Hoare Logic for Parallel Programs

Leonor Prensa Nieto

January 18, 2026

Abstract

In the following theories a formalization of the Owicki-Gries and the rely-
guarantee methods is presented. These methods are widely used for cor-
rectness proofs of parallel imperative programs with shared variables. We
define syntax, semantics and proof rules in Isabelle/HOL. The proof rules
also provide for programs parameterized in the number of parallel compo-
nents. Their correctness w.r.t. the semantics is proven. Completeness proofs
for both methods are extended to the new case of parameterized programs.
(These proofs have not been formalized in Isabelle. They can be found
in [1].) Using this formalizations we verify several non-trivial examples for
parameterized and non-parameterized programs. For the automatic gener-
ation of verification conditions with the Owicki-Gries method we define a
tactic based on the proof rules. The most involved examples are the veri-
fication of two garbage-collection algorithms, the second one parameterized
in the number of mutators.
For excellent descriptions of this work see [2, 4, 1, 3].

Contents

1 The Owicki-Gries Method 4
1.1 Abstract Syntax 4
1.2 Operational Semantics 5

1.2.1 The Transition Relation)
1.2.2 Definition of Semantics 6
1.3 Validity of Correctness Formulas 11
1.4 The Proof System 11
1.5 Soundness 12
1.5.1 Soundness of the System for Atomic Programs 13
1.5.2 Soundness of the System for Component Programs . . 14
1.5.3 Soundness of the System for Parallel Programs 16
1.6 Generation of Verification Conditions 20
1.7 Concrete Syntax 30
1.8 Exampleso 33
1.8.1 Mutual Exclusion. 33
1.8.2 Parallel Zero Search 38
1.8.3 Producer/Consumer 40
1.8.4 Parameterized Examples 42

2 Case Study: Single and Multi-Mutator Garbage Collection

Algorithms 45
2.1 Formalization of the Memory 45
2.1.1 Proofs about Graphs 46
2.2 The Single Mutator Case 53
2.2.1 The Mutator 54
2.2.2 The Collector 55
2.2.3 Interference Freedom 63
2.3 The Multi-Mutator Case 71
2.3.1 The Mutators 71
2.3.2 The Collector 74
2.3.3 Interference Freedom 81

3 The Rely-Guarantee Method

3.1
3.2

3.3

3.4

3.5

3.6
3.7

Abstract Syntax
Operational Semantics,
3.2.1 Semantics of Component Programs
3.2.2 Semantics of Parallel Programs
3.2.3 Computations
3.2.4 Modular Definition of Computation
3.2.5 Equivalence of Both Definitions.
Validity of Correctness Formulas
3.3.1 Validity for Component Programs.
3.3.2 Validity for Parallel Programs.
3.3.3 Compositionality of the Semantics
3.3.4 The Semantics is Compositional
The Proof System o0
3.4.1 Proof System for Component Programs
3.4.2 Proof System for Parallel Programs
Soundness
3.5.1 Soundness of the System for Component Programs . .
3.5.2 Soundness of the System for Parallel Programs
Concrete Syntax
Examples
3.7.1 Set Elements of an Array to Zero
3.7.2 Increment a Variable in Parallel
3.7.3 Find Least Element

[Pure]

[tHoL]

| Graph | | OG_Com | | Quote_Antiquote | RG_Com |

RG_Syntax

OG_Tactics

RG_Examples

OG_Syntax

/

Gar_Coll | | Mul_Gar_Coll | | OG_Examples

| Hoare_Parallel |

RG_Tran

RG_Hoare

Chapter 1

The Owicki-Gries Method

1.1 Abstract Syntax

theory OG-Com imports Main begin

Type abbreviations for boolean expressions and assertions:

type-synonym ’a bezp = 'a set
type-synonym ’‘a assn = 'a set

The syntax of commands is defined by two mutually recursive datatypes: ‘a
ann-com for annotated commands and ‘a com for non-annotated commands.

datatype ’a ann-com =
AnnBasic ('a assn) ('a = 'a)
| AnnSeq ('a ann-com) (‘a ann-com)
| AnnCondl ('a assn) ('a bexp) ('a ann-com) (‘a ann-com)
| AnnCond2 (‘a assn) ('a bexp) ('a ann-com)
| AnnWhile (‘a assn) (‘a bexp) (‘a assn) (‘a ann-com)
| AnnAwait (‘a assn) (‘a bexp) (‘a com)
and ‘a com =
Parallel (‘a ann-com option x 'a assn) list
| Basic ('a = 'a)
| Seq (‘a com) ('a com)
| Cond (‘a bexp) (‘a com) (‘a com)
| While (‘a bexp) (‘a assn) ('a com)

The function pre extracts the precondition of an annotated command:

primrec pre ::'a ann-com = 'a assn where
pre (AnnBasic r f) = r

| pre (AnnSeq cl ¢2) = pre cl

| pre (AnnCondl r b cl ¢2) = r

| pre (AnnCond2 b c) = r

| pre (AnnWhile rbic) =r

| pre (AnnAwait b ¢) = r

Well-formedness predicate for atomic programs:

primrec atom-com :: ‘a com = bool where
atom-com (Parallel Ts) = False
| atom-com (Basic f) = True
| atom-com (Seq c1 ¢2) = (atom-com c1 N atom-com c2)
| atom-com (Cond b cZ c2) = (atom-com c1 N atom-com c2)
| atom-com (While b i ¢) = atom-com ¢

end

1.2 Operational Semantics

theory OG-Tran imports OG-Com begin

type-synonym ‘a ann-com-op = ('a ann-com) option
type-synonym ‘a ann-triple-op = ('a ann-com-op x 'a assn)

primrec com :: 'a ann-triple-op = ’'a ann-com-op where
com (¢, q) = ¢

primrec post :: 'a ann-triple-op = 'a assn where
post (¢, q) = q

definition All-None :: 'a ann-triple-op list = bool where
All-None Ts =V (¢, q) € set Ts. ¢ = None

1.2.1 The Transition Relation

inductive-set
ann-transition :: (('a ann-com-op x 'a) x ('a ann-com-op x 'a)) set
and transition :: ((‘a com x 'a) x (a com x 'a)) set
and ann-transition’ :: (‘a ann-com-op x 'a) = (‘a ann-com-op x ’a) = bool
(«- —1— -[81,81] 100)
and transition’ :: (‘a com x 'a) = (‘a com x 'a) = bool
(- —P1— [81,81] 100)
and transitions :: (‘a com x 'a) = (‘a com x 'a) = bool
(«- —Px— -[81,81] 100)
where
con-0 —1— con-1 = (con-0, con-1) € ann-transition
| con-0 —P1— con-1 = (con-0, con-1) € transition
| con-0 —Px— con-1 = (con-0, con-1) € transition*

| AnnBasic: (Some (AnnBasic r f), s) —1— (None, f)
| AnnSeql: (Some c0, s) —1— (None, t) =
(Some (AnnSeq c0 c1), s) —1— (Some c1, t)
| AnnSeq2: (Some c0, s) —1— (Some ¢2, t) =
(Some (AnnSeq c0 c1), s) —1— (Some (AnnSeq c2 c1), t)

| AnnCond1T: s € b = (Some (AnnCondl r b ¢l c2), s) —1— (Some ci, s)

| AnnCond1F: s ¢ b = (Some (AnnCondl r b cl ¢2), s) —1— (Some c2, s)

| AnnCond2T: s € b = (Some (AnnCond2 r b c), s) —1— (Some ¢, s)
| AnnCond2F: s ¢ b = (Some (AnnCond2 r b c), s) —1— (None, s)

| AnnWhileF: s ¢ b = (Some (AnnWhile r b i ¢), s) —1— (None, s)
| AnnWhileT: s € b = (Some (AnnWhile r b i ¢), s) —1—
(Some (AnnSeq ¢ (AnnWhile i b i c)), s)

| AnnAwait: | s € b; atom-com ¢; (¢, s) —Px— (Parallel [], t) | =
(Some (AnnAwait r b ¢), s) —1— (None, t)

| Parallel: [i<length Ts; Tsli = (Some c, q); (Some ¢, s) —1— (r, t)]
= (Parallel Ts, s) —P1— (Parallel (Ts [i:=(r, q)]), t)

| Basic: (Basic f, s) —P1— (Parallel [], f s)

| Seq1: All-None Ts = (Seq (Parallel Ts) ¢, s) —P1— (c, s)
| Seq2: (c0,s) —P1— (c2,t) = (Seq c0 cl, s) —P1— (Seq c2 c1, t)

| CondT: s € b= (Cond b cl c2, s) —P1— (c1, s)
| CondF: s ¢ b = (Cond b cl c2, s) —P1— (c2, s)

| WhileF: s ¢ b = (While b i ¢, s) —P1— (Parallel [], s)
| WhileT: s € b = (While b i c, s) —P1— (Seq ¢ (While b i c), s)

monos rtrancl-mono

The corresponding abbreviations are:

abbreviation
ann-transition-n :: (‘a ann-com-op X 'a) = nat = ('a ann-com-op x 'a)
= bool (- —-— -»[81,81] 100) where
con-0 —n— con-1 = (con-0, con-1) € ann-transition ~ n

abbreviation
ann-transitions :: ('a ann-com-op X 'a) = ('a ann-com-op x 'a) = bool
(¢- —x— -»[81,81] 100) where
con-0 —x— con-1 = (con-0, con-1) € ann-transition*

abbreviation
transition-n :: (‘a com x 'a) = nat = (‘a com x 'a) = bool
(¢- =P-— -[81,81,81] 100) where
con-0 —Pn— con-1 = (con-0, con-1) € transition ~ n

1.2.2 Definition of Semantics

definition ann-sem :: 'a ann-com = 'a = 'a set where
ann-sem ¢ = As. {t. (Some ¢, s) —x— (None, t)}

definition ann-SEM :: 'a ann-com = 'a set = 'a set where
ann-SEM ¢ S = | (ann-sem ¢ * S)

definition sem :: ‘a com = 'a = 'a set where
sem ¢ = As. {t. 3T5. (¢, s) —Px— (Parallel Ts, t) N All-None Ts}

definition SEM :: 'a com = 'a set = 'a set where

SEM ¢ S =J(semc “95)

abbreviation Omega :: 'a com («Q» 63)
where Q = While UNIV UNIV (Basic id)

primrec fwhile :: 'a bexp = 'a com = nat = 'a com where
fwhile b ¢ 0 = Q
| fwhile b ¢ (Suc n) = Cond b (Seq ¢ (fwhile b ¢ n)) (Basic id)

Proofs

declare ann-transition-transition.intros [intro)
inductive-cases transition-cases:

(Parallel T s) —P1— t

(Basic f, s) —P1— ¢

(Seq cl c2,s) —P1—t

(Cond b cl c2,s) —P1—t

(While bic, s) —P1—t

lemma Parallel-empty-lemma [rule-format (no-asm)]:
(Parallel [),s) —Pn— (Parallel Ts,t) — Ts=[] A n=0 A s=t

apply (induct n)

apply(simp (no-asm))

apply clarify

apply(drule relpow-Suc-D2)

apply (force elim:transition-cases)

done

lemma Parallel-AlliNone-lemma [rule-format (no-asm)]:

All-None Ss — (Parallel Ss,s) —Pn— (Parallel Ts,t) — Ts=Ss A n=0 A s=t
apply (induct n)

apply(simp (no-asm))

apply clarify

apply(drule relpow-Suc-D2)

apply clarify

apply(erule transition-cases,simp-all)

apply(force dest:nth-mem simp add:All-None-def)

done

lemma Parallel-AllNone: All-None Ts => (SEM (Parallel Ts) X) = X
apply (unfold SEM-def sem-def)
apply auto

apply(drule rtrancl-imp-UN-relpow)
apply clarify

apply(drule Parallel-AllNone-lemma)
apply auto

done

lemma Parallel-empty: Ts=[] = (SEM (Parallel Ts) X) = X
apply(rule Parallel-AllNone)

apply(simp add:All-None-def)

done

Set of lemmas from Apt and Olderog "Verification of sequential and concur-
rent programs", page 63.

lemma L3-5i: XCY = SEMc¢c X C SEMcY
apply (unfold SEM-def)

apply force
done

lemma L3-5ii-lemmal:
[(c1, s1) —Px— (Parallel Ts, s2); All-None Ts;
(c2, s2) —Px— (Parallel Ss, s3); All-None Ss |
= (Seq c1 ¢2, s1) —Px— (Parallel Ss, s3)
apply(erule converse-rtrancl-induct2)
apply (force intro:converse-rtrancl-into-rtrancl)+
done

lemma L3-5ii-lemma2 [rule-format (no-asm)):

Vel ¢2st. (Seq ¢l 2, s) —Pn— (Parallel Ts, t) —
(All-None Ts) — (3y m Rs. (cl1,s) —Px— (Parallel Rs, y) A
(All-None Rs) A (c2, y) —Pm— (Parallel Ts, t) A m < n)

apply (induct n)

apply (force)

apply(safe dest!: relpow-Suc-D2)

apply(erule transition-cases,simp-all)

apply (fast introl: le-Sucl)

apply (fast introl: le-Sucl elim!: relpow-imp-rtrancl converse-rtrancl-into-rtrancl)

done

lemma L3-5ii-lemmas3:

[(Seq c1 c¢2,s) —Px— (Parallel Ts,t); All-None Ts] =
(3y Rs. (c1,s) —Px— (Parallel Rs,y) N All-None Rs
A (c2,y) —Px— (Parallel Ts,t))

apply(drule rtrancl-imp-UN-relpow)

apply(fast dest: L3-5ii-lemma2 relpow-imp-rtrancl)

done

lemma L3-5ii: SEM (Seq ¢l ¢2) X = SEM ¢2 (SEM c1 X)
apply (unfold SEM-def sem-def)
apply auto

apply/(fast dest: L3-5ii-lemma3)
apply(fast elim: L3-5ii-lemmal)
done

lemma L3-5iii: SEM (Seq (Seq c1 ¢2) ¢3) X = SEM (Seq c1 (Seq c2 ¢3)) X
apply (simp (no-asm) add: L3-5i7)
done

lemma L3-5iv:
SEM (Cond b c1 ¢2) X = (SEM c¢1 (X N'b)) Un (SEM c2 (X N (=b)))
apply (unfold SEM-def sem-def)
apply auto
apply(erule converse-rtranclE)
prefer 2
apply (erule transition-cases,simp-all)
apply(fast intro: converse-rtrancl-into-rtrancl elim: transition-cases)—+
done

lemma L3-5v-lemmal [rule-format]:
(S,s) =Pn— (T,t) — S=Q — (=(3 Rs. T=(Parallel Rs) N All-None Rs))
apply (unfold UNIV-def)
apply(rule nat-less-induct)
apply safe
apply(erule relpow-E2)
apply simp-all
apply(erule transition-cases)
apply simp-all
apply(erule relpow-E2)
apply(simp add: Id-def)
apply (erule transition-cases,simp-all)
apply clarify
apply(erule transition-cases,simp-all)
apply(erule relpow-E2,simp)
apply clarify
apply (erule transition-cases)
apply simp+

apply clarify

apply(erule transition-cases)
apply simp-all
done

lemma L3-5v-lemma2: [(§2, s) —Px— (Parallel Ts, t); All-None Ts | = False
apply(fast dest: rtrancl-imp-UN-relpow L3-5v-lemmal)
done

lemma L3-5v-lemma3: SEM (Q) S = {}
apply (unfold SEM-def sem-def)
apply(fast dest: L3-5v-lemma?2)

done

lemma L3-5v-lemmad [rule-format]:

Vs. (While b i ¢, s) —Pn— (Parallel Ts, t) — All-None Ts —
(3 k. (fwhile b ¢ k, s) —Px— (Parallel Ts, t))

apply(rule nat-less-induct)

apply safe

apply(erule relpow-E2)

apply safe

apply (erule transition-cases,simp-all)

apply (rule-tac z = 1 in exl)

apply(force dest: Parallel-empty-lemma intro: converse-rtrancl-into-rtrancl simp

add: Id-def)

apply safe

apply (drule L3-5ii-lemmaZ2)

apply safe

apply(drule le-imp-less-Suc)

apply (erule allE |, erule impFE, assumption)

apply (erule allE |, erule impE, assumption)

apply safe

apply (rule-tac x = k+1 in exl)

apply(simp (no-asm))

apply(rule converse-rtrancl-into-rtrancl)
apply fast

apply(fast elim: L3-5ii-lemmal)

done

lemma L3-5v-lemmad [rule-format]:

Vs. (fwhile b ¢ k, s) —Px— (Parallel Ts, t) — All-None Ts —
(While b i ¢, s) —Px— (Parallel Ts,t)

apply (induct k)

apply(force dest: L3-5v-lemmaZ2)

apply safe

apply(erule converse-rtranclE)

apply simp-all

apply (erule transition-cases,simp-all)

apply(rule converse-rtrancl-into-rtrancl)
apply (fast)

apply(fast elim!: L3-5ii-lemmal dest: L3-5ii-lemmad)

apply(drule rtrancl-imp-UN-relpow)

apply clarify

apply(erule relpow-E2)

apply simp-all

apply(erule transition-cases,simp-all)

apply(fast dest: Parallel-empty-lemma)

done

lemma L3-5v: SEM (While b i ¢) = (Ax. (Uk. SEM (fwhile b ¢ k) z))
apply/(rule ext)

10

apply (simp add: SEM-def sem-def)
apply safe

apply(drule rtrancl-imp- UN-relpow,simp)
apply clarify

apply(fast dest:L3-5v-lemma4)
apply(fast intro: L3-5v-lemmad)

done

1.3 Validity of Correctness Formulas

definition com-validity :: 'a assn = 'a com = 'a assn = bool («(3||=-// -//-)
[90,55,90] 50) where
l=pcqg=SEMcpCyq

definition ann-com-validity :: 'a ann-com = 'a assn = bool (= - -» [60,90] 45)
where
E cq=ann-SEM ¢ (pre ¢) C q

end

1.4 The Proof System

theory OG-Hoare imports OG-Tran begin

primrec assertions :: ‘a ann-com = ('a assn) set where
assertions (AnnBasic r f) = {r}
| assertions (AnnSeq c1 ¢2) = assertions c1 U assertions c2
| assertions (AnnCondl b c1 c2) = {r} U assertions c1 U assertions c2
| assertions (AnnCond2 r b ¢) = {r} U assertions ¢
| assertions (AnnWhile r b i ¢) = {r, i} U assertions c
| assertions (AnnAwait r b ¢) = {r}

primrec atomics :: 'a ann-com = ('a assn X 'a com) set where
atomics (AnnBasic r f) = {(r, Basic f)}

| atomics (AnnSeq cl ¢2) = atomics c¢1 U atomics c2

| atomics (AnnCondl b cl ¢2) = atomics c1 U atomics c2

| atomics (AnnCond2 r b ¢) = atomics c

| atomics (AnnWhile r b i ¢) = atomics ¢

| atomics (AnnAwait 7b c) = {(r N b, ¢)}

primrec com :: 'a ann-triple-op = 'a ann-com-op where
com (¢, q) = ¢

primrec post :: 'a ann-triple-op = 'a assn where
post (¢, q) = q

definition interfree-aux :: (a ann-com-op X 'a assn x 'a ann-com-op) = bool
where

11

interfree-auz = A(co, g, co’). co'= None V
(V (r,a) € atomics (the co’). ||= (¢gNr) agqA
(co = None V (Vp € assertions (the co). |= (p N r) a p)))
definition interfree :: (('a ann-triple-op) list) = bool where
interfree Ts = Vi j. i < length Ts A j < length Ts N\ i # j —
interfree-auz (com (Ts!i), post (Tsli), com (Ts!j))
inductive
oghoare :: 'a assn = 'a com = 'a assn = bool («(3||— -//-//-)» [90,55,90] 50)
and ann-hoare :: 'a ann-com = 'a assn = bool («(2+ -// -) [60,90] 45)
where
AnnBasic: v C {s. fs € ¢} =+ (AnnBasic r f) q
| AnnSeq: [F cOprecl; - cl q] = + (AnnSeq c0 c1) ¢
| AnnCond1: [rN b Cprecl;t cl g r N —bC prec2; F c2d]
= F (AnnCondl r b ¢l ¢2) ¢
| AnnCond2: [rNbCprec;keqgrN—-b0C q] = F (AnnCond2r b ¢) ¢

| AnnWhile: [r Cd4;iNbCprec;kci;inN—bCq]
=t (AnnWhile r b i ¢) ¢

| AnnAwait: [atom-com ¢; ||[— (rNb) ¢ ¢] = F (AnnAwait r b ¢) ¢
| AnnConseq: [F cq; ¢ C ¢'] = F c ¢’
| Parallel: | Vi<length Ts. 3¢ q. Tsli = (Some ¢, q) A F ¢ ¢; interfree Ts |

= |- (Nie{i. i<length Ts}. pre(the(com(Tsli))))

Parallel Ts
(Nie{i. i<length Ts}. post(Ts!i))

| Basic: ||— {s. fs €q} (Basic f) ¢
| Seq: [ll=petrif=rec2q]=I-p(Seqctc2)q
| Cond: [|l—(pnbd)clgl—(pn=>b)c2q]=|—p (Condbdclc2)q
| While: [ll—(pNnb)cp] = |—p (Whilebic)(pn —b)

| Conseq: [p'Cps|l-pcqg:iqCq¢]=|-p"cq
1.5 Soundness

lemmas [cong del] = if-weak-cong

lemmas ann-hoare-induct = oghoare-ann-hoare.induct [THEN conjunct2)
lemmas oghoare-induct = oghoare-ann-hoare.induct [THEN conjunct1]

12

lemmas AnnBasic = oghoare-ann-hoare. AnnBasic
lemmas AnnSeq = oghoare-ann-hoare. AnnSeq
lemmas AnnCondl = oghoare-ann-hoare. AnnCond1
lemmas AnnCond2 = oghoare-ann-hoare. AnnCond2
lemmas AnnWhile = oghoare-ann-hoare. Ann While
lemmas AnnAwait = oghoare-ann-hoare. AnnAwait
lemmas AnnConseq = oghoare-ann-hoare. AnnConseq

lemmas Parallel = oghoare-ann-hoare. Parallel
lemmas Basic = oghoare-ann-hoare. Basic
lemmas Seq = oghoare-ann-hoare.Seq
lemmas Cond = oghoare-ann-hoare. Cond
lemmas While = oghoare-ann-hoare. While
lemmas Conseq = oghoare-ann-hoare. Conseq

1.5.1 Soundness of the System for Atomic Programs

lemma Basic-ntran [rule-format):

(Basic f, s) —Pn— (Parallel Ts, t) — All-None Ts — t = [s

apply (induct n)

apply(simp (no-asm))

apply(fast dest: relpow-Suc-D2 Parallel-empty-lemma elim: transition-cases)
done

lemma SEM-fwhile: SEM S (p N b) C p = SEM (fwhile b Sk) p C (p N —b)
apply (induct k)

apply(simp (no-asm) add: L3-5v-lemma3)

apply(simp (no-asm) add: L3-5iv L3-5ii Parallel-empty)

apply(rule conjI)

apply (blast dest: L3-5t)

apply(simp add: SEM-def sem-def id-def)

apply (auto dest: Basic-ntran rtrancl-imp-UN-relpow)

apply blast

done

lemma atom-hoare-sound [rule-format):
l— p ¢ ¢ — atom-com(c) — ||=p c ¢
apply (unfold com-validity-def)
apply (rule oghoare-induct)
apply simp-all
— Basic
apply(simp add: SEM-def sem-def)
apply(fast dest: rtrancl-imp-UN-relpow Basic-ntran)
— Seq
apply(rule impl)
apply(rule subset-trans)
prefer 2 apply simp
apply(simp add: L3-5ii L3-57)

13

— Cond
apply(simp add: L3-5iv)

— While

apply (force simp add: L3-5v dest: SEM-fwhile)
— Conseq

apply(force simp add: SEM-def sem-def)

done

1.5.2 Soundness of the System for Component Programs

inductive-cases ann-transition-cases:
(None,s) —1— (c', ')
(Some (AnnBasic r f),s) —1— (c¢’, ')
(Some (AnnSeq c1 ¢2), s) —1— (c', §')
(Some (AnnCond1 b cl ¢2), s) —1— (c', s)
(Some (AnnCond2 r b ¢), s) —1— (¢, §')
(Some (AnnWhile r b I ¢), s) —1— (¢, s')
(Some (AnnAwait v b ¢),s) —1— (c', s)

Strong Soundness for Component Programs:

lemma ann-hoare-case-analysis [rule-format]: = C ¢ —
(WVrf. C=AnnBasicrf — (3qg. r C{s. fs€ qt AN qgC q') A
(VceOcl. C = AnnSeq c0 ¢l — (q. ¢ C ¢’ AN cOprecl AN+ ¢l q)) A
(Vrbelc2 C=AnnCondl rbcl c2 — (3q. ¢ C ¢’ A
rNbCprecl ANFclgNrn—=bCprec2 AF c2q)) A
(Vrbec C=AnnCond2rbc —
FqgqC¢dArNbCprec ANEcgAhrn—=bCq))A
(Vribe C= AnnWhilerbic —
(3q. ¢CgdANrCiAiNbCprecAbciANiN=bCq)A
(Vrbe C=AnnAwait rbc— (3¢. ¢ C ¢’ ' A|— (rNb) cyq)))

apply(rule ann-hoare-induct)

apply simp-all

apply(rule-tac z=q in ezl simp)+

apply(rule conjl,clarify,simp,clarify,rule-tac z=qa in exI fast)+

apply (clarify,simp,clarify,rule-tac t=qa in ezl ,fast)

done

lemma Help: (transition N {(z,y). True}) = (transition)

apply force
done

lemma Strong-Soundness-aux-auzr [rule-format]:
(co, 8) —1— (co’, t) — (V. co = Some ¢ — s€ pre ¢ —»
(Vq. F ¢ ¢ — (if co’ = None then t€q else t € pre(the co’) A F (the co’) q)))
apply(rule ann-transition-transition.induct [THEN conjunctl])
apply simp-all
— Basic
apply clarify
apply(frule ann-hoare-case-analysis)

14

apply force
— Seq
apply clarify
apply(frule ann-hoare-case-analysis,simp)
apply(fast intro: AnnConseq)
apply clarify
apply(frule ann-hoare-case-analysis,simp)
apply clarify
apply(rule conjI)
apply force
apply(rule AnnSeq,simp)
apply(fast intro: AnnConseq)
— Cond1
apply clarify
apply(frule ann-hoare-case-analysis,simp)
apply(fast intro: AnnConseq)
apply clarify
apply(frule ann-hoare-case-analysis,simp)
apply (fast intro: AnnConseq)
— Cond2
apply clarify
apply(frule ann-hoare-case-analysis,simyp)
apply(fast intro: AnnConseq)
apply clarify
apply(frule ann-hoare-case-analysis,simp)
apply (fast intro: AnnConseq)
— While
apply clarify
apply(frule ann-hoare-case-analysis,simp)
apply force
apply clarify
apply(frule ann-hoare-case-analysis,simp)
apply auto
apply(rule AnnSeq)
apply simp
apply(rule AnnWhile)
apply simp-all
— Await
apply(frule ann-hoare-case-analysis,simp)
apply clarify
apply (drule atom-hoare-sound)
apply simp
apply(simp add: com-validity-def SEM-def sem-def)
apply(simp add: Help All-None-def)
apply force
done

lemma Strong-Soundness-aux: [(Some ¢, s) —x— (co, t); s € pre ¢; F ¢ q]
= if co = None then t € q else t € pre (the co) A+ (the co) g

15

apply (erule rtrancl-induct2)

apply simp

apply/(case-tac a)

apply(fast elim: ann-transition-cases)
apply (erule Strong-Soundness-auz-auz)
apply simp

apply simp-all

done

lemma Strong-Soundness: [(Some ¢, s)—x—(co, t); s € pre ¢; F ¢ q]
= if co = None then t€q else t € pre (the co)

apply (force dest:Strong-Soundness-aux)

done

lemma ann-hoare-sound: - ¢ ¢ = = ¢ ¢

apply (unfold ann-com-validity-def ann-SEM-def ann-sem-def)
apply clarify

apply(drule Strong-Soundness)

apply simp-all

done

1.5.3 Soundness of the System for Parallel Programs

lemma Parallel-length-post-P1: (Parallel Ts,s) —P1— (R', t) =
(3 Rs. R’ = (Parallel Rs) A (length Rs) = (length Ts) A
(Vi. i<length Ts — post(Rs ! i) = post(Ts ! i)))

apply(erule transition-cases)

apply simp

apply clarify

apply(case-tac i=ia)

apply simp+

done

lemma Parallel-length-post-PStar: (Parallel Ts,s) —Px— (R’ ;t) =
(3 Rs. R’ = (Parallel Rs) A (length Rs) = (length Ts) A
(Vi. i<length Ts — post(Ts ! i) = post(Rs ! i)))

apply(erule rtrancl-induct2)

apply(simp-all)

apply clarify

apply simp

apply(drule Parallel-length-post-P1)

apply auto

done

lemma assertions-lemma: pre ¢ € assertions c
apply (rule ann-com-com.induct [THEN conjunctl1])
apply auto

done

16

lemma interfree-auzl [rule-format):
(¢,8) —1— (r,t) —> (interfree-aux(cl, q1, ¢) — interfree-auz(cl, q1, r))
apply (rule ann-transition-transition.induct [THEN conjunctl])
apply (safe)
prefer 13
apply (rule Truel)
apply (simp-all add:interfree-auz-def)
apply force+
done

lemma interfree-auz2 [rule-format):

(¢,8) —1— (r,t) — (interfree-auz(c, q, a) —> interfree-auz(r, q, a))
apply (rule ann-transition-transition.induct [THEN conjunct1])
apply(force simp add:interfree-auz-def)+
done

lemma interfree-lemma: [(Some ¢, s) —1— (r, t);interfree Ts ; i<length Ts;
Tsli = (Some ¢, q) | = interfree (Ts[i:= (r, q)])

apply(simp add: interfree-def)

apply clarify

apply/(case-tac i=j)

apply(drule-tac t = ia in not-sym)

apply simp-all

apply (force elim: interfree-auzl)

apply (force elim: interfree-aux2 simp add:nth-list-update)

done

Strong Soundness Theorem for Parallel Programs:

lemma Parallel-Strong-Soundness-Seq-auz:
[interfree Ts; i<length Ts; com(Ts ! i) = Some(AnnSeq c0 c1) |
= interfree (Ts[i:=(Some c0, pre c1)])
apply(simp add: interfree-def)
apply clarify
apply/(case-tac i=j)
apply(force simp add: nth-list-update interfree-auz-def)
apply(case-tac i=ia)
apply(erule-tac z=ia in allF)
apply(force simp add:interfree-auz-def assertions-lemma)
apply simp
done

lemma Parallel-Strong-Soundness-Seq [rule-format (no-asm)]:
[Vi<length Ts. (if com(Tsli) = None then b € post(Ts!i)
else b € pre(the(com(Ts!%))) A b the(com(Ts!i)) post(Ts!i));
com(Ts ! i) = Some(AnnSeq c0 c1); i<length Ts; interfree Ts | =
(Via<length Ts. (if com(Ts[i:=(Some c0, pre c1)]! ia) = None
then b € post(Ts[i:=(Some c0, pre c1)]! ia)
else b € pre(the(com(Ts[i:=(Some c0, pre c1)]! ia))) A
F the(com(Ts[i:=(Some c0, pre c1)]! ia)) post(Ts[i:=(Some c0, pre c1)]! ia)))

