mset: bounded-lattice-bot (∩#) (⊆#) (⊂#)
(∪#) {#}
〈proof 〉

67.3.8 Additional intersection facts
lemma set-mset-inter [simp]:

set-mset (A ∩# B) = set-mset A ∩ set-mset B
〈proof 〉

lemma diff-intersect-left-idem [simp]:
M − M ∩# N = M − N
〈proof 〉

lemma diff-intersect-right-idem [simp]:
M − N ∩# M = M − N
〈proof 〉

lemma multiset-inter-single[simp]: a 6= b =⇒ {#a#} ∩# {#b#} = {#}
〈proof 〉

lemma multiset-union-diff-commute:
assumes B ∩# C = {#}
shows A + B − C = A − C + B
〈proof 〉

lemma disjunct-not-in:
A ∩# B = {#} ←→ (∀ a. a /∈# A ∨ a /∈# B)
〈proof 〉

THEORY “Multiset” 568

lemma inter-mset-empty-distrib-right: A ∩# (B + C) = {#} ←→ A ∩# B =
{#} ∧ A ∩# C = {#}
〈proof 〉

lemma inter-mset-empty-distrib-left: (A + B) ∩# C = {#} ←→ A ∩# C = {#}
∧ B ∩# C = {#}
〈proof 〉

lemma add-mset-inter-add-mset [simp]:
add-mset a A ∩# add-mset a B = add-mset a (A ∩# B)
〈proof 〉

lemma add-mset-disjoint [simp]:
add-mset a A ∩# B = {#} ←→ a /∈# B ∧ A ∩# B = {#}
{#} = add-mset a A ∩# B ←→ a /∈# B ∧ {#} = A ∩# B
〈proof 〉

lemma disjoint-add-mset [simp]:
B ∩# add-mset a A = {#} ←→ a /∈# B ∧ B ∩# A = {#}
{#} = A ∩# add-mset b B ←→ b /∈# A ∧ {#} = A ∩# B
〈proof 〉

lemma inter-add-left1 : ¬ x ∈# N =⇒ (add-mset x M) ∩# N = M ∩# N
〈proof 〉

lemma inter-add-left2 : x ∈# N =⇒ (add-mset x M) ∩# N = add-mset x (M ∩#
(N − {#x#}))
〈proof 〉

lemma inter-add-right1 : ¬ x ∈# N =⇒ N ∩# (add-mset x M) = N ∩# M
〈proof 〉

lemma inter-add-right2 : x ∈# N =⇒ N ∩# (add-mset x M) = add-mset x ((N
− {#x#}) ∩# M)
〈proof 〉

lemma disjunct-set-mset-diff :
assumes M ∩# N = {#}
shows set-mset (M − N) = set-mset M
〈proof 〉

lemma at-most-one-mset-mset-diff :
assumes a /∈# M − {#a#}
shows set-mset (M − {#a#}) = set-mset M − {a}
〈proof 〉

lemma more-than-one-mset-mset-diff :
assumes a ∈# M − {#a#}
shows set-mset (M − {#a#}) = set-mset M

THEORY “Multiset” 569

〈proof 〉

lemma inter-iff :
a ∈# A ∩# B ←→ a ∈# A ∧ a ∈# B
〈proof 〉

lemma inter-union-distrib-left:
A ∩# B + C = (A + C) ∩# (B + C)
〈proof 〉

lemma inter-union-distrib-right:
C + A ∩# B = (C + A) ∩# (C + B)
〈proof 〉

lemma inter-subset-eq-union:
A ∩# B ⊆# A + B
〈proof 〉

67.3.9 Additional bounded union facts
lemma set-mset-sup [simp]:

‹set-mset (A ∪# B) = set-mset A ∪ set-mset B›
〈proof 〉

lemma sup-union-left1 [simp]: ¬ x ∈# N =⇒ (add-mset x M) ∪# N = add-mset
x (M ∪# N)
〈proof 〉

lemma sup-union-left2 : x ∈# N =⇒ (add-mset x M) ∪# N = add-mset x (M
∪# (N − {#x#}))
〈proof 〉

lemma sup-union-right1 [simp]: ¬ x ∈# N =⇒ N ∪# (add-mset x M) = add-mset
x (N ∪# M)
〈proof 〉

lemma sup-union-right2 : x ∈# N =⇒ N ∪# (add-mset x M) = add-mset x ((N
− {#x#}) ∪# M)
〈proof 〉

lemma sup-union-distrib-left:
A ∪# B + C = (A + C) ∪# (B + C)
〈proof 〉

lemma union-sup-distrib-right:
C + A ∪# B = (C + A) ∪# (C + B)
〈proof 〉

lemma union-diff-inter-eq-sup:

THEORY “Multiset” 570

A + B − A ∩# B = A ∪# B
〈proof 〉

lemma union-diff-sup-eq-inter :
A + B − A ∪# B = A ∩# B
〈proof 〉

lemma add-mset-union:
‹add-mset a A ∪# add-mset a B = add-mset a (A ∪# B)›
〈proof 〉

67.4 Replicate and repeat operations
definition replicate-mset :: nat ⇒ ′a ⇒ ′a multiset where

replicate-mset n x = (add-mset x ^^ n) {#}

lemma replicate-mset-0 [simp]: replicate-mset 0 x = {#}
〈proof 〉

lemma replicate-mset-Suc [simp]: replicate-mset (Suc n) x = add-mset x (replicate-mset
n x)
〈proof 〉

lemma count-replicate-mset[simp]: count (replicate-mset n x) y = (if y = x then
n else 0)
〈proof 〉

lift-definition repeat-mset :: ‹nat ⇒ ′a multiset ⇒ ′a multiset›
is ‹λn M a. n ∗ M a› 〈proof 〉

lemma count-repeat-mset [simp]: count (repeat-mset i A) a = i ∗ count A a
〈proof 〉

lemma repeat-mset-0 [simp]:
‹repeat-mset 0 M = {#}›
〈proof 〉

lemma repeat-mset-Suc [simp]:
‹repeat-mset (Suc n) M = M + repeat-mset n M ›
〈proof 〉

lemma repeat-mset-right [simp]: repeat-mset a (repeat-mset b A) = repeat-mset (a
∗ b) A
〈proof 〉

lemma left-diff-repeat-mset-distrib ′: ‹repeat-mset (i − j) u = repeat-mset i u −
repeat-mset j u›
〈proof 〉

THEORY “Multiset” 571

lemma left-add-mult-distrib-mset:
repeat-mset i u + (repeat-mset j u + k) = repeat-mset (i+j) u + k
〈proof 〉

lemma repeat-mset-distrib:
repeat-mset (m + n) A = repeat-mset m A + repeat-mset n A
〈proof 〉

lemma repeat-mset-distrib2 [simp]:
repeat-mset n (A + B) = repeat-mset n A + repeat-mset n B
〈proof 〉

lemma repeat-mset-replicate-mset[simp]:
repeat-mset n {#a#} = replicate-mset n a
〈proof 〉

lemma repeat-mset-distrib-add-mset[simp]:
repeat-mset n (add-mset a A) = replicate-mset n a + repeat-mset n A
〈proof 〉

lemma repeat-mset-empty[simp]: repeat-mset n {#} = {#}
〈proof 〉

lemma set-mset-sum: finite A =⇒ set-mset (
∑

x∈A. f x) = (
⋃

x∈A. set-mset (f
x))
〈proof 〉

67.4.1 Simprocs
lemma repeat-mset-iterate-add: ‹repeat-mset n M = iterate-add n M ›
〈proof 〉

lemma mset-subseteq-add-iff1 :
j ≤ (i::nat) =⇒ (repeat-mset i u + m ⊆# repeat-mset j u + n) = (repeat-mset

(i−j) u + m ⊆# n)
〈proof 〉

lemma mset-subseteq-add-iff2 :
i ≤ (j::nat) =⇒ (repeat-mset i u + m ⊆# repeat-mset j u + n) = (m ⊆#

repeat-mset (j−i) u + n)
〈proof 〉

lemma mset-subset-add-iff1 :
j ≤ (i::nat) =⇒ (repeat-mset i u + m ⊂# repeat-mset j u + n) = (repeat-mset

(i−j) u + m ⊂# n)
〈proof 〉

lemma mset-subset-add-iff2 :
i ≤ (j::nat) =⇒ (repeat-mset i u + m ⊂# repeat-mset j u + n) = (m ⊂#

THEORY “Multiset” 572

repeat-mset (j−i) u + n)
〈proof 〉

〈ML〉

lemma add-mset-replicate-mset-safe[cancelation-simproc-pre]: ‹NO-MATCH {#}
M =⇒ add-mset a M = {#a#} + M ›
〈proof 〉

declare repeat-mset-iterate-add[cancelation-simproc-pre]

declare iterate-add-distrib[cancelation-simproc-pre]
declare repeat-mset-iterate-add[symmetric, cancelation-simproc-post]

declare add-mset-not-empty[cancelation-simproc-eq-elim]
empty-not-add-mset[cancelation-simproc-eq-elim]
subset-mset.le-zero-eq[cancelation-simproc-eq-elim]
empty-not-add-mset[cancelation-simproc-eq-elim]
add-mset-not-empty[cancelation-simproc-eq-elim]
subset-mset.le-zero-eq[cancelation-simproc-eq-elim]
le-zero-eq[cancelation-simproc-eq-elim]

〈ML〉

67.4.2 Conditionally complete lattice
instantiation multiset :: (type) Inf
begin

lift-definition Inf-multiset :: ′a multiset set ⇒ ′a multiset is
λA i. if A = {} then 0 else Inf ((λf . f i) ‘ A)
〈proof 〉

instance 〈proof 〉

end

lemma Inf-multiset-empty: Inf {} = {#}
〈proof 〉

lemma count-Inf-multiset-nonempty: A 6= {} =⇒ count (Inf A) x = Inf ((λX .
count X x) ‘ A)
〈proof 〉

instantiation multiset :: (type) Sup
begin

definition Sup-multiset :: ′a multiset set ⇒ ′a multiset where

THEORY “Multiset” 573

Sup-multiset A = (if A 6= {} ∧ subset-mset.bdd-above A then
Abs-multiset (λi. Sup ((λX . count X i) ‘ A)) else {#})

lemma Sup-multiset-empty: Sup {} = {#}
〈proof 〉

lemma Sup-multiset-unbounded: ¬ subset-mset.bdd-above A =⇒ Sup A = {#}
〈proof 〉

instance 〈proof 〉

end

lemma bdd-above-multiset-imp-bdd-above-count:
assumes subset-mset.bdd-above (A :: ′a multiset set)
shows bdd-above ((λX . count X x) ‘ A)
〈proof 〉

lemma bdd-above-multiset-imp-finite-support:
assumes A 6= {} subset-mset.bdd-above (A :: ′a multiset set)
shows finite (

⋃
X∈A. {x. count X x > 0})

〈proof 〉

lemma Sup-multiset-in-multiset:
‹finite {i. 0 < (SUP M∈A. count M i)}›
if ‹A 6= {}› ‹subset-mset.bdd-above A›
〈proof 〉

lemma count-Sup-multiset-nonempty:
‹count (Sup A) x = (SUP X∈A. count X x)›
if ‹A 6= {}› ‹subset-mset.bdd-above A›
〈proof 〉

interpretation subset-mset: conditionally-complete-lattice Inf Sup (∩#) (⊆#) (⊂#)
(∪#)
〈proof 〉

lemma set-mset-Inf :
assumes A 6= {}
shows set-mset (Inf A) = (

⋂
X∈A. set-mset X)

〈proof 〉

lemma in-Inf-multiset-iff :
assumes A 6= {}
shows x ∈# Inf A ←→ (∀X∈A. x ∈# X)
〈proof 〉

lemma in-Inf-multisetD: x ∈# Inf A =⇒ X ∈ A =⇒ x ∈# X
〈proof 〉

THEORY “Multiset” 574

lemma set-mset-Sup:
assumes subset-mset.bdd-above A
shows set-mset (Sup A) = (

⋃
X∈A. set-mset X)

〈proof 〉

lemma in-Sup-multiset-iff :
assumes subset-mset.bdd-above A
shows x ∈# Sup A ←→ (∃X∈A. x ∈# X)
〈proof 〉

lemma in-Sup-multisetD:
assumes x ∈# Sup A
shows ∃X∈A. x ∈# X
〈proof 〉

interpretation subset-mset: distrib-lattice (∩#) (⊆#) (⊂#) (∪#)
〈proof 〉

67.4.3 Filter (with comprehension syntax)

Multiset comprehension
lift-definition filter-mset :: (′a ⇒ bool) ⇒ ′a multiset ⇒ ′a multiset
is λP M . λx. if P x then M x else 0
〈proof 〉

syntax (ASCII)
-MCollect :: pttrn ⇒ ′a multiset ⇒ bool ⇒ ′a multiset
(‹(‹indent=1 notation=‹mixfix multiset comprehension››{#- :# -./ -#})›)

syntax
-MCollect :: pttrn ⇒ ′a multiset ⇒ bool ⇒ ′a multiset
(‹(‹indent=1 notation=‹mixfix multiset comprehension››{#- ∈# -./ -#})›)

syntax-consts
-MCollect == filter-mset

translations
{#x ∈# M . P#} == CONST filter-mset (λx. P) M

lemma count-filter-mset [simp]:
count (filter-mset P M) a = (if P a then count M a else 0)
〈proof 〉

lemma set-mset-filter [simp]:
set-mset (filter-mset P M) = {a ∈ set-mset M . P a}
〈proof 〉

lemma filter-empty-mset [simp]: filter-mset P {#} = {#}
〈proof 〉

lemma filter-single-mset: filter-mset P {#x#} = (if P x then {#x#} else {#})

THEORY “Multiset” 575

〈proof 〉

lemma filter-union-mset [simp]: filter-mset P (M + N) = filter-mset P M + fil-
ter-mset P N
〈proof 〉

lemma filter-diff-mset [simp]: filter-mset P (M − N) = filter-mset P M − fil-
ter-mset P N
〈proof 〉

lemma filter-inter-mset [simp]: filter-mset P (M ∩# N) = filter-mset P M ∩#
filter-mset P N
〈proof 〉

lemma filter-sup-mset[simp]: filter-mset P (A ∪# B) = filter-mset P A ∪# fil-
ter-mset P B
〈proof 〉

lemma filter-mset-add-mset [simp]:
filter-mset P (add-mset x A) =
(if P x then add-mset x (filter-mset P A) else filter-mset P A)
〈proof 〉

lemma multiset-filter-subset[simp]: filter-mset f M ⊆# M
〈proof 〉

lemma filter-mset-mono-strong:
assumes A ⊆# B

∧
x. x ∈# A =⇒ P x =⇒ Q x

shows filter-mset P A ⊆# filter-mset Q B
〈proof 〉

lemma multiset-filter-mono:
assumes A ⊆# B
shows filter-mset f A ⊆# filter-mset f B
〈proof 〉

lemma filter-mset-eq-conv:
filter-mset P M = N ←→ N ⊆# M ∧ (∀ b∈#N . P b) ∧ (∀ a∈#M − N . ¬ P a)

(is ?P ←→ ?Q)
〈proof 〉

lemma filter-mset-eq-mempty-iff [simp]: filter-mset P A = {#} ←→ (∀ x. x ∈# A
−→ ¬ P x)
〈proof 〉

lemma filter-filter-mset: filter-mset P (filter-mset Q M) = {#x ∈# M . Q x ∧ P
x#}
〈proof 〉

THEORY “Multiset” 576

lemma
filter-mset-True[simp]: {#y ∈# M . True#} = M and
filter-mset-False[simp]: {#y ∈# M . False#} = {#}
〈proof 〉

lemma filter-mset-cong0 :
assumes

∧
x. x ∈# M =⇒ f x ←→ g x

shows filter-mset f M = filter-mset g M
〈proof 〉

lemma filter-mset-cong:
assumes M = M ′ and

∧
x. x ∈# M ′ =⇒ f x ←→ g x

shows filter-mset f M = filter-mset g M ′

〈proof 〉

lemma filter-eq-replicate-mset: {#y ∈# D. y = x#} = replicate-mset (count D x)
x
〈proof 〉

67.4.4 Size
definition wcount where wcount f M = (λx. count M x ∗ Suc (f x))

lemma wcount-union: wcount f (M + N) a = wcount f M a + wcount f N a
〈proof 〉

lemma wcount-add-mset:
wcount f (add-mset x M) a = (if x = a then Suc (f a) else 0) + wcount f M a
〈proof 〉

definition size-multiset :: (′a ⇒ nat) ⇒ ′a multiset ⇒ nat where
size-multiset f M = sum (wcount f M) (set-mset M)

lemmas size-multiset-eq = size-multiset-def [unfolded wcount-def]

instantiation multiset :: (type) size
begin

definition size-multiset where
size-multiset-overloaded-def : size-multiset = Multiset.size-multiset (λ-. 0)

instance 〈proof 〉

end

lemmas size-multiset-overloaded-eq =
size-multiset-overloaded-def [THEN fun-cong, unfolded size-multiset-eq, simplified]

lemma size-multiset-empty [simp]: size-multiset f {#} = 0

THEORY “Multiset” 577

〈proof 〉

lemma size-empty [simp]: size {#} = 0
〈proof 〉

lemma size-multiset-single : size-multiset f {#b#} = Suc (f b)
〈proof 〉

lemma size-single: size {#b#} = 1
〈proof 〉

lemma sum-wcount-Int:
finite A =⇒ sum (wcount f N) (A ∩ set-mset N) = sum (wcount f N) A
〈proof 〉

lemma size-multiset-union [simp]:
size-multiset f (M + N :: ′a multiset) = size-multiset f M + size-multiset f N
〈proof 〉

lemma size-multiset-add-mset [simp]:
size-multiset f (add-mset a M) = Suc (f a) + size-multiset f M
〈proof 〉

lemma size-add-mset [simp]: size (add-mset a A) = Suc (size A)
〈proof 〉

lemma size-union [simp]: size (M + N :: ′a multiset) = size M + size N
〈proof 〉

lemma size-multiset-eq-0-iff-empty [iff]:
size-multiset f M = 0 ←→ M = {#}
〈proof 〉

lemma size-eq-0-iff-empty [iff]: (size M = 0) = (M = {#})
〈proof 〉

lemma nonempty-has-size: (S 6= {#}) = (0 < size S)
〈proof 〉

lemma size-eq-Suc-imp-elem: size M = Suc n =⇒ ∃ a. a ∈# M
〈proof 〉

lemma size-eq-Suc-imp-eq-union:
assumes size M = Suc n
shows ∃ a N . M = add-mset a N
〈proof 〉

lemma size-mset-mono:
fixes A B :: ′a multiset

THEORY “Multiset” 578

assumes A ⊆# B
shows size A ≤ size B
〈proof 〉

lemma size-filter-mset-lesseq[simp]: size (filter-mset f M) ≤ size M
〈proof 〉

lemma size-Diff-submset:
M ⊆# M ′ =⇒ size (M ′ − M) = size M ′ − size(M :: ′a multiset)
〈proof 〉

lemma size-lt-imp-ex-count-lt: size M < size N =⇒ ∃ x ∈# N . count M x < count
N x
〈proof 〉

67.5 Induction and case splits
theorem multiset-induct [case-names empty add, induct type: multiset]:

assumes empty: P {#}
assumes add:

∧
x M . P M =⇒ P (add-mset x M)

shows P M
〈proof 〉

lemma multiset-induct-min[case-names empty add]:
fixes M :: ′a::linorder multiset
assumes

empty: P {#} and
add:

∧
x M . P M =⇒ (∀ y ∈# M . y ≥ x) =⇒ P (add-mset x M)

shows P M
〈proof 〉

lemma multiset-induct-max[case-names empty add]:
fixes M :: ′a::linorder multiset
assumes

empty: P {#} and
add:

∧
x M . P M =⇒ (∀ y ∈# M . y ≤ x) =⇒ P (add-mset x M)

shows P M
〈proof 〉

lemma multi-nonempty-split: M 6= {#} =⇒ ∃A a. M = add-mset a A
〈proof 〉

lemma multiset-cases [cases type]:
obtains (empty) M = {#} | (add) x N where M = add-mset x N
〈proof 〉

lemma multi-drop-mem-not-eq: c ∈# B =⇒ B − {#c#} 6= B
〈proof 〉

THEORY “Multiset” 579

lemma union-filter-mset-complement[simp]:
∀ x. P x = (¬ Q x) =⇒ filter-mset P M + filter-mset Q M = M
〈proof 〉

lemma multiset-partition: M = {#x ∈# M . P x#} + {#x ∈# M . ¬ P x#}
〈proof 〉

lemma mset-subset-size: A ⊂# B =⇒ size A < size B
〈proof 〉

lemma size-1-singleton-mset: size M = 1 =⇒ ∃ a. M = {#a#}
〈proof 〉

lemma set-mset-subset-singletonD:
assumes set-mset A ⊆ {x}
shows A = replicate-mset (size A) x
〈proof 〉

lemma count-conv-size-mset: count A x = size (filter-mset (λy. y = x) A)
〈proof 〉

lemma size-conv-count-bool-mset: size A = count A True + count A False
〈proof 〉

67.5.1 Strong induction and subset induction for multisets

Well-foundedness of strict subset relation
lemma wf-subset-mset-rel: wf {(M , N :: ′a multiset). M ⊂# N}
〈proof 〉

lemma wfp-subset-mset[simp]: wfp (⊂#)
〈proof 〉

lemma full-multiset-induct [case-names less]:
assumes ih:

∧
B. ∀ (A:: ′a multiset). A ⊂# B −→ P A =⇒ P B

shows P B
〈proof 〉

lemma multi-subset-induct [consumes 2 , case-names empty add]:
assumes F ⊆# A

and empty: P {#}
and insert:

∧
a F . a ∈# A =⇒ P F =⇒ P (add-mset a F)

shows P F
〈proof 〉

67.6 Least and greatest elements
context begin

THEORY “Multiset” 580

qualified lemma
assumes

M 6= {#} and
transp-on (set-mset M) R and
totalp-on (set-mset M) R

shows
bex-least-element: (∃ l ∈# M . ∀ x ∈# M . x 6= l −→ R l x) and
bex-greatest-element: (∃ g ∈# M . ∀ x ∈# M . x 6= g −→ R x g)
〈proof 〉

end

67.7 The fold combinator
definition fold-mset :: (′a ⇒ ′b ⇒ ′b) ⇒ ′b ⇒ ′a multiset ⇒ ′b
where

fold-mset f s M = Finite-Set.fold (λx. f x ^^ count M x) s (set-mset M)

lemma fold-mset-empty [simp]: fold-mset f s {#} = s
〈proof 〉

lemma fold-mset-single [simp]: fold-mset f s {#x#} = f x s
〈proof 〉

context comp-fun-commute
begin

lemma fold-mset-add-mset [simp]: fold-mset f s (add-mset x M) = f x (fold-mset
f s M)
〈proof 〉

lemma fold-mset-fun-left-comm: f x (fold-mset f s M) = fold-mset f (f x s) M
〈proof 〉

lemma fold-mset-union [simp]: fold-mset f s (M + N) = fold-mset f (fold-mset f
s M) N
〈proof 〉

lemma fold-mset-fusion:
assumes comp-fun-commute g

and ∗:
∧

x y. h (g x y) = f x (h y)
shows h (fold-mset g w A) = fold-mset f (h w) A
〈proof 〉

end

lemma union-fold-mset-add-mset: A + B = fold-mset add-mset A B
〈proof 〉

A note on code generation: When defining some function containing a

THEORY “Multiset” 581

subterm fold-mset F, code generation is not automatic. When interpreting
locale left-commutative with F, the would be code thms for fold-mset become
thms like fold-mset F z {#} = z where F is not a pattern but contains
defined symbols, i.e. is not a code thm. Hence a separate constant with its
own code thms needs to be introduced for F. See the image operator below.

67.8 Image
definition image-mset :: (′a ⇒ ′b) ⇒ ′a multiset ⇒ ′b multiset where

image-mset f = fold-mset (add-mset ◦ f) {#}

lemma comp-fun-commute-mset-image: comp-fun-commute (add-mset ◦ f)
〈proof 〉

lemma image-mset-empty [simp]: image-mset f {#} = {#}
〈proof 〉

lemma image-mset-single: image-mset f {#x#} = {#f x#}
〈proof 〉

lemma image-mset-union [simp]: image-mset f (M + N) = image-mset f M +
image-mset f N
〈proof 〉

corollary image-mset-add-mset [simp]:
image-mset f (add-mset a M) = add-mset (f a) (image-mset f M)
〈proof 〉

lemma set-image-mset [simp]: set-mset (image-mset f M) = image f (set-mset M)
〈proof 〉

lemma size-image-mset [simp]: size (image-mset f M) = size M
〈proof 〉

lemma image-mset-is-empty-iff [simp]: image-mset f M = {#} ←→ M = {#}
〈proof 〉

lemma image-mset-If :
image-mset (λx. if P x then f x else g x) A =

image-mset f (filter-mset P A) + image-mset g (filter-mset (λx. ¬P x) A)
〈proof 〉

lemma filter-mset-image-mset:
filter-mset P (image-mset f A) = image-mset f (filter-mset (λx. P (f x)) A)
〈proof 〉

lemma image-mset-Diff :
assumes B ⊆# A
shows image-mset f (A − B) = image-mset f A − image-mset f B

THEORY “Multiset” 582

〈proof 〉

lemma minus-add-mset-if-not-in-lhs[simp]: x /∈# A =⇒ A − add-mset x B = A
− B
〈proof 〉

lemma image-mset-diff-if-inj:
fixes f A B
assumes inj f
shows image-mset f (A − B) = image-mset f A − image-mset f B
〈proof 〉

lemma count-image-mset:
‹count (image-mset f A) x = (

∑
y∈f −‘ {x} ∩ set-mset A. count A y)›

〈proof 〉

lemma count-image-mset ′:
‹count (image-mset f X) y = (

∑
x | x ∈# X ∧ y = f x. count X x)›

〈proof 〉

lemma image-mset-subseteq-mono: A ⊆# B =⇒ image-mset f A ⊆# image-mset
f B
〈proof 〉

lemma image-mset-subset-mono: M ⊂# N =⇒ image-mset f M ⊂# image-mset
f N
〈proof 〉

syntax (ASCII)
-comprehension-mset :: ′a ⇒ ′b ⇒ ′b multiset ⇒ ′a multiset
(‹(‹notation=‹mixfix multiset comprehension››{#-/. - :# -#})›)

syntax
-comprehension-mset :: ′a ⇒ ′b ⇒ ′b multiset ⇒ ′a multiset
(‹(‹notation=‹mixfix multiset comprehension››{#-/. - ∈# -#})›)

syntax-consts
-comprehension-mset
 image-mset

translations
{#e. x ∈# M#}
 CONST image-mset (λx. e) M

syntax (ASCII)
-comprehension-mset ′ :: ′a ⇒ ′b ⇒ ′b multiset ⇒ bool ⇒ ′a multiset
(‹(‹notation=‹mixfix multiset comprehension››{#-/ | - :# -./ -#})›)

syntax
-comprehension-mset ′ :: ′a ⇒ ′b ⇒ ′b multiset ⇒ bool ⇒ ′a multiset
(‹(‹notation=‹mixfix multiset comprehension››{#-/ | - ∈# -./ -#})›)

syntax-consts
-comprehension-mset ′
 image-mset

translations
{#e | x∈#M . P#} ⇀ {#e. x ∈# {# x∈#M . P#}#}

THEORY “Multiset” 583

This allows to write not just filters like {#x ∈# M . x < c#} but also
images like {#x + x. x ∈# M#} and {#x+x|x∈#M . x<c#}, where the
latter is currently displayed as {#x + x. x ∈# {#x ∈# M . x < c#}#}.
lemma in-image-mset: y ∈# {#f x. x ∈# M#} ←→ y ∈ f ‘ set-mset M
〈proof 〉

functor image-mset: image-mset
〈proof 〉

declare
image-mset.id [simp]
image-mset.identity [simp]

lemma image-mset-id[simp]: image-mset id x = x
〈proof 〉

lemma image-mset-cong: (
∧

x. x ∈# M =⇒ f x = g x) =⇒ {#f x. x ∈# M#} =
{#g x. x ∈# M#}
〈proof 〉

lemma image-mset-cong-pair :
(∀ x y. (x, y) ∈# M −→ f x y = g x y) =⇒ {#f x y. (x, y) ∈# M#} = {#g x

y. (x, y) ∈# M#}
〈proof 〉

lemma image-mset-const-eq:
{#c. a ∈# M#} = replicate-mset (size M) c
〈proof 〉

lemma image-mset-filter-mset-swap:
image-mset f (filter-mset (λx. P (f x)) M) = filter-mset P (image-mset f M)
〈proof 〉

lemma image-mset-eq-plusD:
image-mset f A = B + C =⇒ ∃B ′ C ′. A = B ′ + C ′ ∧ B = image-mset f B ′ ∧

C = image-mset f C ′

〈proof 〉

lemma image-mset-eq-image-mset-plusD:
assumes image-mset f A = image-mset f B + C and inj-f : inj-on f (set-mset A
∪ set-mset B)

shows ∃C ′. A = B + C ′ ∧ C = image-mset f C ′

〈proof 〉

lemma image-mset-eq-plus-image-msetD:
image-mset f A = B + image-mset f C =⇒ inj-on f (set-mset A ∪ set-mset C)

=⇒
∃B ′. A = B ′ + C ∧ B = image-mset f B ′

〈proof 〉

THEORY “Multiset” 584

67.9 Further conversions
primrec mset :: ′a list ⇒ ′a multiset where

mset [] = {#} |
mset (a # x) = add-mset a (mset x)

lemma in-multiset-in-set:
x ∈# mset xs ←→ x ∈ set xs
〈proof 〉

lemma count-mset:
count (mset xs) x = count-list xs x
〈proof 〉

lemma mset-zero-iff [simp]: (mset x = {#}) = (x = [])
〈proof 〉

lemma mset-zero-iff-right[simp]: ({#} = mset x) = (x = [])
〈proof 〉

lemma mset-replicate [simp]: mset (replicate n x) = replicate-mset n x
〈proof 〉

lemma count-mset-gt-0 : x ∈ set xs =⇒ count (mset xs) x > 0
〈proof 〉

lemma count-mset-0-iff [simp]: count (mset xs) x = 0 ←→ x /∈ set xs
〈proof 〉

lemma mset-single-iff [iff]: mset xs = {#x#} ←→ xs = [x]
〈proof 〉

lemma mset-single-iff-right[iff]: {#x#} = mset xs ←→ xs = [x]
〈proof 〉

lemma set-mset-mset[simp]: set-mset (mset xs) = set xs
〈proof 〉

lemma set-mset-comp-mset [simp]: set-mset ◦ mset = set
〈proof 〉

lemma size-mset [simp]: size (mset xs) = length xs
〈proof 〉

lemma mset-append [simp]: mset (xs @ ys) = mset xs + mset ys
〈proof 〉

lemma mset-filter [simp]: mset (filter P xs) = {#x ∈# mset xs. P x #}
〈proof 〉

THEORY “Multiset” 585

lemma mset-rev [simp]:
mset (rev xs) = mset xs
〈proof 〉

lemma surj-mset: surj mset
〈proof 〉

lemma distinct-count-atmost-1 :
distinct x = (∀ a. count (mset x) a = (if a ∈ set x then 1 else 0))
〈proof 〉

lemma mset-eq-setD:
assumes mset xs = mset ys
shows set xs = set ys
〈proof 〉

lemma set-eq-iff-mset-eq-distinct:
‹distinct x =⇒ distinct y =⇒ set x = set y ←→ mset x = mset y›
〈proof 〉

lemma set-eq-iff-mset-remdups-eq:
‹set x = set y ←→ mset (remdups x) = mset (remdups y)›
〈proof 〉

lemma mset-eq-imp-distinct-iff :
‹distinct xs ←→ distinct ys› if ‹mset xs = mset ys›
〈proof 〉

lemma nth-mem-mset: i < length ls =⇒ (ls ! i) ∈# mset ls
〈proof 〉

lemma mset-remove1 [simp]: mset (remove1 a xs) = mset xs − {#a#}
〈proof 〉

lemma mset-eq-length:
assumes mset xs = mset ys
shows length xs = length ys
〈proof 〉

lemma mset-eq-length-filter :
assumes mset xs = mset ys
shows count-list xs z = count-list ys z
〈proof 〉

lemma fold-multiset-equiv:
‹List.fold f xs = List.fold f ys›

if f : ‹
∧

x y. x ∈ set xs =⇒ y ∈ set xs =⇒ f x ◦ f y = f y ◦ f x›
and ‹mset xs = mset ys›

〈proof 〉

THEORY “Multiset” 586

lemma fold-permuted-eq:
‹List.fold (�) xs z = List.fold (�) ys z›

if ‹mset xs = mset ys›
and ‹P z› and P: ‹

∧
x z. x ∈ set xs =⇒ P z =⇒ P (x � z)›

and f : ‹
∧

x y z. x ∈ set xs =⇒ y ∈ set xs =⇒ P z =⇒ x � (y � z) = y � (x
� z)›

for f (infixl ‹�› 70)
〈proof 〉

lemma mset-shuffles: zs ∈ shuffles xs ys =⇒ mset zs = mset xs + mset ys
〈proof 〉

lemma mset-insort [simp]: mset (insort x xs) = add-mset x (mset xs)
〈proof 〉

lemma mset-map[simp]: mset (map f xs) = image-mset f (mset xs)
〈proof 〉

lemma mset-removeAll-eq:
‹mset (removeAll x xs) = filter-mset ((6=) x) (mset xs)›
〈proof 〉

lemma singleton-set-mset-subset: fixes X Y :: ′a list set
assumes ∀ xs ∈ X . set xs ⊆ {a} mset ‘ X ⊆ mset ‘ Y
shows X ⊆ Y
〈proof 〉

lemma singleton-set-mset-eq: fixes X Y :: ′a list set
assumes ∀ xs ∈ X . set xs ⊆ {a} mset ‘ X = mset ‘ Y
shows X = Y
〈proof 〉

global-interpretation mset-set: folding add-mset {#}
defines mset-set = folding-on.F add-mset {#}
〈proof 〉

lemma sum-multiset-singleton [simp]: sum (λn. {#n#}) A = mset-set A
〈proof 〉

lemma count-mset-set [simp]:
finite A =⇒ x ∈ A =⇒ count (mset-set A) x = 1 (is PROP ?P)
¬ finite A =⇒ count (mset-set A) x = 0 (is PROP ?Q)
x /∈ A =⇒ count (mset-set A) x = 0 (is PROP ?R)
〈proof 〉

lemma elem-mset-set[simp, intro]: finite A =⇒ x ∈# mset-set A ←→ x ∈ A
〈proof 〉

THEORY “Multiset” 587

lemma mset-set-Union:
finite A =⇒ finite B =⇒ A ∩ B = {} =⇒ mset-set (A ∪ B) = mset-set A +

mset-set B
〈proof 〉

lemma filter-mset-mset-set [simp]:
finite A =⇒ filter-mset P (mset-set A) = mset-set {x∈A. P x}
〈proof 〉

lemma mset-set-Diff :
assumes finite A B ⊆ A
shows mset-set (A − B) = mset-set A − mset-set B
〈proof 〉

lemma mset-minus-list-mset[simp]: mset(minus-list-mset xs ys) = mset xs − mset
ys
〈proof 〉

lemma mset-set-set: distinct xs =⇒ mset-set (set xs) = mset xs
〈proof 〉

lemma count-mset-set ′: count (mset-set A) x = (if finite A ∧ x ∈ A then 1 else
0)
〈proof 〉

lemma subset-imp-msubset-mset-set:
assumes A ⊆ B finite B
shows mset-set A ⊆# mset-set B
〈proof 〉

lemma mset-set-set-mset-msubset: mset-set (set-mset A) ⊆# A
〈proof 〉

lemma mset-set-upto-eq-mset-upto:
‹mset-set {..<n} = mset [0 ..<n]›
〈proof 〉

context linorder
begin

definition sorted-list-of-multiset :: ′a multiset ⇒ ′a list
where

sorted-list-of-multiset M = fold-mset insort [] M

lemma sorted-list-of-multiset-empty [simp]:
sorted-list-of-multiset {#} = []
〈proof 〉

lemma sorted-list-of-multiset-singleton [simp]:

THEORY “Multiset” 588

sorted-list-of-multiset {#x#} = [x]
〈proof 〉

lemma sorted-list-of-multiset-insert [simp]:
sorted-list-of-multiset (add-mset x M) = List.insort x (sorted-list-of-multiset M)
〈proof 〉

end

lemma mset-sorted-list-of-multiset[simp]: mset (sorted-list-of-multiset M) = M
〈proof 〉

lemma sorted-list-of-multiset-mset[simp]: sorted-list-of-multiset (mset xs) = sort
xs
〈proof 〉

lemma finite-set-mset-mset-set[simp]: finite A =⇒ set-mset (mset-set A) = A
〈proof 〉

lemma mset-set-empty-iff : mset-set A = {#} ←→ A = {} ∨ infinite A
〈proof 〉

lemma infinite-set-mset-mset-set: ¬ finite A =⇒ set-mset (mset-set A) = {}
〈proof 〉

lemma set-sorted-list-of-multiset [simp]:
set (sorted-list-of-multiset M) = set-mset M
〈proof 〉

lemma sorted-sorted-list-of-multiset [iff]:
‹sorted (sorted-list-of-multiset M)›
〈proof 〉

lemma sorted-list-of-mset-set [simp]:
sorted-list-of-multiset (mset-set A) = sorted-list-of-set A
〈proof 〉

lemma mset-upt [simp]: mset [m..<n] = mset-set {m..<n}
〈proof 〉

lemma image-mset-map-of :
distinct (map fst xs) =⇒ {#the (map-of xs i). i ∈# mset (map fst xs)#} = mset

(map snd xs)
〈proof 〉

lemma msubset-mset-set-iff [simp]:
assumes finite A finite B
shows mset-set A ⊆# mset-set B ←→ A ⊆ B
〈proof 〉

THEORY “Multiset” 589

lemma mset-set-eq-iff [simp]:
assumes finite A finite B
shows mset-set A = mset-set B ←→ A = B
〈proof 〉

lemma image-mset-mset-set:
assumes inj-on f A
shows image-mset f (mset-set A) = mset-set (f ‘ A)
〈proof 〉

67.10 More properties of the replicate, repeat, and image
operations

lemma in-replicate-mset[simp]: x ∈# replicate-mset n y ←→ n > 0 ∧ x = y
〈proof 〉

lemma set-mset-replicate-mset-subset[simp]: set-mset (replicate-mset n x) = (if n
= 0 then {} else {x})
〈proof 〉

lemma size-replicate-mset[simp]: size (replicate-mset n M) = n
〈proof 〉

lemma size-repeat-mset [simp]: size (repeat-mset n A) = n ∗ size A
〈proof 〉

lemma size-multiset-sum [simp]: size (
∑

x∈A. f x :: ′a multiset) = (
∑

x∈A. size
(f x))
〈proof 〉

lemma size-multiset-sum-list [simp]: size (
∑

X←Xs. X :: ′a multiset) = (
∑

X←Xs.
size X)
〈proof 〉

lemma count-le-replicate-mset-subset-eq: n ≤ count M x ←→ replicate-mset n x
⊆# M
〈proof 〉

lemma replicate-count-mset-eq-filter-eq: replicate (count (mset xs) k) k = filter
(HOL.eq k) xs
〈proof 〉

lemma replicate-mset-eq-empty-iff [simp]: replicate-mset n a = {#} ←→ n = 0
〈proof 〉

lemma replicate-mset-eq-iff :
replicate-mset m a = replicate-mset n b ←→ m = 0 ∧ n = 0 ∨ m = n ∧ a = b
〈proof 〉

THEORY “Multiset” 590

lemma repeat-mset-cancel1 : repeat-mset a A = repeat-mset a B ←→ A = B ∨ a
= 0
〈proof 〉

lemma repeat-mset-cancel2 : repeat-mset a A = repeat-mset b A ←→ a = b ∨ A =
{#}
〈proof 〉

lemma repeat-mset-eq-empty-iff : repeat-mset n A = {#} ←→ n = 0 ∨ A = {#}
〈proof 〉

lemma image-replicate-mset [simp]:
image-mset f (replicate-mset n a) = replicate-mset n (f a)
〈proof 〉

lemma replicate-mset-msubseteq-iff :
replicate-mset m a ⊆# replicate-mset n b ←→ m = 0 ∨ a = b ∧ m ≤ n
〈proof 〉

lemma msubseteq-replicate-msetE :
assumes A ⊆# replicate-mset n a
obtains m where m ≤ n and A = replicate-mset m a
〈proof 〉

lemma count-image-mset-lt-imp-lt-raw:
assumes

finite A and
A = set-mset M ∪ set-mset N and
count (image-mset f M) b < count (image-mset f N) b

shows ∃ x. f x = b ∧ count M x < count N x
〈proof 〉

lemma count-image-mset-lt-imp-lt:
assumes cnt-b: count (image-mset f M) b < count (image-mset f N) b
shows ∃ x. f x = b ∧ count M x < count N x
〈proof 〉

lemma count-image-mset-le-imp-lt-raw:
assumes

finite A and
A = set-mset M ∪ set-mset N and
count (image-mset f M) (f a) + count N a < count (image-mset f N) (f a) +

count M a
shows ∃ b. f b = f a ∧ count M b < count N b
〈proof 〉

lemma count-image-mset-le-imp-lt:
assumes

THEORY “Multiset” 591

count (image-mset f M) (f a) ≤ count (image-mset f N) (f a) and
count M a > count N a

shows ∃ b. f b = f a ∧ count M b < count N b
〈proof 〉

lemma size-filter-unsat-elem:
assumes x ∈# M and ¬ P x
shows size {#x ∈# M . P x#} < size M
〈proof 〉

lemma size-filter-ne-elem: x ∈# M =⇒ size {#y ∈# M . y 6= x#} < size M
〈proof 〉

lemma size-eq-ex-count-lt:
assumes size M = size N and M 6= N
shows ∃ x. count M x < count N x
〈proof 〉

67.11 Big operators
locale comm-monoid-mset = comm-monoid
begin

interpretation comp-fun-commute f
〈proof 〉

interpretation comp?: comp-fun-commute f ◦ g
〈proof 〉

context
begin

definition F :: ′a multiset ⇒ ′a
where eq-fold: F M = fold-mset f 1 M

lemma empty [simp]: F {#} = 1
〈proof 〉

lemma singleton [simp]: F {#x#} = x
〈proof 〉

lemma union [simp]: F (M + N) = F M ∗ F N
〈proof 〉

lemma add-mset [simp]: F (add-mset x N) = x ∗ F N
〈proof 〉

lemma insert [simp]:
shows F (image-mset g (add-mset x A)) = g x ∗ F (image-mset g A)

THEORY “Multiset” 592

〈proof 〉

lemma remove:
assumes x ∈# A
shows F A = x ∗ F (A − {#x#})
〈proof 〉

lemma neutral:
∀ x∈#A. x = 1 =⇒ F A = 1
〈proof 〉

lemma neutral-const [simp]:
F (image-mset (λ-. 1) A) = 1
〈proof 〉 lemma F-image-mset-product:
F {#g x j ∗ F {#g i j. i ∈# A#}. j ∈# B#} =

F (image-mset (g x) B) ∗ F {#F {#g i j. i ∈# A#}. j ∈# B#}
〈proof 〉

lemma swap:
F (image-mset (λi. F (image-mset (g i) B)) A) =

F (image-mset (λj. F (image-mset (λi. g i j) A)) B)
〈proof 〉

lemma distrib: F (image-mset (λx. g x ∗ h x) A) = F (image-mset g A) ∗ F
(image-mset h A)
〈proof 〉

lemma union-disjoint:
A ∩# B = {#} =⇒ F (image-mset g (A ∪# B)) = F (image-mset g A) ∗ F

(image-mset g B)
〈proof 〉

end
end

lemma comp-fun-commute-plus-mset[simp]: comp-fun-commute ((+) :: ′a multiset
⇒ - ⇒ -)
〈proof 〉

declare comp-fun-commute.fold-mset-add-mset[OF comp-fun-commute-plus-mset,
simp]

lemma in-mset-fold-plus-iff [iff]: x ∈# fold-mset (+) M NN ←→ x ∈# M ∨ (∃N .
N ∈# NN ∧ x ∈# N)
〈proof 〉

context comm-monoid-add
begin

THEORY “Multiset” 593

sublocale sum-mset: comm-monoid-mset plus 0
defines sum-mset = sum-mset.F 〈proof 〉

lemma sum-unfold-sum-mset:
sum f A = sum-mset (image-mset f (mset-set A))
〈proof 〉

end

notation sum-mset (‹
∑

#›)

syntax (ASCII)
-sum-mset-image :: pttrn ⇒ ′b set ⇒ ′a ⇒ ′a::comm-monoid-add
(‹(‹indent=3 notation=‹binder SUM ››SUM -:#-. -)› [0 , 51 , 10] 10)

syntax
-sum-mset-image :: pttrn ⇒ ′b set ⇒ ′a ⇒ ′a::comm-monoid-add
(‹(‹indent=3 notation=‹binder

∑
››
∑

-∈#-. -)› [0 , 51 , 10] 10)
syntax-consts

-sum-mset-image
 sum-mset
translations∑

i ∈# A. b
 CONST sum-mset (CONST image-mset (λi. b) A)

context comm-monoid-add
begin

lemma sum-mset-sum-list:
sum-mset (mset xs) = sum-list xs
〈proof 〉

end

context canonically-ordered-monoid-add
begin

lemma sum-mset-0-iff [simp]:
sum-mset M = 0 ←→ (∀ x ∈ set-mset M . x = 0)
〈proof 〉

end

context ordered-comm-monoid-add
begin

lemma sum-mset-mono:
sum-mset (image-mset f K) ≤ sum-mset (image-mset g K)
if

∧
i. i ∈# K =⇒ f i ≤ g i

〈proof 〉

end

THEORY “Multiset” 594

context cancel-comm-monoid-add
begin

lemma sum-mset-diff :
sum-mset (M − N) = sum-mset M − sum-mset N if N ⊆# M for M N :: ′a

multiset
〈proof 〉

end

context semiring-0
begin

lemma sum-mset-distrib-left:
c ∗ (

∑
x ∈# M . f x) = (

∑
x ∈# M . c ∗ f (x))

〈proof 〉

lemma sum-mset-distrib-right:
(
∑

x ∈# M . f x) ∗ c = (
∑

x ∈# M . f x ∗ c)
〈proof 〉

end

lemma sum-mset-product:
fixes f :: ′a::{comm-monoid-add,times} ⇒ ′b::semiring-0
shows (

∑
i ∈# A. f i) ∗ (

∑
i ∈# B. g i) = (

∑
i∈#A.

∑
j∈#B. f i ∗ g j)

〈proof 〉

context semiring-1
begin

lemma sum-mset-replicate-mset [simp]:
sum-mset (replicate-mset n a) = of-nat n ∗ a
〈proof 〉

lemma sum-mset-delta:
sum-mset (image-mset (λx. if x = y then c else 0) A) = c ∗ of-nat (count A y)
〈proof 〉

lemma sum-mset-delta ′:
sum-mset (image-mset (λx. if y = x then c else 0) A) = c ∗ of-nat (count A y)
〈proof 〉

end

lemma of-nat-sum-mset [simp]:
of-nat (sum-mset A) = sum-mset (image-mset of-nat A)
〈proof 〉

THEORY “Multiset” 595

lemma size-eq-sum-mset:
size M = (

∑
a∈#M . 1)

〈proof 〉

lemma size-mset-set [simp]:
size (mset-set A) = card A
〈proof 〉

lemma sum-mset-constant [simp]:
fixes y :: ′b::semiring-1
shows ‹(

∑
x∈#A. y) = of-nat (size A) ∗ y›

〈proof 〉

lemma set-mset-Union-mset[simp]: set-mset (
∑

MM) = (
⋃

M ∈ set-mset MM .
set-mset M)
〈proof 〉

lemma in-Union-mset-iff [iff]: x ∈#
∑

MM ←→ (∃M . M ∈# MM ∧ x ∈# M)
〈proof 〉

lemma count-sum:
count (sum f A) x = sum (λa. count (f a) x) A
〈proof 〉

lemma sum-eq-empty-iff :
assumes finite A
shows sum f A = {#} ←→ (∀ a∈A. f a = {#})
〈proof 〉

lemma mset-concat: mset (concat xss) = (
∑

xs←xss. mset xs)
〈proof 〉

lemma set-mset-sum-list [simp]: set-mset (sum-list xs) = (
⋃

x∈set xs. set-mset x)
〈proof 〉

lemma filter-mset-sum-list: filter-mset P (sum-list xs) = sum-list (map (filter-mset
P) xs)
〈proof 〉

lemma sum-mset-singleton-mset [simp]: (
∑

x∈#A. {#f x#}) = image-mset f A
〈proof 〉

lemma sum-list-singleton-mset [simp]: (
∑

x←xs. {#f x#}) = image-mset f (mset
xs)
〈proof 〉

lemma Union-mset-empty-conv[simp]:
∑

M = {#} ←→ (∀ i∈#M . i = {#})
〈proof 〉

THEORY “Multiset” 596

lemma Union-image-single-mset[simp]:
∑

(image-mset (λx. {#x#}) m) = m
〈proof 〉

lemma size-mset-sum-mset-conv [simp]: size (
∑

A :: ′a multiset) = (
∑

X∈#A.
size X)
〈proof 〉

lemma sum-mset-image-mset-mono-strong:
assumes A ⊆# B and f-subeq-g:

∧
x. x ∈# A =⇒ f x ⊆# g x

shows (
∑

x∈#A. f x) ⊆# (
∑

x∈#B. g x)
〈proof 〉

context comm-monoid-mult
begin

sublocale prod-mset: comm-monoid-mset times 1
defines prod-mset = prod-mset.F 〈proof 〉

lemma prod-mset-empty:
prod-mset {#} = 1
〈proof 〉

lemma prod-mset-singleton:
prod-mset {#x#} = x
〈proof 〉

lemma prod-mset-Un:
prod-mset (A + B) = prod-mset A ∗ prod-mset B
〈proof 〉

lemma prod-mset-prod-list:
prod-mset (mset xs) = prod-list xs
〈proof 〉

lemma prod-mset-replicate-mset [simp]:
prod-mset (replicate-mset n a) = a ^ n
〈proof 〉

lemma prod-unfold-prod-mset:
prod f A = prod-mset (image-mset f (mset-set A))
〈proof 〉

lemma prod-mset-multiplicity:
prod-mset M = prod (λx. x ^ count M x) (set-mset M)
〈proof 〉

lemma prod-mset-delta: prod-mset (image-mset (λx. if x = y then c else 1) A) =
c ^ count A y

THEORY “Multiset” 597

〈proof 〉

lemma prod-mset-delta ′: prod-mset (image-mset (λx. if y = x then c else 1) A) =
c ^ count A y
〈proof 〉

lemma prod-mset-subset-imp-dvd:
assumes A ⊆# B
shows prod-mset A dvd prod-mset B
〈proof 〉

lemma dvd-prod-mset:
assumes x ∈# A
shows x dvd prod-mset A
〈proof 〉

end

notation prod-mset (‹
∏

#›)

syntax (ASCII)
-prod-mset-image :: pttrn ⇒ ′b set ⇒ ′a ⇒ ′a::comm-monoid-mult
(‹(‹indent=3 notation=‹binder PROD››PROD -:#-. -)› [0 , 51 , 10] 10)

syntax
-prod-mset-image :: pttrn ⇒ ′b set ⇒ ′a ⇒ ′a::comm-monoid-mult
(‹(‹indent=3 notation=‹binder

∏
››
∏

-∈#-. -)› [0 , 51 , 10] 10)
syntax-consts

-prod-mset-image
 prod-mset
translations∏

i ∈# A. b
 CONST prod-mset (CONST image-mset (λi. b) A)

lemma prod-mset-constant [simp]: (
∏

-∈#A. c) = c ^ size A
〈proof 〉

lemma (in semidom) prod-mset-zero-iff [iff]:
prod-mset A = 0 ←→ 0 ∈# A
〈proof 〉

lemma (in semidom-divide) prod-mset-diff :
assumes B ⊆# A and 0 /∈# B
shows prod-mset (A − B) = prod-mset A div prod-mset B
〈proof 〉

lemma (in semidom-divide) prod-mset-minus:
assumes a ∈# A and a 6= 0
shows prod-mset (A − {#a#}) = prod-mset A div a
〈proof 〉

lemma (in normalization-semidom) normalize-prod-mset-normalize:

THEORY “Multiset” 598

normalize (prod-mset (image-mset normalize A)) = normalize (prod-mset A)
〈proof 〉

lemma (in algebraic-semidom) is-unit-prod-mset-iff :
is-unit (prod-mset A) ←→ (∀ x ∈# A. is-unit x)
〈proof 〉

lemma (in normalization-semidom-multiplicative) normalize-prod-mset:
normalize (prod-mset A) = prod-mset (image-mset normalize A)
〈proof 〉

lemma (in normalization-semidom-multiplicative) normalized-prod-msetI :
assumes

∧
a. a ∈# A =⇒ normalize a = a

shows normalize (prod-mset A) = prod-mset A
〈proof 〉

lemma image-prod-mset-multiplicity:
prod-mset (image-mset f M) = prod (λx. f x ^ count M x) (set-mset M)
〈proof 〉

67.12 Multiset as order-ignorant lists
context linorder
begin

lemma mset-insort [simp]:
mset (insort-key k x xs) = add-mset x (mset xs)
〈proof 〉

lemma mset-sort [simp]:
mset (sort-key k xs) = mset xs
〈proof 〉

This lemma shows which properties suffice to show that a function f with
f xs = ys behaves like sort.
lemma properties-for-sort-key:

assumes mset ys = mset xs
and

∧
k. k ∈ set ys =⇒ filter (λx. f k = f x) ys = filter (λx. f k = f x) xs

and sorted (map f ys)
shows sort-key f xs = ys
〈proof 〉

lemma properties-for-sort:
assumes multiset: mset ys = mset xs

and sorted ys
shows sort xs = ys
〈proof 〉

lemma sort-key-inj-key-eq:

THEORY “Multiset” 599

assumes mset-equal: mset xs = mset ys
and inj-on f (set xs)
and sorted (map f ys)

shows sort-key f xs = ys
〈proof 〉

lemma sort-key-eq-sort-key:
assumes mset xs = mset ys

and inj-on f (set xs)
shows sort-key f xs = sort-key f ys
〈proof 〉

lemma sort-key-by-quicksort:
sort-key f xs = sort-key f [x←xs. f x < f (xs ! (length xs div 2))]
@ [x←xs. f x = f (xs ! (length xs div 2))]
@ sort-key f [x←xs. f x > f (xs ! (length xs div 2))] (is sort-key f ?lhs = ?rhs)

〈proof 〉

lemma sort-by-quicksort:
sort xs = sort [x←xs. x < xs ! (length xs div 2)]
@ [x←xs. x = xs ! (length xs div 2)]
@ sort [x←xs. x > xs ! (length xs div 2)] (is sort ?lhs = ?rhs)
〈proof 〉

lemma sort-append:
assumes

∧
x y. x ∈ set xs =⇒ y ∈ set ys =⇒ x ≤ y

shows sort (xs @ ys) = sort xs @ sort ys
〈proof 〉

lemma sort-append-replicate-left:
(
∧

y. y ∈ set xs =⇒ x ≤ y) =⇒ sort (replicate n x @ xs) = replicate n x @ sort
xs
〈proof 〉

lemma sort-append-replicate-right:
(
∧

y. y ∈ set xs =⇒ x ≥ y) =⇒ sort (xs @ replicate n x) = sort xs @ replicate n
x
〈proof 〉

A stable parameterized quicksort
definition part :: (′b ⇒ ′a) ⇒ ′a ⇒ ′b list ⇒ ′b list × ′b list × ′b list where

part f pivot xs = ([x ← xs. f x < pivot], [x ← xs. f x = pivot], [x ← xs. pivot <
f x])

lemma part-code [code]:
part f pivot [] = ([], [], [])
part f pivot (x # xs) = (let (lts, eqs, gts) = part f pivot xs; x ′ = f x in

if x ′ < pivot then (x # lts, eqs, gts)
else if x ′ > pivot then (lts, eqs, x # gts)

THEORY “Multiset” 600

else (lts, x # eqs, gts))
〈proof 〉

lemma sort-key-by-quicksort-code [code]:
sort-key f xs =
(case xs of
[] ⇒ []
| [x] ⇒ xs
| [x, y] ⇒ (if f x ≤ f y then xs else [y, x])
| - ⇒

let (lts, eqs, gts) = part f (f (xs ! (length xs div 2))) xs
in sort-key f lts @ eqs @ sort-key f gts)

〈proof 〉

end

hide-const (open) part

lemma sort-sorted-list-of-multiset-eq [simp]:
‹sort (sorted-list-of-multiset M) = sorted-list-of-multiset M › for M :: ‹ ′a::linorder

multiset›
〈proof 〉

lemma mset-remdups-subset-eq: mset (remdups xs) ⊆# mset xs
〈proof 〉

lemma mset-update:
i < length ls =⇒ mset (ls[i := v]) = add-mset v (mset ls − {#ls ! i#})
〈proof 〉

lemma mset-swap:
i < length ls =⇒ j < length ls =⇒

mset (ls[j := ls ! i, i := ls ! j]) = mset ls
〈proof 〉

lemma mset-eq-finite:
‹finite {ys. mset ys = mset xs}›
〈proof 〉

67.13 The multiset order
definition mult1 :: (′a × ′a) set ⇒ (′a multiset × ′a multiset) set where

mult1 r = {(N , M). ∃ a M0 K . M = add-mset a M0 ∧ N = M0 + K ∧
(∀ b. b ∈# K −→ (b, a) ∈ r)}

definition mult :: (′a × ′a) set ⇒ (′a multiset × ′a multiset) set where
mult r = (mult1 r)+

definition multp :: (′a ⇒ ′a ⇒ bool) ⇒ ′a multiset ⇒ ′a multiset ⇒ bool where

THEORY “Multiset” 601

multp r M N ←→ (M , N) ∈ mult {(x, y). r x y}

declare multp-def [pred-set-conv]

lemma mult1I :
assumes M = add-mset a M0 and N = M0 + K and

∧
b. b ∈# K =⇒ (b, a)

∈ r
shows (N , M) ∈ mult1 r
〈proof 〉

lemma mult1E :
assumes (N , M) ∈ mult1 r
obtains a M0 K where M = add-mset a M0 N = M0 + K

∧
b. b ∈# K =⇒

(b, a) ∈ r
〈proof 〉

lemma mono-mult1 :
assumes r ⊆ r ′ shows mult1 r ⊆ mult1 r ′

〈proof 〉

lemma mono-mult:
assumes r ⊆ r ′ shows mult r ⊆ mult r ′

〈proof 〉

lemma mono-multp[mono]: r ≤ r ′ =⇒ multp r ≤ multp r ′

〈proof 〉

lemma not-less-empty [iff]: (M , {#}) /∈ mult1 r
〈proof 〉

67.13.1 Well-foundedness
lemma less-add:

assumes mult1 : (N , add-mset a M0) ∈ mult1 r
shows
(∃M . (M , M0) ∈ mult1 r ∧ N = add-mset a M) ∨
(∃K . (∀ b. b ∈# K −→ (b, a) ∈ r) ∧ N = M0 + K)

〈proof 〉

lemma all-accessible:
assumes wf r
shows ∀M . M ∈ Wellfounded.acc (mult1 r)
〈proof 〉

lemma wf-mult1 : wf r =⇒ wf (mult1 r)
〈proof 〉

lemma wf-mult: wf r =⇒ wf (mult r)
〈proof 〉

THEORY “Multiset” 602

lemma wfp-multp: wfp r =⇒ wfp (multp r)
〈proof 〉

67.13.2 Closure-free presentation

One direction.
lemma mult-implies-one-step:

assumes
trans: trans r and
MN : (M , N) ∈ mult r

shows ∃ I J K . N = I + J ∧ M = I + K ∧ J 6= {#} ∧ (∀ k ∈ set-mset K . ∃ j
∈ set-mset J . (k, j) ∈ r)
〈proof 〉

lemma multp-implies-one-step:
transp R =⇒ multp R M N =⇒ ∃ I J K . N = I + J ∧ M = I + K ∧ J 6= {#}
∧ (∀ k∈#K . ∃ x∈#J . R k x)
〈proof 〉

lemma one-step-implies-mult:
assumes

J 6= {#} and
∀ k ∈ set-mset K . ∃ j ∈ set-mset J . (k, j) ∈ r

shows (I + K , I + J) ∈ mult r
〈proof 〉

lemma one-step-implies-multp:
J 6= {#} =⇒ ∀ k∈#K . ∃ j∈#J . R k j =⇒ multp R (I + K) (I + J)
〈proof 〉

lemma subset-implies-mult:
assumes sub: A ⊂# B
shows (A, B) ∈ mult r
〈proof 〉

lemma subset-implies-multp: A ⊂# B =⇒ multp r A B
〈proof 〉

lemma multp-repeat-mset-repeat-msetI :
assumes transp R and multp R A B and n 6= 0
shows multp R (repeat-mset n A) (repeat-mset n B)
〈proof 〉

67.13.3 Monotonicity
lemma multp-mono-strong:

assumes multp R M1 M2 and transp R and
S-if-R:

∧
x y. x ∈ set-mset M1 =⇒ y ∈ set-mset M2 =⇒ R x y =⇒ S x y

THEORY “Multiset” 603

shows multp S M1 M2
〈proof 〉

lemma mult-mono-strong:
assumes (M1 , M2) ∈ mult r and trans r and

S-if-R:
∧

x y. x ∈ set-mset M1 =⇒ y ∈ set-mset M2 =⇒ (x, y) ∈ r =⇒ (x, y)
∈ s

shows (M1 , M2) ∈ mult s
〈proof 〉

lemma monotone-on-multp-multp-image-mset:
assumes monotone-on A orda ordb f and transp orda
shows monotone-on {M . set-mset M ⊆ A} (multp orda) (multp ordb) (image-mset

f)
〈proof 〉

lemma monotone-multp-multp-image-mset:
assumes monotone orda ordb f and transp orda
shows monotone (multp orda) (multp ordb) (image-mset f)
〈proof 〉

lemma multp-image-mset-image-msetI :
assumes multp (λx y. R (f x) (f y)) M1 M2 and transp R
shows multp R (image-mset f M1) (image-mset f M2)
〈proof 〉

lemma multp-image-mset-image-msetD:
assumes

multp R (image-mset f A) (image-mset f B) and
transp R and
inj-on-f : inj-on f (set-mset A ∪ set-mset B)

shows multp (λx y. R (f x) (f y)) A B
〈proof 〉

67.13.4 The multiset extension is cancellative for multiset union
lemma mult-cancel:

assumes trans s and irrefl-on (set-mset Z) s
shows (X + Z , Y + Z) ∈ mult s ←→ (X , Y) ∈ mult s (is ?L ←→ ?R)
〈proof 〉

lemma multp-cancel:
transp R =⇒ irreflp-on (set-mset Z) R =⇒ multp R (X + Z) (Y + Z) ←→

multp R X Y
〈proof 〉

lemma mult-cancel-add-mset:
trans r =⇒ irrefl-on {z} r =⇒
((add-mset z X , add-mset z Y) ∈ mult r) = ((X , Y) ∈ mult r)

THEORY “Multiset” 604

〈proof 〉

lemma multp-cancel-add-mset:
transp R =⇒ irreflp-on {z} R =⇒ multp R (add-mset z X) (add-mset z Y) =

multp R X Y
〈proof 〉

lemma mult-cancel-max0 :
assumes trans s and irrefl-on (set-mset X ∩ set-mset Y) s
shows (X , Y) ∈ mult s ←→ (X − X ∩# Y , Y − X ∩# Y) ∈ mult s (is ?L
←→ ?R)
〈proof 〉

lemma mult-cancel-max:
trans r =⇒ irrefl-on (set-mset X ∩ set-mset Y) r =⇒
(X , Y) ∈ mult r ←→ (X − Y , Y − X) ∈ mult r
〈proof 〉

lemma multp-cancel-max:
transp R =⇒ irreflp-on (set-mset X ∩ set-mset Y) R =⇒ multp R X Y ←→

multp R (X − Y) (Y − X)
〈proof 〉

67.13.5 Strict partial-order properties
lemma mult1-lessE :

assumes (N , M) ∈ mult1 {(a, b). r a b} and asymp r
obtains a M0 K where M = add-mset a M0 N = M0 + K

a /∈# K
∧

b. b ∈# K =⇒ r b a
〈proof 〉

lemma trans-on-mult:
assumes trans-on A r and

∧
M . M ∈ B =⇒ set-mset M ⊆ A

shows trans-on B (mult r)
〈proof 〉

lemma trans-mult: trans r =⇒ trans (mult r)
〈proof 〉

lemma transp-on-multp:
assumes transp-on A r and

∧
M . M ∈ B =⇒ set-mset M ⊆ A

shows transp-on B (multp r)
〈proof 〉

lemma transp-multp: transp r =⇒ transp (multp r)
〈proof 〉

lemma irrefl-mult:
assumes trans r irrefl r

THEORY “Multiset” 605

shows irrefl (mult r)
〈proof 〉

lemma irreflp-multp: transp R =⇒ irreflp R =⇒ irreflp (multp R)
〈proof 〉

instantiation multiset :: (preorder) order begin

definition less-multiset :: ′a multiset ⇒ ′a multiset ⇒ bool
where M < N ←→ multp (<) M N

definition less-eq-multiset :: ′a multiset ⇒ ′a multiset ⇒ bool
where less-eq-multiset M N ←→ M < N ∨ M = N

instance
〈proof 〉

end

lemma mset-le-irrefl [elim!]:
fixes M :: ′a::preorder multiset
shows M < M =⇒ R
〈proof 〉

lemma wfp-less-multiset[simp]:
assumes wf : wfp ((<) :: (′a :: preorder) ⇒ ′a ⇒ bool)
shows wfp ((<) :: ′a multiset ⇒ ′a multiset ⇒ bool)
〈proof 〉

67.13.6 Strict total-order properties
lemma total-on-mult:

assumes total-on A r and trans r and
∧

M . M ∈ B =⇒ set-mset M ⊆ A
shows total-on B (mult r)
〈proof 〉

lemma total-mult: total r =⇒ trans r =⇒ total (mult r)
〈proof 〉

lemma totalp-on-multp:
totalp-on A R =⇒ transp R =⇒ (

∧
M . M ∈ B =⇒ set-mset M ⊆ A) =⇒ totalp-on

B (multp R)
〈proof 〉

lemma totalp-multp: totalp R =⇒ transp R =⇒ totalp (multp R)
〈proof 〉

THEORY “Multiset” 606

67.14 Quasi-executable version of the multiset extension
Predicate variants of mult and the reflexive closure of mult, which are exe-
cutable whenever the given predicate P is. Together with the standard code
equations for (∩#) and (−) this should yield quadratic (with respect to calls
to P) implementations of multp-code and multeqp-code.
definition multp-code :: (′a ⇒ ′a ⇒ bool) ⇒ ′a multiset ⇒ ′a multiset ⇒ bool
where

multp-code P N M =
(let Z = M ∩# N ; X = M − Z in
X 6= {#} ∧ (let Y = N − Z in (∀ y ∈ set-mset Y . ∃ x ∈ set-mset X . P y x)))

definition multeqp-code :: (′a ⇒ ′a ⇒ bool) ⇒ ′a multiset ⇒ ′a multiset ⇒ bool
where

multeqp-code P N M =
(let Z = M ∩# N ; X = M − Z ; Y = N − Z in
(∀ y ∈ set-mset Y . ∃ x ∈ set-mset X . P y x))

lemma multp-code-iff-mult:
assumes irrefl-on (set-mset N ∩ set-mset M) R and trans R and
[simp]:

∧
x y. P x y ←→ (x, y) ∈ R

shows multp-code P N M ←→ (N , M) ∈ mult R (is ?L ←→ ?R)
〈proof 〉

lemma multp-code-iff-multp:
irreflp-on (set-mset M ∩ set-mset N) R =⇒ transp R =⇒ multp-code R M N
←→ multp R M N
〈proof 〉

lemma multp-code-eq-multp:
assumes irreflp R and transp R
shows multp-code R = multp R
〈proof 〉

lemma multeqp-code-iff-reflcl-mult:
assumes irrefl-on (set-mset N ∩ set-mset M) R and trans R and

∧
x y. P x y

←→ (x, y) ∈ R
shows multeqp-code P N M ←→ (N , M) ∈ (mult R)=

〈proof 〉

lemma multeqp-code-iff-reflclp-multp:
irreflp-on (set-mset M ∩ set-mset N) R =⇒ transp R =⇒ multeqp-code R M N
←→ (multp R)== M N
〈proof 〉

lemma multeqp-code-eq-reflclp-multp:
assumes irreflp R and transp R
shows multeqp-code R = (multp R)==

〈proof 〉

THEORY “Multiset” 607

67.14.1 Monotonicity of multiset union
lemma mult1-union: (B, D) ∈ mult1 r =⇒ (C + B, C + D) ∈ mult1 r
〈proof 〉

lemma union-le-mono2 : B < D =⇒ C + B < C + (D:: ′a::preorder multiset)
〈proof 〉

lemma union-le-mono1 : B < D =⇒ B + C < D + (C :: ′a::preorder multiset)
〈proof 〉

lemma union-less-mono:
fixes A B C D :: ′a::preorder multiset
shows A < C =⇒ B < D =⇒ A + B < C + D
〈proof 〉

instantiation multiset :: (preorder) ordered-ab-semigroup-add
begin
instance
〈proof 〉

end

67.14.2 Termination proofs with multiset orders
lemma multi-member-skip: x ∈# XS =⇒ x ∈# {# y #} + XS

and multi-member-this: x ∈# {# x #} + XS
and multi-member-last: x ∈# {# x #}
〈proof 〉

definition ms-strict = mult pair-less
definition ms-weak = ms-strict ∪ Id

lemma ms-reduction-pair : reduction-pair (ms-strict, ms-weak)
〈proof 〉

lemma smsI :
(set-mset A, set-mset B) ∈ max-strict =⇒ (Z + A, Z + B) ∈ ms-strict
〈proof 〉

lemma wmsI :
(set-mset A, set-mset B) ∈ max-strict ∨ A = {#} ∧ B = {#}
=⇒ (Z + A, Z + B) ∈ ms-weak
〈proof 〉

inductive pw-leq
where

pw-leq-empty: pw-leq {#} {#}
| pw-leq-step: [[(x,y) ∈ pair-leq; pw-leq X Y]] =⇒ pw-leq ({#x#} + X) ({#y#}
+ Y)

THEORY “Multiset” 608

lemma pw-leq-lstep:
(x, y) ∈ pair-leq =⇒ pw-leq {#x#} {#y#}
〈proof 〉

lemma pw-leq-split:
assumes pw-leq X Y
shows ∃A B Z . X = A + Z ∧ Y = B + Z ∧ ((set-mset A, set-mset B) ∈

max-strict ∨ (B = {#} ∧ A = {#}))
〈proof 〉

lemma
assumes pwleq: pw-leq Z Z ′

shows ms-strictI : (set-mset A, set-mset B) ∈ max-strict =⇒ (Z + A, Z ′ + B)
∈ ms-strict

and ms-weakI1 : (set-mset A, set-mset B) ∈ max-strict =⇒ (Z + A, Z ′ + B)
∈ ms-weak

and ms-weakI2 : (Z + {#}, Z ′ + {#}) ∈ ms-weak
〈proof 〉

lemma empty-neutral: {#} + x = x x + {#} = x
and nonempty-plus: {# x #} + rs 6= {#}
and nonempty-single: {# x #} 6= {#}
〈proof 〉

〈ML〉

67.15 Legacy theorem bindings
lemmas multi-count-eq = multiset-eq-iff [symmetric]

lemma union-commute: M + N = N + (M :: ′a multiset)
〈proof 〉

lemma union-assoc: (M + N) + K = M + (N + (K :: ′a multiset))
〈proof 〉

lemma union-lcomm: M + (N + K) = N + (M + (K :: ′a multiset))
〈proof 〉

lemmas union-ac = union-assoc union-commute union-lcomm add-mset-commute

lemma union-right-cancel: M + K = N + K ←→ M = (N :: ′a multiset)
〈proof 〉

lemma union-left-cancel: K + M = K + N ←→ M = (N :: ′a multiset)
〈proof 〉

lemma multi-union-self-other-eq: (A:: ′a multiset) + X = A + Y =⇒ X = Y
〈proof 〉

THEORY “Multiset” 609

lemma mset-subset-trans: (M :: ′a multiset) ⊂# K =⇒ K ⊂# N =⇒ M ⊂# N
〈proof 〉

lemma multiset-inter-commute: A ∩# B = B ∩# A
〈proof 〉

lemma multiset-inter-assoc: A ∩# (B ∩# C) = A ∩# B ∩# C
〈proof 〉

lemma multiset-inter-left-commute: A ∩# (B ∩# C) = B ∩# (A ∩# C)
〈proof 〉

lemmas multiset-inter-ac =
multiset-inter-commute
multiset-inter-assoc
multiset-inter-left-commute

lemma mset-le-not-refl: ¬ M < (M :: ′a::preorder multiset)
〈proof 〉

lemma mset-le-trans: K < M =⇒ M < N =⇒ K < (N :: ′a::preorder multiset)
〈proof 〉

lemma mset-le-not-sym: M < N =⇒ ¬ N < (M :: ′a::preorder multiset)
〈proof 〉

lemma mset-le-asym: M < N =⇒ (¬ P =⇒ N < (M :: ′a::preorder multiset)) =⇒
P
〈proof 〉

〈ML〉

67.16 Naive implementation using lists
code-datatype mset

lemma [code]: {#} = mset []
〈proof 〉

lemma [code]: add-mset x (mset xs) = mset (x # xs)
〈proof 〉

lemma [code]: Multiset.is-empty (mset xs) ←→ List.null xs
〈proof 〉

lemma union-code [code]: mset xs + mset ys = mset (xs @ ys)
〈proof 〉

THEORY “Multiset” 610

lemma [code]: image-mset f (mset xs) = mset (map f xs)
〈proof 〉

lemma [code]: filter-mset f (mset xs) = mset (filter f xs)
〈proof 〉

lemma [code]: mset xs − mset ys = mset (minus-list-mset xs ys)
〈proof 〉

lemma [code]:
mset xs ∩# mset ys =

mset (snd (fold (λx (ys, zs).
if x ∈ set ys then (remove1 x ys, x # zs) else (ys, zs)) xs (ys, [])))

〈proof 〉

lemma [code]:
mset xs ∪# mset ys =

mset (case-prod append (fold (λx (ys, zs). (remove1 x ys, x # zs)) xs (ys, [])))
〈proof 〉

declare in-multiset-in-set [code-unfold]

lemma [code]: count (mset xs) x = fold (λy. if x = y then Suc else id) xs 0
〈proof 〉

declare set-mset-mset [code]

declare sorted-list-of-multiset-mset [code]

lemma [code]: — not very efficient, but representation-ignorant!
mset-set A = mset (sorted-list-of-set A)
〈proof 〉

declare size-mset [code]

fun subset-eq-mset-impl :: ′a list ⇒ ′a list ⇒ bool option where
subset-eq-mset-impl [] ys = Some (ys 6= [])
| subset-eq-mset-impl (Cons x xs) ys = (case List.extract ((=) x) ys of

None ⇒ None
| Some (ys1 ,-,ys2) ⇒ subset-eq-mset-impl xs (ys1 @ ys2))

lemma subset-eq-mset-impl: (subset-eq-mset-impl xs ys = None ←→ ¬ mset xs
⊆# mset ys) ∧
(subset-eq-mset-impl xs ys = Some True ←→ mset xs ⊂# mset ys) ∧
(subset-eq-mset-impl xs ys = Some False −→ mset xs = mset ys)
〈proof 〉

lemma [code]: mset xs ⊆# mset ys ←→ subset-eq-mset-impl xs ys 6= None
〈proof 〉

THEORY “Multiset” 611

lemma [code]: mset xs ⊂# mset ys ←→ subset-eq-mset-impl xs ys = Some True
〈proof 〉

instantiation multiset :: (equal) equal
begin

definition
[code del]: HOL.equal A (B :: ′a multiset) ←→ A = B

lemma [code]: HOL.equal (mset xs) (mset ys) ←→ subset-eq-mset-impl xs ys =
Some False
〈proof 〉

instance
〈proof 〉

end

declare sum-mset-sum-list [code]

lemma [code]: prod-mset (mset xs) = fold times xs 1
〈proof 〉

Exercise for the casual reader: add implementations for (≤) and (<)
(multiset order).

Quickcheck generators
context

includes term-syntax
begin

definition
msetify :: ′a::typerep list × (unit ⇒ Code-Evaluation.term)
⇒ ′a multiset × (unit ⇒ Code-Evaluation.term) where

[code-unfold]: msetify xs = Code-Evaluation.valtermify mset {·} xs

end

instantiation multiset :: (random) random
begin

context
includes state-combinator-syntax

begin

definition
Quickcheck-Random.random i = Quickcheck-Random.random i ◦→ (λxs. Pair

(msetify xs))

instance 〈proof 〉

THEORY “Multiset” 612

end

end

instantiation multiset :: (full-exhaustive) full-exhaustive
begin

definition full-exhaustive-multiset :: (′a multiset × (unit ⇒ term)⇒ (bool × term
list) option) ⇒ natural ⇒ (bool × term list) option
where
full-exhaustive-multiset f i = Quickcheck-Exhaustive.full-exhaustive (λxs. f (msetify

xs)) i

instance 〈proof 〉

end

hide-const (open) msetify

67.17 BNF setup
definition rel-mset where

rel-mset R X Y ←→ (∃ xs ys. mset xs = X ∧ mset ys = Y ∧ list-all2 R xs ys)

lemma mset-zip-take-Cons-drop-twice:
assumes length xs = length ys j ≤ length xs
shows mset (zip (take j xs @ x # drop j xs) (take j ys @ y # drop j ys)) =

add-mset (x,y) (mset (zip xs ys))
〈proof 〉

lemma ex-mset-zip-left:
assumes length xs = length ys mset xs ′ = mset xs
shows ∃ ys ′. length ys ′ = length xs ′ ∧ mset (zip xs ′ ys ′) = mset (zip xs ys)
〈proof 〉

lemma list-all2-reorder-left-invariance:
assumes rel: list-all2 R xs ys and ms-x: mset xs ′ = mset xs
shows ∃ ys ′. list-all2 R xs ′ ys ′ ∧ mset ys ′ = mset ys
〈proof 〉

lemma ex-mset: ∃ xs. mset xs = X
〈proof 〉

inductive pred-mset :: (′a ⇒ bool) ⇒ ′a multiset ⇒ bool
where

pred-mset P {#}
| [[P a; pred-mset P M]] =⇒ pred-mset P (add-mset a M)

THEORY “Multiset” 613

lemma pred-mset-iff : — TODO: alias for Multiset.Ball
‹pred-mset P M ←→ Multiset.Ball M P› (is ‹?P ←→ ?Q›)
〈proof 〉

bnf ′a multiset
map: image-mset
sets: set-mset
bd: natLeq
wits: {#}
rel: rel-mset
pred: pred-mset
〈proof 〉

inductive rel-mset ′ :: ‹(′a ⇒ ′b ⇒ bool) ⇒ ′a multiset ⇒ ′b multiset ⇒ bool›
where

Zero[intro]: rel-mset ′ R {#} {#}
| Plus[intro]: [[R a b; rel-mset ′ R M N]] =⇒ rel-mset ′ R (add-mset a M) (add-mset
b N)

lemma rel-mset-Zero: rel-mset R {#} {#}
〈proof 〉

declare multiset.count[simp]
declare count-Abs-multiset[simp]
declare multiset.count-inverse[simp]

lemma rel-mset-Plus:
assumes ab: R a b

and MN : rel-mset R M N
shows rel-mset R (add-mset a M) (add-mset b N)
〈proof 〉

lemma rel-mset ′-imp-rel-mset: rel-mset ′ R M N =⇒ rel-mset R M N
〈proof 〉

lemma rel-mset-size: rel-mset R M N =⇒ size M = size N
〈proof 〉

lemma rel-mset-Zero-iff [simp]:
shows rel-mset rel {#} Y ←→ Y = {#} and rel-mset rel X {#} ←→ X = {#}
〈proof 〉

lemma multiset-induct2 [case-names empty addL addR]:
assumes empty: P {#} {#}

and addL:
∧

a M N . P M N =⇒ P (add-mset a M) N
and addR:

∧
a M N . P M N =⇒ P M (add-mset a N)

shows P M N
〈proof 〉

THEORY “Multiset” 614

lemma multiset-induct2-size[consumes 1 , case-names empty add]:
assumes c: size M = size N

and empty: P {#} {#}
and add:

∧
a b M N a b. P M N =⇒ P (add-mset a M) (add-mset b N)

shows P M N
〈proof 〉

lemma msed-map-invL:
assumes image-mset f (add-mset a M) = N
shows ∃N1 . N = add-mset (f a) N1 ∧ image-mset f M = N1
〈proof 〉

lemma msed-map-invR:
assumes image-mset f M = add-mset b N
shows ∃M1 a. M = add-mset a M1 ∧ f a = b ∧ image-mset f M1 = N
〈proof 〉

lemma msed-rel-invL:
assumes rel-mset R (add-mset a M) N
shows ∃N1 b. N = add-mset b N1 ∧ R a b ∧ rel-mset R M N1
〈proof 〉

lemma msed-rel-invR:
assumes rel-mset R M (add-mset b N)
shows ∃M1 a. M = add-mset a M1 ∧ R a b ∧ rel-mset R M1 N
〈proof 〉

lemma rel-mset-imp-rel-mset ′:
assumes rel-mset R M N
shows rel-mset ′ R M N
〈proof 〉

lemma rel-mset-rel-mset ′: rel-mset R M N = rel-mset ′ R M N
〈proof 〉

The main end product for rel-mset: inductive characterization:
lemmas rel-mset-induct[case-names empty add, induct pred: rel-mset] =

rel-mset ′.induct[unfolded rel-mset-rel-mset ′[symmetric]]

67.18 Size setup
lemma size-multiset-o-map: size-multiset g ◦ image-mset f = size-multiset (g ◦ f)
〈proof 〉

〈ML〉

67.19 Lemmas about Size
lemma size-mset-SucE : size A = Suc n =⇒ (

∧
a B. A = {#a#} + B =⇒ size B

= n =⇒ P) =⇒ P

THEORY “Multiset” 615

〈proof 〉

lemma size-Suc-Diff1 : x ∈# M =⇒ Suc (size (M − {#x#})) = size M
〈proof 〉

lemma size-Diff-singleton: x ∈# M =⇒ size (M − {#x#}) = size M − 1
〈proof 〉

lemma size-Diff-singleton-if : size (A − {#x#}) = (if x ∈# A then size A − 1
else size A)
〈proof 〉

lemma size-Un-Int: size A + size B = size (A ∪# B) + size (A ∩# B)
〈proof 〉

lemma size-Un-disjoint: A ∩# B = {#} =⇒ size (A ∪# B) = size A + size B
〈proof 〉

lemma size-Diff-subset-Int: size (M − M ′) = size M − size (M ∩# M ′)
〈proof 〉

lemma diff-size-le-size-Diff : size (M :: - multiset) − size M ′ ≤ size (M − M ′)
〈proof 〉

lemma size-Diff1-less: x∈# M =⇒ size (M − {#x#}) < size M
〈proof 〉

lemma size-Diff2-less: x∈# M =⇒ y∈# M =⇒ size (M − {#x#} − {#y#}) <
size M
〈proof 〉

lemma size-Diff1-le: size (M − {#x#}) ≤ size M
〈proof 〉

lemma size-psubset: M ⊆# M ′ =⇒ size M < size M ′ =⇒ M ⊂# M ′

〈proof 〉

lifting-update multiset.lifting
lifting-forget multiset.lifting

hide-const (open) wcount

67.20 The set of multisets of a given size
The following operator gives the set of all multisets consisting of n elements
drawn from the set A. In other words: all the different ways to put n
unlabelled balls into the labelled bins A.
definition multisets-of-size :: ′a set ⇒ nat ⇒ ′a multiset set where

multisets-of-size A n = {X . set-mset X ⊆ A ∧ size X = n}

THEORY “Multiset” 616

lemma
assumes X ∈ multisets-of-size A n
shows multisets-of-size-subset: set-mset X ⊆ A

and multisets-of-size-size: size X = n
〈proof 〉

lemma multisets-of-size-mono:
assumes A ⊆ B
shows multisets-of-size A n ⊆ multisets-of-size B n
〈proof 〉

lemma multisets-of-size-0 [simp]: multisets-of-size A 0 = {{#}}
〈proof 〉

lemma multisets-of-size-empty [simp]: n > 0 =⇒ multisets-of-size {} n = {}
〈proof 〉

lemma count-le-size: count X x ≤ size X
〈proof 〉

lemma bij-betw-multisets-of-size-insert:
assumes a /∈ A
shows bij-betw (λ(m,X). X + replicate-mset m a)

(SIGMA m:{0 ..n}. multisets-of-size A (n − m)) (multisets-of-size (insert
a A) n)
〈proof 〉

lemma multisets-of-size-insert:
assumes a /∈ A
shows multisets-of-size (insert a A) n =

(
⋃

m≤n. (λX . X + replicate-mset m a) ‘ multisets-of-size A (n − m))
〈proof 〉

primrec multisets-of-size-list :: ′a list ⇒ nat ⇒ ′a list list where
multisets-of-size-list [] n = (if n = 0 then [[]] else [])
| multisets-of-size-list (x # xs) n =

[replicate m x @ ys . m ← [0 ..<n+1], ys ← multisets-of-size-list xs (n − m)]

lemma multisets-of-size-list-correct:
assumes distinct xs
shows mset ‘ set (multisets-of-size-list xs n) = multisets-of-size (set xs) n
〈proof 〉

lemma multisets-of-size-code [code]:
multisets-of-size (set xs) n = set (map mset (multisets-of-size-list (remdups xs)

n))
〈proof 〉

THEORY “Multiset-Order” 617

lemma finite-multisets-of-size [intro]:
assumes finite A
shows finite (multisets-of-size A n)
〈proof 〉

lemma card-multisets-of-size:
assumes finite A
shows card (multisets-of-size A n) = (card A + n − 1) choose n
〈proof 〉

end

68 More Theorems about the Multiset Order
theory Multiset-Order
imports Multiset
begin

68.1 Alternative Characterizations
68.1.1 The Dershowitz–Manna Ordering
definition multpDM where

multpDM r M N ←→
(∃X Y . X 6= {#} ∧ X ⊆# N ∧ M = (N − X) + Y ∧ (∀ k. k ∈# Y −→ (∃ a.

a ∈# X ∧ r k a)))

lemma multpDM -imp-multp:
multpDM r M N =⇒ multp r M N
〈proof 〉

68.1.2 The Huet–Oppen Ordering
definition multpHO where

multpHO r M N ←→ M 6= N ∧ (∀ y. count N y < count M y −→ (∃ x. r y x ∧
count M x < count N x))

lemma multp-imp-multpHO:
assumes asymp r and transp r
shows multp r M N =⇒ multpHO r M N
〈proof 〉

lemma multpHO-imp-multpDM : multpHO r M N =⇒ multpDM r M N
〈proof 〉

lemma multp-eq-multpDM : asymp r =⇒ transp r =⇒ multp r = multpDM r
〈proof 〉

lemma multp-eq-multpHO: asymp r =⇒ transp r =⇒ multp r = multpHO r

THEORY “Multiset-Order” 618

〈proof 〉

lemma multpDM -plus-plusI [simp]:
assumes multpDM R M1 M2
shows multpDM R (M + M1) (M + M2)
〈proof 〉

lemma multpHO-plus-plus[simp]: multpHO R (M + M1) (M + M2)←→ multpHO

R M1 M2
〈proof 〉

lemma strict-subset-implies-multpDM : A ⊂# B =⇒ multpDM r A B
〈proof 〉

lemma strict-subset-implies-multpHO: A ⊂# B =⇒ multpHO r A B
〈proof 〉

lemma multpHO-implies-one-step-strong:
assumes multpHO R A B
defines J ≡ B − A and K ≡ A − B
shows J 6= {#} and ∀ k ∈# K . ∃ x ∈# J . R k x
〈proof 〉

lemma multpHO-minus-inter-minus-inter-iff :
fixes M1 M2 :: - multiset
shows multpHO R (M1 − M2) (M2 − M1) ←→ multpHO R M1 M2
〈proof 〉

lemma multpHO-iff-set-mset-lessHO-set-mset:
multpHO R M1 M2 ←→ (set-mset (M1 − M2) 6= set-mset (M2 − M1) ∧
(∀ y ∈# M1 − M2 . (∃ x ∈# M2 − M1 . R y x)))
〈proof 〉

68.1.3 Monotonicity
lemma multpDM -mono-strong:

multpDM R M1 M2 =⇒ (
∧

x y. x ∈# M1 =⇒ y ∈# M2 =⇒ R x y =⇒ S x y)
=⇒ multpDM S M1 M2
〈proof 〉

lemma multpHO-mono-strong:
multpHO R M1 M2 =⇒ (

∧
x y. x ∈# M1 =⇒ y ∈# M2 =⇒ R x y =⇒ S x y)

=⇒ multpHO S M1 M2
〈proof 〉

68.1.4 Properties of Orders

Asymmetry The following lemma is a negative result stating that asym-
metry of an arbitrary binary relation cannot be simply lifted to multpHO.

