
Concrete Semantics

Tobias Nipkow & Gerwin Klein

January 18, 2026

Abstract

This document presents formalizations of the semantics of a simple
imperative programming language together with a number of applica-
tions: a compiler, type systems, various program analyses and abstract
interpreters. These theories form the basis of the book Concrete Se-
mantics with Isabelle/HOL by Nipkow and Klein [2].

Contents
1 Arithmetic and Boolean Expressions 4

1.1 Arithmetic Expressions . 4
1.2 Constant Folding . 5
1.3 Boolean Expressions . 6
1.4 Constant Folding . 6

2 Stack Machine and Compilation 7
2.1 Stack Machine . 7
2.2 Compilation . 8

3 IMP — A Simple Imperative Language 9
3.1 Big-Step Semantics of Commands 9
3.2 Rule inversion . 11
3.3 Command Equivalence . 13
3.4 Execution is deterministic . 15

4 Small-Step Semantics of Commands 16
4.1 The transition relation . 16
4.2 Executability . 16
4.3 Proof infrastructure . 16
4.4 Equivalence with big-step semantics 17
4.5 Final configurations and infinite reductions 19
4.6 Finite number of reachable commands 20

1

5 Denotational Semantics of Commands 24
5.1 Continuity . 25
5.2 The denotational semantics is deterministic 27

6 Compiler for IMP 27
6.1 List setup . 28
6.2 Instructions and Stack Machine 28
6.3 Verification infrastructure . 29
6.4 Compilation . 31
6.5 Preservation of semantics . 32

7 Compiler Correctness, Reverse Direction 33
7.1 Definitions . 33
7.2 Basic properties of exec_n . 34
7.3 Concrete symbolic execution steps 34
7.4 Basic properties of succs . 35
7.5 Splitting up machine executions 39
7.6 Correctness theorem . 42

8 A Typed Language 47
8.1 Arithmetic Expressions . 47
8.2 Boolean Expressions . 48
8.3 Syntax of Commands . 48
8.4 Small-Step Semantics of Commands 48
8.5 The Type System . 49
8.6 Well-typed Programs Do Not Get Stuck 50
8.7 Type Variables . 52
8.8 Typing is Preserved by Substitution 53

9 Security Type Systems 54
9.1 Security Levels and Expressions 54
9.2 Security Typing of Commands 55
9.3 Termination-Sensitive Systems 61

10 Definite Initialization Analysis 66
10.1 The Variables in an Expression 66
10.2 Initialization-Sensitive Expressions Evaluation 68
10.3 Definite Initialization Analysis 69
10.4 Initialization-Sensitive Big Step Semantics 70
10.5 Soundness wrt Big Steps . 70
10.6 Initialization-Sensitive Small Step Semantics 71
10.7 Soundness wrt Small Steps 72

2

11 Constant Folding 73
11.1 Semantic Equivalence up to a Condition 73
11.2 Simple folding of arithmetic expressions 77

12 Live Variable Analysis 81
12.1 Liveness Analysis . 82
12.2 Correctness . 83
12.3 Program Optimization . 84
12.4 True Liveness Analysis . 88

13 Hoare Logic 92
13.1 Hoare Logic for Partial Correctness 92
13.2 Examples . 94
13.3 Soundness and Completeness 95
13.4 Verification Condition Generation 97
13.5 Hoare Logic for Total Correctness 100
13.6 Verification Conditions for Total Correctness 109

14 Abstract Interpretation 119
14.1 Complete Lattice . 119
14.2 Annotated Commands . 120
14.3 Collecting Semantics of Commands 124
14.4 A small step semantics on annotated commands 129
14.5 Collecting Semantics Examples 130
14.6 Abstract Interpretation Test Programs 131
14.7 Abstract Interpretation . 133
14.8 Computable State . 145
14.9 Computable Abstract Interpretation 148
14.10Parity Analysis . 155
14.11Constant Propagation . 159
14.12Backward Analysis of Expressions 162
14.13Interval Analysis . 168
14.14Widening and Narrowing . 178

15 Extensions and Variations of IMP 192
15.1 Procedures and Local Variables 193
15.2 A C-like Language . 196
15.3 Towards an OO Language: A Language of Records 198

16 Halting Problem 201

3

1 Arithmetic and Boolean Expressions

1.1 Arithmetic Expressions

theory AExp imports Main begin

type_synonym vname = string
type_synonym val = int
type_synonym state = vname ⇒ val

datatype aexp = N int | V vname | Plus aexp aexp

fun aval :: aexp ⇒ state ⇒ val where
aval (N n) s = n |
aval (V x) s = s x |
aval (Plus a1 a2) s = aval a1 s + aval a2 s

value aval (Plus (V ′′x ′′) (N 5)) (λx. if x = ′′x ′′ then 7 else 0)

The same state more concisely:

value aval (Plus (V ′′x ′′) (N 5)) ((λx. 0) (′′x ′′:= 7))

A little syntax magic to write larger states compactly:

definition null_state (‹<>›) where
null_state ≡ λx. 0

syntax
State :: updbinds => ′a (‹<>›)

translations
_State ms == _Update <> ms
_State (_updbinds b bs) <= _Update (_State b) bs

We can now write a series of updates to the function λx. 0 compactly:

lemma <a := 1 , b := 2> = (<> (a := 1)) (b := (2 ::int))
by (rule refl)

value aval (Plus (V ′′x ′′) (N 5)) < ′′x ′′ := 7>

In the <a := b> syntax, variables that are not mentioned are 0 by
default:

value aval (Plus (V ′′x ′′) (N 5)) < ′′y ′′ := 7>

Note that this <. . .> syntax works for any function space τ1 ⇒ τ2 where
τ2 has a 0.

4

1.2 Constant Folding

Evaluate constant subsexpressions:

fun asimp_const :: aexp ⇒ aexp where
asimp_const (N n) = N n |
asimp_const (V x) = V x |
asimp_const (Plus a1 a2) =
(case (asimp_const a1, asimp_const a2) of
(N n1, N n2) ⇒ N (n1+n2) |
(b1,b2) ⇒ Plus b1 b2)

theorem aval_asimp_const:
aval (asimp_const a) s = aval a s

apply(induction a)
apply (auto split: aexp.split)
done

Now we also eliminate all occurrences 0 in additions. The standard
method: optimized versions of the constructors:

fun plus :: aexp ⇒ aexp ⇒ aexp where
plus (N i1) (N i2) = N (i1+i2) |
plus (N i) a = (if i=0 then a else Plus (N i) a) |
plus a (N i) = (if i=0 then a else Plus a (N i)) |
plus a1 a2 = Plus a1 a2

lemma aval_plus[simp]:
aval (plus a1 a2) s = aval a1 s + aval a2 s

apply(induction a1 a2 rule: plus.induct)
apply simp_all
done

fun asimp :: aexp ⇒ aexp where
asimp (N n) = N n |
asimp (V x) = V x |
asimp (Plus a1 a2) = plus (asimp a1) (asimp a2)

Note that in asimp_const the optimized constructor was inlined. Making
it a separate function AExp.plus improves modularity of the code and the
proofs.

value asimp (Plus (Plus (N 0) (N 0)) (Plus (V ′′x ′′) (N 0)))

theorem aval_asimp[simp]:
aval (asimp a) s = aval a s

apply(induction a)

5

apply simp_all
done

end

1.3 Boolean Expressions

theory BExp imports AExp begin

datatype bexp = Bc bool | Not bexp | And bexp bexp | Less aexp aexp
fun bval :: bexp ⇒ state ⇒ bool where
bval (Bc v) s = v |
bval (Not b) s = (¬ bval b s) |
bval (And b1 b2) s = (bval b1 s ∧ bval b2 s) |
bval (Less a1 a2) s = (aval a1 s < aval a2 s)

value bval (Less (V ′′x ′′) (Plus (N 3) (V ′′y ′′)))
< ′′x ′′ := 3 , ′′y ′′ := 1>

1.4 Constant Folding

Optimizing constructors:

fun less :: aexp ⇒ aexp ⇒ bexp where
less (N n1) (N n2) = Bc(n1 < n2) |
less a1 a2 = Less a1 a2

lemma [simp]: bval (less a1 a2) s = (aval a1 s < aval a2 s)
apply(induction a1 a2 rule: less.induct)
apply simp_all
done

fun and :: bexp ⇒ bexp ⇒ bexp where
and (Bc True) b = b |
and b (Bc True) = b |
and (Bc False) b = Bc False |
and b (Bc False) = Bc False |
and b1 b2 = And b1 b2

lemma bval_and[simp]: bval (and b1 b2) s = (bval b1 s ∧ bval b2 s)
apply(induction b1 b2 rule: and.induct)
apply simp_all
done

fun not :: bexp ⇒ bexp where

6

not (Bc True) = Bc False |
not (Bc False) = Bc True |
not b = Not b

lemma bval_not[simp]: bval (not b) s = (¬ bval b s)
apply(induction b rule: not.induct)
apply simp_all
done

Now the overall optimizer:

fun bsimp :: bexp ⇒ bexp where
bsimp (Bc v) = Bc v |
bsimp (Not b) = not(bsimp b) |
bsimp (And b1 b2) = and (bsimp b1) (bsimp b2) |
bsimp (Less a1 a2) = less (asimp a1) (asimp a2)

value bsimp (And (Less (N 0) (N 1)) b)

value bsimp (And (Less (N 1) (N 0)) (Bc True))

theorem bval (bsimp b) s = bval b s
apply(induction b)
apply simp_all
done

end

2 Stack Machine and Compilation
theory ASM imports AExp begin

2.1 Stack Machine

datatype instr = LOADI val | LOAD vname | ADD

type_synonym stack = val list

Abbreviations are transparent: they are unfolded after parsing and folded
back again before printing. Internally, they do not exist.

fun exec1 :: instr ⇒ state ⇒ stack ⇒ stack where
exec1 (LOADI n) _ stk = n # stk |
exec1 (LOAD x) s stk = s(x) # stk |

7

exec1 ADD _ (j # i # stk) = (i + j) # stk

fun exec :: instr list ⇒ state ⇒ stack ⇒ stack where
exec [] _ stk = stk |
exec (i#is) s stk = exec is s (exec1 i s stk)

value exec [LOADI 5 , LOAD ′′y ′′, ADD] < ′′x ′′ := 42 , ′′y ′′ := 43> [50]

lemma exec_append[simp]:
exec (is1@is2) s stk = exec is2 s (exec is1 s stk)

apply(induction is1 arbitrary: stk)
apply (auto)
done

2.2 Compilation

fun comp :: aexp ⇒ instr list where
comp (N n) = [LOADI n] |
comp (V x) = [LOAD x] |
comp (Plus e1 e2) = comp e1 @ comp e2 @ [ADD]

value comp (Plus (Plus (V ′′x ′′) (N 1)) (V ′′z ′′))

theorem exec_comp: exec (comp a) s stk = aval a s # stk
apply(induction a arbitrary: stk)
apply (auto)
done

end
theory Star imports Main
begin

inductive
star :: (′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ ′a ⇒ bool

for r where
refl: star r x x |
step: r x y =⇒ star r y z =⇒ star r x z

hide_fact (open) refl step — names too generic

lemma star_trans:
star r x y =⇒ star r y z =⇒ star r x z

proof(induction rule: star .induct)
case refl thus ?case .

8

next
case step thus ?case by (metis star .step)

qed

lemmas star_induct =
star .induct[of r :: ′a∗ ′b ⇒ ′a∗ ′b ⇒ bool, split_format(complete)]

declare star .refl[simp,intro]

lemma star_step1 [simp, intro]: r x y =⇒ star r x y
by(metis star .refl star .step)

code_pred star .

end

3 IMP — A Simple Imperative Language
theory Com imports BExp begin

datatype
com = SKIP
| Assign vname aexp (‹_ ::= _› [1000 , 61] 61)
| Seq com com (‹_;;/ _› [60 , 61] 60)
| If bexp com com (‹(IF _/ THEN _/ ELSE _)› [0 , 0 , 61] 61)
| While bexp com (‹(WHILE _/ DO _)› [0 , 61] 61)

end

3.1 Big-Step Semantics of Commands

theory Big_Step imports Com begin

The big-step semantics is a straight-forward inductive definition with
concrete syntax. Note that the first parameter is a tuple, so the syntax
becomes (c,s) ⇒ s ′.

inductive
big_step :: com × state ⇒ state ⇒ bool (infix ‹⇒› 55)

where
Skip: (SKIP,s) ⇒ s |
Assign: (x ::= a,s) ⇒ s(x := aval a s) |
Seq: [[(c1,s1) ⇒ s2; (c2,s2) ⇒ s3]] =⇒ (c1;;c2, s1) ⇒ s3 |
IfTrue: [[bval b s; (c1,s) ⇒ t]] =⇒ (IF b THEN c1 ELSE c2, s) ⇒ t |
IfFalse: [[¬bval b s; (c2,s) ⇒ t]] =⇒ (IF b THEN c1 ELSE c2, s) ⇒ t |

9

WhileFalse: ¬bval b s =⇒ (WHILE b DO c,s) ⇒ s |
WhileTrue:
[[bval b s1; (c,s1) ⇒ s2; (WHILE b DO c, s2) ⇒ s3]]
=⇒ (WHILE b DO c, s1) ⇒ s3

schematic_goal ex: (′′x ′′ ::= N 5 ;; ′′y ′′ ::= V ′′x ′′, s) ⇒ ?t
apply(rule Seq)
apply(rule Assign)
apply simp
apply(rule Assign)
done

thm ex[simplified]

We want to execute the big-step rules:

code_pred big_step .

For inductive definitions we need command values instead of value.

values {t. (SKIP, λ_. 0) ⇒ t}

We need to translate the result state into a list to display it.

values {map t [′′x ′′] |t. (SKIP, < ′′x ′′ := 42>) ⇒ t}

values {map t [′′x ′′] |t. (′′x ′′ ::= N 2 , < ′′x ′′ := 42>) ⇒ t}

values {map t [′′x ′′, ′′y ′′] |t.
(WHILE Less (V ′′x ′′) (V ′′y ′′) DO (′′x ′′ ::= Plus (V ′′x ′′) (N 5)),
< ′′x ′′ := 0 , ′′y ′′ := 13>) ⇒ t}

Proof automation:

The introduction rules are good for automatically construction small
program executions. The recursive cases may require backtracking, so we
declare the set as unsafe intro rules.

declare big_step.intros [intro]

The standard induction rule

[[x1 ⇒ x2 ;
∧

s. P (SKIP, s) s;
∧

x a s. P (x ::= a, s) (s(x := aval a s));∧
c1 s1 s2 c2 s3.
[[(c1, s1) ⇒ s2; P (c1, s1) s2; (c2, s2) ⇒ s3; P (c2, s2) s3]]
=⇒ P (c1;; c2, s1) s3;∧
b s c1 t c2.
[[bval b s; (c1, s) ⇒ t; P (c1, s) t]] =⇒ P (IF b THEN c1 ELSE c2, s) t;∧
b s c2 t c1.

10

[[¬ bval b s; (c2, s) ⇒ t; P (c2, s) t]] =⇒ P (IF b THEN c1 ELSE c2, s)
t;∧

b s c. ¬ bval b s =⇒ P (WHILE b DO c, s) s;∧
b s1 c s2 s3.
[[bval b s1; (c, s1) ⇒ s2; P (c, s1) s2; (WHILE b DO c, s2) ⇒ s3;
P (WHILE b DO c, s2) s3]]
=⇒ P (WHILE b DO c, s1) s3]]

=⇒ P x1 x2

thm big_step.induct
This induction schema is almost perfect for our purposes, but our trick

for reusing the tuple syntax means that the induction schema has two pa-
rameters instead of the c, s, and s ′ that we are likely to encounter. Splitting
the tuple parameter fixes this:
lemmas big_step_induct = big_step.induct[split_format(complete)]
thm big_step_induct

[[(x1a, x1b) ⇒ x2a;
∧

s. P SKIP s s;
∧

x a s. P (x ::= a) s (s(x := aval a
s));∧

c1 s1 s2 c2 s3.
[[(c1, s1) ⇒ s2; P c1 s1 s2; (c2, s2) ⇒ s3; P c2 s2 s3]]
=⇒ P (c1;; c2) s1 s3;∧
b s c1 t c2.
[[bval b s; (c1, s) ⇒ t; P c1 s t]] =⇒ P (IF b THEN c1 ELSE c2) s t;∧
b s c2 t c1.
[[¬ bval b s; (c2, s) ⇒ t; P c2 s t]] =⇒ P (IF b THEN c1 ELSE c2) s t;∧
b s c. ¬ bval b s =⇒ P (WHILE b DO c) s s;∧
b s1 c s2 s3.
[[bval b s1; (c, s1) ⇒ s2; P c s1 s2; (WHILE b DO c, s2) ⇒ s3;
P (WHILE b DO c) s2 s3]]
=⇒ P (WHILE b DO c) s1 s3]]

=⇒ P x1a x1b x2a

3.2 Rule inversion

What can we deduce from (SKIP, s) ⇒ t ? That s = t. This is how we can
automatically prove it:
inductive_cases SkipE [elim!]: (SKIP,s) ⇒ t
thm SkipE

This is an elimination rule. The [elim] attribute tells auto, blast and
friends (but not simp!) to use it automatically; [elim!] means that it is applied
eagerly.

11

Similarly for the other commands:

inductive_cases AssignE [elim!]: (x ::= a,s) ⇒ t
thm AssignE
inductive_cases SeqE [elim!]: (c1 ;;c2 ,s1) ⇒ s3
thm SeqE
inductive_cases IfE [elim!]: (IF b THEN c1 ELSE c2 ,s) ⇒ t
thm IfE

inductive_cases WhileE [elim]: (WHILE b DO c,s) ⇒ t
thm WhileE

Only [elim]: [elim!] would not terminate.

An automatic example:

lemma (IF b THEN SKIP ELSE SKIP, s) ⇒ t =⇒ t = s
by blast

Rule inversion by hand via the “cases” method:

lemma assumes (IF b THEN SKIP ELSE SKIP, s) ⇒ t
shows t = s
proof−

from assms show ?thesis
proof cases — inverting assms

case IfTrue thm IfTrue
thus ?thesis by blast

next
case IfFalse thus ?thesis by blast

qed
qed

lemma assign_simp:
(x ::= a,s) ⇒ s ′←→ (s ′ = s(x := aval a s))
by auto

An example combining rule inversion and derivations

lemma Seq_assoc:
(c1 ;; c2 ;; c3 , s) ⇒ s ′←→ (c1 ;; (c2 ;; c3), s) ⇒ s ′

proof
assume (c1 ;; c2 ;; c3 , s) ⇒ s ′

then obtain s1 s2 where
c1 : (c1 , s) ⇒ s1 and
c2 : (c2 , s1) ⇒ s2 and
c3 : (c3 , s2) ⇒ s ′ by auto

12

from c2 c3
have (c2 ;; c3 , s1) ⇒ s ′ by (rule Seq)
with c1
show (c1 ;; (c2 ;; c3), s) ⇒ s ′ by (rule Seq)

next
— The other direction is analogous
assume (c1 ;; (c2 ;; c3), s) ⇒ s ′

thus (c1 ;; c2 ;; c3 , s) ⇒ s ′ by auto
qed

3.3 Command Equivalence

We call two statements c and c ′ equivalent wrt. the big-step semantics when
c started in s terminates in s ′ iff c ′ started in the same s also terminates
in the same s ′. Formally:

abbreviation
equiv_c :: com ⇒ com ⇒ bool (infix ‹∼› 50) where
c ∼ c ′ ≡ (∀ s t. (c,s) ⇒ t = (c ′,s) ⇒ t)

Warning: ∼ is the symbol written \ < s i m > (without spaces).
As an example, we show that loop unfolding is an equivalence transfor-

mation on programs:

lemma unfold_while:
(WHILE b DO c) ∼ (IF b THEN c;; WHILE b DO c ELSE SKIP) (is ?w
∼ ?iw)
proof −

— to show the equivalence, we look at the derivation tree for
— each side and from that construct a derivation tree for the other side
have (?iw, s) ⇒ t if assm: (?w, s) ⇒ t for s t
proof −

from assm show ?thesis
proof cases — rule inversion on (?w, s) ⇒ t

case WhileFalse
thus ?thesis by blast

next
case WhileTrue
from ‹bval b s› ‹(?w, s) ⇒ t› obtain s ′ where
(c, s) ⇒ s ′ and (?w, s ′) ⇒ t by auto

— now we can build a derivation tree for the IF
— first, the body of the True-branch:
hence (c;; ?w, s) ⇒ t by (rule Seq)
— then the whole IF
with ‹bval b s› show ?thesis by (rule IfTrue)

13

qed
qed
moreover
— now the other direction:
have (?w, s) ⇒ t if assm: (?iw, s) ⇒ t for s t
proof −

from assm show ?thesis
proof cases — rule inversion on (?iw, s) ⇒ t

case IfFalse
hence s = t by blast
thus ?thesis using ‹¬bval b s› by blast

next
case IfTrue
— and for this, only the Seq-rule is applicable:
from ‹(c;; ?w, s) ⇒ t› obtain s ′ where
(c, s) ⇒ s ′ and (?w, s ′) ⇒ t by auto

— with this information, we can build a derivation tree for WHILE
with ‹bval b s› show ?thesis by (rule WhileTrue)

qed
qed
ultimately
show ?thesis by blast

qed

Luckily, such lengthy proofs are seldom necessary. Isabelle can prove
many such facts automatically.

lemma while_unfold:
(WHILE b DO c) ∼ (IF b THEN c;; WHILE b DO c ELSE SKIP)

by blast

lemma triv_if :
(IF b THEN c ELSE c) ∼ c

by blast

lemma commute_if :
(IF b1 THEN (IF b2 THEN c11 ELSE c12) ELSE c2)
∼
(IF b2 THEN (IF b1 THEN c11 ELSE c2) ELSE (IF b1 THEN c12

ELSE c2))
by blast

lemma sim_while_cong_aux:
(WHILE b DO c,s) ⇒ t =⇒ c ∼ c ′ =⇒ (WHILE b DO c ′,s) ⇒ t

apply(induction WHILE b DO c s t arbitrary: b c rule: big_step_induct)

14

apply blast
apply blast
done

lemma sim_while_cong: c ∼ c ′ =⇒ WHILE b DO c ∼ WHILE b DO c ′

by (metis sim_while_cong_aux)

Command equivalence is an equivalence relation, i.e. it is reflexive, sym-
metric, and transitive. Because we used an abbreviation above, Isabelle
derives this automatically.

lemma sim_refl: c ∼ c by simp
lemma sim_sym: (c ∼ c ′) = (c ′ ∼ c) by auto
lemma sim_trans: c ∼ c ′ =⇒ c ′ ∼ c ′′ =⇒ c ∼ c ′′ by auto

3.4 Execution is deterministic

This proof is automatic.

theorem big_step_determ: [[(c,s) ⇒ t; (c,s) ⇒ u]] =⇒ u = t
by (induction arbitrary: u rule: big_step.induct) blast+

This is the proof as you might present it in a lecture. The remaining
cases are simple enough to be proved automatically:

theorem
(c,s) ⇒ t =⇒ (c,s) ⇒ t ′ =⇒ t ′ = t

proof (induction arbitrary: t ′ rule: big_step.induct)
— the only interesting case, WhileTrue:
fix b c s s1 t t ′
— The assumptions of the rule:
assume bval b s and (c,s) ⇒ s1 and (WHILE b DO c,s1) ⇒ t
— Ind.Hyp; note the

∧
because of arbitrary:

assume IHc:
∧

t ′. (c,s) ⇒ t ′ =⇒ t ′ = s1
assume IHw:

∧
t ′. (WHILE b DO c,s1) ⇒ t ′ =⇒ t ′ = t

— Premise of implication:
assume (WHILE b DO c,s) ⇒ t ′
with ‹bval b s› obtain s1 ′ where

c: (c,s) ⇒ s1 ′ and
w: (WHILE b DO c,s1 ′) ⇒ t ′

by auto
from c IHc have s1 ′ = s1 by blast
with w IHw show t ′ = t by blast

qed blast+ — prove the rest automatically

end

15

4 Small-Step Semantics of Commands
theory Small_Step imports Star Big_Step begin

4.1 The transition relation

inductive
small_step :: com ∗ state ⇒ com ∗ state ⇒ bool (infix ‹→› 55)

where
Assign: (x ::= a, s) → (SKIP, s(x := aval a s)) |

Seq1 : (SKIP;;c2,s) → (c2,s) |
Seq2 : (c1,s) → (c1 ′,s ′) =⇒ (c1;;c2,s) → (c1 ′;;c2,s ′) |

IfTrue: bval b s =⇒ (IF b THEN c1 ELSE c2,s) → (c1,s) |
IfFalse: ¬bval b s =⇒ (IF b THEN c1 ELSE c2,s) → (c2,s) |

While: (WHILE b DO c,s) →
(IF b THEN c;; WHILE b DO c ELSE SKIP,s)

abbreviation
small_steps :: com ∗ state ⇒ com ∗ state ⇒ bool (infix ‹→∗› 55)

where x →∗ y == star small_step x y

4.2 Executability

code_pred small_step .

values {(c ′,map t [′′x ′′, ′′y ′′, ′′z ′′]) |c ′ t.
(′′x ′′ ::= V ′′z ′′;; ′′y ′′ ::= V ′′x ′′,
< ′′x ′′ := 3 , ′′y ′′ := 7 , ′′z ′′ := 5>) →∗ (c ′,t)}

4.3 Proof infrastructure

4.3.1 Induction rules

The default induction rule small_step.induct only works for lemmas of the
form a→ b =⇒ . . . where a and b are not already pairs (DUMMY ,DUMMY).
We can generate a suitable variant of small_step.induct for pairs by “split-
ting” the arguments → into pairs:

lemmas small_step_induct = small_step.induct[split_format(complete)]

16

4.3.2 Proof automation

declare small_step.intros[simp,intro]

Rule inversion:

inductive_cases SkipE [elim!]: (SKIP,s) → ct
thm SkipE
inductive_cases AssignE [elim!]: (x::=a,s) → ct
thm AssignE
inductive_cases SeqE [elim]: (c1 ;;c2 ,s) → ct
thm SeqE
inductive_cases IfE [elim!]: (IF b THEN c1 ELSE c2 ,s) → ct
inductive_cases WhileE [elim]: (WHILE b DO c, s) → ct

A simple property:

lemma deterministic:
cs → cs ′ =⇒ cs → cs ′′ =⇒ cs ′′ = cs ′

apply(induction arbitrary: cs ′′ rule: small_step.induct)
apply blast+
done

4.4 Equivalence with big-step semantics

lemma star_seq2 : (c1 ,s) →∗ (c1 ′,s ′) =⇒ (c1 ;;c2 ,s) →∗ (c1 ′;;c2 ,s ′)
proof(induction rule: star_induct)

case refl thus ?case by simp
next

case step
thus ?case by (metis Seq2 star .step)

qed

lemma seq_comp:
[[(c1 ,s1) →∗ (SKIP,s2); (c2 ,s2) →∗ (SKIP,s3)]]
=⇒ (c1 ;;c2 , s1) →∗ (SKIP,s3)

by(blast intro: star .step star_seq2 star_trans)

The following proof corresponds to one on the board where one would
show chains of → and →∗ steps.

lemma big_to_small:
cs ⇒ t =⇒ cs →∗ (SKIP,t)

proof (induction rule: big_step.induct)
fix s show (SKIP,s) →∗ (SKIP,s) by simp

next
fix x a s show (x ::= a,s) →∗ (SKIP, s(x := aval a s)) by auto

next

17

fix c1 c2 s1 s2 s3
assume (c1 ,s1) →∗ (SKIP,s2) and (c2 ,s2) →∗ (SKIP,s3)
thus (c1 ;;c2 , s1) →∗ (SKIP,s3) by (rule seq_comp)

next
fix s::state and b c0 c1 t
assume bval b s
hence (IF b THEN c0 ELSE c1 ,s) → (c0 ,s) by simp
moreover assume (c0 ,s) →∗ (SKIP,t)
ultimately
show (IF b THEN c0 ELSE c1 ,s) →∗ (SKIP,t) by (metis star .simps)

next
fix s::state and b c0 c1 t
assume ¬bval b s
hence (IF b THEN c0 ELSE c1 ,s) → (c1 ,s) by simp
moreover assume (c1 ,s) →∗ (SKIP,t)
ultimately
show (IF b THEN c0 ELSE c1 ,s) →∗ (SKIP,t) by (metis star .simps)

next
fix b c and s::state
assume b: ¬bval b s
let ?if = IF b THEN c;; WHILE b DO c ELSE SKIP
have (WHILE b DO c,s) → (?if , s) by blast
moreover have (?if ,s) → (SKIP, s) by (simp add: b)
ultimately show (WHILE b DO c,s) →∗ (SKIP,s) by(metis star .refl

star .step)
next

fix b c s s ′ t
let ?w = WHILE b DO c
let ?if = IF b THEN c;; ?w ELSE SKIP
assume w: (?w,s ′) →∗ (SKIP,t)
assume c: (c,s) →∗ (SKIP,s ′)
assume b: bval b s
have (?w,s) → (?if , s) by blast
moreover have (?if , s) → (c;; ?w, s) by (simp add: b)
moreover have (c;; ?w,s) →∗ (SKIP,t) by(rule seq_comp[OF c w])
ultimately show (WHILE b DO c,s)→∗ (SKIP,t) by (metis star .simps)

qed

Each case of the induction can be proved automatically:

lemma cs ⇒ t =⇒ cs →∗ (SKIP,t)
proof (induction rule: big_step.induct)

case Skip show ?case by blast
next

case Assign show ?case by blast

18

next
case Seq thus ?case by (blast intro: seq_comp)

next
case IfTrue thus ?case by (blast intro: star .step)

next
case IfFalse thus ?case by (blast intro: star .step)

next
case WhileFalse thus ?case

by (metis star .step star_step1 small_step.IfFalse small_step.While)
next

case WhileTrue
thus ?case

by(metis While seq_comp small_step.IfTrue star .step[of small_step])
qed

lemma small1_big_continue:
cs → cs ′ =⇒ cs ′⇒ t =⇒ cs ⇒ t

apply (induction arbitrary: t rule: small_step.induct)
apply auto
done

lemma small_to_big:
cs →∗ (SKIP,t) =⇒ cs ⇒ t

apply (induction cs (SKIP,t) rule: star .induct)
apply (auto intro: small1_big_continue)
done

Finally, the equivalence theorem:

theorem big_iff_small:
cs ⇒ t = cs →∗ (SKIP,t)

by(metis big_to_small small_to_big)

4.5 Final configurations and infinite reductions

definition final cs ←→ ¬(∃ cs ′. cs → cs ′)

lemma finalD: final (c,s) =⇒ c = SKIP
apply(simp add: final_def)
apply(induction c)
apply blast+
done

lemma final_iff_SKIP: final (c,s) = (c = SKIP)
by (metis SkipE finalD final_def)

19

Now we can show that ⇒ yields a final state iff → terminates:

lemma big_iff_small_termination:
(∃ t. cs ⇒ t) ←→ (∃ cs ′. cs →∗ cs ′ ∧ final cs ′)

by(simp add: big_iff_small final_iff_SKIP)

This is the same as saying that the absence of a big step result is equiv-
alent with absence of a terminating small step sequence, i.e. with nontermi-
nation. Since → is determininistic, there is no difference between may and
must terminate.

end
theory Finite_Reachable
imports Small_Step
begin

4.6 Finite number of reachable commands

This theory shows that in the small-step semantics one can only reach a
finite number of commands from any given command. Hence one can see
the command component of a small-step configuration as a combination of
the program to be executed and a pc.

definition reachable :: com ⇒ com set where
reachable c = {c ′. ∃ s t. (c,s) →∗ (c ′,t)}

Proofs need induction on the length of a small-step reduction sequence.

fun small_stepsn :: com ∗ state ⇒ nat ⇒ com ∗ state ⇒ bool
(‹_ → ′(_ ′) _› [55 ,0 ,55] 55) where

(cs →(0) cs ′) = (cs ′ = cs) |
cs →(Suc n) cs ′′ = (∃ cs ′. cs → cs ′ ∧ cs ′→(n) cs ′′)

lemma stepsn_if_star : cs →∗ cs ′ =⇒ ∃n. cs →(n) cs ′

proof(induction rule: star .induct)
case refl show ?case by (metis small_stepsn.simps(1))

next
case step thus ?case by (metis small_stepsn.simps(2))

qed

lemma star_if_stepsn: cs →(n) cs ′ =⇒ cs →∗ cs ′

by(induction n arbitrary: cs) (auto elim: star .step)

lemma SKIP_starD: (SKIP, s) →∗ (c,t) =⇒ c = SKIP
by(induction SKIP s c t rule: star_induct) auto

lemma reachable_SKIP: reachable SKIP = {SKIP}
by(auto simp: reachable_def dest: SKIP_starD)

20

lemma Assign_starD: (x::=a, s) →∗ (c,t) =⇒ c ∈ {x::=a, SKIP}
by (induction x::=a s c t rule: star_induct) (auto dest: SKIP_starD)

lemma reachable_Assign: reachable (x::=a) = {x::=a, SKIP}
by(auto simp: reachable_def dest:Assign_starD)

lemma Seq_stepsnD: (c1 ;; c2 , s) →(n) (c ′, t) =⇒
(∃ c1 ′ m. c ′ = c1 ′;; c2 ∧ (c1 , s) →(m) (c1 ′, t) ∧ m ≤ n) ∨
(∃ s2 m1 m2 . (c1 ,s) →(m1) (SKIP,s2) ∧ (c2 , s2) →(m2) (c ′, t) ∧

m1+m2 < n)
proof(induction n arbitrary: c1 c2 s)

case 0 thus ?case by auto
next

case (Suc n)
from Suc.prems obtain s ′ c12 ′ where (c1 ;;c2 , s) → (c12 ′, s ′)

and n: (c12 ′,s ′) →(n) (c ′,t) by auto
from this(1) show ?case
proof

assume c1 = SKIP (c12 ′, s ′) = (c2 , s)
hence (c1 ,s) →(0) (SKIP, s ′) ∧ (c2 , s ′) →(n) (c ′, t) ∧ 0 + n < Suc n

using n by auto
thus ?case by blast

next
fix c1 ′ s ′′ assume 1 : (c12 ′, s ′) = (c1 ′;; c2 , s ′′) (c1 , s) → (c1 ′, s ′′)
hence n ′: (c1 ′;;c2 ,s ′) →(n) (c ′,t) using n by auto
from Suc.IH [OF n ′] show ?case
proof

assume ∃ c1 ′′ m. c ′ = c1 ′′;; c2 ∧ (c1 ′, s ′) →(m) (c1 ′′, t) ∧ m ≤ n
(is ∃ a b. ?P a b)

then obtain c1 ′′ m where 2 : ?P c1 ′′ m by blast
hence c ′ = c1 ′′;;c2 ∧ (c1 , s) →(Suc m) (c1 ′′,t) ∧ Suc m ≤ Suc n

using 1 by auto
thus ?case by blast

next
assume ∃ s2 m1 m2 . (c1 ′,s ′) →(m1) (SKIP,s2) ∧
(c2 ,s2) →(m2) (c ′,t) ∧ m1+m2 < n (is ∃ a b c. ?P a b c)

then obtain s2 m1 m2 where ?P s2 m1 m2 by blast
hence (c1 ,s) →(Suc m1) (SKIP,s2) ∧ (c2 ,s2) →(m2) (c ′,t) ∧

Suc m1 + m2 < Suc n using 1 by auto
thus ?case by blast

qed

21

qed
qed

corollary Seq_starD: (c1 ;; c2 , s) →∗ (c ′, t) =⇒
(∃ c1 ′. c ′ = c1 ′;; c2 ∧ (c1 , s) →∗ (c1 ′, t)) ∨
(∃ s2 . (c1 ,s) →∗ (SKIP,s2) ∧ (c2 , s2) →∗ (c ′, t))

by(metis Seq_stepsnD star_if_stepsn stepsn_if_star)

lemma reachable_Seq: reachable (c1 ;;c2) ⊆
(λc1 ′. c1 ′;;c2) ‘ reachable c1 ∪ reachable c2

by(auto simp: reachable_def image_def dest!: Seq_starD)

lemma If_starD: (IF b THEN c1 ELSE c2 , s) →∗ (c,t) =⇒
c = IF b THEN c1 ELSE c2 ∨ (c1 ,s) →∗ (c,t) ∨ (c2 ,s) →∗ (c,t)

by(induction IF b THEN c1 ELSE c2 s c t rule: star_induct) auto

lemma reachable_If : reachable (IF b THEN c1 ELSE c2) ⊆
{IF b THEN c1 ELSE c2} ∪ reachable c1 ∪ reachable c2

by(auto simp: reachable_def dest!: If_starD)

lemma While_stepsnD: (WHILE b DO c, s) →(n) (c2 ,t) =⇒
c2 ∈ {WHILE b DO c, IF b THEN c ;; WHILE b DO c ELSE SKIP,

SKIP}
∨ (∃ c1 . c2 = c1 ;; WHILE b DO c ∧ (∃ s1 s2 . (c,s1) →∗ (c1 ,s2)))

proof(induction n arbitrary: s rule: less_induct)
case (less n1)
show ?case
proof(cases n1)

case 0 thus ?thesis using less.prems by (simp)
next

case (Suc n2)
let ?w = WHILE b DO c
let ?iw = IF b THEN c ;; ?w ELSE SKIP
from Suc less.prems have n2 : (?iw,s) →(n2) (c2 ,t) by(auto elim!:

WhileE)
show ?thesis
proof(cases n2)

case 0 thus ?thesis using n2 by auto
next

case (Suc n3)
then obtain iw ′ s ′ where (?iw,s) → (iw ′,s ′)

and n3 : (iw ′,s ′) →(n3) (c2 ,t) using n2 by auto

22

from this(1)
show ?thesis
proof

assume (iw ′, s ′) = (c;; WHILE b DO c, s)
with n3 have (c;;?w, s) →(n3) (c2 ,t) by auto
from Seq_stepsnD[OF this] show ?thesis
proof

assume ∃ c1 ′ m. c2 = c1 ′;; ?w ∧ (c,s) →(m) (c1 ′, t) ∧ m ≤ n3
thus ?thesis by (metis star_if_stepsn)

next
assume ∃ s2 m1 m2 . (c, s) →(m1) (SKIP, s2) ∧
(WHILE b DO c, s2) →(m2) (c2 , t) ∧ m1 + m2 < n3 (is ∃ x y

z. ?P x y z)
then obtain s2 m1 m2 where ?P s2 m1 m2 by blast
with ‹n2 = Suc n3 › ‹n1 = Suc n2 ›have m2 < n1 by arith
from less.IH [OF this] ‹?P s2 m1 m2 › show ?thesis by blast

qed
next

assume (iw ′, s ′) = (SKIP, s)
thus ?thesis using star_if_stepsn[OF n3] by(auto dest!: SKIP_starD)
qed

qed
qed

qed

lemma reachable_While: reachable (WHILE b DO c) ⊆
{WHILE b DO c, IF b THEN c ;; WHILE b DO c ELSE SKIP, SKIP} ∪
(λc ′. c ′ ;; WHILE b DO c) ‘ reachable c

apply(auto simp: reachable_def image_def)
by (metis While_stepsnD insertE singletonE stepsn_if_star)

theorem finite_reachable: finite(reachable c)
apply(induction c)
apply(auto simp: reachable_SKIP reachable_Assign

finite_subset[OF reachable_Seq] finite_subset[OF reachable_If]
finite_subset[OF reachable_While])

done

end

23

5 Denotational Semantics of Commands
theory Denotational imports Big_Step begin

type_synonym com_den = (state × state) set

definition W :: (state ⇒ bool) ⇒ com_den ⇒ (com_den ⇒ com_den)
where
W db dc = (λdw. {(s,t). if db s then (s,t) ∈ dc O dw else s=t})

fun D :: com ⇒ com_den where
D SKIP = Id |
D (x ::= a) = {(s,t). t = s(x := aval a s)} |
D (c1 ;;c2) = D(c1) O D(c2) |
D (IF b THEN c1 ELSE c2)
= {(s,t). if bval b s then (s,t) ∈ D c1 else (s,t) ∈ D c2} |

D (WHILE b DO c) = lfp (W (bval b) (D c))

lemma W_mono: mono (W b r)
by (unfold W_def mono_def) auto

lemma D_While_If :
D(WHILE b DO c) = D(IF b THEN c;;WHILE b DO c ELSE SKIP)

proof−
let ?w = WHILE b DO c let ?f = W (bval b) (D c)
have D ?w = lfp ?f by simp
also have . . . = ?f (lfp ?f) by(rule lfp_unfold [OF W_mono])
also have . . . = D(IF b THEN c;;?w ELSE SKIP) by (simp add: W_def)
finally show ?thesis .

qed

Equivalence of denotational and big-step semantics:

lemma D_if_big_step: (c,s) ⇒ t =⇒ (s,t) ∈ D(c)
proof (induction rule: big_step_induct)

case WhileFalse
with D_While_If show ?case by auto

next
case WhileTrue
show ?case unfolding D_While_If using WhileTrue by auto

qed auto

abbreviation Big_step :: com ⇒ com_den where
Big_step c ≡ {(s,t). (c,s) ⇒ t}

24

lemma Big_step_if_D: (s,t) ∈ D(c) =⇒ (s,t) ∈ Big_step c
proof (induction c arbitrary: s t)

case Seq thus ?case by fastforce
next

case (While b c)
let ?B = Big_step (WHILE b DO c) let ?f = W (bval b) (D c)
have ?f ?B ⊆ ?B using While.IH by (auto simp: W_def)
from lfp_lowerbound[where ?f = ?f , OF this] While.prems
show ?case by auto

qed (auto split: if_splits)

theorem denotational_is_big_step:
(s,t) ∈ D(c) = ((c,s) ⇒ t)

by (metis D_if_big_step Big_step_if_D[simplified])

corollary equiv_c_iff_equal_D: (c1 ∼ c2) ←→ D c1 = D c2
by(simp add: denotational_is_big_step[symmetric] set_eq_iff)

5.1 Continuity

definition chain :: (nat ⇒ ′a set) ⇒ bool where
chain S = (∀ i. S i ⊆ S(Suc i))

lemma chain_total: chain S =⇒ S i ≤ S j ∨ S j ≤ S i
by (metis chain_def le_cases lift_Suc_mono_le)

definition cont :: (′a set ⇒ ′b set) ⇒ bool where
cont f = (∀S . chain S −→ f (UN n. S n) = (UN n. f (S n)))

lemma mono_if_cont: fixes f :: ′a set ⇒ ′b set
assumes cont f shows mono f

proof
fix a b :: ′a set assume a ⊆ b
let ?S = λn::nat. if n=0 then a else b
have chain ?S using ‹a ⊆ b› by(auto simp: chain_def)
hence f (UN n. ?S n) = (UN n. f (?S n))

using assms by (simp add: cont_def del: if_image_distrib)
moreover have (UN n. ?S n) = b using ‹a ⊆ b› by (auto split: if_splits)
moreover have (UN n. f (?S n)) = f a ∪ f b by (auto split: if_splits)
ultimately show f a ⊆ f b by (metis Un_upper1)

qed

lemma chain_iterates: fixes f :: ′a set ⇒ ′a set
assumes mono f shows chain(λn. (f^^n) {})

25

proof−
have (f ^^ n) {} ⊆ (f ^^ Suc n) {} for n
proof (induction n)

case 0 show ?case by simp
next

case (Suc n) thus ?case using assms by (auto simp: mono_def)
qed
thus ?thesis by(auto simp: chain_def assms)

qed

theorem lfp_if_cont:
assumes cont f shows lfp f = (UN n. (f^^n) {}) (is _ = ?U)

proof
from assms mono_if_cont
have mono: (f ^^ n) {} ⊆ (f ^^ Suc n) {} for n

using funpow_decreasing [of n Suc n] by auto
show lfp f ⊆ ?U
proof (rule lfp_lowerbound)

have f ?U = (UN n. (f^^Suc n){})
using chain_iterates[OF mono_if_cont[OF assms]] assms
by(simp add: cont_def)

also have . . . = (f^^0){} ∪ . . . by simp
also have . . . = ?U

using mono by auto (metis funpow_simps_right(2) funpow_swap1
o_apply)

finally show f ?U ⊆ ?U by simp
qed

next
have (f^^n){} ⊆ p if f p ⊆ p for n p
proof −

show ?thesis
proof(induction n)

case 0 show ?case by simp
next

case Suc
from monoD[OF mono_if_cont[OF assms] Suc] ‹f p ⊆ p›
show ?case by simp

qed
qed
thus ?U ⊆ lfp f by(auto simp: lfp_def)

qed

lemma cont_W : cont(W b r)
by(auto simp: cont_def W_def)

26

5.2 The denotational semantics is deterministic

lemma single_valued_UN_chain:
assumes chain S (

∧
n. single_valued (S n))

shows single_valued(UN n. S n)
proof(auto simp: single_valued_def)

fix m n x y z assume (x, y) ∈ S m (x, z) ∈ S n
with chain_total[OF assms(1), of m n] assms(2)
show y = z by (auto simp: single_valued_def)

qed

lemma single_valued_lfp: fixes f :: com_den ⇒ com_den
assumes cont f

∧
r . single_valued r =⇒ single_valued (f r)

shows single_valued(lfp f)
unfolding lfp_if_cont[OF assms(1)]
proof(rule single_valued_UN_chain[OF chain_iterates[OF mono_if_cont[OF
assms(1)]]])

fix n show single_valued ((f ^^ n) {})
by(induction n)(auto simp: assms(2))

qed

lemma single_valued_D: single_valued (D c)
proof(induction c)

case Seq thus ?case by(simp add: single_valued_relcomp)
next

case (While b c)
let ?f = W (bval b) (D c)
have single_valued (lfp ?f)
proof(rule single_valued_lfp[OF cont_W])

show
∧

r . single_valued r =⇒ single_valued (?f r)
using While.IH by(force simp: single_valued_def W_def)

qed
thus ?case by simp

qed (auto simp add: single_valued_def)

end

6 Compiler for IMP
theory Compiler imports Big_Step Star
begin

27

6.1 List setup

In the following, we use the length of lists as integers instead of natural
numbers. Instead of converting nat to int explicitly, we tell Isabelle to
coerce nat automatically when necessary.

declare [[coercion_enabled]]
declare [[coercion int :: nat ⇒ int]]

Similarly, we will want to access the ith element of a list, where i is an
int.

fun inth :: ′a list ⇒ int ⇒ ′a (infixl ‹!!› 100) where
(x # xs) !! i = (if i = 0 then x else xs !! (i − 1))

The only additional lemma we need about this function is indexing over
append:

lemma inth_append [simp]:
0 ≤ i =⇒
(xs @ ys) !! i = (if i < size xs then xs !! i else ys !! (i − size xs))

by (induction xs arbitrary: i) (auto simp: algebra_simps)

We hide coercion int applied to length:

abbreviation (output)
isize xs == int (length xs)

notation isize (‹size›)

6.2 Instructions and Stack Machine

datatype instr =
LOADI int | LOAD vname | ADD | STORE vname |
JMP int | JMPLESS int | JMPGE int

type_synonym stack = val list
type_synonym config = int × state × stack

abbreviation hd2 xs == hd(tl xs)
abbreviation tl2 xs == tl(tl xs)

fun iexec :: instr ⇒ config ⇒ config where
iexec instr (i,s,stk) = (case instr of

LOADI n ⇒ (i+1 ,s, n#stk) |
LOAD x ⇒ (i+1 ,s, s x # stk) |
ADD ⇒ (i+1 ,s, (hd2 stk + hd stk) # tl2 stk) |
STORE x ⇒ (i+1 ,s(x := hd stk),tl stk) |
JMP n ⇒ (i+1+n,s,stk) |
JMPLESS n ⇒ (if hd2 stk < hd stk then i+1+n else i+1 ,s,tl2 stk) |

28

JMPGE n ⇒ (if hd2 stk >= hd stk then i+1+n else i+1 ,s,tl2 stk))

definition
exec1 :: instr list ⇒ config ⇒ config ⇒ bool

(‹(_/ ` (_ →/ _))› [59 ,0 ,59] 60)
where

P ` c → c ′ =
(∃ i s stk. c = (i,s,stk) ∧ c ′ = iexec(P!!i) (i,s,stk) ∧ 0 ≤ i ∧ i < size P)

lemma exec1I [intro, code_pred_intro]:
c ′ = iexec (P!!i) (i,s,stk) =⇒ 0 ≤ i =⇒ i < size P
=⇒ P ` (i,s,stk) → c ′

by (simp add: exec1_def)

abbreviation
exec :: instr list ⇒ config ⇒ config ⇒ bool (‹(_/ ` (_ →∗/ _))› 50)

where
exec P ≡ star (exec1 P)

lemmas exec_induct = star .induct [of exec1 P, split_format(complete)]

code_pred exec1 by (metis exec1_def)

values
{(i,map t [′′x ′′, ′′y ′′],stk) | i t stk.
[LOAD ′′y ′′, STORE ′′x ′′] `
(0 , < ′′x ′′ := 3 , ′′y ′′ := 4>, []) →∗ (i,t,stk)}

6.3 Verification infrastructure

Below we need to argue about the execution of code that is embedded in
larger programs. For this purpose we show that execution is preserved by
appending code to the left or right of a program.
lemma iexec_shift [simp]:
((n+i ′,s ′,stk ′) = iexec x (n+i,s,stk)) = ((i ′,s ′,stk ′) = iexec x (i,s,stk))

by(auto split:instr .split)

lemma exec1_appendR: P ` c → c ′ =⇒ P@P ′ ` c → c ′

by (auto simp: exec1_def)

lemma exec_appendR: P ` c →∗ c ′ =⇒ P@P ′ ` c →∗ c ′

by (induction rule: star .induct) (fastforce intro: star .step exec1_appendR)+

lemma exec1_appendL:

29

fixes i i ′ :: int
shows
P ` (i,s,stk) → (i ′,s ′,stk ′) =⇒
P ′ @ P ` (size(P ′)+i,s,stk) → (size(P ′)+i ′,s ′,stk ′)

unfolding exec1_def
by (auto simp del: iexec.simps)

lemma exec_appendL:
fixes i i ′ :: int
shows

P ` (i,s,stk) →∗ (i ′,s ′,stk ′) =⇒
P ′ @ P ` (size(P ′)+i,s,stk) →∗ (size(P ′)+i ′,s ′,stk ′)
by (induction rule: exec_induct) (blast intro: star .step exec1_appendL)+

Now we specialise the above lemmas to enable automatic proofs of P `
c →∗ c ′ where P is a mixture of concrete instructions and pieces of code
that we already know how they execute (by induction), combined by @ and
#. Backward jumps are not supported. The details should be skipped on a
first reading.

