
Hoare Logic for Parallel Programs

Leonor Prensa Nieto

January 18, 2026



Abstract

In the following theories a formalization of the Owicki-Gries and the rely-
guarantee methods is presented. These methods are widely used for cor-
rectness proofs of parallel imperative programs with shared variables. We
define syntax, semantics and proof rules in Isabelle/HOL. The proof rules
also provide for programs parameterized in the number of parallel compo-
nents. Their correctness w.r.t. the semantics is proven. Completeness proofs
for both methods are extended to the new case of parameterized programs.
(These proofs have not been formalized in Isabelle. They can be found
in [1].) Using this formalizations we verify several non-trivial examples for
parameterized and non-parameterized programs. For the automatic gener-
ation of verification conditions with the Owicki-Gries method we define a
tactic based on the proof rules. The most involved examples are the veri-
fication of two garbage-collection algorithms, the second one parameterized
in the number of mutators.

For excellent descriptions of this work see [2, 4, 1, 3].



Contents

1 The Owicki-Gries Method 4
1.1 Abstract Syntax . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 The Transition Relation . . . . . . . . . . . . . . . . . 5
1.2.2 Definition of Semantics . . . . . . . . . . . . . . . . . 6

1.3 Validity of Correctness Formulas . . . . . . . . . . . . . . . . 11
1.4 The Proof System . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5.1 Soundness of the System for Atomic Programs . . . . 13
1.5.2 Soundness of the System for Component Programs . . 14
1.5.3 Soundness of the System for Parallel Programs . . . . 16

1.6 Generation of Verification Conditions . . . . . . . . . . . . . . 20
1.7 Concrete Syntax . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.8.1 Mutual Exclusion . . . . . . . . . . . . . . . . . . . . . 33
1.8.2 Parallel Zero Search . . . . . . . . . . . . . . . . . . . 38
1.8.3 Producer/Consumer . . . . . . . . . . . . . . . . . . . 40
1.8.4 Parameterized Examples . . . . . . . . . . . . . . . . . 42

2 Case Study: Single and Multi-Mutator Garbage Collection
Algorithms 45
2.1 Formalization of the Memory . . . . . . . . . . . . . . . . . . 45

2.1.1 Proofs about Graphs . . . . . . . . . . . . . . . . . . . 46
2.2 The Single Mutator Case . . . . . . . . . . . . . . . . . . . . 53

2.2.1 The Mutator . . . . . . . . . . . . . . . . . . . . . . . 54
2.2.2 The Collector . . . . . . . . . . . . . . . . . . . . . . . 55
2.2.3 Interference Freedom . . . . . . . . . . . . . . . . . . . 63

2.3 The Multi-Mutator Case . . . . . . . . . . . . . . . . . . . . . 71
2.3.1 The Mutators . . . . . . . . . . . . . . . . . . . . . . . 71
2.3.2 The Collector . . . . . . . . . . . . . . . . . . . . . . . 74
2.3.3 Interference Freedom . . . . . . . . . . . . . . . . . . . 81

1



3 The Rely-Guarantee Method 99
3.1 Abstract Syntax . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.2 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . 99

3.2.1 Semantics of Component Programs . . . . . . . . . . . 99
3.2.2 Semantics of Parallel Programs . . . . . . . . . . . . . 100
3.2.3 Computations . . . . . . . . . . . . . . . . . . . . . . . 101
3.2.4 Modular Definition of Computation . . . . . . . . . . 101
3.2.5 Equivalence of Both Definitions. . . . . . . . . . . . . 102

3.3 Validity of Correctness Formulas . . . . . . . . . . . . . . . . 107
3.3.1 Validity for Component Programs. . . . . . . . . . . . 107
3.3.2 Validity for Parallel Programs. . . . . . . . . . . . . . 107
3.3.3 Compositionality of the Semantics . . . . . . . . . . . 108
3.3.4 The Semantics is Compositional . . . . . . . . . . . . 109

3.4 The Proof System . . . . . . . . . . . . . . . . . . . . . . . . 121
3.4.1 Proof System for Component Programs . . . . . . . . 121
3.4.2 Proof System for Parallel Programs . . . . . . . . . . 122

3.5 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.5.1 Soundness of the System for Component Programs . . 127
3.5.2 Soundness of the System for Parallel Programs . . . . 144

3.6 Concrete Syntax . . . . . . . . . . . . . . . . . . . . . . . . . 150
3.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

3.7.1 Set Elements of an Array to Zero . . . . . . . . . . . . 152
3.7.2 Increment a Variable in Parallel . . . . . . . . . . . . . 153
3.7.3 Find Least Element . . . . . . . . . . . . . . . . . . . 157

2



Gar_Coll

Graph

Hoare_Parallel

Mul_Gar_Coll

OG_Com

OG_Examples

OG_Hoare

OG_Syntax

OG_Tactics

OG_Tran

Quote_Antiquote RG_Com

RG_Examples

RG_Hoare

RG_Syntax

RG_Tran

[HOL]

[Pure]

[Tools]

3



Chapter 1

The Owicki-Gries Method

1.1 Abstract Syntax
theory OG-Com imports Main begin

Type abbreviations for boolean expressions and assertions:
type-synonym ′a bexp = ′a set
type-synonym ′a assn = ′a set

The syntax of commands is defined by two mutually recursive datatypes: ′a
ann-com for annotated commands and ′a com for non-annotated commands.
datatype ′a ann-com =

AnnBasic ( ′a assn) ( ′a ⇒ ′a)
| AnnSeq ( ′a ann-com) ( ′a ann-com)
| AnnCond1 ( ′a assn) ( ′a bexp) ( ′a ann-com) ( ′a ann-com)
| AnnCond2 ( ′a assn) ( ′a bexp) ( ′a ann-com)
| AnnWhile ( ′a assn) ( ′a bexp) ( ′a assn) ( ′a ann-com)
| AnnAwait ( ′a assn) ( ′a bexp) ( ′a com)

and ′a com =
Parallel ( ′a ann-com option × ′a assn) list

| Basic ( ′a ⇒ ′a)
| Seq ( ′a com) ( ′a com)
| Cond ( ′a bexp) ( ′a com) ( ′a com)
| While ( ′a bexp) ( ′a assn) ( ′a com)

The function pre extracts the precondition of an annotated command:
primrec pre :: ′a ann-com ⇒ ′a assn where

pre (AnnBasic r f ) = r
| pre (AnnSeq c1 c2 ) = pre c1
| pre (AnnCond1 r b c1 c2 ) = r
| pre (AnnCond2 r b c) = r
| pre (AnnWhile r b i c) = r
| pre (AnnAwait r b c) = r

Well-formedness predicate for atomic programs:

4



primrec atom-com :: ′a com ⇒ bool where
atom-com (Parallel Ts) = False

| atom-com (Basic f ) = True
| atom-com (Seq c1 c2 ) = (atom-com c1 ∧ atom-com c2 )
| atom-com (Cond b c1 c2 ) = (atom-com c1 ∧ atom-com c2 )
| atom-com (While b i c) = atom-com c

end

1.2 Operational Semantics
theory OG-Tran imports OG-Com begin

type-synonym ′a ann-com-op = ( ′a ann-com) option
type-synonym ′a ann-triple-op = ( ′a ann-com-op × ′a assn)

primrec com :: ′a ann-triple-op ⇒ ′a ann-com-op where
com (c, q) = c

primrec post :: ′a ann-triple-op ⇒ ′a assn where
post (c, q) = q

definition All-None :: ′a ann-triple-op list ⇒ bool where
All-None Ts ≡ ∀ (c, q) ∈ set Ts. c = None

1.2.1 The Transition Relation
inductive-set

ann-transition :: (( ′a ann-com-op × ′a) × ( ′a ann-com-op × ′a)) set
and transition :: (( ′a com × ′a) × ( ′a com × ′a)) set
and ann-transition ′ :: ( ′a ann-com-op × ′a) ⇒ ( ′a ann-com-op × ′a) ⇒ bool
(‹- −1→ -›[81 ,81 ] 100 )

and transition ′ :: ( ′a com × ′a) ⇒ ( ′a com × ′a) ⇒ bool
(‹- −P1→ -›[81 ,81 ] 100 )

and transitions :: ( ′a com × ′a) ⇒ ( ′a com × ′a) ⇒ bool
(‹- −P∗→ -›[81 ,81 ] 100 )

where
con-0 −1→ con-1 ≡ (con-0 , con-1 ) ∈ ann-transition

| con-0 −P1→ con-1 ≡ (con-0 , con-1 ) ∈ transition
| con-0 −P∗→ con-1 ≡ (con-0 , con-1 ) ∈ transition∗

| AnnBasic: (Some (AnnBasic r f ), s) −1→ (None, f s)

| AnnSeq1 : (Some c0 , s) −1→ (None, t) =⇒
(Some (AnnSeq c0 c1 ), s) −1→ (Some c1 , t)

| AnnSeq2 : (Some c0 , s) −1→ (Some c2 , t) =⇒
(Some (AnnSeq c0 c1 ), s) −1→ (Some (AnnSeq c2 c1 ), t)

| AnnCond1T : s ∈ b =⇒ (Some (AnnCond1 r b c1 c2 ), s) −1→ (Some c1 , s)

5



| AnnCond1F : s /∈ b =⇒ (Some (AnnCond1 r b c1 c2 ), s) −1→ (Some c2 , s)

| AnnCond2T : s ∈ b =⇒ (Some (AnnCond2 r b c), s) −1→ (Some c, s)
| AnnCond2F : s /∈ b =⇒ (Some (AnnCond2 r b c), s) −1→ (None, s)

| AnnWhileF : s /∈ b =⇒ (Some (AnnWhile r b i c), s) −1→ (None, s)
| AnnWhileT : s ∈ b =⇒ (Some (AnnWhile r b i c), s) −1→

(Some (AnnSeq c (AnnWhile i b i c)), s)

| AnnAwait: [[ s ∈ b; atom-com c; (c, s) −P∗→ (Parallel [], t) ]] =⇒
(Some (AnnAwait r b c), s) −1→ (None, t)

| Parallel: [[ i<length Ts; Ts!i = (Some c, q); (Some c, s) −1→ (r , t) ]]
=⇒ (Parallel Ts, s) −P1→ (Parallel (Ts [i:=(r , q)]), t)

| Basic: (Basic f , s) −P1→ (Parallel [], f s)

| Seq1 : All-None Ts =⇒ (Seq (Parallel Ts) c, s) −P1→ (c, s)
| Seq2 : (c0 , s) −P1→ (c2 , t) =⇒ (Seq c0 c1 , s) −P1→ (Seq c2 c1 , t)

| CondT : s ∈ b =⇒ (Cond b c1 c2 , s) −P1→ (c1 , s)
| CondF : s /∈ b =⇒ (Cond b c1 c2 , s) −P1→ (c2 , s)

| WhileF : s /∈ b =⇒ (While b i c, s) −P1→ (Parallel [], s)
| WhileT : s ∈ b =⇒ (While b i c, s) −P1→ (Seq c (While b i c), s)

monos rtrancl-mono

The corresponding abbreviations are:
abbreviation

ann-transition-n :: ( ′a ann-com-op × ′a) ⇒ nat ⇒ ( ′a ann-com-op × ′a)
⇒ bool (‹- −-→ -›[81 ,81 ] 100 ) where

con-0 −n→ con-1 ≡ (con-0 , con-1 ) ∈ ann-transition ^^ n

abbreviation
ann-transitions :: ( ′a ann-com-op × ′a) ⇒ ( ′a ann-com-op × ′a) ⇒ bool

(‹- −∗→ -›[81 ,81 ] 100 ) where
con-0 −∗→ con-1 ≡ (con-0 , con-1 ) ∈ ann-transition∗

abbreviation
transition-n :: ( ′a com × ′a) ⇒ nat ⇒ ( ′a com × ′a) ⇒ bool

(‹- −P-→ -›[81 ,81 ,81 ] 100 ) where
con-0 −Pn→ con-1 ≡ (con-0 , con-1 ) ∈ transition ^^ n

1.2.2 Definition of Semantics
definition ann-sem :: ′a ann-com ⇒ ′a ⇒ ′a set where

ann-sem c ≡ λs. {t. (Some c, s) −∗→ (None, t)}

6



definition ann-SEM :: ′a ann-com ⇒ ′a set ⇒ ′a set where
ann-SEM c S ≡

⋃
(ann-sem c ‘ S)

definition sem :: ′a com ⇒ ′a ⇒ ′a set where
sem c ≡ λs. {t. ∃Ts. (c, s) −P∗→ (Parallel Ts, t) ∧ All-None Ts}

definition SEM :: ′a com ⇒ ′a set ⇒ ′a set where
SEM c S ≡

⋃
(sem c ‘ S)

abbreviation Omega :: ′a com (‹Ω› 63 )
where Ω ≡ While UNIV UNIV (Basic id)

primrec fwhile :: ′a bexp ⇒ ′a com ⇒ nat ⇒ ′a com where
fwhile b c 0 = Ω

| fwhile b c (Suc n) = Cond b (Seq c (fwhile b c n)) (Basic id)

Proofs
declare ann-transition-transition.intros [intro]
inductive-cases transition-cases:

(Parallel T ,s) −P1→ t
(Basic f , s) −P1→ t
(Seq c1 c2 , s) −P1→ t
(Cond b c1 c2 , s) −P1→ t
(While b i c, s) −P1→ t

lemma Parallel-empty-lemma [rule-format (no-asm)]:
(Parallel [],s) −Pn→ (Parallel Ts,t) −→ Ts=[] ∧ n=0 ∧ s=t

apply(induct n)
apply(simp (no-asm))

apply clarify
apply(drule relpow-Suc-D2 )
apply(force elim:transition-cases)
done

lemma Parallel-AllNone-lemma [rule-format (no-asm)]:
All-None Ss −→ (Parallel Ss,s) −Pn→ (Parallel Ts,t) −→ Ts=Ss ∧ n=0 ∧ s=t

apply(induct n)
apply(simp (no-asm))

apply clarify
apply(drule relpow-Suc-D2 )
apply clarify
apply(erule transition-cases,simp-all)
apply(force dest:nth-mem simp add:All-None-def )
done

lemma Parallel-AllNone: All-None Ts =⇒ (SEM (Parallel Ts) X) = X
apply (unfold SEM-def sem-def )
apply auto

7



apply(drule rtrancl-imp-UN-relpow)
apply clarify
apply(drule Parallel-AllNone-lemma)
apply auto
done

lemma Parallel-empty: Ts=[] =⇒ (SEM (Parallel Ts) X) = X
apply(rule Parallel-AllNone)
apply(simp add:All-None-def )
done

Set of lemmas from Apt and Olderog "Verification of sequential and concur-
rent programs", page 63.
lemma L3-5i: X⊆Y =⇒ SEM c X ⊆ SEM c Y
apply (unfold SEM-def )
apply force
done

lemma L3-5ii-lemma1 :
[[ (c1 , s1 ) −P∗→ (Parallel Ts, s2 ); All-None Ts;
(c2 , s2 ) −P∗→ (Parallel Ss, s3 ); All-None Ss ]]
=⇒ (Seq c1 c2 , s1 ) −P∗→ (Parallel Ss, s3 )

apply(erule converse-rtrancl-induct2 )
apply(force intro:converse-rtrancl-into-rtrancl)+
done

lemma L3-5ii-lemma2 [rule-format (no-asm)]:
∀ c1 c2 s t. (Seq c1 c2 , s) −Pn→ (Parallel Ts, t) −→
(All-None Ts) −→ (∃ y m Rs. (c1 ,s) −P∗→ (Parallel Rs, y) ∧
(All-None Rs) ∧ (c2 , y) −Pm→ (Parallel Ts, t) ∧ m ≤ n)

apply(induct n)
apply(force)

apply(safe dest!: relpow-Suc-D2 )
apply(erule transition-cases,simp-all)
apply (fast intro!: le-SucI )

apply (fast intro!: le-SucI elim!: relpow-imp-rtrancl converse-rtrancl-into-rtrancl)
done

lemma L3-5ii-lemma3 :
[[(Seq c1 c2 ,s) −P∗→ (Parallel Ts,t); All-None Ts]] =⇒

(∃ y Rs. (c1 ,s) −P∗→ (Parallel Rs,y) ∧ All-None Rs
∧ (c2 ,y) −P∗→ (Parallel Ts,t))

apply(drule rtrancl-imp-UN-relpow)
apply(fast dest: L3-5ii-lemma2 relpow-imp-rtrancl)
done

lemma L3-5ii: SEM (Seq c1 c2 ) X = SEM c2 (SEM c1 X)
apply (unfold SEM-def sem-def )
apply auto

8



apply(fast dest: L3-5ii-lemma3 )
apply(fast elim: L3-5ii-lemma1 )
done

lemma L3-5iii: SEM (Seq (Seq c1 c2 ) c3 ) X = SEM (Seq c1 (Seq c2 c3 )) X
apply (simp (no-asm) add: L3-5ii)
done

lemma L3-5iv:
SEM (Cond b c1 c2 ) X = (SEM c1 (X ∩ b)) Un (SEM c2 (X ∩ (−b)))

apply (unfold SEM-def sem-def )
apply auto
apply(erule converse-rtranclE)
prefer 2
apply (erule transition-cases,simp-all)
apply(fast intro: converse-rtrancl-into-rtrancl elim: transition-cases)+

done

lemma L3-5v-lemma1 [rule-format]:
(S ,s) −Pn→ (T ,t) −→ S=Ω −→ (¬(∃Rs. T=(Parallel Rs) ∧ All-None Rs))

apply (unfold UNIV-def )
apply(rule nat-less-induct)
apply safe
apply(erule relpow-E2 )
apply simp-all

apply(erule transition-cases)
apply simp-all

apply(erule relpow-E2 )
apply(simp add: Id-def )

apply(erule transition-cases,simp-all)
apply clarify
apply(erule transition-cases,simp-all)
apply(erule relpow-E2 ,simp)
apply clarify
apply(erule transition-cases)
apply simp+

apply clarify
apply(erule transition-cases)

apply simp-all
done

lemma L3-5v-lemma2 : [[(Ω, s) −P∗→ (Parallel Ts, t); All-None Ts ]] =⇒ False
apply(fast dest: rtrancl-imp-UN-relpow L3-5v-lemma1 )
done

lemma L3-5v-lemma3 : SEM (Ω) S = {}
apply (unfold SEM-def sem-def )
apply(fast dest: L3-5v-lemma2 )

9



done

lemma L3-5v-lemma4 [rule-format]:
∀ s. (While b i c, s) −Pn→ (Parallel Ts, t) −→ All-None Ts −→
(∃ k. (fwhile b c k, s) −P∗→ (Parallel Ts, t))

apply(rule nat-less-induct)
apply safe
apply(erule relpow-E2 )
apply safe

apply(erule transition-cases,simp-all)
apply (rule-tac x = 1 in exI )
apply(force dest: Parallel-empty-lemma intro: converse-rtrancl-into-rtrancl simp

add: Id-def )
apply safe
apply(drule L3-5ii-lemma2 )
apply safe

apply(drule le-imp-less-Suc)
apply (erule allE , erule impE ,assumption)
apply (erule allE , erule impE , assumption)
apply safe
apply (rule-tac x = k+1 in exI )
apply(simp (no-asm))
apply(rule converse-rtrancl-into-rtrancl)
apply fast

apply(fast elim: L3-5ii-lemma1 )
done

lemma L3-5v-lemma5 [rule-format]:
∀ s. (fwhile b c k, s) −P∗→ (Parallel Ts, t) −→ All-None Ts −→
(While b i c, s) −P∗→ (Parallel Ts,t)

apply(induct k)
apply(force dest: L3-5v-lemma2 )

apply safe
apply(erule converse-rtranclE)
apply simp-all

apply(erule transition-cases,simp-all)
apply(rule converse-rtrancl-into-rtrancl)
apply(fast)

apply(fast elim!: L3-5ii-lemma1 dest: L3-5ii-lemma3 )
apply(drule rtrancl-imp-UN-relpow)
apply clarify
apply(erule relpow-E2 )
apply simp-all

apply(erule transition-cases,simp-all)
apply(fast dest: Parallel-empty-lemma)
done

lemma L3-5v: SEM (While b i c) = (λx. (
⋃

k. SEM (fwhile b c k) x))
apply(rule ext)

10



apply (simp add: SEM-def sem-def )
apply safe
apply(drule rtrancl-imp-UN-relpow,simp)
apply clarify
apply(fast dest:L3-5v-lemma4 )

apply(fast intro: L3-5v-lemma5 )
done

1.3 Validity of Correctness Formulas
definition com-validity :: ′a assn ⇒ ′a com ⇒ ′a assn ⇒ bool (‹(3‖= -// -//-)›
[90 ,55 ,90 ] 50 ) where
‖= p c q ≡ SEM c p ⊆ q

definition ann-com-validity :: ′a ann-com ⇒ ′a assn ⇒ bool (‹|= - -› [60 ,90 ] 45 )
where
|= c q ≡ ann-SEM c (pre c) ⊆ q

end

1.4 The Proof System
theory OG-Hoare imports OG-Tran begin

primrec assertions :: ′a ann-com ⇒ ( ′a assn) set where
assertions (AnnBasic r f ) = {r}

| assertions (AnnSeq c1 c2 ) = assertions c1 ∪ assertions c2
| assertions (AnnCond1 r b c1 c2 ) = {r} ∪ assertions c1 ∪ assertions c2
| assertions (AnnCond2 r b c) = {r} ∪ assertions c
| assertions (AnnWhile r b i c) = {r , i} ∪ assertions c
| assertions (AnnAwait r b c) = {r}

primrec atomics :: ′a ann-com ⇒ ( ′a assn × ′a com) set where
atomics (AnnBasic r f ) = {(r , Basic f )}

| atomics (AnnSeq c1 c2 ) = atomics c1 ∪ atomics c2
| atomics (AnnCond1 r b c1 c2 ) = atomics c1 ∪ atomics c2
| atomics (AnnCond2 r b c) = atomics c
| atomics (AnnWhile r b i c) = atomics c
| atomics (AnnAwait r b c) = {(r ∩ b, c)}

primrec com :: ′a ann-triple-op ⇒ ′a ann-com-op where
com (c, q) = c

primrec post :: ′a ann-triple-op ⇒ ′a assn where
post (c, q) = q

definition interfree-aux :: ( ′a ann-com-op × ′a assn × ′a ann-com-op) ⇒ bool
where

11



interfree-aux ≡ λ(co, q, co ′). co ′= None ∨
(∀ (r ,a) ∈ atomics (the co ′). ‖= (q ∩ r) a q ∧
(co = None ∨ (∀ p ∈ assertions (the co). ‖= (p ∩ r) a p)))

definition interfree :: (( ′a ann-triple-op) list) ⇒ bool where
interfree Ts ≡ ∀ i j. i < length Ts ∧ j < length Ts ∧ i 6= j −→

interfree-aux (com (Ts!i), post (Ts!i), com (Ts!j))

inductive
oghoare :: ′a assn ⇒ ′a com ⇒ ′a assn ⇒ bool (‹(3‖− -//-//-)› [90 ,55 ,90 ] 50 )
and ann-hoare :: ′a ann-com ⇒ ′a assn ⇒ bool (‹(2` -// -)› [60 ,90 ] 45 )

where
AnnBasic: r ⊆ {s. f s ∈ q} =⇒ ` (AnnBasic r f ) q

| AnnSeq: [[ ` c0 pre c1 ; ` c1 q ]] =⇒ ` (AnnSeq c0 c1 ) q

| AnnCond1 : [[ r ∩ b ⊆ pre c1 ; ` c1 q; r ∩ −b ⊆ pre c2 ; ` c2 q]]
=⇒ ` (AnnCond1 r b c1 c2 ) q

| AnnCond2 : [[ r ∩ b ⊆ pre c; ` c q; r ∩ −b ⊆ q ]] =⇒ ` (AnnCond2 r b c) q

| AnnWhile: [[ r ⊆ i; i ∩ b ⊆ pre c; ` c i; i ∩ −b ⊆ q ]]
=⇒ ` (AnnWhile r b i c) q

| AnnAwait: [[ atom-com c; ‖− (r ∩ b) c q ]] =⇒ ` (AnnAwait r b c) q

| AnnConseq: [[` c q; q ⊆ q ′ ]] =⇒ ` c q ′

| Parallel: [[ ∀ i<length Ts. ∃ c q. Ts!i = (Some c, q) ∧ ` c q; interfree Ts ]]
=⇒ ‖− (

⋂
i∈{i. i<length Ts}. pre(the(com(Ts!i))))

Parallel Ts
(
⋂

i∈{i. i<length Ts}. post(Ts!i))

| Basic: ‖− {s. f s ∈q} (Basic f ) q

| Seq: [[ ‖− p c1 r ; ‖− r c2 q ]] =⇒ ‖− p (Seq c1 c2 ) q

| Cond: [[ ‖− (p ∩ b) c1 q; ‖− (p ∩ −b) c2 q ]] =⇒ ‖− p (Cond b c1 c2 ) q

| While: [[ ‖− (p ∩ b) c p ]] =⇒ ‖− p (While b i c) (p ∩ −b)

| Conseq: [[ p ′ ⊆ p; ‖− p c q ; q ⊆ q ′ ]] =⇒ ‖− p ′ c q ′

1.5 Soundness
lemmas [cong del] = if-weak-cong

lemmas ann-hoare-induct = oghoare-ann-hoare.induct [THEN conjunct2 ]
lemmas oghoare-induct = oghoare-ann-hoare.induct [THEN conjunct1 ]

12



lemmas AnnBasic = oghoare-ann-hoare.AnnBasic
lemmas AnnSeq = oghoare-ann-hoare.AnnSeq
lemmas AnnCond1 = oghoare-ann-hoare.AnnCond1
lemmas AnnCond2 = oghoare-ann-hoare.AnnCond2
lemmas AnnWhile = oghoare-ann-hoare.AnnWhile
lemmas AnnAwait = oghoare-ann-hoare.AnnAwait
lemmas AnnConseq = oghoare-ann-hoare.AnnConseq

lemmas Parallel = oghoare-ann-hoare.Parallel
lemmas Basic = oghoare-ann-hoare.Basic
lemmas Seq = oghoare-ann-hoare.Seq
lemmas Cond = oghoare-ann-hoare.Cond
lemmas While = oghoare-ann-hoare.While
lemmas Conseq = oghoare-ann-hoare.Conseq

1.5.1 Soundness of the System for Atomic Programs
lemma Basic-ntran [rule-format]:
(Basic f , s) −Pn→ (Parallel Ts, t) −→ All-None Ts −→ t = f s

apply(induct n)
apply(simp (no-asm))

apply(fast dest: relpow-Suc-D2 Parallel-empty-lemma elim: transition-cases)
done

lemma SEM-fwhile: SEM S (p ∩ b) ⊆ p =⇒ SEM (fwhile b S k) p ⊆ (p ∩ −b)
apply (induct k)
apply(simp (no-asm) add: L3-5v-lemma3 )

apply(simp (no-asm) add: L3-5iv L3-5ii Parallel-empty)
apply(rule conjI )
apply (blast dest: L3-5i)

apply(simp add: SEM-def sem-def id-def )
apply (auto dest: Basic-ntran rtrancl-imp-UN-relpow)
apply blast
done

lemma atom-hoare-sound [rule-format]:
‖− p c q −→ atom-com(c) −→ ‖= p c q

apply (unfold com-validity-def )
apply(rule oghoare-induct)
apply simp-all
— Basic

apply(simp add: SEM-def sem-def )
apply(fast dest: rtrancl-imp-UN-relpow Basic-ntran)

— Seq
apply(rule impI )
apply(rule subset-trans)
prefer 2 apply simp

apply(simp add: L3-5ii L3-5i)

13



— Cond
apply(simp add: L3-5iv)

— While
apply (force simp add: L3-5v dest: SEM-fwhile)

— Conseq
apply(force simp add: SEM-def sem-def )
done

1.5.2 Soundness of the System for Component Programs
inductive-cases ann-transition-cases:

(None,s) −1→ (c ′, s ′)
(Some (AnnBasic r f ),s) −1→ (c ′, s ′)
(Some (AnnSeq c1 c2 ), s) −1→ (c ′, s ′)
(Some (AnnCond1 r b c1 c2 ), s) −1→ (c ′, s ′)
(Some (AnnCond2 r b c), s) −1→ (c ′, s ′)
(Some (AnnWhile r b I c), s) −1→ (c ′, s ′)
(Some (AnnAwait r b c),s) −1→ (c ′, s ′)

Strong Soundness for Component Programs:
lemma ann-hoare-case-analysis [rule-format]: ` C q ′ −→
((∀ r f . C = AnnBasic r f −→ (∃ q. r ⊆ {s. f s ∈ q} ∧ q ⊆ q ′)) ∧
(∀ c0 c1 . C = AnnSeq c0 c1 −→ (∃ q. q ⊆ q ′ ∧ ` c0 pre c1 ∧ ` c1 q)) ∧
(∀ r b c1 c2 . C = AnnCond1 r b c1 c2 −→ (∃ q. q ⊆ q ′ ∧
r ∩ b ⊆ pre c1 ∧ ` c1 q ∧ r ∩ −b ⊆ pre c2 ∧ ` c2 q)) ∧
(∀ r b c. C = AnnCond2 r b c −→
(∃ q. q ⊆ q ′ ∧ r ∩ b ⊆ pre c ∧ ` c q ∧ r ∩ −b ⊆ q)) ∧
(∀ r i b c. C = AnnWhile r b i c −→
(∃ q. q ⊆ q ′ ∧ r ⊆ i ∧ i ∩ b ⊆ pre c ∧ ` c i ∧ i ∩ −b ⊆ q)) ∧
(∀ r b c. C = AnnAwait r b c −→ (∃ q. q ⊆ q ′ ∧ ‖− (r ∩ b) c q)))

apply(rule ann-hoare-induct)
apply simp-all
apply(rule-tac x=q in exI ,simp)+

apply(rule conjI ,clarify,simp,clarify,rule-tac x=qa in exI ,fast)+
apply(clarify,simp,clarify,rule-tac x=qa in exI ,fast)
done

lemma Help: (transition ∩ {(x,y). True}) = (transition)
apply force
done

lemma Strong-Soundness-aux-aux [rule-format]:
(co, s) −1→ (co ′, t) −→ (∀ c. co = Some c −→ s∈ pre c −→
(∀ q. ` c q −→ (if co ′ = None then t∈q else t ∈ pre(the co ′) ∧ ` (the co ′) q )))

apply(rule ann-transition-transition.induct [THEN conjunct1 ])
apply simp-all
— Basic

apply clarify
apply(frule ann-hoare-case-analysis)

14



apply force
— Seq

apply clarify
apply(frule ann-hoare-case-analysis,simp)
apply(fast intro: AnnConseq)

apply clarify
apply(frule ann-hoare-case-analysis,simp)
apply clarify
apply(rule conjI )
apply force

apply(rule AnnSeq,simp)
apply(fast intro: AnnConseq)

— Cond1
apply clarify
apply(frule ann-hoare-case-analysis,simp)
apply(fast intro: AnnConseq)

apply clarify
apply(frule ann-hoare-case-analysis,simp)
apply(fast intro: AnnConseq)

— Cond2
apply clarify
apply(frule ann-hoare-case-analysis,simp)
apply(fast intro: AnnConseq)

apply clarify
apply(frule ann-hoare-case-analysis,simp)
apply(fast intro: AnnConseq)

— While
apply clarify
apply(frule ann-hoare-case-analysis,simp)
apply force

apply clarify
apply(frule ann-hoare-case-analysis,simp)
apply auto
apply(rule AnnSeq)
apply simp

apply(rule AnnWhile)
apply simp-all

— Await
apply(frule ann-hoare-case-analysis,simp)
apply clarify
apply(drule atom-hoare-sound)
apply simp

apply(simp add: com-validity-def SEM-def sem-def )
apply(simp add: Help All-None-def )
apply force
done

lemma Strong-Soundness-aux: [[ (Some c, s) −∗→ (co, t); s ∈ pre c; ` c q ]]
=⇒ if co = None then t ∈ q else t ∈ pre (the co) ∧ ` (the co) q

15



apply(erule rtrancl-induct2 )
apply simp

apply(case-tac a)
apply(fast elim: ann-transition-cases)

apply(erule Strong-Soundness-aux-aux)
apply simp

apply simp-all
done

lemma Strong-Soundness: [[ (Some c, s)−∗→(co, t); s ∈ pre c; ` c q ]]
=⇒ if co = None then t∈q else t ∈ pre (the co)

apply(force dest:Strong-Soundness-aux)
done

lemma ann-hoare-sound: ` c q =⇒ |= c q
apply (unfold ann-com-validity-def ann-SEM-def ann-sem-def )
apply clarify
apply(drule Strong-Soundness)
apply simp-all
done

1.5.3 Soundness of the System for Parallel Programs
lemma Parallel-length-post-P1 : (Parallel Ts,s) −P1→ (R ′, t) =⇒
(∃Rs. R ′ = (Parallel Rs) ∧ (length Rs) = (length Ts) ∧
(∀ i. i<length Ts −→ post(Rs ! i) = post(Ts ! i)))

apply(erule transition-cases)
apply simp
apply clarify
apply(case-tac i=ia)
apply simp+
done

lemma Parallel-length-post-PStar : (Parallel Ts,s) −P∗→ (R ′,t) =⇒
(∃Rs. R ′ = (Parallel Rs) ∧ (length Rs) = (length Ts) ∧
(∀ i. i<length Ts −→ post(Ts ! i) = post(Rs ! i)))

apply(erule rtrancl-induct2 )
apply(simp-all)

apply clarify
apply simp
apply(drule Parallel-length-post-P1 )
apply auto
done

lemma assertions-lemma: pre c ∈ assertions c
apply(rule ann-com-com.induct [THEN conjunct1 ])
apply auto
done

16



lemma interfree-aux1 [rule-format]:
(c,s) −1→ (r ,t) −→ (interfree-aux(c1 , q1 , c) −→ interfree-aux(c1 , q1 , r))

apply (rule ann-transition-transition.induct [THEN conjunct1 ])
apply(safe)
prefer 13
apply (rule TrueI )
apply (simp-all add:interfree-aux-def )
apply force+
done

lemma interfree-aux2 [rule-format]:
(c,s) −1→ (r ,t) −→ (interfree-aux(c, q, a) −→ interfree-aux(r , q, a) )

apply (rule ann-transition-transition.induct [THEN conjunct1 ])
apply(force simp add:interfree-aux-def )+
done

lemma interfree-lemma: [[ (Some c, s) −1→ (r , t);interfree Ts ; i<length Ts;
Ts!i = (Some c, q) ]] =⇒ interfree (Ts[i:= (r , q)])

apply(simp add: interfree-def )
apply clarify
apply(case-tac i=j)
apply(drule-tac t = ia in not-sym)
apply simp-all

apply(force elim: interfree-aux1 )
apply(force elim: interfree-aux2 simp add:nth-list-update)
done

Strong Soundness Theorem for Parallel Programs:
lemma Parallel-Strong-Soundness-Seq-aux:
[[interfree Ts; i<length Ts; com(Ts ! i) = Some(AnnSeq c0 c1 ) ]]
=⇒ interfree (Ts[i:=(Some c0 , pre c1 )])

apply(simp add: interfree-def )
apply clarify
apply(case-tac i=j)
apply(force simp add: nth-list-update interfree-aux-def )

apply(case-tac i=ia)
apply(erule-tac x=ia in allE)
apply(force simp add:interfree-aux-def assertions-lemma)

apply simp
done

lemma Parallel-Strong-Soundness-Seq [rule-format (no-asm)]:
[[ ∀ i<length Ts. (if com(Ts!i) = None then b ∈ post(Ts!i)
else b ∈ pre(the(com(Ts!i))) ∧ ` the(com(Ts!i)) post(Ts!i));
com(Ts ! i) = Some(AnnSeq c0 c1 ); i<length Ts; interfree Ts ]] =⇒
(∀ ia<length Ts. (if com(Ts[i:=(Some c0 , pre c1 )]! ia) = None
then b ∈ post(Ts[i:=(Some c0 , pre c1 )]! ia)

else b ∈ pre(the(com(Ts[i:=(Some c0 , pre c1 )]! ia))) ∧
` the(com(Ts[i:=(Some c0 , pre c1 )]! ia)) post(Ts[i:=(Some c0 , pre c1 )]! ia)))

17



∧ interfree (Ts[i:= (Some c0 , pre c1 )])
apply(rule conjI )
apply safe
apply(case-tac i=ia)
apply simp
apply(force dest: ann-hoare-case-analysis)

apply simp
apply(fast elim: Parallel-Strong-Soundness-Seq-aux)
done

lemma Parallel-Strong-Soundness-aux-aux [rule-format]:
(Some c, b) −1→ (co, t) −→
(∀Ts. i<length Ts −→ com(Ts ! i) = Some c −→
(∀ i<length Ts. (if com(Ts ! i) = None then b∈post(Ts!i)
else b∈pre(the(com(Ts!i))) ∧ ` the(com(Ts!i)) post(Ts!i))) −→

interfree Ts −→
(∀ j. j<length Ts ∧ i 6=j −→ (if com(Ts!j) = None then t∈post(Ts!j)
else t∈pre(the(com(Ts!j))) ∧ ` the(com(Ts!j)) post(Ts!j))) )

apply(rule ann-transition-transition.induct [THEN conjunct1 ])
apply safe
prefer 11
apply(rule TrueI )
apply simp-all
— Basic

apply(erule-tac x = i in all-dupE , erule (1 ) notE impE)
apply(erule-tac x = j in allE , erule (1 ) notE impE)
apply(simp add: interfree-def )
apply(erule-tac x = j in allE ,simp)
apply(erule-tac x = i in allE ,simp)
apply(drule-tac t = i in not-sym)
apply(case-tac com(Ts ! j)=None)
apply(force intro: converse-rtrancl-into-rtrancl

simp add: interfree-aux-def com-validity-def SEM-def sem-def All-None-def )
apply(simp add:interfree-aux-def )
apply clarify
apply simp
apply(erule-tac x=pre y in ballE)
apply(force intro: converse-rtrancl-into-rtrancl

simp add: com-validity-def SEM-def sem-def All-None-def )
apply(simp add:assertions-lemma)

— Seqs
apply(erule-tac x = Ts[i:=(Some c0 , pre c1 )] in allE)
apply(drule Parallel-Strong-Soundness-Seq,simp+)

apply(erule-tac x = Ts[i:=(Some c0 , pre c1 )] in allE)
apply(drule Parallel-Strong-Soundness-Seq,simp+)

— Await
apply(rule-tac x = i in allE , assumption , erule (1 ) notE impE)
apply(erule-tac x = j in allE , erule (1 ) notE impE)
apply(simp add: interfree-def )

18



apply(erule-tac x = j in allE ,simp)
apply(erule-tac x = i in allE ,simp)
apply(drule-tac t = i in not-sym)
apply(case-tac com(Ts ! j)=None)
apply(force intro: converse-rtrancl-into-rtrancl simp add: interfree-aux-def

com-validity-def SEM-def sem-def All-None-def Help)
apply(simp add:interfree-aux-def )
apply clarify
apply simp
apply(erule-tac x=pre y in ballE)
apply(force intro: converse-rtrancl-into-rtrancl

simp add: com-validity-def SEM-def sem-def All-None-def Help)
apply(simp add:assertions-lemma)
done

lemma Parallel-Strong-Soundness-aux [rule-format]:
[[(Ts ′,s) −P∗→ (Rs ′,t); Ts ′ = (Parallel Ts); interfree Ts;
∀ i. i<length Ts −→ (∃ c q. (Ts ! i) = (Some c, q) ∧ s∈(pre c) ∧ ` c q ) ]] =⇒
∀Rs. Rs ′ = (Parallel Rs) −→ (∀ j. j<length Rs −→
(if com(Rs ! j) = None then t∈post(Ts ! j)
else t∈pre(the(com(Rs ! j))) ∧ ` the(com(Rs ! j)) post(Ts ! j))) ∧ interfree Rs

apply(erule rtrancl-induct2 )
apply clarify

— Base
apply force

— Induction step
apply clarify
apply(drule Parallel-length-post-PStar)
apply clarify
apply (ind-cases (Parallel Ts, s) −P1→ (Parallel Rs, t) for Ts s Rs t)
apply(rule conjI )
apply clarify
apply(case-tac i=j)
apply(simp split del:if-split)
apply(erule Strong-Soundness-aux-aux,simp+)
apply force

apply force
apply(simp split del: if-split)
apply(erule Parallel-Strong-Soundness-aux-aux)
apply(simp-all add: split del:if-split)
apply force

apply(rule interfree-lemma)
apply simp-all
done

lemma Parallel-Strong-Soundness:
[[(Parallel Ts, s) −P∗→ (Parallel Rs, t); interfree Ts; j<length Rs;
∀ i. i<length Ts −→ (∃ c q. Ts ! i = (Some c, q) ∧ s∈pre c ∧ ` c q) ]] =⇒
if com(Rs ! j) = None then t∈post(Ts ! j) else t∈pre (the(com(Rs ! j)))

19



apply(drule Parallel-Strong-Soundness-aux)
apply simp+
done

lemma oghoare-sound [rule-format]: ‖− p c q −→ ‖= p c q
apply (unfold com-validity-def )
apply(rule oghoare-induct)
apply(rule TrueI )+
— Parallel

apply(simp add: SEM-def sem-def )
apply(clarify, rename-tac x y i Ts ′)
apply(frule Parallel-length-post-PStar)
apply clarify
apply(drule-tac j=i in Parallel-Strong-Soundness)

apply clarify
apply simp

apply force
apply simp
apply(erule-tac V = ∀ i. P i for P in thin-rl)
apply(drule-tac s = length Rs in sym)
apply(erule allE , erule impE , assumption)
apply(force dest: nth-mem simp add: All-None-def )

— Basic
apply(simp add: SEM-def sem-def )
apply(force dest: rtrancl-imp-UN-relpow Basic-ntran)

— Seq
apply(rule subset-trans)
prefer 2 apply assumption

apply(simp add: L3-5ii L3-5i)
— Cond

apply(simp add: L3-5iv)
— While
apply(simp add: L3-5v)
apply (blast dest: SEM-fwhile)

