
Miscellaneous Isabelle/Isar examples

Makarius Wenzel

With contributions by Gertrud Bauer and Tobias Nipkow

January 18, 2026

Abstract

Isar offers a high-level proof (and theory) language for Isabelle.
We give various examples of Isabelle/Isar proof developments, ranging
from simple demonstrations of certain language features to a bit more
advanced applications. The “real” applications of Isabelle/Isar are
found elsewhere.

Contents
1 Structured statements within Isar proofs 2

1.1 Introduction steps . 3
1.2 If-and-only-if . 3
1.3 Elimination and cases . 4
1.4 Induction . 5
1.5 Suffices-to-show . 5

2 Basic logical reasoning 6
2.1 Pure backward reasoning . 6
2.2 Variations of backward vs. forward reasoning 8
2.3 A few examples from “Introduction to Isabelle” 10

2.3.1 A propositional proof 10
2.3.2 A quantifier proof . 11
2.3.3 Deriving rules in Isabelle 12

3 Correctness of a simple expression compiler 13
3.1 Binary operations . 13
3.2 Expressions . 13
3.3 Machine . 13
3.4 Compiler . 14

1

4 Fib and Gcd commute 17
4.1 Fibonacci numbers . 17
4.2 Fib and gcd commute . 17

5 Basic group theory 20
5.1 Groups and calculational reasoning 20
5.2 Groups as monoids . 22
5.3 More theorems of group theory 23

6 Some algebraic identities derived from group axioms – the-
ory context version 24

7 Some algebraic identities derived from group axioms – proof
notepad version 26

8 Hoare Logic 28
8.1 Abstract syntax and semantics 28
8.2 Primitive Hoare rules . 29
8.3 Concrete syntax for assertions 31
8.4 Rules for single-step proof 33
8.5 Verification conditions . 34

9 Using Hoare Logic 36
9.1 State spaces . 36
9.2 Basic examples . 36
9.3 Multiplication by addition . 38
9.4 Summing natural numbers . 39
9.5 Time . 40

10 The Mutilated Checker Board Problem 41
10.1 Tilings . 42
10.2 Basic properties of “below” 42
10.3 Basic properties of “evnodd” 43
10.4 Dominoes . 43
10.5 Tilings of dominoes . 45
10.6 Main theorem . 46

11 An old chestnut 47

12 Summing natural numbers 48
12.1 Summation laws . 49

1 Structured statements within Isar proofs
theory Structured-Statements

2

imports Main
begin

1.1 Introduction steps
notepad
begin

fix A B :: bool
fix P :: ′a ⇒ bool

have A −→ B
proof

show B if A using that 〈proof 〉
qed

have ¬ A
proof

show False if A using that 〈proof 〉
qed

have ∀ x. P x
proof

show P x for x 〈proof 〉
qed

end

1.2 If-and-only-if
notepad
begin

fix A B :: bool

have A ←→ B
proof

show B if A 〈proof 〉
show A if B 〈proof 〉

qed
next

fix A B :: bool

have iff-comm: (A ∧ B) ←→ (B ∧ A)
proof

show B ∧ A if A ∧ B
proof

show B using that ..
show A using that ..

qed
show A ∧ B if B ∧ A
proof

show A using that ..

3

show B using that ..
qed

qed

Alternative proof, avoiding redundant copy of symmetric argument.
have iff-comm: (A ∧ B) ←→ (B ∧ A)
proof

show B ∧ A if A ∧ B for A B
proof

show B using that ..
show A using that ..

qed
then show A ∧ B if B ∧ A

by this (rule that)
qed

end

1.3 Elimination and cases
notepad
begin

fix A B C D :: bool
assume ∗: A ∨ B ∨ C ∨ D

consider (a) A | (b) B | (c) C | (d) D
using ∗ by blast

then have something
proof cases

case a thm ‹A›
then show ?thesis 〈proof 〉

next
case b thm ‹B›
then show ?thesis 〈proof 〉

next
case c thm ‹C ›
then show ?thesis 〈proof 〉

next
case d thm ‹D›
then show ?thesis 〈proof 〉

qed
next

fix A :: ′a ⇒ bool
fix B :: ′b ⇒ ′c ⇒ bool
assume ∗: (∃ x. A x) ∨ (∃ y z. B y z)

consider (a) x where A x | (b) y z where B y z
using ∗ by blast

then have something
proof cases

4

case a thm ‹A x›
then show ?thesis 〈proof 〉

next
case b thm ‹B y z›
then show ?thesis 〈proof 〉

qed
end

1.4 Induction
notepad
begin

fix P :: nat ⇒ bool
fix n :: nat

have P n
proof (induct n)

show P 0 〈proof 〉
show P (Suc n) if P n for n thm ‹P n›

using that 〈proof 〉
qed

end

1.5 Suffices-to-show
notepad
begin

fix A B C
assume r : A =⇒ B =⇒ C

have C
proof −

show ?thesis when A (is ?A) and B (is ?B)
using that by (rule r)

show ?A 〈proof 〉
show ?B 〈proof 〉

qed
next

fix a :: ′a
fix A :: ′a ⇒ bool
fix C

have C
proof −

show ?thesis when A x (is ?A) for x :: ′a — abstract x
using that 〈proof 〉

show ?A a — concrete a
〈proof 〉

qed
end

5

end

2 Basic logical reasoning
theory Basic-Logic

imports Main
begin

2.1 Pure backward reasoning

In order to get a first idea of how Isabelle/Isar proof documents may look
like, we consider the propositions I, K, and S. The following (rather explicit)
proofs should require little extra explanations.
lemma I : A −→ A
proof

assume A
show A by fact

qed

lemma K : A −→ B −→ A
proof

assume A
show B −→ A
proof

show A by fact
qed

qed

lemma S : (A −→ B −→ C) −→ (A −→ B) −→ A −→ C
proof

assume A −→ B −→ C
show (A −→ B) −→ A −→ C
proof

assume A −→ B
show A −→ C
proof

assume A
show C
proof (rule mp)

show B −→ C by (rule mp) fact+
show B by (rule mp) fact+

qed
qed

qed
qed

Isar provides several ways to fine-tune the reasoning, avoiding excessive de-

6

tail. Several abbreviated language elements are available, enabling the writer
to express proofs in a more concise way, even without referring to any au-
tomated proof tools yet.
Concluding any (sub-)proof already involves solving any remaining goals by
assumption1. Thus we may skip the rather vacuous body of the above proof.
lemma A −→ A
proof
qed

Note that the proof command refers to the rule method (without argu-
ments) by default. Thus it implicitly applies a single rule, as determined
from the syntactic form of the statements involved. The by command ab-
breviates any proof with empty body, so the proof may be further pruned.
lemma A −→ A

by rule

Proof by a single rule may be abbreviated as double-dot.
lemma A −→ A ..

Thus we have arrived at an adequate representation of the proof of a tau-
tology that holds by a single standard rule.2

Let us also reconsider K. Its statement is composed of iterated connectives.
Basic decomposition is by a single rule at a time, which is why our first
version above was by nesting two proofs.
The intro proof method repeatedly decomposes a goal’s conclusion.3

lemma A −→ B −→ A
proof (intro impI)

assume A
show A by fact

qed

Again, the body may be collapsed.
lemma A −→ B −→ A

by (intro impI)

Just like rule, the intro and elim proof methods pick standard structural
rules, in case no explicit arguments are given. While implicit rules are
usually just fine for single rule application, this may go too far with iteration.
Thus in practice, intro and elim would be typically restricted to certain
structures by giving a few rules only, e.g. proof (intro impI allI) to strip
implications and universal quantifiers.

1This is not a completely trivial operation, as proof by assumption may involve full
higher-order unification.

2Apparently, the rule here is implication introduction.
3The dual method is elim, acting on a goal’s premises.

7

Such well-tuned iterated decomposition of certain structures is the prime
application of intro and elim. In contrast, terminal steps that solve a goal
completely are usually performed by actual automated proof methods (such
as by blast.

2.2 Variations of backward vs. forward reasoning

Certainly, any proof may be performed in backward-style only. On the
other hand, small steps of reasoning are often more naturally expressed in
forward-style. Isar supports both backward and forward reasoning as a first-
class concept. In order to demonstrate the difference, we consider several
proofs of A ∧ B −→ B ∧ A.
The first version is purely backward.
lemma A ∧ B −→ B ∧ A
proof

assume A ∧ B
show B ∧ A
proof

show B by (rule conjunct2) fact
show A by (rule conjunct1) fact

qed
qed

Above, the projection rules conjunct1 / conjunct2 had to be named explic-
itly, since the goals B and A did not provide any structural clue. This may
be avoided using from to focus on the A ∧ B assumption as the current
facts, enabling the use of double-dot proofs. Note that from already does
forward-chaining, involving the conjE rule here.
lemma A ∧ B −→ B ∧ A
proof

assume A ∧ B
show B ∧ A
proof

from ‹A ∧ B› show B ..
from ‹A ∧ B› show A ..

qed
qed

In the next version, we move the forward step one level upwards. Forward-
chaining from the most recent facts is indicated by the then command. Thus
the proof of B ∧ A from A ∧ B actually becomes an elimination, rather than
an introduction. The resulting proof structure directly corresponds to that
of the conjE rule, including the repeated goal proposition that is abbreviated
as ?thesis below.
lemma A ∧ B −→ B ∧ A

8

proof
assume A ∧ B
then show B ∧ A
proof — rule conjE of A ∧ B

assume B A
then show ?thesis .. — rule conjI of B ∧ A

qed
qed

In the subsequent version we flatten the structure of the main body by doing
forward reasoning all the time. Only the outermost decomposition step is
left as backward.
lemma A ∧ B −→ B ∧ A
proof

assume A ∧ B
from ‹A ∧ B› have A ..
from ‹A ∧ B› have B ..
from ‹B› ‹A› show B ∧ A ..

qed

We can still push forward-reasoning a bit further, even at the risk of getting
ridiculous. Note that we force the initial proof step to do nothing here, by
referring to the − proof method.
lemma A ∧ B −→ B ∧ A
proof −

{
assume A ∧ B
from ‹A ∧ B› have A ..
from ‹A ∧ B› have B ..
from ‹B› ‹A› have B ∧ A ..

}
then show ?thesis .. — rule impI

qed

With these examples we have shifted through a whole range from purely
backward to purely forward reasoning. Apparently, in the extreme ends we
get slightly ill-structured proofs, which also require much explicit naming of
either rules (backward) or local facts (forward).
The general lesson learned here is that good proof style would achieve just
the right balance of top-down backward decomposition, and bottom-up for-
ward composition. In general, there is no single best way to arrange some
pieces of formal reasoning, of course. Depending on the actual applications,
the intended audience etc., rules (and methods) on the one hand vs. facts on
the other hand have to be emphasized in an appropriate way. This requires
the proof writer to develop good taste, and some practice, of course.

