Concrete Semantics

Tobias Nipkow & Gerwin Klein

January 18, 2026

Abstract

This document presents formalizations of the semantics of a simple
imperative programming language together with a number of applica-
tions: a compiler, type systems, various program analyses and abstract
interpreters. These theories form the basis of the book Concrete Se-
mantics with Isabelle/HOL by Nipkow and Klein [2].

Contents

1 Arithmetic and Boolean Expressions

1.1 Arithmetic Expressions
1.2 Constant Folding
1.3 Boolean Expressions
1.4 Constant Folding

Stack Machine and Compilation
2.1 Stack Machine oL
2.2 Compilation L oo

IMP — A Simple Imperative Language

3.1 Big-Step Semantics of Commands
3.2 Ruleinversion o
3.3 Command Equivalence
3.4 Execution is deterministic,

Small-Step Semantics of Commands

4.1 The transition relation L.
4.2 Executability o
4.3 Proof infrastructure
4.4 Equivalence with big-step semantics
4.5 Final configurations and infinite reductions
4.6 Finite number of reachable commands

Denotational Semantics of Commands
51 Continuity Lo
5.2 The denotational semantics is deterministic

Compiler for IMP

6.1 Listsetup
6.2 Instructions and Stack Machine
6.3 Verification infrastructure
6.4 Compilation o
6.5 Preservation of semantics

Compiler Correctness, Reverse Direction

7.1 Definitions
7.2 Basic properties of exec_mo
7.3 Concrete symbolic execution steps
7.4 Basic properties of succs
7.5 Splitting up machine executions
7.6 Correctness theorem

A Typed Language

8.1 Arithmetic Expressions
8.2 Boolean Expressions
8.3 Syntax of Commands.
8.4 Small-Step Semantics of Commands
85 The Type System
8.6 Well-typed Programs Do Not Get Stuck
8.7 Type Variableso ..
8.8 Typing is Preserved by Substitution

Security Type Systems

9.1 Security Levels and Expressions
9.2 Security Typing of Commands
9.3 Termination-Sensitive Systems

10 Definite Initialization Analysis

10.1 The Variables in an Expression
10.2 Initialization-Sensitive Expressions Evaluation
10.3 Definite Initialization Analysis
10.4 Initialization-Sensitive Big Step Semantics
10.5 Soundness wrt Big Steps oL
10.6 Initialization-Sensitive Small Step Semantics.
10.7 Soundness wrt Small Steps

24
25
27

27
28
28
29
31
32

33
33
34
34
35
39
42

47
47
48
48
48
49
50
52
53

54
o4
55
61

11 Constant Folding
11.1 Semantic Equivalence up to a Condition
11.2 Simple folding of arithmetic expressions

12 Live Variable Analysis
12.1 Liveness Analysis
12.2 Correctnesso
12.3 Program Optimization
12.4 True Liveness Analysis

13 Hoare Logic
13.1 Hoare Logic for Partial Correctness
13.2 Examples o
13.3 Soundness and Completeness
13.4 Verification Condition Generation.
13.5 Hoare Logic for Total Correctness
13.6 Verification Conditions for Total Correctness . . .

14 Abstract Interpretation
14.1 Complete Lattice
14.2 Annotated Commands
14.3 Collecting Semantics of Commands
14.4 A small step semantics on annotated commands . .
14.5 Collecting Semantics Examples
14.6 Abstract Interpretation Test Programs
14.7 Abstract Interpretation
14.8 Computable State
14.9 Computable Abstract Interpretation
14.10Parity Analysis
14.11Constant Propagation
14.12Backward Analysis of Expressions
14.13Interval Analysis
14.14Widening and Narrowing

15 Extensions and Variations of IMP
15.1 Procedures and Local Variables
15.2 A C-like Language
15.3 Towards an OO Language: A Language of Records

16 Halting Problem

73
73
7

81
82
83
84
88

92
92
94
95
97
100
109

119
119
120
124
129
130
131
133
145
148
155
159
162
168
178

192
193
196
198

201

1 Arithmetic and Boolean Expressions

1.1 Arithmetic Expressions
theory AFEzp imports Main begin
type__synonym vname = string

type_ synonym val = int
type_ synonym state = vname = val

datatype aexp = N int | V vname | Plus aexp aexp

fun aval :: aexp = state = val where

aval (N n) s =n |

aval (V) s=suz|

aval (Plus a1 a2) s = aval a; s + aval ay s

value aval (Plus (V' "z") (N 5)) (M. if x = "z"" then 7 else 0)
The same state more concisely:

value aval (Plus (V "z") (N 5)) ((Az. 0) ("z":= 7))

A little syntax magic to write larger states compactly:

definition null_state (<<>)) where
null _state = \z. 0

syntax

_ State :: updbinds => 'a («<_>»)
translations

_ State ms == __ Update <> ms

_ State (_updbinds b bs) <= __ Update (__State b) bs
We can now write a series of updates to the function Az. 0 compactly:
lemma <a:=1,b:=2>= (<> (a:=1)) (b:= (2::int))

by (rule refl)
value aval (Plus (V "z") (N 5)) <"z" := 7>

In the <a := b> syntax, variables that are not mentioned are 0 by
default:

value aval (Plus (V "z") (N 5)) <"'y" := 7>

Note that this <...> syntax works for any function space 71 = 72 where
79 has a 0.

1.2 Constant Folding

Evaluate constant subsexpressions:

fun asimp__const :: aexp = aexp where
asimp__const (N n) = N n |
asimp__const (V)= Vx|
asimp__const (Plus a1 ag) =
(case (asimp__const a1, asimp__const az) of
(N n1, N ng) = N(ni+n2) |
(bl,bg) = Plus bl bg)

theorem aval asimp _const:
aval (asimp__const a) s = aval a s
apply (induction a)
apply (auto split: aexp.split)
done

Now we also eliminate all occurrences 0 in additions. The standard
method: optimized versions of the constructors:

fun plus :: aexp = aerp = aexp where

plus (N il) (N ig) = N(i1+i2) |

plus (N @) a = (if i=0 then a else Plus (N ©) a) |
plus a (N @) = (if i=0 then a else Plus a (N 7)) |
plus a1 as = Plus a1 as

lemma aval _plus[simp]:

aval (plus al a2) s = aval al s + aval a2 s
apply (induction al a2 rule: plus.induct)
apply simp__all
done

fun asimp :: aexp = aexp where
asimp (N n) = N n |
asimp (V)= V|
asimp (Plus a1 az) = plus (asimp ay) (asimp as)
Note that in asimp__const the optimized constructor was inlined. Making

it a separate function AFzp.plus improves modularity of the code and the
proofs.

value asimp (Plus (Plus (N 0) (N 0)) (Plus (V "z"") (N 0)))

theorem aval _asimp[simp):
aval (asimp a) s = aval a s
apply (induction a)

apply simp_all
done

end

1.3 Boolean Expressions

theory BFExzp imports AFEzp begin

datatype bexp = Bc bool | Not bexp | And bexp bexp | Less aexp aexp
fun bval :: bexp = state = bool where

bval (Bec v) s = v |

bval (Not b) s = (= bval b s) |

bval (And by b2) s = (bval by s A bval by s) |

bval (Less a1 a2) s = (aval a; s < aval ay $)

value bval (Less (V "z'") (Plus (N 8) (V "y"")))
<//x// — 5)7 //y// — 1>

1.4 Constant Folding

Optimizing constructors:

fun less :: aexp = aexp = bexp where
less (N n1) (N n2) = Be(ng < ng) |
less a1 a9 = Less a1 ao

lemma [simp]: bval (less al a2) s = (aval al s < aval a2 s)
apply (induction al a2 rule: less.induct)

apply simp__all

done

fun and :: bexp = bexp = bexp where
and (Bc True) b = b |

and b (Bc True) = b |

and (Bc False) b = Be False |

and b (Bc False) = Bc False |

and by by = And by bsy

lemma bval _and[simp]: bval (and b1 b2) s = (bval b1 s A bval b2 s)
apply (induction b1 b2 rule: and.induct)

apply simp__all

done

fun not :: bexp = bexp where

not (Bc True) = Bc False |
not (Bc False) = Be True |
not b = Not b

lemma bval_not[simp|: bval (not b) s = (= bval b s)
apply (induction b rule: not.induct)

apply simp__all

done

Now the overall optimizer:

fun bsimp :: bexp = bexp where

bsimp (Bc v) = Be v |

bsimp (Not b) = not(bsimp b) |

bsimp (And by b2) = and (bsimp by) (bsimp ba) |
(

bsimp (Less a1 az) = less (asimp a1) (asimp az)
value bsimp (And (Less (N 0) (N 1)) b)
value bsimp (And (Less (N 1) (N 0)) (Bc True))

theorem bval (bsimp b) s = bval b s
apply (induction b)

apply simp__all

done

end

2 Stack Machine and Compilation

theory ASM imports AFEzp begin

2.1 Stack Machine
datatype instr = LOADI val | LOAD vname | ADD

type__synonym stack = wval list

Abbreviations are transparent: they are unfolded after parsing and folded
back again before printing. Internally, they do not exist.

fun ezecl :: instr = state = stack = stack where
execl (LOADI n) __ stk = n # stk |
execl (LOAD x) s stk = s(x) # stk |

evecl ADD _ (j # i # stk) = (i + j) # stk

fun exec :: instr list = state = stack = stack where
exec || __ stk = stk |
exec (i#1is) s stk = exec is s (execl i s stk)

value ezec [LOADI 5, LOAD "y" ADD] <"z" := 42, "y" := 43> [50]

lemma ezxec__append[simp):
exec (is1Qis2) s stk = exec is2 s (exec isl s stk)
apply (induction is1 arbitrary: stk)

apply (auto)
done

2.2 Compilation

fun comp :: aexp = instr list where

comp (N n) = [LOADI n] |

comp (V z) = [LOAD 1] |

comp (Plus e1 e3) = comp e; @ comp ea Q@ [ADD]

value comp (Plus (Plus (V "z") (N 1)) (V "2"))

theorem exec_comp: exec (comp a) s stk = aval a s # stk
apply(induction a arbitrary: stk)

apply (auto)
done

end
theory Star imports Main
begin

inductive
star :: ('a = 'a = bool) = 'a = 'a = bool
for r where
refl: star rx x|
step: rxy = starryz = starrxz

hide_ fact (open) refl step — names too generic

lemma star trans:

starrry = starry z = star r x 2
proof (induction rule: star.induct)

case refl thus Zcase .

next
case step thus ?case by (metis star.step)
qed

lemmas star _induct =
star.induct[of r:: 'ax’b = 'ax'b = bool, split_format(complete)]

declare star.refl[simp,intro]

lemma star_stepl[simp, intro|: r x y = star r x y
by (metis star.refl star.step)

code__pred star .

end

3 IMP — A Simple Imperative Language

theory Com imports BEzxp begin

datatype
com = SKIP
| Assign vname aexp («_ == _> [1000, 61] 61)
| Seq com com («_3;/ _» 160, 61] 60)
| If bexp com com («(IF _/ THEN |/ ELSE) [0, 0, 61] 61)
| While bexp com («(WHILE _/ DO _)» [0, 61] 61)
end

3.1 Big-Step Semantics of Commands
theory Big Step imports Com begin

The big-step semantics is a straight-forward inductive definition with
concrete syntax. Note that the first parameter is a tuple, so the syntax
becomes (¢,s) = s”.

inductive
big_step :: com x state = state = bool (infix = 55)
where
Skip: (SKIP,s) = s |
Assign: (x == a,8) = s(x := aval a s) |
Seq: [(c1,81) = s2; (c2,82) = s3] = (c13;¢2, s1) = s3 |
IfTrue: | bval b s; (c1,8) = t] = (IF'b THEN ¢1 ELSE c2, s) = t |
IfFalse: [—bval b s; (c2,8) = t] = (IF b THEN c¢; ELSE c3, s) =t |

WhileFalse: —bval b s = (WHILE b DO c¢,s) = s |
While True:

[bval b s1; (c,51) = s2; (WHILE b DO ¢, s2) = s3]
— (WHILE b DO ¢, s1) = s3

schematic__goal ex: ("z" := N &;; "y ==V "z" s) = %

apply(rule Seq)
apply(rule Assign)

apply simp
apply(rule Assign)
done

thm ex[simplified]

We want to execute the big-step rules:
code_ pred big_step .

For inductive definitions we need command values instead of value.
values {t. (SKIP, _. 0) = t}

We need to translate the result state into a list to display it.

values {map t ["z"] |t. (SKIP, <"z" := }2>) = t}
values {map t ["z"] |t. ("z" == N 2, <"z" := }2>) = t}

values {map t ["z","y"] |t.
(WHILE Less (V ”x”) (V "y"y DO ("z" ::= Plus (V "z"") (N 5)),
<" = 0,"y" = 13>) = t}

Proof automation:

The introduction rules are good for automatically construction small
program executions. The recursive cases may require backtracking, so we
declare the set as unsafe intro rules.

declare big_ step.intros [intro]

The standard induction rule

[x1 = z2; N\s. P (SKIP, s) s; Nz a s. P (z == a, s) (s(z := aval a s));
/\Cl §1 S92 Co S3.

[[(01, 51) = $§9; P (Cl, 81) S9; (02, 82) = §3; P (CQ, 82) 83]]

= P (c13; c2, 51) 83;
A\b s c1tca.

[bval b s; (¢1, s) = t; P (c1, s) t] = P (IF b THEN ¢y ELSE ca, 3) t;
Nb s cate.

10

[— bval b s; (c2, s) = t; P (c2,) t] = P (IF' b THEN c¢; ELSE c, s)
1
Absc = bvalbs = P (WHILE b DO ¢, s) s;
b s1 ¢ s2 s3.

[bval b s1; (¢, s1) = s2; P (¢, s1) s2; (WHILE b DO ¢, s2) = s3;

P (WHILE b DO ¢, s2) s3]

— P (WHILE b DO ¢, s1) s3]

= Pzl 22

thm big_ step.induct

This induction schema is almost perfect for our purposes, but our trick
for reusing the tuple syntax means that the induction schema has two pa-
rameters instead of the ¢, s, and s’ that we are likely to encounter. Splitting
the tuple parameter fixes this:

lemmas big_step induct = big_step.induct|split_format(complete)]
thm big step_ induct

[(z1a, £1b) = z2a; N\s. P SKIP s s; Nz a s. P (z := a) s (s(z := aval a
s));
/\01 §1 82 Co S3.

[(c1, s1) = s2; P c1 s1 s2; (c2, s2) = s3; P ca s2 s3]

= P (c13; c2) 81 83;
N\b s c1 tea.

[bval b s; (¢1, 8) = t; P ¢y st] = P (IF b THEN ¢y ELSE ¢3) s t;
N\b s cate.

[— bval b s; (ca, s) = t; P ca st] = P (IF b THEN ¢y ELSE c3) s t;
Absc —bvalbs = P (WHILE b DO c) s s;
b s1 ¢ s2 s3.

[bval b s1; (¢, s1) = s2; P ¢ s1 s2; (WHILE b DO ¢, s3) = s3;

P (WHILE b DO c) s2 s3]

= P (WHILE b DO c) s1 s3]
= P zla x1b 22a

3.2 Rule inversion

What can we deduce from (SKIP, s) = t 7 That s = ¢. This is how we can
automatically prove it:
inductive__cases SkipE[elim!]: (SKIP,s) = t
thm SkipFE

This is an elimination rule. The [elim] attribute tells auto, blast and
friends (but not simp!) to use it automatically; [elim!] means that it is applied
eagerly.

11

Similarly for the other commands:

inductive__cases AssignE[elim!]: (z == a,s) = t

thm Assignk

inductive__cases SeqE|[elim!]: (c1;;¢2,s1) = s3

thm SeqF

inductive__cases IfE[elim!]: (IF' b THEN c1 ELSE c2,s) =t
thm IfE

inductive__cases WhileE[elim]: (WHILE b DO ¢,s) =t
thm WhileE
Only [elim]: [elim!] would not terminate.

An automatic example:

lemma (IF' b THEN SKIP ELSE SKIP, s) =t =t =s
by blast

Rule inversion by hand via the “cases” method:

lemma assumes (IF b THEN SKIP ELSE SKIP, s) =t
shows ¢t = s

proof —
from assms show ?thesis
proof cases — inverting assms

case IfTrue thm IfTrue
thus ?thesis by blast
next
case [fFualse thus ?thesis by blast
qed
qed

lemma assign_simp:
(z == a,8) = s' «— (s’ = s(z := aval a s))
by auto

An example combining rule inversion and derivations

lemma Seq assoc:
(c13; €235 ¢3, 8) = s’ +— (cly; (255 ¢3), s) = ¢’
proof
assume (cl;; ¢2;; ¢3, 8) = s’
then obtain sI s2 where
cl: (c1, s) = sl and
c2: (c2, s1) = s2 and
c3: (¢3, s2) = s’ by auto

12

from c2 ¢8
have (¢2;; ¢3, s1) = s’ by (rule Seq)
with c1
show (c1;; (¢2;; ¢3), s) = s’ by (rule Seq)
next
— The other direction is analogous
assume (c1;; (¢2;; ¢3), s) = s’
thus (cI;; ¢2;; ¢3, s) = s’ by auto
ged

3.3 Command Equivalence

We call two statements ¢ and ¢’ equivalent wrt. the big-step semantics when
c started in s terminates in s’ iff ¢’ started in the same s also terminates
in the same s’. Formally:

abbreviation
equiv_c :: com = com = bool (infix (~) 50) where
c~c'=Wst (¢s) =t = (c)s) = t)

Warning: ~ is the symbol written \ < s i m > (without spaces).
As an example, we show that loop unfolding is an equivalence transfor-
mation on programs:

lemma unfold while:
(WHILE b DO ¢) ~ (IF b THEN c¢;; WHILE b DO ¢ ELSE SKIP) (is ?w
~ Ziw)
proof —
— to show the equivalence, we look at the derivation tree for
— each side and from that construct a derivation tree for the other side
have (%iw, s) = t if assm: (?w, s) = t for s ¢
proof —
from assm show ?thesis
proof cases — rule inversion on (?w, s) = t
case WhileFulse
thus ?thesis by blast
next
case WhileTrue
from <bval b $» «(?w, s) = t» obtain s’ where
(¢, s) = s"and (?w, s’) = t by auto
— now we can build a derivation tree for the IF
— first, the body of the True-branch:
hence (c¢;; ?w, s) = t by (rule Seq)
— then the whole IF'
with <bval b s» show ?thesis by (rule IfTrue)

13

qed
qed
moreover
— now the other direction:
have (?w, s) = t if assm: (%iw, s) = ¢ for s ¢
proof —
from assm show ?thesis
proof cases — rule inversion on (%iw, s) = t
case IfFalse
hence s = t by blast
thus ?thesis using <—bval b s> by blast
next
case IfTrue
— and for this, only the Seq-rule is applicable:
from «(¢;; ?w, s) = t» obtain s’ where
(¢, s) = s"and (w, s’) = t by auto
— with this information, we can build a derivation tree for WHILE
with <bval b s» show ?thesis by (rule WhileTrue)
qged
qed
ultimately
show ?thesis by blast
qed

Luckily, such lengthy proofs are seldom necessary. Isabelle can prove
many such facts automatically.

lemma while _unfold:
(WHILE b DO ¢) ~ (IF b THEN c;; WHILE b DO ¢ ELSE SKIP)
by blast

lemma triv_if:
(IF b THEN c ELSE ¢) ~ ¢
by blast

lemma commute_if:

(IF b1 THEN (IF b2 THEN c11 ELSE c12) ELSFE c2)

~

(IF b2 THEN (IF bl THEN c11 ELSE ¢2) ELSE (IF b1 THEN c12
ELSE ¢2))
by blast

lemma sim__while__cong aux:

(WHILE b DO ¢,8) =t = ¢~ ¢'= (WHILE b DO ¢;s) =t
apply(induction WHILE b DO c s t arbitrary: b c rule: big_step_induct)

14

apply blast
apply blast
done

lemma sim_while cong: ¢ ~ ¢’ = WHILE b DO ¢ ~ WHILE b DO ¢’
by (metis sim__while__cong aux)

Command equivalence is an equivalence relation, i.e. it is reflexive, sym-
metric, and transitive. Because we used an abbreviation above, Isabelle
derives this automatically.

lemma sim_refl: ¢ ~ ¢ by simp
lemma sim_sym: (¢ ~ ¢') = (¢’ ~ ¢) by auto
lemma sim_trans: ¢ ~ ¢/ = ¢’ ~ ¢’ = ¢ ~ ¢" by auto

3.4 Execution is deterministic
This proof is automatic.

theorem big_step determ: [(¢,s) = t; (¢,8) = v] = u =1
by (induction arbitrary: u rule: big_step.induct) blast+

This is the proof as you might present it in a lecture. The remaining
cases are simple enough to be proved automatically:

theorem
(c,s) =t = (¢8) =t = t'=1
proof (induction arbitrary: t’ rule: big step.induct)
— the only interesting case, WhileTrue:
fix bcssy tt'
— The assumptions of the rule:
assume bval b s and (c¢,s) = s; and (WHILE b DO ¢,s1) =t
— Ind.Hyp; note the /\ because of arbitrary:
assume [He: N\t (¢,8) =t/ = t' = s
assume [Hw: \t'. (WHILE b DO ¢,s1) = t' = t' =t
— Premise of implication:
assume (WHILE b DO ¢,s) = t'
with <bval b s» obtain s;’ where
c: (¢,8) = s1" and
w: (WHILE b DO ¢,s1") = t'
by auto
from ¢ IHc have s1’ = s; by blast
with w IHw show t' = t by blast
qed blast+ — prove the rest automatically

end

15

4 Small-Step Semantics of Commands

theory Small_Step imports Star Big Step begin

4.1 The transition relation

inductive

small_step :: com * state = com * state = bool (infix (—> 55)
where
Assign: (z == a, s) = (SKIP, s(z := aval a s)) |

Seql: (SKIP;;ca,5) — (c2,s) |
Seq2: (c1,8) = (c1',8") = (c13502,8) = (e1'55¢0,8") |

IfTrue: bval b s = (IF b THEN c¢; ELSFE c3,s) — (c1,s) |
IfFalse: —bval b s = (IF b THEN ¢y ELSE ca,s) — (c2,s) |

While: (WHILE b DO c,s) —
(IF b THEN c¢;; WHILE b DO ¢ ELSE SKIP,s)

abbreviation
small_steps :: com * state = com * state = bool (infix «—*> 55)
where z —x y == star small_step z y

4.2 Executability

code_ pred small_step .

values {(c¢/;map t ["z","y")""2") |’ t.
(//x// = V /,Z,/;; //y// c— V N$//’
<'g" =8, "y =7, """ = 5>) =« (ct)}

4.3 Proof infrastructure

4.3.1 Induction rules

The default induction rule small_step.induct only works for lemmas of the
form a — b = ... where a and b are not already pairs (DUMMY ,DUMMY).
We can generate a suitable variant of small_step.induct for pairs by “split-
ting” the arguments — into pairs:

lemmas small_step_induct = small_step.induct[split__format(complete)]

16

4.3.2 Proof automation
declare small__step.intros|simp,intro)
Rule inversion:

inductive__cases SkipE[elim!]: (SKIP,s) — ct

thm SkipE

inductive__cases AssignE[elim!]: (z::=a,s) — ct

thm AssignF

inductive__cases SeqFE|elim|: (c1;;¢2,s) — ct

thm SeqFE

inductive__cases IfE[elim!]: (IF' b THEN c1 ELSE c2,s) — ct
inductive__cases WhileE[elim|: (WHILE b DO ¢, s) — ct

A simple property:

lemma deterministic:

cs — cs' = cs — s = cs” = cs
apply (induction arbitrary: cs” rule: small_step.induct)
apply blast+
done

/

4.4 Equivalence with big-step semantics

lemma star_seq2: (c1,s) —x* (c1's") = (cl1;;¢2,8) —x (cl';;¢2,8")
proof (induction rule: star_induct)
case refl thus ?case by simp
next
case step
thus ?case by (metis Seq2 star.step)
ged

lemma seq comp:
[(c1,s1) —x (SKIP,s2); (c2,s2) —x* (SKIP,s3) |
= (cl;;¢2, s1) —x (SKIP,s3)

by (blast intro: star.step star_seq2 star_trans)

The following proof corresponds to one on the board where one would
show chains of — and —x* steps.

lemma big to_small:
cs = t = cs —x (SKIP,t)
proof (induction rule: big_step.induct)
fix s show (SKIP,s) —* (SKIP,s) by simp
next
fix z a s show (z := a,5) =% (SKIP, s(z := aval a s)) by auto
next

17

fix c1 c2 s1 s2 53

assume (c1,s1) —x* (SKIP,s2) and (c2,s2) —x (SKIP,s3)

thus (c1;;¢2, s1) —x (SKIP,s3) by (rule seq_comp)
next

fix s::state and b c0 c1t

assume bval b s

hence (IF' b THEN c0 ELSE c1,s) — (c0,s) by simp

moreover assume (c0,s) —* (SKIP,t)

ultimately

show (IF b THEN c0 ELSE c1,s) —* (SKIP,t) by (metis star.simps)
next

fix s::state and b c0 c1 ¢

assume —bval b s

hence (IF'b THEN c0 ELSE c1,s) — (c1,s) by simp

moreover assume (cl,s) —* (SKIP,t)

ultimately

show (IF b THEN c0 ELSE c1,s) —x* (SKIP,t) by (metis star.simps)
next

fix b ¢ and s::state

assume b: —bval b s

let %if = IF b THEN c;; WHILE b DO ¢ ELSE SKIP

have (WHILE b DO c¢,s) — (?if, s) by blast

moreover have (?if,s) — (SKIP, s) by (simp add: b)

ultimately show (WHILE b DO c¢,s) = (SKIP,s) by(metis star.refl
star.step)
next

fixbess't

let w = WHILE b DO ¢

let %if = IF b THEN ¢;; %w ELSE SKIP

assume w: (w,s’) —* (SKIP,t)

assume c: (c¢,s) —x (SKIP,s’)

assume b: bval b s

have (?w,s) — (%if, s) by blast

moreover have (%if, s) — (¢;; ?w, s) by (simp add: b)

moreover have (c¢;; ?w,s) —* (SKIP,t) by(rule seq_comp[OF ¢ w])

ultimately show (WHILE b DO ¢,s) —x (SKIP,t) by (metis star.simps)
qged

Each case of the induction can be proved automatically:

lemma c¢s = t = c¢s —x (SKIP,t)
proof (induction rule: big__step.induct)
case Skip show ?case by blast
next
case Assign show ?case by blast

18

next
case Seq thus Zcase by (blast intro: seq_comp)
next
case IfTrue thus ?case by (blast intro: star.step)
next
case IfFalse thus ?case by (blast intro: star.step)
next
case WhileFalse thus ?case
by (metis star.step star_stepl small_step.IfFalse small__step. While)
next
case WhileTrue
thus ?case
by (metis While seq_comp small__step.IfTrue star.step[of small_step)])
qed

lemma smalll__big continue:
cs > cs' = cs' =>t= cs=>1t
apply (induction arbitrary: t rule: small_step.induct)
apply auto
done

lemma small_to_ big:
cs = (SKIPt) = ¢s = t
apply (induction cs (SKIP,t) rule: star.induct)
apply (auto intro: smalll__big_continue)
done

Finally, the equivalence theorem:

theorem big_iff small:
cs = t = cs =% (SKIP,t)
by (metis big_to__small small_to_big)

4.5 Final configurations and infinite reductions
definition final cs «+— —(Jcs’. ¢s — cs')

lemma finalD: final (¢,s) = ¢ = SKIP

apply(simp add: final_def)

apply (induction c)

apply blast+
done

lemma final_iff SKIP: final (c,s) = (¢ = SKIP)
by (metis SkipE finalD final_def)

19

Now we can show that = yields a final state iff — terminates:

lemma big iff small _termination:
(Ft. cs = t) «— (Fes’ cs —x cs’ A final cs’)
by (simp add: big_iff small final_iff SKIP)

This is the same as saying that the absence of a big step result is equiv-
alent with absence of a terminating small step sequence, i.e. with nontermi-
nation. Since — is determininistic, there is no difference between may and
must terminate.

end

theory Finite_ Reachable
imports Small Step
begin

4.6 Finite number of reachable commands

This theory shows that in the small-step semantics one can only reach a
finite number of commands from any given command. Hence one can see
the command component of a small-step configuration as a combination of
the program to be executed and a pc.

definition reachable :: com = com set where
reachable ¢ = {c’. Is t. (¢,5) —* ()}

Proofs need induction on the length of a small-step reduction sequence.

fun small_stepsn :: com x state = nat = com * state = bool
(«_ =" _»[55,0,55] 55) where

(s =(0) es') = (es' = ¢s) |
cs =(Suc n) es” = (Fes’. cs = ¢s' A es’ —(n) es”)
lemma stepsn_if star: ¢cs —* c¢s' = In. c¢s —(n) cs’
proof (induction rule: star.induct)

case refl show ?case by (metis small_stepsn.simps(1))
next

case step thus Zcase by (metis small_stepsn.simps(2))
qged

lemma star_if stepsn: cs —(n) cs’ = cs —x* cs’
by (induction n arbitrary: cs) (auto elim: star.step)

lemma SKIP _starD: (SKIP, s) —* (¢,t) = ¢ = SKIP
by (induction SKIP s c t rule: star_induct) auto

lemma reachable SKIP: reachable SKIP = {SKIP}
by (auto simp: reachable def dest: SKIP starD)

20

lemma Assign_starD: (z::=a, s) —x* (¢,t) = ¢ € {z::=a, SKIP}
by (induction z::=a s c t rule: star_induct) (auto dest: SKIP_starD)

lemma reachable Assign: reachable (z::=a) = {z:=a, SKIP}
by (auto simp: reachable__def dest:Assign__starD)

lemma Seq stepsnD: (cl;; ¢2, s) —(n) (¢, t) =
(Fel'm. ¢ =c1l; ¢2 A (cl, s) =(m) (e1’,t) A m < n)V
(352 m1 m2. (cl,s) —(m1) (SKIP,s2) A (c2, s2) —(m2) (c¢’, t) A
mi1+m2 < n)
proof (induction n arbitrary: c1 c2 s)
case 0 thus ?case by auto
next
case (Suc n)
from Suc.prems obtain s’ c12’ where (c1;;¢2, s) — (c12/, s')
and n: (c12's") —(n) (c',t) by auto
from this(1) show ?case
proof
assume c! = SKIP (c12', s') = (¢2, s)
hence (c1,s) —(0) (SKIP, s’) A (¢2, s") —(n) (¢/, t) AN 0 + n < Sucn
using n by auto
thus ?case by blast
next
fix c1’ s assume 1: (c12/, s') = (c1’; ¢2, s") (c1, s) — (1, s")
hence n': (¢1';;¢2,s") —(n) (¢/;,t) using n by auto
from Suc.IH[OF n'| show Zcase
proof
assume Jcl”" m. ¢/ = c1”;; 2 N (c1’, s") —=(m) (c1”,t) Am <n
(is3d ab. ?Pabd)
then obtain c!” m where 2: P c1" m by blast
hence ¢’ = ¢1";;¢2 N (cl, s) —(Suc m) (c1";t) A Suc m < Suc n
using 1 by auto
thus ?case by blast
next
assume 3s2 ml1 m2. (c1's") —(m1) (SKIP,s2) A
(¢2,s2) —=(m2) (¢';t) A mIi+m2 < n (isJabec. ?Pabc)
then obtain s2 m1 m2 where ?P s2 m1 m2 by blast
hence (c1,s) —(Suc m1) (SKIP,s2) A (¢2,s2) —(m2) (c';t) A
Suc m1 + m2 < Suc n using 1 by auto
thus “case by blast
qged

21

qed
qged

corollary Seq starD: (cl;; ¢2, s) —x* (¢/, t) =
(Fel. ¢! =clly; ¢2 N (cl, s) =% (¢l 1) V
(3s2. (cl1,s) =+ (SKIP,s2) A (c2, s2) —x (c/, 1))
by (metis Seq_stepsnD star_if stepsn stepsn__if star)

lemma reachable_Seq: reachable (c1;;¢2) C
(Ael'. ¢1';;¢2) “ reachable ¢l U reachable c2
by (auto simp: reachable__def image__def dest!: Seq starD)

lemma If starD: (IF b THEN c1 ELSE c2, s) —x (c,t) =
¢ =1IF b THEN c1 ELSE c2 V (cl1,s) =% (c,t) V (c2,s) —* (c,t)
by (induction IF b THEN c1 ELSE c2 s c t rule: star_induct) auto

lemma reachable_If: reachable (IF b THEN c1 ELSE c2) C
{IF b THEN c1 ELSE c2} U reachable c1 U reachable c2
by (auto simp: reachable__def dest!: If starD)

lemma While_stepsnD: (WHILE b DO ¢, s) —(n) (c2,t) =
c¢2 € {WHILE b DO ¢, IF b THEN ¢ ;; WHILE b DO ¢ ELSE SKIP,
SKIP}
V (Jel. c2 =cl;; WHILE b DO ¢ A (3 s1 s2. (¢,81) —x* (c1,s2)))
proof (induction n arbitrary: s rule: less_induct)
case (less nl)
show ?case
proof(cases nl)
case 0 thus ?thesis using less.prems by (simp)
next
case (Suc n2)
let Yw = WHILE b DO ¢
let ?iw = IF b THEN c ;; w ELSE SKIP
from Suc less.prems have n2: (%iw,s) —(n2) (c2,t) by(auto elim!:
WhileE)
show ?thesis
proof(cases n2)
case (thus ?thesis using n2 by auto
next
case (Suc n3)
then obtain iw’ s’ where (%iw,s) — (iw’,s’)
and n3: (iw',s") —(n3) (c¢2,t) using n2 by auto

22

from this(1)
show “thesis
proof
assume (iw’, s’) = (¢;; WHILE b DO ¢, s)
with n3 have (¢;;%w, s) —(n3) (¢2,t) by auto
from Seq stepsnD][OF this| show ?thesis
proof
assume Jcl’' m. ¢2 = cl’y; 2w A (¢,8) —(m) (c1’,t) A m < n3
thus ?thesis by (metis star_if _stepsn)
next
assume 3s2 ml m2. (¢, s) —(ml1) (SKIP, s2) A
(WHILE b DO ¢, s2) —(m2) (c2,t) A ml + m2 < n8 (is3Jzy
z. PP xy z)
then obtain s2 m1 m2 where ?P s2 m1 m2 by blast
with «n2 = Suc n8» <n1 = Suc n2>have m2 < nl by arith
from less.IH[OF this] <?P s2 m1 m2> show ?thesis by blast
qed
next
assume (iw', s’) = (SKIP, s)
thus ?thesis using star_if stepsn[OF n3] by (auto dest!: SKIP _starD)
qed
qged
qed
qed

lemma reachable While: reachable (WHILE b DO ¢) C
{WHILE b DO ¢, IF b THEN c ;; WHILE b DO ¢ ELSE SKIP, SKIP} U
(Ac’. ¢’ ;; WHILE b DO ¢) ‘ reachable ¢

apply(auto simp: reachable__def image__def)

by (metis While__stepsnD insertE singletonE stepsn__if star)

theorem finite_reachable: finite(reachable c)

apply (induction c)

apply(auto simp: reachable SKIP reachable_Assign
finite__subset|OF reachable Seq] finite_subset| OF reachable_If]
finite__subset|OF reachable__While])

done

end

23

5 Denotational Semantics of Commands

theory Denotational imports Big Step begin
type__synonym com__den = (state X state) set

definition W :: (state = bool) = com_den = (com__den = com__den)

where
W db de = (Mdw. {(s,t). if db s then (s,t) € dc O dw else s=t})

fun D :: com = com_den where

D SKIP = Id |

D (z == a) = {(s,t). t = s(z := aval a s)} |

D (c1;;¢2) = D(c1) O D(c2) |

D (IF b THEN c1 ELSE ¢2)

= {(s,t). if bval b s then (s,t) € D cl else (s,t) € D c2} |
D (WHILE b DO ¢) = Ifp (W (bval b) (D ¢))

lemma W_mono: mono (W b r)
by (unfold W_def mono__def) auto

lemma D While_If:

D(WHILE b DO ¢) = D(IF b THEN c;; WHILE b DO ¢ ELSE SKIP)
proof—

let Yw = WHILE b DO c let ?f = W (bval b) (D c¢)

have D 2w = Ifp ?f by simp

also have ... = ?f (Ifp ?f) by(rule lfp_unfold [OF W_mono))
also have ... = D(IF b THEN c;;%w ELSE SKIP) by (simp add: W__def)
finally show ?thesis .

qed

Equivalence of denotational and big-step semantics:

lemma D_if big_step: (c,s) = t = (s,t) € D(c)
proof (induction rule: big_step__induct)
case WhileFualse
with D_ While_If show ?case by auto
next
case WhileTrue
show ?case unfolding D While_If using WhileTrue by auto
qed auto

abbreviation Big step :: com = com__den where
Big_step ¢ = {(s,t). (¢,8) = t}

24

lemma Big_step_if D: (s,t) € D(c) = (s,t) € Big_step c
proof (induction ¢ arbitrary: s t)
case Seq thus ?case by fastforce
next
case (While b c)
let B = Big_step (WHILE b DO c) let ?f = W (bval b) (D ¢)
have ?f ?B C B using While.IH by (auto simp: W__def)
from Ifp_lowerbound|where ?f = ?f OF this] While.prems
show ?case by auto
qed (auto split: if _splits)

theorem denotational is_big step:
(s,t) € D(¢) = ((¢,8) = 1)
by (metis D_if big_step Big_step_if D[simplified])

corollary equiv_c_iff _equal_D: (¢l ~ ¢2) <— D cl = D c2
by (simp add: denotational is_big_step[symmetric] set_eq_iff)

5.1 Continuity

definition chain :: (nat = 'a set) = bool where
chain S = (Vi. S i C S(Suc 7))

lemma chain_total: chain S — Si< Sjv Sji<Si
by (metis chain__def le__cases lift_Suc_mono__le)

definition cont :: (a set = 'b set) = bool where
cont f = (VS. chain S — f(UN n. Sn) = (UN n. f(Sn)))

lemma mono_if cont: fixes f :: ‘a set = 'b set
assumes cont f shows mono f
proof
fix a b:: 'a set assume a C b
let 2S = An::nat. if n=0 then a else b
have chain ?S using <a C b by(auto simp: chain__def)
hence f(UN n. 2S n) = (UN n. f(25 n))
using assms by (simp add: cont__def del: if image__distrib)
moreover have (UN n. S n) = b using <a C b) by (auto split: if _splits)
moreover have (UN n. f(25n)) = fa U f b by (auto split: if _splits)
ultimately show fa C f b by (metis Un_upperl)
qed

lemma chain__iterates: fixes f :: 'a set = 'a set
assumes mono f shows chain(An. (f~ n) {})

25

proof—
have (f 7" n) {} C (f 7 Suc n) {} for n
proof (induction n)
case (show ?case by simp
next
case (Suc n) thus ?case using assms by (auto simp: mono__def)
qed
thus ?thesis by (auto simp: chain__def assms)
ged

theorem Ifp_if cont:
assumes cont f shows Ifp f = (UN n. (f" n) {}) (is _ = ?U)
proof
from assms mono__if cont
have mono: (f " n) {} C (f 7 Suc n) {} for n
using funpow__decreasing [of n Suc n] by auto
show Ifp f C ?2U
proof (rule Iifp__lowerbound)
have f ?U = (UN n. (f~ Suc n){})
using chain_iterates|OF mono__if cont|OF assms]| assms
by (simp add: cont__def)

also have ... = (f70){} U ... by simp
also have ... = ?2U
using mono by auto (metis funpow__simps__right(2) funpow__swapl
o_apply)
finally show f ?U C ¢U by simp
qed
next
have (f"n){} Cpif fp Cpfor np
proof —

show ?thesis
proof (induction n)
case () show ?case by simp
next
case Suc
from monoD[OF mono__if cont[OF assms] Suc] <fp C p»
show ?case by simp
qed
qed
thus ?U C Ifp f by(auto simp: lfp__def)
qged

lemma cont_ W: cont(W b r)
by (auto simp: cont_def W__def)

26

5.2 The denotational semantics is deterministic

lemma single _valued UN__chain:
assumes chain S (\n. single_valued (S n))
shows single_valued(UN n. S n)
proof (auto simp: single _valued__def)
fix mnzyzassume (z,y) € Sm (z,2) € Sn
with chain__total|OF assms(1), of m n] assms(2)
show y = z by (auto simp: single_valued__def)
qed

lemma single_valued Ifp: fixes f :: com_den = com__den
assumes cont f A\r. single_valued 1 = single__valued (f)
shows single_valued(lfp f)
unfolding Ifp_if cont[OF assms(1)]
proof (rule single_valued_ UN__chain|OF chain__iterates| OF mono__if _cont[OF
assms(1)]]])
fix n show single_valued ((f ~" n) {})
by (induction n)(auto simp: assms(2))
qged

lemma single_valued D: single_valued (D c)
proof (induction c)
case Seq thus Zcase by(simp add: single _valued__relcomp)
next
case (While b c)
let ?f = W (bval b) (D c)
have single _valued (Ifp ?f)
proof (rule single_valued_Ifp|OF cont_ W)
show Ar. single_valued r = single_valued (?f r)
using While.IH by (force simp: single_valued__def W__def)
qed
thus ?case by simp
qed (auto simp add: single_valued__def)

end

6 Compiler for IMP

theory Compiler imports Big_Step Star
begin

27

6.1 List setup

In the following, we use the length of lists as integers instead of natural
numbers. Instead of converting nat to int explicitly, we tell Isabelle to
coerce nat automatically when necessary.

declare [[coercion__enabled)]
declare [[coercion int :: nat = int]]

Similarly, we will want to access the ith element of a list, where ¢ is an
int.

fun inth :: 'a list = int = 'a (infixl (!> 100) where
(x# zs) W i=(if i =0thenzelsexs!! (i — 1))

The only additional lemma we need about this function is indexing over
append:

lemma inth__append [simp]:

0 <i=

(zs Q ys) Il i = (if i < size xs then xs ! i else ys I (i — size xs))
by (induction xs arbitrary: i) (auto simp: algebra__simps)

We hide coercion int applied to length:

abbreviation (output)
isize xs == int (length xs)

notation isize (<size))

6.2 Instructions and Stack Machine

datatype instr =
LOADI int | LOAD vname | ADD | STORE vname
JMP int | JMPLESS int | JMPGE int
type__synonym stack = wval list
type__synonym config = int x state x stack

abbreviation hd2 zs == hd(tl xs)
abbreviation ¢2 xs == tl(tl zs)

fun iezec :: instr = config = config where
iexec instr (i,s,stk) = (case instr of
LOADI n = (i+1,s, n#stk) |
LOAD x = (i+1,s, s © # stk) |
ADD = (i+1,s, (hd2 stk + hd stk) # tI2 stk) |
STORE x = (i+1,s(z := hd stk),tl stk) |
JMP n = (i+1+n,s,stk) |
JMPLESS n = (if hd2 stk < hd stk then i+1+n else i+1,s,t2 stk) |

28

JMPGE n = (if hd2 stk >= hd stk then i+14n else i+1,s,t2 stk))

definition
execl :: instr list = config = config = bool
«(/EF(—=/_))[59,0,59] 60)
where
Pkc— =
(Fi s stk. ¢ = (i,8,stk) N\ ¢’ = iexzec(Pi) (i,s,stk) A 0 < i A\ i < size P)

lemma ezecll [intro, code pred_intro|:
¢’ = dexec (P9 (i,s,stk) = 0 < i = i < size P
= P+ (i,s,stk) — ¢’

by (simp add: execl__def)

abbreviation

exec :: instr list = config = config = bool («(_/ F (_ —x/ _)) 50)
where

exec P = star (execl P)

lemmas ezec_induct = star.induct [of execl P, split_format(complete)]
code__pred exec! by (metis execl__def)

values
{(i;map t ["x")"y"|,stk) | i t stk.
[LOAD "y, STORE "z"] +
(0, <"z" =3, "y":= 4> []) == (i,t,sth)}

6.3 Verification infrastructure

Below we need to argue about the execution of code that is embedded in
larger programs. For this purpose we show that execution is preserved by
appending code to the left or right of a program.

lemma dexec_shift [simp]:
((n+i's',stk") = iexec x (n+i,s,stk)) = ((i',s,stk") = iexec x (i,s,stk))
by (auto split:instr.split)

lemma ezecl appendR: P+ ¢ — ¢/ = PQP'} ¢ — ¢’
by (auto simp: execl def)

lemma exec_appendR: P+ ¢ —x ¢/ = PQP'F ¢ —x ¢’
by (induction rule: star.induct) (fastforce intro: star.step execl__appendR)+

lemma execl_appendL:

29

fixes i i’ :: int

shows

Pt (i,s,stk) — (i',s',stk’) =

P'@Q Pt (size(P')+1i,s,stk) — (size(P')+i’,s',stk’)
unfolding execl def

by (auto simp del: iexec.simps)

lemma exec_appendL:
fixes i i’ :: int
shows
P+ (i,s,stk) —* (i',s',stk’) =
P’ @ Pt (size(P')+i,s,stk) —x (size(P')+i’,s stk’)
by (induction rule: exec__induct) (blast intro: star.step execl__appendL)+

Now we specialise the above lemmas to enable automatic proofs of P F
¢ —* ¢’ where P is a mixture of concrete instructions and pieces of code
that we already know how they execute (by induction), combined by @ and
#. Backward jumps are not supported. The details should be skipped on a
first reading.

