The Supplemental Isabelle/HOL Library

January 18, 2026

Contents

1 Implementation of Association Lists
1.1 wupdate and updates
1.2 delete
1.3 wupdate-with-auz and delete-auz
1.4 restrict Lo
1.5 clearjunk
1.6 map-ran
1.7 merge
1.8 compose
1.9 map-entryo
1.10 map-defaulto

2 Axiomatic Declaration of Bounded Natural Functors

3 Generalized Corecursor Sugar (corec and friends)
3.1 Coinduction L Lo

4 A general “while” combinator
4.1 while-option
4.2 while
4.3 Termination, ifpand gfp
4.4 while-Some and while-saturate
4.5 Reflexive, transitive closure

5 The Bourbaki-Witt tower construction for transfinite itera-
tion
5.1 Connect with the while combinator for executability on chain-
finite lattices.

6 Division with modulus centered towards zero.

7 Order on characters

42

8 A generic phantom type 51
9 Cardinality of types 51
9.1 Preliminary lemmas00 ... 51
9.2 Cardinalities of typeso oL 52
9.3 Classes with at least land 2 53
9.4 A type class for deciding finiteness of types 53
9.5 A type class for computing the cardinality of types 53
9.6 Instantiations for card-UNIV 54
10 Code setup for sets with cardinality type information 57
11 Eliminating pattern matches 60
12 Lazy types in generated code 60
12.1 The type lazy oo 61
12.2 Implementation oo 63
13 Test infrastructure for the code generator 63
13.1 YXML encoding for term 63
13.2 Test engine and drivers 65

14 A combinator to build partial equivalence relations from a
predicate and an equivalence relation 66

15 Formalisation of chain-complete partial orders, continuity

and admissibility 67
15.1 Continuity 69
15.1.1 Theorem collection cont-intro 70

15.2 Admissibility oo 76
153 (=)asorder 80
15.4 ccpo for products 81
15.5 Complete latticesas ccpo 85
15.6 Parallel fixpoint induction 88

16 Confluence 92

17 Old Datatype package: constructing datatypes from Carte-

sian Products and Disjoint Sums 95
17.1 The datatype universe, 95
17.2 Freeness: Distinctness of Constructors 97

17.3 Set Constructions oo 100

18 Bijections between natural numbers and other types

18.1 Typenat X nat
18.2 Type nat + nat
183 Typent o oo
18.4 Type nat list
18.5 Finite sets of naturals
18.5.1 Preliminaries
18.5.2 From sets to naturals
18.5.3 From naturalstosets
18.5.4 Proof of isomorphism

19 Encoding (almost) everything into natural numbers

19.1 The class of countable types
19.2 Conversion functions
19.3 Finite types are countable

19.4 Automatically proving countability of old-style datatypes

19.5 Automatically proving countability of datatypes.
19.6 More Countable types
19.7 The rationals are countably infinite

20 Infinite Sets and Related Concepts

20.1 The set of natural numbers is infinite
20.2 The set of integers is also infinite
20.3 Infinitely Many and Almost AIl
20.4 Enumeration of an Infinite Set
20.5 Properties of wellorder-class.enumerate on finite sets

21 Countable sets

21.1 Predicate for countablesets
21.2 Enumerate a countableset
21.3 Closure properties of countability
21.4 Misc lemmas
21.5 Uncountable,

22 Countable Complete Lattices

22.0.1 Instances of countable complete lattices

23 Type of (at Most) Countable Sets

23.1 Cardinal stuff
23.2 The type of countablesets
23.3 Additional lemmas L.
23.3.1 cemptyo
23.3.2 cinsert
23.3.3 cimageo oo

104
105
106
107
108
109
109
109
109
110

110
110
111
111

. 111

112
112
113

114
114
115
115
118
120

121
121
122
125
127
129

129
135

23.3.4 bounded quantificationo 143
23.3.5 cUnion e 143
23.4 Setup for Lifting/Transfer 143
23.4.1 Relator and predicator properties 143
23.4.2 Transfer rules for the Transfer package 144
23.5 Registrationas BNF 0. 145

24 Debugging facilities for code generated towards Isabelle/ML146

25 Sequence of Properties on Subsequences 147
26 Common discrete functions 149
26.1 Discrete logarithmo 149
26.2 Discrete square root Lo oo 150
27 Pi and Function Sets 153
27.1 Basic Propertiesof Pi, 154
27.2 Composition With a Restricted Domain: compose 156
27.3 Bounded Abstraction: restrict 156
27.4 Bijections Between Setso 157
27.5 Extensionalityo Lo oo 158
27.6 Cardinality 159
27.7 Extensional Function Spaces. 159
27.7.1 Injective Extensional Function Spaces 162

27.7.2 Misc properties of functions, composition and restric-
tion from HOL Light 162
27.7.3 Cardinality oL 163
27.8 The pigeonhole principle oL 163
279 Productsof sums L oo 164
28 Partitions and Disjoint Sets 164
28.1 Set of Disjoint Sets 164
28.1.1 Family of Disjoint Sets 165
28.2 Construct Disjoint Sequences 167
28.3 Partitions 168
28.4 Constructions of partitions 168
28.5 Finiteness of partitions 169
28.6 Equivalence of partitions and equivalence classes 169
28.7 Refinement of partitions 170
28.8 The coarsest common refinement of a set of partitions 171
29 Type of finite sets defined as a subtype of sets 171
29.1 Definition of the type 172
29.2 Basic operations and type class instantiations 172

29.3 Other operations 175

29.4 Transferred lemmas from Set.thy 177
29.5 Additional lemmas L 193
29.5.1 ffUnion 193
29.5.2 fhind 193
29.5.3 fsingleton 193
29.5.4 femeptyo 193
29.5.5 fset ... 194
29.5.6 ffilter 194
29.5.7 fset-of-listo 194
29.5.8 finsert 195
29.5.9 fimage 195
29.5.10 bounded quantification 195
20511 fcard 196
29.5.12 sorted-list-of-fset 198
29.5.13 ffoldo 198
20514 (|C]) v v v o 199
29.5.15Group operations 199
29.5.16 Semilattice operations oL 200

29.6 Choicein fsets 202
29.7 Induction and Cases rules for fsets 202
29.8 Lemmas depending on induction 202
29.9 Setup for Lifting/Transfer 203
29.9.1 Relator and predicator properties 203
29.9.2 Transfer rules for the Transfer package 203
29.10BNF setup 205
29.11Size setup 206
29.12Advanced relator customization L. 206
29.12.1 Countability o o 206
29.13Quickcheck setupo Lo oo 207
29.14Code Generation Setup 208
30 Type of finite maps defined as a subtype of maps 209
30.1 Auxiliary constants and lemmas over map 209
30.2 Abstract characterisation 210
30.3 Operations 211
304 BNF setup 224
30.5 sizesetup 228
30.6 Additional operations L. 228
30.7 Additional properties 230
30.8 Lifting/transfer setup o 000 230
30.9 View as datatype o Lo 230
30.10Code setup 231
30.11Instances 232

30.12Tests e 233

31 Disjoint FSets

233

32 Lists with elements distinct as canonical example for datatype

invariants

32.1 The type of distinct lists
32.2 Executable version obeying invariant
32.3 Induction principle and case distinction
32.4 Functorial structure o oL,
32.5 Quickcheck generatorso oo
32.6 BNF instance,

33 Type of dual ordered lattices
33.1 Pointwise ordering L Lo oL
33.2 Binary infimum and supremum 0L
33.3 Top and bottom elements
33.4 Complement Lo
33.5 Complete lattice operations

234

34 Equipollence and Other Relations Connected with Cardi-

nality

341 Eqpoll
34.2 The strict relationo
34.3 Mapping by an injection
34.4 Inserting elements intosets
34.5 Binary sums and unions
34.6 Binary Cartesian products
34.7 General Unions oo
34.8 General Cartesian products (Pi)
34.9 Misc other resultd

35 Continuity and iterations
35.1 Continuity for complete lattices
35.1.1 Least fixed points in countable complete lattices

36 Extended natural numbers (i.e. with infinity)
36.1 Type definition L oo
36.2 Constructors and numbers
36.3 Addition
36.4 Multiplicationo o oo
36.5 Numerals L
36.6 Subtraction L
36.7 Ordering
36.8 Cancellation simprocs
36.9 Well-orderingo

246

36.10Complete Latticeo
36.11Traditional theorem names

37 Liminf and Limsup on conditionally complete lattices
37.0.1 Liminf and Limsup
37.1 More Limits

38 Extended real number line
38.1 Definition and basic properties

38.2
38.3
38.4
38.5
38.6

38.1.1
38.1.2
38.1.3
38.14
38.1.5
38.1.6

Addition
Linear orderon ereal
Multiplication Lo oo
Power
Subtraction
Division

Complete lattice 0oL
Extended real intervalso
Topological space
Relation to enat L L
Limitson ereal
38.6.1 Convergent sequences
38.6.2 Sums e
38.6.3 Continuity L.
38.6.4 liminf and limsup
38.6.5 Tests for code generator

39 Indicator Function

40 The type of non-negative extended real numbers

Defining the extended non-negative reals
Cancellation simprocs
Order withtop
Arithmetic.
Coercion from real to ennreal
Coercion from ennreal to real
Coercion from enat to ennreal
Topology on ennreal
Approximation lemmas L.
40.10ennreal theorems o oo

40.1
40.2
40.3
40.4
40.5
40.6
40.7
40.8
40.9

41 Logarithm of Natural Numbers
41.1 Preliminaries o

41.2 Floorlog

41.3

271
272

272
274
278

279
281
283
285
291
297
297
301
305
307
309
315
316
318
322
328
330
333

333

336
339
342
342
345
349
353
354
355
362
363

41.4 Bitlen 370
42 Various algebraic structures combined with a lattice 372
42.1 Positive Part, Negative Part, Absolute Value 373
43 Floating-Point Numbers 377
43.1 Real operations preserving the representation as floating point
number ... L e e 377
43.2 Arithmetic operations on floating point numbers 379
43.3 Quickcheck 381
43.4 Represent floats as unique mantissa and exponent 382
43.5 Compute arithmetic operations 384
43.6 Lemmas for types real, nat, int 385
43.7 Rounding Real Numbers 385
43.8 Rounding Floats 387
43.9 Truncating Real Numbers 388
43.10Truncating Floats oo 390
43.11 Approximation of positive rationals 392
43.12Division 394
43.13Approximate Addition L. 394
43.14Approximate Multiplication 397
43.15Approximate Power L. 398
43.16Lemmas needed by Approximate 400

44 Pointwise instantiation of functions to algebra type classes 404

45 Pointwise instantiation of functions to division 408
45.1 Syntactic with division 408
46 Lexicographic order on functions 409
47 The going-to filter 410
48 Big sum and product over function bodies 412
48.1 Abstract product Lo 413
48.2 Concrete SUmM v v v v v e 414
48.3 Concrete producto 415
49 Infinite Type Class 416
50 Algebraic operations on sets 417
51 Interval Type 423
51.1 Membership 428

51.2 Quickcheck 435

52 Approximate Operations on Intervals of Floating Point Num-

bers

52.1 Intervals with Floating Point Bounds
52.2 intros for real-interval L.
52.3 bounds for lists
52.4 constants for code generation L.

53 Immutable Arrays with Code Generation
53.1 Fundamental operations
53.2 Generic code equations L.
53.3 Auxiliary operations for code generation
53.4 Code Generation for SML
53.5 Code Generation for Haskell

54 Definition of Landau symbols
54.1 Definition of Landau symbols
54.2 Landau symbols and limits
54.3 Flatness of real functions
54.4 Asymptotic Equivalence

55 Values extended by a bottom element
55.1 Values extended by a top element
55.2 Values extended by a top and a bottom element

56 Infinite Streams
56.1 prepend list tostream
56.2 set of streams with elements in some fixed set
56.3 nth, take, drop for streams
56.4 unary predicates lifted to streams
56.5 recurring stream out of a list
56.6 iterated application of a function
56.7 stream repeating a single element,
56.8 stream of natural numbers L.
56.9 flatten a stream of lists
56.10merge a stream of streams L.
56.11product of two streams L.
56.12interleave two streams
56.13zIip
56.14zip via functiono

57 List prefixes, suffixes, and homeomorphic embedding
57.1 Prefix orderon lists
57.2 Basic properties of prefixes
57.3 Prefixes

436

442
442
443
444
445
445

446
447
460
466
467

474
476
478

10

57.4 Longest Common Prefix 495
57.5 Parallel lists 497
57.6 Suffixorderon lists oL, 497
57.7 Suffixes 501
57.8 Homeomorphic embedding on lists 503
57.9 Subsequences (special case of homeomorphic embedding) . . . 504
57.10Appending elementso 506
57.11Relation to standard list operations 506
57.12Contiguous sublistso oo oL 507
57121 sublist 507
57.12.2sublistso 509
57.13Parametricity Lo 509
58 Linear Temporal Logic on Streams 511
59 Preliminaries 511
60 Linear temporal logic 511
61 Weak vs. strong until (contributed by Michael Foster, Uni-
versity of Sheffield) 521
62 Lists as vectors 522
62.1 +and — 523
62.2 Inner product Lo 524
63 Definitions of Least Upper Bounds and Greatest Lower Bounds525
63.1 Rules for the Relations x<=and <= 525
63.2 Rules about the Operators leastP, ub and lub 526
63.3 Rules about the Operators greatestP, isLb and isGlb 527
64 An abstract view on maps for code generation. 530
64.1 Parametricity transfer rules 530
64.2 Type definition and primitive operations 532
64.3 Functorial structure 533
64.4 Derived operations Lo oL 533
64.5 Properties 535
64.5.1 entries, ordered-entries, and fold 542
64.6 Code generator setup 545
65 Monad notation for arbitrary types 545

66 Less common functions on lists 547

67 (Finite) Multisets 554
67.1 The type of multisets 554
67.2 Representing multisets oL 555
67.3 Basic operations o oL 556

67.3.1 Conversion to set and membership 556
67.3.2 Union 558
67.3.3 Difference oL 559
67.3.4 Minand Max 9561
67.3.5 Equality of multisets 561
67.3.6 Pointwise ordering induced by count 563
67.3.7 Intersection and bounded union 566
67.3.8 Additional intersection facts 567
67.3.9 Additional bounded union facts 569
67.4 Replicate and repeat operations 570
67.4.1 Simprocs 571
67.4.2 Conditionally complete lattice. 572
67.4.3 Filter (with comprehension syntax) 574
67.4.4 Size 576
67.5 Induction and case splits 578
67.5.1 Strong induction and subset induction for multisets . 579
67.6 Least and greatest elements 579
67.7 The fold combinator 580
67.8 Tmage 581
67.9 Further conversions 584
67.10More properties of the replicate, repeat, and image operations 589
67.11Big operators Lo 591
67.12Multiset as order-ignorant lists 598
67.13The multiset order L. 600
67.13.1 Well-foundedness 601
67.13.2 Closure-free presentation 602
67.13.3 Monotonicity o oL 602
67.13.4 The multiset extension is cancellative for multiset union603
67.13.5 Strict partial-order properties 604
67.13.6 Strict total-order properties 605
67.14Quasi-executable version of the multiset extension 606
67.14.1 Monotonicity of multiset union 607
67.14.2 Termination proofs with multiset orders 607
67.15Legacy theorem bindings L. 608
67.16Naive implementation using lists 609
67.17TBNF setup 612
67.18Size setup 614
67.19Lemmas about Size Lo 614

67.20The set of multisets of a given size 615

68 More Theorems about the Multiset Order
68.1 Alternative Characterizations
68.1.1 The Dershowitz—Manna Ordering
68.1.2 The Huet—Oppen Ordering
68.1.3 Monotonicity oo
68.1.4 Properties of Orders
68.1.5 Simplificationso
68.2 SImprocs
68.3 Additional facts and instantiations

69 Fixed Length Lists

70 Non-negative, non-positive integers and reals
70.1 Non-positive integers
70.2 Non-negativereals
70.3 Non-positive reals oL

71 Numeral Syntax for Types
71.1 Numeral Types o o
T1.2 numI
71.3 Locales for for modular arithmetic subtypes
71.4 Ring class instances
71.5 Order instances
71.6 Code setup and type classes for code generation
TL7 Syntax oo e
71.8 Examples

72 w-words
72.1 Type declaration and elementary operations
72.2 Subsequence, Prefix, and Suffix
72.3 Prependingo
72.4 The limit set of an w-word
72.5 Index sequences and piecewise definitions

12

617
617
617
617
618
618
622
623
623

625

627
627
629
630

633
633
633
635
637
638
639
641
641

73 Combinator syntax for generic, open state monads (single-

threaded monads)

73.1 Motivation
73.2 State transformations and combinators
73.3 Monad laws
73.4 Do-syntaxo

74 Canonical order on option type

650

13

75 Futures and parallel lists for code generated towards Is-

abelle/ML 656
75.1 Futures oo 656
75.2 Parallel lists 657

76 Input syntax for pattern aliases (or “as-patterns” in Haskell) 657

76.1 Definition 658
76.2 Usage o i e 659
77 Periodic Functions 659

78 Polynomial mapping: combination of almost everywhere

zero functions with an algebraic view 662
78.1 Preliminary: auxiliary operations for almost everywhere zero . 662
78.2 Type definition oL 665
78.3 Additive structure 667
78.4 Multiplicative structure oL, 669
78.5 Single-point mappings 670
78.6 Integral domains oL, 672
78.7 Mapping order 672
78.8 Fundamental mapping notions 673
78.9 Degree 675
78.10Inductive structureo 676
78.11Quasi-functorial structure 676
78.12Canonical dense representation of nat =¢ ‘a. 677
78.13Canonical sparse representation of ‘a =¢ b0 679
78.14Size estimationo Lo 680
78.15Further mapping operations and properties 681
78.16Free Abelian Groups Over a Type 681
79 Exponentiation by Squaring 685
80 Preorders with explicit equivalence relation 685
81 Additive group operations on product types 687
81.1 Operations 687
81.2 Class instances 688
82 Roots of real quadratics 689
83 Pretty syntax for Quotient operations 691
84 Quotient infrastructure for the set type 691

84.1 Contravariant set map (vimage) and set relator, rules for the
Quotient package L 691

85 Quotient infrastructure for the product type 693
85.1 Rules for the Quotient package 693
86 Quotient infrastructure for the option type 695
86.1 Rules for the Quotient package 695
87 Quotient infrastructure for the list type 696
87.1 Rules for the Quotient package 696
88 Quotient infrastructure for the sum type 700
88.1 Rules for the Quotient package 700
89 Quotient types 701
89.1 Equivalence relations and quotient types 701
89.2 Equality on quotients L. 702
89.3 Picking representing elementso 703
90 Ramsey’s Theorem 703
90.1 Preliminary definitions 703
90.1.1 The n-element subsets of aset A 704
90.1.2 Further properties, involving equipollence 706
90.1.3 Partition predicates 706
90.2 Finite versions of Ramsey’s theorem 707
90.2.1 The Erds—Szekeres theorem exhibits an upper bound
for Ramsey numbers L L. 707
90.2.2 Trivialcases. 708
90.2.3 Ramsey’s theorem with TWO colours and arbitrary
exponents (hypergraph version) 708
90.2.4 Full Ramsey’s theorem with multiple colours and ar-
bitrary exponentso 709
90.2.5 Simple graph version 709
90.3 Preliminaries for the infinitary version 709
90.3.1 “Axiom” of Dependent Choice 709
90.3.2 Partition functions 710
90.4 Ramsey’s Theorem: Infinitary Version 710
90.5 Disjunctive Well-Foundedness 711
91 Modulo and congruence on the reals 711
92 Generic reflection and reification 716

93 Assigning lengths to types by type classes 717

15

94 Saturated arithmetic 719
94.1 The type of saturated naturals 719
94.2 Enumeration o 723

95 Set Idioms 723
95.1 Idioms for being a suitable union/intersection of something . 724
95.2 The “Relative to” operator 728

96 Signed division: negative results rounded towards zero rather
than minus infinity. 731

97 State monad 735

98 Comparators on linear quasi-orders 739
98.1 Basic properties Lo oo 739
98.2 Fundamental comparator combinators 743
98.3 Direct implementations for linear orders on selected types . . 744

99 Stably sorted lists 745

100Alternative sorting algorithms 748
100.1Quicksort 748
100.2Mergesorto 749
100.3Lexicographic products 750

101A decision procedure for universal multivariate real arith-
metic with addition, multiplication and ordering using semidef-
inite programming 751

102T'ime functions for various standard library operations. Also
defines itrev. 752

103A table-based implementation of the reflexive transitive clo-

sure 754
104Binary Tree 756
104.1map-tree 758
104.2s0z€ Lo e 758
104.3set-tree e e 759
104.4subtrees e e 759
104.5height and min-height L. 759
104.6complete 760
104.Tacomplete 760
104.8wbalanced 761

1049901 o 761

104.10ist of entrieso
104.1Binary Search Tree
104.12eap . . .« o
104.13narror . . . o o oo e

105Multiset of Elements of Binary Tree
106Unordered pairs

107A type of finite bit strings

107.1Preliminaries Lo oo
107.2Fundamentals L

107.2.1 Type definition

107.2.2 Basic arithmetic

107.2.3Basic tool setup

107.2.4 Basic code generation setup

107.2.5Basic conversions L.
107.3Elementary case distinctions

107.3.1 Basic orderingo
107.4Enumerationo o o
107.5Bit-wise operations
107.6Conversions including casts

107.6.1 Generic unsigned conversion

107.6.2 Generic signed conversion

107.6.3More
107.7Arithmetic operations,
107.80rderingo
107.9Bit-wise operations
107.10More shift operations oo
107.18%ingle-bit operations
107.1Rotationo
107.18plit and cat operations
107.1More on conversions
107.1Festing bitso
107.18ord Arithmetic L
107.1Transferring goals from words to ints
107.18®rder on fixed-length words
107.1€onditions for the addition (etc) of two words to overflow . .
107.28ome proof tool support
107.2More on overflows and monotonicity
107.2Arithmetic type class instantiations
107.28Vord and nat L Lo o
107.2€ardinality, finiteness of set of words
107.2Bitwise Operations on Words

16

761
762
762
762

763

765

107.25.%hift functions in terms of lists of bools
107.25.Mask
107.25.8liceso
107.25.Revecast
107.268plit and cat L oo
107.26.6plit and slice
107.2Rotation
107.27.1Word rotation commutes with bit-wise operations . .
107.280aximum machine word
107.2Recursion combinator for words
107.38ome more naive computations rules
107.3Executable intervals
107.3700l support

108T'he Field of Integers mod 2

109@Pointwise order on product types
109.1Pointwise ordering oL L.
109.2Binary infimum and supremum
109.3Top and bottom elements
109.4Complete lattice operations
109.5Complete distributive lattices
109.6Bekic’s Theorem

11(Finite Lattices
110.1Finite Complete Lattices
110.2Finite Distributive Lattices
110.3Linear Orderso
110.4Finite Linear Orders

111Lexicographic order on lists
112A.exicographic order on lists

113Prefix order on lists as order class instance
114Lexicographic order on product types

115Subsequence Ordering
115.1Definitions and basic lemmas

116Records based on BNF /datatype machinery

117Mmplementation of mappings with Association Lists

847

851
851
852
853
854
855
855

856
856
858
859
860

860

862

863

864

866
866

868

869

18

118Avoidance of pattern matching on natural numbers 874
118.1Case analysis 874
118.2Preprocessorso e e 874
118.3Candidates which need special treatment 875

119mplementation of natural numbers as binary numerals 875

119.1Representationo 875
119.2Basic arithmetic 0oL 876
119.3Conversions Lo 877
120Code generation of prolog programs 878
121Setup for Numerals 878
12Amplementation of integer numbers by target-language in-
tegers 878
123 mplementation of natural numbers by target-language in-
tegers 886
123.1Implementation for nat 886

124lmplementation of natural and integer numbers by target-
language integers 891

125Preprocessor setup for floats implemented by target lan-

guage numerals 891
126Abstract type of association lists with unique keys 892
126.1Preliminaries Lo oo 892
126.2Type (‘key, 'value) alist 892
126.3Primitive operations 893
126.4Abstract operation properties 893
126.5Further operations 894
126.5.1Equality 894
126.5.2Size 894
126.6Quickcheck generatorso 894
127list is a BNF 896
128MIultisets partially implemented by association lists 896
129 mplementation of Red-Black Trees 901
129.1Datatype of RB trees 901
129.2Tree properties 902
129.2.1 Content of a tree 902

129.2.2 Search tree properties 902

129.2.3Tree lookup

129.2.4 Red-black properties
129.3Insertion
129.4Deletion e
129.5Modifying existing entries Lo
129.6Mapping all entries
129.7Folding over entrieso
129.8Bulkloading a treeo Lo
129.9Building a RBT from a sorted list
129.10nion and intersection of sorted associative lists
129.1Co0de generator setup

130Abstract type of RBT trees
130.1Type definition o
130.2Primitive operations oL
130.3Derived operationso oL
130.4Abstract lookup properties
130.5Quickcheck generatorso oL
130.6Hide implementation details

131Implementation of mappings with Red-Black Trees
131.1Data type and invariant
131.20perations
131.3Invariant preservation
131.4Map Semanticso

13Amplementation of sets using RBT trees
133Definition of code datatype constructors

134Lemmas

134.1Auxiliary lemmas

134.2fold and filter

134.3foldiand Ball

134.4foldiand Bex

134.5folding over non empty trees and selecting the minimal and
maximal element
134.5.1concreteo
134.5.2abstract

135Code equations
13dntroduction

137Termination

941
942
942
943
943
946
946

947
947
947
948
948

949

949

20

138artial Functions 961
13Higher-Order Functions 961

139.1Limitations 962
140Predefined Functions 963
141Locales 963
14Zine Points 964
143Common constants 966
144Pairs 966
145Filters 966
14@Bounded quantifiers 966
14Mperations on Predicates 966
1485etup for Numerals 967
149Arithmetic operations 967

149.1Arithmetic on naturals and integers 967

149.2Inductive definitions for ordering on naturals 967
150Alternative list definitions 968

150.1Alternative rules for length 968

150.2Alternative rules for list-all2 968

150.3Alternative rules for membership in lists 968
151Setup for String.literal 969
152Simplification rules for optimisation 969

153A Prototype of Quickcheck based on the Predicate Com-

piler 969
154TFL: recursive function definitions 969
154.1Lemmas for TFL 969
1542Rulesetup 970

155Program extraction from proofs involving datatypes and in-
ductive predicates 971

156Refute 971

THEORY “AList” 21

1 Implementation of Association Lists

theory AList
imports Main
begin

context
begin

The operations preserve distinctness of keys and function clearjunk dis-
tributes over them. Since clearjunk enforces distinctness of keys it can be
used to establish the invariant, e.g. for inductive proofs.

1.1 update and updates

qualified primrec update :: 'key = val = (‘key x 'val) list = ('key x 'val) list
where
update kv [| = [(k, v)]
| update kv (p # ps) = (if fst p = k then (k, v) # ps else p # update k v ps)

lemma update-conv’: map-of (update k v al) = (map-of al)(k—v)
(proof)

corollary update-conv: map-of (update k v al) k' = ((map-of al)(k—v)) k'
{proof)

lemma dom-update: fst ‘ set (update k v al) = {k} U fst ‘ set al
{proof)

lemma update-keys:
map fst (update k v al) =
(if k € set (map fst al) then map fst al else map fst al Q [k])

{proof)

lemma distinct-update:
assumes distinct (map fst al)
shows distinct (map fst (update k v al))

{proof)

lemma update-filter:
a # k = update k v [g<ps. fst ¢ # a] = [g+update k v ps. fst ¢ # a)
(proof)

lemma update-triv: map-of al k = Some v = update k v al = al
(proof)

lemma update-nonempty [simp): update k v al # []
(proof)

THEORY “AList” 22

lemma update-eqD: update k v al = update kv’ al’ = v = v’
(proof)

lemma update-last [simp]: update k v (update k v’ al) = update k v al
(proof)

Note that the lists are not necessarily the same: update k v (update k' v’

) = [(k, v), (k, v)] and update k" v’ (update k v []) = [(k, v), (k', v")].

lemma update-swap:

k # k' = map-of (update k v (update k' v’ al)) = map-of (update k' v’ (update
kv al))

(proof)

lemma update-Some-unfold:
map-of (update k v al) z = Some y «—
r=kANv=yVz#kA map-of al x = Some y
(proof)

lemma image-update [simp|: © ¢ A = map-of (update z y al) * A = map-of al *
A
(proof) definition updates ::
'key list = 'val list = ('key x 'val) list = ("key x 'val) list
where updates ks vs = fold (case-prod update) (zip ks vs)

lemma updates-simps [simpl:
updates [| vs ps = ps
updates ks [| ps = ps
updates (k#ks) (v#vs) ps = updates ks vs (update k v ps)
(proof)

lemma updates-key-simp [simp]:
updates (k # ks) vs ps =
(case vs of [| = ps | v # vs = updates ks vs (update k v ps))
(proof)

lemma updates-conv’: map-of (updates ks vs al) = (map-of al)(ks[—]vs)
(proof)

lemma updates-conv: map-of (updates ks vs al) k = ((map-of al)(ks[—]vs)) k
(proof)

lemma distinct-updates:
assumes distinct (map fst al)
shows distinct (map fst (updates ks vs al))

(proof)

lemma updates-appendl [simp): size ks < size vs =
updates (ksQ[k]) vs al = update k (vslsize ks) (updates ks vs al)

(proof)

THEORY “AList” 23

lemma updates-list-update-drop|simp]:
size ks < 1 = 1 < size v§s —>
updates ks (vs[i:=v]) al = updates ks vs al
(proof)

lemma update-updates-conv-if:
map-of (updates xs ys (update z y al)) =
map-of
(if © € set (take (length ys) xs)
then updates s ys al
else (update z y (updates zs ys al)))

{proof)

lemma updates-twist [simp):
k ¢ set ks =
map-of (updates ks vs (update k v al)) = map-of (update k v (updates ks vs al))

{proof)

lemma updates-apply-notin [simp]:
k ¢ set ks = map-of (updates ks vs al) k = map-of al k
(proof)

lemma updates-append-drop [simp]:
size xs = size ys = updates (s Q zs) ys al = updates xs ys al
(proof)

lemma updates-append2-drop [simp]:
size s = size ys = updates xs (ys Q zs) al = updates xs ys al

{proof)

1.2 delete

qualified definition delete :: 'key = ('key x 'val) list = ('key x 'val) list
where delete-eq: delete k = filter (A, -). k # k')

lemma delete-simps [simp]:
delete k [| = |]
delete k (p # ps) = (if fst p = k then delete k ps else p # delete k ps)

(proof)

lemma delete-conv’: map-of (delete k al) = (map-of al)(k := None)
{proof)

corollary delete-conv: map-of (delete k al) k' = ((map-of al)(k := None)) k’
{proof)

lemma delete-keys: map fst (delete k al) = removeAll k (map fst al)
(proof)

THEORY “AList” 24

lemma distinct-delete:
assumes distinct (map fst al)
shows distinct (map fst (delete k al))

(proof)

lemma delete-id [simp]: k ¢ fst ¢ set al = delete k al = al
{proof)

lemma delete-idem: delete k (delete k al) = delete k al
(proof)

lemma map-of-delete [simp]: k' # k = map-of (delete k al) k' = map-of al k'
(proof)

lemma delete-notin-dom: k ¢ fst “ set (delete k al)
(proof)

lemma dom-delete-subset: fst ¢ set (delete k al) C fst ¢ set al
{proof)

lemma delete-update-same: delete k (update k v al) = delete k al
(proof)

lemma delete-update: k # | = delete | (update k v al) = update k v (delete I al)
(proof)

lemma delete-twist: delete x (delete y al) = delete y (delete x al)
{proof)

lemma length-delete-le: length (delete k al) < length al
(proof)

1.3 update-with-auxr and delete-aux

qualified primrec update-with-auz ::
val = 'key = ("val = "val) = ('key x 'val) list = ('key x 'val) list
where
update-with-aux v k f || = [(k, fv)]
| update-with-aux v k f (p # ps) =
(if (fst p = k) then (k, f (snd p)) # ps else p # update-with-auz v k f ps)

The above delete traverses all the list even if it has found the key. This
one does not have to keep going because is assumes the invariant that keys
are distinct.
qualified fun delete-auz :: 'key = ('key x 'val) list = ('key X 'val) list

where

delete-auz k] = ||
| delete-aux k ((k', v) # xs) = (if k = k' then xs else (k', v) # delete-auz k xs)

THEORY “AList” 25

lemma map-of-update-with-auz':
map-of (update-with-auz v k f ps) k' =
((map-of ps)(k — (case map-of ps k of None = fuv | Some v = fv))) k
(proof)

!

lemma map-of-update-with-aux:
map-of (update-with-auz v k f ps) =
(map-of ps)(k — (case map-of ps k of None = fuv | Some v = fv))
(proof)

lemma dom-update-with-auz: fst ¢ set (update-with-aux v k f ps) = {k} U fst ‘ set
ps
(proof)

lemma distinct-update-with-auzx [simp):
distinct (map fst (update-with-auz v k f ps)) = distinct (map fst ps)
{proof)

lemma set-update-with-aux:
distinct (map fst zs) =
set (update-with-auz v k f xs) =
(set xzs — {k} x UNIV U {(k, f (case map-of zs k of None = v | Some v =
N
{proof)

lemma set-delete-aux: distinct (map fst xs) = set (delete-aux k zs) = set xs —
(kY x UNIV

{proof)
lemma dom-delete-auz: distinct (map fst ps) = fst ‘ set (delete-auzx k ps) = fst
“set ps — {k}

{proof)

lemma distinct-delete-auz [simp): distinct (map fst ps) = distinct (map fst (delete-auz
k ps))
(proof)

lemma map-of-delete-auz’”:
distinct (map fst zs) = map-of (delete-auz k xs) = (map-of xs)(k := None)
{proof)

lemma map-of-delete-auz:

distinct (map fst xs) = map-of (delete-aux k zs) k' = ((map-of zs)(k := None))
k/

{proof)

lemma delete-aux-eq-Nil-conv: delete-auz k ts = [| +— ts =[] V (Jv. ts = [(k,

v)])

THEORY “AList” 26

{proof)

1.4 restrict

qualified definition restrict :: 'key set = (‘key x 'val) list = ("key x 'val) list
where restrict-eq: restrict A = filter (A(k, v). k € A)

lemma restr-simps [simpl:
restrict A [] = |]
restrict A (p#ps) = (if fst p € A then p # restrict A ps else restrict A ps)

{proof)

lemma restr-conv”: map-of (restrict A al) = ((map-of al)|* A)

(proof)

corollary restr-conv: map-of (restrict A al) k = ((map-of al)|* A) k
{proof)

lemma distinct-restr: distinct (map fst al) = distinct (map fst (restrict A al))

{proof)

lemma restr-empty [simp]:
restrict {} al = ||
restrict A [] = |]

(proof)

lemma restr-in [simp]: © € A = map-of (restrict A al) © = map-of al
(proof)

lemma restr-out [simp]: © ¢ A = map-of (restrict A al) x = None
(proof)

lemma dom-restr [simp]: fst < set (restrict A al) = fst ‘set al N A

(proof)

lemma restr-upd-same [simp]: restrict (—{z}) (update = y al) = restrict (—{z}) al
{proof)

lemma restr-restr [simpl: restrict A (restrict B al) = restrict (ANB) al
{proof)

lemma restr-update[simp):
map-of (restrict D (update z y al)) =
map-of ((if x € D then (update x y (restrict (D—{xz}) al)) else restrict D al))
{proof)

lemma restr-delete [simp]:
delete © (restrict D al) = (if x € D then restrict (D — {z}) al else restrict D al)

{proof)

THEORY “AList” 27

lemma update-restr:
map-of (update z y (restrict D al)) = map-of (update x y (restrict (D — {z})

)
(proof)

lemma update-restr-conv [simp]:
reD=
map-of (update z y (restrict D al)) = map-of (update z y (restrict (D — {z})

al))

(proof)

lemma restr-updates [simp]:
length ©s = length ys = set 1s C D —
map-of (restrict D (updates xzs ys al)) =
map-of (updates xs ys (restrict (D — set zs) al))
(proof)

lemma restr-delete-twist: (restrict A (delete a ps)) = delete a (restrict A ps)
{proof)

1.5 clearjunk

qualified function clearjunk :: (’key x 'val) list = ('key x 'val) list
where
clearjunk [| = ||
| clearjunk (p#ps) = p # clearjunk (delete (fst p) ps)

(proof)
termination

(proof)

lemma map-of-clearjunk: map-of (clearjunk al) = map-of al
(proof)

lemma clearjunk-keys-set: set (map fst (clearjunk al)) = set (map fst al)
(proof)

lemma dom-clearjunk: fst ‘ set (clearjunk al) = fst ¢ set al
(proof)

lemma distinct-clearjunk [simp): distinct (map fst (clearjunk al))
(proof)

lemma ran-clearjunk: ran (map-of (clearjunk al)) = ran (map-of al)
{proof)

lemma ran-map-of: ran (map-of al) = snd ‘ set (clearjunk al)
(proof)

THEORY “AList” 28

lemma graph-map-of: Map.graph (map-of al) = set (clearjunk al)
{proof)

lemma clearjunk-update: clearjunk (update k v al) = update k v (clearjunk al)
(proof)

lemma clearjunk-updates: clearjunk (updates ks vs al) = updates ks vs (clearjunk
al)
(proof)

lemma clearjunk-delete: clearjunk (delete x al) = delete x (clearjunk al)
(proof)

lemma clearjunk-restrict: clearjunk (restrict A al) = restrict A (clearjunk al)

(proof)

lemma distinct-clearjunk-id [simpl: distinct (map fst al) = clearjunk al = al
{proof)

lemma clearjunk-idem: clearjunk (clearjunk al) = clearjunk al
(proof)

lemma length-clearjunk: length (clearjunk al) < length al
(proof)

lemma delete-map:
assumes Akv. fst (f kv) = fst kv
shows delete k (map f ps) = map f (delete k ps)

{proof)

lemma clearjunk-map:
assumes Akv. fst (f kv) = fst kv
shows clearjunk (map f ps) = map f (clearjunk ps)
{proof)

1.6 map-ran

definition map-ran :: ("key = "vall = "val2) = (‘key x 'vall) list = ('key x
"val2) list
where map-ran f = map (A(k, v). (k, fk v))

lemma map-ran-simps [simpl:
map-ran £ [| = [
map-ran f ((k, v) # ps) = (k, [k v) # map-ran { ps
(proof)

lemma map-ran-Cons-sel: map-ran f (p # ps) = (fst p, f (fst p) (snd p)) #
map-ran f ps

{proof)

THEORY “AList” 29

lemma length-map-ran[simpl: length (map-ran f al) = length al
(proof)

lemma map-fst-map-ran[simpl: map fst (map-ran f al) = map fst al
(proof)

lemma dom-map-ran: fst ‘ set (map-ran f al) = fst ¢ set al
(proof)

lemma map-ran-conv: map-of (map-ran f al) k = map-option (f k) (map-of al k)
(proof)

lemma distinct-map-ran: distinct (map fst al) = distinct (map fst (map-ran f

al))
(proof)

lemma map-ran-filter: map-ran f [p<ps. fst p # a] = [p<map-ran f ps. fst p #
al
(proof)

lemma clearjunk-map-ran: clearjunk (map-ran f al) = map-ran f (clearjunk al)

{proof)

1.7 merge

qualified definition merge :: (‘key x 'val) list = (’key x 'val) list = ('key x
"val) list
where merge gs ps = foldr (A(k, v). update k v) ps gs

lemma merge-simps [simp]:

merge qs [| = gs

merge qs (p#ps) = update (fst p) (snd p) (merge gs ps)

(proof)
lemma merge-updates: merge gs ps = updates (rev (map fst ps)) (rev (map snd
ps)) as

(proof)

lemma dom-merge: fst ¢ set (merge xs ys) = fst “ set xs U fst set ys
(proof)

lemma distinct-merge: distinct (map fst xs) = distinct (map fst (merge zs ys))
(proof)

lemma clearjunk-merge: clearjunk (merge xs ys) = merge (clearjunk zs) ys
(proof)

lemma merge-conv’: map-of (merge xs ys) = map-of xs ++ map-of ys

THEORY “AList” 30

(proof)

corollary merge-conv: map-of (merge xs ys) k = (map-of s ++ map-of ys) k
(proof)

lemma merge-empty: map-of (merge [| ys) = map-of ys
(proof)

lemma merge-assoc [simpl: map-of (merge m1 (merge m2 m8)) = map-of (merge
(merge m1 m2) m3)
(proof)

lemma merge-Some-iff:
map-of (merge m n) k = Some z +—
map-of n k = Some © V map-of n k = None N map-of m k = Some z
(proof)

lemmas merge-SomeD [dest!] = merge-Some-iff [THEN iffD1]

lemma merge-find-right [simp]: map-of n k = Some v = map-of (merge m n) k
= Some v
(proof)

lemma merge-None [iff]: (map-of (merge m n) k = None) = (map-of n k = None
A map-of m k = None)
(proof)

lemma merge-upd [simp]: map-of (merge m (update k v n)) = map-of (update k
v (merge m n))
(proof)

lemma merge-updatess [simp):
map-of (merge m (updates zs ys n)) = map-of (updates xzs ys (merge m n))
{proof)

lemma merge-append: map-of (xs Q ys) = map-of (merge ys xs)
(proof)

1.8 compose

qualified function compose :: (‘key x 'a) list = ('a x 'b) list = ('key x 'b) list
where
compose [ys = |]
| compose (z # xs) ys =
(case map-of ys (snd z) of
None = compose (delete (fst z) xs) ys
| Some v = (fst z, v) # compose xs ys)

(proof)
termination

THEORY “AList” 31

{proof)

lemma compose-first-None [simp]: map-of s k = None = map-of (compose xs
ys) k = None
(proof)

lemma compose-conv: map-of (compose xs ys) k = (map-of ys o,, map-of zs) k
(proof)

lemma compose-conv’: map-of (compose s ys) = (map-of ys o, map-of xs)
(proof)

lemma compose-first-Some [simp|: map-of xs k = Some v = map-of (compose
xs ys) k = map-of ys v
(proof)

lemma dom-compose: fst ‘ set (compose zs ys) C fst ¢ set xs
(proof)

lemma distinct-compose:
assumes distinct (map fst zs)
shows distinct (map fst (compose s ys))

{proof)

lemma compose-delete-twist: compose (delete k xs) ys = delete k (compose xs ys)

(proof)

lemma compose-clearjunk: compose xs (clearjunk ys) = compose s ys
(proof)

lemma clearjunk-compose: clearjunk (compose zs ys) = compose (clearjunk xs) ys
(proof)

lemma compose-empty [simp]: compose zs [| = []
{proof)

lemma compose-Some-iff:
(map-of (compose zs ys) k = Some v) +—
(3. map-of xs k = Some k' A map-of ys k' = Some v)
(proof)

lemma map-comp-None-iff:
map-of (compose xs ys) k = None «—
(map-of zs k = None V (3 k'. map-of zs k = Some k' N\ map-of ys k' = None))
(proof)

THEORY “BNF-Axiomatization” 32

1.9 map-entry

qualified fun map-entry :: 'key = (‘val = 'val) = ('key x 'val) list = (’key x
"val) list
where
map-entry k f [= [|
| map-entry k f (p # ps) =
(if fst p = k then (k, f (snd p)) # ps else p # map-entry k f ps)

lemma map-of-map-entry:
map-of (map-entry k f xs) =
(map-of xs)(k := case map-of xs k of None = None | Some v’ = Some (f v"))
(proof)

lemma dom-map-entry: fst ¢ set (map-entry k f xs) = fst * set xs
(proof)

lemma distinct-map-entry:
assumes distinct (map fst s)
shows distinct (map fst (map-entry k f xs))

(proof)

1.10 map-default

fun map-default :: 'key = "val = ("val = 'val) = (’key x 'val) list = ('key x
"val) list
where
map-default kv f [| = [(k, v)]
| map-default kv f (p # ps) =
(if fst p = k then (k, f (snd p)) # ps else p # map-default k v f ps)

lemma map-of-map-default:
map-of (map-default k v f xs) =
(map-of zs)(k := case map-of s k of None = Some v | Some v’ = Some (f v’))
(proof)

lemma dom-map-default: fst ‘ set (map-default k v f xs) = insert k (fst * set xs)
(proof)

lemma distinct-map-default:

assumes distinct (map fst s)
shows distinct (map fst (map-default k v f xs))

(proof)
end

end

THEORY “BNF-Corec” 33

2 Axiomatic Declaration of Bounded Natural Func-
tors

theory BNF-Aziomatization
imports Main
keywords

bnf-axiomatization :: thy-decl
begin

(ML)

end

3 Generalized Corecursor Sugar (corec and friends)

theory BNF-Corec

imports Main

keywords
corec :: thy-defn and
corecursive :: thy-goal-defn and
friend-of-corec :: thy-goal-defn and
coinduction-upto :: thy-decl

begin

lemma obj-distinct-prems: P — P — @ = P — (@
(proof)

lemma inject-refine: g (fz) =z = g (fy) =y = fa=fy+—ax =1y
(proof)

lemma convol-apply: BNF-Def.convol f g x = (f z, g)
(proof)

lemma Grp-UNIV-id: BNF-Def.Grp UNIV id = (=)
(proof)

lemma sum-comp-cases:
assumes f o Inl = go Inl and f o Inr = g o Inr
shows f = ¢

(proof)

lemma case-sum-Inl-Inr-L: case-sum (f o Inl) (f o Inr) = f
{proof)

lemma eg-o-Inrl: [g o Inl = h; case-sum h f = g] = f = g o Inr
{proof)

lemma id-bnf-o: BNF-Composition.id-bnf o f = f

THEORY “BNF-Corec” 34

{proof)

lemma o-id-bnf: f o BNF-Composition.id-bnf = f
(proof)

lemma if-True-False:

(if P then True else Q) <— PV @
(if P then False else Q) «+— = P N Q
(if P then Q else True) «— — PV @
(if P then Q else False) «— P N Q
(

proof)

lemma if-distrib-fun: (if ¢ then f else g) x = (if ¢ then f z else g x)
(proof)

3.1 Coinduction

lemma eg-comp-compl: a o b=fox = zroc=1id = f=ao (bo c)
(proof)

lemma self-bounded-weaken-left: (a :: 'a :: semilattice-inf) < infa b = a < b

{proof)

lemma self-bounded-weaken-right: (a :: 'a :: semilattice-inf) < infba = a < b

(proof)

lemma symp-iff: symp R +— R = R~17!
(proof)

lemma equivp-inf: [equivp R; equivp S] = equivp (inf R S)
(proof)

lemma vimage2p-rel-prod:
(Ax y. rel-prod R S (BNF-Def.convol f1 g1 x) (BNF-Def.convol f2 g2 y)) =
(inf (BNF-Def.vimage2p f1 f2 R) (BNF-Def.vimage2p g1 g2 5))
(proof)

lemma predicate2l-obj: (Vzy. Pry — Quy) = P < Q
(proof)

lemma predicate2D-0bj: P < Q = Pzy — Quzy
(proof)

locale cong =
fixes rel :: (‘a = 'a = bool) = ('b = 'b = bool)
and eval :: 'b = a
and retr :: ('a = 'a = bool) = ('a = 'a = bool)
assumes rel-mono: ARS. R < S = rel R <relS
and equivp-retr: AR. equivp R = equivp (retr R)

THEORY “BNF-Corec” 35

and retr-eval: AR z y. [(rel-fun (rel R) R) eval eval; rel (inf R (retr R)) z y]
.
retr R (eval z) (eval y)
begin

definition cong :: (‘a = 'a = bool) = bool where
cong R = equivp R A (rel-fun (rel R) R) eval eval

lemma cong-retr: cong R = cong (inf R (retr R))
{proof)

lemma cong-equivp: cong R = equivp R
(proof)

definition gen-cong :: (Ya = 'a = bool) = 'a = 'a = bool where
gen-cong R j1j2 =VR'. R < R' A cong R' — R’ j1 j2

lemma gen-cong-reflp[intro, simp|: © = y = gen-cong R z y
(proof)

lemma gen-cong-symplintro|: gen-cong R x y = gen-cong R y «
(proof)

lemma gen-cong-transplintro|: gen-cong R x y = gen-cong R y z = gen-cong
Rzz
(proof)

lemma equivp-gen-cong: equivp (gen-cong R)
(proof)

lemma leq-gen-cong: R < gen-cong R
(proof)

lemmas imp-gen-cong[intro] = predicate2D][OF leg-gen-cong]

lemma gen-cong-minimal: [R < R'; cong R'] = gen-cong R < R’
(proof)

lemma congdd-base-gen-congdd-base-aux:
rel (gen-cong R) x y = R < R’ = cong R’ = R’ (eval z) (eval y)

{proof)

lemma cong-gen-cong: cong (gen-cong R)

(proof)

lemma gen-cong-eval-rel-fun:
(rel-fun (rel (gen-cong R)) (gen-cong R)) eval eval

(proof)

THEORY “While-Combinator” 36

lemma gen-cong-eval:
rel (gen-cong R) © y = gen-cong R (eval x) (eval y)
{proof)

lemma gen-cong-idem: gen-cong (gen-cong R) = gen-cong R
(proof)

lemma gen-cong-rho:
0 = eval o f = rel (gen-cong R) (f z) (f y) = gen-cong R (0 z) (0 y)
(proof)
lemma coinduction:
assumes coind: VR. R < retr R — R < (=)
assumes cih: R < retr (gen-cong R)
shows R < (=)

(proof)

end

lemma rel-sum-case-sum:

rel-fun (rel-sum R S) T (case-sum f1 g1) (case-sum f2 g2) = (rel-fun R T f1 f2
A rel-fun S T g1 ¢2)

(proof)

context

fixes rel eval rel’ eval’ retr emb

assumes base: cong rel eval retr

and step: cong rel’ eval’ retr

and emb: eval’ o emb = eval

and emb-transfer: rel-fun (rel R) (rel’ R) emb emb
begin

interpretation base: cong rel eval retr (proof)
interpretation step: cong rel’ eval’ retr (proof)

lemma gen-cong-emb: base.gen-cong R < step.gen-cong R
(proof)

end
named-theorems friend-of-corec-simps
(ML)

end

4 A general “while” combinator

theory While-Combinator
imports Main

THEORY “While-Combinator” 37

begin

Defining partial functions in HOL is tricky. This theory provides a
while-combinator that facilitates the definition of (potentially) partial tail-
recursive functions.

The theory provides the function while-option b f s that iterates f on
s while b is true. If iteration terminates with ¢, Some t is returned, None
otherwise. Thus termination can be shown by proving that Some is always
returned (for some subset of inputs).

Convenient variations include while-Some (for more efficient code) and
while-saturate (for saturating a set).

4.1 while-option

definition while-option :: (‘a = bool) = ('a = 'a) = 'a = 'a option where
while-option b ¢ s = (if (3k. = b ((c "7 k) s))

then Some ((¢ =~ (LEAST k. = b ((¢ "7 k) 5))))

else None)

theorem while-option-unfold]code]:
while-option b ¢ s = (if b s then while-option b ¢ (¢ s) else Some s)

(proof)

lemma while-option-stop2:
while-option b ¢ s = Some t = k. t = (¢ k) sA bt
(proof)

lemma while-option-stop: while-option b ¢ s = Some t = — b t

(proof)

theorem while-option-rule:
assumes step: A\s. Ps = bs= P (cs)
and result: while-option b ¢ s = Some t
and init: P s
shows Pt
(proof)

lemma funpow-commute:
< [[Vk}>< ko f (e ((c7k)) =" (f ((¢TK) s))] = f ((¢77k) s) = (¢"k) (fs)
proo,

lemma while-option-commute-invariant:

assumes [nvariant: N\s. P s = b s = P (c s)

assumes TestCommute: A\s. P s = b s =10b"(fs)

assumes BodyCommute: A\s. Ps = bs = f (cs) =c¢c' (fs)
assumes [nitial: P s

shows map-option [(while-option b ¢ s) = while-option b’ ¢’ (f s)
(proof)

THEORY “While-Combinator” 38

lemma while-option-commute:
assumes As. bs=0b"(fs) Ns. [bs] = [(cs)=¢"(fs)
shows map-option f (while-option b ¢ s) = while-option b’ ¢’ (f s)

(proof)

4.2 while
definition while :: (‘a = bool) = ('a = 'a) = 'a = 'a

where while b ¢ s = the (while-option b ¢ s)

lemma while-unfold [code]:
while b ¢ s = (if b s then while b ¢ (c s) else)

(proof)

lemma def-while-unfold:

assumes fdef: f == while test do
shows f 1 = (if test x then f(do) else x)
(proof)

The proof rule for while, where P is the invariant.

theorem while-rule-lemma:
assumes invariant: \s. P s = b s = P (c s)
and terminate: \s. Ps = - bs = Qs
and wf: wf {(t,s). PsANbsAt=cs}
shows P s = Q (while b ¢ s)
(proof)

theorem while-rule:
[P s;
As. [P s; bs] = P (c¢s);
As. [Ps;—bs] = Q s;
wf r;
Ns. [Ps;bs] = (cs,s) er] =
Q (while b ¢ s)
(proof)

Combine invariant preservation and variant decrease in one goal:

theorem while-rule2:
[P s;
As. [Ps;bs] = P (cs)A(cs,s)€Er;
As. [Ps;—bs] = Qs;
wf r] =
Q (while b ¢ s)
(proof)

4.3 Termination, Ifp and gfp

theorem wf-while-option-Some:
assumes wf {(¢,s). (PsAbs) At=cs}
and A\s. Ps= bs = P(cs)and P s

THEORY “While-Combinator” 39

shows 3 t. while-option b ¢ s = Some t
(proof)

lemma wf-rel-while-option-Some:

assumes wf: wf R

assumes smaller: A\s. Ps ANbs= (cs,s) €R
assumes inv: \s. Ps A bs = P(cs)
assumes init: P s

shows 3 t. while-option b ¢ s = Some t

{(proof)

theorem measure-while-option-Some: fixes [:: 's = nat
shows (As. Ps = bs== P(cs) A f(cs) < fs)
= P s = dt. while-option b ¢ s = Some t

(proof)

Kleene iteration starting from the empty set and assuming some finite
bounding set:

lemma while-option-finite-subset-Some: fixes C :: 'a set
assumes mono f and AX. X C C = f X C C and finite C
shows 3 P. while-option (AA. f A # A) f {} = Some P

{(proof)

lemma [fp-the-while-option:
assumes mono f and AX. X C C = f X C C and finite C
shows Ifp f = the(while-option (MNA. fA # A) f{})

(proof)

lemma [fp-while:
assumes mono f and AX. X C C = f X C C and finite C
shows Ifp f = while (MNA. f A # A) f {}

(proof)

lemma wf-finite-less:
assumes finite (C' :: ‘a::order set)
shows wf {(z, y). {z, y} C C ANz <y}
(proof)

lemma wf-finite-greater:
assumes finite (C' :: ‘a::order set)
shows wf {(z, y). {2, y} C C Ay < a}
(proof)

lemma while-option-finite-increasing-Some:
fixes f :: 'a::order = 'a
assumes mono [and finite (UNIV :: ’a set) and s < f s
shows 3 P. while-option (AA. f A # A) f s = Some P

(proof)

THEORY “While-Combinator” 40

lemma [fp-the-while-option-lattice:

fixes [:: 'a::complete-lattice = 'a

assumes mono [and finite (UNIV :: 'a set)

shows Ifp f = the (while-option (AA. f A # A) f bot)
(proof)

lemma [fp-while-lattice:
fixes f :: 'a::complete-lattice = 'a
assumes mono [and finite (UNIV :: 'a set)
shows Ifp f = while (A\A. f A # A) f bot
(proof)

lemma while-option-finite-decreasing-Some:
fixes [:: 'a::order = a
assumes mono f and finite (UNIV :: 'a set) and fs < s
shows 3 P. while-option (M. f A # A) fs = Some P
(proof)

lemma gfp-the-while-option-lattice:

fixes [:: 'a::complete-lattice = 'a

assumes mono f and finite (UNIV :: 'a set)

shows gfp f = the(while-option (MA. f A # A) [top)
(proof)

lemma gfp-while-lattice:
fixes [:: 'a::complete-lattice = 'a
assumes mono [and finite (UNIV :: 'a set)
shows gfp f = while (AA. f A # A) f top
(proof)

4.4 while-Some and while-saturate

A variation intended for efficient code. The problem with while-option b c:
the computations of b and ¢ may share subcomputations but they need to
be performed twice.

definition while-Some :: ('s = 's option) = 's = 's option where
while-Some f = while-option (As. fs # None) (the o f)

lemma while-Some-rec[code]:
while-Some f x = (case f x© of None = Some z | Some y = while-Some f y)

(proof)
A frequent special case: saturation of a set.
definition while-saturate :: (a set = 'a set) = 'a set = 'a set option where

while-saturate f = while-option (AM. - fM C M) (AM. M U f M)

lemma while-option-cong: (\s. b s = ¢ s = ¢’ s) = while-option b ¢ s =
while-option b ¢’ s

THEORY “While-Combinator” 41

(proof)

lemma while-saturate-code[code|: while-saturate f M =
while-Some (AM. let M' = f M in if M' C M then None else Some (M U M')) M

(proof)
Termination:

lemma while-option-sat-finite-subset-Some: fixes C :: 'a set
assumes mono f and AX. X C ¢ = fX C C and finite C and M C C
shows 3 5. while-option (AM. - fM C M) (AM. M U fM) M = Some S

(proof)

corollary while-saturate-finite-subset-Some:
assumes mono f and AX. X C ¢ = fX C C and finite C and M C C
shows 3 5. while-saturate f M = Some S

(proof)
Correctness: finds the least saturated/closed set above M

lemma while-option-sat-prefiz: assumes mono f

and while-option (AM. - fM C M) (AM. M U fM) M = Some S
and M C Pand fPC P

shows S C P

(proof)

corollary while-saturate-prefiz:
[mono f; while-saturate f M = Some S; M C P; fPCP] = SCP
(proof)

4.5 Reflexive, transitive closure

Computing the reflexive, transitive closure by iterating a successor function.
Stops when an element is found that dos not satisfy the test.

More refined (and hence more efficient) versions can be found in ITP 2011
paper by Nipkow (the theories are in the AFP entry Flyspeck by Nipkow)
and the AFP article Executable Transitive Closures by René Thiemann.

context
fixes p :: 'a = bool
and f :: 'a = 'a list
and z :: ‘a

begin

qualified fun rtrancl-while-test :: 'a list x 'a set = bool
where rtrancl-while-test (ws,-) = (ws # [] A p(hd ws))

qualified fun rtrancl-while-step :: 'a list x 'a set = 'a list x 'a set
where rtrancl-while-step (ws, Z) =

(let x = hd ws; new = remdups (filter (A\y. y ¢ Z) (f z))

in (new @ tl ws, set new U Z))

THEORY “Bourbaki-Witt-Fixpoint” 42

definition rtrancl-while :: ('a list x 'a set) option
where rtrancl-while = while-option rtrancl-while-test rtrancl-while-step ([z],{z})

qualified fun rtrancl-while-invariant :: 'a list x 'a set = bool
where rtrancl-while-invariant (ws, Z) =

(x € Z A set ws C Z A distinct ws A {(z,y). y € set(fz)} “(Z — set ws) C Z
N

Z C{(zy). y € set(fx)} “{a} A (V2eZ — set ws. p 2))

qualified lemma rtrancl-while-invariant:
assumes nv: rtrancl-while-invariant st and test: rtrancl-while-test st
shows rtrancl-while-invariant (rtrancl-while-step st)

(proof)

lemma rtrancl-while-Some:
assumes rtrancl-while = Some(ws,Z)
shows if ws = |]
then Z = {(z,y). y € set(fz)}* “{a} A (V2€Z. p 2)
else ~p(hd ws) A hd ws € {(z,y). y € set(fz)}* “{z}
(proof)

lemma rtrancl-while-finite-Some:
assumes finite ({(z, y). y € set (fz)}* “{z}) (is finite ?CI)
shows 3 y. rtrancl-while = Some y

(proof)

end

end

5 The Bourbaki-Witt tower construction for trans-
finite iteration

theory Bourbaki- Witt-Fixzpoint
imports While-Combinator
begin

lemma ChainsI [intro?):
Nab.[aceY;beY] = (a,b) erV(ba)er)= Y € Chainsr
(proof)

lemma in-Chains-subset: [M € Chains r; M' C M | = M' € Chains r
(proof)

lemma in-ChainsD: [M € Chainsr;z € M;ye M| = (z,y) €rV (y,z) €T

(proof)

THEORY “Bourbaki-Witt-Fixpoint” 43

lemma Chains-FieldD: | M € Chains r; x € M | = x € Field r
(proof)

lemma in-Chains-conv-chain: M € Chains r «<— Complete-Partial-Order.chain
My (z,y)er) M
(proof)

lemma partial-order-on-trans:
[partial-order-on A r; (z, y) € r; (y, 2) € r | = (x, 2) € r

{(proof)

locale bourbaki-witt-fixrpoint =
fixes lub :: 'a set = a
and leq :: (‘a x 'a) set
and f :: 'a = a
assumes po: Partial-order leq
and lub-least: [M € Chains leq; M # {}; Nz. t € M = (=, 2) € leq | = (lub
M, z) € leq
and lub-upper: [M € Chains leq; x € M | = (z, lub M) € leq
and lub-in-Field: [M € Chains leg; M # {} | = lub M € Field leq
and increasing: N\z. © € Field leg = (z, fx) € leg
begin

lemma leg-trans: [(z, y) € leg; (y, z) € leq | = (z, 2) € leg
(proof)

lemma leg-refl: x € Field leq = (z, z) € leq

(proof)

lemma leg-antisym: [(z, y) € leg; (y, z) €leq] = z =y

{(proof)

inductive-set iterates-above :: ‘a = 'a set
for a
where
base: a € iterates-above a
| step: © € iterates-above a = fx € iterates-above a
| Sup: [M € Chains leqg; M # {}; Nz. x € M = z € iterates-above a | = lub
M € iterates-above a

definition fizp-above :: 'a = 'a
where fixp-above a = (if a € Field leq then lub (iterates-above a) else a)

lemma fizp-above-outside: a ¢ Field leq = fixp-above a = a
(proof)

lemma fixp-above-inside: a € Field leq = fizp-above a = lub (iterates-above a)

(proof)

THEORY “Bourbaki-Witt-Fixpoint” 44

context
notes leg-refl [intro!, simp]
and base [intro]
and step [intro]
and Sup [intro]
and leg-trans [trans
begin

lemma iterates-above-le-f: [© € iterates-above a; a € Field leq | = (z, fz) € leg

{(proof)

lemma iterates-above-Field: [« € iterates-above a; a € Field leq | = x € Field
leq
(proof)

lemma iterates-above-ge:
assumes y: y € iterates-above a
and a: a € Field leq
shows (a, y) € leq

(proof)

lemma iterates-above-lub:
assumes M: M € Chains leq
and nempty: M # {}
and upper: N\y. y € M = 3z € M. (y, z) € leq A\ z € iterates-above a
shows lub M € iterates-above a

(proof)

lemma iterates-above-successor:
assumes y: y € iterates-above a
and a: a € Field leq
shows y = a V y € iterates-above (f a)

(proof)

lemma iterates-above-Sup-auz:

assumes M: M € Chains leg M # {}

and M. M’ € Chains leg M’ # {}

and comp: \z. z € M = x € iterates-above (lub M') V lub M’ € iterates-above
T

shows (lub M, lub M) € leq V lub M € iterates-above (lub M)
(proof)

lemma iterates-above-triangle:
assumes z: ¢ € iterates-above a
and y: y € iterates-above a
and a: a € Field leq
shows z € iterates-above y V y € iterates-above x

(proof)

THEORY “Bourbaki-Witt-Fixpoint” 45

lemma chain-iterates-above:
assumes a: a € Field leq
shows iterates-above a € Chains leq (is 7C € -)

(proof)

lemma fixp-iterates-above: fizp-above a € iterates-above a
(proof)

lemma fizp-above-Field: a € Field leq = fixp-above a € Field leq

{(proof)

lemma fizp-above-unfold:
assumes a: a € Field leq
shows fizp-above a = f (fizp-above a) (is ?a = f ?a)

(proof)

end

lemma fizp-above-induct [case-names adm base step:
assumes adm: ccpo.admissible lub (A\z y. (z, y) € leq) P
and base: P a
and step: Az. Pz = P (fz)
shows P (fizp-above a)

(proof)

end

5.1 Connect with the while combinator for executability on
chain-finite lattices.

context bourbaki-witt-fixrpoint begin

lemma in-Chains-finite: — Translation from [Complete-Partial-Order.chain (<)
?4; finite 2A; ?A # {}] = Sup 74 € ?7A.

assumes M € Chains leq

and M # {}

and finite M

shows lub M € M

(proof)

lemma fun-pow-iterates-above: (f ~" k) a € iterates-above a

(proof)

lemma chfin-iterates-above-fun-pow:
assumes x € iterates-above a
assumes VM € Chains leq. finite M
shows 3j. 2 = (f 77 j) a

(proof)

THEORY “Bourbaki-Witt-Fixpoint” 46

lemma Chain-finite-iterates-above-fun-pow-iff:
assumes VM € Chains leq. finite M
shows 1 € iterates-above a <— (5. z = (f " J) a)

(proof)

lemma fizp-above-Kleene-iter-ex:
assumes (VM € Chains leq. finite M)
obtains k where fizp-above a = (f " k) a

(proof)

context fixes a assumes a: a € Field leq begin

lemma funpow-Field-leq: (f =~ k) a € Field leq
(proof)

lemma funpow-prefix: j < k= ((f ~"j) a, (f " k) a) € leg
(proof)

lemma funpow-suffiz: (f =~ Suck) a=(f " k)a= ((f "G+ k) a, (f k)
a) € leg
(proof)

lemma funpow-stability: (f = Suc k) a = (f k) a= ((f " 4) a, (f k) a)
€ leq
(proof)

lemma funpow-in-Chains: {(f "~ k) a |k. True} € Chains leq
(proof)

lemma fixp-above-Kleene-iter:
assumes VM € Chains leq. finite M — convenient but surely not necessary
assumes (f " Suck) a=(f k) a
shows fizp-above a = (f T k) a

(proof)

context assumes chfin: YV M € Chains leq. finite M begin

};mina Chain-finite-wf: wf {(f ((f k) a), (f 7" k) a) [k [((f k) a) #(F
(proof)

lemma while-option-finite-increasing: 3 P. while-option (AA. fA # A) fa = Some
P
(proof)

lemma fizp-above-the-while-option: fixp-above a = the (while-option (AA. f A #
A) f a)
(proof)

THEORY “Centered-Division” 47

lemma fixp-above-conv-while: fixp-above a = while (AA. fA # A) fa
(proof)

end
end
end

lemma bourbaki-witt-fixpoint-complete-latticel :
fixes [:: 'a::complete-lattice = 'a
assumes Az. z < fz
shows bourbaki-witt-fixpoint Sup {(z, y). x < y} f

(proof)

end

6 Division with modulus centered towards zero.

theory Centered-Division
imports Main
begin

lemma off-iff-abs-mod-2-eq-one:
<odd I «— |l mod 2 = 1> for | :: int
(proof)

The following specification of division on integers centers the modulus around
zero. This is useful e.g. to define division on Gauss numbers. N.b.: This is
not mentioned [2].

definition centered-divide :: <int = int = int> (infix] <cdivy 70)
where <k cdiv i = sgn | * ((k + |l| div 2) div |I])

definition centered-modulo :: <int = int = int» (infixl <cmod> 70)
where <k cmod | = (k + || div 2) mod |I] — |l| div 2>

Example: k cmod 5 € {— 2, — 1,0, 1, 2}

lemma signed-take-bit-eq-cmod:
«signed-take-bit n k = k emod (2 ~ Suc n)»
(proof)

Property signed-take-bit n k = k cmod 25U¢ ™ is the key to generalize cen-
tered division to arbitrary structures satisfying ring-bit-operations, but so
far it is not clear what practical relevance that would have.

lemma cdiv-mult-cmod-eq:
kedivl« 1+ kemodl = k»

(proof)

THEORY “Centered-Division”

lemma mult-cdiv-cmod-eq:

<l x (kedivl) + kemodl =k
{proof)

lemma cmod-cdiv-mult-eq:
<k emod l 4+ kcedivl x 1=k

{proof)

lemma cmod-mult-cdiv-eq:
<k emod 1+ 1% (k edivl) = k»

(proof)

lemma minus-cdiv-mult-eq-cmod:
<k — kedivlx1=Fkcmodl

(proof)

lemma minus-mult-cdiv-eq-cmod:

<k — 1 x (kcdivl) =k cmod
{proof)

lemma minus-cmod-eq-cdiv-mult:
<k — kcmodl =Fkecdivl*D

{proof)

lemma minus-cmod-eq-mult-cdiv:
<k — k ecmod 1 = 1 x (k cdiv 1)»
(proof)

lemma cdiv-0-eq [simp]:

<k cdiv 0 = 0»
(proof)

lemma cmod-0-eq [simp]:
<k cmod 0 = k>
{proof)

lemma cdiv-1-eq [simp]:
kcdivl =k
(proof)

lemma cmod-1-eq [simp]:
<k ecmod 1 = 0»
(proof)

lemma zero-cdiv-eq [simpl:
<0 cdiv k = 0>
{proof)

lemma zero-cmod-eq [simp]:

48

THEORY “Centered-Division”

<0 cmod k = 0»
(proof)

lemma cdiv-minus-eq:
<k ediv — 1= — (k cdiv 1)»
{proof)

lemma cmod-minus-eq [simp]:
<k cmod — I = k cmod Iy

(proof)

lemma cdiv-abs-eq:
<k cdiv |l| = sgn 1 (k cdiv 1)
{proof)

lemma cmod-abs-eq [simp]:
<k cmod || = k cmod Iy

{proof)

lemma nonzero-mult-cdiv-cancel-right:
<k x ledivl =k if <l # 0»

(proof)

lemma cdiv-self-eq [simp):
<k cedivk = 1y if <k # O
(proof)

lemma cmod-self-eq [simp]:
<k cmod k = 0>
(proof)

lemma cmod-less-divisor:
<k emod 1 < |I] — |l| div 2> if <l # 0>
(proof)

lemma cmod-less-equal-divisor:
<k emod 1 < |l] div 2> if <l # O»

(proof)

lemma divisor-less-equal-cmod’:
U div 2 — |I| <k emod Iy if <1 # 0>
{proof)

lemma divisor-less-equal-cmod:
<— (]I div 2) < k cmod 1y if <1 # 0»
(proof)

lemma abs-cmod-less-equal:
|k emod 1] < |l| div 2y if <l # 0>

THEORY “Char-ord”

{proof)

end

7 Order on characters
theory Char-ord
imports Main

begin

instantiation char :: linorder
begin

definition less-eq-char :: <char = char = bool)

where <c! < ¢2 +— of-char c1 < (of-char c2 ::

definition less-char :: <char = char = bool»

where <cl < ¢2 <— of-char ¢l < (of-char c2 :

instance
(proof)

end

lemma less-eq-char-simp [simp, code]:

<Char b0 b1 b2 b3 b4 b5 b6 b7 < Char c0 cl c2 c83 ¢4 ch c6 c7

nat)»

nat)»

50

> lexordp-eq [b7, b6, b5, b4, b3, b2, b1, b0] [c7, 6, ¢5, ¢4, 3, c2, cl, cO)»

{proof)

lemma less-char-simp [simp, code]:

<Char b0 b1 b2 b3 b4 b5 b6 b7 < Char c0 cl1 c2 c83 ¢4 c5 cb c7

+— ord-class.lexordp [b7, b6, b5, b4, b3, b2, b1, b0] [c7, c6, ¢5, ¢4, 3, c2,

cl, c0]
{proof)

instantiation char :: distrib-lattice
begin

definition «(inf :: char = -) = min)
definition «(sup :: char = -) = maw>

instance
(proof)

end

code-identifier
code-module Char-ord —

THEORY “Phantom-Type” 51

(SML) Str and (OCaml) Str and (Haskell) Str and (Scala) Str

end

8 A generic phantom type

theory Phantom-Type

imports Main

begin

datatype (‘a, 'b) phantom = phantom (of-phantom: 'b)

lemma type-definition-phantom’”: type-definition of-phantom phantom UNIV
(proof)

lemma phantom-comp-of-phantom [simp]: phantom o of-phantom = id
and of-phantom-comp-phantom [simp): of-phantom o phantom = id

(proof)

syntax -Phantom :: type = logic («(<indent=1 notation=<mizfix Phantomys> Phantom/(1'(-")))>)
syntax-consts -Phantom == phantom

translations

Phantom('t) => CONST phantom :: - = ('t, -) phantom
(ML)

lemma of-phantom-inject [simpl:
of-phantom x = of-phantom y <— = =y
(proof)

end

9 Cardinality of types

theory Cardinality
imports Phantom- Type
begin

9.1 Preliminary lemmas

lemma (in type-definition) univ:
UNIV = Abs ‘ A
(proof)

lemma (in type-definition) card: card (UNIV ::'b set) = card A
(proof)

THEORY “Cardinality” 52

9.2 Cardinalities of types
syntax -type-card :: type => nat («(<indent=1 notation=<mizfixt CARD)> CARD/(1'(-")))»)

syntax-consts -type-card == card
translations CARD('t) => CONST card (CONST UNIV :: 't set)
(ML)

lemma card-prod [simp]: CARD('a x 'b) = CARD('a) *+ CARD('b)
(proof)

lemma card-UNIV-sum: CARD('a + 'b) = (if CARD('a) # 0 N CARD('b) # 0
then CARD('a) + CARD('D) else 0)
(proof)

lemma card-sum [simp]: CARD('a + 'b) = CARD(a::finite) + CARD('b::finite)
(proof)

lemma card-UNIV-option: CARD('a option) = (if CARD('a) = 0 then 0 else
CARD('a) + 1)
(proof)

lemma card-option [simp]: CARD('a option) = Suc CARD('a::finite)
(proof)

lemma card-UNIV-set: CARD('a set) = (if CARD('a) = 0 then 0 else 2 ~ CARD('a))
(proof)

lemma card-set [simp]: CARD('a set) = 2 = CARD('a::finite)
(proof)

lemma card-nat [simp]: CARD(nat) = 0
{proof)

lemma card-fun: CARD('a = 'b) = (if CARD('a) # 0 N CARD('d) # 0 V
CARD('b) = 1 then CARD('b) ~ CARD('a) else 0)
(proof)

corollary finite-UNIV-fun:
finite (UNIV :: (‘a = 'b) set) «—
finite (UNIV :: 'a set) A finite (UNIV :: 'b set) V CARD('b) = 1
(is ?lhs «— ?rhs)

(proof)

lemma card-literal: CARD(String.literal) = 0
(proof)

THEORY “Cardinality” 53

9.3 Classes with at least 1 and 2

Class finite already captures "at least 1"
lemma zero-less-card-finite [simp]: 0 < CARD(’a::finite)
{proof)

lemma one-le-card-finite [simp]: Suc 0 < CARD('a::finite)
(proof)

class CARD-1 =
assumes CARD-1: CARD ('a) = 1
begin

subclass finite
(proof)

end

Class for cardinality "at least 2"

class card2 = finite +
assumes two-le-card: 2 < CARD('a)

lemma one-less-card: Suc 0 < CARD(’a::card2)
(proof)

lemma one-less-int-card: 1 < int CARD('a::card2)
(proof)

9.4 A type class for deciding finiteness of types
type-synonym ’a finite-UNIV = (‘a, bool) phantom

class finite-UNIV =
fixes finite-UNIV :: (‘a, bool) phantom
assumes finite-UNIV: finite-UNIV = Phantom('a) (finite (UNIV :: 'a set))

lemma finite-UNIV-code [code-unfold):

finite (UNIV :: 'a :: finite-UNIV set)

+— of-phantom (finite-UNIV :: 'a finite-UNIV')
(proof)

9.5 A type class for computing the cardinality of types

definition is-list-UNIV :: 'a list = bool
where is-list-UNIV zs = (let ¢ = CARD('a) in if ¢ = 0 then Fulse else size
(remdups xs) = c)

lemma is-list-UNIV-iff: is-list-UNIV zs «— set zs = UNIV
(proof)

THEORY “Cardinality”

type-synonym ‘a card-UNIV = (a, nat) phantom

class card-UNIV = finite-UNIV +
fixes card-UNIV :: 'a card-UNIV
assumes card-UNIV: card-UNIV = Phantom('a) CARD('a)

9.6 Instantiations for card-UNIV

instantiation nat :: card-UNIV begin
definition finite-UNIV = Phantom(nat) False
definition card-UNIV = Phantom(nat) 0
instance (proof)

end

instantiation int :: card-UNIV begin
definition finite-UNIV = Phantom(int) False
definition card-UNIV = Phantom(int) 0
instance (proof)

end

instantiation natural :: card-UNIV begin
definition finite-UNIV = Phantom(natural) False
definition card-UNIV = Phantom(natural) 0
instance

(proof)
end

instantiation integer :: card-UNIV begin
definition finite-UNIV = Phantom(integer) False
definition card-UNIV = Phantom(integer) 0
instance

(proof)
end

instantiation list :: (type) card-UNIV begin
definition finite-UNIV = Phantom(’a list) False
definition card-UNIV = Phantom('a list) 0
instance (proof)

end

instantiation wunit :: card-UNIV begin
definition finite-UNIV = Phantom(unit) True
definition card-UNIV = Phantom(unit) 1
instance (proof)

end

instantiation bool :: card-UNIV begin
definition finite-UNIV = Phantom(bool) True

o4

THEORY “Cardinality” 95

definition card-UNIV = Phantom(bool) 2
instance (proof)
end

instantiation char :: card-UNIV begin
definition finite-UNIV = Phantom(char) True
definition card-UNIV = Phantom(char) 256
instance (proof)

end

instantiation prod :: (finite-UNIV | finite-UNIV) finite-UNIV begin
definition finite-UNIV = Phantom('a x 'b)
(of-phantom (finite-UNIV :: 'a finite-UNIV) A of-phantom (finite-UNIV :: b
finite-UNIV))
instance (proof)
end

instantiation prod :: (card-UNIV, card-UNIV') card-UNIV begin
definition card-UNIV = Phantom('a x 'b)
(of-phantom (card-UNIV ::'a card-UNIV') % of-phantom (card-UNIV :: 'b card-UNIV))
instance (proof)
end

instantiation sum :: (finite-UNIV, finite-UNIV) finite-UNIV begin
definition finite-UNIV = Phantom('a + 'b)
(of-phantom (finite-UNIV :: 'a finite-UNIV) A of-phantom (finite-UNIV :: b
finite-UNIV))
instance

(proof)
end

instantiation sum :: (card-UNIV, card-UNIV) card-UNIV begin
definition card-UNIV = Phantom('a + 'b)
(let ca = of-phantom (card-UNIV :: 'a card-UNIV);
cb = of-phantom (card-UNIV :: 'b card-UNIV)
in if ca # 0 N cb # 0 then ca + cb else 0)
instance (proof)
end

instantiation fun :: (finite-UNIV, card-UNIV) finite-UNIV begin
definition finite-UNIV = Phantom('a = 'b)

(let cb = of-phantom (card-UNIV :: 'b card-UNIV)

in cb = 1 V of-phantom (finite-UNIV :: 'a finite-UNIV) A cb # 0)
instance

(proof)
end

instantiation fun :: (card-UNIV, card-UNIV) card-UNIV begin
definition card-UNIV = Phantom('a = 'b)

THEORY “Cardinality” 56

(let ca = of-phantom (card-UNIV :: 'a card-UNIV);
cb = of-phantom (card-UNIV :: 'b card-UNIV)
inifca# 0 Ncb# 0V cb=1then cb ~ ca else 0)
instance (proof)
end

instantiation option :: (finite-UNIV) finite-UNIV begin

definition finite-UNIV = Phantom(’a option) (of-phantom (finite-UNIV :: 'a fi-
nite-UNIV))

instance (proof)

end

instantiation option :: (card-UNIV) card-UNIV begin
definition card-UNIV = Phantom(’a option)
(let ¢ = of-phantom (card-UNIV :: 'a card-UNIV) in if ¢ # 0 then Suc c else 0)
instance (proof)
end

instantiation String.literal :: card-UNIV begin
definition finite-UNIV = Phantom(String.literal) False
definition card-UNIV = Phantom(String.literal) 0
instance

(proof)
end

instantiation set :: (finite-UNIV) finite-UNIV begin

definition finite-UNIV = Phantom('a set) (of-phantom (finite-UNIV :: 'a fi-
nite-UNIV))

instance (proof)

end

instantiation set :: (card-UNIV) card-UNIV begin
definition card-UNIV = Phantom('a set)
(let ¢ = of-phantom (card-UNIV :: 'a card-UNIV) in if ¢ = 0 then 0 else 2 ~ ¢)
instance (proof)
end

lemma UNIV-finite-1: UNIV = set [finite-1.a4]
(proof)

lemma UNIV-finite-2: UNIV = set [finite-2.a1, finite-2.as)
(proof)

lemma UNIV-finite-3: UNIV = set [finite-3.a1, finite-3.as, finite-3.as]
(proof)

lemma UNIV-finite-4: UNIV = set [finite-4 .a1, finite-4 .aq, finite-4.as, finite-4 .a4)
(proof)

THEORY “Code-Cardinality” 57

lemma UNIV-finite-5:
UNIV = set [finite-5.a1, finite-5.aq, finite-5.as, finite-5.ay4, finite-5.as)
(proof)

instantiation Enum.finite-1 :: card-UNIV begin
definition finite-UNIV = Phantom(Enum.finite-1) True
definition card-UNIV = Phantom(Enum.finite-1) 1
instance

(proof)
end

instantiation Enum.finite-2 :: card-UNIV begin
definition finite-UNIV = Phantom(Enum.finite-2) True
definition card-UNIV = Phantom(Enum.finite-2) 2
instance

(proof)
end

instantiation Enum.finite-3 :: card-UNIV begin
definition finite-UNIV = Phantom(Enum.finite-3) True
definition card-UNIV = Phantom(Enum.finite-3) 3
instance

(proof)
end

instantiation FEnum.finite-4 :: card-UNIV begin
definition finite-UNIV = Phantom(Enum.finite-4) True
definition card-UNIV = Phantom(Enum.finite-4) 4
instance

(proof)
end

instantiation Enum.finite-5 :: card-UNIV begin
definition finite-UNIV = Phantom(Enum.finite-5) True
definition card-UNIV = Phantom(Enum.finite-5) 5

instance

(proof)
end

end

10 Code setup for sets with cardinality type infor-
mation

theory Code-Cardinality imports Cardinality begin

Implement CARD('a) via card-UNIV-class.card-UNIV and provide im-
plementations for finite, card, (C), and (=)if the calling context already

THEORY “Code-Cardinality” 58

provides finite-UNIV and card-UNIV instances. If we implemented the lat-
ter always via card-UNIV-class.card-UNIV, we would require instances of
essentially all element types, i.e., a lot of instantiation proofs and — at run
time — possibly slow dictionary constructions.

context
begin

qualified definition card-UNIV' :: 'a card-UNIV
where card-UNIV' = Phantom('a) CARD('a)

lemma CARD-code [code-unfold):
CARD('a) = of-phantom (card-UNIV' :: 'a card-UNIV)
(proof)

lemma card-UNIV'-code [code]:
card-UNIV' = card-UNIV

(proof)

end

lemma card-Compl:
finite A = card (— A) = card (UNIV :: 'a set) — card (A :: 'a set)
(proof)

context fixes xs :: 'a :: finite-UNIV list
begin

qualified definition finite’ :: ‘a set = bool
where [simp, code-abbrev]: finite’ = finite

lemma finite’-code [code]:

finite’ (set xs) +— True

finite’ (List.coset xs) +— of-phantom (finite-UNIV :: 'a finite-UNIV)
(proof)

end

context fixes zs :: ‘a :: card-UNIV list
begin

qualified definition card’ :: 'a set = nat
where [simp, code-abbrev]: card’ = card

lemma card’-code [code]:
card’ (set xs) = length (remdups xs)
card’ (List.coset zs) = of-phantom (card-UNIV :: 'a card-UNIV') — length (remdups
xs)
(proof) definition subset’ :: ‘a set = 'a set = bool
where [simp, code-abbrev]: subset’ = (C)

THEORY “Code-Cardinality” 59

lemma subset’-code [code]:
subset’ A (List.coset ys) «— (Vy € set ys. y ¢ A)
subset’ (set ys) B +— (Vy € set ys. y € B)
subset’ (List.coset xs) (set ys) «— (let n = CARD('a) in n > 0 A card(set (zs
Q ys)) = n)
(proof) definition eg-set :: 'a set = 'a set = bool
where [simp, code-abbrev]: eq-set = (=)

lemma eg-set-code [code]:
fixes ys
defines 7hs =
let n = CARD('a)
in if n = 0 then False else
let zs' = remdups zs; ys' = remdups ys
in length zs’ + length ys' = n A (Vz € set zs’. x ¢ set ys') A (Vy € set ys'.
y ¢ set xs’)
shows eg-set (List.coset xs) (set ys) «— rhs
and eg-set (set ys) (List.coset xs) «— rhs
and eg-set (set zs) (set ys) «— (Y € set zs. x € set ys) A (Vy € set ys. y €
set xs)
and eg-set (List.coset xs) (List.coset ys) «— (Vz € set zs. x € set ys) AN (Vy €
set ys. y € set xs)

(proof)

end

Provide more informative exceptions than Match for non-rewritten cases.
If generated code raises one these exceptions, then a code equation calls the
mentioned operator for an element type that is not an instance of card-UNIV
and is therefore not implemented via card-UNIV-class.card-UNIV. Constrain
the element type with sort card-UNIV to change this.

lemma card-code [code]:
card (set xs) = length (remdups xs)
card (List.coset xs) =
Code.abort (STR "'card (List.coset -) requires type class instance card-UNIV'")
(A-. card (List.coset xs))

(proof)

lemma coset-subseteq-set-code [code]:

set xs C B = list-all (A\z. z € B) wxs

A C List.coset ys = list-all (A\y. y ¢ A) ys

List.coset xs C set ys «—

(if zs =[] A ys =[] then False

else Code.abort

(STR "'subset-eq (List.coset -) (List.set -) requires type class instance card-UNIV")
(A-. List.coset xs C set ys))

{proof)

THEORY “Case-Converter” 60

notepad begin — test code setup
(proof)

end

end

11 Eliminating pattern matches

theory Case-Converter
imports Main
begin

definition missing-pattern-match :: String.literal = (unit = ‘a) = 'a where
[code del]: missing-pattern-match m f = f ()

lemma missing-pattern-match-cong [congl:
m = m’' = missing-pattern-match m f = missing-pattern-match m’ f
(proof)

lemma missing-pattern-match-code [code-unfold):
missing-pattern-match = Code.abort

(proof)
(ML)

end

12 Lazy types in generated code

theory Code-Lazy
imports Case-Converter
keywords
code-lazy-type
activate-lazy-type
deactivate-lazy-type
activate-lazy-types
deactivate-lazy-types
print-lazy-types :: thy-decl
begin

This theory and the CodeLazy tool described in [3].