For our example the most appropriate way of reasoning is probably the

9

middle one, with conjunction introduction done after elimination.
lemma A ∧ B −→ B ∧ A
proof

assume A ∧ B
then show B ∧ A
proof

assume B A
then show ?thesis ..

qed
qed

2.3 A few examples from “Introduction to Isabelle”

We rephrase some of the basic reasoning examples of [4], using HOL rather
than FOL.

2.3.1 A propositional proof

We consider the proposition P ∨ P −→ P. The proof below involves forward-
chaining from P ∨ P, followed by an explicit case-analysis on the two iden-
tical cases.
lemma P ∨ P −→ P
proof

assume P ∨ P
then show P
proof — rule disjE :

A ∨ B

[A]....
C

[B]....
C

C
assume P show P by fact

next
assume P show P by fact

qed
qed

Case splits are not hardwired into the Isar language as a special feature.
The next command used to separate the cases above is just a short form of
managing block structure.

In general, applying proof methods may split up a goal into separate “cases”,
i.e. new subgoals with individual local assumptions. The corresponding
proof text typically mimics this by establishing results in appropriate con-
texts, separated by blocks.
In order to avoid too much explicit parentheses, the Isar system implicitly
opens an additional block for any new goal, the next statement then closes
one block level, opening a new one. The resulting behaviour is what one
would expect from separating cases, only that it is more flexible. E.g. an
induction base case (which does not introduce local assumptions) would not
require next to separate the subsequent step case.

10

In our example the situation is even simpler, since the two cases actually
coincide. Consequently the proof may be rephrased as follows.
lemma P ∨ P −→ P
proof

assume P ∨ P
then show P
proof

assume P
show P by fact
show P by fact

qed
qed

Again, the rather vacuous body of the proof may be collapsed. Thus the
case analysis degenerates into two assumption steps, which are implicitly
performed when concluding the single rule step of the double-dot proof as
follows.
lemma P ∨ P −→ P
proof

assume P ∨ P
then show P ..

qed

2.3.2 A quantifier proof

To illustrate quantifier reasoning, let us prove (∃ x. P (f x)) −→ (∃ y. P y).
Informally, this holds because any a with P (f a) may be taken as a witness
for the second existential statement.
The first proof is rather verbose, exhibiting quite a lot of (redundant) detail.
It gives explicit rules, even with some instantiation. Furthermore, we en-
counter two new language elements: the fix command augments the context
by some new “arbitrary, but fixed” element; the is annotation binds term
abbreviations by higher-order pattern matching.
lemma (∃ x. P (f x)) −→ (∃ y. P y)
proof

assume ∃ x. P (f x)
then show ∃ y. P y
proof (rule exE) — rule exE :

∃ x. A(x)

[A(x)]x....
B

B
fix a
assume P (f a) (is P ?witness)
then show ?thesis by (rule exI [of P ?witness])

qed
qed

While explicit rule instantiation may occasionally improve readability of
certain aspects of reasoning, it is usually quite redundant. Above, the basic

11

proof outline gives already enough structural clues for the system to infer
both the rules and their instances (by higher-order unification). Thus we
may as well prune the text as follows.
lemma (∃ x. P (f x)) −→ (∃ y. P y)
proof

assume ∃ x. P (f x)
then show ∃ y. P y
proof

fix a
assume P (f a)
then show ?thesis ..

qed
qed

Explicit ∃ -elimination as seen above can become quite cumbersome in prac-
tice. The derived Isar language element “obtain” provides a more handsome
way to do generalized existence reasoning.
lemma (∃ x. P (f x)) −→ (∃ y. P y)
proof

assume ∃ x. P (f x)
then obtain a where P (f a) ..
then show ∃ y. P y ..

qed

Technically, obtain is similar to fix and assume together with a soundness
proof of the elimination involved. Thus it behaves similar to any other
forward proof element. Also note that due to the nature of general existence
reasoning involved here, any result exported from the context of an obtain
statement may not refer to the parameters introduced there.

2.3.3 Deriving rules in Isabelle

We derive the conjunction elimination rule from the corresponding projec-
tions. The proof is quite straight-forward, since Isabelle/Isar supports non-
atomic goals and assumptions fully transparently.
theorem conjE : A ∧ B =⇒ (A =⇒ B =⇒ C) =⇒ C
proof −

assume A ∧ B
assume r : A =⇒ B =⇒ C
show C
proof (rule r)

show A by (rule conjunct1) fact
show B by (rule conjunct2) fact

qed
qed

end

12

3 Correctness of a simple expression compiler
theory Expr-Compiler

imports Main
begin

This is a (rather trivial) example of program verification. We model a com-
piler for translating expressions to stack machine instructions, and prove its
correctness wrt. some evaluation semantics.

3.1 Binary operations

Binary operations are just functions over some type of values. This is both
for abstract syntax and semantics, i.e. we use a “shallow embedding” here.
type-synonym ′val binop = ′val ⇒ ′val ⇒ ′val

3.2 Expressions

The language of expressions is defined as an inductive type, consisting of
variables, constants, and binary operations on expressions.
datatype (dead ′adr , dead ′val) expr =

Variable ′adr
| Constant ′val
| Binop ′val binop (′adr , ′val) expr (′adr , ′val) expr

Evaluation (wrt. some environment of variable assignments) is defined by
primitive recursion over the structure of expressions.
primrec eval :: (′adr , ′val) expr ⇒ (′adr ⇒ ′val) ⇒ ′val

where
eval (Variable x) env = env x
| eval (Constant c) env = c
| eval (Binop f e1 e2) env = f (eval e1 env) (eval e2 env)

3.3 Machine

Next we model a simple stack machine, with three instructions.
datatype (dead ′adr , dead ′val) instr =

Const ′val
| Load ′adr
| Apply ′val binop

Execution of a list of stack machine instructions is easily defined as follows.
primrec exec :: ((′adr , ′val) instr) list ⇒ ′val list ⇒ (′adr ⇒ ′val) ⇒ ′val list

where
exec [] stack env = stack
| exec (instr # instrs) stack env =

13

(case instr of
Const c ⇒ exec instrs (c # stack) env
| Load x ⇒ exec instrs (env x # stack) env
| Apply f ⇒ exec instrs (f (hd stack) (hd (tl stack)) # (tl (tl stack))) env)

definition execute :: ((′adr , ′val) instr) list ⇒ (′adr ⇒ ′val) ⇒ ′val
where execute instrs env = hd (exec instrs [] env)

3.4 Compiler

We are ready to define the compilation function of expressions to lists of
stack machine instructions.
primrec compile :: (′adr , ′val) expr ⇒ ((′adr , ′val) instr) list

where
compile (Variable x) = [Load x]
| compile (Constant c) = [Const c]
| compile (Binop f e1 e2) = compile e2 @ compile e1 @ [Apply f]

The main result of this development is the correctness theorem for compile.
We first establish a lemma about exec and list append.
lemma exec-append:

exec (xs @ ys) stack env =
exec ys (exec xs stack env) env

proof (induct xs arbitrary: stack)
case Nil
show ?case by simp

next
case (Cons x xs)
show ?case
proof (induct x)

case Const
from Cons show ?case by simp

next
case Load
from Cons show ?case by simp

next
case Apply
from Cons show ?case by simp

qed
qed

theorem correctness: execute (compile e) env = eval e env
proof −

have
∧

stack. exec (compile e) stack env = eval e env # stack
proof (induct e)

case Variable
show ?case by simp

next

14

case Constant
show ?case by simp

next
case Binop
then show ?case by (simp add: exec-append)

qed
then show ?thesis by (simp add: execute-def)

qed

In the proofs above, the simp method does quite a lot of work behind the
scenes (mostly “functional program execution”). Subsequently, the same
reasoning is elaborated in detail — at most one recursive function definition
is used at a time. Thus we get a better idea of what is actually going on.
lemma exec-append ′:

exec (xs @ ys) stack env = exec ys (exec xs stack env) env
proof (induct xs arbitrary: stack)

case (Nil s)
have exec ([] @ ys) s env = exec ys s env

by simp
also have . . . = exec ys (exec [] s env) env

by simp
finally show ?case .

next
case (Cons x xs s)
show ?case
proof (induct x)

case (Const val)
have exec ((Const val # xs) @ ys) s env = exec (Const val # xs @ ys) s env

by simp
also have . . . = exec (xs @ ys) (val # s) env

by simp
also from Cons have . . . = exec ys (exec xs (val # s) env) env .
also have . . . = exec ys (exec (Const val # xs) s env) env

by simp
finally show ?case .

next
case (Load adr)
from Cons show ?case

by simp — same as above
next

case (Apply fn)
have exec ((Apply fn # xs) @ ys) s env =

exec (Apply fn # xs @ ys) s env by simp
also have . . . =

exec (xs @ ys) (fn (hd s) (hd (tl s)) # (tl (tl s))) env
by simp

also from Cons have . . . =
exec ys (exec xs (fn (hd s) (hd (tl s)) # tl (tl s)) env) env .