If we have just executed the first instruction of the program, drop it:

lemma exec_Cons__1 [introl:
P+ (0,s,stk) —x (j,t,stk’) =
instr#P & (1,s,stk) —* (147,t,stk’)
by (drule exec__appendL|where P'=[instr]]) simp

lemma ezec__appendL__if [intro]:
fixes i i’ j :: int
shows
size P/ <=1
= P+ (i — size P’ s,stk) —x* (j,s',stk’)
= i'=size P/ +j
= P'Q Pt (i,s,stk) —x* (i',s',stk”)
by (drule exec__appendL[where P'=P’]) simp

Split the execution of a compound program up into the execution of its
parts:

lemma ezec append__translintro):
fixes i’ i" j" :: int
shows

P+ (0,s,stk) == (i',s',stk") =

size P < i/ =

P’ (i' — size P,s' stk") —x (i",s" stk") =
j" = size P + 1"

—

30

P @ P'F (0,s,stk) —x (j",s",stk”)
by (metis star_trans[OF exec__appendR exec__appendL__if])

declare Let_def[simp]

6.4 Compilation

fun acomp :: aexp = instr list where

acomp (N n) = [LOADI n] |

acomp (V z) = [LOAD «z] |

acomp (Plus al a2) = acomp al Q acomp a2 Q [ADD]

lemma acomp__correct[introl:
acomp a b (0,s,stk) —x (size(acomp a),s,aval a s#stk)
by (induction a arbitrary: stk) fastforce+

fun bcomp :: bexp = bool = int = instr list where
bcomp (Bc v) fn = (if v=f then [JMP n| else []) |
bcomp (Not b) fn = bcomp b (—f) n |
bcomp (And b1 b2) fn =
(let ¢b2 = becomp b2 f n;
m = if f then size cb2 else (size cb2)+n;
cbl = bcomp b1 False m
in cbl @ ¢b2) |
bcomp (Less al a2) fn =
acomp al @ acomp a2 Q (if f then [JMPLESS n] else [JMPGE n))

value
becomp (And (Less (V "2y (V "y")) (Not(Less (V "u") (V "v"))))
False 3

lemma bcomp__correct|intro:
fixes n :: int
shows
0 <n—
bcomp b fn F
(0,s,stk) —x (size(bcomp b fn) + (if f = bval b s then n else 0),s,stk)
proof (induction b arbitrary: f n)
case Not
from Not(1)where f="f] Not(2) show ?case by fastforce
next
case (And b1 b2)
from And(1)[of if f then size(bcomp b2 f n) else size(bcomp b2 fn) + n

31

False]
And(2)[of n f] And(3)
show ?case by fastforce
qed fastforce+

fun ccomp :: com = instr list where

ccomp SKIP =[] |

ccomp (z = a) = acomp a Q [STORE x| |

ccomp (c133¢2) = ccomp ¢1 @ ccomp ¢y |

ccomp (IF b THEN c¢; ELSE c3) =
(let ccy = ccomp c1; cca = ccomp ca; c¢b = becomp b False (size cc; + 1)
in cb Q ccy @ JMP (size cco) # cca) |

ccomp (WHILE b DO ¢) =

(let cc = ccomp ¢; cb = bcomp b False (size cc + 1)
in cb @ cc @Q [JMP (—(size cb + size cc + 1))])

value ccomp
(IF Less (V "u')y (N 1) THEN "u" ::= Plus (V "u"") (N 1)
ELSE """ ==V "u")

value ccomp (WHILE Less (V "u") (N 1) DO ("u" ::= Plus (V "u") (N
1)))

6.5 Preservation of semantics

lemma ccomp_ bigstep:
(¢,s) = t = ccomp c = (0,s,stk) —x* (size(ccomp c),t,stk)
proof (induction arbitrary: stk rule: big_step__induct)
case (Assign = a s)
show Zcase by (fastforce simp:fun__upd_def cong: if _cong)
next
case (Seq cl s1 s2 c2 s3)
let %cc1 = ccomp c1 let ?cc2 = ccomp c2
have ?ccl @Q %cc2 b (0,s1,stk) —x (size Zecl ,s2,stk)
using Seq.IH (1) by fastforce
moreover
have ?cc1 @Q %cc2 & (size Zccl,s2,stk) —x (size(Zccl Q Zcc2),s3,stk)
using Seq.IH(2) by fastforce
ultimately show ?case by simp (blast intro: star_trans)
next
case (WhileTrue b s1 ¢ s2 s3)
let ?cc = ccomp ¢
let ?cb = bcomp b False (size %cc + 1)

32

let ?cw = ccomp(WHILE b DO c)

have ?cw - (0,s1,stk) —x (size cb,s1,stk)
using <bval b s1» by fastforce

moreover

have ?cw F (size ?cb,sl,stk) —* (size ?cb + size ?cc,s2,stk)
using WhileTrue.IH(1) by fastforce

moreover

have ?cw F (size 7cb + size ?cc,s2,stk) —x (0,s2,stk)
by fastforce

moreover

have ?cw - (0,s2,stk) —x* (size ?cw,s3,stk) by(rule WhileTrue.IH(2))

ultimately show ?case by(blast intro: star_trans)

qed fastforce+

end

7 Compiler Correctness, Reverse Direction

theory Compiler?2
imports Compiler
begin

The preservation of the source code semantics is already shown in the
parent theory Compiler. This here shows the second direction.

7.1 Definitions
Execution in n steps for simpler induction

primrec
exec_mn :: instr list = config = nat = config = bool
(«/F (. —="_/_)|[650,1000,55] 55)

where
PEtec—=70c = (c"=¢) |
Ptec—"(Sucn)c"=@3c (PFc—=c)ANPEC —="nc"

The possible successor PCs of an instruction at position n

definition isuccs :: instr = int = int set where
isuccs i n = (case i of
JMP j = {n+ 1 + j} |
JMPLESS j = {n+1+jn+ 1} |
JMPGE j = {n+1+j,n+ 1} |
= {n+1})

33

The possible successors PCs of an instruction list

definition succs :: instr list = int = int set where
suces Pmo= {s. Jizint. 0 < i N i < size P N\ s € isuces (P!i) (n+1)}

Possible exit PCs of a program

definition exits :: instr list = int set where
exits P = succs P 0 — {0..< size P}

7.2 Basic properties of exec n

lemma exec_n__exec:
Prc—"ne = Pt c—xc
by (induct n arbitrary: c¢) (auto intro: star.step)

lemma exec_0 [intro]: P+ ¢ — 70 ¢ by simp

lemma exec Suc:
[PFc—=c¢s P —-ne"] = PFc¢c—"(Sucn)c”
by (fastforce simp del: split_paired_ Ex)

lemma ezec exec n:
Prc¢—xc' = 3In.Pkc—"nc
by (induct rule: star.induct) (auto intro: exec_Suc)

lemma exec_eq exec n:
(PFc—*xc¢)=(3n Pkc—"nc)
by (blast intro: exec__exec_n exec_n__exec)

lemma ezec_n_ Nil [simp]:
[Fe—=Tked=("=cNk=0)
by (induct k) (auto simp: execl__def)

lemma ezxecl _exec_n [introl]:
Pre—c¢ = PFc—"1¢
by (cases ¢') simp

7.3 Concrete symbolic execution steps

lemma exec_n_ step:
n#n =
P+ (n,stk,s) =k (n'stk’;s") =
(Fe. PE (nysth,s) = ¢ NPt c—(k—1)(nstk’s) N0 < k)
by (cases k) auto

34

lemma ezecl end:
size P<=fstc= - Pt c— ¢
by (auto simp: execl__def)

lemma ezec_n_end:
size P <= (n:uint) =
P (n,s,stk) — "k (n',s,stk’) = (n" = n A stk’=stk N s'=s N k =0)
by (cases k) (auto simp: execl _end)

lemmas exec_n_simps = exec_mn_step exec_mn__end

7.4 Basic properties of succs

lemma succs _simps [simp]:
suces [ADD) n = {n + 1}
succs [LOADI vl n = {n + 1}
suces [LOAD z] n ={n + 1}
suces [STORE z] n = {n + 1}
suces [JMP i) n={n + 1 + i}
suces [JMPGE il n={n+ 1+ i, n+ 1}
suces [JMPLESS il n={n+ 1+ i, n+ 1}
by (auto simp: succs__def isuccs__def)

lemma succs_empty [iff]: suces [] n = {}
by (simp add: succs__def)

lemma succs Cons:
suces (x#xs) n = isuccs x n U suces zs (1+n) (is _ = 2z U ?xs)
proof
let Zisuccs = Ap P nizint. 0 < i A i < size P A\ p € isuces (Pl7) (n+1)
have p € %2 U %zs if assm: p € succs (z#xs) n for p
proof —
from assm obtain i::int where isuccs: Zisuccs p (z#xs) n i
unfolding succs def by auto
show ?thesis
proof cases
assume i = () with isuccs show ¢thesis by simp
next
assume ¢ # 0
with isuccs
have %isuccs p xs (1+n) (i — 1) by auto
hence p € ?zs unfolding succs def by blast
thus ?thesis ..
qged

35

qed
thus suces (z#xs) n C %z U %zs ..

have p € succs (z#xs) n if assm: p € 2z V p € Zzs for p
proof —
from assm show ?thesis
proof
assume p € ?r thus ?thesis by (fastforce simp: succs_def)
next
assume p € 7xs
then obtain ¢ where ?isuccs p xs (1+n) i
unfolding succs_def by auto
hence ?%isuccs p (z#xs) n (1+1)
by (simp add: algebra__simps)
thus ?thesis unfolding succs def by blast
qed
qed
thus %z U %zs C suces (z#xs) n by blast
qged

lemma succs iexecl:
assumes ¢’ = iexec (Pi) (i,s,stk) 0 < i i < size P
shows fst ¢’ € succs P 0
using assms by (auto simp: succs__def isuccs__def split: instr.split)

lemma succs _shift:
(p — n € suces P 0) = (p € suces P n)
by (fastforce simp: succs__def isuccs__def split: instr.split)

lemma inj_op_ plus [simp]:
inj ((+) (i::int))
by (metis add_minus__cancel inj _on__inversel)

lemma succs__set__shift [simp]:
(+) i “ suces xs 0 = suces xs i
by (force simp: succs_shift [where n=i, symmetric| intro: set_eql)

lemma succs__append [simp]:

suces (s Q ys) n = succs xs n U suces ys (n + size xs)
by (induct xs arbitrary: n) (auto simp: succs_Cons algebra__simps)

lemma exits _append [simp]:
exits (zs Q ys) = exits xs U ((+) (size xs)) * exits ys —

36

{0..<size xs + size ys}
by (auto simp: exits__def image__set_diff)

lemma exits_single:
exits [z] = isuces © 0 — {0}
by (auto simp: exits_def succs__def)

lemma ezits Cons:
exits (¢ # xs) = (isuces © 0 — {0}) U ((+) 1) © exits xs —
{0..<1 + size xs}
using exits_append [of [z] zs]
by (simp add: exits_single)

lemma ezits _empty [iff]: exits [| = {} by (simp add: exits_def)

lemma ezits _simps [simp):
exits [ADD] = {1}
exits [LOADI v] = {1}
exits [LOAD z] = {1}
exits [STORE z] = {1}
i # —1 = exits [JMP i] = {1 + i}
i # —1 = exits [JMPGE i| = {1 + i, 1}
i # —1 = exits [JMPLESS i) = {1 + i, 1}
by (auto simp: exits_def)

lemma acomp__succs [simp]:
suces (acomp a) n = {n + 1 .. n + size (acomp a)}
by (induct a arbitrary: n) auto

lemma acomp__exits [simp):
exits (acomp a) = {size (acomp a)}
proof —
have Suc 0 < length (acomp a)
by (induct a) auto
then show ?thesis
by (auto simp add: exits__def)
qged

lemma bcomp__succs:
0 <i—
suces (bcomp b fi) n C {n .. n + size (bcomp b f i)}
U {n + ¢ + size (bcomp b f i)}
proof (induction b arbitrary: fi n)
case (And b1 b2)

37

from And.prems
show “case
by (cases f)
(auto dest: And.IH(1) [THEN subsetD, rotated)]
And.IH(2) [THEN subsetD, rotated))
qged auto

lemmas bcomp__succsD [dest!] = bcomp__succs [THEN subsetD, rotated]

lemma bcomp _exits:
fixes 7 :: int
shows
0<i—
exits (bcomp b f i) C {size (bcomp b f i), ¢ + size (bcomp b f i)}
by (auto simp: exits_def)

lemma bcomp__ezitsD [dest!]:
p € exits (bcomp b fi) —= 0 < i =
p = size (bcomp b fi) V p =i+ size (bcomp b f 1)
using bcomp__exits by auto

lemma ccomp_ succs:

suces (ccomp ¢) n C {n..n + size (ccomp c)}
proof (induction ¢ arbitrary: n)

case SKIP thus ?case by simp
next

case Assign thus Zcase by simp
next

case (Seq cl ¢2)

from Seq.prems

show ?case

by (fastforce dest: Seq.IH [THEN subsetD))

next

case (If b c1 c2)

from If.prems

show ?case

by (auto dest!: If IH [THEN subsetD] simp: isuccs__def succs_Cons)

next

case (While b c)

from While.prems

show ?case by (auto dest!: While.IH [THEN subsetD])
ged

lemma ccomp__exits:

38

exits (ccomp c¢) C {size (ccomp ¢)}
using ccomp__succs [of ¢ 0] by (auto simp: exits__def)

lemma ccomp_ezitsD [dest!]:
p € exits (ccomp ¢) = p = size (ccomp c)
using ccomp__exits by auto

7.5 Splitting up machine executions

lemma execl split:
fixes i j :: int
shows
P@c@P't (size P+ i,8) — (j,8) = 0 <i= i< size c =
¢tk (i,8) = (j — size P, s’
by (auto split: instr.splits simp: execl _def)

lemma exec_n_ split:
fixes i j :: int
assumes P Q ¢ @ P'+ (size P + 4, s) = n (4, ')
0 <ii<sizec
j & {size P ..< size P + size c}
shows 35" (i":int) k m.
ck (i, 8) =7k (i, s") A
i’ € exits ¢ A
P@c¢@QP't (size P+ i, s") ="m (4, s') A
n=*k+m
using assms proof (induction n arbitrary: i j s)
case (
thus ?case by simp
next
case (Suc n)
have i: 0 < i i < size ¢ by fact+
from Suc.prems
have j: = (size P < j A j < size P + size ¢) by simp
from Suc.prems
obtain i0 s0 where
step: P @ ¢ @ P'+ (size P + i, s) — (i0,s0) and
rest: P @Q ¢ @ P'+ (i0,s0) —"n (4, s')
by clarsimp

from step 4
have c: ¢ (i,s) — (i0 — size P, s0) by (rule execl__split)

have i0 = size P + (i0 — size P) by simp

39

then obtain j0::int where j0: i0 = size P + j0 ..
note split_paired_FEx [simp del]

have Zcase if assm: jO € {0 ..< size ¢}
proof —
from assm jO j rest ¢ show ?case
by (fastforce dest!: Suc.IH intro!: exec_Suc)
qed
moreover
have ?case if assm: jO ¢ {0 ..< size c}
proof —
from c jO have j0 € succs ¢ 0
by (auto dest: succs_iexecl simp: execl__def simp del: iexec.simps)
with assm have j0 € exits ¢ by (simp add: exits def)
with c jO rest show ?case by fastforce
qed
ultimately
show ?case by cases
ged

lemma exec_n_ drop_ right:
fixes j :: int
assumes ¢ @ P'F (0, s) = "n (j, s') j ¢ {0..<size ¢}
shows Js” i’ k m.
(ifc=1 thens"=sANi'=0ANk=20
else c (0, s) =k (i, s") A
i’ € exits ¢) A
c@QP'F (i, ") —="m (4, s) A
n==~kk+m
using assms
by (cases ¢ = [])
(auto dest: exec_n__split [where P=[], simplified])

Dropping the left context of a potentially incomplete execution of c.

lemma execl drop_left:

fixes i n :: int

assumes P1 Q P2 & (i, s, stk) — (n, s', stk’) and size P1 < i

shows P2 F (i — size P1, s, stk) — (n — size P1, s', stk')
proof —

have i = size P1 + (i — size P1) by simp

then obtain ¢’ :: int where i = size P1 + i’ ..

moreover

have n = size P1 + (n — size P1) by simp

40

then obtain n’ :: int where n = size P1 + n’ ..
ultimately
show ?thesis using assms
by (clarsimp simp: execl _def simp del: iexec.simps)
qed

lemma exec_n_ drop_left:
fixes i n :: int
assumes P Q@ P+ (i, s, stk) =k (n, s/, stk’)
size P < i exits P' C {0..}
shows P'F (i — size P, s, stk) =k (n — size P, s/, stk’)
using assms proof (induction k arbitrary: i s stk)
case 0 thus ?case by simp
next
case (Suc k)
from Suc.prems
obtain i’ s" stk’ where
step: P @ P'F (i, s, stk) — (i', 8", stk’) and
rest: P Q P'F (i, s”, stk") =7k (n, s', stk’)
by auto
from step <size P < 0»
have x: P'F (i — size P, s, stk) — (i’ — size P, s" stk'")
by (rule execl__drop_ left)
then have i’ — size P € succs P’ 0
by (fastforce dest!: succs iexecl simp: execl__def simp del: iexec.simps)
with <ezits P' C {0..}»
have size P < i’ by (auto simp: exits_def)
from rest this <exits P' C {0..}»
have P't (i’ — size P, s”, stk") ="k (n — size P, s', stk’)
by (rule Suc.IH)
with * show ?case by auto
qged

lemmas exec_n_drop_ Cons =
exec_n__drop_left [where P=[instr|, simplified] for instr

definition
closed P «— exits P C {size P}

lemma ccomp__closed [simp, intro!]: closed (ccomp c)
using ccomp__exits by (auto simp: closed__def)

lemma acomp__closed [simp, intro!]: closed (acomp c)
by (simp add: closed__def)

41

lemma exec_n_ split_full:
fixes j :: int
assumes exec: P Q P'F (0,s,stk) =k (j, s/, stk”)
assumes P: size P < j
assumes closed: closed P
assumes ezits: exits P’ C {0..}
shows 3 k1 k2 s stk". P+ (0,s,stk) — k1 (size P, s", stk”) A
P'+ (0,s"stk") —7k2 (j — size P, s', stk’)
proof (cases P)
case Nil with exec
show ¢thesis by fastforce
next
case Cons
hence 0 < size P by simp
with exec P closed
obtain kI k2 s" stk’ where
1: P+ (0,s,stk) — k1 (size P, s, stk”) and
2: PQ Pt (size P,s" stk") —7k2 (4, s', stk’)
by (auto dest!: exec_n_ split [where P=[] and i=0, simplified]
simp: closed__def)
moreover
have j = size P + (j — size P) by simp
then obtain j0 :: int where j = size P + jO ..
ultimately
show ?thesis using exits
by (fastforce dest: exec_n__drop__left)
qged

7.6 Correctness theorem

lemma acomp_neq Nil [simp]:

acomp a # ||
by (induct a) auto

lemma acomp__exec_n [dest!]:
acomp a t (0,s,stk) — "n (size (acomp a),s’ stk’) =
s' = s A stk! = aval a s# stk
proof (induction a arbitrary: n s’ stk stk’)
case (Plus al a2)
let ?sz = size (acomp al) + (size (acomp a2) + 1)
from Plus.prems
have acomp al @Q acomp a2 Q [ADD] F (0,s,stk) — n (?sz, s', stk’)
by (simp add: algebra__simps)

42

then obtain ni si1 stkl n2 s2 stk2 n3 where
acomp al + (0,s,stk) — nl (size (acomp al), s1, stkl)
acomp a2 = (0,s1,stkl) — n2 (size (acomp a2), s2, stk2)
[ADD] & (0,s2,stk2) — "n3 (1, s', stk’)
by (auto dest!: exec_n__split_full)

thus ?case by (fastforce dest: Plus.IH simp: exec_n__simps execl _def)
qed (auto simp: exec_n__simps execl__def)

lemma bcomp__ split:
fixes i j :: int
assumes bcomp b fi @ P'+ (0, s, stk) = "n (4, s, stk’)
j & {0..<size (bcomp b fi)} 0 < i
shows 35" stk (i":int) k m.
bcomp b fit (0, s, stk) =k (i', s", stk") A
(7' = size (bcomp b fi) V i’ =i + size (bcomp b fi)) N
bcomp b fi @ P'F (i, 8", stk") —"m (4, s', stk’) A
n==~kk+m
using assms by (cases bcomp b fi = []) (fastforce dest!: exec_n__drop_right)+

lemma bcomp__exec_n [dest]:
fixes i j :: int
assumes bcomp b fj+ (0, s, stk) = "n (i, s', stk’)
size (bcomp b f7) <i0 <j
shows i = size(bcomp b f j) + (if f = bval b s then j else 0) A
s' = s A stk! = stk
using assms proof (induction b arbitrary: fjin s’ stk’)
case Bc thus ?case
by (simp split: if _split_asm add: exec_n_ simps execl_def)
next
case (Not b)
from Not.prems show ?case
by (fastforce dest!: Not.IH)
next

case (And b1 b2)

let 262 = bcomp b2 fj

let ?m = if f then size ?b2 else size ?b2 + j

let ?b1 = bcomp b1 False ?m

have j: size (bcomp (And b1 b2) fj) < i 0 < j by fact+

from And.prems

43

obtain s” stk’ and i"::int and k m where
b1: 2b1 + (0, s, stk) =k (i', s, stk”)
i' = size 2b1 V i’ = ?m + size ?b1 and
b2: 7b2 F (i’ — size 2b1, s", stk’) —"m (i — size ?b1, s', stk’)
by (auto dest!: bcomp__split dest: exec_n__drop_left)
from b1 j
have i’ = size ?b1 + (if —bval b1 s then ?m else 0) A " = s A stk =
stk
by (auto dest!: And.IH)
with b2 j
show ?case
by (fastforce dest!: And.IH simp: exec_n__end split: if _split_asm)
next
case Less
thus Zcase by (auto dest!: exec_n__split_full simp: exec_n__simps execl__def)

qged

lemma ccomp__empty [elim!]:
ccomp ¢ =[] = (¢,8) = s
by (induct ¢) auto

declare assign__simp [simp]

lemma ccomp_exec_n:
ccomp ¢ b (0,s,stk) — n (size(ccomp c),t,stk’)
= (¢,8) = t N stk'=stk
proof (induction ¢ arbitrary: s t stk stk’ n)
case SKIP
thus “case by auto
next
case (Assign = a)
thus ?case
by simp (fastforce dest!: exec_n__split_full simp: exec_n__simps execl__def)
next
case (Seq cl ¢2)
thus Zcase by (fastforce dest!: exec_n__split_ full)
next
case (If b c1 c2)
note If.IH [dest!]

let ?if = IF b THEN c1 ELSE c2

let ?cs = ccomp ?if
let ?bcomp = bcomp b False (size (ccomp c1) + 1)

44

from «%cs b= (0,s,stk) — "n (size Zes,t,stk’))
obtain i’ :: int and k m s” stk” where
cs: Zes B (il,s" stk") — Tm (size %cs,t,stk’) and
Zbcomp + (0,s,stk) — "k (i’, 8", stk”)
i = size 2bcomp V i’ = size ?bcomp + size (ccomp cl) + 1
by (auto dest!: bcomp__split)

hence "
s'"=s stk" = stk
i" = (if bval b s then size Zbcomp else size ?bcomp+size(ccomp c1)+1)
by auto

with cs have cs”.
ccomp c¢1QJMP (size (ccomp c2))#ccomp c2 +
(if bval b s then 0 else size (ccomp c1)+1, s, stk) — m
(1 + size (ccomp cl) + size (ccomp ¢2), t, stk’)
by (fastforce dest: exec_n__drop_left simp: exits_Cons isuccs__def alge-
bra__simps)

show “case
proof (cases bval b s)
case True with cs’
show ?thesis
by simp
(fastforce dest: exec_n__drop_ right
split: if _split_asm
simp: exec_n_ simps execl _def)
next
case Fualse with cs’
show ?thesis
by (auto dest!: exec_n_drop_Cons exec_n_ drop_left
sitmp: exits_Cons isuccs__def)
qed

next

case (While b c)

from While.prems

show ?case

proof (induction n arbitrary: s rule: nat_less_induct)
case (1 n)

have ?case if assm: — bval b s
proof —

45

from assm 1.prems
show ?Zcase
by simp (fastforce dest!: bcomp__split simp: exec_n__simps)

qged
moreover
have ?Zcase if b: bval b s
proof —

let ?c0 = WHILE b DO ¢

let ?cs = ccomp ?c0

let ?bs = bcomp b False (size (ccomp ¢) + 1)

let ?jmp = [JMP (—((size ?bs + size (ccomp c) + 1)))]

from 1.prems b

obtain k& where
cs: Pes b (size 7bs, s, stk) — Tk (size Pes, t, stk’) and
ki k<n
by (fastforce dest!: bcomp__split)

show “case
proof cases
assume ccomp ¢ = ||
with cs k&
obtain m where
Zcs B (0,s,stk) — "m (size (ccomp ?¢0), t, stk’)
m<n
by (auto simp: exec_n__step [where k=Fk| execl__def)
with 1.1H
show ?case by blast
next
assume ccomp ¢ # ||
with cs
obtain m m’ s” stk” where
c: ccomp ¢ b (0, s, stk) —"m' (size (ccomp c), s”, stk'’) and
rest: Zcs b (size ?bs + size (ccomp c¢), s", stk'') —"m
(size Pcs, t, stk’) and
m: k=m + m’
by (auto dest: exec_n__split [where i=0, simplified])
from c
have (c¢,s) = s’ and stk: stk” = stk
by (auto dest!: While.IH)
moreover
from rest m k stk
obtain £’ where
Zes B (0, s, stk) — k' (size %cs, t, stk')

46

k"< n
by (auto simp: exec_n_step [where k=m] execl _def)
with 1.7H
have (?¢0, s") = t A stk’ = stk by blast
ultimately
show ?case using b by blast
qed
qged
ultimately show ?case by cases
qed
qged

theorem ccomp__exec:
ccomp ¢ = (0,s,stk) —= (size(ccomp c),t,stk’) = (c,s) =t
by (auto dest: exec__exec_n ccomp__exec_n)

corollary ccomp_sound:
ccomp ¢ F (0,s,stk) —* (size(ccomp c),t,stk) <— (c,8) =t
by (blast intro!: ccomp _exec ccomp__bigstep)

end

8 A Typed Language

theory Types imports Star Complex Main begin

We build on Complex_Main instead of Main to access the real numbers.

8.1 Arithmetic Expressions

datatype val = Iv int | Rv real

type__synonym vname = string
type__synonym state = vname = valdatatype aexp = Ic int | Rc real |
V vname | Plus aexp aexp

inductive taval :: aexp = state = wval = bool where
taval (Ic i) s (Iv i) |

taval (Re r) s (Rvr) |

taval (V) s (s z) |

taval al s (Iv i1) = taval a2 s (Iv i2)

= taval (Plus al a?2) s (Iv(il+i2)) |

taval al s (Rv r1) = taval a2 s (Rv r2)

= taval (Plus al a2) s (Rv(r1+r2))

47

inductive__cases [elim!]:
taval (Ic) s v taval (Rc i) s v
taval (V) swv
taval (Plus al a2) s v

8.2 Boolean Expressions

datatype bexp = Bc bool | Not bexp | And bexp bexp | Less aexp aexp

inductive tbval :: bexp = state = bool = bool where

tbval (Bc v) s v |

tbval b s bv = tbval (Not b) s (= bv) |

tbval b1 s bvl = tbval b2 s bv2 = tbval (And b1 b2) s (bvl & bv2) |
taval al s (Iv i1) = taval a2 s (v i2) = tbval (Less al a2) s (il < i2)
|

taval a1 s (Rv r1) = taval a2 s (Rv r2) = tbval (Less al a2) s (rl <
r2)

8.3 Syntax of Commands

datatype
com = SKIP
| Assign vname aexp («_ == _> [1000, 61] 61)
| Seq com com (<3 > [60,61] 60)
| If bexp com com (<IF_ THEN _ELSE » [0, 0, 61] 61)
| While bexp com («<WHILE _ DO » |0, 61] 61)

8.4 Small-Step Semantics of Commands

inductive

small_step :: (com x state) = (com x state) = bool (infix <—> 55)
where
Assign: taval a s v = (z == a, s) = (SKIP, s(z := v)) |

Seql: (SKIP;;c,s) — (c,s) |
Seq2: (cl,s) = (c1's") = (cl3;¢2,8) — (cl;5¢2,8") |

IfTrue: tbval b s True = (IF b THEN c1 ELSE c2,s) — (c1,s) |
IfFalse: tbval b s False = (IF b THEN c1 ELSE c2,s) — (c2,s) |

While: (WHILE b DO ¢,s) — (IF b THEN c¢;; WHILE b DO ¢ ELSE
SKIP,s)

lemmas small_step_induct = small__step.induct[split__format(complete)]

48

8.5 The Type System
datatype ty = Ity | Rty

type__synonym tyenv = vname = ty

inductive atyping :: tyenv = aexp = ty = bool
(((_/ B/ (/) [50,0,50] 50)
where
Ic_ ty: Tk Ici: Ity |
Re_ty: T'F Rer: Rty |
V ity T'HVaz:T x|
Plus ty:TFal :7=—T4Fa2: 7= TF Plusal a2 : 71

declare atyping.intros [intro!]
inductive__cases [elim!]:
'rVx:7rIkFIci:7I'F Rer:7D ¢ Plusal a2 : 7

[l

Warning: the notation leads to syntactic ambiguities, i.e. multiple
parse trees, because “:” also stands for set membership. In most situations
Isabelle’s type system will reject all but one parse tree, but will still inform

you of the potential ambiguity.

inductive btyping :: tyenv = bexp = bool (infix <> 50)
where

B ty:T'F Bew |

Not ty:T'+b=T1F Not b |

And_ty: TH bl = TF b2 = TF And b1 b2 |

Less ty:T'Fal :7=TF a2 :7 =T+t Less al a2

declare btyping.intros [introl
inductive__cases [elim!]: I' - Not b I' = And b1 b2 T" = Less al a2

inductive ctyping :: tyenv = com = bool (infix <> 50) where
Skip_ty: T' = SKIP |

Assign_ ty:T'Fa:T(z) =T F 2z = a |

Seq ty:THcl =TFc2=TFk cl;;c2|

If ty TFb=TFcl =T1TFc2=TFIFbTHEN cl ELSE c2 |
While ty: THb=—TFc=TF WHILE b DO ¢

declare ctyping.intros [intro!]

inductive__cases [elim!]:
I'Fzxzu=a 'tk cl;;c2
I'IF b THEN c1 ELSE c2
I' = WHILE b DO ¢

49

8.6 Well-typed Programs Do Not Get Stuck

fun type :: val = ty where
type (Iv i) = Ity |
type (Rv r) = Rty

lemma type eq Ity[simp]: type v = Ity +— (Fi. v = Tv Q)
by (cases v) simp__all

lemma type eq Rty[simp|: type v = Rty «— (Ir. v = Rur)
by (cases v) simp__all

definition styping :: tyenv = state = bool (infix > 50)
where ' F s «— (Vz. type (s z) =T x)

lemma apreservation:

I'Fa:7= tavala sv=—=T1F s = typev =7
apply (induction arbitrary: v rule: atyping.induct)
apply (fastforce simp: styping def)+
done

lemma aprogress: ' a: 7= T'F s = Jwv. taval a s v
proof (induction rule: atyping.induct)
case (Plus_ty I' al t a2)
then obtain v! v2 where v: taval al s v1 taval a2 s v2 by blast
show ?Zcase
proof (cases vl)
case [v
with Plus ty v show ?thesis
by (fastforce intro: taval.intros(4) dest!: apreservation)
next
case Rv
with Plus ty v show ?thesis
by (fastforce intro: taval.intros(5) dest!: apreservation)
qed
qed (auto intro: taval.intros)

lemma bprogress: ' b = I' F s = Jwv. thval b s v
proof (induction rule: btyping.induct)
case (Less ty I al ta2)
then obtain v v2 where v: taval al s vI taval a2 s v2
by (metis aprogress)
show ?case
proof (cases v1)

50

case [v
with Less ty v show ?thesis
by (fastforce intro!: thval.intros(4) dest!:apreservation)
next
case Rv
with Less ty v show ?thesis
by (fastforce introl: tbval.intros(5) dest!:apreservation)
qed
qed (auto intro: tbval.intros)

theorem progress:
'te=T*Fs= c# SKIP = Jc¢s’ (¢,s) — cs’
proof (induction rule: ctyping.induct)
case Skip_ty thus ?case by simp
next
case Assign_ty
thus Zcase by (metis Assign aprogress)
next
case Seq ty thus ?case by simp (metis Seql Seq2)
next
case (If ty T b cl c2)
then obtain bv where tbval b s bv by (metis bprogress)
show ?case
proof (cases bv)
assume bHv
with <tbval b s bvy show ?Zcase by simp (metis IfTrue)
next
assume —bv
with <tbval b s bv> show Zcase by simp (metis IfFalse)
qed
next
case While_ty show ?Zcase by (metis While)
ged

theorem styping preservation:
(¢,s) = (¢/s) =The=TFs=TFJ
proof (induction rule: small_step__induct)
case Assign thus Zcase
by (auto simp: styping_def) (metis Assign(1,3) apreservation)
qed auto

theorem ctyping preservation:

(¢,8) = (¢s)) =TFe¢e=TF¢
by (induct rule: small_step__induct) (auto simp: ctyping.intros)

o1

abbreviation small steps :: com * state = com * state = bool (infix
(—x> 55)
where © —x y == star small_step x y

theorem type sound:
(¢,s) =* (c's)) =TFc¢c=TFs= ¢ # SKIP
= Jes”. (¢),8) — cs”

apply (induction rule:star_induct)

apply (metis progress)

by (metis styping _preservation ctyping__preservation)

end

8.7 Type Variables
theory Poly Types imports Types begin

datatype ty = Ity | Rty | TV nat
Everything else remains the same.

type__synonym tyenv = vname = ty

inductive atyping :: tyenv = aexp = ty = bool
(«(1_/ Fp/ (/) [50,0,50] 50)

where

Dkplei: Ity |

I'tp Rer: Rty |

F'Fp Va:T o

I'tpal :7=Ttrpa2:7=TFpPlusal a2 : 7

inductive btyping :: tyenv = bexp = bool (infix -py> 50)
where

I'tp Bew |

F'kpb=Ttp Notb |

Pkpbl = THkpb2 = T kp And b1 b2 |

I'tpal :7=TtFpa2:7 =T tp Less al a2

inductive ctyping :: tyenv = com = bool (infix <-p) 50) where

I' Fp SKIP |

F'kpa:T(z) =TkFpz:u=al

Pkpel =T Fkpc2 =TkFpcl;;e2 |

Pkpb=TkFpcl = Ttpc2 = TtplIFbTHEN cl ELSE ¢2 |
I'tpb=TFpc=TtFp WHILE b DO ¢

52

fun type :: val = ty where
type (Iv i) = Ity |
type (Rv r) = Rty

definition styping :: tyenv = state = bool (infix Fp» 50)
where ' Fp s «— (Vz. type (sz) =T x)

fun tsubst :: (nat = ty) = ty = ty where
tsubst S (TV n) = S n |
tsubst St =t

8.8 Typing is Preserved by Substitution

lemma subst _atyping: E Fp a:t = tsubst S o EFp a : tsubst St
apply (induction rule: atyping.induct)

apply(auto intro: atyping.intros)

done

lemma subst_btyping: E Fp (b::bexp) = tsubst S o E Fp b
apply (induction rule: btyping.induct)

apply(auto intro: btyping.intros)

apply(drule subst__atyping[where S=S])

apply(drule subst_atyping|[where S=5])

apply(simp add: o__def btyping.intros)

done

lemma subst_ ctyping: E Fp (c::com) = tsubst S o E Fp ¢
apply (induction rule: ctyping.induct)

apply(auto intro: ctyping.intros)

apply(drule subst_atyping|[where S=5))

apply(simp add: o__def ctyping.intros)

apply(drule subst_btyping[where S=5])

apply(simp add: o__def ctyping.intros)

apply(drule subst_btyping[where S=5])

apply(simp add: o__def ctyping.intros)

done

end

93

9 Security Type Systems

9.1 Security Levels and Expressions

theory Sec Type FEzxpr imports Big Step
begin

type_ synonym level = nat

class sec =
fixes sec :: 'a = nat

The security/confidentiality level of each variable is globally fixed for
simplicity. For the sake of examples — the general theory does not rely on
it! — a variable of length n has security level n:

instantiation list :: (type)sec
begin

definition sec(z :: 'a list) = length x
instance ..
end

instantiation aexp :: sec
begin

fun sec_aexp :: aexp = level where
sec (Nn) =10

sec (V) = sec x|

sec (Plus a1 a2) = max (sec a1) (sec ag)

instance ..
end

instantiation bexp :: sec
begin

fun sec_bexp :: bexp = level where

sec (Bcv) = 0 |

sec (Not b) = sec b |

sec (And by ba) = maz (sec by) (sec ba) |
sec (Less a1 az) = mazx (sec ay1) (sec az)

54

instance ..

end

abbreviation eq le :: state = state = level = bool
(. =_"<_N)y [51,51,0] 50) where
s=s8(K)==(z.secx <l — sz =s"1)

abbreviation eq less :: state = state = level = bool
«(=_"(<_N) [51,51,0] 50) where
s=s' (<)== z.secx <l — sz =s"1)

lemma aval _eq if eq le:
[s1 =25 (<1); seca<l] = aval a s1 = aval a sz
by (induct a) auto

lemma bval_eq if eq le:
[s1 =15 (<1); secb<1] = bval b sy = bval b s9
by (induct b) (auto simp add: aval _eq if eq le)

end

9.2 Security Typing of Commands

theory Sec_ Typing imports Sec_ Type Expr
begin

9.2.1 Syntax Directed Typing

inductive sec_type :: nat = com = bool (<(_/ F _)» [0,0] 50) where
Skip:
I+ SKIP |
Assign:
[secx > seca; secr>1]=IlFzu=a
Seg:
[[“‘Cl; “‘CQ]]:>Z|_61;;CQ|
If:
[max (sec b) I+ c1; maz (sec b) I+ ca | = I+ IF b THEN c¢; ELSE
C9 |
While:
max (sec b) I+ ¢ = 1+ WHILE b DO ¢

code__pred (expected_modes: i => i => bool) sec__type .