— Conseq
apply(auto simp add: SEM-def sem-def )
done

end

1.6 Generation of Verification Conditions
theory OG-Tactics
imports OG-Hoare
begin

lemmas ann-hoare-intros=AnnBasic AnnSeq AnnCond1 AnnCond2 AnnWhile An-
nAwait AnnConseq
lemmas oghoare-intros=Parallel Basic Seq Cond While Conseq

20



lemma ParallelConseqRule:
[[ p ⊆ (

⋂
i∈{i. i<length Ts}. pre(the(com(Ts ! i))));

‖− (
⋂

i∈{i. i<length Ts}. pre(the(com(Ts ! i))))
(Parallel Ts)
(
⋂

i∈{i. i<length Ts}. post(Ts ! i));
(
⋂

i∈{i. i<length Ts}. post(Ts ! i)) ⊆ q ]]
=⇒ ‖− p (Parallel Ts) q

apply (rule Conseq)
prefer 2
apply fast

apply assumption+
done

lemma SkipRule: p ⊆ q =⇒ ‖− p (Basic id) q
apply(rule oghoare-intros)

prefer 2 apply(rule Basic)
prefer 2 apply(rule subset-refl)

apply(simp add:Id-def )
done

lemma BasicRule: p ⊆ {s. (f s)∈q} =⇒ ‖− p (Basic f ) q
apply(rule oghoare-intros)

prefer 2 apply(rule oghoare-intros)
prefer 2 apply(rule subset-refl)

apply assumption
done

lemma SeqRule: [[ ‖− p c1 r ; ‖− r c2 q ]] =⇒ ‖− p (Seq c1 c2 ) q
apply(rule Seq)
apply fast+
done

lemma CondRule:
[[ p ⊆ {s. (s∈b −→ s∈w) ∧ (s/∈b −→ s∈w ′)}; ‖− w c1 q; ‖− w ′ c2 q ]]
=⇒ ‖− p (Cond b c1 c2 ) q

apply(rule Cond)
apply(rule Conseq)
prefer 4 apply(rule Conseq)

apply simp-all
apply force+
done

lemma WhileRule: [[ p ⊆ i; ‖− (i ∩ b) c i ; (i ∩ (−b)) ⊆ q ]]
=⇒ ‖− p (While b i c) q

apply(rule Conseq)
prefer 2 apply(rule While)

apply assumption+
done

21



Three new proof rules for special instances of the AnnBasic and the An-
nAwait commands when the transformation performed on the state is the
identity, and for an AnnAwait command where the boolean condition is {s.
True}:
lemma AnnatomRule:
[[ atom-com(c); ‖− r c q ]] =⇒ ` (AnnAwait r {s. True} c) q

apply(rule AnnAwait)
apply simp-all
done

lemma AnnskipRule:
r ⊆ q =⇒ ` (AnnBasic r id) q

apply(rule AnnBasic)
apply simp
done

lemma AnnwaitRule:
[[ (r ∩ b) ⊆ q ]] =⇒ ` (AnnAwait r b (Basic id)) q

apply(rule AnnAwait)
apply simp

apply(rule BasicRule)
apply simp
done

Lemmata to avoid using the definition of map-ann-hoare, interfree-aux, in-
terfree-swap and interfree by splitting it into different cases:
lemma interfree-aux-rule1 : interfree-aux(co, q, None)
by(simp add:interfree-aux-def )

lemma interfree-aux-rule2 :
∀ (R,r)∈(atomics a). ‖− (q ∩ R) r q =⇒ interfree-aux(None, q, Some a)

apply(simp add:interfree-aux-def )
apply(force elim:oghoare-sound)
done

lemma interfree-aux-rule3 :
(∀ (R, r)∈(atomics a). ‖− (q ∩ R) r q ∧ (∀ p∈(assertions c). ‖− (p ∩ R) r p))
=⇒ interfree-aux(Some c, q, Some a)

apply(simp add:interfree-aux-def )
apply(force elim:oghoare-sound)
done

lemma AnnBasic-assertions:
[[interfree-aux(None, r , Some a); interfree-aux(None, q, Some a)]] =⇒

interfree-aux(Some (AnnBasic r f ), q, Some a)
apply(simp add: interfree-aux-def )
by force

22



lemma AnnSeq-assertions:
[[ interfree-aux(Some c1 , q, Some a); interfree-aux(Some c2 , q, Some a)]]=⇒
interfree-aux(Some (AnnSeq c1 c2 ), q, Some a)

apply(simp add: interfree-aux-def )
by force

lemma AnnCond1-assertions:
[[ interfree-aux(None, r , Some a); interfree-aux(Some c1 , q, Some a);
interfree-aux(Some c2 , q, Some a)]]=⇒
interfree-aux(Some(AnnCond1 r b c1 c2 ), q, Some a)

apply(simp add: interfree-aux-def )
by force

lemma AnnCond2-assertions:
[[ interfree-aux(None, r , Some a); interfree-aux(Some c, q, Some a)]]=⇒
interfree-aux(Some (AnnCond2 r b c), q, Some a)

apply(simp add: interfree-aux-def )
by force

lemma AnnWhile-assertions:
[[ interfree-aux(None, r , Some a); interfree-aux(None, i, Some a);
interfree-aux(Some c, q, Some a)]]=⇒
interfree-aux(Some (AnnWhile r b i c), q, Some a)

apply(simp add: interfree-aux-def )
by force

lemma AnnAwait-assertions:
[[ interfree-aux(None, r , Some a); interfree-aux(None, q, Some a)]]=⇒
interfree-aux(Some (AnnAwait r b c), q, Some a)

apply(simp add: interfree-aux-def )
by force

lemma AnnBasic-atomics:
‖− (q ∩ r) (Basic f ) q =⇒ interfree-aux(None, q, Some (AnnBasic r f ))

by(simp add: interfree-aux-def oghoare-sound)

lemma AnnSeq-atomics:
[[ interfree-aux(Any, q, Some a1 ); interfree-aux(Any, q, Some a2 )]]=⇒
interfree-aux(Any, q, Some (AnnSeq a1 a2 ))

apply(simp add: interfree-aux-def )
by force

lemma AnnCond1-atomics:
[[ interfree-aux(Any, q, Some a1 ); interfree-aux(Any, q, Some a2 )]]=⇒
interfree-aux(Any, q, Some (AnnCond1 r b a1 a2 ))

apply(simp add: interfree-aux-def )
by force

lemma AnnCond2-atomics:

23



interfree-aux (Any, q, Some a)=⇒ interfree-aux(Any, q, Some (AnnCond2 r b
a))
by(simp add: interfree-aux-def )

lemma AnnWhile-atomics: interfree-aux (Any, q, Some a)
=⇒ interfree-aux(Any, q, Some (AnnWhile r b i a))

by(simp add: interfree-aux-def )

lemma Annatom-atomics:
‖− (q ∩ r) a q =⇒ interfree-aux (None, q, Some (AnnAwait r {x. True} a))

by(simp add: interfree-aux-def oghoare-sound)

lemma AnnAwait-atomics:
‖− (q ∩ (r ∩ b)) a q =⇒ interfree-aux (None, q, Some (AnnAwait r b a))

by(simp add: interfree-aux-def oghoare-sound)

definition interfree-swap :: ( ′a ann-triple-op ∗ ( ′a ann-triple-op) list) ⇒ bool where
interfree-swap == λ(x, xs). ∀ y∈set xs. interfree-aux (com x, post x, com y)
∧ interfree-aux(com y, post y, com x)

lemma interfree-swap-Empty: interfree-swap (x, [])
by(simp add:interfree-swap-def )

lemma interfree-swap-List:
[[ interfree-aux (com x, post x, com y);
interfree-aux (com y, post y ,com x); interfree-swap (x, xs) ]]
=⇒ interfree-swap (x, y#xs)

by(simp add:interfree-swap-def )

lemma interfree-swap-Map: ∀ k. i≤k ∧ k<j −→ interfree-aux (com x, post x, c k)
∧ interfree-aux (c k, Q k, com x)
=⇒ interfree-swap (x, map (λk. (c k, Q k)) [i..<j])

by(force simp add: interfree-swap-def less-diff-conv)

lemma interfree-Empty: interfree []
by(simp add:interfree-def )

lemma interfree-List:
[[ interfree-swap(x, xs); interfree xs ]] =⇒ interfree (x#xs)

apply(simp add:interfree-def interfree-swap-def )
apply clarify
apply(case-tac i)
apply(case-tac j)
apply simp-all

apply(case-tac j,simp+)
done

lemma interfree-Map:
(∀ i j. a≤i ∧ i<b ∧ a≤j ∧ j<b ∧ i 6=j −→ interfree-aux (c i, Q i, c j))

24



=⇒ interfree (map (λk. (c k, Q k)) [a..<b])
by(force simp add: interfree-def less-diff-conv)

definition map-ann-hoare :: (( ′a ann-com-op ∗ ′a assn) list) ⇒ bool (‹[`] -› [0 ]
45 ) where
[`] Ts == (∀ i<length Ts. ∃ c q. Ts!i=(Some c, q) ∧ ` c q)

lemma MapAnnEmpty: [`] []
by(simp add:map-ann-hoare-def )

lemma MapAnnList: [[ ` c q ; [`] xs ]] =⇒ [`] (Some c,q)#xs
apply(simp add:map-ann-hoare-def )
apply clarify
apply(case-tac i,simp+)
done

lemma MapAnnMap:
∀ k. i≤k ∧ k<j −→ ` (c k) (Q k) =⇒ [`] map (λk. (Some (c k), Q k)) [i..<j]

apply(simp add: map-ann-hoare-def less-diff-conv)
done

lemma ParallelRule:[[ [`] Ts ; interfree Ts ]]
=⇒ ‖− (

⋂
i∈{i. i<length Ts}. pre(the(com(Ts!i))))

Parallel Ts
(
⋂

i∈{i. i<length Ts}. post(Ts!i))
apply(rule Parallel)
apply(simp add:map-ann-hoare-def )

apply simp
done

The following are some useful lemmas and simplification tactics to control
which theorems are used to simplify at each moment, so that the original
input does not suffer any unexpected transformation.
lemma Compl-Collect: −(Collect b) = {x. ¬(b x)}

by fast

lemma list-length: length []=0 length (x#xs) = Suc(length xs)
by simp-all

lemma list-lemmas: length []=0 length (x#xs) = Suc(length xs)
(x#xs) ! 0 = x (x#xs) ! Suc n = xs ! n

by simp-all
lemma le-Suc-eq-insert: {i. i <Suc n} = insert n {i. i< n}

by auto
lemmas primrecdef-list = pre.simps assertions.simps atomics.simps atom-com.simps
lemmas my-simp-list = list-lemmas fst-conv snd-conv
not-less0 refl le-Suc-eq-insert Suc-not-Zero Zero-not-Suc nat.inject
Collect-mem-eq ball-simps option.simps primrecdef-list
lemmas ParallelConseq-list = INTER-eq Collect-conj-eq length-map length-upt length-append

25



ML ‹
fun before-interfree-simp-tac ctxt =

simp-tac (put-simpset HOL-basic-ss ctxt addsimps [@{thm com.simps}, @{thm
post.simps}])

fun interfree-simp-tac ctxt =
asm-simp-tac (put-simpset HOL-ss ctxt
addsimps [@{thm split}, @{thm ball-Un}, @{thm ball-empty}] @ @{thms my-simp-list})

fun ParallelConseq ctxt =
simp-tac (put-simpset HOL-basic-ss ctxt

addsimps @{thms ParallelConseq-list} @ @{thms my-simp-list})
›

The following tactic applies tac to each conjunct in a subgoal of the form A
=⇒ a1 ∧ a2 ∧ .. ∧ an returning n subgoals, one for each conjunct:
ML ‹
fun conjI-Tac ctxt tac i st = st |>

( (EVERY [resolve-tac ctxt [conjI ] i,
conjI-Tac ctxt tac (i+1 ),
tac i]) ORELSE (tac i) )

›

Tactic for the generation of the verification conditions

The tactic basically uses two subtactics:

HoareRuleTac is called at the level of parallel programs, it uses the Par-
allelTac to solve parallel composition of programs. This verification
has two parts, namely, (1) all component programs are correct and
(2) they are interference free. HoareRuleTac is also called at the level
of atomic regions, i.e. 〈 〉 and AWAIT b THEN - END, and at each
interference freedom test.

AnnHoareRuleTac is for component programs which are annotated pro-
grams and so, there are not unknown assertions (no need to use the
parameter precond, see NOTE).
NOTE: precond(::bool) informs if the subgoal has the form ‖− ?p c
q, in this case we have precond=False and the generated verification
condition would have the form ?p ⊆ . . . which can be solved by rtac
subset-refl, if True we proceed to simplify it using the simplification
tactics above.

ML ‹

fun WlpTac ctxt i = resolve-tac ctxt @{thms SeqRule} i THEN HoareRuleTac ctxt
false (i + 1 )

26



and HoareRuleTac ctxt precond i st = st |>
( (WlpTac ctxt i THEN HoareRuleTac ctxt precond i)

ORELSE
(FIRST [resolve-tac ctxt @{thms SkipRule} i,

resolve-tac ctxt @{thms BasicRule} i,
EVERY [resolve-tac ctxt @{thms ParallelConseqRule} i,

ParallelConseq ctxt (i+2 ),
ParallelTac ctxt (i+1 ),
ParallelConseq ctxt i],

EVERY [resolve-tac ctxt @{thms CondRule} i,
HoareRuleTac ctxt false (i+2 ),
HoareRuleTac ctxt false (i+1 )],

EVERY [resolve-tac ctxt @{thms WhileRule} i,
HoareRuleTac ctxt true (i+1 )],

K all-tac i ]
THEN (if precond then (K all-tac i) else resolve-tac ctxt @{thms subset-refl}

i)))

and AnnWlpTac ctxt i = resolve-tac ctxt @{thms AnnSeq} i THEN AnnHoareRule-
Tac ctxt (i + 1 )
and AnnHoareRuleTac ctxt i st = st |>

( (AnnWlpTac ctxt i THEN AnnHoareRuleTac ctxt i )
ORELSE
(FIRST [(resolve-tac ctxt @{thms AnnskipRule} i),

EVERY [resolve-tac ctxt @{thms AnnatomRule} i,
HoareRuleTac ctxt true (i+1 )],

(resolve-tac ctxt @{thms AnnwaitRule} i),
resolve-tac ctxt @{thms AnnBasic} i,
EVERY [resolve-tac ctxt @{thms AnnCond1} i,

AnnHoareRuleTac ctxt (i+3 ),
AnnHoareRuleTac ctxt (i+1 )],

EVERY [resolve-tac ctxt @{thms AnnCond2} i,
AnnHoareRuleTac ctxt (i+1 )],

EVERY [resolve-tac ctxt @{thms AnnWhile} i,
AnnHoareRuleTac ctxt (i+2 )],

EVERY [resolve-tac ctxt @{thms AnnAwait} i,
HoareRuleTac ctxt true (i+1 )],

K all-tac i]))

and ParallelTac ctxt i = EVERY [resolve-tac ctxt @{thms ParallelRule} i,
interfree-Tac ctxt (i+1 ),
MapAnn-Tac ctxt i]

and MapAnn-Tac ctxt i st = st |>
(FIRST [resolve-tac ctxt @{thms MapAnnEmpty} i,

EVERY [resolve-tac ctxt @{thms MapAnnList} i,
MapAnn-Tac ctxt (i+1 ),
AnnHoareRuleTac ctxt i],

EVERY [resolve-tac ctxt @{thms MapAnnMap} i,

27



resolve-tac ctxt @{thms allI} i,
resolve-tac ctxt @{thms impI} i,
AnnHoareRuleTac ctxt i]])

and interfree-swap-Tac ctxt i st = st |>
(FIRST [resolve-tac ctxt @{thms interfree-swap-Empty} i,

EVERY [resolve-tac ctxt @{thms interfree-swap-List} i,
interfree-swap-Tac ctxt (i+2 ),
interfree-aux-Tac ctxt (i+1 ),
interfree-aux-Tac ctxt i ],

EVERY [resolve-tac ctxt @{thms interfree-swap-Map} i,
resolve-tac ctxt @{thms allI} i,
resolve-tac ctxt @{thms impI} i,
conjI-Tac ctxt (interfree-aux-Tac ctxt) i]])

and interfree-Tac ctxt i st = st |>
(FIRST [resolve-tac ctxt @{thms interfree-Empty} i,

EVERY [resolve-tac ctxt @{thms interfree-List} i,
interfree-Tac ctxt (i+1 ),
interfree-swap-Tac ctxt i],

EVERY [resolve-tac ctxt @{thms interfree-Map} i,
resolve-tac ctxt @{thms allI} i,
resolve-tac ctxt @{thms allI} i,
resolve-tac ctxt @{thms impI} i,
interfree-aux-Tac ctxt i ]])

and interfree-aux-Tac ctxt i = (before-interfree-simp-tac ctxt i ) THEN
(FIRST [resolve-tac ctxt @{thms interfree-aux-rule1} i,

dest-assertions-Tac ctxt i])

and dest-assertions-Tac ctxt i st = st |>
(FIRST [EVERY [resolve-tac ctxt @{thms AnnBasic-assertions} i,

dest-atomics-Tac ctxt (i+1 ),
dest-atomics-Tac ctxt i],

EVERY [resolve-tac ctxt @{thms AnnSeq-assertions} i,
dest-assertions-Tac ctxt (i+1 ),
dest-assertions-Tac ctxt i],

EVERY [resolve-tac ctxt @{thms AnnCond1-assertions} i,
dest-assertions-Tac ctxt (i+2 ),
dest-assertions-Tac ctxt (i+1 ),
dest-atomics-Tac ctxt i],

EVERY [resolve-tac ctxt @{thms AnnCond2-assertions} i,
dest-assertions-Tac ctxt (i+1 ),
dest-atomics-Tac ctxt i],

EVERY [resolve-tac ctxt @{thms AnnWhile-assertions} i,
dest-assertions-Tac ctxt (i+2 ),
dest-atomics-Tac ctxt (i+1 ),
dest-atomics-Tac ctxt i],

EVERY [resolve-tac ctxt @{thms AnnAwait-assertions} i,

28



dest-atomics-Tac ctxt (i+1 ),
dest-atomics-Tac ctxt i],

dest-atomics-Tac ctxt i])

and dest-atomics-Tac ctxt i st = st |>
(FIRST [EVERY [resolve-tac ctxt @{thms AnnBasic-atomics} i,

HoareRuleTac ctxt true i],
EVERY [resolve-tac ctxt @{thms AnnSeq-atomics} i,

dest-atomics-Tac ctxt (i+1 ),
dest-atomics-Tac ctxt i],

EVERY [resolve-tac ctxt @{thms AnnCond1-atomics} i,
dest-atomics-Tac ctxt (i+1 ),
dest-atomics-Tac ctxt i],

EVERY [resolve-tac ctxt @{thms AnnCond2-atomics} i,
dest-atomics-Tac ctxt i],

EVERY [resolve-tac ctxt @{thms AnnWhile-atomics} i,
dest-atomics-Tac ctxt i],

EVERY [resolve-tac ctxt @{thms Annatom-atomics} i,
HoareRuleTac ctxt true i],

EVERY [resolve-tac ctxt @{thms AnnAwait-atomics} i,
HoareRuleTac ctxt true i],
K all-tac i])

›

The final tactic is given the name oghoare:
ML ‹
fun oghoare-tac ctxt = SUBGOAL (fn (-, i) => HoareRuleTac ctxt true i)
›

Notice that the tactic for parallel programs oghoare-tac is initially invoked
with the value true for the parameter precond.
Parts of the tactic can be also individually used to generate the verification
conditions for annotated sequential programs and to generate verification
conditions out of interference freedom tests:
ML ‹
fun annhoare-tac ctxt = SUBGOAL (fn (-, i) => AnnHoareRuleTac ctxt i)

fun interfree-aux-tac ctxt = SUBGOAL (fn (-, i) => interfree-aux-Tac ctxt i)
›

The so defined ML tactics are then “exported” to be used in Isabelle proofs.
method-setup oghoare = ‹

Scan.succeed (SIMPLE-METHOD ′ o oghoare-tac)›
verification condition generator for the oghoare logic

method-setup annhoare = ‹
Scan.succeed (SIMPLE-METHOD ′ o annhoare-tac)›
verification condition generator for the ann-hoare logic

29



method-setup interfree-aux = ‹
Scan.succeed (SIMPLE-METHOD ′ o interfree-aux-tac)›
verification condition generator for interference freedom tests

Tactics useful for dealing with the generated verification conditions:
method-setup conjI-tac = ‹

Scan.succeed (fn ctxt => SIMPLE-METHOD ′ (conjI-Tac ctxt (K all-tac)))›
verification condition generator for interference freedom tests

ML ‹
fun disjE-Tac ctxt tac i st = st |>

( (EVERY [eresolve-tac ctxt [disjE ] i,
disjE-Tac ctxt tac (i+1 ),
tac i]) ORELSE (tac i) )

›

method-setup disjE-tac = ‹
Scan.succeed (fn ctxt => SIMPLE-METHOD ′ (disjE-Tac ctxt (K all-tac)))›
verification condition generator for interference freedom tests

end

1.7 Concrete Syntax
theory Quote-Antiquote imports Main begin

syntax
-quote :: ′b ⇒ ( ′a ⇒ ′b) (‹(«-»)› [0 ] 1000 )
-antiquote :: ( ′a ⇒ ′b) ⇒ ′b (‹´-› [1000 ] 1000 )
-Assert :: ′a ⇒ ′a set (‹({|-|})› [0 ] 1000 )

translations
{|b|} ⇀ CONST Collect «b»

parse-translation ‹
let

fun quote-tr [t] = Syntax-Trans.quote-tr syntax-const ‹-antiquote› t
| quote-tr ts = raise TERM (quote-tr, ts);

in [(syntax-const ‹-quote›, K quote-tr)] end
›

end
theory OG-Syntax
imports OG-Tactics Quote-Antiquote
begin

Syntax for commands and for assertions and boolean expressions in com-
mands com and annotated commands ann-com.

30



abbreviation Skip :: ′a com (‹SKIP› 63 )
where SKIP ≡ Basic id

abbreviation AnnSkip :: ′a assn ⇒ ′a ann-com (‹-//SKIP› [90 ] 63 )
where r SKIP ≡ AnnBasic r id

notation
Seq (‹-,,/ -› [55 , 56 ] 55 ) and
AnnSeq (‹-;;/ -› [60 ,61 ] 60 )

syntax
-Assign :: idt ⇒ ′b ⇒ ′a com (‹(´- :=/ -)› [70 , 65 ] 61 )
-AnnAssign :: ′a assn ⇒ idt ⇒ ′b ⇒ ′a com (‹(- ´- :=/ -)› [90 ,70 ,65 ] 61 )

translations
´x := a ⇀ CONST Basic «´(-update-name x (λ-. a))»
r ´x := a ⇀ CONST AnnBasic r «´(-update-name x (λ-. a))»

syntax
-AnnCond1 :: ′a assn ⇒ ′a bexp ⇒ ′a ann-com ⇒ ′a ann-com ⇒ ′a ann-com

(‹- //IF - /THEN - /ELSE - /FI › [90 ,0 ,0 ,0 ] 61 )
-AnnCond2 :: ′a assn ⇒ ′a bexp ⇒ ′a ann-com ⇒ ′a ann-com

(‹- //IF - /THEN - /FI › [90 ,0 ,0 ] 61 )
-AnnWhile :: ′a assn ⇒ ′a bexp ⇒ ′a assn ⇒ ′a ann-com ⇒ ′a ann-com

(‹- //WHILE - /INV - //DO -//OD› [90 ,0 ,0 ,0 ] 61 )
-AnnAwait :: ′a assn ⇒ ′a bexp ⇒ ′a com ⇒ ′a ann-com

(‹- //AWAIT - /THEN /- /END› [90 ,0 ,0 ] 61 )
-AnnAtom :: ′a assn ⇒ ′a com ⇒ ′a ann-com (‹-//〈-〉› [90 ,0 ] 61 )
-AnnWait :: ′a assn ⇒ ′a bexp ⇒ ′a ann-com (‹-//WAIT - END› [90 ,0 ] 61 )

-Cond :: ′a bexp ⇒ ′a com ⇒ ′a com ⇒ ′a com
(‹(0IF -/ THEN -/ ELSE -/ FI )› [0 , 0 , 0 ] 61 )

-Cond2 :: ′a bexp ⇒ ′a com ⇒ ′a com (‹IF - THEN - FI › [0 ,0 ] 56 )
-While-inv :: ′a bexp ⇒ ′a assn ⇒ ′a com ⇒ ′a com

(‹(0WHILE -/ INV - //DO - /OD)› [0 , 0 , 0 ] 61 )
-While :: ′a bexp ⇒ ′a com ⇒ ′a com

(‹(0WHILE - //DO - /OD)› [0 , 0 ] 61 )

translations
IF b THEN c1 ELSE c2 FI ⇀ CONST Cond {|b|} c1 c2
IF b THEN c FI ⇀↽ IF b THEN c ELSE SKIP FI
WHILE b INV i DO c OD ⇀ CONST While {|b|} i c
WHILE b DO c OD ⇀↽ WHILE b INV CONST undefined DO c OD

r IF b THEN c1 ELSE c2 FI ⇀ CONST AnnCond1 r {|b|} c1 c2
r IF b THEN c FI ⇀ CONST AnnCond2 r {|b|} c
r WHILE b INV i DO c OD ⇀ CONST AnnWhile r {|b|} i c
r AWAIT b THEN c END ⇀ CONST AnnAwait r {|b|} c
r 〈c〉 ⇀↽ r AWAIT CONST True THEN c END

31



r WAIT b END ⇀↽ r AWAIT b THEN SKIP END

nonterminal prgs

syntax
-PAR :: prgs ⇒ ′a (‹COBEGIN//-//COEND› [57 ] 56 )
-prg :: [ ′a, ′a] ⇒ prgs (‹-//-› [60 , 90 ] 57 )
-prgs :: [ ′a, ′a, prgs] ⇒ prgs (‹-//-//‖//-› [60 ,90 ,57 ] 57 )

-prg-scheme :: [ ′a, ′a, ′a, ′a, ′a] ⇒ prgs
(‹SCHEME [- ≤ - < -] -// -› [0 ,0 ,0 ,60 , 90 ] 57 )

translations
-prg c q ⇀↽ [(CONST Some c, q)]
-prgs c q ps ⇀↽ (CONST Some c, q) # ps
-PAR ps ⇀↽ CONST Parallel ps

-prg-scheme j i k c q ⇀↽ CONST map (λi. (CONST Some c, q)) [j..<k]

print-translation ‹
let

fun quote-tr ′ f (t :: ts) =
Term.list-comb (f $ Syntax-Trans.quote-tr ′ syntax-const ‹-antiquote› t,

ts)
| quote-tr ′ - - = raise Match;

fun annquote-tr ′ f (r :: t :: ts) =
Term.list-comb (f $ r $ Syntax-Trans.quote-tr ′ syntax-const ‹-antiquote›

t, ts)
| annquote-tr ′ - - = raise Match;

val assert-tr ′ = quote-tr ′ (Syntax.const syntax-const ‹-Assert›);

fun bexp-tr ′ name ((Const (const-syntax ‹Collect›, -) $ t) :: ts) =
quote-tr ′ (Syntax.const name) (t :: ts)

| bexp-tr ′ - - = raise Match;

fun annbexp-tr ′ name (r :: (Const (const-syntax ‹Collect›, -) $ t) :: ts) =
annquote-tr ′ (Syntax.const name) (r :: t :: ts)

| annbexp-tr ′ - - = raise Match;

fun assign-tr ′ (Abs (x, -, f $ k $ Bound 0 ) :: ts) =
quote-tr ′ (Syntax.const syntax-const ‹-Assign› $ Syntax-Trans.update-name-tr ′

f )
(Abs (x, dummyT , Syntax-Trans.const-abs-tr ′ k) :: ts)

| assign-tr ′ - = raise Match;

fun annassign-tr ′ (r :: Abs (x, -, f $ k $ Bound 0 ) :: ts) =
quote-tr ′ (Syntax.const syntax-const ‹-AnnAssign› $ r $ Syntax-Trans.update-name-tr ′

32



f )
(Abs (x, dummyT , Syntax-Trans.const-abs-tr ′ k) :: ts)

| annassign-tr ′ - = raise Match;

fun Parallel-PAR [(Const (const-syntax ‹Cons›, -) $
(Const (const-syntax ‹Pair›, -) $ (Const (const-syntax ‹Some›,-) $ t1

) $ t2 ) $
Const (const-syntax ‹Nil›, -))] = Syntax.const syntax-const ‹-prg› $

t1 $ t2
| Parallel-PAR [(Const (const-syntax ‹Cons›, -) $

(Const (const-syntax ‹Pair›, -) $ (Const (const-syntax ‹Some›, -) $
t1 ) $ t2 ) $ ts)] =

Syntax.const syntax-const ‹-prgs› $ t1 $ t2 $ Parallel-PAR [ts]
| Parallel-PAR - = raise Match;

fun Parallel-tr ′ ts = Syntax.const syntax-const ‹-PAR› $ Parallel-PAR ts;
in
[(const-syntax ‹Collect›, K assert-tr ′),
(const-syntax ‹Basic›, K assign-tr ′),
(const-syntax ‹Cond›, K (bexp-tr ′ syntax-const ‹-Cond›)),
(const-syntax ‹While›, K (bexp-tr ′ syntax-const ‹-While-inv›)),
(const-syntax ‹AnnBasic›, K annassign-tr ′),
(const-syntax ‹AnnWhile›, K (annbexp-tr ′ syntax-const ‹-AnnWhile›)),
(const-syntax ‹AnnAwait›, K (annbexp-tr ′ syntax-const ‹-AnnAwait›)),
(const-syntax ‹AnnCond1 ›, K (annbexp-tr ′ syntax-const ‹-AnnCond1 ›)),
(const-syntax ‹AnnCond2 ›, K (annbexp-tr ′ syntax-const ‹-AnnCond2 ›))]

end
›

end

1.8 Examples
theory OG-Examples imports OG-Syntax begin

1.8.1 Mutual Exclusion
Peterson’s Algorithm I

Eike Best. "Semantics of Sequential and Parallel Programs", page 217.
record Petersons-mutex-1 =
pr1 :: nat
pr2 :: nat
in1 :: bool
in2 :: bool
hold :: nat

lemma Petersons-mutex-1 :
‖− {|´pr1=0 ∧ ¬´in1 ∧ ´pr2=0 ∧ ¬´in2 |}

33



COBEGIN {|´pr1=0 ∧ ¬´in1 |}
WHILE True INV {|´pr1=0 ∧ ¬´in1 |}
DO
{|´pr1=0 ∧ ¬´in1 |} 〈 ´in1 :=True,,´pr1 :=1 〉;;
{|´pr1=1 ∧ ´in1 |} 〈 ´hold:=1 ,,´pr1 :=2 〉;;
{|´pr1=2 ∧ ´in1 ∧ (´hold=1 ∨ ´hold=2 ∧ ´pr2=2 )|}
AWAIT (¬´in2 ∨ ¬(´hold=1 )) THEN ´pr1 :=3 END;;
{|´pr1=3 ∧ ´in1 ∧ (´hold=1 ∨ ´hold=2 ∧ ´pr2=2 )|}
〈´in1 :=False,,´pr1 :=0 〉

OD {|´pr1=0 ∧ ¬´in1 |}
‖
{|´pr2=0 ∧ ¬´in2 |}
WHILE True INV {|´pr2=0 ∧ ¬´in2 |}
DO
{|´pr2=0 ∧ ¬´in2 |} 〈 ´in2 :=True,,´pr2 :=1 〉;;
{|´pr2=1 ∧ ´in2 |} 〈 ´hold:=2 ,,´pr2 :=2 〉;;
{|´pr2=2 ∧ ´in2 ∧ (´hold=2 ∨ (´hold=1 ∧ ´pr1=2 ))|}
AWAIT (¬´in1 ∨ ¬(´hold=2 )) THEN ´pr2 :=3 END;;
{|´pr2=3 ∧ ´in2 ∧ (´hold=2 ∨ (´hold=1 ∧ ´pr1=2 ))|}
〈´in2 :=False,,´pr2 :=0 〉

OD {|´pr2=0 ∧ ¬´in2 |}
COEND
{|´pr1=0 ∧ ¬´in1 ∧ ´pr2=0 ∧ ¬´in2 |}

apply oghoare
— 104 verification conditions.
apply auto
done

Peterson’s Algorithm II: A Busy Wait Solution

Apt and Olderog. "Verification of sequential and concurrent Programs",
page 282.
record Busy-wait-mutex =
flag1 :: bool
flag2 :: bool
turn :: nat
after1 :: bool
after2 :: bool

lemma Busy-wait-mutex:
‖− {|True|}
´flag1 :=False,, ´flag2 :=False,,
COBEGIN {|¬´flag1 |}

WHILE True
INV {|¬´flag1 |}
DO {|¬´flag1 |} 〈 ´flag1 :=True,,´after1 :=False 〉;;

{|´flag1 ∧ ¬´after1 |} 〈 ´turn:=1 ,,´after1 :=True 〉;;
{|´flag1 ∧ ´after1 ∧ (´turn=1 ∨ ´turn=2 )|}
WHILE ¬(´flag2 −→ ´turn=2 )

34



INV {|´flag1 ∧ ´after1 ∧ (´turn=1 ∨ ´turn=2 )|}
DO {|´flag1 ∧ ´after1 ∧ (´turn=1 ∨ ´turn=2 )|} SKIP OD;;
{|´flag1 ∧ ´after1 ∧ (´flag2 ∧ ´after2 −→ ´turn=2 )|}
´flag1 :=False

OD
{|False|}

‖
{|¬´flag2 |}

WHILE True
INV {|¬´flag2 |}
DO {|¬´flag2 |} 〈 ´flag2 :=True,,´after2 :=False 〉;;

{|´flag2 ∧ ¬´after2 |} 〈 ´turn:=2 ,,´after2 :=True 〉;;
{|´flag2 ∧ ´after2 ∧ (´turn=1 ∨ ´turn=2 )|}
WHILE ¬(´flag1 −→ ´turn=1 )
INV {|´flag2 ∧ ´after2 ∧ (´turn=1 ∨ ´turn=2 )|}
DO {|´flag2 ∧ ´after2 ∧ (´turn=1 ∨ ´turn=2 )|} SKIP OD;;
{|´flag2 ∧ ´after2 ∧ (´flag1 ∧ ´after1 −→ ´turn=1 )|}
´flag2 :=False

OD
{|False|}

COEND
{|False|}

apply oghoare
— 122 vc
apply auto
done

Peterson’s Algorithm III: A Solution using Semaphores
record Semaphores-mutex =
out :: bool
who :: nat

lemma Semaphores-mutex:
‖− {|i 6=j|}
´out:=True ,,
COBEGIN {|i 6=j|}

WHILE True INV {|i 6=j|}
DO {|i 6=j|} AWAIT ´out THEN ´out:=False,, ´who:=i END;;

{|¬´out ∧ ´who=i ∧ i 6=j|} ´out:=True OD
{|False|}

‖
{|i 6=j|}
WHILE True INV {|i 6=j|}
DO {|i 6=j|} AWAIT ´out THEN ´out:=False,,´who:=j END;;

{|¬´out ∧ ´who=j ∧ i 6=j|} ´out:=True OD
{|False|}

COEND
{|False|}

35



apply oghoare
— 38 vc
apply auto
done

Peterson’s Algorithm III: Parameterized version:
lemma Semaphores-parameterized-mutex:
0<n =⇒ ‖− {|True|}
´out:=True ,,

COBEGIN
SCHEME [0≤ i< n]
{|True|}
WHILE True INV {|True|}
DO {|True|} AWAIT ´out THEN ´out:=False,, ´who:=i END;;

{|¬´out ∧ ´who=i|} ´out:=True OD
{|False|}

COEND
{|False|}

apply oghoare
— 20 vc
apply auto
done

The Ticket Algorithm
record Ticket-mutex =
num :: nat
nextv :: nat
turn :: nat list
index :: nat

lemma Ticket-mutex:
[[ 0<n; I=«n=length ´turn ∧ 0<´nextv ∧ (∀ k l. k<n ∧ l<n ∧ k 6=l

−→ ´turn!k < ´num ∧ (´turn!k =0 ∨ ´turn!k 6=´turn!l))» ]]
=⇒ ‖− {|n=length ´turn|}
´index:= 0 ,,
WHILE ´index < n INV {|n=length ´turn ∧ (∀ i<´index. ´turn!i=0 )|}
DO ´turn:= ´turn[´index:=0 ],, ´index:=´index +1 OD,,

´num:=1 ,, ´nextv:=1 ,,
COBEGIN
SCHEME [0≤ i< n]
{|´I |}
WHILE True INV {|´I |}
DO {|´I |} 〈 ´turn :=´turn[i:=´num],, ´num:=´num+1 〉;;

{|´I |} WAIT ´turn!i=´nextv END;;
{|´I ∧ ´turn!i=´nextv|} ´nextv:=´nextv+1

OD
{|False|}

COEND

36



{|False|}
apply oghoare
— 35 vc
apply simp-all
— 16 vc
apply(tactic ‹ALLGOALS (clarify-tac context )›)
— 11 vc
apply simp-all
apply(tactic ‹ALLGOALS (clarify-tac context )›)
— 10 subgoals left
apply(erule less-SucE)
apply simp

apply simp
— 9 subgoals left
apply(case-tac i=k)
apply force

apply simp
apply(case-tac i=l)
apply force

apply force
— 8 subgoals left
prefer 8
apply force
apply force
— 6 subgoals left
prefer 6
apply(erule-tac x=j in allE)
apply fastforce
— 5 subgoals left
prefer 5
apply(case-tac [!] j=k)
— 10 subgoals left
apply simp-all
apply(erule-tac x=k in allE)
apply force
— 9 subgoals left
apply(case-tac j=l)
apply simp
apply(erule-tac x=k in allE)
apply(erule-tac x=k in allE)
apply(erule-tac x=l in allE)
apply force

apply(erule-tac x=k in allE)
apply(erule-tac x=k in allE)
apply(erule-tac x=l in allE)
apply force
— 8 subgoals left
apply force
apply(case-tac j=l)

37



apply simp
apply(erule-tac x=k in allE)
apply(erule-tac x=l in allE)
apply force
apply force
apply force
— 5 subgoals left
apply(erule-tac x=k in allE)
apply(erule-tac x=l in allE)
apply(case-tac j=l)
apply force

apply force
apply force
— 3 subgoals left
apply(erule-tac x=k in allE)
apply(erule-tac x=l in allE)
apply(case-tac j=l)
apply force

apply force
apply force
— 1 subgoals left
apply(erule-tac x=k in allE)
apply(erule-tac x=l in allE)
apply(case-tac j=l)
apply force

apply force
done

1.8.2 Parallel Zero Search

Synchronized Zero Search. Zero-6

Apt and Olderog. "Verification of sequential and concurrent Programs" page
294:
record Zero-search =

turn :: nat
found :: bool
x :: nat
y :: nat

lemma Zero-search:
[[I1= « a≤´x ∧ (´found −→ (a<´x ∧ f (´x)=0 ) ∨ (´y≤a ∧ f (´y)=0 ))

∧ (¬´found ∧ a<´ x −→ f (´x) 6=0 ) » ;
I2= «´y≤a+1 ∧ (´found −→ (a<´x ∧ f (´x)=0 ) ∨ (´y≤a ∧ f (´y)=0 ))
∧ (¬´found ∧ ´y≤a −→ f (´y)6=0 ) » ]] =⇒

‖− {|∃ u. f (u)=0 |}
´turn:=1 ,, ´found:= False,,
´x:=a,, ´y:=a+1 ,,
COBEGIN {|´I1 |}

38



WHILE ¬´found
INV {|´I1 |}
DO {|a≤´x ∧ (´found −→ ´y≤a ∧ f (´y)=0 ) ∧ (a<´x −→ f (´x) 6=0 )|}

WAIT ´turn=1 END;;
{|a≤´x ∧ (´found −→ ´y≤a ∧ f (´y)=0 ) ∧ (a<´x −→ f (´x)6=0 )|}
´turn:=2 ;;
{|a≤´x ∧ (´found −→ ´y≤a ∧ f (´y)=0 ) ∧ (a<´x −→ f (´x)6=0 )|}
〈 ´x:=´x+1 ,,

IF f (´x)=0 THEN ´found:=True ELSE SKIP FI 〉
OD;;
{|´I1 ∧ ´found|}
´turn:=2
{|´I1 ∧ ´found|}

‖
{|´I2 |}
WHILE ¬´found
INV {|´I2 |}
DO {|´y≤a+1 ∧ (´found −→ a<´x ∧ f (´x)=0 ) ∧ (´y≤a −→ f (´y)6=0 )|}

WAIT ´turn=2 END;;
{|´y≤a+1 ∧ (´found −→ a<´x ∧ f (´x)=0 ) ∧ (´y≤a −→ f (´y)6=0 )|}
´turn:=1 ;;
{|´y≤a+1 ∧ (´found −→ a<´x ∧ f (´x)=0 ) ∧ (´y≤a −→ f (´y)6=0 )|}
〈 ´y:=(´y − 1 ),,

IF f (´y)=0 THEN ´found:=True ELSE SKIP FI 〉
OD;;
{|´I2 ∧ ´found|}
´turn:=1
{|´I2 ∧ ´found|}

COEND
{|f (´x)=0 ∨ f (´y)=0 |}

apply oghoare
— 98 verification conditions
apply auto
— auto takes about 3 minutes !!
done

Easier Version: without AWAIT. Apt and Olderog. page 256:
lemma Zero-Search-2 :
[[I1=« a≤´x ∧ (´found −→ (a<´x ∧ f (´x)=0 ) ∨ (´y≤a ∧ f (´y)=0 ))