15

also have . . . = exec ys (exec (Apply fn # xs) s env) env
by simp

finally show ?case .
qed

qed

theorem correctness ′: execute (compile e) env = eval e env
proof −

have exec-compile:
∧

stack. exec (compile e) stack env = eval e env # stack
proof (induct e)

case (Variable adr s)
have exec (compile (Variable adr)) s env = exec [Load adr] s env

by simp
also have . . . = env adr # s

by simp
also have env adr = eval (Variable adr) env

by simp
finally show ?case .

next
case (Constant val s)
show ?case by simp — same as above

next
case (Binop fn e1 e2 s)
have exec (compile (Binop fn e1 e2)) s env =

exec (compile e2 @ compile e1 @ [Apply fn]) s env
by simp

also have . . . = exec [Apply fn]
(exec (compile e1) (exec (compile e2) s env) env) env

by (simp only: exec-append)
also have exec (compile e2) s env = eval e2 env # s

by fact
also have exec (compile e1) . . . env = eval e1 env # . . .

by fact
also have exec [Apply fn] . . . env =

fn (hd . . .) (hd (tl . . .)) # (tl (tl . . .))
by simp

also have . . . = fn (eval e1 env) (eval e2 env) # s
by simp

also have fn (eval e1 env) (eval e2 env) =
eval (Binop fn e1 e2) env

by simp
finally show ?case .

qed

have execute (compile e) env = hd (exec (compile e) [] env)
by (simp add: execute-def)

also from exec-compile have exec (compile e) [] env = [eval e env] .
also have hd . . . = eval e env

by simp

16

finally show ?thesis .
qed

end

4 Fib and Gcd commute
theory Fibonacci

imports HOL−Computational-Algebra.Primes
begin4

4.1 Fibonacci numbers
fun fib :: nat ⇒ nat

where
fib 0 = 0
| fib (Suc 0) = 1
| fib (Suc (Suc x)) = fib x + fib (Suc x)

lemma [simp]: fib (Suc n) > 0
by (induct n rule: fib.induct) simp-all

Alternative induction rule.
theorem fib-induct: P 0 =⇒ P 1 =⇒ (

∧
n. P (n + 1) =⇒ P n =⇒ P (n + 2))

=⇒ P n
for n :: nat
by (induct rule: fib.induct) simp-all

4.2 Fib and gcd commute

A few laws taken from [1].
lemma fib-add: fib (n + k + 1) = fib (k + 1) ∗ fib (n + 1) + fib k ∗ fib n
(is ?P n)
— see [1, page 280]

proof (induct n rule: fib-induct)
show ?P 0 by simp
show ?P 1 by simp
fix n
have fib (n + 2 + k + 1)
= fib (n + k + 1) + fib (n + 1 + k + 1) by simp

also assume fib (n + k + 1) = fib (k + 1) ∗ fib (n + 1) + fib k ∗ fib n (is -
= ?R1)

also assume fib (n + 1 + k + 1) = fib (k + 1) ∗ fib (n + 1 + 1) + fib k ∗ fib
(n + 1)

(is - = ?R2)
4Isar version by Gertrud Bauer. Original tactic script by Larry Paulson. A few proofs

of laws taken from [1].

17

also have ?R1 + ?R2 = fib (k + 1) ∗ fib (n + 2 + 1) + fib k ∗ fib (n + 2)
by (simp add: add-mult-distrib2)

finally show ?P (n + 2) .
qed

lemma coprime-fib-Suc: coprime (fib n) (fib (n + 1))
(is ?P n)

proof (induct n rule: fib-induct)
show ?P 0 by simp
show ?P 1 by simp
fix n
assume P: coprime (fib (n + 1)) (fib (n + 1 + 1))
have fib (n + 2 + 1) = fib (n + 1) + fib (n + 2)

by simp
also have . . . = fib (n + 2) + fib (n + 1)

by simp
also have gcd (fib (n + 2)) . . . = gcd (fib (n + 2)) (fib (n + 1))

by (rule gcd-add2)
also have . . . = gcd (fib (n + 1)) (fib (n + 1 + 1))

by (simp add: gcd.commute)
also have . . . = 1

using P by simp
finally show ?P (n + 2)

by (simp add: coprime-iff-gcd-eq-1)
qed

lemma gcd-mult-add: (0 ::nat) < n =⇒ gcd (n ∗ k + m) n = gcd m n
proof −

assume 0 < n
then have gcd (n ∗ k + m) n = gcd n (m mod n)

by (simp add: gcd-non-0-nat add.commute)
also from ‹0 < n› have . . . = gcd m n

by (simp add: gcd-non-0-nat)
finally show ?thesis .

qed

lemma gcd-fib-add: gcd (fib m) (fib (n + m)) = gcd (fib m) (fib n)
proof (cases m)

case 0
then show ?thesis by simp

next
case (Suc k)
then have gcd (fib m) (fib (n + m)) = gcd (fib (n + k + 1)) (fib (k + 1))

by (simp add: gcd.commute)
also have fib (n + k + 1) = fib (k + 1) ∗ fib (n + 1) + fib k ∗ fib n

by (rule fib-add)
also have gcd . . . (fib (k + 1)) = gcd (fib k ∗ fib n) (fib (k + 1))

by (simp add: gcd-mult-add)
also have . . . = gcd (fib n) (fib (k + 1))

18

using coprime-fib-Suc [of k] gcd-mult-left-right-cancel [of fib (k + 1) fib k fib n]
by (simp add: ac-simps)

also have . . . = gcd (fib m) (fib n)
using Suc by (simp add: gcd.commute)

finally show ?thesis .
qed

lemma gcd-fib-diff : gcd (fib m) (fib (n − m)) = gcd (fib m) (fib n) if m ≤ n
proof −

have gcd (fib m) (fib (n − m)) = gcd (fib m) (fib (n − m + m))
by (simp add: gcd-fib-add)

also from ‹m ≤ n› have n − m + m = n
by simp

finally show ?thesis .
qed

lemma gcd-fib-mod: gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n) if 0 < m
proof (induct n rule: nat-less-induct)

case hyp: (1 n)
show ?case
proof −

have n mod m = (if n < m then n else (n − m) mod m)
by (rule mod-if)

also have gcd (fib m) (fib . . .) = gcd (fib m) (fib n)
proof (cases n < m)

case True
then show ?thesis by simp

next
case False
then have m ≤ n by simp
from ‹0 < m› and False have n − m < n

by simp
with hyp have gcd (fib m) (fib ((n − m) mod m))

= gcd (fib m) (fib (n − m)) by simp
also have . . . = gcd (fib m) (fib n)

using ‹m ≤ n› by (rule gcd-fib-diff)
finally have gcd (fib m) (fib ((n − m) mod m)) =

gcd (fib m) (fib n) .
with False show ?thesis by simp

qed
finally show ?thesis .

qed
qed

theorem fib-gcd: fib (gcd m n) = gcd (fib m) (fib n)
(is ?P m n)

proof (induct m n rule: gcd-nat-induct)
fix m n :: nat
show fib (gcd m 0) = gcd (fib m) (fib 0)

19

by simp
assume n: 0 < n
then have gcd m n = gcd n (m mod n)

by (simp add: gcd-non-0-nat)
also assume hyp: fib . . . = gcd (fib n) (fib (m mod n))
also from n have . . . = gcd (fib n) (fib m)

by (rule gcd-fib-mod)
also have . . . = gcd (fib m) (fib n)

by (rule gcd.commute)
finally show fib (gcd m n) = gcd (fib m) (fib n) .

qed

end

5 Basic group theory
theory Group

imports Main
begin

5.1 Groups and calculational reasoning

Groups over signature (∗ :: α⇒ α⇒ α, 1 :: α, inverse :: α⇒ α) are defined
as an axiomatic type class as follows. Note that the parent classes times,
one, inverse is provided by the basic HOL theory.
class group = times + one + inverse +

assumes group-assoc: (x ∗ y) ∗ z = x ∗ (y ∗ z)
and group-left-one: 1 ∗ x = x
and group-left-inverse: inverse x ∗ x = 1

The group axioms only state the properties of left one and inverse, the right
versions may be derived as follows.
theorem (in group) group-right-inverse: x ∗ inverse x = 1
proof −

have x ∗ inverse x = 1 ∗ (x ∗ inverse x)
by (simp only: group-left-one)

also have . . . = 1 ∗ x ∗ inverse x
by (simp only: group-assoc)

also have . . . = inverse (inverse x) ∗ inverse x ∗ x ∗ inverse x
by (simp only: group-left-inverse)

also have . . . = inverse (inverse x) ∗ (inverse x ∗ x) ∗ inverse x
by (simp only: group-assoc)

also have . . . = inverse (inverse x) ∗ 1 ∗ inverse x
by (simp only: group-left-inverse)

also have . . . = inverse (inverse x) ∗ (1 ∗ inverse x)
by (simp only: group-assoc)

also have . . . = inverse (inverse x) ∗ inverse x
by (simp only: group-left-one)

20

also have . . . = 1
by (simp only: group-left-inverse)

finally show ?thesis .
qed

With group-right-inverse already available, group-right-one is now estab-
lished much easier.
theorem (in group) group-right-one: x ∗ 1 = x
proof −

have x ∗ 1 = x ∗ (inverse x ∗ x)
by (simp only: group-left-inverse)

also have . . . = x ∗ inverse x ∗ x
by (simp only: group-assoc)

also have . . . = 1 ∗ x
by (simp only: group-right-inverse)

also have . . . = x
by (simp only: group-left-one)

finally show ?thesis .
qed

The calculational proof style above follows typical presentations given in
any introductory course on algebra. The basic technique is to form a tran-
sitive chain of equations, which in turn are established by simplifying with
appropriate rules. The low-level logical details of equational reasoning are
left implicit.
Note that “. . .” is just a special term variable that is bound automatically
to the argument5 of the last fact achieved by any local assumption or proven
statement. In contrast to ?thesis, the “. . .” variable is bound after the proof
is finished.
There are only two separate Isar language elements for calculational proofs:
“also” for initial or intermediate calculational steps, and “finally” for ex-
hibiting the result of a calculation. These constructs are not hardwired into
Isabelle/Isar, but defined on top of the basic Isar/VM interpreter. Expand-
ing the also and finally derived language elements, calculations may be
simulated by hand as demonstrated below.
theorem (in group) x ∗ 1 = x
proof −

have x ∗ 1 = x ∗ (inverse x ∗ x)
by (simp only: group-left-inverse)

note calculation = this
— first calculational step: init calculation register

have . . . = x ∗ inverse x ∗ x
5The argument of a curried infix expression happens to be its right-hand side.

21

by (simp only: group-assoc)

note calculation = trans [OF calculation this]
— general calculational step: compose with transitivity rule

have . . . = 1 ∗ x
by (simp only: group-right-inverse)

note calculation = trans [OF calculation this]
— general calculational step: compose with transitivity rule

have . . . = x
by (simp only: group-left-one)

note calculation = trans [OF calculation this]
— final calculational step: compose with transitivity rule . . .

from calculation
— . . . and pick up the final result

show ?thesis .
qed

Note that this scheme of calculations is not restricted to plain transitivity.
Rules like anti-symmetry, or even forward and backward substitution work
as well. For the actual implementation of also and finally, Isabelle/Isar
maintains separate context information of “transitivity” rules. Rule selection
takes place automatically by higher-order unification.

5.2 Groups as monoids

Monoids over signature (∗ :: α ⇒ α ⇒ α, 1 :: α) are defined like this.
class monoid = times + one +

assumes monoid-assoc: (x ∗ y) ∗ z = x ∗ (y ∗ z)
and monoid-left-one: 1 ∗ x = x
and monoid-right-one: x ∗ 1 = x

Groups are not yet monoids directly from the definition. For monoids,
right-one had to be included as an axiom, but for groups both right-one and
right-inverse are derivable from the other axioms. With group-right-one de-
rived as a theorem of group theory (see ?x ∗ 1 = ?x), we may still instantiate
group ⊆ monoid properly as follows.
instance group ⊆ monoid

by intro-classes
(rule group-assoc,

rule group-left-one,
rule group-right-one)

22

The instance command actually is a version of theorem, setting up a goal
that reflects the intended class relation (or type constructor arity). Thus
any Isar proof language element may be involved to establish this statement.
When concluding the proof, the result is transformed into the intended type
signature extension behind the scenes.