It hooks into Isabelle’s code generator such that the generated code eval-
uates a user-specified set of type constructors lazily, even in target languages
with eager evaluation. The lazy type must be algebraic, i.e., values must be
built from constructors and a corresponding case operator decomposes them.
Every datatype and codatatype is algebraic and thus eligible for lazification.

THEORY “Code-Lazy” 61

12.1 The type lazy

typedef ‘a lazy = UNIV :: 'a set (proof)

setup-lifting type-definition-lazy

lift-definition delay :: (unit = 'a) = ‘a lazy is Af. f () (proof)
lift-definition force :: ‘a lazy = 'a is Az. z (proof)

code-datatype delay
lemma force-delay [code]: force (delay f) = f () (proof)
lemma delay-force: delay (A-. force s) = s (proof)

definition termify-lazy2 :: 'a :: typerep lazy = term
where termify-lazy2 x =
Code-Evaluation. App (Code-Evaluation. Const (STR "'Code-Lazy.delay’) (TYPEREP ((unit
= 'a) = 'a lazy)))
(Code-Evaluation.Const (STR ' Pure.dummy-pattern’) (TYPEREP((unit =
'a))))

definition termify-lazy ::
(String.literal = 'typerep = 'term) =
("term = 'term = ‘term) =
(String.literal = "typerep = 'term = 'term) =
"typerep = ('typerep = 'typerep = 'typerep) = ("typerep = 'typerep) =
('a = 'term) = 'typerep = 'a :: typerep lazy = "term = term
where termify-lazy - - - - - - - - z - = termify-lazy2 x

declare [[code drop: Code-Evaluation.term-of :: - lazy = -]

lemma term-of-lazy-code [code]:
Code-FEvaluation.term-of x =
termify-lazy
Code-Evaluation. Const Code-Evaluation.App Code-Evaluation.Abs
TYPEREP(unit) (AT U. typerep. Typerep (STR "'fun’) [T, U]) (AT. type-
rep. Typerep (STR "'Code-Lazy.lazy') [T)])
Code-Evaluation.term-of TYPEREP('a) x (Code-Evaluation.Const (STR """

(TYPEREP (unit)))
for z :: 'a :: {typerep, term-of } lazy
(proof)

The implementations of - lazy using language primitives cache forced
values.

Term reconstruction for lazy looks into the lazy value and reconstructs
it to the depth it has been evaluated. This is not done for Haskell as we
do not know of any portable way to inspect whether a lazy value has been
evaluated to or not.

code-printing code-module Lazy — (SML) file ~~ /src/ HOL/ Library/ Tools/lazy. ML
for type-constructor lazy constant delay force termify-lazy

| type-constructor lazy — (SML) - Lazy.lazy

| constant delay — (SML) Lazy.lazy

THEORY “Code-Lazy” 62

| constant force — (SML) Lazy.force
| constant termify-lazy — (SML) Lazy.termify’-lazy

code-reserved (SML) Lazy

code-printing — For code generation within the Isabelle environment, we reuse

the thread-safe implementation of lazy from ~~/src/Pure/Concurrent/lazy.ML
code-module Lazy — (Fwal) > for constant undefined

| type-constructor lazy — (Eval) - Lazy.lazy

| constant delay — (Ewval) Lazy.lazy

| constant force — (Ewval) Lazy.force

| code-module Termify-Lazy — (Eval) file ~~ /src/ HOL/ Library/ Tools/ termify-lazy. ML

for constant termify-lazy
| constant termify-lazy — (Eval) Termify’-Lazy.termify’-lazy

code-reserved (Fval) Termify-Lazy

code-printing
type-constructor lazy — (OCaml) - Lazy.t
| constant delay — (OCaml) Lazy.from’-fun
| constant force — (OCaml) Lazy.force
| code-module Termify-Lazy — (OCaml) file ~~ /src/ HOL/ Library/ Tools/ termify-lazy.ocaml
for constant termify-lazy
| constant termify-lazy — (OCaml) Termify’-Lazy.termify’-lazy

code-reserved (OCaml) Lazy Termify-Lazy

code-printing
code-module Lazy — (Haskell) file ~~ /src/HOL/ Library/ Tools/lazy.hs
for type-constructor lazy constant delay force
| type-constructor lazy — (Haskell) Lazy.Lazy -
| constant delay — (Haskell) Lazy.delay
| constant force — (Haskell) Lazy.force

code-reserved (Haskell) Lazy

code-printing
code-module Lazy — (Scala) file ~~ /src/HOL/ Library/ Tools/lazy.scala
for type-constructor lazy constant delay force termify-lazy
| type-constructor lazy — (Scala) Lazy.Lazy[-]
| constant delay — (Scala) Lazy.delay
| constant force — (Scala) Lazy.force
| constant termify-lazy — (Scala) Lazy.termify’-lazy

code-reserved (Scala) Lazy

Make evaluation with the simplifier respect delays.

lemma delay-lazy-cong: delay f = delay f (proof)
(ML)

THEORY “Code-Test” 63

12.2 Implementation
(ML)

end

13 Test infrastructure for the code generator

theory Code-Test
imports Main

keywords test-code :: diag
begin

13.1 YXML encoding for term
datatype (plugins del: code size quickcheck) yrml-of-term = YXML

lemma yot-anything: © = (y :: yzml-of-term)

(proof)

definition yot-empty :: yrml-of-term where [code del]: yot-empty = YXML
definition yot-literal :: String.literal = yxml-of-term
where [code del]: yot-literal - = YXML
definition yot-append :: yrml-of-term = yxml-of-term = yxml-of-term
where [code del]: yot-append - - = YXML
definition yot-concat :: yrml-of-term list = yaxml-of-term
where [code del]: yot-concat - = YXML

Serialise yxml-of-term to native string of target language

code-printing type-constructor yzml-of-term
— (SML) string

and (OCaml) string

and (Haskell) String

and (Scala) String

constant yot-empty

— (SML)

and (OCaml)

and (Haskell)

and (Scala)

constant yot-literal

— (SML) -

and (OCaml) -

and (Haskell) -

and (Scala) -

constant yot-append

— (SML) String.concat [(-), (-)]
and (OCaml) String.concat [(-); (-)]
and (Haskell) infixr 5 ++

and (Scala) infixl 5 +

THEORY “Code-Test” 64

| constant yot-concat
— (SML) String.concat
and (OCaml) String.concat
and (Haskell) Prelude.concat
and (Scala) -.mkString()

Stripped-down implementations of Isabelle’s XML tree with YXML en-
coding as defined in ~~/src/Pure/PIDE/xml.ML, ~~/src/Pure/PIDE/yxml.ML
sufficient to encode term as in ~~/src/Pure/term_xml.ML.

datatype (plugins del: code size quickcheck) xml-tree = XML-Tree

lemma zml-tree-anything: x = (y :: zml-tree)
(proof)

context begin
(ML)

type-synonym attributes = (String.literal x String.literal) list
type-synonym body = xml-tree list

definition FElem :: String.literal = attributes = xml-tree list = xml-tree
where [code del]: Elem - - - = XML-Tree

definition Text :: String.literal = xml-tree
where [code del]: Text - = XML-Tree

definition node :: xmli-tree list = xmli-tree
where node ts = Elem (STR '") [] ts

definition tagged :: String.literal = String.literal option = xml-tree list = xml-tree
where tagged tag x ts = Elem tag (case x© of None =[] | Some ' = [(STR 0",

z')]) ts

definition list where list f xs = map (node o f) zs

definition X :: yaml-of-term where X = yot-literal (STR 0x05)
definition Y :: yzmli-of-term where Y = yot-literal (STR 0x06)

definition XY :: yzml-of-term where XY = yot-append X Y
definition XYX :: yrml-of-term where XYX = yot-append XY X

end
code-datatype zml.Elem zml. Text

definition yzmli-string-of-rml-tree :: xml-tree = yxml-of-term = yxml-of-term
where [code del|: yzml-string-of-xml-tree - - = YXML

lemma yzmi-string-of-rmi-tree-code [code]:
yzml-string-of-rml-tree (xml.Elem name atts ts) rest =

THEORY “Combine-PER” 65

yot-append zml. XY (
yot-append (yot-literal name) (
foldr (A(a, x) rest.
yot-append zml. Y (
yot-append (yot-literal a) (
yot-append (yot-literal (STR ""="")) (
yot-append (yot-literal x) rest)))) atts (
foldr yzml-string-of-xmi-tree ts (
yot-append xml. XYX rest))))
yrml-string-of-rml-tree (xml. Text s) rest = yot-append (yot-literal s) rest

(proof)

definition yzmli-string-of-body :: xml.body = yxml-of-term
where yxml-string-of-body ts = foldr yzml-string-of-rml-tree ts yot-empty

Encoding term into XML trees as defined in ~~/src/Pure/term_xml .ML.

definition zml-of-typ :: Typerep.typerep = xml.body
where [code del]: xml-of-typ - = [XML-Tree]

definition zml-of-term :: Code-FEvaluation.term = zml.body
where [code del]: xml-of-term - = [XML-Tree]

lemma zml-of-typ-code [code]:

aml-of-typ (typerep. Typerep t args) = [zml.tagged (STR "0") (Some t) (xml.list
axml-of-typ args)]
(proof)

lemma zml-of-term-code [codel:

xzml-of-term (Code-Evaluation.Const = ty) = [zml.tagged (STR "'0") (Some z)
(zml-of-typ ty)]

axml-of-term (Code-FEvaluation. App t1 t2) = [zml.tagged (STR "'5'") None [xml.node
(zml-of-term t1), xml.node (xml-of-term t2)]]

aml-of-term (Code-Evaluation.Abs z ty t) = [zml.tagged (STR "4') (Some x)
[zml.node (zml-of-typ ty), xml.node (xml-of-term t)]]

— FIXME: Code-FEvaluation. Free is used only in HOL. Quickcheck-Narrowing to
represent uninstantiated parameters in constructors. Here, we always translate
them to Free variables.

xzml-of-term (Code-Evaluation.Free x ty) = [zml.tagged (STR "'1"") (Some z)
(zml-of-typ ty)]

(proof)

definition yxml-string-of-term :: Code-FEvaluation.term = yxml-of-term
where yxml-string-of-term = yxml-string-of-body o xml-of-term

13.2 Test engine and drivers
(ML)

end

THEORY “Complete-Partial-Order2” 66

14 A combinator to build partial equivalence re-
lations from a predicate and an equivalence re-
lation

theory Combine-PER
imports Main
begin

unbundle lattice-syntax

definition combine-per :: ('a = bool) = (‘a = 'a = bool) = 'a = 'a = bool
where combine-per PR = (Axy. Pz A Py) MR

lemma combine-per-simp [simp):
combine-per PR xy +— Pz AN Py Az = yfor R (infixl <x) 50)
(proof)

lemma combine-per-top [simp|: combine-per T R = R
(proof)

lemma combine-per-eq [simp]: combine-per P HOL.eq = HOL.eq N (Az y. P z)
(proof)

lemma symp-combine-per: symp R = symp (combine-per P R)
(proof)

lemma transp-combine-per: transp R = transp (combine-per P R)
(proof)

lemma combine-perl: P x =—> P y = a =~ y = combine-per P R xz y for R
(infix]l = 50)
(proof)

lemma symp-combine-per-symp: symp R = symp (combine-per P R)
(proof)

lemma transp-combine-per-transp: transp R = transp (combine-per P R)
(proof)

lemma equivp-combine-per-part-equivp [intro?):
fixes R (infixl <= 50)
assumes Jz. P z and equivp R
shows part-equivp (combine-per P R)

(proof)

end

THEORY “Complete-Partial-Order2” 67

15 Formalisation of chain-complete partial orders,
continuity and admissibility
theory Complete-Partial-Order2
imports Main
begin

unbundle lattice-syntax

lemma chain-transfer [transfer-rule]:
includes lifting-syntax

shows ((A ===> A ===> (=)) ===> rel-set A ===> (=)) Complete-Partial-Order.chain
Complete-Partial-Order.chain

(proof)
lemma linorder-chain [simp, introl]:

fixes Y :: - :: linorder set

shows Complete-Partial-Order.chain (<) Y

(proof)

lemma fun-lub-apply: \Sup. fun-lub Sup Y z = Sup ((Mf. fz) °Y)
(proof)

lemma fun-lub-empty [simp]: fun-lub lub {} = (M- lub {})
{proof)

lemma chain-fun-ordD:
assumes Complete-Partial-Order.chain (fun-ord le) Y
shows Complete-Partial-Order.chain le (A\f. fz) °Y)

{proof)

lemma chain-Diff:
Complete-Partial-Order.chain ord A
= Complete-Partial-Order.chain ord (A — B)

{proof)

lemma chain-rel-prodD1 :
Complete-Partial-Order.chain (rel-prod orda ordb) Y
= Complete-Partial-Order.chain orda (fst © Y)

{proof)

lemma chain-rel-prodD2:
Complete-Partial-Order.chain (rel-prod orda ordb) Y
= Complete-Partial-Order.chain ordb (snd ‘ Y)

{proof)

context ccpo begin

THEORY “Complete-Partial-Order2” 68

lemma ccpo-fun: class.ccpo (fun-lub Sup) (fun-ord (<)) (mk-less (fun-ord (<)))
(proof)

lemma ccpo-Sup-below-iff: Complete-Partial-Order.chain (<) ¥ = Sup Y < z
+— (VyeY. y <z
(proof)

lemma Sup-minus-bot:
assumes chain: Complete-Partial-Order.chain (<) A
shows | [(4 — {[J{}}) =J4
(is ?lhs = %rhs)
(proof)

lemma mono-lub:
fixes le-b (infix <C» 60)
assumes chain: Complete-Partial-Order.chain (fun-ord (<)) Y
and mono: \f. f € Y = monotone le-b (<) f
shows monotone (C) (<) (fun-lub Sup Y)

(proof)

context

fixes le-b (infix <C») 60) and Y f

assumes chain: Complete-Partial-Order.chain le-b Y

and monol: A\y. y € Y = monotone le-b (<) (Az. fz y)

and mono2: Az ab. [z € Y;aCbacY;beY]= fza<fabd
begin

lemma Sup-mono:
assumes le: 2 C yand z: z € Yand y: y € Y
shows | |(fz ‘YY) <||(fy ‘Y) (is - < ?rhs)
{proof)

1<emr}1§1 diag-Sup: | |((Az. | J(fz ‘Y)) ‘Y)=|((Az. fzx) °Y) (is ?lhs = ?rhs)
Proo

end

lemma Sup-image-mono-le:
fixes le-b (infix <C» 60) and Sup-b (<\/)
assumes ccpo: class.ccpo Sup-b (C) lt-b
assumes chain: Complete-Partial-Order.chain (C) Y
and mono: Az y. [z Cy;2 € Y] = fz<fy
shows Sup (f* Y) < f (VY)

(proof)

lemma swap-Sup:
fixes le-b (infix (C) 60)
assumes Y: Complete-Partial-Order.chain (C) Y

THEORY “Complete-Partial-Order2” 69

and Z: Complete-Partial-Order.chain (fun-ord (<)) Z
and mono: A\f. f € Z = monotone (C) (<) f
shows | |((Az. | (2 * Y)) * Z) = U (. (M- f2) ©2)) °Y)

(is ?lhs = %rhs)

(proof)

lemma fizp-mono:
assumes fg: fun-ord (<) fg
and f: monotone (<) (<) f
and g: monotone (<) (<) ¢
shows ccpo-class.fixp f

(proof)

<
<
< cepo-class.fizp g

~— —

context fixes ordb :: 'b = 'b = bool (infix <C) 60) begin

lemma iterates-mono:
assumes f: f € cepo.iterates (fun-lub Sup) (fun-ord (<)) F
and mono: A\f. monotone (C) (<) f = monotone (C) (<) (F f)
shows monotone (C) (<) f

{proof)

lemma fixp-preserves-mono:
assumes mono: \z. monotone (fun-ord (<)) (<) (\f. F fz)
and mono2: A\f. monotone (C) (<) f = monotone (C) (<) (F f)
shows monotone (C) (<) (cepo.fixp (fun-lub Sup) (fun-ord (<)) F)
(is monotone - - fizp)

(proof)

end
end

lemma monotone2monotone:
assumes 2: Az. monotone ordb ordc (Ay. fz y)
and ¢: monotone orda ordb (Az. t x)
and 1: A\y. monotone orda ordc (A\z. f z y)
and trans: transp ordc

shows monotone orda orde (\z. fx (t x))

{proof)

15.1 Continuity

definition cont :: (‘a set = ‘a) = (‘a = '‘a = bool) = (b set = 'b) = ('b="b
= bool) = ('a = 'b) = bool
where

cont luba orda lubb ordb f <—

(VY. Complete-Partial-Order.chain orda Y — Y # {} — f (luba Y) = lubb

(fY)

THEORY “Complete-Partial-Order2” 70

definition mcont :: (‘a set = 'a) = (‘a = 'a = bool) = ('b set = 'b) = (b =
b = bool) = ('a = 'b) = bool
where

mcont luba orda lubb ordb f +—

monotone orda ordb f N cont luba orda lubb ordb f

15.1.1 Theorem collection cont-intro

named-theorems cont-intro continuity and admissibility intro rules
(ML)

lemmas [cont-intro] =
call-mono
let-mono
if-mono
option.const-mono
tailrec.const-mono
bind-mono

experiment begin

The following proof by simplification diverges if variables are not handled
properly.
lemma (Af. monotone R S f = thesis) = monotone R S g = thesis
{proof)

end
declare if-monolsimp)

lemma monotone-id’ [cont-intro|: monotone ord ord (Az. z)

(proof)

lemma monotone-applyl:
monotone orda ordb F => monotone (fun-ord orda) ordb (\f. F (f z))

{proof)

lemma monotone-if-fun [partial-function-mono):
[monotone (fun-ord orda) (fun-ord ordb) F; monotone (fun-ord orda) (fun-ord
ordb) G]
= monotone (fun-ord orda) (fun-ord ordb) (Af n. if ¢ n then F fn else G fn)
(proof)

lemma monotone-fun-apply-fun [partial-function-mono):
monotone (fun-ord (fun-ord ord)) (fun-ord ord) (Af n. ft (g n))

{proof)

lemma monotone-fun-ord-apply:
monotone orda (fun-ord ordd) f «— (VY x. monotone orda ordb (A\y. fy x))

THEORY “Complete-Partial-Order2” 71

(proof)
context preorder begin
declare transp-on-le[cont-intro]

lemma monotone-const [simp, cont-intro|: monotone ord (<) (A-. ¢)
{proof)

end

lemma transp-le [cont-intro, simpl:
class.preorder ord (mk-less ord) = transp ord

{proof)
context partial-function-definitions begin
declare const-mono [cont-intro, simp|

lemma transp-le [cont-intro, simp|: transp leq
(proof)

lemma preorder [cont-intro, simp|: class.preorder leq (mk-less leq)
(proof)

declare ccpo[cont-intro, simp)
end

lemma contl [intro?):
(AY. [Complete-Partial-Order.chain orda Y; Y # {} | = f (luba Y) = lubb

(oY)

= cont luba orda lubb ordb f
{proof)

lemma contD:
[cont luba orda lubb ordb f; Complete-Partial-Order.chain orda Y; Y # {}]
= f (luba V) = lubb (f ¢ Y)
{proof)

lemma cont-id [simp, cont-intro|: \Sup. cont Sup ord Sup ord id

(proof)

lemma cont-id’ [simp, cont-intro]: A\Sup. cont Sup ord Sup ord (A\z.)
{proof)

lemma cont-applyl [cont-intro):
assumes cont: cont luba orda lubb ordb g
shows cont (fun-lub luba) (fun-ord orda) lubb ordb (Af. g (f z))

THEORY “Complete-Partial-Order2” 72

{proof)

lemma call-cont: cont (fun-lub lub) (fun-ord ord) lub ord (Af. ft)
{proof)

lemma cont-if [cont-intro]:
[cont luba orda lubb ordb f; cont luba orda lubb ordb g |
= cont luba orda lubb ordb (Az. if ¢ then f z else g x)

{proof)

lemma mcontl [intro?):
[monotone orda ordb f; cont luba orda lubb ordb f | = mcont luba orda lubb
ordb f

{proof)

lemma mcont-mono: mcont luba orda lubb ordb f = monotone orda ordb f
(proof)

lemma mcont-cont [simpl: mcont luba orda lubb ordb f = cont luba orda lubb
ordb f

(proof)

lemma mcont-monoD:
[mcont luba orda lubb ordb f; orda zy | = ordb (fz) (fy)

{proof)

lemma mcont-contD:
[mcont luba orda lubb ordb f; Complete-Partial-Order.chain orda Y; Y # {}]
= f (luba Y) = lubb (f ° Y)
{proof)

lemma mcont-call [cont-intro, simp):
mecont (fun-lub lub) (fun-ord ord) lub ord (Af. f 1)

{proof)

lemma mcont-id’ [cont-intro, simp|: mecont lub ord lub ord (Az. x)
(proof)

lemma mcont-applyl:

mecont luba orda lubb ordb (Az. F x) = mcont (fun-lub luba) (fun-ord orda) lubb
ordb (\f. F (f z))

(proof)

lemma mcont-if [cont-intro, simp):
[mcont luba orda lubb ordb (Az. f x); mcont luba orda lubb ordb (A\z. g z) |
= mcont luba orda lubb ordb (Axz. if ¢ then f z else g x)

(proof)

lemma cont-fun-lub-apply:

THEORY “Complete-Partial-Order2” 73

cont luba orda (fun-lub lubb) (fun-ord ordb) f <— (Vz. cont luba orda lubb ordb
(Ay. fy z))
{proof)

lemma mcont-fun-lub-apply:

mcont luba orda (fun-lub lubb) (fun-ord ordb) f «— (VY z. mcont luba orda lubb
ordb (A\y. fy x))

(proof)

context ccpo begin

lemma cont-const [simp, cont-intro]: cont luba orda Sup (<) (Az. c)
{proof)

lemma mcont-const [cont-intro, simp):
meont luba orda Sup (<) (Az. ¢)
{proof)

lemma cont-apply:

assumes 2: Axz. cont lubb ordb Sup (<) (Ay. fz y)
and t: cont luba orda lubb ordb (Az. t x)
and 1: Ay. cont luba orda Sup (<) (Az. fzy)
and mono: monotone orda ordb (\z. t x)
and mono2: A\z. monotone ordb (<) (Ay. fz y)
and monol: A\y. monotone orda (<) (A\z. fz y)

shows cont luba orda Sup (<) (Az. fz (t z))

(proof)

lemma mcont2mcont”:

[Az. meont lub” ord’ Sup (<) (Ay. fz y);
Ny. mcont lub ord Sup (<) (A\z. fz y);
mceont lub ord lub’ ord’ (Ay. ty) |

= mcont lub ord Sup (<) (\z. fz (I z))

{proof)

lemma mcont2mcont:
[meont lub’ ord’ Sup (<) (Az. fx); mcont lub ord lub” ord’ (Az. t)]
= mecont lub ord Sup (<) (A\z. f (t z))
(proof)

context
fixes ord :: 'b = 'b = bool (infix (C» 60)
and lub :: 'b set = 'b (<\/?)
begin

lemma cont-fun-lub-Sup:
assumes chainM: Complete-Partial-Order.chain (fun-ord (<)) M
and mcont [rule-format]: VfeM. mcont lub (C) Sup (<) f
shows cont lub (C) Sup (<) (fun-lub Sup M)

THEORY “Complete-Partial-Order2” 74

(proof)

lemma mcont-fun-lub-Sup:
[Complete-Partial-Order.chain (fun-ord (<)) M;
Y feM. mcont lub ord Sup (<) f]
= mecont lub (C) Sup (<) (fun-lub Sup M)

(proof)

lemma iterates-mcont:
assumes f: f € ccpo.iterates (fun-lub Sup) (fun-ord (<)) F
and mono: Af. mcont lub (C) Sup (<) f = mcont lub (C) Sup (<) (F f)
shows mcont lub (C) Sup (<) f

(proof)

lemma fixp-preserves-mcont:
assumes mono: Az. monotone (fun-ord (<)) (<) (Mf. F fx)
and mcont: N\f. mcont lub (C) Sup (<) f = mcont lub (C) Sup (<) (F f)
shows mcont lub (C) Sup (<) (cepo.fizp (fun-lub Sup) (fun-ord (<)) F)
(is mcont - - - - Zfizp)
{proof)

end

context
fixes F::'c='cand U ::'c = b= ‘aand C :: ('b = 'a) = 'cand f
assumes mono: Az. monotone (fun-ord (<)) (<) (Af. U (F (Cf)) z)
and eq: f = C (cepo.fixp (fun-lub Sup) (fun-ord (<)) (Af. U (F (C [))))
and inverse: Af. U (Cf) = f

begin

lemma fizp-preserves-mono-uc:
assumes mono2: \f. monotone ord (<) (U f) = monotone ord (<) (U (F f))
shows monotone ord (<) (U f)

(proof)

lemma fizp-preserves-mcont-uc:

assumes mcont: N\f. mcont lubb ordb Sup (<) (U f) = mcont lubb ordb Sup
(<) (U (F)

shows mcont lubb ordb Sup (<) (U f)
(proof)

end

lemmas fixp-preserves-monol = fixp-preserves-mono-uc[of Az. z - Az. z, OF - -
refl]

lemmas fixp-preserves-mono2 =

fixp-preserves-mono-uclof case-prod - curry, unfolded case-prod-curry curry-case-prod,
OF - - refl]

lemmas fixp-preserves-mono3 =

THEORY “Complete-Partial-Order2” 75

fizp-preserves-mono-uclof A\f. case-prod (case-prod f) - Mf. curry (curry f), un-
folded case-prod-curry curry-case-prod, OF - - refl]
lemmas fizp-preserves-mono =

fixp-preserves-mono-uclof Af. case-prod (case-prod (case-prod f)) - Af. curry
(curry (curry f)), unfolded case-prod-curry curry-case-prod, OF - - refi]

lemmas fizp-preserves-mcontl = fixp-preserves-mcont-uclof Az. xz - \z. z, OF - -
refi]
lemmas fizp-preserves-mcont2 =

fizp-preserves-mcont-uc|of case-prod - curry, unfolded case-prod-curry curry-case-prod,
OF - - refl]
lemmas fixp-preserves-mcont3 =

fizp-preserves-mcont-uc[of Af. case-prod (case-prod f) - Nf. curry (curry f), un-
folded case-prod-curry curry-case-prod, OF - - refl]
lemmas fixp-preserves-mconts =

fixp-preserves-mcont-uclof Af. case-prod (case-prod (case-prod f)) - Af. curry
(curry (curry f)), unfolded case-prod-curry curry-case-prod, OF - - refl]

end

lemma (in preorder) monotone-if-bot:
fixes bot
assumes mono: Az y. [z < y; = (z < bound) | = ord (fz) (fy)
and bot: Az. = z < bound = ord bot (f x) ord bot bot
shows monotone (<) ord (Az. if z < bound then bot else f x)

(proof)

lemma (in ccpo) mcont-if-bot:

fixes bot and lub (<\/>) and ord (infix <C» 60)

assumes ccpo: class.cepo lub (C) It

and mono: Az y. [z < y; vz <bound | = fzC fy

and cont: A\Y. [Complete-Partial-Order.chain (<) V; YV #{}; Az.z € ¥ =
< bound | — £ (L] Y) = V(f*)

and bot: Az. = z < bound = bot C fz

shows mcont Sup (<) lub (C) (Az. if z < bound then bot else f z) (is mcont - -
- - 7g)
(proof)

context partial-function-definitions begin

lemma mcont-const [cont-intro, simp):
mecont luba orda lub leq (Az. c)

(proof)

lemmas [cont-intro, simp] =
cepo.cont-const| OF Partial-Function.ccpo| OF partial-function-definitions-azioms)

lemma mono2mono:
assumes monotone ordb leq (A\y. f y) monotone orda ordb (Az. t z)

THEORY “Complete-Partial-Order2” 76

shows monotone orda leq (Az. f (t z))
(proof)

lemmas mcont2mcont’ = ccpo.mcont2meont’|OF Partial-Function.ccpo[OF par-
tial-function-definitions-axioms])
lemmas mcont2mcont = ccpo.mcont2mceont|OF Partial-Function.ccpo| OF partial-function-definitions-axioms]

lemmas fizp-preserves-monol = ccpo.fixp-preserves-monol[OF Partial- Function.ccpo| OF
partial-function-definitions-azioms||

lemmas fizp-preserves-mono2 = ccpo.fixp-preserves-mono2[OF Partial-Function.ccpo| OF
partial-function-definitions-azioms|]

lemmas fizp-preserves-mono3 = ccpo.fixp-preserves-mono3|[OF Partial-Function.ccpo| OF
partial-function-definitions-axioms]]

lemmas fizp-preserves-mono4 = ccpo.fixp-preserves-mono4 |OF Partial- Function.ccpo| OF
partial-function-definitions-azioms||

lemmas fizp-preserves-mcont! = ccpo.fizp-preserves-mcontl |OF Partial-Function.ccpo|OF
partial-function-definitions-axioms|]

lemmas fizp-preserves-mcont2 = ccpo.fixp-preserves-mcont2[OF Partial-Function.ccpo| OF
partial-function-definitions-azioms||

lemmas fizp-preserves-mcont3 = ccpo.fizp-preserves-mcont3 | OF Partial-Function.ccpo| OF
partial-function-definitions-azioms||

lemmas fizp-preserves-mconts = ccpo.fixp-preserves-mcont [OF Partial-Function.ccpo| OF
partial-function-definitions-axioms]]

lemma monotone-if-bot:
fixes bot
assumes ¢: Az. g © = (if leqg x bound then bot else f x)
and mono: Nz y. [leq z y; = leq x bound | = ord (fz) (fy)
and bot: Az. = leq z bound = ord bot (f z) ord bot bot
shows monotone leq ord g

{(proof)

lemma mcont-if-bot:

fixes bot

assumes ccpo: class.ccpo lub’ ord (mk-less ord)

and bot: Az. — leq z bound = ord bot (f z)

and g: Az. g © = (if leq « bound then bot else f x)

and mono: Az y. [leq z y; = leq x bound | = ord (fz) (f y)

and cont: \Y. [Complete-Partial-Order.chain leq Y; Y # {}; N\z. 2 € ¥ =
—leqgzbound | = f (lub Y) = b’ (f°Y)

shows mcont lub leq lub’ ord g

(proof)
end

15.2 Admissibility

lemma admissible-subst:
assumes adm: ccpo.admissible luba orda (Az. P x)

THEORY “Complete-Partial-Order2” 7

and mcont: mcont lubb ordb luba orda f

shows ccpo.admissible lubb ordb (Az. P (f x))
{proof)

lemmas [simp, cont-intro] =
admissible-all
admissible-ball
admissible-const
admissible-conj

lemma admissible-disj’ [simp, cont-intro]:
[class.ccpo lub ord (mk-less ord); ccpo.admissible lub ord P; ccpo.admissible lub

ord Q|

= ccpo.admissible lub ord (Az. Px VvV Q x)

(proof)

lemma admissible-imp’ [cont-intro]:

[class.ccpo lub ord (mk-less ord);
cepo.admissible lub ord (Az. = P x);
cepo.admissible lub ord (A\z. Q z)]

= ccpo.admissible lub ord (Az. Pz — Q 1)

{proof)

lemma admissible-imp [cont-intro):
(Q = ccpo.admissible lub ord (Az. P z))
= ccpo.admissible lub ord (Az. @ — P x)

{proof)

lemma admissible-not-mem’ [THEN admissible-subst, cont-intro, simpl:
shows admissible-not-mem: ccpo.admissible Union (C) (AA. z ¢ A)

(proof)

lemma admissible-eql:
assumes f: cont luba orda lub ord (\z. f x)
and g: cont luba orda lub ord (A\z. g x)
shows ccpo.admissible luba orda (A\z. fz = g z)

(proof)

corollary admissible-eq-mcontl [cont-intro]:
[mcont luba orda lub ord (Az. f x);
mcont luba orda lub ord (A\z. g z) |
= ccpo.admissible luba orda (Az. fz = g x)

{proof)

lemma admissible-iff [cont-intro, simp):

[cepo.admissible lub ord (A\x. Pz — Q); ccpo.admissible lub ord (Az. Q x —>
P

= ccpo.admissible lub ord (Az. P x +— Q x)

{proof)

THEORY “Complete-Partial-Order2” 78

context ccpo begin

lemma admissible-lel:
assumes f: mcont luba orda Sup (<) (Az. f x)
and g: mcont luba orda Sup (<) (\z. g x)
shows ccpo.admissible luba orda (Az. fz < g x)

(proof)
end

lemma admissible-lel:
fixes ord (infix <C» 60) and lub (<\/>)
assumes class.ccpo lub (C) (mk-less (C))
and mcont luba orda lub (C) (Az. fx)
and mcont luba orda lub (C) (A\z. g x)
shows ccpo.admissible luba orda (\x. fz C g x)

(proof)

declare ccpo-class.admissible-lel[cont-intro)
context ccpo begin

lemma admissible-not-below: ccpo.admissible Sup (<) (Az. = (L) z y)
(proof)

end

lemma (in preorder) preorder [cont-intro, simp|: class.preorder (<) (mk-less (<))
(proof)

context partial-function-definitions begin

lemmas [cont-intro, simp] =
admissible-lel[OF Partial-Function.ccpo| OF partial-function-definitions-azioms]]
cepo.admissible-not-below| THEN admissible-subst, OF Partial-Function.ccpo| OF
partial-function-definitions-azioms|]

end
(ML)

inductive compact :: (‘a set = 'a) = (‘a = 'a = bool) = 'a = bool
for lub ord z
where compact:
[ccpo.admissible lub ord (Ay. = ord z y);
cepo.admissible lub ord (Ay. © # y)]
=—> compact lub ord x

THEORY “Complete-Partial-Order2” 79

(ML)
context ccpo begin

lemma compactl:
assumes ccpo.admissible Sup (<) (A\y. =z < y)
shows ccpo.compact Sup (<) x

(proof)

lemma compact-bot:
assumes z = Sup {}
shows ccpo.compact Sup (<) x

(proof)
end

lemma admissible-compact-neq’ [THEN admissible-subst, cont-intro, simp]:
shows admissible-compact-neq: ccpo.compact lub ord k = ccpo.admissible lub

ord (A\z. k # x)

(proof)

lemma admissible-neq-compact’ [THEN admissible-subst, cont-intro, simp]:
shows admissible-neq-compact: ccpo.compact lub ord k = ccpo.admissible lub

ord (A\z. x # k)

(proof)

context partial-function-definitions begin

lemmas [cont-intro, simp] = ccpo.compact-bot|OF Partial-Function.ccpo[OF par-
tial-function-definitions-azioms]]

end
context ccpo begin

lemma fizp-strong-induct:
assumes [cont-intro|: ccpo.admissible Sup (<) P
and mono: monotone (<) (<) f

and bot: P (| |{})
and step: A\z. [< ccpo-class.fizp f; P x| = P (f)
shows P (ccpo-class.fixp f)

(proof)

end
context partial-function-definitions begin

lemma fixp-strong-induct-uc:
fixes F' :: 'c = 'c

THEORY “Complete-Partial-Order2” 80

and U:'c='b="a
and C :: (b= 'a) = 'c
and P :: ('b = 'a) = bool
assumes mono: Az. mono-body (Af. U (F (Cf)) z)
and eg: [= C (fip-fun (Af. U (F (C 1))
and inverse: Af. U (Cf) = f
and adm: ccpo.admissible lub-fun le-fun P
and bot: P (A-. lub {})
and step: Af'. [P (U '), lefun (U f) (Uf)] = P (U (F)
shows P (U f)
(proof)

end

15.3 (=) as order

definition lub-singleton :: (‘a set = 'a) = bool
where lub-singleton lub +— (V a. lub {a} = a)

definition the-Sup :: 'a set = 'a
where the-Sup A = (THE a. a € A)

lemma lub-singleton-the-Sup [cont-intro, simp]: lub-singleton the-Sup
(proof)

lemma (in ccpo) lub-singleton: lub-singleton Sup
(proof)

lemma (in partial-function-definitions) lub-singleton [cont-intro, simp): lub-singleton
lub
(proof)

lemma preorder-eq [cont-intro, simp):
class.preorder (=) (mk-less (=))
(proof)

lemma monotone-eql [cont-intro:
assumes class.preorder ord (mk-less ord)
shows monotone (=) ord f

(proof)

lemma cont-eql [cont-introl:
fixes f : 'a = 'b
assumes lub-singleton lub
shows cont the-Sup (=) lub ord f

(proof)

lemma mcont-eql [cont-intro, simp):
[class.preorder ord (mk-less ord); lub-singleton lub |

THEORY “Complete-Partial-Order2” 81

= mcont the-Sup (=) lub ord f
{proof)

15.4 ccpo for products

definition prod-lub :: ('a set = 'a) = ('b set = 'b) = (Ya x 'b) set = 'a x b
where prod-lub Sup-a Sup-b Y = (Sup-a (fst * Y), Sup-b (snd * Y))

lemma lub-singleton-prod-lub [cont-intro, simp]:
[lub-singleton luba; lub-singleton lubb | = lub-singleton (prod-lub luba lubb)
(proof)

lemma prod-lub-empty [simp]: prod-lub luba lubb {} = (luba {}, lubb {})
{proof)

lemma preorder-rel-prodl [cont-intro, simp]:
assumes class.preorder orda (mk-less orda)
and class.preorder ordb (mk-less ordb)
shows class.preorder (rel-prod orda ordb) (mk-less (rel-prod orda ordb))

(proof)

lemma order-rel-prodl:
assumes a: class.order orda (mk-less orda)
and b: class.order ordb (mk-less ordb)
shows class.order (rel-prod orda ordb) (mk-less (rel-prod orda ordb))
(is class.order ?ord ?ord’)

(proof)

lemma monotone-rel-prodl:
assumes mono2: N\a. monotone ordb ordc (Ab. f (a, b))
and monol: \b. monotone orda ordc (Aa. f (a, b))
and a: class.preorder orda (mk-less orda)
and b: class.preorder ordb (mk-less ordb)
and c: class.preorder ordc (mk-less ordc)
shows monotone (rel-prod orda ordb) ordc f

(proof)

lemma monotone-rel-prodD1:
assumes mono: monotone (rel-prod orda ordb) ordc f
and preorder: class.preorder ordb (mk-less ordb)
shows monotone orda ordc (Ma. f (a, b))

(proof)

lemma monotone-rel-prodD2:
assumes mono: monotone (rel-prod orda ordb) ordc f
and preorder: class.preorder orda (mk-less orda)
shows monotone ordb ordc (Ab. f (a, b))

(proof)

THEORY “Complete-Partial-Order2” 82

lemma monotone-case-prodl:

[Aa. monotone ordb ordc (f a); \b. monotone orda ordc (Aa. f a b);
class.preorder orda (mk-less orda); class.preorder ordb (mk-less ordb);
class.preorder ordc (mk-less orde) |

= monotone (rel-prod orda ordb) ordc (case-prod f)

{proof)

lemma monotone-case-prodD1:
assumes mono: monotone (rel-prod orda ordb) ordc (case-prod f)
and preorder: class.preorder ordb (mk-less ordb)
shows monotone orda ordc (Aa. fa b)

{proof)

lemma monotone-case-prodD2:
assumes mono: monotone (rel-prod orda ordb) ordc (case-prod f)
and preorder: class.preorder orda (mk-less orda)
shows monotone ordb orde (f a)

{proof)

context
fixes orda ordb ordc
assumes a: class.preorder orda (mk-less orda)
and b: class.preorder ordb (mk-less ordb)
and c: class.preorder ordc (mk-less ordc)
begin

lemma monotone-rel-prod-iff:
monotone (rel-prod orda ordb) orde f +—
(V a. monotone ordb orde (Ab. f (a, b))) A
(V b. monotone orda ordc (Aa. f (a, b)))

(proof)

lemma monotone-case-prod-iff [simp]:
monotone (rel-prod orda ordb) ordc (case-prod f) <—
(V a. monotone ordb orde (f a)) A (Vb. monotone orda ordc (Aa. f a b))

{proof)

end

lemma monotone-case-prod-apply-iff:

monotone orda ordb (Az. (case-prod f x) y) +— monotone orda ordb (case-prod
(Aa b. faby))

{proof)

lemma monotone-case-prod-applyD:
monotone orda ordb (Az. (case-prod f x) y)
= monotone orda ordb (case-prod (Aa b. fa b y))
(proof)

THEORY “Complete-Partial-Order2” 83

lemma monotone-case-prod-applyl:
monotone orda ordb (case-prod (Aa b. fa by))
= monotone orda ordb (Az. (case-prod f) y)

{proof)

lemma cont-case-prod-apply-iff:
cont luba orda lubb ordb (Az. (case-prod f x) y) <— cont luba orda lubb ordb
(case-prod (Aa b. fa b y))

(proof)

lemma cont-case-prod-applyl:
cont luba orda lubb ordb (case-prod (Aa b. fa b y))
= cont luba orda lubb ordb (Az. (case-prod f) y)

(proof)

lemma cont-case-prod-applyD:
cont luba orda lubb ordb (Az. (case-prod f x) y)
= cont luba orda lubb ordb (case-prod (Aa b. fa b y))

{proof)

lemma mcont-case-prod-apply-iff [simp]:
meont luba orda lubb ordb (Az. (case-prod f) y) +—
meont luba orda lubb ordb (case-prod (Aa b. fa b y))

(proof)

lemma cont-prodD1:
assumes cont: cont (prod-lub luba lubb) (rel-prod orda ordb) lubc ordc f
and class.preorder orda (mk-less orda)
and [luba: lub-singleton luba
shows cont lubb ordb lubc orde (M\y. f (z, y))

(proof)

lemma cont-prodD2:
assumes cont: cont (prod-lub luba lubb) (rel-prod orda ordb) lubc ordc f
and class.preorder ordb (mk-less ordb)
and lubb: lub-singleton lubb
shows cont luba orda lubc orde (Az. f (z, y))

(proof)

lemma cont-case-prodD1:
assumes cont (prod-lub luba lubbd) (rel-prod orda ordb) lubc ordc (case-prod f)
and class.preorder orda (mk-less orda)
and lub-singleton luba
shows cont lubb ordb lubc ordc (f x)

(proof)

lemma cont-case-prodD2:
assumes cont (prod-lub luba lubbd) (rel-prod orda ordb) lubc ordc (case-prod f)

THEORY “Complete-Partial-Order2” 84

and class.preorder ordb (mk-less ordb)
and [ub-singleton lubb
shows cont luba orda lubc ordc (Az. fz y)

(proof)

context ccpo begin

lemma cont-prodl:
assumes mono: monotone (rel-prod orda ordb) (<)
and contl: Az. cont lubb ordb Sup (<) (Ay. f (z, y
and cont2: Ay. cont luba orda Sup (<) (Az. f (z, y
and class.preorder orda (mk-less orda)
and class.preorder ordb (mk-less ordb)
shows cont (prod-lub luba lubb) (rel-prod orda ordb) Sup (<) f

(proof)

f
)
)

lemma cont-case-prodl:
assumes monotone (rel-prod orda ordb) (<) (case-prod f)
and Az. cont lubb ordb Sup (<) (Ay. fz y)
and Ay. cont luba orda Sup (<) (Az. fz y)
and class.preorder orda (mk-less orda)
and class.preorder ordb (mk-less ordb)
shows cont (prod-lub luba lubb) (rel-prod orda ordb) Sup (<) (case-prod f)

(proof)

lemma cont-case-prod-iff:
[monotone (rel-prod orda ordb) (<) (case-prod f);
class.preorder orda (mk-less orda); lub-singleton luba;
class.preorder ordb (mk-less ordb); lub-singleton lubb |
= cont (prod-lub luba lubb) (rel-prod orda ordb) Sup (<) (case-prod f) +—
(Vz. cont lubb ordb Sup (<) (Ay. fz y)) A (Vy. cont luba orda Sup (<) (Az. fz

Y))
(proof)

end
context partial-function-definitions begin

lemma mono2mono2:
assumes f: monotone (rel-prod ordb ordc) leq (A(z, y). fz y)
and t: monotone orda ordb (Az. t z)
and t": monotone orda ordc (Az. t')
shows monotone orda leq (A\z. f (t z) (t' z))

{proof)

lemma cont-case-prodl [cont-intro]:
[monotone (rel-prod orda ordb) leq (case-prod f);
Nz. cont lubb ordb lub leq (\y. f z y);
Ny. cont luba orda lub leq (Az. f x y);

THEORY “Complete-Partial-Order2” 85

class.preorder orda (mk-less orda);
class.preorder ordb (mk-less ordb) |
= cont (prod-lub luba lubb) (rel-prod orda ordb) lub leq (case-prod f)

{proof)

lemma cont-case-prod-iff:
[monotone (rel-prod orda ordb) leq (case-prod f);
class.preorder orda (mk-less orda); lub-singleton luba;
class.preorder ordb (mk-less ordb); lub-singleton lubb |
= cont (prod-lub luba lubd) (rel-prod orda ordb) lub leq (case-prod f) +—
(V. cont lubb ordb lub leq (Ay. fz y)) A (Vy. cont luba orda lub leq (Mz. fz y))

{proof)

lemma mcont-case-prod-iff [simpl:
[class.preorder orda (mk-less orda); lub-singleton luba;
class.preorder ordb (mk-less ordb); lub-singleton lubb |
= mcont (prod-lub luba lubb) (rel-prod orda ordb) lub leq (case-prod f) «—
(Vz. mcont lubb ordb lub leg (\y. fz y)) A (Vy. mcont luba orda lub leq (A\z. fx

Y))
(proof)

end

lemma mono2mono-case-prod [cont-intro:
assumes Az y. monotone orda ordb (Af. pair f x y)
shows monotone orda ordb (Af. case-prod (pair f) x)

{proof)

15.5 Complete lattices as ccpo

context complete-lattice begin

lemma complete-lattice-ccpo: class.ccpo Sup (<) (<)

(proof)

lemma complete-lattice-ccpo’: class.ccpo Sup (<) (mk-less (<))
(proof)

lemma complete-lattice-partial-function-definitions:
partial-function-definitions (<) Sup
(proof)

lemma complete-lattice-partial-function-definitions-dual:
partial-function-definitions (>) Inf
(proof)

lemmas [cont-intro, simp] =
Partial-Function.ccpo] OF complete-lattice-partial-function-definitions]
Partial-Function.ccpo| OF complete-lattice-partial-function-definitions-dual]

THEORY “Complete-Partial-Order2” 86

lemma mono2mono-inf:
assumes f: monotone ord (<) (Az. fz)
and ¢: monotone ord (<) (Az. g z)
shows monotone ord (<) (Az. fo M g x)

{proof)

lemma mcont-const [simp]: mcont lub ord Sup (<) (A-. ¢)
{proof)

lemma mono2mono-sup:
assumes f: monotone ord (<) (Az. fx)
and g: monotone ord (<) (A\z. g z)
shows monotone ord (<) (Az. fo U g z)

(proof)

lemma Sup-image-sup:

assumes Y # {}

shows | |[(U)z ‘Y)=2U|]Y
(proof)

lemma mcont-sup1: mcont Sup (<) Sup (<) (\y. z U y)
(proof)

lemma mcont-sup2: mcont Sup (<) Sup (<) (Az. z U y)
(proof)

lemma mcont2mcont-sup [cont-intro, simp):
[mcont lub ord Sup (<) (Az. f z);
meont lub ord Sup (<) (Az. g)]
= mcont lub ord Sup (<) (A\z. fz U g x)

(proof)
end
lemmas [cont-intro] = admissible-le][OF complete-lattice-ccpo’]
context complete-distrib-lattice begin

lemma mcont-infl: mcont Sup (<) Sup (<) (A\y. z M y)
{proof)

lemma mcont-inf2: mcont Sup (<) Sup (<) (Az. z M y)
(proof)

lemma mcont2mcont-inf [cont-intro, simp]:
[mecont lub ord Sup (<) (Az. f x);
mcont lub ord Sup (<) (Az. g z) |
= mcont lub ord Sup (<) (A\z. fz N gx)

THEORY “Complete-Partial-Order2” 87

{proof)

end

interpretation Ifp: partial-function-definitions (<) :: - :: complete-lattice = - Sup
(proof)

(ML)

interpretation gfp: partial-function-definitions (>) :: - :: complete-lattice = - Inf
(proof)

(ML)

lemma insert-mono [partial-function-mono):
monotone (fun-ord (C)) (C) A = monotone (fun-ord (C)) (C) (Ay. insert x (A

Y))
(proof)

lemma mono2mono-insert [THEN Ifp.mono2mono, cont-intro, simp):
shows monotone-insert: monotone (C) (C) (insert x)

{proof)

lemma mcont2mcont-insert| THEN Ifp.mcont2mcont, cont-intro, simp):
shows mcont-insert: mecont Union (C) Union (C) (insert x)

(proof)

lemma mono2mono-image [THEN Ifp.mono2mono, cont-intro, simp:
shows monotone-image: monotone (C) (C) ((9) f)

{proof)

lemma cont-image: cont Union (C) Union (C) ((9) f)

{proof)

lemma mcont2mcont-image [THEN Ifp.mcont2mcont, cont-intro, simp):
shows mcont-image: mcont Union (C) Union (C) ((9) f)

(proof)

context complete-lattice begin

lemma monotone-Sup [cont-intro, simp):
monotone ord (C) f = monotone ord (<) (A\z. | |f z)

{proof)

lemma cont-Sup:
assumes cont lub ord Union (C) f
shows cont lub ord Sup (<) (Az. | |f)

(proof)

THEORY “Complete-Partial-Order2” 88

lemma mcont-Sup: meont lub ord Union (C) f = mcont lub ord Sup (<) (Az.
LIS)
{proof)

lemma monotone-SUP:

[monotone ord (C) f; Ay. monotone ord (<) (Az. g z y) | = monotone ord
() Az yefz. gz y)

(proof)

lemma monotone-SUP2:

(Ay. y € A = monotone ord (<) (Az. g y)) = monotone ord (<) (Az.
LlyeA. gz y)

(proof)

lemma cont-SUP:
assumes f: mcont lub ord Union (C) f
and g: Ay. mcont lub ord Sup (<) (Az. g = y)
shows cont lub ord Sup (<) (A\z. | |yEfz. gz y)

(proof)

lemma mcont-SUP [cont-intro, simpl:
[mcont lub ord Union (C) f; Ay. mcont lub ord Sup (<) (Az. gz y) |
= mcont lub ord Sup (<) (\z. | JyEfz. gz y)

(proof)
end

lemma admissible-Ball [cont-intro, simp]:
[Az. ccpo.admissible lub ord (AA. P A z);
mceont lub ord Union (C) f;
class.ccpo lub ord (mk-less ord) |
= ccpo.admissible lub ord (AA. Vzef A. P A x)

(proof)

lemma admissible-Bex'|THEN admissible-subst, cont-intro, simp):
shows admissible-Bex: ccpo.admissible Union (C) (AA. Jz€A. P x)

(proof)

15.6 Parallel fixpoint induction

context

fixes luba :: 'a set = 'a

and orda :: 'a = 'a = bool

and Jubb :: ‘b set = 'b

and ordb :: 'b = b = bool

assumes a: class.ccpo luba orda (mk-less orda)

and b: class.ccpo lubb ordb (mk-less ordb)
begin

THEORY “Complete-Partial-Order2” 89

interpretation a: ccpo luba orda mk-less orda (proof)
interpretation b: ccpo lubb ordb mk-less ordb (proof)

lemma ccpo-rel-prodl:
class.ccpo (prod-lub luba lubb) (rel-prod orda ordb) (mk-less (rel-prod orda ordb))
(is class.ccpo ?lub Zord ford’)

(proof)

interpretation ab: ccpo prod-lub luba lubb rel-prod orda ordb mk-less (rel-prod orda
ordb)

(proof)

lemma monotone-map-prod [simpl:
monotone (rel-prod orda ordb) (rel-prod orde ordd) (map-prod f g) +—
monotone orda ordc f N\ monotone ordb ordd g

(proof)

lemma parallel-fixp-induct:

assumes adm: ccpo.admissible (prod-lub luba lubb) (rel-prod orda ordb) (Az. P
(fst z) (snd z))

and f: monotone orda orda f

and g: monotone ordb ordb g

and bot: P (luba {}) (lubdb {})

and step: Azy. Pxry = P (fz) (gvy)

shows P (ccpo.fizp luba orda f) (ccpo.fixp lubb ordb g)
(proof)

end

lemma parallel-fixp-induct-uc:
assumes a: partial-function-definitions orda luba
and b: partial-function-definitions ordb lubb

and F: Az. monotone (fun-ord orda) orda (A\f. Ul (F (C1 f)) x)
and G: Ay. monotone (fun-ord ordb) ordb (Ag. U2 (G (C2 g)) y)
and eql: f = C1 (cepo.fizp (fun-lub luba) (fun-ord orda) (Af. Ul (F (C1 f))))
and eq2: g = C2 (ccpo.fixp (fun-lub lubd) (fun-ord ordb) (Ag. U2 (G (C2 g))))

and inverse: \f. Ul (C1f)=f

and inverse2: \g. U2 (C2g) = ¢

and adm: ccpo.admissible (prod-lub (fun-lub luba) (fun-lub lubb)) (rel-prod (fun-ord
orda) (fun-ord ordb)) (Az. P (fst z) (snd z))

and bot: P (A-. luba {}) (A-. lubdb {})

and step: Afg. P (U1 f) (U2g9) = P (Ul (Ff)) (U2 (G yg))
shows P (Ul f) (U2 g)

{proof)

lemmas parallel-firp-induct-1-1 = parallel-fixp-induct-uc|
of ----Ar. x-Ar. x Az. T - Az, T,

OF - - - - - - refl refi]

THEORY “Complete-Partial-Order2” 90

lemmas parallel-fizp-induct-2-2 = parallel-fixp-induct-uc]
of - - - - case-prod - curry case-prod - curry,
where P=M\fg. P (curry f) (curry g),
unfolded case-prod-curry curry-case-prod curry-K,
OF - - - - - - refl refi]
for P

lemma monotone-fst: monotone (rel-prod orda ordb) orda fst
(proof)

lemma mcont-fst: mcont (prod-lub luba lubb) (rel-prod orda ordb) luba orda fst
(proof)

lemma mcont2mcont-fst [cont-intro, simpl:
mecont lub ord (prod-lub luba lubb) (rel-prod orda ordb) t
= mecont lub ord luba orda (Az. fst (t x))

(proof)

lemma monotone-snd: monotone (rel-prod orda ordb) ordb snd
{proof)

lemma mcont-snd: mcont (prod-lub luba lubb) (rel-prod orda ordb) lubb ordb snd
(proof)

lemma mcont2mcont-snd [cont-intro, simp):
mecont lub ord (prod-lub luba lubb) (rel-prod orda ordb) t
= mecont lub ord lubb ordb (Ax. snd (t z))

(proof)

lemma monotone-Pair:
[monotone ord orda f; monotone ord ordb g |
= monotone ord (rel-prod orda ordb) (\z. (f x, g x))

{proof)

lemma cont-Pair:
[cont lub ord luba orda f; cont lub ord lubb ordb g]
= cont lub ord (prod-lub luba lubbd) (rel-prod orda ordb) (Az. (f z, g z))

{proof)

lemma mcont-Pair:
[mcont lub ord luba orda f; mcont lub ord lubb ordb g]
= mecont lub ord (prod-lub luba lubd) (rel-prod orda ordb) (Az. (f z, g z))

{proof)

context partial-function-definitions
begin

Specialised versions of mcont-call for admissibility proofs for parallel
fixpoint inductions

THEORY “Conditional-Parametricity” 91

lemmas mcont-call-fst [cont-intro] = mcont-call| THEN mcont2mcont, OF mcont-fst]
lemmas mcont-call-snd [cont-intro] = mcont-call| THEN mcont2mcont, OF mcont-snd)
end

lemma map-option-mono [partial-function-monol:
mono-option B = mono-option (Af. map-option g (B [))
(proof)

lemma compact-flat-lub [cont-introl: ccpo.compact (flat-lub x) (flat-ord z) y

{(proof)

end

theory Conditional-Parametricity
imports Main

keywords parametric-constant :: thy-decl
begin

context includes lifting-syntar begin

qualified definition Rel-match :: (‘a = 'b = bool) = 'a = 'b = bool where
Rel-match Rxy=Rzy

named-theorems parametricity-preprocess

lemma bi-unique-Rel-match [parametricity-preprocess:
bi-unique A = Rel-match (A ===> A ===> (=)) (=) (=)
(proof)

lemma bi-total-Rel-match [parametricity-preprocess:
bi-total A = Rel-match ((A ===> (=)) ===> (=)) All All
(proof)

lemma is-equality-Rel: is-equality A = Transfer.Rel A t t
(proof)

lemma Rel-Rel-match: Transfer.Rel R © y = Rel-match R z y
(proof)

lemma Rel-match-Rel: Rel-match R © y = Transfer.Rel R z y
(proof)

lemma Rel-Rel-match-eq: Transfer.Rel R x y = Rel-match R x y
(proof)

lemma Rel-match-app:
assumes Rel-match (A ===> B) f g and Transfer.Rel A = y
shows Rel-match B (f z) (g y)

THEORY “Confluence” 92

{proof)

end
(ML)

end

theory Confluence imports
Main

begin

16 Confluence

definition semiconfluentp :: ('a = 'a = bool) = bool where
semiconfluentp r <— r=171 00 r** < r** Q0 r~1-1*x

definition confluentp :: (‘a = ’a = bool) = bool where
confluentp r +— =171 Q0 p** < pfx QO plo i

definition strong-confluentp :: ('a = 'a = bool) = bool where
strong-confluentp r +— r=1=1 00 r < r** 00 (r~171)==

lemma semiconfluentpl [intro?):
semiconfluentp r if Az yz. [rzy; r* z2] = Ju. r** yu Ar** zu
(proof)

lemma semiconfluentpD: Ju. r** y u A r** z u if semiconfluentp rrzy r** x 2

{proof)

lemma confluentpl:
confluentp r if Aeyz. [r* zy; r** zz] = Ju. r** yu A r™* zu
(proof)

* %

lemma confluentpD: Ju. r** y u A r** z u if confluentp r r** z y r** z 2

{proof)

lemma strong-confluentpl [intro?):
strong-confluentp r if Az yz. [rey;rzz] = Ju. r*™* yu Ar== zu
(proof)
lemma strong-confluentpD: Fu. r** yu A r==
z

{proof)

z u if strong-confluentp rrx y rx

lemma semiconfluentp-imp-confluentp: confluentp r if r: semiconfluentp r

(proof)

lemma confluentp-imp-semiconfluentp: semiconfluentp r if confluentp r

{proof)

THEORY “Confluent-Quotient” 93

lemma confluentp-eq-semiconfluentp: confluentp r <— semiconfluentp r
(proof)

lemma confluentp-conv-strong-confluentp-rtranclp:
confluentp r <— strong-confluentp (r**)
(proof)

lemma strong-confluentp-into-semiconfluentp:
semiconfluentp r if r: strong-confluentp r

(proof)

lemma strong-confluentp-imp-confluentp: confluentp r if strong-confluentp r
(proof)

—1—1x%x%

lemma semiconfluentp-equivclp: equivelp r = r** OO r if r: semiconfluentp

(proof)

end

theory Confluent-Quotient imports
Confluence

begin

Functors with finite setters preserve wide intersection for any equivalence
relation that respects the mapper.

lemma Inter-finite-subset:

assumes VA € A. finite A

shows 3BCA. finite B A (NB) = (NA)
(proof)

locale wide-intersection-finite =
fixes E :: 'Fa = 'Fa = bool
and mapFa :: ('a = 'a) = 'Fa = 'Fa
and setFa :: 'Fa = 'a set
assumes equiv: equivp F
and map-E: E ©y = E (mapFa f z) (mapFa [y)
and map-id: mapFa id x = x
and map-cong: Y a€setFa z. fa = g a = mapFa fx = mapFa g x
and set-map: setFa (mapFa fx) = f ¢ setFa x
and finite: finite (setFa x)
begin

lemma binary-intersection:
assumes F y z and y: setFay C Y and 2: setFa 2 C Zand a:a € Ya € Z
shows dz. Exy A setFax C Y A setFax C Z

(proof)

lemma finite-intersection:

THEORY “Confluent-Quotient” 94

assumes E: VycA. Ey 2z

and fin: finite A

and sub: VyeA. setFay C YyANa € Yy
shows Jz. Ex z A (VyeA. setFaxz C Y y)

(proof)

lemma wide-intersection:

assumes inter-nonempty: (| Ss # {}

shows ((4s € Ss. {(z,). Ex 2’} “{z. setFaz C As}) C {(z, z). Ez 2’} *
{z. setFa x C () Ss} (is ?lhs C ?rhs)
(proof)

end

Subdistributivity for quotients via confluence

lemma rtranclp-transp-reflp: R** = R if transp R reflp R
(proof)

lemma rtranclp-equivp: R** = R if equivp R
(proof)

locale confluent-quotient =
fixes Rb :: 'Fb = '"Fb = bool
and Fa :: 'Fa = 'Fa = bool
and Eb :: 'Fb = 'Fb = bool
and Ec :: 'Fc = 'Fe = bool
and Eab :: 'Fab = 'Fab = bool
and Ebc :: 'Fbc = 'Fbc = bool

and 7w-Faba :: 'Fab = 'Fa
and 7w-Fabb :: 'Fab = 'Fb
and w-Fbeb :: 'Fbe = 'Fb
and w-Fbee :: 'Fbe = 'Fe
and rel-Fab :: ('a = 'b = bool) = 'Fa = 'Fb = bool
and rel-Fbe :: ('b = "¢ = bool) = 'Fb = 'Fc = bool

and rel-Fac :: ('a = "¢ = bool) = 'Fa = "Fc = bool

and set-Fab :: 'Fab = (‘a x 'b) set

and set-Fbe :: 'Fbe = ('b x 'c) set

assumes confluent: confluentp Rb

and retractl-ab: Nz y. Rb (m-Fabb z) y = 2. Fab z z A y = w-Fabb z A
set-Fab z C set-Fab z

and retractl-be: Az y. Rb (w-Fbeb) y = 32. Ebc z 2z N y = w-Fbch z A
set-Fbe z C set-Fbe x

and generated-b: Eb < equivclp Rb

and transp-a: transp Fa

and transp-c: transp Ec

and equivp-ab: equivp Fab

and equivp-be: equivp Ebc

and in-rel-Fab: NA z y. rel-Fab A z y +— (3 2. z € {x. set-Fab x C {(z, y). A
zy}} A w-Faba z = © A w-Fabb z = y)

~—

THEORY “Old-Datatype” 95

and in-rel-Fbc: AB z y. rel-Fbc Bz y +— (2. z € {x. set-Fbc x C {(z, y). B
zy}} A w-Fbch z = x A w-Fbee z = y)

and rel-compp: NA B. rel-Fac (A OO B) = rel-Fab A OO rel-Fbe B

and w-Faba-respect: rel-fun Eab Ea mw-Faba w-Faba

and w-Fbcc-respect: rel-fun Ebc Ec m-Fbee w-Fbee
begin

lemma retract-ab: Rb** (w-Fabb) y = 3z. Eab z z N y = w-Fabb z A set-Fab
z C set-Fab x

(proof)

lemma retract-be: Rb** (n-Fbeb ©) y = 3z. Ebc © z N y = w-Fbcb z A set-Fbe z
C set-Fbe x

{proof)

lemma subdistributivity: rel-Fab A OO Eb OO rel-Fbc B < Ea OO rel-Fac (A OO
B) 00 Ec

(proof)
end

end

17 Old Datatype package: constructing datatypes
from Cartesian Products and Disjoint Sums

theory Old-Datatype
imports Main
begin

17.1 The datatype universe
definition Node = {p. I3fz k. p = (f = nat => b + nat, x ::’a + nat) A fk =
Inr 0}

typedef (‘a, 'b) node = Node :: ((nat => 'b + nat) * (‘a + nat)) set
morphisms Rep-Node Abs-Node
{proof)

Datatypes will be represented by sets of type node

type-synonym ’a item = (‘a, unit) node set
type-synonym (‘a, 'b) dtree = ('a, 'b) node set

definition Push :: [('b 4+ nat), nat => ('b + nat)] => (nat => ('b + nat))
where Push == (%b h. case-nat b h)

definition Push-Node :: [('b + nat), ('a, 'b) node] => ('a, 'b) node

THEORY “Old-Datatype” 96

where Push-Node == (%n z. Abs-Node (apfst (Push n) (Rep-Node t)))

definition Atom :: (‘a + nat) => (‘a, 'b) ditree

where Atom == (%z. {Abs-Node((%k. Inr 0, x))})
definition Scons :: [('a, 'b) dtree, ('a, 'b) dtree] => ('a, 'b) dtree

where Scons M N == (Push-Node (Inr 1) * M) Un (Push-Node (Inr (Suc 1))
¢ N)

definition Leaf :: ‘a => (‘a, 'b) dtree
where Leaf == Atom o Inl

definition Numb :: nat => (‘a, 'b) ditree
where Numb == Atom o Inr

definition In0 :: (‘a, 'b) dtree => (‘a, 'b) diree
where In0(M) == Scons (Numb 0) M

definition Inf :: (‘a, 'b) dtree => (‘a, 'b) diree
where In1(M) == Scons (Numb 1) M

definition Lim :: ('b => ('a, 'b) dtree) => (‘a, 'b) dtree
where Lim f == |J{z. 3z. 2 = Push-Node (Inl z) ‘ (f z)}

definition ndepth :: (‘a, 'b) node => nat

where ndepth(n) == (%(f,z). LEAST k. f k = Inr 0) (Rep-Node n)
definition ntrunc :: [nat, ('a, 'b) dtree] => ('a, 'b) dtree

where ntrunc k N == {n. neN A ndepth(n)<k}

definition uprod :: [(‘a, 'b) dtree set, ('a, 'b) diree set]=> ('a, 'b) dtree set
where uprod A B == UN z:A. UN y:B. { Scons z y }

definition usum :: [(‘a, 'b) dtree set, (‘a, 'b) diree set]=> ('a, 'b) dtree set
where usum A B == In0‘A Un In1‘B

definition Split :: [[(‘a, 'b) ditree, ('a, 'b) dtree]=>"c, (‘a, 'b) dtree] => 'c
where Split c M == THE w. dzy. M = Sconsxy ANu=czxy

definition Case :: [[("a, 'b) diree]=>"c, [('a, 'b) diree]=>"c, (‘a, 'b) dtree] =>
where Case ¢ d M == THE u. 3z . M = In0(z) N u=c(z))V Fy. M
In(y) A uw= d(y))

‘e

THEORY “Old-Datatype” 97

definition dprod :: [(('a, 'b) dtree x ('a, 'b) diree)set, ((‘a, 'b) dtree x ('a, 'b)
dtree)set]
=> (('a, 'b) ditree * ('a, 'b) diree)set
where dprod r s == UN (z,z'):r. UN (y,y"):s. {(Scons x y, Scons =’ y')}

definition dsum :: [((‘a, 'b) dtree x (‘a, 'b) dtree)set, (('a, 'b) diree x ('a, 'b)
dtree)set]

=> ((‘a, 'b) diree * ('a, 'b) diree)set
where dsum r s == (UN (z,z’):r. {(In0(z),In0(x")}) Un (UN (y,y"):s. {(In1(y),In1(y")})

lemma apfst-convE:

(| g=apfstfp; Ny [|p=(z9); ¢=(f(x)y) || ==>R
| ==>R

(proof)

lemma Push-injectl: Push i f = Push j g ==> i=j

(proof)
lemma Push-inject2: Push i f = Push j g ==> f=g
(proof)
lemma Push-inject:

[| Push i f =Push j g; [| i=j; f=g || ==> P[] =—> P
(proof)

lemma Push-neq-K0: Push (Inr (Suc k)) f = (%z. Inr 0) ==> P
(proof)

lemmas Abs-Node-inj = Abs-Node-inject [THEN [2] rev-iff D1]

lemma Node-K0-1: (Ak. Inr 0, a) € Node
(proof)

lemma Node-Push-I: p € Node = apfst (Push i) p € Node
(proof)

17.2 Freeness: Distinctness of Constructors

lemma Scons-not-Atom [iff]: Scons M N # Atom(a)
(proof)

THEORY “Old-Datatype” 98

lemmas Atom-not-Scons [iff] = Scons-not-Atom [THEN not-sym]

lemma inj-Atom: inj(Atom)

(proof)
lemmas Atom-inject = inj-Atom [THEN injD]

lemma Atom-Atom-eq [iff]: (Atom(a)=Atom(b)) = (a=b)
(proof)

lemma inj-Leaf: inj(Leaf)

(proof)
lemmas Leaf-inject [dest!| = inj-Leaf [THEN injD)|

lemma inj-Numb: inj(Numb)

(proof)

lemmas Numb-inject [dest!] = inj-Numb [THEN injD)

lemma Push-Node-inject:
[| Push-Node i m =Push-Node j n; [| i=j; m=n|] ==> P
|| ==>P

(proof)

lemma Scons-inject-lemmal: Scons M N <= Scons M' N' ==> M<=M"

(proof)

lemma Scons-inject-lemma2: Scons M N <= Scons M’ N' ==> N<=N'

(proof)

lemma Scons-injectl: Scons M N = Scons M' N' ==> M=M'
(proof)

lemma Scons-inject2: Scons M N = Scons M’ N' ==> N=N'
(proof)

lemma Scons-inject:
[| Scons M N = Scons M' N’; || M=M'; N=N'|] ==> P |] ==> P

THEORY “Old-Datatype” 99

(proof)

lemma Scons-Scons-eq [iff]: (Scons M N = Scons M' N') = (M=M' AN N=N')
(proof)

lemma Scons-not-Leaf [iff]: Scons M N # Leaf(a)
(proof)

lemmas Leaf-not-Scons [iff] = Scons-not-Leaf [THEN not-sym)|

lemma Scons-not-Numb [iff]: Scons M N # Numb(k)
(proof)

lemmas Numb-not-Scons [iff] = Scons-not-Numb [THEN not-sym)|

lemma Leaf-not-Numb [iff]: Leaf(a) # Numb(k)
(proof)

lemmas Numb-not-Leaf [iff] = Leaf-not-Numb [THEN not-sym]

lemma ndepth-K0: ndepth (Abs-Node(%k. Inr 0, x)) = 0
(proof)

lemma ndepth-Push-Node-aux:
case-nat (Inr (Suc ©)) fk = Inr 0 — Suc(LEAST x. fo = Inr 0) < k

(proof)

lemma ndepth-Push-Node:
ndepth (Push-Node (Inr (Suc i)) n) = Suc(ndepth(n))
(proof)

lemma ntrunc-0 [simp]: ntrunc 0 M = {}

(proof)

THEORY “Old-Datatype” 100

lemma nirunc-Atom [simp: ntrunc (Suc k) (Atom a) = Atom(a)
(proof)

lemma ntrunc-Leaf [simp]: ntrunc (Suc k) (Leaf a) = Leaf(a)

(proof)

lemma ntrunc-Numb [simp]: ntrunc (Suc k) (Numb i) = Numb(i)
(proof)

lemma ntrunc-Scons [simp]:
ntrunc (Suc k) (Scons M N) = Scons (ntrunc k M) (ntrunc k N)

(proof)

lemma ntrunc-one-In0 [simp): ntrunc (Suc 0) (In0 M) = {}
(proof)

lemma ntrunc-In0 [simp]: ntrunc (Suc(Suc k)) (In0 M) = In0 (ntrunc (Suc k)
M)
(proof)

lemma ntrunc-one-Inl [simp): ntrunc (Suc 0) (Inl M) = {}

(proof)

lemma ntrunc-Ini [simp]: ntrunc (Suc(Suc k)) (In1 M) = Inl (ntrunc (Suc k)
M)
(proof)

17.3 Set Constructions

lemma uprodl [introl]: [M€A; NeB] = Scons M N € uprod A B
(proof)

lemma uprodE [elim!]:
[c € uprod A B;
Nzy. [z € A;y € By c= Sconszy] = P
|l=7r

(proof)

lemma uprodE2: [Scons M N € uprod A B; [M € A; N € Bl = P] = P
(proof)

THEORY “Old-Datatype” 101

lemma usum-In0I [intro]: M € A = In0(M) € usum A B

(proof)

lemma usum-Inil [intro]: N € B = In1(N) € usum A B
(proof)

lemma usumE [eliml]:
[u € usum A B;
Nz. [z € A; u=In0(z)] = P;
Ny. [y € B; u=In1(y)] = P
|= P
(proof)

lemma In0-not-Inl [iff]: In0(M) # Inl(N)
(proof)

lemmas Ini-not-In0 [iff] = In0O-not-In1 [THEN not-sym]

lemma In0-inject: In0(M) = In0(N) ==> M=N
(proof)

lemma Inl-inject: In1(M) = In1(N) ==> M=N
(proof)

lemma In0-eq [iff]: (In0 M = In0 N) = (M=N)
(proof)

lemma Inl-eq [iff]: (In1 M = In1 N) = (M=N)
(proof)

lemma inj-In0: inj In0

(proof)

lemma inj-Ini: inj Inl
(proof)

lemma Lim-inject: Lim f = Lim g ==> f = ¢
(proof)

THEORY “Old-Datatype” 102

lemma nirunc-subsetl: ntrunc k M <= M
(proof)

lemma ntrunc-subsetD: (k. ntrunc k M <= N) ==> M<=N

(proof)

lemma ntrunc-equality: (k. ntrunc k M = ntrunc k N) ==> M=N

{(proof)

lemma ntrunc-o-equality:

[| "k. (ntrunc(k) o h1) = (ntrunc(k) o h2) || ==> h1=h2

(proof)

lemma uprod-mono: [| A<=A"; B<=B'|] ==> uprod A B <= uprod A’ B’
(proof)

lemma usum-mono: || A<=A"; B<=B'|] ==> usum A B <= usum A’ B’
(proof)

lemma Scons-mono: || M<=M'; N<=N'|] ==> Scons M N <= Scons M’ N’
(proof)

lemma In0-mono: M<=N ==> In0(M) <= In0(N)
(proof)

lemma Inl-mono: M<=N ==> Inl(M) <= In1(N)
(proof)

lemma Split [simp]: Split ¢ (Scons M N) = ¢ M N
(proof)

lemma Case-In0 [simp]: Case ¢ d (In0 M) = ¢(M)
(proof)

lemma Case-Inl [simp]: Case ¢ d (Inl N) = d(N)
(proof)

THEORY “Old-Datatype” 103

lemma ntrunc-UN1: ntrunc k (UN z. f(x)) = (UN z. ntrunc k (f z))
(proof)

lemma Scons-UN1-x: Scons (UN z. fx) M = (UN xz. Scons (f) M)
(proof)

lemma Scons-UN1-y: Scons M (UN z. fz) = (UN z. Scons M (f z))
(proof)

lemma n0-UN1: InO(UN z. f(z)) = (UN z. In0(f(z)))
(proof)

lemma In1-UN1: In1(UN z. f(z)) = (UN z. In1(f(z)))
(proof)

lemma dprodl [introl]:
[(M,M') € r; (N,N) € s] = (Scons M N, Scons M' N') € dprod r s
(proof)

lemma dprodE [elim!]:
[c € dprod r s;
Neya'y' [(z2) €r (y.y) € s
¢ = (Scons x y, Scons ' y')] = P
|l=7r
(proof)

lemma dsum-In0I [intro]: (M, M") € r = (In0(M), In0(M")) € dsum r s
(proof)

lemma dsum-In1l [intro]: (N,N") € s = (In1(N), In1(N')) € dsum r s
(proof)

lemma dsumkE [elim!]:
[w e dsum r s;
Nz [(z,2) € r; w= (In0
Ayy' [(yy) €s w=(
l=r
(proof)

THEORY “Nat-Bijection” 104

lemma dprod-mono: || r<=r'; s<=s'|] ==> dprod r s <= dprod r' s’
(proof)
lemma dsum-mono: [| r<=r’; s<=s'|] ==> dsum r s <= dsum r’ s’
(proof)

lemma dprod-Sigma: (dprod (A x B) (C x D)) <= (uprod A C') x (uprod B D)
(proof)

lemmas dprod-subset-Sigma = subset-trans [OF dprod-mono dprod-Sigmal

lemma dprod-subset-Sigma2:

(dprod (Sigma A B) (Sigma C D)) <= Sigma (uprod A C) (Split (%ox y. uprod
(B z) (D y)))
(proof)

lemma dsum-Sigma: (dsum (A x B) (C x D)) <= (usum A C) x (usum B D)
(proof)

lemmas dsum-subset-Sigma = subset-trans [OF dsum-mono dsum-Sigmal

lemma Domain-dprod [simp]: Domain (dprod r s) = uprod (Domain r) (Domain
5)
{proof)

lemma Domain-dsum [simp|: Domain (dsum r s) = usum (Domain r) (Domain
s)
{proof)

hides popular names

hide-type (open) node item
hide-const (open) Push Node Atom Leaf Numb Lim Split Case

(ML)

end

18 Bijections between natural numbers and other
types
theory Nat-Bijection

THEORY “Nat-Bijection” 105

imports Main
begin

18.1 Type nat x nat
Triangle numbers: 0, 1, 3, 6, 10, 15, ...
definition triangle :: nat = nat

where triangle n = (n x Suc n) div 2

lemma triangle-0 [simp]: triangle 0 = 0
(proof)

lemma triangle-Suc [simp]: triangle (Suc n) = triangle n + Suc n
{proof)

definition prod-encode :: nat X nat = nat
where prod-encode = (A\(m, n). triangle (m + n) + m)

In this auxiliary function, triangle k + m is an invariant.

fun prod-decode-aux :: nat = nat = nat X nat
where prod-decode-aux k m =
(if m < k then (m, k — m) else prod-decode-auz (Suc k) (m — Suc k))

declare prod-decode-auz.simps [simp del]

definition prod-decode :: nat = nat x nat
where prod-decode = prod-decode-auz 0

lemma prod-encode-prod-decode-auz: prod-encode (prod-decode-auz k m) = triangle
kE+m
(proof)

lemma prod-decode-inverse [simp]: prod-encode (prod-decode n) = n
{proof)

lemma prod-decode-triangle-add: prod-decode (triangle k + m) = prod-decode-aux
km

(proof)

lemma prod-encode-inverse [simpl: prod-decode (prod-encode xz) = x
{proof)

lemma inj-prod-encode: inj-on prod-encode A
(proof)

lemma inj-prod-decode: inj-on prod-decode A
(proof)

THEORY “Nat-Bijection”

lemma surj-prod-encode: surj prod-encode
{proof)

lemma surj-prod-decode: surj prod-decode
(proof)

lemma bij-prod-encode: bij prod-encode
(proof)

lemma bij-prod-decode: bij prod-decode
(proof)

lemma prod-encode-eq [simpl: prod-encode x = prod-encode y «— = =y
(proof)

lemma prod-decode-eq [simp]: prod-decode x = prod-decode y +— © =y
(proof)
Ordering properties
lemma le-prod-encode-1: a < prod-encode (a, b)

{proof)

lemma le-prod-encode-2: b < prod-encode (a, b)
(proof)
18.2 Type nat + nat

definition sum-encode :: nat + nat = nat
where sum-encode © = (case x of Inl a = 2 % a | Inr b = Suc (2 * b))

definition sum-decode :: nat = nat + nat
where sum-decode n = (if even n then Inl (n div 2) else Inr (n div 2))

lemma sum-encode-inverse [simpl: sum-decode (sum-encode z) = x
{proof)

lemma sum-decode-inverse [simp]: sum-encode (sum-decode n) = n
{proof)

lemma inj-sum-encode: inj-on sum-encode A
(proof)

lemma inj-sum-decode: inj-on sum-decode A
(proof)

lemma surj-sum-encode: surj sum-encode
(proof)

lemma surj-sum-decode: surj sum-decode
(proof)

106

THEORY “Nat-Bijection” 107

lemma bij-sum-encode: bij sum-encode
(proof)

lemma bij-sum-decode: bij sum-decode
(proof)

lemma sum-encode-eq: sum-encode T = sum-encode y <— T =y
(proof)

lemma sum-decode-eq: sum-decode © = sum-decode y +— © = y
(proof)

18.3 Type int

definition int-encode :: int = nat
where int-encode i = sum-encode (if 0 < i then Inl (nat %) else Inr (nat (— i —

1)))

definition int-decode :: nat = int
where int-decode n = (case sum-decode n of Inl a = int a | Inr b = — int b —

1)

lemma int-encode-inverse [simp]: int-decode (int-encode x) = x
(proof)

lemma int-decode-inverse [simp|: int-encode (int-decode n) = n
{proof)

lemma inj-int-encode: inj-on int-encode A
(proof)

lemma inj-int-decode: inj-on int-decode A

(proof)

lemma surj-int-encode: surj int-encode
{proof)

lemma surj-int-decode: surj int-decode
(proof)

lemma bij-int-encode: bij int-encode
(proof)

lemma bij-int-decode: bij int-decode
(proof)

lemma int-encode-eq: int-encode x = int-encode y +— = =y
(proof)

THEORY “Nat-Bijection” 108

lemma int-decode-eq: int-decode x = int-decode y <— = =y
(proof)

18.4 Type nat list

fun list-encode :: nat list = nat
where
list-encode [| = 0
| list-encode (x # xs) = Suc (prod-encode (z, list-encode xs))

function list-decode :: nat = nat list
where
list-decode 0 = |
| list-decode (Suc n) = (case prod-decode n of (x, y) = x # list-decode y)

{proof)

termination list-decode

(proof)

lemma list-encode-inverse [simp): list-decode (list-encode x) = x
{proof)

lemma list-decode-inverse [simp]: list-encode (list-decode n) = n

(proof)

lemma inj-list-encode: inj-on list-encode A
(proof)

lemma inj-list-decode: inj-on list-decode A
(proof)

lemma surj-list-encode: surj list-encode

(proof)

lemma surj-list-decode: surj list-decode
{proof)

lemma bij-list-encode: bij list-encode
(proof)

lemma bij-list-decode: bij list-decode
(proof)

lemma list-encode-eq: list-encode x = list-encode y +— =z =y
(proof)

lemma list-decode-eq: list-decode x = list-decode y +— x© =y
(proof)

THEORY “Nat-Bijection” 109

18.5 Finite sets of naturals

18.5.1 Preliminaries

lemma finite-vimage-Suc-iff: finite (Suc —‘ F) «— finite F
(proof)

lemma vimage-Suc-insert-0: Suc —* insert 0 A = Suc —‘ A
(proof)

lemma vimage-Suc-insert-Suc: Suc — insert (Suc n) A = insert n (Suc —* A)
{proof)

lemma div2-even-ext-nat:
fixes = y :: nat
assumes z div 2 = y div 2
and even T <— even y
shows z = y

(proof)

18.5.2 From sets to naturals

definition set-encode :: nat set = nat
where set-encode = sum ((7) 2)

lemma set-encode-empty [simp]: set-encode {} = 0
{proof)

lemma set-encode-inf: — finite A = set-encode A = 0
(proof)

lemma set-encode-insert [simp): finite A => n ¢ A = set-encode (insert n A)
= 2"n + set-encode A
{proof)

lemma even-set-encode-iff: finite A = even (set-encode A) <+— 0 ¢ A
{proof)

lemma set-encode-vimage-Suc: set-encode (Suc —° A) = set-encode A div 2

(proof)
lemmas set-encode-div-2 = set-encode-vimage-Suc [symmetric]

18.5.3 From naturals to sets

definition set-decode :: nat = nat set
where set-decode x = {n. odd (z div 2 " n)}

lemma set-decode-0 [simpl: 0 € set-decode © +— odd x
{proof)

THEORY “Countable” 110

lemma set-decode-Suc [simp]: Suc n € set-decode T «— n € set-decode (x div 2)
{proof)

lemma set-decode-zero [simp): set-decode 0 = {}
{proof)

lemma set-decode-div-2: set-decode (x div 2) = Suc —* set-decode x

{proof)

lemma set-decode-plus-power-2:
n ¢ set-decode z = set-decode (2 ~n + z) = insert n (set-decode z)

(proof)

lemma finite-set-decode [simpl: finite (set-decode n)

(proof)
18.5.4 Proof of isomorphism
lemma set-decode-inverse [simp|: set-encode (set-decode n) = n

(proof)

lemma set-encode-inverse [simp]: finite A = set-decode (set-encode A) = A
(proof)

lemma inj-on-set-encode: inj-on set-encode (Collect finite)
(proof)

lemma set-encode-eq: finite A = finite B = set-encode A = set-encode B <—
A=DB
(proof)

lemma subset-decode-imp-le:
assumes set-decode m C set-decode n
shows m < n

(proof)

end

19 Encoding (almost) everything into natural num-
bers

theory Countable

imports Old-Datatype HOL.Rat Nat-Bijection
begin

19.1 The class of countable types

class countable =

THEORY “Countable” 111

assumes ez-inj: 3 to-nat :: ‘a = nat. inj to-nat

lemma countable-classI:
fixes f :: 'a = nat
assumes Az y. fr=fy=—=z=y
shows OFCLASS('a, countable-class)
(proof)

19.2 Conversion functions

definition to-nat :: 'a::countable = nat where
to-nat = (SOME f. inj f)

definition from-nat :: nat = 'a::countable where
from-nat = inv (to-nat :: 'a = nat)

lemma inj-to-nat [simp]: inj to-nat

(proof)

lemma inj-on-to-nat[simp, introl: inj-on to-nat S
{proof)

lemma surj-from-nat [simp]: surj from-nat
(proof)

lemma to-nat-split [simp]: to-nat z = to-nat y +— z =y
(proof)

lemma from-nat-to-nat [simp]:
from-nat (to-nat z) = x
(proof)

19.3 Finite types are countable

subclass (in finite) countable
(proof)

19.4 Automatically proving countability of old-style datatypes

context
begin

qualified inductive finite-item :: ‘a Old-Datatype.item = bool where
undefined: finite-item undefined

| In0: finite-item x = finite-item (Old-Datatype.In0 x)

| In1: finite-item x = finite-item (Old-Datatype.Inl x)

| Leaf: finite-item (Old-Datatype.Leaf a)

| Scons: [finite-item x; finite-item y]| = finite-item (Old-Datatype.Scons z y)

qualified function nth-item :: nat = ('a::countable) Old-Datatype.item

THEORY “Countable” 112

where
nth-item 0 = undefined
| nth-item (Suc n) =
(case sum-decode n of
Inli=
(case sum-decode i of
Inl j = Old-Datatype.In0 (nth-item j)
| Inr j = Old-Datatype.Inl (nth-item j))
| Inr i =
(case sum-decode i of
Inl j = Old-Datatype.Leaf (from-nat j)
| Inr j =
(case prod-decode j of
(a, b) = Old-Datatype.Scons (nth-item a) (nth-item b))))

(proof)

lemma le-sum-encode-Inl: © < y = & < sum-encode (Inl y)
(proof)

lemma le-sum-encode-Inr: © < y = = < sum-encode (Inr y)
(proof) termination

(proof)

lemma nth-item-covers: finite-item * =—> I n. nth-item n = x

(proof)

theorem countable-datatype:
fixes Rep :: 'b = (‘a::countable) Old-Datatype.item
fixes Abs :: ('a::countable) Old-Datatype.item = 'b
fixes rep-set :: (‘a::countable) Old-Datatype.item = bool
assumes type: type-definition Rep Abs (Collect rep-set)
assumes finite-item: \xz. rep-set © = finite-item x
shows OFCLASS('b, countable-class)

(proof)
(ML)

end

19.5 Automatically proving countability of datatypes
(ML)

19.6 More Countable types

Naturals

instance nat :: countable
(proof)

Pairs

THEORY “Countable” 113

instance prod :: (countable, countable) countable
{proof)

Sums

instance sum :: (countable, countable) countable
{proof)

Integers

instance int :: countable
(proof)

Options

instance option :: (countable) countable

(proof)
Lists

instance list :: (countable) countable
{proof)

String literals

instance String.literal :: countable
{proof)

Functions

instance fun :: (finite, countable) countable
(proof)
Typereps

instance typerep :: countable
(proof)

19.7 The rationals are countably infinite

definition nat-to-rat-surj :: nat = rat where
nat-to-rat-surj n = (let (a, b) = prod-decode n in Fract (int-decode a) (int-decode

b))

lemma surj-nat-to-rat-surj: surj nat-to-rat-surj

(proof)

lemma Rats-eq-range-nat-to-rat-surj: Q = range nat-to-rat-surj
{proof)

context field-char-0
begin

lemma Rats-eq-range-of-rat-o-nat-to-rat-surj:
Q = range (of-rat o nat-to-rat-surj)
(proof)

THEORY “Infinite-Set” 114

lemma surj-of-rat-nat-to-rat-surj:
r € Q = In. r = of-rat (nat-to-rat-surj n)
{proof)

end

instance rat :: countable
(proof)

theorem rat-denum: 3f :: nat = rat. surj f

{proof)

end

20 Infinite Sets and Related Concepts

theory Infinite-Set
imports Main
begin

20.1 The set of natural numbers is infinite

lemma infinite-nat-iff-unbounded-le: infinite S +— (Vm. In>m. n € §)
for S :: nat set

(proof)

lemma infinite-nat-iff-unbounded: infinite S <— (¥ m. In>m. n €)
for S :: nat set

(proof)

lemma finite-nat-iff-bounded: finite S «— (3 k. S C {..<k})
for S :: nat set

{proof)

lemma finite-nat-iff-bounded-le: finite S «— (k. S C {.. k})
for S :: nat set

{proof)

lemma finite-nat-bounded: finite S = Ik. S C {..<k}
for S :: nat set

{proof)

For a set of natural numbers to be infinite, it is enough to know that
for any number larger than some k, there is some larger number that is an
element of the set.

lemma unbounded-k-infinite: Vm>k. In>m. n € § = infinite (S::nat set)
{proof)

THEORY “Infinite-Set” 115

lemma nat-not-finite: finite (UNIV::nat set) = R
{proof)

lemma range-inj-infinite:
fixes [:: nat = 'a
assumes nj f
shows infinite (range f)
(proof)

20.2 The set of integers is also infinite

lemma infinite-int-iff-infinite-nat-abs: infinite S «— infinite ((nat o abs) *S)
for S :: int set

(proof)

proposition infinite-int-iff-unbounded-le: infinite S +— (Y m. In. |n|] > m A n €
S)

for S :: int set

(proof)

proposition infinite-int-iff-unbounded: infinite S <+— (Vm. In. |n| > m A n €
S)

for S :: int set

(proof)

proposition finite-int-iff-bounded: finite S +— (k. abs * S C {..<k})
for S :: int set
(proof)

proposition finite-int-iff-bounded-le: finite S «— (I k. abs S C {.. k})
for S :: int set
(proof)

lemma infinite-split: — courtesy of Michael Schmidt
fixes S :: ‘a set
assumes infinite S
obtains A B
where A C S B C S infinite A infinite BAN B ={}
(proof)

20.3 Infinitely Many and Almost All

We often need to reason about the existence of infinitely many (resp., all
but finitely many) objects satisfying some predicate, so we introduce corre-
sponding binders and their proof rules.

lemma not-INFM [simp): = (INFM z. P z) +— (MOST z. = P 1)
{proof)

lemma not-MOST [simp]: = (MOST z. P z) <— (INFM z. = P x)

THEORY “Infinite-Set” 116

{proof)

lemma INFM-const [simp|: (INFM z::'a. P) <— P A infinite (UNIV::a set)
{proof)

lemma MOST-const [simp]: (MOST x::'a. P) «— PV finite (UNIV::'a set)
{proof)

lemma INFM-imp-distrib: (INFM z. P 2 — Q z) +— ((MOST z. P) —
(INFM z. Q z))

(proof)

lemma MOST-imp-iff: MOST z. P v — (MOST z. Pz — @ z) +— (MOST
(proof)

lemma INFM-conjl: INFM xz. Px — MOST z. Qx — INFM z. Pz N\ Q x
(proof)

Properties of quantifiers with injective functions.

lemma INFM-inj: INFM z. P (fz) = inj f = INFM z. P x
(proof)

lemma MOST-inj: MOST x. P x = inj f = MOST x. P (f x)
(proof)
Properties of quantifiers with singletons.
lemma not-INFM-eq [simp]:
- (INFM z. z = a)
= (INFM z. a = x)
(proof)

lemma MOST-neq [simp]:
MOST x. z # a
MOST z. a # x

{proof)

lemma INFM-neq [simp:
(INFM z::'a. © # a) <— infinite (UNIV::"a set)
(INFM z::'a. a # z) <— infinite (UNIV::'a set)
{proof)

lemma MOST-eq [simp]:
(MOST x::'a. x = a) «— finite (UNIV::'a set)
(MOST z::'a. a = x) «— finite (UNIV::'a set)
(proof)

lemma MOST-eq-imp:
MOSTxz.zt =a — Px

THEORY “Infinite-Set” 117

MOST z.a =2 — Px
(proof)

Properties of quantifiers over the naturals.

lemma MOST-nat: (¥ son. P n) <— (Im. Vn>m. P n)
for P :: nat = bool

{proof)

lemma MOST-nat-le: (Voon. P n) +— (Im. Yn>m. P n)
for P :: nat = bool

{proof)

lemma INFM-nat: (3oon. P n) +— (VYm. In>m. P n)
for P :: nat = bool

(proof)

lemma INFM-nat-le: (3oon. P n) <— (¥Ym. In>m. P n)
for P :: nat = bool

(proof)

lemma MOST-INFM: infinite (UNIV::'a set) = MOST z::'a. P x = INFM
z:'a. Px

{proof)

lemma MOST-Suc-iff: (MOST n. P (Suc n)) +— (MOST n. P n)
(proof)

lemma MOST-Sucl: MOST n. P n = MOST n. P (Suc n)
and MOST-SucD: MOST n. P (Suc n) = MOST n. P n

(proof)

lemma MOST-ge-nat: MOST n:nat. m < n

(proof)
lemma Inf-many-def: Inf-many P «— infinite {z. P z} (proof)
lemma Alm-all-def: Alm-all P <— — (INFM z. = P z) (proof)
lemma INFM-iff-infinite: (INFM z. P z) <— infinite {x. P z} (proof)
lemma MOST-iff-cofinite: (MOST z. P x) «— finite {x. = P x} (proof)
lemma INFM-EX: (3. P x) = (3z. P) (proof)
lemma ALL-MOST: V. Pz =V ox. Pz (proof)
lemma INFM-mono: 3cx. P2 = (Az. P2 = Q) = J . Q z (proof)
lemma MOST-mono: ¥V ooz. Pz = (Nz. Pz = Q z) = V oz. Q = (proof)
lemma INFM-disj-distrib: (ocz. Pz V Q z) +— (Jooz. P 2) V Foz. Q)
(proof)
lemma MOST-rev-mp: Voox. P2 = Vooz. Pz — Q z = V z. Q = (proof)
lemma MOST-conj-distrib: (Voox. P2z A Q z) +— (Vooz. P 2) A (Vor. Q)
(proof)
lemma MOST-conjl: MOST z. P x — MOST x. Q x = MOST z. Pz N Qx
(proof)
lemma INFM-finite-Bez-distrib: finite A =— (INFM y. 3z€A. Pz y) +— (Fz€A.