∧ (¬´found ∧ a<´x −→ f (´x)6=0 )»;
I2= «´y≤a+1 ∧ (´found −→ (a<´x ∧ f (´x)=0 ) ∨ (´y≤a ∧ f (´y)=0 ))

∧ (¬´found ∧ ´y≤a −→ f (´y)6=0 )»]] =⇒
‖− {|∃ u. f (u)=0 |}
´found:= False,,
´x:=a,, ´y:=a+1 ,,
COBEGIN {|´I1 |}

WHILE ¬´found
INV {|´I1 |}
DO {|a≤´x ∧ (´found −→ ´y≤a ∧ f (´y)=0 ) ∧ (a<´x −→ f (´x) 6=0 )|}

39



〈 ´x:=´x+1 ,,IF f (´x)=0 THEN ´found:=True ELSE SKIP FI 〉
OD
{|´I1 ∧ ´found|}

‖
{|´I2 |}
WHILE ¬´found
INV {|´I2 |}
DO {|´y≤a+1 ∧ (´found −→ a<´x ∧ f (´x)=0 ) ∧ (´y≤a −→ f (´y)6=0 )|}

〈 ´y:=(´y − 1 ),,IF f (´y)=0 THEN ´found:=True ELSE SKIP FI 〉
OD
{|´I2 ∧ ´found|}

COEND
{|f (´x)=0 ∨ f (´y)=0 |}

apply oghoare
— 20 vc
apply auto
— auto takes aprox. 2 minutes.
done

1.8.3 Producer/Consumer
Previous lemmas
lemma nat-lemma2 : [[ b = m∗(n::nat) + t; a = s∗n + u; t=u; b−a < n ]] =⇒ m
≤ s
proof −

assume b = m∗(n::nat) + t a = s∗n + u t=u
hence (m − s) ∗ n = b − a by (simp add: diff-mult-distrib)
also assume . . . < n
finally have m − s < 1 by simp
thus ?thesis by arith

qed

lemma mod-lemma: [[ (c::nat) ≤ a; a < b; b − c < n ]] =⇒ b mod n 6= a mod n
apply(subgoal-tac b=b div n∗n + b mod n )
prefer 2 apply (simp add: div-mult-mod-eq [symmetric])

apply(subgoal-tac a=a div n∗n + a mod n)
prefer 2
apply(simp add: div-mult-mod-eq [symmetric])

apply(subgoal-tac b − a ≤ b − c)
prefer 2 apply arith

apply(drule le-less-trans)
back
apply assumption

apply(frule less-not-refl2 )
apply(drule less-imp-le)
apply (drule-tac m = a and k = n in div-le-mono)
apply(safe)
apply(frule-tac b = b and a = a and n = n in nat-lemma2 , assumption, assump-
tion)

40



apply assumption
apply(drule order-antisym, assumption)
apply(rotate-tac −3 )
apply(simp)
done

Producer/Consumer Algorithm
record Producer-consumer =

ins :: nat
outs :: nat
li :: nat
lj :: nat
vx :: nat
vy :: nat
buffer :: nat list
b :: nat list

The whole proof takes aprox. 4 minutes.
lemma Producer-consumer :
[[INIT= «0<length a ∧ 0<length ´buffer ∧ length ´b=length a» ;

I= «(∀ k<´ins. ´outs≤k −→ (a ! k) = ´buffer ! (k mod (length ´buffer))) ∧
´outs≤´ins ∧ ´ins−´outs≤length ´buffer» ;

I1= «´I ∧ ´li≤length a» ;
p1= «´I1 ∧ ´li=´ins» ;
I2 = «´I ∧ (∀ k<´lj. (a ! k)=(´b ! k)) ∧ ´lj≤length a» ;
p2 = «´I2 ∧ ´lj=´outs» ]] =⇒

‖− {|´INIT |}
´ins:=0 ,, ´outs:=0 ,, ´li:=0 ,, ´lj:=0 ,,
COBEGIN {|´p1 ∧ ´INIT |}

WHILE ´li <length a
INV {|´p1 ∧ ´INIT |}

DO {|´p1 ∧ ´INIT ∧ ´li<length a|}
´vx:= (a ! ´li);;
{|´p1 ∧ ´INIT ∧ ´li<length a ∧ ´vx=(a ! ´li)|}

WAIT ´ins−´outs < length ´buffer END;;
{|´p1 ∧ ´INIT ∧ ´li<length a ∧ ´vx=(a ! ´li)

∧ ´ins−´outs < length ´buffer |}
´buffer :=(list-update ´buffer (´ins mod (length ´buffer)) ´vx);;
{|´p1 ∧ ´INIT ∧ ´li<length a

∧ (a ! ´li)=(´buffer ! (´ins mod (length ´buffer)))
∧ ´ins−´outs <length ´buffer |}

´ins:=´ins+1 ;;
{|´I1 ∧ ´INIT ∧ (´li+1 )=´ins ∧ ´li<length a|}
´li:=´li+1

OD
{|´p1 ∧ ´INIT ∧ ´li=length a|}
‖
{|´p2 ∧ ´INIT |}

41



WHILE ´lj < length a
INV {|´p2 ∧ ´INIT |}

DO {|´p2 ∧ ´lj<length a ∧ ´INIT |}
WAIT ´outs<´ins END;;

{|´p2 ∧ ´lj<length a ∧ ´outs<´ins ∧ ´INIT |}
´vy:=(´buffer ! (´outs mod (length ´buffer)));;
{|´p2 ∧ ´lj<length a ∧ ´outs<´ins ∧ ´vy=(a ! ´lj) ∧ ´INIT |}
´outs:=´outs+1 ;;
{|´I2 ∧ (´lj+1 )=´outs ∧ ´lj<length a ∧ ´vy=(a ! ´lj) ∧ ´INIT |}
´b:=(list-update ´b ´lj ´vy);;
{|´I2 ∧ (´lj+1 )=´outs ∧ ´lj<length a ∧ (a ! ´lj)=(´b ! ´lj) ∧ ´INIT |}
´lj:=´lj+1

OD
{|´p2 ∧ ´lj=length a ∧ ´INIT |}

COEND
{| ∀ k<length a. (a ! k)=(´b ! k)|}

apply oghoare
— 138 vc
apply(tactic ‹ALLGOALS (clarify-tac context )›)
— 112 subgoals left
apply(simp-all (no-asm))
— 43 subgoals left
apply(tactic ‹ALLGOALS (conjI-Tac context (K all-tac))›)
— 419 subgoals left
apply(tactic ‹ALLGOALS (clarify-tac context )›)
— 99 subgoals left
apply(simp-all only:length-0-conv [THEN sym])
— 20 subgoals left
apply (simp-all del:length-0-conv length-greater-0-conv add: nth-list-update mod-lemma)
— 9 subgoals left
apply (force simp add:less-Suc-eq)
apply(hypsubst-thin, drule sym)
apply (force simp add:less-Suc-eq)+
done

1.8.4 Parameterized Examples
Set Elements of an Array to Zero
record Example1 =

a :: nat ⇒ nat

lemma Example1 :
‖− {|True|}

COBEGIN SCHEME [0≤i<n] {|True|} ´a:=´a (i:=0 ) {|´a i=0 |} COEND
{|∀ i < n. ´a i = 0 |}

apply oghoare
apply simp-all
done

42



Same example with lists as auxiliary variables.
record Example1-list =

A :: nat list
lemma Example1-list:
‖− {|n < length ´A|}

COBEGIN
SCHEME [0≤i<n] {|n < length ´A|} ´A:=´A[i:=0 ] {|´A!i=0 |}

COEND
{|∀ i < n. ´A!i = 0 |}

apply oghoare
apply force+
done

Increment a Variable in Parallel

First some lemmas about summation properties.
lemma Example2-lemma2-aux: !!b. j<n =⇒
(
∑

i=0 ..<n. (b i::nat)) =
(
∑

i=0 ..<j. b i) + b j + (
∑

i=0 ..<n−(Suc j) . b (Suc j + i))
apply(induct n)
apply simp-all

apply(simp add:less-Suc-eq)
apply(auto)

apply(subgoal-tac n − j = Suc(n− Suc j))
apply simp

apply arith
done

lemma Example2-lemma2-aux2 :
!!b. j≤ s =⇒ (

∑
i::nat=0 ..<j. (b (s:=t)) i) = (

∑
i=0 ..<j. b i)

apply(induct j)
apply simp-all

done

lemma Example2-lemma2 :
!!b. [[j<n; b j=0 ]] =⇒ Suc (

∑
i::nat=0 ..<n. b i)=(

∑
i=0 ..<n. (b (j := Suc 0 ))

i)
apply(frule-tac b=(b (j:=(Suc 0 ))) in Example2-lemma2-aux)
apply(erule-tac t=sum (b(j := (Suc 0 ))) {0 ..<n} in ssubst)
apply(frule-tac b=b in Example2-lemma2-aux)
apply(erule-tac t=sum b {0 ..<n} in ssubst)
apply(subgoal-tac Suc (sum b {0 ..<j} + b j + (

∑
i=0 ..<n − Suc j. b (Suc j +

i)))=(sum b {0 ..<j} + Suc (b j) + (
∑

i=0 ..<n − Suc j. b (Suc j + i))))
apply(rotate-tac −1 )
apply(erule ssubst)
apply(subgoal-tac j≤j)
apply(drule-tac b=b and t=(Suc 0 ) in Example2-lemma2-aux2 )

apply(rotate-tac −1 )

43



apply(erule ssubst)
apply simp-all
done

record Example2 =
c :: nat ⇒ nat
x :: nat

lemma Example-2 : 0<n =⇒
‖− {|´x=0 ∧ (

∑
i=0 ..<n. ´c i)=0 |}

COBEGIN
SCHEME [0≤i<n]
{|´x=(

∑
i=0 ..<n. ´c i) ∧ ´c i=0 |}

〈 ´x:=´x+(Suc 0 ),, ´c:=´c (i:=(Suc 0 )) 〉
{|´x=(

∑
i=0 ..<n. ´c i) ∧ ´c i=(Suc 0 )|}

COEND
{|´x=n|}

apply oghoare
apply (simp-all cong del: sum.cong-simp)
apply (tactic ‹ALLGOALS (clarify-tac context )›)
apply (simp-all cong del: sum.cong-simp)

apply(erule (1 ) Example2-lemma2 )
apply(erule (1 ) Example2-lemma2 )

apply(erule (1 ) Example2-lemma2 )
apply(simp)
done

end

44



Chapter 2

Case Study: Single and
Multi-Mutator Garbage
Collection Algorithms

2.1 Formalization of the Memory
theory Graph imports Main begin

datatype node = Black | White

type-synonym nodes = node list
type-synonym edge = nat × nat
type-synonym edges = edge list

consts Roots :: nat set

definition Proper-Roots :: nodes ⇒ bool where
Proper-Roots M ≡ Roots 6={} ∧ Roots ⊆ {i. i<length M}

definition Proper-Edges :: (nodes × edges) ⇒ bool where
Proper-Edges ≡ (λ(M ,E). ∀ i<length E . fst(E !i)<length M ∧ snd(E !i)<length

M )

definition BtoW :: (edge × nodes) ⇒ bool where
BtoW ≡ (λ(e,M ). (M !fst e)=Black ∧ (M !snd e)6=Black)

definition Blacks :: nodes ⇒ nat set where
Blacks M ≡ {i. i<length M ∧ M !i=Black}

definition Reach :: edges ⇒ nat set where
Reach E ≡ {x. (∃ path. 1<length path ∧ path!(length path − 1 )∈Roots ∧ x=path!0

∧ (∀ i<length path − 1 . (∃ j<length E . E !j=(path!(i+1 ), path!i))))
∨ x∈Roots}

45



Reach: the set of reachable nodes is the set of Roots together with the
nodes reachable from some Root by a path represented by a list of nodes (at
least two since we traverse at least one edge), where two consecutive nodes
correspond to an edge in E.

2.1.1 Proofs about Graphs
lemmas Graph-defs= Blacks-def Proper-Roots-def Proper-Edges-def BtoW-def
declare Graph-defs [simp]

Graph 1
lemma Graph1-aux [rule-format]:
[[ Roots⊆Blacks M ; ∀ i<length E . ¬BtoW (E !i,M )]]
=⇒ 1< length path −→ (path!(length path − 1 ))∈Roots −→
(∀ i<length path − 1 . (∃ j. j < length E ∧ E !j=(path!(Suc i), path!i)))
−→ M !(path!0 ) = Black

apply(induct-tac path)
apply force

apply clarify
apply simp
apply(case-tac list)
apply force

apply simp
apply(rename-tac lista)
apply(rotate-tac −2 )
apply(erule-tac x = 0 in all-dupE)
apply simp
apply clarify
apply(erule allE , erule (1 ) notE impE)
apply simp
apply(erule mp)
apply(case-tac lista)
apply force

apply simp
apply(erule mp)
apply clarify
apply(erule-tac x = Suc i in allE)
apply force
done

lemma Graph1 :
[[Roots⊆Blacks M ; Proper-Edges(M , E); ∀ i<length E . ¬BtoW (E !i,M ) ]]
=⇒ Reach E⊆Blacks M

apply (unfold Reach-def )
apply simp
apply clarify
apply(erule disjE)
apply clarify

46



apply(rule conjI )
apply(subgoal-tac 0< length path − Suc 0 )
apply(erule allE , erule (1 ) notE impE)
apply force

apply simp
apply(rule Graph1-aux)

apply auto
done

Graph 2
lemma Ex-first-occurrence [rule-format]:

P (n::nat) −→ (∃m. P m ∧ (∀ i. i<m −→ ¬ P i))
apply(rule nat-less-induct)
apply clarify
apply(case-tac ∀m. m<n −→ ¬ P m)
apply auto
done

lemma Compl-lemma: (n::nat)≤l =⇒ (∃m. m≤l ∧ n=l − m)
apply(rule-tac x = l − n in exI )
apply arith
done

lemma Ex-last-occurrence:
[[P (n::nat); n≤l]] =⇒ (∃m. P (l − m) ∧ (∀ i. i<m −→ ¬P (l − i)))

apply(drule Compl-lemma)
apply clarify
apply(erule Ex-first-occurrence)
done

lemma Graph2 :
[[T ∈ Reach E ; R<length E ]] =⇒ T ∈ Reach (E [R:=(fst(E !R), T )])

apply (unfold Reach-def )
apply clarify
apply simp
apply(case-tac ∀ z<length path. fst(E !R)6=path!z)
apply(rule-tac x = path in exI )
apply simp
apply clarify
apply(erule allE , erule (1 ) notE impE)
apply clarify
apply(rule-tac x = j in exI )
apply(case-tac j=R)
apply(erule-tac x = Suc i in allE)
apply simp

apply (force simp add:nth-list-update)
apply simp
apply(erule exE)

47



apply(subgoal-tac z ≤ length path − Suc 0 )
prefer 2 apply arith

apply(drule-tac P = λm. m<length path ∧ fst(E !R)=path!m in Ex-last-occurrence)
apply assumption

apply clarify
apply simp
apply(rule-tac x = (path!0 )#(drop (length path − Suc m) path) in exI )
apply simp
apply(case-tac length path − (length path − Suc m))
apply arith

apply simp
apply(subgoal-tac (length path − Suc m) + nat ≤ length path)
prefer 2 apply arith

apply(subgoal-tac length path − Suc m + nat = length path − Suc 0 )
prefer 2 apply arith

apply clarify
apply(case-tac i)
apply(force simp add: nth-list-update)

apply simp
apply(subgoal-tac (length path − Suc m) + nata ≤ length path)
prefer 2 apply arith

apply(subgoal-tac (length path − Suc m) + (Suc nata) ≤ length path)
prefer 2 apply arith

apply simp
apply(erule-tac x = length path − Suc m + nata in allE)
apply simp
apply clarify
apply(rule-tac x = j in exI )
apply(case-tac R=j)
prefer 2 apply force

apply simp
apply(drule-tac t = path ! (length path − Suc m) in sym)
apply simp
apply(case-tac length path − Suc 0 < m)
apply(subgoal-tac (length path − Suc m)=0 )
prefer 2 apply arith

apply(simp del: diff-is-0-eq)
apply(subgoal-tac Suc nata≤nat)
prefer 2 apply arith
apply(drule-tac n = Suc nata in Compl-lemma)
apply clarify
subgoal using [[linarith-split-limit = 0 ]] by force

apply(drule leI )
apply(subgoal-tac Suc (length path − Suc m + nata)=(length path − Suc 0 ) − (m
− Suc nata))
apply(erule-tac x = m − (Suc nata) in allE)
apply(case-tac m)
apply simp

apply simp

48



apply simp
done

Graph 3
declare min.absorb1 [simp] min.absorb2 [simp]

lemma Graph3 :
[[ T∈Reach E ; R<length E ]] =⇒ Reach(E [R:=(fst(E !R),T )]) ⊆ Reach E

apply (unfold Reach-def )
apply clarify
apply simp
apply(case-tac ∃ i<length path − 1 . (fst(E !R),T )=(path!(Suc i),path!i))
— the changed edge is part of the path
apply(erule exE)
apply(drule-tac P = λi. i<length path − 1 ∧ (fst(E !R),T )=(path!Suc i,path!i)

in Ex-first-occurrence)
apply clarify
apply(erule disjE)

— T is NOT a root
apply clarify
apply(rule-tac x = (take m path)@patha in exI )
apply(subgoal-tac ¬(length path≤m))
prefer 2 apply arith

apply(simp)
apply(rule conjI )
apply(subgoal-tac ¬(m + length patha − 1 < m))
prefer 2 apply arith

apply(simp add: nth-append)
apply(rule conjI )
apply(case-tac m)
apply force

apply(case-tac path)
apply force

apply force
apply clarify
apply(case-tac Suc i≤m)
apply(erule-tac x = i in allE)
apply simp
apply clarify
apply(rule-tac x = j in exI )
apply(case-tac Suc i<m)
apply(simp add: nth-append)
apply(case-tac R=j)
apply(simp add: nth-list-update)
apply(case-tac i=m)
apply force

apply(erule-tac x = i in allE)
apply force

49



apply(force simp add: nth-list-update)
apply(simp add: nth-append)
apply(subgoal-tac i=m − 1 )
prefer 2 apply arith

apply(case-tac R=j)
apply(erule-tac x = m − 1 in allE)
apply(simp add: nth-list-update)

apply(force simp add: nth-list-update)
apply(simp add: nth-append)
apply(rotate-tac −4 )
apply(erule-tac x = i − m in allE)
apply(subgoal-tac Suc (i − m)=(Suc i − m) )

prefer 2 apply arith
apply simp

— T is a root
apply(case-tac m=0 )
apply force

apply(rule-tac x = take (Suc m) path in exI )
apply(subgoal-tac ¬(length path≤Suc m) )
prefer 2 apply arith

apply clarsimp
apply(erule-tac x = i in allE)
apply simp
apply clarify
apply(case-tac R=j)
apply(force simp add: nth-list-update)

apply(force simp add: nth-list-update)
— the changed edge is not part of the path
apply(rule-tac x = path in exI )
apply simp
apply clarify
apply(erule-tac x = i in allE)
apply clarify
apply(case-tac R=j)
apply(erule-tac x = i in allE)
apply simp

apply(force simp add: nth-list-update)
done

Graph 4
lemma Graph4 :
[[T ∈ Reach E ; Roots⊆Blacks M ; I≤length E ; T<length M ; R<length E ;
∀ i<I . ¬BtoW (E !i,M ); R<I ; M !fst(E !R)=Black; M !T 6=Black]] =⇒
(∃ r . I≤r ∧ r<length E ∧ BtoW (E [R:=(fst(E !R),T )]!r ,M ))

apply (unfold Reach-def )
apply simp
apply(erule disjE)
prefer 2 apply force

50



apply clarify
— there exist a black node in the path to T
apply(case-tac ∃m<length path. M !(path!m)=Black)
apply(erule exE)
apply(drule-tac P = λm. m<length path ∧ M !(path!m)=Black in Ex-first-occurrence)
apply clarify
apply(case-tac ma)
apply force

apply simp
apply(case-tac length path)
apply force

apply simp
apply(erule-tac P = λi. i < nata −→ P i and x = nat for P in allE)
apply simp
apply clarify
apply(erule-tac P = λi. i < Suc nat −→ P i and x = nat for P in allE)
apply simp
apply(case-tac j<I )
apply(erule-tac x = j in allE)
apply force

apply(rule-tac x = j in exI )
apply(force simp add: nth-list-update)

apply simp
apply(rotate-tac −1 )
apply(erule-tac x = length path − 1 in allE)
apply(case-tac length path)
apply force

apply force
done

declare min.absorb1 [simp del] min.absorb2 [simp del]

Graph 5
lemma Graph5 :
[[ T ∈ Reach E ; Roots ⊆ Blacks M ; ∀ i<R. ¬BtoW (E !i,M ); T<length M ;

R<length E ; M !fst(E !R)=Black; M !snd(E !R)=Black; M !T 6= Black]]
=⇒ (∃ r . R<r ∧ r<length E ∧ BtoW (E [R:=(fst(E !R),T )]!r ,M ))

apply (unfold Reach-def )
apply simp
apply(erule disjE)
prefer 2 apply force

apply clarify
— there exist a black node in the path to T
apply(case-tac ∃m<length path. M !(path!m)=Black)
apply(erule exE)
apply(drule-tac P = λm. m<length path ∧ M !(path!m)=Black in Ex-first-occurrence)
apply clarify
apply(case-tac ma)

51



apply force
apply simp
apply(case-tac length path)
apply force

apply simp
apply(erule-tac P = λi. i < nata −→ P i and x = nat for P in allE)
apply simp
apply clarify
apply(erule-tac P = λi. i < Suc nat −→ P i and x = nat for P in allE)
apply simp
apply(case-tac j≤R)
apply(drule le-imp-less-or-eq [of - R])
apply(erule disjE)
apply(erule allE , erule (1 ) notE impE)
apply force

apply force
apply(rule-tac x = j in exI )
apply(force simp add: nth-list-update)

apply simp
apply(rotate-tac −1 )
apply(erule-tac x = length path − 1 in allE)
apply(case-tac length path)
apply force

apply force
done

Other lemmas about graphs
lemma Graph6 :
[[Proper-Edges(M ,E); R<length E ; T<length M ]] =⇒ Proper-Edges(M ,E [R:=(fst(E !R),T )])
apply (unfold Proper-Edges-def )
apply(force simp add: nth-list-update)

done

lemma Graph7 :
[[Proper-Edges(M ,E)]] =⇒ Proper-Edges(M [T :=a],E)

apply (unfold Proper-Edges-def )
apply force
done

lemma Graph8 :
[[Proper-Roots(M )]] =⇒ Proper-Roots(M [T :=a])

apply (unfold Proper-Roots-def )
apply force
done

Some specific lemmata for the verification of garbage collection algorithms.
lemma Graph9 : j<length M =⇒ Blacks M⊆Blacks (M [j := Black])
apply (unfold Blacks-def )

52



apply(force simp add: nth-list-update)
done

lemma Graph10 [rule-format (no-asm)]: ∀ i. M !i=a −→M [i:=a]=M
apply(induct-tac M )
apply auto
apply(case-tac i)
apply auto
done

lemma Graph11 [rule-format (no-asm)]:
[[ M !j 6=Black;j<length M ]] =⇒ Blacks M ⊂ Blacks (M [j := Black])

apply (unfold Blacks-def )
apply(rule psubsetI )
apply(force simp add: nth-list-update)

apply safe
apply(erule-tac c = j in equalityCE)
apply auto
done

lemma Graph12 : [[a⊆Blacks M ;j<length M ]] =⇒ a⊆Blacks (M [j := Black])
apply (unfold Blacks-def )
apply(force simp add: nth-list-update)
done

lemma Graph13 : [[a⊂ Blacks M ;j<length M ]] =⇒ a ⊂ Blacks (M [j := Black])
apply (unfold Blacks-def )
apply(erule psubset-subset-trans)
apply(force simp add: nth-list-update)
done

declare Graph-defs [simp del]

end

2.2 The Single Mutator Case
theory Gar-Coll imports Graph OG-Syntax begin

declare psubsetE [rule del]

Declaration of variables:
record gar-coll-state =

M :: nodes
E :: edges
bc :: nat set
obc :: nat set
Ma :: nodes
ind :: nat

53



k :: nat
z :: bool

2.2.1 The Mutator

The mutator first redirects an arbitrary edge R from an arbitrary accessible
node towards an arbitrary accessible node T. It then colors the new target
T black.
We declare the arbitrarily selected node and edge as constants:
consts R :: nat T :: nat

The following predicate states, given a list of nodes m and a list of edges e,
the conditions under which the selected edge R and node T are valid:
definition Mut-init :: gar-coll-state ⇒ bool where

Mut-init ≡ « T ∈ Reach ´E ∧ R < length ´E ∧ T < length ´M »

For the mutator we consider two modules, one for each action. An auxiliary
variable ´z is set to false if the mutator has already redirected an edge but
has not yet colored the new target.
definition Redirect-Edge :: gar-coll-state ann-com where

Redirect-Edge ≡ {|´Mut-init ∧ ´z|} 〈´E :=´E [R:=(fst(´E !R), T )],, ´z:= (¬´z)〉

definition Color-Target :: gar-coll-state ann-com where
Color-Target ≡ {|´Mut-init ∧ ¬´z|} 〈´M :=´M [T :=Black],, ´z:= (¬´z)〉

definition Mutator :: gar-coll-state ann-com where
Mutator ≡
{|´Mut-init ∧ ´z|}
WHILE True INV {|´Mut-init ∧ ´z|}
DO Redirect-Edge ;; Color-Target OD

Correctness of the mutator
lemmas mutator-defs = Mut-init-def Redirect-Edge-def Color-Target-def

lemma Redirect-Edge:
` Redirect-Edge pre(Color-Target)

apply (unfold mutator-defs)
apply annhoare
apply(simp-all)
apply(force elim:Graph2 )
done

lemma Color-Target:
` Color-Target {|´Mut-init ∧ ´z|}

apply (unfold mutator-defs)
apply annhoare

54



apply(simp-all)
done

lemma Mutator :
` Mutator {|False|}

apply(unfold Mutator-def )
apply annhoare
apply(simp-all add:Redirect-Edge Color-Target)
apply(simp add:mutator-defs)
done

2.2.2 The Collector

A constant M-init is used to give ´Ma a suitable first value, defined as a list
of nodes where only the Roots are black.
consts M-init :: nodes

definition Proper-M-init :: gar-coll-state ⇒ bool where
Proper-M-init ≡ « Blacks M-init=Roots ∧ length M-init=length ´M »

definition Proper :: gar-coll-state ⇒ bool where
Proper ≡ « Proper-Roots ´M ∧ Proper-Edges(´M , ´E) ∧ ´Proper-M-init »

definition Safe :: gar-coll-state ⇒ bool where
Safe ≡ « Reach ´E ⊆ Blacks ´M »

lemmas collector-defs = Proper-M-init-def Proper-def Safe-def

Blackening the roots
definition Blacken-Roots :: gar-coll-state ann-com where

Blacken-Roots ≡
{|´Proper |}
´ind:=0 ;;
{|´Proper ∧ ´ind=0 |}
WHILE ´ind<length ´M
INV {|´Proper ∧ (∀ i<´ind. i ∈ Roots −→ ´M !i=Black) ∧ ´ind≤length ´M |}

DO {|´Proper ∧ (∀ i<´ind. i ∈ Roots −→ ´M !i=Black) ∧ ´ind<length ´M |}
IF ´ind∈Roots THEN
{|´Proper ∧ (∀ i<´ind. i ∈ Roots −→ ´M !i=Black) ∧ ´ind<length ´M ∧

´ind∈Roots|}
´M :=´M [´ind:=Black] FI ;;
{|´Proper ∧ (∀ i<´ind+1 . i ∈ Roots −→ ´M !i=Black) ∧ ´ind<length ´M |}
´ind:=´ind+1

OD

lemma Blacken-Roots:
` Blacken-Roots {|´Proper ∧ Roots⊆Blacks ´M |}

apply (unfold Blacken-Roots-def )

55



apply annhoare
apply(simp-all add:collector-defs Graph-defs)
apply safe
apply(simp-all add:nth-list-update)

apply (erule less-SucE)
apply simp+

apply force
apply force
done

Propagating black
definition PBInv :: gar-coll-state ⇒ nat ⇒ bool where

PBInv ≡ « λind. ´obc < Blacks ´M ∨ (∀ i <ind. ¬BtoW (´E !i, ´M ) ∨
(¬´z ∧ i=R ∧ (snd(´E !R)) = T ∧ (∃ r . ind ≤ r ∧ r < length ´E ∧ BtoW (´E !r ,´M ))))»

definition Propagate-Black-aux :: gar-coll-state ann-com where
Propagate-Black-aux ≡
{|´Proper ∧ Roots⊆Blacks ´M ∧ ´obc⊆Blacks ´M ∧ ´bc⊆Blacks ´M |}
´ind:=0 ;;
{|´Proper ∧ Roots⊆Blacks ´M ∧ ´obc⊆Blacks ´M ∧ ´bc⊆Blacks ´M ∧ ´ind=0 |}
WHILE ´ind<length ´E
INV {|´Proper ∧ Roots⊆Blacks ´M ∧ ´obc⊆Blacks ´M ∧ ´bc⊆Blacks ´M

∧ ´PBInv ´ind ∧ ´ind≤length ´E |}
DO {|´Proper ∧ Roots⊆Blacks ´M ∧ ´obc⊆Blacks ´M ∧ ´bc⊆Blacks ´M

∧ ´PBInv ´ind ∧ ´ind<length ´E |}
IF ´M !(fst (´E !´ind)) = Black THEN
{|´Proper ∧ Roots⊆Blacks ´M ∧ ´obc⊆Blacks ´M ∧ ´bc⊆Blacks ´M

∧ ´PBInv ´ind ∧ ´ind<length ´E ∧ ´M !fst(´E !´ind)=Black|}
´M :=´M [snd(´E !´ind):=Black];;
{|´Proper ∧ Roots⊆Blacks ´M ∧ ´obc⊆Blacks ´M ∧ ´bc⊆Blacks ´M

∧ ´PBInv (´ind + 1 ) ∧ ´ind<length ´E |}
´ind:=´ind+1

FI
OD

lemma Propagate-Black-aux:
` Propagate-Black-aux
{|´Proper ∧ Roots⊆Blacks ´M ∧ ´obc⊆Blacks ´M ∧ ´bc⊆Blacks ´M
∧ ( ´obc < Blacks ´M ∨ ´Safe)|}

apply (unfold Propagate-Black-aux-def PBInv-def collector-defs)
apply annhoare
apply(simp-all add:Graph6 Graph7 Graph8 Graph12 )

apply force
apply force

apply force
— 4 subgoals left
apply clarify
apply(simp add:Proper-Edges-def Proper-Roots-def Graph6 Graph7 Graph8 Graph12 )

56



apply (erule disjE)
apply(rule disjI1 )
apply(erule Graph13 )
apply force

apply (case-tac M x ! snd (E x ! ind x)=Black)
apply (simp add: Graph10 BtoW-def )
apply (rule disjI2 )
apply clarify
apply (erule less-SucE)
apply (erule-tac x=i in allE , erule (1 ) notE impE)
apply simp
apply clarify
apply (drule-tac y = r in le-imp-less-or-eq)
apply (erule disjE)
apply (subgoal-tac Suc (ind x)≤r)
apply fast

apply arith
apply fast

apply fast
apply(rule disjI1 )
apply(erule subset-psubset-trans)
apply(erule Graph11 )
apply fast
— 3 subgoals left
apply force
apply force
— last
apply clarify
apply simp
apply(subgoal-tac ind x = length (E x))
apply (simp)
apply(drule Graph1 )

apply simp
apply clarify
apply(erule allE , erule impE , assumption)
apply force

apply force
apply arith
done

Refining propagating black
definition Auxk :: gar-coll-state ⇒ bool where

Auxk ≡ «´k<length ´M ∧ (´M !´k 6=Black ∨ ¬BtoW (´E !´ind, ´M ) ∨
´obc<Blacks ´M ∨ (¬´z ∧ ´ind=R ∧ snd(´E !R)=T
∧ (∃ r . ´ind<r ∧ r<length ´E ∧ BtoW (´E !r , ´M ))))»

definition Propagate-Black :: gar-coll-state ann-com where
Propagate-Black ≡

57



{|´Proper ∧ Roots⊆Blacks ´M ∧ ´obc⊆Blacks ´M ∧ ´bc⊆Blacks ´M |}
´ind:=0 ;;
{|´Proper ∧ Roots⊆Blacks ´M ∧ ´obc⊆Blacks ´M ∧ ´bc⊆Blacks ´M ∧ ´ind=0 |}
WHILE ´ind<length ´E
INV {|´Proper ∧ Roots⊆Blacks ´M ∧ ´obc⊆Blacks ´M ∧ ´bc⊆Blacks ´M

∧ ´PBInv ´ind ∧ ´ind≤length ´E |}
DO {|´Proper ∧ Roots⊆Blacks ´M ∧ ´obc⊆Blacks ´M ∧ ´bc⊆Blacks ´M

∧ ´PBInv ´ind ∧ ´ind<length ´E |}
IF (´M !(fst (´E !´ind)))=Black THEN
{|´Proper ∧ Roots⊆Blacks ´M ∧ ´obc⊆Blacks ´M ∧ ´bc⊆Blacks ´M
∧ ´PBInv ´ind ∧ ´ind<length ´E ∧ (´M !fst(´E !´ind))=Black|}

´k:=(snd(´E !´ind));;
{|´Proper ∧ Roots⊆Blacks ´M ∧ ´obc⊆Blacks ´M ∧ ´bc⊆Blacks ´M
∧ ´PBInv ´ind ∧ ´ind<length ´E ∧ (´M !fst(´E !´ind))=Black
∧ ´Auxk|}
〈´M :=´M [´k:=Black],, ´ind:=´ind+1 〉

ELSE {|´Proper ∧ Roots⊆Blacks ´M ∧ ´obc⊆Blacks ´M ∧ ´bc⊆Blacks ´M
∧ ´PBInv ´ind ∧ ´ind<length ´E |}
〈IF (´M !(fst (´E !´ind)))6=Black THEN ´ind:=´ind+1 FI 〉

FI
OD

lemma Propagate-Black:
` Propagate-Black
{|´Proper ∧ Roots⊆Blacks ´M ∧ ´obc⊆Blacks ´M ∧ ´bc⊆Blacks ´M
∧ ( ´obc < Blacks ´M ∨ ´Safe)|}

apply (unfold Propagate-Black-def PBInv-def Auxk-def collector-defs)
apply annhoare
apply(simp-all add: Graph6 Graph7 Graph8 Graph12 )

apply force
apply force

apply force
— 5 subgoals left
apply clarify
apply(simp add:BtoW-def Proper-Edges-def )
— 4 subgoals left
apply clarify
apply(simp add:Proper-Edges-def Graph6 Graph7 Graph8 Graph12 )
apply (erule disjE)
apply (rule disjI1 )
apply (erule psubset-subset-trans)
apply (erule Graph9 )

apply (case-tac M x!k x=Black)
apply (case-tac M x ! snd (E x ! ind x)=Black)
apply (simp add: Graph10 BtoW-def )
apply (rule disjI2 )
apply clarify
apply (erule less-SucE)
apply (erule-tac x=i in allE , erule (1 ) notE impE)

58



apply simp
apply clarify
apply (drule-tac y = r in le-imp-less-or-eq)
apply (erule disjE)
apply (subgoal-tac Suc (ind x)≤r)
apply fast

apply arith
apply fast

apply fast
apply (simp add: Graph10 BtoW-def )
apply (erule disjE)
apply (erule disjI1 )

apply clarify
apply (erule less-SucE)
apply force

apply simp
apply (subgoal-tac Suc R≤r)
apply fast

apply arith
apply(rule disjI1 )
apply(erule subset-psubset-trans)
apply(erule Graph11 )
apply fast
— 2 subgoals left
apply clarify
apply(simp add:Proper-Edges-def Graph6 Graph7 Graph8 Graph12 )
apply (erule disjE)
apply fast

apply clarify
apply (erule less-SucE)
apply (erule-tac x=i in allE , erule (1 ) notE impE)
apply simp
apply clarify
apply (drule-tac y = r in le-imp-less-or-eq)
apply (erule disjE)
apply (subgoal-tac Suc (ind x)≤r)
apply fast

apply arith
apply (simp add: BtoW-def )

apply (simp add: BtoW-def )
— last
apply clarify
apply simp
apply(subgoal-tac ind x = length (E x))
apply (simp)
apply(drule Graph1 )

apply simp
apply clarify
apply(erule allE , erule impE , assumption)

59



apply force
apply force

apply arith
done

Counting black nodes
definition CountInv :: gar-coll-state ⇒ nat ⇒ bool where

CountInv ≡ « λind. {i. i<ind ∧ ´Ma!i=Black}⊆´bc »

definition Count :: gar-coll-state ann-com where
Count ≡
{|´Proper ∧ Roots⊆Blacks ´M
∧ ´obc⊆Blacks ´Ma ∧ Blacks ´Ma⊆Blacks ´M ∧ ´bc⊆Blacks ´M
∧ length ´Ma=length ´M ∧ (´obc < Blacks ´Ma ∨ ´Safe) ∧ ´bc={}|}

´ind:=0 ;;
{|´Proper ∧ Roots⊆Blacks ´M
∧ ´obc⊆Blacks ´Ma ∧ Blacks ´Ma⊆Blacks ´M ∧ ´bc⊆Blacks ´M
∧ length ´Ma=length ´M ∧ (´obc < Blacks ´Ma ∨ ´Safe) ∧ ´bc={}
∧ ´ind=0 |}
WHILE ´ind<length ´M

INV {|´Proper ∧ Roots⊆Blacks ´M
∧ ´obc⊆Blacks ´Ma ∧ Blacks ´Ma⊆Blacks ´M ∧ ´bc⊆Blacks ´M
∧ length ´Ma=length ´M ∧ ´CountInv ´ind
∧ ( ´obc < Blacks ´Ma ∨ ´Safe) ∧ ´ind≤length ´M |}

DO {|´Proper ∧ Roots⊆Blacks ´M
∧ ´obc⊆Blacks ´Ma ∧ Blacks ´Ma⊆Blacks ´M ∧ ´bc⊆Blacks ´M
∧ length ´Ma=length ´M ∧ ´CountInv ´ind
∧ ( ´obc < Blacks ´Ma ∨ ´Safe) ∧ ´ind<length ´M |}

IF ´M !´ind=Black
THEN {|´Proper ∧ Roots⊆Blacks ´M

∧ ´obc⊆Blacks ´Ma ∧ Blacks ´Ma⊆Blacks ´M ∧ ´bc⊆Blacks ´M
∧ length ´Ma=length ´M ∧ ´CountInv ´ind

∧ ( ´obc < Blacks ´Ma ∨ ´Safe) ∧ ´ind<length ´M ∧ ´M !´ind=Black|}
´bc:=insert ´ind ´bc

FI ;;
{|´Proper ∧ Roots⊆Blacks ´M
∧ ´obc⊆Blacks ´Ma ∧ Blacks ´Ma⊆Blacks ´M ∧ ´bc⊆Blacks ´M
∧ length ´Ma=length ´M ∧ ´CountInv (´ind+1 )
∧ ( ´obc < Blacks ´Ma ∨ ´Safe) ∧ ´ind<length ´M |}

´ind:=´ind+1
OD

lemma Count:
` Count
{|´Proper ∧ Roots⊆Blacks ´M
∧ ´obc⊆Blacks ´Ma ∧ Blacks ´Ma⊆´bc ∧ ´bc⊆Blacks ´M ∧ length ´Ma=length

´M
∧ (´obc < Blacks ´Ma ∨ ´Safe)|}

60



apply(unfold Count-def )
apply annhoare
apply(simp-all add:CountInv-def Graph6 Graph7 Graph8 Graph12 Blacks-def col-
lector-defs)

apply force
apply force

apply force
apply clarify
apply simp
apply(fast elim:less-SucE)

apply clarify
apply simp
apply(fast elim:less-SucE)

apply force
apply force
done

Appending garbage nodes to the free list
axiomatization Append-to-free :: nat × edges ⇒ edges
where

Append-to-free0 : length (Append-to-free (i, e)) = length e and
Append-to-free1 : Proper-Edges (m, e)

=⇒ Proper-Edges (m, Append-to-free(i, e)) and
Append-to-free2 : i /∈ Reach e

=⇒ n ∈ Reach (Append-to-free(i, e)) = ( n = i ∨ n ∈ Reach e)

definition AppendInv :: gar-coll-state ⇒ nat ⇒ bool where
AppendInv ≡ «λind. ∀ i<length ´M . ind≤i −→ i∈Reach ´E −→ ´M !i=Black»

definition Append :: gar-coll-state ann-com where
Append ≡
{|´Proper ∧ Roots⊆Blacks ´M ∧ ´Safe|}
´ind:=0 ;;
{|´Proper ∧ Roots⊆Blacks ´M ∧ ´Safe ∧ ´ind=0 |}

WHILE ´ind<length ´M
INV {|´Proper ∧ ´AppendInv ´ind ∧ ´ind≤length ´M |}

DO {|´Proper ∧ ´AppendInv ´ind ∧ ´ind<length ´M |}
IF ´M !´ind=Black THEN

{|´Proper ∧ ´AppendInv ´ind ∧ ´ind<length ´M ∧ ´M !´ind=Black|}
´M :=´M [´ind:=White]

ELSE {|´Proper ∧ ´AppendInv ´ind ∧ ´ind<length ´M ∧ ´ind /∈Reach ´E |}
´E :=Append-to-free(´ind,´E)

FI ;;
{|´Proper ∧ ´AppendInv (´ind+1 ) ∧ ´ind<length ´M |}

´ind:=´ind+1
OD

lemma Append:

61



` Append {|´Proper |}
apply(unfold Append-def AppendInv-def )
apply annhoare
apply(simp-all add:collector-defs Graph6 Graph7 Graph8 Append-to-free0 Append-to-free1
Graph12 )

apply(force simp:Blacks-def nth-list-update)
apply force

apply force
apply(force simp add:Graph-defs)

apply force
apply clarify
apply simp
apply(rule conjI )
apply (erule Append-to-free1 )

apply clarify
apply (drule-tac n = i in Append-to-free2 )
apply force

apply force
apply force
done

Correctness of the Collector
definition Collector :: gar-coll-state ann-com where