5.3 More theorems of group theory

The one element is already uniquely determined by preserving an arbitrary
group element.
theorem (in group) group-one-equality:

assumes eq: e ∗ x = x
shows 1 = e

proof −
have 1 = x ∗ inverse x

by (simp only: group-right-inverse)
also have . . . = (e ∗ x) ∗ inverse x

by (simp only: eq)
also have . . . = e ∗ (x ∗ inverse x)

by (simp only: group-assoc)
also have . . . = e ∗ 1

by (simp only: group-right-inverse)
also have . . . = e

by (simp only: group-right-one)
finally show ?thesis .

qed

Likewise, the inverse is already determined by the cancel property.
theorem (in group) group-inverse-equality:

assumes eq: x ′ ∗ x = 1
shows inverse x = x ′

proof −
have inverse x = 1 ∗ inverse x

by (simp only: group-left-one)
also have . . . = (x ′ ∗ x) ∗ inverse x

by (simp only: eq)
also have . . . = x ′ ∗ (x ∗ inverse x)

by (simp only: group-assoc)
also have . . . = x ′ ∗ 1

by (simp only: group-right-inverse)
also have . . . = x ′

by (simp only: group-right-one)
finally show ?thesis .

qed

The inverse operation has some further characteristic properties.
theorem (in group) group-inverse-times: inverse (x ∗ y) = inverse y ∗ inverse x

23

proof (rule group-inverse-equality)
show (inverse y ∗ inverse x) ∗ (x ∗ y) = 1
proof −

have (inverse y ∗ inverse x) ∗ (x ∗ y) =
(inverse y ∗ (inverse x ∗ x)) ∗ y

by (simp only: group-assoc)
also have . . . = (inverse y ∗ 1) ∗ y

by (simp only: group-left-inverse)
also have . . . = inverse y ∗ y

by (simp only: group-right-one)
also have . . . = 1

by (simp only: group-left-inverse)
finally show ?thesis .

qed
qed

theorem (in group) inverse-inverse: inverse (inverse x) = x
proof (rule group-inverse-equality)

show x ∗ inverse x = one
by (simp only: group-right-inverse)

qed

theorem (in group) inverse-inject:
assumes eq: inverse x = inverse y
shows x = y

proof −
have x = x ∗ 1

by (simp only: group-right-one)
also have . . . = x ∗ (inverse y ∗ y)

by (simp only: group-left-inverse)
also have . . . = x ∗ (inverse x ∗ y)

by (simp only: eq)
also have . . . = (x ∗ inverse x) ∗ y

by (simp only: group-assoc)
also have . . . = 1 ∗ y

by (simp only: group-right-inverse)
also have . . . = y

by (simp only: group-left-one)
finally show ?thesis .

qed

end

6 Some algebraic identities derived from group ax-
ioms – theory context version

theory Group-Context
imports Main

24

begin

hypothetical group axiomatization
context

fixes prod :: ′a ⇒ ′a ⇒ ′a (infixl ‹�› 70)
and one :: ′a
and inverse :: ′a ⇒ ′a

assumes assoc: (x � y) � z = x � (y � z)
and left-one: one � x = x
and left-inverse: inverse x � x = one

begin

some consequences
lemma right-inverse: x � inverse x = one
proof −

have x � inverse x = one � (x � inverse x)
by (simp only: left-one)

also have . . . = one � x � inverse x
by (simp only: assoc)

also have . . . = inverse (inverse x) � inverse x � x � inverse x
by (simp only: left-inverse)

also have . . . = inverse (inverse x) � (inverse x � x) � inverse x
by (simp only: assoc)

also have . . . = inverse (inverse x) � one � inverse x
by (simp only: left-inverse)

also have . . . = inverse (inverse x) � (one � inverse x)
by (simp only: assoc)

also have . . . = inverse (inverse x) � inverse x
by (simp only: left-one)

also have . . . = one
by (simp only: left-inverse)

finally show ?thesis .
qed

lemma right-one: x � one = x
proof −

have x � one = x � (inverse x � x)
by (simp only: left-inverse)

also have . . . = x � inverse x � x
by (simp only: assoc)

also have . . . = one � x
by (simp only: right-inverse)

also have . . . = x
by (simp only: left-one)

finally show ?thesis .
qed

lemma one-equality:
assumes eq: e � x = x

25

shows one = e
proof −

have one = x � inverse x
by (simp only: right-inverse)

also have . . . = (e � x) � inverse x
by (simp only: eq)

also have . . . = e � (x � inverse x)
by (simp only: assoc)

also have . . . = e � one
by (simp only: right-inverse)

also have . . . = e
by (simp only: right-one)

finally show ?thesis .
qed

lemma inverse-equality:
assumes eq: x ′ � x = one
shows inverse x = x ′

proof −
have inverse x = one � inverse x

by (simp only: left-one)
also have . . . = (x ′ � x) � inverse x

by (simp only: eq)
also have . . . = x ′ � (x � inverse x)

by (simp only: assoc)
also have . . . = x ′ � one

by (simp only: right-inverse)
also have . . . = x ′

by (simp only: right-one)
finally show ?thesis .

qed

end

end

7 Some algebraic identities derived from group ax-
ioms – proof notepad version

theory Group-Notepad
imports Main

begin

notepad
begin

hypothetical group axiomatization

fix prod :: ′a ⇒ ′a ⇒ ′a (infixl ‹�› 70)

26

and one :: ′a
and inverse :: ′a ⇒ ′a

assume assoc: (x � y) � z = x � (y � z)
and left-one: one � x = x
and left-inverse: inverse x � x = one
for x y z

some consequences

have right-inverse: x � inverse x = one for x
proof −

have x � inverse x = one � (x � inverse x)
by (simp only: left-one)

also have . . . = one � x � inverse x
by (simp only: assoc)

also have . . . = inverse (inverse x) � inverse x � x � inverse x
by (simp only: left-inverse)

also have . . . = inverse (inverse x) � (inverse x � x) � inverse x
by (simp only: assoc)

also have . . . = inverse (inverse x) � one � inverse x
by (simp only: left-inverse)

also have . . . = inverse (inverse x) � (one � inverse x)
by (simp only: assoc)

also have . . . = inverse (inverse x) � inverse x
by (simp only: left-one)

also have . . . = one
by (simp only: left-inverse)

finally show ?thesis .
qed

have right-one: x � one = x for x
proof −

have x � one = x � (inverse x � x)
by (simp only: left-inverse)

also have . . . = x � inverse x � x
by (simp only: assoc)

also have . . . = one � x
by (simp only: right-inverse)

also have . . . = x
by (simp only: left-one)

finally show ?thesis .
qed

have one-equality: one = e if eq: e � x = x for e x
proof −

have one = x � inverse x
by (simp only: right-inverse)

also have . . . = (e � x) � inverse x
by (simp only: eq)

also have . . . = e � (x � inverse x)

27

by (simp only: assoc)
also have . . . = e � one

by (simp only: right-inverse)
also have . . . = e

by (simp only: right-one)
finally show ?thesis .

qed

have inverse-equality: inverse x = x ′ if eq: x ′ � x = one for x x ′

proof −
have inverse x = one � inverse x

by (simp only: left-one)
also have . . . = (x ′ � x) � inverse x

by (simp only: eq)
also have . . . = x ′ � (x � inverse x)

by (simp only: assoc)
also have . . . = x ′ � one

by (simp only: right-inverse)
also have . . . = x ′

by (simp only: right-one)
finally show ?thesis .

qed

end

end

8 Hoare Logic
theory Hoare

imports HOL−Hoare.Hoare-Tac
begin

8.1 Abstract syntax and semantics

The following abstract syntax and semantics of Hoare Logic over WHILE pro-
grams closely follows the existing tradition in Isabelle/HOL of formalizing
the presentation given in [8, §6]. See also ~~/src/HOL/Hoare and [3].
type-synonym ′a bexp = ′a set
type-synonym ′a assn = ′a set
type-synonym ′a var = ′a ⇒ nat

datatype ′a com =
Basic ′a ⇒ ′a
| Seq ′a com ′a com (‹(-;/ -)› [60 , 61] 60)
| Cond ′a bexp ′a com ′a com
| While ′a bexp ′a assn ′a var ′a com

28

abbreviation Skip (‹SKIP›)
where SKIP ≡ Basic id

type-synonym ′a sem = ′a ⇒ ′a ⇒ bool

primrec iter :: nat ⇒ ′a bexp ⇒ ′a sem ⇒ ′a sem
where

iter 0 b S s s ′←→ s /∈ b ∧ s = s ′

| iter (Suc n) b S s s ′←→ s ∈ b ∧ (∃ s ′′. S s s ′′ ∧ iter n b S s ′′ s ′)

primrec Sem :: ′a com ⇒ ′a sem
where

Sem (Basic f) s s ′←→ s ′ = f s
| Sem (c1 ; c2) s s ′←→ (∃ s ′′. Sem c1 s s ′′ ∧ Sem c2 s ′′ s ′)
| Sem (Cond b c1 c2) s s ′←→ (if s ∈ b then Sem c1 s s ′ else Sem c2 s s ′)
| Sem (While b x y c) s s ′←→ (∃n. iter n b (Sem c) s s ′)

definition Valid :: ′a bexp ⇒ ′a com ⇒ ′a bexp ⇒ bool (‹(3` -/ (2-)/ -)› [100 ,
55 , 100] 50)

where ` P c Q ←→ (∀ s s ′. Sem c s s ′ −→ s ∈ P −→ s ′ ∈ Q)

lemma ValidI [intro?]: (
∧

s s ′. Sem c s s ′ =⇒ s ∈ P =⇒ s ′ ∈ Q) =⇒ ` P c Q
by (simp add: Valid-def)

lemma ValidD [dest?]: ` P c Q =⇒ Sem c s s ′ =⇒ s ∈ P =⇒ s ′ ∈ Q
by (simp add: Valid-def)

8.2 Primitive Hoare rules

From the semantics defined above, we derive the standard set of primitive
Hoare rules; e.g. see [8, §6]. Usually, variant forms of these rules are applied
in actual proof, see also §8.4 and §8.5.