THEORY “Multiset-Order” 619

It suffices to have four distinct values to build a counterexample.
lemma asymp-not-liftable-to-multpHO:

fixes a b c d :: ′a
assumes distinct [a, b, c, d]
shows ¬ (∀ (R :: ′a ⇒ ′a ⇒ bool). asymp R −→ asymp (multpHO R))
〈proof 〉

However, if the binary relation is both asymmetric and transitive, then
multpHO is also asymmetric.
lemma asymp-on-multpHO:

assumes asymp-on A R and transp-on A R and
B-sub-A:

∧
M . M ∈ B =⇒ set-mset M ⊆ A

shows asymp-on B (multpHO R)
〈proof 〉

lemma asymp-multpHO:
assumes asymp R and transp R
shows asymp (multpHO R)
〈proof 〉

Irreflexivity lemma irreflp-on-multpHO[simp]: irreflp-on B (multpHO R)
〈proof 〉

Transitivity lemma transp-on-multpHO:
assumes asymp-on A R and transp-on A R and B-sub-A:

∧
M . M ∈ B =⇒

set-mset M ⊆ A
shows transp-on B (multpHO R)
〈proof 〉

lemma transp-multpHO:
assumes asymp R and transp R
shows transp (multpHO R)
〈proof 〉

Totality lemma totalp-on-multpDM :
totalp-on A R =⇒ (

∧
M . M ∈ B =⇒ set-mset M ⊆ A) =⇒ totalp-on B (multpDM

R)
〈proof 〉

lemma totalp-multpDM : totalp R =⇒ totalp (multpDM R)
〈proof 〉

lemma totalp-on-multpHO:
totalp-on A R =⇒ (

∧
M . M ∈ B =⇒ set-mset M ⊆ A) =⇒ totalp-on B (multpHO

R)
〈proof 〉

lemma totalp-multpHO: totalp R =⇒ totalp (multpHO R)
〈proof 〉

THEORY “Multiset-Order” 620

Type Classes context preorder
begin

lemma order-mult: class.order
(λM N . (M , N) ∈ mult {(x, y). x < y} ∨ M = N)
(λM N . (M , N) ∈ mult {(x, y). x < y})
(is class.order ?le ?less)
〈proof 〉

The Dershowitz–Manna ordering:
definition less-multisetDM where

less-multisetDM M N ←→
(∃X Y . X 6= {#} ∧ X ⊆# N ∧ M = (N − X) + Y ∧ (∀ k. k ∈# Y −→ (∃ a.

a ∈# X ∧ k < a)))

The Huet–Oppen ordering:
definition less-multisetHO where

less-multisetHO M N ←→ M 6= N ∧ (∀ y. count N y < count M y −→ (∃ x. y <
x ∧ count M x < count N x))

lemma mult-imp-less-multisetHO:
(M , N) ∈ mult {(x, y). x < y} =⇒ less-multisetHO M N
〈proof 〉

lemma less-multisetDM -imp-mult:
less-multisetDM M N =⇒ (M , N) ∈ mult {(x, y). x < y}
〈proof 〉

lemma less-multisetHO-imp-less-multisetDM : less-multisetHO M N =⇒ less-multisetDM

M N
〈proof 〉

lemma mult-less-multisetDM : (M , N) ∈ mult {(x, y). x < y} ←→ less-multisetDM

M N
〈proof 〉

lemma mult-less-multisetHO: (M , N) ∈ mult {(x, y). x < y} ←→ less-multisetHO

M N
〈proof 〉

lemmas multDM = mult-less-multisetDM [unfolded less-multisetDM -def]
lemmas multHO = mult-less-multisetHO[unfolded less-multisetHO-def]

end

lemma less-multiset-less-multisetHO: M < N ←→ less-multisetHO M N
〈proof 〉

lemma less-multisetDM :

THEORY “Multiset-Order” 621

M < N ←→ (∃X Y . X 6= {#} ∧ X ⊆# N ∧ M = N − X + Y ∧ (∀ k. k ∈#
Y −→ (∃ a. a ∈# X ∧ k < a)))
〈proof 〉

lemma less-multisetHO:
M < N ←→ M 6= N ∧ (∀ y. count N y < count M y −→ (∃ x>y. count M x <

count N x))
〈proof 〉

lemma subset-eq-imp-le-multiset:
shows M ⊆# N =⇒ M ≤ N
〈proof 〉

lemma le-multiset-right-total: M < add-mset x M
〈proof 〉

lemma less-eq-multiset-empty-left[simp]: {#} ≤ M
〈proof 〉

lemma ex-gt-imp-less-multiset: (∃ y. y ∈# N ∧ (∀ x. x ∈# M −→ x < y)) =⇒ M
< N
〈proof 〉

lemma less-eq-multiset-empty-right[simp]: M 6= {#} =⇒ ¬ M ≤ {#}
〈proof 〉

lemma le-multiset-empty-left[simp]: M 6= {#} =⇒ {#} < M
〈proof 〉

lemma le-multiset-empty-right[simp]: ¬ M < {#}
〈proof 〉

lemma union-le-diff-plus: P ⊆# M =⇒ N < P =⇒ M − P + N < M
〈proof 〉

instantiation multiset :: (preorder) ordered-ab-semigroup-monoid-add-imp-le
begin

lemma less-eq-multisetHO:
M ≤ N ←→ (∀ y. count N y < count M y −→ (∃ x. y < x ∧ count M x < count

N x))
〈proof 〉

instance 〈proof 〉

THEORY “Multiset-Order” 622

lemma
fixes M N :: ′a multiset
shows less-eq-multiset-plus-left: N ≤ (M + N)

and less-eq-multiset-plus-right: M ≤ (M + N)
〈proof 〉

lemma
fixes M N :: ′a multiset
shows le-multiset-plus-left-nonempty: M 6= {#} =⇒ N < M + N

and le-multiset-plus-right-nonempty: N 6= {#} =⇒ M < M + N
〈proof 〉

end

lemma all-lt-Max-imp-lt-mset: N 6= {#} =⇒ (∀ a ∈# M . a < Max (set-mset N))
=⇒ M < N
〈proof 〉

lemma lt-imp-ex-count-lt: M < N =⇒ ∃ y. count M y < count N y
〈proof 〉

lemma subset-imp-less-mset: A ⊂# B =⇒ A < B
〈proof 〉

lemma image-mset-strict-mono:
assumes mono-f : ∀ x ∈ set-mset M . ∀ y ∈ set-mset N . x < y −→ f x < f y

and less: M < N
shows image-mset f M < image-mset f N
〈proof 〉

lemma image-mset-mono:
assumes mono-f : ∀ x ∈ set-mset M . ∀ y ∈ set-mset N . x < y −→ f x < f y

and less: M ≤ N
shows image-mset f M ≤ image-mset f N
〈proof 〉

lemma mset-lt-single-right-iff [simp]: M < {#y#} ←→ (∀ x ∈# M . x < y) for y
:: ′a::linorder
〈proof 〉

lemma mset-le-single-right-iff [simp]:
M ≤ {#y#} ←→ M = {#y#} ∨ (∀ x ∈# M . x < y) for y :: ′a::linorder
〈proof 〉

68.1.5 Simplifications
lemma multpHO-repeat-mset-repeat-mset[simp]:

assumes n 6= 0
shows multpHO R (repeat-mset n A) (repeat-mset n B) ←→ multpHO R A B

THEORY “Multiset-Order” 623

〈proof 〉

lemma multpHO-double-double[simp]: multpHO R (A + A) (B + B)←→ multpHO

R A B
〈proof 〉

68.2 Simprocs
lemma mset-le-add-iff1 :

j ≤ (i::nat) =⇒ (repeat-mset i u + m ≤ repeat-mset j u + n) = (repeat-mset
(i−j) u + m ≤ n)
〈proof 〉

lemma mset-le-add-iff2 :
i ≤ (j::nat) =⇒ (repeat-mset i u + m ≤ repeat-mset j u + n) = (m ≤ repeat-mset

(j−i) u + n)
〈proof 〉

〈ML〉

68.3 Additional facts and instantiations
lemma ex-gt-count-imp-le-multiset:
(∀ y :: ′a :: order . y ∈# M + N −→ y ≤ x) =⇒ count M x < count N x =⇒ M

< N
〈proof 〉

lemma mset-lt-single-iff [iff]: {#x#} < {#y#} ←→ x < y
〈proof 〉

lemma mset-le-single-iff [iff]: {#x#} ≤ {#y#} ←→ x ≤ y for x y :: ′a::order
〈proof 〉

instance multiset :: (linorder) linordered-cancel-ab-semigroup-add
〈proof 〉

lemma less-eq-multiset-total: ¬ M ≤ N =⇒ N ≤ M for M N :: ′a :: linorder
multiset
〈proof 〉

instantiation multiset :: (wellorder) wellorder
begin

lemma wf-less-multiset: wf {(M :: ′a multiset, N). M < N}
〈proof 〉

instance
〈proof 〉

end

THEORY “Multiset-Order” 624

instantiation multiset :: (preorder) order-bot
begin

definition bot-multiset :: ′a multiset where bot-multiset = {#}

instance 〈proof 〉

end

instance multiset :: (preorder) no-top
〈proof 〉

instance multiset :: (preorder) ordered-cancel-comm-monoid-add
〈proof 〉

instantiation multiset :: (linorder) distrib-lattice
begin

definition inf-multiset :: ′a multiset ⇒ ′a multiset ⇒ ′a multiset where
inf-multiset A B = (if A < B then A else B)

definition sup-multiset :: ′a multiset ⇒ ′a multiset ⇒ ′a multiset where
sup-multiset A B = (if B > A then B else A)

instance
〈proof 〉

end

lemma add-mset-lt-left-lt: a < b =⇒ add-mset a A < add-mset b A
〈proof 〉

lemma add-mset-le-left-le: a ≤ b =⇒ add-mset a A ≤ add-mset b A for a :: ′a ::
linorder
〈proof 〉

lemma add-mset-lt-right-lt: A < B =⇒ add-mset a A < add-mset a B
〈proof 〉

lemma add-mset-le-right-le: A ≤ B =⇒ add-mset a A ≤ add-mset a B
〈proof 〉

lemma add-mset-lt-lt-lt:
assumes a-lt-b: a < b and A-le-B: A < B
shows add-mset a A < add-mset b B
〈proof 〉

lemma add-mset-lt-lt-le: a < b =⇒ A ≤ B =⇒ add-mset a A < add-mset b B

THEORY “NList” 625

〈proof 〉

lemma add-mset-lt-le-lt: a ≤ b =⇒ A < B =⇒ add-mset a A < add-mset b B for
a :: ′a :: linorder
〈proof 〉

lemma add-mset-le-le-le:
fixes a :: ′a :: linorder
assumes a-le-b: a ≤ b and A-le-B: A ≤ B
shows add-mset a A ≤ add-mset b B
〈proof 〉

lemma Max-lt-imp-lt-mset:
assumes n-nemp: N 6= {#} and max: Max-mset M < Max-mset N (is ?max-M

< ?max-N)
shows M < N
〈proof 〉

end

69 Fixed Length Lists
theory NList
imports Main
begin

definition nlists :: nat ⇒ ′a set ⇒ ′a list set
where nlists n A = {xs. size xs = n ∧ set xs ⊆ A}

lemma nlistsI : [[size xs = n; set xs ⊆ A]] =⇒ xs ∈ nlists n A
〈proof 〉

These [simp] attributes are double-edged. Many proofs in Jinja rely on
it but they can degrade performance.
lemma nlistsE-length [simp]: xs ∈ nlists n A =⇒ size xs = n
〈proof 〉

lemma in-nlists-UNIV : xs ∈ nlists k UNIV ←→ length xs = k
〈proof 〉

lemma less-lengthI : [[xs ∈ nlists n A; p < n]] =⇒ p < size xs
〈proof 〉

lemma nlistsE-set[simp]: xs ∈ nlists n A =⇒ set xs ⊆ A
〈proof 〉

lemma nlists-mono:
assumes A ⊆ B shows nlists n A ⊆ nlists n B
〈proof 〉

THEORY “NList” 626

lemma nlists-singleton: nlists n {a} = {replicate n a}
〈proof 〉

lemma nlists-n-0 [simp]: nlists 0 A = {[]}
〈proof 〉

lemma in-nlists-Suc-iff : (xs ∈ nlists (Suc n) A) = (∃ y∈A. ∃ ys ∈ nlists n A. xs
= y#ys)
〈proof 〉

lemma Cons-in-nlists-Suc [iff]: (x#xs ∈ nlists (Suc n) A) ←→ (x∈A ∧ xs ∈ nlists
n A)
〈proof 〉

lemma nlists-Suc: nlists (Suc n) A = (
⋃

a∈A. (#) a ‘ nlists n A)
〈proof 〉

lemma nlists-not-empty: A 6={} =⇒ ∃ xs. xs ∈ nlists n A
〈proof 〉

lemma nlistsE-nth-in: [[xs ∈ nlists n A; i < n]] =⇒ xs!i ∈ A
〈proof 〉

lemma nlists-Cons-Suc [elim!]:
l#xs ∈ nlists n A =⇒ (

∧
n ′. n = Suc n ′ =⇒ l ∈ A =⇒ xs ∈ nlists n ′ A =⇒ P)

=⇒ P
〈proof 〉

lemma nlists-appendE [elim!]:
a@b ∈ nlists n A =⇒ (

∧
n1 n2 . n=n1+n2 =⇒ a ∈ nlists n1 A =⇒ b ∈ nlists n2

A =⇒ P) =⇒ P
〈proof 〉

lemma nlists-update-in-list [simp, intro!]:
[[xs ∈ nlists n A; x∈A]] =⇒ xs[i := x] ∈ nlists n A
〈proof 〉

lemma nlists-appendI [intro?]:
[[a ∈ nlists n A; b ∈ nlists m A]] =⇒ a @ b ∈ nlists (n+m) A
〈proof 〉

lemma nlists-append:
xs @ ys ∈ nlists k A ←→
k = length(xs @ ys) ∧ xs ∈ nlists (length xs) A ∧ ys ∈ nlists (length ys) A

〈proof 〉

lemma nlists-map [simp]: (map f xs ∈ nlists (size xs) A) = (f ‘ set xs ⊆ A)

THEORY “Nonpos-Ints” 627

〈proof 〉

lemma nlists-replicateI [intro]: x ∈ A =⇒ replicate n x ∈ nlists n A
〈proof 〉

Link to an executable version on lists in List.
lemma nlists-set[code]: nlists n (set xs) = set(List.n-lists n xs)
〈proof 〉

end

70 Non-negative, non-positive integers and reals
theory Nonpos-Ints
imports Complex-Main
begin

70.1 Non-positive integers
The set of non-positive integers on a ring. (in analogy to the set of non-
negative integers �) This is useful e.g. for the Gamma function.
definition nonpos-Ints (‹�≤0›) where �≤0 = {of-int n |n. n ≤ 0}

lemma zero-in-nonpos-Ints [simp,intro]: 0 ∈ �≤0

〈proof 〉

lemma neg-one-in-nonpos-Ints [simp,intro]: −1 ∈ �≤0

〈proof 〉

lemma neg-numeral-in-nonpos-Ints [simp,intro]: −numeral n ∈ �≤0

〈proof 〉

lemma one-notin-nonpos-Ints [simp]: (1 :: ′a :: ring-char-0) /∈ �≤0

〈proof 〉

lemma numeral-notin-nonpos-Ints [simp]: (numeral n :: ′a :: ring-char-0) /∈ �≤0

〈proof 〉

lemma minus-of-nat-in-nonpos-Ints [simp, intro]: − of-nat n ∈ �≤0

〈proof 〉

lemma of-nat-in-nonpos-Ints-iff : (of-nat n :: ′a :: {ring-1 ,ring-char-0}) ∈ �≤0

←→ n = 0
〈proof 〉

lemma nonpos-Ints-of-int: n ≤ 0 =⇒ of-int n ∈ �≤0

〈proof 〉

THEORY “Nonpos-Ints” 628

lemma nonpos-IntsI :
x ∈ � =⇒ x ≤ 0 =⇒ (x :: ′a :: linordered-idom) ∈ �≤0

〈proof 〉

lemma nonpos-Ints-subset-Ints: �≤0 ⊆ �
〈proof 〉

lemma nonpos-Ints-nonpos [dest]: x ∈ �≤0 =⇒ x ≤ (0 :: ′a :: linordered-idom)
〈proof 〉

lemma nonpos-Ints-Int [dest]: x ∈ �≤0 =⇒ x ∈ �
〈proof 〉

lemma nonpos-Ints-cases:
assumes x ∈ �≤0

obtains n where x = of-int n n ≤ 0
〈proof 〉

lemma nonpos-Ints-cases ′:
assumes x ∈ �≤0

obtains n where x = −of-nat n
〈proof 〉

lemma of-real-in-nonpos-Ints-iff : (of-real x :: ′a :: real-algebra-1) ∈ �≤0 ←→ x ∈
�≤0

〈proof 〉

lemma nonpos-Ints-altdef : �≤0 = {n ∈ �. (n :: ′a :: linordered-idom) ≤ 0}
〈proof 〉

lemma uminus-in-Nats-iff : −x ∈ � ←→ x ∈ �≤0

〈proof 〉

lemma uminus-in-nonpos-Ints-iff : −x ∈ �≤0 ←→ x ∈ �
〈proof 〉

lemma nonpos-Ints-mult: x ∈ �≤0 =⇒ y ∈ �≤0 =⇒ x ∗ y ∈ �
〈proof 〉

lemma Nats-mult-nonpos-Ints: x ∈ � =⇒ y ∈ �≤0 =⇒ x ∗ y ∈ �≤0

〈proof 〉

lemma nonpos-Ints-mult-Nats:
x ∈ �≤0 =⇒ y ∈ � =⇒ x ∗ y ∈ �≤0

〈proof 〉

lemma nonpos-Ints-add:
x ∈ �≤0 =⇒ y ∈ �≤0 =⇒ x + y ∈ �≤0

〈proof 〉

THEORY “Nonpos-Ints” 629

lemma nonpos-Ints-diff-Nats:
x ∈ �≤0 =⇒ y ∈ � =⇒ x − y ∈ �≤0

〈proof 〉

lemma Nats-diff-nonpos-Ints:
x ∈ � =⇒ y ∈ �≤0 =⇒ x − y ∈ �
〈proof 〉

lemma plus-of-nat-eq-0-imp: z + of-nat n = 0 =⇒ z ∈ �≤0

〈proof 〉

70.2 Non-negative reals
definition nonneg-Reals :: ′a::real-algebra-1 set (‹�≥0›)

where �≥0 = {of-real r | r . r ≥ 0}

lemma nonneg-Reals-of-real-iff [simp]: of-real r ∈ �≥0 ←→ r ≥ 0
〈proof 〉

lemma nonneg-Reals-subset-Reals: �≥0 ⊆ �
〈proof 〉

lemma nonneg-Reals-Real [dest]: x ∈ �≥0 =⇒ x ∈ �
〈proof 〉

lemma nonneg-Reals-of-nat-I [simp]: of-nat n ∈ �≥0

〈proof 〉

lemma nonneg-Reals-cases:
assumes x ∈ �≥0

obtains r where x = of-real r r ≥ 0
〈proof 〉

lemma nonneg-Reals-zero-I [simp]: 0 ∈ �≥0

〈proof 〉

lemma nonneg-Reals-one-I [simp]: 1 ∈ �≥0

〈proof 〉

lemma nonneg-Reals-minus-one-I [simp]: −1 /∈ �≥0

〈proof 〉

lemma nonneg-Reals-numeral-I [simp]: numeral w ∈ �≥0

〈proof 〉

lemma nonneg-Reals-minus-numeral-I [simp]: − numeral w /∈ �≥0

〈proof 〉

THEORY “Nonpos-Ints” 630

lemma nonneg-Reals-add-I [simp]: [[a ∈ �≥0; b ∈ �≥0]] =⇒ a + b ∈ �≥0

〈proof 〉

lemma nonneg-Reals-mult-I [simp]: [[a ∈ �≥0; b ∈ �≥0]] =⇒ a ∗ b ∈ �≥0

〈proof 〉

lemma nonneg-Reals-inverse-I [simp]:
fixes a :: ′a::real-div-algebra
shows a ∈ �≥0 =⇒ inverse a ∈ �≥0

〈proof 〉

lemma nonneg-Reals-divide-I [simp]:
fixes a :: ′a::real-div-algebra
shows [[a ∈ �≥0; b ∈ �≥0]] =⇒ a / b ∈ �≥0

〈proof 〉

lemma nonneg-Reals-pow-I [simp]: a ∈ �≥0 =⇒ a^n ∈ �≥0

〈proof 〉

lemma complex-nonneg-Reals-iff : z ∈ �≥0 ←→ Re z ≥ 0 ∧ Im z = 0
〈proof 〉

lemma ii-not-nonneg-Reals [iff]: i /∈ �≥0

〈proof 〉

70.3 Non-positive reals
definition nonpos-Reals :: ′a::real-algebra-1 set (‹�≤0›)

where �≤0 = {of-real r | r . r ≤ 0}

lemma nonpos-Reals-of-real-iff [simp]: of-real r ∈ �≤0 ←→ r ≤ 0
〈proof 〉

lemma nonpos-Reals-subset-Reals: �≤0 ⊆ �
〈proof 〉

lemma nonpos-Ints-subset-nonpos-Reals: �≤0 ⊆ �≤0

〈proof 〉

lemma nonpos-Reals-of-nat-iff [simp]: of-nat n ∈ �≤0 ←→ n=0
〈proof 〉

lemma nonpos-Reals-Real [dest]: x ∈ �≤0 =⇒ x ∈ �
〈proof 〉

lemma nonpos-Reals-cases:
assumes x ∈ �≤0

obtains r where x = of-real r r ≤ 0
〈proof 〉

THEORY “Nonpos-Ints” 631

lemma uminus-nonneg-Reals-iff [simp]: −x ∈ �≥0 ←→ x ∈ �≤0

〈proof 〉

lemma uminus-nonpos-Reals-iff [simp]: −x ∈ �≤0 ←→ x ∈ �≥0

〈proof 〉

lemma nonpos-Reals-zero-I [simp]: 0 ∈ �≤0

〈proof 〉

lemma nonpos-Reals-one-I [simp]: 1 /∈ �≤0

〈proof 〉

lemma nonpos-Reals-numeral-I [simp]: numeral w /∈ �≤0

〈proof 〉

lemma nonpos-Reals-add-I [simp]: [[a ∈ �≤0; b ∈ �≤0]] =⇒ a + b ∈ �≤0

〈proof 〉

lemma nonpos-Reals-mult-I1 : [[a ∈ �≥0; b ∈ �≤0]] =⇒ a ∗ b ∈ �≤0

〈proof 〉

lemma nonpos-Reals-mult-I2 : [[a ∈ �≤0; b ∈ �≥0]] =⇒ a ∗ b ∈ �≤0

〈proof 〉

lemma nonpos-Reals-mult-of-nat-iff :
fixes a:: ′a :: real-div-algebra shows a ∗ of-nat n ∈ �≤0 ←→ a ∈ �≤0 ∨ n=0
〈proof 〉

lemma nonpos-Reals-inverse-I :
fixes a :: ′a::real-div-algebra
shows a ∈ �≤0 =⇒ inverse a ∈ �≤0

〈proof 〉

lemma nonpos-Reals-divide-I1 :
fixes a :: ′a::real-div-algebra
shows [[a ∈ �≥0; b ∈ �≤0]] =⇒ a / b ∈ �≤0

〈proof 〉

lemma nonpos-Reals-divide-I2 :
fixes a :: ′a::real-div-algebra
shows [[a ∈ �≤0; b ∈ �≥0]] =⇒ a / b ∈ �≤0

〈proof 〉

lemma nonpos-Reals-divide-of-nat-iff :
fixes a:: ′a :: real-div-algebra shows a / of-nat n ∈ �≤0 ←→ a ∈ �≤0 ∨ n=0
〈proof 〉

lemma nonpos-Reals-inverse-iff [simp]:

THEORY “Nonpos-Ints” 632

fixes a :: ′a::real-div-algebra
shows inverse a ∈ �≤0 ←→ a ∈ �≤0

〈proof 〉

lemma nonpos-Reals-pow-I : [[a ∈ �≤0; odd n]] =⇒ a^n ∈ �≤0

〈proof 〉

lemma complex-nonpos-Reals-iff : z ∈ �≤0 ←→ Re z ≤ 0 ∧ Im z = 0
〈proof 〉

lemma ii-not-nonpos-Reals [iff]: i /∈ �≤0

〈proof 〉

lemma plus-one-in-nonpos-Ints-imp: z + 1 ∈ �≤0 =⇒ z ∈ �≤0

〈proof 〉

lemma of-int-in-nonpos-Ints-iff :
(of-int n :: ′a :: ring-char-0) ∈ �≤0 ←→ n ≤ 0
〈proof 〉

lemma one-plus-of-int-in-nonpos-Ints-iff :
(1 + of-int n :: ′a :: ring-char-0) ∈ �≤0 ←→ n ≤ −1
〈proof 〉

lemma one-minus-of-nat-in-nonpos-Ints-iff :
(1 − of-nat n :: ′a :: ring-char-0) ∈ �≤0 ←→ n > 0
〈proof 〉

lemma fraction-not-in-Nats:
assumes ¬n dvd m n 6= 0
shows of-int m / of-int n /∈ (� :: ′a :: {division-ring,ring-char-0} set)
〈proof 〉

lemma not-in-Ints-imp-not-in-nonpos-Ints: z /∈ � =⇒ z /∈ �≤0

〈proof 〉

lemma double-in-nonpos-Ints-imp:
assumes 2 ∗ (z :: ′a :: field-char-0) ∈ �≤0

shows z ∈ �≤0 ∨ z + 1/2 ∈ �≤0

〈proof 〉

lemma fraction-numeral-Ints-iff [simp]:
numeral a / numeral b ∈ (� :: ′a :: {division-ring, ring-char-0} set)
←→ (numeral b :: int) dvd numeral a (is ?L=?R)

〈proof 〉

lemma fraction-numeral-Ints-iff1 [simp]:
1 / numeral b ∈ (� :: ′a :: {division-ring, ring-char-0} set)
←→ b = Num.One (is ?L=?R)

THEORY “Numeral-Type” 633

〈proof 〉

lemma fraction-numeral-Nats-iff [simp]:
numeral a / numeral b ∈ (� :: ′a :: {division-ring, ring-char-0} set)
←→ (numeral b :: int) dvd numeral a (is ?L=?R)

〈proof 〉

lemma fraction-numeral-Nats-iff1 [simp]:
1 / numeral b ∈ (� :: ′a :: {division-ring, ring-char-0} set)
←→ b = Num.One (is ?L=?R)
〈proof 〉

end

71 Numeral Syntax for Types
theory Numeral-Type
imports Cardinality
begin

71.1 Numeral Types
typedef num0 = UNIV :: nat set 〈proof 〉
typedef num1 = UNIV :: unit set 〈proof 〉

typedef ′a bit0 = {0 ..< 2 ∗ int CARD(′a::finite)}
〈proof 〉

typedef ′a bit1 = {0 ..< 1 + 2 ∗ int CARD(′a::finite)}
〈proof 〉

lemma card-num0 [simp]: CARD (num0) = 0
〈proof 〉

lemma infinite-num0 : ¬ finite (UNIV :: num0 set)
〈proof 〉

lemma card-num1 [simp]: CARD(num1) = 1
〈proof 〉

lemma card-bit0 [simp]: CARD(′a bit0) = 2 ∗ CARD(′a::finite)
〈proof 〉

lemma card-bit1 [simp]: CARD(′a bit1) = Suc (2 ∗ CARD(′a::finite))
〈proof 〉

71.2 num1
instance num1 :: finite

THEORY “Numeral-Type” 634

〈proof 〉

instantiation num1 :: CARD-1
begin

instance
〈proof 〉

end

lemma num1-eq-iff : (x::num1) = (y::num1) ←→ True
〈proof 〉

instantiation num1 :: {comm-ring,comm-monoid-mult,numeral}
begin

instance
〈proof 〉

end

lemma num1-eqI :
fixes a::num1 shows a = b
〈proof 〉

lemma num1-eq1 [simp]:
fixes a::num1 shows a = 1
〈proof 〉

lemma forall-1 [simp]: (∀ i::num1 . P i) ←→ P 1
〈proof 〉

lemma ex-1 [simp]: (∃ x::num1 . P x) ←→ P 1
〈proof 〉

instantiation num1 :: linorder begin
definition a < b ←→ Rep-num1 a < Rep-num1 b
definition a ≤ b ←→ Rep-num1 a ≤ Rep-num1 b
instance
〈proof 〉

end

instance num1 :: wellorder
〈proof 〉

instance bit0 :: (finite) card2
〈proof 〉

THEORY “Numeral-Type” 635

instance bit1 :: (finite) card2
〈proof 〉

71.3 Locales for for modular arithmetic subtypes
locale mod-type =

fixes n :: int
and Rep :: ′a::{zero,one,plus,times,uminus,minus} ⇒ int
and Abs :: int ⇒ ′a::{zero,one,plus,times,uminus,minus}
assumes type: type-definition Rep Abs {0 ..<n}
and size1 : 1 < n
and zero-def : 0 = Abs 0
and one-def : 1 = Abs 1
and add-def : x + y = Abs ((Rep x + Rep y) mod n)
and mult-def : x ∗ y = Abs ((Rep x ∗ Rep y) mod n)
and diff-def : x − y = Abs ((Rep x − Rep y) mod n)
and minus-def : − x = Abs ((− Rep x) mod n)

begin

lemma size0 : 0 < n
〈proof 〉

lemmas definitions =
zero-def one-def add-def mult-def minus-def diff-def

lemma Rep-less-n: Rep x < n
〈proof 〉

lemma Rep-le-n: Rep x ≤ n
〈proof 〉

lemma Rep-inject-sym: x = y ←→ Rep x = Rep y
〈proof 〉

lemma Rep-inverse: Abs (Rep x) = x
〈proof 〉

lemma Abs-inverse: m ∈ {0 ..<n} =⇒ Rep (Abs m) = m
〈proof 〉

lemma Rep-Abs-mod: Rep (Abs (m mod n)) = m mod n
〈proof 〉

lemma Rep-Abs-0 : Rep (Abs 0) = 0
〈proof 〉

lemma Rep-0 : Rep 0 = 0
〈proof 〉

THEORY “Numeral-Type” 636

lemma Rep-Abs-1 : Rep (Abs 1) = 1
〈proof 〉

lemma Rep-1 : Rep 1 = 1
〈proof 〉

lemma Rep-mod: Rep x mod n = Rep x
〈proof 〉

lemmas Rep-simps =
Rep-inject-sym Rep-inverse Rep-Abs-mod Rep-mod Rep-Abs-0 Rep-Abs-1

lemma comm-ring-1 : OFCLASS(′a, comm-ring-1-class)
〈proof 〉

end

locale mod-ring = mod-type n Rep Abs
for n :: int
and Rep :: ′a::{comm-ring-1} ⇒ int
and Abs :: int ⇒ ′a::{comm-ring-1}

begin

lemma of-nat-eq: of-nat k = Abs (int k mod n)
〈proof 〉

lemma of-int-eq: of-int z = Abs (z mod n)
〈proof 〉

lemma Rep-numeral: Rep (numeral w) = numeral w mod n
〈proof 〉

lemma iszero-numeral:
iszero (numeral w:: ′a) ←→ numeral w mod n = 0
〈proof 〉

lemma cases:
assumes 1 :

∧
z. [[(x:: ′a) = of-int z; 0 ≤ z; z < n]] =⇒ P

shows P
〈proof 〉

lemma induct:
(
∧

z. [[0 ≤ z; z < n]] =⇒ P (of-int z)) =⇒ P (x:: ′a)
〈proof 〉

lemma UNIV-eq: (UNIV :: ′a set) = Abs ‘ {0 ..<n}
〈proof 〉

lemma CARD-eq: CARD(′a) = nat n

THEORY “Numeral-Type” 637

〈proof 〉

lemma CHAR-eq [simp]: CHAR(′a) = CARD(′a)
〈proof 〉

end

71.4 Ring class instances
Unfortunately ring-1 instance is not possible for num1, since 0 and 1 are
not distinct.
instantiation

bit0 and bit1 :: (finite) {zero,one,plus,times,uminus,minus}
begin

definition Abs-bit0 ′ :: int ⇒ ′a bit0 where
Abs-bit0 ′ x = Abs-bit0 (x mod int CARD(′a bit0))

definition Abs-bit1 ′ :: int ⇒ ′a bit1 where
Abs-bit1 ′ x = Abs-bit1 (x mod int CARD(′a bit1))

definition 0 = Abs-bit0 0
definition 1 = Abs-bit0 1
definition x + y = Abs-bit0 ′ (Rep-bit0 x + Rep-bit0 y)
definition x ∗ y = Abs-bit0 ′ (Rep-bit0 x ∗ Rep-bit0 y)
definition x − y = Abs-bit0 ′ (Rep-bit0 x − Rep-bit0 y)
definition − x = Abs-bit0 ′ (− Rep-bit0 x)

definition 0 = Abs-bit1 0
definition 1 = Abs-bit1 1
definition x + y = Abs-bit1 ′ (Rep-bit1 x + Rep-bit1 y)
definition x ∗ y = Abs-bit1 ′ (Rep-bit1 x ∗ Rep-bit1 y)
definition x − y = Abs-bit1 ′ (Rep-bit1 x − Rep-bit1 y)
definition − x = Abs-bit1 ′ (− Rep-bit1 x)

instance 〈proof 〉

end

interpretation bit0 :
mod-type int CARD(′a::finite bit0)

Rep-bit0 :: ′a::finite bit0 ⇒ int
Abs-bit0 :: int ⇒ ′a::finite bit0

〈proof 〉

interpretation bit1 :
mod-type int CARD(′a::finite bit1)

Rep-bit1 :: ′a::finite bit1 ⇒ int
Abs-bit1 :: int ⇒ ′a::finite bit1

THEORY “Numeral-Type” 638

〈proof 〉

instance bit0 :: (finite) comm-ring-1
〈proof 〉

instance bit1 :: (finite) comm-ring-1
〈proof 〉

interpretation bit0 :
mod-ring int CARD(′a::finite bit0)

Rep-bit0 :: ′a::finite bit0 ⇒ int
Abs-bit0 :: int ⇒ ′a::finite bit0

〈proof 〉

interpretation bit1 :
mod-ring int CARD(′a::finite bit1)

Rep-bit1 :: ′a::finite bit1 ⇒ int
Abs-bit1 :: int ⇒ ′a::finite bit1

〈proof 〉

Set up cases, induction, and arithmetic
lemmas bit0-cases [case-names of-int, cases type: bit0] = bit0 .cases
lemmas bit1-cases [case-names of-int, cases type: bit1] = bit1 .cases

lemmas bit0-induct [case-names of-int, induct type: bit0] = bit0 .induct
lemmas bit1-induct [case-names of-int, induct type: bit1] = bit1 .induct

lemmas bit0-iszero-numeral [simp] = bit0 .iszero-numeral
lemmas bit1-iszero-numeral [simp] = bit1 .iszero-numeral

lemmas [simp] = eq-numeral-iff-iszero [where ′a= ′a bit0] for dummy :: ′a::finite
lemmas [simp] = eq-numeral-iff-iszero [where ′a= ′a bit1] for dummy :: ′a::finite

71.5 Order instances
instantiation bit0 and bit1 :: (finite) linorder begin
definition a < b ←→ Rep-bit0 a < Rep-bit0 b
definition a ≤ b ←→ Rep-bit0 a ≤ Rep-bit0 b
definition a < b ←→ Rep-bit1 a < Rep-bit1 b
definition a ≤ b ←→ Rep-bit1 a ≤ Rep-bit1 b

instance
〈proof 〉

end

instance bit0 and bit1 :: (finite) wellorder
〈proof 〉

THEORY “Numeral-Type” 639

71.6 Code setup and type classes for code generation
Code setup for num0 and num1
definition Num0 :: num0 where Num0 = Abs-num0 0
code-datatype Num0

instantiation num0 :: equal begin
definition equal-num0 :: num0 ⇒ num0 ⇒ bool

where equal-num0 = (=)
instance 〈proof 〉
end

lemma equal-num0-code [code]:
equal-class.equal Num0 Num0 = True
〈proof 〉

code-datatype 1 :: num1

instantiation num1 :: equal begin
definition equal-num1 :: num1 ⇒ num1 ⇒ bool

where equal-num1 = (=)
instance 〈proof 〉
end

lemma equal-num1-code [code]:
equal-class.equal (1 :: num1) 1 = True
〈proof 〉

instantiation num1 :: enum begin
definition enum-class.enum = [1 :: num1]
definition enum-class.enum-all P = P (1 :: num1)
definition enum-class.enum-ex P = P (1 :: num1)
instance
〈proof 〉

end

instantiation num0 and num1 :: card-UNIV begin
definition finite-UNIV = Phantom(num0) False
definition card-UNIV = Phantom(num0) 0
definition finite-UNIV = Phantom(num1) True
definition card-UNIV = Phantom(num1) 1
instance
〈proof 〉

end

Code setup for ′a bit0 and ′a bit1
declare

bit0 .Rep-inverse[code abstype]
bit0 .Rep-0 [code abstract]

THEORY “Numeral-Type” 640

bit0 .Rep-1 [code abstract]

lemma Abs-bit0 ′-code [code abstract]:
Rep-bit0 (Abs-bit0 ′ x :: ′a :: finite bit0) = x mod int (CARD(′a bit0))
〈proof 〉

lemma inj-on-Abs-bit0 :
inj-on (Abs-bit0 :: int ⇒ ′a bit0) {0 ..<2 ∗ int CARD(′a :: finite)}
〈proof 〉

declare
bit1 .Rep-inverse[code abstype]
bit1 .Rep-0 [code abstract]
bit1 .Rep-1 [code abstract]

lemma Abs-bit1 ′-code [code abstract]:
Rep-bit1 (Abs-bit1 ′ x :: ′a :: finite bit1) = x mod int (CARD(′a bit1))
〈proof 〉

lemma inj-on-Abs-bit1 :
inj-on (Abs-bit1 :: int ⇒ ′a bit1) {0 ..<1 + 2 ∗ int CARD(′a :: finite)}
〈proof 〉

instantiation bit0 and bit1 :: (finite) equal begin

definition equal-class.equal x y ←→ Rep-bit0 x = Rep-bit0 y
definition equal-class.equal x y ←→ Rep-bit1 x = Rep-bit1 y

instance
〈proof 〉

end

instantiation bit0 :: (finite) enum begin
definition (enum-class.enum :: ′a bit0 list) = map (Abs-bit0 ′ ◦ int) (upt 0 (CARD(′a
bit0)))
definition enum-class.enum-all P = (∀ b :: ′a bit0 ∈ set enum-class.enum. P b)
definition enum-class.enum-ex P = (∃ b :: ′a bit0 ∈ set enum-class.enum. P b)

instance 〈proof 〉

end

instantiation bit1 :: (finite) enum begin
definition (enum-class.enum :: ′a bit1 list) = map (Abs-bit1 ′ ◦ int) (upt 0 (CARD(′a
bit1)))
definition enum-class.enum-all P = (∀ b :: ′a bit1 ∈ set enum-class.enum. P b)
definition enum-class.enum-ex P = (∃ b :: ′a bit1 ∈ set enum-class.enum. P b)

THEORY “Omega-Words-Fun” 641

instance
〈proof 〉

end

instantiation bit0 and bit1 :: (finite) finite-UNIV begin
definition finite-UNIV = Phantom(′a bit0) True
definition finite-UNIV = Phantom(′a bit1) True
instance 〈proof 〉
end

instantiation bit0 and bit1 :: ({finite,card-UNIV }) card-UNIV begin
definition card-UNIV = Phantom(′a bit0) (2 ∗ of-phantom (card-UNIV :: ′a
card-UNIV))
definition card-UNIV = Phantom(′a bit1) (1 + 2 ∗ of-phantom (card-UNIV ::
′a card-UNIV))
instance 〈proof 〉
end

71.7 Syntax
syntax

-NumeralType :: num-token => type (‹(‹open-block notation=‹type-literal num-
ber››-)›)

-NumeralType0 :: type (‹(‹open-block notation=‹type-literal number››0)›)
-NumeralType1 :: type (‹(‹open-block notation=‹type-literal number››1)›)

translations
(type) 1 == (type) num1
(type) 0 == (type) num0

〈ML〉

71.8 Examples
lemma CARD(0) = 0 〈proof 〉
lemma CARD(17) = 17 〈proof 〉
lemma CHAR(23) = 23 〈proof 〉
lemma 8 ∗ 11 ^ 3 − 6 = (2 ::5) 〈proof 〉

end

72 ω-words
theory Omega-Words-Fun

imports Infinite-Set
begin

Note: This theory is based on Stefan Merz’s work.

THEORY “Omega-Words-Fun” 642

Automata recognize languages, which are sets of words. For the theory
of ω-automata, we are mostly interested in ω-words, but it is sometimes
useful to reason about finite words, too. We are modeling finite words as
lists; this lets us benefit from the existing library. Other formalizations could
be investigated, such as representing words as functions whose domains are
initial intervals of the natural numbers.

72.1 Type declaration and elementary operations
We represent ω-words as functions from the natural numbers to the alphabet
type. Other possible formalizations include a coinductive definition or a
uniform encoding of finite and infinite words, as studied by Müller et al.
type-synonym

′a word = nat ⇒ ′a

We can prefix a finite word to an ω-word, and a way to obtain an ω-word
from a finite, non-empty word is by ω-iteration.
definition

conc :: [′a list, ′a word] ⇒ ′a word (infixr ‹_› 65)
where w _ x == λn. if n < length w then w!n else x (n − length w)

definition
iter :: ′a list ⇒ ′a word (‹(‹notation=‹postfix ω››-ω)› [1000])
where iter w == if w = [] then undefined else (λn. w!(n mod (length w)))

lemma conc-empty[simp]: [] _ w = w
〈proof 〉

lemma conc-fst[simp]: n < length w =⇒ (w _ x) n = w!n
〈proof 〉

lemma conc-snd[simp]: ¬(n < length w) =⇒ (w _ x) n = x (n − length w)
〈proof 〉

lemma iter-nth [simp]: 0 < length w =⇒ wω n = w!(n mod (length w))
〈proof 〉

lemma conc-conc[simp]: u _ v _ w = (u @ v) _ w (is ?lhs = ?rhs)
〈proof 〉

lemma range-conc[simp]: range (w1 _ w2) = set w1 ∪ range w2

〈proof 〉

lemma iter-unroll: 0 < length w =⇒ wω = w _ wω

〈proof 〉

THEORY “Omega-Words-Fun” 643

72.2 Subsequence, Prefix, and Suffix
definition suffix :: [nat, ′a word] ⇒ ′a word

where suffix k x ≡ λn. x (k+n)

definition subsequence :: ′a word ⇒ nat ⇒ nat ⇒ ′a list
(‹(‹open-block notation=‹mixfix subsequence››- [- → -])› 900)

where subsequence w i j ≡ map w [i..<j]

abbreviation prefix :: nat ⇒ ′a word ⇒ ′a list
where prefix n w ≡ subsequence w 0 n

lemma suffix-nth [simp]: (suffix k x) n = x (k+n)
〈proof 〉

lemma suffix-0 [simp]: suffix 0 x = x
〈proof 〉

lemma suffix-suffix [simp]: suffix m (suffix k x) = suffix (k+m) x
〈proof 〉

lemma subsequence-append: prefix (i + j) w = prefix i w @ (w [i → i + j])
〈proof 〉

lemma subsequence-drop[simp]: drop i (w [j → k]) = w [j + i → k]
〈proof 〉

lemma subsequence-empty[simp]: w [i → j] = [] ←→ j ≤ i
〈proof 〉

lemma subsequence-length[simp]: length (subsequence w i j) = j − i
〈proof 〉

lemma subsequence-nth[simp]: k < j − i =⇒ (w [i → j]) ! k = w (i + k)
〈proof 〉

lemma subseq-to-zero[simp]: w[i→0] = []
〈proof 〉

lemma subseq-to-smaller [simp]: i≥j =⇒ w[i→j] = []
〈proof 〉

lemma subseq-to-Suc[simp]: i≤j =⇒ w [i → Suc j] = w [i → j] @ [w j]
〈proof 〉

lemma subsequence-singleton[simp]: w [i → Suc i] = [w i]
〈proof 〉

lemma subsequence-prefix-suffix: prefix (j − i) (suffix i w) = w [i → j]

THEORY “Omega-Words-Fun” 644

〈proof 〉

lemma prefix-suffix: x = prefix n x _ (suffix n x)
〈proof 〉

declare prefix-suffix[symmetric, simp]

lemma word-split: obtains v1 v2 where v = v1 _ v2 length v1 = k
〈proof 〉

lemma set-subsequence[simp]: set (w[i→j]) = w‘{i..<j}
〈proof 〉

lemma subsequence-take[simp]: take i (w [j → k]) = w [j → min (j + i) k]
〈proof 〉

lemma subsequence-shift[simp]: (suffix i w) [j → k] = w [i + j → i + k]
〈proof 〉

lemma suffix-subseq-join[simp]: i ≤ j =⇒ v [i → j] _ suffix j v = suffix i v
〈proof 〉

lemma prefix-conc-fst[simp]:
assumes j ≤ length w
shows prefix j (w _ w ′) = take j w
〈proof 〉

lemma prefix-conc-snd[simp]:
assumes n ≥ length u
shows prefix n (u _ v) = u @ prefix (n − length u) v
〈proof 〉

lemma prefix-conc-length[simp]: prefix (length w) (w _ w ′) = w
〈proof 〉

lemma suffix-conc-fst[simp]:
assumes n ≤ length u
shows suffix n (u _ v) = drop n u _ v
〈proof 〉

lemma suffix-conc-snd[simp]:
assumes n ≥ length u
shows suffix n (u _ v) = suffix (n − length u) v
〈proof 〉

lemma suffix-conc-length[simp]: suffix (length w) (w _ w ′) = w ′

〈proof 〉

THEORY “Omega-Words-Fun” 645

lemma concat-eq[iff]:
assumes length v1 = length v2

shows v1 _ u1 = v2 _ u2 ←→ v1 = v2 ∧ u1 = u2

(is ?lhs ←→ ?rhs)
〈proof 〉

lemma same-concat-eq[iff]: u _ v = u _ w ←→ v = w
〈proof 〉

lemma comp-concat[simp]: f ◦ u _ v = map f u _ (f ◦ v)
〈proof 〉

72.3 Prepending
primrec build :: ′a ⇒ ′a word ⇒ ′a word (infixr ‹##› 65)

where (a ## w) 0 = a | (a ## w) (Suc i) = w i

lemma build-eq[iff]: a1 ## w1 = a2 ## w2 ←→ a1 = a2 ∧ w1 = w2

〈proof 〉

lemma build-cons[simp]: (a # u) _ v = a ## u _ v
〈proof 〉

lemma build-append[simp]: (w @ a # u) _ v = w _ a ## u _ v
〈proof 〉

lemma build-first[simp]: w 0 ## suffix (Suc 0) w = w
〈proof 〉

lemma build-split[intro]: w = w 0 ## suffix 1 w
〈proof 〉

lemma build-range[simp]: range (a ## w) = insert a (range w)
〈proof 〉

lemma suffix-singleton-suffix[simp]: w i ## suffix (Suc i) w = suffix i w
〈proof 〉

Find the first occurrence of a letter from a given set
lemma word-first-split-set:

assumes A ∩ range w 6= {}
obtains u a v where w = u _ [a] _ v A ∩ set u = {} a ∈ A
〈proof 〉

72.4 The limit set of an ω-word
The limit set (also called infinity set) of an ω-word is the set of letters that
appear infinitely often in the word. This set plays an important role in

THEORY “Omega-Words-Fun” 646

defining acceptance conditions of ω-automata.
definition limit :: ′a word ⇒ ′a set

where limit x ≡ {a . ∃∞n . x n = a}

lemma limit-iff-frequent: a ∈ limit x ←→ (∃∞n . x n = a)
〈proof 〉

The following is a different way to define the limit, using the reverse
image, making the laws about reverse image applicable to the limit set.
(Might want to change the definition above?)
lemma limit-vimage: (a ∈ limit x) = infinite (x −‘ {a})
〈proof 〉

lemma two-in-limit-iff :
({a, b} ⊆ limit x) =
((∃n. x n =a) ∧ (∀n. x n = a −→ (∃m>n. x m = b)) ∧ (∀m. x m = b −→

(∃n>m. x n = a)))
(is ?lhs = (?r1 ∧ ?r2 ∧ ?r3))
〈proof 〉

For ω-words over a finite alphabet, the limit set is non-empty. Moreover,
from some position onward, any such word contains only letters from its limit
set.
lemma limit-nonempty:

assumes fin: finite (range x)
shows ∃ a. a ∈ limit x
〈proof 〉

lemmas limit-nonemptyE = limit-nonempty[THEN exE]

lemma limit-inter-INF :
assumes hyp: limit w ∩ S 6= {}
shows ∃∞ n. w n ∈ S
〈proof 〉

The reverse implication is true only if S is finite.
lemma INF-limit-inter :

assumes hyp: ∃∞ n. w n ∈ S
and fin: finite (S ∩ range w)

shows ∃ a. a ∈ limit w ∩ S
〈proof 〉

lemma fin-ex-inf-eq-limit: finite A =⇒ (∃∞i. w i ∈ A) ←→ limit w ∩ A 6= {}
〈proof 〉

lemma limit-in-range-suffix: limit x ⊆ range (suffix k x)
〈proof 〉

THEORY “Omega-Words-Fun” 647

lemma limit-in-range: limit r ⊆ range r
〈proof 〉

lemmas limit-in-range-suffixD = limit-in-range-suffix[THEN subsetD]

lemma limit-subset: limit f ⊆ f ‘ {n..}
〈proof 〉

theorem limit-is-suffix:
assumes fin: finite (range x)
shows ∃ k. limit x = range (suffix k x)
〈proof 〉

lemmas limit-is-suffixE = limit-is-suffix[THEN exE]

The limit set enjoys some simple algebraic laws with respect to concate-
nation, suffixes, iteration, and renaming.
theorem limit-conc [simp]: limit (w _ x) = limit x
〈proof 〉

theorem limit-suffix [simp]: limit (suffix n x) = limit x
〈proof 〉

theorem limit-iter [simp]:
assumes nempty: 0 < length w
shows limit wω = set w
〈proof 〉

lemma limit-o [simp]:
assumes a: a ∈ limit w
shows f a ∈ limit (f ◦ w)
〈proof 〉

The converse relation is not true in general: f(a) can be in the limit of
f ◦w even though a is not in the limit of w. However, limit commutes with
renaming if the function is injective. More generally, if f(a) is the image of
only finitely many elements, some of these must be in the limit of w.
lemma limit-o-inv:

assumes fin: finite (f −‘ {x})
and x: x ∈ limit (f ◦ w)

shows ∃ a ∈ (f −‘ {x}). a ∈ limit w
〈proof 〉

theorem limit-inj [simp]:
assumes inj: inj f
shows limit (f ◦ w) = f ‘ (limit w)
〈proof 〉

lemma limit-inter-empty:

THEORY “Omega-Words-Fun” 648

assumes fin: finite (range w)
assumes hyp: limit w ∩ S = {}
shows ∀∞n. w n /∈ S
〈proof 〉

If the limit is the suffix of the sequence’s range, we may increase the
suffix index arbitrarily
lemma limit-range-suffix-incr :

assumes limit r = range (suffix i r)
assumes j≥i
shows limit r = range (suffix j r)
(is ?lhs = ?rhs)

〈proof 〉

For two finite sequences, we can find a common suffix index such that
the limits can be represented as these suffixes’ ranges.
lemma common-range-limit:

assumes finite (range x)
and finite (range y)

obtains i where limit x = range (suffix i x)
and limit y = range (suffix i y)

〈proof 〉

72.5 Index sequences and piecewise definitions
A word can be defined piecewise: given a sequence of words w0, w1, . . . and a
strictly increasing sequence of integers i0, i1, . . . where i0 = 0, a single word
is obtained by concatenating subwords of the wn as given by the integers:
the resulting word is

(w0)i0 . . . (w0)i1−1(w1)i1 . . . (w1)i2−1 . . .

We prepare the field by proving some trivial facts about such sequences of
indexes.
definition idx-sequence :: nat word ⇒ bool

where idx-sequence idx ≡ (idx 0 = 0) ∧ (∀n. idx n < idx (Suc n))

lemma idx-sequence-less:
assumes iseq: idx-sequence idx
shows idx n < idx (Suc(n+k))
〈proof 〉

lemma idx-sequence-inj:
assumes iseq: idx-sequence idx

and eq: idx m = idx n
shows m = n
〈proof 〉

THEORY “Omega-Words-Fun” 649

lemma idx-sequence-mono:
assumes iseq: idx-sequence idx

and m: m ≤ n
shows idx m ≤ idx n
〈proof 〉

Given an index sequence, every natural number is contained in the inter-
val defined by two adjacent indexes, and in fact this interval is determined
uniquely.
lemma idx-sequence-idx:

assumes idx-sequence idx
shows idx k ∈ {idx k ..< idx (Suc k)}
〈proof 〉

lemma idx-sequence-interval:
assumes iseq: idx-sequence idx
shows ∃ k. n ∈ {idx k ..< idx (Suc k) }
(is ?P n is ∃ k. ?in n k)

〈proof 〉

lemma idx-sequence-interval-unique:
assumes iseq: idx-sequence idx

and k: n ∈ {idx k ..< idx (Suc k)}
and m: n ∈ {idx m ..< idx (Suc m)}

shows k = m
〈proof 〉

lemma idx-sequence-unique-interval:
assumes iseq: idx-sequence idx
shows ∃ ! k. n ∈ {idx k ..< idx (Suc k) }
〈proof 〉

Now we can define the piecewise construction of a word using an index
sequence.
definition merge :: ′a word word ⇒ nat word ⇒ ′a word

where merge ws idx ≡ λn. let i = THE i. n ∈ {idx i ..< idx (Suc i) } in ws i n

lemma merge:
assumes idx: idx-sequence idx

and n: n ∈ {idx i ..< idx (Suc i)}
shows merge ws idx n = ws i n
〈proof 〉

lemma merge0 :
assumes idx: idx-sequence idx
shows merge ws idx 0 = ws 0 0
〈proof 〉

lemma merge-Suc:

THEORY “Open-State-Syntax” 650

assumes idx: idx-sequence idx
and n: n ∈ {idx i ..< idx (Suc i)}

shows merge ws idx (Suc n) = (if Suc n = idx (Suc i) then ws (Suc i) else ws
i) (Suc n)
〈proof 〉

end

73 Combinator syntax for generic, open state mon-
ads (single-threaded monads)

theory Open-State-Syntax
imports Main
begin

context
includes state-combinator-syntax

begin

73.1 Motivation
The logic HOL has no notion of constructor classes, so it is not possible to
model monads the Haskell way in full genericity in Isabelle/HOL.

However, this theory provides substantial support for a very common
class of monads: state monads (or single-threaded monads, since a state is
transformed single-threadedly).

To enter from the Haskell world, https://www.engr.mun.ca/~theo/Misc/
haskell_and_monads.htm makes a good motivating start. Here we just
sketch briefly how those monads enter the game of Isabelle/HOL.

73.2 State transformations and combinators
We classify functions operating on states into two categories:

transformations with type signature σ ⇒ σ ′, transforming a state.

“yielding” transformations with type signature σ ⇒ α × σ ′, “yielding”
a side result while transforming a state.

queries with type signature σ ⇒ α, computing a result dependent on a
state.

By convention we write σ for types representing states and α, β, γ, . . .
for types representing side results. Type changes due to transformations are
not excluded in our scenario.

We aim to assert that values of any state type σ are used in a single-
threaded way: after application of a transformation on a value of type σ,

https://www.engr.mun.ca/~theo/Misc/haskell_and_monads.htm
https://www.engr.mun.ca/~theo/Misc/haskell_and_monads.htm

THEORY “Open-State-Syntax” 651

the former value should not be used again. To achieve this, we use a set of
monad combinators:

Given two transformations f and g, they may be directly composed using
the (◦>) combinator, forming a forward composition: (f ◦> g) s = f (g s).

After any yielding transformation, we bind the side result immediately
using a lambda abstraction. This is the purpose of the (◦→) combinator: (f
◦→ (λx. g)) s = (let (x, s ′) = f s in g s ′).

For queries, the existing Let is appropriate.
Naturally, a computation may yield a side result by pairing it to the

state from the left; we introduce the suggestive abbreviation return for this
purpose.

The most crucial distinction to Haskell is that we do not need to intro-
duce distinguished type constructors for different kinds of state. This has
two consequences:

• The monad model does not state anything about the kind of state;
the model for the state is completely orthogonal and may be specified
completely independently.

• There is no distinguished type constructor encapsulating away the
state transformation, i.e. transformations may be applied directly with-
out using any lifting or providing and dropping units (“open monad”).

• The type of states may change due to a transformation.

73.3 Monad laws
The common monadic laws hold and may also be used as normalization rules
for monadic expressions:
lemmas monad-simp = Pair-scomp scomp-Pair id-fcomp fcomp-id

scomp-scomp scomp-fcomp fcomp-scomp fcomp-assoc

Evaluation of monadic expressions by force:
lemmas monad-collapse = monad-simp fcomp-apply scomp-apply split-beta

end

73.4 Do-syntax
nonterminal sdo-binds and sdo-bind

syntax
-sdo-block :: sdo-binds ⇒ ′a
(‹(‹open-block notation=‹mixfix exec block››exec {//(2 -)//})› [12] 62)

-sdo-bind :: [pttrn, ′a] ⇒ sdo-bind

THEORY “Option-ord” 652

(‹(‹indent=2 notation=‹infix exec bind››- ←/ -)› 13)
-sdo-let :: [pttrn, ′a] ⇒ sdo-bind
(‹(‹indent=2 notation=‹infix exec let››let - =/ -)› [1000 , 13] 13)

-sdo-then :: ′a ⇒ sdo-bind (‹-› [14] 13)
-sdo-final :: ′a ⇒ sdo-binds (‹-›)
-sdo-cons :: [sdo-bind, sdo-binds] ⇒ sdo-binds
(‹(‹open-block notation=‹infix exec next››-;//-)› [13 , 12] 12)

syntax (ASCII)
-sdo-bind :: [pttrn, ′a] ⇒ sdo-bind
(‹(‹indent=2 notation=‹infix exec bind››- <−/ -)› 13)

syntax-consts
-sdo-let == Let

translations
-sdo-block (-sdo-cons (-sdo-bind p t) (-sdo-final e))
== CONST scomp t (λp. e)

-sdo-block (-sdo-cons (-sdo-then t) (-sdo-final e))
=> CONST fcomp t e

-sdo-final (-sdo-block (-sdo-cons (-sdo-then t) (-sdo-final e)))
<= -sdo-final (CONST fcomp t e)

-sdo-block (-sdo-cons (-sdo-then t) e)
<= CONST fcomp t (-sdo-block e)

-sdo-block (-sdo-cons (-sdo-let p t) bs)
== let p = t in -sdo-block bs

-sdo-block (-sdo-cons b (-sdo-cons c cs))
== -sdo-block (-sdo-cons b (-sdo-final (-sdo-block (-sdo-cons c cs))))

-sdo-cons (-sdo-let p t) (-sdo-final s)
== -sdo-final (let p = t in s)

-sdo-block (-sdo-final e) => e

For an example, see ~~/src/HOL/Proofs/Extraction/Higman_Extraction.thy.
end

74 Canonical order on option type
theory Option-ord
imports Main
begin

unbundle lattice-syntax

instantiation option :: (preorder) preorder
begin

definition less-eq-option where
x ≤ y ←→ (case x of None ⇒ True | Some x ⇒ (case y of None ⇒ False | Some

y ⇒ x ≤ y))

THEORY “Option-ord” 653

definition less-option where
x < y ←→ (case y of None ⇒ False | Some y ⇒ (case x of None ⇒ True | Some

x ⇒ x < y))

lemma less-eq-option-None [simp]: None ≤ x
〈proof 〉

lemma less-eq-option-None-code [code]: None ≤ x ←→ True
〈proof 〉

lemma less-eq-option-None-is-None: x ≤ None =⇒ x = None
〈proof 〉

lemma less-eq-option-Some-None [simp, code]: Some x ≤ None ←→ False
〈proof 〉

lemma less-eq-option-Some [simp, code]: Some x ≤ Some y ←→ x ≤ y
〈proof 〉

lemma less-option-None [simp, code]: x < None ←→ False
〈proof 〉

lemma less-option-None-is-Some: None < x =⇒ ∃ z. x = Some z
〈proof 〉

lemma less-option-None-Some [simp]: None < Some x
〈proof 〉

lemma less-option-None-Some-code [code]: None < Some x ←→ True
〈proof 〉

lemma less-option-Some [simp, code]: Some x < Some y ←→ x < y
〈proof 〉

instance
〈proof 〉

end

instance option :: (order) order
〈proof 〉

instance option :: (linorder) linorder
〈proof 〉

instantiation option :: (order) order-bot
begin

THEORY “Option-ord” 654

definition bot-option where ⊥ = None

instance
〈proof 〉

end

instantiation option :: (order-top) order-top
begin

definition top-option where > = Some >

instance
〈proof 〉

end

instance option :: (wellorder) wellorder
〈proof 〉

instantiation option :: (inf) inf
begin

definition inf-option where
x u y = (case x of None ⇒ None | Some x ⇒ (case y of None ⇒ None | Some

y ⇒ Some (x u y)))

lemma inf-None-1 [simp, code]: None u y = None
〈proof 〉

lemma inf-None-2 [simp, code]: x u None = None
〈proof 〉

lemma inf-Some [simp, code]: Some x u Some y = Some (x u y)
〈proof 〉

instance 〈proof 〉

end

instantiation option :: (sup) sup
begin

definition sup-option where
x t y = (case x of None ⇒ y | Some x ′ ⇒ (case y of None ⇒ x | Some y ⇒

Some (x ′ t y)))

lemma sup-None-1 [simp, code]: None t y = y
〈proof 〉

THEORY “Option-ord” 655

lemma sup-None-2 [simp, code]: x t None = x
〈proof 〉

lemma sup-Some [simp, code]: Some x t Some y = Some (x t y)
〈proof 〉

instance 〈proof 〉

end

instance option :: (semilattice-inf) semilattice-inf
〈proof 〉

instance option :: (semilattice-sup) semilattice-sup
〈proof 〉

instance option :: (lattice) lattice 〈proof 〉

instance option :: (lattice) bounded-lattice-bot 〈proof 〉

instance option :: (bounded-lattice-top) bounded-lattice-top 〈proof 〉

instance option :: (bounded-lattice-top) bounded-lattice 〈proof 〉

instance option :: (distrib-lattice) distrib-lattice
〈proof 〉

instantiation option :: (complete-lattice) complete-lattice
begin

definition Inf-option :: ′a option set ⇒ ′a option whered
A = (if None ∈ A then None else Some (

d
Option.these A))

lemma None-in-Inf [simp]: None ∈ A =⇒
d

A = None
〈proof 〉

definition Sup-option :: ′a option set ⇒ ′a option where⊔
A = (if A = {} ∨ A = {None} then None else Some (

⊔
Option.these A))

lemma empty-Sup [simp]:
⊔
{} = None

〈proof 〉

lemma singleton-None-Sup [simp]:
⊔
{None} = None

〈proof 〉

instance
〈proof 〉

THEORY “Parallel” 656

end

lemma Some-Inf :
Some (

d
A) =

d
(Some ‘ A)

〈proof 〉

lemma Some-Sup:
A 6= {} =⇒ Some (

⊔
A) =

⊔
(Some ‘ A)

〈proof 〉

lemma Some-INF :
Some (

d
x∈A. f x) = (

d
x∈A. Some (f x))

〈proof 〉

lemma Some-SUP:
A 6= {} =⇒ Some (

⊔
x∈A. f x) = (

⊔
x∈A. Some (f x))

〈proof 〉

lemma option-Inf-Sup:
d
(Sup ‘ A) ≤

⊔
(Inf ‘ {f ‘ A |f . ∀Y∈A. f Y ∈ Y })

for A :: (′a::complete-distrib-lattice option) set set
〈proof 〉

instance option :: (complete-distrib-lattice) complete-distrib-lattice
〈proof 〉

instance option :: (complete-linorder) complete-linorder 〈proof 〉

unbundle no lattice-syntax

end

75 Futures and parallel lists for code generated
towards Isabelle/ML

theory Parallel
imports Main
begin

75.1 Futures
datatype ′a future = fork unit ⇒ ′a

primrec join :: ′a future ⇒ ′a where
join (fork f) = f ()

lemma future-eqI [intro!]:
assumes join f = join g
shows f = g

THEORY “Pattern-Aliases” 657

〈proof 〉

code-printing
type-constructor future ⇀ (Eval) - future
| constant fork ⇀ (Eval) Future.fork
| constant join ⇀ (Eval) Future.join

code-reserved (Eval) Future future

75.2 Parallel lists
definition map :: (′a ⇒ ′b) ⇒ ′a list ⇒ ′b list where
[simp]: map = List.map

definition forall :: (′a ⇒ bool) ⇒ ′a list ⇒ bool where
forall = list-all

lemma forall-all [simp]:
forall P xs ←→ (∀ x∈set xs. P x)
〈proof 〉

definition exists :: (′a ⇒ bool) ⇒ ′a list ⇒ bool where
exists = list-ex

lemma exists-ex [simp]:
exists P xs ←→ (∃ x∈set xs. P x)
〈proof 〉

code-printing
constant map ⇀ (Eval) Par ′-List.map
| constant forall ⇀ (Eval) Par ′-List.forall
| constant exists ⇀ (Eval) Par ′-List.exists

code-reserved (Eval) Par-List

hide-const (open) fork join map exists forall

end

76 Input syntax for pattern aliases (or “as-patterns”
in Haskell)

theory Pattern-Aliases
imports Main
begin

Most functional languages (Haskell, ML, Scala) support aliases in pat-
terns. This allows to refer to a subpattern with a variable name. This theory

THEORY “Pattern-Aliases” 658

implements this using a check phase. It works well for function definitions
(see usage below). All features are packed into a bundle.

The following caveats should be kept in mind:

• The translation expects a term of the form f x y = rhs, where x and y
are patterns that may contain aliases. The result of the translation is a
nested Let-expression on the right hand side. The code generator does
not print Isabelle pattern aliases to target language pattern aliases.

• The translation does not process nested equalities; only the top-level
equality is translated.

• Terms that do not adhere to the above shape may either stay untrans-
lated or produce an error message. The fun command will complain if
pattern aliases are left untranslated. In particular, there are no checks
whether the patterns are wellformed or linear.

• The corresponding uncheck phase attempts to reverse the translation
(no guarantee). The additionally introduced variables are bound using
a “fake quantifier” that does not appear in the output.

• To obtain reasonable induction principles in function definitions, the
bundle also declares a custom congruence rule for Let that only affects
fun. This congruence rule might lead to an explosion in term size
(although that is rare)! In some circumstances (using let to destructure
tuples), the internal construction of functions stumbles over this rule
and prints an error. To mitigate this, either

– activate the bundle locally (context includes ... begin) or
– rewrite the let-expression to use case: let (a, b) = x in (b, a)

becomes case x of (a, b) ⇒ (b, a).

• The bundle also adds the Let ?s ?f ≡ ?f ?s rule to the simpset.

76.1 Definition
consts

as :: ′a ⇒ ′a ⇒ ′a
fake-quant :: (′a ⇒ prop) ⇒ prop

lemma let-cong-unfolding: M = N =⇒ f N = g N =⇒ Let M f = Let N g
〈proof 〉

translations P <= CONST fake-quant (λx. P)

〈ML〉

THEORY “Periodic-Fun” 659

bundle pattern-aliases begin

notation as (infixr ‹=:› 1)

〈ML〉

declare let-cong-unfolding [fundef-cong]
declare Let-def [simp]

end

hide-const as
hide-const fake-quant

76.2 Usage
context includes pattern-aliases begin

Not very useful for plain definitions, but works anyway.
private definition test-1 x (y =: z) = y + z

lemma test-1 x y = y + y
〈proof 〉

Very useful for function definitions.
private fun test-2 where
test-2 (y # (y ′ # ys =: x ′) =: x) = x @ x ′ @ x ′ |
test-2 - = []

lemma test-2 (y # y ′ # ys) = (y # y ′ # ys) @ (y ′ # ys) @ (y ′ # ys)
〈proof 〉

〈ML〉

end

end

77 Periodic Functions
theory Periodic-Fun
imports Complex-Main
begin

A locale for periodic functions. The idea is that one proves f(x + p) =
f(x) for some period p and gets derived results like f(x − p) = f(x) and
f(x+ 2p) = f(x) for free.

THEORY “Periodic-Fun” 660

g and gm are “plus/minus k periods” functions. g1 and gn1 are “plus/mi-
nus one period” functions. This is useful e.g. if the period is one; the lemmas
one gets are then f (x + 1) = f x instead of f (x + 1 ∗ 1) = f x etc.
locale periodic-fun =

fixes f :: (′a :: {ring-1}) ⇒ ′b and g gm :: ′a ⇒ ′a ⇒ ′a and g1 gn1 :: ′a ⇒ ′a
assumes plus-1 : f (g1 x) = f x
assumes periodic-arg-plus-0 : g x 0 = x
assumes periodic-arg-plus-distrib: g x (of-int (m + n)) = g (g x (of-int n)) (of-int

m)
assumes plus-1-eq: g x 1 = g1 x and minus-1-eq: g x (−1) = gn1 x

and minus-eq: g x (−y) = gm x y
begin

lemma plus-of-nat: f (g x (of-nat n)) = f x
〈proof 〉

lemma minus-of-nat: f (gm x (of-nat n)) = f x
〈proof 〉

lemma plus-of-int: f (g x (of-int n)) = f x
〈proof 〉

lemma minus-of-int: f (gm x (of-int n)) = f x
〈proof 〉

lemma plus-numeral: f (g x (numeral n)) = f x
〈proof 〉

lemma minus-numeral: f (gm x (numeral n)) = f x
〈proof 〉

lemma minus-1 : f (gn1 x) = f x
〈proof 〉

lemmas periodic-simps = plus-of-nat minus-of-nat plus-of-int minus-of-int
plus-numeral minus-numeral plus-1 minus-1

end

Specialised case of the periodic-fun locale for periods that are not 1.
Gives lemmas f (x − period) = f x etc.
locale periodic-fun-simple =

fixes f :: (′a :: {ring-1}) ⇒ ′b and period :: ′a
assumes plus-period: f (x + period) = f x

begin
sublocale periodic-fun f λz x. z + x ∗ period λz x. z − x ∗ period
λz. z + period λz. z − period
〈proof 〉

end

THEORY “Periodic-Fun” 661

Specialised case of the periodic-fun locale for period 1. Gives lemmas f
(x − 1) = f x etc.
locale periodic-fun-simple ′ =

fixes f :: (′a :: {ring-1}) ⇒ ′b
assumes plus-period: f (x + 1) = f x

begin
sublocale periodic-fun f λz x. z + x λz x. z − x λz. z + 1 λz. z − 1
〈proof 〉

lemma of-nat: f (of-nat n) = f 0 〈proof 〉
lemma uminus-of-nat: f (−of-nat n) = f 0 〈proof 〉
lemma of-int: f (of-int n) = f 0 〈proof 〉
lemma uminus-of-int: f (−of-int n) = f 0 〈proof 〉
lemma of-numeral: f (numeral n) = f 0 〈proof 〉
lemma of-neg-numeral: f (−numeral n) = f 0 〈proof 〉
lemma of-1 : f 1 = f 0 〈proof 〉
lemma of-neg-1 : f (−1) = f 0 〈proof 〉

lemmas periodic-simps ′ =
of-nat uminus-of-nat of-int uminus-of-int of-numeral of-neg-numeral of-1 of-neg-1

end

lemma sin-plus-pi: sin ((z :: ′a :: {real-normed-field,banach}) + of-real pi) = −
sin z
〈proof 〉

lemma cos-plus-pi: cos ((z :: ′a :: {real-normed-field,banach}) + of-real pi) = −
cos z
〈proof 〉

interpretation sin: periodic-fun-simple sin 2 ∗ of-real pi :: ′a :: {real-normed-field,banach}
〈proof 〉

interpretation cos: periodic-fun-simple cos 2 ∗ of-real pi :: ′a :: {real-normed-field,banach}
〈proof 〉

interpretation tan: periodic-fun-simple tan 2 ∗ of-real pi :: ′a :: {real-normed-field,banach}
〈proof 〉

interpretation cot: periodic-fun-simple cot 2 ∗ of-real pi :: ′a :: {real-normed-field,banach}
〈proof 〉

lemma cos-eq-neg-periodic-intro:
assumes x − y = 2∗(of-int k)∗pi + pi ∨ x + y = 2∗(of-int k)∗pi + pi
shows cos x = − cos y 〈proof 〉

lemma cos-eq-periodic-intro:
assumes x − y = 2∗(of-int k)∗pi ∨ x + y = 2∗(of-int k)∗pi

THEORY “Poly-Mapping” 662

shows cos x = cos y
〈proof 〉

lemma cos-eq-arccos-Ex:
cos x = y ←→ −1≤y ∧ y≤1 ∧ (∃ k::int. x = arccos y + 2∗k∗pi ∨ x = − arccos

y + 2∗k∗pi) (is ?L=?R)
〈proof 〉

end

78 Polynomial mapping: combination of almost ev-
erywhere zero functions with an algebraic view

theory Poly-Mapping
imports Groups-Big-Fun Fun-Lexorder More-List
begin

78.1 Preliminary: auxiliary operations for almost everywhere
zero

A central notion for polynomials are functions being almost everywhere zero.
For these we provide some auxiliary definitions and lemmas.
lemma finite-mult-not-eq-zero-leftI :

fixes f :: ′b ⇒ ′a :: mult-zero
assumes finite {a. f a 6= 0}
shows finite {a. g a ∗ f a 6= 0}
〈proof 〉

lemma finite-mult-not-eq-zero-rightI :
fixes f :: ′b ⇒ ′a :: mult-zero
assumes finite {a. f a 6= 0}
shows finite {a. f a ∗ g a 6= 0}
〈proof 〉

lemma finite-mult-not-eq-zero-prodI :
fixes f g :: ′a ⇒ ′b::semiring-0
assumes finite {a. f a 6= 0} (is finite ?F)
assumes finite {b. g b 6= 0} (is finite ?G)
shows finite {(a, b). f a ∗ g b 6= 0}
〈proof 〉

lemma finite-not-eq-zero-sumI :
fixes f g :: ′a::monoid-add ⇒ ′b::semiring-0
assumes finite {a. f a 6= 0} (is finite ?F)
assumes finite {b. g b 6= 0} (is finite ?G)
shows finite {a + b | a b. f a 6= 0 ∧ g b 6= 0} (is finite ?FG)
〈proof 〉

THEORY “Poly-Mapping” 663

lemma finite-mult-not-eq-zero-sumI :
fixes f g :: ′a::monoid-add ⇒ ′b::semiring-0
assumes finite {a. f a 6= 0}
assumes finite {b. g b 6= 0}
shows finite {a + b | a b. f a ∗ g b 6= 0}
〈proof 〉

lemma finite-Sum-any-not-eq-zero-weakenI :
assumes finite {a. ∃ b. f a b 6= 0}
shows finite {a. Sum-any (f a) 6= 0}
〈proof 〉

context zero
begin

definition when :: ′a ⇒ bool ⇒ ′a (infixl ‹when› 20)
where
(a when P) = (if P then a else 0)

Case distinctions always complicate matters, particularly when nested.
The (when) operation allows to minimise these if 0 is the false-case value
and makes proof obligations much more readable.
lemma when [simp]:

P =⇒ (a when P) = a
¬ P =⇒ (a when P) = 0
〈proof 〉

lemma when-simps [simp]:
(a when True) = a
(a when False) = 0
〈proof 〉

lemma when-cong:
assumes P ←→ Q

and Q =⇒ a = b
shows (a when P) = (b when Q)
〈proof 〉

lemma zero-when [simp]:
(0 when P) = 0
〈proof 〉

lemma when-when:
(a when P when Q) = (a when P ∧ Q)
〈proof 〉

lemma when-commute:
(a when Q when P) = (a when P when Q)

THEORY “Poly-Mapping” 664

〈proof 〉

lemma when-neq-zero [simp]:
(a when P) 6= 0 ←→ P ∧ a 6= 0
〈proof 〉

end

context monoid-add
begin

lemma when-add-distrib:
(a + b when P) = (a when P) + (b when P)
〈proof 〉

end

context semiring-1
begin

lemma zero-power-eq:
0 ^ n = (1 when n = 0)
〈proof 〉

end

context comm-monoid-add
begin

lemma Sum-any-when-equal [simp]:
(
∑

a. (f a when a = b)) = f b
〈proof 〉

lemma Sum-any-when-equal ′ [simp]:
(
∑

a. (f a when b = a)) = f b
〈proof 〉

lemma Sum-any-when-independent:
(
∑

a. g a when P) = ((
∑

a. g a) when P)
〈proof 〉

lemma Sum-any-when-dependent-prod-right:
(
∑

(a, b). g a when b = h a) = (
∑

a. g a)
〈proof 〉

lemma Sum-any-when-dependent-prod-left:
(
∑

(a, b). g b when a = h b) = (
∑

b. g b)
〈proof 〉

THEORY “Poly-Mapping” 665

end

context cancel-comm-monoid-add
begin

lemma when-diff-distrib:
(a − b when P) = (a when P) − (b when P)
〈proof 〉

end

context group-add
begin

lemma when-uminus-distrib:
(− a when P) = − (a when P)
〈proof 〉

end

context mult-zero
begin

lemma mult-when:
a ∗ (b when P) = (a ∗ b when P)
〈proof 〉

lemma when-mult:
(a when P) ∗ b = (a ∗ b when P)
〈proof 〉

end

78.2 Type definition
The following type is of central importance:
typedef (overloaded) (′a, ′b) poly-mapping (‹(- ⇒0 /-)› [1 , 0] 0) =
{f :: ′a ⇒ ′b::zero. finite {x. f x 6= 0}}
morphisms lookup Abs-poly-mapping
〈proof 〉

declare lookup-inverse [simp]
declare lookup-inject [simp]

lemma lookup-Abs-poly-mapping [simp]:
finite {x. f x 6= 0} =⇒ lookup (Abs-poly-mapping f) = f
〈proof 〉

lemma finite-lookup [simp]:

THEORY “Poly-Mapping” 666

finite {k. lookup f k 6= 0}
〈proof 〉

lemma finite-lookup-nat [simp]:
fixes f :: ′a ⇒0 nat
shows finite {k. 0 < lookup f k}
〈proof 〉

lemma poly-mapping-eqI :
assumes

∧
k. lookup f k = lookup g k

shows f = g
〈proof 〉

lemma poly-mapping-eq-iff : a = b ←→ lookup a = lookup b
〈proof 〉

We model the universe of functions being almost everywhere zero by
means of a separate type ′a ⇒0

′b. For convenience we provide a suggestive
infix syntax which is a variant of the usual function space syntax. Conversion
between both types happens through the morphisms

lookup

Abs-poly-mapping

satisfying

Abs-poly-mapping (lookup ?x) = ?x

finite {x. ?f x 6= 0} =⇒ lookup (Abs-poly-mapping ?f) = ?f

Luckily, we have rarely to deal with those low-level morphisms explicitly but
rely on Isabelle’s lifting package with its method transfer and its specifica-
tion tool lift-definition.
setup-lifting type-definition-poly-mapping
code-datatype Abs-poly-mapping— FIXME? workaround for preventing code-abstype
setup

′a ⇒0
′b serves distinctive purposes:

1. A clever nesting as (nat ⇒0 nat) ⇒0
′a later in theory MPoly gives a

suitable representation type for polynomials almost for free: Interpret-
ing nat ⇒0 nat as a mapping from variable identifiers to exponents
yields monomials, and the whole type maps monomials to coefficients.
Lets call this the ultimate interpretation.

2. A further more specialised type isomorphic to nat ⇒0
′a is apt to

direct implementation using code generation [1].

THEORY “Poly-Mapping” 667

Note that despite the names mapping and lookup suggest something implementation-
near, it is best to keep ′a ⇒0

′b as an abstract algebraic type providing op-
erations like addition, multiplication without any notion of key-order, data
structures etc. This implementations-specific notions are easily introduced
later for particular implementations but do not provide any gain for speci-
fying logical properties of polynomials.

78.3 Additive structure
The additive structure covers the usual operations 0, + and (unary and
binary) −. Recalling the ultimate interpretation, it is obvious that these
have just lift the corresponding operations on values to mappings.

Isabelle has a rich hierarchy of algebraic type classes, and in such sit-
uations of pointwise lifting a typical pattern is to have instantiations for a
considerable number of type classes.

The operations themselves are specified using lift-definition, where the
proofs of the almost everywhere zero property can be significantly involved.

The lookup operation is supposed to be usable explicitly (unless in other
situations where the morphisms between types are somehow internal to the
lifting package). Hence it is good style to provide explicit rewrite rules how
lookup acts on operations immediately.
instantiation poly-mapping :: (type, zero) zero
begin

lift-definition zero-poly-mapping :: ′a ⇒0
′b

is λk. 0
〈proof 〉

instance 〈proof 〉

end

lemma Abs-poly-mapping [simp]: Abs-poly-mapping (λk. 0) = 0
〈proof 〉

lemma lookup-zero [simp]: lookup 0 k = 0
〈proof 〉

instantiation poly-mapping :: (type, monoid-add) monoid-add
begin

lift-definition plus-poly-mapping ::
(′a ⇒0

′b) ⇒ (′a ⇒0
′b) ⇒ ′a ⇒0

′b
is λf1 f2 k. f1 k + f2 k
〈proof 〉

THEORY “Poly-Mapping” 668

instance
〈proof 〉

end

lemma lookup-add: lookup (f + g) k = lookup f k + lookup g k
〈proof 〉

instance poly-mapping :: (type, comm-monoid-add) comm-monoid-add
〈proof 〉

lemma lookup-sum: lookup (sum pp X) i = sum (λx. lookup (pp x) i) X
〈proof 〉

instantiation poly-mapping :: (type, cancel-comm-monoid-add) cancel-comm-monoid-add
begin

lift-definition minus-poly-mapping :: (′a ⇒0
′b) ⇒ (′a ⇒0

′b) ⇒ ′a ⇒0
′b

is λf1 f2 k. f1 k − f2 k
〈proof 〉

instance
〈proof 〉

end

instantiation poly-mapping :: (type, ab-group-add) ab-group-add
begin

lift-definition uminus-poly-mapping :: (′a ⇒0
′b) ⇒ ′a ⇒0

′b
is uminus
〈proof 〉

instance
〈proof 〉

end

lemma lookup-uminus [simp]:
lookup (− f) k = − lookup f k
〈proof 〉

lemma lookup-minus:
lookup (f − g) k = lookup f k − lookup g k
〈proof 〉

THEORY “Poly-Mapping” 669

78.4 Multiplicative structure
instantiation poly-mapping :: (zero, zero-neq-one) zero-neq-one
begin

lift-definition one-poly-mapping :: ′a ⇒0
′b

is λk. 1 when k = 0
〈proof 〉

instance
〈proof 〉

end

lemma lookup-one: lookup 1 k = (1 when k = 0)
〈proof 〉

lemma lookup-one-zero [simp]:
lookup 1 0 = 1
〈proof 〉

definition prod-fun :: (′a ⇒ ′b) ⇒ (′a ⇒ ′b) ⇒ ′a::monoid-add ⇒ ′b::semiring-0
where

prod-fun f1 f2 k = (
∑

l. f1 l ∗ (
∑

q. (f2 q when k = l + q)))

lemma prod-fun-unfold-prod:
fixes f g :: ′a :: monoid-add ⇒ ′b::semiring-0
assumes fin-f : finite {a. f a 6= 0}
assumes fin-g: finite {b. g b 6= 0}
shows prod-fun f g k = (

∑
(a, b). f a ∗ g b when k = a + b)

〈proof 〉

lemma finite-prod-fun:
fixes f1 f2 :: ′a :: monoid-add ⇒ ′b :: semiring-0
assumes fin1 : finite {l. f1 l 6= 0}
and fin2 : finite {q. f2 q 6= 0}
shows finite {k. prod-fun f1 f2 k 6= 0}
〈proof 〉

instantiation poly-mapping :: (monoid-add, semiring-0) semiring-0
begin

lift-definition times-poly-mapping :: (′a ⇒0
′b) ⇒ (′a ⇒0

′b) ⇒ ′a ⇒0
′b

is prod-fun
〈proof 〉

instance
〈proof 〉

end

THEORY “Poly-Mapping” 670

lemma lookup-mult:
lookup (f ∗ g) k = (

∑
l. lookup f l ∗ (

∑
q. lookup g q when k = l + q))

〈proof 〉

instance poly-mapping :: (comm-monoid-add, comm-semiring-0) comm-semiring-0
〈proof 〉

instance poly-mapping :: (monoid-add, semiring-0-cancel) semiring-0-cancel
〈proof 〉

instance poly-mapping :: (comm-monoid-add, comm-semiring-0-cancel) comm-semiring-0-cancel
〈proof 〉

instance poly-mapping :: (monoid-add, semiring-1) semiring-1
〈proof 〉

instance poly-mapping :: (comm-monoid-add, comm-semiring-1) comm-semiring-1
〈proof 〉

instance poly-mapping :: (monoid-add, semiring-1-cancel) semiring-1-cancel
〈proof 〉

instance poly-mapping :: (monoid-add, ring) ring
〈proof 〉

instance poly-mapping :: (comm-monoid-add, comm-ring) comm-ring
〈proof 〉

instance poly-mapping :: (monoid-add, ring-1) ring-1
〈proof 〉

instance poly-mapping :: (comm-monoid-add, comm-ring-1) comm-ring-1
〈proof 〉

78.5 Single-point mappings
lift-definition single :: ′a ⇒ ′b ⇒ ′a ⇒0

′b::zero
is λk v k ′. (v when k = k ′)
〈proof 〉

lemma inj-single [iff]:
inj (single k)
〈proof 〉

lemma lookup-single:
lookup (single k v) k ′ = (v when k = k ′)
〈proof 〉

THEORY “Poly-Mapping” 671

lemma lookup-single-eq [simp]:
lookup (single k v) k = v
〈proof 〉

lemma lookup-single-not-eq:
k 6= k ′ =⇒ lookup (single k v) k ′ = 0
〈proof 〉

lemma single-zero [simp]:
single k 0 = 0
〈proof 〉

lemma single-one [simp]:
single 0 1 = 1
〈proof 〉

lemma single-add:
single k (a + b) = single k a + single k b
〈proof 〉

lemma single-uminus:
single k (− a) = − single k a
〈proof 〉

lemma single-diff :
single k (a − b) = single k a − single k b
〈proof 〉

lemma single-numeral [simp]:
single 0 (numeral n) = numeral n
〈proof 〉

lemma lookup-numeral:
lookup (numeral n) k = (numeral n when k = 0)
〈proof 〉

lemma single-of-nat [simp]:
single 0 (of-nat n) = of-nat n
〈proof 〉

lemma lookup-of-nat:
lookup (of-nat n) k = (of-nat n when k = 0)
〈proof 〉

lemma of-nat-single:
of-nat = single 0 ◦ of-nat
〈proof 〉

lemma mult-single:

THEORY “Poly-Mapping” 672

single k a ∗ single l b = single (k + l) (a ∗ b)
〈proof 〉

instance poly-mapping :: (monoid-add, semiring-char-0) semiring-char-0
〈proof 〉

instance poly-mapping :: (monoid-add, ring-char-0) ring-char-0
〈proof 〉

lemma single-of-int [simp]:
single 0 (of-int k) = of-int k
〈proof 〉

lemma lookup-of-int:
lookup (of-int l) k = (of-int l when k = 0)
〈proof 〉

78.6 Integral domains
instance poly-mapping :: ({ordered-cancel-comm-monoid-add, linorder}, semiring-no-zero-divisors)
semiring-no-zero-divisors

The linorder constraint is a pragmatic device for the proof — maybe it
can be dropped
〈proof 〉

instance poly-mapping :: ({ordered-cancel-comm-monoid-add, linorder}, ring-no-zero-divisors)
ring-no-zero-divisors
〈proof 〉

instance poly-mapping :: ({ordered-cancel-comm-monoid-add, linorder}, ring-1-no-zero-divisors)
ring-1-no-zero-divisors
〈proof 〉

instance poly-mapping :: ({ordered-cancel-comm-monoid-add, linorder}, idom) idom
〈proof 〉

78.7 Mapping order
instantiation poly-mapping :: (linorder , {zero, linorder}) linorder
begin

lift-definition less-poly-mapping :: (′a ⇒0
′b) ⇒ (′a ⇒0

′b) ⇒ bool
is less-fun
〈proof 〉

lift-definition less-eq-poly-mapping :: (′a ⇒0
′b) ⇒ (′a ⇒0

′b) ⇒ bool
is λf g. less-fun f g ∨ f = g
〈proof 〉

THEORY “Poly-Mapping” 673

instance 〈proof 〉

end

instance poly-mapping :: (linorder , {ordered-comm-monoid-add, ordered-ab-semigroup-add-imp-le,
linorder}) ordered-ab-semigroup-add
〈proof 〉

instance poly-mapping :: (linorder , {ordered-comm-monoid-add, ordered-ab-semigroup-add-imp-le,
cancel-comm-monoid-add, linorder}) linordered-cancel-ab-semigroup-add
〈proof 〉

instance poly-mapping :: (linorder , {ordered-comm-monoid-add, ordered-ab-semigroup-add-imp-le,
cancel-comm-monoid-add, linorder}) ordered-comm-monoid-add
〈proof 〉

instance poly-mapping :: (linorder , {ordered-comm-monoid-add, ordered-ab-semigroup-add-imp-le,
cancel-comm-monoid-add, linorder}) ordered-cancel-comm-monoid-add
〈proof 〉

instance poly-mapping :: (linorder , linordered-ab-group-add) linordered-ab-group-add
〈proof 〉

For pragmatism we leave out the final elements in the hierarchy: linordered-ring,
linordered-ring-strict, linordered-idom; remember that the order instance is
a mere technical device, not a deeper algebraic property.