THEORY “Infinite-Set” 118

INFM y. P z y) {(proof)

lemma MOST-finite-Ball-distrib: finite A — (MOST y. Vz€A. P z y) +—
(VzeA. MOST y. P z y) (proof)

lemma INFM-E: INFM z. P x = (\x. P x = thesis) = thesis (proof)
lemma MOST-I: (Az. P) = MOST z. P z (proof)

lemmas MOST-iff-finiteNeg = MOST-iff-cofinite

20.4 Enumeration of an Infinite Set
The set’s element type must be wellordered (e.g. the natural numbers).

Could be generalized to enumerate’ Sn = (SOME t. t € s A finite {s €
S.s <ty Acard {s€ S. s<t}=n).

primrec (in wellorder) enumerate :: 'a set = nat = 'a
where
enumerate-0: enumerate S 0 = (LEAST n. n € S5)
| enumerate-Suc: enumerate S (Suc n) = enumerate (S — {LEAST n. n € S}) n

lemma enumerate-Suc” enumerate S (Suc n) = enumerate (S — {enumerate S
0}) n
(proof)

lemma enumerate-in-set: infinite S = enumerate S n € S

(proof)

declare enumerate-0 [simp del| enumerate-Suc [simp del]

lemma enumerate-step: infinite S = enumerate S n < enumerate S (Suc n)

(proof)

lemma enumerate-mono: m < n = infinite S = enumerate S m < enumerate

Sn
(proof)

lemma enumerate-mono-iff [simp]:
infinite S = enumerate S m < enumerate Sn <— m < n

{proof)

lemma enumerate-mono-le-iff [simp):
infinite S = enumerate S m < enumerate Sn — m < n

{proof)

lemma le-enumerate:
assumes S: infinite S
shows n < enumerate S n

(proof)

lemma infinite-enumerate:
assumes fS: infinite S

THEORY “Infinite-Set” 119

shows I r:nat=nat. strict-mono r A (¥Yn. rn € 5)
{proof)

lemma enumerate-Suc’”:
fixes S :: ‘a::wellorder set
assumes infinite S
shows enumerate S (Suc n) = (LEAST s. s € S A enumerate S n < s)

{proof)

lemma enumerate-FEx:
fixes S :: nat set
assumes S: infinite S

and s: s € S
shows dn. enumerate S n = s
(proof)

lemma inj-enumerate:
fixes S :: ‘a::wellorder set
assumes S: infinite S
shows inj (enumerate S)
(proof)
To generalise this, we’d need a condition that all initial segments were
finite

lemma bij-enumerate:
fixes S :: nat set
assumes S: infinite S
shows bij-betw (enumerate S) UNIV S

(proof)

lemma
fixes S :: nat set
assumes S: infinite S
shows range-enumerate: range (enumerate S) = S
and strict-mono-enumerate: strict-mono (enumerate S)

(proof)
A pair of weird and wonderful lemmas from HOL Light.

lemma finite-transitivity-chain:
assumes finite A
and R: A\z. ~Rzz Nzyz [Rey; Ryz] = Ruxz
and A: A\z.2 € A= Jy.y€ ANRzy
shows 4 = {}

{proof)

corollary Union-mazimal-sets:
assumes finite F
shows J{T € F.YVUeF. - T C U} =UF
(is ?lhs = ?rhs)
(proof)

THEORY “Infinite-Set” 120

20.5 Properties of wellorder-class.enumerate on finite sets

lemma finite-enumerate-in-set: [finite S; n < card S| = enumerate Sn € S

(proof)

lemma finite-enumerate-step: [finite S; Suc n < card S| = enumerate S n <
enumerate S (Suc n)

(proof)

lemma finite-enumerate-mono: [m < n; finite S; n < card S] => enumerate S m
< enumerate S n
{proof)

lemma finite-enumerate-mono-iff [simp):

[finite S; m < card S; n < card S] = enumerate S m < enumerate S n <— m
<mn

{proof)

lemma finite-le-enumerate:
assumes finite S n < card S
shows n < enumerate S n

{proof)

lemma finite-enumerate:
assumes [S: finite S
shows 3 ri:nat=-nat. strict-mono-on {..<card S} r A (Vn<card S. rn € S)

(proof)

lemma finite-enumerate-Suc’":
fixes S :: ‘a::wellorder set
assumes finite S Suc n < card S
shows enumerate S (Suc n) = (LEAST s. s € S A\ enumerate S n < s)

{proof)

lemma finite-enumerate-initial-segment:
fixes S :: ‘a::wellorder set
assumes finite S and n: n < card (S N {..<s})
shows enumerate (S N {..<s}) n = enumerate S n

{proof)

lemma finite-enumerate-Fx:
fixes S :: ‘a::wellorder set
assumes S: finite S

and s: s € S
shows dn<card S. enumerate S n = s
(proof)

lemma finite-enum-subset:
assumes A\i. i < card X = enumerate X i = enumerate Y i and finite X finite
Y card X < card Y

THEORY “Countable-Set” 121

shows X C Y
(proof)

lemma finite-enum-ext:

assumes A\i. i < card X = enumerate X { = enumerate Y ¢ and finite X finite
Y card X = card Y

shows X = Y

{proof)

lemma finite-bij-enumerate:
fixes S :: ‘a::wellorder set
assumes S: finite S
shows bij-betw (enumerate S) {..<card S} S

(proof)

lemma ex-bij-betw-strict-mono-card:
fixes M :: 'a::wellorder set
assumes finite M
obtains h where bij-betw h {..<card M} M and strict-mono-on {..<card M} h

(proof)

end

21 Countable sets

theory Countable-Set
imports Countable Infinite-Set
begin

21.1 Predicate for countable sets
definition countable :: 'a set = bool where

countable S «— (I f::'a = nat. inj-on [5)

lemma countable-as-injective-image-subset: countable S +— (3 f. I K::nat set. S
=f ‘K N inj-on f K)
(proof)

lemma countableF:
assumes S: countable S obtains f :: ‘a = nat where inj-on f S

(proof)

lemma countablel: inj-on (f::'a = nat) S = countable S
{proof)

lemma countablel”: inj-on (f::'a = 'b::countable) S => countable S
(proof)

lemma countableE-bij:

THEORY “Countable-Set” 122

assumes S: countable S obtains f :: nat = ‘a and C :: nat set where bij-betw
fcs
{proof)

lemma countablel-bij: bij-betw f (C::nat set) S = countable S
(proof)

lemma countable-finite: finite S = countable S
(proof)

lemma countablel-bijl: bij-betw f A B = countable A = countable B
(proof)

lemma countablel-bij2: bij-betw f B A = countable A = countable B

(proof)

lemma countable-iff-bij[simp]: bij-betw f A B = countable A <— countable B
{proof)

lemma countable-subset: A C B = countable B = countable A
(proof)

lemma countablel-type[intro, simpl|: countable (A:: 'a :: countable set)

{proof)

21.2 Enumerate a countable set

lemma countable E-infinite:
assumes countable S infinite S
obtains e :: ‘a = nat where bij-betw e S UNIV

(proof)

lemma countable-infiniteE":
assumes countable A infinite A
obtains g where bij-betw g (UNIV :: nat set) A

{proof)

lemma countable-enum-cases:
assumes countable S
obtains (finite) f :: ‘a = nat where finite S bij-betw f S {..<card S}
| (infinite) f :: 'a = nat where infinite S bij-betw f S UNIV
(proof)

definition to-nat-on :: 'a set = ‘a = nat where
to-nat-on S = (SOME f. if finite S then bij-betw f S {..< card S} else bij-betw f
S UNIV)

definition from-nat-into :: 'a set = nat = 'a where
from-nat-into S n = (if n € to-nat-on S * S then inv-into S (to-nat-on S) n else

THEORY “Countable-Set” 123

SOME s. s€8)

lemma to-nat-on-finite: finite S = bij-betw (to-nat-on S) S {..< card S}
(proof)

lemma to-nat-on-infinite: countable S = infinite S = bij-betw (to-nat-on S) S
UNIV

{proof)

lemma bij-betw-from-nat-into-finite: finite S = bij-betw (from-nat-into S) {..<
card S} S
(proof)

lemma bij-betw-from-nat-into: countable S = infinite S = bij-betw (from-nat-into
S) UNIV S

(proof)

The sum/product over the enumeration of a finite set equals simply the
sum/product over the set

context comm-monoid-set
begin

lemma card-from-nat-into:
F (Mi. h (from-nat-into A 7)) {..<card A} = Fh A
(proof)

end

lemma countable-as-injective-image:

assumes countable A infinite A

obtains f :: nat = ‘a where A = range finj f
(proof)

lemma inj-on-to-nat-on[introl: countable A = inj-on (to-nat-on A) A
{proof)

lemma to-nat-on-inj[simp):
countable A =— a € A =— b € A = to-nat-on A a = to-nat-on A b<+— a=0>
(proof)

lemma from-nat-into-to-nat-on[simp|: countable A — a € A = from-nat-into
A (to-nat-on A a) = a
(proof)

lemma subset-range-from-nat-into: countable A = A C range (from-nat-into A)
(proof)

lemma from-nat-into: A # {} = from-nat-into A n € A
(proof)

THEORY “Countable-Set” 124

lemma range-from-nat-into-subset: A # {} = range (from-nat-into A) C A
{proof)

lemma range-from-nat-into[simp|: A # {} = countable A = range (from-nat-into
A=A
{proof)

lemma image-to-nat-on: countable A = infinite A = to-nat-on A * A = UNIV
(proof)

lemma to-nat-on-surj: countable A = infinite A = Fa€A. to-nat-on A a = n
(proof)

lemma to-nat-on-from-nat-into[simp): n € to-nat-on A * A = to-nat-on A (from-nat-into
An)=n
(proof)

lemma to-nat-on-from-nat-into-infinite[simp:
countable A = infinite A = to-nat-on A (from-nat-into A n) = n
(proof)

lemma from-nat-into-inj:
countable A = m € to-nat-on A ‘ A = n € to-nat-on A ‘ A =
from-nat-into A m = from-nat-into A n <— m=mn
(proof)

lemma from-nat-into-inj-infinite[simp:
countable A = infinite A = from-nat-into A m = from-nat-into A n +— m
=n

(proof)

lemma eg-from-nat-into-iff:

countable A = z € A = i € to-nat-on A ‘ A = = = from-nat-into A i +—
1 = to-nat-on A x

(proof)

lemma from-nat-into-surj: countable A — a € A = In. from-nat-into A n =
a

{proof)

lemma from-nat-into-inject]simp):

A # {} = countable A = B # {} = countable B = from-nat-into A =
from-nat-into B +— A = B

(proof)

lemma inj-on-from-nat-into: inj-on from-nat-into ({A. A # {} A countable A})
{proof)

THEORY “Countable-Set” 125

21.3 Closure properties of countability

lemma countable-SIGMA[intro, simp:
countable I = (\i. i € I = countable (A i)) = countable (SIGMA i : I. A

i)

{proof)

lemma countable-image[intro, simp):
assumes countable A
shows countable (f*A)

(proof)

lemma countable-image-inj-on: countable (f * A) = inj-on f A = countable A
(proof)

lemma countable-image-inj-Int-vimage:
[ing-on fS; countable A] = countable (S N f —* A)
(proof)

lemma countable-image-inj-gen:
[ing-on f S; countable A] = countable {z € S. fz € A}
(proof)

lemma countable-image-inj-eq:
inj-on f S = countable(f * S) +— countable S
(proof)

lemma countable-image-ing:
[countable A; inj f] = countable {z. fz € A}
{proof)

lemma countable-UN[intro, simp]:
fixes I :: 'i set and A :: i => 'a set
assumes [: countable I
assumes A: A\i. i € I = countable (A 7)
shows countable (|Ji€l. A 7)

(proof)

lemma countable-Un[intro]: countable A = countable B => countable (A U B)
{proof)

lemma countable- Un-iff [simp]: countable (A U B) +— countable A N\ countable B
{proof)

lemma countable-Pluslintro, simp]:
countable A = countable B = countable (A <+> B)

(proof)

lemma countable-empty[intro, simp|: countable {}
{proof)

THEORY “Countable-Set” 126

lemma countable-insert[intro, simp|: countable A = countable (insert a A)
{proof)

lemma countable-Int1 [intro, simp|: countable A = countable (A N B)
{proof)

lemma countable-Int2[intro, simp|: countable B = countable (A N B)
{proof)

lemma countable-INT[intro, simpl: i € I = countable (A i) = countable ([i€l.
A Q)
(proof)

lemma countable-Diff[intro, simp]: countable A = countable (A — B)
(proof)

lemma countable-insert-eq [simp|: countable (insert x A) = countable A

(proof)

lemma countable-vimage: B C range f = countable (f —¢ B) = countable B
(proof)

lemma surj-countable-vimage: surj f = countable (f —‘ B) = countable B
(proof)

lemma countable-Collect[simp]: countable A = countable {a € A. ¢ a}
{proof)

lemma countable-Image:
assumes Ay. y € Y = countable (X ““ {y})
assumes countable Y
shows countable (X “Y)

(proof)

lemma countable-relpow:
fixes X :: ‘a rel
assumes Image-X: \Y. countable Y = countable (X ““ Y)
assumes Y: countable Y
shows countable (X 7" 14) “Y)

{proof)

lemma countable-funpow:
fixes [:: 'a set = 'a set
assumes A\A. countable A = countable (f A)
and countable A
shows countable ((f =" n) A)

(proof)

THEORY “Countable-Set” 127

lemma countable-rtrancl:

(AY. countable Y = countable (X ““ Y)) = countable Y = countable (X*
X3 Y)

{proof)

lemma countable-lists[intro, simpl:
assumes A: countable A shows countable (lists A)

(proof)

lemma Collect-finite-eq-lists: Collect finite = set * lists UNIV
(proof)

lemma countable-Collect-finite: countable (Collect (finite::'a::countable set=>bool))
{proof)

lemma countable-int: countable Z.
(proof)

lemma countable-rat: countable Q
(proof)

lemma Collect-finite-subset-eq-lists: {A. finite AN A C T} = set “lists T
(proof)

lemma countable-Collect-finite-subset:
countable T = countable {A. finite ANAC T}

{proof)

lemma countable-Fpow: countable S = countable (Fpow S)
{proof)

lemma countable-set-option [simpl: countable (set-option x)

{proof)

21.4 Misc lemmas

lemma countable-subset-image:
countable B A B C (f ¢ A) «+— (A" countable A’ N A’ C AN (B=f*A4")
(is ?lhs = %rhs)

(proof)

lemma ex-subset-image-ing:
@T.TCf*SAPT)+— 3T.TCSANinjonfTANP(fT))
(proof)

lemma all-subset-image-ing:
VT.TCfS—PT)«— NVT.TCSANinjonfT — P(f‘T))
(proof)

THEORY “Countable-Set” 128

lemma ex-countable-subset-image-ing:
(3T. countable TN T C f*SANPT)<+—
(3T. countable T AT C S N inj-onfT NP (fT))

{proof)

lemma all-countable-subset-image-inj:

(VT. countable T N T C f‘S — P T)«— (VT. countable T N T C S A
inj-on f T —P(f “T))

(proof)

lemma ex-countable-subset-image:

(3T. countable TANT C f*SANPT)«— (3T. countable T NT C S AP (f
°T))

(proof)

lemma all-countable-subset-image:

(VT. countable TANT Cf‘S — PT)<«— (VT. countable TN T C § —
P(f*T))

(proof)

lemma countable-image-eq:
countable(f < S) +— (3T. countable TANT CSANf<S=f*T)
(proof)

lemma countable-image-eq-inj:
countable(f < S) «— (3 T. countable TANT CSANf<S=fTAinjonfT)
(proof)

lemma infinite-countable-subset:
assumes X: infinite X shows 3 CCX. countable C' A infinite C

{(proof)

lemma countable-all:

assumes S: countable S

shows (VseS. P s) «— (Vnunat. from-nat-into S n € S — P (from-nat-into
S n))

(proof)

lemma finite-sequence-to-countable-set:

assumes countable X

obtains F' where A\i. Fi C X Ai. Fi C F (Suc i) Ai. finite (F i) (4. F i)
=X
(proof)

lemma transfer-countable[transfer-rule]:
bi-unique R = rel-fun (rel-set R) (=) countable countable

(proof)

THEORY “Countable-Complete-Lattices” 129

21.5 Uncountable

abbreviation uncountable where
uncountable A = — countable A

lemma uncountable-def: uncountable A +— A # {} A = (3 f::(nat = 'a). range f
= A)
(proof)

lemma uncountable-bij-betw: bij-betw f A B => uncountable B = uncountable A
(proof)

lemma uncountable-infinite: uncountable A = infinite A
(proof)

lemma uncountable-minus-countable:
uncountable A = countable B = uncountable (A — B)

{proof)

lemma countable-Diff-eq [simp]: countable (A — {z}) = countable A
{proof)

Every infinite set can be covered by a pairwise disjoint family of infinite
sets. This version doesn’t achieve equality, as it only covers a countable
subset
lemma infinite-infinite-partition:

assumes infinite A

obtains C :: nat = ’a set
where pairwise (\i j. disjnt (C i) (C 7)) UNIV (U4 Ci) € A Ai. infinite (C
i)

(proof)

end

22 Countable Complete Lattices

theory Countable-Complete-Lattices
imports Main Countable-Set
begin

lemma UNIV-nat-eq: UNIV = insert 0 (range Suc)
{proof)

class countable-complete-lattice = lattice + Inf + Sup + bot + top +
assumes cclnf-lower: countable A —= r € A = InfA <z
assumes cclnf-greatest: countable A —= (\z. 2 € A = 2z < 2) = 2z < InfA
assumes ccSup-upper: countable A — v € A = = < Sup A
assumes ccSup-least: countable A = (A\z. 1 € A = 2z < 2) = Sup A < 2
assumes cclnf-empty [simpl: Inf {} = top

THEORY “Countable-Complete-Lattices” 130

assumes ccSup-empty [simp]: Sup {} = bot
begin

subclass bounded-lattice

(proof)

lemma ccINF-lower: countable A = i € A = (INFic A. fi) < fi
{proof)

lemma ccINF-greatest: countable A — (N\i. i € A = u < fi) = u < (INF i
€ A fi)
{proof)

lemma ccSUP-upper: countable A = i € A = fi < (SUP i € A. f1)
(proof)

lemma ccSUP-least: countable A = (N\i. i€ A= fi<u) = (SUPic A f
i) <u
{proof)

lemma ccinf-lower2: countable A — v € A —= u < v=— InfA < v
(proof)

lemma ccINF-lower2: countable A — i € A = fi<u= (INFic A. fi) <
m

(proof)

lemma ccSup-upper?2: countable A — u € A = v < u=— v < Sup A
(proof)

lemma ccSUP-upper2: countable A — i € A = u < fi = u < (SUP i € A.
fi)
(proof)

lemma le-ccInf-iff: countable A = b < Inf A +— (Va€A. b < a)

{proof)

lemma le-ccINF-iff: countable A = v < (INF i € A. fi) +— (Vi€eA. u < f1i)
(proof)

lemma ccSup-le-iff: countable A = Sup A < b +— (VacA. a < b)
(proof)

lemma ccSUP-le-iff: countable A = (SUP i € A. fi) < u+— (Vi€A. fi < u)
{proof)

lemma cclnf-insert [simpl: countable A = Inf (insert a A) = inf a (Inf A)

(proof)

THEORY “Countable-Complete-Lattices” 131

lemma ccINF-insert [simp]: countable A = (INF z€insert a A. fz) = inf (f a)
(Inf (f *A))
{proof)

lemma ccSup-insert [simp]: countable A = Sup (insert a A) = sup a (Sup A)
(proof)

lemma ccSUP-insert [simp]: countable A = (SUP z€insert a A. fz) = sup (f a)
(Sup (f * A))
{proof)

lemma ccINF-empty [simp]: (INF z€{}. fz) = top
{proof)

lemma ccSUP-empty [simp]: (SUP z€{}. fz) = bot
{proof)

lemma cclnf-superset-mono: countable A =— B C A = Inf A < Inf B
(proof)

lemma ccSup-subset-mono: countable B— A C B — Sup A < Sup B
(proof)

lemma ccInf-mono:
assumes [intro]: countable B countable A
assumes Ab. b € B=— JacAd. a <)
shows Inf A < Inf B

(proof)

lemma ccINF-mono:

countable A = countable B = (A\m. m € B = 3ne€A. fn < gm) = (INF
n€A. fn) < (INF neB. g n)

(proof)

lemma ccSup-mono:
assumes [intro]: countable B countable A
assumes Aa. a € A = JbeB. a < b
shows Sup A < Sup B

(proof)

lemma ccSUP-mono:

countable A = countable B—=—= (An.n € A= ImeB. fn < gm) = (SUP
neA. fn) < (SUP neB. g n)

(proof)

lemma ccINF-superset-mono:
countable A = BC A = (A\z. 2 € B= fuz < gz) = (INF z€A. fz) <
(INF z€B. g 1)

{proof)

THEORY “Countable-Complete-Lattices” 132

lemma ccSUP-subset-mono:

countable B= ACB = (A\z. 2 € A = faz < gz) = (SUP z€A. fz) <
(SUP z€B. g 1)

(proof)

lemma less-eq-ccInf-inter: countable A = countable B = sup (Inf A) (Inf B)
< Inf (AN B)
(proof)

lemma ccSup-inter-less-eq: countable A = countable B = Sup (A N B) < inf
(Sup A) (Sup B)
(proof)

lemma cclnf-union-distrib: countable A = countable B => Inf (A U B) = inf
(Inf A) (Inf B)
(proof)

lemma ccINF-union:
countable A = countable B = (INF i€cA U B. M i) = inf (INF i€A. M i)
(INF i€B. M i)

{proof)

lemma ccSup-union-distrib: countable A = countable B = Sup (A U B) = sup
(Sup A) (Sup B)
(proof)

lemma ccSUP-union:
countable A = countable B = (SUP i€ A U B. M i) = sup (SUP i€A. M i)
(SUP i€B. M i)

(proof)

lemma ccINF-inf-distrib: countable A = inf (INF a€A. fa) (INF a€A. g a) =
(INF acA. inf (fa) (g a))
{proof)

lemma ccSUP-sup-distrib: countable A = sup (SUP a€A. fa) (SUP a€A. g a)
= (SUP acA. sup (fa) (g a))
(proof)

lemma ccINF-const [simp]: A # {} = (INFiec A. f)=f
{proof)

lemma ccSUP-const [simp]: A # {} = (SUPi€ A. f)=f
{proof)

lemma ccINF-top [simp]: (INF z€A. top) = top
(proof)

THEORY “Countable-Complete-Lattices” 133

lemma ccSUP-bot [simp]: (SUP z€A. bot) = bot
{proof)

lemma ccINF-commute: countable A => countable B => (INF i€ A. INF jeB. f
ij) = (INF jeB. INF icA. fij)
{proof)

lemma ccSUP-commute: countable A = countable B = (SUP icA. SUP jeB.
fij) = (SUP jeB. SUP i€A. fij)
(proof)

end

context
fixes a :: ‘a::{countable-complete-lattice, linorder}
begin

lemma less-ccSup-iff: countable S = a < Sup S «— (Fz€S. a < z)
(proof)

lemma less-ccSUP-iff: countable A = a < (SUP i€A. fi) «— (3z€A. a < fx)
(proof)

lemma cclnf-less-iff: countable S = Inf S < a +— (Fz€S. z < a)
(proof)

lemma ccINF-less-iff: countable A = (INF i€A. fi) < a +— (3z€A. fz < a)
{proof)

end

class countable-complete-distrib-lattice = countable-complete-lattice +
assumes sup-ccInf: countable B = sup a (Inf B) = (INF beB. sup a b)
assumes inf-ccSup: countable B = inf a (Sup B) = (SUP beB. inf a b)

begin

lemma sup-ccINF:
countable B => sup a (INF beB. fb) = (INF beB. sup a (f b))

{proof)

lemma inf-ccSUP:
countable B = inf a (SUP beB. fb) = (SUP beB. inf a (f b))

{proof)

subclass distrib-lattice

{(proof)

lemma cclnf-sup:

THEORY “Countable-Complete-Lattices” 134

countable B => sup (Inf B) a = (INF beB. sup b a)
{proof)

lemma ccSup-inf:
countable B = inf (Sup B) a = (SUP beB. inf b a)
(proof)

lemma ccINF-sup:
countable B = sup (INF beB. fb) a = (INF beB. sup (fb) a)
(proof)

lemma ccSUP-inf:
countable B = inf (SUP beB. fb) a = (SUP beB. inf (fb) a)
{proof)

lemma ccINF-sup-distrib2:

countable A = countable B = sup (INF a€A. f a) (INF beB. g b) = (INF
acA. INF beB. sup (fa) (g b))

{proof)

lemma ccSUP-inf-distrib2:
countable A = countable B = inf (SUP a€A. f a) (SUP beB. g b) = (SUP
acA. SUP beB. inf (f a) (g b))

{proof)

context
fixes [:: 'a = 'b::countable-complete-lattice
assumes mono f

begin

lemma mono-cclnf:
countable A = [(Inf A) < (INF z€A. f 1)

{proof)

lemma mono-ccSup:
countable A = (SUP z€A. fz) < f (Sup A)

(proof)

lemma mono-ccINF":
countable | = f (INFie€I. A7) < (INFzel. f(Ax)
(proof)

lemma mono-ccSUP:
countable] = (SUPz € I.f (Ax)) <f(SUPiecl. Ai)
(proof)

end

end

THEORY “Countable-Set-Type” 135

22.0.1 Instances of countable complete lattices

instance fun :: (type, countable-complete-lattice) countable-complete-lattice
(proof)

subclass (in complete-lattice) countable-complete-lattice
{proof)

subclass (in complete-distrib-lattice) countable-complete-distrib-lattice
{proof)

end

23 Type of (at Most) Countable Sets

theory Countable-Set-Type
imports Countable-Set
begin

23.1 Cardinal stuff

context
includes cardinal-syntax
begin

lemma countable-card-of-nat: countable A <— |A| <o |UNIV::nat set|
{proof)

lemma countable-card-le-natLeq: countable A +— |A| <o natLeq
(proof)

lemma countable-or-card-of:

assumes countable A

shows (finite A A |A| <o |UNIV::nat set|) V
(infinite A A |A| =0 |UNIV::nat set|)

(proof)

lemma countable-cases-card-of [elim]:
assumes countable A
obtains (Fin) finite A |A| <o |UNIV::nat set|
| (Inf) infinite A |A] =0 |UNIV ::nat set|
(proof)

lemma countable-or:

countable A = (3 f::'a=nat. finite A A inj-on f A) V (3 f::'a=nat. infinite A
A bij-betw f A UNIV)

(proof)

lemma countable-cases|elim]:

THEORY “Countable-Set-Type” 136

assumes countable A
obtains (Fin) f :: ‘a=nat where finite A inj-on f A

| (Inf) f :: '"a=nat where infinite A bij-betw f A UNIV
(proof)

lemma countable-ordLeg:
assumes |A| <o |B| and countable B
shows countable A

(proof)

lemma countable-ordLess:
assumes AB: |A| <o |B| and B: countable B
shows countable A

(proof)

end

23.2 The type of countable sets

typedef ‘a cset = {A :: ‘a set. countable A} morphisms rcset acset
(proof)

setup-lifting type-definition-cset

declare
reset-inverse[simpl
acset-inverse| Transfer.transferred, unfolded mem-Collect-eq, simp)
acset-inject| Transfer.transferred, unfolded mem-Collect-eq, simp)
reset| Transfer.transferred, unfolded mem-Collect-eq, simp]

instantiation cset :: (type) {bounded-lattice-bot, distrib-lattice, minus}
begin

lift-definition bot-cset :: ‘a cset is {} parametric empty-transfer (proof)

lift-definition less-eg-cset :: 'a cset = 'a cset = bool
is subset-eq parametric subset-transfer (proof)

definition less-cset :: 'a cset = 'a cset = bool
where zs < ys = xs < ys A xs # (ys::'a cset)

lemma less-cset-transfer|[transfer-rule]:

includes lifting-syntax

assumes [transfer-rule]: bi-unique A

shows ((per-cset A) ===> (per-cset A) ===> (=)) (Q) (<)
(proof)

lift-definition sup-cset :: 'a cset = 'a cset = 'a cset
is union parametric union-transfer (proof)

THEORY “Countable-Set-Type” 137

lift-definition inf-cset :: ‘a cset = 'a cset = 'a cset
is inter parametric inter-transfer (proof)

lift-definition minus-cset :: 'a cset = 'a cset = 'a cset
is minus parametric Diff-transfer {proof)

instance (proof)
end

abbreviation cempty :: 'a cset where cempty = bot

abbreviation csubset-eq :: ‘a cset = 'a cset = bool where csubset-eq 15 ys = s
< ys

abbreviation csubset :: ‘a cset = 'a cset = bool where csubset xs ys = xs < ys
abbreviation cUn :: 'a cset = 'a cset = 'a cset where cUn zs ys = sup xs ys

abbreviation cInt :: 'a cset = 'a cset = 'a cset where cInt xs ys = inf zs ys
abbreviation cDiff :: 'a cset = 'a cset = 'a cset where cDiff xs ys = minus s

ys

lift-definition cin :: 'a = 'a cset = bool is (€) parametric member-transfer

(proof)
lift-definition cinsert :: 'a = 'a cset = 'a cset is insert parametric Lifting-Set.insert-transfer

(proof)
abbreviation csingle :: 'a = 'a cset where csingle x = cinsert © cempty
lift-definition cimage :: (‘la = 'b) = ’a cset = 'b cset is () parametric im-
age-transfer

(proof)
lift-definition cBall :: ‘a cset = (‘a = bool) = bool is Ball parametric Ball-transfer

(proof)
lift-definition cBex :: ‘a cset = (‘a = bool) = bool is Bex parametric Bex-transfer

(proof)

lift-definition cUnion :: 'a cset cset = 'a cset is Union parametric Union-transfer
(proof)

abbreviation (input) cUNION :: 'a cset = (‘a = 'b cset) = b cset
where cUNION A f = cUnion (cimage f A)

lemma Union-conv-UNION: [JA = | (id ¢ A)
(proof)

lemmas cset-eql = set-eql| Transfer.transferred)

lemmas cset-eq-iff [no-atp] = set-eq-iff [Transfer.transferred)
lemmas cBalll[introl] = balll[Transfer.transferred]
lemmas cbspec|dest?] = bspec| Transfer.transferred]
lemmas cBallE[elim] = ballE| Transfer.transferred)
lemmas cBezl[intro] = bexlI|Transfer.transferred]

lemmas rev-cBexl[intro?] = rev-bexl| Transfer.transferred)
lemmas cBexCI = bexCI[Transfer.transferred)

lemmas cBezE[elim!] = bexE|Transfer.transferred)

THEORY “Countable-Set-Type” 138

lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas

cBall-triv[simp] = ball-triv] Transfer.transferred)
cBex-triv[simp] = bex-triv] Transfer.transferred]
cBex-triv-one-pointl [simp] = bex-triv-one-pointl | Transfer.transferred)
cBex-triv-one-point2[simp] = bex-triv-one-point2| Transfer.transferred)
cBez-one-point1 [simp] = bex-one-point! | Transfer.transferred]
cBex-one-point2[simp] = bex-one-point2[Transfer.transferred)
cBall-one-point1[simp] = ball-one-point1 | Transfer.transferred]
cBall-one-point2|[simp] = ball-one-point2| Transfer.transferred)
cBall-conj-distrib = ball-conj-distrib| Transfer.transferred)
cBex-disj-distrib = bex-disj-distrib| Transfer.transferred)
cBall-cong = ball-cong| Transfer.transferred)

cBex-cong = bex-cong| Transfer.transferred|

csubsetl[introl] = subsetI[Transfer.transferred]

csubsetD[elim, intro?] = subsetD|Transfer.transferred]
rev-csubsetD[no-atp,intro?] = rev-subsetD| Transfer.transferred)
csubsetCE[no-atp,elim] = subsetCE| Transfer.transferred]
csubset-eq[no-atp] = subset-eq[Transfer.transferred)
contra-csubsetD[no-atp] = contra-subsetD[Transfer.transferred)
csubset-refl = subset-refl| Transfer.transferred]

csubset-trans = subset-trans| Transfer.transferred)

cset-rev-mp = rev-subsetD| Transfer.transferred]

cset-mp = subsetD| Transfer.transferred]
csubset-not-fsubset-eq[code] = subset-not-subset-eq| Transfer.transferred]
eq-cmem-trans = eg-mem-trans| Transfer.transferred)
csubset-antisym[introl] = subset-antisym| Transfer.transferred]
cequalityD1 = equalityD1[Transfer.transferred)

cequalityD2 = equalityD2[Transfer.transferred)

cequalityE = equalityE| Transfer.transferred]

cequalityCE[elim] = equalityCE[Transfer.transferred]
eqeset-imp-iff = eqset-imp-iff | Transfer.transferred)
eqeelem-imp-iff = eqelem-imp-iff| Transfer.transferred)
cempty-iff [simp] = empty-iff [Transfer.transferred)
cempty-fsubsetl[iff] = empty-subsetl| Transfer.transferred]
equals-cemptyl = equalsOI| Transfer.transferred]
equals-cemptyD = equalsOD| Transfer.transferred)
cBall-cempty[simp] = ball-empty| Transfer.transferred)
cBez-cempty[simp] = bex-empty| Transfer.transferred)

cInt-iff [simp] = Int-iff [Transfer.transferred]

cIntI[introl] = IntI| Transfer.transferred)

cIntD1 = IntD1|Transfer.transferred]

cIntD2 = IntD2|Transfer.transferred]

cIntE[elim!] = IntE[Transfer.transferred)

cUn-iff [simp] = Un-iff[Transfer.transferred)

cUnll[elim? = Unll|Transfer.transferred]

cUni2[elim? = Unl2|Transfer.transferred]

cUnClI[intro!] = UnCI|Transfer.transferred)

cuUnE[elim!] = UnE[Transfer.transferred)

eDiff-iff [simp] = Diff-iff [Transfer.transferred]

cDiffIintrol] = DiffI[Transfer.transferred)

THEORY “Countable-Set-Type” 139

lemmas ¢DiffD1 = DiffD1|Transfer.transferred]

lemmas c¢DiffD2 = DiffD2| Transfer.transferred]

lemmas cDiffE[elim!] = DiffE|Transfer.transferred]

lemmas cinsert-iff [simp] = insert-iff [Transfer.transferred)

lemmas cinsertl! = insertll[Transfer.transferred)

lemmas cinsertI2 = insertI2| Transfer.transferred]

lemmas cinsertE[elim!] = insertE[Transfer.transferred)

lemmas cinsertCI[introl] = insertCI[Transfer.transferred]

lemmas csubset-cinsert-iff = subset-insert-iff | Transfer.transferred]
lemmas cinsert-ident = insert-ident| Transfer.transferred)

lemmas csingletonl [introl,no-atp] = singletonl | Transfer.transferred)
lemmas csingletonD[dest!,no-atp] = singletonD] Transfer.transferred]
lemmas fsingletonE = csingletonD [elim-format]

lemmas csingleton-iff = singleton-iff [Transfer.transferred]

lemmas csingleton-inject[dest!] = singleton-inject| Transfer.transferred]
lemmas csingleton-finsert-inj-eq[iff ,no-atp] = singleton-insert-inj-eq[Transfer.transferred)
lemmas csingleton-finsert-inj-eq'[iff ,no-atp] = singleton-insert-inj-eq'| Transfer.transferred)
lemmas csubset-csingletonD = subset-singletonD| Transfer.transferred)
lemmas cDiff-single-cinsert = Diff-single-insert| Transfer.transferred)
lemmas cdoubleton-eq-iff = doubleton-eq-iff | Transfer.transferred)
lemmas cUn-csingleton-iff = Un-singleton-iff [Transfer.transferred)
lemmas csingleton-cUn-iff = singleton- Un-iff [Transfer.transferred)
lemmas cimage-eql[simp, intro| = image-eql | Transfer.transferred)
lemmas cimagel = imagel|Transfer.transferred)

lemmas rev-cimage-eql = rev-image-eql | Transfer.transferred]

lemmas cimageE[elim!] = imageE| Transfer.transferred)

lemmas Compr-cimage-eq = Compr-image-eq| Transfer.transferred]
lemmas cimage-cUn = image-Un|Transfer.transferred)

lemmas cimage-iff = image-iff | Transfer.transferred]

lemmas cimage-csubset-iff [no-atp] = image-subset-iff | Transfer.transferred)
lemmas cimage-csubset] = image-subsetl| Transfer.transferred)

lemmas cimage-ident[simp] = image-ident| Transfer.transferred)

lemmas if-split-cinl = if-split-mem1 [Transfer.transferred)

lemmas if-split-cin2 = if-split-mem2[Transfer.transferred)

lemmas cpsubsetl|introl,no-atp] = psubsetl| Transfer.transferred)

lemmas cpsubsetE|elim!,no-atp] = psubsetE| Transfer.transferred)
lemmas cpsubset-finsert-iff = psubset-insert-iff| Transfer.transferred)
lemmas cpsubset-eq = psubset-eq| Transfer.transferred)

lemmas cpsubset-imp-fsubset = psubset-imp-subset| Transfer.transferred]
lemmas cpsubset-trans = psubset-trans| Transfer.transferred)

lemmas cpsubsetD = psubsetD|Transfer.transferred]

lemmas cpsubset-csubset-trans = psubset-subset-trans| Transfer.transferred)
lemmas csubset-cpsubset-trans = subset-psubset-trans| Transfer.transferred)
lemmas cpsubset-imp-ex-fmem = psubset-imp-ez-mem| Transfer.transferred)
lemmas csubset-cinsert] = subset-insertI[Transfer.transferred)

lemmas csubset-cinsertI2 = subset-insertI2| Transfer.transferred)

lemmas csubset-cinsert = subset-insert] Transfer.transferred)

lemmas cUn-upper! = Un-upperl|Transfer.transferred)

lemmas cUn-upper?2 = Un-upper2|Transfer.transferred)

THEORY “Countable-Set-Type” 140

lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas

cUn-least = Un-least| Transfer.transferred]

cInt-lower! = Int-lowerl|[Transfer.transferred]

cInt-lower2 = Int-lower2| Transfer.transferred]

cInt-greatest = Int-greatest| Transfer.transferred)

cDiff-csubset = Diff-subset| Transfer.transferred)
cDiff-csubset-conv = Diff-subset-conv| Transfer.transferred)
csubset-cempty|simp| = subset-empty| Transfer.transferred)
not-cpsubset-cempty|iff] = not-psubset-empty| Transfer.transferred)
cinsert-is-cUn = insert-is-Un| Transfer.transferred)
cinsert-not-cempty[simp] = insert-not-empty| Transfer.transferred)
cempty-not-cinsert = empty-not-insert Transfer.transferred)
cinsert-absorb = insert-absorb| Transfer.transferred)
cinsert-absorb2[simp| = insert-absorb2| Transfer.transferred|
cinsert-commute = insert-commute| Transfer.transferred)
cinsert-csubset|[simp] = insert-subset| Transfer.transferred)
cinsert-cinter-cinsert[simp] = insert-inter-insert| Transfer.transferred)
cinsert-disjoint[simp,no-atp] = insert-disjoint| Transfer.transferred)
disjoint-cinsert[simp,no-atp] = disjoint-insert| Transfer.transferred)
cimage-cempty|simp] = image-empty| Transfer.transferred)
cimage-cinsert[simp] = image-insert| Transfer.transferred)
cimage-constant = image-constant| Transfer.transferred)
cimage-constant-conv = image-constant-conv| Transfer.transferred)
cimage-cimage = image-image| Transfer.transferred)
cinsert-cimage[simp] = insert-image[Transfer.transferred)
cimage-is-cempty|iff] = image-is-empty| Transfer.transferred)
cempty-is-cimage[iff] = empty-is-image| Transfer.transferred)
cimage-cong = image-cong| Transfer.transferred)
cimage-cInt-csubset = image-Int-subset| Transfer.transferred]
cimage-cDiff-csubset = image-diff-subset| Transfer.transferred)
cInt-absorb = Int-absord| Transfer.transferred]

cInt-left-absorb = Int-left-absord| Transfer.transferred]
cInt-commute = Int-commute| Transfer.transferred]
cInt-left-commute = Int-left-commute| Transfer.transferred)
cInt-assoc = Int-assoc| Transfer.transferred)

cInt-ac = Int-ac| Transfer.transferred]

cInt-absorbl = Int-absorbl | Transfer.transferred]

cInt-absorb2 = Int-absorb2| Transfer.transferred)

cInt-cempty-left = Int-empty-left| Transfer.transferred)
cInt-cempty-right = Int-empty-right| Transfer.transferred]
disjoint-iff-cnot-equal = disjoint-iff-not-equal| Transfer.transferred)
cInt-cUn-distrib = Int- Un-distrib] Transfer.transferred)
cInt-cUn-distrib2 = Int-Un-distrib2[Transfer.transferred)
cInt-csubset-iff [no-atp, simp] = Int-subset-iff | Transfer.transferred)
cUn-absorb = Un-absorb| Transfer.transferred]

cUn-left-absorb = Un-left-absorb| Transfer.transferred]
cUn-commute = Un-commute| Transfer.transferred]
cUn-left-commute = Un-left-commute| Transfer.transferred)
cUn-assoc = Un-assoc| Transfer.transferred)

cUn-ac = Un-ac|Transfer.transferred)

THEORY “Countable-Set-Type” 141

lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas
lemmas

cUn-absorbl = Un-absorbl[Transfer.transferred)

cUn-absorb2 = Un-absorb2|Transfer.transferred)

cUn-cempty-left = Un-empty-left] Transfer.transferred)
cUn-cempty-right = Un-empty-right| Transfer.transferred)
cUn-cinsert-left[simp] = Un-insert-left| Transfer.transferred)
cUn-cinsert-right[simp] = Un-insert-right[Transfer.transferred)
cInt-cinsert-left = Int-insert-left[Transfer.transferred)
cInt-cinsert-left-if0[simp] = Int-insert-left-if0| Transfer.transferred]
cInt-cinsert-left-if1 [simp] = Int-insert-left-if1 | Transfer.transferred]
cInt-cinsert-right = Int-insert-right| Transfer.transferred)
cInt-cinsert-right-if0[simp] = Int-insert-right-if0| Transfer.transferred)
cInt-cinsert-right-if1 [simp] = Int-insert-right-if1 | Transfer.transferred)
cUn-cInt-distrib = Un-Int-distrib] Transfer.transferred]
cUn-cInt-distrib2 = Un-Int-distrib2| Transfer.transferred)
cUn-cInt-crazy = Un-Int-crazy| Transfer.transferred)
csubset-cUn-eq = subset-Un-eq[Transfer.transferred)
cUn-cempty[iff] = Un-empty| Transfer.transferred]

cUn-csubset-iff [no-atp, simp] = Un-subset-iff | Transfer.transferred)
cUn-cDiff-cInt = Un-Diff-Int]| Transfer.transferred)

eDiff-cInt2 = Diff-Int2| Transfer.transferred]

cUn-cInt-assoc-eq = Un-Int-assoc-eq| Transfer.transferred)
¢Ball-cUn = ball-Un| Transfer.transferred]

cBez-cUn = bex-Un| Transfer.transferred)

cDiff-eq-cempty-iff [simp,no-atp] = Diff-eq-empty-iff [Transfer.transferred]
eDiff-cancel[simp] = Diff-cancel| Transfer.transferred)
cDiff-idemp|[simp] = Diff-idemp| Transfer.transferred)

eDiff-triv = Diff-triv[Transfer.transferred)

cempty-cDiff [simp] = empty-Diff| Transfer.transferred|
cDiff-cempty[simp] = Diff-empty| Transfer.transferred]
eDiff-cinsert0[simp,no-atp] = Diff-insert0| Transfer.transferred]
cDiff-cinsert = Diff-insert| Transfer.transferred)

eDiff-cinsert2 = Diff-insert2] Transfer.transferred)

cinsert-cDiff-if = insert-Diff-if [Transfer.transferred)
cinsert-cDiff1[simp] = insert-Diff1 [Transfer.transferred]
cinsert-cDiff-single[simp] = insert-Diff-single| Transfer.transferred]
cinsert-cDiff = insert-Diff| Transfer.transferred)
cDiff-cinsert-absorb = Diff-insert-absorb| Transfer.transferred)
cDiff-disjoint[simp] = Diff-disjoint]| Transfer.transferred)
cDiff-partition = Diff-partition| Transfer.transferred)

double-cDiff = double-diff | Transfer.transferred)
cUn-cDiff-cancel[simp] = Un-Diff-cancel| Transfer.transferred)
cUn-cDiff-cancel2[simp] = Un-Diff-cancel2| Transfer.transferred)
eDiff-cUn = Diff-Un| Transfer.transferred)

cDiff-cInt = Diff-Int| Transfer.transferred]

cUn-cDiff = Un-Diff [Transfer.transferred]

cInt-cDiff = Int-Diff| Transfer.transferred)

eDiff-cInt-distrib = Diff-Int-distrib| Transfer.transferred)
cDiff-cInt-distrib2 = Diff-Int-distrib2| Transfer.transferred]
cset-eq-csubset = set-eq-subset| Transfer.transferred|

THEORY “Countable-Set-Type” 142

lemmas csubset-iff [no-atp] = subset-iff | Transfer.transferred]
lemmas csubset-iff-pfsubset-eq = subset-iff-psubset-eq[Transfer.transferred)
lemmas all-not-cin-conv|[simp] = all-not-in-conv| Transfer.transferred]
lemmas ez-cin-conv = ex-in-conv| Transfer.transferred)

lemmas cimage-mono = image-mono| Transfer.transferred]

lemmas cinsert-mono = insert-mono[Transfer.transferred)

lemmas cunion-mono = Un-mono| Transfer.transferred|

lemmas cinter-mono = Int-mono| Transfer.transferred)

lemmas cminus-mono = Diff-mono| Transfer.transferred)

lemmas cin-mono = in-mono| Transfer.transferred]

lemmas cLeast-mono = Least-mono| Transfer.transferred)

lemmas cequalityl = equalityl | Transfer.transferred)

lemmas cUN-iff [simp] = UN-iff[Transfer.transferred|

lemmas c¢UN-I [intro] = UN-I|Transfer.transferred)

lemmas cUN-E [elim!] = UN-E|Transfer.transferred)

lemmas cUN-upper = UN-upper| Transfer.transferred)

lemmas cUN-least = UN-least| Transfer.transferred)

lemmas cUN-cinsert-distrib = UN-insert-distrib] Transfer.transferred)
lemmas cUN-empty [simp] = UN-empty| Transfer.transferred)
lemmas cUN-empty2 [simp] = UN-empty2| Transfer.transferred)
lemmas cUN-absorb = UN-absorb| Transfer.transferred)

lemmas cUN-cinsert [simp] = UN-insert| Transfer.transferred]
lemmas cUN-cUn [simp] = UN-Un[Transfer.transferred)

lemmas c¢UN-cUN-flatten = UN-UN-flatten| Transfer.transferred)
lemmas cUN-csubset-iff = UN-subset-iff | Transfer.transferred)
lemmas cUN-constant [simp] = UN-constant| Transfer.transferred)
lemmas cimage-cUnion = image-Union| Transfer.transferred)
lemmas cUNION-cempty-conv [simp] = UNION-empty-conv|[Transfer.transferred]
lemmas cBall-cUN = ball-UN|Transfer.transferred]

lemmas cBex-cUN = bex-UN|Transfer.transferred]

lemmas cUn-eq-cUN = Un-eq-UN|Transfer.transferred)

lemmas cUN-mono = UN-mono[Transfer.transferred)

lemmas cimage-cUN = image- UN[Transfer.transferred)

lemmas cUN-csingleton [simp] = UN-singleton| Transfer.transferred)

23.3 Additional lemmas
23.3.1 cempty

lemma cemptyE [elim!]: cin a cempty = P (proof)

23.3.2 cinsert

lemma countable-insert-iff: countable (insert x A) «— countable A
(proof)

lemma set-cinsert:
assumes cin ¢ A
obtains B where A = cinsert x B and — cin z B

(proof)

THEORY “Countable-Set-Type” 143

lemma mk-disjoint-cinsert: cin a A = 3B. A = cinsert a B A = cin a B
(proof)

23.3.3 cimage

lemma subset-cimage-iff: csubset-eq B (cimage f A) +— (FAA. csubset-eq AA A
A B = cimage f AA)
(proof)

23.3.4 bounded quantification

lemma cBez-simps [simp, no-atp):
NA P Q. cBex A (Az. Pz A Q) = (cBex A P A Q)
NA P Q. cBex A (Ax. PA Q)= (P A cBex A Q)
A\P. cBex cempty P = False
Na B P. cBex (cinsert a B) P = (P a V cBex B P)
NA P f. cBex (cimage f A) P = cBex A (Az. P (f x))
NA P. (= cBex A P) = cBall A (Az. = P x)

(proof)

lemma cBall-simps [simp, no-atp):
NA P Q. cBall A (Az. Pz V Q) = (¢cBall A PV Q)
NA P Q. cBall A (Az. PV Qz) = (P V cBall A Q)
NA P Q. cBall A (Az. P — Qz) = (P — cBall A Q)
NA P Q. cBall A (Az. Pz — Q) = (cBex A P — Q)
AP. cBall cempty P = True
Na B P. cBall (cinsert a B) P = (P a A c¢Ball B P)
NA P f. c¢Ball (cimage f A) P = ¢Ball A (Az. P (f x))
NA P. (- c¢Ball A P) = cBex A (Az. = P x)

(proof)

lemma atomize-cBall:
(Az. cin © A = P z) == Trueprop (cBall A (Az. P z))

(proof)

23.3.5 cUnion

lemma cUNION-cimage: cUNION (cimage f A) g = cUNION A (g o f)
(proof)

23.4 Setup for Lifting/Transfer

23.4.1 Relator and predicator properties
lift-definition rel-cset :: (‘a = 'b = bool) = 'a cset = 'b cset = bool

is rel-set parametric rel-set-transfer (proof)

lemma rel-cset-alt-def:
rel-cset R a b +—

THEORY “Countable-Set-Type” 144

(Vt € reset a. Ju € reset b. Rt u) A
(Vt € reset b. Ju € reset a. R u t)

(proof)

lemma rel-cset-iff:
rel-cset R a b +—
(Vt.cinta — (Ju. cinw b A R tu)) A
(Vt.cintb — (Bu. cinuw a A R u t))

(proof)

lemma rel-cset-cUNION:

[rel-cset @ A B; rel-fun @ (rel-cset R) f g |

= rel-cset R (cUnion (cimage f A)) (cUnion (cimage g B))
(proof)

lemma rel-cset-csingle-iff [simp]: rel-cset R (csingle x) (csingle y) «— Rz y

(proof)

23.4.2 Transfer rules for the Transfer package

Unconditional transfer rules

context includes lifting-syntax
begin

lemmas cempty-parametric [transfer-rule] = empty-transfer| Transfer.transferred|

lemma cinsert-parametric [transfer-rule):

(A ===> rel-cset A ===> rel-cset A) cinsert cinsert
{proof)

lemma cUn-parametric [transfer-rule]:
(rel-cset A ===> rel-cset A ===> rel-cset A) ¢Un cUn
{proof)

lemma cUnion-parametric [transfer-rule]:
(rel-cset (rel-cset A) ===> rel-cset A) cUnion cUnion
{proof)

lemma cimage-parametric [transfer-rule]:
((A ===> B) ===> rel-cset A ===> rel-cset B) cimage cimage
{proof)

lemma cBall-parametric [transfer-rule]:
(rel-cset A ===> (A ===> (=)) ===> (=)) cBall cBall
{proof)

lemma cBez-parametric [transfer-rule]:
(rel-cset A ===> (A ===> (=)) ===> (=)) cBex cBex
{proof)

THEORY “Countable-Set-Type” 145

lemma rel-cset-parametric [transfer-rule]:

((A ===> B ===> (=)) ===> rel-cset A ===> rel-cset B ===> (=))
rel-cset rel-cset
(proof)

Rules requiring bi-unique, bi-total or right-total relations

lemma cin-parametric [transfer-rule]:

bi-unique A = (A ===> rel-cset A ===> (=)) cin cin
(proof)
lemma clnt-parametric [transfer-rule]:

bi-unique A = (rel-cset A ===> rel-cset A ===> rel-cset A) cInt cInt
(proof)
lemma cDiff-parametric [transfer-rule]:

bi-unique A = (rel-cset A ===> rel-cset A ===> rel-cset A) cDiff cDiff
(proof)
lemma csubset-parametric [transfer-rulel:

bi-unique A = (rel-cset A ===> rel-cset A ===> (=)) csubset-eq csubset-eq
(proof)
end

lifting-update cset.lifting
lifting-forget cset.lifting

23.5 Registration as BNF

context
includes cardinal-syntax
begin

lemma card-of-countable-sets-range:
fixes A :: 'a set
shows [{X. X C A A countable X AN X # {}}| <o |{f::nat = "a. range f C A}|

(proof)

lemma card-of-countable-sets-Func:
HX. X C A A countable X N X # {}}| <o |A| "¢ natLeq

{proof)

lemma ordLeq-countable-subsets:
|A| <o [{X. X C A A countable X}|

(proof)

end

lemma finite-countable-subset:

THEORY “Debug” 146

finite {X. X C A A countable X} <— finite A
{proof)

lemma reset-to-reset: countable A = reset (the-inv reset A) = A
including cset.lifting
{proof)

lemma Collect-Int-Times: {(z, y). Rz y} N A X B={(z,y). Rz yAhz € AN
y € B}
{proof)

lemma rel-cset-aux:

(Vt € reset a. 3u € reset b. Rt u) A (Yt € reset b. Ju € reset a. R ut) «—
((BNF-Def.Grp {z. reset x C {(a, b). R a b}} (cimage fst))~1=1 00

BNF-Def.Grp {x. rcset © C {(a, b). R a b}} (cimage snd)) a b (is ?L = ?R)
(proof) including cset.lifting

(proof)

context
includes cardinal-syntax
begin

bnf ‘a cset

map: cimage

sets: rcset

bd: card-suc natLeq

wits: cempty

rel: rel-cset
(proof) including cset.lifting (proof) including cset.lifting (proof) including
cset.lifting {proof)

end

end

24 Debugging facilities for code generated towards
Isabelle/ML

theory Debug
imports Main
begin

context
begin

qualified definition trace :: String.literal = unit where
[simp]: trace s = ()

THEORY “Diagonal-Subsequence” 147

qualified definition tracing :: String.literal = 'a = ’'a where
[simp]: tracing s = id

lemma [code]:
tracing s = (let u = trace s in id)
(proof) definition flush :: ‘a = unit where
[simp]: flush z = ()

qualified definition flushing :: 'a = 'b = 'b where
[simp]: flushing x = id

lemma [code, code-unfold]:
flushing © = (let w = flush x in id)
(proof) definition timing :: String.literal = (‘a = 'b) = 'a = 'b where
[simp]: timing s fz = fx

end

code-printing
constant Debug.trace — (Eval) Output.tracing
| constant Debug.flush — (Ewval) Output.tracing/ (Q{make’-string} -) — note
indirection via antiquotation
| constant Debug.timing — (Fwval) Timing.timeap’-msg

code-reserved (FEval) Output Timing

end

25 Sequence of Properties on Subsequences

theory Diagonal-Subsequence
imports Complex-Main
begin

locale subseqs =

fixes P::nat=(nat=-nat)=bool

assumes ex-subseq: A\n s. strict-mono (s:nat=-nat) = I r'. strict-mono r’ A
Pn(sor)
begin

definition reduce where reduce s n = (SOME r'::nat=-nat. strict-mono r' A P n

(s o)

lemma subseg-reduce[intro, simp]:
strict-mono s = strict-mono (reduce s n)

(proof)

lemma reduce-holds:

THEORY “Diagonal-Subsequence” 148

strict-mono s => P n (s o reduce s n)
{proof)

primrec segseq :: nat = nat = nat where
seqseq 0 = id
| seqgseq (Suc n) = seqseq n o reduce (segseq n) n

lemma subseg-seqseq|intro, simpl: strict-mono (seqseq n)
(proof)

lemma seqseq-holds:
P n (segseq (Suc n))
(proof)

definition diagseq :: nat = nat where diagseq i = seqseq i i

lemma diagseqg-mono: diagseq n < diagseq (Suc n)
(proof)

lemma subseq-diagseq: strict-mono diagseq
(proof)

primrec fold-reduce where
fold-reduce n 0 = id
| fold-reduce n (Suc k) = fold-reduce n k o reduce (seqseq (n + k)) (n + k)

lemma subseg-fold-reducelintro, simp|: strict-mono (fold-reduce n k)

(proof)

lemma ex-subseq-reduce-index: seqseq (n + k) = segseq n o fold-reduce n k

(proof)

lemma segseg-fold-reduce: seqseq n = fold-reduce 0 n
(proof)

lemma diagseq-fold-reduce: diagseq n = fold-reduce 0 n n
(proof)

lemma fold-reduce-add: fold-reduce 0 (m + n) = fold-reduce 0 m o fold-reduce m
n

{proof)

lemma diagseg-add: diagseq (k + n) = (seqseq k o (fold-reduce k n)) (k + n)
(proof)

lemma diagseq-sub:
assumes m < n shows diagseq n = (seqseq m o (fold-reduce m (n — m))) n

(proof)

THEORY “Discrete-Functions” 149

lemma subseg-diagonal-rest: strict-mono (Az. fold-reduce k x (k + x))
{proof)

lemma diagseq-seqseq: diagseq o ((+) k) = (segseq k o (Az. fold-reduce k z (k +
z)))

{proof)

lemma diagseq-holds:
assumes subseg-stable: \r s n. strict-monor = Pns=— Pn (sor)
shows P k (diagseq o ((+) (Suc k)))

(proof)

end

end

26 Common discrete functions

theory Discrete-Functions
imports Complex-Main
begin

26.1 Discrete logarithm

fun floor-log :: nat = nat
where [simp del]: floor-log n = (if n < 2 then 0 else Suc (floor-log (n div 2)))

lemma floor-log-induct [consumes 1, case-names one double]:
fixes n :: nat
assumes n > 0
assumes one: P 1
assumes double: An. n > 2 = P (n div 2) = Pn
shows P n

(proof)

lemma floor-log-zero [simp]: floor-log 0 = 0
(proof)

lemma floor-log-one [simpl: floor-log 1 = 0
(proof)

lemma floor-log-Suc-zero [simp]: floor-log (Suc 0) = 0
(proof)

lemma floor-log-rec: n > 2 = floor-log n = Suc (floor-log (n div 2))
(proof)

lemma floor-log-twice [simp]: n # 0 = floor-log (2 * n) = Suc (floor-log n)
(proof)

THEORY “Discrete-Functions” 150

lemma floor-log-half [simp]: floor-log (n div 2) = floor-log n — 1
(proof)

lemma floor-log-power [simp]: floor-log (2 ~n) = n
{proof)

lemma floor-log-mono: mono floor-log
(proof)

lemma floor-log-exp2-le:
assumes n > 0
shows 2 ~ floor-log n < n
(proof)

lemma floor-log-exp2-gt: 2 * 2 ~ floor-log n > n

(proof)

lemma floor-log-exp2-ge: 2 * 2 ~ floor-log n > n
(proof)

lemma floor-log-le-iff: m < n = floor-log m < floor-log n
(proof)

lemma floor-log-eql:
assumes n > 02 k<nn< 2% 2k
shows floor-log n = k

(proof)

lemma floor-log-altdef: floor-log n = (if n = 0 then 0 else nat |log 2 (real-of-nat
n)])
(proof)

26.2 Discrete square root

definition floor-sqrt :: nat = nat
where floor-sqrt n = Max {m. m*> < n}

lemma floor-sqrt-aux:
fixes n :: nat
shows finite {m. m? < n} and {m. m? < n} # {}

(proof)

lemma floor-sqri-unique:
assumes m 2 < nn < (Suc m) 2
shows floor-sqrt n = m

(proof)

lemma floor-sqrt-inverse-power2 [simp): floor-sqrt (n?)

|
3

THEORY “Discrete-Functions” 151

(proof)

lemma floor-sqrt-zero [simp]: floor-sqrt 0 = 0
(proof)

lemma floor-sqrt-one [simpl: floor-sqrt 1 = 1
(proof)

lemma floor-sqrt-Suc-0 [simp):
<floor-sqrt (Suc 0) = 1>
(proof)

lemma mono-floor-sqrt: mono floor-sqrt
(proof)

lemma mono-floor-sqrt’: m < n = floor-sqrt m < floor-sqrt n
(proof)

lemma floor-sqrt-greater-zero-iff [simpl: floor-sqrt n > 0 +— n > 0
(proof)

lemma floor-sqrt-power2-le [simp|: (floor-sqrt n)? < n
(proof)

lemma floor-sqrt-le: floor-sqri n < n
(proof)

Additional facts about the discrete square root, thanks to Julian Bien-
darra, Manuel Eberl

lemma Suc-floor-sqrt-power2-gt: n < (Suc (floor-sqrt n)) "2
(proof)

lemma le-floor-sqrt-iff: © < floor-sqrt y <+— 72 < y

(proof)

lemma le-floor-sqrtl: 72 < y = x < floor-sqrt y
(proof)

lemma floor-sqrt-le-iff:
(floor-sqrt y < x +— (V2. 22 <y — 2 < 1)
(proof)

lemma floor-sqrt-lel:
(Nz. 272 <y= z<2) = floor-sqrt y < x
(proof)

lemma floor-sqrt-less-eq-half:
<floor-sqrt m < Suc n div 2>

(proof)

THEORY “Discrete-Functions” 152

lemma floor-sqrt-Suc:

floor-sqrt (Suc n) = (if Im. Suc n = m "2 then Suc (floor-sqrt n) else floor-sqrt
n)
(proof)

Computation by divide and conquer

definition floor-sqrt-between :: <nat = nat = nat = nat>
where floor-sqrt-between-eq:
<floor-sqrt-between m q n =
(if floor-sqrt n € {m..<m + q} then floor-sqrt n else 0)»
— The 0 is not for relevant regular computation and can be chosen arbitrarily.

lemma floor-sqrt-between-out-of-bounds:
<floor-sqrt-between m 0 n = 0>

{proof)

lemma floor-sqrt-between-singleton:
<floor-sqrit-between m (Suc 0) n =
(if m* < n A n < (Suc m)? then m else 0)»
(proof)

lemma floor-sqri-between-rec:
<floor-sqrit-between m g n = (

let

r = qdiv 2;
p=m+T;
s = p?

m

ifs=mn
then p

else if s < n
then floor-sqrt-between (m + r) (¢ — r) n
else floor-sqrt-between m r n
»if <g > O
(proof)

lemma floor-sqrt-between-code [code):
< floor-sqrit-between m g n = (

if g = 0 then 0
else if g = 1
then if m?* < n A n < (Suc m)?
then m
else 0
else
let
r=qdiv2;
p=m+ T

s = p?