If we have just executed the first instruction of the program, drop it:

lemma exec_Cons_1 [intro]:
P ` (0 ,s,stk) →∗ (j,t,stk ′) =⇒
instr#P ` (1 ,s,stk) →∗ (1+j,t,stk ′)

by (drule exec_appendL[where P ′=[instr]]) simp

lemma exec_appendL_if [intro]:
fixes i i ′ j :: int
shows
size P ′ <= i
=⇒ P ` (i − size P ′,s,stk) →∗ (j,s ′,stk ′)
=⇒ i ′ = size P ′ + j
=⇒ P ′ @ P ` (i,s,stk) →∗ (i ′,s ′,stk ′)

by (drule exec_appendL[where P ′=P ′]) simp

Split the execution of a compound program up into the execution of its
parts:

lemma exec_append_trans[intro]:
fixes i ′ i ′′ j ′′ :: int
shows

P ` (0 ,s,stk) →∗ (i ′,s ′,stk ′) =⇒
size P ≤ i ′ =⇒
P ′ ` (i ′ − size P,s ′,stk ′) →∗ (i ′′,s ′′,stk ′′) =⇒
j ′′ = size P + i ′′
=⇒

30

P @ P ′ ` (0 ,s,stk) →∗ (j ′′,s ′′,stk ′′)
by(metis star_trans[OF exec_appendR exec_appendL_if])

declare Let_def [simp]

6.4 Compilation

fun acomp :: aexp ⇒ instr list where
acomp (N n) = [LOADI n] |
acomp (V x) = [LOAD x] |
acomp (Plus a1 a2) = acomp a1 @ acomp a2 @ [ADD]

lemma acomp_correct[intro]:
acomp a ` (0 ,s,stk) →∗ (size(acomp a),s,aval a s#stk)

by (induction a arbitrary: stk) fastforce+

fun bcomp :: bexp ⇒ bool ⇒ int ⇒ instr list where
bcomp (Bc v) f n = (if v=f then [JMP n] else []) |
bcomp (Not b) f n = bcomp b (¬f) n |
bcomp (And b1 b2) f n =
(let cb2 = bcomp b2 f n;

m = if f then size cb2 else (size cb2)+n;
cb1 = bcomp b1 False m

in cb1 @ cb2) |
bcomp (Less a1 a2) f n =
acomp a1 @ acomp a2 @ (if f then [JMPLESS n] else [JMPGE n])

value
bcomp (And (Less (V ′′x ′′) (V ′′y ′′)) (Not(Less (V ′′u ′′) (V ′′v ′′))))

False 3

lemma bcomp_correct[intro]:
fixes n :: int
shows
0 ≤ n =⇒
bcomp b f n `
(0 ,s,stk) →∗ (size(bcomp b f n) + (if f = bval b s then n else 0),s,stk)

proof(induction b arbitrary: f n)
case Not
from Not(1)[where f=∼f] Not(2) show ?case by fastforce

next
case (And b1 b2)
from And(1)[of if f then size(bcomp b2 f n) else size(bcomp b2 f n) + n

31

False]
And(2)[of n f] And(3)

show ?case by fastforce
qed fastforce+

fun ccomp :: com ⇒ instr list where
ccomp SKIP = [] |
ccomp (x ::= a) = acomp a @ [STORE x] |
ccomp (c1;;c2) = ccomp c1 @ ccomp c2 |
ccomp (IF b THEN c1 ELSE c2) =
(let cc1 = ccomp c1; cc2 = ccomp c2; cb = bcomp b False (size cc1 + 1)
in cb @ cc1 @ JMP (size cc2) # cc2) |

ccomp (WHILE b DO c) =
(let cc = ccomp c; cb = bcomp b False (size cc + 1)
in cb @ cc @ [JMP (−(size cb + size cc + 1))])

value ccomp
(IF Less (V ′′u ′′) (N 1) THEN ′′u ′′ ::= Plus (V ′′u ′′) (N 1)
ELSE ′′v ′′ ::= V ′′u ′′)

value ccomp (WHILE Less (V ′′u ′′) (N 1) DO (′′u ′′ ::= Plus (V ′′u ′′) (N
1)))

6.5 Preservation of semantics

lemma ccomp_bigstep:
(c,s) ⇒ t =⇒ ccomp c ` (0 ,s,stk) →∗ (size(ccomp c),t,stk)

proof(induction arbitrary: stk rule: big_step_induct)
case (Assign x a s)
show ?case by (fastforce simp:fun_upd_def cong: if_cong)

next
case (Seq c1 s1 s2 c2 s3)
let ?cc1 = ccomp c1 let ?cc2 = ccomp c2
have ?cc1 @ ?cc2 ` (0 ,s1 ,stk) →∗ (size ?cc1 ,s2 ,stk)

using Seq.IH (1) by fastforce
moreover
have ?cc1 @ ?cc2 ` (size ?cc1 ,s2 ,stk) →∗ (size(?cc1 @ ?cc2),s3 ,stk)

using Seq.IH (2) by fastforce
ultimately show ?case by simp (blast intro: star_trans)

next
case (WhileTrue b s1 c s2 s3)
let ?cc = ccomp c
let ?cb = bcomp b False (size ?cc + 1)

32

let ?cw = ccomp(WHILE b DO c)
have ?cw ` (0 ,s1 ,stk) →∗ (size ?cb,s1 ,stk)

using ‹bval b s1 › by fastforce
moreover
have ?cw ` (size ?cb,s1 ,stk) →∗ (size ?cb + size ?cc,s2 ,stk)

using WhileTrue.IH (1) by fastforce
moreover
have ?cw ` (size ?cb + size ?cc,s2 ,stk) →∗ (0 ,s2 ,stk)

by fastforce
moreover
have ?cw ` (0 ,s2 ,stk) →∗ (size ?cw,s3 ,stk) by(rule WhileTrue.IH (2))
ultimately show ?case by(blast intro: star_trans)

qed fastforce+

end

7 Compiler Correctness, Reverse Direction
theory Compiler2
imports Compiler
begin

The preservation of the source code semantics is already shown in the
parent theory Compiler. This here shows the second direction.

7.1 Definitions

Execution in n steps for simpler induction

primrec
exec_n :: instr list ⇒ config ⇒ nat ⇒ config ⇒ bool
(‹_/ ` (_ →^_/ _)› [65 ,0 ,1000 ,55] 55)

where
P ` c →^0 c ′ = (c ′=c) |
P ` c →^(Suc n) c ′′ = (∃ c ′. (P ` c → c ′) ∧ P ` c ′→^n c ′′)

The possible successor PCs of an instruction at position n

definition isuccs :: instr ⇒ int ⇒ int set where
isuccs i n = (case i of

JMP j ⇒ {n + 1 + j} |
JMPLESS j ⇒ {n + 1 + j, n + 1} |
JMPGE j ⇒ {n + 1 + j, n + 1} |
_ ⇒ {n +1})

33

The possible successors PCs of an instruction list

definition succs :: instr list ⇒ int ⇒ int set where
succs P n = {s. ∃ i::int. 0 ≤ i ∧ i < size P ∧ s ∈ isuccs (P!!i) (n+i)}

Possible exit PCs of a program

definition exits :: instr list ⇒ int set where
exits P = succs P 0 − {0 ..< size P}

7.2 Basic properties of exec_n

lemma exec_n_exec:
P ` c →^n c ′ =⇒ P ` c →∗ c ′

by (induct n arbitrary: c) (auto intro: star .step)

lemma exec_0 [intro!]: P ` c →^0 c by simp

lemma exec_Suc:
[[P ` c → c ′; P ` c ′→^n c ′′]] =⇒ P ` c →^(Suc n) c ′′

by (fastforce simp del: split_paired_Ex)

lemma exec_exec_n:
P ` c →∗ c ′ =⇒ ∃n. P ` c →^n c ′

by (induct rule: star .induct) (auto intro: exec_Suc)

lemma exec_eq_exec_n:
(P ` c →∗ c ′) = (∃n. P ` c →^n c ′)
by (blast intro: exec_exec_n exec_n_exec)

lemma exec_n_Nil [simp]:
[] ` c →^k c ′ = (c ′ = c ∧ k = 0)
by (induct k) (auto simp: exec1_def)

lemma exec1_exec_n [intro!]:
P ` c → c ′ =⇒ P ` c →^1 c ′

by (cases c ′) simp

7.3 Concrete symbolic execution steps

lemma exec_n_step:
n 6= n ′ =⇒
P ` (n,stk,s) →^k (n ′,stk ′,s ′) =
(∃ c. P ` (n,stk,s) → c ∧ P ` c →^(k − 1) (n ′,stk ′,s ′) ∧ 0 < k)
by (cases k) auto

34

lemma exec1_end:
size P <= fst c =⇒ ¬ P ` c → c ′

by (auto simp: exec1_def)

lemma exec_n_end:
size P <= (n::int) =⇒
P ` (n,s,stk) →^k (n ′,s ′,stk ′) = (n ′ = n ∧ stk ′=stk ∧ s ′=s ∧ k =0)
by (cases k) (auto simp: exec1_end)

lemmas exec_n_simps = exec_n_step exec_n_end

7.4 Basic properties of succs

lemma succs_simps [simp]:
succs [ADD] n = {n + 1}
succs [LOADI v] n = {n + 1}
succs [LOAD x] n = {n + 1}
succs [STORE x] n = {n + 1}
succs [JMP i] n = {n + 1 + i}
succs [JMPGE i] n = {n + 1 + i, n + 1}
succs [JMPLESS i] n = {n + 1 + i, n + 1}
by (auto simp: succs_def isuccs_def)

lemma succs_empty [iff]: succs [] n = {}
by (simp add: succs_def)

lemma succs_Cons:
succs (x#xs) n = isuccs x n ∪ succs xs (1+n) (is _ = ?x ∪ ?xs)

proof
let ?isuccs = λp P n i::int. 0 ≤ i ∧ i < size P ∧ p ∈ isuccs (P!!i) (n+i)
have p ∈ ?x ∪ ?xs if assm: p ∈ succs (x#xs) n for p
proof −

from assm obtain i::int where isuccs: ?isuccs p (x#xs) n i
unfolding succs_def by auto

show ?thesis
proof cases

assume i = 0 with isuccs show ?thesis by simp
next

assume i 6= 0
with isuccs
have ?isuccs p xs (1+n) (i − 1) by auto
hence p ∈ ?xs unfolding succs_def by blast
thus ?thesis ..

qed

35

qed
thus succs (x#xs) n ⊆ ?x ∪ ?xs ..

have p ∈ succs (x#xs) n if assm: p ∈ ?x ∨ p ∈ ?xs for p
proof −

from assm show ?thesis
proof

assume p ∈ ?x thus ?thesis by (fastforce simp: succs_def)
next

assume p ∈ ?xs
then obtain i where ?isuccs p xs (1+n) i

unfolding succs_def by auto
hence ?isuccs p (x#xs) n (1+i)

by (simp add: algebra_simps)
thus ?thesis unfolding succs_def by blast

qed
qed
thus ?x ∪ ?xs ⊆ succs (x#xs) n by blast

qed

lemma succs_iexec1 :
assumes c ′ = iexec (P!!i) (i,s,stk) 0 ≤ i i < size P
shows fst c ′ ∈ succs P 0
using assms by (auto simp: succs_def isuccs_def split: instr .split)

lemma succs_shift:
(p − n ∈ succs P 0) = (p ∈ succs P n)
by (fastforce simp: succs_def isuccs_def split: instr .split)

lemma inj_op_plus [simp]:
inj ((+) (i::int))
by (metis add_minus_cancel inj_on_inverseI)

lemma succs_set_shift [simp]:
(+) i ‘ succs xs 0 = succs xs i
by (force simp: succs_shift [where n=i, symmetric] intro: set_eqI)

lemma succs_append [simp]:
succs (xs @ ys) n = succs xs n ∪ succs ys (n + size xs)
by (induct xs arbitrary: n) (auto simp: succs_Cons algebra_simps)

lemma exits_append [simp]:
exits (xs @ ys) = exits xs ∪ ((+) (size xs)) ‘ exits ys −

36

{0 ..<size xs + size ys}
by (auto simp: exits_def image_set_diff)

lemma exits_single:
exits [x] = isuccs x 0 − {0}
by (auto simp: exits_def succs_def)

lemma exits_Cons:
exits (x # xs) = (isuccs x 0 − {0}) ∪ ((+) 1) ‘ exits xs −

{0 ..<1 + size xs}
using exits_append [of [x] xs]
by (simp add: exits_single)

lemma exits_empty [iff]: exits [] = {} by (simp add: exits_def)

lemma exits_simps [simp]:
exits [ADD] = {1}
exits [LOADI v] = {1}
exits [LOAD x] = {1}
exits [STORE x] = {1}
i 6= −1 =⇒ exits [JMP i] = {1 + i}
i 6= −1 =⇒ exits [JMPGE i] = {1 + i, 1}
i 6= −1 =⇒ exits [JMPLESS i] = {1 + i, 1}
by (auto simp: exits_def)

lemma acomp_succs [simp]:
succs (acomp a) n = {n + 1 .. n + size (acomp a)}
by (induct a arbitrary: n) auto

lemma acomp_exits [simp]:
exits (acomp a) = {size (acomp a)}

proof −
have Suc 0 ≤ length (acomp a)

by (induct a) auto
then show ?thesis

by (auto simp add: exits_def)
qed

lemma bcomp_succs:
0 ≤ i =⇒
succs (bcomp b f i) n ⊆ {n .. n + size (bcomp b f i)}

∪ {n + i + size (bcomp b f i)}
proof (induction b arbitrary: f i n)

case (And b1 b2)

37

from And.prems
show ?case

by (cases f)
(auto dest: And.IH (1) [THEN subsetD, rotated]

And.IH (2) [THEN subsetD, rotated])
qed auto

lemmas bcomp_succsD [dest!] = bcomp_succs [THEN subsetD, rotated]

lemma bcomp_exits:
fixes i :: int
shows
0 ≤ i =⇒
exits (bcomp b f i) ⊆ {size (bcomp b f i), i + size (bcomp b f i)}
by (auto simp: exits_def)

lemma bcomp_exitsD [dest!]:
p ∈ exits (bcomp b f i) =⇒ 0 ≤ i =⇒
p = size (bcomp b f i) ∨ p = i + size (bcomp b f i)
using bcomp_exits by auto

lemma ccomp_succs:
succs (ccomp c) n ⊆ {n..n + size (ccomp c)}

proof (induction c arbitrary: n)
case SKIP thus ?case by simp

next
case Assign thus ?case by simp

next
case (Seq c1 c2)
from Seq.prems
show ?case

by (fastforce dest: Seq.IH [THEN subsetD])
next

case (If b c1 c2)
from If .prems
show ?case

by (auto dest!: If .IH [THEN subsetD] simp: isuccs_def succs_Cons)
next

case (While b c)
from While.prems
show ?case by (auto dest!: While.IH [THEN subsetD])

qed

lemma ccomp_exits:

38

exits (ccomp c) ⊆ {size (ccomp c)}
using ccomp_succs [of c 0] by (auto simp: exits_def)

lemma ccomp_exitsD [dest!]:
p ∈ exits (ccomp c) =⇒ p = size (ccomp c)
using ccomp_exits by auto

7.5 Splitting up machine executions

lemma exec1_split:
fixes i j :: int
shows
P @ c @ P ′ ` (size P + i, s) → (j,s ′) =⇒ 0 ≤ i =⇒ i < size c =⇒
c ` (i,s) → (j − size P, s ′)
by (auto split: instr .splits simp: exec1_def)

lemma exec_n_split:
fixes i j :: int
assumes P @ c @ P ′ ` (size P + i, s) →^n (j, s ′)

0 ≤ i i < size c
j /∈ {size P ..< size P + size c}

shows ∃ s ′′ (i ′::int) k m.
c ` (i, s) →^k (i ′, s ′′) ∧
i ′ ∈ exits c ∧
P @ c @ P ′ ` (size P + i ′, s ′′) →^m (j, s ′) ∧
n = k + m

using assms proof (induction n arbitrary: i j s)
case 0
thus ?case by simp

next
case (Suc n)
have i: 0 ≤ i i < size c by fact+
from Suc.prems
have j: ¬ (size P ≤ j ∧ j < size P + size c) by simp
from Suc.prems
obtain i0 s0 where

step: P @ c @ P ′ ` (size P + i, s) → (i0 ,s0) and
rest: P @ c @ P ′ ` (i0 ,s0) →^n (j, s ′)
by clarsimp

from step i
have c: c ` (i,s) → (i0 − size P, s0) by (rule exec1_split)

have i0 = size P + (i0 − size P) by simp

39

then obtain j0 ::int where j0 : i0 = size P + j0 ..

note split_paired_Ex [simp del]

have ?case if assm: j0 ∈ {0 ..< size c}
proof −

from assm j0 j rest c show ?case
by (fastforce dest!: Suc.IH intro!: exec_Suc)

qed
moreover
have ?case if assm: j0 /∈ {0 ..< size c}
proof −

from c j0 have j0 ∈ succs c 0
by (auto dest: succs_iexec1 simp: exec1_def simp del: iexec.simps)

with assm have j0 ∈ exits c by (simp add: exits_def)
with c j0 rest show ?case by fastforce

qed
ultimately
show ?case by cases

qed

lemma exec_n_drop_right:
fixes j :: int
assumes c @ P ′ ` (0 , s) →^n (j, s ′) j /∈ {0 ..<size c}
shows ∃ s ′′ i ′ k m.

(if c = [] then s ′′ = s ∧ i ′ = 0 ∧ k = 0
else c ` (0 , s) →^k (i ′, s ′′) ∧
i ′ ∈ exits c) ∧
c @ P ′ ` (i ′, s ′′) →^m (j, s ′) ∧
n = k + m

using assms
by (cases c = [])

(auto dest: exec_n_split [where P=[], simplified])

Dropping the left context of a potentially incomplete execution of c.

lemma exec1_drop_left:
fixes i n :: int
assumes P1 @ P2 ` (i, s, stk) → (n, s ′, stk ′) and size P1 ≤ i
shows P2 ` (i − size P1 , s, stk) → (n − size P1 , s ′, stk ′)

proof −
have i = size P1 + (i − size P1) by simp
then obtain i ′ :: int where i = size P1 + i ′ ..
moreover
have n = size P1 + (n − size P1) by simp

40

then obtain n ′ :: int where n = size P1 + n ′ ..
ultimately
show ?thesis using assms

by (clarsimp simp: exec1_def simp del: iexec.simps)
qed

lemma exec_n_drop_left:
fixes i n :: int
assumes P @ P ′ ` (i, s, stk) →^k (n, s ′, stk ′)

size P ≤ i exits P ′ ⊆ {0 ..}
shows P ′ ` (i − size P, s, stk) →^k (n − size P, s ′, stk ′)

using assms proof (induction k arbitrary: i s stk)
case 0 thus ?case by simp

next
case (Suc k)
from Suc.prems
obtain i ′ s ′′ stk ′′ where

step: P @ P ′ ` (i, s, stk) → (i ′, s ′′, stk ′′) and
rest: P @ P ′ ` (i ′, s ′′, stk ′′) →^k (n, s ′, stk ′)
by auto

from step ‹size P ≤ i›
have ∗: P ′ ` (i − size P, s, stk) → (i ′ − size P, s ′′, stk ′′)

by (rule exec1_drop_left)
then have i ′ − size P ∈ succs P ′ 0

by (fastforce dest!: succs_iexec1 simp: exec1_def simp del: iexec.simps)
with ‹exits P ′ ⊆ {0 ..}›
have size P ≤ i ′ by (auto simp: exits_def)
from rest this ‹exits P ′ ⊆ {0 ..}›
have P ′ ` (i ′ − size P, s ′′, stk ′′) →^k (n − size P, s ′, stk ′)

by (rule Suc.IH)
with ∗ show ?case by auto

qed

lemmas exec_n_drop_Cons =
exec_n_drop_left [where P=[instr], simplified] for instr

definition
closed P ←→ exits P ⊆ {size P}

lemma ccomp_closed [simp, intro!]: closed (ccomp c)
using ccomp_exits by (auto simp: closed_def)

lemma acomp_closed [simp, intro!]: closed (acomp c)
by (simp add: closed_def)

41

lemma exec_n_split_full:
fixes j :: int
assumes exec: P @ P ′ ` (0 ,s,stk) →^k (j, s ′, stk ′)
assumes P: size P ≤ j
assumes closed: closed P
assumes exits: exits P ′ ⊆ {0 ..}
shows ∃ k1 k2 s ′′ stk ′′. P ` (0 ,s,stk) →^k1 (size P, s ′′, stk ′′) ∧

P ′ ` (0 ,s ′′,stk ′′) →^k2 (j − size P, s ′, stk ′)
proof (cases P)

case Nil with exec
show ?thesis by fastforce

next
case Cons
hence 0 < size P by simp
with exec P closed
obtain k1 k2 s ′′ stk ′′ where

1 : P ` (0 ,s,stk) →^k1 (size P, s ′′, stk ′′) and
2 : P @ P ′ ` (size P,s ′′,stk ′′) →^k2 (j, s ′, stk ′)
by (auto dest!: exec_n_split [where P=[] and i=0 , simplified]

simp: closed_def)
moreover
have j = size P + (j − size P) by simp
then obtain j0 :: int where j = size P + j0 ..
ultimately
show ?thesis using exits

by (fastforce dest: exec_n_drop_left)
qed

7.6 Correctness theorem

lemma acomp_neq_Nil [simp]:
acomp a 6= []
by (induct a) auto

lemma acomp_exec_n [dest!]:
acomp a ` (0 ,s,stk) →^n (size (acomp a),s ′,stk ′) =⇒
s ′ = s ∧ stk ′ = aval a s#stk

proof (induction a arbitrary: n s ′ stk stk ′)
case (Plus a1 a2)
let ?sz = size (acomp a1) + (size (acomp a2) + 1)
from Plus.prems
have acomp a1 @ acomp a2 @ [ADD] ` (0 ,s,stk) →^n (?sz, s ′, stk ′)

by (simp add: algebra_simps)

42

then obtain n1 s1 stk1 n2 s2 stk2 n3 where
acomp a1 ` (0 ,s,stk) →^n1 (size (acomp a1), s1 , stk1)
acomp a2 ` (0 ,s1 ,stk1) →^n2 (size (acomp a2), s2 , stk2)

[ADD] ` (0 ,s2 ,stk2) →^n3 (1 , s ′, stk ′)
by (auto dest!: exec_n_split_full)

thus ?case by (fastforce dest: Plus.IH simp: exec_n_simps exec1_def)
qed (auto simp: exec_n_simps exec1_def)

lemma bcomp_split:
fixes i j :: int
assumes bcomp b f i @ P ′ ` (0 , s, stk) →^n (j, s ′, stk ′)

j /∈ {0 ..<size (bcomp b f i)} 0 ≤ i
shows ∃ s ′′ stk ′′ (i ′::int) k m.

bcomp b f i ` (0 , s, stk) →^k (i ′, s ′′, stk ′′) ∧
(i ′ = size (bcomp b f i) ∨ i ′ = i + size (bcomp b f i)) ∧
bcomp b f i @ P ′ ` (i ′, s ′′, stk ′′) →^m (j, s ′, stk ′) ∧
n = k + m

using assms by (cases bcomp b f i = []) (fastforce dest!: exec_n_drop_right)+

lemma bcomp_exec_n [dest]:
fixes i j :: int
assumes bcomp b f j ` (0 , s, stk) →^n (i, s ′, stk ′)

size (bcomp b f j) ≤ i 0 ≤ j
shows i = size(bcomp b f j) + (if f = bval b s then j else 0) ∧

s ′ = s ∧ stk ′ = stk
using assms proof (induction b arbitrary: f j i n s ′ stk ′)

case Bc thus ?case
by (simp split: if_split_asm add: exec_n_simps exec1_def)

next
case (Not b)
from Not.prems show ?case

by (fastforce dest!: Not.IH)
next

case (And b1 b2)

let ?b2 = bcomp b2 f j
let ?m = if f then size ?b2 else size ?b2 + j
let ?b1 = bcomp b1 False ?m

have j: size (bcomp (And b1 b2) f j) ≤ i 0 ≤ j by fact+

from And.prems

43

obtain s ′′ stk ′′ and i ′::int and k m where
b1 : ?b1 ` (0 , s, stk) →^k (i ′, s ′′, stk ′′)

i ′ = size ?b1 ∨ i ′ = ?m + size ?b1 and
b2 : ?b2 ` (i ′ − size ?b1 , s ′′, stk ′′) →^m (i − size ?b1 , s ′, stk ′)
by (auto dest!: bcomp_split dest: exec_n_drop_left)

from b1 j
have i ′ = size ?b1 + (if ¬bval b1 s then ?m else 0) ∧ s ′′ = s ∧ stk ′′ =

stk
by (auto dest!: And.IH)

with b2 j
show ?case

by (fastforce dest!: And.IH simp: exec_n_end split: if_split_asm)
next

case Less
thus ?case by (auto dest!: exec_n_split_full simp: exec_n_simps exec1_def)

qed

lemma ccomp_empty [elim!]:
ccomp c = [] =⇒ (c,s) ⇒ s
by (induct c) auto

declare assign_simp [simp]

lemma ccomp_exec_n:
ccomp c ` (0 ,s,stk) →^n (size(ccomp c),t,stk ′)
=⇒ (c,s) ⇒ t ∧ stk ′=stk

proof (induction c arbitrary: s t stk stk ′ n)
case SKIP
thus ?case by auto

next
case (Assign x a)
thus ?case
by simp (fastforce dest!: exec_n_split_full simp: exec_n_simps exec1_def)

next
case (Seq c1 c2)
thus ?case by (fastforce dest!: exec_n_split_full)

next
case (If b c1 c2)
note If .IH [dest!]

let ?if = IF b THEN c1 ELSE c2
let ?cs = ccomp ?if
let ?bcomp = bcomp b False (size (ccomp c1) + 1)

44

from ‹?cs ` (0 ,s,stk) →^n (size ?cs,t,stk ′)›
obtain i ′ :: int and k m s ′′ stk ′′ where

cs: ?cs ` (i ′,s ′′,stk ′′) →^m (size ?cs,t,stk ′) and
?bcomp ` (0 ,s,stk) →^k (i ′, s ′′, stk ′′)
i ′ = size ?bcomp ∨ i ′ = size ?bcomp + size (ccomp c1) + 1

by (auto dest!: bcomp_split)

hence i ′:
s ′′=s stk ′′ = stk
i ′ = (if bval b s then size ?bcomp else size ?bcomp+size(ccomp c1)+1)
by auto

with cs have cs ′:
ccomp c1@JMP (size (ccomp c2))#ccomp c2 `

(if bval b s then 0 else size (ccomp c1)+1 , s, stk) →^m
(1 + size (ccomp c1) + size (ccomp c2), t, stk ′)

by (fastforce dest: exec_n_drop_left simp: exits_Cons isuccs_def alge-
bra_simps)

show ?case
proof (cases bval b s)

case True with cs ′

show ?thesis
by simp

(fastforce dest: exec_n_drop_right
split: if_split_asm
simp: exec_n_simps exec1_def)

next
case False with cs ′

show ?thesis
by (auto dest!: exec_n_drop_Cons exec_n_drop_left

simp: exits_Cons isuccs_def)
qed

next
case (While b c)

from While.prems
show ?case
proof (induction n arbitrary: s rule: nat_less_induct)

case (1 n)

have ?case if assm: ¬ bval b s
proof −

45

from assm 1 .prems
show ?case

by simp (fastforce dest!: bcomp_split simp: exec_n_simps)
qed
moreover
have ?case if b: bval b s
proof −

let ?c0 = WHILE b DO c
let ?cs = ccomp ?c0
let ?bs = bcomp b False (size (ccomp c) + 1)
let ?jmp = [JMP (−((size ?bs + size (ccomp c) + 1)))]

from 1 .prems b
obtain k where

cs: ?cs ` (size ?bs, s, stk) →^k (size ?cs, t, stk ′) and
k: k ≤ n
by (fastforce dest!: bcomp_split)

show ?case
proof cases

assume ccomp c = []
with cs k
obtain m where

?cs ` (0 ,s,stk) →^m (size (ccomp ?c0), t, stk ′)
m < n
by (auto simp: exec_n_step [where k=k] exec1_def)

with 1 .IH
show ?case by blast

next
assume ccomp c 6= []
with cs
obtain m m ′ s ′′ stk ′′ where

c: ccomp c ` (0 , s, stk) →^m ′ (size (ccomp c), s ′′, stk ′′) and
rest: ?cs ` (size ?bs + size (ccomp c), s ′′, stk ′′) →^m

(size ?cs, t, stk ′) and
m: k = m + m ′

by (auto dest: exec_n_split [where i=0 , simplified])
from c
have (c,s) ⇒ s ′′ and stk: stk ′′ = stk

by (auto dest!: While.IH)
moreover
from rest m k stk
obtain k ′ where

?cs ` (0 , s ′′, stk) →^k ′ (size ?cs, t, stk ′)

46

k ′ < n
by (auto simp: exec_n_step [where k=m] exec1_def)

with 1 .IH
have (?c0 , s ′′) ⇒ t ∧ stk ′ = stk by blast
ultimately
show ?case using b by blast

qed
qed
ultimately show ?case by cases

qed
qed

theorem ccomp_exec:
ccomp c ` (0 ,s,stk) →∗ (size(ccomp c),t,stk ′) =⇒ (c,s) ⇒ t
by (auto dest: exec_exec_n ccomp_exec_n)

corollary ccomp_sound:
ccomp c ` (0 ,s,stk) →∗ (size(ccomp c),t,stk) ←→ (c,s) ⇒ t
by (blast intro!: ccomp_exec ccomp_bigstep)

end

8 A Typed Language
theory Types imports Star Complex_Main begin

We build on Complex_Main instead of Main to access the real numbers.

8.1 Arithmetic Expressions

datatype val = Iv int | Rv real

type_synonym vname = string
type_synonym state = vname ⇒ valdatatype aexp = Ic int | Rc real |
V vname | Plus aexp aexp

inductive taval :: aexp ⇒ state ⇒ val ⇒ bool where
taval (Ic i) s (Iv i) |
taval (Rc r) s (Rv r) |
taval (V x) s (s x) |
taval a1 s (Iv i1) =⇒ taval a2 s (Iv i2)
=⇒ taval (Plus a1 a2) s (Iv(i1+i2)) |

taval a1 s (Rv r1) =⇒ taval a2 s (Rv r2)
=⇒ taval (Plus a1 a2) s (Rv(r1+r2))

47

inductive_cases [elim!]:
taval (Ic i) s v taval (Rc i) s v
taval (V x) s v
taval (Plus a1 a2) s v

8.2 Boolean Expressions

datatype bexp = Bc bool | Not bexp | And bexp bexp | Less aexp aexp

inductive tbval :: bexp ⇒ state ⇒ bool ⇒ bool where
tbval (Bc v) s v |
tbval b s bv =⇒ tbval (Not b) s (¬ bv) |
tbval b1 s bv1 =⇒ tbval b2 s bv2 =⇒ tbval (And b1 b2) s (bv1 & bv2) |
taval a1 s (Iv i1) =⇒ taval a2 s (Iv i2) =⇒ tbval (Less a1 a2) s (i1 < i2)
|
taval a1 s (Rv r1) =⇒ taval a2 s (Rv r2) =⇒ tbval (Less a1 a2) s (r1 <
r2)

8.3 Syntax of Commands

datatype
com = SKIP
| Assign vname aexp (‹_ ::= _› [1000 , 61] 61)
| Seq com com (‹_;; _› [60 , 61] 60)
| If bexp com com (‹IF _ THEN _ ELSE _› [0 , 0 , 61] 61)
| While bexp com (‹WHILE _ DO _› [0 , 61] 61)

8.4 Small-Step Semantics of Commands

inductive
small_step :: (com × state) ⇒ (com × state) ⇒ bool (infix ‹→› 55)

where
Assign: taval a s v =⇒ (x ::= a, s) → (SKIP, s(x := v)) |

Seq1 : (SKIP;;c,s) → (c,s) |
Seq2 : (c1 ,s) → (c1 ′,s ′) =⇒ (c1 ;;c2 ,s) → (c1 ′;;c2 ,s ′) |

IfTrue: tbval b s True =⇒ (IF b THEN c1 ELSE c2 ,s) → (c1 ,s) |
IfFalse: tbval b s False =⇒ (IF b THEN c1 ELSE c2 ,s) → (c2 ,s) |

While: (WHILE b DO c,s) → (IF b THEN c;; WHILE b DO c ELSE
SKIP,s)

lemmas small_step_induct = small_step.induct[split_format(complete)]

48

8.5 The Type System

datatype ty = Ity | Rty

type_synonym tyenv = vname ⇒ ty

inductive atyping :: tyenv ⇒ aexp ⇒ ty ⇒ bool
(‹(1_/ `/ (_ :/ _))› [50 ,0 ,50] 50)

where
Ic_ty: Γ ` Ic i : Ity |
Rc_ty: Γ ` Rc r : Rty |
V_ty: Γ ` V x : Γ x |
Plus_ty: Γ ` a1 : τ =⇒ Γ ` a2 : τ =⇒ Γ ` Plus a1 a2 : τ

declare atyping.intros [intro!]
inductive_cases [elim!]:
Γ ` V x : τ Γ ` Ic i : τ Γ ` Rc r : τ Γ ` Plus a1 a2 : τ

Warning: the “:” notation leads to syntactic ambiguities, i.e. multiple
parse trees, because “:” also stands for set membership. In most situations
Isabelle’s type system will reject all but one parse tree, but will still inform
you of the potential ambiguity.

inductive btyping :: tyenv ⇒ bexp ⇒ bool (infix ‹`› 50)
where
B_ty: Γ ` Bc v |
Not_ty: Γ ` b =⇒ Γ ` Not b |
And_ty: Γ ` b1 =⇒ Γ ` b2 =⇒ Γ ` And b1 b2 |
Less_ty: Γ ` a1 : τ =⇒ Γ ` a2 : τ =⇒ Γ ` Less a1 a2

declare btyping.intros [intro!]
inductive_cases [elim!]: Γ ` Not b Γ ` And b1 b2 Γ ` Less a1 a2

inductive ctyping :: tyenv ⇒ com ⇒ bool (infix ‹`› 50) where
Skip_ty: Γ ` SKIP |
Assign_ty: Γ ` a : Γ(x) =⇒ Γ ` x ::= a |
Seq_ty: Γ ` c1 =⇒ Γ ` c2 =⇒ Γ ` c1 ;;c2 |
If_ty: Γ ` b =⇒ Γ ` c1 =⇒ Γ ` c2 =⇒ Γ ` IF b THEN c1 ELSE c2 |
While_ty: Γ ` b =⇒ Γ ` c =⇒ Γ ` WHILE b DO c

declare ctyping.intros [intro!]
inductive_cases [elim!]:
Γ ` x ::= a Γ ` c1 ;;c2
Γ ` IF b THEN c1 ELSE c2
Γ ` WHILE b DO c

49

8.6 Well-typed Programs Do Not Get Stuck

fun type :: val ⇒ ty where
type (Iv i) = Ity |
type (Rv r) = Rty

lemma type_eq_Ity[simp]: type v = Ity ←→ (∃ i. v = Iv i)
by (cases v) simp_all

lemma type_eq_Rty[simp]: type v = Rty ←→ (∃ r . v = Rv r)
by (cases v) simp_all

definition styping :: tyenv ⇒ state ⇒ bool (infix ‹`› 50)
where Γ ` s ←→ (∀ x. type (s x) = Γ x)

lemma apreservation:
Γ ` a : τ =⇒ taval a s v =⇒ Γ ` s =⇒ type v = τ

apply(induction arbitrary: v rule: atyping.induct)
apply (fastforce simp: styping_def)+
done

lemma aprogress: Γ ` a : τ =⇒ Γ ` s =⇒ ∃ v. taval a s v
proof(induction rule: atyping.induct)

case (Plus_ty Γ a1 t a2)
then obtain v1 v2 where v: taval a1 s v1 taval a2 s v2 by blast
show ?case
proof (cases v1)

case Iv
with Plus_ty v show ?thesis

by(fastforce intro: taval.intros(4) dest!: apreservation)
next

case Rv
with Plus_ty v show ?thesis

by(fastforce intro: taval.intros(5) dest!: apreservation)
qed

qed (auto intro: taval.intros)

lemma bprogress: Γ ` b =⇒ Γ ` s =⇒ ∃ v. tbval b s v
proof(induction rule: btyping.induct)

case (Less_ty Γ a1 t a2)
then obtain v1 v2 where v: taval a1 s v1 taval a2 s v2

by (metis aprogress)
show ?case
proof (cases v1)

50

case Iv
with Less_ty v show ?thesis

by (fastforce intro!: tbval.intros(4) dest!:apreservation)
next

case Rv
with Less_ty v show ?thesis

by (fastforce intro!: tbval.intros(5) dest!:apreservation)
qed

qed (auto intro: tbval.intros)

theorem progress:
Γ ` c =⇒ Γ ` s =⇒ c 6= SKIP =⇒ ∃ cs ′. (c,s) → cs ′

proof(induction rule: ctyping.induct)
case Skip_ty thus ?case by simp

next
case Assign_ty
thus ?case by (metis Assign aprogress)

next
case Seq_ty thus ?case by simp (metis Seq1 Seq2)

next
case (If_ty Γ b c1 c2)
then obtain bv where tbval b s bv by (metis bprogress)
show ?case
proof(cases bv)

assume bv
with ‹tbval b s bv› show ?case by simp (metis IfTrue)

next
assume ¬bv
with ‹tbval b s bv› show ?case by simp (metis IfFalse)

qed
next

case While_ty show ?case by (metis While)
qed

theorem styping_preservation:
(c,s) → (c ′,s ′) =⇒ Γ ` c =⇒ Γ ` s =⇒ Γ ` s ′

proof(induction rule: small_step_induct)
case Assign thus ?case

by (auto simp: styping_def) (metis Assign(1 ,3) apreservation)
qed auto

theorem ctyping_preservation:
(c,s) → (c ′,s ′) =⇒ Γ ` c =⇒ Γ ` c ′

by (induct rule: small_step_induct) (auto simp: ctyping.intros)

51

abbreviation small_steps :: com ∗ state ⇒ com ∗ state ⇒ bool (infix
‹→∗› 55)
where x →∗ y == star small_step x y

theorem type_sound:
(c,s) →∗ (c ′,s ′) =⇒ Γ ` c =⇒ Γ ` s =⇒ c ′ 6= SKIP
=⇒ ∃ cs ′′. (c ′,s ′) → cs ′′

apply(induction rule:star_induct)
apply (metis progress)
by (metis styping_preservation ctyping_preservation)

end

8.7 Type Variables

theory Poly_Types imports Types begin

datatype ty = Ity | Rty | TV nat

Everything else remains the same.

type_synonym tyenv = vname ⇒ ty

inductive atyping :: tyenv ⇒ aexp ⇒ ty ⇒ bool
(‹(1_/ `p/ (_ :/ _))› [50 ,0 ,50] 50)

where
Γ `p Ic i : Ity |
Γ `p Rc r : Rty |
Γ `p V x : Γ x |
Γ `p a1 : τ =⇒ Γ `p a2 : τ =⇒ Γ `p Plus a1 a2 : τ

inductive btyping :: tyenv ⇒ bexp ⇒ bool (infix ‹`p› 50)
where
Γ `p Bc v |
Γ `p b =⇒ Γ `p Not b |
Γ `p b1 =⇒ Γ `p b2 =⇒ Γ `p And b1 b2 |
Γ `p a1 : τ =⇒ Γ `p a2 : τ =⇒ Γ `p Less a1 a2

inductive ctyping :: tyenv ⇒ com ⇒ bool (infix ‹`p› 50) where
Γ `p SKIP |
Γ `p a : Γ(x) =⇒ Γ `p x ::= a |
Γ `p c1 =⇒ Γ `p c2 =⇒ Γ `p c1 ;;c2 |
Γ `p b =⇒ Γ `p c1 =⇒ Γ `p c2 =⇒ Γ `p IF b THEN c1 ELSE c2 |
Γ `p b =⇒ Γ `p c =⇒ Γ `p WHILE b DO c

52

fun type :: val ⇒ ty where
type (Iv i) = Ity |
type (Rv r) = Rty

definition styping :: tyenv ⇒ state ⇒ bool (infix ‹`p› 50)
where Γ `p s ←→ (∀ x. type (s x) = Γ x)

fun tsubst :: (nat ⇒ ty) ⇒ ty ⇒ ty where
tsubst S (TV n) = S n |
tsubst S t = t

8.8 Typing is Preserved by Substitution

lemma subst_atyping: E `p a : t =⇒ tsubst S ◦ E `p a : tsubst S t
apply(induction rule: atyping.induct)
apply(auto intro: atyping.intros)
done

lemma subst_btyping: E `p (b::bexp) =⇒ tsubst S ◦ E `p b
apply(induction rule: btyping.induct)
apply(auto intro: btyping.intros)
apply(drule subst_atyping[where S=S])
apply(drule subst_atyping[where S=S])
apply(simp add: o_def btyping.intros)
done

lemma subst_ctyping: E `p (c::com) =⇒ tsubst S ◦ E `p c
apply(induction rule: ctyping.induct)
apply(auto intro: ctyping.intros)
apply(drule subst_atyping[where S=S])
apply(simp add: o_def ctyping.intros)
apply(drule subst_btyping[where S=S])
apply(simp add: o_def ctyping.intros)
apply(drule subst_btyping[where S=S])
apply(simp add: o_def ctyping.intros)
done

end

53

9 Security Type Systems

9.1 Security Levels and Expressions

theory Sec_Type_Expr imports Big_Step
begin

type_synonym level = nat

class sec =
fixes sec :: ′a ⇒ nat

The security/confidentiality level of each variable is globally fixed for
simplicity. For the sake of examples — the general theory does not rely on
it! — a variable of length n has security level n:
instantiation list :: (type)sec
begin

definition sec(x :: ′a list) = length x

instance ..

end

instantiation aexp :: sec
begin

fun sec_aexp :: aexp ⇒ level where
sec (N n) = 0 |
sec (V x) = sec x |
sec (Plus a1 a2) = max (sec a1) (sec a2)

instance ..

end

instantiation bexp :: sec
begin

fun sec_bexp :: bexp ⇒ level where
sec (Bc v) = 0 |
sec (Not b) = sec b |
sec (And b1 b2) = max (sec b1) (sec b2) |
sec (Less a1 a2) = max (sec a1) (sec a2)

54

instance ..

end

abbreviation eq_le :: state ⇒ state ⇒ level ⇒ bool
(‹(_ = _ ′(≤ _ ′))› [51 ,51 ,0] 50) where

s = s ′ (≤ l) == (∀ x. sec x ≤ l −→ s x = s ′ x)

abbreviation eq_less :: state ⇒ state ⇒ level ⇒ bool
(‹(_ = _ ′(< _ ′))› [51 ,51 ,0] 50) where

s = s ′ (< l) == (∀ x. sec x < l −→ s x = s ′ x)

lemma aval_eq_if_eq_le:
[[s1 = s2 (≤ l); sec a ≤ l]] =⇒ aval a s1 = aval a s2

by (induct a) auto

lemma bval_eq_if_eq_le:
[[s1 = s2 (≤ l); sec b ≤ l]] =⇒ bval b s1 = bval b s2

by (induct b) (auto simp add: aval_eq_if_eq_le)

end

9.2 Security Typing of Commands

theory Sec_Typing imports Sec_Type_Expr
begin

9.2.1 Syntax Directed Typing

inductive sec_type :: nat ⇒ com ⇒ bool (‹(_/ ` _)› [0 ,0] 50) where
Skip:

l ` SKIP |
Assign:
[[sec x ≥ sec a; sec x ≥ l]] =⇒ l ` x ::= a |

Seq:
[[l ` c1; l ` c2]] =⇒ l ` c1;;c2 |

If :
[[max (sec b) l ` c1; max (sec b) l ` c2]] =⇒ l ` IF b THEN c1 ELSE

c2 |
While:

max (sec b) l ` c =⇒ l ` WHILE b DO c

code_pred (expected_modes: i => i => bool) sec_type .