17

A interfree (Ts[i:= (Some c0, pre c1)])
apply(rule conjI)

apply safe

apply(case-tac i=ia)

apply simp

apply(force dest: ann-hoare-case-analysis)

apply simp
apply(fast elim: Parallel-Strong-Soundness-Seq-aux)
done

lemma Parallel-Strong-Soundness-auz-auz [rule-format]:
(Some ¢, b) —1— (co, t) —
(V Ts. i<length Ts — com(Ts ! i) = Some ¢ —>
(Vi<length Ts. (if com(Ts ! i) = None then bepost(Ts!i)
else bepre(the(com(Ts!i))) A+ the(com(Tsli)) post(Tsli))) —
interfree Ts —
(Vj. j<length Ts N i#£j — (if com(Tslj) = None then tEpost(Ts!j)
else tepre(the(com(Ts!))) A b the(com(Tsf)) post(Tsly))))
apply(rule ann-transition-transition.induct [THEN conjunctl])
apply safe
prefer 11
apply(rule Truel)
apply simp-all
— Basic
apply(erule-tac = i in all-dupE, erule (1) notE impE)
apply(erule-tac x = j in allE | erule (1) notE impE)
apply(simp add: interfree-def)
apply(erule-tac © = j in allE simp)
apply(erule-tac © = i in allE, simp)
apply(drule-tac t = i in not-sym)
apply(case-tac com(Ts ! j)=None)
apply (force intro: converse-rtrancl-into-rtrancl
stmp add: interfree-aux-def com-validity-def SEM-def sem-def All-None-def)
apply(simp add:interfree-aua-def)
apply clarify
apply simp
apply(erule-tac z=pre y in ballE)
apply (force intro: converse-rtrancl-into-rtrancl
simp add: com-validity-def SEM-def sem-def All-None-def)
apply(simp add:assertions-lemma)
— Seqgs
apply(erule-tac x = Ts[i:=(Some c0, pre c1)] in allE)
apply(drule Parallel-Strong-Soundness-Seq,simp+)
apply (erule-tac x = Ts[i:=(Some c0, pre c1)] in allE)
apply(drule Parallel-Strong-Soundness-Seq,simp+)
— Await
apply(rule-tac © = i in allE , assumption , erule (1) notE impFE)
apply(erule-tac © = j in ollE | erule (1) notE impF)
apply(simp add: interfree-def)

18

apply(erule-tac z = j in allE simp)

apply(erule-tac z = i in allE, simp)

apply(drule-tac t = i in not-sym)

apply(case-tac com(Ts ! j)=None)

apply (force intro: converse-rtrancl-into-rtrancl simp add: interfree-aux-def
com-validity-def SEM-def sem-def All-None-def Help)

apply(simp add:interfree-auz-def)

apply clarify

apply simp

apply (erule-tac z=pre y in ballE)

apply (force intro: converse-rtrancl-into-rtrancl
stmp add: com-validity-def SEM-def sem-def All-None-def Help)

apply(simp add:assertions-lemma)

done

lemma Parallel-Strong-Soundness-aux [rule-format]:
[(Ts',s) —Px— (Rs',t); Ts' = (Parallel Ts); interfree Ts;
Vi. i<length Ts — (3¢ q. (Ts ! i) = (Some ¢, q) A s€(prec) At cq)] =
V Rs. Rs' = (Parallel Rs) — (Vj. j<length Rs —
(if com(Rs ! j) = None then t€post(Ts ! 7)
else tepre(the(com(Rs ! §))) A b the(com(Rs ! j)) post(Ts ! §))) A interfree Rs
apply (erule rtrancl-induct2)
apply clarify
— Base
apply force
— Induction step
apply clarify
apply(drule Parallel-length-post-PStar)
apply clarify
apply (ind-cases (Parallel Ts, s) —P1— (Parallel Rs, t) for Ts s Rs t)
apply(rule conjI)
apply clarify
apply/(case-tac i=j)
apply(simp split del:if-split)
apply(erule Strong-Soundness-auz-auz,simp+)
apply force
apply force
apply(simp split del: if-split)
apply(erule Parallel-Strong-Soundness-auz-auzx)
apply(simp-all add: split del:if-split)
apply force
apply(rule interfree-lemma)
apply simp-all
done

lemma Parallel-Strong-Soundness:

[(Parallel Ts, s) —Px— (Parallel Rs, t); interfree Ts; j<length Rs;

Vi. i<length Ts — (3¢ q. Ts ! i = (Some ¢, q) A s€pre c AFcq)] =
if com(Rs ! j) = None then t€post(Ts | j) else t€pre (the(com(Rs ! j)))

19

apply(drule Parallel-Strong-Soundness-aux)
apply simp+
done

lemma oghoare-sound [rule-format]: ||[— pc ¢ — ||=p c ¢
apply (unfold com-validity-def)
apply(rule oghoare-induct)
apply(rule Truel)+
— Parallel
apply(simp add: SEM-def sem-def)
apply (clarify, rename-tac x y i Ts”)
apply(frule Parallel-length-post-PStar)
apply clarify
apply (drule-tac j=i in Parallel-Strong-Soundness)
apply clarify
apply simp
apply force
apply simp
apply(erule-tac V = Vi. P i for P in thin-rl)
apply(drule-tac s = length Rs in sym)
apply(erule allE, erule impE, assumption)
apply (force dest: nth-mem simp add: All-None-def)
— Basic
apply(simp add: SEM-def sem-def)
apply(force dest: rtrancl-imp- UN-relpow Basic-ntran)
— Seq
apply(rule subset-trans)
prefer 2 apply assumption
apply(simp add: L3-5ii L3-517)
— Cond
apply(simp add: L3-5iv)
— While
apply(simp add: L3-5v)
apply (blast dest: SEM-fwhile)
— Conseq
apply (auto simp add: SEM-def sem-def)
done

NN~

end

1.6 Generation of Verification Conditions

theory OG-Tuctics
imports OG-Hoare
begin

lemmas ann-hoare-intros=AnnBasic AnnSeq AnnCondl AnnCond2 AnnWhile An-

nAwait AnnConseq
lemmas oghoare-intros=Parallel Basic Seq Cond While Conseq

20

lemma ParallelConseqRule:
[p € (Niefi. i<length Ts}. pre(the(com(Ts ! i))));
I— (Nie{i. i<length Ts}. pre(the(com(Ts ! 7))))
(Parallel Ts)
(Nie{i. i<length Ts}. post(Ts ! 7));
(Nie{i. i<length Ts}. post(Ts! i) C q]
= ||— p (Parallel Ts) q
apply (rule Conseq)
prefer 2
apply fast
apply assumption+
done

lemma SkipRule: p C ¢ = ||— p (Basic id) ¢
apply(rule oghoare-intros)
prefer 2 apply(rule Basic)
prefer 2 apply(rule subset-refl)
apply(simp add:Id-def)
done

lemma BasicRule: p C {s. (f s)€q} = ||— p (Basic f) ¢
apply(rule oghoare-intros)
prefer 2 apply(rule oghoare-intros)
prefer 2 apply(rule subset-refl)
apply assumption
done

lemma SeqRule: [||— pclr;||—rc2q] = ||— p (Seq ¢l ¢2) ¢

apply(rule Seq)
apply fast+
done

lemma CondRule:

[pC{s (s€6b — scw) A (s¢b — scw}; ||— wel g ||— w' 2 q]
= ||— p (Cond b cl c2) q

apply(rule Cond)

apply(rule Conseq)

prefer / apply(rule Conseq)

apply simp-all

apply force+

done

lemma WhileRule: [p C4; ||— (i Nb) ci; (i N (=) Cq]
= ||— p (While b ic) q

apply(rule Conseq)

prefer 2 apply(rule While)

apply assumption+

done

21

Three new proof rules for special instances of the AnnBasic and the An-
nAwait commands when the transformation performed on the state is the
identity, and for an AnnAwait command where the boolean condition is {s.
True}:

lemma AnnatomRule:
[atom-com(c); |— rc q] = F (AnnAwait r {s. True} c) q
apply(rule AnnAwait)
apply simp-all
done

lemma AnnskipRule:
r C ¢ = F (AnnBasic r id) q
apply(rule AnnBasic)
apply simp
done

lemma AnnwaitRule:
[(rnd) Cq] = F (AnnAwait r b (Basic id)) q
apply (rule AnnAwait)
apply simp
apply(rule BasicRule)
apply simp
done

Lemmata to avoid using the definition of map-ann-hoare, interfree-auz, in-
terfree-swap and interfree by splitting it into different cases:

lemma interfree-auz-rulel: interfree-aux(co, q, None)
by (simp add:interfree-auz-def)

lemma interfree-auz-rule2:
YV (R,r)€(atomics a). ||— (¢ N R) r ¢ = interfree-aux(None, g, Some a)
apply(simp add:interfree-auz-def)
apply (force elim:oghoare-sound)
done

lemma interfree-auz-rule3:
(V (R, r)€(atomics a). ||— (¢ N R) r ¢ A (Vp€E(assertions ¢). ||— (p N R) r p))
= interfree-aux(Some ¢, q, Some a)

apply(simp add:interfree-auz-def)

apply (force elim:oghoare-sound)

done

lemma AnnBasic-assertions:
[interfree-auz(None, r, Some a); interfree-auz(None, q, Some a)] =
interfree-auz(Some (AnnBasic r f), q, Some a)
apply(simp add: interfree-auz-def)
by force

22

lemma AnnSeg-assertions:
[interfree-aux(Some cl1, q, Some a); interfree-aux(Some c2, q, Some a)]—>
interfree-auz(Some (AnnSeq c1 ¢2), q, Some a)

apply(simp add: interfree-aux-def)

by force

lemma AnnCond1-assertions:
[interfree-aux(None, r, Some a); interfree-aux(Some cl1, q, Some a);
interfree-auz(Some c2, q, Some a)]=
interfree-auz(Some(AnnCondl r b ¢l ¢2), q, Some a)

apply(simp add: interfree-auz-def)

by force

lemma AnnCond2-assertions:
[interfree-aux(None, r, Some a); interfree-aux(Some ¢, g, Some a)]—>
interfree-auz(Some (AnnCond2 r b ¢), q, Some a)

apply(simp add: interfree-auz-def)

by force

lemma AnnWhile-assertions:
[interfree-aux(None, r, Some a); interfree-aux(None, i, Some a);
interfree-auz(Some ¢, q, Some a)]—=
interfree-auz(Some (AnnWhile v b i ¢), ¢, Some a)

apply(simp add: interfree-auz-def)

by force

lemma AnnAwait-assertions:
[interfree-aux(None, r, Some a); interfree-aux(None, q, Some a)]—
interfree-auz(Some (AnnAwait r b ¢), q, Some a)

apply(simp add: interfree-auz-def)

by force

lemma AnnBasic-atomics:
I— (¢ N r) (Basic f) ¢ = interfree-aux(None, g, Some (AnnBasic r f))
by (simp add: interfree-auz-def oghoare-sound)

lemma AnnSeqg-atomics:
[interfree-aux(Any, q, Some al); interfree-aux(Any, q, Some a2)]—=—
interfree-auz(Any, q, Some (AnnSeq al a2))

apply(simp add: interfree-auz-def)

by force

lemma AnnCond1-atomics:
[interfree-auxz(Any, q, Some al); interfree-aux(Any, q, Some a2)]=>
interfree-auz(Any, q, Some (AnnCondl r b al a2))

apply(simp add: interfree-auz-def)

by force

lemma AnnCond2-atomics:

23

interfree-auzr (Any, q, Some a)=> interfree-aux(Any, q, Some (AnnCond2 r b

a))

by (simp add: interfree-aua-def)

lemma AnnWhile-atomics: interfree-aux (Any, q, Some a)
= interfree-aux(Any, q, Some (AnnWhile r b i a))
by (simp add: interfree-aua-def)

lemma Annatom-atomics:
I— (¢ N 1) a ¢ = interfree-aux (None, q, Some (AnnAwait r {z. True} a))
by (simp add: interfree-aux-def oghoare-sound)

lemma AnnAwait-atomics:
I— (g N (rNbd) aq= interfree-auzx (None, q, Some (AnnAwait r b a))
by (simp add: interfree-auz-def oghoare-sound)

definition interfree-swap :: ('a ann-triple-op x ('a ann-triple-op) list) = bool where
interfree-swap == \(z, xs). V yEset xs. interfree-auz (com z, post x, com y)
A interfree-auz(com y, post y, com x)

lemma interfree-swap-Empty: interfree-swap (z, [])
by (simp add:interfree-swap-def)

lemma interfree-swap-List:
[interfree-aux (com x, post x, com y);
interfree-aux (com y, post y ,com x); interfree-swap (z, xs) |
= interfree-swap (z, y#s)

by (simp add:interfree-swap-def)

lemma interfree-swap-Map: ¥ k. i<k N k<j — interfree-aux (com z, post z, c k)
A interfree-aux (¢ k, Q k, com x)

= interfree-swap (xz, map (Ak. (¢ k, Q k)) [i..<j])

by (force simp add: interfree-swap-def less-diff-conv)

lemma interfree- Empty: interfree ||
by (simp add:interfree-def)

lemma interfree-List:
[interfree-swap(x, xs); interfree xs | = interfree (z#txs)
apply(simp add:interfree-def interfree-swap-def)
apply clarify
apply(case-tac 1)
apply/(case-tac j)
apply simp-all
apply(case-tac j,simp+)
done

lemma interfree-Map:
(Vij. a<i Ai<b A a<j A j<b A i#j — interfree-auz (c i, Q i, ¢ j))

24

= interfree (map (\k. (¢ k, Q k)) [a..<D])
by (force simp add: interfree-def less-diff-conv)

definition map-ann-hoare :: ((‘a ann-com-op * 'a assn) list) = bool (<[] -» [0]
45) where
[F] Ts == (Vi<length Ts. ¢ q. Ts'i=(Some ¢, q) A F ¢ q)

lemma MapAnnEmpty: [F] []
by (simp add:map-ann-hoare-def)

lemma MapAnnList: [F ¢ g ; [F] s | = [] (Some c¢,q)#xs
apply(simp add:map-ann-hoare-def)

apply clarify

apply (case-tac i,simp+)

done

lemma MapAnnMap:

Vk. i<k N k<j — F (ck) (Q k) = [F] map (M\k. (Some (¢ k), Q k)) [i..<J]
apply(simp add: map-ann-hoare-def less-diff-conv)
done

lemma ParallelRule:[[F] Ts ; interfree Ts |
= ||— (N ie{i. i<length Ts}. pre(the(com(Ts!7))))
Parallel Ts
(Niedi. i<length Ts}. post(Tsli))
apply (rule Parallel)
apply(simp add:map-ann-hoare-def)
apply simp
done

The following are some useful lemmas and simplification tactics to control
which theorems are used to simplify at each moment, so that the original
input does not suffer any unexpected transformation.

lemma Compl-Collect: —(Collect b) = {z. —(b z)}
by fast

lemma list-length: length [|=0 length (z#xs) = Suc(length xs)

by simp-all
lemma list-lemmas: length [|=0 length (z#xs) = Suc(length xs)

(z#xs) ! 0 =z (x#axs) ! Sucn=1as!n

by simp-all
lemma le-Suc-eg-insert: {i. i <Suc n} = insert n {i. i< n}

by auto
lemmas primrecdef-list = pre.simps assertions.simps atomics.simps atom-com.simps
lemmas my-simp-list = list-lemmas fst-conv snd-conv
not-less0 refl le-Suc-eq-insert Suc-not-Zero Zero-not-Suc nat.inject
Collect-mem-eq ball-simps option.simps primrecdef-list
lemmas ParallelConseg-list = INTER-eq Collect-conj-eq length-map length-upt length-append

25

ML «
fun before-interfree-simp-tac ctxt =

simp-tac (put-simpset HOL-basic-ss ctzt addsimps [@{thm com.simps}, @{thm
post.simps}])

fun interfree-simp-tac ctxt =
asm-simp-tac (put-simpset HOL-ss clat
addsimps [Q{thm split}, Q{thm ball-Un}, Q{thm ball-empty}] @ Q{thms my-simp-list})

fun ParallelConseq ctxt =
simp-tac (put-simpset HOL-basic-ss ctxt
addsimps @Q{thms ParallelConseg-list} @ Q{thms my-simp-list})
)

The following tactic applies tac to each conjunct in a subgoal of the form A
= al A a2 A .. A an returning n subgoals, one for each conjunct:
ML «
fun conjl-Tac ctzt tac © st = st |>
((EVERY [resolve-tac ctxt [congl] i,
conjl-Tac ctxt tac (i+1),
tac 7)) ORELSFE (tac 7))

Tactic for the generation of the verification conditions

The tactic basically uses two subtactics:

HoareRuleTac is called at the level of parallel programs, it uses the Par-
allelTac to solve parallel composition of programs. This verification
has two parts, namely, (1) all component programs are correct and
(2) they are interference free. HoareRuleTac is also called at the level
of atomic regions, i.e. () and AWAIT b THEN - END, and at each
interference freedom test.

AnnHoareRuleTac is for component programs which are annotated pro-
grams and so, there are not unknown assertions (no need to use the
parameter precond, see NOTE).

NOTE: precond(::bool) informs if the subgoal has the form ||— %p ¢
¢, in this case we have precond=False and the generated verification
condition would have the form ?p C ... which can be solved by rtac
subset-refl, if True we proceed to simplify it using the simplification
tactics above.

ML «

fun WipTac ctat i = resolve-tac ctxt Q{thms SeqRule} i THEN HoareRuleTac ctxt
false (i + 1)

26

and HoareRuleTac ctxt precond i st = st |>
((WipTac ctat i« THEN HoareRuleTac ctzt precond 7)
ORELSE
(FIRST[resolve-tac ctxt @Q{thms SkipRule} i,
resolve-tac ctrt Q{thms BasicRule} i,
EVERY [resolve-tac ctat @{thms ParallelConseqRule} i,
ParallelConseq ctxt (i42),
ParallelTac ctat (i+1),
ParallelConseq ctat i),
EVERY [resolve-tac ctat Q{thms CondRule} 1,
HoareRuleTac ctxt false (i+2),
HoareRuleTac ctat false (i+1)],
EVERY [resolve-tac ctzt @{thms WhileRule} i,
HoareRuleTac ctat true (i+1)],
K all-tac i]
THEN (if precond then (K all-tac i) else resolve-tac ctxt Q{thms subset-refl}

i)))

and AnnWipTac ctxt i = resolve-tac ctxt Q{thms AnnSeq} i THEN AnnHoareRule-
Tac ctat (i + 1)
and AnnHoareRuleTac ctxt i st = st |>
((AnnWipTac ctat ¢ THEN AnnHoareRuleTac ctxt i)
ORELSE
(FIRST[(resolve-tac ctxt Q{thms AnnskipRule}),

EVERY [resolve-tac ctat Q{thms AnnatomRule} 1,
HoareRuleTac ctat true (i+1)],

(resolve-tac ctxt Q{thms AnnwaitRule} 7),

resolve-tac ctzt @{thms AnnBasic} i,

EVERY [resolve-tac ctat Q{thms AnnCondl1} 1,
AnnHoareRuleTac ctat (i+3),
AnnHoareRuleTac ctat (i+1)],

EVERY [resolve-tac ctat Q{thms AnnCond2} 1,
AnnHoareRuleTac ctat (i+1)],

EVERY [resolve-tac ctxt @{thms AnnWhile} 1,
AnnHoareRuleTac ctat (i+2)],

EVERY [resolve-tac ctat @{thms AnnAwait} i,
HoareRuleTac ctat true (i+1)],

K all-tac 1]))

and ParallelTac ctat i = EVERY [resolve-tac ctet Q{thms ParallelRule} 1,
interfree-Tac ctat (i+1),
MapAnn-Tac ctat i)

and MapAnn-Tac ctxt i st = st |>
(FIRST[resolve-tac ctazt @{thms MapAnnEmpty} i,
EVERY [resolve-tac ctat @{thms MapAnnList} 1,
MapAnn-Tac ctxt (i+1),
AnnHoareRuleTac ctxt i),
EVERY [resolve-tac ctat @{thms MapAnnMap} i,

27

resolve-tac ctzt Q{thms alll} i,
resolve-tac ctat @{thms impl} i,
AnnHoareRuleTac ctxt i]])

and interfree-swap-Tac ctxt i st = st |>
(FIRST[resolve-tac ctxt @{thms interfree-swap-Empty} i,

EVERY [resolve-tac ctat Q{thms interfree-swap-List} 1,
interfree-swap-Tac ctat (i+2),
interfree-auz-Tac ctxt (i+1),
interfree-auz-Tac ctxt i |,

EVERY [resolve-tac ctat Q{thms interfree-swap-Map} 1,
resolve-tac ctzt Q{thms alll} i,
resolve-tac ctat Q{thms impl} i,
conjl-Tac ctat (interfree-auz-Tac ctat) i]])

and interfree-Tac ctxt i st = st |>
(FIRST[resolve-tac ctxt Q{thms interfree-Empty} i,

EVERY [resolve-tac ctat Q{thms interfree-List} i,
interfree-Tac ctxt (i+1),
interfree-swap-Tac ctat i),

EVERY [resolve-tac ctat Q{thms interfree-Map} i,
resolve-tac ctxt Q{thms alll} i,
resolve-tac ctzt Q{thms alll'} i,
resolve-tac ctxt @{thms impl} i,
interfree-auz-Tac ctzt i]])

and interfree-auz-Tac ctzt i = (before-interfree-simp-tac ctxt i) THEN
(FIRST[resolve-tac ctxt Q{thms interfree-aux-rulel} i,
dest-assertions-Tac ctxt i])

and dest-assertions-Tac ctzt i st = st |>
(FIRST|EVERY [resolve-tac ctxt Q{thms AnnBasic-assertions} i,

dest-atomics-Tac ctat (i+1),
dest-atomics-Tac ctat i),

EVERY [resolve-tac ctat @{thms AnnSeq-assertions} 1,
dest-assertions-Tac ctat (i+1),
dest-assertions-Tac ctat i),

EVERY [resolve-tac ctat Q{thms AnnCondI-assertions} i,
dest-assertions-Tac ctxt (i+2),
dest-assertions-Tac ctat (i+1),
dest-atomics-Tac ctat i),

EVERY [resolve-tac ctat Q{thms AnnCond2-assertions} i,
dest-assertions-Tac ctat (i+1),
dest-atomics-Tac ctat i),

EVERY [resolve-tac ctat Q{thms AnnWhile-assertions} 1,
dest-assertions-Tac ctxt (i+2),
dest-atomics-Tac ctat (i+1),
dest-atomics-Tac ctxt i),

EVERY [resolve-tac ctat @{thms AnnAwait-assertions} i,

28

dest-atomics-Tac ctat (i+1),
dest-atomics-Tac ctat i),
dest-atomics-Tac ctat i))

and dest-atomics-Tac ctxt © st = st |>
(FIRST[EVERY [resolve-tac ctxt Q{thms AnnBasic-atomics} i,
HoareRuleTac ctat true i),
EVERY [resolve-tac ctat @Q{thms AnnSeq-atomics} 1,
dest-atomics-Tac ctat (i+1),
dest-atomics-Tac ctat i),
EVERY [resolve-tac ctat Q{thms AnnCondI-atomics} 1,
dest-atomics-Tac ctat (i+1),
dest-atomics-Tac ctat i),
EVERY [resolve-tac ctat Q{thms AnnCond2-atomics} 1,
dest-atomics-Tac ctat i),
EVERY [resolve-tac ctat Q{thms AnnWhile-atomics} 1,
dest-atomics-Tac ctat i),
EVERY [resolve-tac ctat Q{thms Annatom-atomics} i,
HoareRuleTac ctxt true i,
EVERY [resolve-tac ctat @{thms AnnAwait-atomics} i,
HoareRuleTac ctat true i),
K all-tac i])
)

The final tactic is given the name oghoare:

ML ¢
fun oghoare-tac ctzt = SUBGOAL (fn (-, i) => HoareRuleTac ctxt true i)
)

Notice that the tactic for parallel programs oghoare-tac is initially invoked
with the value true for the parameter precond.

Parts of the tactic can be also individually used to generate the verification
conditions for annotated sequential programs and to generate verification
conditions out of interference freedom tests:

ML «
fun annhoare-tac ctzt = SUBGOAL (fn (-, i) => AnnHoareRuleTac ctzt 7)

fun interfree-auz-tac ctat = SUBGOAL (fn (-, i) => interfree-auz-Tac ctxt i)
)

The so defined ML tactics are then “exported” to be used in Isabelle proofs.

method-setup oghoare = «
Scan.succeed (SIMPLE-METHOD' o oghoare-tac)
verification condition generator for the oghoare logic

method-setup annhoare = «

Scan.succeed (SIMPLE-METHOD' o annhoare-tac)»
verification condition generator for the ann-hoare logic

29

method-setup interfree-auz = <
Scan.succeed (SIMPLE-METHOD' o interfree-auz-tac)»
verification condition generator for interference freedom tests

Tactics useful for dealing with the generated verification conditions:

method-setup conjl-tac = «
Scan.succeed (fn ctet => SIMPLE-METHOD' (conjl-Tac ctat (K all-tac)))»
verification condition generator for interference freedom tests

ML ¢
fun disjE-Tac ctzt tac i st = st |>
((EVERY [eresolve-tac ctat [disjE] 1,
disjE-Tac ctzt tac (i+1),
tac 7)) ORELSE (tac 1))

method-setup disjE-tac = «
Scan.succeed (fn ctet => SIMPLE-METHOD' (disjE-Tac ctzt (K all-tac)))»
verification condition generator for interference freedom tests

end

1.7 Concrete Syntax

theory Quote-Antiquote imports Main begin

syntax
-quote b= (‘a = 'b) (<(«-»)» [0] 1000)
-antiquote :: ('a = 'b) = b («"-» [1000] 1000)
-Assert i 'a = 'a set <({-})» [0] 1000)
translations

{b} —= CONST Collect «b»

parse-translation «
let
fun quote-tr [t] = Syntaz-Trans.quote-tr syntax-const-antiquoter t
| quote-tr ts = raise TERM (quote-tr, ts);
in [(syntax-const -quoter, K quote-tr)| end
)

end

theory OG-Syntax

imports OG-Tactics Quote-Antiquote
begin

Syntax for commands and for assertions and boolean expressions in com-
mands com and annotated commands ann-com.