78.8 Fundamental mapping notions
lift-definition keys :: (′a ⇒0

′b::zero) ⇒ ′a set
is λf . {k. f k 6= 0} 〈proof 〉

lift-definition range :: (′a ⇒0
′b::zero) ⇒ ′b set

is λf :: ′a ⇒ ′b. Set.range f − {0} 〈proof 〉

lemma finite-keys [simp]:
finite (keys f)
〈proof 〉

lemma not-in-keys-iff-lookup-eq-zero:
k /∈ keys f ←→ lookup f k = 0
〈proof 〉

lemma lookup-not-eq-zero-eq-in-keys:
lookup f k 6= 0 ←→ k ∈ keys f
〈proof 〉

lemma lookup-eq-zero-in-keys-contradict [dest]:
lookup f k = 0 =⇒ ¬ k ∈ keys f

THEORY “Poly-Mapping” 674

〈proof 〉

lemma finite-range [simp]: finite (Poly-Mapping.range p)
〈proof 〉

lemma in-keys-lookup-in-range [simp]:
k ∈ keys f =⇒ lookup f k ∈ range f
〈proof 〉

lemma in-keys-iff : x ∈ (keys s) = (lookup s x 6= 0)
〈proof 〉

lemma keys-zero [simp]:
keys 0 = {}
〈proof 〉

lemma range-zero [simp]:
range 0 = {}
〈proof 〉

lemma keys-add:
keys (f + g) ⊆ keys f ∪ keys g
〈proof 〉

lemma keys-one [simp]:
keys 1 = {0}
〈proof 〉

lemma range-one [simp]:
range 1 = {1}
〈proof 〉

lemma keys-single [simp]:
keys (single k v) = (if v = 0 then {} else {k})
〈proof 〉

lemma range-single [simp]:
range (single k v) = (if v = 0 then {} else {v})
〈proof 〉

lemma keys-mult:
keys (f ∗ g) ⊆ {a + b | a b. a ∈ keys f ∧ b ∈ keys g}
〈proof 〉

lemma setsum-keys-plus-distrib:
assumes hom-0 :

∧
k. f k 0 = 0

and hom-plus:
∧

k. k ∈ Poly-Mapping.keys p ∪ Poly-Mapping.keys q =⇒ f k
(Poly-Mapping.lookup p k + Poly-Mapping.lookup q k) = f k (Poly-Mapping.lookup
p k) + f k (Poly-Mapping.lookup q k)

THEORY “Poly-Mapping” 675

shows
(
∑

k∈Poly-Mapping.keys (p + q). f k (Poly-Mapping.lookup (p + q) k)) =
(
∑

k∈Poly-Mapping.keys p. f k (Poly-Mapping.lookup p k)) +
(
∑

k∈Poly-Mapping.keys q. f k (Poly-Mapping.lookup q k))
(is ?lhs = ?p + ?q)
〈proof 〉

78.9 Degree
definition degree :: (nat ⇒0

′a::zero) ⇒ nat
where

degree f = Max (insert 0 (Suc ‘ keys f))

lemma degree-zero [simp]:
degree 0 = 0
〈proof 〉

lemma degree-one [simp]:
degree 1 = 1
〈proof 〉

lemma degree-single-zero [simp]:
degree (single k 0) = 0
〈proof 〉

lemma degree-single-not-zero [simp]:
v 6= 0 =⇒ degree (single k v) = Suc k
〈proof 〉

lemma degree-zero-iff [simp]:
degree f = 0 ←→ f = 0
〈proof 〉

lemma degree-greater-zero-in-keys:
assumes 0 < degree f
shows degree f − 1 ∈ keys f
〈proof 〉

lemma in-keys-less-degree:
n ∈ keys f =⇒ n < degree f
〈proof 〉

lemma beyond-degree-lookup-zero:
degree f ≤ n =⇒ lookup f n = 0
〈proof 〉

lemma degree-add:
degree (f + g) ≤ max (degree f) (Poly-Mapping.degree g)
〈proof 〉

THEORY “Poly-Mapping” 676

lemma sorted-list-of-set-keys:
sorted-list-of-set (keys f) = filter (λk. k ∈ keys f) [0 ..<degree f] (is - = ?r)
〈proof 〉

78.10 Inductive structure
lift-definition update :: ′a ⇒ ′b ⇒ (′a ⇒0

′b::zero) ⇒ ′a ⇒0
′b

is λk v f . f (k := v)
〈proof 〉

lemma update-induct [case-names const update]:
assumes const ′: P 0
assumes update ′:

∧
f a b. a /∈ keys f =⇒ b 6= 0 =⇒ P f =⇒ P (update a b f)

shows P f
〈proof 〉

lemma lookup-update:
lookup (update k v f) k ′ = (if k = k ′ then v else lookup f k ′)
〈proof 〉

lemma keys-update:
keys (update k v f) = (if v = 0 then keys f − {k} else insert k (keys f))
〈proof 〉

78.11 Quasi-functorial structure
lift-definition map :: (′b::zero ⇒ ′c::zero)
⇒ (′a ⇒0

′b) ⇒ (′a ⇒0
′c::zero)

is λg f k. g (f k) when f k 6= 0
〈proof 〉

context
fixes f :: ′b ⇒ ′a
assumes inj-f : inj f

begin

lift-definition map-key :: (′a ⇒0
′c::zero) ⇒ ′b ⇒0

′c
is λp. p ◦ f
〈proof 〉

end

lemma map-key-compose:
assumes [transfer-rule]: inj f inj g
shows map-key f (map-key g p) = map-key (g ◦ f) p
〈proof 〉

lemma map-key-id:
map-key (λx. x) p = p

THEORY “Poly-Mapping” 677

〈proof 〉

context
fixes f :: ′a ⇒ ′b
assumes inj-f [transfer-rule]: inj f

begin

lemma map-key-map:
map-key f (map g p) = map g (map-key f p)
〈proof 〉

lemma map-key-plus:
map-key f (p + q) = map-key f p + map-key f q
〈proof 〉

lemma keys-map-key:
keys (map-key f p) = f −‘ keys p
〈proof 〉

lemma map-key-zero [simp]:
map-key f 0 = 0
〈proof 〉

lemma map-key-single [simp]:
map-key f (single (f k) v) = single k v
〈proof 〉

end

lemma mult-map-scale-conv-mult: map ((∗) s) p = single 0 s ∗ p
〈proof 〉

lemma map-single [simp]:
(c = 0 =⇒ f 0 = 0) =⇒ map f (single x c) = single x (f c)
〈proof 〉

lemma map-eq-zero-iff : map f p = 0 ←→ (∀ k ∈ keys p. f (lookup p k) = 0)
〈proof 〉

78.12 Canonical dense representation of nat ⇒0
′a

abbreviation no-trailing-zeros :: ′a :: zero list ⇒ bool
where

no-trailing-zeros ≡ no-trailing ((=) 0)

lift-definition nth :: ′a list ⇒ (nat ⇒0
′a::zero)

is nth-default 0
〈proof 〉

The opposite direction is directly specified on (later) type nat-mapping.

THEORY “Poly-Mapping” 678

lemma nth-Nil [simp]:
nth [] = 0
〈proof 〉

lemma nth-singleton [simp]:
nth [v] = single 0 v
〈proof 〉

lemma nth-replicate [simp]:
nth (replicate n 0 @ [v]) = single n v
〈proof 〉

lemma nth-strip-while [simp]:
nth (strip-while ((=) 0) xs) = nth xs
〈proof 〉

lemma nth-strip-while ′ [simp]:
nth (strip-while (λk. k = 0) xs) = nth xs
〈proof 〉

lemma nth-eq-iff :
nth xs = nth ys ←→ strip-while (HOL.eq 0) xs = strip-while (HOL.eq 0) ys
〈proof 〉

lemma lookup-nth [simp]:
lookup (nth xs) = nth-default 0 xs
〈proof 〉

lemma keys-nth [simp]:
keys (nth xs) = fst ‘ {(n, v) ∈ set (enumerate 0 xs). v 6= 0}
〈proof 〉

lemma range-nth [simp]:
range (nth xs) = set xs − {0}
〈proof 〉

lemma degree-nth:
no-trailing-zeros xs =⇒ degree (nth xs) = length xs
〈proof 〉

lemma nth-trailing-zeros [simp]:
nth (xs @ replicate n 0) = nth xs
〈proof 〉

lemma nth-idem:
nth (List.map (lookup f) [0 ..<degree f]) = f
〈proof 〉

lemma nth-idem-bound:

THEORY “Poly-Mapping” 679

assumes degree f ≤ n
shows nth (List.map (lookup f) [0 ..<n]) = f
〈proof 〉

78.13 Canonical sparse representation of ′a ⇒0
′b

lift-definition the-value :: (′a × ′b) list ⇒ ′a ⇒0
′b::zero

is λxs k. case map-of xs k of None ⇒ 0 | Some v ⇒ v
〈proof 〉

definition items :: (′a::linorder ⇒0
′b::zero) ⇒ (′a × ′b) list

where
items f = List.map (λk. (k, lookup f k)) (sorted-list-of-set (keys f))

For the canonical sparse representation we provide both directions of
morphisms since the specification of ordered association lists in theory OAL-
ist will support arbitrary linear orders linorder as keys, not just natural
numbers nat.
lemma the-value-items [simp]:

the-value (items f) = f
〈proof 〉

lemma lookup-the-value:
lookup (the-value xs) k = (case map-of xs k of None ⇒ 0 | Some v ⇒ v)
〈proof 〉

lemma items-the-value:
assumes sorted (List.map fst xs) and distinct (List.map fst xs) and 0 /∈ snd ‘

set xs
shows items (the-value xs) = xs
〈proof 〉

lemma the-value-Nil [simp]:
the-value [] = 0
〈proof 〉

lemma the-value-Cons [simp]:
the-value (x # xs) = update (fst x) (snd x) (the-value xs)
〈proof 〉

lemma items-zero [simp]:
items 0 = []
〈proof 〉

lemma items-one [simp]:
items 1 = [(0 , 1)]
〈proof 〉

lemma items-single [simp]:

THEORY “Poly-Mapping” 680

items (single k v) = (if v = 0 then [] else [(k, v)])
〈proof 〉

lemma in-set-items-iff [simp]:
(k, v) ∈ set (items f) ←→ k ∈ keys f ∧ lookup f k = v
〈proof 〉

78.14 Size estimation
context

fixes f :: ′a ⇒ nat
and g :: ′b :: zero ⇒ nat

begin

definition poly-mapping-size :: (′a ⇒0
′b) ⇒ nat

where
poly-mapping-size m = g 0 + (

∑
k ∈ keys m. Suc (f k + g (lookup m k)))

lemma poly-mapping-size-0 [simp]:
poly-mapping-size 0 = g 0
〈proof 〉

lemma poly-mapping-size-single [simp]:
poly-mapping-size (single k v) = (if v = 0 then g 0 else g 0 + f k + g v + 1)
〈proof 〉

lemma keys-less-poly-mapping-size:
k ∈ keys m =⇒ f k + g (lookup m k) < poly-mapping-size m
〈proof 〉

lemma lookup-le-poly-mapping-size:
g (lookup m k) ≤ poly-mapping-size m
〈proof 〉

lemma poly-mapping-size-estimation:
k ∈ keys m =⇒ y ≤ f k + g (lookup m k) =⇒ y < poly-mapping-size m
〈proof 〉

lemma poly-mapping-size-estimation2 :
assumes v ∈ range m and y ≤ g v
shows y < poly-mapping-size m
〈proof 〉

end

lemma poly-mapping-size-one [simp]:
poly-mapping-size f g 1 = g 0 + f 0 + g 1 + 1
〈proof 〉

THEORY “Poly-Mapping” 681

lemma poly-mapping-size-cong [fundef-cong]:
m = m ′ =⇒ g 0 = g ′ 0 =⇒ (

∧
k. k ∈ keys m ′ =⇒ f k = f ′ k)

=⇒ (
∧

v. v ∈ range m ′ =⇒ g v = g ′ v)
=⇒ poly-mapping-size f g m = poly-mapping-size f ′ g ′ m ′

〈proof 〉

instantiation poly-mapping :: (type, zero) size
begin

definition size = poly-mapping-size (λ-. 0) (λ-. 0)

instance 〈proof 〉

end

78.15 Further mapping operations and properties
It is like in algebra: there are many definitions, some are also used
lift-definition mapp ::
(′a ⇒ ′b :: zero ⇒ ′c :: zero) ⇒ (′a ⇒0

′b) ⇒ (′a ⇒0
′c)

is λf p k. (if k ∈ keys p then f k (lookup p k) else 0)
〈proof 〉

lemma mapp-cong [fundef-cong]:
[[m = m ′;

∧
k. k ∈ keys m ′ =⇒ f k (lookup m ′ k) = f ′ k (lookup m ′ k)]]

=⇒ mapp f m = mapp f ′ m ′

〈proof 〉

lemma lookup-mapp:
lookup (mapp f p) k = (f k (lookup p k) when k ∈ keys p)
〈proof 〉

lemma keys-mapp-subset: keys (mapp f p) ⊆ keys p
〈proof 〉

78.16 Free Abelian Groups Over a Type
abbreviation frag-of :: ′a ⇒ ′a ⇒0 int

where frag-of c ≡ Poly-Mapping.single c (1 ::int)

lemma lookup-frag-of [simp]:
Poly-Mapping.lookup(frag-of c) = (λx. if x = c then 1 else 0)
〈proof 〉

lemma frag-of-nonzero [simp]: frag-of a 6= 0
〈proof 〉

definition frag-cmul :: int ⇒ (′a ⇒0 int) ⇒ (′a ⇒0 int)
where frag-cmul c a = Abs-poly-mapping (λx. c ∗ Poly-Mapping.lookup a x)

THEORY “Poly-Mapping” 682

lemma frag-cmul-zero [simp]: frag-cmul 0 x = 0
〈proof 〉

lemma frag-cmul-zero2 [simp]: frag-cmul c 0 = 0
〈proof 〉

lemma frag-cmul-one [simp]: frag-cmul 1 x = x
〈proof 〉

lemma frag-cmul-minus-one [simp]: frag-cmul (−1) x = −x
〈proof 〉

lemma frag-cmul-cmul [simp]: frag-cmul c (frag-cmul d x) = frag-cmul (c∗d) x
〈proof 〉

lemma lookup-frag-cmul [simp]: poly-mapping.lookup (frag-cmul c x) i = c ∗ poly-mapping.lookup
x i
〈proof 〉

lemma minus-frag-cmul [simp]: − frag-cmul k x = frag-cmul (−k) x
〈proof 〉

lemma keys-frag-of : Poly-Mapping.keys(frag-of a) = {a}
〈proof 〉

lemma finite-cmul-nonzero: finite {x. c ∗ Poly-Mapping.lookup a x 6= (0 ::int)}
〈proof 〉

lemma keys-cmul: Poly-Mapping.keys(frag-cmul c a) ⊆ Poly-Mapping.keys a
〈proof 〉

lemma keys-cmul-iff [iff]: i ∈ Poly-Mapping.keys (frag-cmul c x)←→ i ∈ Poly-Mapping.keys
x ∧ c 6= 0
〈proof 〉

lemma keys-minus [simp]: Poly-Mapping.keys(−a) = Poly-Mapping.keys a
〈proof 〉

lemma keys-diff :
Poly-Mapping.keys(a − b) ⊆ Poly-Mapping.keys a ∪ Poly-Mapping.keys b
〈proof 〉

lemma keys-eq-empty [simp]: Poly-Mapping.keys c = {} ←→ c = 0
〈proof 〉

lemma frag-cmul-eq-0-iff [simp]: frag-cmul k c = 0 ←→ k=0 ∨ c=0
〈proof 〉

THEORY “Poly-Mapping” 683

lemma frag-of-eq: frag-of x = frag-of y ←→ x = y
〈proof 〉

lemma frag-cmul-distrib: frag-cmul (c+d) a = frag-cmul c a + frag-cmul d a
〈proof 〉

lemma frag-cmul-distrib2 : frag-cmul c (a+b) = frag-cmul c a + frag-cmul c b
〈proof 〉

lemma frag-cmul-diff-distrib: frag-cmul (a − b) c = frag-cmul a c − frag-cmul b c
〈proof 〉

lemma frag-cmul-sum:
frag-cmul a (sum b I) = (

∑
i∈I . frag-cmul a (b i))

〈proof 〉

lemma keys-sum: Poly-Mapping.keys(sum b I) ⊆ (
⋃

i ∈I . Poly-Mapping.keys(b
i))
〈proof 〉

definition frag-extend :: (′b ⇒ ′a ⇒0 int) ⇒ (′b ⇒0 int) ⇒ ′a ⇒0 int
where frag-extend b x ≡ (

∑
i ∈ Poly-Mapping.keys x. frag-cmul (Poly-Mapping.lookup

x i) (b i))

lemma frag-extend-0 [simp]: frag-extend b 0 = 0
〈proof 〉

lemma frag-extend-of [simp]: frag-extend f (frag-of a) = f a
〈proof 〉

lemma frag-extend-cmul:
frag-extend f (frag-cmul c x) = frag-cmul c (frag-extend f x)
〈proof 〉

lemma frag-extend-minus:
frag-extend f (− x) = − (frag-extend f x)
〈proof 〉

lemma frag-extend-add:
frag-extend f (a+b) = (frag-extend f a) + (frag-extend f b)
〈proof 〉

lemma frag-extend-diff :
frag-extend f (a−b) = (frag-extend f a) − (frag-extend f b)
〈proof 〉

lemma frag-extend-sum:

THEORY “Power-By-Squaring” 684

finite I =⇒ frag-extend f (
∑

i∈I . g i) = sum (frag-extend f o g) I
〈proof 〉

lemma frag-extend-eq:
(
∧

f . f ∈ Poly-Mapping.keys c =⇒ g f = h f) =⇒ frag-extend g c = frag-extend
h c
〈proof 〉

lemma frag-extend-eq-0 :
(
∧

x. x ∈ Poly-Mapping.keys c =⇒ f x = 0) =⇒ frag-extend f c = 0
〈proof 〉

lemma keys-frag-extend: Poly-Mapping.keys(frag-extend f c) ⊆ (
⋃

x ∈ Poly-Mapping.keys
c. Poly-Mapping.keys(f x))
〈proof 〉

lemma frag-expansion: a = frag-extend frag-of a
〈proof 〉

lemma frag-closure-minus-cmul:
assumes P 0 and P:

∧
x y. [[P x; P y]] =⇒ P(x − y) P c

shows P(frag-cmul k c)
〈proof 〉

lemma frag-induction [consumes 1 , case-names zero one diff]:
assumes supp: Poly-Mapping.keys c ⊆ S

and 0 : P 0 and sing:
∧

x. x ∈ S =⇒ P(frag-of x)
and diff :

∧
a b. [[P a; P b]] =⇒ P(a − b)

shows P c
〈proof 〉

lemma frag-extend-compose:
frag-extend f (frag-extend (frag-of o g) c) = frag-extend (f o g) c
〈proof 〉

lemma frag-split:
fixes c :: ′a ⇒0 int
assumes Poly-Mapping.keys c ⊆ S ∪ T
obtains d e where Poly-Mapping.keys d ⊆ S Poly-Mapping.keys e ⊆ T d + e

= c
〈proof 〉

hide-const (open) lookup single update keys range map map-key degree nth the-value
items foldr mapp

end

THEORY “Preorder” 685

79 Exponentiation by Squaring
theory Power-By-Squaring

imports Main
begin

context
fixes f :: ′a ⇒ ′a ⇒ ′a

begin

function efficient-funpow :: ′a ⇒ ′a ⇒ nat ⇒ ′a where
efficient-funpow y x 0 = y
| efficient-funpow y x (Suc 0) = f x y
| n 6= 0 =⇒ even n =⇒ efficient-funpow y x n = efficient-funpow y (f x x) (n div
2)
| n 6= 1 =⇒ odd n =⇒ efficient-funpow y x n = efficient-funpow (f x y) (f x x) (n
div 2)
〈proof 〉

termination 〈proof 〉

lemma efficient-funpow-code [code]:
efficient-funpow y x n =

(if n = 0 then y
else if n = 1 then f x y
else if even n then efficient-funpow y (f x x) (n div 2)
else efficient-funpow (f x y) (f x x) (n div 2))

〈proof 〉

end

lemma efficient-funpow-correct:
assumes f-assoc:

∧
x z. f x (f x z) = f (f x x) z

shows efficient-funpow f y x n = (f x ^^ n) y
〈proof 〉

context monoid-mult
begin

lemma power-by-squaring: efficient-funpow (∗) (1 :: ′a) = (^)
〈proof 〉

end

end

80 Preorders with explicit equivalence relation
theory Preorder

THEORY “Preorder” 686

imports Main
begin

class preorder-equiv = preorder
begin

definition equiv :: ′a ⇒ ′a ⇒ bool
where equiv x y ←→ x ≤ y ∧ y ≤ x

notation
equiv (‹ ′(≈ ′)›) and
equiv (‹(‹notation=‹infix ≈››-/ ≈ -)› [51 , 51] 50)

lemma equivD1 : x ≤ y if x ≈ y
〈proof 〉

lemma equivD2 : y ≤ x if x ≈ y
〈proof 〉

lemma equiv-refl [iff]: x ≈ x
〈proof 〉

lemma equiv-sym: x ≈ y ←→ y ≈ x
〈proof 〉

lemma equiv-trans: x ≈ y =⇒ y ≈ z =⇒ x ≈ z
〈proof 〉

lemma equiv-antisym: x ≤ y =⇒ y ≤ x =⇒ x ≈ y
〈proof 〉

lemma less-le: x < y ←→ x ≤ y ∧ ¬ x ≈ y
〈proof 〉

lemma le-less: x ≤ y ←→ x < y ∨ x ≈ y
〈proof 〉

lemma le-imp-less-or-equiv: x ≤ y =⇒ x < y ∨ x ≈ y
〈proof 〉

lemma less-imp-not-equiv: x < y =⇒ ¬ x ≈ y
〈proof 〉

lemma not-equiv-le-trans: ¬ a ≈ b =⇒ a ≤ b =⇒ a < b
〈proof 〉

lemma le-not-equiv-trans: a ≤ b =⇒ ¬ a ≈ b =⇒ a < b
〈proof 〉

THEORY “Product-Plus” 687

lemma antisym-conv: y ≤ x =⇒ x ≤ y ←→ x ≈ y
〈proof 〉

end

〈ML〉

end

81 Additive group operations on product types
theory Product-Plus
imports Main
begin

81.1 Operations
instantiation prod :: (zero, zero) zero
begin

definition zero-prod-def : 0 = (0 , 0)

instance 〈proof 〉
end

instantiation prod :: (plus, plus) plus
begin

definition plus-prod-def :
x + y = (fst x + fst y, snd x + snd y)

instance 〈proof 〉
end

instantiation prod :: (minus, minus) minus
begin

definition minus-prod-def :
x − y = (fst x − fst y, snd x − snd y)

instance 〈proof 〉
end

instantiation prod :: (uminus, uminus) uminus
begin

definition uminus-prod-def :
− x = (− fst x, − snd x)

THEORY “Product-Plus” 688

instance 〈proof 〉
end

lemma fst-zero [simp]: fst 0 = 0
〈proof 〉

lemma snd-zero [simp]: snd 0 = 0
〈proof 〉

lemma fst-add [simp]: fst (x + y) = fst x + fst y
〈proof 〉

lemma snd-add [simp]: snd (x + y) = snd x + snd y
〈proof 〉

lemma fst-diff [simp]: fst (x − y) = fst x − fst y
〈proof 〉

lemma snd-diff [simp]: snd (x − y) = snd x − snd y
〈proof 〉

lemma fst-uminus [simp]: fst (− x) = − fst x
〈proof 〉

lemma snd-uminus [simp]: snd (− x) = − snd x
〈proof 〉

lemma add-Pair [simp]: (a, b) + (c, d) = (a + c, b + d)
〈proof 〉

lemma diff-Pair [simp]: (a, b) − (c, d) = (a − c, b − d)
〈proof 〉

lemma uminus-Pair [simp, code]: − (a, b) = (− a, − b)
〈proof 〉

81.2 Class instances
instance prod :: (semigroup-add, semigroup-add) semigroup-add
〈proof 〉

instance prod :: (ab-semigroup-add, ab-semigroup-add) ab-semigroup-add
〈proof 〉

instance prod :: (monoid-add, monoid-add) monoid-add
〈proof 〉

instance prod :: (comm-monoid-add, comm-monoid-add) comm-monoid-add
〈proof 〉

THEORY “Quadratic-Discriminant” 689

instance prod :: (cancel-semigroup-add, cancel-semigroup-add) cancel-semigroup-add
〈proof 〉

instance prod :: (cancel-ab-semigroup-add, cancel-ab-semigroup-add) cancel-ab-semigroup-add
〈proof 〉

instance prod :: (cancel-comm-monoid-add, cancel-comm-monoid-add) cancel-comm-monoid-add
〈proof 〉

instance prod :: (group-add, group-add) group-add
〈proof 〉

instance prod :: (ab-group-add, ab-group-add) ab-group-add
〈proof 〉

lemma fst-sum: fst (
∑

x∈A. f x) = (
∑

x∈A. fst (f x))
〈proof 〉

lemma snd-sum: snd (
∑

x∈A. f x) = (
∑

x∈A. snd (f x))
〈proof 〉

lemma sum-prod: (
∑

x∈A. (f x, g x)) = (
∑

x∈A. f x,
∑

x∈A. g x)
〈proof 〉

end

82 Roots of real quadratics
theory Quadratic-Discriminant
imports Complex-Main
begin

definition discrim :: real ⇒ real ⇒ real ⇒ real
where discrim a b c ≡ b2 − 4 ∗ a ∗ c

lemma complete-square:
a 6= 0 =⇒ a ∗ x2 + b ∗ x + c = 0 ←→ (2 ∗ a ∗ x + b)2 = discrim a b c
〈proof 〉

lemma discriminant-negative:
fixes a b c x :: real
assumes a 6= 0

and discrim a b c < 0
shows a ∗ x2 + b ∗ x + c 6= 0
〈proof 〉

lemma plus-or-minus-sqrt:
fixes x y :: real

THEORY “Quadratic-Discriminant” 690

assumes y ≥ 0
shows x2 = y ←→ x = sqrt y ∨ x = − sqrt y
〈proof 〉

lemma divide-non-zero:
fixes x y z :: real
assumes x 6= 0
shows x ∗ y = z ←→ y = z / x
〈proof 〉

lemma discriminant-nonneg:
fixes a b c x :: real
assumes a 6= 0

and discrim a b c ≥ 0
shows a ∗ x2 + b ∗ x + c = 0 ←→

x = (−b + sqrt (discrim a b c)) / (2 ∗ a) ∨
x = (−b − sqrt (discrim a b c)) / (2 ∗ a)

〈proof 〉

lemma discriminant-zero:
fixes a b c x :: real
assumes a 6= 0

and discrim a b c = 0
shows a ∗ x2 + b ∗ x + c = 0 ←→ x = −b / (2 ∗ a)
〈proof 〉

theorem discriminant-iff :
fixes a b c x :: real
assumes a 6= 0
shows a ∗ x2 + b ∗ x + c = 0 ←→

discrim a b c ≥ 0 ∧
(x = (−b + sqrt (discrim a b c)) / (2 ∗ a) ∨
x = (−b − sqrt (discrim a b c)) / (2 ∗ a))

〈proof 〉

lemma discriminant-nonneg-ex:
fixes a b c :: real
assumes a 6= 0

and discrim a b c ≥ 0
shows ∃ x. a ∗ x2 + b ∗ x + c = 0
〈proof 〉

lemma discriminant-pos-ex:
fixes a b c :: real
assumes a 6= 0

and discrim a b c > 0
shows ∃ x y. x 6= y ∧ a ∗ x2 + b ∗ x + c = 0 ∧ a ∗ y2 + b ∗ y + c = 0
〈proof 〉

THEORY “Quotient-Syntax” 691

lemma discriminant-pos-distinct:
fixes a b c x :: real
assumes a 6= 0

and discrim a b c > 0
shows ∃ y. x 6= y ∧ a ∗ y2 + b ∗ y + c = 0
〈proof 〉

lemma Rats-solution-QE :
assumes a ∈ � b ∈ � a 6= 0
and a∗x^2 + b∗x + c = 0
and sqrt (discrim a b c) ∈ �
shows x ∈ �
〈proof 〉

lemma Rats-solution-QE-converse:
assumes a ∈ � b ∈ �
and a∗x^2 + b∗x + c = 0
and x ∈ �
shows sqrt (discrim a b c) ∈ �
〈proof 〉

end

83 Pretty syntax for Quotient operations
theory Quotient-Syntax
imports Main
begin

notation
rel-conj (infixr ‹OOO› 75) and
map-fun (infixr ‹−−−>› 55) and
rel-fun (infixr ‹===>› 55)

end

84 Quotient infrastructure for the set type
theory Quotient-Set
imports Quotient-Syntax
begin

84.1 Contravariant set map (vimage) and set relator, rules
for the Quotient package

definition rel-vset R xs ys ≡ ∀ x y. R x y −→ x ∈ xs ←→ y ∈ ys

lemma rel-vset-eq [id-simps]:

THEORY “Quotient-Set” 692

rel-vset (=) = (=)
〈proof 〉

lemma rel-vset-equivp:
assumes e: equivp R
shows rel-vset R xs ys ←→ xs = ys ∧ (∀ x y. x ∈ xs −→ R x y −→ y ∈ xs)
〈proof 〉

lemma set-quotient [quot-thm]:
assumes Quotient3 R Abs Rep
shows Quotient3 (rel-vset R) (vimage Rep) (vimage Abs)
〈proof 〉

declare [[mapQ3 set = (rel-vset, set-quotient)]]

lemma empty-set-rsp[quot-respect]:
rel-vset R {} {}
〈proof 〉

lemma collect-rsp[quot-respect]:
assumes Quotient3 R Abs Rep
shows ((R ===> (=)) ===> rel-vset R) Collect Collect
〈proof 〉

lemma collect-prs[quot-preserve]:
assumes Quotient3 R Abs Rep
shows ((Abs −−−> id) −−−> (−‘) Rep) Collect = Collect
〈proof 〉

lemma union-rsp[quot-respect]:
assumes Quotient3 R Abs Rep
shows (rel-vset R ===> rel-vset R ===> rel-vset R) (∪) (∪)
〈proof 〉

lemma union-prs[quot-preserve]:
assumes Quotient3 R Abs Rep
shows ((−‘) Abs −−−> (−‘) Abs −−−> (−‘) Rep) (∪) = (∪)
〈proof 〉

lemma diff-rsp[quot-respect]:
assumes Quotient3 R Abs Rep
shows (rel-vset R ===> rel-vset R ===> rel-vset R) (−) (−)
〈proof 〉

lemma diff-prs[quot-preserve]:
assumes Quotient3 R Abs Rep
shows ((−‘) Abs −−−> (−‘) Abs −−−> (−‘) Rep) (−) = (−)
〈proof 〉

THEORY “Quotient-Product” 693

lemma inter-rsp[quot-respect]:
assumes Quotient3 R Abs Rep
shows (rel-vset R ===> rel-vset R ===> rel-vset R) (∩) (∩)
〈proof 〉

lemma inter-prs[quot-preserve]:
assumes Quotient3 R Abs Rep
shows ((−‘) Abs −−−> (−‘) Abs −−−> (−‘) Rep) (∩) = (∩)
〈proof 〉

lemma mem-prs[quot-preserve]:
assumes Quotient3 R Abs Rep
shows (Rep −−−> (−‘) Abs −−−> id) (∈) = (∈)
〈proof 〉

lemma mem-rsp[quot-respect]:
shows (R ===> rel-vset R ===> (=)) (∈) (∈)
〈proof 〉

end

85 Quotient infrastructure for the product type
theory Quotient-Product
imports Quotient-Syntax
begin

85.1 Rules for the Quotient package
lemma map-prod-id [id-simps]:

shows map-prod id id = id
〈proof 〉

lemma rel-prod-eq [id-simps]:
shows rel-prod (=) (=) = (=)
〈proof 〉

lemma prod-equivp [quot-equiv]:
assumes equivp R1
assumes equivp R2
shows equivp (rel-prod R1 R2)
〈proof 〉

lemma prod-quotient [quot-thm]:
assumes Quotient3 R1 Abs1 Rep1
assumes Quotient3 R2 Abs2 Rep2
shows Quotient3 (rel-prod R1 R2) (map-prod Abs1 Abs2) (map-prod Rep1 Rep2)
〈proof 〉

THEORY “Quotient-Product” 694

declare [[mapQ3 prod = (rel-prod, prod-quotient)]]

lemma Pair-rsp [quot-respect]:
assumes q1 : Quotient3 R1 Abs1 Rep1
assumes q2 : Quotient3 R2 Abs2 Rep2
shows (R1 ===> R2 ===> rel-prod R1 R2) Pair Pair
〈proof 〉

lemma Pair-prs [quot-preserve]:
assumes q1 : Quotient3 R1 Abs1 Rep1
assumes q2 : Quotient3 R2 Abs2 Rep2
shows (Rep1 −−−> Rep2 −−−> (map-prod Abs1 Abs2)) Pair = Pair
〈proof 〉

lemma fst-rsp [quot-respect]:
assumes Quotient3 R1 Abs1 Rep1
assumes Quotient3 R2 Abs2 Rep2
shows (rel-prod R1 R2 ===> R1) fst fst
〈proof 〉

lemma fst-prs [quot-preserve]:
assumes q1 : Quotient3 R1 Abs1 Rep1
assumes q2 : Quotient3 R2 Abs2 Rep2
shows (map-prod Rep1 Rep2 −−−> Abs1) fst = fst
〈proof 〉

lemma snd-rsp [quot-respect]:
assumes Quotient3 R1 Abs1 Rep1
assumes Quotient3 R2 Abs2 Rep2
shows (rel-prod R1 R2 ===> R2) snd snd
〈proof 〉

lemma snd-prs [quot-preserve]:
assumes q1 : Quotient3 R1 Abs1 Rep1
assumes q2 : Quotient3 R2 Abs2 Rep2
shows (map-prod Rep1 Rep2 −−−> Abs2) snd = snd
〈proof 〉

lemma case-prod-rsp [quot-respect]:
shows ((R1 ===> R2 ===> (=)) ===> (rel-prod R1 R2) ===> (=))

case-prod case-prod
〈proof 〉

lemma split-prs [quot-preserve]:
assumes q1 : Quotient3 R1 Abs1 Rep1
and q2 : Quotient3 R2 Abs2 Rep2
shows (((Abs1 −−−> Abs2 −−−> id) −−−> map-prod Rep1 Rep2 −−−> id)

case-prod) = case-prod
〈proof 〉

THEORY “Quotient-Option” 695

lemma [quot-respect]:
shows ((R2 ===> R2 ===> (=)) ===> (R1 ===> R1 ===> (=)) ===>
rel-prod R2 R1 ===> rel-prod R2 R1 ===> (=)) rel-prod rel-prod
〈proof 〉

lemma [quot-preserve]:
assumes q1 : Quotient3 R1 abs1 rep1
and q2 : Quotient3 R2 abs2 rep2
shows ((abs1 −−−> abs1 −−−> id) −−−> (abs2 −−−> abs2 −−−> id)
−−−>

map-prod rep1 rep2 −−−> map-prod rep1 rep2 −−−> id) rel-prod = rel-prod
〈proof 〉

lemma [quot-preserve]:
shows(rel-prod ((rep1 −−−> rep1 −−−> id) R1) ((rep2 −−−> rep2 −−−>

id) R2)
(l1 , l2) (r1 , r2)) = (R1 (rep1 l1) (rep1 r1) ∧ R2 (rep2 l2) (rep2 r2))
〈proof 〉

declare prod.inject[quot-preserve]

end

86 Quotient infrastructure for the option type
theory Quotient-Option
imports Quotient-Syntax
begin

86.1 Rules for the Quotient package
lemma rel-option-map1 :

rel-option R (map-option f x) y ←→ rel-option (λx. R (f x)) x y
〈proof 〉

lemma rel-option-map2 :
rel-option R x (map-option f y) ←→ rel-option (λx y. R x (f y)) x y
〈proof 〉

declare
map-option.id [id-simps]
option.rel-eq [id-simps]

lemma reflp-rel-option:
reflp R =⇒ reflp (rel-option R)
〈proof 〉

lemma option-symp:

THEORY “Quotient-List” 696

symp R =⇒ symp (rel-option R)
〈proof 〉

lemma option-transp:
transp R =⇒ transp (rel-option R)
〈proof 〉

lemma option-equivp [quot-equiv]:
equivp R =⇒ equivp (rel-option R)
〈proof 〉

lemma option-quotient [quot-thm]:
assumes Quotient3 R Abs Rep
shows Quotient3 (rel-option R) (map-option Abs) (map-option Rep)
〈proof 〉

declare [[mapQ3 option = (rel-option, option-quotient)]]

lemma option-None-rsp [quot-respect]:
assumes q: Quotient3 R Abs Rep
shows rel-option R None None
〈proof 〉

lemma option-Some-rsp [quot-respect]:
assumes q: Quotient3 R Abs Rep
shows (R ===> rel-option R) Some Some
〈proof 〉

lemma option-None-prs [quot-preserve]:
assumes q: Quotient3 R Abs Rep
shows map-option Abs None = None
〈proof 〉

lemma option-Some-prs [quot-preserve]:
assumes q: Quotient3 R Abs Rep
shows (Rep −−−> map-option Abs) Some = Some
〈proof 〉

end

87 Quotient infrastructure for the list type
theory Quotient-List
imports Quotient-Set Quotient-Product Quotient-Option
begin

87.1 Rules for the Quotient package
lemma map-id [id-simps]:

THEORY “Quotient-List” 697

map id = id
〈proof 〉

lemma list-all2-eq [id-simps]:
list-all2 (=) = (=)
〈proof 〉

lemma reflp-list-all2 :
assumes reflp R
shows reflp (list-all2 R)
〈proof 〉

lemma list-symp:
assumes symp R
shows symp (list-all2 R)
〈proof 〉

lemma list-transp:
assumes transp R
shows transp (list-all2 R)
〈proof 〉

lemma list-equivp [quot-equiv]:
equivp R =⇒ equivp (list-all2 R)
〈proof 〉

lemma list-quotient3 [quot-thm]:
assumes Quotient3 R Abs Rep
shows Quotient3 (list-all2 R) (map Abs) (map Rep)
〈proof 〉

declare [[mapQ3 list = (list-all2 , list-quotient3)]]

lemma cons-prs [quot-preserve]:
assumes q: Quotient3 R Abs Rep
shows (Rep −−−> (map Rep) −−−> (map Abs)) (#) = (#)
〈proof 〉

lemma cons-rsp [quot-respect]:
assumes q: Quotient3 R Abs Rep
shows (R ===> list-all2 R ===> list-all2 R) (#) (#)
〈proof 〉

lemma nil-prs [quot-preserve]:
assumes q: Quotient3 R Abs Rep
shows map Abs [] = []
〈proof 〉

lemma nil-rsp [quot-respect]:

THEORY “Quotient-List” 698

assumes q: Quotient3 R Abs Rep
shows list-all2 R [] []
〈proof 〉

lemma map-prs-aux:
assumes a: Quotient3 R1 abs1 rep1
and b: Quotient3 R2 abs2 rep2
shows (map abs2) (map ((abs1 −−−> rep2) f) (map rep1 l)) = map f l
〈proof 〉

lemma map-prs [quot-preserve]:
assumes a: Quotient3 R1 abs1 rep1
and b: Quotient3 R2 abs2 rep2
shows ((abs1 −−−> rep2) −−−> (map rep1) −−−> (map abs2)) map = map
and ((abs1 −−−> id) −−−> map rep1 −−−> id) map = map
〈proof 〉

lemma map-rsp [quot-respect]:
assumes q1 : Quotient3 R1 Abs1 Rep1
and q2 : Quotient3 R2 Abs2 Rep2
shows ((R1 ===> R2) ===> (list-all2 R1) ===> list-all2 R2) map map
and ((R1 ===> (=)) ===> (list-all2 R1) ===> (=)) map map
〈proof 〉

lemma foldr-prs-aux:
assumes a: Quotient3 R1 abs1 rep1
and b: Quotient3 R2 abs2 rep2
shows abs2 (foldr ((abs1 −−−> abs2 −−−> rep2) f) (map rep1 l) (rep2 e))

= foldr f l e
〈proof 〉

lemma foldr-prs [quot-preserve]:
assumes a: Quotient3 R1 abs1 rep1
and b: Quotient3 R2 abs2 rep2
shows ((abs1 −−−> abs2 −−−> rep2) −−−> (map rep1) −−−> rep2 −−−>

abs2) foldr = foldr
〈proof 〉

lemma foldl-prs-aux:
assumes a: Quotient3 R1 abs1 rep1
and b: Quotient3 R2 abs2 rep2
shows abs1 (foldl ((abs1 −−−> abs2 −−−> rep1) f) (rep1 e) (map rep2 l)) =

foldl f e l
〈proof 〉

lemma foldl-prs [quot-preserve]:
assumes a: Quotient3 R1 abs1 rep1
and b: Quotient3 R2 abs2 rep2
shows ((abs1 −−−> abs2 −−−> rep1) −−−> rep1 −−−> (map rep2) −−−>

THEORY “Quotient-List” 699

abs1) foldl = foldl
〈proof 〉

lemma foldl-rsp[quot-respect]:
assumes q1 : Quotient3 R1 Abs1 Rep1
and q2 : Quotient3 R2 Abs2 Rep2
shows ((R1 ===> R2 ===> R1) ===> R1 ===> list-all2 R2 ===> R1)

foldl foldl
〈proof 〉

lemma foldr-rsp[quot-respect]:
assumes q1 : Quotient3 R1 Abs1 Rep1
and q2 : Quotient3 R2 Abs2 Rep2
shows ((R1 ===> R2 ===> R2) ===> list-all2 R1 ===> R2 ===> R2)

foldr foldr
〈proof 〉

lemma list-all2-rsp:
assumes r : ∀ x y. R x y −→ (∀ a b. R a b −→ S x a = T y b)
and l1 : list-all2 R x y
and l2 : list-all2 R a b
shows list-all2 S x a = list-all2 T y b
〈proof 〉

lemma [quot-respect]:
((R ===> R ===> (=)) ===> list-all2 R ===> list-all2 R ===> (=))

list-all2 list-all2
〈proof 〉

lemma [quot-preserve]:
assumes a: Quotient3 R abs1 rep1
shows ((abs1 −−−> abs1 −−−> id) −−−> map rep1 −−−> map rep1 −−−>

id) list-all2 = list-all2
〈proof 〉

lemma [quot-preserve]:
assumes a: Quotient3 R abs1 rep1
shows (list-all2 ((rep1 −−−> rep1 −−−> id) R) l m) = (l = m)
〈proof 〉

lemma list-all2-find-element:
assumes a: x ∈ set a
and b: list-all2 R a b
shows ∃ y. (y ∈ set b ∧ R x y)
〈proof 〉

lemma list-all2-refl:
assumes a:

∧
x y. R x y = (R x = R y)

shows list-all2 R x x

THEORY “Quotient-Sum” 700

〈proof 〉

end

88 Quotient infrastructure for the sum type
theory Quotient-Sum
imports Quotient-Syntax
begin

88.1 Rules for the Quotient package
lemma rel-sum-map1 :

rel-sum R1 R2 (map-sum f1 f2 x) y ←→ rel-sum (λx. R1 (f1 x)) (λx. R2 (f2 x))
x y
〈proof 〉

lemma rel-sum-map2 :
rel-sum R1 R2 x (map-sum f1 f2 y) ←→ rel-sum (λx y. R1 x (f1 y)) (λx y. R2 x

(f2 y)) x y
〈proof 〉

lemma map-sum-id [id-simps]:
map-sum id id = id
〈proof 〉

lemma rel-sum-eq [id-simps]:
rel-sum (=) (=) = (=)
〈proof 〉

lemma reflp-rel-sum:
reflp R1 =⇒ reflp R2 =⇒ reflp (rel-sum R1 R2)
〈proof 〉

lemma sum-symp:
symp R1 =⇒ symp R2 =⇒ symp (rel-sum R1 R2)
〈proof 〉

lemma sum-transp:
transp R1 =⇒ transp R2 =⇒ transp (rel-sum R1 R2)
〈proof 〉

lemma sum-equivp [quot-equiv]:
equivp R1 =⇒ equivp R2 =⇒ equivp (rel-sum R1 R2)
〈proof 〉

lemma sum-quotient [quot-thm]:
assumes q1 : Quotient3 R1 Abs1 Rep1
assumes q2 : Quotient3 R2 Abs2 Rep2

THEORY “Quotient-Type” 701

shows Quotient3 (rel-sum R1 R2) (map-sum Abs1 Abs2) (map-sum Rep1 Rep2)
〈proof 〉

declare [[mapQ3 sum = (rel-sum, sum-quotient)]]

lemma sum-Inl-rsp [quot-respect]:
assumes q1 : Quotient3 R1 Abs1 Rep1
assumes q2 : Quotient3 R2 Abs2 Rep2
shows (R1 ===> rel-sum R1 R2) Inl Inl
〈proof 〉

lemma sum-Inr-rsp [quot-respect]:
assumes q1 : Quotient3 R1 Abs1 Rep1
assumes q2 : Quotient3 R2 Abs2 Rep2
shows (R2 ===> rel-sum R1 R2) Inr Inr
〈proof 〉

lemma sum-Inl-prs [quot-preserve]:
assumes q1 : Quotient3 R1 Abs1 Rep1
assumes q2 : Quotient3 R2 Abs2 Rep2
shows (Rep1 −−−> map-sum Abs1 Abs2) Inl = Inl
〈proof 〉

lemma sum-Inr-prs [quot-preserve]:
assumes q1 : Quotient3 R1 Abs1 Rep1
assumes q2 : Quotient3 R2 Abs2 Rep2
shows (Rep2 −−−> map-sum Abs1 Abs2) Inr = Inr
〈proof 〉

end

89 Quotient types
theory Quotient-Type
imports Main
begin

We introduce the notion of quotient types over equivalence relations via
type classes.

89.1 Equivalence relations and quotient types
Type class equiv models equivalence relations ∼ :: ′a ⇒ ′a ⇒ bool.
class eqv =

fixes eqv :: ′a ⇒ ′a ⇒ bool (infixl ‹∼› 50)

class equiv = eqv +
assumes equiv-refl [intro]: x ∼ x

THEORY “Quotient-Type” 702

and equiv-trans [trans]: x ∼ y =⇒ y ∼ z =⇒ x ∼ z
and equiv-sym [sym]: x ∼ y =⇒ y ∼ x

begin

lemma equiv-not-sym [sym]: ¬ x ∼ y =⇒ ¬ y ∼ x
〈proof 〉

lemma not-equiv-trans1 [trans]: ¬ x ∼ y =⇒ y ∼ z =⇒ ¬ x ∼ z
〈proof 〉

lemma not-equiv-trans2 [trans]: x ∼ y =⇒ ¬ y ∼ z =⇒ ¬ x ∼ z
〈proof 〉

end

The quotient type ′a quot consists of all equivalence classes over elements
of the base type ′a.
definition (in eqv) quot = {{x. a ∼ x} | a. True}

typedef (overloaded) ′a quot = quot :: ′a::eqv set set
〈proof 〉

lemma quotI [intro]: {x. a ∼ x} ∈ quot
〈proof 〉

lemma quotE [elim]:
assumes R ∈ quot
obtains a where R = {x. a ∼ x}
〈proof 〉

Abstracted equivalence classes are the canonical representation of ele-
ments of a quotient type.
definition class :: ′a::equiv ⇒ ′a quot (‹(‹open-block notation=‹mixfix class››b-c)›)

where bac = Abs-quot {x. a ∼ x}

theorem quot-exhaust: ∃ a. A = bac
〈proof 〉

lemma quot-cases [cases type: quot]:
obtains a where A = bac
〈proof 〉

89.2 Equality on quotients
Equality of canonical quotient elements coincides with the original relation.
theorem quot-equality [iff?]: bac = bbc ←→ a ∼ b
〈proof 〉

THEORY “Ramsey” 703

89.3 Picking representing elements
definition pick :: ′a::equiv quot ⇒ ′a

where pick A = (SOME a. A = bac)

theorem pick-equiv [intro]: pick bac ∼ a
〈proof 〉

theorem pick-inverse [intro]: bpick Ac = A
〈proof 〉

The following rules support canonical function definitions on quotient
types (with up to two arguments). Note that the stripped-down version
without additional conditions is sufficient most of the time.
theorem quot-cond-function:

assumes eq:
∧

X Y . P X Y =⇒ f X Y ≡ g (pick X) (pick Y)
and cong:

∧
x x ′ y y ′. bxc = bx ′c =⇒ byc = by ′c

=⇒ P bxc byc =⇒ P bx ′c by ′c =⇒ g x y = g x ′ y ′

and P: P bac bbc
shows f bac bbc = g a b
〈proof 〉

theorem quot-function:
assumes

∧
X Y . f X Y ≡ g (pick X) (pick Y)

and
∧

x x ′ y y ′. bxc = bx ′c =⇒ byc = by ′c =⇒ g x y = g x ′ y ′

shows f bac bbc = g a b
〈proof 〉

theorem quot-function ′:
(
∧

X Y . f X Y ≡ g (pick X) (pick Y)) =⇒
(
∧

x x ′ y y ′. x ∼ x ′ =⇒ y ∼ y ′ =⇒ g x y = g x ′ y ′) =⇒
f bac bbc = g a b
〈proof 〉

end

90 Ramsey’s Theorem
theory Ramsey

imports Infinite-Set Equipollence FuncSet
begin

90.1 Preliminary definitions
abbreviation strict-sorted :: ′a::linorder list ⇒ bool where

strict-sorted ≡ sorted-wrt (<)

THEORY “Ramsey” 704

90.1.1 The n-element subsets of a set A
definition nsets :: [′a set, nat] ⇒ ′a set set (‹(‹notation=‹mixfix nsets››[-]-)›
[0 ,999] 999)

where nsets A n ≡ {N . N ⊆ A ∧ finite N ∧ card N = n}

lemma finite-imp-finite-nsets: finite A =⇒ finite ([A]k)
〈proof 〉

lemma nsets-mono: A ⊆ B =⇒ nsets A n ⊆ nsets B n
〈proof 〉

lemma nsets-Pi-contra: A ′ ⊆ A =⇒ Pi ([A]n) B ⊆ Pi ([A ′]n) B
〈proof 〉

lemma nsets-2-eq: [A]2 = (
⋃

x∈A.
⋃

y∈A − {x}. {{x, y}})
〈proof 〉

lemma nsets2-E :
assumes e ∈ [A]2

obtains x y where e = {x,y} x ∈ A y ∈ A x 6=y
〈proof 〉

lemma nsets-doubleton-2-eq [simp]: [{x, y}]2 = (if x=y then {} else {{x, y}})
〈proof 〉

lemma doubleton-in-nsets-2 [simp]: {x,y} ∈ [A]2 ←→ x ∈ A ∧ y ∈ A ∧ x 6= y
〈proof 〉

lemma nsets-3-eq: [A]3 = (
⋃

x∈A.
⋃

y∈A − {x}.
⋃

z∈A − {x,y}. {{x,y,z}})
〈proof 〉

lemma nsets-4-eq: [A]4 = (
⋃

u∈A.
⋃

x∈A − {u}.
⋃

y∈A − {u,x}.
⋃

z∈A −
{u,x,y}. {{u,x,y,z}})

(is - = ?rhs)
〈proof 〉

lemma nsets-disjoint-2 :
X ∩ Y = {} =⇒ [X ∪ Y]2 = [X]2 ∪ [Y]2 ∪ (

⋃
x∈X .

⋃
y∈Y . {{x,y}})

〈proof 〉

lemma ordered-nsets-2-eq:
fixes A :: ′a::linorder set
shows [A]2 = {{x,y} | x y. x ∈ A ∧ y ∈ A ∧ x<y}

(is - = ?rhs)
〈proof 〉

lemma ordered-nsets-3-eq:
fixes A :: ′a::linorder set
shows [A]3 = {{x,y,z} | x y z. x ∈ A ∧ y ∈ A ∧ z ∈ A ∧ x<y ∧ y<z}

THEORY “Ramsey” 705

(is - = ?rhs)
〈proof 〉

lemma ordered-nsets-4-eq:
fixes A :: ′a::linorder set
defines rhs ≡ λU . ∃ u x y z. U = {u,x,y,z} ∧ u ∈ A ∧ x ∈ A ∧ y ∈ A ∧ z ∈ A
∧ u < x ∧ x < y ∧ y < z

shows [A]4 = Collect rhs
〈proof 〉

lemma ordered-nsets-5-eq:
fixes A :: ′a::linorder set
defines rhs ≡ λU . ∃ u v x y z. U = {u,v,x,y,z} ∧ u ∈ A ∧ v ∈ A ∧ x ∈ A ∧ y
∈ A ∧ z ∈ A ∧ u < v ∧ v < x ∧ x < y ∧ y < z

shows [A]5 = Collect rhs
〈proof 〉

lemma binomial-eq-nsets: n choose k = card (nsets {0 ..<n} k)
〈proof 〉

lemma nsets-eq-empty-iff : nsets A r = {} ←→ finite A ∧ card A < r
〈proof 〉

lemma nsets-eq-empty: [[finite A; card A < r]] =⇒ nsets A r = {}
〈proof 〉

lemma nsets-empty-iff : nsets {} r = (if r=0 then {{}} else {})
〈proof 〉

lemma nsets-singleton-iff : nsets {a} r = (if r=0 then {{}} else if r=1 then {{a}}
else {})
〈proof 〉

lemma nsets-self [simp]: nsets {..<m} m = {{..<m}}
〈proof 〉

lemma nsets-zero [simp]: nsets A 0 = {{}}
〈proof 〉

lemma nsets-one: nsets A (Suc 0) = (λx. {x}) ‘ A
〈proof 〉

lemma inj-on-nsets:
assumes inj-on f A
shows inj-on (λX . f ‘ X) ([A]n)
〈proof 〉

lemma bij-betw-nsets:
assumes bij-betw f A B

THEORY “Ramsey” 706

shows bij-betw (λX . f ‘ X) ([A]n) ([B]n)
〈proof 〉

lemma nset-image-obtains:
assumes X ∈ [f‘A]k inj-on f A
obtains Y where Y ∈ [A]k X = f ‘ Y
〈proof 〉

lemma nsets-image-funcset:
assumes g ∈ S → T and inj-on g S
shows (λX . g ‘ X) ∈ [S]k → [T]k

〈proof 〉

lemma nsets-compose-image-funcset:
assumes f : f ∈ [T]k → D and g ∈ S → T and inj-on g S
shows f ◦ (λX . g ‘ X) ∈ [S]k → D
〈proof 〉

90.1.2 Further properties, involving equipollence
lemma nsets-lepoll-cong:

assumes A . B
shows [A]k . [B]k

〈proof 〉

lemma nsets-eqpoll-cong:
assumes A≈B
shows [A]k ≈ [B]k

〈proof 〉

lemma infinite-imp-infinite-nsets:
assumes inf : infinite A and k>0
shows infinite ([A]k)
〈proof 〉

lemma finite-nsets-iff :
assumes k>0
shows finite ([A]k) ←→ finite A
〈proof 〉

lemma card-nsets [simp]: card (nsets A k) = card A choose k
〈proof 〉

90.1.3 Partition predicates
definition monochromatic ≡ λβ α γ f i. ∃H ∈ nsets β α. f ‘ (nsets H γ) ⊆ {i}

uniform partition sizes
definition partn :: ′a set ⇒ nat ⇒ nat ⇒ ′b set ⇒ bool

THEORY “Ramsey” 707

where partn β α γ δ ≡ ∀ f ∈ nsets β γ → δ. ∃ ξ∈δ. monochromatic β α γ f ξ

partition sizes enumerated in a list
definition partn-lst :: ′a set ⇒ nat list ⇒ nat ⇒ bool

where partn-lst β α γ ≡ ∀ f ∈ nsets β γ → {..<length α}. ∃ i < length α.
monochromatic β (α!i) γ f i

There’s always a 0-clique
lemma partn-lst-0 : γ > 0 =⇒ partn-lst β (0#α) γ
〈proof 〉

lemma partn-lst-0 ′: γ > 0 =⇒ partn-lst β (a#0#α) γ
〈proof 〉

lemma partn-lst-greater-resource:
fixes M ::nat
assumes M : partn-lst {..<M} α γ and M ≤ N
shows partn-lst {..<N} α γ
〈proof 〉

lemma partn-lst-fewer-colours:
assumes major : partn-lst β (n#α) γ and n ≥ γ
shows partn-lst β α γ
〈proof 〉

lemma partn-lst-eq-partn: partn-lst {..<n} [m,m] 2 = partn {..<n} m 2 {..<2 ::nat}
〈proof 〉

lemma partn-lstE :
assumes partn-lst β α γ f ∈ nsets β γ → {..<l} length α = l
obtains i H where i < length α H ∈ nsets β (α!i) f ‘ (nsets H γ) ⊆ {i}
〈proof 〉

lemma partn-lst-less:
assumes M : partn-lst β α n and eq: length α ′ = length α

and le:
∧

i. i < length α =⇒ α ′!i ≤ α!i
shows partn-lst β α ′ n
〈proof 〉

90.2 Finite versions of Ramsey’s theorem
To distinguish the finite and infinite ones, lower and upper case names are
used (ramsey vs Ramsey).

90.2.1 The Erds–Szekeres theorem exhibits an upper bound for
Ramsey numbers

The Erds–Szekeres bound, essentially extracted from the proof

THEORY “Ramsey” 708

fun ES :: [nat,nat,nat] ⇒ nat
where ES 0 k l = max k l
| ES (Suc r) k l =

(if r=0 then k+l−1
else if k=0 ∨ l=0 then 1 else Suc (ES r (ES (Suc r) (k−1) l) (ES (Suc

r) k (l−1))))

declare ES .simps [simp del]

lemma ES-0 [simp]: ES 0 k l = max k l
〈proof 〉

lemma ES-1 [simp]: ES 1 k l = k+l−1
〈proof 〉

lemma ES-2 : ES 2 k l = (if k=0 ∨ l=0 then 1 else ES 2 (k−1) l + ES 2 k (l−1))
〈proof 〉

The Erds–Szekeres upper bound
lemma ES2-choose: ES 2 k l = (k+l) choose k
〈proof 〉

90.2.2 Trivial cases

Vacuous, since we are dealing with 0-sets!
lemma ramsey0 : ∃N ::nat. partn-lst {..<N} [q1 ,q2] 0
〈proof 〉

Just the pigeon hole principle, since we are dealing with 1-sets
lemma ramsey1-explicit: partn-lst {..<q0 + q1 − Suc 0} [q0 ,q1] 1
〈proof 〉

lemma ramsey1 : ∃N ::nat. partn-lst {..<N} [q0 ,q1] 1
〈proof 〉

90.2.3 Ramsey’s theorem with TWO colours and arbitrary ex-
ponents (hypergraph version)

lemma ramsey-induction-step:
fixes p::nat
assumes p1 : partn-lst {..<p1} [q1−1 ,q2] (Suc r) and p2 : partn-lst {..<p2}

[q1 ,q2−1] (Suc r)
and p: partn-lst {..<p} [p1 ,p2] r
and q1>0 q2>0

shows partn-lst {..<Suc p} [q1 , q2] (Suc r)
〈proof 〉

proposition ramsey2-full: partn-lst {..<ES r q1 q2} [q1 ,q2] r
〈proof 〉

THEORY “Ramsey” 709

90.2.4 Full Ramsey’s theorem with multiple colours and arbi-
trary exponents

theorem ramsey-full: ∃N ::nat. partn-lst {..<N} qs r
〈proof 〉

90.2.5 Simple graph version

This is the most basic version in terms of cliques and independent sets, i.e.
the version for graphs and 2 colours.
definition clique V E ←→ (∀ v∈V . ∀w∈V . v 6= w −→ {v, w} ∈ E)
definition indep V E ←→ (∀ v∈V . ∀w∈V . v 6= w −→ {v, w} /∈ E)

lemma clique-Un: [[clique K F ; clique L F ; ∀ v∈K . ∀w∈L. v 6=w −→ {v,w} ∈ F]]
=⇒ clique (K ∪ L) F
〈proof 〉

lemma null-clique[simp]: clique {} E and null-indep[simp]: indep {} E
〈proof 〉

lemma smaller-clique: [[clique R E ; R ′ ⊆ R]] =⇒ clique R ′ E
〈proof 〉

lemma smaller-indep: [[indep R E ; R ′ ⊆ R]] =⇒ indep R ′ E
〈proof 〉

lemma ramsey2 :
∃ r≥1 . ∀ (V :: ′a set) (E :: ′a set set). finite V ∧ card V ≥ r −→
(∃R ⊆ V . card R = m ∧ clique R E ∨ card R = n ∧ indep R E)

〈proof 〉

90.3 Preliminaries for the infinitary version
90.3.1 “Axiom” of Dependent Choice
primrec choice :: (′a ⇒ bool) ⇒ (′a × ′a) set ⇒ nat ⇒ ′a

where — An integer-indexed chain of choices
choice-0 : choice P r 0 = (SOME x. P x)
| choice-Suc: choice P r (Suc n) = (SOME y. P y ∧ (choice P r n, y) ∈ r)

lemma choice-n:
assumes P0 : P x0

and Pstep:
∧

x. P x =⇒ ∃ y. P y ∧ (x, y) ∈ r
shows P (choice P r n)
〈proof 〉

lemma dependent-choice:
assumes trans: trans r

and P0 : P x0
and Pstep:

∧
x. P x =⇒ ∃ y. P y ∧ (x, y) ∈ r

THEORY “Ramsey” 710

obtains f :: nat ⇒ ′a where
∧

n. P (f n) and
∧

n m. n < m =⇒ (f n, f m) ∈ r
〈proof 〉

90.3.2 Partition functions
definition part-fn :: nat ⇒ nat ⇒ ′a set ⇒ (′a set ⇒ nat) ⇒ bool

— the function f partitions the r-subsets of the typically infinite set Y into s
distinct categories.

where part-fn r s Y f ←→ (f ∈ nsets Y r → {..<s})

For induction, we decrease the value of r in partitions.
lemma part-fn-Suc-imp-part-fn:
[[infinite Y ; part-fn (Suc r) s Y f ; y ∈ Y]] =⇒ part-fn r s (Y − {y}) (λu. f

(insert y u))
〈proof 〉

lemma part-fn-subset: part-fn r s YY f =⇒ Y ⊆ YY =⇒ part-fn r s Y f
〈proof 〉

90.4 Ramsey’s Theorem: Infinitary Version
lemma Ramsey-induction:

fixes s r :: nat
and YY :: ′a set
and f :: ′a set ⇒ nat

assumes infinite YY part-fn r s YY f
shows ∃Y ′ t ′. Y ′ ⊆ YY ∧ infinite Y ′ ∧ t ′ < s ∧ (∀X . X ⊆ Y ′ ∧ finite X ∧

card X = r −→ f X = t ′)
〈proof 〉

theorem Ramsey:
fixes s r :: nat

and Z :: ′a set
and f :: ′a set ⇒ nat

shows
[[infinite Z ;
∀X . X ⊆ Z ∧ finite X ∧ card X = r −→ f X < s]]

=⇒ ∃Y t. Y ⊆ Z ∧ infinite Y ∧ t < s
∧ (∀X . X ⊆ Y ∧ finite X ∧ card X = r −→ f X = t)

〈proof 〉

corollary Ramsey2 :
fixes s :: nat

and Z :: ′a set
and f :: ′a set ⇒ nat

assumes infZ : infinite Z
and part: ∀ x∈Z . ∀ y∈Z . x 6= y −→ f {x, y} < s

shows ∃Y t. Y ⊆ Z ∧ infinite Y ∧ t < s ∧ (∀ x∈Y . ∀ y∈Y . x 6=y −→ f {x, y}
= t)

THEORY “Real-Mod” 711

〈proof 〉

corollary Ramsey-nsets:
fixes f :: ′a set ⇒ nat
assumes infinite Z f ‘ nsets Z r ⊆ {..<s}
obtains Y t where Y ⊆ Z infinite Y t < s f ‘ nsets Y r ⊆ {t}
〈proof 〉

90.5 Disjunctive Well-Foundedness
An application of Ramsey’s theorem to program termination. See [4].
definition disj-wf :: (′a × ′a) set ⇒ bool

where disj-wf r ←→ (∃T . ∃n::nat. (∀ i<n. wf (T i)) ∧ r = (
⋃

i<n. T i))

definition transition-idx :: (nat ⇒ ′a) ⇒ (nat ⇒ (′a × ′a) set) ⇒ nat set ⇒ nat
where transition-idx s T A = (LEAST k. ∃ i j. A = {i, j} ∧ i < j ∧ (s j, s i) ∈

T k)

lemma transition-idx-less:
assumes i < j (s j, s i) ∈ T k k < n
shows transition-idx s T {i, j} < n
〈proof 〉

lemma transition-idx-in:
assumes i < j (s j, s i) ∈ T k
shows (s j, s i) ∈ T (transition-idx s T {i, j})
〈proof 〉

To be equal to the union of some well-founded relations is equivalent to
being the subset of such a union.
lemma disj-wf : disj-wf r ←→ (∃T . ∃n::nat. (∀ i<n. wf (T i)) ∧ r ⊆ (

⋃
i<n. T

i))
〈proof 〉

theorem trans-disj-wf-implies-wf :
assumes trans r

and disj-wf r
shows wf r
〈proof 〉

end

91 Modulo and congruence on the reals
theory Real-Mod

imports Complex-Main
begin

THEORY “Real-Mod” 712

definition rmod :: real ⇒ real ⇒ real (infixl ‹rmod› 70) where
x rmod y = x − |y| ∗ of-int bx / |y|c

lemma rmod-conv-frac: y 6= 0 =⇒ x rmod y = frac (x / |y|) ∗ |y|
〈proof 〉

lemma rmod-conv-frac ′: x rmod y = (if y = 0 then x else frac (x / |y|) ∗ |y|)
〈proof 〉

lemma rmod-rmod [simp]: (x rmod y) rmod y = x rmod y
〈proof 〉

lemma rmod-0-right [simp]: x rmod 0 = x
〈proof 〉

lemma rmod-less: m > 0 =⇒ x rmod m < m
〈proof 〉

lemma rmod-less-abs: m 6= 0 =⇒ x rmod m < |m|
〈proof 〉

lemma rmod-le: m > 0 =⇒ x rmod m ≤ m
〈proof 〉

lemma rmod-nonneg: m 6= 0 =⇒ x rmod m ≥ 0
〈proof 〉

lemma rmod-unique:
assumes z ∈ {0 ..<|y|} x = z + of-int n ∗ y
shows x rmod y = z
〈proof 〉

lemma rmod-0 [simp]: 0 rmod z = 0
〈proof 〉

lemma rmod-add: (x rmod z + y rmod z) rmod z = (x + y) rmod z
〈proof 〉

lemma rmod-diff : (x rmod z − y rmod z) rmod z = (x − y) rmod z
〈proof 〉

lemma rmod-self [simp]: x rmod x = 0
〈proof 〉

lemma rmod-self-multiple-int [simp]: (of-int n ∗ x) rmod x = 0
〈proof 〉

THEORY “Real-Mod” 713

lemma rmod-self-multiple-nat [simp]: (of-nat n ∗ x) rmod x = 0
〈proof 〉

lemma rmod-self-multiple-numeral [simp]: (numeral n ∗ x) rmod x = 0
〈proof 〉

lemma rmod-self-multiple-int ′ [simp]: (x ∗ of-int n) rmod x = 0
〈proof 〉

lemma rmod-self-multiple-nat ′ [simp]: (x ∗ of-nat n) rmod x = 0
〈proof 〉

lemma rmod-self-multiple-numeral ′ [simp]: (x ∗ numeral n) rmod x = 0
〈proof 〉

lemma rmod-idem [simp]: x ∈ {0 ..<|y|} =⇒ x rmod y = x
〈proof 〉

definition rcong :: real ⇒ real ⇒ real ⇒ bool
(‹(‹indent=1 notation=‹mixfix rcong››[- = -] ′(′ rmod - ′))›)

where [x = y] (rmod m) ←→ x rmod m = y rmod m

named-theorems rcong-intros

lemma rcong-0-right [simp]: [x = y] (rmod 0) ←→ x = y
〈proof 〉

lemma rcong-0-iff : [x = 0] (rmod m) ←→ x rmod m = 0
and rcong-0-iff ′: [0 = x] (rmod m) ←→ x rmod m = 0
〈proof 〉

lemma rcong-refl [simp, intro!, rcong-intros]: [x = x] (rmod m)
〈proof 〉

lemma rcong-sym: [y = x] (rmod m) =⇒ [x = y] (rmod m)
〈proof 〉

lemma rcong-sym-iff : [y = x] (rmod m) ←→ [x = y] (rmod m)
〈proof 〉

lemma rcong-trans [trans]: [x = y] (rmod m) =⇒ [y = z] (rmod m) =⇒ [x = z]
(rmod m)
〈proof 〉

lemma rcong-add [rcong-intros]:
[a = b] (rmod m) =⇒ [c = d] (rmod m) =⇒ [a + c = b + d] (rmod m)

THEORY “Real-Mod” 714

〈proof 〉

lemma rcong-diff [rcong-intros]:
[a = b] (rmod m) =⇒ [c = d] (rmod m) =⇒ [a − c = b − d] (rmod m)
〈proof 〉

lemma rcong-uminus [rcong-intros]:
[a = b] (rmod m) =⇒ [−a = −b] (rmod m)
〈proof 〉

lemma rcong-uminus-uminus-iff [simp]: [−x = −y] (rmod m) ←→ [x = y] (rmod
m)
〈proof 〉

lemma rcong-uminus-left-iff : [−x = y] (rmod m) ←→ [x = −y] (rmod m)
〈proof 〉

lemma rcong-add-right-cancel [simp]: [a + c = b + c] (rmod m)←→ [a = b] (rmod
m)
〈proof 〉

lemma rcong-add-left-cancel [simp]: [c + a = c + b] (rmod m) ←→ [a = b] (rmod
m)
〈proof 〉

lemma rcong-diff-right-cancel [simp]: [a − c = b − c] (rmod m)←→ [a = b] (rmod
m)
〈proof 〉

lemma rcong-diff-left-cancel [simp]: [c − a = c − b] (rmod m) ←→ [a = b] (rmod
m)
〈proof 〉

lemma rcong-rmod-right-iff [simp]: [a = (b rmod m)] (rmod m)←→ [a = b] (rmod
m)

and rcong-rmod-left-iff [simp]: [(a rmod m) = b] (rmod m) ←→ [a = b] (rmod
m)
〈proof 〉

lemma rcong-rmod-left [rcong-intros]: [a = b] (rmod m) =⇒ [(a rmod m) = b]
(rmod m)

and rcong-rmod-right [rcong-intros]: [a = b] (rmod m) =⇒ [a = (b rmod m)]
(rmod m)
〈proof 〉

lemma rcong-mult-of-int-0-left-left [rcong-intros]: [0 = of-int n ∗ m] (rmod m)
and rcong-mult-of-int-0-right-left [rcong-intros]: [0 = m ∗ of-int n] (rmod m)
and rcong-mult-of-int-0-left-right [rcong-intros]: [of-int n ∗ m = 0] (rmod m)
and rcong-mult-of-int-0-right-right [rcong-intros]: [m ∗ of-int n = 0] (rmod m)

THEORY “Real-Mod” 715

〈proof 〉

lemma rcong-altdef : [a = b] (rmod m) ←→ (∃n. b = a + of-int n ∗ m)
〈proof 〉

lemma rcong-conv-diff-rmod-eq-0 : [x = y] (rmod m) ←→ (x − y) rmod m = 0
〈proof 〉

lemma rcong-imp-eq:
assumes [x = y] (rmod m) |x − y| < |m|
shows x = y
〈proof 〉

lemma rcong-mult-modulus:
assumes [a = b] (rmod (m / c)) c 6= 0
shows [a ∗ c = b ∗ c] (rmod m)
〈proof 〉

lemma rcong-divide-modulus:
assumes [a = b] (rmod (m ∗ c)) c 6= 0
shows [a / c = b / c] (rmod m)
〈proof 〉

lemma sin-rmod [simp]: sin (x rmod (2∗pi)) = sin x
and cos-rmod [simp]: cos (x rmod (2∗pi)) = cos x
〈proof 〉

lemma tan-rmod [simp]: tan (x rmod (2∗pi)) = tan x
and cot-rmod [simp]: cot (x rmod (2∗pi)) = cot x
and cis-rmod [simp]: cis (x rmod (2∗pi)) = cis x
and rcis-rmod [simp]: rcis r (x rmod (2∗pi)) = rcis r x
〈proof 〉

lemma cis-eq-iff : cis a = cis b ←→ [a = b] (rmod (2 ∗ pi))
〈proof 〉

lemma cis-eq-1-iff : cis a = 1 ←→ (∃n. a = of-int n ∗ (2 ∗ pi))
〈proof 〉

lemma cis-cong:
assumes [a = b] (rmod 2 ∗ pi)
shows cis a = cis b
〈proof 〉

lemma rcis-cong:
assumes [a = b] (rmod 2 ∗ pi)
shows rcis r a = rcis r b
〈proof 〉

THEORY “Reflection” 716

lemma sin-rcong: [x = y] (rmod (2 ∗ pi)) =⇒ sin x = sin y
and cos-rcong: [x = y] (rmod (2 ∗ pi)) =⇒ cos x = cos y
〈proof 〉

lemma sin-eq-sin-conv-rmod:
assumes sin x = sin y
shows [x = y] (rmod 2 ∗ pi) ∨ [x = pi − y] (rmod 2 ∗ pi)
〈proof 〉

lemma cos-eq-cos-conv-rmod:
assumes cos x = cos y
shows [x = y] (rmod 2 ∗ pi) ∨ [x = −y] (rmod 2 ∗ pi)
〈proof 〉

lemma sin-eq-sin-conv-rmod-iff :
sin x = sin y ←→ [x = y] (rmod 2 ∗ pi) ∨ [x = pi − y] (rmod 2 ∗ pi)
〈proof 〉

lemma cos-eq-cos-conv-rmod-iff :
cos x = cos y ←→ [x = y] (rmod 2 ∗ pi) ∨ [x = −y] (rmod 2 ∗ pi)
〈proof 〉

end

92 Generic reflection and reification
theory Reflection
imports Main
begin

〈ML〉

end

theory Rewrite
imports Main
begin

consts rewrite-HOLE :: ′a::{} (‹◊›)

lemma eta-expand:
fixes f :: ′a::{} ⇒ ′b::{}
shows f ≡ λx. f x 〈proof 〉

lemma imp-cong-eq:
(PROP A =⇒ (PROP B =⇒ PROP C) ≡ (PROP B ′ =⇒ PROP C ′)) ≡
((PROP B =⇒ PROP A =⇒ PROP C) ≡ (PROP B ′ =⇒ PROP A =⇒ PROP

C ′))

THEORY “Type-Length” 717

〈proof 〉

〈ML〉

end

93 Assigning lengths to types by type classes
theory Type-Length
imports Numeral-Type
begin

The aim of this is to allow any type as index type, but to provide a
default instantiation for numeral types. This independence requires some
duplication with the definitions in Numeral_Type.thy.
class len0 =

fixes len-of :: ′a itself ⇒ nat

syntax -type-length :: type ⇒ nat (‹(1LENGTH/(1 ′(- ′)))›)
syntax-consts -type-length
 len-of
translations LENGTH (′a) ⇀ CONST len-of TYPE(′a)
〈ML〉

Some theorems are only true on words with length greater 0.
class len = len0 +

assumes len-gt-0 [iff]: 0 < LENGTH (′a)
begin

lemma len-not-eq-0 [simp]:
LENGTH (′a) 6= 0
〈proof 〉

end

instantiation num0 and num1 :: len0
begin

definition len-num0 : len-of (- :: num0 itself) = 0
definition len-num1 : len-of (- :: num1 itself) = 1

instance 〈proof 〉

end

instantiation bit0 and bit1 :: (len0) len0
begin

definition len-bit0 : len-of (- :: ′a::len0 bit0 itself) = 2 ∗ LENGTH (′a)
definition len-bit1 : len-of (- :: ′a::len0 bit1 itself) = 2 ∗ LENGTH (′a) + 1

THEORY “Type-Length” 718

instance 〈proof 〉

end

lemmas len-of-numeral-defs [simp] = len-num0 len-num1 len-bit0 len-bit1

instance num1 :: len
〈proof 〉

instance bit0 :: (len) len
〈proof 〉

instance bit1 :: (len0) len
〈proof 〉

instantiation Enum.finite-1 :: len
begin

definition
len-of-finite-1 (x :: Enum.finite-1 itself) ≡ (1 :: nat)

instance
〈proof 〉

end

instantiation Enum.finite-2 :: len
begin

definition
len-of-finite-2 (x :: Enum.finite-2 itself) ≡ (2 :: nat)

instance
〈proof 〉

end

instantiation Enum.finite-3 :: len
begin

definition
len-of-finite-3 (x :: Enum.finite-3 itself) ≡ (4 :: nat)

instance
〈proof 〉

end

lemma length-less-eq-Suc-0-iff [simp]:
‹LENGTH (′a::len) ≤ Suc 0 ←→ LENGTH (′a) = Suc 0 ›

THEORY “Saturated” 719

〈proof 〉

lemma length-not-greater-eq-2-iff [simp]:
‹¬ 2 ≤ LENGTH (′a::len) ←→ LENGTH (′a) = Suc 0 ›
〈proof 〉

lemma less-eq-decr-length-iff [simp]:
‹n ≤ LENGTH (′a::len) − Suc 0 ←→ n < LENGTH (′a)›
〈proof 〉

lemma decr-length-less-iff [simp]:
‹LENGTH (′a::len) − Suc 0 < n ←→ LENGTH (′a) ≤ n›
〈proof 〉

context linordered-idom
begin

lemma two-less-eq-exp-length [simp]:
‹2 ≤ 2 ^ LENGTH (′b::len)›
〈proof 〉

end

end

94 Saturated arithmetic
theory Saturated
imports Numeral-Type Type-Length
begin

94.1 The type of saturated naturals
typedef (overloaded) (′a::len) sat = {.. LENGTH (′a)}

morphisms nat-of Abs-sat
〈proof 〉

lemma sat-eqI :
nat-of m = nat-of n =⇒ m = n
〈proof 〉

lemma sat-eq-iff :
m = n ←→ nat-of m = nat-of n
〈proof 〉

lemma Abs-sat-nat-of [code abstype]:
Abs-sat (nat-of n) = n
〈proof 〉

THEORY “Saturated” 720

definition Abs-sat ′ :: nat ⇒ ′a::len sat where
Abs-sat ′ n = Abs-sat (min (LENGTH (′a)) n)

lemma nat-of-Abs-sat ′ [simp]:
nat-of (Abs-sat ′ n :: (′a::len) sat) = min (LENGTH (′a)) n
〈proof 〉

lemma nat-of-le-len-of [simp]:
nat-of (n :: (′a::len) sat) ≤ LENGTH (′a)
〈proof 〉

lemma min-len-of-nat-of [simp]:
min (LENGTH (′a)) (nat-of (n::(′a::len) sat)) = nat-of n
〈proof 〉

lemma min-nat-of-len-of [simp]:
min (nat-of (n::(′a::len) sat)) (LENGTH (′a)) = nat-of n
〈proof 〉

lemma Abs-sat ′-nat-of [simp]:
Abs-sat ′ (nat-of n) = n
〈proof 〉

instantiation sat :: (len) linorder
begin

definition
less-eq-sat-def : x ≤ y ←→ nat-of x ≤ nat-of y

definition
less-sat-def : x < y ←→ nat-of x < nat-of y

instance
〈proof 〉

end

instantiation sat :: (len) {minus, comm-semiring-1}
begin

definition
0 = Abs-sat ′ 0

definition
1 = Abs-sat ′ 1

lemma nat-of-zero-sat [simp, code abstract]:
nat-of 0 = 0
〈proof 〉

THEORY “Saturated” 721

lemma nat-of-one-sat [simp, code abstract]:
nat-of 1 = min 1 (LENGTH (′a))
〈proof 〉

definition
x + y = Abs-sat ′ (nat-of x + nat-of y)

lemma nat-of-plus-sat [simp, code abstract]:
nat-of (x + y) = min (nat-of x + nat-of y) (LENGTH (′a))
〈proof 〉

definition
x − y = Abs-sat ′ (nat-of x − nat-of y)

lemma nat-of-minus-sat [simp, code abstract]:
nat-of (x − y) = nat-of x − nat-of y
〈proof 〉

definition
x ∗ y = Abs-sat ′ (nat-of x ∗ nat-of y)

lemma nat-of-times-sat [simp, code abstract]:
nat-of (x ∗ y) = min (nat-of x ∗ nat-of y) (LENGTH (′a))
〈proof 〉

instance
〈proof 〉

end

instantiation sat :: (len) ordered-comm-semiring
begin

instance
〈proof 〉

end

lemma Abs-sat ′-eq-of-nat: Abs-sat ′ n = of-nat n
〈proof 〉

abbreviation Sat :: nat ⇒ ′a::len sat where
Sat ≡ of-nat

lemma nat-of-Sat [simp]:
nat-of (Sat n :: (′a::len) sat) = min (LENGTH (′a)) n
〈proof 〉

THEORY “Saturated” 722

lemma [code-abbrev]:
of-nat (numeral k) = (numeral k :: ′a::len sat)
〈proof 〉

context
begin

qualified definition sat-of-nat :: nat ⇒ (′a::len) sat
where [code-abbrev]: sat-of-nat = of-nat

lemma [code abstract]:
nat-of (sat-of-nat n :: (′a::len) sat) = min (LENGTH (′a)) n
〈proof 〉

end

instance sat :: (len) finite
〈proof 〉

instantiation sat :: (len) equal
begin

definition HOL.equal A B ←→ nat-of A = nat-of B

instance
〈proof 〉

end

instantiation sat :: (len) {bounded-lattice, distrib-lattice}
begin

definition (inf :: ′a sat ⇒ ′a sat ⇒ ′a sat) = min
definition (sup :: ′a sat ⇒ ′a sat ⇒ ′a sat) = max
definition bot = (0 :: ′a sat)
definition top = Sat (LENGTH (′a))

instance
〈proof 〉

end

instantiation sat :: (len) {Inf , Sup}
begin

global-interpretation Inf-sat: semilattice-neutr-set min ‹top :: ′a sat›
defines Inf-sat = Inf-sat.F
〈proof 〉

THEORY “Set-Idioms” 723

global-interpretation Sup-sat: semilattice-neutr-set max ‹bot :: ′a sat›
defines Sup-sat = Sup-sat.F
〈proof 〉

instance 〈proof 〉

end

instance sat :: (len) complete-lattice
〈proof 〉

94.2 Enumeration
lemma inj-on-sat-of-nat:

shows inj-on (of-nat :: nat ⇒ ′a::len sat) {0 ..<LENGTH (′a)}
〈proof 〉

lemma UNIV-sat-eq-of-nat:
shows (UNIV :: ′a::len sat set) = of-nat ‘ {0 ..LENGTH (′a)} (is ?lhs = ?rhs)
〈proof 〉

instantiation sat :: (len) enum
begin

definition enum-sat :: ′a sat list where
enum-sat = map of-nat [0 ..<Suc(LENGTH (′a))]

definition enum-all-sat :: (′a sat ⇒ bool) ⇒ bool where
enum-all-sat = All

definition enum-ex-sat :: (′a sat ⇒ bool) ⇒ bool where
enum-ex-sat = Ex

instance
〈proof 〉

end

lemma enum-sat-code [code]:
fixes P :: ′a::len sat ⇒ bool
shows Enum.enum-all P ←→ list-all P Enum.enum

and Enum.enum-ex P ←→ list-ex P Enum.enum
〈proof 〉

end

95 Set Idioms
theory Set-Idioms

THEORY “Set-Idioms” 724

imports Countable-Set

begin

95.1 Idioms for being a suitable union/intersection of some-
thing

definition union-of :: (′a set set ⇒ bool) ⇒ (′a set ⇒ bool) ⇒ ′a set ⇒ bool
(infixr ‹union ′-of › 60)
where P union-of Q ≡ λS . ∃U . P U ∧ U ⊆ Collect Q ∧

⋃
U = S

definition intersection-of :: (′a set set ⇒ bool) ⇒ (′a set ⇒ bool) ⇒ ′a set ⇒ bool
(infixr ‹intersection ′-of › 60)
where P intersection-of Q ≡ λS . ∃U . P U ∧ U ⊆ Collect Q ∧

⋂
U = S

definition arbitrary:: ′a set set ⇒ bool where arbitrary U ≡ True

lemma union-of-inc: [[P {S}; Q S]] =⇒ (P union-of Q) S
〈proof 〉

lemma intersection-of-inc:
[[P {S}; Q S]] =⇒ (P intersection-of Q) S
〈proof 〉

lemma union-of-mono:
[[(P union-of Q) S ;

∧
x. Q x =⇒ Q ′ x]] =⇒ (P union-of Q ′) S

〈proof 〉

lemma intersection-of-mono:
[[(P intersection-of Q) S ;

∧
x. Q x =⇒ Q ′ x]] =⇒ (P intersection-of Q ′) S

〈proof 〉

lemma all-union-of :
(∀S . (P union-of Q) S −→ R S) ←→ (∀T . P T ∧ T ⊆ Collect Q −→ R(

⋃
T))

〈proof 〉

lemma all-intersection-of :
(∀S . (P intersection-of Q) S −→ R S) ←→ (∀T . P T ∧ T ⊆ Collect Q −→

R(
⋂

T))
〈proof 〉

lemma intersection-ofE :
[[(P intersection-of Q) S ;

∧
T . [[P T ; T ⊆ Collect Q]] =⇒ R(

⋂
T)]] =⇒ R S

〈proof 〉

lemma union-of-empty:
P {} =⇒ (P union-of Q) {}

〈proof 〉

THEORY “Set-Idioms” 725

lemma intersection-of-empty:
P {} =⇒ (P intersection-of Q) UNIV

〈proof 〉

The arbitrary and finite cases
lemma arbitrary-union-of-alt:

(arbitrary union-of Q) S ←→ (∀ x ∈ S . ∃U . Q U ∧ x ∈ U ∧ U ⊆ S)
(is ?lhs = ?rhs)
〈proof 〉

lemma arbitrary-union-of-empty [simp]: (arbitrary union-of P) {}
〈proof 〉

lemma arbitrary-intersection-of-empty [simp]:
(arbitrary intersection-of P) UNIV
〈proof 〉

lemma arbitrary-union-of-inc:
P S =⇒ (arbitrary union-of P) S
〈proof 〉

lemma arbitrary-intersection-of-inc:
P S =⇒ (arbitrary intersection-of P) S
〈proof 〉

lemma arbitrary-union-of-complement:
(arbitrary union-of P) S ←→ (arbitrary intersection-of (λS . P(− S))) (− S)

(is ?lhs = ?rhs)
〈proof 〉

lemma arbitrary-intersection-of-complement:
(arbitrary intersection-of P) S ←→ (arbitrary union-of (λS . P(− S))) (− S)
〈proof 〉

lemma arbitrary-union-of-idempot [simp]:
arbitrary union-of arbitrary union-of P = arbitrary union-of P
〈proof 〉

lemma arbitrary-intersection-of-idempot:
arbitrary intersection-of arbitrary intersection-of P = arbitrary intersection-of P

(is ?lhs = ?rhs)
〈proof 〉

lemma arbitrary-union-of-Union:
(
∧

S . S ∈ U =⇒ (arbitrary union-of P) S) =⇒ (arbitrary union-of P) (
⋃
U)

〈proof 〉

lemma arbitrary-union-of-Un:
[[(arbitrary union-of P) S ; (arbitrary union-of P) T]]

THEORY “Set-Idioms” 726

=⇒ (arbitrary union-of P) (S ∪ T)
〈proof 〉

lemma arbitrary-intersection-of-Inter :
(
∧

S . S ∈ U =⇒ (arbitrary intersection-of P) S) =⇒ (arbitrary intersection-of
P) (

⋂
U)

〈proof 〉

lemma arbitrary-intersection-of-Int:
[[(arbitrary intersection-of P) S ; (arbitrary intersection-of P) T]]

=⇒ (arbitrary intersection-of P) (S ∩ T)
〈proof 〉

lemma arbitrary-union-of-Int-eq:
(∀S T . (arbitrary union-of P) S ∧ (arbitrary union-of P) T

−→ (arbitrary union-of P) (S ∩ T))
←→ (∀S T . P S ∧ P T −→ (arbitrary union-of P) (S ∩ T)) (is ?lhs = ?rhs)

〈proof 〉

lemma arbitrary-intersection-of-Un-eq:
(∀S T . (arbitrary intersection-of P) S ∧ (arbitrary intersection-of P) T

−→ (arbitrary intersection-of P) (S ∪ T)) ←→
(∀S T . P S ∧ P T −→ (arbitrary intersection-of P) (S ∪ T))

〈proof 〉

lemma finite-union-of-empty [simp]: (finite union-of P) {}
〈proof 〉

lemma finite-intersection-of-empty [simp]: (finite intersection-of P) UNIV
〈proof 〉

lemma finite-union-of-inc:
P S =⇒ (finite union-of P) S
〈proof 〉

lemma finite-intersection-of-inc:
P S =⇒ (finite intersection-of P) S
〈proof 〉

lemma finite-union-of-complement:
(finite union-of P) S ←→ (finite intersection-of (λS . P(− S))) (− S)
〈proof 〉

lemma finite-intersection-of-complement:
(finite intersection-of P) S ←→ (finite union-of (λS . P(− S))) (− S)
〈proof 〉

lemma finite-union-of-idempot [simp]:
finite union-of finite union-of P = finite union-of P

THEORY “Set-Idioms” 727

〈proof 〉

lemma finite-intersection-of-idempot [simp]:
finite intersection-of finite intersection-of P = finite intersection-of P
〈proof 〉

lemma finite-union-of-Union:
[[finite U ;

∧
S . S ∈ U =⇒ (finite union-of P) S]] =⇒ (finite union-of P) (

⋃
U)

〈proof 〉

lemma finite-union-of-Un:
[[(finite union-of P) S ; (finite union-of P) T]] =⇒ (finite union-of P) (S ∪ T)
〈proof 〉

lemma finite-intersection-of-Inter :
[[finite U ;

∧
S . S ∈ U =⇒ (finite intersection-of P) S]] =⇒ (finite intersection-of

P) (
⋂
U)

〈proof 〉

lemma finite-intersection-of-Int:
[[(finite intersection-of P) S ; (finite intersection-of P) T]]

=⇒ (finite intersection-of P) (S ∩ T)
〈proof 〉

lemma finite-union-of-Int-eq:
(∀S T . (finite union-of P) S ∧ (finite union-of P) T −→ (finite union-of P) (S

∩ T))
←→ (∀S T . P S ∧ P T −→ (finite union-of P) (S ∩ T))

(is ?lhs = ?rhs)
〈proof 〉

lemma finite-intersection-of-Un-eq:
(∀S T . (finite intersection-of P) S ∧

(finite intersection-of P) T
−→ (finite intersection-of P) (S ∪ T)) ←→

(∀S T . P S ∧ P T −→ (finite intersection-of P) (S ∪ T))
〈proof 〉

abbreviation finite ′ :: ′a set ⇒ bool
where finite ′ A ≡ finite A ∧ A 6= {}

lemma finite ′-intersection-of-Int:
[[(finite ′ intersection-of P) S ; (finite ′ intersection-of P) T]]

=⇒ (finite ′ intersection-of P) (S ∩ T)
〈proof 〉

lemma finite ′-intersection-of-inc:
P S =⇒ (finite ′ intersection-of P) S

THEORY “Set-Idioms” 728

〈proof 〉

95.2 The “Relative to” operator
A somewhat cheap but handy way of getting localized forms of various
topological concepts (open, closed, borel, fsigma, gdelta etc.)
definition relative-to :: [′a set ⇒ bool, ′a set, ′a set] ⇒ bool (infixl ‹relative ′-to›
55)

where P relative-to S ≡ λT . ∃U . P U ∧ S ∩ U = T

lemma relative-to-UNIV [simp]: (P relative-to UNIV) S ←→ P S
〈proof 〉

lemma relative-to-imp-subset:
(P relative-to S) T =⇒ T ⊆ S
〈proof 〉

lemma all-relative-to: (∀S . (P relative-to U) S −→ Q S) ←→ (∀S . P S −→ Q(U
∩ S))
〈proof 〉

lemma relative-toE : [[(P relative-to U) S ;
∧

S . P S =⇒ Q(U ∩ S)]] =⇒ Q S
〈proof 〉

lemma relative-to-inc:
P S =⇒ (P relative-to U) (U ∩ S)
〈proof 〉

lemma relative-to-relative-to [simp]:
P relative-to S relative-to T = P relative-to (S ∩ T)
〈proof 〉

lemma relative-to-compl:
S ⊆ U =⇒ ((P relative-to U) (U − S) ←→ ((λc. P(− c)) relative-to U) S)
〈proof 〉

lemma relative-to-subset-trans:
[[(P relative-to U) S ; S ⊆ T ; T ⊆ U]] =⇒ (P relative-to T) S
〈proof 〉

lemma relative-to-mono:
[[(P relative-to U) S ;

∧
S . P S =⇒ Q S]] =⇒ (Q relative-to U) S

〈proof 〉

lemma relative-to-subset-inc: [[S ⊆ U ; P S]] =⇒ (P relative-to U) S
〈proof 〉

lemma relative-to-Int:
[[(P relative-to S) C ; (P relative-to S) D;