55

value 0 ` IF Less (V ′′x1 ′′) (V ′′x ′′) THEN ′′x1 ′′ ::= N 0 ELSE SKIP
value 1 ` IF Less (V ′′x1 ′′) (V ′′x ′′) THEN ′′x ′′ ::= N 0 ELSE SKIP
value 2 ` IF Less (V ′′x1 ′′) (V ′′x ′′) THEN ′′x1 ′′ ::= N 0 ELSE SKIP

inductive_cases [elim!]:
l ` x ::= a l ` c1;;c2 l ` IF b THEN c1 ELSE c2 l ` WHILE b DO c

An important property: anti-monotonicity.

lemma anti_mono: [[l ` c; l ′ ≤ l]] =⇒ l ′ ` c
apply(induction arbitrary: l ′ rule: sec_type.induct)
apply (metis sec_type.intros(1))
apply (metis le_trans sec_type.intros(2))
apply (metis sec_type.intros(3))
apply (metis If le_refl sup_mono sup_nat_def)
apply (metis While le_refl sup_mono sup_nat_def)
done

lemma confinement: [[(c,s) ⇒ t; l ` c]] =⇒ s = t (< l)
proof(induction rule: big_step_induct)

case Skip thus ?case by simp
next

case Assign thus ?case by auto
next

case Seq thus ?case by auto
next

case (IfTrue b s c1)
hence max (sec b) l ` c1 by auto
hence l ` c1 by (metis max.cobounded2 anti_mono)
thus ?case using IfTrue.IH by metis

next
case (IfFalse b s c2)
hence max (sec b) l ` c2 by auto
hence l ` c2 by (metis max.cobounded2 anti_mono)
thus ?case using IfFalse.IH by metis

next
case WhileFalse thus ?case by auto

next
case (WhileTrue b s1 c)
hence max (sec b) l ` c by auto
hence l ` c by (metis max.cobounded2 anti_mono)
thus ?case using WhileTrue by metis

qed

56

theorem noninterference:
[[(c,s) ⇒ s ′; (c,t) ⇒ t ′; 0 ` c; s = t (≤ l)]]
=⇒ s ′ = t ′ (≤ l)

proof(induction arbitrary: t t ′ rule: big_step_induct)
case Skip thus ?case by auto

next
case (Assign x a s)
have [simp]: t ′ = t(x := aval a t) using Assign by auto
have sec x >= sec a using ‹0 ` x ::= a› by auto
show ?case
proof auto

assume sec x ≤ l
with ‹sec x >= sec a› have sec a ≤ l by arith
thus aval a s = aval a t

by (rule aval_eq_if_eq_le[OF ‹s = t (≤ l)›])
next

fix y assume y 6= x sec y ≤ l
thus s y = t y using ‹s = t (≤ l)› by simp

qed
next

case Seq thus ?case by blast
next

case (IfTrue b s c1 s ′ c2)
have sec b ` c1 sec b ` c2 using ‹0 ` IF b THEN c1 ELSE c2 › by auto
show ?case
proof cases

assume sec b ≤ l
hence s = t (≤ sec b) using ‹s = t (≤ l)› by auto
hence bval b t using ‹bval b s› by(simp add: bval_eq_if_eq_le)
with IfTrue.IH IfTrue.prems(1 ,3) ‹sec b ` c1 › anti_mono
show ?thesis by auto

next
assume ¬ sec b ≤ l
have 1 : sec b ` IF b THEN c1 ELSE c2

by(rule sec_type.intros)(simp_all add: ‹sec b ` c1 › ‹sec b ` c2 ›)
from confinement[OF ‹(c1 , s) ⇒ s ′› ‹sec b ` c1 ›] ‹¬ sec b ≤ l›
have s = s ′ (≤ l) by auto
moreover
from confinement[OF ‹(IF b THEN c1 ELSE c2 , t) ⇒ t ′› 1] ‹¬ sec b

≤ l›
have t = t ′ (≤ l) by auto
ultimately show s ′ = t ′ (≤ l) using ‹s = t (≤ l)› by auto

qed

57

next
case (IfFalse b s c2 s ′ c1)
have sec b ` c1 sec b ` c2 using ‹0 ` IF b THEN c1 ELSE c2 › by auto
show ?case
proof cases

assume sec b ≤ l
hence s = t (≤ sec b) using ‹s = t (≤ l)› by auto
hence ¬ bval b t using ‹¬ bval b s› by(simp add: bval_eq_if_eq_le)
with IfFalse.IH IfFalse.prems(1 ,3) ‹sec b ` c2 › anti_mono
show ?thesis by auto

next
assume ¬ sec b ≤ l
have 1 : sec b ` IF b THEN c1 ELSE c2

by(rule sec_type.intros)(simp_all add: ‹sec b ` c1 › ‹sec b ` c2 ›)
from confinement[OF big_step.IfFalse[OF IfFalse(1 ,2)] 1] ‹¬ sec b ≤

l›
have s = s ′ (≤ l) by auto
moreover
from confinement[OF ‹(IF b THEN c1 ELSE c2 , t) ⇒ t ′› 1] ‹¬ sec b

≤ l›
have t = t ′ (≤ l) by auto
ultimately show s ′ = t ′ (≤ l) using ‹s = t (≤ l)› by auto

qed
next

case (WhileFalse b s c)
have sec b ` c using WhileFalse.prems(2) by auto
show ?case
proof cases

assume sec b ≤ l
hence s = t (≤ sec b) using ‹s = t (≤ l)› by auto
hence ¬ bval b t using ‹¬ bval b s› by(simp add: bval_eq_if_eq_le)
with WhileFalse.prems(1 ,3) show ?thesis by auto

next
assume ¬ sec b ≤ l
have 1 : sec b ` WHILE b DO c

by(rule sec_type.intros)(simp_all add: ‹sec b ` c›)
from confinement[OF ‹(WHILE b DO c, t) ⇒ t ′› 1] ‹¬ sec b ≤ l›
have t = t ′ (≤ l) by auto
thus s = t ′ (≤ l) using ‹s = t (≤ l)› by auto

qed
next

case (WhileTrue b s1 c s2 s3 t1 t3)
let ?w = WHILE b DO c
have sec b ` c using ‹0 ` WHILE b DO c› by auto

58

show ?case
proof cases

assume sec b ≤ l
hence s1 = t1 (≤ sec b) using ‹s1 = t1 (≤ l)› by auto
hence bval b t1

using ‹bval b s1 › by(simp add: bval_eq_if_eq_le)
then obtain t2 where (c,t1) ⇒ t2 (?w,t2) ⇒ t3

using ‹(?w,t1) ⇒ t3 › by auto
from WhileTrue.IH (2)[OF ‹(?w,t2) ⇒ t3 › ‹0 ` ?w›

WhileTrue.IH (1)[OF ‹(c,t1) ⇒ t2 › anti_mono[OF ‹sec b ` c›]
‹s1 = t1 (≤ l)›]]

show ?thesis by simp
next

assume ¬ sec b ≤ l
have 1 : sec b ` ?w by(rule sec_type.intros)(simp_all add: ‹sec b ` c›)
from confinement[OF big_step.WhileTrue[OF WhileTrue.hyps] 1] ‹¬

sec b ≤ l›
have s1 = s3 (≤ l) by auto
moreover
from confinement[OF ‹(WHILE b DO c, t1) ⇒ t3 › 1] ‹¬ sec b ≤ l›
have t1 = t3 (≤ l) by auto
ultimately show s3 = t3 (≤ l) using ‹s1 = t1 (≤ l)› by auto

qed
qed

9.2.2 The Standard Typing System

The predicate l ` c is nicely intuitive and executable. The standard formu-
lation, however, is slightly different, replacing the maximum computation
by an antimonotonicity rule. We introduce the standard system now and
show the equivalence with our formulation.
inductive sec_type ′ :: nat ⇒ com ⇒ bool (‹(_/ ` ′′ _)› [0 ,0] 50) where
Skip ′:

l ` ′ SKIP |
Assign ′:
[[sec x ≥ sec a; sec x ≥ l]] =⇒ l ` ′ x ::= a |

Seq ′:
[[l ` ′ c1; l ` ′ c2]] =⇒ l ` ′ c1;;c2 |

If ′:
[[sec b ≤ l; l ` ′ c1; l ` ′ c2]] =⇒ l ` ′ IF b THEN c1 ELSE c2 |

While ′:
[[sec b ≤ l; l ` ′ c]] =⇒ l ` ′ WHILE b DO c |

anti_mono ′:
[[l ` ′ c; l ′ ≤ l]] =⇒ l ′ ` ′ c

59

lemma sec_type_sec_type ′: l ` c =⇒ l ` ′ c
apply(induction rule: sec_type.induct)
apply (metis Skip ′)
apply (metis Assign ′)
apply (metis Seq ′)
apply (metis max.commute max.absorb_iff2 nat_le_linear If ′ anti_mono ′)
by (metis less_or_eq_imp_le max.absorb1 max.absorb2 nat_le_linear While ′

anti_mono ′)

lemma sec_type ′_sec_type: l ` ′ c =⇒ l ` c
apply(induction rule: sec_type ′.induct)
apply (metis Skip)
apply (metis Assign)
apply (metis Seq)
apply (metis max.absorb2 If)
apply (metis max.absorb2 While)
by (metis anti_mono)

9.2.3 A Bottom-Up Typing System

inductive sec_type2 :: com ⇒ level ⇒ bool (‹(` _ : _)› [0 ,0] 50) where
Skip2 :
` SKIP : l |

Assign2 :
sec x ≥ sec a =⇒ ` x ::= a : sec x |

Seq2 :
[[` c1 : l1; ` c2 : l2]] =⇒ ` c1;;c2 : min l1 l2 |

If2 :
[[sec b ≤ min l1 l2; ` c1 : l1; ` c2 : l2]]
=⇒ ` IF b THEN c1 ELSE c2 : min l1 l2 |

While2 :
[[sec b ≤ l; ` c : l]] =⇒ ` WHILE b DO c : l

lemma sec_type2_sec_type ′: ` c : l =⇒ l ` ′ c
apply(induction rule: sec_type2 .induct)
apply (metis Skip ′)
apply (metis Assign ′ eq_imp_le)
apply (metis Seq ′ anti_mono ′ min.cobounded1 min.cobounded2)
apply (metis If ′ anti_mono ′ min.absorb2 min.absorb_iff1 nat_le_linear)
by (metis While ′)

60

lemma sec_type ′_sec_type2 : l ` ′ c =⇒ ∃ l ′ ≥ l. ` c : l ′
apply(induction rule: sec_type ′.induct)
apply (metis Skip2 le_refl)
apply (metis Assign2)
apply (metis Seq2 min.boundedI)
apply (metis If2 inf_greatest inf_nat_def le_trans)
apply (metis While2 le_trans)
by (metis le_trans)

end

9.3 Termination-Sensitive Systems

theory Sec_TypingT imports Sec_Type_Expr
begin

9.3.1 A Syntax Directed System

inductive sec_type :: nat ⇒ com ⇒ bool (‹(_/ ` _)› [0 ,0] 50) where
Skip:

l ` SKIP |
Assign:
[[sec x ≥ sec a; sec x ≥ l]] =⇒ l ` x ::= a |

Seq:
l ` c1 =⇒ l ` c2 =⇒ l ` c1;;c2 |

If :
[[max (sec b) l ` c1; max (sec b) l ` c2]]
=⇒ l ` IF b THEN c1 ELSE c2 |

While:
sec b = 0 =⇒ 0 ` c =⇒ 0 ` WHILE b DO c

code_pred (expected_modes: i => i => bool) sec_type .

inductive_cases [elim!]:
l ` x ::= a l ` c1;;c2 l ` IF b THEN c1 ELSE c2 l ` WHILE b DO c

lemma anti_mono: l ` c =⇒ l ′ ≤ l =⇒ l ′ ` c
apply(induction arbitrary: l ′ rule: sec_type.induct)
apply (metis sec_type.intros(1))
apply (metis le_trans sec_type.intros(2))
apply (metis sec_type.intros(3))
apply (metis If le_refl sup_mono sup_nat_def)
by (metis While le_0_eq)

61

lemma confinement: (c,s) ⇒ t =⇒ l ` c =⇒ s = t (< l)
proof(induction rule: big_step_induct)

case Skip thus ?case by simp
next

case Assign thus ?case by auto
next

case Seq thus ?case by auto
next

case (IfTrue b s c1)
hence max (sec b) l ` c1 by auto
hence l ` c1 by (metis max.cobounded2 anti_mono)
thus ?case using IfTrue.IH by metis

next
case (IfFalse b s c2)
hence max (sec b) l ` c2 by auto
hence l ` c2 by (metis max.cobounded2 anti_mono)
thus ?case using IfFalse.IH by metis

next
case WhileFalse thus ?case by auto

next
case (WhileTrue b s1 c)
hence l ` c by auto
thus ?case using WhileTrue by metis

qed

lemma termi_if_non0 : l ` c =⇒ l 6= 0 =⇒ ∃ t. (c,s) ⇒ t
apply(induction arbitrary: s rule: sec_type.induct)
apply (metis big_step.Skip)
apply (metis big_step.Assign)
apply (metis big_step.Seq)
apply (metis IfFalse IfTrue le0 le_antisym max.cobounded2)
apply simp
done

theorem noninterference: (c,s) ⇒ s ′ =⇒ 0 ` c =⇒ s = t (≤ l)
=⇒ ∃ t ′. (c,t) ⇒ t ′ ∧ s ′ = t ′ (≤ l)

proof(induction arbitrary: t rule: big_step_induct)
case Skip thus ?case by auto

next
case (Assign x a s)
have sec x >= sec a using ‹0 ` x ::= a› by auto
have (x ::= a,t) ⇒ t(x := aval a t) by auto

62

moreover
have s(x := aval a s) = t(x := aval a t) (≤ l)
proof auto

assume sec x ≤ l
with ‹sec x ≥ sec a› have sec a ≤ l by arith
thus aval a s = aval a t

by (rule aval_eq_if_eq_le[OF ‹s = t (≤ l)›])
next

fix y assume y 6= x sec y ≤ l
thus s y = t y using ‹s = t (≤ l)› by simp

qed
ultimately show ?case by blast

next
case Seq thus ?case by blast

next
case (IfTrue b s c1 s ′ c2)
have sec b ` c1 sec b ` c2 using ‹0 ` IF b THEN c1 ELSE c2 › by auto
obtain t ′ where t ′: (c1 , t) ⇒ t ′ s ′ = t ′ (≤ l)
using IfTrue.IH [OF anti_mono[OF ‹sec b ` c1 ›] ‹s = t (≤ l)›] by blast

show ?case
proof cases

assume sec b ≤ l
hence s = t (≤ sec b) using ‹s = t (≤ l)› by auto
hence bval b t using ‹bval b s› by(simp add: bval_eq_if_eq_le)
thus ?thesis by (metis t ′ big_step.IfTrue)

next
assume ¬ sec b ≤ l
hence 0 : sec b 6= 0 by arith
have 1 : sec b ` IF b THEN c1 ELSE c2

by(rule sec_type.intros)(simp_all add: ‹sec b ` c1 › ‹sec b ` c2 ›)
from confinement[OF big_step.IfTrue[OF IfTrue(1 ,2)] 1] ‹¬ sec b ≤ l›
have s = s ′ (≤ l) by auto
moreover
from termi_if_non0 [OF 1 0 , of t] obtain t ′ where

t ′: (IF b THEN c1 ELSE c2 ,t) ⇒ t ′ ..
moreover
from confinement[OF t ′ 1] ‹¬ sec b ≤ l›
have t = t ′ (≤ l) by auto
ultimately
show ?case using ‹s = t (≤ l)› by auto

qed
next

case (IfFalse b s c2 s ′ c1)
have sec b ` c1 sec b ` c2 using ‹0 ` IF b THEN c1 ELSE c2 › by auto

63

obtain t ′ where t ′: (c2 , t) ⇒ t ′ s ′ = t ′ (≤ l)
using IfFalse.IH [OF anti_mono[OF ‹sec b ` c2 ›] ‹s = t (≤ l)›] by

blast
show ?case
proof cases

assume sec b ≤ l
hence s = t (≤ sec b) using ‹s = t (≤ l)› by auto
hence ¬ bval b t using ‹¬ bval b s› by(simp add: bval_eq_if_eq_le)
thus ?thesis by (metis t ′ big_step.IfFalse)

next
assume ¬ sec b ≤ l
hence 0 : sec b 6= 0 by arith
have 1 : sec b ` IF b THEN c1 ELSE c2

by(rule sec_type.intros)(simp_all add: ‹sec b ` c1 › ‹sec b ` c2 ›)
from confinement[OF big_step.IfFalse[OF IfFalse(1 ,2)] 1] ‹¬ sec b ≤

l›
have s = s ′ (≤ l) by auto
moreover
from termi_if_non0 [OF 1 0 , of t] obtain t ′ where

t ′: (IF b THEN c1 ELSE c2 ,t) ⇒ t ′ ..
moreover
from confinement[OF t ′ 1] ‹¬ sec b ≤ l›
have t = t ′ (≤ l) by auto
ultimately
show ?case using ‹s = t (≤ l)› by auto

qed
next

case (WhileFalse b s c)
hence [simp]: sec b = 0 by auto
have s = t (≤ sec b) using ‹s = t (≤ l)› by auto
hence ¬ bval b t using ‹¬ bval b s› by (metis bval_eq_if_eq_le le_refl)
with WhileFalse.prems(2) show ?case by auto

next
case (WhileTrue b s c s ′′ s ′)
let ?w = WHILE b DO c
from ‹0 ` ?w› have [simp]: sec b = 0 by auto
have 0 ` c using ‹0 ` WHILE b DO c› by auto
from WhileTrue.IH (1)[OF this ‹s = t (≤ l)›]
obtain t ′′ where (c,t) ⇒ t ′′ and s ′′ = t ′′ (≤l) by blast
from WhileTrue.IH (2)[OF ‹0 ` ?w› this(2)]
obtain t ′ where (?w,t ′′) ⇒ t ′ and s ′ = t ′ (≤l) by blast
from ‹bval b s› have bval b t

using bval_eq_if_eq_le[OF ‹s = t (≤l)›] by auto
show ?case

64

using big_step.WhileTrue[OF ‹bval b t› ‹(c,t) ⇒ t ′′› ‹(?w,t ′′) ⇒ t ′›]
by (metis ‹s ′ = t ′ (≤ l)›)

qed

9.3.2 The Standard System

The predicate l ` c is nicely intuitive and executable. The standard formu-
lation, however, is slightly different, replacing the maximum computation
by an antimonotonicity rule. We introduce the standard system now and
show the equivalence with our formulation.
inductive sec_type ′ :: nat ⇒ com ⇒ bool (‹(_/ ` ′′ _)› [0 ,0] 50) where
Skip ′:

l ` ′ SKIP |
Assign ′:
[[sec x ≥ sec a; sec x ≥ l]] =⇒ l ` ′ x ::= a |

Seq ′:
l ` ′ c1 =⇒ l ` ′ c2 =⇒ l ` ′ c1;;c2 |

If ′:
[[sec b ≤ l; l ` ′ c1; l ` ′ c2]] =⇒ l ` ′ IF b THEN c1 ELSE c2 |

While ′:
[[sec b = 0 ; 0 ` ′ c]] =⇒ 0 ` ′ WHILE b DO c |

anti_mono ′:
[[l ` ′ c; l ′ ≤ l]] =⇒ l ′ ` ′ c

lemma sec_type_sec_type ′:
l ` c =⇒ l ` ′ c

apply(induction rule: sec_type.induct)
apply (metis Skip ′)
apply (metis Assign ′)
apply (metis Seq ′)
apply (metis max.commute max.absorb_iff2 nat_le_linear If ′ anti_mono ′)
by (metis While ′)

lemma sec_type ′_sec_type:
l ` ′ c =⇒ l ` c

apply(induction rule: sec_type ′.induct)
apply (metis Skip)
apply (metis Assign)
apply (metis Seq)
apply (metis max.absorb2 If)
apply (metis While)
by (metis anti_mono)

65

corollary sec_type_eq: l ` c ←→ l ` ′ c
by (metis sec_type ′_sec_type sec_type_sec_type ′)

end

10 Definite Initialization Analysis
theory Vars imports Com
begin

10.1 The Variables in an Expression

We need to collect the variables in both arithmetic and boolean expressions.
For a change we do not introduce two functions, e.g. avars and bvars, but
we overload the name vars via a type class, a device that originated with
Haskell:

class vars =
fixes vars :: ′a ⇒ vname set

This defines a type class “vars” with a single function of (coincidentally)
the same name. Then we define two separated instances of the class, one for
aexp and one for bexp:

instantiation aexp :: vars
begin

fun vars_aexp :: aexp ⇒ vname set where
vars (N n) = {} |
vars (V x) = {x} |
vars (Plus a1 a2) = vars a1 ∪ vars a2

instance ..

end

value vars (Plus (V ′′x ′′) (V ′′y ′′))

instantiation bexp :: vars
begin

fun vars_bexp :: bexp ⇒ vname set where
vars (Bc v) = {} |
vars (Not b) = vars b |
vars (And b1 b2) = vars b1 ∪ vars b2 |

66

vars (Less a1 a2) = vars a1 ∪ vars a2

instance ..

end

value vars (Less (Plus (V ′′z ′′) (V ′′y ′′)) (V ′′x ′′))

abbreviation
eq_on :: (′a ⇒ ′b) ⇒ (′a ⇒ ′b) ⇒ ′a set ⇒ bool
(‹(_ =/ _/ on _)› [50 ,0 ,50] 50) where

f = g on X == ∀ x ∈ X . f x = g x

lemma aval_eq_if_eq_on_vars[simp]:
s1 = s2 on vars a =⇒ aval a s1 = aval a s2

apply(induction a)
apply simp_all
done

lemma bval_eq_if_eq_on_vars:
s1 = s2 on vars b =⇒ bval b s1 = bval b s2

proof(induction b)
case (Less a1 a2)
hence aval a1 s1 = aval a1 s2 and aval a2 s1 = aval a2 s2 by simp_all
thus ?case by simp

qed simp_all

fun lvars :: com ⇒ vname set where
lvars SKIP = {} |
lvars (x::=e) = {x} |
lvars (c1 ;;c2) = lvars c1 ∪ lvars c2 |
lvars (IF b THEN c1 ELSE c2) = lvars c1 ∪ lvars c2 |
lvars (WHILE b DO c) = lvars c

fun rvars :: com ⇒ vname set where
rvars SKIP = {} |
rvars (x::=e) = vars e |
rvars (c1 ;;c2) = rvars c1 ∪ rvars c2 |
rvars (IF b THEN c1 ELSE c2) = vars b ∪ rvars c1 ∪ rvars c2 |
rvars (WHILE b DO c) = vars b ∪ rvars c

instantiation com :: vars
begin

67

definition vars_com c = lvars c ∪ rvars c

instance ..

end

lemma vars_com_simps[simp]:
vars SKIP = {}
vars (x::=e) = {x} ∪ vars e
vars (c1 ;;c2) = vars c1 ∪ vars c2
vars (IF b THEN c1 ELSE c2) = vars b ∪ vars c1 ∪ vars c2
vars (WHILE b DO c) = vars b ∪ vars c

by(auto simp: vars_com_def)

lemma finite_avars[simp]: finite(vars(a::aexp))
by(induction a) simp_all

lemma finite_bvars[simp]: finite(vars(b::bexp))
by(induction b) simp_all

lemma finite_lvars[simp]: finite(lvars(c))
by(induction c) simp_all

lemma finite_rvars[simp]: finite(rvars(c))
by(induction c) simp_all

lemma finite_cvars[simp]: finite(vars(c::com))
by(simp add: vars_com_def)

end

theory Def_Init_Exp
imports Vars
begin

10.2 Initialization-Sensitive Expressions Evaluation

type_synonym state = vname ⇒ val option

fun aval :: aexp ⇒ state ⇒ val option where
aval (N i) s = Some i |
aval (V x) s = s x |

68

aval (Plus a1 a2) s =
(case (aval a1 s, aval a2 s) of

(Some i1,Some i2) ⇒ Some(i1+i2) | _ ⇒ None)

fun bval :: bexp ⇒ state ⇒ bool option where
bval (Bc v) s = Some v |
bval (Not b) s = (case bval b s of None ⇒ None | Some bv ⇒ Some(¬ bv))
|
bval (And b1 b2) s = (case (bval b1 s, bval b2 s) of
(Some bv1, Some bv2) ⇒ Some(bv1 & bv2) | _ ⇒ None) |

bval (Less a1 a2) s = (case (aval a1 s, aval a2 s) of
(Some i1, Some i2) ⇒ Some(i1 < i2) | _ ⇒ None)

lemma aval_Some: vars a ⊆ dom s =⇒ ∃ i. aval a s = Some i
by (induct a) auto

lemma bval_Some: vars b ⊆ dom s =⇒ ∃ bv. bval b s = Some bv
by (induct b) (auto dest!: aval_Some)

end
theory Def_Init
imports Vars Com
begin

10.3 Definite Initialization Analysis

inductive D :: vname set ⇒ com ⇒ vname set ⇒ bool where
Skip: D A SKIP A |
Assign: vars a ⊆ A =⇒ D A (x ::= a) (insert x A) |
Seq: [[D A1 c1 A2; D A2 c2 A3]] =⇒ D A1 (c1;; c2) A3 |
If : [[vars b ⊆ A; D A c1 A1; D A c2 A2]] =⇒

D A (IF b THEN c1 ELSE c2) (A1 Int A2) |
While: [[vars b ⊆ A; D A c A ′]] =⇒ D A (WHILE b DO c) A

inductive_cases [elim!]:
D A SKIP A ′

D A (x ::= a) A ′

D A (c1 ;;c2) A ′

D A (IF b THEN c1 ELSE c2) A ′

D A (WHILE b DO c) A ′

lemma D_incr :

69

D A c A ′ =⇒ A ⊆ A ′

by (induct rule: D.induct) auto

end

theory Def_Init_Big
imports Def_Init_Exp Def_Init
begin

10.4 Initialization-Sensitive Big Step Semantics

inductive
big_step :: (com × state option) ⇒ state option ⇒ bool (infix ‹⇒› 55)

where
None: (c,None) ⇒ None |
Skip: (SKIP,s) ⇒ s |
AssignNone: aval a s = None =⇒ (x ::= a, Some s) ⇒ None |
Assign: aval a s = Some i =⇒ (x ::= a, Some s) ⇒ Some(s(x := Some i))
|
Seq: (c1,s1) ⇒ s2 =⇒ (c2,s2) ⇒ s3 =⇒ (c1;;c2,s1) ⇒ s3 |

IfNone: bval b s = None =⇒ (IF b THEN c1 ELSE c2,Some s) ⇒ None |
IfTrue: [[bval b s = Some True; (c1,Some s) ⇒ s ′]] =⇒
(IF b THEN c1 ELSE c2,Some s) ⇒ s ′ |

IfFalse: [[bval b s = Some False; (c2,Some s) ⇒ s ′]] =⇒
(IF b THEN c1 ELSE c2,Some s) ⇒ s ′ |

WhileNone: bval b s = None =⇒ (WHILE b DO c,Some s) ⇒ None |
WhileFalse: bval b s = Some False =⇒ (WHILE b DO c,Some s) ⇒ Some
s |
WhileTrue:
[[bval b s = Some True; (c,Some s) ⇒ s ′; (WHILE b DO c,s ′) ⇒ s ′′]]

=⇒
(WHILE b DO c,Some s) ⇒ s ′′

lemmas big_step_induct = big_step.induct[split_format(complete)]

10.5 Soundness wrt Big Steps

Note the special form of the induction because one of the arguments of the
inductive predicate is not a variable but the term Some s:

theorem Sound:
[[(c,Some s) ⇒ s ′; D A c A ′; A ⊆ dom s]]

70

=⇒ ∃ t. s ′ = Some t ∧ A ′ ⊆ dom t
proof (induction c Some s s ′ arbitrary: s A A ′ rule:big_step_induct)

case AssignNone thus ?case
by auto (metis aval_Some option.simps(3) subset_trans)

next
case Seq thus ?case by auto metis

next
case IfTrue thus ?case by auto blast

next
case IfFalse thus ?case by auto blast

next
case IfNone thus ?case

by auto (metis bval_Some option.simps(3) order_trans)
next

case WhileNone thus ?case
by auto (metis bval_Some option.simps(3) order_trans)

next
case (WhileTrue b s c s ′ s ′′)
from ‹D A (WHILE b DO c) A ′› obtain A ′ where D A c A ′ by blast
then obtain t ′ where s ′ = Some t ′ A ⊆ dom t ′

by (metis D_incr WhileTrue(3 ,7) subset_trans)
from WhileTrue(5)[OF this(1) WhileTrue(6) this(2)] show ?case .

qed auto

corollary sound: [[D (dom s) c A ′; (c,Some s) ⇒ s ′]] =⇒ s ′ 6= None
by (metis Sound not_Some_eq subset_refl)

end

theory Def_Init_Small
imports Star Def_Init_Exp Def_Init
begin

10.6 Initialization-Sensitive Small Step Semantics

inductive
small_step :: (com × state) ⇒ (com × state) ⇒ bool (infix ‹→› 55)

where
Assign: aval a s = Some i =⇒ (x ::= a, s) → (SKIP, s(x := Some i)) |

Seq1 : (SKIP;;c,s) → (c,s) |
Seq2 : (c1,s) → (c1 ′,s ′) =⇒ (c1;;c2,s) → (c1 ′;;c2,s ′) |

71

IfTrue: bval b s = Some True =⇒ (IF b THEN c1 ELSE c2,s) → (c1,s) |
IfFalse: bval b s = Some False =⇒ (IF b THEN c1 ELSE c2,s) → (c2,s) |

While: (WHILE b DO c,s) → (IF b THEN c;; WHILE b DO c ELSE
SKIP,s)

lemmas small_step_induct = small_step.induct[split_format(complete)]

abbreviation small_steps :: com ∗ state ⇒ com ∗ state ⇒ bool (infix
‹→∗› 55)
where x →∗ y == star small_step x y

10.7 Soundness wrt Small Steps

theorem progress:
D (dom s) c A ′ =⇒ c 6= SKIP =⇒ ∃ cs ′. (c,s) → cs ′

proof (induction c arbitrary: s A ′)
case Assign thus ?case by auto (metis aval_Some small_step.Assign)

next
case (If b c1 c2)
then obtain bv where bval b s = Some bv by (auto dest!:bval_Some)
then show ?case

by(cases bv)(auto intro: small_step.IfTrue small_step.IfFalse)
qed (fastforce intro: small_step.intros)+

lemma D_mono: D A c M =⇒ A ⊆ A ′ =⇒ ∃M ′. D A ′ c M ′ & M <=
M ′

proof (induction c arbitrary: A A ′ M)
case Seq thus ?case by auto (metis D.intros(3))

next
case (If b c1 c2)
then obtain M1 M2 where vars b ⊆ A D A c1 M1 D A c2 M2 M =

M1 ∩ M2
by auto

with If .IH ‹A ⊆ A ′› obtain M1 ′ M2 ′

where D A ′ c1 M1 ′ D A ′ c2 M2 ′ and M1 ⊆ M1 ′ M2 ⊆ M2 ′ by metis
hence D A ′ (IF b THEN c1 ELSE c2) (M1 ′ ∩ M2 ′) and M ⊆ M1 ′ ∩

M2 ′

using ‹vars b ⊆ A› ‹A ⊆ A ′› ‹M = M1 ∩ M2 › by(fastforce intro:
D.intros)+

thus ?case by metis
next

case While thus ?case by auto (metis D.intros(5) subset_trans)
qed (auto intro: D.intros)

72

theorem D_preservation:
(c,s) → (c ′,s ′) =⇒ D (dom s) c A =⇒ ∃A ′. D (dom s ′) c ′ A ′ & A <= A ′

proof (induction arbitrary: A rule: small_step_induct)
case (While b c s)
then obtain A ′ where A ′: vars b ⊆ dom s A = dom s D (dom s) c A ′

by blast
then obtain A ′′ where D A ′ c A ′′ by (metis D_incr D_mono)
with A ′ have D (dom s) (IF b THEN c;; WHILE b DO c ELSE SKIP)

(dom s)
by (metis D.If [OF ‹vars b ⊆ dom s› D.Seq[OF ‹D (dom s) c A ′›

D.While[OF _ ‹D A ′ c A ′′›]] D.Skip] D_incr Int_absorb1 subset_trans)
thus ?case by (metis D_incr ‹A = dom s›)

next
case Seq2 thus ?case by auto (metis D_mono D.intros(3))

qed (auto intro: D.intros)

theorem D_sound:
(c,s) →∗ (c ′,s ′) =⇒ D (dom s) c A ′

=⇒ (∃ cs ′′. (c ′,s ′) → cs ′′) ∨ c ′ = SKIP
apply(induction arbitrary: A ′ rule:star_induct)
apply (metis progress)
by (metis D_preservation)

end

11 Constant Folding
theory Sem_Equiv
imports Big_Step
begin

11.1 Semantic Equivalence up to a Condition

type_synonym assn = state ⇒ bool

definition
equiv_up_to :: assn ⇒ com ⇒ com ⇒ bool (‹_ |= _ ∼ _› [50 ,0 ,10] 50)

where
(P |= c ∼ c ′) = (∀ s s ′. P s −→ (c,s) ⇒ s ′←→ (c ′,s) ⇒ s ′)

definition
bequiv_up_to :: assn ⇒ bexp ⇒ bexp ⇒ bool (‹_ |= _ <∼> _› [50 ,0 ,10]

50)

73

where
(P |= b <∼> b ′) = (∀ s. P s −→ bval b s = bval b ′ s)

lemma equiv_up_to_True:
((λ_. True) |= c ∼ c ′) = (c ∼ c ′)
by (simp add: equiv_def equiv_up_to_def)

lemma equiv_up_to_weaken:
P |= c ∼ c ′ =⇒ (

∧
s. P ′ s =⇒ P s) =⇒ P ′ |= c ∼ c ′

by (simp add: equiv_up_to_def)

lemma equiv_up_toI :
(
∧

s s ′. P s =⇒ (c, s) ⇒ s ′ = (c ′, s) ⇒ s ′) =⇒ P |= c ∼ c ′

by (unfold equiv_up_to_def) blast

lemma equiv_up_toD1 :
P |= c ∼ c ′ =⇒ (c, s) ⇒ s ′ =⇒ P s =⇒ (c ′, s) ⇒ s ′

by (unfold equiv_up_to_def) blast

lemma equiv_up_toD2 :
P |= c ∼ c ′ =⇒ (c ′, s) ⇒ s ′ =⇒ P s =⇒ (c, s) ⇒ s ′

by (unfold equiv_up_to_def) blast

lemma equiv_up_to_refl [simp, intro!]:
P |= c ∼ c
by (auto simp: equiv_up_to_def)

lemma equiv_up_to_sym:
(P |= c ∼ c ′) = (P |= c ′ ∼ c)
by (auto simp: equiv_up_to_def)

lemma equiv_up_to_trans:
P |= c ∼ c ′ =⇒ P |= c ′ ∼ c ′′ =⇒ P |= c ∼ c ′′

by (auto simp: equiv_up_to_def)

lemma bequiv_up_to_refl [simp, intro!]:
P |= b <∼> b
by (auto simp: bequiv_up_to_def)

lemma bequiv_up_to_sym:
(P |= b <∼> b ′) = (P |= b ′ <∼> b)
by (auto simp: bequiv_up_to_def)

74

lemma bequiv_up_to_trans:
P |= b <∼> b ′ =⇒ P |= b ′ <∼> b ′′ =⇒ P |= b <∼> b ′′

by (auto simp: bequiv_up_to_def)

lemma bequiv_up_to_subst:
P |= b <∼> b ′ =⇒ P s =⇒ bval b s = bval b ′ s
by (simp add: bequiv_up_to_def)

lemma equiv_up_to_seq:
P |= c ∼ c ′ =⇒ Q |= d ∼ d ′ =⇒
(
∧

s s ′. (c,s) ⇒ s ′ =⇒ P s =⇒ Q s ′) =⇒
P |= (c;; d) ∼ (c ′;; d ′)
by (clarsimp simp: equiv_up_to_def) blast

lemma equiv_up_to_while_lemma_weak:
shows (d,s) ⇒ s ′ =⇒

P |= b <∼> b ′ =⇒
P |= c ∼ c ′ =⇒
(
∧

s s ′. (c, s) ⇒ s ′ =⇒ P s =⇒ bval b s =⇒ P s ′) =⇒
P s =⇒
d = WHILE b DO c =⇒
(WHILE b ′ DO c ′, s) ⇒ s ′

proof (induction rule: big_step_induct)
case (WhileTrue b s1 c s2 s3)
hence IH : P s2 =⇒ (WHILE b ′ DO c ′, s2) ⇒ s3 by auto
from WhileTrue.prems
have P |= b <∼> b ′ by simp
with ‹bval b s1 › ‹P s1 ›
have bval b ′ s1 by (simp add: bequiv_up_to_def)
moreover
from WhileTrue.prems
have P |= c ∼ c ′ by simp
with ‹bval b s1 › ‹P s1 › ‹(c, s1) ⇒ s2 ›
have (c ′, s1) ⇒ s2 by (simp add: equiv_up_to_def)
moreover
from WhileTrue.prems
have

∧
s s ′. (c,s) ⇒ s ′ =⇒ P s =⇒ bval b s =⇒ P s ′ by simp

with ‹P s1 › ‹bval b s1 › ‹(c, s1) ⇒ s2 ›
have P s2 by simp
hence (WHILE b ′ DO c ′, s2) ⇒ s3 by (rule IH)
ultimately
show ?case by blast

75

next
case WhileFalse
thus ?case by (auto simp: bequiv_up_to_def)

qed (fastforce simp: equiv_up_to_def bequiv_up_to_def)+

lemma equiv_up_to_while_weak:
assumes b: P |= b <∼> b ′

assumes c: P |= c ∼ c ′

assumes I :
∧

s s ′. (c, s) ⇒ s ′ =⇒ P s =⇒ bval b s =⇒ P s ′

shows P |= WHILE b DO c ∼ WHILE b ′ DO c ′

proof −
from b have b ′: P |= b ′ <∼> b by (simp add: bequiv_up_to_sym)

from c b have c ′: P |= c ′ ∼ c by (simp add: equiv_up_to_sym)

from I
have I ′:

∧
s s ′. (c ′, s) ⇒ s ′ =⇒ P s =⇒ bval b ′ s =⇒ P s ′

by (auto dest!: equiv_up_toD1 [OF c ′] simp: bequiv_up_to_subst [OF
b ′])

note equiv_up_to_while_lemma_weak [OF _ b c]
equiv_up_to_while_lemma_weak [OF _ b ′ c ′]

thus ?thesis using I I ′ by (auto intro!: equiv_up_toI)
qed

lemma equiv_up_to_if_weak:
P |= b <∼> b ′ =⇒ P |= c ∼ c ′ =⇒ P |= d ∼ d ′ =⇒
P |= IF b THEN c ELSE d ∼ IF b ′ THEN c ′ ELSE d ′

by (auto simp: bequiv_up_to_def equiv_up_to_def)

lemma equiv_up_to_if_True [intro!]:
(
∧

s. P s =⇒ bval b s) =⇒ P |= IF b THEN c1 ELSE c2 ∼ c1
by (auto simp: equiv_up_to_def)

lemma equiv_up_to_if_False [intro!]:
(
∧

s. P s =⇒ ¬ bval b s) =⇒ P |= IF b THEN c1 ELSE c2 ∼ c2
by (auto simp: equiv_up_to_def)

lemma equiv_up_to_while_False [intro!]:
(
∧

s. P s =⇒ ¬ bval b s) =⇒ P |= WHILE b DO c ∼ SKIP
by (auto simp: equiv_up_to_def)

lemma while_never : (c, s) ⇒ u =⇒ c 6= WHILE (Bc True) DO c ′

by (induct rule: big_step_induct) auto

76

lemma equiv_up_to_while_True [intro!,simp]:
P |= WHILE Bc True DO c ∼ WHILE Bc True DO SKIP
unfolding equiv_up_to_def
by (blast dest: while_never)

end
theory Fold imports Sem_Equiv Vars begin

11.2 Simple folding of arithmetic expressions

type_synonym
tab = vname ⇒ val option

fun afold :: aexp ⇒ tab ⇒ aexp where
afold (N n) _ = N n |
afold (V x) t = (case t x of None ⇒ V x | Some k ⇒ N k) |
afold (Plus e1 e2) t = (case (afold e1 t, afold e2 t) of
(N n1 , N n2) ⇒ N (n1+n2) | (e1 ′,e2 ′) ⇒ Plus e1 ′ e2 ′)

definition approx t s ←→ (∀ x k. t x = Some k −→ s x = k)

theorem aval_afold[simp]:
assumes approx t s
shows aval (afold a t) s = aval a s

using assms
by (induct a) (auto simp: approx_def split: aexp.split option.split)

theorem aval_afold_N :
assumes approx t s
shows afold a t = N n =⇒ aval a s = n

by (metis assms aval.simps(1) aval_afold)

definition
merge t1 t2 = (λm. if t1 m = t2 m then t1 m else None)

primrec defs :: com ⇒ tab ⇒ tab where
defs SKIP t = t |
defs (x ::= a) t =
(case afold a t of N k ⇒ t(x 7→ k) | _ ⇒ t(x:=None)) |

defs (c1 ;;c2) t = (defs c2 o defs c1) t |
defs (IF b THEN c1 ELSE c2) t = merge (defs c1 t) (defs c2 t) |
defs (WHILE b DO c) t = t |‘ (−lvars c)

77

primrec fold where
fold SKIP _ = SKIP |
fold (x ::= a) t = (x ::= (afold a t)) |
fold (c1 ;;c2) t = (fold c1 t;; fold c2 (defs c1 t)) |
fold (IF b THEN c1 ELSE c2) t = IF b THEN fold c1 t ELSE fold c2 t |
fold (WHILE b DO c) t = WHILE b DO fold c (t |‘ (−lvars c))

lemma approx_merge:
approx t1 s ∨ approx t2 s =⇒ approx (merge t1 t2) s
by (fastforce simp: merge_def approx_def)

lemma approx_map_le:
approx t2 s =⇒ t1 ⊆m t2 =⇒ approx t1 s
by (clarsimp simp: approx_def map_le_def dom_def)

lemma restrict_map_le [intro!, simp]: t |‘ S ⊆m t
by (clarsimp simp: restrict_map_def map_le_def)

lemma merge_restrict:
assumes t1 |‘ S = t |‘ S
assumes t2 |‘ S = t |‘ S
shows merge t1 t2 |‘ S = t |‘ S

proof −
from assms
have ∀ x. (t1 |‘ S) x = (t |‘ S) x
and ∀ x. (t2 |‘ S) x = (t |‘ S) x by auto

thus ?thesis
by (auto simp: merge_def restrict_map_def

split: if_splits)
qed

lemma defs_restrict:
defs c t |‘ (− lvars c) = t |‘ (− lvars c)

proof (induction c arbitrary: t)
case (Seq c1 c2)
hence defs c1 t |‘ (− lvars c1) = t |‘ (− lvars c1)

by simp
hence defs c1 t |‘ (− lvars c1) |‘ (−lvars c2) =

t |‘ (− lvars c1) |‘ (−lvars c2) by simp
moreover
from Seq
have defs c2 (defs c1 t) |‘ (− lvars c2) =