Collector ≡
{|´Proper |}
WHILE True INV {|´Proper |}
DO
Blacken-Roots;;
{|´Proper ∧ Roots⊆Blacks ´M |}
´obc:={};;
{|´Proper ∧ Roots⊆Blacks ´M ∧ ´obc={}|}
´bc:=Roots;;
{|´Proper ∧ Roots⊆Blacks ´M ∧ ´obc={} ∧ ´bc=Roots|}
´Ma:=M-init;;
{|´Proper ∧ Roots⊆Blacks ´M ∧ ´obc={} ∧ ´bc=Roots ∧ ´Ma=M-init|}
WHILE ´obc 6=´bc

INV {|´Proper ∧ Roots⊆Blacks ´M
∧ ´obc⊆Blacks ´Ma ∧ Blacks ´Ma⊆´bc ∧ ´bc⊆Blacks ´M
∧ length ´Ma=length ´M ∧ (´obc < Blacks ´Ma ∨ ´Safe)|}

DO {|´Proper ∧ Roots⊆Blacks ´M ∧ ´bc⊆Blacks ´M |}
´obc:=´bc;;
Propagate-Black;;
{|´Proper ∧ Roots⊆Blacks ´M ∧ ´obc⊆Blacks ´M ∧ ´bc⊆Blacks ´M
∧ (´obc < Blacks ´M ∨ ´Safe)|}

´Ma:=´M ;;
{|´Proper ∧ Roots⊆Blacks ´M ∧ ´obc⊆Blacks ´Ma
∧ Blacks ´Ma⊆Blacks ´M ∧ ´bc⊆Blacks ´M ∧ length ´Ma=length ´M
∧ ( ´obc < Blacks ´Ma ∨ ´Safe)|}

62



´bc:={};;
Count

OD;;
Append

OD

lemma Collector :
` Collector {|False|}

apply(unfold Collector-def )
apply annhoare
apply(simp-all add: Blacken-Roots Propagate-Black Count Append)
apply(simp-all add:Blacken-Roots-def Propagate-Black-def Count-def Append-def
collector-defs)

apply (force simp add: Proper-Roots-def )
apply force

apply force
apply clarify
apply (erule disjE)
apply(simp add:psubsetI )
apply(force dest:subset-antisym)

done

2.2.3 Interference Freedom
lemmas modules = Redirect-Edge-def Color-Target-def Blacken-Roots-def

Propagate-Black-def Count-def Append-def
lemmas Invariants = PBInv-def Auxk-def CountInv-def AppendInv-def
lemmas abbrev = collector-defs mutator-defs Invariants

lemma interfree-Blacken-Roots-Redirect-Edge:
interfree-aux (Some Blacken-Roots, {}, Some Redirect-Edge)

apply (unfold modules)
apply interfree-aux
apply safe
apply (simp-all add:Graph6 Graph12 abbrev)
done

lemma interfree-Redirect-Edge-Blacken-Roots:
interfree-aux (Some Redirect-Edge, {}, Some Blacken-Roots)

apply (unfold modules)
apply interfree-aux
apply safe
apply(simp add:abbrev)+
done

lemma interfree-Blacken-Roots-Color-Target:
interfree-aux (Some Blacken-Roots, {}, Some Color-Target)

apply (unfold modules)
apply interfree-aux

63



apply safe
apply(simp-all add:Graph7 Graph8 nth-list-update abbrev)
done

lemma interfree-Color-Target-Blacken-Roots:
interfree-aux (Some Color-Target, {}, Some Blacken-Roots)

apply (unfold modules )
apply interfree-aux
apply safe
apply(simp add:abbrev)+
done

lemma interfree-Propagate-Black-Redirect-Edge:
interfree-aux (Some Propagate-Black, {}, Some Redirect-Edge)

apply (unfold modules )
apply interfree-aux
— 11 subgoals left
apply(clarify, simp add:abbrev Graph6 Graph12 )
apply(clarify, simp add:abbrev Graph6 Graph12 )
apply(clarify, simp add:abbrev Graph6 Graph12 )
apply(clarify, simp add:abbrev Graph6 Graph12 )
apply(erule conjE)+
apply(erule disjE , erule disjI1 , rule disjI2 , rule allI , (rule impI )+, case-tac R=i,
rule conjI , erule sym)
apply(erule Graph4 )

apply(simp)+
apply (simp add:BtoW-def )

apply (simp add:BtoW-def )
apply(rule conjI )
apply (force simp add:BtoW-def )

apply(erule Graph4 )
apply simp+

— 7 subgoals left
apply(clarify, simp add:abbrev Graph6 Graph12 )
apply(erule conjE)+
apply(erule disjE , erule disjI1 , rule disjI2 , rule allI , (rule impI )+, case-tac R=i,
rule conjI , erule sym)
apply(erule Graph4 )

apply(simp)+
apply (simp add:BtoW-def )

apply (simp add:BtoW-def )
apply(rule conjI )
apply (force simp add:BtoW-def )

apply(erule Graph4 )
apply simp+

— 6 subgoals left
apply(clarify, simp add:abbrev Graph6 Graph12 )
apply(erule conjE)+
apply(rule conjI )

64



apply(erule disjE , erule disjI1 , rule disjI2 , rule allI , (rule impI )+, case-tac R=i,
rule conjI , erule sym)

apply(erule Graph4 )
apply(simp)+

apply (simp add:BtoW-def )
apply (simp add:BtoW-def )

apply(rule conjI )
apply (force simp add:BtoW-def )

apply(erule Graph4 )
apply simp+

apply(simp add:BtoW-def nth-list-update)
apply force
— 5 subgoals left
apply(clarify, simp add:abbrev Graph6 Graph12 )
— 4 subgoals left
apply(clarify, simp add:abbrev Graph6 Graph12 )
apply(rule conjI )
apply(erule disjE , erule disjI1 , rule disjI2 , rule allI , (rule impI )+, case-tac R=i,

rule conjI , erule sym)
apply(erule Graph4 )

apply(simp)+
apply (simp add:BtoW-def )

apply (simp add:BtoW-def )
apply(rule conjI )
apply (force simp add:BtoW-def )

apply(erule Graph4 )
apply simp+

apply(rule conjI )
apply(simp add:nth-list-update)
apply force

apply(rule impI , rule impI , erule disjE , erule disjI1 , case-tac R = (ind x) ,case-tac
M x ! T = Black)

apply(force simp add:BtoW-def )
apply(case-tac M x !snd (E x ! ind x)=Black)
apply(rule disjI2 )
apply simp
apply (erule Graph5 )
apply simp+

apply(force simp add:BtoW-def )
apply(force simp add:BtoW-def )
— 3 subgoals left
apply(clarify, simp add:abbrev Graph6 Graph12 )
— 2 subgoals left
apply(clarify, simp add:abbrev Graph6 Graph12 )
apply(erule disjE , erule disjI1 , rule disjI2 , rule allI , (rule impI )+, case-tac R=i,
rule conjI , erule sym)
apply clarify
apply(erule Graph4 )

apply(simp)+

65



apply (simp add:BtoW-def )
apply (simp add:BtoW-def )

apply(rule conjI )
apply (force simp add:BtoW-def )

apply(erule Graph4 )
apply simp+

done

lemma interfree-Redirect-Edge-Propagate-Black:
interfree-aux (Some Redirect-Edge, {}, Some Propagate-Black)

apply (unfold modules )
apply interfree-aux
apply(clarify, simp add:abbrev)+
done

lemma interfree-Propagate-Black-Color-Target:
interfree-aux (Some Propagate-Black, {}, Some Color-Target)

apply (unfold modules )
apply interfree-aux
— 11 subgoals left
apply(clarify, simp add:abbrev Graph7 Graph8 Graph12 )+
apply(erule conjE)+
apply(erule disjE ,rule disjI1 ,erule psubset-subset-trans,erule Graph9 ,

case-tac M x!T=Black, rule disjI2 ,rotate-tac −1 , simp add: Graph10 , clarify,
erule allE , erule impE , assumption, erule impE , assumption,
simp add:BtoW-def , rule disjI1 , erule subset-psubset-trans, erule Graph11 ,

force)
— 7 subgoals left
apply(clarify, simp add:abbrev Graph7 Graph8 Graph12 )
apply(erule conjE)+
apply(erule disjE ,rule disjI1 ,erule psubset-subset-trans,erule Graph9 ,

case-tac M x!T=Black, rule disjI2 ,rotate-tac −1 , simp add: Graph10 , clarify,
erule allE , erule impE , assumption, erule impE , assumption,
simp add:BtoW-def , rule disjI1 , erule subset-psubset-trans, erule Graph11 ,

force)
— 6 subgoals left
apply(clarify, simp add:abbrev Graph7 Graph8 Graph12 )
apply clarify
apply (rule conjI )
apply(erule disjE ,rule disjI1 ,erule psubset-subset-trans,erule Graph9 ,

case-tac M x!T=Black, rule disjI2 ,rotate-tac −1 , simp add: Graph10 , clarify,
erule allE , erule impE , assumption, erule impE , assumption,
simp add:BtoW-def , rule disjI1 , erule subset-psubset-trans, erule Graph11 ,

force)
apply(simp add:nth-list-update)
— 5 subgoals left
apply(clarify, simp add:abbrev Graph7 Graph8 Graph12 )
— 4 subgoals left
apply(clarify, simp add:abbrev Graph7 Graph8 Graph12 )

66



apply (rule conjI )
apply(erule disjE ,rule disjI1 ,erule psubset-subset-trans,erule Graph9 ,

case-tac M x!T=Black, rule disjI2 ,rotate-tac −1 , simp add: Graph10 , clarify,
erule allE , erule impE , assumption, erule impE , assumption,
simp add:BtoW-def , rule disjI1 , erule subset-psubset-trans, erule Graph11 ,

force)
apply(rule conjI )
apply(simp add:nth-list-update)
apply(rule impI ,rule impI , case-tac M x!T=Black,rotate-tac −1 , force simp add:
BtoW-def Graph10 ,

erule subset-psubset-trans, erule Graph11 , force)
— 3 subgoals left
apply(clarify, simp add:abbrev Graph7 Graph8 Graph12 )
— 2 subgoals left
apply(clarify, simp add:abbrev Graph7 Graph8 Graph12 )
apply(erule disjE ,rule disjI1 ,erule psubset-subset-trans,erule Graph9 ,

case-tac M x!T=Black, rule disjI2 ,rotate-tac −1 , simp add: Graph10 , clarify,
erule allE , erule impE , assumption, erule impE , assumption,
simp add:BtoW-def , rule disjI1 , erule subset-psubset-trans, erule Graph11 ,

force)
— 3 subgoals left
apply(simp add:abbrev)
done

lemma interfree-Color-Target-Propagate-Black:
interfree-aux (Some Color-Target, {}, Some Propagate-Black)

apply (unfold modules )
apply interfree-aux
apply(clarify, simp add:abbrev)+
done

lemma interfree-Count-Redirect-Edge:
interfree-aux (Some Count, {}, Some Redirect-Edge)

apply (unfold modules)
apply interfree-aux
— 9 subgoals left
apply(simp-all add:abbrev Graph6 Graph12 )
— 6 subgoals left
apply(clarify, simp add:abbrev Graph6 Graph12 ,

erule disjE ,erule disjI1 ,rule disjI2 ,rule subset-trans, erule Graph3 ,force,force)+
done

lemma interfree-Redirect-Edge-Count:
interfree-aux (Some Redirect-Edge, {}, Some Count)

apply (unfold modules )
apply interfree-aux
apply(clarify,simp add:abbrev)+
apply(simp add:abbrev)
done

67



lemma interfree-Count-Color-Target:
interfree-aux (Some Count, {}, Some Color-Target)

apply (unfold modules )
apply interfree-aux
— 9 subgoals left
apply(simp-all add:abbrev Graph7 Graph8 Graph12 )
— 6 subgoals left
apply(clarify,simp add:abbrev Graph7 Graph8 Graph12 ,

erule disjE , erule disjI1 , rule disjI2 ,erule subset-trans, erule Graph9 )+
— 2 subgoals left
apply(clarify, simp add:abbrev Graph7 Graph8 Graph12 )
apply(rule conjI )
apply(erule disjE , erule disjI1 , rule disjI2 ,erule subset-trans, erule Graph9 )

apply(simp add:nth-list-update)
— 1 subgoal left
apply(clarify, simp add:abbrev Graph7 Graph8 Graph12 ,

erule disjE , erule disjI1 , rule disjI2 ,erule subset-trans, erule Graph9 )
done

lemma interfree-Color-Target-Count:
interfree-aux (Some Color-Target, {}, Some Count)

apply (unfold modules )
apply interfree-aux
apply(clarify, simp add:abbrev)+
apply(simp add:abbrev)
done

lemma interfree-Append-Redirect-Edge:
interfree-aux (Some Append, {}, Some Redirect-Edge)

apply (unfold modules )
apply interfree-aux
apply( simp-all add:abbrev Graph6 Append-to-free0 Append-to-free1 Graph12 )
apply(clarify, simp add:abbrev Graph6 Append-to-free0 Append-to-free1 Graph12 ,
force dest:Graph3 )+
done

lemma interfree-Redirect-Edge-Append:
interfree-aux (Some Redirect-Edge, {}, Some Append)

apply (unfold modules )
apply interfree-aux
apply(clarify, simp add:abbrev Append-to-free0 )+
apply (force simp add: Append-to-free2 )
apply(clarify, simp add:abbrev Append-to-free0 )+
done

lemma interfree-Append-Color-Target:
interfree-aux (Some Append, {}, Some Color-Target)

apply (unfold modules )

68



apply interfree-aux
apply(clarify, simp add:abbrev Graph7 Graph8 Append-to-free0 Append-to-free1
Graph12 nth-list-update)+
apply(simp add:abbrev Graph7 Graph8 Append-to-free0 Append-to-free1 Graph12
nth-list-update)
done

lemma interfree-Color-Target-Append:
interfree-aux (Some Color-Target, {}, Some Append)

apply (unfold modules )
apply interfree-aux
apply(clarify, simp add:abbrev Append-to-free0 )+
apply (force simp add: Append-to-free2 )
apply(clarify,simp add:abbrev Append-to-free0 )+
done

lemmas collector-mutator-interfree =
interfree-Blacken-Roots-Redirect-Edge interfree-Blacken-Roots-Color-Target
interfree-Propagate-Black-Redirect-Edge interfree-Propagate-Black-Color-Target
interfree-Count-Redirect-Edge interfree-Count-Color-Target
interfree-Append-Redirect-Edge interfree-Append-Color-Target
interfree-Redirect-Edge-Blacken-Roots interfree-Color-Target-Blacken-Roots
interfree-Redirect-Edge-Propagate-Black interfree-Color-Target-Propagate-Black
interfree-Redirect-Edge-Count interfree-Color-Target-Count
interfree-Redirect-Edge-Append interfree-Color-Target-Append

Interference freedom Collector-Mutator
lemma interfree-Collector-Mutator :
interfree-aux (Some Collector , {}, Some Mutator)

apply(unfold Collector-def Mutator-def )
apply interfree-aux
apply(simp-all add:collector-mutator-interfree)
apply(unfold modules collector-defs Mut-init-def )
apply(tactic ‹TRYALL (interfree-aux-tac context )›)
— 32 subgoals left
apply(simp-all add:Graph6 Graph7 Graph8 Append-to-free0 Append-to-free1 Graph12 )
— 20 subgoals left
apply(tactic‹TRYALL (clarify-tac context )›)
apply(simp-all add:Graph6 Graph7 Graph8 Append-to-free0 Append-to-free1 Graph12 )
apply(tactic ‹TRYALL (eresolve-tac context [disjE ])›)
apply simp-all
apply(tactic ‹TRYALL(EVERY ′[resolve-tac context [disjI2 ],

resolve-tac context @{thms subset-trans},
eresolve-tac context @{thms Graph3},
force-tac context ,
assume-tac context ])›)

apply(tactic ‹TRYALL(EVERY ′[resolve-tac context [disjI2 ],
eresolve-tac context @{thms subset-trans},

69



resolve-tac context @{thms Graph9},
force-tac context ])›)

apply(tactic ‹TRYALL(EVERY ′[resolve-tac context [disjI1 ],
eresolve-tac context @{thms psubset-subset-trans},
resolve-tac context @{thms Graph9},
force-tac context ])›)

done

Interference freedom Mutator-Collector
lemma interfree-Mutator-Collector :
interfree-aux (Some Mutator , {}, Some Collector)

apply(unfold Collector-def Mutator-def )
apply interfree-aux
apply(simp-all add:collector-mutator-interfree)
apply(unfold modules collector-defs Mut-init-def )
apply(tactic ‹TRYALL (interfree-aux-tac context )›)
— 64 subgoals left
apply(simp-all add:nth-list-update Invariants Append-to-free0 )+
apply(tactic‹TRYALL (clarify-tac context )›)
— 4 subgoals left
apply force
apply(simp add:Append-to-free2 )
apply force
apply(simp add:Append-to-free2 )
done

The Garbage Collection algorithm

In total there are 289 verification conditions.
lemma Gar-Coll:
‖− {|´Proper ∧ ´Mut-init ∧ ´z|}
COBEGIN
Collector
{|False|}
‖

Mutator
{|False|}

COEND
{|False|}

apply oghoare
apply(force simp add: Mutator-def Collector-def modules)
apply(rule Collector)
apply(rule Mutator)
apply(simp add:interfree-Collector-Mutator)
apply(simp add:interfree-Mutator-Collector)
apply force
done

70



end

2.3 The Multi-Mutator Case
theory Mul-Gar-Coll imports Graph OG-Syntax begin

The full theory takes aprox. 18 minutes.
record mut =

Z :: bool
R :: nat
T :: nat

Declaration of variables:
record mul-gar-coll-state =

M :: nodes
E :: edges
bc :: nat set
obc :: nat set
Ma :: nodes
ind :: nat
k :: nat
q :: nat
l :: nat
Muts :: mut list

2.3.1 The Mutators
definition Mul-mut-init :: mul-gar-coll-state ⇒ nat ⇒ bool where

Mul-mut-init ≡ « λn. n=length ´Muts ∧ (∀ i<n. R (´Muts!i)<length ´E
∧ T (´Muts!i)<length ´M ) »

definition Mul-Redirect-Edge :: nat ⇒ nat ⇒ mul-gar-coll-state ann-com where
Mul-Redirect-Edge j n ≡
{|´Mul-mut-init n ∧ Z (´Muts!j)|}
〈IF T (´Muts!j) ∈ Reach ´E THEN
´E := ´E [R (´Muts!j):= (fst (´E !R(´Muts!j)), T (´Muts!j))] FI ,,
´Muts:= ´Muts[j:= (´Muts!j) (|Z :=False|)]〉

definition Mul-Color-Target :: nat ⇒ nat ⇒ mul-gar-coll-state ann-com where
Mul-Color-Target j n ≡
{|´Mul-mut-init n ∧ ¬ Z (´Muts!j)|}
〈´M :=´M [T (´Muts!j):=Black],, ´Muts:=´Muts[j:= (´Muts!j) (|Z :=True|)]〉

definition Mul-Mutator :: nat ⇒ nat ⇒ mul-gar-coll-state ann-com where
Mul-Mutator j n ≡
{|´Mul-mut-init n ∧ Z (´Muts!j)|}
WHILE True

INV {|´Mul-mut-init n ∧ Z (´Muts!j)|}

71



DO Mul-Redirect-Edge j n ;;
Mul-Color-Target j n

OD

lemmas mul-mutator-defs = Mul-mut-init-def Mul-Redirect-Edge-def Mul-Color-Target-def

Correctness of the proof outline of one mutator
lemma Mul-Redirect-Edge: 0≤j ∧ j<n =⇒
` Mul-Redirect-Edge j n

pre(Mul-Color-Target j n)
apply (unfold mul-mutator-defs)
apply annhoare
apply(simp-all)
apply clarify
apply(simp add:nth-list-update)
done

lemma Mul-Color-Target: 0≤j ∧ j<n =⇒
` Mul-Color-Target j n
{|´Mul-mut-init n ∧ Z (´Muts!j)|}

apply (unfold mul-mutator-defs)
apply annhoare
apply(simp-all)
apply clarify
apply(simp add:nth-list-update)
done

lemma Mul-Mutator : 0≤j ∧ j<n =⇒
` Mul-Mutator j n {|False|}

apply(unfold Mul-Mutator-def )
apply annhoare
apply(simp-all add:Mul-Redirect-Edge Mul-Color-Target)
apply(simp add:mul-mutator-defs Mul-Redirect-Edge-def )
done

Interference freedom between mutators
lemma Mul-interfree-Redirect-Edge-Redirect-Edge:
[[0≤i; i<n; 0≤j; j<n; i 6=j]] =⇒
interfree-aux (Some (Mul-Redirect-Edge i n),{}, Some(Mul-Redirect-Edge j n))

apply (unfold mul-mutator-defs)
apply interfree-aux
apply safe
apply(simp-all add: nth-list-update)
done

lemma Mul-interfree-Redirect-Edge-Color-Target:
[[0≤i; i<n; 0≤j; j<n; i 6=j]] =⇒
interfree-aux (Some(Mul-Redirect-Edge i n),{},Some(Mul-Color-Target j n))

72



apply (unfold mul-mutator-defs)
apply interfree-aux
apply safe
apply(simp-all add: nth-list-update)
done

lemma Mul-interfree-Color-Target-Redirect-Edge:
[[0≤i; i<n; 0≤j; j<n; i 6=j]] =⇒
interfree-aux (Some(Mul-Color-Target i n),{},Some(Mul-Redirect-Edge j n))

apply (unfold mul-mutator-defs)
apply interfree-aux
apply safe
apply(simp-all add:nth-list-update)
done

lemma Mul-interfree-Color-Target-Color-Target:
[[0≤i; i<n; 0≤j; j<n; i 6=j]] =⇒

interfree-aux (Some(Mul-Color-Target i n),{},Some(Mul-Color-Target j n))
apply (unfold mul-mutator-defs)
apply interfree-aux
apply safe
apply(simp-all add: nth-list-update)
done

lemmas mul-mutator-interfree =
Mul-interfree-Redirect-Edge-Redirect-Edge Mul-interfree-Redirect-Edge-Color-Target
Mul-interfree-Color-Target-Redirect-Edge Mul-interfree-Color-Target-Color-Target

lemma Mul-interfree-Mutator-Mutator : [[i < n; j < n; i 6= j]] =⇒
interfree-aux (Some (Mul-Mutator i n), {}, Some (Mul-Mutator j n))

apply(unfold Mul-Mutator-def )
apply(interfree-aux)
apply(simp-all add:mul-mutator-interfree)
apply(simp-all add: mul-mutator-defs)
apply(tactic ‹TRYALL (interfree-aux-tac context )›)
apply(tactic ‹ALLGOALS (clarify-tac context )›)
apply (simp-all add:nth-list-update)
done

Modular Parameterized Mutators
lemma Mul-Parameterized-Mutators: 0<n =⇒
‖− {|´Mul-mut-init n ∧ (∀ i<n. Z (´Muts!i))|}
COBEGIN
SCHEME [0≤ j< n]
Mul-Mutator j n
{|False|}
COEND
{|False|}

73



apply oghoare
apply(force simp add:Mul-Mutator-def mul-mutator-defs nth-list-update)
apply(erule Mul-Mutator)
apply(simp add:Mul-interfree-Mutator-Mutator)
apply(force simp add:Mul-Mutator-def mul-mutator-defs nth-list-update)
done

2.3.2 The Collector
definition Queue :: mul-gar-coll-state ⇒ nat where
Queue ≡ « length (filter (λi. ¬ Z i ∧ ´M !(T i) 6= Black) ´Muts) »

consts M-init :: nodes

definition Proper-M-init :: mul-gar-coll-state ⇒ bool where
Proper-M-init ≡ « Blacks M-init=Roots ∧ length M-init=length ´M »

definition Mul-Proper :: mul-gar-coll-state ⇒ nat ⇒ bool where
Mul-Proper ≡ « λn. Proper-Roots ´M ∧ Proper-Edges (´M , ´E) ∧ ´Proper-M-init

∧ n=length ´Muts »

definition Safe :: mul-gar-coll-state ⇒ bool where
Safe ≡ « Reach ´E ⊆ Blacks ´M »

lemmas mul-collector-defs = Proper-M-init-def Mul-Proper-def Safe-def

Blackening Roots
definition Mul-Blacken-Roots :: nat ⇒ mul-gar-coll-state ann-com where

Mul-Blacken-Roots n ≡
{|´Mul-Proper n|}
´ind:=0 ;;
{|´Mul-Proper n ∧ ´ind=0 |}
WHILE ´ind<length ´M

INV {|´Mul-Proper n ∧ (∀ i<´ind. i∈Roots −→ ´M !i=Black) ∧ ´ind≤length
´M |}

DO {|´Mul-Proper n ∧ (∀ i<´ind. i∈Roots −→ ´M !i=Black) ∧ ´ind<length ´M |}
IF ´ind∈Roots THEN

{|´Mul-Proper n ∧ (∀ i<´ind. i∈Roots −→ ´M !i=Black) ∧ ´ind<length ´M ∧
´ind∈Roots|}

´M :=´M [´ind:=Black] FI ;;
{|´Mul-Proper n ∧ (∀ i<´ind+1 . i∈Roots −→ ´M !i=Black) ∧ ´ind<length

´M |}
´ind:=´ind+1

OD

lemma Mul-Blacken-Roots:
` Mul-Blacken-Roots n
{|´Mul-Proper n ∧ Roots ⊆ Blacks ´M |}

apply (unfold Mul-Blacken-Roots-def )

74



apply annhoare
apply(simp-all add:mul-collector-defs Graph-defs)
apply safe
apply(simp-all add:nth-list-update)

apply (erule less-SucE)
apply simp+

apply force
apply force
done

Propagating Black
definition Mul-PBInv :: mul-gar-coll-state ⇒ bool where

Mul-PBInv ≡ «´Safe ∨ ´obc⊂Blacks ´M ∨ ´l<´Queue
∨ (∀ i<´ind. ¬BtoW (´E !i,´M )) ∧ ´l≤´Queue»

definition Mul-Auxk :: mul-gar-coll-state ⇒ bool where
Mul-Auxk ≡ «´l<´Queue ∨ ´M !´k 6=Black ∨ ¬BtoW (´E !´ind, ´M ) ∨ ´obc⊂Blacks

´M»

definition Mul-Propagate-Black :: nat ⇒ mul-gar-coll-state ann-com where
Mul-Propagate-Black n ≡
{|´Mul-Proper n ∧ Roots⊆Blacks ´M ∧ ´obc⊆Blacks ´M ∧ ´bc⊆Blacks ´M
∧ (´Safe ∨ ´l≤´Queue ∨ ´obc⊂Blacks ´M )|}

´ind:=0 ;;
{|´Mul-Proper n ∧ Roots⊆Blacks ´M
∧ ´obc⊆Blacks ´M ∧ Blacks ´M⊆Blacks ´M ∧ ´bc⊆Blacks ´M
∧ (´Safe ∨ ´l≤´Queue ∨ ´obc⊂Blacks ´M ) ∧ ´ind=0 |}

WHILE ´ind<length ´E
INV {|´Mul-Proper n ∧ Roots⊆Blacks ´M

∧ ´obc⊆Blacks ´M ∧ ´bc⊆Blacks ´M
∧ ´Mul-PBInv ∧ ´ind≤length ´E |}

DO {|´Mul-Proper n ∧ Roots⊆Blacks ´M
∧ ´obc⊆Blacks ´M ∧ ´bc⊆Blacks ´M
∧ ´Mul-PBInv ∧ ´ind<length ´E |}

IF ´M !(fst (´E !´ind))=Black THEN
{|´Mul-Proper n ∧ Roots⊆Blacks ´M
∧ ´obc⊆Blacks ´M ∧ ´bc⊆Blacks ´M
∧ ´Mul-PBInv ∧ (´M !fst(´E !´ind))=Black ∧ ´ind<length ´E |}

´k:=snd(´E !´ind);;
{|´Mul-Proper n ∧ Roots⊆Blacks ´M
∧ ´obc⊆Blacks ´M ∧ ´bc⊆Blacks ´M
∧ (´Safe ∨ ´obc⊂Blacks ´M ∨ ´l<´Queue ∨ (∀ i<´ind. ¬BtoW (´E !i,´M ))

∧ ´l≤´Queue ∧ ´Mul-Auxk ) ∧ ´k<length ´M ∧ ´M !fst(´E !´ind)=Black
∧ ´ind<length ´E |}

〈´M :=´M [´k:=Black],,´ind:=´ind+1 〉
ELSE {|´Mul-Proper n ∧ Roots⊆Blacks ´M

∧ ´obc⊆Blacks ´M ∧ ´bc⊆Blacks ´M
∧ ´Mul-PBInv ∧ ´ind<length ´E |}

75



〈IF ´M !(fst (´E !´ind))6=Black THEN ´ind:=´ind+1 FI 〉 FI
OD

lemma Mul-Propagate-Black:
` Mul-Propagate-Black n
{|´Mul-Proper n ∧ Roots⊆Blacks ´M ∧ ´obc⊆Blacks ´M ∧ ´bc⊆Blacks ´M

∧ (´Safe ∨ ´obc⊂Blacks ´M ∨ ´l<´Queue ∧ (´l≤´Queue ∨ ´obc⊂Blacks
´M ))|}
apply(unfold Mul-Propagate-Black-def )
apply annhoare
apply(simp-all add:Mul-PBInv-def mul-collector-defs Mul-Auxk-def Graph6 Graph7
Graph8 Graph12 mul-collector-defs Queue-def )
— 8 subgoals left
apply force
apply force
apply force
apply(force simp add:BtoW-def Graph-defs)
— 4 subgoals left
apply clarify
apply(simp add: mul-collector-defs Graph12 Graph6 Graph7 Graph8 )
apply(disjE-tac)
apply(simp-all add:Graph12 Graph13 )
apply(case-tac M x! k x=Black)
apply(simp add: Graph10 )

apply(rule disjI2 , rule disjI1 , erule subset-psubset-trans, erule Graph11 , force)
apply(case-tac M x! k x=Black)
apply(simp add: Graph10 BtoW-def )
apply(rule disjI2 , clarify, erule less-SucE , force)
apply(case-tac M x!snd(E x! ind x)=Black)
apply(force)

apply(force)
apply(rule disjI2 , rule disjI1 , erule subset-psubset-trans, erule Graph11 , force)
— 2 subgoals left
apply clarify
apply(conjI-tac)
apply(disjE-tac)
apply (simp-all)

apply clarify
apply(erule less-SucE)
apply force

apply (simp add:BtoW-def )
— 1 subgoal left
apply clarify
apply simp
apply(disjE-tac)
apply (simp-all)
apply(rule disjI1 , rule Graph1 )
apply simp-all

done

76



Counting Black Nodes
definition Mul-CountInv :: mul-gar-coll-state ⇒ nat ⇒ bool where

Mul-CountInv ≡ « λind. {i. i<ind ∧ ´Ma!i=Black}⊆´bc »

definition Mul-Count :: nat ⇒ mul-gar-coll-state ann-com where
Mul-Count n ≡
{|´Mul-Proper n ∧ Roots⊆Blacks ´M
∧ ´obc⊆Blacks ´Ma ∧ Blacks ´Ma⊆Blacks ´M ∧ ´bc⊆Blacks ´M
∧ length ´Ma=length ´M
∧ (´Safe ∨ ´obc⊂Blacks ´Ma ∨ ´l<´q ∧ (´q≤´Queue ∨ ´obc⊂Blacks ´M ) )
∧ ´q<n+1 ∧ ´bc={}|}

´ind:=0 ;;
{|´Mul-Proper n ∧ Roots⊆Blacks ´M
∧ ´obc⊆Blacks ´Ma ∧ Blacks ´Ma⊆Blacks ´M ∧ ´bc⊆Blacks ´M
∧ length ´Ma=length ´M
∧ (´Safe ∨ ´obc⊂Blacks ´Ma ∨ ´l<´q ∧ (´q≤´Queue ∨ ´obc⊂Blacks ´M ) )
∧ ´q<n+1 ∧ ´bc={} ∧ ´ind=0 |}

WHILE ´ind<length ´M
INV {|´Mul-Proper n ∧ Roots⊆Blacks ´M

∧ ´obc⊆Blacks ´Ma ∧ Blacks ´Ma⊆Blacks ´M ∧ ´bc⊆Blacks ´M
∧ length ´Ma=length ´M ∧ ´Mul-CountInv ´ind

∧ (´Safe ∨ ´obc⊂Blacks ´Ma ∨ ´l<´q ∧ (´q≤´Queue ∨ ´obc⊂Blacks ´M ))
∧ ´q<n+1 ∧ ´ind≤length ´M |}

DO {|´Mul-Proper n ∧ Roots⊆Blacks ´M
∧ ´obc⊆Blacks ´Ma ∧ Blacks ´Ma⊆Blacks ´M ∧ ´bc⊆Blacks ´M
∧ length ´Ma=length ´M ∧ ´Mul-CountInv ´ind
∧ (´Safe ∨ ´obc⊂Blacks ´Ma ∨ ´l<´q ∧ (´q≤´Queue ∨ ´obc⊂Blacks ´M ))
∧ ´q<n+1 ∧ ´ind<length ´M |}

IF ´M !´ind=Black
THEN {|´Mul-Proper n ∧ Roots⊆Blacks ´M

∧ ´obc⊆Blacks ´Ma ∧ Blacks ´Ma⊆Blacks ´M ∧ ´bc⊆Blacks ´M
∧ length ´Ma=length ´M ∧ ´Mul-CountInv ´ind
∧ (´Safe ∨ ´obc⊂Blacks ´Ma ∨ ´l<´q ∧ (´q≤´Queue ∨ ´obc⊂Blacks

´M ))
∧ ´q<n+1 ∧ ´ind<length ´M ∧ ´M !´ind=Black|}

´bc:=insert ´ind ´bc
FI ;;

{|´Mul-Proper n ∧ Roots⊆Blacks ´M
∧ ´obc⊆Blacks ´Ma ∧ Blacks ´Ma⊆Blacks ´M ∧ ´bc⊆Blacks ´M
∧ length ´Ma=length ´M ∧ ´Mul-CountInv (´ind+1 )
∧ (´Safe ∨ ´obc⊂Blacks ´Ma ∨ ´l<´q ∧ (´q≤´Queue ∨ ´obc⊂Blacks ´M ))
∧ ´q<n+1 ∧ ´ind<length ´M |}

´ind:=´ind+1
OD

lemma Mul-Count:
` Mul-Count n
{|´Mul-Proper n ∧ Roots⊆Blacks ´M
∧ ´obc⊆Blacks ´Ma ∧ Blacks ´Ma⊆Blacks ´M ∧ ´bc⊆Blacks ´M

77



∧ length ´Ma=length ´M ∧ Blacks ´Ma⊆´bc
∧ (´Safe ∨ ´obc⊂Blacks ´Ma ∨ ´l<´q ∧ (´q≤´Queue ∨ ´obc⊂Blacks ´M ))
∧ ´q<n+1 |}

apply (unfold Mul-Count-def )
apply annhoare
apply(simp-all add:Mul-CountInv-def mul-collector-defs Mul-Auxk-def Graph6 Graph7
Graph8 Graph12 mul-collector-defs Queue-def )
— 7 subgoals left
apply force
apply force
apply force
— 4 subgoals left
apply clarify
apply(conjI-tac)
apply(disjE-tac)
apply simp-all

apply(simp add:Blacks-def )
apply clarify
apply(erule less-SucE)
back
apply force

apply force
— 3 subgoals left
apply clarify
apply(conjI-tac)
apply(disjE-tac)
apply simp-all

apply clarify
apply(erule less-SucE)
back
apply force

apply simp
apply(rotate-tac −1 )
apply (force simp add:Blacks-def )
— 2 subgoals left
apply force
— 1 subgoal left
apply clarify
apply(drule-tac x = ind x in le-imp-less-or-eq)
apply (simp-all add:Blacks-def )
done

Appending garbage nodes to the free list
axiomatization Append-to-free :: nat × edges ⇒ edges
where

Append-to-free0 : length (Append-to-free (i, e)) = length e and
Append-to-free1 : Proper-Edges (m, e)

=⇒ Proper-Edges (m, Append-to-free(i, e)) and

78



Append-to-free2 : i /∈ Reach e
=⇒ n ∈ Reach (Append-to-free(i, e)) = ( n = i ∨ n ∈ Reach e)

definition Mul-AppendInv :: mul-gar-coll-state ⇒ nat ⇒ bool where
Mul-AppendInv ≡ « λind. (∀ i. ind≤i −→ i<length ´M −→ i∈Reach ´E −→

´M !i=Black)»

definition Mul-Append :: nat ⇒ mul-gar-coll-state ann-com where
Mul-Append n ≡
{|´Mul-Proper n ∧ Roots⊆Blacks ´M ∧ ´Safe|}
´ind:=0 ;;
{|´Mul-Proper n ∧ Roots⊆Blacks ´M ∧ ´Safe ∧ ´ind=0 |}
WHILE ´ind<length ´M

INV {|´Mul-Proper n ∧ ´Mul-AppendInv ´ind ∧ ´ind≤length ´M |}
DO {|´Mul-Proper n ∧ ´Mul-AppendInv ´ind ∧ ´ind<length ´M |}

IF ´M !´ind=Black THEN
{|´Mul-Proper n ∧ ´Mul-AppendInv ´ind ∧ ´ind<length ´M ∧ ´M !´ind=Black|}

´M :=´M [´ind:=White]
ELSE
{|´Mul-Proper n ∧ ´Mul-AppendInv ´ind ∧ ´ind<length ´M ∧ ´ind /∈Reach

´E |}
´E :=Append-to-free(´ind,´E)
FI ;;

{|´Mul-Proper n ∧ ´Mul-AppendInv (´ind+1 ) ∧ ´ind<length ´M |}
´ind:=´ind+1

OD

lemma Mul-Append:
` Mul-Append n

{|´Mul-Proper n|}
apply(unfold Mul-Append-def )
apply annhoare
apply(simp-all add: mul-collector-defs Mul-AppendInv-def

Graph6 Graph7 Graph8 Append-to-free0 Append-to-free1 Graph12 )
apply(force simp add:Blacks-def )
apply(force simp add:Blacks-def )
apply(force simp add:Blacks-def )
apply(force simp add:Graph-defs)
apply force
apply(force simp add:Append-to-free1 Append-to-free2 )
apply force
apply force
done

Collector
definition Mul-Collector :: nat ⇒ mul-gar-coll-state ann-com where

Mul-Collector n ≡
{|´Mul-Proper n|}

79



WHILE True INV {|´Mul-Proper n|}
DO
Mul-Blacken-Roots n ;;
{|´Mul-Proper n ∧ Roots⊆Blacks ´M |}
´obc:={};;
{|´Mul-Proper n ∧ Roots⊆Blacks ´M ∧ ´obc={}|}
´bc:=Roots;;
{|´Mul-Proper n ∧ Roots⊆Blacks ´M ∧ ´obc={} ∧ ´bc=Roots|}
´l:=0 ;;
{|´Mul-Proper n ∧ Roots⊆Blacks ´M ∧ ´obc={} ∧ ´bc=Roots ∧ ´l=0 |}
WHILE ´l<n+1

INV {|´Mul-Proper n ∧ Roots⊆Blacks ´M ∧ ´bc⊆Blacks ´M ∧
(´Safe ∨ (´l≤´Queue ∨ ´bc⊂Blacks ´M ) ∧ ´l<n+1 )|}

DO {|´Mul-Proper n ∧ Roots⊆Blacks ´M ∧ ´bc⊆Blacks ´M
∧ (´Safe ∨ ´l≤´Queue ∨ ´bc⊂Blacks ´M )|}

´obc:=´bc;;
Mul-Propagate-Black n;;
{|´Mul-Proper n ∧ Roots⊆Blacks ´M
∧ ´obc⊆Blacks ´M ∧ ´bc⊆Blacks ´M
∧ (´Safe ∨ ´obc⊂Blacks ´M ∨ ´l<´Queue
∧ (´l≤´Queue ∨ ´obc⊂Blacks ´M ))|}

´bc:={};;
{|´Mul-Proper n ∧ Roots⊆Blacks ´M
∧ ´obc⊆Blacks ´M ∧ ´bc⊆Blacks ´M
∧ (´Safe ∨ ´obc⊂Blacks ´M ∨ ´l<´Queue
∧ (´l≤´Queue ∨ ´obc⊂Blacks ´M )) ∧ ´bc={}|}
〈 ´Ma:=´M ,, ´q:=´Queue 〉;;

Mul-Count n;;
{|´Mul-Proper n ∧ Roots⊆Blacks ´M
∧ ´obc⊆Blacks ´Ma ∧ Blacks ´Ma⊆Blacks ´M ∧ ´bc⊆Blacks ´M
∧ length ´Ma=length ´M ∧ Blacks ´Ma⊆´bc
∧ (´Safe ∨ ´obc⊂Blacks ´Ma ∨ ´l<´q ∧ (´q≤´Queue ∨ ´obc⊂Blacks ´M ))
∧ ´q<n+1 |}

IF ´obc=´bc THEN
{|´Mul-Proper n ∧ Roots⊆Blacks ´M
∧ ´obc⊆Blacks ´Ma ∧ Blacks ´Ma⊆Blacks ´M ∧ ´bc⊆Blacks ´M
∧ length ´Ma=length ´M ∧ Blacks ´Ma⊆´bc
∧ (´Safe ∨ ´obc⊂Blacks ´Ma ∨ ´l<´q ∧ (´q≤´Queue ∨ ´obc⊂Blacks ´M ))
∧ ´q<n+1 ∧ ´obc=´bc|}

´l:=´l+1
ELSE {|´Mul-Proper n ∧ Roots⊆Blacks ´M

∧ ´obc⊆Blacks ´Ma ∧ Blacks ´Ma⊆Blacks ´M ∧ ´bc⊆Blacks ´M
∧ length ´Ma=length ´M ∧ Blacks ´Ma⊆´bc