30

abbreviation Skip :: ‘a com (<(SKIP»> 63)
where SKIP = Basic id

abbreviation AnnSkip :: ‘a assn = ’a ann-com (<-//SKIP» [90] 63)
where r SKIP = AnnBasic r id

notation
Seq (¢-,,/ - [65, 56] 55) and
AnnSeq («-;/ -» [60,61] 60)

syntax
-Assign widt = b= 'a com («(7-:=/ -) [70, 65] 61)
-AnnAssign i 'a assn = idt = 'b = 'a com («(- - :=/ -)» [90,70,65] 61)

translations
“z := a — CONST Basic « (-update-name x (A-. a))»
r 'z := a — CONST AnnBasic r « (-update-name z (A-. a))»

syntax

-AnnCondl :: 'a assn = 'a bexp = 'a ann-com = 'a ann-com = 'a ann-com

(«- //IF - JTHEN - JELSE - /FI> [90,0,0,0] 61)
-AnnCond2 :: 'a assn = 'a bexp = 'a ann-com = 'a ann-com

(< //IF - /THEN - /FI> [90,0,0] 61)
-AnnWhile :: 'a assn = 'a bexp = 'a assn = 'a ann-com = 'a ann-com

(«- //WHILE - /INV - / /DO -//OD> [90,0,0,0] 61)
-AnnAwait i 'a assn = 'a bexp = 'a com = 'a ann-com

(«- /JAWAIT - /THEN /- /END» [90,0,0] 61)
-AnnAtom ::'a assn = 'a com = 'a ann-com («-//(-)> [90,0] 61)
-AnnWait 2 ’a assn = 'a bexp = 'a ann-com («-//WAIT - END> [90,0] 61)
-Cond :: 'a bexp = 'a com = 'a com = 'a com

(«(0IF -/ THEN -/ ELSE -/ FI)) [0, 0, 0] 61)

-Cond?2 i 'a bexp = 'a com = 'a com (<IF - THEN - FI» [0,0] 56)
-While-inv :: 'a bexp = 'a assn = 'a com = 'a com

(«(OWHILE -/ INV - //DO - JOD)> [0, 0, 0] 61)

-While 2 'a bexp = 'a com = 'a com
(«(OWHILE - //DO -]OD)> [0, 0] 61)

translations
IF b THEN c1 ELSE ¢2 FI — CONST Cond {b} c1 c2
IF b THEN ¢ FI = IF b THEN ¢ ELSE SKIP FI
WHILE b INV i DO ¢ OD — CONST While {b} i c
WHILE b DO ¢ OD = WHILE b INV CONST undefined DO ¢ OD

r IF b THEN c1 ELSE ¢2 FI — CONST AnnCondl r {b} c1 c2
r IF b THEN ¢ FI — CONST AnnCond2 r {b} c

r WHILE b INV ¢ DO ¢ OD — CONST AnnWhile r {b]} i ¢

r AWAIT b THEN ¢ END — CONST AnnAwait r {{b} ¢

r (¢) &= r AWAIT CONST True THEN ¢ END

31

r WAIT b END = r AWAIT b THEN SKIP END

nonterminal prgs

syntax
-PAR :: prgs = 'a («COBEGIN//-//COEND:> [57] 56)
-prg :: ['a, 'a] = prys (x-//- [60, 90] 57)

prgs = ['a, 'a, prgs] = pros (-//-//1//~> 160.90,57) 57)

-prg-scheme :: ['a, 'a, 'a, 'a, 'a] = prygs
((SCHEME [- < - < -] -// - [0,0,0,60, 90] 57)

translations
-prg ¢ ¢ = [(CONST Some ¢, q)]
-prgs ¢ q ps = (CONST Some ¢, q) # ps
-PAR ps = CONST Parallel ps

-prg-scheme j i k ¢ ¢ = CONST map (Mi. (CONST Some ¢, q)) [j..<K]

print-translation ¢
let
fun quote-tr’ f (¢ :: ts) =
Term.list-comb (f $ Syntaz-Trans.quote-tr’ syntax-const (-antiquote) t,
ts)
| quote-tr’ - - = raise Match;

fun annquote-tr’ f (r = t = ts) =
Term.list-comb (f $ r $ Syntaz-Trans.quote-tr’ syntax-const <-antiquotes
t, ts)
| annquote-tr’ - - = raise Match;

val assert-tr’ = quote-tr’ (Syntax.const syntax-const-Assert));

fun bexp-tr’ name ((Const (const-syntax <Collecty, -) $ t) :: ts) =
quote-tr’ (Syntaz.const name) (¢ :: ts)
| bexp-tr’ - - = raise Match;

fun annbexp-tr’ name (r :: (Const (const-syntax<Collecty, -) $ t) :: ts) =
annguote-tr’ (Syntax.const name) (r :: t :: ts)
| annbexp-tr' - - = raise Match;

fun assign-tr’ (Abs (z, -, f $ k£ $ Bound 0) :: ts) =
quote-tr' (Syntaz.const syntax-const -Assigny $ Syntaz- Trans.update-name-tr’

/)
(Abs (z, dummyT, Syntaz-Trans.const-abs-tr’ k) :: ts)
| assign-tr’ - = raise Match;

fun annassign-tr’ (r :: Abs (z, -, f $ k£ $ Bound 0) :: ts) =
quote-tr' (Syntaz.const syntax-const <-AnnAssigny $ r $ Syntaz- Trans.update-name-tr’

32

(Abs (z, dummyT, Syntax-Trans.const-abs-tr’ k) :: ts)
| annassign-tr' - = raise Match;

fun Parallel-PAR [(Const (const-syntaz<Cons), -) $
(Const (const-syntax < Pairy, -) $ (Const (const-syntax Somey,-) § t1
)$12)8
Const (const-syntaz <Nils, -))] = Syntaz.const syntax-const:-prg> $
t1 $ 2
| Parallel-PAR [(Const (const-syntaxConsy, -) $
(Const (const-syntax Pairy, -) $ (Const (const-syntaxSomey, -) $
t1) $ ¢2) $ ts)] =
Syntax.const syntazx-const:-prgs> $ t1 $ t2 $§ Parallel-PAR [ts]
| Parallel-PAR - = raise Match;

fun Parallel-tr’ ts = Syntaz.const syntax-const«-PAR> $ Parallel-PAR ts;
in

[(const-syntax «Collecty, K assert-tr'),

(const-syntax <Basicy, K assign-tr’),

(const-syntax «Cond>, K (bexp-tr’ syntax-const<-Cond)),

(const-syntax < Whiley, K (bexp-tr’ syntax-const <- While-inv»)),

(const-syntax «AnnBasic), K annassign-tr'),

(const-syntax «AnnWhiley, K (annbexp-tr' syntaz-const -AnnWhiley)),
(const-syntar <AnnAwaity, K (annbexp-tr’ syntax-const -AnnAwait»)),
(const-syntaxr <AnnCondl), K (annbexp-tr’ syntaxr-const<-AnnCondl)),
(const-syntax «<AnnCond2y, K (annbexp-tr’ syntax-const-AnnCond2»))]
end

end

1.8 Examples

theory OG-Ezamples imports OG-Syntar begin

1.8.1 Mutual Exclusion
Peterson’s Algorithm I

FEike Best. "Semantics of Sequential and Parallel Programs", page 217.

record Petersons-mutex-1 =

prl :: nat
pr2 :: nat
inl :: bool
imn2 :: bool
hold :: nat

lemma Petersons-mutex-1:
I— { pri=0 A ="in1 A "pr2=0 A ="in2 |}

33

COBEGIN {’pr1=0 A = inl]
WHILE True INV {"pri=0 A —"inl}
DO
L pri=0 A ="inl}t { “inl:=True,, pri:=1);
{'pri=1 A “inl} { "hold:=1,,"pr1:=2);;
{'pri=2 A “inl A ("hold=1 V “hold=2 A "pr2=2)}
AWAIT (= in2 vV =("hold=1)) THEN “pri:=3 END;;
{'pr1=3 A “in1 A ("hold=1 V "hold=2 N "pr2=2)}}
("in1:=False,, pri:=0)
OD {’pri=0 N —="inl]}
|
{'pr2=0 A =" in2}
WHILE True INV {"pr2=0 A = in2}
DO
4 pr2=0 N ="in2} { “in2:=True,, pr2:=1);;
{ pre2=1 A “in2} { "hold:=2,,"pr2:=2);;
{ pr2=2 A "in2 A ("hold=2 V ("hold=1 N "pri=2))}
AWAIT (=" in1 v =("hold=2)) THEN ’pr2:=3 END;;
{'pr2=3 N “in2 A ("hold=2 Vv ("hold=1 A “pri=2))}
("in2:=False,,” pr2:=0)
OD {’pr2=0 N = in2}
COEND
{ pri=0 A ="inl A "pr2=0 N = in2}
apply oghoare
— 104 verification conditions.
apply auto
done

Peterson’s Algorithm II: A Busy Wait Solution

Apt and Olderog. "Verification of sequential and concurrent Programs',
page 282.

record Busy-wait-mutexr =
flagl :: bool

flag2 :: bool

turn :: nat

afterl :: bool

after2 :: bool

lemma Busy-wait-mutez:
I— {True}
‘flagl:=False,, *flag2:=False,,
COBEGIN {—"flag! }
WHILE True
INV {—"flag1}
DO {—"flag1|} (’flagl:=True,, after!:=False);;
{ flag! N = afterl]} { “turn:=1,," afterl:=True);;
{ flagl A “afterl A (“turn=1 V “turn=2)}
WHILE (" flag2 — "turn=2)

34

INV { flagt A “afterl A (“turn=1 V “turn=2)}
DO { flagl N ~after’1 A (“turn=1 V “turn=2)} SKIP OD;;
{ flagt N “after’ A ("flag2 N “after2 — “turn=2)}
"flagl:=False
OD
{False}
|
{~"flag2|t
WHILE True
INV {-"flag2}}
DO {—"flag2] (*flag2:=True,,” after2:=False);;
{"flag2 N =" after2]} { “turn:=2,," after2:=True);;
{ flag2 N “after2 A (“turn=1 V “turn=2)}
WHILE —(’flagl — “turn=1)
INV { flag2 A “after2 A (“turn=1 V “turn=2)}
DO {’flag2 A “after2 A (“turn=1 V “turn=2)} SKIP OD:;
{ flag2 N “after2 A (“flagl N “after] — “turn=1)}
"flag2:=False
OD
{False}
COEND
{False}
apply oghoare
— 122 ve
apply auto
done

Peterson’s Algorithm III: A Solution using Semaphores

record Semaphores-muter =
out :: bool
who :: nat

lemma Semaphores-mutex:
= i)
“out:=True ,,
COBEGIN {i#j}
WHILE True INV {i#j}
DO {i#£j}} AWAIT “out THEN ~out:=False,, “who:=i END;;
{—"out A “who=i A i#j} “out:=True OD
{Falsel

{i#i}
WHILE True INV {i#j}
DO {i#j}} AWAIT “out THEN ~out:=False,, who:=j END;;
{="out A “who=j A i#£j} “out:=True OD
{False}
COEND
{Falsel

35

apply oghoare
— 38 vc
apply auto
done

Peterson’s Algorithm III: Parameterized version:

lemma Semaphores-parameterized-mutex:
0<n = ||— {True}
“out:=True ,,
COBEGIN
SCHEME [0< i< n]
{ Truel
WHILE True INV { Truel}
DO {Truel AWAIT “out THEN ’out:=Fulse,, “who:=i END:;;
{—"out A “who=il} “out:=True OD
{ False}
COEND
{Falsel}
apply oghoare
— 20 ve
apply auto
done

The Ticket Algorithm

record Ticket-mutex =
num :: nat

nextv :: nat

turn :: nat list

index :: nat

lemma Ticket-mutez:
[0<n; I=«n=length "turn A 0<’nextv N (VkIl. k<n A l<n A k#l
— “turnlk < “num A (“turnlk =0 V “turnlk#£ turnll))»]
= ||— {n=length "turn]
“indezr:= 0,,
WHILE “index < n INV {n=length "turn A (Vi< indexr. “turn!i=0)[}
DO “turn:= "turn|[index:=0),, “index:="index +1 OD,,
‘num:=1 ,, ‘nextv:i=1 ,,

COBEGIN
SCHEME [0< i< n]
11}
WHILE True INV {’I}
DO {'I} { “turn :="turn[i:="num],, "num:="num+1);;

{ I} WAIT “turnli="nextv END;;
{1 A “turnli="nextv]} “nextv:="nextv+1
OD
{ False}
COEND

36

{False}
apply oghoare
— 35 ve
apply simp-all
— 16 vc
apply (tactic cALLGOALS (clarify-tac context)y)
— 11 ve
apply simp-all
apply (tactic c<ALLGOALS (clarify-tac context)y)
— 10 subgoals left
apply(erule less-SucE)
apply simp
apply simp
— 9 subgoals left
apply (case-tac i=k)
apply force
apply simp
apply(case-tac i=I)
apply force

apply force
— 8 subgoals left

prefer 8

apply force

apply force
— 6 subgoals left

prefer 6

apply(erule-tac z=j in allE)
apply fastforce

— 5 subgoals left

prefer 5

apply (case-tac [!] j=k)

— 10 subgoals left

apply simp-all
apply(erule-tac z=Fk in allF)
apply force

— 9 subgoals left
apply(case-tac j=I)

apply simp

apply(erule-tac x=Fk in allF)
apply(erule-tac z=Fk in allF)
apply(erule-tac z=I in allF)
apply force

apply(erule-tac z=Fk in allF)
apply(erule-tac z=Fk in allF)
apply(erule-tac z=I in allF)

apply force
— 8 subgoals left

apply force
apply(case-tac j=I)

37

apply simp
apply(erule-tac z=Fk in allF)
apply(erule-tac z=I in allF)
apply force
apply force

apply force
— 5 subgoals left

apply(erule-tac z=Fk in allF)
apply(erule-tac z=I in allF)
apply(case-tac j=I)

apply force

apply force

apply force
— 3 subgoals left

apply (erule-tac z=Fk in allE)
apply(erule-tac z=I in allF)
apply(case-tac j=I)

apply force

apply force

apply force
— 1 subgoals left

apply(erule-tac z=Fk in allF)
apply(erule-tac z=I in allF)
apply(case-tac j=I)

apply force

apply force
done

1.8.2 Parallel Zero Search
Synchronized Zero Search. Zero-6

Apt and Olderog. "Verification of sequential and concurrent Programs" page
294:

record Zero-search =
turn :: nat
found :: bool
T nat
Yy i nat

lemma Zero-search:

[I1=« a<’z A (“found — (a<'z A f("2)=0) V ("y<a A f("y)=0))

A (= found N a<” xz — f("2)#0) » ;
2=« y<a+1 A ("found — (a<'z A f("2)=0) V ("y<a A f("y)=0))

A (= found N “y<a — f("y)#0) » | =

I- 43 u. f(w=0}

“turn:=1,, " found:= Fulse,),

‘ri=a,, ‘yi=a+1

COBEGIN {’I1}}

38

WHILE —’ found

INV {11}

DO {a<’z A ("found — "y<a A f("y)=0) A (a<’z — f("2)#0)]}
WAIT “turn=1 END;;
{a<’z A (“found — “y<a A f("y)=0) A (a<'z —> f("2)#0)}
“turn:=2;;
fa< s A (*found — “y<a A f('9)=0) A (a<’s — f("5)£0)}
(‘m="z+1,,

IF f("2)=0 THEN ’ found:=True ELSE SKIP FT)

OD;;

{11 A ’found]

“turn:=2

{11 A 7 found]}

112}
WHILE -’ found
INV {12}
DO { y<a+1 A ("found — a<’z A f("2)=0) A ("y<a — f("y)#0)}
WAIT “turn=2 END;;
{"y<a+1 A (“found — a<’z A f("2)=0) A ("y<a — f("y)#0)}
“turn:=1;;
{ y<a+1 A (“found — a<’z A f("2)=0) N ("y<a — f("y)#£0)}
< ,y::(,y - 1);7
IF f("y)=0 THEN °’ found:=True ELSE SKIP FI)
OD;;
{12 A 7 found]}
“turn:=1
{712 A 7 found]}
COEND
1fC)=0 v £ 5)=0}
apply oghoare
— 98 verification conditions
apply auto
— auto takes about 3 minutes !!
done

Easier Version: without AWAIT. Apt and Olderog. page 256:

lemma Zero-Search-2:
[H1=« a<’z A ("found — (a<’z A f('2)=0) V ("y<a A f("y)=0))
A (= found N a<’z — f("z)F£0)»;
2= «"y<a+1 A (“found — (a<’z A f("2)=0) V ("y<a A f("y)=0))
A (= found A “y<a — f('y)#0)»] =
|- {3 f(w)=0}
" found:= False,,
‘ri=a,, ‘y:=a+1,,
COBEGIN {’I1}}
WHILE -’ found
INV {11}
DO {a<’z A (“found — “y<a A f("y)=0) A (a<’z — f("2)#0)]}

39

("w:="a+1,IF f("z)=0 THEN found:=True ELSE SKIP FI)
0D
{11 A~ found]}

112}
WHILE —’ found
INV {12}
DO { y<a+1 A ("found — a<’z A f("2)=0) A ("y<a — f("y)#0)}
("y=Cy - 1),IF f("y)=0 THEN ' found:=True ELSE SKIP FI)
0D
{12 A 7 found]}
COEND
{fCz)=0 v f("y)=0}
apply oghoare
— 20 ve
apply auto
— auto takes aprox. 2 minutes.
done

1.8.3 Producer/Consumer

Previous lemmas

lemma nat-lemma2: [b = mx(nunat) + t; a = s«n + u; t=u; b—a < n] = m
<s
proof —
assume b = mx(n:nat) + t a = sxn + u t=u
hence (m — s) * n = b — a by (simp add: diff-mult-distrib)
also assume ... < n
finally have m — s < 1 by simp
thus ?thesis by arith
qed

lemma mod-lemma: [(c:nat) < a; a < by b—c<n] = bmodn# amodn
apply (subgoal-tac b=b div nxn + b mod n)

prefer 2 apply (simp add: div-mult-mod-eq [symmetric])

apply (subgoal-tac a=a div nxn + a mod n)

prefer 2

apply(simp add: div-mult-mod-eq [symmetric])

apply(subgoal-tac b — a < b — ¢)

prefer 2 apply arith

apply (drule le-less-trans)

back

apply assumption

apply (frule less-not-refl2)

apply(drule less-imp-le)

apply (drule-tac m = a and k = n in div-le-mono)

apply (safe)

apply(frule-tac b = b and a = a and n = n in nat-lemma?2, assumption, assump-
tion)

40

apply assumption

apply(drule order-antisym, assumption)
apply(rotate-tac —3)

apply (simp)

done

Producer/Consumer Algorithm

record Producer-consumer =
mns :: nat
outs :: nat
li :: nat
lj :: nat
vT nat
vy :: nat
buffer :: nat list
b :: nat list

The whole proof takes aprox. 4 minutes.

lemma Producer-consumer:
[INIT= «0<length a N 0<length “buffer A length “b=length a» ;
I= «(Vk<ins. “outs<k — (a ! k) = “buffer | (k mod (length “buffer))) A
“outs<’ins A “ins— " outs<length “buffer» ;
I1= «"I N “lilength a» ;
pl= «"I1 A "li="ins» ;
I2 =« I AN(VE<'l. (a K)=("b1 k) A "lj<length a» ;
p2 = «I2 A "lj="outsy | =
|- {°INIT}
“ins:=0,, “outs:=0,, "li:=0,, "lj:=0,,
COBEGIN {’p! N "INIT}
WHILE “li <length a
INV {’p1 N "INIT}
DO {’p1 A "INIT A "li<length ol
“vri= (a ! ")
{'p1 AN "INIT A “li<length a N “vz=(a ! "li)}
WAIT “ins—"outs < length “buffer END:;;
{'p1 N "INIT A “li<length a A “vz=(a ! "li)
A “ins—"outs < length ~buffer]
“buffer:=(list-update “buffer (“ins mod (length “buffer)) "vx);;
{'p1 N "INIT A “li<length a
A (a ! “lD)=("buffer | ("ins mod (length “buffer)))
A “ins—"outs <length ~buffer|}
“ins:="ins+1;;
{11 AN TINIT A (Cli+1)="ins A “li<length al
“li:="1li+1
OD
{'p1 AN "INIT A "li=length al
|
{'p2 N "INIT]}

41

WHILE “lj < length a
INV {’p2 A “INIT}
DO {’'p2 A “lji<length a N "INIT]}
WAIT “outs<’ins END;;
{'p2 A “li<length a A “outs<’ins A "INIT|}
“vy:=("buffer ! (" outs mod (length “buffer)));;
{'p2 A “li<length a N “outs<’ins A “vy=(a ! "lj) A "INIT]}
“outs:="outs+13;;
412 A (Clj+1)="0outs A "lj<length a N “vy=(a ! "lj) A "INIT}
“b:=(list-update b "lj “vy);;
{712 A (Tlj+1)="0uts A “lj<length a A (a! "lj)=("b"! "lj) A "INIT}
="l 1
OD
4’ p2 A “lji=length a A "INIT}
COEND
{ Vk<length a. (a ! k)=("b! k)}
apply oghoare
— 138 vc
apply(tactic {ALLGOALS (clarify-tac context)))
— 112 subgoals left
apply (simp-all (no-asm))
— 43 subgoals left
apply (tactic cALLGOALS (conjI-Tac context (K all-tac))»)
— 419 subgoals left
apply (tactic c<ALLGOALS (clarify-tac context)y)
— 99 subgoals left
apply (simp-all only:length-0-conv [THEN sym))
— 20 subgoals left
apply (simp-all del:length-0-conv length-greater-0-conv add: nth-list-update mod-lemma)
— 9 subgoals left
apply (force simp add:less-Suc-eq)
apply (hypsubst-thin, drule sym)
apply (force simp add:less-Suc-eq)+
done

1.8.4 Parameterized Examples

Set Elements of an Array to Zero

record Eramplel =
a :: nat = nat

lemma Ezamplel:

lI= | Truel
COBEGIN SCHEME [0<i<n] {True} "a:="a (i:=0) {"a i=0} COEND
Vi< n “ai=0}

apply oghoare

apply simp-all

done

42

Same example with lists as auxiliary variables.

record Ezxamplel-list =
A i nat list
lemma Eramplel-list:
|I— {n < length “A}
COBEGIN
SCHEME [0<i<n] {n < length "A} ~A:="Ali:=0] { Ali=0]}
COEND
Vi < n. "Ali = 0}
apply oghoare
apply force+
done

Increment a Variable in Parallel

First some lemmas about summation properties.

lemma Ezample2-lemma2-auz: 1b. j<n —
(> i=0..<n. (b i:nat)) =

Ooi=0..<j. bi)+bj+ O i=0..<n—(Suc j) . b (Sucj + 7))

apply (induct n)

apply simp-all

apply(simp add:less-Suc-eq)

apply(auto)

apply(subgoal-tac n — j = Suc(n— Suc j))
apply simp

apply arith

done

lemma FEzample2-lemma2-aux2:
b, j< s = (D] iunat=0..<j. (b (s:=t)) i) = (O i=0..<j. b 1)
apply (induct 7)
apply simp-all
done

lemma Ezample2-lemma2:

o, [i<n; b j=0] = Suc (3. iznat=0..<n. b))=(>_ i=0..<n. (b (j := Suc 0))
i)

apply
apply

frule-tac b=(b (j:=(Suc 0))) in Example2-lemma2-auz)

erule-tac t=sum (b(j := (Suc 0))) {0..<n} in ssubst)
apply(frule-tac b=0b in Ezample2-lemma2-auz)

apply(erule-tac t=sum b {0..<n} in ssubst)

apply (subgoal-tac Suc (sum b {0..<j} + b j + (O i=0..<n — Suc j. b (Suc j +
i))=(sum b {0..<j} + Suc (b j) + (O i=0..<n — Suc j. b (Suc j + 7))))
apply(rotate-tac —1)

apply(erule ssubst)

apply (subgoal-tac j<j)

apply(drule-tac b=b and t=(Suc 0) in Ezample2-lemma2-auz2)

apply (rotate-tac —1)

A~ S

43

apply(erule ssubst)
apply simp-all
done

record Erample2 =
¢t nat = nat
T nat

lemma Ezrample-2: 0<n —
I— { z=0 A (O i=0..<n. "¢))=0]
COBEGIN
SCHEME [0<i<n]
{72=0"i=0..<n. "ci) A "ci=0]
("z:="x+(Suc 0),, “e:="c¢ (i:=(Suc 0)))
{ 2="i=0..<n. "¢ i) A "¢ i=(Suc 0)}
COEND
{ z=nl
apply oghoare
apply (simp-all cong del: sum.cong-simp)
apply (tactic t<ALLGOALS (clarify-tac context)))
apply (simp-all cong del: sum.cong-simp)
apply(erule (1) Example2-lemma2)
apply(erule (1) Example2-lemma?2)
apply(erule (1) Example2-lemma2)
apply (simp)
done

end

44

Chapter 2

Case Study: Single and
Multi-Mutator Garbage
Collection Algorithms

2.1 Formalization of the Memory

theory Graph imports Main begin
datatype node = Black | White

type-synonym nodes = node list
type-synonym edge = nat X nat
type-synonym edges = edge list

consts Roots :: nat set

definition Proper-Roots :: nodes = bool where
Proper-Roots M = Roots#{} N Roots C {i. i<length M}

definition Proper-Edges :: (nodes x edges) = bool where
Proper-Edges = (A(M,E). Vi<length E. fst(Eli)<length M A snd(E'{)<length
M)

definition BtoW :: (edge X nodes) = bool where
BtoW = (M e,M). (M!fst e)=Black N (M'snd e)#Black)

definition Blacks :: nodes = nat set where
Blacks M = {i. i<length M N M!i=Black}

definition Reach :: edges = nat set where
Reach E = {z. (3 path. 1 <length path A path!(length path — 1)€Roots A\ x=path!0
A (Vi<length path — 1. (3j<length E. E\j=(pathl(i+1), pathli))))
V z€Roots}

45

Reach: the set of reachable nodes is the set of Roots together with the
nodes reachable from some Root by a path represented by a list of nodes (at
least two since we traverse at least one edge), where two consecutive nodes
correspond to an edge in E.

2.1.1 Proofs about Graphs

lemmas Graph-defs= Blacks-def Proper-Roots-def Proper-Edges-def BtoW-def
declare Graph-defs [simp]

Graph 1

lemma Graphl-aux [rule-format]:
[RootsCBlacks M; ¥ i<length E. ~BtoW (E!i,M)]
= 1< length path — (path!(length path — 1))€Roots —
(Vi<length path — 1. (3j. j < length E A Elj=(path!(Suc 7), pathli)))
— M!(path!0) = Black

apply (induct-tac path)

apply force

apply clarify

apply simp

apply (case-tac list)

apply force

apply simp

apply(rename-tac lista)

apply(rotate-tac —2)

apply (erule-tac x = 0 in all-dupE)

apply simp

apply clarify

apply(erule allE | erule (1) notE impE)

apply simp

apply (erule mp)

apply(case-tac lista)

apply force

apply simp

apply(erule mp)

apply clarify

apply (erule-tac x = Suc i in allE)

apply force
done

lemma Graphl:
[RootsC Blacks M; Proper-Edges(M, E); ¥V i<length E. ~BtoW (E!i,M)]
= Reach ECBlacks M

apply (unfold Reach-def)

apply simp

apply clarify

apply(erule disjE)

apply clarify

46

apply(rule conjI)
apply(subgoal-tac 0< length path — Suc 0)
apply(erule allE | erule (1) notE impFE)
apply force
apply simp

apply(rule Graphl-auz)

apply auto

done

Graph 2

lemma FEz-first-occurrence [rule-format]:
P (n:nat) — (3m. Pm A (Vi. i<m — = P 1))
apply(rule nat-less-induct)
apply clarify
apply(case-tac ¥V m. m<n — — P m)
apply auto
done

lemma Compl-lemma: (n::nat)<l = (Im. m<I A n=l — m)
apply(rule-tac x = 1 — n in exl)

apply arith

done

lemma FEz-last-occurrence:
[P (n:nat); n<l]] = (3m. P (I — m) A (Vi. i<m — =P (I — 7))
apply(drule Compl-lemma)
apply clarify
apply(erule Ez-first-occurrence)
done

lemma Graph?2:
[T € Reach E; R<length E] = T € Reach (E[R:=(fst(E'R), T)])
apply (unfold Reach-def)
apply clarify
apply simp
apply(case-tac V z<length path. fst(E'R)#path!z)
apply(rule-tac * = path in exI)
apply simp
apply clarify
apply(erule ollE , erule (1) notE impE)
apply clarify
apply(rule-tac z = j in exl)
apply/(case-tac j=R)
apply(erule-tac £ = Suc i in allE)
apply simp
apply (force simp add:nth-list-update)
apply simp
apply(erule exE)

47

apply(subgoal-tac z < length path — Suc 0)
prefer 2 apply arith
apply(drule-tac P = Am. m<length path A fst(E!R)=path!m in Ez-last-occurrence)
apply assumption
apply clarify
apply simp
apply(rule-tac x = (path!0)#(drop (length path — Suc m) path) in exl)
apply simp
apply(case-tac length path — (length path — Suc m))
apply arith
apply simp
apply(subgoal-tac (length path — Suc m) + nat < length path)
prefer 2 apply arith
apply (subgoal-tac length path — Suc m + nat = length path — Suc 0)
prefer 2 apply arith
apply clarify
apply(case-tac 1)
apply(force simp add: nth-list-update)
apply simp
apply (subgoal-tac (length path — Suc m) + nata < length path)
prefer 2 apply arith
apply (subgoal-tac (length path — Suc m) + (Suc nata) < length path)
prefer 2 apply arith
apply simp
apply (erule-tac x = length path — Suc m + nata in allE)
apply simp
apply clarify
apply(rule-tac x = j in exl)
apply/(case-tac R=j)
prefer 2 apply force
apply simp
apply(drule-tac t = path ! (length path — Suc m) in sym)
apply simp
apply(case-tac length path — Suc 0 < m)
apply(subgoal-tac (length path — Suc m)=0)
prefer 2 apply arith
apply(simp del: diff-is-0-eq)
apply(subgoal-tac Suc nata<nat)
prefer 2 apply arith
apply(drule-tac n = Suc nata in Compl-lemma)
apply clarify
subgoal using [[linarith-split-limit = 0]] by force
apply(drule lel)
apply (subgoal-tac Suc (length path — Suc m + nata)=(length path — Suc 0) — (m
— Suc nata))
apply(erule-tac x = m — (Suc nata) in allE)
apply(case-tac m)
apply simp
apply simp

48

apply simp
done

Graph 3

declare min.absorbl [simp] min.absorb2 [simp]

lemma Graph3:
[T€Reach E; R<length E | = Reach(E[R:=(fst(E'R),T)]) C Reach E
apply (unfold Reach-def)
apply clarify
apply simp
apply (case-tac Fi<length path — 1. (fst(E'R),T)=(path!(Suc ©),path!t))
— the changed edge is part of the path
apply(erule exE)
apply(drule-tac P = \i. i<length path — 1 A (fst(E'R),T)=(path!Suc i,path!i)
in Ez-first-occurrence)
apply clarify
apply (erule disjF)
— T is NOT a root
apply clarify
apply(rule-tac x = (take m path)@patha in exl)
apply(subgoal-tac —(length path<m))
prefer 2 apply arith
apply (simp)
apply(rule conjI)
apply(subgoal-tac =(m + length patha — 1 < m))
prefer 2 apply arith
apply(simp add: nth-append)
apply (rule conjI)
apply(case-tac m)
apply force
apply/(case-tac path)
apply force
apply force
apply clarify
apply/(case-tac Suc i<m)
apply(erule-tac = i in allE)
apply simp
apply clarify
apply(rule-tac © = j in exl)
apply(case-tac Suc i<m)
apply(simp add: nth-append)
apply(case-tac R=j)
apply(simp add: nth-list-update)
apply(case-tac i=m)
apply force
apply(erule-tac z = i in allF)
apply force

49

apply(force simp add: nth-list-update)
apply(simp add: nth-append)
apply(subgoal-tac i=m — 1)
prefer 2 apply arith
apply(case-tac R=j)
apply(erule-tac z = m — 1 in allE)
apply(simp add: nth-list-update)
apply(force simp add: nth-list-update)
apply(simp add: nth-append)
apply(rotate-tac —4)
apply(erule-tac x = i — m in allF)
apply(subgoal-tac Suc (i — m)=(Suc i — m))
prefer 2 apply arith
apply simp
— T is a root
apply(case-tac m=0)
apply force
apply (rule-tac x = take (Suc m) path in exl)
apply(subgoal-tac —(length path<Suc m))
prefer 2 apply arith
apply clarsimp
apply(erule-tac z = i in allF)
apply simp
apply clarify
apply/(case-tac R=j)
apply(force simp add: nth-list-update)
apply(force simp add: nth-list-update)
— the changed edge is not part of the path
apply(rule-tac * = path in exl)
apply simp
apply clarify
apply(erule-tac z = i in allF)
apply clarify
apply/(case-tac R=j)
apply(erule-tac © = i in allE)
apply simp
apply(force simp add: nth-list-update)
done

Graph 4

lemma Graph4:
[T € Reach E; RootsCBlacks M; I<length E; T<length M; R<length E,
Vi<I. =BtoW(E!i,M); R<I; M!fst(E'R)=DBlack; M'T+# Black] =
(3r. I<r A r<length E N BtoW (E[R:=(fst(E'R),T)]!r,M))

apply (unfold Reach-def)

apply simp

apply(erule disjE)

prefer 2 apply force

50

apply clarify
— there exist a black node in the path to T
apply(case-tac Im<length path. M!(path!m)=Black)
apply (erule exE)
apply(drule-tac P = Am. m<length path A M!(path!m)=Black in Ex-first-occurrence)
apply clarify
apply/(case-tac ma)
apply force
apply simp
apply(case-tac length path)
apply force
apply simp
apply(erule-tac P = Ai. i < nata — P i{ and = = nat for P in allE)
apply simp
apply clarify
apply(erule-tac P = \i. i < Suc nat — P i and = = nat for P in allE)
apply simp
apply(case-tac j<I)
apply(erule-tac = j in allE)
apply force
apply(rule-tac © = j in exl)
apply(force simp add: nth-list-update)
apply simp
apply(rotate-tac —1)
apply(erule-tac & = length path — 1 in allE)
apply (case-tac length path)
apply force

apply force
done

declare min.absorbl [simp del] min.absorb2 [simp del]

Graph 5

lemma Graphs:

[T € Reach E ; Roots C Blacks M; ¥V i<R. -BtoW (E!i,M); T<length M;
R<length E; M!fst(E'R)=DBlack; M'snd(E'\R)=Black; M'T # Black]
= (Ir. R<r A r<length E N BtoW (E[R:=(fst(E!R),T)]!r,M))

apply (unfold Reach-def)

apply simp

apply (erule disjE)

prefer 2 apply force

apply clarify

— there exist a black node in the path to T
apply(case-tac Im<length path. M!(path!m)=Black)
apply(erule exF)

apply(drule-tac P = Am. m<length path A M!(path!m)=Black in Ex-first-occurrence)
apply clarify

apply/(case-tac ma)

o1

apply force
apply simp
apply/(case-tac length path)
apply force
apply simp
apply(erule-tac P = \i. i < nata — P i and = = nat for P in allE)
apply simp
apply clarify
apply(erule-tac P = \i. i < Suc nat — P i and z = nat for P in allE)
apply simp
apply(case-tac j<R)
apply(drule le-imp-less-or-eq [of - R])
apply(erule disjE)
apply(erule ollE , erule (1) notE impE)
apply force
apply force
apply(rule-tac z = j in exl)
apply(force simp add: nth-list-update)
apply simp
apply (rotate-tac —1)
apply(erule-tac © = length path — 1 in allE)
apply/(case-tac length path)
apply force

apply force
done

Other lemmas about graphs

lemma Graph6:

[Proper-Edges(M ,E); R<length E ; T<length M] = Proper-Edges(M ,E[R:=(fst(E'R),T)])
apply (unfold Proper-Edges-def)

apply(force simp add: nth-list-update)

done

lemma Graph?7:

[Proper-Edges(M,E)] = Proper-Edges(M[T:=a],E)
apply (unfold Proper-Edges-def)

apply force

done

lemma Graph8:
[Proper-Roots(M)] = Proper-Roots(M|T:=al)
apply (unfold Proper-Roots-def)

apply force
done

Some specific lemmata for the verification of garbage collection algorithms.

lemma Graph9: j<length M = Blacks M CBlacks (M[j := Black])
apply (unfold Blacks-def)

52

apply(force simp add: nth-list-update)
done

lemma Graphl0 [rule-format (no-asm)]: Vi. Mli=a — M|[i:=a]=M
apply (induct-tac M)

apply auto

apply(case-tac 7)

apply auto

done

lemma Graphll! [rule-format (no-asm)]:
[M'j#Black;j<length M| = Blacks M C Blacks (M[j := Black])
apply (unfold Blacks-def)
apply (rule psubsetl)
apply(force simp add: nth-list-update)
apply safe
apply(erule-tac ¢ = j in equalityCFE)
apply auto
done

lemma Graphl2: [aCBlacks M;j<length M| = aCBlacks (M[j := Black])
apply (unfold Blacks-def)

apply(force simp add: nth-list-update)

done

lemma Graphl8: [aC Blacks M;j<length M| = a C Blacks (M[j := Black])
apply (unfold Blacks-def)

apply(erule psubset-subset-trans)

apply(force simp add: nth-list-update)

done

declare Graph-defs [simp del]

end

2.2 The Single Mutator Case

theory Gar-Coll imports Graph OG-Syntar begin

declare psubsetE [rule del]

Declaration of variables:

record gar-coll-state =
M :: nodes
E :: edges
be :: nat set
obc :: nat set
Ma :: nodes
ind :: nat

93

k :: nat
z 2 bool

2.2.1 The Mutator

The mutator first redirects an arbitrary edge R from an arbitrary accessible
node towards an arbitrary accessible node T. It then colors the new target
T black.