78

defs c1 t |‘ (− lvars c2)
by simp

hence defs c2 (defs c1 t) |‘ (− lvars c2) |‘ (− lvars c1) =
defs c1 t |‘ (− lvars c2) |‘ (− lvars c1)

by simp
ultimately
show ?case by (clarsimp simp: Int_commute)

next
case (If b c1 c2)
hence defs c1 t |‘ (− lvars c1) = t |‘ (− lvars c1) by simp
hence defs c1 t |‘ (− lvars c1) |‘ (−lvars c2) =

t |‘ (− lvars c1) |‘ (−lvars c2) by simp
moreover
from If
have defs c2 t |‘ (− lvars c2) = t |‘ (− lvars c2) by simp
hence defs c2 t |‘ (− lvars c2) |‘ (−lvars c1) =

t |‘ (− lvars c2) |‘ (−lvars c1) by simp
ultimately
show ?case by (auto simp: Int_commute intro: merge_restrict)

qed (auto split: aexp.split)

lemma big_step_pres_approx:
(c,s) ⇒ s ′ =⇒ approx t s =⇒ approx (defs c t) s ′

proof (induction arbitrary: t rule: big_step_induct)
case Skip thus ?case by simp

next
case Assign
thus ?case

by (clarsimp simp: aval_afold_N approx_def split: aexp.split)
next

case (Seq c1 s1 s2 c2 s3)
have approx (defs c1 t) s2 by (rule Seq.IH (1)[OF Seq.prems])
hence approx (defs c2 (defs c1 t)) s3 by (rule Seq.IH (2))
thus ?case by simp

next
case (IfTrue b s c1 s ′)
hence approx (defs c1 t) s ′ by simp
thus ?case by (simp add: approx_merge)

next
case (IfFalse b s c2 s ′)
hence approx (defs c2 t) s ′ by simp
thus ?case by (simp add: approx_merge)

next

79

case WhileFalse
thus ?case by (simp add: approx_def restrict_map_def)

next
case (WhileTrue b s1 c s2 s3)
hence approx (defs c t) s2 by simp
with WhileTrue
have approx (defs c t |‘ (−lvars c)) s3 by simp
thus ?case by (simp add: defs_restrict)

qed

lemma big_step_pres_approx_restrict:
(c,s) ⇒ s ′ =⇒ approx (t |‘ (−lvars c)) s =⇒ approx (t |‘ (−lvars c)) s ′

proof (induction arbitrary: t rule: big_step_induct)
case Assign
thus ?case by (clarsimp simp: approx_def)

next
case (Seq c1 s1 s2 c2 s3)
hence approx (t |‘ (−lvars c2) |‘ (−lvars c1)) s1

by (simp add: Int_commute)
hence approx (t |‘ (−lvars c2) |‘ (−lvars c1)) s2

by (rule Seq)
hence approx (t |‘ (−lvars c1) |‘ (−lvars c2)) s2

by (simp add: Int_commute)
hence approx (t |‘ (−lvars c1) |‘ (−lvars c2)) s3

by (rule Seq)
thus ?case by simp

next
case (IfTrue b s c1 s ′ c2)
hence approx (t |‘ (−lvars c2) |‘ (−lvars c1)) s

by (simp add: Int_commute)
hence approx (t |‘ (−lvars c2) |‘ (−lvars c1)) s ′

by (rule IfTrue)
thus ?case by (simp add: Int_commute)

next
case (IfFalse b s c2 s ′ c1)
hence approx (t |‘ (−lvars c1) |‘ (−lvars c2)) s

by simp
hence approx (t |‘ (−lvars c1) |‘ (−lvars c2)) s ′

by (rule IfFalse)
thus ?case by simp

qed auto

80

declare assign_simp [simp]

lemma approx_eq:
approx t |= c ∼ fold c t

proof (induction c arbitrary: t)
case SKIP show ?case by simp

next
case Assign
show ?case by (simp add: equiv_up_to_def)

next
case Seq
thus ?case by (auto intro!: equiv_up_to_seq big_step_pres_approx)

next
case If
thus ?case by (auto intro!: equiv_up_to_if_weak)

next
case (While b c)
hence approx (t |‘ (− lvars c)) |=

WHILE b DO c ∼ WHILE b DO fold c (t |‘ (− lvars c))
by (auto intro: equiv_up_to_while_weak big_step_pres_approx_restrict)

thus ?case
by (auto intro: equiv_up_to_weaken approx_map_le)

qed

lemma approx_empty [simp]:
approx Map.empty = (λ_. True)
by (auto simp: approx_def)

theorem constant_folding_equiv:
fold c Map.empty ∼ c
using approx_eq [of Map.empty c]
by (simp add: equiv_up_to_True sim_sym)

end

12 Live Variable Analysis
theory Live imports Vars Big_Step
begin

81

12.1 Liveness Analysis

fun L :: com ⇒ vname set ⇒ vname set where
L SKIP X = X |
L (x ::= a) X = vars a ∪ (X − {x}) |
L (c1;; c2) X = L c1 (L c2 X) |
L (IF b THEN c1 ELSE c2) X = vars b ∪ L c1 X ∪ L c2 X |
L (WHILE b DO c) X = vars b ∪ X ∪ L c X

value show (L (′′y ′′ ::= V ′′z ′′;; ′′x ′′ ::= Plus (V ′′y ′′) (V ′′z ′′)) { ′′x ′′})

value show (L (WHILE Less (V ′′x ′′) (V ′′x ′′) DO ′′y ′′ ::= V ′′z ′′) { ′′x ′′})

fun kill :: com ⇒ vname set where
kill SKIP = {} |
kill (x ::= a) = {x} |
kill (c1;; c2) = kill c1 ∪ kill c2 |
kill (IF b THEN c1 ELSE c2) = kill c1 ∩ kill c2 |
kill (WHILE b DO c) = {}

fun gen :: com ⇒ vname set where
gen SKIP = {} |
gen (x ::= a) = vars a |
gen (c1;; c2) = gen c1 ∪ (gen c2 − kill c1) |
gen (IF b THEN c1 ELSE c2) = vars b ∪ gen c1 ∪ gen c2 |
gen (WHILE b DO c) = vars b ∪ gen c

lemma L_gen_kill: L c X = gen c ∪ (X − kill c)
by(induct c arbitrary:X) auto

lemma L_While_pfp: L c (L (WHILE b DO c) X) ⊆ L (WHILE b DO c)
X
by(auto simp add:L_gen_kill)

lemma L_While_lpfp:
vars b ∪ X ∪ L c P ⊆ P =⇒ L (WHILE b DO c) X ⊆ P

by(simp add: L_gen_kill)

lemma L_While_vars: vars b ⊆ L (WHILE b DO c) X
by auto

lemma L_While_X : X ⊆ L (WHILE b DO c) X
by auto

Disable L WHILE equation and reason only with L WHILE constraints

82

declare L.simps(5)[simp del]

12.2 Correctness

theorem L_correct:
(c,s) ⇒ s ′ =⇒ s = t on L c X =⇒
∃ t ′. (c,t) ⇒ t ′ & s ′ = t ′ on X

proof (induction arbitrary: X t rule: big_step_induct)
case Skip then show ?case by auto

next
case Assign then show ?case

by (auto simp: ball_Un)
next

case (Seq c1 s1 s2 c2 s3 X t1)
from Seq.IH (1) Seq.prems obtain t2 where

t12 : (c1 , t1) ⇒ t2 and s2t2 : s2 = t2 on L c2 X
by simp blast

from Seq.IH (2)[OF s2t2] obtain t3 where
t23 : (c2 , t2) ⇒ t3 and s3t3 : s3 = t3 on X
by auto

show ?case using t12 t23 s3t3 by auto
next

case (IfTrue b s c1 s ′ c2)
hence s = t on vars b s = t on L c1 X by auto
from bval_eq_if_eq_on_vars[OF this(1)] IfTrue(1) have bval b t by

simp
from IfTrue.IH [OF ‹s = t on L c1 X›] obtain t ′ where
(c1 , t) ⇒ t ′ s ′ = t ′ on X by auto

thus ?case using ‹bval b t› by auto
next

case (IfFalse b s c2 s ′ c1)
hence s = t on vars b s = t on L c2 X by auto
from bval_eq_if_eq_on_vars[OF this(1)] IfFalse(1) have ∼bval b t by

simp
from IfFalse.IH [OF ‹s = t on L c2 X›] obtain t ′ where
(c2 , t) ⇒ t ′ s ′ = t ′ on X by auto

thus ?case using ‹∼bval b t› by auto
next

case (WhileFalse b s c)
hence ∼ bval b t

by (metis L_While_vars bval_eq_if_eq_on_vars subsetD)
thus ?case by(metis WhileFalse.prems L_While_X big_step.WhileFalse

subsetD)
next

83

case (WhileTrue b s1 c s2 s3 X t1)
let ?w = WHILE b DO c
from ‹bval b s1 › WhileTrue.prems have bval b t1

by (metis L_While_vars bval_eq_if_eq_on_vars subsetD)
have s1 = t1 on L c (L ?w X) using L_While_pfp WhileTrue.prems

by (blast)
from WhileTrue.IH (1)[OF this] obtain t2 where
(c, t1) ⇒ t2 s2 = t2 on L ?w X by auto

from WhileTrue.IH (2)[OF this(2)] obtain t3 where (?w,t2) ⇒ t3 s3 =
t3 on X

by auto
with ‹bval b t1 › ‹(c, t1) ⇒ t2 › show ?case by auto

qed

12.3 Program Optimization

Burying assignments to dead variables:

fun bury :: com ⇒ vname set ⇒ com where
bury SKIP X = SKIP |
bury (x ::= a) X = (if x ∈ X then x ::= a else SKIP) |
bury (c1;; c2) X = (bury c1 (L c2 X);; bury c2 X) |
bury (IF b THEN c1 ELSE c2) X = IF b THEN bury c1 X ELSE bury c2
X |
bury (WHILE b DO c) X = WHILE b DO bury c (L (WHILE b DO c) X)

We could prove the analogous lemma to L_correct, and the proof would
be very similar. However, we phrase it as a semantics preservation property:

theorem bury_correct:
(c,s) ⇒ s ′ =⇒ s = t on L c X =⇒
∃ t ′. (bury c X ,t) ⇒ t ′ & s ′ = t ′ on X

proof (induction arbitrary: X t rule: big_step_induct)
case Skip then show ?case by auto

next
case Assign then show ?case

by (auto simp: ball_Un)
next

case (Seq c1 s1 s2 c2 s3 X t1)
from Seq.IH (1) Seq.prems obtain t2 where

t12 : (bury c1 (L c2 X), t1) ⇒ t2 and s2t2 : s2 = t2 on L c2 X
by simp blast

from Seq.IH (2)[OF s2t2] obtain t3 where
t23 : (bury c2 X , t2) ⇒ t3 and s3t3 : s3 = t3 on X
by auto

show ?case using t12 t23 s3t3 by auto

84

next
case (IfTrue b s c1 s ′ c2)
hence s = t on vars b s = t on L c1 X by auto
from bval_eq_if_eq_on_vars[OF this(1)] IfTrue(1) have bval b t by

simp
from IfTrue.IH [OF ‹s = t on L c1 X›] obtain t ′ where
(bury c1 X , t) ⇒ t ′ s ′ =t ′ on X by auto

thus ?case using ‹bval b t› by auto
next

case (IfFalse b s c2 s ′ c1)
hence s = t on vars b s = t on L c2 X by auto
from bval_eq_if_eq_on_vars[OF this(1)] IfFalse(1) have ∼bval b t by

simp
from IfFalse.IH [OF ‹s = t on L c2 X›] obtain t ′ where
(bury c2 X , t) ⇒ t ′ s ′ = t ′ on X by auto

thus ?case using ‹∼bval b t› by auto
next

case (WhileFalse b s c)
hence ∼ bval b t by (metis L_While_vars bval_eq_if_eq_on_vars sub-

setD)
thus ?case

by simp (metis L_While_X WhileFalse.prems big_step.WhileFalse sub-
setD)
next

case (WhileTrue b s1 c s2 s3 X t1)
let ?w = WHILE b DO c
from ‹bval b s1 › WhileTrue.prems have bval b t1

by (metis L_While_vars bval_eq_if_eq_on_vars subsetD)
have s1 = t1 on L c (L ?w X)

using L_While_pfp WhileTrue.prems by blast
from WhileTrue.IH (1)[OF this] obtain t2 where
(bury c (L ?w X), t1) ⇒ t2 s2 = t2 on L ?w X by auto

from WhileTrue.IH (2)[OF this(2)] obtain t3
where (bury ?w X ,t2) ⇒ t3 s3 = t3 on X
by auto

with ‹bval b t1 › ‹(bury c (L ?w X), t1) ⇒ t2 › show ?case by auto
qed

corollary final_bury_correct: (c,s) ⇒ s ′ =⇒ (bury c UNIV ,s) ⇒ s ′

using bury_correct[of c s s ′ UNIV]
by (auto simp: fun_eq_iff [symmetric])

Now the opposite direction.

lemma SKIP_bury[simp]:

85

SKIP = bury c X ←→ c = SKIP | (∃ x a. c = x::=a & x /∈ X)
by (cases c) auto

lemma Assign_bury[simp]: x::=a = bury c X ←→ c = x::=a ∧ x ∈ X
by (cases c) auto

lemma Seq_bury[simp]: bc1;;bc2 = bury c X ←→
(∃ c1 c2. c = c1;;c2 & bc2 = bury c2 X & bc1 = bury c1 (L c2 X))

by (cases c) auto

lemma If_bury[simp]: IF b THEN bc1 ELSE bc2 = bury c X ←→
(∃ c1 c2 . c = IF b THEN c1 ELSE c2 &

bc1 = bury c1 X & bc2 = bury c2 X)
by (cases c) auto

lemma While_bury[simp]: WHILE b DO bc ′ = bury c X ←→
(∃ c ′. c = WHILE b DO c ′ & bc ′ = bury c ′ (L (WHILE b DO c ′) X))

by (cases c) auto

theorem bury_correct2 :
(bury c X ,s) ⇒ s ′ =⇒ s = t on L c X =⇒
∃ t ′. (c,t) ⇒ t ′ & s ′ = t ′ on X

proof (induction bury c X s s ′ arbitrary: c X t rule: big_step_induct)
case Skip then show ?case by auto

next
case Assign then show ?case

by (auto simp: ball_Un)
next

case (Seq bc1 s1 s2 bc2 s3 c X t1)
then obtain c1 c2 where c: c = c1 ;;c2

and bc2 : bc2 = bury c2 X and bc1 : bc1 = bury c1 (L c2 X) by auto
note IH = Seq.hyps(2 ,4)
from IH (1)[OF bc1 , of t1] Seq.prems c obtain t2 where

t12 : (c1 , t1) ⇒ t2 and s2t2 : s2 = t2 on L c2 X by auto
from IH (2)[OF bc2 s2t2] obtain t3 where

t23 : (c2 , t2) ⇒ t3 and s3t3 : s3 = t3 on X
by auto

show ?case using c t12 t23 s3t3 by auto
next

case (IfTrue b s bc1 s ′ bc2)
then obtain c1 c2 where c: c = IF b THEN c1 ELSE c2

and bc1 : bc1 = bury c1 X and bc2 : bc2 = bury c2 X by auto
have s = t on vars b s = t on L c1 X using IfTrue.prems c by auto
from bval_eq_if_eq_on_vars[OF this(1)] IfTrue(1) have bval b t by

86

simp
note IH = IfTrue.hyps(3)
from IH [OF bc1 ‹s = t on L c1 X›] obtain t ′ where
(c1 , t) ⇒ t ′ s ′ =t ′ on X by auto

thus ?case using c ‹bval b t› by auto
next

case (IfFalse b s bc2 s ′ bc1)
then obtain c1 c2 where c: c = IF b THEN c1 ELSE c2

and bc1 : bc1 = bury c1 X and bc2 : bc2 = bury c2 X by auto
have s = t on vars b s = t on L c2 X using IfFalse.prems c by auto
from bval_eq_if_eq_on_vars[OF this(1)] IfFalse(1) have ∼bval b t by

simp
note IH = IfFalse.hyps(3)
from IH [OF bc2 ‹s = t on L c2 X›] obtain t ′ where
(c2 , t) ⇒ t ′ s ′ =t ′ on X by auto

thus ?case using c ‹∼bval b t› by auto
next

case (WhileFalse b s c)
hence ∼ bval b t

by auto (metis L_While_vars bval_eq_if_eq_on_vars rev_subsetD)
thus ?case using WhileFalse

by auto (metis L_While_X big_step.WhileFalse subsetD)
next

case (WhileTrue b s1 bc ′ s2 s3 w X t1)
then obtain c ′ where w: w = WHILE b DO c ′

and bc ′: bc ′ = bury c ′ (L (WHILE b DO c ′) X) by auto
from ‹bval b s1 › WhileTrue.prems w have bval b t1

by auto (metis L_While_vars bval_eq_if_eq_on_vars subsetD)
note IH = WhileTrue.hyps(3 ,5)
have s1 = t1 on L c ′ (L w X)

using L_While_pfp WhileTrue.prems w by blast
with IH (1)[OF bc ′, of t1] w obtain t2 where
(c ′, t1) ⇒ t2 s2 = t2 on L w X by auto

from IH (2)[OF WhileTrue.hyps(6), of t2] w this(2) obtain t3
where (w,t2) ⇒ t3 s3 = t3 on X
by auto

with ‹bval b t1 › ‹(c ′, t1) ⇒ t2 › w show ?case by auto
qed

corollary final_bury_correct2 : (bury c UNIV ,s) ⇒ s ′ =⇒ (c,s) ⇒ s ′

using bury_correct2 [of c UNIV]
by (auto simp: fun_eq_iff [symmetric])

corollary bury_sim: bury c UNIV ∼ c

87

by(metis final_bury_correct final_bury_correct2)

end

12.4 True Liveness Analysis

theory Live_True
imports HOL−Library.While_Combinator Vars Big_Step
begin

12.4.1 Analysis

fun L :: com ⇒ vname set ⇒ vname set where
L SKIP X = X |
L (x ::= a) X = (if x ∈ X then vars a ∪ (X − {x}) else X) |
L (c1;; c2) X = L c1 (L c2 X) |
L (IF b THEN c1 ELSE c2) X = vars b ∪ L c1 X ∪ L c2 X |
L (WHILE b DO c) X = lfp(λY . vars b ∪ X ∪ L c Y)

lemma L_mono: mono (L c)
proof−

have X ⊆ Y =⇒ L c X ⊆ L c Y for X Y
proof(induction c arbitrary: X Y)

case (While b c)
show ?case
proof(simp, rule lfp_mono)

fix Z show vars b ∪ X ∪ L c Z ⊆ vars b ∪ Y ∪ L c Z
using While by auto

qed
next

case If thus ?case by(auto simp: subset_iff)
qed auto
thus ?thesis by(rule monoI)

qed

lemma mono_union_L:
mono (λY . X ∪ L c Y)

using L_mono unfolding mono_def by (metis (no_types) order_eq_iff
set_eq_subset sup_mono)

lemma L_While_unfold:
L (WHILE b DO c) X = vars b ∪ X ∪ L c (L (WHILE b DO c) X)

by(metis lfp_unfold[OF mono_union_L] L.simps(5))

88

lemma L_While_pfp: L c (L (WHILE b DO c) X) ⊆ L (WHILE b DO c)
X
using L_While_unfold by blast

lemma L_While_vars: vars b ⊆ L (WHILE b DO c) X
using L_While_unfold by blast

lemma L_While_X : X ⊆ L (WHILE b DO c) X
using L_While_unfold by blast

Disable L WHILE equation and reason only with L WHILE constraints:

declare L.simps(5)[simp del]

12.4.2 Correctness

theorem L_correct:
(c,s) ⇒ s ′ =⇒ s = t on L c X =⇒
∃ t ′. (c,t) ⇒ t ′ & s ′ = t ′ on X

proof (induction arbitrary: X t rule: big_step_induct)
case Skip then show ?case by auto

next
case Assign then show ?case

by (auto simp: ball_Un)
next

case (Seq c1 s1 s2 c2 s3 X t1)
from Seq.IH (1) Seq.prems obtain t2 where

t12 : (c1 , t1) ⇒ t2 and s2t2 : s2 = t2 on L c2 X
by simp blast

from Seq.IH (2)[OF s2t2] obtain t3 where
t23 : (c2 , t2) ⇒ t3 and s3t3 : s3 = t3 on X
by auto

show ?case using t12 t23 s3t3 by auto
next

case (IfTrue b s c1 s ′ c2)
hence s = t on vars b and s = t on L c1 X by auto
from bval_eq_if_eq_on_vars[OF this(1)] IfTrue(1) have bval b t by

simp
from IfTrue.IH [OF ‹s = t on L c1 X›] obtain t ′ where
(c1 , t) ⇒ t ′ s ′ = t ′ on X by auto

thus ?case using ‹bval b t› by auto
next

case (IfFalse b s c2 s ′ c1)
hence s = t on vars b s = t on L c2 X by auto
from bval_eq_if_eq_on_vars[OF this(1)] IfFalse(1) have ∼bval b t by

89

simp
from IfFalse.IH [OF ‹s = t on L c2 X›] obtain t ′ where
(c2 , t) ⇒ t ′ s ′ = t ′ on X by auto

thus ?case using ‹∼bval b t› by auto
next

case (WhileFalse b s c)
hence ∼ bval b t

by (metis L_While_vars bval_eq_if_eq_on_vars subsetD)
thus ?case using WhileFalse.prems L_While_X [of X b c] by auto

next
case (WhileTrue b s1 c s2 s3 X t1)
let ?w = WHILE b DO c
from ‹bval b s1 › WhileTrue.prems have bval b t1

by (metis L_While_vars bval_eq_if_eq_on_vars subsetD)
have s1 = t1 on L c (L ?w X) using L_While_pfp WhileTrue.prems

by (blast)
from WhileTrue.IH (1)[OF this] obtain t2 where
(c, t1) ⇒ t2 s2 = t2 on L ?w X by auto

from WhileTrue.IH (2)[OF this(2)] obtain t3 where (?w,t2) ⇒ t3 s3 =
t3 on X

by auto
with ‹bval b t1 › ‹(c, t1) ⇒ t2 › show ?case by auto

qed

12.4.3 Executability

lemma L_subset_vars: L c X ⊆ rvars c ∪ X
proof(induction c arbitrary: X)

case (While b c)
have lfp(λY . vars b ∪ X ∪ L c Y) ⊆ vars b ∪ rvars c ∪ X

using While.IH [of vars b ∪ rvars c ∪ X]
by (auto intro!: lfp_lowerbound)

thus ?case by (simp add: L.simps(5))
qed auto

Make L executable by replacing lfp with the while combinator from the-
ory HOL−Library.While_Combinator. The while combinator obeys the re-
cursion equation

while b c s = (if b s then while b c (c s) else s)

and is thus executable.

lemma L_While: fixes b c X
assumes finite X defines f == λY . vars b ∪ X ∪ L c Y
shows L (WHILE b DO c) X = while (λY . f Y 6= Y) f {} (is _ = ?r)

90

proof −
let ?V = vars b ∪ rvars c ∪ X
have lfp f = ?r
proof(rule lfp_while[where C = ?V])

show mono f by(simp add: f_def mono_union_L)
next

fix Y show Y ⊆ ?V =⇒ f Y ⊆ ?V
unfolding f_def using L_subset_vars[of c] by blast

next
show finite ?V using ‹finite X› by simp

qed
thus ?thesis by (simp add: f_def L.simps(5))

qed

lemma L_While_let: finite X =⇒ L (WHILE b DO c) X =
(let f = (λY . vars b ∪ X ∪ L c Y)
in while (λY . f Y 6= Y) f {})

by(simp add: L_While)

lemma L_While_set: L (WHILE b DO c) (set xs) =
(let f = (λY . vars b ∪ set xs ∪ L c Y)
in while (λY . f Y 6= Y) f {})

by(rule L_While_let, simp)

Replace the equation for L (WHILE . . .) by the executable L_While_set:

lemmas [code] = L.simps(1−4) L_While_set

Sorry, this syntax is odd.

A test:

lemma (let b = Less (N 0) (V ′′y ′′); c = ′′y ′′ ::= V ′′x ′′;; ′′x ′′ ::= V ′′z ′′

in L (WHILE b DO c) { ′′y ′′}) = { ′′x ′′, ′′y ′′, ′′z ′′}
by eval

12.4.4 Limiting the number of iterations

The final parameter is the default value:

fun iter :: (′a ⇒ ′a) ⇒ nat ⇒ ′a ⇒ ′a ⇒ ′a where
iter f 0 p d = d |
iter f (Suc n) p d = (if f p = p then p else iter f n (f p) d)

A version of L with a bounded number of iterations (here: 2) in the
WHILE case:

fun Lb :: com ⇒ vname set ⇒ vname set where
Lb SKIP X = X |

91

Lb (x ::= a) X = (if x ∈ X then X − {x} ∪ vars a else X) |
Lb (c1;; c2) X = (Lb c1 ◦ Lb c2) X |
Lb (IF b THEN c1 ELSE c2) X = vars b ∪ Lb c1 X ∪ Lb c2 X |
Lb (WHILE b DO c) X = iter (λA. vars b ∪ X ∪ Lb c A) 2 {} (vars b ∪
rvars c ∪ X)

Lb (and iter) is not monotone!

lemma let w = WHILE Bc False DO (′′x ′′ ::= V ′′y ′′;; ′′z ′′ ::= V ′′x ′′)
in ¬ (Lb w { ′′z ′′} ⊆ Lb w { ′′y ′′, ′′z ′′})

by eval

lemma lfp_subset_iter :
[[mono f ; !!X . f X ⊆ f ′ X ; lfp f ⊆ D]] =⇒ lfp f ⊆ iter f ′ n A D

proof(induction n arbitrary: A)
case 0 thus ?case by simp

next
case Suc thus ?case by simp (metis lfp_lowerbound)

qed

lemma L c X ⊆ Lb c X
proof(induction c arbitrary: X)

case (While b c)
let ?f = λA. vars b ∪ X ∪ L c A
let ?fb = λA. vars b ∪ X ∪ Lb c A
show ?case
proof (simp add: L.simps(5), rule lfp_subset_iter [OF mono_union_L])

show !!X . ?f X ⊆ ?fb X using While.IH by blast
show lfp ?f ⊆ vars b ∪ rvars c ∪ X

by (metis (full_types) L.simps(5) L_subset_vars rvars.simps(5))
qed

next
case Seq thus ?case by simp (metis (full_types) L_mono monoD sub-

set_trans)
qed auto

end

13 Hoare Logic

13.1 Hoare Logic for Partial Correctness

theory Hoare imports Big_Step begin

type_synonym assn = state ⇒ bool

92

definition
hoare_valid :: assn ⇒ com ⇒ assn ⇒ bool (‹|= {(1_)}/ (_)/ {(1_)}› 50)
where
|= {P}c{Q} = (∀ s t. P s ∧ (c,s) ⇒ t −→ Q t)

abbreviation state_subst :: state ⇒ aexp ⇒ vname ⇒ state
(‹_[_ ′/_]› [1000 ,0 ,0] 999)

where s[a/x] == s(x := aval a s)

inductive
hoare :: assn ⇒ com ⇒ assn ⇒ bool (‹` ({(1_)}/ (_)/ {(1_)})› 50)

where
Skip: ` {P} SKIP {P} |

Assign: ` {λs. P(s[a/x])} x::=a {P} |

Seq: [[` {P} c1 {Q}; ` {Q} c2 {R}]]
=⇒ ` {P} c1;;c2 {R} |

If : [[` {λs. P s ∧ bval b s} c1 {Q}; ` {λs. P s ∧ ¬ bval b s} c2 {Q}]]
=⇒ ` {P} IF b THEN c1 ELSE c2 {Q} |

While: ` {λs. P s ∧ bval b s} c {P} =⇒
` {P} WHILE b DO c {λs. P s ∧ ¬ bval b s} |

conseq: [[∀ s. P ′ s −→ P s; ` {P} c {Q}; ∀ s. Q s −→ Q ′ s]]
=⇒ ` {P ′} c {Q ′}

lemmas [simp] = hoare.Skip hoare.Assign hoare.Seq If

lemmas [intro!] = hoare.Skip hoare.Assign hoare.Seq hoare.If

lemma strengthen_pre:
[[∀ s. P ′ s −→ P s; ` {P} c {Q}]] =⇒ ` {P ′} c {Q}

by (blast intro: conseq)

lemma weaken_post:
[[` {P} c {Q}; ∀ s. Q s −→ Q ′ s]] =⇒ ` {P} c {Q ′}

by (blast intro: conseq)

The assignment and While rule are awkward to use in actual proofs
because their pre and postcondition are of a very special form and the actual
goal would have to match this form exactly. Therefore we derive two variants

93

with arbitrary pre and postconditions.

lemma Assign ′: ∀ s. P s −→ Q(s[a/x]) =⇒ ` {P} x ::= a {Q}
by (simp add: strengthen_pre[OF _ Assign])

lemma While ′:
assumes ` {λs. P s ∧ bval b s} c {P} and ∀ s. P s ∧ ¬ bval b s −→ Q s
shows ` {P} WHILE b DO c {Q}
by(rule weaken_post[OF While[OF assms(1)] assms(2)])

end

13.2 Examples

theory Hoare_Examples imports Hoare begin

hide_const (open) sum

Summing up the first x natural numbers in variable y.

fun sum :: int ⇒ int where
sum i = (if i ≤ 0 then 0 else sum (i − 1) + i)

lemma sum_simps[simp]:
0 < i =⇒ sum i = sum (i − 1) + i
i ≤ 0 =⇒ sum i = 0

by(simp_all)

declare sum.simps[simp del]

abbreviation wsum ==
WHILE Less (N 0) (V ′′x ′′)
DO (′′y ′′ ::= Plus (V ′′y ′′) (V ′′x ′′);;

′′x ′′ ::= Plus (V ′′x ′′) (N (− 1)))

13.2.1 Proof by Operational Semantics

The behaviour of the loop is proved by induction:

lemma while_sum:
(wsum, s) ⇒ t =⇒ t ′′y ′′ = s ′′y ′′ + sum(s ′′x ′′)

apply(induction wsum s t rule: big_step_induct)
apply(auto)
done

We were lucky that the proof was automatic, except for the induction.
In general, such proofs will not be so easy. The automation is partly due to

94

the right inversion rules that we set up as automatic elimination rules that
decompose big-step premises.

Now we prefix the loop with the necessary initialization:

lemma sum_via_bigstep:
assumes (′′y ′′ ::= N 0 ;; wsum, s) ⇒ t
shows t ′′y ′′ = sum (s ′′x ′′)

proof −
from assms have (wsum,s(′′y ′′:=0)) ⇒ t by auto
from while_sum[OF this] show ?thesis by simp

qed

13.2.2 Proof by Hoare Logic

Note that we deal with sequences of commands from right to left, pulling
back the postcondition towards the precondition.

lemma ` {λs. s ′′x ′′ = n} ′′y ′′ ::= N 0 ;; wsum {λs. s ′′y ′′ = sum n}
apply(rule Seq)
prefer 2
apply(rule While ′ [where P = λs. (s ′′y ′′ = sum n − sum(s ′′x ′′))])
apply(rule Seq)
prefer 2
apply(rule Assign)

apply(rule Assign ′)
apply simp

apply simp
apply(rule Assign ′)
apply simp
done

The proof is intentionally an apply script because it merely composes
the rules of Hoare logic. Of course, in a few places side conditions have to
be proved. But since those proofs are 1-liners, a structured proof is overkill.
In fact, we shall learn later that the application of the Hoare rules can be
automated completely and all that is left for the user is to provide the loop
invariants and prove the side-conditions.

end

13.3 Soundness and Completeness

theory Hoare_Sound_Complete
imports Hoare
begin

95

13.3.1 Soundness

lemma hoare_sound: ` {P}c{Q} =⇒ |= {P}c{Q}
proof(induction rule: hoare.induct)

case (While P b c)
have (WHILE b DO c,s) ⇒ t =⇒ P s =⇒ P t ∧ ¬ bval b t for s t
proof(induction WHILE b DO c s t rule: big_step_induct)

case WhileFalse thus ?case by blast
next

case WhileTrue thus ?case
using While.IH unfolding hoare_valid_def by blast

qed
thus ?case unfolding hoare_valid_def by blast

qed (auto simp: hoare_valid_def)

13.3.2 Weakest Precondition

definition wp :: com ⇒ assn ⇒ assn where
wp c Q = (λs. ∀ t. (c,s) ⇒ t −→ Q t)

lemma wp_SKIP[simp]: wp SKIP Q = Q
by (rule ext) (auto simp: wp_def)

lemma wp_Ass[simp]: wp (x::=a) Q = (λs. Q(s[a/x]))
by (rule ext) (auto simp: wp_def)

lemma wp_Seq[simp]: wp (c1;;c2) Q = wp c1 (wp c2 Q)
by (rule ext) (auto simp: wp_def)

lemma wp_If [simp]:
wp (IF b THEN c1 ELSE c2) Q =
(λs. if bval b s then wp c1 Q s else wp c2 Q s)

by (rule ext) (auto simp: wp_def)

lemma wp_While_If :
wp (WHILE b DO c) Q s =
wp (IF b THEN c;;WHILE b DO c ELSE SKIP) Q s

unfolding wp_def by (metis unfold_while)

lemma wp_While_True[simp]: bval b s =⇒
wp (WHILE b DO c) Q s = wp (c;; WHILE b DO c) Q s

by(simp add: wp_While_If)

lemma wp_While_False[simp]: ¬ bval b s =⇒ wp (WHILE b DO c) Q s

96

= Q s
by(simp add: wp_While_If)

13.3.3 Completeness

lemma wp_is_pre: ` {wp c Q} c {Q}
proof(induction c arbitrary: Q)

case If thus ?case by(auto intro: conseq)
next

case (While b c)
let ?w = WHILE b DO c
show ` {wp ?w Q} ?w {Q}
proof(rule While ′)

show ` {λs. wp ?w Q s ∧ bval b s} c {wp ?w Q}
proof(rule strengthen_pre[OF _ While.IH])

show ∀ s. wp ?w Q s ∧ bval b s −→ wp c (wp ?w Q) s by auto
qed
show ∀ s. wp ?w Q s ∧ ¬ bval b s −→ Q s by auto

qed
qed auto

lemma hoare_complete: assumes |= {P}c{Q} shows ` {P}c{Q}
proof(rule strengthen_pre)

show ∀ s. P s −→ wp c Q s using assms
by (auto simp: hoare_valid_def wp_def)

show ` {wp c Q} c {Q} by(rule wp_is_pre)
qed

corollary hoare_sound_complete: ` {P}c{Q} ←→ |= {P}c{Q}
by (metis hoare_complete hoare_sound)

end

13.4 Verification Condition Generation

theory VCG imports Hoare begin

13.4.1 Annotated Commands

Commands where loops are annotated with invariants.

datatype acom =
Askip (‹SKIP›) |
Aassign vname aexp (‹(_ ::= _)› [1000 , 61] 61) |
Aseq acom acom (‹_;;/ _› [60 , 61] 60) |

97

Aif bexp acom acom (‹(IF _/ THEN _/ ELSE _)› [0 , 0 , 61] 61) |
Awhile assn bexp acom (‹({_}/ WHILE _/ DO _)› [0 , 0 , 61] 61)

notation com.SKIP (‹SKIP›)

Strip annotations:

fun strip :: acom ⇒ com where
strip SKIP = SKIP |
strip (x ::= a) = (x ::= a) |
strip (C 1;; C 2) = (strip C 1;; strip C 2) |
strip (IF b THEN C 1 ELSE C 2) = (IF b THEN strip C 1 ELSE strip C 2) |
strip ({_} WHILE b DO C) = (WHILE b DO strip C)

13.4.2 Weeakest Precondistion and Verification Condition

Weakest precondition:

fun pre :: acom ⇒ assn ⇒ assn where
pre SKIP Q = Q |
pre (x ::= a) Q = (λs. Q(s(x := aval a s))) |
pre (C 1;; C 2) Q = pre C 1 (pre C 2 Q) |
pre (IF b THEN C 1 ELSE C 2) Q =
(λs. if bval b s then pre C 1 Q s else pre C 2 Q s) |

pre ({I} WHILE b DO C) Q = I

Verification condition:

fun vc :: acom ⇒ assn ⇒ bool where
vc SKIP Q = True |
vc (x ::= a) Q = True |
vc (C 1;; C 2) Q = (vc C 1 (pre C 2 Q) ∧ vc C 2 Q) |
vc (IF b THEN C 1 ELSE C 2) Q = (vc C 1 Q ∧ vc C 2 Q) |
vc ({I} WHILE b DO C) Q =
((∀ s. (I s ∧ bval b s −→ pre C I s) ∧

(I s ∧ ¬ bval b s −→ Q s)) ∧
vc C I)

13.4.3 Soundness

lemma vc_sound: vc C Q =⇒ ` {pre C Q} strip C {Q}
proof(induction C arbitrary: Q)

case (Awhile I b C)
show ?case
proof(simp, rule While ′)

from ‹vc (Awhile I b C) Q›
have vc: vc C I and IQ: ∀ s. I s ∧ ¬ bval b s −→ Q s and

98

pre: ∀ s. I s ∧ bval b s −→ pre C I s by simp_all
have ` {pre C I} strip C {I} by(rule Awhile.IH [OF vc])
with pre show ` {λs. I s ∧ bval b s} strip C {I}

by(rule strengthen_pre)
show ∀ s. I s ∧ ¬bval b s −→ Q s by(rule IQ)

qed
qed (auto intro: hoare.conseq)

corollary vc_sound ′:
[[vc C Q; ∀ s. P s −→ pre C Q s]] =⇒ ` {P} strip C {Q}

by (metis strengthen_pre vc_sound)

13.4.4 Completeness

lemma pre_mono:
∀ s. P s −→ P ′ s =⇒ pre C P s =⇒ pre C P ′ s

proof (induction C arbitrary: P P ′ s)
case Aseq thus ?case by simp metis

qed simp_all

lemma vc_mono:
∀ s. P s −→ P ′ s =⇒ vc C P =⇒ vc C P ′

proof(induction C arbitrary: P P ′)
case Aseq thus ?case by simp (metis pre_mono)

qed simp_all

lemma vc_complete:
` {P}c{Q} =⇒ ∃C . strip C = c ∧ vc C Q ∧ (∀ s. P s −→ pre C Q s)
(is _ =⇒ ∃C . ?G P c Q C)

proof (induction rule: hoare.induct)
case Skip
show ?case (is ∃C . ?C C)
proof show ?C Askip by simp qed

next
case (Assign P a x)
show ?case (is ∃C . ?C C)
proof show ?C (Aassign x a) by simp qed

next
case (Seq P c1 Q c2 R)
from Seq.IH obtain C1 where ih1 : ?G P c1 Q C1 by blast
from Seq.IH obtain C2 where ih2 : ?G Q c2 R C2 by blast
show ?case (is ∃C . ?C C)
proof

show ?C (Aseq C1 C2)

99

using ih1 ih2 by (fastforce elim!: pre_mono vc_mono)
qed

next
case (If P b c1 Q c2)
from If .IH obtain C1 where ih1 : ?G (λs. P s ∧ bval b s) c1 Q C1

by blast
from If .IH obtain C2 where ih2 : ?G (λs. P s ∧ ¬bval b s) c2 Q C2

by blast
show ?case (is ∃C . ?C C)
proof

show ?C (Aif b C1 C2) using ih1 ih2 by simp
qed

next
case (While P b c)
from While.IH obtain C where ih: ?G (λs. P s ∧ bval b s) c P C by

blast
show ?case (is ∃C . ?C C)
proof show ?C (Awhile P b C) using ih by simp qed

next
case conseq thus ?case by(fast elim!: pre_mono vc_mono)

qed

end

13.5 Hoare Logic for Total Correctness

13.5.1 Separate Termination Relation

theory Hoare_Total
imports Hoare_Examples
begin

Note that this definition of total validity |=t only works if execution is
deterministic (which it is in our case).

definition hoare_tvalid :: assn ⇒ com ⇒ assn ⇒ bool
(‹|=t {(1_)}/ (_)/ {(1_)}› 50) where
|=t {P}c{Q} ←→ (∀ s. P s −→ (∃ t. (c,s) ⇒ t ∧ Q t))

Provability of Hoare triples in the proof system for total correctness is
written `t {P}c{Q} and defined inductively. The rules for `t differ from
those for ` only in the one place where nontermination can arise: the While-
rule.

inductive
hoaret :: assn ⇒ com ⇒ assn ⇒ bool (‹`t ({(1_)}/ (_)/ {(1_)})› 50)

where

100

Skip: `t {P} SKIP {P} |

Assign: `t {λs. P(s[a/x])} x::=a {P} |

Seq: [[`t {P1} c1 {P2}; `t {P2} c2 {P3}]] =⇒ `t {P1} c1;;c2 {P3} |

If : [[`t {λs. P s ∧ bval b s} c1 {Q}; `t {λs. P s ∧ ¬ bval b s} c2 {Q}]]
=⇒ `t {P} IF b THEN c1 ELSE c2 {Q} |

While:
(
∧

n::nat.
`t {λs. P s ∧ bval b s ∧ T s n} c {λs. P s ∧ (∃n ′<n. T s n ′)})
=⇒ `t {λs. P s ∧ (∃n. T s n)} WHILE b DO c {λs. P s ∧ ¬bval b s} |

conseq: [[∀ s. P ′ s −→ P s; `t {P}c{Q}; ∀ s. Q s −→ Q ′ s]] =⇒
`t {P ′}c{Q ′}

The While-rule is like the one for partial correctness but it requires ad-
ditionally that with every execution of the loop body some measure relation
T :: state ⇒ nat ⇒ bool decreases. The following functional version is more
intuitive:

lemma While_fun:
[[
∧

n::nat. `t {λs. P s ∧ bval b s ∧ n = f s} c {λs. P s ∧ f s < n}]]
=⇒ `t {P} WHILE b DO c {λs. P s ∧ ¬bval b s}

by (rule While [where T=λs n. n = f s, simplified])

Building in the consequence rule:

lemma strengthen_pre:
[[∀ s. P ′ s −→ P s; `t {P} c {Q}]] =⇒ `t {P ′} c {Q}

by (metis conseq)

lemma weaken_post:
[[`t {P} c {Q}; ∀ s. Q s −→ Q ′ s]] =⇒ `t {P} c {Q ′}

by (metis conseq)

lemma Assign ′: ∀ s. P s −→ Q(s[a/x]) =⇒ `t {P} x ::= a {Q}
by (simp add: strengthen_pre[OF _ Assign])

lemma While_fun ′:
assumes

∧
n::nat. `t {λs. P s ∧ bval b s ∧ n = f s} c {λs. P s ∧ f s < n}

and ∀ s. P s ∧ ¬ bval b s −→ Q s
shows `t {P} WHILE b DO c {Q}
by(blast intro: assms(1) weaken_post[OF While_fun assms(2)])

101

Our standard example:

lemma `t {λs. s ′′x ′′ = i} ′′y ′′ ::= N 0 ;; wsum {λs. s ′′y ′′ = sum i}
apply(rule Seq)
prefer 2
apply(rule While_fun ′ [where P = λs. (s ′′y ′′ = sum i − sum(s ′′x ′′))

and f = λs. nat(s ′′x ′′)])
apply(rule Seq)
prefer 2
apply(rule Assign)

apply(rule Assign ′)
apply simp

apply(simp)
apply(rule Assign ′)
apply simp
done

Nested loops. This poses a problem for VCGs because the proof of
the inner loop needs to refer to outer loops. This works here because the
invariant is not written down statically but created in the context of a proof
that has already introduced/fixed outer ns that can be referred to.

lemma
`t {λ_. True}
WHILE Less (N 0) (V ′′x ′′)
DO (′′x ′′ ::= Plus (V ′′x ′′) (N (−1));;

′′y ′′ ::= V ′′x ′′;;
WHILE Less (N 0) (V ′′y ′′) DO ′′y ′′ ::= Plus (V ′′y ′′) (N (−1)))

{λ_. True}
apply(rule While_fun ′[where f = λs. nat(s ′′x ′′)])
prefer 2 apply simp

apply(rule_tac P2 = λs. nat(s ′′x ′′) < n in Seq)
apply(rule_tac P2 = λs. nat(s ′′x ′′) < n in Seq)
apply(rule Assign ′)
apply simp

apply(rule Assign ′)
apply simp

apply(rule While_fun ′[where f = λs. nat(s ′′y ′′)])
prefer 2 apply simp

apply(rule Assign ′)
apply simp
done

The soundness theorem:

theorem hoaret_sound: `t {P}c{Q} =⇒ |=t {P}c{Q}

102

proof(unfold hoare_tvalid_def , induction rule: hoaret.induct)
case (While P b T c)
have [[P s; T s n]] =⇒ ∃ t. (WHILE b DO c, s) ⇒ t ∧ P t ∧ ¬ bval b t

for s n
proof(induction n arbitrary: s rule: less_induct)

case (less n) thus ?case by (metis While.IH WhileFalse WhileTrue)
qed
thus ?case by auto

next
case If thus ?case by auto blast

qed fastforce+

The completeness proof proceeds along the same lines as the one for
partial correctness. First we have to strengthen our notion of weakest pre-
condition to take termination into account:

definition wpt :: com ⇒ assn ⇒ assn (‹wpt›) where
wpt c Q = (λs. ∃ t. (c,s) ⇒ t ∧ Q t)

lemma [simp]: wpt SKIP Q = Q
by(auto intro!: ext simp: wpt_def)

lemma [simp]: wpt (x ::= e) Q = (λs. Q(s(x := aval e s)))
by(auto intro!: ext simp: wpt_def)

lemma [simp]: wpt (c1;;c2) Q = wpt c1 (wpt c2 Q)
unfolding wpt_def
apply(rule ext)
apply auto
done

lemma [simp]:
wpt (IF b THEN c1 ELSE c2) Q = (λs. wpt (if bval b s then c1 else c2) Q

s)
apply(unfold wpt_def)
apply(rule ext)
apply auto
done

Now we define the number of iterations WHILE b DO c needs to ter-
minate when started in state s. Because this is a truly partial function, we
define it as an (inductive) relation first:

inductive Its :: bexp ⇒ com ⇒ state ⇒ nat ⇒ bool where
Its_0 : ¬ bval b s =⇒ Its b c s 0 |
Its_Suc: [[bval b s; (c,s) ⇒ s ′; Its b c s ′ n]] =⇒ Its b c s (Suc n)

103

The relation is in fact a function:
lemma Its_fun: Its b c s n =⇒ Its b c s n ′ =⇒ n=n ′

proof(induction arbitrary: n ′ rule:Its.induct)
case Its_0 thus ?case by(metis Its.cases)

next
case Its_Suc thus ?case by(metis Its.cases big_step_determ)

qed
For all terminating loops, Its yields a result:

lemma WHILE_Its: (WHILE b DO c,s) ⇒ t =⇒ ∃n. Its b c s n
proof(induction WHILE b DO c s t rule: big_step_induct)

case WhileFalse thus ?case by (metis Its_0)
next

case WhileTrue thus ?case by (metis Its_Suc)
qed

lemma wpt_is_pre: `t {wpt c Q} c {Q}
proof (induction c arbitrary: Q)

case SKIP show ?case by (auto intro:hoaret.Skip)
next

case Assign show ?case by (auto intro:hoaret.Assign)
next

case Seq thus ?case by (auto intro:hoaret.Seq)
next

case If thus ?case by (auto intro:hoaret.If hoaret.conseq)
next

case (While b c)
let ?w = WHILE b DO c
let ?T = Its b c
have 1 : ∀ s. wpt ?w Q s −→ wpt ?w Q s ∧ (∃n. Its b c s n)

unfolding wpt_def by (metis WHILE_Its)
let ?R = λn s ′. wpt ?w Q s ′ ∧ (∃n ′<n. ?T s ′ n ′)
have ∀ s. wpt ?w Q s ∧ bval b s ∧ ?T s n −→ wpt c (?R n) s for n
proof −

have wpt c (?R n) s if bval b s and ?T s n and (?w, s) ⇒ t and Q t
for s t

proof −
from ‹bval b s› and ‹(?w, s) ⇒ t› obtain s ′ where
(c,s) ⇒ s ′ (?w,s ′) ⇒ t by auto

from ‹(?w, s ′) ⇒ t› obtain n ′ where ?T s ′ n ′

by (blast dest: WHILE_Its)
with ‹bval b s› and ‹(c, s) ⇒ s ′› have ?T s (Suc n ′) by (rule Its_Suc)
with ‹?T s n› have n = Suc n ′ by (rule Its_fun)
with ‹(c,s) ⇒ s ′› and ‹(?w,s ′) ⇒ t› and ‹Q t› and ‹?T s ′ n ′›