THEORY “FuncSet” 153

mn
ifs=mn
then p
else if s < n
then floor-sqrt-between (m + 1) (¢ — 1) n
else floor-sqrt-between m r n
K
(proof)

lemma [code]:
floor-sqrt n = floor-sqrt-between 0 (Suc (Suc n div 2)) n
(proof)

end

27 Pi and Function Sets

theory FuncSet
imports Main
abbrevs PiF = Pig
and PIE = IIg
begin

definition Pi :: ‘a set = (‘a = 'b set) = (‘a = 'b) set
where PiA B={f Ve.2 € A — fz € Bz}

definition exztensional :: 'a set = (‘a = 'b) set
where extensional A = {f. Vz. 2 ¢ A — fx = undefined}

definition restrict :: (‘a = 'b) = 'a set = 'a = b
where restrict f A = (Az. if x € A then f z else undefined)

abbreviation funcset :: 'a set = 'b set = ('a = 'b) set
where funcset A B = Pi A (A-. B)

open-bundle funcset-syntax
begin

notation funcset (infixr «—> 60)
end

syntax
-Pi :: pttrn = 'a set = 'b set = (‘a = 'b) set
(«(<indent=3 notation=<binder TIenIl -€-./ -)» 10)
-lam =2 pttrn = 'a set = ('a = 'b) = ('a = 'b)
(<(<indent=3 notation=<binder \e»A-€-./ -)» [0, 0, 3] 3)
syntax-consts
-Pi = Pi and
-lam = restrict
translations

THEORY “FuncSet” 154

I z€A. B = CONST Pi A (\z. B)
Az€A. f = CONST restrict (Az. f) A

definition compose :: ‘a set = ('b = '¢) = (‘a = 'b) = ('a = '¢)
where compose A g f = (A\z€A. g (fz))
27.1 Basic Properties of Pi

lemma Pi-I[intro]: (A\z. 2 € A= fz € Bx) = fe€ PiAB
{proof)

lemma Pi-I'[simpl: (Nz. 2 € A — fo € Bz) = fe€ PiAB
{proof)

lemma funcsetl: (Az. 1 € A= frx € B)=— fe€ A— B
{proof)

lemma Pi-mem: f € PiAB=—zx€ A= fz € Bz
(proof)

lemma Pi-iff: f € Pi I X «— (Viel. fi € X 1)
(proof)

lemma PiE [elim]: f € PiAB= (fr€e Bz = Q) = (¢ A = Q) = Q
{proof)

lemma Pi-cong: (A\w. w € A = fw=gw) = f€e PiAB<+—ge PiAB
(proof)

lemma funcset-id [simp]: (Az. z) € A — A

{proof)

lemma funcset-mem: f € A > B=—z€ A= fz € B

(proof)

lemma funcset-image: f € A - B=— f‘ACB
{proof)

lemma image-subset-iff-funcset: F A C B+— Fe€ A— B
(proof)

lemma funcset-to-empty-iff: A — {} = (if A={} then UNIV else {})
{proof)

lemma Pi-eq-empty[simp]: (Il x € A. Bz) = {} +— (3z€A. Bz = {})
(proof)

lemma Pi-empty [simp|: Pi {} B = UNIV
{proof)

THEORY “FuncSet” 155

lemma Pi-Int: PiI EN PiIF = (Il icl. EiN F i)
{proof)

lemma Pi-UN:
fixes A :: nat = "I = 'a set
assumes finite [
and mono: Ainm. i€l —=n<m=—AniC Ami
shows (n. Pi I (An)) =M iel.Jn. A ni)
(proof)

lemma Pi-UNIV [simp]: A — UNIV = UNIV
(proof)

Covariance of Pi-sets in their second argument

lemma Pi-mono: (Az. 2 € A= Bz C Cz) = PiABCPiAC
{proof)

Contravariance of Pi-sets in their first argument

lemma Pi-anti-mono: A’ C A = Pi A BC Pi A'B
(proof)

lemma prod-final:
assumes I: fsto f € Pi A B
and 2: sndo f € Pi A C
shows f e (Il z€ A. Bz x Cz)

(proof)

lemma Pi-split-domain[simp]: t € Pi (IUJ) X «—z € PiIX ANz € PiJX
{proof)

lemma Pi-split-insert-domain[simp): x € Pi (insert i I[) X «—xz € PiIX ANz
e X1
{proof)

lemma Pi-cancel-fupd-range[simpl: i ¢] = v € PiI (B(i:=1b0)) +— z € Pil
B
{proof)

lemma Pi-cancel-fupd[simp]: { ¢] = z(i:=a) € PilIB<+— z € PilIB
{proof)

lemma Pi-fupd-iff: i € [= f € PiI (B(i := A)) «— f € Pi (I — {i}) BAfi
€A
(proof)

lemma fst-Pi: fst € A x B — A and snd-Pi: snd € A x B— B
(proof)

THEORY “FuncSet” 156

27.2 Composition With a Restricted Domain: compose

lemma funcset-compose: f € A - B=— g€ B — C = compose A gf € A —
C

(proof)

lemma compose-assoc:
assumes f € A — B
shows compose A h (compose A g) = compose A (compose B h g) f

(proof)

lemma compose-eq: © € A = compose A g fz = g (f z)
(proof)

lemma surj-compose: f ‘A =B = g ‘B =C = compose A gf‘A="C
(proof)

27.3 Bounded Abstraction: restrict
lemma restrict-cong: I = J = (\i. i € J =simp=> f1i = g i) = restrict f I
= restrict g J

(proof)

lemma restrictl[introl]: (Ne. 2 € A = fz € Bz) = (M\z€A. fz) € PiA B
{proof)

lemma restrict-apply[simpl: (A\y€A. fy) z = (if z € A then f z else undefined)
(proof)

lemma restrict-apply”: z € A = (\yeA. fy)z = fx
(proof)

lemma restrict-ext: (Az. 2 € A = fz = gz) = (A\z€A. fz) = (Az€A. g)

(proof)

lemma restrict-UNIV: restrict f UNIV = f
(proof)

lemma inj-on-restrict-eq [simpl: inj-on (restrict f A) A +— inj-on f A
(proof)

lemma inj-on-restrict-iff: A C B = inj-on (restrict f B) A «— inj-on f A
(proof)

lemma Id-compose: f € A — B = [€ extensional A = compose A (A\yeB. y)
f=1r
(proof)

lemma compose-Id: g € A — B = g € extensional A => compose A g (Az€A.
z) =g

THEORY “FuncSet” 157

{proof)

lemma image-restrict-eq [simp]: (restrict f A) ‘A =f*‘A
(proof)

lemma restrict-restrict[simp]: restrict (restrict f A) B = restrict f (A N B)
(proof)

lemma restrict-fupd[simp): { ¢ I = restrict (f (i := z)) I = restrict f I
{proof)

lemma restrict-upd[simpl: i ¢ I = (restrict f I)(i := y) = restrict (f(i := y))
(insert i I)
{proof)

lemma restrict-Pi-cancel: restrict x I € Pi I A<+—x € PiT A
(proof)

lemma sum-restrict’ [simp]: sum’ (Ai€l. g i) I = sum’ (Xi. g i) I
{proof)

lemma prod-restrict’ [simp]: prod’ (M€l. g i) I = prod’ (Mi. g i) I
(proof)

27.4 Bijections Between Sets

The definition of bij-betw is in Fun.thy, but most of the theorems belong
here, or need at least Hilbert-Choice.

lemma bij-betwl:
assumes f € A — B
and ge B— A
and g-f: A\z. 264 = ¢ (fz) =z
and f-g: A\y. yeB = f (gy) =y
shows bij-betw f A B

(proof)

lemma bij-betw-imp-funcset: bij-betw fA B — f € A — B
(proof)

lemma inj-on-compose: bij-betw f A B = inj-on g B => inj-on (compose A g f)
A
(proof)

lemma bij-betw-compose: bij-betw f A B = bij-betw g B C = bij-betw (compose
Agf)AC
(proof)

lemma bij-betw-restrict-eq [simpl: bij-betw (restrict f A) A B = bij-betw f A B
(proof)

THEORY “FuncSet” 158

27.5 Extensionality

lemma extensional-empty[simp]: extensional {} = {Az. undefined}
{proof)

lemma extensional-arb: f € extensional A = x ¢ A = fz = undefined
(proof)

lemma restrict-extensional [simpl: restrict f A € extensional A
{proof)

lemma compose-extensional [simp]: compose A [g € extensional A
(proof)

lemma extensionalityl:
assumes f € extensional A
and g € extensional A
and A\z. 2 € A= fz =gz
shows f = ¢
(proof)

lemma extensional-restrict: f € extensional A = restrict f A = f
(proof)

lemma extensional-subset: f € extensional A = A C B = f € extensional B
(proof)

lemma inv-into-funcset: f * A = B = (Az€B. inv-into A fz) € B — A
(proof)

lemma compose-inv-into-id: bij-betw f A B = compose A (Ay€B. inv-into A fy)
f=(\ze€A. 1)
(proof)

lemma compose-id-inv-into: f ¢ A = B = compose B f (Ay€B. inv-into A [y)
= (Az€B. x)
(proof)

lemma extensional-insert[intro, simp):
assumes a € extensional (insert i I)

shows a(i := b) € extensional (insert i I)

(proof)
lemma extensional-Int[simp|: extensional I N extensional I’ = extensional (I N
I

{proof)

lemma extensional-UNIV [simp]: extensional UNIV = UNIV
{proof)

THEORY “FuncSet” 159

lemma restrict-extensional-sublintro]: A C B = restrict f A € extensional B
{proof)

lemma extensional-insert-undefined[intro, simp):
a € extensional (insert i I) = a(i := undefined) € extensional I

{proof)

lemma extensional-insert-cancel[intro, simp):
a € extensional I = a € extensional (insert i I)

(proof)

27.6 Cardinality

lemma card-inj: f € A - B = inj-on f A = finite B = card A < card B
(proof)

lemma card-bij:
assumes f € A — B inj-on f A
and g € B — A inj-on g B
and finite A finite B
shows card A = card B
(proof)

27.7 Extensional Function Spaces

definition PiE : 'a set = ('a = 'b set) = ('a = 'b) set
where PiE ST = Pi S T N extensional S

abbreviation Pig A B= PiF A B

syntax
-PiE :: pttrn = 'a set = 'b set = ('a = 'b) set
(<(<indent=3 notation=<binder llgenlly -€-./ -)» 10)
syntax-consts
-PiE = Pig
translations
Il z€A. B = CONST Pig A (\z. B)

abbreviation estensional-funcset :: ‘a set = 'b set = ('a = 'b) set (infixr «(—p>
60)
where A —g B = (Il i€A. B)

lemma eztensional-funcset-def: extensional-funcset S T = (S — T) N extensional

S
{proof)

lemma PiE-empty-domain[simp]: Pig {} T = {\z. undefined}
{proof)

lemma PiE-UNIV-domain: Pip UNIV T = P; UNIV T

THEORY “FuncSet” 160

{proof)

lemma PiE-empty-range[simpl: i €] = F i ={} = (Illg i€l. F i) ={}
{proof)

lemma PiE-eg-empty-iff: Pip I F = {} +— (3iel. Fi={})
(proof)

lemma PiE-arb: f € Pig ST = z ¢ S = fx = undefined
(proof)

lemma PiE-mem: f € Pip ST —=z2x€ S=— fze Tz
(proof)

lemma PiE-fun-upd: y € Te = f € Pig S T = f(z := y) € Pig (insert x S)
T
(proof)

lemma fun-upd-in-PiE: ¢ ¢ S = f € Pig (insert x S) T = f(z := undefined)
€ Pip ST
{proof)

lemma PiE-insert-eq: Pig (insert x S) T = (A (y, g9). g(z :==y)) ‘(T z x Pig S
T)
(proof)

lemma PiE-Int: Pig IAN Pig IB= Pig I (Az. Az N Bux)
(proof)

lemma PiE-cong: (\i. i€l = Ai=Bi) = Pig IA=Pig IB
{proof)

lemma PiE-E [elim]:
assumes f € Pig A B
obtains z € Aand fz € Bz
| z ¢ A and f 1z = undefined
(proof)

lemma PiE-I[intro!]:

(Nt.2€ A= frz € Bz) = (A\z. 2 ¢ A = fz = undefined) = f € Pig
A B

(proof)

lemma PiE-mono: (Nz. 2 € A=— Bax C Cx) = Pip ABC Pig AC
(proof)

lemma PiE-iff: f € Pig I X +— (Vi€l. fi € X i) A f € extensional T
(proof)

THEORY “FuncSet” 161

lemma restrict-PiE-iff: restrict fI1 € Pig [X «— (Vi e l. fie€ X i)
{proof)

lemma ext-funcset-to-sing-iff [simp]: A =g {a} = {Xz€A. a}
(proof)

lemma PiE-restrict[simp]: f € Pig A B = restrict fA=f
(proof)

lemma restrict-PiE[simp]: restrict fI € Pig I S «— fe€ PilS
(proof)

lemma PiFE-eq-subset:
assumes ne: N\i.i € I = Fi#{} Ni.ie€l = F'i#{}
and eq: Pip [F = Pig I F’

and ¢ € [
shows FFi C F'
(proof)

lemma PiF-eq-iff-not-empty:
assumes ne: N\i. i € I = Fi#{} Ni.iel = F'i#{}
shows Pip I F = Pig I F' «— (Viel. Fi= F')

(proof)

lemma PiE-eq-iff: Pig I F = Pig I F' +— (Viel. Fi= F'i) v ((3iel. Fi =
{H A (Fiel. F'i={}))
(proof)

lemma extensional-funcset-fun-upd-restricts-rangel:
VyeS. fa#fy=f € (insert z S) »g T = f(z := undefined) € S —f
(T = A{f=})

(proof)

lemma extensional-funcset-fun-upd-extends-rangel:
assumes a € Tf € S =g (T — {a})
shows f(z := a) € insertx S =g T

(proof)

lemma subset-PiE:

PIEISCPEIT +— PiIEIS={}yVv (Viel SiCTi)(is ¢lhs +— -V
2rhs)
(proof)

lemma PiE-eq: PiIEIS = PiEIT «— PiIEIS={} APiEIT ={}V (Vi €
I.Si=Ti
(proof)

lemma PiE-UNIV [simp]: PiE UNIV (\i. UNIV) = UNIV
{proof)

THEORY “FuncSet” 162

lemma image-projection-PiFE:

(M. fi) “(PIETS) = (if PPiETS = {} then {} else if i € I then S i else
{undefined})
(proof)

lemma PiE-singleton:
assumes f € extensional A
shows PiE A (Az. {f z}) = {f}
{(proof)

lemma PiE-eg-singleton: (Ilg i€l. S i) = {\i€l. fi} «— (Viel. Si={f1i})
{proof)

lemma PiE-over-singleton-iff: (Ilg z€{a}. Bz) = (Ub € B a. {\z € {a}. b})
(proof)

lemma all-PiE-elements:
(Vze PiIEIS. Vi€l Pi(zi)+— PiIEIS={}v (Viel.Vze Si. Pix)
(is ?lhs = %rhs)

(proof)

lemma PiFE-ext: [z € PiIEks;y€ PiIEks; Ni. i € k= zi=yi] =2z=1y
(proof)

27.7.1 Injective Extensional Function Spaces

lemma extensional-funcset-fun-upd-inj-onl:
assumes f € S =g (T — {a})
and inj-on f S
shows inj-on (f(z := a)) S
(proof)

lemma extensional-funcset-extend-domain-inj-on-eq:
assumes z ¢ S
shows {f. f € (insert £ S) =g T A inj-on f (insert © S)} =
Ay, 9)- 9(z=y)) {(y, 9)- y € T A g€ S —=p (T —{y}) Ainjon g S}
(proof)

lemma extensional-funcset-extend-domain-ingj-onl:
assumes z ¢ S

shows inj-on (A(y, 9). g(z :== y)) {(y, 9). ye€e TANge S =p (T - {y}) A
inj-on g S}
(proof)

27.7.2 Misc properties of functions, composition and restriction
from HOL Light

lemma function-factors-left-gen:
Vzy. Pt APyANge=gy — fae=fy)+— FhVz. Pz — fz=h(gz))

THEORY “FuncSet” 163

(is ?lhs = %rhs)
(proof)

lemma function-factors-left: (Vzy. (9x=gy) — (fz=fy)) +— Bh. f=h
°g)
(proof)

lemma function-factors-right-gen: YVz. Pz — (3y. gy = fz)) «— (3h. V. P
x— fz=g(huz)
(proof)

lemma function-factors-right: Vz. 3y. gy = fz) «— (3h. f = go h)
{proof)

lemma restrict-compose-right: restrict (g o restrict f S) S = restrict (g o f) S
{proof)

lemma restrict-compose-left: f < S C T = restrict (restrict ¢ T o f) S = restrict
(gof) s
(proof)

27.7.3 Cardinality
lemma finite-PiE: finite S = (\i. i € S = finite (T 7)) = finite (Ilg i € S.
T)

{proof)

lemma inj-combinator: © ¢ S = inj-on (My, 9). g(x :==y)) (T x Pig S T)
(proof)

lemma card-PiE: finite S = card (Ilg i € S. T i) = ([i€S. card (T 7))
(proof)

lemma card-funcsetE: finite A => card (A —g B) = card B ™ card A
{proof)

lemma card-inj-on-subset-funcset:
assumes finB: finite B
and finC: finite C
and AB: ACB
shows card {f € B =g C. inj-on f A} =
card C(card B — card A) * prod ((—) (card C)) {0 ..< card A}
(proof)

27.8 The pigeonhole principle

An alternative formulation of this is that for a function mapping a finite set
A of cardinality m to a finite set B of cardinality n, there exists an element
y € B that is hit at least [Z*] times. However, since we do not have real

THEORY “Disjoint-Sets” 164

numbers or rounding yet, we state it in the following equivalent form:

lemma pigeonhole-card:
assumes f € A — B finite A finite B B # {}
shows JyeB. card (f —{y} N A) % card B > card A

(proof)

27.9 Products of sums

lemma prod-sum-PiE:
fixes f :: 'a = 'b = ‘¢ :: comm-semiring-1
assumes finite: finite A and finite: Az. x € A = finite (B x)
shows ([[z€A. > yeBua. fazy) = (D gePiE A B. [[z€A. fz (gz))
(proof)

end

28 Partitions and Disjoint Sets

theory Disjoint-Sets
imports FuncSet
begin

lemma mono-imp-UN-eq-last: mono A = (Ji<n. Ai) =An
{proof)

28.1 Set of Disjoint Sets

abbreviation disjoint :: ‘a set set = bool where disjoint = pairwise disjnt

lemma disjoint-def: disjoint A «— (Va€A.VbeA. a £ b — anb={})
(proof)

lemma disjointl:
(Nab.ae A= be A= a# b= anb={}) = disjoint A

(proof)

lemma disjointD:
disjoint A—=a€A=beAd=a#b=anb={}

(proof)

lemma disjoint-image: inj-on f ((JA) = disjoint A = disjoint ((*) f * A)
(proof)

lemma assumes disjoint (A U B)
shows disjoint-unionD1: disjoint A and disjoint-unionD2: disjoint B
(proof)

lemma disjoint-INT:
assumes x: \i. ¢ € I = disjoint (F i)

THEORY “Disjoint-Sets” 165

shows disjoint {()i€l. X i | X.Viel. Xi € F i}
(proof)

lemma diff- Union-pairwise-disjoint:
assumes pairwise disjnt A B C A
shows YA - UB=(A - B)
(proof)

lemma Int-Union-pairwise-disjoint:
assumes pairwise disjnt (A U B)
shows AN UB=J(AnNB)
(proof)

lemma psubset- Union-pairwise-disjoint:
assumes B: pairwise disjnt B and A C B — {{}}
shows A Cc UB

(proof)

28.1.1 Family of Disjoint Sets

definition disjoint-family-on :: (i = 'a set) = 'i set = bool where
disjoint-family-on A S +— (YmeS.VneS. m#n — Amn An={})

abbreviation disjoint-family A = disjoint-family-on A UNIV

lemma disjoint-family-elem-disjnt:
assumes infinite A finite C
and df: disjoint-family-on B A
obtains = where z € A disjnt C (B z)
(proof)

lemma disjoint-family-onD:
disjoint-family-on Al — i€l = jel = i#j=— AiNAj=1{}
(proof)

lemma disjoint-family-subset: disjoint-family A = (N\z. B x C A z) = dis-
joint-family B
(proof)

lemma disjoint-family-on-insert:

i ¢ I = disjoint-family-on A (insert i I) +— A i N (Jiel. A i) = {} A
disjoint-family-on A 1

(proof)

lemma disjoint-family-on-bisimulation:
assumes disjoint-family-on f S
and A\nm.neS=meS=n#m=fnNfm={}=gnnNgm=

{

shows disjoint-family-on g S

THEORY “Disjoint-Sets” 166

{proof)

lemma disjoint-family-on-mono:
A C B = disjoint-family-on f B = disjoint-family-on f A
(proof)

lemma disjoint-family-Suc:
(An. A n C A (Suc n)) = disjoint-family (Ai. A (Suc i) — A i)
{proof)

lemma disjoint-family-on-disjoint-image:
disjoint-family-on A I = disjoint (A ‘1)
(proof)

lemma disjoint-family-on-vimagel: disjoint-family-on F I = disjoint-family-on
Ni. f—“Fq) I
(proof)

lemma disjoint-image-disjoint-family-on:
assumes d: disjoint (A ‘I) and i: inj-on A I
shows disjoint-family-on A I
(proof)

lemma disjoint-family-on-iff-disjoint-image:

assumes A\i. i €] = A i # {}

shows disjoint-family-on A I +— disjoint (A “I) A inj-on A T
{proof)

lemma card- UN-disjoint”:
assumes disjoint-family-on A I N\i. i € I = finite (A i) finite I
shows card (|Ji€l. A i) = (Y i€l. card (A 7))
(proof)

lemma disjoint-UN:

assumes F: A\i. i € I = disjoint (F i) and *: disjoint-family-on (Ai. | (F 1))
I

shows disjoint (|Ji€l. F 1)
(proof)

lemma distinct-list-bind:
assumes distinct xs N\z. x € set xs = distinct (f)
disjoint-family-on (set o f) (set xs)
shows distinct (List.bind zs f)
(proof)

lemma bij-betw- UNION-disjoint:
assumes disj: disjoint-family-on A’ I
assumes bij: A\i. i € I = bij-betw f (A i) (A’ Q)
shows bij-betw f (Jiel. A i) (Jiel. A" i)

THEORY “Disjoint-Sets” 167

(proof)

lemma disjoint-union: disjoint C = disjoint B=-J C N|J B = {} = disjoint
(C U B)
{proof)
Sum /product of the union of a finite disjoint family

context comm-monoid-set
begin

lemma UNION-disjoint-family:
assumes finite I and Vi€l. finite (A 7)
and disjoint-family-on A 1
shows F g (U(A ‘D) =F (M\z. Fg(Ax))I
(proof)

lemma Union-disjoint-sets:
assumes YV AcC'. finite A and disjoint C
shows F g (UC)=(FoF)gC
(proof)

end

The union of an infinite disjoint family of non-empty sets is infinite.

lemma infinite-disjoint-family-imp-infinite-UNION:
assumes —finite A N\z. © € A = fx # {} disjoint-family-on f A
shows —finite (U (f < 4))

(proof)

28.2 Construct Disjoint Sequences
definition disjointed :: (nat = 'a set) = nat = 'a set where

disjointed An = An — (Jie{0..<n}. A i)

lemma finite-UN-disjointed-eq: (Ji€{0..<n}. disjointed A i) = (|Ji€{0..<n}. A
i)
(proof)

lemma UN-disjointed-eq: (|Ji. disjointed A i) = (|Ji. A 7)
{proof)

lemma less-disjoint-disjointed: m < n = disjointed A m N disjointed A n = {}
(proof)

lemma disjoint-family-disjointed: disjoint-family (disjointed A)
(proof)

lemma disjointed-subset: disjointed A n C A n
(proof)

THEORY “Disjoint-Sets” 168

lemma disjointed-0[simp]: disjointed A 0 = A 0
{proof)

lemma disjointed-mono: mono A = disjointed A (Suc n) = A (Sucn) — A n
(proof)

28.3 Partitions

Partitions P of a set A. We explicitly disallow empty sets.

definition partition-on :: 'a set = 'a set set = bool
where
partition-on A P «— |JP = A A disjoint P AN {} ¢ P

lemma partition-onl:

UP=A= (ApgqpeEP = qeP=p+#q=disintpq = {} ¢ P
— partition-on A P

(proof)

lemma partition-onD1: partition-on A P — A =JP
(proof)

lemma partition-onD2: partition-on A P —> disjoint P
(proof)

lemma partition-onD3: partition-on A P = {} ¢ P
{proof)

28.4 Constructions of partitions

lemma partition-on-empty: partition-on {} P +— P = {}
{proof)

lemma partition-on-space: A # {} = partition-on A {A}
{proof)

lemma partition-on-singletons: partition-on A ((Az. {z}) < A)
(proof)

lemma partition-on-transform:

assumes P: partition-on A P

assumes F-UN: |J(F ‘P) = F (UP) and F-disjnt: Ap g. p € P = q € P
= disjnt p ¢ = disjnt (F p) (F q)

shows partition-on (F A) (F ‘P — {{}})
(proof)

¢

lemma partition-on-restrict: partition-on A P = partition-on (B N A) ((N) B

P —{{}})

{proof)

THEORY “Disjoint-Sets” 169

¢

lemma partition-on-vimage: partition-on A P = partition-on (f —° A) (=9 f

P —{{}})
(proof)

lemma partition-on-inj-image:
assumes P: partition-on A P and f: inj-on f A
shows partition-on (f “ A) () f P — {{}})
(proof)

lemma partition-on-insert:
assumes disjnt p (J P)
shows partition-on A (insert p P) <— partition-on (A—p) P Ap C A A p # {}
{proof)

28.5 Finiteness of partitions

lemma finitely-many-partition-on:
assumes finite A
shows finite { P. partition-on A P}
(proof)

lemma finite-elements: finite A = partition-on A P = finite P
(proof)

lemma product-partition:
assumes partition-on A P and Ap. p € P = finite p
shows card A = (3 peP. card p)

(proof)

28.6 Equivalence of partitions and equivalence classes

lemma partition-on-quotient:
assumes 7: equiv A r
shows partition-on A (A /] r)
(proof)

lemma equiv-partition-on:

assumes P: partition-on A P

shows equiv A {(z, y). 3p € P. 2z € p A y € p}
(proof)

lemma partition-on-eq-quotient:
assumes P: partition-on A P
shows A // {(z,y). I pe P.xepAhyept =P
(proof)

lemma partition-on-alt: partition-on A P +— (3r. equiv Ar NP =A// r)
(proof)

lemma (in comm-monoid-set) partition:

THEORY “Disjoint-Sets” 170

assumes finite X partition-on X A
shows FgX=F (AB.FgB) A
(proof)

If h is an involution on X with no fixed points in X and f(h(z)) = —f(z)
then > v f(x) = 0.

This is easy to show in a ring with characteristic not equal to 2, since
then we can do

Yo f@) =) @) == f(2)

zeX zeX zeX

and therefore 2" f(z) = 0.

However, the following proof also works in rings of characteristic 2. The
idea is to simply partition X into a disjoint union of doubleton sets of the
form {z, h(x)}.
lemma sum-involution-eq-0:

assumes f-h: N\z.z € X = f (hz)+ fz =0

assumes h: Az.z € X = hzec X N\e.ce X =h(hz)=z Nv.z € X
= hz#ux

shows (> zeX.fz)=0
(proof)

28.7 Refinement of partitions

definition refines :: ‘a set = ’a set set = 'a set set = bool
where refines A P Q =
partition-on A P A partition-on A Q AN (VXeP.3Ye@. X CY)

lemma refines-refl: partition-on A P = refines A P P
(proof)

lemma refines-asyml:
assumes refines A P Q refines A Q P
shows P C @)

(proof)

lemma refines-asym: [refines A P @Q; refines A Q P] = P=Q
{proof)

lemma refines-trans: [refines A P Q; refines A Q R] = refines A P R
(proof)

lemma refines-obtains-subset:
assumes refines A P Q q € Q
shows partition-on ¢ {p € P. p C ¢}
(proof)

THEORY “FSet” 171

28.8 The coarsest common refinement of a set of partitions

definition common-refinement :: 'a set set set = 'a set set
where common-refinement P = (Jf € (Ilg PeP. P). {N (f *P)}) — {{}}

With non-extensional function space
lemma common-refinement: common-refinement P = (Jf € (Il PeP. P). {N (f

P} - {1}

(is ?lhs = %rhs)

(proof)

lemma common-refinement-exists: [X € common-refinement P; P € P] = 3 REP.
XCR
(proof)

lemma Union-common-refinement: |J (common-refinement P) = (| PeP.J P)

(proof)

lemma partition-on-common-refinement:
assumes A: AP. P € P = partition-on A P and P # {}
shows partition-on A (common-refinement P)

(proof)

lemma refines-common-refinement:
assumes AP. P € P = partition-on A P P € P
shows refines A (common-refinement P) P

(proof)
The common refinement is itself refined by any other
lemma common-refinement-coarsest:
assumes AP. P € P = partition-on A P partition-on A R A\P. P € P =
refines A R PP # {}

shows refines A R (common-refinement P)
{proof)

lemma finite-common-refinement:
assumes finite P AP. P € P = finite P
shows finite (common-refinement P)

(proof)

lemma card-common-refinement:
assumes finite P A\P. P € P = finite P
shows card (common-refinement P) < ([[P € P. card P)

(proof)

end

29 Type of finite sets defined as a subtype of sets

theory FSet

THEORY “FSet” 172

imports Main Countable
begin

29.1 Definition of the type

typedef ‘a fset = {A :: 'a set. finite A} morphisms fset Abs-fset
(proof)

setup-lifting type-definition-fset

29.2 Basic operations and type class instantiations
instantiation fset :: (finite) finite

begin

instance (proof)

end

instantiation fset :: (type) {bounded-lattice-bot, distrib-lattice, minus}
begin

lift-definition bot-fset :: ‘a fset is {} parametric empty-transfer (proof)

lift-definition less-eq-fset :: 'a fset = ’'a fset = bool is subset-eq parametric
subset-transfer

(proof)

definition less-fset :: 'a fset = 'a fset = bool where s < ys = xs < ys A\ s #
(ys::'a fset)

lemma less-fset-transfer|transfer-rule]:
includes lifting-syntax
assumes [transfer-rule]: bi-unique A
shows ((per-fset A) ===> (pcr-fset A) ===> (=)) (C) (<)
(proof)

lift-definition sup-fset :: ‘a fset = 'a fset = 'a fset is union parametric union-transfer
(proof)

lift-definition inf-fset :: 'a fset = ’'a fset = 'a fset is inter parametric in-
ter-transfer

{proof)

lift-definition minus-fset :: ‘a fset = 'a fset = 'a fset is minus parametric
Diff-transfer
(proof)

instance
(proof)

THEORY “FSet” 173

end

abbreviation fempty :: ‘a fset (<{||}>) where {||} = bot

abbreviation fsubset-eq :: 'a fset = 'a fset = bool (infix |C|> 50) where zs |C|
ys = xs < ys

abbreviation fsubset :: 'a fset = 'a fset = bool (infix (|C|> 50) where zs |C| ys
= x5 < ys

abbreviation funion :: ‘a fset = 'a fset = 'a fset (infixl <|U|> 65) where zs |U|
Ys = sup xs ys

abbreviation finter :: ‘a fset = ‘a fset = ‘a fset (infixl <|N|> 65) where zs |N|
ys = inf xs ys

abbreviation fminus :: 'a fset = 'a fset = 'a fset (infixl <|—|» 65) where zs |—|
Ys = minus s ys

instantiation fset :: (equal) equal

begin

definition HOL.equal A B +— A |C| BA B|C| 4
instance (proof)

end

instantiation fset :: (type) conditionally-complete-lattice
begin

context includes lifting-syntax
begin

lemma right-total-Inf-fset-transfer:
assumes [transfer-rule]: bi-unique A and [transfer-rule]: right-total A
shows (rel-set (rel-set A) ===> rel-set A)
(AS. if finite (NS N Collect (Domainp A)) then (S N Collect (Domainp A)
else {})
(AS. if finite (Inf S) then Inf S else {})

(proof)

lemma Inf-fset-transfer:
assumes [transfer-rule]: bi-unique A and [transfer-rule]: bi-total A
shows (rel-set (rel-set A) ===> rel-set A) (AA. if finite (Inf A) then Inf A else

{H
(M. if finite (Inf A) then Inf A else {})

{proof)

lift-definition Inf-fset :: ‘a fset set = 'a fset is AA. if finite (Inf A) then Inf A
else {}

parametric right-total-Inf-fset-transfer Inf-fset-transfer (proof)

lemma Sup-fset-transfer:

assumes [transfer-rule]: bi-unique A

shows (rel-set (rel-set A) ===> rel-set A) (AA. if finite (Sup A) then Sup A
else {})

THEORY “FSet” 174

(MA. if finite (Sup A) then Sup A else {}) (proof)

lift-definition Sup-fset :: 'a fset set = ’a fset is AA. if finite (Sup A) then Sup A
else {}

parametric Sup-fset-transfer (proof)

lemma finite-Sup: 3 z. finite z A (Va. a € X — a < z2) = finite (Sup X)
(proof)

lemma transfer-bdd-below[transfer-rule]: (rel-set (per-fset (=)) ===> (=)) bdd-below
bdd-below
(proof)

end

instance

(proof)

end

instantiation fset :: (finite) complete-lattice
begin

lift-definition top-fset :: 'a fset is UNIV parametric right-total-UNIV-transfer
UNIV-transfer
(proof)

instance
(proof)

end

instantiation fset :: (finite) complete-boolean-algebra
begin

lift-definition uminus-fset :: 'a fset = 'a fset is uminus
parametric right-total-Compl-transfer Compl-transfer {proof)

instance

(proof)
end

abbreviation fUNIV :: ‘a:finite fset where fUNIV = top

abbreviation fuminus :: ‘a:finite fset = 'a fset (<|]—| -» [81] 80) where |—| z =
UMINUS T

declare top-fset.rep-eq[simp)

THEORY “FSet” 175

29.3 Other operations

lift-definition finsert :: ‘a = 'a fset = 'a fset is insert parametric Lifting-Set.insert-transfer
(proof)

syntax

-fset :: args => 'a fset (<(<indent=2 notation=<mizfix finite set enumeration»>{|-|})»)
syntax-consts

-fset = finsert

translations
{lz, zs|} == CONST finsert x {|zs|}
{lz|} == CONST finsert z {||}

abbreviation fmember :: ‘a = 'a fset = bool (infix ¢|€|> 50) where
zl€| X == € fset X

abbreviation not-fmember :: ‘a = 'a fset = bool (infix <|¢|> 50) where
z|¢| X =z ¢ fset X

context
begin

qualified abbreviation Ball :: ‘a fset = ('a = bool) = bool where
Ball X = Set.Ball (fset X)

alias fBall = FSet.Ball

qualified abbreviation Bex :: ‘a fset = ('a = bool) = bool where
Bex X = Set.Bex (fset X)

alias fBex = FSet.Bex
end

syntax (input)

-fBall :: pttrn = 'a fset = bool = bool (:(<indent=3 notation=<binder finite !»>!
(I:1-/) [0, 0, 10] 10)

-fBex :: pttrn = 'a fset = bool = bool («(<indent=3 notation=<binder finite
22 (-/1:19)-./ -» [0, 0, 10] 10)

-fBexl :: pttrn = 'a fset = bool = bool («(<indent=3 notation=<binder finite
A2 (/:2).)) [0, 0, 10] 10)

syntax

-fBall :: pttrn = 'a fset = bool = bool («(tvindent=38 notation=<binder finite
VYoV (-/|€l-)./ -)» [0, 0, 10] 10)

-fBex :: pttrn = 'a fset = bool = bool («(<indent=3 notation=<binder finite
In3(-/|€l-)./ -)» [0, 0, 10] 10)

-fBnex :: pttrn = 'a fset = bool = bool («(<indent=3 notation=<binder finite
ﬂ”ﬂ('/|€|')~/ _)> [07 07 10} 10)

-fBex1 :: pttrn = 'a fset = bool = bool («(<indent=3 notation=<binder finite

THEORY “FSet”

Im3N-/lel-)./ -» [0, 0, 10] 10)

syntax-consts
-fBall -fBnex = fBall and
-fBer = fBex and
-fBexl = Exl

translations
Vz|€|A. P = CONST FSet.Ball A (Az. P)
Jz|€|A. P = CONST FSet.Bex A (\z. P)
Pz|€|A. P = CONST fBall A (\z. = P)
Alzle|A. P —~3lz. z |e| AANP

(ML)

syntax

176

-setlessfAll :: [idt, 'a, bool] = bool («(<indent=3 notation=<binder finite ¥ »V -|C|-./

)y [0, 0, 10] 10)

-setlessfEx :: [idt, 'a, bool] = bool (<(<indent=3 notation=<binder finite 33 -|C|-./

) [0, 0, 10] 10)

-setlefAll :: [idt, 'a, bool] = bool (<(<indent=3 notation=<binder finite ¥ »V -|C|-./

) [0, 0, 10] 10)

-setlefEx i [idt, ‘a, bool] = bool («(<indent=3 notation=<binder finite

In3-|ICl-./ -» [0, 0, 10] 10)

syntax-consts
-setlessfAll -setlefAll = All and
-setlessfRx -setlefEr = Fx

translations

VA|C|B.P =~VA A|C|B— P
JA|IC|B. P —~3A. A|C|BAP
VAIC|IB.P ~VA A|C|B— P
JA|IC|B.P—~3A. A|IC|BAP

context includes lifting-syntax
begin

lemma fmember-transfer0[transfer-rule]:
assumes [transfer-rule]: bi-unique A
shows (A ===> per-fset A ===> (=)) (€) (|€|)
(proof)

lemma fBall-transfer0[transfer-rule]:
assumes [transfer-rule]: bi-unique A

shows (per-fset A ===> (A ===> (=)) ===> (=)) (Ball) (fBall)

(proof)

THEORY “FSet” 177

lemma fBex-transfer0[transfer-rule]:
assumes [transfer-rule]: bi-unique A
shows (per-fset A ===> (A ===> (=)) ===> (=)) (Bex) (fBex)
{proof)

lift-definition ffilter :: (‘a = bool) = 'a fset = 'a fset is Set.filter
parametric Lifting-Set.filter-transfer {proof)

lift-definition fPow :: 'a fset = 'a fset fset is Pow parametric Pow-transfer
{(proof)

lift-definition fcard :: 'a fset = nat is card parametric card-transfer (proof)

lift-definition fimage :: (‘a = 'b) = ’a fset = 'b fset (infixr <> 90) is image
parametric image-transfer (proof)

lift-definition fthe-elem :: ‘a fset = 'a is the-elem (proof)

lift-definition fbind :: 'a fset = (‘a = 'b fset) = 'b fset is Set.bind parametric
bind-transfer
(proof)

lift-definition ffUnion :: 'a fset fset = 'a fset is Union parametric Union-transfer
(proof)

lift-definition ffold :: ('a = 'b = 'b) = 'b = 'a fset = 'b is Finite-Set.fold (proof)
lift-definition fset-of-list :: 'a list = 'a fset is set (proof)

lift-definition sorted-list-of-fset :: 'a::linorder fset = 'a list is sorted-list-of-set

{(proof)

29.4 Transferred lemmas from Set.thy
lemma fset-eqI: (Az. (z |€] A) = (z|€| B)) = A =B
(proof)

lemma fset-eq-iff [no-atp]: (A = B) = (Va. (z |€] 4) = (z |€| B))
{proof)

lemma fBalll[no-atp]: (Az. z |€| A= Pz) = fBall A P
{proof)

lemma fbspec[no-atp|: fBall A P = z |€| A= Pux
{proof)

lemma fBallE[no-atp]: fBall AP = (Pz = Q) = (z |¢| A = Q) = @
{proof)

THEORY “FSet” 178

lemma fBexlI[no-atp]: Px = x |€] A = fBex A P
{proof)

lemma rev-fBezI[no-atp): x |€| A = P 1 = fBext A P
(proof)

lemma fBexCI[no-atp]: (fBall A (A\z. = Pz) = Pa) = a |€| A= fBex A P
{proof)

lemma fBexE[no-atp]: fBex A P —= (A\z.z|€| A= Pz = Q) = (@
(proof)

lemma fBall-trivno-atp]: fBall A (Az. P) = ((3z. z |€| A) — P)
{proof)

lemma fBex-triv[no-atp]: fBex A (Az. P) = ((3z. z |€] A) A P)
(proof)

lemma fBez-triv-one-pointl [no-atp]: fBex A (Az. z = a) = (a |€| A)
(proof)

lemma fBez-triv-one-point2[no-atp): fBex A ((=) a) = (a |€] A)
(proof)

lemma fBex-one-point! [no-atp|: fBex A (Az. z = a AN Pz) = (a |€]| A A P a)
(proof)

lemma fBez-one-point2[no-atp): fBex A (Ax. a =z AN Pz) = (a |€| AN P a)
{proof)

lemma fBall-one-point! [no-atp): fBall A (A\x. x = a — Pz) = (a|€| A — P
a)
(proof)

lemma fBall-one-point2[no-atp|: fBall A (\xz. a =2 — Pz) = (a|€| A — P
a)

(proof)

lemma fBall-conj-distrib: fBall A (Ax. Pz A Q z) = (fBall A P A fBall A Q)
(proof)

lemma fBex-disj-distrib: fBex A (Az. Pz V Q z) = (fBex A P V fBex A Q)
(proof)

lemma fBall-cong|fundef-cong]: A = B = (A\z. 2z |€| B= Pz = Q z) =
fBall A P = fBall B Q
(proof)

lemma fBezx-cong|fundef-cong]: A= B=— (\z. 2 |€| B= Pz = Qz) = fBex

THEORY “FSet” 179

A P = fBex B @
{proof)

lemma fsubsetl[introl]: (Az. z |€| A= =z |€| B) = A |C| B
(proof)

lemma fsubsetDl[elim, intro?]: A |C| B= c |€| A = c |€| B
{proof)

lemma rev-fsubsetD[no-atp,intro?): ¢ |€| A= A |C| B= ¢ |€| B
(proof)

lemma fsubsetCE[no-atp,elim]: A |C| B = (¢ |¢| A= P) = (c|€| B= P)
= P

(proof)

lemma fsubset-eq[no-atp|: (A |C| B) = fBall A (M\z. z |€| B)
{proof)

lemma contra-fsubsetD[no-atp]: A |C| B= ¢ |¢| B= c |¢| A
{proof)

lemma fsubset-refl: A |C| A
{proof)

lemma fsubset-trans: A |C| B—=— B |C| C = A |C| C
{proof)

lemma fset-rev-mp: ¢ |€| A= A |C| B= c |€| B
{proof)

lemma fset-mp: A |C| B= c|€| A= c|€|] B

{proof)

lemma fsubset-not-fsubset-eq|code]: (A |C| B) = (A |C| BA - B |C| A)
{proof)

lemma eq-fmem-trans: a = b = b |€|] A = a |€| A
(proof)

lemma fsubset-antisym[introl]: A |C| B=— B|C| A= A= 1B
(proof)

lemma fequalityD1: A= B —=— A |C| B
(proof)

lemma fequalityD2: A = B = B |C| A
(proof)

THEORY “FSet” 180

lemma fequalityf: A= B = (A|C| B= B|C| A= P) = P
{proof)

lemma fequalityCE|elim]:
A=B= (¢c|le|A=c|€e|B=P) = (c|¢| A= c|¢| B=—= P) =P
(proof)

lemma eqfset-imp-iff: A = B = (z |€| A) = (z |€| B)
(proof)

lemma eqgfelem-imp-iff: x = y = (z |€|] A) = (y |€|] A)
(proof)

lemma fempty-iff [simp]: (c |€| {||}) = False
(proof)

lemma fempty-fsubsetI[iff]: {||} |<| =
{proof)

lemma equalsffemptyl: (Ny. y |€] A = False) = A = {||}
(proof)

lemma equalsffemptyD: A = {||} = a |¢| A
{proof)

lemma fBall-fempty[simp|: fBall {||} P = True
{proof)

lemma fBex-fempty[simp|: fBex {||} P = False
{proof)

lemma fPow-iff[iff]: (A |€| fPow B) = (A |C| B)
{proof)

lemma fPowl: A |C| B = A |€| fPow B
{proof)

lemma fPowD: A |€| fPow B= A |C| B
{proof)

lemma fPow-bottom: {||} |€| fPow B
(proof)

lemma fPow-top: A |€| fPow A
(proof)

lemma fPow-not-fempty: fPow A # {||}
(proof)

THEORY “FSet” 181

lemma finter-iff [simp]: (¢ |€] A |N| B) = (c |€] A A ¢ |€| B)
{proof)

lemma finterl[introl]: ¢ |€| A= ¢ |€| B= ¢ |€] A|N| B
(proof)

lemma finterD1: c |€| A|N| B=c €| A
{proof)

lemma finterD2: ¢ |€| A|N| B= ¢ |€| B
(proof)

lemma finterElelim!]: ¢ |€| A|N| B= (¢ |€| A= ¢ |€| B= P) = P
{proof)

lemma funion-iff[simp]: (c |€| A |U| B) = (c |€| AV ¢ |€] B)
(proof)

lemma funionll[elim?): ¢ || A = c|€| A |U| B
{proof)

lemma funionI2[elim?): ¢ |€|] B= ¢ |€| A |U| B
(proof)

lemma funionCI[introl]: (¢ |¢| B= c |€| A) = c |€| A |U| B
(proof)

lemma funionE[elim!]: ¢ |€| AUl B= (¢ |€| A = P) = (c |€| B = P)
=P
{proof)

lemma fminus-iff [simp]: (¢ |€] A || B) = (c |€| A A ¢ |¢| B)
(proof)

lemma fminusl[intro]: ¢ || A= c|¢| B= c|€| A|-| B
{proof)

lemma fminusD1: ¢ |€| A|—| B= c|€| A
{proof)

lemma fminusD2: ¢ |€| A|-| B= c|€¢| B= P
(proof)

lemma fminusElelim!]: ¢ |€| A|-| B= (¢ |€| A= ¢ |¢| B= P) = P
{proof)

lemma finsert-iff[simp]: (a |€] finsert b A) = (a = bV a |€| A)
{proof)

THEORY “FSet” 182

lemma finsertll: a |€| finsert a B
{proof)

lemma finsertI2: a |€| B => a |€]| finsert b B
(proof)

lemma finsertE[elim!]: o |€| finsert b A = (a = b = P) = (a |€| A = P)
= P
{proof)

lemma finsertCI[intro!]: (a |¢| B = a = b) = a |€| finsert b B
(proof)

lemma fsubset-finsert-iff:
(A |C| finsert x B) = (if x |€] A then A |—| {|z|} || B else A |C| B)
(proof)

lemma finsert-ident: z |¢| A = z |¢| B = (finsert t A = finsert x B) = (A =
B)
{proof)

lemma fsingletonl[intro!,no-atpl: a |€| {|a|}
(proof)

lemma fsingletonD[dest!,no-atp]: b |€| {|a]} = b= a
(proof)

lemma fsingleton-iff: (b |€| {|a|}) = (b = a)
{proof)

lemma fsingleton-inject[dest!]: {|a|]} = {|b]} = a = b
{proof)

lemma fsingleton-finsert-inj-eq[iff ,;no-atp]: ({|b|} = finsert a A) = (a =b A A |C]|
{lel})
{proof)

lemma fsingleton-finsert-inj-eq'[iff ,no-atp]: (finsert a A = {|b]}) = (a=b A A |C]|
{lo[})
(proof)

lemma fsubset-fsingletonD: A |C| {|z|} = A ={||} V 4 = {|z|}
{proof)

lemma fminus-single-finsert: A |—| {|z|} |C] B = A |C| finsert © B
{proof)

lemma fdoubleton-eg-iff: ({|a, b|} = {|e, d|}) = (a=cAb=dVa=dANb=
¢)

THEORY “FSet” 183

{proof)

lemma funion-fsingleton-iff:

(AU B=A[z]}) = (A={[} AB={lz]} vA={lz]} AB={[]} VA= {[z[}
A B = {|z]})

(proof)

lemma fsingleton-funion-iff:

({lzl} =AU B)=(A={[} AB={lz]} vA={lz]} AB={[[} VA= {z[}
A B = {|z]})

(proof)

lemma fimage-eql[simp, intro]: b= fz =z |€| A= ble|f|] A
{proof)

lemma fimagel: z |€| A= fz |€| f|] A
(proof)

lemma rev-fimage-eql: z |€| A= b=fz=ble|f|] A
(proof)

lemma fimageEelim!]: b |€| f || A = (Az. b= fz = z |€| A = thesis) =
thesis
(proof)

lemma Compr-fimage-eq: {z. z |€| f || ANPaz}=f{x.z|€e|l] ANP (fz)}
{proof)

lemma fimage-funion: f || (A|U| By =f|{1A|U| f | B
(proof)

lemma fimage-iff: (z |€| f |9 A) = fBex A (A\z. z = [x)
(proof)

lemma fimage-fsubset-iff [no-atp]: (f || A |C| B) = fBall A (A\z. fz |€| B)
{proof)

lemma fimage-fsubsetl: (A\z. z |€| A = fz|€| B) = f || A|C| B
{proof)

lemma fimage-ident|[simp]: (A\z. z) |1 Y =Y
(proof)

lemma if-split-fmem1: ((if Q then z else y) |€] b) = ((Q@ — z |€] b)) A (= Q —
y €l b))
{proof)

lemma if-split-fmem2: (a |€| (if Q then x else y)) = ((Q — a |€|) A (- Q —
a €| y))

THEORY “FSet” 184

{proof)

lemma pfsubset![introl,no-atp]: A |C| B=—= A # B= A |C| B
{proof)

lemma pfsubsetE[elim!,no-atp]: A|C| B= (A|C|]B= - B|C| A= R) =
R
{proof)

lemma pfsubset-finsert-iff:
(A |C| finsert x B) =
(if z |€| B then A |C| B else if z |€| A then A |—| {|z|} |C| B else A |C| B)
(proof)

lemma pfsubset-eq: (A |C| B) = (A |C| B A A # B)
(proof)

lemma pfsubset-imp-fsubset: A |C| B = A |C| B
{proof)

lemma pfsubset-trans: A |C| B=— B |C| C = A |C| C
{proof)

lemma pfsubsetD: A |C| B= c|€|] A= ¢ |€| B
{proof)

lemma pfsubset-fsubset-trans: A |C| B= B |C| C = A |C| C
(proof)

lemma fsubset-pfsubset-trans: A |C| B= B |C| C = A |C| C

(proof)

lemma pfsubset-imp-ex-fmem: A |C| B= 3b. b |€| B|-| A
{proof)

lemma fimage-fPow-mono: f | A |C| B = (|9) f | fPow A |C| fPow B
(proof)

lemma fimage-fPow-surj: f || A= B = (1) f | fPow A = fPow B
{proof)

lemma fsubset-finsertl: B |C| finsert a B
(proof)

lemma fsubset-finsertI2: A |C| B = A |C| finsert b B
{proof)

lemma fsubset-finsert: z |¢| A = (A |C| finsert z B) = (A |C| B)
{proof)

THEORY “FSet” 185

lemma funion-upperi: A |C| A |U| B
{proof)

lemma funion-upper2: B |C| A |U| B
{proof)

lemma funion-least: A |C|] C = B |C| C = A |U| B|C| C
{proof)

lemma finter-lower!: A |N| B |C| A
{proof)

lemma finter-lower2: A |N| B |C| B

(proof)

lemma finter-greatest: C |C| A= C |C| B= C |C| A|N| B
{proof)

lemma fminus-fsubset: A |—| B |C| A
{proof)

lemma fminus-fsubset-conv: (A |—| B || C) = (A |C] B |U] C)
{proof)

lemma fsubset-fempty[simp]: (A [C] {[[}) = (A =A{][})
(proof)

lemma not-pfsubset-fempty[iff]: = A |C| {||}
(proof)

lemma finsert-is-funion: finsert a A = {Ja|} |U] A

{proof)

lemma finsert-not-fempty[simp|: finsert a A # {||}
(proof)

lemma fempty-not-finsert: {||} # finsert a A
(proof)

lemma finsert-absorb: a |€| A = finsert a A = A
(proof)

lemma finsert-absorb2[simpl: finsert x (finsert x A) = finsert x A
(proof)

lemma finsert-commute: finsert x (finsert y A) = finsert y (finsert x A)
(proof)

THEORY “FSet” 186

lemma finsert-fsubset[simp]: (finsert x A |C| B) = (z |€]| B A A |C| B)
(proof)

lemma finsert-inter-finsert[simp): finsert a A || finsert a B = finsert a (A |N| B)
(proof)

lemma finsert-disjoint|[simp,no-atp):
(finsert a A |N] B =A{||}) = (a |¢| BA AN B ={][})
({l[} = finsert a A |N| B) = (a [¢| B A{|]} = A N[B)
(proof)

lemma disjoint-finsert[simp,no-atp):
(B [N finsert a A = {|[}) = (a [¢]| B A B [N[A ={][[})
({I[} = A N[finsert b B) = (b [¢] A A{||} = A |N] B)
(proof)

lemma fimage-fempty[simp]: f [{|[} = {|I}
{proof)

lemma fimage-finsert[simpl: f | finsert a B = finsert (f a) (f | B)
(proof)

lemma fimage-constant: z |€|] A = (Az. ¢) || 4 = {|¢|}
{proof)

lemma fimage-constant-conv: (Az. ¢) || A = (if A = {||} then {||} else {|c|})
{proof)

lemma fimage-fimage: f | g || A= (Az. f (gx)) || A
(proof)

lemma finsert-fimage[simp|: © |€| A = finsert (fz) (f |1 A)=f1]1A4
(proof)

lemma fimage-is-fempty[iff]: (f |1 A = {|[}) = (4 = {[[})
{proof)

lemma fempty-is-fimage[iff]: ({|[} = f |1 4) = (A = {l[})
(proof)

lemma fimage-cong: M = N = (Az. 2 |€| N = fz=gz) = f |1 M =g |
N
(proof)

lemma fimage-finter-fsubset: f || (A |N| B) || f|1A N f]B
{proof)

lemma fimage-fminus-fsubset: f || A |—| f 191 BI|C| f || (A |-| B)
{proof)

THEORY “FSet” 187

lemma finter-absorb: A |N| A=A
{proof)

lemma finter-left-absorb: A |N| (A |N| B) = A |N| B
{proof)

lemma finter-commute: A |N| B =B |N| A
{proof)

lemma finter-left-commute: A |N| (B |N| C) = B |N| (4 |n| C)
(proof)

lemma finter-assoc: A |N| B |N| C = A |N| (B |N] C)
{proof)

lemma finter-ac:
An[BN € = A|n[(B |n| C)
ANl (AN B) = A|n| B
AN B=B|n| 4
ANl (BN €) = B |n[(A |n] €)
{proof)

lemma finter-absorbl: B |C| A= A |N| B=B
{proof)

lemma finter-absorb2: A |C| B= A |N| B= A4
{proof)

lemma finter-fempty-left: {||} IN| B = {||}
(proof)

lemma finter-fempty-right: A |N| {||} = {||}
(proof)

lemma disjoint-iff-fnot-equal: (A |N| B = {||}) = fBall A (\z. fBall B ((#) z))
(proof)

lemma finter-funion-distrib: A |N| (B |U] C) = A |n| B |U] (4 |n| C)
(proof)

lemma finter-funion-distrib2: B (U] C |N| A = B |n| A |U| (C |N] A)
{proof)

lemma finter-fsubset-iff [no-atp, simp|: (C |C| A |N| B) = (C |C] A A C |C| B)
(proof)

lemma funion-absorb: A |U] A = A

{proof)

THEORY “FSet” 188

lemma funion-left-absorb: A |U| (A |U| B) = A |U| B
{proof)

lemma funion-commute: A U] B = B |U| A
{proof)

lemma funion-left-commute: A |U] (B |U| C) = B |U| (4 |U] C)
(proof)

lemma funion-assoc: A |U| B |U| C = A |U| (B |U] C)
(proof)

lemma funion-ac:
AUl B U] € =AUl (B[] C)
AUl (AUl B) =AU B
AU B=BJU A
AUl (B |u] €) = B | (4 |] C)
(proof)

lemma funion-absorbl: A |C| B= A |U| B=B
{proof)

lemma funion-absorb2: B|C| A= A|U| B=A
{proof)

lemma funion-fempty-left: {||} |U| B = B
(proof)

lemma funion-fempty-right: A |U| {||} = A
{proof)

lemma funion-finsert-left[simp]: finsert a B |U| C = finsert a (B |U]| C)
{proof)

lemma funion-finsert-right[simp]: A |U| finsert a B = finsert a (A |U| B)
(proof)

lemma finter-finsert-left: finsert a B |N| C = (if a |€| C then finsert a (B |N| C)
else B |N| C)
{proof)

lemma finter-finsert-left-ifffempty[simp]: a |¢| C = finsert a B |N| C = B |N| C
(proof)

lemma finter-finsert-left-if1[simp]: a |€] C = finsert a B |N| C' = finsert a (B
[al ey
{proof)

THEORY “FSet” 189

lemma finter-finsert-right:
A |N| finsert a B = (if a |€| A then finsert a (A |N| B) else A |N| B)
{proof)

lemma finter-finsert-right-ifffempty[simp]: a |¢| A = A |N| finsert a B = A |N|
B
(proof)

lemma finter-finsert-right-if1[simp]: o |€| A = A |N| finsert a B = finsert a (A
N[B)
(proof)

lemma funion-finter-distrib: A |U| (B |N] C) = A |U| B |N| (4 |U| C)
(proof)

lemma funion-finter-distrib2: B |N| C |U| A = B |U| 4 |n| (C |U] A)
(proof)

lemma funion-finter-crazy:
A N[B U] (B [N] C) U] (€ |N] A) = A|u| B |n[(B[] C) [N (C [U] A)
(proof)

lemma fsubset-funion-eq: (A |C| B) = (A |U] B = B)
{proof)

lemma funion-fempty[iff]: (A [U] B = {|[}) = (A ={ll} A B ={l[})
(proof)

lemma funion-fsubset-iff [no-atp, simpl: (A |U| B |C| C) = (A |C| C A B|C| C)
(proof)

lemma funion-fminus-finter: A |—| B |U| (A |N| B) = A
(proof)

lemma ffunion-empty[simp): [fUnion {||} = {||}
{proof)

lemma ffunion-mono: A |C| B = ffUnion A |C| ffUnion B
(proof)

lemma ffunion-insert[simp|: ffUnion (finsert a B) = a |J| [fUnion B
(proof)

lemma fminus-finter2: A|N| C |-| (B|N| C)=An| C |-| B
(proof)

lemma funion-finter-assoc-eq: (A |N| B U] C = A |N| (B |J] C)) = (C |C| A)
(proof)

THEORY “FSet” 190

lemma fBall-funion: fBall (A |U| B) P = (fBall A P A fBall B P)
{proof)

lemma fBex-funion: fBex (A |J| B) P = (fBex A P V fBex B P)
(proof)

lemma fminus-eg-fempty-iff [simp,no-atp]: (A |—| B = {||}) = (4 |C| B)
(proof)

lemma fminus-cancel[simp]: A |—| A = {||}
(proof)

lemma fminus-idemp[simp|: A |—| B|—-| B=A|-| B
{proof)

lemma fminus-triv: A |N| B={||} = A|-| B=4
(proof)

lemma fempty-fminus[simp]: {||} |- A = {||}
(proof)

lemma fminus-fempty[simp]: A |—| {||} = A
(proof)

lemma fminus-finsertffempty|[simp,no-atp|: ¢ |¢| A = A |—| finsert £ B = A |—|
B
{proof)

lemma fminus-finsert: A |—| finsert a B = A |—| B |—| {]a|}
{proof)

lemma fminus-finsert2: A |—| finsert « B = A |—| {|a|} |-| B
{proof)

lemma finsert-fminus-if: finsert v A |—| B = (if © |€| B then A |—| B else finsert
z (A|-| B))
(proof)

lemma finsert-fminusl [simp]: z |€| B = finsert x A |—| B= A |-| B
{proof)

lemma finsert-fminus-single[simp): finsert a (A |—| {|a|}) = finsert a A
{proof)

lemma finsert-fminus: a |€| A = finsert a (A |—| {]a|]}) = A
{proof)

lemma fminus-finsert-absord: = |¢| A = finsert x A |—| {|z|} = A

{proof)

THEORY “FSet” 191

lemma fminus-disjoint[simp]: A |N| (B |—| 4) = {||}
{proof)

lemma fminus-partition: A |C| B= A |U|] (B|-| A) = B
{proof)

lemma double-fminus: A |C| B= B|C| C = B|-|(C|-] A) =4
{proof)

lemma funion-fminus-cancel[simp]: A |U| (B |-| 4) = A |U| B
(proof)

lemma funion-fminus-cancel2[simp|: B |-| AU A= B |J] A

(proof)

lemma fminus-funion: A |—| (B |U| C) = A |—| B|n| (A |-] C)
{proof)

lemma fminus-finter: A |—| (B|N| C) = A |—| B|U| (4 |-] C)
{proof)

lemma funion-fminus: A |U| B |—| C = A |—| C |U| (B |-| C)
{proof)

lemma finter-fminus: A |N| B |—| C = A |N| (B |-| C)
{proof)

lemma fminus-finter-distrib: C |N| (A |—| B) = C |n| A |—| (C |N| B)
(proof)

lemma fminus-finter-distrib2: A |—| B|N| C = A |n| C |—| (B|N| C)
(proof)

lemma fUNIV-bool[no-atp|: fUNIV = {|False, True|}
{proof)

lemma fPow-fempty[simp]: fPow {||} = {|{||}}
(proof)

lemma fPow-finsert: fPow (finsert a A) = fPow A |U]| finsert a | fPow A
(proof)

lemma funion-fPow-fsubset: fPow A |U| fPow B |C| fPow (A |U| B)
{proof)

lemma fPow-finter-eq[simp]: fPow (A |N| B) = fPow A |N| fPow B
{proof)

THEORY “FSet” 192

lemma fset-eg-fsubset: (A = B) = (A |<| B A B |C| A)
{proof)

lemma fsubset-iff [no-atp]: (A |C| B) = (Vt. t |€|] A — t |€| B)
(proof)

lemma fsubset-iff-pfsubset-eq: (A |C| B) = (A |C| BV A = B)
{proof)

lemma all-not-fin-conv[simpl: (V. z |¢| A) = (4 = {||})
(proof)

lemma ez-fin-conv: (3z. z |€| A) = (4 # {||})
(proof)

lemma fimage-mono: A |C| B= f |1 A|C|f | B
(proof)

lemma fPow-mono: A |C| B = fPow A |C| fPow B
{proof)

lemma finsert-mono: C |C| D = finsert a C |C| finsert a D
(proof)

lemma funion-mono: A |C|] C = B|C| D= A |U| B|C| C |U| D
(proof)

lemma finter-mono: A |C| C = B|C| D= A|N| BI|C| C|n| D
(proof)

lemma fminus-mono: A |C| C = D|C|B= A |-| BI|C| C|-| D
{proof)

lemma fin-mono: A |C| B=z|€| A — z |€| B
{proof)

lemma fthe-felem-eq[simp]: fthe-elem {|z|} = =
{proof)

lemma fLeast-mono:

mono [= fBex S (Az. fBall S ((<) z)) = (LEAST y. y |€| f|1S) =f
(LEAST z. z |€| 5)

(proof)

lemma fbind-foind: fbind (fbind A B) C = fbind A (Az. fbind (B z) C)
(proof)

lemma fempty-foind[simp|: foind {||} f = {l|}
(proof)

THEORY “FSet” 193

lemma nonfempty-foind-const: A # {||} = fbind A (A-. B) = B
{proof)

lemma fbind-const: foind A (A-. B) = (if A = {||} then {||} else B)
{proof)

lemma ffmember-filter[simp]: (z |€| ffilter P A) = (z |€] A AN P z)
{proof)

lemma fequalityl: A |C| B— B|C| A= A=1B
{proof)

lemma fset-of-list-simps[simp]:

fset-of-list [| = {[|}
fset-of-list (x21 # x22) = finsert 21 (fset-of-list 122)

(proof)

lemma fset-of-list-append|[simp]: fset-of-list (xs Q ys) = fset-of-list xs |U| fset-of-list
ys
(proof)

lemma fset-of-list-rev[simpl: fset-of-list (rev xs) = fset-of-list zs
(proof)

lemma fset-of-list-map[simp): fset-of-list (map f xs) = f | fset-of-list xs
(proof)
29.5 Additional lemmas

29.5.1 ffUnion

lemma ffUnion-funion-distrib[simp|: [fUnion (A |U| B) = ffUnion A |J| ffUnion
B
(proof)

29.5.2 fbind

lemma fbind-cong[fundef-cong]: A= B = (A\z. z |€| B= fx = g z) = fbind
Af = foind Byg

(proof)

29.5.3 fsingleton

lemma fsingletonE: b |€| {|a|} = (b = a = thesis) = thesis
{proof)

29.5.4 femepty
lemma fempty-ffilter[simp]: ffilter (A-. False) A = {||}

THEORY “FSet” 194

(proof)
lemma femptyE [elim!]: o |€| {||} = P
(proof)

29.5.5 fset

lemma fset-simps|simp]:

fset {|I} = {}
fset (finsert x X) = insert x (fset X)
{proof)

lemma finite-fset [simp]:
shows finite (fset S)
(proof)

lemmas fset-cong = fset-inject

lemma filter-fset [simp):
shows fset (ffilter P xs) = Collect P N fset s
(proof)

lemma inter-fset[simp]: fset (A |N| B) = fset A N fset B
{proof)

lemma union-fset[simp|: fset (A |U| B) = fset A U fset B
(proof)

lemma minus-fset[simp]: fset (A |—| B) = fset A — fset B
{proof)

29.5.6 ffilter

lemma subset-ffilter:
ffilter P A |C| ffilter QA= (N z.z|€|A— Pz — Q)
(proof)

lemma eq-ffilter:
(ffilter P A = ffilter Q A) = Vz. 2 |€| A — Pz = Qux)
(proof)

lemma pfsubset-ffilter:
Ne.z|€e|] A= Pzx= Qz)= (z|e| AN-PzAQz) =

ffilter P A |C]| ffilter Q A

(proof)

29.5.7 fset-of-list

lemma fset-of-list-filter[simp]:

THEORY “FSet” 195

fset-of-list (filter P xs) = ffilter P (fset-of-list xs)
{proof)

lemma fset-of-list-subset|introl:
set xs C set ys = fset-of-list xs |C| fset-of-list ys
(proof)

lemma fset-of-list-elem: (x |€| fset-of-list xs) «— (z € set xs)
{proof)

29.5.8 finsert

lemma set-finsert:
assumes z |€| A
obtains B where A = finsert x B and z |¢| B

(proof)

lemma mk-disjoint-finsert: a |€] A = IB. A = finsert a B A a |¢| B
(proof)

lemma finsert-eq-iff:
assumes ¢ |¢| A and b |¢| B
shows (finsert a A = finsert b B) =
(ifa =bthen A= Belse 3C. A= finsert b C AN b|¢| C AN B = finsert a C A
a |¢] C)

(proof)

29.5.9 fimage

lemma subset-fimage-iff: (B |C| f||A) = (3 AA. AA|C| A A B = f||AA)
(proof)

lemma fimage-strict-mono:

assumes inj-on f (fset B) and A |C| B

shows f | A[C[f[]B

— TODO: Configure transfer framework to lift [inj-on ?f ?B; ?A C ?B] = ?f
“PAC ?f 9B
(proof)

29.5.10 bounded quantification

lemma bex-simps [simp, no-atp:
NA P Q. fBex A (Ax. Pz A Q) = (fBex A P A Q)
NA P Q. fBex A (Az. PN Qz) = (P A fBex A Q)
AP. fBex {||} P = False
Na B P. fBex (finsert a B) P = (P a V fBex B P)
NA P f. fBex (f || A) P = fBex A (\z. P (f z))
NA P. (- fBex A P) = fBall A (Az. -~ P z)
(proof)

THEORY “FSet” 196

lemma ball-simps [simp, no-atp]:
NA P Q. fBall A (Ax. Pz VvV Q) = (fBall APV Q)
NA P Q. fBall A (Ax. PV Qz) = (P V fBall A Q)
AA P Q. fBall A (\e. P — Q) = (P — fBall A Q)
AA P Q. fBall A (\e. Pz — Q) = (fBex A P — Q)
AP. fBall {||} P = True
Na B P. fBall (finsert a B) P = (P a A fBall B P)
AA P f. fBall (f |1 A) P = fBall A (\a. P (f z))
NA P. (= fBall A P) = fBex A (Az. = P x)

(proof)

lemma atomize-fBall:
(Az. z |€| A ==> P z) == Trueprop (fBall A (Az. P x))
{proof)

lemma fBall-mono[mono]: P < Q = fBall S P < fBall S Q
(proof)

lemma fBexz-mono[monol: P < Q = fBex S P < fBex S @
(proof)

end

29.5.11 fecard

lemma feard-fempty:
feard {||} = 0
(proof)

lemma fcard-finsert-disjoint:
z |¢| A = feard (finsert © A) = Suc (feard A)
(proof)

lemma fecard-finsert-if:
feard (finsert ¢ A) = (if x |€] A then feard A else Suc (fcard A))
{proof)

lemma fcard-0-eq [simp, no-atp):
feard A = 0 «— A ={||}
(proof)

lemma feard-Suc-fminust:
z |€] A = Suc (feard (A |—| {|z|})) = feard A
(proof)

lemma fecard-fminus-fsingleton:
z |€| A = feard (A |—| {|z|}) = feard A — 1
(proof)

THEORY “FSet” 197

lemma feard-fminus-fsingleton-if:
feard (A |—| {|z|}) = (if = |€| A then fecard A — 1 else fcard A)
{proof)

lemma feard-fminus-finsert[simp):

assumes a |€| A and a |¢| B

shows fcard (A |—| finsert a B) = feard (A |—| B) — 1
(proof)

lemma feard-finsert: fecard (finsert x A) = Suc (feard (A |—| {|z|}))
(proof)

lemma fcard-finsert-le: feard A < feard (finsert x A)
(proof)

lemma fcard-mono:
A |C| B = feard A < feard B
(proof)

lemma feard-seteq: A |C| B = feard B < feard A = A = B

(proof)

lemma pfsubset-fecard-mono: A |C| B = feard A < fecard B
(proof)

lemma fecard-funion-finter:
feard A + fecard B = fcard (A |U| B) + fecard (A |N| B)
(proof)

lemma fecard-funion-disjoint:
A|N| B ={||} = feard (A |U| B) = feard A + fcard B
(proof)

lemma fecard-funion-fsubset:
B |C| A = feard (A |—| B) = fecard A — feard B
(proof)

lemma diff-fcard-le-feard-fminus:
feard A — feard B < feard(A |—| B)
(proof)

lemma feard-fminusi-less: x |€] A = feard (A |—| {|z|}) < feard A

(proof)

lemma feard-fminus2-less:
zle|l A=y €| A = feard (A |=| {[z[} -] {|y]}) < feard A
{proof)

lemma feard-fminusi-le: feard (A |—| {|z|}) < feard A

THEORY “FSet”

(proof)

lemma fcard-pfsubset: A |C| B = feard A < fcard B— A < B
(proof)

29.5.12 sorted-list-of-fset

lemma sorted-list-of-fset-simps[simp):
set (sorted-list-of-fset S) = fset S
fset-of-list (sorted-list-of-fset S) = S
(proof)

29.5.13 ffold

context comp-fun-commute
begin
lemma ffold-empty[simp]: ffold f z {||} = 2
(proof)

lemma ffold-finsert [simp]:
assumes z |[¢| A
shows ffold f z (finsert x A) = fx (ffold f z A)
(proof)

lemma ffold-fun-left-comm:
fz (ffoldfzA)=ffoldf (fxz) A
(proof)

lemma ffold-finsert2:
z |¢| A = ffold f z (finsert x A) = ffold f (fzz) A
(proof)

lemma ffold-rec:
assumes 7z |€] A
shows ffold fz A = fz (ffold f 2z (A |—| {|z]}))
(proof)

lemma ffold-finsert-fremove:
fold [= (finsert z A) = f o (ffold f = (4 || {|z]}))
(proof)
end

lemma ffold-fimage:

assumes inj-on g (fset A)

shows ffold fz (g || A) = ffold (f o g) z A
(proof)

lemma ffold-cong:
assumes comp-fun-commute f comp-fun-commute g
Ne.z|€| A= fz=9gux

198

THEORY “FSet” 199

and s =tand A = B
shows ffold f s A = ffold g t B
(proof)

context comp-fun-idem
begin

lemma ffold-finsert-idem:
ffold f z (finsert x A) = fx (ffold f z A)
(proof)

declare ffold-finsert [simp del] ffold-finsert-idem [simp]

lemma ffold-finsert-idem?2:
ffold f z (finsert x A) = ffold f (fz 2) A
(proof)

end

29.5.14 (|C|)

lemma wfP-pfsubset: wfP (|C|)
(proof)

29.5.15 Group operations

locale comm-monoid-fset = comm-monoid
begin

sublocale set: comm-monoid-set {proof)

lift-definition F :: (b = ‘a) = 'b fset = 'a is set.F' (proof)

lemma cong[fundef-cong]: A= B = (N\z.z|€| B=gaz=hz) = FgA=
FhB
{proof)

lemma cong-simp[cong]:
[A=B; Az.z|€| B=simp=>gazx=hz]|]=—FgA=FhB
(proof)

end
context comm-monoid-add begin
sublocale fsum: comm-monoid-fset plus 0

rewrites comm-monoid-set.F plus 0 = sum
defines fsum = fsum.F

(proof)

THEORY “FSet” 200

end

29.5.16 Semilattice operations

locale semilattice-fset = semilattice
begin

sublocale set: semilattice-set (proof)
lift-definition F :: ‘a fset = 'a is set.F (proof)

lemma eq-fold: F (finsert x A) = ffold fz A
(proof)

lemma singleton [simp]: F {|z|} = z
{proof)

lemma insert-not-elem: z |¢| A = A # {||} = F (finsertc A) =z * F A
{proof)

lemma in-idem: z |€| A=z« FA=FA
{proof)

lemma insert [simp]: A # {||} = F (finsert x A) =z % F A
{proof)

end

locale semilattice-order-fset = binary?: semilattice-order + semilattice-fset
begin

end

context linorder begin

sublocale fMin: semilattice-order-fset min less-eq less
rewrites semilattice-set.F min = Min
defines fMin = fMin.F

(proof)

sublocale fMaz: semilattice-order-fset max greater-eq greater
rewrites semilattice-set.F max = Max
defines fMax = fMax.F

(proof)

end

lemma mono-fMaz-commute: mono f = A # {||} = f (fMazx A) = fMax (f |

THEORY “FSet” 201

4)
(proof)

lemma mono-fMin-commute: mono f = A # {||} = f (fMin A) = fMin (f |
4)
{proof)

lemma fMaz-in[simp]: A # {||} = fMaz A |€| A
{proof)

lemma fMin-in[simp]: A # {||} = fMin A |€] A
{proof)

lemma fMaz-ge[simp]: z |€] A = z < fMaz A

(proof)

lemma fMin-le[simp]: z |€]| A = fMin A < z
{proof)

lemma fMaz-eql: (N\y. y|€| A= y<z2) = z|€| A = fMazx A==z
(proof)

lemma fMin-eql: (N\y. y|€| A=z <vy) =2 |€| A= fMin A==z
{proof)

lemma fMaz-finsert[simp|: fMaz (finsert x A) = (if A = {||} then z else max x
(fMaz A))
{proof)

lemma fMin-finsert[simp]: fMin (finsert © A) = (if A = {||} then z else min x
{proof)

context linorder begin

lemma fset-linorder-maz-induct|case-names fempty finsert]:
assumes P {||}
and Az S. [Vy. yle|l S — y<uz; PS| = P (finsertz S)
shows P §

(proof)

lemma fset-linorder-min-induct|case-names fempty finsert]:
assumes P {||}
and AzS. [Vy.ylelS—y>a PS] = P (finsert z5)
shows P S

(proof)

end

THEORY “FSet” 202

29.6 Choice in fsets

lemma fset-choice:
assumes Vz. z |€] A — (Fy. Pz y)
shows 3f. Vz. z |€e| A — Pz (fz)

{proof)

29.7 Induction and Cases rules for fsets

lemma fset-exhaust [case-names empty insert, cases type: fset]:
assumes fempty-case: S = {||} = P
and finsert-case: Az S'. S = finsert ¢ S’ = P
shows P

(proof)

lemma fset-induct [case-names empty insert]:
assumes fempty-case: P {||}
and finsert-case: Az S. P.S = P (finsert x S)
shows P S

(proof)

lemma fset-induct-stronger [case-names empty insert, induct type: fset]:
assumes empty-fset-case: P {||}
and insert-fset-case: Az S. [z |¢| S; P S] = P (finsert z S)
shows P §

(proof)

lemma fset-card-induct:
assumes empty-fset-case: P {||}
and card-fset-Suc-case: AS T. Suc (feard S) = (feard T) = P S = P T
shows P S

(proof)

lemma fset-strong-cases:
obtains zs = {||}
| ys z where z |¢| ys and zs = finsert = ys

{proof)

lemma fset-induct2:

PAF I =

(Az zs. z |¢| xs = P (finsert x zs) {||}) =

(Ay ys. y [¢| ys = P {[l} (finsert y ys)) =
(Az zs y ys. [P xs ys; x |¢| zs; y |¢] ys] = P (finsert z xzs) (finsert y ys)) =
P xzsa ysa

(proof)

29.8 Lemmas depending on induction

lemma ffUnion-fsubset-iff: ffUnion A |C| B <— fBall A (A\z. z |C| B)
{proof)

THEORY “FSet” 203

29.9 Setup for Lifting/Transfer
29.9.1 Relator and predicator properties

lift-definition rel-fset :: (‘a = 'b = bool) = 'a fset = 'b fset = bool is rel-set
parametric rel-set-transfer (proof)

lemma rel-fset-alt-def: rel-fset R = (A B. (Vz.3y. z|€|]A — y|€|B A Rz y)
A (Vy. 3z. yle|B — z|€|A A R z 7))
(proof)

lemma finite-rel-set:
assumes fin: finite X finite Z
assumes R-S: rel-set (R 00 S) X Z
shows 3 Y. finite Y AN rel-set RX Y A rel-set S Y Z

(proof)
29.9.2 Transfer rules for the Transfer package

Unconditional transfer rules
context includes lifting-syntax

begin

lemma fempty-transfer [transfer-rule]:

rel-fset A {[[} {I[}

(proof)

lemma finsert-transfer [transfer-rule]:
(A ===> rel-fset A ===> rel-fset A) finsert finsert
(proof)

lemma funion-transfer [transfer-rule]:
(rel-fset A ===> rel-fset A ===> rel-fset A) funion funion
(proof)

lemma ffUnion-transfer [transfer-rule]:
(rel-fset (rel-fset A) ===> rel-fset A) ffUnion ffUnion
(proof)

lemma fimage-transfer [transfer-rule]:
((A ===> B) ===> rel-fset A ===> rel-fset B) fimage fimage
(proof)

lemma fBall-transfer [transfer-rule]:
(rel-fset A ===> (A ===> (=)) ===> (=)) fBall fBall
(proof)

lemma fBex-transfer [transfer-rule]:
(rel-fset A ===> (A ===> (=)) ===> (=)) fBez fBex
(proof)

THEORY “FSet” 204

lemma fPow-transfer [transfer-rule]:
(rel-fset A ===> rel-fset (rel-fset A)) fPow fPow
(proof)

lemma rel-fset-transfer [transfer-rule]:
((A ===> B ===> (=)) ===> rel-fset A ===> rel-fset B ===> (=))
rel-fset rel-fset

(proof)

lemma bind-transfer [transfer-rule]:
(rel-fset A ===> (A ===> rel-fset B) ===> rel-fset B) fbind fbind
{proof)

Rules requiring bi-unique, bi-total or right-total relations

lemma fmember-transfer [transfer-rule]:
assumes bi-unique A
shows (A ===> rel-fset A ===> (=)) (|€]) (|€])
(proof)

lemma finter-transfer [transfer-rulel:
assumes bi-unique A
shows (rel-fset A ===> rel-fset A ===> rel-fset A) finter finter

{proof)

lemma fminus-transfer [transfer-rule]:
assumes bi-unique A
shows (rel-fset A ===> rel-fset A ===> rel-fset A) (|-|) (|-])
(proof)

lemma fsubset-transfer [transfer-rule]:
assumes bi-unique A

shows (rel-fset A ===> rel-fset A ===> (=)) (|<]) (|<])
(proof)

lemma fSup-transfer [transfer-rule]:
bi-unique A = (rel-set (rel-fset A) ===> rel-fset A) Sup Sup
(proof)

lemma fInf-transfer [transfer-rule]:
assumes bi-unique A and bi-total A
shows (rel-set (rel-fset A) ===> rel-fset A) Inf Inf
(proof)

lemma ffilter-transfer [transfer-rule]:
assumes bi-unique A

THEORY “FSet” 205

shows ((4 ===> (=)) ===> rel-fset A ===> rel-fset A) ffilter ffilter
{proof)

lemma card-transfer [transfer-rule]:
bi-unique A = (rel-fset A ===> (=)) feard feard
(proof)

end

lifting-update fset.lifting
lifting-forget fset.lifting

29.10 BNF setup

context
includes fset.lifting
begin

lemma rel-fset-alt:
rel-fset R a b +— (Vt € fset a. Ju € fset b. Rt u) A (Vi € fset b. Ju € fset a.
R ut)

{proof)

lemma fset-to-fset: finite A = fset (the-inv fset A) = A
(proof)

lemma rel-fset-auz:

(Vt € fset a. Ju € fset b. Rtu) A (Vu € fset b. 3¢ € fset a. R t u) +—
((BNF-Def.Grp {a. fset a C {(a, b). R a b}} (fimage fst))~1=1 OO
BNF-Def.Grp {a. fset a C {(a, b). R a b}} (fimage snd)) a b (is ?L = ?R)

(proof)

bnf ’a fset
map: fimage
sets: fset
bd: natLeq

wits: {]|}

rel: rel-fset
(proof)

lemma rel-fset-fset: rel-set x (fset A1) (fset A2) = rel-fset x A1 A2
(proof)

end

declare
fset.map-comp[simp]
fset.map-id[simp]
fset.set-map|simp)

THEORY “FSet” 206

29.11 Size setup

context includes fset.lifting

begin

lift-definition size-fset :: (‘a = nat) = ‘a fset = nat is Af. sum (Suc o f) (proof)
end

instantiation fset :: (type) size
begin
definition size-fset where
size-fset-overloaded-def: size-fset = FSet.size-fset (A-. 0)
instance (proof)
end

lemma size-fset-simps[simp]: size-fset f X = (O x € fset X. Suc (f z))
(proof)

lemma size-fset-overloaded-simps[simp]: size X = (D x € fset X. Suc 0)
{proof)

lemma fset-size-o-map: inj [= size-fset g o fimage [= size-fset (g o f)
(proof)

(ML)

lifting-update fset.lifting
lifting-forget fset.lifting

29.12 Advanced relator customization

Set vs. sum relators:

lemma rel-set-rel-sum[simp]:

rel-set (rel-sum x ¢) A1 A2 +—

rel-set x (Inl —“ A1) (Inl —“ A2) A rel-set ¢ (Inr —“ A1) (Inr —° A2)
(is 7L «— 7RI A 7Rr)

{proof)

29.12.1 Countability

lemma exists-fset-of-list: xs. fset-of-list s = S
including fset.lifting
(proof)

lemma fset-of-list-surj[simp, intro]: surj fset-of-list
(proof)

instance fset :: (countable) countable

(proof)

THEORY “FSet” 207

29.13 Quickcheck setup
Setup adapted from sets.

notation Quickcheck-Erhaustive.orelse (infixr <orelser 55)

context
includes term-syntax
begin

definition [code-unfold]:
valterm-femptyset = Code-Evaluation.valtermify ({||} :: ('a :: typerep) fset)

definition [code-unfold):
valtermify-finsert © s = Code-Evaluation.valtermify finsert {-} (z :: (‘a :: typerep *

) {}s
end

instantiation fset :: (ezhaustive) exhaustive
begin

fun ezhaustive-fset where

exhaustive-fset f i = (if i = 0 then None else (f {||} orelse exhaustive-fset (AA. f
A orelse Quickcheck-Erhaustive.exhaustive (Ax. if x |€| A then None else f (finsert

zA)) (i — 1)) (i = 1))
instance (proof)
end

instantiation fset :: (full-exhaustive) full-exhaustive
begin

fun full-exhaustive-fset where

full-ezhaustive-fset f i = (if i = 0 then None else (f valterm-femptyset orelse
full-ezhaustive-fset (AA. f A orelse Quickcheck-Exhaustive.full-ezhaustive (Ax. if
fst z |€| fst A then None else f (valtermify-finsert x A)) (i — 1)) (i — 1)))
instance (proof)

end

no-notation Quickcheck-Ezhaustive.orelse (infixr <orelser 55)

instantiation fset :: (random) random
begin

context
includes state-combinator-syntax

THEORY “Finite-Map” 208

begin

fun random-auz-fset :: natural = natural = natural x natural = ('a fset x (unit
= term)) X natural x natural where
random-auz-fset 0 j = Quickcheck-Random.collapse (Random.select-weight [(1, Pair
valterm-femptyset)]) |
random-auz-fset (Code-Numeral.Suc) j =
Quickcheck-Random.collapse (Random.select-weight
[(1, Pair valterm-femptyset),
(Code-Numeral.Suc i,
Quickcheck-Random.random j o— (Az. random-auz-fset i j o— (As. Pair

(valtermify-finsert x 5))))])

lemma [code]:
random-auz-fset ¢ j =
Quickcheck-Random.collapse (Random.select-weight [(1, Pair valterm-femptyset),
(i, Quickcheck-Random.random j o— (Azx. random-auz-fset (i — 1) j o— (As.
Pair (valtermify-finsert x s))))])

(proof)

definition random-fset i = random-auz-fset i i
instance (proof)
end

end

29.14 Code Generation Setup

The following code-unfold lemmas are so the pre-processor of the code gen-
erator will perform conversions like, e.g., (z |€| f || fset-of-list zs) = (z € f
‘set xs).

declare
filter.rep-eq|code-unfold)
fimage.rep-eq[code-unfold)
finsert.rep-eq|code-unfold]
fset-of-list.rep-eq|code-unfold]
inf-fset.rep-eq|code-unfold)
minus-fset.rep-eq[code-unfold)
sup-fset.rep-eq|code-unfold]
uminus-fset.rep-eq|[code-unfold]

end

THEORY “Finite-Map” 209

30 Type of finite maps defined as a subtype of
maps

theory Finite-Map
imports FSet AList Conditional-Parametricity
abbrevs (= = Cy
begin
30.1 Auxiliary constants and lemmas over map

parametric-constant map-add-transfer|[transfer-rule]: map-add-def
parametric-constant map-of-transfer|transfer-rule]: map-of-def

context includes lifting-syntar begin

abbreviation rel-map :: ("6 = ‘¢ = bool) = ('a = 'b) = ("a — '¢) = bool where
rel-map f = (=) ===> rel-option f

lemma ran-transfer|[transfer-rule]: (rel-map A ===> rel-set A) ran ran

(proof)

lemma ran-alt-def: ran m = (the o m) ‘ dom m
(proof)

parametric-constant dom-transfer(transfer-rule]: dom-def

definition map-upd :: 'a = 'b = (‘a — 'b) = (‘a — 'b) where
map-upd kv m = m(k — v)

parametric-constant map-upd-transfer|[transfer-rule]: map-upd-def

definition map-filter :: ('a = bool) = (‘a — 'b) = (‘a — 'b) where
map-filter P m = (Az. if P x then m x else None)

parametric-constant map-filter-transfer|transfer-rule]: map-filter-def

lemma map-filter-map-of [simp|: map-filter P (map-of m) = map-of [(k, -) < m.
Pk
(proof)

lemma map-filter-finite[introl:
assumes finite (dom m)
shows finite (dom (map-filter P m))

(proof)

definition map-drop :: 'a = (‘a — 'b) = (‘a — 'b) where
map-drop a = map-filter (Aa’. a’ # a)

parametric-constant map-drop-transfer|transfer-rule]: map-drop-def

THEORY “Finite-Map” 210

definition map-drop-set :: 'a set = (‘a = 'b) = (‘a — 'b) where
map-drop-set A = map-filter (Aa. a ¢ A)

parametric-constant map-drop-set-transfer[transfer-rule]: map-drop-set-def

definition map-restrict-set :: ‘a set = (‘a — 'b) = (‘a — 'b) where
map-restrict-set A = map-filter (Aa. a € A)

parametric-constant map-restrict-set-transfer|transfer-rule]: map-restrict-set-def

definition map-pred :: (‘a = 'b = bool) = ('‘a — 'b) = bool where
map-pred P m «— (Vz. case m = of None = True | Some y = P x y)

parametric-constant map-pred-transfer|[transfer-rule]: map-pred-def
definition rel-map-on-set :: 'a set = ('b = 'c = bool) = (Ya — 'b) = (Ya — '¢)
= bool where

rel-map-on-set S P = eq-onp (Az. x € §) ===> rel-option P

definition set-of-map :: (‘'a = 'b) = (‘a x 'b) set where
set-of-map m = {(k, v)|k v. m k = Some v}

lemma set-of-map-alt-def: set-of-map m = (Ak. (k, the (m k))) ‘ dom m
(proof)

lemma set-of-map-finite: finite (dom m) = finite (set-of-map m)

(proof)

lemma set-of-map-ing: inj set-of-map

{(proof)

lemma dom-comp: dom (m o,, n) C dom n
(proof)

lemma dom-comp-finite: finite (dom n) = finite (dom (map-comp m n))

(proof)
parametric-constant map-comp-transfer|transfer-rule]: map-comp-def
end

30.2 Abstract characterisation

typedef (‘a, 'b) fmap = {m. finite (dom m)} :: (‘a — 'b) set
morphisms fmlookup Abs-fmap
(proof)

setup-lifting type-definition-fmap

THEORY “Finite-Map” 211

lemma dom-fmlookup-finitelintro, simp|: finite (dom (fmlookup m))
(proof)

lemma fmap-ext:
assumes Az. fmlookup m x = fmlookup n x
shows m = n

(proof)

30.3 Operations

context
includes fset.lifting
begin

lift-definition fmran :: (‘a, 'b) fmap = 'b fset
is ran
parametric ran-transfer

(proof)

lemma fmlookup-ran-iff: y |€| fmran m <— (. fmlookup m x = Some y)
(proof)

lemma fmranl: fmlookup m x = Some y = y |€| fmran m (proof)
lemma fmranE|[elim]:

assumes y |€| fmran m
obtains = where fmlookup m x = Some y

(proof)

lift-definition fmdom :: (‘a, 'b) fmap = 'a fset
is dom
parametric dom-transfer

(proof)

lemma fmlookup-dom-iff: = |€| fmdom m <— (3 a. fmlookup m x = Some a)
(proof)

lemma fmdom-notl: fmlookup m x = None = z |¢| fmdom m (proof)
lemma fmdomlI: fmlookup m © = Some y = z |€| fmdom m (proof)
lemma fmdom-notD[dest]: z |¢| fmdom m = fmlookup m x = None (proof)

lemma fmdomFE|elim]:
assumes z |€| fmdom m
obtains y where fmlookup m x = Some y

(proof)

lift-definition fmdom’ :: (‘a, 'b) fmap = 'a set
is dom

THEORY “Finite-Map” 212

parametric dom-transfer
(proof)

lemma fmlookup-dom’-iff: x € fmdom’ m +— (a. fmlookup m © = Some a)

(proof)

lemma fmdom’-notl: fmlookup m © = None = = ¢ fmdom’ m (proof)
lemma fmdom’Il: fmlookup m © = Some y = x € fmdom’ m (proof)
lemma fmdom’-notD[dest]: © ¢ fmdom’ m = fmlookup m x = None (proof)

lemma fmdom’E[elim]:
assumes z € fmdom’ m
obtains z y where fmlookup m z = Some y

(proof)

lemma fmdom’-alt-def: fmdom’ m = fset (fmdom m)

(proof)

lemma finite-fmdom'[simp): finite (fmdom’ m)
(proof)

lemma dom-fmlookup[simp|: dom (fmlookup m) = fmdom’ m
(proof)

lift-definition fmempty :: (‘a, 'b) fmap
is Map.empty
{proof)

lemma fmempty-lookup[simp]: fmlookup fmemply = None
(proof)

lemma fmdom-empty[simpl: fmdom fmempty = {||} (proof)
lemma fmdom/’-empty[simp]: fmdom’ fmempty = {} (proof)
lemma fmran-empty[simp|: fmran fmempty = fempty (proof)

lift-definition fmupd :: 'a = b = (‘a, 'b) fmap = (‘a, 'b) fmap
is map-upd
parametric map-upd-transfer

(proof)

lemma fmupd-lookup[simp]: fmlookup (fmupd a b m) o’ = (if a = a’ then Some b
else fmlookup m a’)
(proof)

lemma fmdom-fmupd[simp]: fmdom (fmupd a b m) = finsert a (fmdom m) {proof)
lemma fmdom’-fmupd[simp]: fmdom’ (fmupd a b m) = insert a (fmdom’ m) (proof)

lemma fmupd-reorder-neq:
assumes a # b

THEORY “Finite-Map” 213

shows fmupd a = (fmupd b y m) = fmupd b y (fmupd a x m)
(proof)

lemma fmupd-idem[simp]: fmupd a z (fmupd a y m) = frmupd a x m
{proof)

lift-definition fmfilter :: ("a = bool) = ('a, 'b) fmap = (‘a, 'b) fmap
is map-filter
parametric map-filter-transfer

{(proof)

lemma fmdom-filter[simpl: fmdom (fmfilter P m) = ffilter P (fmdom m)
(proof)

lemma fmdom/’-filter[simp]: fmdom’ (fmfilter P m) = Set.filter P (fmdom’ m)
{proof)

lemma fmlookup-filter[simp]: fmlookup (fmfilter P m) x = (if P x then fmlookup
m x else None)
(proof)

lemma fmfilter-empty[simp|: fmfilter P fmempty = fmempty
(proof)

lemma fmfilter-true[simpl:
assumes Az y. fmlookup m x = Some y = Pz
shows fmfilter P m = m

(proof)

lemma fmfilter-false[simp]:
assumes Az y. fmlookup m x = Some y = -~ P ¢
shows fmfilter P m = fmempty

(proof)

lemma fmfilter-comp|simpl: fmfilter P (fmfilter Q@ m) = fmfilter (Az. Pz A Q z)
m

(proof)

lemma fmfilter-comm: fmfilter P (fmfilter Q m) = fmfilter @ (fmfilter P m)
(proof)

lemma fmfilter-cong|cong]:
assumes Az y. fmlookup m z = Some y = Pz = Q z
shows fmfilter P m = fmfilter Q m