∧ (´Safe ∨ ´obc⊂Blacks ´Ma ∨ ´l<´q ∧ (´q≤´Queue ∨ ´obc⊂Blacks ´M ))
∧ ´q<n+1 ∧ ´obc 6=´bc|}

´l:=0 FI
OD;;
Mul-Append n

OD

80



lemmas mul-modules = Mul-Redirect-Edge-def Mul-Color-Target-def
Mul-Blacken-Roots-def Mul-Propagate-Black-def
Mul-Count-def Mul-Append-def

lemma Mul-Collector :
` Mul-Collector n
{|False|}

apply(unfold Mul-Collector-def )
apply annhoare
apply(simp-all only:pre.simps Mul-Blacken-Roots

Mul-Propagate-Black Mul-Count Mul-Append)
apply(simp-all add:mul-modules)
apply(simp-all add:mul-collector-defs Queue-def )
apply force
apply force
apply force
apply (force simp add: less-Suc-eq-le)
apply force
apply (force dest:subset-antisym)
apply force
apply force
apply force
done

2.3.3 Interference Freedom
lemma le-length-filter-update[rule-format]:
∀ i. (¬P (list!i) ∨ P j) ∧ i<length list
−→ length(filter P list) ≤ length(filter P (list[i:=j]))

apply(induct-tac list)
apply(simp)

apply(clarify)
apply(case-tac i)
apply(simp)

apply(simp)
done

lemma less-length-filter-update [rule-format]:
∀ i. P j ∧ ¬(P (list!i)) ∧ i<length list
−→ length(filter P list) < length(filter P (list[i:=j]))

apply(induct-tac list)
apply(simp)

apply(clarify)
apply(case-tac i)
apply(simp)

apply(simp)
done

81



lemma Mul-interfree-Blacken-Roots-Redirect-Edge: [[0≤j; j<n]] =⇒
interfree-aux (Some(Mul-Blacken-Roots n),{},Some(Mul-Redirect-Edge j n))

apply (unfold mul-modules)
apply interfree-aux
apply safe
apply(simp-all add:Graph6 Graph9 Graph12 nth-list-update mul-mutator-defs mul-collector-defs)
done

lemma Mul-interfree-Redirect-Edge-Blacken-Roots: [[0≤j; j<n]]=⇒
interfree-aux (Some(Mul-Redirect-Edge j n ),{},Some (Mul-Blacken-Roots n))

apply (unfold mul-modules)
apply interfree-aux
apply safe
apply(simp-all add:mul-mutator-defs nth-list-update)
done

lemma Mul-interfree-Blacken-Roots-Color-Target: [[0≤j; j<n]]=⇒
interfree-aux (Some(Mul-Blacken-Roots n),{},Some (Mul-Color-Target j n ))

apply (unfold mul-modules)
apply interfree-aux
apply safe
apply(simp-all add:mul-mutator-defs mul-collector-defs nth-list-update Graph7 Graph8
Graph9 Graph12 )
done

lemma Mul-interfree-Color-Target-Blacken-Roots: [[0≤j; j<n]]=⇒
interfree-aux (Some(Mul-Color-Target j n ),{},Some (Mul-Blacken-Roots n ))

apply (unfold mul-modules)
apply interfree-aux
apply safe
apply(simp-all add:mul-mutator-defs nth-list-update)
done

lemma Mul-interfree-Propagate-Black-Redirect-Edge: [[0≤j; j<n]]=⇒
interfree-aux (Some(Mul-Propagate-Black n),{},Some (Mul-Redirect-Edge j n ))

apply (unfold mul-modules)
apply interfree-aux
apply(simp-all add:mul-mutator-defs mul-collector-defs Mul-PBInv-def nth-list-update
Graph6 )
— 7 subgoals left
apply clarify
apply(disjE-tac)

apply(simp-all add:Graph6 )
apply(rule impI ,rule disjI1 ,rule subset-trans,erule Graph3 ,simp,simp)

apply(rule conjI )
apply(rule impI ,rule disjI2 ,rule disjI1 ,erule le-trans,force simp add:Queue-def

less-Suc-eq-le le-length-filter-update)
apply(rule impI ,rule disjI2 ,rule disjI1 ,erule le-trans,force simp add:Queue-def less-Suc-eq-le
le-length-filter-update)

82



— 6 subgoals left
apply clarify
apply(disjE-tac)

apply(simp-all add:Graph6 )
apply(rule impI ,rule disjI1 ,rule subset-trans,erule Graph3 ,simp,simp)

apply(rule conjI )
apply(rule impI ,rule disjI2 ,rule disjI1 ,erule le-trans,force simp add:Queue-def

less-Suc-eq-le le-length-filter-update)
apply(rule impI ,rule disjI2 ,rule disjI1 ,erule le-trans,force simp add:Queue-def less-Suc-eq-le
le-length-filter-update)
— 5 subgoals left
apply clarify
apply(disjE-tac)

apply(simp-all add:Graph6 )
apply(rule impI ,rule disjI1 ,rule subset-trans,erule Graph3 ,simp,simp)

apply(rule conjI )
apply(rule impI ,rule disjI2 ,rule disjI2 ,rule disjI1 ,erule less-le-trans,force simp

add:Queue-def less-Suc-eq-le le-length-filter-update)
apply(rule impI ,rule disjI2 ,rule disjI2 ,rule disjI1 ,erule less-le-trans,force simp add:Queue-def
less-Suc-eq-le le-length-filter-update)
apply(erule conjE)
apply(case-tac M x!(T (Muts x!j))=Black)
apply(rule conjI )
apply(rule impI ,(rule disjI2 )+,rule conjI )
apply clarify
apply(case-tac R (Muts x! j)=i)
apply (force simp add: nth-list-update BtoW-def )

apply (force simp add: nth-list-update)
apply(erule le-trans,force simp add:Queue-def less-Suc-eq-le le-length-filter-update)
apply(rule impI ,(rule disjI2 )+, erule le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update)

apply(rule conjI )
apply(rule impI ,rule disjI2 ,rule disjI2 ,rule disjI1 , erule le-less-trans)
apply(force simp add:Queue-def less-Suc-eq-le less-length-filter-update)

apply(rule impI ,rule disjI2 ,rule disjI2 ,rule disjI1 , erule le-less-trans)
apply(force simp add:Queue-def less-Suc-eq-le less-length-filter-update)
— 4 subgoals left
apply clarify
apply(disjE-tac)

apply(simp-all add:Graph6 )
apply(rule impI ,rule disjI1 ,rule subset-trans,erule Graph3 ,simp,simp)

apply(rule conjI )
apply(rule impI ,rule disjI2 ,rule disjI2 ,rule disjI1 ,erule less-le-trans,force simp

add:Queue-def less-Suc-eq-le le-length-filter-update)
apply(rule impI ,rule disjI2 ,rule disjI2 ,rule disjI1 ,erule less-le-trans,force simp add:Queue-def
less-Suc-eq-le le-length-filter-update)
apply(erule conjE)
apply(case-tac M x!(T (Muts x!j))=Black)
apply(rule conjI )

83



apply(rule impI ,(rule disjI2 )+,rule conjI )
apply clarify
apply(case-tac R (Muts x! j)=i)
apply (force simp add: nth-list-update BtoW-def )

apply (force simp add: nth-list-update)
apply(erule le-trans,force simp add:Queue-def less-Suc-eq-le le-length-filter-update)
apply(rule impI ,(rule disjI2 )+, erule le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update)

apply(rule conjI )
apply(rule impI ,rule disjI2 ,rule disjI2 ,rule disjI1 , erule le-less-trans)
apply(force simp add:Queue-def less-Suc-eq-le less-length-filter-update)

apply(rule impI ,rule disjI2 ,rule disjI2 ,rule disjI1 , erule le-less-trans)
apply(force simp add:Queue-def less-Suc-eq-le less-length-filter-update)
— 3 subgoals left
apply clarify
apply(disjE-tac)

apply(simp-all add:Graph6 )
apply (rule impI )
apply(rule conjI )
apply(rule disjI1 ,rule subset-trans,erule Graph3 ,simp,simp)

apply(case-tac R (Muts x ! j)= ind x)
apply(simp add:nth-list-update)

apply(simp add:nth-list-update)
apply(case-tac R (Muts x ! j)= ind x)
apply(simp add:nth-list-update)

apply(simp add:nth-list-update)
apply(case-tac M x!(T (Muts x!j))=Black)
apply(rule conjI )
apply(rule impI )
apply(rule conjI )
apply(rule disjI2 ,rule disjI2 ,rule disjI1 , erule less-le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update)

apply(case-tac R (Muts x ! j)= ind x)
apply(simp add:nth-list-update)

apply(simp add:nth-list-update)
apply(rule impI )
apply(rule disjI2 ,rule disjI2 ,rule disjI1 , erule less-le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update)

apply(rule conjI )
apply(rule impI )
apply(rule conjI )
apply(rule disjI2 ,rule disjI2 ,rule disjI1 , erule less-le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update)

apply(case-tac R (Muts x ! j)= ind x)
apply(simp add:nth-list-update)

apply(simp add:nth-list-update)
apply(rule impI )
apply(rule disjI2 ,rule disjI2 ,rule disjI1 , erule less-le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update)

84



apply(erule conjE)
apply(rule conjI )
apply(case-tac M x!(T (Muts x!j))=Black)
apply(rule impI ,rule conjI ,(rule disjI2 )+,rule conjI )
apply clarify
apply(case-tac R (Muts x! j)=i)
apply (force simp add: nth-list-update BtoW-def )

apply (force simp add: nth-list-update)
apply(erule le-trans,force simp add:Queue-def less-Suc-eq-le le-length-filter-update)
apply(case-tac R (Muts x ! j)= ind x)
apply(simp add:nth-list-update)

apply(simp add:nth-list-update)
apply(rule impI ,rule conjI )
apply(rule disjI2 ,rule disjI2 ,rule disjI1 , erule le-less-trans)
apply(force simp add:Queue-def less-Suc-eq-le less-length-filter-update)

apply(case-tac R (Muts x! j)=ind x)
apply (force simp add: nth-list-update)

apply (force simp add: nth-list-update)
apply(rule impI , (rule disjI2 )+, erule le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update)
— 2 subgoals left
apply clarify
apply(rule conjI )
apply(disjE-tac)
apply(simp-all add:Mul-Auxk-def Graph6 )
apply (rule impI )
apply(rule conjI )
apply(rule disjI1 ,rule subset-trans,erule Graph3 ,simp,simp)

apply(case-tac R (Muts x ! j)= ind x)
apply(simp add:nth-list-update)

apply(simp add:nth-list-update)
apply(case-tac R (Muts x ! j)= ind x)
apply(simp add:nth-list-update)

apply(simp add:nth-list-update)
apply(case-tac M x!(T (Muts x!j))=Black)
apply(rule impI )
apply(rule conjI )
apply(rule disjI2 ,rule disjI2 ,rule disjI1 , erule less-le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update)

apply(case-tac R (Muts x ! j)= ind x)
apply(simp add:nth-list-update)

apply(simp add:nth-list-update)
apply(rule impI )
apply(rule conjI )
apply(rule disjI2 ,rule disjI2 ,rule disjI1 , erule less-le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update)

apply(case-tac R (Muts x ! j)= ind x)
apply(simp add:nth-list-update)

apply(simp add:nth-list-update)

85



apply(rule impI )
apply(rule conjI )
apply(erule conjE)+
apply(case-tac M x!(T (Muts x!j))=Black)
apply((rule disjI2 )+,rule conjI )
apply clarify
apply(case-tac R (Muts x! j)=i)
apply (force simp add: nth-list-update BtoW-def )

apply (force simp add: nth-list-update)
apply(rule conjI )
apply(erule le-trans,force simp add:Queue-def less-Suc-eq-le le-length-filter-update)
apply(rule impI )
apply(case-tac R (Muts x ! j)= ind x)
apply(simp add:nth-list-update BtoW-def )

apply (simp add:nth-list-update)
apply(rule impI )
apply simp
apply(disjE-tac)
apply(rule disjI1 , erule less-le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update)

apply force
apply(rule disjI2 ,rule disjI2 ,rule disjI1 , erule le-less-trans)
apply(force simp add:Queue-def less-Suc-eq-le less-length-filter-update)
apply(case-tac R (Muts x ! j)= ind x)
apply(simp add:nth-list-update)

apply(simp add:nth-list-update)
apply(disjE-tac)
apply simp-all
apply(conjI-tac)
apply(rule impI )
apply(rule disjI2 ,rule disjI2 ,rule disjI1 , erule less-le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update)

apply(erule conjE)+
apply(rule impI ,(rule disjI2 )+,rule conjI )
apply(erule le-trans,force simp add:Queue-def less-Suc-eq-le le-length-filter-update)
apply(rule impI )+
apply simp
apply(disjE-tac)
apply(rule disjI1 , erule less-le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update)

apply force
— 1 subgoal left
apply clarify
apply(disjE-tac)

apply(simp-all add:Graph6 )
apply(rule impI ,rule disjI1 ,rule subset-trans,erule Graph3 ,simp,simp)

apply(rule conjI )
apply(rule impI ,rule disjI2 ,rule disjI2 ,rule disjI1 ,erule less-le-trans,force simp

add:Queue-def less-Suc-eq-le le-length-filter-update)

86



apply(rule impI ,rule disjI2 ,rule disjI2 ,rule disjI1 ,erule less-le-trans,force simp add:Queue-def
less-Suc-eq-le le-length-filter-update)
apply(erule conjE)
apply(case-tac M x!(T (Muts x!j))=Black)
apply(rule conjI )
apply(rule impI ,(rule disjI2 )+,rule conjI )
apply clarify
apply(case-tac R (Muts x! j)=i)
apply (force simp add: nth-list-update BtoW-def )

apply (force simp add: nth-list-update)
apply(erule le-trans,force simp add:Queue-def less-Suc-eq-le le-length-filter-update)
apply(rule impI ,(rule disjI2 )+, erule le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update)

apply(rule conjI )
apply(rule impI ,rule disjI2 ,rule disjI2 ,rule disjI1 , erule le-less-trans)
apply(force simp add:Queue-def less-Suc-eq-le less-length-filter-update)

apply(rule impI ,rule disjI2 ,rule disjI2 ,rule disjI1 , erule le-less-trans)
apply(force simp add:Queue-def less-Suc-eq-le less-length-filter-update)
done

lemma Mul-interfree-Redirect-Edge-Propagate-Black: [[0≤j; j<n]]=⇒
interfree-aux (Some(Mul-Redirect-Edge j n ),{},Some (Mul-Propagate-Black n))

apply (unfold mul-modules)
apply interfree-aux
apply safe
apply(simp-all add:mul-mutator-defs nth-list-update)
done

lemma Mul-interfree-Propagate-Black-Color-Target: [[0≤j; j<n]]=⇒
interfree-aux (Some(Mul-Propagate-Black n),{},Some (Mul-Color-Target j n ))

apply (unfold mul-modules)
apply interfree-aux
apply(simp-all add: mul-collector-defs mul-mutator-defs)
— 7 subgoals left
apply clarify
apply (simp add:Graph7 Graph8 Graph12 )
apply(disjE-tac)

apply(simp add:Graph7 Graph8 Graph12 )
apply(case-tac M x!(T (Muts x!j))=Black)
apply(rule disjI2 ,rule disjI1 , erule le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update Graph10 )

apply((rule disjI2 )+,erule subset-psubset-trans, erule Graph11 , simp)
apply((rule disjI2 )+,erule psubset-subset-trans, simp add: Graph9 )
— 6 subgoals left
apply clarify
apply (simp add:Graph7 Graph8 Graph12 )
apply(disjE-tac)

apply(simp add:Graph7 Graph8 Graph12 )
apply(case-tac M x!(T (Muts x!j))=Black)

87



apply(rule disjI2 ,rule disjI1 , erule le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update Graph10 )

apply((rule disjI2 )+,erule subset-psubset-trans, erule Graph11 , simp)
apply((rule disjI2 )+,erule psubset-subset-trans, simp add: Graph9 )
— 5 subgoals left
apply clarify
apply (simp add:mul-collector-defs Mul-PBInv-def Graph7 Graph8 Graph12 )
apply(disjE-tac)

apply(simp add:Graph7 Graph8 Graph12 )
apply(rule disjI2 ,rule disjI1 , erule psubset-subset-trans,simp add:Graph9 )

apply(case-tac M x!(T (Muts x!j))=Black)
apply(rule disjI2 ,rule disjI2 ,rule disjI1 , erule less-le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update Graph10 )

apply(rule disjI2 ,rule disjI1 ,erule subset-psubset-trans, erule Graph11 , simp)
apply(erule conjE)
apply(case-tac M x!(T (Muts x!j))=Black)
apply((rule disjI2 )+)
apply (rule conjI )
apply(simp add:Graph10 )

apply(erule le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update Graph10 )

apply(rule disjI2 ,rule disjI1 ,erule subset-psubset-trans, erule Graph11 , simp)
— 4 subgoals left
apply clarify
apply (simp add:mul-collector-defs Mul-PBInv-def Graph7 Graph8 Graph12 )
apply(disjE-tac)

apply(simp add:Graph7 Graph8 Graph12 )
apply(rule disjI2 ,rule disjI1 , erule psubset-subset-trans,simp add:Graph9 )

apply(case-tac M x!(T (Muts x!j))=Black)
apply(rule disjI2 ,rule disjI2 ,rule disjI1 , erule less-le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update Graph10 )

apply(rule disjI2 ,rule disjI1 ,erule subset-psubset-trans, erule Graph11 , simp)
apply(erule conjE)
apply(case-tac M x!(T (Muts x!j))=Black)
apply((rule disjI2 )+)
apply (rule conjI )
apply(simp add:Graph10 )

apply(erule le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update Graph10 )

apply(rule disjI2 ,rule disjI1 ,erule subset-psubset-trans, erule Graph11 , simp)
— 3 subgoals left
apply clarify
apply (simp add:mul-collector-defs Mul-PBInv-def Graph7 Graph8 Graph12 )
apply(case-tac M x!(T (Muts x!j))=Black)
apply(simp add:Graph10 )
apply(disjE-tac)
apply simp-all
apply(rule disjI2 , rule disjI2 , rule disjI1 ,erule less-le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update Graph10 )

88



apply(erule conjE)
apply((rule disjI2 )+,erule le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update Graph10 )

apply(rule conjI )
apply(rule disjI2 ,rule disjI1 , erule subset-psubset-trans,simp add:Graph11 )

apply (force simp add:nth-list-update)
— 2 subgoals left
apply clarify
apply(simp add:Mul-Auxk-def Graph7 Graph8 Graph12 )
apply(case-tac M x!(T (Muts x!j))=Black)
apply(simp add:Graph10 )
apply(disjE-tac)
apply simp-all
apply(rule disjI2 , rule disjI2 , rule disjI1 ,erule less-le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update Graph10 )

apply(erule conjE)+
apply((rule disjI2 )+,rule conjI , erule le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update Graph10 )

apply((rule impI )+)
apply simp
apply(erule disjE)
apply(rule disjI1 , erule less-le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update Graph10 )

apply force
apply(rule conjI )
apply(rule disjI2 ,rule disjI1 , erule subset-psubset-trans,simp add:Graph11 )

apply (force simp add:nth-list-update)
— 1 subgoal left
apply clarify
apply (simp add:mul-collector-defs Mul-PBInv-def Graph7 Graph8 Graph12 )
apply(case-tac M x!(T (Muts x!j))=Black)
apply(simp add:Graph10 )
apply(disjE-tac)
apply simp-all
apply(rule disjI2 , rule disjI2 , rule disjI1 ,erule less-le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update Graph10 )

apply(erule conjE)
apply((rule disjI2 )+,erule le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update Graph10 )

apply(rule disjI2 ,rule disjI1 , erule subset-psubset-trans,simp add:Graph11 )
done

lemma Mul-interfree-Color-Target-Propagate-Black: [[0≤j; j<n]]=⇒
interfree-aux (Some(Mul-Color-Target j n),{},Some(Mul-Propagate-Black n ))

apply (unfold mul-modules)
apply interfree-aux
apply safe
apply(simp-all add:mul-mutator-defs nth-list-update)
done

89



lemma Mul-interfree-Count-Redirect-Edge: [[0≤j; j<n]]=⇒
interfree-aux (Some(Mul-Count n ),{},Some(Mul-Redirect-Edge j n))

apply (unfold mul-modules)
apply interfree-aux
— 9 subgoals left
apply(simp add:mul-mutator-defs mul-collector-defs Mul-CountInv-def Graph6 )
apply clarify
apply disjE-tac

apply(simp add:Graph6 )
apply(rule impI ,rule disjI1 ,rule subset-trans,erule Graph3 ,simp,simp)

apply(simp add:Graph6 )
apply clarify
apply disjE-tac
apply(simp add:Graph6 )
apply(rule conjI )
apply(rule impI ,rule disjI2 ,rule disjI2 ,rule disjI1 ,erule le-trans,force simp add:Queue-def

less-Suc-eq-le le-length-filter-update)
apply(rule impI ,rule disjI2 ,rule disjI2 ,rule disjI1 ,erule le-trans,force simp add:Queue-def
less-Suc-eq-le le-length-filter-update)
apply(simp add:Graph6 )
— 8 subgoals left
apply(simp add:mul-mutator-defs nth-list-update)
— 7 subgoals left
apply(simp add:mul-mutator-defs mul-collector-defs)
apply clarify
apply disjE-tac

apply(simp add:Graph6 )
apply(rule impI ,rule disjI1 ,rule subset-trans,erule Graph3 ,simp,simp)

apply(simp add:Graph6 )
apply clarify
apply disjE-tac
apply(simp add:Graph6 )
apply(rule conjI )
apply(rule impI ,rule disjI2 ,rule disjI2 ,rule disjI1 ,erule le-trans,force simp add:Queue-def

less-Suc-eq-le le-length-filter-update)
apply(rule impI ,rule disjI2 ,rule disjI2 ,rule disjI1 ,erule le-trans,force simp add:Queue-def
less-Suc-eq-le le-length-filter-update)
apply(simp add:Graph6 )
— 6 subgoals left
apply(simp add:mul-mutator-defs mul-collector-defs Mul-CountInv-def )
apply clarify
apply disjE-tac

apply(simp add:Graph6 Queue-def )
apply(rule impI ,rule disjI1 ,rule subset-trans,erule Graph3 ,simp,simp)

apply(simp add:Graph6 )
apply clarify
apply disjE-tac
apply(simp add:Graph6 )

90



apply(rule conjI )
apply(rule impI ,rule disjI2 ,rule disjI2 ,rule disjI1 ,erule le-trans,force simp add:Queue-def

less-Suc-eq-le le-length-filter-update)
apply(rule impI ,rule disjI2 ,rule disjI2 ,rule disjI1 ,erule le-trans,force simp add:Queue-def
less-Suc-eq-le le-length-filter-update)
apply(simp add:Graph6 )
— 5 subgoals left
apply(simp add:mul-mutator-defs mul-collector-defs Mul-CountInv-def )
apply clarify
apply disjE-tac

apply(simp add:Graph6 )
apply(rule impI ,rule disjI1 ,rule subset-trans,erule Graph3 ,simp,simp)

apply(simp add:Graph6 )
apply clarify
apply disjE-tac
apply(simp add:Graph6 )
apply(rule conjI )
apply(rule impI ,rule disjI2 ,rule disjI2 ,rule disjI1 ,erule le-trans,force simp add:Queue-def

less-Suc-eq-le le-length-filter-update)
apply(rule impI ,rule disjI2 ,rule disjI2 ,rule disjI1 ,erule le-trans,force simp add:Queue-def
less-Suc-eq-le le-length-filter-update)
apply(simp add:Graph6 )
— 4 subgoals left
apply(simp add:mul-mutator-defs mul-collector-defs Mul-CountInv-def )
apply clarify
apply disjE-tac

apply(simp add:Graph6 )
apply(rule impI ,rule disjI1 ,rule subset-trans,erule Graph3 ,simp,simp)

apply(simp add:Graph6 )
apply clarify
apply disjE-tac
apply(simp add:Graph6 )
apply(rule conjI )
apply(rule impI ,rule disjI2 ,rule disjI2 ,rule disjI1 ,erule le-trans,force simp add:Queue-def

less-Suc-eq-le le-length-filter-update)
apply(rule impI ,rule disjI2 ,rule disjI2 ,rule disjI1 ,erule le-trans,force simp add:Queue-def
less-Suc-eq-le le-length-filter-update)
apply(simp add:Graph6 )
— 3 subgoals left
apply(simp add:mul-mutator-defs nth-list-update)
— 2 subgoals left
apply(simp add:mul-mutator-defs mul-collector-defs Mul-CountInv-def )
apply clarify
apply disjE-tac

apply(simp add:Graph6 )
apply(rule impI ,rule disjI1 ,rule subset-trans,erule Graph3 ,simp,simp)

apply(simp add:Graph6 )
apply clarify
apply disjE-tac

91



apply(simp add:Graph6 )
apply(rule conjI )
apply(rule impI ,rule disjI2 ,rule disjI2 ,rule disjI1 ,erule le-trans,force simp add:Queue-def

less-Suc-eq-le le-length-filter-update)
apply(rule impI ,rule disjI2 ,rule disjI2 ,rule disjI1 ,erule le-trans,force simp add:Queue-def
less-Suc-eq-le le-length-filter-update)
apply(simp add:Graph6 )
— 1 subgoal left
apply(simp add:mul-mutator-defs nth-list-update)
done

lemma Mul-interfree-Redirect-Edge-Count: [[0≤j; j<n]]=⇒
interfree-aux (Some(Mul-Redirect-Edge j n),{},Some(Mul-Count n ))

apply (unfold mul-modules)
apply interfree-aux
apply safe
apply(simp-all add:mul-mutator-defs nth-list-update)
done

lemma Mul-interfree-Count-Color-Target: [[0≤j; j<n]]=⇒
interfree-aux (Some(Mul-Count n ),{},Some(Mul-Color-Target j n))

apply (unfold mul-modules)
apply interfree-aux
apply(simp-all add:mul-collector-defs mul-mutator-defs Mul-CountInv-def )
— 6 subgoals left
apply clarify
apply disjE-tac

apply (simp add: Graph7 Graph8 Graph12 )
apply (simp add: Graph7 Graph8 Graph12 )

apply clarify
apply disjE-tac
apply (simp add: Graph7 Graph8 Graph12 )
apply(case-tac M x!(T (Muts x!j))=Black)
apply(rule disjI2 ,rule disjI2 , rule disjI1 , erule le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update Graph10 )

apply((rule disjI2 )+,(erule subset-psubset-trans)+, simp add: Graph11 )
apply (simp add: Graph7 Graph8 Graph12 )
apply((rule disjI2 )+,erule psubset-subset-trans, simp add: Graph9 )
— 5 subgoals left
apply clarify
apply disjE-tac

apply (simp add: Graph7 Graph8 Graph12 )
apply (simp add: Graph7 Graph8 Graph12 )

apply clarify
apply disjE-tac
apply (simp add: Graph7 Graph8 Graph12 )
apply(case-tac M x!(T (Muts x!j))=Black)
apply(rule disjI2 ,rule disjI2 , rule disjI1 , erule le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update Graph10 )

92



apply((rule disjI2 )+,(erule subset-psubset-trans)+, simp add: Graph11 )
apply (simp add: Graph7 Graph8 Graph12 )
apply((rule disjI2 )+,erule psubset-subset-trans, simp add: Graph9 )
— 4 subgoals left
apply clarify
apply disjE-tac

apply (simp add: Graph7 Graph8 Graph12 )
apply (simp add: Graph7 Graph8 Graph12 )

apply clarify
apply disjE-tac
apply (simp add: Graph7 Graph8 Graph12 )
apply(case-tac M x!(T (Muts x!j))=Black)
apply(rule disjI2 ,rule disjI2 , rule disjI1 , erule le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update Graph10 )

apply((rule disjI2 )+,(erule subset-psubset-trans)+, simp add: Graph11 )
apply (simp add: Graph7 Graph8 Graph12 )
apply((rule disjI2 )+,erule psubset-subset-trans, simp add: Graph9 )
— 3 subgoals left
apply clarify
apply disjE-tac

apply (simp add: Graph7 Graph8 Graph12 )
apply (simp add: Graph7 Graph8 Graph12 )

apply clarify
apply disjE-tac
apply (simp add: Graph7 Graph8 Graph12 )
apply(case-tac M x!(T (Muts x!j))=Black)
apply(rule disjI2 ,rule disjI2 , rule disjI1 , erule le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update Graph10 )

apply((rule disjI2 )+,(erule subset-psubset-trans)+, simp add: Graph11 )
apply (simp add: Graph7 Graph8 Graph12 )
apply((rule disjI2 )+,erule psubset-subset-trans, simp add: Graph9 )
— 2 subgoals left
apply clarify
apply disjE-tac

apply (simp add: Graph7 Graph8 Graph12 nth-list-update)
apply (simp add: Graph7 Graph8 Graph12 nth-list-update)

apply clarify
apply disjE-tac
apply (simp add: Graph7 Graph8 Graph12 )
apply(rule conjI )
apply(case-tac M x!(T (Muts x!j))=Black)
apply(rule disjI2 ,rule disjI2 , rule disjI1 , erule le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update Graph10 )

apply((rule disjI2 )+,(erule subset-psubset-trans)+, simp add: Graph11 )
apply (simp add: nth-list-update)

apply (simp add: Graph7 Graph8 Graph12 )
apply(rule conjI )
apply((rule disjI2 )+,erule psubset-subset-trans, simp add: Graph9 )

apply (simp add: nth-list-update)

93



— 1 subgoal left
apply clarify
apply disjE-tac

apply (simp add: Graph7 Graph8 Graph12 )
apply (simp add: Graph7 Graph8 Graph12 )

apply clarify
apply disjE-tac
apply (simp add: Graph7 Graph8 Graph12 )
apply(case-tac M x!(T (Muts x!j))=Black)
apply(rule disjI2 ,rule disjI2 , rule disjI1 , erule le-trans)
apply(force simp add:Queue-def less-Suc-eq-le le-length-filter-update Graph10 )

apply((rule disjI2 )+,(erule subset-psubset-trans)+, simp add: Graph11 )
apply (simp add: Graph7 Graph8 Graph12 )
apply((rule disjI2 )+,erule psubset-subset-trans, simp add: Graph9 )
done

lemma Mul-interfree-Color-Target-Count: [[0≤j; j<n]]=⇒
interfree-aux (Some(Mul-Color-Target j n),{}, Some(Mul-Count n ))

apply (unfold mul-modules)
apply interfree-aux
apply safe
apply(simp-all add:mul-mutator-defs nth-list-update)
done

lemma Mul-interfree-Append-Redirect-Edge: [[0≤j; j<n]]=⇒
interfree-aux (Some(Mul-Append n),{}, Some(Mul-Redirect-Edge j n))

apply (unfold mul-modules)
apply interfree-aux
apply(tactic ‹ALLGOALS (clarify-tac context )›)
apply(simp-all add:Graph6 Append-to-free0 Append-to-free1 mul-collector-defs mul-mutator-defs
Mul-AppendInv-def )
apply(erule-tac x=j in allE , force dest:Graph3 )+
done

lemma Mul-interfree-Redirect-Edge-Append: [[0≤j; j<n]]=⇒
interfree-aux (Some(Mul-Redirect-Edge j n),{},Some(Mul-Append n))

apply (unfold mul-modules)
apply interfree-aux
apply(tactic ‹ALLGOALS (clarify-tac context )›)
apply(simp-all add:mul-collector-defs Append-to-free0 Mul-AppendInv-def mul-mutator-defs
nth-list-update)
done

lemma Mul-interfree-Append-Color-Target: [[0≤j; j<n]]=⇒
interfree-aux (Some(Mul-Append n),{}, Some(Mul-Color-Target j n))

apply (unfold mul-modules)
apply interfree-aux
apply(tactic ‹ALLGOALS (clarify-tac context )›)
apply(simp-all add:mul-mutator-defs mul-collector-defs Mul-AppendInv-def Graph7

94



Graph8 Append-to-free0 Append-to-free1
Graph12 nth-list-update)

done

lemma Mul-interfree-Color-Target-Append: [[0≤j; j<n]]=⇒
interfree-aux (Some(Mul-Color-Target j n),{}, Some(Mul-Append n))

apply (unfold mul-modules)
apply interfree-aux
apply(tactic ‹ALLGOALS (clarify-tac context )›)
apply(simp-all add: mul-mutator-defs nth-list-update)
apply(simp add:Mul-AppendInv-def Append-to-free0 )
done

Interference freedom Collector-Mutator
lemmas mul-collector-mutator-interfree =
Mul-interfree-Blacken-Roots-Redirect-Edge Mul-interfree-Blacken-Roots-Color-Target
Mul-interfree-Propagate-Black-Redirect-Edge Mul-interfree-Propagate-Black-Color-Target
Mul-interfree-Count-Redirect-Edge Mul-interfree-Count-Color-Target
Mul-interfree-Append-Redirect-Edge Mul-interfree-Append-Color-Target
Mul-interfree-Redirect-Edge-Blacken-Roots Mul-interfree-Color-Target-Blacken-Roots
Mul-interfree-Redirect-Edge-Propagate-Black Mul-interfree-Color-Target-Propagate-Black
Mul-interfree-Redirect-Edge-Count Mul-interfree-Color-Target-Count
Mul-interfree-Redirect-Edge-Append Mul-interfree-Color-Target-Append

lemma Mul-interfree-Collector-Mutator : j<n =⇒
interfree-aux (Some (Mul-Collector n), {}, Some (Mul-Mutator j n))

apply(unfold Mul-Collector-def Mul-Mutator-def )
apply interfree-aux
apply(simp-all add:mul-collector-mutator-interfree)
apply(unfold mul-modules mul-collector-defs mul-mutator-defs)
apply(tactic ‹TRYALL (interfree-aux-tac context )›)
— 42 subgoals left
apply (clarify,simp add:Graph6 Graph7 Graph8 Append-to-free0 Append-to-free1
Graph12 )+
— 24 subgoals left
apply(simp-all add:Graph6 Graph7 Graph8 Append-to-free0 Append-to-free1 Graph12 )
— 14 subgoals left
apply(tactic ‹TRYALL (clarify-tac context )›)
apply(simp-all add:Graph6 Graph7 Graph8 Append-to-free0 Append-to-free1 Graph12 )
apply(tactic ‹TRYALL (resolve-tac context [conjI ])›)
apply(tactic ‹TRYALL (resolve-tac context [impI ])›)
apply(tactic ‹TRYALL (eresolve-tac context [disjE ])›)
apply(tactic ‹TRYALL (eresolve-tac context [conjE ])›)
apply(tactic ‹TRYALL (eresolve-tac context [disjE ])›)
apply(tactic ‹TRYALL (eresolve-tac context [disjE ])›)
— 72 subgoals left
apply(simp-all add:Graph6 Graph7 Graph8 Append-to-free0 Append-to-free1 Graph12 )
— 35 subgoals left

95



apply(tactic ‹TRYALL(EVERY ′[resolve-tac context [disjI1 ],
resolve-tac context @{thms subset-trans},
eresolve-tac context @{thms Graph3},
force-tac context ,
assume-tac context ])›)

— 28 subgoals left
apply(tactic ‹TRYALL (eresolve-tac context [conjE ])›)
apply(tactic ‹TRYALL (eresolve-tac context [disjE ])›)
— 34 subgoals left
apply(rule disjI2 ,rule disjI1 ,erule le-trans,force simp add:Queue-def less-Suc-eq-le
le-length-filter-update)
apply(rule disjI2 ,rule disjI1 ,erule le-trans,force simp add:Queue-def less-Suc-eq-le
le-length-filter-update)
apply(case-tac [!] M x!(T (Muts x ! j))=Black)
apply(simp-all add:Graph10 )
— 47 subgoals left
apply(tactic ‹TRYALL(EVERY ′[REPEAT o resolve-tac context [disjI2 ],

eresolve-tac context @{thms subset-psubset-trans},
eresolve-tac context @{thms Graph11},
force-tac context ])›)

— 41 subgoals left
apply(tactic ‹TRYALL(EVERY ′[resolve-tac context [disjI2 ],

resolve-tac context [disjI1 ],
eresolve-tac context @{thms le-trans},

force-tac (context addsimps @{thms Queue-def less-Suc-eq-le le-length-filter-update})])›)
— 35 subgoals left
apply(tactic ‹TRYALL(EVERY ′[resolve-tac context [disjI2 ],

resolve-tac context [disjI1 ],
eresolve-tac context @{thms psubset-subset-trans},
resolve-tac context @{thms Graph9},
force-tac context ])›)

— 31 subgoals left
apply(tactic ‹TRYALL(EVERY ′[resolve-tac context [disjI2 ],

resolve-tac context [disjI1 ],
eresolve-tac context @{thms subset-psubset-trans},
eresolve-tac context @{thms Graph11},
force-tac context ])›)

— 29 subgoals left
apply(tactic ‹TRYALL(EVERY ′[REPEAT o resolve-tac context [disjI2 ],

eresolve-tac context @{thms subset-psubset-trans},
eresolve-tac context @{thms subset-psubset-trans},
eresolve-tac context @{thms Graph11},
force-tac context ])›)

— 25 subgoals left
apply(tactic ‹TRYALL(EVERY ′[resolve-tac context [disjI2 ],

resolve-tac context [disjI2 ],
resolve-tac context [disjI1 ],
eresolve-tac context @{thms le-trans},

force-tac (context addsimps @{thms Queue-def less-Suc-eq-le le-length-filter-update})])›)

96



— 10 subgoals left
apply(rule disjI2 ,rule disjI2 ,rule conjI ,erule less-le-trans,force simp add:Queue-def
less-Suc-eq-le le-length-filter-update, rule disjI1 , rule less-imp-le, erule less-le-trans,
force simp add:Queue-def less-Suc-eq-le le-length-filter-update)+
done

Interference freedom Mutator-Collector
lemma Mul-interfree-Mutator-Collector : j < n =⇒

interfree-aux (Some (Mul-Mutator j n), {}, Some (Mul-Collector n))
apply(unfold Mul-Collector-def Mul-Mutator-def )
apply interfree-aux
apply(simp-all add:mul-collector-mutator-interfree)
apply(unfold mul-modules mul-collector-defs mul-mutator-defs)
apply(tactic ‹TRYALL (interfree-aux-tac context )›)
— 76 subgoals left
apply (clarsimp simp add: nth-list-update)+
— 56 subgoals left
apply (clarsimp simp add: Mul-AppendInv-def Append-to-free0 nth-list-update)+
done

The Multi-Mutator Garbage Collection Algorithm

The total number of verification conditions is 328
lemma Mul-Gar-Coll:
‖− {|´Mul-Proper n ∧ ´Mul-mut-init n ∧ (∀ i<n. Z (´Muts!i))|}
COBEGIN
Mul-Collector n
{|False|}
‖
SCHEME [0≤ j< n]
Mul-Mutator j n
{|False|}
COEND
{|False|}

apply oghoare
— Strengthening the precondition
apply(rule Int-greatest)
apply (case-tac n)
apply(force simp add: Mul-Collector-def mul-mutator-defs mul-collector-defs nth-append)
apply(simp add: Mul-Mutator-def mul-collector-defs mul-mutator-defs nth-append)
apply force

apply clarify
apply(case-tac i)
apply(simp add:Mul-Collector-def mul-mutator-defs mul-collector-defs nth-append)
apply(simp add: Mul-Mutator-def mul-mutator-defs mul-collector-defs nth-append
nth-map-upt)
— Collector
apply(rule Mul-Collector)

97



— Mutator
apply(erule Mul-Mutator)
— Interference freedom
apply(simp add:Mul-interfree-Collector-Mutator)
apply(simp add:Mul-interfree-Mutator-Collector)
apply(simp add:Mul-interfree-Mutator-Mutator)
— Weakening of the postcondition
apply(case-tac n)
apply(simp add:Mul-Collector-def mul-mutator-defs mul-collector-defs nth-append)
apply(simp add:Mul-Mutator-def mul-mutator-defs mul-collector-defs nth-append)
done

end

98



Chapter 3

The Rely-Guarantee Method

3.1 Abstract Syntax
theory RG-Com imports Main begin

Semantics of assertions and boolean expressions (bexp) as sets of states.
Syntax of commands com and parallel commands par-com.
type-synonym ′a bexp = ′a set

datatype ′a com =
Basic ′a ⇒ ′a

| Seq ′a com ′a com
| Cond ′a bexp ′a com ′a com
| While ′a bexp ′a com
| Await ′a bexp ′a com

type-synonym ′a par-com = ′a com option list

end

3.2 Operational Semantics
theory RG-Tran
imports RG-Com
begin

3.2.1 Semantics of Component Programs
Environment transitions
type-synonym ′a conf = (( ′a com) option) × ′a

inductive-set
etran :: ( ′a conf × ′a conf ) set
and etran ′ :: ′a conf ⇒ ′a conf ⇒ bool (‹- −e→ -› [81 ,81 ] 80 )

99



where
P −e→ Q ≡ (P,Q) ∈ etran

| Env: (P, s) −e→ (P, t)

lemma etranE : c −e→ c ′ =⇒ (
∧

P s t. c = (P, s) =⇒ c ′ = (P, t) =⇒ Q) =⇒ Q
by (induct c, induct c ′, erule etran.cases, blast)