104

show ?thesis by (auto simp: wpt_def)
qed
thus ?thesis

unfolding wpt_def by auto

qed
note 2 = hoaret.While[OF strengthen_pre[OF this While.IH]]
have ∀ s. wpt ?w Q s ∧ ¬ bval b s −→ Q s

by (auto simp add:wpt_def)
with 1 2 show ?case by (rule conseq)

qed

In the While-case, Its provides the obvious termination argument.
The actual completeness theorem follows directly, in the same manner

as for partial correctness:

theorem hoaret_complete: |=t {P}c{Q} =⇒ `t {P}c{Q}
apply(rule strengthen_pre[OF _ wpt_is_pre])
apply(auto simp: hoare_tvalid_def wpt_def)
done

corollary hoaret_sound_complete: `t {P}c{Q} ←→ |=t {P}c{Q}
by (metis hoaret_sound hoaret_complete)

end

13.5.2 nat-Indexed Invariant

theory Hoare_Total_EX
imports Hoare
begin

This is the standard set of rules that you find in many publications.
The While-rule is different from the one in Concrete Semantics in that the
invariant is indexed by natural numbers and goes down by 1 with every
iteration. The completeness proof is easier but the rule is harder to apply
in program proofs.

definition hoare_tvalid :: assn ⇒ com ⇒ assn ⇒ bool
(‹|=t {(1_)}/ (_)/ {(1_)}› 50) where
|=t {P}c{Q} ←→ (∀ s. P s −→ (∃ t. (c,s) ⇒ t ∧ Q t))

inductive
hoaret :: assn ⇒ com ⇒ assn ⇒ bool (‹`t ({(1_)}/ (_)/ {(1_)})› 50)

where

105

Skip: `t {P} SKIP {P} |

Assign: `t {λs. P(s[a/x])} x::=a {P} |

Seq: [[`t {P1} c1 {P2}; `t {P2} c2 {P3}]] =⇒ `t {P1} c1;;c2 {P3} |

If : [[`t {λs. P s ∧ bval b s} c1 {Q}; `t {λs. P s ∧ ¬ bval b s} c2 {Q}]]
=⇒ `t {P} IF b THEN c1 ELSE c2 {Q} |

While:
[[
∧

n::nat. `t {P (Suc n)} c {P n};
∀n s. P (Suc n) s −→ bval b s; ∀ s. P 0 s −→ ¬ bval b s]]

=⇒ `t {λs. ∃n. P n s} WHILE b DO c {P 0} |

conseq: [[∀ s. P ′ s −→ P s; `t {P}c{Q}; ∀ s. Q s −→ Q ′ s]] =⇒
`t {P ′}c{Q ′}

Building in the consequence rule:

lemma strengthen_pre:
[[∀ s. P ′ s −→ P s; `t {P} c {Q}]] =⇒ `t {P ′} c {Q}

by (metis conseq)

lemma weaken_post:
[[`t {P} c {Q}; ∀ s. Q s −→ Q ′ s]] =⇒ `t {P} c {Q ′}

by (metis conseq)

lemma Assign ′: ∀ s. P s −→ Q(s[a/x]) =⇒ `t {P} x ::= a {Q}
by (simp add: strengthen_pre[OF _ Assign])

The soundness theorem:

theorem hoaret_sound: `t {P}c{Q} =⇒ |=t {P}c{Q}
proof(unfold hoare_tvalid_def , induction rule: hoaret.induct)

case (While P c b)
have P n s =⇒ ∃ t. (WHILE b DO c, s) ⇒ t ∧ P 0 t for n s
proof(induction n arbitrary: s)

case 0 thus ?case using While.hyps(3) WhileFalse by blast
next

case Suc
thus ?case by (meson While.IH While.hyps(2) WhileTrue)

qed
thus ?case by auto

next
case If thus ?case by auto blast

qed fastforce+

106

definition wpt :: com ⇒ assn ⇒ assn (‹wpt›) where
wpt c Q = (λs. ∃ t. (c,s) ⇒ t ∧ Q t)

lemma [simp]: wpt SKIP Q = Q
by(auto intro!: ext simp: wpt_def)

lemma [simp]: wpt (x ::= e) Q = (λs. Q(s(x := aval e s)))
by(auto intro!: ext simp: wpt_def)

lemma [simp]: wpt (c1;;c2) Q = wpt c1 (wpt c2 Q)
unfolding wpt_def
apply(rule ext)
apply auto
done

lemma [simp]:
wpt (IF b THEN c1 ELSE c2) Q = (λs. wpt (if bval b s then c1 else c2) Q

s)
apply(unfold wpt_def)
apply(rule ext)
apply auto
done

Function wpw computes the weakest precondition of a While-loop that
is unfolded a fixed number of times.

fun wpw :: bexp ⇒ com ⇒ nat ⇒ assn ⇒ assn where
wpw b c 0 Q s = (¬ bval b s ∧ Q s) |
wpw b c (Suc n) Q s = (bval b s ∧ (∃ s ′. (c,s) ⇒ s ′ ∧ wpw b c n Q s ′))

lemma WHILE_Its: (WHILE b DO c,s) ⇒ t =⇒ Q t =⇒ ∃n. wpw b c n
Q s
proof(induction WHILE b DO c s t rule: big_step_induct)

case WhileFalse thus ?case using wpw.simps(1) by blast
next

case WhileTrue thus ?case using wpw.simps(2) by blast
qed

lemma wpt_is_pre: `t {wpt c Q} c {Q}
proof (induction c arbitrary: Q)

case SKIP show ?case by (auto intro:hoaret.Skip)
next

case Assign show ?case by (auto intro:hoaret.Assign)

107

next
case Seq thus ?case by (auto intro:hoaret.Seq)

next
case If thus ?case by (auto intro:hoaret.If hoaret.conseq)

next
case (While b c)
let ?w = WHILE b DO c
have c1 : ∀ s. wpt ?w Q s −→ (∃n. wpw b c n Q s)

unfolding wpt_def by (metis WHILE_Its)
have c3 : ∀ s. wpw b c 0 Q s −→ Q s by simp
have w2 : ∀n s. wpw b c (Suc n) Q s −→ bval b s by simp
have w3 : ∀ s. wpw b c 0 Q s −→ ¬ bval b s by simp
have `t {wpw b c (Suc n) Q} c {wpw b c n Q} for n
proof −

have ∗: ∀ s. wpw b c (Suc n) Q s −→ (∃ t. (c, s) ⇒ t ∧ wpw b c n Q t)
by simp

show ?thesis by(rule strengthen_pre[OF ∗ While.IH [of wpw b c n Q,
unfolded wpt_def]])

qed
from conseq[OF c1 hoaret.While[OF this w2 w3] c3]
show ?case .

qed

theorem hoaret_complete: |=t {P}c{Q} =⇒ `t {P}c{Q}
apply(rule strengthen_pre[OF _ wpt_is_pre])
apply(auto simp: hoare_tvalid_def wpt_def)
done

corollary hoaret_sound_complete: `t {P}c{Q} ←→ |=t {P}c{Q}
by (metis hoaret_sound hoaret_complete)

Two examples:

lemma `t
{λs. ∃n. n = nat(s ′′x ′′)}
WHILE Less (N 0) (V ′′x ′′) DO ′′x ′′ ::= Plus (V ′′x ′′) (N (−1))
{λs. s ′′x ′′ ≤ 0}
apply(rule weaken_post)
apply(rule While)

apply(rule Assign ′)
apply auto

done

lemma `t
{λs. ∃n. n = nat(s ′′x ′′)}

108

WHILE Less (N 0) (V ′′x ′′)
DO (′′x ′′ ::= Plus (V ′′x ′′) (N (−1));;

(′′y ′′ ::= V ′′x ′′;;
WHILE Less (N 0) (V ′′y ′′) DO ′′y ′′ ::= Plus (V ′′y ′′) (N (−1))))

{λs. s ′′x ′′ ≤ 0}
apply(rule weaken_post)
apply(rule While)

defer
apply auto[3]

apply(rule Seq)
prefer 2
apply(rule Seq)
prefer 2
apply(rule weaken_post)
apply(rule_tac P = λm s. n = nat(s ′′x ′′) ∧ m = nat(s ′′y ′′) in While)

apply(rule Assign ′)
apply auto[4]

apply(rule Assign)
apply(rule Assign ′)
apply auto
done

end

13.6 Verification Conditions for Total Correctness

13.6.1 The Standard Approach

theory VCG_Total_EX
imports Hoare_Total_EX
begin

Annotated commands: commands where loops are annotated with in-
variants.

datatype acom =
Askip (‹SKIP›) |
Aassign vname aexp (‹(_ ::= _)› [1000 , 61] 61) |
Aseq acom acom (‹_;;/ _› [60 , 61] 60) |
Aif bexp acom acom (‹(IF _/ THEN _/ ELSE _)› [0 , 0 , 61] 61) |
Awhile nat ⇒ assn bexp acom
(‹({_}/ WHILE _/ DO _)› [0 , 0 , 61] 61)

notation com.SKIP (‹SKIP›)

Strip annotations:

109

fun strip :: acom ⇒ com where
strip SKIP = SKIP |
strip (x ::= a) = (x ::= a) |
strip (C 1;; C 2) = (strip C 1;; strip C 2) |
strip (IF b THEN C 1 ELSE C 2) = (IF b THEN strip C 1 ELSE strip C 2) |
strip ({_} WHILE b DO C) = (WHILE b DO strip C)

Weakest precondition from annotated commands:
fun pre :: acom ⇒ assn ⇒ assn where
pre SKIP Q = Q |
pre (x ::= a) Q = (λs. Q(s(x := aval a s))) |
pre (C 1;; C 2) Q = pre C 1 (pre C 2 Q) |
pre (IF b THEN C 1 ELSE C 2) Q =
(λs. if bval b s then pre C 1 Q s else pre C 2 Q s) |

pre ({I} WHILE b DO C) Q = (λs. ∃n. I n s)
Verification condition:

fun vc :: acom ⇒ assn ⇒ bool where
vc SKIP Q = True |
vc (x ::= a) Q = True |
vc (C 1;; C 2) Q = (vc C 1 (pre C 2 Q) ∧ vc C 2 Q) |
vc (IF b THEN C 1 ELSE C 2) Q = (vc C 1 Q ∧ vc C 2 Q) |
vc ({I} WHILE b DO C) Q =
(∀ s n. (I (Suc n) s −→ pre C (I n) s) ∧

(I (Suc n) s −→ bval b s) ∧
(I 0 s −→ ¬ bval b s ∧ Q s) ∧
vc C (I n))

lemma vc_sound: vc C Q =⇒ `t {pre C Q} strip C {Q}
proof(induction C arbitrary: Q)

case (Awhile I b C)
show ?case
proof(simp, rule conseq[OF _ While[of I]], goal_cases)

case (2 n) show ?case
using Awhile.IH [of I n] Awhile.prems
by (auto intro: strengthen_pre)

qed (insert Awhile.prems, auto)
qed (auto intro: conseq Seq If simp: Skip Assign)

When trying to extend the completeness proof of the VCG for partial
correctness to total correctness one runs into the following problem. In
the case of the while-rule, the universally quantified n in the first premise
means that for that premise the induction hypothesis does not yield a single
annotated command C but merely that for every n such a C exists.
end

110

13.6.2 Hoare Logic for Total Correctness With Logical Variables

theory Hoare_Total_EX2
imports Hoare
begin

This is the standard set of rules that you find in many publications.
In the while-rule, a logical variable is needed to remember the pre-value
of the variant (an expression that decreases by one with each iteration).
In this theory, logical variables are modeled explicitly. A simpler (but not
quite as flexible) approach is found in theory Hoare_Total_EX : pre and
post-condition are connected via a universally quantified HOL variable.
type_synonym lvname = string
type_synonym assn2 = (lvname ⇒ nat) ⇒ state ⇒ bool

definition hoare_tvalid :: assn2 ⇒ com ⇒ assn2 ⇒ bool
(‹|=t {(1_)}/ (_)/ {(1_)}› 50) where
|=t {P}c{Q} ←→ (∀ l s. P l s −→ (∃ t. (c,s) ⇒ t ∧ Q l t))

inductive
hoaret :: assn2 ⇒ com ⇒ assn2 ⇒ bool (‹`t ({(1_)}/ (_)/ {(1_)})› 50)

where

Skip: `t {P} SKIP {P} |

Assign: `t {λl s. P l (s[a/x])} x::=a {P} |

Seq: [[`t {P1} c1 {P2}; `t {P2} c2 {P3}]] =⇒ `t {P1} c1;;c2 {P3} |

If : [[`t {λl s. P l s ∧ bval b s} c1 {Q}; `t {λl s. P l s ∧ ¬ bval b s} c2 {Q}
]]
=⇒ `t {P} IF b THEN c1 ELSE c2 {Q} |

While:
[[`t {λl. P (l(x := Suc(l(x))))} c {P};
∀ l s. l x > 0 ∧ P l s −→ bval b s;
∀ l s. l x = 0 ∧ P l s −→ ¬ bval b s]]

=⇒ `t {λl s. ∃n. P (l(x:=n)) s} WHILE b DO c {λl s. P (l(x := 0)) s}
|

conseq: [[∀ l s. P ′ l s −→ P l s; `t {P}c{Q}; ∀ l s. Q l s −→ Q ′ l s]] =⇒
`t {P ′}c{Q ′}

Building in the consequence rule:
lemma strengthen_pre:

111

[[∀ l s. P ′ l s −→ P l s; `t {P} c {Q}]] =⇒ `t {P ′} c {Q}
by (metis conseq)

lemma weaken_post:
[[`t {P} c {Q}; ∀ l s. Q l s −→ Q ′ l s]] =⇒ `t {P} c {Q ′}

by (metis conseq)

lemma Assign ′: ∀ l s. P l s −→ Q l (s[a/x]) =⇒ `t {P} x ::= a {Q}
by (simp add: strengthen_pre[OF _ Assign])

The soundness theorem:

theorem hoaret_sound: `t {P}c{Q} =⇒ |=t {P}c{Q}
proof(unfold hoare_tvalid_def , induction rule: hoaret.induct)

case (While P x c b)
have [[l x = n; P l s]] =⇒ ∃ t. (WHILE b DO c, s) ⇒ t ∧ P (l(x := 0))

t for n l s
proof(induction n arbitrary: l s)

case 0 thus ?case using While.hyps(3) WhileFalse
by (metis fun_upd_triv)

next
case Suc
thus ?case using While.IH While.hyps(2) WhileTrue

by (metis fun_upd_same fun_upd_triv fun_upd_upd zero_less_Suc)
qed
thus ?case by fastforce

next
case If thus ?case by auto blast

qed fastforce+

definition wpt :: com ⇒ assn2 ⇒ assn2 (‹wpt›) where
wpt c Q = (λl s. ∃ t. (c,s) ⇒ t ∧ Q l t)

lemma [simp]: wpt SKIP Q = Q
by(auto intro!: ext simp: wpt_def)

lemma [simp]: wpt (x ::= e) Q = (λl s. Q l (s(x := aval e s)))
by(auto intro!: ext simp: wpt_def)

lemma wpt_Seq[simp]: wpt (c1;;c2) Q = wpt c1 (wpt c2 Q)
by (auto simp: wpt_def fun_eq_iff)

lemma [simp]:
wpt (IF b THEN c1 ELSE c2) Q = (λl s. wpt (if bval b s then c1 else c2)

112

Q l s)
by (auto simp: wpt_def fun_eq_iff)

Function wpw computes the weakest precondition of a While-loop that
is unfolded a fixed number of times.

fun wpw :: bexp ⇒ com ⇒ nat ⇒ assn2 ⇒ assn2 where
wpw b c 0 Q l s = (¬ bval b s ∧ Q l s) |
wpw b c (Suc n) Q l s = (bval b s ∧ (∃ s ′. (c,s) ⇒ s ′ ∧ wpw b c n Q l s ′))

lemma WHILE_Its:
(WHILE b DO c,s) ⇒ t =⇒ Q l t =⇒ ∃n. wpw b c n Q l s

proof(induction WHILE b DO c s t arbitrary: l rule: big_step_induct)
case WhileFalse thus ?case using wpw.simps(1) by blast

next
case WhileTrue show ?case

using wpw.simps(2) WhileTrue(1 ,2) WhileTrue(5)[OF WhileTrue(6)]
by blast
qed

definition support :: assn2 ⇒ string set where
support P = {x. ∃ l1 l2 s. (∀ y. y 6= x −→ l1 y = l2 y) ∧ P l1 s 6= P l2 s}

lemma support_wpt: support (wpt c Q) ⊆ support Q
by(simp add: support_def wpt_def) blast

lemma support_wpw0 : support (wpw b c n Q) ⊆ support Q
proof(induction n)

case 0 show ?case by (simp add: support_def) blast
next

case Suc
have 1 : support (λl s. A s ∧ B l s) ⊆ support B for A B

by(auto simp: support_def)
have 2 : support (λl s. ∃ s ′. A s s ′ ∧ B l s ′) ⊆ support B for A B

by(auto simp: support_def) blast+
from Suc 1 2 show ?case by simp (meson order_trans)

qed

lemma support_wpw_Un:
support (%l. wpw b c (l x) Q l) ⊆ insert x (UN n. support(wpw b c n Q))

using support_wpw0 [of b c _ Q]
apply(auto simp add: support_def subset_iff)
apply metis
apply metis

113

done

lemma support_wpw: support (%l. wpw b c (l x) Q l) ⊆ insert x (support
Q)
using support_wpw0 [of b c _ Q] support_wpw_Un[of b c _ Q]
by blast

lemma assn2_lupd: x /∈ support Q =⇒ Q (l(x:=n)) = Q l
by(simp add: support_def fun_upd_other fun_eq_iff)
(metis (no_types, lifting) fun_upd_def)

abbreviation new Q ≡ SOME x. x /∈ support Q

lemma wpw_lupd: x /∈ support Q =⇒ wpw b c n Q (l(x := u)) = wpw b c
n Q l
by(induction n) (auto simp: assn2_lupd fun_eq_iff)

lemma wpt_is_pre: finite(support Q) =⇒ `t {wpt c Q} c {Q}
proof (induction c arbitrary: Q)

case SKIP show ?case by (auto intro:hoaret.Skip)
next

case Assign show ?case by (auto intro:hoaret.Assign)
next

case (Seq c1 c2) show ?case
by (auto intro:hoaret.Seq Seq finite_subset[OF support_wpt])

next
case If thus ?case by (auto intro:hoaret.If hoaret.conseq)

next
case (While b c)
let ?x = new Q
have ∃ x. x /∈ support Q using While.prems infinite_UNIV_listI

using ex_new_if_finite by blast
hence [simp]: ?x /∈ support Q by (rule someI_ex)
let ?w = WHILE b DO c
have fsup: finite (support (λl. wpw b c (l x) Q l)) for x

using finite_subset[OF support_wpw] While.prems by simp
have c1 : ∀ l s. wpt ?w Q l s −→ (∃n. wpw b c n Q l s)

unfolding wpt_def by (metis WHILE_Its)
have c2 : ∀ l s. l ?x = 0 ∧ wpw b c (l ?x) Q l s −→ ¬ bval b s

by (simp cong: conj_cong)
have w2 : ∀ l s. 0 < l ?x ∧ wpw b c (l ?x) Q l s −→ bval b s

by (auto simp: gr0_conv_Suc cong: conj_cong)
have 1 : ∀ l s. wpw b c (Suc(l ?x)) Q l s −→

(∃ t. (c, s) ⇒ t ∧ wpw b c (l ?x) Q l t)

114

by simp
have ∗: `t {λl. wpw b c (Suc (l ?x)) Q l} c {λl. wpw b c (l ?x) Q l}

by(rule strengthen_pre[OF 1
While.IH [of λl. wpw b c (l ?x) Q l, unfolded wpt_def , OF fsup]])

show ?case
apply(rule conseq[OF _ hoaret.While[OF _ w2 c2]])

apply (simp_all add: c1 ∗ assn2_lupd wpw_lupd del: wpw.simps(2))
done

qed

theorem hoaret_complete: finite(support Q) =⇒ |=t {P}c{Q} =⇒ `t {P}c{Q}
apply(rule strengthen_pre[OF _ wpt_is_pre])
apply(auto simp: hoare_tvalid_def wpt_def)
done

Two examples:

lemma `t
{λl s. l ′′x ′′ = nat(s ′′x ′′)}
WHILE Less (N 0) (V ′′x ′′) DO ′′x ′′ ::= Plus (V ′′x ′′) (N (−1))
{λl s. s ′′x ′′ ≤ 0}
apply(rule conseq)
prefer 2
apply(rule While[where P = λl s. l ′′x ′′ = nat(s ′′x ′′) and x = ′′x ′′])

apply(rule Assign ′)
apply auto

done

lemma `t
{λl s. l ′′x ′′ = nat(s ′′x ′′)}
WHILE Less (N 0) (V ′′x ′′)
DO (′′x ′′ ::= Plus (V ′′x ′′) (N (−1));;

(′′y ′′ ::= V ′′x ′′;;
WHILE Less (N 0) (V ′′y ′′) DO ′′y ′′ ::= Plus (V ′′y ′′) (N (−1))))

{λl s. s ′′x ′′ ≤ 0}
apply(rule conseq)
prefer 2
apply(rule While[where P = λl s. l ′′x ′′ = nat(s ′′x ′′) and x = ′′x ′′])

defer
apply auto

apply(rule Seq)
prefer 2
apply(rule Seq)
prefer 2
apply(rule weaken_post)

115

apply(rule_tac P = λl s. l ′′x ′′ = nat(s ′′x ′′) ∧ l ′′y ′′ = nat(s ′′y ′′) and
x = ′′y ′′ in While)

apply(rule Assign ′)
apply auto[4]

apply(rule Assign)
apply(rule Assign ′)
apply auto
done

end

13.6.3 VCG for Total Correctness With Logical Variables

theory VCG_Total_EX2
imports Hoare_Total_EX2
begin

Theory VCG_Total_EX conatins a VCG built on top of a Hoare logic
without logical variables. As a result the completeness proof runs into a
problem. This theory uses a Hoare logic with logical variables and proves
soundness and completeness.

Annotated commands: commands where loops are annotated with in-
variants.

datatype acom =
Askip (‹SKIP›) |
Aassign vname aexp (‹(_ ::= _)› [1000 , 61] 61) |
Aseq acom acom (‹_;;/ _› [60 , 61] 60) |
Aif bexp acom acom (‹(IF _/ THEN _/ ELSE _)› [0 , 0 , 61] 61) |
Awhile assn2 lvname bexp acom
(‹({_ ′/_}/ WHILE _/ DO _)› [0 , 0 , 0 , 61] 61)

notation com.SKIP (‹SKIP›)

Strip annotations:

fun strip :: acom ⇒ com where
strip SKIP = SKIP |
strip (x ::= a) = (x ::= a) |
strip (C 1;; C 2) = (strip C 1;; strip C 2) |
strip (IF b THEN C 1 ELSE C 2) = (IF b THEN strip C 1 ELSE strip C 2) |
strip ({_/_} WHILE b DO C) = (WHILE b DO strip C)

Weakest precondition from annotated commands:

fun pre :: acom ⇒ assn2 ⇒ assn2 where
pre SKIP Q = Q |

116

pre (x ::= a) Q = (λl s. Q l (s(x := aval a s))) |
pre (C 1;; C 2) Q = pre C 1 (pre C 2 Q) |
pre (IF b THEN C 1 ELSE C 2) Q =
(λl s. if bval b s then pre C 1 Q l s else pre C 2 Q l s) |

pre ({I/x} WHILE b DO C) Q = (λl s. ∃n. I (l(x:=n)) s)

Verification condition:

fun vc :: acom ⇒ assn2 ⇒ bool where
vc SKIP Q = True |
vc (x ::= a) Q = True |
vc (C 1;; C 2) Q = (vc C 1 (pre C 2 Q) ∧ vc C 2 Q) |
vc (IF b THEN C 1 ELSE C 2) Q = (vc C 1 Q ∧ vc C 2 Q) |
vc ({I/x} WHILE b DO C) Q =
(∀ l s. (I (l(x:=Suc(l x))) s −→ pre C I l s) ∧

(l x > 0 ∧ I l s −→ bval b s) ∧
(I (l(x := 0)) s −→ ¬ bval b s ∧ Q l s) ∧
vc C I)

lemma vc_sound: vc C Q =⇒ `t {pre C Q} strip C {Q}
proof(induction C arbitrary: Q)

case (Awhile I x b C)
show ?case
proof(simp, rule weaken_post[OF While[of I x]], goal_cases)

case 1 show ?case
using Awhile.IH [of I] Awhile.prems by (auto intro: strengthen_pre)

next
case 3 show ?case

using Awhile.prems by (simp) (metis fun_upd_triv)
qed (insert Awhile.prems, auto)

qed (auto intro: conseq Seq If simp: Skip Assign)

Completeness:

lemma pre_mono:
∀ l s. P l s −→ P ′ l s =⇒ pre C P l s =⇒ pre C P ′ l s

proof (induction C arbitrary: P P ′ l s)
case Aseq thus ?case by simp metis

qed simp_all

lemma vc_mono:
∀ l s. P l s −→ P ′ l s =⇒ vc C P =⇒ vc C P ′

proof(induction C arbitrary: P P ′)
case Aseq thus ?case by simp (metis pre_mono)

qed simp_all

117

lemma vc_complete:
`t {P}c{Q} =⇒ ∃C . strip C = c ∧ vc C Q ∧ (∀ l s. P l s −→ pre C Q l

s)
(is _ =⇒ ∃C . ?G P c Q C)

proof (induction rule: hoaret.induct)
case Skip
show ?case (is ∃C . ?C C)
proof show ?C Askip by simp qed

next
case (Assign P a x)
show ?case (is ∃C . ?C C)
proof show ?C (Aassign x a) by simp qed

next
case (Seq P c1 Q c2 R)
from Seq.IH obtain C1 where ih1 : ?G P c1 Q C1 by blast
from Seq.IH obtain C2 where ih2 : ?G Q c2 R C2 by blast
show ?case (is ∃C . ?C C)
proof

show ?C (Aseq C1 C2)
using ih1 ih2 by (fastforce elim!: pre_mono vc_mono)

qed
next

case (If P b c1 Q c2)
from If .IH obtain C1 where ih1 : ?G (λl s. P l s ∧ bval b s) c1 Q C1

by blast
from If .IH obtain C2 where ih2 : ?G (λl s. P l s ∧ ¬bval b s) c2 Q C2

by blast
show ?case (is ∃C . ?C C)
proof

show ?C (Aif b C1 C2) using ih1 ih2 by simp
qed

next
case (While P x c b)
from While.IH obtain C where

ih: ?G (λl s. P (l(x:=Suc(l x))) s ∧ bval b s) c P C
by blast

show ?case (is ∃C . ?C C)
proof

have vc ({P/x} WHILE b DO C) (λl. P (l(x := 0)))
using ih While.hyps(2 ,3)
by simp (metis fun_upd_same zero_less_Suc)

thus ?C (Awhile P x b C) using ih by simp
qed

next

118

case conseq thus ?case by(fast elim!: pre_mono vc_mono)
qed

Two examples:

lemma vc1 : vc
({λl s. l ′′x ′′ = nat(s ′′x ′′) / ′′x ′′} WHILE Less (N 0) (V ′′x ′′) DO ′′x ′′

::= Plus (V ′′x ′′) (N (−1)))
(λl s. s ′′x ′′ ≤ 0)

by auto

thm vc_sound[OF vc1 , simplified]

lemma vc2 : vc
({λl s. l ′′x ′′ = nat(s ′′x ′′) / ′′x ′′} WHILE Less (N 0) (V ′′x ′′)
DO (′′x ′′ ::= Plus (V ′′x ′′) (N (−1));;

(′′y ′′ ::= V ′′x ′′;;
{λl s. l ′′x ′′ = nat(s ′′x ′′) ∧ l ′′y ′′ = nat(s ′′y ′′) / ′′y ′′}
WHILE Less (N 0) (V ′′y ′′) DO ′′y ′′ ::= Plus (V ′′y ′′) (N (−1)))))

(λl s. s ′′x ′′ ≤ 0)
by auto

thm vc_sound[OF vc2 , simplified]

end

14 Abstract Interpretation

14.1 Complete Lattice

theory Complete_Lattice
imports Main
begin

locale Complete_Lattice =
fixes L :: ′a::order set and Glb :: ′a set ⇒ ′a
assumes Glb_lower : A ⊆ L =⇒ a ∈ A =⇒ Glb A ≤ a
and Glb_greatest: b ∈ L =⇒ ∀ a∈A. b ≤ a =⇒ b ≤ Glb A
and Glb_in_L: A ⊆ L =⇒ Glb A ∈ L
begin

definition lfp :: (′a ⇒ ′a) ⇒ ′a where
lfp f = Glb {a : L. f a ≤ a}

lemma index_lfp: lfp f ∈ L

119

by(auto simp: lfp_def intro: Glb_in_L)

lemma lfp_lowerbound:
[[a ∈ L; f a ≤ a]] =⇒ lfp f ≤ a

by (auto simp add: lfp_def intro: Glb_lower)

lemma lfp_greatest:
[[a ∈ L;

∧
u. [[u ∈ L; f u ≤ u]] =⇒ a ≤ u]] =⇒ a ≤ lfp f

by (auto simp add: lfp_def intro: Glb_greatest)

lemma lfp_unfold: assumes
∧

x. f x ∈ L ←→ x ∈ L
and mono: mono f shows lfp f = f (lfp f)
proof−

note assms(1)[simp] index_lfp[simp]
have 1 : f (lfp f) ≤ lfp f

apply(rule lfp_greatest)
apply simp
by (blast intro: lfp_lowerbound monoD[OF mono] order_trans)

have lfp f ≤ f (lfp f)
by (fastforce intro: 1 monoD[OF mono] lfp_lowerbound)

with 1 show ?thesis by(blast intro: order_antisym)
qed

end

end

14.2 Annotated Commands

theory ACom
imports Com
begin

datatype ′a acom =
SKIP ′a (‹SKIP {_}› 61) |
Assign vname aexp ′a (‹(_ ::= _/ {_})› [1000 , 61 , 0] 61) |
Seq (′a acom) (′a acom) (‹_;;//_› [60 , 61] 60) |
If bexp ′a (′a acom) ′a (′a acom) ′a
(‹(IF _/ THEN ({_}/ _)/ ELSE ({_}/ _)//{_})› [0 , 0 , 0 , 61 , 0 ,

0] 61) |
While ′a bexp ′a (′a acom) ′a
(‹({_}//WHILE _//DO ({_}//_)//{_})› [0 , 0 , 0 , 61 , 0] 61)

notation com.SKIP (‹SKIP›)

120

fun strip :: ′a acom ⇒ com where
strip (SKIP {P}) = SKIP |
strip (x ::= e {P}) = x ::= e |
strip (C 1;;C 2) = strip C 1;; strip C 2 |
strip (IF b THEN {P1} C 1 ELSE {P2} C 2 {P}) =

IF b THEN strip C 1 ELSE strip C 2 |
strip ({I} WHILE b DO {P} C {Q}) = WHILE b DO strip C

fun asize :: com ⇒ nat where
asize SKIP = 1 |
asize (x ::= e) = 1 |
asize (C 1;;C 2) = asize C 1 + asize C 2 |
asize (IF b THEN C 1 ELSE C 2) = asize C 1 + asize C 2 + 3 |
asize (WHILE b DO C) = asize C + 3

definition shift :: (nat ⇒ ′a) ⇒ nat ⇒ nat ⇒ ′a where
shift f n = (λp. f (p+n))

fun annotate :: (nat ⇒ ′a) ⇒ com ⇒ ′a acom where
annotate f SKIP = SKIP {f 0} |
annotate f (x ::= e) = x ::= e {f 0} |
annotate f (c1;;c2) = annotate f c1;; annotate (shift f (asize c1)) c2 |
annotate f (IF b THEN c1 ELSE c2) =

IF b THEN {f 0} annotate (shift f 1) c1
ELSE {f (asize c1 + 1)} annotate (shift f (asize c1 + 2)) c2
{f (asize c1 + asize c2 + 2)} |

annotate f (WHILE b DO c) =
{f 0} WHILE b DO {f 1} annotate (shift f 2) c {f (asize c + 2)}

fun annos :: ′a acom ⇒ ′a list where
annos (SKIP {P}) = [P] |
annos (x ::= e {P}) = [P] |
annos (C 1;;C 2) = annos C 1 @ annos C 2 |
annos (IF b THEN {P1} C 1 ELSE {P2} C 2 {Q}) =

P1 # annos C 1 @ P2 # annos C 2 @ [Q] |
annos ({I} WHILE b DO {P} C {Q}) = I # P # annos C @ [Q]
definition anno :: ′a acom ⇒ nat ⇒ ′a where
anno C p = annos C ! p

definition post :: ′a acom ⇒ ′a where
post C = last(annos C)
fun map_acom :: (′a ⇒ ′b) ⇒ ′a acom ⇒ ′b acom where
map_acom f (SKIP {P}) = SKIP {f P} |
map_acom f (x ::= e {P}) = x ::= e {f P} |

121

map_acom f (C 1;;C 2) = map_acom f C 1;; map_acom f C 2 |
map_acom f (IF b THEN {P1} C 1 ELSE {P2} C 2 {Q}) =

IF b THEN {f P1} map_acom f C 1 ELSE {f P2} map_acom f C 2

{f Q} |
map_acom f ({I} WHILE b DO {P} C {Q}) =
{f I} WHILE b DO {f P} map_acom f C {f Q}

lemma annos_ne: annos C 6= []
by(induction C) auto

lemma strip_annotate[simp]: strip(annotate f c) = c
by(induction c arbitrary: f) auto

lemma length_annos_annotate[simp]: length (annos (annotate f c)) = asize
c
by(induction c arbitrary: f) auto

lemma size_annos: size(annos C) = asize(strip C)
by(induction C)(auto)

lemma size_annos_same: strip C1 = strip C2 =⇒ size(annos C1) =
size(annos C2)
apply(induct C2 arbitrary: C1)
apply(case_tac C1 , simp_all)+
done

lemmas size_annos_same2 = eqTrueI [OF size_annos_same]

lemma anno_annotate[simp]: p < asize c =⇒ anno (annotate f c) p = f p
apply(induction c arbitrary: f p)
apply (auto simp: anno_def nth_append nth_Cons numeral_eq_Suc shift_def

split: nat.split)
apply (metis add_Suc_right add_diff_inverse add.commute)

apply(rule_tac f=f in arg_cong)
apply arith

apply (metis less_Suc_eq)
done

lemma eq_acom_iff_strip_annos:
C1 = C2 ←→ strip C1 = strip C2 ∧ annos C1 = annos C2

apply(induction C1 arbitrary: C2)
apply(case_tac C2 , auto simp: size_annos_same2)+
done

122

lemma eq_acom_iff_strip_anno:
C1=C2 ←→ strip C1 = strip C2 ∧ (∀ p<size(annos C1). anno C1 p =

anno C2 p)
by(auto simp add: eq_acom_iff_strip_annos anno_def

list_eq_iff_nth_eq size_annos_same2)

lemma post_map_acom[simp]: post(map_acom f C) = f (post C)
by (induction C) (auto simp: post_def last_append annos_ne)

lemma strip_map_acom[simp]: strip (map_acom f C) = strip C
by (induction C) auto

lemma anno_map_acom: p < size(annos C) =⇒ anno (map_acom f C)
p = f (anno C p)
apply(induction C arbitrary: p)
apply(auto simp: anno_def nth_append nth_Cons ′ size_annos)
done

lemma strip_eq_SKIP:
strip C = SKIP ←→ (∃P. C = SKIP {P})

by (cases C) simp_all

lemma strip_eq_Assign:
strip C = x::=e ←→ (∃P. C = x::=e {P})

by (cases C) simp_all

lemma strip_eq_Seq:
strip C = c1 ;;c2 ←→ (∃C1 C2 . C = C1 ;;C2 & strip C1 = c1 & strip

C2 = c2)
by (cases C) simp_all

lemma strip_eq_If :
strip C = IF b THEN c1 ELSE c2 ←→
(∃P1 P2 C1 C2 Q. C = IF b THEN {P1} C1 ELSE {P2} C2 {Q} &

strip C1 = c1 & strip C2 = c2)
by (cases C) simp_all

lemma strip_eq_While:
strip C = WHILE b DO c1 ←→
(∃ I P C1 Q. C = {I} WHILE b DO {P} C1 {Q} & strip C1 = c1)

by (cases C) simp_all

lemma [simp]: shift (λp. a) n = (λp. a)
by(simp add:shift_def)

123

lemma set_annos_anno[simp]: set (annos (annotate (λp. a) c)) = {a}
by(induction c) simp_all

lemma post_in_annos: post C ∈ set(annos C)
by(auto simp: post_def annos_ne)

lemma post_anno_asize: post C = anno C (size(annos C) − 1)
by(simp add: post_def last_conv_nth[OF annos_ne] anno_def)

end

14.3 Collecting Semantics of Commands

theory Collecting
imports Complete_Lattice Big_Step ACom
begin

14.3.1 The generic Step function

notation
sup (infixl ‹t› 65) and
inf (infixl ‹u› 70) and
bot (‹⊥›) and
top (‹>›)

context
fixes f :: vname ⇒ aexp ⇒ ′a ⇒ ′a::sup
fixes g :: bexp ⇒ ′a ⇒ ′a

begin
fun Step :: ′a ⇒ ′a acom ⇒ ′a acom where
Step S (SKIP {Q}) = (SKIP {S}) |
Step S (x ::= e {Q}) =

x ::= e {f x e S} |
Step S (C1 ;; C2) = Step S C1 ;; Step (post C1) C2 |
Step S (IF b THEN {P1} C1 ELSE {P2} C2 {Q}) =

IF b THEN {g b S} Step P1 C1 ELSE {g (Not b) S} Step P2 C2
{post C1 t post C2} |

Step S ({I} WHILE b DO {P} C {Q}) =
{S t post C} WHILE b DO {g b I} Step P C {g (Not b) I}

end

lemma strip_Step[simp]: strip(Step f g S C) = strip C
by(induct C arbitrary: S) auto

124

14.3.2 Annotated commands as a complete lattice

instantiation acom :: (order) order
begin

definition less_eq_acom :: (′a::order)acom ⇒ ′a acom ⇒ bool where
C1 ≤ C2 ←→ strip C1 = strip C2 ∧ (∀ p<size(annos C1). anno C1 p ≤
anno C2 p)

definition less_acom :: ′a acom ⇒ ′a acom ⇒ bool where
less_acom x y = (x ≤ y ∧ ¬ y ≤ x)

instance
proof (standard, goal_cases)

case 1 show ?case by(simp add: less_acom_def)
next

case 2 thus ?case by(auto simp: less_eq_acom_def)
next

case 3 thus ?case by(fastforce simp: less_eq_acom_def size_annos)
next

case 4 thus ?case
by(fastforce simp: le_antisym less_eq_acom_def size_annos

eq_acom_iff_strip_anno)
qed

end

lemma less_eq_acom_annos:
C1 ≤ C2 ←→ strip C1 = strip C2 ∧ list_all2 (≤) (annos C1) (annos

C2)
by(auto simp add: less_eq_acom_def anno_def list_all2_conv_all_nth size_annos_same2)

lemma SKIP_le[simp]: SKIP {S} ≤ c ←→ (∃S ′. c = SKIP {S ′} ∧ S ≤
S ′)
by (cases c) (auto simp:less_eq_acom_def anno_def)

lemma Assign_le[simp]: x ::= e {S} ≤ c ←→ (∃S ′. c = x ::= e {S ′} ∧ S
≤ S ′)
by (cases c) (auto simp:less_eq_acom_def anno_def)

lemma Seq_le[simp]: C1 ;;C2 ≤ C ←→ (∃C1 ′ C2 ′. C = C1 ′;;C2 ′ ∧ C1 ≤
C1 ′ ∧ C2 ≤ C2 ′)
apply (cases C)
apply(auto simp: less_eq_acom_annos list_all2_append size_annos_same2)

125

done

lemma If_le[simp]: IF b THEN {p1} C1 ELSE {p2} C2 {S} ≤ C ←→
(∃ p1 ′ p2 ′ C1 ′ C2 ′ S ′. C = IF b THEN {p1 ′} C1 ′ ELSE {p2 ′} C2 ′ {S ′}
∧

p1 ≤ p1 ′ ∧ p2 ≤ p2 ′ ∧ C1 ≤ C1 ′ ∧ C2 ≤ C2 ′ ∧ S ≤ S ′)
apply (cases C)
apply(auto simp: less_eq_acom_annos list_all2_append size_annos_same2)
done

lemma While_le[simp]: {I} WHILE b DO {p} C {P} ≤ W ←→
(∃ I ′ p ′ C ′ P ′. W = {I ′} WHILE b DO {p ′} C ′ {P ′} ∧ C ≤ C ′ ∧ p ≤ p ′

∧ I ≤ I ′ ∧ P ≤ P ′)
apply (cases W)
apply(auto simp: less_eq_acom_annos list_all2_append size_annos_same2)
done

lemma mono_post: C ≤ C ′ =⇒ post C ≤ post C ′

using annos_ne[of C ′]
by(auto simp: post_def less_eq_acom_def last_conv_nth[OF annos_ne]
anno_def

dest: size_annos_same)

definition Inf_acom :: com ⇒ ′a::complete_lattice acom set ⇒ ′a acom
where
Inf_acom c M = annotate (λp. INF C∈M . anno C p) c

global_interpretation
Complete_Lattice {C . strip C = c} Inf_acom c for c

proof (standard, goal_cases)
case 1 thus ?case
by(auto simp: Inf_acom_def less_eq_acom_def size_annos intro:INF_lower)

next
case 2 thus ?case
by(auto simp: Inf_acom_def less_eq_acom_def size_annos intro:INF_greatest)

next
case 3 thus ?case by(auto simp: Inf_acom_def)

qed

14.3.3 Collecting semantics

definition step = Step (λx e S . {s(x := aval e s) |s. s ∈ S}) (λb S . {s:S .
bval b s})

126

definition CS :: com ⇒ state set acom where
CS c = lfp c (step UNIV)

lemma mono2_Step: fixes C1 C2 :: ′a::semilattice_sup acom
assumes !!x e S1 S2 . S1 ≤ S2 =⇒ f x e S1 ≤ f x e S2

!!b S1 S2 . S1 ≤ S2 =⇒ g b S1 ≤ g b S2
shows C1 ≤ C2 =⇒ S1 ≤ S2 =⇒ Step f g S1 C1 ≤ Step f g S2 C2

proof(induction S1 C1 arbitrary: C2 S2 rule: Step.induct)
case 1 thus ?case by(auto)

next
case 2 thus ?case by (auto simp: assms(1))

next
case 3 thus ?case by(auto simp: mono_post)

next
case 4 thus ?case

by(auto simp: subset_iff assms(2))
(metis mono_post le_supI1 le_supI2)+

next
case 5 thus ?case

by(auto simp: subset_iff assms(2))
(metis mono_post le_supI1 le_supI2)+

qed

lemma mono2_step: C1 ≤ C2 =⇒ S1 ⊆ S2 =⇒ step S1 C1 ≤ step S2 C2
unfolding step_def by(rule mono2_Step) auto

lemma mono_step: mono (step S)
by(blast intro: monoI mono2_step)

lemma strip_step: strip(step S C) = strip C
by (induction C arbitrary: S) (auto simp: step_def)

lemma lfp_cs_unfold: lfp c (step S) = step S (lfp c (step S))
apply(rule lfp_unfold[OF _ mono_step])
apply(simp add: strip_step)
done

lemma CS_unfold: CS c = step UNIV (CS c)
by (metis CS_def lfp_cs_unfold)

lemma strip_CS [simp]: strip(CS c) = c
by(simp add: CS_def index_lfp[simplified])

127

14.3.4 Relation to big-step semantics

lemma asize_nz: asize(c::com) 6= 0
by (metis length_0_conv length_annos_annotate annos_ne)

lemma post_Inf_acom:
∀C∈M . strip C = c =⇒ post (Inf_acom c M) =

⋂
(post ‘ M)

apply(subgoal_tac ∀C∈M . size(annos C) = asize c)
apply(simp add: post_anno_asize Inf_acom_def asize_nz neq0_conv[symmetric])
apply(simp add: size_annos)
done

lemma post_lfp: post(lfp c f) = (
⋂
{post C |C . strip C = c ∧ f C ≤ C})

by(auto simp add: lfp_def post_Inf_acom)

lemma big_step_post_step:
[[(c, s) ⇒ t; strip C = c; s ∈ S ; step S C ≤ C]] =⇒ t ∈ post C

proof(induction arbitrary: C S rule: big_step_induct)
case Skip thus ?case by(auto simp: strip_eq_SKIP step_def post_def)

next
case Assign thus ?case

by(fastforce simp: strip_eq_Assign step_def post_def)
next

case Seq thus ?case
by(fastforce simp: strip_eq_Seq step_def post_def last_append an-

nos_ne)
next

case IfTrue thus ?case apply(auto simp: strip_eq_If step_def post_def)
by (metis (lifting,full_types) mem_Collect_eq subsetD)

next
case IfFalse thus ?case apply(auto simp: strip_eq_If step_def post_def)

by (metis (lifting,full_types) mem_Collect_eq subsetD)
next

case (WhileTrue b s1 c ′ s2 s3)
from WhileTrue.prems(1) obtain I P C ′ Q where C = {I} WHILE b

DO {P} C ′ {Q} strip C ′ = c ′

by(auto simp: strip_eq_While)
from WhileTrue.prems(3) ‹C = _›
have step P C ′ ≤ C ′ {s ∈ I . bval b s} ≤ P S ≤ I step (post C ′) C ≤ C

by (auto simp: step_def post_def)
have step {s ∈ I . bval b s} C ′ ≤ C ′

by (rule order_trans[OF mono2_step[OF order_refl ‹{s ∈ I . bval b s}
≤ P›] ‹step P C ′ ≤ C ′›])

have s1 ∈ {s∈I . bval b s} using ‹s1 ∈ S› ‹S ⊆ I › ‹bval b s1 › by auto

128

note s2_in_post_C ′ = WhileTrue.IH (1)[OF ‹strip C ′ = c ′› this ‹step
{s ∈ I . bval b s} C ′ ≤ C ′›]
from WhileTrue.IH (2)[OF WhileTrue.prems(1) s2_in_post_C ′ ‹step (post

C ′) C ≤ C ›]
show ?case .