95

value 0 + IF Less (V "z1") (V "2y THEN "z1" ::= N 0 ELSE SKIP
value 1 + IF Less (V "z1") (V "z") THEN "z" .= N 0 ELSE SKIP
value 2 IF Less (V "z1") (V "2y THEN "z1" ::= N 0 ELSE SKIP

inductive__cases [elim!]:
IlFza2=a lFci5e0 IHIF b THEN ¢y ELSE ¢o I+ WHILE b DO ¢

An important property: anti-monotonicity.

lemma anti_mono: [l ¢; I'<I]=1l'F ¢
apply (induction arbitrary: 1’ rule: sec_type.induct)
apply (metis sec_type.intros(1))

apply (metis le_trans sec__type.intros(2))

apply (metis sec__type.intros(3))

apply (metis If le_refl sup_mono sup_nat__def)
apply (metis While le__refl sup__mono sup_nat__def)
done

lemma confinement: [(¢,s) = t; Ik c] = s=1(<])
proof (induction rule: big_step__induct)
case Skip thus Zcase by simp
next
case Assign thus ?case by auto
next
case Seq thus ?case by auto
next
case (IfTrue b s c1)
hence maz (sec b) [= ¢1 by auto
hence [F cI by (metis maz.cobounded? anti _mono)
thus ?case using IfTrue.IH by metis
next
case (IfFalse b s c2)
hence maz (sec b) |+ ¢2 by auto
hence [- ¢2 by (metis maz.cobounded?2 anti_mono)
thus ?case using IfFalse.IH by metis
next
case WhileFualse thus ?case by auto
next
case (WhileTrue b s1 c)
hence maz (sec b) I F ¢ by auto
hence | F ¢ by (metis maz.cobounded? anti_mono)
thus ?case using WhileTrue by metis
qged

o6

theorem noninterference:
[(c,8) = s (¢,t) =t OF¢; s=t(<1)]
= s'=t' (<)
proof (induction arbitrary: t t' rule: big_step _induct)
case Skip thus ?case by auto
next
case (Assign © a s)
have [simp]: t' = t(z := aval a t) using Assign by auto
have sec x >= sec a using <0 - z ::= a>» by auto
show Zcase
proof auto
assume sec z < [
with (sec x >= sec a» have sec a < [by arith
thus aval a s = aval a t
by (rule aval _eq if eq le[OF «s =t (< I)])
next
fix y assume y # x sec y < |
thus s y = t y using s = t (< 1)) by simp
qed
next
case Seq thus ?case by blast
next
case (IfTrue b s c1 s’ ¢2)
have sec b c¢1 sec bt ¢2 using <0 - IF b THEN c1 ELSE c2»> by auto
show ?Zcase
proof cases
assume sec b <[
hence s = t (< sec b) using <s = t (< 1)» by auto
hence bval b ¢t using <bval b $» by(simp add: bval_eq if eq le)
with IfTrue.IH IfTrue.prems(1,3) <sec b\ c1» anti_mono
show ?thesis by auto
next
assume — sec b < [
have 1: sec b+ IF b THEN c1 ELSE c2
by (rule sec_type.intros)(simp__all add: <sec b\ c1» <sec b F c2»)
from confinement|OF ¢(c1, s) = s’ <sec b b cIy] <= sec b < D
have s = s’ (< 1) by auto
moreover
from confinement[OF «(IF b THEN c1 ELSE c2, t) = t» 1] <= sec b
<0b
have ¢t = t’ (< 1) by auto
ultimately show s’ = ¢’ (< [) using <s = t (< I)» by auto
qed

o7

next
case (IfFalse b s ¢2 s' c1)
have sec b+ ¢1 sec bt ¢2 using <0 - IF b THEN c1 ELSE c2)> by auto
show “case
proof cases
assume sec b <[
hence s = t (< sec b) using <s = t (< 1)» by auto
hence — bval b t using <— bval b $» by(simp add: bval_eq if eq le)
with IfFalse.IH IfFalse.prems(1,3) <sec b F ¢2)> anti_mono
show ?thesis by auto
next
assume — sec b < [
have 1: sec b+ IF b THEN c1 ELSE c2
by (rule sec_type.intros)(simp__all add: <sec b\ c1» <sec b F c2»)
from confinement|OF big_step.IfFalse|OF IfFalse(1,2)] 1] <— sec b <
b
have s = s’ (< 1) by auto
moreover
from confinement|OF «(IF b THEN c1 ELSE ¢2, t) = t» 1] <— sec b
<D
have ¢ = t' (< 1) by auto
ultimately show s’ = ¢’ (< [) using s = t (< [)» by auto
qed
next
case (WhileFalse b s c)
have sec b - ¢ using WhileFalse.prems(2) by auto
show ?case
proof cases
assume sec b <[
hence s = t (< sec b) using «s = t (<)) by auto
hence — bval b t using <— bval b $» by(simp add: bval_eq_if eq le)
with WhileFalse.prems(1,3) show ?thesis by auto
next
assume — sec b < [
have 1: sec b+ WHILE b DO ¢
by (rule sec__type.intros)(simp__all add: <sec b F ¢»)
from confinement|OF «(WHILE b DO ¢, t) = t"» 1] <= sec b < D
have ¢t = t’ (< 1) by auto
thus s = ¢/ (< [) using ¢<s = t (< I)» by auto
qed
next
case (WhileTrue b s1 ¢ s2 s3 t1 t3)
let 2w = WHILE b DO ¢
have sec b + ¢ using <0 = WHILE b DO ¢ by auto

o8

show Zcase
proof cases
assume sec b <[
hence s1 = t1 (< sec b) using «s1 = t1 (< 1)) by auto
hence bval b t1
using <bval b s1» by(simp add: bval_eq if eq le)
then obtain {2 where (¢,t1) = 12 (w,t2) = t3
using «(?w,t1) = t3» by auto
from WhileTrue.IH(2)[OF «(%w,t2) = t3» <0 & 2w
WhileTrue. IH(1)[OF <(c,t1) = t2> anti_mono|OF <sec b F ¢»]
s1 = t1 (<)]
show ?Zthesis by simp
next
assume — sec b < [
have 1: sec b+ 7w by(rule sec__type.intros)(simp__all add: <sec b - ¢»)
from confinement|OF big_step. While True| OF While True.hyps| 1] «—
sec b < D
have s1 = s3 (<) by auto
moreover
from confinement[OF «(WHILE b DO ¢, t1) = t3> 1] <= sec b < Iy
have t1 = t3 (<) by auto
ultimately show s3 = t3 (< [) using «sI = t1 (< [)) by auto
qed
qed

9.2.2 The Standard Typing System

The predicate [- c is nicely intuitive and executable. The standard formu-
lation, however, is slightly different, replacing the maximum computation
by an antimonotonicity rule. We introduce the standard system now and
show the equivalence with our formulation.

inductive sec_type’ :: nat = com = bool («(_/ +" _)» [0,0] 50) where
Skip”:
I+ SKIP |
Assign:
[secx > seca; secx >1] = IFH z:=a
Seq:
[iF ¢e1; IH co] = IF c135e9 |
If":
[secb<l; IF"¢ci; I+ ¢co] = I+ IFb THEN ¢y ELSE c5 |
While':
[secb<l; I+ c¢] = IF WHILE b DO c |
anti_mono”
[IF e UV<1]=I'F ¢

99

lemma sec_type sec type” I+ c = I+'¢

apply (induction rule: sec__type.induct)

apply (metis Skip’)

apply (metis Assign’)

apply (metis Seq’)

apply (metis max.commaute maz.absorb_iff2 nat_le_linear If" anti_mono’)
by (metis less_or_eq imp _le maz.absorbl mazx.absorb2 nat_le_ linear While’
anti_mono’)

lemma sec_type’ sec type: |F' ¢ = I+ ¢
apply (induction rule: sec_type’.induct)
apply (metis Skip)

apply (metis Assign)

apply (metis Seq)

apply (metis maz.absorb2 If)

apply (metis maz.absorb2 While)

by (metis anti_mono)

9.2.3 A Bottom-Up Typing System

inductive sec_type2 :: com = level = bool (<«(F _:_)» [0,0] 50) where
Skip2:

- SKIP : 1 |
Assign2:

secx > seca = F x = a: sec |
Seq2:

[Fer:ly; Feaila] = F crje: minly Iy |
If2:

[secb<minlylo; Fep:li; Feaila]
=+ IF b THEN ¢y ELSE ¢ : min Iy Iy |
While2:

[secb<l; Fec:l] =+ WHILEb DO c: 1

lemma sec_type2 sec_type:Fc: 1= I1F'¢

apply (induction rule: sec__type2.induct)

apply (metis Skip’)

apply (metis Assign’ eq_imp_le)

apply (metis Seq’ anti_mono’ min.coboundedl min.cobounded2)

apply (metis If" anti_mono’ min.absorb2 min.absorb__iff1 nat_le_linear)

by (metis While')

60

lemma sec_type’ sec_type2: IF ¢c= 3 "> 1L +Fc: 1
apply (induction rule: sec_type’.induct)

apply (metis Skip2 le__refl)

apply (metis Assign2)

apply (metis Seq2 min.boundedl)

apply (metis If2 inf _greatest inf _nat_def le_trans)
apply (metis While2 le__trans)

by (metis le_trans)

end

9.3 Termination-Sensitive Systems

theory Sec TypingT imports Sec Type Faxpr
begin

9.3.1 A Syntax Directed System

inductive sec_type :: nat = com = bool («(_/ F _)» [0,0] 50) where
Skip:
[+ SKIP |
Assign:
[secx > seca; secx >1] = Ik z:u=a
Seq:
I = 1lFca=1F c;c0 |
If:
[max (sec b) I F c1; mazx (sec b) I+ co]
= |+ IF b THEN ¢y ELSE co |
While:
secb=0= 0Fc= 0+ WHILE b DO c

code__pred (expected _modes: i => i => bool) sec__type .

inductive__cases [elim!]:
IFxu=a lF e3¢0 IHIF b THEN ¢y ELSE ¢o I+ WHILE b DO ¢

lemma anti mono: lFec=10'<]l=1F ¢
apply (induction arbitrary: 1’ rule: sec_type.induct)
apply (metis sec__type.intros(1))

apply (metis le_trans sec__type.intros(2))

apply (metis sec_type.intros(3))

apply (metis If le_refl sup_mono sup_nat__def)
by (metis While le_0__eq)

61

lemma confinement: (¢,s) =t = IlFc= s=1 (<)
proof (induction rule: big_step _induct)
case Skip thus ?case by simp
next
case Assign thus Zcase by auto
next
case Seq thus “case by auto
next
case (IfTrue b s c1)
hence maz (sec b) |+ c1 by auto
hence [- c¢1 by (metis maz.cobounded?2 anti_mono)
thus ?case using IfTrue.IH by metis
next
case (IfFalse b s c2)
hence maz (sec b) |+ ¢2 by auto
hence [- ¢2 by (metis max.cobounded?2 anti _mono)
thus ?case using IfFalse.IH by metis
next
case WhileFulse thus ?case by auto
next
case (WhileTrue b s1 c)
hence | - ¢ by auto
thus ?case using WhileTrue by metis
qed

lemma termi_if non0: 1+ c = 1# 0 = 3 t. (¢,s) =t
apply (induction arbitrary: s rule: sec__type.induct)

apply (metis big_step.Skip)

apply (metis big_step.Assign)

apply (metis big_step.Seq)

apply (metis IfFalse IfTrue le0 le__antisym maz.cobounded?)
apply simp

done

theorem noninterference: (¢,s) = ' = 0k ¢ = s=1 (<)
= J t. (ct) =t/ Ns'=t' (<)

proof (induction arbitrary: t rule: big step induct)
case Skip thus ?case by auto

next
case (Assign = a s)
have sec x >= sec a using <0 - z ::= a» by auto

have (z ::= a,t) = t(z := aval a t) by auto

62

moreover
have s(z := aval a s) = t(z := aval a t) (< 1)
proof auto
assume sec z < [
with <sec x > sec a» have sec a < [by arith
thus aval a s = aval a ¢
by (rule aval _eq if eq le[OF «s =t (< I)])
next
fix y assume y # x sec y < [
thus s y = t y using s = t (< 1)) by simp
qed
ultimately show ?case by blast
next
case Seq thus ?case by blast
next
case (IfTrue b s c1 s’ c2)
have sec b+ c1 sec b+ ¢2 using <0 - IF b THEN c1 ELSE ¢c2> by auto
obtain t’ where t" (c1,t) = t's'=t' (<)
using IfTrue. IH[OF anti_mono[OF «sec b c1»] <s = t (< 1)»] by blast
show Zcase
proof cases
assume sec b <[
hence s = t (< sec b) using «s = t (<)) by auto
hence buval b t using <bval b s> by(simp add: bval_eq_if eq le)
thus ?thesis by (metis t' big_step.IfTrue)
next
assume — sec b < |
hence 0: sec b # 0 by arith
have 1: sec b+ IF b THEN c1 ELSE c2
by (rule sec__type.intros)(simp__all add: <sec bt c1»y <sec b+ ¢2»)
from confinement|OF big_step.IfTrue[OF IfTrue(1,2)] 1] <= sec b < Iy
have s = s’ (< 1) by auto
moreover
from termi_if non0[OF 1 0, of t] obtain t’ where
t". (IF b THEN c1 ELSE c2,t) = t'..
moreover
from confinement[OF t' 1] <= sec b < D
have ¢t = t’ (< 1) by auto
ultimately
show ?case using <s = t (< 1)» by auto
qed
next
case (IfFalse b s ¢2 s' c1)
have sec b c1 sec bt c2 using <0 - IF b THEN c1 ELSE c2») by auto

63

obtain t' where t" (¢2,t) = t' s’ =t' (<)
using IfFalse.IH[OF anti_mono[OF <sec b = ¢2)] <s = t (< I)] by
blast
show “case
proof cases
assume sec b <[
hence s = t (< sec b) using <s = t (< 1)» by auto
hence — bval b t using <— bval b $» by(simp add: bval_eq if eq le)
thus ?thesis by (metis t' big_step.IfFalse)
next
assume — sec b <[
hence 0: sec b # 0 by arith
have 1: sec b+ IF b THEN c1 ELSE c2
by (rule sec_type.intros)(simp__all add: <sec b\ c1» <sec b F c2»)
from confinement|OF big_step.IfFalse|OF IfFalse(1,2)] 1] <— sec b <
b
have s = s’ (< 1) by auto
moreover
from termi_if non0[OF 1 0, of t] obtain ¢’ where
t': (IF b THEN c1 ELSE c2,t) = t' ..
moreover
from confinement|OF t' 1] <= sec b < Iy
have ¢ = t' (< 1) by auto
ultimately
show ?case using <s = t (< 1)» by auto
qed
next
case (WhileFalse b s c)
hence [simp]: sec b = 0 by auto
have s = t (< sec b) using <s = t (< 1)» by auto
hence — bval b t using <— bval b s» by (metis bval_eq if eq le le_refl)
with WhileFalse.prems(2) show ?case by auto
next
case (WhileTrue b s ¢ s” s')
let 2w = WHILE b DO ¢
from <0 - 2w have [simp]: sec b = 0 by auto
have 0 F ¢ using <0 - WHILE b DO ¢» by auto
from WhileTrue.IH(1)[OF this <s = t (< [)]
obtain t” where (¢,t) = t"" and s" = t” (<l) by blast
from WhileTrue.IH(2)[OF <0 & ?w» this(2)]
obtain t’ where (?w,t"") = t'and s’ = t’ (<I) by blast
from <bval b s» have bval b ¢
using bval_eq _if eq le[OF «s =t (<I)»] by auto
show “case

64

using big_step. WhileTrue[OF <bval b t> «(c,t) = t' «(?w,t") = t})]
by (metis <s' = t' (< 1))
qed

9.3.2 The Standard System

The predicate [I ¢ is nicely intuitive and executable. The standard formu-
lation, however, is slightly different, replacing the maximum computation
by an antimonotonicity rule. We introduce the standard system now and
show the equivalence with our formulation.

inductive sec_type’ :: nat = com = bool («(_/ " _)» [0,0] 50) where
Skip':
I+ SKIP |
Assign’”:
[secx > seca; seccx >1] = IFH z:=a
Seq:
lFlcl :>ZF/62:>ZF’61;;CQ |
If"
[secb <1l I+"¢1; IF ¢cg] = IF'IFb THEN ¢; ELSE ¢o |
While':
[secb=0; 0F' ¢c] = 0F WHILE b DO ¢ |
anti_mono”
[1F e U'<1]=I'F ¢

lemma sec_type sec_type”:
IlFe=I1Fc
apply (induction rule: sec__type.induct)
apply (metis Skip’)
apply (metis Assign’)
apply (metis Seq’)
apply (metis max.commaute maz.absorb_iff2 nat_le_linear If anti_mono’)

by (metis While')

lemma sec_ type r sec__type:
I e= 1+ ¢
apply (induction rule: sec_type’.induct)
apply (metis Skip)
apply (metis Assign)
apply (metis Seq)
apply (metis maz.absorb2 If)
apply (metis While)
by (metis anti_mono)

65

corollary sec_type_eq: I+ c+— I F' ¢
by (metz’s sec_type’_ sec__type sec_type_sec_type’)

end

10 Definite Initialization Analysis

theory Vars imports Com
begin

10.1 The Variables in an Expression

We need to collect the variables in both arithmetic and boolean expressions.
For a change we do not introduce two functions, e.g. avars and bvars, but

we overload the name wvars via a type class, a device that originated with
Haskell:

class vars =
fixes vars :: 'a = vname set

This defines a type class “vars” with a single function of (coincidentally)
the same name. Then we define two separated instances of the class, one for
aexp and one for bexp:

instantiation aexp :: vars

begin

fun vars aexp :: aexrp = vname set where
vars (N n) = {} |

vars (V z) = {z} |

vars (Plus a1 a2) = vars a1 U vars az

instance ..
end
value vars (Plus (V "z") (V "y"))

instantiation bexp :: vars
begin

fun vars_bexp :: bexp = wvname set where

vars (Be v) = {} |
vars (Not b) = vars b |
vars (And by by) = vars by U vars by |

66

vars (Less a1 a2) = vars a1 U vars az

instance ..

end

value vars (Less (Plus (V "2") (V "'y")) (V "z"))

abbreviation

eq_on :: ('"a="b) = ('la = 'b) = 'a set = bool
(«(_=/_/ on_) [50,0,50] 50) where
f=gomnX==VzeX fz=9gx

lemma aval_eq if eq on_vars[simp]:
$1 = 89 on vars a —> aval a s1 = aval a $o
apply (induction a)
apply simp__all
done

lemma bval _eq if eq on_vars:
$1 = 89 on vars b = bval b s1 = bval b sy
proof (induction b)
case (Less al a2)
hence aval al s; = aval al s2 and aval a2 s; = aval a2 so by simp__all
thus ?case by simp
qed simp__all

fun lvars :: com = vname set where

lvars SKIP = {} |

lars (z::=e) = {z} |

lvars (c13;¢2) = lars ¢1 U lvars c2 |

lvars (IF b THEN c1 ELSE ¢2) = lvars c1 U lvars c2 |
lvars (WHILE b DO ¢) = lvars ¢

fun rvars :: com = vname set where

rvars SKIP = {} |

rvars (z::=e) = vars e |

rvars (cl1;;¢2) = rvars ¢1 U rvars c2 |

rvars (IF b THEN c1 ELSE ¢2) = vars b U rvars ¢1 U rvars c2 |
rvars (WHILE b DO ¢) = vars b U rvars ¢

instantiation com :: vars
begin

67

definition vars com ¢ = lvars ¢ U rvars ¢
instance ..
end

lemma vars__com__simps[simp]:
vars SKIP = {}
vars (z::=e) = {z} U vars e
vars (cl;;¢2) = vars ¢l U vars c2
vars (IF b THEN c1 ELSE ¢2) = vars b U vars c¢1 U vars c2
vars (WHILE b DO ¢) = vars b U vars ¢
by (auto simp: vars__com__def)

lemma finite__avars[simp|: finite(vars(a::aexp))
by (induction a) simp__all

lemma finite_ bvars[simp|: finite(vars(b::bezp))
by (induction b) simp__all

lemma finite_lvars[simp]: finite(lvars(c))
by (induction c) simp__all

lemma finite__rvars[simpl: finite(rvars(c))
by (induction c) simp__all

lemma finite_ cvars[simp|: finite(vars(c::com))
by (simp add: vars__com__def)

end
theory Def Init Exp
imports Vars

begin

10.2 Initialization-Sensitive Expressions Evaluation

type_ synonym state = vname = val option

fun aval :: aexp = state = wval option where
aval (N i) s = Some 1 |
aval (V) s=suz|

68

aval (Plus a1 ag) s =
(case (aval a1 s, aval ag s) of
(Some i1,Some i) = Some(i1+i2) | _ = None)

fun bval :: bexp = state = bool option where
bval (Bc v) s = Some v |
bval (Not b) s = (case bval b s of None = None | Some bv = Some(— bv))
|
bval (And by by) s = (case (bval by s, bval by s) of
(Some bvi, Some bvg) = Some(bvy & bva) | _ = None) |
bval (Less a1 az) s = (case (aval a1 s, aval ag s) of
(Some iy, Some i3) = Some(iy < iz) | _ = None)

lemma aval Some: vars a C dom s =—> 3 1. aval a s = Some i
by (induct a) auto

lemma bval Some: vars b C dom s = 3 bv. bval b s = Some bv
by (induct b) (auto dest!: aval Some)

end

theory Def Init
imports Vars Com
begin

10.3 Definite Initialization Analysis

inductive D :: vname set = com = vname set = bool where
Skip: D A SKIP A |
Assign: vars a € A = D A (z ::= a) (insert x A) |
Seq: [D Ay ¢1 Ag; D Ay cg A3 | = D Aj (c135 c2) As |
If:[[varsbgA; DA Cc1 Al; DA (&) AQH:>

D A (IF b THEN ¢, ELSE c3) (A1 Int As) |
While: [vars b C A; DAcA'] = DA (WHILE b DO c) A

inductive__cases [elim!]:

D A SKIP A’

D A (z == a) A’
A (cl1;;¢2) A
A (IF b THEN c1 ELSE ¢2) A’
A (WHILE b DO ¢) A’

lemma D incr:

69

DAcA'=— ACA'
by (induct rule: D.induct) auto

end

theory Def Init Big
imports Def Init Fxp Def Init
begin

10.4 Initialization-Sensitive Big Step Semantics

inductive
big _step :: (com x state option) = state option = bool (infix = 55)
where
None: (¢,None) = None |
Skip: (SKIP,s) = s |
AssignNone: aval a s = None = (z ::= a, Some s) = None |
Assign: aval a s = Some i = (z ::= a, Some s) = Some(s(z := Some 7))
|

Seq: (c1,81) = s2 = (c2,82) = s3 = (c155¢2,81) = s3 |

IfNone: bval b s = None = (IF b THEN ¢y ELSE c2,Some s) = None |
IfTrue: [bval b s = Some True; (c1,S0me s) = s'] =

(IF b THEN ¢y ELSE c9,Some s) = s’ |
IfFalse: [bval b s = Some False; (c2,Some s) = s’ | =

(IF b THEN ¢y ELSE c9,Some s) = s’ |

WhileNone: bval b s = None = (WHILE b DO c¢,Some s) = None |
WhileFalse: bval b s = Some False = (WHILE b DO c¢,Some s) = Some
s

|
While True:

[bval b s = Some True; (c,Some s) = s’; (WHILE b DO ¢,s’) = s"]
—

(WHILE b DO c¢,Some s) = s"

lemmas big_step induct = big_step.induct|split_format(complete)]

10.5 Soundness wrt Big Steps

Note the special form of the induction because one of the arguments of the
inductive predicate is not a variable but the term Some s:

theorem Sound:
[(¢,Some s) = s DAcA; AC doms]

70

— 3 t.s'= Somet N A’ C dom t
proof (induction ¢ Some s s’ arbitrary: s A A’ rule:big_step__induct)
case AssignNone thus ?case
by auto (metis aval _Some option.simps(3) subset_trans)
next
case Seq thus ?case by auto metis
next
case IfTrue thus ?case by auto blast
next
case IfFalse thus ?case by auto blast
next
case IfNone thus ?case
by auto (metis bval_Some option.simps(3) order_trans)
next
case WhileNone thus ?case
by auto (metis bval _Some option.simps(3) order_trans)
next
case (WhileTrue b s ¢ s’ s")
from <D A (WHILE b DO ¢) A" obtain A’ where D A ¢ A’ by blast
then obtain ¢’ where s’ = Some t' A C dom t’
by (metis D__incr WhileTrue(3,7) subset_trans)
from WhileTrue(5)[OF this(1) WhileTrue(6) this(2)] show Zcase .
qed auto

corollary sound: [D (dom s) ¢ A’; (¢,Some s) = s’] = s’ # None
by (metis Sound not_Some__eq subset_refl)

end

theory Def Init Small
imports Star Def Init Exp Def Init
begin

10.6 Initialization-Sensitive Small Step Semantics

inductive

small_step :: (com X state) = (com x state) = bool (infix <—» 55)
where
Assign: aval a s = Some | = (x ::= a, s) — (SKIP, s(xz := Some 1)) |

Seql: (SKIP;;c,s) — (c,s) |
Seq2: (c1,8) = (1)) = (c135¢2,8) — (e155¢2,8") |

71

IfTrue: bval b s = Some True = (IF b THEN c¢i ELSE ca,s) — (c1,s) |
IfFalse: bval b s = Some False = (IF b THEN c¢; ELSFE c3,s) — (c2,s) |

While: (WHILE b DO ¢,s) — (IF b THEN ¢;; WHILE b DO ¢ ELSE
SKIP,s)

lemmas small_step_induct = small_step.induct[split_format(complete)]

abbreviation small_steps :: com % state = com * state = bool (infix
(—%> 55)
where © —x y == star small_step xz y

10.7 Soundness wrt Small Steps

theorem progress:
D (dom s) ¢ A’ = ¢ # SKIP — J¢s'. (¢,s) — ¢s’
proof (induction c arbitrary: s A’
case Assign thus Zcase by auto (metis aval _Some small _step.Assign)
next
case (If b c1 c2)
then obtain bv where bval b s = Some bv by (auto dest!:bval Some)
then show “case
by (cases bv)(auto intro: small_step.IfTrue small_step.IfFalse)
qed (fastforce intro: small_step.intros)+

lemma D mono: DAcM —= ACA'—= IM DA c M & M <=
M/
proof (induction c arbitrary: A A" M)
case Seq thus Zcase by auto (metis D.intros(3))
next
case (If b c1 c2)
then obtain M1 M2 where vars b C A D A c1 M1 D A ¢2 M2 M =
M1 N M2
by auto
with If.IH <A C A’ obtain M1’ M2’
where D A’ ¢c1 M1' D A’ ¢2 M2’ and M1 C M1’ M2 C M2’ by metis
hence D A’ (IF b THEN c1 ELSE ¢2) (M1’ N M2’y and M C M1’
M2’
using «vars b C A» <A C A «M = M1 N M2 by(fastforce intro:
D.intros)+
thus ?case by metis
next
case While thus ?case by auto (metis D.intros(5) subset_trans)
qed (auto intro: D.intros)

72

theorem D_ preservation:

(¢,s) = (¢';s) = D (dom s) ¢ A= FA". D (dom s") ¢’ A’ & A <= A’
proof (induction arbitrary: A rule: small_step__induct)

case (While b ¢ s)

then obtain A’ where A" vars b C dom s A = dom s D (dom s) ¢ A’
by blast

then obtain A” where D A’ ¢ A" by (metis D_incr D_mono)

with A’ have D (dom s) (IF b THEN c;; WHILE b DO ¢ ELSE SKIP)
(dom s)

by (metis D.If[OF <wvars b C dom s> D.Seq[OF <D (dom s) ¢ A"

D.While[OF _ <D A" ¢ A™]] D.Skip] D_incr Int_absorbl subset_trans)

thus Zcase by (metis D_incr <A = dom s»)
next

case Seq2 thus Zcase by auto (metis D_mono D.intros(3))
qed (auto intro: D.intros)

theorem D sound:

(¢,8) == (c',8") = D (dom s) ¢ A’

= (Fes". (¢/;s") = ¢s”) v ¢/ = SKIP
apply (induction arbitrary: A’ rule:star_induct)
apply (metis progress)
by (metis D_preservation)

end

11 Constant Folding

theory Sem__ Equiv
imports Big Step
begin

11.1 Semantic Equivalence up to a Condition
type__synonym assn = state = bool
definition

equiv_up_to :: assn = com = com = bool («_ = __~ _» [50,0,10] 50)

where
(PEc~c)=(ss. Ps— (c,5) = s < (c\s) = &)

definition

bequiv_up__to :: assn = bexp = bexp = bool (_ = _ <~> _» [50,0,10]
50)

73

where
(PEb<~>1b)=(Vs. Ps— bval b s = bual b’ s)

lemma equiv_up_to_ True:

(A_. True) Ec~c)=(c~<c)

by (simp add: equiv__def equiv_up__to__def)

lemma equiv_up_to_weaken:
PEc~c = (\ssP's= Ps)=— P'Ec~<c
by (simp add: equiv_up_to_ def)

lemma equiv_up tol:
(Ass"Ps=(c,8) =>s'=(c/,s)=s)=PEc~c
by (unfold equiv_up_to_def) blast

lemma equiv_up_toD1:
PeEc~cd=(¢,8)=> s = Ps= (¢, s) = s
by (unfold equiv_up_to_def) blast

lemma equiv_up_toD2:
PErc~cd=(c,s)= 8= Ps= (¢, s) = s
by (unfold equiv_up_to_def) blast

lemma equiv_up_to_refl [simp, intro!]:
PEc~c
by (auto simp: equiv_up__to__def)

lemma equiv_up_to_sym:

(PEc~c)=(PEcd~c¢)

by (auto simp: equiv_up__to__def)

lemma equiv_up_to_trans:
PeEc~cd=PEd~c"=PEc~c"
by (auto simp: equiv_up__to__def)

lemma bequiv_up__to_refl [simp, intro!]:
PlEb<~>b
by (auto simp: bequiv_up__to_def)

lemma bequiv_up to_sym:
(PEbL<~>1Db)=(PEV<~>D)
by (auto simp: bequiv_up__to__def)

74

lemma bequiv_up to trans:
PEbl<~>bV=PEFbVV<~>bV = PEb<~>D"
by (auto simp: bequiv_up_to__def)

lemma bequiv_up to_subst:
PEb<~>b = Ps= bvalbs=bval b’ s
by (simp add: bequiv_up_to_def)

lemma equiv_up_to_ seq:
PEc~d=QFd~d =
(As s (¢,8) = s' = Ps—= Qs) =
P = (e d) ~ (cf; d)

by (clarsimp simp: equiv_up_to__def) blast

lemma equiv_up_to_while_lemma_ weak:
shows (d,s) = s' =
PEb<~>bV =
PEc~cd=
(As s’ (¢, 8) = s'= Ps= bualbs = Ps') =
Ps=
d = WHILE b DO ¢ =
(WHILE b" DO ¢', s) = s’
proof (induction rule: big_step__induct)
case (WhileTrue b s1 ¢ s2 s3)
hence IH: P s2 — (WHILE b’ DO ¢/, s2) = s3 by auto
from While True.prems
have P = b <~> b’ by simp
with <bval b s1» <P sl»
have bval b’ s1 by (simp add: bequiv_up_to_def)
moreover
from While True.prems
have P = ¢ ~ ¢’ by simp
with <bval b s1» <P s1» «(c, s1) = s2»
have (¢/, s1) = s2 by (simp add: equiv_up_to_def)
moreover
from WhileTrue.prems
have As s’ (¢,s) = s' = P s = bval b s = P s’ by simp
with <P s1» <bval b s1» «(c, s1) = s2»
have P s2 by simp
hence (WHILE b’ DO ¢’, s2) = s3 by (rule IH)
ultimately
show ?case by blast

75

next
case WhileFualse
thus ?case by (auto simp: bequiv_up__to_ def)
qed (fastforce simp: equiv_up__to__def bequiv_up__to__def)+

lemma equiv_up_to_while weak:
assumes b: P = b <~> b’
assumes c¢: P E ¢ ~ ¢’
assumes I: \s s’ (¢, s) = s'= Ps= bvalb s = P s’
shows P = WHILE b DO ¢ ~ WHILE b’ DO ¢’
proof —
from b have b P = b’ <~> b by (simp add: bequiv_up_to__sym)

from ¢ b have ¢ P = ¢’ ~ ¢ by (simp add: equiv_up_to_sym)

from [
have I \s s’ (¢, s) = ' = P s = bval b’ s = P s’
by (auto dest!: equiv_up_toD1 [OF ¢’ simp: bequiv_up_to_subst [OF

b))

note equiv_up__to_while_lemma_weak [OF __ b]
equiv__up__to__while_lemma_weak [OF __ b’ ¢/
thus ?thesis using I I’ by (auto intro!: equiv_up _tol)
qed

lemma equiv_up_to_if weak:
PEb<~>bV=PFc~d=PEFd~d =
P = IF b THEN ¢ ELSE d ~ IF b' THEN ¢’ ELSE d’
by (auto simp: bequiv_up__to_def equiv_up_to_ def)

lemma equiv_up_to_if True [introl]:
(As. Ps =>bvalbs) = P |= IF b THEN c1 ELSE ¢2 ~ cl
by (auto simp: equiv_up__to__def)

lemma equiv_up_to_if False [introl]:
(As. Ps = —bval bs) = P = IF b THEN c1 ELSE c2 ~ c2
by (auto simp: equiv_up__to__def)

lemma equiv_up__to__while_ False [introl]:
(As. Ps = - bval bs) = P = WHILE b DO ¢ ~ SKIP
by (auto simp: equiv_up_to_def)

lemma while_never: (¢, s) = uw = ¢ # WHILE (Bc True) DO ¢’
by (induct rule: big_step__induct) auto

76

lemma equiv_up__to__while_ True [intro!,simp]:
P |= WHILE Bc True DO ¢ ~ WHILE Bc True DO SKIP
unfolding equiv_up to_ def
by (blast dest: while__never)

end
theory Fold imports Sem_ FEquiv Vars begin

11.2 Simple folding of arithmetic expressions

type__synonym
tab = vname = wal option

fun afold :: aexp = tab = aexrp where

afold (Nn) _ = Nn |

afold (V z) t = (case t x of None = V z | Some k = N k) |

afold (Plus el e2) t = (case (afold el t, afold e2 t) of
(Nnl, Nn2)= N(ni+n2) | (el',e2) = Plus el’ e2’)

definition approz t s «+— (Vax k. t z = Some k — sz = k)

theorem aval_afold]simp]:
assumes approxr t s
shows aval (afold a t) s = aval a s
using assms
by (induct a) (auto simp: approx__def split: aexp.split option.split)

theorem aval afold N:

assumes approzx t §

shows afold a t = Nn = aval a s = n
by (metis assms aval.simps(1) aval_afold)

definition
merge t1 t2 = (Am. if t1 m = t2 m then t1 m else None)

primrec defs :: com = tab = tab where
defs SKIP t =t |
defs (x = a) t =
(case afold a t of Nk = t(x — k)| _ = t(z:=None)) |
defs (c13;¢2) t = (defs c2 o defs c1) t |
defs (IF'b THEN c1 ELSE c2) t = merge (defs c1 t) (defs c2t) |
defs (WHILE b DO ¢) t =t |* (—lvars ¢)

77

primrec fold where

fold SKIP _ = SKIP |

fold (z = a) t = (z ::= (afold a t)) |

fold (c1;;¢2) t = (fold c1 t;; fold c2 (defs c1 t)) |

fold (IF b THEN c1 ELSE ¢2) t = IF b THEN fold c1 t ELSE fold c2 t |
fold (WHILE b DO ¢) t = WHILE b DO fold ¢ (t | (—lvars c))

lemma approx_merge:
approx t1 s \V approx t2 s = approx (merge t1 t2) s
by (fastforce simp: merge__def approx__def)

lemma approx_map_ le:
approx t2 s = t1 C,, t2 = approx t1 s
by (clarsimp simp: approz__def map__le_def dom__def)

lemma restrict_map__le [intro!, simp]: t |*S C,, t
by (clarsimp simp: restrict_map__def map__le_def)

lemma merge_restrict:
assumes t1 ‘S =1¢|‘S
assumes 2 | S =1t |8
shows merge t1 t2 |*S =1t |°S
proof —
from assms
have Vz. (t1 |*S)z=(t|‘S) =
and Vz. (12 |°S) z = (¢t | S) = by auto
thus ?thesis
by (auto simp: merge__def restrict_map__def
split: if _splits)
ged

lemma defs restrict:
defs ¢t | (— lvars ¢) =t |* (— lvars c)
proof (induction ¢ arbitrary: t)
case (Seq cl ¢2)
hence defs c1t | (— lvars c1) =t |* (— lvars c1)
by simp
hence defs c1 t | (— lvars c1) |* (—lvars ¢2) =
t | (= lvars c1) | (—lvars c2) by simp
moreover
from Seq
have defs c2 (defs c1 t) |* (— lvars c2) =

78

defs c1t |*(— lvars c2)
by simp

hence defs c2 (defs c1t) |* (— lars ¢2) | (— lars c¢1) =

defs c1 t|*(— lvars c2) |* (= lvars c1)
by simp
ultimately
show ?case by (clarsimp simp: Int_commute)
next

case (If b cl c2)

hence defs c1t | (— lvars c1) =t |* (— lvars c1) by simp

hence defs c1 t | (— lvars c1) |‘ (—lvars c¢2) =
t | (= lvars c1) |* (—lvars c2) by simp

moreover

from If

have defs c2t |* (— lars ¢2) =t |* (— lars c¢2) by simp

hence defs c2t | (— lvars c2) |* (—lvars c¢1) =
t | (= lars c2) |* (—lvars c1) by simp

ultimately

show ?case by (auto simp: Int_commute intro: merge_restrict)

qed (auto split: aexp.split)

lemma big step_ pres__approx:
(¢,8) = s’ = approx t s = approx (defs ¢ t) s’
proof (induction arbitrary: t rule: big_step__induct)
case Skip thus ?case by simp
next
case Assign
thus ?case
by (clarsimp simp: aval _afold_N approz__def split: aexp.split)
next
case (Seq cl s1 s2 c2 s3)
have approz (defs c1 t) s2 by (rule Seq.IH(1)[OF Seq.prems))
hence approx (defs c2 (defs c1 t)) s3 by (rule Seq.IH(2))
thus ?case by simp
next
case (IfTrue b s cl1 s”)
hence approz (defs c1 t) s’ by simp
thus ?case by (simp add: approxz__merge)
next
case (IfFalse b s c2 s')
hence approz (defs c2 t) s’ by simp
thus ?case by (simp add: approx_merge)
next

79

case WhileFulse

thus Zcase by (simp add: approx__def restrict_map__def)
next

case (WhileTrue b s1 ¢ s2 s3)

hence approx (defs c t) s2 by simp

with WhileTrue

have approz (defs ¢ t |* (—lvars c)) s3 by simp

thus ?case by (simp add: defs_restrict)
ged

lemma big step_pres approx_restrict:
(¢,8) = s = approz (t | (—lars ¢)) s = approx (t |* (—lvars c)) s
proof (induction arbitrary: t rule: big_step_induct)
case Assign
thus ?case by (clarsimp simp: approx__def)
next
case (Seq cl s1 s2 c2 s3)
hence approz (t | (—lvars ¢2) | (—lvars c1)) s1
by (simp add: Int__commute)
hence approz (t | (—lvars c¢2) | (—lvars c1)) s2
by (rule Seq)
hence approz (t | (—lvars c1) | (—lvars c2)) s2
by (simp add: Int_commute)
hence approz (t | (—lvars c1) |¢ (—lvars c2)) s3
by (rule Seq)
thus ?case by simp
next
case (IfTrue b s c1 s’ c2)
hence approz (t | (—lvars ¢2) | (—lvars c1)) s
by (simp add: Int__commute)
hence approz (t |* (—lvars ¢2) | (—lars c1)) s’
by (rule IfTrue)
thus ?case by (simp add: Int_commute)
next
case (IfFalse b s c¢2 s' c1)
hence approz (t |* (—lvars c1) | (—lvars c2)) s
by simp
hence approz (t |* (—lvars c1) |* (—lars c2)) s’
by (rule IfFalse)
thus “case by simp
qed auto