Component transitions
inductive-set

ctran :: ( ′a conf × ′a conf ) set
and ctran ′ :: ′a conf ⇒ ′a conf ⇒ bool (‹- −c→ -› [81 ,81 ] 80 )
and ctrans :: ′a conf ⇒ ′a conf ⇒ bool (‹- −c∗→ -› [81 ,81 ] 80 )

where
P −c→ Q ≡ (P,Q) ∈ ctran

| P −c∗→ Q ≡ (P,Q) ∈ ctran∗

| Basic: (Some(Basic f ), s) −c→ (None, f s)

| Seq1 : (Some P0 , s) −c→ (None, t) =⇒ (Some(Seq P0 P1 ), s) −c→ (Some P1 ,
t)

| Seq2 : (Some P0 , s) −c→ (Some P2 , t) =⇒ (Some(Seq P0 P1 ), s) −c→
(Some(Seq P2 P1 ), t)

| CondT : s∈b =⇒ (Some(Cond b P1 P2 ), s) −c→ (Some P1 , s)
| CondF : s/∈b =⇒ (Some(Cond b P1 P2 ), s) −c→ (Some P2 , s)

| WhileF : s/∈b =⇒ (Some(While b P), s) −c→ (None, s)
| WhileT : s∈b =⇒ (Some(While b P), s) −c→ (Some(Seq P (While b P)), s)

| Await: [[s∈b; (Some P, s) −c∗→ (None, t)]] =⇒ (Some(Await b P), s) −c→
(None, t)

monos rtrancl-mono

3.2.2 Semantics of Parallel Programs
type-synonym ′a par-conf = ( ′a par-com) × ′a

inductive-set
par-etran :: ( ′a par-conf × ′a par-conf ) set
and par-etran ′ :: [ ′a par-conf , ′a par-conf ] ⇒ bool (‹- −pe→ -› [81 ,81 ] 80 )

where
P −pe→ Q ≡ (P,Q) ∈ par-etran

| ParEnv: (Ps, s) −pe→ (Ps, t)

inductive-set
par-ctran :: ( ′a par-conf × ′a par-conf ) set
and par-ctran ′ :: [ ′a par-conf , ′a par-conf ] ⇒ bool (‹- −pc→ -› [81 ,81 ] 80 )

100



where
P −pc→ Q ≡ (P,Q) ∈ par-ctran

| ParComp: [[i<length Ps; (Ps!i, s) −c→ (r , t)]] =⇒ (Ps, s) −pc→ (Ps[i:=r ], t)

lemma par-ctranE : c −pc→ c ′ =⇒
(
∧

i Ps s r t. c = (Ps, s) =⇒ c ′ = (Ps[i := r ], t) =⇒ i < length Ps =⇒
(Ps ! i, s) −c→ (r , t) =⇒ P) =⇒ P

by (induct c, induct c ′, erule par-ctran.cases, blast)

3.2.3 Computations
Sequential computations
type-synonym ′a confs = ′a conf list

inductive-set cptn :: ′a confs set
where

CptnOne: [(P,s)] ∈ cptn
| CptnEnv: (P, t)#xs ∈ cptn =⇒ (P,s)#(P,t)#xs ∈ cptn
| CptnComp: [[(P,s) −c→ (Q,t); (Q, t)#xs ∈ cptn ]] =⇒ (P,s)#(Q,t)#xs ∈ cptn

definition cp :: ( ′a com) option ⇒ ′a ⇒ ( ′a confs) set where
cp P s ≡ {l. l!0=(P,s) ∧ l ∈ cptn}

Parallel computations
type-synonym ′a par-confs = ′a par-conf list

inductive-set par-cptn :: ′a par-confs set
where

ParCptnOne: [(P,s)] ∈ par-cptn
| ParCptnEnv: (P,t)#xs ∈ par-cptn =⇒ (P,s)#(P,t)#xs ∈ par-cptn
| ParCptnComp: [[ (P,s) −pc→ (Q,t); (Q,t)#xs ∈ par-cptn ]] =⇒ (P,s)#(Q,t)#xs
∈ par-cptn

definition par-cp :: ′a par-com ⇒ ′a ⇒ ( ′a par-confs) set where
par-cp P s ≡ {l. l!0=(P,s) ∧ l ∈ par-cptn}

3.2.4 Modular Definition of Computation
definition lift :: ′a com ⇒ ′a conf ⇒ ′a conf where

lift Q ≡ λ(P, s). (if P=None then (Some Q,s) else (Some(Seq (the P) Q), s))

inductive-set cptn-mod :: ( ′a confs) set
where

CptnModOne: [(P, s)] ∈ cptn-mod
| CptnModEnv: (P, t)#xs ∈ cptn-mod =⇒ (P, s)#(P, t)#xs ∈ cptn-mod
| CptnModNone: [[(Some P, s) −c→ (None, t); (None, t)#xs ∈ cptn-mod ]] =⇒
(Some P,s)#(None, t)#xs ∈cptn-mod

101



| CptnModCondT : [[(Some P0 , s)#ys ∈ cptn-mod; s ∈ b ]] =⇒ (Some(Cond b P0
P1 ), s)#(Some P0 , s)#ys ∈ cptn-mod
| CptnModCondF : [[(Some P1 , s)#ys ∈ cptn-mod; s /∈ b ]] =⇒ (Some(Cond b P0
P1 ), s)#(Some P1 , s)#ys ∈ cptn-mod
| CptnModSeq1 : [[(Some P0 , s)#xs ∈ cptn-mod; zs=map (lift P1 ) xs ]]

=⇒ (Some(Seq P0 P1 ), s)#zs ∈ cptn-mod
| CptnModSeq2 :
[[(Some P0 , s)#xs ∈ cptn-mod; fst(last ((Some P0 , s)#xs)) = None;
(Some P1 , snd(last ((Some P0 , s)#xs)))#ys ∈ cptn-mod;
zs=(map (lift P1 ) xs)@ys ]] =⇒ (Some(Seq P0 P1 ), s)#zs ∈ cptn-mod

| CptnModWhile1 :
[[ (Some P, s)#xs ∈ cptn-mod; s ∈ b; zs=map (lift (While b P)) xs ]]
=⇒ (Some(While b P), s)#(Some(Seq P (While b P)), s)#zs ∈ cptn-mod

| CptnModWhile2 :
[[ (Some P, s)#xs ∈ cptn-mod; fst(last ((Some P, s)#xs))=None; s ∈ b;
zs=(map (lift (While b P)) xs)@ys;
(Some(While b P), snd(last ((Some P, s)#xs)))#ys ∈ cptn-mod]]
=⇒ (Some(While b P), s)#(Some(Seq P (While b P)), s)#zs ∈ cptn-mod

3.2.5 Equivalence of Both Definitions.
lemma last-length: ((a#xs)!(length xs))=last (a#xs)

by (induct xs) auto

lemma div-seq [rule-format]: list ∈ cptn-mod =⇒
(∀ s P Q zs. list=(Some (Seq P Q), s)#zs −→
(∃ xs. (Some P, s)#xs ∈ cptn-mod ∧ (zs=(map (lift Q) xs) ∨
( fst(((Some P, s)#xs)!length xs)=None ∧
(∃ ys. (Some Q, snd(((Some P, s)#xs)!length xs))#ys ∈ cptn-mod
∧ zs=(map (lift (Q)) xs)@ys)))))

apply(erule cptn-mod.induct)
apply simp-all

apply clarify
apply(force intro:CptnModOne)

apply clarify
apply(erule-tac x=Pa in allE)
apply(erule-tac x=Q in allE)
apply simp
apply clarify
apply(erule disjE)
apply(rule-tac x=(Some Pa,t)#xsa in exI )
apply(rule conjI )
apply clarify
apply(erule CptnModEnv)

apply(rule disjI1 )
apply(simp add:lift-def )

apply clarify
apply(rule-tac x=(Some Pa,t)#xsa in exI )

102



apply(rule conjI )
apply(erule CptnModEnv)

apply(rule disjI2 )
apply(rule conjI )
apply(case-tac xsa,simp,simp)

apply(rule-tac x=ys in exI )
apply(rule conjI )
apply simp

apply(simp add:lift-def )
apply clarify
apply(erule ctran.cases,simp-all)

apply clarify
apply(rule-tac x=xs in exI )
apply simp
apply clarify

apply(rule-tac x=xs in exI )
apply(simp add: last-length)
done

lemma cptn-onlyif-cptn-mod-aux [rule-format]:
∀ s Q t xs.((Some a, s), Q, t) ∈ ctran −→ (Q, t) # xs ∈ cptn-mod
−→ (Some a, s) # (Q, t) # xs ∈ cptn-mod
supply [[simproc del: defined-all]]

apply(induct a)
apply simp-all
— basic
apply clarify
apply(erule ctran.cases,simp-all)
apply(rule CptnModNone,rule Basic,simp)
apply clarify
apply(erule ctran.cases,simp-all)
— Seq1
apply(rule-tac xs=[(None,ta)] in CptnModSeq2 )

apply(erule CptnModNone)
apply(rule CptnModOne)

apply simp
apply simp
apply(simp add:lift-def )
— Seq2
apply(erule-tac x=sa in allE)
apply(erule-tac x=Some P2 in allE)
apply(erule allE ,erule impE , assumption)
apply(drule div-seq,simp)
apply clarify
apply(erule disjE)
apply clarify
apply(erule allE ,erule impE , assumption)
apply(erule-tac CptnModSeq1 )
apply(simp add:lift-def )

103



apply clarify
apply(erule allE ,erule impE , assumption)
apply(erule-tac CptnModSeq2 )

apply (simp add:last-length)
apply (simp add:last-length)

apply(simp add:lift-def )
— Cond
apply clarify
apply(erule ctran.cases,simp-all)
apply(force elim: CptnModCondT )
apply(force elim: CptnModCondF)
— While
apply clarify
apply(erule ctran.cases,simp-all)
apply(rule CptnModNone,erule WhileF ,simp)
apply(drule div-seq,force)
apply clarify
apply (erule disjE)
apply(force elim:CptnModWhile1 )

apply clarify
apply(force simp add:last-length elim:CptnModWhile2 )
— await
apply clarify
apply(erule ctran.cases,simp-all)
apply(rule CptnModNone,erule Await,simp+)
done

lemma cptn-onlyif-cptn-mod [rule-format]: c ∈ cptn =⇒ c ∈ cptn-mod
apply(erule cptn.induct)

apply(rule CptnModOne)
apply(erule CptnModEnv)

apply(case-tac P)
apply simp
apply(erule ctran.cases,simp-all)

apply(force elim:cptn-onlyif-cptn-mod-aux)
done

lemma lift-is-cptn: c∈cptn =⇒ map (lift P) c ∈ cptn
apply(erule cptn.induct)

apply(force simp add:lift-def CptnOne)
apply(force intro:CptnEnv simp add:lift-def )

apply(force simp add:lift-def intro:CptnComp Seq2 Seq1 elim:ctran.cases)
done

lemma cptn-append-is-cptn [rule-format]:
∀ b a. b#c1∈cptn −→ a#c2∈cptn −→ (b#c1 )!length c1=a −→ b#c1@c2∈cptn

apply(induct c1 )
apply simp

apply clarify

104



apply(erule cptn.cases,simp-all)
apply(force intro:CptnEnv)

apply(force elim:CptnComp)
done

lemma last-lift: [[xs 6=[]; fst(xs!(length xs − (Suc 0 )))=None]]
=⇒ fst((map (lift P) xs)!(length (map (lift P) xs)− (Suc 0 )))=(Some P)
by (cases (xs ! (length xs − (Suc 0 )))) (simp add:lift-def )

lemma last-fst [rule-format]: P((a#x)!length x) −→ ¬P a −→ P (x!(length x −
(Suc 0 )))

by (induct x) simp-all

lemma last-fst-esp:
fst(((Some a,s)#xs)!(length xs))=None =⇒ fst(xs!(length xs − (Suc 0 )))=None

apply(erule last-fst)
apply simp
done

lemma last-snd: xs 6=[] =⇒
snd(((map (lift P) xs))!(length (map (lift P) xs) − (Suc 0 )))=snd(xs!(length xs

− (Suc 0 )))
by (cases (xs ! (length xs − (Suc 0 )))) (simp-all add:lift-def )

lemma Cons-lift: (Some (Seq P Q), s) # (map (lift Q) xs) = map (lift Q) ((Some
P, s) # xs)

by (simp add:lift-def )

lemma Cons-lift-append:
(Some (Seq P Q), s) # (map (lift Q) xs) @ ys = map (lift Q) ((Some P, s) #

xs)@ ys
by (simp add:lift-def )

lemma lift-nth: i<length xs =⇒ map (lift Q) xs ! i = lift Q (xs! i)
by (simp add:lift-def )

lemma snd-lift: i< length xs =⇒ snd(lift Q (xs ! i))= snd (xs ! i)
by (cases xs!i) (simp add:lift-def )

lemma cptn-if-cptn-mod: c ∈ cptn-mod =⇒ c ∈ cptn
apply(erule cptn-mod.induct)

apply(rule CptnOne)
apply(erule CptnEnv)

apply(erule CptnComp,simp)
apply(rule CptnComp)
apply(erule CondT ,simp)

apply(rule CptnComp)
apply(erule CondF ,simp)

— Seq1

105



apply(erule cptn.cases,simp-all)
apply(rule CptnOne)

apply clarify
apply(drule-tac P=P1 in lift-is-cptn)
apply(simp add:lift-def )
apply(rule CptnEnv,simp)

apply clarify
apply(simp add:lift-def )
apply(rule conjI )
apply clarify
apply(rule CptnComp)
apply(rule Seq1 ,simp)

apply(drule-tac P=P1 in lift-is-cptn)
apply(simp add:lift-def )

apply clarify
apply(rule CptnComp)
apply(rule Seq2 ,simp)

apply(drule-tac P=P1 in lift-is-cptn)
apply(simp add:lift-def )
— Seq2
apply(rule cptn-append-is-cptn)

apply(drule-tac P=P1 in lift-is-cptn)
apply(simp add:lift-def )

apply simp
apply(simp split: if-split-asm)
apply(frule-tac P=P1 in last-lift)
apply(rule last-fst-esp)
apply (simp add:last-length)

apply(simp add:Cons-lift lift-def split-def last-conv-nth)
— While1
apply(rule CptnComp)
apply(rule WhileT ,simp)

apply(drule-tac P=While b P in lift-is-cptn)
apply(simp add:lift-def )
— While2
apply(rule CptnComp)
apply(rule WhileT ,simp)

apply(rule cptn-append-is-cptn)
apply(drule-tac P=While b P in lift-is-cptn)
apply(simp add:lift-def )

apply simp
apply(simp split: if-split-asm)
apply(frule-tac P=While b P in last-lift)
apply(rule last-fst-esp,simp add:last-length)

apply(simp add:Cons-lift lift-def split-def last-conv-nth)
done

theorem cptn-iff-cptn-mod: (c ∈ cptn) = (c ∈ cptn-mod)
apply(rule iffI )

106



apply(erule cptn-onlyif-cptn-mod)
apply(erule cptn-if-cptn-mod)
done

3.3 Validity of Correctness Formulas
3.3.1 Validity for Component Programs.
type-synonym ′a rgformula =

′a com × ′a set × ( ′a × ′a) set × ( ′a × ′a) set × ′a set

definition assum :: ( ′a set × ( ′a × ′a) set) ⇒ ( ′a confs) set where
assum ≡ λ(pre, rely). {c. snd(c!0 ) ∈ pre ∧ (∀ i. Suc i<length c −→

c!i −e→ c!(Suc i) −→ (snd(c!i), snd(c!Suc i)) ∈ rely)}

definition comm :: (( ′a × ′a) set × ′a set) ⇒ ( ′a confs) set where
comm ≡ λ(guar , post). {c. (∀ i. Suc i<length c −→

c!i −c→ c!(Suc i) −→ (snd(c!i), snd(c!Suc i)) ∈ guar) ∧
(fst (last c) = None −→ snd (last c) ∈ post)}

definition com-validity :: ′a com ⇒ ′a set ⇒ ( ′a × ′a) set ⇒ ( ′a × ′a) set ⇒ ′a
set ⇒ bool

(‹|= - sat [-, -, -, -]› [60 ,0 ,0 ,0 ,0 ] 45 ) where
|= P sat [pre, rely, guar , post] ≡
∀ s. cp (Some P) s ∩ assum(pre, rely) ⊆ comm(guar , post)

3.3.2 Validity for Parallel Programs.
definition All-None :: (( ′a com) option) list ⇒ bool where

All-None xs ≡ ∀ c∈set xs. c=None

definition par-assum :: ( ′a set × ( ′a × ′a) set) ⇒ ( ′a par-confs) set where
par-assum ≡ λ(pre, rely). {c. snd(c!0 ) ∈ pre ∧ (∀ i. Suc i<length c −→

c!i −pe→ c!Suc i −→ (snd(c!i), snd(c!Suc i)) ∈ rely)}

definition par-comm :: (( ′a × ′a) set × ′a set) ⇒ ( ′a par-confs) set where
par-comm ≡ λ(guar , post). {c. (∀ i. Suc i<length c −→

c!i −pc→ c!Suc i −→ (snd(c!i), snd(c!Suc i)) ∈ guar) ∧
(All-None (fst (last c)) −→ snd( last c) ∈ post)}

definition par-com-validity :: ′a par-com ⇒ ′a set ⇒ ( ′a × ′a) set ⇒ ( ′a × ′a)
set
⇒ ′a set ⇒ bool (‹|= - SAT [-, -, -, -]› [60 ,0 ,0 ,0 ,0 ] 45 ) where
|= Ps SAT [pre, rely, guar , post] ≡
∀ s. par-cp Ps s ∩ par-assum(pre, rely) ⊆ par-comm(guar , post)

107



3.3.3 Compositionality of the Semantics
Definition of the conjoin operator
definition same-length :: ′a par-confs ⇒ ( ′a confs) list ⇒ bool where

same-length c clist ≡ (∀ i<length clist. length(clist!i)=length c)

definition same-state :: ′a par-confs ⇒ ( ′a confs) list ⇒ bool where
same-state c clist ≡ (∀ i <length clist. ∀ j<length c. snd(c!j) = snd((clist!i)!j))

definition same-program :: ′a par-confs ⇒ ( ′a confs) list ⇒ bool where
same-program c clist ≡ (∀ j<length c. fst(c!j) = map (λx. fst(nth x j)) clist)

definition compat-label :: ′a par-confs ⇒ ( ′a confs) list ⇒ bool where
compat-label c clist ≡ (∀ j. Suc j<length c −→

(c!j −pc→ c!Suc j ∧ (∃ i<length clist. (clist!i)!j −c→ (clist!i)! Suc j ∧
(∀ l<length clist. l 6=i −→ (clist!l)!j −e→ (clist!l)! Suc j))) ∨

(c!j −pe→ c!Suc j ∧ (∀ i<length clist. (clist!i)!j −e→ (clist!i)! Suc j)))

definition conjoin :: ′a par-confs ⇒ ( ′a confs) list ⇒ bool (‹- ∝ -› [65 ,65 ] 64 )
where

c ∝ clist ≡ (same-length c clist) ∧ (same-state c clist) ∧ (same-program c clist)
∧ (compat-label c clist)

Some previous lemmas
lemma list-eq-if [rule-format]:
∀ ys. xs=ys −→ (length xs = length ys) −→ (∀ i<length xs. xs!i=ys!i)
by (induct xs) auto

lemma list-eq: (length xs = length ys ∧ (∀ i<length xs. xs!i=ys!i)) = (xs=ys)
apply(rule iffI )
apply clarify
apply(erule nth-equalityI )
apply simp+

done

lemma nth-tl: [[ ys!0=a; ys 6=[] ]] =⇒ ys=(a#(tl ys))
by (cases ys) simp-all

lemma nth-tl-if [rule-format]: ys 6=[] −→ ys!0=a −→ P ys −→ P (a#(tl ys))
by (induct ys) simp-all

lemma nth-tl-onlyif [rule-format]: ys 6=[] −→ ys!0=a −→ P (a#(tl ys)) −→ P ys
by (induct ys) simp-all

lemma seq-not-eq1 : Seq c1 c2 6=c1
by (induct c1 ) auto

lemma seq-not-eq2 : Seq c1 c2 6=c2

108



by (induct c2 ) auto

lemma if-not-eq1 : Cond b c1 c2 6=c1
by (induct c1 ) auto

lemma if-not-eq2 : Cond b c1 c2 6=c2
by (induct c2 ) auto

lemmas seq-and-if-not-eq [simp] = seq-not-eq1 seq-not-eq2
seq-not-eq1 [THEN not-sym] seq-not-eq2 [THEN not-sym]
if-not-eq1 if-not-eq2 if-not-eq1 [THEN not-sym] if-not-eq2 [THEN not-sym]

lemma prog-not-eq-in-ctran-aux:
assumes c: (P,s) −c→ (Q,t)
shows P 6=Q using c
by (induct x1 ≡ (P,s) x2 ≡ (Q,t) arbitrary: P s Q t) auto

lemma prog-not-eq-in-ctran [simp]: ¬ (P,s) −c→ (P,t)
apply clarify
apply(drule prog-not-eq-in-ctran-aux)
apply simp
done

lemma prog-not-eq-in-par-ctran-aux [rule-format]: (P,s) −pc→ (Q,t) =⇒ (P 6=Q)
apply(erule par-ctran.induct)
apply(drule prog-not-eq-in-ctran-aux)
apply clarify
apply(drule list-eq-if )
apply simp-all

apply force
done

lemma prog-not-eq-in-par-ctran [simp]: ¬ (P,s) −pc→ (P,t)
apply clarify
apply(drule prog-not-eq-in-par-ctran-aux)
apply simp
done

lemma tl-in-cptn: [[ a#xs ∈cptn; xs 6=[] ]] =⇒ xs∈cptn
by (force elim: cptn.cases)

lemma tl-zero[rule-format]:
P (ys!Suc j) −→ Suc j<length ys −→ ys 6=[] −→ P (tl(ys)!j)
by (induct ys) simp-all

3.3.4 The Semantics is Compositional
lemma aux-if [rule-format]:
∀ xs s clist. (length clist = length xs ∧ (∀ i<length xs. (xs!i,s)#clist!i ∈ cptn)

109



∧ ((xs, s)#ys ∝ map (λi. (fst i,s)#snd i) (zip xs clist))
−→ (xs, s)#ys ∈ par-cptn)

apply(induct ys)
apply(clarify)
apply(rule ParCptnOne)

apply(clarify)
apply(simp add:conjoin-def compat-label-def )
apply clarify
apply(erule-tac x=0 and P=λj. H j −→ (P j ∨ Q j) for H P Q in all-dupE ,
simp)
apply(erule disjE)
— first step is a Component step
apply clarify
apply simp
apply(subgoal-tac a=(xs[i:=(fst(clist!i!0 ))]))
apply(subgoal-tac b=snd(clist!i!0 ),simp)
prefer 2
apply(simp add: same-state-def )
apply(erule-tac x=i in allE ,erule impE ,assumption,

erule-tac x=1 and P=λj. (H j) −→ (snd (d j))=(snd (e j)) for H d e in
allE , simp)

prefer 2
apply(simp add:same-program-def )
apply(erule-tac x=1 and P=λj. H j −→ (fst (s j))=(t j) for H s t in allE ,simp)
apply(rule nth-equalityI ,simp)
apply clarify
apply(case-tac i=ia,simp,simp)
apply(erule-tac x=ia and P=λj. H j −→ I j −→ J j for H I J in allE)
apply(drule-tac t=i in not-sym,simp)
apply(erule etranE ,simp)

apply(rule ParCptnComp)
apply(erule ParComp,simp)

— applying the induction hypothesis
apply(erule-tac x=xs[i := fst (clist ! i ! 0 )] in allE)
apply(erule-tac x=snd (clist ! i ! 0 ) in allE)
apply(erule mp)
apply(rule-tac x=map tl clist in exI ,simp)
apply(rule conjI ,clarify)
apply(case-tac i=ia,simp)
apply(rule nth-tl-if )

apply(force simp add:same-length-def length-Suc-conv)
apply simp

apply(erule allE ,erule impE ,assumption,erule tl-in-cptn)
apply(force simp add:same-length-def length-Suc-conv)

apply(rule nth-tl-if )
apply(force simp add:same-length-def length-Suc-conv)

apply(simp add:same-state-def )
apply(erule-tac x=ia in allE , erule impE , assumption,

erule-tac x=1 and P=λj. H j −→ (snd (d j))=(snd (e j)) for H d e in allE)

110



apply(erule-tac x=ia and P=λj. H j −→ I j −→ J j for H I J in allE)
apply(drule-tac t=i in not-sym,simp)
apply(erule etranE ,simp)

apply(erule allE ,erule impE ,assumption,erule tl-in-cptn)
apply(force simp add:same-length-def length-Suc-conv)

apply(simp add:same-length-def same-state-def )
apply(rule conjI )
apply clarify
apply(case-tac j,simp,simp)
apply(erule-tac x=ia in allE , erule impE , assumption,

erule-tac x=Suc(Suc nat) and P=λj. H j −→ (snd (d j))=(snd (e j)) for
H d e in allE ,simp)

apply(force simp add:same-length-def length-Suc-conv)
apply(rule conjI )
apply(simp add:same-program-def )
apply clarify
apply(case-tac j,simp)
apply(rule nth-equalityI ,simp)
apply clarify
apply(case-tac i=ia,simp,simp)

apply(erule-tac x=Suc(Suc nat) and P=λj. H j −→ (fst (s j))=(t j) for H s t
in allE ,simp)

apply(rule nth-equalityI ,simp,simp)
apply(force simp add:length-Suc-conv)

apply(rule allI ,rule impI )
apply(erule-tac x=Suc j and P=λj. H j −→ (I j ∨ J j) for H I J in allE ,simp)
apply(erule disjE)
apply clarify
apply(rule-tac x=ia in exI ,simp)
apply(case-tac i=ia,simp)
apply(rule conjI )
apply(force simp add: length-Suc-conv)

apply clarify
apply(erule-tac x=l and P=λj. H j −→ I j −→ J j for H I J in allE ,erule

impE ,assumption)
apply(erule-tac x=l and P=λj. H j −→ I j −→ J j for H I J in allE ,erule

impE ,assumption)
apply simp
apply(case-tac j,simp)
apply(rule tl-zero)

apply(erule-tac x=l in allE , erule impE , assumption,
erule-tac x=1 and P=λj. (H j) −→ (snd (d j))=(snd (e j)) for H d e

in allE ,simp)
apply(force elim:etranE intro:Env)

apply force
apply force

apply simp
apply(rule tl-zero)

apply(erule tl-zero)

111



apply force
apply force

apply force
apply force

apply(rule conjI ,simp)
apply(rule nth-tl-if )

apply force
apply(erule-tac x=ia in allE , erule impE , assumption,

erule-tac x=1 and P=λj. H j −→ (snd (d j))=(snd (e j)) for H d e in
allE)

apply(erule-tac x=ia and P=λj. H j −→ I j −→ J j for H I J in allE)
apply(drule-tac t=i in not-sym,simp)
apply(erule etranE ,simp)

apply(erule tl-zero)
apply force

apply force
apply clarify
apply(case-tac i=l,simp)
apply(rule nth-tl-if )

apply(erule-tac x=l and P=λj. H j −→ (length (s j) = t) for H s t in
allE ,force)

apply simp
apply(erule-tac P=λj. H j −→ I j −→ J j for H I J in allE ,erule impE ,assumption,erule

impE ,assumption)
apply(erule tl-zero,force)
apply(erule-tac x=l and P=λj. H j −→ (length (s j) = t) for H s t in allE ,force)
apply(rule nth-tl-if )

apply(erule-tac x=l and P=λj. H j −→ (length (s j) = t) for H s t in
allE ,force)

apply(erule-tac x=l in allE , erule impE , assumption,
erule-tac x=1 and P=λj. H j −→ (snd (d j))=(snd (e j)) for H d e in

allE)
apply(erule-tac x=l and P=λj. H j −→ I j −→ J j for H I J in allE ,erule

impE , assumption,simp)
apply(erule etranE ,simp)

apply(rule tl-zero)
apply force

apply force
apply(erule-tac x=l and P=λj. H j −→ (length (s j) = t) for H s t in allE ,force)
apply(rule disjI2 )
apply(case-tac j,simp)
apply clarify
apply(rule tl-zero)
apply(erule-tac x=ia and P=λj. H j −→ I j∈etran for H I in allE ,erule impE ,

assumption)
apply(case-tac i=ia,simp,simp)
apply(erule-tac x=ia in allE , erule impE , assumption,
erule-tac x=1 and P=λj. H j −→ (snd (d j))=(snd (e j)) for H d e in allE)
apply(erule-tac x=ia and P=λj. H j −→ I j −→ J j for H I J in allE ,erule

112



impE , assumption,simp)
apply(force elim:etranE intro:Env)

apply force
apply(erule-tac x=ia and P=λj. H j −→ (length (s j) = t) for H s t in

allE ,force)
apply simp
apply clarify
apply(rule tl-zero)

apply(rule tl-zero,force)
apply force
apply(erule-tac x=ia and P=λj. H j −→ (length (s j) = t) for H s t in

allE ,force)
apply force

apply(erule-tac x=ia and P=λj. H j −→ (length (s j) = t) for H s t in allE ,force)
— first step is an environmental step
apply clarify
apply(erule par-etran.cases)
apply simp
apply(rule ParCptnEnv)
apply(erule-tac x=Ps in allE)
apply(erule-tac x=t in allE)
apply(erule mp)
apply(rule-tac x=map tl clist in exI ,simp)
apply(rule conjI )
apply clarify
apply(erule-tac x=i and P=λj. H j −→ I j ∈ cptn for H I in allE ,simp)
apply(erule cptn.cases)

apply(simp add:same-length-def )
apply(erule-tac x=i and P=λj. H j −→ (length (s j) = t) for H s t in allE ,force)
apply(simp add:same-state-def )
apply(erule-tac x=i in allE , erule impE , assumption,
erule-tac x=1 and P=λj. H j −→ (snd (d j))=(snd (e j)) for H d e in allE ,simp)

apply(erule-tac x=i and P=λj. H j −→ J j ∈etran for H J in allE ,simp)
apply(erule etranE ,simp)

apply(simp add:same-state-def same-length-def )
apply(rule conjI ,clarify)
apply(case-tac j,simp,simp)
apply(erule-tac x=i in allE , erule impE , assumption,

erule-tac x=Suc(Suc nat) and P=λj. H j −→ (snd (d j))=(snd (e j)) for H
d e in allE ,simp)
apply(rule tl-zero)

apply(simp)
apply force

apply(erule-tac x=i and P=λj. H j −→ (length (s j) = t) for H s t in allE ,force)
apply(rule conjI )
apply(simp add:same-program-def )
apply clarify
apply(case-tac j,simp)
apply(rule nth-equalityI ,simp)

113



apply clarify
apply simp

apply(erule-tac x=Suc(Suc nat) and P=λj. H j −→ (fst (s j))=(t j) for H s t
in allE ,simp)
apply(rule nth-equalityI ,simp,simp)
apply(force simp add:length-Suc-conv)

apply(rule allI ,rule impI )
apply(erule-tac x=Suc j and P=λj. H j −→ (I j ∨ J j) for H I J in allE ,simp)
apply(erule disjE)
apply clarify
apply(rule-tac x=i in exI ,simp)
apply(rule conjI )
apply(erule-tac x=i and P=λi. H i −→ J i ∈etran for H J in allE , erule impE ,

assumption)
apply(erule etranE ,simp)
apply(erule-tac x=i in allE , erule impE , assumption,

erule-tac x=1 and P=λj. H j −→ (snd (d j))=(snd (e j)) for H d e in
allE ,simp)

apply(rule nth-tl-if )
apply(erule-tac x=i and P=λj. H j −→ (length (s j) = t) for H s t in allE ,force)
apply simp

apply(erule tl-zero,force)
apply(erule-tac x=i and P=λj. H j −→ (length (s j) = t) for H s t in allE ,force)
apply clarify
apply(erule-tac x=l and P=λi. H i −→ J i ∈etran for H J in allE , erule impE ,

assumption)
apply(erule etranE ,simp)
apply(erule-tac x=l in allE , erule impE , assumption,

erule-tac x=1 and P=λj. H j −→ (snd (d j))=(snd (e j)) for H d e in
allE ,simp)
apply(rule nth-tl-if )
apply(erule-tac x=l and P=λj. H j −→ (length (s j) = t) for H s t in allE ,force)
apply simp
apply(rule tl-zero,force)
apply force

apply(erule-tac x=l and P=λj. H j −→ (length (s j) = t) for H s t in allE ,force)
apply(rule disjI2 )
apply simp
apply clarify
apply(case-tac j,simp)
apply(rule tl-zero)

apply(erule-tac x=i and P=λi. H i −→ J i ∈etran for H J in allE , erule
impE , assumption)

apply(erule-tac x=i and P=λi. H i −→ J i ∈etran for H J in allE , erule
impE , assumption)

apply(force elim:etranE intro:Env)
apply force

apply(erule-tac x=i and P=λj. H j −→ (length (s j) = t) for H s t in allE ,force)
apply simp

114



apply(rule tl-zero)
apply(rule tl-zero,force)
apply force

apply(erule-tac x=i and P=λj. H j −→ (length (s j) = t) for H s t in allE ,force)
apply force

apply(erule-tac x=i and P=λj. H j −→ (length (s j) = t) for H s t in allE ,force)
done

lemma aux-onlyif [rule-format]: ∀ xs s. (xs, s)#ys ∈ par-cptn −→
(∃ clist. (length clist = length xs) ∧
(xs, s)#ys ∝ map (λi. (fst i,s)#(snd i)) (zip xs clist) ∧
(∀ i<length xs. (xs!i,s)#(clist!i) ∈ cptn))
supply [[simproc del: defined-all]]

apply(induct ys)
apply(clarify)
apply(rule-tac x=map (λi. []) [0 ..<length xs] in exI )
apply(simp add: conjoin-def same-length-def same-state-def same-program-def com-
pat-label-def )
apply(rule conjI )
apply(rule nth-equalityI ,simp,simp)

apply(force intro: cptn.intros)
apply(clarify)
apply(erule par-cptn.cases,simp)
apply simp
apply(erule-tac x=xs in allE)
apply(erule-tac x=t in allE ,simp)
apply clarify
apply(rule-tac x=(map (λj. (P!j, t)#(clist!j)) [0 ..<length P]) in exI ,simp)
apply(rule conjI )
prefer 2
apply clarify
apply(rule CptnEnv,simp)

apply(simp add:conjoin-def same-length-def same-state-def )
apply (rule conjI )
apply clarify
apply(case-tac j,simp,simp)

apply(rule conjI )
apply(simp add:same-program-def )
apply clarify
apply(case-tac j,simp)
apply(rule nth-equalityI ,simp,simp)

apply simp
apply(rule nth-equalityI ,simp,simp)

apply(simp add:compat-label-def )
apply clarify
apply(case-tac j,simp)
apply(simp add:ParEnv)
apply clarify
apply(simp add:Env)

115



apply simp
apply(erule-tac x=nat in allE ,erule impE , assumption)
apply(erule disjE ,simp)
apply clarify
apply(rule-tac x=i in exI ,simp)

apply force
apply(erule par-ctran.cases,simp)
apply(erule-tac x=Ps[i:=r ] in allE)
apply(erule-tac x=ta in allE ,simp)
apply clarify
apply(rule-tac x=(map (λj. (Ps!j, ta)#(clist!j)) [0 ..<length Ps]) [i:=((r , ta)#(clist!i))]
in exI ,simp)
apply(rule conjI )
prefer 2
apply clarify
apply(case-tac i=ia,simp)
apply(erule CptnComp)
apply(erule-tac x=ia and P=λj. H j −→ (I j ∈ cptn) for H I in allE ,simp)

apply simp
apply(erule-tac x=ia in allE)
apply(rule CptnEnv,simp)

apply(simp add:conjoin-def )
apply (rule conjI )
apply(simp add:same-length-def )
apply clarify
apply(case-tac i=ia,simp,simp)

apply(rule conjI )
apply(simp add:same-state-def )
apply clarify
apply(case-tac j, simp, simp (no-asm-simp))
apply(case-tac i=ia,simp,simp)

apply(rule conjI )
apply(simp add:same-program-def )
apply clarify
apply(case-tac j,simp)
apply(rule nth-equalityI ,simp,simp)

apply simp
apply(rule nth-equalityI ,simp,simp)
apply(erule-tac x=nat and P=λj. H j −→ (fst (a j))=((b j)) for H a b in allE)
apply(case-tac nat)
apply clarify
apply(case-tac i=ia,simp,simp)

apply clarify
apply(case-tac i=ia,simp,simp)

apply(simp add:compat-label-def )
apply clarify
apply(case-tac j)
apply(rule conjI ,simp)
apply(erule ParComp,assumption)

116



apply clarify
apply(rule-tac x=i in exI ,simp)

apply clarify
apply(rule Env)

apply simp
apply(erule-tac x=nat and P=λj. H j −→ (P j ∨ Q j) for H P Q in allE ,simp)
apply(erule disjE)
apply clarify
apply(rule-tac x=ia in exI ,simp)
apply(rule conjI )
apply(case-tac i=ia,simp,simp)

apply clarify
apply(case-tac i=l,simp)
apply(case-tac l=ia,simp,simp)
apply(erule-tac x=l in allE ,erule impE ,assumption,erule impE , assumption,simp)
apply simp
apply(erule-tac x=l in allE ,erule impE ,assumption,erule impE , assumption,simp)
apply clarify
apply(erule-tac x=ia and P=λj. H j −→ (P j)∈etran for H P in allE , erule
impE , assumption)
apply(case-tac i=ia,simp,simp)
done

lemma one-iff-aux: xs 6=[] =⇒ (∀ ys. ((xs, s)#ys ∈ par-cptn) =
(∃ clist. length clist= length xs ∧
((xs, s)#ys ∝ map (λi. (fst i,s)#(snd i)) (zip xs clist)) ∧
(∀ i<length xs. (xs!i,s)#(clist!i) ∈ cptn))) =
(par-cp (xs) s = {c. ∃ clist. (length clist)=(length xs) ∧
(∀ i<length clist. (clist!i) ∈ cp(xs!i) s) ∧ c ∝ clist})

apply (rule iffI )
apply(rule subset-antisym)
apply(rule subsetI )
apply(clarify)
apply(simp add:par-cp-def cp-def )
apply(case-tac x)
apply(force elim:par-cptn.cases)

apply simp
apply(rename-tac a list)
apply(erule-tac x=list in allE)
apply clarify
apply simp
apply(rule-tac x=map (λi. (fst i, s) # snd i) (zip xs clist) in exI ,simp)

apply(rule subsetI )
apply(clarify)
apply(case-tac x)
apply(erule-tac x=0 in allE)
apply(simp add:cp-def conjoin-def same-length-def same-program-def same-state-def

compat-label-def )
apply clarify

117



apply(erule cptn.cases,force,force,force)
apply(simp add:par-cp-def conjoin-def same-length-def same-program-def same-state-def
compat-label-def )
apply clarify
apply(erule-tac x=0 and P=λj. H j −→ (length (s j) = t) for H s t in all-dupE)
apply(subgoal-tac a = xs)
apply(subgoal-tac b = s,simp)
prefer 3
apply(erule-tac x=0 and P=λj. H j −→ (fst (s j))=((t j)) for H s t in allE)
apply (simp add:cp-def )
apply(rule nth-equalityI ,simp,simp)

prefer 2
apply(erule-tac x=0 in allE)
apply (simp add:cp-def )
apply(erule-tac x=0 and P=λj. H j −→ (∀ i. T i −→ (snd (d j i))=(snd (e j

i))) for H T d e in allE ,simp)
apply(erule-tac x=0 and P=λj. H j −→ (snd (d j))=(snd (e j)) for H d e in

allE ,simp)
apply(erule-tac x=list in allE)
apply(rule-tac x=map tl clist in exI ,simp)
apply(rule conjI )
apply clarify
apply(case-tac j,simp)
apply(erule-tac x=i in allE , erule impE , assumption,

erule-tac x=0 and P=λj. H j −→ (snd (d j))=(snd (e j)) for H d e in
allE ,simp)

apply(erule-tac x=i in allE , erule impE , assumption,
erule-tac x=Suc nat and P=λj. H j −→ (snd (d j))=(snd (e j)) for H d e

in allE)
apply(erule-tac x=i and P=λj. H j −→ (length (s j) = t) for H s t in allE)
apply(case-tac clist!i,simp,simp)

apply(rule conjI )
apply clarify
apply(rule nth-equalityI ,simp,simp)
apply(case-tac j)
apply clarify
apply(erule-tac x=i in allE)
apply(simp add:cp-def )

apply clarify
apply simp
apply(erule-tac x=i and P=λj. H j −→ (length (s j) = t) for H s t in allE)
apply(case-tac clist!i,simp,simp)

apply(thin-tac H = (∃ i. J i) for H J )
apply(rule conjI )
apply clarify
apply(erule-tac x=j in allE ,erule impE , assumption,erule disjE)
apply clarify
apply(rule-tac x=i in exI ,simp)
apply(case-tac j,simp)

118



apply(rule conjI )
apply(erule-tac x=i in allE)
apply(simp add:cp-def )
apply(erule-tac x=i and P=λj. H j −→ (length (s j) = t) for H s t in allE)
apply(case-tac clist!i,simp,simp)

apply clarify
apply(erule-tac x=l in allE)
apply(erule-tac x=l and P=λj. H j −→ I j −→ J j for H I J in allE)
apply clarify
apply(simp add:cp-def )
apply(erule-tac x=l and P=λj. H j −→ (length (s j) = t) for H s t in allE)
apply(case-tac clist!l,simp,simp)

apply simp
apply(rule conjI )
apply(erule-tac x=i and P=λj. H j −→ (length (s j) = t) for H s t in allE)
apply(case-tac clist!i,simp,simp)

apply clarify
apply(erule-tac x=l and P=λj. H j −→ I j −→ J j for H I J in allE)
apply(erule-tac x=l and P=λj. H j −→ (length (s j) = t) for H s t in allE)
apply(case-tac clist!l,simp,simp)

apply clarify
apply(erule-tac x=i in allE)
apply(simp add:cp-def )
apply(erule-tac x=i and P=λj. H j −→ (length (s j) = t) for H s t in allE)
apply(case-tac clist!i,simp)
apply(rule nth-tl-if ,simp,simp)
apply(erule-tac x=i and P=λj. H j −→ (P j)∈etran for H P in allE , erule

impE , assumption,simp)
apply(simp add:cp-def )
apply clarify
apply(rule nth-tl-if )
apply(erule-tac x=i and P=λj. H j −→ (length (s j) = t) for H s t in allE)
apply(case-tac clist!i,simp,simp)

apply force
apply force

apply clarify
apply(rule iffI )
apply(simp add:par-cp-def )
apply(erule-tac c=(xs, s) # ys in equalityCE)
apply simp
apply clarify
apply(rule-tac x=map tl clist in exI )
apply simp
apply (rule conjI )
apply(simp add:conjoin-def cp-def )
apply(rule conjI )
apply clarify
apply(unfold same-length-def )
apply clarify