We declare the arbitrarily selected node and edge as constants:

consts R :: nat T :: nat

The following predicate states, given a list of nodes m and a list of edges e,
the conditions under which the selected edge R and node T are valid:

definition Mut-init :: gar-coll-state = bool where
Mut-init = « T € Reach "E N R < length "E AN T < length "M »

For the mutator we consider two modules, one for each action. An auxiliary
variable “z is set to false if the mutator has already redirected an edge but
has not yet colored the new target.

definition Redirect-Edge :: gar-coll-state ann-com where
Redirect-Edge = {” Mut-init A "z} (" E:="E[R:=(fst("E'R), T)],, "z:= (="2))

definition Color-Target :: gar-coll-state ann-com where
Color-Target = {” Mut-init A ="z (" M:="M[T:=Black],, "z:= (="2))

definition Mutator :: gar-coll-state ann-com where
Mutator =
{" Mut-init N “z]}
WHILE True INV {" Mut-init A ~“z[}
DO Redirect-Edge ;; Color-Target OD

Correctness of the mutator

lemmas mutator-defs = Mut-init-def Redirect-FEdge-def Color-Target-def

lemma Redirect-FEdge:
F Redirect-Edge pre(Color-Target)
apply (unfold mutator-defs)
apply annhoare
apply (simp-all)
apply (force elim:Graph2)
done

lemma Color-Target:

F Color-Target {” Mut-init A "z}
apply (unfold mutator-defs)
apply annhoare

54

apply (simp-all)
done

lemma Mutator:

F Mutator {Falsel

apply (unfold Mutator-def)

apply annhoare

apply (simp-all add: Redirect-Edge Color-Target)
apply(simp add:mutator-defs)

done

2.2.2 The Collector

A constant M-init is used to give “Ma a suitable first value, defined as a list
of nodes where only the Roots are black.

consts M-init :: nodes

definition Proper-M-init :: gar-coll-state = bool where
Proper-M-init = « Blacks M-init=Roots A length M-init=Ilength "“M »

definition Proper :: gar-coll-state = bool where
Proper = « Proper-Roots "M A Proper-Edges(" M, “E) A * Proper-M-init »

definition Safe :: gar-coll-state = bool where
Safe = « Reach “E C Blacks "M »

lemmas collector-defs = Proper-M-init-def Proper-def Safe-def

Blackening the roots

definition Blacken-Roots :: gar-coll-state ann-com where
Blacken-Roots =
{’ Proper|
“ind:=0;;
{" Proper A “ind=0]
WHILE “ind<length "M
INV {’ Proper A (Vi<’ind. i € Roots — ~M'i=Black) N “ind<length "M|
DO {’ Proper A (Vi<’ind. i € Roots — “M!i=Black) N “ind<length “M}
IF “indeRoots THEN
{" Proper A (Vi<’ind. { € Roots — “M!li=Black) N “ind<length "M A
“ind€ Roots]}
‘M:=" M| ind:=Black] FI:;
{" Proper N (Vi< ind+1.1i € Roots — “~M!i=Black) N “ind<length “M}
“ind:="ind+1
OD

lemma Blacken-Roots:
F Blacken-Roots { " Proper A RootsCBlacks ~M|}
apply (unfold Blacken-Roots-def)

95

apply annhoare
apply(simp-all add:collector-defs Graph-defs)
apply safe
apply (simp-all add:nth-list-update)
apply (erule less-SucE)
apply simp+
apply force

apply force
done

Propagating black

definition PBInv :: gar-coll-state = nat = bool where
PBInv = « Aind. “obc < Blacks "M Vv (Vi <ind. -BtoW ("Eli, "M) Vv
(=" zANi=R A (snd("ER)) =T A (3r.ind < r A r <length "E N BtoW (" E\r,”M))))»

definition Propagate-Black-auz :: gar-coll-state ann-com where
Propagate-Black-aur =
{’ Proper A RootsCBlacks "M A “obcCBlacks "M A “beCBlacks “M[}
“ind:=0;;
{" Proper N RootsCBlacks "M A “obcCBlacks "M N “bcCBlacks "M A “ind=0}]
WHILE “ind<length "E
INV {’ Proper A RootsCBlacks "M A “obcCBlacks "M A “beCBlacks *M
A "PBInv “ind A “ind<length “Ef}
DO {’ Proper A RootsCBlacks "M N ~obeCBlacks "M N “beCBlacks "M
A “PBInv “ind A “ind<length *E|}
IF "M!(fst ("E!"ind)) = Black THEN
{’ Proper A RootsCBlacks "M A “obcCBlacks "M A “bcCBlacks "M
A "PBInv “ind A “ind<length “E N “M!fst(" E!”ind)=Black}
"M:="M|snd(’" E!"ind):=Black];
{" Proper A RootsCBlacks "M A “obcCBlacks "M A “beCBlacks *M
A "PBInv (“ind + 1) A “ind<length “E}
“ind:="ind+1
FI
OD

lemma Propagate-Black-auz:
F Propagate-Black-aux
{" Proper N RootsCBlacks "M A “obcCBlacks "M A “beCBlacks *M
A (“obc < Blacks "M V ~Safe)}
apply (unfold Propagate-Black-auz-def PBInv-def collector-defs)
apply annhoare
apply (simp-all add: Graph6 Graph7 Graph8 Graphl2)
apply force
apply force
apply force
— 4 subgoals left
apply clarify
apply(simp add: Proper-Edges-def Proper-Roots-def Graph6 Graph7 Graph8 Graphl2)

o6

apply (erule disjE)
apply(rule disjI1)
apply(erule Graphl3)
apply force
apply (case-tac M z ! snd (E z ! ind x)=DBlack)
apply (simp add: Graphl0 BtoW-def)
apply (rule disjI2)
apply clarify
apply (erule less-SucE)
apply (erule-tac x=i in allE |, erule (1) notE impE)
apply simp
apply clarify
apply (drule-tac y = r in le-imp-less-or-eq)
apply (erule disjE)
apply (subgoal-tac Suc (ind x)<r)
apply fast
apply arith
apply fast
apply fast
apply (rule disjl1)
apply(erule subset-psubset-trans)
apply(erule Graphl1)
apply fast
— 3 subgoals left
apply force
apply force
— last
apply clarify
apply simp
apply(subgoal-tac ind © = length (E x))
apply (simp)
apply(drule Graphl)
apply simp
apply clarify
apply(erule allE, erule impE, assumption)
apply force
apply force
apply arith
done

Refining propagating black

definition Auzk :: gar-coll-state = bool where
Auzk = «"k<length "M N ("M k#Black v =BtoW (" E!"ind, "M) V
“obc<Blacks "M Vv (="z A “ind=R A snd("E'R)=T
A (3r. “ind<r A r<length “E A BtoW(Elr, "M))))»

definition Propagate-Black :: gar-coll-state ann-com where
Propagate-Black =

o7

{’ Proper A RootsCBlacks "M A “obcCBlacks "M A “beCBlacks “MJ}
“ind:=03;
{" Proper N RootsCBlacks "M A “obcCBlacks "M A “beCBlacks "M A “ind=0}]}
WHILE “ind<length “E
INV {’ Proper A RootsCBlacks "M A “obcCBlacks "M A “beCBlacks *M
A "PBInv “ind A “ind<length “Ef}
DO {’ Proper N RootsCBlacks "M A “obcCBlacks "M A “bcCBlacks *M
A “PBInv “ind A “ind<length “E}
IF ("M!(fst ("E!"ind)))=Black THEN
{" Proper A RootsCBlacks "M A “obcCBlacks "M A “beCBlacks *M
A "PBInv “ind A “ind<length “E N (" M\fst(" E!"ind))=Black]}
"k:=(snd("E!"ind));;
{" Proper A RootsCBlacks "M A “obcCBlacks "M A “beCBlacks *M
A "PBInv “ind A “ind<length "E N ("M!fst(" E!"ind))=DBlack
A T Auzkl]
("M:="M| k:=Black],, “ind:="ind+1)
ELSE {’ Proper A RootsCBlacks "M A “obcCBlacks “M A “beCBlacks *M
A “PBlInv “ind N “ind<length “Ef}
(IF ("M\(fst ("E!"ind)))#Black THEN “ind:="ind+1 FI)
FI
OD

lemma Propagate-Black:
F Propagate-Black
{" Proper A RootsCBlacks "M A “obcCBlacks "M A “beCBlacks *M
A (“obc < Blacks "M V “Safe)}
apply (unfold Propagate-Black-def PBInv-def Auzk-def collector-defs)
apply annhoare
apply(simp-all add: Graph6 Graph7 Graph8 Graphl2)
apply force
apply force
apply force
— 5 subgoals left
apply clarify
apply(simp add:BtoW-def Proper-Edges-def)
— 4 subgoals left
apply clarify
apply(simp add:Proper-Edges-def Graph6 Graph7 Graph8 Graphl2)
apply (erule disjE)
apply (rule disjl1)
apply (erule psubset-subset-trans)
apply (erule Graph9)
apply (case-tac M x'k x=Black)
apply (case-tac M z ! snd (E x| ind z)=DBlack)
apply (simp add: Graph10 BtoW-def)
apply (rule disjl2)
apply clarify
apply (erule less-SucE)
apply (erule-tac x=i in allE | erule (1) notE impE)

o8

apply simp
apply clarify
apply (drule-tac y = r in le-imp-less-or-eq)
apply (erule disjE)
apply (subgoal-tac Suc (ind z)<r)
apply fast
apply arith
apply fast
apply fast
apply (simp add: Graphl0 BtoW-def)
apply (erule disjE)
apply (erule disjI1)
apply clarify
apply (erule less-SucE)
apply force
apply simp
apply (subgoal-tac Suc R<r)
apply fast
apply arith
apply (rule disjl1)
apply(erule subset-psubset-trans)
apply(erule Graphl1)
apply fast
— 2 subgoals left
apply clarify
apply(simp add: Proper-Edges-def Graph6 Graph7 Graph8 Graph12)
apply (erule disjE)
apply fast
apply clarify
apply (erule less-SucE)
apply (erule-tac z=i in allE , erule (1) notE impE)
apply simp
apply clarify
apply (drule-tac y = r in le-imp-less-or-eq)
apply (erule disjE)
apply (subgoal-tac Suc (ind x)<r)
apply fast
apply arith
apply (simp add: BtoW-def)
apply (simp add: BtoW-def)
— last
apply clarify
apply simp
apply(subgoal-tac ind © = length (F x))
apply (simp)
apply(drule Graphl)
apply simp
apply clarify
apply(erule allE, erule impE, assumption)

99

apply force
apply force
apply arith
done

Counting black nodes

definition Countlnv :: gar-coll-state = nat = bool where
CountInv = « Xind. {i. i<ind A “Mali=Black}C bc »

definition Count :: gar-coll-state ann-com where
Count =
{" Proper N RootsCBlacks "M
A “obcCBlacks “Ma N Blacks “MaCBlacks "M N “bcCBlacks "M
A length “Ma=length "M A (“obc < Blacks "Ma Vv “Safe) N “be={}]}
“ind:=0;;
{’ Proper A RootsCBlacks “M
A “obcCBlacks “Ma N Blacks “MaCBlacks "M N “bcCBlacks “M
A length “Ma=length "M A (“obc < Blacks "Ma vV “Safe) A “be={}
A ind=01]
WHILE “ind<length "M
INV {’ Proper A RootsCBlacks ~M
A “obcCBlacks “Ma N Blacks “MaCBlacks "M N “bcCBlacks M
A length “Ma=length "M A ~Countlnv “ind
A (“obc < Blacks “Ma Vv “Safe) A “ind<length ~M}
DO {’ Proper A RootsCBlacks "M
A “obcCBlacks “Ma N Blacks “MaCBlacks "M N “beCBlacks "M
A length “Ma=length "M A *CountInv “ind
A (“obe < Blacks “Ma Vv “Safe) A “ind<length ~M|}
IF "M ind=Black
THEN {’ Proper A RootsCBlacks M
A “obcCBlacks “Ma N Blacks “MaCBlacks "M N “beCBlacks “M
A length “Ma=length "M A *CountInv “ind
A (“obc < Blacks “Ma vV “Safe) N “ind<length "M A “M!”ind=Black[}
“be:=insert “ind “be
FI;;
{’ Proper A RootsCBlacks “M
A “obcCBlacks “Ma N Blacks “MaCBlacks "M N “bcCBlacks “M
A length “Ma=length "M A ~CountInv (“ind+1)
A (“obe < Blacks “Ma Vv “Safe) A “ind<length ~M|}
“ind:="ind+1
oD

lemma Count:

F Count

{’ Proper N RootsCBlacks *M

A “0bcCBlacks “Ma N Blacks “MaC bc A “bcCBlacks "M A length ~Ma=length
‘M

A (“obe < Blacks “Ma V ~Safe)}

60

apply (unfold Count-def)
apply annhoare
apply(simp-all add: CountInv-def Graph6 Graph7 Graph8 Graphl2 Blacks-def col-
lector-defs)
apply force
apply force
apply force
apply clarify
apply simp
apply(fast elim:less-SucE)
apply clarify
apply simp
apply/(fast elim:less-SucE)
apply force

apply force
done

Appending garbage nodes to the free list

axiomatization Append-to-free :: nat x edges = edges
where
Append-to-free0: length (Append-to-free (i, e)) = length e and
Append-to-freel: Proper-Edges (m, e)
= Proper-Edges (m, Append-to-free(i, e)) and
Append-to-free2: i ¢ Reach e
= n € Reach (Append-to-free(i, e)) = (n =iV n € Reach e)

definition AppendInv :: gar-coll-state = nat = bool where
AppendInv = «Xind. ¥V i<length M. ind<i — i€ Reach "E — ~M!i=DBlack»

definition Append :: gar-coll-state ann-com where
Append =
{’ Proper A RootsCBlacks "M A ~Safel}
“ind:=03;
{’ Proper A RootsCBlacks "M A ’“Safe N “ind=0}
WHILE “ind<length ~M
INV {’ Proper N ~AppendInv “ind A “ind<length M}
DO {’ Proper A~ AppendInv “ind A “ind<length “M]
IF "M ind=Black THEN
{" Proper N ~AppendInv “ind A “ind<length "M A ~M!"ind=Black]}
*M:=" M ind:= White]
ELSE {’ Proper N “AppendInv “ind A “ind<length "M A “ind¢ Reach "El}
" E:=Append-to-free("ind,” F)

FI;;

{" Proper A “AppendInv (“ind+1) A “ind<length M|}
“ind:="ind+1

oD

lemma Append:

61

F Append { Proper]}
apply (unfold Append-def AppendInv-def)
apply annhoare
apply (simp-all add:collector-defs Graph6 Graph7 Graph8 Append-to-free0 Append-to-freel
Graphl2)
apply (force simp:Blacks-def nth-list-update)
apply force
apply force
apply(force simp add: Graph-defs)
apply force
apply clarify
apply simp
apply(rule conjI)
apply (erule Append-to-freel)
apply clarify
apply (drule-tac n = i in Append-to-free2)
apply force
apply force

apply force
done

Correctness of the Collector

definition Collector :: gar-coll-state ann-com where
Collector =
{’ Proper]}
WHILE True INV {’ Proper}
DO
Blacken-Roots;;
{" Proper A RootsCBlacks M}
“obe:={};;
{" Proper A RootsCBlacks "M A “obc={}|
“be:=Rootss;
{" Proper A RootsCBlacks "M A “obc={} A “be=Roots|
" Ma:=M-init;;
{" Proper A RootsCBlacks "M A “obc={} A “be=Roots N ~Ma=M-init]}
WHILE “obc#"be
INV {’ Proper A RootsCBlacks ~M
A “obcCBlacks “Ma N Blacks "MaC " bc N “becCBlacks "M
A length “Ma=length "M A (“obc < Blacks "Ma Vv ~Safe)|
DO {’ Proper A RootsCBlacks "M N "bcCBlacks *M|}
“obc:="bc;;
Propagate-Blacks;;
{’ Proper A RootsCBlacks "M A “obecCBlacks "M N “beCBlacks "M
A (“obc < Blacks "M V ’Safe)}
"Ma:="M;;
{’ Proper N RootsCBlacks "M A “obcCBlacks “Ma
A Blacks “MaCBlacks "M N “bcCBlacks "M A length ~Ma=length "M
A (“obc < Blacks “Ma V ’Safe)

62

“be:={};
Count
OD:;;
Append
OD

lemma Collector:
F Collector {Falsel
apply(unfold Collector-def)
apply annhoare
apply(simp-all add: Blacken-Roots Propagate-Black Count Append)
apply(simp-all add:Blacken-Roots-def Propagate-Black-def Count-def Append-def
collector-defs)
apply (force simp add: Proper-Roots-def)
apply force
apply force
apply clarify
apply (erule disjE)
apply(simp add:psubsetl)
apply(force dest:subset-antisym)
done

2.2.3 Interference Freedom

lemmas modules = Redirect-Edge-def Color-Target-def Blacken-Roots-def
Propagate-Black-def Count-def Append-def

lemmas Invariants = PBInv-def Auxk-def CountInv-def AppendInv-def

lemmas abbrev = collector-defs mutator-defs Invariants

lemma interfree- Blacken-Roots- Redirect- Edge:

interfree-auz (Some Blacken-Roots, {}, Some Redirect-Edge)
apply (unfold modules)

apply interfree-aux

apply safe

apply (simp-all add: Graph6 Graph12 abbrev)

done

lemma interfree- Redirect-Edge- Blacken-Roots:
interfree-auz (Some Redirect-Edge, {}, Some Blacken-Roots)
apply (unfold modules)
apply interfree-aux
apply safe
apply(simp add:abbrev)—+
done

lemma interfree-Blacken-Roots-Color-Target:

interfree-aux (Some Blacken-Roots, {}, Some Color-Target)
apply (unfold modules)
apply interfree-aux

63

apply safe
apply (simp-all add: Graph7 Graph8 nth-list-update abbrev)
done

lemma interfree-Color-Target-Blacken-Roots:
interfree-auz (Some Color-Target, {}, Some Blacken-Roots)
apply (unfold modules)
apply interfree-auz
apply safe
apply(simp add:abbrev)+
done

lemma interfree- Propagate-Black-Redirect-Edge:
interfree-auz (Some Propagate-Black, {}, Some Redirect-Edge)
apply (unfold modules)
apply interfree-aux
— 11 subgoals left
apply(clarify, simp add:abbrev Graph6 Graphl?2
apply(clarify, simp add:abbrev Graph6 Graphl2
apply(clarify, simp add:abbrev Graph6 Graphl2
apply(clarify, simp add:abbrev Graph6 Graphl2
apply(erule conjE)+
apply(erule disjE, erule disjI1, rule disjI2, rule alll, (rule impI)+, case-tac R=t,
rule conjl, erule sym)
apply(erule Graph4)
apply(simp)+
apply (simp add:BtoW-def)
apply (simp add:BtoW-def)
apply(rule conjI)
apply (force simp add:BtoW-def)
apply(erule Graphi)
apply simp+
— 7 subgoals left
apply(clarify, simp add:abbrev Graph6 Graphl12)
apply(erule conjE)+
apply (erule disjE, erule disjl1, rule disjI2, rule alll, (rule impl)+, case-tac R=i,
rule congl, erule sym)
apply(erule Graph4)
apply(simp)+
apply (simp add:BtoW-def)
apply (simp add: Bto W-def)
apply (rule conjI)
apply (force simp add:BtoW-def)
apply(erule Graph4)
apply simp+
— 6 subgoals left
apply (clarify, simp add:abbrev Graph6 Graphl12)
apply(erule conjE)+
apply(rule conjI)

)
)
)
)

A~ S

64

apply(erule disjE, erule disjl1, rule disjI2, rule alll, (rule impl)+, case-tac R=1,
rule conjl, erule sym)
apply(erule Graph4)
apply(simp)+
apply (simp add:BtoW-def)
apply (simp add:BtoW-def)
apply(rule conjI)
apply (force simp add:BtoW-def)
apply(erule Graph/)
apply simp+
apply(simp add: Bto W-def nth-list-update)
apply force
— 5 subgoals left
apply (clarify, simp add:abbrev Graph6 Graph12)
— 4 subgoals left
apply (clarify, simp add:abbrev Graph6 Graph12)
apply(rule conjI)
apply(erule disjE, erule disjl1, rule disjI2, rule alll, (rule impl)+, case-tac R=1,
rule conjl, erule sym)
apply (erule Graphi)
apply(simp)+
apply (simp add:BtoW-def)
apply (simp add:BtoW-def)
apply(rule conjI)
apply (force simp add:BtoW-def)
apply(erule Graphi)
apply simp+
apply(rule conjI)
apply(simp add:nth-list-update)
apply force
apply (rule impl, rule impl, erule disjE, erule disjI1, case-tac R = (ind z) ,case-tac
Mz ! T = Black)
apply(force simp add:BtoW-def)
apply/(case-tac M x snd (E z ! ind x)=DBlack)
apply(rule disjI2)
apply simp
apply (erule Graph5)
apply simp+
apply(force simp add:BtoW-def)
apply(force simp add:BtoW-def)
— 3 subgoals left
apply (clarify, simp add:abbrev Graph6 Graphl12)
— 2 subgoals left
apply(clarify, simp add:abbrev Graph6 Graphl12)
apply(erule disjE, erule disjI1, rule disjI2, rule alll, (rule impI)+, case-tac R=t,
rule conjl, erule sym)
apply clarify
apply(erule Graph4)
apply(simp)+

65

apply (simp add:BtoW-def)
apply (simp add:BtoW-def)
apply(rule conjI)
apply (force simp add:BtoW-def)
apply(erule Graph4)

apply simp+
done

lemma interfree- Redirect- Edge- Propagate-Black:
interfree-aux (Some Redirect-Edge, {}, Some Propagate-Black)
apply (unfold modules)
apply interfree-aux
apply(clarify, simp add:abbrev)+
done

lemma interfree- Propagate-Black-Color-Target:
interfree-aux (Some Propagate-Black, {}, Some Color-Target)
apply (unfold modules)
apply interfree-aux
— 11 subgoals left
apply (clarify, simp add:abbrev Graph7 Graph8 Graph12)+
apply(erule conjE)+
apply(erule disjE,rule disjl1 erule psubset-subset-trans,erule Graph9,
case-tac M z!T=Black, rule disjI2,rotate-tac — 1, simp add: Graphl0, clarify,
erule allE, erule impE, assumption, erule impE, assumption,
simp add:BtoW-def, rule disjl1, erule subset-psubset-trans, erule Graphll,
force)
— 7 subgoals left
apply(clarify, simp add:abbrev Graph7 Graph8 Graph12)
apply(erule conjE)+
apply (erule disjE,rule disjI1,erule psubset-subset-trans,erule Graph9,
case-tac M z!T=Black, rule disjI2,rotate-tac —1, simp add: Graphl0, clarify,
erule allE, erule impE, assumption, erule impE, assumption,
simp add:BtoW-def, rule disjl1, erule subset-psubset-trans, erule Graphll,
force)
— 6 subgoals left
apply(clarify, simp add:abbrev Graph7 Graph8 Graphl12)
apply clarify
apply (rule conjI)
apply(erule disjE,rule disjl1, erule psubset-subset-trans,erule Graph9,
case-tac M x! T=Black, rule disjI2,rotate-tac —1, simp add: Graphl0, clarify,
erule allE, erule impE, assumption, erule impE, assumption,
simp add:BtoW-def, rule disjl1, erule subset-psubset-trans, erule Graphll,
force)
apply(simp add:nth-list-update)
— 5 subgoals left
apply (clarify, simp add:abbrev Graph7 Graph8 Graph12)
— 4 subgoals left
apply (clarify, simp add:abbrev Graph7 Graph8 Graphl12)

66

apply (rule conjI)
apply(erule disjE,rule disjl1, erule psubset-subset-trans,erule Graph9,
case-tac M z!T=Black, rule disjI2,rotate-tac — 1, simp add: Graphl0, clarify,
erule allE, erule impE, assumption, erule tmpFE, assumption,
simp add:BtoW-def, rule disjl1, erule subset-psubset-trans, erule Graphll,
force)
apply(rule conjI)
apply(simp add:nth-list-update)
apply(rule impl,rule impl, case-tac M z! T=Black,rotate-tac —1, force simp add:
BtoW-def Graphl10,
erule subset-psubset-trans, erule Graphll, force)
— 3 subgoals left
apply(clarify, simp add:abbrev Graph7 Graph8 Graph12)
— 2 subgoals left
apply (clarify, simp add:abbrev Graph7 Graph8 Graph12)
apply(erule disjE,rule disjl1,erule psubset-subset-trans,erule Graph9,
case-tac M z!T=Black, rule disjI2,rotate-tac — 1, simp add: Graphl0, clarify,
erule allE, erule impE, assumption, erule impE, assumption,
simp add:BtoW-def, rule disjl1, erule subset-psubset-trans, erule Graphll,
force)
— 3 subgoals left
apply(simp add:abbrev)
done

lemma interfree-Color-Target-Propagate-Black:
interfree-aux (Some Color-Target, {}, Some Propagate-Black)
apply (unfold modules)
apply interfree-aux
apply(clarify, simp add:abbrev)+
done

lemma interfree- Count-Redirect- Edge:

interfree-aux (Some Count, {}, Some Redirect-Edge)
apply (unfold modules)
apply interfree-aux
— 9 subgoals left
apply (simp-all add:abbrev Graph6 Graph12)
— 6 subgoals left
apply(clarify, simp add:abbrev Graph6 Graphl2,

erule disjE erule disjl1,rule disjI2,rule subset-trans, erule Graph3,force,force)+

done

lemma interfree- Redirect-Edge-Count:
interfree-aux (Some Redirect-Edge, {}, Some Count)
apply (unfold modules)
apply interfree-aux
apply (clarify,simp add:abbrev)+
apply(simp add:abbrev)
done

67

lemma interfree-Count-Color-Target:
interfree-auz (Some Count, {}, Some Color-Target)
apply (unfold modules)
apply interfree-auz
— 9 subgoals left
apply(simp-all add:abbrev Graph7 Graph8 Graphl12)
— 6 subgoals left
apply (clarify,simp add:abbrev Graph7 Graph8 Graphl2,
erule disjE, erule disjl1, rule disjI2,erule subset-trans, erule Graph9)+
— 2 subgoals left
apply(clarify, simp add:abbrev Graph7 Graph8 Graph12)
apply(rule conjI)
apply(erule disjE, erule disjl1, rule disjI2, erule subset-trans, erule Graph9)
apply(simp add:nth-list-update)
— 1 subgoal left
apply(clarify, simp add:abbrev Graph7 Graph8 Graphl12,
erule disjE, erule disjl1, rule disjI2,erule subset-trans, erule Graph9)
done

lemma interfree-Color-Target-Count:
interfree-auz (Some Color-Target, {}, Some Count)
apply (unfold modules)
apply interfree-auz
apply(clarify, simp add:abbrev)+
apply(simp add:abbrev)
done

lemma interfree- Append- Redirect-Edge:
interfree-auz (Some Append, {}, Some Redirect-Edge)
apply (unfold modules)
apply interfree-aux
apply(simp-all add:abbrev Graph6 Append-to-free0 Append-to-freel Graphl?2)
apply(clarify, simp add:abbrev Graph6 Append-to-free0 Append-to-freel Graphl2,
force dest: Graph8)+
done

lemma interfree- Redirect-Edge-Append:

interfree-auz (Some Redirect-Edge, {}, Some Append)
apply (unfold modules)
apply interfree-aux
apply (clarify, simp add:abbrev Append-to-free0)+
apply (force simp add: Append-to-free2)
apply(clarify, simp add:abbrev Append-to-free0)+
done

lemma interfree-Append-Color-Target:

interfree-aux (Some Append, {}, Some Color-Target)
apply (unfold modules)

68

apply interfree-aux

apply(clarify, simp add:abbrev Graph7 Graph8 Append-to-free0 Append-to-freel
Graphl2 nth-list-update)+

apply(simp add:abbrev Graph7 Graph8 Append-to-free0 Append-to-freel Graphl2
nth-list-update)

done

lemma interfree-Color-Target-Append:

interfree-auz (Some Color-Target, {}, Some Append)
apply (unfold modules)
apply interfree-aux
apply(clarify, simp add:abbrev Append-to-free0)+
apply (force simp add: Append-to-free2)
apply (clarify,simp add:abbrev Append-to-free0)+
done

lemmas collector-mutator-interfree =
interfree- Blacken-Roots- Redirect- Edge interfree- Blacken-Roots-Color-Target
interfree- Propagate- Black-Redirect- Edge interfree- Propagate-Black-Color-Target
interfree-Count-Redirect- Edge interfree-Count-Color-Target
interfree- Append-Redirect- Edge interfree- Append-Color-Target
interfree- Redirect- Edge- Blacken-Roots interfree-Color-Target-Blacken-Roots
interfree- Redirect- Edge- Propagate- Black interfree- Color- Target- Propagate-Black
interfree- Redirect-Edge-Count interfree-Color-Target-Count
interfree- Redirect- Edge- Append interfree-Color-Target-Append