next
case (WhileFalse b s1 c ′) thus ?case

by (force simp: strip_eq_While step_def post_def)
qed

lemma big_step_lfp: [[(c,s) ⇒ t; s ∈ S]] =⇒ t ∈ post(lfp c (step S))
by(auto simp add: post_lfp intro: big_step_post_step)

lemma big_step_CS : (c,s) ⇒ t =⇒ t ∈ post(CS c)
by(simp add: CS_def big_step_lfp)

end

14.4 A small step semantics on annotated commands

theory Collecting1
imports Collecting
begin

The idea: the state is propagated through the annotated command as
an annotation {s}, all other annotations are {}. It is easy to show that this
semantics approximates the collecting semantics.

lemma step_preserves_le:
[[step S cs = cs; S ′ ⊆ S ; cs ′ ≤ cs]] =⇒
step S ′ cs ′ ≤ cs

by (metis mono2_step)

lemma steps_empty_preserves_le: assumes step S cs = cs
shows cs ′ ≤ cs =⇒ (step {} ^^ n) cs ′ ≤ cs
proof(induction n arbitrary: cs ′)

case 0 thus ?case by simp
next

case (Suc n) thus ?case
using Suc.IH [OF step_preserves_le[OF assms empty_subsetI Suc.prems]]
by(simp add:funpow_swap1)

qed

definition steps :: state ⇒ com ⇒ nat ⇒ state set acom where

129

steps s c n = ((step {})^^n) (step {s} (annotate (λp. {}) c))

lemma steps_approx_fix_step: assumes step S cs = cs and s ∈ S
shows steps s (strip cs) n ≤ cs
proof−

let ?bot = annotate (λp. {}) (strip cs)
have ?bot ≤ cs by(induction cs) auto
from step_preserves_le[OF assms(1)_ this, of {s}] ‹s ∈ S›
have 1 : step {s} ?bot ≤ cs by simp
from steps_empty_preserves_le[OF assms(1) 1]
show ?thesis by(simp add: steps_def)

qed

theorem steps_approx_CS : steps s c n ≤ CS c
by (metis CS_unfold UNIV_I steps_approx_fix_step strip_CS)

end

14.5 Collecting Semantics Examples

theory Collecting_Examples
imports Collecting Vars
begin

14.5.1 Pretty printing state sets

Tweak code generation to work with sets of non-equality types:

lemma insert_code [code]: insert x (set xs) = set (x#xs)
and union_code [code]: set xs ∪ A = fold insert xs A
by (simp_all add: union_set_fold)

Compensate for the fact that sets may now have duplicates:

definition compact :: ′a set ⇒ ′a set where
compact X = X

lemma [code]: compact(set xs) = set(remdups xs)
by(simp add: compact_def)

definition vars_acom = compact o vars o strip

In order to display commands annotated with state sets, states must
be translated into a printable format as sets of variable-state pairs, for the
variables in the command:

definition show_acom :: state set acom ⇒ (vname∗val)set set acom where

130

show_acom C =
annotate (λp. (λs. (λx. (x, s x)) ‘ (vars_acom C)) ‘ anno C p) (strip C)

14.5.2 Examples

definition c0 = WHILE Less (V ′′x ′′) (N 3)
DO ′′x ′′ ::= Plus (V ′′x ′′) (N 2)

definition C0 :: state set acom where C0 = annotate (λp. {}) c0

Collecting semantics:

value show_acom (((step {<>}) ^^ 0) C0)
value show_acom (((step {<>}) ^^ 1) C0)
value show_acom (((step {<>}) ^^ 2) C0)
value show_acom (((step {<>}) ^^ 3) C0)
value show_acom (((step {<>}) ^^ 4) C0)
value show_acom (((step {<>}) ^^ 5) C0)
value show_acom (((step {<>}) ^^ 6) C0)
value show_acom (((step {<>}) ^^ 7) C0)
value show_acom (((step {<>}) ^^ 8) C0)

Small-step semantics:

value show_acom (((step {}) ^^ 0) (step {<>} C0))
value show_acom (((step {}) ^^ 1) (step {<>} C0))
value show_acom (((step {}) ^^ 2) (step {<>} C0))
value show_acom (((step {}) ^^ 3) (step {<>} C0))
value show_acom (((step {}) ^^ 4) (step {<>} C0))
value show_acom (((step {}) ^^ 5) (step {<>} C0))
value show_acom (((step {}) ^^ 6) (step {<>} C0))
value show_acom (((step {}) ^^ 7) (step {<>} C0))
value show_acom (((step {}) ^^ 8) (step {<>} C0))

end

14.6 Abstract Interpretation Test Programs

theory Abs_Int_Tests
imports Com
begin

For constant propagation:

Straight line code:

definition test1_const =
′′y ′′ ::= N 7 ;;

131

′′z ′′ ::= Plus (V ′′y ′′) (N 2);;
′′y ′′ ::= Plus (V ′′x ′′) (N 0)

Conditional:

definition test2_const =
IF Less (N 41) (V ′′x ′′) THEN ′′x ′′ ::= N 5 ELSE ′′x ′′ ::= N 5

Conditional, test is relevant:

definition test3_const =
′′x ′′ ::= N 42 ;;
IF Less (N 41) (V ′′x ′′) THEN ′′x ′′ ::= N 5 ELSE ′′x ′′ ::= N 6

While:

definition test4_const =
′′x ′′ ::= N 0 ;; WHILE Bc True DO ′′x ′′ ::= N 0

While, test is relevant:

definition test5_const =
′′x ′′ ::= N 0 ;; WHILE Less (V ′′x ′′) (N 1) DO ′′x ′′ ::= N 1

Iteration is needed:

definition test6_const =
′′x ′′ ::= N 0 ;; ′′y ′′ ::= N 0 ;; ′′z ′′ ::= N 2 ;;
WHILE Less (V ′′x ′′) (N 1) DO (′′x ′′ ::= V ′′y ′′;; ′′y ′′ ::= V ′′z ′′)

For intervals:

definition test1_ivl =
′′y ′′ ::= N 7 ;;
IF Less (V ′′x ′′) (V ′′y ′′)
THEN ′′y ′′ ::= Plus (V ′′y ′′) (V ′′x ′′)
ELSE ′′x ′′ ::= Plus (V ′′x ′′) (V ′′y ′′)

definition test2_ivl =
WHILE Less (V ′′x ′′) (N 100)
DO ′′x ′′ ::= Plus (V ′′x ′′) (N 1)

definition test3_ivl =
′′x ′′ ::= N 0 ;;
WHILE Less (V ′′x ′′) (N 100)
DO ′′x ′′ ::= Plus (V ′′x ′′) (N 1)

definition test4_ivl =
′′x ′′ ::= N 0 ;; ′′y ′′ ::= N 0 ;;
WHILE Less (V ′′x ′′) (N 11)
DO (′′x ′′ ::= Plus (V ′′x ′′) (N 1);; ′′y ′′ ::= Plus (V ′′y ′′) (N 1))

132

definition test5_ivl =
′′x ′′ ::= N 0 ;; ′′y ′′ ::= N 0 ;;
WHILE Less (V ′′x ′′) (N 100)
DO (′′y ′′ ::= V ′′x ′′;; ′′x ′′ ::= Plus (V ′′x ′′) (N 1))

definition test6_ivl =
′′x ′′ ::= N 0 ;;
WHILE Less (N (− 1)) (V ′′x ′′) DO ′′x ′′ ::= Plus (V ′′x ′′) (N 1)

end
theory Abs_Int_init
imports HOL−Library.While_Combinator

HOL−Library.Extended
Vars Collecting Abs_Int_Tests

begin

hide_const (open) top bot dom — to avoid qualified names

end

14.7 Abstract Interpretation

theory Abs_Int0
imports Abs_Int_init
begin

14.7.1 Orderings

The basic type classes order, semilattice_sup and order_top are defined in
Main, more precisely in theories HOL.Orderings and HOL.Lattices. If you
view this theory with jedit, just click on the names to get there.

class semilattice_sup_top = semilattice_sup + order_top

instance fun :: (type, semilattice_sup_top) semilattice_sup_top ..

instantiation option :: (order)order
begin

fun less_eq_option where
Some x ≤ Some y = (x ≤ y) |
None ≤ y = True |
Some _ ≤ None = False

133

definition less_option where x < (y:: ′a option) = (x ≤ y ∧ ¬ y ≤ x)

lemma le_None[simp]: (x ≤ None) = (x = None)
by (cases x) simp_all

lemma Some_le[simp]: (Some x ≤ u) = (∃ y. u = Some y ∧ x ≤ y)
by (cases u) auto

instance
proof (standard, goal_cases)

case 1 show ?case by(rule less_option_def)
next

case (2 x) show ?case by(cases x, simp_all)
next

case (3 x y z) thus ?case by(cases z , simp, cases y, simp, cases x , auto)
next

case (4 x y) thus ?case by(cases y, simp, cases x, auto)
qed

end

instantiation option :: (sup)sup
begin

fun sup_option where
Some x t Some y = Some(x t y) |
None t y = y |
x t None = x

lemma sup_None2 [simp]: x t None = x
by (cases x) simp_all

instance ..

end

instantiation option :: (semilattice_sup_top)semilattice_sup_top
begin

definition top_option where > = Some >

instance
proof (standard, goal_cases)

134

case (4 a) show ?case by(cases a, simp_all add: top_option_def)
next

case (1 x y) thus ?case by(cases x, simp, cases y, simp_all)
next

case (2 x y) thus ?case by(cases y, simp, cases x, simp_all)
next

case (3 x y z) thus ?case by(cases z , simp, cases y, simp, cases x ,
simp_all)
qed

end

lemma [simp]: (Some x < Some y) = (x < y)
by(auto simp: less_le)

instantiation option :: (order)order_bot
begin

definition bot_option :: ′a option where
⊥ = None

instance
proof (standard, goal_cases)

case 1 thus ?case by(auto simp: bot_option_def)
qed

end

definition bot :: com ⇒ ′a option acom where
bot c = annotate (λp. None) c

lemma bot_least: strip C = c =⇒ bot c ≤ C
by(auto simp: bot_def less_eq_acom_def)

lemma strip_bot[simp]: strip(bot c) = c
by(simp add: bot_def)

14.7.2 Pre-fixpoint iteration

definition pfp :: ((′a::order) ⇒ ′a) ⇒ ′a ⇒ ′a option where
pfp f = while_option (λx. ¬ f x ≤ x) f

lemma pfp_pfp: assumes pfp f x0 = Some x shows f x ≤ x

135

using while_option_stop[OF assms[simplified pfp_def]] by simp

lemma while_least:
fixes q :: ′a::order
assumes ∀ x∈L.∀ y∈L. x ≤ y −→ f x ≤ f y and ∀ x. x ∈ L −→ f x ∈ L
and ∀ x ∈ L. b ≤ x and b ∈ L and f q ≤ q and q ∈ L
and while_option P f b = Some p
shows p ≤ q
using while_option_rule[OF _ assms(7)[unfolded pfp_def],

where P = %x. x ∈ L ∧ x ≤ q]
by (metis assms(1−6) order_trans)

lemma pfp_bot_least:
assumes ∀ x∈{C . strip C = c}.∀ y∈{C . strip C = c}. x ≤ y −→ f x ≤ f y
and ∀C . C ∈ {C . strip C = c} −→ f C ∈ {C . strip C = c}
and f C ′ ≤ C ′ strip C ′ = c pfp f (bot c) = Some C
shows C ≤ C ′

by(rule while_least[OF assms(1 ,2) _ _ assms(3) _ assms(5)[unfolded pfp_def]])
(simp_all add: assms(4) bot_least)

lemma pfp_inv:
pfp f x = Some y =⇒ (

∧
x. P x =⇒ P(f x)) =⇒ P x =⇒ P y

unfolding pfp_def by (blast intro: while_option_rule)

lemma strip_pfp:
assumes

∧
x. g(f x) = g x and pfp f x0 = Some x shows g x = g x0

using pfp_inv[OF assms(2), where P = %x. g x = g x0] assms(1) by
simp

14.7.3 Abstract Interpretation

definition γ_fun :: (′a ⇒ ′b set) ⇒ (′c ⇒ ′a) ⇒ (′c ⇒ ′b)set where
γ_fun γ F = {f . ∀ x. f x ∈ γ(F x)}

fun γ_option :: (′a ⇒ ′b set) ⇒ ′a option ⇒ ′b set where
γ_option γ None = {} |
γ_option γ (Some a) = γ a

The interface for abstract values:

locale Val_semilattice =
fixes γ :: ′av::semilattice_sup_top ⇒ val set

assumes mono_gamma: a ≤ b =⇒ γ a ≤ γ b
and gamma_Top[simp]: γ > = UNIV

fixes num ′ :: val ⇒ ′av

136

and plus ′ :: ′av ⇒ ′av ⇒ ′av
assumes gamma_num ′: i ∈ γ(num ′ i)
and gamma_plus ′: i1 ∈ γ a1 =⇒ i2 ∈ γ a2 =⇒ i1+i2 ∈ γ(plus ′ a1 a2)

type_synonym ′av st = (vname ⇒ ′av)

The for-clause (here and elsewhere) only serves the purpose of fixing the
name of the type parameter ′av which would otherwise be renamed to ′a.

locale Abs_Int_fun = Val_semilattice where γ=γ
for γ :: ′av::semilattice_sup_top ⇒ val set

begin

fun aval ′ :: aexp ⇒ ′av st ⇒ ′av where
aval ′ (N i) S = num ′ i |
aval ′ (V x) S = S x |
aval ′ (Plus a1 a2) S = plus ′ (aval ′ a1 S) (aval ′ a2 S)

definition asem x e S = (case S of None ⇒ None | Some S ⇒ Some(S(x
:= aval ′ e S)))

definition step ′ = Step asem (λb S . S)

lemma strip_step ′[simp]: strip(step ′ S C) = strip C
by(simp add: step ′_def)

definition AI :: com ⇒ ′av st option acom option where
AI c = pfp (step ′ >) (bot c)

abbreviation γs :: ′av st ⇒ state set
where γs == γ_fun γ

abbreviation γo :: ′av st option ⇒ state set
where γo == γ_option γs

abbreviation γc :: ′av st option acom ⇒ state set acom
where γc == map_acom γo

lemma gamma_s_Top[simp]: γs > = UNIV
by(simp add: top_fun_def γ_fun_def)

lemma gamma_o_Top[simp]: γo > = UNIV
by (simp add: top_option_def)

137

lemma mono_gamma_s: f1 ≤ f2 =⇒ γs f1 ⊆ γs f2
by(auto simp: le_fun_def γ_fun_def dest: mono_gamma)

lemma mono_gamma_o:
S1 ≤ S2 =⇒ γo S1 ⊆ γo S2

by(induction S1 S2 rule: less_eq_option.induct)(simp_all add: mono_gamma_s)

lemma mono_gamma_c: C1 ≤ C2 =⇒ γc C1 ≤ γc C2
by (simp add: less_eq_acom_def mono_gamma_o size_annos anno_map_acom
size_annos_same[of C1 C2])

Correctness:

lemma aval ′_correct: s ∈ γs S =⇒ aval a s ∈ γ(aval ′ a S)
by (induct a) (auto simp: gamma_num ′ gamma_plus ′ γ_fun_def)

lemma in_gamma_update: [[s ∈ γs S ; i ∈ γ a]] =⇒ s(x := i) ∈ γs(S(x
:= a))
by(simp add: γ_fun_def)

lemma gamma_Step_subcomm:
assumes

∧
x e S . f1 x e (γo S) ⊆ γo (f2 x e S)

∧
b S . g1 b (γo S) ⊆ γo

(g2 b S)
shows Step f1 g1 (γo S) (γc C) ≤ γc (Step f2 g2 S C)

by (induction C arbitrary: S) (auto simp: mono_gamma_o assms)

lemma step_step ′: step (γo S) (γc C) ≤ γc (step ′ S C)
unfolding step_def step ′_def
by(rule gamma_Step_subcomm)
(auto simp: aval ′_correct in_gamma_update asem_def split: option.splits)

lemma AI_correct: AI c = Some C =⇒ CS c ≤ γc C
proof(simp add: CS_def AI_def)

assume 1 : pfp (step ′ >) (bot c) = Some C
have pfp ′: step ′ > C ≤ C by(rule pfp_pfp[OF 1])
have 2 : step (γo >) (γc C) ≤ γc C — transfer the pfp’
proof(rule order_trans)

show step (γo >) (γc C) ≤ γc (step ′ > C) by(rule step_step ′)
show ... ≤ γc C by (metis mono_gamma_c[OF pfp ′])

qed
have 3 : strip (γc C) = c by(simp add: strip_pfp[OF _ 1] step ′_def)
have lfp c (step (γo >)) ≤ γc C

by(rule lfp_lowerbound[simplified,where f=step (γo >), OF 3 2])
thus lfp c (step UNIV) ≤ γc C by simp

qed

138

end

14.7.4 Monotonicity

locale Abs_Int_fun_mono = Abs_Int_fun +
assumes mono_plus ′: a1 ≤ b1 =⇒ a2 ≤ b2 =⇒ plus ′ a1 a2 ≤ plus ′ b1 b2
begin

lemma mono_aval ′: S ≤ S ′ =⇒ aval ′ e S ≤ aval ′ e S ′

by(induction e)(auto simp: le_fun_def mono_plus ′)

lemma mono_update: a ≤ a ′ =⇒ S ≤ S ′ =⇒ S(x := a) ≤ S ′(x := a ′)
by(simp add: le_fun_def)

lemma mono_step ′: S1 ≤ S2 =⇒ C1 ≤ C2 =⇒ step ′ S1 C1 ≤ step ′ S2
C2
unfolding step ′_def
by(rule mono2_Step)
(auto simp: mono_update mono_aval ′ asem_def split: option.split)

lemma mono_step ′_top: C ≤ C ′ =⇒ step ′ > C ≤ step ′ > C ′

by (metis mono_step ′ order_refl)

lemma AI_least_pfp: assumes AI c = Some C step ′ > C ′ ≤ C ′ strip C ′

= c
shows C ≤ C ′

by(rule pfp_bot_least[OF _ _ assms(2 ,3) assms(1)[unfolded AI_def]])
(simp_all add: mono_step ′_top)

end

instantiation acom :: (type) vars
begin

definition vars_acom = vars o strip

instance ..

end

lemma finite_Cvars: finite(vars(C :: ′a acom))
by(simp add: vars_acom_def)

139

14.7.5 Termination

lemma pfp_termination:
fixes x0 :: ′a::order and m :: ′a ⇒ nat
assumes mono:

∧
x y. I x =⇒ I y =⇒ x ≤ y =⇒ f x ≤ f y

and m:
∧

x y. I x =⇒ I y =⇒ x < y =⇒ m x > m y
and I :

∧
x y. I x =⇒ I (f x) and I x0 and x0 ≤ f x0

shows ∃ x. pfp f x0 = Some x
proof(simp add: pfp_def , rule wf_while_option_Some[where P = %x. I
x & x ≤ f x])

show wf {(y,x). ((I x ∧ x ≤ f x) ∧ ¬ f x ≤ x) ∧ y = f x}
by(rule wf_subset[OF wf_measure[of m]]) (auto simp: m I)

next
show I x0 ∧ x0 ≤ f x0 using ‹I x0 › ‹x0 ≤ f x0 › by blast

next
fix x assume I x ∧ x ≤ f x thus I (f x) ∧ f x ≤ f (f x)

by (blast intro: I mono)
qed

lemma le_iff_le_annos: C1 ≤ C2 ←→
strip C1 = strip C2 ∧ (∀ i<size(annos C1). annos C1 ! i ≤ annos C2 !

i)
by(simp add: less_eq_acom_def anno_def)

locale Measure1_fun =
fixes m :: ′av::top ⇒ nat
fixes h :: nat
assumes h: m x ≤ h
begin

definition m_s :: ′av st ⇒ vname set ⇒ nat (‹ms›) where
m_s S X = (

∑
x ∈ X . m(S x))

lemma m_s_h: finite X =⇒ m_s S X ≤ h ∗ card X
by(simp add: m_s_def) (metis mult.commute of_nat_id sum_bounded_above[OF
h])

fun m_o :: ′av st option ⇒ vname set ⇒ nat (‹mo›) where
m_o (Some S) X = m_s S X |
m_o None X = h ∗ card X + 1

lemma m_o_h: finite X =⇒ m_o opt X ≤ (h∗card X + 1)
by(cases opt)(auto simp add: m_s_h le_SucI dest: m_s_h)

140

definition m_c :: ′av st option acom ⇒ nat (‹mc›) where
m_c C = sum_list (map (λa. m_o a (vars C)) (annos C))

Upper complexity bound:

lemma m_c_h: m_c C ≤ size(annos C) ∗ (h ∗ card(vars C) + 1)
proof−

let ?X = vars C let ?n = card ?X let ?a = size(annos C)
have m_c C = (

∑
i<?a. m_o (annos C ! i) ?X)

by(simp add: m_c_def sum_list_sum_nth atLeast0LessThan)
also have . . . ≤ (

∑
i<?a. h ∗ ?n + 1)

apply(rule sum_mono) using m_o_h[OF finite_Cvars] by simp
also have . . . = ?a ∗ (h ∗ ?n + 1) by simp
finally show ?thesis .

qed

end

locale Measure_fun = Measure1_fun where m=m
for m :: ′av::semilattice_sup_top ⇒ nat +

assumes m2 : x < y =⇒ m x > m y
begin

The predicates top_on_ty a X that follow describe that any abstract
state in a maps all variables in X to >. This is an important invariant for
the termination proof where we argue that only the finitely many variables
in the program change. That the others do not change follows because they
remain >.

fun top_on_st :: ′av st ⇒ vname set ⇒ bool (‹top ′_ons›) where
top_on_st S X = (∀ x∈X . S x = >)

fun top_on_opt :: ′av st option ⇒ vname set ⇒ bool (‹top ′_ono›) where
top_on_opt (Some S) X = top_on_st S X |
top_on_opt None X = True

definition top_on_acom :: ′av st option acom ⇒ vname set ⇒ bool (‹top ′_onc›)
where
top_on_acom C X = (∀ a ∈ set(annos C). top_on_opt a X)

lemma top_on_top: top_on_opt > X
by(auto simp: top_option_def)

lemma top_on_bot: top_on_acom (bot c) X
by(auto simp add: top_on_acom_def bot_def)

141

lemma top_on_post: top_on_acom C X =⇒ top_on_opt (post C) X
by(simp add: top_on_acom_def post_in_annos)

lemma top_on_acom_simps:
top_on_acom (SKIP {Q}) X = top_on_opt Q X
top_on_acom (x ::= e {Q}) X = top_on_opt Q X
top_on_acom (C1 ;;C2) X = (top_on_acom C1 X ∧ top_on_acom C2

X)
top_on_acom (IF b THEN {P1} C1 ELSE {P2} C2 {Q}) X =
(top_on_opt P1 X ∧ top_on_acom C1 X ∧ top_on_opt P2 X ∧

top_on_acom C2 X ∧ top_on_opt Q X)
top_on_acom ({I} WHILE b DO {P} C {Q}) X =
(top_on_opt I X ∧ top_on_acom C X ∧ top_on_opt P X ∧ top_on_opt

Q X)
by(auto simp add: top_on_acom_def)

lemma top_on_sup:
top_on_opt o1 X =⇒ top_on_opt o2 X =⇒ top_on_opt (o1 t o2) X

apply(induction o1 o2 rule: sup_option.induct)
apply(auto)
done

lemma top_on_Step: fixes C :: ′av st option acom
assumes !!x e S . [[top_on_opt S X ; x /∈ X ; vars e ⊆ −X]] =⇒ top_on_opt
(f x e S) X

!!b S . top_on_opt S X =⇒ vars b ⊆ −X =⇒ top_on_opt (g b S) X
shows [[vars C ⊆ −X ; top_on_opt S X ; top_on_acom C X]] =⇒ top_on_acom
(Step f g S C) X
proof(induction C arbitrary: S)
qed (auto simp: top_on_acom_simps vars_acom_def top_on_post top_on_sup
assms)

lemma m1 : x ≤ y =⇒ m x ≥ m y
by(auto simp: le_less m2)

lemma m_s2_rep: assumes finite(X) and S1 = S2 on −X and ∀ x. S1
x ≤ S2 x and S1 6= S2
shows (

∑
x∈X . m (S2 x)) < (

∑
x∈X . m (S1 x))

proof−
from assms(3) have 1 : ∀ x∈X . m(S1 x) ≥ m(S2 x) by (simp add: m1)
from assms(2 ,3 ,4) have ∃ x∈X . S1 x < S2 x

by(simp add: fun_eq_iff) (metis Compl_iff le_neq_trans)
hence 2 : ∃ x∈X . m(S1 x) > m(S2 x) by (metis m2)

142

from sum_strict_mono_ex1 [OF ‹finite X› 1 2]
show (

∑
x∈X . m (S2 x)) < (

∑
x∈X . m (S1 x)) .

qed

lemma m_s2 : finite(X) =⇒ S1 = S2 on −X =⇒ S1 < S2 =⇒ m_s S1
X > m_s S2 X
apply(auto simp add: less_fun_def m_s_def)
apply(simp add: m_s2_rep le_fun_def)
done

lemma m_o2 : finite X =⇒ top_on_opt o1 (−X) =⇒ top_on_opt o2
(−X) =⇒

o1 < o2 =⇒ m_o o1 X > m_o o2 X
proof(induction o1 o2 rule: less_eq_option.induct)

case 1 thus ?case by (auto simp: m_s2 less_option_def)
next
case 2 thus ?case by(auto simp: less_option_def le_imp_less_Suc m_s_h)

next
case 3 thus ?case by (auto simp: less_option_def)

qed

lemma m_o1 : finite X =⇒ top_on_opt o1 (−X) =⇒ top_on_opt o2
(−X) =⇒

o1 ≤ o2 =⇒ m_o o1 X ≥ m_o o2 X
by(auto simp: le_less m_o2)

lemma m_c2 : top_on_acom C1 (−vars C1) =⇒ top_on_acom C2 (−vars
C2) =⇒

C1 < C2 =⇒ m_c C1 > m_c C2
proof(auto simp add: le_iff_le_annos size_annos_same[of C1 C2] vars_acom_def
less_acom_def)

let ?X = vars(strip C2)
assume top: top_on_acom C1 (− vars(strip C2)) top_on_acom C2 (−

vars(strip C2))
and strip_eq: strip C1 = strip C2
and 0 : ∀ i<size(annos C2). annos C1 ! i ≤ annos C2 ! i
hence 1 : ∀ i<size(annos C2). m_o (annos C1 ! i) ?X ≥ m_o (annos C2

! i) ?X
apply (auto simp: all_set_conv_all_nth vars_acom_def top_on_acom_def)
by (metis (lifting, no_types) finite_cvars m_o1 size_annos_same2)

fix i assume i: i < size(annos C2) ¬ annos C2 ! i ≤ annos C1 ! i
have topo1 : top_on_opt (annos C1 ! i) (− ?X)
using i(1) top(1) by(simp add: top_on_acom_def size_annos_same[OF

143

strip_eq])
have topo2 : top_on_opt (annos C2 ! i) (− ?X)
using i(1) top(2) by(simp add: top_on_acom_def size_annos_same[OF

strip_eq])
from i have m_o (annos C1 ! i) ?X > m_o (annos C2 ! i) ?X (is ?P

i)
by (metis 0 less_option_def m_o2 [OF finite_cvars topo1] topo2)

hence 2 : ∃ i < size(annos C2). ?P i using ‹i < size(annos C2)› by blast
have (

∑
i<size(annos C2). m_o (annos C2 ! i) ?X)

< (
∑

i<size(annos C2). m_o (annos C1 ! i) ?X)
apply(rule sum_strict_mono_ex1) using 1 2 by (auto)

thus ?thesis
by(simp add: m_c_def vars_acom_def strip_eq sum_list_sum_nth

atLeast0LessThan size_annos_same[OF strip_eq])
qed

end

locale Abs_Int_fun_measure =
Abs_Int_fun_mono where γ=γ + Measure_fun where m=m
for γ :: ′av::semilattice_sup_top ⇒ val set and m :: ′av ⇒ nat

begin

lemma top_on_step ′: top_on_acom C (−vars C) =⇒ top_on_acom (step ′

> C) (−vars C)
unfolding step ′_def
by(rule top_on_Step)
(auto simp add: top_option_def asem_def split: option.splits)

lemma AI_Some_measure: ∃C . AI c = Some C
unfolding AI_def
apply(rule pfp_termination[where I = λC . top_on_acom C (− vars C)
and m=m_c])
apply(simp_all add: m_c2 mono_step ′_top bot_least top_on_bot)
using top_on_step ′ apply(auto simp add: vars_acom_def)
done

end

Problem: not executable because of the comparison of abstract states,
i.e. functions, in the pre-fixpoint computation.

end

144

14.8 Computable State

theory Abs_State
imports Abs_Int0
begin

type_synonym ′a st_rep = (vname ∗ ′a) list

fun fun_rep :: (′a::top) st_rep ⇒ vname ⇒ ′a where
fun_rep [] = (λx. >) |
fun_rep ((x,a)#ps) = (fun_rep ps) (x := a)

lemma fun_rep_map_of [code]: — original def is too slow
fun_rep ps = (%x. case map_of ps x of None ⇒ > | Some a ⇒ a)

by(induction ps rule: fun_rep.induct) auto

definition eq_st :: (′a::top) st_rep ⇒ ′a st_rep ⇒ bool where
eq_st S1 S2 = (fun_rep S1 = fun_rep S2)

hide_type st — hide previous def to avoid long names
declare [[typedef_overloaded]] — allow quotient types to depend on classes

quotient_type ′a st = (′a::top) st_rep / eq_st
morphisms rep_st St
by (metis eq_st_def equivpI reflpI sympI transpI)

lift_definition update :: (′a::top) st ⇒ vname ⇒ ′a ⇒ ′a st
is λps x a. (x,a)#ps

by(auto simp: eq_st_def)

lift_definition fun :: (′a::top) st ⇒ vname ⇒ ′a is fun_rep
by(simp add: eq_st_def)

definition show_st :: vname set ⇒ (′a::top) st ⇒ (vname ∗ ′a)set where
show_st X S = (λx. (x, fun S x)) ‘ X

definition show_acom C = map_acom (map_option (show_st (vars(strip
C)))) C
definition show_acom_opt = map_option show_acom

lemma fun_update[simp]: fun (update S x y) = (fun S)(x:=y)
by transfer auto

definition γ_st :: ((′a::top) ⇒ ′b set) ⇒ ′a st ⇒ (vname ⇒ ′b) set where

145

γ_st γ F = {f . ∀ x. f x ∈ γ(fun F x)}

instantiation st :: (order_top) order
begin

definition less_eq_st_rep :: ′a st_rep ⇒ ′a st_rep ⇒ bool where
less_eq_st_rep ps1 ps2 =
((∀ x ∈ set(map fst ps1) ∪ set(map fst ps2). fun_rep ps1 x ≤ fun_rep ps2

x))

lemma less_eq_st_rep_iff :
less_eq_st_rep r1 r2 = (∀ x. fun_rep r1 x ≤ fun_rep r2 x)

apply(auto simp: less_eq_st_rep_def fun_rep_map_of split: option.split)
apply (metis Un_iff map_of_eq_None_iff option.distinct(1))
apply (metis Un_iff map_of_eq_None_iff option.distinct(1))
done

corollary less_eq_st_rep_iff_fun:
less_eq_st_rep r1 r2 = (fun_rep r1 ≤ fun_rep r2)

by (metis less_eq_st_rep_iff le_fun_def)

lift_definition less_eq_st :: ′a st ⇒ ′a st ⇒ bool is less_eq_st_rep
by(auto simp add: eq_st_def less_eq_st_rep_iff)

definition less_st where F < (G:: ′a st) = (F ≤ G ∧ ¬ G ≤ F)

instance
proof (standard, goal_cases)

case 1 show ?case by(rule less_st_def)
next

case 2 show ?case by transfer (auto simp: less_eq_st_rep_def)
next

case 3 thus ?case by transfer (metis less_eq_st_rep_iff order_trans)
next

case 4 thus ?case
by transfer (metis less_eq_st_rep_iff eq_st_def fun_eq_iff antisym)

qed

end

lemma le_st_iff : (F ≤ G) = (∀ x. fun F x ≤ fun G x)
by transfer (rule less_eq_st_rep_iff)

fun map2_st_rep :: (′a::top ⇒ ′a ⇒ ′a) ⇒ ′a st_rep ⇒ ′a st_rep ⇒ ′a

146

st_rep where
map2_st_rep f [] ps2 = map (%(x,y). (x, f > y)) ps2 |
map2_st_rep f ((x,y)#ps1) ps2 =
(let y2 = fun_rep ps2 x
in (x,f y y2) # map2_st_rep f ps1 ps2)

lemma fun_rep_map2_rep[simp]: f > > = > =⇒
fun_rep (map2_st_rep f ps1 ps2) = (λx. f (fun_rep ps1 x) (fun_rep ps2

x))
apply(induction f ps1 ps2 rule: map2_st_rep.induct)
apply(simp add: fun_rep_map_of map_of_map fun_eq_iff split: option.split)
apply(fastforce simp: fun_rep_map_of fun_eq_iff split:option.splits)
done

instantiation st :: (semilattice_sup_top) semilattice_sup_top
begin

lift_definition sup_st :: ′a st ⇒ ′a st ⇒ ′a st is map2_st_rep (t)
by (simp add: eq_st_def)

lift_definition top_st :: ′a st is [] .

instance
proof (standard, goal_cases)

case 1 show ?case by transfer (simp add:less_eq_st_rep_iff)
next

case 2 show ?case by transfer (simp add:less_eq_st_rep_iff)
next

case 3 thus ?case by transfer (simp add:less_eq_st_rep_iff)
next
case 4 show ?case by transfer (simp add:less_eq_st_rep_iff fun_rep_map_of)

qed

end

lemma fun_top: fun > = (λx. >)
by transfer simp

lemma mono_update[simp]:
a1 ≤ a2 =⇒ S1 ≤ S2 =⇒ update S1 x a1 ≤ update S2 x a2

by transfer (auto simp add: less_eq_st_rep_def)

lemma mono_fun: S1 ≤ S2 =⇒ fun S1 x ≤ fun S2 x
by transfer (simp add: less_eq_st_rep_iff)

147

locale Gamma_semilattice = Val_semilattice where γ=γ
for γ :: ′av::semilattice_sup_top ⇒ val set

begin

abbreviation γs :: ′av st ⇒ state set
where γs == γ_st γ

abbreviation γo :: ′av st option ⇒ state set
where γo == γ_option γs

abbreviation γc :: ′av st option acom ⇒ state set acom
where γc == map_acom γo

lemma gamma_s_top[simp]: γs > = UNIV
by(auto simp: γ_st_def fun_top)

lemma gamma_o_Top[simp]: γo > = UNIV
by (simp add: top_option_def)

lemma mono_gamma_s: f ≤ g =⇒ γs f ⊆ γs g
by(simp add:γ_st_def le_st_iff subset_iff) (metis mono_gamma subsetD)

lemma mono_gamma_o:
S1 ≤ S2 =⇒ γo S1 ⊆ γo S2

by(induction S1 S2 rule: less_eq_option.induct)(simp_all add: mono_gamma_s)

lemma mono_gamma_c: C1 ≤ C2 =⇒ γc C1 ≤ γc C2
by (simp add: less_eq_acom_def mono_gamma_o size_annos anno_map_acom
size_annos_same[of C1 C2])

lemma in_gamma_option_iff :
x ∈ γ_option r u ←→ (∃ u ′. u = Some u ′ ∧ x ∈ r u ′)

by (cases u) auto

end

end

14.9 Computable Abstract Interpretation

theory Abs_Int1
imports Abs_State
begin

148

Abstract interpretation over type st instead of functions.
context Gamma_semilattice
begin

fun aval ′ :: aexp ⇒ ′av st ⇒ ′av where
aval ′ (N i) S = num ′ i |
aval ′ (V x) S = fun S x |
aval ′ (Plus a1 a2) S = plus ′ (aval ′ a1 S) (aval ′ a2 S)

lemma aval ′_correct: s ∈ γs S =⇒ aval a s ∈ γ(aval ′ a S)
by (induction a) (auto simp: gamma_num ′ gamma_plus ′ γ_st_def)

lemma gamma_Step_subcomm: fixes C1 C2 :: ′a::semilattice_sup acom
assumes !!x e S . f1 x e (γo S) ⊆ γo (f2 x e S)

!!b S . g1 b (γo S) ⊆ γo (g2 b S)
shows Step f1 g1 (γo S) (γc C) ≤ γc (Step f2 g2 S C)

proof(induction C arbitrary: S)
qed (auto simp: assms intro!: mono_gamma_o sup_ge1 sup_ge2)

lemma in_gamma_update: [[s ∈ γs S ; i ∈ γ a]] =⇒ s(x := i) ∈ γs(update
S x a)
by(simp add: γ_st_def)

end

locale Abs_Int = Gamma_semilattice where γ=γ
for γ :: ′av::semilattice_sup_top ⇒ val set

begin

definition step ′ = Step
(λx e S . case S of None ⇒ None | Some S ⇒ Some(update S x (aval ′ e

S)))
(λb S . S)

definition AI :: com ⇒ ′av st option acom option where
AI c = pfp (step ′ >) (bot c)

lemma strip_step ′[simp]: strip(step ′ S C) = strip C
by(simp add: step ′_def)

Correctness:
lemma step_step ′: step (γo S) (γc C) ≤ γc (step ′ S C)

149

unfolding step_def step ′_def
by(rule gamma_Step_subcomm)
(auto simp: intro!: aval ′_correct in_gamma_update split: option.splits)

lemma AI_correct: AI c = Some C =⇒ CS c ≤ γc C
proof(simp add: CS_def AI_def)

assume 1 : pfp (step ′ >) (bot c) = Some C
have pfp ′: step ′ > C ≤ C by(rule pfp_pfp[OF 1])
have 2 : step (γo >) (γc C) ≤ γc C — transfer the pfp’
proof(rule order_trans)

show step (γo >) (γc C) ≤ γc (step ′ > C) by(rule step_step ′)
show ... ≤ γc C by (metis mono_gamma_c[OF pfp ′])

qed
have 3 : strip (γc C) = c by(simp add: strip_pfp[OF _ 1] step ′_def)
have lfp c (step (γo >)) ≤ γc C

by(rule lfp_lowerbound[simplified,where f=step (γo >), OF 3 2])
thus lfp c (step UNIV) ≤ γc C by simp

qed

end

14.9.1 Monotonicity

locale Abs_Int_mono = Abs_Int +
assumes mono_plus ′: a1 ≤ b1 =⇒ a2 ≤ b2 =⇒ plus ′ a1 a2 ≤ plus ′ b1 b2
begin

lemma mono_aval ′: S1 ≤ S2 =⇒ aval ′ e S1 ≤ aval ′ e S2
by(induction e) (auto simp: mono_plus ′ mono_fun)

theorem mono_step ′: S1 ≤ S2 =⇒ C1 ≤ C2 =⇒ step ′ S1 C1 ≤ step ′ S2
C2
unfolding step ′_def
by(rule mono2_Step) (auto simp: mono_aval ′ split: option.split)

lemma mono_step ′_top: C ≤ C ′ =⇒ step ′ > C ≤ step ′ > C ′

by (metis mono_step ′ order_refl)

lemma AI_least_pfp: assumes AI c = Some C step ′ > C ′ ≤ C ′ strip C ′

= c
shows C ≤ C ′

by(rule pfp_bot_least[OF _ _ assms(2 ,3) assms(1)[unfolded AI_def]])
(simp_all add: mono_step ′_top)

150

end

14.9.2 Termination

locale Measure1 =
fixes m :: ′av::order_top ⇒ nat
fixes h :: nat
assumes h: m x ≤ h
begin

definition m_s :: ′av st ⇒ vname set ⇒ nat (‹ms›) where
m_s S X = (

∑
x ∈ X . m(fun S x))

lemma m_s_h: finite X =⇒ m_s S X ≤ h ∗ card X
by(simp add: m_s_def) (metis mult.commute of_nat_id sum_bounded_above[OF
h])

definition m_o :: ′av st option ⇒ vname set ⇒ nat (‹mo›) where
m_o opt X = (case opt of None ⇒ h ∗ card X + 1 | Some S ⇒ m_s S X)

lemma m_o_h: finite X =⇒ m_o opt X ≤ (h∗card X + 1)
by(auto simp add: m_o_def m_s_h le_SucI split: option.split dest:m_s_h)

definition m_c :: ′av st option acom ⇒ nat (‹mc›) where
m_c C = sum_list (map (λa. m_o a (vars C)) (annos C))

Upper complexity bound:

lemma m_c_h: m_c C ≤ size(annos C) ∗ (h ∗ card(vars C) + 1)
proof−

let ?X = vars C let ?n = card ?X let ?a = size(annos C)
have m_c C = (

∑
i<?a. m_o (annos C ! i) ?X)

by(simp add: m_c_def sum_list_sum_nth atLeast0LessThan)
also have . . . ≤ (

∑
i<?a. h ∗ ?n + 1)

apply(rule sum_mono) using m_o_h[OF finite_Cvars] by simp
also have . . . = ?a ∗ (h ∗ ?n + 1) by simp
finally show ?thesis .

qed

end

fun top_on_st :: ′a::order_top st ⇒ vname set ⇒ bool (‹top ′_ons›) where
top_on_st S X = (∀ x∈X . fun S x = >)

fun top_on_opt :: ′a::order_top st option ⇒ vname set ⇒ bool (‹top ′_ono›)

151

where
top_on_opt (Some S) X = top_on_st S X |
top_on_opt None X = True

definition top_on_acom :: ′a::order_top st option acom ⇒ vname set ⇒
bool (‹top ′_onc›) where
top_on_acom C X = (∀ a ∈ set(annos C). top_on_opt a X)

lemma top_on_top: top_on_opt (>::_ st option) X
by(auto simp: top_option_def fun_top)

lemma top_on_bot: top_on_acom (bot c) X
by(auto simp add: top_on_acom_def bot_def)

lemma top_on_post: top_on_acom C X =⇒ top_on_opt (post C) X
by(simp add: top_on_acom_def post_in_annos)

lemma top_on_acom_simps:
top_on_acom (SKIP {Q}) X = top_on_opt Q X
top_on_acom (x ::= e {Q}) X = top_on_opt Q X
top_on_acom (C1 ;;C2) X = (top_on_acom C1 X ∧ top_on_acom C2

X)
top_on_acom (IF b THEN {P1} C1 ELSE {P2} C2 {Q}) X =
(top_on_opt P1 X ∧ top_on_acom C1 X ∧ top_on_opt P2 X ∧

top_on_acom C2 X ∧ top_on_opt Q X)
top_on_acom ({I} WHILE b DO {P} C {Q}) X =
(top_on_opt I X ∧ top_on_acom C X ∧ top_on_opt P X ∧ top_on_opt

Q X)
by(auto simp add: top_on_acom_def)

lemma top_on_sup:
top_on_opt o1 X =⇒ top_on_opt o2 X =⇒ top_on_opt (o1 t o2 :: _

st option) X
apply(induction o1 o2 rule: sup_option.induct)
apply(auto)
by transfer simp

lemma top_on_Step: fixes C :: (′a::semilattice_sup_top)st option acom
assumes !!x e S . [[top_on_opt S X ; x /∈ X ; vars e ⊆ −X]] =⇒ top_on_opt
(f x e S) X

!!b S . top_on_opt S X =⇒ vars b ⊆ −X =⇒ top_on_opt (g b S) X
shows [[vars C ⊆ −X ; top_on_opt S X ; top_on_acom C X]] =⇒ top_on_acom
(Step f g S C) X
proof(induction C arbitrary: S)

152

qed (auto simp: top_on_acom_simps vars_acom_def top_on_post top_on_sup
assms)

locale Measure = Measure1 +
assumes m2 : x < y =⇒ m x > m y
begin

lemma m1 : x ≤ y =⇒ m x ≥ m y
by(auto simp: le_less m2)

lemma m_s2_rep: assumes finite(X) and S1 = S2 on −X and ∀ x. S1
x ≤ S2 x and S1 6= S2
shows (

∑
x∈X . m (S2 x)) < (

∑
x∈X . m (S1 x))

proof−
from assms(3) have 1 : ∀ x∈X . m(S1 x) ≥ m(S2 x) by (simp add: m1)
from assms(2 ,3 ,4) have ∃ x∈X . S1 x < S2 x

by(simp add: fun_eq_iff) (metis Compl_iff le_neq_trans)
hence 2 : ∃ x∈X . m(S1 x) > m(S2 x) by (metis m2)
from sum_strict_mono_ex1 [OF ‹finite X› 1 2]
show (

∑
x∈X . m (S2 x)) < (

∑
x∈X . m (S1 x)) .

qed

lemma m_s2 : finite(X) =⇒ fun S1 = fun S2 on −X
=⇒ S1 < S2 =⇒ m_s S1 X > m_s S2 X

apply(auto simp add: less_st_def m_s_def)
apply (transfer fixing: m)
apply(simp add: less_eq_st_rep_iff eq_st_def m_s2_rep)
done

lemma m_o2 : finite X =⇒ top_on_opt o1 (−X) =⇒ top_on_opt o2
(−X) =⇒

o1 < o2 =⇒ m_o o1 X > m_o o2 X
proof(induction o1 o2 rule: less_eq_option.induct)

case 1 thus ?case by (auto simp: m_o_def m_s2 less_option_def)
next
case 2 thus ?case by(auto simp: m_o_def less_option_def le_imp_less_Suc

m_s_h)
next

case 3 thus ?case by (auto simp: less_option_def)
qed

lemma m_o1 : finite X =⇒ top_on_opt o1 (−X) =⇒ top_on_opt o2
(−X) =⇒

153

o1 ≤ o2 =⇒ m_o o1 X ≥ m_o o2 X
by(auto simp: le_less m_o2)

lemma m_c2 : top_on_acom C1 (−vars C1) =⇒ top_on_acom C2 (−vars
C2) =⇒

C1 < C2 =⇒ m_c C1 > m_c C2
proof(auto simp add: le_iff_le_annos size_annos_same[of C1 C2] vars_acom_def
less_acom_def)

let ?X = vars(strip C2)
assume top: top_on_acom C1 (− vars(strip C2)) top_on_acom C2 (−

vars(strip C2))
and strip_eq: strip C1 = strip C2
and 0 : ∀ i<size(annos C2). annos C1 ! i ≤ annos C2 ! i
hence 1 : ∀ i<size(annos C2). m_o (annos C1 ! i) ?X ≥ m_o (annos C2

! i) ?X
apply (auto simp: all_set_conv_all_nth vars_acom_def top_on_acom_def)
by (metis finite_cvars m_o1 size_annos_same2)

fix i assume i: i < size(annos C2) ¬ annos C2 ! i ≤ annos C1 ! i
have topo1 : top_on_opt (annos C1 ! i) (− ?X)
using i(1) top(1) by(simp add: top_on_acom_def size_annos_same[OF

strip_eq])
have topo2 : top_on_opt (annos C2 ! i) (− ?X)
using i(1) top(2) by(simp add: top_on_acom_def size_annos_same[OF

strip_eq])
from i have m_o (annos C1 ! i) ?X > m_o (annos C2 ! i) ?X (is ?P

i)
by (metis 0 less_option_def m_o2 [OF finite_cvars topo1] topo2)

hence 2 : ∃ i < size(annos C2). ?P i using ‹i < size(annos C2)› by blast
have (

∑
i<size(annos C2). m_o (annos C2 ! i) ?X)

< (
∑

i<size(annos C2). m_o (annos C1 ! i) ?X)
apply(rule sum_strict_mono_ex1) using 1 2 by (auto)

thus ?thesis
by(simp add: m_c_def vars_acom_def strip_eq sum_list_sum_nth

atLeast0LessThan size_annos_same[OF strip_eq])
qed

end

locale Abs_Int_measure =
Abs_Int_mono where γ=γ + Measure where m=m
for γ :: ′av::semilattice_sup_top ⇒ val set and m :: ′av ⇒ nat

begin

154

lemma top_on_step ′: [[top_on_acom C (−vars C)]] =⇒ top_on_acom
(step ′ > C) (−vars C)
unfolding step ′_def
by(rule top_on_Step)
(auto simp add: top_option_def fun_top split: option.splits)

lemma AI_Some_measure: ∃C . AI c = Some C
unfolding AI_def
apply(rule pfp_termination[where I = λC . top_on_acom C (− vars C)
and m=m_c])
apply(simp_all add: m_c2 mono_step ′_top bot_least top_on_bot)
using top_on_step ′ apply(auto simp add: vars_acom_def)
done

end

end

14.10 Parity Analysis

theory Abs_Int1_parity
imports Abs_Int1
begin

datatype parity = Even | Odd | Either

Instantiation of class order with type parity:

instantiation parity :: order
begin

First the definition of the interface function ≤. Note that the header of
the definition must refer to the ascii name (≤) of the constants as less_eq_parity
and the definition is named less_eq_parity_def. Inside the definition the
symbolic names can be used.

definition less_eq_parity where
x ≤ y = (y = Either ∨ x=y)

We also need <, which is defined canonically:

definition less_parity where
x < y = (x ≤ y ∧ ¬ y ≤ (x::parity))

(The type annotation is necessary to fix the type of the polymorphic predi-
cates.)