The basic rule represents any kind of atomic access to the state space. This
subsumes the common rules of skip and assign, as formulated in §8.4.
theorem basic: ` {s. f s ∈ P} (Basic f) P
proof

fix s s ′

assume s: s ∈ {s. f s ∈ P}
assume Sem (Basic f) s s ′

then have s ′ = f s by simp
with s show s ′ ∈ P by simp

qed

The rules for sequential commands and semantic consequences are estab-
lished in a straight forward manner as follows.
theorem seq: ` P c1 Q =⇒ ` Q c2 R =⇒ ` P (c1 ; c2) R
proof

29

assume cmd1 : ` P c1 Q and cmd2 : ` Q c2 R
fix s s ′

assume s: s ∈ P
assume Sem (c1 ; c2) s s ′

then obtain s ′′ where sem1 : Sem c1 s s ′′ and sem2 : Sem c2 s ′′ s ′

by auto
from cmd1 sem1 s have s ′′ ∈ Q ..
with cmd2 sem2 show s ′ ∈ R ..

qed

theorem conseq: P ′ ⊆ P =⇒ ` P c Q =⇒ Q ⊆ Q ′ =⇒ ` P ′ c Q ′

proof
assume P ′P: P ′ ⊆ P and QQ ′: Q ⊆ Q ′

assume cmd: ` P c Q
fix s s ′ :: ′a
assume sem: Sem c s s ′

assume s ∈ P ′ with P ′P have s ∈ P ..
with cmd sem have s ′ ∈ Q ..
with QQ ′ show s ′ ∈ Q ′ ..

qed

The rule for conditional commands is directly reflected by the corresponding
semantics; in the proof we just have to look closely which cases apply.
theorem cond:

assumes case-b: ` (P ∩ b) c1 Q
and case-nb: ` (P ∩ −b) c2 Q

shows ` P (Cond b c1 c2) Q
proof

fix s s ′

assume s: s ∈ P
assume sem: Sem (Cond b c1 c2) s s ′

show s ′ ∈ Q
proof cases

assume b: s ∈ b
from case-b show ?thesis
proof

from sem b show Sem c1 s s ′ by simp
from s b show s ∈ P ∩ b by simp

qed
next

assume nb: s /∈ b
from case-nb show ?thesis
proof

from sem nb show Sem c2 s s ′ by simp
from s nb show s ∈ P ∩ −b by simp

qed
qed

qed

30

The while rule is slightly less trivial — it is the only one based on recur-
sion, which is expressed in the semantics by a Kleene-style least fixed-point
construction. The auxiliary statement below, which is by induction on the
number of iterations is the main point to be proven; the rest is by routine
application of the semantics of WHILE.
theorem while:

assumes body: ` (P ∩ b) c P
shows ` P (While b X Y c) (P ∩ −b)

proof
fix s s ′ assume s: s ∈ P
assume Sem (While b X Y c) s s ′

then obtain n where iter n b (Sem c) s s ′ by auto
from this and s show s ′ ∈ P ∩ −b
proof (induct n arbitrary: s)

case 0
then show ?case by auto

next
case (Suc n)
then obtain s ′′ where b: s ∈ b and sem: Sem c s s ′′

and iter : iter n b (Sem c) s ′′ s ′ by auto
from Suc and b have s ∈ P ∩ b by simp
with body sem have s ′′ ∈ P ..
with iter show ?case by (rule Suc)

qed
qed

8.3 Concrete syntax for assertions

We now introduce concrete syntax for describing commands (with embed-
ded expressions) and assertions. The basic technique is that of semantic
“quote-antiquote”. A quotation is a syntactic entity delimited by an im-
plicit abstraction, say over the state space. An antiquotation is a marked
expression within a quotation that refers the implicit argument; a typical
antiquotation would select (or even update) components from the state.
We will see some examples later in the concrete rules and applications.

The following specification of syntax and translations is for Isabelle experts
only; feel free to ignore it.
While the first part is still a somewhat intelligible specification of the con-
crete syntactic representation of our Hoare language, the actual “ML drivers”
is quite involved. Just note that the we re-use the basic quote/antiquote
translations as already defined in Isabelle/Pure (see Syntax_Trans.quote_tr,
and Syntax_Trans.quote_tr’,).
syntax

-quote :: ′b ⇒ (′a ⇒ ′b)
-antiquote :: (′a ⇒ ′b) ⇒ ′b (‹´-› [1000] 1000)

31

-Subst :: ′a bexp ⇒ ′b ⇒ idt ⇒ ′a bexp (‹-[- ′/´-]› [1000] 999)
-Assert :: ′a ⇒ ′a set (‹({|-|})› [0] 1000)
-Assign :: idt ⇒ ′b ⇒ ′a com (‹(´- :=/ -)› [70 , 65] 61)
-Cond :: ′a bexp ⇒ ′a com ⇒ ′a com ⇒ ′a com
(‹(0IF -/ THEN -/ ELSE -/ FI)› [0 , 0 , 0] 61)

-While-inv :: ′a bexp ⇒ ′a assn ⇒ ′a com ⇒ ′a com
(‹(0WHILE -/ INV - //DO - /OD)› [0 , 0 , 0] 61)

-While :: ′a bexp ⇒ ′a com ⇒ ′a com (‹(0WHILE - //DO - /OD)› [0 , 0] 61)

translations
{|b|} ⇀ CONST Collect (-quote b)
B [a/´x] ⇀ {|´(-update-name x (λ-. a)) ∈ B|}
´x := a ⇀ CONST Basic (-quote (´(-update-name x (λ-. a))))
IF b THEN c1 ELSE c2 FI ⇀ CONST Cond {|b|} c1 c2
WHILE b INV i DO c OD ⇀ CONST While {|b|} i (λ-. 0) c
WHILE b DO c OD
 WHILE b INV CONST undefined DO c OD

parse-translation ‹
let

fun quote-tr [t] = Syntax-Trans.quote-tr syntax-const ‹-antiquote› t
| quote-tr ts = raise TERM (quote-tr, ts);

in [(syntax-const ‹-quote›, K quote-tr)] end
›

As usual in Isabelle syntax translations, the part for printing is more com-
plicated — we cannot express parts as macro rules as above. Don’t look
here, unless you have to do similar things for yourself.
print-translation ‹

let
fun quote-tr ′ f (t :: ts) =

Term.list-comb (f $ Syntax-Trans.quote-tr ′ syntax-const ‹-antiquote› t,
ts)

| quote-tr ′ - - = raise Match;

val assert-tr ′ = quote-tr ′ (Syntax.const syntax-const ‹-Assert›);

fun bexp-tr ′ name ((Const (const-syntax ‹Collect›, -) $ t) :: ts) =
quote-tr ′ (Syntax.const name) (t :: ts)

| bexp-tr ′ - - = raise Match;

fun assign-tr ′ (Abs (x, -, f $ k $ Bound 0) :: ts) =
quote-tr ′ (Syntax.const syntax-const ‹-Assign› $ Syntax-Trans.update-name-tr ′

f)
(Abs (x, dummyT , Syntax-Trans.const-abs-tr ′ k) :: ts)

| assign-tr ′ - = raise Match;
in
[(const-syntax ‹Collect›, K assert-tr ′),
(const-syntax ‹Basic›, K assign-tr ′),
(const-syntax ‹Cond›, K (bexp-tr ′ syntax-const ‹-Cond›)),

32

(const-syntax ‹While›, K (bexp-tr ′ syntax-const ‹-While-inv›))]
end

›

8.4 Rules for single-step proof

We are now ready to introduce a set of Hoare rules to be used in single-step
structured proofs in Isabelle/Isar. We refer to the concrete syntax introduce
above.

Assertions of Hoare Logic may be manipulated in calculational proofs, with
the inclusion expressed in terms of sets or predicates. Reversed order is
supported as well.
lemma [trans]: ` P c Q =⇒ P ′ ⊆ P =⇒ ` P ′ c Q

by (unfold Valid-def) blast
lemma [trans] : P ′ ⊆ P =⇒ ` P c Q =⇒ ` P ′ c Q

by (unfold Valid-def) blast

lemma [trans]: Q ⊆ Q ′ =⇒ ` P c Q =⇒ ` P c Q ′

by (unfold Valid-def) blast
lemma [trans]: ` P c Q =⇒ Q ⊆ Q ′ =⇒ ` P c Q ′

by (unfold Valid-def) blast

lemma [trans]:
` {|´P|} c Q =⇒ (

∧
s. P ′ s −→ P s) =⇒ ` {|´P ′|} c Q

by (simp add: Valid-def)
lemma [trans]:

(
∧

s. P ′ s −→ P s) =⇒ ` {|´P|} c Q =⇒ ` {|´P ′|} c Q
by (simp add: Valid-def)

lemma [trans]:
` P c {|´Q|} =⇒ (

∧
s. Q s −→ Q ′ s) =⇒ ` P c {|´Q ′|}

by (simp add: Valid-def)
lemma [trans]:

(
∧

s. Q s −→ Q ′ s) =⇒ ` P c {|´Q|} =⇒ ` P c {|´Q ′|}
by (simp add: Valid-def)

Identity and basic assignments.6

lemma skip [intro?]: ` P SKIP P
proof −

have ` {s. id s ∈ P} SKIP P by (rule basic)
then show ?thesis by simp

qed

lemma assign: ` P [´a/´x:: ′a] ´x := ´a P
by (rule basic)

6The hoare method introduced in §8.5 is able to provide proper instances for any
number of basic assignments, without producing additional verification conditions.

33

Note that above formulation of assignment corresponds to our preferred way
to model state spaces, using (extensible) record types in HOL [2]. For any
record field x, Isabelle/HOL provides a functions x (selector) and x-update
(update). Above, there is only a place-holder appearing for the latter kind
of function: due to concrete syntax ´x := ´a also contains x-update.7

Sequential composition — normalizing with associativity achieves proper of
chunks of code verified separately.
lemmas [trans, intro?] = seq

lemma seq-assoc [simp]: ` P c1 ;(c2 ;c3) Q ←→ ` P (c1 ;c2);c3 Q
by (auto simp add: Valid-def)

Conditional statements.
lemmas [trans, intro?] = cond

lemma [trans, intro?]:
` {|´P ∧ ´b|} c1 Q

=⇒ ` {|´P ∧ ¬ ´b|} c2 Q
=⇒ ` {|´P|} IF ´b THEN c1 ELSE c2 FI Q

by (rule cond) (simp-all add: Valid-def)

While statements — with optional invariant.
lemma [intro?]: ` (P ∩ b) c P =⇒ ` P (While b P V c) (P ∩ −b)

by (rule while)

lemma [intro?]: ` (P ∩ b) c P =⇒ ` P (While b undefined V c) (P ∩ −b)
by (rule while)

lemma [intro?]:
` {|´P ∧ ´b|} c {|´P|}
=⇒ ` {|´P|} WHILE ´b INV {|´P|} DO c OD {|´P ∧ ¬ ´b|}

by (simp add: while Collect-conj-eq Collect-neg-eq)

lemma [intro?]:
` {|´P ∧ ´b|} c {|´P|}
=⇒ ` {|´P|} WHILE ´b DO c OD {|´P ∧ ¬ ´b|}

by (simp add: while Collect-conj-eq Collect-neg-eq)

8.5 Verification conditions

We now load the original ML file for proof scripts and tactic definition for
the Hoare Verification Condition Generator (see ~~/src/HOL/Hoare). As

7Note that due to the external nature of HOL record fields, we could not even state
a general theorem relating selector and update functions (if this were required here); this
would only work for any particular instance of record fields introduced so far.