119



apply(erule-tac x=i and P=λj. H j −→ (length (s j) = t) for H s t in
allE ,simp)

apply(rule conjI )
apply(simp add:same-state-def )
apply clarify
apply(erule-tac x=i in allE , erule impE , assumption,

erule-tac x=j and P=λj. H j −→ (snd (d j))=(snd (e j)) for H d e in allE)
apply(case-tac j,simp)
apply(erule-tac x=i and P=λj. H j −→ (length (s j) = t) for H s t in allE)
apply(case-tac clist!i,simp,simp)

apply(rule conjI )
apply(simp add:same-program-def )
apply clarify
apply(rule nth-equalityI ,simp,simp)
apply(case-tac j,simp)
apply clarify
apply(erule-tac x=i and P=λj. H j −→ (length (s j) = t) for H s t in allE)
apply(case-tac clist!i,simp,simp)

apply clarify
apply(simp add:compat-label-def )
apply(rule allI ,rule impI )
apply(erule-tac x=j in allE ,erule impE , assumption)
apply(erule disjE)
apply clarify
apply(rule-tac x=i in exI ,simp)
apply(rule conjI )
apply(erule-tac x=i in allE)
apply(case-tac j,simp)
apply(erule-tac x=i and P=λj. H j −→ (length (s j) = t) for H s t in allE)
apply(case-tac clist!i,simp,simp)

apply(erule-tac x=i and P=λj. H j −→ (length (s j) = t) for H s t in allE)
apply(case-tac clist!i,simp,simp)

apply clarify
apply(erule-tac x=l and P=λj. H j −→ I j −→ J j for H I J in allE)
apply(erule-tac x=l and P=λj. H j −→ (length (s j) = t) for H s t in allE)
apply(case-tac clist!l,simp,simp)
apply(erule-tac x=l in allE ,simp)

apply(rule disjI2 )
apply clarify
apply(rule tl-zero)

apply(case-tac j,simp,simp)
apply(rule tl-zero,force)
apply force
apply(erule-tac x=i and P=λj. H j −→ (length (s j) = t) for H s t in

allE ,force)
apply force

apply(erule-tac x=i and P=λj. H j −→ (length (s j) = t) for H s t in allE ,force)
apply clarify
apply(erule-tac x=i in allE)

120



apply(simp add:cp-def )
apply(rule nth-tl-if )

apply(simp add:conjoin-def )
apply clarify
apply(simp add:same-length-def )
apply(erule-tac x=i in allE ,simp)

apply simp
apply simp

apply simp
apply clarify
apply(erule-tac c=(xs, s) # ys in equalityCE)
apply(simp add:par-cp-def )

apply simp
apply(erule-tac x=map (λi. (fst i, s) # snd i) (zip xs clist) in allE)
apply simp
apply clarify
apply(simp add:cp-def )
done

theorem one: xs 6=[] =⇒
par-cp xs s = {c. ∃ clist. (length clist)=(length xs) ∧

(∀ i<length clist. (clist!i) ∈ cp(xs!i) s) ∧ c ∝ clist}
apply(frule one-iff-aux)
apply(drule sym)
apply(erule iffD2 )
apply clarify
apply(rule iffI )
apply(erule aux-onlyif )

apply clarify
apply(force intro:aux-if )
done

end

3.4 The Proof System
theory RG-Hoare imports RG-Tran begin

3.4.1 Proof System for Component Programs
declare Un-subset-iff [simp del] sup.bounded-iff [simp del]

definition stable :: ′a set ⇒ ( ′a × ′a) set ⇒ bool where
stable ≡ λf g. (∀ x y. x ∈ f −→ (x, y) ∈ g −→ y ∈ f )

inductive
rghoare :: [ ′a com, ′a set, ( ′a × ′a) set, ( ′a × ′a) set, ′a set] ⇒ bool
(‹` - sat [-, -, -, -]› [60 ,0 ,0 ,0 ,0 ] 45 )

where

121



Basic: [[ pre ⊆ {s. f s ∈ post}; {(s,t). s ∈ pre ∧ (t=f s ∨ t=s)} ⊆ guar ;
stable pre rely; stable post rely ]]
=⇒ ` Basic f sat [pre, rely, guar , post]

| Seq: [[ ` P sat [pre, rely, guar , mid]; ` Q sat [mid, rely, guar , post] ]]
=⇒ ` Seq P Q sat [pre, rely, guar , post]

| Cond: [[ stable pre rely; ` P1 sat [pre ∩ b, rely, guar , post];
` P2 sat [pre ∩ −b, rely, guar , post]; ∀ s. (s,s)∈guar ]]
=⇒ ` Cond b P1 P2 sat [pre, rely, guar , post]

| While: [[ stable pre rely; (pre ∩ −b) ⊆ post; stable post rely;
` P sat [pre ∩ b, rely, guar , pre]; ∀ s. (s,s)∈guar ]]

=⇒ ` While b P sat [pre, rely, guar , post]

| Await: [[ stable pre rely; stable post rely;
∀V . ` P sat [pre ∩ b ∩ {V }, {(s, t). s = t},

UNIV , {s. (V , s) ∈ guar} ∩ post] ]]
=⇒ ` Await b P sat [pre, rely, guar , post]

| Conseq: [[ pre ⊆ pre ′; rely ⊆ rely ′; guar ′ ⊆ guar ; post ′ ⊆ post;
` P sat [pre ′, rely ′, guar ′, post ′] ]]
=⇒ ` P sat [pre, rely, guar , post]

definition Pre :: ′a rgformula ⇒ ′a set where
Pre x ≡ fst(snd x)

definition Post :: ′a rgformula ⇒ ′a set where
Post x ≡ snd(snd(snd(snd x)))

definition Rely :: ′a rgformula ⇒ ( ′a × ′a) set where
Rely x ≡ fst(snd(snd x))

definition Guar :: ′a rgformula ⇒ ( ′a × ′a) set where
Guar x ≡ fst(snd(snd(snd x)))

definition Com :: ′a rgformula ⇒ ′a com where
Com x ≡ fst x

3.4.2 Proof System for Parallel Programs
type-synonym ′a par-rgformula =
( ′a rgformula) list × ′a set × ( ′a × ′a) set × ( ′a × ′a) set × ′a set

inductive
par-rghoare :: ( ′a rgformula) list ⇒ ′a set ⇒ ( ′a × ′a) set ⇒ ( ′a × ′a) set ⇒ ′a

set ⇒ bool
(‹` - SAT [-, -, -, -]› [60 ,0 ,0 ,0 ,0 ] 45 )

where

122



Parallel:
[[ ∀ i<length xs. rely ∪ (

⋃
j∈{j. j<length xs ∧ j 6=i}. Guar(xs!j)) ⊆ Rely(xs!i);

(
⋃

j∈{j. j<length xs}. Guar(xs!j)) ⊆ guar ;
pre ⊆ (

⋂
i∈{i. i<length xs}. Pre(xs!i));

(
⋂

i∈{i. i<length xs}. Post(xs!i)) ⊆ post;
∀ i<length xs. ` Com(xs!i) sat [Pre(xs!i),Rely(xs!i),Guar(xs!i),Post(xs!i)] ]]
=⇒ ` xs SAT [pre, rely, guar , post]

3.5 Soundness
Some previous lemmas
lemma tl-of-assum-in-assum:
(P, s) # (P, t) # xs ∈ assum (pre, rely) =⇒ stable pre rely
=⇒ (P, t) # xs ∈ assum (pre, rely)

apply(simp add:assum-def )
apply clarify
apply(rule conjI )
apply(erule-tac x=0 in allE)
apply(simp (no-asm-use)only:stable-def )
apply(erule allE ,erule allE ,erule impE ,assumption,erule mp)
apply(simp add:Env)

apply clarify
apply(erule-tac x=Suc i in allE)
apply simp
done

lemma etran-in-comm:
(P, t) # xs ∈ comm(guar , post) =⇒ (P, s) # (P, t) # xs ∈ comm(guar , post)

apply(simp add:comm-def )
apply clarify
apply(case-tac i,simp+)
done

lemma ctran-in-comm:
[[(s, s) ∈ guar ; (Q, s) # xs ∈ comm(guar , post)]]
=⇒ (P, s) # (Q, s) # xs ∈ comm(guar , post)

apply(simp add:comm-def )
apply clarify
apply(case-tac i,simp+)
done

lemma takecptn-is-cptn [rule-format, elim!]:
∀ j. c ∈ cptn −→ take (Suc j) c ∈ cptn

apply(induct c)
apply(force elim: cptn.cases)

apply clarify
apply(case-tac j)
apply simp

123



apply(rule CptnOne)
apply simp
apply(force intro:cptn.intros elim:cptn.cases)
done

lemma dropcptn-is-cptn [rule-format,elim!]:
∀ j<length c. c ∈ cptn −→ drop j c ∈ cptn

apply(induct c)
apply(force elim: cptn.cases)

apply clarify
apply(case-tac j,simp+)
apply(erule cptn.cases)

apply simp
apply force

apply force
done

lemma takepar-cptn-is-par-cptn [rule-format,elim]:
∀ j. c ∈ par-cptn −→ take (Suc j) c ∈ par-cptn

apply(induct c)
apply(force elim: cptn.cases)

apply clarify
apply(case-tac j,simp)
apply(rule ParCptnOne)

apply(force intro:par-cptn.intros elim:par-cptn.cases)
done

lemma droppar-cptn-is-par-cptn [rule-format]:
∀ j<length c. c ∈ par-cptn −→ drop j c ∈ par-cptn

apply(induct c)
apply(force elim: par-cptn.cases)

apply clarify
apply(case-tac j,simp+)
apply(erule par-cptn.cases)

apply simp
apply force

apply force
done

lemma tl-of-cptn-is-cptn: [[x # xs ∈ cptn; xs 6= []]] =⇒ xs ∈ cptn
apply(subgoal-tac 1 < length (x # xs))
apply(drule dropcptn-is-cptn,simp+)

done

lemma not-ctran-None [rule-format]:
∀ s. (None, s)#xs ∈ cptn −→ (∀ i<length xs. ((None, s)#xs)!i −e→ xs!i)

apply(induct xs,simp+)
apply clarify
apply(erule cptn.cases,simp)

124



apply simp
apply(case-tac i,simp)
apply(rule Env)

apply simp
apply(force elim:ctran.cases)
done

lemma cptn-not-empty [simp]:[] /∈ cptn
apply(force elim:cptn.cases)
done

lemma etran-or-ctran [rule-format]:
∀m i. x∈cptn −→ m ≤ length x
−→ (∀ i. Suc i < m −→ ¬ x!i −c→ x!Suc i) −→ Suc i < m
−→ x!i −e→ x!Suc i

supply [[simproc del: defined-all]]
apply(induct x,simp)
apply clarify
apply(erule cptn.cases,simp)
apply(case-tac i,simp)
apply(rule Env)

apply simp
apply(erule-tac x=m − 1 in allE)
apply(case-tac m,simp,simp)
apply(subgoal-tac (∀ i. Suc i < nata −→ (((P, t) # xs) ! i, xs ! i) /∈ ctran))
apply force

apply clarify
apply(erule-tac x=Suc ia in allE ,simp)

apply(erule-tac x=0 and P=λj. H j −→ (J j) /∈ ctran for H J in allE ,simp)
done

lemma etran-or-ctran2 [rule-format]:
∀ i. Suc i<length x −→ x∈cptn −→ (x!i −c→ x!Suc i −→ ¬ x!i −e→ x!Suc i)
∨ (x!i −e→ x!Suc i −→ ¬ x!i −c→ x!Suc i)

apply(induct x)
apply simp

apply clarify
apply(erule cptn.cases,simp)
apply(case-tac i,simp+)

apply(case-tac i,simp)
apply(force elim:etran.cases)

apply simp
done

lemma etran-or-ctran2-disjI1 :
[[ x∈cptn; Suc i<length x; x!i −c→ x!Suc i]] =⇒ ¬ x!i −e→ x!Suc i

by(drule etran-or-ctran2 ,simp-all)

lemma etran-or-ctran2-disjI2 :

125



[[ x∈cptn; Suc i<length x; x!i −e→ x!Suc i]] =⇒ ¬ x!i −c→ x!Suc i
by(drule etran-or-ctran2 ,simp-all)

lemma not-ctran-None2 [rule-format]:
[[ (None, s) # xs ∈cptn; i<length xs]] =⇒ ¬ ((None, s) # xs) ! i −c→ xs ! i

apply(frule not-ctran-None,simp)
apply(case-tac i,simp)
apply(force elim:etranE)

apply simp
apply(rule etran-or-ctran2-disjI2 ,simp-all)
apply(force intro:tl-of-cptn-is-cptn)
done

lemma Ex-first-occurrence [rule-format]: P (n::nat) −→ (∃m. P m ∧ (∀ i<m. ¬
P i))
apply(rule nat-less-induct)
apply clarify
apply(case-tac ∀m. m<n −→ ¬ P m)
apply auto
done

lemma stability [rule-format]:
∀ j k. x ∈ cptn −→ stable p rely −→ j≤k −→ k<length x −→ snd(x!j)∈p −→
(∀ i. (Suc i)<length x −→

(x!i −e→ x!(Suc i)) −→ (snd(x!i), snd(x!(Suc i))) ∈ rely) −→
(∀ i. j≤i ∧ i<k −→ x!i −e→ x!Suc i) −→ snd(x!k)∈p ∧ fst(x!j)=fst(x!k)
supply [[simproc del: defined-all]]

apply(induct x)
apply clarify
apply(force elim:cptn.cases)

apply clarify
apply(erule cptn.cases,simp)
apply simp
apply(case-tac k,simp,simp)
apply(case-tac j,simp)
apply(erule-tac x=0 in allE)
apply(erule-tac x=nat and P=λj. (0≤j) −→ (J j) for J in allE ,simp)
apply(subgoal-tac t∈p)
apply(subgoal-tac (∀ i. i < length xs −→ ((P, t) # xs) ! i −e→ xs ! i −→ (snd

(((P, t) # xs) ! i), snd (xs ! i)) ∈ rely))
apply clarify

apply(erule-tac x=Suc i and P=λj. (H j) −→ (J j)∈etran for H J in allE ,simp)
apply clarify
apply(erule-tac x=Suc i and P=λj. (H j) −→ (J j) −→ (T j)∈rely for H J T

in allE ,simp)
apply(erule-tac x=0 and P=λj. (H j) −→ (J j)∈etran −→ T j for H J T in

allE ,simp)
apply(simp(no-asm-use) only:stable-def )
apply(erule-tac x=s in allE)

126



apply(erule-tac x=t in allE)
apply simp
apply(erule mp)
apply(erule mp)
apply(rule Env)

apply simp
apply(erule-tac x=nata in allE)
apply(erule-tac x=nat and P=λj. (s≤j) −→ (J j) for s J in allE ,simp)
apply(subgoal-tac (∀ i. i < length xs −→ ((P, t) # xs) ! i −e→ xs ! i −→ (snd
(((P, t) # xs) ! i), snd (xs ! i)) ∈ rely))

apply clarify
apply(erule-tac x=Suc i and P=λj. (H j) −→ (J j)∈etran for H J in allE ,simp)
apply clarify
apply(erule-tac x=Suc i and P=λj. (H j) −→ (J j) −→ (T j)∈rely for H J T

in allE ,simp)
apply(case-tac k,simp,simp)
apply(case-tac j)
apply(erule-tac x=0 and P=λj. (H j) −→ (J j)∈etran for H J in allE ,simp)
apply(erule etran.cases,simp)

apply(erule-tac x=nata in allE)
apply(erule-tac x=nat and P=λj. (s≤j) −→ (J j) for s J in allE ,simp)
apply(subgoal-tac (∀ i. i < length xs −→ ((Q, t) # xs) ! i −e→ xs ! i −→ (snd
(((Q, t) # xs) ! i), snd (xs ! i)) ∈ rely))
apply clarify
apply(erule-tac x=Suc i and P=λj. (H j) −→ (J j)∈etran for H J in allE ,simp)

apply clarify
apply(erule-tac x=Suc i and P=λj. (H j) −→ (J j) −→ (T j)∈rely for H J T in
allE ,simp)
done

3.5.1 Soundness of the System for Component Programs
Soundness of the Basic rule
lemma unique-ctran-Basic [rule-format]:
∀ s i. x ∈ cptn −→ x ! 0 = (Some (Basic f ), s) −→
Suc i<length x −→ x!i −c→ x!Suc i −→
(∀ j. Suc j<length x −→ i 6=j −→ x!j −e→ x!Suc j)

apply(induct x,simp)
apply simp
apply clarify
apply(erule cptn.cases,simp)
apply(case-tac i,simp+)
apply clarify
apply(case-tac j,simp)
apply(rule Env)

apply simp
apply clarify
apply simp
apply(case-tac i)

127



apply(case-tac j,simp,simp)
apply(erule ctran.cases,simp-all)
apply(force elim: not-ctran-None)

apply(ind-cases ((Some (Basic f ), sa), Q, t) ∈ ctran for sa Q t)
apply simp
apply(drule-tac i=nat in not-ctran-None,simp)
apply(erule etranE ,simp)
done

lemma exists-ctran-Basic-None [rule-format]:
∀ s i. x ∈ cptn −→ x ! 0 = (Some (Basic f ), s)
−→ i<length x −→ fst(x!i)=None −→ (∃ j<i. x!j −c→ x!Suc j)

apply(induct x,simp)
apply simp
apply clarify
apply(erule cptn.cases,simp)
apply(case-tac i,simp,simp)
apply(erule-tac x=nat in allE ,simp)
apply clarify
apply(rule-tac x=Suc j in exI ,simp,simp)

apply clarify
apply(case-tac i,simp,simp)
apply(rule-tac x=0 in exI ,simp)
done

lemma Basic-sound:
[[pre ⊆ {s. f s ∈ post}; {(s, t). s ∈ pre ∧ t = f s} ⊆ guar ;

stable pre rely; stable post rely]]
=⇒ |= Basic f sat [pre, rely, guar , post]
supply [[simproc del: defined-all]]

apply(unfold com-validity-def )
apply clarify
apply(simp add:comm-def )
apply(rule conjI )
apply clarify
apply(simp add:cp-def assum-def )
apply clarify
apply(frule-tac j=0 and k=i and p=pre in stability)

apply simp-all
apply(erule-tac x=ia in allE ,simp)

apply(erule-tac i=i and f=f in unique-ctran-Basic,simp-all)
apply(erule subsetD,simp)
apply(case-tac x!i)
apply clarify
apply(drule-tac s=Some (Basic f ) in sym,simp)
apply(thin-tac ∀ j. H j for H )
apply(force elim:ctran.cases)

apply clarify
apply(simp add:cp-def )

128



apply clarify
apply(frule-tac i=length x − 1 and f=f in exists-ctran-Basic-None,simp+)

apply(case-tac x,simp+)
apply(rule last-fst-esp,simp add:last-length)

apply (case-tac x,simp+)
apply(simp add:assum-def )
apply clarify
apply(frule-tac j=0 and k=j and p=pre in stability)

apply simp-all
apply(erule-tac x=i in allE ,simp)

apply(erule-tac i=j and f=f in unique-ctran-Basic,simp-all)
apply(case-tac x!j)
apply clarify
apply simp
apply(drule-tac s=Some (Basic f ) in sym,simp)
apply(case-tac x!Suc j,simp)
apply(rule ctran.cases,simp)
apply(simp-all)
apply(drule-tac c=sa in subsetD,simp)
apply clarify
apply(frule-tac j=Suc j and k=length x − 1 and p=post in stability,simp-all)
apply(case-tac x,simp+)
apply(erule-tac x=i in allE)

apply(erule-tac i=j and f=f in unique-ctran-Basic,simp-all)
apply arith+

apply(case-tac x)
apply(simp add:last-length)+
done

Soundness of the Await rule
lemma unique-ctran-Await [rule-format]:
∀ s i. x ∈ cptn −→ x ! 0 = (Some (Await b c), s) −→
Suc i<length x −→ x!i −c→ x!Suc i −→
(∀ j. Suc j<length x −→ i 6=j −→ x!j −e→ x!Suc j)

apply(induct x,simp+)
apply clarify
apply(erule cptn.cases,simp)
apply(case-tac i,simp+)
apply clarify
apply(case-tac j,simp)
apply(rule Env)

apply simp
apply clarify
apply simp
apply(case-tac i)
apply(case-tac j,simp,simp)
apply(erule ctran.cases,simp-all)
apply(force elim: not-ctran-None)

129



apply(ind-cases ((Some (Await b c), sa), Q, t) ∈ ctran for sa Q t,simp)
apply(drule-tac i=nat in not-ctran-None,simp)
apply(erule etranE ,simp)
done

lemma exists-ctran-Await-None [rule-format]:
∀ s i. x ∈ cptn −→ x ! 0 = (Some (Await b c), s)
−→ i<length x −→ fst(x!i)=None −→ (∃ j<i. x!j −c→ x!Suc j)

apply(induct x,simp+)
apply clarify
apply(erule cptn.cases,simp)
apply(case-tac i,simp+)
apply(erule-tac x=nat in allE ,simp)
apply clarify
apply(rule-tac x=Suc j in exI ,simp,simp)

apply clarify
apply(case-tac i,simp,simp)
apply(rule-tac x=0 in exI ,simp)
done

lemma Star-imp-cptn:
(P, s) −c∗→ (R, t) =⇒ ∃ l ∈ cp P s. (last l)=(R, t)
∧ (∀ i. Suc i<length l −→ l!i −c→ l!Suc i)

apply (erule converse-rtrancl-induct2 )
apply(rule-tac x=[(R,t)] in bexI )
apply simp

apply(simp add:cp-def )
apply(rule CptnOne)

apply clarify
apply(rule-tac x=(a, b)#l in bexI )
apply (rule conjI )
apply(case-tac l,simp add:cp-def )
apply(simp add:last-length)

apply clarify
apply(case-tac i,simp)
apply(simp add:cp-def )
apply force
apply(simp add:cp-def )
apply(case-tac l)
apply(force elim:cptn.cases)

apply simp
apply(erule CptnComp)
apply clarify
done

lemma Await-sound:
[[stable pre rely; stable post rely;
∀V . ` P sat [pre ∩ b ∩ {s. s = V }, {(s, t). s = t},

UNIV , {s. (V , s) ∈ guar} ∩ post] ∧

130



|= P sat [pre ∩ b ∩ {s. s = V }, {(s, t). s = t},
UNIV , {s. (V , s) ∈ guar} ∩ post] ]]

=⇒ |= Await b P sat [pre, rely, guar , post]
apply(unfold com-validity-def )
apply clarify
apply(simp add:comm-def )
apply(rule conjI )
apply clarify
apply(simp add:cp-def assum-def )
apply clarify
apply(frule-tac j=0 and k=i and p=pre in stability,simp-all)

apply(erule-tac x=ia in allE ,simp)
apply(subgoal-tac x∈ cp (Some(Await b P)) s)
apply(erule-tac i=i in unique-ctran-Await,force,simp-all)
apply(simp add:cp-def )

— here starts the different part.
apply(erule ctran.cases,simp-all)
apply(drule Star-imp-cptn)
apply clarify
apply(erule-tac x=sa in allE)
apply clarify
apply(erule-tac x=sa in allE)
apply(drule-tac c=l in subsetD)
apply (simp add:cp-def )
apply clarify
apply(erule-tac x=ia and P=λi. H i −→ (J i, I i)∈ctran for H J I in allE ,simp)
apply(erule etranE ,simp)

apply simp
apply clarify
apply(simp add:cp-def )
apply clarify
apply(frule-tac i=length x − 1 in exists-ctran-Await-None,force)

apply (case-tac x,simp+)
apply(rule last-fst-esp,simp add:last-length)
apply(case-tac x, simp+)

apply clarify
apply(simp add:assum-def )
apply clarify
apply(frule-tac j=0 and k=j and p=pre in stability,simp-all)

apply(erule-tac x=i in allE ,simp)
apply(erule-tac i=j in unique-ctran-Await,force,simp-all)

apply(case-tac x!j)
apply clarify
apply simp
apply(drule-tac s=Some (Await b P) in sym,simp)
apply(case-tac x!Suc j,simp)
apply(rule ctran.cases,simp)
apply(simp-all)
apply(drule Star-imp-cptn)

131



apply clarify
apply(erule-tac x=sa in allE)
apply clarify
apply(erule-tac x=sa in allE)
apply(drule-tac c=l in subsetD)
apply (simp add:cp-def )
apply clarify
apply(erule-tac x=i and P=λi. H i −→ (J i, I i)∈ctran for H J I in allE ,simp)
apply(erule etranE ,simp)

apply simp
apply clarify
apply(frule-tac j=Suc j and k=length x − 1 and p=post in stability,simp-all)
apply(case-tac x,simp+)
apply(erule-tac x=i in allE)

apply(erule-tac i=j in unique-ctran-Await,force,simp-all)
apply arith+

apply(case-tac x)
apply(simp add:last-length)+
done

Soundness of the Conditional rule
lemma Cond-sound:
[[ stable pre rely; |= P1 sat [pre ∩ b, rely, guar , post];
|= P2 sat [pre ∩ − b, rely, guar , post]; ∀ s. (s,s)∈guar ]]
=⇒ |= (Cond b P1 P2 ) sat [pre, rely, guar , post]

apply(unfold com-validity-def )
apply clarify
apply(simp add:cp-def comm-def )
apply(case-tac ∃ i. Suc i<length x ∧ x!i −c→ x!Suc i)
prefer 2
apply simp
apply clarify
apply(frule-tac j=0 and k=length x − 1 and p=pre in stability,simp+)

apply(case-tac x,simp+)
apply(simp add:assum-def )

apply(simp add:assum-def )
apply(erule-tac m=length x in etran-or-ctran,simp+)

apply(case-tac x, (simp add:last-length)+)
apply(erule exE)
apply(drule-tac n=i and P=λi. H i ∧ (J i, I i) ∈ ctran for H J I in Ex-first-occurrence)
apply clarify
apply (simp add:assum-def )
apply(frule-tac j=0 and k=m and p=pre in stability,simp+)
apply(erule-tac m=Suc m in etran-or-ctran,simp+)

apply(erule ctran.cases,simp-all)
apply(erule-tac x=sa in allE)
apply(drule-tac c=drop (Suc m) x in subsetD)
apply simp

132



apply clarify
apply simp
apply clarify
apply(case-tac i≤m)
apply(drule le-imp-less-or-eq)
apply(erule disjE)
apply(erule-tac x=i in allE , erule impE , assumption)
apply simp+

apply(erule-tac x=i − (Suc m) and P=λj. H j −→ J j −→ (I j)∈guar for H J
I in allE)
apply(subgoal-tac (Suc m)+(i − Suc m) ≤ length x)
apply(subgoal-tac (Suc m)+Suc (i − Suc m) ≤ length x)
apply(rotate-tac −2 )
apply simp

apply arith
apply arith

apply(case-tac length (drop (Suc m) x),simp)
apply(erule-tac x=sa in allE)
back
apply(drule-tac c=drop (Suc m) x in subsetD,simp)
apply clarify

apply simp
apply clarify
apply(case-tac i≤m)
apply(drule le-imp-less-or-eq)
apply(erule disjE)
apply(erule-tac x=i in allE , erule impE , assumption)
apply simp

apply simp
apply(erule-tac x=i − (Suc m) and P=λj. H j −→ J j −→ (I j)∈guar for H J I
in allE)
apply(subgoal-tac (Suc m)+(i − Suc m) ≤ length x)
apply(subgoal-tac (Suc m)+Suc (i − Suc m) ≤ length x)
apply(rotate-tac −2 )
apply simp

apply arith
apply arith
done

Soundness of the Sequential rule
inductive-cases Seq-cases [elim!]: (Some (Seq P Q), s) −c→ t

lemma last-lift-not-None: fst ((lift Q) ((x#xs)!(length xs))) 6= None
apply(subgoal-tac length xs<length (x # xs))
apply(drule-tac Q=Q in lift-nth)
apply(erule ssubst)
apply (simp add:lift-def )
apply(case-tac (x # xs) ! length xs,simp)

133



apply simp
done

lemma Seq-sound1 [rule-format]:
x∈ cptn-mod =⇒ ∀ s P. x !0=(Some (Seq P Q), s) −→
(∀ i<length x. fst(x!i)6=Some Q) −→
(∃ xs∈ cp (Some P) s. x=map (lift Q) xs)
supply [[simproc del: defined-all]]

apply(erule cptn-mod.induct)
apply(unfold cp-def )
apply safe
apply simp-all

apply(simp add:lift-def )
apply(rule-tac x=[(Some Pa, sa)] in exI ,simp add:CptnOne)

apply(subgoal-tac (∀ i < Suc (length xs). fst (((Some (Seq Pa Q), t) # xs) ! i)
6= Some Q))

apply clarify
apply(rule-tac x=(Some Pa, sa) #(Some Pa, t) # zs in exI ,simp)
apply(rule conjI ,erule CptnEnv)
apply(simp (no-asm-use) add:lift-def )

apply clarify
apply(erule-tac x=Suc i in allE , simp)

apply(ind-cases ((Some (Seq Pa Q), sa), None, t) ∈ ctran for Pa sa t)
apply(rule-tac x=(Some P, sa) # xs in exI , simp add:cptn-iff-cptn-mod lift-def )

apply(erule-tac x=length xs in allE , simp)
apply(simp only:Cons-lift-append)
apply(subgoal-tac length xs < length ((Some P, sa) # xs))
apply(simp only :nth-append length-map last-length nth-map)
apply(case-tac last((Some P, sa) # xs))
apply(simp add:lift-def )

apply simp
done

lemma Seq-sound2 [rule-format]:
x ∈ cptn =⇒ ∀ s P i. x!0=(Some (Seq P Q), s) −→ i<length x
−→ fst(x!i)=Some Q −→
(∀ j<i. fst(x!j) 6=(Some Q)) −→
(∃ xs ys. xs ∈ cp (Some P) s ∧ length xs=Suc i
∧ ys ∈ cp (Some Q) (snd(xs !i)) ∧ x=(map (lift Q) xs)@tl ys)

supply [[simproc del: defined-all]]
apply(erule cptn.induct)
apply(unfold cp-def )
apply safe
apply simp-all
apply(case-tac i,simp+)
apply(erule allE ,erule impE ,assumption,simp)
apply clarify
apply(subgoal-tac (∀ j < nat. fst (((Some (Seq Pa Q), t) # xs) ! j) 6= Some

Q),clarify)

134



prefer 2
apply force

apply(case-tac xsa,simp,simp)
apply(rename-tac list)
apply(rule-tac x=(Some Pa, sa) #(Some Pa, t) # list in exI ,simp)
apply(rule conjI ,erule CptnEnv)
apply(simp (no-asm-use) add:lift-def )
apply(rule-tac x=ys in exI ,simp)

apply(ind-cases ((Some (Seq Pa Q), sa), t) ∈ ctran for Pa sa t)
apply simp
apply(rule-tac x=(Some Pa, sa)#[(None, ta)] in exI ,simp)
apply(rule conjI )
apply(drule-tac xs=[] in CptnComp,force simp add:CptnOne,simp)

apply(case-tac i, simp+)
apply(case-tac nat,simp+)
apply(rule-tac x=(Some Q,ta)#xs in exI ,simp add:lift-def )
apply(case-tac nat,simp+)
apply(force)

apply(case-tac i, simp+)
apply(case-tac nat,simp+)
apply(erule-tac x=Suc nata in allE ,simp)
apply clarify
apply(subgoal-tac (∀ j<Suc nata. fst (((Some (Seq P2 Q), ta) # xs) ! j) 6= Some
Q),clarify)
prefer 2
apply clarify
apply force

apply(rule-tac x=(Some Pa, sa)#(Some P2 , ta)#(tl xsa) in exI ,simp)
apply(rule conjI ,erule CptnComp)
apply(rule nth-tl-if ,force,simp+)
apply(rule-tac x=ys in exI ,simp)
apply(rule conjI )
apply(rule nth-tl-if ,force,simp+)
apply(rule tl-zero,simp+)
apply force

apply(rule conjI ,simp add:lift-def )
apply(subgoal-tac lift Q (Some P2 , ta) =(Some (Seq P2 Q), ta))
apply(simp add:Cons-lift del:list.map)
apply(rule nth-tl-if )

apply force
apply simp+

apply(simp add:lift-def )
done

lemma last-lift-not-None2 : fst ((lift Q) (last (x#xs))) 6= None
apply(simp only:last-length [THEN sym])
apply(subgoal-tac length xs<length (x # xs))
apply(drule-tac Q=Q in lift-nth)

135



apply(erule ssubst)
apply (simp add:lift-def )
apply(case-tac (x # xs) ! length xs,simp)

apply simp
done

lemma Seq-sound:
[[|= P sat [pre, rely, guar , mid]; |= Q sat [mid, rely, guar , post]]]
=⇒ |= Seq P Q sat [pre, rely, guar , post]

apply(unfold com-validity-def )
apply clarify
apply(case-tac ∃ i<length x. fst(x!i)=Some Q)
prefer 2
apply (simp add:cp-def cptn-iff-cptn-mod)
apply clarify
apply(frule-tac Seq-sound1 ,force)
apply force

apply clarify
apply(erule-tac x=s in allE ,simp)
apply(drule-tac c=xs in subsetD,simp add:cp-def cptn-iff-cptn-mod)
apply(simp add:assum-def )
apply clarify
apply(erule-tac P=λj. H j −→ J j −→ I j for H J I in allE ,erule impE ,

assumption)
apply(simp add:snd-lift)
apply(erule mp)
apply(force elim:etranE intro:Env simp add:lift-def )

apply(simp add:comm-def )
apply(rule conjI )
apply clarify
apply(erule-tac P=λj. H j −→ J j −→ I j for H J I in allE ,erule impE ,

assumption)
apply(simp add:snd-lift)
apply(erule mp)
apply(case-tac (xs!i))
apply(case-tac (xs! Suc i))
apply(case-tac fst(xs!i))
apply(erule-tac x=i in allE , simp add:lift-def )

apply(case-tac fst(xs!Suc i))
apply(force simp add:lift-def )

apply(force simp add:lift-def )
apply clarify
apply(case-tac xs,simp add:cp-def )
apply clarify
apply (simp del:list.map)
apply (rename-tac list)
apply(subgoal-tac (map (lift Q) ((a, b) # list)) 6=[])
apply(drule last-conv-nth)
apply (simp del:list.map)

136



apply(simp only:last-lift-not-None)
apply simp

— ∃ i<length x . fst (x ! i) = Some Q
apply(erule exE)
apply(drule-tac n=i and P=λi. i < length x ∧ fst (x ! i) = Some Q in Ex-first-occurrence)
apply clarify
apply (simp add:cp-def )
apply clarify
apply(frule-tac i=m in Seq-sound2 ,force)
apply simp+

apply clarify
apply(simp add:comm-def )
apply(erule-tac x=s in allE)
apply(drule-tac c=xs in subsetD,simp)
apply(case-tac xs=[],simp)
apply(simp add:cp-def assum-def nth-append)
apply clarify
apply(erule-tac x=i in allE)
back

apply(simp add:snd-lift)
apply(erule mp)
apply(force elim:etranE intro:Env simp add:lift-def )

apply simp
apply clarify
apply(erule-tac x=snd(xs!m) in allE)
apply(drule-tac c=ys in subsetD,simp add:cp-def assum-def )
apply(case-tac xs 6=[])
apply(drule last-conv-nth,simp)
apply(rule conjI )
apply(erule mp)
apply(case-tac xs!m)
apply(case-tac fst(xs!m),simp)
apply(simp add:lift-def nth-append)

apply clarify
apply(erule-tac x=m+i in allE)
back
back
apply(case-tac ys,(simp add:nth-append)+)
apply (case-tac i, (simp add:snd-lift)+)
apply(erule mp)
apply(case-tac xs!m)
apply(force elim:etran.cases intro:Env simp add:lift-def )

apply simp
apply simp
apply clarify
apply(rule conjI ,clarify)
apply(case-tac i<m,simp add:nth-append)
apply(simp add:snd-lift)
apply(erule allE , erule impE , assumption, erule mp)

137



apply(case-tac (xs ! i))
apply(case-tac (xs ! Suc i))
apply(case-tac fst(xs ! i),force simp add:lift-def )
apply(case-tac fst(xs ! Suc i))
apply (force simp add:lift-def )

apply (force simp add:lift-def )
apply(erule-tac x=i−m in allE)
back
back
apply(subgoal-tac Suc (i − m) < length ys,simp)
prefer 2
apply arith

apply(simp add:nth-append snd-lift)
apply(rule conjI ,clarify)
apply(subgoal-tac i=m)
prefer 2
apply arith

apply clarify
apply(simp add:cp-def )
apply(rule tl-zero)

apply(erule mp)
apply(case-tac lift Q (xs!m),simp add:snd-lift)
apply(case-tac xs!m,case-tac fst(xs!m),simp add:lift-def snd-lift)
apply(case-tac ys,simp+)

apply(simp add:lift-def )
apply simp

apply force
apply clarify
apply(rule tl-zero)

apply(rule tl-zero)
apply (subgoal-tac i−m=Suc(i−Suc m))
apply simp
apply(erule mp)
apply(case-tac ys,simp+)

apply force
apply arith

apply force
apply clarify
apply(case-tac (map (lift Q) xs @ tl ys)6=[])
apply(drule last-conv-nth)
apply(simp add: snd-lift nth-append)
apply(rule conjI ,clarify)
apply(case-tac ys,simp+)

apply clarify
apply(case-tac ys,simp+)

done

138



Soundness of the While rule
lemma last-append[rule-format]:
∀ xs. ys 6=[] −→ ((xs@ys)!(length (xs@ys) − (Suc 0 )))=(ys!(length ys − (Suc 0 )))

apply(induct ys)
apply simp

apply clarify
apply (simp add:nth-append)
done

lemma assum-after-body:
[[ |= P sat [pre ∩ b, rely, guar , pre];
(Some P, s) # xs ∈ cptn-mod; fst (last ((Some P, s) # xs)) = None; s ∈ b;
(Some (While b P), s) # (Some (Seq P (While b P)), s) #
map (lift (While b P)) xs @ ys ∈ assum (pre, rely)]]
=⇒ (Some (While b P), snd (last ((Some P, s) # xs))) # ys ∈ assum (pre, rely)

apply(simp add:assum-def com-validity-def cp-def cptn-iff-cptn-mod)
apply clarify
apply(erule-tac x=s in allE)
apply(drule-tac c=(Some P, s) # xs in subsetD,simp)
apply clarify
apply(erule-tac x=Suc i in allE)
apply simp
apply(simp add:Cons-lift-append nth-append snd-lift del:list.map)
apply(erule mp)
apply(erule etranE ,simp)
apply(case-tac fst(((Some P, s) # xs) ! i))
apply(force intro:Env simp add:lift-def )

apply(force intro:Env simp add:lift-def )
apply(rule conjI )
apply clarify
apply(simp add:comm-def last-length)

apply clarify
apply(rule conjI )
apply(simp add:comm-def )

apply clarify
apply(erule-tac x=Suc(length xs + i) in allE ,simp)
apply(case-tac i, simp add:nth-append Cons-lift-append snd-lift last-conv-nth lift-def
split-def )
apply(simp add:Cons-lift-append nth-append snd-lift)
done

lemma While-sound-aux [rule-format]:
[[ pre ∩ − b ⊆ post; |= P sat [pre ∩ b, rely, guar , pre]; ∀ s. (s, s) ∈ guar ;
stable pre rely; stable post rely; x ∈ cptn-mod ]]
=⇒ ∀ s xs. x=(Some(While b P),s)#xs −→ x∈assum(pre, rely) −→ x ∈ comm

(guar , post)
supply [[simproc del: defined-all]]

apply(erule cptn-mod.induct)
apply safe

139



apply (simp-all del:last.simps)
— 5 subgoals left
apply(simp add:comm-def )
— 4 subgoals left
apply(rule etran-in-comm)
apply(erule mp)
apply(erule tl-of-assum-in-assum,simp)
— While-None
apply(ind-cases ((Some (While b P), s), None, t) ∈ ctran for s t)
apply(simp add:comm-def )
apply(simp add:cptn-iff-cptn-mod [THEN sym])
apply(rule conjI ,clarify)
apply(force simp add:assum-def )

apply clarify
apply(rule conjI , clarify)
apply(case-tac i,simp,simp)
apply(force simp add:not-ctran-None2 )

apply(subgoal-tac ∀ i. Suc i < length ((None, t) # xs) −→ (((None, t) # xs) ! i,
((None, t) # xs) ! Suc i)∈ etran)
prefer 2
apply clarify
apply(rule-tac m=length ((None, s) # xs) in etran-or-ctran,simp+)
apply(erule not-ctran-None2 ,simp)
apply simp+

apply(frule-tac j=0 and k=length ((None, s) # xs) − 1 and p=post in stabil-
ity,simp+)

apply(force simp add:assum-def subsetD)
apply(simp add:assum-def )
apply clarify
apply(erule-tac x=i in allE ,simp)
apply(erule-tac x=Suc i in allE ,simp)

apply simp
apply clarify
apply (simp add:last-length)
— WhileOne
apply(rule ctran-in-comm,simp)
apply(simp add:Cons-lift del:list.map)
apply(simp add:comm-def del:list.map)
apply(rule conjI )
apply clarify
apply(case-tac fst(((Some P, sa) # xs) ! i))
apply(case-tac ((Some P, sa) # xs) ! i)
apply (simp add:lift-def )
apply(ind-cases (Some (While b P), ba) −c→ t for ba t)
apply simp

apply simp
apply(simp add:snd-lift del:list.map)
apply(simp only:com-validity-def cp-def cptn-iff-cptn-mod)
apply(erule-tac x=sa in allE)