(proof)

lemma fmfilter-cong’[fundef-cong]:
assumes m = n A\z. z € fmdom’ m = Pz = Q z
shows fmfilter P m = fmfilter Q n

THEORY “Finite-Map” 214

(proof)

lemma fmfilter-upd|simp):
fmfilter P (fmupd y m) = (if P x then fmupd z y (fmfilter P m) else fmfilter P
m)

(proof)

lift-definition fmdrop :: ‘a = ('a, 'b) fmap = ('a, 'b) fmap
is map-drop
parametric map-drop-transfer

(proof)

lemma fmdrop-lookup[simp]: fmlookup (fmdrop a m) a = None
(proof)

lift-definition fmdrop-set :: ‘a set = (‘a, 'b) fmap = ('a, 'b) fmap
is map-drop-set
parametric map-drop-set-transfer

(proof)

lift-definition fmdrop-fset :: ‘a fset = (‘a, 'b) fmap = ('a, 'b) fmap
is map-drop-set
parametric map-drop-set-transfer

(proof)

lift-definition fmrestrict-set :: 'a set = (‘a, 'b) fmap = ('a, 'b) fmap
is map-restrict-set
parametric map-restrict-set-transfer

(proof)

lift-definition fmrestrict-fset :: 'a fset = (‘a, 'b) fmap = ('a, 'b) fmap
is map-restrict-set
parametric map-restrict-set-transfer

(proof)

lemma fmfilter-alt-defs:
fmdrop a = fmfilter (Aa’. a’ # a)
fmdrop-set A = fmfilter (Aa. a ¢ A)
fmdrop-fset B = fmfilter (\a. a |¢| B)
fmrestrict-set A = fmfilter (Aa. a € A)
fmrestrict-fset B = fmfilter (Aa. a |€| B)
(proof)

lemma fmdom-drop[simpl: fmdom (fmdrop a m) = fmdom m — {|a|} {(proof)
lemma fmdom’-drop[simp]: fmdom’ (fmdrop a m) = fmdom’ m — {a} (proof)
lemma fmdom’-drop-set[simp]: fmdom’ (fmdrop-set A m) = fmdom’ m — A (proof)
lemma fmdom-drop-fset[simp]: fmdom (fmdrop-fset A m) = fmdom m — A (proof)
lemma fmdom/’-restrict-set: fmdom’ (fmrestrict-set A m) C A (proof)

)

lemma fmdom-restrict-fset: fmdom (fmrestrict-fset A m |_g A (proof)

THEORY “Finite-Map” 215

lemma fmdrop-fmupd: fmdrop z (fmupd y z m) = (if x = y then fmdrop m else
fmupd y z (fmdrop z m))
(proof)

lemma fmdrop-idle: z |¢| fmdom B = fmdrop * B = B
(proof)

lemma fmdrop-idle’: z ¢ fmdom’ B = fmdrop © B = B
{(proof)

lemma fmdrop-fmupd-same: fmdrop x (fmupd x y m) = fmdrop z m
(proof)

lemma fmdom/'-restrict-set-precise: fmdom’ (fmrestrict-set A m) = fmdom’ m N

A
(proof)

lemma fmdom/’-restrict-fset-precise: fmdom (fmrestrict-fset A m) = fmdom m |N|
A

(proof)

lemma fmdom’-drop-fset[simp]: fmdom’ (fmdrop-fset A m) = fmdom’ m — fset A
(proof)

lemma fmdom/’-restrict-fset: fmdom’ (fmrestrict-fset A m) C fset A

(proof)

lemma fmlookup-drop[simp]:
fmlookup (fmdrop a m) x = (if x # a then fmlookup m x else None)
{proof)

lemma fmlookup-drop-set[simp):
fmlookup (fmdrop-set A m) z = (if x ¢ A then fmlookup m z else None)
(proof)

lemma fmlookup-drop-fset[simp):
fmlookup (fmdrop-fset A m) = = (if x |¢| A then fmlookup m x else None)
(proof)

lemma fmlookup-restrict-set[simp):
fmlookup (fmrestrict-set A m) x = (if x € A then fmlookup m x else None)

(proof)

lemma fmlookup-restrict-fset[simp]:
fmlookup (fmrestrict-fset A m) x = (if z |€| A then fmlookup m z else None)

{(proof)

lemma fmrestrict-set-dom[simp]: fmrestrict-set (fmdom’ m) m = m

THEORY “Finite-Map” 216

(proof)

lemma fmrestrict-fset-dom[simp|: fmrestrict-fset (fmdom m) m = m

(proof)

lemma fmdrop-empty[simpl: fmdrop a fmempty = fmempty
(proof)

lemma fmdrop-set-empty[simp: fmdrop-set A fmempty = fmempty
{(proof)

lemma fmdrop-fset-empty[simpl: fmdrop-fset A fmempty = fmempty
(proof)

lemma fmdrop-fset-fmdom[simp]: fmdrop-fset (fmdom A) A = fmempty
{proof)

lemma fmdrop-set-fmdom[simp|: fmdrop-set (fmdom’ A) A = fmempty
(proof)

lemma fmrestrict-set-empty[simpl: fmrestrict-set A fmempty = fmempty
(proof)

lemma fmrestrict-fset-empty[simpl: fmrestrict-fset A fmempty = fmempty
(proof)

lemma fmdrop-set-null[simp]: fmdrop-set {} m = m

(proof)

lemma fmdrop-fset-null[simp|: fmdrop-fset {||} m = m

{(proof)

lemma fmdrop-set-single[simp|: fmdrop-set {a} m = fmdrop a m
(proof)

lemma fmdrop-fset-single[simp|: fmdrop-fset {|a]} m = fmdrop a m

(proof)

lemma fmrestrict-set-null[simp): fmrestrict-set {} m = fmempty
(proof)

lemma fmrestrict-fset-null[simpl: fmrestrict-fset {||} m = fmempty

(proof)

lemma fmdrop-comm: fmdrop a (fmdrop b m) = fmdrop b (fmdrop a m)
(proof)

lemma fmdrop-set-insert[simp|: fmdrop-set (insert x S) m = fmdrop © (fmdrop-set
S m)

THEORY “Finite-Map” 217

(proof)

lemma fmdrop-fset-insert[simpl: fmdrop-fset (finsert £ S) m = fmdrop x (fmdrop-fset
S m)
(proof)

lemma fmrestrict-set-twice[simp|: fmrestrict-set S (fmrestrict-set T m) = fmre-
strict-set (S N T) m
(proof)

lemma fmrestrict-fset-twice[simp|: fmrestrict-fset S (fmrestrict-fset T m) = fmre-
strict-fset (S |N| T) m
(proof)

lemma fmrestrict-set-drop[simp): fmrestrict-set S (fmdrop b m) = fmrestrict-set
(8 —{b}) m
(proof)

lemma fmrestrict-fset-drop[simp|: fmrestrict-fset S (fmdrop b m) = fmrestrict-fset
(S =A{lbl})m
(proof)

lemma fmdrop-fmrestrict-set[simpl: fmdrop b (fmrestrict-set S m) = fmrestrict-set
(8§ = {b}) m
(proof)

lemma fmdrop-fmrestrict-fset[simp|: fmdrop b (fmrestrict-fset S m) = fmrestrict-fset
(S =Alb[})m
(proof)

lemma fmdrop-idem[simp]: fmdrop a (fmdrop a m) = fmdrop a m

(proof)

lemma fmdrop-set-twice[simpl: fmdrop-set S (fmdrop-set T m) = fmdrop-set (S U
T) m
(proof)

lemma fmdrop-fset-twice[simp]: fmdrop-fset S (fmdrop-fset T m) = fmdrop-fset (S
U[T) m
(proof)

lemma fmdrop-set-fmdrop[simp]: fmdrop-set S (fmdrop b m) = fmdrop-set (insert
bS)m
(proof)

lemma fmdrop-fset-fmdrop[simp]: fmdrop-fset S (fmdrop b m) = fmdrop-fset (finsert
bS)m
(proof)

THEORY “Finite-Map” 218

lift-definition fmadd :: (‘a, 'b) fmap = (‘a, 'b) fmap = (‘a, 'b) fmap (infixl
(++> 100)

is map-add

parametric map-add-transfer

(proof)

lemma fmlookup-add[simpl:

fmlookup (m ++5 n) z = (if x |€| fmdom n then fmlookup n z else fmlookup m
z)

(proof)

lemma fmdom-add[simp]: fmdom (m ++ n) = fmdom m |U| fmdom n (proof)
lemma fmdom’-add[simp): fmdom’ (m ++¢ n) = fmdom’ m U fmdom’ n (proof)

lemma fmadd-drop-left-dom: fmdrop-fset (fmdom n) m ++5 n=m ++5 n
(proof)

lemma fmadd-restrict-right-dom: fmrestrict-fset (fmdom n) (m ++j5 n) = n
(proof)

lemma fmfilter-add-distrib[simp]: fmfilter P (m ++ n) = fmfilter P m ++ fm-
filter P n
(proof)

lemma fmdrop-add-distrib[simp): fmdrop a (m ++¢ n) = fmdrop a m ++¢ fmdrop
an
(proof)

lemma fmdrop-set-add-distrib[simp|: fmdrop-set A (m ++5 n) = fmdrop-set A m
++5 fmdrop-set A n
(proof)

lemma fmdrop-fset-add-distrib[simp]: fmdrop-fset A (m ++ n) = fmdrop-fset A
m ++5 fmdrop-fset A n
(proof)

lemma fmrestrict-set-add-distrib[simp):
fmrestrict-set A (m ++; n) = fmrestrict-set A m ++ fmrestrict-set A n
(proof)

lemma fmrestrict-fset-add-distrib|simp]:
fmrestrict-fset A (m ++; n) = fmrestrict-fset A m ++y fmrestrict-fset A n
(proof)

lemma fmadd-empty[simp]: fmempty ++¢ m = m m ++; fmempty = m
(proof)

lemma fmadd-idempotent[simp]: m ++; m = m

{proof)

THEORY “Finite-Map” 219

lemma fmadd-assoc[simp]: m ++5 (n ++5 p) = m ++5 n ++5 p
{proof)

lemma fmadd-fmupd[simp]: m ++; fmupd a b n = fmupd a b (m ++5 n)
(proof)

lift-definition fmpred :: (‘a = 'b = bool) = ('a, 'b) fmap = bool
is map-pred
parametric map-pred-transfer
(proof)

lemma fmpredl[introl:
assumes Az y. fmlookup m x = Some y = Pxy
shows fmpred P m

(proof)

lemma fmpredD|dest]: fmpred P m = fmlookup m © = Some y = Pz y
(proof)

lemma fmpred-iff: fmpred P m +— (Vz y. fmlookup m © = Some y — P z y)
(proof)

lemma fmpred-alt-def: fmpred P m <— fBall (fmdom m) (Az. P z (the (fmlookup
m z)))

(proof)

lemma fmpred-mono-strong:
assumes Az y. fmlookup m z = Some y — Pry— Quzy
shows fmpred P m = fmpred Q m

{(proof)

lemma fmpred-mono[monol: P < Q = fmpred P < fmpred Q
(proof)

lemma fmpred-emptylintro!, simp]: fmpred P fmempty
(proof)

lemma fmpred-upd[intro|: fmpred P m = P x y = fmpred P (fmupd = y m)
(proof)

lemma fmpred-updD|dest]: fmpred P (fmupd x y m) = Pxy
(proof)

lemma fmpred-add[intro]: fmpred P m = fmpred P n = fmpred P (m ++; n)
(proof)

lemma fmpred-filter[intro]: fmpred P m = fmpred P (fmfilter Q m)
(proof)

THEORY “Finite-Map” 220

lemma fmpred-drop[intro]: fmpred P m —> fmpred P (fmdrop a m)
(proof)

lemma fmpred-drop-set|intro): fmpred P m = fmpred P (fmdrop-set A m)
(proof)

lemma fmpred-drop-fset|intro|: fmpred P m = fmpred P (fmdrop-fset A m)
(proof)

lemma fmpred-restrict-set[intro]: fmpred P m = fmpred P (fmrestrict-set A m)
(proof)

lemma fmpred-restrict-fset|intro]: fmpred P m = fmpred P (fmrestrict-fset A m)

(proof)

lemma fmpred-cases[consumes 1]:

assumes fmpred P m

obtains (none) fmlookup m © = None | (some) y where fmlookup m x = Some
yPuy
(proof)

lift-definition fmsubset :: (‘a, 'b) fmap = (‘a, 'b) fmap = bool (infix «Cy» 50)
is map-le
(proof)

lemma fmsubset-alt-def: m Cy n <— fmpred (Ak v. fmlookup n k = Some v) m

(proof)

lemma fmsubset-pred: fmpred P m = n Cy m = fmpred P n

{(proof)

lemma fmsubset-filter-mono: m Cy n = fmfilter P m C; fmfilter P n
(proof)

lemma fmsubset-drop-mono: m Cy n = fmdrop a m Cy fmdrop a n

(proof)

lemma fmsubset-drop-set-mono: m Cy n => fmdrop-set A m C; fmdrop-set A n

(proof)

lemma fmsubset-drop-fset-mono: m Cy n = fmdrop-fset A m C¢ fmdrop-fset A
n

(proof)

lemma fmsubset-restrict-set-mono: m Cy n = fmrestrict-set A m Cy fmre-
strict-set A n

(proof)

THEORY “Finite-Map” 221

lemma fmsubset-restrict-fset-mono: m Cy n = fmrestrict-fset A m Cy fmre-
strict-fset A n

(proof)

lemma fmfilter-subset[simp]: fmfilter P m C; m

(proof)

lemma fmsubset-drop[simp]: fmdrop a m Cy m
(proof)

lemma fmsubset-drop-set[simp]: fmdrop-set S m Cy m

(proof)

lemma fmsubset-drop-fset[simp]: fmdrop-fset S m Cy m

(proof)

lemma fmsubset-restrict-set[simp]: fmrestrict-set S m Cy m
(proof)

lemma fmsubset-restrict-fset[simpl: fmrestrict-fset S m Cy m

(proof)

lift-definition fset-of-fmap :: ('a, 'b) fmap = (‘a x 'b) fset is set-of-map
(proof)

lemma fset-of-fmap-inj[intro, simp|: inj fset-of-fmayp
(proof)

lemma fset-of-fmap-iff [simp]: (a, b) |€| fset-of-fmap m <— fmlookup m a = Some
b
{proof)

lemma fset-of-fmap-iff - (a, b) € fset (fset-of-fmap m) <— fmlookup m a = Some
b
{proof)

lift-definition fmap-of-list :: (‘a x 'b) list = (‘a, 'b) fmap
is map-of
parametric map-of-transfer

(proof)

lemma fmap-of-list-simps[simp):
fmap-of-list [| = fmempty
fmap-of-list ((k, v) # kvs) = fmupd k v (fmap-of-list kvs)

{proof)

lemma fmap-of-list-app[simp|: fmap-of-list (xs Q ys) = fmap-of-list ys ++5 fmap-of-list
s

{proof)

THEORY “Finite-Map” 222

lemma fmupd-alt-def: fmupd kv m = m ++; fmap-of-list [(k, v)]
(proof)

lemma fmpred-of-list[intro]:
assumes Ak v. (k, v) € set zs = P kv
shows fmpred P (fmap-of-list xs)
{proof)

lemma fmap-of-list-SomeD: fmlookup (fmap-of-list xs) k = Some v = (k, v) €
set xs
(proof)

lemma fmdom-fmap-of-list[simp]: fmdom (fmap-of-list xs) = fset-of-list (map fst
xs)
(proof)

lift-definition fmrel-on-fset :: ‘a fset = ('b = ‘¢ = bool) = (‘a, 'b) fmap = ('a,
‘c) fmap = bool
is rel-map-on-set

(proof)

lemma fmrel-on-fset-alt-def: fmrel-on-fset S P m n +— fBall S (Ax. rel-option P
(fmlookup m z) (fmlookup n x))

(proof)

lemma fmrel-on-fsetl[intro]:
assumes Az. z |€| S = rel-option P (fmlookup m z) (fmlookup n x)
shows fmrel-on-fset S P m n

{proof)

lemma fmrel-on-fset-mono[monol: R < Q = fmrel-on-fset S R < fmrel-on-fset
5Q
(proof)

lemma fmrel-on-fsetD: x |€| S = fmrel-on-fset S P m n => rel-option P (fmlookup
m x) (fmlookup n x)

{proof)

lemma fmrel-on-fsubset: fmrel-on-fset S R mn = T |C| S = fmrel-on-fset T
Rmn

(proof)

lemma fmrel-on-fset-unionl:
fmrel-on-fset A R m n = fmrel-on-fset B R m n = fmrel-on-fset (A |U| B) R
mn

(proof)

lemma fmrel-on-fset-updatel:

THEORY “Finite-Map” 223

assumes fmrel-on-fset S P m n P v1 vg
shows fmrel-on-fset (finsert k S) P (fmupd k v m) (fmupd k ve n)
(proof)

lift-definition fmimage :: (‘a, 'b) fmap = 'a fset = 'b fset is Am S. {bla b. m a
= Some b A\ a € S}
(proof)

lemma fmimage-alt-def: fmimage m S = fmran (fmrestrict-fset S m)
(proof)

lemma fmimage-empty[simp|: fmimage m fempty = fempty
(proof)

lemma fmimage-subset-ran[simpl: fmimage m S |C| fmran m
(proof)

lemma fmimage-dom[simp): fmimage m (fmdom m) = fmran m
(proof)

lemma fmimage-inter: fmimage m (A |N| B) |C| fmimage m A |N| fmimage m B
{proof)

lemma fimage-inter-dom|[simpl:
fmimage m (fmdom m |N| A) = fmimage m A
fmimage m (A |N| fmdom m) = fmimage m A
(proof)

lemma fmimage-union[simp|: fmimage m (A |U| B) = fmimage m A |U| fmimage
m B

(proof)
lemma fmimage-Union[simp]: fmimage m ([fUnion A) = ffUnion (fmimage m ||
A4)

(proof)

lemma fmimage-filter[simp]: fmimage (fmfilter P m) A = fmimage m (ffilter P A)
(proof)

lemma fmimage-drop[simp]: fmimage (fmdrop a m) A = fmimage m (A — {|a|})
{proof)

lemma fmimage-drop-fset[simp]: fmimage (fmdrop-fset B m) A = fmimage m (A
— B)
(proof)

lemma fmimage-restrict-fset[simp|: fmimage (fmrestrict-fset B m) A = fmimage
m (A |N] B)
(proof)

THEORY “Finite-Map” 224

lemma fmfilter-ran[simpl: fmran (fmfilter P m) = fmimage m (ffilter P (fmdom

m))
{proof)

lemma fmran-drop[simpl: fmran (fmdrop a m) = fmimage m (fmdom m — {|a|})
(proof)

lemma fmran-drop-fset[simp]: fmran (fmdrop-fset A m) = fmimage m (fmdom m
_ A)
(proof)

lemma fmran-restrict-fset: fmran (fmrestrict-fset A m) = fmimage m (fmdom m
N[A)
(proof)

lemma frlookup-image-iff: y |€| fmimage m A «— (Fz. fmlookup m = = Some
y Az lel A)
{proof)

lemma fmimagel: fmlookup m © = Some y = z |€| A = y |€| fmimage m A
(proof)

lemma fmimageE[elim]:
assumes y |€| fmimage m A
obtains = where fmlookup m x = Some y z |€| A

{proof)

lift-definition fmcomp :: ('b, 'c) fmap = (‘a, 'b) fmap = (‘a, '¢) fmap (infixl
gy 55)

is map-comp

parametric map-comp-transfer

{proof)

lemma fmlookup-comp|[simp|: fmlookup (m oy n) x = Option.bind (fmlookup n)
(fmlookup m)
(proof)

end

30.4 BNF setup

lift-bnf (‘a, fmran’: 'b) fmap [wits: Map.empty)
for map: fmmap
rel: fmrel
(proof)

declare fmap.pred-mono[mono)

THEORY “Finite-Map” 225

lemma fmran’-alt-def: fmran’ m = fset (fmran m)
including fset.lifting
(proof)

lemma fmlookup-ran’-iff: y € fmran’ m +— (Fz. fmlookup m x = Some y)
(proof)

lemma fmran’l: fmlookup m x = Some y = y € fmran’ m
(proof)

lemma fmran’Elelim]:
assumes y € fmran’ m
obtains = where fmlookup m x = Some y

(proof)

lemma fmrel-iff: fmrel R m n <— (¥ z. rel-option R (fmlookup m z) (fmlookup n

z))
(proof)

lemma fmrell[introl:
assumes Az. rel-option R (fmlookup m z) (fmlookup n x)
shows fmrel R m n

{proof)

lemma fmrel-upd[intro]: fmrel P m n = P xy = fmrel P (fmupd k x m) (fmupd
kyn)
(proof)

lemma fmrelD|[dest]: fmrel P m n = rel-option P (fmlookup m z) (fmlookup n x)

(proof)

lemma fmrel-addl [introl:
assumes fmrel P m n fmrel P a b
shows fmrel P (m ++y a) (n ++5 b)
{proof)

lemma fmrel-cases[consumes 1]:
assumes fmrel P m n
obtains (none) fmlookup m © = None fmlookup n © = None
| (some) a b where fmlookup m © = Some a fmlookup n z = Some b P a b

(proof)

lemma fmrel-filter[intro]: fmrel P m n => fmrel P (fmfilter Q m) (fmfilter @ n)
(proof)

lemma fmrel-drop[intro): fmrel P m n = fmrel P (fmdrop a m) (fmdrop a n)

(proof)

THEORY “Finite-Map” 226

lemma fmrel-drop-set[intro|: fmrel P m n => fmrel P (fmdrop-set A m) (fmdrop-set
A n)
(proof)

lemma fmrel-drop-fset[intro]: fmrel P m n => fmrel P (fmdrop-fset A m) (fmdrop-fset
A n)
(proof)

lemma fmrel-restrict-setlintro|: fmrel P m n = fmrel P (fmrestrict-set A m)
(fmrestrict-set A n)

(proof)

lemma fmrel-restrict-fset[introl: fmrel P m n = fmrel P (fmrestrict-fset A m)
(fmrestrict-fset A n)

(proof)

lemma fmrel-on-fset-fmrel-restrict:
fmrel-on-fset S P m n «— fmrel P (fmrestrict-fset S m) (fmrestrict-fset S n)

(proof)

lemma fmrel-on-fset-refi-strong:
assumes Az y. z |€] S = fmlookup m x = Some y = Py y
shows fmrel-on-fset S P m m

(proof)

lemma fmrel-on-fset-addl:
assumes fmrel-on-fset S P m n fmrel-on-fset S P a b
shows fmrel-on-fset S P (m ++; a) (n ++; b)
(proof)

lemma fmrel-fmdom-eq:
assumes fmrel P x y
shows fmdom x = fmdom y

(proof)

lemma fmrel-fmdom’-eq: fmrel P v y = fmdom’ x = fmdom’ y

(proof)

lemma fmrel-rel-fmran:
assumes fmrel P x y
shows rel-fset P (fmran z) (fmran y)

(proof)

lemma fmrel-rel-fmran’: fmrel P x y = rel-set P (fmran’ x) (fmran’ y)
(proof)

lemma pred-fmap-fmpred|simp|: pred-fmap P = fmpred (A-. P)
(proof)

THEORY “Finite-Map” 227

lemma pred-fmap-id[simp: pred-fmap id (fmmap f m) «— pred-fmap fm
(proof)

lemma pred-fmapD: pred-fmap P m = z |€| fmran m = Pz
{proof)

lemma frlookup-map[simp]: fmlookup (fmmap f m) © = map-option f (fmlookup
m x)
(proof)

lemma fmpred-map[simp|: fmpred P (fmmap f m) «— fmpred (Ak v. Pk (fv)) m
(proof)

lemma fmpred-id[simp]: fmpred (A-. id) (fmmap f m) +— fmpred (A-. f) m
(proof)

lemma fmmap-add[simp]: fmmap f (m ++; n) = fmmap f m ++; fmmap fn
(proof)

lemma fmmap-empty[simp]: fmmap f fmempty = fmempty
(proof)

lemma fmdom-map[simp|: fmdom (fmmap f m) = fmdom m
including fset.lifting
(proof)

lemma fmdom’-map[simp]: fmdom’ (fmmap f m) = fmdom’ m
(proof)

lemma fmran-fmmap[simp|: fmran (fmmap f m) = f |9 fmran m
including fset.lifting
(proof)

lemma fmran’-fmmap[simpl: fmran’ (fmmap fm) = f ¢ fmran’ m
(proof)

lemma fmfilter-fmmap|simpl: fmfilter P (fmmap f m) = fmmap f (fmfilter P m)
(proof)

lemma fmdrop-fmmap|[simp]: fmdrop a (fmmap f m) = fmmap f (fmdrop a m)
(proof)

lemma fmdrop-set-fmmap[simp): fmdrop-set A (fmmap fm) = fmmap f (fmdrop-set
A m)
(proof)

lemma fmdrop-fset-fmmap[simp|: fmdrop-fset A (fmmap f m) = fmmap f (fmdrop-fset
A m)
(proof)

THEORY “Finite-Map” 228

lemma fmrestrict-set-fmmap[simp|: fmrestrict-set A (fmmap fm) = fmmap f (fmrestrict-set
A m)
(proof)

lemma fmrestrict-fset-fmmap[simpl: fmrestrict-fset A (fmmap f m) = fmmap f
(fmrestrict-fset A m)

{proof)

lemma fmmap-subset[introl: m C; n = fmmap fm C; fmmap fn
(proof)

lemma fmmap-fset-of-fmap: fset-of-fmap (fmmap f m) = (Mk, v). (k, f v)) |
fset-of-fmap m
including fset.lifting

(proof)

lemma fmmap-fmupd: fmmap f (fmupd = y m) = fmupd = (f y) (fmmap f m)
(proof)

30.5 size setup

definition size-fmap :: ('a = nat) = ('b = nat) = (‘a, 'b) fmap = nat where
[simp]: size-fmap f g m = size-fset (A(a, b). fa + g b) (fset-of-fmap m)

instantiation fmap :: (type, type) size begin

definition size-fmap where
size-fmap-overloaded-def: size-fmap = Finite-Map.size-fmap (A-. 0) (A-. 0)

instance (proof)
end

lemma size-fmap-overloaded-simps|simp|: size © = size (fset-of-fmap x)
(proof)

lemma fmap-size-o-map: size-fmap f g o fmmap h = size-fmap f (g o h)

{(proof)
(ML)

30.6 Additional operations

lift-definition fmmap-keys :: (‘a = 'b = '¢) = (‘a, 'b) fmap = (‘a, 'c) fmap is
A m a. map-option (f a) (m a)
(proof)

lemma fmpred-fmmap-keys[simp|: fmpred P (fmmap-keys f m) = fmpred (Aa b. P
a (fab))m

THEORY “Finite-Map” 229

{proof)

lemma fmdom-fmmap-keys[simpl: fmdom (fmmap-keys f m) = fmdom m
including fset.lifting
(proof)

lemma frlookup-fmmap-keys[simp|: fmlookup (fmmap-keys f m) © = map-option
(f z) (fmlookup m x)
(proof)

lemma fmfilter-fmmap-keys[simp]: fmfilter P (fmmap-keys f m) = fmmap-keys f
(fmfilter P m)
(proof)

lemma fmdrop-fmmap-keys[simp]: fmdrop a (fmmap-keys f m) = fmmap-keys f
(fmdrop a m)
(proof)

lemma fmdrop-set-fmmap-keys|simpl: fmdrop-set A (fmmap-keys f m) = fmmap-keys
f (fmdrop-set A m)
(proof)

lemma fmdrop-fset-fmmap-keys[simp|: fmdrop-fset A (fmmap-keys f m) = fmmap-keys
I (fmdrop-fset A m)
(proof)

lemma fmrestrict-set-fmmap-keys[simp|: fmrestrict-set A (fmmap-keys f m) = fmmap-keys
I (fmrestrict-set A m)
(proof)

lemma fmrestrict-fset-fmmap-keys[simp): fmrestrict-fset A (fmmap-keys f m) =
fmmap-keys f (fmrestrict-fset A m)
(proof)

lemma fmmap-keys-subset]intro]: m Cy n = fmmap-keys f m Cy fmmap-keys f
n
(proof)

definition sorted-list-of-fmap :: ('a::linorder, 'b) fmap = (‘a x 'b) list where
sorted-list-of-fmap m = map (Ak. (k, the (fmlookup m k))) (sorted-list-of-fset
(fmdom m))

lemma list-all-sorted-list[simp): list-all P (sorted-list-of-fmap m) = fmpred (curry
P)m
(proof)

lemma map-of-sorted-list[simp|: map-of (sorted-list-of-fmap m) = fmlookup m

(proof)
including fset.lifting

THEORY “Finite-Map” 230

{proof)

30.7 Additional properties

lemma fmchoice”:
assumes finite SVzx € S. Jy. Qxy
shows 3m. fmdom’ m = S A fmpred Q m

(proof)
30.8 Lifting/transfer setup
context includes lifting-syntar begin

lemma fmempty-transfer[simp, intro, transfer-rule]: fmrel P fmempty fmempty
(proof)

lemma fmadd-transfer|[transfer-rule]:
(fmrel P ===> fmrel P ===> fmrel P) fmadd fmadd

(proof)

lemma fmupd-transfer[transfer-rule]:
((=) ===> P ===> fmrel P ===> fmrel P) fmupd fmupd
(proof)

end

lemma Quotient-fmap-bnf|[quot-map]:
assumes Quotient R Abs Rep T
shows Quotient (fmrel R) (fmmap Abs) (fmmap Rep) (fmrel T')

(proof)

30.9 View as datatype

lemma fmap-distinct|simp]:
fmempty # fmupd k v m
fmupd k v m # fmempty
(proof)

lifting-update fmap.lifting

lemma fmap-exhaust[cases type: fmap):
obtains (frnempty) m = fmempty
| (fmupd) =y m’ where m = fmupd z y m’ z |¢| fmdom m’
(proof) including fmap.lifting and fset.lifting
{proof)

lemma fmap-induct[case-names fmempty fmupd, induct type: fmapl:
assumes P fmempty
assumes (Az y m. P m = fmlookup m © = None = P (fmupd x y m))
shows P m

THEORY “Finite-Map” 231

(proof)

30.10 Code setup

instantiation fmap :: (type, equal) equal begin
definition equal-fmap = fmrel HOL.equal
instance (proof)

end

lemma fBall-alt-def: fBall S P +— (Vz. z |€] S — P x)
(proof)

lemma fmrel-code:
fmrel R m n +—
fBall (fmdom m) (Az. rel-option R (fmlookup m x) (fmlookup n x)) A
fBall (fmdom n) (Az. rel-option R (fmlookup m z) (fmlookup n x))

(proof)

lemmas [code] =
fmrel-code
fmran’-alt-def
fmdom/-alt-def
fmfilter-alt-defs
pred-fmap-fmpred
fmsubset-alt-def
fmupd-alt-def
fmrel-on-fset-alt-def
fmpred-alt-def

code-datatype fmap-of-list
quickcheck-generator fmap constructors: fmap-of-list

context includes fset.lifting begin

lemma fmlookup-of-list[code]: fmlookup (fmap-of-list m) = map-of m
(proof)

lemma fmempty-of-list[code]: fmempty = fmap-of-list ||

(proof)

lemma fmran-of-list[code]: fmran (fmap-of-list m) = snd || fset-of-list (AList.clearjunk
m)

(proof)

lemma fmdom-of-list[code]: fmdom (fmap-of-list m) = fst || fset-of-list m

THEORY “Finite-Map” 232

(proof)

lemma fmfilter-of-list[code]: fmfilter P (fmap-of-list m) = fmap-of-list (filter (A(k,
-). P k) m)
(proof)

lemma fmadd-of-list[code]: fmap-of-list m ++f fmap-of-list n = fmap-of-list (AList.merge
mn)
(proof)

lemma fmmap-of-list[code]: fmmap f (fmap-of-list m) = fmap-of-list (map (apsnd
f) m)
(proof)

lemma fmmap-keys-of-list[code]:
fmmap-keys f (fmap-of-list m) = fmap-of-list (map (A(a, b). (a, fa b)) m)
(proof)

lemma fmimage-of-list[code]:

fmimage (fmap-of-list m) A = fset-of-list (map snd (filter (\(k, -). k |€] A)
(AList.clearjunk m)))

(proof)

lemma fmcomp-list]code):
fmap-of-list m oy fmap-of-list n = fmap-of-list (AList.compose n m)
(proof)

end

30.11 Instances

lemma exists-map-of:
assumes finite (dom m) shows Jxs. map-of s = m

(proof)

lemma exists-fmap-of-list: Ixs. fmap-of-list xs = m
(proof)

lemma fmap-of-list-surj[simp, intro): surj fmap-of-list

(proof)

instance fmap :: (countable, countable) countable
(proof)

instance fmap :: (finite, finite) finite
(proof)

lifting-update fmap.lifting
lifting-forget fmap.lifting

THEORY “Disjoint-FSets” 233

30.12 Tests

export-code

Ball fset fmrel fmran fmran’ fmdom fmdom’ fmpred pred-fmap fmsubset fmupd
fmrel-on-fset

fmdrop fmdrop-set fmdrop-fset fmrestrict-set fmrestrict-fset fmimage fmlookup

fmempty
fmfilter fmadd fmmap fmmap-keys fmcomp
checking SML Scala Haskell? OCaml?

— lifting through fmap
experiment begin
context includes fset.lifting begin

lift-definition test! :: (‘a, 'b fset) fmap is fmempty :: (‘a, 'b set) fmap
(proof)

lift-definition test2 :: ‘a = 'b = (‘a, 'b fset) fmap is Aa b. fmupd a {b} fmempty
(proof)

end
end

end

31 Disjoint FSets

theory Disjoint-FSets
imports
HOL— Library. Finite-Map
Disjoint-Sets
begin

context
includes fset.lifting
begin

lift-definition fdisjnt :: 'a fset = ‘a fset = bool is disjnt {proof)

lemma fdisjnt-alt-def: fdisint M N «+— (M |n| N = {||})
(proof)

lemma fdisjnt-insert: z |¢| N = fdisint M N = fdisjnt (finsert © M) N
(proof)

lemma fdisjnt-subset-right: N' |C| N = fdisint M N = fdisjnt M N’

THEORY “Dlist” 234

(proof)

lemma fdisjnt-subset-left: N' |C| N = fdisjnt N M = fdisjnt N' M
(proof)

lemma fdisjnt-union-right: fdisjint M A = fdisjnt M B = fdisjnt M (A |U| B)
(proof)

lemma fdisjnt-union-left: fdisint A M — fdisjnt B M = fdisjnt (A |U| B) M
{(proof)

lemma fdisjnt-swap: fdisjint M N = fdisjnt N M
including fset.lifting (proof)

lemma distinct-append-fset:
assumes distinct zs distinct ys fdisjnt (fset-of-list xs) (fset-of-list ys)
shows distinct (zs Q ys)

(proof)

lemma fdisjnt-contrl:
assumes Az. z |€] M = z |€| N = Fulse
shows fdisjnt M N

(proof)

lemma fdisjnt-Union-left: fdisjnt (ffUnion S) T +— fBall S (\S. fdisjnt S T)
(proof)

lemma fdisjnt-Union-right: fdisint T (ffUnion S) <— fBall S (AS. fdisjnt T S)
(proof)

lemma fdisjnt-ge-maz: fBall X (Az. © > fMax V) = fdisint X Y
{proof)

end

lemma fmadd-disint: fdisjint (fmdom m) (fmdom n) = m ++; n=n ++, m

(proof)
including fset.lifting and fmap.lifting

(proof)

end

32 Lists with elements distinct as canonical exam-
ple for datatype invariants

theory Dlist
imports Confluent-Quotient

THEORY “Dlist” 235

begin

32.1 The type of distinct lists

typedef ‘a dlist = {xs::'a list. distinct xs}
morphisms list-of-dlist Abs-dlist
(proof)

context begin

qualified definition dlist-eq where dlist-eq = BNF-Def.vimage2p remdups remdups

=)

qualified lemma equivp-dlist-eq: equivp dlist-eq
(proof) definition abs-dlist :: 'a list = 'a dlist where abs-dlist = Abs-dlist o
remdups

definition qer-dlist :: ’a list = 'a dlist = bool where qcr-dlist x y «— y =
abs-dlist x

qualified lemma Quotient-dlist-remdups: Quotient dlist-eq abs-dlist list-of-dlist
qer-dlist
(proof)

end

locale Quotient-dlist begin
setup-lifting Dlist. Quotient-dlist-remdups Dlist.equivp-dlist-eq THEN equivp-refip2]
end

setup-lifting type-definition-dlist

lemma dlist-eq-iff:
dxs = dys <— list-of-dlist dxs = list-of-dlist dys
{proof)

lemma dlist-eql:
list-of-dlist dxs = list-of-dlist dys = dxs = dys
(proof)
Formal, totalized constructor for 'a dlist:

definition Dlist :: 'a list = 'a dlist where
Dlist zs = Abs-dlist (remdups xs)

lemma distinct-list-of-dlist [simp, intro|:
distinct (list-of-dlist dxs)
(proof)

lemma list-of-dlist-Dlist [simp]:
list-of-dlist (Dlist xs) = remdups s

THEORY “Dlist”

{proof)

lemma remdups-list-of-dlist [simp]:
remdups (list-of-dlist dzs) = list-of-dlist dxs
(proof)

lemma Dlist-list-of-dlist [simp, code abstype]:
Dlist (list-of-dlist dzs) = duxs
(proof)
Fundamental operations:
context

begin

qualified definition empty :: ‘a dlist where
empty = Dlist []

qualified definition insert :: ‘a = 'a dlist = 'a dlist where
insert x dxs = Dlist (List.insert © (list-of-dlist dxs))

qualified definition remove :: ‘a = 'a dlist = 'a dlist where
remove & dxs = Dlist (removel x (list-of-dlist dzs))

qualified definition map :: (‘a = 'b) = 'a dlist = 'b dlist where
map f dxs = Dlist (remdups (List.map [(list-of-dlist dxs)))

qualified definition filter :: (‘a = bool) = 'a dlist = 'a dlist where
filter P dzs = Dlist (List.filter P (list-of-dlist dxs))

qualified definition rotate :: nat = ’'a dlist = 'a dlist where
rotate n dxs = Dlist (List.rotate n (list-of-dlist dzs))

end

Derived operations:
context

begin

qualified definition null :: 'a dlist = bool where
null drs = List.null (list-of-dlist dxs)

qualified definition member :: 'a dlist = 'a = bool where
member dxs = List.member (list-of-dlist dzs)

qualified definition length :: ‘a dlist = nat where
length dxs = List.length (list-of-dlist dxs)

qualified definition fold :: (‘a = 'b = 'b) = 'a dlist = 'b = 'b where
fold f dzs = List.fold f (list-of-dlist dxs)

236

THEORY “Dlist”

qualified definition foldr :: (‘a = 'b = 'b) = 'a dlist = 'b = 'b where
foldr f dzs = List.foldr f (list-of-dlist dxs)

end

32.2 Executable version obeying invariant

lemma list-of-dlist-empty [simp, code abstract):
list-of-dlist Dlist.empty = ||
(proof)

lemma list-of-dlist-insert [simp, code abstract):
list-of-dlist (Dlist.insert x dxs) = List.insert z (list-of-dlist dxs)
(proof)

lemma list-of-dlist-remove [simp, code abstract]:
list-of-dlist (Dlist.remove z dzs) = removel x (list-of-dlist dxs)

(proof)

lemma list-of-dlist-map [simp, code abstract]:
list-of-dlist (Dlist.map f dxs) = remdups (List.map [(list-of-dlist dzs))
(proof)

lemma list-of-dlist-filter [simp, code abstract]:
list-of-dlist (Dlist.filter P dxs) = List.filter P (list-of-dlist dxs)
{proof)

lemma list-of-dlist-rotate [simp, code abstract]:
list-of-dlist (Dlist.rotate n dxs) = List.rotate n (list-of-dlist dxs)
{proof)
Explicit executable conversion
definition dlist-of-list [simp]:
dlist-of-list = Dlist

lemma [code abstract]:
list-of-dlist (dlist-of-list xs) = remdups xs
(proof)
Equality
instantiation dlist :: (equal) equal
begin

237

definition HOL.equal dzs dys +— HOL.equal (list-of-dlist dxs) (list-of-dlist dys)

instance
(proof)

end

THEORY “Dlist” 238

declare equal-dlist-def [code]

lemma [code nbe]: HOL.equal (dzs :: 'a::equal dlist) dxs +— True
(proof)

32.3 Induction principle and case distinction

lemma dlist-induct [case-names empty insert, induct type: dlist]:

assumes empty: P Dlist.empty

assumes insrt: Az dus. - Dlist. member dxs © => P dxs = P (Dlist.insert
dzs)

shows P dzs

(proof)

lemma dlist-case [cases type: dlist]:
obtains (empty) dzs = Dlist.empty
| (insert) x dys where — Dlist.member dys x and dxs = Dlist.insert x dys

(proof)

32.4 Functorial structure

functor map: map
(proof)

32.5 Quickcheck generators

quickcheck-generator dlist predicate: distinct constructors: Dlist.empty, Dlist.insert

32.6 BNF instance

context begin

qualified inductive double :: 'a list = 'a list = bool where
double (zs @ ys) (zs Q x # ys) if z € set ys

qualified lemma strong-confluentp-double: strong-confluentp double
(proof) lemma double-Cons1 [simp]: double xs (x # xs) if x € set xs

(proof) lemma double-Cons-same [simp]: double xs ys = double (x # xs) (z #
ys)

(proof) lemma doubles-Cons-same: double** xs ys = double™* (z # zs) (z #
ys)

(proof) lemma remdups-into-doubles: double** (remdups xs) s

(proof) lemma dlist-eq-into-doubles: Dlist.dlist-eq < equivclp double

(proof) lemma factor-double-map: double (map f xs) ys = I zs. Dlist.dlist-eq
xs zs \ ys = map f zs A set zs C set zs

(proof) lemma dlist-eq-set-eq: Dlist.dlist-eq xs ys = set zs = set ys

(proof) lemma dlist-eq-map-respect: Dlist.dlist-eq xs ys = Dlist.dlist-eq (map
£ 25) (map f ys)

(proof) lemma confluent-quotient-dlist:

THEORY “Dual-Ordered-Lattice” 239

confluent-quotient double Dlist.dlist-eq Dlist.dlist-eq Dlist.dlist-eq Dlist.dlist-eq
Dlist.dlist-eq
(map fst) (map snd) (map fst) (map snd) list-all2 list-all2 list-all2 set set

{proof)

lifting-update dlist.lifting
lifting-forget dlist.lifting

end

context begin
interpretation Quotient-dlist: Quotient-dlist (proof)

lift-bnf (plugins del: code) 'a dlist
(proof) lemma list-of-dlist-transfer|transfer-rule]:
bi-unique R = (rel-fun (Quotient-dlist.pcr-dlist R) (list-all2 R)) remdups list-of-dlist
(proof)

lemma list-of-dlist-map-dlist[simp]:
list-of-dlist (map-dlist f xs) = remdups (map f (list-of-dlist xs))
(proof)

end

end

33 Type of dual ordered lattices

theory Dual-Ordered-Lattice
imports Main
begin
The dual of an ordered structure is an isomorphic copy of the underlying
type, with the < relation defined as the inverse of the original one.
The class of lattices is closed under formation of dual structures. This

means that for any theorem of lattice theory, the dualized statement holds
as well; this important fact simplifies many proofs of lattice theory.

typedef ‘a dual = UNIV :: 'a set
morphisms undual dual (proof)

setup-lifting type-definition-dual
code-datatype dual

lemma dual-eql:
z = y if undual z = undual y

(proof)

THEORY “Dual-Ordered-Lattice”

lemma dual-eq-iff:
xr =y <— undual x = undual y
(proof)

lemma eq-dual-iff [iff]:
dual x = dual y — v =y
(proof)

lemma undual-dual [simp, code]:
undual (dual) = x
(proof)

lemma dual-undual [simp):
dual (undual z) = x

(proof)

lemma undual-comp-dual [simp]:
undual o dual = id

{proof)

lemma dual-comp-undual [simp]:
dual o undual = id

{proof)

lemma inj-dual:
inj dual
(proof)

lemma inj-undual:
inj undual
(proof)

lemma surj-dual:
surj dual

{proof)

lemma surj-undual:
surj undual

{proof)

lemma bij-dual:
bij dual
(proof)

lemma bij-undual:
bij undual

(proof)

240

THEORY “Dual-Ordered-Lattice”

instance dual :: (finite) finite
(proof)

instantiation dual :: (equal) equal
begin

lift-definition equal-dual :: 'a dual = 'a dual = bool
is HOL.equal (proof)

instance
(proof)

end

33.1 Pointwise ordering

instantiation dual :: (ord) ord
begin

lift-definition less-eg-dual :: 'a dual = 'a dual = bool
is (=) (proof)

lift-definition less-dual :: 'a dual = 'a dual = bool
is (>) (proof)

instance (proof)
end

lemma dual-less-eql:
z < y if undual y < undual x

{proof)

lemma dual-less-eq-iff:
z < y +— undual y < undual z

{proof)

lemma less-eq-dual-iff [iff]:
dual ¢ < dual y +— y < x
(proof)

lemma dual-lessI:
x < y if undual y < undual x

{proof)

lemma dual-less-iff:
x < y < undual y < undual

{proof)

241

THEORY “Dual-Ordered-Lattice” 242

lemma less-dual-iff [iff]:
dual x < dual y +— y < z

{proof)

instance dual :: (preorder) preorder
(proof)

instance dual :: (order) order
{proof)

33.2 Binary infimum and supremum

instantiation dual :: (sup) inf
begin

lift-definition inf-dual :: 'a dual = 'a dual = 'a dual
is sup (proof)

instance (proof)
end

lemma undual-inf-eq [simp]:
undual (inf x y) = sup (undual z) (undual y)
(proof)

lemma dual-sup-eq [simp]:
dual (sup z y) = inf (dual z) (dual y)
(proof)

instantiation dual :: (inf) sup
begin

lift-definition sup-dual :: 'a dual = 'a dual = 'a dual
is inf (proof)

instance (proof)
end

lemma undual-sup-eq [simpl:
undual (sup z y) = inf (undual z) (undual y)
{proof)

lemma dual-inf-eq [simp]:
dual (inf z y) = sup (dual z) (dual y)
(proof)

instance dual :: (semilattice-sup) semilattice-inf

THEORY “Dual-Ordered-Lattice”

{proof)

instance dual :: (semilattice-inf) semilattice-sup
{proof)

instance dual :: (lattice) lattice {proof)

instance dual :: (distrib-lattice) distrib-lattice
{proof)

33.3 Top and bottom elements

instantiation dual :: (top) bot
begin

lift-definition bot-dual :: 'a dual
is top (proof)

instance (proof)
end

lemma undual-bot-eq [simp]:
undual bot = top
(proof)

lemma dual-top-eq [simp]:
dual top = bot
(proof)

instantiation dual :: (bot) top
begin

lift-definition top-dual :: 'a dual
is bot (proof)

instance (proof)
end

lemma undual-top-eq [simp]:
undual top = bot
(proof)

lemma dual-bot-eq [simp]:
dual bot = top
(proof)

instance dual :: (order-top) order-bot

243

THEORY “Dual-Ordered-Lattice” 244

{proof)

instance dual :: (order-bot) order-top
{proof)

instance dual :: (bounded-lattice-top) bounded-lattice-bot {proof)
instance dual :: (bounded-lattice-bot) bounded-lattice-top {proof)

instance dual :: (bounded-lattice) bounded-lattice {proof)

33.4 Complement

instantiation dual :: (uminus) uminus
begin

lift-definition uminus-dual :: 'a dual = 'a dual
is uminus (proof)

instance (proof)
end

lemma undual-uminus-eq [simp]:

undual (— z) = — undual =
{proof)

lemma dual-uminus-eq [simp]:
dual (— z) = — dual x
(proof)

instantiation dual :: (boolean-algebra) boolean-algebra
begin

lift-definition minus-dual :: 'a dual = 'a dual = 'a dual
is Az y. — (y — z) (proof)

instance
(proof)

end

lemma undual-minus-eq [simp):
undual (z — y) = — (undual y — undual)

(proof)

lemma dual-minus-eq [simp):
dual (z — y) = — (dual y — dual z)
{proof)

THEORY “Dual-Ordered-Lattice” 245

33.5 Complete lattice operations

The class of complete lattices is closed under formation of dual structures.

instantiation dual :: (Sup) Inf
begin

lift-definition Inf-dual :: 'a dual set = 'a dual
is Sup (proof)

instance (proof)
end

lemma undual-Inf-eq [simp]:
undual (Inf A) = Sup (undual © A)
{proof)

lemma dual-Sup-eq [simp):
dual (Sup A) = Inf (dual © A)
(proof)

instantiation dual :: (Inf) Sup
begin

lift-definition Sup-dual :: 'a dual set = 'a dual
is Inf (proof)

instance (proof)
end

lemma undual-Sup-eq [simp]:
undual (Sup A) = Inf (undual ¢ A)
(proof)

lemma dual-Inf-eq [simp]:
dual (Inf A) = Sup (dual © A)
{proof)

instance dual :: (complete-lattice) complete-lattice
(proof)

context
fixes f :: 'a::complete-lattice = 'a
and ¢ :: ‘a dual = 'a dual
assumes mono f
defines g = dual o f o undual
begin

THEORY “Equipollence” 246

private lemma mono-dual:
mono g

(proof)

lemma Ifp-dual-gfp:
Ifp f = undual (gfp g) (is ?lhs = %rhs)
(proof)

lemma gfp-dual-Ifp:

g9fp f = undual (Ifp g)
(proof)

end

Finally

lifting-update dual.lifting
lifting-forget dual.lifting

end

34 Equipollence and Other Relations Connected
with Cardinality

theory FEquipollence
imports FuncSet Countable-Set
begin

34.1 Eqpoll

definition egpoll :: 'a set = 'b set = bool (infixl <= 50)
where eqpoll A B = 3f. bij-betw f A B

definition lepoll :: 'a set = 'b set = bool (infixl <<y 50)
where lepoll A B=3f. injfon fANf‘ACB

definition lesspoll :: 'a set = b set = bool (infixl «<» 50)
where A < B==A < BA (A= B)

lemma lepoll-def’: lepoll A B =3f. inj-on fANfe€ A— B
(proof)

lemma egpoll-empty-iff-empty [simp]: A ~ {} +— A={}
(proof)

lemma lepoll-empty-iff-empty [simp]: A < {} +— A = {}
(proof)

lemma not-lesspoll-empty: = A < {}

THEORY “Equipollence” 247

{proof)

lemma lepoll-relational-full:
assumes A\y. y€e B=—= Jz.2 € ANRzy
and N\eyy' [r€e A;ye By € B;Rzy; Raey] = y=vy’
shows B < A

(proof)

lemma egpoll-iff-card-of-ordlso: A ~ B <— ordlso2 (card-of A) (card-of B)
(proof)

lemma egpoll-refl [iff]: A =~ A
(proof)

lemma egpoli-finite-iff: A =~ B = finite A +— finite B
(proof)

lemma egpoll-iff-card:
assumes finite A finite B
shows A~ B +— card A = card B

{proof)

lemma egpoll-singleton-iff: A ~ {z} +— (Ju. A = {u})
(proof)

lemma egpoli-doubleton-iff: A = {z,y} +— (Juv. A = {u,0} A (u=v +— z=Yy))
(proof)

lemma lepoll-antisym:
assumes A < BB < Ashows A~ B

(proof)

lemma lepoli-trans [trans]:
assumes A < B B < Cshows A S C

(proof) h

lemma lepoll-trans! [trans|: [A~ B; BS C] = A S C
{proof)

lemma lepoll-trans2 [trans]: [A S B; B~ C] = A S C
(proof)

lemma egpoll-sym: A~ B— B~ A
(proof)

lemma egpoll-trans [trans]: [A = B; B~ C] = A~ C
{proof)

THEORY “Equipollence” 248

lemma egpoll-imp-lepoll: A~ B=— A < B
(proof)

lemma subset-imp-lepoll: A C B=— A < B
(proof)

lemma lepoll-refl [iff]: A < A
(proof)

lemma lepoll-iff: A < B+— (3g. A C g ‘B)
(proof)

lemma empty-lepoll [iff]: {} < A
{proof)

lemma subset-image-lepoll: BC f ‘A= B < A
(proof)

lemma image-lepoll: f A < A
(proof)

lemma infinite-le-lepoll: infinite A +— (UNIV::nat set) < A
(proof)

lemma lepoll-Pow-self: A < Pow A
(proof)

lemma egpoll-iff-bijections:

A= B+— 3fg. Vze A fre BANg(fz)=2)AN(Nye B.gye AN f(g
y) =)

(proof)

lemma lepoll-restricted-funspace:
{f fACBA{z. fe#kaz} C AN finite {z. fo # ka}} S Fpow (A x B)
(proof)

lemma singleton-lepoll: {z} < insert y A
{proof)

lemma singleton-egpoll: {z} ~ {y}
(proof)

lemma subset-singleton-iff-lepoll: (3z. S C {z}) +— S < {()}
(proof)

lemma infinite-insert-lepoll:
assumes infinite A shows insert a A < A

(proof)

THEORY “Equipollence” 249

lemma infinite-insert-eqpoll: infinite A = insert a A ~ A
(proof)

lemma finite-lepoll-infinite:
assumes infinite A finite B shows B < A

(proof)

lemma countable-lepoll: [countable A; B < A] = countable B
{proof)

lemma countable-eqpoll: Jcountable A; B = A] = countable B
(proof)

34.2 The strict relation

lemma lesspoll-not-refl [iff]: ~ (i < 1)

(proof)
lemma lesspoll-imp-lepoll: A < B==> A < B
(proof)
lemma lepoll-iff-leqpoll: A< B+— A<B| A~ B
(proof)

lemma lesspoll-trans [trans]: [X < YV; Y < Z] = X < Z
{proof)

lemma lesspoll-transl [trans]: [X S Y; Y < 7] = X < Z
{proof)

lemma lesspoll-trans2 [trans]: [X < V; YV S 7] = X < Z
{proof)

lemma eg-lesspoll-trans [trans]: [X = V; V < 7] = X < Z
{proof)

lemma lesspoll-eq-trans [trans]: [X < V; VY = Z] = X < Z
{proof)

lemma lesspoll-Pow-self: A < Pow A
(proof)

lemma finite-lesspoll-infinite:
assumes infinite A finite B shows B < A
(proof)

lemma countable-lesspoll: [countable A; B < A] = countable B
(proof)

THEORY “Equipollence” 250

lemma lepoll-iff-card-le: [finite A; finite Bl = A < B <— card A < card B
{proof)

lemma lepoll-iff-finite-card: A < {..<nunat} +— finite A A card A < n
(proof)

lemma egpoll-iff-finite-card: A ~ {..<n:nat} <— finite A A\ card A = n
(proof)

lemma lesspoll-iff-finite-card: A < {..<n:nat} +— finite A A card A < n
(proof)

34.3 Mapping by an injection

lemma inj-on-image-eqpoll-self: inj-on fA = f‘ A=~ A
(proof)

lemma inj-on-image-lepoll-1 [simp]:
assumes inj-on f A shows f ‘A < B+— A<B
{proof)

lemma inj-on-image-lepoll-2 [simpl:
assumes inj-on f Bshows A S f‘B+— AS B
(proof)

lemma inj-on-image-lesspoll-1 [simp]:
assumes inj-on f A shows f ‘A < B<+— A< B
(proof)

lemma inj-on-image-lesspoll-2 [simp]:
assumes inj-on f B shows A < f‘B+— A< B
(proof)

lemma inj-on-image-eqpoll-1 [simp):
assumes inj-on f A shows f ‘A~ B+— A~ B
(proof)

lemma inj-on-image-eqpoll-2 [simp):
assumes inj-on f B shows A~ f‘B+— A=~ B
(proof)

34.4 Inserting elements into sets

lemma insert-lepoll-insertD:
assumes insert u A < insert v Bu ¢ A v ¢ B shows A < B

(proof)

lemma insert-egpoll-insertD: [insert u A =~ insert v B; u ¢ A; v ¢ B] — A~ B
{proof)

THEORY “Equipollence” 251

lemma insert-lepoll-cong:
assumes A < B b ¢ B shows insert a A < insert b B

(proof)

lemma insert-egpoll-cong:
[A~B;ad¢ A; b¢ Bl = insert a A = insert b B
(proof)

lemma insert-eqpoll-insert-iff:
[a ¢ A; b ¢ B] = insert a A =~ insert b B +— A~ B
(proof)

lemma insert-lepoll-insert-iff:
la ¢ A; b ¢ B] = (insert a A < insert b B) «— (A < B)
(proof)

lemma less-imp-insert-lepoll:
assumes A < B shows insert a A < B

(proof)

lemma finite-insert-lepoll: finite A = (insert a A S A) +— (a € A)

(proof)

34.5 Binary sums and unions

lemma Un-lepoll-mono:
assumes A < C B < D disjint C D shows AU B < CUD

(proof)

lemma Un-egpoll-cong: [A =~ C; B = D; disjnt A B; disjnt C D] = AU B~ C
ub
(proof)

lemma sum-Ilepoll-mono:
assumes A < OB < Dshows A <+> B S C <+>D

(proof)
lemma sum-egpoll-cong: [A =~ C; B~ D] = A <+> B~ C <+> D
{proof)

34.6 Binary Cartesian products

lemma times-square-lepoll: A < A x A
(proof)

lemma times-commute-eqpoll: A x B~ B x A
(proof)

lemma times-assoc-egpoll: (A x B) x C = A x (B x C)
{proof)

THEORY “Equipollence” 252

lemma times-singleton-egpoll: {a} x A ~ A
(proof)

lemma times-lepoll-mono:
assumes A < OB < Dshows A x BS C x D

(proof)

lemma times-eqpoll-cong: [A ~ C; B~ D] = A X B~ C x D
(proof)

lemma
assumes B # {} shows lepoll-times1: A < A x B and lepoll-times2: A < B
x A

(proof)

lemma times-0-egpoll: {} x A =~ {}
{proof)

lemma Sigma-inj-lepoll-mono:
assumes h: injronh Ah ‘AC Cand A\e. 1 € A=— Bz <D (hx)
shows Sigma A B < Sigma C D

(proof)

lemma Sigma-lepoll-mono:
assumes A C C A\z. 2 € A = Bz < D x shows Sigma A B < Sigma C D

{proof)

lemma sum-times-distrib-eqpoll: (A <+> B) x C = (A x C) <+> (B x ()
{proof)

lemma Sigma-eqpoll-cong:
assumes h: bij-betw h A C and BD: A\x. 2 € A= Bx~ D (hz)
shows Sigma A B =~ Sigma C D

(proof)

lemma prod-insert-eqpoll:
assumes a ¢ A shows insert a A x B~ B <+> A x B

{proof)

34.7 General Unions

lemma Union-egpoll-Times:
assumes B: \z. x € A = F ¢ ~ B and disj: pairwise (Az y. disjnt (F z) (F

y)) A
shows (| Jz€Ad. Fz) = A x B

(proof)

lemma UN-lepoll-UN:

THEORY “Equipollence” 253

assumes A: A\w.z € A= Bz S Cuz
and disj: pairwise (\z y. disjnt (C z) (C'y)) A
shows |J (B‘4) S| (C4)
(proof)

lemma UN-eqpoll-UN:
assumes A: A\v. 1 € A= Bz~ Cz
and B: pairwise (Az y. disjnt (B z) (By)) A
and C: pairwise (A\z y. disjnt (C z) (C'y)) A
shows (|Jz€A. Bz) = (JzeA. Cz)
(proof)

34.8 General Cartesian products (Pi)

lemma PiE-sing-eqpoll-self: ({a} —g B) ~ B
(proof)

lemma lepoll-funcset-right:
assumes B < B’ shows A -y B < A —p B’

(proof)

lemma lepoll-funcset-left:
assumes B # {} A < A’
shows A - g B<S A’ —»g B

(proof)

lemma lepoll-funcset:
[B#{}; ASABSB]= A—=gBS A =g B’
(proof)

lemma lepoll-PiE:
assumes A\i. i1 € A= BiS Ci
shows PiFE A B S PiEAC

{(proof)

lemma card-le- PiE-subindex:
assumes A C A’ Pig A’ B # {}
shows PiF A B< PiEA'B
(proof)

lemma finite-restricted-funspace:

assumes finite A finite B

shows finite {f. f ‘A C BA{x. fo # ka} C A} (is finite ?F)
(proof)

proposition finite- PiE-iff:

THEORY “Simps-Case-Conv”

254

finite(PiETS) «— PiEIS = {}V finite {i € . ¥(3a. SiC {a})} A (Vi €

I. finite(S 7))
(is ?lhs = %rhs)

(proof)

corollary finite-funcset-iff:
finite(I =g S) +— (Fa. S C{a}) VI={}V finite I A finite S
(proof)

34.9 Misc other resultd

lemma lists-lepoll-mono:
assumes A < B shows lists A < lists B

(proof)

lemma lepoll-lists: A < lists A
{proof)

Dedekind’s definition of infinite set
lemma infinite-iff-psubset: infinite A +— (IB. B C A N A=B)
(proof)

lemma infinite-iff-psubset-le: infinite A +— (3B. BC AN A < B)
(proof)

end

theory Simps-Case-Conv

imports Case-Converter
keywords simps-of-case case-of-simps :: thy-decl
abbrevs simps-of-case case-of-simps =

begin

(ML)
end
theory FExtended
imports Simps-Case-Conv
begin
datatype ‘a extended = Fin 'a | Pinf (<o00)) | Minf (<—o0»)

instantiation extended :: (order)order
begin

THEORY “Extended” 255

fun less-eq-extended :: 'a extended = 'a extended = bool where
Finz < Finy=(z <y)|

- < Pinf = True |
Minf < - = True |
(-:'a extended) < - = False

case-of-simps less-eq-extended-case: less-eq-extended.simps

definition less-extended :: 'a extended = 'a extended = bool where
((z::'a extended) < y) = (z <y AN-y <z

instance
(proof)

end

instance extended :: (linorder)linorder
{proof)

lemma Minf-le[simp]: Minf < y

(proof)

lemma le-Pinf[simp]: x < Pinf

(proof)

lemma le-Minf[simp]: x < Minf +— z = Minf
(proof)

lemma Pinf-le[simp]: Pinf < x +— = = Pinf

(proof)

lemma less-extended-simps|simp):
Finz < Finy = (z <y)
Fin © < Pinf = True
Fin © < Minf = False
Pinf < h = Fulse
Minf < Fin x = True
Minf < Pinf = True
I < Minf = False
(proof)

lemma min-extended-simps[simpl:
min (Fin x) (Fin y) = Fin(min = y)

min xx Pinf = zx

min xx Minf = Minf

min Pinf yy = yy

min Minf yy = Minf
(proof)

lemma maz-exstended-simps|simp):
maz (Fin z) (Fin y) = Fin(maz x y)
max T Pinf = Pinf

THEORY “Extended” 256

maxr TT Minf = zx

maz Pinf yy = Pinf

max Minf yy = yy
(proof)

instantiation extended :: (zero)zero
begin

definition 0 = Fin(0::'a)
instance (proof)

end

declare zero-extended-def[symmetric, code-post]

instantiation extended :: (one)one
begin

definition 1 = Fin(1::'a)
instance (proof)

end

declare one-extended-def[symmetric, code-post]

instantiation extended :: (plus)plus
begin

The following definition of of addition is totalized to make it asociative
and commutative. Normally the sum of plus and minus infinity is undefined.

fun plus-extended where
Fin z + Fin y = Fin(z+vy) |
Fin z + Pinf = Pinf |
Pinf + Fin z = Pinf |
Pinf + Pinf = Pinf |
Minf + Fin y = Minf |
Fin © + Minf = Minf |
Minf + Minf = Minf |
Minf + Pinf = Pinf |
Pinf + Minf = Pinf

case-of-simps plus-case: plus-extended.simps
instance (proof)

end

instance extended :: (ab-semigroup-add)ab-semigroup-add
(proof)

THEORY “Extended” 257

instance extended :: (ordered-ab-semigroup-add)ordered-ab-semigroup-add
{proof)

instance extended :: (comm-monoid-add)comm-monoid-add

(proof)

instantiation extended :: (uminus)uminus
begin

fun uminus-extended where
— (Fin z) = Fin (—) |

— Pinf = Minf |

— Minf = Pinf

instance (proof)

end

instantiation extended :: (ab-group-add)minus
begin

definition z — y = z + —(y::'a extended)
instance (proof)

end

lemma minus-ezctended-simps[simp):
Fin x — Fin y = Fin(z — y)
Fin x — Pinf = Minf
Fin © — Minf = Pinf
Pinf — Fin y = Pinf
Pinf — Minf = Pinf
Minf — Fin y = Minf
Minf — Pinf = Minf
Minf — Minf = Pinf
Pinf — Pinf = Pinf
(proof)
Numerals:

instance extended :: ({ab-semigroup-add,one})numeral (proof)

lemma Fin-numeral[code-post]: Fin(numeral w) = numeral w
{proof)

lemma Fin-neg-numeral[code-post]: Fin (— numeral w) = — numeral w

(proof)

instantiation extended :: (lattice) bounded-lattice
begin

THEORY “Order-Continuity” 258

definition bot = Minf
definition top = Pinf

fun inf-extended :: 'a extended = 'a extended = 'a extended where
inf-extended (Fin i) (Fin j) = Fin (inf i j) |

inf-extended a Minf = Minf |

inf-extended Minf a = Minf |

inf-extended Pinf a = a |

inf-extended a Pinf = a

fun sup-extended :: 'a extended = 'a extended = 'a extended where
sup-extended (Fin i) (Fin j) = Fin (sup i j) |

sup-extended a Pinf = Pinf |

sup-extended Pinf a = Pinf |

sup-extended Minf a = a |

sup-extended a Minf = a

case-of-simps inf-extended-case: inf-extended.simps
case-of-simps sup-extended-case: sup-extended.simps

instance

(proof)
end

end

35 Continuity and iterations

theory Order-Continuity
imports Complez-Main Countable-Complete-Lattices
begin

lemma SUP-nat-binary:
(sup A (SUP z€Collect ((<) (0::nat)). B)) = (sup A B::'a::countable-complete-lattice)
(proof)

lemma INF-nat-binary:
inf A (INF z€ Collect ((<) (0::nat)). B) = (inf A B::'a::countable-complete-lattice)
(proof)

The name continuous is already taken in Complex-Main, so we use
sup-continuous and inf-continuous. These names appear sometimes in liter-
ature and have the advantage that these names are duals.

named-theorems order-continuous-intros

THEORY “Order-Continuity” 259

35.1 Continuity for complete lattices

definition

sup-continuous :: ('a::countable-complete-lattice = 'b::countable-complete-lattice)
= bool
where

sup-continuous F «— (¥ M::nat = 'a. mono M — F (SUP i. M i) = (SUP i.
F (M 1))

lemma sup-continuousD: sup-continuous F = mono M = F (SUP i:nat. M
i) = (SUP i. F (M 1))
(proof)

lemma sup-continuous-mono:
mono F if sup-continuous F

(proof)

lemma [order-continuous-intros):
shows sup-continuous-const: sup-continuous (Az. c)
and sup-continuous-id: sup-continuous (Az. z)
and sup-continuous-apply: sup-continuous (Af. f x)
and sup-continuous-fun: (/\s. sup-continuous (A\z. P x s)) = sup-continuous
P
and sup-continuous-If: sup-continuous F = sup-continuous G = sup-continuous
(Mf. if C then F felse G f)

(proof)

lemma sup-continuous-compose:
assumes f: sup-continuous f and g: sup-continuous g
shows sup-continuous (Az. f (g z))

(proof)

lemma sup-continuous-sup|order-continuous-intros|:
sup-continuous f = sup-continuous g = sup-continuous (Az. sup (f z) (g x))

{proof)

lemma sup-continuous-inf[order-continuous-intros]:
fixes P () :: 'a :: countable-complete-lattice = 'b :: countable-complete-distrib-lattice
assumes P: sup-continuous P and @Q: sup-continuous @)
shows sup-continuous (Az. inf (P z) (Q x))

{proof)

lemma sup-continuous-and|order-continuous-intros):
sup-continuous P = sup-continuous Q => sup-continuous (Az. Pz A Q z)

{proof)

lemma sup-continuous-or|order-continuous-intros|:
sup-continuous P = sup-continuous Q => sup-continuous (Az. Pz V Q x)

{proof)

THEORY “Order-Continuity” 260

lemma sup-continuous-Ifp:
assumes sup-continuous F shows lfp F' = (SUP i. (F 7 i) bot) (is lfp F = ?U)

(proof)

lemma [fp-transfer-bounded:

assumes P: P bot Ax. Pz = P (fz) AM. (A\i. P (M i)) = P (SUP i::nat.
M 9)

assumes a: AM. mono M = (Aiz:nat. P (M i)) = o (SUP i. M i) = (SUP
1. a (M 7))

assumes f: sup-continuous f and g: sup-continuous g

assumes [simp|: A\z. Pz = < Ilfpf = a (fz) = g (0 2)

assumes g-bound: N\z. a bot < gz

shows a (Ifp f) = lfp g
(proof)

lemma Ifp-transfer:
sup-continuous o« = sup-continuous f = sup-continuous g —>
(Az. v bot < gz) = (Nz.a<lfpf=a(fz)=yg(az) = a(pf)=
lfp g
(proof)

definition

inf-continuous :: ('a::countable-complete-lattice = 'b::countable-complete-lattice)
= bool
where

inf-continuous F <— (¥ M::nat = 'a. antimono M — F (INF i. M i) = (INF

lemma inf-continuousD: inf-continuous F = antimono M = F (INF i::nat. M
i) = (INFi. F (M1))
(proof)

lemma inf-continuous-mono:
mono F if inf-continuous F

(proof)

lemma [order-continuous-intros|:
shows inf-continuous-const: inf-continuous (Az. ¢)
and inf-continuous-id: inf-continuous (Az. x)
and inf-continuous-apply: inf-continuous (Af. f)
and inf-continuous-fun: (\s. inf-continuous (Az. P x s)) = inf-continuous P
and inf-continuous-If: inf-continuous F = inf-continuous G = inf-continuous

(M. if Cthen F felse G f)
(proof)

lemma inf-continuous-inf|order-continuous-intros|:
inf-continuous f = inf-continuous g = inf-continuous (A\x. inf (fz) (g z))
(proof)

THEORY “Order-Continuity” 261

lemma inf-continuous-sup|order-continuous-intros|:
fixes P Q :: 'a :: countable-complete-lattice = 'b :: countable-complete-distrib-lattice
assumes P: inf-continuous P and Q: inf-continuous @
shows inf-continuous (Az. sup (P z) (Q z))

(proof)

lemma inf-continuous-and|order-continuous-intros|:
inf-continuous P = inf-continuous @ = inf-continuous (Az. Pz A Q z)

{proof)

lemma inf-continuous-or|order-continuous-intros|:
inf-continuous P = inf-continuous @ = inf-continuous (Az. Pz V Q z)

{proof)

lemma inf-continuous-compose:
assumes f: inf-continuous f and g: inf-continuous g
shows inf-continuous (\z. f (g z))
(proof)

lemma inf-continuous-gfp:
assumes inf-continuous F shows gfp F = (INF i. (F 1) top) (is gfp F = ?U)
(proof)

lemma gfp-transfer:
assumes «: inf-continuous o and f: inf-continuous f and g: inf-continuous g
assumes [simp]: « top = top N\z. o (fz) = g (« z)
shows a (gfp f) = gfp g

(proof)

lemma gfp-transfer-bounded:

assumes P: P (f top) Az. Pz = P (fz) AM. antimono M = (\i. P (M
i)) = P (INF i:nat. M 7)

assumes a: AM. antimono M = (Niznat. P (M i)) = « (INF i. M i) =
(INF i. a (M 7))

assumes f: inf-continuous f and g: inf-continuous g

assumes [simp]: Az. Pz = o (fz) = g (« z)

assumes g-bound: A\z. g z < a (f top)

shows a (gfp f) = afp g
(proof)

35.1.1 Least fixed points in countable complete lattices
definition (in countable-complete-lattice) cclfp :: ('a = 'a) = 'a

where cclfp f = (SUP 4. (f 7 i) bot)

lemma cclfp-unfold:
assumes sup-continuous F shows cclfp F = F (cclfp F)

(proof)

THEORY “Extended-Nat” 262

lemma cclfp-lowerbound: assumes f: mono f and A: f A < A shows cclfp f < A
(proof)

lemma cclfp-transfer:
assumes sup-continuous o mono f
assumes « bot = bot N\z. a (fz) = g (o x)
shows « (cclfp f) = cclfp g

(proof)

end

36 Extended natural numbers (i.e. with infinity)

theory Faxtended-Nat
imports Main Countable Order-Continuity
begin

class infinity =
fixes infinity :: ‘a (<00))

context

fixes f :: nat = 'a::{canonically-ordered-monoid-add, linorder-topology, com-
plete-linorder}
begin

lemma sums-SUP|[simp, intro): f sums (SUP n. Y i<n. f 1)
{proof)

lemma suminf-eq-SUP: suminf f = (SUP n. Y i<n. f 1)
(proof)

end

36.1 Type definition

We extend the standard natural numbers by a special value indicating in-
finity.
typedef enat = UNIV :: nat option set (proof)

TODO: introduce enat as coinductive datatype, enat is just of-nat
definition enat :: nat = enat where

enat n = Abs-enat (Some n)

instantiation enat :: infinity
begin

definition co = Abs-enat None
instance (proof)

THEORY “Extended-Nat” 263

end

instance enat :: countable

(proof)

old-rep-datatype enat oo :: enat
(proof)

declare [[coercion enat::nat=enat]]

lemmas enat2-cases = enat.exhaust|case-product enat.exhaust]
lemmas enat3-cases = enat.exhaust|case-product enat.ezhaust enat.exhaust]

lemma not-infinity-eq [iff]: (x # o0) = (Fi. © = enat i)
(proof)

lemma not-enat-eq [iff]: (Vy. © # enat y) = (z = o0)
{proof)

lemma enat-ex-split: (3 c::enat. P ¢) «— P oo V (Fe:nat. P c)
(proof)

primrec the-enat :: enat = nat
where the-enat (enat n) = n

36.2 Constructors and numbers

instantiation enat :: zero-neq-one
begin

definition
0 = enat 0

definition
1 = enat 1

instance
(proof)

end

definition eSuc :: enat = enat where
eSuc i = (case i of enat n = enat (Suc n) | co = o)

lemma enat-0 [code-post]: enat 0 = 0
{proof)

lemma enat-1 [code-post]: enat 1 = 1

THEORY “Extended-Nat”

{proof)

lemma enat-0-iff: enat t = 0 +— =00 = enat x +— z

{proof)

lemma enat-1-iff: enat x = 1 «+— =11 = enatz +— 2

{proof)

lemma one-eSuc: 1 = eSuc 0
(proof)

lemma infinity-ne-i0 [simp): (co::enat) # 0
{proof)

lemma i0-ne-infinity [simpl: 0 # (co::enat)
{proof)

lemma zero-one-enat-neq:
= 0 = (1::enat)
- 1 = (0::enat)
(proof)

lemma infinity-ne-i1 [simp]: (co::enat) # 1
{proof)

lemma il-ne-infinity [simpl: 1 # (co::enat)
{proof)

lemma eSuc-enat: eSuc (enat n) = enat (Suc n)
{proof)

lemma eSuc-infinity [simp]: eSuc oo = o0

{proof)

lemma eSuc-ne-0 [simp]: eSuc n # 0
{proof)

lemma zero-ne-eSuc [simp]: 0 # eSuc n
{proof)

lemma eSuc-inject [simpl: eSuc m = eSuc n +— m =n
(proof)

lemma eSuc-enat-iff: eSuc x = enat y +— (In. y = Suc n A z = enat n)

{proof)

lemma enat-eSuc-iff: enat y = eSuc x +— (In. y = Suc n A enat n = z)

(proof)

264

THEORY “Extended-Nat” 265

36.3 Addition

instantiation enat :: comm-monoid-add
begin

definition [nitpick-simp]:
m + n = (case m of co = oo | enat m = (case n of co = oo | enat n = enat
(m + n)))

lemma plus-enat-simps [simp, code]:
fixes ¢ :: enat
shows enat m + enat n = enat (m + n)
and co + ¢ = o©
and ¢ + o0 = ©

(proof)

instance
(proof)

end

lemma eSuc-plus-1:
eSucn=mn+ 1
(proof)

lemma plus-1-eSuc:
1+ q= eSucq
g+ 1 = eSucq
(proof)

lemma iadd-Suc: eSuc m + n = eSuc (m + n)
{proof)

lemma iadd-Suc-right: m + eSuc n = eSuc (m + n)
{proof)

36.4 Multiplication

instantiation enat :: {comm-semiring-1, semiring-no-zero-divisors}
begin

definition times-enat-def [nitpick-simp]:
m x n = (case m of oo = if n = 0 then 0 else 0o | enat m =
(case n of 0o = if m = 0 then 0 else 0o | enat n = enat (m * n)))

lemma times-enat-simps [simp, code]:
enat m * enat n = enat (m * n)
00 * 0o = (oco::enat)
oo * enat n = (if n = 0 then 0 else co)
enat m x oo = (if m = 0 then 0 else o)

THEORY “Extended-Nat” 266

{proof)

instance

(proof)

end

lemma mult-eSuc: eSuc m s n=n + m * n
(proof)

lemma mult-eSuc-right: m *x eSucn =m + m * n
(proof)

lemma of-nat-eq-enat: of-nat n = enat n

(proof)

instance enat :: semiring-char-0
(proof)

lemma imult-is-infinity: ((a::enat) * b=00) =(a =0 Ab# 0V b=00A a#
0)
{proof)

36.5 Numerals

lemma numeral-eq-enat:
numeral k = enat (numeral k)

(proof)

lemma enat-numeral [code-abbrev]:
enat (numeral k) = numeral k

{proof)

lemma infinity-ne-numeral [simp]: (co::enat) # numeral k
(proof)

lemma numeral-ne-infinity [simp: numeral k # (co::enat)
{proof)

lemma eSuc-numeral [simp]: eSuc (numeral k) = numeral (k + Num.One)
(proof)

36.6 Subtraction

instantiation enat :: minus
begin

definition diff-enat-def:
a — b = (case a of (enat x) = (case b of (enat y) = enat (x — y) | oo = 0)
| 00 = o0)

THEORY “Extended-Nat”

instance (proof)
end

lemma idiff-enat-enat [simp, code]: enat a — enat b = enat (a — b)
(proof)

lemma idiff-infinity [simp, code]: co — n = (co::enat)
{proof)

lemma idiff-infinity-right [simp, code]: enat a — oo = 0
(proof)

lemma idiff-0 [simp]: (0::enat) — n = 0
{proof)

lemmas idiff-enat-0 [simp] = idiff-0 [unfolded zero-enat-def]

lemma idiff-0-right [simp]: (n::enat) — 0 = n
{proof)

lemmas idiff-enat-0-right [simp] = idiff-0-right [unfolded zero-enat-def]

lemma idiff-self [simp]: n # co = (n::enat) — n = 0
(proof)

lemma eSuc-minus-eSuc [simp]: eSuc n — eSuc m =n — m
{proof)

lemma eSuc-minus-1 [simp]: eSucn — 1 = n
{proof)

36.7 Ordering

instantiation enat :: linordered-ab-semigroup-add
begin

definition [nitpick-simp):

267

m < n = (case n of enat n1 = (case m of enat m1 = ml1 < nl | co = Fualse)

| oo = True)

definition [nitpick-simpl:

m < n = (case m of enat m1 = (case n of enat nl = ml < nl | oo = True)

| o0 = Fulse)

lemma enat-ord-simps [simpl:
enat m < enatn <— m < n
enat m < enatn <— m < n

THEORY “Extended-Nat”

(co::enat)

<
< (oo:enat) «— q # o0

q
q
(coienat) < q +— ¢ = o0
(coenat) < g «— False
(proof)

lemma numeral-le-enat-iff [simp]:
shows numeral m < enat n <— numeral m < n

{proof)

lemma numeral-less-enat-iff [simp]:
shows numeral m < enat n <— numeral m < n

{proof)

lemma enat-ord-code [code):
enatm < enatn «<— m < n
enat m < enatn <— m < n
g < (co:enat) «— True
enat m < oo +— True
oo < enat n +— False
(coenat) < g <— False
(proof)

instance
(proof)

end

instance enat :: dioid

(proof)

268

instance enat :: {linordered-nonzero-semiring, strict-ordered-comm-monoid-add}

(proof)

lemma add-diff-assoc-enat: z < y = z + (y — z) = z + y — (z::enat)

(proof)

lemma enat-ord-number [simp):
(numeral m :: enat) < numeral n +— (numeral m :: nat) < numeral n
(numeral m :: enat) < numeral n <— (numeral m :: nat) < numeral n

{proof)

lemma infinity-ileE [elim!]: co < enat m = R
{proof)

lemma infinity-ilessE [elim!]: co < enat m = R

{proof)

THEORY “Extended-Nat” 269

lemma eSuc-ile-mono [simp]: eSuc n < eSuc m +— n < m
{proof)

lemma eSuc-mono [simp]: eSuc n < eSuc m <— n < m
{proof)

lemma ile-eSuc [simp]: n < eSuc n
{proof)

lemma not-eSuc-ilei0 [simp]: = eSuc n < 0
{proof)

lemma i0-iless-eSuc [simp]: 0 < eSuc n

(proof)

lemma iless-eSucO[simp]: (n < eSuc 0) = (n = 0)
{proof)

lemma ilell: m < n = eSucm < n
(proof)

lemma Suc-ile-eq: enat (Suc m) < n <— enat m < n
{proof)

lemma iless-Suc-eq [simp]: enat m < eSuc n «— enat m < n
{proof)

lemma imult-infinity: (0:enat) < n = 00 * n = 00
{proof)

lemma imult-infinity-right: (0::enat) < n => n * 00 = 00

{proof)

lemma enat-0-less-mult-iff: (0 < (m:enat) * n) = (0 < m A 0 < n)

{proof)

lemma mono-eSuc: mono eSuc
(proof)

lemma min-enat-simps [simp):
min (enat m) (enat n) = enat (min m n)
min q 0 = 0
min 0 ¢ = 0
min q (co::enat) = ¢
min (co:enat) ¢ = q

(proof)

lemma maz-enat-simps [simp]:

THEORY “Extended-Nat” 270

maz (enat m) (enat n) = enat (max m n)
maz q 0 = q

maz 0 ¢ = q

maz q oo = (oco::enat)

maz 0o ¢ = (0o0::enat)

{proof)

lemma enat-ile: n < enat m — k. n = enat k
(proof)

lemma enat-iless: n < enat m — k. n = enat k
(proof)

lemma iadd-le-enat-iff:
z+y<enatn<+— (Fy' z'.z=-enatax’ ANy=enaty’' Az’ + y' < n)

(proof)

lemma chain-incr: Vi. 3j. Yi < Yj=— Fj. enatk < Yj
(proof)

lemma eSuc-maz: eSuc (maz z y) = maz (eSuc) (eSuc y)
(proof)

lemma eSuc-Maz:
assumes finite A A # {}
shows eSuc (Mazx A) = Maz (eSuc © A)

{proof)

instantiation enat :: {order-bot, order-top}
begin

definition bot-enat :: enat where bot-enat = 0
definition top-enat :: enat where top-enat = oo

instance
(proof)

end

lemma finite-enat-bounded:
assumes le-fin: \y. y € A = y < enat n
shows finite A

(proof)

36.8 Cancellation simprocs

lemma add-diff-cancel-enat[simp]: © # 0o = x + y — = = (y::enat)
{proof)

THEORY “Extended-Nat” 271

lemma enat-add-left-cancel: a + b = a + ¢ +— a = (c0:zenat) V b = ¢
{proof)

lemma enat-add-left-cancel-le: a + b < a + ¢ +— a = (coenat) V b < ¢
(proof)

lemma enat-add-left-cancel-less: a + b < a + ¢ <— a # (coenat) A b < ¢
{proof)

lemma plus-eq-infty-iff-enat: (m::enat) + n = 00 +— m=o00 V n=00
(proof)
(ML)
TODO: add regression tests for these simprocs

TODO: add simprocs for combining and cancelling numerals

36.9 Well-ordering

lemma less-enatE:
[n < enat m; Nk. [n = enat k; k < m] = P] = P
(proof)

lemma less-infinityE:
[n < o0; Ak. n = enat k = P] = P
(proof)

lemma enat-less-induct:
assumes An. Vm:enat. m <n — Pm = Pn
shows P n

(proof)

instance enat :: wellorder
(proof)

36.10 Complete Lattice

instantiation enat :: complete-lattice
begin

definition inf-enat :: enat = enat = enat where
inf-enat = min

definition sup-enat :: enat = enat = enat where
sup-enat = max

definition Inf-enat :: enat set = enat where
Inf-enat A = (if A = {} then oo else (LEAST x. z € A))