34

far as we are concerned here, the result is a proof method hoare, which may
be applied to a Hoare Logic assertion to extract purely logical verification
conditions. It is important to note that the method requires WHILE loops
to be fully annotated with invariants beforehand. Furthermore, only con-
crete pieces of code are handled — the underlying tactic fails ungracefully
if supplied with meta-variables or parameters, for example.
lemma SkipRule: p ⊆ q =⇒ Valid p (Basic id) q

by (auto simp add: Valid-def)

lemma BasicRule: p ⊆ {s. f s ∈ q} =⇒ Valid p (Basic f) q
by (auto simp: Valid-def)

lemma SeqRule: Valid P c1 Q =⇒ Valid Q c2 R =⇒ Valid P (c1 ;c2) R
by (auto simp: Valid-def)

lemma CondRule:
p ⊆ {s. (s ∈ b −→ s ∈ w) ∧ (s /∈ b −→ s ∈ w ′)}
=⇒ Valid w c1 q =⇒ Valid w ′ c2 q =⇒ Valid p (Cond b c1 c2) q

by (auto simp: Valid-def)

lemma iter-aux:
∀ s s ′. Sem c s s ′ −→ s ∈ I ∧ s ∈ b −→ s ′ ∈ I =⇒

(
∧

s s ′. s ∈ I =⇒ iter n b (Sem c) s s ′ =⇒ s ′ ∈ I ∧ s ′ /∈ b)
by (induct n) auto

lemma WhileRule:
p ⊆ i =⇒ Valid (i ∩ b) c i =⇒ i ∩ (−b) ⊆ q =⇒ Valid p (While b i v c) q

apply (clarsimp simp: Valid-def)
apply (drule iter-aux)

prefer 2
apply assumption

apply blast
apply blast
done

declare BasicRule [Hoare-Tac.BasicRule]
and SkipRule [Hoare-Tac.SkipRule]
and SeqRule [Hoare-Tac.SeqRule]
and CondRule [Hoare-Tac.CondRule]
and WhileRule [Hoare-Tac.WhileRule]

method-setup hoare =
‹Scan.succeed (fn ctxt =>
(SIMPLE-METHOD ′

(Hoare-Tac.hoare-tac ctxt
(simp-tac (put-simpset HOL-basic-ss ctxt addsimps [@{thm Record.K-record-comp}]

)))))›
verification condition generator for Hoare logic

35

end

9 Using Hoare Logic
theory Hoare-Ex

imports Hoare
begin

9.1 State spaces

First of all we provide a store of program variables that occur in any of the
programs considered later. Slightly unexpected things may happen when
attempting to work with undeclared variables.
record vars =

I :: nat
M :: nat
N :: nat
S :: nat

While all of our variables happen to have the same type, nothing would
prevent us from working with many-sorted programs as well, or even poly-
morphic ones. Also note that Isabelle/HOL’s extensible record types even
provides simple means to extend the state space later.

9.2 Basic examples

We look at few trivialities involving assignment and sequential composition,
in order to get an idea of how to work with our formulation of Hoare Logic.

Using the basic assign rule directly is a bit cumbersome.
lemma ` {|´(N-update (λ-. (2 ∗ ´N))) ∈ {|´N = 10 |}|} ´N := 2 ∗ ´N {|´N = 10 |}

by (rule assign)

Certainly we want the state modification already done, e.g. by simplification.
The hoare method performs the basic state update for us; we may apply the
Simplifier afterwards to achieve “obvious” consequences as well.
lemma ` {|True|} ´N := 10 {|´N = 10 |}

by hoare

lemma ` {|2 ∗ ´N = 10 |} ´N := 2 ∗ ´N {|´N = 10 |}
by hoare

lemma ` {|´N = 5 |} ´N := 2 ∗ ´N {|´N = 10 |}
by hoare simp

36

lemma ` {|´N + 1 = a + 1 |} ´N := ´N + 1 {|´N = a + 1 |}
by hoare

lemma ` {|´N = a|} ´N := ´N + 1 {|´N = a + 1 |}
by hoare simp

lemma ` {|a = a ∧ b = b|} ´M := a; ´N := b {|´M = a ∧ ´N = b|}
by hoare

lemma ` {|True|} ´M := a; ´N := b {|´M = a ∧ ´N = b|}
by hoare

lemma
` {|´M = a ∧ ´N = b|}

´I := ´M ; ´M := ´N ; ´N := ´I
{|´M = b ∧ ´N = a|}

by hoare simp

It is important to note that statements like the following one can only be
proven for each individual program variable. Due to the extra-logical nature
of record fields, we cannot formulate a theorem relating record selectors and
updates schematically.
lemma ` {|´N = a|} ´N := ´N {|´N = a|}

by hoare

lemma ` {|´x = a|} ´x := ´x {|´x = a|}
oops

lemma
Valid {s. x s = a} (Basic (λs. x-update (x s) s)) {s. x s = n}
— same statement without concrete syntax
oops

In the following assignments we make use of the consequence rule in order
to achieve the intended precondition. Certainly, the hoare method is able to
handle this case, too.
lemma ` {|´M = ´N |} ´M := ´M + 1 {|´M 6= ´N |}
proof −

have {|´M = ´N |} ⊆ {|´M + 1 6= ´N |}
by auto

also have ` . . . ´M := ´M + 1 {|´M 6= ´N |}
by hoare

finally show ?thesis .
qed

lemma ` {|´M = ´N |} ´M := ´M + 1 {|´M 6= ´N |}
proof −

have m = n −→ m + 1 6= n for m n :: nat

37

— inclusion of assertions expressed in “pure” logic,
— without mentioning the state space

by simp
also have ` {|´M + 1 6= ´N |} ´M := ´M + 1 {|´M 6= ´N |}

by hoare
finally show ?thesis .

qed

lemma ` {|´M = ´N |} ´M := ´M + 1 {|´M 6= ´N |}
by hoare simp

9.3 Multiplication by addition

We now do some basic examples of actual WHILE programs. This one is a loop
for calculating the product of two natural numbers, by iterated addition. We
first give detailed structured proof based on single-step Hoare rules.
lemma
` {|´M = 0 ∧ ´S = 0 |}

WHILE ´M 6= a
DO ´S := ´S + b; ´M := ´M + 1 OD
{|´S = a ∗ b|}

proof −
let ` - ?while - = ?thesis
let {|´?inv|} = {|´S = ´M ∗ b|}

have {|´M = 0 ∧ ´S = 0 |} ⊆ {|´?inv|} by auto
also have ` . . . ?while {|´?inv ∧ ¬ (´M 6= a)|}
proof

let ?c = ´S := ´S + b; ´M := ´M + 1
have {|´?inv ∧ ´M 6= a|} ⊆ {|´S + b = (´M + 1) ∗ b|}

by auto
also have ` . . . ?c {|´?inv|} by hoare
finally show ` {|´?inv ∧ ´M 6= a|} ?c {|´?inv|} .

qed
also have . . . ⊆ {|´S = a ∗ b|} by auto
finally show ?thesis .

qed

The subsequent version of the proof applies the hoare method to reduce
the Hoare statement to a purely logical problem that can be solved fully
automatically. Note that we have to specify the WHILE loop invariant in the
original statement.
lemma
` {|´M = 0 ∧ ´S = 0 |}

WHILE ´M 6= a
INV {|´S = ´M ∗ b|}
DO ´S := ´S + b; ´M := ´M + 1 OD
{|´S = a ∗ b|}

38

by hoare auto

9.4 Summing natural numbers

We verify an imperative program to sum natural numbers up to a given limit.
First some functional definition for proper specification of the problem.

The following proof is quite explicit in the individual steps taken, with the
hoare method only applied locally to take care of assignment and sequential
composition. Note that we express intermediate proof obligation in pure
logic, without referring to the state space.
theorem
` {|True|}

´S := 0 ; ´I := 1 ;
WHILE ´I 6= n
DO

´S := ´S + ´I ;
´I := ´I + 1

OD
{|´S = (

∑
j<n. j)|}

(is ` - (-; ?while) -)
proof −

let ?sum = λk::nat.
∑

j<k. j
let ?inv = λs i::nat. s = ?sum i

have ` {|True|} ´S := 0 ; ´I := 1 {|?inv ´S ´I |}
proof −

have True −→ 0 = ?sum 1
by simp

also have ` {|. . .|} ´S := 0 ; ´I := 1 {|?inv ´S ´I |}
by hoare

finally show ?thesis .
qed
also have ` . . . ?while {|?inv ´S ´I ∧ ¬ ´I 6= n|}
proof

let ?body = ´S := ´S + ´I ; ´I := ´I + 1
have ?inv s i ∧ i 6= n −→ ?inv (s + i) (i + 1) for s i

by simp
also have ` {|´S + ´I = ?sum (´I + 1)|} ?body {|?inv ´S ´I |}

by hoare
finally show ` {|?inv ´S ´I ∧ ´I 6= n|} ?body {|?inv ´S ´I |} .

qed
also have s = ?sum i ∧ ¬ i 6= n −→ s = ?sum n for s i

by simp
finally show ?thesis .

qed

The next version uses the hoare method, while still explaining the resulting
proof obligations in an abstract, structured manner.

39

theorem
` {|True|}

´S := 0 ; ´I := 1 ;
WHILE ´I 6= n
INV {|´S = (

∑
j<´I . j)|}

DO
´S := ´S + ´I ;
´I := ´I + 1

OD
{|´S = (

∑
j<n. j)|}

proof −
let ?sum = λk::nat.