/

80

declare assign__simp [simp]

lemma approx_eq:
approx t = ¢ ~ fold c t
proof (induction ¢ arbitrary: t)
case SKIP show ?case by simp
next
case Assign
show ?case by (simp add: equiv_up_to_def)
next
case Seq
thus ?case by (auto intro!: equiv_up_to_seq big_step_pres _approx)
next
case If
thus Zcase by (auto introl: equiv_up__to_if weak)
next
case (While b c)
hence approz (t |* (— lars ¢)) =
WHILE b DO ¢ ~ WHILE b DO fold ¢ (t |* (— lvars c))
by (auto intro: equiv_up__to_while__weak big__step_ pres__approx_restrict)
thus “case
by (auto intro: equiv_up__to_weaken approx_map_le)
qed

lemma approz__empty [simp]:
approx Map.empty = (_. True)
by (auto simp: approz__def)

theorem constant_ folding equiv:
fold ¢ Map.empty ~ ¢
using approz__eq [of Map.empty c]
by (simp add: equiv_up_to_ True sim__sym)

end

12 Live Variable Analysis

theory Live imports Vars Big Step
begin

81

12.1 Liveness Analysis

fun L :: com = wvname set = vname set where

L SKIP X = X |

L(x::—a)X—varsaU(X—{x}H
L(c155¢00) X=Lcy (Leg X) |
L (IF b THEN ¢y ELSE ¢3) X =wvars bU L ¢y X UL cg X |
L (WHILEbDO c¢) X =varsbU XU LcX

Value ShO’w (L (// " e V // // // " - Plus (V //y//) (V //Z/Q) {//x//})
value show (L (WHILE Less (V "z') (V "2y DO "y" .=V "2"") {"z'"})

fun kil :: com = wvname set where

kill SKIP = {} |

kill (x = a) = {z} |

kill (Cl;; 62) = kill ¢1 U kill ¢y ’

kill (IF b THEN ¢y ELSE c3) = kill ¢1 N kill co |
kill (WHILE b DO ¢) = {}

fun gen :: com = wvname set where

gen SKIP = {} |

gen (z == a) = vars a |

gen (c13; c2) = gen c1 U (gen co — kill ¢1) |

gen (IF b THEN ¢y ELSE c2) = vars b U gen ¢1 U gen ca |
gen (WHILE b DO ¢) = vars b U gen ¢

lemma L gen_ kill: L ¢ X = gen ¢ U (X — kill ¢)
by (induct ¢ arbitrary:X) auto

lemma L While pfp: L ¢ (L (WHILE b DO ¢) X) C L (WHILE b DO c)
X
by (auto simp add:L__gen_ kill)

lemma L_ While_ lpfp:
vars b UX UL cP CP= L(WHILEbDOc¢) XCP
by (simp add: L__gen_ kill)

lemma L While_wvars: vars b C L (WHILE b DO ¢) X
by auto

lemma L While_ X: X C L (WHILE b DO ¢) X
by auto

Disable L. WHILE equation and reason only with L. WHILE constraints

82

declare L.simps(5)[simp del]

12.2 Correctness

theorem L _correct:
(¢,s) = s’ = s=tonLlcX =
FJth(et)=t'&s'=t'on X
proof (induction arbitrary: X t rule: big_step_induct)
case Skip then show ?case by auto
next
case Assign then show ?case
by (auto simp: ball_Un)
next
case (Seq cl s1 s2 c2 s3 X t1)
from Seq.IH(1) Seq.prems obtain t2 where
t12: (c1, t1) = t2 and s2t2: s2 =t2 on L c2 X
by simp blast
from Seq.IH(2)[OF s2t2] obtain t3 where
t23: (c2, t2) = t3 and s3t3: s3 = t3 on X
by auto
show Zcase using t12 t23 s3t3 by auto
next
case (IfTrue b s c1 s’ c2)
hence s = t on vars b s =t on L c1 X by auto
from bval _eq if eq on_wvars|OF this(1)] IfTrue(1) have bval b ¢t by
simp
from IfTrue.IH|OF <s = t on L ¢1 X)] obtain ¢’ where
(c1,t) = t's"=1t"on X by auto
thus ?case using <bval b t» by auto
next
case (IfFalse b s ¢2 s' c1)
hence s = t on vars b s = t on L c2 X by auto
from bval_eq if eq _on_vars|OF this(1)] IfFalse(1) have ~bval b t by
stmp
from IfFalse.IH[OF «s =t on L ¢2 X»| obtain t’ where
(c2,t) = t's"=t"on X by auto
thus ?case using ~bval b t» by auto
next
case (WhileFalse b s c)
hence ™~ bval b ¢
by (metis L__While__vars bval_eq if eq on_wvars subsetD)
thus ?case by(metis WhileFalse.prems L _While_ X big step. WhileFalse
subsetD)
next

83

case (WhileTrue b s1 ¢ s2 s3 X t1)

let w = WHILE b DO ¢

from <bval b s1> WhileTrue.prems have bval b t1
by (metis L_While _vars bval_eq if eq on_wvars subsetD)

have s1 = t1 on L ¢ (L %w X) using L_ While_pfp WhileTrue.prems
by (blast)

from WhileTrue.IH(1)[OF this] obtain t2 where
(¢, t1) = t2 82 = t2 on L ?w X by auto

from WhileTrue.IH(2)[OF this(2)] obtain t3 where (?w,t2) = t3 s3 =

t3 on X

by auto
with <bval b t1) «(c, t1) = t2> show ?case by auto
qged

12.3 Program Optimization
Burying assignments to dead variables:

fun bury :: com = vname set = com where

bury SKIP X = SKIP |

bury (z == a) X = (if v € X then z ::= a else SKIP) |

bury (c1; ¢2) X = (bury e1 (L ¢3 X)3 bury ¢ X) |

bury (IF b THEN ¢y ELSE ¢3) X = IF b THEN bury ¢; X ELSE bury ca
X |

bury (WHILE b DO ¢) X = WHILE b DO bury ¢ (L (WHILE b DO ¢) X)

We could prove the analogous lemma to L_ correct, and the proof would
be very similar. However, we phrase it as a semantics preservation property:

theorem bury correct:
(¢,s) = s’ = s=tonlcX =
It (bury e Xjt) => t'& s'=t'on X
proof (induction arbitrary: X t rule: big_step__induct)
case Skip then show ?case by auto
next
case Assign then show ?case
by (auto simp: ball_Un)
next
case (Seq cl s1 s2 c2 s3 X t1)
from Seq.IH(1) Seq.prems obtain t2 where
t12: (bury ¢l (L c2 X), t1) = t2 and s2t2: s2 = t2on L c2 X
by simp blast
from Seq.IH(2)[OF s2t2] obtain t3 where
t23: (bury c¢2 X, t2) = t3 and s3t3: s8 = t3 on X
by auto
show Zcase using t12 t23 s3t3 by auto

84

next
case (IfTrue b s c1 s’ ¢2)
hence s =t onvars b s =t on L c1 X by auto
from buval _eq if eq on_wvars[OF this(1)] IfTrue(1) have bval b t by
simp
from IfTrue.IH[OF <s = t on L c¢1 X)) obtain ¢’ where
(bury ¢l X, t) = t' s’ =t' on X by auto
thus ?case using <bval b t» by auto
next
case (IfFalse b s ¢2 s' c1)
hence s = t on vars b s = t on L c2 X by auto
from bval_eq if eq on_vars|OF this(1)] IfFalse(1) have ~bval b t by
stmp
from IfFalse.IH[OF <s = t on L ¢2 X»| obtain ¢’ where
(bury c2 X, t) = t' s’ = t' on X by auto
thus ?case using <~bval b t» by auto
next
case (WhileFalse b s c)
hence ™~ bval b t by (metis L__While_vars bval_eq if eq on_vars sub-
setD)
thus Zcase
by simp (metis L_While_ X WhileFalse.prems big__step. WhileFalse sub-
setD)
next
case (WhileTrue b s1 ¢ s2 s3 X t1)
let w = WHILE b DO ¢
from <bval b s1> WhileTrue.prems have bval b t1
by (metis L While__vars bval_eq if eq on_wvars subsetD)
have s/ = t1 on L ¢ (L %w X)
using L While_pfp WhileTrue.prems by blast
from WhileTrue.IH(1)[OF this| obtain t2 where
(bury ¢ (L ?w X), t1) = t2 s2 = t2 on L ?w X by auto
from WhileTrue.IH(2)[OF this(2)] obtain t3
where (bury w X,12) = t3s3 = t3 on X
by auto
with <bval b t1> «(bury ¢ (L %w X), t1) = t2» show ?Zcase by auto
qged

corollary final_bury_correct: (¢,s) = s’ = (bury ¢ UNIV,s) = s’
using bury_correct[of ¢ s s UNIV]
by (auto simp: fun__eq_iff[symmetric))

Now the opposite direction.

lemma SKIP_bury|simp):

85

SKIP = bury ¢ X «— ¢ = SKIP | (3za. c=zi=a & v ¢ X)
by (cases c) auto

lemma Assign__bury[simp]: x::=a = bury ¢ X «— c=zu=a ANz € X
by (cases c) auto

lemma Seq bury[simp]: beys;bea = bury ¢ X «—
(Fer . ¢ = cip5e0 & beg = bury co X & bey = bury ¢ (L co X))
by (cases c) auto

lemma If bury[simp|: IF b THEN bcl ELSE bc2 = bury ¢ X +—
(3¢l ¢2. ¢ = IF b THEN c1 ELSE c2 &
bel = bury c1 X & be2 = bury ¢2 X)
by (cases c) auto

lemma While_bury[simp]: WHILE b DO bc’ = bury ¢ X +—
(3¢’ ¢ = WHILE b DO ¢' & be’ = bury ¢’ (L (WHILE b DO ¢') X))

by (cases c) auto

theorem bury correct2:
(bury c X;8) = ' = s=tonlLcX =
it (et) = t'&s"=t" on X
proof (induction bury ¢ X s s’ arbitrary: ¢ X t rule: big_step_induct)
case Skip then show ?Zcase by auto
next
case Assign then show ?case
by (auto simp: ball_Un)
next
case (Seq bcl s1 s2 bc2 s3 ¢ X t1)
then obtain ¢! ¢2 where c: ¢ = c1;;¢c2
and bc2: be2 = bury c2 X and bel: bel = bury cl (L ¢2 X) by auto
note IH = Seq.hyps(2,4)
from IH(1)[OF bcl, of t1] Seq.prems ¢ obtain t2 where
t12: (c1, t1) = t2 and s2t2: s2 = t2 on L c2 X by auto
from [H(2)[OF bc2 s2t2] obtain t3 where
t23: (c2, t2) = t3 and s3t3: s3 = t3 on X
by auto
show Zcase using c t12 t23 s3t3 by auto
next
case (IfTrue b s bel s’ be2)
then obtain ¢! ¢2 where ¢: ¢ = IF b THEN c1 ELSE c2
and bcl: bel = bury ¢l X and bc2: bc2 = bury c2 X by auto
have s = t on vars b s = t on L c1 X using IfTrue.prems ¢ by auto
from bval eq if eq on_wvars|OF this(1)] IfTrue(1) have bval b t by

86

simp
note [H = IfTrue.hyps(3)
from IH[OF bcl <s = t on L c1 X»] obtain ¢’ where
(c1,t) = t' s’ =t on X by auto
thus ?case using c¢ <bval b t» by auto
next
case (IfFalse b s bc2 s’ bel)
then obtain ¢! ¢2 where ¢: ¢ = IF b THEN c1 ELSE c2
and bcl: bel = bury ¢l X and bc2: be2 = bury c2 X by auto
have s = t on vars b s = t on L ¢2 X using IfFalse.prems c by auto
from bval _eq if eq on_wars[OF this(1)] IfFalse(1) have ~bval b t by
simp
note [H = IfFalse.hyps(3)
from IH[OF bc2 <s = t on L ¢2 X»] obtain ¢’ where
(c2,t) = t' s" =t' on X by auto
thus ?case using ¢ «~bval b t» by auto
next
case (WhileFalse b s c)
hence ~ bval b t
by auto (metis L_ While_vars bval_eq_if eq on_vars rev_subsetD)
thus “case using WhileFualse
by auto (metis L_While_X big_step. WhileFalse subsetD)
next
case (WhileTrue b s1 bc’ s2 s3 w X t1)
then obtain ¢’ where w: w = WHILE b DO ¢’
and bc”: be’ = bury ¢’ (L (WHILE b DO ¢’) X) by auto
from <bval b s1» WhileTrue.prems w have bval b t1
by auto (metis L_ While_vars bval_eq_if _eq on_vars subsetD)
note IH = WhileTrue.hyps(3,5)
have s1 = t1 on L ¢’ (L w X)
using L While _pfp WhileTrue.prems w by blast
with IH(1)[OF bc', of t1] w obtain t2 where
(¢, t1) = t2 52 = t2 on L w X by auto
from IH(2)[OF WhileTrue.hyps(6), of t2] w this(2) obtain t3
where (w,t2) = t3 s3 = t3 on X
by auto
with <bval b t1» «(¢, t1) = t2) w show ?case by auto
qed
corollary final _bury_correct2: (bury ¢ UNIV,s) = s' = (¢,s) = s’
using bury_correct2[of ¢ UNIV]
by (auto simp: fun__eq iff[symmetric))

corollary bury sim: bury ¢ UNIV ~ ¢

87

by (metis final _bury__correct final_bury__correct?)

end

12.4 True Liveness Analysis

theory Live True
imports HOL— Library. While_ Combinator Vars Big Step
begin

12.4.1 Analysis

fun L :: com = wvname set = vname set where

L SKIP X = X |

L (z:=a) X = (ifz € X then vars a U (X — {z}) else X) |
L (Cl;; 62) X = L01 (L ()] X) ’

L (IF b THEN ¢y ELSE ¢3) X =wvarsbU L ¢y X UL ca X |
L (WHILE b DO ¢) X = lfp(AY. vars b U X U L cY)

lemma L__mono: mono (L c)
proof—
have X C Y —=Lc¢cXCLcYfor XY
proof (induction c arbitrary: X Y)
case (While b ¢)
show Zcase
proof (simp, rule ifp__mono)
fix Zshowvars b U X ULcZ CwvarsbU Y ULcZ
using While by auto
qged
next
case If thus ?case by(auto simp: subset_iff)
qged auto
thus ?thesis by(rule monol)
qed

lemma mono__union L:

mono (AY. X ULcY)
using L__mono unfolding mono__def by (metis (no_types) order__eq _iff
set__eq_subset supimono)

lemma L_ While_unfold:

L (WHILE b DO ¢) X =warsbU X UL ¢ (L (WHILE b DO ¢) X)
by (metis ifp__unfold[OF mono__union__L] L.simps(5))

88

lemma L_ While_pfp: L ¢ (L (WHILE b DO ¢) X) C L (WHILE b DO c¢)
X
using L While_unfold by blast

lemma L_ While_wvars: vars b C L (WHILE b DO ¢) X
using L While_unfold by blast

lemma L While X: X C L (WHILE b DO ¢) X
using L While_unfold by blast

Disable L WHILFE equation and reason only with L WHILFE constraints:
declare L.simps(5)[simp del]

12.4.2 Correctness

theorem L _correct:
(¢,s) = s’ = s=tonlcX =
Jt(et) =>t'&s'=t'on X
proof (induction arbitrary: X t rule: big_step_induct)
case Skip then show ?case by auto
next
case Assign then show Zcase
by (auto simp: ball_Un)
next
case (Seq cl s1 s2 c2 s3 X t1)
from Seq.IH(1) Seq.prems obtain t2 where
t12: (cl, t1) = t2 and s2t2: s2 = t2on L c2 X
by simp blast
from Seq.IH(2)[OF s2t2] obtain t3 where
t23: (c2, t2) = t3 and s3t3: s3 = t3 on X
by auto
show Zcase using t12 t23 s3t3 by auto
next
case (IfTrue b s c1 s’ ¢2)
hence s = t on vars band s = t on L c1 X by auto
from buval _eq if eq on_wvars[OF this(1)] IfTrue(1) have bval b t by
simp
from IfTrue.IH[OF <s = t on L c¢1 X)) obtain ¢’ where
(c1,t) = t's"=1t"on X by auto
thus ?case using <bval b t» by auto
next
case (IfFalse b s ¢2 s' c1)
hence s = t on vars b s = t on L c2 X by auto
from bval _eq if eq on_vars|OF this(1)] IfFalse(1) have ~bval b t by

89

simp
from IfFalse.IH[OF <s =t on L ¢2 X»| obtain t’ where
(c2,t) = t's"=t" on X by auto
thus ?case using ~bval b t» by auto
next
case (WhileFalse b s c)
hence ~ bval b t
by (metis L__While__vars bval_eq if eq on_wvars subsetD)
thus ?case using WhileFalse.prems L_ While_X[of X b c| by auto
next
case (WhileTrue b s1 ¢ s2 s3 X t1)
let w = WHILE b DO ¢
from <bwval b s1» WhileTrue.prems have bval b t1
by (metis L__While__vars bval_eq if eq on_wvars subsetD)
have s1 = t1 on L ¢ (L ?w X) using L_ While_pfp WhileTrue.prems
by (blast)
from WhileTrue.IH(1)[OF this] obtain t2 where
(¢, t1) = t2s2 = t2 on L 2w X by auto
from WhileTrue.IH(2)[OF this(2)] obtain t3 where (?w,t2) = t3 s3 =
t3 on X

by auto
with <bval b t1) «(c, t1) = t2> show ?case by auto
qed

12.4.3 Executability

lemma L subset wars: L ¢ X C rvars ¢ U X
proof (induction ¢ arbitrary: X)
case (While b c)
have Ifp(A\Y. vars bU X U L ¢ Y) C vars b U rvars ¢ U X
using While.IH [of vars b U rvars ¢ U X|
by (auto intro!: lfp_lowerbound)
thus “case by (simp add: L.simps(5))
qed auto

Make L executable by replacing Ifp with the while combinator from the-
ory HOL— Library. While_ Combinator. The while combinator obeys the re-
cursion equation

while b ¢ s = (if b s then while b ¢ (c s) else s)

and is thus executable.

lemma L While: fixes b ¢ X
assumes finite X defines f == AY. vars b U X UL c Y
shows L (WHILE b DO ¢) X = while AY. fY #Y) f{} (is_ = ?r)

90

proof —
let 2V = vars b U rvars ¢ U X
have ifp f = ?r
proof (rule lfp_whilej[where C = ?V])
show mono f by(simp add: f_def mono_union__L)
next
fix Yshow Y C ?V — fY C 2V
unfolding f def using L_ subset_wvars|of c] by blast
next
show finite ?V using «finite X» by simp
qed
thus ?thesis by (simp add: f_def L.simps(5))
qged

lemma L While_let: finite X = L (WHILE b DO ¢) X =
(let f=AY. varsbUXULCcY)
in while A\Y. fY #Y) f{})

by (simp add: L _While)

lemma L While set: L (WHILE b DO c) (set xs) =
(let f = (AY.vars bU set zs U L ¢ Y)
in while A\Y. fY #Y) f{})

by (rule L__ While_let, simp)

Replace the equation for L (WHILE ...) by the executable L While _set:
lemmas [code] = L.simps(1—4) L_While set

Sorry, this syntax is odd.

A test:

lemma (let b = Less (N 0) (V "y"); e = "y" = V gl Vg =V 1727
Z.n L (WHILE b DO C) {//y//}) — {//x//, //y//7 //z//
by eval

12.4.4 Limiting the number of iterations
The final parameter is the default value:

fun iter :: (a = 'a) = nat = 'a = 'a = 'a where
iter fOpd=d|
iter f (Suc n) p d = (if fp = p then p else iter fn (f p) d)
A version of L with a bounded number of iterations (here: 2) in the
WHILE case:

fun Lb :: com = vname set = vname set where
Lb SKIP X = X |

91

Lb (z::=1a) X = (if v € X then X — {z} U vars a else X) |

Lb (e13; 02) = (Lb ¢y o Lb 02) X |

Lb (IF b THEN c¢1 ELSE ¢3) X = wvars b U Lb ¢; X U Lb ¢y X |
Lb (WHILE b DO ¢) X = iter (AA. vars b U X U Lb ¢ A) 2 {} (vars b U
rvars ¢ U X)

Lb (and iter) is not monotone!

lemma let w = WHILE Bc False DO ("z" ==V "y";; 72" ==V "z")
ZTL - (Lb w {// //} C Lb w {//y// 11,17)
by eval

lemma Ifp_ subset iter:
[mono f; ' X. fXCf' XslfpfCD]=IfpfCiterf'nAD
proof (induction n arbitrary: A)
case (thus ?case by simp
next
case Suc thus ?case by simp (metis ifp_ lowerbound)
qged

lemma L ¢ X C Lbe X
proof (induction ¢ arbitrary: X)
case (While b c)
let 2f = AA. varsbU X UL cA
let 2fb = AA. varsb U X U Lbc A
show “case
proof (simp add: L.simps(5), rule lfp__subset iter|OF mono__union_ L))
show !!X. 2f X C ?fb X using While.IH by blast
show Ifp ?f C vars b U rvars ¢ U X
by (metis (full_types) L.simps(5) L__subset_vars rvars.simps(5))
qed
next
case Seq thus ?Zcase by simp (metis (full_types) L_mono monoD sub-
set__trans)
qed auto

end

13 Hoare Logic

13.1 Hoare Logic for Partial Correctness

theory Hoare imports Big Step begin

type__synonym assn = state = bool

92

definition
holclzreivalid massm = com = assn = bool (<= {(1_)}/ (L)/ {(1_)}» 50)
E{P}{Q}=Vst. PsA(cs) =t — Q%)

abbreviation state subst :: state = aexp = vname = state
(«_["/_] [1000,0,0] 999)
where s[a/z] == s(z := aval a s)

inductive
flzloare assn = com = assn = bool (< ({(1_)}/ (L)/ {(1_)})» 50)
Skip: + {P} SKIP {P} |

Assign: = {As. P(s[a/z])} zi:=a {P} |

Seq: [F{P} a1 {Q}; F{Q} c2 {R}]
= F {P} ci;;c2 {R} |

If: [F {As. P s A bval b s} c1 {Q}; F {As. Ps A = bval b s} ca {Q}]
— | {P} IF b THEN ¢, ELSE ¢5 {Q} |

While: F {\s. P s A bval b s} ¢ {P} =
F{P} WHILE b DO ¢ {As. P s N\ = bval b s} |

conseq: [Vs. P's — P s; F{P} c{Q}; Vs. Qs — Q's]
— E{P%} ¢ {Q}

lemmas [simp| = hoare.Skip hoare.Assign hoare.Seq If
lemmas [intro!] = hoare.Skip hoare.Assign hoare.Seq hoare.If

lemma strengthen_ pre:
[Vs.P's — Ps; F{P} c{Q}] =+ {P'} c{Q}
by (blast intro: conseq)

lemma weaken__post:
[FA{P} c{Q}; Vs. Qs — Q' s] = +{P}c{Q"}
by (blast intro: conseq)

The assignment and While rule are awkward to use in actual proofs
because their pre and postcondition are of a very special form and the actual
goal would have to match this form exactly. Therefore we derive two variants

93

with arbitrary pre and postconditions.

lemma Assign”: Vs. P s — Q(s[a/z]) = F {P} z := a {Q}
by (simp add: strengthen_pre[OF __ Assign])

lemma While”:

assumes - {As. P s A bval b s} ¢ {P}and Vs. PsA —bvalbs— Qs
shows - {P} WHILE b DO ¢ {Q}

by (rule weaken__post[OF While|OF assms(1)] assms(2)])

end

13.2 Examples

theory Hoare_FExamples imports Hoare begin

hide__const (open) sum
Summing up the first £ natural numbers in variable .

fun sum :: int = int where
sum i = (if 1 < 0 then 0 else sum (i — 1) + 1)

lemma sum__simps[simp):
0 <i= sumi=sum(i—1)+1
1< 0= sumi=10

by (simp__all)

declare sum.simps|simp del]

abbreviation wsum ==
WHILE Less (N 0) (V "z
DO ("y" == Plus (V "y") (V "z");
"g! = Plus (V "2y (N (— 1)))

13.2.1 Proof by Operational Semantics

The behaviour of the loop is proved by induction:

lemma while sum:
(wsum, s) = t =t "y"" = s "y"" + sum(s "z")
apply (induction wsum s t rule: big_step_induct)

apply (auto)
done

We were lucky that the proof was automatic, except for the induction.
In general, such proofs will not be so easy. The automation is partly due to

94

the right inversion rules that we set up as automatic elimination rules that
decompose big-step premises.
Now we prefix the loop with the necessary initialization:

lemma sum_ via_ bigstep:

assumes ("'y" := N 0;; wsum, s) =t
shows t "y"" = sum (s ""z"’)
proof —

from assms have (wsum,s("y":=0)) = ¢ by auto
from while_sum[OF this| show ?thesis by simp
qed

13.2.2 Proof by Hoare Logic

Note that we deal with sequences of commands from right to left, pulling
back the postcondition towards the precondition.

lemma = {As. s "z"” = n} "y" := N 0;; wsum {Xs. s ""y" = sum n}

apply(rule Seq)
prefer 2
apply(rule While' [where P = Xs. (s ""y" = sum n — sum(s "z"))])
apply (rule Seq)
prefer 2
apply (rule Assign)
apply (rule Assign’)
apply simp
apply simp
apply(rule Assign’)
apply simp
done

The proof is intentionally an apply script because it merely composes
the rules of Hoare logic. Of course, in a few places side conditions have to
be proved. But since those proofs are 1-liners, a structured proof is overkill.
In fact, we shall learn later that the application of the Hoare rules can be

automated completely and all that is left for the user is to provide the loop
invariants and prove the side-conditions.

end

13.3 Soundness and Completeness

theory Hoare Sound_ Complete
imports Hoare
begin

95

13.3.1 Soundness

lemma hoare _sound: - {P}c{Q} = E {P}c{Q}
proof (induction rule: hoare.induct)
case (While P b c)
have (WHILE b DO ¢,s) =t = Ps = Pt A - bval bt for st
proof (induction WHILE b DO c s t rule: big_step_induct)
case WhileFualse thus ?case by blast
next
case WhileTrue thus ?case
using While.IH unfolding hoare wvalid_def by blast
qed
thus ?case unfolding hoare_wvalid_def by blast
qed (auto simp: hoare_valid__def)

13.3.2 Weakest Precondition

definition wp :: com = assn = assn where
wp e Q= (As.Vt. (¢,8) =t — Q1)

lemma wp_ SKIP[simp|: wp SKIP Q = Q
by (rule ext) (auto simp: wp__def)

lemma wp_ Ass[simp]: wp (z::=a) Q = (As. Q(s[a/z]))
by (rule ext) (auto simp: wp__def)

lemma wp_Seqlsimp]: wp (cii¢2) Q = wp e1 (up ¢z Q)
by (rule ext) (auto simp: wp__def)

lemma wp__If[simp]:

wp (IF b THEN c¢i ELSE ¢3) Q =

(As. if bval b s then wp ¢1 Q s else wp ca Q)
by (rule ext) (auto simp: wp__def)

lemma wp_ While_If:

wp (WHILE b DO ¢) Q s =

wp (IF b THEN ¢;;WHILE b DO ¢ ELSE SKIP) Q s
unfolding wp_ def by (metis unfold _while)

lemma wp_ While_ True[simp]: bval b s =
wp (WHILE b DO ¢) Q s = wp (¢;; WHILE b DO ¢) Q s
by (simp add: wp_ While_ If)

lemma wp_While_False[simp]: = bval b s = wp (WHILE b DO ¢) Q s

96

= Q S
by (simp add: wp_ While__If)

13.3.3 Completeness

lemma wp_is_pre: - {wp ¢ Q} ¢ {Q}
proof (induction ¢ arbitrary: Q)
case If thus ?case by(auto intro: conseq)
next
case (While b c)
let 7w = WHILE b DO ¢
show F {wp 2w Q} ?w {Q}
proof (rule While')
show {As. wp w @ s A bval b s} ¢ {wp 2w Q}
proof (rule strengthen__pre[OF __ While.IH|)
show Vs. wp %w Q s A bval b s — wp ¢ (wp ?w Q) s by auto
qed
show Vs. wp 2w Q s A = bval b s — @ s by auto
qed
qed auto

lemma hoare__complete: assumes |= {P}c{Q} shows - {P}c{Q}
proof(rule strengthen__pre)
show Vs. P s — wp ¢ @ s using assms
by (auto simp: hoare__valid__def wp__def)

show - {wp ¢ Q} ¢ {Q} by(rule wp__is_pre)
qed

corollary hoare__sound__complete: = {P}c{Q} <— = {P}c{Q}
by (metis hoare__complete hoare__sound)

end

13.4 Verification Condition Generation

theory VCG imports Hoare begin

13.4.1 Annotated Commands
Commands where loops are annotated with invariants.

datatype acom =
Askip («(SKIP») |
Aassign vname aexp («(_ == _)» [1000, 61] 61) |
Aseq acom acom («_3;/ _» [60, 61] 60) |

97

Aif bexp acom acom («(IF _/ THEN _/ ELSE _)» [0, 0, 61] 61) |
Auwhile assn bexp acom («({_}/ WHILE / DO _)» [0, 0, 61] 61)

notation com.SKIP (<SKIP»)
Strip annotations:

fun strip :: acom = com where

strip SKIP = SKIP |

strip (z == a) = (z == a) |

strip (C1;; C2) = (strip Cu; strip Ca) |

strip (IF'b THEN Cy ELSE C3) = (IF' b THEN strip C1 ELSE strip C3) |
strip ({_} WHILE b DO C) = (WHILE b DO strip C)

13.4.2 Weeakest Precondistion and Verification Condition
Weakest precondition:

fun pre :: acom = assn = assn where
pre SKIP @ = Q|
pre (z == a) Q@ = (As. Q(s(z := aval a s))) |
pre (C1;; Ca) Q@ = pre Cp (pre C2 Q) |
pre (IF b THEN Cy ELSE C3) Q =
(As. if bval b s then pre C1 @ s else pre Ca Q s) |
pre ({I} WHILE b DO C) Q =1

Verification condition:

fun vc :: acom = assn = bool where
ve SKIP Q = True |
ve (x = a) @ = True |
ve (Ci;; Ca) Q = (ve C1 (pre Ca Q) A ve Co Q) |
ve (IF b THEN C1 ELSE C3) Q = (ve C1 Q A ve Co Q) |
ve ({I} WHILE b DO C) Q =

(Vs. (IsAbvalbs— pre C1s) A

(IsAN—=bvalbs — Qs)) A
ve C'I)

13.4.3 Soundness

lemma vc_sound: ve C Q = F {pre C Q} strip C {Q}
proof (induction C arbitrary: Q)
case (Awhile I b C)
show Zcase
proof (simp, rule While')
from <vc (Awhile I b C) @Q»
have vc: ve C I and IQ: Vs. I s A = bval b s — @ s and

98

pre:Vs. I s A bval b s — pre C I s by simp__all
have - {pre C I} strip C {I} by(rule Awhile.IH[OF vc])
with pre show = {As. I s A buval b s} strip C {I}
by (rule strengthen__pre)
show Vs. I s A =bval b s — @ s by(rule 1Q)
qed
qed (auto intro: hoare.conseq)

corollary vc_sound”:
[veCQ;Vs. Ps— pre CQs] =+ {P} strip C {Q}
by (metis strengthen__pre vc__sound)

13.4.4 Completeness

lemma pre__mono:

Vs.Ps— P's= pre CPs=— pre CP’s
proof (induction C arbitrary: P P’ s)

case Aseq thus ?case by simp metis
qed simp__all

lemma vc_ _mono:
Vs.Ps— P's = vc CP = vc CP'
proof (induction C arbitrary: P P’
case Aseq thus ?case by simp (metis pre_mono)
qed simp_all

lemma vc__complete:
F{P}cA{Q} = 3C.strip C =cANvcC QAN (Vs. Ps— pre CQ s)
(is_ = 3C.?GPcQQC)
proof (induction rule: hoare.induct)
case Skip
show Zcase (is 3C. 7C C)
proof show ?C Askip by simp qed
next
case (Assign P a 1)
show Zcase (is 3C. 72C C)
proof show ?C(Aassign x a) by simp qed
next
case (Seq P c1 Q c2 R)
from Seq.IH obtain C! where ihi: ?G P c1 @ C1 by blast
from Seq.IH obtain C2 where ih2: ?G) ¢2 R C2 by blast
show Zcase (is 3C. ?2C ()
proof
show ?C(Aseq C1 C2)

99

using ih1 ih2 by (fastforce elim!: pre_mono vc_mono)
qed
next
case (If P b cl Q c2)
from If.IH obtain C1 where ihl: ?G (As. P s A bval b s) c¢1 Q C1
by blast
from If.IH obtain C2 where ih2: ?G (As. P s A =bval b s) c2 Q C2
by blast
show Zcase (is 3C. ?2C ()
proof
show ?C(Aif b C1 C2) using ih1 ih2 by simp
qed
next
case (While P b ¢)
from While.IH obtain C where ih: G (As. P s A bval b s) ¢ P C by
blast
show Zcase (is 3C. 7C C)
proof show ?C(Awhile P b C) using ih by simp qed
next
case conseq thus Zcase by(fast elim!: pre_mono vc_mono)
qed

end

13.5 Hoare Logic for Total Correctness
13.5.1 Separate Termination Relation

theory Hoare_ Total
imports Hoare Ezxzamples
begin

Note that this definition of total validity |=¢ only works if execution is
deterministic (which it is in our case).

definition hoare_tvalid :: assn = com = assn = bool

(= {(1)}/ L)/ {(1)}> 50) where
Et {P}c{Q} «— (Vs. Ps— (Ft. (c,8) =t A Q1))

Provability of Hoare triples in the proof system for total correctness is
written F; {P}c{@} and defined inductively. The rules for -, differ from
those for - only in the one place where nontermination can arise: the While-
rule.

inductive
l}zloaret imassm = com = assn = bool (< ({(1)}/ (L)/ {(1_)})» 50)

100

Skip: ¢ {P} SKIP {P} |
Assign: by {As. P(s[a/z])} z:=a {P} |
Seq: [o {P1} c1 {Pa}; o {Pa} c2 {Ps} | = ¢ {P1} cisiea {Ps} |

If: [Fe {Xs. P s Abval b s} ¢ {Q}; Fe {\s. P s A= bval b s} ca {Q}]
— +; {P} IF b THEN ¢, ELSE ¢, {Q} |

While:
(An:nat.
Ft {As. Ps A bvalbs AN Tsn} c{rs. PsA (In'<n. Tsn)})
=k {As. Ps A (3n. Tsn)} WHILE b DO ¢ {\s. Ps A\ —bval b s} |

conseq: [Vs. P's — P s; 4 {P}c{Q}; Vs. Qs — Q's | =
Fe {Pe{ Q)

The While-rule is like the one for partial correctness but it requires ad-
ditionally that with every execution of the loop body some measure relation
T :: state = nat = bool decreases. The following functional version is more
intuitive:

lemma While_ fun:
[An:nat. ¢ {As. P s Abvalbs An=fs}c{s.PsAfs<n}]
=ty {P} WHILE b DO ¢ {\s. P s A\ —bval b s}
by (rule While [where T=MAs n. n = f s, simplified])

Building in the consequence rule:
lemma strengthen_ pre:

[Vs.P's — Ps; H {P} c{Q}] = H {P'} ¢ {Q}
by (metis conseq)

lemma weaken__post:

[Fe{Ptc{@Q) Vs. Qs — Q's] = H {P} c{Q"

by (metis conseq)

lemma Assign”: Vs. P s — Q(sla/z]) = k¢ {P} z == a {Q}
by (simp add: strengthen_pre[OF __ Assign])

lemma While_ fun':

assumes An:nat. by {As. Ps AbvalbsAn=fs}c{rs. PsA fs<n}
and Vs. Ps A —bvalbs — Qs

shows -, {P} WHILE b DO ¢ {Q}

by (blast intro: assms(1) weaken__post|OF While_fun assms(2)])

101

Our standard example:

lemma F; {As. s "z" =i} "y"” := N 0;; wsum {Xs. s "'y" = sum i}

apply(rule Seq)

prefer 2

apply(rule While_fun’ [where P = Xs. (s ""y" = sum i — sum(s ""z"))

and f = Xs. nat(s "z")])

apply (rule Seq)
prefer 2
apply(rule Assign)
apply (rule Assign’)
apply simp

apply (simp)

apply(rule Assign’)

apply simp

done

Nested loops. This poses a problem for VCGs because the proof of
the inner loop needs to refer to outer loops. This works here because the
invariant is not written down statically but created in the context of a proof
that has already introduced/fixed outer ns that can be referred to.

lemma
Fe {_. True}
WHILE Less (N 0) (V "z
DO ("z" ::= Plus (V "z"") (N(—1));;
Iyl = Y gl
WHILE Less (N 0) (V "y"") DO "y" ::= Plus (V "y") (N(—1)))
{A_. True}
apply(rule While_fun/[where f = As. nat(s ""z")])
prefer 2 apply simp
apply(rule_tac Py = Xs. nat(s "z") < n in Seq)
apply(rule_tac Py = Xs. nat(s "z") < n in Seq)
apply(rule Assign’)
apply simp
apply(rule Assign’)
apply simp

apply(rule While_fun'[where f = As. nat(s ""y")])
prefer 2 apply simp
apply(rule Assign’)
apply simp
done
The soundness theorem:

theorem hoaret_sound: - {P}c{Q} = k& {P}c{Q}

102

proof (unfold hoare__tvalid_def, induction rule: hoaret.induct)
case (While P b T ¢)
have [Ps; Tsn] = 3t. (WHILEb DO ¢, s) =t NPt A —bval bt
for s n
proof (induction n arbitrary: s rule: less_induct)
case (less n) thus Zcase by (metis While.IH WhileFalse WhileTrue)
qed
thus “case by auto
next
case If thus ?case by auto blast
qed fastforce+

The completeness proof proceeds along the same lines as the one for
partial correctness. First we have to strengthen our notion of weakest pre-
condition to take termination into account:

definition wpt :: com = assn = assn (<wpy>) where
wpr ¢ Q@ = (As. 3t (e,8) =t A Q1)

lemma [simp]: wp; SKIP Q = Q
by (auto introl: ext simp: wpt_def)

lemma [simp]: wp; (z ::=¢€) Q@ = (As. Q(s(z := aval e s)))
by (auto intro!: ext simp: wpt_ def)

lemma [simp]: wp; (c15502) Q = wpy c1 (wpg c2 Q)
unfolding wpt_ def

apply(rule ext)

apply auto

done

lemma [simp]:

wpy (IF'b THEN c¢1 ELSE ¢3) Q = (As. wpy (if bval b s then ¢ else c2) Q
s

)

apply(unfold wpt_def)

apply(rule ext)

apply auto

done

Now we define the number of iterations WHILE b DO c¢ needs to ter-
minate when started in state s. Because this is a truly partial function, we
define it as an (inductive) relation first:

inductive Its :: bexp = com = state = nat = bool where
Its 0: = bvalbs= ItsbcsO|
Its _Suc: [bval b s; (¢,8) = s’y Itsbcs'n] = Its b ¢ s (Suc n)

103

The relation is in fact a function:

lemma Its fun: Its b csn = Itsbcsn’' = n=n’'
proof (induction arbitrary: n' rule:Its.induct)
case Its (0 thus Zcase by(metis Its.cases)
next
case Its Suc thus ?case by(metis Its.cases big_step__determ)
qged

For all terminating loops, Its yields a result:

lemma WHILE Its: (WHILE b DO ¢,s) = t = 3n. Itsbcsn
proof (induction WHILE b DO c s t rule: big_step_induct)
case WhileFalse thus ?case by (metis Its_0)
next
case WhileTrue thus ?case by (metis Its Suc)
qed

lemma wpt_is_pre: by {wpr ¢ Q} ¢ {Q}
proof (induction ¢ arbitrary: Q)
case SKIP show ?case by (auto intro:hoaret.Skip)
next
case Assign show Zcase by (auto intro:hoaret. Assign)
next
case Seq thus ?case by (auto intro:hoaret.Seq)
next
case If thus ?case by (auto intro:hoaret.If hoaret.conseq)
next
case (While b c)
let 2w = WHILE b DO ¢
let 7T = 1Its b c
have 1: Vs. wpy 2w Q s — wpr w Q s A (In. Its b ¢ s n)
unfolding wpt_def by (metis WHILE__Its)
let R = An s’ wpy 2w Q s’ N (In'<n. 2T s' n')
have Vs. wpy 2w Q s A bval b s N ¢T s n — wps ¢ (R n) s for n
proof —
have wp; ¢ (R n) s if bval b s and ?T s n and (?w, s) = ¢t and Q t
for st
proof —
from <bval b s» and ¢(%w, s) = ¢» obtain s’ where
(¢,8) = s’ (?w,s’) = t by auto
from «(%w, s’) = t» obtain n’ where ?T s’ n’
by (blast dest: WHILE__Its)
with <bval b $» and (¢, s) = s"» have ?T s (Suc n') by (rule Its_Suc)
with «?T s n» have n = Suc n’ by (rule Its_fun)
with «(¢,s) = s» and «(?w,s") = » and «Q t» and «?T s’ n’