Interference freedom Collector-Mutator

lemma interfree-Collector-Mutator:
interfree-auz (Some Collector, {}, Some Mutator)
apply (unfold Collector-def Mutator-def)
apply interfree-aux
apply (simp-all add:collector-mutator-interfree)
apply (unfold modules collector-defs Mut-init-def)
apply(tactic «<TRYALL (interfree-auz-tac context)))
— 32 subgoals left
apply(simp-all add: Graph6 Graph7 Graph8 Append-to-free0 Append-to-freel Graphl2)
— 20 subgoals left
apply(tactict TRYALL (clarify-tac context)))
apply (simp-all add: Graph6 Graph7 Graph8 Append-to-free0 Append-to-freel Graphl2)
apply (tactic <TRYALL (eresolve-tac context [disjE])»)
apply simp-all
apply(tactic < TRYALL(EVERY '[resolve-tac context |disjI2],
resolve-tac context Q{thms subset-trans},
eresolve-tac context Q{thms Graph3},
force-tac context
assume-tac context])y)
apply (tactic <TRYALL(EVERY '[resolve-tac context [disjI2],
eresolve-tac context Q{thms subset-trans},

69

resolve-tac context Q{thms Graph9},
force-tac context])))

apply(tactic <TRYALL(EVERY '[resolve-tac context [disjl1],
eresolve-tac context Q{thms psubset-subset-trans},
resolve-tac context Q{thms Graph9},
force-tac context])»)

done

Interference freedom Mutator-Collector

lemma interfree-Mutator-Collector:

interfree-aux (Some Mutator, {}, Some Collector)
apply(unfold Collector-def Mutator-def)

apply interfree-aux

apply (simp-all add:collector-mutator-interfree)

apply (unfold modules collector-defs Mut-init-def)
apply(tactic <TRYALL (interfree-auz-tac context))
— 64 subgoals left

apply (simp-all add:nth-list-update Invariants Append-to-free0)+
apply (tactic TRYALL (clarify-tac context)>)

— 4 subgoals left

apply force

apply(simp add: Append-to-free2)

apply force

apply(simp add: Append-to-free2)

done

The Garbage Collection algorithm

In total there are 289 verification conditions.

lemma Gar-Coll:
I— { Proper A ~Mut-init A “z|}
COBEGIN
Collector
{Falsel]}
|
Mutator
{Falsel}
COEND
{Falsel
apply oghoare
apply (force simp add: Mutator-def Collector-def modules)
apply(rule Collector)
apply(rule Mutator)
apply(simp add:interfree-Collector-Mutator)
apply(simp add:interfree-Mutator-Collector)

apply force
done

70

end

2.3 The Multi-Mutator Case

theory Mul-Gar-Coll imports Graph OG-Syntaxr begin

The full theory takes aprox. 18 minutes.

record mut =

Z :: bool
R :: nat
T :: nat

Declaration of variables:

record mul-gar-coll-state =
M :: nodes
E :: edges
be :: nat set
obc :: nat set
Ma :: nodes

ind :: nat
k :: nat
q :: nat
[:: nat

Muts :: mut list

2.3.1 The Mutators

definition Mul-mut-init :: mul-gar-coll-state = nat = bool where
Mul-mut-init = « An. n=length “Muts A (Vi<n. R (" Muts!i)<length "FE
A T (" Mutsli)<length “M) »

definition Mul-Redirect-Edge :: nat = nat = mul-gar-coll-state ann-com where
Mul-Redirect-Edge j n =
{’ Mul-mut-init n N Z (" Muts!j)}
(IF T("Muts!j) € Reach “E THEN
"E:= "E[R ("Mutslj):= (fst ("E'R("Mutsly)), T (" Muts!j))] FI,,
"Muts:= ~Muts[j:= (" Muts'j) (Z:=False|)])

definition Mul-Color-Target :: nat = nat = mul-gar-coll-state ann-com where
Mul-Color-Target j n =
{" Mul-mut-init n A = Z (" Muts!j)]}
("M:="M[T (" Muts!j):=Black],, *Muts:="Muts[j:= (" Muts!j) (Z:=True))])

definition Mul-Mutator :: nat = nat = mul-gar-coll-state ann-com where
Mul-Mutator j n =
{" Mul-mut-init n N Z (" Muts!j)}
WHILE True
INV {” Mul-mut-init n A Z (" Muts!j)|}

71

DO Mul-Redirect-Edge j n ;;
Mul-Color-Target j n
oD

lemmas mul-mutator-defs = Mul-mut-init-def Mul-Redirect- Edge-def Mul-Color- Target-def

Correctness of the proof outline of one mutator

lemma Mul-Redirect-Edge: 0<j N j<n —
F Mul-Redirect-Edge j n
pre(Mul-Color-Target j n)
apply (unfold mul-mutator-defs)
apply annhoare
apply (simp-all)
apply clarify
apply(simp add:nth-list-update)
done

lemma Mul-Color-Target: 0<j A j<n =
F Mul-Color-Target j n
{" Mul-mut-init n N Z (" Muts!j)}
apply (unfold mul-mutator-defs)
apply annhoare
apply (simp-all)
apply clarify
apply(simp add:nth-list-update)
done

lemma Mul-Mutator: 0<j A j<n =

F Mul-Mutator j n { Falsel}

apply (unfold Mul-Mutator-def)

apply annhoare

apply(simp-all add: Mul-Redirect-Edge Mul-Color-Target)
apply(simp add:mul-mutator-defs Mul-Redirect-Edge-def)
done

Interference freedom between mutators

lemma Mul-interfree- Redirect- Edge- Redirect- Edge:
[0<i; i<n; 0<j; j<n; i#j] =
interfree-aux (Some (Mul-Redirect-Edge i n),{}, Some(Mul-Redirect-Edge j n))
apply (unfold mul-mutator-defs)
apply interfree-aux
apply safe
apply(simp-all add: nth-list-update)
done

lemma Mul-interfree- Redirect-Edge-Color-Target:

[0<is i<n; 0<j; j<n; i#j] =
interfree-auz (Some(Mul-Redirect-Edge i n),{},Some(Mul-Color-Target j n))

72

apply (unfold mul-mutator-defs)
apply interfree-aux

apply safe

apply (simp-all add: nth-list-update)
done

lemma Mul-interfree- Color-Target- Redirect-Edge:
[0<i; i<n; 0<j; j<n; i#j] =
interfree-auz (Some(Mul-Color-Target i n),{},Some(Mul-Redirect-Edge j n))
apply (unfold mul-mutator-defs)
apply interfree-aux
apply safe
apply(simp-all add:nth-list-update)
done

lemma Mul-interfree-Color-Target-Color-Target:
[0<3; i<n; 0<j; j<n; i#]] =
interfree-auz (Some(Mul-Color-Target i n),{},Some(Mul-Color-Target j n))
apply (unfold mul-mutator-defs)
apply interfree-aux
apply safe
apply(simp-all add: nth-list-update)
done

lemmas mul-mutator-interfree =
Mul-interfree- Redirect- Edge- Redirect- Edge Mul-interfree- Redirect-FEdge-Color-Target
Mul-interfree- Color- Target- Redirect- Edge Mul-interfree-Color-Target-Color-Target

lemma Mul-interfree-Mutator-Mutator: [i < n; j < n; i # j] =
interfree-auz (Some (Mul-Mutator i n), {}, Some (Mul-Mutator j n))

apply (unfold Mul-Mutator-def)

apply (interfree-auz)

apply (simp-all add:mul-mutator-interfree)

apply(simp-all add: mul-mutator-defs)

apply(tactic < TRYALL (interfree-auz-tac context)))

apply (tactic c<ALLGOALS (clarify-tac context)y)

apply (simp-all add:nth-list-update)

done

Modular Parameterized Mutators

lemma Mul-Parameterized-Mutators: 0<n —>
I— {" Mul-mut-init n A (Vi<n. Z (" Muts'i))|
COBEGIN
SCHEME [0< j< n]
Mul-Mutator j n
{Falsel}
COEND
{Falsel}

73

apply oghoare

apply(force simp add: Mul-Mutator-def mul-mutator-defs nth-list-update)
apply(erule Mul-Mutator)

apply(simp add: Mul-interfree-Mutator-Mutator)

apply (force simp add: Mul-Mutator-def mul-mutator-defs nth-list-update)
done

NN S

2.3.2 The Collector

definition Queue :: mul-gar-coll-state = nat where
Queue = « length (filter (Ni. = Z i N "M!(T) # Black) ~Muts) »

consts M-init :: nodes

definition Proper-M-init :: mul-gar-coll-state = bool where
Proper-M-init = « Blacks M-init=Roots N\ length M-init=length "M »

definition Mul-Proper :: mul-gar-coll-state = nat = bool where
Mul-Proper = « An. Proper-Roots "M A Proper-Edges ("M, "E) A\ * Proper-M-init
A n=length *~Muts »

definition Safe :: mul-gar-coll-state = bool where
Safe = « Reach "E C Blacks "M »

lemmas mul-collector-defs = Proper-M-init-def Mul-Proper-def Safe-def

Blackening Roots

definition Mul-Blacken-Roots :: nat = mul-gar-coll-state ann-com where
Mul-Blacken-Roots n =
{’ Mul-Proper nl}
“ind:=0;;
{* Mul-Proper n A “ind=0]
WHILE “ind<length "M
INV {"Mul-Proper n A (¥ i< ind. i€ Roots — “M!i=Black) N “ind<length
‘MY
DO {” Mul-Proper n A (Vi< ind. i€ Roots — “M!i=Black) A “ind<length “M[
IF “indeRoots THEN
{" Mul-Proper n A\ (Vi<’ind. i€ Roots — “M'i=Black) N “ind<length "M A
“ind€ Rootsl}
"M:="M|[ind:=Black] FI;
{’ Mul-Proper n N (Yi<’ind+1. i€Roots — ~Mli=Black) N “ind<length
M}
“ind:="ind+1
OD

lemma Mul-Blacken-Roots:

F Mul-Blacken-Roots n

{* Mul-Proper n A Roots C Blacks "M}
apply (unfold Mul-Blacken-Roots-def)

74

apply annhoare
apply(simp-all add:mul-collector-defs Graph-defs)
apply safe
apply (simp-all add:nth-list-update)
apply (erule less-SucE)
apply simp+
apply force

apply force
done

Propagating Black

definition Mul-PBInv :: mul-gar-coll-state = bool where
Mul-PBInv =« Safe V "obcCBlacks "M V "I<’ Queue
V (Vi<ind. ~BtoW (' Eli,” M)) A "I<’ Queue»

definition Mul-Auzk :: mul-gar-coll-state = bool where
Mul-Auzk = « 1<’ Queue V " M!"k#Black V ~BtoW (" E!"ind, "M) V ~obcC Blacks
"My

definition Mul-Propagate-Black :: nat = mul-gar-coll-state ann-com where
Mul-Propagate-Black n =
{* Mul-Proper n A RootsCBlacks "M A “obcCBlacks "M A “beCBlacks "M
A (“Safe vV 71<” Queue V “obcC Blacks M)}
“ind:=0;;
{’ Mul-Proper n A RootsCBlacks *M
A “obcCBlacks "M N Blacks "M CBlacks "M N “becCBlacks "M
A ("Safe v "I<’ Queue V “obeCBlacks “M) A “ind=0]
WHILE “ind<length 'E
INV {” Mul-Proper n A RootsC Blacks *M
A “obcCBlacks "M N “bcCBlacks “M
A “Mul-PBInv A “ind<length "E[
DO {’" Mul-Proper n A RootsC Blacks *M
A “obcCBlacks "M N “bcCBlacks “M
A “Mul-PBInv A “ind<length “E}
IF "M!(fst ("E! ind))=Black THEN
{” Mul-Proper n A RootsCBlacks “M
A “obcCBlacks "M N “bcCBlacks “M
A “Mul-PBInv A (" M!fst(" E!"ind))=DBlack N “ind<length “E|
"k:=snd("E!"ind);;
{” Mul-Proper n A RootsCBlacks *M
A “obcCBlacks "M N “bcCBlacks “M
A ("Safe vV “obcCBlacks "M V “l<’ Queue V (Vi< ind. ~BtoW (" Eli,” M))
A 1< Queue N Mul-Auzk) A “k<length "M N “M!fst("E!" ind)=DBlack
A “ind<length “E[}
("M:="M| k:=Black],, ind:="ind+1)
ELSE {” Mul-Proper n A RootsCBlacks M
A “obcCBlacks "M N “bcCBlacks “M
A “Mul-PBInv A “ind<length “E[

75

(IF "M\(fst ("E!"ind))#Black THEN “ind:="ind+1 FI) FI
OD

lemma Mul-Propagate-Black:

F Mul-Propagate-Black n

{” Mul-Proper n A RootsCBlacks "M A “obcCBlacks "M A “beCBlacks *M

A ("Safe V “obcCBlacks "M V “l<’ Queue N ("I<’ Queue V “obeC Blacks

M)
apply (unfold Mul-Propagate-Black-def)
apply annhoare
apply (simp-all add: Mul-PBInv-def mul-collector-defs Mul-Auzk-def Graph6 Graph7
Graph8 Graphl?2 mul-collector-defs Queue-def)
— 8 subgoals left

apply force
apply force
apply force
apply(force simp add:BtoW-def Graph-defs)
— 4 subgoals left
apply clarify
apply(simp add: mul-collector-defs Graph12 Graph6 Graph7 Graph8)
apply(disjE-tac)
apply(simp-all add: Graph12 Graphl3)
apply/(case-tac M z! k x=Black)
apply(simp add: Graphl10)
apply (rule disjI2, rule disjl1, erule subset-psubset-trans, erule Graphll, force)
apply(case-tac M z! k x=Black)
apply(simp add: Graph10 BtoW-def)
apply(rule disjI2, clarify, erule less-SucE, force)
apply(case-tac M zlsnd(E z! ind x)=Black)
apply/(force)
apply(force)
apply(rule disjI2, rule disjI1, erule subset-psubset-trans, erule Graphll, force)
— 2 subgoals left
apply clarify
apply(conjl-tac)
apply(disjE-tac)
apply (simp-all)
apply clarify
apply(erule less-SucE)
apply force
apply (simp add:BtoW-def)
— 1 subgoal left
apply clarify
apply simp
apply(disjE-tac)
apply (simp-all)
apply(rule disjl1 , rule Graphl)
apply simp-all
done

76

Counting Black Nodes

definition Mul-CountInv :: mul-gar-coll-state = nat = bool where
Mul-CountInv = « Xind. {i. i<ind A “Mali=Black}C bc »

definition Mul-Count :: nat = mul-gar-coll-state ann-com where
Mul-Count n =
{” Mul-Proper n A RootsCBlacks *M
A “obcCBlacks “Ma N Blacks “MaCBlacks "M N “bcCBlacks "M
A length “Ma=length ~M
A ("Safe V “obcCBlacks "Ma V 1< q A ("q<’ Queue V “obcCBlacks "M))
A “g<n+1 N “be={}}
“ind:=03;
{” Mul-Proper n A RootsCBlacks *M
A “obcCBlacks “Ma N Blacks “MaCBlacks "M N “bcCBlacks "M
A length “Ma=length ~M
A ("Safe v “obeCBlacks "Ma VvV "1<’ g A ("¢<" Queue V “obcCBlacks “M))
A “g<nt+1 A “be={} A “ind=0}
WHILE “ind<length ~M
INV {” Mul-Proper n A RootsCBlacks *M
A “obcCBlacks “Ma N Blacks “MaCBlacks "M N “beCBlacks "M
A length “Ma=length "M A ~Mul-CountInv “ind
A ("Safe v “obeCBlacks “Ma V "1< g A ("¢<’ Queue V “obcCBlacks “M))
A “g<n+1 A “ind<length "M|
DO {’ Mul-Proper n A RootsCBlacks *M
A “obcCBlacks “Ma N Blacks “MaCBlacks "M N “beCBlacks "M
A length “Ma=length "M A ~Mul-CountInv “ind
A ("Safe V “obeCBlacks "Ma Vv "<’ q A ("q<’" Queue V “obcCBlacks “M))
A “g<n+1 A “ind<length “MJ}
IF M ind=Black
THEN {’ Mul-Proper n A RootsC Blacks M
A “obcCBlacks “Ma N Blacks "MaCBlacks "M N “bcCBlacks “M
A length “Ma=length "M A ~Mul-CountInv “ind
A (“Safe V “obeCBlacks "Ma vV “l<’q A ("q<" Queue V “obcC Blacks
‘M)
A “q<n+1 A “ind<length "M A “M!"ind=Black[}
“be:=insert “ind “be
FI;;
{” Mul-Proper n A RootsCBlacks “M
A “obcCBlacks “Ma N Blacks “MaCBlacks "M N “bcC Blacks “M
A length “Ma=length "M N ~Mul-CountInv (" ind+1)
A ("Safe V “obcCBlacks "Ma Vv "I1< q A ("q<” Queue V " obcC Blacks “M))
A “g<n+1 A “ind<length “M]
“ind:="ind+1
oD

lemma Mul-Count:
F Mul-Count n
{’ Mul-Proper n N RootsCBlacks “M
A “obcCBlacks “Ma N Blacks “MaCBlacks "M N “bcCBlacks ~M

77

A length “Ma=length "M A Blacks “MaC " bc
A (“Safe v “obcCBlacks “Ma Vv "1< q A ("q<’ Queue V “obcCBlacks “M))
A g<n+1}
apply (unfold Mul-Count-def)
apply annhoare
apply (simp-all add: Mul-CountInv-def mul-collector-defs Mul-Auzk-def Graph6 Graph7
Graph8 Graphl?2 mul-collector-defs Queue-def)
— 7 subgoals left

apply force

apply force

apply force

— 4 subgoals left

apply clarify

apply (conjl-tac)
apply(disjE-tac)

apply simp-all
apply(simp add:Blacks-def)
apply clarify

apply(erule less-SucE)
back

apply force

apply force

— 3 subgoals left

apply clarify

apply (conjl-tac)
apply(disjE-tac)

apply simp-all

apply clarify

apply(erule less-SucE)
back

apply force

apply simp
apply(rotate-tac —1)
apply (force simp add:Blacks-def)
— 2 subgoals left

apply force

— 1 subgoal left

apply clarify
apply(drule-tac x = ind z in le-imp-less-or-eq)
apply (simp-all add:Blacks-def)
done

Appending garbage nodes to the free list

axiomatization Append-to-free :: nat x edges = edges
where
Append-to-free0: length (Append-to-free (i, e)) = length e and
Append-to-freel: Proper-Edges (m, e)
= Proper-Edges (m, Append-to-free(i, e)) and

78

Append-to-free2: i ¢ Reach e
= n € Reach (Append-to-free(i, e)) = (n =iV n € Reach e)

definition Mul-AppendInv :: mul-gar-coll-state = nat = bool where
Mul-AppendInv = « Aind. (Vi. ind<i — i<length "M — i€Reach "E —
"Mli=Black)»

definition Mul-Append :: nat = mul-gar-coll-state ann-com where
Mul-Append n =
{” Mul-Proper n A RootsCBlacks "M A ~Safel
“ind:=0;;
{’ Mul-Proper n A RootsCBlacks "M A “Safe A “ind=0}]}
WHILE “ind<length “M
INV {” Mul-Proper n A~ Mul-AppendInv “ind A “ind<length *M]
DO {’ Mul-Proper n A “Mul-AppendInv “ind A “ind<length “M]
IF "M ind=Black THEN
{’ Mul-Proper n A “ Mul-AppendInv “ind A “ind<length "M N~ M ind=Black]}
*M:="M][ind:= White]
ELSE
{" Mul-Proper n A “Mul-AppendInv “ind A “ind<length "M A “ind¢ Reach
" E:=Append-to-free("ind,” F)
FI;
{" Mul-Proper n A~ Mul-AppendInv ("ind+1) A “ind<length “M}
“ind:="ind+1
OD

lemma Mul-Append:
F Mul-Append n
{’ Mul-Proper nl}
apply (unfold Mul-Append-def)
apply annhoare
apply(simp-all add: mul-collector-defs Mul-AppendInv-def
Graph6 Graph? Graph8 Append-to-free0 Append-to-freel Graphl12)
apply (force simp add:Blacks-def)
apply (force simp add: Blacks-def)
apply (force simp add: Blacks-def)
apply (force simp add: Graph-defs)
apply force
apply (force simp add: Append-to-freel Append-to-free?2)
apply force
apply force

done
Collector

definition Mul-Collector :: nat = mul-gar-coll-state ann-com where
Mul-Collector n =
{’ Mul-Proper nl}

79

WHILE True INV {’ Mul-Proper nl
DO
Mul-Blacken-Roots n ;;
{* Mul-Proper n A RootsC Blacks * M|}
“obe:={};;
{’ Mul-Proper n A RootsCBlacks "M A “obc={}|
“be:=Roots;;
{” Mul-Proper n A RootsCBlacks "M N “obc={} N “bc=Rootsl}
“1.=0;;
{’ Mul-Proper n A RootsCBlacks "M A “obc={} N "be=Roots N "I=0]
WHILE “l<n+1
INV {’” Mul-Proper n A RootsCBlacks "M A “bcCBlacks "M A
("Safe v ("1<’Queue V "beCBlacks M) A “l<n+1)}
DO {” Mul-Proper n A\ RootsCBlacks "M N "bcCBlacks *M
A ("Safe vV 1<’ Queue V “beC Blacks “M)[}
“obc:="bc;;
Mul-Propagate-Black n;;
{’ Mul-Proper n A\ RootsCBlacks *M
A “obcCBlacks "M N “becCBlacks “M
A (" Safe V “obcCBlacks "M V “l<’ Queue
A (1< Queue V “obcCBlacks “M))|}
“be={}3;
{’ Mul-Proper n A RootsCBlacks "M
A “obcCBlacks "M N “beCBlacks “M
A ("Safe V “obcCBlacks "M V “l<’ Queue
A (7I<” Queue V “obcCBlacks “M)) N “be={}}
("Ma:="M,, "q:="Queue);;
Mul-Count n;;
{’ Mul-Proper n A\ RootsCBlacks *M
A “0bcCBlacks “"Ma N Blacks “MaCBlacks "M N “beCBlacks "M
A length “Ma=length "M A Blacks “MaC bc
A ("Safe V “obcCBlacks "Ma Vv "I<’q A ("q<’ Queue V “obcCBlacks “M))
A Tq<n+1}
IF “obc="bc THEN
{” Mul-Proper n A RootsCBlacks *M
A “obcCBlacks “Ma N Blacks “MaCBlacks "M N “beCBlacks "M
A length “Ma=length "M A Blacks “MaC bc
A ("Safe v “obcCBlacks "Ma Vv "I1<’q A ("q<’ Queue V “obcCBlacks “M))
A “q<n+1 A “obe="bc|
l="141
ELSE {” Mul-Proper n A RootsCBlacks *M
A “obcCBlacks “Ma N Blacks “MaCBlacks "M N “becCBlacks "M
A length “Ma=length "M A Blacks “MaC bc
A ("Safe v “obeCBlacks “Ma V "l1< g A ("¢<” Queue V “obcC Blacks “M))
A “q<n+1 N “obc# belf
“1:=0 FI
OD;;
Mul-Append n
oD

80

lemmas mul-modules = Mul-Redirect-Edge-def Mul-Color-Target-def
Mul-Blacken-Roots-def Mul-Propagate-Black-def
Mul-Count-def Mul-Append-def

lemma Mul-Collector:
F Mul-Collector n
{Falsel}
apply (unfold Mul-Collector-def)
apply annhoare
apply (simp-all only:pre.simps Mul-Blacken-Roots
Mul-Propagate-Black Mul-Count Mul-Append)
apply (simp-all add:mul-modules)
apply (simp-all add:mul-collector-defs Queue-def)
apply force
apply force
apply force
apply (force simp add: less-Suc-eq-le)
apply force
apply (force dest:subset-antisym)
apply force
apply force

apply force
done

2.3.3 Interference Freedom

lemma le-length-filter-update|[rule-format):

Vi. (=P (listli) vV P j) A i<length list

— length(filter P list) < length(filter P (list[i:=j]))
apply (induct-tac list)

apply(simp)

apply (clarify)

apply(case-tac 1)

apply (simp)

apply(simp)

done

lemma less-length-filter-update [rule-format):

Vi. Pj A (P (listli)) A i<length list

— length(filter P list) < length(filter P (list[i:=j]))
apply (induct-tac list)

apply(simp)

apply (clarify)

apply(case-tac 1)

apply (simp)

apply(simp)

done

81

lemma Mul-interfree-Blacken-Roots-Redirect-Edge: [0<j; j<n] =
interfree-aux (Some(Mul-Blacken-Roots n),{},Some(Mul-Redirect-Edge j n))
apply (unfold mul-modules)
apply interfree-aux
apply safe
apply(simp-all add: Graph6 Graph9 Graphl12 nth-list-update mul-mutator-defs mul-collector-defs)
done

lemma Mul-interfree- Redirect- Edge-Blacken-Roots: [0<j; j<n]—
interfree-aux (Some(Mul-Redirect-Edge j n),{},Some (Mul-Blacken-Roots n))

apply (unfold mul-modules)

apply interfree-aux

apply safe

apply (simp-all add:mul-mutator-defs nth-list-update)

done

lemma Mul-interfree-Blacken-Roots-Color-Target: [0<j; j<n]—=—
interfree-aux (Some(Mul-Blacken-Roots n),{},Some (Mul-Color-Target j n))
apply (unfold mul-modules)
apply interfree-aux
apply safe
apply (simp-all add:mul-mutator-defs mul-collector-defs nth-list-update Graph7 Graph8
Graph9 Graphl2)
done

lemma Mul-interfree-Color-Target-Blacken-Roots: [0<j; j<n]—
interfree-auz (Some(Mul-Color-Target j n),{},Some (Mul-Blacken-Roots n))

apply (unfold mul-modules)

apply interfree-auz

apply safe

apply (simp-all add:mul-mutator-defs nth-list-update)

done

lemma Mul-interfree- Propagate-Black-Redirect-Edge: [0<j; j<n]=-

interfree-auz (Some(Mul-Propagate-Black n),{},Some (Mul-Redirect-Edge j n))
apply (unfold mul-modules)
apply interfree-aux
apply (simp-all add:mul-mutator-defs mul-collector-defs Mul-PBInv-def nth-list-update
Grapht6)
— 7 subgoals left
apply clarify
apply(disjE-tac)

apply(simp-all add: Grapht)

apply(rule impl rule disjl1,rule subset-trans,erule Graphd,simp,simp)
apply(rule conjI)

apply(rule impl,rule disjI2,rule disjl1,erule le-trans,force simp add:Queue-def
less-Suc-eq-le le-length-filter-update)
apply (rule impl rule disjI2 rule disjl1 ,erule le-trans,force simp add: Queue-def less-Suc-eq-le
le-length-filter-update)

82

— 6 subgoals left
apply clarify
apply(disjE-tac)
apply(simp-all add: Grapht)
apply(rule impl rule disjl1,rule subset-trans,erule Graphd,simp,simp)
apply(rule conjI)
apply(rule impl,rule disjI2,rule disjl1,erule le-trans,force simp add:Queue-def
less-Suc-eq-le le-length-filter-update)
apply(rule impl,rule disjI2,rule disjl1 ,erule le-trans,force simp add: Queue-def less-Suc-eq-le
le-length-filter-update)
— 5 subgoals left
apply clarify
apply(disjE-tac)
apply(simp-all add: Grapht)
apply(rule impl,rule disjI1,rule subset-trans,erule Graph3,simp,simp)
apply(rule conjI)
apply(rule impl, rule disjI2,rule disjI2,rule disjI1,erule less-le-trans,force simp
add: Queue-def less-Suc-eq-le le-length-filter-update)
apply (rule impl,rule disjI2, rule disjI2,rule disjl1,erule less-le-trans,force simp add: Queue-def
less-Suc-eq-le le-length-filter-update)
apply (erule conjE)
apply(case-tac M /(T (Muts z!j))=DBlack)
apply(rule conjI)
apply(rule impl,(rule disjI2)+,rule conjI)
apply clarify
apply(case-tac R (Muts z! j)=i)
apply (force simp add: nth-list-update Bto W-def)
apply (force simp add: nth-list-update)
apply (erule le-trans,force simp add: Queue-def less-Suc-eq-le le-length-filter-update)
apply(rule impl,(rule disjI2)+, erule le-trans)
apply(force simp add: Queue-def less-Suc-eq-le le-length-filter-update)
apply(rule conjI)
apply(rule impl rule disjI2, rule disjI2,rule disjl1, erule le-less-trans)
apply(force simp add: Queue-def less-Suc-eq-le less-length-filter-update)
apply(rule impl,rule disjI2,rule disjI2,rule disjl1, erule le-less-trans)
apply (force simp add: Queue-def less-Suc-eg-le less-length-filter-update)
— 4 subgoals left
apply clarify
apply(disjE-tac)
apply(simp-all add: Graph()
apply(rule impl,rule disjl1,rule subset-trans,erule Graphs3,simp,simp)
apply (rule conjI)
apply(rule impl, rule disjI2,rule disjI2,rule disjI1,erule less-le-trans,force simp
add: Queue-def less-Suc-eq-le le-length-filter-update)
apply (rule impl rule disjI2 rule disjI2,rule disjl1,erule less-le-trans,force simp add: Queue-def
less-Suc-eq-le le-length-filter-update)
apply (erule conjE)
apply(case-tac M /(T (Muts z!j))=DBlack)
apply(rule conjI)

83

apply(rule impl,(rule disjI2)+,rule conjI)
apply clarify
apply(case-tac R (Muts ! j)=1)
apply (force simp add: nth-list-update Bto W-def)
apply (force simp add: nth-list-update)
apply (erule le-trans,force simp add: Queue-def less-Suc-eq-le le-length-filter-update)
apply(rule impl,(rule disjI2)+, erule le-trans)
apply(force simp add: Queue-def less-Suc-eq-le le-length-filter-update)
apply(rule conjI)
apply (rule impl,rule disjI2,rule disjl2,rule disjI1, erule le-less-trans)
apply(force simp add: Queue-def less-Suc-eq-le less-length-filter-update)
apply(rule impl rule disjI2,rule disjI2,rule disjl1, erule le-less-trans)
apply(force simp add: Queue-def less-Suc-eg-le less-length-filter-update)
— 3 subgoals left
apply clarify
apply(disjE-tac)
apply(simp-all add: Graph6)
apply (rule impI)
apply(rule conjI)
apply(rule disjl1,rule subset-trans,erule Graph3,simp,simp)
apply(case-tac R (Muts z ! j)= ind x)
apply(simp add:nth-list-update)
apply(simp add:nth-list-update)
apply(case-tac R (Muts z ! j)= ind x)
apply(simp add:nth-list-update)
apply(simp add:nth-list-update)
apply(case-tac M /(T (Muts z!j))=Black)
apply(rule conjI)
apply(rule impl)
apply(rule conjI)
apply (rule disjI2,rule disjI2,rule disjI1, erule less-le-trans)
apply(force simp add: Queue-def less-Suc-eg-le le-length-filter-update)
apply(case-tac R (Muts z ! j)= ind x)
apply(simp add:nth-list-update)
apply(simp add:nth-list-update)
apply(rule impI)
apply (rule disjI2,rule disjI2,rule disjl1, erule less-le-trans)
apply(force simp add: Queue-def less-Suc-eq-le le-length-filter-update)
apply(rule conjI)
apply(rule impl)
apply (rule conjI)
apply(rule disjI2,rule disjI2,rule disjl1, erule less-le-trans)
apply(force simp add: Queue-def less-Suc-eg-le le-length-filter-update)
apply(case-tac R (Muts z ! j)= ind x)
apply(simp add:nth-list-update)
apply(simp add:nth-list-update)
apply(rule implI)
apply(rule disjI2,rule disjI2,rule disjI1, erule less-le-trans)
apply(force simp add: Queue-def less-Suc-eq-le le-length-filter-update)