∑
j<k. j

let ?inv = λs i::nat. s = ?sum i
show ?thesis
proof hoare

show ?inv 0 1 by simp
show ?inv (s + i) (i + 1) if ?inv s i ∧ i 6= n for s i

using that by simp
show s = ?sum n if ?inv s i ∧ ¬ i 6= n for s i

using that by simp
qed

qed

Certainly, this proof may be done fully automatic as well, provided that the
invariant is given beforehand.
theorem
` {|True|}

´S := 0 ; ´I := 1 ;
WHILE ´I 6= n
INV {|´S = (

∑
j<´I . j)|}

DO
´S := ´S + ´I ;
´I := ´I + 1

OD
{|´S = (

∑
j<n. j)|}

by hoare auto

9.5 Time

A simple embedding of time in Hoare logic: function timeit inserts an extra
variable to keep track of the elapsed time.
record tstate = time :: nat

type-synonym ′a time = (|time :: nat, . . . :: ′a|)

primrec timeit :: ′a time com ⇒ ′a time com
where

timeit (Basic f) = (Basic f ; Basic(λs. s(|time := Suc (time s)|)))

40

| timeit (c1 ; c2) = (timeit c1 ; timeit c2)
| timeit (Cond b c1 c2) = Cond b (timeit c1) (timeit c2)
| timeit (While b iv v c) = While b iv v (timeit c)

record tvars = tstate +
I :: nat
J :: nat

lemma lem: (0 ::nat) < n =⇒ n + n ≤ Suc (n ∗ n)
by (induct n) simp-all

lemma
` {|i = ´I ∧ ´time = 0 |}
(timeit
(WHILE ´I 6= 0

INV {|2 ∗´ time + ´I ∗ ´I + 5 ∗ ´I = i ∗ i + 5 ∗ i|}
DO

´J := ´I ;
WHILE ´J 6= 0
INV {|0 < ´I ∧ 2 ∗ ´time + ´I ∗ ´I + 3 ∗ ´I + 2 ∗ ´J − 2 = i ∗ i + 5

∗ i|}
DO ´J := ´J − 1 OD;
´I := ´I − 1

OD))
{|2 ∗ ´time = i ∗ i + 5 ∗ i|}

apply simp
apply hoare

apply simp
apply clarsimp

apply clarsimp
apply arith
prefer 2
apply clarsimp

apply (clarsimp simp: nat-distrib)
apply (frule lem)
apply arith
done

end

10 The Mutilated Checker Board Problem
theory Mutilated-Checkerboard

imports Main
begin

The Mutilated Checker Board Problem, formalized inductively. See [5] for
the original tactic script version.

41

10.1 Tilings
inductive-set tiling :: ′a set set ⇒ ′a set set for A :: ′a set set

where
empty: {} ∈ tiling A
| Un: a ∪ t ∈ tiling A if a ∈ A and t ∈ tiling A and a ⊆ − t

The union of two disjoint tilings is a tiling.
lemma tiling-Un:

assumes t ∈ tiling A
and u ∈ tiling A
and t ∩ u = {}

shows t ∪ u ∈ tiling A
proof −

let ?T = tiling A
from ‹t ∈ ?T › and ‹t ∩ u = {}›
show t ∪ u ∈ ?T
proof (induct t)

case empty
with ‹u ∈ ?T › show {} ∪ u ∈ ?T by simp

next
case (Un a t)
show (a ∪ t) ∪ u ∈ ?T
proof −

have a ∪ (t ∪ u) ∈ ?T
using ‹a ∈ A›

proof (rule tiling.Un)
from ‹(a ∪ t) ∩ u = {}› have t ∩ u = {} by blast
then show t ∪ u ∈ ?T by (rule Un)
from ‹a ⊆ − t› and ‹(a ∪ t) ∩ u = {}›
show a ⊆ − (t ∪ u) by blast

qed
also have a ∪ (t ∪ u) = (a ∪ t) ∪ u

by (simp only: Un-assoc)
finally show ?thesis .

qed
qed

qed

10.2 Basic properties of “below”
definition below :: nat ⇒ nat set

where below n = {i. i < n}

lemma below-less-iff [iff]: i ∈ below k ←→ i < k
by (simp add: below-def)

lemma below-0 : below 0 = {}
by (simp add: below-def)

42

lemma Sigma-Suc1 : m = n + 1 =⇒ below m × B = ({n} × B) ∪ (below n × B)
by (simp add: below-def less-Suc-eq) blast

lemma Sigma-Suc2 :
m = n + 2 =⇒

A × below m = (A × {n}) ∪ (A × {n + 1}) ∪ (A × below n)
by (auto simp add: below-def)

lemmas Sigma-Suc = Sigma-Suc1 Sigma-Suc2

10.3 Basic properties of “evnodd”
definition evnodd :: (nat × nat) set ⇒ nat ⇒ (nat × nat) set

where evnodd A b = A ∩ {(i, j). (i + j) mod 2 = b}

lemma evnodd-iff : (i, j) ∈ evnodd A b ←→ (i, j) ∈ A ∧ (i + j) mod 2 = b
by (simp add: evnodd-def)

lemma evnodd-subset: evnodd A b ⊆ A
unfolding evnodd-def by (rule Int-lower1)

lemma evnoddD: x ∈ evnodd A b =⇒ x ∈ A
by (rule subsetD) (rule evnodd-subset)

lemma evnodd-finite: finite A =⇒ finite (evnodd A b)
by (rule finite-subset) (rule evnodd-subset)

lemma evnodd-Un: evnodd (A ∪ B) b = evnodd A b ∪ evnodd B b
unfolding evnodd-def by blast

lemma evnodd-Diff : evnodd (A − B) b = evnodd A b − evnodd B b
unfolding evnodd-def by blast

lemma evnodd-empty: evnodd {} b = {}
by (simp add: evnodd-def)

lemma evnodd-insert: evnodd (insert (i, j) C) b =
(if (i + j) mod 2 = b

then insert (i, j) (evnodd C b) else evnodd C b)
by (simp add: evnodd-def)

10.4 Dominoes
inductive-set domino :: (nat × nat) set set

where
horiz: {(i, j), (i, j + 1)} ∈ domino
| vertl: {(i, j), (i + 1 , j)} ∈ domino

lemma dominoes-tile-row:
{i} × below (2 ∗ n) ∈ tiling domino

43

(is ?B n ∈ ?T)
proof (induct n)

case 0
show ?case by (simp add: below-0 tiling.empty)

next
case (Suc n)
let ?a = {i} × {2 ∗ n + 1} ∪ {i} × {2 ∗ n}
have ?B (Suc n) = ?a ∪ ?B n

by (auto simp add: Sigma-Suc Un-assoc)
also have . . . ∈ ?T
proof (rule tiling.Un)

have {(i, 2 ∗ n), (i, 2 ∗ n + 1)} ∈ domino
by (rule domino.horiz)

also have {(i, 2 ∗ n), (i, 2 ∗ n + 1)} = ?a by blast
finally show . . . ∈ domino .
show ?B n ∈ ?T by (rule Suc)
show ?a ⊆ − ?B n by blast

qed
finally show ?case .

qed

lemma dominoes-tile-matrix:
below m × below (2 ∗ n) ∈ tiling domino
(is ?B m ∈ ?T)

proof (induct m)
case 0
show ?case by (simp add: below-0 tiling.empty)

next
case (Suc m)
let ?t = {m} × below (2 ∗ n)
have ?B (Suc m) = ?t ∪ ?B m by (simp add: Sigma-Suc)
also have . . . ∈ ?T
proof (rule tiling-Un)

show ?t ∈ ?T by (rule dominoes-tile-row)
show ?B m ∈ ?T by (rule Suc)
show ?t ∩ ?B m = {} by blast

qed
finally show ?case .

qed

lemma domino-singleton:
assumes d ∈ domino

and b < 2
shows ∃ i j. evnodd d b = {(i, j)} (is ?P d)
using assms

proof induct
from ‹b < 2 › have b-cases: b = 0 ∨ b = 1 by arith
fix i j
note [simp] = evnodd-empty evnodd-insert mod-Suc

44

from b-cases show ?P {(i, j), (i, j + 1)} by rule auto
from b-cases show ?P {(i, j), (i + 1 , j)} by rule auto

qed

lemma domino-finite:
assumes d ∈ domino
shows finite d
using assms

proof induct
fix i j :: nat
show finite {(i, j), (i, j + 1)} by (intro finite.intros)
show finite {(i, j), (i + 1 , j)} by (intro finite.intros)

qed

10.5 Tilings of dominoes
lemma tiling-domino-finite:

assumes t: t ∈ tiling domino (is t ∈ ?T)
shows finite t (is ?F t)
using t

proof induct
show ?F {} by (rule finite.emptyI)
fix a t assume ?F t
assume a ∈ domino
then have ?F a by (rule domino-finite)
from this and ‹?F t› show ?F (a ∪ t) by (rule finite-UnI)

qed

lemma tiling-domino-01 :
assumes t: t ∈ tiling domino (is t ∈ ?T)
shows card (evnodd t 0) = card (evnodd t 1)
using t

proof induct
case empty
show ?case by (simp add: evnodd-def)

next
case (Un a t)
let ?e = evnodd
note hyp = ‹card (?e t 0) = card (?e t 1)›

and at = ‹a ⊆ − t›
have card-suc: card (?e (a ∪ t) b) = Suc (card (?e t b)) if b < 2 for b :: nat
proof −

have ?e (a ∪ t) b = ?e a b ∪ ?e t b by (rule evnodd-Un)
also obtain i j where e: ?e a b = {(i, j)}
proof −

from ‹a ∈ domino› and ‹b < 2 ›
have ∃ i j. ?e a b = {(i, j)} by (rule domino-singleton)
then show ?thesis by (blast intro: that)

qed

45

also have . . . ∪ ?e t b = insert (i, j) (?e t b) by simp
also have card . . . = Suc (card (?e t b))
proof (rule card-insert-disjoint)

from ‹t ∈ tiling domino› have finite t
by (rule tiling-domino-finite)

then show finite (?e t b)
by (rule evnodd-finite)

from e have (i, j) ∈ ?e a b by simp
with at show (i, j) /∈ ?e t b by (blast dest: evnoddD)

qed
finally show ?thesis .

qed
then have card (?e (a ∪ t) 0) = Suc (card (?e t 0)) by simp
also from hyp have card (?e t 0) = card (?e t 1) .
also from card-suc have Suc . . . = card (?e (a ∪ t) 1)

by simp
finally show ?case .

qed

10.6 Main theorem
definition mutilated-board :: nat ⇒ nat ⇒ (nat × nat) set

where mutilated-board m n =
below (2 ∗ (m + 1)) × below (2 ∗ (n + 1)) − {(0 , 0)} − {(2 ∗ m + 1 , 2 ∗ n