140



apply(drule-tac c=(Some P, sa) # xs in subsetD)
apply (simp add:assum-def del:list.map)
apply clarify
apply(erule-tac x=Suc ia in allE ,simp add:snd-lift del:list.map)
apply(erule mp)
apply(case-tac fst(((Some P, sa) # xs) ! ia))
apply(erule etranE ,simp add:lift-def )
apply(rule Env)

apply(erule etranE ,simp add:lift-def )
apply(rule Env)

apply (simp add:comm-def del:list.map)
apply clarify
apply(erule allE ,erule impE ,assumption)
apply(erule mp)
apply(case-tac ((Some P, sa) # xs) ! i)
apply(case-tac xs!i)
apply(simp add:lift-def )
apply(case-tac fst(xs!i))
apply force

apply force
— last=None
apply clarify
apply(subgoal-tac (map (lift (While b P)) ((Some P, sa) # xs)) 6=[])
apply(drule last-conv-nth)
apply (simp del:list.map)
apply(simp only:last-lift-not-None)

apply simp
— WhileMore
apply(rule ctran-in-comm,simp del:last.simps)
— metiendo la hipotesis antes de dividir la conclusion.
apply(subgoal-tac (Some (While b P), snd (last ((Some P, sa) # xs))) # ys ∈
assum (pre, rely))
apply (simp del:last.simps)
prefer 2
apply(erule assum-after-body)
apply (simp del:last.simps)+

— lo de antes.
apply(simp add:comm-def del:list.map last.simps)
apply(rule conjI )
apply clarify
apply(simp only:Cons-lift-append)
apply(case-tac i<length xs)
apply(simp add:nth-append del:list.map last.simps)
apply(case-tac fst(((Some P, sa) # xs) ! i))
apply(case-tac ((Some P, sa) # xs) ! i)
apply (simp add:lift-def del:last.simps)
apply(ind-cases (Some (While b P), ba) −c→ t for ba t)
apply simp

apply simp

141



apply(simp add:snd-lift del:list.map last.simps)
apply(thin-tac ∀ i. i < length ys −→ P i for P)
apply(simp only:com-validity-def cp-def cptn-iff-cptn-mod)
apply(erule-tac x=sa in allE)
apply(drule-tac c=(Some P, sa) # xs in subsetD)
apply (simp add:assum-def del:list.map last.simps)
apply clarify
apply(erule-tac x=Suc ia in allE ,simp add:nth-append snd-lift del:list.map

last.simps, erule mp)
apply(case-tac fst(((Some P, sa) # xs) ! ia))
apply(erule etranE ,simp add:lift-def )
apply(rule Env)

apply(erule etranE ,simp add:lift-def )
apply(rule Env)

apply (simp add:comm-def del:list.map)
apply clarify
apply(erule allE ,erule impE ,assumption)
apply(erule mp)
apply(case-tac ((Some P, sa) # xs) ! i)
apply(case-tac xs!i)
apply(simp add:lift-def )
apply(case-tac fst(xs!i))
apply force

apply force
— i ≥ length xs
apply(subgoal-tac i−length xs <length ys)
prefer 2
apply arith

apply(erule-tac x=i−length xs in allE ,clarify)
apply(case-tac i=length xs)
apply (simp add:nth-append snd-lift del:list.map last.simps)
apply(simp add:last-length del:last.simps)
apply(erule mp)
apply(case-tac last((Some P, sa) # xs))
apply(simp add:lift-def del:last.simps)

— i>length xs
apply(case-tac i−length xs)
apply arith

apply(simp add:nth-append del:list.map last.simps)
apply(rotate-tac −3 )
apply(subgoal-tac i− Suc (length xs)=nat)
prefer 2
apply arith

apply simp
— last=None
apply clarify
apply(case-tac ys)
apply(simp add:Cons-lift del:list.map last.simps)
apply(subgoal-tac (map (lift (While b P)) ((Some P, sa) # xs)) 6=[])

142



apply(drule last-conv-nth)
apply (simp del:list.map)
apply(simp only:last-lift-not-None)

apply simp
apply(subgoal-tac ((Some (Seq P (While b P)), sa) # map (lift (While b P)) xs
@ ys) 6=[])
apply(drule last-conv-nth)
apply (simp del:list.map last.simps)
apply(simp add:nth-append del:last.simps)
apply(rename-tac a list)
apply(subgoal-tac ((Some (While b P), snd (last ((Some P, sa) # xs))) # a #

list)6=[])
apply(drule last-conv-nth)
apply (simp del:list.map last.simps)

apply simp
apply simp
done

lemma While-sound:
[[stable pre rely; pre ∩ − b ⊆ post; stable post rely;
|= P sat [pre ∩ b, rely, guar , pre]; ∀ s. (s,s)∈guar ]]

=⇒ |= While b P sat [pre, rely, guar , post]
apply(unfold com-validity-def )
apply clarify
apply(erule-tac xs=tl x in While-sound-aux)
apply(simp add:com-validity-def )
apply force
apply simp-all

apply(simp add:cptn-iff-cptn-mod cp-def )
apply(simp add:cp-def )
apply clarify
apply(rule nth-equalityI )
apply simp-all
apply(case-tac x,simp+)

apply(case-tac i,simp+)
apply(case-tac x,simp+)
done

Soundness of the Rule of Consequence
lemma Conseq-sound:
[[pre ⊆ pre ′; rely ⊆ rely ′; guar ′ ⊆ guar ; post ′ ⊆ post;
|= P sat [pre ′, rely ′, guar ′, post ′]]]
=⇒ |= P sat [pre, rely, guar , post]

apply(simp add:com-validity-def assum-def comm-def )
apply clarify
apply(erule-tac x=s in allE)
apply(drule-tac c=x in subsetD)
apply force

143



apply force
done

Soundness of the system for sequential component programs
theorem rgsound:
` P sat [pre, rely, guar , post] =⇒ |= P sat [pre, rely, guar , post]

apply(erule rghoare.induct)
apply(force elim:Basic-sound)
apply(force elim:Seq-sound)
apply(force elim:Cond-sound)
apply(force elim:While-sound)
apply(force elim:Await-sound)

apply(erule Conseq-sound,simp+)
done

3.5.2 Soundness of the System for Parallel Programs
definition ParallelCom :: ( ′a rgformula) list ⇒ ′a par-com where

ParallelCom Ps ≡ map (Some ◦ fst) Ps

lemma two:
[[ ∀ i<length xs. rely ∪ (

⋃
j∈{j. j < length xs ∧ j 6= i}. Guar (xs ! j))

⊆ Rely (xs ! i);
pre ⊆ (

⋂
i∈{i. i < length xs}. Pre (xs ! i));

∀ i<length xs.
|= Com (xs ! i) sat [Pre (xs ! i), Rely (xs ! i), Guar (xs ! i), Post (xs ! i)];
length xs=length clist; x ∈ par-cp (ParallelCom xs) s; x∈par-assum(pre, rely);
∀ i<length clist. clist!i∈cp (Some(Com(xs!i))) s; x ∝ clist ]]
=⇒ ∀ j i. i<length clist ∧ Suc j<length x −→ (clist!i!j) −c→ (clist!i!Suc j)
−→ (snd(clist!i!j), snd(clist!i!Suc j)) ∈ Guar(xs!i)

apply(unfold par-cp-def )
apply (rule ccontr)
— By contradiction:
apply simp
apply(erule exE)
— the first c-tran that does not satisfy the guarantee-condition is from σ-i at step
m.
apply(drule-tac n=j and P=λj. ∃ i. H i j for H in Ex-first-occurrence)
apply(erule exE)
apply clarify
— σ-i ∈ A(pre, rely-1 )
apply(subgoal-tac take (Suc (Suc m)) (clist!i) ∈ assum(Pre(xs!i), Rely(xs!i)))
— but this contradicts |= σ-i sat [pre-i,rely-i,guar-i,post-i]
apply(erule-tac x=i and P=λi. H i −→ |= (J i) sat [I i,K i,M i,N i] for H J I

K M N in allE ,erule impE ,assumption)
apply(simp add:com-validity-def )
apply(erule-tac x=s in allE)
apply(simp add:cp-def comm-def )
apply(drule-tac c=take (Suc (Suc m)) (clist ! i) in subsetD)

144



apply simp
apply (blast intro: takecptn-is-cptn)

apply simp
apply clarify
apply(erule-tac x=m and P=λj. I j ∧ J j −→ H j for I J H in allE)
apply (simp add:conjoin-def same-length-def )

apply(simp add:assum-def )
apply(rule conjI )
apply(erule-tac x=i and P=λj. H j −→ I j ∈cp (K j) (J j) for H I K J in allE)
apply(simp add:cp-def par-assum-def )
apply(drule-tac c=s in subsetD,simp)
apply simp

apply clarify
apply(erule-tac x=i and P=λj. H j −→ M ∪

⋃
((T j) ‘ (S j)) ⊆ (L j) for H M

S T L in allE)
apply simp
apply(erule subsetD)
apply simp
apply(simp add:conjoin-def compat-label-def )
apply clarify
apply(erule-tac x=ia and P=λj. H j −→ (P j) ∨ Q j for H P Q in allE ,simp)
— each etran in σ-1 [0 . . .m] corresponds to
apply(erule disjE)
— a c-tran in some σ-{ib}
apply clarify
apply(case-tac i=ib,simp)
apply(erule etranE ,simp)

apply(erule-tac x=ib and P=λi. H i −→ (I i) ∨ (J i) for H I J in allE)
apply (erule etranE)
apply(case-tac ia=m,simp)
apply simp
apply(erule-tac x=ia and P=λj. H j −→ (∀ i. P i j) for H P in allE)
apply(subgoal-tac ia<m,simp)
prefer 2
apply arith
apply(erule-tac x=ib and P=λj. (I j, H j) ∈ ctran −→ P i j for I H P in

allE ,simp)
apply(simp add:same-state-def )
apply(erule-tac x=i and P=λj. (T j) −→ (∀ i. (H j i) −→ (snd (d j i))=(snd (e

j i))) for T H d e in all-dupE)
apply(erule-tac x=ib and P=λj. (T j) −→ (∀ i. (H j i) −→ (snd (d j i))=(snd
(e j i))) for T H d e in allE ,simp)
— or an e-tran in σ, therefore it satisfies rely ∨ guar-{ib}
apply (force simp add:par-assum-def same-state-def )
done

lemma three [rule-format]:
[[ xs 6=[]; ∀ i<length xs. rely ∪ (

⋃
j∈{j. j < length xs ∧ j 6= i}. Guar (xs ! j))

145



⊆ Rely (xs ! i);
pre ⊆ (

⋂
i∈{i. i < length xs}. Pre (xs ! i));

∀ i<length xs.
|= Com (xs ! i) sat [Pre (xs ! i), Rely (xs ! i), Guar (xs ! i), Post (xs ! i)];

length xs=length clist; x ∈ par-cp (ParallelCom xs) s; x ∈ par-assum(pre, rely);
∀ i<length clist. clist!i∈cp (Some(Com(xs!i))) s; x ∝ clist ]]
=⇒ ∀ j i. i<length clist ∧ Suc j<length x −→ (clist!i!j) −e→ (clist!i!Suc j)
−→ (snd(clist!i!j), snd(clist!i!Suc j)) ∈ rely ∪ (

⋃
j∈{j. j < length xs ∧ j 6= i}.

Guar (xs ! j))
apply(drule two)
apply simp-all

apply clarify
apply(simp add:conjoin-def compat-label-def )
apply clarify
apply(erule-tac x=j and P=λj. H j −→ (J j ∧ (∃ i. P i j)) ∨ I j for H J P I in
allE ,simp)
apply(erule disjE)
prefer 2
apply(force simp add:same-state-def par-assum-def )

apply clarify
apply(case-tac i=ia,simp)
apply(erule etranE ,simp)

apply(erule-tac x=ia and P=λi. H i −→ (I i) ∨ (J i) for H I J in allE ,simp)
apply(erule-tac x=j and P=λj. ∀ i. S j i −→ (I j i, H j i) ∈ ctran −→ P i j for
S I H P in allE)
apply(erule-tac x=ia and P=λj. S j −→ (I j, H j) ∈ ctran −→ P j for S I H P
in allE)
apply(simp add:same-state-def )
apply(erule-tac x=i and P=λj. T j −→ (∀ i. H j i −→ (snd (d j i))=(snd (e j
i))) for T H d e in all-dupE)
apply(erule-tac x=ia and P=λj. T j −→ (∀ i. H j i −→ (snd (d j i))=(snd (e j
i))) for T H d e in allE ,simp)
done

lemma four :
[[xs 6=[]; ∀ i < length xs. rely ∪ (

⋃
j∈{j. j < length xs ∧ j 6= i}. Guar (xs ! j))

⊆ Rely (xs ! i);
(
⋃

j∈{j. j < length xs}. Guar (xs ! j)) ⊆ guar ;
pre ⊆ (

⋂
i∈{i. i < length xs}. Pre (xs ! i));

∀ i < length xs.
|= Com (xs ! i) sat [Pre (xs ! i), Rely (xs ! i), Guar (xs ! i), Post (xs ! i)];

x ∈ par-cp (ParallelCom xs) s; x ∈ par-assum (pre, rely); Suc i < length x;
x ! i −pc→ x ! Suc i]]
=⇒ (snd (x ! i), snd (x ! Suc i)) ∈ guar

apply(simp add: ParallelCom-def )
apply(subgoal-tac (map (Some ◦ fst) xs) 6=[])
prefer 2
apply simp

apply(frule rev-subsetD)

146



apply(erule one [THEN equalityD1 ])
apply(erule subsetD)
apply simp
apply clarify
apply(drule-tac pre=pre and rely=rely and x=x and s=s and xs=xs and clist=clist
in two)
apply(assumption+)

apply(erule sym)
apply(simp add:ParallelCom-def )

apply assumption
apply(simp add:Com-def )

apply assumption
apply(simp add:conjoin-def same-program-def )
apply clarify
apply(erule-tac x=i and P=λj. H j −→ fst(I j)=(J j) for H I J in all-dupE)
apply(erule-tac x=Suc i and P=λj. H j −→ fst(I j)=(J j) for H I J in allE)
apply(erule par-ctranE ,simp)
apply(erule-tac x=i and P=λj. ∀ i. S j i −→ (I j i, H j i) ∈ ctran −→ P i j for
S I H P in allE)
apply(erule-tac x=ia and P=λj. S j −→ (I j, H j) ∈ ctran −→ P j for S I H P
in allE)
apply(rule-tac x=ia in exI )
apply(simp add:same-state-def )
apply(erule-tac x=ia and P=λj. T j −→ (∀ i. H j i −→ (snd (d j i))=(snd (e j
i))) for T H d e in all-dupE ,simp)
apply(erule-tac x=ia and P=λj. T j −→ (∀ i. H j i −→ (snd (d j i))=(snd (e j
i))) for T H d e in allE ,simp)
apply(erule-tac x=i and P=λj. H j −→ (snd (d j))=(snd (e j)) for H d e in
all-dupE)
apply(erule-tac x=i and P=λj. H j −→ (snd (d j))=(snd (e j)) for H d e in
all-dupE ,simp)
apply(erule-tac x=Suc i and P=λj. H j −→ (snd (d j))=(snd (e j)) for H d e in
allE ,simp)
apply(erule mp)
apply(subgoal-tac r=fst(clist ! ia ! Suc i),simp)
apply(drule-tac i=ia in list-eq-if )
back
apply simp-all
done

lemma parcptn-not-empty [simp]:[] /∈ par-cptn
apply(force elim:par-cptn.cases)
done

lemma five:
[[xs 6=[]; ∀ i<length xs. rely ∪ (

⋃
j∈{j. j < length xs ∧ j 6= i}. Guar (xs ! j))

⊆ Rely (xs ! i);
pre ⊆ (

⋂
i∈{i. i < length xs}. Pre (xs ! i));

(
⋂

i∈{i. i < length xs}. Post (xs ! i)) ⊆ post;

147



∀ i < length xs.
|= Com (xs ! i) sat [Pre (xs ! i), Rely (xs ! i), Guar (xs ! i), Post (xs ! i)];
x ∈ par-cp (ParallelCom xs) s; x ∈ par-assum (pre, rely);

All-None (fst (last x)) ]] =⇒ snd (last x) ∈ post
apply(simp add: ParallelCom-def )
apply(subgoal-tac (map (Some ◦ fst) xs) 6=[])
prefer 2
apply simp

apply(frule rev-subsetD)
apply(erule one [THEN equalityD1 ])

apply(erule subsetD)
apply simp
apply clarify
apply(subgoal-tac ∀ i<length clist. clist!i∈assum(Pre(xs!i), Rely(xs!i)))
apply(erule-tac x=xa and P=λi. H i −→ |= (J i) sat [I i,K i,M i,N i] for H J

I K M N in allE ,erule impE ,assumption)
apply(simp add:com-validity-def )
apply(erule-tac x=s in allE)
apply(erule-tac x=xa and P=λj. H j −→ (I j) ∈ cp (J j) s for H I J in allE ,simp)
apply(drule-tac c=clist!xa in subsetD)
apply (force simp add:Com-def )

apply(simp add:comm-def conjoin-def same-program-def del:last.simps)
apply clarify
apply(erule-tac x=length x − 1 and P=λj. H j −→ fst(I j)=(J j) for H I J in

allE)
apply (simp add:All-None-def same-length-def )
apply(erule-tac x=xa and P=λj. H j −→ length(J j)=(K j) for H J K in allE)
apply(subgoal-tac length x − 1 < length x,simp)
apply(case-tac x 6=[])
apply(simp add: last-conv-nth)
apply(erule-tac x=clist!xa in ballE)
apply(simp add:same-state-def )
apply(subgoal-tac clist!xa 6=[])
apply(simp add: last-conv-nth)

apply(case-tac x)
apply (force simp add:par-cp-def )

apply (force simp add:par-cp-def )
apply force

apply (force simp add:par-cp-def )
apply(case-tac x)
apply (force simp add:par-cp-def )

apply (force simp add:par-cp-def )
apply clarify
apply(simp add:assum-def )
apply(rule conjI )
apply(simp add:conjoin-def same-state-def par-cp-def )
apply clarify
apply(erule-tac x=i and P=λj. T j −→ (∀ i. H j i −→ (snd (d j i))=(snd (e j

i))) for T H d e in allE ,simp)

148



apply(erule-tac x=0 and P=λj. H j −→ (snd (d j))=(snd (e j)) for H d e in
allE)
apply(case-tac x,simp+)
apply (simp add:par-assum-def )
apply clarify
apply(drule-tac c=snd (clist ! i ! 0 ) in subsetD)
apply assumption
apply simp

apply clarify
apply(erule-tac x=i in all-dupE)
apply(rule subsetD, erule mp, assumption)
apply(erule-tac pre=pre and rely=rely and x=x and s=s in three)
apply(erule-tac x=ib in allE ,erule mp)
apply simp-all
apply(simp add:ParallelCom-def )
apply(force simp add:Com-def )

apply(simp add:conjoin-def same-length-def )
done

lemma ParallelEmpty [rule-format]:
∀ i s. x ∈ par-cp (ParallelCom []) s −→
Suc i < length x −→ (x ! i, x ! Suc i) /∈ par-ctran

apply(induct-tac x)
apply(simp add:par-cp-def ParallelCom-def )

apply clarify
apply(case-tac list,simp,simp)
apply(case-tac i)
apply(simp add:par-cp-def ParallelCom-def )
apply(erule par-ctranE ,simp)

apply(simp add:par-cp-def ParallelCom-def )
apply clarify
apply(erule par-cptn.cases,simp)
apply simp

apply(erule par-ctranE)
back
apply simp
done

theorem par-rgsound:
` c SAT [pre, rely, guar , post] =⇒
|= (ParallelCom c) SAT [pre, rely, guar , post]

apply(erule par-rghoare.induct)
apply(case-tac xs,simp)
apply(simp add:par-com-validity-def par-comm-def )
apply clarify
apply(case-tac post=UNIV ,simp)
apply clarify
apply(drule ParallelEmpty)
apply assumption

149



apply simp
apply clarify
apply simp

apply(subgoal-tac xs 6=[])
prefer 2
apply simp

apply(rename-tac a list)
apply(thin-tac xs = a # list)
apply(simp add:par-com-validity-def par-comm-def )
apply clarify
apply(rule conjI )
apply clarify
apply(erule-tac pre=pre and rely=rely and guar=guar and x=x and s=s and

xs=xs in four)
apply(assumption+)

apply clarify
apply (erule allE , erule impE , assumption,erule rgsound)

apply(assumption+)
apply clarify
apply(erule-tac pre=pre and rely=rely and post=post and x=x and s=s and
xs=xs in five)

apply(assumption+)
apply clarify
apply (erule allE , erule impE , assumption,erule rgsound)

apply(assumption+)
done

end

3.6 Concrete Syntax
theory RG-Syntax
imports RG-Hoare Quote-Antiquote
begin

abbreviation Skip :: ′a com (‹SKIP›)
where SKIP ≡ Basic id

notation Seq (‹(-;;/ -)› [60 ,61 ] 60 )

syntax
-Assign :: idt ⇒ ′b ⇒ ′a com (‹(´- :=/ -)› [70 , 65 ] 61 )
-Cond :: ′a bexp ⇒ ′a com ⇒ ′a com ⇒ ′a com (‹(0IF -/ THEN -/ ELSE

-/FI )› [0 , 0 , 0 ] 61 )
-Cond2 :: ′a bexp ⇒ ′a com ⇒ ′a com (‹(0IF - THEN - FI )› [0 ,0 ]

56 )
-While :: ′a bexp ⇒ ′a com ⇒ ′a com (‹(0WHILE - /DO - /OD)›

[0 , 0 ] 61 )
-Await :: ′a bexp ⇒ ′a com ⇒ ′a com (‹(0AWAIT - /THEN /-

150



/END)› [0 ,0 ] 61 )
-Atom :: ′a com ⇒ ′a com (‹(〈-〉)› 61 )
-Wait :: ′a bexp ⇒ ′a com (‹(0WAIT - END)› 61 )

translations
´x := a ⇀ CONST Basic «´(-update-name x (λ-. a))»
IF b THEN c1 ELSE c2 FI ⇀ CONST Cond {|b|} c1 c2
IF b THEN c FI ⇀↽ IF b THEN c ELSE SKIP FI
WHILE b DO c OD ⇀ CONST While {|b|} c
AWAIT b THEN c END ⇀↽ CONST Await {|b|} c
〈c〉 ⇀↽ AWAIT CONST True THEN c END
WAIT b END ⇀↽ AWAIT b THEN SKIP END

nonterminal prgs

syntax
-PAR :: prgs ⇒ ′a (‹COBEGIN//-//COEND› 60 )
-prg :: ′a ⇒ prgs (‹-› 57 )
-prgs :: [ ′a, prgs] ⇒ prgs (‹-//‖//-› [60 ,57 ] 57 )

translations
-prg a ⇀ [a]
-prgs a ps ⇀ a # ps
-PAR ps ⇀ ps

syntax
-prg-scheme :: [ ′a, ′a, ′a, ′a] ⇒ prgs (‹SCHEME [- ≤ - < -] -› [0 ,0 ,0 ,60 ] 57 )

translations
-prg-scheme j i k c ⇀↽ (CONST map (λi. c) [j..<k])

Translations for variables before and after a transition:
syntax

-before :: id ⇒ ′a (‹º-›)
-after :: id ⇒ ′a (‹ª-›)

translations
ºx ⇀↽ x ´CONST fst
ªx ⇀↽ x ´CONST snd

print-translation ‹
let

fun quote-tr ′ f (t :: ts) =
Term.list-comb (f $ Syntax-Trans.quote-tr ′ syntax-const ‹-antiquote› t,

ts)
| quote-tr ′ - - = raise Match;

val assert-tr ′ = quote-tr ′ (Syntax.const syntax-const ‹-Assert›);

151



fun bexp-tr ′ name ((Const (const-syntax ‹Collect›, -) $ t) :: ts) =
quote-tr ′ (Syntax.const name) (t :: ts)

| bexp-tr ′ - - = raise Match;

fun assign-tr ′ (Abs (x, -, f $ k $ Bound 0 ) :: ts) =
quote-tr ′ (Syntax.const syntax-const ‹-Assign› $ Syntax-Trans.update-name-tr ′

f )
(Abs (x, dummyT , Syntax-Trans.const-abs-tr ′ k) :: ts)

| assign-tr ′ - = raise Match;
in
[(const-syntax ‹Collect›, K assert-tr ′),
(const-syntax ‹Basic›, K assign-tr ′),
(const-syntax ‹Cond›, K (bexp-tr ′ syntax-const ‹-Cond›)),
(const-syntax ‹While›, K (bexp-tr ′ syntax-const ‹-While›))]

end
›

end

3.7 Examples
theory RG-Examples
imports RG-Syntax
begin

lemmas definitions [simp]= stable-def Pre-def Rely-def Guar-def Post-def Com-def

3.7.1 Set Elements of an Array to Zero
lemma le-less-trans2 : [[(j::nat)<k; i≤ j]] =⇒ i<k
by simp

lemma add-le-less-mono: [[ (a::nat) < c; b≤d ]] =⇒ a + b < c + d
by simp

record Example1 =
A :: nat list

lemma Example1 :
` COBEGIN

SCHEME [0 ≤ i < n]
(´A := ´A [i := 0 ],
{| n < length ´A |},
{| length ºA = length ªA ∧ ºA ! i = ªA ! i |},
{| length ºA = length ªA ∧ (∀ j<n. i 6= j −→ ºA ! j = ªA ! j) |},
{| ´A ! i = 0 |})

COEND
SAT [{| n < length ´A |}, {| ºA = ªA |}, {| True |}, {| ∀ i < n. ´A ! i = 0 |}]

apply(rule Parallel)

152



apply (auto intro!: Basic)
done

lemma Example1-parameterized:
k < t =⇒
` COBEGIN

SCHEME [k∗n≤i<(Suc k)∗n] (´A:=´A[i:=0 ],
{|t∗n < length ´A|},
{|t∗n < length ºA ∧ length ºA=length ªA ∧ ºA!i = ªA!i|},
{|t∗n < length ºA ∧ length ºA=length ªA ∧ (∀ j<length ºA . i 6=j −→ ºA!j =

ªA!j)|},
{|´A!i=0 |})
COEND

SAT [{|t∗n < length ´A|},
{|t∗n < length ºA ∧ length ºA=length ªA ∧ (∀ i<n. ºA!(k∗n+i)=ªA!(k∗n+i))|},
{|t∗n < length ºA ∧ length ºA=length ªA ∧
(∀ i<length ºA . (i<k∗n −→ ºA!i = ªA!i) ∧ ((Suc k)∗n ≤ i−→ ºA!i = ªA!i))|},
{|∀ i<n. ´A!(k∗n+i) = 0 |}]

apply(rule Parallel)
apply auto

apply(erule-tac x=k∗n +i in allE)
apply(subgoal-tac k∗n+i <length (A b))
apply force

apply(erule le-less-trans2 )
apply(case-tac t,simp+)
apply (simp add:add.commute)
apply(simp add: add-le-mono)

apply(rule Basic)
apply simp
apply clarify
apply (subgoal-tac k∗n+i< length (A x))
apply simp

apply(erule le-less-trans2 )
apply(case-tac t,simp+)
apply (simp add:add.commute)
apply(rule add-le-mono, auto)

done

3.7.2 Increment a Variable in Parallel
Two components
record Example2 =

x :: nat
c-0 :: nat
c-1 :: nat

lemma Example2 :
` COBEGIN

(〈 ´x:=´x+1 ;; ´c-0 :=´c-0 + 1 〉,

153



{|´x=´c-0 + ´c-1 ∧ ´c-0=0 |},
{|ºc-0 = ªc-0 ∧

(ºx=ºc-0 + ºc-1
−→ ªx = ªc-0 + ªc-1 )|},

{|ºc-1 = ªc-1 ∧
(ºx=ºc-0 + ºc-1
−→ ªx =ªc-0 + ªc-1 )|},

{|´x=´c-0 + ´c-1 ∧ ´c-0=1 |})
‖

(〈 ´x:=´x+1 ;; ´c-1 :=´c-1+1 〉,
{|´x=´c-0 + ´c-1 ∧ ´c-1=0 |},
{|ºc-1 = ªc-1 ∧

(ºx=ºc-0 + ºc-1
−→ ªx = ªc-0 + ªc-1 )|},

{|ºc-0 = ªc-0 ∧
(ºx=ºc-0 + ºc-1
−→ ªx =ªc-0 + ªc-1 )|},

{|´x=´c-0 + ´c-1 ∧ ´c-1=1 |})
COEND
SAT [{|´x=0 ∧ ´c-0=0 ∧ ´c-1=0 |},

{|ºx=ªx ∧ ºc-0= ªc-0 ∧ ºc-1=ªc-1 |},
{|True|},
{|´x=2 |}]

apply(rule Parallel)
apply simp-all
apply clarify
apply(case-tac i)
apply simp
apply(rule conjI )
apply clarify
apply simp

apply clarify
apply simp

apply simp
apply(rule conjI )
apply clarify
apply simp

apply clarify
apply simp
apply(subgoal-tac x=0 )
apply simp

apply arith
apply clarify
apply(case-tac xa, simp, simp)

apply clarify
apply simp
apply(erule-tac x=0 in all-dupE)
apply(erule-tac x=1 in allE ,simp)

apply clarify

154



apply(case-tac i,simp)
apply(rule Await)
apply simp-all

apply(clarify)
apply(rule Seq)
prefer 2
apply(rule Basic)
apply simp-all

apply(rule subset-refl)
apply(rule Basic)
apply simp-all
apply clarify
apply simp

apply(rule Await)
apply simp-all

apply(clarify)
apply(rule Seq)
prefer 2
apply(rule Basic)
apply simp-all

apply(rule subset-refl)
apply(auto intro!: Basic)
done

Parameterized
lemma Example2-lemma2-aux: j<n =⇒
(
∑

i=0 ..<n. (b i::nat)) =
(
∑

i=0 ..<j. b i) + b j + (
∑

i=0 ..<n−(Suc j) . b (Suc j + i))
apply(induct n)
apply simp-all

apply(simp add:less-Suc-eq)
apply(auto)

apply(subgoal-tac n − j = Suc(n− Suc j))
apply simp

apply arith
done

lemma Example2-lemma2-aux2 :
j≤ s =⇒ (

∑
i::nat=0 ..<j. (b (s:=t)) i) = (

∑
i=0 ..<j. b i)

by (induct j) simp-all

lemma Example2-lemma2 :
[[j<n; b j=0 ]] =⇒ Suc (

∑
i::nat=0 ..<n. b i)=(

∑
i=0 ..<n. (b (j := Suc 0 )) i)

apply(frule-tac b=(b (j:=(Suc 0 ))) in Example2-lemma2-aux)
apply(erule-tac t=sum (b(j := (Suc 0 ))) {0 ..<n} in ssubst)
apply(frule-tac b=b in Example2-lemma2-aux)
apply(erule-tac t=sum b {0 ..<n} in ssubst)
apply(subgoal-tac Suc (sum b {0 ..<j} + b j + (

∑
i=0 ..<n − Suc j. b (Suc j +

155



i)))=(sum b {0 ..<j} + Suc (b j) + (
∑

i=0 ..<n − Suc j. b (Suc j + i))))
apply(rotate-tac −1 )
apply(erule ssubst)
apply(subgoal-tac j≤j)
apply(drule-tac b=b and t=(Suc 0 ) in Example2-lemma2-aux2 )

apply(rotate-tac −1 )
apply(erule ssubst)
apply simp-all
done

lemma Example2-lemma2-Suc0 : [[j<n; b j=0 ]] =⇒
Suc (

∑
i::nat=0 ..< n. b i)=(

∑
i=0 ..< n. (b (j:=Suc 0 )) i)

by(simp add:Example2-lemma2 )

record Example2-parameterized =
C :: nat ⇒ nat
y :: nat

lemma Example2-parameterized: 0<n =⇒
` COBEGIN SCHEME [0≤i<n]

(〈 ´y:=´y+1 ;; ´C :=´C (i:=1 ) 〉,
{|´y=(

∑
i=0 ..<n. ´C i) ∧ ´C i=0 |},

{|ºC i = ªC i ∧
(ºy=(

∑
i=0 ..<n. ºC i) −→ ªy =(

∑
i=0 ..<n. ªC i))|},

{|(∀ j<n. i 6=j −→ ºC j = ªC j) ∧
(ºy=(

∑
i=0 ..<n. ºC i) −→ ªy =(

∑
i=0 ..<n. ªC i))|},

{|´y=(
∑

i=0 ..<n. ´C i) ∧ ´C i=1 |})
COEND

SAT [{|´y=0 ∧ (
∑

i=0 ..<n. ´C i)=0 |}, {|ºC=ªC ∧ ºy=ªy|}, {|True|}, {|´y=n|}]
apply(rule Parallel)
apply force
apply force
apply(force)
apply clarify
apply simp
apply simp
apply clarify
apply simp
apply(rule Await)
apply simp-all
apply clarify
apply(rule Seq)
prefer 2
apply(rule Basic)
apply(rule subset-refl)
apply simp+
apply(rule Basic)
apply simp
apply clarify

156



apply simp
apply(simp add:Example2-lemma2-Suc0 cong:if-cong)
apply simp-all
done

3.7.3 Find Least Element

A previous lemma:
lemma mod-aux :[[i < (n::nat); a mod n = i; j < a + n; j mod n = i; a < j]] =⇒
False
apply(subgoal-tac a=a div n∗n + a mod n )
prefer 2 apply (simp (no-asm-use))

apply(subgoal-tac j=j div n∗n + j mod n)
prefer 2 apply (simp (no-asm-use))

apply simp
apply(subgoal-tac a div n∗n < j div n∗n)
prefer 2 apply arith
apply(subgoal-tac j div n∗n < (a div n + 1 )∗n)
prefer 2 apply simp
apply (simp only:mult-less-cancel2 )
apply arith
done

record Example3 =
X :: nat ⇒ nat
Y :: nat ⇒ nat

lemma Example3 : m mod n=0 =⇒
` COBEGIN
SCHEME [0≤i<n]
(WHILE (∀ j<n. ´X i < ´Y j) DO

IF P(B!(´X i)) THEN ´Y :=´Y (i:=´X i)
ELSE ´X := ´X (i:=(´X i)+ n) FI

OD,
{|(´X i) mod n=i ∧ (∀ j<´X i. j mod n=i −→ ¬P(B!j)) ∧ (´Y i<m −→ P(B!(´Y

i)) ∧ ´Y i≤ m+i)|},
{|(∀ j<n. i 6=j −→ ªY j ≤ ºY j) ∧ ºX i = ªX i ∧

ºY i = ªY i|},
{|(∀ j<n. i 6=j −→ ºX j = ªX j ∧ ºY j = ªY j) ∧

ªY i ≤ ºY i|},
{|(´X i) mod n=i ∧ (∀ j<´X i. j mod n=i −→ ¬P(B!j)) ∧ (´Y i<m −→ P(B!(´Y

i)) ∧ ´Y i≤ m+i) ∧ (∃ j<n. ´Y j ≤ ´X i) |})
COEND
SAT [{| ∀ i<n. ´X i=i ∧ ´Y i=m+i |},{|ºX=ªX ∧ ºY=ªY |},{|True|},
{|∀ i<n. (´X i) mod n=i ∧ (∀ j<´X i. j mod n=i −→ ¬P(B!j)) ∧
(´Y i<m −→ P(B!(´Y i)) ∧ ´Y i≤ m+i) ∧ (∃ j<n. ´Y j ≤ ´X i)|}]

apply(rule Parallel)
— 5 subgoals left
apply force+

157



apply clarify
apply simp
apply(rule While)

apply force
apply force
apply force

apply (erule dvdE)
apply(rule-tac pre ′={| ´X i mod n = i ∧ (∀ j. j<´X i −→ j mod n = i −→
¬P(B!j)) ∧ (´Y i < n ∗ k −→ P (B!(´Y i))) ∧ ´X i<´Y i|} in Conseq)

apply force
apply(rule subset-refl)+

apply(rule Cond)
apply force

apply(rule Basic)
apply force

apply fastforce
apply force

apply force
apply(rule Basic)

apply simp
apply clarify
apply simp
apply (case-tac X x (j mod n) ≤ j)
apply (drule le-imp-less-or-eq)
apply (erule disjE)
apply (drule-tac j=j and n=n and i=j mod n and a=X x (j mod n) in

mod-aux)
apply auto

done

Same but with a list as auxiliary variable:
record Example3-list =

X :: nat list
Y :: nat list

lemma Example3-list: m mod n=0 =⇒ ` (COBEGIN SCHEME [0≤i<n]
(WHILE (∀ j<n. ´X !i < ´Y !j) DO

IF P(B!(´X !i)) THEN ´Y :=´Y [i:=´X !i] ELSE ´X := ´X [i:=(´X !i)+ n] FI
OD,
{|n<length ´X ∧ n<length ´Y ∧ (´X !i) mod n=i ∧ (∀ j<´X !i. j mod n=i −→
¬P(B!j)) ∧ (´Y !i<m −→ P(B!(´Y !i)) ∧ ´Y !i≤ m+i)|},
{|(∀ j<n. i 6=j −→ ªY !j ≤ ºY !j) ∧ ºX !i = ªX !i ∧

ºY !i = ªY !i ∧ length ºX = length ªX ∧ length ºY = length ªY |},
{|(∀ j<n. i 6=j −→ ºX !j = ªX !j ∧ ºY !j = ªY !j) ∧

ªY !i ≤ ºY !i ∧ length ºX = length ªX ∧ length ºY = length ªY |},
{|(´X !i) mod n=i ∧ (∀ j<´X !i. j mod n=i −→ ¬P(B!j)) ∧ (´Y !i<m −→ P(B!(´Y !i))
∧ ´Y !i≤ m+i) ∧ (∃ j<n. ´Y !j ≤ ´X !i) |}) COEND)
SAT [{|n<length ´X ∧ n<length ´Y ∧ (∀ i<n. ´X !i=i ∧ ´Y !i=m+i) |},

{|ºX=ªX ∧ ºY=ªY |},

158



{|True|},
{|∀ i<n. (´X !i) mod n=i ∧ (∀ j<´X !i. j mod n=i −→ ¬P(B!j)) ∧
(´Y !i<m −→ P(B!(´Y !i)) ∧ ´Y !i≤ m+i) ∧ (∃ j<n. ´Y !j ≤ ´X !i)|}]

apply (rule Parallel)
apply (auto cong del: image-cong-simp)
apply force
apply (rule While)

apply force
apply force

apply force
apply (erule dvdE)

apply(rule-tac pre ′={|n<length ´X ∧ n<length ´Y ∧ ´X ! i mod n = i ∧ (∀ j. j
< ´X ! i −→ j mod n = i −→ ¬ P (B ! j)) ∧ (´Y ! i < n ∗ k −→ P (B ! (´Y !
i))) ∧ ´X !i<´Y !i|} in Conseq)

apply force
apply(rule subset-refl)+

apply(rule Cond)
apply force

apply(rule Basic)
apply force

apply force
apply force

apply force
apply(rule Basic)

apply simp
apply clarify
apply simp
apply(rule allI )
apply(rule impI )+
apply(case-tac X x ! i≤ j)
apply(drule le-imp-less-or-eq)
apply(erule disjE)
apply(drule-tac j=j and n=n and i=i and a=X x ! i in mod-aux)

apply auto
done

end
theory Hoare-Parallel
imports OG-Examples Gar-Coll Mul-Gar-Coll RG-Examples
begin

end

159



Bibliography

[1] Leonor Prensa Nieto. Verification of Parallel Programs with the Owicki-
Gries and Rely-Guarantee Methods in Isabelle/HOL. PhD thesis, Tech-
nische Universität München, 2002.

[2] Tobias Nipkow and Leonor Prensa Nieto. Owicki/Gries in Isabelle/HOL.
In J.-P. Finance, editor, Fundamental Approaches to Software Engineer-
ing (FASE’99), volume 1577 of LNCS, pages 188–203. Springer, 1999.

[3] Leonor Prensa Nieto. The Rely-Guarantee method in Isabelle/HOL. In
P. Degano, editor, European Symposium on Programming (ESOP’03),
volume 2618, pages 348–362, 2003.

[4] Leonor Prensa Nieto and Javier Esparza. Verifying single and multi-
mutator garbage collectors with Owicki/Gries in Isabelle/HOL. In
M. Nielsen and B. Rovan, editors, Mathematical Foundations of Com-
puter Science (MFCS 2000), volume 1893 of LNCS, pages 619–628.
Springer-Verlag, 2000.

160


	The Owicki-Gries Method
	Abstract Syntax
	Operational Semantics
	The Transition Relation
	Definition of Semantics

	Validity of Correctness Formulas
	The Proof System
	Soundness
	Soundness of the System for Atomic Programs
	Soundness of the System for Component Programs
	Soundness of the System for Parallel Programs

	Generation of Verification Conditions
	Concrete Syntax
	Examples
	Mutual Exclusion
	Parallel Zero Search
	Producer/Consumer
	Parameterized Examples


	Case Study: Single and Multi-Mutator Garbage Collection Algorithms
	Formalization of the Memory
	Proofs about Graphs

	The Single Mutator Case
	The Mutator
	The Collector
	Interference Freedom

	The Multi-Mutator Case
	The Mutators
	The Collector
	Interference Freedom


	The Rely-Guarantee Method
	Abstract Syntax
	Operational Semantics
	Semantics of Component Programs
	Semantics of Parallel Programs
	Computations
	Modular Definition of Computation
	Equivalence of Both Definitions.

	Validity of Correctness Formulas
	Validity for Component Programs.
	Validity for Parallel Programs.
	Compositionality of the Semantics
	The Semantics is Compositional

	The Proof System
	Proof System for Component Programs
	Proof System for Parallel Programs

	Soundness
	Soundness of the System for Component Programs
	Soundness of the System for Parallel Programs

	Concrete Syntax
	Examples
	Set Elements of an Array to Zero
	Increment a Variable in Parallel
	Find Least Element