84

apply(erule conjE)
apply(rule conjI)
apply(case-tac M z\(T (Muts z!5))=DBlack)
apply (rule impl,rule conjl,(rule disjI2)+,rule congl)
apply clarify
apply(case-tac R (Muts x! j)=1)
apply (force simp add: nth-list-update BtoW-def)
apply (force simp add: nth-list-update)
apply (erule le-trans,force simp add: Queue-def less-Suc-eq-le le-length-filter-update)
apply(case-tac R (Muts z ! j)= ind x)
apply(simp add:nth-list-update)
apply(simp add:nth-list-update)
apply(rule impl,rule conjI)
apply (rule disjI2,rule disjI2,rule disjl1, erule le-less-trans)
apply(force simp add: Queue-def less-Suc-eg-le less-length-filter-update)
apply(case-tac R (Muts x! j)=ind x)
apply (force simp add: nth-list-update)
apply (force simp add: nth-list-update)
apply(rule impl, (rule disjI2)+, erule le-trans)
apply (force simp add: Queue-def less-Suc-eg-le le-length-filter-update)
— 2 subgoals left
apply clarify
apply(rule conjI)
apply(disjE-tac)
apply(simp-all add: Mul-Auzk-def Graph6)
apply (rule impl)
apply(rule conjI)
apply(rule disjl1,rule subset-trans,erule Graph3,simp,simp)
apply(case-tac R (Muts z ! j)= ind x)
apply(simp add:nth-list-update)
apply(simp add:nth-list-update)
apply(case-tac R (Muts x ! j)= ind x)
apply(simp add:nth-list-update)
apply(simp add:nth-list-update)
apply/(case-tac M z!(T (Muts z!j))=DBlack)
apply(rule impI)
apply (rule conjI)
apply(rule disjI2,rule disjI2,rule disjl1, erule less-le-trans)
apply(force simp add: Queue-def less-Suc-eq-le le-length-filter-update)
apply(case-tac R (Muts z ! j)= ind x)
apply(simp add:nth-list-update)
apply(simp add:nth-list-update)
apply(rule impl)
apply(rule conjI)
apply(rule disjI2,rule disjI2,rule disjl1, erule less-le-trans)
apply(force simp add: Queue-def less-Suc-eq-le le-length-filter-update)
apply(case-tac R (Muts z ! j)= ind x)
apply(simp add:nth-list-update)
apply(simp add:nth-list-update)

85

apply(rule impl)
apply(rule conjI)
apply(erule conjE)+
apply(case-tac M /(T (Muts x!j))=Black)
apply((rule disjI2)+,rule congl)
apply clarify
apply(case-tac R (Muts z! j)=1)
apply (force simp add: nth-list-update BtoW-def)
apply (force simp add: nth-list-update)
apply(rule conjI)
apply(erule le-trans, force simp add: Queue-def less-Suc-eq-le le-length-filter-update)
apply(rule impl)
apply(case-tac R (Muts z ! j)= ind x)
apply(simp add:nth-list-update BtoW-def)
apply (simp add:nth-list-update)
apply(rule impl)
apply simp
apply(disjE-tac)
apply(rule disjl1, erule less-le-trans)
apply(force simp add: Queue-def less-Suc-eq-le le-length-filter-update)
apply force
apply(rule disjI2,rule disjI2,rule disjI1, erule le-less-trans)
apply(force simp add: Queue-def less-Suc-eq-le less-length-filter-update)
apply(case-tac R (Muts z ! j)= ind x)
apply(simp add:nth-list-update)
apply(simp add:nth-list-update)
apply(disjE-tac)
apply simp-all
apply(conjl-tac)
apply(rule impl)
apply (rule disjI2,rule disjI2,rule disjl1, erule less-le-trans)
apply(force simp add: Queue-def less-Suc-eq-le le-length-filter-update)
apply(erule conjE)+
apply(rule impl (rule disjI2)+,rule conjI)
apply(erule le-trans,force simp add: Queue-def less-Suc-eg-le le-length-filter-update)
apply(rule impl)+
apply simp
apply(disjE-tac)
apply(rule disjl1, erule less-le-trans)
apply(force simp add: Queue-def less-Suc-eq-le le-length-filter-update)
apply force
— 1 subgoal left
apply clarify
apply(disjE-tac)
apply(simp-all add: Graph()
apply(rule impl,rule disjl1,rule subset-trans,erule Graphsd,simp,simp)
apply(rule conjI)
apply(rule impl,rule disjI2,rule disjI2,rule disjl1,erule less-le-trans,force simp
add: Queue-def less-Suc-eq-le le-length-filter-update)

86

apply (rule impl rule disjI2 rule disjI2,rule disjl1 erule less-le-trans,force simp add: Queue-def
less-Suc-eq-le le-length-filter-update)
apply(erule conjE)
apply(case-tac M x!(T (Muts z!j))=DBlack)
apply(rule conjl)
apply(rule impl (rule disjI2)+,rule conjI)
apply clarify
apply(case-tac R (Muts ! j)=1)
apply (force simp add: nth-list-update Bto W-def)
apply (force simp add: nth-list-update)
apply (erule le-trans,force simp add: Queue-def less-Suc-eq-le le-length-filter-update)
apply(rule impl,(rule disjiI2)+, erule le-trans)
apply(force simp add: Queue-def less-Suc-eq-le le-length-filter-update)
apply(rule conjI)
apply (rule impl,rule disjI2,rule disjI2,rule disjI1, erule le-less-trans)
apply(force simp add: Queue-def less-Suc-eq-le less-length-filter-update)
apply(rule impl rule disjI2, rule disjI2,rule disjll, erule le-less-trans)
apply(force simp add: Queue-def less-Suc-eq-le less-length-filter-update)
done

lemma Mul-interfree- Redirect- Edge-Propagate-Black: [0<j; j<n]—
interfree-aux (Some(Mul-Redirect-Edge j n),{},Some (Mul-Propagate-Black n))

apply (unfold mul-modules)

apply interfree-auz

apply safe

apply (simp-all add:mul-mutator-defs nth-list-update)

done

lemma Mul-interfree- Propagate-Black-Color-Target: [0<j; j<n]=—
interfree-auz (Some(Mul-Propagate-Black n),{},Some (Mul-Color-Target jn))
apply (unfold mul-modules)
apply interfree-aux
apply(simp-all add: mul-collector-defs mul-mutator-defs)
— 7 subgoals left
apply clarify
apply (simp add:Graph7 Graph8 Graphl2)
apply(disjE-tac)
apply(simp add: Graph7 Graph8 Graphl2)
apply(case-tac M z!(T (Muts z!j))=DBlack)
apply(rule disjI2,rule disjI1, erule le-trans)
apply(force simp add: Queue-def less-Suc-eg-le le-length-filter-update Graph10)
apply ((rule disjI2)+,erule subset-psubset-trans, erule Graphl1, simp)
apply((rule disjI2)+,erule psubset-subset-trans, simp add: Graph9)
— 6 subgoals left
apply clarify
apply (simp add:Graph7 Graph8 Graphl2)
apply(disjE-tac)
apply(simp add: Graph7 Graph8 Graphl2)
apply(case-tac M /(T (Muts x!j))=Black)

87

apply(rule disjI2,rule disjI1, erule le-trans)

apply(force simp add: Queue-def less-Suc-eq-le le-length-filter-update Graphl0)
apply((rule disjI2)+,erule subset-psubset-trans, erule Graphll, simp)
apply ((rule disjI2)+,erule psubset-subset-trans, simp add: Graph9)
— 5 subgoals left
apply clarify
apply (simp add:mul-collector-defs Mul-PBInv-def Graph7 Graph8 Graphl12)
apply(disjE-tac)

apply(simp add:Graph7 Graph8 Graph12)

apply(rule disjI2,rule disjI1, erule psubset-subset-trans,simp add: Graph9)
apply/(case-tac M /(T (Muts z!j))=DBlack)

apply(rule disjI2,rule disjI2,rule disjl1, erule less-le-trans)

apply(force simp add: Queue-def less-Suc-eq-le le-length-filter-update Graphl0)
apply(rule disjI2,rule disjl1,erule subset-psubset-trans, erule Graphll, simp)
apply (erule conjE)
apply(case-tac M /(T (Muts z!j))=DBlack)
apply((rule disjI2)+)
apply (rule conjI)

apply(simp add: Graph10)
apply (erule le-trans)
apply(force simp add: Queue-def less-Suc-eq-le le-length-filter-update Graphl0)
apply(rule disjI2,rule disjl1,erule subset-psubset-trans, erule Graphll, simp)
— 4 subgoals left
apply clarify
apply (simp add:mul-collector-defs Mul-PBInv-def Graph7 Graph8 Graphl2)
apply(disjE-tac)

apply(simp add: Graph7 Graph8 Graphl2)

apply(rule disjI2,rule disjl1, erule psubset-subset-trans,simp add: Graph9)
apply/(case-tac M z!(T (Muts z!j))=DBlack)

apply(rule disjI2,rule disjI2,rule disjI1, erule less-le-trans)

apply(force simp add: Queue-def less-Suc-eg-le le-length-filter-update Graph10)
apply(rule disjI2,rule disjl1,erule subset-psubset-trans, erule Graphll, simp)
apply(erule conjE)
apply(case-tac M /(T (Muts z!j))=DBlack)
apply((rule disjI2)+)
apply (rule conjl)

apply(simp add: Graph10)
apply(erule le-trans)
apply(force simp add: Queue-def less-Suc-eq-le le-length-filter-update Graphl0)
apply(rule disjI2,rule disjl1,erule subset-psubset-trans, erule Graphll, simp)
— 3 subgoals left
apply clarify
apply (simp add:mul-collector-defs Mul-PBInv-def Graph7 Graph8 Graphl12)
apply(case-tac M /(T (Muts z!j))=DBlack)
apply(simp add: Graph10)
apply(disjE-tac)

apply simp-all

apply(rule disjI2, rule disjI2, rule disjI1,erule less-le-trans)

apply(force simp add: Queue-def less-Suc-eq-le le-length-filter-update Graphl0)

88

apply(erule conjE)

apply((rule disjI2)+,erule le-trans)

apply(force simp add: Queue-def less-Suc-eq-le le-length-filter-update Graphl0)
apply(rule conjI)

apply(rule disjI2,rule disjl1, erule subset-psubset-trans,simp add: Graphl1)
apply (force simp add:nth-list-update)
— 2 subgoals left
apply clarify
apply(simp add: Mul-Auxk-def Graph7 Graph8 Graphl2)
apply(case-tac M /(T (Muts z!j))=Black)

apply(simp add: Graph10)

apply(disjE-tac)

apply simp-all

apply (rule disjI2, rule disjl2, rule disjl1 erule less-le-trans)

apply(force simp add: Queue-def less-Suc-eg-le le-length-filter-update Graph10)
apply(erule conjE)+

apply((rule disjI2)+,rule conjl, erule le-trans)

apply(force simp add: Queue-def less-Suc-eq-le le-length-filter-update Graphl0)
apply((rule impl)+)

apply simp

apply (erule disjE)

apply(rule disjl1, erule less-le-trans)

apply(force simp add: Queue-def less-Suc-eq-le le-length-filter-update Graphl0)
apply force
apply(rule conjI)

apply (rule disjI2,rule disjI1, erule subset-psubset-trans,simp add:Graphl1)
apply (force simp add:nth-list-update)
— 1 subgoal left
apply clarify
apply (simp add:mul-collector-defs Mul-PBInv-def Graph7 Graph8 Graph12)
apply(case-tac M /(T (Muts z!j))=Black)

apply(simp add: Graph10)

apply(disjE-tac)

apply simp-all

apply(rule disjI2, rule disjI2, rule disjI1,erule less-le-trans)

apply(force simp add: Queue-def less-Suc-eg-le le-length-filter-update Graph10)
apply(erule conjE)

apply((rule disjI2)+,erule le-trans)

apply(force simp add: Queue-def less-Suc-eq-le le-length-filter-update Graphl0)
apply(rule disjI2,rule disjl1, erule subset-psubset-trans,simp add: Graphl1)
done

—~

lemma Mul-interfree-Color-Target-Propagate-Black: [0<j; j<n]—
interfree-aux (Some(Mul-Color-Target j n),{},Some(Mul-Propagate-Black n))

apply (unfold mul-modules)

apply interfree-auz

apply safe

apply (simp-all add:mul-mutator-defs nth-list-update)

done

89

lemma Mul-interfree- Count- Redirect-Edge: [0<j; j<n]=—
interfree-auz (Some(Mul-Count n),{},Some(Mul-Redirect-Edge j n))
apply (unfold mul-modules)
apply interfree-auz
— 9 subgoals left
apply(simp add:mul-mutator-defs mul-collector-defs Mul-CountInv-def Grapht)
apply clarify
apply disjE-tac
apply(simp add: Graph6)
apply(rule impl rule disjI1,rule subset-trans,erule Graphd,simp,simp)
apply(simp add: Graph6)
apply clarify
apply disjE-tac
apply(simp add: Graph6)
apply(rule conjI)
apply (rule impl rule disjI2 rule disjI2,rule disjI1 erule le-trans,force simp add: Queue-def
less-Suc-eq-le le-length-filter-update)
apply(rule impl,rule disjI2,rule disjI2,rule disjI1 erule le-trans,force simp add: Queue-def
less-Suc-eq-le le-length-filter-update)
apply(simp add: Graph6)
— 8 subgoals left
apply(simp add:mul-mutator-defs nth-list-update)
— 7 subgoals left
apply(simp add:mul-mutator-defs mul-collector-defs)
apply clarify
apply disjE-tac
apply(simp add: Graph6)
apply(rule impl,rule disjl1,rule subset-trans,erule Graphd,simp,simp)
apply(simp add: Graph6)
apply clarify
apply disjE-tac
apply(simp add: Graph6)
apply(rule conjI)
apply (rule impl,rule disjI2 rule disjI2,rule disjl1,erule le-trans,force simp add: Queue-def
less-Suc-eq-le le-length-filter-update)
apply (rule impl,rule disjI2,rule disjI2,rule disjI1,erule le-trans,force simp add: Queue-def
less-Suc-eq-le le-length-filter-update)
apply(simp add: Graph6)
— 6 subgoals left
apply(simp add:mul-mutator-defs mul-collector-defs Mul-CountInv-def)
apply clarify
apply disjE-tac
apply(simp add: Graph6 Queue-def)
apply(rule impl,rule disjl1,rule subset-trans,erule Graph8,simp,simp)
apply(simp add: Graph6)
apply clarify
apply disjE-tac
apply(simp add: Graph6)

90

apply(rule conjI)
apply (rule impl,rule disjI2 rule disjI2,rule disjI1 erule le-trans,force simp add: Queue-def
less-Suc-eq-le le-length-filter-update)
apply (rule impl,rule disjI2,rule disjI2,rule disjI1,erule le-trans,force simp add: Queue-def
less-Suc-eq-le le-length-filter-update)
apply(simp add: Graph6)
— 5 subgoals left
apply(simp add:mul-mutator-defs mul-collector-defs Mul-CountInv-def)
apply clarify
apply disjE-tac
apply(simp add: Graph6)
apply(rule impl,rule disjl1,rule subset-trans,erule Graphd,simp,simp)
apply(simp add: Graph6)
apply clarify
apply disjE-tac
apply(simp add: Graph6)
apply(rule conjI)
apply (rule impl rule disjI2 rule disjI2,rule disjI1 erule le-trans,force simp add: Queue-def
less-Suc-eq-le le-length-filter-update)
apply (rule impl,rule disjI2,rule disjI2,rule disjI1,erule le-trans,force simp add: Queue-def
less-Suc-eq-le le-length-filter-update)
apply(simp add: Graph6)
— 4 subgoals left
apply(simp add:mul-mutator-defs mul-collector-defs Mul-CountInv-def)
apply clarify
apply disjE-tac
apply(simp add: Graph6)
apply(rule impl,rule disjl1, rule subset-trans,erule Graphd,simp,simp)
apply(simp add: Graph6)
apply clarify
apply disjE-tac
apply(simp add: Graph6)
apply(rule conjI)
apply (rule implrule disjI2 rule disjI2,rule disjI1 erule le-trans,force simp add: Queue-def
less-Suc-eq-le le-length-filter-update)
apply (rule impl,rule disjI2,rule disjI2,rule disjI1,erule le-trans,force simp add: Queue-def
less-Suc-eq-le le-length-filter-update)
apply(simp add: Graph6)
— 3 subgoals left
apply(simp add:mul-mutator-defs nth-list-update)
— 2 subgoals left
apply(simp add:mul-mutator-defs mul-collector-defs Mul-CountInv-def)
apply clarify
apply disjE-tac
apply(simp add: Graph6)
apply(rule impl,rule disjl1,rule subset-trans,erule Graph3,simp,simp)
apply(simp add: Graph6)
apply clarify
apply disjE-tac

91

apply(simp add: Graph6)

apply(rule conjI)

apply (rule implrule disjI2 rule disjI2,rule disjl1,erule le-trans,force simp add: Queue-def
less-Suc-eq-le le-length-filter-update)

apply (rule impl,rule disjI2,rule disjI2,rule disjI1,erule le-trans,force simp add: Queue-def
less-Suc-eq-le le-length-filter-update)
apply(simp add: Graph6)
— 1 subgoal left
apply(simp add:mul-mutator-defs nth-list-update)
done

lemma Mul-interfree- Redirect-Edge-Count: [0<j; j<n]—
interfree-aux (Some(Mul-Redirect-Edge j n),{},Some(Mul-Count n))

apply (unfold mul-modules)

apply interfree-aux

apply safe

apply (simp-all add:mul-mutator-defs nth-list-update)

done

lemma Mul-interfree-Count-Color-Target: [0<j; j<n]=—
interfree-aux (Some(Mul-Count n),{},Some(Mul-Color-Target j n))
apply (unfold mul-modules)
apply interfree-aux
apply (simp-all add:mul-collector-defs mul-mutator-defs Mul-CountInv-def)
— 6 subgoals left
apply clarify
apply disjE-tac
apply (simp add: Graph7 Graph8 Graph12)
apply (simp add: Graph7 Graph8 Graph12)
apply clarify
apply disjE-tac
apply (simp add: Graph7 Graph8 Graph12)
apply(case-tac M /(T (Muts z!j))=DBlack)
apply(rule disjI2,rule disjI2, rule disjl1, erule le-trans)
apply(force simp add: Queue-def less-Suc-eq-le le-length-filter-update Graphl0)
apply ((rule disjI2)+,(erule subset-psubset-trans)+, simp add: Graphll)
apply (simp add: Graph7 Graph8 Graphl12)
apply((rule disjI2)+,erule psubset-subset-trans, simp add: Graph9)
— 5 subgoals left
apply clarify
apply disjE-tac
apply (simp add: Graph7 Graph8 Graph12)
apply (simp add: Graph7 Graph8 Graph12)
apply clarify
apply disjE-tac
apply (simp add: Graph7 Graph8 Graph12)
apply(case-tac M /(T (Muts x!j))=Black)
apply (rule disjI2,rule disjI2, rule disjI1, erule le-trans)
apply(force simp add: Queue-def less-Suc-eq-le le-length-filter-update Graphl0)

92

apply((rule disjI2)+,(erule subset-psubset-trans)+, simp add: Graphll)
apply (simp add: Graph7 Graph8 Graph12)
apply((rule disjI2)+,erule psubset-subset-trans, simp add: Graph9)
— 4 subgoals left
apply clarify
apply disjE-tac
apply (simp add: Graph7 Graph8 Graph12)
apply (simp add: Graph7 Graph8 Graph12)
apply clarify
apply disjE-tac
apply (simp add: Graph7 Graph8 Graph12)
apply(case-tac M z\(T (Muts z!j))=DBlack)
apply(rule disjI2,rule disjI2, rule disjl1, erule le-trans)
apply(force simp add: Queue-def less-Suc-eq-le le-length-filter-update Graph10)
apply ((rule disjI2)+,(erule subset-psubset-trans)+, simp add: Graphll)
apply (simp add: Graph7 Graph8 Graphl12)
apply((rule disjI2)+,erule psubset-subset-trans, simp add: Graph9)
— 3 subgoals left
apply clarify
apply disjE-tac
apply (simp add: Graph7 Graph8 Graph12)
apply (simp add: Graph7 Graph8 Graph12)
apply clarify
apply disjE-tac
apply (simp add: Graph7 Graph8 Graphl12)
apply(case-tac M /(T (Muts x!j))=Black)
apply(rule disjI2,rule disjI2, rule disjl1, erule le-trans)
apply(force simp add: Queue-def less-Suc-eq-le le-length-filter-update Graphl0)
apply((rule disjI2)+,(erule subset-psubset-trans)+, simp add: Graphll)
apply (simp add: Graph7 Graph8 Graph12)
apply ((rule disjI2)+,erule psubset-subset-trans, simp add: Graph9)
— 2 subgoals left
apply clarify
apply disjE-tac
apply (simp add: Graph7 Graph8 Graphl?2 nth-list-update)
apply (simp add: Graph7 Graph8 Graphl12 nth-list-update)
apply clarify
apply disjE-tac
apply (simp add: Graph7 Graph8 Graph12)
apply(rule conjI)
apply(case-tac M /(T (Muts x!j))=Black)
apply (rule disjI2,rule disjI2, rule disjI1, erule le-trans)
apply(force simp add: Queue-def less-Suc-eq-le le-length-filter-update Graphl0)
apply((rule disjI2)+,(erule subset-psubset-trans)+, simp add: Graphll)
apply (simp add: nth-list-update)
apply (simp add: Graph7 Graph8 Graph12)
apply(rule conjI)
apply((rule disjI2)+,erule psubset-subset-trans, simp add: Graph9)
apply (simp add: nth-list-update)

93

— 1 subgoal left
apply clarify
apply disjE-tac
apply (simp add: Graph7 Graph8 Graph12)
apply (simp add: Graph7 Graph8 Graph12)
apply clarify
apply disjE-tac
apply (simp add: Graph7 Graph8 Graph12)
apply(case-tac M /(T (Muts x!j))=Black)
apply(rule disjI2,rule disjI2, rule disjI1, erule le-trans)
apply(force simp add: Queue-def less-Suc-eq-le le-length-filter-update Graphl0)
apply((rule disjI2)+,(erule subset-psubset-trans)+, simp add: Graphll)
apply (simp add: Graph7 Graph8 Graph12)
apply((rule disjI2)+,erule psubset-subset-trans, simp add: Graph9)
done

lemma Mul-interfree-Color-Target-Count: [0<j; j<n]=
interfree-auz (Some(Mul-Color-Target j n),{}, Some(Mul-Count n))

apply (unfold mul-modules)

apply interfree-aux

apply safe

apply (simp-all add:mul-mutator-defs nth-list-update)

done

lemma Mul-interfree- Append-Redirect-Edge: [0<j; j<n]—
interfree-auz (Some(Mul-Append n),{}, Some(Mul-Redirect-Edge j n))
apply (unfold mul-modules)
apply interfree-aux
apply(tactic {ALLGOALS (clarify-tac context)))
apply (simp-all add: Graph6 Append-to-free0 Append-to-freel mul-collector-defs mul-mutator-defs
Mul-AppendInv-def)
apply(erule-tac z=j in allE, force dest: Graph3)+
done

lemma Mul-interfree- Redirect- Edge-Append: [0<j; j<n]—
interfree-aux (Some(Mul-Redirect-Edge j n),{},Some(Mul-Append n))
apply (unfold mul-modules)
apply interfree-aux
apply(tactic {ALLGOALS (clarify-tac context)))
apply (simp-all add:mul-collector-defs Append-to-free0 Mul-AppendInv-def mul-mutator-defs
nth-list-update)
done

lemma Mul-interfree-Append-Color-Target: [0<j; j<n]=
interfree-auz (Some(Mul-Append n),{}, Some(Mul-Color-Target j n))
apply (unfold mul-modules)
apply interfree-aux
apply(tactic CALLGOALS (clarify-tac context)y)
apply (simp-all add:mul-mutator-defs mul-collector-defs Mul-AppendInv-def Graph’7

94

Graph8 Append-to-free0 Append-to-freel
Graphl12 nth-list-update)
done

lemma Mul-interfree-Color-Target-Append: [0<j; j<n]—
interfree-auz (Some(Mul-Color-Target j n),{}, Some(Mul-Append n))

apply (unfold mul-modules)

apply interfree-aux

apply (tactic c<ALLGOALS (clarify-tac context)y)

apply (simp-all add: mul-mutator-defs nth-list-update)

apply(simp add: Mul-AppendInv-def Append-to-freeQ)

done

Interference freedom Collector-Mutator

lemmas mul-collector-mutator-interfree =
Mul-interfree- Blacken- Roots- Redirect- Edge Mul-interfree- Blacken-Roots-Color-Target
Mul-interfree- Propagate-Black- Redirect- Edge Mul-interfree- Propagate-Black-Color-Target
Mul-interfree-Count-Redirect-Edge Mul-interfree-Count-Color-Target
Mul-interfree- Append-Redirect-Edge Mul-interfree- Append-Color-Target
Mul-interfree- Redirect- Edge- Blacken-Roots Mul-interfree- Color- Target- Blacken- Roots
Mul-interfree- Redirect- Edge- Propagate-Black Mul-interfree-Color- Target- Propagate-Black
Mul-interfree-Redirect-Edge- Count Mul-interfree-Color-Target-Count
Mul-interfree-Redirect- Edge- Append Mul-interfree-Color-Target-Append

lemma Mul-interfree-Collector-Mutator: j<n —>

interfree-auz (Some (Mul-Collector n), {}, Some (Mul-Mutator j n))
apply (unfold Mul-Collector-def Mul-Mutator-def)
apply interfree-aux
apply (simp-all add:mul-collector-mutator-interfree)
apply (unfold mul-modules mul-collector-defs mul-mutator-defs)
apply(tactic «TRYALL (interfree-auz-tac context)))
— 42 subgoals left
apply (clarify,simp add: Graph6 Graph7 Graph8 Append-to-free0 Append-to-freel
Graphl2)+
— 24 subgoals left
apply(simp-all add: Graph6 Graph7 Graph8 Append-to-free0 Append-to-freel Graphl2)
— 14 subgoals left
apply(tactic < TRYALL (clarify-tac context)y)
apply (simp-all add: Graph6 Graph7 Graph8 Append-to-free0 Append-to-freel Graphl2)
apply (tactic <TRYALL (resolve-tac context [conjl])»)
apply(tactic <TRYALL (resolve-tac context [impl])»)
apply(tactic < TRYALL (eresolve-tac context [disjE])»)
apply(tactic < TRYALL (eresolve-tac context [conjE])»)
apply (tactic <TRYALL (eresolve-tac context [disjE])»)
apply (tactic <TRYALL ([disjE])»)
— 72 subgoals left
apply(simp-all add: Graph6 Graph7 Graph8 Append-to-freeQ Append-to-freel Graphl2)
— 35 subgoals left

e N e e T

>
eresolve-tac context y

95

apply (tactic <TRYALL(EVERY '[resolve-tac context [disjl1],
resolve-tac context Q{thms subset-trans},
eresolve-tac context Q{thms Graph3},
force-tac context
assume-tac context])y)
— 28 subgoals left
apply(tactic < TRYALL (eresolve-tac context [conjE])»)
apply(tactic <TRYALL (eresolve-tac context [disjE])»)
— 34 subgoals left
apply (rule disjI2,rule disjI1 erule le-trans,force simp add: Queue-def less-Suc-eg-le
le-length-filter-update)
apply(rule disjI2,rule disjl1 erule le-trans,force simp add: Queue-def less-Suc-eg-le
le-length-filter-update)
apply (case-tac [!] M z!(T (Muts z ! j))=DBlack)
apply (simp-all add: Graph10)
— 47 subgoals left
apply(tactic <TRYALL(EVERY '|[REPEAT o resolve-tac context [disjI2],
eresolve-tac context Q{thms subset-psubset-trans},
eresolve-tac context Q{thms Graphll},
force-tac context])»)
— 41 subgoals left
apply(tactic < TRYALL(EVERY '[resolve-tac context |disjI2],
resolve-tac context [disjl1],
eresolve-tac context Q{thms le-trans},
force-tac (context addsimps Q{thms Queue-def less-Suc-eq-le le-length-filter-update})])»)
— 35 subgoals left
apply(tactic <TRYALL(EVERY '[resolve-tac context [disjI2],
resolve-tac context [disjI1],
eresolve-tac context Q{thms psubset-subset-trans},
resolve-tac context Q{thms Graph9},
force-tac context])»)
— 31 subgoals left
apply(tactic <TRYALL(EVERY '[resolve-tac context [disjI2],
resolve-tac context [disjl1],
eresolve-tac context Q{thms subset-psubset-trans},
eresolve-tac context @Q{thms Graphll1},
force-tac context])»)
— 29 subgoals left
apply (tactic <TRYALL(EVERY '|REPEAT o resolve-tac context [disjI2],
eresolve-tac context Q{thms subset-psubset-trans},
eresolve-tac context Q{thms subset-psubset-trans},
eresolve-tac context @Q{thms Graphll1},
force-tac context])»)
— 25 subgoals left
apply (tactic <TRYALL(EVERY '[resolve-tac context [disjI2],
resolve-tac context [disjl2],
resolve-tac context [disjl1],
eresolve-tac context Q{thms le-trans},
force-tac (context addsimps Q{thms Queue-def less-Suc-eq-le le-length-filter-update})])»)

96

— 10 subgoals left

apply (rule disjI2,rule disjI2,rule conjl erule less-le-trans,force simp add: Queue-def
less-Suc-eq-le le-length-filter-update, rule disjl1, rule less-imp-le, erule less-le-trans,
force simp add: Queue-def less-Suc-eq-le le-length-filter-update)+

done

Interference freedom Mutator-Collector

lemma Mul-interfree-Mutator-Collector: j < n =
interfree-auz (Some (Mul-Mutator j n), {}, Some (Mul-Collector n))
apply (unfold Mul-Collector-def Mul-Mutator-def)
apply interfree-aux
apply (simp-all add:mul-collector-mutator-interfree)
apply (unfold mul-modules mul-collector-defs mul-mutator-defs)
apply(tactic <TRYALL (interfree-auz-tac context))
— 76 subgoals left
apply (clarsimp simp add: nth-list-update)+
— 56 subgoals left
apply (clarsimp simp add: Mul-AppendInv-def Append-to-free0 nth-list-update)+
done