+ 1)}

theorem mutil-not-tiling: mutilated-board m n /∈ tiling domino
proof (unfold mutilated-board-def)

let ?T = tiling domino
let ?t = below (2 ∗ (m + 1)) × below (2 ∗ (n + 1))
let ?t ′ = ?t − {(0 , 0)}
let ?t ′′ = ?t ′ − {(2 ∗ m + 1 , 2 ∗ n + 1)}

show ?t ′′ /∈ ?T
proof

have t: ?t ∈ ?T by (rule dominoes-tile-matrix)
assume t ′′: ?t ′′ ∈ ?T

let ?e = evnodd
have fin: finite (?e ?t 0)

by (rule evnodd-finite, rule tiling-domino-finite, rule t)

note [simp] = evnodd-iff evnodd-empty evnodd-insert evnodd-Diff
have card (?e ?t ′′ 0) < card (?e ?t ′ 0)
proof −

have card (?e ?t ′ 0 − {(2 ∗ m + 1 , 2 ∗ n + 1)})
< card (?e ?t ′ 0)

proof (rule card-Diff1-less)
from - fin show finite (?e ?t ′ 0)

46

by (rule finite-subset) auto
show (2 ∗ m + 1 , 2 ∗ n + 1) ∈ ?e ?t ′ 0 by simp

qed
then show ?thesis by simp

qed
also have . . . < card (?e ?t 0)
proof −

have (0 , 0) ∈ ?e ?t 0 by simp
with fin have card (?e ?t 0 − {(0 , 0)}) < card (?e ?t 0)

by (rule card-Diff1-less)
then show ?thesis by simp

qed
also from t have . . . = card (?e ?t 1)

by (rule tiling-domino-01)
also have ?e ?t 1 = ?e ?t ′′ 1 by simp
also from t ′′ have card . . . = card (?e ?t ′′ 0)

by (rule tiling-domino-01 [symmetric])
finally have . . . < then show False ..

qed
qed

end

11 An old chestnut
theory Puzzle

imports Main
begin8

Problem. Given some function f : � → � such that f (f n) < f (Suc n)
for all n. Demonstrate that f is the identity.
theorem

assumes f-ax:
∧

n. f (f n) < f (Suc n)
shows f n = n

proof (rule order-antisym)
show ge: n ≤ f n for n
proof (induct f n arbitrary: n rule: less-induct)

case less
show n ≤ f n
proof (cases n)

case (Suc m)
from f-ax have f (f m) < f n by (simp only: Suc)
with less have f m ≤ f (f m) .
also from f-ax have . . . < f n by (simp only: Suc)
finally have f m < f n .
with less have m ≤ f m .

8A question from “Bundeswettbewerb Mathematik”. Original pen-and-paper proof due
to Herbert Ehler; Isabelle tactic script by Tobias Nipkow.

47

also note ‹. . . < f n›
finally have m < f n .
then have n ≤ f n by (simp only: Suc)
then show ?thesis .

next
case 0
then show ?thesis by simp

qed
qed

have mono: m ≤ n =⇒ f m ≤ f n for m n :: nat
proof (induct n)

case 0
then have m = 0 by simp
then show ?case by simp

next
case (Suc n)
from Suc.prems show f m ≤ f (Suc n)
proof (rule le-SucE)

assume m ≤ n
with Suc.hyps have f m ≤ f n .
also from ge f-ax have . . . < f (Suc n)

by (rule le-less-trans)
finally show ?thesis by simp

next
assume m = Suc n
then show ?thesis by simp

qed
qed

show f n ≤ n
proof −

have ¬ n < f n
proof

assume n < f n
then have Suc n ≤ f n by simp
then have f (Suc n) ≤ f (f n) by (rule mono)
also have . . . < f (Suc n) by (rule f-ax)
finally have . . . < then show False ..

qed
then show ?thesis by simp

qed
qed

end

12 Summing natural numbers
theory Summation

48

imports Main
begin

Subsequently, we prove some summation laws of natural numbers (including
odds, squares, and cubes). These examples demonstrate how plain natural
deduction (including induction) may be combined with calculational proof.

12.1 Summation laws

The sum of natural numbers 0 + · · · + n equals n × (n + 1)/2. Avoiding
formal reasoning about division we prove this equation multiplied by 2.
theorem sum-of-naturals:

2 ∗ (
∑

i::nat=0 ..n. i) = n ∗ (n + 1)
(is ?P n is ?S n = -)

proof (induct n)
show ?P 0 by simp

next
fix n have ?S (n + 1) = ?S n + 2 ∗ (n + 1)

by simp
also assume ?S n = n ∗ (n + 1)
also have . . . + 2 ∗ (n + 1) = (n + 1) ∗ (n + 2)

by simp
finally show ?P (Suc n)

by simp
qed

The above proof is a typical instance of mathematical induction. The main
statement is viewed as some ?P n that is split by the induction method into
base case ?P 0, and step case ?P n =⇒ ?P (Suc n) for arbitrary n.
The step case is established by a short calculation in forward manner. Start-
ing from the left-hand side ?S (n + 1) of the thesis, the final result is
achieved by transformations involving basic arithmetic reasoning (using the
Simplifier). The main point is where the induction hypothesis ?S n = n
× (n + 1) is introduced in order to replace a certain subterm. So the
“transitivity” rule involved here is actual substitution. Also note how the
occurrence of “. . . ” in the subsequent step documents the position where
the right-hand side of the hypothesis got filled in.

A further notable point here is integration of calculations with plain natural
deduction. This works so well in Isar for two reasons.

1. Facts involved in also / finally calculational chains may be just any-
thing. There is nothing special about have, so the natural deduction
element assume works just as well.

2. There are two separate primitives for building natural deduction con-
texts: fix x and assume A. Thus it is possible to start reasoning with

49

some new “arbitrary, but fixed” elements before bringing in the actual
assumption. In contrast, natural deduction is occasionally formalized
with basic context elements of the form x:A instead.

We derive further summation laws for odds, squares, and cubes as follows.
The basic technique of induction plus calculation is the same as before.
theorem sum-of-odds:
(
∑

i::nat=0 ..<n. 2 ∗ i + 1) = n^Suc (Suc 0)
(is ?P n is ?S n = -)

proof (induct n)
show ?P 0 by simp

next
fix n
have ?S (n + 1) = ?S n + 2 ∗ n + 1

by simp
also assume ?S n = n^Suc (Suc 0)
also have . . . + 2 ∗ n + 1 = (n + 1)^Suc (Suc 0)

by simp
finally show ?P (Suc n)

by simp
qed

Subsequently we require some additional tweaking of Isabelle built-in arith-
metic simplifications, such as bringing in distributivity by hand.
lemmas distrib = add-mult-distrib add-mult-distrib2

theorem sum-of-squares:
6 ∗ (

∑
i::nat=0 ..n. i^Suc (Suc 0)) = n ∗ (n + 1) ∗ (2 ∗ n + 1)

(is ?P n is ?S n = -)
proof (induct n)

show ?P 0 by simp
next

fix n
have ?S (n + 1) = ?S n + 6 ∗ (n + 1)^Suc (Suc 0)

by (simp add: distrib)
also assume ?S n = n ∗ (n + 1) ∗ (2 ∗ n + 1)
also have . . . + 6 ∗ (n + 1)^Suc (Suc 0) =

(n + 1) ∗ (n + 2) ∗ (2 ∗ (n + 1) + 1)
by (simp add: distrib)

finally show ?P (Suc n)
by simp

qed

theorem sum-of-cubes:
4 ∗ (

∑
i::nat=0 ..n. i^3) = (n ∗ (n + 1))^Suc (Suc 0)

(is ?P n is ?S n = -)
proof (induct n)

show ?P 0 by (simp add: power-eq-if)

50

next
fix n
have ?S (n + 1) = ?S n + 4 ∗ (n + 1)^3

by (simp add: power-eq-if distrib)
also assume ?S n = (n ∗ (n + 1))^Suc (Suc 0)
also have . . . + 4 ∗ (n + 1)^3 = ((n + 1) ∗ ((n + 1) + 1))^Suc (Suc 0)

by (simp add: power-eq-if distrib)
finally show ?P (Suc n)

by simp
qed

Note that in contrast to older traditions of tactical proof scripts, the struc-
tured proof applies induction on the original, unsimplified statement. This
allows to state the induction cases robustly and conveniently. Simplification
(or other automated) methods are then applied in terminal position to solve
certain sub-problems completely.
As a general rule of good proof style, automatic methods such as simp or auto
should normally be never used as initial proof methods with a nested sub-
proof to address the automatically produced situation, but only as terminal
ones to solve sub-problems.
end

References

[1] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics.
Addison-Wesley, 1989.

[2] W. Naraschewski and M. Wenzel. Object-oriented verification based on
record subtyping in Higher-Order Logic. In J. Grundy and M. Newey,
editors, Theorem Proving in Higher Order Logics: TPHOLs ’98, volume
1479 of LNCS, 1998.

[3] T. Nipkow. Winskel is (almost) right: Towards a mechanized semantics
textbook. Formal Aspects of Computing, 10:171–186, 1998.

[4] L. C. Paulson. Introduction to Isabelle.

[5] L. C. Paulson. A simple formalization and proof for the mutilated chess
board. Technical Report 394, Comp. Lab., Univ. Camb., 1996. http:
//www.cl.cam.ac.uk/users/lcp/papers/Reports/mutil.pdf.

[6] M. Wenzel. The Isabelle/Isar Reference Manual.

[7] M. Wenzel. Isar — a generic interpretative approach to readable formal
proof documents. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and
L. Thery, editors, Theorem Proving in Higher Order Logics: TPHOLs
’99, LNCS 1690, 1999.

51

http://www.cl.cam.ac.uk/users/lcp/papers/Reports/mutil.pdf
http://www.cl.cam.ac.uk/users/lcp/papers/Reports/mutil.pdf

[8] G. Winskel. The Formal Semantics of Programming Languages. MIT
Press, 1993.

52

	Structured statements within Isar proofs
	Introduction steps
	If-and-only-if
	Elimination and cases
	Induction
	Suffices-to-show

	Basic logical reasoning
	Pure backward reasoning
	Variations of backward vs. forward reasoning
	A few examples from ``Introduction to Isabelle''
	A propositional proof
	A quantifier proof
	Deriving rules in Isabelle

	Correctness of a simple expression compiler
	Binary operations
	Expressions
	Machine
	Compiler

	Fib and Gcd commute
	Fibonacci numbers
	Fib and gcd commute

	Basic group theory
	Groups and calculational reasoning
	Groups as monoids
	More theorems of group theory

	Some algebraic identities derived from group axioms – theory context version
	Some algebraic identities derived from group axioms – proof notepad version
	Hoare Logic
	Abstract syntax and semantics
	Primitive Hoare rules
	Concrete syntax for assertions
	Rules for single-step proof
	Verification conditions

	Using Hoare Logic
	State spaces
	Basic examples
	Multiplication by addition
	Summing natural numbers
	Time

	The Mutilated Checker Board Problem
	Tilings
	Basic properties of ``below''
	Basic properties of ``evnodd''
	Dominoes
	Tilings of dominoes
	Main theorem

	An old chestnut
	Summing natural numbers
	Summation laws