∧
X Y . [[P X ; P Y]] =⇒ P(X ∩ Y)]]

THEORY “Set-Idioms” 729

=⇒ (P relative-to S) (C ∩ D)
〈proof 〉

lemma relative-to-Un:
[[(P relative-to S) C ; (P relative-to S) D;

∧
X Y . [[P X ; P Y]] =⇒ P(X ∪ Y)]]

=⇒ (P relative-to S) (C ∪ D)
〈proof 〉

lemma arbitrary-union-of-relative-to:
((arbitrary union-of P) relative-to U) = (arbitrary union-of (P relative-to U))

(is ?lhs = ?rhs)
〈proof 〉

lemma finite-union-of-relative-to:
((finite union-of P) relative-to U) = (finite union-of (P relative-to U)) (is ?lhs

= ?rhs)
〈proof 〉

lemma countable-union-of-relative-to:
((countable union-of P) relative-to U) = (countable union-of (P relative-to U))

(is ?lhs = ?rhs)
〈proof 〉

lemma arbitrary-intersection-of-relative-to:
((arbitrary intersection-of P) relative-to U) = ((arbitrary intersection-of (P rel-

ative-to U)) relative-to U) (is ?lhs = ?rhs)
〈proof 〉

lemma finite-intersection-of-relative-to:
((finite intersection-of P) relative-to U) = ((finite intersection-of (P relative-to

U)) relative-to U) (is ?lhs = ?rhs)
〈proof 〉

lemma countable-intersection-of-relative-to:
((countable intersection-of P) relative-to U) = ((countable intersection-of (P

relative-to U)) relative-to U) (is ?lhs = ?rhs)
〈proof 〉

lemma countable-union-of-empty [simp]: (countable union-of P) {}
〈proof 〉

lemma countable-intersection-of-empty [simp]: (countable intersection-of P) UNIV
〈proof 〉

lemma countable-union-of-inc: P S =⇒ (countable union-of P) S
〈proof 〉

lemma countable-intersection-of-inc: P S =⇒ (countable intersection-of P) S

THEORY “Set-Idioms” 730

〈proof 〉

lemma countable-union-of-complement:
(countable union-of P) S ←→ (countable intersection-of (λS . P(−S))) (−S)
(is ?lhs=?rhs)
〈proof 〉

lemma countable-intersection-of-complement:
(countable intersection-of P) S ←→ (countable union-of (λS . P(− S))) (− S)
〈proof 〉

lemma countable-union-of-explicit:
assumes P {}
shows (countable union-of P) S ←→

(∃T . (∀n::nat. P(T n)) ∧
⋃

(range T) = S) (is ?lhs=?rhs)
〈proof 〉

lemma countable-union-of-ascending:
assumes empty: P {} and Un:

∧
T U . [[P T ; P U]] =⇒ P(T ∪ U)

shows (countable union-of P) S ←→
(∃T . (∀n. P(T n)) ∧ (∀n. T n ⊆ T (Suc n)) ∧

⋃
(range T) = S) (is

?lhs=?rhs)
〈proof 〉

lemma countable-union-of-idem [simp]:
countable union-of countable union-of P = countable union-of P (is ?lhs=?rhs)
〈proof 〉

lemma countable-intersection-of-idem [simp]:
countable intersection-of countable intersection-of P =

countable intersection-of P
〈proof 〉

lemma countable-union-of-Union:
[[countable U ;

∧
S . S ∈ U =⇒ (countable union-of P) S]]

=⇒ (countable union-of P) (
⋃
U)

〈proof 〉

lemma countable-union-of-UN :
[[countable I ;

∧
i. i ∈ I =⇒ (countable union-of P) (U i)]]

=⇒ (countable union-of P) (
⋃

i∈I . U i)
〈proof 〉

lemma countable-union-of-Un:
[[(countable union-of P) S ; (countable union-of P) T]]

=⇒ (countable union-of P) (S ∪ T)
〈proof 〉

lemma countable-intersection-of-Inter :

THEORY “Signed-Division” 731

[[countable U ;
∧

S . S ∈ U =⇒ (countable intersection-of P) S]]
=⇒ (countable intersection-of P) (

⋂
U)

〈proof 〉

lemma countable-intersection-of-INT :
[[countable I ;

∧
i. i ∈ I =⇒ (countable intersection-of P) (U i)]]

=⇒ (countable intersection-of P) (
⋂

i∈I . U i)
〈proof 〉

lemma countable-intersection-of-inter :
[[(countable intersection-of P) S ; (countable intersection-of P) T]]

=⇒ (countable intersection-of P) (S ∩ T)
〈proof 〉

lemma countable-union-of-Int:
assumes S : (countable union-of P) S and T : (countable union-of P) T

and Int:
∧

S T . P S ∧ P T =⇒ P(S ∩ T)
shows (countable union-of P) (S ∩ T)
〈proof 〉

lemma countable-intersection-of-union:
assumes S : (countable intersection-of P) S and T : (countable intersection-of P)

T
and Un:

∧
S T . P S ∧ P T =⇒ P(S ∪ T)

shows (countable intersection-of P) (S ∪ T)
〈proof 〉

end

96 Signed division: negative results rounded to-
wards zero rather than minus infinity.

theory Signed-Division
imports Main

begin

class signed-divide =
fixes signed-divide :: ‹ ′a ⇒ ′a ⇒ ′a› (infixl ‹sdiv› 70)

class signed-modulo =
fixes signed-modulo :: ‹ ′a ⇒ ′a ⇒ ′a› (infixl ‹smod› 70)

class signed-division = comm-semiring-1-cancel + signed-divide + signed-modulo
+

assumes sdiv-mult-smod-eq: ‹a sdiv b ∗ b + a smod b = a›
begin

lemma mult-sdiv-smod-eq:

THEORY “Signed-Division” 732

‹b ∗ (a sdiv b) + a smod b = a›
〈proof 〉

lemma smod-sdiv-mult-eq:
‹a smod b + a sdiv b ∗ b = a›
〈proof 〉

lemma smod-mult-sdiv-eq:
‹a smod b + b ∗ (a sdiv b) = a›
〈proof 〉

lemma minus-sdiv-mult-eq-smod:
‹a − a sdiv b ∗ b = a smod b›
〈proof 〉

lemma minus-mult-sdiv-eq-smod:
‹a − b ∗ (a sdiv b) = a smod b›
〈proof 〉

lemma minus-smod-eq-sdiv-mult:
‹a − a smod b = a sdiv b ∗ b›
〈proof 〉

lemma minus-smod-eq-mult-sdiv:
‹a − a smod b = b ∗ (a sdiv b)›
〈proof 〉

end

The following specification of division is named “T-division” in [2]. It is
motivated by ISO C99, which in turn adopted the typical behavior of hard-
ware modern in the beginning of the 1990ies; but note ISO C99 describes
the instance on machine words, not mathematical integers.
instantiation int :: signed-division
begin

definition signed-divide-int :: ‹int ⇒ int ⇒ int›
where ‹k sdiv l = sgn k ∗ sgn l ∗ (|k| div |l|)› for k l :: int

definition signed-modulo-int :: ‹int ⇒ int ⇒ int›
where ‹k smod l = sgn k ∗ (|k| mod |l|)› for k l :: int

instance 〈proof 〉

end

lemma divide-int-eq-signed-divide-int:
‹k div l = k sdiv l − of-bool (l 6= 0 ∧ sgn k 6= sgn l ∧ ¬ l dvd k)›
for k l :: int

THEORY “Signed-Division” 733

〈proof 〉

lemma signed-divide-int-eq-divide-int:
‹k sdiv l = k div l + of-bool (l 6= 0 ∧ sgn k 6= sgn l ∧ ¬ l dvd k)›
for k l :: int
〈proof 〉

lemma modulo-int-eq-signed-modulo-int:
‹k mod l = k smod l + l ∗ of-bool (sgn k 6= sgn l ∧ ¬ l dvd k)›
for k l :: int
〈proof 〉

lemma signed-modulo-int-eq-modulo-int:
‹k smod l = k mod l − l ∗ of-bool (sgn k 6= sgn l ∧ ¬ l dvd k)›
for k l :: int
〈proof 〉

lemma sdiv-int-div-0 :
(x :: int) sdiv 0 = 0
〈proof 〉

lemma sdiv-int-0-div [simp]:
0 sdiv (x :: int) = 0
〈proof 〉

lemma smod-int-alt-def :
(a::int) smod b = sgn (a) ∗ (abs a mod abs b)

〈proof 〉

lemma int-sdiv-simps [simp]:
(a :: int) sdiv 1 = a
(a :: int) sdiv 0 = 0
(a :: int) sdiv −1 = −a
〈proof 〉

lemma smod-int-mod-0 [simp]:
x smod (0 :: int) = x
〈proof 〉

lemma smod-int-0-mod [simp]:
0 smod (x :: int) = 0
〈proof 〉

lemma sgn-sdiv-eq-sgn-mult:
a sdiv b 6= 0 =⇒ sgn ((a :: int) sdiv b) = sgn (a ∗ b)
〈proof 〉

lemma int-sdiv-same-is-1 [simp]:
assumes a 6= 0

THEORY “Signed-Division” 734

shows ((a :: int) sdiv b = a) = (b = 1)
〈proof 〉

lemma int-sdiv-negated-is-minus1 [simp]:
a 6= 0 =⇒ ((a :: int) sdiv b = − a) = (b = −1)
〈proof 〉

lemma sdiv-int-range:
‹a sdiv b ∈ {− |a|..|a|}› for a b :: int
〈proof 〉

lemma smod-int-range:
‹a smod b ∈ {− |b| + 1 ..|b| − 1}›
if ‹b 6= 0 › for a b :: int
〈proof 〉

lemma smod-int-compares:
[[0 ≤ a; 0 < b]] =⇒ (a :: int) smod b < b
[[0 ≤ a; 0 < b]] =⇒ 0 ≤ (a :: int) smod b
[[a ≤ 0 ; 0 < b]] =⇒ −b < (a :: int) smod b
[[a ≤ 0 ; 0 < b]] =⇒ (a :: int) smod b ≤ 0
[[0 ≤ a; b < 0]] =⇒ (a :: int) smod b < − b
[[0 ≤ a; b < 0]] =⇒ 0 ≤ (a :: int) smod b
[[a ≤ 0 ; b < 0]] =⇒ (a :: int) smod b ≤ 0
[[a ≤ 0 ; b < 0]] =⇒ b ≤ (a :: int) smod b
〈proof 〉

lemma smod-mod-positive:
[[0 ≤ (a :: int); 0 ≤ b]] =⇒ a smod b = a mod b
〈proof 〉

lemma minus-sdiv-eq [simp]:
‹− k sdiv l = − (k sdiv l)› for k l :: int
〈proof 〉

lemma sdiv-minus-eq [simp]:
‹k sdiv − l = − (k sdiv l)› for k l :: int
〈proof 〉

lemma sdiv-int-numeral-numeral [simp]:
‹numeral m sdiv numeral n = numeral m div (numeral n :: int)›
〈proof 〉

lemma minus-smod-eq [simp]:
‹− k smod l = − (k smod l)› for k l :: int
〈proof 〉

lemma smod-minus-eq [simp]:
‹k smod − l = k smod l› for k l :: int

THEORY “State-Monad” 735

〈proof 〉

lemma smod-int-numeral-numeral [simp]:
‹numeral m smod numeral n = numeral m mod (numeral n :: int)›
〈proof 〉

end

97 State monad
theory State-Monad
imports Monad-Syntax
begin

datatype (′s, ′a) state = State (run-state: ′s ⇒ (′a × ′s))

lemma set-state-iff : x ∈ set-state m ←→ (∃ s s ′. run-state m s = (x, s ′))
〈proof 〉

lemma pred-stateI [intro]:
assumes

∧
a s s ′. run-state m s = (a, s ′) =⇒ P a

shows pred-state P m
〈proof 〉

lemma pred-stateD[dest]:
assumes pred-state P m run-state m s = (a, s ′)
shows P a
〈proof 〉

lemma pred-state-run-state: pred-state P m =⇒ P (fst (run-state m s))
〈proof 〉

definition state-io-rel :: (′s ⇒ ′s ⇒ bool) ⇒ (′s, ′a) state ⇒ bool where
state-io-rel P m = (∀ s. P s (snd (run-state m s)))

lemma state-io-relI [intro]:
assumes

∧
a s s ′. run-state m s = (a, s ′) =⇒ P s s ′

shows state-io-rel P m
〈proof 〉

lemma state-io-relD[dest]:
assumes state-io-rel P m run-state m s = (a, s ′)
shows P s s ′

〈proof 〉

lemma state-io-rel-mono[mono]: P ≤ Q =⇒ state-io-rel P ≤ state-io-rel Q
〈proof 〉

lemma state-ext:

THEORY “State-Monad” 736

assumes
∧

s. run-state m s = run-state n s
shows m = n
〈proof 〉

context begin

qualified definition return :: ′a ⇒ (′s, ′a) state where
return a = State (Pair a)

lemma run-state-return[simp]: run-state (return x) s = (x, s)
〈proof 〉 definition ap :: (′s, ′a ⇒ ′b) state ⇒ (′s, ′a) state ⇒ (′s, ′b) state where
ap f x = State (λs. case run-state f s of (g, s ′) ⇒ case run-state x s ′ of (y, s ′′) ⇒
(g y, s ′′))

lemma run-state-ap[simp]:
run-state (ap f x) s = (case run-state f s of (g, s ′) ⇒ case run-state x s ′ of (y,

s ′′) ⇒ (g y, s ′′))
〈proof 〉 definition bind :: (′s, ′a) state ⇒ (′a ⇒ (′s, ′b) state) ⇒ (′s, ′b) state
where
bind x f = State (λs. case run-state x s of (a, s ′) ⇒ run-state (f a) s ′)

lemma run-state-bind[simp]:
run-state (bind x f) s = (case run-state x s of (a, s ′) ⇒ run-state (f a) s ′)
〈proof 〉

adhoc-overloading Monad-Syntax.bind
 bind

lemma bind-left-identity[simp]: bind (return a) f = f a
〈proof 〉

lemma bind-right-identity[simp]: bind m return = m
〈proof 〉

lemma bind-assoc[simp]: bind (bind m f) g = bind m (λx. bind (f x) g)
〈proof 〉

lemma bind-predI [intro]:
assumes pred-state (λx. pred-state P (f x)) m
shows pred-state P (bind m f)
〈proof 〉 definition get :: (′s, ′s) state where
get = State (λs. (s, s))

lemma run-state-get[simp]: run-state get s = (s, s)
〈proof 〉 definition set :: ′s ⇒ (′s, unit) state where
set s ′ = State (λ-. ((), s ′))

lemma run-state-set[simp]: run-state (set s ′) s = ((), s ′)
〈proof 〉

THEORY “State-Monad” 737

lemma get-set[simp]: bind get set = return ()
〈proof 〉

lemma set-set[simp]: bind (set s) (λ-. set s ′) = set s ′

〈proof 〉

lemma get-bind-set[simp]: bind get (λs. bind (set s) (f s)) = bind get (λs. f s ())
〈proof 〉

lemma get-const[simp]: bind get (λ-. m) = m
〈proof 〉

fun traverse-list :: (′a ⇒ (′b, ′c) state) ⇒ ′a list ⇒ (′b, ′c list) state where
traverse-list - [] = return [] |
traverse-list f (x # xs) = do {

x ← f x;
xs ← traverse-list f xs;
return (x # xs)
}

lemma traverse-list-app[simp]: traverse-list f (xs @ ys) = do {
xs ← traverse-list f xs;
ys ← traverse-list f ys;
return (xs @ ys)
}
〈proof 〉

lemma traverse-comp[simp]: traverse-list (g ◦ f) xs = traverse-list g (map f xs)
〈proof 〉

abbreviation mono-state :: (′s::preorder , ′a) state ⇒ bool where
mono-state ≡ state-io-rel (≤)

abbreviation strict-mono-state :: (′s::preorder , ′a) state ⇒ bool where
strict-mono-state ≡ state-io-rel (<)

corollary strict-mono-implies-mono: strict-mono-state m =⇒ mono-state m
〈proof 〉

lemma return-mono[simp, intro]: mono-state (return x)
〈proof 〉

lemma get-mono[simp, intro]: mono-state get
〈proof 〉

lemma put-mono:
assumes

∧
x. s ′ ≥ x

shows mono-state (set s ′)
〈proof 〉

THEORY “State-Monad” 738

lemma map-mono[intro]: mono-state m =⇒ mono-state (map-state f m)
〈proof 〉

lemma map-strict-mono[intro]: strict-mono-state m =⇒ strict-mono-state (map-state
f m)
〈proof 〉

lemma bind-mono-strong:
assumes mono-state m
assumes

∧
x s s ′. run-state m s = (x, s ′) =⇒ mono-state (f x)

shows mono-state (bind m f)
〈proof 〉

lemma bind-strict-mono-strong1 :
assumes mono-state m
assumes

∧
x s s ′. run-state m s = (x, s ′) =⇒ strict-mono-state (f x)

shows strict-mono-state (bind m f)
〈proof 〉

lemma bind-strict-mono-strong2 :
assumes strict-mono-state m
assumes

∧
x s s ′. run-state m s = (x, s ′) =⇒ mono-state (f x)

shows strict-mono-state (bind m f)
〈proof 〉

corollary bind-strict-mono-strong:
assumes strict-mono-state m
assumes

∧
x s s ′. run-state m s = (x, s ′) =⇒ strict-mono-state (f x)

shows strict-mono-state (bind m f)
〈proof 〉 definition update :: (′s ⇒ ′s) ⇒ (′s, unit) state where
update f = bind get (set ◦ f)

lemma update-id[simp]: update (λx. x) = return ()
〈proof 〉

lemma update-comp[simp]: bind (update f) (λ-. update g) = update (g ◦ f)
〈proof 〉

lemma set-update[simp]: bind (set s) (λ-. update f) = set (f s)
〈proof 〉

lemma set-bind-update[simp]: bind (set s) (λ-. bind (update f) g) = bind (set (f
s)) g
〈proof 〉

lemma update-mono:
assumes

∧
x. x ≤ f x

shows mono-state (update f)

THEORY “Comparator” 739

〈proof 〉

lemma update-strict-mono:
assumes

∧
x. x < f x

shows strict-mono-state (update f)
〈proof 〉

end

end

theory Comparator
imports Main

begin

98 Comparators on linear quasi-orders
98.1 Basic properties
datatype comp = Less | Equiv | Greater

locale comparator =
fixes cmp :: ‹ ′a ⇒ ′a ⇒ comp›
assumes refl [simp]: ‹

∧
a. cmp a a = Equiv›

and trans-equiv: ‹
∧

a b c. cmp a b = Equiv =⇒ cmp b c = Equiv =⇒ cmp a c
= Equiv›

assumes trans-less: ‹cmp a b = Less =⇒ cmp b c = Less =⇒ cmp a c = Less›
and greater-iff-sym-less: ‹

∧
b a. cmp b a = Greater ←→ cmp a b = Less›

begin

Dual properties
lemma trans-greater :

‹cmp a c = Greater› if ‹cmp a b = Greater› ‹cmp b c = Greater›
〈proof 〉

lemma less-iff-sym-greater :
‹cmp b a = Less ←→ cmp a b = Greater›
〈proof 〉

The equivalence part
lemma sym:

‹cmp b a = Equiv ←→ cmp a b = Equiv›
〈proof 〉

lemma reflp:
‹reflp (λa b. cmp a b = Equiv)›
〈proof 〉

THEORY “Comparator” 740

lemma symp:
‹symp (λa b. cmp a b = Equiv)›
〈proof 〉

lemma transp:
‹transp (λa b. cmp a b = Equiv)›
〈proof 〉

lemma equivp:
‹equivp (λa b. cmp a b = Equiv)›
〈proof 〉

The strict part
lemma irreflp-less:

‹irreflp (λa b. cmp a b = Less)›
〈proof 〉

lemma irreflp-greater :
‹irreflp (λa b. cmp a b = Greater)›
〈proof 〉

lemma asym-less:
‹cmp b a 6= Less› if ‹cmp a b = Less›
〈proof 〉

lemma asym-greater :
‹cmp b a 6= Greater› if ‹cmp a b = Greater›
〈proof 〉

lemma asymp-less:
‹asymp (λa b. cmp a b = Less)›
〈proof 〉

lemma asymp-greater :
‹asymp (λa b. cmp a b = Greater)›
〈proof 〉

lemma trans-equiv-less:
‹cmp a c = Less› if ‹cmp a b = Equiv› and ‹cmp b c = Less›
〈proof 〉

lemma trans-less-equiv:
‹cmp a c = Less› if ‹cmp a b = Less› and ‹cmp b c = Equiv›
〈proof 〉

lemma trans-equiv-greater :
‹cmp a c = Greater› if ‹cmp a b = Equiv› and ‹cmp b c = Greater›
〈proof 〉

THEORY “Comparator” 741

lemma trans-greater-equiv:
‹cmp a c = Greater› if ‹cmp a b = Greater› and ‹cmp b c = Equiv›
〈proof 〉

lemma transp-less:
‹transp (λa b. cmp a b = Less)›
〈proof 〉

lemma transp-greater :
‹transp (λa b. cmp a b = Greater)›
〈proof 〉

The reflexive part
lemma reflp-not-less:

‹reflp (λa b. cmp a b 6= Less)›
〈proof 〉

lemma reflp-not-greater :
‹reflp (λa b. cmp a b 6= Greater)›
〈proof 〉

lemma quasisym-not-less:
‹cmp a b = Equiv› if ‹cmp a b 6= Less› and ‹cmp b a 6= Less›
〈proof 〉

lemma quasisym-not-greater :
‹cmp a b = Equiv› if ‹cmp a b 6= Greater› and ‹cmp b a 6= Greater›
〈proof 〉

lemma trans-not-less:
‹cmp a c 6= Less› if ‹cmp a b 6= Less› ‹cmp b c 6= Less›
〈proof 〉

lemma trans-not-greater :
‹cmp a c 6= Greater› if ‹cmp a b 6= Greater› ‹cmp b c 6= Greater›
〈proof 〉

lemma transp-not-less:
‹transp (λa b. cmp a b 6= Less)›
〈proof 〉

lemma transp-not-greater :
‹transp (λa b. cmp a b 6= Greater)›
〈proof 〉

Substitution under equivalences
lemma equiv-subst-left:

‹cmp z y = comp ←→ cmp x y = comp› if ‹cmp z x = Equiv› for comp
〈proof 〉

THEORY “Comparator” 742

lemma equiv-subst-right:
‹cmp x z = comp ←→ cmp x y = comp› if ‹cmp z y = Equiv› for comp
〈proof 〉

end

typedef ′a comparator = ‹{cmp :: ′a ⇒ ′a ⇒ comp. comparator cmp}›
morphisms compare Abs-comparator
〈proof 〉

setup-lifting type-definition-comparator

global-interpretation compare: comparator ‹compare cmp›
〈proof 〉

lift-definition flat :: ‹ ′a comparator›
is ‹λ- -. Equiv› 〈proof 〉

instantiation comparator :: (linorder) default
begin

lift-definition default-comparator :: ‹ ′a comparator›
is ‹λx y. if x < y then Less else if x > y then Greater else Equiv›
〈proof 〉

instance 〈proof 〉

end

lemma compare-default-eq-Less-iff [simp]:
‹compare default x y = Less ←→ x < y›
〈proof 〉

lemma compare-default-eq-Equiv-iff [simp]:
‹compare default x y = Equiv ←→ x = y›
〈proof 〉

lemma compare-default-eq-Greater-iff [simp]:
‹compare default x y = Greater ←→ x > y›
〈proof 〉

A rudimentary quickcheck setup
instantiation comparator :: (enum) equal
begin

lift-definition equal-comparator :: ‹ ′a comparator ⇒ ′a comparator ⇒ bool›
is ‹λf g. ∀ x ∈ set Enum.enum. f x = g x› 〈proof 〉

THEORY “Comparator” 743

instance
〈proof 〉

end

lemma [code nbe]:
‹HOL.equal (cmp :: ′a::enum comparator) cmp ←→ True›
〈proof 〉

lemma [code]:
‹HOL.equal cmp1 cmp2 ←→ Enum.enum-all (λx. compare cmp1 x = compare

cmp2 x)›
〈proof 〉

instantiation comparator :: ({linorder , typerep}) full-exhaustive
begin

definition full-exhaustive-comparator ::
‹(′a comparator × (unit ⇒ term) ⇒ (bool × term list) option)
⇒ natural ⇒ (bool × term list) option›

where ‹full-exhaustive-comparator f s =
Quickcheck-Exhaustive.orelse
(f (flat, (λu. Code-Evaluation.Const (STR ′′Comparator .flat ′′) TYPEREP(′a

comparator))))
(f (default, (λu. Code-Evaluation.Const (STR ′′HOL.default-class.default ′′)

TYPEREP(′a comparator))))›

instance 〈proof 〉

end

98.2 Fundamental comparator combinators
lift-definition reversed :: ‹ ′a comparator ⇒ ′a comparator›

is ‹λcmp a b. cmp b a›
〈proof 〉

lemma compare-reversed-apply [simp]:
‹compare (reversed cmp) x y = compare cmp y x›
〈proof 〉

lift-definition key :: ‹(′b ⇒ ′a) ⇒ ′a comparator ⇒ ′b comparator›
is ‹λf cmp a b. cmp (f a) (f b)›
〈proof 〉

lemma compare-key-apply [simp]:
‹compare (key f cmp) x y = compare cmp (f x) (f y)›
〈proof 〉

THEORY “Comparator” 744

lift-definition prod-lex :: ‹ ′a comparator ⇒ ′b comparator ⇒ (′a × ′b) comparator›
is ‹λf g (a, c) (b, d). case f a b of Less ⇒ Less | Equiv ⇒ g c d | Greater ⇒

Greater›
〈proof 〉

lemma compare-prod-lex-apply:
‹compare (prod-lex cmp1 cmp2) p q =
(case compare (key fst cmp1) p q of Less ⇒ Less | Equiv ⇒ compare (key snd

cmp2) p q | Greater ⇒ Greater)›
〈proof 〉

98.3 Direct implementations for linear orders on selected
types

definition comparator-bool :: ‹bool comparator›
where [simp, code-abbrev]: ‹comparator-bool = default›

lemma compare-comparator-bool [code abstract]:
‹compare comparator-bool = (λp q.

if p then if q then Equiv else Greater
else if q then Less else Equiv)›
〈proof 〉

definition raw-comparator-nat :: ‹nat ⇒ nat ⇒ comp›
where [simp]: ‹raw-comparator-nat = compare default›

lemma default-comparator-nat [simp, code]:
‹raw-comparator-nat (0 ::nat) 0 = Equiv›
‹raw-comparator-nat (Suc m) 0 = Greater›
‹raw-comparator-nat 0 (Suc n) = Less›
‹raw-comparator-nat (Suc m) (Suc n) = raw-comparator-nat m n›
〈proof 〉

definition comparator-nat :: ‹nat comparator›
where [simp, code-abbrev]: ‹comparator-nat = default›

lemma compare-comparator-nat [code abstract]:
‹compare comparator-nat = raw-comparator-nat›
〈proof 〉

definition comparator-linordered-group :: ‹ ′a::linordered-ab-group-add comparator›
where [simp, code-abbrev]: ‹comparator-linordered-group = default›

lemma comparator-linordered-group [code abstract]:
‹compare comparator-linordered-group = (λa b.

let c = a − b in if c < 0 then Less
else if c = 0 then Equiv else Greater)›

〈proof 〉

THEORY “Sorting-Algorithms” 745

end

theory Sorting-Algorithms
imports Main Multiset Comparator

begin

99 Stably sorted lists
abbreviation (input) stable-segment :: ‹ ′a comparator ⇒ ′a ⇒ ′a list ⇒ ′a list›

where ‹stable-segment cmp x ≡ filter (λy. compare cmp x y = Equiv)›

fun sorted :: ‹ ′a comparator ⇒ ′a list ⇒ bool›
where sorted-Nil: ‹sorted cmp [] ←→ True›
| sorted-single: ‹sorted cmp [x] ←→ True›
| sorted-rec: ‹sorted cmp (y # x # xs) ←→ compare cmp y x 6= Greater ∧ sorted

cmp (x # xs)›

lemma sorted-ConsI :
‹sorted cmp (x # xs)› if ‹sorted cmp xs›

and ‹
∧

y ys. xs = y # ys =⇒ compare cmp x y 6= Greater›
〈proof 〉

lemma sorted-Cons-imp-sorted:
‹sorted cmp xs› if ‹sorted cmp (x # xs)›
〈proof 〉

lemma sorted-Cons-imp-not-less:
‹compare cmp y x 6= Greater› if ‹sorted cmp (y # xs)›

and ‹x ∈ set xs›
〈proof 〉

lemma sorted-induct [consumes 1 , case-names Nil Cons, induct pred: sorted]:
‹P xs› if ‹sorted cmp xs› and ‹P []›

and ∗: ‹
∧

x xs. sorted cmp xs =⇒ P xs
=⇒ (

∧
y. y ∈ set xs =⇒ compare cmp x y 6= Greater) =⇒ P (x # xs)›

〈proof 〉

lemma sorted-induct-remove1 [consumes 1 , case-names Nil minimum]:
‹P xs› if ‹sorted cmp xs› and ‹P []›

and ∗: ‹
∧

x xs. sorted cmp xs =⇒ P (remove1 x xs)
=⇒ x ∈ set xs =⇒ hd (stable-segment cmp x xs) = x =⇒ (

∧
y. y ∈ set xs =⇒

compare cmp x y 6= Greater)
=⇒ P xs›

〈proof 〉

lemma sorted-remove1 :
‹sorted cmp (remove1 x xs)› if ‹sorted cmp xs›
〈proof 〉

THEORY “Sorting-Algorithms” 746

lemma sorted-stable-segment:
‹sorted cmp (stable-segment cmp x xs)›
〈proof 〉

primrec insort :: ‹ ′a comparator ⇒ ′a ⇒ ′a list ⇒ ′a list›
where ‹insort cmp y [] = [y]›
| ‹insort cmp y (x # xs) = (if compare cmp y x 6= Greater

then y # x # xs
else x # insort cmp y xs)›

lemma mset-insort [simp]:
‹mset (insort cmp x xs) = add-mset x (mset xs)›
〈proof 〉

lemma length-insort [simp]:
‹length (insort cmp x xs) = Suc (length xs)›
〈proof 〉

lemma sorted-insort:
‹sorted cmp (insort cmp x xs)› if ‹sorted cmp xs›
〈proof 〉

lemma stable-insort-equiv:
‹stable-segment cmp y (insort cmp x xs) = x # stable-segment cmp y xs›

if ‹compare cmp y x = Equiv›
〈proof 〉

lemma stable-insort-not-equiv:
‹stable-segment cmp y (insort cmp x xs) = stable-segment cmp y xs›

if ‹compare cmp y x 6= Equiv›
〈proof 〉

lemma remove1-insort-same-eq [simp]:
‹remove1 x (insort cmp x xs) = xs›
〈proof 〉

lemma insort-eq-ConsI :
‹insort cmp x xs = x # xs›

if ‹sorted cmp xs› ‹
∧

y. y ∈ set xs =⇒ compare cmp x y 6= Greater›
〈proof 〉

lemma remove1-insort-not-same-eq [simp]:
‹remove1 y (insort cmp x xs) = insort cmp x (remove1 y xs)›

if ‹sorted cmp xs› ‹x 6= y›
〈proof 〉

lemma insort-remove1-same-eq:
‹insort cmp x (remove1 x xs) = xs›

THEORY “Sorting-Algorithms” 747

if ‹sorted cmp xs› and ‹x ∈ set xs› and ‹hd (stable-segment cmp x xs) = x›
〈proof 〉

lemma sorted-append-iff :
‹sorted cmp (xs @ ys) ←→ sorted cmp xs ∧ sorted cmp ys
∧ (∀ x ∈ set xs. ∀ y ∈ set ys. compare cmp x y 6= Greater)› (is ‹?P ←→ ?R ∧

?S ∧ ?Q›)
〈proof 〉

definition sort :: ‹ ′a comparator ⇒ ′a list ⇒ ′a list›
where ‹sort cmp xs = foldr (insort cmp) xs []›

lemma sort-simps [simp]:
‹sort cmp [] = []›
‹sort cmp (x # xs) = insort cmp x (sort cmp xs)›
〈proof 〉

lemma mset-sort [simp]:
‹mset (sort cmp xs) = mset xs›
〈proof 〉

lemma length-sort [simp]:
‹length (sort cmp xs) = length xs›
〈proof 〉

lemma sorted-sort [simp]:
‹sorted cmp (sort cmp xs)›
〈proof 〉

lemma stable-sort:
‹stable-segment cmp x (sort cmp xs) = stable-segment cmp x xs›
〈proof 〉

lemma sort-remove1-eq [simp]:
‹sort cmp (remove1 x xs) = remove1 x (sort cmp xs)›
〈proof 〉

lemma set-insort [simp]:
‹set (insort cmp x xs) = insert x (set xs)›
〈proof 〉

lemma set-sort [simp]:
‹set (sort cmp xs) = set xs›
〈proof 〉

lemma sort-eqI :
‹sort cmp ys = xs›

if permutation: ‹mset ys = mset xs›
and sorted: ‹sorted cmp xs›

THEORY “Sorting-Algorithms” 748

and stable: ‹
∧

y. y ∈ set ys =⇒
stable-segment cmp y ys = stable-segment cmp y xs›

〈proof 〉

lemma filter-insort:
‹filter P (insort cmp x xs) = insort cmp x (filter P xs)›

if ‹sorted cmp xs› and ‹P x›
〈proof 〉

lemma filter-insort-triv:
‹filter P (insort cmp x xs) = filter P xs›

if ‹¬ P x›
〈proof 〉

lemma filter-sort:
‹filter P (sort cmp xs) = sort cmp (filter P xs)›
〈proof 〉

100 Alternative sorting algorithms
100.1 Quicksort
definition quicksort :: ‹ ′a comparator ⇒ ′a list ⇒ ′a list›

where quicksort-is-sort [simp]: ‹quicksort = sort›

lemma sort-by-quicksort:
‹sort = quicksort›
〈proof 〉

lemma sort-by-quicksort-rec:
‹sort cmp xs = sort cmp [x←xs. compare cmp x (xs ! (length xs div 2)) = Less]
@ stable-segment cmp (xs ! (length xs div 2)) xs
@ sort cmp [x←xs. compare cmp x (xs ! (length xs div 2)) = Greater]› (is ‹- =

?rhs›)
〈proof 〉

context
begin

qualified definition partition :: ‹ ′a comparator ⇒ ′a ⇒ ′a list ⇒ ′a list × ′a list
× ′a list›

where ‹partition cmp pivot xs =
([x ← xs. compare cmp x pivot = Less], stable-segment cmp pivot xs, [x ← xs.

compare cmp x pivot = Greater])›

qualified lemma partition-code [code]:
‹partition cmp pivot [] = ([], [], [])›
‹partition cmp pivot (x # xs) =
(let (lts, eqs, gts) = partition cmp pivot xs

THEORY “Sorting-Algorithms” 749

in case compare cmp x pivot of
Less ⇒ (x # lts, eqs, gts)
| Equiv ⇒ (lts, x # eqs, gts)
| Greater ⇒ (lts, eqs, x # gts))›

〈proof 〉

lemma quicksort-code [code]:
‹quicksort cmp xs =
(case xs of
[] ⇒ []
| [x] ⇒ xs
| [x, y] ⇒ (if compare cmp x y 6= Greater then xs else [y, x])
| - ⇒

let (lts, eqs, gts) = partition cmp (xs ! (length xs div 2)) xs
in quicksort cmp lts @ eqs @ quicksort cmp gts)›

〈proof 〉

end

100.2 Mergesort
definition mergesort :: ‹ ′a comparator ⇒ ′a list ⇒ ′a list›

where mergesort-is-sort [simp]: ‹mergesort = sort›

lemma sort-by-mergesort:
‹sort = mergesort›
〈proof 〉

context
fixes cmp :: ‹ ′a comparator›

begin

qualified function merge :: ‹ ′a list ⇒ ′a list ⇒ ′a list›
where ‹merge [] ys = ys›
| ‹merge xs [] = xs›
| ‹merge (x # xs) (y # ys) = (if compare cmp x y = Greater

then y # merge (x # xs) ys else x # merge xs (y # ys))›
〈proof 〉 termination 〈proof 〉

lemma mset-merge:
‹mset (merge xs ys) = mset xs + mset ys›
〈proof 〉

lemma merge-eq-Cons-imp:
‹xs 6= [] ∧ z = hd xs ∨ ys 6= [] ∧ z = hd ys›

if ‹merge xs ys = z # zs›
〈proof 〉

lemma filter-merge:

THEORY “Sorting-Algorithms” 750

‹filter P (merge xs ys) = merge (filter P xs) (filter P ys)›
if ‹sorted cmp xs› and ‹sorted cmp ys›

〈proof 〉

lemma sorted-merge:
‹sorted cmp (merge xs ys)› if ‹sorted cmp xs› and ‹sorted cmp ys›
〈proof 〉

lemma merge-eq-appendI :
‹merge xs ys = xs @ ys›

if ‹
∧

x y. x ∈ set xs =⇒ y ∈ set ys =⇒ compare cmp x y 6= Greater›
〈proof 〉

lemma merge-stable-segments:
‹merge (stable-segment cmp l xs) (stable-segment cmp l ys) =

stable-segment cmp l xs @ stable-segment cmp l ys›
〈proof 〉

lemma sort-by-mergesort-rec:
‹sort cmp xs =

merge (sort cmp (take (length xs div 2) xs))
(sort cmp (drop (length xs div 2) xs))› (is ‹- = ?rhs›)

〈proof 〉

lemma mergesort-code [code]:
‹mergesort cmp xs =
(case xs of
[] ⇒ []
| [x] ⇒ xs
| [x, y] ⇒ (if compare cmp x y 6= Greater then xs else [y, x])
| - ⇒

let
half = length xs div 2 ;
ys = take half xs;
zs = drop half xs

in merge (mergesort cmp ys) (mergesort cmp zs))›
〈proof 〉

end

100.3 Lexicographic products
lemma sorted-prod-lex-imp-sorted-fst:

‹sorted (key fst cmp1) ps› if ‹sorted (prod-lex cmp1 cmp2) ps›
〈proof 〉

lemma sorted-prod-lex-imp-sorted-snd:
‹sorted (key snd cmp2) ps› if ‹sorted (prod-lex cmp1 cmp2) ps› ‹

∧
a ′ b ′. (a ′, b ′)

∈ set ps =⇒ compare cmp1 a a ′ = Equiv›

THEORY “Sum-of-Squares” 751

〈proof 〉

lemma sort-comp-fst-snd-eq-sort-prod-lex:
‹sort (key fst cmp1) ◦ sort (key snd cmp2) = sort (prod-lex cmp1 cmp2)› (is

‹sort ?cmp1 ◦ sort ?cmp2 = sort ?cmp›)
〈proof 〉

end

101 A decision procedure for universal multivari-
ate real arithmetic with addition, multiplica-
tion and ordering using semidefinite program-
ming

theory Sum-of-Squares
imports Complex-Main
begin

〈ML〉

end

theory Time-Commands
imports Main
keywords time-fun :: thy-decl

and time-function :: thy-decl
and time-definition :: thy-decl
and time-partial-function :: thy-decl
and equations
and time-fun-0 :: thy-decl

begin

〈ML〉

declare [[time-prefix = T-]]

This theory provides commands for the automatic definition of step-
counting running-time functions from HOL functions following the trans-
lation described in Section 1.5, Running Time, of the book "Functional
Data Structures and Algorithms. A Proof Assistant Approach." See https:
//functional-algorithms-verified.org

Command time-fun f retrieves the definition of f and defines a corre-
sponding step-counting running-time function T-f. For all auxiliary func-
tions used by f (excluding constructors), running time functions must al-
ready have been defined. If the definition of the function requires a manual
termination proof, use time-function accompanied by a termination com-

https://functional-algorithms-verified.org
https://functional-algorithms-verified.org

THEORY “Time-Functions” 752

mand.
The pre-defined functions below are assumed to have constant running

time. In fact, we make that constant 0. This does not change the asymp-
totic running time of user-defined functions using the pre-defined functions
because 1 is added for every user-defined function call.

Many of the functions below are polymorphic and reside in type classes.
The constant-time assumption is justified only for those types where the
hardware offers suitable support, e.g. numeric types. The argument size is
implicitly bounded, too.

The constant-time assumption for (=) is justified for recursive data types
such as lists and trees as long as the comparison is of the form t = c where
c is a constant term, for example xs = [].

Users of this running time framework need to ensure that 0-time func-
tions are used only within the above restrictions.
time-fun-0 min
time-fun-0 max
time-fun-0 (+)
time-fun-0 (−)
time-fun-0 (∗)
time-fun-0 (/)
time-fun-0 (div)
time-fun-0 (<)
time-fun-0 (≤)
time-fun-0 Not
time-fun-0 (∧)
time-fun-0 (∨)
time-fun-0 Num.numeral-class.numeral
time-fun-0 (=)

end

102 Time functions for various standard library
operations. Also defines itrev.

theory Time-Functions
imports Time-Commands

begin

time-fun fst
time-fun snd

time-fun (@)

lemma T-append: T-append xs ys = length xs + 1
〈proof 〉

THEORY “Time-Functions” 753

class T-size =
fixes T-size :: ′a ⇒ nat

instantiation list :: (-) T-size
begin

time-fun length

instance 〈proof 〉

end

abbreviation T-length :: ′a list ⇒ nat where
T-length ≡ T-size

lemma T-length: T-length xs = length xs + 1
〈proof 〉

lemmas [simp del] = T-size-list.simps

time-fun map

lemma T-map-simps [simp,code]:
T-map T-f [] = 1
T-map T-f (x # xs) = T-f x + T-map T-f xs + 1
〈proof 〉

lemma T-map: T-map T-f xs = (
∑

x←xs. T-f x) + length xs + 1
〈proof 〉

lemmas [simp del] = T-map-simps

time-fun filter

lemma T-filter-simps [code]:
T-filter T-P [] = 1
T-filter T-P (x # xs) = T-P x + T-filter T-P xs + 1
〈proof 〉

lemma T-filter : T-filter T-P xs = (
∑

x←xs. T-P x) + length xs + 1
〈proof 〉

time-fun nth

lemma T-nth: n < length xs =⇒ T-nth xs n = n + 1
〈proof 〉

lemmas [simp del] = T-nth.simps

THEORY “Transitive-Closure-Table” 754

time-fun take
time-fun drop

lemma T-take: T-take n xs = min n (length xs) + 1
〈proof 〉

lemma T-drop: T-drop n xs = min n (length xs) + 1
〈proof 〉

time-fun rev

lemma T-rev: T-rev xs ≤ (length xs + 1)^2
〈proof 〉

fun itrev :: ′a list ⇒ ′a list ⇒ ′a list where
itrev [] ys = ys |
itrev (x#xs) ys = itrev xs (x # ys)

lemma itrev: itrev xs ys = rev xs @ ys
〈proof 〉

lemma itrev-Nil: itrev xs [] = rev xs
〈proof 〉

time-fun itrev

lemma T-itrev: T-itrev xs ys = length xs + 1
〈proof 〉

time-fun tl

lemma T-tl: T-tl xs = 0
〈proof 〉

declare T-tl.simps[simp del]

end

103 A table-based implementation of the reflexive
transitive closure

theory Transitive-Closure-Table
imports Main
begin

inductive rtrancl-path :: (′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ ′a list ⇒ ′a ⇒ bool
for r :: ′a ⇒ ′a ⇒ bool

where

THEORY “Transitive-Closure-Table” 755

base: rtrancl-path r x [] x
| step: r x y =⇒ rtrancl-path r y ys z =⇒ rtrancl-path r x (y # ys) z

lemma rtranclp-eq-rtrancl-path: r∗∗ x y ←→ (∃ xs. rtrancl-path r x xs y)
〈proof 〉

lemma rtrancl-path-trans:
assumes xy: rtrancl-path r x xs y

and yz: rtrancl-path r y ys z
shows rtrancl-path r x (xs @ ys) z 〈proof 〉

lemma rtrancl-path-appendE :
assumes xz: rtrancl-path r x (xs @ y # ys) z
obtains rtrancl-path r x (xs @ [y]) y and rtrancl-path r y ys z
〈proof 〉

lemma rtrancl-path-distinct:
assumes xy: rtrancl-path r x xs y
obtains xs ′ where rtrancl-path r x xs ′ y and distinct (x # xs ′) and set xs ′ ⊆

set xs
〈proof 〉

inductive rtrancl-tab :: (′a ⇒ ′a ⇒ bool) ⇒ ′a list ⇒ ′a ⇒ ′a ⇒ bool
for r :: ′a ⇒ ′a ⇒ bool

where
base: rtrancl-tab r xs x x
| step: x /∈ set xs =⇒ r x y =⇒ rtrancl-tab r (x # xs) y z =⇒ rtrancl-tab r xs x z

lemma rtrancl-path-imp-rtrancl-tab:
assumes path: rtrancl-path r x xs y

and x: distinct (x # xs)
and ys: ({x} ∪ set xs) ∩ set ys = {}

shows rtrancl-tab r ys x y
〈proof 〉

lemma rtrancl-tab-imp-rtrancl-path:
assumes tab: rtrancl-tab r ys x y
obtains xs where rtrancl-path r x xs y
〈proof 〉

lemma rtranclp-eq-rtrancl-tab-nil: r∗∗ x y ←→ rtrancl-tab r [] x y
〈proof 〉

declare rtranclp-rtrancl-eq [code del]
declare rtranclp-eq-rtrancl-tab-nil [THEN iffD2 , code-pred-intro]

code-pred rtranclp
〈proof 〉

THEORY “Tree” 756

lemma rtrancl-path-Range: [[rtrancl-path R x xs y; z ∈ set xs]] =⇒ Rangep R z
〈proof 〉

lemma rtrancl-path-Range-end: [[rtrancl-path R x xs y; xs 6= []]] =⇒ Rangep R y
〈proof 〉

lemma rtrancl-path-nth:
[[rtrancl-path R x xs y; i < length xs]] =⇒ R ((x # xs) ! i) (xs ! i)
〈proof 〉

lemma rtrancl-path-last: [[rtrancl-path R x xs y; xs 6= []]] =⇒ last xs = y
〈proof 〉

lemma rtrancl-path-mono:
[[rtrancl-path R x p y;

∧
x y. R x y =⇒ S x y]] =⇒ rtrancl-path S x p y

〈proof 〉

end

104 Binary Tree
theory Tree
imports Main
begin

datatype ′a tree =
Leaf (‹〈〉›) |
Node ′a tree (value: ′a) ′a tree (‹(‹indent=1 notation=‹mixfix Node››〈-,/ -,/ -〉)›)

datatype-compat tree

primrec left :: ′a tree ⇒ ′a tree where
left (Node l v r) = l |
left Leaf = Leaf

primrec right :: ′a tree ⇒ ′a tree where
right (Node l v r) = r |
right Leaf = Leaf

Counting the number of leaves rather than nodes:
fun size1 :: ′a tree ⇒ nat where
size1 〈〉 = 1 |
size1 〈l, x, r〉 = size1 l + size1 r

fun subtrees :: ′a tree ⇒ ′a tree set where
subtrees 〈〉 = {〈〉} |
subtrees (〈l, a, r〉) = {〈l, a, r〉} ∪ subtrees l ∪ subtrees r

fun mirror :: ′a tree ⇒ ′a tree where
mirror 〈〉 = Leaf |

THEORY “Tree” 757

mirror 〈l,x,r〉 = 〈mirror r , x, mirror l〉

class height = fixes height :: ′a ⇒ nat

instantiation tree :: (type)height
begin

fun height-tree :: ′a tree => nat where
height Leaf = 0 |
height (Node l a r) = max (height l) (height r) + 1

instance 〈proof 〉

end

fun min-height :: ′a tree ⇒ nat where
min-height Leaf = 0 |
min-height (Node l - r) = min (min-height l) (min-height r) + 1

fun complete :: ′a tree ⇒ bool where
complete Leaf = True |
complete (Node l x r) = (height l = height r ∧ complete l ∧ complete r)

Almost complete:
definition acomplete :: ′a tree ⇒ bool where
acomplete t = (height t − min-height t ≤ 1)

Weight balanced:
fun wbalanced :: ′a tree ⇒ bool where
wbalanced Leaf = True |
wbalanced (Node l x r) = (abs(int(size l) − int(size r)) ≤ 1 ∧ wbalanced l ∧
wbalanced r)

Internal path length:
fun ipl :: ′a tree ⇒ nat where
ipl Leaf = 0 |
ipl (Node l - r) = ipl l + size l + ipl r + size r

fun preorder :: ′a tree ⇒ ′a list where
preorder 〈〉 = [] |
preorder 〈l, x, r〉 = x # preorder l @ preorder r

fun inorder :: ′a tree ⇒ ′a list where
inorder 〈〉 = [] |
inorder 〈l, x, r〉 = inorder l @ [x] @ inorder r

A linear version avoiding append:
fun inorder2 :: ′a tree ⇒ ′a list ⇒ ′a list where
inorder2 〈〉 xs = xs |

THEORY “Tree” 758

inorder2 〈l, x, r〉 xs = inorder2 l (x # inorder2 r xs)

fun postorder :: ′a tree ⇒ ′a list where
postorder 〈〉 = [] |
postorder 〈l, x, r〉 = postorder l @ postorder r @ [x]

Binary Search Tree:
fun bst-wrt :: (′a ⇒ ′a ⇒ bool) ⇒ ′a tree ⇒ bool where
bst-wrt P 〈〉 ←→ True |
bst-wrt P 〈l, a, r〉 ←→
(∀ x∈set-tree l. P x a) ∧ (∀ x∈set-tree r . P a x) ∧ bst-wrt P l ∧ bst-wrt P r

abbreviation bst :: (′a::linorder) tree ⇒ bool where
bst ≡ bst-wrt (<)

fun (in linorder) heap :: ′a tree ⇒ bool where
heap Leaf = True |
heap (Node l m r) =
((∀ x ∈ set-tree l ∪ set-tree r . m ≤ x) ∧ heap l ∧ heap r)

104.1 map-tree
lemma eq-map-tree-Leaf [simp]: map-tree f t = Leaf ←→ t = Leaf
〈proof 〉

lemma eq-Leaf-map-tree[simp]: Leaf = map-tree f t ←→ t = Leaf
〈proof 〉

104.2 size
lemma size1-size: size1 t = size t + 1
〈proof 〉

lemma size1-ge0 [simp]: 0 < size1 t
〈proof 〉

lemma eq-size-0 [simp]: size t = 0 ←→ t = Leaf
〈proof 〉

lemma eq-0-size[simp]: 0 = size t ←→ t = Leaf
〈proof 〉

lemma neq-Leaf-iff : (t 6= 〈〉) = (∃ l a r . t = 〈l, a, r〉)
〈proof 〉

lemma size-map-tree[simp]: size (map-tree f t) = size t
〈proof 〉

lemma size1-map-tree[simp]: size1 (map-tree f t) = size1 t
〈proof 〉

THEORY “Tree” 759

104.3 set-tree
lemma eq-set-tree-empty[simp]: set-tree t = {} ←→ t = Leaf
〈proof 〉

lemma eq-empty-set-tree[simp]: {} = set-tree t ←→ t = Leaf
〈proof 〉

lemma finite-set-tree[simp]: finite(set-tree t)
〈proof 〉

104.4 subtrees
lemma neq-subtrees-empty[simp]: subtrees t 6= {}
〈proof 〉

lemma neq-empty-subtrees[simp]: {} 6= subtrees t
〈proof 〉

lemma size-subtrees: s ∈ subtrees t =⇒ size s ≤ size t
〈proof 〉

lemma set-treeE : a ∈ set-tree t =⇒ ∃ l r . 〈l, a, r〉 ∈ subtrees t
〈proof 〉

lemma Node-notin-subtrees-if [simp]: a /∈ set-tree t =⇒ Node l a r /∈ subtrees t
〈proof 〉

lemma in-set-tree-if : 〈l, a, r〉 ∈ subtrees t =⇒ a ∈ set-tree t
〈proof 〉

104.5 height and min-height
lemma eq-height-0 [simp]: height t = 0 ←→ t = Leaf
〈proof 〉

lemma eq-0-height[simp]: 0 = height t ←→ t = Leaf
〈proof 〉

lemma height-map-tree[simp]: height (map-tree f t) = height t
〈proof 〉

lemma height-le-size-tree: height t ≤ size (t:: ′a tree)
〈proof 〉

lemma size1-height: size1 t ≤ 2 ^ height (t:: ′a tree)
〈proof 〉

corollary size-height: size t ≤ 2 ^ height (t:: ′a tree) − 1
〈proof 〉

THEORY “Tree” 760

lemma height-subtrees: s ∈ subtrees t =⇒ height s ≤ height t
〈proof 〉

lemma min-height-le-height: min-height t ≤ height t
〈proof 〉

lemma min-height-map-tree[simp]: min-height (map-tree f t) = min-height t
〈proof 〉

lemma min-height-size1 : 2 ^ min-height t ≤ size1 t
〈proof 〉

104.6 complete
lemma complete-iff-height: complete t ←→ (min-height t = height t)
〈proof 〉

lemma size1-if-complete: complete t =⇒ size1 t = 2 ^ height t
〈proof 〉

lemma size-if-complete: complete t =⇒ size t = 2 ^ height t − 1
〈proof 〉

lemma size1-height-if-incomplete:
¬ complete t =⇒ size1 t < 2 ^ height t
〈proof 〉

lemma complete-iff-min-height: complete t ←→ (height t = min-height t)
〈proof 〉

lemma min-height-size1-if-incomplete:
¬ complete t =⇒ 2 ^ min-height t < size1 t
〈proof 〉

lemma complete-if-size1-height: size1 t = 2 ^ height t =⇒ complete t
〈proof 〉

lemma complete-if-size1-min-height: size1 t = 2 ^ min-height t =⇒ complete t
〈proof 〉

lemma complete-iff-size1 : complete t ←→ size1 t = 2 ^ height t
〈proof 〉

104.7 acomplete
lemma acomplete-subtreeL: acomplete (Node l x r) =⇒ acomplete l
〈proof 〉

THEORY “Tree” 761

lemma acomplete-subtreeR: acomplete (Node l x r) =⇒ acomplete r
〈proof 〉

lemma acomplete-subtrees: [[acomplete t; s ∈ subtrees t]] =⇒ acomplete s
〈proof 〉

Balanced trees have optimal height:
lemma acomplete-optimal:
fixes t :: ′a tree and t ′ :: ′b tree
assumes acomplete t size t ≤ size t ′ shows height t ≤ height t ′

〈proof 〉

104.8 wbalanced
lemma wbalanced-subtrees: [[wbalanced t; s ∈ subtrees t]] =⇒ wbalanced s
〈proof 〉

104.9 ipl
The internal path length of a tree:
lemma ipl-if-complete-int:

complete t =⇒ int(ipl t) = (int(height t) − 2) ∗ 2^(height t) + 2
〈proof 〉

104.10 List of entries
lemma eq-inorder-Nil[simp]: inorder t = [] ←→ t = Leaf
〈proof 〉

lemmas eq-Nil-inorder [simp] = eq-inorder-Nil[THEN eq-iff-swap]

lemma set-inorder [simp]: set (inorder t) = set-tree t
〈proof 〉

lemma preorder-eq-Nil-iff [simp]: (preorder t = []) = (t = 〈〉)
〈proof 〉

lemmas Nil-eq-preorder-iff [simp] = preorder-eq-Nil-iff [THEN eq-iff-swap]

lemma preorder-eq-Cons-iff :
preorder t = x # xs ←→ (∃ l r . t = 〈l, x, r〉 ∧ xs = preorder l @ preorder r)
〈proof 〉

lemmas Cons-eq-preorder-iff = preorder-eq-Cons-iff [THEN eq-iff-swap]

lemma set-preorder [simp]: set (preorder t) = set-tree t
〈proof 〉

lemma set-postorder [simp]: set (postorder t) = set-tree t

THEORY “Tree” 762

〈proof 〉

lemma length-preorder [simp]: length (preorder t) = size t
〈proof 〉

lemma length-inorder [simp]: length (inorder t) = size t
〈proof 〉

lemma length-postorder [simp]: length (postorder t) = size t
〈proof 〉

lemma preorder-map: preorder (map-tree f t) = map f (preorder t)
〈proof 〉

lemma inorder-map: inorder (map-tree f t) = map f (inorder t)
〈proof 〉

lemma postorder-map: postorder (map-tree f t) = map f (postorder t)
〈proof 〉

lemma inorder2-inorder : inorder2 t xs = inorder t @ xs
〈proof 〉

104.11 Binary Search Tree
lemma bst-wrt-mono: (

∧
x y. P x y =⇒ Q x y) =⇒ bst-wrt P t =⇒ bst-wrt Q t

〈proof 〉

lemma bst-wrt-le-if-bst: bst t =⇒ bst-wrt (≤) t
〈proof 〉

lemma bst-wrt-le-iff-sorted: bst-wrt (≤) t ←→ sorted (inorder t)
〈proof 〉

lemma bst-iff-sorted-wrt-less: bst t ←→ sorted-wrt (<) (inorder t)
〈proof 〉

104.12 heap
104.13 mirror
lemma mirror-Leaf [simp]: mirror t = 〈〉 ←→ t = 〈〉
〈proof 〉

lemma Leaf-mirror [simp]: 〈〉 = mirror t ←→ t = 〈〉
〈proof 〉

lemma size-mirror [simp]: size(mirror t) = size t
〈proof 〉

THEORY “Tree-Multiset” 763

lemma size1-mirror [simp]: size1 (mirror t) = size1 t
〈proof 〉

lemma height-mirror [simp]: height(mirror t) = height t
〈proof 〉

lemma min-height-mirror [simp]: min-height (mirror t) = min-height t
〈proof 〉

lemma ipl-mirror [simp]: ipl (mirror t) = ipl t
〈proof 〉

lemma inorder-mirror : inorder(mirror t) = rev(inorder t)
〈proof 〉

lemma map-mirror : map-tree f (mirror t) = mirror (map-tree f t)
〈proof 〉

lemma mirror-mirror [simp]: mirror(mirror t) = t
〈proof 〉

end

105 Multiset of Elements of Binary Tree
theory Tree-Multiset
imports Multiset Tree
begin

Kept separate from theory HOL−Library.Tree to avoid importing all of
theory HOL−Library.Multiset into HOL−Library.Tree. Should be merged
if HOL−Library.Multiset ever becomes part of Main.
fun mset-tree :: ′a tree ⇒ ′a multiset where
mset-tree Leaf = {#} |
mset-tree (Node l a r) = {#a#} + mset-tree l + mset-tree r

fun subtrees-mset :: ′a tree ⇒ ′a tree multiset where
subtrees-mset Leaf = {#Leaf#} |
subtrees-mset (Node l x r) = add-mset (Node l x r) (subtrees-mset l + subtrees-mset
r)

lemma mset-tree-empty-iff [simp]: mset-tree t = {#} ←→ t = Leaf
〈proof 〉

lemma set-mset-tree[simp]: set-mset (mset-tree t) = set-tree t
〈proof 〉

lemma size-mset-tree[simp]: size(mset-tree t) = size t

THEORY “Tree-Real” 764

〈proof 〉

lemma mset-map-tree: mset-tree (map-tree f t) = image-mset f (mset-tree t)
〈proof 〉

lemma mset-iff-set-tree: x ∈# mset-tree t ←→ x ∈ set-tree t
〈proof 〉

lemma mset-preorder [simp]: mset (preorder t) = mset-tree t
〈proof 〉

lemma mset-inorder [simp]: mset (inorder t) = mset-tree t
〈proof 〉

lemma map-mirror : mset-tree (mirror t) = mset-tree t
〈proof 〉

lemma in-subtrees-mset-iff [simp]: s ∈# subtrees-mset t ←→ s ∈ subtrees t
〈proof 〉

end

theory Tree-Real
imports

Complex-Main
Tree

begin

This theory is separate from HOL−Library.Tree because the former is
discrete and builds on Main whereas this theory builds on Complex-Main.
lemma size1-height-log: log 2 (size1 t) ≤ height t
〈proof 〉

lemma min-height-size1-log: min-height t ≤ log 2 (size1 t)
〈proof 〉

lemma size1-log-if-complete: complete t =⇒ height t = log 2 (size1 t)
〈proof 〉

lemma min-height-size1-log-if-incomplete:
¬ complete t =⇒ min-height t < log 2 (size1 t)
〈proof 〉

lemma min-height-acomplete: assumes acomplete t
shows min-height t = nat(floor(log 2 (size1 t)))
〈proof 〉

THEORY “Uprod” 765

lemma height-acomplete: assumes acomplete t
shows height t = nat(ceiling(log 2 (size1 t)))
〈proof 〉

lemma acomplete-Node-if-wbal1 :
assumes acomplete l acomplete r size l = size r + 1
shows acomplete 〈l, x, r〉
〈proof 〉

lemma acomplete-sym: acomplete 〈l, x, r〉 =⇒ acomplete 〈r , y, l〉
〈proof 〉

lemma acomplete-Node-if-wbal2 :
assumes acomplete l acomplete r abs(int(size l) − int(size r)) ≤ 1
shows acomplete 〈l, x, r〉
〈proof 〉

lemma acomplete-if-wbalanced: wbalanced t =⇒ acomplete t
〈proof 〉

end

106 Unordered pairs
theory Uprod imports Main begin

typedef (′a, ′b) commute = {f :: ′a ⇒ ′a ⇒ ′b. ∀ x y. f x y = f y x}
morphisms apply-commute Abs-commute
〈proof 〉

setup-lifting type-definition-commute

lemma apply-commute-commute: apply-commute f x y = apply-commute f y x
〈proof 〉

context includes lifting-syntax begin

lift-definition rel-commute :: (′a ⇒ ′b ⇒ bool) ⇒ (′c ⇒ ′d ⇒ bool) ⇒ (′a, ′c)
commute ⇒ (′b, ′d) commute ⇒ bool
is λA B. A ===> A ===> B 〈proof 〉

end

definition eq-upair :: (′a × ′a) ⇒ (′a × ′a) ⇒ bool
where eq-upair = (λ(a, b) (c, d). a = c ∧ b = d ∨ a = d ∧ b = c)

lemma eq-upair-simps [simp]:
eq-upair (a, b) (c, d) ←→ a = c ∧ b = d ∨ a = d ∧ b = c
〈proof 〉

THEORY “Uprod” 766

lemma equivp-eq-upair : equivp eq-upair
〈proof 〉

quotient-type ′a uprod = ′a × ′a / eq-upair 〈proof 〉

lift-definition Upair :: ′a ⇒ ′a ⇒ ′a uprod is Pair parametric Pair-transfer [of
A A for A] 〈proof 〉

lemma uprod-exhaust [case-names Upair , cases type: uprod]:
obtains a b where x = Upair a b
〈proof 〉

lemma Upair-inject [simp]: Upair a b = Upair c d ←→ a = c ∧ b = d ∨ a = d ∧
b = c
〈proof 〉

code-datatype Upair

lift-definition case-uprod :: (′a, ′b) commute ⇒ ′a uprod ⇒ ′b is case-prod
parametric case-prod-transfer [of A A for A] 〈proof 〉

lemma case-uprod-simps [simp, code]: case-uprod f (Upair x y) = apply-commute
f x y
〈proof 〉

lemma uprod-split: P (case-uprod f x)←→ (∀ a b. x = Upair a b −→ P (apply-commute
f a b))
〈proof 〉

lemma uprod-split-asm: P (case-uprod f x) ←→ ¬ (∃ a b. x = Upair a b ∧ ¬ P
(apply-commute f a b))
〈proof 〉

lift-definition not-equal :: (′a, bool) commute is (6=) 〈proof 〉

lemma apply-not-equal [simp]: apply-commute not-equal x y ←→ x 6= y
〈proof 〉

definition proper-uprod :: ′a uprod ⇒ bool
where proper-uprod = case-uprod not-equal

lemma proper-uprod-simps [simp, code]: proper-uprod (Upair x y) ←→ x 6= y
〈proof 〉

context includes lifting-syntax begin

private lemma set-uprod-parametric ′:
(rel-prod A A ===> rel-set A) (λ(a, b). {a, b}) (λ(a, b). {a, b})

THEORY “Uprod” 767

〈proof 〉

lift-definition set-uprod :: ′a uprod ⇒ ′a set is λ(a, b). {a, b}
parametric set-uprod-parametric ′ 〈proof 〉

lemma set-uprod-simps [simp, code]: set-uprod (Upair x y) = {x, y}
〈proof 〉

lemma finite-set-uprod [simp]: finite (set-uprod x)
〈proof 〉 lemma map-uprod-parametric ′:
((A ===> B) ===> rel-prod A A ===> rel-prod B B) (λf . map-prod f f) (λf .

map-prod f f)
〈proof 〉

lift-definition map-uprod :: (′a ⇒ ′b) ⇒ ′a uprod ⇒ ′b uprod is λf . map-prod f f
parametric map-uprod-parametric ′ 〈proof 〉

lemma map-uprod-simps [simp, code]: map-uprod f (Upair x y) = Upair (f x) (f
y)
〈proof 〉 lemma rel-uprod-transfer ′:
((A ===> B ===> (=)) ===> rel-prod A A ===> rel-prod B B ===>

(=))
(λR (a, b) (c, d). R a c ∧ R b d ∨ R a d ∧ R b c) (λR (a, b) (c, d). R a c ∧ R

b d ∨ R a d ∧ R b c)
〈proof 〉

lift-definition rel-uprod :: (′a ⇒ ′b ⇒ bool) ⇒ ′a uprod ⇒ ′b uprod ⇒ bool
is λR (a, b) (c, d). R a c ∧ R b d ∨ R a d ∧ R b c parametric rel-uprod-transfer ′

〈proof 〉

lemma rel-uprod-simps [simp, code]:
rel-uprod R (Upair a b) (Upair c d) ←→ R a c ∧ R b d ∨ R a d ∧ R b c
〈proof 〉

lemma Upair-parametric [transfer-rule]: (A ===> A ===> rel-uprod A) Upair
Upair
〈proof 〉

lemma case-uprod-parametric [transfer-rule]:
(rel-commute A B ===> rel-uprod A ===> B) case-uprod case-uprod
〈proof 〉

end

bnf uprod: ′a uprod
map: map-uprod
sets: set-uprod
bd: natLeq
rel: rel-uprod

THEORY “Word” 768

〈proof 〉

lemma pred-uprod-code [simp, code]: pred-uprod P (Upair x y) ←→ P x ∧ P y
〈proof 〉

instantiation uprod :: (equal) equal begin

definition equal-uprod :: ′a uprod ⇒ ′a uprod ⇒ bool
where equal-uprod = (=)

lemma equal-uprod-code [code]:
HOL.equal (Upair x y) (Upair z u) ←→ x = z ∧ y = u ∨ x = u ∧ y = z
〈proof 〉

instance 〈proof 〉
end

quickcheck-generator uprod constructors: Upair

lemma UNIV-uprod: UNIV = (λx. Upair x x) ‘ UNIV ∪ (λ(x, y). Upair x y) ‘
Sigma UNIV (λx. UNIV − {x})
〈proof 〉

context begin
private lift-definition upair-inv :: ′a uprod ⇒ ′a
is λ(x, y). if x = y then x else undefined 〈proof 〉

lemma finite-UNIV-prod [simp]:
finite (UNIV :: ′a uprod set) ←→ finite (UNIV :: ′a set) (is ?lhs = ?rhs)
〈proof 〉

end

lemma card-UNIV-uprod:
card (UNIV :: ′a uprod set) = card (UNIV :: ′a set) ∗ (card (UNIV :: ′a set) +

1) div 2
(is ?UPROD = ?A ∗ - div -)
〈proof 〉

end

107 A type of finite bit strings
theory Word
imports

HOL−Library.Type-Length
begin

THEORY “Word” 769

107.1 Preliminaries
lemma signed-take-bit-decr-length-iff :

‹signed-take-bit (LENGTH (′a::len) − Suc 0) k = signed-take-bit (LENGTH (′a)
− Suc 0) l
←→ take-bit LENGTH (′a) k = take-bit LENGTH (′a) l›
〈proof 〉

107.2 Fundamentals
107.2.1 Type definition
quotient-type (overloaded) ′a word = int / ‹λk l. take-bit LENGTH (′a) k =
take-bit LENGTH (′a::len) l›

morphisms rep Word 〈proof 〉

hide-const (open) rep — only for foundational purpose
hide-const (open) Word — only for code generation

107.2.2 Basic arithmetic
instantiation word :: (len) comm-ring-1
begin

lift-definition zero-word :: ‹ ′a word›
is 0 〈proof 〉

lift-definition one-word :: ‹ ′a word›
is 1 〈proof 〉

lift-definition plus-word :: ‹ ′a word ⇒ ′a word ⇒ ′a word›
is ‹(+)›
〈proof 〉

lift-definition minus-word :: ‹ ′a word ⇒ ′a word ⇒ ′a word›
is ‹(−)›
〈proof 〉

lift-definition uminus-word :: ‹ ′a word ⇒ ′a word›
is uminus
〈proof 〉

lift-definition times-word :: ‹ ′a word ⇒ ′a word ⇒ ′a word›
is ‹(∗)›
〈proof 〉

instance
〈proof 〉

end

THEORY “Word” 770

context
includes lifting-syntax
notes

power-transfer [transfer-rule]
transfer-rule-of-bool [transfer-rule]
transfer-rule-numeral [transfer-rule]
transfer-rule-of-nat [transfer-rule]
transfer-rule-of-int [transfer-rule]

begin

lemma power-transfer-word [transfer-rule]:
‹(pcr-word ===> (=) ===> pcr-word) (^) (^)›
〈proof 〉

lemma [transfer-rule]:
‹((=) ===> pcr-word) of-bool of-bool›
〈proof 〉

lemma [transfer-rule]:
‹((=) ===> pcr-word) numeral numeral›
〈proof 〉

lemma [transfer-rule]:
‹((=) ===> pcr-word) int of-nat›
〈proof 〉

lemma [transfer-rule]:
‹((=) ===> pcr-word) (λk. k) of-int›
〈proof 〉

lemma [transfer-rule]:
‹(pcr-word ===> (←→)) even ((dvd) 2 :: ′a::len word ⇒ bool)›
〈proof 〉

end

lemma exp-eq-zero-iff [simp]:
‹2 ^ n = (0 :: ′a::len word) ←→ n ≥ LENGTH (′a)›
〈proof 〉

lemma word-exp-length-eq-0 [simp]:
‹(2 :: ′a::len word) ^ LENGTH (′a) = 0 ›
〈proof 〉

107.2.3 Basic tool setup
〈ML〉

THEORY “Word” 771

107.2.4 Basic code generation setup
context
begin

qualified lift-definition the-int :: ‹ ′a::len word ⇒ int›
is ‹take-bit LENGTH (′a)› 〈proof 〉

end

lemma [code abstype]:
‹Word.Word (Word.the-int w) = w›
〈proof 〉

lemma Word-eq-word-of-int [code-post, simp]:
‹Word.Word = of-int›
〈proof 〉

quickcheck-generator word
constructors:

‹0 :: ′a::len word›,
‹numeral :: num ⇒ ′a::len word›

instantiation word :: (len) equal
begin

lift-definition equal-word :: ‹ ′a word ⇒ ′a word ⇒ bool›
is ‹λk l. take-bit LENGTH (′a) k = take-bit LENGTH (′a) l›
〈proof 〉

instance
〈proof 〉

end

lemma [code]:
‹HOL.equal v w ←→ HOL.equal (Word.the-int v) (Word.the-int w)›
〈proof 〉

lemma [code]:
‹Word.the-int 0 = 0 ›
〈proof 〉

lemma [code]:
‹Word.the-int 1 = 1 ›
〈proof 〉

lemma [code]:
‹Word.the-int (v + w) = take-bit LENGTH (′a) (Word.the-int v + Word.the-int

w)›

THEORY “Word” 772

for v w :: ‹ ′a::len word›
〈proof 〉

lemma [code]:
‹Word.the-int (− w) = (let k = Word.the-int w in if w = 0 then 0 else 2 ^

LENGTH (′a) − k)›
for w :: ‹ ′a::len word›
〈proof 〉

lemma [code]:
‹Word.the-int (v − w) = take-bit LENGTH (′a) (Word.the-int v − Word.the-int

w)›
for v w :: ‹ ′a::len word›
〈proof 〉

lemma [code]:
‹Word.the-int (v ∗ w) = take-bit LENGTH (′a) (Word.the-int v ∗ Word.the-int

w)›
for v w :: ‹ ′a::len word›
〈proof 〉

107.2.5 Basic conversions
abbreviation word-of-nat :: ‹nat ⇒ ′a::len word›

where ‹word-of-nat ≡ of-nat›

abbreviation word-of-int :: ‹int ⇒ ′a::len word›
where ‹word-of-int ≡ of-int›

lemma word-of-nat-eq-iff :
‹word-of-nat m = (word-of-nat n :: ′a::len word) ←→ take-bit LENGTH (′a) m

= take-bit LENGTH (′a) n›
〈proof 〉

lemma word-of-int-eq-iff :
‹word-of-int k = (word-of-int l :: ′a::len word) ←→ take-bit LENGTH (′a) k =

take-bit LENGTH (′a) l›
〈proof 〉

lemma word-of-nat-eq-0-iff :
‹word-of-nat n = (0 :: ′a::len word) ←→ 2 ^ LENGTH (′a) dvd n›
〈proof 〉

lemma word-of-int-eq-0-iff :
‹word-of-int k = (0 :: ′a::len word) ←→ 2 ^ LENGTH (′a) dvd k›
〈proof 〉

context semiring-1
begin

THEORY “Word” 773

lift-definition unsigned :: ‹ ′b::len word ⇒ ′a›
is ‹of-nat ◦ nat ◦ take-bit LENGTH (′b)›
〈proof 〉

lemma unsigned-0 [simp]:
‹unsigned 0 = 0 ›
〈proof 〉

lemma unsigned-1 [simp]:
‹unsigned 1 = 1 ›
〈proof 〉

lemma unsigned-numeral [simp]:
‹unsigned (numeral n :: ′b::len word) = of-nat (take-bit LENGTH (′b) (numeral

n))›
〈proof 〉

lemma unsigned-neg-numeral [simp]:
‹unsigned (− numeral n :: ′b::len word) = of-nat (nat (take-bit LENGTH (′b) (−

numeral n)))›
〈proof 〉

end

context semiring-1
begin

lemma unsigned-of-nat:
‹unsigned (word-of-nat n :: ′b::len word) = of-nat (take-bit LENGTH (′b) n)›
〈proof 〉

lemma unsigned-of-int:
‹unsigned (word-of-int k :: ′b::len word) = of-nat (nat (take-bit LENGTH (′b) k))›
〈proof 〉

end

context semiring-char-0
begin

lemma unsigned-word-eqI :
‹v = w› if ‹unsigned v = unsigned w›
〈proof 〉

lemma word-eq-iff-unsigned:
‹v = w ←→ unsigned v = unsigned w›
〈proof 〉

THEORY “Word” 774

lemma inj-unsigned [simp]:
‹inj unsigned›
〈proof 〉

lemma unsigned-eq-0-iff :
‹unsigned w = 0 ←→ w = 0 ›
〈proof 〉

end

context ring-1
begin

lift-definition signed :: ‹ ′b::len word ⇒ ′a›
is ‹of-int ◦ signed-take-bit (LENGTH (′b) − Suc 0)›
〈proof 〉

lemma signed-0 [simp]:
‹signed 0 = 0 ›
〈proof 〉

lemma signed-1 [simp]:
‹signed (1 :: ′b::len word) = (if LENGTH (′b) = 1 then − 1 else 1)›
〈proof 〉

lemma signed-minus-1 [simp]:
‹signed (− 1 :: ′b::len word) = − 1 ›
〈proof 〉

lemma signed-numeral [simp]:
‹signed (numeral n :: ′b::len word) = of-int (signed-take-bit (LENGTH (′b) − 1)

(numeral n))›
〈proof 〉

lemma signed-neg-numeral [simp]:
‹signed (− numeral n :: ′b::len word) = of-int (signed-take-bit (LENGTH (′b) −

1) (− numeral n))›
〈proof 〉

lemma signed-of-nat:
‹signed (word-of-nat n :: ′b::len word) = of-int (signed-take-bit (LENGTH (′b) −

Suc 0) (int n))›
〈proof 〉

lemma signed-of-int:
‹signed (word-of-int n :: ′b::len word) = of-int (signed-take-bit (LENGTH (′b) −

Suc 0) n)›
〈proof 〉

THEORY “Word” 775

end

context ring-char-0
begin

lemma signed-word-eqI :
‹v = w› if ‹signed v = signed w›
〈proof 〉

lemma word-eq-iff-signed:
‹v = w ←→ signed v = signed w›
〈proof 〉

lemma inj-signed [simp]:
‹inj signed›
〈proof 〉

lemma signed-eq-0-iff :
‹signed w = 0 ←→ w = 0 ›
〈proof 〉

end

abbreviation unat :: ‹ ′a::len word ⇒ nat›
where ‹unat ≡ unsigned›

abbreviation uint :: ‹ ′a::len word ⇒ int›
where ‹uint ≡ unsigned›

abbreviation sint :: ‹ ′a::len word ⇒ int›
where ‹sint ≡ signed›

abbreviation ucast :: ‹ ′a::len word ⇒ ′b::len word›
where ‹ucast ≡ unsigned›

abbreviation scast :: ‹ ′a::len word ⇒ ′b::len word›
where ‹scast ≡ signed›

context
includes lifting-syntax

begin

lemma [transfer-rule]:
‹(pcr-word ===> (=)) (nat ◦ take-bit LENGTH (′a)) (unat :: ′a::len word ⇒

nat)›
〈proof 〉

lemma [transfer-rule]:
‹(pcr-word ===> (=)) (take-bit LENGTH (′a)) (uint :: ′a::len word ⇒ int)›

THEORY “Word” 776

〈proof 〉

lemma [transfer-rule]:
‹(pcr-word ===> (=)) (signed-take-bit (LENGTH (′a) − Suc 0)) (sint :: ′a::len

word ⇒ int)›
〈proof 〉

lemma [transfer-rule]:
‹(pcr-word ===> pcr-word) (take-bit LENGTH (′a)) (ucast :: ′a::len word ⇒

′b::len word)›
〈proof 〉

lemma [transfer-rule]:
‹(pcr-word ===> pcr-word) (signed-take-bit (LENGTH (′a) − Suc 0)) (scast ::

′a::len word ⇒ ′b::len word)›
〈proof 〉

end

lemma of-nat-unat [simp]:
‹of-nat (unat w) = unsigned w›
〈proof 〉

lemma of-int-uint [simp]:
‹of-int (uint w) = unsigned w›
〈proof 〉

lemma of-int-sint [simp]:
‹of-int (sint a) = signed a›
〈proof 〉

lemma nat-uint-eq [simp]:
‹nat (uint w) = unat w›
〈proof 〉

lemma nat-of-natural-unsigned-eq [simp]:
‹nat-of-natural (unsigned w) = unat w›
〈proof 〉

lemma int-of-integer-unsigned-eq [simp]:
‹int-of-integer (unsigned w) = uint w›
〈proof 〉

lemma int-of-integer-signed-eq [simp]:
‹int-of-integer (signed w) = sint w›
〈proof 〉

lemma sgn-uint-eq [simp]:
‹sgn (uint w) = of-bool (w 6= 0)›

THEORY “Word” 777

〈proof 〉

Aliasses only for code generation
context
begin

qualified lift-definition of-int :: ‹int ⇒ ′a::len word›
is ‹take-bit LENGTH (′a)› 〈proof 〉 lift-definition of-nat :: ‹nat ⇒ ′a::len word›
is ‹int ◦ take-bit LENGTH (′a)› 〈proof 〉 lift-definition the-nat :: ‹ ′a::len word
⇒ nat›

is ‹nat ◦ take-bit LENGTH (′a)› 〈proof 〉 lift-definition the-signed-int :: ‹ ′a::len
word ⇒ int›
is ‹signed-take-bit (LENGTH (′a) − Suc 0)› 〈proof 〉 lift-definition cast :: ‹ ′a::len

word ⇒ ′b::len word›
is ‹take-bit LENGTH (′a)› 〈proof 〉 lift-definition signed-cast :: ‹ ′a::len word ⇒

′b::len word›
is ‹signed-take-bit (LENGTH (′a) − Suc 0)› 〈proof 〉

end

lemma [code-abbrev, simp]:
‹Word.the-int = uint›
〈proof 〉

lemma [code]:
‹Word.the-int (Word.of-int k :: ′a::len word) = take-bit LENGTH (′a) k›
〈proof 〉

lemma [code-abbrev, simp]:
‹Word.of-int = word-of-int›
〈proof 〉

lemma [code]:
‹Word.the-int (Word.of-nat n :: ′a::len word) = take-bit LENGTH (′a) (int n)›
〈proof 〉

lemma [code-abbrev, simp]:
‹Word.of-nat = word-of-nat›
〈proof 〉

lemma [code]:
‹Word.the-nat w = nat (Word.the-int w)›
〈proof 〉

lemma [code-abbrev, simp]:
‹Word.the-nat = unat›
〈proof 〉

lemma [code]:

THEORY “Word” 778

‹Word.the-signed-int w = (let k = Word.the-int w
in if bit k (LENGTH (′a) − Suc 0) then k + push-bit LENGTH (′a) (− 1) else

k)›
for w :: ‹ ′a::len word›
〈proof 〉

lemma [code-abbrev, simp]:
‹Word.the-signed-int = sint›
〈proof 〉

lemma [code]:
‹Word.the-int (Word.cast w :: ′b::len word) = take-bit LENGTH (′b) (Word.the-int

w)›
for w :: ‹ ′a::len word›
〈proof 〉

lemma [code-abbrev, simp]:
‹Word.cast = ucast›
〈proof 〉

lemma [code]:
‹Word.the-int (Word.signed-cast w :: ′b::len word) = take-bit LENGTH (′b) (Word.the-signed-int

w)›
for w :: ‹ ′a::len word›
〈proof 〉

lemma [code-abbrev, simp]:
‹Word.signed-cast = scast›
〈proof 〉

lemma [code]:
‹unsigned w = of-nat (nat (Word.the-int w))›
〈proof 〉

lemma [code]:
‹signed w = of-int (Word.the-signed-int w)›
〈proof 〉

107.3 Elementary case distinctions
lemma word-length-one [case-names zero minus-one length-beyond]:

fixes w :: ‹ ′a::len word›
obtains (zero) ‹LENGTH (′a) = Suc 0 › ‹w = 0 ›
| (minus-one) ‹LENGTH (′a) = Suc 0 › ‹w = − 1 ›
| (length-beyond) ‹2 ≤ LENGTH (′a)›
〈proof 〉

107.3.1 Basic ordering
instantiation word :: (len) linorder

THEORY “Word” 779

begin

lift-definition less-eq-word :: ′a word ⇒ ′a word ⇒ bool
is λa b. take-bit LENGTH (′a) a ≤ take-bit LENGTH (′a) b
〈proof 〉

lift-definition less-word :: ′a word ⇒ ′a word ⇒ bool
is λa b. take-bit LENGTH (′a) a < take-bit LENGTH (′a) b
〈proof 〉

instance
〈proof 〉

end

interpretation word-order : ordering-top ‹(≤)› ‹(<)› ‹− 1 :: ′a::len word›
〈proof 〉

interpretation word-coorder : ordering-top ‹(≥)› ‹(>)› ‹0 :: ′a::len word›
〈proof 〉

lemma word-of-nat-less-eq-iff :
‹word-of-nat m ≤ (word-of-nat n :: ′a::len word) ←→ take-bit LENGTH (′a) m
≤ take-bit LENGTH (′a) n›
〈proof 〉

lemma word-of-int-less-eq-iff :
‹word-of-int k ≤ (word-of-int l :: ′a::len word) ←→ take-bit LENGTH (′a) k ≤

take-bit LENGTH (′a) l›
〈proof 〉

lemma word-of-nat-less-iff :
‹word-of-nat m < (word-of-nat n :: ′a::len word) ←→ take-bit LENGTH (′a) m

< take-bit LENGTH (′a) n›
〈proof 〉

lemma word-of-int-less-iff :
‹word-of-int k < (word-of-int l :: ′a::len word) ←→ take-bit LENGTH (′a) k <

take-bit LENGTH (′a) l›
〈proof 〉

lemma word-le-def [code]:
a ≤ b ←→ uint a ≤ uint b
〈proof 〉

lemma word-less-def [code]:
a < b ←→ uint a < uint b
〈proof 〉

THEORY “Word” 780

lemma word-greater-zero-iff :
‹a > 0 ←→ a 6= 0 › for a :: ‹ ′a::len word›
〈proof 〉

lemma of-nat-word-less-eq-iff :
‹of-nat m ≤ (of-nat n :: ′a::len word) ←→ take-bit LENGTH (′a) m ≤ take-bit

LENGTH (′a) n›
〈proof 〉

lemma of-nat-word-less-iff :
‹of-nat m < (of-nat n :: ′a::len word) ←→ take-bit LENGTH (′a) m < take-bit

LENGTH (′a) n›
〈proof 〉

lemma of-int-word-less-eq-iff :
‹of-int k ≤ (of-int l :: ′a::len word) ←→ take-bit LENGTH (′a) k ≤ take-bit

LENGTH (′a) l›
〈proof 〉

lemma of-int-word-less-iff :
‹of-int k < (of-int l :: ′a::len word) ←→ take-bit LENGTH (′a) k < take-bit

LENGTH (′a) l›
〈proof 〉

instantiation word :: (len) order-bot
begin

lift-definition bot-word :: ‹ ′a word›
is 0 〈proof 〉

instance
〈proof 〉

end

lemma bot-word-eq:
‹bot = (0 :: ′a::len word)›
〈proof 〉

instantiation word :: (len) order-top
begin

lift-definition top-word :: ‹ ′a word›
is ‹− 1 › 〈proof 〉

instance
〈proof 〉

end

THEORY “Word” 781

lemma top-word-eq:
‹top = (− 1 :: ′a::len word)›
〈proof 〉

107.4 Enumeration
lemma inj-on-word-of-nat:

‹inj-on (word-of-nat :: nat ⇒ ′a::len word) {0 ..<2 ^ LENGTH (′a)}›
〈proof 〉

lemma UNIV-word-eq-word-of-nat:
‹(UNIV :: ′a::len word set) = word-of-nat ‘ {0 ..<2 ^ LENGTH (′a)}› (is ‹- =

?A›)
〈proof 〉

instantiation word :: (len) enum
begin

definition enum-word :: ‹ ′a word list›
where ‹enum-word = map word-of-nat [0 ..<2 ^ LENGTH (′a)]›

definition enum-all-word :: ‹(′a word ⇒ bool) ⇒ bool›
where ‹enum-all-word = All›

definition enum-ex-word :: ‹(′a word ⇒ bool) ⇒ bool›
where ‹enum-ex-word = Ex›

instance
〈proof 〉

end

lemma [code]:
‹Enum.enum-all P ←→ list-all P Enum.enum›
‹Enum.enum-ex P ←→ list-ex P Enum.enum› for P :: ‹ ′a::len word ⇒ bool›
〈proof 〉

107.5 Bit-wise operations
The following specification of word division just lifts the pre-existing division
on integers named “F-Division” in [2].
instantiation word :: (len) semiring-modulo
begin

lift-definition divide-word :: ‹ ′a word ⇒ ′a word ⇒ ′a word›
is ‹λa b. take-bit LENGTH (′a) a div take-bit LENGTH (′a) b›
〈proof 〉

THEORY “Word” 782

lift-definition modulo-word :: ‹ ′a word ⇒ ′a word ⇒ ′a word›
is ‹λa b. take-bit LENGTH (′a) a mod take-bit LENGTH (′a) b›
〈proof 〉

instance 〈proof 〉

end

lemma unat-div-distrib:
‹unat (v div w) = unat v div unat w›
〈proof 〉

lemma unat-mod-distrib:
‹unat (v mod w) = unat v mod unat w›
〈proof 〉

instance word :: (len) semiring-parity
〈proof 〉

lemma word-bit-induct [case-names zero even odd]:
‹P a› if word-zero: ‹P 0 ›

and word-even: ‹
∧

a. P a =⇒ 0 < a =⇒ a < 2 ^ (LENGTH (′a) − Suc 0) =⇒
P (2 ∗ a)›

and word-odd: ‹
∧

a. P a =⇒ a < 2 ^ (LENGTH (′a) − Suc 0) =⇒ P (1 + 2
∗ a)›

for P and a :: ‹ ′a::len word›
〈proof 〉

lemma bit-word-half-eq:
‹(of-bool b + a ∗ 2) div 2 = a›

if ‹a < 2 ^ (LENGTH (′a) − Suc 0)›
for a :: ‹ ′a::len word›

〈proof 〉

lemma even-mult-exp-div-word-iff :
‹even (a ∗ 2 ^ m div 2 ^ n) ←→ ¬ (

m ≤ n ∧
n < LENGTH (′a) ∧ odd (a div 2 ^ (n − m)))› for a :: ‹ ′a::len word›
〈proof 〉

instantiation word :: (len) semiring-bits
begin

lift-definition bit-word :: ‹ ′a word ⇒ nat ⇒ bool›
is ‹λk n. n < LENGTH (′a) ∧ bit k n›
〈proof 〉

instance 〈proof 〉

THEORY “Word” 783

end

lemma bit-word-eqI :
‹a = b› if ‹

∧
n. n < LENGTH (′a) =⇒ bit a n ←→ bit b n›

for a b :: ‹ ′a::len word›
〈proof 〉

lemma bit-imp-le-length: ‹n < LENGTH (′a)› if ‹bit w n› for w :: ‹ ′a::len word›
〈proof 〉

lemma not-bit-length [simp]:
‹¬ bit w LENGTH (′a)› for w :: ‹ ′a::len word›
〈proof 〉

lemma finite-bit-word [simp]:
‹finite {n. bit w n}›
for w :: ‹ ′a::len word›
〈proof 〉

lemma bit-numeral-word-iff [simp]:
‹bit (numeral w :: ′a::len word) n
←→ n < LENGTH (′a) ∧ bit (numeral w :: int) n›
〈proof 〉

lemma bit-neg-numeral-word-iff [simp]:
‹bit (− numeral w :: ′a::len word) n
←→ n < LENGTH (′a) ∧ bit (− numeral w :: int) n›
〈proof 〉

instantiation word :: (len) ring-bit-operations
begin

lift-definition not-word :: ‹ ′a word ⇒ ′a word›
is not
〈proof 〉

lift-definition and-word :: ‹ ′a word ⇒ ′a word ⇒ ′a word›
is ‹and›
〈proof 〉

lift-definition or-word :: ‹ ′a word ⇒ ′a word ⇒ ′a word›
is or
〈proof 〉

lift-definition xor-word :: ‹ ′a word ⇒ ′a word ⇒ ′a word›
is xor
〈proof 〉

lift-definition mask-word :: ‹nat ⇒ ′a word›

THEORY “Word” 784

is mask
〈proof 〉

lift-definition set-bit-word :: ‹nat ⇒ ′a word ⇒ ′a word›
is set-bit
〈proof 〉

lift-definition unset-bit-word :: ‹nat ⇒ ′a word ⇒ ′a word›
is unset-bit
〈proof 〉

lift-definition flip-bit-word :: ‹nat ⇒ ′a word ⇒ ′a word›
is flip-bit
〈proof 〉

lift-definition push-bit-word :: ‹nat ⇒ ′a word ⇒ ′a word›
is push-bit
〈proof 〉

lift-definition drop-bit-word :: ‹nat ⇒ ′a word ⇒ ′a word›
is ‹λn. drop-bit n ◦ take-bit LENGTH (′a)›
〈proof 〉

lift-definition take-bit-word :: ‹nat ⇒ ′a word ⇒ ′a word›
is ‹λn. take-bit (min LENGTH (′a) n)›
〈proof 〉

context
includes bit-operations-syntax

begin

instance 〈proof 〉

end

end

lemma [code]:
‹push-bit n w = w ∗ 2 ^ n› for w :: ‹ ′a::len word›
〈proof 〉

lemma [code]:
‹Word.the-int (drop-bit n w) = drop-bit n (Word.the-int w)›
〈proof 〉

lemma [code]:
‹Word.the-int (take-bit n w) = (if n < LENGTH (′a::len) then take-bit n (Word.the-int

w) else Word.the-int w)›
for w :: ‹ ′a::len word›

THEORY “Word” 785

〈proof 〉

lemma [code-abbrev]:
‹push-bit n 1 = (2 :: ′a::len word) ^ n›
〈proof 〉

context
includes bit-operations-syntax

begin

lemma [code]:
‹NOT w = Word.of-int (NOT (Word.the-int w))›
for w :: ‹ ′a::len word›
〈proof 〉

lemma [code]:
‹Word.the-int (v AND w) = Word.the-int v AND Word.the-int w›
〈proof 〉

lemma [code]:
‹Word.the-int (v OR w) = Word.the-int v OR Word.the-int w›
〈proof 〉

lemma [code]:
‹Word.the-int (v XOR w) = Word.the-int v XOR Word.the-int w›
〈proof 〉

lemma [code]:
‹Word.the-int (mask n :: ′a::len word) = mask (min LENGTH (′a) n)›
〈proof 〉

lemma [code]:
‹set-bit n w = w OR push-bit n 1 › for w :: ‹ ′a::len word›
〈proof 〉

lemma [code]:
‹unset-bit n w = w AND NOT (push-bit n 1)› for w :: ‹ ′a::len word›
〈proof 〉

lemma [code]:
‹flip-bit n w = w XOR push-bit n 1 › for w :: ‹ ′a::len word›
〈proof 〉

context
includes lifting-syntax

begin

lemma set-bit-word-transfer [transfer-rule]:
‹((=) ===> pcr-word ===> pcr-word) set-bit set-bit›