The Multi-Mutator Garbage Collection Algorithm

The total number of verification conditions is 328

lemma Mul-Gar-Coll:
I— 4" Mul-Proper n A~ Mul-mut-init n A (Vi<n. Z (" Muts!i))}
COBEGIN
Mul-Collector n
{Falsel
|
SCHEME [0< j< n]
Mul-Mutator j n
{False}
COEND
{ False]}
apply oghoare
— Strengthening the precondition
apply(rule Int-greatest)
apply (case-tac n)
apply (force simp add: Mul-Collector-def mul-mutator-defs mul-collector-defs nth-append)
apply(simp add: Mul-Mutator-def mul-collector-defs mul-mutator-defs nth-append)
apply force
apply clarify
apply(case-tac 1)
apply(simp add: Mul-Collector-def mul-mutator-defs mul-collector-defs nth-append)
apply(simp add: Mul-Mutator-def mul-mutator-defs mul-collector-defs nth-append
nth-map-upt)
— Collector
apply (rule Mul-Collector)

97

— Mutator

apply(erule Mul-Mutator)

— Interference freedom

apply(simp add: Mul-interfree-Collector-Mutator)

apply(simp add: Mul-interfree-Mutator-Collector)

apply(simp add: Mul-interfree-Mutator-Mutator)

— Weakening of the postcondition

apply(case-tac n)

apply(simp add: Mul-Collector-def mul-mutator-defs mul-collector-defs nth-append)
apply(simp add: Mul-Mutator-def mul-mutator-defs mul-collector-defs nth-append)
done

end

98

Chapter 3

The Rely-Guarantee Method

3.1 Abstract Syntax

theory RG-Com imports Main begin

Semantics of assertions and boolean expressions (bexp) as sets of states.
Syntax of commands com and parallel commands par-com.
type-synonym ’a bexp = 'a set
datatype ‘a com =
Basic 'a ='a
| Seq ‘a com 'a com
| Cond 'a bexp 'a com 'a com

| While 'a bexp 'a com
| Await ‘a bexp 'a com

type-synonym ’a par-com = 'a com option list

end

3.2 Operational Semantics

theory RG-Tran
imports RG-Com
begin

3.2.1 Semantics of Component Programs

Environment transitions
type-synonym ‘a conf = ((‘a com) option) X 'a

inductive-set
etran :: (‘a conf x 'a conf) set
and etran’ :: 'a conf = 'a conf = bool (<- —e— -» [81,81] 80)

99

where
P —e— Q = (P,Q) € etran
| Env: (P, s) —e— (P, t)

lemma etranE: ¢ —e— ¢’ = (APst.c=(P,s) = ¢'= (P, t) = Q) = @
by (induct ¢, induct ¢’, erule etran.cases, blast)

Component transitions

inductive-set
ctran :: (‘a conf x 'a conf) set
and ctran’ :: 'a conf = 'a conf = bool (- —c— - [81,81] 80)
and ctrans :: 'a conf = 'a conf = bool (- —cx— - [81,81] 80)
where
P —c— Q= (P,Q) € ctran
| P —cx— @ = (P,Q) € ctran*

| Basic: (Some(Basic f), s) —c— (None, fs)

| Seql: (Some PO, s) —c— (None, t) = (Some(Seq PO P1), s) —c— (Some P1,
t)

| Seq2: (Some PO, s) —c— (Some P2, t) = (Some(Seq PO P1), s) —c—
(Some(Seq P2 P1), t)

| CondT: s€b = (Some(Cond b P1 P2), s) —c— (Some P1, s)
| CondF: s¢b = (Some(Cond b P1 P2), s) —c— (Some P2, s)

| WhileF: s¢b => (Some(While b P), s) —c— (None, s)
| WhileT: s€b = (Some(While b P), s) —c— (Some(Seq P (While b P)), s)

| Await: [s€b; (Some P, s) —cx— (None, t)] = (Some(Await b P), s) —c—
(None, t)

monos rtrancl-mono

3.2.2 Semantics of Parallel Programs

type-synonym ‘a par-conf = ('a par-com) x 'a

inductive-set

par-etran :: ('a par-conf x 'a par-conf) set

and par-etran’ :: ['a par-conf,’a par-conf] = bool (- —pe— -» [81,81] 80)
where

P —pe— Q = (P,Q) € par-etran
| ParEnv: (Ps, s) —pe— (Ps, t)

inductive-set

par-ctran :: ('a par-conf x 'a par-conf) set
and par-ctran’ :: ['a par-conf,’a par-conf] = bool (- —pc— - [81,81] 80)

100

where
P —pc— Q = (P,Q) € par-ctran
| ParComp: [i<length Ps; (Psli, s) —c— (r, t)] = (Ps, s) —pc— (Ps[i:=r], t)

lemma par-ctranE: ¢ —pc— ¢/ =
(Ni Pssrt.c=(Ps, s) = ¢’ = (Ps[i :==r], t) = i < length Ps =
(Ps'i,s) —c— (r,t) = P) = P
by (induct ¢, induct ¢’, erule par-ctran.cases, blast)

3.2.3 Computations

Sequential computations

type-synonym ’a confs = 'a conf list

inductive-set cptn :: ‘a confs set
where
CptnOne: [(P,s)] € cptn
| CptnEnv: (P, t)#xs € cptn = (P,s)#(P,t)#xs € cpin
| CptnComp: [(P,s) —c— (Q,t); (Q, H)#xs € cptn | = (P,s)#(Q,t)F#xs € cpin

definition cp :: (‘a com) option = 'a = ('a confs) set where
cp Ps={l.110=(P,s) Nl € cptn}

Parallel computations

type-synonym ’a par-confs = 'a par-conf list

inductive-set par-cptn :: ‘a par-confs set
where
ParCptnOne: [(P,s)] € par-cptn
| ParCptnEnv: (P,t)#xs € par-cptn = (P,s)#(P,t)#xs € par-cptn
| ParCptnComp: [(P,s) —pc— (Q,t); (Q,t)#xs € par-cptn | = (P,s)#(Q,t)#xs
€ par-cpin

definition par-cp :: ‘a par-com = 'a = ('a par-confs) set where
par-cp P s = {l. 10=(P,s) A | € par-cptn}

3.2.4 Modular Definition of Computation

definition lift :: 'a com = 'a conf = ’a conf where
lift @ = AP, s). (if P=None then (Some Q,s) else (Some(Seq (the P) Q), s))

inductive-set cptn-mod :: (‘a confs) set
where
CptnModOne: [(P, s)] € cptn-mod
| CptnModEnv: (P, t)#xs € cptn-mod = (P, s)#(P, t)#xs € cptn-mod
| CptnModNone: [(Some P, s) —c— (None, t); (None, t)#zs € cptn-mod | =
(Some P,s)#(None, t)#xs €cptn-mod

101

| CptnModCondT: [(Some PO, s)#ys € cptn-mod; s € b | = (Some(Cond b PO
P1), s)#(Some PO, s)#ys € cptn-mod
| CptnModCondF: [(Some P1, s)#ys € cptn-mod; s ¢ b]| = (Some(Cond b PO
P1), s)#(Some P1, s)#ys € cptn-mod
| CptnModSeq1: [(Some PO, s)#xs € cptn-mod; zs=map (lift P1) zs]
= (Some(Seq PO P1), s)#zs € cptn-mod

| CptnModSeq?2:

[(Some PO, s)#xs € cptn-mod; fst(last ((Some PO, s)#xs)) = None;

(Some P1, snd(last ((Some PO, s)#uxs)))#ys € cptn-mod;

zs=(map (lift P1) xs)Qys | = (Some(Seq PO P1), s)#zs € cptn-mod

| CptnModWhilel:

[(Some P, s)#zxs € cptn-mod; s € b; zs=map (lift (While b P)) xs |

= (Some(While b P), s)#(Some(Seq P (While b P)), s)#zs € cptn-mod
| CptnModWhile2:

[(Some P, s)#uxs € cptn-mod; fst(last ((Some P, s)#xs))=None; s € b;

zs=(map (lift (While b P)) xs)Qys;

(Some(While b P), snd(last ((Some P, s)#xs)))#ys € cptn-mod]

= (Some(While b P), s)#(Some(Seq P (While b P)), s)#zs € cptn-mod

3.2.5 Equivalence of Both Definitions.

lemma last-length: ((a#txs)!(length xs))=last (aftxs)
by (induct zs) auto

lemma div-seq [rule-format]: list € cptn-mod —>
(Vs P Q zs. list=(Some (Seq P Q), s)#zs —>
(3zs. (Some P, s)#as € cptn-mod A (zs=(map (lift Q) zs) V
(fst(((Some P, s)#uxs)llength xs)=None A
(Fys. (Some Q, snd(((Some P, s)#xs)!length xs))#ys € cptn-mod
A zs=(map (iift (Q)) 55)y5)))))
apply(erule cptn-mod.induct)
apply simp-all
apply clarify
apply (force intro: CptnModOne)
apply clarify
apply(erule-tac x=Pa in allF)
apply(erule-tac =@ in allE)
apply simp
apply clarify
apply(erule disjE)
apply (rule-tac =(Some Pa,t)#zsa in exl)
apply(rule conjl)
apply clarify
apply(erule CptnModEnv)
apply(rule disjI1)
apply(simp add:lift-def)
apply clarify
apply(rule-tac x=(Some Pa,t)#zsa in exl)

102

apply(rule conjI)
apply(erule CptnModEnv)
apply(rule disjI2)
apply (rule conjI)
apply(case-tac zsa,simp,simp)
apply(rule-tac z=ys in exl)
apply(rule conjI)
apply simp
apply(simp add:lift-def)
apply clarify
apply(erule ctran.cases,simp-all)
apply clarify
apply(rule-tac z=xs in exl)
apply simp
apply clarify
apply(rule-tac z=xs in exI)
apply(simp add: last-length)
done

lemma cptn-onlyif-cptn-mod-auz [rule-format):
Vs Q tzs.((Some a, s), Q, t) € ctran — (Q, t) # xs € cptn-mod
— (Some a, s) # (Q, t) # xs € cptn-mod
supply [[simproc del: defined-all]]

apply(induct a)

apply simp-all

— basic

apply clarify

apply(erule ctran.cases,simp-all)

apply(rule CptnModNone,rule Basic,simp)

apply clarify

apply (erule ctran.cases,simp-all)

— Seql

apply (rule-tac zs=[(None,ta)] in CptnModSeq?2)
apply(erule CptnModNone)
apply(rule CptnModOne)

apply simp

apply simp

apply(simp add:lift-def)

— Seq?2

apply(erule-tac =sa in allE)

apply (erule-tac z==Some P2 in allE)

apply(erule allE erule impE, assumption)

apply(drule div-seq,simp)

apply clarify

apply(erule disjE)

apply clarify

apply (erule allE erule impE, assumption)
apply(erule-tac CptnModSeql)

apply(simp add:lift-def)

103

apply clarify
apply(erule allE erule impE, assumption)
apply(erule-tac CptnModSeq?2)
apply (simp add:last-length)
apply (simp add:last-length)
apply(simp add:lift-def)
— Cond
apply clarify
apply (erule ctran.cases,simp-all)
apply (force elim: CptnModCondT)
apply (force elim: CptnModCondF)
— While
apply clarify
apply(erule ctran.cases,simp-all)
apply(rule CptnModNone,erule WhileF ,simp)
apply(drule div-seq,force)
apply clarify
apply (erule disjE)
apply(force elim: CptnMod Whilel)
apply clarify
apply (force simp add:last-length elim: CptnMod While2)
— await
apply clarify
apply(erule ctran.cases,simp-all)
apply(rule CptnModNone,erule Await,simp+)
done

lemma cptn-onlyif-cptn-mod [rule-format]: ¢ € cptn = ¢ € cptn-mod
apply(erule cptn.induct)
apply(rule CptnModOne)
apply(erule CptnModEnv)
apply/(case-tac P)
apply simp
apply(erule ctran.cases,simp-all)
apply (force elim:cptn-onlyif-cptn-mod-aux)
done

lemma lift-is-cptn: c€cptn = map (lift P) ¢ € cptn
apply(erule cptn.induct)
apply(force simp add:lift-def CptnOne)
apply (force intro: CptnEnv simp add:lift-def)
apply (force simp add:lift-def intro: CptnComp Seq2 Seql elim:ctran.cases)
done

lemma cpin-append-is-cptn [rule-format]:

Vb a. b#clecptn — a#c2€cptn — (b#tcl)llength c1=a — bF#cl1Qc2€ecpin
apply (induct c1)

apply simp

apply clarify

104

apply(erule cptn.cases,simp-all)

apply(force intro: CptnEnv)
apply (force elim: CptnComp)
done

lemma last-lift: [xs#[]; fst(zs!(length xs — (Suc 0)))=None]
= fst((map (lift P) xs)!(length (map (lift P) xs)— (Suc 0)))=(Some P)
by (cases (zs ! (length zs — (Suc 0)))) (simp add:lift-def)

lemma last-fst [rule-format]: P((a#x)!length) — —P a — P (z!(length © —
(Suc 0)))
by (induct) simp-all

lemma last-fst-esp:

fst(((Some a,s)#xs)!(length xs))=None = fst(xs!(length xs — (Suc 0)))=None
apply (erule last-fst)

apply simp

done

lemma last-snd: xs#£[] =

snd(((map (lift P) xs))!(length (map (lift P) zs) — (Suc 0)))=snd(zs!(length s
— (Suc 0)))

by (cases (zs ! (length s — (Suc 0)))) (simp-all add:lift-def)

lemma Cons-lift: (Some (Seq P Q), s) # (map (lift Q) xs) = map (lift Q) ((Some
P, s) # xs)
by (simp add:lift-def)

lemma Cons-lift-append:

(Some (Seq P Q), s) # (map (lift Q) zs) @ ys = map (lift Q) ((Some P, s) #
z$)Q ys

by (simp add:lift-def)

lemma lift-nth: i<length xs = map (lift Q) zs ! i = lift Q (xs! @)
by (simp add:lift-def)

lemma snd-lift: i< length xs = snd(lift Q (zs! i))= snd (zs ! 7)
by (cases xsli) (simp add:lift-def)

lemma cpin-if-cptn-mod: ¢ € cptn-mod = ¢ € cpin
apply(erule cptn-mod.induct)
apply(rule CptnOne)
apply(erule CptnEnv)
apply(erule CptnComp,simp)
apply(rule CptnComp)
apply(erule CondT,simp)
apply(rule CptnComp)
apply(erule CondF,simp)
— Seql

105

apply(erule cptn.cases,simp-all)
apply(rule CptnOne)

apply clarify

apply(drule-tac P=P1 in lift-is-cptn)
apply(simp add:lift-def)

apply(rule CptnEnv,simp)

apply clarify

apply(simp add:lift-def)

apply(rule conjI)

apply clarify

apply(rule CptnComp)
apply(rule Seql,simp)

apply(drule-tac P=P1 in lift-is-cptn)
apply(simp add:lift-def)

apply clarify

apply(rule CptnComp)

apply(rule Seq2,simp)

apply(drule-tac P=P1 in lift-is-cptn)

apply(simp add:lift-def)

— Seq2

apply(rule cptn-append-is-cptn)
apply(drule-tac P=P1 in lift-is-cptn)
apply(simp add:lift-def)

apply simp

apply (simp split: if-split-asm)

apply(frule-tac P=P1 in last-lift)
apply/(rule last-fst-esp)

apply (simp add:last-length)

apply(simp add: Cons-lift lift-def split-def last-conv-nith)

— Whilel

apply(rule CptnComp)

apply(rule WhileT ,simp)

apply(drule-tac P=While b P in lift-is-cptn)

apply(simp add:lift-def)

— While2

apply(rule CptnComp)

apply(rule WhileT ,simp)

apply(rule cptn-append-is-cptn)
apply(drule-tac P=While b P in lift-is-cptn)
apply(simp add:lift-def)

apply simp

apply (simp split: if-split-asm)

apply (frule-tac P=While b P in last-lift)
apply(rule last-fst-esp,simp add:last-length)

apply(simp add: Cons-lift lift-def split-def last-conv-nith)

done

theorem cptn-iff-cptn-mod: (¢ € cptn) = (¢ € cptn-mod)
apply (rule iffI)

106

apply(erule cptn-onlyif-cptn-mod)
apply(erule cptn-if-cptn-mod)
done

3.3 Validity of Correctness Formulas

3.3.1 Validity for Component Programs.

type-synonym ’a rgformula =
‘a com x 'a set x ('a x 'a) set x (a x 'a) set X 'a set

definition assum :: (‘a set x ('a x 'a) set) = ('a confs) set where
assum = X(pre, rely). {c. snd(cl0) € pre A (¥ i. Suc i<length ¢ —
cli —e— cl(Suc i) — (snd(cli), snd(c!Suc i) € rely)}

definition comm :: (('a x ‘a) set x 'a set) = ('a confs) set where
comm = A(guar, post). {c. (Vi. Suc i<length ¢ —
cli —c— ! (Suc i) — (snd(cli), snd(c!Suc i) € guar) A
(fst (last ¢) = None — snd (last ¢) € post)}

definition com-validity :: 'a com = 'a set = (‘a x 'a) set = ('a x 'a) set = 'a
set = bool
(xE - sat [-, -, - -] [60,0,0,0,0] 45) where
E P sat [pre, rely, guar, post] =
Vs. cp (Some P) s N assum(pre, rely) C comm(guar, post)

3.3.2 Validity for Parallel Programs.

definition All-None :: ((‘a com) option) list = bool where
All-None zs = V ceset xs. c=None

definition par-assum :: ('a set x (‘a x 'a) set) = ('a par-confs) set where
par-assum = A(pre, rely). {c. snd(c!0) € pre A (Vi. Suc i<length ¢ —
cli —pe— c!Suc i — (snd(cli), snd(c!Suc i) € rely)}

definition par-comm :: ((‘a x 'a) set x ’a set) = ('a par-confs) set where
par-comm = A(guar, post). {c. (Vi. Suc i<length ¢ —
cli —pc— clSuc i — (snd(cli), snd(c!Suc 7)) € guar) A
(All-None (fst (last ¢)) — snd(last ¢) € post)}

definition par-com-validity :: 'a par-com = 'a set = ('a x 'a) set = (‘a x 'a)
set
= 'a set = bool (< - SAT [-, -, -, - [60,0,0,0,0] 45) where

= Ps SAT [pre, rely, guar, post] =

V' s. par-cp Ps s N par-assum(pre, rely) C par-comm(guar, post)

107

3.3.3 Compositionality of the Semantics
Definition of the conjoin operator

definition same-length :: ‘a par-confs = ('a confs) list = bool where
same-length c clist = (Y i<length clist. length(clist!i)=length c)

definition same-state :: 'a par-confs = ('a confs) list = bool where
same-state ¢ clist = (Vi <length clist. V¥ j<length c. snd(c\j) = snd((clist!i)!]))

definition same-program :: 'a par-confs = ('a confs) list = bool where
same-program c clist = (V¥ j<length c. fst(c!j) = map (Az. fst(nth z j)) clist)

definition compat-label :: 'a par-confs = ('a confs) list = bool where
compat-label ¢ clist = (Vj. Suc j<length ¢ —
(clj —pc— clSuc j A (Fi<length clist. (clist!i)lj —c— (clist!i)! Suc j A
(ViI<length clist. I#i — (clist!l)lj —e— (clist!])! Suc j))) V
(clj —pe— clSuc j A (Vi<length clist. (clist!i)lj —e— (clist!i)! Suc 7)))

definition conjoin :: 'a par-confs = ('a confs) list = bool (- x -» [65,65] 64)
where

¢ « clist = (same-length c clist) N (same-state ¢ clist) N (same-program c clist)
A (compat-label ¢ clist)

Some previous lemmas

lemma list-eq-if [rule-format]:
YV ys. xs=ys — (length zs = length ys) — (Vi<length xs. zsli=ysli)
by (induct zs) auto

lemma list-eq: (length xs = length ys N\ (Vi<length xs. zsli=ys!i)) = (zs=ys)
apply (rule iffI)

apply clarify

apply (erule nth-equalityl)

apply simp+

done

lemma nth-tl: [ys!0=a; ys#[] | = ys=(a#(¢ ys))
by (cases ys) simp-all

lemma nth-tl-if [rule-format]: ys#£[] — ys!0=a — P ys — P (a#(tl ys))
by (induct ys) simp-all

lemma nth-tl-onlyif [rule-format]: ys#£[] — ys!l0=a — P (a#(tl ys)) — P ys
by (induct ys) simp-all

lemma seg-not-eql: Seq c1 c2+#cl
by (induct c1) auto

lemma seq-not-eq2: Seq c1 c2#c2

108

by (induct c2) auto

lemma if-not-eql: Cond b c1 c2 #cl
by (induct c1) auto

lemma if-not-eq2: Cond b c1 c2#c2
by (induct c2) auto

lemmas seq-and-if-not-eq [simp] = seq-not-eql seq-not-eq2
seg-not-eql [THEN not-sym| seq-not-eq2 [THEN not-sym|
if-not-eql if-not-eq2 if-not-eql [THEN not-sym] if-not-eq2 [THEN not-sym)

lemma prog-not-eq-in-ctran-aux:
assumes c: (P,s) —c— (Q,?)
shows P#() using c
by (induct z1 = (P,s) 22 = (Q,t) arbitrary: P s Q t) auto

lemma prog-not-eq-in-ctran [simp]: = (P,s) —c— (P,t)
apply clarify

apply(drule prog-not-eg-in-ctran-aux)

apply simp

done

lemma prog-not-eg-in-par-ctran-auz [rule-format]: (P,s) —pc— (Q,t) = (P#Q)
apply (erule par-ctran.induct)

apply(drule prog-not-eq-in-ctran-aux)

apply clarify

apply(drule list-eq-if)

apply simp-all

apply force

done

lemma prog-not-eq-in-par-ctran [simpl: = (P,s) —pc— (P,t)
apply clarify

apply(drule prog-not-eg-in-par-ctran-auzx)

apply simp

done

lemma tl-in-cptn: | a#as Ecpin; zs#[] | = zs€cpin
by (force elim: cptn.cases)

lemma ti-zero[rule-format]:
P (ys!'Suc j) — Suc j<length ys — ys#[] — P (tl(ys)!4)
by (induct ys) simp-all

3.3.4 The Semantics is Compositional

lemma auz-if [rule-format]:
Vs s clist. (length clist = length s A (Y i<length zs. (zsli,s)#clist!i € cptn)

109

A ((zs, s)#ys o< map (Ai. (fst i,8)#snd i) (zip zs clist))
— (zs, $)#ys € par-cptn)
apply (induct ys)
apply (clarify)
apply(rule ParCptnOne)
apply (clarify)
apply(simp add:conjoin-def compat-label-def)
apply clarify
apply(erule-tac =0 and P=Xj. Hj — (P j V @ j) for H P Q in all-dupF,
simp)
apply(erule disjE)
— first step is a Component step
apply clarify
apply simp
apply (subgoal-tac a=(xs[i:=(fst(clist!i!0))]))
apply(subgoal-tac b=snd(clist!i!0),simp)
prefer 2
apply(simp add: same-state-def)
apply(erule-tac =1 in allE erule impE, assumption,
erule-tac t=1 and P=M\j. (H j) — (snd (d j))=(snd (e j)) for H d e in
allE, simp)
prefer 2
apply(simp add:same-program-def)
apply(erule-tac z=1 and P=M\j. Hj — (fst (s j))=(t j) for H s t in allE simp)
apply (rule nth-equalityl ,simp)
apply clarify
apply/(case-tac i=ia,simp,simp)
apply(erule-tac x=ia and P=\j. Hj — [j — J j for H 1 J in dllE)
apply(drule-tac t=i in not-sym,simp)
apply(erule etranE, simp)
apply(rule ParCptnComp)
apply(erule ParComp,simp)
— applying the induction hypothesis
apply (erule-tac z=xs[i := fst (clist ! ! 0)] in allE)
apply (erule-tac z=snd (clist | i1 0) in allE)
apply(erule mp)
apply (rule-tac x=map tl clist in exl, simp)
apply(rule conjl,clarify)
apply/(case-tac i=ia,simp)
apply(rule nth-ti-if)
apply (force simp add:same-length-def length-Suc-conv)
apply simp
apply(erule allE, erule impE assumption,erule tl-in-cptn)
apply(force simp add:same-length-def length-Suc-conv)
apply(rule nth-ti-if)
apply(force simp add:same-length-def length-Suc-conv)
apply(simp add:same-state-def)
apply(erule-tac x=ia in allE, erule impE, assumption,
erule-tac z=1 and P=Xj. H j — (snd (d j))=(snd (e 7)) for H d e in allF)

110

apply(erule-tac x=ia and P=\j. Hj — [j — Jj for H1 J in dllF)
apply(drule-tac t=i in not-sym,simp)
apply(erule etranE, simp)
apply(erule allE erule impE,assumption,erule tl-in-cptn)
apply(force simp add:same-length-def length-Suc-conv)
apply(simp add:same-length-def same-state-def)
apply(rule conjI)
apply clarify
apply(case-tac j,simp,simp)
apply (erule-tac z=ia in ollE, erule impE, assumption,
erule-tac t=Suc(Suc nat) and P=)\j. H j — (snd (d j))=(snd (e j)) for
H d e in allE simp)
apply(force simp add:same-length-def length-Suc-conv)
apply(rule conjI)
apply(simp add:same-program-def)
apply clarify
apply/(case-tac j,simp)
apply(rule nth-equalityl ,simp)
apply clarify
apply (case-tac i=ia,simp,simp)
apply (erule-tac x=Suc(Suc nat) and P=X\j. Hj — (fst (s j))=(t j) for H s t
in allE, simp)
apply(rule nth-equalityl ,simp,simp)
apply(force simp add:length-Suc-conv)
apply(rule alll,rule impl)
apply (erule-tac z=Suc j and P=\j. Hj — (I j Vv Jj) for H I J in allE,simp)
apply(erule disjE)
apply clarify
apply(rule-tac z=ia in ezl simp)
apply(case-tac i=ia,simp)
apply (rule conjI)
apply(force simp add: length-Suc-conv)
apply clarify
apply(erule-tac x=I and P=Xj. Hj — I j — J j for H I J in allE erule
impE, assumption)
apply(erule-tac =1 and P=X\j. Hj — [j — J j for H I J in allE, erule
impE assumption)
apply simp
apply/(case-tac j,simp)
apply (rule tl-zero)
apply(erule-tac z=I in allE, erule impE, assumption,
erule-tac z=1 and P=\j. (H j) — (snd (d j))=(snd (e j)) for H d e
in allE, simp)
apply (force elim:etranE intro: Env)
apply force
apply force
apply simp
apply(rule tl-zero)
apply(erule tl-zero)

111

apply force
apply force
apply force
apply force
apply (rule conjl,simp)
apply(rule nth-ti-if)
apply force
apply(erule-tac z=ia in allE, erule impE, assumption,
erule-tac =1 and P=Xj. Hj — (snd (d j))=(snd (e j)) for H d e in
allE)
apply(erule-tac z=ia and P=Nj. Hj — I j — J j for H I J in allF)
apply(drule-tac t=i in not-sym,simp)
apply(erule etranE, simp)
apply (erule tl-zero)
apply force
apply force
apply clarify
apply/(case-tac i=I,simp)
apply(rule nth-ti-if)
apply(erule-tac x=! and P=Xj. H j — (length (s j) = t) for H s t in
allE, force)
apply simp
apply(erule-tac P=X\j. Hj — 1j — Jjfor H I J in allF, erule impE assumption,erule
impE, assumption)
apply(erule tl-zero,force)
apply (erule-tac =l and P=M\j. Hj — (length (s j) = t) for H s t in allE,force)
apply(rule nth-ti-if)
apply(erule-tac z=I and P=M\j. H j — (length (s j) = t) for H s ¢ in
allE, force)
apply(erule-tac =1 in allE, erule impE, assumption,
erule-tac =1 and P=Xj. Hj — (snd (d j))=(snd (e j)) for H d e in
allF)
apply(erule-tac z=I and P=X\j. Hj — I j — J j for H I J in allE, erule
impE, assumption,simp)
apply(erule etranE, simp)
apply (rule tl-zero)
apply force
apply force
apply(erule-tac z=Il and P=M\j. Hj — (length (s j) = t) for H s t in allFE,force)
apply(rule disjI2)
apply/(case-tac j,simp)
apply clarify
apply(rule tl-zero)
apply(erule-tac z=ia and P=\j. Hj — I j€etran for H I in allE, erule impFE,
assumption)
apply(case-tac i=ia,simp,simp)
apply (erule-tac x=ia in allE, erule impE, assumption,
erule-tac t=1 and P=\j. H j — (snd (d j))=(snd (e j)) for H d e in allF)
apply(erule-tac z=ia and P=Xj. Hj — [j — J j for H I J in allE, erule

112

impE, assumption,simp)
apply(force elim:etranE intro: Env)
apply force
apply(erule-tac z=ia and P=\j. H j — (length (s j) = t) for H s t in
allE, force)
apply simp
apply clarify
apply(rule tl-zero)
apply(rule ti-zero,force)
apply force
apply(erule-tac z=ia and P=M)j. H j — (length (s j) = t) for H s t in
allE, force)
apply force
apply(erule-tac z=ia and P=X\j. Hj — (length (s j) = t) for H s t in allF,force)
— first step is an environmental step
apply clarify
apply (erule par-etran.cases)
apply simp
apply(rule ParCptnEnv)
apply (erule-tac z=Ps in allF)
apply(erule-tac z=t in allE)
apply(erule mp)
apply(rule-tac z=map tl clist in exl,simp)
apply(rule conjI)
apply clarify
apply(erule-tac z=i and P=Xj. Hj — I j € cptn for H I in allE,simp)
apply(erule cptn.cases)
apply(simp add:same-length-def)
apply(erule-tac z=i and P=Xj. Hj — (length (s j) = t) for H s t in allE, force)
apply(simp add:same-state-def)
apply(erule-tac z=i in allE, erule impE, assumption,
erule-tac =1 and P=M\j. Hj — (snd (d j))=(snd (e j)) for H d e in allE,simp)
apply(erule-tac z=i and P=M\j. H j — J j €etran for H J in allF simp)
apply(erule etranE simp)
apply(simp add:same-state-def same-length-def)
apply (rule conjI,clarify)
apply (case-tac j,simp,simp)
apply(erule-tac =i in allE, erule impE, assumption,
erule-tac t==Suc(Suc nat) and P=\j. Hj — (snd (d j))=(snd (e j)) for H
d e in allFE,simp)
apply(rule tl-zero)
apply (simp)
apply force
apply(erule-tac z=i and P=M\j. Hj — (length (s j) = t) for H s t in allE, force)
apply(rule conjI)
apply(simp add:same-program-def)
apply clarify
apply/(case-tac j,simp)
apply(rule nth-equalityl ,simp)