104

show ?thesis by (auto simp: wpt__def)
qged
thus ?thesis

unfolding wpt _def by auto

qed
note 2 = hoaret. While| OF strengthen_pre[OF this While.IH|]
have Vs. wps 2w Q s A = bval b s — @ s
by (auto simp add:wpt__def)
with 7 2 show ?case by (rule conseq)
qged

In the While-case, Its provides the obvious termination argument.
The actual completeness theorem follows directly, in the same manner
as for partial correctness:

theorem hoaret _complete: =, {P}c{Q} = F: {P}c{Q}
apply(rule strengthen_pre[OF __ wpt_is_pre])

apply(auto simp: hoare__tvalid__def wpt_def)
done

corollary hoaret_sound__complete: by {P}c{Q} +— ¢ {P}c{Q}
by (metis hoaret__sound hoaret__complete)

end

13.5.2 nat-Indexed Invariant

theory Hoare_Total EX
imports Hoare
begin

This is the standard set of rules that you find in many publications.
The While-rule is different from the one in Concrete Semantics in that the
invariant is indexed by natural numbers and goes down by 1 with every
iteration. The completeness proof is easier but the rule is harder to apply
in program proofs.

definition hoare tvalid :: assn = com = assn = bool

(= {(1)}/ L)/ {(1)}> 50) where
E. {P}c{Q} +— (Vs. Ps— (3t. (¢,s) =t A Q1))

inductive

/;loaret it assn = com = assn = bool (<t ({(1_)}/ (L)/ {(1_)})> 50)

105

Skip: + {P} SKIP {P} |
Assign: by {As. P(s[a/z])} z::=a {P} |
Seq: [{P1} e1 {Pa}; o {P2} c2 {Ps} | = ¢ {P1} cisiea {Ps} |

If: [y {Xs. P s A bval b s} c1 {Q}; Fe {As. Ps A — bval b s} co {Q}]
— +, {P} IF b THEN ¢, ELSE ¢; {Q} |

While:
[An:nat. = {P (Suc n)} ¢ {P n};
Vns. P(Sucn)s— bvalbs; ¥Vs.P0Os— = bval b s]
— b {Xs. 3n. Pn s} WHILE b DO ¢ {P 0} |

conseq: [Vs. P's — P s; b {P}c{Q}; Vs. Qs — Q's | =
Fe {P}e{ Q%

Building in the consequence rule:

lemma strengthen_ pre:
[Vs. P's — Ps b {P} c{Q}] =k {P} ¢ {Q}
by (metis conseq)

lemma weaken__post:

[Fe{Ptc{@Q) Vs. Qs — Q's] = H {P} c{Q"

by (metis conseq)

lemma Assign” Vs. P s — Q(s[la/z]) = F {P} z == a {Q}
by (simp add: strengthen_pre[OF __ Assign])

The soundness theorem:

theorem hoaret_sound: - {P}c{Q} = ki {P}c{Q}
proof (unfold hoare__tvalid__def, induction rule: hoaret.induct)
case (While P ¢ b)
have Pn s = 3t. (WHILE b DO ¢, s) =t NP Otforns
proof (induction n arbitrary: s)
case 0 thus ?case using While.hyps(3) WhileFalse by blast
next
case Suc
thus ?case by (meson While.IH While.hyps(2) WhileTrue)
qed
thus ?case by auto
next
case If thus ?case by auto blast
qed fastforce+

106

definition wpt :: com = assn = assn (<wpy>) where
wpr ¢ Q@ = (As. It (¢e,8) = t N Q1)

lemma [simp]: wp; SKIP Q = Q
by (auto introl: ext simp: wpt_def)

lemma [simp]: wp; (z ::= €) @ = (As. Q(s(z := aval e s5)))
by (auto introl: ext simp: wpt_def)

lemma [simp|: wp; (c155¢2) Q@ = wp ¢1 (wpy c2 Q)
unfolding wpt_def

apply(rule ext)

apply auto

done

lemma [simp):

wpy (IF b THEN ¢y ELSE ¢3) Q = (As. wpy (if bval b s then ¢y else ¢3) Q
s

)

apply (unfold wpt__def)

apply(rule ext)

apply auto

done

Function wpw computes the weakest precondition of a While-loop that
is unfolded a fixed number of times.

fun wpw :: bexp = com = nat = assn = assn where
wpwbc0Qs=(—bvalbs N Qs)|
wpw b ¢ (Sucn) Qs = (bval bs A (Fs (¢,8) = s’ A wpwbecn Qs'))

lemma WHILE Its: (WHILE b DO ¢,s) =t — Qt—=— 3In. wpwbcn
Qs
proof (induction WHILE b DO c s t rule: big_step__induct)
case WhileFalse thus Zcase using wpw.simps(1) by blast
next
case WhileTrue thus ?case using wpw.simps(2) by blast
qged

lemma wpt_is_pre: by {wpr ¢ Q} ¢ {Q}
proof (induction ¢ arbitrary: Q)

case SKIP show ?case by (auto intro:hoaret.Skip)
next

case Assign show Zcase by (auto intro:hoaret. Assign)

107

next
case Seq thus Zcase by (auto intro:hoaret.Seq)
next
case If thus ?case by (auto intro:hoaret.If hoaret.conseq)
next
case (While b c)
let 7w = WHILE b DO ¢
have c1: Vs. wp ?w Q s — (In. wpw b cn Q 3)
unfolding wpt_def by (metis WHILE__Its)
have c¢3: Vs. wpw b c 0 Q s — @ s by simp
have w2: Vn s. wpw b ¢ (Suc n) Q@ s — bval b s by simp
have w3: Vs. wpw b c 0 @Q s — — bval b s by simp
have -, {wpw b ¢ (Suc n) Q} ¢ {wpw b ¢ n Q} for n
proof —
have *: Vs. wpw b ¢ (Suc n) Q s — (It. (¢, s) =t ANwpwbecn Q1)
by simp
show ?thesis by(rule strengthen__pre[OF x While.IH[of wpw b ¢ n Q,
unfolded wpt__def]])
qed
from conseq[OF c1 hoaret. While| OF this w2 w3] ¢8|
show Zcase .
qged

theorem hoaret_complete: =y {P}c{Q} = +; {P}c{Q}
apply(rule strengthen__pre[OF __ wpt_is_pre])
apply(auto simp: hoare tvalid__def wpt_ def)

done

corollary hoaret__sound__complete: Fy {P}c{Q} +— = {P}c{Q}
by (metis hoaret__sound hoaret__complete)

Two examples:

lemma H;
{As. An. n = nat(s "z")}
WHILE Less (N 0) (V "z") DO "z" ©:= Plus (V "z") (N (—1))
{As. s "z < 0}
apply(rule weaken__post)
apply(rule While)
apply (rule Assign’)
apply auto
done

lemma +;

{As. In. n = nat(s "z")}

108

WHILE Less (N 0) (V "z")
DO ("z" == Plus (V "z") (N (—1));;
("y" =V Vg
WHILE Less (N 0) (V "y"") DO "y"" ::= Plus (V "y") (N (—1))))
{As. s "z < 0}
apply(rule weaken_ post)
apply(rule While)
defer
apply auto[3]
apply(rule Seq)
prefer 2
apply(rule Seq)
prefer 2
apply(rule weaken__post)
apply(rule_tac P = Am s. n = nat(s "z") A m = nat(s ""y") in While)
apply(rule Assign’)
apply auto[{]
apply(rule Assign)
apply(rule Assign’)
apply auto
done

end

13.6 Verification Conditions for Total Correctness
13.6.1 The Standard Approach

theory VCG_Total EX
imports Hoare Total EX
begin

Annotated commands: commands where loops are annotated with in-
variants.

datatype acom =
Askip (<SKIP») |
Aassign vname aexp («(_ == _)» [1000, 61] 61) |
Aseq acom acom («_3;/ _» 160, 61] 60) |
Aif bexp acom acom («(IF _/ THEN _/ ELSE _)> [0, 0, 61] 61) |
Awhile nat = assn bexp acom

(«({_}/ WHILE _/ DO _) [0, 0, 61] 61)

notation com.SKIP (<SKIP»)

Strip annotations:

109

fun strip :: acom = com where

strip SKIP = SKIP |

strip (x == a) = (z == a) |

strip (C13; C2) = (strip Cu; strip Ca) |

strip (IF'b THEN Cy ELSE C3) = (IF' b THEN strip C1 ELSE strip C3) |
strip ({_} WHILE b DO C) = (WHILE b DO strip C)

Weakest precondition from annotated commands:

fun pre :: acom = assn = assn where
pre SKIP @Q = Q|
pre (x == a) Q@ = (As. Q(s(z := aval a s))) |
pre (C13; C2) @ = pre C1 (pre C2 Q) |
pre (IF b THEN Cy ELSE Cs) Q =
(Xs. if bval b s then pre C1 @ s else pre Ca Q 8) |
pre ({I} WHILE b DO C) Q@ = (As. 3n. Ins)

Verification condition:

fun vc :: acom = assn = bool where
ve SKIP @) = True |
ve (x = a) Q = True |
ve (Ci;; C2) Q = (ve C1 (pre Co Q) A ve Co Q) |
ve (IF b THEN C1 ELSE C3) Q = (ve C1 Q A ve Co Q) |
ve ({I} WHILE b DO C) Q =
(Vsn. (I (Sucn)s— pre C (In)s)A
(I (Sucn)s— bval bs) A
(I0s— —bvalbs AN Qs) A
ve C (In))

lemma vc_sound: ve C Q@ = by {pre C Q} strip C {Q}
proof (induction C arbitrary: Q)
case (Awhile I b C)
show ?Zcase
proof (simp, rule conseq(OF _ While[of I]], goal cases)
case (2 n) show ?case
using Awhile.IH[of I n] Awhile.prems
by (auto intro: strengthen__pre)
qed (insert Awhile.prems, auto)
qed (auto intro: conseq Seq If simp: Skip Assign)

When trying to extend the completeness proof of the VCG for partial
correctness to total correctness one runs into the following problem. In
the case of the while-rule, the universally quantified n in the first premise
means that for that premise the induction hypothesis does not yield a single
annotated command C but merely that for every n such a C exists.

end

110

13.6.2 Hoare Logic for Total Correctness With Logical Variables

theory Hoare Total EX2
imports Hoare
begin

This is the standard set of rules that you find in many publications.
In the while-rule, a logical variable is needed to remember the pre-value
of the variant (an expression that decreases by one with each iteration).
In this theory, logical variables are modeled explicitly. A simpler (but not
quite as flexible) approach is found in theory Hoare Total EX: pre and
post-condition are connected via a universally quantified HOL variable.
type__synonym lvname = string
type_synonym assn2 = (lvname = nat) = state = bool

definition hoare tvalid :: assn2 = com = assn?2 = bool

(= {(1)}/ (L)) {(1) 50) where
E{P}c{Q} +— (Vls. Pls— (Ft. (¢,5) =t N QIYT))

inductive
hoaret :: assn2 = com = assn2 = bool (< ({(1_)}/ (L)/ {(1_)})» 50)
where

Skip: Fy {P} SKIP {P} |
Assign: by {Als. Pl (s[la/z])} z::=a {P} |
Seq: [B {P1} e1 {Pa}; ke {Pa} c2 {P3} | = ¢ {P1} caisser {Ps} |

If: [Fe {Als. Pls A bval b s} c1 {Q}; Fe {Als. Pls A = bval b s} co {Q}

I
— + {P} IF b THEN ¢, ELSE ¢ {Q} |

While:

[AL P (I = Suc(i(@)} ¢ {P)
Vis.lx>0NPls— bval b s;
Vis.le=0ANPls— —bval b s

= bty {Als. In. P (l(z:=n)) s} WHILE b DO ¢ {\ls. P (I(x := 0)) s}

|

conseq: [V1s. P'ls — Pls;FH {P}c{Q};Vis. Qls — Q' ls | =
F {Pe{ Q)
Building in the consequence rule:

lemma strengthen_ pre:

111

[Vis.P'ls— Pls; i {P} c{Q}] = H {P'} c{Q}
by (metis conseq)

lemma weaken__post:

[H {P} c{Q}; Vis. Qls — Q'ls] = k{P} c{Q'}

by (metis conseq)

lemma Assign” Vis. Pls — Q1 (sla/z]) = F {P} z == a {Q}
by (simp add: strengthen_pre[OF __ Assign])

The soundness theorem:

theorem hoaret_sound: - {P}c{Q} = k& {P}c{Q}
proof (unfold hoare__tvalid_def, induction rule: hoaret.induct)
case (While P x c b)
have [lz =n; Pls]| = 3t. (WHILE b DO ¢, s) =t A P (I(z := 0))
tfor nls
proof (induction n arbitrary: 1 s)
case 0 thus ?case using While.hyps(3) WhileFalse
by (metis fun__upd__triv)
next
case Suc
thus ?case using While.IH While.hyps(2) While True
by (metis fun_upd_same fun__upd_triv fun__upd_upd zero_less _Suc)
qed
thus ?case by fastforce
next
case If thus ?case by auto blast
qed fastforce+

definition wpt :: com = assn2 = assn2 (<wpy>) where
wpr ¢ Q@ = (Mls. It (e,8) =t N QL)

lemma [simp]: wp; SKIP Q = Q
by (auto introl: ext simp: wpt_def)

lemma [simp]: wp; (z =€) Q@ = (Al s. Q1 (s(xz := aval e s)))
by (auto introl: ext simp: wpt_def)

lemma wpt_Seq[simp|: wp; (c13;c2) Q = wpy c1 (wpr ca Q)
by (auto simp: wpt__def fun__eq__iff)

lemma [simp]:

wpy (IF b THEN ¢1 ELSE ¢3) Q = (Al s. wp (if bval b s then ¢ else c3)

112

Qls)
by (auto simp: wpt__def fun__eq__iff)

Function wpw computes the weakest precondition of a While-loop that
is unfolded a fixed number of times.

fun wpw :: bexp = com = nat = assn2 = assn2 where
wpwbec 0 Qls= (—bvalbs N QlS) |
wpw b ¢ (Sucn) Qls= (bvalbs A (Ts" (¢,8) = s’ A wpwben Qls'))

lemma WHILE Iis:
(WHILE b DO ¢,8) =t = Qlt = 3n. wpwbcn Qls
proof (induction WHILE b DO c s t arbitrary: [rule: big__step__induct)
case WhileFalse thus Zcase using wpw.simps(1) by blast
next
case WhileTrue show ?case
using wpw.simps(2) WhileTrue(1,2) WhileTrue(5)[OF WhileTrue(6)]
by blast
qged

definition support :: assn2 = string set where
support P = {z. 311 12s. Vy.y#x — lly=12y) NPll s# PIl2s}

lemma support_wpt: support (wp; ¢ Q) C support Q
by (simp add: support_def wpt__def) blast

lemma support _wpw0: support (wpw b ¢ n Q) C support Q
proof (induction n)
case (show ?Zcase by (simp add: support_def) blast
next
case Suc
have 1: support (Al s. A s AN Bls) C support B for A B
by (auto simp: support_def)
have 2: support (Al s. 3s’. A ss' AN Bls') C support B for A B
by (auto simp: support_def) blast+
from Suc 1 2 show ?Zcase by simp (meson order_trans)
qed

lemma support_wpw_Un:
support (%l. wpw b ¢ (1 z) Q1) C insert x (UN n. support(wpw b ¢ n Q))
using support_wpwO[of b ¢ _ Q)
apply(auto simp add: support_def subset_iff)
apply metis
apply metis

113

done

lemma support_wpw: support (%l. wpw b ¢ (I z) Q1) C insert x (support
Q)

using support_wpw0[of b ¢ _ Q] support_wpw_Unlof b ¢ _ Q)]

by blast

lemma assn2_lupd: = ¢ support @ = Q (I(z:=n)) = Q1
by (simp add: support_def fun__upd_other fun__eq iff)
(metis (no__types, lifting) fun__upd_ def)

abbreviation new @ = SOME x. x ¢ support Q

lemma wpw_lupd: © ¢ support Q — wpw b cn Q (I(z := u)) = wpw b ¢

nQl
by (induction n) (auto simp: assn2_lupd fun__eq iff)

lemma wpt_is_pre: finite(support Q) = F {wp; ¢ Q} ¢ {Q}
proof (induction ¢ arbitrary: Q)
case SKIP show ?case by (auto intro:hoaret.Skip)
next
case Assign show Zcase by (auto intro:hoaret. Assign)
next
case (Seq c1 c2) show ?case
by (auto intro:hoaret.Seq Seq finite__subset| OF support__wpt))
next
case If thus ?case by (auto intro:hoaret.If hoaret.conseq)
next
case (While b c)
let %z = new @
have Jz. z ¢ support @ using While.prems infinite_ UNIV_list]
using ex_new_if finite by blast
hence [simp|: 7z ¢ support Q by (rule somel _ex)
let w = WHILE b DO ¢
have fsup: finite (support (Al. wpw b ¢ (I z) Q1)) for z
using finite_subset|OF support_wpw| While.prems by simp
have c1:Vis wp 7w Qls — (In. wpwben Qls)
unfolding wpt_def by (metis WHILE__Its)
have c¢2:Vis. l %2 =0 ANwpwbc (l %) Qls— — bval b s
by (simp cong: conj__cong)
have w2: Vis. 0 <1 % Nwpwbec(l%)Qls— bval b s
by (auto simp: gr0_conv_Suc cong: conj__cong)
have 1: VIs. wpw b ¢ (Suc(l %x)) Qls —
(3t. (¢,) =t ANwpw b c (I %z) Q1)

114

by simp
have *: b {Al. wpw b ¢ (Suc (I %z)) Q I} ¢ {\. wpw b c (I ?z) Q I}
by (rule strengthen__pre[OF 1
While. IH[of Al. wpw b ¢ (I ?z) Q I, unfolded wpt_def, OF fsup]])
show Zcase
apply (rule conseq|OF __ hoaret. While[OF __ w2 c2]])
apply (simp__all add: c1 * assn2_lupd wpw_lupd del: wpw.simps(2))
done
ged

theorem hoaret_complete: finite(support Q) = = {P}c{Q} = F+ {P}c{Q}
apply(rule strengthen__pre[OF __ wpt_is_pre])

apply(auto simp: hoare tvalid__def wpt_ def)

done

Two examples:

lemma H;

{A s. 1 "z" = nat(s "z")}

WHILE Less (N 0) (V "z') DO "z"" ::= Plus (V "z") (N (—1))

{Als. s"z" < 0}

apply(rule conseq)

prefer 2

apply(rule While[where P = Al s. | ""z" = nat(s "z') and z = "z"))
apply(rule Assign’)
apply auto

done

lemma H;
{A s. 1 "z" = nat(s "z")}
WHILE Less (N 0) (V "z")
DO ("z" ::= Plus (V "z") (N (—1));;
("y" w=V "z
WHILE Less (N 0) (V "y"") DO "y" ©:= Plus (V "y") (N (=1))))
{Als. sz <0}
apply(rule conseq)
prefer 2
apply(rule While[where P = Al s. | ""z" = nat(s "z") and =z = "z"))
defer
apply auto
apply(rule Seq)
prefer 2
apply(rule Seq)
prefer 2
apply(rule weaken__post)

115

apply(rule_tac P = Xl s. 1 "z" = nat(s "z"") A1 ""y" = nat(s ""y") and

z = "y" in While)

apply(rule Assign’)

apply auto[{]
apply(rule Assign)
apply(rule Assign’)
apply auto
done

end

13.6.3 VCG for Total Correctness With Logical Variables

theory VCG_Total EX2
imports Hoare_ Total EX2
begin

Theory VCG_Total _EX conatins a VCG built on top of a Hoare logic
without logical variables. As a result the completeness proof runs into a
problem. This theory uses a Hoare logic with logical variables and proves
soundness and completeness.

Annotated commands: commands where loops are annotated with in-
variants.

datatype acom =
Askip (<SKIP») |
Aassign vname aexp («(_ == _)» [1000, 61] 61) |
Aseq acom acom («_3;/ _» [60, 61] 60) |
Aif bexp acom acom («(IF _/ THEN _/ ELSE)» [0, 0, 61] 61) |
Awhile assn2 lvname bexp acom
(«({_'/_}/ WHILE _/ DO _)> |0, 0, 0, 61] 61)

notation com.SKIP (<SKIP»)

Strip annotations:

fun strip :: acom = com where

strip SKIP = SKIP |

strip (x == a) = (z == a) |

strip (C13; C2) = (strip C13; strip C3) |

strip (IF'b THEN Cy ELSE C3) = (IF' b THEN strip C1 ELSE strip C3) |
strip ({_/_} WHILE b DO C) = (WHILE b DO strip C)

Weakest precondition from annotated commands:

fun pre :: acom = assn2 = assn2 where
pre SKIP @ = @Q |

116

pre (x 2= a) Q@ = (Als. QI (s(z := aval a s))) |
pre (C1;; C2) Q = pre C1 (pre C2 Q) |
pre (IF b THEN Cy ELSE C3) Q =
(Als. if bval b s then pre C1 Q s else pre Cy Q1) |
pre ({I/xz} WHILE b DO C) Q = (Al's. 3n. I (I(z:=n)) s)

Verification condition:

fun vc :: acom = assn2 = bool where
ve SKIP @ = True |
ve (z := a) Q = True |
ve (Crs; Ca) Q = (ve C1 (pre Co Q) A ve Co Q) |
(e ([F b THEN Ci ELSE CQ) Q = (UC Ci1 Q N ve Cq Q) ’
¢ ({I/z} WHILE b DO C) Q =
(Vis. (I (l(z:=Suc(lz)))s— pre C1ls) A
(las>0/\]ls—>bvalbs)/\
(I ((x:=0))s— —bvalbs N Q1ls) A
ve C' 1)

v

lemma vc_sound: ve C Q = b {pre C Q} strip C {Q}
proof (induction C arbitrary: Q)
case (Awhile I z b C)
show ?case
proof (simp, rule weaken__post|OF While[of I x||, goal__cases)
case 1 show ?Zcase
using Awhile.IH[of I| Awhile.prems by (auto intro: strengthen__pre)
next
case & show “case
using Awhile.prems by (simp) (metis fun__upd_triv)
qed (insert Awhile.prems, auto)
qed (auto intro: conseq Seq If simp: Skip Assign)

Completeness:

lemma pre_mono:

Vis.Pls — P'ls= pre CPls=— pre CP'ls
proof (induction C arbitrary: P P’ 1 s)

case Aseq thus ?case by simp metis
qed simp__all

lemma vec _mono:

Vis.Pls — P'ls=— vc CP = vc CP'
proof (induction C arbitrary: P P’)

case Aseq thus ?case by simp (metis pre_mono)
qed simp_all

117

lemma vc__complete:
Fe {P}c{Q} = 3C. strip C =cNvcC QAN (Vls. Pls— pre C Q1
s
)
(is_ = 3C.?GPcQQC)
proof (induction rule: hoaret.induct)
case Skip
show Zcase (is 3C. ?2C ()
proof show ?C Askip by simp qed
next
case (Assign P a 1)
show Zcase (is 3C. ?2C ()
proof show ?C(Aassign z a) by simp qed
next
case (Seq P c1 Q ¢2 R)
from Seq.IH obtain C1 where ih1: ?G P c1 () C1 by blast
from Seq.IH obtain C2 where ih2: ?G () c2 R C2 by blast
show Zcase (is 3C. 7C C)
proof
show ?C(Aseq C1 C2)
using ih1 ih2 by (fastforce elim!: pre_mono vc_mono)
qed
next
case (If P b cl @Q c2)
from If.IH obtain C1 where ih1: ?G (Al s. P1ls A bval b s) c1 Q C1
by blast
from If.IH obtain C2 where ih2: ?G (AMls. Pls A —bval b s) c2 Q C2
by blast
show Zcase (is 3C. 7C ()
proof
show ?C(Aif b C1 C2) using ih1 ih2 by simp
qged
next
case (While P x c b)
from While.IH obtain C where
ih: 2G (Al's. P (l(z:=Suc(l x))) s A bval b s) ¢ P C
by blast
show Zcase (is 3C. 7C ()
proof
have ve ({P/z} WHILE b DO C) (Al. P (I(z := 0)))
using th While.hyps(2,3)
by simp (metis fun__upd_same zero_less_Suc)
thus ?C(Awhile P x b C) using ih by simp
qed
next

118

case conseq thus Zcase by(fast elim!: pre_mono vc_mono)
qged

Two examples:

lemma vci: ve

({\ls. 1 "z" = nat(s "z") / "'y WHILE Less (N 0) (V "z'"y DO "z"
= Plus (V "2") (N (—1)))

(Al s. s "z" < 0)

by auto

thm vc_sound[OF vcl, simplified]

lemma vc2: ve
({\ls. 12" = nat(s "z") | "z'"y WHILE Less (N 0) (V "z")
DO ("z" ::= Plus (V "z") (N (=1));;
(//y// e V //x//;;
{)\l s. l //1:// — nat(s H.T”) /\ l //y// — nat(s //y//) / //y//}
WHILE Less (N 0) (V "y") DO "y" ::= Plus (V "y") (N (—1)))))
(A s. sz < 0)
by auto

thm vc_sound[OF vc2, simplified]

end

14 Abstract Interpretation

14.1 Complete Lattice

theory Complete Lattice
imports Main
begin

locale Complete Lattice =

fixes L :: 'a::order set and GIb :: 'a set = 'a

assumes Glb _lower: ACL=—ac€¢ A=— GlbA<a
and GIlb_greatest: be L= VacA. b<a=b< Glb A
and Gib_in . ACL— GlbA€L

begin

definition Ifp :: (‘a = ’a) = 'a where
Ifpf=Glb{a: L fa<a}

lemma index_Ifp: ifp f € L

119

by (auto simp: lfp__def intro: Glb_in_ L)

lemma Ifp_ lowerbound:
[a€el; fa<a]=lfpf<a
by (auto simp add: Ifp__def intro: Glb__lower)

lemma Ifp_ greatest:
flacel; NuJuelifu<u]=a<u]=a<lpf
by (auto simp add: lfp__def intro: Glb__greatest)

lemma Ifp_ unfold: assumes \z. fr € L +— z € L
and mono: mono f shows Ifp f = f (Ifp f)
proof—
note assms(1)[simp] index_lfp[simp]
have 1: f (Ifp f) < Ufp |
apply(rule Ifp__greatest)
apply simp
by (blast intro: Ifp_lowerbound monoD[OF mono| order _trans)
have Ifp f < f (ifp f)
by (fastforce intro: 1 monoD[OF mono] Ifp_ lowerbound)
with 7 show ?thesis by(blast intro: order _antisym)
qged

end

end

14.2 Annotated Commands

theory ACom
imports Com
begin

datatype 'a acom =
SKIP 'a (<SKIP {_}» 61) |
Assign vname aexp 'a («(_==_/4{_})» [1000, 61, 0] 61) |
Seq ('a acom) ('a acom) («_3// > [60, 61] 60) |
If bexp 'a ("a acom) 'a ("a acom) 'a
| Uar J TREN ()])] ELSE (L) DA 10,0,0.61.0
0] 61

While 'a bexp 'a ('a acom) 'a

(«({3//WHILE _//DO ({_}//)//{_})» [0, 0,0, 61, 0] 61)

notation com.SKIP (<SKIP»)

120

fun strip :: ‘a acom = com where
strip (SKIP {P}) = SKIP |
strip (x == e {P}) =z == e |
strip (C1;;C2) = strip Cy;; strip Co |
strip (IF b THEN {P1} Cy ELSE {Ps} Cs {P}) =
IF b THEN strip C1 ELSE strip Cy |
strip ({I} WHILE b DO {P} C {Q}) = WHILE b DO strip C

fun asize :: com = nat where

asize SKIP = 1 |

asize (x == ¢) = 1 |

asize (C1;;C2) = asize Cq1 + asize Cq |

asize (IF b THEN Cy ELSE C3) = asize C1 + asize Cy + 3 |
asize (WHILE b DO C) = asize C + 3

definition shift :: (nat = 'a) = nat = nat = 'a where
shift fn = (Ap. f(p+n))

fun annotate :: (nat = 'a) = com = 'a acom where
annotate f SKIP = SKIP {f 0} |
annotate f (x == ¢€) =x == e {f 0} |
annotate f (c1;;¢2) = annotate f c1;; annotate (shift f (asize ¢1)) ¢ |
annotate f (IF b THEN ¢y ELSE c3) =
IF b THEN {f 0} annotate (shift f 1) c1
ELSE {f(asize c1 + 1)} annotate (shift f (asize c1 + 2)) c2
{f(asize c1 + asize ca + 2)} |
annotate f (WHILE b DO ¢) =
{f0} WHILE b DO {f 1} annotate (shift f 2) ¢ {f(asize ¢ + 2)}

fun annos :: 'a acom = 'a list where
annos (SKIP {P}) = [P] |
annos (z = e {P}) = [P] |
annos (C1;;Cq) = annos C1 Q annos Co |
annos (IF b THEN {P;} Cy ELSE {Py} C {Q}) =
Py # annos C1 @ Py # annos Cy @ [Q] |
annos ({I} WHILE b DO {P} C {Q}) =1 # P # annos C Q [()]
definition anno :: 'a acom = nat = ’'a where
anno C p = annos C'! p

definition post :: ‘a acom ='a where

post C' = last(annos C)

fun map_acom :: ('a = 'b) = 'a acom = 'b acom where
map__acom f (SKIP {P}) = SKIP {f P} |

map__acom f (x = e {P}) =z == e {f P} |

121

map__acom f (Cy;;C2) = map__acom f C1;; map_acom f Co |
map__acom f (IF'b THEN {P1} C1 ELSE {P2} Cy {Q}) =
IF b THEN {f P1} map_acom f C1 ELSE {f P2} map_acom f C,
{f ot
map__acom f ({I} WHILE b DO {P} C {Q}) =
{fI} WHILE b DO {f P} map_acom f C {f Q}

lemma annos_ne: annos C # ||
by (induction C) auto

lemma strip__annotate[simp]: strip(annotate f ¢) = ¢
by (induction c arbitrary: f) auto

lemma length__annos__annotate[simp|: length (annos (annotate f c)) = asize
c
by (induction c arbitrary: f) auto

lemma size _annos: size(annos C) = asize(strip C)
by (induction C)(auto)

lemma size_annos_same: strip C1 = strip C2 = size(annos C1) =
size(annos C2)

apply(induct C2 arbitrary: C1)

apply(case_tac C1, simp__all)+

done

lemmas size__annos_same2 = eqTruel [OF size__annos__same]

lemma anno__annotate[simp|: p < asize ¢ => anno (annotate fc) p = fp
apply (induction ¢ arbitrary: f p)
apply (auto simp: anno__def nth__append nth__Cons numeral__eq_Suc shift_def
split: nat.split)
apply (metis add__Suc__right add__diff _inverse add.commute)
apply(rule_tac f=f in arg_cong)
apply arith
apply (metis less_Suc__eq)
done

lemma eq acom__iff strip__annos:
Cl1 = C2 +— strip C1 = strip C2 N annos C1 = annos C2
apply (induction C1 arbitrary: C2)
apply(case_tac C2, auto simp: size__annos__same2)+
done

122

lemma eq acom__iff strip__anno:
C1=C2 «— strip C1 = strip C2 A (¥ p<size(annos C1). anno C1 p =
anno C2 p)
by (auto simp add: eq_acom__iff _strip__annos anno__def
list_eq iff nth_eq size_annos_same2)

lemma post_map__acom|[simp|: post(map__acom f C) = f(post C)
by (induction C) (auto simp: post_def last_append annos_ne)

lemma strip__map__acom[simp]: strip (map__acom f C) = strip C
by (induction C) auto

lemma anno_map acom: p < size(annos C) = anno (map_acom f C)
p = f(anno C p)

apply(induction C arbitrary: p)

apply(auto simp: anno__def nth__append nth__Cons’ size_annos)

done

lemma strip__eq SKIP:
strip C = SKIP +— (3P. C = SKIP {P})
by (cases C) simp__all

lemma strip _eq Assign:
strip C = zu:=e «— (IP. C = zu:=e {P})
by (cases C) simp__all

lemma strip_eq Seq:

strip C = cl;;¢2 «+— (3C1 C2. C = C1;;C2 & strip C1 = ¢l & strip
C2 = c2)
by (cases C) simp__all

lemma strip_eq If:

strip C = IF b THEN c1 ELSE ¢2 +—

(3P1 P2 C1 C2 Q. C = IF b THEN {P1} C1 ELSE {P2} 02 {Q} &
strip C1 = c1 & strip C2 = ¢2)
by (cases C) simp__all

lemma strip _eq While:

strip C = WHILE b DO cl1 +—

(3IPC1Q. C={I} WHILE b DO {P} C1 {Q} & strip C1 = c1)
by (cases C) simp__all

lemma [simp]: shift (Ap. a) n = (Ap. a)
by (simp add:shift_def)

123

lemma set_annos_anno[simpl: set (annos (annotate (Ap. a) ¢)) = {a}
by (induction c) simp__all

lemma post_in__annos: post C € set(annos C)
by (auto simp: post_def annos_ne)

lemma post_anno__asize: post C = anno C (size(annos C) — 1)
by (simp add: post_def last_conv_nth[OF annos_ne] anno__def)

end

14.3 Collecting Semantics of Commands

theory Collecting
imports Complete_ Lattice Big Step ACom
begin

14.3.1 The generic Step function

notation
sup (infix] <L) 65) and
inf (infixl «7» 70) and
bot («L») and
top («<T»)

context
fixes f :: vname = aexp = 'a = 'a:sup
fixes g :: bexp = 'a = 'a
begin
fun Step :: '‘a = 'a acom = 'a acom where
Step S (SKIP {Q}) = (SKIP {S}) |
Step S (z = e {Q}) =
ru=¢e{fzeS}|
Step S (C1;; C2) = Step S C13;; Step (post C1) C2 |
Step S (IF b THEN {P1} C1 ELSE {P2} C2 {Q}) =
IF b THEN {g b S} Step P1 C1 ELSE {g (Not b) S} Step P2 C2
{post C1 U post C2} |
Step S ({I} WHILE b DO {P} C {Q}) =
{S U post C} WHILE b DO {g b I} Step P C {g (Not b) I}
end

lemma strip_ Step[simp|: strip(Step fg S C) = strip C
by (induct C arbitrary: S) auto

124

14.3.2 Annotated commands as a complete lattice

instantiation acom :: (order) order
begin

definition less _eq acom :: (‘a::order)acom = 'a acom = bool where
C1 < C2 «— strip C1 = strip C2 N (Vp<size(annos C1). anno C1 p <
anno C2 p)

definition less _acom :: 'a acom = 'a acom = bool where
less_acomzy = (z<yAN-y<uz)

instance
proof (standard, goal_cases)

case 1 show ?case by(simp add: less_acom,__def)
next

case 2 thus ?case by(auto simp: less_eq acom__def)
next

case 3 thus ?case by(fastforce simp: less_eq _acom__def size_annos)
next

case 4 thus ?case

by (fastforce simp: le__antisym less_eq acom__def size__annos
eq_acom__iff _strip__anno)

qged

end

lemma less _eq acom__annos:
Cl1 < C2 <— strip C1 = strip C2 A list_all2 (<) (annos C1) (annos
C2)
by (auto simp add: less_eq _acom__def anno__def list_all2_conv__all_nth size__annos__same2)

lemma SKIP_le[simp]: SKIP {S} < ¢ +— (35" ¢ = SKIP {S'} A S <
')

by (cases ¢) (auto simp:less_eq _acom__def anno__def)

lemma Assign_le[simp]: z := e {S} < c+— (S . c=zu=e{S}T A S
< 5)

by (cases ¢) (auto simp:less_eq acom__def anno__def)

lemma Seq_le[simp]: C1;;C2 < C +— (3C1' C2". C = C1';;C2' A C1 <
C1'AN C2 < C2)

apply (cases C)

apply (auto simp: less_eq _acom__annos list_all2_append size__annos_same2)

125

done

lemma If le[simp]: IF'b THEN {p1} C1 ELSE {p2} C2 {S} < C +—
(3p1’'p2' C1’' C2'S". C =1IF b THEN {p1'} C1' ELSE {p2'} C2'{S"}
AN
pl <pl'Ap2<p2'ANCI<C1'ANC2<C2'NS<S)
apply (cases C)
apply(auto simp: less_eq _acom__annos list_all2_append size__annos__same2)
done

lemma While le[simp]: {I} WHILE b DO {p} C {P} < W +—

3I'p' C'"P. W ={I"Yy WHILE b DO {p'} C'"{P} ANC < C'Ap<p’
NI <I'"ANP<P)
apply (cases W)
apply (auto simp: less_eq _acom__annos list_all2_append size__annos_same2)
done

lemma mono_post: C < C' = post C < post C’
using annos_nelof C']
by (auto simp: post_def less_eq acom__def last_conv_nth[OF annos_ne]
anno__def
dest: size__annos__same)

definition Inf acom :: com = ’'a::complete lattice acom set = 'a acom
where
Inf_acom ¢ M = annotate (Ap. INF CeM. anno C p) c

global__interpretation

Complete__Lattice {C. strip C = ¢} Inf _acom c for ¢
proof (standard, goal_cases)

case 1 thus ?case

by (auto simp: Inf _acom__def less _eq _acom__def size__annos intro:INF _lower)
next

case 2 thus ?case

by (auto simp: Inf _acom__def less_eq _acom__def size__annos intro:INF _greatest)
next

case 3 thus ?case by(auto simp: Inf _acom__def)
qed

14.3.3 Collecting semantics

definition step = Step (Ax e S. {s(z := aval e s) |s. s € S}) (Ab S. {s:S.
bval b s})

126

definition CS :: com = state set acom where
CS ¢ = lfp ¢ (step UNIV)

lemma mono2_Step: fixes C1 C2 :: 'a::semilattice_sup acom
assumes !lz e §51 52. 51 < 82 — fzxe Sl < fxeS2
Mo S152.51 <82 = gbS1 <gbs2
shows (1 < (2 = 51 < §2 = Step fg 51 C1 < Step fg S§2 C2
proof (induction S1 C1 arbitrary: C2 S2 rule: Step.induct)
case I thus ?case by(auto)

next

case 2 thus ?case by (auto simp: assms(1))
next

case 3 thus ?case by(auto simp: mono__post)
next

case / thus ?Zcase
by (auto simp: subset_iff assms(2))
(metis mono__post le__supll le__supl2)+
next
case 5 thus ?Zcase
by (auto simp: subset iff assms(2))
(metis mono__post le__supll le__supl2)+
qged

lemma mono2_step: C1 < C2 =—> S§1 C 52 — step S1 C1 < step S2 C2
unfolding step def by(rule mono2_Step) auto

lemma mono__step: mono (step S)
by (blast intro: monol mono2_step)

lemma strip_step: strip(step S C) = strip C
by (induction C arbitrary: S) (auto simp: step_def)

lemma Ifp _cs unfold: Ifp ¢ (step S) = step S (Ifp ¢ (step S))
apply(rule lfp_unfold[OF _ mono__step))

apply(simp add: strip__step)

done

lemma CS_unfold: CS ¢ = step UNIV (CS ¢)
by (metis CS_def Ifp__cs_unfold)

lemma strip_ CS|[simp)|: strip(CS ¢) = ¢
by (simp add: CS_def index_lfp[simplified])

127

14.3.4 Relation to big-step semantics

lemma asize_nz: asize(c::com) # 0
by (metis length__ 0 _conv length__annos__annotate annos_ne)

lemma post_Inf acom:

VCeM. strip C = ¢ = post (Inf _acom ¢ M) = () (post * M)
apply(subgoal_tac ¥ CeM. size(annos C) = asize c)

apply (simp add: post_anno__asize Inf _acom__def asize__nz neq0__conv[symmetric])
apply(simp add: size__annos)
done

lemma post_Ilfp: post(lfp ¢) = (({post C|C. strip C = c AN fC < C})
by (auto simp add: lfp__def post_Inf acom)

lemma big step_ post_step:
[(c,s)=t stripC=c; s€8; step SC<C]|=1t¢c postC
proof (induction arbitrary: C' S rule: big _step_induct)
case Skip thus ?case by(auto simp: strip_eq SKIP step__def post__def)
next
case Assign thus ?case
by (fastforce simp: strip_eq Assign step__def post__def)
next
case Seq thus ?case
by (fastforce simp: strip_eq Seq step__def post_def last_append an-
nos_ne)
next
case IfTrue thus ?case apply(auto simp: strip_eq If step_def post__def)
by (metis (lifting,full _types) mem__Collect _eq subsetD)
next
case IfFalse thus ?case apply(auto simp: strip__eq If step__def post__def)
by (metis (lifting,full _types) mem__Collect eq subsetD)
next
case (WhileTrue b s1 ¢’ s2 s3)
from WhileTrue.prems(1) obtain I P C' Q where C = {I} WHILE b
DO {P} C'{Q} strip C" = ¢’
by (auto simp: strip_eq_While)
from WhileTrue.prems(3) «C = _»
have step P C' < C' {s€ . bvalbs} <P S <1 step (post C') C < C
by (auto simp: step__def post__def)
have step {s € I. bval b s} C' < C’
by (rule order_trans[OF mono2_step[OF order _refl «{s € I. bval b s}
< Py] «step P C' < COh))
have s1 € {s€l. bval b s} using <s1 € S) «S C I» <bval b s1» by auto