THEORY “Word” 786

〈proof 〉

lemma unset-bit-word-transfer [transfer-rule]:
‹((=) ===> pcr-word ===> pcr-word) unset-bit unset-bit›
〈proof 〉

lemma flip-bit-word-transfer [transfer-rule]:
‹((=) ===> pcr-word ===> pcr-word) flip-bit flip-bit›
〈proof 〉

lemma signed-take-bit-word-transfer [transfer-rule]:
‹((=) ===> pcr-word ===> pcr-word)
(λn k. signed-take-bit n (take-bit LENGTH (′a::len) k))
(signed-take-bit :: nat ⇒ ′a word ⇒ ′a word)›

〈proof 〉

end

end

107.6 Conversions including casts
107.6.1 Generic unsigned conversion
context semiring-bits
begin

lemma bit-unsigned-iff [bit-simps]:
‹bit (unsigned w) n ←→ possible-bit TYPE(′a) n ∧ bit w n›
for w :: ‹ ′b::len word›
〈proof 〉

end

lemma possible-bit-word[simp]:
‹possible-bit TYPE((′a :: len) word) m ←→ m < LENGTH (′a)›
〈proof 〉

context semiring-bit-operations
begin

lemma unsigned-minus-1-eq-mask:
‹unsigned (− 1 :: ′b::len word) = mask LENGTH (′b)›
〈proof 〉

lemma unsigned-push-bit-eq:
‹unsigned (push-bit n w) = take-bit LENGTH (′b) (push-bit n (unsigned w))›
for w :: ‹ ′b::len word›
〈proof 〉

THEORY “Word” 787

lemma unsigned-take-bit-eq:
‹unsigned (take-bit n w) = take-bit n (unsigned w)›
for w :: ‹ ′b::len word›
〈proof 〉

end

context linordered-euclidean-semiring-bit-operations
begin

lemma unsigned-drop-bit-eq:
‹unsigned (drop-bit n w) = drop-bit n (take-bit LENGTH (′b) (unsigned w))›
for w :: ‹ ′b::len word›
〈proof 〉

end

lemma ucast-drop-bit-eq:
‹ucast (drop-bit n w) = drop-bit n (ucast w :: ′b::len word)›
if ‹LENGTH (′a) ≤ LENGTH (′b)› for w :: ‹ ′a::len word›
〈proof 〉

context semiring-bit-operations
begin

context
includes bit-operations-syntax

begin

lemma unsigned-and-eq:
‹unsigned (v AND w) = unsigned v AND unsigned w›
for v w :: ‹ ′b::len word›
〈proof 〉

lemma unsigned-or-eq:
‹unsigned (v OR w) = unsigned v OR unsigned w›
for v w :: ‹ ′b::len word›
〈proof 〉

lemma unsigned-xor-eq:
‹unsigned (v XOR w) = unsigned v XOR unsigned w›
for v w :: ‹ ′b::len word›
〈proof 〉

end

end

context ring-bit-operations

THEORY “Word” 788

begin

context
includes bit-operations-syntax

begin

lemma unsigned-not-eq:
‹unsigned (NOT w) = take-bit LENGTH (′b) (NOT (unsigned w))›
for w :: ‹ ′b::len word›
〈proof 〉

end

end

context linordered-euclidean-semiring
begin

lemma unsigned-greater-eq [simp]:
‹0 ≤ unsigned w› for w :: ‹ ′b::len word›
〈proof 〉

lemma unsigned-less [simp]:
‹unsigned w < 2 ^ LENGTH (′b)› for w :: ‹ ′b::len word›
〈proof 〉

end

context linordered-semidom
begin

lemma word-less-eq-iff-unsigned:
a ≤ b ←→ unsigned a ≤ unsigned b
〈proof 〉

lemma word-less-iff-unsigned:
a < b ←→ unsigned a < unsigned b
〈proof 〉

end

107.6.2 Generic signed conversion
context ring-bit-operations
begin

lemma bit-signed-iff [bit-simps]:
‹bit (signed w) n ←→ possible-bit TYPE(′a) n ∧ bit w (min (LENGTH (′b) −

Suc 0) n)›

THEORY “Word” 789

for w :: ‹ ′b::len word›
〈proof 〉

lemma signed-push-bit-eq:
‹signed (push-bit n w) = signed-take-bit (LENGTH (′b) − Suc 0) (push-bit n

(signed w :: ′a))›
for w :: ‹ ′b::len word›
〈proof 〉

lemma signed-take-bit-eq:
‹signed (take-bit n w) = (if n < LENGTH (′b) then take-bit n (signed w) else

signed w)›
for w :: ‹ ′b::len word›
〈proof 〉

context
includes bit-operations-syntax

begin

lemma signed-not-eq:
‹signed (NOT w) = signed-take-bit LENGTH (′b) (NOT (signed w))›
for w :: ‹ ′b::len word›
〈proof 〉

lemma signed-and-eq:
‹signed (v AND w) = signed v AND signed w›
for v w :: ‹ ′b::len word›
〈proof 〉

lemma signed-or-eq:
‹signed (v OR w) = signed v OR signed w›
for v w :: ‹ ′b::len word›
〈proof 〉

lemma signed-xor-eq:
‹signed (v XOR w) = signed v XOR signed w›
for v w :: ‹ ′b::len word›
〈proof 〉

end

end

107.6.3 More
lemma sint-greater-eq:

‹− (2 ^ (LENGTH (′a) − Suc 0)) ≤ sint w› for w :: ‹ ′a::len word›
〈proof 〉

THEORY “Word” 790

lemma sint-less:
‹sint w < 2 ^ (LENGTH (′a) − Suc 0)› for w :: ‹ ′a::len word›
〈proof 〉

lemma uint-div-distrib:
‹uint (v div w) = uint v div uint w›
〈proof 〉

lemma unat-drop-bit-eq:
‹unat (drop-bit n w) = drop-bit n (unat w)›
〈proof 〉

lemma uint-mod-distrib:
‹uint (v mod w) = uint v mod uint w›
〈proof 〉

context semiring-bit-operations
begin

lemma unsigned-ucast-eq:
‹unsigned (ucast w :: ′c::len word) = take-bit LENGTH (′c) (unsigned w)›
for w :: ‹ ′b::len word›
〈proof 〉

end

context ring-bit-operations
begin

lemma signed-ucast-eq:
‹signed (ucast w :: ′c::len word) = signed-take-bit (LENGTH (′c) − Suc 0)

(unsigned w)›
for w :: ‹ ′b::len word›
〈proof 〉

lemma signed-scast-eq:
‹signed (scast w :: ′c::len word) = signed-take-bit (LENGTH (′c) − Suc 0) (signed

w)›
for w :: ‹ ′b::len word›
〈proof 〉

end

lemma uint-nonnegative: 0 ≤ uint w
〈proof 〉

lemma uint-bounded: uint w < 2 ^ LENGTH (′a)
for w :: ′a::len word
〈proof 〉

THEORY “Word” 791

lemma uint-idem: uint w mod 2 ^ LENGTH (′a) = uint w
for w :: ′a::len word
〈proof 〉

lemma word-uint-eqI : uint a = uint b =⇒ a = b
〈proof 〉

lemma word-uint-eq-iff : a = b ←→ uint a = uint b
〈proof 〉

lemma uint-word-of-int-eq:
‹uint (word-of-int k :: ′a::len word) = take-bit LENGTH (′a) k›
〈proof 〉

lemma uint-word-of-int: uint (word-of-int k :: ′a::len word) = k mod 2 ^ LENGTH (′a)
〈proof 〉

lemma word-of-int-uint: word-of-int (uint w) = w
〈proof 〉

lemma word-div-def [code]:
a div b = word-of-int (uint a div uint b)
〈proof 〉

lemma word-mod-def [code]:
a mod b = word-of-int (uint a mod uint b)
〈proof 〉

lemma split-word-all: (
∧

x:: ′a::len word. PROP P x) ≡ (
∧

x. PROP P (word-of-int
x))
〈proof 〉

lemma sint-uint:
‹sint w = signed-take-bit (LENGTH (′a) − Suc 0) (uint w)›
for w :: ‹ ′a::len word›
〈proof 〉

lemma unat-eq-nat-uint:
‹unat w = nat (uint w)›
〈proof 〉

lemma ucast-eq:
‹ucast w = word-of-int (uint w)›
〈proof 〉

lemma scast-eq:
‹scast w = word-of-int (sint w)›
〈proof 〉

THEORY “Word” 792

lemma uint-0-eq:
‹uint 0 = 0 ›
〈proof 〉

lemma uint-1-eq:
‹uint 1 = 1 ›
〈proof 〉

lemma word-m1-wi: − 1 = word-of-int (− 1)
〈proof 〉

lemma uint-0-iff : uint x = 0 ←→ x = 0
〈proof 〉

lemma unat-0-iff : unat x = 0 ←→ x = 0
〈proof 〉

lemma unat-0 : unat 0 = 0
〈proof 〉

lemma unat-gt-0 : 0 < unat x ←→ x 6= 0
〈proof 〉

lemma ucast-0 : ucast 0 = 0
〈proof 〉

lemma sint-0 : sint 0 = 0
〈proof 〉

lemma scast-0 : scast 0 = 0
〈proof 〉

lemma sint-n1 : sint (− 1) = − 1
〈proof 〉

lemma scast-n1 : scast (− 1) = − 1
〈proof 〉

lemma uint-1 : uint (1 :: ′a::len word) = 1
〈proof 〉

lemma unat-1 : unat (1 :: ′a::len word) = 1
〈proof 〉

lemma ucast-1 : ucast (1 :: ′a::len word) = 1
〈proof 〉

instantiation word :: (len) size

THEORY “Word” 793

begin

lift-definition size-word :: ‹ ′a word ⇒ nat›
is ‹λ-. LENGTH (′a)› 〈proof 〉

instance 〈proof 〉

end

lemma word-size [code]:
‹size w = LENGTH (′a)› for w :: ‹ ′a::len word›
〈proof 〉

lemma word-size-gt-0 [iff]: 0 < size w
for w :: ′a::len word
〈proof 〉

lemmas lens-gt-0 = word-size-gt-0 len-gt-0

lemma lens-not-0 [iff]:
‹size w 6= 0 › for w :: ‹ ′a::len word›
〈proof 〉

lift-definition source-size :: ‹(′a::len word ⇒ ′b) ⇒ nat›
is ‹λ-. LENGTH (′a)› 〈proof 〉

lift-definition target-size :: ‹(′a ⇒ ′b::len word) ⇒ nat›
is ‹λ-. LENGTH (′b)› 〈proof 〉

lift-definition is-up :: ‹(′a::len word ⇒ ′b::len word) ⇒ bool›
is ‹λ-. LENGTH (′a) ≤ LENGTH (′b)› 〈proof 〉

lift-definition is-down :: ‹(′a::len word ⇒ ′b::len word) ⇒ bool›
is ‹λ-. LENGTH (′a) ≥ LENGTH (′b)› 〈proof 〉

lemma is-up-eq:
‹is-up f ←→ source-size f ≤ target-size f ›
for f :: ‹ ′a::len word ⇒ ′b::len word›
〈proof 〉

lemma is-down-eq:
‹is-down f ←→ target-size f ≤ source-size f ›
for f :: ‹ ′a::len word ⇒ ′b::len word›
〈proof 〉

lift-definition word-int-case :: ‹(int ⇒ ′b) ⇒ ′a::len word ⇒ ′b›
is ‹λf . f ◦ take-bit LENGTH (′a)› 〈proof 〉

lemma word-int-case-eq-uint [code]:

THEORY “Word” 794

‹word-int-case f w = f (uint w)›
〈proof 〉

translations
case x of XCONST of-int y ⇒ b
 CONST word-int-case (λy. b) x
case x of (XCONST of-int :: ′a) y ⇒ b ⇀ CONST word-int-case (λy. b) x

107.7 Arithmetic operations
lemma div-word-self :

‹w div w = 1 › if ‹w 6= 0 › for w :: ‹ ′a::len word›
〈proof 〉

lemma mod-word-self [simp]:
‹w mod w = 0 › for w :: ‹ ′a::len word›
〈proof 〉

lemma div-word-less:
‹w div v = 0 › if ‹w < v› for w v :: ‹ ′a::len word›
〈proof 〉

lemma mod-word-less:
‹w mod v = w› if ‹w < v› for w v :: ‹ ′a::len word›
〈proof 〉

lemma div-word-one [simp]:
‹1 div w = of-bool (w = 1)› for w :: ‹ ′a::len word›
〈proof 〉

lemma mod-word-one [simp]:
‹1 mod w = 1 − w ∗ of-bool (w = 1)› for w :: ‹ ′a::len word›
〈proof 〉

lemma div-word-by-minus-1-eq [simp]:
‹w div − 1 = of-bool (w = − 1)› for w :: ‹ ′a::len word›
〈proof 〉

lemma mod-word-by-minus-1-eq [simp]:
‹w mod − 1 = w ∗ of-bool (w < − 1)› for w :: ‹ ′a::len word›
〈proof 〉

Legacy theorems:
lemma word-add-def [code]:

a + b = word-of-int (uint a + uint b)
〈proof 〉

lemma word-sub-wi [code]:
a − b = word-of-int (uint a − uint b)
〈proof 〉

THEORY “Word” 795

lemma word-mult-def [code]:
a ∗ b = word-of-int (uint a ∗ uint b)
〈proof 〉

lemma word-minus-def [code]:
− a = word-of-int (− uint a)
〈proof 〉

lemma word-0-wi:
0 = word-of-int 0
〈proof 〉

lemma word-1-wi:
1 = word-of-int 1
〈proof 〉

lift-definition word-succ :: ′a::len word ⇒ ′a word is λx. x + 1
〈proof 〉

lift-definition word-pred :: ′a::len word ⇒ ′a word is λx. x − 1
〈proof 〉

lemma word-succ-alt [code]:
word-succ a = word-of-int (uint a + 1)
〈proof 〉

lemma word-pred-alt [code]:
word-pred a = word-of-int (uint a − 1)
〈proof 〉

lemmas word-arith-wis =
word-add-def word-sub-wi word-mult-def
word-minus-def word-succ-alt word-pred-alt
word-0-wi word-1-wi

lemma wi-homs:
shows wi-hom-add: word-of-int a + word-of-int b = word-of-int (a + b)

and wi-hom-sub: word-of-int a − word-of-int b = word-of-int (a − b)
and wi-hom-mult: word-of-int a ∗ word-of-int b = word-of-int (a ∗ b)
and wi-hom-neg: − word-of-int a = word-of-int (− a)
and wi-hom-succ: word-succ (word-of-int a) = word-of-int (a + 1)
and wi-hom-pred: word-pred (word-of-int a) = word-of-int (a − 1)
〈proof 〉

lemmas wi-hom-syms = wi-homs [symmetric]

lemmas word-of-int-homs = wi-homs word-0-wi word-1-wi

lemmas word-of-int-hom-syms = word-of-int-homs [symmetric]

THEORY “Word” 796

lemma double-eq-zero-iff :
‹2 ∗ a = 0 ←→ a = 0 ∨ a = 2 ^ (LENGTH (′a) − Suc 0)›
for a :: ‹ ′a::len word›
〈proof 〉

107.8 Ordering
instance word :: (len) wellorder
〈proof 〉

lemma word-m1-ge [simp]:
word-pred 0 ≥ y
〈proof 〉

lemma word-less-alt:
a < b ←→ uint a < uint b
〈proof 〉

lemma word-zero-le [simp]:
0 ≤ y for y :: ′a::len word
〈proof 〉

lemma word-n1-ge [simp]:
y ≤ − 1 for y :: ′a::len word
〈proof 〉

lemmas word-not-simps [simp] =
word-zero-le [THEN leD] word-m1-ge [THEN leD] word-n1-ge [THEN leD]

lemma word-gt-0 :
0 < y ←→ 0 6= y
for y :: ′a::len word
〈proof 〉

lemma word-gt-0-no [simp]:
‹(0 :: ′a::len word) < numeral y ←→ (0 :: ′a::len word) 6= numeral y›
〈proof 〉

lemma word-le-nat-alt:
a ≤ b ←→ unat a ≤ unat b
〈proof 〉

lemma word-less-nat-alt:
a < b ←→ unat a < unat b
〈proof 〉

lemmas unat-mono = word-less-nat-alt [THEN iffD1]

THEORY “Word” 797

lemma wi-less:
(word-of-int n < (word-of-int m :: ′a::len word)) =
(n mod 2 ^ LENGTH (′a) < m mod 2 ^ LENGTH (′a))
〈proof 〉

lemma wi-le:
(word-of-int n ≤ (word-of-int m :: ′a::len word)) =
(n mod 2 ^ LENGTH (′a) ≤ m mod 2 ^ LENGTH (′a))
〈proof 〉

lift-definition word-sle :: ‹ ′a::len word ⇒ ′a word ⇒ bool›
is ‹λk l. signed-take-bit (LENGTH (′a) − Suc 0) k ≤ signed-take-bit (LENGTH (′a)
− Suc 0) l›
〈proof 〉

lift-definition word-sless :: ‹ ′a::len word ⇒ ′a word ⇒ bool›
is ‹λk l. signed-take-bit (LENGTH (′a) − Suc 0) k < signed-take-bit (LENGTH (′a)
− Suc 0) l›
〈proof 〉

notation
word-sle (‹ ′(≤s ′)›) and
word-sle (‹(‹notation=‹infix ≤s››-/ ≤s -)› [51 , 51] 50) and
word-sless (‹ ′(<s ′)›) and
word-sless (‹(‹notation=‹infix <s››-/ <s -)› [51 , 51] 50)

notation (input)
word-sle (‹(‹notation=‹infix <=s››-/ <=s -)› [51 , 51] 50)

lemma word-sle-eq [code]:
‹a <=s b ←→ sint a ≤ sint b›
〈proof 〉

lemma word-sless-alt [code]:
a <s b ←→ sint a < sint b
〈proof 〉

lemma signed-ordering: ‹ordering word-sle word-sless›
〈proof 〉

lemma signed-linorder : ‹class.linorder word-sle word-sless›
〈proof 〉

interpretation signed: linorder word-sle word-sless
〈proof 〉

lemma word-sless-eq:
‹x <s y ←→ x <=s y ∧ x 6= y›
〈proof 〉

THEORY “Word” 798

lemma minus-1-sless-0 [simp]:
‹− 1 <s 0 ›
〈proof 〉

lemma not-0-sless-minus-1 [simp]:
‹¬ 0 <s − 1 ›
〈proof 〉

lemma minus-1-sless-eq-0 [simp]:
‹− 1 ≤s 0 ›
〈proof 〉

lemma not-0-sless-eq-minus-1 [simp]:
‹¬ 0 ≤s − 1 ›
〈proof 〉

107.9 Bit-wise operations
context

includes bit-operations-syntax
begin

lemma take-bit-word-eq-self :
‹take-bit n w = w› if ‹LENGTH (′a) ≤ n› for w :: ‹ ′a::len word›
〈proof 〉

lemma take-bit-length-eq [simp]:
‹take-bit LENGTH (′a) w = w› for w :: ‹ ′a::len word›
〈proof 〉

lemma bit-word-of-int-iff :
‹bit (word-of-int k :: ′a::len word) n ←→ n < LENGTH (′a) ∧ bit k n›
〈proof 〉

lemma bit-uint-iff :
‹bit (uint w) n ←→ n < LENGTH (′a) ∧ bit w n›

for w :: ‹ ′a::len word›
〈proof 〉

lemma bit-sint-iff :
‹bit (sint w) n ←→ n ≥ LENGTH (′a) ∧ bit w (LENGTH (′a) − 1) ∨ bit w n›
for w :: ‹ ′a::len word›
〈proof 〉

lemma bit-word-ucast-iff :
‹bit (ucast w :: ′b::len word) n ←→ n < LENGTH (′a) ∧ n < LENGTH (′b) ∧

bit w n›
for w :: ‹ ′a::len word›

THEORY “Word” 799

〈proof 〉

lemma bit-word-scast-iff :
‹bit (scast w :: ′b::len word) n ←→

n < LENGTH (′b) ∧ (bit w n ∨ LENGTH (′a) ≤ n ∧ bit w (LENGTH (′a) −
Suc 0))›

for w :: ‹ ′a::len word›
〈proof 〉

lemma bit-word-iff-drop-bit-and [code]:
‹bit a n ←→ drop-bit n a AND 1 = 1 › for a :: ‹ ′a::len word›
〈proof 〉

lemma
word-not-def : NOT (a:: ′a::len word) = word-of-int (NOT (uint a))

and word-and-def : (a:: ′a word) AND b = word-of-int (uint a AND uint b)
and word-or-def : (a:: ′a word) OR b = word-of-int (uint a OR uint b)
and word-xor-def : (a:: ′a word) XOR b = word-of-int (uint a XOR uint b)
〈proof 〉

definition even-word :: ‹ ′a::len word ⇒ bool›
where [code-abbrev]: ‹even-word = even›

lemma even-word-iff [code]:
‹even-word a ←→ a AND 1 = 0 ›
〈proof 〉

lemma map-bit-range-eq-if-take-bit-eq:
‹map (bit k) [0 ..<n] = map (bit l) [0 ..<n]›
if ‹take-bit n k = take-bit n l› for k l :: int
〈proof 〉

lemma
take-bit-word-Bit0-eq [simp]: ‹take-bit (numeral n) (numeral (num.Bit0 m) ::

′a::len word)
= 2 ∗ take-bit (pred-numeral n) (numeral m)› (is ?P)

and take-bit-word-Bit1-eq [simp]: ‹take-bit (numeral n) (numeral (num.Bit1 m)
:: ′a::len word)

= 1 + 2 ∗ take-bit (pred-numeral n) (numeral m)› (is ?Q)
and take-bit-word-minus-Bit0-eq [simp]: ‹take-bit (numeral n) (− numeral (num.Bit0

m) :: ′a::len word)
= 2 ∗ take-bit (pred-numeral n) (− numeral m)› (is ?R)

and take-bit-word-minus-Bit1-eq [simp]: ‹take-bit (numeral n) (− numeral (num.Bit1
m) :: ′a::len word)

= 1 + 2 ∗ take-bit (pred-numeral n) (− numeral (Num.inc m))› (is ?S)
〈proof 〉

THEORY “Word” 800

107.10 More shift operations
lift-definition signed-drop-bit :: ‹nat ⇒ ′a word ⇒ ′a::len word›

is ‹λn. drop-bit n ◦ signed-take-bit (LENGTH (′a) − Suc 0)›
〈proof 〉

lemma bit-signed-drop-bit-iff [bit-simps]:
‹bit (signed-drop-bit m w) n ←→ bit w (if LENGTH (′a) − m ≤ n ∧ n <

LENGTH (′a) then LENGTH (′a) − 1 else m + n)›
for w :: ‹ ′a::len word›
〈proof 〉

lemma [code]:
‹Word.the-int (signed-drop-bit n w) = take-bit LENGTH (′a) (drop-bit n (Word.the-signed-int

w))›
for w :: ‹ ′a::len word›
〈proof 〉

lemma signed-drop-bit-of-0 [simp]:
‹signed-drop-bit n 0 = 0 ›
〈proof 〉

lemma signed-drop-bit-of-minus-1 [simp]:
‹signed-drop-bit n (− 1) = − 1 ›
〈proof 〉

lemma signed-drop-bit-signed-drop-bit [simp]:
‹signed-drop-bit m (signed-drop-bit n w) = signed-drop-bit (m + n) w›
for w :: ‹ ′a::len word›
〈proof 〉

lemma signed-drop-bit-0 [simp]:
‹signed-drop-bit 0 w = w›
〈proof 〉

lemma sint-signed-drop-bit-eq:
‹sint (signed-drop-bit n w) = drop-bit n (sint w)›
〈proof 〉

107.11 Single-bit operations
lemma set-bit-eq-idem-iff :

‹set-bit n w = w ←→ bit w n ∨ n ≥ LENGTH (′a)›
for w :: ‹ ′a::len word›
〈proof 〉

lemma unset-bit-eq-idem-iff :
‹unset-bit n w = w ←→ bit w n −→ n ≥ LENGTH (′a)›
for w :: ‹ ′a::len word›
〈proof 〉

THEORY “Word” 801

lemma flip-bit-eq-idem-iff :
‹flip-bit n w = w ←→ n ≥ LENGTH (′a)›
for w :: ‹ ′a::len word›
〈proof 〉

107.12 Rotation
lift-definition word-rotr :: ‹nat ⇒ ′a::len word ⇒ ′a::len word›

is ‹λn k. concat-bit (LENGTH (′a) − n mod LENGTH (′a))
(drop-bit (n mod LENGTH (′a)) (take-bit LENGTH (′a) k))
(take-bit (n mod LENGTH (′a)) k)›
〈proof 〉

lift-definition word-rotl :: ‹nat ⇒ ′a::len word ⇒ ′a::len word›
is ‹λn k. concat-bit (n mod LENGTH (′a))
(drop-bit (LENGTH (′a) − n mod LENGTH (′a)) (take-bit LENGTH (′a) k))
(take-bit (LENGTH (′a) − n mod LENGTH (′a)) k)›
〈proof 〉

lift-definition word-roti :: ‹int ⇒ ′a::len word ⇒ ′a::len word›
is ‹λr k. concat-bit (LENGTH (′a) − nat (r mod int LENGTH (′a)))
(drop-bit (nat (r mod int LENGTH (′a))) (take-bit LENGTH (′a) k))
(take-bit (nat (r mod int LENGTH (′a))) k)›
〈proof 〉

lemma word-rotl-eq-word-rotr [code]:
‹word-rotl n = (word-rotr (LENGTH (′a) − n mod LENGTH (′a)) :: ′a::len word
⇒ ′a word)›
〈proof 〉

lemma word-roti-eq-word-rotr-word-rotl [code]:
‹word-roti i w =
(if i ≥ 0 then word-rotr (nat i) w else word-rotl (nat (− i)) w)›

〈proof 〉

lemma bit-word-rotr-iff [bit-simps]:
‹bit (word-rotr m w) n ←→

n < LENGTH (′a) ∧ bit w ((n + m) mod LENGTH (′a))›
for w :: ‹ ′a::len word›
〈proof 〉

lemma bit-word-rotl-iff [bit-simps]:
‹bit (word-rotl m w) n ←→

n < LENGTH (′a) ∧ bit w ((n + (LENGTH (′a) − m mod LENGTH (′a))) mod
LENGTH (′a))›

for w :: ‹ ′a::len word›
〈proof 〉

THEORY “Word” 802

lemma bit-word-roti-iff [bit-simps]:
‹bit (word-roti k w) n ←→

n < LENGTH (′a) ∧ bit w (nat ((int n + k) mod int LENGTH (′a)))›
for w :: ‹ ′a::len word›
〈proof 〉

lemma uint-word-rotr-eq:
‹uint (word-rotr n w) = concat-bit (LENGTH (′a) − n mod LENGTH (′a))
(drop-bit (n mod LENGTH (′a)) (uint w))
(uint (take-bit (n mod LENGTH (′a)) w))›

for w :: ‹ ′a::len word›
〈proof 〉

lemma [code]:
‹Word.the-int (word-rotr n w) = concat-bit (LENGTH (′a) − n mod LENGTH (′a))
(drop-bit (n mod LENGTH (′a)) (Word.the-int w))
(Word.the-int (take-bit (n mod LENGTH (′a)) w))›

for w :: ‹ ′a::len word›
〈proof 〉

107.13 Split and cat operations
lift-definition word-cat :: ‹ ′a::len word ⇒ ′b::len word ⇒ ′c::len word›

is ‹λk l. concat-bit LENGTH (′b) l (take-bit LENGTH (′a) k)›
〈proof 〉

lemma word-cat-eq:
‹(word-cat v w :: ′c::len word) = push-bit LENGTH (′b) (ucast v) + ucast w›
for v :: ‹ ′a::len word› and w :: ‹ ′b::len word›
〈proof 〉

lemma word-cat-eq ′ [code]:
‹word-cat a b = word-of-int (concat-bit LENGTH (′b) (uint b) (uint a))›
for a :: ‹ ′a::len word› and b :: ‹ ′b::len word›
〈proof 〉

lemma bit-word-cat-iff [bit-simps]:
‹bit (word-cat v w :: ′c::len word) n ←→ n < LENGTH (′c) ∧ (if n < LENGTH (′b)

then bit w n else bit v (n − LENGTH (′b)))›
for v :: ‹ ′a::len word› and w :: ‹ ′b::len word›
〈proof 〉

definition word-split :: ‹ ′a::len word ⇒ ′b::len word × ′c::len word›
where ‹word-split w =
(ucast (drop-bit LENGTH (′c) w) :: ′b::len word, ucast w :: ′c::len word)›

definition word-rcat :: ‹ ′a::len word list ⇒ ′b::len word›
where ‹word-rcat = word-of-int ◦ horner-sum uint (2 ^ LENGTH (′a)) ◦ rev›

THEORY “Word” 803

107.14 More on conversions
lemma int-word-sint:

‹sint (word-of-int x :: ′a::len word) = (x + 2 ^ (LENGTH (′a) − 1)) mod 2 ^
LENGTH (′a) − 2 ^ (LENGTH (′a) − 1)›
〈proof 〉

lemma sint-sbintrunc ′: sint (word-of-int bin :: ′a word) = signed-take-bit (LENGTH (′a::len)
− 1) bin
〈proof 〉

lemma uint-sint: uint w = take-bit LENGTH (′a) (sint w)
for w :: ′a::len word
〈proof 〉

lemma bintr-uint: LENGTH (′a) ≤ n =⇒ take-bit n (uint w) = uint w
for w :: ′a::len word
〈proof 〉

lemma wi-bintr :
LENGTH (′a::len) ≤ n =⇒

word-of-int (take-bit n w) = (word-of-int w :: ′a word)
〈proof 〉

lemma word-numeral-alt: numeral b = word-of-int (numeral b)
〈proof 〉

declare word-numeral-alt [symmetric, code-abbrev]

lemma word-neg-numeral-alt: − numeral b = word-of-int (− numeral b)
〈proof 〉

declare word-neg-numeral-alt [symmetric, code-abbrev]

lemma uint-bintrunc [simp]:
uint (numeral bin :: ′a word) = take-bit LENGTH (′a::len) (numeral bin)
〈proof 〉

lemma uint-bintrunc-neg [simp]:
uint (− numeral bin :: ′a word) = take-bit LENGTH (′a::len) (− numeral bin)
〈proof 〉

lemma sint-sbintrunc [simp]:
sint (numeral bin :: ′a word) = signed-take-bit (LENGTH (′a::len) − 1) (numeral

bin)
〈proof 〉

lemma sint-sbintrunc-neg [simp]:
sint (− numeral bin :: ′a word) = signed-take-bit (LENGTH (′a::len) − 1) (−

numeral bin)

THEORY “Word” 804

〈proof 〉

lemma unat-bintrunc [simp]:
unat (numeral bin :: ′a::len word) = take-bit LENGTH (′a) (numeral bin)
〈proof 〉

lemma unat-bintrunc-neg [simp]:
unat (− numeral bin :: ′a::len word) = nat (take-bit LENGTH (′a) (− numeral

bin))
〈proof 〉

lemma size-0-eq: size w = 0 =⇒ v = w
for v w :: ′a::len word
〈proof 〉

lemma uint-ge-0 [iff]: 0 ≤ uint x
〈proof 〉

lemma uint-lt2p [iff]: uint x < 2 ^ LENGTH (′a)
for x :: ′a::len word
〈proof 〉

lemma sint-ge: − (2 ^ (LENGTH (′a) − 1)) ≤ sint x
for x :: ′a::len word
〈proof 〉

lemma sint-lt: sint x < 2 ^ (LENGTH (′a) − 1)
for x :: ′a::len word
〈proof 〉

lemma uint-m2p-neg: uint x − 2 ^ LENGTH (′a) < 0
for x :: ′a::len word
〈proof 〉

lemma uint-m2p-not-non-neg: ¬ 0 ≤ uint x − 2 ^ LENGTH (′a)
for x :: ′a::len word
〈proof 〉

lemma lt2p-lem: LENGTH (′a) ≤ n =⇒ uint w < 2 ^ n
for w :: ′a::len word
〈proof 〉

lemma uint-le-0-iff [simp]: uint x ≤ 0 ←→ uint x = 0
〈proof 〉

lemma uint-nat: uint w = int (unat w)
〈proof 〉

lemma uint-numeral: uint (numeral b :: ′a::len word) = numeral b mod 2 ^

THEORY “Word” 805

LENGTH (′a)
〈proof 〉

lemma uint-neg-numeral: uint (− numeral b :: ′a::len word) = − numeral b mod
2 ^ LENGTH (′a)
〈proof 〉

lemma unat-numeral: unat (numeral b :: ′a::len word) = numeral b mod 2 ^
LENGTH (′a)
〈proof 〉

lemma sint-numeral:
sint (numeral b :: ′a::len word) =
(numeral b + 2 ^ (LENGTH (′a) − 1)) mod 2 ^ LENGTH (′a) − 2 ^ (LENGTH (′a)

− 1)
〈proof 〉

lemma word-of-int-0 [simp, code-post]: word-of-int 0 = 0
〈proof 〉

lemma word-of-int-1 [simp, code-post]: word-of-int 1 = 1
〈proof 〉

lemma word-of-int-neg-1 [simp]: word-of-int (− 1) = − 1
〈proof 〉

lemma word-of-int-numeral [simp] : (word-of-int (numeral bin) :: ′a::len word) =
numeral bin
〈proof 〉

lemma word-int-case-wi:
word-int-case f (word-of-int i :: ′b word) = f (i mod 2 ^ LENGTH (′b::len))
〈proof 〉

lemma word-int-split:
P (word-int-case f x) =
(∀ i. x = (word-of-int i :: ′b::len word) ∧ 0 ≤ i ∧ i < 2 ^ LENGTH (′b) −→ P

(f i))
〈proof 〉

lemma word-int-split-asm:
P (word-int-case f x) =
(@n. x = (word-of-int n :: ′b::len word) ∧ 0 ≤ n ∧ n < 2 ^ LENGTH (′b::len)

∧ ¬ P (f n))
〈proof 〉

lemma uint-range-size: 0 ≤ uint w ∧ uint w < 2 ^ size w
〈proof 〉

THEORY “Word” 806

lemma sint-range-size: − (2 ^ (size w − Suc 0)) ≤ sint w ∧ sint w < 2 ^ (size w
− Suc 0)
〈proof 〉

lemma sint-above-size: 2 ^ (size w − 1) ≤ x =⇒ sint w < x
for w :: ′a::len word
〈proof 〉

lemma sint-below-size: x ≤ − (2 ^ (size w − 1)) =⇒ x ≤ sint w
for w :: ′a::len word
〈proof 〉

lemma word-unat-eq-iff :
‹v = w ←→ unat v = unat w›
for v w :: ‹ ′a::len word›
〈proof 〉

107.15 Testing bits
lemma bin-nth-uint-imp: bit (uint w) n =⇒ n < LENGTH (′a)

for w :: ′a::len word
〈proof 〉

lemma bin-nth-sint:
LENGTH (′a) ≤ n =⇒

bit (sint w) n = bit (sint w) (LENGTH (′a) − 1)
for w :: ′a::len word
〈proof 〉

lemma num-of-bintr ′:
take-bit (LENGTH (′a::len)) (numeral a :: int) = (numeral b) =⇒

numeral a = (numeral b :: ′a word)
〈proof 〉

lemma num-of-sbintr ′:
signed-take-bit (LENGTH (′a::len) − 1) (numeral a :: int) = (numeral b) =⇒

numeral a = (numeral b :: ′a word)
〈proof 〉

lemma num-abs-bintr :
(numeral x :: ′a word) =

word-of-int (take-bit (LENGTH (′a::len)) (numeral x))
〈proof 〉

lemma num-abs-sbintr :
(numeral x :: ′a word) =

word-of-int (signed-take-bit (LENGTH (′a::len) − 1) (numeral x))
〈proof 〉

cast – note, no arg for new length, as it’s determined by type of result,

THEORY “Word” 807

thus in cast w = w, the type means cast to length of w!
lemma bit-ucast-iff :

‹bit (ucast a :: ′a::len word) n ←→ n < LENGTH (′a::len) ∧ bit a n›
〈proof 〉

lemma ucast-id [simp]: ucast w = w
〈proof 〉

lemma scast-id [simp]: scast w = w
〈proof 〉

lemma ucast-mask-eq:
‹ucast (mask n :: ′b word) = mask (min LENGTH (′b::len) n)›
〈proof 〉

lemma ucast-bintr [simp]:
ucast (numeral w :: ′a::len word) =

word-of-int (take-bit (LENGTH (′a)) (numeral w))
〈proof 〉

lemma scast-sbintr [simp]:
scast (numeral w :: ′a::len word) =

word-of-int (signed-take-bit (LENGTH (′a) − Suc 0) (numeral w))
〈proof 〉

lemma source-size: source-size (c:: ′a::len word ⇒ -) = LENGTH (′a)
〈proof 〉

lemma target-size: target-size (c::- ⇒ ′b::len word) = LENGTH (′b)
〈proof 〉

lemma is-down: is-down c ←→ LENGTH (′b) ≤ LENGTH (′a)
for c :: ′a::len word ⇒ ′b::len word
〈proof 〉

lemma is-up: is-up c ←→ LENGTH (′a) ≤ LENGTH (′b)
for c :: ′a::len word ⇒ ′b::len word
〈proof 〉

lemma is-up-down:
‹is-up c ←→ is-down d›
for c :: ‹ ′a::len word ⇒ ′b::len word›
and d :: ‹ ′b::len word ⇒ ′a::len word›
〈proof 〉

context
fixes dummy-types :: ‹ ′a::len × ′b::len›

begin

THEORY “Word” 808

private abbreviation (input) UCAST :: ‹ ′a::len word ⇒ ′b::len word›
where ‹UCAST == ucast›

private abbreviation (input) SCAST :: ‹ ′a::len word ⇒ ′b::len word›
where ‹SCAST == scast›

lemma down-cast-same:
‹UCAST = scast› if ‹is-down UCAST ›
〈proof 〉

lemma sint-up-scast:
‹sint (SCAST w) = sint w› if ‹is-up SCAST ›
〈proof 〉

lemma uint-up-ucast:
‹uint (UCAST w) = uint w› if ‹is-up UCAST ›
〈proof 〉

lemma ucast-up-ucast:
‹ucast (UCAST w) = ucast w› if ‹is-up UCAST ›
〈proof 〉

lemma ucast-up-ucast-id:
‹ucast (UCAST w) = w› if ‹is-up UCAST ›
〈proof 〉

lemma scast-up-scast:
‹scast (SCAST w) = scast w› if ‹is-up SCAST ›
〈proof 〉

lemma scast-up-scast-id:
‹scast (SCAST w) = w› if ‹is-up SCAST ›
〈proof 〉

lemma isduu:
‹is-up UCAST › if ‹is-down d›

for d :: ‹ ′b word ⇒ ′a word›
〈proof 〉

lemma isdus:
‹is-up SCAST › if ‹is-down d›

for d :: ‹ ′b word ⇒ ′a word›
〈proof 〉

lemmas ucast-down-ucast-id = isduu [THEN ucast-up-ucast-id]
lemmas scast-down-scast-id = isdus [THEN scast-up-scast-id]

lemma up-ucast-surj:

THEORY “Word” 809

‹surj (ucast :: ′b word ⇒ ′a word)› if ‹is-up UCAST ›
〈proof 〉

lemma up-scast-surj:
‹surj (scast :: ′b word ⇒ ′a word)› if ‹is-up SCAST ›
〈proof 〉

lemma down-ucast-inj:
‹inj-on UCAST A› if ‹is-down (ucast :: ′b word ⇒ ′a word)›
〈proof 〉

lemma down-scast-inj:
‹inj-on SCAST A› if ‹is-down (scast :: ′b word ⇒ ′a word)›
〈proof 〉

lemma ucast-down-wi:
‹UCAST (word-of-int x) = word-of-int x› if ‹is-down UCAST ›
〈proof 〉

lemma ucast-down-no:
‹UCAST (numeral bin) = numeral bin› if ‹is-down UCAST ›
〈proof 〉

end

lemmas word-log-defs = word-and-def word-or-def word-xor-def word-not-def

lemma bit-last-iff :
‹bit w (LENGTH (′a) − Suc 0) ←→ sint w < 0 › (is ‹?P ←→ ?Q›)
for w :: ‹ ′a::len word›
〈proof 〉

lemma drop-bit-eq-zero-iff-not-bit-last:
‹drop-bit (LENGTH (′a) − Suc 0) w = 0 ←→ ¬ bit w (LENGTH (′a) − Suc 0)›
for w :: ′a::len word
〈proof 〉

lemma unat-div:
‹unat (x div y) = unat x div unat y›
〈proof 〉

lemma unat-mod:
‹unat (x mod y) = unat x mod unat y›
〈proof 〉

107.16 Word Arithmetic
lemmas less-eq-word-numeral-numeral [simp] =
word-le-def [of ‹numeral a› ‹numeral b›, simplified uint-bintrunc uint-bintrunc-neg

THEORY “Word” 810

unsigned-minus-1-eq-mask mask-eq-exp-minus-1]
for a b

lemmas less-word-numeral-numeral [simp] =
word-less-def [of ‹numeral a› ‹numeral b›, simplified uint-bintrunc uint-bintrunc-neg

unsigned-minus-1-eq-mask mask-eq-exp-minus-1]
for a b

lemmas less-eq-word-minus-numeral-numeral [simp] =
word-le-def [of ‹− numeral a› ‹numeral b›, simplified uint-bintrunc uint-bintrunc-neg

unsigned-minus-1-eq-mask mask-eq-exp-minus-1]
for a b

lemmas less-word-minus-numeral-numeral [simp] =
word-less-def [of ‹− numeral a› ‹numeral b›, simplified uint-bintrunc uint-bintrunc-neg

unsigned-minus-1-eq-mask mask-eq-exp-minus-1]
for a b

lemmas less-eq-word-numeral-minus-numeral [simp] =
word-le-def [of ‹numeral a› ‹− numeral b›, simplified uint-bintrunc uint-bintrunc-neg

unsigned-minus-1-eq-mask mask-eq-exp-minus-1]
for a b

lemmas less-word-numeral-minus-numeral [simp] =
word-less-def [of ‹numeral a› ‹− numeral b›, simplified uint-bintrunc uint-bintrunc-neg

unsigned-minus-1-eq-mask mask-eq-exp-minus-1]
for a b

lemmas less-eq-word-minus-numeral-minus-numeral [simp] =
word-le-def [of ‹− numeral a› ‹− numeral b›, simplified uint-bintrunc uint-bintrunc-neg

unsigned-minus-1-eq-mask mask-eq-exp-minus-1]
for a b

lemmas less-word-minus-numeral-minus-numeral [simp] =
word-less-def [of ‹− numeral a› ‹− numeral b›, simplified uint-bintrunc uint-bintrunc-neg

unsigned-minus-1-eq-mask mask-eq-exp-minus-1]
for a b

lemmas less-word-numeral-minus-1 [simp] =
word-less-def [of ‹numeral a› ‹− 1 ›, simplified uint-bintrunc uint-bintrunc-neg

unsigned-minus-1-eq-mask mask-eq-exp-minus-1]
for a b

lemmas less-word-minus-numeral-minus-1 [simp] =
word-less-def [of ‹− numeral a› ‹− 1 ›, simplified uint-bintrunc uint-bintrunc-neg

unsigned-minus-1-eq-mask mask-eq-exp-minus-1]
for a b

lemmas sless-eq-word-numeral-numeral [simp] =
word-sle-eq [of ‹numeral a› ‹numeral b›, simplified sint-sbintrunc sint-sbintrunc-neg]
for a b

lemmas sless-word-numeral-numeral [simp] =
word-sless-alt [of ‹numeral a› ‹numeral b›, simplified sint-sbintrunc sint-sbintrunc-neg]
for a b

lemmas sless-eq-word-minus-numeral-numeral [simp] =
word-sle-eq [of ‹− numeral a› ‹numeral b›, simplified sint-sbintrunc sint-sbintrunc-neg]
for a b

lemmas sless-word-minus-numeral-numeral [simp] =

THEORY “Word” 811

word-sless-alt [of ‹− numeral a› ‹numeral b›, simplified sint-sbintrunc sint-sbintrunc-neg]
for a b

lemmas sless-eq-word-numeral-minus-numeral [simp] =
word-sle-eq [of ‹numeral a› ‹− numeral b›, simplified sint-sbintrunc sint-sbintrunc-neg]
for a b

lemmas sless-word-numeral-minus-numeral [simp] =
word-sless-alt [of ‹numeral a› ‹− numeral b›, simplified sint-sbintrunc sint-sbintrunc-neg]
for a b

lemmas sless-eq-word-minus-numeral-minus-numeral [simp] =
word-sle-eq [of ‹− numeral a› ‹− numeral b›, simplified sint-sbintrunc sint-sbintrunc-neg]
for a b

lemmas sless-word-minus-numeral-minus-numeral [simp] =
word-sless-alt [of ‹− numeral a› ‹− numeral b›, simplified sint-sbintrunc sint-sbintrunc-neg]
for a b

lemmas div-word-numeral-numeral [simp] =
word-div-def [of ‹numeral a› ‹numeral b›, simplified uint-bintrunc uint-bintrunc-neg

unsigned-minus-1-eq-mask mask-eq-exp-minus-1]
for a b

lemmas div-word-minus-numeral-numeral [simp] =
word-div-def [of ‹− numeral a› ‹numeral b›, simplified uint-bintrunc uint-bintrunc-neg

unsigned-minus-1-eq-mask mask-eq-exp-minus-1]
for a b

lemmas div-word-numeral-minus-numeral [simp] =
word-div-def [of ‹numeral a› ‹− numeral b›, simplified uint-bintrunc uint-bintrunc-neg

unsigned-minus-1-eq-mask mask-eq-exp-minus-1]
for a b

lemmas div-word-minus-numeral-minus-numeral [simp] =
word-div-def [of ‹− numeral a› ‹− numeral b›, simplified uint-bintrunc uint-bintrunc-neg

unsigned-minus-1-eq-mask mask-eq-exp-minus-1]
for a b

lemmas div-word-minus-1-numeral [simp] =
word-div-def [of ‹− 1 › ‹numeral b›, simplified uint-bintrunc uint-bintrunc-neg

unsigned-minus-1-eq-mask mask-eq-exp-minus-1]
for a b

lemmas div-word-minus-1-minus-numeral [simp] =
word-div-def [of ‹− 1 › ‹− numeral b›, simplified uint-bintrunc uint-bintrunc-neg

unsigned-minus-1-eq-mask mask-eq-exp-minus-1]
for a b

lemmas mod-word-numeral-numeral [simp] =
word-mod-def [of ‹numeral a› ‹numeral b›, simplified uint-bintrunc uint-bintrunc-neg

unsigned-minus-1-eq-mask mask-eq-exp-minus-1]
for a b

lemmas mod-word-minus-numeral-numeral [simp] =
word-mod-def [of ‹− numeral a› ‹numeral b›, simplified uint-bintrunc uint-bintrunc-neg

unsigned-minus-1-eq-mask mask-eq-exp-minus-1]
for a b

lemmas mod-word-numeral-minus-numeral [simp] =

THEORY “Word” 812

word-mod-def [of ‹numeral a› ‹− numeral b›, simplified uint-bintrunc uint-bintrunc-neg
unsigned-minus-1-eq-mask mask-eq-exp-minus-1]

for a b
lemmas mod-word-minus-numeral-minus-numeral [simp] =
word-mod-def [of ‹− numeral a› ‹− numeral b›, simplified uint-bintrunc uint-bintrunc-neg

unsigned-minus-1-eq-mask mask-eq-exp-minus-1]
for a b

lemmas mod-word-minus-1-numeral [simp] =
word-mod-def [of ‹− 1 › ‹numeral b›, simplified uint-bintrunc uint-bintrunc-neg

unsigned-minus-1-eq-mask mask-eq-exp-minus-1]
for a b

lemmas mod-word-minus-1-minus-numeral [simp] =
word-mod-def [of ‹− 1 › ‹− numeral b›, simplified uint-bintrunc uint-bintrunc-neg

unsigned-minus-1-eq-mask mask-eq-exp-minus-1]
for a b

lemma signed-drop-bit-of-1 [simp]:
‹signed-drop-bit n (1 :: ′a::len word) = of-bool (LENGTH (′a) = 1 ∨ n = 0)›
〈proof 〉

lemma take-bit-word-beyond-length-eq:
‹take-bit n w = w› if ‹LENGTH (′a) ≤ n› for w :: ‹ ′a::len word›
〈proof 〉

lemmas word-div-no [simp] = word-div-def [of numeral a numeral b] for a b
lemmas word-mod-no [simp] = word-mod-def [of numeral a numeral b] for a b
lemmas word-less-no [simp] = word-less-def [of numeral a numeral b] for a b
lemmas word-le-no [simp] = word-le-def [of numeral a numeral b] for a b
lemmas word-sless-no [simp] = word-sless-eq [of numeral a numeral b] for a b
lemmas word-sle-no [simp] = word-sle-eq [of numeral a numeral b] for a b

lemma size-0-same ′: size w = 0 =⇒ w = v
for v w :: ′a::len word
〈proof 〉

lemmas size-0-same = size-0-same ′ [unfolded word-size]

lemmas unat-eq-0 = unat-0-iff
lemmas unat-eq-zero = unat-0-iff

lemma mask-1 : mask 1 = 1
〈proof 〉

lemma mask-Suc-0 : mask (Suc 0) = 1
〈proof 〉

lemma bin-last-bintrunc: odd (take-bit l n) ←→ l > 0 ∧ odd n
〈proof 〉

THEORY “Word” 813

lemma push-bit-word-beyond [simp]:
‹push-bit n w = 0 › if ‹LENGTH (′a) ≤ n› for w :: ‹ ′a::len word›
〈proof 〉

lemma drop-bit-word-beyond [simp]:
‹drop-bit n w = 0 › if ‹LENGTH (′a) ≤ n› for w :: ‹ ′a::len word›
〈proof 〉

lemma signed-drop-bit-beyond:
‹signed-drop-bit n w = (if bit w (LENGTH (′a) − Suc 0) then − 1 else 0)›
if ‹LENGTH (′a) ≤ n› for w :: ‹ ′a::len word›
〈proof 〉

lemma take-bit-numeral-minus-numeral-word [simp]:
‹take-bit (numeral m) (− numeral n :: ′a::len word) =
(case take-bit-num (numeral m) n of None ⇒ 0 | Some q ⇒ take-bit (numeral

m) (2 ^ numeral m − numeral q))› (is ‹?lhs = ?rhs›)
〈proof 〉

lemma of-nat-inverse:
‹word-of-nat r = a =⇒ r < 2 ^ LENGTH (′a) =⇒ unat a = r›
for a :: ‹ ′a::len word›
〈proof 〉

107.17 Transferring goals from words to ints
lemma word-ths:

shows word-succ-p1 : word-succ a = a + 1
and word-pred-m1 : word-pred a = a − 1
and word-pred-succ: word-pred (word-succ a) = a
and word-succ-pred: word-succ (word-pred a) = a
and word-mult-succ: word-succ a ∗ b = b + a ∗ b
〈proof 〉

lemma uint-cong: x = y =⇒ uint x = uint y
〈proof 〉

lemma uint-word-ariths:
fixes a b :: ′a::len word
shows uint (a + b) = (uint a + uint b) mod 2 ^ LENGTH (′a::len)

and uint (a − b) = (uint a − uint b) mod 2 ^ LENGTH (′a)
and uint (a ∗ b) = uint a ∗ uint b mod 2 ^ LENGTH (′a)
and uint (− a) = − uint a mod 2 ^ LENGTH (′a)
and uint (word-succ a) = (uint a + 1) mod 2 ^ LENGTH (′a)
and uint (word-pred a) = (uint a − 1) mod 2 ^ LENGTH (′a)
and uint (0 :: ′a word) = 0 mod 2 ^ LENGTH (′a)
and uint (1 :: ′a word) = 1 mod 2 ^ LENGTH (′a)
〈proof 〉

THEORY “Word” 814

lemma uint-word-arith-bintrs:
fixes a b :: ′a::len word
shows uint (a + b) = take-bit (LENGTH (′a)) (uint a + uint b)

and uint (a − b) = take-bit (LENGTH (′a)) (uint a − uint b)
and uint (a ∗ b) = take-bit (LENGTH (′a)) (uint a ∗ uint b)
and uint (− a) = take-bit (LENGTH (′a)) (− uint a)
and uint (word-succ a) = take-bit (LENGTH (′a)) (uint a + 1)
and uint (word-pred a) = take-bit (LENGTH (′a)) (uint a − 1)
and uint (0 :: ′a word) = take-bit (LENGTH (′a)) 0
and uint (1 :: ′a word) = take-bit (LENGTH (′a)) 1
〈proof 〉

context
fixes a b :: ′a::len word

begin

lemma sint-word-add: sint (a + b) = signed-take-bit (LENGTH (′a) − 1) (sint a
+ sint b)
〈proof 〉

lemma sint-word-diff : sint (a − b) = signed-take-bit (LENGTH (′a) − 1) (sint a
− sint b)
〈proof 〉

lemma sint-word-mult: sint (a ∗ b) = signed-take-bit (LENGTH (′a) − 1) (sint a
∗ sint b)
〈proof 〉

lemma sint-word-minus: sint (− a) = signed-take-bit (LENGTH (′a) − 1) (− sint
a)
〈proof 〉

lemma sint-word-succ: sint (word-succ a) = signed-take-bit (LENGTH (′a) − 1)
(sint a + 1)
〈proof 〉

lemma sint-word-pred: sint (word-pred a) = signed-take-bit (LENGTH (′a) − 1)
(sint a − 1)
〈proof 〉

lemma sint-word-01 :
sint (0 :: ′a word) = signed-take-bit (LENGTH (′a) − 1) 0
sint (1 :: ′a word) = signed-take-bit (LENGTH (′a) − 1) 1
〈proof 〉

end

lemmas sint-word-ariths =

THEORY “Word” 815

sint-word-add sint-word-diff sint-word-mult sint-word-minus
sint-word-succ sint-word-pred sint-word-01

lemma word-pred-0-n1 : word-pred 0 = word-of-int (− 1)
〈proof 〉

lemma succ-pred-no [simp]:
word-succ (numeral w) = numeral w + 1
word-pred (numeral w) = numeral w − 1
word-succ (− numeral w) = − numeral w + 1
word-pred (− numeral w) = − numeral w − 1
〈proof 〉

lemma word-sp-01 [simp]:
word-succ (− 1) = 0 ∧ word-succ 0 = 1 ∧ word-pred 0 = − 1 ∧ word-pred 1 =

0
〈proof 〉

lemma word-of-int-Ex: ∃ y. x = word-of-int y
〈proof 〉

107.18 Order on fixed-length words
lift-definition udvd :: ‹ ′a::len word ⇒ ′a::len word ⇒ bool› (infixl ‹udvd› 50)

is ‹λk l. take-bit LENGTH (′a) k dvd take-bit LENGTH (′a) l› 〈proof 〉

lemma udvd-iff-dvd:
‹x udvd y ←→ unat x dvd unat y›
〈proof 〉

lemma udvd-iff-dvd-int:
‹v udvd w ←→ uint v dvd uint w›
〈proof 〉

lemma udvdI [intro]:
‹v udvd w› if ‹unat w = unat v ∗ unat u›
〈proof 〉

lemma udvdE [elim]:
fixes v w :: ‹ ′a::len word›
assumes ‹v udvd w›
obtains u :: ‹ ′a word› where ‹unat w = unat v ∗ unat u›
〈proof 〉

lemma udvd-imp-mod-eq-0 :
‹w mod v = 0 › if ‹v udvd w›
〈proof 〉

lemma mod-eq-0-imp-udvd [intro?]:
‹v udvd w› if ‹w mod v = 0 ›

THEORY “Word” 816

〈proof 〉

lemma udvd-imp-dvd:
‹v dvd w› if ‹v udvd w› for v w :: ‹ ′a::len word›
〈proof 〉

lemma exp-dvd-iff-exp-udvd:
‹2 ^ n dvd w ←→ 2 ^ n udvd w› for v w :: ‹ ′a::len word›
〈proof 〉

lemma udvd-nat-alt:
‹a udvd b ←→ (∃n. unat b = n ∗ unat a)›
〈proof 〉

lemma udvd-unfold-int:
‹a udvd b ←→ (∃n≥0 . uint b = n ∗ uint a)›
〈proof 〉

lemma unat-minus-one:
‹unat (w − 1) = unat w − 1 › if ‹w 6= 0 ›
〈proof 〉

lemma measure-unat: p 6= 0 =⇒ unat (p − 1) < unat p
〈proof 〉

lemmas uint-add-ge0 [simp] = add-nonneg-nonneg [OF uint-ge-0 uint-ge-0]
lemmas uint-mult-ge0 [simp] = mult-nonneg-nonneg [OF uint-ge-0 uint-ge-0]

lemma uint-sub-lt2p [simp]: uint x − uint y < 2 ^ LENGTH (′a)
for x :: ′a::len word and y :: ′b::len word
〈proof 〉

107.19 Conditions for the addition (etc) of two words to
overflow

lemma uint-add-lem:
(uint x + uint y < 2 ^ LENGTH (′a)) =
(uint (x + y) = uint x + uint y)

for x y :: ′a::len word
〈proof 〉

lemma uint-mult-lem:
(uint x ∗ uint y < 2 ^ LENGTH (′a)) =
(uint (x ∗ y) = uint x ∗ uint y)

for x y :: ′a::len word
〈proof 〉

lemma uint-sub-lem: uint x ≥ uint y ←→ uint (x − y) = uint x − uint y
〈proof 〉

THEORY “Word” 817

lemma uint-add-le: uint (x + y) ≤ uint x + uint y
〈proof 〉

lemma uint-sub-ge: uint (x − y) ≥ uint x − uint y
〈proof 〉

lemma int-mod-ge: ‹a ≤ a mod n› if ‹a < n› ‹0 < n›
for a n :: int
〈proof 〉

lemma mod-add-if-z:
[[x < z; y < z; 0 ≤ y; 0 ≤ x; 0 ≤ z]] =⇒
(x + y) mod z = (if x + y < z then x + y else x + y − z)

for x y z :: int
〈proof 〉

lemma uint-plus-if ′:
uint (a + b) =
(if uint a + uint b < 2 ^ LENGTH (′a) then uint a + uint b
else uint a + uint b − 2 ^ LENGTH (′a))

for a b :: ′a::len word
〈proof 〉

lemma mod-sub-if-z:
[[x < z; y < z; 0 ≤ y; 0 ≤ x; 0 ≤ z]] =⇒
(x − y) mod z = (if y ≤ x then x − y else x − y + z)

for x y z :: int
〈proof 〉

lemma uint-sub-if ′:
uint (a − b) =
(if uint b ≤ uint a then uint a − uint b
else uint a − uint b + 2 ^ LENGTH (′a))

for a b :: ′a::len word
〈proof 〉

lemma word-of-int-inverse:
word-of-int r = a =⇒ 0 ≤ r =⇒ r < 2 ^ LENGTH (′a) =⇒ uint a = r
for a :: ′a::len word
〈proof 〉

lemma unat-split: P (unat x) ←→ (∀n. of-nat n = x ∧ n < 2^LENGTH (′a) −→
P n)

for x :: ′a::len word
〈proof 〉

lemma unat-split-asm: P (unat x) ←→ (@n. of-nat n = x ∧ n < 2^LENGTH (′a)
∧ ¬ P n)

THEORY “Word” 818

for x :: ′a::len word
〈proof 〉

lemma un-ui-le:
‹unat a ≤ unat b ←→ uint a ≤ uint b›
〈proof 〉

lemma unat-plus-if ′:
‹unat (a + b) =
(if unat a + unat b < 2 ^ LENGTH (′a)
then unat a + unat b
else unat a + unat b − 2 ^ LENGTH (′a))› for a b :: ‹ ′a::len word›
〈proof 〉

lemma unat-sub-if-size:
unat (x − y) =
(if unat y ≤ unat x
then unat x − unat y
else unat x + 2 ^ size x − unat y)

〈proof 〉

lemmas unat-sub-if ′ = unat-sub-if-size [unfolded word-size]

lemma uint-split:
P (uint x) = (∀ i. word-of-int i = x ∧ 0 ≤ i ∧ i < 2^LENGTH (′a) −→ P i)
for x :: ′a::len word
〈proof 〉

lemma uint-split-asm:
P (uint x) = (@ i. word-of-int i = x ∧ 0 ≤ i ∧ i < 2^LENGTH (′a) ∧ ¬ P i)
for x :: ′a::len word
〈proof 〉

107.20 Some proof tool support
lemma power-False-cong: False =⇒ a ^ b = c ^ d
〈proof 〉

lemmas unat-splits = unat-split unat-split-asm

lemmas unat-arith-simps =
word-le-nat-alt word-less-nat-alt
word-unat-eq-iff
unat-sub-if ′ unat-plus-if ′ unat-div unat-mod

lemmas uint-splits = uint-split uint-split-asm

lemmas uint-arith-simps =
word-le-def word-less-alt

THEORY “Word” 819

word-uint-eq-iff
uint-sub-if ′ uint-plus-if ′

— unat-arith-tac: tactic to reduce word arithmetic to nat, try to solve via arith
〈ML〉

107.21 More on overflows and monotonicity
lemma no-plus-overflow-uint-size: x ≤ x + y ←→ uint x + uint y < 2 ^ size x

for x y :: ′a::len word
〈proof 〉

lemmas no-olen-add = no-plus-overflow-uint-size [unfolded word-size]

lemma no-ulen-sub: x ≥ x − y ←→ uint y ≤ uint x
for x y :: ′a::len word
〈proof 〉

lemma no-olen-add ′: x ≤ y + x ←→ uint y + uint x < 2 ^ LENGTH (′a)
for x y :: ′a::len word
〈proof 〉

lemmas olen-add-eqv = trans [OF no-olen-add no-olen-add ′ [symmetric]]

lemmas uint-plus-simple-iff = trans [OF no-olen-add uint-add-lem]
lemmas uint-plus-simple = uint-plus-simple-iff [THEN iffD1]
lemmas uint-minus-simple-iff = trans [OF no-ulen-sub uint-sub-lem]
lemmas uint-minus-simple-alt = uint-sub-lem [folded word-le-def]
lemmas word-sub-le-iff = no-ulen-sub [folded word-le-def]
lemmas word-sub-le = word-sub-le-iff [THEN iffD2]

lemma word-less-sub1 : x 6= 0 =⇒ 1 < x ←→ 0 < x − 1
for x :: ′a::len word
〈proof 〉

lemma word-le-sub1 : x 6= 0 =⇒ 1 ≤ x ←→ 0 ≤ x − 1
for x :: ′a::len word
〈proof 〉

lemma sub-wrap-lt: x < x − z ←→ x < z
for x z :: ′a::len word
〈proof 〉

lemma sub-wrap: x ≤ x − z ←→ z = 0 ∨ x < z
for x z :: ′a::len word
〈proof 〉

lemma plus-minus-not-NULL-ab: x ≤ ab − c =⇒ c ≤ ab =⇒ c 6= 0 =⇒ x + c
6= 0

THEORY “Word” 820

for x ab c :: ′a::len word
〈proof 〉

lemma plus-minus-no-overflow-ab: x ≤ ab − c =⇒ c ≤ ab =⇒ x ≤ x + c
for x ab c :: ′a::len word
〈proof 〉

lemma le-minus ′: a + c ≤ b =⇒ a ≤ a + c =⇒ c ≤ b − a
for a b c :: ′a::len word
〈proof 〉

lemma le-plus ′: a ≤ b =⇒ c ≤ b − a =⇒ a + c ≤ b
for a b c :: ′a::len word
〈proof 〉

lemmas le-plus = le-plus ′ [rotated]

lemmas le-minus = leD [THEN thin-rl, THEN le-minus ′]

lemma word-plus-mono-right: y ≤ z =⇒ x ≤ x + z =⇒ x + y ≤ x + z
for x y z :: ′a::len word
〈proof 〉

lemma word-less-minus-cancel: y − x < z − x =⇒ x ≤ z =⇒ y < z
for x y z :: ′a::len word
〈proof 〉

lemma word-less-minus-mono-left: y < z =⇒ x ≤ y =⇒ y − x < z − x
for x y z :: ′a::len word
〈proof 〉

lemma word-less-minus-mono: a < c =⇒ d < b =⇒ a − b < a =⇒ c − d < c
=⇒ a − b < c − d

for a b c d :: ′a::len word
〈proof 〉

lemma word-le-minus-cancel: y − x ≤ z − x =⇒ x ≤ z =⇒ y ≤ z
for x y z :: ′a::len word
〈proof 〉

lemma word-le-minus-mono-left: y ≤ z =⇒ x ≤ y =⇒ y − x ≤ z − x
for x y z :: ′a::len word
〈proof 〉

lemma word-le-minus-mono:
a ≤ c =⇒ d ≤ b =⇒ a − b ≤ a =⇒ c − d ≤ c =⇒ a − b ≤ c − d
for a b c d :: ′a::len word
〈proof 〉

THEORY “Word” 821

lemma plus-le-left-cancel-wrap: x + y ′ < x =⇒ x + y < x =⇒ x + y ′ < x + y
←→ y ′ < y

for x y y ′ :: ′a::len word
〈proof 〉

lemma plus-le-left-cancel-nowrap: x ≤ x + y ′ =⇒ x ≤ x + y =⇒ x + y ′ < x +
y ←→ y ′ < y

for x y y ′ :: ′a::len word
〈proof 〉

lemma word-plus-mono-right2 : a ≤ a + b =⇒ c ≤ b =⇒ a ≤ a + c
for a b c :: ′a::len word
〈proof 〉

lemma word-less-add-right: x < y − z =⇒ z ≤ y =⇒ x + z < y
for x y z :: ′a::len word
〈proof 〉

lemma word-less-sub-right: x < y + z =⇒ y ≤ x =⇒ x − y < z
for x y z :: ′a::len word
〈proof 〉

lemma word-le-plus-either : x ≤ y ∨ x ≤ z =⇒ y ≤ y + z =⇒ x ≤ y + z
for x y z :: ′a::len word
〈proof 〉

lemma word-less-nowrapI : x < z − k =⇒ k ≤ z =⇒ 0 < k =⇒ x < x + k
for x z k :: ′a::len word
〈proof 〉

lemma inc-le: i < m =⇒ i + 1 ≤ m
for i m :: ′a::len word
〈proof 〉

lemma less-imp-less-eq-dec:
‹v ≤ w − 1 › if ‹v < w› for v w :: ‹ ′a::len word›
〈proof 〉

lemma inc-less-eq-triv-imp:
‹w = − 1 › if ‹w + 1 ≤ w› for w :: ‹ ′a::len word›
〈proof 〉

lemma less-eq-dec-triv-imp:
‹w = 0 › if ‹w ≤ w − 1 › for w :: ‹ ′a::len word›
〈proof 〉

lemma inc-less-eq-iff :
‹v + 1 ≤ w ←→ v = − 1 ∨ v < w› for v w :: ‹ ′a::len word›
〈proof 〉

THEORY “Word” 822

lemma less-eq-dec-iff :
‹v ≤ w − 1 ←→ w = 0 ∨ v < w› for v w :: ‹ ′a::len word›
〈proof 〉

lemma inc-i: 1 ≤ i =⇒ i < m =⇒ 1 ≤ i + 1 ∧ i + 1 ≤ m
for i m :: ′a::len word
〈proof 〉

lemma dec-less-imp-less-eq:
‹v ≤ w› if ‹v − 1 < w› for v w :: ‹ ′a::len word›
〈proof 〉

lemma less-inc-imp-less-eq:
‹v ≤ w› if ‹v < w + 1 › for v w :: ‹ ′a::len word›
〈proof 〉

lemma less-eq-dec-self-iff-eq:
‹w ≤ w − 1 ←→ w = 0 › for w :: ‹ ′a::len word›
〈proof 〉

lemma inc-less-eq-self-iff-eq:
‹w + 1 ≤ w ←→ w = − 1 › for w :: ‹ ′a::len word›
〈proof 〉

lemma udvd-incr-lem:
[[up < uq; up = ua + n ∗ uint K ; uq = ua + n ′ ∗ uint K]]
=⇒ up + uint K ≤ uq
〈proof 〉

lemma udvd-incr ′:
p < q =⇒ uint p = ua + n ∗ uint K =⇒

uint q = ua + n ′ ∗ uint K =⇒ p + K ≤ q
〈proof 〉

lemma udvd-decr ′:
assumes p < q uint p = ua + n ∗ uint K uint q = ua + n ′ ∗ uint K

shows uint q = ua + n ′ ∗ uint K =⇒ p ≤ q − K
〈proof 〉

lemmas udvd-incr-lem0 = udvd-incr-lem [where ua=0 , unfolded add-0-left]
lemmas udvd-incr0 = udvd-incr ′ [where ua=0 , unfolded add-0-left]
lemmas udvd-decr0 = udvd-decr ′ [where ua=0 , unfolded add-0-left]

lemma udvd-minus-le ′: xy < k =⇒ z udvd xy =⇒ z udvd k =⇒ xy ≤ k − z
〈proof 〉

lemma udvd-incr2-K :
p < a + s =⇒ a ≤ a + s =⇒ K udvd s =⇒ K udvd p − a =⇒ a ≤ p =⇒

THEORY “Word” 823

0 < K =⇒ p ≤ p + K ∧ p + K ≤ a + s
〈proof 〉

107.22 Arithmetic type class instantiations
lemmas word-le-0-iff [simp] =

word-zero-le [THEN leD, THEN antisym-conv1]

lemma word-of-int-nat: 0 ≤ x =⇒ word-of-int x = of-nat (nat x)
〈proof 〉

note that iszero-def is only for class comm-semiring-1-cancel, which re-
quires word length ≥ 1, ie ′a::len word
lemma iszero-word-no [simp]:

iszero (numeral bin :: ′a::len word) =
iszero (take-bit LENGTH (′a) (numeral bin :: int))
〈proof 〉

Use iszero to simplify equalities between word numerals.
lemmas word-eq-numeral-iff-iszero [simp] =

eq-numeral-iff-iszero [where ′a= ′a::len word]

lemma word-less-eq-imp-half-less-eq:
‹v div 2 ≤ w div 2 › if ‹v ≤ w› for v w :: ‹ ′a::len word›
〈proof 〉

lemma word-half-less-imp-less-eq:
‹v ≤ w› if ‹v div 2 < w div 2 › for v w :: ‹ ′a::len word›
〈proof 〉

107.23 Word and nat
lemma word-nchotomy: ∀w :: ′a::len word. ∃n. w = of-nat n ∧ n < 2 ^ LENGTH (′a)
〈proof 〉

lemma of-nat-eq: of-nat n = w ←→ (∃ q. n = unat w + q ∗ 2 ^ LENGTH (′a))
for w :: ′a::len word
〈proof 〉

lemma of-nat-eq-size: of-nat n = w ←→ (∃ q. n = unat w + q ∗ 2 ^ size w)
〈proof 〉

lemma of-nat-0 : of-nat m = (0 :: ′a::len word)←→ (∃ q. m = q ∗ 2 ^ LENGTH (′a))
〈proof 〉

lemma of-nat-2p [simp]: of-nat (2 ^ LENGTH (′a)) = (0 :: ′a::len word)
〈proof 〉

lemma of-nat-gt-0 : of-nat k 6= 0 =⇒ 0 < k

THEORY “Word” 824

〈proof 〉

lemma of-nat-neq-0 : 0 < k =⇒ k < 2 ^ LENGTH (′a::len) =⇒ of-nat k 6= (0 ::
′a word)
〈proof 〉

lemma Abs-fnat-hom-add: of-nat a + of-nat b = of-nat (a + b)
〈proof 〉

lemma Abs-fnat-hom-mult: of-nat a ∗ of-nat b = (of-nat (a ∗ b) :: ′a::len word)
〈proof 〉

lemma Abs-fnat-hom-Suc: word-succ (of-nat a) = of-nat (Suc a)
〈proof 〉

lemma Abs-fnat-hom-0 : (0 :: ′a::len word) = of-nat 0
〈proof 〉

lemma Abs-fnat-hom-1 : (1 :: ′a::len word) = of-nat (Suc 0)
〈proof 〉

lemmas Abs-fnat-homs =
Abs-fnat-hom-add Abs-fnat-hom-mult Abs-fnat-hom-Suc
Abs-fnat-hom-0 Abs-fnat-hom-1

lemma word-arith-nat-add: a + b = of-nat (unat a + unat b)
〈proof 〉

lemma word-arith-nat-mult: a ∗ b = of-nat (unat a ∗ unat b)
〈proof 〉

lemma word-arith-nat-Suc: word-succ a = of-nat (Suc (unat a))
〈proof 〉

lemma word-arith-nat-div: a div b = of-nat (unat a div unat b)
〈proof 〉

lemma word-arith-nat-mod: a mod b = of-nat (unat a mod unat b)
〈proof 〉

lemmas word-arith-nat-defs =
word-arith-nat-add word-arith-nat-mult
word-arith-nat-Suc Abs-fnat-hom-0
Abs-fnat-hom-1 word-arith-nat-div
word-arith-nat-mod

lemma unat-of-nat:
‹unat (word-of-nat x :: ′a::len word) = x mod 2 ^ LENGTH (′a)›
〈proof 〉

THEORY “Word” 825

lemma unat-cong: x = y =⇒ unat x = unat y
〈proof 〉

lemmas unat-word-ariths = word-arith-nat-defs
[THEN trans [OF unat-cong unat-of-nat]]

lemmas word-sub-less-iff = word-sub-le-iff
[unfolded linorder-not-less [symmetric] Not-eq-iff]

lemma unat-add-lem:
unat x + unat y < 2 ^ LENGTH (′a) ←→ unat (x + y) = unat x + unat y
for x y :: ′a::len word
〈proof 〉

lemma unat-mult-lem:
unat x ∗ unat y < 2 ^ LENGTH (′a) ←→ unat (x ∗ y) = unat x ∗ unat y
for x y :: ′a::len word
〈proof 〉

lemma le-no-overflow: x ≤ b =⇒ a ≤ a + b =⇒ x ≤ a + b
for a b x :: ′a::len word
〈proof 〉

lemma uint-div:
‹uint (x div y) = uint x div uint y›
〈proof 〉

lemma uint-mod:
‹uint (x mod y) = uint x mod uint y›
〈proof 〉

lemma no-plus-overflow-unat-size: x ≤ x + y ←→ unat x + unat y < 2 ^ size x
for x y :: ′a::len word
〈proof 〉

lemmas no-olen-add-nat =
no-plus-overflow-unat-size [unfolded word-size]

lemmas unat-plus-simple =
trans [OF no-olen-add-nat unat-add-lem]

lemma word-div-mult: [[0 < y; unat x ∗ unat y < 2 ^ LENGTH (′a)]] =⇒ x ∗ y
div y = x

for x y :: ′a::len word
〈proof 〉

lemma div-lt ′: i ≤ k div x =⇒ unat i ∗ unat x < 2 ^ LENGTH (′a)
for i k x :: ′a::len word

THEORY “Word” 826

〈proof 〉

lemmas div-lt ′′ = order-less-imp-le [THEN div-lt ′]

lemma div-lt-mult: [[i < k div x; 0 < x]] =⇒ i ∗ x < k
for i k x :: ′a::len word
〈proof 〉

lemma div-le-mult: [[i ≤ k div x; 0 < x]] =⇒ i ∗ x ≤ k
for i k x :: ′a::len word
〈proof 〉

lemma div-lt-uint ′: i ≤ k div x =⇒ uint i ∗ uint x < 2 ^ LENGTH (′a)
for i k x :: ′a::len word
〈proof 〉

lemmas div-lt-uint ′′ = order-less-imp-le [THEN div-lt-uint ′]

lemma word-le-exists ′: x ≤ y =⇒ ∃ z. y = x + z ∧ uint x + uint z < 2 ^
LENGTH (′a)

for x y z :: ′a::len word
〈proof 〉

lemmas plus-minus-not-NULL = order-less-imp-le [THEN plus-minus-not-NULL-ab]

lemmas plus-minus-no-overflow =
order-less-imp-le [THEN plus-minus-no-overflow-ab]

lemmas mcs = word-less-minus-cancel word-less-minus-mono-left
word-le-minus-cancel word-le-minus-mono-left

lemmas word-l-diffs = mcs [where y = w + x, unfolded add-diff-cancel] for w x
lemmas word-diff-ls = mcs [where z = w + x, unfolded add-diff-cancel] for w x
lemmas word-plus-mcs = word-diff-ls [where y = v + x, unfolded add-diff-cancel]
for v x

lemma le-unat-uoi:
‹y ≤ unat z =⇒ unat (word-of-nat y :: ′a word) = y›
for z :: ‹ ′a::len word›
〈proof 〉

lemmas thd = times-div-less-eq-dividend

lemmas uno-simps [THEN le-unat-uoi] = mod-le-divisor div-le-dividend

lemma word-mod-div-equality: (n div b) ∗ b + (n mod b) = n
for n b :: ′a::len word
〈proof 〉

THEORY “Word” 827

lemma word-div-mult-le: a div b ∗ b ≤ a
for a b :: ′a::len word
〈proof 〉

lemma word-mod-less-divisor : 0 < n =⇒ m mod n < n
for m n :: ′a::len word
〈proof 〉

lemma word-of-int-power-hom: word-of-int a ^ n = (word-of-int (a ^ n) :: ′a::len
word)
〈proof 〉

lemma word-arith-power-alt: a ^ n = (word-of-int (uint a ^ n) :: ′a::len word)
〈proof 〉

lemma unatSuc: 1 + n 6= 0 =⇒ unat (1 + n) = Suc (unat n)
for n :: ′a::len word
〈proof 〉

107.24 Cardinality, finiteness of set of words
lemma inj-on-word-of-int: ‹inj-on (word-of-int :: int ⇒ ′a word) {0 ..<2 ^ LENGTH (′a::len)}›
〈proof 〉

lemma range-uint: ‹range (uint :: ′a word ⇒ int) = {0 ..<2 ^ LENGTH (′a::len)}›
〈proof 〉

lemma UNIV-eq: ‹(UNIV :: ′a word set) = word-of-int ‘ {0 ..<2 ^ LENGTH (′a::len)}›
〈proof 〉

lemma card-word: CARD(′a word) = 2 ^ LENGTH (′a::len)
〈proof 〉

lemma card-word-size: CARD(′a word) = 2 ^ size x
for x :: ′a::len word
〈proof 〉

end

instance word :: (len) finite
〈proof 〉

107.25 Bitwise Operations on Words
context

includes bit-operations-syntax
begin

lemma word-wi-log-defs:
NOT (word-of-int a) = word-of-int (NOT a)

THEORY “Word” 828

word-of-int a AND word-of-int b = word-of-int (a AND b)
word-of-int a OR word-of-int b = word-of-int (a OR b)
word-of-int a XOR word-of-int b = word-of-int (a XOR b)
〈proof 〉

lemma word-no-log-defs [simp]:
NOT (numeral a) = word-of-int (NOT (numeral a))
NOT (− numeral a) = word-of-int (NOT (− numeral a))
numeral a AND numeral b = word-of-int (numeral a AND numeral b)
numeral a AND − numeral b = word-of-int (numeral a AND − numeral b)
− numeral a AND numeral b = word-of-int (− numeral a AND numeral b)
− numeral a AND − numeral b = word-of-int (− numeral a AND − numeral b)
numeral a OR numeral b = word-of-int (numeral a OR numeral b)
numeral a OR − numeral b = word-of-int (numeral a OR − numeral b)
− numeral a OR numeral b = word-of-int (− numeral a OR numeral b)
− numeral a OR − numeral b = word-of-int (− numeral a OR − numeral b)
numeral a XOR numeral b = word-of-int (numeral a XOR numeral b)
numeral a XOR − numeral b = word-of-int (numeral a XOR − numeral b)
− numeral a XOR numeral b = word-of-int (− numeral a XOR numeral b)
− numeral a XOR − numeral b = word-of-int (− numeral a XOR − numeral b)
〈proof 〉

Special cases for when one of the arguments equals 1.
lemma word-bitwise-1-simps [simp]:

NOT (1 :: ′a::len word) = −2
1 AND numeral b = word-of-int (1 AND numeral b)
1 AND − numeral b = word-of-int (1 AND − numeral b)
numeral a AND 1 = word-of-int (numeral a AND 1)
− numeral a AND 1 = word-of-int (− numeral a AND 1)
1 OR numeral b = word-of-int (1 OR numeral b)
1 OR − numeral b = word-of-int (1 OR − numeral b)
numeral a OR 1 = word-of-int (numeral a OR 1)
− numeral a OR 1 = word-of-int (− numeral a OR 1)
1 XOR numeral b = word-of-int (1 XOR numeral b)
1 XOR − numeral b = word-of-int (1 XOR − numeral b)
numeral a XOR 1 = word-of-int (numeral a XOR 1)
− numeral a XOR 1 = word-of-int (− numeral a XOR 1)

〈proof 〉

Special cases for when one of the arguments equals -1.
lemma word-bitwise-m1-simps [simp]:

NOT (−1 :: ′a::len word) = 0
(−1 :: ′a::len word) AND x = x
x AND (−1 :: ′a::len word) = x
(−1 :: ′a::len word) OR x = −1
x OR (−1 :: ′a::len word) = −1
(−1 :: ′a::len word) XOR x = NOT x

x XOR (−1 :: ′a::len word) = NOT x
〈proof 〉

THEORY “Word” 829

lemma word-of-int-not-numeral-eq [simp]:
‹(word-of-int (NOT (numeral bin)) :: ′a::len word) = − numeral bin − 1 ›
〈proof 〉

lemma uint-and:
‹uint (x AND y) = uint x AND uint y›
〈proof 〉

lemma uint-or :
‹uint (x OR y) = uint x OR uint y›
〈proof 〉

lemma uint-xor :
‹uint (x XOR y) = uint x XOR uint y›
〈proof 〉

lemmas bwsimps =
wi-hom-add
word-wi-log-defs

lemma word-bw-assocs:
(x AND y) AND z = x AND y AND z
(x OR y) OR z = x OR y OR z
(x XOR y) XOR z = x XOR y XOR z
for x :: ′a::len word
〈proof 〉

lemma word-bw-comms:
x AND y = y AND x
x OR y = y OR x
x XOR y = y XOR x
for x :: ′a::len word
〈proof 〉

lemma word-bw-lcs:
y AND x AND z = x AND y AND z
y OR x OR z = x OR y OR z
y XOR x XOR z = x XOR y XOR z
for x :: ′a::len word
〈proof 〉

lemma word-log-esimps:
x AND 0 = 0
x AND −1 = x
x OR 0 = x
x OR −1 = −1
x XOR 0 = x
x XOR −1 = NOT x
0 AND x = 0

THEORY “Word” 830

−1 AND x = x
0 OR x = x
−1 OR x = −1
0 XOR x = x
−1 XOR x = NOT x
for x :: ′a::len word
〈proof 〉

lemma word-not-dist:
NOT (x OR y) = NOT x AND NOT y
NOT (x AND y) = NOT x OR NOT y
for x :: ′a::len word
〈proof 〉

lemma word-bw-same:
x AND x = x
x OR x = x
x XOR x = 0
for x :: ′a::len word
〈proof 〉

lemma word-ao-absorbs [simp]:
x AND (y OR x) = x
x OR y AND x = x
x AND (x OR y) = x
y AND x OR x = x
(y OR x) AND x = x
x OR x AND y = x
(x OR y) AND x = x
x AND y OR x = x
for x :: ′a::len word
〈proof 〉

lemma word-not-not [simp]: NOT (NOT x) = x
for x :: ′a::len word
〈proof 〉

lemma word-ao-dist: (x OR y) AND z = x AND z OR y AND z
for x :: ′a::len word
〈proof 〉

lemma word-oa-dist: x AND y OR z = (x OR z) AND (y OR z)
for x :: ′a::len word
〈proof 〉

lemma word-add-not [simp]: x + NOT x = −1
for x :: ′a::len word
〈proof 〉

THEORY “Word” 831

lemma word-plus-and-or [simp]: (x AND y) + (x OR y) = x + y
for x :: ′a::len word
〈proof 〉

lemma leoa: w = x OR y =⇒ y = w AND y
for x :: ′a::len word
〈proof 〉

lemma leao: w ′ = x ′ AND y ′ =⇒ x ′ = x ′ OR w ′

for x ′ :: ′a::len word
〈proof 〉

lemma word-ao-equiv: w = w OR w ′←→ w ′ = w AND w ′

for w w ′ :: ′a::len word
〈proof 〉

lemma le-word-or2 : x ≤ x OR y
for x y :: ′a::len word
〈proof 〉

lemmas le-word-or1 = xtrans(3) [OF word-bw-comms (2) le-word-or2]
lemmas word-and-le1 = xtrans(3) [OF word-ao-absorbs (4) [symmetric] le-word-or2]
lemmas word-and-le2 = xtrans(3) [OF word-ao-absorbs (8) [symmetric] le-word-or2]

lemma bit-horner-sum-bit-word-iff [bit-simps]:
‹bit (horner-sum of-bool (2 :: ′a::len word) bs) n
←→ n < min LENGTH (′a) (length bs) ∧ bs ! n›
〈proof 〉

definition word-reverse :: ‹ ′a::len word ⇒ ′a word›
where ‹word-reverse w = horner-sum of-bool 2 (rev (map (bit w) [0 ..<LENGTH (′a)]))›

lemma bit-word-reverse-iff [bit-simps]:
‹bit (word-reverse w) n ←→ n < LENGTH (′a) ∧ bit w (LENGTH (′a) − Suc n)›
for w :: ‹ ′a::len word›
〈proof 〉

lemma word-rev-rev [simp] : word-reverse (word-reverse w) = w
〈proof 〉

lemma word-rev-gal: word-reverse w = u =⇒ word-reverse u = w
〈proof 〉

lemma word-rev-gal ′: u = word-reverse w =⇒ w = word-reverse u
〈proof 〉

lemma word-eq-reverseI :
‹v = w› if ‹word-reverse v = word-reverse w›
〈proof 〉

THEORY “Word” 832

lemma uint-2p: (0 :: ′a::len word) < 2 ^ n =⇒ uint (2 ^ n:: ′a::len word) = 2 ^ n
〈proof 〉

lemma word-of-int-2p: (word-of-int (2 ^ n) :: ′a::len word) = 2 ^ n
〈proof 〉

107.25.1 shift functions in terms of lists of bools
lemma drop-bit-word-numeral [simp]:

‹drop-bit (numeral n) (numeral k) =
(word-of-int (drop-bit (numeral n) (take-bit LENGTH (′a) (numeral k))) :: ′a::len

word)›
〈proof 〉

lemma drop-bit-word-Suc-numeral [simp]:
‹drop-bit (Suc n) (numeral k) =
(word-of-int (drop-bit (Suc n) (take-bit LENGTH (′a) (numeral k))) :: ′a::len

word)›
〈proof 〉

lemma drop-bit-word-minus-numeral [simp]:
‹drop-bit (numeral n) (− numeral k) =
(word-of-int (drop-bit (numeral n) (take-bit LENGTH (′a) (− numeral k))) ::

′a::len word)›
〈proof 〉

lemma drop-bit-word-Suc-minus-numeral [simp]:
‹drop-bit (Suc n) (− numeral k) =
(word-of-int (drop-bit (Suc n) (take-bit LENGTH (′a) (− numeral k))) :: ′a::len

word)›
〈proof 〉

lemma signed-drop-bit-word-numeral [simp]:
‹signed-drop-bit (numeral n) (numeral k) =
(word-of-int (drop-bit (numeral n) (signed-take-bit (LENGTH (′a) − 1) (numeral

k))) :: ′a::len word)›
〈proof 〉

lemma signed-drop-bit-word-Suc-numeral [simp]:
‹signed-drop-bit (Suc n) (numeral k) =

(word-of-int (drop-bit (Suc n) (signed-take-bit (LENGTH (′a) − 1) (numeral
k))) :: ′a::len word)›
〈proof 〉

lemma signed-drop-bit-word-minus-numeral [simp]:
‹signed-drop-bit (numeral n) (− numeral k) =

(word-of-int (drop-bit (numeral n) (signed-take-bit (LENGTH (′a) − 1) (−
numeral k))) :: ′a::len word)›