155

Now the instance proof, i.e. the proof that the definition fulfills the ax-
ioms (assumptions) of the class. The initial proof-step generates the neces-
sary proof obligations.

instance
proof

fix x::parity show x ≤ x by(auto simp: less_eq_parity_def)
next

fix x y z :: parity assume x ≤ y y ≤ z thus x ≤ z
by(auto simp: less_eq_parity_def)

next
fix x y :: parity assume x ≤ y y ≤ x thus x = y

by(auto simp: less_eq_parity_def)
next
fix x y :: parity show (x < y) = (x ≤ y ∧ ¬ y ≤ x) by(rule less_parity_def)

qed

end
Instantiation of class semilattice_sup_top with type parity:

instantiation parity :: semilattice_sup_top
begin

definition sup_parity where
x t y = (if x = y then x else Either)

definition top_parity where
> = Either

Now the instance proof. This time we take a shortcut with the help of
proof method goal_cases: it creates cases 1 ... n for the subgoals 1 ... n; in
case i, i is also the name of the assumptions of subgoal i and case? refers
to the conclusion of subgoal i. The class axioms are presented in the same
order as in the class definition.

instance
proof (standard, goal_cases)

case 1 show ?case by(auto simp: less_eq_parity_def sup_parity_def)
next

case 2 show ?case by(auto simp: less_eq_parity_def sup_parity_def)
next

case 3 thus ?case by(auto simp: less_eq_parity_def sup_parity_def)
next

case 4 show ?case by(auto simp: less_eq_parity_def top_parity_def)
qed

156

end

Now we define the functions used for instantiating the abstract inter-
pretation locales. Note that the Isabelle terminology is interpretation, not
instantiation of locales, but we use instantiation to avoid confusion with
abstract interpretation.

fun γ_parity :: parity ⇒ val set where
γ_parity Even = {i. i mod 2 = 0} |
γ_parity Odd = {i. i mod 2 = 1} |
γ_parity Either = UNIV

fun num_parity :: val ⇒ parity where
num_parity i = (if i mod 2 = 0 then Even else Odd)

fun plus_parity :: parity ⇒ parity ⇒ parity where
plus_parity Even Even = Even |
plus_parity Odd Odd = Even |
plus_parity Even Odd = Odd |
plus_parity Odd Even = Odd |
plus_parity Either y = Either |
plus_parity x Either = Either

First we instantiate the abstract value interface and prove that the func-
tions on type parity have all the necessary properties:

global_interpretation Val_semilattice
where γ = γ_parity and num ′ = num_parity and plus ′ = plus_parity
proof (standard, goal_cases)

subgoals are the locale axioms

case 1 thus ?case by(auto simp: less_eq_parity_def)
next

case 2 show ?case by(auto simp: top_parity_def)
next

case 3 show ?case by auto
next

case (4 _ a1 _ a2) thus ?case
by (induction a1 a2 rule: plus_parity.induct)
(auto simp add: mod_add_eq [symmetric])

qed

In case 4 we needed to refer to particular variables. Writing (i x y z) fixes
the names of the variables in case i to be x, y and z in the left-to-right order
in which the variables occur in the subgoal. Underscores are anonymous
placeholders for variable names we don’t care to fix.

157

Instantiating the abstract interpretation locale requires no more proofs
(they happened in the instatiation above) but delivers the instantiated ab-
stract interpreter which we call AI_parity:

global_interpretation Abs_Int
where γ = γ_parity and num ′ = num_parity and plus ′ = plus_parity
defines aval_parity = aval ′ and step_parity = step ′ and AI_parity = AI
..

14.10.1 Tests

definition test1_parity =
′′x ′′ ::= N 1 ;;
WHILE Less (V ′′x ′′) (N 100) DO ′′x ′′ ::= Plus (V ′′x ′′) (N 2)

value show_acom (the(AI_parity test1_parity))

definition test2_parity =
′′x ′′ ::= N 1 ;;
WHILE Less (V ′′x ′′) (N 100) DO ′′x ′′ ::= Plus (V ′′x ′′) (N 3)

definition steps c i = ((step_parity >) ^^ i) (bot c)

value show_acom (steps test2_parity 0)
value show_acom (steps test2_parity 1)
value show_acom (steps test2_parity 2)
value show_acom (steps test2_parity 3)
value show_acom (steps test2_parity 4)
value show_acom (steps test2_parity 5)
value show_acom (steps test2_parity 6)
value show_acom (the(AI_parity test2_parity))

14.10.2 Termination

global_interpretation Abs_Int_mono
where γ = γ_parity and num ′ = num_parity and plus ′ = plus_parity
proof (standard, goal_cases)

case (1 _ a1 _ a2) thus ?case
by(induction a1 a2 rule: plus_parity.induct)
(auto simp add:less_eq_parity_def)

qed

definition m_parity :: parity ⇒ nat where
m_parity x = (if x = Either then 0 else 1)

global_interpretation Abs_Int_measure

158

where γ = γ_parity and num ′ = num_parity and plus ′ = plus_parity
and m = m_parity and h = 1
proof (standard, goal_cases)

case 1 thus ?case by(auto simp add: m_parity_def less_eq_parity_def)
next

case 2 thus ?case by(auto simp add: m_parity_def less_eq_parity_def
less_parity_def)
qed

thm AI_Some_measure

end

14.11 Constant Propagation

theory Abs_Int1_const
imports Abs_Int1
begin

datatype const = Const val | Any

fun γ_const where
γ_const (Const i) = {i} |
γ_const (Any) = UNIV

fun plus_const where
plus_const (Const i) (Const j) = Const(i+j) |
plus_const _ _ = Any

lemma plus_const_cases: plus_const a1 a2 =
(case (a1 ,a2) of (Const i, Const j) ⇒ Const(i+j) | _ ⇒ Any)

by(auto split: prod.split const.split)

instantiation const :: semilattice_sup_top
begin

fun less_eq_const where x ≤ y = (y = Any | x=y)

definition x < (y::const) = (x ≤ y & ¬ y ≤ x)

fun sup_const where x t y = (if x=y then x else Any)

definition > = Any

159

instance
proof (standard, goal_cases)

case 1 thus ?case by (rule less_const_def)
next

case (2 x) show ?case by (cases x) simp_all
next

case (3 x y z) thus ?case by(cases z, cases y, cases x, simp_all)
next

case (4 x y) thus ?case by(cases x , cases y, simp_all, cases y, simp_all)
next

case (6 x y) thus ?case by(cases x, cases y, simp_all)
next

case (5 x y) thus ?case by(cases y, cases x, simp_all)
next

case (7 x y z) thus ?case by(cases z, cases y, cases x, simp_all)
next

case 8 thus ?case by(simp add: top_const_def)
qed

end

global_interpretation Val_semilattice
where γ = γ_const and num ′ = Const and plus ′ = plus_const
proof (standard, goal_cases)

case (1 a b) thus ?case
by(cases a, cases b, simp, simp, cases b, simp, simp)

next
case 2 show ?case by(simp add: top_const_def)

next
case 3 show ?case by simp

next
case 4 thus ?case by(auto simp: plus_const_cases split: const.split)

qed

global_interpretation Abs_Int
where γ = γ_const and num ′ = Const and plus ′ = plus_const
defines AI_const = AI and step_const = step ′ and aval ′_const = aval ′
..

14.11.1 Tests

definition steps c i = (step_const > ^^ i) (bot c)

160

value show_acom (steps test1_const 0)
value show_acom (steps test1_const 1)
value show_acom (steps test1_const 2)
value show_acom (steps test1_const 3)
value show_acom (the(AI_const test1_const))

value show_acom (the(AI_const test2_const))
value show_acom (the(AI_const test3_const))

value show_acom (steps test4_const 0)
value show_acom (steps test4_const 1)
value show_acom (steps test4_const 2)
value show_acom (steps test4_const 3)
value show_acom (steps test4_const 4)
value show_acom (the(AI_const test4_const))

value show_acom (steps test5_const 0)
value show_acom (steps test5_const 1)
value show_acom (steps test5_const 2)
value show_acom (steps test5_const 3)
value show_acom (steps test5_const 4)
value show_acom (steps test5_const 5)
value show_acom (steps test5_const 6)
value show_acom (the(AI_const test5_const))

value show_acom (steps test6_const 0)
value show_acom (steps test6_const 1)
value show_acom (steps test6_const 2)
value show_acom (steps test6_const 3)
value show_acom (steps test6_const 4)
value show_acom (steps test6_const 5)
value show_acom (steps test6_const 6)
value show_acom (steps test6_const 7)
value show_acom (steps test6_const 8)
value show_acom (steps test6_const 9)
value show_acom (steps test6_const 10)
value show_acom (steps test6_const 11)
value show_acom (steps test6_const 12)
value show_acom (steps test6_const 13)
value show_acom (the(AI_const test6_const))

Monotonicity:

global_interpretation Abs_Int_mono
where γ = γ_const and num ′ = Const and plus ′ = plus_const

161

proof (standard, goal_cases)
case 1 thus ?case by(auto simp: plus_const_cases split: const.split)

qed

Termination:

definition m_const :: const ⇒ nat where
m_const x = (if x = Any then 0 else 1)

global_interpretation Abs_Int_measure
where γ = γ_const and num ′ = Const and plus ′ = plus_const
and m = m_const and h = 1
proof (standard, goal_cases)

case 1 thus ?case by(auto simp: m_const_def split: const.splits)
next

case 2 thus ?case by(auto simp: m_const_def less_const_def split:
const.splits)
qed

thm AI_Some_measure

end

14.12 Backward Analysis of Expressions

theory Abs_Int2
imports Abs_Int1
begin

instantiation prod :: (order ,order) order
begin

definition less_eq_prod p1 p2 = (fst p1 ≤ fst p2 ∧ snd p1 ≤ snd p2)
definition less_prod p1 p2 = (p1 ≤ p2 ∧ ¬ p2 ≤ (p1 :: ′a∗ ′b))

instance
proof (standard, goal_cases)

case 1 show ?case by(rule less_prod_def)
next

case 2 show ?case by(simp add: less_eq_prod_def)
next

case 3 thus ?case unfolding less_eq_prod_def by(metis order_trans)
next

case 4 thus ?case by(simp add: less_eq_prod_def)(metis eq_iff surjec-
tive_pairing)

162

qed

end

14.12.1 Extended Framework

subclass (in bounded_lattice) semilattice_sup_top ..

locale Val_lattice_gamma = Gamma_semilattice where γ = γ
for γ :: ′av::bounded_lattice ⇒ val set +

assumes inter_gamma_subset_gamma_inf :
γ a1 ∩ γ a2 ⊆ γ(a1 u a2)

and gamma_bot[simp]: γ ⊥ = {}
begin

lemma in_gamma_inf : x ∈ γ a1 =⇒ x ∈ γ a2 =⇒ x ∈ γ(a1 u a2)
by (metis IntI inter_gamma_subset_gamma_inf subsetD)

lemma gamma_inf : γ(a1 u a2) = γ a1 ∩ γ a2
by(rule equalityI [OF _ inter_gamma_subset_gamma_inf])
(metis inf_le1 inf_le2 le_inf_iff mono_gamma)

end

locale Val_inv = Val_lattice_gamma where γ = γ
for γ :: ′av::bounded_lattice ⇒ val set +

fixes test_num ′ :: val ⇒ ′av ⇒ bool
and inv_plus ′ :: ′av ⇒ ′av ⇒ ′av ⇒ ′av ∗ ′av
and inv_less ′ :: bool ⇒ ′av ⇒ ′av ⇒ ′av ∗ ′av
assumes test_num ′: test_num ′ i a = (i ∈ γ a)
and inv_plus ′: inv_plus ′ a a1 a2 = (a1

′,a2
′) =⇒

i1 ∈ γ a1 =⇒ i2 ∈ γ a2 =⇒ i1+i2 ∈ γ a =⇒ i1 ∈ γ a1
′ ∧ i2 ∈ γ a2

′

and inv_less ′: inv_less ′ (i1<i2) a1 a2 = (a1
′,a2

′) =⇒
i1 ∈ γ a1 =⇒ i2 ∈ γ a2 =⇒ i1 ∈ γ a1

′ ∧ i2 ∈ γ a2
′

locale Abs_Int_inv = Val_inv where γ = γ
for γ :: ′av::bounded_lattice ⇒ val set

begin

lemma in_gamma_sup_UpI :
s ∈ γo S1 ∨ s ∈ γo S2 =⇒ s ∈ γo(S1 t S2)

by (metis (opaque_lifting, no_types) sup_ge1 sup_ge2 mono_gamma_o

163

subsetD)

fun aval ′′ :: aexp ⇒ ′av st option ⇒ ′av where
aval ′′ e None = ⊥ |
aval ′′ e (Some S) = aval ′ e S

lemma aval ′′_correct: s ∈ γo S =⇒ aval a s ∈ γ(aval ′′ a S)
by(cases S)(auto simp add: aval ′_correct split: option.splits)

14.12.2 Backward analysis

fun inv_aval ′ :: aexp ⇒ ′av ⇒ ′av st option ⇒ ′av st option where
inv_aval ′ (N n) a S = (if test_num ′ n a then S else None) |
inv_aval ′ (V x) a S = (case S of None ⇒ None | Some S ⇒

let a ′ = fun S x u a in
if a ′ = ⊥ then None else Some(update S x a ′)) |

inv_aval ′ (Plus e1 e2) a S =
(let (a1 ,a2) = inv_plus ′ a (aval ′′ e1 S) (aval ′′ e2 S)
in inv_aval ′ e1 a1 (inv_aval ′ e2 a2 S))

The test for bot in the V -case is important: bot indicates that a variable
has no possible values, i.e. that the current program point is unreachable.
But then the abstract state should collapse to None. Put differently, we
maintain the invariant that in an abstract state of the form Some s, all
variables are mapped to non-bot values. Otherwise the (pointwise) sup of
two abstract states, one of which contains bot values, may produce too large
a result, thus making the analysis less precise.

fun inv_bval ′ :: bexp ⇒ bool ⇒ ′av st option ⇒ ′av st option where
inv_bval ′ (Bc v) res S = (if v=res then S else None) |
inv_bval ′ (Not b) res S = inv_bval ′ b (¬ res) S |
inv_bval ′ (And b1 b2) res S =
(if res then inv_bval ′ b1 True (inv_bval ′ b2 True S)
else inv_bval ′ b1 False S t inv_bval ′ b2 False S) |

inv_bval ′ (Less e1 e2) res S =
(let (a1 ,a2) = inv_less ′ res (aval ′′ e1 S) (aval ′′ e2 S)
in inv_aval ′ e1 a1 (inv_aval ′ e2 a2 S))

lemma inv_aval ′_correct: s ∈ γo S =⇒ aval e s ∈ γ a =⇒ s ∈ γo (inv_aval ′
e a S)
proof(induction e arbitrary: a S)

case N thus ?case by simp (metis test_num ′)
next

case (V x)
obtain S ′ where S = Some S ′ and s ∈ γs S ′ using ‹s ∈ γo S›

164

by(auto simp: in_gamma_option_iff)
moreover hence s x ∈ γ (fun S ′ x)

by(simp add: γ_st_def)
moreover have s x ∈ γ a using V (2) by simp
ultimately show ?case

by(simp add: Let_def γ_st_def)
(metis mono_gamma emptyE in_gamma_inf gamma_bot subset_empty)

next
case (Plus e1 e2) thus ?case

using inv_plus ′[OF _ aval ′′_correct aval ′′_correct]
by (auto split: prod.split)

qed

lemma inv_bval ′_correct: s ∈ γo S =⇒ bv = bval b s =⇒ s ∈ γo(inv_bval ′
b bv S)
proof(induction b arbitrary: S bv)

case Bc thus ?case by simp
next

case (Not b) thus ?case by simp
next

case (And b1 b2) thus ?case
by simp (metis And(1) And(2) in_gamma_sup_UpI)

next
case (Less e1 e2) thus ?case

apply hypsubst_thin
apply (auto split: prod.split)
apply (metis (lifting) inv_aval ′_correct aval ′′_correct inv_less ′)
done

qed

definition step ′ = Step
(λx e S . case S of None ⇒ None | Some S ⇒ Some(update S x (aval ′ e

S)))
(λb S . inv_bval ′ b True S)

definition AI :: com ⇒ ′av st option acom option where
AI c = pfp (step ′ >) (bot c)

lemma strip_step ′[simp]: strip(step ′ S c) = strip c
by(simp add: step ′_def)

lemma top_on_inv_aval ′: [[top_on_opt S X ; vars e ⊆ −X]] =⇒ top_on_opt
(inv_aval ′ e a S) X
by(induction e arbitrary: a S) (auto simp: Let_def split: option.splits prod.split)

165

lemma top_on_inv_bval ′: [[top_on_opt S X ; vars b ⊆ −X]] =⇒ top_on_opt
(inv_bval ′ b r S) X
by(induction b arbitrary: r S) (auto simp: top_on_inv_aval ′ top_on_sup
split: prod.split)

lemma top_on_step ′: top_on_acom C (− vars C) =⇒ top_on_acom
(step ′ > C) (− vars C)
unfolding step ′_def
by(rule top_on_Step)
(auto simp add: top_on_top top_on_inv_bval ′ split: option.split)

14.12.3 Correctness

lemma step_step ′: step (γo S) (γc C) ≤ γc (step ′ S C)
unfolding step_def step ′_def
by(rule gamma_Step_subcomm)

(auto simp: intro!: aval ′_correct inv_bval ′_correct in_gamma_update
split: option.splits)

lemma AI_correct: AI c = Some C =⇒ CS c ≤ γc C
proof(simp add: CS_def AI_def)

assume 1 : pfp (step ′ >) (bot c) = Some C
have pfp ′: step ′ > C ≤ C by(rule pfp_pfp[OF 1])
have 2 : step (γo >) (γc C) ≤ γc C — transfer the pfp’
proof(rule order_trans)

show step (γo >) (γc C) ≤ γc (step ′ > C) by(rule step_step ′)
show ... ≤ γc C by (metis mono_gamma_c[OF pfp ′])

qed
have 3 : strip (γc C) = c by(simp add: strip_pfp[OF _ 1] step ′_def)
have lfp c (step (γo >)) ≤ γc C

by(rule lfp_lowerbound[simplified,where f=step (γo >), OF 3 2])
thus lfp c (step UNIV) ≤ γc C by simp

qed

end

14.12.4 Monotonicity

locale Abs_Int_inv_mono = Abs_Int_inv +
assumes mono_plus ′: a1 ≤ b1 =⇒ a2 ≤ b2 =⇒ plus ′ a1 a2 ≤ plus ′ b1 b2
and mono_inv_plus ′: a1 ≤ b1 =⇒ a2 ≤ b2 =⇒ r ≤ r ′ =⇒

inv_plus ′ r a1 a2 ≤ inv_plus ′ r ′ b1 b2
and mono_inv_less ′: a1 ≤ b1 =⇒ a2 ≤ b2 =⇒

166

inv_less ′ bv a1 a2 ≤ inv_less ′ bv b1 b2
begin

lemma mono_aval ′:
S1 ≤ S2 =⇒ aval ′ e S1 ≤ aval ′ e S2

by(induction e) (auto simp: mono_plus ′ mono_fun)

lemma mono_aval ′′:
S1 ≤ S2 =⇒ aval ′′ e S1 ≤ aval ′′ e S2

apply(cases S1)
apply simp

apply(cases S2)
apply simp

by (simp add: mono_aval ′)

lemma mono_inv_aval ′: r1 ≤ r2 =⇒ S1 ≤ S2 =⇒ inv_aval ′ e r1 S1 ≤
inv_aval ′ e r2 S2
apply(induction e arbitrary: r1 r2 S1 S2)

apply(auto simp: test_num ′ Let_def inf_mono split: option.splits prod.splits)
apply (metis mono_gamma subsetD)

apply (metis le_bot inf_mono le_st_iff)
apply (metis inf_mono mono_update le_st_iff)

apply(metis mono_aval ′′ mono_inv_plus ′[simplified less_eq_prod_def] fst_conv
snd_conv)
done

lemma mono_inv_bval ′: S1 ≤ S2 =⇒ inv_bval ′ b bv S1 ≤ inv_bval ′ b bv
S2
apply(induction b arbitrary: bv S1 S2)

apply(simp)
apply(simp)

apply simp
apply(metis order_trans[OF _ sup_ge1] order_trans[OF _ sup_ge2])

apply (simp split: prod.splits)
apply(metis mono_aval ′′ mono_inv_aval ′ mono_inv_less ′[simplified less_eq_prod_def]
fst_conv snd_conv)
done

theorem mono_step ′: S1 ≤ S2 =⇒ C1 ≤ C2 =⇒ step ′ S1 C1 ≤ step ′ S2
C2
unfolding step ′_def
by(rule mono2_Step) (auto simp: mono_aval ′ mono_inv_bval ′ split: op-
tion.split)

167

lemma mono_step ′_top: C1 ≤ C2 =⇒ step ′ > C1 ≤ step ′ > C2
by (metis mono_step ′ order_refl)

end

end

14.13 Interval Analysis

theory Abs_Int2_ivl
imports Abs_Int2
begin

type_synonym eint = int extended
type_synonym eint2 = eint ∗ eint

definition γ_rep :: eint2 ⇒ int set where
γ_rep p = (let (l,h) = p in {i. l ≤ Fin i ∧ Fin i ≤ h})

definition eq_ivl :: eint2 ⇒ eint2 ⇒ bool where
eq_ivl p1 p2 = (γ_rep p1 = γ_rep p2)

lemma refl_eq_ivl[simp]: eq_ivl p p
by(auto simp: eq_ivl_def)

quotient_type ivl = eint2 / eq_ivl
by(rule equivpI)(auto simp: reflp_def symp_def transp_def eq_ivl_def)

abbreviation ivl_abbr :: eint ⇒ eint ⇒ ivl (‹[_, _]›) where
[l,h] == abs_ivl(l,h)

lift_definition γ_ivl :: ivl ⇒ int set is γ_rep
by(simp add: eq_ivl_def)

lemma γ_ivl_nice: γ_ivl[l,h] = {i. l ≤ Fin i ∧ Fin i ≤ h}
by transfer (simp add: γ_rep_def)

lift_definition num_ivl :: int ⇒ ivl is λi. (Fin i, Fin i) .

lift_definition in_ivl :: int ⇒ ivl ⇒ bool
is λi (l,h). l ≤ Fin i ∧ Fin i ≤ h

by(auto simp: eq_ivl_def γ_rep_def)

lemma in_ivl_nice: in_ivl i [l,h] = (l ≤ Fin i ∧ Fin i ≤ h)

168

by transfer simp

definition is_empty_rep :: eint2 ⇒ bool where
is_empty_rep p = (let (l,h) = p in l>h | l=Pinf & h=Pinf | l=Minf &
h=Minf)

lemma γ_rep_cases: γ_rep p = (case p of (Fin i,Fin j) => {i..j} | (Fin
i,Pinf) => {i..} |
(Minf ,Fin i) ⇒ {..i} | (Minf ,Pinf) ⇒ UNIV | _ ⇒ {})

by(auto simp add: γ_rep_def split: prod.splits extended.splits)

lift_definition is_empty_ivl :: ivl ⇒ bool is is_empty_rep
apply(auto simp: eq_ivl_def γ_rep_cases is_empty_rep_def)
apply(auto simp: not_less less_eq_extended_case split: extended.splits)
done

lemma eq_ivl_iff : eq_ivl p1 p2 = (is_empty_rep p1 & is_empty_rep p2
| p1 = p2)
by(auto simp: eq_ivl_def is_empty_rep_def γ_rep_cases Icc_eq_Icc split:
prod.splits extended.splits)

definition empty_rep :: eint2 where empty_rep = (Pinf ,Minf)

lift_definition empty_ivl :: ivl is empty_rep .

lemma is_empty_empty_rep[simp]: is_empty_rep empty_rep
by(auto simp add: is_empty_rep_def empty_rep_def)

lemma is_empty_rep_iff : is_empty_rep p = (γ_rep p = {})
by(auto simp add: γ_rep_cases is_empty_rep_def split: prod.splits ex-
tended.splits)

declare is_empty_rep_iff [THEN iffD1 , simp]

instantiation ivl :: semilattice_sup_top
begin

definition le_rep :: eint2 ⇒ eint2 ⇒ bool where
le_rep p1 p2 = (let (l1 ,h1) = p1 ; (l2 ,h2) = p2 in

if is_empty_rep(l1 ,h1) then True else
if is_empty_rep(l2 ,h2) then False else l1 ≥ l2 & h1 ≤ h2)

lemma le_iff_subset: le_rep p1 p2 ←→ γ_rep p1 ⊆ γ_rep p2

169

apply rule
apply(auto simp: is_empty_rep_def le_rep_def γ_rep_def split: if_splits
prod.splits)[1]
apply(auto simp: is_empty_rep_def γ_rep_cases le_rep_def)
apply(auto simp: not_less split: extended.splits)
done

lift_definition less_eq_ivl :: ivl ⇒ ivl ⇒ bool is le_rep
by(auto simp: eq_ivl_def le_iff_subset)

definition less_ivl where i1 < i2 = (i1 ≤ i2 ∧ ¬ i2 ≤ (i1 ::ivl))

lemma le_ivl_iff_subset: iv1 ≤ iv2 ←→ γ_ivl iv1 ⊆ γ_ivl iv2
by transfer (rule le_iff_subset)

definition sup_rep :: eint2 ⇒ eint2 ⇒ eint2 where
sup_rep p1 p2 = (if is_empty_rep p1 then p2 else if is_empty_rep p2 then
p1

else let (l1 ,h1) = p1 ; (l2 ,h2) = p2 in (min l1 l2 , max h1 h2))

lift_definition sup_ivl :: ivl ⇒ ivl ⇒ ivl is sup_rep
by(auto simp: eq_ivl_iff sup_rep_def)

lift_definition top_ivl :: ivl is (Minf ,Pinf) .

lemma is_empty_min_max:
¬ is_empty_rep (l1 ,h1) =⇒ ¬ is_empty_rep (l2 , h2) =⇒ ¬ is_empty_rep

(min l1 l2 , max h1 h2)
by(auto simp add: is_empty_rep_def max_def min_def split: if_splits)

instance
proof (standard, goal_cases)

case 1 show ?case by (rule less_ivl_def)
next

case 2 show ?case by transfer (simp add: le_rep_def split: prod.splits)
next

case 3 thus ?case by transfer (auto simp: le_rep_def split: if_splits)
next

case 4 thus ?case by transfer (auto simp: le_rep_def eq_ivl_iff split:
if_splits)
next

case 5 thus ?case by transfer (auto simp add: le_rep_def sup_rep_def
is_empty_min_max)
next

170

case 6 thus ?case by transfer (auto simp add: le_rep_def sup_rep_def
is_empty_min_max)
next

case 7 thus ?case by transfer (auto simp add: le_rep_def sup_rep_def)
next
case 8 show ?case by transfer (simp add: le_rep_def is_empty_rep_def)

qed

end

Implement (naive) executable equality:

instantiation ivl :: equal
begin

definition equal_ivl where
equal_ivl i1 (i2 ::ivl) = (i1≤i2 ∧ i2 ≤ i1)

instance
proof (standard, goal_cases)

case 1 show ?case by(simp add: equal_ivl_def eq_iff)
qed

end

lemma [simp]: fixes x :: ′a::linorder extended shows (¬ x < Pinf) = (x =
Pinf)
by(simp add: not_less)
lemma [simp]: fixes x :: ′a::linorder extended shows (¬ Minf < x) = (x
= Minf)
by(simp add: not_less)

instantiation ivl :: bounded_lattice
begin

definition inf_rep :: eint2 ⇒ eint2 ⇒ eint2 where
inf_rep p1 p2 = (let (l1 ,h1) = p1 ; (l2 ,h2) = p2 in (max l1 l2 , min h1 h2))

lemma γ_inf_rep: γ_rep(inf_rep p1 p2) = γ_rep p1 ∩ γ_rep p2
by(auto simp:inf_rep_def γ_rep_cases split: prod.splits extended.splits)

lift_definition inf_ivl :: ivl ⇒ ivl ⇒ ivl is inf_rep
by(auto simp: γ_inf_rep eq_ivl_def)

lemma γ_inf : γ_ivl (iv1 u iv2) = γ_ivl iv1 ∩ γ_ivl iv2

171

by transfer (rule γ_inf_rep)

definition ⊥ = empty_ivl

instance
proof (standard, goal_cases)

case 1 thus ?case by (simp add: γ_inf le_ivl_iff_subset)
next

case 2 thus ?case by (simp add: γ_inf le_ivl_iff_subset)
next

case 3 thus ?case by (simp add: γ_inf le_ivl_iff_subset)
next

case 4 show ?case
unfolding bot_ivl_def by transfer (auto simp: le_iff_subset)

qed

end

lemma eq_ivl_empty: eq_ivl p empty_rep = is_empty_rep p
by (metis eq_ivl_iff is_empty_empty_rep)

lemma le_ivl_nice: [l1 ,h1] ≤ [l2 ,h2] ←→
(if [l1 ,h1] = ⊥ then True else
if [l2 ,h2] = ⊥ then False else l1 ≥ l2 & h1 ≤ h2)

unfolding bot_ivl_def by transfer (simp add: le_rep_def eq_ivl_empty)

lemma sup_ivl_nice: [l1 ,h1] t [l2 ,h2] =
(if [l1 ,h1] = ⊥ then [l2 ,h2] else
if [l2 ,h2] = ⊥ then [l1 ,h1] else [min l1 l2 ,max h1 h2])

unfolding bot_ivl_def by transfer (simp add: sup_rep_def eq_ivl_empty)

lemma inf_ivl_nice: [l1 ,h1] u [l2 ,h2] = [max l1 l2 ,min h1 h2]
by transfer (simp add: inf_rep_def)

lemma top_ivl_nice: > = [−∞,∞]
by (simp add: top_ivl_def)

instantiation ivl :: plus
begin

definition plus_rep :: eint2 ⇒ eint2 ⇒ eint2 where
plus_rep p1 p2 =

172

(if is_empty_rep p1 ∨ is_empty_rep p2 then empty_rep else
let (l1 ,h1) = p1 ; (l2 ,h2) = p2 in (l1+l2 , h1+h2))

lift_definition plus_ivl :: ivl ⇒ ivl ⇒ ivl is plus_rep
by(auto simp: plus_rep_def eq_ivl_iff)

instance ..
end

lemma plus_ivl_nice: [l1 ,h1] + [l2 ,h2] =
(if [l1 ,h1] = ⊥ ∨ [l2 ,h2] = ⊥ then ⊥ else [l1+l2 , h1+h2])

unfolding bot_ivl_def by transfer (auto simp: plus_rep_def eq_ivl_empty)

lemma uminus_eq_Minf [simp]: −x = Minf ←→ x = Pinf
by(cases x) auto
lemma uminus_eq_Pinf [simp]: −x = Pinf ←→ x = Minf
by(cases x) auto

lemma uminus_le_Fin_iff : − x ≤ Fin(−y)←→ Fin y ≤ (x:: ′a::ordered_ab_group_add
extended)
by(cases x) auto
lemma Fin_uminus_le_iff : Fin(−y) ≤ −x ←→ x ≤ ((Fin y):: ′a::ordered_ab_group_add
extended)
by(cases x) auto

instantiation ivl :: uminus
begin

definition uminus_rep :: eint2 ⇒ eint2 where
uminus_rep p = (let (l,h) = p in (−h, −l))

lemma γ_uminus_rep: i ∈ γ_rep p =⇒ −i ∈ γ_rep(uminus_rep p)
by(auto simp: uminus_rep_def γ_rep_def image_def uminus_le_Fin_iff
Fin_uminus_le_iff

split: prod.split)

lift_definition uminus_ivl :: ivl ⇒ ivl is uminus_rep
by (auto simp: uminus_rep_def eq_ivl_def γ_rep_cases)

(auto simp: Icc_eq_Icc split: extended.splits)

instance ..
end

lemma γ_uminus: i ∈ γ_ivl iv =⇒ −i ∈ γ_ivl(− iv)

173

by transfer (rule γ_uminus_rep)

lemma uminus_nice: −[l,h] = [−h,−l]
by transfer (simp add: uminus_rep_def)

instantiation ivl :: minus
begin

definition minus_ivl :: ivl ⇒ ivl ⇒ ivl where
(iv1 ::ivl) − iv2 = iv1 + −iv2

instance ..
end

definition inv_plus_ivl :: ivl ⇒ ivl ⇒ ivl ⇒ ivl∗ivl where
inv_plus_ivl iv iv1 iv2 = (iv1 u (iv − iv2), iv2 u (iv − iv1))

definition above_rep :: eint2 ⇒ eint2 where
above_rep p = (if is_empty_rep p then empty_rep else let (l,h) = p in
(l,∞))

definition below_rep :: eint2 ⇒ eint2 where
below_rep p = (if is_empty_rep p then empty_rep else let (l,h) = p in
(−∞,h))

lift_definition above :: ivl ⇒ ivl is above_rep
by(auto simp: above_rep_def eq_ivl_iff)

lift_definition below :: ivl ⇒ ivl is below_rep
by(auto simp: below_rep_def eq_ivl_iff)

lemma γ_aboveI : i ∈ γ_ivl iv =⇒ i ≤ j =⇒ j ∈ γ_ivl(above iv)
by transfer

(auto simp add: above_rep_def γ_rep_cases is_empty_rep_def
split: extended.splits)

lemma γ_belowI : i ∈ γ_ivl iv =⇒ j ≤ i =⇒ j ∈ γ_ivl(below iv)
by transfer

(auto simp add: below_rep_def γ_rep_cases is_empty_rep_def
split: extended.splits)

definition inv_less_ivl :: bool ⇒ ivl ⇒ ivl ⇒ ivl ∗ ivl where
inv_less_ivl res iv1 iv2 =

174

(if res
then (iv1 u (below iv2 − [1 ,1]),

iv2 u (above iv1 + [1 ,1]))
else (iv1 u above iv2 , iv2 u below iv1))

lemma above_nice: above[l,h] = (if [l,h] = ⊥ then ⊥ else [l,∞])
unfolding bot_ivl_def by transfer (simp add: above_rep_def eq_ivl_empty)

lemma below_nice: below[l,h] = (if [l,h] = ⊥ then ⊥ else [−∞,h])
unfolding bot_ivl_def by transfer (simp add: below_rep_def eq_ivl_empty)

lemma add_mono_le_Fin:
[[x1 ≤ Fin y1 ; x2 ≤ Fin y2]] =⇒ x1 + x2 ≤ Fin (y1 + (y2 :: ′a::ordered_ab_group_add))

by(drule (1) add_mono) simp

lemma add_mono_Fin_le:
[[Fin y1 ≤ x1 ; Fin y2 ≤ x2]] =⇒ Fin(y1 + y2 :: ′a::ordered_ab_group_add)
≤ x1 + x2
by(drule (1) add_mono) simp

global_interpretation Val_semilattice
where γ = γ_ivl and num ′ = num_ivl and plus ′ = (+)
proof (standard, goal_cases)

case 1 thus ?case by transfer (simp add: le_iff_subset)
next

case 2 show ?case by transfer (simp add: γ_rep_def)
next

case 3 show ?case by transfer (simp add: γ_rep_def)
next

case 4 thus ?case
apply transfer

apply(auto simp: γ_rep_def plus_rep_def add_mono_le_Fin add_mono_Fin_le)
by(auto simp: empty_rep_def is_empty_rep_def)

qed

global_interpretation Val_lattice_gamma
where γ = γ_ivl and num ′ = num_ivl and plus ′ = (+)
defines aval_ivl = aval ′
proof (standard, goal_cases)

case 1 show ?case by(simp add: γ_inf)
next

case 2 show ?case unfolding bot_ivl_def by transfer simp
qed

175

global_interpretation Val_inv
where γ = γ_ivl and num ′ = num_ivl and plus ′ = (+)
and test_num ′ = in_ivl
and inv_plus ′ = inv_plus_ivl and inv_less ′ = inv_less_ivl
proof (standard, goal_cases)

case 1 thus ?case by transfer (auto simp: γ_rep_def)
next

case (2 _ _ _ _ _ i1 i2) thus ?case
unfolding inv_plus_ivl_def minus_ivl_def
apply(clarsimp simp add: γ_inf)
using gamma_plus ′[of i1+i2 _ −i1] gamma_plus ′[of i1+i2 _ −i2]
by(simp add: γ_uminus)

next
case (3 i1 i2) thus ?case

unfolding inv_less_ivl_def minus_ivl_def one_extended_def
apply(clarsimp simp add: γ_inf split: if_splits)
using gamma_plus ′[of i1+1 _ −1] gamma_plus ′[of i2 − 1 _ 1]
apply(simp add: γ_belowI [of i2] γ_aboveI [of i1]

uminus_ivl.abs_eq uminus_rep_def γ_ivl_nice)
apply(simp add: γ_aboveI [of i2] γ_belowI [of i1])
done

qed

global_interpretation Abs_Int_inv
where γ = γ_ivl and num ′ = num_ivl and plus ′ = (+)
and test_num ′ = in_ivl
and inv_plus ′ = inv_plus_ivl and inv_less ′ = inv_less_ivl
defines inv_aval_ivl = inv_aval ′
and inv_bval_ivl = inv_bval ′
and step_ivl = step ′

and AI_ivl = AI
and aval_ivl ′ = aval ′′
..

Monotonicity:

lemma mono_plus_ivl: iv1 ≤ iv2 =⇒ iv3 ≤ iv4 =⇒ iv1+iv3 ≤ iv2+(iv4 ::ivl)
apply transfer
apply(auto simp: plus_rep_def le_iff_subset split: if_splits)
by(auto simp: is_empty_rep_iff γ_rep_cases split: extended.splits)

lemma mono_minus_ivl: iv1 ≤ iv2 =⇒ −iv1 ≤ −(iv2 ::ivl)
apply transfer
apply(auto simp: uminus_rep_def le_iff_subset split: if_splits prod.split)

176

by(auto simp: γ_rep_cases split: extended.splits)

lemma mono_above: iv1 ≤ iv2 =⇒ above iv1 ≤ above iv2
apply transfer
apply(auto simp: above_rep_def le_iff_subset split: if_splits prod.split)
by(auto simp: is_empty_rep_iff γ_rep_cases split: extended.splits)

lemma mono_below: iv1 ≤ iv2 =⇒ below iv1 ≤ below iv2
apply transfer
apply(auto simp: below_rep_def le_iff_subset split: if_splits prod.split)
by(auto simp: is_empty_rep_iff γ_rep_cases split: extended.splits)

global_interpretation Abs_Int_inv_mono
where γ = γ_ivl and num ′ = num_ivl and plus ′ = (+)
and test_num ′ = in_ivl
and inv_plus ′ = inv_plus_ivl and inv_less ′ = inv_less_ivl
proof (standard, goal_cases)

case 1 thus ?case by (rule mono_plus_ivl)
next

case 2 thus ?case
unfolding inv_plus_ivl_def minus_ivl_def less_eq_prod_def
by (auto simp: le_infI1 le_infI2 mono_plus_ivl mono_minus_ivl)

next
case 3 thus ?case

unfolding less_eq_prod_def inv_less_ivl_def minus_ivl_def
by (auto simp: le_infI1 le_infI2 mono_plus_ivl mono_above mono_below)

qed

14.13.1 Tests

value show_acom_opt (AI_ivl test1_ivl)

Better than AI_const:

value show_acom_opt (AI_ivl test3_const)
value show_acom_opt (AI_ivl test4_const)
value show_acom_opt (AI_ivl test6_const)

definition steps c i = (step_ivl > ^^ i) (bot c)

value show_acom_opt (AI_ivl test2_ivl)
value show_acom (steps test2_ivl 0)
value show_acom (steps test2_ivl 1)
value show_acom (steps test2_ivl 2)
value show_acom (steps test2_ivl 3)

177

Fixed point reached in 2 steps. Not so if the start value of x is known:

value show_acom_opt (AI_ivl test3_ivl)
value show_acom (steps test3_ivl 0)
value show_acom (steps test3_ivl 1)
value show_acom (steps test3_ivl 2)
value show_acom (steps test3_ivl 3)
value show_acom (steps test3_ivl 4)
value show_acom (steps test3_ivl 5)

Takes as many iterations as the actual execution. Would diverge if loop
did not terminate. Worse still, as the following example shows: even if the
actual execution terminates, the analysis may not. The value of y keeps
increasing as the analysis is iterated, no matter how long:

value show_acom (steps test4_ivl 50)

Relationships between variables are NOT captured:

value show_acom_opt (AI_ivl test5_ivl)

Again, the analysis would not terminate:

value show_acom (steps test6_ivl 50)

end

14.14 Widening and Narrowing

theory Abs_Int3
imports Abs_Int2_ivl
begin

class widen =
fixes widen :: ′a ⇒ ′a ⇒ ′a (infix ‹∇› 65)

class narrow =
fixes narrow :: ′a ⇒ ′a ⇒ ′a (infix ‹4› 65)

class wn = widen + narrow + order +
assumes widen1 : x ≤ x ∇ y
assumes widen2 : y ≤ x ∇ y
assumes narrow1 : y ≤ x =⇒ y ≤ x 4 y
assumes narrow2 : y ≤ x =⇒ x 4 y ≤ x
begin

lemma narrowid[simp]: x 4 x = x
by (rule order .antisym) (simp_all add: narrow1 narrow2)

178

end

lemma top_widen_top[simp]: > ∇ > = (>::_::{wn,order_top})
by (metis eq_iff top_greatest widen2)

instantiation ivl :: wn
begin

definition widen_rep p1 p2 =
(if is_empty_rep p1 then p2 else if is_empty_rep p2 then p1 else
let (l1 ,h1) = p1 ; (l2 ,h2) = p2
in (if l2 < l1 then Minf else l1 , if h1 < h2 then Pinf else h1))

lift_definition widen_ivl :: ivl ⇒ ivl ⇒ ivl is widen_rep
by(auto simp: widen_rep_def eq_ivl_iff)

definition narrow_rep p1 p2 =
(if is_empty_rep p1 ∨ is_empty_rep p2 then empty_rep else
let (l1 ,h1) = p1 ; (l2 ,h2) = p2
in (if l1 = Minf then l2 else l1 , if h1 = Pinf then h2 else h1))

lift_definition narrow_ivl :: ivl ⇒ ivl ⇒ ivl is narrow_rep
by(auto simp: narrow_rep_def eq_ivl_iff)

instance
proof
qed (transfer , auto simp: widen_rep_def narrow_rep_def le_iff_subset
γ_rep_def subset_eq is_empty_rep_def empty_rep_def eq_ivl_def split:
if_splits extended.splits)+

end

instantiation st :: ({order_top,wn})wn
begin

lift_definition widen_st :: ′a st ⇒ ′a st ⇒ ′a st is map2_st_rep (∇)
by(auto simp: eq_st_def)

lift_definition narrow_st :: ′a st ⇒ ′a st ⇒ ′a st is map2_st_rep (4)
by(auto simp: eq_st_def)

instance
proof (standard, goal_cases)

179

case 1 thus ?case by transfer (simp add: less_eq_st_rep_iff widen1)
next

case 2 thus ?case by transfer (simp add: less_eq_st_rep_iff widen2)
next

case 3 thus ?case by transfer (simp add: less_eq_st_rep_iff narrow1)
next

case 4 thus ?case by transfer (simp add: less_eq_st_rep_iff narrow2)
qed

end

instantiation option :: (wn)wn
begin

fun widen_option where
None ∇ x = x |
x ∇ None = x |
(Some x) ∇ (Some y) = Some(x ∇ y)

fun narrow_option where
None 4 x = None |
x 4 None = None |
(Some x) 4 (Some y) = Some(x 4 y)

instance
proof (standard, goal_cases)

case (1 x y) thus ?case
by(induct x y rule: widen_option.induct)(simp_all add: widen1)

next
case (2 x y) thus ?case

by(induct x y rule: widen_option.induct)(simp_all add: widen2)
next

case (3 x y) thus ?case
by(induct x y rule: narrow_option.induct) (simp_all add: narrow1)

next
case (4 y x) thus ?case

by(induct x y rule: narrow_option.induct) (simp_all add: narrow2)
qed

end

definition map2_acom :: (′a ⇒ ′a ⇒ ′a) ⇒ ′a acom ⇒ ′a acom ⇒ ′a acom
where

180

map2_acom f C1 C2 = annotate (λp. f (anno C1 p) (anno C2 p)) (strip
C1)

instantiation acom :: (widen)widen
begin
definition widen_acom = map2_acom (∇)
instance ..
end

instantiation acom :: (narrow)narrow
begin
definition narrow_acom = map2_acom (4)
instance ..
end

lemma strip_map2_acom[simp]:
strip C1 = strip C2 =⇒ strip(map2_acom f C1 C2) = strip C1

by(simp add: map2_acom_def)

lemma strip_widen_acom[simp]:
strip C1 = strip C2 =⇒ strip(C1 ∇ C2) = strip C1

by(simp add: widen_acom_def)

lemma strip_narrow_acom[simp]:
strip C1 = strip C2 =⇒ strip(C1 4 C2) = strip C1

by(simp add: narrow_acom_def)

lemma narrow1_acom: C2 ≤ C1 =⇒ C2 ≤ C1 4 (C2 :: ′a::wn acom)
by(simp add: narrow_acom_def narrow1 map2_acom_def less_eq_acom_def
size_annos)

lemma narrow2_acom: C2 ≤ C1 =⇒ C1 4 (C2 :: ′a::wn acom) ≤ C1
by(simp add: narrow_acom_def narrow2 map2_acom_def less_eq_acom_def
size_annos)