128

note s2_in_post_C' = WhileTrue.IH(1)[OF <strip C' = ¢’y this <step
{sel. bval bs} C'< Ch]
from WhileTrue.IH(2)[OF While True.prems(1) s2_in__post_C’ <step (post

Cy C < Oy
show ?case .
next

case (WhileFalse b s1 ¢’) thus ?case
by (force simp: strip_eq While step__def post_ def)
ged

lemma big step Ifp: [(¢,s) = t; s€ S| =t € post(ifp ¢ (step S))
by (auto simp add: post_Ifp intro: big_step post_step)

lemma big_step CS: (¢,s) = t = t € post(CS c¢)
by (simp add: CS_def big_step_lfp)

end

14.4 A small step semantics on annotated commands

theory Collecting1
imports Collecting
begin

The idea: the state is propagated through the annotated command as
an annotation {s}, all other annotations are {}. It is easy to show that this
semantics approximates the collecting semantics.

lemma step preserves_le:
[step Secs=cs; 8"CS;es'<es] =
step S ¢s’ < cs

by (metis mono2_step)

lemma steps empty_preserves_le: assumes step S c¢s = cs
shows cs’ < ¢cs = (step {} ~ " n) ¢s’ < cs
proof (induction n arbitrary: cs’)
case 0 thus ?case by simp
next
case (Suc n) thus ?case
using Suc. IH[OF step__preserves__le|OF assms empty__subset] Suc.prems]|
by (simp add:funpow__swapl)
qged

definition steps :: state = com = nat = state set acom where

129

steps s ¢ n = ((step {}) "n) (step {s} (annotate (Ap. {}) ¢))

lemma steps approx_fiz_step: assumes step S cs = cs and s € §
shows steps s (strip c¢s) n < cs
proof—
let ?bot = annotate (Ap. {}) (strip cs)
have ?bot < cs by(induction cs) auto
from step_preserves_le[OF assms(1)__ this, of {s}] «s € S»
have 1: step {s} ?bot < cs by simp
from steps empty preserves_le[OF assms(1) 1]
show ?thesis by (simp add: steps__def)
qed

theorem steps approx_CS: steps s cn < CS ¢
by (metis CS_unfold UNIV_I steps__approx_fiz_step strip_ CS)

end

14.5 Collecting Semantics Examples
theory Collecting Fxamples

imports Collecting Vars

begin

14.5.1 Pretty printing state sets

Tweak code generation to work with sets of non-equality types:

lemma insert_code [code]: insert x (set xs) = set (z#xs)
and union__code [code]: set xs U A = fold insert xs A
by (simp__all add: union__set_fold)

Compensate for the fact that sets may now have duplicates:
definition compact :: 'a set = 'a set where

compact X = X

lemma [code|: compact(set zs) = set(remdups xs)
by (simp add: compact__def)
definition vars acom = compact o vars o strip

In order to display commands annotated with state sets, states must
be translated into a printable format as sets of variable-state pairs, for the
variables in the command:

definition show_acom :: state set acom = (vnamexval)set set acom where

130

show _acom C =
annotate (Ap. (As. (Az. (z, s x)) ‘ (vars_acom C)) ‘anno C p) (strip C)
14.5.2 Examples
definition c0 = WHILFE Less (V "z") (N 3)
DO "z" = Plus (V "z") (N 2)

definition C0 :: state set acom where C0O = annotate (Ap. {}) c0

Collecting semantics:

value show _acom (((step {<>}) 0) C0)
value show__acom (((step {<>}) "~ 1) C0)
value show acom (((step {<>}) ~ 2) C0)
value show__acom (((step {<>}) 3) C0)
value show__acom (((step {<>}) = 4) C0)
value show__acom (((step {<>}) 7 5) C0)
value show__acom (((step {<>}) 6) C0)
value show__acom (((step {<>}) 7) CO)
value show__acom (((step {<>}) 8) C0)

Small-step semantics:

value show_acom (((step {}) ~~0) (step {<>} C0))
value show_acom (((step {}) " 1) (step {<>} C0))
value show acom (((step {}) ~ 2) (step {<>} C0))
value show_acom (((step {}) ~— 3) (step {<>} C0))
value show acom (((step {}) ~ 4) (step {<>} C0))
value show_acom (((step {}) ~ 5) (step {<>} C0))
value show _acom (((step {}) ~ 6) (step {<>} C0))
value show_acom (((step {}) ~~ 7) (step {<>} C0))
value show _acom (((step {}) ~ 8) (step {<>} C0))

end

14.6 Abstract Interpretation Test Programs

theory Abs Int Tests
imports Com
begin

For constant propagation:
Straight line code:

definition test! const =
"y = N 7;;

131

"y = Plus (V "y") (N 2);
"y = Plus (V "z'") (N 0)

Conditional:

definition test2 const =
IF Less (N 41) (V "z'"y THEN "x" ::= N 5 ELSE "z" := N 5

Conditional, test is relevant:

definition test3 const =
I/ 123 e N42
IF Less (N 41) (V "z'"y THEN "x" ::= N 5 ELSE "z" := N 6

While:

definition test/ const =
"g! .= N 0;; WHILE Bc True DO "z" ::= N 0

While, test is relevant:

definition test5 const =
"g!" = N 0;; WHILE Less (V "z") (N 1) DO "z" ::= N 1

Iteration is needed:

definition test6__const =
// 12 e N 0 // 7. N 0 // // N 2
WHILE Less (V ”x”) (N 1) DO (” o=V Myl Ty =V R

For intervals:

definition test! wl =

// 1 e N /7”

IF Less (V "2y (V ""y"))

THEN "y ::= Plus (V "y") (V "&")
ELSE "x ” = Plus (V "2y (V "y"")

definition test2 vl =
WHILE Less (V "z'") (N 100)
DO "z" ::= Plus (V "z") (N 1)

definition test3 wl =

Hpll .o N 0:;

WHILE Less (V "z"") (N 100)
DO "z" ::= Plus (V "z") (N 1)

definition test/ vl =

"z = N 03 "y" = N 0;;

WHILE Less (V "z') (N 11)

DO ("z" = Plus (V "z") (N 1);; "y" ::= Plus (V "y"") (N 1))

132

definition test5 vl =

"y = N 03 "y" = N 0;;

WHILE Less (V "z") (N 100)

DO ("y" ==V "z Vg i= Plus (V "z") (N 1))

definition test6 wl =
Myl . N (-
WHILE Less (N (— 1)) (V "z") DO "z" ::= Plus (V "z"") (N 1)

end
theory Abs Int init
imports HOL— Library. While_ Combinator
HOL— Library. Extended
Vars Collecting Abs_Int_Tests
begin

hide__const (open) top bot dom — to avoid qualified names

end

14.7 Abstract Interpretation

theory Abs Int0
imports Abs Int init
begin

14.7.1 Orderings

The basic type classes order, semilattice__sup and order_top are defined in
Main, more precisely in theories HOL.Orderings and HOL. Lattices. 1f you
view this theory with jedit, just click on the names to get there.

class semilattice__sup_top = semilattice__sup + order_top

instance fun :: (type, semilattice__sup__top) semilattice__sup__top ..

instantiation option :: (order)order
begin

fun less _eq option where
Some x < Some y = (z < y) |
None < y = True |

Some < None = Fulse

133

definition less _option where z < (y::'a option) = (z < y A =y < 1)

lemma le_ None[simp]: (x < None) = (xz = None)
by (cases) simp__all

lemma Some_ le[simp]: (Some x < u) = (3y. u = Some y A z < y)
by (cases u) auto

instance
proof (standard, goal_cases)
case 1 show ?Zcase by(rule less_option__def)
next
case (2 z) show ?case by(cases x, simp_all)
next
case (3 = y z) thus ?case by(cases z, simp, cases y, simp, cases x, auto)
next
case (4 = y) thus Zcase by(cases y, simp, cases x, auto)
qged

end

instantiation option :: (sup)sup
begin

fun sup_option where

Some z LU Some y = Some(z U y) |
None Ll y =y |

z U None = x

lemma sup_ None2[simp|: © U None = z
by (cases) simp__all

instance ..
end

instantiation option :: (semilattice__sup_top)semilattice__sup__top
begin

definition top option where T = Some T

instance
proof (standard, goal_cases)

134

case (4 a) show ?Zcase by(cases a, simp__all add: top_option__def)
next

case (I z y) thus ?case by(cases x, simp, cases y, simp__all)
next

case (2 z y) thus Zcase by(cases y, simp, cases x, simp__all)
next

case (3 z y z) thus ?Zcase by(cases z, simp, cases y, simp, cases z,
simp__all)
ged

end

lemma [simp]: (Some © < Some y) = (z < y)
by (auto simp: less_le)

instantiation option :: (order)order_bot
begin

definition bot_option :: 'a option where
1 = None

instance
proof (standard, goal_cases)
case [thus ?case by(auto simp: bot__option__def)
qed
end
definition bot :: com = 'a option acom where

bot ¢ = annotate (Ap. None) ¢

lemma bot_least: strip C = ¢ = bot ¢ < C
by (auto simp: bot_def less_eq acom__def)

lemma strip__bot[simpl: strip(bot c) = ¢
by (simp add: bot__def)

14.7.2 Pre-fixpoint iteration

definition pfp :: (('a::order) = 'a) = 'a = 'a option where
pfp f = while_option (A\z. = fz < z) f

lemma pfp_pfp: assumes pfp f 0 = Some x shows fz < z

135

using while_option__stop[OF assms|[simplified pfp__def]] by simp

lemma while least:
fixes ¢ :: 'a::order
assumes VezelLVyel. 2 <y — fz < fyandVz.z € L — fzx € L
andVze L.b<zand b€ Land fg<qgand ¢q€ L
and while_option P f b = Some p
shows p < ¢
using while_option_rule[OF __ assms(7)[unfolded pfp__def],
where P = %z. z € L N z < ¢
by (metis assms(1—6) order_trans)

lemma pfp bot_least:

assumes Vze{C. strip C = c}Nye{C. strip C = c}. 2 <y — fz < fy

and VC. C € {C. strip C = ¢} — fC € {C. strip C = ¢}

and f C' < C' strip C' = ¢ pfp f (bot ¢) = Some C

shows C < C'

by (rule while_least|OF assms(1,2) __ assms(3) _ assms(5)[unfolded pfp_ def]])
(simp__all add: assms(4) bot_least)

lemma pfp_inv:
pfp fr = Some y = (A\z. Px = P(fz)) = Px = Py
unfolding pfp_def by (blast intro: while__option__rule)

lemma strip_ pfp:

assumes Az. g(fz) = g z and pfp f 20 = Some z shows g z = g 20
using pfp_inv[OF assms(2), where P = %z. g x = g 0] assms(1) by
stmp

14.7.3 Abstract Interpretation

definition v_ fun :: ('a = 'b set) = (‘¢ = ’a) = (‘c = 'b)set where
v_funy F ={f.Va. fz € y(F z)}

fun v_ option :: ('a = 'b set) = 'a option = 'b set where
~__option vy None = {} |
v__option v (Some a) = v a
The interface for abstract values:

locale Val semilattice =
fixes v :: ‘av::semilattice__sup top = wval set

assumes mono_gamma: ¢ < b= v a <~yb

and gamma__Top[simp]: v T = UNIV
fixes num’ :: val = 'av

136

and plus’ :: 'av = 'av = 'av
assumes gamma_num’: i € y(num’ i)
and gamma_plus” il € v al = i2 € v a2 = i1+1i2 € y(plus’ al a2)

type__synonym ‘av st = (vname = 'av)

The for-clause (here and elsewhere) only serves the purpose of fixing the
name of the type parameter ‘av which would otherwise be renamed to ‘a.

locale Abs Int fun = Val semilattice where y=-
for ~y :: 'av::semilattice__sup_top = wval set
begin

fun aval’ :: aexp = ’av st = 'av where
aval’ (N i) S = num' i |

aval’ (Vz) S =Sz |
aval’ (Plus al a2) S = plus’ (aval’ a1 S) (aval’ a2 S)

definition asem x e S = (case S of None = None | Some S = Some(S(z
= aval’ e 5)))

definition step’ = Step asem (\b S. S)

lemma strip_step’[simp]: strip(step’ S C) = strip C
by (simp add: step’_def)

definition Al :: com = 'av st option acom option where
Al ¢ = pfp (step’ T) (bot ¢)

abbreviation v, :: ‘av st = state set
where v; == v_ fun v

abbreviation 7, :: ‘av st option = state set
where v, == ~v_ option s

abbreviation 7. :: ‘av st option acom = state set acom
where v, == map__acom ~,

lemma gamma_s_Top[simp]: vs T = UNIV
by (simp add: top_fun_def v_ fun_ def)

lemma gamma_o_ Top[simp|: v, T = UNIV
by (simp add: top__option__def)

137

lemma mono_gamma_s: f1 < f2 = ~, f1 C v f2
by (auto simp: le_fun__def ~v_ fun__def dest: mono__gamma)

lemma mono__gamma__o:
S1 < 852 = v, 851 C~, 52
by (induction S1 S2 rule: less_eq__option.induct)(simp__all add: mono__gamma__s)

lemma mono_gamma_c: C1 < C2 = . C1 < v, C2
by (simp add: less_eq_acom__def mono__gamma__o size__annos anno__map__acom
size__annos__samelof C1 C2])

Correctness:

lemma aval’_correct: s € vs S = aval a s € y(aval’ a S)
by (induct a) (auto simp: gamma_ num’' gamma_ plus’ v fun_ def)

lemma in__gamma_update: [s € 75 S; i € v a] = s(z = 1) € v5(S(z
= a)
by (simp add: ~v__fun__def)

lemma gamma_ Step subcomm:

assumes Az e S. flze (v, 5) Cv (f2zeS) NbS. g1b (v S) <
(92 b 5)

shows Step f1 g1 (7o S) (ve C) < 7 (Step f2 g2 S C)
by (induction C arbitrary: S) (auto simp: mono__gamma_ o assms)

lemma step_step”: step (v, S) (7. C) < 7. (step” S C)
unfolding step def step’ def
by (rule gamma_ Step subcomm)
(auto simp: aval’_correct in__gamma__ update asem.__def split: option.splits)

lemma Al correct: Al ¢ = Some C — CS ¢ < . C
proof (simp add: CS_def AL def)
assume 1: pfp (step’ T) (bot ¢) = Some C
have pfp”: step’ T C < C by(rule pfp_pfp|OF 1])
have 2: step (7, T) (7e C) < 7. C — transfer the pfp’
proof (rule order_trans)
show step (7o T) (7e C) < 7e (step” T C) by(rule step__step’)
show ... < 7. C by (metis mono__gamma__c[OF pfp'])
qed
have 3: strip (7. C) = ¢ by(simp add: strip_pfp[OF _ 1] step’_def)
have Ifp ¢ (step (70 T)) <. C
by (rule Ifp__lowerbound|simplified,where f=step (v, T), OF 8 2])
thus Ifp ¢ (step UNIV) < ~. C by simp
qed

138

end

14.7.4 Monotonicity

locale Abs Int_fun_mono = Abs_Int_fun +
assumes mono_plus”: al < bl = a2 < b2 = plus’ al a2 < plus’ b1 b2
begin

lemma mono_aval: S < S' = aval’ ¢ S < aval’ e S’
by (induction e)(auto simp: le_fun__def mono__plus’)

lemma mono_update: a < o' = 5§ < §' = S(z := a) < §'(z := a)
by (simp add: le_fun__def)

lemma mono_step”: S1 < §2 — C1 < C2 = step’ S1 C1 < step’ S2
c2
unfolding step’ def
by (rule mono2_Step)
(auto simp: mono__update mono__aval’ asem__def split: option.split)

lemma mono_step’ top: C < C' = step’ T C < step’ T C’
by (metis mono__step’ order__refl)

lemma Al least_pfp: assumes Al ¢ = Some C step’ T C' < C’ strip C’

=c

shows C < (C'

by (rule pfp__bot_least{OF __ _ assms(2,3) assms(1)[unfolded AL _def]])
(simp__all add: mono__step’_top)

end

instantiation acom :: (type) vars

begin

definition vars acom = vars o strip

instance ..

end

lemma finite Cwars: finite(vars(C::'a acom))
by (simp add: vars_acom__def)

139

14.7.5 Termination

lemma pfp termination:
fixes z0 :: 'a::order and m :: 'a = nat
assumes mono: Nz y. [t = [y =z < y= faz < fy
and m: N\zy. [o = Iy=2x<y= mz>my
and I: Az y. Iz = I(fz) and [20 and z0 < f 0
shows Jz. pfp f 20 = Some x
proof (simp add: pfp__def, rule wf_while_option__Some[where P = %x. I
z & v < fu])
show wf {(y,z). (Iz ANz <fa)AN-fz<zx)ANy=fz}
by (rule wf _subset[OF wf _measure[of m]]) (auto simp: m I)
next
show I 20 A z0 < f 20 using <I 20> <z0 < f z0> by blast
next
fix z assume [z Az < fz thus I(fz) A fz < f(fz)
by (blast intro: I mono)
ged

lemma le_iff le _annos: C1 < C2 +—
strip C1 = strip C2 N (V i<size(annos C1). annos C1 ! i < annos C2 !
i)

by (simp add: less_eq acom__def anno__def)

locale Measurel fun =
fixes m :: ‘av::top = nat
fixes h :: nat

assumes h: mxz < h
begin

definition m_ s :: ‘av st = vname set = nat (¢ms») where
m_ sSX=0ze X m(Sx))

lemma m_s h: finite X = m_sS X < h * card X
by (simp add: m__s_def) (metis mult.commute of _nat_id sum__bounded__above] OF

h])

fun m_ o :: ‘av st option = vname set = nat (¢m,>) where
m_o (Some S) X =m_s S X |

m_o None X = h x card X + 1

lemma m_o_h: finite X = m_o opt X < (hxcard X + 1)
by (cases opt)(auto simp add: m_s_h le_Sucl dest: m_s_h)

140

definition m__c :: 'av st option acom = nat (¢m.>) where
m_c C = sum_list (map (Aa. m_o a (vars C)) (annos C))

Upper complexity bound:

lemma m_c¢_h: m_c C < size(annos C) * (h * card(vars C) + 1)
proof—
let ?X = vars C let n = card ?X let %a = size(annos C)
have m_c¢ C = ()] i<?a. m_o (annos C'! i) ?X)
by (simp add: m__c_def sum__list_sum__nth atLeastOLessThan)
also have ... < (> i<%a. h x n + 1)
apply(rule sum_mono) using m__o_h|OF finite_Cvars| by simp

also have ... = %a x (h * ?n + 1) by simp
finally show ?thesis .

qged

end

locale Measure_fun = Measurel fun where m=m
for m :: 'av::semilattice _sup top = nat +

assumes m2: r < Yy = mz > my

begin

The predicates top__on_ty a X that follow describe that any abstract
state in @ maps all variables in X to T. This is an important invariant for
the termination proof where we argue that only the finitely many variables
in the program change. That the others do not change follows because they
remain T.

fun top_on_ st :: 'av st = vname set = bool (<top’ _ong>) where
top_on_stS X =VzeX. Sz=T)

fun top_on_opt :: ‘av st option = vname set = bool (<top’_on,>) where
top__on__opt (Some S) X = top_on_st S X |
top__on__opt None X = True

definition top__on__acom :: 'av st option acom = vname set = bool (<top’_on.>)
where

top_on_acom C X = (Va € set(annos C). top_on_opt a X)

lemma top_on_top: top_on_opt T X
by (auto simp: top__option__def)

lemma top_on_bot: top__on__acom (bot ¢) X
by (auto simp add: top__on__acom__def bot__def)

141

lemma top__on_post: top_on_acom C X = top__on__opt (post C') X
by (simp add: top__on__acom__def post_in__annos)

lemma top_ on_acom__simps:

top__on_acom (SKIP {Q}) X = top_on_opt Q X

top_on_acom (z == e {Q}) X = top_on_opt Q X

top_on__acom (C1;;C2) X = (top_on_acom C1 X A top_on_acom C2
X)

top_on_acom (IF b THEN {P1} C1 ELSE {P2} C2 {Q}) X =

(top_on_opt P1 X A top_on_acom C1 X A top_on_opt P2 X A

top_on_acom C2 X A top_on_opt Q X)

top_on_acom ({I} WHILE b DO {P} C {Q}) X =

(top_on_opt I X A top_on_acom C X A top_on_opt P X A top_on_opt
Q X)
by (auto simp add: top__on__acom__def)

lemma top_ on_ sup:
top_on_opt o1 X = top_on_opt 02 X = top_on_opt (0ol U 02) X
apply (induction o1 02 rule: sup__option.induct)

apply(auto)
done

lemma top on_Step: fixes C :: 'av st option acom
assumes !lz e S. Jtop_on_opt S X; x ¢ X; vars e C —X]| = top__on_opt
(fzeS) X

6 S. top_on_opt S X = vars b C —X = top_on_opt (¢b S) X
shows [vars C C —X; top_on_opt S X; top_on_acom C X | = top__on__acom
(Step fg S C) X
proof (induction C arbitrary: S)
qed (auto simp: top__on__acom__simps vars__acom__def top__on__post top__on__sup
assms)

lemma mi: 2 <y= mz>my
by (auto simp: le_less m2)

lemma m_s2 rep: assumes finite(X) and S1 = S2 on —X and Vz. SI
z < 82z and SI # 52
shows (> zeX. m (S212)) < O_zeX. m (S1 x))
proof—
from assms(3) have 1: VzeX. m(S1 z) > m(S2 z) by (simp add: m1)
from assms(2,3,4) have Jz€X. S1 z < S2z
by (simp add: fun__eq iff) (metis Compl_iff le_neq trans)
hence 2: 3zeX. m(S1 z) > m(S2 z) by (metis m2)

142

from sum__strict_mono__ex1[OF <finite X» 1 2]
show (> zeX. m (S2z)) < D zeX. m (S1 z)) .
qed

lemma m_s2: finite(X) = S1 = S2 on —X = S1 < S2 = m_s S1
X>m s5852X

apply(auto simp add: less_fun__def m__s_def)

apply(simp add: m_s2_rep le_fun__def)

done

lemma m_o02: finite X = top_on_opt ol (—X) = top_on_opt 02
(—X) =

0l <02 =—=m ool X >m 002X
proof (induction o1 02 rule: less_eq option.induct)

case [thus ?case by (auto simp: m__s2 less_option__def)
next

case 2 thus ?case by(auto simp: less__option__defle_imp_less_Suc m_s_h)
next

case 3 thus ?case by (auto simp: less _option__def)
ged

lemma m_ol: finite X = top_on_opt ol (—X) = top_on_opt 02
(—X) =

0l <02 =—=m o0l X>m 002X
by (auto simp: le_less m_02)

lemma m__c2: top_on_acom C1 (—vars C1) = top__on__acom C2 (—vars
C2) =

Cl<(C2=—m cCl>m cC2
proof (auto simp add: le_iff le_annos size_annos__same[of C1 C2] vars_acom__def
less__acom__def)

let X = vars(strip C2)

assume top: top_on_acom C1 (— vars(strip C2)) top_on_acom C2 (—
vars(strip C2))

and strip_eq: strip C1 = strip C2

and 0: Vi<size(annos C2). annos C1 ! i < annos C2 ! i

hence 1:Vi<size(annos C2). m_o (annos C1! i) ?X > m_o (annos C2
li) 2X

apply (auto simp: all_set__conv__all_nth vars_acom__def top__on__acom__def)

by (metis (lifting, no__types) finite__cvars m__ol size_annos__same2)

fix 7 assume i: i < size(annos C2) = annos C2 ! i < annos C1 ! i

have topol: top_on_opt (annos C1 ! i) (— ?X)

using i(1) top(1) by(simp add: top__on__acom__def size__annos_same[OF

143

strip__eq)
have topo2: top_on_opt (annos C2 ! i) (— ?X)
using i(1) top(2) by(simp add: top_on__acom__def size_annos__same| OF
strip__eq))
from ¢ have m_o (annos C1 ! i) ?X > m_o (annos C2 ! ¢) ?X (is ?P
i)
by (metis 0 less_option__def m__02[OF finite__cvars topol] topo2)
hence 2: 3i < size(annos C2). ?P i using «i < size(annos C2)) by blast
have (> i<size(annos C2). m_o (annos C2 ! i) ?X)
< (> i<size(annos C2). m_o (annos C1 ! i) ?X)
apply(rule sum__strict _mono_exl) using 1 2 by (auto)
thus ?thesis
by (simp add: m__c_def vars_acom__def strip _eq sum__list _sum_ nth
atLeastOLessThan size__annos_same[OF strip__eq))
qed

end

locale Abs Int_fun_measure =
Abs_Int_fun_mono where y=v + Measure_fun where m=m
for ~y :: 'av::semilattice__sup_top = wval set and m :: '‘av = nat
begin
lemma top_on__step”: top__on_acom C (—vars C) = top__on__acom (step’
T C) (—vars C)
unfolding step’ def
by (rule top__on__Step)
(auto simp add: top__option__def asem__def split: option.splits)

lemma Al Some measure: 3 C. AI ¢ = Some C

unfolding Al def

apply(rule pfp__termination[where I = AC. top_on_acom C (— vars C)
and m=m__c|)

apply(simp__all add: m__c2 mono__step’ _top bot_least top__on__bot)
using top_on__step’ apply(auto simp add: vars_acom__def)

done

end

Problem: not executable because of the comparison of abstract states,
i.e. functions, in the pre-fixpoint computation.

end

144

14.8 Computable State

theory Abs State
imports Abs _Int0
begin

type__synonym ‘a st_rep = (vname x 'a) list

fun fun_rep :: (‘a::top) st_rep = vname = 'a where
fun_rep || = (A\z. T) |
fun_rep ((z,a)#ps) = (fun_rep ps) (z := a)

lemma fun_rep_map_of[code]: — original def is too slow
fun_rep ps = (%x. case map__of ps x of None = T | Some a = a)
by (induction ps rule: fun_rep.induct) auto

definition eq st :: (‘a::top) st_rep = 'a st_rep = bool where
eq_st S1 52 = (fun_rep S1 = fun_rep S2)

hide_ type st — hide previous def to avoid long names
declare [[typedef overloaded]] — allow quotient types to depend on classes

quotient__type ‘a st = ('a::top) st_rep | eq st
morphisms rep_ st St
by (metis eq_st_def equivpl reflpl sympl transpl)

lift_ definition update :: (‘a::top) st = vname = 'a = 'a st
is A\ps = a. (z,a)#ps
by (auto simp: eq_st_def)

lift_ definition fun :: (‘a::top) st = vname = 'a is fun_rep
by (simp add: eq st_def)

definition show st :: vname set = ('a::top) st = (vname * 'a)set where

show_st X S = (Az. (z, fun S x)) ‘X
definition show__acom C' = map__acom (map__option (show__st (vars(strip
) C

definition show __acom__opt = map__option show__acom

lemma fun_update][simp|: fun (update S x y) = (fun S)(z:=y)
by transfer auto

definition ~v_ st :: (("a::top) = b set) = 'a st = (vname = 'b) set where

145

v sty F={f.Va. fz € v(fun F x)}

instantiation st :: (order_top) order
begin

definition less eq st _rep :: 'a st_rep = 'a st_rep = bool where
less_eq st_rep psl ps2 =
((Vz € set(map fst ps1) U set(map fst ps2). fun_rep psl x < fun_rep ps2

z))

lemma less _eq st _rep iff:
less_eq st_rep ri 2 = (Y. fun_rep r1 x < fun_rep r2 x)
apply(auto simp: less_eq_st_rep__def fun_rep_map__of split: option.split)
apply (metis Un__iff map__of eq None__iff option.distinct(1))
apply (metis Un__iff map__of _eq None__iff option.distinct(1))
done

corollary less _eq st _rep iff fun:
less_eq st_rep r1 r2 = (fun_rep r1 < fun_rep r2)
by (metis less_eq_st_rep_iff le_fun__def)

lift_definition less eq st :: 'a st = 'a st = bool is less _eq st _rep
by (auto simp add: eq st _def less_eq _st_rep__iff)

definition less st where F < (G::'a st) = (F < GAN- G<F)

instance
proof (standard, goal_cases)

case I show ?case by(rule less_st_def)
next

case 2 show ?Zcase by transfer (auto simp: less_eq st_rep_def)
next

case 3 thus ?case by transfer (metis less_eq_st_rep__iff order_trans)
next

case / thus ?Zcase

by transfer (metis less_eq _st_rep_iff eq _st_def fun__eq iff antisym)

qged

end

lemma le_st_iff: (F < G) = Vz. fun F z < fun G x)
by transfer (rule less_eq st_rep__iff)

fun map2_st_rep :: ('a::top = 'a = 'a) = 'a st_rep = 'a st_rep = 'a

146

st_rep where
map2_st_rep f [| ps2 = map (%(z,y). (z, f T y)) ps2 |
map2_st_rep f ((z,y)#psl) ps2 =

(let y2 = fun_rep ps2 x

in (z,fy y2) # map2_st_rep f psl ps2)

lemma fun_rep_map2_rep[simpl: f T T =T =

fun_rep (map2_st_rep fpsl ps2) = (Az. f (fun_rep psl z) (fun_rep ps2
7))
apply (induction f ps1 ps2 rule: map2_st_rep.induct)
apply(simp add: fun_rep_map__of map__of _map fun__eq_iff split: option.split)
apply (fastforce simp: fun_rep_map_ of fun__eq iff split:option.splits)
done

instantiation st :: (semilattice _sup_top) semilattice sup_top
begin

lift__definition sup st :: ‘a st = 'a st = 'a st is map2_st_rep (U)
by (simp add: eq_st_def)

liftt_ definition top st :: 'a st is [] .

instance
proof (standard, goal_cases)
case 1 show ?Zcase by transfer (simp add:less_eq st _rep_iff)
next
case 2 show ?Zcase by transfer (simp add:less_eq st _rep_iff)
next
case 3 thus ?case by transfer (simp add:less_eq st_rep__iff)
next
case 4 show ?case by transfer (simp add:less_eq_st_rep__iff fun__rep__map__of)
qged

end

lemma fun_top: fun T = (Az. T)
by transfer simp

lemma mono__update[simp]:
al < a2 = S1 < 52 = update S1 z al < update S2 x a2
by transfer (auto simp add: less_eq st_rep def)

lemma mono_fun: S1 < 52 = fun S1 ¢ < fun S2 x
by transfer (simp add: less_eq st_rep__iff)

147

locale Gamma__semilattice = Val__semilattice where ~vy=-y
for ~ :: ‘av::semilattice__sup_top = wval set
begin

abbreviation v, :: ‘av st = state set
where v, == v_ st y

abbreviation 7, :: ‘av st option = state set
where v, == ~v_ option s

abbreviation v, :: ‘av st option acom = state set acom
where v, == map__acom 7,

lemma gamma__s_top[simp|: vs T = UNIV
by (auto simp: v__st_def fun__top)

lemma gamma_o_ Top[simp|: v, T = UNIV
by (simp add: top_option__def)

lemma mono_gamma_s: f < g= v f C s g
by (simp add:y__st_def le__st_iff subset_iff) (metis mono__gamma subsetD)

lemma mono__gamma_ o:
S1 <82 = v, 51 C v, 52
by (induction S1 52 rule: less_eq _option.induct)(simp__all add: mono__gamma__s)

lemma mono_gamma_c: C1 < C2 = . C1 < v, C2
by (simp add: less_eq _acom__def mono__gamma__o size__annos anno__map__acom
size__annos__same[of C1 C2])

lemma in__gamma__option__iff:
z € y_option T u <— (Fu'. u = Some u' AN x € ru’)
by (cases u) auto

end

end

14.9 Computable Abstract Interpretation

theory Abs Intl
imports Abs_State
begin

148

Abstract interpretation over type st instead of functions.

context Gamma_ semilattice
begin

fun aval’ :: aexp = 'av st = 'av where

aval’ (N i) S = num' i |

aval” (Vz) S = fun Sz |

aval’ (Plus al a2) S = plus’ (aval’ a1 S) (aval’ a2 S)

lemma aval’ correct: s € vs S = aval a s € y(aval’ a S)
by (induction a) (auto simp: gamma_num’ gamma_ plus’ v__st_def)

lemma gamma_ Step subcomm: fixes C1 C2 :: 'a::semilattice_sup acom
assumes !z e S. flz e (7, 5) C v, (f2ze)
M S. g1 b (v, S) C v, (g2b09)
shows Step f1 g1 (7o 5) (ve C) < 7 (Step f2 g2 S C)
proof (induction C arbitrary: S)
qed (auto simp: assms introl: mono__gamma__o sup__gel sup__ge2)

lemma in_gamma_update: [s € v5 S; i € v a | = s(z := i) € vs(update
Sza)
by (simp add: v__st_def)

end

locale Abs Int = Gamma__semilattice where y=+y
for ~ :: ‘av::semilattice__sup_top = wval set
begin

definition step’ = Step
(Az e S. case S of None = None | Some S = Some(update S z (aval’ e

S)))
(Ab 8. 5)

definition Al :: com = 'av st option acom option where
Al ¢ = pfp (step’ T) (bot ¢)

lemma strip_step’[simp]: strip(step’ S C) = strip C
by (simp add: step’ _def)

Correctness:

lemma step_step”: step (Vo S) (ve C) < v (step’ S C)

149

unfolding step def step’ def
by (rule gamma__Step__subcomm)
(auto simp: introl: aval’_correct in__gamma__update split: option.splits)

lemma Al correct: Al ¢ = Some C — CS ¢ <. C
proof (simp add: CS_def AL def)
assume 1: pfp (step’ T) (bot ¢) = Some C
have pfp": step’ T C < C by(rule pfp_pfp|OF 1])
have 2: step (7o T) (¢ C) < vc C — transfer the pfp’
proof (rule order_trans)
show step (Vo T) (7e C) < 7. (step” T C) by(rule step__step”)
show ... < 7. C by (metis mono__gamma__c[OF pfp'])
qed
have 3: strip (v. C') = ¢ by(simp add: strip__pfp|OF __ 1] step’_def)
have Ifp ¢ (step (7o T)) < 7. C
by (rule lfp__lowerbound|simplified,where f=step (v, T), OF 38 2])
thus ifp ¢ (step UNIV) < v, C by simp
qed

end

14.9.1 Monotonicity

locale Abs _Int_mono = Abs_Int +
assumes mono_plus”: al < bl = a2 < b2 = plus’ al a2 < plus’ b1 b2
begin

lemma mono_aval’: S1 < 52 = aval’ e S1 < aval’ e S2
by (induction e) (auto simp: mono__plus’ mono__fun)

theorem mono_step”: S1 < S2 — C1 < 02 = step’ S1 C1 < step’ S2
C2

unfolding step’ def

by (rule mono2_Step) (auto simp: mono__aval’ split: option.split)

lemma mono_step’ top: C < C' = step’ T C < step’ T C’
by (metis mono__step’ order_refl)

lemma Al least_pfp: assumes Al ¢ = Some C step’ T C' < C’ strip C’

=c

shows C < C'

by (rule pfp_ bot_least[OF _ assms(2,3) assms(1)[unfolded AL def]])
(simp__all add: mono__step’ _top)

150

end

14.9.2 Termination

locale Measurel =

fixes m :: ‘av:zorder top = nat
fixes h :: nat

assumes h: mxz < h

begin

definition m_s :: ‘av st = vname set = nat (¢ms>) where
m_sSX=0O zeX m(fun Sx))

lemma m_s h: finite X = m_s S X < h x card X
by (simp add: m__s_def) (metis mult.commute of _nat_id sum__bounded__above] OF

h])

definition m_ o :: ‘av st option = vname set = nat (<m,>) where
m__o opt X = (case opt of None = h x card X + 1 | Some S = m_s S X)

lemma m_o_h: finite X = m_o opt X < (hxcard X + 1)
by (auto simp add: m__o__def m__s_hle_Sucl split: option.split dest:m__s_h)

definition m_ ¢ :: 'av st option acom = nat (¢m.>) where
m_c C = sum_list (map (Aa. m_o a (vars C)) (annos C))

Upper complexity bound:

lemma m_c¢ h: m_c C < size(annos C) * (h * card(vars C) + 1)
proof —
let ?X = vars C let ?n = card ?X let ?a = size(annos C)
have m_c C = (Y i<?a. m_o (annos C ! i) ?X)
by (simp add: m__c__def sum__list_sum__nth atLeastOLessThan)
also have ... < (> i<?a. h x n + 1)
apply(rule sum_mono) using m__o_h[OF finite_ Cvars] by simp

also have ... = %a x (h * ?n + 1) by simp
finally show ?thesis .

qed

end

fun top_on_st :: 'a::order_top st = vname set = bool (<top’_ons>) where
top_on_st S X = (VzeX. fun Sz =T)

fun top _on_ opt :: ‘a::order__top st option = vname set = bool (<top’_ony»)

151

where
top__on__opt (Some S) X = top_on_st S X |
top_on__opt None X = True

definition top on__acom :: 'a::order_top st option acom = vname set =
bool (¢<top’_on.») where
top_on_acom C X = (Va € set(annos C). top_on_opt a X)

lemma top_on__top: top_on_opt (T::_ st option) X
by (auto simp: top__option__def fun__top)

lemma top_on_bot: top_on__acom (bot ¢) X
by (auto simp add: top_on__acom__def bot__def)

lemma top__on_post: top_on_acom C X = top__on__opt (post C') X
by (simp add: top__on__acom__def post_in__annos)

lemma top on_acom__simps:

top_on_acom (SKIP {Q}) X = top_on_opt Q X

top_on_acom (z == e {Q}) X = top_on_opt Q@ X

top_on__acom (C1;;C2) X = (top_on_acom C1 X A top_on_acom C2
X)

top_on_acom (IF b THEN {P1} C1 ELSE {P2} C2 {Q}) X =

(top_on_opt P1 X A top_on_acom C1 X A top_on_opt P2 X A

top_on_acom C2 X A top_on_opt @ X)

top_on_acom ({I} WHILE b DO {P} C {Q}) X =

(top_on_opt I X A top_on_acom C' X A top_on_opt P X A top_on__opt
Q X)
by (auto simp add: top__on__acom__def)

lemma top_on_ sup:
top_on_opt o1 X = top_on_opt 02 X = top_on_opt (ol U 02 1 _
st option) X
apply (induction o1 02 rule: sup__option.induct)
apply (auto)
by transfer simp

lemma top_on_ Step: fixes C :: ('a::semilattice__sup__top)st option acom
assumes !lz e S. [top_on_opt S X; x ¢ X; vars e C —X] = top__on__opt
(fzeS) X

"6 S. top_on_opt S X = vars b C —X = top_on_opt (¢b S) X
shows [vars C C —X; top_on_opt S X; top_on_acom C X | = top__on__acom
(Step fg S C) X
proof (induction C arbitrary: S)

152

qed (auto simp: top__on__acom__simps vars__acom__def top__on__post top__on__sup
assms)

locale Measure = Measurel +
assumes m2: x <y = mz > my
begin

lemma mi: 2 <y=—= mz>my
by (auto simp: le_less m2)

lemma m_s2 rep: assumes finite(X) and S1 = S2 on —X and Vz. SI
r < 82z and SI # 52
shows (D zeX. m (S2x)) < O zeX. m (S1 x))
proof—
from assms(3) have 1: VzeX. m(S1 z) > m(S2 z) by (simp add: m1)
from assms(2,3,4) have Jz€X. S1 z < S2 x
by (simp add: fun__eq iff) (metis Compl_iff le_neq_trans)
hence 2: 3zeX. m(S1 z) > m(S2 z) by (metis m2)
from sum__strict_mono__exl[OF «finite X» 1 2]
show (Y zeX. m (S2z)) < (D zeX. m (S1z)) .
qged

lemma m_s2: finite(X) = fun S1 = fun S2 on —X
= S1 <S2=m sS1X>m s52X
apply(auto simp add: less_st_def m__s_def)
apply (transfer fizing: m)
apply(simp add: less_eq_st_rep_iff eq_st_def m__s2_rep)
done

lemma m_o02: finite X = top_on_opt ol (—X) = top_on_opt 02
(-X) =

0l <02 = m o0l X >m 002X
proof (induction o1 02 rule: less_eq option.induct)

case [thus ?case by (auto simp: m__o_def m__s2 less_option__def)
next

case 2 thus ?case by(auto simp: m__o__def less_option__def le__imp__less_Suc

m_s_h)
next

case 3 thus ?case by (auto simp: less__option__def)
qged

lemma m_ol: finite X = top_on_opt ol (—X) = top_on_opt 02
(—X) =

153

0l <02 = m o0l X>m 002X
by (auto simp: le_less m__02)

lemma m_ c2: top_on__acom C1 (—vars C1) = top__on__acom C2 (—vars
C2) =
Cl<C2=m cCl>m cC2
proof (auto simp add: le_iff le_annos size_annos__same[of C1 C2] vars_acom__def
less_acom__def)
let ?X = vars(strip C2)
assume top: top_on_acom C1 (— vars(strip C2)) top_on_acom C2 (—
vars(strip C2))
and strip_eq: strip C1 = strip C2
and 0: Vi<size(annos C2). annos C1 ! i < annos C2 ! i
hence 1:Vi<size(annos C2). m_o (annos C1! i) ?X > m_o (annos C2
1i) 2X
apply (auto simp: all_set__conv__all_nth vars_acom__def top__on__acom,__def)
by (metis finite__cvars m__ol size__annos__same2)
fix ¢ assume i: i < size(annos C2) — annos C2 ! i < annos C1 ! i
have topol: top _on_opt (annos C1 ! i) (— ?2X)
using i(1) top(1) by(simp add: top__on__acom__def size__annos__same| OF
strip__eq))
have topo2: top_on_opt (annos C2 ! i) (— ?X)
using i(1) top(2) by(simp add: top__on__acom__def size__annos_same| OF
strip__eq)
from i have m_o (annos C1 ! i) ?X > m_o (annos C2 ! i) ?X (is ?P
i
)
by (metis 0 less_option__def m__o02[OF finite__cvars topol] topo2)
hence 2: 3¢ < size(annos C2). 7P i using i < size(annos C2)> by blast
have () i<size(annos C2). m_o (annos C2 ! i) ?X)
< (3> i<size(annos C2). m_o (annos C1 ! i) 2X)
apply(rule sum__strict _mono__exl) using 1 2 by (auto)
thus ?thesis
by(simp add: m__c_def vars_acom__def strip_eq sum__list_sum_ nth
atLeastOLessThan size__annos_same[OF strip__eq))
qed

end
locale Abs Int measure =
Abs_Int_mono where y=vy + Measure where m=m
for ~ :: 'av::semilattice__sup_top = wval set and m :: '‘av = nat

begin

154

lemma top_on_step’: [[top_on__acom C (—vars C)]] = top__on__acom
(step’ T C) (—vars C)
unfolding step’ def
by (rule top__on__Step)
(auto simp add: top__option__def fun__top split: option.splits)

lemma Al Some_ measure: 3 C. Al ¢ = Some C

unfolding Al def

apply(rule pfp__termination[where I = \C. top_on__acom C (— vars C)
and m=m__c])

apply(simp__all add: m__c2 mono__step’ _top bot_least top__on__bot)
using top_on_ step’ apply(auto simp add: vars_acom__def)

done

end

end

14.10 Parity Analysis

theory Abs Intl parity

imports Abs Intl

begin

datatype parity = Even | Odd | FEither
Instantiation of class order with type parity:

instantiation parity :: order
begin

First the definition of the interface function <. Note that the header of
the definition must refer to the ascii name (<) of the constants as less__eq _parity

and the definition is named less eq parity def. Inside the definition the
symbolic names can be used.

definition less eq parity where
z <y = (y = Either V xz=y)

We also need <, which is defined canonically:

definition less parity where
r<y=(r<yA-y< (euparity))

(The type annotation is necessary to fix the type of the polymorphic predi-
cates.)