THEORY “Word” 833

〈proof 〉

lemma signed-drop-bit-word-Suc-minus-numeral [simp]:
‹signed-drop-bit (Suc n) (− numeral k) =
(word-of-int (drop-bit (Suc n) (signed-take-bit (LENGTH (′a) − 1) (− numeral

k))) :: ′a::len word)›
〈proof 〉

lemma take-bit-word-numeral [simp]:
‹take-bit (numeral n) (numeral k) =
(word-of-int (take-bit (min LENGTH (′a) (numeral n)) (numeral k)) :: ′a::len

word)›
〈proof 〉

lemma take-bit-word-Suc-numeral [simp]:
‹take-bit (Suc n) (numeral k) =
(word-of-int (take-bit (min LENGTH (′a) (Suc n)) (numeral k)) :: ′a::len word)›
〈proof 〉

lemma take-bit-word-minus-numeral [simp]:
‹take-bit (numeral n) (− numeral k) =
(word-of-int (take-bit (min LENGTH (′a) (numeral n)) (− numeral k)) :: ′a::len

word)›
〈proof 〉

lemma take-bit-word-Suc-minus-numeral [simp]:
‹take-bit (Suc n) (− numeral k) =

(word-of-int (take-bit (min LENGTH (′a) (Suc n)) (− numeral k)) :: ′a::len
word)›
〈proof 〉

lemma signed-take-bit-word-numeral [simp]:
‹signed-take-bit (numeral n) (numeral k) =
(word-of-int (signed-take-bit (numeral n) (take-bit LENGTH (′a) (numeral k)))

:: ′a::len word)›
〈proof 〉

lemma signed-take-bit-word-Suc-numeral [simp]:
‹signed-take-bit (Suc n) (numeral k) =

(word-of-int (signed-take-bit (Suc n) (take-bit LENGTH (′a) (numeral k))) ::
′a::len word)›
〈proof 〉

lemma signed-take-bit-word-minus-numeral [simp]:
‹signed-take-bit (numeral n) (− numeral k) =

(word-of-int (signed-take-bit (numeral n) (take-bit LENGTH (′a) (− numeral
k))) :: ′a::len word)›
〈proof 〉

THEORY “Word” 834

lemma signed-take-bit-word-Suc-minus-numeral [simp]:
‹signed-take-bit (Suc n) (− numeral k) =
(word-of-int (signed-take-bit (Suc n) (take-bit LENGTH (′a) (− numeral k))) ::

′a::len word)›
〈proof 〉

lemma False-map2-or : [[set xs ⊆ {False}; length ys = length xs]] =⇒ map2 (∨) xs
ys = ys
〈proof 〉

lemma align-lem-or :
assumes length xs = n + m length ys = n + m

and drop m xs = replicate n False take m ys = replicate m False
shows map2 (∨) xs ys = take m xs @ drop m ys
〈proof 〉

lemma False-map2-and: [[set xs ⊆ {False}; length ys = length xs]] =⇒ map2 (∧)
xs ys = xs
〈proof 〉

lemma align-lem-and:
assumes length xs = n + m length ys = n + m

and drop m xs = replicate n False take m ys = replicate m False
shows map2 (∧) xs ys = replicate (n + m) False
〈proof 〉

107.25.2 Mask
lemma minus-1-eq-mask:

‹− 1 = (mask LENGTH (′a) :: ′a::len word)›
〈proof 〉

lemma mask-eq-decr-exp:
‹mask n = 2 ^ n − (1 :: ′a::len word)›
〈proof 〉

lemma mask-Suc-rec:
‹mask (Suc n) = 2 ∗ mask n + (1 :: ′a::len word)›
〈proof 〉

context
begin

qualified lemma bit-mask-iff [bit-simps]:
‹bit (mask m :: ′a::len word) n ←→ n < min LENGTH (′a) m›
〈proof 〉

end

THEORY “Word” 835

lemma mask-bin: mask n = word-of-int (take-bit n (− 1))
〈proof 〉

lemma and-mask-bintr : w AND mask n = word-of-int (take-bit n (uint w))
〈proof 〉

lemma and-mask-wi: word-of-int i AND mask n = word-of-int (take-bit n i)
〈proof 〉

lemma and-mask-wi ′:
word-of-int i AND mask n = (word-of-int (take-bit (min LENGTH (′a) n) i) ::

′a::len word)
〈proof 〉

lemma and-mask-no: numeral i AND mask n = word-of-int (take-bit n (numeral
i))
〈proof 〉

lemma and-mask-mod-2p: w AND mask n = word-of-int (uint w mod 2 ^ n)
〈proof 〉

lemma uint-mask-eq:
‹uint (mask n :: ′a::len word) = mask (min LENGTH (′a) n)›
〈proof 〉

lemma and-mask-lt-2p: uint (w AND mask n) < 2 ^ n
〈proof 〉

lemma mask-eq-iff : w AND mask n = w ←→ uint w < 2 ^ n
〈proof 〉

lemma and-mask-dvd: 2 ^ n dvd uint w ←→ w AND mask n = 0
〈proof 〉

lemma and-mask-dvd-nat: 2 ^ n dvd unat w ←→ w AND mask n = 0
〈proof 〉

lemma word-2p-lem: n < size w =⇒ w < 2 ^ n = (uint w < 2 ^ n)
for w :: ′a::len word
〈proof 〉

lemma less-mask-eq:
fixes x :: ′a::len word
assumes x < 2 ^ n shows x AND mask n = x
〈proof 〉

lemmas mask-eq-iff-w2p = trans [OF mask-eq-iff word-2p-lem [symmetric]]

lemmas and-mask-less ′= iffD2 [OF word-2p-lem and-mask-lt-2p, simplified word-size]

THEORY “Word” 836

lemma and-mask-less-size: n < size x =⇒ x AND mask n < 2 ^ n
for x :: ‹ ′a::len word›
〈proof 〉

lemma word-mod-2p-is-mask [OF refl]: c = 2 ^ n =⇒ c > 0 =⇒ x mod c = x
AND mask n

for c x :: ′a::len word
〈proof 〉

lemma mask-eqs:
(a AND mask n) + b AND mask n = a + b AND mask n
a + (b AND mask n) AND mask n = a + b AND mask n
(a AND mask n) − b AND mask n = a − b AND mask n
a − (b AND mask n) AND mask n = a − b AND mask n
a ∗ (b AND mask n) AND mask n = a ∗ b AND mask n
(b AND mask n) ∗ a AND mask n = b ∗ a AND mask n
(a AND mask n) + (b AND mask n) AND mask n = a + b AND mask n
(a AND mask n) − (b AND mask n) AND mask n = a − b AND mask n
(a AND mask n) ∗ (b AND mask n) AND mask n = a ∗ b AND mask n
− (a AND mask n) AND mask n = − a AND mask n
word-succ (a AND mask n) AND mask n = word-succ a AND mask n
word-pred (a AND mask n) AND mask n = word-pred a AND mask n
〈proof 〉

lemma mask-power-eq: (x AND mask n) ^ k AND mask n = x ^ k AND mask n
for x :: ‹ ′a::len word›
〈proof 〉

lemma mask-full [simp]: mask LENGTH (′a) = (− 1 :: ′a::len word)
〈proof 〉

107.25.3 Slices
definition slice1 :: ‹nat ⇒ ′a::len word ⇒ ′b::len word›

where ‹slice1 n w = (if n < LENGTH (′a)
then ucast (drop-bit (LENGTH (′a) − n) w)
else push-bit (n − LENGTH (′a)) (ucast w))›

lemma bit-slice1-iff [bit-simps]:
‹bit (slice1 m w :: ′b::len word) n ←→ m − LENGTH (′a) ≤ n ∧ n < min

LENGTH (′b) m
∧ bit w (n + (LENGTH (′a) − m) − (m − LENGTH (′a)))›

for w :: ‹ ′a::len word›
〈proof 〉

definition slice :: ‹nat ⇒ ′a::len word ⇒ ′b::len word›
where ‹slice n = slice1 (LENGTH (′a) − n)›

THEORY “Word” 837

lemma bit-slice-iff [bit-simps]:
‹bit (slice m w :: ′b::len word) n ←→ n < min LENGTH (′b) (LENGTH (′a) −

m) ∧ bit w (n + LENGTH (′a) − (LENGTH (′a) − m))›
for w :: ‹ ′a::len word›
〈proof 〉

lemma slice1-0 [simp] : slice1 n 0 = 0
〈proof 〉

lemma slice-0 [simp] : slice n 0 = 0
〈proof 〉

lemma ucast-slice1 : ucast w = slice1 (size w) w
〈proof 〉

lemma ucast-slice: ucast w = slice 0 w
〈proof 〉

lemma slice-id: slice 0 t = t
〈proof 〉

lemma rev-slice1 :
‹slice1 n (word-reverse w :: ′b::len word) = word-reverse (slice1 k w :: ′a::len

word)›
if ‹n + k = LENGTH (′a) + LENGTH (′b)›
〈proof 〉

lemma rev-slice:
n + k + LENGTH (′a::len) = LENGTH (′b::len) =⇒

slice n (word-reverse (w:: ′b word)) = word-reverse (slice k w :: ′a word)
〈proof 〉

107.25.4 Revcast
definition revcast :: ‹ ′a::len word ⇒ ′b::len word›

where ‹revcast = slice1 LENGTH (′b)›

lemma bit-revcast-iff [bit-simps]:
‹bit (revcast w :: ′b::len word) n ←→ LENGTH (′b) − LENGTH (′a) ≤ n ∧ n <

LENGTH (′b)
∧ bit w (n + (LENGTH (′a) − LENGTH (′b)) − (LENGTH (′b) − LENGTH (′a)))›

for w :: ‹ ′a::len word›
〈proof 〉

lemma revcast-slice1 [OF refl]: rc = revcast w =⇒ slice1 (size rc) w = rc
〈proof 〉

lemma revcast-rev-ucast [OF refl refl refl]:
cs = [rc, uc] =⇒ rc = revcast (word-reverse w) =⇒ uc = ucast w =⇒

THEORY “Word” 838

rc = word-reverse uc
〈proof 〉

lemma revcast-ucast: revcast w = word-reverse (ucast (word-reverse w))
〈proof 〉

lemma ucast-revcast: ucast w = word-reverse (revcast (word-reverse w))
〈proof 〉

lemma ucast-rev-revcast: ucast (word-reverse w) = word-reverse (revcast w)
〈proof 〉

linking revcast and cast via shift
lemmas wsst-TYs = source-size target-size word-size

lemmas sym-notr =
not-iff [THEN iffD2 , THEN not-sym, THEN not-iff [THEN iffD1]]

107.26 Split and cat
lemmas word-split-bin ′ = word-split-def
lemmas word-cat-bin ′ = word-cat-eq

— this odd result is analogous to ucast-id, result to the length given by the result
type

lemma word-cat-id: word-cat a b = b
〈proof 〉

lemma word-cat-split-alt: [[size w ≤ size u + size v; word-split w = (u,v)]] =⇒
word-cat u v = w
〈proof 〉

lemmas word-cat-split-size = sym [THEN [2] word-cat-split-alt [symmetric]]

107.26.1 Split and slice
lemma split-slices:

assumes word-split w = (u, v)
shows u = slice (size v) w ∧ v = slice 0 w
〈proof 〉

lemma slice-cat1 [OF refl]:
[[wc = word-cat a b; size a + size b ≤ size wc]] =⇒ slice (size b) wc = a
〈proof 〉

lemmas slice-cat2 = trans [OF slice-id word-cat-id]

lemma cat-slices:

THEORY “Word” 839

[[a = slice n c; b = slice 0 c; n = size b; size c ≤ size a + size b]] =⇒ word-cat a
b = c
〈proof 〉

lemma word-split-cat-alt:
assumes w = word-cat u v and size: size u + size v ≤ size w
shows word-split w = (u,v)
〈proof 〉

lemma horner-sum-uint-exp-Cons-eq:
‹horner-sum uint (2 ^ LENGTH (′a)) (w # ws) =

concat-bit LENGTH (′a) (uint w) (horner-sum uint (2 ^ LENGTH (′a)) ws)›
for ws :: ‹ ′a::len word list›
〈proof 〉

lemma bit-horner-sum-uint-exp-iff :
‹bit (horner-sum uint (2 ^ LENGTH (′a)) ws) n ←→

n div LENGTH (′a) < length ws ∧ bit (ws ! (n div LENGTH (′a))) (n mod
LENGTH (′a))›

for ws :: ‹ ′a::len word list›
〈proof 〉

107.27 Rotation
lemma word-rotr-word-rotr-eq: ‹word-rotr m (word-rotr n w) = word-rotr (m +
n) w›
〈proof 〉

lemma word-rot-lem: [[l + k = d + k mod l; n < l]] =⇒ ((d + n) mod l) = n for
l::nat
〈proof 〉

lemma word-rot-rl [simp]: ‹word-rotl k (word-rotr k v) = v›
〈proof 〉

lemma word-rot-lr [simp]: ‹word-rotr k (word-rotl k v) = v›
〈proof 〉

lemma word-rot-gal:
‹word-rotr n v = w ←→ word-rotl n w = v›
〈proof 〉

lemma word-rot-gal ′:
‹w = word-rotr n v ←→ v = word-rotl n w›
〈proof 〉

lemma word-reverse-word-rotl:
‹word-reverse (word-rotl n w) = word-rotr n (word-reverse w)› (is ‹?lhs = ?rhs›)
〈proof 〉

THEORY “Word” 840

lemma word-reverse-word-rotr :
‹word-reverse (word-rotr n w) = word-rotl n (word-reverse w)›
〈proof 〉

lemma word-rotl-rev:
‹word-rotl n w = word-reverse (word-rotr n (word-reverse w))›
〈proof 〉

lemma word-rotr-rev:
‹word-rotr n w = word-reverse (word-rotl n (word-reverse w))›
〈proof 〉

lemma word-roti-0 [simp]: word-roti 0 w = w
〈proof 〉

lemma word-roti-add: word-roti (m + n) w = word-roti m (word-roti n w)
〈proof 〉

lemma word-roti-conv-mod ′:
word-roti n w = word-roti (n mod int (size w)) w
〈proof 〉

lemmas word-roti-conv-mod = word-roti-conv-mod ′ [unfolded word-size]

end

107.27.1 "Word rotation commutes with bit-wise operations
locale word-rotate
begin

context
includes bit-operations-syntax

begin

lemma word-rot-logs:
word-rotl n (NOT v) = NOT (word-rotl n v)
word-rotr n (NOT v) = NOT (word-rotr n v)
word-rotl n (x AND y) = word-rotl n x AND word-rotl n y
word-rotr n (x AND y) = word-rotr n x AND word-rotr n y
word-rotl n (x OR y) = word-rotl n x OR word-rotl n y
word-rotr n (x OR y) = word-rotr n x OR word-rotr n y
word-rotl n (x XOR y) = word-rotl n x XOR word-rotl n y
word-rotr n (x XOR y) = word-rotr n x XOR word-rotr n y
〈proof 〉

end

THEORY “Word” 841

end

lemmas word-rot-logs = word-rotate.word-rot-logs

lemma word-rotx-0 [simp] : word-rotr i 0 = 0 ∧ word-rotl i 0 = 0
〈proof 〉

lemma word-roti-0 ′ [simp] : word-roti n 0 = 0
〈proof 〉

declare word-roti-eq-word-rotr-word-rotl [simp]

107.28 Maximum machine word
context

includes bit-operations-syntax
begin

lemma word-int-cases:
fixes x :: ′a::len word
obtains n where x = word-of-int n and 0 ≤ n and n < 2^LENGTH (′a)
〈proof 〉

lemma word-nat-cases [cases type: word]:
fixes x :: ′a::len word
obtains n where x = of-nat n and n < 2^LENGTH (′a)
〈proof 〉

lemma max-word-max [intro!]:
‹n ≤ − 1 › for n :: ‹ ′a::len word›
〈proof 〉

lemma word-of-int-2p-len: word-of-int (2 ^ LENGTH (′a)) = (0 :: ′a::len word)
〈proof 〉

lemma word-pow-0 : (2 :: ′a::len word) ^ LENGTH (′a) = 0
〈proof 〉

lemma max-word-wrap:
‹x + 1 = 0 =⇒ x = − 1 › for x :: ‹ ′a::len word›
〈proof 〉

lemma word-and-max:
‹x AND − 1 = x› for x :: ‹ ′a::len word›
〈proof 〉

lemma word-or-max:
‹x OR − 1 = − 1 › for x :: ‹ ′a::len word›
〈proof 〉

THEORY “Word” 842

lemma word-ao-dist2 : x AND (y OR z) = x AND y OR x AND z
for x y z :: ′a::len word
〈proof 〉

lemma word-oa-dist2 : x OR y AND z = (x OR y) AND (x OR z)
for x y z :: ′a::len word
〈proof 〉

lemma word-and-not [simp]: x AND NOT x = 0
for x :: ′a::len word
〈proof 〉

lemma word-or-not [simp]:
‹x OR NOT x = − 1 › for x :: ‹ ′a::len word›
〈proof 〉

lemma word-xor-and-or : x XOR y = x AND NOT y OR NOT x AND y
for x y :: ′a::len word
〈proof 〉

lemma uint-lt-0 [simp]: uint x < 0 = False
〈proof 〉

lemma word-less-1 [simp]: x < 1 ←→ x = 0
for x :: ′a::len word
〈proof 〉

lemma uint-plus-if-size:
uint (x + y) =
(if uint x + uint y < 2^size x
then uint x + uint y
else uint x + uint y − 2^size x)

〈proof 〉

lemma unat-plus-if-size:
unat (x + y) =
(if unat x + unat y < 2^size x
then unat x + unat y
else unat x + unat y − 2^size x)

for x y :: ′a::len word
〈proof 〉

lemma word-neq-0-conv: w 6= 0 ←→ 0 < w
for w :: ′a::len word
〈proof 〉

lemma max-lt: unat (max a b div c) = unat (max a b) div unat c
for c :: ′a::len word

THEORY “Word” 843

〈proof 〉

lemma uint-sub-if-size:
uint (x − y) =
(if uint y ≤ uint x
then uint x − uint y
else uint x − uint y + 2^size x)

〈proof 〉

lemma unat-sub:
‹unat (a − b) = unat a − unat b›
if ‹b ≤ a›
〈proof 〉

lemmas word-less-sub1-numberof [simp] = word-less-sub1 [of numeral w] for w
lemmas word-le-sub1-numberof [simp] = word-le-sub1 [of numeral w] for w

lemma word-of-int-minus: word-of-int (2^LENGTH (′a) − i) = (word-of-int (−i):: ′a::len
word)
〈proof 〉

lemma word-of-int-inj:
‹(word-of-int x :: ′a::len word) = word-of-int y ←→ x = y›
if ‹0 ≤ x ∧ x < 2 ^ LENGTH (′a)› ‹0 ≤ y ∧ y < 2 ^ LENGTH (′a)›
〈proof 〉

lemma word-le-less-eq: x ≤ y ←→ x = y ∨ x < y
for x y :: ′z::len word
〈proof 〉

lemma mod-plus-cong:
fixes b b ′ :: int
assumes 1 : b = b ′

and 2 : x mod b ′ = x ′ mod b ′

and 3 : y mod b ′ = y ′ mod b ′

and 4 : x ′ + y ′ = z ′

shows (x + y) mod b = z ′ mod b ′

〈proof 〉

lemma mod-minus-cong:
fixes b b ′ :: int
assumes b = b ′

and x mod b ′ = x ′ mod b ′

and y mod b ′ = y ′ mod b ′

and x ′ − y ′ = z ′

shows (x − y) mod b = z ′ mod b ′

〈proof 〉

lemma word-induct-less [case-names zero less]:

THEORY “Word” 844

‹P m› if zero: ‹P 0 › and less: ‹
∧

n. n < m =⇒ P n =⇒ P (1 + n)›
for m :: ‹ ′a::len word›
〈proof 〉

lemma word-induct: P 0 =⇒ (
∧

n. P n =⇒ P (1 + n)) =⇒ P m
for P :: ′a::len word ⇒ bool
〈proof 〉

lemma word-induct2 [case-names zero suc, induct type]: P 0 =⇒ (
∧

n. 1 + n 6=
0 =⇒ P n =⇒ P (1 + n)) =⇒ P n

for P :: ′b::len word ⇒ bool
〈proof 〉

107.29 Recursion combinator for words
definition word-rec :: ′a ⇒ (′b::len word ⇒ ′a ⇒ ′a) ⇒ ′b word ⇒ ′a

where word-rec forZero forSuc n = rec-nat forZero (forSuc ◦ of-nat) (unat n)

lemma word-rec-0 [simp]: word-rec z s 0 = z
〈proof 〉

lemma word-rec-Suc [simp]: 1 + n 6= 0 =⇒ word-rec z s (1 + n) = s n (word-rec
z s n)

for n :: ′a::len word
〈proof 〉

lemma word-rec-Pred: n 6= 0 =⇒ word-rec z s n = s (n − 1) (word-rec z s (n −
1))
〈proof 〉

lemma word-rec-in: f (word-rec z (λ-. f) n) = word-rec (f z) (λ-. f) n
〈proof 〉

lemma word-rec-in2 : f n (word-rec z f n) = word-rec (f 0 z) (f ◦ (+) 1) n
〈proof 〉

lemma word-rec-twice:
m ≤ n =⇒ word-rec z f n = word-rec (word-rec z f (n − m)) (f ◦ (+) (n − m))

m
〈proof 〉

lemma word-rec-id: word-rec z (λ-. id) n = z
〈proof 〉

lemma word-rec-id-eq: (
∧

m. m < n =⇒ f m = id) =⇒ word-rec z f n = z
〈proof 〉

lemma word-rec-max:
assumes ∀m≥n. m 6= − 1 −→ f m = id

THEORY “Word” 845

shows word-rec z f (− 1) = word-rec z f n
〈proof 〉

end

107.30 Some more naive computations rules
lemma drop-bit-of-minus-1-eq [simp]:

‹drop-bit n (− 1 :: ′a::len word) = mask (LENGTH (′a) − n)›
〈proof 〉

context
includes bit-operations-syntax

begin

lemma word-cat-eq-push-bit-or :
‹word-cat v w = (push-bit LENGTH (′b) (ucast v) OR ucast w :: ′c::len word)›
for v :: ‹ ′a::len word› and w :: ‹ ′b::len word›
〈proof 〉

end

context semiring-bit-operations
begin

lemma of-nat-take-bit-numeral-eq [simp]:
‹of-nat (take-bit m (numeral n)) = take-bit m (numeral n)›
〈proof 〉

end

context ring-bit-operations
begin

lemma signed-take-bit-of-int:
‹signed-take-bit n (of-int k) = of-int (signed-take-bit n k)›
〈proof 〉

lemma of-int-signed-take-bit:
‹of-int (signed-take-bit n k) = signed-take-bit n (of-int k)›
〈proof 〉

lemma of-int-take-bit-minus-numeral-eq [simp]:
‹of-int (take-bit m (numeral n)) = take-bit m (numeral n)›
‹of-int (take-bit m (− numeral n)) = take-bit m (− numeral n)›
〈proof 〉

end

THEORY “Z2” 846

context
includes bit-operations-syntax

begin

lemma concat-bit-numeral-of-one-1 [simp]:
‹concat-bit (numeral m) 1 l = 1 OR push-bit (numeral m) l›
〈proof 〉

lemma concat-bit-of-one-2 [simp]:
‹concat-bit n k 1 = set-bit n (take-bit n k)›
〈proof 〉

lemma concat-bit-numeral-of-minus-one-1 [simp]:
‹concat-bit (numeral m) (− 1) l = push-bit (numeral m) l OR mask (numeral

m)›
〈proof 〉

lemma concat-bit-numeral-of-minus-one-2 [simp]:
‹concat-bit (numeral m) k (− 1) = take-bit (numeral m) k OR NOT (mask

(numeral m))›
〈proof 〉

lemma concat-bit-numeral [simp]:
‹concat-bit (numeral m) (numeral n) (numeral q) = take-bit (numeral m) (numeral

n) OR push-bit (numeral m) (numeral q)›
‹concat-bit (numeral m) (− numeral n) (numeral q) = take-bit (numeral m) (−

numeral n) OR push-bit (numeral m) (numeral q)›
‹concat-bit (numeral m) (numeral n) (− numeral q) = take-bit (numeral m)

(numeral n) OR push-bit (numeral m) (− numeral q)›
‹concat-bit (numeral m) (− numeral n) (− numeral q) = take-bit (numeral m)

(− numeral n) OR push-bit (numeral m) (− numeral q)›
〈proof 〉

end

lemma word-cat-0-left [simp]:
‹word-cat 0 w = ucast w›
〈proof 〉

107.31 Executable intervals
instance word :: (len) ‹{interval-top, interval-bot}›
〈proof 〉

107.32 Tool support
〈ML〉

end

THEORY “Z2” 847

108 The Field of Integers mod 2
theory Z2
imports Main
begin

Note that in most cases bool is appropriate when a binary type is needed;
the type provided here, for historical reasons named bit, is only needed if
proper field operations are required.
typedef bit = ‹UNIV :: bool set› 〈proof 〉

instantiation bit :: zero-neq-one
begin

definition zero-bit :: bit
where ‹0 = Abs-bit False›

definition one-bit :: bit
where ‹1 = Abs-bit True›

instance
〈proof 〉

end

free-constructors case-bit for ‹0 ::bit› | ‹1 ::bit›
〈proof 〉

lemma bit-not-zero-iff [simp]:
‹a 6= 0 ←→ a = 1 › for a :: bit
〈proof 〉

lemma bit-not-one-iff [simp]:
‹a 6= 1 ←→ a = 0 › for a :: bit
〈proof 〉

instantiation bit :: semidom-modulo
begin

definition plus-bit :: ‹bit ⇒ bit ⇒ bit›
where ‹a + b = Abs-bit (Rep-bit a 6= Rep-bit b)›

definition minus-bit :: ‹bit ⇒ bit ⇒ bit›
where [simp]: ‹minus-bit = plus›

definition times-bit :: ‹bit ⇒ bit ⇒ bit›
where ‹a ∗ b = Abs-bit (Rep-bit a ∧ Rep-bit b)›

definition divide-bit :: ‹bit ⇒ bit ⇒ bit›

THEORY “Z2” 848

where [simp]: ‹divide-bit = times›

definition modulo-bit :: ‹bit ⇒ bit ⇒ bit›
where ‹a mod b = Abs-bit (Rep-bit a ∧ ¬ Rep-bit b)›

instance
〈proof 〉

end

lemma bit-2-eq-0 [simp]:
‹2 = (0 ::bit)›
〈proof 〉

instance bit :: semiring-parity
〈proof 〉

lemma Abs-bit-eq-of-bool [code-abbrev]:
‹Abs-bit = of-bool›
〈proof 〉

lemma Rep-bit-eq-odd:
‹Rep-bit = odd›
〈proof 〉

lemma Rep-bit-iff-odd [code-abbrev]:
‹Rep-bit b ←→ odd b›
〈proof 〉

lemma Not-Rep-bit-iff-even [code-abbrev]:
‹¬ Rep-bit b ←→ even b›
〈proof 〉

lemma Not-Not-Rep-bit [code-unfold]:
‹¬ ¬ Rep-bit b ←→ Rep-bit b›
〈proof 〉

code-datatype ‹0 ::bit› ‹1 ::bit›

lemma Abs-bit-code [code]:
‹Abs-bit False = 0 ›
‹Abs-bit True = 1 ›
〈proof 〉

lemma Rep-bit-code [code]:
‹Rep-bit 0 ←→ False›
‹Rep-bit 1 ←→ True›
〈proof 〉

THEORY “Z2” 849

context zero-neq-one
begin

abbreviation of-bit :: ‹bit ⇒ ′a›
where ‹of-bit b ≡ of-bool (odd b)›

end

context
begin

qualified lemma bit-eq-iff :
‹a = b ←→ (even a ←→ even b)› for a b :: bit
〈proof 〉

end

lemma modulo-bit-unfold [simp, code]:
‹a mod b = of-bool (odd a ∧ even b)› for a b :: bit
〈proof 〉

lemma power-bit-unfold [simp]:
‹a ^ n = of-bool (odd a ∨ n = 0)› for a :: bit
〈proof 〉

instantiation bit :: field
begin

definition uminus-bit :: ‹bit ⇒ bit›
where [simp]: ‹uminus-bit = id›

definition inverse-bit :: ‹bit ⇒ bit›
where [simp]: ‹inverse-bit = id›

instance
〈proof 〉

end

instantiation bit :: semiring-bits
begin

definition bit-bit :: ‹bit ⇒ nat ⇒ bool›
where [simp]: ‹bit-bit b n ←→ odd b ∧ n = 0 ›

instance
〈proof 〉

end

THEORY “Z2” 850

instantiation bit :: ring-bit-operations
begin

context
includes bit-operations-syntax

begin

definition not-bit :: ‹bit ⇒ bit›
where [simp]: ‹NOT b = of-bool (even b)› for b :: bit

definition and-bit :: ‹bit ⇒ bit ⇒ bit›
where [simp]: ‹b AND c = of-bool (odd b ∧ odd c)› for b c :: bit

definition or-bit :: ‹bit ⇒ bit ⇒ bit›
where [simp]: ‹b OR c = of-bool (odd b ∨ odd c)› for b c :: bit

definition xor-bit :: ‹bit ⇒ bit ⇒ bit›
where [simp]: ‹b XOR c = of-bool (odd b 6= odd c)› for b c :: bit

definition mask-bit :: ‹nat ⇒ bit›
where [simp]: ‹mask n = (of-bool (n > 0) :: bit)›

definition set-bit-bit :: ‹nat ⇒ bit ⇒ bit›
where [simp]: ‹set-bit n b = of-bool (n = 0 ∨ odd b)› for b :: bit

definition unset-bit-bit :: ‹nat ⇒ bit ⇒ bit›
where [simp]: ‹unset-bit n b = of-bool (n > 0 ∧ odd b)› for b :: bit

definition flip-bit-bit :: ‹nat ⇒ bit ⇒ bit›
where [simp]: ‹flip-bit n b = of-bool ((n = 0) 6= odd b)› for b :: bit

definition push-bit-bit :: ‹nat ⇒ bit ⇒ bit›
where [simp]: ‹push-bit n b = of-bool (odd b ∧ n = 0)› for b :: bit

definition drop-bit-bit :: ‹nat ⇒ bit ⇒ bit›
where [simp]: ‹drop-bit n b = of-bool (odd b ∧ n = 0)› for b :: bit

definition take-bit-bit :: ‹nat ⇒ bit ⇒ bit›
where [simp]: ‹take-bit n b = of-bool (odd b ∧ n > 0)› for b :: bit

end

instance
〈proof 〉

end

lemma add-bit-eq-xor [simp, code]:

THEORY “Library” 851

‹(+) = (Bit-Operations.xor :: bit ⇒ -)›
〈proof 〉

lemma mult-bit-eq-and [simp, code]:
‹(∗) = (Bit-Operations.and :: bit ⇒ -)›
〈proof 〉

lemma bit-numeral-even [simp]:
‹numeral (Num.Bit0 n) = (0 :: bit)›
〈proof 〉

lemma bit-numeral-odd [simp]:
‹numeral (Num.Bit1 n) = (1 :: bit)›
〈proof 〉

end

109 Pointwise order on product types
theory Product-Order
imports Product-Plus
begin

109.1 Pointwise ordering
instantiation prod :: (ord, ord) ord
begin

definition
x ≤ y ←→ fst x ≤ fst y ∧ snd x ≤ snd y

definition
(x:: ′a × ′b) < y ←→ x ≤ y ∧ ¬ y ≤ x

instance 〈proof 〉

end

lemma fst-mono: x ≤ y =⇒ fst x ≤ fst y
〈proof 〉

lemma snd-mono: x ≤ y =⇒ snd x ≤ snd y
〈proof 〉

lemma Pair-mono: x ≤ x ′ =⇒ y ≤ y ′ =⇒ (x, y) ≤ (x ′, y ′)
〈proof 〉

lemma Pair-le [simp]: (a, b) ≤ (c, d) ←→ a ≤ c ∧ b ≤ d

THEORY “Product-Order” 852

〈proof 〉

lemma atLeastAtMost-prod-eq: {a..b} = {fst a..fst b} × {snd a..snd b}
〈proof 〉

instance prod :: (preorder , preorder) preorder
〈proof 〉

instance prod :: (order , order) order
〈proof 〉

109.2 Binary infimum and supremum
instantiation prod :: (inf , inf) inf
begin

definition inf x y = (inf (fst x) (fst y), inf (snd x) (snd y))

lemma inf-Pair-Pair [simp]: inf (a, b) (c, d) = (inf a c, inf b d)
〈proof 〉

lemma fst-inf [simp]: fst (inf x y) = inf (fst x) (fst y)
〈proof 〉

lemma snd-inf [simp]: snd (inf x y) = inf (snd x) (snd y)
〈proof 〉

instance 〈proof 〉

end

instance prod :: (semilattice-inf , semilattice-inf) semilattice-inf
〈proof 〉

instantiation prod :: (sup, sup) sup
begin

definition
sup x y = (sup (fst x) (fst y), sup (snd x) (snd y))

lemma sup-Pair-Pair [simp]: sup (a, b) (c, d) = (sup a c, sup b d)
〈proof 〉

lemma fst-sup [simp]: fst (sup x y) = sup (fst x) (fst y)
〈proof 〉

lemma snd-sup [simp]: snd (sup x y) = sup (snd x) (snd y)
〈proof 〉

THEORY “Product-Order” 853

instance 〈proof 〉

end

instance prod :: (semilattice-sup, semilattice-sup) semilattice-sup
〈proof 〉

instance prod :: (lattice, lattice) lattice 〈proof 〉

instance prod :: (distrib-lattice, distrib-lattice) distrib-lattice
〈proof 〉

109.3 Top and bottom elements
instantiation prod :: (top, top) top
begin

definition
top = (top, top)

instance 〈proof 〉

end

lemma fst-top [simp]: fst top = top
〈proof 〉

lemma snd-top [simp]: snd top = top
〈proof 〉

lemma Pair-top-top: (top, top) = top
〈proof 〉

instance prod :: (order-top, order-top) order-top
〈proof 〉

instantiation prod :: (bot, bot) bot
begin

definition
bot = (bot, bot)

instance 〈proof 〉

end

lemma fst-bot [simp]: fst bot = bot
〈proof 〉

THEORY “Product-Order” 854

lemma snd-bot [simp]: snd bot = bot
〈proof 〉

lemma Pair-bot-bot: (bot, bot) = bot
〈proof 〉

instance prod :: (order-bot, order-bot) order-bot
〈proof 〉

instance prod :: (bounded-lattice, bounded-lattice) bounded-lattice 〈proof 〉

instance prod :: (boolean-algebra, boolean-algebra) boolean-algebra
〈proof 〉

109.4 Complete lattice operations
instantiation prod :: (Inf , Inf) Inf
begin

definition Inf A = (INF x∈A. fst x, INF x∈A. snd x)

instance 〈proof 〉

end

instantiation prod :: (Sup, Sup) Sup
begin

definition Sup A = (SUP x∈A. fst x, SUP x∈A. snd x)

instance 〈proof 〉

end

instance prod :: (conditionally-complete-lattice, conditionally-complete-lattice)
conditionally-complete-lattice
〈proof 〉

instance prod :: (complete-lattice, complete-lattice) complete-lattice
〈proof 〉

lemma fst-Inf : fst (Inf A) = (INF x∈A. fst x)
〈proof 〉

lemma fst-INF : fst (INF x∈A. f x) = (INF x∈A. fst (f x))
〈proof 〉

lemma fst-Sup: fst (Sup A) = (SUP x∈A. fst x)

THEORY “Product-Order” 855

〈proof 〉

lemma fst-SUP: fst (SUP x∈A. f x) = (SUP x∈A. fst (f x))
〈proof 〉

lemma snd-Inf : snd (Inf A) = (INF x∈A. snd x)
〈proof 〉

lemma snd-INF : snd (INF x∈A. f x) = (INF x∈A. snd (f x))
〈proof 〉

lemma snd-Sup: snd (Sup A) = (SUP x∈A. snd x)
〈proof 〉

lemma snd-SUP: snd (SUP x∈A. f x) = (SUP x∈A. snd (f x))
〈proof 〉

lemma INF-Pair : (INF x∈A. (f x, g x)) = (INF x∈A. f x, INF x∈A. g x)
〈proof 〉

lemma SUP-Pair : (SUP x∈A. (f x, g x)) = (SUP x∈A. f x, SUP x∈A. g x)
〈proof 〉

Alternative formulations for set infima and suprema over the product of
two complete lattices:
lemma INF-prod-alt-def :

Inf (f ‘ A) = (Inf ((fst ◦ f) ‘ A), Inf ((snd ◦ f) ‘ A))
〈proof 〉

lemma SUP-prod-alt-def :
Sup (f ‘ A) = (Sup ((fst ◦ f) ‘ A), Sup((snd ◦ f) ‘ A))
〈proof 〉

109.5 Complete distributive lattices
instance prod :: (complete-distrib-lattice, complete-distrib-lattice) complete-distrib-lattice

〈proof 〉

109.6 Bekic’s Theorem
Simultaneous fixed points over pairs can be written in terms of separate
fixed points. Transliterated from HOLCF.Fix by Peter Gammie
lemma lfp-prod:

fixes F :: ′a::complete-lattice × ′b::complete-lattice ⇒ ′a × ′b
assumes mono F
shows lfp F = (lfp (λx. fst (F (x, lfp (λy. snd (F (x, y)))))),

(lfp (λy. snd (F (lfp (λx. fst (F (x, lfp (λy. snd (F (x, y)))))), y)))))
(is lfp F = (?x, ?y))

THEORY “Finite-Lattice” 856

〈proof 〉

lemma gfp-prod:
fixes F :: ′a::complete-lattice × ′b::complete-lattice ⇒ ′a × ′b
assumes mono F
shows gfp F = (gfp (λx. fst (F (x, gfp (λy. snd (F (x, y)))))),

(gfp (λy. snd (F (gfp (λx. fst (F (x, gfp (λy. snd (F (x, y)))))), y)))))
(is gfp F = (?x, ?y))
〈proof 〉

end

110 Finite Lattices
theory Finite-Lattice
imports Product-Order
begin

110.1 Finite Complete Lattices
A non-empty finite lattice is a complete lattice. Since types are never empty
in Isabelle/HOL, a type of classes finite and lattice should also have class
complete-lattice. A type class is defined that extends classes finite and lattice
with the operators bot, top, Inf, and Sup, along with assumptions that define
these operators in terms of the ones of classes finite and lattice. The resulting
class is a subclass of complete-lattice.
class finite-lattice-complete = finite + lattice + bot + top + Inf + Sup +

assumes bot-def : bot = Inf-fin UNIV
assumes top-def : top = Sup-fin UNIV
assumes Inf-def : Inf A = Finite-Set.fold inf top A
assumes Sup-def : Sup A = Finite-Set.fold sup bot A

The definitional assumptions on the operators bot and top of class fi-
nite-lattice-complete ensure that they yield bottom and top.
lemma finite-lattice-complete-bot-least: (bot:: ′a::finite-lattice-complete) ≤ x
〈proof 〉

instance finite-lattice-complete ⊆ order-bot
〈proof 〉

lemma finite-lattice-complete-top-greatest: (top:: ′a::finite-lattice-complete) ≥ x
〈proof 〉

instance finite-lattice-complete ⊆ order-top
〈proof 〉

instance finite-lattice-complete ⊆ bounded-lattice 〈proof 〉

THEORY “Finite-Lattice” 857

The definitional assumptions on the operators Inf and Sup of class fi-
nite-lattice-complete ensure that they yield infimum and supremum.
lemma finite-lattice-complete-Inf-empty: Inf {} = (top :: ′a::finite-lattice-complete)
〈proof 〉

lemma finite-lattice-complete-Sup-empty: Sup {} = (bot :: ′a::finite-lattice-complete)
〈proof 〉

lemma finite-lattice-complete-Inf-insert:
fixes A :: ′a::finite-lattice-complete set
shows Inf (insert x A) = inf x (Inf A)
〈proof 〉

lemma finite-lattice-complete-Sup-insert:
fixes A :: ′a::finite-lattice-complete set
shows Sup (insert x A) = sup x (Sup A)
〈proof 〉

lemma finite-lattice-complete-Inf-lower :
(x:: ′a::finite-lattice-complete) ∈ A =⇒ Inf A ≤ x
〈proof 〉

lemma finite-lattice-complete-Inf-greatest:
∀ x:: ′a::finite-lattice-complete ∈ A. z ≤ x =⇒ z ≤ Inf A
〈proof 〉

lemma finite-lattice-complete-Sup-upper :
(x:: ′a::finite-lattice-complete) ∈ A =⇒ Sup A ≥ x
〈proof 〉

lemma finite-lattice-complete-Sup-least:
∀ x:: ′a::finite-lattice-complete ∈ A. z ≥ x =⇒ z ≥ Sup A
〈proof 〉

instance finite-lattice-complete ⊆ complete-lattice
〈proof 〉

The product of two finite lattices is already a finite lattice.
lemma finite-bot-prod:
(bot :: (′a::finite-lattice-complete × ′b::finite-lattice-complete)) =

Inf-fin UNIV
〈proof 〉

lemma finite-top-prod:
(top :: (′a::finite-lattice-complete × ′b::finite-lattice-complete)) =

Sup-fin UNIV
〈proof 〉

lemma finite-Inf-prod:

THEORY “Finite-Lattice” 858

Inf (A :: (′a::finite-lattice-complete × ′b::finite-lattice-complete) set) =
Finite-Set.fold inf top A
〈proof 〉

lemma finite-Sup-prod:
Sup (A :: (′a::finite-lattice-complete × ′b::finite-lattice-complete) set) =

Finite-Set.fold sup bot A
〈proof 〉

instance prod :: (finite-lattice-complete, finite-lattice-complete) finite-lattice-complete
〈proof 〉

Functions with a finite domain and with a finite lattice as codomain
already form a finite lattice.
lemma finite-bot-fun: (bot :: (′a::finite⇒ ′b::finite-lattice-complete)) = Inf-fin UNIV
〈proof 〉

lemma finite-top-fun: (top :: (′a::finite ⇒ ′b::finite-lattice-complete)) = Sup-fin
UNIV
〈proof 〉

lemma finite-Inf-fun:
Inf (A::(′a::finite ⇒ ′b::finite-lattice-complete) set) =

Finite-Set.fold inf top A
〈proof 〉

lemma finite-Sup-fun:
Sup (A::(′a::finite ⇒ ′b::finite-lattice-complete) set) =

Finite-Set.fold sup bot A
〈proof 〉

instance fun :: (finite, finite-lattice-complete) finite-lattice-complete
〈proof 〉

110.2 Finite Distributive Lattices
A finite distributive lattice is a complete lattice whose inf and sup operators
distribute over Sup and Inf.
class finite-distrib-lattice-complete =

distrib-lattice + finite-lattice-complete

lemma finite-distrib-lattice-complete-sup-Inf :
sup (x:: ′a::finite-distrib-lattice-complete) (Inf A) = (INF y∈A. sup x y)
〈proof 〉

lemma finite-distrib-lattice-complete-inf-Sup:
inf (x:: ′a::finite-distrib-lattice-complete) (Sup A) = (SUP y∈A. inf x y)
〈proof 〉

THEORY “Finite-Lattice” 859

context finite-distrib-lattice-complete
begin
subclass finite-distrib-lattice
〈proof 〉
end

instance finite-distrib-lattice-complete ⊆ complete-distrib-lattice 〈proof 〉

The product of two finite distributive lattices is already a finite distribu-
tive lattice.
instance prod ::
(finite-distrib-lattice-complete, finite-distrib-lattice-complete)
finite-distrib-lattice-complete
〈proof 〉

Functions with a finite domain and with a finite distributive lattice as
codomain already form a finite distributive lattice.
instance fun ::
(finite, finite-distrib-lattice-complete) finite-distrib-lattice-complete
〈proof 〉

110.3 Linear Orders
A linear order is a distributive lattice. A type class is defined that extends
class linorder with the operators inf and sup, along with assumptions that
define these operators in terms of the ones of class linorder. The resulting
class is a subclass of distrib-lattice.
class linorder-lattice = linorder + inf + sup +

assumes inf-def : inf x y = (if x ≤ y then x else y)
assumes sup-def : sup x y = (if x ≥ y then x else y)

The definitional assumptions on the operators inf and sup of class linorder-lattice
ensure that they yield infimum and supremum and that they distribute over
each other.
lemma linorder-lattice-inf-le1 : inf (x:: ′a::linorder-lattice) y ≤ x
〈proof 〉

lemma linorder-lattice-inf-le2 : inf (x:: ′a::linorder-lattice) y ≤ y
〈proof 〉

lemma linorder-lattice-inf-greatest:
(x:: ′a::linorder-lattice) ≤ y =⇒ x ≤ z =⇒ x ≤ inf y z
〈proof 〉

lemma linorder-lattice-sup-ge1 : sup (x:: ′a::linorder-lattice) y ≥ x
〈proof 〉

lemma linorder-lattice-sup-ge2 : sup (x:: ′a::linorder-lattice) y ≥ y

THEORY “List-Lexorder” 860

〈proof 〉

lemma linorder-lattice-sup-least:
(x:: ′a::linorder-lattice) ≥ y =⇒ x ≥ z =⇒ x ≥ sup y z
〈proof 〉

lemma linorder-lattice-sup-inf-distrib1 :
sup (x:: ′a::linorder-lattice) (inf y z) = inf (sup x y) (sup x z)
〈proof 〉

instance linorder-lattice ⊆ distrib-lattice
〈proof 〉

110.4 Finite Linear Orders
A (non-empty) finite linear order is a complete linear order.
class finite-linorder-complete = linorder-lattice + finite-lattice-complete

instance finite-linorder-complete ⊆ complete-linorder 〈proof 〉

A (non-empty) finite linear order is a complete lattice whose inf and sup
operators distribute over Sup and Inf.
instance finite-linorder-complete ⊆ finite-distrib-lattice-complete 〈proof 〉

end

111 Lexicographic order on lists
theory List-Lexorder
imports Main
begin

instantiation list :: (ord) ord
begin

definition
list-less-def : xs < ys ←→ (xs, ys) ∈ lexord {(u, v). u < v}

definition
list-le-def : (xs :: - list) ≤ ys ←→ xs < ys ∨ xs = ys

instance 〈proof 〉

end

instance list :: (order) order
〈proof 〉

THEORY “List-Lexorder” 861

instance list :: (linorder) linorder
〈proof 〉

instantiation list :: (linorder) distrib-lattice
begin

definition (inf :: ′a list ⇒ -) = min

definition (sup :: ′a list ⇒ -) = max

instance
〈proof 〉

end

lemma not-less-Nil [simp]: ¬ x < []
〈proof 〉

lemma Nil-less-Cons [simp]: [] < a # x
〈proof 〉

lemma Cons-less-Cons [simp]: a # x < b # y ←→ a < b ∨ a = b ∧ x < y
〈proof 〉

lemma le-Nil [simp]: x ≤ [] ←→ x = []
〈proof 〉

lemma Nil-le-Cons [simp]: [] ≤ x
〈proof 〉

lemma Cons-le-Cons [simp]: a # x ≤ b # y ←→ a < b ∨ a = b ∧ x ≤ y
〈proof 〉

instantiation list :: (order) order-bot
begin

definition bot = []

instance
〈proof 〉

end

lemma less-list-code [code]:
xs < ([]:: ′a::{equal, order} list) ←→ False
[] < (x:: ′a::{equal, order}) # xs ←→ True
(x:: ′a::{equal, order}) # xs < y # ys ←→ x < y ∨ x = y ∧ xs < ys
〈proof 〉

THEORY “List-Lenlexorder” 862

lemma less-eq-list-code [code]:
x # xs ≤ ([]:: ′a::{equal, order} list) ←→ False
[] ≤ (xs:: ′a::{equal, order} list) ←→ True
(x:: ′a::{equal, order}) # xs ≤ y # ys ←→ x < y ∨ x = y ∧ xs ≤ ys
〈proof 〉

end

112 Lexicographic order on lists
This version prioritises length and can yield wellorderings
theory List-Lenlexorder
imports Main
begin

instantiation list :: (ord) ord
begin

definition
list-less-def : xs < ys ←→ (xs, ys) ∈ lenlex {(u, v). u < v}

definition
list-le-def : (xs :: - list) ≤ ys ←→ xs < ys ∨ xs = ys

instance 〈proof 〉

end

instance list :: (order) order
〈proof 〉

instance list :: (linorder) linorder
〈proof 〉

instance list :: (wellorder) wellorder
〈proof 〉

instantiation list :: (linorder) distrib-lattice
begin

definition (inf :: ′a list ⇒ -) = min

definition (sup :: ′a list ⇒ -) = max

instance
〈proof 〉

THEORY “Prefix-Order” 863

end

lemma not-less-Nil [simp]: ¬ x < []
〈proof 〉

lemma Nil-less-Cons [simp]: [] < a # x
〈proof 〉

lemma Cons-less-Cons: a # x < b # y ←→ length x < length y ∨ length x =
length y ∧ (a < b ∨ a = b ∧ x < y)
〈proof 〉

lemma le-Nil [simp]: x ≤ [] ←→ x = []
〈proof 〉

lemma Nil-le-Cons [simp]: [] ≤ x
〈proof 〉

lemma Cons-le-Cons: a # x ≤ b # y ←→ length x < length y ∨ length x = length
y ∧ (a < b ∨ a = b ∧ x ≤ y)
〈proof 〉

instantiation list :: (order) order-bot
begin

definition bot = []

instance
〈proof 〉

end

end

113 Prefix order on lists as order class instance
theory Prefix-Order
imports Sublist
begin

instantiation list :: (type) order
begin

definition xs ≤ ys ≡ prefix xs ys for xs ys :: ′a list
definition xs < ys ≡ xs ≤ ys ∧ ¬ (ys ≤ xs) for xs ys :: ′a list

instance
〈proof 〉

THEORY “Product-Lexorder” 864

end

lemma less-list-def ′: xs < ys ←→ strict-prefix xs ys for xs ys :: ′a list
〈proof 〉

lemmas prefixI [intro?] = prefixI [folded less-eq-list-def]
lemmas prefixE [elim?] = prefixE [folded less-eq-list-def]
lemmas strict-prefixI ′ [intro?] = strict-prefixI ′ [folded less-list-def ′]
lemmas strict-prefixE ′ [elim?] = strict-prefixE ′ [folded less-list-def ′]
lemmas strict-prefixI [intro?] = strict-prefixI [folded less-list-def ′]
lemmas strict-prefixE [elim?] = strict-prefixE [folded less-list-def ′]
lemmas Nil-prefix [iff] = Nil-prefix [folded less-eq-list-def]
lemmas prefix-Nil [simp] = prefix-Nil [folded less-eq-list-def]
lemmas prefix-snoc [simp] = prefix-snoc [folded less-eq-list-def]
lemmas Cons-prefix-Cons [simp] = Cons-prefix-Cons [folded less-eq-list-def]
lemmas same-prefix-prefix [simp] = same-prefix-prefix [folded less-eq-list-def]
lemmas same-prefix-nil [iff] = same-prefix-nil [folded less-eq-list-def]
lemmas prefix-prefix [simp] = prefix-prefix [folded less-eq-list-def]
lemmas prefix-Cons = prefix-Cons [folded less-eq-list-def]
lemmas prefix-length-le = prefix-length-le [folded less-eq-list-def]
lemmas strict-prefix-simps [simp, code] = strict-prefix-simps [folded less-list-def ′]
lemmas not-prefix-induct [consumes 1 , case-names Nil Neq Eq] =

not-prefix-induct [folded less-eq-list-def]

end

114 Lexicographic order on product types
theory Product-Lexorder
imports Main
begin

instantiation prod :: (ord, ord) ord
begin

definition
x ≤ y ←→ fst x < fst y ∨ fst x ≤ fst y ∧ snd x ≤ snd y

definition
x < y ←→ fst x < fst y ∨ fst x ≤ fst y ∧ snd x < snd y

instance 〈proof 〉

end

lemma less-eq-prod-simp [simp, code]:
(x1 , y1) ≤ (x2 , y2) ←→ x1 < x2 ∨ x1 ≤ x2 ∧ y1 ≤ y2
〈proof 〉

THEORY “Product-Lexorder” 865

lemma less-prod-simp [simp, code]:
(x1 , y1) < (x2 , y2) ←→ x1 < x2 ∨ x1 ≤ x2 ∧ y1 < y2
〈proof 〉

A stronger version for partial orders.
lemma less-prod-def ′:

fixes x y :: ′a::order × ′b::ord
shows x < y ←→ fst x < fst y ∨ fst x = fst y ∧ snd x < snd y
〈proof 〉

instance prod :: (preorder , preorder) preorder
〈proof 〉

instance prod :: (order , order) order
〈proof 〉

instance prod :: (linorder , linorder) linorder
〈proof 〉

instantiation prod :: (linorder , linorder) distrib-lattice
begin

definition
(inf :: ′a × ′b ⇒ - ⇒ -) = min

definition
(sup :: ′a × ′b ⇒ - ⇒ -) = max

instance
〈proof 〉

end

instantiation prod :: (bot, bot) bot
begin

definition
bot = (bot, bot)

instance 〈proof 〉

end

instance prod :: (order-bot, order-bot) order-bot
〈proof 〉

instantiation prod :: (top, top) top
begin

THEORY “Subseq-Order” 866

definition
top = (top, top)

instance 〈proof 〉

end

instance prod :: (order-top, order-top) order-top
〈proof 〉

instance prod :: (wellorder , wellorder) wellorder
〈proof 〉

Legacy lemma bindings
lemmas prod-le-def = less-eq-prod-def
lemmas prod-less-def = less-prod-def
lemmas prod-less-eq = less-prod-def ′

end

115 Subsequence Ordering
theory Subseq-Order
imports Sublist
begin

This theory defines subsequence ordering on lists. A list ys is a subse-
quence of a list xs, iff one obtains ys by erasing some elements from xs.

115.1 Definitions and basic lemmas
instantiation list :: (type) ord
begin

definition less-eq-list
where ‹xs ≤ ys ←→ subseq xs ys› for xs ys :: ‹ ′a list›

definition less-list
where ‹xs < ys ←→ xs ≤ ys ∧ ¬ ys ≤ xs› for xs ys :: ‹ ′a list›

instance 〈proof 〉

end

instance list :: (type) order
〈proof 〉

lemmas less-eq-list-induct [consumes 1 , case-names empty drop take] =
list-emb.induct [of (=), folded less-eq-list-def]

THEORY “Subseq-Order” 867

lemma less-eq-list-empty [code]:
‹[] ≤ xs ←→ True›
〈proof 〉

lemma less-eq-list-below-empty [code]:
‹x # xs ≤ [] ←→ False›
〈proof 〉

lemma le-list-Cons2-iff [simp, code]:
‹x # xs ≤ y # ys ←→ (if x = y then xs ≤ ys else x # xs ≤ ys)›
〈proof 〉

lemma less-list-empty [simp]:
‹[] < xs ←→ xs 6= []›
〈proof 〉

lemma less-list-empty-Cons [code]:
‹[] < x # xs ←→ True›
〈proof 〉

lemma less-list-below-empty [simp, code]:
‹xs < [] ←→ False›
〈proof 〉

lemma less-list-Cons2-iff [code]:
‹x # xs < y # ys ←→ (if x = y then xs < ys else x # xs ≤ ys)›
〈proof 〉

lemmas less-eq-list-drop = list-emb.list-emb-Cons [of (=), folded less-eq-list-def]
lemmas le-list-map = subseq-map [folded less-eq-list-def]
lemmas le-list-filter = subseq-filter [folded less-eq-list-def]
lemmas le-list-length = list-emb-length [of (=), folded less-eq-list-def]

lemma less-list-length: xs < ys =⇒ length xs < length ys
〈proof 〉

lemma less-list-drop: xs < ys =⇒ xs < x # ys
〈proof 〉

lemma less-list-take-iff : x # xs < x # ys ←→ xs < ys
〈proof 〉

lemma less-list-drop-many: xs < ys =⇒ xs < zs @ ys
〈proof 〉

lemma less-list-take-many-iff : zs @ xs < zs @ ys ←→ xs < ys
〈proof 〉

THEORY “Datatype-Records” 868

lemma less-list-rev-take: xs @ zs < ys @ zs ←→ xs < ys
〈proof 〉

end

116 Records based on BNF/datatype machinery
theory Datatype-Records
imports Main
keywords datatype-record :: thy-defn
begin

This theory provides an alternative, stripped-down implementation of
records based on the machinery of the datatype package.

It supports:

• similar declaration syntax as records

• record creation and update syntax (using (| ... |) brackets)

• regular datatype features (e.g. dead type variables etc.)

• “after-the-fact” registration of single-free-constructor types as records

Caveats:

• there is no compatibility layer; importing this theory will disrupt ex-
isting syntax

• extensible records are not supported

nonterminal
ident and
field-type and
field-types and
field and
fields and
field-update and
field-updates

open-bundle datatype-record-syntax
begin

unbundle no record-syntax

syntax
-constify :: id => ident (‹-›)
-constify :: longid => ident (‹-›)

THEORY “AList-Mapping” 869

-datatype-field :: ident => ′a => field (‹(‹indent=2 notation=‹infix
field value››- =/ -)›)

:: field => fields (‹-›)
-datatype-fields :: field => fields => fields (‹-,/ -›)
-datatype-record :: fields => ′a (‹(‹indent=3 notation=‹mixfix

datatype record value››(|-|))›)
-datatype-field-update :: ident => ′a => field-update (‹(‹indent=2 nota-

tion=‹infix field update››- :=/ -)›)
:: field-update => field-updates (‹-›)

-datatype-field-updates :: field-update => field-updates => field-updates (‹-,/ -›)
-datatype-record-update :: ′a => field-updates => ′b (‹(‹open-block nota-

tion=‹mixfix datatype record update››-/(3 (|-|)))› [900 , 0] 900)

syntax (ASCII)
-datatype-record :: fields => ′a (‹(‹indent=3 notation=‹mixfix

datatype record value›› ′(| - | ′))›)
-datatype-record-update :: ′a => field-updates => ′b (‹(‹open-block nota-

tion=‹mixfix datatype record update››-/(3 ′(| - | ′)))› [900 , 0] 900)

end

named-theorems datatype-record-update

〈ML〉

end

117 Implementation of mappings with Association
Lists

theory AList-Mapping
imports AList Mapping

begin

lift-definition Mapping :: (′a × ′b) list ⇒ (′a, ′b) mapping is map-of 〈proof 〉

code-datatype Mapping

lemma lookup-Mapping [simp, code]: Mapping.lookup (Mapping xs) = map-of xs
〈proof 〉

lemma keys-Mapping [simp, code]: Mapping.keys (Mapping xs) = set (map fst xs)
〈proof 〉

lemma empty-Mapping [code]: Mapping.empty = Mapping []
〈proof 〉

THEORY “AList-Mapping” 870

lemma is-empty-Mapping [code]: Mapping.is-empty (Mapping xs) ←→ List.null xs
〈proof 〉

lemma update-Mapping [code]: Mapping.update k v (Mapping xs) = Mapping (AList.update
k v xs)
〈proof 〉

lemma delete-Mapping [code]: Mapping.delete k (Mapping xs) = Mapping (AList.delete
k xs)
〈proof 〉

lemma ordered-keys-Mapping [code]:
Mapping.ordered-keys (Mapping xs) = sort (remdups (map fst xs))
〈proof 〉

lemma entries-Mapping [code]:
Mapping.entries (Mapping xs) = set (AList.clearjunk xs)
〈proof 〉

lemma ordered-entries-Mapping [code]:
Mapping.ordered-entries (Mapping xs) = sort-key fst (AList.clearjunk xs)
〈proof 〉

lemma fold-Mapping [code]:
Mapping.fold f (Mapping xs) a = List.fold (case-prod f) (sort-key fst (AList.clearjunk

xs)) a
〈proof 〉

lemma size-Mapping [code]: Mapping.size (Mapping xs) = length (remdups (map
fst xs))
〈proof 〉

lemma tabulate-Mapping [code]: Mapping.tabulate ks f = Mapping (map (λk. (k,
f k)) ks)
〈proof 〉

lemma bulkload-Mapping [code]:
Mapping.bulkload vs = Mapping (map (λn. (n, vs ! n)) [0 ..<length vs])
〈proof 〉

lemma equal-Mapping [code]:
HOL.equal (Mapping xs) (Mapping ys) ←→
(let ks = map fst xs; ls = map fst ys
in (∀ l∈set ls. l ∈ set ks) ∧ (∀ k∈set ks. k ∈ set ls ∧ map-of xs k = map-of ys

k))
〈proof 〉

lemma map-values-Mapping [code]:
Mapping.map-values f (Mapping xs) = Mapping (map (λ(x,y). (x, f x y)) xs)

THEORY “Code-Abstract-Char” 871

for f :: ′c ⇒ ′a ⇒ ′b and xs :: (′c × ′a) list
〈proof 〉

lemma combine-with-key-code [code]:
Mapping.combine-with-key f (Mapping xs) (Mapping ys) =

Mapping.tabulate (remdups (map fst xs @ map fst ys))
(λx. the (combine-options (f x) (map-of xs x) (map-of ys x)))

〈proof 〉

lemma combine-code [code]:
Mapping.combine f (Mapping xs) (Mapping ys) =

Mapping.tabulate (remdups (map fst xs @ map fst ys))
(λx. the (combine-options f (map-of xs x) (map-of ys x)))

〈proof 〉

lemma map-of-filter-distinct:
assumes distinct (map fst xs)
shows map-of (filter P xs) x =
(case map-of xs x of

None ⇒ None
| Some y ⇒ if P (x,y) then Some y else None)
〈proof 〉

lemma filter-Mapping [code]:
Mapping.filter P (Mapping xs) = Mapping (filter (λ(k,v). P k v) (AList.clearjunk

xs))
〈proof 〉

lemma [code nbe]: HOL.equal (x :: (′a, ′b) mapping) x ←→ True
〈proof 〉

end

theory Code-Abstract-Char
imports

Main
HOL−Library.Char-ord

begin

definition Chr :: ‹integer ⇒ char›
where [simp]: ‹Chr = char-of ›

lemma char-of-integer-of-char [code abstype]:
‹Chr (integer-of-char c) = c›
〈proof 〉

lemma char-of-integer-code [code]:
‹integer-of-char (char-of-integer k) = (if 0 ≤ k ∧ k < 256 then k else k mod

THEORY “Code-Abstract-Char” 872

256)›
〈proof 〉

lemma of-char-code [code]:
‹of-char c = of-nat (nat-of-integer (integer-of-char c))›
〈proof 〉

definition byte :: ‹bool ⇒ bool ⇒ bool ⇒ bool ⇒ bool ⇒ bool ⇒ bool ⇒ bool ⇒
integer›

where [simp]: ‹byte b0 b1 b2 b3 b4 b5 b6 b7 = horner-sum of-bool 2 [b0 , b1 , b2 ,
b3 , b4 , b5 , b6 , b7]›

lemma byte-code [code]:
‹byte b0 b1 b2 b3 b4 b5 b6 b7 = (

let
s0 = if b0 then 1 else 0 ;
s1 = if b1 then s0 + 2 else s0 ;
s2 = if b2 then s1 + 4 else s1 ;
s3 = if b3 then s2 + 8 else s2 ;
s4 = if b4 then s3 + 16 else s3 ;
s5 = if b5 then s4 + 32 else s4 ;
s6 = if b6 then s5 + 64 else s5 ;
s7 = if b7 then s6 + 128 else s6

in s7)›
〈proof 〉

lemma Char-code [code]:
‹integer-of-char (Char b0 b1 b2 b3 b4 b5 b6 b7) = byte b0 b1 b2 b3 b4 b5 b6 b7 ›
〈proof 〉

lemma digit-0-code [code]:
‹digit0 c ←→ bit (integer-of-char c) 0 ›
〈proof 〉

lemma digit-1-code [code]:
‹digit1 c ←→ bit (integer-of-char c) 1 ›
〈proof 〉

lemma digit-2-code [code]:
‹digit2 c ←→ bit (integer-of-char c) 2 ›
〈proof 〉

lemma digit-3-code [code]:
‹digit3 c ←→ bit (integer-of-char c) 3 ›
〈proof 〉

lemma digit-4-code [code]:
‹digit4 c ←→ bit (integer-of-char c) 4 ›
〈proof 〉

THEORY “Code-Abstract-Char” 873

lemma digit-5-code [code]:
‹digit5 c ←→ bit (integer-of-char c) 5 ›
〈proof 〉

lemma digit-6-code [code]:
‹digit6 c ←→ bit (integer-of-char c) 6 ›
〈proof 〉

lemma digit-7-code [code]:
‹digit7 c ←→ bit (integer-of-char c) 7 ›
〈proof 〉

lemma case-char-code [code]:
‹case-char f c = f (digit0 c) (digit1 c) (digit2 c) (digit3 c) (digit4 c) (digit5 c)

(digit6 c) (digit7 c)›
〈proof 〉

lemma rec-char-code [code]:
‹rec-char f c = f (digit0 c) (digit1 c) (digit2 c) (digit3 c) (digit4 c) (digit5 c)

(digit6 c) (digit7 c)›
〈proof 〉

lemma char-of-code [code]:
‹integer-of-char (char-of a) =

byte (bit a 0) (bit a 1) (bit a 2) (bit a 3) (bit a 4) (bit a 5) (bit a 6) (bit a 7)›
〈proof 〉

lemma ascii-of-code [code]:
‹integer-of-char (String.ascii-of c) = (let k = integer-of-char c in if k < 128 then

k else k − 128)›
〈proof 〉

lemma equal-char-code [code]:
‹HOL.equal c d ←→ integer-of-char c = integer-of-char d›
〈proof 〉

lemma less-eq-char-code [code]:
‹c ≤ d ←→ integer-of-char c ≤ integer-of-char d› (is ‹?P ←→ ?Q›)
〈proof 〉

lemma less-char-code [code]:
‹c < d ←→ integer-of-char c < integer-of-char d› (is ‹?P ←→ ?Q›)
〈proof 〉

lemma absdef-simps:
‹horner-sum of-bool 2 [] = (0 :: integer)›
‹horner-sum of-bool 2 (False # bs) = (0 :: integer) ←→ horner-sum of-bool 2 bs

= (0 :: integer)›

THEORY “Code-Abstract-Nat” 874

‹horner-sum of-bool 2 (True # bs) = (1 :: integer) ←→ horner-sum of-bool 2 bs
= (0 :: integer)›

‹horner-sum of-bool 2 (False # bs) = (numeral (Num.Bit0 n) :: integer) ←→
horner-sum of-bool 2 bs = (numeral n :: integer)›

‹horner-sum of-bool 2 (True # bs) = (numeral (Num.Bit1 n) :: integer) ←→
horner-sum of-bool 2 bs = (numeral n :: integer)›
〈proof 〉

〈ML〉

code-identifier
code-module Code-Abstract-Char ⇀
(SML) Str and (OCaml) Str and (Haskell) Str and (Scala) Str

end

118 Avoidance of pattern matching on natural num-
bers

theory Code-Abstract-Nat
imports Main
begin

When natural numbers are implemented in another than the conven-
tional inductive 0/Suc representation, it is necessary to avoid all pattern
matching on natural numbers altogether. This is accomplished by this the-
ory (up to a certain extent).

118.1 Case analysis
Case analysis on natural numbers is rephrased using a conditional expres-
sion:
lemma [code, code-unfold]:

case-nat = (λf g n. if n = 0 then f else g (n − 1))
〈proof 〉

118.2 Preprocessors
The term Suc n is no longer a valid pattern. Therefore, all occurrences of
this term in a position where a pattern is expected (i.e. on the left-hand side
of a code equation) must be eliminated. This can be accomplished – as far
as possible – by applying the following transformation rule:
lemma Suc-if-eq:

assumes
∧

n. f (Suc n) ≡ h n
assumes f 0 ≡ g
shows f n ≡ if n = 0 then g else h (n − 1)

THEORY “Code-Binary-Nat” 875

〈proof 〉

The rule above is built into a preprocessor that is plugged into the code
generator.
〈ML〉

118.3 Candidates which need special treatment
lemma drop-bit-int-code [code]:

‹drop-bit n k = k div 2 ^ n› for k :: int
〈proof 〉

lemma take-bit-num-code [code]:
‹take-bit-num n Num.One =
(case n of 0 ⇒ None | Suc n ⇒ Some Num.One)›

‹take-bit-num n (Num.Bit0 m) =
(case n of 0 ⇒ None | Suc n ⇒ (case take-bit-num n m of None ⇒ None |

Some q ⇒ Some (Num.Bit0 q)))›
‹take-bit-num n (Num.Bit1 m) =

(case n of 0 ⇒ None | Suc n ⇒ Some (case take-bit-num n m of None ⇒
Num.One | Some q ⇒ Num.Bit1 q))›
〈proof 〉

end

119 Implementation of natural numbers as binary
numerals

theory Code-Binary-Nat
imports Code-Abstract-Nat
begin

When generating code for functions on natural numbers, the canonical
representation using 0 and Suc is unsuitable for computations involving
large numbers. This theory refines the representation of natural numbers
for code generation to use binary numerals, which do not grow linear in size
but logarithmic.

119.1 Representation
code-datatype 0 ::nat nat-of-num

lemma [code]:
num-of-nat 0 = Num.One
num-of-nat (nat-of-num k) = k
〈proof 〉

lemma [code]:

THEORY “Code-Binary-Nat” 876

(1 ::nat) = Numeral1
〈proof 〉

lemma [code-abbrev]: Numeral1 = (1 ::nat)
〈proof 〉

lemma [code]:
Suc n = n + 1
〈proof 〉

119.2 Basic arithmetic
context
begin

lemma plus-nat-code [code]:
0 + n = (n::nat)
m + 0 = (m::nat)
nat-of-num k + nat-of-num l = nat-of-num (k + l)
〈proof 〉

Bounded subtraction needs some auxiliary
qualified definition dup :: nat ⇒ nat where

dup n = n + n

lemma dup-code [code]:
dup 0 = 0
dup (nat-of-num k) = nat-of-num (Num.Bit0 k)
〈proof 〉 definition sub :: num ⇒ num ⇒ nat option where
sub k l = (if k ≥ l then Some (numeral k − numeral l) else None)

lemma sub-code [code]:
sub Num.One Num.One = Some 0
sub (Num.Bit0 m) Num.One = Some (nat-of-num (Num.BitM m))
sub (Num.Bit1 m) Num.One = Some (nat-of-num (Num.Bit0 m))
sub Num.One (Num.Bit0 n) = None
sub Num.One (Num.Bit1 n) = None
sub (Num.Bit0 m) (Num.Bit0 n) = map-option dup (sub m n)
sub (Num.Bit1 m) (Num.Bit1 n) = map-option dup (sub m n)
sub (Num.Bit1 m) (Num.Bit0 n) = map-option (λq. dup q + 1) (sub m n)
sub (Num.Bit0 m) (Num.Bit1 n) = (case sub m n of None ⇒ None
| Some q ⇒ if q = 0 then None else Some (dup q − 1))

〈proof 〉

lemma minus-nat-code [code]:
0 − n = (0 ::nat)
m − 0 = (m::nat)
nat-of-num k − nat-of-num l = (case sub k l of None ⇒ 0 | Some j ⇒ j)
〈proof 〉

THEORY “Code-Binary-Nat” 877

lemma times-nat-code [code]:
0 ∗ n = (0 ::nat)
m ∗ 0 = (0 ::nat)
nat-of-num k ∗ nat-of-num l = nat-of-num (k ∗ l)
〈proof 〉

lemma equal-nat-code [code]:
HOL.equal 0 (0 ::nat) ←→ True
HOL.equal 0 (nat-of-num l) ←→ False
HOL.equal (nat-of-num k) 0 ←→ False
HOL.equal (nat-of-num k) (nat-of-num l) ←→ HOL.equal k l
〈proof 〉

lemma equal-nat-refl [code nbe]:
HOL.equal (n::nat) n ←→ True
〈proof 〉

lemma less-eq-nat-code [code]:
0 ≤ (n::nat) ←→ True
nat-of-num k ≤ 0 ←→ False
nat-of-num k ≤ nat-of-num l ←→ k ≤ l
〈proof 〉

lemma less-nat-code [code]:
(m::nat) < 0 ←→ False
0 < nat-of-num l ←→ True
nat-of-num k < nat-of-num l ←→ k < l
〈proof 〉

lemma divmod-nat-code [code]:
Euclidean-Rings.divmod-nat 0 n = (0 , 0)
Euclidean-Rings.divmod-nat m 0 = (0 , m)
Euclidean-Rings.divmod-nat (nat-of-num k) (nat-of-num l) = divmod k l
〈proof 〉

end

119.3 Conversions
lemma of-nat-code [code]:

of-nat 0 = 0
of-nat (nat-of-num k) = numeral k
〈proof 〉

code-identifier
code-module Code-Binary-Nat ⇀
(SML) Arith and (OCaml) Arith and (Haskell) Arith

THEORY “Code-Prolog” 878

end

120 Code generation of prolog programs
theory Code-Prolog
imports Main
keywords values-prolog :: diag
begin

〈ML〉

121 Setup for Numerals
〈ML〉

end

122 Implementation of integer numbers by target-
language integers

theory Code-Target-Int
imports Main
begin

code-datatype int-of-integer

context
includes integer .lifting
begin

lemma [code]:
integer-of-int (int-of-integer k) = k
〈proof 〉

lemma [code]:
Int.Pos = int-of-integer ◦ integer-of-num
〈proof 〉

lemma [code]:
Int.Neg = int-of-integer ◦ uminus ◦ integer-of-num
〈proof 〉

lemma [code-abbrev]:
int-of-integer (numeral k) = Int.Pos k
〈proof 〉

lemma [code-abbrev]:

THEORY “Code-Target-Int” 879

int-of-integer (− numeral k) = Int.Neg k
〈proof 〉

context
begin

qualified definition positive :: num ⇒ int
where [simp]: positive = numeral

qualified definition negative :: num ⇒ int
where [simp]: negative = uminus ◦ numeral

lemma [code-computation-unfold]:
numeral = positive
Int.Pos = positive
Int.Neg = negative
〈proof 〉

end

lemma [code, symmetric, code-post]:
0 = int-of-integer 0
〈proof 〉

lemma [code, symmetric, code-post]:
1 = int-of-integer 1
〈proof 〉

lemma [code-post]:
int-of-integer (− 1) = − 1
〈proof 〉

lemma [code]:
k + l = int-of-integer (of-int k + of-int l)
〈proof 〉

lemma [code]:
− k = int-of-integer (− of-int k)
〈proof 〉

lemma [code]:
k − l = int-of-integer (of-int k − of-int l)
〈proof 〉

lemma [code]:
Int.dup k = int-of-integer (Code-Numeral.dup (of-int k))
〈proof 〉

declare [[code drop: Int.sub]]

THEORY “Code-Target-Int” 880

lemma [code]:
k ∗ l = int-of-integer (of-int k ∗ of-int l)
〈proof 〉

lemma [code]:
k div l = int-of-integer (of-int k div of-int l)
〈proof 〉

lemma [code]:
k mod l = int-of-integer (of-int k mod of-int l)
〈proof 〉

lemma [code]:
divmod m n = map-prod int-of-integer int-of-integer (divmod m n)
〈proof 〉

lemma [code]:
HOL.equal k l = HOL.equal (of-int k :: integer) (of-int l)
〈proof 〉

lemma [code]:
k ≤ l ←→ (of-int k :: integer) ≤ of-int l
〈proof 〉

lemma [code]:
k < l ←→ (of-int k :: integer) < of-int l
〈proof 〉

lemma gcd-int-of-integer [code]:
gcd (int-of-integer x) (int-of-integer y) = int-of-integer (gcd x y)
〈proof 〉

lemma lcm-int-of-integer [code]:
lcm (int-of-integer x) (int-of-integer y) = int-of-integer (lcm x y)
〈proof 〉

end

lemma (in ring-1) of-int-code-if :
of-int k = (if k = 0 then 0

else if k < 0 then − of-int (− k)
else let

l = 2 ∗ of-int (k div 2);
j = k mod 2

in if j = 0 then l else l + 1)
〈proof 〉

declare of-int-code-if [code]

THEORY “Code-Target-Int” 881

lemma [code]:
nat = nat-of-integer ◦ of-int
including integer .lifting 〈proof 〉

definition char-of-int :: int ⇒ char
where [code-abbrev]: char-of-int = char-of

definition int-of-char :: char ⇒ int
where [code-abbrev]: int-of-char = of-char

lemma [code]:
char-of-int = char-of-integer ◦ integer-of-int
including integer .lifting 〈proof 〉

lemma [code]:
int-of-char = int-of-integer ◦ integer-of-char
including integer .lifting 〈proof 〉

context
includes integer .lifting and bit-operations-syntax

begin

lemma [code]:
‹bit (int-of-integer k) n ←→ bit k n›
〈proof 〉

lemma [code]:
‹NOT (int-of-integer k) = int-of-integer (NOT k)›
〈proof 〉

lemma [code]:
‹int-of-integer k AND int-of-integer l = int-of-integer (k AND l)›
〈proof 〉

lemma [code]:
‹int-of-integer k OR int-of-integer l = int-of-integer (k OR l)›
〈proof 〉

lemma [code]:
‹int-of-integer k XOR int-of-integer l = int-of-integer (k XOR l)›
〈proof 〉

lemma [code]:
‹push-bit n (int-of-integer k) = int-of-integer (push-bit n k)›
〈proof 〉

lemma [code]:
‹drop-bit n (int-of-integer k) = int-of-integer (drop-bit n k)›

THEORY “Code-Real-Approx-By-Float” 882

〈proof 〉

lemma [code]:
‹take-bit n (int-of-integer k) = int-of-integer (take-bit n k)›
〈proof 〉

lemma [code]:
‹mask n = int-of-integer (mask n)›
〈proof 〉

lemma [code]:
‹set-bit n (int-of-integer k) = int-of-integer (set-bit n k)›
〈proof 〉

lemma [code]:
‹unset-bit n (int-of-integer k) = int-of-integer (unset-bit n k)›
〈proof 〉

lemma [code]:
‹flip-bit n (int-of-integer k) = int-of-integer (flip-bit n k)›
〈proof 〉

end

code-identifier
code-module Code-Target-Int ⇀
(SML) Arith and (OCaml) Arith and (Haskell) Arith

end

theory Code-Real-Approx-By-Float
imports Complex-Main Code-Target-Int
begin

WARNING! This theory implements mathematical reals by machine
reals (floats). This is inconsistent. See the proof of False at the end of the
theory, where an equality on mathematical reals is (incorrectly) disproved
by mapping it to machine reals.

The value command cannot display real results yet.
The only legitimate use of this theory is as a tool for code generation

purposes.
context
begin

qualified definition real-of-integer :: integer ⇒ real
where [code-abbrev]: real-of-integer = of-int ◦ int-of-integer

end

THEORY “Code-Real-Approx-By-Float” 883

code-datatype Code-Real-Approx-By-Float.real-of-integer ‹(/) :: real ⇒ real ⇒
real›

lemma [code-unfold del]: numeral k ≡ real-of-rat (numeral k)
〈proof 〉

lemma [code-unfold del]: − numeral k ≡ real-of-rat (− numeral k)
〈proof 〉

context
begin

qualified definition real-of-int :: ‹int ⇒ real›
where [code-abbrev]: ‹real-of-int = of-int›

lemma [code]: real-of-int = Code-Real-Approx-By-Float.real-of-integer ◦ integer-of-int
〈proof 〉 definition exp-real :: ‹real ⇒ real›
where [code-abbrev, code del]: ‹exp-real = exp›

qualified definition sin-real :: ‹real ⇒ real›
where [code-abbrev, code del]: ‹sin-real = sin›

qualified definition cos-real :: ‹real ⇒ real›
where [code-abbrev, code del]: ‹cos-real = cos›

qualified definition tan-real :: ‹real ⇒ real›
where [code-abbrev, code del]: ‹tan-real = tan›

end

lemma [code]: ‹r − s = r + (− s)› for r s :: real
〈proof 〉

lemma [code]: ‹inverse r = 1 / r› for r :: real
〈proof 〉

lemma [code]: ‹Ratreal r = (let (p, q) = quotient-of r in real-of-int p / real-of-int
q)›
〈proof 〉

declare [[code drop:
‹HOL.equal :: real ⇒ real ⇒ bool›
‹(≤) :: real ⇒ real ⇒ bool›
‹(<) :: real ⇒ real ⇒ bool›
‹(+) :: real ⇒ real ⇒ real›
‹uminus :: real ⇒ real›
‹(∗) :: real ⇒ real ⇒ real›
sqrt

THEORY “Code-Real-Approx-By-Float” 884

‹ln :: real ⇒ real›
pi
arcsin
arccos
arctan]]

code-reserved (SML) Real

code-printing
type-constructor real ⇀
(SML) real
and (OCaml) float
and (Haskell) Prelude.Double

| constant 0 :: real ⇀
(SML) 0 .0
and (OCaml) 0 .0
and (Haskell) 0 .0

| constant 1 :: real ⇀
(SML) 1 .0
and (OCaml) 1 .0
and (Haskell) 1 .0

| constant HOL.equal :: real ⇒ real ⇒ bool ⇀
(SML) Real.== ((-), (-))
and (OCaml) Pervasives.(=)
and (Haskell) infix 4 ==

| class-instance real :: HOL.equal => (Haskell) −
| constant (≤) :: real ⇒ real ⇒ bool ⇀

(SML) Real.<= ((-), (-))
and (OCaml) Pervasives.(<=)
and (Haskell) infix 4 <=

| constant (<) :: real ⇒ real ⇒ bool ⇀
(SML) Real.< ((-), (-))
and (OCaml) Pervasives.(<)
and (Haskell) infix 4 <

| constant (+) :: real ⇒ real ⇒ real ⇀
(SML) Real.+ ((-), (-))
and (OCaml) Pervasives.(+.)
and (Haskell) infixl 6 +

| constant (∗) :: real ⇒ real ⇒ real ⇀
(SML) Real.∗ ((-), (-))
and (Haskell) infixl 7 ∗

| constant uminus :: real ⇒ real ⇀
(SML) Real.∼
and (OCaml) Pervasives.(∼−.)
and (Haskell) negate

| constant (−) :: real ⇒ real ⇒ real ⇀
(SML) Real.− ((-), (-))
and (OCaml) Pervasives.(−.)
and (Haskell) infixl 6 −

THEORY “Code-Real-Approx-By-Float” 885

| constant (/) :: real ⇒ real ⇒ real ⇀
(SML) Real. ′/ ((-), (-))
and (OCaml) Pervasives.(′/.)
and (Haskell) infixl 7 /

| constant sqrt :: real ⇒ real ⇀
(SML) Math.sqrt
and (OCaml) Pervasives.sqrt
and (Haskell) Prelude.sqrt

| constant Code-Real-Approx-By-Float.exp-real ⇀
(SML) Math.exp
and (OCaml) Pervasives.exp
and (Haskell) Prelude.exp

| constant ln ⇀
(SML) Math.ln
and (OCaml) Pervasives.ln
and (Haskell) Prelude.log

| constant Code-Real-Approx-By-Float.sin-real ⇀
(SML) Math.sin
and (OCaml) Pervasives.sin
and (Haskell) Prelude.sin

| constant Code-Real-Approx-By-Float.cos-real ⇀
(SML) Math.cos
and (OCaml) Pervasives.cos
and (Haskell) Prelude.cos

| constant Code-Real-Approx-By-Float.tan-real ⇀
(SML) Math.tan
and (OCaml) Pervasives.tan
and (Haskell) Prelude.tan

| constant pi ⇀
(SML) Math.pi

and (Haskell) Prelude.pi
| constant arcsin ⇀

(SML) Math.asin
and (OCaml) Pervasives.asin
and (Haskell) Prelude.asin

| constant arccos ⇀
(SML) Math.scos
and (OCaml) Pervasives.acos
and (Haskell) Prelude.acos

| constant arctan ⇀
(SML) Math.atan
and (OCaml) Pervasives.atan
and (Haskell) Prelude.atan

| constant Code-Real-Approx-By-Float.real-of-integer ⇀
(SML) Real.fromInt
and (OCaml) Pervasives.float/ (Big ′-int.to ′-int (-))
and (Haskell) Prelude.fromIntegral (-)

THEORY “Code-Target-Nat” 886

notepad
begin
〈proof 〉

end

end

123 Implementation of natural numbers by target-
language integers

theory Code-Target-Nat
imports Code-Abstract-Nat
begin

123.1 Implementation for nat
context
includes integer .lifting
begin

lift-definition Nat :: integer ⇒ nat
is nat
〈proof 〉

lemma [code-post]:
Nat 0 = 0
Nat 1 = 1
Nat (numeral k) = numeral k
〈proof 〉

lemma [code-abbrev]:
integer-of-nat = of-nat
〈proof 〉

lemma [code-unfold]:
Int.nat (int-of-integer k) = nat-of-integer k
〈proof 〉

lemma [code abstype]:
Code-Target-Nat.Nat (integer-of-nat n) = n
〈proof 〉

lemma [code abstract]:
integer-of-nat (nat-of-integer k) = max 0 k
〈proof 〉

lemma [code-abbrev]:
nat-of-integer (numeral k) = nat-of-num k

THEORY “Code-Target-Nat” 887

〈proof 〉

context
begin

qualified definition natural :: num ⇒ nat
where [simp]: natural = nat-of-num

lemma [code-computation-unfold]:
numeral = natural
nat-of-num = natural
〈proof 〉

end

lemma [code abstract]:
integer-of-nat (nat-of-num n) = integer-of-num n
〈proof 〉

lemma [code abstract]:
integer-of-nat 0 = 0
〈proof 〉

lemma [code abstract]:
integer-of-nat 1 = 1
〈proof 〉

lemma [code]:
Suc n = n + 1
〈proof 〉

lemma [code abstract]:
integer-of-nat (m + n) = of-nat m + of-nat n
〈proof 〉

lemma [code abstract]:
integer-of-nat (m − n) = max 0 (of-nat m − of-nat n)
〈proof 〉

lemma [code abstract]:
integer-of-nat (m ∗ n) = of-nat m ∗ of-nat n
〈proof 〉

lemma [code abstract]:
integer-of-nat (m div n) = of-nat m div of-nat n
〈proof 〉

lemma [code abstract]:
integer-of-nat (m mod n) = of-nat m mod of-nat n

THEORY “Code-Target-Nat” 888

〈proof 〉

context
includes integer .lifting

begin

lemma divmod-nat-code [code]:
Euclidean-Rings.divmod-nat m n = (

let k = integer-of-nat m; l = integer-of-nat n
in map-prod nat-of-integer nat-of-integer
(if k = 0 then (0 , 0)
else if l = 0 then (0 , k) else

Code-Numeral.divmod-abs k l))
〈proof 〉

end

lemma [code]:
divmod m n = map-prod nat-of-integer nat-of-integer (divmod m n)
〈proof 〉

lemma [code]:
HOL.equal m n = HOL.equal (of-nat m :: integer) (of-nat n)
〈proof 〉

lemma [code]:
m ≤ n ←→ (of-nat m :: integer) ≤ of-nat n
〈proof 〉

lemma [code]:
m < n ←→ (of-nat m :: integer) < of-nat n
〈proof 〉

lemma num-of-nat-code [code]:
num-of-nat = num-of-integer ◦ of-nat
〈proof 〉

end

lemma (in semiring-1) of-nat-code-if :
of-nat n = (if n = 0 then 0

else let
(m, q) = Euclidean-Rings.divmod-nat n 2 ;
m ′ = 2 ∗ of-nat m

in if q = 0 then m ′ else m ′ + 1)
〈proof 〉

declare of-nat-code-if [code]

THEORY “Code-Target-Nat” 889

definition int-of-nat :: nat ⇒ int where
[code-abbrev]: int-of-nat = of-nat

lemma [code]:
int-of-nat n = int-of-integer (of-nat n)
〈proof 〉

lemma [code abstract]:
integer-of-nat (nat k) = max 0 (integer-of-int k)
including integer .lifting 〈proof 〉

definition char-of-nat :: nat ⇒ char
where [code-abbrev]: char-of-nat = char-of

definition nat-of-char :: char ⇒ nat
where [code-abbrev]: nat-of-char = of-char

lemma [code]:
char-of-nat = char-of-integer ◦ integer-of-nat
including integer .lifting 〈proof 〉

lemma [code abstract]:
integer-of-nat (nat-of-char c) = integer-of-char c
〈proof 〉

lemma term-of-nat-code [code]:
— Use nat-of-integer in term reconstruction instead of Code-Target-Nat.Nat such

that reconstructed terms can be fed back to the code generator
term-of-class.term-of n =
Code-Evaluation.App
(Code-Evaluation.Const (STR ′′Code-Numeral.nat-of-integer ′′)

(typerep.Typerep (STR ′′fun ′′)
[typerep.Typerep (STR ′′Code-Numeral.integer ′′) [],

typerep.Typerep (STR ′′Nat.nat ′′) []]))
(term-of-class.term-of (integer-of-nat n))

〈proof 〉

lemma nat-of-integer-code-post [code-post]:
nat-of-integer 0 = 0
nat-of-integer 1 = 1
nat-of-integer (numeral k) = numeral k
including integer .lifting 〈proof 〉

context
includes integer .lifting and bit-operations-syntax

begin

lemma [code]:
‹bit m n ←→ bit (integer-of-nat m) n›

THEORY “Code-Target-Numeral” 890

〈proof 〉

lemma [code]:
‹integer-of-nat (m AND n) = integer-of-nat m AND integer-of-nat n›
〈proof 〉

lemma [code]:
‹integer-of-nat (m OR n) = integer-of-nat m OR integer-of-nat n›
〈proof 〉

lemma [code]:
‹integer-of-nat (m XOR n) = integer-of-nat m XOR integer-of-nat n›
〈proof 〉

lemma [code]:
‹integer-of-nat (push-bit n m) = push-bit n (integer-of-nat m)›
〈proof 〉

lemma [code]:
‹integer-of-nat (drop-bit n m) = drop-bit n (integer-of-nat m)›
〈proof 〉

lemma [code]:
‹integer-of-nat (take-bit n m) = take-bit n (integer-of-nat m)›
〈proof 〉

lemma [code]:
‹integer-of-nat (mask n) = mask n›
〈proof 〉

lemma [code]:
‹integer-of-nat (set-bit n m) = set-bit n (integer-of-nat m)›
〈proof 〉

lemma [code]:
‹integer-of-nat (unset-bit n m) = unset-bit n (integer-of-nat m)›
〈proof 〉

lemma [code]:
‹integer-of-nat (flip-bit n m) = flip-bit n (integer-of-nat m)›
〈proof 〉

end

code-identifier
code-module Code-Target-Nat ⇀
(SML) Arith and (OCaml) Arith and (Haskell) Arith

end

THEORY “Code-Target-Numeral-Float” 891

124 Implementation of natural and integer num-
bers by target-language integers

theory Code-Target-Numeral
imports Code-Target-Nat Code-Target-Int
begin

end

125 Preprocessor setup for floats implemented by
target language numerals

theory Code-Target-Numeral-Float
imports Float Code-Target-Numeral
begin

lemma numeral-float-computation-unfold [code-computation-unfold]:
‹numeral k = Float (int-of-integer (Code-Numeral.positive k)) 0 ›
‹− numeral k = Float (int-of-integer (Code-Numeral.negative k)) 0 ›
〈proof 〉

end

theory Complex-Order
imports Complex-Main

begin

instantiation complex :: order begin

definition ‹x < y ←→ Re x < Re y ∧ Im x = Im y›
definition ‹x ≤ y ←→ Re x ≤ Re y ∧ Im x = Im y›

instance
〈proof 〉

end

lemma nonnegative-complex-is-real: ‹(x::complex) ≥ 0 =⇒ x ∈ �›
〈proof 〉

lemma complex-is-real-iff-compare0 : ‹(x::complex) ∈ � ←→ x ≤ 0 ∨ x ≥ 0 ›
〈proof 〉

instance complex :: ordered-comm-ring
〈proof 〉

instance complex :: ordered-real-vector
〈proof 〉

THEORY “DAList” 892

instance complex :: ordered-cancel-comm-semiring
〈proof 〉

end

126 Abstract type of association lists with unique
keys

theory DAList
imports AList
begin

This was based on some existing fragments in the AFP-Collection frame-
work.