THEORY “Liminf-Limsup” 272

definition Sup-enat :: enat set = enat where
Sup-enat A = (if A = {} then 0 else if finite A then Maz A else c0)

instance

(proof)

end
instance enat :: complete-linorder (proof)

lemma eSuc-Sup: A # {} = eSuc (Sup A) = Sup (eSuc ‘ A)
(proof)

lemma sup-continuous-eSuc: sup-continuous f = sup-continuous (Az. eSuc (f z))

(proof)

36.11 Traditional theorem names
lemmas enat-defs = zero-enat-def one-enat-def eSuc-def

plus-enat-def less-eq-enat-def less-enat-def

lemma iadd-is-0: (m + n = (0:enat)) = (m =0 An=20)
{proof)

lemma i0-1b : (0::enat) < n
(proof)

lemma ile0-eq: n < (0::enat) +— n =0
{proof)

lemma not-iless0: = n < (0::enat)
{proof)

lemma i0-less[simp]: (0::enat) < n +— n # 0
{proof)

lemma imult-is-0: ((m::enat) x n = 0) = (m =0V n=0)
{proof)

end

37 Liminf and Limsup on conditionally complete
lattices
theory Liminf-Limsup

imports Complex-Main
begin

THEORY “Liminf-Limsup” 273

lemma (in conditionally-complete-linorder) le-cSup-iff:
assumes A # {} bdd-above A
shows z < Sup A +— (Vy<z. Ja€A. y < a)

(proof)

lemma (in conditionally-complete-linorder) le-cSUP-iff:
A # {} = bdd-above (f‘A) = = < Sup (f * 4) +— (Vy<z. JicA. y < f1i)
(proof)

lemma le-cSup-iff-less:

fixes z :: 'a :: {conditionally-complete-linorder, dense-linorder}

shows A # {} = bdd-above (f'A) = = < (SUP i€A. fi) +— (Vy<z. JicA.
y < fi)

{proof)

lemma le-Sup-iff-less:
fixes z :: ‘a :: {complete-linorder, dense-linorder}
shows z < (SUP i€A. fi) «— (Vy<z. JicA. y < fi) (is ?lhs = ?rhs)
{proof)

lemma (in conditionally-complete-linorder) cInf-le-iff:
assumes A # {} bdd-below A
shows Inf A < z +— (Vy>z. Ja€A. y > a)
(proof)

lemma (in conditionally-complete-linorder) cINF-le-iff:
A # {} = bdd-below (f‘A) = Inf (f ‘A) < z +— Vy>z. FicA. y > f1)
{proof)

lemma cInf-le-iff-less:

fixes z :: ‘a :: {conditionally-complete-linorder, dense-linorder}

shows A # {} = bdd-below (f‘A) = (INF i€A. fi) < z +— (Vy>z. JicA.
fi<uy)

{proof)

lemma Inf-le-iff-less:
fixes z :: ‘a :: {complete-linorder, dense-linorder}
shows (INF i€A. fi) < z «— (Vy>z. FicA. fi < y)
{proof)

lemma SUP-pair:
fixes f i1 - = - = - 1 complete-lattice
shows (SUP i€ A. SUPje€ B. fij) = (SUPpe€ A x B. f (fst p) (snd p))
(proof)

lemma INF-pair:
fixes f i1 - = - = - 1 complete-lattice
shows (INF i€ A. INFje B. fij)=(INFpe A x B. f (fstp) (snd p))
{proof)

THEORY “Liminf-Limsup” 274

lemma INF-Sigma:
fixes f :: - = - = - 1 complete-lattice
shows (INF i€ A. INFj e Bi. fij) = (INFp e Sigma A B. f (fst p) (snd p))
(proof)

37.0.1 Liminf and Limsup

definition Liminf :: 'a filter = (‘a = 'b) = b :: complete-lattice where
Liminf F f = (SUP Pe{P. eventually P F}. INF z€{z. P z}. f x)

definition Limsup :: 'a filter = (‘a = 'b) = 'b :: complete-lattice where
Limsup F f = (INF Pe{P. eventually P F}. SUP z€{z. P z}. f z)

abbreviation liminf = Liminf sequentially
abbreviation limsup = Limsup sequentially

lemma Liminf-eql:
(AP. eventually P F = Inf (f ‘ (Collect P)) < z) =
(Ay. (AP. eventually P F = Inf (f ‘ (Collect P)) < y) = z < y) = Liminf
Ff=x
(proof)

lemma Limsup-eql:
(A\P. eventually P F —> z < Sup (f ‘ (Collect P))) =
(Ay. (AP. eventually P F = y < Sup (f ¢ (Collect P))) = y < z) =
Limsup F f =«
(proof)

lemma liminf-SUP-INF: liminf f = (SUP n. INF me{n..}. f m)
{proof)

lemma limsup-INF-SUP: limsup f = (INF n. SUP me{n..}. f m)
{proof)

lemma mem-limsup-iff: © € limsup A +— (I r n in sequentially. x € A n)
(proof)

lemma mem-liminf-iff: © € liminf A «+— (Vg n in sequentially. x € A n)
(proof)

lemma Limsup-const:
assumes niriv: - trivial-limit F
shows Limsup F (Az. ¢) = ¢

(proof)

lemma Liminf-const:
assumes niriv: - trivial-limit F

THEORY “Liminf-Limsup”

shows Liminf F (A\z. ¢) = ¢
(proof)

lemma Liminf-mono:
assumes ev: eventually (A\z. fo < gz) F
shows Liminf F f < Liminf F g
(proof)

lemma Liminf-eq:
assumes eventually (Az. fz = gz) F
shows Liminf F f = Liminf F g
(proof)

lemma Limsup-mono:
assumes ev: eventually (Az. fo < gz) F
shows Limsup F f < Limsup F g

(proof)

lemma Limsup-eq:
assumes eventually (Az. fx = g) net
shows Limsup net f = Limsup net g

{proof)

lemma Liminf-bot[simp|: Liminf bot f = top

{proof)

lemma Limsup-bot[simp|: Limsup bot f = bot

{proof)

lemma Liminf-le-Limsup:
assumes ntriv: - trivial-limit F
shows Liminf F f < Limsup F f
(proof)

lemma Liminf-bounded:
assumes le: eventually (An. C < X n) F
shows C < Liminf F X

{proof)

lemma Limsup-bounded:
assumes le: eventually (An. X n < C) F
shows Limsup F X < C

{proof)

lemma le-Limsup:

assumes F: F £ botand z:Vpxin F. I < fz

shows [< Limsup F f
(proof)

275

THEORY “Liminf-Limsup” 276

lemma Liminf-le:
assumes I: F # bot and z: Vp zin F. fo <1
shows Liminf F f < I
(proof)

lemma le-Liminf-iff:

fixes X :: - = - 1 complete-linorder

shows C < Liminf F X +— (Vy<C. eventually (A\z. y < X z) F)
(proof)

lemma Limsup-le-iff:

fixes X :: - = - 1 complete-linorder

shows C > Limsup F X «— (Vy>C. eventually (A\z. y > X z) F)
(proof)

lemma less-LiminfD:
y < Liminf F (f = - = 'a :: complete-linorder) = eventually (\z. fz > y) F
{proof)

lemma Limsup-lessD:
y > Limsup F (f 2 - = 'a 1 complete-linorder) = eventually (Az. fz < y) F

{proof)

lemma lim-imp-Liminf:
fixes f :: 'a = - i {complete-linorder,linorder-topology}
assumes ntriv: — trivial-limit F
assumes lim: (f —— f0) F
shows Liminf F f = f0
(proof)

lemma lim-imp-Limsup:
fixes f :: 'a = - i {complete-linorder,linorder-topology}
assumes ntriv: = trivial-limit F
assumes lim: (f —— f0) F
shows Limsup F f = f0
(proof)

lemma Liminf-eq-Limsup:
fixes f0 :: 'a :: {complete-linorder linorder-topology}
assumes ntriv: - trivial-limit F
and lim: Liminf F f = fO0 Limsup F f = f0
shows (f —— f0) F
(proof)

lemma tendsto-iff-Liminf-eq-Limsup:

fixes f0 :: 'a :: {complete-linorder linorder-topology}

shows - trivial-limit F = (f —— f0) F «— (Liminf F f = fO N Limsup F f
= f0)

(proof)

THEORY “Liminf-Limsup” 277

lemma liminf-subseq-mono:
fixes X :: nat = ’a :: complete-linorder
assumes strict-mono r
shows liminf X < liminf (X o r)

(proof)

lemma limsup-subseq-mono:
fixes X :: nat = 'a :: complete-linorder
assumes strict-mono r
shows limsup (X o r) < limsup X

(proof)

lemma continuous-on-imp-continuous-within:
continuous-on s f = t C s = x € s = continuous (at x within t) f

(proof)

lemma Liminf-compose-continuous-mono:

fixes f :: 'a::{ complete-linorder, linorder-topology} = 'b::{ complete-linorder, linorder-topology}
assumes c: continuous-on UNIV f and am: mono f and F: F # bot
shows Liminf F (An. f (g n)) = f (Liminf F g)

(proof)

lemma Limsup-compose-continuous-mono:

fixes f :: 'a::{ complete-linorder, linorder-topology} = 'b::{ complete-linorder, linorder-topology}
assumes c: continuous-on UNIV f and am: mono f and F: F # bot
shows Limsup F (An. f (¢ n)) = f (Limsup F g)

(proof)

lemma Liminf-compose-continuous-antimono:
fixes f :: 'a::{ complete-linorder,linorder-topology} = 'b::{ complete-linorder,linorder-topology }
assumes c: continuous-on UNIV f
and am: antimono f
and F: F # bot
shows Liminf F (An. f (¢ n)) = f (Limsup F g)
(proof)

lemma Limsup-compose-continuous-antimono:

fixes f :: 'a::{complete-linorder, linorder-topology} = 'b::{ complete-linorder, linorder-topology}
assumes c: continuous-on UNIV f and am: antimono f and F: F # bot
shows Limsup F (An. f (g n)) = f (Liminf F g)

(proof)

lemma Liminf-filtermap-le: Liminf (filtermap f F) g < Liminf F (Az. g (f z))
(proof)

lemma Limsup-filtermap-ge: Limsup (filtermap f F) g > Limsup F (Az. g (f z))
(proof)

THEORY “Liminf-Limsup” 278

lemma Liminf-least: (\P. eventually P F = (INF z€Collect P. fz) < z) =
Liminf F f < x
{proof)

lemma Limsup-greatest: (A\P. eventually P F —> z < (SUP z€Collect P. f 1))
= Limsup F f > ¢
(proof)

lemma Liminf-filtermap-ge: inj f = Liminf (filtermap f F) g > Liminf F (A\z.
g9 (fz))
(proof)

lemma Limsup-filtermap-le: inj f = Limsup (filtermap f F) g < Limsup F (\z.

g9 (fz))
(proof)

lemma Liminf-filtermap-eq: inj f = Liminf (filtermap f F) g = Liminf F (\z.
g (fx))
{proof)

lemma Limsup-filtermap-eq: inj f => Limsup (filtermap f F) g = Limsup F (\z.

g (fz))
(proof)

37.1 More Limits

lemma convergent-limsup-cl:
fixes X :: nat = ‘a::{complete-linorder,linorder-topology }
shows convergent X = limsup X = lim X

(proof)

lemma convergent-liminf-cl:
fixes X :: nat = ‘a::{complete-linorder,linorder-topology}
shows convergent X = liminf X = lim X

(proof)

lemma lim-increasing-cl:
assumes Anm.n>m = fn>fm
obtains | where f —— (I::'a::{ complete-linorder,linorder-topology})

(proof)

lemma lim-decreasing-cl:
assumes Anm.n>m = fn<fm
obtains [where f —— (I::'a::{ complete-linorder,linorder-topology})

(proof)

lemma compact-complete-linorder:
fixes X :: nat = 'a::{complete-linorder,linorder-topology}
shows 31 r. strict-mono r A (X o r) —— 1

THEORY “Extended-Real” 279

(proof)

lemma tendsto-Limsup:
fixes f :: - = 'a :: {complete-linorder,linorder-topology}
shows F # bot = Limsup F f = Liminf F f = (f —— Limsup F f) F
(proof)

lemma tendsto-Liminf:
fixes f :: - = 'a :: {complete-linorder,linorder-topology}
shows F # bot = Limsup F f = Liminf F f = (f —— Liminf F f) F
(proof)

end

38 Extended real number line

theory FExtended-Real
imports Complex-Main Ezxtended-Nat Liminf-Limsup
begin

This should be part of HOL— Library. Extended-Nat or HOL— Library. Order- Continuity,
but then the AFP-entry Jinja- Thread fails, as it does overload certain named
from Complex-Main.

lemma incseq-sumli2:
fixes [:: i = nat = 'a::ordered-comm-monoid-add
shows (An. n € A = mono (f n)) = mono (Ai. >_n€A. fni)

{proof)

lemma incseq-sumli:
fixes [:: nat = 'a::ordered-comm-monoid-add
assumes Ai. 0 < fi
shows incseq (Ai. sum f {..< i})

(proof)

lemma continuous-at-left-imp-sup-continuous:
fixes f :: 'a::{complete-linorder, linorder-topology} = 'b::{ complete-linorder, linorder-topology}
assumes mono f Az. continuous (at-left) f
shows sup-continuous f

(proof)

lemma sup-continuous-at-left:
fixes [:: 'a::{complete-linorder, linorder-topology, first-countable-topology} =
'b::{ complete-linorder, linorder-topology}
assumes f: sup-continuous f
shows continuous (at-left x) f

(proof)

lemma sup-continuous-iff-at-left:
fixes f :: 'a::{complete-linorder, linorder-topology, first-countable-topology} =

THEORY “Extended-Real” 280

'b::{ complete-linorder, linorder-topology}
shows sup-continuous f +— (V. continuous (at-left x) f) A mono f

{proof)

lemma continuous-at-right-imp-inf-continuous:

fixes f :: 'a::{complete-linorder, linorder-topology} = 'b::{ complete-linorder, linorder-topology}
assumes mono f Az. continuous (at-right x) f

shows inf-continuous f

{proof)

lemma inf-continuous-at-right:
fixes f :: 'a::{complete-linorder, linorder-topology, first-countable-topology} =
'b::{ complete-linorder, linorder-topology}
assumes f: inf-continuous f
shows continuous (at-right x) f

(proof)

lemma inf-continuous-iff-at-right:
fixes f :: 'a::{complete-linorder, linorder-topology, first-countable-topology} =
'b::{ complete-linorder, linorder-topology}
shows inf-continuous f +— (Vz. continuous (at-right z) f) A mono f

{proof)

instantiation enat :: linorder-topology
begin

definition open-enat :: enat set = bool where
open-enat = generate-topology (range lessThan U range greaterThan)

instance

(proof)

end

lemma open-enat: open {enat n}
(proof)

lemma open-enat-iff:
fixes A :: enat set
shows open A «+— (00 € A — (Fnunat. {n <.} C A4))

(proof)

lemma nhds-enat: nhds x = (if x = oo then INF i. principal {enat i..} else principal
{=})
(proof)

instance enat :: topological-comm-monoid-add

(proof)

For more lemmas about the extended real numbers see ~~/src/HOL/

THEORY “Extended-Real”

Analysis/Extended_Real_Limits.thy.

38.1 Definition and basic properties
datatype ereal = ereal real | PInfty | MInfty

instantiation ereal :: uminus
begin

fun uminus-ereal where
— (ereal r) = ereal (— 1)

| — PInfty = MInfty

| — MInfty = Plnfty

instance (proof)
end

instantiation ereal :: infinity
begin

definition (co::ereal) = Plnfty
instance (proof)

end
declare [[coercion ereal :: real = ereal]]

lemma ereal-uminus-uminus|[simpl:
fixes a :: ereal
shows — (— a) = a
(proof)

lemma
shows PInfty-eg-infinity[simp]: Plnfty = oo
and MInfty-eq-minfinity|simp|: MInfty = —oo

and MInfty-neq-PInfty[simp]: co # — (co::ereal) —oo # (oco::ereal)
and MInfty-neg-ereal[simp]: ereal r # —o0 —oo # ereal 1
and Plnfty-neg-ereal[simp]: ereal r # 00 0o # ereal r

281

and Plnfty-cases[simp]: (case oo of ereal r = fr | Plnfty = y | Minfty = z)

=Y

and Mlnfty-cases[simp]: (case —oo of ereal v = fr | Plnfty = y | MInfty =

z) =2z
(proof)
declare

PlInfty-eq-infinity[code-post]
MInfty-eq-minfinity[code-post)

THEORY “Extended-Real” 282

lemma [code-unfold):
oo = Plnfty
— PInfty = MlInfty
(proof)

lemma inj-ereal[simp]: inj-on ereal A
(proof)

lemma ereal-cases|cases type: ereal]:
obtains (real) r where z = ereal r
| (PInf) z = o0
| (MInf) z = —oc0
(proof)

lemmas ereal2-cases = ereal-cases|case-product ereal-cases]
lemmas ereal3-cases = ereal2-cases|[case-product ereal-cases]

lemma ereal-all-split: AP. (Vz:ereal. P) <— P oo A (Vz. P (ereal x)) N P
(—00)
{proof)

lemma ereal-ex-split: AP. (3z::ereal. P z) «— P oo V (z. P (ereal z)) V P
(—o0)
(proof)

lemma ereal-uminus-eq-iff [simp]:
fixes a b :: ereal
shows —a = —-b<+—a=10»
(proof)

function real-of-ereal :: ereal = real where
real-of-ereal (ereal r) = r

| real-of-ereal co = 0

| real-of-ereal (—o0) = 0
(proof)

termination (proof)

lemma real-of-ereal[simp]:
real-of-ereal (— z :: ereal) = — (real-of-ereal x)
{proof)

lemma range-ereal]simp): range ereal = UNIV — {oco, —oco}

(proof)

lemma ereal-range-uminus[simp|: range uminus = (UNIV ::ereal set)
(proof)

instantiation ereal :: abs
begin

THEORY “Extended-Real” 283

function abs-ereal where
|ereal r| = ereal |r|

| |[—oo| = (o0::ereal)

| Joo| = (o00::ereal)

(proof)

termination (proof)
instance (proof)
end

lemma abs-eg-infinity-cases|elim!]:
fixes = :: ereal
assumes |z| = o0
obtains z = 00 | z = —©
(proof)

lemma abs-neq-infinity-cases|elim!]:
fixes z :: ereal
assumes |z| # o0
obtains r where z = ereal r

{proof)

lemma abs-ereal-uminus|simp):
fixes z :: ereal
shows |— z| = |z
{proof)

lemma ereal-infinity-cases:
fixes a :: ereal
shows a # 0o = a # —00 = |a| #
(proof)

38.1.1 Addition

instantiation ereal :: {one,comm-monoid-add,zero-neq-one}
begin

definition 0 = ereal 0
definition I = ereal 1

function plus-ereal where
ereal 7 + ereal p = ereal (r + p)
| 00 + a = (co:ereal)
| @ + 0o = (occ::ereal)
| ereal r + —00 = —c0
| —00 + ereal p = —(o0::ereal)
| —00 + —o0 = —(o0::ereal)

THEORY “Extended-Real”

(proof)

termination (proof)

lemma Infty-neq-0[simp]:
(co:zereal) # 0 0 # (oo::ereal)
—(oc::ereal) # 0 0 # —(oco::ereal)
(proof)

lemma ereal-eg-0[simp):
erealr =0 4—1r =10
0=erealr <— 1 =10

{proof)

lemma ereal-eq-1[simp):
ereal T =1 +— 1 =1
1 =erealr «— r=1

(proof)

instance
(proof)

end

lemma ereal-0-plus [simp): ereal 0 + = = x
and plus-ereal-0 [simp: + ereal 0 = x
(proof)

instance ereal :: numeral (proof)

lemma real-of-ereal-0[simp]: real-of-ereal (0::ereal) = 0

{proof)

lemma abs-ereal-zero[simp]: |0 = (0::ereal)
{proof)

lemma ereal-uminus-zero[simp|: — 0 = (0::ereal)
(proof)

lemma ereal-uminus-zero-iff [simpl:
fixes a :: ereal
shows —a =0 +—a=10
(proof)

lemma ereal-plus-eq-Plnfty|simp]:
fixes a b :: ereal
shows a + b=o0 +—>a=0c0 V b= 00

(proof)

lemma ereal-plus-eq-MInfty[simp]:

284

THEORY “Extended-Real” 285

fixes a b :: ereal
shows a + b= -0 ¢— (a=—-00Vb=—-c0)ANa#oc0Ab#
{proof)

lemma ereal-add-cancel-left:
fixes a b :: ereal
assumes a # —o0
shows a +b=a+ c+—a=xVb=c
(proof)

lemma ereal-add-cancel-right:
fixes a b :: ereal
assumes a # —o0
shows b+ a=c+a+—a=00Vb=c

(proof)

lemma ereal-real: ereal (real-of-ereal x) = (if |z| = oo then 0 else x)
{proof)

lemma real-of-ereal-add:
fixes a b :: ereal
shows real-of-ereal (a + b) =
(if (Ja| = 00) A (|b] = 00) V (|a| # o0) A (|b] # o) then real-of-ereal a +
real-of-ereal b else 0)
(proof)

38.1.2 Linear order on ereal

instantiation ereal :: linorder
begin

function less-ereal

where

ereal x < ereal y —r <y
| (couereal) < a «— False
| a < —(oo::ereal) «— False
| ereal x < oo +— True
| —oo < ereal v <— True
| —o00 < (oco:ereal) «— True
(proof)
termination (proof)

definition z < (y:ereal) +— < yVz=y

lemma ereal-infty-less|simpl:
fixes z :: ereal
shows z < 00 +— (z #)
—00 < 2 — (z # —0)
(proof)

THEORY “Extended-Real”

lemma ereal-infty-less-eq[simp]:

fixes z :: ereal

shows oo < 2z +— 2 = ©
and z < —c0 +— . = —©

{proof)

lemma ereal-less[simp):
ereal < 0 +— (r < 0
0 < ereal 7 <— (
ereal m < 1 «— (r < 1
1 < ereal m +— (
0 < (oo::ereal)
—(oo::zereal) < 0

(proof)

lemma ereal-less-eq[simp):

z < (oo::ereal)
—(o0:zereal) < x

ereal r < ereal p <— r < p

ereal T < 0 +—1r <0
0<erealr<+— 0<r
ereal T < 1 +—r < I
1 <erealr «—— 1 <r

{proof)

lemma ereal-infty-less-eq2:
a<b= a=o00= b= (couereal)
a<b= b= —00= a= —(o0:ereal)

{proof)

instance

(proof)

end

lemma ereal-dense2: x < y = Jz. © < ereal z N\ ereal z < y

{proof)

instance ereal ::

{proof)

instance ereal ::

(proof)

lemma ereal-one-not-less-zero-ereal[simp]: = 1 < (0::ereal)

(proof)

dense-linorder

ordered-comm-monoid-add

lemma real-of-ereal-positive-mono:

286

THEORY “Extended-Real” 287

fixes z y :: ereal
shows 0 <z = 2z < y = y # 0o = real-of-ereal x < real-of-ereal y

{proof)

lemma ereal-MInfty-lessI[intro, simpl:
fixes a :: ereal
shows a # —00 = —00 < a

{proof)

lemma ereal-less-PInfty[intro, simp]:
fixes a :: ereal
shows a # 00 = a4 < ©

{proof)

lemma ereal-less-ereal-Ex:
fixes a b :: ereal
shows z < ereal r +— = —o0 V (Ip. p < r A = = ereal p)

{proof)

lemma less-PInf-Ex-of-nat: x # oo +— (I nunat. © < ereal (real n))

(proof)

lemma ereal-add-strict-mono2:
fixes a b ¢ d :: ereal
assumes a < band ¢c < d
shows a + c < b+ d

{proof)

lemma ereal-minus-le-minus|[simp]:
fixes a b :: ereal
shows —a < —b+—b<a
(proof)

lemma ereal-minus-less-minus[simp):
fixes a b :: ereal
shows —a < - b+—=b<a

(proof)

lemma ereal-le-real-iff:
z < real-of-ereal y <— (|y| # co —> ereal z < y) A (Jy| =00 — z < 0)
{proof)

lemma real-le-ereal-iff:
real-of-ereal y < x <— (Jy| # o0 — y < ereal) A (Jy| = 0o — 0 < 1)
{proof)

lemma ereal-less-real-iff:
z < real-of-ereal y <— (|y| # 0o —> ereal z < y) A (Jy| = 00 — z < 0)

{proof)

THEORY “Extended-Real”

lemma real-less-ereal-iff:

real-of-ereal y < x +— (Jy| # 00 — y < ereal z) A (Jy| = c0o — 0 < x)

{proof)

To help with inferences like [a < ereal z; z < y] = a < ereal y, where

x and y are real.

lemma le-ereal-le: a < ereal z = x < y = a < ereal y
(proof)

lemma le-ereal-less: a < ereal x = x < y = a < ereal y

(proof)

lemma less-ereal-le: a < ereal x = x < y = a < ereal y
(proof)

lemma ereal-le-le: ereal y < a = xz < y = ereal z < a
(proof)

lemma ereal-le-less: ereal y < o = = < y = ereal z < a
(proof)

lemma ereal-less-le: ereal y < a = 2 < y = ereal z < a

{proof)

lemma real-of-ereal-pos:
fixes z :: ereal
shows 0 < z = 0 < real-of-ereal x

{proof)

lemmas real-of-ereal-ord-simps =

ereal-le-real-iff real-le-ereal-iff ereal-less-real-iff real-less-ereal-iff

lemma abs-ereal-geO[simp]: 0 < x = |z :: ereal| = x
(proof)

lemma abs-ereal-lessO[simp): x < 0 = |z :: ereal| = —zx

(proof)

lemma abs-ereal-pos[simp]: 0 < |z :: ereal|
{proof)

lemma ereal-abs-lel:
fixes = y :: ereal
shows [z < y; —z<y] = |z| <y
(proof)

lemma ereal-abs-add:
fixes a b::ereal

THEORY “Extended-Real” 289

shows abs(a+b) < abs a + abs b
{proof)

lemma real-of-ereal-le-0[simp]: real-of-ereal (x :: ereal) < 0 +— < 0V . = 0
(proof)

lemma abs-real-of-ereal[simp|: |real-of-ereal (z :: ereal)| = real-of-ereal ||
{proof)

lemma zero-less-real-of-ereal:
fixes z :: ereal
shows 0 < real-of-ereal © +— 0 < x Nz # o0

{proof)

lemma ereal-0-le-uminus-iff [simp]:
fixes a :: ereal
shows 0 < —a<+—a <0

{proof)

lemma ereal-uminus-le-0-iff [simp]:
fixes a :: ereal
shows —a < 0 +— 0<a
(proof)

lemma ereal-add-strict-mono:
fixes a b ¢ d :: ereal
assumes a < b
and 0 < a
and a # c©
and ¢ < d
shows a + ¢ < b+ d

(proof)

lemma ereal-less-add:
fixes a b ¢ :: ereal
shows [a| #c0o = c<b=a+c<a+b

(proof)

lemma ereal-uminus-eq-reorder: — a = b «— a = (—b::ereal)
{proof)

lemma ereal-uminus-less-reorder: — a < b +—— —b < a
and ereal-less-uminus-reorder: a < — b<+— b < — a
and ereal-uminus-le-reorder: — a < b <— —b < qa for a::ereal

{proof)

lemmas ereal-uminus-reorder =
ereal-uminus-eq-reorder ereal-uminus-less-reorder ereal-uminus-le-reorder

THEORY “Extended-Real” 290

lemma ereal-bot:
fixes z :: ereal
assumes A\B. z < ereal B
shows z = —o0

(proof)

lemma ereal-top:
fixes z :: ereal
assumes A\B. z > ereal B
shows z =

(proof)

lemma
shows ereal-maz(simp|: ereal (max z y) = maz (ereal) (ereal y)
and ereal-min[simp|: ereal (min x y) = min (ereal z) (ereal y)

(proof)

lemma ereal-maz-0: maz 0 (ereal r) = ereal (maz 0)
{proof)

lemma
fixes f :: nat = ereal
shows ereal-incseq-uminus[simp)|: incseq (A\x. — f) +— decseq f
and ereal-decseq-uminus[simp|: decseq (Az. — fz) «— incseq f

{proof)

lemma incseq-ereal: incseq f = incseq (Az. ereal (f x))
(proof)

lemma sum-ereal[simp]: (3 z€A. ereal (f z)) = ereal (> xz€A. f1x)

(proof)

lemma sum-list-ereal [simp]: sum-list (map (Ax. ereal (f z)) zs) = ereal (sum-list
(map f zs))
{proof)

lemma sum-Pinfty:

fixes [:: 'a = ereal

shows (3" z€P. fz) = 0o «— finite P A\ (i€P. fi = o0)
(proof)

lemma sum-Inf:

fixes [:: 'a = ereal

shows |sum f A| = co +— finite A A (Fi€A. |fi| = o0)
(proof)
lemma sum-real-of-ereal:

fixes f :: i = ereal
assumes A\z. z € S = |fz] # ©

THEORY “Extended-Real” 291

shows (> z€S. real-of-ereal (f z)) = real-of-ereal (sum f S)
(proof)

38.1.3 Multiplication

instantiation ereal :: {comm-monoid-mult,sgn}
begin

function sgn-ereal :: ereal = ereal where
sgn (ereal r) = ereal (sgn r)

| sgn (oo::ereal) = 1

| sgn (—oo::ereal) = —1

(proof)

termination (proof)

function times-ereal where

ereal T * ereal p = ereal (v * p)
| ereal m % oo = (if r = 0 then 0 else if v > 0 then oo else —o0)
| 0o * ereal v = (if r = 0 then 0 else if r > 0 then 0o else —o0)
| ereal 7« —oco = (if r = 0 then 0 else if r > 0 then —oco else 00)
| —oco * ereal r = (if r = 0 then 0 else if r > 0 then —oo else o)
| (co::ereal) * 0o = oo

| —(oc0::ereal) * co = —o0
| (co:ereal) x —oo = —o0
| —(oco:zereal) x —oo = 00
(proof)

termination (proof)
instance

(proof)

end

lemma [simp]:
shows ereal-1-times: ereal 1 * x = x
and times-ereal-1: ¢ * ereal 1 = x

(proof)

lemma one-not-le-zero-ereal[simp]: = (1 < (0::ereal))
{proof)

lemma real-ereal-1[simp): real-of-ereal (1::ereal) = 1
(proof)

lemma real-of-ereal-le-1:
fixes a :: ereal
shows a < 1 = real-of-ereal a < 1

(proof)

THEORY “Extended-Real”

lemma abs-ereal-one[simpl: |1]| = (1::ereal)
{proof)

lemma ereal-mult-zero[simp):
fixes a :: ereal
shows a *x 0 = 0

{proof)

lemma ereal-zero-mult[simp):
fixes a :: ereal
shows 0 *x a = 0

{proof)

lemma ereal-m1-less-0[simp]: —(1::ereal) < 0

(proof)

lemma ereal-times[simp]:
1 # (oco:ereal) (oco::ereal) # 1
1 # —(oco:zereal) —(oo::ereal) # 1
{proof)

lemma ereal-plus-1[simp]:

1 + ereal r = ereal (r + 1)
ereal T + 1 = ereal (r + 1)

1 4+ —(ocozereal) = —o0
—(o0::ereal) + 1 = —o0
(proof)

lemma ereal-zero-times|simp):
fixes a b :: ereal
shows ax b=0<¢+—=a=0V b=0

(proof)

lemma ereal-mult-eq-PInfty[simpl:
ax b = (oco:ereal) «—

292

(a=c0AbD>0)V(a>0ANb=0)V (a=-0Ab<0)V(a<OANb=

—0)
{proof)

lemma ereal-mult-eq-MInfty|simp]:
a* b= —(co:ereal) +—

(a=00Ab<0)V(a<OANb=o)V(a=-00Ab>0)V(a>0ANb=

—00)
(proof)

lemma ereal-abs-mult: |z * y :: ereal| = |z| * |y|

(proof)

lemma ereal-0-less-1[simp]: 0 < (1::ereal)

THEORY “Extended-Real” 293

{proof)

lemma ereal-mult-minus-left[simp]:
fixes a b :: ereal
shows —a x b = — (a * b)

{proof)

lemma ereal-mult-minus-right[simp):
fixes a b :: ereal
shows a x —b = — (a x b)

(proof)

lemma ereal-mult-infty[simp:
a * (couereal) = (if a = 0 then 0 else if 0 < a then oo else —o0)

(proof)

lemma ereal-infty-mult[simp]:
(co:zereal) * a = (if a = 0 then 0 else if 0 < a then oo else —o0)
{proof)

lemma ereal-mult-strict-right-mono:
assumes a < b
and 0 < ¢
and ¢ < (oco:ereal)
shows a x ¢ < b *x ¢

(proof)

lemma ereal-mult-strict-left-mono:
a<b=0<c= c< (oouereal) = c*xa<cxb

{proof)

lemma ereal-mult-right-mono:
fixes a b ¢ :: ereal
assumes ¢ < b 0 < ¢
shows a x ¢ < b x ¢

(proof)

lemma ereal-mult-left-mono:
fixes a b ¢ :: ereal
shows a < b—=0<c=—=cxa<cx*xb
(proof)

lemma ereal-mult-mono:
fixes a b ¢ d::ereal
assumes b > 0c>0a<bc<d
shows a x ¢ < b x d

(proof)

lemma ereal-mult-mono’:

THEORY “Extended-Real”

fixes a b ¢ d::ereal
assumes ¢ > 0c>0a<bc<d
shows a x ¢ < b x d

(proof)

lemma ereal-mult-mono-strict:
fixes a b ¢ d::ereal
assumes b > 0c>0a<bc<d
shows a x ¢ < b *x d

{(proof)

lemma ereal-mult-mono-strict”:
fixes a b ¢ d::ereal
assumes a > 0c>0a<bec<d
shows a x ¢ < b * d

(proof)

lemma zero-less-one-ereal[simp|: 0 < (1::ereal)
{proof)

lemma ereal-0-le-mult[simp]: 0 < a = 0 < b= 0 < a * (b

{proof)

lemma ereal-right-distrib:
fixes r a b :: ereal
shows 0 <a=0<b=rx(a+b)=rxa+rxb
(proof)

lemma ereal-left-distrib:
fixes 7 a b :: ereal
shows 0 <a=0<b=(a+b)xr=a*xr+bxr
(proof)

lemma ereal-mult-le-0-iff:
fixes a b :: ereal
shows a x b < 0+— (0<aANb<0)V(a<O0ANO<LD
(proof)

lemma ereal-zero-le-0-iff:
fixes a b :: ereal
shows 0 <axb+— (0<aN0<b)V(a<0ADbLDO)
(proof)

lemma ereal-mult-less-0-iff:
fixes a b :: ereal
shows a x b < 0 +— (0 <aANb<0)V(a<O0ANO<D)

(proof)

lemma ereal-zero-less-0-iff:

ereal)

294

THEORY “Extended-Real” 295

fixes a b :: ereal
shows 0 <axb+—= (0 <aN0<b)V(ia<O0ANDb<DO)

{proof)

lemma ereal-left-mult-cong:
fixes a b c :: ereal
shows c=d= (d#0=a=0b)=axc=0bxd
{proof)

lemma ereal-right-mult-cong:
fixes a b ¢ :: ereal
shows c=d = (d#0 = a=b) = cxa=dxDb
{proof)

lemma ereal-distrib:
fixes a b ¢ :: ereal
assumes g # 00 V b # —©
and a # —o0 V b # o0
and |¢| #
shows (a + b) x c=axc+ bx*c
(proof)

lemma numeral-eg-ereal [simp]: numeral w = ereal (numeral w)
(proof)

lemma m1-ereal-less-iff [simp]:
((—1::ereal) < numeral a) <— ((—1::real) < numeral a)
{proof)

lemma m1-ereal-le-iff [simp]:
((—1::ereal) < numeral a) +— ((—1:real) < numeral a)
{proof)

lemma m1-ereal-eg-iff [simp]:
((—1::ereal) = numeral a) <— ((—1::real) = numeral a)

{proof)

lemma ereal-less-m1-iff [simp]:
(numeral a < (—1::ereal)) «— (numeral a < (—1::real))
{proof)

lemma ereal-le-m1-iff [simp]:
(numeral a < (—1::ereal)) <— (numeral a < (—1::real))
(proof)

lemma ereal-eq-m1-iff [simp):
(numeral a = (—1::ereal)) +— (numeral a = (—1::real))
{proof)

THEORY “Extended-Real” 296

lemma distrib-left-ereal-nn:
c>0 = (z+y)* ereal c = x * ereal ¢ + y * ereal ¢

{proof)

lemma sum-ereal-right-distrib:
fixes [:: 'a = ereal
shows (Ni. i€ A= 0<fi)=r+xsumfA=(D_ncA rx*fn)
{proof)

lemma sum-ereal-left-distrib:
(Ni.i € A= 0<fi)= sumfAxr= (> ncA fnx*r: erel)
(proof)

lemma sum-distrib-right-ereal:
c>0 = sumfAxerealc= (Y z€A. fxxc:: ereal)

(proof)

lemma ereal-le-epsilon:
fixes x y :: ereal
assumes Ae. 0 <e= a2 <y + e
shows z < y

(proof)

lemma ereal-le-epsilon?2:
fixes z y :: ereal
assumes Aezreal. 0 < e =z < y + ereal e
shows z < y

(proof)

lemma ereal-le-real:
fixes z y :: ereal
assumes Az. z < ereal z = y < ereal z
shows y < z

{proof)

lemma prod-ereal-0:
fixes [:: 'a = ereal
shows ([[i€A. fi) = 0 «— finite AN (Fi€A. fi=0)
(proof)

lemma prod-ereal-pos:
fixes [:: 'a = ereal
assumes N\i. i € I = 0 < fi
shows 0 < ([]i€l. f1i)
(proof)

lemma prod-Plnf:
fixes [:: 'a = ereal
assumes A\i. i € I = 0 < fi

THEORY “Extended-Real” 297

shows ([[i€l. fi) = oo <— finite I A (Fi€l. fi = o00) A (Vi€l. fi # 0)
{proof)

lemma prod-ereal: ([] i€A. ereal (fi)) = ereal (prod f A)
(proof)

38.1.4 Power

lemma ereal-power[simpl: (ereal) ~n = ereal (z7n)
(proof)

lemma ereal-power-PInf[simp]: (co::ereal) ~n = (if n = 0 then 1 else 00)
{proof)

lemma ereal-power-uminus|simp]:
fixes z :: ereal
shows (— z) ~n = (if even n then x ~ n else — (z7n))
{proof)

lemma ereal-power-numeral]simp):
(numeral num :: ereal) ~n = ereal (numeral num ~ n)
(proof)

lemma zero-le-power-ereal[simp):
fixes a :: ereal
assumes 0 < a

o~

shows 0 < a " n
(proof)

38.1.5 Subtraction

lemma ereal-minus-minus-image[simp):
fixes S :: ereal set
shows uminus ‘ uminus ‘S = S

{proof)

lemma ereal-uminus-less Than[simp]:
fixes a :: ereal
shows uminus ‘ {..<a} = {—a<..}

{proof)

lemma ereal-uminus-greater Than[simp: uminus ‘ {(a:ereal)<..} = {.<—a}
{proof)

instantiation ereal :: minus
begin

definition z — y = z + —(y::ereal)
instance (proof)

THEORY “Extended-Real” 298

end

lemma ereal-minus[simp):
ereal r — ereal p = ereal (r — p)
—00 — ereal r = —00
ereal r —00 = —00
(coizereal) — z = oo
—(o0::ereal) —oo = —o0
r——y=z+Yy
T —0=zx
0—-—z=—2
(proof)

lemma ereal-z-minus-z[simp): * — z = (if |z| = oo then oo else 0::ereal)
{proof)

lemma ereal-eq-minus-iff:
fixes x y z :: ereal
shows z = 2z — y +—

(lyl # 00—z +y=2) A

(y = —00 — = 00) A

(y=00 — 2=00 — . =00) A

(y=00 — 2#£ 00 — = —00)
(proof)

lemma ereal-eq-minus:
fixes z y z :: ereal
shows |[y| oo =—=z=2—-y+— 2+ y==2
(proof)

lemma ereal-less-minus-iff:
fixes z y z :: ereal
shows z < z — y +—
(y=00 — 2=00 Az # 0) A
(y = —00 — z # 00) A
(lyl #oo— z + y < 2)
(proof)

lemma ereal-less-minus:
fixes x y z :: ereal
shows |y| oo =< z—-y+—z+y<z
(proof)

lemma ereal-le-minus-iff:

fixes x y z :: ereal

showsz < z—y+— (y=00 —2#00—2=-00)A (Jy #c00c — z+
y<2)

(proof)

THEORY “Extended-Real”

lemma ereal-le-minus:
fixes x y z :: ereal
shows |y oo =< z—-y+—z+y<z

{proof)

lemma ereal-minus-less-iff:
fixes x y z :: ereal

299

shows 2 — y< z+—= y# -0 A (y=00 —2z# 0N z# —00) A (y # 0

— < z+y)
(proof)

lemma ereal-minus-less:
fixes x y z :: ereal
shows |y| oo =1 —y<z+—z<z+4+y

(proof)

lemma ereal-minus-le-iff:
fixes x y z :: ereal
shows z — y < 2z +—
(y = —00 — z=00) A
(y=00 — =00 — 2=00) A
(ly| # 00 — z < 2+ y)
{proof)

lemma ereal-minus-le:
fixes z y z :: ereal
shows |y oo =1 —y<z+—>2<2+4+y

{proof)

lemma ereal-minus-eq-minus-iff:
fixes a b c :: ereal
shows ¢ —b=a — ¢ +—
b=cVa=ocoV(a=—-00Ab# —00Ac# —0)
(proof)

lemma ereal-add-le-add-iff:
fixes a b ¢ :: ereal
shows c + a < ¢+ b +—
a<bVec=o0oV(c=—-00Aa#00Ab#)
(proof)

lemma ereal-add-le-add-iff2:
fixes a b ¢ :: ereal

showsa+c<b+c—a<bVe=o00oV(c=—-00Aa#0c0Ab#)

{proof)

lemma ereal-mult-le-mult-iff:
fixes a b ¢ :: ereal

shows [c|] oo = c*xa<cxb+—> (0<c—a<bA(c<0—b<a)

THEORY “Extended-Real” 300

{proof)

lemma ereal-minus-mono:
fixes A BCD :: ereal assumes A < BD < (C
shows A — C < B - D
(proof)

lemma ereal-mono-minus-cancel:
fixes a b ¢ :: ereal
shows c —a<c—-b=—=0<c=—=c<oow=b<a

(proof)

lemma real-of-ereal-minus:

fixes a b :: ereal

shows real-of-ereal (a — b) = (if |a| = oo V |b] = oo then 0 else real-of-ereal a
— real-of-ereal b)

(proof)

lemma real-of-ereal-minus’: |z| = 0o +— |y| = co = real-of-ereal x — real-of-ereal
y = real-of-ereal (x — y :: ereal)

(proof)

lemma ereal-diff-positive:
fixes a b :: ereal shows a < b=— 0 <b — a

{proof)

lemma ereal-between:
fixes z e :: ereal
assumes |z| # oo and 0 < e
shows z — e < z
and x <z + e

(proof)

lemma ereal-minus-eq-PInfty-iff:
fixes x y :: ereal
shows z — y =00 +— y= -0 V=0
(proof)

lemma ereal-diff-add-eq-diff-diff-swap:
fixes x y z :: ereal
shows |y oo =z —(y+2) =2 —y — 2
(proof)

lemma ereal-diff-add-assoc2:
fixes x y z :: ereal
showsz +y —z2=2—2+y
(proof)

lemma ereal-add-uminus-conv-diff: fixes x y z :: ereal shows — z +y =y —

THEORY “Extended-Real” 301
(proof)

lemma ereal-minus-diff-eq:
fixes = y :: ereal
shows [2 =00 — y# 02 =-00 —y#-—-0]=—-(z—y) =y—=z

{proof)

lemma ediff-le-self [simp]: © — y < (z :: enat)
{proof)

lemma ereal-abs-diff:
fixes a b::ereal
shows abs(a—b) < abs a + abs b

{proof)

38.1.6 Division

instantiation ereal :: ‘nverse
begin

function inverse-ereal where

inverse (ereal) = (if r = 0 then oo else ereal (inverse r))
| inverse (co::ereal) = 0
| inverse (—oo::ereal) = 0

{proof)

termination (proof)

definition z div y = = * inverse (y :: ereal)
instance (proof)

end

lemma real-of-ereal-inverse|simp]:
fixes a :: ereal
shows real-of-ereal (inverse a) = 1 / real-of-ereal a

(proof)

lemma ereal-inverse[simp):
inverse (0::ereal) = 0o
inverse (1::ereal) = 1
(proof)

lemma ereal-divide[simp]:
ereal v / ereal p = (if p = 0 then ereal r x 0o else ereal (1 / p))
{proof)

lemma ereal-divide-same[simp):
fixes z :: ereal

THEORY “Extended-Real”

shows = / . = (if || = o0 V . = 0 then 0 else 1)
{proof)

lemma ereal-inv-inv[simp]:
fixes z :: ereal
shows inverse (inverse) = (if x # —oo then z else 00)
(proof)

lemma ereal-inverse-minus[simpl:
fixes x :: ereal
shows inverse (— z) = (if x = 0 then oo else —inverse x)

{proof)

lemma ereal-uminus-divide[simp]:
fixes z y :: ereal
shows — 2z /y=— (2 / y)
(proof)

lemma ereal-divide-Infty|simp]:
fixes z :: ereal
shows z / co =0z / —co = 0
(proof)

lemma ereal-divide-one[simp]: © / 1 = (x::ereal)
{proof)

lemma ereal-divide-ereal[simp]: oo / ereal r = (if 0 < r then oo else —o0)

{proof)

302

lemma ereal-inverse-nonneg-iff: 0 < inverse (z :: ereal) +— 0 < xV z = —00

(proof)

lemma inverse-ereal-geOI: 0 < (z :: ereal) = 0 < inverse x

(proof)

lemma zero-le-divide-ereal[simpl:
fixes a :: ereal
assumes (0 < gand 0 < b
shows 0 < a /b

{proof)

lemma ereal-le-divide-pos:
fixes z y z :: ereal
showsz >0 —=z#00=y<z/z+—zxy<z
(proof)

lemma ereal-divide-le-pos:
fixes z y z :: ereal
showsz >0 =zc#c0=z/2<y<+—z2<zxy

THEORY “Extended-Real” 303

{proof)

lemma ereal-le-divide-neg:
fixes z y z :: ereal
showst < 0 = 1# -0 = y<z/z+— 2<%y
(proof)

lemma ereal-divide-le-neg:
fixes © y z :: ereal
showsz < 0 =2 # 0=z /< y<+—zr*xy<z
(proof)

lemma ereal-inverse-antimono-strict:
fixes z y :: ereal
shows 0 < 2 = 2 < y = inverse y < inverse

(proof)

lemma ereal-inverse-antimono:
fixes x y :: ereal
shows 0 < 1z — zx < y = inverse y < inverse x

(proof)

lemma inverse-inverse-Pinfty-iff [simp):
fixes z :: ereal
shows inverse t = co +— . = 0

(proof)

lemma ereal-inverse-eq-0:
fixes z :: ereal
shows inverse t = 0 +— x =00 V £ = —©

(proof)

lemma ereal-0-gt-inverse:
fixes z :: ereal
shows 0 < inverse x +— z #o00 AN 0 < x

{proof)

lemma ereal-inverse-le-0-iff:
fixes z :: ereal
shows inverse t < 0 +— < 0V £ = ©

{proof)

lemma ereal-divide-eq-0-iff: © | y = 0 «— z = 0 V |y :: ereal| = 00

(proof)

lemma ereal-mult-less-right:
fixes a b ¢ :: ereal
assumes bx a < c*x a0 < aa< o
shows b < ¢

THEORY “Extended-Real” 304

{proof)

lemma ereal-mult-divide:
fixes a b :: ereal
shows 0 <b=b<oo=1bx*(a/b) =a
(proof)

lemma ereal-power-divide:
fixes © y :: ereal
shows y#0 = (¢ /y) "n=2n/yn
(proof)

lemma ereal-le-mult-one-interval:
fixes z y :: ereal
assumes y: y # —00
assumes z: N\2. 0 < z = 2< 1 = zxz <y
shows z < y

(proof)

lemma ereal-divide-right-mono[simp:
fixes z y z :: ereal
assumes r < y
and 0 < z
showsz / 2<y / 2
{proof)

lemma ereal-divide-left-mono|[simp]:
fixes x y z :: ereal
assumes y <
and 0 < z
and 0 < z x y
shows z /< z/y

{proof)

lemma ereal-divide-zero-left[simp):
fixes a :: ereal
shows 0 / a =0
(proof)

lemma ereal-times-divide-eq-left[simp]:
fixes a b ¢ :: ereal
shows b /cxa=bx*xa/c

{proof)

lemma ereal-times-divide-eq: a x (b / ¢ :: ereal) = ax b/ ¢
{proof)

lemma ereal-inverse-real [simp]: |z| # 00 => z # 0 = ereal (inverse (real-of-ereal
z)) = inverse z

THEORY “Extended-Real” 305

{proof)

lemma ereal-inverse-mult:
a# 0= b+# 0 = inverse (a * (b::ereal)) = inverse a x inverse b

(proof)

lemma inverse-eq-infinity-iff-eq-zero [simp):
1/(z:ereal) = 0o +— =10
(proof)

lemma ereal-distrib-left:
fixes a b c :: ereal
assumes g # 00 V b # —0
and a # —oo V b # o0
and |c| # o
shows c* (a+b) =cxa+cxb
(proof)

lemma ereal-distrib-minus-left:
fixes a b ¢ :: ereal
assumes a # o0 V b # o0
and a # —o0 V b # —o0
and |c| # o0
shows cx (a — b)) =c*xa—cxb
(proof)

lemma ereal-distrib-minus-right:
fixes a b c :: ereal
assumes g # 00 V b # o
and a # —o0 V b # —o0
and |¢| # o
shows (¢ — b)x c=a*xc—bx*c

{proof)

38.2 Complete lattice

instantiation ereal :: lattice
begin

definition [simp]: sup © y = (maz z y :: ereal)
definition [simp]: inf z y = (min z y :: ereal)
instance (proof)

end

instantiation ereal :: complete-lattice
begin

definition bot = (—oo:ereal)

THEORY “Extended-Real” 306

definition top = (co::ereal)

definition Sup S = (SOME z :: ereal. (VyeS. y < z) A (Vz. VyeS. y < z) —
z < z))
definition Inf S = (SOME z :: ereal. (VyeS. z < y) A Vz. (VyeS. 2 < y) —
z < 1))

lemma ereal-complete-Sup:

fixes S :: ereal set

shows Jz. (VyeS. y < 2) A (Vz. (VyeS. y < z) — z < 2)
(proof)

lemma ereal-complete-uminus-eq:
fixes S :: ereal set
shows (Vycuminus‘S. y < z) A (Vz. (Vy€uminus‘S. y < z) — x < 2)
+— (VyeS. —z < y) A (V2. (VyeS. 2 < y) — 2z < —x)
(proof)

lemma ereal-complete-Inf:
Jax. (VyeS:ereal set. z < y) A (Vz. (VyeS. 2 < y) — z < x)
(proof)

instance

(proof)

end
instance ereal :: complete-linorder {proof)

instance ereal :: linear-continuum

(proof)

lemma min-PInf [simp]: min (co::ereal) x =
{proof)

lemma min-PInf2 [simp]: min x (co:ereal) = x
(proof)

lemma maz-PInf [simp]: maz (co::ereal) z = 0o
{proof)

lemma maz-PInf2 [simp]: maz x (co::ereal) = oo
{proof)

lemma min-MInf [simp]: min (—oo::ereal) © = —o0
{proof)

lemma min-MInf2 [simp]: min z (—oo:ereal) = —o0

{proof)

THEORY “Extended-Real” 307

lemma maz-MInf [simp|: maz (—oo::ereal) z = x
{proof)

lemma maz-MInf2 [simp]: maz ¢ (—oc::ereal) = x
{proof)

38.3 Extended real intervals

lemma real-greaterThanLess Than-infinity-eq:
real-of-ereal ‘ {N::ereal<..<oco} =
(if N = oo then {} else if N = —oo then UNIV else {real-of-ereal N<..})

(proof)

lemma real-greaterThanLess Than-minus-infinity-eq:
real-of-ereal ‘ {—oco<..<N:ereal} =
(if N = oo then UNIV else if N = —oco then {} else {..<real-of-ereal N})

(proof)

lemma real-greaterThanLess Than-inter:

real-of-ereal * {N<..<M:ereal} = real-of-ereal ‘ {—oo<..<M} N real-of-ereal
{N<..<o0}

{proof)

lemma real-atLeastGreaterThan-eq: real-of-ereal ‘ {N<..<M::ereal} =
(if N = oo then {} else
if N = —oo then
(if M = oo then UNIV
else if M = —oo then {}
else {..< real-of-ereal M})
else if M = —oo then {}
else if M = oo then {real-of-ereal N<..}
else {real-of-ereal N <..< real-of-ereal M})

{(proof)

lemma real-image-ereal-ivl:

fixes a b::ereal

shows

real-of-ereal ¢ {a<..<b} =

(if a < b then (if a = —oo then if b = oo then UNIV else {..<real-of-ereal b}

else if b = oo then {real-of-ereal a<..} else {real-of-ereal a <..< real-of-ereal b})
else {})

(proof)

lemma fixes a b c::ereal
shows not-inftyl: a < b = b < ¢ = abs b #

{proof)

context

THEORY “Extended-Real” 308

fixes r s t::real
begin

lemma interval-Ioo-neg-Ioi: {r<..<s} # {t<..}
(proof)

lemma interval-loo-neg-Tio: {r<..<s} # {..<t}
{proof)

lemma interval-neg-ioo-UNIV: {r<..<s} # UNIV
and interval-Ioi-neqg-UNIV: {r<..} # UNIV
and interval-Tio-neq-UNIV: {..<r} # UNIV

{proof)

lemma interval-Ioi-neq-Tio: {r<..} # {..<s}
{proof)

lemma interval-empty-neq-loi: {} # {r<..}
and interval-empty-neg-Tio: {} # {..<r}

{proof)

end

lemmas interval-neqs = interval-Ioo-neq-Ioi interval-loo-neq-Iio
interval-neq-i0o0- UNIV interval-loi-neq-Iio
interval-Ioi-neq-UNIV interval-Iio-neq-UNIV
interval-empty-neq-loi interval-empty-neq-Tio

lemma greaterThanLessThan-eq-iff:
fixes r s t u:real
shows ({r<.<s} ={i<.<u})=(r>2sAu<tVr=tAs=u)
(proof)

lemma real-of-ereal-image-greater ThanLess Than-iff :

real-of-ereal ‘ {a <..< b} = real-of-ereal ‘{c <.< d} +— (a>bAc>dVa
=cAb=d)

(proof)

lemma uminus-image-real-of-ereal-image-greater ThanLess Than:
uminus ‘ real-of-ereal ‘ {l <..< u} = real-of-ereal ‘ {—u <.< —I}
(proof)

lemma add-image-real-of-ereal-image-greater ThanLess Than:
(4+) ¢ ‘ real-of-ereal “ {l <..< u} = real-of-ereal ‘ {c + | <..< ¢ + u}
(proof)

lemma add2-image-real-of-ereal-image-greater ThanLess Than:
(Az. = + ¢) ‘real-of-ereal ‘ {l <..< u} = real-of-ereal ‘{l + ¢ <..< u + ¢}

{proof)

THEORY “Extended-Real” 309

lemma minus-image-real-of-ereal-image-greater ThanLess Than:
(=) ¢ ‘ real-of-ereal ‘ {l <..< u} = real-of-ereal ‘ {c — u <..< ¢ — I}
(is 21 = ?r)

(proof)

lemma real-ereal-bound-lemma-up:
assumes s € real-of-ereal ‘ {a<..<b}
assumes t ¢ real-of-ereal ‘ {a<..<b}
assumes s < ¢
shows b # oo

(proof)

lemma real-ereal-bound-lemma-down:
assumes s: s € real-of-ereal ¢ {a<..<b}
and ¢: t ¢ real-of-ereal ‘ {a<..<b}
and t < s

shows a # —oc0

{proof)

38.4 Topological space

instantiation ereal :: linear-continuum-topology
begin

definition open-ereal :: ereal set = bool where
open-ereal-generated: open-ereal = generate-topology (range lessThan U range
greaterThan)

instance
(proof)

end

lemma continuous-on-ereal[continuous-intros|:
assumes f: continuous-on s f shows continuous-on s (Az. ereal (f z))

{proof)

lemma tendsto-ereal[tendsto-intros, simp, introl: (f —— z) F = ((A\z. ereal (f
z)) — ereal x) F

{proof)

lemma tendsto-uminus-ereal[tendsto-intros, simp, intro):
assumes (f —— z) F
shows ((A\z. — fauereal) —— — z) F

(proof)

THEORY “Extended-Real” 310

lemma at-infty-ereal-eq-at-top: at co = filtermap ereal at-top
(proof)

lemma ereal-Lim-uminus: (f —— f0) net +— ((Az. — f x:zereal) —— — f0)
net
(proof)

lemma ereal-divide-less-iff: 0 < (ciereal) = c < oo = a/c<bé+—a<b
% ¢

(proof)

lemma ereal-less-divide-iff: 0 < (c:ereal) = c< oo = a<b/c+—ax*xc<
b

{proof)

lemma tendsto-cmult-ereal[tendsto-intros, simp, intro|:
assumes c: |¢| # oo and f: (f —— z) F
shows ((A\z. ¢ x fziereal) —— ¢ x z) F

(proof)

lemma tendsto-cmult-ereal-not-0[tendsto-intros, simp, intro|:
assumes z # 0 and f: (f —— z) F
shows ((A\z. ¢ x fziereal) —— ¢ x z) F

(proof)

lemma tendsto-cadd-ereal[tendsto-intros, simp, introl:
assumes c: y # —o00o z # —oco and f: (f ——) F
shows ((\z. fz + y:ereal) —— 2+ y) F
(proof)

lemma tendsto-add-left-ereal[tendsto-intros, simp, introl:
assumes c: |y| #occ and f: (f —— z) F
shows ((A\z. fz + y:ereal) —— x + y) F
(proof)

lemma continuous-at-ereal]continuous-intros]: continuous F f = continuous F

(A\z. ereal (f z))
(proof)

lemma ereal-Sup:
assumes *: |SUP a€A. ereal a| # o0
shows ereal (Sup A) = (SUP a€A. ereal a)

(proof)

lemma ereal-SUP: |SUP a€A. ereal (f a)| # oo = ereal (SUP a€A. fa) = (SUP
acA. ereal (f a))

(proof)

lemma ereal-Inf:

THEORY “Extended-Real” 311

assumes x: [INF acA. ereal a| # oo
shows ereal (Inf A) = (INF acA. ereal a)
(proof)

lemma ereal-Inf":
assumes *: bdd-below A A # {}
shows ereal (Inf A) = (INF acA. ereal a)

(proof)

lemma ereal-INF: |INF acA. ereal (f a)| # oo = ereal (INF a€A. f a) = (INF
a€A. ereal (f a))

{proof)

lemma ereal-Sup-uminus-image-eq: Sup (uminus ‘ S::ereal set) = — Inf S

(proof)

lemma ereal-SUP-uminus-eq:
fixes [:: 'a = ereal
shows (SUP z€S. uminus (f x)) = — (INF z€S. fx)
(proof)

lemma ereal-inj-on-uminus[intro, simpl: inj-on uminus (A :: ereal set)
(proof)

lemma ereal-Inf-uminus-image-eq: Inf (uminus ‘ S::ereal set) = — Sup S
(proof)

lemma ereal-INF-uminus-eq:
fixes [:: 'a = ereal
shows (INF z€S. — fz) = — (SUP z€S. fx)
(proof)

lemma ereal-SUP-not-infty:

fixes f :: - = ereal

shows A4 {} = l# -0 = u#o00=VacA. I<faAfa<u= |Sup
(f “A)] # o0

(proof)

lemma ereal-INF-not-infty:

fixes f :: - = ereal

shows A £ {} = 1l# -0 = u# o0 =Vacd. I < fa A fa<u= |Inf
(f “A) # o0

(proof)

lemma ereal-image-uminus-shift:
fixes X Y :: ereal set
shows uminus ‘X = Y +— X = uminus ‘' Y

(proof)

THEORY “Extended-Real” 312

lemma Sup-eq-MInfty:
fixes S :: ereal set
shows Sup § = —c0 «— S ={} V § = {0}
(proof)

lemma Inf-eq-Plnfty:
fixes S :: ereal set
shows Inf S =00 «— S ={} VS = {oo}
(proof)

lemma Inf-eq-MInfty:
fixes S :: ereal set
shows —c0 € § = InfS = —©

{proof)

lemma Sup-eq-Plnfty:
fixes S :: ereal set
shows co € § = Sup S = x©

{proof)

lemma not-MInfty-nonneg[simp): 0 < (z::ereal) = x # —o0
(proof)

lemma Sup-ereal-close:
fixes e :: ereal
assumes 0 < e
and S: |Sup S| £ o0 S # {}
shows Jz€S. Sup § —e< x
(proof)

lemma Inf-ereal-close:
fixes e :: ereal
assumes |Inf X| # oo
and 0 < e
shows JzeX. z < Inf X + ¢

{proof)

lemma SUP-PlInfty:
(An:nat. Fi€A. ereal (real n) < fi) = (SUP i€A. fi :: ereal) = 0o
{proof)

lemma SUP-nat-Infty: (SUP i. ereal (real i)) = oo
{proof)

lemma SUP-ereal-add-left:

assumes [# {} ¢ # —o0

shows (SUP i€l. fi + c :: ereal) = (SUP i€l. fi) + ¢
(proof)

THEORY “Extended-Real” 313

lemma SUP-ereal-add-right:
fixes c :: ereal
shows [# {} = ¢ # —c0o = (SUP i€l. ¢ + fi) = ¢ + (SUP i€l. f1)
(proof)

lemma SUP-ereal-minus-right:
assumes [# {} ¢ # —©
shows (SUP i€l. ¢ — fi == ereal) = ¢ — (INF i€l. f1)
{proof)

lemma SUP-ereal-minus-left:
assumes I # {} ¢ # c©
shows (SUP i€l. fi — c:: ereal) = (SUP i€l. fi) — ¢
{proof)

lemma INF-ereal-minus-right:

assumes [# {} and |c| # c©

shows (INF i€l. ¢ — fi) = ¢ — (SUP i€l. f i::ereal)
(proof)

lemma SUP-ereal-le-addl:
fixes f :: i = ereal
assumes Ai. fi + y < zand y # —oc0
shows Sup (f * UNIV) + y < z
(proof)

lemma SUP-combine:
fixes [:: 'a::semilattice-sup = 'a::semilattice-sup = 'b::complete-lattice
assumes mono: Aabcd. a<b=— c<d= fac<fbd
shows (SUP i€ UNIV. SUP je UNIV. fij) = (SUP 4. fi1)

{proof)

lemma SUP-ereal-add:
fixes f g :: nat = ereal
assumes inc: incseq f incseq g
and pos: N\i. fi # —oco N\i. gi # —o0
shows (SUP i. fi + g i) = Sup (f * UNIV) + Sup (g * UNIV)
(proof)

lemma INF-eg-minf: (INF i€l. fi:ereal) # —oo +— (Fb>—o00. Viel. b < f1)
(proof)

lemma INF-ereal-add-left:
assumes [#{} c# —-coN\z.z €] = 0 < fx
shows (INF i€l. fi + c = ereal) = (INF i€l. fi) + ¢
(proof)

lemma INF-ereal-add-right:
assumes [#{} c# —coA\z.z €l = 0 < fz

THEORY “Extended-Real” 314

shows (INF i€l. ¢ + fi :: ereal) = ¢ + (INF i€l. f1)
{proof)

lemma INF-ereal-add-directed:
fixes f g :: 'a = ereal
assumes nonneg: N\i. i € I = 0 < fi Ni.i €l = 0<ygi
assumes directed: N\ij.i € | = jel = 3Jkel. fi+gj>fk+ gk
shows (INF i€l. fi + g i) = (INF i€l. fi) + (INF i€l. g 1)

(proof)

lemma INF-ereal-add:
fixes f :: nat = ereal
assumes decseq f decseq g
and fin: Ni. fi# 0o N\i. g # o0
shows (INF i. fi + g i) = Inf (f * UNIV) + Inf (g * UNIV)
(proof)

lemma SUP-ereal-add-pos:
fixes f g :: nat = ereal
assumes incseq f incseq g
and \i. 0 < fiNi. 0<gi
shows (SUP 4. fi + g i) = Sup (f ¢ UNIV) 4+ Sup (g * UNIV)
(proof)

lemma SUP-ereal-sum:
fixes f g :: 'a = nat = ereal
assumes An. n € A = incseq (f n)
and pos: Ani.n€e A= 0<fni
shows (SUP i. > neA. fni)= (> neA. Sup ((fn) UNIV))
(proof)

lemma SUP-ereal-mult-left:
fixes [:: 'a = ereal
assumes [# {}
assumes f: Ni.i€] = 0 < fiand ¢: 0 < ¢
shows (SUP i€l. ¢ x fi) = ¢ x (SUP i€l. f1)
(proof)

lemma countable-approach:

fixes z :: ereal

assumes r #* —o0

shows 3f. incseq f A (Viunat. fi < z) A (f —— 2)
(proof)

lemma Sup-countable-SUP:

assumes A # {}
shows 3 f::nat = ereal. incseq f N range f C A A Sup A = (SUP i. f 1)

(proof)

THEORY “Extended-Real” 315

lemma Inf-countable-INF:

assumes A # {} shows I f::nat = ereal. decseq f N range f C A A Inf A =
(INF i. f 1)
(proof)

lemma SUP-countable-SUP:
A # {} = If:nat = ereal. range f C g‘A A Sup (g * A) = Sup (f < UNIV)
(proof)

38.5 Relation to enat

definition ereal-of-enat n = (case n of enat n = ereal (real n) | co = o)

declare [[coercion ereal-of-enat :: enat = ereal]]
declare [[coercion (An. ereal (real n)) :: nat = ereal]]

lemma ereal-of-enat-simps[simp):
ereal-of-enat (enat n) = ereal n
ereal-of-enat co = oo

{proof)

lemma ereal-of-enat-le-iff [simp): ereal-of-enat m < ereal-of-enat n +— m < n
(proof)

lemma ereal-of-enat-less-iff [simp]: ereal-of-enat m < ereal-of-enat n <— m < n
(proof)

lemma numeral-le-ereal-of-enat-iff [simp]: numeral m < ereal-of-enat n +— nu-
meral m < n

(proof)

lemma numeral-less-ereal-of-enat-iff [simp]: numeral m < ereal-of-enat n +— nu-
meral m < n

(proof)

lemma ereal-of-enat-ge-zero-cancel-iff [simp]: 0 < ereal-of-enat n +— 0 < n
{proof)

lemma ereal-of-enat-gt-zero-cancel-iff [simp]: 0 < ereal-of-enat n +— 0 < n
(proof)

lemma ereal-of-enat-zero[simp): ereal-of-enat 0 = 0
(proof)

lemma ereal-of-enat-inf[simpl: ereal-of-enat n = co +— n = o0
(proof)

lemma ereal-of-enat-add: ereal-of-enat (m + n) = ereal-of-enat m + ereal-of-enat
n

THEORY “Extended-Real” 316

{proof)

lemma ereal-of-enat-sub:
assumes n < m
shows ereal-of-enat (m — n) = ereal-of-enat m — ereal-of-enat n

{proof)

lemma ereal-of-enat-mult:
ereal-of-enat (m % n) = ereal-of-enat m * ereal-of-enat n

(proof)

lemmas ereal-of-enat-pushin = ereal-of-enat-add ereal-of-enat-sub ereal-of-enat-mult
lemmas ereal-of-enat-pushout = ereal-of-enat-pushin|symmetric|

lemma ereal-of-enat-nonneg: ereal-of-enat n > 0
(proof)

lemma ereal-of-enat-Sup:
assumes A # {} shows ereal-of-enat (Sup A) = (SUP a € A. ereal-of-enat a)

(proof)

lemma ereal-of-enat-SUP:
A # {} = ereal-of-enat (SUP acA. fa) = (SUP a € A. ereal-of-enat (f a))

{proof)

38.6 Limits on ereal

lemma open-Plnfty: open A = co € A = (Fz. {ereal z<..} C A)
(proof)

lemma open-MInfty: open A = —oco0 € A = (Jz. {..<ereal z} C A)
{proof)

lemma open-ereal-vimage: open S = open (ereal —°S)
(proof)

lemma open-ereal: open S = open (ereal ¢ S)
(proof)

lemma open-image-real-of-ereal:
fixes X::ereal set
assumes open X
assumes infty: co ¢ X —oo ¢ X
shows open (real-of-ereal * X)

(proof)

lemma eventually-finite:
fixes z :: ereal
assumes |z| £ oo (f —— z) F

THEORY “Extended-Real” 317

shows eventually (\z. |f z| # o) F
(proof)

lemma open-ereal-def:

open A <— open (ereal —* A) A (o0 € A — (Fz. {ereal z <..} C A)) A (—00
€ A — (Jz. {.<ereal z} C A))

(is open A <— ?rhs)
(proof)

lemma open-Plnfty2:
assumes open A and co € A
obtains z where {ereal z<..} C A

{proof)

lemma open-MInfty2:
assumes open A and —oo € A
obtains z where {..<ereal 2} C A

{proof)

lemma ereal-openk:
assumes open A
obtains = y where open (ereal —° A)
and co € A = {ereal z<..} C A
and —c0 € A = {..<ereal y} C A

(proof)

lemmas open-ereal-lessThan = open-lessThan[where 'a=ereal]

lemmas open-ereal-greater Than = open-greater Than[where 'a=ereal)

lemmas ereal-open-greater ThanLess Than = open-greater ThanLess Than[where ‘a=ereal]
lemmas closed-ereal-atLeast = closed-atLeast[where 'a=ereal)

lemmas closed-ereal-atMost = closed-atMost|where ‘a=ereal]

lemmas closed-ereal-atLeastAtMost = closed-atLeastAtMost[where 'a=ereal]

lemmas closed-ereal-singleton = closed-singleton|where ‘a=ereal]

lemma ereal-open-cont-interval:
fixes S :: ereal set
assumes open S
and z € §
and |z| # oo
obtains e where ¢ > 0 and {z—e <..< z4+¢} C S
{proof)

lemma ereal-open-cont-interval2:
fixes S :: ereal set
assumes open S and z € § and |z| # o0
obtains ¢ b where ¢ < rand z < b and {a <.< b} C S

(proof)

THEORY “Extended-Real” 318

38.6.1 Convergent sequences

lemma lim-real-of-ereal[simp]:
assumes lim: (f —— ereal x) net
shows ((\z. real-of-ereal (f z)) ——) net

(proof)

lemma lim-ereal[simp]: ((An. ereal (f n)) —— ereal x) net +— (f —— z) net
{proof)

lemma convergent-real-imp-convergent-ereal:
assumes convergent a
shows convergent (An. ereal (a n)) and lim (An. ereal (a n)) = ereal (lim a)

(proof)

lemma tendsto-Plnfty: (f —— o0) F «— (Vr. eventually (A\z. ereal r < fz) F)

(proof)

lemma tendsto-Plnfty”: (f —— o0) F = (Vr>c. eventually (Az. ereal r < f z)
F)
(proof)

lemma tendsto-PInfty-eq-at-top:
((Az. ereal (f z)) —— o0) F «— (LIM z F. f z :> at-top)

{proof)

lemma tendsto-MInfty: (f —— —o0) F <— (Vr. eventually (Mz. fz < ereal 1)
F)
(proof)

lemma tendsto-MInfty" (f —— —o0) F = (Vr<ec. eventually (Az. ereal v > fx)
F)
(proof)

lemma Lim-Plnfty: f —— oo +— (VB. AN.Vn>N. fn > ereal B)
(proof)

lemma Lim-MInfty: f —— —o0 +— (VB. AN.Vn>N. ereal B > fn)
(proof)

lemma Lim-bounded-Plnfty: f —— | = (An. fn < ereal B) = | # ¢
(proof)

lemma Lim-bounded-MInfty: f —— | = (An. ereal B < fn) = | # —o0
(proof)

lemma tendsto-zero-ereall:
assumes Ae. e > 0 = eventually (Az. |f x| < ereal e) F
shows (f —— 0) F

(proof)

THEORY “Extended-Real”

319

lemma Lim-bounded-PInfty2: f —— | = Vn>N. fn < ereal B = | # oo

{proof)

lemma real-of-ereal-mult[simp):
fixes a b :: ereal
shows real-of-ereal (a x b) = real-of-ereal a * real-of-ereal b

{proof)

lemma real-of-ereal-eq-0:
fixes z :: ereal
shows real-of-ereal t = 0 «+— =0V =—-coVz=10

{proof)

lemma tendsto-ereal-realD:
fixes [:: 'a = ereal
assumes z # 0
and tendsto: ((Az. ereal (real-of-ereal (f z))) ——) net
shows (f ——) net

(proof)

lemma tendsto-ereal-reall:
fixes [:: 'a = ereal
assumes z: |z| # co and tendsto: (f —— z) net
shows ((Az. ereal (real-of-ereal (f x))) —— x) net

(proof)

lemma ereal-mult-cancel-left:
fixes a b c :: ereal
showsaxb=axc+— (Jal=c0o N0 <bxc)Va=0Vb=c

(proof)

lemma tendsto-add-ereal:
fixes x y :: ereal
assumes z: |z| # oo and y: |y| # oo
assumes f: (f —— z) Fand ¢g: (9 —— y) F
shows (\z. fr + gz) — x + y) F
(proof)

lemma tendsto-add-ereal-nonneg:
fixes z y :: ereal
assumes z # —o00 y # —o0 (f — z) F (g —— y) F
shows (\z. fz +g2) — z+ y) F

(proof)

lemma ereal-inj-affinity:
fixes m t :: ereal
assumes |m| # oo
and m # 0

THEORY “Extended-Real”

and |t] # o0
shows inj-on (Az. m x z + t) A
{proof)

lemma ereal-PInfty-eq-plus[simp]:
fixes a b :: ereal
showsco=a+ b+—>a=00V b=00
(proof)

lemma ereal-MInfty-eq-plus[simp]:
fixes a b :: ereal

shows —co =a+ b¢— (a=—-00AbF 0)V (b=—00A a#)

{proof)

lemma ereal-less-divide-pos:
fixes z y :: ereal
showsz >0 =—=z#400 = y<z/z+—zxy<z

{proof)

lemma ereal-divide-less-pos:
fixes z y z :: ereal
showsz > 0= zc#400=y/ax<z+—y<zx*z
(proof)

lemma ereal-divide-eq:
fixes a b ¢ :: ereal
shows b #£ 0 = |b| o= a/b=c+—a=bxc
(proof)

lemma ereal-inverse-not-MInfty[simp]: inverse (a::ereal) # —oo

(proof)

lemma ereal-mult-m1[simp: x x ereal (—1) = —x
{proof)

lemma ereal-real”:
assumes |z| # o0
shows ereal (real-of-ereal) = x

{proof)

lemma real-ereal-id: real-of-ereal o ereal = id
(proof)

lemma open-image-ereal: open(UNIV —{ oo , (—oo :: ereal)})
{proof)

lemma ereal-le-distrib:
fixes a b ¢ :: ereal
shows cx (a +b) <c*xa+cx*xb

320

THEORY “Extended-Real” 321

{proof)

lemma ereal-pos-distrib:
fixes a b ¢ :: ereal
assumes (0 < ¢
and ¢ # oo
shows cx (a +b)=c*xa+cx*xbd
(proof)

lemma ereal-Liml-finite:
fixes x :: ereal
assumes |z| # oo
and Ar. 0 <r—=3IN.Va>N.un<z+rAz<un-+r
shows v —— z

(proof)

lemma tendsto-obtains-N:
assumes [— f0 open S f0 € S
obtains N where Vn>N. fn € S
(proof)

lemma ereal-LimlI-finite-iff:

fixes z :: ereal

assumes |z| # 0o

shows u —— 2 ++— Vr. 0 <r — 3N.Va>N.un<z+rAz<un
+ 7))

(is ?lhs <— ?rhs)

(proof)

lemma ereal-Limsup-uminus:
fixes [:: 'a = ereal
shows Limsup net (Az. — (f x)) = — Liminf net f
(proof)

lemma liminf-bounded-iff:
fixes = :: nat = ereal
shows C < liminfz +— (VB<C.3IN.Vn>N. B < zn)
(is ?lhs <— ?rhs)
(proof)

lemma Liminf-add-le:
fixes fg :: - = ereal
assumes F: F' # bot
assumes ev: eventually (Az. 0 < fz) F eventually (A\z. 0 < gz) F
shows Liminf F f + Liminf F g < Liminf F (Az. fz + g z)
(proof)

lemma Sup-ereal-mult-right .
assumes nonempty: Y # {}

THEORY “Extended-Real” 322

and z: z > 0
shows (SUP i€ Y. f1i) x ereal t = (SUP i€Y. f i x ereal) (is ?lhs = ?rhs)
(proof)

lemma Sup-ereal-mult-left”:
[Y#{};2>0] = ereal z x (SUP i€Y. fi) = (SUP (€Y. ereal x % f 1)
(proof)

lemma sup-continuous-add|order-continuous-intros|:
fixes f g :: 'a::complete-lattice = ereal
assumes nn: Az. 0 < fz Az. 0 < gz and cont: sup-continuous f sup-continuous

g
shows sup-continuous (Az. fz + g z)

{proof)

lemma sup-continuous-mult-right[order-continuous-intros|:
0 < ¢ = ¢ < 0o = sup-continuous [=> sup-continuous (Az. fx x ¢ :: ereal)

{proof)

lemma sup-continuous-mult-left[order-continuous-intros|:
0 < c= ¢ < oo = sup-continuous f = sup-continuous (Ax. ¢ x fx :: ereal)

{proof)

lemma sup-continuous-ereal-of-enat|order-continuous-intros|:
assumes f: sup-continuous f
shows sup-continuous (Az. ereal-of-enat (f z))

{proof)

38.6.2 Sums

lemma sums-ereal-positive:
fixes f :: nat = ereal
assumes Ai. 0 < fi
shows f sums (SUP n. Y i<n. f1)
(proof)

lemma summable-ereal-pos:
fixes f :: nat = ereal
assumes Ai. 0 < fi
shows summable f
(proof)

lemma sums-ereal: (A\z. ereal (f x)) sums ereal x «— f sums
(proof)

lemma suminf-ereal-eq-SUP:
fixes f :: nat = ereal
assumes Ai. 0 < fi
shows (3" z. fz) = (SUP n. > i<n. f1i)

THEORY “Extended-Real”

{proof)

lemma suminf-bound:
fixes f :: nat = ereal
assumes VN. (3 n<N. fn) <z An. 0 < fn
shows suminf f < x
(proof)

lemma suminf-bound-add:
fixes f :: nat = ereal
assumes VN. (D" n<N.fn)+y <z
and An. 0 < fn

and y # —©0
shows suminf f + y < z
(proof)

lemma suminf-upper:
fixes f :: nat = ereal
assumes An. 0 < fn
shows (> n<N. fn) < (> n. fn)
(proof)

lemma suminf-0-le:
fixes f :: nat = ereal
assumes An. 0 < fn
shows 0 < (D" n. fn)
(proof)

lemma suminf-le-pos:
fixes f g :: nat = ereal
assumes AN. fN < g N
and AN. 0 < fN
shows suminf f < suminf g
(proof)

lemma suminf-half-series-ereal: (> n. (1/2 :: ereal) ~ Suc n) = 1

(proof)

lemma suminf-add-ereal:

fixes f g :: nat = ereal

assumes A\i. 0 < fi Ni. 0 < gi

shows (3" i. fi + g i) = suminf f + suminf g
(proof)

lemma suminf-cmult-ereal:
fixes f g :: nat = ereal
assumes Ai. 0 < fiand 0 < a
shows (3" i. a x fi) = a x suminf f
(proof)

323

THEORY “Extended-Real”

lemma suminf-Plnfty:
fixes f :: nat = ereal
assumes Ai. 0 < fi
and suminf f # oo
shows fi # oo
(proof)

lemma suminf-PInfty-fun:
assumes Ai. 0 < fi
and suminf f # oo

shows 3f’. f = (Az. ereal (f' x))

(proof)

lemma summable-ereal:
assumes Ai. 0 < fi
and (4. ereal (f 1)) # oo

shows summable f
(proof)

lemma suminf-ereal:
assumes Ai. 0 < fi

and (4. ereal (f 1)) # oo

shows (> i. ereal (fi)) = ereal (suminf f)

(proof)

lemma suminf-ereal-minus:
fixes f g :: nat = ereal

assumes ord: Ni. gi < fi Ni. 0 < g1
and fin: suminf f # co suminf g # o
shows (3" i. fi — g i) = suminf f — suminf g

(proof)

lemma suminf-ereal-PInf [simp]: (D . co::ereal) = oo

{proof)

lemma summable-real-of-ereal:
fixes f :: nat = ereal
assumes f: N\i. 0 < fi

and fin: (> 4. fi) # o0

shows summable (\i. real-of-ereal (f 1))

(proof)

lemma suminf-SUP-eq:
fixes f :: nat = nat = ereal

assumes Ai. incseq (An. fn i)

and Ani. 0 < fni
shows (3" i. SUP n. fni) =
(proof)

(SUP n. > 4. fni)

324

THEORY “Extended-Real” 325

lemma suminf-sum-ereal:
fixes f :: - = - = ereal
assumes nonneg: Nia. a € A= 0 < fia
shows (3" i. > a€A. fia) = (> acA > i. fia)
(proof)

lemma suminf-ereal-eq-0:

fixes f :: nat = ereal

assumes nneg: N\i. 0 < fi

shows (3" i. fi) =0 «— (Vi. fi=0)
(proof)

lemma suminf-ereal-offset-le:

fixes f :: nat = ereal

assumes f: \i. 0 < fi

shows (3" 4. f (i + k)) < suminf f
(proof)

lemma sums-suminf-ereal: f sums © = (> 4. ereal (f 7)) = ereal
{proof)

lemma suminf-ereal”: summable f = (3 4. ereal (f 1)) = ereal (D> 4. f1)
{proof)

lemma suminf-ereal-finite: summable f = (> 1. ereal (f 7)) # oo
(proof)

lemma suminf-ereal-finite-neg:
assumes summable f
shows (> z. ereal (fz)) # —o0

(proof)

lemma SUP-ereal-add-directed:
fixes f g :: 'a = ereal
assumes nonneg: N\i. i € I = 0 < fiNi.i €l = 0<gi
assumes directed: N\ij. i€ | = jel = Jkel. fi+gj<fk+gk
shows (SUP icl. fi + g i) = (SUP icl. fi) + (SUP i€l. g i)

(proof)

lemma SUP-ereal-sum-directed:

fixes fg:: 'a = 'b = ereal

assumes [# {}

assumes directed: ANij. NC A= ie€l = jel—=— Jkel. VneN. fni
SfnkANfnj<fnk

assumes nonneg: A\ni. i€l =ne€ A= 0<fni

shows (SUP i€l. > neA. fni)= (> ncA. SUPi€l. fni)

(proof)

THEORY “Extended-Real” 326

lemma suminf-SUP-eq-directed:

fixes f :: - = nat = ereal

assumes [# {}

assumes directed: ANij. i €] = j € I = finite N = Jkel. VneN. fin
<fknANfjn<fkn

assumes nonneg: Ani. 0 < fni

shows (3" i. SUP nel. fni) = (SUP nel. Y i. fni)
(proof)

lemma ereal-dense3:
fixes z y :: ereal
shows z < y = Jrurat. x < real-of-rat r A real-of-rat r < y

(proof)

lemma continuous-within-ereallintro, simp): © € A = continuous (at x within A)
ereal

(proof)

lemma ereal-open-uminus:
fixes S :: ereal set
assumes open S
shows open (uminus ‘ S)

{proof)

lemma ereal-uminus-complement:
fixes S :: ereal set
shows uminus ‘ (— S) = — uminus ‘S
(proof)

lemma ereal-closed-uminus:
fixes S :: ereal set
assumes closed S
shows closed (uminus ©S)

{proof)

lemma ereal-open-affinity-pos:
fixes S :: ereal set
assumes open S
and m: m # 00 0 < m
and & |t| # oo
shows open (Az. m x z + t) ©5)
{proof)

lemma ereal-open-affinity:
fixes S :: ereal set
assumes open S
and m: |m| # oo m # 0
and t: |t| # o0
shows open (A\z. m x z + t) ©9)

THEORY “Extended-Real” 327

(proof)

lemma open-uminus-iff:
fixes S :: ereal set
shows open (uminus ¢ S) <— open S

{proof)

lemma ereal-Liminf-uminus:
fixes f :: 'a = ereal
shows Liminf net (Az. — (f z)) = — Limsup net f
(proof)

lemma Liminf-Plnfty:
fixes f :: 'a = ereal
assumes — trivial-limit net
shows (f —— o0) net «— Liminf net f = oo
(proof)

lemma Limsup-MInfty:
fixes [:: 'a = ereal
assumes — trivial-limit net
shows (f —— —o0) net «— Limsup net f = —o0
{proof)

lemma convergent-ereal: — RENAME
fixes X :: nat = 'a :: {complete-linorder,linorder-topology}
shows convergent X <— limsup X = liminf X