155

Now the instance proof, i.e. the proof that the definition fulfills the ax-
ioms (assumptions) of the class. The initial proof-step generates the neces-
sary proof obligations.

instance
proof
fix z::parity show z < x by(auto simp: less_eq parity_def)
next
fix xy z :: parity assume z < yy < zthus z < 2
by (auto simp: less _eq parity def)
next
fix z y :: parity assume z < yy < xr thusz =y
by (auto simp: less__eq parity_def)
next
fix x y :: parity show (z < y) = (z < y A =y < z) by(rule less_parity_def)
qed

end
Instantiation of class semilattice sup_top with type parity:

instantiation parity :: semilattice _sup_ top
begin

definition sup parity where
z Uy = (if © = y then z else Either)

definition top_ parity where
T = Fither

Now the instance proof. This time we take a shortcut with the help of
proof method goal cases: it creates cases 1 ... n for the subgoals 1 ... n; in
case 1, i is also the name of the assumptions of subgoal i and case? refers
to the conclusion of subgoal i. The class axioms are presented in the same
order as in the class definition.

instance
proof (standard, goal cases)

case I show Zcase by(auto simp: less_eq parity_def sup__parity_def)
next

case 2 show Zcase by(auto simp: less_eq parity_def sup__parity_def)
next

case 3 thus ?Zcase by(auto simp: less_eq parity_def sup_parity_def)
next

case 4 show Zcase by(auto simp: less_eq parity_def top__parity_def)
qed

156

end

Now we define the functions used for instantiating the abstract inter-
pretation locales. Note that the Isabelle terminology is interpretation, not
instantiation of locales, but we use instantiation to avoid confusion with
abstract interpretation.

fun v_ parity :: parity = val set where
v_parity Even = {i. i mod 2 = 0} |
~v_parity Odd = {i. i mod 2 = 1} |
~v__parity Either = UNIV

fun num_ parity :: val = parity where
num__parity i = (if i mod 2 = 0 then Fven else Odd)

fun plus_parity :: parity = parity = parity where
plus__parity Even Even = Even |

plus_parity Odd Odd = FEven |

plus_parity Even Odd = Odd |

plus_parity Odd FEven = 0Odd |

plus_parity Either y = FEither |

plus__parity x Either = FEither

First we instantiate the abstract value interface and prove that the func-
tions on type parity have all the necessary properties:

global__interpretation Val semilattice
where v = v_ parity and num’ = num__parity and plus’ = plus__parity
proof (standard, goal_cases)

subgoals are the locale axioms

case [thus ?case by(auto simp: less__eq_parity__def)
next
case 2 show ?Zcase by(auto simp: top__parity_ def)
next
case 3 show Zcase by auto
next
case (4 _ al _ a?2) thus “case
by (induction al a2 rule: plus_parity.induct)
(auto simp add: mod__add__eq [symmetric])
qged

In case 4 we needed to refer to particular variables. Writing (i x y z) fixes
the names of the variables in case i to be x, y and z in the left-to-right order
in which the variables occur in the subgoal. Underscores are anonymous
placeholders for variable names we don’t care to fix.

157

Instantiating the abstract interpretation locale requires no more proofs
(they happened in the instatiation above) but delivers the instantiated ab-
stract interpreter which we call AL parity:

global__interpretation Abs Int
where v = v parity and num’ = num_ parity and plus’ = plus_parity
defines aval parity = aval’ and step_parity = step’ and AL parity = Al

14.10.1 Tests

definition testl parity =

//:L,// e N 1

WHILE Less (V "z') (N 100) DO "z" ::= Plus (V "z"") (N 2)
value show__acom (the(AI parity testl_parity))

definition test2 parity =
"g! = N 13
WHILE Less (V "z'") (N 100) DO "z" ::= Plus (V "z") (N 3)

definition steps ¢ i = ((step__parity T) ~ ©) (bot ¢)

value show _acom
value show acom
value show acom
value show acom
value show acom
value show acom
value show acom
value show acom

steps test2_parity 0)
steps test2_parity 1)
steps test2 _parity 2)
steps test2_parity 3)
steps test2__parity 4)
steps test2_parity 5)
steps test2 _parity 6)
the(AIL _parity test2_parity))

N N N N N N /N

14.10.2 Termination

global__interpretation Abs Int _mono
where v = v__parity and num’ = num__parity and plus’ = plus__parity
proof (standard, goal_cases)
case (I _ al _ a?2) thus “case
by (induction al a2 rule: plus_parity.induct)
(auto simp add:less__eq parity_def)
qged

definition m_ parity :: parity = nat where
m__parity x = (if © = Either then 0 else 1)

global__interpretation Abs Int measure

158

where v = v_ parity and num’ = num__parity and plus’ = plus__parity
and m = m_ parity and h = 1
proof (standard, goal_cases)

case 1 thus Zcase by(auto simp add: m__parity_def less__eq_parity__def)
next

case 2 thus Zcase by(auto simp add: m__parity def less_eq parity_def
less__parity__def)
qed

thm Al Some_ measure

end

14.11 Constant Propagation

theory Abs Intl const

imports Abs Intl

begin

datatype const = Const val | Any

fun ~_ const where

v__const (Const i) = {i} |

~v__const (Any) = UNIV

fun plus const where

plus_const (Const ©) (Const j) = Const(i+j) |

plus _const = Any

lemma plus const_cases: plus_const al a2 =
(case (al,a2) of (Const i, Const j) = Const(i+j) | _ = Any)

by (auto split: prod.split const.split)

instantiation const :: semilattice _sup_ top
begin

fun less _eq const where z < y = (y = Any | z=y)
definition z < (y::const) = (z <y & =y <)
fun sup_const where = U y = (if z=y then x else Any)

definition T = Any

159

instance
proof (standard, goal cases)
case I thus ?case by (rule less_const__def)
next
case (2 z) show Zcase by (cases) simp__all
next
case (3 z y z) thus ?case by(cases z, cases y, cases x, simp__all)
next
case (4 z y) thus Zcase by(cases x, cases y, simp__all, cases y, simp__all)
next
case (6 z y) thus ?case by(cases x, cases y, simp_all)
next
case (5 z y) thus ?case by(cases y, cases x, simp__all)
next
case (7 x y z) thus ?case by(cases z, cases y, cases x, simp__all)
next
case 8 thus ?case by(simp add: top__const__def)
qed

end

global__interpretation Val semilattice
where v = v_ const and num’ = Const and plus’ = plus_const
proof (standard, goal_cases)

case (1 a b) thus ?case

by(cases a, cases b, simp, simp, cases b, simp, simp)

next

case 2 show ?case by(simp add: top__const__def)
next

case & show ?case by simp
next

case 4 thus ?case by(auto simp: plus__const__cases split: const.split)
qed

global__interpretation Abs Int

where v = v_ const and num’ = Const and plus’ = plus_const
defines Al const = AI and step_const = step’ and aval’ _const = aval’

14.11.1 Tests

definition steps ¢ i = (step_const T ~ i) (bot ¢)

160

value show__acom (steps testl__const 0
value show__acom (steps testl _const 1
value show _acom (steps testl const 2
(
(

— — —

value show__acom (steps testl__const 3
value show__acom (the(AI _const testl__const))
e(AI const test2_const))
e(AI _const test3 _const))

value show_acom (th
value show__acom (th
value show__acom (steps test) _const 0)
value show__acom (steps test)__const 1)
value show__acom (steps test)__const 2)
value show__acom (steps test4__const 3)
value show__acom (steps test)__const 4)
value show__acom (the(Al _const test const))
value show acom
value show acom
value show acom
value show acom
value show acom
value show _acom
value show acom
value show acom

steps test5__const 0)
steps test5_const 1)
steps testh__const 2)
steps tests_const 3)
steps testh__const /)
steps tests_const 5)
steps testh__const 6)
the(AL _const test5__const))

N N N N N N N

value show__acom (steps test6__const 0)
value show_acom (steps test6_const 1)
value show__acom (steps test6__const 2)
value show_acom (steps test6_const 3)
value show__acom (steps test6__const 4)
value show acom (steps test6_const 5)
value show__acom (steps test6__const 6)
value show acom (steps test6_const 7)
value show__acom (steps test6__const 8)
value show__acom (steps test6__const 9)
value show_acom (steps test6_const 10)
value show__acom (steps test6__const 11)
value show _acom (steps test6_const 12)
value show _acom (steps test6_const 13)
(

value show _acom (the(AlL const test6_const))

Monotonicity:

global__interpretation Abs Int mono
where 7 = v__const and num’ = Const and plus’ = plus__const

161

proof (standard, goal_cases)
case [thus ?case by(auto simp: plus_const__cases split: const.split)
qed

Termination:

definition m_const :: const = nat where
m__const x = (if x = Any then 0 else 1)

global__interpretation Abs Int measure
where v = v_ const and num’ = Const and plus’ = plus_const
and m = m_const and h = I
proof (standard, goal cases)
case I thus ?case by(auto simp: m__const_def split: const.splits)
next
case 2 thus %case by(auto simp: m__const_def less const_def split:
const.splits)
ged

thm Al Some measure

end

14.12 Backward Analysis of Expressions

theory Abs Int2
imports Abs Intl
begin

instantiation prod :: (order,order) order
begin

definition less _eq prod p1 p2 = (fst p1 < fst p2 A snd pl < snd p2)
definition less_prod p1 p2 = (p1 < p2 A = p2 < (pl::'ax'b))

instance
proof (standard, goal cases)

case I show ?case by(rule less_prod__def)
next

case 2 show ?case by(simp add: less_eq_prod__def)
next

case 3 thus ?case unfolding less eq prod_ def by(metis order trans)
next

case /4 thus Zcase by(simp add: less _eq prod__def)(metis eq_iff surjec-
tive__pairing)

162

qed
end

14.12.1 Extended Framework

subclass (in bounded_lattice) semilattice__sup__top ..

locale Val lattice _gamma = Gamma__semilattice where v = ~
for ~y :: ‘av::bounded_lattice = val set +

assumes inter__gamma__ subset__gamma__inf:
val Ny a2 Cy(al M a2)

and gamma__bot[simp]: v L = {}

begin

lemma in_gamma_inf: ¢ € vy al = z € v a2 = x € y(al M a2)
by (metis Intl inter _gamma__subset__gamma__inf subsetD)

lemma gamma_inf: y(al M a2) =~ al N~y a2
by (rule equalityl[OF __ inter_gamma__subset__gamma__inf))
(metis inf_lel inf le2 le_inf iff mono__gamma)

end

locale Val inv = Val_lattice_gamma where v = ~
for v :: ‘av:i:bounded _lattice = val set +
fixes test _num':: val = 'av = bool
and inv_plus’ :: 'av = 'av = 'av = 'av * 'av
and inv_less’ :: bool = 'av = 'av = 'av * ‘av
assumes test_num’: test_num'ia = (i € v a)
and inv_plus” inv_plus’ a al a2 = (a1’,a2) =
il €evyal = i2€vya2 = il+i2 €vya=— il €va'Ni2 €va
and inv_less" inv_less’ (i1<i2) al a2 = (a1',a2)) =
il €vyal = i2€vya2 =il €vyar'Ni2 € v ay’

locale Abs Int inv = Val inv where v = ~
for v :: 'av::bounded_lattice = wval set
begin

lemma in__gamma_ sup_ Upl:

SE N, SI Vs €y, 82 = s€7,(51 US2)
by (metis (opaque_lifting, no__types) sup__gel sup__ge2 mono__gamma__o

163

subsetD)

fun aval” :: aexp = 'av st option = 'av where
aval” e None = L |
aval” e (Some S) = aval’ e S

lemma aval”_correct: s € v, S = aval a s € y(aval” a 5)
by (cases S)(auto simp add: aval’_correct split: option.splits)

14.12.2 Backward analysis

fun inv_aval’ :: aexp = 'av = 'av st option = 'av st option where
inv_aval’ (N n) a S = (if test_num’ n a then S else None) |
inv_aval’ (V z) a S = (case S of None = None | Some S =

let o' = fun Sz M ain

if a’ = L then None else Some(update S z a')) |
inv_aval’ (Plus el e2) a S =

(let (al,a2) = inv_plus’ a (aval” el S) (aval” €2 S)

in inv_aval” el al (inv_aval’ e2 a2 S))

The test for bot in the V-case is important: bot indicates that a variable
has no possible values, i.e. that the current program point is unreachable.
But then the abstract state should collapse to None. Put differently, we
maintain the invariant that in an abstract state of the form Some s, all
variables are mapped to non-bot values. Otherwise the (pointwise) sup of
two abstract states, one of which contains bot values, may produce too large

a result, thus making the analysis less precise.

fun inv_bval’ :: bexp = bool = 'av st option = 'av st option where
inv_bval’ (Bc v) res S = (if v=res then S else None) |
inv_bval’ (Not b) res S = inv_bval’ b (= res) S |
inv_bval’ (And b1 b2) res S =
(if res then inv_bval’ b1 True (inv_bval’ b2 True S)
else inv_bval’ b1 False S U inv_bval’ b2 False S) |
inv_bval’ (Less el €2) res S =
(let (al,a2) = inv_less' res (aval” e1 S) (aval” e2 S)
in inv_aval’ el al (inv_aval’ €2 a2 S))

lemma inv_aval’_correct: s € v, S => aval e s € v a = s € 7, (inv_aval’

eald)
proof (induction e arbitrary: a S)
case N thus ?case by simp (metis test_num’)
next
case (V)
obtain S’ where S = Some S’ and s € v; S’ using s € 7, S

164

by (auto simp: in__gamma__option__iff)
moreover hence sz € v (fun S’ z)
by (simp add: ~v__st_def)
moreover have s z € v a using V(2) by simp
ultimately show ?case
by (simp add: Let_def v st _def)
(metis mono__gamma emptyE in__gamma__inf gamma__bot subset__empty)
next
case (Plus el e2) thus Zcase
using inv_plus’{OF __ aval”_correct aval” _correct]
by (auto split: prod.split)
qed

lemma inv_bval’_correct: s € v, S = bv = bval b s = s € v,(inv_bval’
b bv S)
proof (induction b arbitrary: S bv)
case Bc thus ?case by simp
next
case (Not b) thus ?case by simp
next
case (And b1 b2) thus ?case
by simp (metis And(1) And(2) in_gamma_sup Upl)
next
case (Less el e2) thus ?case
apply hypsubst__thin
apply (auto split: prod.split)
apply (metis (lifting) inv_aval’_correct aval” _correct inv_less’)
done
qed

definition step’ = Step
(Ax e S. case S of None = None | Some S = Some(update S = (aval’ e

S5)))
(Ab S. inv_bval” b True S)

definition Al :: com = 'av st option acom option where
Al ¢ = pfp (step’ T) (bot ¢)

lemma strip_step’[simp]: strip(step’ S ¢) = strip c
by (simp add: step’_def)

lemma top_on__inv_aval” [top_on_opt S X; varse C —X | = top_on__opt
(inv_aval’ e a S) X

by (induction e arbitrary: a S) (auto simp: Let__def split: option.splits prod.split)

165

lemma top__on_inv_bval”: [top_on_opt S X; vars b C —X| = top__on__opt
(inv_bval” b r S) X

by (induction b arbitrary: v S) (auto simp: top_on__inv_aval’ top__on__sup
split: prod.split)

lemma top_on_step” top_on_acom C (— wvars C) = top_on_acom
(step’ T C) (— vars C)
unfolding step’ def
by (rule top__on_ Step)
(auto simp add: top__on__top top__on__iny_bval’ split: option.split)

14.12.3 Correctness

lemma step_step” step (7o S) (ve C) < 7e (step” S O)
unfolding step def step’ def
by (rule gamma__Step__subcomm)
(auto simp: introl: aval’ _correct inv_bval’_correct in_gamma__update
split: option.splits)

lemma Al correct: Al ¢ = Some C = CS c <. C
proof (simp add: CS_def AL def)
assume 1: pfp (step’ T) (bot ¢) = Some C
have pfp”: step’ T C < C by(rule pfp_pfp|OF 1])
have 2: step (7o, T) (e C) < v. C — transfer the pfp’
proof (rule order__trans)
show step (7o T) (7e C) < 7¢ (step” T C) by(rule step__step’)
show ... < 7. C by (metis mono__gamma__c[OF pfp'])
qed
have 3: strip (7. C) = ¢ by(simp add: strip_pfp[OF _ 1] step’_def)
have Ifp ¢ (step (7o T)) <. C
by (rule lfp__lowerbound[simplified,where f=step (v, T), OF 3 2])
thus Ifp ¢ (step UNIV) < v, C by simp
qed

end

14.12.4 Monotonicity

locale Abs Int inv_mono = Abs Int inv +
assumes mono_ plus”: al < bl = a2 < b2 = plus’ al a2 < plus’ b1 b2
and mono_inv_plus”: al < bl = a2 < b2 —= r < r' =
inv_plus’ v al a2 < inv_plus’ v’ b1 b2
and mono_inv_lesss al < bl = a2 < b2 =

166

inv_less’ bv al a2 < inv_less’ bv b1 b2
begin

lemma mono__aval”:
S1 < 82 = aval’ e S1 < aval’ e 52
by (induction e) (auto simp: mono__plus’ mono__fun)

lemma mono__aval’
S1 < 82 = aval” e S1 < aval” e S2
apply(cases S1)
apply simp
apply(cases S2)
apply simp
by (simp add: mono__aval’)

lemma mono_inv_aval” r1 < r2 = S1 < 52 = inv_aval’ e r1 S1 <
inv_aval’ e r2 S2
apply (induction e arbitrary: r1 r2 S1 S2)
apply(auto simp: test_num’ Let_def inf mono split: option.splits prod.splits)
apply (metis mono_gamma subsetD)
apply (metis le_bot inf _mono le_st_iff)
apply (metis inf _mono mono__update le__st_iff)
apply(metis mono__aval” mono__inv_ plus'[simplified less_eq _prod__def] fst_conv
snd__conw)
done

lemma mono_inv_buval”: S1 < 82 = inv_bval’ b bv S1 < inv_bval’ b bv
S2
apply (induction b arbitrary: bv S1 S2)

apply (simp)

apply (simp)
apply simp
apply(metis order_trans|OF _ sup_gel] order trans[OF _ sup_ge2])
apply (simp split: prod.splits)
apply(metis mono__aval” mono__inv_aval’ mono__inv_less'[simplified less _eq _prod__def]
fst_conv snd__conv)
done

theorem mono_step”: S1 < S2 = C1 < 02 = step’ S1 C1 < step’ S2
C2

unfolding step’ def

by (rule mono2_Step) (auto simp: mono__aval’ mono__inv_bval’ split: op-
tion.split)

167

lemma mono_step’ top: C1 < C2 = step’ T C1 < step’ T C2
by (metis mono__step’ order_refl)

end

end

14.13 Interval Analysis

theory Abs Int2 vl
imports Abs Int2
begin

type__synonym eint = int extended
type__synonym eint2 = eint x eint

definition v_rep :: eint2 = int set where
v_rep p = (let (ILbh) = pin{i.l < Fini A Fini < h})

definition eq vl :: eint2 = eint2 = bool where
eq il pl p2 = (y_rep pl = ~v_rep p2)

lemma refl _eq ivl[simp]: eq_ivl p p
by (auto simp: eq vl _def)

quotient__type vl = eint2 / eq vl
by (rule equivpl)(auto simp: refip__def symp__def transp__def eq _ivl_def)

abbreviation vl_abbr :: eint = eint = wl (<[_, _]>) where
[l,h] == abs_ivl(l,h)

lift_ definition v _ vl :: vl = int set is v__rep
by (simp add: eq_ivl_def)

lemma ~__ivl_nice: yv_wl[l,h] = {i. | < Fini A Fin i < h}
by transfer (simp add: ~v_rep__def)

lift__definition num__ivl :: int = vl is \i. (Fin i, Fin 1) .
lift definition in_wl :: int = vl = bool

is i (Lh). l< Fini A Fini<h
by (auto simp: eq_ivl_def v_rep_def)

lemma in_ivl_nice: in_ivl i [l,h] = (I < Fini A Fin i < h)

168

by transfer simp

definition is _empty rep :: eint2 = bool where
is_empty_rep p = (let (I,h) = p in I>h | I=Pinf & h=Pinf | I=Minf &
h=Minf)

lemma ~_rep_cases: v_rep p = (case p of (Fin i,Fin j) => {i..j} | (Fin
i,Pinf) => {i..} |

(Minf,Fin i) = {..i} | (Minf,Pinf) = UNIV | _ = {})
by (auto simp add: ~v__rep_ def split: prod.splits extended.splits)

lift_ definition s empty vl :: ivl = bool is is_empty rep
apply(auto simp: eq vl _def ~_rep_cases is_empty_rep__def)
apply(auto simp: not_less less_eq extended__case split: extended.splits)
done

lemma eq vl iff: eq vl p1 p2 = (is_empty_rep pl & is_empty_rep p2
| p1 = p2)

by (auto simp: eq vl _defis_empty rep_def v_rep_cases Icc_eq Icc split:
prod.splits extended.splits)

definition empty_rep :: eint2 where empty_rep = (Pinf,Minf)

lift_ definition empty vl :: il is empty_rep .

lemma is_empty__empty_rep[simp|: is_empty_rep empty_rep
by (auto simp add: is_empty_rep_def empty_rep__def)

lemma is_empty_rep_iff: is_empty rep p = (y_rep p = {})
by(auto simp add: ~v_rep cases is_empty rep def split: prod.splits ex-
tended.splits)
declare is_empty_rep iff THEN iffD1, simp)
instantiation wl :: semilattice_sup top
begin
definition le_rep :: eint2 = eint2 = bool where
le_rep p1 p2 = (let (I1,h1) = p1; (I12,h2) = p2 in
if is_empty_rep(l1,h1) then True else
if is_empty_rep(12,h2) then False else 11 > 12 & h1 < h2)

lemma le_iff subset: le_rep pl p2 <— ~v_rep pl C ~v_rep p2

169

apply rule

apply(auto simp: is_empty_rep_def le_rep_def ~v_rep_ def split: if splits
prod.splits)[1]

apply(auto simp: is_empty_rep_def v_rep cases le_rep def)
apply(auto simp: not_less split: extended.splits)

done

lift_ definition less eq vl :: vl = vl = bool is le_rep
by (auto simp: eq_ivl_def le_iff subset)

definition less vl where i1 < i2 = (il <2 N =2 < (il::q0l))

lemma le_ il _iff subset: vl < w2 +— v_wl w1l C v_ vl w2
by transfer (rule le_iff subset)

definition sup rep :: eint2 = eint2 = eint2 where
sup_rep pl p2 = (if is_empty_rep pl then p2 else if is_empty rep p2 then
pl

else let (11,h1) = p1; (12,h2) = p2in (min l1 12, max h1 h2))

lift_ definition sup vl :: vl = wl = vl is sup_rep
by (auto simp: eq_ivl_iff sup__rep__def)

lift__definition top il :: il is (Minf,Pinf) .

lemma is_empty_min_maz:

—is_empty_rep (I1,h1) = = is_empty_rep (12, h2) = — is_empty_rep
(min 11 12, maz h1 h2)
by (auto simp add: is_empty rep_def max_def min__def split: if _splits)

instance
proof (standard, goal_cases)

case I show ?Zcase by (rule less_ivl_def)
next

case 2 show ?case by transfer (simp add: le_rep__def split: prod.splits)
next

case 3 thus ?case by transfer (auto simp: le__rep_def split: if _splits)
next

case 4 thus ?case by transfer (auto simp: le_rep_def eq vl iff split:
if _splits)
next

case 5 thus ?Zcase by transfer (auto simp add: le_rep_def sup__rep_def
is_empty _min_mar)
next

170

case 6 thus ?Zcase by transfer (auto simp add: le_rep_ def sup_rep_ def
is_empty__min_maz)
next

case 7 thus ?case by transfer (auto simp add: le_rep__def sup__rep__def)
next

case 8 show ?case by transfer (simp add: le_rep__defis_empty_rep__def)
qed

end
Implement (naive) executable equality:

instantiation vl :: equal
begin

definition equal ivl where
equal_vl i1 (i2::0vl) = (i1 <i2 N i2 < il)

instance
proof (standard, goal_cases)

case I show ?Zcase by(simp add: equal_ivl_def eq iff)
qged

end

lemma [simp]: fixes z :: ‘a::linorder extended shows (= x < Pinf) = (z =
Pinf)

by (simp add: not_less)

lemma [simp]: fixes = :: 'a::linorder extended shows (- Minf < z) = (z
= Minf)

by (simp add: not_less)

instantiation 7wl :: bounded_lattice
begin

definition inf rep :: eint2 = eint2 = eint2 where
inf_rep p1 p2 = (let (I1,h1) = p1; (12,h2) = p2in (max l1 12, min h1 h2))

lemma ~__inf rep: v_rep(inf _rep pl p2) = ~v_rep pl N ~_rep p2
by (auto simp:inf _rep__def ~v_rep__cases split: prod.splits extended.splits)

lift_ definition inf vl :: wl = vl = vl is inf _rep
by (auto simp: v_inf _rep eq ivl_def)

lemma ~__inf: y_ivl (vl M w2) = ~v_ivl vl N v_ivl iv2

171

by transfer (rule v__inf _rep)
definition 1 = empty_ vl

instance
proof (standard, goal_cases)

case I thus ?case by (simp add: v_inf le_ivl_iff subset)
next

case 2 thus ?case by (simp add: v_inf le_ivl_iff subset)
next

case 3 thus ?case by (simp add: v_inf le_ivl_iff _subset)
next

case 4/ show Zcase

unfolding bot_ivl_def by transfer (auto simp: le_iff subset)

qed

end

lemma eq il _empty: eq vl p empty _rep = is_empty rep p
by (metis eq ivl_iff is_empty empty_rep)

lemma le_ivl_nice: [I1,h1] < [I2,h2] +—
(if [11,h1] = L then True else
if [12,h2] = L then False else 1 > 12 & h1 < h2)
unfolding bot_ivl_def by transfer (simp add: le_rep__def eq_ivl_empty)

lemma sup__ivl_nice: [I1,h1] U [I2,h2] =
(if [11,h1] = L then [I2,h2] else
if [12,h2] = L then [l1,h1] else [min 1 12,maz h1 h2])
unfolding bot_ivl_def by transfer (simp add: sup_rep__def eq_ivl_empty)

lemma inf vl _nice: [I1,h1] M [I2,h2] = [maz 11 12,min h1 h2]
by transfer (simp add: inf_rep_ def)

lemma top_ivl_nice: T = [—00,00]
by (simp add: top_ivl_def)
instantiation vl :: plus

begin

definition plus rep :: eint2 = eint2 = eint2 where
plus_rep p1 p2 =

172

(if is_empty_rep pl V is_empty rep p2 then empty rep else
let (I11,h1) = p1; (12,h2) = p2in (11412, h1+h2))

lift_definition plus il :: il = wl = vl is plus_rep
by (auto simp: plus_rep__def eq ivl_iff)

instance ..
end

lemma plus vl _nice: [I1,h1] + [I2,h2] =
(if [I1,h1] = L Vv [I12,h2] = L then L else [l1412 , h1+h2])
unfolding bot_ivl_def by transfer (auto simp: plus_rep_def eq_ivl_empty)

lemma uminus_eq Minf[simp]: —z = Minf <— x = Pinf
by (cases x) auto
lemma uminus_eq Pinf[simp]: —x = Pinf <— x = Minf
by(cases x) auto

lemma uminus_le_ Fin_iff: — x < Fin(—y) «— Finy < (z::’a::ordered__ab__group add
extended)

by (cases x) auto

lemma Fin_uminus_le_iff: Fin(—y) < —z +— z < ((Fin y)::'a::ordered__ab__group__add
extended)

by (cases x) auto

instantiation 7wl :: uminus
begin

definition uminus_rep :: eint2 = eint2 where
uminus_rep p = (let (I,h) = p in (—h, —1))

lemma ~_ uminus_rep: i € v_rep p = —1i € v__rep(uminus_rep p)
by (auto simp: uminus_rep__def ~v__rep__def image__def uminus_le_ Fin__iff
Fin_uminus_le_ iff

split: prod.split)

lift_ definition uminus vl :: wl = Wl is uminus_rep
by (auto simp: uminus_rep__def eq _ivl_def v_rep__cases)

(auto simp: Icc_eq Icc split: extended.splits)

instance ..
end

lemma ~v__uminus: i € v_ivl iv = —i € y__il(— v)

173

by transfer (rule v_uminus_rep)

lemma uminus_nice: —[l,h] = [—h,—I]
by transfer (simp add: uminus_rep__def)

instantiation 7wl :: minus
begin

definition minus @l :: wwl = wl = vl where
(il :ivl) — w2 = vl + —iv2

instance ..
end

definition inv_plus vl :: wl = wl = wl = wilxivl where
inv_plus_wl w vl w2 = (il M (iv — w2), w2 N (v — wl))

definition above rep :: eint2 = eint2 where
above_rep p = (if is_empty_rep p then empty rep else let (1,h)

(1,00))

definition below rep :: eint2 = eint2 where
below_rep p = (if is_empty_rep p then empty_rep else let (I,h)
(—00,h))

lift_ definition above :: il = vl is above rep
by (auto simp: above__rep__def eq vl _iff)

lift_ definition below :: il = vl is below _rep
by (auto simp: below__rep__def eq ivl_iff)

lemma 7__abovel: i € y_ivl iv = i < j = j € v_iwl(above iv)
by transfer
(auto simp add: above _rep__def ~__rep_cases is_empty_rep_ def
split: extended.splits)

lemma ~_belowl: i € v_iwl v —= j < i = j € v_ivl(below iv)
by transfer
(auto simp add: below_rep _def ~v__rep__cases is_empty_rep__def
split: extended.splits)

definition inv_less vl :: bool = il = il = il * wl where
v _less vl res wl w2 =

174

(if res

then (vl M (below w2 — [1,1]),
w2 N (above w1 + [1,1]))

else (w1 M above w2, w2 M below ivl))

lemma above_nice: above[l,h] = (if [[,h] = L then L else [l,00])
unfolding bot_ivl_def by transfer (simp add: above_ _rep__def eq vl _empty)

lemma below_nice: below[l,h] = (if [I,h] = L then L else [—o0,h])
unfolding bot_ivl_def by transfer (simp add: below__rep def eq ivl_empty)

lemma add mono le Fin:
[x1 < Finyl; 22 < Fin y2] = z1 + 22 < Fin (y1 + (y2::'a::ordered__ab__group _add))
by (drule (1) add_mono) simp

lemma add_mono_Fin_le:

[Fin y1 < z1; Finy2 < 22] = Fin(yl + y2::'a::ordered__ab__group__add)
<zl + z2
by (drule (1) add_mono) simp

global__interpretation Val semilattice
where v = vl and num’ = num__ivl and plus’ = (+)
proof (standard, goal_cases)
case [thus ?case by transfer (simp add: le_iff subset)
next
case 2 show ?case by transfer (simp add: v_rep__def)
next
case 3 show ?case by transfer (simp add: v_rep__def)
next
case 4 thus ?case
apply transfer
apply(auto simp: v_rep_def plus_rep__def add_mono_le_ Fin add_mono_ Fin__le)
by (auto simp: empty_rep_def is_empty_rep__def)
qed

global__interpretation Val lattice _gamma
where v = v_wl and num’ = num__ivl and plus’ = (+)
defines aval vl = aval’
proof (standard, goal_cases)

case 1 show ?case by(simp add: v__inf)
next

case 2 show ?case unfolding bot vl _def by transfer simp
qged

175

global__interpretation Val inv
where v = v__wl and num’ = num__ivl and plus’ = (+)
and test num’ = in_vl
and inv_plus’ = inv_plus vl and inv_less’ = inv_less vl
proof (standard, goal_cases)
case I thus ?case by transfer (auto simp: ~v__rep_ def)
next
case (2 _ i1 i2) thus ?case
unfolding inv_plus vl _def minus vl _def
apply(clarsimp simp add: ~v__inf)
using gamma__plus’[of i1+i2 _ —il] gamma_ plus’lof i1+i2 _ —i2]
by (simp add: ~_uminus)
next
case (3 i1 i2) thus Zcase
unfolding inv_less vl _def minus vl _def one__extended _def
apply(clarsimp simp add: ~v__inf split: if _splits)
using gamma_ plus’[of i1+1 _ —1] gamma_plus’lof i2 — 1 _ 1]
apply(simp add: v__belowI[of i2] v__abovel[of i1]
uminus__ivl.abs__eq uminus__rep__def ~y__ivl_nice)
apply(simp add: v__abovel[of i2] ~y__belowI[of i1])
done
qed

global__interpretation Abs Int inv

where v = v_ivl and num’ = num__il and plus’ = (+)
and test num' = in_ivl

and inv_plus’ = inv_plus vl and inv_less’ = inv_less vl
defines inv_aval wl = inv_aval’

and inv_bval vl = inv_bval’

and step vl = step’

and Al wl = Al

and aval vl = aval”

Monotonicity:

lemma mono_plus_ivl: il < w2 = w8 < wj = wl+iw3 < w2+(ivg::ivl)
apply transfer

apply(auto simp: plus_rep_def le_iff subset split: if _splits)

by (auto simp: is_empty rep_iff v_rep_cases split: extended.splits)

lemma mono_minus_iwl: vl < w2 = —iwl < —(w2::4vl)

apply transfer
apply(auto simp: uminus_rep_def le_iff subset split: if _splits prod.split)

176

by (auto simp: v__rep_ cases split: extended.splits)

lemma mono above: w1l < w2 —> above w1l < above w2

apply transfer

apply(auto simp: above_rep__def le_iff subset split: if _splits prod.split)
by (auto simp: is_empty_rep__iff v_rep__cases split: extended.splits)

lemma mono_below: w1 < w2 — below w1 < below w2

apply transfer

apply(auto simp: below rep def le_iff subset split: if splits prod.split)
by (auto simp: is_empty_rep_iff ~v_rep_cases split: extended.splits)

global__interpretation Abs Int inv_mono
where v = v__wl and num’ = num__ivl and plus’ = (+)
and test num’ = in_ vl
and inv_plus’ = inv_plus vl and inv_less’ = inv_less vl
proof (standard, goal_cases)
case I thus ?case by (rule mono__plus_ivl)
next
case 2 thus Zcase
unfolding inv_plus il _def minus_ivl_def less_eq prod__def
by (auto simp: le_infl1 le_infI2 mono__plus__ivl mono_minus__ivl)
next
case 3 thus ?Zcase
unfolding less eq prod_def inv_less vl _def minus_iwvl_def
by (auto simp: le_infI1 le_infI2 mono__plus__ivl mono__above mono__below)
qed

14.13.1 Tests
value show__acom__opt (AL vl test1__ivl)
Better than Al const:

value show__acom__opt (AL _ivl test3_const)
value show__acom__opt (AI vl test]__const)
value show__acom__opt (AL _ivl test6__const)

definition steps ¢ i = (step_ivl T ~ i) (bot ¢)

value show__acom__opt (Al vl test2 ivl)
value show__acom (steps test2_ivl 0)
value show__acom (steps test2 vl 1)
value show__acom (steps test2_ivl 2)
value show__acom (steps test2_ivl 3)

A~ N N

177

Fixed point reached in 2 steps. Not so if the start value of x is known:

value show__acom__opt (AL _ivl test3_ivl)
value show _acom (steps test3 vl 0)
value show__acom (steps test3 vl 1)
value show acom (steps test3 vl 2)
value show__acom (steps test3 vl 3)
value show acom (steps test3 vl 4)
value show__acom (steps test3 vl 5)

Takes as many iterations as the actual execution. Would diverge if loop
did not terminate. Worse still, as the following example shows: even if the
actual execution terminates, the analysis may not. The value of y keeps
increasing as the analysis is iterated, no matter how long:

value show__acom (steps test] vl 50)

Relationships between variables are NOT captured:
value show__acom__opt (AL vl test5__ivl)

Again, the analysis would not terminate:

value show__acom (steps test6__ivl 50)

end

14.14 Widening and Narrowing

theory Abs Int3
imports Abs Int2 vl
begin

class widen =
fixes widen :: 'a = 'a = 'a (infix V) 65)

class narrow =
fixes narrow :: 'a = 'a = 'a (infix <A 65)

class wn = widen + narrow + order +
assumes widenl: z <z V y

assumes widen2: y <z V y

assumes narrowl: y <z =y <z ANy
assumes narrow?: y <z =z N y<zx
begin

lemma narrowid[simp|: x A x = x
by (rule order.antisym) (simp__all add: narrowl narrow?2)

178

end

lemma top_widen_top[simp]: T V T = (T::_::{wn,order_top})
by (metis eq iff top__greatest widen?2)

instantiation 7wl :: wn
begin

definition widen_rep pl p2 =
(if is_empty_rep pl1 then p2 else if is_empty rep p2 then pl else
let (I11,h1) = p1; (I2,h2) = p2
in (if 12 < U1 then Minf else l1, if h1 < h2 then Pinf else h1))

lift_ definition widen_ il :: vl = wl = wl is widen__rep
by (auto simp: widen__rep__def eq ivl_iff)

definition narrow_rep p1 p2 =
(if is_empty_rep pl1 V is_empty rep p2 then empty rep else
let (I1,h1) = p1; (I12,h2) = p2
in (if 1 = Minf then 12 else l1, if h1 = Pinf then h2 else h1))

lift_ definition narrow il :: il = vl = vl is narrow_rep
by (auto simp: narrow_rep__def eq_ivl_iff)

instance

proof

qed (transfer, auto simp: widen_rep def narrow_rep_def le_iff subset
~v_rep__def subset_eq is _empty rep_ def empty rep def eq vl _def split:
if _splits extended.splits)+

end

instantiation st :: ({order_top,un})wn
begin

lift_definition widen_st :: 'a st = 'a st = 'a st is map2_st_rep (V)
by (auto simp: eq_st_def)

lift__definition narrow_st :: 'a st = 'a st = 'a st is map2_st_rep (A)
by (auto simp: eq st _def)

instance
proof (standard, goal_cases)