126.1 Preliminaries
lemma distinct-map-fst-filter :

distinct (map fst xs) =⇒ distinct (map fst (List.filter P xs))
〈proof 〉

126.2 Type (′key, ′value) alist
typedef (′key, ′value) alist = {xs :: (′key × ′value) list. (distinct ◦ map fst) xs}

morphisms impl-of Alist
〈proof 〉

setup-lifting type-definition-alist

lemma alist-ext: impl-of xs = impl-of ys =⇒ xs = ys
〈proof 〉

lemma alist-eq-iff : xs = ys ←→ impl-of xs = impl-of ys
〈proof 〉

lemma impl-of-distinct [simp, intro]: distinct (map fst (impl-of xs))
〈proof 〉

lemma impl-of-Alist:
‹impl-of (Alist xs) = xs› if ‹distinct (map fst xs)›
〈proof 〉

lemma Alist-impl-of [code abstype]: Alist (impl-of xs) = xs
〈proof 〉

THEORY “DAList” 893

126.3 Primitive operations
lift-definition lookup :: (′key, ′value) alist ⇒ ′key ⇒ ′value option is map-of
〈proof 〉

lift-definition empty :: (′key, ′value) alist is []
〈proof 〉

lift-definition update :: ′key ⇒ ′value ⇒ (′key, ′value) alist ⇒ (′key, ′value) alist
is AList.update
〈proof 〉

lift-definition delete :: ′key ⇒ (′key, ′value) alist ⇒ (′key, ′value) alist
is AList.delete
〈proof 〉

lift-definition map-entry ::
′key ⇒ (′value ⇒ ′value) ⇒ (′key, ′value) alist ⇒ (′key, ′value) alist

is AList.map-entry
〈proof 〉

lift-definition filter :: (′key × ′value⇒ bool)⇒ (′key, ′value) alist ⇒ (′key, ′value)
alist

is List.filter
〈proof 〉

lift-definition map-default ::
′key ⇒ ′value ⇒ (′value ⇒ ′value) ⇒ (′key, ′value) alist ⇒ (′key, ′value) alist

is AList.map-default
〈proof 〉

126.4 Abstract operation properties
lemma lookup-empty [simp]: lookup empty k = None
〈proof 〉

lemma lookup-update:
lookup (update k1 v xs) k2 = (if k1 = k2 then Some v else lookup xs k2)
〈proof 〉

lemma lookup-update-eq [simp]:
k1 = k2 =⇒ lookup (update k1 v xs) k2 = Some v
〈proof 〉

lemma lookup-update-neq [simp]:
k1 6= k2 =⇒ lookup (update k1 v xs) k2 = lookup xs k2
〈proof 〉

lemma update-update-eq [simp]:

THEORY “DAList” 894

k1 = k2 =⇒ update k2 v2 (update k1 v1 xs) = update k2 v2 xs
〈proof 〉

lemma lookup-delete [simp]: lookup (delete k al) = (lookup al)(k := None)
〈proof 〉

126.5 Further operations
126.5.1 Equality
instantiation alist :: (equal, equal) equal
begin

definition HOL.equal (xs :: (′a, ′b) alist) ys == impl-of xs = impl-of ys

instance
〈proof 〉

end

126.5.2 Size
instantiation alist :: (type, type) size
begin

definition size (al :: (′a, ′b) alist) = length (impl-of al)

instance 〈proof 〉

end

126.6 Quickcheck generators
context

includes state-combinator-syntax and term-syntax
begin

definition
valterm-empty :: (′key :: typerep, ′value :: typerep) alist × (unit ⇒ Code-Evaluation.term)
where valterm-empty = Code-Evaluation.valtermify empty

definition
valterm-update :: ′key :: typerep × (unit ⇒ Code-Evaluation.term) ⇒
′value :: typerep × (unit ⇒ Code-Evaluation.term) ⇒
(′key, ′value) alist × (unit ⇒ Code-Evaluation.term) ⇒
(′key, ′value) alist × (unit ⇒ Code-Evaluation.term) where
[code-unfold]: valterm-update k v a = Code-Evaluation.valtermify update {·} k {·}

v {·}a

fun random-aux-alist

THEORY “DAList” 895

where
random-aux-alist i j =
(if i = 0 then Pair valterm-empty
else Quickcheck-Random.collapse
(Random.select-weight

[(i, Quickcheck-Random.random j ◦→ (λk. Quickcheck-Random.random j
◦→

(λv. random-aux-alist (i − 1) j ◦→ (λa. Pair (valterm-update k v a))))),
(1 , Pair valterm-empty)]))

end

instantiation alist :: (random, random) random
begin

definition random-alist
where

random-alist i = random-aux-alist i i

instance 〈proof 〉

end

instantiation alist :: (exhaustive, exhaustive) exhaustive
begin

fun exhaustive-alist ::
((′a, ′b) alist ⇒ (bool × term list) option) ⇒ natural ⇒ (bool × term list) option

where
exhaustive-alist f i =
(if i = 0 then None
else
case f empty of

Some ts ⇒ Some ts
| None ⇒

exhaustive-alist
(λa. Quickcheck-Exhaustive.exhaustive
(λk. Quickcheck-Exhaustive.exhaustive (λv. f (update k v a)) (i − 1))

(i − 1))
(i − 1))

instance 〈proof 〉

end

instantiation alist :: (full-exhaustive, full-exhaustive) full-exhaustive
begin

fun full-exhaustive-alist ::

THEORY “DAList-Multiset” 896

((′a, ′b) alist × (unit ⇒ term) ⇒ (bool × term list) option) ⇒ natural ⇒
(bool × term list) option

where
full-exhaustive-alist f i =
(if i = 0 then None
else
case f valterm-empty of

Some ts ⇒ Some ts
| None ⇒

full-exhaustive-alist
(λa.

Quickcheck-Exhaustive.full-exhaustive
(λk. Quickcheck-Exhaustive.full-exhaustive (λv. f (valterm-update k v

a)) (i − 1))
(i − 1))

(i − 1))

instance 〈proof 〉

end

127 alist is a BNF
lift-bnf (dead ′k, set: ′v) alist [wits: [] :: (′k × ′v) list] for map: map rel: rel
〈proof 〉

hide-const valterm-empty valterm-update random-aux-alist

hide-fact (open) lookup-def empty-def update-def delete-def map-entry-def filter-def
map-default-def
hide-const (open) impl-of lookup empty update delete map-entry filter map-default
map set rel

end

128 Multisets partially implemented by associa-
tion lists

theory DAList-Multiset
imports Multiset DAList
begin

Raw operations on lists
definition join-raw ::

(′key ⇒ ′val × ′val ⇒ ′val) ⇒
(′key × ′val) list ⇒ (′key × ′val) list ⇒ (′key × ′val) list

where join-raw f xs ys = foldr (λ(k, v). map-default k v (λv ′. f k (v ′, v))) ys xs

THEORY “DAList-Multiset” 897

lemma join-raw-Nil [simp]: join-raw f xs [] = xs
〈proof 〉

lemma join-raw-Cons [simp]:
join-raw f xs ((k, v) # ys) = map-default k v (λv ′. f k (v ′, v)) (join-raw f xs ys)
〈proof 〉

lemma map-of-join-raw:
assumes distinct (map fst ys)
shows map-of (join-raw f xs ys) x =
(case map-of xs x of

None ⇒ map-of ys x
| Some v ⇒ (case map-of ys x of None ⇒ Some v | Some v ′ ⇒ Some (f x (v,

v ′))))
〈proof 〉

lemma distinct-join-raw:
assumes distinct (map fst xs)
shows distinct (map fst (join-raw f xs ys))
〈proof 〉

definition subtract-entries-raw xs ys = foldr (λ(k, v). AList.map-entry k (λv ′. v ′

− v)) ys xs

lemma map-of-subtract-entries-raw:
assumes distinct (map fst ys)
shows map-of (subtract-entries-raw xs ys) x =
(case map-of xs x of

None ⇒ None
| Some v ⇒ (case map-of ys x of None ⇒ Some v | Some v ′⇒ Some (v − v ′)))
〈proof 〉

lemma distinct-subtract-entries-raw:
assumes distinct (map fst xs)
shows distinct (map fst (subtract-entries-raw xs ys))
〈proof 〉

Operations on alists with distinct keys
lift-definition join :: (′a ⇒ ′b × ′b ⇒ ′b) ⇒ (′a, ′b) alist ⇒ (′a, ′b) alist ⇒ (′a,
′b) alist

is join-raw
〈proof 〉

lift-definition subtract-entries :: (′a, (′b :: minus)) alist ⇒ (′a, ′b) alist ⇒ (′a, ′b)
alist

is subtract-entries-raw
〈proof 〉

Implementing multisets by means of association lists
definition count-of :: (′a × nat) list ⇒ ′a ⇒ nat

THEORY “DAList-Multiset” 898

where count-of xs x = (case map-of xs x of None ⇒ 0 | Some n ⇒ n)

lemma count-of-multiset: finite {x. 0 < count-of xs x}
〈proof 〉

lemma count-simps [simp]:
count-of [] = (λ-. 0)
count-of ((x, n) # xs) = (λy. if x = y then n else count-of xs y)
〈proof 〉

lemma count-of-empty: x /∈ fst ‘ set xs =⇒ count-of xs x = 0
〈proof 〉

lemma count-of-filter : count-of (List.filter (P ◦ fst) xs) x = (if P x then count-of
xs x else 0)
〈proof 〉

lemma count-of-map-default [simp]:
count-of (map-default x b (λx. x + b) xs) y =
(if x = y then count-of xs x + b else count-of xs y)
〈proof 〉

lemma count-of-join-raw:
distinct (map fst ys) =⇒

count-of xs x + count-of ys x = count-of (join-raw (λx (x, y). x + y) xs ys) x
〈proof 〉

lemma count-of-subtract-entries-raw:
distinct (map fst ys) =⇒

count-of xs x − count-of ys x = count-of (subtract-entries-raw xs ys) x
〈proof 〉

Code equations for multiset operations
definition Bag :: (′a, nat) alist ⇒ ′a multiset

where Bag xs = Abs-multiset (count-of (DAList.impl-of xs))

code-datatype Bag

lemma count-Bag [simp, code]: count (Bag xs) = count-of (DAList.impl-of xs)
〈proof 〉

lemma Bag-eq:
‹Bag ms = (

∑
(a, n)←alist.impl-of ms. replicate-mset n a)›

for ms :: ‹(′a, nat) alist›
〈proof 〉

lemma Mempty-Bag [code]: {#} = Bag (DAList.empty)
〈proof 〉

THEORY “DAList-Multiset” 899

lift-definition is-empty-Bag-impl :: (′a, nat) alist ⇒ bool is
λxs. list-all (λx. snd x = 0) xs 〈proof 〉

lemma is-empty-Bag [code]: Multiset.is-empty (Bag xs) ←→ is-empty-Bag-impl xs
〈proof 〉

lemma union-Bag [code]: Bag xs + Bag ys = Bag (join (λx (n1 , n2). n1 + n2)
xs ys)
〈proof 〉

lemma add-mset-Bag [code]: add-mset x (Bag xs) =
Bag (join (λx (n1 , n2). n1 + n2) (DAList.update x 1 DAList.empty) xs)
〈proof 〉

lemma minus-Bag [code]: Bag xs − Bag ys = Bag (subtract-entries xs ys)
〈proof 〉

lemma filter-Bag [code]: filter-mset P (Bag xs) = Bag (DAList.filter (P ◦ fst) xs)
〈proof 〉

lemma mset-eq [code]: HOL.equal (m1 :: ′a::equal multiset) m2 ←→ m1 ⊆# m2 ∧
m2 ⊆# m1
〈proof 〉

By default the code for < is (xs < ys) = (xs ≤ ys ∧ xs 6= ys). With
equality implemented by ≤, this leads to three calls of ≤. Here is a more
efficient version:
lemma mset-less[code]: xs ⊂# (ys :: ′a multiset) ←→ xs ⊆# ys ∧ ¬ ys ⊆# xs
〈proof 〉

lemma mset-less-eq-Bag0 :
Bag xs ⊆# A ←→ (∀ (x, n) ∈ set (DAList.impl-of xs). count-of (DAList.impl-of

xs) x ≤ count A x)
(is ?lhs ←→ ?rhs)

〈proof 〉

lemma mset-less-eq-Bag [code]:
Bag xs ⊆# (A :: ′a multiset) ←→ (∀ (x, n) ∈ set (DAList.impl-of xs). n ≤ count

A x)
〈proof 〉

declare inter-mset-def [code]
declare union-mset-def [code]
declare mset.simps [code]

fun fold-impl :: (′a ⇒ nat ⇒ ′b ⇒ ′b) ⇒ ′b ⇒ (′a × nat) list ⇒ ′b
where

THEORY “DAList-Multiset” 900

fold-impl fn e ((a,n) # ms) = (fold-impl fn ((fn a n) e) ms)
| fold-impl fn e [] = e

context
begin

qualified definition fold :: (′a ⇒ nat ⇒ ′b ⇒ ′b) ⇒ ′b ⇒ (′a, nat) alist ⇒ ′b
where fold f e al = fold-impl f e (DAList.impl-of al)

end

context comp-fun-commute
begin

lemma DAList-Multiset-fold:
assumes fn:

∧
a n x. fn a n x = (f a ^^ n) x

shows fold-mset f e (Bag al) = DAList-Multiset.fold fn e al
〈proof 〉

end

context
begin

private lift-definition single-alist-entry :: ′a ⇒ ′b ⇒ (′a, ′b) alist is λa b. [(a,
b)]
〈proof 〉

lemma image-mset-Bag [code]:
image-mset f (Bag ms) =

DAList-Multiset.fold (λa n m. Bag (single-alist-entry (f a) n) + m) {#} ms
〈proof 〉

end

— we cannot use λa n. (+) (a ∗ n) for folding, since (∗) is not defined in comm-monoid-add
lemma sum-mset-Bag[code]: sum-mset (Bag ms) = DAList-Multiset.fold (λa n.
(((+) a) ^^ n)) 0 ms
〈proof 〉

lemma prod-mset-Bag[code]: prod-mset (Bag ms) = DAList-Multiset.fold (λa n.
(((∗) a) ^^ n)) 1 ms
〈proof 〉

lemma size-fold: size A = fold-mset (λ-. Suc) 0 A (is - = fold-mset ?f - -)
〈proof 〉

lemma size-Bag[code]: size (Bag ms) = DAList-Multiset.fold (λa n. (+) n) 0 ms
〈proof 〉

THEORY “RBT-Impl” 901

lemma set-mset-fold: set-mset A = fold-mset insert {} A (is - = fold-mset ?f - -)
〈proof 〉

lemma set-mset-Bag[code]:
set-mset (Bag ms) = DAList-Multiset.fold (λa n. (if n = 0 then (λm. m) else

insert a)) {} ms
〈proof 〉

lemma sorted-list-of-multiset-Bag [code]:
‹sorted-list-of-multiset (Bag ms) = concat (map (λ(a, n). replicate n a)
(sort-key fst (DAList.impl-of ms)))› (is ‹?lhs = ?rhs›)

〈proof 〉

instantiation multiset :: (exhaustive) exhaustive
begin

definition exhaustive-multiset ::
(′a multiset ⇒ (bool × term list) option) ⇒ natural ⇒ (bool × term list) option
where exhaustive-multiset f i = Quickcheck-Exhaustive.exhaustive (λxs. f (Bag

xs)) i

instance 〈proof 〉

end

end

129 Implementation of Red-Black Trees
theory RBT-Impl
imports Main
begin

For applications, you should use theory RBT which defines an abstract
type of red-black tree obeying the invariant.

129.1 Datatype of RB trees
datatype color = R | B
datatype (′a, ′b) rbt = Empty | Branch color (′a, ′b) rbt ′a ′b (′a, ′b) rbt

lemma rbt-cases:
obtains (Empty) t = Empty
| (Red) l k v r where t = Branch R l k v r
| (Black) l k v r where t = Branch B l k v r
〈proof 〉

THEORY “RBT-Impl” 902

129.2 Tree properties
129.2.1 Content of a tree
primrec entries :: (′a, ′b) rbt ⇒ (′a × ′b) list
where

entries Empty = []
| entries (Branch - l k v r) = entries l @ (k,v) # entries r

abbreviation (input) entry-in-tree :: ′a ⇒ ′b ⇒ (′a, ′b) rbt ⇒ bool
where

entry-in-tree k v t ≡ (k, v) ∈ set (entries t)

definition keys :: (′a, ′b) rbt ⇒ ′a list where
keys t = map fst (entries t)

lemma keys-simps [simp]:
keys Empty = []
keys (Branch c l k v r) = keys l @ k # keys r
〈proof 〉

lemma entry-in-tree-keys:
assumes (k, v) ∈ set (entries t)
shows k ∈ set (keys t)
〈proof 〉

lemma keys-entries:
k ∈ set (keys t) ←→ (∃ v. (k, v) ∈ set (entries t))
〈proof 〉

lemma non-empty-rbt-keys:
t 6= rbt.Empty =⇒ keys t 6= []
〈proof 〉

129.2.2 Search tree properties
context ord begin

definition rbt-less :: ′a ⇒ (′a, ′b) rbt ⇒ bool
where

rbt-less-prop: rbt-less k t ←→ (∀ x∈set (keys t). x < k)

abbreviation rbt-less-symbol (infix ‹|«› 50)
where t |« x ≡ rbt-less x t

definition rbt-greater :: ′a ⇒ (′a, ′b) rbt ⇒ bool (infix ‹«|› 50)
where

rbt-greater-prop: rbt-greater k t = (∀ x∈set (keys t). k < x)

lemma rbt-less-simps [simp]:

THEORY “RBT-Impl” 903

Empty |« k = True
Branch c lt kt v rt |« k ←→ kt < k ∧ lt |« k ∧ rt |« k
〈proof 〉

lemma rbt-greater-simps [simp]:
k «| Empty = True
k «| (Branch c lt kt v rt) ←→ k < kt ∧ k «| lt ∧ k «| rt
〈proof 〉

lemmas rbt-ord-props = rbt-less-prop rbt-greater-prop

lemmas rbt-greater-nit = rbt-greater-prop entry-in-tree-keys
lemmas rbt-less-nit = rbt-less-prop entry-in-tree-keys

lemma (in order)
shows rbt-less-eq-trans: l |« u =⇒ u ≤ v =⇒ l |« v
and rbt-less-trans: t |« x =⇒ x < y =⇒ t |« y
and rbt-greater-eq-trans: u ≤ v =⇒ v «| r =⇒ u «| r
and rbt-greater-trans: x < y =⇒ y «| t =⇒ x «| t
〈proof 〉

primrec rbt-sorted :: (′a, ′b) rbt ⇒ bool
where

rbt-sorted Empty = True
| rbt-sorted (Branch c l k v r) = (l |« k ∧ k «| r ∧ rbt-sorted l ∧ rbt-sorted r)

end

context linorder begin

lemma rbt-sorted-entries:
rbt-sorted t =⇒ List.sorted (map fst (entries t))
〈proof 〉

lemma distinct-entries:
rbt-sorted t =⇒ distinct (map fst (entries t))
〈proof 〉

lemma distinct-keys:
rbt-sorted t =⇒ distinct (keys t)
〈proof 〉

129.2.3 Tree lookup
primrec (in ord) rbt-lookup :: (′a, ′b) rbt ⇒ ′a ⇀ ′b
where

rbt-lookup Empty k = None
| rbt-lookup (Branch - l x y r) k =

(if k < x then rbt-lookup l k else if x < k then rbt-lookup r k else Some y)

THEORY “RBT-Impl” 904

lemma rbt-lookup-keys: rbt-sorted t =⇒ dom (rbt-lookup t) = set (keys t)
〈proof 〉

lemma dom-rbt-lookup-Branch:
rbt-sorted (Branch c t1 k v t2) =⇒

dom (rbt-lookup (Branch c t1 k v t2))
= Set.insert k (dom (rbt-lookup t1) ∪ dom (rbt-lookup t2))

〈proof 〉

lemma finite-dom-rbt-lookup [simp, intro!]: finite (dom (rbt-lookup t))
〈proof 〉

end

context ord begin

lemma rbt-lookup-rbt-less[simp]: t |« k =⇒ rbt-lookup t k = None
〈proof 〉

lemma rbt-lookup-rbt-greater [simp]: k «| t =⇒ rbt-lookup t k = None
〈proof 〉

lemma rbt-lookup-Empty: rbt-lookup Empty = Map.empty
〈proof 〉

end

context linorder begin

lemma map-of-entries:
rbt-sorted t =⇒ map-of (entries t) = rbt-lookup t
〈proof 〉

lemma rbt-lookup-in-tree: rbt-sorted t =⇒ rbt-lookup t k = Some v ←→ (k, v) ∈
set (entries t)
〈proof 〉

lemma set-entries-inject:
assumes rbt-sorted: rbt-sorted t1 rbt-sorted t2
shows set (entries t1) = set (entries t2) ←→ entries t1 = entries t2
〈proof 〉

lemma entries-eqI :
assumes rbt-sorted: rbt-sorted t1 rbt-sorted t2
assumes rbt-lookup: rbt-lookup t1 = rbt-lookup t2
shows entries t1 = entries t2
〈proof 〉

THEORY “RBT-Impl” 905

lemma entries-rbt-lookup:
assumes rbt-sorted t1 rbt-sorted t2
shows entries t1 = entries t2 ←→ rbt-lookup t1 = rbt-lookup t2
〈proof 〉

lemma rbt-lookup-from-in-tree:
assumes rbt-sorted t1 rbt-sorted t2
and

∧
v. (k, v) ∈ set (entries t1) ←→ (k, v) ∈ set (entries t2)

shows rbt-lookup t1 k = rbt-lookup t2 k
〈proof 〉

end

129.2.4 Red-black properties
primrec color-of :: (′a, ′b) rbt ⇒ color
where

color-of Empty = B
| color-of (Branch c - - - -) = c

primrec bheight :: (′a, ′b) rbt ⇒ nat
where

bheight Empty = 0
| bheight (Branch c lt k v rt) = (if c = B then Suc (bheight lt) else bheight lt)

primrec inv1 :: (′a, ′b) rbt ⇒ bool
where

inv1 Empty = True
| inv1 (Branch c lt k v rt) ←→ inv1 lt ∧ inv1 rt ∧ (c = B ∨ color-of lt = B ∧
color-of rt = B)

primrec inv1l :: (′a, ′b) rbt ⇒ bool — Weaker version
where

inv1l Empty = True
| inv1l (Branch c l k v r) = (inv1 l ∧ inv1 r)
lemma [simp]: inv1 t =⇒ inv1l t 〈proof 〉

primrec inv2 :: (′a, ′b) rbt ⇒ bool
where

inv2 Empty = True
| inv2 (Branch c lt k v rt) = (inv2 lt ∧ inv2 rt ∧ bheight lt = bheight rt)

context ord begin

definition is-rbt :: (′a, ′b) rbt ⇒ bool where
is-rbt t ←→ inv1 t ∧ inv2 t ∧ color-of t = B ∧ rbt-sorted t

lemma is-rbt-rbt-sorted [simp]:
is-rbt t =⇒ rbt-sorted t 〈proof 〉

THEORY “RBT-Impl” 906

theorem Empty-is-rbt [simp]:
is-rbt Empty 〈proof 〉

end

129.3 Insertion
The function definitions are based on the book by Okasaki.
fun

balance :: (′a, ′b) rbt ⇒ ′a ⇒ ′b ⇒ (′a, ′b) rbt ⇒ (′a, ′b) rbt
where

balance (Branch R a w x b) s t (Branch R c y z d) = Branch R (Branch B a w x
b) s t (Branch B c y z d) |

balance (Branch R (Branch R a w x b) s t c) y z d = Branch R (Branch B a w x
b) s t (Branch B c y z d) |

balance (Branch R a w x (Branch R b s t c)) y z d = Branch R (Branch B a w x
b) s t (Branch B c y z d) |

balance a w x (Branch R b s t (Branch R c y z d)) = Branch R (Branch B a w x
b) s t (Branch B c y z d) |

balance a w x (Branch R (Branch R b s t c) y z d) = Branch R (Branch B a w x
b) s t (Branch B c y z d) |

balance a s t b = Branch B a s t b

lemma balance-inv1 : [[inv1l l; inv1l r]] =⇒ inv1 (balance l k v r)
〈proof 〉

lemma balance-bheight: bheight l = bheight r =⇒ bheight (balance l k v r) = Suc
(bheight l)
〈proof 〉

lemma balance-inv2 :
assumes inv2 l inv2 r bheight l = bheight r
shows inv2 (balance l k v r)
〈proof 〉

context ord begin

lemma balance-rbt-greater [simp]: (v «| balance a k x b) = (v «| a ∧ v «| b ∧ v <
k)
〈proof 〉

lemma balance-rbt-less[simp]: (balance a k x b |« v) = (a |« v ∧ b |« v ∧ k < v)
〈proof 〉

end

lemma (in linorder) balance-rbt-sorted:
fixes k :: ′a

THEORY “RBT-Impl” 907

assumes rbt-sorted l rbt-sorted r l |« k k «| r
shows rbt-sorted (balance l k v r)
〈proof 〉

lemma entries-balance [simp]:
entries (balance l k v r) = entries l @ (k, v) # entries r
〈proof 〉

lemma keys-balance [simp]:
keys (balance l k v r) = keys l @ k # keys r
〈proof 〉

lemma balance-in-tree:
entry-in-tree k x (balance l v y r) ←→ entry-in-tree k x l ∨ k = v ∧ x = y ∨

entry-in-tree k x r
〈proof 〉

lemma (in linorder) rbt-lookup-balance[simp]:
fixes k :: ′a
assumes rbt-sorted l rbt-sorted r l |« k k «| r
shows rbt-lookup (balance l k v r) x = rbt-lookup (Branch B l k v r) x
〈proof 〉

primrec paint :: color ⇒ (′a, ′b) rbt ⇒ (′a, ′b) rbt
where

paint c Empty = Empty
| paint c (Branch - l k v r) = Branch c l k v r

lemma paint-inv1l[simp]: inv1l t =⇒ inv1l (paint c t) 〈proof 〉
lemma paint-inv1 [simp]: inv1l t =⇒ inv1 (paint B t) 〈proof 〉
lemma paint-inv2 [simp]: inv2 t =⇒ inv2 (paint c t) 〈proof 〉
lemma paint-color-of [simp]: color-of (paint B t) = B 〈proof 〉
lemma paint-in-tree[simp]: entry-in-tree k x (paint c t) = entry-in-tree k x t 〈proof 〉

context ord begin

lemma paint-rbt-sorted[simp]: rbt-sorted t =⇒ rbt-sorted (paint c t) 〈proof 〉
lemma paint-rbt-lookup[simp]: rbt-lookup (paint c t) = rbt-lookup t 〈proof 〉
lemma paint-rbt-greater [simp]: (v «| paint c t) = (v «| t) 〈proof 〉
lemma paint-rbt-less[simp]: (paint c t |« v) = (t |« v) 〈proof 〉

fun
rbt-ins :: (′a ⇒ ′b ⇒ ′b ⇒ ′b) ⇒ ′a ⇒ ′b ⇒ (′a, ′b) rbt ⇒ (′a, ′b) rbt

where
rbt-ins f k v Empty = Branch R Empty k v Empty |
rbt-ins f k v (Branch B l x y r) = (if k < x then balance (rbt-ins f k v l) x y r

else if k > x then balance l x y (rbt-ins f k v r)
else Branch B l x (f k y v) r) |

rbt-ins f k v (Branch R l x y r) = (if k < x then Branch R (rbt-ins f k v l) x y r

THEORY “RBT-Impl” 908

else if k > x then Branch R l x y (rbt-ins f k v r)
else Branch R l x (f k y v) r)

lemma ins-inv1-inv2 :
assumes inv1 t inv2 t
shows inv2 (rbt-ins f k x t) bheight (rbt-ins f k x t) = bheight t
color-of t = B =⇒ inv1 (rbt-ins f k x t) inv1l (rbt-ins f k x t)
〈proof 〉

end

context linorder begin

lemma ins-rbt-greater [simp]: (v «| rbt-ins f (k :: ′a) x t) = (v «| t ∧ k > v)
〈proof 〉

lemma ins-rbt-less[simp]: (rbt-ins f k x t |« v) = (t |« v ∧ k < v)
〈proof 〉

lemma ins-rbt-sorted[simp]: rbt-sorted t =⇒ rbt-sorted (rbt-ins f k x t)
〈proof 〉

lemma keys-ins: set (keys (rbt-ins f k v t)) = { k } ∪ set (keys t)
〈proof 〉

lemma rbt-lookup-ins:
fixes k :: ′a
assumes rbt-sorted t
shows rbt-lookup (rbt-ins f k v t) x = ((rbt-lookup t)(k |−> case rbt-lookup t k

of None ⇒ v
| Some w ⇒ f k w v)) x

〈proof 〉

end

context ord begin

definition rbt-insert-with-key :: (′a ⇒ ′b ⇒ ′b ⇒ ′b) ⇒ ′a ⇒ ′b ⇒ (′a, ′b) rbt ⇒
(′a, ′b) rbt
where rbt-insert-with-key f k v t = paint B (rbt-ins f k v t)

definition rbt-insertw-def : rbt-insert-with f = rbt-insert-with-key (λ-. f)

definition rbt-insert :: ′a ⇒ ′b ⇒ (′a, ′b) rbt ⇒ (′a, ′b) rbt where
rbt-insert = rbt-insert-with-key (λ- - nv. nv)

end

context linorder begin

lemma rbt-insertwk-rbt-sorted: rbt-sorted t =⇒ rbt-sorted (rbt-insert-with-key f (k

THEORY “RBT-Impl” 909

:: ′a) x t)
〈proof 〉

theorem rbt-insertwk-is-rbt:
assumes inv: is-rbt t
shows is-rbt (rbt-insert-with-key f k x t)
〈proof 〉

lemma rbt-lookup-rbt-insertwk:
assumes rbt-sorted t
shows rbt-lookup (rbt-insert-with-key f k v t) x = ((rbt-lookup t)(k |−> case

rbt-lookup t k of None ⇒ v
| Some w ⇒ f k w v)) x

〈proof 〉

lemma rbt-insertw-rbt-sorted: rbt-sorted t =⇒ rbt-sorted (rbt-insert-with f k v t)
〈proof 〉

theorem rbt-insertw-is-rbt: is-rbt t =⇒ is-rbt (rbt-insert-with f k v t)
〈proof 〉

lemma rbt-lookup-rbt-insertw:
is-rbt t =⇒

rbt-lookup (rbt-insert-with f k v t) =
(rbt-lookup t)(k 7→ (if k ∈ dom (rbt-lookup t) then f (the (rbt-lookup t k)) v

else v))
〈proof 〉

lemma rbt-insert-rbt-sorted: rbt-sorted t =⇒ rbt-sorted (rbt-insert k v t)
〈proof 〉

theorem rbt-insert-is-rbt [simp]: is-rbt t =⇒ is-rbt (rbt-insert k v t)
〈proof 〉

lemma rbt-lookup-rbt-insert: is-rbt t =⇒ rbt-lookup (rbt-insert k v t) = (rbt-lookup
t)(k 7→v)
〈proof 〉

end

129.4 Deletion
lemma bheight-paintR ′[simp]: color-of t = B =⇒ bheight (paint R t) = bheight t
− 1
〈proof 〉

The function definitions are based on the Haskell code by Stefan Kahrs
at http://www.cs.ukc.ac.uk/people/staff/smk/redblack/rb.html.
fun

balance-left :: (′a, ′b) rbt ⇒ ′a ⇒ ′b ⇒ (′a, ′b) rbt ⇒ (′a, ′b) rbt
where

http://www.cs.ukc.ac.uk/people/staff/smk/redblack/rb.html

THEORY “RBT-Impl” 910

balance-left (Branch R a k x b) s y c = Branch R (Branch B a k x b) s y c |
balance-left bl k x (Branch B a s y b) = balance bl k x (Branch R a s y b) |
balance-left bl k x (Branch R (Branch B a s y b) t z c) = Branch R (Branch B bl

k x a) s y (balance b t z (paint R c)) |
balance-left t k x s = Empty

lemma balance-left-inv2-with-inv1 :
assumes inv2 lt inv2 rt bheight lt + 1 = bheight rt inv1 rt
shows bheight (balance-left lt k v rt) = bheight lt + 1
and inv2 (balance-left lt k v rt)
〈proof 〉

lemma balance-left-inv2-app:
assumes inv2 lt inv2 rt bheight lt + 1 = bheight rt color-of rt = B
shows inv2 (balance-left lt k v rt)

bheight (balance-left lt k v rt) = bheight rt
〈proof 〉

lemma balance-left-inv1 : [[inv1l a; inv1 b; color-of b = B]] =⇒ inv1 (balance-left a
k x b)
〈proof 〉

lemma balance-left-inv1l: [[inv1l lt; inv1 rt]] =⇒ inv1l (balance-left lt k x rt)
〈proof 〉

lemma (in linorder) balance-left-rbt-sorted:
[[rbt-sorted l; rbt-sorted r ; rbt-less k l; k «| r]] =⇒ rbt-sorted (balance-left l k v

r)
〈proof 〉

context order begin

lemma balance-left-rbt-greater :
fixes k :: ′a
assumes k «| a k «| b k < x
shows k «| balance-left a x t b
〈proof 〉

lemma balance-left-rbt-less:
fixes k :: ′a
assumes a |« k b |« k x < k
shows balance-left a x t b |« k
〈proof 〉

end

lemma balance-left-in-tree:
assumes inv1l l inv1 r bheight l + 1 = bheight r
shows entry-in-tree k v (balance-left l a b r) = (entry-in-tree k v l ∨ k = a ∧ v

THEORY “RBT-Impl” 911

= b ∨ entry-in-tree k v r)
〈proof 〉

fun
balance-right :: (′a, ′b) rbt ⇒ ′a ⇒ ′b ⇒ (′a, ′b) rbt ⇒ (′a, ′b) rbt

where
balance-right a k x (Branch R b s y c) = Branch R a k x (Branch B b s y c) |
balance-right (Branch B a k x b) s y bl = balance (Branch R a k x b) s y bl |
balance-right (Branch R a k x (Branch B b s y c)) t z bl = Branch R (balance

(paint R a) k x b) s y (Branch B c t z bl) |
balance-right t k x s = Empty

lemma balance-right-inv2-with-inv1 :
assumes inv2 lt inv2 rt bheight lt = bheight rt + 1 inv1 lt
shows inv2 (balance-right lt k v rt) ∧ bheight (balance-right lt k v rt) = bheight

lt
〈proof 〉

lemma balance-right-inv1 : [[inv1 a; inv1l b; color-of a = B]] =⇒ inv1 (balance-right
a k x b)
〈proof 〉

lemma balance-right-inv1l: [[inv1 lt; inv1l rt]] =⇒inv1l (balance-right lt k x rt)
〈proof 〉

lemma (in linorder) balance-right-rbt-sorted:
[[rbt-sorted l; rbt-sorted r ; rbt-less k l; k «| r]] =⇒ rbt-sorted (balance-right l k v

r)
〈proof 〉

context order begin

lemma balance-right-rbt-greater :
fixes k :: ′a
assumes k «| a k «| b k < x
shows k «| balance-right a x t b
〈proof 〉

lemma balance-right-rbt-less:
fixes k :: ′a
assumes a |« k b |« k x < k
shows balance-right a x t b |« k
〈proof 〉

end

lemma balance-right-in-tree:
assumes inv1 l inv1l r bheight l = bheight r + 1 inv2 l inv2 r
shows entry-in-tree x y (balance-right l k v r) = (entry-in-tree x y l ∨ x = k ∧

THEORY “RBT-Impl” 912

y = v ∨ entry-in-tree x y r)
〈proof 〉

fun
combine :: (′a, ′b) rbt ⇒ (′a, ′b) rbt ⇒ (′a, ′b) rbt

where
combine Empty x = x
| combine x Empty = x
| combine (Branch R a k x b) (Branch R c s y d) = (case (combine b c) of

Branch R b2 t z c2 ⇒ (Branch R (Branch R a k x
b2) t z (Branch R c2 s y d)) |

bc ⇒ Branch R a k x (Branch R bc s y d))
| combine (Branch B a k x b) (Branch B c s y d) = (case (combine b c) of

Branch R b2 t z c2 ⇒ Branch R (Branch B a k x b2)
t z (Branch B c2 s y d) |

bc ⇒ balance-left a k x (Branch B bc s y d))
| combine a (Branch R b k x c) = Branch R (combine a b) k x c
| combine (Branch R a k x b) c = Branch R a k x (combine b c)

lemma combine-inv2 :
assumes inv2 lt inv2 rt bheight lt = bheight rt
shows bheight (combine lt rt) = bheight lt inv2 (combine lt rt)
〈proof 〉

lemma combine-inv1 :
assumes inv1 lt inv1 rt
shows color-of lt = B =⇒ color-of rt = B =⇒ inv1 (combine lt rt)

inv1l (combine lt rt)
〈proof 〉

context linorder begin

lemma combine-rbt-greater [simp]:
fixes k :: ′a
assumes k «| l k «| r
shows k «| combine l r
〈proof 〉

lemma combine-rbt-less[simp]:
fixes k :: ′a
assumes l |« k r |« k
shows combine l r |« k
〈proof 〉

lemma combine-rbt-sorted:
fixes k :: ′a
assumes rbt-sorted l rbt-sorted r l |« k k «| r
shows rbt-sorted (combine l r)
〈proof 〉

THEORY “RBT-Impl” 913

end

lemma combine-in-tree:
assumes inv2 l inv2 r bheight l = bheight r inv1 l inv1 r
shows entry-in-tree k v (combine l r) = (entry-in-tree k v l ∨ entry-in-tree k v r)
〈proof 〉

context ord begin

fun
rbt-del-from-left :: ′a ⇒ (′a, ′b) rbt ⇒ ′a ⇒ ′b ⇒ (′a, ′b) rbt ⇒ (′a, ′b) rbt and
rbt-del-from-right :: ′a ⇒ (′a, ′b) rbt ⇒ ′a ⇒ ′b ⇒ (′a, ′b) rbt ⇒ (′a, ′b) rbt and
rbt-del :: ′a⇒ (′a, ′b) rbt ⇒ (′a, ′b) rbt

where
rbt-del x Empty = Empty |
rbt-del x (Branch c a y s b) =
(if x < y then rbt-del-from-left x a y s b
else (if x > y then rbt-del-from-right x a y s b else combine a b)) |

rbt-del-from-left x (Branch B lt z v rt) y s b = balance-left (rbt-del x (Branch B
lt z v rt)) y s b |

rbt-del-from-left x a y s b = Branch R (rbt-del x a) y s b |
rbt-del-from-right x a y s (Branch B lt z v rt) = balance-right a y s (rbt-del x

(Branch B lt z v rt)) |
rbt-del-from-right x a y s b = Branch R a y s (rbt-del x b)

end

context linorder begin

lemma
assumes inv2 lt inv1 lt
shows
[[inv2 rt; bheight lt = bheight rt; inv1 rt]] =⇒
inv2 (rbt-del-from-left x lt k v rt) ∧
bheight (rbt-del-from-left x lt k v rt) = bheight lt ∧
(color-of lt = B ∧ color-of rt = B ∧ inv1 (rbt-del-from-left x lt k v rt) ∨
(color-of lt 6= B ∨ color-of rt 6= B) ∧ inv1l (rbt-del-from-left x lt k v rt))

and [[inv2 rt; bheight lt = bheight rt; inv1 rt]] =⇒
inv2 (rbt-del-from-right x lt k v rt) ∧
bheight (rbt-del-from-right x lt k v rt) = bheight lt ∧
(color-of lt = B ∧ color-of rt = B ∧ inv1 (rbt-del-from-right x lt k v rt) ∨
(color-of lt 6= B ∨ color-of rt 6= B) ∧ inv1l (rbt-del-from-right x lt k v rt))

and rbt-del-inv1-inv2 : inv2 (rbt-del x lt) ∧ (color-of lt = R ∧ bheight (rbt-del x
lt) = bheight lt ∧ inv1 (rbt-del x lt)
∨ color-of lt = B ∧ bheight (rbt-del x lt) = bheight lt − 1 ∧ inv1l (rbt-del x lt))
〈proof 〉

lemma

THEORY “RBT-Impl” 914

rbt-del-from-left-rbt-less: [[lt |« v; rt |« v; k < v]] =⇒ rbt-del-from-left x lt k y rt
|« v

and rbt-del-from-right-rbt-less: [[lt |« v; rt |« v; k < v]] =⇒ rbt-del-from-right x
lt k y rt |« v

and rbt-del-rbt-less: lt |« v =⇒ rbt-del x lt |« v
〈proof 〉

lemma rbt-del-from-left-rbt-greater : [[v «| lt; v «| rt; k > v]] =⇒ v «| rbt-del-from-left
x lt k y rt
and rbt-del-from-right-rbt-greater : [[v «| lt; v «| rt; k > v]] =⇒ v «| rbt-del-from-right

x lt k y rt
and rbt-del-rbt-greater : v «| lt =⇒ v «| rbt-del x lt
〈proof 〉

lemma [[rbt-sorted lt; rbt-sorted rt; lt |« k; k «| rt]] =⇒ rbt-sorted (rbt-del-from-left
x lt k y rt)

and [[rbt-sorted lt; rbt-sorted rt; lt |« k; k «| rt]] =⇒ rbt-sorted (rbt-del-from-right
x lt k y rt)

and rbt-del-rbt-sorted: rbt-sorted lt =⇒ rbt-sorted (rbt-del x lt)
〈proof 〉

lemma [[rbt-sorted lt; rbt-sorted rt; lt |« kt; kt «| rt; inv1 lt; inv1 rt; inv2 lt; inv2
rt; bheight lt = bheight rt; x < kt]] =⇒ entry-in-tree k v (rbt-del-from-left x lt kt y
rt) = (False ∨ (x 6= k ∧ entry-in-tree k v (Branch c lt kt y rt)))

and [[rbt-sorted lt; rbt-sorted rt; lt |« kt; kt «| rt; inv1 lt; inv1 rt; inv2 lt; inv2
rt; bheight lt = bheight rt; x > kt]] =⇒ entry-in-tree k v (rbt-del-from-right x lt kt
y rt) = (False ∨ (x 6= k ∧ entry-in-tree k v (Branch c lt kt y rt)))

and rbt-del-in-tree: [[rbt-sorted t; inv1 t; inv2 t]] =⇒ entry-in-tree k v (rbt-del x
t) = (False ∨ (x 6= k ∧ entry-in-tree k v t))
〈proof 〉

definition (in ord) rbt-delete where
rbt-delete k t = paint B (rbt-del k t)

theorem rbt-delete-is-rbt [simp]: assumes is-rbt t shows is-rbt (rbt-delete k t)
〈proof 〉

lemma rbt-delete-in-tree:
assumes is-rbt t
shows entry-in-tree k v (rbt-delete x t) = (x 6= k ∧ entry-in-tree k v t)
〈proof 〉

lemma rbt-lookup-rbt-delete:
assumes is-rbt: is-rbt t
shows rbt-lookup (rbt-delete k t) = (rbt-lookup t)|‘(−{k})
〈proof 〉

end

THEORY “RBT-Impl” 915

129.5 Modifying existing entries
context ord begin

primrec
rbt-map-entry :: ′a ⇒ (′b ⇒ ′b) ⇒ (′a, ′b) rbt ⇒ (′a, ′b) rbt

where
rbt-map-entry k f Empty = Empty
| rbt-map-entry k f (Branch c lt x v rt) =

(if k < x then Branch c (rbt-map-entry k f lt) x v rt
else if k > x then (Branch c lt x v (rbt-map-entry k f rt))
else Branch c lt x (f v) rt)

lemma rbt-map-entry-color-of : color-of (rbt-map-entry k f t) = color-of t 〈proof 〉
lemma rbt-map-entry-inv1 : inv1 (rbt-map-entry k f t) = inv1 t 〈proof 〉
lemma rbt-map-entry-inv2 : inv2 (rbt-map-entry k f t) = inv2 t bheight (rbt-map-entry
k f t) = bheight t 〈proof 〉
lemma rbt-map-entry-rbt-greater : rbt-greater a (rbt-map-entry k f t) = rbt-greater
a t 〈proof 〉
lemma rbt-map-entry-rbt-less: rbt-less a (rbt-map-entry k f t) = rbt-less a t 〈proof 〉
lemma rbt-map-entry-rbt-sorted: rbt-sorted (rbt-map-entry k f t) = rbt-sorted t
〈proof 〉

theorem rbt-map-entry-is-rbt [simp]: is-rbt (rbt-map-entry k f t) = is-rbt t
〈proof 〉

end

theorem (in linorder) rbt-lookup-rbt-map-entry:
rbt-lookup (rbt-map-entry k f t) = (rbt-lookup t)(k := map-option f (rbt-lookup t

k))
〈proof 〉

129.6 Mapping all entries
primrec

map :: (′a ⇒ ′b ⇒ ′c) ⇒ (′a, ′b) rbt ⇒ (′a, ′c) rbt
where

map f Empty = Empty
| map f (Branch c lt k v rt) = Branch c (map f lt) k (f k v) (map f rt)

lemma map-entries [simp]: entries (map f t) = List.map (λ(k, v). (k, f k v))
(entries t)
〈proof 〉

lemma map-keys [simp]: keys (map f t) = keys t 〈proof 〉
lemma map-color-of : color-of (map f t) = color-of t 〈proof 〉
lemma map-inv1 : inv1 (map f t) = inv1 t 〈proof 〉
lemma map-inv2 : inv2 (map f t) = inv2 t bheight (map f t) = bheight t 〈proof 〉

THEORY “RBT-Impl” 916

context ord begin

lemma map-rbt-greater : rbt-greater k (map f t) = rbt-greater k t 〈proof 〉
lemma map-rbt-less: rbt-less k (map f t) = rbt-less k t 〈proof 〉
lemma map-rbt-sorted: rbt-sorted (map f t) = rbt-sorted t 〈proof 〉
theorem map-is-rbt [simp]: is-rbt (map f t) = is-rbt t
〈proof 〉

end

theorem (in linorder) rbt-lookup-map: rbt-lookup (map f t) x = map-option (f x)
(rbt-lookup t x)
〈proof 〉

hide-const (open) map

129.7 Folding over entries
definition fold :: (′a ⇒ ′b ⇒ ′c ⇒ ′c) ⇒ (′a, ′b) rbt ⇒ ′c ⇒ ′c where

fold f t = List.fold (case-prod f) (entries t)

lemma fold-simps [simp]:
fold f Empty = id
fold f (Branch c lt k v rt) = fold f rt ◦ f k v ◦ fold f lt
〈proof 〉

lemma fold-code [code]:
fold f Empty x = x
fold f (Branch c lt k v rt) x = fold f rt (f k v (fold f lt x))
〈proof 〉
fun foldi :: (′c ⇒ bool) ⇒ (′a ⇒ ′b ⇒ ′c ⇒ ′c) ⇒ (′a :: linorder , ′b) rbt ⇒ ′c ⇒
′c

where
foldi c f Empty s = s |
foldi c f (Branch col l k v r) s = (

if (c s) then
let s ′ = foldi c f l s in

if (c s ′) then
foldi c f r (f k v s ′)

else s ′

else
s

)

129.8 Bulkloading a tree
definition (in ord) rbt-bulkload :: (′a × ′b) list ⇒ (′a, ′b) rbt where

rbt-bulkload xs = foldr (λ(k, v). rbt-insert k v) xs Empty

THEORY “RBT-Impl” 917

context linorder begin

lemma rbt-bulkload-is-rbt [simp, intro]:
is-rbt (rbt-bulkload xs)
〈proof 〉

lemma rbt-lookup-rbt-bulkload:
rbt-lookup (rbt-bulkload xs) = map-of xs
〈proof 〉

end

129.9 Building a RBT from a sorted list
These functions have been adapted from Andrew W. Appel, Efficient Verified
Red-Black Trees (September 2011)
fun rbtreeify-f :: nat ⇒ (′a × ′b) list ⇒ (′a, ′b) rbt × (′a × ′b) list

and rbtreeify-g :: nat ⇒ (′a × ′b) list ⇒ (′a, ′b) rbt × (′a × ′b) list
where

rbtreeify-f n kvs =
(if n = 0 then (Empty, kvs)
else if n = 1 then

case kvs of (k, v) # kvs ′⇒ (Branch R Empty k v Empty, kvs ′)
else if (n mod 2 = 0) then

case rbtreeify-f (n div 2) kvs of (t1 , (k, v) # kvs ′) ⇒
apfst (Branch B t1 k v) (rbtreeify-g (n div 2) kvs ′)

else case rbtreeify-f (n div 2) kvs of (t1 , (k, v) # kvs ′) ⇒
apfst (Branch B t1 k v) (rbtreeify-f (n div 2) kvs ′))

| rbtreeify-g n kvs =
(if n = 0 ∨ n = 1 then (Empty, kvs)
else if n mod 2 = 0 then

case rbtreeify-g (n div 2) kvs of (t1 , (k, v) # kvs ′) ⇒
apfst (Branch B t1 k v) (rbtreeify-g (n div 2) kvs ′)

else case rbtreeify-f (n div 2) kvs of (t1 , (k, v) # kvs ′) ⇒
apfst (Branch B t1 k v) (rbtreeify-g (n div 2) kvs ′))

definition rbtreeify :: (′a × ′b) list ⇒ (′a, ′b) rbt
where rbtreeify kvs = fst (rbtreeify-g (Suc (length kvs)) kvs)

declare rbtreeify-f .simps [simp del] rbtreeify-g.simps [simp del]

lemma rbtreeify-f-code [code]:
rbtreeify-f n kvs =
(if n = 0 then (Empty, kvs)
else if n = 1 then

case kvs of (k, v) # kvs ′⇒
(Branch R Empty k v Empty, kvs ′)

else let (n ′, r) = Euclidean-Rings.divmod-nat n 2 in

THEORY “RBT-Impl” 918

if r = 0 then
case rbtreeify-f n ′ kvs of (t1 , (k, v) # kvs ′) ⇒

apfst (Branch B t1 k v) (rbtreeify-g n ′ kvs ′)
else case rbtreeify-f n ′ kvs of (t1 , (k, v) # kvs ′) ⇒

apfst (Branch B t1 k v) (rbtreeify-f n ′ kvs ′))
〈proof 〉

lemma rbtreeify-g-code [code]:
rbtreeify-g n kvs =
(if n = 0 ∨ n = 1 then (Empty, kvs)
else let (n ′, r) = Euclidean-Rings.divmod-nat n 2 in

if r = 0 then
case rbtreeify-g n ′ kvs of (t1 , (k, v) # kvs ′) ⇒

apfst (Branch B t1 k v) (rbtreeify-g n ′ kvs ′)
else case rbtreeify-f n ′ kvs of (t1 , (k, v) # kvs ′) ⇒

apfst (Branch B t1 k v) (rbtreeify-g n ′ kvs ′))
〈proof 〉

lemma Suc-double-half : Suc (2 ∗ n) div 2 = n
〈proof 〉

lemma div2-plus-div2 : n div 2 + n div 2 = (n :: nat) − n mod 2
〈proof 〉

lemma rbtreeify-f-rec-aux-lemma:
[[k − n div 2 = Suc k ′; n ≤ k; n mod 2 = Suc 0]]
=⇒ k ′ − n div 2 = k − n
〈proof 〉

lemma rbtreeify-f-simps:
rbtreeify-f 0 kvs = (Empty, kvs)
rbtreeify-f (Suc 0) ((k, v) # kvs) =
(Branch R Empty k v Empty, kvs)
0 < n =⇒ rbtreeify-f (2 ∗ n) kvs =
(case rbtreeify-f n kvs of (t1 , (k, v) # kvs ′) ⇒

apfst (Branch B t1 k v) (rbtreeify-g n kvs ′))
0 < n =⇒ rbtreeify-f (Suc (2 ∗ n)) kvs =
(case rbtreeify-f n kvs of (t1 , (k, v) # kvs ′) ⇒

apfst (Branch B t1 k v) (rbtreeify-f n kvs ′))
〈proof 〉

lemma rbtreeify-g-simps:
rbtreeify-g 0 kvs = (Empty, kvs)
rbtreeify-g (Suc 0) kvs = (Empty, kvs)
0 < n =⇒ rbtreeify-g (2 ∗ n) kvs =
(case rbtreeify-g n kvs of (t1 , (k, v) # kvs ′) ⇒

apfst (Branch B t1 k v) (rbtreeify-g n kvs ′))
0 < n =⇒ rbtreeify-g (Suc (2 ∗ n)) kvs =
(case rbtreeify-f n kvs of (t1 , (k, v) # kvs ′) ⇒

THEORY “RBT-Impl” 919

apfst (Branch B t1 k v) (rbtreeify-g n kvs ′))
〈proof 〉

declare rbtreeify-f-simps[simp] rbtreeify-g-simps[simp]

lemma length-rbtreeify-f : n ≤ length kvs
=⇒ length (snd (rbtreeify-f n kvs)) = length kvs − n
and length-rbtreeify-g:[[0 < n; n ≤ Suc (length kvs)]]
=⇒ length (snd (rbtreeify-g n kvs)) = Suc (length kvs) − n
〈proof 〉

lemma rbtreeify-induct [consumes 1 , case-names f-0 f-1 f-even f-odd g-0 g-1 g-even
g-odd]:

fixes P Q
defines f0 == (

∧
kvs. P 0 kvs)

and f1 == (
∧

k v kvs. P (Suc 0) ((k, v) # kvs))
and feven ==
(
∧

n kvs t k v kvs ′. [[n > 0 ; n ≤ length kvs; P n kvs;
rbtreeify-f n kvs = (t, (k, v) # kvs ′); n ≤ Suc (length kvs ′); Q n kvs ′]]

=⇒ P (2 ∗ n) kvs)
and fodd ==
(
∧

n kvs t k v kvs ′. [[n > 0 ; n ≤ length kvs; P n kvs;
rbtreeify-f n kvs = (t, (k, v) # kvs ′); n ≤ length kvs ′; P n kvs ′]]

=⇒ P (Suc (2 ∗ n)) kvs)
and g0 == (

∧
kvs. Q 0 kvs)

and g1 == (
∧

kvs. Q (Suc 0) kvs)
and geven ==
(
∧

n kvs t k v kvs ′. [[n > 0 ; n ≤ Suc (length kvs); Q n kvs;
rbtreeify-g n kvs = (t, (k, v) # kvs ′); n ≤ Suc (length kvs ′); Q n kvs ′]]

=⇒ Q (2 ∗ n) kvs)
and godd ==
(
∧

n kvs t k v kvs ′. [[n > 0 ; n ≤ length kvs; P n kvs;
rbtreeify-f n kvs = (t, (k, v) # kvs ′); n ≤ Suc (length kvs ′); Q n kvs ′]]

=⇒ Q (Suc (2 ∗ n)) kvs)
shows [[n ≤ length kvs;

PROP f0 ; PROP f1 ; PROP feven; PROP fodd;
PROP g0 ; PROP g1 ; PROP geven; PROP godd]]

=⇒ P n kvs
and [[n ≤ Suc (length kvs);

PROP f0 ; PROP f1 ; PROP feven; PROP fodd;
PROP g0 ; PROP g1 ; PROP geven; PROP godd]]

=⇒ Q n kvs
〈proof 〉

lemma inv1-rbtreeify-f : n ≤ length kvs
=⇒ inv1 (fst (rbtreeify-f n kvs))
and inv1-rbtreeify-g: n ≤ Suc (length kvs)
=⇒ inv1 (fst (rbtreeify-g n kvs))
〈proof 〉

THEORY “RBT-Impl” 920

fun plog2 :: nat ⇒ nat
where plog2 n = (if n ≤ 1 then 0 else plog2 (n div 2) + 1)

declare plog2 .simps [simp del]

lemma plog2-simps [simp]:
plog2 0 = 0 plog2 (Suc 0) = 0
0 < n =⇒ plog2 (2 ∗ n) = 1 + plog2 n
0 < n =⇒ plog2 (Suc (2 ∗ n)) = 1 + plog2 n
〈proof 〉

lemma bheight-rbtreeify-f : n ≤ length kvs
=⇒ bheight (fst (rbtreeify-f n kvs)) = plog2 n
and bheight-rbtreeify-g: n ≤ Suc (length kvs)
=⇒ bheight (fst (rbtreeify-g n kvs)) = plog2 n
〈proof 〉

lemma bheight-rbtreeify-f-eq-plog2I :
[[rbtreeify-f n kvs = (t, kvs ′); n ≤ length kvs]]
=⇒ bheight t = plog2 n
〈proof 〉

lemma bheight-rbtreeify-g-eq-plog2I :
[[rbtreeify-g n kvs = (t, kvs ′); n ≤ Suc (length kvs)]]
=⇒ bheight t = plog2 n
〈proof 〉

hide-const (open) plog2

lemma inv2-rbtreeify-f : n ≤ length kvs
=⇒ inv2 (fst (rbtreeify-f n kvs))
and inv2-rbtreeify-g: n ≤ Suc (length kvs)
=⇒ inv2 (fst (rbtreeify-g n kvs))
〈proof 〉

lemma n ≤ length kvs =⇒ True
and color-of-rbtreeify-g:
[[n ≤ Suc (length kvs); 0 < n]]
=⇒ color-of (fst (rbtreeify-g n kvs)) = B
〈proof 〉

lemma entries-rbtreeify-f-append:
n ≤ length kvs
=⇒ entries (fst (rbtreeify-f n kvs)) @ snd (rbtreeify-f n kvs) = kvs
and entries-rbtreeify-g-append:
n ≤ Suc (length kvs)
=⇒ entries (fst (rbtreeify-g n kvs)) @ snd (rbtreeify-g n kvs) = kvs
〈proof 〉

THEORY “RBT-Impl” 921

lemma length-entries-rbtreeify-f :
n ≤ length kvs =⇒ length (entries (fst (rbtreeify-f n kvs))) = n
and length-entries-rbtreeify-g:
n ≤ Suc (length kvs) =⇒ length (entries (fst (rbtreeify-g n kvs))) = n − 1
〈proof 〉

lemma rbtreeify-f-conv-drop:
n ≤ length kvs =⇒ snd (rbtreeify-f n kvs) = drop n kvs
〈proof 〉

lemma rbtreeify-g-conv-drop:
n ≤ Suc (length kvs) =⇒ snd (rbtreeify-g n kvs) = drop (n − 1) kvs
〈proof 〉

lemma entries-rbtreeify-f [simp]:
n ≤ length kvs =⇒ entries (fst (rbtreeify-f n kvs)) = take n kvs
〈proof 〉

lemma entries-rbtreeify-g [simp]:
n ≤ Suc (length kvs) =⇒
entries (fst (rbtreeify-g n kvs)) = take (n − 1) kvs
〈proof 〉

lemma keys-rbtreeify-f [simp]: n ≤ length kvs
=⇒ keys (fst (rbtreeify-f n kvs)) = take n (map fst kvs)
〈proof 〉

lemma keys-rbtreeify-g [simp]: n ≤ Suc (length kvs)
=⇒ keys (fst (rbtreeify-g n kvs)) = take (n − 1) (map fst kvs)
〈proof 〉

lemma rbtreeify-fD:
[[rbtreeify-f n kvs = (t, kvs ′); n ≤ length kvs]]
=⇒ entries t = take n kvs ∧ kvs ′ = drop n kvs
〈proof 〉

lemma rbtreeify-gD:
[[rbtreeify-g n kvs = (t, kvs ′); n ≤ Suc (length kvs)]]
=⇒ entries t = take (n − 1) kvs ∧ kvs ′ = drop (n − 1) kvs
〈proof 〉

lemma entries-rbtreeify [simp]: entries (rbtreeify kvs) = kvs
〈proof 〉

context linorder begin

lemma rbt-sorted-rbtreeify-f :
[[n ≤ length kvs; sorted (map fst kvs); distinct (map fst kvs)]]

THEORY “RBT-Impl” 922

=⇒ rbt-sorted (fst (rbtreeify-f n kvs))
and rbt-sorted-rbtreeify-g:
[[n ≤ Suc (length kvs); sorted (map fst kvs); distinct (map fst kvs)]]
=⇒ rbt-sorted (fst (rbtreeify-g n kvs))
〈proof 〉

lemma rbt-sorted-rbtreeify:
[[sorted (map fst kvs); distinct (map fst kvs)]] =⇒ rbt-sorted (rbtreeify kvs)
〈proof 〉

lemma is-rbt-rbtreeify:
[[sorted (map fst kvs); distinct (map fst kvs)]]
=⇒ is-rbt (rbtreeify kvs)
〈proof 〉

lemma rbt-lookup-rbtreeify:
[[sorted (map fst kvs); distinct (map fst kvs)]] =⇒
rbt-lookup (rbtreeify kvs) = map-of kvs
〈proof 〉

end

Functions to compare the height of two rbt trees, taken from Andrew
W. Appel, Efficient Verified Red-Black Trees (September 2011)
fun skip-red :: (′a, ′b) rbt ⇒ (′a, ′b) rbt
where

skip-red (Branch color .R l k v r) = l
| skip-red t = t

definition skip-black :: (′a, ′b) rbt ⇒ (′a, ′b) rbt
where

skip-black t = (let t ′ = skip-red t in case t ′ of Branch color .B l k v r ⇒ l | - ⇒
t ′)

datatype compare = LT | GT | EQ

partial-function (tailrec) compare-height :: (′a, ′b) rbt ⇒ (′a, ′b) rbt ⇒ (′a, ′b)
rbt ⇒ (′a, ′b) rbt ⇒ compare
where

compare-height sx s t tx =
(case (skip-red sx, skip-red s, skip-red t, skip-red tx) of

(Branch - sx ′ - - -, Branch - s ′ - - -, Branch - t ′ - - -, Branch - tx ′ - - -) ⇒
compare-height (skip-black sx ′) s ′ t ′ (skip-black tx ′)

| (-, rbt.Empty, -, Branch - - - - -) ⇒ LT
| (Branch - - - - -, -, rbt.Empty, -) ⇒ GT
| (Branch - sx ′ - - -, Branch - s ′ - - -, Branch - t ′ - - -, rbt.Empty) ⇒

compare-height (skip-black sx ′) s ′ t ′ rbt.Empty
| (rbt.Empty, Branch - s ′ - - -, Branch - t ′ - - -, Branch - tx ′ - - -) ⇒

compare-height rbt.Empty s ′ t ′ (skip-black tx ′)

THEORY “RBT-Impl” 923

| - ⇒ EQ)

declare compare-height.simps [code]

hide-type (open) compare
hide-const (open)

compare-height skip-black skip-red LT GT EQ case-compare rec-compare
Abs-compare Rep-compare

hide-fact (open)
Abs-compare-cases Abs-compare-induct Abs-compare-inject Abs-compare-inverse
Rep-compare Rep-compare-cases Rep-compare-induct Rep-compare-inject Rep-compare-inverse
compare.simps compare.exhaust compare.induct compare.rec compare.simps
compare.size compare.case-cong compare.case-cong-weak compare.case
compare.nchotomy compare.split compare.split-asm compare.eq.refl compare.eq.simps
equal-compare-def
skip-red.simps skip-red.cases skip-red.induct
skip-black-def
compare-height.simps

129.10 union and intersection of sorted associative lists
context ord begin

function sunion-with :: (′a ⇒ ′b ⇒ ′b ⇒ ′b) ⇒ (′a × ′b) list ⇒ (′a × ′b) list ⇒
(′a × ′b) list
where

sunion-with f ((k, v) # as) ((k ′, v ′) # bs) =
(if k > k ′ then (k ′, v ′) # sunion-with f ((k, v) # as) bs
else if k < k ′ then (k, v) # sunion-with f as ((k ′, v ′) # bs)
else (k, f k v v ′) # sunion-with f as bs)

| sunion-with f [] bs = bs
| sunion-with f as [] = as
〈proof 〉
termination 〈proof 〉

function sinter-with :: (′a ⇒ ′b ⇒ ′b ⇒ ′b) ⇒ (′a × ′b) list ⇒ (′a × ′b) list ⇒
(′a × ′b) list
where

sinter-with f ((k, v) # as) ((k ′, v ′) # bs) =
(if k > k ′ then sinter-with f ((k, v) # as) bs
else if k < k ′ then sinter-with f as ((k ′, v ′) # bs)
else (k, f k v v ′) # sinter-with f as bs)

| sinter-with f [] - = []
| sinter-with f - [] = []
〈proof 〉
termination 〈proof 〉

end

THEORY “RBT-Impl” 924

declare ord.sunion-with.simps [code] ord.sinter-with.simps[code]

context linorder begin

lemma set-fst-sunion-with:
set (map fst (sunion-with f xs ys)) = set (map fst xs) ∪ set (map fst ys)
〈proof 〉

lemma sorted-sunion-with [simp]:
[[sorted (map fst xs); sorted (map fst ys)]]
=⇒ sorted (map fst (sunion-with f xs ys))
〈proof 〉

lemma distinct-sunion-with [simp]:
[[distinct (map fst xs); distinct (map fst ys); sorted (map fst xs); sorted (map fst

ys)]]
=⇒ distinct (map fst (sunion-with f xs ys))
〈proof 〉

lemma map-of-sunion-with:
[[sorted (map fst xs); sorted (map fst ys)]]
=⇒ map-of (sunion-with f xs ys) k =
(case map-of xs k of None ⇒ map-of ys k
| Some v ⇒ case map-of ys k of None ⇒ Some v

| Some w ⇒ Some (f k v w))
〈proof 〉

lemma set-fst-sinter-with [simp]:
[[sorted (map fst xs); sorted (map fst ys)]]
=⇒ set (map fst (sinter-with f xs ys)) = set (map fst xs) ∩ set (map fst ys)
〈proof 〉

lemma set-fst-sinter-with-subset1 :
set (map fst (sinter-with f xs ys)) ⊆ set (map fst xs)
〈proof 〉

lemma set-fst-sinter-with-subset2 :
set (map fst (sinter-with f xs ys)) ⊆ set (map fst ys)
〈proof 〉

lemma sorted-sinter-with [simp]:
[[sorted (map fst xs); sorted (map fst ys)]]
=⇒ sorted (map fst (sinter-with f xs ys))
〈proof 〉

lemma distinct-sinter-with [simp]:
[[distinct (map fst xs); distinct (map fst ys)]]
=⇒ distinct (map fst (sinter-with f xs ys))
〈proof 〉

THEORY “RBT-Impl” 925

lemma map-of-sinter-with:
[[sorted (map fst xs); sorted (map fst ys)]]
=⇒ map-of (sinter-with f xs ys) k =
(case map-of xs k of None ⇒ None | Some v ⇒ map-option (f k v) (map-of ys

k))
〈proof 〉

end

lemma distinct-map-of-rev: distinct (map fst xs) =⇒ map-of (rev xs) = map-of xs
〈proof 〉

lemma map-map-filter :
map f (List.map-filter g xs) = List.map-filter (map-option f ◦ g) xs
〈proof 〉

lemma map-filter-map-option-const:
List.map-filter (λx. map-option (λy. f x) (g (f x))) xs = filter (λx. g x 6= None)

(map f xs)
〈proof 〉

lemma set-map-filter : set (List.map-filter P xs) = the ‘ (P ‘ set xs − {None})
〈proof 〉

definition is-rbt-empty :: (′a, ′b) rbt ⇒ bool where
is-rbt-empty t ←→ (case t of RBT-Impl.Empty ⇒ True | - ⇒ False)

lemma is-rbt-empty-prop[simp]: is-rbt-empty t ←→ t = RBT-Impl.Empty
〈proof 〉

definition small-rbt :: (′a, ′b) rbt ⇒ bool where
small-rbt t ←→ bheight t < 4

definition flip-rbt :: (′a, ′b) rbt ⇒ (′a, ′b) rbt ⇒ bool where
flip-rbt t1 t2 ←→ bheight t2 < bheight t1

abbreviation (input) MR where MR l a b r ≡ Branch RBT-Impl.R l a b r
abbreviation (input) MB where MB l a b r ≡ Branch RBT-Impl.B l a b r

fun rbt-baliL :: (′a, ′b) rbt ⇒ ′a ⇒ ′b ⇒ (′a, ′b) rbt ⇒ (′a, ′b) rbt where
rbt-baliL (MR (MR t1 a b t2) a ′ b ′ t3) a ′′ b ′′ t4 = MR (MB t1 a b t2) a ′ b ′ (MB

t3 a ′′ b ′′ t4)
| rbt-baliL (MR t1 a b (MR t2 a ′ b ′ t3)) a ′′ b ′′ t4 = MR (MB t1 a b t2) a ′ b ′ (MB
t3 a ′′ b ′′ t4)
| rbt-baliL t1 a b t2 = MB t1 a b t2

THEORY “RBT-Impl” 926

fun rbt-baliR :: (′a, ′b) rbt ⇒ ′a ⇒ ′b ⇒ (′a, ′b) rbt ⇒ (′a, ′b) rbt where
rbt-baliR t1 a b (MR t2 a ′ b ′ (MR t3 a ′′ b ′′ t4)) = MR (MB t1 a b t2) a ′ b ′ (MB

t3 a ′′ b ′′ t4)
| rbt-baliR t1 a b (MR (MR t2 a ′ b ′ t3) a ′′ b ′′ t4) = MR (MB t1 a b t2) a ′ b ′ (MB
t3 a ′′ b ′′ t4)
| rbt-baliR t1 a b t2 = MB t1 a b t2

fun rbt-baldL :: (′a, ′b) rbt ⇒ ′a ⇒ ′b ⇒ (′a, ′b) rbt ⇒ (′a, ′b) rbt where
rbt-baldL (MR t1 a b t2) a ′ b ′ t3 = MR (MB t1 a b t2) a ′ b ′ t3
| rbt-baldL t1 a b (MB t2 a ′ b ′ t3) = rbt-baliR t1 a b (MR t2 a ′ b ′ t3)
| rbt-baldL t1 a b (MR (MB t2 a ′ b ′ t3) a ′′ b ′′ t4) =

MR (MB t1 a b t2) a ′ b ′ (rbt-baliR t3 a ′′ b ′′ (paint RBT-Impl.R t4))
| rbt-baldL t1 a b t2 = MR t1 a b t2

fun rbt-baldR :: (′a, ′b) rbt ⇒ ′a ⇒ ′b ⇒ (′a, ′b) rbt ⇒ (′a, ′b) rbt where
rbt-baldR t1 a b (MR t2 a ′ b ′ t3) = MR t1 a b (MB t2 a ′ b ′ t3)
| rbt-baldR (MB t1 a b t2) a ′ b ′ t3 = rbt-baliL (MR t1 a b t2) a ′ b ′ t3
| rbt-baldR (MR t1 a b (MB t2 a ′ b ′ t3)) a ′′ b ′′ t4 =

MR (rbt-baliL (paint RBT-Impl.R t1) a b t2) a ′ b ′ (MB t3 a ′′ b ′′ t4)
| rbt-baldR t1 a b t2 = MR t1 a b t2

fun rbt-app :: (′a, ′b) rbt ⇒ (′a, ′b) rbt ⇒ (′a, ′b) rbt where
rbt-app RBT-Impl.Empty t = t
| rbt-app t RBT-Impl.Empty = t
| rbt-app (MR t1 a b t2) (MR t3 a ′′ b ′′ t4) = (case rbt-app t2 t3 of

MR u2 a ′ b ′ u3 ⇒ (MR (MR t1 a b u2) a ′ b ′ (MR u3 a ′′ b ′′ t4))
| t23 ⇒ MR t1 a b (MR t23 a ′′ b ′′ t4))
| rbt-app (MB t1 a b t2) (MB t3 a ′′ b ′′ t4) = (case rbt-app t2 t3 of

MR u2 a ′ b ′ u3 ⇒ MR (MB t1 a b u2) a ′ b ′ (MB u3 a ′′ b ′′ t4)
| t23 ⇒ rbt-baldL t1 a b (MB t23 a ′′ b ′′ t4))
| rbt-app t1 (MR t2 a b t3) = MR (rbt-app t1 t2) a b t3
| rbt-app (MR t1 a b t2) t3 = MR t1 a b (rbt-app t2 t3)

fun rbt-joinL :: (′a, ′b) rbt ⇒ ′a ⇒ ′b ⇒ (′a, ′b) rbt ⇒ (′a, ′b) rbt where
rbt-joinL l a b r = (if bheight l ≥ bheight r then MR l a b r

else case r of MB l ′ a ′ b ′ r ′⇒ rbt-baliL (rbt-joinL l a b l ′) a ′ b ′ r ′

| MR l ′ a ′ b ′ r ′⇒ MR (rbt-joinL l a b l ′) a ′ b ′ r ′)

declare rbt-joinL.simps[simp del]

fun rbt-joinR :: (′a, ′b) rbt ⇒ ′a ⇒ ′b ⇒ (′a, ′b) rbt ⇒ (′a, ′b) rbt where
rbt-joinR l a b r = (if bheight l ≤ bheight r then MR l a b r

else case l of MB l ′ a ′ b ′ r ′⇒ rbt-baliR l ′ a ′ b ′ (rbt-joinR r ′ a b r)
| MR l ′ a ′ b ′ r ′⇒ MR l ′ a ′ b ′ (rbt-joinR r ′ a b r))

declare rbt-joinR.simps[simp del]

definition rbt-join :: (′a, ′b) rbt ⇒ ′a ⇒ ′b ⇒ (′a, ′b) rbt ⇒ (′a, ′b) rbt where
rbt-join l a b r =

THEORY “RBT-Impl” 927

(let bhl = bheight l; bhr = bheight r
in if bhl > bhr
then paint RBT-Impl.B (rbt-joinR l a b r)
else if bhl < bhr
then paint RBT-Impl.B (rbt-joinL l a b r)
else MB l a b r)

lemma size-paint[simp]: size (paint c t) = size t
〈proof 〉

lemma size-baliL[simp]: size (rbt-baliL t1 a b t2) = Suc (size t1 + size t2)
〈proof 〉

lemma size-baliR[simp]: size (rbt-baliR t1 a b t2) = Suc (size t1 + size t2)
〈proof 〉

lemma size-baldL[simp]: size (rbt-baldL t1 a b t2) = Suc (size t1 + size t2)
〈proof 〉

lemma size-baldR[simp]: size (rbt-baldR t1 a b t2) = Suc (size t1 + size t2)
〈proof 〉

lemma size-rbt-app[simp]: size (rbt-app t1 t2) = size t1 + size t2
〈proof 〉

lemma size-rbt-joinL[simp]: size (rbt-joinL t1 a b t2) = Suc (size t1 + size t2)
〈proof 〉

lemma size-rbt-joinR[simp]: size (rbt-joinR t1 a b t2) = Suc (size t1 + size t2)
〈proof 〉

lemma size-rbt-join[simp]: size (rbt-join t1 a b t2) = Suc (size t1 + size t2)
〈proof 〉

definition inv-12 t ←→ inv1 t ∧ inv2 t

lemma rbt-Node: inv-12 (RBT-Impl.Branch c l a b r) =⇒ inv-12 l ∧ inv-12 r
〈proof 〉

lemma paint2 : paint c2 (paint c1 t) = paint c2 t
〈proof 〉

lemma inv1-rbt-baliL: inv1l l =⇒ inv1 r =⇒ inv1 (rbt-baliL l a b r)
〈proof 〉

lemma inv1-rbt-baliR: inv1 l =⇒ inv1l r =⇒ inv1 (rbt-baliR l a b r)
〈proof 〉

lemma rbt-bheight-rbt-baliL: bheight l = bheight r =⇒ bheight (rbt-baliL l a b r)

THEORY “RBT-Impl” 928

= Suc (bheight l)
〈proof 〉

lemma rbt-bheight-rbt-baliR: bheight l = bheight r =⇒ bheight (rbt-baliR l a b r)
= Suc (bheight l)
〈proof 〉

lemma inv2-rbt-baliL: inv2 l =⇒ inv2 r =⇒ bheight l = bheight r =⇒ inv2
(rbt-baliL l a b r)
〈proof 〉

lemma inv2-rbt-baliR: inv2 l =⇒ inv2 r =⇒ bheight l = bheight r =⇒ inv2
(rbt-baliR l a b r)
〈proof 〉

lemma inv-rbt-baliR: inv2 l =⇒ inv2 r =⇒ inv1 l =⇒ inv1l r =⇒ bheight l =
bheight r =⇒

inv1 (rbt-baliR l a b r) ∧ inv2 (rbt-baliR l a b r) ∧ bheight (rbt-baliR l a b r) =
Suc (bheight l)
〈proof 〉

lemma inv-rbt-baliL: inv2 l =⇒ inv2 r =⇒ inv1l l =⇒ inv1 r =⇒ bheight l =
bheight r =⇒

inv1 (rbt-baliL l a b r) ∧ inv2 (rbt-baliL l a b r) ∧ bheight (rbt-baliL l a b r) =
Suc (bheight l)
〈proof 〉

lemma inv2-rbt-baldL-inv1 : inv2 l =⇒ inv2 r =⇒ bheight l + 1 = bheight r =⇒
inv1 r =⇒

inv2 (rbt-baldL l a b r) ∧ bheight (rbt-baldL l a b r) = bheight r
〈proof 〉

lemma inv2-rbt-baldL-B: inv2 l =⇒ inv2 r =⇒ bheight l + 1 = bheight r =⇒
color-of r = RBT-Impl.B =⇒

inv2 (rbt-baldL l a b r) ∧ bheight (rbt-baldL l a b r) = bheight r
〈proof 〉

lemma inv1-rbt-baldL: inv1l l =⇒ inv1 r =⇒ color-of r = RBT-Impl.B =⇒ inv1
(rbt-baldL l a b r)
〈proof 〉

lemma inv1lI : inv1 t =⇒ inv1l t
〈proof 〉

lemma neq-Black[simp]: (c 6= RBT-Impl.B) = (c = RBT-Impl.R)
〈proof 〉

lemma inv1l-rbt-baldL: inv1l l =⇒ inv1 r =⇒ inv1l (rbt-baldL l a b r)
〈proof 〉

THEORY “RBT-Impl” 929

lemma inv2-rbt-baldR-inv1 : inv2 l =⇒ inv2 r =⇒ bheight l = bheight r + 1 =⇒
inv1 l =⇒

inv2 (rbt-baldR l a b r) ∧ bheight (rbt-baldR l a b r) = bheight l
〈proof 〉

lemma inv1-rbt-baldR: inv1 l =⇒ inv1l r =⇒ color-of l = RBT-Impl.B =⇒ inv1
(rbt-baldR l a b r)
〈proof 〉

lemma inv1l-rbt-baldR: inv1 l =⇒ inv1l r =⇒inv1l (rbt-baldR l a b r)
〈proof 〉

lemma inv2-rbt-app: inv2 l =⇒ inv2 r =⇒ bheight l = bheight r =⇒
inv2 (rbt-app l r) ∧ bheight (rbt-app l r) = bheight l
〈proof 〉

lemma inv1-rbt-app: inv1 l =⇒ inv1 r =⇒ (color-of l = RBT-Impl.B ∧
color-of r = RBT-Impl.B −→ inv1 (rbt-app l r)) ∧ inv1l (rbt-app l r)
〈proof 〉

lemma inv-rbt-baldL: inv2 l =⇒ inv2 r =⇒ bheight l + 1 = bheight r =⇒ inv1l l
=⇒ inv1 r =⇒

inv2 (rbt-baldL l a b r) ∧ bheight (rbt-baldL l a b r) = bheight r ∧
inv1l (rbt-baldL l a b r) ∧ (color-of r = RBT-Impl.B −→ inv1 (rbt-baldL l a b

r))
〈proof 〉

lemma inv-rbt-baldR: inv2 l =⇒ inv2 r =⇒ bheight l = bheight r + 1 =⇒ inv1 l
=⇒ inv1l r =⇒

inv2 (rbt-baldR l a b r) ∧ bheight (rbt-baldR l a b r) = bheight l ∧
inv1l (rbt-baldR l a b r) ∧ (color-of l = RBT-Impl.B −→ inv1 (rbt-baldR l a b

r))
〈proof 〉

lemma inv-rbt-app: inv2 l =⇒ inv2 r =⇒ bheight l = bheight r =⇒ inv1 l =⇒
inv1 r =⇒

inv2 (rbt-app l r) ∧ bheight (rbt-app l r) = bheight l ∧
inv1l (rbt-app l r) ∧ (color-of l = RBT-Impl.B ∧ color-of r = RBT-Impl.B −→

inv1 (rbt-app l r))
〈proof 〉

lemma inv1l-rbt-joinL: inv1 l =⇒ inv1 r =⇒ bheight l ≤ bheight r =⇒
inv1l (rbt-joinL l a b r) ∧
(bheight l 6= bheight r ∧ color-of r = RBT-Impl.B −→ inv1 (rbt-joinL l a b r))
〈proof 〉

lemma inv1l-rbt-joinR: inv1 l =⇒ inv2 l =⇒ inv1 r =⇒ inv2 r =⇒ bheight l ≥
bheight r =⇒

THEORY “RBT-Impl” 930

inv1l (rbt-joinR l a b r) ∧
(bheight l 6= bheight r ∧ color-of l = RBT-Impl.B −→ inv1 (rbt-joinR l a b r))
〈proof 〉

lemma bheight-rbt-joinL: inv2 l =⇒ inv2 r =⇒ bheight l ≤ bheight r =⇒
bheight (rbt-joinL l a b r) = bheight r
〈proof 〉

lemma inv2-rbt-joinL: inv2 l =⇒ inv2 r =⇒ bheight l ≤ bheight r =⇒ inv2
(rbt-joinL l a b r)
〈proof 〉

lemma bheight-rbt-joinR: inv2 l =⇒ inv2 r =⇒ bheight l ≥ bheight r =⇒
bheight (rbt-joinR l a b r) = bheight l
〈proof 〉

lemma inv2-rbt-joinR: inv2 l =⇒ inv2 r =⇒ bheight l ≥ bheight r =⇒ inv2
(rbt-joinR l a b r)
〈proof 〉

lemma keys-paint[simp]: RBT-Impl.keys (paint c t) = RBT-Impl.keys t
〈proof 〉

lemma keys-rbt-baliL: RBT-Impl.keys (rbt-baliL l a b r) = RBT-Impl.keys l @ a
RBT-Impl.keys r
〈proof 〉

lemma keys-rbt-baliR: RBT-Impl.keys (rbt-baliR l a b r) = RBT-Impl.keys l @ a
RBT-Impl.keys r
〈proof 〉

lemma keys-rbt-baldL: RBT-Impl.keys (rbt-baldL l a b r) = RBT-Impl.keys l @ a
RBT-Impl.keys r
〈proof 〉

lemma keys-rbt-baldR: RBT-Impl.keys (rbt-baldR l a b r) = RBT-Impl.keys l @ a
RBT-Impl.keys r
〈proof 〉

lemma keys-rbt-app: RBT-Impl.keys (rbt-app l r) = RBT-Impl.keys l @ RBT-Impl.keys
r
〈proof 〉

lemma keys-rbt-joinL: bheight l ≤ bheight r =⇒
RBT-Impl.keys (rbt-joinL l a b r) = RBT-Impl.keys l @ a # RBT-Impl.keys r
〈proof 〉

lemma keys-rbt-joinR: RBT-Impl.keys (rbt-joinR l a b r) = RBT-Impl.keys l @ a
RBT-Impl.keys r

THEORY “RBT-Impl” 931

〈proof 〉

lemma rbt-set-rbt-baliL: set (RBT-Impl.keys (rbt-baliL l a b r)) =
set (RBT-Impl.keys l) ∪ {a} ∪ set (RBT-Impl.keys r)
〈proof 〉

lemma set-rbt-joinL: set (RBT-Impl.keys (rbt-joinL l a b r)) =
set (RBT-Impl.keys l) ∪ {a} ∪ set (RBT-Impl.keys r)
〈proof 〉

lemma rbt-set-rbt-baliR: set (RBT-Impl.keys (rbt-baliR l a b r)) =
set (RBT-Impl.keys l) ∪ {a} ∪ set (RBT-Impl.keys r)
〈proof 〉

lemma set-rbt-joinR: set (RBT-Impl.keys (rbt-joinR l a b r)) =
set (RBT-Impl.keys l) ∪ {a} ∪ set (RBT-Impl.keys r)
〈proof 〉

lemma set-keys-paint: set (RBT-Impl.keys (paint c t)) = set (RBT-Impl.keys t)
〈proof 〉

lemma set-rbt-join: set (RBT-Impl.keys (rbt-join l a b r)) =
set (RBT-Impl.keys l) ∪ {a} ∪ set (RBT-Impl.keys r)
〈proof 〉

lemma inv-rbt-join: inv-12 l =⇒ inv-12 r =⇒ inv-12 (rbt-join l a b r)
〈proof 〉

fun rbt-recolor :: (′a, ′b) rbt ⇒ (′a, ′b) rbt where
rbt-recolor (Branch RBT-Impl.R t1 k v t2) =

(if color-of t1 = RBT-Impl.B ∧ color-of t2 = RBT-Impl.B then Branch
RBT-Impl.B t1 k v t2

else Branch RBT-Impl.R t1 k v t2)
| rbt-recolor t = t

lemma rbt-recolor : inv-12 t =⇒ inv-12 (rbt-recolor t)
〈proof 〉

fun rbt-split-min :: (′a, ′b) rbt ⇒ ′a × ′b × (′a, ′b) rbt where
rbt-split-min RBT-Impl.Empty = undefined
| rbt-split-min (RBT-Impl.Branch - l a b r) =

(if is-rbt-empty l then (a,b,r) else let (a ′,b ′,l ′) = rbt-split-min l in (a ′,b ′,rbt-join
l ′ a b r))

lemma rbt-split-min-set:
rbt-split-min t = (a,b,t ′) =⇒ t 6= RBT-Impl.Empty =⇒
a ∈ set (RBT-Impl.keys t) ∧ set (RBT-Impl.keys t) = {a} ∪ set (RBT-Impl.keys

t ′)
〈proof 〉

THEORY “RBT-Impl” 932

lemma rbt-split-min-inv: rbt-split-min t = (a,b,t ′) =⇒ inv-12 t =⇒ t 6= RBT-Impl.Empty
=⇒ inv-12 t ′

〈proof 〉

definition rbt-join2 :: (′a, ′b) rbt ⇒ (′a, ′b) rbt ⇒ (′a, ′b) rbt where
rbt-join2 l r = (if is-rbt-empty r then l else let (a,b,r ′) = rbt-split-min r in rbt-join

l a b r ′)

lemma set-rbt-join2 [simp]: set (RBT-Impl.keys (rbt-join2 l r)) =
set (RBT-Impl.keys l) ∪ set (RBT-Impl.keys r)
〈proof 〉

lemma inv-rbt-join2 : inv-12 l =⇒ inv-12 r =⇒ inv-12 (rbt-join2 l r)
〈proof 〉

context ord begin

fun rbt-split :: (′a, ′b) rbt ⇒ ′a ⇒ (′a, ′b) rbt × ′b option × (′a, ′b) rbt where
rbt-split RBT-Impl.Empty k = (RBT-Impl.Empty, None, RBT-Impl.Empty)
| rbt-split (RBT-Impl.Branch - l a b r) x =
(if x < a then (case rbt-split l x of (l1 , β, l2) ⇒ (l1 , β, rbt-join l2 a b r))
else if a < x then (case rbt-split r x of (r1 , β, r2) ⇒ (rbt-join l a b r1 , β, r2))
else (l, Some b, r))

lemma rbt-split: rbt-split t x = (l,β,r) =⇒ inv-12 t =⇒ inv-12 l ∧ inv-12 r
〈proof 〉

lemma rbt-split-size: (l2 ,β,r2) = rbt-split t2 a =⇒ size l2 + size r2 ≤ size t2
〈proof 〉

function rbt-union-rec :: (′a ⇒ ′b ⇒ ′b ⇒ ′b) ⇒ (′a, ′b) rbt ⇒ (′a, ′b) rbt ⇒ (′a,
′b) rbt where

rbt-union-rec f t1 t2 = (let (f , t2 , t1) =
if flip-rbt t2 t1 then (λk v v ′. f k v ′ v, t1 , t2) else (f , t2 , t1) in
if small-rbt t2 then RBT-Impl.fold (rbt-insert-with-key f) t2 t1
else (case t1 of RBT-Impl.Empty ⇒ t2
| RBT-Impl.Branch - l1 a b r1 ⇒

case rbt-split t2 a of (l2 , β, r2) ⇒
rbt-join (rbt-union-rec f l1 l2) a (case β of None ⇒ b | Some b ′ ⇒ f a b

b ′) (rbt-union-rec f r1 r2)))
〈proof 〉

termination
〈proof 〉

declare rbt-union-rec.simps[simp del]

function rbt-union-swap-rec :: (′a ⇒ ′b ⇒ ′b ⇒ ′b) ⇒ bool ⇒ (′a, ′b) rbt ⇒ (′a,
′b) rbt ⇒ (′a, ′b) rbt where

THEORY “RBT-Impl” 933

rbt-union-swap-rec f γ t1 t2 = (let (γ, t2 , t1) =
if flip-rbt t2 t1 then (¬γ, t1 , t2) else (γ, t2 , t1);
f ′ = (if γ then (λk v v ′. f k v ′ v) else f) in
if small-rbt t2 then RBT-Impl.fold (rbt-insert-with-key f ′) t2 t1
else (case t1 of RBT-Impl.Empty ⇒ t2
| RBT-Impl.Branch - l1 a b r1 ⇒

case rbt-split t2 a of (l2 , β, r2) ⇒
rbt-join (rbt-union-swap-rec f γ l1 l2) a (case β of None ⇒ b | Some b ′⇒

f ′ a b b ′) (rbt-union-swap-rec f γ r1 r2)))
〈proof 〉

termination
〈proof 〉

declare rbt-union-swap-rec.simps[simp del]

lemma rbt-union-swap-rec: rbt-union-swap-rec f γ t1 t2 =
rbt-union-rec (if γ then (λk v v ′. f k v ′ v) else f) t1 t2
〈proof 〉

lemma rbt-fold-rbt-insert:
assumes inv-12 t2
shows inv-12 (RBT-Impl.fold (rbt-insert-with-key f) t1 t2)
〈proof 〉

lemma rbt-union-rec: inv-12 t1 =⇒ inv-12 t2 =⇒ inv-12 (rbt-union-rec f t1 t2)
〈proof 〉

definition map-filter-inter f t1 t2 = List.map-filter (λ(k, v).
case rbt-lookup t1 k of None ⇒ None
| Some v ′⇒ Some (k, f k v ′ v)) (RBT-Impl.entries t2)

function rbt-inter-rec :: (′a ⇒ ′b ⇒ ′b ⇒ ′b) ⇒ (′a, ′b) rbt ⇒ (′a, ′b) rbt ⇒ (′a,
′b) rbt where

rbt-inter-rec f t1 t2 = (let (f , t2 , t1) =
if flip-rbt t2 t1 then (λk v v ′. f k v ′ v, t1 , t2) else (f , t2 , t1) in
if small-rbt t2 then rbtreeify (map-filter-inter f t1 t2)
else case t1 of RBT-Impl.Empty ⇒ RBT-Impl.Empty
| RBT-Impl.Branch - l1 a b r1 ⇒
case rbt-split t2 a of (l2 , β, r2)⇒ let l ′ = rbt-inter-rec f l1 l2 ; r ′ = rbt-inter-rec

f r1 r2 in
(case β of None ⇒ rbt-join2 l ′ r ′ | Some b ′⇒ rbt-join l ′ a (f a b b ′) r ′))