{proof)

lemma limsup-le-liminf-real:
fixes X :: nat = real and L :: real
assumes 1: limsup X < L and 2: L < liminf X
shows X —— L

(proof)

lemma liminf-PlInfty:
fixes X :: nat = ereal
shows X —— 0o «— liminf X = oo

{proof)

lemma limsup-MInfty:
fixes X :: nat = ereal
shows X ——— —o0 «— limsup X = —o0

{proof)

lemma SUP-eq-LIMSEQ:
assumes mono f
shows (SUP n. ereal (fn)) = ereal z +— f —— «

(proof)

THEORY “Extended-Real” 328

lemma liminf-ereal-cminus:
fixes f :: nat = ereal
assumes ¢ # —o0
shows liminf (A\z. ¢ — fxz) = ¢ — limsup f

(proof)

38.6.3 Continuity

lemma continuous-at-of-ereal:
|20 :: ereal] # co = continuous (at x0) real-of-ereal

{proof)

lemma nhds-ereal: nhds (ereal v) = filtermap ereal (nhds r)
(proof)

lemma at-ereal: at (ereal r) = filtermap ereal (at 7)
{proof)

lemma at-left-ereal: at-left (ereal r) = filtermap ereal (at-left)
{proof)

lemma at-right-ereal: at-right (ereal r) = filtermap ereal (at-right r)
(proof)

lemma
shows at-left-PInf: at-left oo = filtermap ereal at-top
and at-right-MInf: at-right (—oco) = filtermap ereal at-bot
(proof)

lemma ereal-tendsto-simps1:
((f o real-of-ereal) —— y) (at-left (ereal x)) +— (f —— y) (at-left z)
((f o real-of-ereal) —— y) (at-right (ereal z)) +— (f —— v) (at-right z)
((f o real-of-ereal) —— y) (at-left (co::ereal)) «— (f —— y) at-top
((f o real-of-ereal) —— y) (at-right (—oc::ereal)) «— (f —— y) at-bot
(proof)

lemma ereal-tendsto-simps2:
((ereal o f) —— ereal a) F <— (f —— a) F
((ereal o f) —— o0) F «— (LIM z F. f z :> at-top)
((ereal o f) —— —o0) F «— (LIM z F. fz :> at-bot)
(proof)

lemma inverse-infty-ereal-tendsto-0: inverse —oo— (0::ereal)
(proof)

lemma inverse-ereal-tendsto-pos:
fixes z :: ereal assumes 0 < z
shows inverse —x— inverse x

THEORY “Extended-Real” 329

(proof)

lemma inverse-ereal-tendsto-at-right-0: (inverse —— oo) (at-right (0::ereal))

{proof)

lemmas ereal-tendsto-simps = ereal-tendsto-simps1 ereal-tendsto-simps2

lemma continuous-at-iff-ereal:
fixes f :: 'a::t2-space = real
shows continuous (at x0 within s) f +— continuous (at x0 within s) (ereal o f)
(proof)

lemma continuous-on-iff-ereal:
fixes [:: 'a::t2-space => real
assumes open A
shows continuous-on A f +— continuous-on A (ereal o f)

(proof)

lemma continuous-on-real: continuous-on (UNIV — {00, —oo::ereal}) real-of-ereal

{proof)

lemma continuous-on-iff-real:
fixes [:: 'a::t2-space = ereal
assumes Az. 2 € A = |fz]| # o©
shows continuous-on A f +— continuous-on A (real-of-ereal o f)

(proof)

lemma continuous-uminus-ereal [continuous-intros|: continuous-on (A :: ereal set)
UMINus

{proof)

lemma ereal-uminus-atMost [simp]: uminus ‘ {..(a::ereal)} = {—a..}

(proof)

lemma continuous-on-inverse-ereal [continuous-intros|:
continuous-on {0::ereal ..} inverse

(proof)

lemma continuous-inverse-ereal-nonpos: continuous-on ({..<0} :: ereal set) in-
verse

(proof)

lemma tendsto-inverse-ereal:
assumes (f —— (¢ :: ereal)) F
assumes eventually (A\z. fz > 0) F
shows ((Az. inverse (f ©)) — inverse ¢) F

(proof)

THEORY “Extended-Real” 330

38.6.4 liminf and limsup

lemma Limsup-ereal-mult-right:
assumes F # bot (c:real) > 0
shows Limsup F (An. fn * ereal ¢) = Limsup F [* ereal ¢

(proof)

lemma Liminf-ereal-mult-right:
assumes F # bot (c:real) > 0
shows Liminf F (An. fn x ereal ¢) = Liminf F f x ereal ¢

(proof)

lemma Liminf-ereal-mult-left:
assumes F' # bot (c:real) > 0
shows Liminf F (An. ereal ¢ x f n) = ereal ¢ x Liminf F f

(proof)

lemma Limsup-ereal-mult-left:
assumes F # bot (c:real) > 0
shows Limsup F (An. ereal ¢ x fn) = ereal ¢ x Limsup F f

(proof)

lemma limsup-ereal-mult-right:
(cireal) > 0 = limsup (An. fn % ereal ¢) = limsup f * ereal c

{proof)

lemma limsup-ereal-mult-left:
(c:real) > 0 = limsup (An. ereal ¢ x fn) = ereal ¢ x limsup f

{proof)

lemma Limsup-add-ereal-right:

F # bot = abs ¢ # oo = Limsup F (An. g n + (c :: ereal)) = Limsup F g +
c

(proof)

lemma Limsup-add-ereal-left:

F # bot = abs ¢ # oo => Limsup F (An. (¢ :: ereal) + g n) = ¢ + Limsup F
g

(proof)

lemma Liminf-add-ereal-right:
F # bot = abs ¢ # co = Liminf F (An. gn + (¢ :: ereal)) = Liminf F g + ¢
(proof)

lemma Liminf-add-ereal-left:
F # bot = abs ¢ # co = Liminf F (An. (c :: ereal) + g n) = ¢ + Liminf F g
(proof)

lemma
assumes F' # bot

THEORY “Extended-Real” 331

assumes nonneg: eventually (Az. fx > (0:ereal)) F
shows Liminf-inverse-ereal: Liminf F (Az. inverse (f z)) = inverse (Limsup F

f)

and Limsup-inverse-ereal: Limsup F (Ax. inverse (f x)) = inverse (Liminf F

)
(proof)

lemma ereal-diff-le-mono-left: [z < z; 0 <y]| = z — y < (2 == ereal)
(proof)

lemma neg-0-less-iff-less-erea [simp]: 0 < — a <— (a :: ereal) < 0

(proof)

lemma not-infty-ereal: |z| # oo +— (. z = ereal z')

(proof)

lemma neg-Plnf-trans: fixes z y :: ereal shows [y £ oo; 2 <y] = 2 # ©
{proof)

lemma mult-2-ereal: ereal 2 x v = x + «
(proof)

lemma ereal-diff-le-self: 0
(proof)

IN

y= 2z — y < (z:: ereal)

lemma ereal-le-add-self: 0 < y = x < z + (y :: ereal)
(proof)

lemma ereal-le-add-self2: 0 < y = z < y + (z :: ereal)
(proof)

lemma ereal-diff-nonpos:

fixes a b :: ereal shows [a < b;a =00 = b # 00; a = —00 = b # —0 |
—a—-—b<0

(proof)

lemma minus-ereal-0 [simp]: © — ereal 0 = x
{proof)

lemma ereal-diff-eq-0-iff: fixes a b :: ereal
shows (Ja| =c0c = |b)| #0) = a—-b=0+—a=0>
(proof)

lemma SUP-ereal-eq-0-iff-nonneg:
fixes f :: - = ereal and A
assumes nonneg: V€A, fz > 0
and 4:4 # {}
shows (SUP z€A. fz) = 0 +— (Vz€A. fo = 0) (is %lhs +— -)
(proof)

THEORY “Extended-Real” 332

lemma ereal-divide-le-posl:
fixes © y z :: ereal
showsz >0 = z2# —-c0o=z<zxy=2z2/2<y

(proof)

lemma add-diff-eq-ereal:
fixes x y z :: ereal
showsz + (y —2) =z +y — 2
(proof)

lemma ereal-diff-gro:
fixes a b :: ereal
showsa < b—=0<b—a

(proof)

lemma ereal-minus-minus:
fixes x y 2z :: ereal shows
(gl =0 = |dl £o00) = 2 — (y—2) =+ 2~y
(proof)

lemma diff-diff-commute-ereal:
fixes x y z :: ereal
showsz —y —z2=20—2—y
(proof)

lemma ereal-diff-eq-MInfty-iff:
fixes x y :: ereal
shows z — y = —c0+— 2= -0 Ay # -0V y=ocoA |z # o0
(proof)

lemma ereal-diff-add-inverse:
fixes = y :: ereal
shows |z| oo =z +y—z =y
{proof)

lemma tendsto-diff-ereal:
fixes z y :: ereal
assumes z: |z| # 0o and y: |y| # o0
assumes f: (f —— z) Fand ¢g: (9 —— y) F
shows (\z. fz —gz) —> x —y) F
(proof)

lemma continuous-on-diff-ereal:
continuous-on A f = continuous-on A g = (\z. © € A = |f 2| # o0) =
(Az. z € A = |g 2| # 00) = continuous-on A (A\z. fz — g z:ereal)

(proof)

THEORY “Indicator-Function” 333

38.6.5 Tests for code generator

A small list of simple arithmetic expressions.

value —oo :: ereal

value |—o0| :: ereal

value 4 + 5 / 4 — ereal 2 :: ereal
value ereal 3 < oo

value real-of-ereal (co::ereal) = 0

end

39 Indicator Function

theory Indicator-Function
imports Complex-Main Disjoint-Sets
begin

definition indicator S x = of-bool (z € S)

Type constrained version

abbreviation indicat-real :: 'a set = 'a = real where indicat-real S = indicator

S

lemma indicator-simps|simp:
z € § = indicator Sz = 1
z ¢ S = indicator S = 0

{proof)

lemma indicator-pos-lelintro, simp): (0::'a::linordered-semidom) < indicator S
and indicator-le-1[intro, simp|: indicator S x < (1::'a::linordered-semidom)
(proof)

lemma indicator-abs-le-1: |indicator S z| < (1::'a:linordered-idom)
{proof)

lemma indicator-eq-0-iff: indicator A x = (0::'a::zero-neg-one) «— = ¢ A
{proof)

lemma indicator-eq-1-iff: indicator A x = (1::'a::zero-neg-one) +— x € A
(proof)

lemma indicator-UNIV [simp]: indicator UNIV = (Az. 1)
{proof)

lemma indicator-lel:

(r € A = y € B) = (indicator A x :: 'a:linordered-nonzero-semiring) <
indicator B y

(proof)

THEORY “Indicator-Function” 334

lemma split-indicator: P (indicator S z) <— (z € S — PI1)AN(zx ¢ S — P

0))
(proof)

lemma split-indicator-asm: P (indicator Sz) «— (n(x € SA-P1Vz ¢ SA
- P0))

{proof)

lemma indicator-inter-arith: indicator (A N B) x = indicator A © * (indicator B
z:'asemiring-1)
{proof)

lemma indicator-union-arith:

indicator (A U B) © = indicator A © + indicator B x — indicator A x * (indicator
Bz :: 'auring-1)

(proof)

lemma indicator-inter-min: indicator (A N B) © = min (indicator A) (indicator
B z::'a::linordered-semidom)

and indicator-union-maz: indicator (A U B) x = max (indicator A x) (indicator
B z::'a::linordered-semidom)

{proof)

lemma indicator-disj-union:
AN B = {} = indicator (A U B) z = (indicator A z + indicator B z ::
'a::linordered-semidom)

{proof)

lemma indicator-compl: indicator (— A) x = 1 — (indicator A z :: 'a::ring-1)
and indicator-diff: indicator (A — B) xz = indicator A © % (1 — indicator B z
:aziring-1)
(proof)

lemma indicator-times:
indicator (A x B) x = indicator A (fst) * (indicator B (snd z) :: 'a::semiring-1)
{proof)

lemma indicator-sum:

indicator (A <4+> B) z = (case z of Inl x = indicator A x| Inr z = indicator
B z)

{proof)

lemma indicator-image: inj f = indicator (f * X) (f z) = (indicator X x::-::zero-neg-one)
(proof)

lemma indicator-vimage: indicator (f —‘ A) x = indicator A (f x)
{proof)

lemma mult-indicator-cong:

THEORY “Indicator-Function” 335

fixes f g :: - = 'a :: semiring-1
shows (Az. 2 € A = fz = g) = indicator A x x fx = indicator A = x g x
(proof)

lemma

fixes [:: 'a = 'b::semiring-1

assumes finite A

shows sum-mult-indicator[simp): (3" xz € A. fz * indicator Bz) = (D z € AN
B. fx)

and sum-indicator-mult[simp): (O_x € A. indicator Bz x fz) = (> z € AN

B. fz)

(proof)

lemma sum-indicator-eq-card:
assumes finite A
shows (3" z € A. indicator B) = card (A Int B)

(proof)

lemma sum-indicator-scaleR[simp):
finite A =
Sz € A indicator (Bz) (gz) *xg fz) = Oz € {z€ld. gz € Bz}. fa
'a::real-vector)
{proof)

lemma LIMSEQ-indicator-incseq:

assumes incseq A

shows (\i. indicator (A i) x :: 'a::{topological-space,zero-neg-one}) —— indi-
cator (Ji. A1)z
(proof)

lemma LIMSEQ-indicator-UN:

(Ak. indicator (Ji<k. A i) x :: 'a::{topological-space,zero-neq-one}) —— in-
dicator ((Ji. A i)
(proof)

lemma LIMSEQ-indicator-decseq:

assumes decseq A

shows (Ai. indicator (A i) z :: 'a::{topological-space,zero-neq-one}) —— indi-
cator ((i. A1)z
(proof)

lemma LIMSEQ-indicator-INT:
(Ak. indicator ((i<k. A i) x = 'a::{topological-space,zero-neq-one}) —— in-
dicator ((i. A i)
(proof)
lemma indicator-add:

AN B = {} = (indicator A z::-:monoid-add) + indicator B x = indicator (A
UB)z

THEORY “Extended-Nonnegative-Real” 336

{proof)

lemma of-real-indicator: of-real (indicator A z) = indicator A z
{proof)

lemma real-of-nat-indicator: real (indicator A x :: nat) = indicator A z
{proof)

lemma abs-indicator: |indicator A x :: 'a::linordered-idom| = indicator A x
{proof)

lemma mult-indicator-subset:
A C B = indicator A x * indicator B x = (indicator A z :: 'a::comm-semiring-1)

{proof)

lemma indicator-times-eq-if:

fixes [:: 'a = 'b::comm-ring-1

shows indicator Sz x fx = (if x € S then f z else 0) fx * indicator S z = (if ©
€ S then f x else 0)

{proof)

lemma indicator-scaleR-eq-if :
fixes [:: 'a = 'b::real-vector
shows indicator S x xg fo = (if x € S then f x else 0)
(proof)

lemma indicator-sums:

assumes A\ij. i #j= AinNnAj={}

shows (\i. indicator (A i) z::real) sums indicator ((Ji. A i)
(proof)

The indicator function of the union of a disjoint family of sets is the sum
over all the individual indicators.

lemma indicator-UN-disjoint:

finite A = disjoint-family-on f A = indicator ({J (f ‘ 4)) z = (> y€A. indicator
(fy) =)

(proof)

end

40 The type of non-negative extended real num-

bers
theory FExtended-Nonnegative-Real
imports Eztended-Real Indicator-Function

begin

lemma ereal-ineq-diff-add:

THEORY “Extended-Nonnegative-Real” 337

assumes b # (—oo:ereal) a > b
shows a = b + (a—b)
(proof)

lemma Limsup-const-add:

fixes ¢ :: 'a::{complete-linorder, linorder-topology, topological-monoid-add, or-
dered-ab-semigroup-add}

shows F # bot = Limsup F (Az. ¢ + fx) = ¢ + Limsup F f

(proof)

lemma Liminf-const-add:

fixes ¢ :: 'a::{complete-linorder, linorder-topology, topological-monoid-add, or-
dered-ab-semigroup-add}

shows F # bot = Liminf F (Ax. ¢ + fz) = ¢ + Liminf F f

(proof)

lemma Liminf-add-const:

fixes ¢ :: 'a::{complete-linorder, linorder-topology, topological-monoid-add, or-
dered-ab-semigroup-add}

shows F # bot = Liminf F (\x. fz + ¢) = Liminf F f + ¢

(proof)

lemma sums-offset:
fixes f g :: nat = 'a :: {t2-space, topological-comm-monoid-add}
assumes (An. f (n + 7)) sums [shows f sums (I + (O j<i. fj))
(proof)

lemma suminf-offset:
fixes f g :: nat = 'a :: {t2-space, topological-comm-monoid-add}
shows summable (A\j. f (j + 1)) = suminf f = O_4. f G+ 1) + O_j<i. f7)
(proof)

lemma eventually-at-left-1: (N\zireal. 0 < 2z = z < 1 = P z) = eventually
P (at-left 1)
{proof)

lemma mult-eq-1:
fixes a b :: ‘a :: {ordered-semiring, comm-monoid-mult}
shows 0 <a=—=a<1=0b<1=axb=1«—(a=1ANb=1)
(proof)

lemma ereal-add-diff-cancel:
fixes a b :: ereal
shows |b| #oco = (a +b) —b=a
(proof)

lemma add-top:
fixes = :: ‘a::{order-top, ordered-comm-monoid-add}
shows 0 < x = x + top = top

THEORY “Extended-Nonnegative-Real” 338

{proof)

lemma top-add:
fixes z :: ‘a::{order-top, ordered-comm-monoid-add}
shows 0 < z — top + = = top

{proof)

lemma le-lfp: mono f = z <lfpf = fa<Ifpf
(proof)

lemma Ifp-transfer:
assumes «: sup-continuous o and f: sup-continuous f and mg: mono g
assumes bot: « bot < lfp gand eq: N\z. z < lfp f = o (fz) = g (o)
shows o (Ifp f) = lUfp g

(proof)

lemma sup-continuous-applyD: sup-continuous f = sup-continuous (Az. fz h)
(proof)

lemma sup-continuous-SUP|order-continuous-intros|:
fixes M :: - = - = 'a::complete-lattice
assumes M: Ai. i € I = sup-continuous (M ©)
shows sup-continuous (SUP i€l. M 1)

{proof)

lemma sup-continuous-apply-SUP|order-continuous-intros):
fixes M :: - = - = 'a::complete-lattice
shows (Ai. i € I = sup-continuous (M i)) = sup-continuous (Az. SUP i€l.
{proof)

lemma sup-continuous-lfp'lorder-continuous-intros:
assumes 1: sup-continuous f
assumes 2: Ag. sup-continuous ¢ = sup-continuous (f g)
shows sup-continuous (Ifp f)

(proof)

lemma sup-continuous-lfp’’|order-continuous-intros):
assumes I: As. sup-continuous (f s)
assumes 2: Ag. sup-continuous ¢ = sup-continuous (As. f s (g s))
shows sup-continuous (Az. lifp (f x))

(proof)

lemma mono-INF-fun:
(Az y. mono (F z y)) = mono Azz. INFy e Xz. Fxyz:'a:: com-
plete-lattice)

(proof)

lemma continuous-on-cmult-ereal:

THEORY “Extended-Nonnegative-Real” 339

|c:ereal| # 00 = continuous-on A f = continuous-on A (\z. ¢ * f 1)
{proof)

lemma real-of-nat-Sup:
assumes A # {} bdd-above A
shows of-nat (Sup A) = (SUP a€A. of-nat a :: real)

(proof)
lemma (in complete-lattice) SUP-sup-const1:
I #{} = (SUP iel. sup ¢ (fi)) = sup ¢ (SUP i€l. f1)
(proof)
lemma (in complete-lattice) SUP-sup-const2:
I #{} = (SUP iel. sup (fi) c) = sup (SUP i€l. fi) ¢
{proof)

lemma one-less-of-natD:
assumes (1::’a::linordered-semidom) < of-nat n shows 1 < n

(proof)
40.1 Defining the extended non-negative reals

Basic definitions and type class setup

typedef ennreal = {z :: ereal. 0 < z}
morphisms ennZ2ereal e2ennreal’

{proof)

definition e2ennreal © = e2ennreal’ (mazx 0 x)

lemma enn2ereal-range: e2ennreal {0..} = UNIV
(proof)

lemma type-definition-ennreal”: type-definition enn2ereal e2ennreal {z. 0 < z}
(proof)

setup-lifting type-definition-ennreal’
declare [[coercion e2ennreal]]

instantiation ennreal :: complete-linorder
begin

lift-definition top-ennreal :: ennreal is top (proof)

lift-definition bot-ennreal :: ennreal is 0 {proof)

lift-definition sup-ennreal :: ennreal = ennreal = ennreal is sup (proof)
lift-definition inf-ennreal :: ennreal = ennreal = ennreal is inf (proof)

lift-definition Inf-ennreal :: ennreal set = ennreal is Inf
(proof)

THEORY “Extended-Nonnegative-Real” 340

lift-definition Sup-ennreal :: ennreal set = ennreal is sup 0 o Sup
(proof)

lift-definition less-eg-ennreal :: ennreal = ennreal = bool is (<) (proof)
lift-definition less-ennreal :: ennreal = ennreal = bool is (<) (proof)

instance
(proof)

end

lemma per-ennreal-enn2ereal[simp]: per-ennreal (enn2ereal x) x
{proof)

lemma rel-fun-eq-per-ennreal: rel-fun (=) per-ennreal f g +— f = ennZereal o g
(proof)

instantiation ennreal :: infinity
begin

definition infinity-ennreal :: ennreal
where [simp]: co = (top::ennreal)

instance (proof)
end

instantiation ennreal :: {semiring-1-no-zero-divisors, comm-semiring-1}
begin

lift-definition one-ennreal :: ennreal is 1 (proof)
lift-definition zero-ennreal :: ennreal is 0 (proof)
lift-definition plus-ennreal :: ennreal = ennreal = ennreal is (+) (proof)
lift-definition times-ennreal :: ennreal = ennreal = ennreal is (x) (proof)

instance
(proof)

end

instantiation ennreal :: minus
begin

lift-definition minus-ennreal :: ennreal = ennreal = ennreal is Aa b. maz 0 (a
—b)
{proof)

instance (proof)

THEORY “Extended-Nonnegative-Real”

end
instance ennreal :: numeral {proof)

instantiation ennreal :: inverse
begin

lift-definition inverse-ennreal :: ennreal = ennreal is inverse
(proof)

definition divide-ennreal :: ennreal = ennreal = ennreal
where z div y = x * inverse (y :: ennreal)

instance (proof)
end

lemma ennreal-zero-less-one: 0 < (1::ennreal) — TODO: remove
{proof)

instance ennreal :: dioid
(proof)

instance ennreal :: ordered-comm-semiring
(proof)

instance ennreal :: linordered-nonzero-semiring
(proof)

instance ennreal :: strict-ordered-ab-semigroup-add

(proof)

declare [[coercion of-nat :: nat = ennreal]

lemma e2ennreal-neg: © < 0 = e2ennreal r = 0
(proof)

lemma eZennreal-mono: z < y =—> eZennreal x < elennreal y
(proof)

lemma enn2ereal-nonneg[simpl: 0 < ennZereal x
{proof)

lemma ereal-ennreal-cases:
obtains b where 0 < a a = ennZereal b | a < 0

(proof)

341

lemma rel-fun-liminf[transfer-rule]: rel-fun (rel-fun (=) pcr-ennreal) per-ennreal

THEORY “Extended-Nonnegative-Real” 342

liminf liminf
(proof)

lemma rel-fun-limsup[transfer-rule]: rel-fun (rel-fun (=) per-ennreal) pcr-ennreal
limsup limsup

(proof)

lemma sum-ennZereal[simp): (Ni. i € I = 0 < fi) = (D> i€l. ennZereal (f 7))
= ennZereal (sum f 1)
{proof)

lemma transfer-e2ennreal-sum [transfer-rule]:
rel-fun (rel-fun (=) per-ennreal) (rel-fun (=) per-ennreal) sum sum

{proof)

lemma enn2ereal-of-nat[simpl: enn2ereal (of-nat n) = ereal n

(proof)

lemma enn2ereal-numeral[simp|: enn2ereal (numeral a) = numeral a
{proof)

lemma transfer-numeral[transfer-rule]: per-ennreal (numeral a) (numeral a)
(proof)

40.2 Cancellation simprocs
lemma ennreal-add-left-cancel: a + b = a + ¢ +— a = (co::ennreal) V b = ¢

(proof)

lemma ennreal-add-left-cancel-le: a + b < a + ¢ +— a = (c0:ennreal) V b < ¢
{proof)

lemma ereal-add-left-cancel-less:
fixes a b ¢ :: ereal
shows 0 <o = 0<b=a+b<a+c—a£ooAb<c

{proof)

lemma ennreal-add-left-cancel-less: a + b < a + ¢ «— a # (co::ennreal) N b < ¢
(proof)

(ML)

40.3 Order with top

lemma ennreal-zero-less-top[simp]: 0 < (top::ennreal)
{proof)

lemma ennreal-one-less-top[simp): 1 < (top::ennreal)
{proof)

THEORY “Extended-Nonnegative-Real” 343

lemma ennreal-zero-neg-top[simp]: 0 # (top::ennreal)
{proof)

lemma ennreal-top-neg-zero[simp]: (top::ennreal) # 0
(proof)

lemma ennreal-top-neg-one[simp|: top # (1::ennreal)
{proof)

lemma ennreal-one-neg-top[simp]: 1 # (top::ennreal)
(proof)

lemma ennreal-add-less-top|simp]:
fixes a b :: ennreal
shows a + b < top <— a < top AN b < top

(proof)

lemma ennreal-add-eq-top[simp):
fixes a b :: ennreal
shows a + b = top <— a = top V b = top
(proof)

lemma ennreal-sum-less-top[simp]:
fixes [:: 'a = ennreal
shows finite | = (> i€l. fi) < top «— (Vi€l. fi < top)
(proof)

lemma ennreal-sum-eq-top[simpl:
fixes [:: 'a = ennreal
shows finite | = (> i€l. fi) = top «— (Fi€l. fi = top)
(proof)

lemma ennreal-mult-eq-top-iff:
fixes a b :: ennreal
shows a x b = top «— (a=top ANb# 0)V (b=top A a# 0)
(proof)

lemma ennreal-top-eq-mult-iff:
fixes a b :: ennreal
shows top = ax b<+— (a=top ANb# 0)V (b=top A a# 0)
(proof)

lemma ennreal-mult-less-top:
fixes a b :: ennreal
shows a x b < top «— (a =0V b=0V (a < top ANb < top))

{proof)

lemma top-power-ennreal: top ~n = (if n = 0 then 1 else top :: ennreal)

{proof)

THEORY “Extended-Nonnegative-Real” 344

lemma ennreal-prod-eq-0[simp):
fixes [:: 'a = ennreal
shows (prod f A = 0) = (finite A A (3i€A. fi=0))
(proof)

lemma ennreal-prod-eq-top:
fixes [:: 'a = ennreal
shows ([[i€l. fi) = top «— (finite I A ((Vi€l. fi# 0) A (Fi€l. fi = top)))
(proof)

lemma ennreal-top-mult: top x a = (if a = 0 then 0 else top :: ennreal)
(proof)

lemma ennreal-mult-top: a * top = (if a = 0 then 0 else top :: ennreal)
(proof)

lemma enn2ereal-eg-top-iff [simp]: ennZereal x = 0o +— x = top
(proof)

lemma enn2ereal-top[simp]: ennZereal top = oo
(proof)

lemma eZ2ennreal-infty[simp|: e2ennreal co = top
(proof)

lemma ennreal-top-minus[simp|: top — x = (top::ennreal)
(proof)

lemma minus-top-ennreal: © — top = (if x = top then top else 0:: ennreal)

(proof)

lemma bot-ennreal: bot = (0::ennreal)
{proof)

lemma ennreal-of-nat-neq-top[simp): of-nat i # (top::ennreal)
(proof)

lemma numeral-eq-of-nat: (numeral a::ennreal) = of-nat (numeral a)
{proof)

lemma of-nat-less-top: of-nat i < (top::ennreal)
(proof)

lemma top-neg-numeral|simp|: top # (numeral i::ennreal)
{proof)

lemma ennreal-numeral-less-top[simp]: numeral i < (top::ennreal)

{proof)

THEORY “Extended-Nonnegative-Real” 345

lemma ennreal-add-bot[simp]: bot + © = (x::ennreal)
{proof)

lemma add-top-right-ennreal [simp]: © + top = (top :: ennreal)
(proof)

lemma add-top-left-ennreal [simp]: top + x = (top :: ennreal)
(proof)

lemma ennreal-top-mult-left [simp]: © # 0 = = * top = (top :: ennreal)
(proof)

lemma ennreal-top-mult-right [simp]: © # 0 = top * x = (top :: ennreal)

(proof)

lemma power-top-ennreal [simp]: n > 0 = top ~ n = (top :: ennreal)
(proof)

lemma power-eg-top-ennreal-iff: © ~n = top «— x = (top :: ennreal) A n > 0
(proof)

lemma ennreal-mult-le-mult-iff: ¢ # 0 = c # top = cx a < c* b +— a <
(b :: ennreal)
including ennreal.lifting

{proof)

lemma power-mono-ennreal: t <y =z ~n < (y ~ n :: ennreal)
(proof)

instance ennreal :: semiring-char-0

(proof)

40.4 Arithmetic

lemma ennreal-minus-zero[simp]: a — (0::ennreal) = a
{proof)

lemma ennreal-add-diff-cancel-right[simp]:
fixes z y z :: ennreal shows y # top = (z +y) —y=1z
{proof)

lemma ennreal-add-diff-cancel-left[simp]:
fixes z y 2z :: ennreal shows y # top = (y +2) —y =1z

{proof)

lemma
fixes a b :: ennreal

THEORY “Extended-Nonnegative-Real” 346

shows a —b=0—= a <b
(proof)

lemma ennreal-minus-cancel:
fixes a b ¢ :: ennreal
shows c £ top—=a<c=b<c=c—a=c—b=a=25b
(proof)

lemma sup-const-add-ennreal:
fixes a b ¢ :: ennreal
shows sup (¢ + a) (¢ + b) = c+ sup a b
(proof)

lemma ennreal-diff-add-assoc:
fixes a b ¢ :: ennreal
showsa<b=c+b—a=c+ (b— a)
(proof)

lemma mult-divide-eq-ennreal:
fixes a b :: ennreal
shows b # 0 = b # top = (axb) / b=«
(proof)

lemma divide-mult-eq: a # 0 = a # oo =z *x a / (b * a) = z / (b::ennreal)
{proof)

lemma ennreal-mult-divide-eq:
fixes a b :: ennreal
shows b # 0 = b# top = (axb) / b=ua
(proof)

lemma ennreal-add-diff-cancel:
fixes a b :: ennreal
shows b £ 00 = (a+b) —b=a
(proof)

lemma ennreal-minus-eq-0:
a—b=0= a < (b:ennreal)
(proof)

lemma ennreal-mono-minus-cancel:
fixes a b ¢ :: ennreal
showsa —b<a—-—c=—=a<top—=b<a—c<a=—c<bh
(proof)

lemma ennreal-mono-minus:
fixes a b ¢ :: ennreal
shows c< b= a—-b<a-—c¢

{proof)

THEORY “Extended-Nonnegative-Real” 347

lemma ennreal-minus-pos-iff:
fixes a b :: ennreal
shows a < top Vb <top=0<a—-b=b<a

(proof)

lemma ennreal-inverse-top[simp|: inverse top = (0::ennreal)
{proof)

lemma ennreal-inverse-zero[simpl: inverse 0 = (top::ennreal)
(proof)

lemma ennreal-top-divide: top / (z::ennreal) = (if © = top then 0 else top)
{proof)

lemma ennreal-zero-divide[simpl: 0 / (x::ennreal) = 0
(proof)

lemma ennreal-divide-zero[simp: © / (0::ennreal) = (if x = 0 then 0 else top)
{proof)

lemma ennreal-divide-top[simp|: z / (top::ennreal) = 0
(proof)

lemma ennreal-times-divide: a * (b / ¢) = a * b / (c::ennreal)
(proof)

lemma ennreal-zero-less-divide: 0 < a [b +— (0 < a A b < (top::ennreal))
{proof)

lemma add-divide-distrib-ennreal: (a + b) / ¢c=a [/ ¢+ b/ (c:: ennreal)
{proof)

lemma divide-right-mono-ennreal:
fixes a b ¢ :: ennreal
showsa<b=a/c<b/c
(proof)

lemma ennreal-mult-strict-right-mono: (a::ennreal) < ¢ = 0 < b = b < top
= axb<cxb

{proof)

lemma ennreal-indicator-less[simp:
indicator A z < (indicator B z::ennreal) +— (x € A — z € B)

{proof)

lemma ennreal-inverse-positive: 0 < inverse x <— (x::ennreal) # top
(proof)

THEORY “Extended-Nonnegative-Real” 348

lemma ennreal-inverse-mult” (0 < bV a < top) A (0 < a V b < top)) =
inverse (a * b:ennreal) = inverse a * inverse b

{proof)

lemma ennreal-inverse-mult: a < top = b < top = inverse (a * b::ennreal) =
inverse a * inverse b

{proof)

lemma ennreal-inverse-1[simp|: inverse (1::ennreal) = 1
{proof)

lemma ennreal-inverse-eq-0-iff [simp]: inverse (a::ennreal) = 0 <— a = top
{proof)

lemma ennreal-inverse-eq-top-iff [simp|: inverse (a::ennreal) = top +— a = 0
{proof)

lemma ennreal-divide-eq-0-iff [simp]: (a::ennreal) /| b= 0 <— (a = 0 V b = top)
{proof)

lemma ennreal-divide-eg-top-iff: (a::ennreal) / b = top +— ((a £ 0 ANb=0)V
(a = top N\ b # top))
(proof)

lemma one-divide-one-divide-ennreal[simpl: 1 / (1] ¢) = (c::ennreal)
including ennreal.lifting
(proof)

lemma ennreal-mult-left-cong:
((azzennreal) 2 0 = b=c¢) = axb=ax*c

(proof)

lemma ennreal-mult-right-cong:
((azzennreal) # 0 = b=c) = bxa=cxa
{proof)

lemma ennreal-zero-less-mult-iff: 0 < a x b +— 0 < a A 0 < (b::ennreal)
(proof)

lemma [ess-diff-eq-ennreal:
fixes a b ¢ :: ennreal
shows b < topVe<top=—=a<b—-—c+—a+c<b

{proof)

lemma diff-add-cancel-ennreal:
fixes a b :: ennreal shows a < b=—b—-—a+a=10»

(proof)

lemma ennreal-diff-self [simp]: a # top = a — a = (0::ennreal)

THEORY “Extended-Nonnegative-Real” 349

{proof)

lemma ennreal-minus-mono:
fixes a b ¢ :: ennreal
shows e <c=d<b=a—-b<c¢c—-d
(proof)

lemma ennreal-minus-eq-top[simp: a — (b::ennreal) = top «— a = top
(proof)

lemma ennreal-divide-self[simp]: ¢ # 0 = a < top = a / a = (1::ennreal)
(proof)

40.5 Coercion from real to ennreal

lift-definition ennreal :: real = ennreal is sup 0 o ereal
(proof)

declare [[coercion ennreal]]

lemma ennreal-cong: © = y = ennreal x = ennreal y
(proof)

lemma ennreal-cases|cases type: ennreal):
fixes z :: ennreal
obtains (real) 7 :: real where 0 < r z = ennreal v | (top) © = top

{proof)

lemmas ennreal2-cases = ennreal-cases|case-product ennreal-cases]
lemmas ennreal3-cases = ennreal-cases|case-product ennreal2-cases)

lemma ennreal-neg-top[simp|: ennreal v # top
(proof)

lemma top-neg-ennreal[simpl: top # ennreal T

{proof)

lemma ennreal-less-top[simp|: ennreal x < top
(proof)

lemma ennreal-neg: x < 0 = ennreal x = 0
(proof)

lemma ennreal-inj[simp]:
0<a=— 0<b= ennreal a = ennreal b +— a =1>
(proof)

lemma ennreal-le-iff[simp]: 0 < y => ennreal © < ennreal y +— z < y
(proof)

THEORY “Extended-Nonnegative-Real” 350

lemma le-ennreal-iff: 0 < r = z < ennreal r <— (F¢>0. = ennreal ¢ A q <
r)
(proof)

lemma ennreal-less-iff: 0 < r = ennreal r < ennreal ¢ +— 17 < ¢
(proof)

lemma ennreal-eq-zero-iff [simp]: 0 < © = ennreal z = 0 +— z = 0
(proof)

lemma ennreal-less-zero-iff [simp]: 0 < ennreal © +— 0 < x
{proof)

lemma ennreal-lessl: 0 < ¢ = r < ¢ = ennreal r < ennreal q
(proof)

lemma ennreal-lel: x < y = ennreal x < ennreal y
(proof)

lemma enn2ereal-ennreal[simp]: 0 < r = ennZereal (ennreal x) = x
{proof)

lemma eZ2ennreal-ennZereal[simp|: e2ennreal (enn2ereal) = x
{proof)

lemma enn2ereal-e2ennreal: © > 0 = ennZereal (e2ennreal z) = x

(proof)

lemma eZ2ennreal-ereal [simp]: e2ennreal (ereal) = ennreal x

{(proof)

lemma ennreal-0[simp]: ennreal 0 = 0
{proof)

lemma ennreal-1[simp]: ennreal 1 = 1
(proof)

lemma ennreal-eq-0-iff: ennreal x = 0 +— z < 0
(proof)

lemma ennreal-le-iff2: ennreal x < ennreal y +— (0 <y ANz <y)V (<0 A

y < 0))
(proof)

lemma ennreal-eq-1[simp]: ennreal t = 1 +— z = 1

(proof)

lemma ennreal-le-1[simp): ennreal z < 1 +— z < 1

THEORY “Extended-Nonnegative-Real” 351

{proof)

lemma ennreal-ge-1[simp|: ennreal x > 1 +— z > 1

{proof)

lemma one-less-ennreal[simp: 1 < ennreal x +— 1 < z
{proof)

lemma ennreal-plus[simp):
0 <a= 0< b= ennreal (a + b) = ennreal a + ennreal b
(proof)

lemma add-mono-ennreal: © < ennreal y = 1’ < ennreal y' = z + x’ < ennreal
(y + 9
(proof)

lemma sum-ennreal[simp]: (N\i. i € I = 0 < fi) = (D>_i€l. ennreal (f 1)) =
ennreal (sum f 1)

{proof)

lemma sum-list-ennreal[simp]:
assumes /\:r T € setxs = fx >0
shows sum-list (map (\z. ennreal (f z)) zs) = ennreal (sum-list (map f xs))

(proof)

lemma ennreal-of-nat-eq-real-of-nat: of-nat i = ennreal (of-nat 7)
(proof)

lemma of-nat-le-ennreal-iff [simp]: 0 < r = of-nat i < ennreal r +— of-nat { <
r

(proof)

lemma ennreal-le-of-nat-iff [simp]: ennreal v < of-nat i «+— r < of-nat i
{proof)

lemma ennreal-indicator: ennreal (indicator A x) = indicator A x
(proof)

lemma ennreal-numeral[simp]: ennreal (numeral n) = numeral n
{proof)

lemma ennreal-less-numeral-iff [simp]: ennreal n < numeral w <— n < numeral
w

{proof)

lemma numeral-less-ennreal-iff [simp]: numeral w < ennreal n <— numeral w <
n

(proof)

THEORY “Extended-Nonnegative-Real” 352

lemma numeral-le-ennreal-iff [simp]: numeral n < ennreal m <— numeral n < m
{proof)

lemma min-ennreal: 0 < z = 0 < y = min (ennreal z) (ennreal y) = ennreal
(min z y)
{proof)

lemma ennreal-half [simp]: ennreal (1/2) = inverse 2
{proof)

lemma ennreal-minus: 0 < ¢ => ennreal r — ennreal ¢ = ennreal (r — q)
(proof)

lemma ennreal-minus-top[simp|: ennreal a — top = 0

(proof)

lemma e2eenreal-enn2ereal-diff [simp]:
e2ennreal(ennereal x — enn2ereal y) = v — y for z y

(proof)

lemma ennreal-mult: 0 < a = 0 < b = ennreal (a x b) = ennreal a * ennreal

b
{proof)

lemma ennreal-mult: 0 < a = ennreal (a * b) = ennreal a * ennreal b
(proof)

lemma indicator-mult-ennreal: indicator A x % ennreal r = ennreal (indicator A
x*T)
{proof)

lemma ennreal-mult’”: 0 < b = ennreal (a * b) = ennreal a x ennreal b

{proof)

lemma numeral-mult-ennreal: 0 < x = numeral b ¥ ennreal x = ennreal (numeral
b * x)
(proof)

lemma ennreal-power: 0 < r = ennreal 1 ~ n = ennreal (r " n)
{proof)

lemma power-eq-top-ennreal: * ~n = top <— (n # 0 A (x::ennreal) = top)
{proof)

lemma inverse-ennreal: 0 < r = inverse (ennreal r) = ennreal (inverse r)
{proof)

lemma divide-ennreal: 0 < r = 0 < ¢ = ennreal v / ennreal ¢ = ennreal (r

/)

THEORY “Extended-Nonnegative-Real” 353

{proof)

lemma ennreal-inverse-power: inverse (x ~ n :: ennreal) = inverse ~ n

(proof)

lemma power-divide-distrib-ennreal [algebra-simps|:
(x/y) "n=2x "n/(y n: ennreal)
(proof)

lemma ennreal-divide-numeral: 0 < © = ennreal © / numeral b = ennreal (z /
numeral b)
{proof)

lemma prod-ennreal: (N\i. i € A = 0 < fi) = ([i€A. ennreal (7)) = ennreal
(prod f A)
{proof)

lemma prod-mono-ennreal:
assumes Az. z € A = fx < (g z :: ennreal)
shows prod f A < prod g A
(proof)
lemma mult-right-ennreal-cancel: a * ennreal ¢ = b * ennreal ¢ +— (a = b V ¢
<0)
{proof)
lemma ennreal-le-epsilon:

(Nezreal. y < top = 0 < e= 2z <y + ennreal e) = z < y
(proof)

lemma ennreal-rat-dense:
fixes z y :: ennreal
shows © < y = Jrurat. © < real-of-rat r N real-of-rat r < y

(proof)

lemma ennreal-Ex-less-of-nat: (z::ennreal) < top = In. & < of-nat n
(proof)

40.6 Coercion from ennreal to real

definition enn2real x = real-of-ereal (ennZereal x)

lemma enn2real-nonneg[simp]: 0 < enn2real ©
{proof)

lemma enn2real-mono: a < b = b < top = enn2real a < enn2real b
(proof)

lemma enn2real-of-nat[simpl: enn2real (of-nat n) = n

THEORY “Extended-Nonnegative-Real” 354

{proof)

lemma enn2real-ennreal[simp]: 0 < r => ennZreal (ennreal 7) = r
{proof)

lemma ennreal-enn2real[simp): r < top => ennreal (ennZreal r) = r
(proof)

lemma real-of-ereal-enn2ereal]simp): real-of-ereal (enn2ereal ©) = enn2real x
{proof)

lemma enn2real-top[simpl: enn2real top = 0
{proof)

lemma enn2real-0[simp]: enn2real 0 = 0
{proof)

lemma enn2real-1[simp]: enn2real 1 = 1
{proof)

lemma enn2real-numeral[simpl: enn2real (numeral n) = (numeral n)
(proof)

lemma enn2real-mult: enn2real (a * b) = enn2real a * ennZreal b
{proof)

lemma enn2real-lel: 0 < B = z < ennreal B = enn2real x < B
(proof)

lemma enn2real-positive-iff: 0 < ennZreal x +— (0 < z A x < top)

(proof)

lemma enn2real-eq-posreal-iff [simp]: ¢ > 0 = ennZreal t = ¢ +— x = ¢
(proof)

lemma ennreal-enn2real-if: ennreal (enn2real r) = (if r = top then 0 else r)
(proof)

40.7 Coercion from enat to ennreal

definition ennreal-of-enat :: enat = ennreal
where
ennreal-of-enat n = (case n of 0o = top | enat n = of-nat n)

declare [[coercion ennreal-of-enat]]
declare [[coercion of-nat :: nat = ennreal]]

lemma ennreal-of-enat-infty[simp|: ennreal-of-enat co = oo
(proof)

THEORY “Extended-Nonnegative-Real” 355

lemma ennreal-of-enat-enat[simp|: ennreal-of-enat (enat n) = of-nat n
{proof)

lemma ennreal-of-enat-0[simp|: ennreal-of-enat 0 = 0
{proof)

lemma ennreal-of-enat-1[simp|: ennreal-of-enat 1 = 1
(proof)

lemma ennreal-top-neq-of-nat[simp|: (top::ennreal) # of-nat i
(proof)

lemma ennreal-of-enat-inj[simp|: ennreal-of-enat i = ennreal-of-enat j +— i = j

(proof)

lemma ennreal-of-enat-le-iff [simp|: ennreal-of-enat m < ennreal-of-enat n +— m
<n

{proof)

lemma of-nat-less-ennreal-of-nat[simpl: of-nat n < ennreal-of-enat T <— of-nat
n<gzc
(proof)

lemma ennreal-of-enat-Sup: ennreal-of-enat (Sup X) = (SUP z€X. ennreal-of-enat
z)
(proof)

lemma ennreal-of-enat-eSuc[simp]: ennreal-of-enat (eSuc x) = 1 + ennreal-of-enat
z

(proof)

lemma ennreal-of-enat-plus[simp|: <ennreal-of-enat (a+b) = ennreal-of-enat a +
ennreal-of-enat b

(proof)

lemma sum-ennreal-of-enat[simp): (3" i€1. ennreal-of-enat (fi)) = ennreal-of-enat
(sum f 1)
{proof)

40.8 Topology on ennreal

lemma enn2ereal-Tio: enn2ereal —‘ {..<a} = (if 0 < a then {..< eZ2ennreal a} else

{H

{proof)

lemma ennZereal-Ioi: ennZereal —‘ {a <..} = (if 0 < a then {e2ennreal a <..}

THEORY “Extended-Nonnegative-Real” 356

else UNIV)
{proof)

instantiation ennreal :: linear-continuum-topology
begin

definition open-ennreal :: ennreal set = bool
where (open :: ennreal set = bool) = generate-topology (range lessThan U range
greaterThan)

instance

(proof)

end

lemma continuous-on-e2ennreal: continuous-on A e2ennreal

(proof)

lemma continuous-at-e2ennreal: continuous (at x within A) e2ennreal
{proof)

lemma continuous-on-enn2ereal: continuous-on UNIV ennZereal
(proof)

lemma continuous-at-enn2ereal: continuous (at x within A) ennZereal
(proof)

lemma sup-continuous-e2ennreal|order-continuous-intros|:
assumes f: sup-continuous f shows sup-continuous (Az. e2ennreal (f x))

(proof)

lemma sup-continuous-enn2ereal]order-continuous-intros|:
assumes f: sup-continuous f shows sup-continuous (Az. ennlereal (f x))

(proof)

lemma sup-continuous-mult-left-ennreal:
fixes ¢ :: ennreal
shows sup-continuous (\z. ¢ x x)

{proof)

lemma sup-continuous-mult-left-ennreal[order-continuous-intros|:
sup-continuous f = sup-continuous (Ax. ¢ * fx :: ennreal)

{proof)

lemma sup-continuous-mult-right-ennreal|order-continuous-intros|:
sup-continuous f = sup-continuous (Az. fz * ¢ :: ennreal)

(proof)

lemma sup-continuous-divide-ennreal|order-continuous-intros|:

THEORY “Extended-Nonnegative-Real” 357

fixes f g :: 'a::complete-lattice = ennreal
shows sup-continuous f = sup-continuous (A\z. fz /)

{proof)

lemma transfer-ennZereal-continuous-on [transfer-rule]:
rel-fun (=) (rel-fun (rel-fun (=) pcr-ennreal) (=)) continuous-on continuous-on
(proof)

lemma transfer-sup-continuous|transfer-rule]:
(rel-fun (rel-fun (=) pcr-ennreal) (=)) sup-continuous sup-continuous

(proof)

lemma continuous-on-ennreal[tendsto-intros|:
continuous-on A f = continuous-on A (Az. ennreal (f z))

(proof)

lemma tendsto-ennrealD:
assumes lim: ((Az. ennreal (f ©)) —— ennreal z) F
assumes x: Vpzin F. 0 < frand z: 0 < z
shows (f —— z) F

(proof)

lemma tendsto-ennreal-iff [simpl:
«((Az. ennreal (f x)) —— ennreal x) F +— (f —— z) I (is <P «— 7(»)
if VepzinF.0<fx <0<

(proof)

lemma tendsto-enn2ereal-iff [simp]: ((Ai. enn2ereal (fi)) — ennZ2ereal x) F <—
(f — o) F
{proof)

lemma ennreal-tendsto-0-iff: (An. fn > 0) = ((An. ennreal (f n)) —— 0)
— (f —— 0)
(proof)

lemma continuous-on-add-ennreal:

fixes f g :: 'a::topological-space = ennreal

shows continuous-on A f = continuous-on A g = continuous-on A (\z. f z
+ g9 2)

(proof)

lemma continuous-on-inverse-ennreal|continuous-intros|:

fixes f :: 'a::topological-space = ennreal

shows continuous-on A f = continuous-on A (Az. inverse (f x))
(proof)

instance ennreal :: topological-comm-monoid-add

(proof)

THEORY “Extended-Nonnegative-Real” 358

lemma sup-continuous-add-ennreal[order-continuous-intros|:
fixes f g :: 'a::complete-lattice = ennreal
shows sup-continuous f = sup-continuous g = sup-continuous (A\z. fz + g

z)

(proof)

lemma ennreal-suminf-lessD: (> i. fi :: ennreal) < 2 = fi < z
{proof)

lemma sums-ennreal[simp]: (\i. 0 < fi) = 0 < x = (\i. ennreal (f 7)) sums
ennreal x <— f sums x
{proof)

lemma summable-suminf-not-top: (\i. 0 < fi) = (> i. ennreal (1)) # top =
summable f
{proof)

lemma suminf-ennreal]simp]:
(Ai. 0 < fi) = (D 4. ennreal (f i) # top = (>_i. ennreal (f 7)) = ennreal
(i fi)

(proof)

lemma sums-ennZereal[simp]: (\i. enn2ereal (f 7)) sums enn2ereal © — f sums
T

{proof)

lemma suminf-enn2ereal[simp]: (> i. enn2ereal (f i)) = ennZereal (suminf f)
(proof)

lemma transfer-e2ennreal-suminf [transfer-rule]: rel-fun (rel-fun (=) per-ennreal)
per-ennreal suminf suminf

(proof)

lemma ennreal-suminf-cmult[simp]: (O i. rx fi) = r x (D> i. f i::ennreal)
{proof)

lemma ennreal-suminf-multc[simp): O 4. fi* r) = (O i. fiennreal) * r
{proof)

lemma ennreal-suminf-divide[simp: (3 . fi / r) = (D 4. fi:ennreal) / r
{proof)

lemma ennreal-suminf-neg-top: summable f = (\i. 0 < fi) = (_i. ennreal
(f 7)) # top
(proof)

lemma suminf-ennreal-eq:
(Ni. 0 < fi) = fsumsz = (> i. ennreal (f 7)) = ennreal ©

{proof)

THEORY “Extended-Nonnegative-Real” 359

lemma ennreal-suminf-bound-add:
fixes f :: nat = ennreal
shows (AN. O n<N. fn)+ y<z) = suminff+y <z
(proof)

lemma ennreal-suminf-SUP-eq-directed:

fixes [:: 'a = nat = ennreal

assumes x: ANij. i€] = je€ I = finite N = Jkel. VneN. fin < fk
nAfin<fkn

shows (3> n. SUP i€l. fin) = (SUPi€l. > n. fin)
(proof)

lemma INF-ennreal-add-const:
fixes f g :: nat = ennreal
shows (INF i. fi + ¢) = (INFi. fi) + ¢
{proof)

lemma INF-ennreal-const-add:
fixes f g :: nat = ennreal
shows (INF i. c + fi) = ¢ + (INF i. f 1)
(proof)

lemma SUP-mult-left-ennreal: ¢ x (SUP i€l. fi) = (SUP i€l. ¢ * f i ::ennreal)
(proof)

lemma SUP-mult-right-ennreal: (SUP i€l. fi) x ¢ = (SUP i€l. fi % ¢ ::ennreal)
(proof)

lemma SUP-divide-ennreal: (SUP i€l. fi) /| ¢ = (SUP i€l. fi / ¢ ::ennreal)
{proof)

lemma ennreal-SUP-of-nat-eg-top: (SUP x. of-nat x :: ennreal) = top
(proof)

lemma ennreal-SUP-eg-top:
fixes [:: 'a = ennreal
assumes An. 3i€l. of-nat n < fi
shows (SUP i € I. fi) = top
(proof)

lemma ennreal-INF-const-minus:
fixes f :: 'a = ennreal
shows I # {} = (SUP z€l. ¢ — fz) = ¢ — (INF z€l. f)
(proof)

lemma of-nat-Sup-ennreal:
assumes A # {} bdd-above A
shows of-nat (Sup A) = (SUP a€A. of-nat a :: ennreal)

THEORY “Extended-Nonnegative-Real” 360

(proof)

lemma ennreal-tendsto-const-minus:
fixes g :: 'a = ennreal
assumes ae: Vpzin F. gz < ¢
assumes ¢: (Az. ¢ — gx) —— 0) F
shows (g —— ¢) F

(proof)

lemma ennreal-SUP-add:

fixes f g :: nat = ennreal

shows incseq f = incseq g = (SUP 4. fi+ g i) = Sup (f * UNIV) + Sup (g
“UNIV)

(proof)

lemma ennreal-SUP-sum:
fixes [:: 'a = nat = ennreal
shows (Ai. i € I = incseq (fi)) = (SUP n. Y i€l. fin) = (> icl. SUP
(proof)

lemma ennreal-liminf-minus:
fixes f :: nat = ennreal
shows (An. fn < ¢) = liminf (An. ¢ — fn) = c — limsup f
(proof)

lemma ennreal-continuous-on-cmult:
(cizennreal) < top = continuous-on A f = continuous-on A (Az. ¢ * f)

{proof)

lemma ennreal-tendsto-cmult:
(c:ennreal) < top = (f ——) F = ((M\z. ¢ x fz) —— cxx) F

{proof)

lemma tendsto-ennreall [intro, simp, tendsto-intros|:
(f — z) F = ((\z. ennreal (f £)) —— ennreal) F

(proof)

lemma tendsto-enn2ereall [tendsto-intros]:
assumes (f —— [) F
shows ((\i. enn2ereal(f i)) —— ennZereal l) F

(proof)

lemma tendsto-e2ennreall [tendsto-intros]:
assumes (f —— [) F
shows ((\i. e2ennreal(f i)) —— e2ennreal l) F

{(proof)

lemma ennreal-suminf-minus:

THEORY “Extended-Nonnegative-Real” 361

fixes f g :: nat = ennreal

shows (A\i. g i < fi) = suminf f # top = suminf g # top = (>_i. fi — ¢
1) = suminf f — suminf g

(proof)

lemma ennreal-Sup-countable-SUP:
A # {} = Ff:nat = ennreal. incseq f N range f C A N Sup A = (SUP i. f1)
(proof)

lemma ennreal-Inf-countable-INF':
A # {} = Ffinat = ennreal. decseq f N range f C A A Inf A = (INF i. f i)
(proof)

lemma ennreal-SUP-countable-SUP:
A # {} = Ffiinat = ennreal. range f C g‘A A Sup (g “ A) = Sup (f < UNIV)

(proof)

lemma of-nat-tendsto-top-ennreal: (An::nat. of-nat n :: ennreal) —— top
(proof)

lemma SUP-sup-continuous-ennreal:
fixes [:: ennreal = 'a::complete-lattice
assumes f: sup-continuous f and I # {}
shows (SUP i€l. f (g i) = f (SUP i€l. g i)
(proof)

lemma ennreal-suminf-SUP-eq:
fixes f :: nat = nat = ennreal

shows (Ai. incseq (An. fn i) = > i. SUPn. fni)= (SUPn.> i fni)
{proof)

lemma ennreal-SUP-add-left:
fixes c :: ennreal
shows I # {} = (SUPi€l. fi+ ¢) = (SUP i€l. fi) + ¢
(proof)

lemma ennreal-SUP-const-minus:
fixes f :: 'a = ennreal
shows [# {} = ¢ < top = (INF z€l. ¢ — fz) = ¢ — (SUP z€l. f x)

{proof)

lemma isCont-ennreal[simp]: <isCont ennreal >
{proof)

lemma isCont-ennreal-of-enat[simpl: <isCont ennreal-of-enat x»

(proof)

THEORY “Extended-Nonnegative-Real” 362

40.9 Approximation lemmas

lemma INF-approz-ennreal:
fixes z::ennreal and e::real
assumes ¢ > ()
assumes z = (INF i € A. f1)
assumes r # o0
shows i€ A. fi<axz+ e

{proof)

lemma SUP-approz-ennreal:
fixes x::ennreal and e::real
assumes ¢ > 0 A # {}
assumes SUP: ¢ = (SUP i € A. f1)
assumes I # 00
shows i€ A. x < fi+ e

(proof)

lemma ennreal-approz-SUP:
fixes z::ennreal
assumes f-bound: \i. 1 € A = fi<zx
assumes approz: Ne. (exreal) > 0 = Jic A.z < fi+ e
shows © = (SUP i € A. f1)
(proof)

lemma ennreal-approz-INF':
fixes z::ennreal
assumes f-bound: \i. i € A= z < fi
assumes approx: Ne. (exreal) > 0 = i€ A. fi <z + e
shows z = (INF i € A. f1i)
(proof)

lemma ennreal-approz-unit:
(Nazennreal. 0 < a = a< 1 = ax2<y) = 2<y

(proof) -

lemma suminf-ennreal2:
(Ai. 0 < fi) = summable f = (>_i. ennreal (fi)) = ennreal (> . f1)
(proof)

lemma less-top-ennreal: © < top <+— (Ir>0. z = ennreal r)
{proof)

lemma enn2real-less-iff [simp]: © < top => ennlreal z < ¢ +— = < ¢
(proof)

lemma enn2real-le-iff [simp]: [z < top; ¢ > 0] = ennZreal z < ¢ +— z < ¢
(proof)

lemma enn2real-less:

THEORY “Extended-Nonnegative-Real” 363

assumes enn2real e < r e # top shows e < ennreal r
{proof)

lemma enn2real-le:
assumes enn2real e < r e # top shows e < ennreal r

{proof)

lemma tendsto-top-iff-ennreal:
fixes f :: 'a = ennreal
shows (f —— top) F «— (VI>0. eventually (Az. ennreal | < fx) F)

(proof)

lemma ennreal-tendsto-top-eq-at-top:
((Az. ennreal (f z)) —— top) F <— (LIM z F. f z :> at-top)

(proof)

lemma tendsto-0-if-Limsup-eq-0-ennreal:

fixes f :: - = ennreal
shows Limsup F f = 0 = (f —— 0) F
(proof)

lemma diff-le-self-ennreal[simp]: a — b < (a::ennreal)
(proof)

lemma ennreal-ineq-diff-add: b < a = a = b + (a — b::ennreal)
(proof)

lemma ennreal-mult-strict-left-mono: (a::ennreal) < ¢ = 0 < b = b < top =
bxa<bxc
{proof)

lemma ennreal-between: 0 < e = 0 < t = = < top = = — e < (z::ennreal)

{proof)

lemma minus-less-iff-ennreal: b < top —= b < a = a — b < c+— a < c+
(b::ennreal)
(proof)

lemma tendsto-zero-ennreal:
assumes ev: A\r. 0 < r=VpazinF. fz < ennreal r
shows (f —— 0) F

(proof)

lifting-update ennreal.lifting
lifting-forget ennreal.lifting

40.10 ennreal theorems

lemma neq-top-trans: fixes = y :: ennreal shows [y # top; x < y]| = z # top

THEORY “Extended-Nonnegative-Real” 364

{proof)

lemma diff-diff-ennreal: fixes a b :: ennreal shows a < b= b # oo = b — (b
—a)=a
(proof)

lemma ennreal-less-one-iff [simp]: ennreal x < 1 +— x < 1
{proof)

lemma SUP-const-minus-ennreal:
fixes f :: ‘a = ennreal shows I # {} = (SUP z€l. ¢ — fz) = ¢ — (INF z€l.

fx)

including ennreal.lifting
(proof)

lemma zero-minus-ennreal[simpl: 0 — (a::ennreal) = 0
including ennreal.lifting

{proof)

lemma diff-diff-commute-ennreal:
fixes a b ¢ :: ennreal shows a — b —c=a —c— b

{proof)

lemma diff-gr0-ennreal: b < (a::ennreal) = 0 < a — b
including ennreal.lifting (proof)

lemma divide-le-posl-ennreal:
fixes x y z :: ennreal
showsz >0 = z2<zxy=2/z<y

{proof)

lemma add-diff-eq-ennreal:
fixes z y z :: ennreal
shows 2 <y=—=z+ (y—2)=z+y— 2
(proof)

lemma add-diff-inverse-ennreal:
fixeszy :: ennreal shows s < y=z+ (y —z) =y

{proof)

lemma add-diff-eq-iff-ennreal[simp]:
fixes z y :: ennreal shows 2 + (y —z) = y+— <y
(proof)

lemma add-diff-le-ennreal: a + b — ¢ < a + (b — c::ennreal)
{proof)

lemma diff-eq-0-ennreal: a < top = a < b = a — b = (0::ennreal)
{proof)

THEORY “Extended-Nonnegative-Real” 365

lemma diff-diff-ennreal’: fixes x y z :: ennreal shows z <y —= y — 2z < 1 =
T (y—2)=a+z—y
(proof)

lemma diff-diff-ennreal’: fixes x y 2z :: ennreal
shows 2 <y= 2z —(y—2)=(ify — 2 < xthenz + z — y else 0)
(proof)

lemma power-less-top-ennreal: fixes x :: ennreal shows z ~n < top <— x < top
V=20
(proof)

lemma ennreal-divide-times: (a / b) x ¢ = a * (¢ / b :: ennreal)

(proof)

lemma diff-less-top-ennreal: a — b < top +— a < (top :: ennreal)
(proof)

lemma divide-less-ennreal: b # 0 = b < top = a /b < c+— a<(cxb:
ennreal)
(proof)

lemma one-less-numeral[simpl: 1 < (numeral n::ennreal) <— (num.One < n)
{proof)

lemma divide-eq-1-ennreal: a /| b = (1::ennreal) +— (b # top ANb# 0 N b= a)
(proof)

lemma ennreal-mult-cancel-left: (a x b =axc) =(a=top Nb# 0 ANc# 0V
a= 0V b= (c:ennreal))
{proof)

lemma ennreal-minus-if: ennreal a — ennreal b = ennreal (if 0 < b then (if b <
a then a — b else 0) else a)

{proof)

lemma ennreal-plus-if: ennreal a + ennreal b = ennreal (if 0 < a then (if 0 < b
then a + b else a) else b)

{proof)

lemma ennreal-diff-le-mono-left: a < b = a — ¢ < (b::ennreal)
(proof)

lemma ennreal-minus-le-iff: a — b < ¢ +— (a < b + (c:zennreal) A (a = top A
b = top — ¢ = top))
{proof)

lemma ennreal-le-minus-iff: a < b — ¢ <— (a + ¢ < (b:ennreal) V (a = 0 A b

THEORY “Extended-Nonnegative-Real” 366

< 0)
{proof)

lemma diff-add-eq-diff-diff-swap-ennreal: * — (y + z :: ennreal) =z — y — 2
(proof)

lemma diff-add-assoc2-ennreal: b < a => (a — b + cuennreal) = a + ¢ — b
{proof)

lemma diff-gt-0-iff-gt-ennreal: 0 < a — b <— (a = top A b= top V b < (a::ennreal))
(proof)

lemma diff-eq-0-iff-ennreal: (a — b:zennreal) = 0 «+— (a < top A a < b)
{proof)

IN

lemma add-diff-self-ennreal: a + (b — a::ennreal) = (if a < b then b else a)

(proof)

IN

lemma diff-add-self-ennreal: (b — a + a::ennreal) = (if a < b then b else a)

{proof)

lemma ennreal-minus-cancel-iff:
fixes a b c :: ennreal
showsa —b=a—c+— (b=cV(a<bAa<c)Va=top)
(proof)

The next lemma is wrong for a = top, for b = ¢ = 1 for instance.

lemma ennreal-right-diff-distrib:
fixes a b ¢ :: ennreal
assumes a # top
shows ax (b—¢c)=axb—axc
(proof)

lemma SUP-diff-ennreal:
¢ < top = (SUP i€l. fi — ¢ :: ennreal) = (SUP i€l. fi) — ¢
(proof)

lemma ennreal-SUP-add-right:
fixes c :: ennreal shows I # {} = ¢ + (SUP i€l. fi) = (SUP i€l. ¢ + f1)

(proof)

lemma SUP-add-directed-ennreal:
fixes f g :: - = ennreal
assumes directed: N\ij. i€ | = jel = Jkel. fi+gj<fk+ gk
shows (SUP i€l. fi + g i) = (SUP i€l. fi) + (SUP i€l. g i)

{proof)

lemma enn2real-eq-0-iff: enn2real z = 0 «— x = 0 V x = top

THEORY “Log-Nat” 367

{proof)

lemma continuous-on-diff-ennreal:
continuous-on A f = continuous-on A ¢ = (\z. © € A = fz # top) =
(ANz. 2 € A = gz # top) = continuous-on A (Az. fz — g z::ennreal)
including ennreal.lifting

(proof)

lemma tendsto-diff-ennreal:
f—) F=(9g—y F=2a#top = y#top—= (M2. f2z—yg
zennreal) — x — y) F

{proof)
declare lim-real-of-ereal [tendsto-intros]

lemma tendsto-enn2real [tendsto-intros|:
assumes (u — ennreal l) F'1 > 0
shows ((An. enn2real (u n)) —— 1) F

{proof)

end

41 Logarithm of Natural Numbers

theory Log-Nat
imports Complex-Main
begin

41.1 Preliminaries
lemma divide-nat-diff-div-nat-less-one:

real © / real b — real (z div b) < 1 for z b :: nat
(proof)

41.2 Floorlog

definition floorlog :: nat = nat = nat
where floorlog b a = (if a > 0 AN b > 1 then nat |log b a] + 1 else 0)

lemma floorlog-mono: x < y = floorlog b = < floorlog b y
(proof)

lemma floorlog-bounds:
b " (floorlogbx — 1) <z Az <b (floorlogbzx)ifx>0b>1
(proof)

lemma floorlog-power [simp]:
floorlog b (a x b ~¢) = floorlogb a + cifa > 0b > 1
(proof)

THEORY “Log-Nat”

lemma floor-log-add-eql:
llogb (a+ 1) =|logbalifb>1a>10<rr<1
for a b :: nat and 7 :: real

(proof)

lemma floor-log-div:
llogbz| = [logb (xdivd)] +1ifb>1xz>0xdivb>0
for b z :: nat

{(proof)

lemma compute-floorlog [code]:
floorlog b x = (if x > 0 AN b > 1 then floorlog b (z div b) + 1 else 0)

{proof)

lemma floor-log-eq-if :
llogbx| =|logby|ifzdivb=ydivbb>1z>0xdivb>1
for b z y :: nat
(proof)

lemma floorlog-eq-if:
floorlog b x = floorlogb yif xdivb=ydivbb>1xz>0zxdivb>1
for b z y :: nat
(proof)

lemma floorlog-leD:
floorlogbr <w=—=>b>1=z<b w

{proof)

lemma floorlog-lel:
r<b w=—0<w=— b>1= floorlogbz < w

(proof)

lemma floorlog-eq-zero-iff:
floorlogbz =0 +—b< 1 V<0
(proof)

lemma floorlog-le-iff:
floorlogbz < w+—b<I1VDbI>1IANO0O<wAz<b w
(proof)

lemma floorlog-ge-Sucl:
Suc w < floorlog bz if b “w < xzb>1
(proof)

lemma floorlog-gel:
w < floorlog bz if b “(w—1)<zb>1
(proof)

368

THEORY “Log-Nat”

lemma floorlog-geD:
b " (w—1)<zifw< floorlog bz w> 0
(proof)

41.3

definition ceillog2 :: nat = nat where

ceillog2 n = (if n = 0 then 0 else nat [log 2 (real n)])

lemma ceillog2-0 [simp]: ceillog2 0 = 0
and ceillog2-Suc-0 [simp]: ceillog2 (Suc 0) = 0
and ceillog2-2 [simp]: ceillog2 2 = 1
(proof)

lemma ceillog2-lel-eq-0 [simp]: n < 1 = ceillog2 n = 0

{proof)

lemma ceillog2-2-power [simp]: ceillog2 (2 ~n) =

(proof)

lemma ceillog2-ge-log:
assumes n > 0
shows real (ceillog2 n) > log 2 (real n)

(proof)

lemma ceillog2-less-log:
assumes n > 0
shows real (ceillog2 n) < log 2 (real n) + 1

(proof)

lemma ceillog2-le-iff:
assumes n > (
shows ceillog2n <Il+—n<271

{(proof)

lemma ceillog2-ge-iff:
assumes n > (
shows ceillog2n >1+— 271 < 2=xn

(proof)

lemma le-two-power-ceillog2: n < 2 ~ ceillog2 n
(proof)

lemma two-power-ceillog2-gt:
assumes n > 0
shows 2 xn > 2 " ceillog2 n

{proof)

lemma ceillog2-eql:

n

369

THEORY “Log-Nat” 370

assumes n < 2 71271 < 2% n
shows ceillog2 n =1

{proof)

lemma ceillog2-rec-even:
assumes k > 0
shows ceillog2 (2 * k) = Suc (ceillog2 k)
(proof)

lemma ceillog2-mono:
assumes m < n
shows ceillog2 m < ceillog2 n

(proof)

lemma ceillog2-rec-odd:
assumes k > 0
shows ceillog2 (Suc (2 * k)) = Suc (ceillog2 (Suc k))

(proof)

lemma ceillog2-rec:
ceillog2 n = (if n < 1 then 0 else 1 + ceillog2 ((n + 1) div 2))
(proof)

lemma funpow-div2-ceillog2-le-1:
(An. (n + 1) div 2) " ceillog2 n) n < 1
(proof)

fun ceillog2-auzx :: nat = nat = nat where
ceillog2-aux acc n = (if n < 1 then acc else ceillog2-auz (acc + 1) ((n + 1) div

2))
lemmas [simp del] = ceillog2-auz.simps

lemma ceillog2-aux-correct: ceillog2-aux acc n = ceillog2 n + acc

(proof)

lemma ceillog2-code [code]: ceillog2 n = ceillog2-aux 0 n
(proof)

41.4 Bitlen

definition bitlen :: int = int
where bitlen a = floorlog 2 (nat a)

lemma bitlen-alt-def:
bitlen a = (if a > 0 then |log 2 a| + 1 else 0)

THEORY “Log-Nat” 371

{proof)

lemma bitlen-zero [simp]:
bitlen 0 = 0

(proof)

lemma bitlen-nonneg:
0 < bitlen z

{proof)

lemma bitlen-bounds:
2 “nat (bitlenx — 1) <z Az < 2 nat (bitlen z) if z > 0

(proof)

lemma bitlen-pow2 [simp]:
bitlen (b« 2 ~¢) = bitlen b + cif b > 0
{proof)

lemma compute-bitlen [code]:
bitlen x = (if x > 0 then bitlen (z div 2) + 1 else 0)

(proof)

lemma bitlen-eq-zero-iff:
bitlenx = 0 +— z < 0
(proof)

lemma bitlen-div:
1 < real-of-int m / 2"nat (bitlen m — 1)
and real-of-int m / 27 nat (bitlen m — 1) < 2if 0 < m
(proof)

lemma bitlen-le-iff-floorlog:
bitlen x < w +— w > 0 A floorlog 2 (nat x) < nat w
(proof)

lemma bitlen-le-iff-power:
bitlenz < w+— w>0ANz< 2 natw

{proof)

lemma less-power-nat-iff-bitlen:
T < 2w+ bitlen (int) < w
(proof)

lemma bitlen-ge-iff-power:
w<bitlenz+— w< 0V 2 (natw—1)<z

{proof)

lemma bitlen-twopow-add-eq:
bitlen (2 "w+b)=w+1if0<bb< 2 w

THEORY “Lattice-Algebras” 372

{proof)

end

42 Various algebraic structures combined with a

lattice
theory Lattice-Algebras
imports Complex-Main

begin

class semilattice-inf-ab-group-add = ordered-ab-group-add + semilattice-inf
begin

lemma add-inf-distrib-left: a + inf b ¢ = inf (a + b) (a + ¢) (is 2L=%R)
(proof)

lemma add-inf-distrib-right: inf a b + ¢ = inf (a + ¢) (b + ¢)
{proof)

end

class semilattice-sup-ab-group-add = ordered-ab-group-add + semilattice-sup
begin

lemma add-sup-distrib-left: a + sup b ¢ = sup (a + b) (a + ¢) (is 2L = ?R)
(proof)

lemma add-sup-distrib-right: sup a b + ¢ = sup (a + ¢) (b + ¢)
(proof)

end

class lattice-ab-group-add = ordered-ab-group-add + lattice
begin

subclass semilattice-inf-ab-group-add (proof)
subclass semilattice-sup-ab-group-add (proof)

lemmas add-sup-inf-distribs =
add-inf-distrib-right add-inf-distrib-left add-sup-distrib-right add-sup-distrib-left

lemma inf-eq-neg-sup: inf a b = — sup (— a) (— b)
(proof)
lemma sup-eg-neg-inf: sup a b = — inf (— a) (— b)

(proof)

THEORY “Lattice-Algebras” 373

lemma neg-inf-eq-sup: — inf a b = sup (— a) (— b)
{proof)

lemma diff-inf-eq-sup: a — infb c=a + sup (— b) (— ¢)
(proof)

lemma neg-sup-eg-inf: — sup a b = inf (— a) (— b)
(proof)

lemma diff-sup-eq-inf: a — sup b ¢ = a + inf (— b) (— ¢)
(proof)

lemma add-eq-inf-sup: a + b = sup a b + infa b
(proof)

42.1 Positive Part, Negative Part, Absolute Value

definition nprt :: 'a = 'a
where nprt © = infx 0

definition pprt :: 'a = ‘a
where pprt © = sup = 0

lemma pprt-neg: pprt (— x) = — nprt ©
(proof)
lemma nprt-neg: nprt (— z) = — pprt z
(proof)

lemma prts: a = pprt a + nprt a
(proof)

lemma zero-le-pprt[simp]: 0 < pprt a

(proof)

lemma nprt-le-zero[simp]: nprt a < 0
(proof)

lemma le-eg-neg: a < — b<+—a+ b< 0
(is ?lhs = ?rhs)
(proof)

lemma pprt-0[simp]: pprt 0 = 0 (proof)
lemma nprt-0[simp): nprt 0 = 0

lemma pprt-eg-id [simp, no-atp]: 0 < © = pprtz = x

{proof)

lemma npri-eq-id [simp, no-atp]: © < 0 = nprt z = x

THEORY “Lattice-Algebras” 374

{proof)

lemma pprt-eq-0 [simp, no-atp]: x < 0 = pprt z = 0
(proof)

lemma nprt-eq-0 [simp, no-atp]: 0 < © = nprt z = 0
(proof)

lemma sup-0-imp-0:
assumes sup a (— a) = 0
shows a = 0

(proof)

lemma inf-0-imp-0: infa (—a) =0 = a= 0

(proof)

lemma inf-0-eq-0 [simp]: infa (— a) =0 «— a =0
{proof)

lemma sup-0-eq-0 [simp]: sup a (— a) = 0 +— a =0

(proof)

lemma zero-le-double-add-iff-zero-le-single-add [simp]: 0 < a + a +— 0 < a
(is ?lhs «— ?rhs)
(proof)

lemma double-zero [simp]: a + a = 0 +— a = 0
{proof)

lemma zero-less-double-add-iff-zero-less-single-add [simp]: 0 < a + a +— 0 < a

(proof)

lemma double-add-le-zero-iff-single-add-le-zero [simp]: a + a < 0 «— a < 0
(proof)

lemma double-add-less-zero-iff-single-less-zero [simp]: a + a < 0 +— a < 0

(proof)

declare neg-inf-eq-sup [simp]
and neg-sup-eg-inf [simp]
and diff-inf-eq-sup [simp]
and diff-sup-eg-inf [simp]

lemma le-minus-self-iff: a < — a +— a
(proof)

IN
S

lemma minus-le-self-iff: — a < a+— 0 < a

(proof)

THEORY “Lattice-Algebras”

lemma zero-le-iff-zero-nprt: 0 < a <— nprt a = 0

{proof)

lemma le-zero-iff-zero-pprt: a < 0 <— pprt a = 0

(proof)

lemma le-zero-iff-pprt-id: 0 < a «— pprt a = a
(proof)

lemma zero-le-iff-nprt-id: a < 0 +— nprt a = a
(proof)

lemma ppri-mono [simp, no-atp]: a < b = pprt a < pprt b

{proof)

lemma nprt-mono [simp, no-atp]: a < b = nprt a < nprt b

(proof)

end

lemmas add-sup-inf-distribs =

375

add-inf-distrib-right add-inf-distrib-left add-sup-distrib-right add-sup-distrib-left

class lattice-ab-group-add-abs = lattice-ab-group-add + abs +

assumes abs-lattice: |a| = sup a (— a)
begin

lemma abs-prts: |a| = pprt a — nprt a

(proof)

subclass ordered-ab-group-add-abs

(proof)

end

lemma sup-eq-if:
fixes a :: 'a::{lattice-ab-group-add,linorder}
shows sup a (— a) = (if a < 0 then — a else a)
(proof)

lemma abs-if-lattice:
fixes a :: ‘a::{lattice-ab-group-add-abs,linorder}
shows |a| = (if a < 0 then — a else a)
(proof)

lemma estimate-by-abs:
fixes a b c :: 'a:lattice-ab-group-add-abs
assumes a + b < ¢

THEORY “Float” 376

shows a < ¢ + |b|
(proof)

class lattice-ring = ordered-ring + lattice-ab-group-add-abs
begin

subclass semilattice-inf-ab-group-add (proof)
subclass semilattice-sup-ab-group-add (proof)

end

lemma abs-le-mult:
fixes a b :: 'a::lattice-ring
shows |a * b| < |a| * ||

(proof)

instance lattice-ring C ordered-ring-abs
(proof)

lemma mult-le-prts:
fixes a b :: 'a::lattice-ring
assumes al < a
and a < a2
and b1 <b
and b < b2
shows a x b <
pprt a2 x pprt b2 + pprt al x nprt b2 + nprt a2 * pprt b1 + nprt al x nprt
b1

(proof)

lemma mult-ge-prts:
fixes a b :: 'a::lattice-ring
assumes al < a
and a < a2
and b1 <b
and b < b2
shows a x b >
nprt al * pprt b2 + nprt a2 x nprt b2 + pprt al * pprt b1 + pprt a2 x nprt
b1

(proof)

instance int :: lattice-ring

(proof)

instance real :: lattice-ring
(proof)

end

THEORY “Float” 377

43 Floating-Point Numbers

theory Float
imports Log-Nat Lattice-Algebras
begin

definition float = {m * 2 powr e | (m :: int) (e :: int). True}

typedef float = float
morphisms real-of-float float-of

(proof)
setup-lifting type-definition-float
declare real-of-float [code-unfold]
lemmas float-of-inject]simp]
declare [[coercion real-of-float :: float = real]]

lemma real-of-float-eq: f1 = f2 +— real-of-float f1 = real-of-float f2 for f1 f2 ::
float
(proof)

declare real-of-float-inverse[simp]| float-of-inverse [simp]
declare real-of-float [simp)

43.1 Real operations preserving the representation as float-
ing point number

lemma floatl: m x 2 powr e = © = x € float for m e :: int

(proof)

lemma zero-float[simpl]: 0 € float
{proof)

lemma one-float[simp]: 1 € float
(proof)

lemma numeral-float[simp]: numeral i € float
(proof)

lemma neg-numeral-float[simp): — numeral i € float
(proof)

lemma real-of-int-float[simp]: real-of-int x € float for x :: int
(proof)

lemma real-of-nat-float[simpl: real x € float for z :: nat

THEORY “Float” 378

{proof)

lemma two-powr-int-float[simpl: 2 powr (real-of-int i) € float for i :: int
(proof)

lemma two-powr-nat-float[simpl: 2 powr (real ©) € float for i :: nat
(proof)

lemma two-powr-minus-int-float[simp|: 2 powr — (real-of-int i) € float for i :: int
(proof)

lemma two-powr-minus-nat-float[simp]: 2 powr — (real i) € float for i :: nat
(proof)

lemma two-powr-numeral-float[simpl: 2 powr numeral i € float
(proof)

lemma two-powr-neg-numeral-float[simp|: 2 powr — numeral i € float
(proof)

lemma two-pow-float[simp]: 2 " n € float
{proof)

lemma plus-float[simp|: r € float = p € float = r + p € float
(proof)

lemma uminus-float[simp]: © € float = —z € float
(proof)

lemma times-float[simp]: © € float = y € float = x * y € float
(proof)

lemma minus-float[simp]: x € float = y € float = = — y € float
(proof)

lemma abs-float[simp]: x € float = |z| € float
{proof)

lemma sgn-of-float[simp|: z € float = sgn x € float
(proof)

lemma div-power-2-float[simp]: z € float = x / 27d € float
(proof)

lemma div-power-2-int-float[simp]: = € float = ¢ / (2::int)"d € float

(proof)

lemma div-numeral-Bit0-float[simp]:

THEORY “Float” 379

assumes z / numeral n € float
shows = / (numeral (Num.Bit0 n)) € float

(proof)

lemma div-neg-numeral-Bit0-float[simp):
assumes z / numeral n € float
shows = / (— numeral (Num.Bit0 n)) € float

{proof)

lemma power-float[simp]:
assumes a € float
shows a ~ b € float

(proof)

lift-definition Float :: int = int = float is A(m::int) (ezint). m x 2 powr e
(proof)

declare Float.rep-eq[simp]

code-datatype Float

lemma compute-real-of-float[code]:
real-of-float (Float m e) = (if e > 0 then m x 2 " nat e else m / 2~ (nat (—e)))

(proof)
43.2 Arithmetic operations on floating point numbers
instantiation float :: {ring-1,linorder linordered-ring,linordered-idom,numeral,equal }

begin

lift-definition zero-float :: float is 0 (proof)
declare zero-float.rep-eq[simp]

lift-definition one-float :: float is 1 {proof)
declare one-float.rep-eq[simp]

lift-definition plus-float :: float = float = float is (+) (proof)
declare plus-float.rep-eq|simp)

lift-definition times-float :: float = float = float is (x) (proof)
declare times-float.rep-eq[simp]

lift-definition minus-float :: float = float = float is (—) (proof)
declare minus-float.rep-eq|simp]

lift-definition uminus-float :: float = float is uminus {proof)
declare uminus-float.rep-eq|simp]

lift-definition abs-float :: float = float is abs (proof)
declare abs-float.rep-eq[simp)

THEORY “Float” 380

lift-definition sgn-float :: float = float is sgn (proof)
declare sgn-float.rep-eq[simp]

lift-definition equal-float :: float = float = bool is (=) :: real = real = bool

(proof)

lift-definition less-eg-float :: float = float = bool is (<) (proof)
declare less-eq-float.rep-eq|simp]

lift-definition less-float :: float = float = bool is (<) {proof)
declare less-float.rep-eq[simp]

instance

(proof)

end

lemma real-of-float [simp]: real-of-float (of-nat n) = of-nat n
(proof)

lemma real-of-float-of-int-eq [simp]: real-of-float (of-int z) = of-int z
(proof)

lemma Float-0-eq-0[simp]: Float 0 e = 0
(proof)

lemma real-of-float-power[simp]: real-of-float (f n) = real-of-float f™n for f :: float
(proof)

lemma real-of-float-min: real-of-float (min z y) = min (real-of-float x) (real-of-float

v)

and real-of-float-maz: real-of-float (maz x y) = mazx (real-of-float z) (real-of-float
)

for z y :: float

(proof)

instance float :: unbounded-dense-linorder
(proof)

instantiation float :: lattice-ab-group-add
begin

definition inf-float :: float = float = float
where inf-float a b = min a b

definition sup-float :: float = float = float
where sup-float a b = maz a b

THEORY “Float” 381

instance
(proof)

end

lemma float-numeral[simpl: real-of-float (numeral x :: float) = numeral x
(proof)

lemma transfer-numeral [transfer-rule):
rel-fun (=) per-float (numeral :: - = real) (numeral :: - = float)
(proof)

lemma float-neg-numeral[simp): real-of-float (— numeral z :: float) = — numeral
x