179

case I thus ?case by transfer (simp add: less_eq st_rep__iff widenl)
next

case 2 thus ?case by transfer (simp add: less_eq st_rep__iff widen2)
next

case 3 thus ?case by transfer (simp add: less_eq _st_rep__iff narrowl)
next

case 4 thus ?case by transfer (simp add: less_eq_st_rep__iff narrow?2)
qed

end

instantiation option :: (wn)wn
begin

fun widen_ option where

None V z = z |

z V None = z |

(Some x) V (Some y) = Some(z V y)

fun narrow_option where

None A\ x = None |

z A None = None |

(Some z) A (Some y) = Some(z A y)

instance
proof (standard, goal_cases)
case (1 z y) thus Zcase
by (induct x y rule: widen__option.induct)(simp__all add: widenl)
next
case (2 z y) thus “case
by (induct x y rule: widen__option.induct)(simp__all add: widen?2)
next
case (3 z y) thus “case
by (induct x y rule: narrow__option.induct) (simp__all add: narrowl)
next
case (4 y z) thus ?case
by (induct x y rule: narrow_option.induct) (simp__all add: narrow2)
qged

end

definition map2_acom :: ('a = 'a = 'a) = 'a acom = 'a acom = 'a acom
where

180

map2_acom f C1 C2 = annotate (Ap. f (anno C1 p) (anno C2 p)) (strip
C1)

instantiation acom :: (widen)widen

begin

definition widen_acom = map2 _acom (V)
instance ..

end

instantiation acom :: (narrow)narrow
begin

definition narrow acom = map2_acom ()
instance ..

end

lemma strip_map2_acom[simp]:
strip C1 = strip C2 = strip(map2_acom f C1 C2) = strip C1
by (simp add: map2_acom__def)

lemma strip__widen__acom|[simp):
strip C1 = strip C2 = strip(C1 V C2) = strip C1
by (simp add: widen__acom__def)

lemma strip__narrow__acom[simpl:
strip C1 = strip C2 = strip(C1 A C2) = strip C1
by (simp add: narrow__acom__def)

lemma narrowl__acom: C2 < C1 = C2 < C1 A (C2::'a::wn acom)
by (simp add: narrow__acom__def narrowl map2_acom__def less_eq _acom__def
size__annos)

lemma narrow2_acom: C2 < C1 = C1 A (C2::'a::wn acom) < C1

by (simp add: narrow__acom__def narrow2 map2_acom__def less_eq _acom__def
size__annos)

14.14.1 Pre-fixpoint computation

definition iter_widen :: (‘a = 'a) = 'a = (‘a::{order,widen})option
where iter _widen f = while_option (A\z. = fz < z) (A\z. 2 V fx)

definition iter_narrow :: ('a = 'a) = 'a = (‘a::{order,narrow})option
where iter _narrow f = while_option (Az. z A fz < z) (Az. 2 A fx)

181

definition pfp_wn :: (‘a::{order,widen,narrow} = 'a) = 'a = 'a option
where pfp_wn fx =
(case iter_widen f x of None = None | Some p = iter_narrow f p)

lemma iter widen_pfp: iter _widen fx = Somep = fp < p
by (auto simp add: iter _widen__def dest: while__option__stop)

lemma iter widen inv:

assumes !lz. P x = P(fz) !zl 22. P21 = P 12 = P(z1 V 22) and

Pz

and iter_widen fx = Some y shows P y

using while_option_rulefwhere P = P, OF __ assms(4)[unfolded iter _widen__def]]
by (blast intro: assms(1—3))

lemma strip_while: fixes f :: 'a acom = 'a acom

assumes V C. strip (f C') = strip C' and while_option P f C = Some C'
shows strip C’ = strip C

using while_option_rule[where P = \C'". strip C' = strip C, OF __ assms(2)]
by (metis assms(1))

lemma strip_iter _widen: fixes f :: 'a::{order,widen} acom = 'a acom
assumes V C. strip (f C') = strip C and iter_widen f C = Some C’
shows strip C' = strip C
proof—

have V C. strip(C V f C) = strip C

by (metis assms(1) strip_map2_acom widen__acom__def)

from strip _while| OF this| assms(2) show ?thesis by (simp add: iter _widen__ def)

qged

lemma iter _narrow_ pfp:
assumes mono: 'zl x2::_::wn acom. Pzl — P22 — z1 < 22 = f
1l < fz2
and Pinv: lz. P x = P(fz) 'z1 22. P2l = P 22 = P(z1 A 22)
and P p0 and f p0 < p0 and iter_narrow f p0 = Some p
shows Pp A fp<p
proof—
let 7Q = %p. PpAfp<pAp<pl
have ?Q (p A fp) if Q: ?Q p for p
proof auto
note P = conjunctl [OF Q] and 12 = conjunct2[OF Q)]
note 1 = conjunct! [OF 12] and 2 = conjunct2|OF 12]
let %' =p A fp

182

show P ?p’ by (blast intro: P Pinv)
have f ?p’ < f p by(rule mono[OF <P (p A fp)» P narrow2_acom[OF
1)
also have ... < ?p’ by(rule narrowl__acom[OF 1])
finally show f 7p’ < 2p’.
have ?p’ < p by (rule narrow2_acom|[OF 1])
also have p < p0 by(rule 2)
finally show ?p’ < p0 .
qed
thus “thesis
using while option_rulefwhere P = ?2Q, OF __ assms(6)[simplified
iter_narrow__def]]
by (blast intro: assms(4,5) le_refl)
qed

lemma pfp_wn_ pfp:
assumes mono: al x2::_ :wn acom. Pzl = P22 — z1 < 22 = f

xl < fal
and Pinv: Pz lz. Px = P(fx)
Wal z2. Pxl = P 22 = P(x1 V 22)
Nzl 22. Pxl = P x2 = P(z1 A z2)
and pfp_wn: pfp_wn fx = Some p shows Pp A fp <p
proof—
from pfp__wn obtain p0
where its: iter_widen f x = Some p0 iter _narrow f p0 = Some p
by (auto simp: pfp_wn__def split: option.splits)
have P p0 by (blast intro: iter_widen_ inv[where P=DP] its(1) Pinv(1—3))
thus ?thesis
by — (assumption |
rule iter_narrow_pfp[where P=P| mono Pinv(2,4) iter_widen__pfp
its)+
qged

lemma strip_pfp wn:
[V C. strip(f C) = strip C; pfp_wn f C = Some C'] = strip C' = strip
C
by (auto simp add: pfp_wn__def iter_narrow__def split: option.splits)
(metis (mono__tags) strip__iter _widen strip__narrow__acom strip__while)

locale Abs Int _wn = Abs_Int inv_mono where y=-~
for v :: ‘av::{wn,bounded_lattice} = val set
begin

183

definition Al _wn :: com = ’av st option acom option where
AL _wn ¢ = pfp_wn (step’ T) (bot c)

lemma Al wn_ correct: AI_wn ¢ = Some C = CS ¢ < . C
proof (simp add: CS_def AI _wn__def)
assume 1: pfp_wn (step’ T) (bot ¢) = Some C
have 2: strip C = ¢ A step’ T C < C
by (rule pfp_wn__pfplwhere z=bot c]) (simp__all add: 1 mono__step’_top)
have pfp: step (7o T) (yc C) < 7e C
proof (rule order_trans)
show step (7o T) (ve C) < e (step” T C)
by (rule step__step’)
show ... < . C
by (rule mono__gamma_ c[OF conjunct2[OF 2]])
qed
have 3: strip (v. C) = ¢ by(simp add: strip_pfp_wn[OF _ 1])
have Ifp ¢ (step (7o T)) < 7e C
by (rule lfp__lowerbound[simplified,where f=step (v, T), OF 3 pfp])
thus ifp ¢ (step UNIV) < 5. C by simp
ged

end

global__interpretation Abs Int wn

where v = v_wl and num’ = num__ivl and plus’ = (+)
and test num’ = in_ivl

and inv_plus’ = inv_plus vl and inv_less’ = inv_less vl
defines AI wn_wl = AI wn

14.14.2 Tests

definition step_up_ vl n = (AC. C V step_ivl T C) n)
definition step__down_ivl n = (ANC. C A step_iwl T C)”" n)

For test3 ivl, Al ivl needed as many iterations as the loop took to
execute. In contrast, AI wn_ ivl converges in a constant number of steps:

value show__acom (step_up_ivl 1 (bot test3_ivl))
value show acom (step _up vl 2 (bot test3 ivl))
value show__acom (step_up_ivl 8 (bot test3 ivl))
value show acom (step _up vl 4 (bot test3 ivl))
value show__acom (step_up__ivl 5 (bot test3_ivl))
value show _acom (step_up ivl 6 (bot test3 ivl))
value show _acom (step_up_ vl 7 (bot test3 ivl))

184

value show__acom (step_up__ivl 8 (bot test3_ivl))
value show__acom (step__down__ivl 1 (step_up_ivl 8

(

(bot test3__ivl
value show__acom (step__down__ivl 2 (step_up_ivl 8

(

(

)

bot test3 ivl)))
value show__acom (step__down__ivl 3 (step_up_ivl 8 (bot test3_ivl)))
value show__acom (step__down__ivl 4 (step_up_ivl 8)

value show__acom__opt (AL _wn__ivl test3_ivl)

bot test3 il

o~~~ S~

Now all the analyses terminate:

value show__acom__opt (AL _wn__ivl test]_ivl)
value show__acom__opt (AL _wn__ivl testh__ivl)
value show__acom__opt (AL _wn__ivl test6_ivl)

14.14.3 Generic Termination Proof

lemma top_on_ opt_ widen:
top_on_opt o1 X = top_on_opt 02 X = top_on_opt (01 V 02 :: _
st option) X
apply(induct o1 02 rule: widen__option.induct)
apply (auto)
by transfer simp

lemma top_on_opt_narrow:
top_on_opt o1 X = top_on_opt 02 X = top_on_opt (o1 A 02 :: _
st option) X
apply(induct o1 02 rule: narrow__option.induct)
apply (auto)
by transfer simp

lemma annos_map2_acom[simp]: strip C2 = strip C1 =
annos(map2_acom f C1 C2) = map (%(z,y).fz y) (zip (annos C1) (annos
C2))
by (simp add: map2__acom__def list_eq iff nth__eq size__annos anno__def[symmetric]
size__annos__same[of C1 C2])

lemma top_on__acom__widen:

[top_on_acom C1 X; strip C1 = strip C2; top__on_acom C2 X]

= top_on_acom (C1 V C2 :: __ st option acom) X
by (auto simp add: widen__acom__def top__on__acom__def)(metis top__on__opt_widen
in_set_zipFE)

lemma top_on__acom__narrow:

[top_on_acom C1 X; strip C1 = strip C2; top_on_acom C2 X]
= top_on_acom (C1 A C2 :: _ st option acom) X

185

by (auto simp add: narrow__acom__def top__on__acom__def)(metis top__on__opt_narrow
in__set_zipE)

The assumptions for widening and narrowing differ because during nar-
rowing we have the invariant y < z (where y is the next iterate), but during
widening there is no such invariant, there we only have that not yet y < z.
This complicates the termination proof for widening.

locale Measure _wn = Measurel where m=m
for m :: 'av::{order_top,un} = nat +
fixes n :: ‘av = nat
assumes m_anti_mono: x < Yy =— mzT > my
assumes m_widen: ~ y <z = m(z Vy) < mz
assumes n_narrow: y <z =z A y<z=nlz Ay <nz

begin

lemma m_s anti_mono_rep: assumes Vz. S1 z < 52z
shows (> zeX. m (S2z)) < (D zeX. m (51 z))
proof—
from assms have Vz. m(S1 x) > m(S2 z) by (metis m__anti_mono)
thus (Y zeX. m (52 z)) < (> zeX. m (S1 z)) by (metis sum__mono)
qed

lemma m s anti mono: S1 < S2 — m sS1 X >m s52X
unfolding m_ s def

apply (transfer fizing: m)

apply(simp add: less_eq st_rep iff eq st _def m__s anti_mono_ rep)
done

lemma m_s widen_rep: assumes finite X S1 = S2 on —X - 52 x < S1
x
shows (> zeX. m (S12V S21)) < (D zeX. m (51 z))
proof—
have 1: VzeX. m(S1 z) > m(S1 =z 'V S2)
by (metis m__anti_mono wn__class.widenl)
have z € X using assms(2,3)
by (auto simp add: Ball_def)
hence 2: 3zeX. m(S1 x) > m(S1 = V S2 x)
using assms(3) m_widen by blast
from sum__strict_mono__ex1[OF «finite X» 1 2]
show %thesis .
qed

lemma m_s widen: finite X = fun S1 = fun S2 on — X ==>

186

~MS82<81 = m s(S1VS2)X<m sSlX
apply(auto simp add: less_st_def m__s_def)
apply (transfer fizing: m)
apply(auto simp add: less_eq _st_rep iff m__s_widen_rep)
done

lemma m__o__anti_mono: finite X = top__on__opt o1 (—X) = top__on__opt
02 (-X) =

0l <02 = m o0l X>m 002X
proof (induction o1 02 rule: less_eq option.induct)

case I thus ?case by (simp add: m__o__def)(metis m__s_anti_mono)
next

case 2 thus ?Zcase

by (simp add: m__o_def le_Sucl m__s_h split: option.splits)

next

case 8 thus “case by simp
qged

lemma m_o_widen: [finite X; top_on_opt S1 (—X); top_on_opt S2
(—X); -~ 52< 81] =

m_o(S1VS2)X<m oS1X
by (auto simp: m_o_def m_s_hless_Suc_eq lem__s_widen split: option.split)

lemma m_c¢_widen:
strip C1 = strip C2 = top__on__acom C1 (—vars C1) = top__on__acom
C2 (—wvars C2)
— 2 02< (01l = m _c(C1V C2) <m_cCl

apply (auto simp: m__c__def widen__acom__def map2_acom__def size__annos[symmetric]
anno__def[symmetric|sum__list_sum__nth)
apply(subgoal_tac length(annos C2) = length(annos C1))

prefer 2 apply (simp add: size_annos_same?2)
apply (auto)
apply(rule sum__strict_mono__exl)

apply(auto simp add: m__o__anti_mono vars__acom__def anno__def top__on__acom__def
top_on__opt_widen widenl less__eq _acom__def listrel _iff nth)
apply(rule_tac z=p in bexl)

apply (auto simp: vars_acom__def m__o_widen top__on__acom__def)
done

definition n_s :: ‘av st = vname set = nat (<ns») where
ns S X = (3 zeX. n(fun S z))

lemma n_s narrow_rep:

187

assumes finite X S1 = S2on —X Vz. S22 < Slz Vz. S1z A S2zx <
S1x

Stz #SlaxAS2«x
shows (> zeX. n (S1z A S21)) < (D zeX. n (51 z))
proof—

have 1: Vz. n(S1 z A S2) < n(S1 x)

by (metis assms(3) assms(4) eq iff less_le_mnot_le n_narrow)

have x € X by (metis Compl_iff assms(2) assms(5) narrowid)

hence 2: 3z€X. n(S1 z A 52 z) < n(SI x)

by (metis assms(3—5) eq_iff less_le_not_le n_narrow)

show “thesis

apply(rule sum__strict_mono__ex1[OF «finite X>]) using 1 2 by blast+
qged

lemma n_s narrow: finite X = fun S1 = fun S2 on — X = 52 < §1
= S1 A S2 < S1
= ns (S1 A S2) X <ns S1 X
apply(auto simp add: less_st_def n_s_def)
apply (transfer fixing: n)
apply(auto simp add: less_eq _st_rep_iff eq st _def fun__eq iff n_s_narrow_rep)
done

definition n_o :: 'av st option = wvname set = nat (<n,>) where
ne opt X = (case opt of None = 0 | Some S = ns S X + 1)

lemma n_o_ narrow:
top_on_opt S1 (—X) = top_on_opt S2 (—X) = finite X
= S2< 851 = S1 ANS2<81 =mn, (51 AS2)X<n,S1X
apply (induction S1 S2 rule: narrow__option.induct)
apply(auto simp: n_o_def n_s_narrow)
done

definition n__c :: ‘av st option acom = nat (<n.>) where
ne C = sum_list (map (Aa. ny, a (vars C)) (annos C))

lemma less _annos_iff: (C1 < C2) = (C1 < C2 A
(Fi<length (annos C1). annos C1 ! i < annos C2 ! 7))
by (metis (opaque__lifting, no__types) less_le_not_lele_iff le_annos size__annos__sameZ2)

lemma n_c_narrow: strip C1 = strip C2
= top_on_acom C1 (— vars C1) = top_on_acom C2 (— vars C2)
= (02<Cl = ClAC2<(Cl = n.(C1lAC2)<n.C1
apply(auto simp: n__c__def narrow_acom__def sum__list_sum__nth)

188

apply(subgoal_tac length(annos C2) = length(annos C1))
prefer 2 apply (simp add: size_annos_same2)

apply (auto)

apply(simp add: less_annos_iff le_iff le_annos)
apply(rule sum__strict_mono__exl)

apply (auto simp: vars_acom__def top__on__acom__def)
apply (metis n_o_narrow nth_mem finite__cvars less_imp_le le_less or-
der_refl)

apply(rule_tac =1 in bezl)

prefer 2 apply simp

apply(rule n_o_narrowjwhere X = vars(strip C2)))
apply (simp__all)

done

end

lemma iter widen termination:
fixes m :: ‘a::wn acom = nat
assumes P_f: N\C. P C = P(f C)
and P_widen: NC1 C2. P C1 = P C2 — P(C1 V (C2)
and m_widen: N\C1 C2. P(Cl —= P (2 —= ~ (02 < C1 = m(C1 V
C2) < m C1
and P C shows 3 C'. iter_widen f C = Some C’
proof (simp add: iter_widen__def,
rule measure__while__option__Some[where P = P and f=m])

show P C by(rule <P C»)
next

fix Cassume PC - fC < Cthus P(CV fC)Am(CV fC)<m
C

by (simp add: P_f P_widen m__widen)

qged

lemma iter narrow termination:
fixes n :: 'a::wn acom = nat
assumes P_f: N\C. P C = P(f C)
and P_narrow: NC1 C2. P C1 = P C2 — P(C1 A (C2)
and mono: N\C1 C2. P(Cl —= P(C2 — C1 < (02 = fC1 < f(C2
and n_narrow: N\C1 C2. PCl = P (C2 = C2 < (C1 = C1 A C2 <
Cl = n(C1 A C2) < n C1
and init: P C f C < C shows 3 C'. iter_narrow f C = Some C’
proof(simp add: iter_narrow__def,

rule measure__while__option__Some[where f=n and P = %C. P C A

fe<a

189

show P C A f C < C using init by blast
next
fix Cassume I: PCAfC<Cand 2: CA fC < C
hence P (C A f C) by(simp add: P_f P_narrow)
moreover then have f (C A fC) < CAfC
by (metis narrowl _acom narrow2__acom 1 mono order _trans)
moreover have n (C A fC) < n C using 1 2 by(simp add: n__narrow
P_f)
ultimately show (P (C A fC)NfF(CAfC)<SCAFC)AnCAf
C)<nC
by blast
qed

locale Abs Int _wn_measure = Abs_Int_wn where y=v + Measure_wn
where m=m
for v :: av::{wn,bounded_lattice} = val set and m :: ‘av = nat

14.14.4 Termination: Intervals

definition m_rep :: eint2 = nat where
m_rep p = (if is_empty_rep p then 3 else

let (I,h) = p in (case l of Minf = 0 | _ = 1) + (case h of Pinf = 0 |
_=1))

lift_ definition m_ vl :: vl = nat is m__rep
by (auto simp: m__rep__def eq_ivl_iff)

lemma m__ivl_nice: m__iwl[l,h] = (if [[,h] = L then 3 else

(if | = Minf then 0 else 1) + (if h = Pinf then 0 else 1))
unfolding bot_ivl_def
by transfer (auto simp: m_rep__def eq ivl_empty split: extended.split)

lemma m__ivl_height: m_ivl iv < 8
by transfer (simp add: m__rep__def split: prod.split extended.split)

lemma m_ivl_anti_mono: y <z = m_ivlx < m_ivly
by transfer
(auto simp: m_rep__def is_empty rep_def ~v_rep_cases le_iff subset
split: prod.split extended.splits if _splits)

lemma m vl widen:
Yy<z= m_wl(zVy <m_wlzx
by transfer
(auto simp: m__rep__def widen__rep__def is_empty_rep__def ~v__rep_ cases

190

le_iff subset
split: prod.split extended.splits if _splits)

definition n_ !l :: il = nat where
n wliv=38 — m_ wliw

lemma n_ il narrow:

rANy<z=n_wl(z Ay <n_ivlx
unfolding n_ vl _def
apply(subst (asm) less_le_not_le)
apply transfer
by (auto simp add: m__rep__def narrow_rep__defis_empty rep_ def empty_rep def
~v_rep_cases le_iff subset

split: prod.splits if _splits extended.split)

global__interpretation Abs Int wn_measure
where v = vl and num’ = num__ivl and plus’ = (+)
and test _num’ = in_ivl
and inv_plus’ = inv_plus il and inv_less’ = inv_less ivl
and m=m wlandn=mn wl and h = 3
proof (standard, goal_cases)
case 2 thus ?case by(rule m__ivl_anti_mono)
next
case I thus ?case by(rule m_ivl_height)
next
case 3 thus ?case by(rule m__ivl_widen)
next
case 4 from 4(2) show ?case by(rule n_ vl narrow)
— note that the first assms is unnecessary for intervals
ged

lemma iter winden_ step vl _termination:

3C. iter_widen (step_ivl T) (bot ¢) = Some C
apply (rule iter_widen__termination[where m = m_c and P = %C. strip
C = ¢ A top_on_acom C (— vars C)))
apply (auto simp add: m_c_widen top_on_bot top_on_ step’[simplified
comp__def vars__acom__def]

vars_acom__def top__on__acom__widen)
done

lemma iter narrow step vl _termination:

top_on_acom C (— vars C) = step_ivl T C < C =
3. iter_narrow (step_ivl T) C = Some C’

191

apply(rule iter_narrow__termination|where n = n_c and P = %C". strip

C = strip C' A top_on_acom C' (—vars C')])

apply(auto simp: top__on__step’[simplified comp__def vars__acom.__def]
mono__step’ _top n__c_narrow vars_acom__def top__on__acom__narrow)

done

theorem Al wn_ wl termination:
3C. AI wn_ il ¢ = Some C
apply(auto simp: AL _wn__def pfp_wn__def iter_winden__step__ivl_termination
split: option.split)
apply(rule iter_narrow__step__ivl_termination)
apply(rule conjunct2)
apply(rule iter_widen__inv[where f = step’ T and P = %C. ¢ = strip C
& top_on_acom C (— vars C)))
apply(auto simp: top_on__acom__widen top__on__step’[simplified comp__def
vars__acom,__def]
iter_widen__pfp top__on__bot vars_acom__def)
done

14.14.5 Counterexamples

Widening is increasing by assumption, but < f x is not an invariant of
widening. It can already be lost after the first step:

lemma assumes !z y::'a;:un. 2 <y = fz < fy
and z < frzand - fz < zshowsz V fz < f(z V fz)
nitpick|card = 3, expect = genuine, show__consts, timeout = 120)]

oops

Widening terminates but may converge more slowly than Kleene itera-
tion. In the following model, Kleene iteration goes from 0 to the least pfp
in one step but widening takes 2 steps to reach a strictly larger pfp:

lemma assumes !z y::'azun. 2 <y = fx < fy

and z < frzand -~ fz < zand f(fz) < fz

shows f(z V fz) <z V fz

nitpick[card = 4, expect = genuine, show__consts, timeout = 120]

oops

end

15 Extensions and Variations of IMP

theory Procs imports BEzp begin

192

15.1 Procedures and Local Variables

type__synonym pname = string

datatype
com = SKIP

| Assign vname aexp («_ == _>»[1000, 61] 61)
| Seq com com («_3;/ _» [60, 61] 60)
| If bexp com com (« (IF _/ THEN _/ ELSE), [0, 0, 61] 61)
| While bexp com «(WHILE _/ DO _)» [0, 61] 61)
| Var vname com («(1{VAR _;/ _}))
| Proc pname com com («(1{PROC _ = _;/ _}))
| CALL pname

definition test com =
{VAR /l //
{PROC // // // 1! = N 1
{PROC "q ” "= CALL "p";
{VAR /l //
// " = NQH
{PROC 11 // // // _ Ns)
CALL //q//’7 // I/ V //x//}}}}}

end
theory Procs Dyn_Vars Dyn imports Procs
begin

15.1.1 Dynamic Scoping of Procedures and Variables

type__synonym penv = pname = com

inductive

big__step :: penv = com X state = state = bool («_+ _ = _» [60,0,60]
55)
where
Skip: pe = (SKIP,s) = s |
Assign: pe b (z == a,5) = s(z := aval a s) |
Seq: [pet (c1,81) = s2; pe b (c2,82) = s3] =

pe b (c13502, $1) = S3 |

IfTrue: [bval b's; pet (ci,s) = t] =

pe = (IF b THEN c¢i ELSE ca, s) = t |
IfFalse: [—bval b s; pe b (c2,8) = t] =

pe = (IF b THEN ¢y ELSE ca, s) = t |

193

WhileFalse: —~bval b s = pe = (WHILE b DO c¢,s) = s |

While True:
[bval b s1; pet (¢,81) = s2; pet (WHILE b DO ¢, s3) = s3 | =
pe = (WHILE b DO ¢, s1) = s3 |

Var: pe - (¢,s) = t = pet ({VAR z; ¢}, s) = t(z == s) |

Call: pe - (pe p, s) =t = pebt (CALL p, s) =t |

Proc: pe(p := ¢cp) b (¢,8) =t = pek ({PROC p = cp; ¢}, s) =t
code_ pred big_step .

values {map t ["z","y"] |t. (\p. SKIP) + (test_com, <>) = t}

end
theory Procs Stat_Vars Dyn imports Procs
begin

15.1.2 Static Scoping of Procedures, Dynamic of Variables

type__synonym penv = (pname x com) list

inductive

big__step :: penv = com X state = state = bool (<_+ _ = _» [60,0,60]
55)
where
Skip: pe - (SKIP,s) = s |
Assign: pe F (z == a,5) = s(z := aval a s) |
Seq: [pet (ci,81) = s2; pe b (c2,82) = s3] =

pe b (c13509, $1) = s3 |

IfTrue: [bval bs; pet (c1,8) = t] =

pe = (IF b THEN ¢y ELSE ca, s) = t |
IfFalse: [—bval b s; pe b (c2,8) = t] =

pe = (IF b THEN ¢y ELSE co, 5) = t |

WhileFalse: —bval b s = pe = (WHILE b DO c¢,s) = s |

While True:
[bval b s1; pe bt (¢,81) = s2; peb (WHILE b DO ¢, s2) = s3 | =
pe = (WHILE b DO ¢, s1) = s3 |

Var: pe - (¢,8) =t = pet ({VAR z; ¢}, s) = t(z := s x) |

194

Calll: (p,c)#pet (¢, s) =t = (p,c)#pet (CALL p, s) = t |
Call2: [p'# p; pet (CALL p, s) = t]| =
(p/,c)#pe b (CALL p, s) =t |

Proc: (p,cp)#pe F (¢,s) =t = pebk ({PROC p = cp; ¢}, s) =t
code_ pred big_step .
values {map t ["z”, "y"] |t. [| F (test_com, <>) = t}

end
theory Procs Stat_Vars Stat imports Procs
begin

15.1.3 Static Scoping of Procedures and Variables

type__synonym addr = nat

type__synonym venv = vname = addr

type_ synonym store = addr = wval
type__synonym penv = (pname X com X venv) list

fun venv :: penv X venv X nat = venv where
venv(__,ve,) = ve

inductive
big_step :: penv X venv X mat = com X store = store = bool
(CF_ = [60,0,60] 55)
where
Skip: et (SKIP,s) = s |
Assign: (pe,ve,f) F (z == a,5) = s(ve z := aval a (s o ve)) |
Seq: [et (c1,81) = s2; eb (c2,52) = s3] =
et (c13c2, s1) = s3 |

IfTrue: [bval b (s o venv e); et (c1,8) = t] =
et (IF b THEN ¢y ELSE cy, s) = t |
IfFalse: [=bval b (s o venv e); et (ca,8) = t] =
et (IF b THEN ¢y ELSE cy, s) = t |

WhileFalse: —bval b (s o venv e) = e = (WHILE b DO ¢,s) = s |
While True:
[bval b (s1 o venv e); el (¢,81) = $o;
et (WHILE b DO ¢, s3) = s3] =
et (WHILE b DO ¢, s1) = s3 |

195

Var: (pe,ve(z:=f).f+1) F (¢,5) = t =
(pe,ve,f) - ({ VAR T, C}, S) =t ’

Calll: ((p,c,ve)#pe,ve,f) - (¢, s) =t =
((p,c,ve)#peve’.f) = (CALL p, s) = t |
Call2: [p' # p; (peyve,f) F (CALL p, s) = t]| =
((p',c,ve’)#pe,ve,f) = (CALL p, s) = t |

Proc: ((p,cp,ve)#pe,ve.f) = (c,8) = ¢
— (peyve.f) F ({PROC p = cp; ¢}, s) = ¢

code_ pred big_step .

values {map t [10,11] |t.
([, <"z":= 10, "y" .= 11>, 12)
F (test_com, <>) = t}

end
theory C' like imports Main begin

15.2 A C-like Language

type__synonym state = nat = nat
datatype aexp = N nat | Deref aexp (<)) | Plus aexp aexp

fun aval :: aexp = state = nat where
aval (N n) s =n |

aval (la) s = s(aval a s) |

aval (Plus a1 a2) s = aval a; s + aval ay s

datatype bexp = Bc bool | Not bexp | And bexp bexp | Less aexp aexp

primrec bval :: bexp = state = bool where

bval (Becv) _ = v |

bval (Not b) s = (= bval b s) |

bval (And by by) s = (if bval by s then buval by s else False) |
bval (Less a1 az) s = (aval a; s < aval ay $)

datatype
com = SKIP

196

| Assign aexp aexp («_ == _»[61, 61] 61)

| New aexp aexp

| Seq com com («;/ _» [60,61] 60)

| If bexp com com («(IF _/ THEN _/ ELSE), [0, 0, 61] 61)
| While bexp com «(WHILE _/ DO _)y [0, 61] 61)

inductive

big_step :: com X state X nat = state X nat = bool (infix (= 55)
where
Skip: (SKIP,sn) = sn |
Assign: (lhs ::= a,s,n) = (s(aval lhs s := aval a s),n) |
New: (New lhs a,s,n) = (s(aval lhs s :== n), nt+aval a s) |
Seq: [(c1,8m1) = sng; (ca,sm2) = sng | =

(c1;¢2, sn1) = sns |

IfTrue: [bval bs; (ci,s,n) = tn]| =
(IF b THEN ¢y ELSE c3, s,n) = tn |

IfFalse: [—bval b s; (c2,8,n) = tn | =
(IF b THEN ¢y ELSE ca, s,n) = tn |

WhileFalse: —bval b s = (WHILE b DO c,s,n) = (s,n) |

While True:
[bval b s1; (¢,s1,n) = sno; (WHILE b DO ¢, sna) = sng | =
(WHILE b DO ¢, s1,n) = sns

code_ pred big_step .

declare [[values__timeout = 3600]]
Examples:

definition

array__sum =

WHILE Less (\(N 0)) (Plus ({(N 1)) (N 1))
(N

1
DO (N 2 == Plus ({(N 2)) ({(/(N 0)));
N 0 == Plus /(N 0)) (N1))

To show the first n variables in a nat = nat state:

definition
listt n = mapt [0 ..< n

values {list t n |t n. (array_sum, nth[3,4,0,3,7],5) = (t,n)}

definition
linked__list _sum =

197

WHILE Less (N 0) ({(N 0))
DO (N1 == Plus(!I(N 1)) ({(/(N 0)));
N 0 == (Plus((N 0))(N 1)))

values {list t n |t n. (linked list sum, nth[4,0,3,0,7,2],6) = (t,n)}

definition
array__init =
New (N 0) ({(N 1)); N 2 == (N 0);
WHILE Less (I(N 2)) (Plus ({(N 0)) (/(N 1)))
DO (I(N 2) == (N 2);
N 2 ::= Plus (I(N 2)) (N 1))

values {list t n |t n. (array_init, nth[5,2,7],3) = (t,n)}

definition

linked__list _init =

WHILE Less ({(N 1)) ({(N 0))

DO (New (N 8) (N 2);
N1 := Plus (/(N 1)) (N 1);
(N 3) == (N 1);
Plus (I(N 3)) (N 1) == (N 2);
N2 :=l(N3))

values {list t n |t n. (linked_list_init, nth[2,0,0,0],4) = (t,n)}

end
theory OO imports Main begin

15.3 Towards an OO Language: A Language of Records

abbreviation fun_upd2 :: (‘la = b= 'c) = "a="b="c="a= b =

‘e

()2, =]) [1000,0,0,0] 900)
where f(z,y := 2) == f(z := (f2)(y := 2))

type_synonym addr = nat
datatype ref = null | Ref addr

type_synonym obj = string = ref
type_ synonym venv = string = ref

type__synonym store = addr = obj

datatype exp =

198

Null |

New |

V string |

Faccess exp string (x_+/_» [63,1000] 63) |

Vassign string exp («(_ / _)» [1000,61] 62) |

Fassign exp string exp («(_-_ ==/ _)» [63,0,62] 62) |

Mecall exp string exp («(_ / <_>)» [65,0,0] 63) |

Seq exp exp («;/ _» [61,60] 60) |

If bexp exp exp (<(IF _/ THEN (2_)/ ELSE (2_)> [0,0,61] 61)

and bexp = B bool | Not bexp | And bexp bexp | Eq exp exp

type_ synonym menv = string = exp
type_ synonym config = venv X store X addr

inductive
big_step :: menv = exp X config = ref X config = bool
(_+/ (/)= _))[60,0,60] 55) and
bval :: menv = bexp X config = bool X config = bool
(«_F_ — _»[60,0,60] 55)
where
Null:
me F (Null,c) = (null,c) |
New:
me = (New,ve,s,n) = (Ref n,ve,s(n := (Af. null)),n+1) |
Vaccess:
me = (V z,ve,sn) = (ve z,ve,sn) |
Faccess:
me b (e,c) = (Ref a,ve’;s',n") =
) =

me b= (e-f,c (s’ a fve s’ n’) |

Vassign:

me b (e,c) = (r,ve’,sn’) =

me b= (z ::= e,c) = (rve'(z:=r),sn’) |

Fassign:

[me - (oe,c1) = (Ref a,c2); me F (e,c2) = (r,ves,s3,n3) | =
me b= (oe-f ::= e,c1) = (r,ves,s3(a,f := r),n3) |

Mcall:

[me - (oe,c1) = (or,ca); me b (pe,ca) = (pr,ves,sns);
ve = (Az. null)("this” := or, "param’ := pr);
me F (me m,ve,sns) = (r,ve’,snyq) |
.

me = (oe-m<pe>,c1) = (r,ves,sny) for or |

Seq:

[mel (e1,c1) = (r,c2); met (ez,c2) = 3] =

me = (e1; e2,c1) = c3 |

199

IfTrue:

[me = (b,c1) — (True,ce); me - (e1,c2) = c3 | =
me = (IF b THEN e; ELSE ey,c1) = c3 |

IfFalse:

[met (b,c1) — (False,ca); me t= (e2,c2) = c3 | =
me F (IFb THEN ey FLSE 62,61) = C3 |

me b (B bv,c) — (bv,c) |
me b (b,c1) — (bv,co) = me = (Not b,c1) — (—bv,ca) |

[met (b1,c1) — (bui,ca); me b (ba,c2) — (bva,c3) | =
me = (And by ba,c1) — (bviAbug,cs) |

[met (e1,c1) = (r1,c2); met (e2,c2) = (r2,c3) | =
me b (Eq e; ea,c1) — (r1=rg,c3)

code_ pred (modes: i => i => 0 => bool) big_step .

Example: natural numbers encoded as objects with a predecessor field.
Null is zero. Method succ adds an object in front, method add adds as many
objects in front as the parameter specifies.

First, the method bodies:

definition
m_succ = ("s" ::= New)-"pred” := V "this'; V' "'s"

definition m_add =
IF Eq (V "param'’) Null
THEN V "this"
ELSE V "this"-"succ”"<Null>-"add""<V "param’-"pred'>

The method environment:

definition
menv = (Am. Null)("succ” := m__suce, "add" := m__add)

The main code, adding 1 and 2:
definition main =
"1 = Null-"suce”"< Null>;
"2 =V "1 succ”< Null>;
V //2// R //add// <V //1 //>
Execution of semantics. The final variable environment and store are

converted into lists of references based on given lists of variable and field
names to extract.

200

values
{(r, map ve' ["1",72"], map (An. map (s" n)["pred”]) [0..<n])]|
rve' s’ n. menv b (main, Az. null, nth{], 0) = (r,ve’;s",n)}

end

theory Halting
imports HOL—IMP.Big Step
begin

definition halts ¢ s = (3s'. (¢, s) = §')
A simple program that does not halt:
definition loop = WHILE Bc True DO SKIP

lemma loop__never__halts[simp]: — halts loop s
unfolding halts def
proof clarify
fix s’ assume (loop, s) = s’
then show Fulse
by (induction loop s s’ rule: big_step _induct) (simp__all add: loop__def)
qged

16 Halting Problem

Given any encoding f (of programs to states), there is no Program H such
that for all programs ¢, H terminates in a state s’ which has at variable x
the answer whether ¢ halts.

theorem halting:
BPH. Ve 3s'. (H, fe) = s A (halts ¢ (fc) <« s'z > 0)
(is AH. ?P H)

proof clarify
fix H assume assm: P H

— inverted H: loops if input halts
let ?inv H = H ;; IF Less (V z) (N 1) THEN SKIP ELSE loop

— compute in s’ whether inverted H halts when applied to itself
obtain s’ where

s" def: (H, f %inv_H) = s" and

s’ _halts: halts Zinv_H (f %inv_H) < (s'z > 0)

using assm by blast

201

— contradiction: if it terminates, loop must have terminated; if not, SKIP
must have looped!
show Fulse
proof(cases halts ?inv_H (f %inv_H))
case True

then have halts (IF Less (V z) (N 1) THEN SKIP ELSE loop) s’
unfolding halts def using big_step determ s’ _def by fast

then have halts loop s’
using s’ halts True halts _def by auto

then show Fulse by auto
next
case Fulse

then have — halts SKIP s’
using s’ def s’ _halts halts _def by force

then show Fulse using halts _def by auto
qed
qed

end

References

[1] T. Nipkow. Winskel is (almost) right: Towards a mechanized seman-
tics textbook. In V. Chandru and V. Vinay, editors, Foundations of
Software Technology and Theoretical Computer Science, volume 1180 of
Lect. Notes in Comp. Sci., pages 180-192. Springer-Verlag, 1996.

[2] T. Nipkow and G. Klein. Concrete Semantics with Isabelle/HOL.
Springer, 2014. http://concrete-semantics.org.

202

http://concrete-semantics.org

	Arithmetic and Boolean Expressions
	Arithmetic Expressions
	Constant Folding
	Boolean Expressions
	Constant Folding

	Stack Machine and Compilation
	Stack Machine
	Compilation

	IMP — A Simple Imperative Language
	Big-Step Semantics of Commands
	Rule inversion
	Command Equivalence
	Execution is deterministic

	Small-Step Semantics of Commands
	The transition relation
	Executability
	Proof infrastructure
	Equivalence with big-step semantics
	Final configurations and infinite reductions
	Finite number of reachable commands

	Denotational Semantics of Commands
	Continuity
	The denotational semantics is deterministic

	Compiler for IMP
	List setup
	Instructions and Stack Machine
	Verification infrastructure
	Compilation
	Preservation of semantics

	Compiler Correctness, Reverse Direction
	Definitions
	Basic properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 exec_n
	Concrete symbolic execution steps
	Basic properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 succs
	Splitting up machine executions
	Correctness theorem

	A Typed Language
	Arithmetic Expressions
	Boolean Expressions
	Syntax of Commands
	Small-Step Semantics of Commands
	The Type System
	Well-typed Programs Do Not Get Stuck
	Type Variables
	Typing is Preserved by Substitution

	Security Type Systems
	Security Levels and Expressions
	Security Typing of Commands
	Termination-Sensitive Systems

	Definite Initialization Analysis
	The Variables in an Expression
	Initialization-Sensitive Expressions Evaluation
	Definite Initialization Analysis
	Initialization-Sensitive Big Step Semantics
	Soundness wrt Big Steps
	Initialization-Sensitive Small Step Semantics
	Soundness wrt Small Steps

	Constant Folding
	Semantic Equivalence up to a Condition
	Simple folding of arithmetic expressions

	Live Variable Analysis
	Liveness Analysis
	Correctness
	Program Optimization
	True Liveness Analysis

	Hoare Logic
	Hoare Logic for Partial Correctness
	Examples
	Soundness and Completeness
	Verification Condition Generation
	Hoare Logic for Total Correctness
	Verification Conditions for Total Correctness

	Abstract Interpretation
	Complete Lattice
	Annotated Commands
	Collecting Semantics of Commands
	A small step semantics on annotated commands
	Collecting Semantics Examples
	Abstract Interpretation Test Programs
	Abstract Interpretation
	Computable State
	Computable Abstract Interpretation
	Parity Analysis
	Constant Propagation
	Backward Analysis of Expressions
	Interval Analysis
	Widening and Narrowing

	Extensions and Variations of IMP
	Procedures and Local Variables
	A C-like Language
	Towards an OO Language: A Language of Records

	Halting Problem