14.14.1 Pre-fixpoint computation

definition iter_widen :: (′a ⇒ ′a) ⇒ ′a ⇒ (′a::{order ,widen})option
where iter_widen f = while_option (λx. ¬ f x ≤ x) (λx. x ∇ f x)

definition iter_narrow :: (′a ⇒ ′a) ⇒ ′a ⇒ (′a::{order ,narrow})option
where iter_narrow f = while_option (λx. x 4 f x < x) (λx. x 4 f x)

181

definition pfp_wn :: (′a::{order ,widen,narrow} ⇒ ′a) ⇒ ′a ⇒ ′a option
where pfp_wn f x =
(case iter_widen f x of None ⇒ None | Some p ⇒ iter_narrow f p)

lemma iter_widen_pfp: iter_widen f x = Some p =⇒ f p ≤ p
by(auto simp add: iter_widen_def dest: while_option_stop)

lemma iter_widen_inv:
assumes !!x. P x =⇒ P(f x) !!x1 x2 . P x1 =⇒ P x2 =⇒ P(x1 ∇ x2) and
P x
and iter_widen f x = Some y shows P y
using while_option_rule[where P = P, OF _ assms(4)[unfolded iter_widen_def]]
by (blast intro: assms(1−3))

lemma strip_while: fixes f :: ′a acom ⇒ ′a acom
assumes ∀C . strip (f C) = strip C and while_option P f C = Some C ′

shows strip C ′ = strip C
using while_option_rule[where P = λC ′. strip C ′= strip C , OF _ assms(2)]
by (metis assms(1))

lemma strip_iter_widen: fixes f :: ′a::{order ,widen} acom ⇒ ′a acom
assumes ∀C . strip (f C) = strip C and iter_widen f C = Some C ′

shows strip C ′ = strip C
proof−

have ∀C . strip(C ∇ f C) = strip C
by (metis assms(1) strip_map2_acom widen_acom_def)

from strip_while[OF this] assms(2) show ?thesis by(simp add: iter_widen_def)
qed

lemma iter_narrow_pfp:
assumes mono: !!x1 x2 ::_::wn acom. P x1 =⇒ P x2 =⇒ x1 ≤ x2 =⇒ f
x1 ≤ f x2
and Pinv: !!x. P x =⇒ P(f x) !!x1 x2 . P x1 =⇒ P x2 =⇒ P(x1 4 x2)
and P p0 and f p0 ≤ p0 and iter_narrow f p0 = Some p
shows P p ∧ f p ≤ p
proof−

let ?Q = %p. P p ∧ f p ≤ p ∧ p ≤ p0
have ?Q (p 4 f p) if Q: ?Q p for p
proof auto

note P = conjunct1 [OF Q] and 12 = conjunct2 [OF Q]
note 1 = conjunct1 [OF 12] and 2 = conjunct2 [OF 12]
let ?p ′ = p 4 f p

182

show P ?p ′ by (blast intro: P Pinv)
have f ?p ′ ≤ f p by(rule mono[OF ‹P (p 4 f p)› P narrow2_acom[OF

1]])
also have . . . ≤ ?p ′ by(rule narrow1_acom[OF 1])
finally show f ?p ′ ≤ ?p ′ .
have ?p ′ ≤ p by (rule narrow2_acom[OF 1])
also have p ≤ p0 by(rule 2)
finally show ?p ′ ≤ p0 .

qed
thus ?thesis

using while_option_rule[where P = ?Q, OF _ assms(6)[simplified
iter_narrow_def]]

by (blast intro: assms(4 ,5) le_refl)
qed

lemma pfp_wn_pfp:
assumes mono: !!x1 x2 ::_::wn acom. P x1 =⇒ P x2 =⇒ x1 ≤ x2 =⇒ f
x1 ≤ f x2
and Pinv: P x !!x. P x =⇒ P(f x)
!!x1 x2 . P x1 =⇒ P x2 =⇒ P(x1 ∇ x2)
!!x1 x2 . P x1 =⇒ P x2 =⇒ P(x1 4 x2)

and pfp_wn: pfp_wn f x = Some p shows P p ∧ f p ≤ p
proof−

from pfp_wn obtain p0
where its: iter_widen f x = Some p0 iter_narrow f p0 = Some p
by(auto simp: pfp_wn_def split: option.splits)

have P p0 by (blast intro: iter_widen_inv[where P=P] its(1) Pinv(1−3))
thus ?thesis

by − (assumption |
rule iter_narrow_pfp[where P=P] mono Pinv(2 ,4) iter_widen_pfp

its)+
qed

lemma strip_pfp_wn:
[[∀C . strip(f C) = strip C ; pfp_wn f C = Some C ′]] =⇒ strip C ′ = strip

C
by(auto simp add: pfp_wn_def iter_narrow_def split: option.splits)
(metis (mono_tags) strip_iter_widen strip_narrow_acom strip_while)

locale Abs_Int_wn = Abs_Int_inv_mono where γ=γ
for γ :: ′av::{wn,bounded_lattice} ⇒ val set

begin

183

definition AI_wn :: com ⇒ ′av st option acom option where
AI_wn c = pfp_wn (step ′ >) (bot c)

lemma AI_wn_correct: AI_wn c = Some C =⇒ CS c ≤ γc C
proof(simp add: CS_def AI_wn_def)

assume 1 : pfp_wn (step ′ >) (bot c) = Some C
have 2 : strip C = c ∧ step ′ > C ≤ C
by(rule pfp_wn_pfp[where x=bot c]) (simp_all add: 1 mono_step ′_top)

have pfp: step (γo >) (γc C) ≤ γc C
proof(rule order_trans)

show step (γo >) (γc C) ≤ γc (step ′ > C)
by(rule step_step ′)

show ... ≤ γc C
by(rule mono_gamma_c[OF conjunct2 [OF 2]])

qed
have 3 : strip (γc C) = c by(simp add: strip_pfp_wn[OF _ 1])
have lfp c (step (γo >)) ≤ γc C

by(rule lfp_lowerbound[simplified,where f=step (γo >), OF 3 pfp])
thus lfp c (step UNIV) ≤ γc C by simp

qed

end

global_interpretation Abs_Int_wn
where γ = γ_ivl and num ′ = num_ivl and plus ′ = (+)
and test_num ′ = in_ivl
and inv_plus ′ = inv_plus_ivl and inv_less ′ = inv_less_ivl
defines AI_wn_ivl = AI_wn
..

14.14.2 Tests

definition step_up_ivl n = ((λC . C ∇ step_ivl > C)^^n)
definition step_down_ivl n = ((λC . C 4 step_ivl > C)^^n)

For test3_ivl, AI_ivl needed as many iterations as the loop took to
execute. In contrast, AI_wn_ivl converges in a constant number of steps:

value show_acom (step_up_ivl 1 (bot test3_ivl))
value show_acom (step_up_ivl 2 (bot test3_ivl))
value show_acom (step_up_ivl 3 (bot test3_ivl))
value show_acom (step_up_ivl 4 (bot test3_ivl))
value show_acom (step_up_ivl 5 (bot test3_ivl))
value show_acom (step_up_ivl 6 (bot test3_ivl))
value show_acom (step_up_ivl 7 (bot test3_ivl))

184

value show_acom (step_up_ivl 8 (bot test3_ivl))
value show_acom (step_down_ivl 1 (step_up_ivl 8 (bot test3_ivl)))
value show_acom (step_down_ivl 2 (step_up_ivl 8 (bot test3_ivl)))
value show_acom (step_down_ivl 3 (step_up_ivl 8 (bot test3_ivl)))
value show_acom (step_down_ivl 4 (step_up_ivl 8 (bot test3_ivl)))
value show_acom_opt (AI_wn_ivl test3_ivl)

Now all the analyses terminate:

value show_acom_opt (AI_wn_ivl test4_ivl)
value show_acom_opt (AI_wn_ivl test5_ivl)
value show_acom_opt (AI_wn_ivl test6_ivl)

14.14.3 Generic Termination Proof

lemma top_on_opt_widen:
top_on_opt o1 X =⇒ top_on_opt o2 X =⇒ top_on_opt (o1 ∇ o2 :: _

st option) X
apply(induct o1 o2 rule: widen_option.induct)
apply (auto)
by transfer simp

lemma top_on_opt_narrow:
top_on_opt o1 X =⇒ top_on_opt o2 X =⇒ top_on_opt (o1 4 o2 :: _

st option) X
apply(induct o1 o2 rule: narrow_option.induct)
apply (auto)
by transfer simp

lemma annos_map2_acom[simp]: strip C2 = strip C1 =⇒
annos(map2_acom f C1 C2) = map (%(x,y).f x y) (zip (annos C1) (annos

C2))
by(simp add: map2_acom_def list_eq_iff_nth_eq size_annos anno_def [symmetric]
size_annos_same[of C1 C2])

lemma top_on_acom_widen:
[[top_on_acom C1 X ; strip C1 = strip C2 ; top_on_acom C2 X]]
=⇒ top_on_acom (C1 ∇ C2 :: _ st option acom) X

by(auto simp add: widen_acom_def top_on_acom_def)(metis top_on_opt_widen
in_set_zipE)

lemma top_on_acom_narrow:
[[top_on_acom C1 X ; strip C1 = strip C2 ; top_on_acom C2 X]]
=⇒ top_on_acom (C1 4 C2 :: _ st option acom) X

185

by(auto simp add: narrow_acom_def top_on_acom_def)(metis top_on_opt_narrow
in_set_zipE)

The assumptions for widening and narrowing differ because during nar-
rowing we have the invariant y ≤ x (where y is the next iterate), but during
widening there is no such invariant, there we only have that not yet y ≤ x.
This complicates the termination proof for widening.

locale Measure_wn = Measure1 where m=m
for m :: ′av::{order_top,wn} ⇒ nat +

fixes n :: ′av ⇒ nat
assumes m_anti_mono: x ≤ y =⇒ m x ≥ m y
assumes m_widen: ∼ y ≤ x =⇒ m(x ∇ y) < m x
assumes n_narrow: y ≤ x =⇒ x 4 y < x =⇒ n(x 4 y) < n x

begin

lemma m_s_anti_mono_rep: assumes ∀ x. S1 x ≤ S2 x
shows (

∑
x∈X . m (S2 x)) ≤ (

∑
x∈X . m (S1 x))

proof−
from assms have ∀ x. m(S1 x) ≥ m(S2 x) by (metis m_anti_mono)
thus (

∑
x∈X . m (S2 x)) ≤ (

∑
x∈X . m (S1 x)) by (metis sum_mono)

qed

lemma m_s_anti_mono: S1 ≤ S2 =⇒ m_s S1 X ≥ m_s S2 X
unfolding m_s_def
apply (transfer fixing: m)
apply(simp add: less_eq_st_rep_iff eq_st_def m_s_anti_mono_rep)
done

lemma m_s_widen_rep: assumes finite X S1 = S2 on −X ¬ S2 x ≤ S1
x

shows (
∑

x∈X . m (S1 x ∇ S2 x)) < (
∑

x∈X . m (S1 x))
proof−

have 1 : ∀ x∈X . m(S1 x) ≥ m(S1 x ∇ S2 x)
by (metis m_anti_mono wn_class.widen1)

have x ∈ X using assms(2 ,3)
by(auto simp add: Ball_def)

hence 2 : ∃ x∈X . m(S1 x) > m(S1 x ∇ S2 x)
using assms(3) m_widen by blast

from sum_strict_mono_ex1 [OF ‹finite X› 1 2]
show ?thesis .

qed

lemma m_s_widen: finite X =⇒ fun S1 = fun S2 on −X ==>

186

∼ S2 ≤ S1 =⇒ m_s (S1 ∇ S2) X < m_s S1 X
apply(auto simp add: less_st_def m_s_def)
apply (transfer fixing: m)
apply(auto simp add: less_eq_st_rep_iff m_s_widen_rep)
done

lemma m_o_anti_mono: finite X =⇒ top_on_opt o1 (−X) =⇒ top_on_opt
o2 (−X) =⇒

o1 ≤ o2 =⇒ m_o o1 X ≥ m_o o2 X
proof(induction o1 o2 rule: less_eq_option.induct)

case 1 thus ?case by (simp add: m_o_def)(metis m_s_anti_mono)
next

case 2 thus ?case
by(simp add: m_o_def le_SucI m_s_h split: option.splits)

next
case 3 thus ?case by simp

qed

lemma m_o_widen: [[finite X ; top_on_opt S1 (−X); top_on_opt S2
(−X); ¬ S2 ≤ S1]] =⇒

m_o (S1 ∇ S2) X < m_o S1 X
by(auto simp: m_o_def m_s_h less_Suc_eq_le m_s_widen split: option.split)

lemma m_c_widen:
strip C1 = strip C2 =⇒ top_on_acom C1 (−vars C1) =⇒ top_on_acom

C2 (−vars C2)
=⇒ ¬ C2 ≤ C1 =⇒ m_c (C1 ∇ C2) < m_c C1

apply(auto simp: m_c_def widen_acom_def map2_acom_def size_annos[symmetric]
anno_def [symmetric]sum_list_sum_nth)
apply(subgoal_tac length(annos C2) = length(annos C1))
prefer 2 apply (simp add: size_annos_same2)

apply (auto)
apply(rule sum_strict_mono_ex1)
apply(auto simp add: m_o_anti_mono vars_acom_def anno_def top_on_acom_def
top_on_opt_widen widen1 less_eq_acom_def listrel_iff_nth)
apply(rule_tac x=p in bexI)
apply (auto simp: vars_acom_def m_o_widen top_on_acom_def)

done

definition n_s :: ′av st ⇒ vname set ⇒ nat (‹ns›) where
ns S X = (

∑
x∈X . n(fun S x))

lemma n_s_narrow_rep:

187

assumes finite X S1 = S2 on −X ∀ x. S2 x ≤ S1 x ∀ x. S1 x 4 S2 x ≤
S1 x

S1 x 6= S1 x 4 S2 x
shows (

∑
x∈X . n (S1 x 4 S2 x)) < (

∑
x∈X . n (S1 x))

proof−
have 1 : ∀ x. n(S1 x 4 S2 x) ≤ n(S1 x)

by (metis assms(3) assms(4) eq_iff less_le_not_le n_narrow)
have x ∈ X by (metis Compl_iff assms(2) assms(5) narrowid)
hence 2 : ∃ x∈X . n(S1 x 4 S2 x) < n(S1 x)

by (metis assms(3−5) eq_iff less_le_not_le n_narrow)
show ?thesis
apply(rule sum_strict_mono_ex1 [OF ‹finite X›]) using 1 2 by blast+

qed

lemma n_s_narrow: finite X =⇒ fun S1 = fun S2 on −X =⇒ S2 ≤ S1
=⇒ S1 4 S2 < S1
=⇒ ns (S1 4 S2) X < ns S1 X

apply(auto simp add: less_st_def n_s_def)
apply (transfer fixing: n)
apply(auto simp add: less_eq_st_rep_iff eq_st_def fun_eq_iff n_s_narrow_rep)
done

definition n_o :: ′av st option ⇒ vname set ⇒ nat (‹no›) where
no opt X = (case opt of None ⇒ 0 | Some S ⇒ ns S X + 1)

lemma n_o_narrow:
top_on_opt S1 (−X) =⇒ top_on_opt S2 (−X) =⇒ finite X
=⇒ S2 ≤ S1 =⇒ S1 4 S2 < S1 =⇒ no (S1 4 S2) X < no S1 X

apply(induction S1 S2 rule: narrow_option.induct)
apply(auto simp: n_o_def n_s_narrow)
done

definition n_c :: ′av st option acom ⇒ nat (‹nc›) where
nc C = sum_list (map (λa. no a (vars C)) (annos C))

lemma less_annos_iff : (C1 < C2) = (C1 ≤ C2 ∧
(∃ i<length (annos C1). annos C1 ! i < annos C2 ! i))

by(metis (opaque_lifting, no_types) less_le_not_le le_iff_le_annos size_annos_same2)

lemma n_c_narrow: strip C1 = strip C2
=⇒ top_on_acom C1 (− vars C1) =⇒ top_on_acom C2 (− vars C2)
=⇒ C2 ≤ C1 =⇒ C1 4 C2 < C1 =⇒ nc (C1 4 C2) < nc C1

apply(auto simp: n_c_def narrow_acom_def sum_list_sum_nth)

188

apply(subgoal_tac length(annos C2) = length(annos C1))
prefer 2 apply (simp add: size_annos_same2)
apply (auto)
apply(simp add: less_annos_iff le_iff_le_annos)
apply(rule sum_strict_mono_ex1)
apply (auto simp: vars_acom_def top_on_acom_def)
apply (metis n_o_narrow nth_mem finite_cvars less_imp_le le_less or-
der_refl)
apply(rule_tac x=i in bexI)
prefer 2 apply simp
apply(rule n_o_narrow[where X = vars(strip C2)])
apply (simp_all)
done

end

lemma iter_widen_termination:
fixes m :: ′a::wn acom ⇒ nat
assumes P_f :

∧
C . P C =⇒ P(f C)

and P_widen:
∧

C1 C2 . P C1 =⇒ P C2 =⇒ P(C1 ∇ C2)
and m_widen:

∧
C1 C2 . P C1 =⇒ P C2 =⇒ ∼ C2 ≤ C1 =⇒ m(C1 ∇

C2) < m C1
and P C shows ∃C ′. iter_widen f C = Some C ′

proof(simp add: iter_widen_def ,
rule measure_while_option_Some[where P = P and f=m])

show P C by(rule ‹P C ›)
next

fix C assume P C ¬ f C ≤ C thus P (C ∇ f C) ∧ m (C ∇ f C) < m
C

by(simp add: P_f P_widen m_widen)
qed

lemma iter_narrow_termination:
fixes n :: ′a::wn acom ⇒ nat
assumes P_f :

∧
C . P C =⇒ P(f C)

and P_narrow:
∧

C1 C2 . P C1 =⇒ P C2 =⇒ P(C1 4 C2)
and mono:

∧
C1 C2 . P C1 =⇒ P C2 =⇒ C1 ≤ C2 =⇒ f C1 ≤ f C2

and n_narrow:
∧

C1 C2 . P C1 =⇒ P C2 =⇒ C2 ≤ C1 =⇒ C1 4 C2 <
C1 =⇒ n(C1 4 C2) < n C1
and init: P C f C ≤ C shows ∃C ′. iter_narrow f C = Some C ′

proof(simp add: iter_narrow_def ,
rule measure_while_option_Some[where f=n and P = %C . P C ∧

f C ≤ C])

189

show P C ∧ f C ≤ C using init by blast
next

fix C assume 1 : P C ∧ f C ≤ C and 2 : C 4 f C < C
hence P (C 4 f C) by(simp add: P_f P_narrow)
moreover then have f (C 4 f C) ≤ C 4 f C

by (metis narrow1_acom narrow2_acom 1 mono order_trans)
moreover have n (C 4 f C) < n C using 1 2 by(simp add: n_narrow

P_f)
ultimately show (P (C 4 f C) ∧ f (C 4 f C) ≤ C 4 f C) ∧ n(C 4 f

C) < n C
by blast

qed

locale Abs_Int_wn_measure = Abs_Int_wn where γ=γ + Measure_wn
where m=m

for γ :: ′av::{wn,bounded_lattice} ⇒ val set and m :: ′av ⇒ nat

14.14.4 Termination: Intervals

definition m_rep :: eint2 ⇒ nat where
m_rep p = (if is_empty_rep p then 3 else

let (l,h) = p in (case l of Minf ⇒ 0 | _ ⇒ 1) + (case h of Pinf ⇒ 0 |
_ ⇒ 1))

lift_definition m_ivl :: ivl ⇒ nat is m_rep
by(auto simp: m_rep_def eq_ivl_iff)

lemma m_ivl_nice: m_ivl[l,h] = (if [l,h] = ⊥ then 3 else
(if l = Minf then 0 else 1) + (if h = Pinf then 0 else 1))

unfolding bot_ivl_def
by transfer (auto simp: m_rep_def eq_ivl_empty split: extended.split)

lemma m_ivl_height: m_ivl iv ≤ 3
by transfer (simp add: m_rep_def split: prod.split extended.split)

lemma m_ivl_anti_mono: y ≤ x =⇒ m_ivl x ≤ m_ivl y
by transfer

(auto simp: m_rep_def is_empty_rep_def γ_rep_cases le_iff_subset
split: prod.split extended.splits if_splits)

lemma m_ivl_widen:
∼ y ≤ x =⇒ m_ivl(x ∇ y) < m_ivl x

by transfer
(auto simp: m_rep_def widen_rep_def is_empty_rep_def γ_rep_cases

190

le_iff_subset
split: prod.split extended.splits if_splits)

definition n_ivl :: ivl ⇒ nat where
n_ivl iv = 3 − m_ivl iv

lemma n_ivl_narrow:
x 4 y < x =⇒ n_ivl(x 4 y) < n_ivl x

unfolding n_ivl_def
apply(subst (asm) less_le_not_le)
apply transfer
by(auto simp add: m_rep_def narrow_rep_def is_empty_rep_def empty_rep_def
γ_rep_cases le_iff_subset

split: prod.splits if_splits extended.split)

global_interpretation Abs_Int_wn_measure
where γ = γ_ivl and num ′ = num_ivl and plus ′ = (+)
and test_num ′ = in_ivl
and inv_plus ′ = inv_plus_ivl and inv_less ′ = inv_less_ivl
and m = m_ivl and n = n_ivl and h = 3
proof (standard, goal_cases)

case 2 thus ?case by(rule m_ivl_anti_mono)
next

case 1 thus ?case by(rule m_ivl_height)
next

case 3 thus ?case by(rule m_ivl_widen)
next

case 4 from 4 (2) show ?case by(rule n_ivl_narrow)
— note that the first assms is unnecessary for intervals

qed

lemma iter_winden_step_ivl_termination:
∃C . iter_widen (step_ivl >) (bot c) = Some C

apply(rule iter_widen_termination[where m = m_c and P = %C . strip
C = c ∧ top_on_acom C (− vars C)])
apply (auto simp add: m_c_widen top_on_bot top_on_step ′[simplified
comp_def vars_acom_def]

vars_acom_def top_on_acom_widen)
done

lemma iter_narrow_step_ivl_termination:
top_on_acom C (− vars C) =⇒ step_ivl > C ≤ C =⇒
∃C ′. iter_narrow (step_ivl >) C = Some C ′

191

apply(rule iter_narrow_termination[where n = n_c and P = %C ′. strip
C = strip C ′ ∧ top_on_acom C ′ (−vars C ′)])
apply(auto simp: top_on_step ′[simplified comp_def vars_acom_def]

mono_step ′_top n_c_narrow vars_acom_def top_on_acom_narrow)
done

theorem AI_wn_ivl_termination:
∃C . AI_wn_ivl c = Some C

apply(auto simp: AI_wn_def pfp_wn_def iter_winden_step_ivl_termination
split: option.split)

apply(rule iter_narrow_step_ivl_termination)
apply(rule conjunct2)
apply(rule iter_widen_inv[where f = step ′ > and P = %C . c = strip C
& top_on_acom C (− vars C)])
apply(auto simp: top_on_acom_widen top_on_step ′[simplified comp_def
vars_acom_def]

iter_widen_pfp top_on_bot vars_acom_def)
done

14.14.5 Counterexamples

Widening is increasing by assumption, but x ≤ f x is not an invariant of
widening. It can already be lost after the first step:
lemma assumes !!x y:: ′a::wn. x ≤ y =⇒ f x ≤ f y
and x ≤ f x and ¬ f x ≤ x shows x ∇ f x ≤ f (x ∇ f x)
nitpick[card = 3 , expect = genuine, show_consts, timeout = 120]

oops
Widening terminates but may converge more slowly than Kleene itera-

tion. In the following model, Kleene iteration goes from 0 to the least pfp
in one step but widening takes 2 steps to reach a strictly larger pfp:
lemma assumes !!x y:: ′a::wn. x ≤ y =⇒ f x ≤ f y
and x ≤ f x and ¬ f x ≤ x and f (f x) ≤ f x
shows f (x ∇ f x) ≤ x ∇ f x
nitpick[card = 4 , expect = genuine, show_consts, timeout = 120]

oops

end

15 Extensions and Variations of IMP
theory Procs imports BExp begin

192

15.1 Procedures and Local Variables

type_synonym pname = string

datatype
com = SKIP
| Assign vname aexp (‹_ ::= _› [1000 , 61] 61)
| Seq com com (‹_;;/ _› [60 , 61] 60)
| If bexp com com (‹(IF _/ THEN _/ ELSE _)› [0 , 0 , 61] 61)
| While bexp com (‹(WHILE _/ DO _)› [0 , 61] 61)
| Var vname com (‹(1{VAR _;/ _})›)
| Proc pname com com (‹(1{PROC _ = _;/ _})›)
| CALL pname

definition test_com =
{VAR ′′x ′′;
{PROC ′′p ′′ = ′′x ′′ ::= N 1 ;
{PROC ′′q ′′ = CALL ′′p ′′;
{VAR ′′x ′′;
′′x ′′ ::= N 2 ;;
{PROC ′′p ′′ = ′′x ′′ ::= N 3 ;
CALL ′′q ′′;; ′′y ′′ ::= V ′′x ′′}}}}}

end
theory Procs_Dyn_Vars_Dyn imports Procs
begin

15.1.1 Dynamic Scoping of Procedures and Variables

type_synonym penv = pname ⇒ com

inductive
big_step :: penv ⇒ com × state ⇒ state ⇒ bool (‹_ ` _ ⇒ _› [60 ,0 ,60]

55)
where
Skip: pe ` (SKIP,s) ⇒ s |
Assign: pe ` (x ::= a,s) ⇒ s(x := aval a s) |
Seq: [[pe ` (c1,s1) ⇒ s2; pe ` (c2,s2) ⇒ s3]] =⇒

pe ` (c1;;c2, s1) ⇒ s3 |

IfTrue: [[bval b s; pe ` (c1,s) ⇒ t]] =⇒
pe ` (IF b THEN c1 ELSE c2, s) ⇒ t |

IfFalse: [[¬bval b s; pe ` (c2,s) ⇒ t]] =⇒
pe ` (IF b THEN c1 ELSE c2, s) ⇒ t |

193

WhileFalse: ¬bval b s =⇒ pe ` (WHILE b DO c,s) ⇒ s |
WhileTrue:
[[bval b s1; pe ` (c,s1) ⇒ s2; pe ` (WHILE b DO c, s2) ⇒ s3]] =⇒
pe ` (WHILE b DO c, s1) ⇒ s3 |

Var : pe ` (c,s) ⇒ t =⇒ pe ` ({VAR x; c}, s) ⇒ t(x := s x) |

Call: pe ` (pe p, s) ⇒ t =⇒ pe ` (CALL p, s) ⇒ t |

Proc: pe(p := cp) ` (c,s) ⇒ t =⇒ pe ` ({PROC p = cp; c}, s) ⇒ t

code_pred big_step .

values {map t [′′x ′′, ′′y ′′] |t. (λp. SKIP) ` (test_com, <>) ⇒ t}

end
theory Procs_Stat_Vars_Dyn imports Procs
begin

15.1.2 Static Scoping of Procedures, Dynamic of Variables

type_synonym penv = (pname × com) list

inductive
big_step :: penv ⇒ com × state ⇒ state ⇒ bool (‹_ ` _ ⇒ _› [60 ,0 ,60]

55)
where
Skip: pe ` (SKIP,s) ⇒ s |
Assign: pe ` (x ::= a,s) ⇒ s(x := aval a s) |
Seq: [[pe ` (c1,s1) ⇒ s2; pe ` (c2,s2) ⇒ s3]] =⇒

pe ` (c1;;c2, s1) ⇒ s3 |

IfTrue: [[bval b s; pe ` (c1,s) ⇒ t]] =⇒
pe ` (IF b THEN c1 ELSE c2, s) ⇒ t |

IfFalse: [[¬bval b s; pe ` (c2,s) ⇒ t]] =⇒
pe ` (IF b THEN c1 ELSE c2, s) ⇒ t |

WhileFalse: ¬bval b s =⇒ pe ` (WHILE b DO c,s) ⇒ s |
WhileTrue:
[[bval b s1; pe ` (c,s1) ⇒ s2; pe ` (WHILE b DO c, s2) ⇒ s3]] =⇒
pe ` (WHILE b DO c, s1) ⇒ s3 |

Var : pe ` (c,s) ⇒ t =⇒ pe ` ({VAR x; c}, s) ⇒ t(x := s x) |

194

Call1 : (p,c)#pe ` (c, s) ⇒ t =⇒ (p,c)#pe ` (CALL p, s) ⇒ t |
Call2 : [[p ′ 6= p; pe ` (CALL p, s) ⇒ t]] =⇒

(p ′,c)#pe ` (CALL p, s) ⇒ t |

Proc: (p,cp)#pe ` (c,s) ⇒ t =⇒ pe ` ({PROC p = cp; c}, s) ⇒ t

code_pred big_step .

values {map t [′′x ′′, ′′y ′′] |t. [] ` (test_com, <>) ⇒ t}

end
theory Procs_Stat_Vars_Stat imports Procs
begin

15.1.3 Static Scoping of Procedures and Variables

type_synonym addr = nat
type_synonym venv = vname ⇒ addr
type_synonym store = addr ⇒ val
type_synonym penv = (pname × com × venv) list

fun venv :: penv × venv × nat ⇒ venv where
venv(_,ve,_) = ve

inductive
big_step :: penv × venv × nat ⇒ com × store ⇒ store ⇒ bool
(‹_ ` _ ⇒ _› [60 ,0 ,60] 55)

where
Skip: e ` (SKIP,s) ⇒ s |
Assign: (pe,ve,f) ` (x ::= a,s) ⇒ s(ve x := aval a (s o ve)) |
Seq: [[e ` (c1,s1) ⇒ s2; e ` (c2,s2) ⇒ s3]] =⇒

e ` (c1;;c2, s1) ⇒ s3 |

IfTrue: [[bval b (s ◦ venv e); e ` (c1,s) ⇒ t]] =⇒
e ` (IF b THEN c1 ELSE c2, s) ⇒ t |

IfFalse: [[¬bval b (s ◦ venv e); e ` (c2,s) ⇒ t]] =⇒
e ` (IF b THEN c1 ELSE c2, s) ⇒ t |

WhileFalse: ¬bval b (s ◦ venv e) =⇒ e ` (WHILE b DO c,s) ⇒ s |
WhileTrue:
[[bval b (s1 ◦ venv e); e ` (c,s1) ⇒ s2;

e ` (WHILE b DO c, s2) ⇒ s3]] =⇒
e ` (WHILE b DO c, s1) ⇒ s3 |

195

Var : (pe,ve(x:=f),f+1) ` (c,s) ⇒ t =⇒
(pe,ve,f) ` ({VAR x; c}, s) ⇒ t |

Call1 : ((p,c,ve)#pe,ve,f) ` (c, s) ⇒ t =⇒
((p,c,ve)#pe,ve ′,f) ` (CALL p, s) ⇒ t |

Call2 : [[p ′ 6= p; (pe,ve,f) ` (CALL p, s) ⇒ t]] =⇒
((p ′,c,ve ′)#pe,ve,f) ` (CALL p, s) ⇒ t |

Proc: ((p,cp,ve)#pe,ve,f) ` (c,s) ⇒ t
=⇒ (pe,ve,f) ` ({PROC p = cp; c}, s) ⇒ t

code_pred big_step .

values {map t [10 ,11] |t.
([], < ′′x ′′ := 10 , ′′y ′′ := 11>, 12)
` (test_com, <>) ⇒ t}

end
theory C_like imports Main begin

15.2 A C-like Language

type_synonym state = nat ⇒ nat

datatype aexp = N nat | Deref aexp (‹!›) | Plus aexp aexp

fun aval :: aexp ⇒ state ⇒ nat where
aval (N n) s = n |
aval (!a) s = s(aval a s) |
aval (Plus a1 a2) s = aval a1 s + aval a2 s

datatype bexp = Bc bool | Not bexp | And bexp bexp | Less aexp aexp

primrec bval :: bexp ⇒ state ⇒ bool where
bval (Bc v) _ = v |
bval (Not b) s = (¬ bval b s) |
bval (And b1 b2) s = (if bval b1 s then bval b2 s else False) |
bval (Less a1 a2) s = (aval a1 s < aval a2 s)

datatype
com = SKIP

196

| Assign aexp aexp (‹_ ::= _› [61 , 61] 61)
| New aexp aexp
| Seq com com (‹_;/ _› [60 , 61] 60)
| If bexp com com (‹(IF _/ THEN _/ ELSE _)› [0 , 0 , 61] 61)
| While bexp com (‹(WHILE _/ DO _)› [0 , 61] 61)

inductive
big_step :: com × state × nat ⇒ state × nat ⇒ bool (infix ‹⇒› 55)

where
Skip: (SKIP,sn) ⇒ sn |
Assign: (lhs ::= a,s,n) ⇒ (s(aval lhs s := aval a s),n) |
New: (New lhs a,s,n) ⇒ (s(aval lhs s := n), n+aval a s) |
Seq: [[(c1,sn1) ⇒ sn2; (c2,sn2) ⇒ sn3]] =⇒

(c1;c2, sn1) ⇒ sn3 |

IfTrue: [[bval b s; (c1,s,n) ⇒ tn]] =⇒
(IF b THEN c1 ELSE c2, s,n) ⇒ tn |

IfFalse: [[¬bval b s; (c2,s,n) ⇒ tn]] =⇒
(IF b THEN c1 ELSE c2, s,n) ⇒ tn |

WhileFalse: ¬bval b s =⇒ (WHILE b DO c,s,n) ⇒ (s,n) |
WhileTrue:
[[bval b s1; (c,s1,n) ⇒ sn2; (WHILE b DO c, sn2) ⇒ sn3]] =⇒
(WHILE b DO c, s1,n) ⇒ sn3

code_pred big_step .

declare [[values_timeout = 3600]]

Examples:

definition
array_sum =
WHILE Less (!(N 0)) (Plus (!(N 1)) (N 1))
DO (N 2 ::= Plus (!(N 2)) (!(!(N 0)));

N 0 ::= Plus (!(N 0)) (N 1))

To show the first n variables in a nat ⇒ nat state:

definition
list t n = map t [0 ..< n]

values {list t n |t n. (array_sum, nth[3 ,4 ,0 ,3 ,7],5) ⇒ (t,n)}

definition
linked_list_sum =

197

WHILE Less (N 0) (!(N 0))
DO (N 1 ::= Plus(!(N 1)) (!(!(N 0)));

N 0 ::= !(Plus(!(N 0))(N 1)))

values {list t n |t n. (linked_list_sum, nth[4 ,0 ,3 ,0 ,7 ,2],6) ⇒ (t,n)}

definition
array_init =
New (N 0) (!(N 1)); N 2 ::= !(N 0);
WHILE Less (!(N 2)) (Plus (!(N 0)) (!(N 1)))
DO (!(N 2) ::= !(N 2);

N 2 ::= Plus (!(N 2)) (N 1))

values {list t n |t n. (array_init, nth[5 ,2 ,7],3) ⇒ (t,n)}

definition
linked_list_init =
WHILE Less (!(N 1)) (!(N 0))
DO (New (N 3) (N 2);

N 1 ::= Plus (!(N 1)) (N 1);
!(N 3) ::= !(N 1);
Plus (!(N 3)) (N 1) ::= !(N 2);
N 2 ::= !(N 3))

values {list t n |t n. (linked_list_init, nth[2 ,0 ,0 ,0],4) ⇒ (t,n)}

end
theory OO imports Main begin

15.3 Towards an OO Language: A Language of Records

abbreviation fun_upd2 :: (′a ⇒ ′b ⇒ ′c) ⇒ ′a ⇒ ′b ⇒ ′c ⇒ ′a ⇒ ′b ⇒
′c
(‹_/ ′((2_,_ :=/ _) ′)› [1000 ,0 ,0 ,0] 900)

where f (x,y := z) == f (x := (f x)(y := z))

type_synonym addr = nat
datatype ref = null | Ref addr

type_synonym obj = string ⇒ ref
type_synonym venv = string ⇒ ref
type_synonym store = addr ⇒ obj

datatype exp =

198

Null |
New |
V string |
Faccess exp string (‹_·/_› [63 ,1000] 63) |
Vassign string exp (‹(_ ::=/ _)› [1000 ,61] 62) |
Fassign exp string exp (‹(_·_ ::=/ _)› [63 ,0 ,62] 62) |
Mcall exp string exp (‹(_·/_<_>)› [63 ,0 ,0] 63) |
Seq exp exp (‹_;/ _› [61 ,60] 60) |
If bexp exp exp (‹IF _/ THEN (2_)/ ELSE (2_)› [0 ,0 ,61] 61)

and bexp = B bool | Not bexp | And bexp bexp | Eq exp exp

type_synonym menv = string ⇒ exp
type_synonym config = venv × store × addr

inductive
big_step :: menv ⇒ exp × config ⇒ ref × config ⇒ bool
(‹(_ `/ (_/ ⇒ _))› [60 ,0 ,60] 55) and

bval :: menv ⇒ bexp × config ⇒ bool × config ⇒ bool
(‹_ ` _ → _› [60 ,0 ,60] 55)

where
Null:
me ` (Null,c) ⇒ (null,c) |
New:
me ` (New,ve,s,n) ⇒ (Ref n,ve,s(n := (λf . null)),n+1) |
Vaccess:
me ` (V x,ve,sn) ⇒ (ve x,ve,sn) |
Faccess:
me ` (e,c) ⇒ (Ref a,ve ′,s ′,n ′) =⇒
me ` (e·f ,c) ⇒ (s ′ a f ,ve ′,s ′,n ′) |

Vassign:
me ` (e,c) ⇒ (r ,ve ′,sn ′) =⇒
me ` (x ::= e,c) ⇒ (r ,ve ′(x:=r),sn ′) |

Fassign:
[[me ` (oe,c1) ⇒ (Ref a,c2); me ` (e,c2) ⇒ (r ,ve3,s3,n3)]] =⇒
me ` (oe·f ::= e,c1) ⇒ (r ,ve3,s3(a,f := r),n3) |

Mcall:
[[me ` (oe,c1) ⇒ (or ,c2); me ` (pe,c2) ⇒ (pr ,ve3,sn3);

ve = (λx. null)(′′this ′′ := or , ′′param ′′ := pr);
me ` (me m,ve,sn3) ⇒ (r ,ve ′,sn4)]]
=⇒

me ` (oe·m<pe>,c1) ⇒ (r ,ve3,sn4) for or |
Seq:
[[me ` (e1,c1) ⇒ (r ,c2); me ` (e2,c2) ⇒ c3]] =⇒
me ` (e1; e2,c1) ⇒ c3 |

199

IfTrue:
[[me ` (b,c1) → (True,c2); me ` (e1,c2) ⇒ c3]] =⇒
me ` (IF b THEN e1 ELSE e2,c1) ⇒ c3 |

IfFalse:
[[me ` (b,c1) → (False,c2); me ` (e2,c2) ⇒ c3]] =⇒
me ` (IF b THEN e1 ELSE e2,c1) ⇒ c3 |

me ` (B bv,c) → (bv,c) |

me ` (b,c1) → (bv,c2) =⇒ me ` (Not b,c1) → (¬bv,c2) |

[[me ` (b1,c1) → (bv1,c2); me ` (b2,c2) → (bv2,c3)]] =⇒
me ` (And b1 b2,c1) → (bv1∧bv2,c3) |

[[me ` (e1,c1) ⇒ (r1,c2); me ` (e2,c2) ⇒ (r2,c3)]] =⇒
me ` (Eq e1 e2,c1) → (r1=r2,c3)

code_pred (modes: i => i => o => bool) big_step .

Example: natural numbers encoded as objects with a predecessor field.
Null is zero. Method succ adds an object in front, method add adds as many
objects in front as the parameter specifies.

First, the method bodies:

definition
m_succ = (′′s ′′ ::= New)· ′′pred ′′ ::= V ′′this ′′; V ′′s ′′

definition m_add =
IF Eq (V ′′param ′′) Null
THEN V ′′this ′′

ELSE V ′′this ′′· ′′succ ′′<Null>· ′′add ′′<V ′′param ′′· ′′pred ′′>

The method environment:

definition
menv = (λm. Null)(′′succ ′′ := m_succ, ′′add ′′ := m_add)

The main code, adding 1 and 2:

definition main =
′′1 ′′ ::= Null· ′′succ ′′<Null>;
′′2 ′′ ::= V ′′1 ′′· ′′succ ′′<Null>;
V ′′2 ′′ · ′′add ′′ <V ′′1 ′′>

Execution of semantics. The final variable environment and store are
converted into lists of references based on given lists of variable and field
names to extract.

200

values
{(r , map ve ′ [′′1 ′′, ′′2 ′′], map (λn. map (s ′ n)[′′pred ′′]) [0 ..<n])|

r ve ′ s ′ n. menv ` (main, λx. null, nth[], 0) ⇒ (r ,ve ′,s ′,n)}

end

theory Halting
imports HOL−IMP.Big_Step

begin

definition halts c s ≡ (∃ s ′. (c, s) ⇒ s ′)

A simple program that does not halt:

definition loop ≡ WHILE Bc True DO SKIP

lemma loop_never_halts[simp]: ¬ halts loop s
unfolding halts_def

proof clarify
fix s ′ assume (loop, s) ⇒ s ′

then show False
by (induction loop s s ′ rule: big_step_induct) (simp_all add: loop_def)

qed

16 Halting Problem
Given any encoding f (of programs to states), there is no Program H such
that for all programs c, H terminates in a state s ′ which has at variable x
the answer whether c halts.

theorem halting:
@H . ∀ c. ∃ s ′. (H , f c) ⇒ s ′ ∧ (halts c (f c) ←→ s ′ x > 0)
(is @H . ?P H)

proof clarify
fix H assume assm: ?P H

— inverted H: loops if input halts
let ?inv_H = H ;; IF Less (V x) (N 1) THEN SKIP ELSE loop

— compute in s ′ whether inverted H halts when applied to itself
obtain s ′ where

s ′_def : (H , f ?inv_H) ⇒ s ′ and
s ′_halts: halts ?inv_H (f ?inv_H) ←→ (s ′ x > 0)
using assm by blast

201

— contradiction: if it terminates, loop must have terminated; if not, SKIP
must have looped!

show False
proof(cases halts ?inv_H (f ?inv_H))

case True

then have halts (IF Less (V x) (N 1) THEN SKIP ELSE loop) s ′

unfolding halts_def using big_step_determ s ′_def by fast

then have halts loop s ′

using s ′_halts True halts_def by auto

then show False by auto
next

case False

then have ¬ halts SKIP s ′

using s ′_def s ′_halts halts_def by force

then show False using halts_def by auto
qed

qed

end

References
[1] T. Nipkow. Winskel is (almost) right: Towards a mechanized seman-

tics textbook. In V. Chandru and V. Vinay, editors, Foundations of
Software Technology and Theoretical Computer Science, volume 1180 of
Lect. Notes in Comp. Sci., pages 180–192. Springer-Verlag, 1996.

[2] T. Nipkow and G. Klein. Concrete Semantics with Isabelle/HOL.
Springer, 2014. http://concrete-semantics.org.

202

http://concrete-semantics.org

	Arithmetic and Boolean Expressions
	Arithmetic Expressions
	Constant Folding
	Boolean Expressions
	Constant Folding

	Stack Machine and Compilation
	Stack Machine
	Compilation

	IMP — A Simple Imperative Language
	Big-Step Semantics of Commands
	Rule inversion
	Command Equivalence
	Execution is deterministic

	Small-Step Semantics of Commands
	The transition relation
	Executability
	Proof infrastructure
	Equivalence with big-step semantics
	Final configurations and infinite reductions
	Finite number of reachable commands

	Denotational Semantics of Commands
	Continuity
	The denotational semantics is deterministic

	Compiler for IMP
	List setup
	Instructions and Stack Machine
	Verification infrastructure
	Compilation
	Preservation of semantics

	Compiler Correctness, Reverse Direction
	Definitions
	Basic properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 exec_n
	Concrete symbolic execution steps
	Basic properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 succs
	Splitting up machine executions
	Correctness theorem

	A Typed Language
	Arithmetic Expressions
	Boolean Expressions
	Syntax of Commands
	Small-Step Semantics of Commands
	The Type System
	Well-typed Programs Do Not Get Stuck
	Type Variables
	Typing is Preserved by Substitution

	Security Type Systems
	Security Levels and Expressions
	Security Typing of Commands
	Termination-Sensitive Systems

	Definite Initialization Analysis
	The Variables in an Expression
	Initialization-Sensitive Expressions Evaluation
	Definite Initialization Analysis
	Initialization-Sensitive Big Step Semantics
	Soundness wrt Big Steps
	Initialization-Sensitive Small Step Semantics
	Soundness wrt Small Steps

	Constant Folding
	Semantic Equivalence up to a Condition
	Simple folding of arithmetic expressions

	Live Variable Analysis
	Liveness Analysis
	Correctness
	Program Optimization
	True Liveness Analysis

	Hoare Logic
	Hoare Logic for Partial Correctness
	Examples
	Soundness and Completeness
	Verification Condition Generation
	Hoare Logic for Total Correctness
	Verification Conditions for Total Correctness

	Abstract Interpretation
	Complete Lattice
	Annotated Commands
	Collecting Semantics of Commands
	A small step semantics on annotated commands
	Collecting Semantics Examples
	Abstract Interpretation Test Programs
	Abstract Interpretation
	Computable State
	Computable Abstract Interpretation
	Parity Analysis
	Constant Propagation
	Backward Analysis of Expressions
	Interval Analysis
	Widening and Narrowing

	Extensions and Variations of IMP
	Procedures and Local Variables
	A C-like Language
	Towards an OO Language: A Language of Records

	Halting Problem