(proof)

lemma transfer-neg-numeral [transfer-rule]:
rel-fun (=) per-float (— numeral :: - = real) (— numeral :: - = float)
{proof)

lemma float-of-numeral: numeral k = float-of (numeral k)
and float-of-neg-numeral: — numeral k = float-of (— numeral k)

{proof)

43.3 Quickcheck

instantiation float :: erhaustive
begin

definition exhaustive-float where

exhaustive-float f d =

Quickcheck- Ezhaustive. exhaustive (A\zx. Quickcheck-Exhaustive.ezhaustive (Ay. f

(Float z y)) d) d
instance (proof)
end
context

includes term-syntaz

begin

definition [code-unfold]:
valtermify-float x y = Code-Evaluation.valtermify Float {-} = {-} y

end

instantiation float :: full-exhaustive
begin

THEORY “Float” 382

definition
full-exhaustive-float f d =
Quickcheck- Exhaustive. full-exhaustive
(Az. Quickcheck-Ezhaustive.full-exhaustive (Ay. f (valtermify-float = y)) d) d

instance (proof)
end

instantiation float :: random
begin

definition Quickcheck-Random.random ¢ =
scomp (Quickcheck-Random.random (2 ~ nat-of-natural 7))
(Aman. scomp (Quickcheck-Random.random i) (Aexp. Pair (valtermify-float
man exp)))

instance (proof)

end

43.4 Represent floats as unique mantissa and exponent

lemma int-induct-abs[case-names less]:
fixes j :: int
assumes H: An. (Ai. |i| < |n| = Pi) = Pn
shows P j

(proof)

lemma int-cancel-factors:

fixes n :: int

assumes [< 7

showsn=0V 3kin=kxr iA-rdvdk)
(proof)

lemma mult-powr-eq-mult-powr-iff-asym:
fixes m1 m2 el e2 :: int
assumes ml1: - 2 dvd m1
and el < e2
shows m1 *x 2 powr el = m2 * 2 powr e2 <— ml = m2 N el = e2
(is ?lhs «— ?rhs)

(proof)

lemma mult-powr-eq-mult-powr-iff :

= 2dvd ml = — 2 dvd m2 —> m1 * 2 powr el = m2 *x 2 powr e2 +— ml =
m2 N el = e2

for m1 m2 el e2 :: int

{proof)

THEORY “Float” 383

lemma floatE-normed:
assumes z: = € float
obtains (zero) z = 0
| (powr) m e :: int where £ = m x 2 powr e = 2 dvd m = # 0

(proof)

lemma float-normed-cases:

fixes f :: float

obtains (zero) f = 0

| (powr) m e :: int where real-of-float f = m x 2 powr e = 2 dvd m f # 0
(proof)

definition mantissa :: float = int
where mantissa [=
fst (SOME p:int X int. (f = 0N fstp=0ANsndp=10)V
(f # 0 A real-of-float f = real-of-int (fst p) = 2 powr real-of-int (snd p) A —
2 dvd fst p))

definition exponent :: float = int
where exponent f =
snd (SOME p:int x int. (f =0 A fstp=0 A sndp=0)V
(f # 0 A real-of-float f = real-of-int (fst p) = 2 powr real-of-int (snd p) A —
2 dvd fst p))

lemma exponent-0[simp|: exponent 0 = 0 (is ?E)
and mantissa-0[simp]: mantissa 0 = 0 (is ?M)

(proof)

lemma mantissa-exponent: real-of-float f = mantissa f * 2 powr exponent f (is
and mantissa-not-dvd: f # 0 = = 2 dvd mantissa f (is - = ?D)

(proof)

lemma mantissa-noteq-0: f # 0 = mantissa f # 0
(proof)

lemma mantissa-eq-zero-iff: mantissa x = 0 <— x = 0
(is ?lhs «— ?rhs)
(proof)

lemma mantissa-pos-iff: 0 < mantissa x +— 0 < x
(proof)

lemma mantissa-nonneg-iff: 0 < mantissa x <— 0 < z
(proof)

lemma mantissa-neg-iff: 0 > mantissa +— 0 > z

{proof)

THEORY “Float” 384

lemma
fixes m e :: int
defines f = float-of (m * 2 powr e€)
assumes dvd: = 2 dvd m
shows mantissa-float: mantissa f = m (is M)
and ezponent-float: m # 0 = exponent f = e (is - = ¢F)
(proof)

43.5 Compute arithmetic operations

lemma Float-mantissa-exponent: Float (mantissa f) (exponent f) = f
(proof)

lemma Float-cases [cases type: float):

fixes f :: float
obtains (Float) m e :: int where f = Float m e
{proof)

lemma denormalize-shift:
assumes f-def: f = Float m e
and not-0: f # 0
obtains ¢ where m = mantissa f x 2 ~ i e = exponent f — i

(proof)

context
begin

qualified lemma compute-float-zero[code-unfold, code]: 0 = Float 0 0
(proof) lemma compute-float-one[code-unfold, code]: 1 = Float 1 0

{proof)

lift-definition normfloat :: float = float is Az. z (proof)
lemma normloat-id[simp]: normfloat z = x (proof) lemma compute-normfloat|codel:
normfloat (Float m e) =
(if m mod 2 = 0 N m # 0 then normfloat (Float (m div 2) (e + 1))
else if m = 0 then 0 else Float m e)
(proof) lemma compute-float-numeral[code-abbrev|: Float (numeral k) 0 = nu-
meral k
(proof) lemma compute-float-neg-numeral]code-abbrev]: Float (— numeral k) 0
= — numeral k
(proof) lemma compute-float-uminus|[code]: — Float m1 el = Float (— m1) el
(proof) lemma compute-float-times|code]: Float m1 el x Float m2 e2 = Float
(m1 « m2) (el + e2)
(proof) lemma compute-float-plus|code]:
Float m1 el + Float m2 e2 =
(if m1 = 0 then Float m2 e2
else if m2 = 0 then Float m1 el
else if el < e2 then Float (m1 + m2 % 2 nat (e2 — el)) el

THEORY “Float” 385

else Float (m2 + m1 * 2 nat (el — e2)) e2)
(proof) lemma compute-float-minus|code]: f — g = f + (—g) for f g :: float
(proof) lemma compute-float-sgn|code]:
sgn (Float m1 el) = (if 0 < m1 then 1 else if m1 < 0 then —1 else 0)
(proof)

lift-definition is-float-pos :: float = bool is (<) 0 :: real = bool (proof) lemma
compute-is-float-pos|code]: is-float-pos (Float m €) +— 0 < m
(proof)

lift-definition is-float-nonneg :: float = bool is (<) 0 :: real = bool {(proof)
lemma compute-is-float-nonneg[code]: is-float-nonneg (Float m e) +— 0 < m
(proof)

lift-definition is-float-zero :: float = bool is (=) 0 :: real = bool (proof) lemma
compute-is-float-zero|code]: is-float-zero (Float m €) +— 0 = m

(proof) lemma compute-float-abs[codel: |Float m e| = Float |m| e

(proof) lemma compute-float-eq|code]: equal-class.equal f g = is-float-zero (f —

9)
(proof)

end

43.6 Lemmas for types real, nat, int

lemmas real-of-ints =
of-int-add
of-int-minus
of-int-diff
of-int-mult
of-int-power
of-int-numeral of-int-neg-numeral

lemmas int-of-reals = real-of-ints[symmetric]

43.7 Rounding Real Numbers

definition round-down :: int = real = real
where round-down prec x = |z * 2 powr prec| * 2 powr —prec

definition round-up :: int = real = real
where round-up prec x = [z * 2 powr prec| * 2 powr —prec

lemma round-down-float[simp): round-down prec z € float
(proof)

lemma round-up-float[simp|: round-up prec x € float
(proof)

lemma round-up: © < round-up prec x

THEORY “Float” 386

{proof)

lemma round-down: round-down prec x < x
(proof)

lemma round-up-0[simp|: round-up p 0 = 0
(proof)

lemma round-down-0|[simpl: round-down p 0 = 0
{proof)

lemma round-up-diff-round-down: round-up prec x — round-down prec x < 2 powr
—prec
(proof)

lemma round-down-shift: round-down p (z * 2 powr k) = 2 powr k * round-down
(p+k)z
(proof)

lemma round-up-shift: round-up p (z * 2 powr k) = 2 powr k * round-up (p + k)
x

(proof)

lemma round-up-uminus-eq: round-up p (—z) = — round-down p x
and round-down-uminus-eq: round-down p (—x) = — round-up p
(proof)

lemma round-up-mono: v < y = round-up p x < round-up p y
(proof)

lemma round-up-lel:
assumes z < 1 prec > 0
shows round-up prec x < 1

(proof)

lemma round-up-lessi:
assumes z < 1 / 2p> 0
shows round-up p z < 1

(proof)

lemma round-down-gel:
assumes z: x > 1
assumes prec: p > — log 2«
shows 1 < round-down p x

(proof)

lemma round-up-lef: © < 0 = round-up p z < 0
(proof)

THEORY “Float” 387

43.8 Rounding Floats

definition div-twopow :: int = nat = int
where [simp]: div-twopow x n = z div (2 " n)

definition mod-twopow :: int = nat = int
where [simp]: mod-twopow x n = z mod (2 ~ n)

lemma compute-div-twopow|code]:
div-twopow xn = (if x = 0V © = —1 V n = 0 then x else div-twopow (x div 2)
(n—1))

{proof)

lemma compute-mod-twopow|code]:
mod-twopow . n = (if n = 0 then 0 else x mod 2 + 2 * mod-twopow (z div 2) (n

- 1))

{proof)

lift-definition float-up :: int = float = float is round-up (proof)
declare float-up.rep-eq[simp]

lemma round-up-correct: round-up e f — f € {0..2 powr —e}
(proof)

lemma float-up-correct: real-of-float (float-up e f) — real-of-float f € {0..2 powr
—6}

(proof)

lift-definition float-down :: int = float = float is round-down (proof)
declare float-down.rep-eq[simp]

lemma round-down-correct: f — (round-down e f) € {0..2 powr —e}
{proof)

lemma float-down-correct: real-of-float f — real-of-float (float-down e f) € {0..2
powr —e}
(proof)

context
begin

qualified lemma compute-float-down|code]:
float-down p (Float m e) =
(if p + e < 0 then Float (div-twopow m (nat (—(p + €)))) (—p) else Float m e)

(proof)

lemma abs-round-down-le: |f — (round-down e f)| < 2 powr —e
(proof)

lemma abs-round-up-le: |f — (round-up e f)| < 2 powr —e

THEORY “Float” 388

{proof)

lemma round-down-nonneg: 0 < s = 0 < round-down p s
(proof)

lemma ceil-divide-floor-conv:
assumes b # 0
shows [real-of-int a / real-of-int b] =
(if b dvd a then a div b else |real-of-int a / real-of-int b] + 1)
(proof) lemma compute-float-up|[code]: float-up p x = — float-down p (—x)
(proof)

end

lemma bitlen-Float:

fixes m e

defines [THEN meta-eq-to-obj-eq|: f = Float m e

shows bitlen |mantissa f| + exponent f = (if m = 0 then 0 else bitlen |m| + e)
(proof)

lemma float-gt1-scale:
assumes I < Float m e
shows 0 < e + (bitlen m — 1)
(proof)

43.9 Truncating Real Numbers

definition truncate-down::nat = real = real
where truncate-down prec © = round-down (prec — |log 2 |z||) =

lemma truncate-down: truncate-down prec v < x
(proof)

lemma truncate-down-le: x < y = truncate-down prec z < y

{proof)

lemma truncate-down-zero[simp): truncate-down prec 0 = 0
{proof)

lemma truncate-down-float[simp): truncate-down p z € float
{proof)

definition truncate-up::nat = real = real
where truncate-up prec & = round-up (prec — |log 2 |z|]) =

lemma truncate-up: © < truncate-up prec x
{proof)

THEORY “Float” 389

lemma truncate-up-le: © < y = x < truncate-up prec y

{proof)
lemma truncate-up-zero[simpl: truncate-up prec 0 = 0
(proof)
lemma truncate-up-uminus-eq: truncate-up prec (—z) = — truncate-down prec x
and truncate-down-uminus-eq: truncate-down prec (—z) = — truncate-up prec
(proof)
lemma truncate-up-float[simpl: truncate-up p « € float
{proof)
lemma mult-powr-eq: 0 < b= b# 1 = 0 <z = z * b powr y = b powr (y
+ log b z)
(proof)

lemma truncate-down-pos:
assumes z > (
shows truncate-down p x > 0

(proof)

lemma truncate-down-nonneg: 0 < y =—> 0 < truncate-down prec y
(proof)

lemma truncate-down-gel: 1 < x = 1 < truncate-down p z
(proof)

lemma truncate-up-nonpos: © < 0 = truncate-up prec v < 0
{proof)

lemma truncate-up-lel:
assumes z < I
shows truncate-up p x < 1

(proof)

lemma truncate-down-shift-int:
truncate-down p (z x 2 powr real-of-int k) = truncate-down p x * 2 powr k
(proof)

lemma truncate-down-shift-nat: truncate-down p (x x 2 powr real k) = trun-
cate-down p x x 2 powr k

{proof)

lemma truncate-up-shift-int: truncate-up p (z % 2 powr real-of-int k) = truncate-up
px* 2 powrk
(proof)

lemma truncate-up-shift-nat: truncate-up p (z * 2 powr real k) = truncate-up p x

THEORY “Float” 390

* 2 powr k
(proof)

43.10 Truncating Floats

lift-definition float-round-up :: nat = float = float is truncate-up
(proof)

lemma float-round-up: real-of-float x < real-of-float (float-round-up prec x)
(proof)

lemma float-round-up-zero[simp): float-round-up prec 0 = 0
(proof)

lift-definition float-round-down :: nat = float = float is truncate-down
(proof)

lemma float-round-down: real-of-float (float-round-down prec x) < real-of-float
(proof)

lemma float-round-down-zero[simpl: float-round-down prec 0 = 0
(proof)

lemmas float-round-up-le = order-trans|OF - float-round-up
and float-round-down-le = order-trans|OF float-round-down]

lemma minus-float-round-up-eq: — float-round-up prec x = float-round-down prec
(=)

and minus-float-round-down-eq: — float-round-down prec x = float-round-up prec
(—)

{proof)

context
begin

qualified lemma compute-float-round-down[code]:
float-round-down prec (Float m e) =
(let d = bitlen |m| — int prec — 1 in
if 0 < d then Float (div-twopow m (nat d)) (e + d)
else Float m e)
(proof) lemma compute-float-round-up[code]:
float-round-up prec x = — float-round-down prec (—zx)
(proof)

end
lemma truncate-up-nonneg-mono:

assumes (0 < zzx <y
shows truncate-up prec x < truncate-up prec y

THEORY “Float” 391

(proof)

lemma truncate-up-switch-sign-mono:
assumes z < 00 <y
shows truncate-up prec © < truncate-up prec y

(proof)

lemma truncate-down-switch-sign-mono:
assumes z < ()
and 0 < y
and z < y
shows truncate-down prec x < truncate-down prec y

(proof)

lemma truncate-down-nonneg-mono:
assumes 0 < zzx <y
shows truncate-down prec © < truncate-down prec y

(proof)

lemma truncate-down-eq-truncate-up: truncate-down p x = — truncate-up p (—x)
and truncate-up-eq-truncate-down: truncate-up p x = — truncate-down p (—:E)
(proof)

lemma truncate-down-mono: x < y = truncate-down p x < truncate-down p y
(proof)

lemma truncate-up-mono: x < y = truncate-up p r < truncate-up p y
(proof)

lemma truncate-up-nonneg: 0 < truncate-up p z if 0 < x
(proof)

lemma truncate-up-pos: 0 < truncate-up p z if 0 < z
(proof)

lemma truncate-up-less-zero-iff [simp]: truncate-up p x < 0 +— z < 0
(proof)

lemma truncate-up-nonneg-iff [simp|: truncate-up p x > 0 +— = > 0
(proof)

lemma truncate-down-less-zero-iff [simp]: truncate-down p © < 0 +— z < 0
{proof)

lemma truncate-down-nonneg-iff [simpl: truncate-down p x > 0 «— z > 0
(proof)

lemma truncate-down-eg-zero-iff [simp]: truncate-down prec © = 0 «+— z = 0
(proof)

THEORY “Float” 392

lemma truncate-up-eq-zero-iff [simp|: truncate-up prec x = 0 «— = 0
{proof)

43.11 Approximation of positive rationals

lemma div-mult-twopow-eq: a div ((2::nat) ~n) divb = a div (b* 2 " n) for a b
:nat
(proof)

lemma real-div-nat-eq-floor-of-divide: a div b = real-of-int |a / b| for a b :: nat
(proof)

definition rat-precision prec x y =
(let d = bitlen z — bitlen y
in int prec — d + (if Float (abs) 0 < Float (abs y) d then 1 else 0))

lemma floor-log-divide-eq:
assumes i > 0j > 0p > 1
shows [log p (i / j)] = floor (log p @) — floor (log p j) —
(if i > § = p powr (floor (log p ©) — floor (log p j)) then 0 else 1)
(proof)

lemma truncate-down-rat-precision:
truncate-down prec (real z / real y) = round-down (rat-precision prec x y) (real
x [real y)
and truncate-up-rat-precision:
truncate-up prec (real © / real y) = round-up (rat-precision prec z y) (real z /
real y)

(proof)

lift-definition lapproz-posrat :: nat = nat = nat = float
is Aprec (z::nat) (y::nat). truncate-down prec (z / y)

(proof)

context
begin

qualified lemma compute-lapproz-posrat|code:
lapprox-posrat prec x y =
(let
l = rat-precision prec x vy;
d=1if 0 < lthen z x 2" nat l divy else z div 2" nat (— 1) divy
in normfloat (Float d (— 1)))
(proof)

end

lift-definition rapproxz-posrat :: nat = nat = nat = float

THEORY “Float” 393

is Aprec (z::nat) (y::nat). truncate-up prec (z / y)
{proof)

context
begin

qualified lemma compute-rapproz-posrat|code]:
fixes prec z y
defines | = rat-precision prec z y
shows rapproz-posrat prec x y =
(let
=1
(r,s) =if 0 < lthen (z x 27nat l, y) else (z, y * 2 nat(=1));
d = r div s;
m = r mod s
in normfloat (Float (d + (if m = 0 V y = 0 then 0 else 1)) (— 1)))

(proof)

end

lemma rat-precision-pos:
assumes (0 <
and 0 < y
and 2 xz < y
shows rat-precision n (int x) (int y) > 0

(proof)

lemma rapprox-posrat-lessi:
0<z= 0<y= 2%z <y = real-of-float (rapproz-posrat n z y) < 1

{proof)

lift-definition lapproz-rat :: nat = int = int = float is
Aprec (z::int) (y::int). truncate-down prec (z / y)
{proof)

context
begin

qualified lemma compute-lapproz-rat|code]:
lapprox-rat prec T y =
(if y = 0 then 0
else if 0 < x then
(if 0 < y then lapproz-posrat prec (nat x) (nat y)
else — (rapproz-posrat prec (nat z) (nat (—y))))
else
(iff0 <y
then — (rapprox-posrat prec (nat (—z)) (nat y))
else lapproz-posrat prec (nat (—x)) (nat (—y))))

{proof)

THEORY “Float” 394

lift-definition rapproxz-rat :: nat = int = int = float is
Aprec (z::int) (y:int). truncate-up prec (z / y)
{proof)

lemma rapproz-rat = rapprozr-posrat
(proof)

lemma lapproz-rat = lapprox-posrat
(proof) lemma compute-rapproz-rat[code]:
rapproz-rat prec £y = — lapproz-rat prec (—z) y
(proof) lemma compute-truncate-down[codel:
truncate-down p (Ratreal) = (let (a, b) = quotient-of r in lapproz-rat p a b)
(proof) lemma compute-truncate-up|code]:
truncate-up p (Ratreal v) = (let (a, b) = quotient-of r in rapproxz-rat p a b)
(proof)

end

43.12 Division

definition real-divl prec a b = truncate-down prec (a / b)
definition real-divr prec a b = truncate-up prec (a / b)

lift-definition float-divl :: nat = float = float = float is real-divl
(proof)

context
begin

qualified lemma compute-float-divl|code]:

float-divl prec (Float m1 s1) (Float m2 s2) = lapproz-rat prec m1 m2 x Float 1
(s1 — s2)

(proof)
lift-definition float-divr :: nat = float = float = float is real-divr

(proof) lemma compute-float-divr|code]:

float-divr prec x y = — float-divl prec (—z) y

(proof)

end

43.13 Approximate Addition

definition plus-down prec x y = truncate-down prec (z + y)

definition plus-up prec x y = truncate-up prec (z + y)

THEORY “Float” 395

lemma float-plus-down-floatlintro, simp|: € float = y € float = plus-down p
zy € float
(proof)

lemma float-plus-up-float]intro, simpl: x € float = y € float = plus-up p x y
€ float
(proof)

lift-definition float-plus-down :: nat = float = float = float is plus-down {proof)
lift-definition float-plus-up :: nat = float = float = float is plus-up (proof)

lemma plus-down: plus-down prec xy < x + y
and plus-up: © + y < plus-up prec Ty
(proof)

lemma float-plus-down: real-of-float (float-plus-down prec z y) < z + y
and float-plus-up: + y < real-of-float (float-plus-up prec x y)
(proof)

lemmas plus-down-le = order-trans|OF plus-down]
and plus-up-le = order-trans[OF - plus-up)
and float-plus-down-le = order-trans|OF float-plus-down)
and float-plus-up-le = order-trans|OF - float-plus-up)

lemma compute-plus-up|[code]: plus-up p x y = — plus-down p (—z) (—y)
(proof)

lemma truncate-down-log2-eql:
assumes |log 2 |z|] = |log 2 |y|]
assumes |z * 2 powr (p — [log 2 |z|])] = |y * 2 powr (p — |log 2 |z|])]
shows truncate-down p x = truncate-down p y

{proof)

lemma sum-neq-zerol:
la| > k= |b|<k=a+b#0
la] >k = |b|<k= a4+ b#0
for a k :: real
(proof)

lemma abs-real-le-2-powr-bitlen[simp]: |real-of-int m2| < 2 powr real-of-int (bitlen
[m2])
(proof)

lemma floor-sum-times-2-powr-sgn-eq:
fixes ai p q :: int
and a b :: real
assumes a * 2 powr p = ai
and b-le-1: |b x 2 powr (p + 1)] < 1

THEORY “Float” 396

and legp: ¢ < p
shows |(a + b) * 2 powr q] = |(2 % ai + sgn b) x 2 powr (¢ — p — 1)]
(proof)

lemma log2-abs-int-add-less-half-sgn-eq:
fixes ai :: int
and b :: real
assumes |b] < 1/2
and ai # 0
shows |log 2 |real-of-int ai + b|| = |log 2 |ai + sgn b / 2|]
(proof)

context
begin

qualified lemma compute-far-float-plus-down:
fixes m1 el m2 e2 :: int
and p :: nat
defines kI = Suc p — nat (bitlen |m1|)
assumes H: bitlen |/m2| < el —e2 — kIl — 2ml #0m2 # 0el > e2
shows float-plus-down p (Float m1 el) (Float m2 e2) =
float-round-down p (Float (m1 * 2 ~ (Suc (Suc k1)) + sgn m2) (el — int ki
- 2))
(proof)

lemma compute-float-plus-down-naive: float-plus-down p = y = float-round-down
p(z+y)
(proof) lemma compute-float-plus-down[code]:
fixes p::nat and m1 el m2 e2::int
shows float-plus-down p (Float m1 el) (Float m2 e2) =
(if m1 = 0 then float-round-down p (Float m2 e2)
else if m2 = 0 then float-round-down p (Float m1 el)
else
(if e1 > e2 then
(let k1 = Suc p — nat (bitlen |m1]) in
if bitlen |m2| > el — e2 — ki — 2
then float-round-down p ((Float m1 el) + (Float m2 e2))
else float-round-down p (Float (m1 x 2 ~ (Suc (Suc k1)) + sgn m2) (el
—ant k1 — 2)))
else float-plus-down p (Float m2 e2) (Float m1 el)))
(proof) lemma compute-float-plus-up|[codel: float-plus-up p x y = — float-plus-down
p (-2) (—y)

{proof)

lemma mantissa-zero: mantissa 0 = 0

(proof) lemma compute-float-less[code]: a < b +— is-float-pos (float-plus-down
0b (= a))

(proof) lemma compute-float-le[code]: a < b +— is-float-nonneg (float-plus-down
0b (= a))

THEORY “Float” 397

{proof)

end

lemma plus-down-mono: plus-down p a b < plus-down p cdif a + b < c + d
(proof)

lemma plus-up-mono: plus-up p a b < plus-uppcdifa+ b<c+ d
(proof)

43.14 Approximate Multiplication

lemma mult-mono-nonpos-nonneg: a x b < ¢ x d
if a<ca<00<dd<bforabdcd:'a:ordered-ring
(proof)

lemma mult-mono-nonneg-nonpos: b x a < d * ¢
if a<ce<00<dd<bforabcd:'a:ordered-ring
(proof)

lemma mult-mono-nonpos-nonpos: a * b < ¢ x d
if a>ca<0b>dd<0forabcd:real
(proof)

lemma mult-float-monol :
shows a < b — ab < bb —
aa < @ =
b < ba —
ac < ab —
bb < be =
plus-down prec (nprt aa * pprt be)
(plus-down prec (nprt ba * nprt bc)
(plus-down prec (pprt aa * pprt ac)
(pprt ba x nprt ac)))
< plus-down prec (nprt a * pprt bb)
(plus-down prec (nprt b * nprt bb)
(plus-down prec (pprt a * pprt ab)

(pprt b x nprt ab)))
(proof)

lemma mult-float-mono2:
shows ¢ < b —

ab < bb =
ae < @ —
b < ba —
ac < ab =
bb < be =
plus-up prec (pprt b x pprt bb)
(plus-up prec (pprt a * nprt bb)

THEORY “Float” 398

(plus-up prec (nprt b x pprt ab)
(nprt a x nprt ab)))
< plus-up prec (pprt ba * pprt be)
(plus-up prec (pprt aa * nprt be)
(plus-up prec (nprt ba = pprt ac)
(nprt aa * nprt ac)))
(proof)

43.15 Approximate Power

lemma div2-less-self[termination-simp): odd n => n div 2 < n for n :: nat
{proof)

fun power-down :: nat = real = nat = real
where
power-down p 0 = 1
| power-down p z (Suc n) =
(if odd n then truncate-down (Suc p) ((power-down p z (Suc n div 2))?)
else truncate-down (Suc p) (z * power-down p x n))

fun power-up :: nat = real = nat = real
where
power-up p x 0 = 1
| power-up p x (Suc n) =
(if odd n then truncate-up p ((power-up p x (Suc n div 2))?)
else truncate-up p (z * power-up p x n))

lift-definition power-up-fi :: nat = float = nat = float is power-up
(proof)

lift-definition power-down-fl :: nat = float = nat = float is power-down
(proof)

lemma power-float-transfer|[transfer-rule]:
(rel-fun per-float (rel-fun (=) per-float)) (7) (7)
(proof)

lemma compute-power-up-fi[code]:
power-up-flp x 0 = 1
power-up-fl p x (Suc n) =
(if odd n then float-round-up p ((power-up-fl p x (Suc n div 2))?)
else float-round-up p (x * power-up-fl p x n))
and compute-power-down-fi[code]:
power-down-fl p x 0 = 1
power-down-fl p x (Suc n) =
(if odd n then float-round-down (Suc p) ((power-down-fl p x (Suc n div 2))?)
else float-round-down (Suc p) (z * power-down-fl p x n))

{proof)

THEORY “Float” 399

lemma power-down-pos: 0 < © = 0 < power-down p x n
(proof)

lemma power-down-nonneg: 0 < x = 0 < power-down p x n
(proof)

lemma power-down: 0 < x = power-dounpzn <z n
(proof)

lemma power-up: 0 < = x ~n < power-up p T n

(proof)

lemmas power-up-le = order-trans[OF - power-up)
and power-up-less = less-le-trans|OF - power-up]
and power-down-le = order-trans|OF power-down)

lemma power-down-fl: 0 < x = power-down-filpzn <z " n
(proof)

lemma power-up-fl: 0 < x = z ~ n < power-up-flp z n
(proof)

lemma real-power-up-fl: real-of-float (power-up-fl p x n) = power-up p n
(proof)

lemma real-power-down-fl: real-of-float (power-down-fl p x n) = power-down p x
n

{proof)
lemmas [simp del] = power-down.simps(2) power-up.simps(2)

lemmas power-down-simp = power-down.simps(2)
lemmas power-up-simp = power-up.simps(2)

lemma power-down-even-nonneg: even n =—> 0 < power-down p T n
(proof)

lemma power-down-eq-zero-iff [simp]: power-down prec bn = 0 «— b= 0 A n #
0
(proof)

lemma power-down-nonneg-iff [simp]:
power-down prec bn > 0 <— evenn Vb > 0

(proof)

lemma power-down-neg-iff [simp]:
power-down prec b n < 0 <—
b< 0N oddn

{proof)

THEORY “Float” 400

lemma power-down-nonpos-iff [simp):
notes [simp del] = power-down-neg-iff power-down-eq-zero-iff
shows power-down prec bn < 0 <— b < 0 ANoddnVb=0An%0
(proof)

lemma power-down-mono:
power-down prec a n < power-down prec b n
if (0<aAna<bVioddnANa<b)V(ewennAa<O0Ab<a))
(proof)

lemma power-up-even-nonneg: even n =—> 0 < power-up p T n
{proof)

lemma power-up-eq-zero-iff [simp]: power-up prec bn =0 +—b=0An#0

(proof)

lemma power-up-nonneg-iff [simp]:
power-up prec bn > 0 < evenn V b > 0
(proof)

lemma power-up-neg-iff [simp]:
power-up prec bn < 0 <— b < 0 A oddn
(proof)

lemma power-up-nonpos-iff [simp):
notes [simp del] = power-up-neg-iff power-up-eq-zero-iff
shows power-up precbn < 0 +—b< 0 ANoddnVb=0An+#0
(proof)

lemma power-up-mono:
power-up prec a n < power-up prec b n
if (0<ana<bVioddnANa<b)V(ewennAa<O0Ab<a))
{proof)

43.16 Lemmas needed by Approximate

lemma Float-num[simp):

real-of-float (Float (— 1) 0) = —1
real-of-float (Float (numeral n) 0) = numeral n
real-of-float (Float (— numeral n) 0) = — numeral n

{proof)

real-of-float (Float 1 0) = 1
real-of-float (Float 1 1) = 2
real-of-float (Float 1 2) = 4
real-of-float (Float 1 (— 1)) =1/2
real-of-float (Float 1 (— 2)) = 1/4
real-of-float (Float 1 (— 8)) = 1/8

(

(

(

THEORY “Float” 401

lemma real-of-Float-int[simp]: real-of-float (Float n 0) = real n
{proof)

lemma float-zero[simp): real-of-float (Float 0 ¢) = 0
(proof)

lemma abs-div-2-less: a # 0 = a # —1 = |(a::int) div 2| < |a|
{proof)

lemma lapprox-rat: real-of-float (lapproz-rat prec z y) < real-of-int x | real-of-int
Y
(proof)

lemma mult-div-le:
fixes a b :: int
assumes b > 0
shows a > b * (a div b)

{proof)

lemma lapproz-rat-nonneg:
assumes 0 < zand 0 < y
shows 0 < real-of-float (lapproz-rat n x y)

{proof)

lemma rapproz-rat: real-of-int © / real-of-int y < real-of-float (rapproz-rat prec x
y)
(proof)

lemma rapprox-rat-lel:
assumes 0 <z 0 <yz <y
shows real-of-float (rapprox-rat n z y) < 1

(proof)

lemma rapproz-rat-nonneg-nonpos: 0 < x = y < 0 = real-of-float (rapproz-rat
nzry) <0
(proof)

lemma rapproz-rat-nonpos-nonneg: < 0 = 0 < y = real-of-float (rapproz-rat
nzy) <0
(proof)

lemma real-divl: real-divl prec xy < z [y
(proof)

lemma real-divr: z [/ y < real-divr prec z y
(proof)

lemma float-divl: real-of-float (float-divl prec x y) < z / y
(proof)

THEORY “Float” 402

lemma real-divl-lower-bound: 0 < v = 0 < y = 0 < real-divl prec x y
(proof)

lemma float-divi-lower-bound: 0 < z = 0 < y = 0 < real-of-float (float-divl
prec T y)
(proof)

lemma exponent-1: exponent 1 = 0
(proof)

lemma mantissa-1: mantissa 1 = 1
(proof)

lemma bitlen-1: bitlen 1 = 1
(proof)

lemma float-upper-bound: x < 2 powr (bitlen |mantissa x| + exponent x)
(proof)

lemma real-divi-pos-less1-bound:
assumes (< zz < 1
shows 1 < real-divl prec 1 x

{proof)

lemma float-divi-pos-less1-bound:
0 < real-of-float © = real-of-float x < 1 = prec > 1 =
1 < real-of-float (float-divl prec 1 x)
(proof)

lemma float-divr: real-of-float x / real-of-float y < real-of-float (float-divr prec x
y)
(proof)

lemma real-divr-pos-less1-lower-bound:
assumes () < z
and z < 1
shows 1 < real-divr prec 1 x

(proof)

lemma float-divr-pos-less1-lower-bound: 0 < x = z < 1 = 1 < float-divr prec
1z

{proof)

lemma real-divr-nonpos-pos-upper-bound: © < 0 = 0 < y = real-divr prec z y
<40

(proof)

lemma float-divr-nonpos-pos-upper-bound:

THEORY “Float” 403

real-of-float © < 0 = 0 < real-of-float y = real-of-float (float-divr prec x y) <
0
{proof)

lemma real-divr-nonneg-neg-upper-bound: 0 < r = y < 0 = real-divr prec T y
<90
(proof)

lemma float-divr-nonneg-neg-upper-bound:

0 < real-of-float x = real-of-float y < 0 = real-of-float (float-divr prec x y) <
0

(proof)

lemma Float-le-zero-iff: Float a b < 0 +— a < 0

(proof)

lemma real-of-float-pprt[simp):
fixes a :: float
shows real-of-float (pprt a) = pprt (real-of-float a)
(proof)

lemma real-of-float-nprt[simpl:
fixes a :: float
shows real-of-float (nprt a) = nprt (real-of-float a)
(proof)

context
begin

lift-definition int-floor-fl :: float = int is floor {proof) lemma compute-int-floor-fl code]:
int-floor-fl (Float m €) = (if 0 < e then m x 2 ~ nat e else m div (2 ~ (nat
(—e€))))
(proof)

lift-definition floor-fi :: float = float is Ax. real-of-int |z|

(proof) lemma compute-floor-fi[code]:

floor-fl (Float m e) = (if 0 < e then Float m e else Float (m div (2 ~ (nat (—e))))
0)

(proof)

end

lemma floor-fl: real-of-float (floor-fl x) < real-of-float
(proof)

lemma int-floor-fl: real-of-int (int-floor-fl) < real-of-float ©

(proof)

lemma floor-pos-exp: exponent (floor-fl £) > 0

THEORY “Function-Algebras” 404

(proof)

lemma compute-mantissa[code]:
mantissa (Float m e) =
(if m = 0 then 0 else if 2 dvd m then mantissa (normfloat (Float m e)) else m)

{proof)

lemma compute-exponent|codel:
exponent (Float m e) =
(if m = 0 then 0 else if 2 dvd m then exponent (normfloat (Float m e)) else €)

(proof)

lifting-update Float.float.lifting
lifting-forget Float.float.lifting

end

44 Pointwise instantiation of functions to algebra
type classes

theory Function-Algebras
imports Main
begin

Pointwise operations
instantiation fun :: (type, plus) plus

begin

definition f + ¢ = (\z. fz + g x)
instance (proof)

end

lemma plus-fun-apply [simp):
f+ge=Ffz+tgua
(proof)

instantiation fun :: (type, zero) zero
begin

definition 0 = (\z. 0)
instance (proof)

end
lemma zero-fun-apply [simp]:

Oz =0
(proof)

THEORY “Function-Algebras” 405

instantiation fun :: (type, times) times

begin

definition f x g = (Az. fz * g 1)
instance (proof)

end

lemma times-fun-apply [simp):
(frg)z=fzxgz

{proof)

instantiation fun :: (type, one) one

begin

definition 1 = (A\z. 1)
instance (proof)

end

lemma one-fun-apply [simp]:

lz=1
(proof)

Additive structures

instance fun :

{proof)

instance fun

(proof)

instance fun
(proof)

instance fun
{proof)

instance fun
(proof)

instance fun
(proof)

instance fun

instance fun
(proof)

(type, semigroup-add) semigroup-add

i (type, cancel-semigroup-add) cancel-semigroup-add

i (type, ab-semigroup-add) ab-semigroup-add

i (type, cancel-ab-semigroup-add) cancel-ab-semigroup-add

i (type, monoid-add) monoid-add

i (type, comm-monoid-add) comm-monoid-add

i (type, cancel-comm-monoid-add) cancel-comm-monoid-add (proof)

i (type, group-add) group-add

THEORY “Function-Algebras”

instance fun ::

{proof)

(type,

406

ab-group-add) ab-group-add

Multiplicative structures

instance fun ::

{proof)

instance fun
(proof)

instance fun :

{proof)

instance fun ::

(proof)
Misc

instance fun ::

instance fun :

{proof)

instance fun ::

{proof)

(type,

i (type,

(type,

(type,

(type,

(type,

(type,

Ring structures

instance fun :

{proof)

instance fun
(proof)

instance fun ::
instance fun :
instance fun ::
instance fun ::

instance fun :

(type,

i (type,

(type,
(type,
(type,
(type,

(type,

lemma numeral-fun:
<numeral n = (Az::'a. numeral n)»

{proof)

semigroup-mult) semigroup-mult

ab-semigroup-mult) ab-semigroup-mult

monoid-mult) monoid-mult

comm-monoid-mult) comm-monoid-mult

Rings.dvd) Rings.dvd {proof)

mult-zero) mult-zero

ZGTO—TLGQ-OTLB) ZET0-Nneqg-one

semiring) semiring

COMM-SEMITing) comm-semiring

semiring-0) semiring-0 (proof)

comm-semiring-0) comm-semiring-0 (proof)
semiring-0-cancel) semiring-0-cancel {proof)
comm-semiring-0-cancel) comm-semiring-0-cancel (proof)

semiring-1) semiring-1 (proof)

lemma numeral-fun-apply [simp):
<numeral n x = numeral n»

(proof)

THEORY “Function-Algebras”

407

lemma of-nat-fun: of-nat n = (Az::’a. of-nat n)

(proof)

lemma of-nat-fun-apply [simp]:
of-nat n x = of-nat n

{proof)

instance fun :
instance fun ::

instance fun :

{proof)

instance fun :

(proof)

instance fun :
instance fun :
instance fun ::
instance fun :

instance fun ::

(type, comm-semiring-1) comm-semiring-1 (proof)

(type, semiring-1-cancel) semiring-1-cancel {proof)

(type, comm-semiring-1-cancel) comm-semiring-1-cancel

(type, semiring-char-0) semiring-char-0

(type, ring) ring (proof)

(type, comm-ring) comm-ring {proof)
(type, ring-1) ring-1 {proof)
(type, comm-ring-1) comm-ring-1 {proof)

(type, ring-char-0) ring-char-0 {proof)

Ordered structures

instance fun ::

(proof)

instance fun

(proof)

instance fun
{proof)

instance fun

instance fun

(proof)
instance fun

instance fun

{proof)

instance fun

(type, ordered-ab-semigroup-add) ordered-ab-semigroup-add

i (type, ordered-cancel-ab-semigroup-add) ordered-cancel-ab-semigroup-add

i (type, ordered-ab-semigroup-add-imp-le) ordered-ab-semigroup-add-imp-le

:: (type, ordered-comm-monoid-add) ordered-comm-monoid-add (proof)

i (type, ordered-cancel-comm-monoid-add) ordered-cancel-comm-monoid-add

i (type, ordered-ab-group-add) ordered-ab-group-add (proof)

i (type, ordered-semiring) ordered-semiring

i (type, dioid) dioid

THEORY “Function-Division” 408

(proof)

instance fun :: (type, ordered-comm-semiring) ordered-comm-semiring
(proof)

instance fun :: (type, ordered-cancel-semiring) ordered-cancel-semiring (proof)

instance fun :: (type, ordered-cancel-comm-semiring) ordered-cancel-comm-semiring
(proof)

instance fun :: (type, ordered-ring) ordered-ring (proof)

instance fun :: (type, ordered-comm-ring) ordered-comm-ring {proof)

lemmas func-plus = plus-fun-def
lemmas func-zero = zero-fun-def
lemmas func-times = times-fun-def
lemmas func-one = one-fun-def

end

45 Pointwise instantiation of functions to division

theory Function-Division
imports Function-Algebras
begin

45.1 Syntactic with division

instantiation fun :: (type, inverse) inverse
begin

definition inverse f = inverse o f
definition f div g = (Az. fz / g)
instance (proof)
end
lemma inverse-fun-apply [simp]:
inverse f x = inverse (f x)
(proof)
lemma divide-fun-apply [simp]:

(f/gz=fz/gz
{proof)

THEORY “Fun-Lexorder” 409

Unfortunately, we cannot lift this operations to algebraic type classes for
division: being different from the constant zero function f # 0 is too weak
as precondition. So we must introduce our own set of lemmas.

abbreviation zero-free :: ('b = 'a::field) = bool where
zero-free f = —~ (3z. fz = 0)

lemma fun-left-inverse:
fixes f :: 'b = 'a:field
shows zero-free f = inverse f x f = 1
(proof)

lemma fun-right-inverse:
fixes f :: 'b = 'a:field
shows zero-free f = f * inverse f = 1
(proof)

lemma fun-divide-inverse:
fixes f g :: 'b = 'a:field
shows [/ g = f * inverse ¢
(proof)

Feel free to extend this.

Another possibility would be a reformulation of the division type classes
to user a zero-free predicate rather than a direct a # 0 condition.

end

46 Lexicographic order on functions

theory Fun-Lexorder
imports Main
begin

definition less-fun :: (‘a::linorder = 'b::linorder) = ('a = 'b) = bool
where
less-fun fg«— (k. fhk<gkNNVE <k fk'=gk')

lemma less-funl:
assumes k. fk< gk AN (VK <k fk' =gk’
shows less-fun f g
(proof)

lemma less-funk:
assumes less-fun f g
obtains k where fk < gkand Ak k' < k= fk'=gk'
(proof)

lemma less-fun-asym:

THEORY “Going-To-Filter” 410

assumes less-fun f g
shows — less-fun g f

(proof)

lemma less-fun-irrefi:

= less-fun f f
(proof)

lemma less-fun-trans:
assumes less-fun f g and less-fun g h
shows less-fun f h

(proof)

lemma order-less-fun:
class.order (\f g. less-fun f g VvV f = g) less-fun

(proof)

lemma less-fun-trichotomy:

assumes finite {k. f k # g k}

shows less-fun f gV f = gV less-fun g f
(proof)

end

47 The going-to filter

theory Going-To-Filter
imports Complex-Main
begin

definition going-to-within :: ('a = 'b) = 'b filter = 'a set = ’a filter
(<(xopen-block notation=<mizfix going-to-withiny»(-)/ going’-to (-)/ within (-))»
[1000,60,60] 60)
where [going-to F within A = inf (filtercomap f F') (principal A)

abbreviation going-to :: ('a = 'b) = 'b filter = 'a filter
(infix <going’-to) 60)
where f going-to F' = f going-to F within UNIV

The going-to filter is, in a sense, the opposite of filtermap. It corresponds
to the intuition of, given a function f : A — B and a filter F' on the range of
B, looking at such values of x that f(z) approaches F'. This can be written
as f going-to F.

A classic example is the at-infinity filter, which describes the neigbour-
hood of infinity (i. e. all values sufficiently far away from the zero). This can
also be written as norm going-to at-top.

Additionally, the going-to filter can be restricted with an optional ‘within’
parameter. For instance, if one would would want to consider the filter of

THEORY “Going-To-Filter” 411

complex numbers near infinity that do not lie on the negative real line, one
could write cmod going-to at-top within — complex-of-real ‘{..0}.

A third, less mathematical example lies in the complexity analysis of
algorithms. Suppose we wanted to say that an algorithm on lists takes O(n?)
time where n is the length of the input list. We can write this using the
Landau symbols from the AFP, where the underlying filter is length going-to
sequentially. If, on the other hand, we want to look the complexity of the
algorithm on sorted lists, we could use the filter length going-to sequentially
within Collect sorted.

lemma going-to-def: f going-to F' = filtercomap f F
(proof)

lemma eventually-going-tol [introl:
assumes cventually P F
shows eventually (Az. P (f z)) (f going-to F)
(proof)

lemma filterlim-going-tol-weak [intro]: filterlim f F (f going-to F within A)
(proof)

lemma going-to-mono: F < G = A C B = [going-to F within A < f going-to
G within B
(proof)

lemma going-to-inf:

f going-to (inf F G) within A = inf (f going-to F within A) (f going-to G within
A)

(proof)

lemma going-to-sup:

f going-to (sup F G) within A > sup (f going-to F within A) (f going-to G within
A)

(proof)

lemma going-to-top [simpl: f going-to top within A = principal A
(proof)

lemma going-to-bot [simp]: f going-to bot within A = bot
(proof)

lemma going-to-principal:
f going-to principal A within B = principal (f — A N B)
(proof)

lemma going-to-within-empty [simp|: f going-to F within {} = bot
(proof)

lemma going-to-within-union [simp]:

THEORY “Groups-Big-Fun” 412

f going-to F within (A U B) = sup (f going-to F within A) (f going-to F within
B)
{proof)

lemma eventually-going-to-at-top-linorder:

fixes f :: 'a = 'b :: linorder

shows eventually P (f going-to at-top within A) +— (3C.Vz€A. fz > C —
P z)

(proof)

lemma eventually-going-to-at-bot-linorder:

fixes f :: 'a = 'b :: linorder

shows eventually P (f going-to at-bot within A) +— (3C. Vz€A. fz < C —
Px)

(proof)

lemma eventually-going-to-at-top-dense:

fixes f :: 'a = 'b :: {linorder,no-top}

shows eventually P (f going-to at-top within A) +— (3C.Vz€A. fz > C —
P 1)

(proof)

lemma eventually-going-to-at-bot-dense:

fixes f :: 'a = 'b :: {linorder,no-bot}

shows eventually P (f going-to at-bot within A) +— (3C.Vz€A. fz < C —
P z)

(proof)

lemma eventually-going-to-nhds:
eventually P (f going-to nhds a within A) +—
(3S. open SANae SN NVzeA. fz e S — Pux))

(proof)
lemma eventually-going-to-at:
eventually P (f going-to (at a within B) within A) +—
(3S.open SANae SN NVz€A. fre BNS — {a} — Pux))
(proof)

lemma norm-going-to-at-top-eq: norm going-to at-top = at-infinity
(proof)

lemmas at-infinity-altdef = norm-going-to-at-top-eq [symmetric]

end

48 Big sum and product over function bodies

theory Groups-Big-Fun
imports

THEORY “Groups-Big-Fun” 413

Main
begin

48.1 Abstract product

locale comm-monoid-fun = comm-monoid
begin

definition G :: ('b = 'a) = 'a
where
expand-set: G g = comm-monotid-set.F f1 g {a. g a # 1}

interpretation F: comm-monoid-set f 1
(proof)

lemma expand-superset:
assumes finite A and {a. ga # 1} C A
shows Gg=F.FgA
(proof)

lemma conditionalize:
assumes finite A
shows F.FF g A = G (Ma. if a € A then g a else 1)

(proof)

lemma neutral [simp]:
G (M. 1)=1
{proof)

lemma update [simpl:
assumes finite {a. g a # 1}
assumes ga = 1
shows G (g(a:=b)=bx*x Gg
(proof)

lemma infinite [simp]:
- finite {a. ga #1} = Gg=1
{proof)

lemma cong [cong]:
assumes Aa. ga=ha
shows Gg=Gh

{proof)

lemma not-neutral-obtains-not-neutral:
assumes G g # 1
obtains a where ga # 1

{proof)

THEORY “Groups-Big-Fun” 414

lemma reindez-cong:
assumes bij [
assumes go |l = h
shows Gg= G h

(proof)

lemma distrib:
assumes finite {a. g a # 1} and finite {a. h a # 1}
shows G (Aa. gax ha)=Gg= Gh

(proof)

lemma swap:

assumes finite C

assumes subset: {a. 3b. ga b # 1} x {b. Ja. gab#1} C C (is A x ?B C
)

shows G (Aa. G (g a)) = G (Ab. G (Aa. g a b))
(proof)

lemma cartesian-product:

assumes finite C

assumes subset: {a. 3b. ga b # 1} x {b.Ja. gab#1} C C (is ?A x ?B C
)

shows G (Aa. G (g a)) = G (A(a, b). gab)
(proof)

lemma cartesian-product2:

assumes fin: finite D

assumes subset: {(a, b). Jc. gabc# 1} x {c.Tab. gabc#1} C D (is
?AB x ?C C D)

shows G (A(a, b). G (ga b)) =G (A(a, b, c). gabc)
(proof)

lemma delta [simp]:
G (Ab.ifb=athengbelsel) =ga
(proof)

lemma delta’ [simp]:
G (Ab.ifa=bthengbelsel)=ga
(proof)

end

48.2 Concrete sum

context comm-monoid-add
begin

sublocale Sum-any: comm-monoid-fun plus 0

THEORY “Groups-Big-Fun” 415

rewrites comm-monoid-set.F plus 0 = sum
defines Sum-any = Sum-any.G

(proof)

end

syntax (ASCII)

-Sum-any :: pttrn = 'a = 'a::comm-monoid-add (<(<indent=3 notation=<binder
SUM»SUM -. -)» [0, 10] 10)
syntax

-Sum-any :: pttrn = 'a = 'a::comm-monoid-add («(<indent=2 notation=<binder
dSondo-) [0, 10] 10)
syntax-consts

-Sum-any = Sum-any
translations

> a. b = CONST Sum-any (Ma. b)

lemma Sum-any-left-distrib:
fixes r :: ‘a :: semiring-0
assumes finite {a. g a # 0}
shows Sum-any g« r= D n. gn xr)
(proof)

lemma Sum-any-right-distrib:
fixes r :: 'a :: semiring-0
assumes finite {a. g a # 0}
shows r * Sum-any g = D n. r* gn)

{proof)

lemma Sum-any-product:
fixes f g :: 'b = 'a::semiring-0
assumes finite {a. f a # 0} and finite {b. g b # 0}
shows Sum-any f * Sum-any g = (3 a. > b. fa * gb)
(proo)

lemma Sum-any-eq-zero-iff [simp:
fixes f :: 'a = nat
assumes finite {a. fa # 0}
shows Sum-any f = 0 «— [= (A-. 0)
(proof)

48.3 Concrete product
context comm-monoid-mult

begin

sublocale Prod-any: comm-monoid-fun times 1
rewrites comm-monoid-set.F times 1 = prod
defines Prod-any = Prod-any.G

THEORY “Infinite-Typeclass” 416

(proof)

end

syntax (ASCII)

-Prod-any :: pttrn = 'a = 'a::comm-monoid-mult («(<indent=4 notation=<binder
PROD» PROD -. -) [0, 10] 10)
syntax

-Prod-any :: pttrn = 'a = 'a::comm-monoid-mult (<(<indent=2 notation=<binder
111~ -)» [0, 10] 10)
syntax-consts

-Prod-any == Prod-any
translations

[1a. b == CONST Prod-any (Aa. b)

lemma Prod-any-zero:
fixes f :: 'b = 'a :: comm-semiring-1
assumes finite {a. fa # 1}
assumes fa = 0
shows ([[a. fa) =0

(proof)

lemma Prod-any-not-zero:
fixes f :: 'b = 'a :: comm-semiring-1
assumes finite {a. fa # 1}
assumes ([[a. fa) # 0
shows fa # 0
(proof)

lemma power-Sum-any:

assumes finite {a. fa # 0}

shows ¢ ~ (D" a. fa) = ([[a- ¢ " fa)
(proof)

end

49 Infinite Type Class

The type class of infinite sets (orginally from the Incredible Proof Machine)

theory Infinite- Typeclass
imports Complex-Main
begin

class infinite =
assumes infinite-UNIV: infinite (UNIV::'a set)

begin

THEORY “Set-Algebras” 417

lemma arb-element: finite Y = Iz :: 'a. x ¢ Y
{proof)

lemma arb-finite-subset: finite Y = 3X = ‘a set. Y N X = {} A finite X A n
< card X

(proof)

lemma arb-inj-on-finite-infinite: finite(A :: 'b set) = 3f :: 'b = 'a. inj-on f A
(proof)

lemma arb-countable-map: finite Y = 3f :: (nat = 'a). inj f A range f C UNIV
- Y
(proof)

end

instance nat :: infinite
(proof)

instance int :: infinite
(proof)

instance rat :: infinite
(proof)

instance real :: infinite
(proof)

instance complex :: infinite
(proof)

instance option :: (infinite) infinite
(proof)

instance prod :: (infinite, type) infinite
(proof)

instance list :: (type) infinite
(proof)

end

50 Algebraic operations on sets

theory Set-Algebras
imports Main
begin

This library lifts operations like addition and multiplication to sets. It

THEORY “Set-Algebras”

418

was designed to support asymptotic calculations for the now-obsolete BigO

theory, but has other uses.

instantiation set :: (plus) plus
begin

definition plus-set :: ‘a::plus set = 'a set = 'a set
where set-plus-def: A + B = {c. 3a€A. 3b€B. ¢ = a + b}

instance (proof)
end

instantiation set :: (times) times
begin

definition times-set :: 'a::times set = 'a set = 'a set
where set-times-def: A x B = {c. 3acA. 3bEB. ¢ = a * b}

instance (proof)
end

instantiation set :: (zero) zero
begin

definition set-zero[simp]: (0::'a::zero set) = {0}
instance (proof)
end

instantiation set :: (one) one
begin

definition set-one[simp]: (1::'a::one set) = {1}
instance (proof)
end

definition elt-set-plus :: 'a::plus = 'a set = 'a set (infixl <+o0) 70)
where a +0 B = {c. 3b€EB. ¢ = a + b}

definition elt-set-times :: ‘a::times = 'a set = 'a set (infixl <o) 80)
where a x0 B = {c. 3b€B. ¢ = a * b}

abbreviation (input) elt-set-eq :: 'a = 'a set = bool (infix (=0> 50)
where t =0 A=z € A

THEORY “Set-Algebras” 419

instance set :: (semigroup-add) semigroup-add
{proof)

instance set :: (ab-semigroup-add) ab-semigroup-add
(proof)

instance set :: (monoid-add) monoid-add
{proof)

instance set :: (comm-monoid-add) comm-monoid-add
(proof)

instance set :: (semigroup-mult) semigroup-mult
(proof)

instance set :: (ab-semigroup-mult) ab-semigroup-mult
(proof)

instance set :: (monoid-mult) monoid-mult
{proof)

instance set :: (comm-monoid-mult) comm-monoid-mult
{proof)

lemma sumset-empty [simp]: A + {} = {} {} + A ={}
(proof)

lemma Un-set-plus: (A U B) + C = (A+C) U (B+C) and set-plus-Un: C' + (A
U B) = (C+A) U (C+B)
{proof)

lemma

fixes A :: 'a::comm-monoid-add set

shows insert-set-plus: (insert a A) + B = (A+B) U (((+)a) ‘ B) and set-plus-insert:
B + (insert a A) = (B+A) U (((+)a) ‘ B)

{proof)

lemma set-add-0 [simp]:
fixes A :: 'a::comm-monoid-add set
shows {0} + A=A
{proof)

lemma set-add-0-right [simp]:
fixes A :: 'a::comm-monoid-add set
shows A + {0} = A
{proof)

lemma card-plus-sing:
fixes A :: 'a::ab-group-add set

THEORY “Set-Algebras” 420

shows card (A + {a}) = card A
(proof)

lemma set-plus-intro [introl: a € C = be D= a+be C+ D
(proof)

lemma set-plus-elim:
assumes z € A + B
obtains a b where z = a + band a€ Aand b€ B

(proof)

lemma set-plus-intro2 [intro]: b€ C = a + b € a +o0 C
{proof)

lemma set-plus-rearrange: (a +0 C) + (b +0 D) = (a + b) 40 (C + D)
for a b :: ‘a::comm-monoid-add

(proof)

lemma set-plus-rearrange2: a +o (b +0 C) = (a + b) 40 C
for a b :: 'a::semigroup-add
{proof)

lemma set-plus-rearrange3: (a +0 B) + C = a +o0 (B + C)
for a :: 'a::semigroup-add
{proof)

theorem set-plus-rearrange4: C + (a +0 D) = a +o (C + D)
for a :: 'a::comm-monoid-add

{proof)

lemmas set-plus-rearranges = set-plus-rearrange set-plus-rearrange?2
set-plus-rearrange3 set-plus-rearrange/

lemma set-plus-mono [introl]: C C D = a +0 C C a +o0 D
{proof)

lemma set-plus-mono2 [intro]: C C D —=FECF— C+ ECD+ F
for CD E F :: 'a:plus set
(proof)

lemma set-plus-mono3 [intro]: a € C = a+0 D C C + D
(proof)

lemma set-plus-mono4 [intro]: a € C = a +0 D C D + C
for a :: 'a::comm-monoid-add

{proof)

lemma set-plus-monos5: a € C — BC D —a+4+0BC C+ D

{proof)

THEORY “Set-Algebras” 421

lemma set-plus-mono-b: C C D=z € a+0oC =z € a+oD
(proof)

lemma set-zero-plus [simp]: 0 +o0 C = C
for C :: 'a::comm-monoid-add set
(proof)

lemma set-zero-plus2: 0 € A=— BC A+ B
for A B :: 'a::comm-monoid-add set

(proof)

lemma set-plus-imp-minus: a € b +0 C = a — b€ C
for a b :: 'a::ab-group-add
(proof)

lemma set-minus-imp-plus: a — b€ C = a € b +o C
for a b :: 'a::ab-group-add
(proof)

lemma set-minus-plus: a — b€ C +— a € b+o C
for a b :: ’a::ab-group-add
(proof)

lemma set-times-intro [introl: a € C = be D= axbe C *x D
(proof)

lemma set-times-elim:
assumes z € A x B
obtains a b where x = a*x band a € Aand b € B

(proof)

lemma set-times-intro2 [introl]: b € C = a x b € a xo C
{proof)

lemma set-times-rearrange: (a xo C) * (b %0 D) = (a * b) x0 (C x D)
for a b :: 'a::comm-monoid-mult

{proof)

lemma set-times-rearrange2: a %o (b xo0 C) = (a * b) xo C
for a b :: 'a::semigroup-mult
(proof)

lemma set-times-rearrange3: (a %0 B) x C = a xo (B * C)
for a :: 'a::semigroup-mult
{proof)

theorem set-times-rearrange4: C x (a x0 D) = a 0 (C * D)
for a :: 'a::comm-monoid-mult

THEORY “Set-Algebras” 422

{proof)

lemmas set-times-rearranges = set-times-rearrange set-times-rearrange?2
set-times-rearrange3 set-times-rearranges

lemma set-times-mono [intro]: C C D = a %0 C C a x0 D
(proof)

lemma set-times-mono2 [intro]: C C D= ECF = C* ECDxF
for C D E F :: 'a::times set

(proof)

lemma set-times-mono3 [intro]: a € C = ax0o D C C x D
{proof)

lemma set-times-mono4 [introl: a € C = a *x0 D C D x C
for a :: ‘a::comm-monoid-mult

{proof)

lemma set-times-monod: a € C = BC D= a*x0oBC C * D
(proof)

lemma set-one-times [simp]: 1 0o C = C
for C :: ‘a::comm-monoid-mult set
{proof)

lemma set-times-plus-distrib: a o (b +0 C) = (a * b) +o0 (a x0 C)
for a b :: 'a::semiring
(proof)

lemma set-times-plus-distrib2: a xo (B + C) = (a x0 B) + (a x0 C)
for a :: 'a::semiring

{proof)

lemma set-times-plus-distrib3: (a +0 C) * D Ca %o D+ C % D
for a :: 'a::semiring
(proof)

lemmas set-times-plus-distribs =
set-times-plus-distrib
set-times-plus-distrib2

lemma set-neg-intro: a € (— 1) x0o C = — a € C
for a :: 'a::ring-1
{proof)

lemma set-neg-intro2: a € C = —a € (— 1) *x0 C
for a :: 'a::ring-1

{proof)

THEORY “Interval” 423

lemma set-plus-image: S + T = (Mz, y). .+ y) ‘(S x T)
(proof)

lemma set-times-image: S * T = (A(z, y). z xy) ‘(S x T)
(proof)

lemma finite-set-plus: finite s = finite t = finite (s + t)
(proof)

lemma finite-set-times: finite s = finite t = finite (s * t)
{proof)

lemma set-sum-alt:
assumes fin: finite I
shows sum ST = {sum s I |s.Viel. si e Si}
(is - = Zsum I)
(proof)

lemma sum-set-cond-linear:
fixes f :: 'a::comm-monoid-add set = 'b::comm-monoid-add set
assumes [introl]: NAAB.PA = PB = P (A + B) P {0}
and f: NkAAB.PA —=PB—= f(A+B)=fA+ fBf{0}={0}
assumes all: \i. i € [= P (S1)
shows f (sum S I) = sum (f o S) I

(proof)

lemma sum-set-linear:
fixes [:: 'a::comm-monoid-add set = 'b::comm-monoid-add set
assumes AA B. f(A) + f(B) = f(A+ B) f {0} = {0}
shows f (sum S I) = sum (f o S) I
(proof)

lemma set-times-Un-distrib:
Ax(BUC)=AxBUAxC
(AUB)* C=AxCUB=xC

(proof)

lemma set-times-UNION-distrib:
AxJWM 1) = (Uiel. Ax M)
UM I)x A= (Jiel. Mix A)
(proof)

end

51 Interval Type

theory Interval
imports

THEORY “Interval” 424

Complez-Main

Lattice-Algebras

Set-Algebras
begin

A type of non-empty, closed intervals.

typedef (overloaded) ‘a interval =
{(a::"a::preorder, b). a < b}
morphisms bounds-of-interval Interval
(proof)

setup-lifting type-definition-interval
lift-definition lower::('a::preorder) interval = 'a is fst (proof)
lift-definition upper::(‘a::preorder) interval = 'a is snd (proof)

lemma interval-eq-iff: a = b +— lower a = lower b A upper a = upper b
(proof)

lemma interval-eql: lower a = lower b = upper a = upper b = a = b
(proof)

lemma lower-le-upper|simp): lower i < upper i
(proof)

lift-definition set-of :: ‘a::preorder interval = 'a set is Az. {fst z .. snd z} {proof)

lemma set-of-eq: set-of x = {lower x .. upper x}
(proof)

context notes [[typedef-overloaded]] begin

lift-definition(code-dt) Interval’::'a::preorder = 'a::preorder = 'a interval option
is Aa b. if a < b then Some (a, b) else None

{proof)

lemma Interval’-split:
P (Interval’ a b) +—
(Vivl. a < b — lower ivl = a — upper wl = b — P (Some ivl)) A (ma<b
— P None)
(proof)

lemma Interval’-split-asm:
P (Interval’ a b) +—
=((Fivl. a < b A lower wl = a A upper @wl = b A =P (Some iwl)) V (—a<b A
—P None))
(proof)

THEORY “Interval” 425

lemmas Interval’-splits = Interval’-split Interval’-split-asm

lemma Interval’-eq-Some: Interval’ a b = Some i = lower i = a N upper i = b
(proof)

end

instantiation interval :: ({preorder,equal}) equal
begin

definition equal-class.equal a b = (lower a = lower b) A (upper a = upper b)

instance (proof)
end

instantiation interval :: (preorder) ord begin

definition less-eq-interval :: 'a interval = 'a interval = bool
where less-eq-interval a b <— lower b < lower a A upper a < upper b

definition less-interval :: 'a interval = 'a interval = bool
where less-interval vy = (z <y A -y < x)

instance (proof)
end

instantiation interval :: (lattice) semilattice-sup
begin

lift-definition sup-interval :: 'a interval = 'a interval = 'a interval
is A(a, b) (¢, d). (inf a ¢, sup b d)
(proof)

lemma lower-sup[simp]: lower (sup A B) = inf (lower A) (lower B)
{proof)

lemma upper-sup[simp|: upper (sup A B) = sup (upper A) (upper B)
(proof)

instance (proof)
end

lemma set-of-interval-union: set-of A U set-of B C set-of (sup A B) for A::'a::lattice
interval
(proof)

lemma interval-union-commute: sup A B = sup B A for A::'a:lattice interval
(proof)

THEORY “Interval” 426

lemma interval-union-monol: set-of a C set-of (sup a A) for A :: 'a::lattice in-
terval

{proof)

lemma interval-union-mono2: set-of A C set-of (sup a A) for A :: 'a::lattice in-
terval
{proof)

lift-definition interval-of :: ‘a::preorder = 'a interval is A\z. (z, x)
{proof)

lemma lower-interval-of[simp]: lower (interval-of a) = a
{proof)

lemma upper-interval-of [simp]: upper (interval-of a) = a
{proof)

definition width :: ‘a:{preorder,minus} interval = 'a
where width i = upper i — lower i

instantiation interval :: (ordered-ab-semigroup-add) ab-semigroup-add
begin

lift-definition plus-interval::'a interval = 'a interval = 'a interval
is AM(a, b). AM(¢, d). (a + ¢, b+ d)
(proof)

lemma lower-plus[simp]: lower (plus A B) = plus (lower A) (lower B)
(proof)

lemma upper-plus[simpl: upper (plus A B) = plus (upper A) (upper B)
(proof)

instance (proof)
end

instance interval :: ({ordered-ab-semigroup-add, lattice}) ordered-ab-semigroup-add

(proof)

instantiation interval :: ({preorder,zero}) zero
begin

lift-definition zero-interval::'a interval is (0, 0) {proof)
lemma lower-zero[simp|: lower 0 = 0
(proof)
lemma upper-zero[simp|: upper 0 = 0
{proof)
instance (proof)
end

THEORY “Interval” 427

instance interval :: ({ordered-comm-monoid-add}) comm-monoid-add
(proof)

instance interval :: ({ordered-comm-monoid-add,lattice}) ordered-comm-monoid-add

(proof)

instantiation interval :: ({ordered-ab-group-add}) uminus
begin

lift-definition wuminus-interval::'a interval = 'a interval is A(a, b). (=b, —a)
(proof)
lemma lower-uminus[simp]: lower (— A) = — upper A
{proof)
lemma upper-uminus|simp|: upper (— A) = — lower A
{proof)
instance (proof)
end

instantiation interval :: ({ordered-ab-group-add}) minus
begin

definition minus-interval::'a interval = ’a interval = 'a interval
where minus-interval a b = a + — b

lemma lower-minus[simp]: lower (minus A B) = minus (lower A) (upper B)
(proof)

lemma upper-minus|[simp|: upper (minus A B) = minus (upper A) (lower B)
(proof)

instance (proof)
end

instantiation interval :: ({times, linorder}) times
begin

lift-definition times-interval :: 'a interval = 'a interval = 'a interval
is AM(al, a2). \(b1, b2).
(let x1 = al * bl; 22 = al * b2; 28 = a2 % bl; x4 = a2 % b2
in (min 1 (min x2 (min 8 z4)), maz x1 (maz 2 (mazx 28 z4))))
(proof)

lemma lower-times:

lower (times A B) = Min {lower A x lower B, lower A x upper B, upper A
lower B, upper A % upper B}

(proof)

lemma upper-times:
upper (times A B) = Maxz {lower A * lower B, lower A x upper B, upper A x
lower B, upper A % upper B}

{proof)

THEORY “Interval” 428

instance (proof)
end

lemma interval-eq-set-of-iff: X = Y <— set-of X = set-of Y for X Y::'a::order
interval
(proof)

51.1 Membership

abbreviation (in preorder) in-interval («(<notation=<infix €;»-/ €; -)» [51, 51]
50)
where in-interval © X = z € set-of X

lemma in-interval-to-interval[intro!]: a €; interval-of a
{proof)

lemma plus-in-intervall:
fixes z y :: 'a :: ordered-ab-semigroup-add
showsz €, X =y, VY —=24+y&;, X+ Y
(proof)

lemma connected-set-of [intro, simp]:
connected (set-of X) for X::'a::linear-continuum-topology interval

(proof)

lemma ex-sum-in-interval-lemma: 3zac{la .. ua}. Izbe{lb .. ub}. x = za + zb
ifla<walb<ubla+1b<zz<wuas+ ub
ua — la < ub — Ib
for la b ¢ d::'a::linordered-ab-group-add

(proof)

lemma ex-sum-in-interval: Iza>la. za < ua A (Fxb>1b. ©b < ub A © = za + xb)
ifa:la<weand b: b <wuwband z: la + b <z 2 < ua + ub
for la b ¢ d::'a:linordered-ab-group-add

(proof)

lemma Icc-plus-Icc:
{a..b}+{c..d}={a+c..b+ d}
ifa<be<d
for a b ¢ d::'a::linordered-ab-group-add
(proof)

lemma set-of-plus:
fixes A :: 'a::linordered-ab-group-add interval
shows set-of (A + B) = set-of A + set-of B
(proof)

THEORY “Interval” 429

lemma plus-in-intervalE:
fixes zy :: 'a :: linordered-ab-group-add
assumes 2y €; X + Y
obtains r y where xy =z + yzr €; Xy &, Y
(proof)

lemma set-of-uminus: set-of (—X) ={— z | z. = € set-of X}
for X :: 'a :: ordered-ab-group-add interval
(proof)

lemma uminus-in-intervall
fixes = :: 'a :: ordered-ab-group-add
shows z €, X —= -2 ¢; — X

{proof)

lemma uminus-in-intervalD:
fixes z :: ‘a :: ordered-ab-group-add
showsz ¢, — X —= —z2z¢; X
(proof)

lemma minus-in-intervall:
fixes z y :: 'a :: ordered-ab-group-add
showszrz €, X =y, Y —=z—-—y&; X -Y

(proof)
lemma set-of-minus: set-of (X — Y)={z —y|zy.xz € set-of X N\ y € set-of
Y}

for X Y :: 'a :: linordered-ab-group-add interval

(proof)

lemma times-in-intervall:
fixes z y::'a::linordered-ring
assumes z €; Xy &; YV
shows z x y €; X x Y
(proof)

lemma times-in-intervalE:
fixes zy :: ‘a :: {linorder, real-normed-algebra, linear-continuum-topology}
— TODQO: linear continuum topology is pretty strong
assumes 2y €; X * Y
obtains z y where xy =z x yzr €; Xye&; Y
{proof)
thm times-in-intervalE[of 1::real]
lemma set-of-times: set-of (X « V) ={z*xy|zy. z € set-of X N\ y € set-of Y}
for X Y::'a :: {linordered-ring, real-normed-algebra, linear-continuum-topology}
interval

(proof)

instance interval :: (linordered-idom) cancel-semigroup-add

THEORY “Interval” 430

(proof)

lemma interval-mul-commute: A x B = B x A for A B:: 'a::linordered-idom in-
terval

(proof)

lemma interval-times-zero-right[simp]: A x 0 = 0 for A :: 'a::linordered-ring in-
terval
(proof)

lemma interval-times-zero-left[simp]:
0 x A= 0 for A :: 'a:linordered-ring interval
(proof)

instantiation interval :: ({preorder,one}) one
begin

lift-definition one-interval::’a interval is (1, 1) (proof)
lemma lower-one[simp|: lower 1 = 1

(proof)
lemma upper-one[simp|: upper 1 = 1

{proof)
instance (proof)

end

instance interval :: ({one, preorder, linorder, times}) power

(proof)

lemma set-of-one[simpl: set-of (1::'a::{one, order} interval) = {1}
{proof)

instance interval :
({linordered-idom, real-normed-algebra, linear-continuum-topology}) monoid-mult

{proof)

lemma one-times-il-left[simp]: 1 x A = A for A :: 'a::linordered-idom interval
(proof)

lemma one-times-ivl-right[simp|: A x 1 = A for A :: 'a::linordered-idom interval
{proof)

lemma set-of-power-mono: a"n € set-of (A™n) if a € set-of A
for a :: 'a::linordered-idom
(proof)

lemma set-of-add-cong:
set-of (A + B) = set-of (A’ + B’)
if set-of A = set-of A’ set-of B = set-of B’
for A :: 'a::linordered-ab-group-add interval

THEORY “Interval” 431

{proof)

lemma set-of-add-inc-left:
set-of (A + B) C set-of (A’ + B)
if set-of A C set-of A’
for A :: 'a::linordered-ab-group-add interval
(proof)

lemma set-of-add-inc-right:
set-of (A + B) C set-of (A + B’)
if set-of B C set-of B’
for A :: 'a::linordered-ab-group-add interval
(proof)

lemma set-of-add-inc:
set-of (A + B) C set-of (A’ + B’)
if set-of A C set-of A’ set-of B C set-of B’
for A :: 'a::linordered-ab-group-add interval
(proof)

lemma set-of-neg-inc:
set-of (—A) C set-of (—A")
if set-of A C set-of A’
for A :: 'a::ordered-ab-group-add interval
(proof)

lemma set-of-sub-inc-left:
set-of (A — B) C set-of (A’ — B)
if set-of A C set-of A’
for A :: 'a::linordered-ab-group-add interval

(proof)

lemma set-of-sub-inc-right:
set-of (A — B) C set-of (A — B’)
if set-of B C set-of B’
for A :: 'a::linordered-ab-group-add interval
(proof)

lemma set-of-sub-inc:
set-of (A — B) C set-of (A’ — B’)
if set-of A C set-of A’ set-of B C set-of B’
for A :: 'a::linordered-idom interval
(proof)

lemma set-of-mul-inc-right:
set-of (A * B) C set-of (A x B
if set-of B C set-of B’
for A :: 'a::linordered-ring interval

{proof)

THEORY “Interval” 432

lemma set-of-distrib-left:
set-of (B x (A1 + A2)) C set-of (B+ Al + B *x A2)
for A1 :: 'a::linordered-ring interval

(proof)

lemma set-of-distrib-right:

set-of ((A1 + A2) x B) C set-of (A1 x B+ A2 x B)

for A1 A2 B :: 'a::{linordered-ring, real-normed-algebra, linear-continuum-topology}
interval

(proof)

lemma set-of-mul-inc-left:

set-of (A * B) C set-of (A’ x B)

if set-of A C set-of A’

for A :: 'a::{linordered-ring, real-normed-algebra, linear-continuum-topology} in-
terval

{proof)

lemma set-of-mul-inc:

set-of (A * B) C set-of (A" * B

if set-of A C set-of A’ set-of B C set-of B’

for A :: 'a::{linordered-ring, real-normed-algebra, linear-continuum-topology} in-
terval

{proof)

lemma set-of-pow-inc:

set-of (A™n) C set-of (A"™n)

if set-of A C set-of A’

for A :: 'a::{linordered-idom, real-normed-algebra, linear-continuum-topology} in-
terval

(proof)

lemma set-of-distrib-right-left:

set-of ((A1 + A2) = (B1 + B2)) C set-of (Al « Bl + Al «= B2 + A2 « Bl +
A2 x B2)

for A1 :: 'a::{linordered-idom, real-normed-algebra, linear-continuum-topology}
interval

(proof)

lemma mult-bounds-enclose-zerol:
min (la = Ib) (min (la * ub) (min (Ib * ua) (ua * ub))) < 0
0 < maz (la * Ib) (maz (la x ub) (max (Ib * ua) (ua * ub)))
ifla <00 < ua
for la b ua ub:: 'a:linordered-idom
(proof)

lemma mult-bounds-enclose-zero2:
min (la * 1b) (min (la * ub) (min (Ib * ua) (ua * ub))) < 0

THEORY “Interval” 433

0 < maz (la * Ib) (maz (la x ub) (max (Ib * ua) (ua * ub)))
if Ib<00 < ub

for la Ib ua ub:: 'a::linordered-idom

{proof)

lemma set-of-mul-contains-zero:
0 € set-of (A x B)
if 0 € set-of AV 0 € set-of B
for A :: 'a::linordered-idom interval

(proof)

instance interval :: ({linordered-semiring, zero, times}) mult-zero
{proof)

lift-definition min-interval::'a::linorder interval = 'a interval = 'a interval is
A1, ul). M(12, u2). (min 11 12, min ul u2)

(proof)
lemma lower-min-interval|simp|: lower (min-interval x y) = min (lower z) (lower
Y)

(proof)
lemma upper-min-interval[simp|: upper (min-interval x y) = min (upper z) (upper
Y)

(proof)

lemma min-intervall:
a€; A= be; B=— minab e€; min-interval A B

{proof)

lift-definition maz-interval::'a::linorder interval = 'a interval = ’a interval is
AL, ul). (12, u2). (maz 11 12, maz ul u2)

(proof)
lemma lower-maz-interval[simp|: lower (maz-interval z y) = max (lower) (lower
y)

(proof)
lemma upper-maz-interval[simpl: upper (maz-interval x y) = maz (upper x) (upper
y)

(proof)

lemma maz-intervall:
a € A= bec; B=— maz a b €; maz-interval A B

{proof)

lift-definition abs-interval::’a::linordered-idom interval = ’a interval is
(A(w). (if 1 < 0 N 0 < u then 0 else min |l] |u|, maz || |u]))
(proof)

lemma lower-abs-interval[simp):
lower (abs-interval) = (if lower x < 0 A 0 < upper x then 0 else min |lower |

|upper x|)

THEORY “Interval” 434

{proof)
lemma upper-abs-interval[simp|: upper (abs-interval x) = maz |lower z| |upper z|

{proof)

lemma in-abs-intervalll:
lr< 0= 0<ur = 0 < za = za < max (— Iz) (ur) = za € abs ‘ {lz..uz}
for za::'a:linordered-idom

{proof)

lemma in-abs-intervall2:
min (|lz]) |uz] < za = za < maz |lz| |uz] = Izt < uz = 0 <z V uz < 0
.
za € abs ‘ {lx..uzr}
for za::'a::linordered-idom

(proof)

lemma set-of-abs-interval: set-of (abs-interval) = abs * set-of ©
{proof)

fun split-domain :: ('a::preorder interval = 'a interval list) = 'a interval list =
‘a interval list list
where split-domain split [| = [[]]
| split-domain split (I#1s) = (
let S = split I
D = split-domain split Is
in concat (map (Ad. map (As. s # d) S) D)
)

context notes [[typedef-overloaded]] begin
lift-definition(code-dt) split-interval::'a::linorder interval = 'a = ('a interval x
‘a interval)

is A(l, u) z. ((min Iz, maz I z), (min u x, maz u x))

(proof)

end

lemma split-domain-nonempty:
assumes AI. split I # ||
shows split-domain split I # |]
{proof)

lemma lower-split-intervall: lower (fst (split-interval X m)) = min (lower X) m
and lower-split-interval2: lower (snd (split-interval X m)) = min (upper X) m
and upper-split-intervall : upper (fst (split-interval X m)) = max (lower X) m
and upper-split-interval2: upper (snd (split-interval X m)) = maz (upper X) m
(proof)

lemma split-intervalD: split-interval X © = (A, B) = set-of X C set-of A U set-of
B
(proof)

THEORY “Interval” 435

instantiation interval :: ({topological-space, preorder}) topological-space
begin

definition open-interval-def|[code del]: open (X::'a interval set) =
(VzeX.
JA4 B.
open A N
open B A
lower x € A A\ upper x € B A Interval ‘(A x B) C X)

instance
(proof)

end

51.2 Quickcheck

lift-definition [vi::'a = 'a::preorder = 'a interval is Aa b. (min a b, b)

{proof)

instantiation interval :: ({ezhaustive,preorder}) exhaustive
begin

definition ezhaustive-interval::('a interval = (bool X term list) option)
= natural = (bool x term list) option
where
ezhaustive-interval f d =
Quickcheck- Exhaustive. exhaustive (A\z. Quickcheck-Exhaustive.ezhaustive (Ay. f
(Il zy)) d) d

instance (proof)
end
context
includes term-syntax
begin
definition [code-unfold):
valtermify-interval x y = Code-Evaluation.valtermify (Ivl::'a::{preorder,typerep}=--)
(1e{ty

end

instantiation interval :: ({full-exhaustive,preorder,typerep}) full-exhaustive
begin

definition full-exhaustive-interval::

THEORY “Interval-Float” 436

("a interval x (unit = term) = (bool x term list) option)
= natural = (bool x term list) option where
full-exhaustive-interval f d =
Quickcheck- Exhaustive. full-exhaustive
(Az. Quickcheck-Exhaustive.full-ezhaustive (\y. f (valtermify-interval x y)) d)
d

instance (proof)
end

instantiation interval :: ({random,preorder typerep}) random
begin

definition random-interval ::
natural
= natural X natural
= ('a interval x (unit = term)) X natural X natural where
random-interval © =
scomp (Quickcheck-Random.random i)
(Aman. scomp (Quickcheck-Random.random i) (Aexp. Pair (valtermify-interval
man exp)))

instance (proof)
end

lifting-update interval.lifting
lifting-forget interval.lifting

end

52 Approximate Operations on Intervals of Float-
ing Point Numbers

theory Interval-Float
imports
Interval
Float
begin

definition mid :: float interval = float
where mid ¢ = (lower i + upper i) * Float 1 (—1)

lemma mid-in-interval: mid i €; i
(proof)

lemma mid-le: lower i < mid i mid i < upper i

THEORY “Interval-Float” 437

{proof)

definition centered :: float interval = float interval
where centered i = i — interval-of (mid 7)

definition split-float-interval x = split-interval z ((lower = 4+ upper z) * Float 1

(=1))

lemma split-float-intervalD: split-float-interval X = (A, B) = set-of X C set-of
A U set-of B
(proof)

lemma split-float-interval-bounds:
shows
lower-split-float-intervall : lower (fst (split-float-interval X)) = lower X
and lower-split-float-interval2: lower (snd (split-float-interval X)) = mid X
and upper-split-float-intervall : upper (fst (split-float-interval X)) = mid X
and upper-split-float-interval2: upper (snd (split-float-interval X)) = upper X
(proof)

lemmas float-round-down-le[intro] = order-trans|OF float-round-down)
and float-round-up-ge[intro] = order-trans|OF - float-round-up]
TODO: many of the lemmas should move to theories Float or Approxi-
mation (the latter should be based on type interval.

52.1 Intervals with Floating Point Bounds

context includes interval.lifting begin

lift-definition round-interval :: nat = float interval = float interval
is Ap. A(1, u). (float-round-down p I, float-round-up p u)
(proof)

lemma lower-round-iwl[simp]: lower (round-interval p z) = float-round-down p
(lower z)

(proof)
lemma upper-round-ivl[simp|: upper (round-interval p) = float-round-up p (upper

z)
(proof)

lemma round-ivl-correct: set-of A C set-of (round-interval prec A)
{proof)

lift-definition truncate-ivl :: nat = real interval = real interval
is Ap. A(I,). (truncate-down p 1, truncate-up p u)
(proof)

lemma lower-truncate-ivl[simp]: lower (truncate-ivl p) = truncate-down p (lower

z)

THEORY “Interval-Float” 438

(proof)
lemma upper-truncate-ivl[simpl: upper (truncate-ivl p x) = truncate-up p (upper

z)
{proof)

lemma truncate-ivl-correct: set-of A C set-of (truncate-ivl prec A)
{proof)

lift-definition real-interval::float interval = real interval
is A(I, u). (real-of-float 1, real-of-float u)
(proof)

lemma lower-real-interval[simp|: lower (real-interval x) = lower x

(proof)
lemma upper-real-interval[simp): upper (real-interval x) = upper x

(proof)

definition set-of ' = (case = of None = UNIV | Some i = set-of (real-interval

i)

lemma real-interval-min-interval[simp]:
real-interval (min-interval a b) = min-interval (real-interval a) (real-interval b)
{proof)

lemma real-interval-maz-interval[simpl:
real-interval (max-interval a b) = maz-interval (real-interval a) (real-interval b)

{proof)

lemma in-intervall:
z €; X if lower X < zx < upper X

(proof)

abbreviation in-real-interval («(<notation=<infix €,.1-/ €, -)» [61, 51] 50)
where z €, X = z €; real-interval X

lemma in-real-intervall:
z €. X if lower X < z x < upper X for z::real and X::float interval

{proof)

52.2 intros for real-interval

lemma in-round-intervall: © €, A = z €, (round-interval prec A)
{proof)

lemma zero-in-float-intervall: 0 €, 0
(proof)

lemma plus-in-float-intervall: a + b €, A+ Bifa €, Abe€,. B
(proof)

THEORY “Interval-Float” 439

lemma minus-in-float-intervall: a — b €, A — Bifa €. Abe, B
(proof)

lemma uminus-in-float-intervall: —a €, —A if a €, A
(proof)

lemma real-interval-times: real-interval (A *x B) = real-interval A x real-interval
B

(proof)

lemma times-in-float-intervall: a x b €, A