〈proof 〉
termination
〈proof 〉

declare rbt-inter-rec.simps[simp del]

function rbt-inter-swap-rec :: (′a ⇒ ′b ⇒ ′b ⇒ ′b) ⇒ bool ⇒ (′a, ′b) rbt ⇒ (′a,
′b) rbt ⇒ (′a, ′b) rbt where

THEORY “RBT-Impl” 934

rbt-inter-swap-rec f γ t1 t2 = (let (γ, t2 , t1) =
if flip-rbt t2 t1 then (¬γ, t1 , t2) else (γ, t2 , t1);
f ′ = (if γ then (λk v v ′. f k v ′ v) else f) in
if small-rbt t2 then rbtreeify (map-filter-inter f ′ t1 t2)
else case t1 of RBT-Impl.Empty ⇒ RBT-Impl.Empty
| RBT-Impl.Branch - l1 a b r1 ⇒

case rbt-split t2 a of (l2 , β, r2) ⇒ let l ′ = rbt-inter-swap-rec f γ l1 l2 ; r ′ =
rbt-inter-swap-rec f γ r1 r2 in

(case β of None ⇒ rbt-join2 l ′ r ′ | Some b ′⇒ rbt-join l ′ a (f ′ a b b ′) r ′))
〈proof 〉

termination
〈proof 〉

declare rbt-inter-swap-rec.simps[simp del]

lemma rbt-inter-swap-rec: rbt-inter-swap-rec f γ t1 t2 =
rbt-inter-rec (if γ then (λk v v ′. f k v ′ v) else f) t1 t2
〈proof 〉

lemma rbt-rbtreeify[simp]: inv-12 (rbtreeify kvs)
〈proof 〉

lemma rbt-inter-rec: inv-12 t1 =⇒ inv-12 t2 =⇒ inv-12 (rbt-inter-rec f t1 t2)
〈proof 〉

definition filter-minus t1 t2 = filter (λ(k, -). rbt-lookup t2 k = None) (RBT-Impl.entries
t1)

fun rbt-minus-rec :: (′a, ′b) rbt ⇒ (′a, ′b) rbt ⇒ (′a, ′b) rbt where
rbt-minus-rec t1 t2 = (if small-rbt t2 then RBT-Impl.fold (λk - t. rbt-delete k t)

t2 t1
else if small-rbt t1 then rbtreeify (filter-minus t1 t2)
else case t2 of RBT-Impl.Empty ⇒ t1
| RBT-Impl.Branch - l2 a b r2 ⇒
case rbt-split t1 a of (l1 , -, r1)⇒ rbt-join2 (rbt-minus-rec l1 l2) (rbt-minus-rec

r1 r2))

declare rbt-minus-rec.simps[simp del]

end

context linorder begin

lemma rbt-sorted-entries-right-unique:
[[(k, v) ∈ set (entries t); (k, v ′) ∈ set (entries t);

rbt-sorted t]] =⇒ v = v ′

〈proof 〉

lemma rbt-sorted-fold-rbt-insertwk:

THEORY “RBT-Impl” 935

rbt-sorted t =⇒ rbt-sorted (List.fold (λ(k, v). rbt-insert-with-key f k v) xs t)
〈proof 〉

lemma is-rbt-fold-rbt-insertwk:
assumes is-rbt t1
shows is-rbt (fold (rbt-insert-with-key f) t2 t1)
〈proof 〉

lemma rbt-delete: inv-12 t =⇒ inv-12 (rbt-delete x t)
〈proof 〉

lemma rbt-sorted-delete: rbt-sorted t =⇒ rbt-sorted (rbt-delete x t)
〈proof 〉

lemma rbt-fold-rbt-delete:
assumes inv-12 t2
shows inv-12 (RBT-Impl.fold (λk - t. rbt-delete k t) t1 t2)
〈proof 〉

lemma rbt-minus-rec: inv-12 t1 =⇒ inv-12 t2 =⇒ inv-12 (rbt-minus-rec t1 t2)
〈proof 〉

end

context linorder begin

lemma rbt-sorted-rbt-baliL: rbt-sorted l =⇒ rbt-sorted r =⇒ l |« a =⇒ a «| r =⇒
rbt-sorted (rbt-baliL l a b r)
〈proof 〉

lemma rbt-lookup-rbt-baliL: rbt-sorted l =⇒ rbt-sorted r =⇒ l |« a =⇒ a «| r =⇒
rbt-lookup (rbt-baliL l a b r) k =
(if k < a then rbt-lookup l k else if k = a then Some b else rbt-lookup r k)
〈proof 〉

lemma rbt-sorted-rbt-baliR: rbt-sorted l =⇒ rbt-sorted r =⇒ l |« a =⇒ a «| r =⇒
rbt-sorted (rbt-baliR l a b r)
〈proof 〉

lemma rbt-lookup-rbt-baliR: rbt-sorted l =⇒ rbt-sorted r =⇒ l |« a =⇒ a «| r =⇒
rbt-lookup (rbt-baliR l a b r) k =
(if k < a then rbt-lookup l k else if k = a then Some b else rbt-lookup r k)
〈proof 〉

lemma rbt-sorted-rbt-joinL: rbt-sorted (RBT-Impl.Branch c l a b r) =⇒ bheight l
≤ bheight r =⇒

rbt-sorted (rbt-joinL l a b r)
〈proof 〉

THEORY “RBT-Impl” 936

lemma rbt-lookup-rbt-joinL: rbt-sorted l =⇒ rbt-sorted r =⇒ l |« a =⇒ a «| r =⇒
rbt-lookup (rbt-joinL l a b r) k =
(if k < a then rbt-lookup l k else if k = a then Some b else rbt-lookup r k)
〈proof 〉

lemma rbt-sorted-rbt-joinR: rbt-sorted l =⇒ rbt-sorted r =⇒ l |« a =⇒ a «| r =⇒
rbt-sorted (rbt-joinR l a b r)
〈proof 〉

lemma rbt-lookup-rbt-joinR: rbt-sorted l =⇒ rbt-sorted r =⇒ l |« a =⇒ a «| r
=⇒

rbt-lookup (rbt-joinR l a b r) k =
(if k < a then rbt-lookup l k else if k = a then Some b else rbt-lookup r k)
〈proof 〉

lemma rbt-sorted-paint: rbt-sorted (paint c t) = rbt-sorted t
〈proof 〉

lemma rbt-sorted-rbt-join: rbt-sorted (RBT-Impl.Branch c l a b r) =⇒
rbt-sorted (rbt-join l a b r)
〈proof 〉

lemma rbt-lookup-rbt-join: rbt-sorted l =⇒ rbt-sorted r =⇒ l |« a =⇒ a «| r =⇒
rbt-lookup (rbt-join l a b r) k =
(if k < a then rbt-lookup l k else if k = a then Some b else rbt-lookup r k)
〈proof 〉

lemma rbt-split-min-rbt-sorted: rbt-split-min t = (a,b,t ′) =⇒ rbt-sorted t =⇒ t 6=
RBT-Impl.Empty =⇒

rbt-sorted t ′ ∧ (∀ x ∈ set (RBT-Impl.keys t ′). a < x)
〈proof 〉

lemma rbt-split-min-rbt-lookup: rbt-split-min t = (a,b,t ′) =⇒ rbt-sorted t =⇒ t 6=
RBT-Impl.Empty =⇒

rbt-lookup t k = (if k < a then None else if k = a then Some b else rbt-lookup t ′

k)
〈proof 〉

lemma rbt-sorted-rbt-join2 : rbt-sorted l =⇒ rbt-sorted r =⇒
∀ x ∈ set (RBT-Impl.keys l). ∀ y ∈ set (RBT-Impl.keys r). x < y =⇒ rbt-sorted

(rbt-join2 l r)
〈proof 〉

lemma rbt-lookup-rbt-join2 : rbt-sorted l =⇒ rbt-sorted r =⇒
∀ x ∈ set (RBT-Impl.keys l). ∀ y ∈ set (RBT-Impl.keys r). x < y =⇒
rbt-lookup (rbt-join2 l r) k = (case rbt-lookup l k of None ⇒ rbt-lookup r k | Some

v ⇒ Some v)
〈proof 〉

THEORY “RBT-Impl” 937

lemma rbt-split-props: rbt-split t x = (l,β,r) =⇒ rbt-sorted t =⇒
set (RBT-Impl.keys l) = {a ∈ set (RBT-Impl.keys t). a < x} ∧
set (RBT-Impl.keys r) = {a ∈ set (RBT-Impl.keys t). x < a} ∧
rbt-sorted l ∧ rbt-sorted r
〈proof 〉

lemma rbt-split-lookup: rbt-split t x = (l,β,r) =⇒ rbt-sorted t =⇒
rbt-lookup t k = (if k < x then rbt-lookup l k else if k = x then β else rbt-lookup

r k)
〈proof 〉

lemma rbt-sorted-fold-insertwk: rbt-sorted t =⇒
rbt-sorted (RBT-Impl.fold (rbt-insert-with-key f) t ′ t)
〈proof 〉

lemma rbt-lookup-iff-keys:
rbt-sorted t =⇒ set (RBT-Impl.keys t) = {k. ∃ v. rbt-lookup t k = Some v}
rbt-sorted t =⇒ rbt-lookup t k = None ←→ k /∈ set (RBT-Impl.keys t)
rbt-sorted t =⇒ (∃ v. rbt-lookup t k = Some v) ←→ k ∈ set (RBT-Impl.keys t)
〈proof 〉

lemma rbt-lookup-fold-rbt-insertwk:
assumes t1 : rbt-sorted t1 and t2 : rbt-sorted t2
shows rbt-lookup (fold (rbt-insert-with-key f) t1 t2) k =
(case rbt-lookup t1 k of None ⇒ rbt-lookup t2 k
| Some v ⇒ case rbt-lookup t2 k of None ⇒ Some v

| Some w ⇒ Some (f k w v))
〈proof 〉

lemma rbt-lookup-union-rec: rbt-sorted t1 =⇒ rbt-sorted t2 =⇒
rbt-sorted (rbt-union-rec f t1 t2) ∧ rbt-lookup (rbt-union-rec f t1 t2) k =
(case rbt-lookup t1 k of None ⇒ rbt-lookup t2 k
| Some v ⇒ (case rbt-lookup t2 k of None ⇒ Some v

| Some w ⇒ Some (f k v w)))
〈proof 〉

lemma rbtreeify-map-filter-inter :
fixes f :: ′a ⇒ ′b ⇒ ′b ⇒ ′b
assumes rbt-sorted t2
shows rbt-sorted (rbtreeify (map-filter-inter f t1 t2))

rbt-lookup (rbtreeify (map-filter-inter f t1 t2)) k =
(case rbt-lookup t1 k of None ⇒ None
| Some v ⇒ (case rbt-lookup t2 k of None ⇒ None | Some w ⇒ Some (f k v

w)))
〈proof 〉

lemma rbt-lookup-inter-rec: rbt-sorted t1 =⇒ rbt-sorted t2 =⇒
rbt-sorted (rbt-inter-rec f t1 t2) ∧ rbt-lookup (rbt-inter-rec f t1 t2) k =
(case rbt-lookup t1 k of None ⇒ None

THEORY “RBT-Impl” 938

| Some v ⇒ (case rbt-lookup t2 k of None ⇒ None | Some w ⇒ Some (f k v w)))
〈proof 〉

lemma rbt-lookup-delete:
assumes inv-12 t rbt-sorted t
shows rbt-lookup (rbt-delete x t) k = (if x = k then None else rbt-lookup t k)
〈proof 〉

lemma fold-rbt-delete:
assumes inv-12 t1 rbt-sorted t1 rbt-sorted t2
shows inv-12 (RBT-Impl.fold (λk - t. rbt-delete k t) t2 t1) ∧

rbt-sorted (RBT-Impl.fold (λk - t. rbt-delete k t) t2 t1) ∧
rbt-lookup (RBT-Impl.fold (λk - t. rbt-delete k t) t2 t1) k =
(case rbt-lookup t1 k of None ⇒ None
| Some v ⇒ (case rbt-lookup t2 k of None ⇒ Some v | - ⇒ None))

〈proof 〉

lemma rbtreeify-filter-minus:
assumes rbt-sorted t1
shows rbt-sorted (rbtreeify (filter-minus t1 t2)) ∧

rbt-lookup (rbtreeify (filter-minus t1 t2)) k =
(case rbt-lookup t1 k of None ⇒ None
| Some v ⇒ (case rbt-lookup t2 k of None ⇒ Some v | - ⇒ None))

〈proof 〉

lemma rbt-lookup-minus-rec: inv-12 t1 =⇒ rbt-sorted t1 =⇒ rbt-sorted t2 =⇒
rbt-sorted (rbt-minus-rec t1 t2) ∧ rbt-lookup (rbt-minus-rec t1 t2) k =
(case rbt-lookup t1 k of None ⇒ None
| Some v ⇒ (case rbt-lookup t2 k of None ⇒ Some v | - ⇒ None))
〈proof 〉

end

context ord begin

definition rbt-union-with-key :: (′a ⇒ ′b ⇒ ′b ⇒ ′b) ⇒ (′a, ′b) rbt ⇒ (′a, ′b) rbt
⇒ (′a, ′b) rbt
where

rbt-union-with-key f t1 t2 = paint B (rbt-union-swap-rec f False t1 t2)

definition rbt-union-with where
rbt-union-with f = rbt-union-with-key (λ-. f)

definition rbt-union where
rbt-union = rbt-union-with-key (%- - rv. rv)

definition rbt-inter-with-key :: (′a ⇒ ′b ⇒ ′b ⇒ ′b) ⇒ (′a, ′b) rbt ⇒ (′a, ′b) rbt
⇒ (′a, ′b) rbt
where

THEORY “RBT-Impl” 939

rbt-inter-with-key f t1 t2 = paint B (rbt-inter-swap-rec f False t1 t2)

definition rbt-inter-with where
rbt-inter-with f = rbt-inter-with-key (λ-. f)

definition rbt-inter where
rbt-inter = rbt-inter-with-key (λ- - rv. rv)

definition rbt-minus where
rbt-minus t1 t2 = paint B (rbt-minus-rec t1 t2)

end

context linorder begin

lemma is-rbt-rbt-unionwk [simp]:
[[is-rbt t1 ; is-rbt t2]] =⇒ is-rbt (rbt-union-with-key f t1 t2)
〈proof 〉

lemma rbt-lookup-rbt-unionwk:
[[rbt-sorted t1 ; rbt-sorted t2]]
=⇒ rbt-lookup (rbt-union-with-key f t1 t2) k =
(case rbt-lookup t1 k of None ⇒ rbt-lookup t2 k
| Some v ⇒ case rbt-lookup t2 k of None ⇒ Some v

| Some w ⇒ Some (f k v w))
〈proof 〉

lemma rbt-unionw-is-rbt: [[is-rbt lt; is-rbt rt]] =⇒ is-rbt (rbt-union-with f lt rt)
〈proof 〉

lemma rbt-union-is-rbt: [[is-rbt lt; is-rbt rt]] =⇒ is-rbt (rbt-union lt rt)
〈proof 〉

lemma rbt-lookup-rbt-union:
[[rbt-sorted s; rbt-sorted t]] =⇒
rbt-lookup (rbt-union s t) = rbt-lookup s ++ rbt-lookup t
〈proof 〉

lemma rbt-interwk-is-rbt [simp]:
[[is-rbt t1 ; is-rbt t2]] =⇒ is-rbt (rbt-inter-with-key f t1 t2)
〈proof 〉

lemma rbt-interw-is-rbt:
[[is-rbt t1 ; is-rbt t2]] =⇒ is-rbt (rbt-inter-with f t1 t2)
〈proof 〉

lemma rbt-inter-is-rbt:
[[is-rbt t1 ; is-rbt t2]] =⇒ is-rbt (rbt-inter t1 t2)
〈proof 〉

THEORY “RBT-Impl” 940

lemma rbt-lookup-rbt-interwk:
[[rbt-sorted t1 ; rbt-sorted t2]]
=⇒ rbt-lookup (rbt-inter-with-key f t1 t2) k =
(case rbt-lookup t1 k of None ⇒ None
| Some v ⇒ case rbt-lookup t2 k of None ⇒ None

| Some w ⇒ Some (f k v w))
〈proof 〉

lemma rbt-lookup-rbt-inter :
[[rbt-sorted t1 ; rbt-sorted t2]]
=⇒ rbt-lookup (rbt-inter t1 t2) = rbt-lookup t2 |‘ dom (rbt-lookup t1)
〈proof 〉

lemma rbt-minus-is-rbt:
[[is-rbt t1 ; is-rbt t2]] =⇒ is-rbt (rbt-minus t1 t2)
〈proof 〉

lemma rbt-lookup-rbt-minus:
[[is-rbt t1 ; is-rbt t2]]
=⇒ rbt-lookup (rbt-minus t1 t2) = rbt-lookup t1 |‘ (− dom (rbt-lookup t2))
〈proof 〉

end

129.11 Code generator setup
lemmas [code] =

ord.rbt-less-prop
ord.rbt-greater-prop
ord.rbt-sorted.simps
ord.rbt-lookup.simps
ord.is-rbt-def
ord.rbt-ins.simps
ord.rbt-insert-with-key-def
ord.rbt-insertw-def
ord.rbt-insert-def
ord.rbt-del-from-left.simps
ord.rbt-del-from-right.simps
ord.rbt-del.simps
ord.rbt-delete-def
ord.rbt-split.simps
ord.rbt-union-swap-rec.simps
ord.map-filter-inter-def
ord.rbt-inter-swap-rec.simps
ord.filter-minus-def
ord.rbt-minus-rec.simps
ord.rbt-union-with-key-def
ord.rbt-union-with-def

THEORY “RBT” 941

ord.rbt-union-def
ord.rbt-inter-with-key-def
ord.rbt-inter-with-def
ord.rbt-inter-def
ord.rbt-minus-def
ord.rbt-map-entry.simps
ord.rbt-bulkload-def

More efficient implementations for entries and keys
definition gen-entries ::
((′a × ′b) × (′a, ′b) rbt) list ⇒ (′a, ′b) rbt ⇒ (′a × ′b) list

where
gen-entries kvts t = entries t @ concat (map (λ(kv, t). kv # entries t) kvts)

lemma gen-entries-simps [simp, code]:
gen-entries [] Empty = []
gen-entries ((kv, t) # kvts) Empty = kv # gen-entries kvts t
gen-entries kvts (Branch c l k v r) = gen-entries (((k, v), r) # kvts) l
〈proof 〉

lemma entries-code [code]:
entries = gen-entries []
〈proof 〉

definition gen-keys :: (′a × (′a, ′b) rbt) list ⇒ (′a, ′b) rbt ⇒ ′a list
where gen-keys kts t = RBT-Impl.keys t @ concat (List.map (λ(k, t). k # keys
t) kts)

lemma gen-keys-simps [simp, code]:
gen-keys [] Empty = []
gen-keys ((k, t) # kts) Empty = k # gen-keys kts t
gen-keys kts (Branch c l k v r) = gen-keys ((k, r) # kts) l
〈proof 〉

lemma keys-code [code]:
keys = gen-keys []
〈proof 〉

Restore original type constraints for constants
〈ML〉

hide-const (open) MR MB R B Empty entries keys fold gen-keys gen-entries

end

130 Abstract type of RBT trees
theory RBT
imports Main RBT-Impl

THEORY “RBT” 942

begin

130.1 Type definition
typedef (overloaded) (′a, ′b) rbt = {t :: (′a::linorder , ′b) RBT-Impl.rbt. is-rbt
t}

morphisms impl-of RBT
〈proof 〉

lemma rbt-eq-iff :
t1 = t2 ←→ impl-of t1 = impl-of t2
〈proof 〉

lemma rbt-eqI :
impl-of t1 = impl-of t2 =⇒ t1 = t2
〈proof 〉

lemma is-rbt-impl-of [simp, intro]:
is-rbt (impl-of t)
〈proof 〉

lemma RBT-impl-of [simp, code abstype]:
RBT (impl-of t) = t
〈proof 〉

130.2 Primitive operations
setup-lifting type-definition-rbt

lift-definition lookup :: (′a::linorder , ′b) rbt ⇒ ′a ⇀ ′b is rbt-lookup 〈proof 〉

lift-definition empty :: (′a::linorder , ′b) rbt is RBT-Impl.Empty
〈proof 〉

lift-definition insert :: ′a::linorder ⇒ ′b ⇒ (′a, ′b) rbt ⇒ (′a, ′b) rbt is rbt-insert

〈proof 〉

lift-definition delete :: ′a::linorder ⇒ (′a, ′b) rbt ⇒ (′a, ′b) rbt is rbt-delete
〈proof 〉

lift-definition entries :: (′a::linorder , ′b) rbt ⇒ (′a × ′b) list is RBT-Impl.entries
〈proof 〉

lift-definition keys :: (′a::linorder , ′b) rbt ⇒ ′a list is RBT-Impl.keys 〈proof 〉

lift-definition bulkload :: (′a::linorder × ′b) list ⇒ (′a, ′b) rbt is rbt-bulkload
〈proof 〉

THEORY “RBT” 943

lift-definition map-entry :: ′a ⇒ (′b ⇒ ′b) ⇒ (′a::linorder , ′b) rbt ⇒ (′a, ′b) rbt
is rbt-map-entry
〈proof 〉

lift-definition map :: (′a ⇒ ′b ⇒ ′c) ⇒ (′a::linorder , ′b) rbt ⇒ (′a, ′c) rbt is
RBT-Impl.map
〈proof 〉

lift-definition fold :: (′a ⇒ ′b ⇒ ′c ⇒ ′c) ⇒ (′a::linorder , ′b) rbt ⇒ ′c ⇒ ′c is
RBT-Impl.fold 〈proof 〉

lift-definition union :: (′a::linorder , ′b) rbt ⇒ (′a, ′b) rbt ⇒ (′a, ′b) rbt is
rbt-union
〈proof 〉

lift-definition foldi :: (′c ⇒ bool) ⇒ (′a ⇒ ′b ⇒ ′c ⇒ ′c) ⇒ (′a :: linorder , ′b)
rbt ⇒ ′c ⇒ ′c

is RBT-Impl.foldi 〈proof 〉

lift-definition combine-with-key :: (′a ⇒ ′b ⇒ ′b ⇒ ′b) ⇒ (′a::linorder , ′b) rbt ⇒
(′a, ′b) rbt ⇒ (′a, ′b) rbt

is RBT-Impl.rbt-union-with-key 〈proof 〉

lift-definition combine :: (′b ⇒ ′b ⇒ ′b) ⇒ (′a::linorder , ′b) rbt ⇒ (′a, ′b) rbt ⇒
(′a, ′b) rbt

is RBT-Impl.rbt-union-with 〈proof 〉

130.3 Derived operations
definition is-empty :: (′a::linorder , ′b) rbt ⇒ bool where
[code]: is-empty t = (case impl-of t of RBT-Impl.Empty ⇒ True | - ⇒ False)

definition filter :: (′a ⇒ ′b ⇒ bool) ⇒ (′a::linorder , ′b) rbt ⇒ (′a, ′b) rbt where
[code]: filter P t = fold (λk v t. if P k v then insert k v t else t) t empty

130.4 Abstract lookup properties
lemma lookup-RBT :

is-rbt t =⇒ lookup (RBT t) = rbt-lookup t
〈proof 〉

lemma lookup-impl-of :
rbt-lookup (impl-of t) = lookup t
〈proof 〉

lemma entries-impl-of :
RBT-Impl.entries (impl-of t) = entries t
〈proof 〉

THEORY “RBT” 944

lemma keys-impl-of :
RBT-Impl.keys (impl-of t) = keys t
〈proof 〉

lemma lookup-keys:
dom (lookup t) = set (keys t)
〈proof 〉

lemma lookup-empty [simp]:
lookup empty = Map.empty
〈proof 〉

lemma lookup-insert [simp]:
lookup (insert k v t) = (lookup t)(k 7→ v)
〈proof 〉

lemma lookup-delete [simp]:
lookup (delete k t) = (lookup t)(k := None)
〈proof 〉

lemma map-of-entries [simp]:
map-of (entries t) = lookup t
〈proof 〉

lemma entries-lookup:
entries t1 = entries t2 ←→ lookup t1 = lookup t2
〈proof 〉

lemma lookup-bulkload [simp]:
lookup (bulkload xs) = map-of xs
〈proof 〉

lemma lookup-map-entry [simp]:
lookup (map-entry k f t) = (lookup t)(k := map-option f (lookup t k))
〈proof 〉

lemma lookup-map [simp]:
lookup (map f t) k = map-option (f k) (lookup t k)
〈proof 〉

lemma lookup-combine-with-key [simp]:
lookup (combine-with-key f t1 t2) k = combine-options (f k) (lookup t1 k) (lookup

t2 k)
〈proof 〉

lemma combine-altdef : combine f t1 t2 = combine-with-key (λ-. f) t1 t2
〈proof 〉

lemma lookup-combine [simp]:

THEORY “RBT” 945

lookup (combine f t1 t2) k = combine-options f (lookup t1 k) (lookup t2 k)
〈proof 〉

lemma fold-fold:
fold f t = List.fold (case-prod f) (entries t)
〈proof 〉

lemma impl-of-empty:
impl-of empty = RBT-Impl.Empty
〈proof 〉

lemma is-empty-empty [simp]:
is-empty t ←→ t = empty
〈proof 〉

lemma RBT-lookup-empty [simp]:
rbt-lookup t = Map.empty ←→ t = RBT-Impl.Empty
〈proof 〉

lemma lookup-empty-empty [simp]:
lookup t = Map.empty ←→ t = empty
〈proof 〉

lemma keys-empty-eq [simp]:
‹keys empty = []›
〈proof 〉

lemma sorted-keys [iff]:
sorted (keys t)
〈proof 〉

lemma distinct-keys [iff]:
distinct (keys t)
〈proof 〉

lemma finite-dom-lookup [simp, intro!]: finite (dom (lookup t))
〈proof 〉

lemma lookup-union: lookup (union s t) = lookup s ++ lookup t
〈proof 〉

lemma lookup-in-tree: (lookup t k = Some v) = ((k, v) ∈ set (entries t))
〈proof 〉

lemma keys-entries: (k ∈ set (keys t)) = (∃ v. (k, v) ∈ set (entries t))
〈proof 〉

lemma fold-def-alt:
fold f t = List.fold (case-prod f) (entries t)

THEORY “RBT-Mapping” 946

〈proof 〉

lemma distinct-entries: distinct (List.map fst (entries t))
〈proof 〉

lemma sorted-entries: sorted (List.map fst (entries t))
〈proof 〉

lemma non-empty-keys: t 6= empty =⇒ keys t 6= []
〈proof 〉

lemma keys-def-alt:
keys t = List.map fst (entries t)
〈proof 〉

context
begin

private lemma lookup-filter-aux:
assumes distinct (List.map fst xs)
shows lookup (List.fold (λ(k, v) t. if P k v then insert k v t else t) xs t) k =

(case map-of xs k of
None ⇒ lookup t k
| Some v ⇒ if P k v then Some v else lookup t k)

〈proof 〉

lemma lookup-filter :
lookup (filter P t) k =
(case lookup t k of None ⇒ None | Some v ⇒ if P k v then Some v else None)
〈proof 〉

end

130.5 Quickcheck generators
quickcheck-generator rbt predicate: is-rbt constructors: empty, insert

130.6 Hide implementation details
lifting-update rbt.lifting
lifting-forget rbt.lifting

hide-const (open) impl-of empty lookup keys entries bulkload delete map fold
union insert map-entry foldi

is-empty filter
hide-fact (open) empty-def lookup-def keys-def entries-def bulkload-def delete-def
map-def fold-def

union-def insert-def map-entry-def foldi-def is-empty-def filter-def

end

THEORY “RBT-Mapping” 947

131 Implementation of mappings with Red-Black
Trees

〈proof 〉
This theory defines abstract red-black trees as an efficient representation

of finite maps, backed by the implementation in HOL−Library.RBT-Impl.

131.1 Data type and invariant
The type (′k, ′v) RBT-Impl.rbt denotes red-black trees with keys of type ′k
and values of type ′v. To function properly, the key type musorted belong
to the linorder class.

A value t of this type is a valid red-black tree if it satisfies the invariant
is-rbt t. The abstract type (′k, ′v) RBT .rbt always obeys this invariant, and
for this reason you should only use this in our application. Going back to (′k,
′v) RBT-Impl.rbt may be necessary in proofs if not yet proven properties
about the operations must be established.

The interpretation function RBT .lookup returns the partial map repre-
sented by a red-black tree:

RBT .lookup

This function should be used for reasoning about the semantics of the
RBT operations. Furthermore, it implements the lookup functionality for
the data structure: It is executable and the lookup is performed in O(log n).

131.2 Operations
Currently, the following operations are supported:

RBT .empty

Returns the empty tree. O(1)

RBT .insert

Updates the map at a given position. O(log n)

RBT .delete

Deletes a map entry at a given position. O(log n)

RBT .entries

Return a corresponding key-value list for a tree.

RBT .bulkload

THEORY “RBT-Set” 948

Builds a tree from a key-value list.

RBT .map-entry

Maps a single entry in a tree.

RBT .map

Maps all values in a tree. O(n)

RBT .fold

Folds over all entries in a tree. O(n)

131.3 Invariant preservation
is-rbt rbt.Empty (Empty-is-rbt)
is-rbt ?t =⇒ is-rbt (rbt-insert ?k ?v ?t) (rbt-insert-is-rbt)
is-rbt ?t =⇒ is-rbt (rbt-delete ?k ?t) (delete-is-rbt)
is-rbt (rbt-bulkload ?xs) (bulkload-is-rbt)
is-rbt (rbt-map-entry ?k ?f ?t) = is-rbt ?t (map-entry-is-rbt)
is-rbt (RBT-Impl.map ?f ?t) = is-rbt ?t (map-is-rbt)
[[is-rbt ?lt; is-rbt ?rt]] =⇒ is-rbt (rbt-union ?lt ?rt) (union-is-rbt)

131.4 Map Semantics
lookup-empty

Mapping.lookup Mapping.empty ?k = None

lookup-insert

RBT .lookup (RBT .insert ?k ?v ?t) = (RBT .lookup ?t)(?k 7→ ?v)

lookup-delete

Mapping.lookup (Mapping.delete ?k ?m) ?k = None

lookup-bulkload

RBT .lookup (RBT .bulkload ?xs) = map-of ?xs

lookup-map

RBT .lookup (RBT .map ?f ?t) ?k = map-option (?f ?k) (RBT .lookup ?t ?k)

end

THEORY “RBT-Set” 949

132 Implementation of sets using RBT trees
theory RBT-Set
imports RBT Product-Lexorder
begin

133 Definition of code datatype constructors
definition Set :: (′a::linorder , unit) rbt ⇒ ′a set

where Set t = {x . RBT .lookup t x = Some ()}

definition Coset :: (′a::linorder , unit) rbt ⇒ ′a set
where [simp]: Coset t = − Set t

134 Lemmas
134.1 Auxiliary lemmas
lemma [simp]: x 6= Some () ←→ x = None
〈proof 〉

lemma Set-set-keys: Set x = dom (RBT .lookup x)
〈proof 〉

lemma finite-Set [simp, intro!]: finite (Set x)
〈proof 〉

lemma set-keys: Set t = set(RBT .keys t)
〈proof 〉

134.2 fold and filter
lemma finite-fold-rbt-fold-eq:

assumes comp-fun-commute f
shows Finite-Set.fold f A (set (RBT .entries t)) = RBT .fold (curry f) t A
〈proof 〉

definition fold-keys :: (′a :: linorder ⇒ ′b ⇒ ′b) ⇒ (′a, -) rbt ⇒ ′b ⇒ ′b
where [code-unfold]:fold-keys f t A = RBT .fold (λk - t. f k t) t A

lemma fold-keys-def-alt:
fold-keys f t s = List.fold f (RBT .keys t) s
〈proof 〉

lemma finite-fold-fold-keys:
assumes comp-fun-commute f
shows Finite-Set.fold f A (Set t) = fold-keys f t A
〈proof 〉

THEORY “RBT-Set” 950

definition rbt-filter :: (′a :: linorder ⇒ bool) ⇒ (′a, ′b) rbt ⇒ ′a set where
rbt-filter P t = RBT .fold (λk - A ′. if P k then Set.insert k A ′ else A ′) t {}

lemma Set-filter-rbt-filter :
Set.filter P (Set t) = rbt-filter P t
〈proof 〉

134.3 foldi and Ball
lemma Ball-False: RBT-Impl.fold (λk v s. s ∧ P k) t False = False
〈proof 〉

lemma rbt-foldi-fold-conj:
RBT-Impl.foldi (λs. s = True) (λk v s. s ∧ P k) t val = RBT-Impl.fold (λk v s.

s ∧ P k) t val
〈proof 〉

lemma foldi-fold-conj: RBT .foldi (λs. s = True) (λk v s. s ∧ P k) t val = fold-keys
(λk s. s ∧ P k) t val
〈proof 〉 including rbt.lifting 〈proof 〉

134.4 foldi and Bex
lemma Bex-True: RBT-Impl.fold (λk v s. s ∨ P k) t True = True
〈proof 〉

lemma rbt-foldi-fold-disj:
RBT-Impl.foldi (λs. s = False) (λk v s. s ∨ P k) t val = RBT-Impl.fold (λk v s.

s ∨ P k) t val
〈proof 〉

lemma foldi-fold-disj: RBT .foldi (λs. s = False) (λk v s. s ∨ P k) t val = fold-keys
(λk s. s ∨ P k) t val
〈proof 〉 including rbt.lifting 〈proof 〉

134.5 folding over non empty trees and selecting the minimal
and maximal element

134.5.1 concrete

The concrete part is here because it’s probably not general enough to be
moved to RBT-Impl
definition rbt-fold1-keys :: (′a ⇒ ′a ⇒ ′a) ⇒ (′a::linorder , ′b) RBT-Impl.rbt ⇒
′a

where rbt-fold1-keys f t = List.fold f (tl(RBT-Impl.keys t)) (hd(RBT-Impl.keys
t))

minimum definition rbt-min :: (′a::linorder , unit) RBT-Impl.rbt ⇒ ′a
where rbt-min t = rbt-fold1-keys min t

THEORY “RBT-Set” 951

lemma key-le-right: rbt-sorted (Branch c lt k v rt) =⇒ (
∧

x. x ∈set (RBT-Impl.keys
rt) =⇒ k ≤ x)
〈proof 〉

lemma left-le-key: rbt-sorted (Branch c lt k v rt) =⇒ (
∧

x. x ∈set (RBT-Impl.keys
lt) =⇒ x ≤ k)
〈proof 〉

lemma fold-min-triv:
fixes k :: - :: linorder
shows (∀ x∈set xs. k ≤ x) =⇒ List.fold min xs k = k
〈proof 〉

lemma rbt-min-simps:
is-rbt (Branch c RBT-Impl.Empty k v rt) =⇒ rbt-min (Branch c RBT-Impl.Empty

k v rt) = k
〈proof 〉

fun rbt-min-opt where
rbt-min-opt (Branch c RBT-Impl.Empty k v rt) = k |
rbt-min-opt (Branch c (Branch lc llc lk lv lrt) k v rt) = rbt-min-opt (Branch lc

llc lk lv lrt)

lemma rbt-min-opt-Branch:
t1 6= rbt.Empty =⇒ rbt-min-opt (Branch c t1 k () t2) = rbt-min-opt t1
〈proof 〉

lemma rbt-min-opt-induct [case-names empty left-empty left-non-empty]:
fixes t :: (′a :: linorder , unit) RBT-Impl.rbt
assumes P rbt.Empty
assumes

∧
color t1 a b t2 . P t1 =⇒ P t2 =⇒ t1 = rbt.Empty =⇒ P (Branch

color t1 a b t2)
assumes

∧
color t1 a b t2 . P t1 =⇒ P t2 =⇒ t1 6= rbt.Empty =⇒ P (Branch

color t1 a b t2)
shows P t
〈proof 〉

lemma rbt-min-opt-in-set:
fixes t :: (′a :: linorder , unit) RBT-Impl.rbt
assumes t 6= rbt.Empty
shows rbt-min-opt t ∈ set (RBT-Impl.keys t)
〈proof 〉

lemma rbt-min-opt-is-min:
fixes t :: (′a :: linorder , unit) RBT-Impl.rbt
assumes rbt-sorted t
assumes t 6= rbt.Empty
shows

∧
y. y ∈ set (RBT-Impl.keys t) =⇒ y ≥ rbt-min-opt t

THEORY “RBT-Set” 952

〈proof 〉

lemma rbt-min-eq-rbt-min-opt:
assumes t 6= RBT-Impl.Empty
assumes is-rbt t
shows rbt-min t = rbt-min-opt t
〈proof 〉

maximum definition rbt-max :: (′a::linorder , unit) RBT-Impl.rbt ⇒ ′a
where rbt-max t = rbt-fold1-keys max t

lemma fold-max-triv:
fixes k :: - :: linorder
shows (∀ x∈set xs. x ≤ k) =⇒ List.fold max xs k = k
〈proof 〉

lemma fold-max-rev-eq:
fixes xs :: (′a :: linorder) list
assumes xs 6= []
shows List.fold max (tl xs) (hd xs) = List.fold max (tl (rev xs)) (hd (rev xs))
〈proof 〉

lemma rbt-max-simps:
assumes is-rbt (Branch c lt k v RBT-Impl.Empty)
shows rbt-max (Branch c lt k v RBT-Impl.Empty) = k
〈proof 〉

fun rbt-max-opt where
rbt-max-opt (Branch c lt k v RBT-Impl.Empty) = k |
rbt-max-opt (Branch c lt k v (Branch rc rlc rk rv rrt)) = rbt-max-opt (Branch rc

rlc rk rv rrt)

lemma rbt-max-opt-Branch:
t2 6= rbt.Empty =⇒ rbt-max-opt (Branch c t1 k () t2) = rbt-max-opt t2
〈proof 〉

lemma rbt-max-opt-induct [case-names empty right-empty right-non-empty]:
fixes t :: (′a :: linorder , unit) RBT-Impl.rbt
assumes P rbt.Empty
assumes

∧
color t1 a b t2 . P t1 =⇒ P t2 =⇒ t2 = rbt.Empty =⇒ P (Branch

color t1 a b t2)
assumes

∧
color t1 a b t2 . P t1 =⇒ P t2 =⇒ t2 6= rbt.Empty =⇒ P (Branch

color t1 a b t2)
shows P t
〈proof 〉

lemma rbt-max-opt-in-set:
fixes t :: (′a :: linorder , unit) RBT-Impl.rbt
assumes t 6= rbt.Empty

THEORY “RBT-Set” 953

shows rbt-max-opt t ∈ set (RBT-Impl.keys t)
〈proof 〉

lemma rbt-max-opt-is-max:
fixes t :: (′a :: linorder , unit) RBT-Impl.rbt
assumes rbt-sorted t
assumes t 6= rbt.Empty
shows

∧
y. y ∈ set (RBT-Impl.keys t) =⇒ y ≤ rbt-max-opt t

〈proof 〉

lemma rbt-max-eq-rbt-max-opt:
assumes t 6= RBT-Impl.Empty
assumes is-rbt t
shows rbt-max t = rbt-max-opt t
〈proof 〉

134.5.2 abstract
context includes rbt.lifting begin
lift-definition fold1-keys :: (′a ⇒ ′a ⇒ ′a) ⇒ (′a::linorder , ′b) rbt ⇒ ′a

is rbt-fold1-keys 〈proof 〉

lemma fold1-keys-def-alt:
fold1-keys f t = List.fold f (tl (RBT .keys t)) (hd (RBT .keys t))
〈proof 〉

lemma finite-fold1-fold1-keys:
assumes semilattice f
assumes ¬ RBT .is-empty t
shows semilattice-set.F f (Set t) = fold1-keys f t
〈proof 〉

minimum lift-definition r-min :: (′a :: linorder , unit) rbt ⇒ ′a is rbt-min
〈proof 〉

lift-definition r-min-opt :: (′a :: linorder , unit) rbt ⇒ ′a is rbt-min-opt 〈proof 〉

lemma r-min-alt-def : r-min t = fold1-keys min t
〈proof 〉

lemma r-min-eq-r-min-opt:
assumes ¬ (RBT .is-empty t)
shows r-min t = r-min-opt t
〈proof 〉

lemma fold-keys-min-top-eq:
fixes t :: (′a::{linorder ,bounded-lattice-top}, unit) rbt
assumes ¬ (RBT .is-empty t)
shows fold-keys min t top = fold1-keys min t

THEORY “RBT-Set” 954

〈proof 〉

maximum lift-definition r-max :: (′a :: linorder , unit) rbt ⇒ ′a is rbt-max
〈proof 〉

lift-definition r-max-opt :: (′a :: linorder , unit) rbt ⇒ ′a is rbt-max-opt 〈proof 〉

lemma r-max-alt-def : r-max t = fold1-keys max t
〈proof 〉

lemma r-max-eq-r-max-opt:
assumes ¬ (RBT .is-empty t)
shows r-max t = r-max-opt t
〈proof 〉

lemma fold-keys-max-bot-eq:
fixes t :: (′a::{linorder ,bounded-lattice-bot}, unit) rbt
assumes ¬ (RBT .is-empty t)
shows fold-keys max t bot = fold1-keys max t
〈proof 〉

end

135 Code equations
code-datatype Set Coset

declare list.set[code]

lemma empty-Set [code]:
Set.empty = Set RBT .empty
〈proof 〉

lemma UNIV-Coset [code]:
UNIV = Coset RBT .empty
〈proof 〉

lemma is-empty-Set [code]:
Set.is-empty (Set t) = RBT .is-empty t
〈proof 〉

lemma compl-code [code]:
− Set xs = Coset xs
− Coset xs = Set xs
〈proof 〉

lemma member-code [code]:
x ∈ (Set t) = (RBT .lookup t x = Some ())
x ∈ (Coset t) = (RBT .lookup t x = None)

THEORY “RBT-Set” 955

〈proof 〉

lemma insert-code [code]:
Set.insert x (Set t) = Set (RBT .insert x () t)
Set.insert x (Coset t) = Coset (RBT .delete x t)
〈proof 〉

lemma remove-code [code]:
Set.remove x (Set t) = Set (RBT .delete x t)
Set.remove x (Coset t) = Coset (RBT .insert x () t)
〈proof 〉

lemma inter-Set [code]:
A ∩ Set t = rbt-filter (λk. k ∈ A) t
〈proof 〉

lemma union-Set-Set [code]:
Set t1 ∪ Set t2 = Set (RBT .union t1 t2)
〈proof 〉

lemma union-Set [code]:
Set t ∪ A = fold-keys Set.insert t A
〈proof 〉

lemma minus-Set [code]:
A − Set t = fold-keys Set.remove t A
〈proof 〉

lemma inter-Coset-Coset [code]:
Coset t1 ∩ Coset t2 = Coset (RBT .union t1 t2)
〈proof 〉

lemma inter-Coset [code]:
A ∩ Coset t = fold-keys Set.remove t A
〈proof 〉

lemma union-Coset [code]:
Coset t ∪ A = − rbt-filter (λk. k /∈ A) t
〈proof 〉

lemma minus-Coset [code]:
A − Coset t = rbt-filter (λk. k ∈ A) t
〈proof 〉

lemma filter-Set [code]:
Set.filter P (Set t) = rbt-filter P t
〈proof 〉

lemma image-Set [code]:

THEORY “RBT-Set” 956

image f (Set t) = fold-keys (λk A. Set.insert (f k) A) t {}
〈proof 〉

lemma Ball-Set [code]:
Ball (Set t) P ←→ RBT .foldi (λs. s = True) (λk v s. s ∧ P k) t True
〈proof 〉

lemma Bex-Set [code]:
Bex (Set t) P ←→ RBT .foldi (λs. s = False) (λk v s. s ∨ P k) t False
〈proof 〉

lemma subset-code [code]:
Set t ≤ B ←→ (∀ x∈Set t. x ∈ B)
A ≤ Coset t ←→ (∀ y∈Set t. y /∈ A)
〈proof 〉

lemma subset-Coset-empty-Set-empty [code]:
Coset t1 ≤ Set t2 ←→ (case (RBT .impl-of t1 , RBT .impl-of t2) of
(rbt.Empty, rbt.Empty) ⇒ False |
(-, -) ⇒ Code.abort (STR ′′non-empty-trees ′′) (λ-. Coset t1 ≤ Set t2))

〈proof 〉

A frequent case – avoid intermediate sets
lemma [code-unfold]:

Set t1 ⊆ Set t2 ←→ RBT .foldi (λs. s = True) (λk v s. s ∧ k ∈ Set t2) t1 True
〈proof 〉

lemma card-Set [code]:
card (Set t) = fold-keys (λ- n. n + 1) t 0
〈proof 〉

lemma sum-Set [code]:
sum f (Set xs) = fold-keys (plus ◦ f) xs 0
〈proof 〉

lemma prod-Set [code]:
prod f (Set xs) = fold-keys (times ◦ f) xs 1
〈proof 〉

lemma the-elem-set [code]:
fixes t :: (′a :: linorder , unit) rbt
shows the-elem (Set t) = (case RBT .impl-of t of
(Branch RBT-Impl.B RBT-Impl.Empty x () RBT-Impl.Empty) ⇒ x
| - ⇒ Code.abort (STR ′′not-a-singleton-tree ′′) (λ-. the-elem (Set t)))

〈proof 〉

lemma Pow-Set [code]: Pow (Set t) = fold-keys (λx A. A ∪ Set.insert x ‘ A) t
{{}}
〈proof 〉

THEORY “RBT-Set” 957

lemma product-Set [code]:
Product-Type.product (Set t1) (Set t2) =

fold-keys (λx A. fold-keys (λy. Set.insert (x, y)) t2 A) t1 {}
〈proof 〉

lemma Id-on-Set [code]: Id-on (Set t) = fold-keys (λx. Set.insert (x, x)) t {}
〈proof 〉

lemma Image-Set [code]:
(Set t) ‘‘ S = fold-keys (λ(x,y) A. if x ∈ S then Set.insert y A else A) t {}
〈proof 〉

lemma trancl-set-ntrancl [code]:
trancl (Set t) = ntrancl (card (Set t) − 1) (Set t)
〈proof 〉

lemma relcomp-Set[code]:
(Set t1) O (Set t2) = fold-keys
(λ(x,y) A. fold-keys (λ(w,z) A ′. if y = w then Set.insert (x,z) A ′ else A ′) t2 A)

t1 {}
〈proof 〉

lemma wf-set: wf (Set t) = acyclic (Set t)
〈proof 〉

lemma wf-code-set[code]: wf-code (Set t) = acyclic (Set t)
〈proof 〉

lemma Min-fin-set-fold [code]:
Min (Set t) =
(if RBT .is-empty t
then Code.abort (STR ′′not-non-empty-tree ′′) (λ-. Min (Set t))
else r-min-opt t)

〈proof 〉

lemma Inf-fin-set-fold [code]:
Inf-fin (Set t) = Min (Set t)
〈proof 〉

lemma Inf-Set-fold:
fixes t :: (′a :: {linorder , complete-lattice}, unit) rbt
shows Inf (Set t) = (if RBT .is-empty t then top else r-min-opt t)
〈proof 〉

lemma Max-fin-set-fold [code]:
Max (Set t) =
(if RBT .is-empty t
then Code.abort (STR ′′not-non-empty-tree ′′) (λ-. Max (Set t))

THEORY “RBT-Set” 958

else r-max-opt t)
〈proof 〉

lemma Sup-fin-set-fold [code]:
Sup-fin (Set t) = Max (Set t)
〈proof 〉

lemma Sup-Set-fold:
fixes t :: (′a :: {linorder , complete-lattice}, unit) rbt
shows Sup (Set t) = (if RBT .is-empty t then bot else r-max-opt t)
〈proof 〉

context
begin

qualified definition Inf ′ :: ′a :: {linorder , complete-lattice} set ⇒ ′a
where [code-abbrev]: Inf ′ = Inf

lemma Inf ′-Set-fold [code]:
Inf ′ (Set t) = (if RBT .is-empty t then top else r-min-opt t)
〈proof 〉 definition Sup ′ :: ′a :: {linorder , complete-lattice} set ⇒ ′a
where [code-abbrev]: Sup ′ = Sup

lemma Sup ′-Set-fold [code]:
Sup ′ (Set t) = (if RBT .is-empty t then bot else r-max-opt t)
〈proof 〉

end

lemma [code]:
Gcdf in (Set t) = fold-keys gcd t (0 :: ′a::{semiring-gcd, linorder})
〈proof 〉

lemma [code]:
Gcd (Set t) = (Gcdf in (Set t) :: nat)
〈proof 〉

lemma [code]:
Gcd (Set t) = (Gcdf in (Set t) :: int)
〈proof 〉

lemma [code]:
Lcmf in (Set t) = fold-keys lcm t (1 :: ′a::{semiring-gcd, linorder})
〈proof 〉

lemma [code]:
Lcm (Set t) = (Lcmf in (Set t) :: nat)
〈proof 〉

THEORY “Time-Manual” 959

lemma [code]:
Lcm (Set t) = (Lcmf in (Set t) :: int)
〈proof 〉

lemma sorted-list-set [code]: sorted-list-of-set (Set t) = RBT .keys t
〈proof 〉

lemma Least-code [code]:
‹Lattices-Big.Least (Set t) = (if RBT .is-empty t then Lattices-Big.Least-abort {}

else Min (Set t))›
〈proof 〉

lemma Greatest-code [code]:
‹Lattices-Big.Greatest (Set t) = (if RBT .is-empty t then Lattices-Big.Greatest-abort
{} else Max (Set t))›
〈proof 〉

lemma [code]:
‹Option.these A = the ‘ Set.filter (Not ◦ Option.is-none) A›
〈proof 〉

lemma [code]:
‹Option.image-filter f A = Option.these (image f A)›
〈proof 〉

lemma [code]:
‹Set.can-select P A = is-singleton (Set.filter P A)›
〈proof 〉

declare [[code drop:
‹Inf :: - ⇒ ′a set›
‹Sup :: - ⇒ ′a set›
‹Inf :: - ⇒ ′a Predicate.pred›
‹Sup :: - ⇒ ′a Predicate.pred›
pred-of-set
Wellfounded.acc

]]

hide-const (open) RBT-Set.Set RBT-Set.Coset

end

theory Time-Manual
imports HOL−Library.Time-Commands
begin

THEORY “Time-Manual” 960

136 Introduction
This manual describes the framework for the automatic definition of step-
counting ‘running-time’ functions from HOL functions. The principles of the
translation are described in Section 1.5, Running Time, of the book Func-
tional Data Structures and Algorithms. A Proof Assistant Approach. https:
//fdsa-book.net To load the framework import HOL−Library.Time-Commands
The framework was implemented by Jonas Stahl.

As a first simple example consider len, which we define here returning
an int (to distinguish it from the time functions returning nat):
fun len :: ′a list ⇒ int where
len [] = 0 |
len (x#xs) = 1 + len xs

time-fun len

Command time-fun defines a new function T-len of type ′a list ⇒ nat,
the time function for len that counts the number of computation steps. The
definition is printed by time-fun: fun T-len :: ′a list ⇒ nat where T-len []
= 1 | T-len (x # xs) = T-len xs + 1 The details of this translation are
described in the book referenced above. This manual is about the use of the
time framework.

Command time-fun f retrieves the definition of f and defines a corre-
sponding step-counting running-time function T-f. For all auxiliary func-
tions used by f (excluding constructors and predefined functions (see be-
low)), running time functions must already have been defined. Example:
fun aux :: ′a ⇒ ′a where
aux x = x

time-fun aux

fun main :: bool ⇒ bool where
main x = aux x

time-fun main

For functions defined by definition, there is a corresponding time-definition
command. Example:
definition gdef :: ′a ⇒ ′a where gdef x = x

time-definition gdef

thm T-gdef .simps

Note that T-gdef is defined via fun, which means that the defining equa-
tion is not named T-gdef-def but T-gdef .simps and is a simp-rule.

https://fdsa-book.net
https://fdsa-book.net

THEORY “Time-Manual” 961

The time functions for many standard functions (in particular on lists)
are already defined in theory HOL−Library.Time-Functions and basic upper
bounds are proved.

137 Termination
If the definition of a recursive function requires a manual termination proof,
use time-function accompanied by a termination command.
function sum-to :: int ⇒ int ⇒ int where

sum-to i j = (if j ≤ i then 0 else i + sum-to (i+1) j)
〈proof 〉
termination
〈proof 〉

time-function sum-to
termination
〈proof 〉

138 Partial Functions
Partial functions can also be ‘timed’.
partial-function (tailrec) positive :: int ⇒ bool where
positive i = (if i = 1 then True else positive (i−1))

time-partial-function positive

The difference is that T-positive has return type nat option because
positive may not terminate.

Timing a function defined with partial-function (option) is trickier and
we do not go into it here.

139 Higher-Order Functions
A large subclass of higher-order functions are supported, covering map, filter
and other standard functions. For example,
time-fun map

defines a time function T-map :: (′a ⇒ nat) ⇒ ′a list ⇒ nat. The first
argument (called T-f below) is the time function for the first argument f
of map. We ignore the definition of T-map because the output of time-fun
map suggests that you should add these lemmas
lemma T-map-simps [simp,code]:

T-map T-f [] = 1
T-map T-f (x # xs) = T-f x + T-map T-f xs + 1

THEORY “Time-Manual” 962

〈proof 〉

which are what you would expect as defining equations. You can click
on the suggestion to have it copied into your theory. Afterwards, you can
work with T-map as if it were defined via those equations.

In general, things are a bit more complicated, which is why T-map is
defined the way it is. Consider
fun foldl :: (′b ⇒ ′a ⇒ ′b) ⇒ ′b ⇒ ′a list ⇒ ′b where
foldl f a [] = a |
foldl f a (x # xs) = foldl f (f a x) xs

time-fun foldl

This definition is generated:
fun T-foldl :: (′b ⇒ ′a ⇒ ′b) × (′b ⇒ ′a ⇒ nat) ⇒ ′b ⇒ ′a list ⇒ nat

where T-foldl (f ,T-f) a [] = 1 | T-foldl (f ,T-f) a (x # xs) = T-f a x +
T-foldl f (f a x) xs + 1

The meaning of the pair (f , T-f) is obvious. The difference to T-map
is that T-foldl needs not just T-f (like T-map) but also f. Function T-map
does not need f : in the recursion equation map f (x # xs) = f x # map
f xs the result of subterm f x is irrelevant for the computation of T-map
because the running time of (#) is constant. This is in contrast to foldl,
whose running time may depend on its second argument.

All higher-order functions are translated like foldl, but if the first element
in (f ,T-f) is unused, a simplified definition is derived. This is the case for
T-map.

In case you wonder how it is ensured that T-foldl is always passed a
corresponding pair of a function and its timing function: this is the respon-
sibility of the time framework when translating functions that use foldl.
Example:
definition inc :: int ⇒ ′a ⇒ int where inc i x = i+1
definition len2 xs = foldl inc 0 xs
time-definition inc
time-definition len2

In the defining equation T-len2 xs = T-foldl (inc, T-inc) 0 xs we find
the correct pair (inc, T-inc).

139.1 Limitations
Partial application and lambda-abstraction are currently not supported.
They need to be replaced by additional function definitions, if possible. For
example,
definition fHO :: bool list ⇒ bool list where ‹fHO = map (λx. x ∧ x)›

is not acceptable (i.e. time-definition fHO fails), but can be replaced
with

THEORY “Time-Manual” 963

definition double :: int ⇒ int where ‹double i = 2 ∗ i›
definition fHO ′ :: int list ⇒ int list where ‹fHO ′ xs = map double xs›

time-definition double
time-definition fHO ′

That is why in the definition of len2 above we could not just write foldl
(λi x. i+1) 0 xs.

140 Predefined Functions
The time framework requires executable functions. However, many basic
types and functions are not defined via datatype and fun but in an abstract
mathematical fashion and are not executable, i.e. the time framework does
not apply (or gives the ‘wrong’ result).

In order to model actual hardware that executes these predefined func-
tions in constant time, there is a command for axiomatically declaring that
some function takes 0 time. (This is how we model constant time, to simplify
the resulting time expressions. This does not change the asymptotic running
time of user-defined functions using the predefined functions because 1 is
added for every user-defined function call.) Theory HOL−Library.Time-Commands
declares a number of predefined functions as 0-time functions. This includes
(+), −, (∗), /, div, min, max, <, ≤, ¬, ∧, ∨ and = and can be extended
with the command time-fun-0. This feature has to be used with care:

• Many of these functions are polymorphic and reside in type classes.
The constant-time assumption is justified only for those types where
the hardware offers suitable support, e.g. numeric types. The argu-
ment size is implicitly bounded, too.

• The constant-time assumption for (=) is justified for recursive data
types such as lists and trees as long as the comparison is of the form
t = c where c is a constant term, for example xs = [].
Users of the time framework need to ensure that 0-time functions are
used only within these bounds.

141 Locales
If we want to apply the time framework to a function g defined within a
locale, we need to add additional locale parameters T-f :: τ ⇒ nat for every
locale parameter f :: τ ⇒ τ ′ used in the definition of g.

In the following example we do not only parameterize the locale with
T-f but also assume a property of T-f. As a result we can prove a property
of T-g inside the locale:

THEORY “Time-Manual” 964

lemma T-map-sum: T-map T-f xs = sum-list (map T-f xs) + length xs + 1
〈proof 〉

locale LT =
fixes f :: ′a ⇒ ′a
and T-f :: ′a ⇒ nat
assumes T-f : T-f x ≤ 1
begin

definition g where g xs = map f xs

time-definition g

lemma sum-list-map-T-f-ub: sum-list (map T-f xs) ≤ length xs
〈proof 〉

lemma T-g-ub: T-g xs ≤ 2 ∗ length xs + 1
〈proof 〉

end

Of course now you need to prove T-f x ≤ 1 for every interpretation of
the locale. A more flexible approach is not to constrain T-f inside the locale.
It may then be difficult to derive a generic time bound for T-g inside the
locale (in the above example it would not be difficult). If that is the case,
one may also derive a bound for T-g conditional on some specific bound
for T-f. Or one can derive the bound for T-g after a specific interpretation
with a specific T-f. For a larger realistic example of the latter approach see
theory HOL−Data-Structures.Time-Locale-Example.

142 Fine Points
Time functions for mutually recursive functions f , g, . . . : time-fun f g

If you want to generate time functions not from the defining equations
of a function but from lemmas proved as equations, you can provide those
lemmas explicitly. Example:
fun f0 :: nat ⇒ nat where
f0 0 = 0 |
f0 (Suc n) = f0 n

lemma f0-eq: f0 n = 0
〈proof 〉

time-fun f0 equations f0-eq

The T- prefix can be changed by modifying the time-prefix attribute.
Example:

THEORY “LaTeXsugar” 965

declare [[time-prefix = t-]]

The time framework is not verified (which is why the framework always
prints out what it defines). There is no underlying formal model. This
remains future work.
end

〈ML〉

theory Suc-Notation
imports Main
begin

Nested Suc terms of depth 2 ≤ n ≤ 9 are abbreviated with new notations
Sucn:
abbreviation (input) Suc2 where Suc2 n ≡ Suc (Suc n)
abbreviation (input) Suc3 where Suc3 n ≡ Suc (Suc2 n)
abbreviation (input) Suc4 where Suc4 n ≡ Suc (Suc3 n)
abbreviation (input) Suc5 where Suc5 n ≡ Suc (Suc4 n)
abbreviation (input) Suc6 where Suc6 n ≡ Suc (Suc5 n)
abbreviation (input) Suc7 where Suc7 n ≡ Suc (Suc6 n)
abbreviation (input) Suc8 where Suc8 n ≡ Suc (Suc7 n)
abbreviation (input) Suc9 where Suc9 n ≡ Suc (Suc8 n)

notation Suc2 (Suc2)
notation Suc3 (Suc3)
notation Suc4 (Suc4)
notation Suc5 (Suc5)
notation Suc6 (Suc6)
notation Suc7 (Suc7)
notation Suc8 (Suc8)
notation Suc9 (Suc9)

Beyond 9, the syntax Sucn kicks in:
syntax

-Suc-tower :: num-token ⇒ nat ⇒ nat (Suc-)

〈ML〉

end

theory Predicate-Compile-Alternative-Defs
imports Main

begin

THEORY “Predicate-Compile-Alternative-Defs” 966

143 Common constants
declare HOL.if-bool-eq-disj[code-pred-inline]

declare bool-diff-def [code-pred-inline]
declare inf-bool-def [abs-def , code-pred-inline]
declare less-bool-def [abs-def , code-pred-inline]
declare le-bool-def [abs-def , code-pred-inline]

lemma min-bool-eq [code-pred-inline]: (min :: bool => bool => bool) == (∧)
〈proof 〉

lemma [code-pred-inline]:
((A::bool) 6= (B::bool)) = ((A ∧ ¬ B) ∨ (B ∧ ¬ A))
〈proof 〉

〈ML〉

144 Pairs
〈ML〉

145 Filters
〈ML〉

146 Bounded quantifiers
declare Ball-def [code-pred-inline]
declare Bex-def [code-pred-inline]

147 Operations on Predicates
lemma Diff [code-pred-inline]:
(A − B) = (%x. A x ∧ ¬ B x)
〈proof 〉

lemma subset-eq[code-pred-inline]:
(P :: ′a ⇒ bool) < (Q :: ′a ⇒ bool) ≡ ((∃ x. Q x ∧ (¬ P x)) ∧ (∀ x. P x −→ Q

x))
〈proof 〉

lemma set-equality[code-pred-inline]:
A = B ←→ (∀ x. A x −→ B x) ∧ (∀ x. B x −→ A x)
〈proof 〉

THEORY “Predicate-Compile-Alternative-Defs” 967

148 Setup for Numerals
〈ML〉

149 Arithmetic operations
149.1 Arithmetic on naturals and integers
definition plus-eq-nat :: nat => nat => nat => bool
where

plus-eq-nat x y z = (x + y = z)

definition minus-eq-nat :: nat => nat => nat => bool
where

minus-eq-nat x y z = (x − y = z)

definition plus-eq-int :: int => int => int => bool
where

plus-eq-int x y z = (x + y = z)

definition minus-eq-int :: int => int => int => bool
where

minus-eq-int x y z = (x − y = z)

definition subtract
where
[code-unfold]: subtract x y = y − x

〈ML〉

149.2 Inductive definitions for ordering on naturals
inductive less-nat
where

less-nat 0 (Suc y)
| less-nat x y ==> less-nat (Suc x) (Suc y)

lemma less-nat[code-pred-inline]:
x < y = less-nat x y
〈proof 〉

inductive less-eq-nat
where

less-eq-nat 0 y
| less-eq-nat x y ==> less-eq-nat (Suc x) (Suc y)

lemma [code-pred-inline]:
x <= y = less-eq-nat x y
〈proof 〉

THEORY “Predicate-Compile-Alternative-Defs” 968

150 Alternative list definitions
150.1 Alternative rules for length
definition size-list ′ :: ′a list => nat
where size-list ′ = size

lemma size-list ′-simps:
size-list ′ [] = 0
size-list ′ (x # xs) = Suc (size-list ′ xs)
〈proof 〉

declare size-list ′-simps[code-pred-def]
declare size-list ′-def [symmetric, code-pred-inline]

150.2 Alternative rules for list-all2
lemma list-all2-NilI [code-pred-intro]: list-all2 P [] []
〈proof 〉

lemma list-all2-ConsI [code-pred-intro]: list-all2 P xs ys ==> P x y ==> list-all2
P (x#xs) (y#ys)
〈proof 〉

code-pred [skip-proof] list-all2
〈proof 〉

150.3 Alternative rules for membership in lists
lemma in-set-member [code-pred-inline]:

x ∈ set xs ←→ List.member xs x
〈proof 〉

lemma member-intros [code-pred-intro]:
List.member (x#xs) x
List.member xs x =⇒ List.member (y#xs) x
〈proof 〉

code-pred List.member
〈proof 〉

code-identifier constant member-i-i
⇀ (SML) List.member-i-i

and (OCaml) List.member-i-i
and (Haskell) List.member-i-i
and (Scala) List.member-i-i

code-identifier constant member-i-o
⇀ (SML) List.member-i-o

and (OCaml) List.member-i-o

THEORY “Predicate-Compile-Quickcheck” 969

and (Haskell) List.member-i-o
and (Scala) List.member-i-o

151 Setup for String.literal
〈ML〉

152 Simplification rules for optimisation
lemma [code-pred-simp]: ¬ False == True
〈proof 〉

lemma [code-pred-simp]: ¬ True == False
〈proof 〉

lemma less-nat-k-0 [code-pred-simp]: less-nat k 0 == False
〈proof 〉

end

153 A Prototype of Quickcheck based on the Pred-
icate Compiler

theory Predicate-Compile-Quickcheck
imports Predicate-Compile-Alternative-Defs

begin

〈ML〉

end

154 TFL: recursive function definitions
theory Old-Recdef
imports Main
keywords

recdef :: thy-defn and
permissive congs hints

begin

154.1 Lemmas for TFL
lemma tfl-wf-induct: ∀R. wf R −→

(∀P. (∀ x. (∀ y. (y,x)∈R −→ P y) −→ P x) −→ (∀ x. P x))
〈proof 〉

lemma tfl-cut-def : cut f r x ≡ (λy. if (y,x) ∈ r then f y else undefined)

THEORY “Old-Recdef” 970

〈proof 〉

lemma tfl-cut-apply: ∀ f R. (x,a)∈R −→ (cut f R a)(x) = f (x)
〈proof 〉

lemma tfl-wfrec:
∀M R f . (f=wfrec R M) −→ wf R −→ (∀ x. f x = M (cut f R x) x)

〈proof 〉

lemma tfl-eq-True: (x = True) −→ x
〈proof 〉

lemma tfl-rev-eq-mp: (x = y) −→ y −→ x
〈proof 〉

lemma tfl-simp-thm: (x −→ y) −→ (x = x ′) −→ (x ′ −→ y)
〈proof 〉

lemma tfl-P-imp-P-iff-True: P =⇒ P = True
〈proof 〉

lemma tfl-imp-trans: (A −→ B) =⇒ (B −→ C) =⇒ (A −→ C)
〈proof 〉

lemma tfl-disj-assoc: (a ∨ b) ∨ c ≡ a ∨ (b ∨ c)
〈proof 〉

lemma tfl-disjE : P ∨ Q =⇒ P −→ R =⇒ Q −→ R =⇒ R
〈proof 〉

lemma tfl-exE : ∃ x. P x =⇒ ∀ x. P x −→ Q =⇒ Q
〈proof 〉

〈ML〉

154.2 Rule setup
lemmas [recdef-simp] =

inv-image-def
measure-def
lex-prod-def
same-fst-def
less-Suc-eq [THEN iffD2]

lemmas [recdef-cong] =
if-cong let-cong image-cong INF-cong SUP-cong bex-cong ball-cong imp-cong
map-cong filter-cong takeWhile-cong dropWhile-cong foldl-cong foldr-cong

lemmas [recdef-wf] =

THEORY “Realizers” 971

wf-trancl
wf-less-than
wf-lex-prod
wf-inv-image
wf-measure
wf-measures
wf-pred-nat
wf-same-fst
wf-on-bot

end

155 Program extraction from proofs involving datatypes
and inductive predicates

theory Realizers
imports Main
begin

〈ML〉

end

156 Refute
theory Refute
imports Main
keywords

refute :: diag and
refute-params :: thy-decl

begin

〈ML〉

refute-params
[itself = 1 ,
minsize = 1 ,
maxsize = 8 ,
maxvars = 10000 ,
maxtime = 60 ,
satsolver = auto,
no-assms = false]

(* --- *)
(* REFUTE *)
(* *)
(* We use a SAT solver to search for a (finite) model that refutes a given *)

THEORY “Refute” 972

(* HOL formula. *)
(* --- *)

(* --- *)
(* NOTE *)
(* *)
(* I strongly recommend that you install a stand-alone SAT solver if you *)
(* want to use ’refute’. For details see ’HOL/Tools/sat_solver.ML’. If you *)
(* have installed (a supported version of) zChaff, simply set ’ZCHAFF_HOME’ *)
(* in ’etc/settings’. *)
(* --- *)

(* --- *)
(* USAGE *)
(* *)
(* See the file ’HOL/ex/Refute_Examples.thy’ for examples. The supported *)
(* parameters are explained below. *)
(* --- *)

(* --- *)
(* CURRENT LIMITATIONS *)
(* *)
(* ’refute’ currently accepts formulas of higher-order predicate logic (with *)
(* equality), including free/bound/schematic variables, lambda abstractions, *)
(* sets and set membership, "arbitrary", "The", "Eps", records and *)
(* inductively defined sets. Constants are unfolded automatically, and sort *)
(* axioms are added as well. Other, user-asserted axioms however are *)
(* ignored. Inductive datatypes and recursive functions are supported, but *)
(* may lead to spurious countermodels. *)
(* *)
(* The (space) complexity of the algorithm is non-elementary. *)
(* *)
(* Schematic type variables are not supported. *)
(* --- *)

(* --- *)
(* PARAMETERS *)
(* *)
(* The following global parameters are currently supported (and required, *)
(* except for "expect"): *)
(* *)
(* Name Type Description *)
(* *)
(* "minsize" int Only search for models with size at least *)
(* ’minsize’. *)
(* "maxsize" int If >0, only search for models with size at most *)
(* ’maxsize’. *)
(* "maxvars" int If >0, use at most ’maxvars’ boolean variables *)
(* when transforming the term into a propositional *)

REFERENCES 973

(* formula. *)
(* "maxtime" int If >0, terminate after at most ’maxtime’ seconds. *)
(* This value is ignored under some ML compilers. *)
(* "satsolver" string Name of the SAT solver to be used. *)
(* "no_assms" bool If "true", assumptions in structured proofs are *)
(* not considered. *)
(* "expect" string Expected result ("genuine", "potential", "none", or *)
(* "unknown"). *)
(* *)
(* The size of particular types can be specified in the form type=size *)
(* (where ’type’ is a string, and ’size’ is an int). Examples: *)
(* "’a"=1 *)
(* "List.list"=2 *)
(* --- *)

(* --- *)
(* FILES *)
(* *)
(* HOL/Tools/prop_logic.ML Propositional logic *)
(* HOL/Tools/sat_solver.ML SAT solvers *)
(* HOL/Tools/refute.ML Translation HOL -> propositional logic and *)
(* Boolean assignment -> HOL model *)
(* HOL/Refute.thy This file: loads the ML files, basic setup, *)
(* documentation *)
(* HOL/SAT.thy Sets default parameters *)
(* HOL/ex/Refute_Examples.thy Examples *)
(* --- *)

end

References
[1] F. Haftmann and T. Nipkow. Code generation via higher-order rewrite

systems. In M. Blume, N. Kobayashi, and G. Vidal, editors, Functional
and Logic Programming: 10th International Symposium: FLOPS 2010,
volume 6009, 2010.

[2] D. Leijen. Division and modulus for computer scientists. 2001.

[3] A. Lochbihler and P. Stoop. Lazy algebraic types in Isabelle/HOL. In
Isabelle Workshop 2018, 2018.

[4] A. Podelski and A. Rybalchenko. Transition invariants. In 19th Annual
IEEE Symposium on Logic in Computer Science (LICS’04), pages 32–41,
2004.

	Implementation of Association Lists
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 update and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 updates
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 delete
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 update-with-aux and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 delete-aux
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 restrict
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 clearjunk
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 map-ran
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 merge
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 compose
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 map-entry
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 map-default

	Axiomatic Declaration of Bounded Natural Functors
	Generalized Corecursor Sugar (corec and friends)
	Coinduction

	A general ``while'' combinator
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 while-option
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 while
	Termination, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 lfp and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 gfp
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 while-Some and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 while-saturate
	Reflexive, transitive closure

	The Bourbaki-Witt tower construction for transfinite iteration
	Connect with the while combinator for executability on chain-finite lattices.

	Division with modulus centered towards zero.
	Order on characters
	A generic phantom type
	Cardinality of types
	Preliminary lemmas
	Cardinalities of types
	Classes with at least 1 and 2
	A type class for deciding finiteness of types
	A type class for computing the cardinality of types
	Instantiations for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 card-UNIV

	Code setup for sets with cardinality type information
	Eliminating pattern matches
	Lazy types in generated code
	The type 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 lazy
	Implementation

	Test infrastructure for the code generator
	YXML encoding for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 term
	Test engine and drivers

	A combinator to build partial equivalence relations from a predicate and an equivalence relation
	Formalisation of chain-complete partial orders, continuity and admissibility
	Continuity
	Theorem collection 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 cont-intro

	Admissibility
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (=) as order
	ccpo for products
	Complete lattices as ccpo
	Parallel fixpoint induction

	Confluence
	Old Datatype package: constructing datatypes from Cartesian Products and Disjoint Sums
	The datatype universe
	Freeness: Distinctness of Constructors
	Set Constructions

	Bijections between natural numbers and other types
	Type 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 nat nat
	Type 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 nat + nat
	Type 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 int
	Type 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 nat list
	Finite sets of naturals
	Preliminaries
	From sets to naturals
	From naturals to sets
	Proof of isomorphism

	Encoding (almost) everything into natural numbers
	The class of countable types
	Conversion functions
	Finite types are countable
	Automatically proving countability of old-style datatypes
	Automatically proving countability of datatypes
	More Countable types
	The rationals are countably infinite

	Infinite Sets and Related Concepts
	The set of natural numbers is infinite
	The set of integers is also infinite
	Infinitely Many and Almost All
	Enumeration of an Infinite Set
	Properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 wellorder-class.enumerate on finite sets

	Countable sets
	Predicate for countable sets
	Enumerate a countable set
	Closure properties of countability
	Misc lemmas
	Uncountable

	Countable Complete Lattices
	Instances of countable complete lattices

	Type of (at Most) Countable Sets
	Cardinal stuff
	The type of countable sets
	Additional lemmas
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 cempty
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 cinsert
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 cimage
	bounded quantification
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 cUnion

	Setup for Lifting/Transfer
	Relator and predicator properties
	Transfer rules for the Transfer package

	Registration as BNF

	Debugging facilities for code generated towards Isabelle/ML
	Sequence of Properties on Subsequences
	Common discrete functions
	Discrete logarithm
	Discrete square root

	Pi and Function Sets
	Basic Properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Pi
	Composition With a Restricted Domain: 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 compose
	Bounded Abstraction: 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 restrict
	Bijections Between Sets
	Extensionality
	Cardinality
	Extensional Function Spaces
	Injective Extensional Function Spaces
	Misc properties of functions, composition and restriction from HOL Light
	Cardinality

	The pigeonhole principle
	Products of sums

	Partitions and Disjoint Sets
	Set of Disjoint Sets
	Family of Disjoint Sets

	Construct Disjoint Sequences
	Partitions
	Constructions of partitions
	Finiteness of partitions
	Equivalence of partitions and equivalence classes
	Refinement of partitions
	The coarsest common refinement of a set of partitions

	Type of finite sets defined as a subtype of sets
	Definition of the type
	Basic operations and type class instantiations
	Other operations
	Transferred lemmas from Set.thy
	Additional lemmas
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ffUnion
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 fbind
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 fsingleton
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 femepty
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 fset
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ffilter
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 fset-of-list
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 finsert
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 fimage
	bounded quantification
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 fcard
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 sorted-list-of-fset
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ffold
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ()
	Group operations
	Semilattice operations

	Choice in fsets
	Induction and Cases rules for fsets
	Lemmas depending on induction
	Setup for Lifting/Transfer
	Relator and predicator properties
	Transfer rules for the Transfer package

	BNF setup
	Size setup
	Advanced relator customization
	Countability

	Quickcheck setup
	Code Generation Setup

	Type of finite maps defined as a subtype of maps
	Auxiliary constants and lemmas over 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 map
	Abstract characterisation
	Operations
	BNF setup
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 size setup
	Additional operations
	Additional properties
	Lifting/transfer setup
	View as datatype
	Code setup
	Instances
	Tests

	Disjoint FSets
	Lists with elements distinct as canonical example for datatype invariants
	The type of distinct lists
	Executable version obeying invariant
	Induction principle and case distinction
	Functorial structure
	Quickcheck generators
	BNF instance

	Type of dual ordered lattices
	Pointwise ordering
	Binary infimum and supremum
	Top and bottom elements
	Complement
	Complete lattice operations

	Equipollence and Other Relations Connected with Cardinality
	Eqpoll
	The strict relation
	Mapping by an injection
	Inserting elements into sets
	Binary sums and unions
	Binary Cartesian products
	General Unions
	General Cartesian products (Pi)
	Misc other resultd

	Continuity and iterations
	Continuity for complete lattices
	Least fixed points in countable complete lattices

	Extended natural numbers (i.e. with infinity)
	Type definition
	Constructors and numbers
	Addition
	Multiplication
	Numerals
	Subtraction
	Ordering
	Cancellation simprocs
	Well-ordering
	Complete Lattice
	Traditional theorem names

	Liminf and Limsup on conditionally complete lattices
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Liminf and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Limsup
	More Limits

	Extended real number line
	Definition and basic properties
	Addition
	Linear order on 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ereal
	Multiplication
	Power
	Subtraction
	Division

	Complete lattice
	Extended real intervals
	Topological space
	Relation to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 enat
	Limits on 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ereal
	Convergent sequences
	Sums
	Continuity
	liminf and limsup
	Tests for code generator

	Indicator Function
	The type of non-negative extended real numbers
	Defining the extended non-negative reals
	Cancellation simprocs
	Order with top
	Arithmetic
	Coercion from 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 real to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ennreal
	Coercion from 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ennreal to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 real
	Coercion from 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 enat to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ennreal
	Topology on 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ennreal
	Approximation lemmas
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ennreal theorems

	Logarithm of Natural Numbers
	Preliminaries
	Floorlog
	
	Bitlen

	Various algebraic structures combined with a lattice
	Positive Part, Negative Part, Absolute Value

	Floating-Point Numbers
	Real operations preserving the representation as floating point number
	Arithmetic operations on floating point numbers
	Quickcheck
	Represent floats as unique mantissa and exponent
	Compute arithmetic operations
	Lemmas for types 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 real, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 nat, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 int
	Rounding Real Numbers
	Rounding Floats
	Truncating Real Numbers
	Truncating Floats
	Approximation of positive rationals
	Division
	Approximate Addition
	Approximate Multiplication
	Approximate Power
	Lemmas needed by Approximate

	Pointwise instantiation of functions to algebra type classes
	Pointwise instantiation of functions to division
	Syntactic with division

	Lexicographic order on functions
	The 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 going-to filter
	Big sum and product over function bodies
	Abstract product
	Concrete sum
	Concrete product

	Infinite Type Class
	Algebraic operations on sets
	Interval Type
	Membership
	Quickcheck

	Approximate Operations on Intervals of Floating Point Numbers
	Intervals with Floating Point Bounds
	intros for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 real-interval
	bounds for lists
	constants for code generation

	Immutable Arrays with Code Generation
	Fundamental operations
	Generic code equations
	Auxiliary operations for code generation
	Code Generation for SML
	Code Generation for Haskell

	Definition of Landau symbols
	Definition of Landau symbols
	Landau symbols and limits
	Flatness of real functions
	Asymptotic Equivalence

	Values extended by a bottom element
	Values extended by a top element
	Values extended by a top and a bottom element

	Infinite Streams
	prepend list to stream
	set of streams with elements in some fixed set
	nth, take, drop for streams
	unary predicates lifted to streams
	recurring stream out of a list
	iterated application of a function
	stream repeating a single element
	stream of natural numbers
	flatten a stream of lists
	merge a stream of streams
	product of two streams
	interleave two streams
	zip
	zip via function

	List prefixes, suffixes, and homeomorphic embedding
	Prefix order on lists
	Basic properties of prefixes
	Prefixes
	Longest Common Prefix
	Parallel lists
	Suffix order on lists
	Suffixes
	Homeomorphic embedding on lists
	Subsequences (special case of homeomorphic embedding)
	Appending elements
	Relation to standard list operations
	Contiguous sublists
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 sublist
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 sublists

	Parametricity

	Linear Temporal Logic on Streams
	Preliminaries
	Linear temporal logic
	Weak vs. strong until (contributed by Michael Foster, University of Sheffield)
	Lists as vectors
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 + and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -
	Inner product

	Definitions of Least Upper Bounds and Greatest Lower Bounds
	Rules for the Relations 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 *<= and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 <=*
	Rules about the Operators 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 leastP, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ub and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 lub
	Rules about the Operators 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 greatestP, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 isLb and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 isGlb

	An abstract view on maps for code generation.
	Parametricity transfer rules
	Type definition and primitive operations
	Functorial structure
	Derived operations
	Properties
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 entries, 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ordered-entries, and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 fold

	Code generator setup

	Monad notation for arbitrary types
	Less common functions on lists
	(Finite) Multisets
	The type of multisets
	Representing multisets
	Basic operations
	Conversion to set and membership
	Union
	Difference
	Min and Max
	Equality of multisets
	Pointwise ordering induced by count
	Intersection and bounded union
	Additional intersection facts
	Additional bounded union facts

	Replicate and repeat operations
	Simprocs
	Conditionally complete lattice
	Filter (with comprehension syntax)
	Size

	Induction and case splits
	Strong induction and subset induction for multisets

	Least and greatest elements
	The fold combinator
	Image
	Further conversions
	More properties of the replicate, repeat, and image operations
	Big operators
	Multiset as order-ignorant lists
	The multiset order
	Well-foundedness
	Closure-free presentation
	Monotonicity
	The multiset extension is cancellative for multiset union
	Strict partial-order properties
	Strict total-order properties

	Quasi-executable version of the multiset extension
	Monotonicity of multiset union
	Termination proofs with multiset orders

	Legacy theorem bindings
	Naive implementation using lists
	BNF setup
	Size setup
	Lemmas about Size
	The set of multisets of a given size

	More Theorems about the Multiset Order
	Alternative Characterizations
	The Dershowitz–Manna Ordering
	The Huet–Oppen Ordering
	Monotonicity
	Properties of Orders
	Simplifications

	Simprocs
	Additional facts and instantiations

	Fixed Length Lists
	Non-negative, non-positive integers and reals
	Non-positive integers
	Non-negative reals
	Non-positive reals

	Numeral Syntax for Types
	Numeral Types
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 num1
	Locales for for modular arithmetic subtypes
	Ring class instances
	Order instances
	Code setup and type classes for code generation
	Syntax
	Examples

	-words
	Type declaration and elementary operations
	Subsequence, Prefix, and Suffix
	Prepending
	The limit set of an -word
	Index sequences and piecewise definitions

	Combinator syntax for generic, open state monads (single-threaded monads)
	Motivation
	State transformations and combinators
	Monad laws
	Do-syntax

	Canonical order on option type
	Futures and parallel lists for code generated towards Isabelle/ML
	Futures
	Parallel lists

	Input syntax for pattern aliases (or ``as-patterns'' in Haskell)
	Definition
	Usage

	Periodic Functions
	Polynomial mapping: combination of almost everywhere zero functions with an algebraic view
	Preliminary: auxiliary operations for almost everywhere zero
	Type definition
	Additive structure
	Multiplicative structure
	Single-point mappings
	Integral domains
	Mapping order
	Fundamental mapping notions
	Degree
	Inductive structure
	Quasi-functorial structure
	Canonical dense representation of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 nat 0 2mu'-2mua
	Canonical sparse representation of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 2mu'-2mua 0 2mu'-2mub
	Size estimation
	Further mapping operations and properties
	Free Abelian Groups Over a Type

	Exponentiation by Squaring
	Preorders with explicit equivalence relation
	Additive group operations on product types
	Operations
	Class instances

	Roots of real quadratics
	Pretty syntax for Quotient operations
	Quotient infrastructure for the set type
	Contravariant set map (vimage) and set relator, rules for the Quotient package

	Quotient infrastructure for the product type
	Rules for the Quotient package

	Quotient infrastructure for the option type
	Rules for the Quotient package

	Quotient infrastructure for the list type
	Rules for the Quotient package

	Quotient infrastructure for the sum type
	Rules for the Quotient package

	Quotient types
	Equivalence relations and quotient types
	Equality on quotients
	Picking representing elements

	Ramsey's Theorem
	Preliminary definitions
	The n-element subsets of a set A
	Further properties, involving equipollence
	Partition predicates

	Finite versions of Ramsey's theorem
	The Erdős–Szekeres theorem exhibits an upper bound for Ramsey numbers
	Trivial cases
	Ramsey's theorem with TWO colours and arbitrary exponents (hypergraph version)
	Full Ramsey's theorem with multiple colours and arbitrary exponents
	Simple graph version

	Preliminaries for the infinitary version
	``Axiom'' of Dependent Choice
	Partition functions

	Ramsey's Theorem: Infinitary Version
	Disjunctive Well-Foundedness

	Modulo and congruence on the reals
	Generic reflection and reification
	Assigning lengths to types by type classes
	Saturated arithmetic
	The type of saturated naturals
	Enumeration

	Set Idioms
	Idioms for being a suitable union/intersection of something
	The ``Relative to'' operator

	Signed division: negative results rounded towards zero rather than minus infinity.
	State monad
	Comparators on linear quasi-orders
	Basic properties
	Fundamental comparator combinators
	Direct implementations for linear orders on selected types

	Stably sorted lists
	Alternative sorting algorithms
	Quicksort
	Mergesort
	Lexicographic products

	A decision procedure for universal multivariate real arithmetic with addition, multiplication and ordering using semidefinite programming
	Time functions for various standard library operations. Also defines 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 itrev.
	A table-based implementation of the reflexive transitive closure
	Binary Tree
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 map-tree
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 size
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 set-tree
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 subtrees
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 height and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 min-height
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 complete
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 acomplete
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 wbalanced
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 ipl
	List of entries
	Binary Search Tree
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 heap
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 mirror

	Multiset of Elements of Binary Tree
	Unordered pairs
	A type of finite bit strings
	Preliminaries
	Fundamentals
	Type definition
	Basic arithmetic
	Basic tool setup
	Basic code generation setup
	Basic conversions

	Elementary case distinctions
	Basic ordering

	Enumeration
	Bit-wise operations
	Conversions including casts
	Generic unsigned conversion
	Generic signed conversion
	More

	Arithmetic operations
	Ordering
	Bit-wise operations
	More shift operations
	Single-bit operations
	Rotation
	Split and cat operations
	More on conversions
	Testing bits
	Word Arithmetic
	Transferring goals from words to ints
	Order on fixed-length words
	Conditions for the addition (etc) of two words to overflow
	Some proof tool support
	More on overflows and monotonicity
	Arithmetic type class instantiations
	Word and nat
	Cardinality, finiteness of set of words
	Bitwise Operations on Words
	shift functions in terms of lists of bools
	Mask
	Slices
	Revcast

	Split and cat
	Split and slice

	Rotation
	"Word rotation commutes with bit-wise operations

	Maximum machine word
	Recursion combinator for words
	Some more naive computations rules
	Executable intervals
	Tool support

	The Field of Integers mod 2
	Pointwise order on product types
	Pointwise ordering
	Binary infimum and supremum
	Top and bottom elements
	Complete lattice operations
	Complete distributive lattices
	Bekic's Theorem

	Finite Lattices
	Finite Complete Lattices
	Finite Distributive Lattices
	Linear Orders
	Finite Linear Orders

	Lexicographic order on lists
	Lexicographic order on lists
	Prefix order on lists as order class instance
	Lexicographic order on product types
	Subsequence Ordering
	Definitions and basic lemmas

	Records based on BNF/datatype machinery
	Implementation of mappings with Association Lists
	Avoidance of pattern matching on natural numbers
	Case analysis
	Preprocessors
	Candidates which need special treatment

	Implementation of natural numbers as binary numerals
	Representation
	Basic arithmetic
	Conversions

	Code generation of prolog programs
	Setup for Numerals
	Implementation of integer numbers by target-language integers
	Implementation of natural numbers by target-language integers
	Implementation for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 nat

	Implementation of natural and integer numbers by target-language integers
	Preprocessor setup for floats implemented by target language numerals
	Abstract type of association lists with unique keys
	Preliminaries
	Type 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 (2mu'-2mukey, 2mu'-2muvalue) alist
	Primitive operations
	Abstract operation properties
	Further operations
	Equality
	Size

	Quickcheck generators

	alist is a BNF
	Multisets partially implemented by association lists
	Implementation of Red-Black Trees
	Datatype of RB trees
	Tree properties
	Content of a tree
	Search tree properties
	Tree lookup
	Red-black properties

	Insertion
	Deletion
	Modifying existing entries
	Mapping all entries
	Folding over entries
	Bulkloading a tree
	Building a RBT from a sorted list
	union and intersection of sorted associative lists
	Code generator setup

	Abstract type of RBT trees
	Type definition
	Primitive operations
	Derived operations
	Abstract lookup properties
	Quickcheck generators
	Hide implementation details

	Implementation of mappings with Red-Black Trees
	Data type and invariant
	Operations
	Invariant preservation
	Map Semantics

	Implementation of sets using RBT trees
	Definition of code datatype constructors
	Lemmas
	Auxiliary lemmas
	fold and filter
	foldi and Ball
	foldi and Bex
	folding over non empty trees and selecting the minimal and maximal element
	concrete
	abstract

	Code equations
	Introduction
	Termination
	Partial Functions
	Higher-Order Functions
	Limitations

	Predefined Functions
	Locales
	Fine Points
	Common constants
	Pairs
	Filters
	Bounded quantifiers
	Operations on Predicates
	Setup for Numerals
	Arithmetic operations
	Arithmetic on naturals and integers
	Inductive definitions for ordering on naturals

	Alternative list definitions
	Alternative rules for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 length
	Alternative rules for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 list-all2
	Alternative rules for membership in lists

	Setup for String.literal
	Simplification rules for optimisation
	A Prototype of Quickcheck based on the Predicate Compiler
	TFL: recursive function definitions
	Lemmas for TFL
	Rule setup

	Program extraction from proofs involving datatypes and inductive predicates
	Refute