113

apply clarify
apply simp
apply(erule-tac x=Suc(Suc nat) and P=Xj. Hj — (fst (s j))=(t j) for H s ¢
in allE,simp)
apply (rule nth-equalityl ,simp,simp)
apply(force simp add:length-Suc-conv)
apply(rule alll,rule impl)
apply(erule-tac z=Suc j and P=\j. Hj — (I j Vv Jj) for H I J in allE simp)
apply(erule disjE)
apply clarify
apply(rule-tac z=1i in exl simp)
apply(rule conjI)
apply(erule-tac z=i and P=MXi. Hi — J i €etran for H J in allE, erule impFE,
assumption)
apply(erule etranE, simp)
apply(erule-tac =i in allE, erule impE, assumption,
erule-tac t=1 and P=M\j. H j — (snd (d j))=(snd (e j)) for H d e in
allE,simp)
apply(rule nth-ti-if)
apply (erule-tac x=i and P=MXj. H j —> (length (s j) = t) for H s t in allE,force)
apply simp
apply(erule ti-zero,force)
apply(erule-tac z=i and P=\j. H j — (length (s j) = t) for H s t in allFE,force)
apply clarify
apply(erule-tac z=0 and P=Xi. H i — J i €etran for H J in allE, erule impFE,
assumption)
apply(erule etranE, simp)
apply(erule-tac =1 in allE, erule impE, assumption,
erule-tac t=1 and P=Xj. H j — (snd (d j))=(snd (e j)) for H d e in
allE,simp)
apply (rule nth-tl-if)
apply(erule-tac z=1 and P=M\j. H j — (length (s j) = t) for H s t in allE, force)
apply simp
apply/(rule tl-zero,force)
apply force
apply (erule-tac =1 and P=M\j. Hj — (length (s j) = t) for H s t in allE,force)
apply (rule disjI2)
apply simp
apply clarify
apply/(case-tac j,simp)
apply(rule tl-zero)
apply(erule-tac z=i and P=Xi. H i — J i €etran for H J in allE, erule
impE, assumption)
apply(erule-tac x=i and P=Ai. H i — J i €etran for H J in allE, erule
impE, assumption)
apply(force elim:etranE intro: Env)
apply force
apply (erule-tac z=i and P=Xj. Hj — (length (s j) = t) for H s t in allE,force)
apply simp

114

apply(rule tl-zero)
apply/(rule tl-zero,force)
apply force
apply (erule-tac x=i and P=M\j. Hj — (length (sj) = t) for H s t in allE, force)
apply force
apply(erule-tac x=i and P=\j. Hj — (length (s j) = t) for H s t in allE, force)
done

lemma aux-onlyif [rule-format]: Vs s. (zs, s)#ys € par-cptn —
(3 clist. (length clist = length zs) A
(zs, 8)#ys o< map (Ni. (fst i,8)#(snd 7)) (zip zs clist) N
(Vi<length zs. (zsli,s)#(clist!i) € cptn))
supply [[simproc del: defined-all]]
apply (induct ys)
apply(clarify)
apply (rule-tac x=map (N\i. []) [0..<length zs] in exI)
apply(simp add: conjoin-def same-length-def same-state-def same-program-def com-
pat-label-def)
apply(rule conjI)
apply (rule nth-equalityl ,simp,simp)
apply (force intro: cptn.intros)
apply (clarify)
apply(erule par-cptn.cases,simp)
apply simp
apply(erule-tac z=xs in allF)
apply(erule-tac z=t in allF,simp)
apply clarify
apply(rule-tac z=(map (Nj. (P4, t)#(clist'j)) [0..<length P]) in exl, simp)
apply(rule conjI)
prefer 2
apply clarify
apply(rule CptnEnv,simp)
apply(simp add:conjoin-def same-length-def same-state-def)
apply (rule conjI)
apply clarify
apply(case-tac j,simp,simp)
apply(rule conjl)
apply(simp add:same-program-def)
apply clarify
apply/(case-tac j,simp)
apply (rule nth-equalityl ,simp,simp)
apply simp
apply(rule nth-equalityl ,simp,simp)
apply(simp add:compat-label-def)
apply clarify
apply/(case-tac j,simp)
apply(simp add:ParEnv)
apply clarify
apply(simp add:Env)

115

apply simp
apply(erule-tac x=nat in allE erule impE, assumption)
apply(erule disjE, simp)
apply clarify
apply (rule-tac z=i in exl,simp)
apply force
apply(erule par-ctran.cases,simp)
apply (erule-tac x=Ps[i:=r] in allE)
apply (erule-tac z=ta in allE, simp)
apply clarify
apply (rule-tac x=(map (N\j. (Pslf, ta)#(clist!y)) [0..<length Ps]) [i:=((r, ta)#(clist!i))]
in exl simp)
apply(rule conjI)
prefer 2
apply clarify
apply/(case-tac i=ia,simp)
apply(erule CptnComp)
apply(erule-tac x=ia and P=\j. Hj — (I j € cptn) for H I in allE, simp)
apply simp
apply (erule-tac z=ia in allE)
apply(rule CptnEnv,simp)
apply(simp add:conjoin-def)
apply (rule conjI)
apply(simp add:same-length-def)
apply clarify
apply(case-tac i=ia,simp,simp)
apply(rule conjI)
apply(simp add:same-state-def)
apply clarify
apply(case-tac j, simp, simp (no-asm-simp))
apply(case-tac i=ia,simp,simp)
apply(rule conjI)
apply(simp add:same-program-def)
apply clarify
apply/(case-tac j,simp)
apply (rule nth-equalityl ,simp,simp)
apply simp
apply (rule nth-equalityl ,simp,simp)
apply(erule-tac x=nat and P=\j. Hj — (fst (a j))=((b j)) for H a b in allE)
apply/(case-tac nat)
apply clarify
apply(case-tac i=ia,simp,simp)
apply clarify
apply/(case-tac i=ia,simp,simp)
apply(simp add:compat-label-def)
apply clarify
apply(case-tac j)
apply(rule conjl,simp)
apply(erule ParComp,assumption)

116

apply clarify
apply(rule-tac z=1i in exl,simp)
apply clarify
apply(rule Env)
apply simp
apply(erule-tac z=nat and P=\j. Hj — (P jV Q j) for H P Q in allFE, simp)
apply(erule disjE)
apply clarify
apply (rule-tac x=ia in exl,simp)
apply(rule conjI)
apply/(case-tac i=ia,simp,simp)
apply clarify
apply/(case-tac i=I,simp)
apply(case-tac l=ia,simp,simp)
apply (erule-tac x=l in ollE erule impE, assumption,erule impE, assumption,simp)
apply simp
apply(erule-tac =1 in allE, erule impE assumption,erule impE, assumption,simp)
apply clarify
apply(erule-tac z=ia and P=Xj. H j — (P j)€etran for H P in allE, erule
impE, assumption)
apply(case-tac i=ia,simp,simp)
done

lemma one-iff-aux: zs#£[] = (Vys. ((zs, s)#ys € par-cptn) =
(3 clist. length clist= length zs N\
(zs, s)#ys < map (Ni. (fst i,8)#(snd ©)) (zip s clist)) A
Vi<length xzs. (xzsli,s)#(clist!i) € cptn))) =
par-cp (xs) s = {c. I clist. (length clist)=(length xs) N
Vi<length clist. (clistli) € cp(xsli) s) A ¢ o clist})
apply (rule iffI)

apply(rule subset-antisym)

apply(rule subsetl)

apply(clarify)

apply(simp add:par-cp-def cp-def)

apply/(case-tac x)

apply(force elim:par-cptn.cases)

apply simp

apply(rename-tac a list)

apply(erule-tac x=list in allE)

apply clarify

apply simp

apply (rule-tac x=map (Ni. (fst i, s) # snd i) (zip zs clist) in exl,simp)
apply(rule subsetl)

apply (clarify)

apply/(case-tac x)

apply(erule-tac =0 in allFE)

apply(simp add:cp-def conjoin-def same-length-def same-program-def same-state-def
compat-label-def)

apply clarify

(
(
(
(

117

apply(erule cptn.cases,force,force,force)
apply(simp add:par-cp-def conjoin-def same-length-def same-program-def same-state-def
compat-label-def)
apply clarify
apply(erule-tac t=0 and P=X\j. Hj — (length (s j) = t) for H s t in all-dupE)
apply(subgoal-tac a = xs)

apply(subgoal-tac b = s,simp)

prefer 3

apply(erule-tac z=0 and P=\j. Hj — (fst (s 7))=((¢ 7)) for H s t in allE)

apply (simp add:cp-def)

apply(rule nth-equalityl ,simp,simp)

prefer 2

apply(erule-tac =0 in allFE)

apply (simp add:cp-def)

apply(erule-tac x=0 and P=\j. Hj — (Vi. Ti — (snd (d j i))=(snd (e j
7)) for H T d e in allE,simp)

apply(erule-tac x=0 and P=M\j. Hj — (snd (d j))=(snd (e j)) for H d e in
allE,simp)
apply(erule-tac z=list in allE)
apply (rule-tac x=map tl clist in exl simp)
apply(rule conjI)

apply clarify

apply/(case-tac j,simp)

apply(erule-tac =i in allE, erule impE, assumption,

erule-tac =0 and P=M\j. H j — (snd (d j))=(snd (e j)) for H d e in

allE simp)

apply(erule-tac =i in allE, erule impE, assumption,

erule-tac t=Suc nat and P=M\j. Hj — (snd (d j))=(snd (e j)) for H d e

in allF)

apply(erule-tac x=i{ and P=M\j. H j — (length (s j) = t) for H s t in allE)

apply(case-tac clistli,simp,simp)
apply(rule conjI)

apply clarify

apply(rule nth-equalityl ,simp,simp)

apply/(case-tac j)

apply clarify

apply (erule-tac z=1 in allF)

apply(simp add:cp-def)

apply clarify

apply simp

apply(erule-tac z=i and P=Xj. H j — (length (s j) = t) for H s t in allF)

apply(case-tac clistli,simp,simp)
apply(thin-tac H = (3. J i) for H J)
apply(rule conjI)

apply clarify

apply(erule-tac z=j in allE erule impE, assumption,erule disjE)

apply clarify

apply(rule-tac z=1 in exl simp)

apply/(case-tac j,simp)

118

apply(rule conjI)
apply(erule-tac =i in allE)
apply(simp add:cp-def)
apply (erule-tac z=i and P=X\j. H j — (length (s j) = t) for H s t in allE)
apply (case-tac clistli,simp,simp)
apply clarify
apply(erule-tac z=I in allF)
apply(erule-tac z=1 and P=Xj. Hj — [j — Jj for H 1 J in dllE)
apply clarify
apply(simp add:cp-def)
apply(erule-tac z=1 and P=\j. H j — (length (s j) = t) for H s t in allE)
apply(case-tac clist!l,simp,simp)
apply simp
apply (rule conjI)
apply (erule-tac x=i and P=Xj. H j — (length (s j) = t) for H s t in allF)
apply(case-tac clisti,simp,simp)
apply clarify
apply(erule-tac x=0 and P=X\j. Hj — I j — Jjfor HI J in allE)
apply(erule-tac =1 and P=M\j. H j — (length (s j) = t) for H s t in allF)
apply(case-tac clist!l,simp,simp)
apply clarify
apply(erule-tac =i in allE)
apply(simp add:cp-def)
apply(erule-tac x=i and P=M\j. H j — (length (s j) = t) for H s t in allE)
apply(case-tac clistli,simp)
apply (rule nth-tl-if ,simp,simp)
apply(erule-tac z=i and P=X\j. H j — (P j)€etran for H P in allE, erule
impE, assumption,simp)
apply(simp add:cp-def)
apply clarify
apply (rule nth-tl-if)
apply(erule-tac =i and P=M\j. H j — (length (s j) = t) for H s t in allE)
apply(case-tac clist!i,simp,simp)
apply force
apply force
apply clarify
apply (rule iffI)
apply(simp add:par-cp-def)
apply(erule-tac c=(zs, s) # ys in equalityCE)
apply simp
apply clarify
apply (rule-tac x=map tl clist in exl)
apply simp
apply (rule conjI)
apply(simp add:conjoin-def cp-def)
apply(rule conjI)
apply clarify
apply(unfold same-length-def)
apply clarify

119

apply (erule-tac z=i and P=M\j. H j — (length (s j) = t) for H s t in
allE,simp)
apply(rule conjI)
apply(simp add:same-state-def)
apply clarify
apply(erule-tac =i in allE, erule impFE, assumption,
erule-tac x=§ and P=Xj. H j — (snd (d j))=(snd (e j)) for H d e in allE)
apply(case-tac j,simp)
apply (erule-tac x=i and P=Xj. H j — (length (s j) = t) for H s t in allF)
apply(case-tac clist!i,simp,simp)
apply(rule conjI)
apply(simp add:same-program-def)
apply clarify
apply(rule nth-equalityl ,simp,simp)
apply(case-tac j,simp)
apply clarify
apply (erule-tac x=i and P=Xj. H j — (length (s j) = t) for H s t in allF)
apply(case-tac clist!i,simp,simp)
apply clarify
apply(simp add:compat-label-def)
apply (rule alll,rule impl)
apply(erule-tac x=j in allE erule impFE, assumption)
apply(erule disjE)
apply clarify
apply (rule-tac z=i in exl,simp)
apply (rule congI)
apply(erule-tac =i in allE)
apply(case-tac j,simp)
apply(erule-tac z=i and P=M\j. Hj — (length (s j) = t) for H s ¢ in allE)
apply (case-tac clistli,simp,simp)
apply (erule-tac z=i and P=X\j. H j — (length (s j) = t) for H s t in allE)
apply(case-tac clist!i,simp,simp)
apply clarify
apply(erule-tac z=l and P=Xj. Hj — [j — J j for H 1 J in dllE)
apply(erule-tac z=1 and P=\j. H j — (length (s j) = t) for H s t in allE)
apply(case-tac clist!l,simp,simp)
apply(erule-tac z=I in allF, simp)
apply(rule disjI2)
apply clarify
apply(rule tl-zero)
apply (case-tac j,simp,simp)
apply (rule tl-zero,force)
apply force
apply(erule-tac z=i and P=M\j. H j — (length (s j) = t) for H s t in
allE, force)
apply force
apply (erule-tac x=i and P=M\j. H j — (length (s j) = t) for H s t in allE,force)
apply clarify
apply(erule-tac =i in allE)

120

apply(simp add:cp-def)
apply(rule nth-ti-if)
apply(simp add:conjoin-def)
apply clarify
apply(simp add:same-length-def)
apply(erule-tac =1 in allE simp)
apply simp
apply simp
apply simp
apply clarify
apply(erule-tac c=(zs, s) # ys in equalityCE)
apply(simp add:par-cp-def)
apply simp
apply (erule-tac xz=map (Xi. (fst i, s) # snd i) (zip zs clist) in allE)
apply simp
apply clarify
apply(simp add:cp-def)
done

theorem one: xs#£[] =

par-cp xs s = {c. I clist. (length clist)=(length xs) N
(Vi<length clist. (clist!i) € cp(wsli) s) A ¢ o clist}

apply(frule one-iff-aux)

apply(drule sym)

apply (erule iff D2)

apply clarify

apply (rule iffI)

apply(erule auz-onlyif)

apply clarify

apply (force intro:auz-if)

done

end

3.4 The Proof System

theory RG-Hoare imports RG-Tran begin

3.4.1 Proof System for Component Programs
declare Un-subset-iff [simp del] sup.bounded-iff [simp del]

definition stable :: 'a set = (‘a x 'a) set = bool where

x 'a)
stable = A\fg. Ve y.z € f — (z,y) € g — y € f)

inductive
rghoare :: ['a com, 'a set, ('a x 'a) set, ('a x 'a) set, 'a set] = bool
(< - sat [~ -, - -] [60,0,0,0,0] 45)
where

121

Basic: [pre C {s. fs € post}; {(s,t). s € pre A (t=fs V t=s)} C guar;
stable pre rely; stable post rely |
= b Basic f sat [pre, rely, guar, post]

| Seq: [F P sat [pre, rely, guar, mid]; b Q sat [mid, rely, guar, post] |
=+ Seq P @ sat [pre, rely, guar, post)

| Cond: [stable pre rely; - P1 sat [pre N b, rely, guar, post];
F P2 sat [pre N —b, rely, guar, post]; V's. (s,s)Eguar |
=+ Cond b P1 P2 sat [pre, rely, guar, post]

| While: [stable pre rely; (pre N —b) C post; stable post rely;
F P sat [pre N b, rely, guar, pre]; Vs. (s,8)Eguar |
= b While b P sat [pre, rely, guar, post]

| Await: | stable pre rely; stable post rely;
VV.E Psat [prenbn {V}, {(s, t). s = t},
UNIV, {s. (V, s) € guar} N post]]
=+ Await b P sat [pre, rely, guar, post]

Conseq: [pre C pre’; rely C rely’; guar’ C guar; post’ C post;
Y Yy 4g g
F P sat [pre’, rely’, guar’, post’] |
= F P sat [pre, rely, guar, post]

definition Pre :: 'a rgformula = 'a set where
Pre x = fst(snd x)

definition Post :: 'a rgformula = ’a set where
Post x = snd(snd(snd(snd z)))

definition Rely :: ‘a rgformula = (‘a X ’a) set where
Rely = = fst(snd(snd z))

definition Guar :: 'a rgformula = ('a x 'a) set where
Guar © = fst(snd(snd(snd x)))

definition Com :: 'a rgformula = ’'a com where
Comx = fstzx

3.4.2 Proof System for Parallel Programs

type-synonym ’a par-rgformula =
('a rgformula) list x 'a set x ('a x 'a) set x ('a x 'a) set x 'a set

inductive
par-rghoare :: ('a rgformula) list = 'a set = (‘a x 'a) set = ('a x 'a) set = 'a
set = bool
(¢ - SAT [-, -, -, -] [60,0,0,0,0] 45)
where

122

Parallel:
[Vi<length zs. rely U (|Jje{j. j<length xs A j#i}. Guar(zslj)) C Rely(zs!i);
(Uje{y. j<length zs}. Guar(wzslj)) C guar;
pre C ((i€{i. i<length xs}. Pre(xs!i));
(Nie{i. i<length xs}. Post(xsli)) C post;
Vi<length zs. b Com(zs!i) sat [Pre(xsli),Rely(xs!i), Guar(xsli),Post(xs!i)]]
= F as SAT [pre, rely, guar, post]

3.5 Soundness

Some previous lemmas

lemma tl-of-assum-in-assum:
(P, s) # (P, t) # zs € assum (pre, rely) => stable pre rely
= (P, t) # xs € assum (pre, rely)

apply(simp add:assum-def)

apply clarify

apply(rule conjI)

apply(erule-tac =0 in allE)

apply(simp (no-asm-use)only:stable-def)

apply(erule allE,erule allE erule impE, assumption,erule mp)
apply(simp add: Env)

apply clarify

apply(erule-tac z=>Suc ¢ in allE)

apply simp

done

lemma etran-in-comm:
(P, t) # zs € comm(guar, post) = (P, s) # (P, t) # xs € comm(guar, post)
apply(simp add:comm-def)
apply clarify
apply(case-tac i,simp+)
done

lemma ctran-in-comm:
(s, s) € guar; (@, s) # zs € comm(guar, post)]
= (P, s) # (Q, s) # xzs € comm(guar, post)
apply(simp add:comm-def)
apply clarify
apply (case-tac i,simp+)
done

lemma takecptn-is-cptn [rule-format, elim!]:
Vj. ¢ € cptn — take (Suc j) ¢ € cptn

apply (induct c)

apply(force elim: cptn.cases)

apply clarify

apply(case-tac j)

apply simp

123

apply(rule CptnOne)

apply simp

apply (force intro:cptn.intros elim:cptn.cases)
done

lemma dropeptn-is-cptn [rule-format,elim!]:
Vj<length c. ¢ € cptn —> drop j ¢ € cptn

apply (induct c)

apply(force elim: cptn.cases)

apply clarify

apply(case-tac j,simp+)

apply(erule cptn.cases)
apply simp

apply force

apply force
done

lemma takepar-cptn-is-par-cptn [rule-format,elim):
Vj. ¢ € par-cptn — take (Suc j) ¢ € par-cptn

apply (induct c)

apply(force elim: cptn.cases)

apply clarify

apply(case-tac j,simp)

apply(rule ParCptnOne)

apply (force intro:par-cptn.intros elim:par-cptn.cases)

done

lemma droppar-cptn-is-par-cptn [rule-format]:
Vj<length c. ¢ € par-cptn — drop j ¢ € par-cptn

apply (induct c)

apply(force elim: par-cptn.cases)

apply clarify

apply(case-tac j,simp+)

apply(erule par-cptn.cases)
apply simp

apply force

apply force
done

lemma tl-of-cptn-is-cptn: [x # xs € cptn; xs # [|]] = zs € cpin
apply (subgoal-tac 1 < length (x # xs))

apply(drule dropeptn-is-cptn,simp+)

done

lemma not-ctran-None [rule-format]:
Vs. (None, s)#xs € cptn — (Vi<length zs. ((None, s)#xs)li —e— wsl9)
apply (induct xs,simp+)
apply clarify
apply(erule cptn.cases,simp)

124

apply simp

apply/(case-tac i,simp)
apply(rule Env)

apply simp

apply (force elim:ctran.cases)

done

lemma cptn-not-empty [simpl:[] & cptn
apply (force elim:cptn.cases)
done

lemma etran-or-ctran [rule-format]:
Vm i. z€cptn — m < length
— (Vi. Suci < m — = zli —c— zlSuc i) — Suci < m
— zli —e— x!Suc @
supply [[simproc del: defined-all]]
apply (induct z,simp)
apply clarify
apply(erule cptn.cases,simp)
apply(case-tac i,simp)
apply(rule Env)
apply simp
apply(erule-tac z=m — 1 in allE)
apply/(case-tac m,simp,simp)
apply (subgoal-tac (Vi. Suc i < nata — (((P, t) # xs) | i, s | §) ¢ ctran))
apply force
apply clarify
apply(erule-tac =>Suc ia in allE simp)
apply(erule-tac z=0 and P=\j. Hj — (J j) ¢ ctran for H J in allE simp)
done

lemma etran-or-ctran2 [rule-format):
Vi. Suc i<length © — z€cptn — (210 —c— z!Suc i — = zli —e— z!Suc 7)
V (zli —e— z!Suc i — — zli —c— 2!Suc 7)

apply (induct z)

apply simp

apply clarify

apply(erule cptn.cases,simp)

apply(case-tac i,simp+)

apply/(case-tac i,simp)

apply(force elim:etran.cases)

apply simp

done

lemma etran-or-ctran2-disjl1:
[z€cptn; Suc i<length z; z!i —c— z!Suc i] = - zli —e— z!Suc i

by (drule etran-or-ctran2,simp-all)

lemma etran-or-ctran2-disjI2:

125

[zecptn; Suc i<length z; xli —e— z!Suc i] = — zli —c— x!Suc 7
by (drule etran-or-ctran2,simp-all)

lemma not-ctran-None2 [rule-format]:
[(None, s) # xs Ecptn; i<length xs] = — ((None, s) # zs) ! i —c— zs ! ¢
apply(frule not-ctran-None,simp)
apply/(case-tac i,simp)
apply(force elim:etranE)
apply simp
apply(rule etran-or-ctran2-disjI2,simp-all)
apply (force intro:tl-of-cptn-is-cptn)
done

lemma Ez-first-occurrence [rule-format]: P (n:nat) — (Im. P m A (Vi<m. =
P i)

apply (rule nat-less-induct)

apply clarify

apply(case-tac ¥V m. m<n — — P m)

apply auto

done

lemma stability [rule-format]:
Vjk. z € cptn — stable p rely — j<k — k<length v — snd(z!j)ep —>
(Vi. (Suc i)<length v —
(zli —e— a!(Suc 7)) — (snd(z!), snd(z!(Suc 7))) € rely) —
(Vi. j<i N i<k — zli —e— z!Suc i) — snd(zlk)ep A fst(zf)=fst(x!k)
supply [[simproc del: defined-all]]
apply (induct z)
apply clarify
apply(force elim:cptn.cases)
apply clarify
apply(erule cptn.cases,simp)
apply simp
apply(case-tac k,simp,simp)
apply/(case-tac j,simp)
apply(erule-tac z=0 in allE)
apply (erule-tac z=nat and P=X\j. (0<j) — (J j) for J in ollE,simp)
apply(subgoal-tac tEp)
apply(subgoal-tac (Vi. i < length xs — (P, t) # zs) ! i —e— x5! i — (snd
(((P, t) # zs) 1 7), snd (xs ! 7)) € rely))
apply clarify
apply (erule-tac x=Suc i and P=Xj. (Hj) — (J j)€etran for H J in allE, simp)
apply clarify
apply(erule-tac x==Suc i and P=M\j. (Hj) — (Jj) — (T j)erely for HJ T
in allE,simp)
apply(erule-tac z=0 and P=\j. (H j) — (J j)€etran — T jfor HJ T in
allE ,simp)
apply(simp(no-asm-use) only:stable-def)
apply(erule-tac z=s in allFE)

126

apply(erule-tac z=t in allE)

apply simp

apply(erule mp)

apply(erule mp)

apply(rule Env)

apply simp

apply(erule-tac r=nata in allE)

apply(erule-tac z=nat and P=M\j. (s<j) — (J j) for s J in allF,simp)
apply(subgoal-tac (Vi. i < length xs — ((P, t) # xs) ! i —e— s | i — (snd
(((P, t) # xs) ! 1), snd (xzs ! 7)) € rely))

apply clarify

apply(erule-tac z=Suc i and P=\j. (H j) — (J j)€etran for H J in allFE, simp)
apply clarify

apply (erule-tac x=Suc i and P=M\j. (H j) — (J j) — (T j)€rely for HJ T
in allE,simp)
apply (case-tac k,simp,simp)
apply(case-tac j)

apply(erule-tac z=0 and P=M\j. (H j) — (J j)€etran for H J in allE simp)
apply(erule etran.cases,simp)
apply (erule-tac z=nata in allE)
apply (erule-tac z=nat and P=X\j. (s<j) — (J j) for s J in allE,simp)
apply(subgoal-tac (Vi. i < length xs — ((Q, t) # xs) ' i —e— xzs ! i — (snd
(((Q, t) # xs) ! ©), snd (zs ! 7)) € rely))

apply clarify

apply (erule-tac t=Suc i and P=Xj. (H j) — (J j)€etran for H J in allE,simp)
apply clarify
apply(erule-tac z=Suc i and P=)\j. (Hj) — (Jj) — (T j)€rely for HJ T in
allE,simp)
done

3.5.1 Soundness of the System for Component Programs

Soundness of the Basic rule

lemma unique-ctran-Basic [rule-format]:
Vsi € cptn — z! 0 = (Some (Basic f), s) —
Suc i<length x — x!i —c— z!Suc i —
(Vj. Suc j<length x — i#j — z!j —e— z!Suc j)
apply (induct z,simp)
apply simp
apply clarify
apply (erule cptn.cases,simp)
apply(case-tac i,simp+)
apply clarify
apply/(case-tac j,simp)
apply(rule Env)
apply simp
apply clarify
apply simp
apply(case-tac 1)

127

apply/(case-tac j,simp,simp)

apply(erule ctran.cases,simp-all)

apply(force elim: not-ctran-None)

apply (ind-cases ((Some (Basic f), sa), @, t) € ctran for sa Q t)
apply simp

apply(drule-tac i=nat in not-ctran-None,simp)

apply(erule etranE, simp)

done

lemma exists-ctran-Basic-None [rule-format]:
Vsi. x € cptn — x| 0 = (Some (Basic f), s)
— i<length © — fst(z!i)=None — (I j<i. zlj —c— z!Suc j)

apply (induct z,simp)

apply simp

apply clarify

apply(erule cptn.cases,simp)

apply/(case-tac i,simp,simp)

apply(erule-tac z=nat in allE, simp)

apply clarify

apply (rule-tac =Suc j in exl,simp,simp)

apply clarify

apply(case-tac i,simp,simp)

apply(rule-tac z=0 in ezl simp)

done

lemma Basic-sound:
[pre C {s. f s € post}; {(s, t). s € pre A t = f s} C guar;
stable pre rely; stable post rely]
= |= Basic [sat [pre, rely, guar, post]
supply [[simproc del: defined-all]]
apply (unfold com-validity-def)
apply clarify
apply(simp add:comm-def)
apply(rule conjI)
apply clarify
apply(simp add:cp-def assum-def)
apply clarify
apply(frule-tac j=0 and k=i and p=pre in stability)
apply simp-all
apply(erule-tac x=ia in allE,simp)
apply(erule-tac i=i and f=f in unique-ctran-Basic,simp-all)
apply (erule subsetD,simp)
apply/(case-tac x!7)
apply clarify
apply(drule-tac s=Some (Basic f) in sym,simp)
apply(thin-tac Vj. H j for H)
apply(force elim:ctran.cases)
apply clarify
apply(simp add:cp-def)

128

apply clarify
apply(frule-tac i=length z — 1 and f=f in exists-ctran-Basic-None,simp+)
apply/(case-tac x,simp+)
apply (rule last-fst-esp,simp add:last-length)
apply (case-tac x,simp+)
apply(simp add:assum-def)
apply clarify
apply(frule-tac j=0 and k=j and p=pre in stability)
apply simp-all
apply(erule-tac =i in allE,simp)
apply(erule-tac i=j and f=f in unique-ctran-Basic,simp-all)
apply(case-tac x!j)
apply clarify
apply simp
apply (drule-tac s=Some (Basic f) in sym,simp)
apply(case-tac x!Suc j,simp)
apply(rule ctran.cases,simp)
apply (simp-all)
apply(drule-tac c=sa in subsetD,simp)
apply clarify
apply(frule-tac j=Suc j and k=length x — 1 and p=post in stability,simp-all)
apply(case-tac z,simp+)
apply(erule-tac =i in allE)
apply(erule-tac i=j and f=f in unique-ctran-Basic,simp-all)
apply arith+
apply (case-tac x)
apply(simp add:last-length)+
done

Soundness of the Await rule

lemma unique-ctran-Await [rule-format]:
Vsi z € cptn — z! 0 = (Some (Await b c), s) —
Suc i<length © — x!i —c— z!Suc 1 —
(Vj. Suc j<length x — i#j — zlj —e— z!Suc j)
apply (induct x,simp+)
apply clarify
apply(erule cptn.cases,simp)
apply(case-tac i,simp+)
apply clarify
apply(case-tac j,simp)
apply(rule Env)
apply simp
apply clarify
apply simp
apply(case-tac 1)
apply(case-tac j,simp,simp)
apply(erule ctran.cases,simp-all)
apply(force elim: not-ctran-None)

129

apply(ind-cases ((Some (Await b c), sa), @, t) € ctran for sa Q t,simp)
apply(drule-tac i=nat in not-ctran-None,simp)

apply(erule etranE, simp)

done

lemma exists-ctran- Await-None [rule-format]:
Vsi. x€ cptn — z! 0 = (Some (Await b ¢), s)
— i<length © — fst(z!i)=None — (I j<i. zlj —c— z!Suc j)

apply (induct z,simp+)

apply clarify

apply(erule cptn.cases,simp)

apply(case-tac i,simp+)

apply(erule-tac z=nat in allE, simp)

apply clarify

apply (rule-tac =Suc j in exl,simp,simp)

apply clarify

apply(case-tac i,simp,simp)

apply(rule-tac z=0 in ezl simp)

done

lemma Star-imp-cptn:
(P, s) —cx— (R, t) = 3l € ¢p P s. (last I)=(R, t)
A (Vi. Suc i<length | — Vi —c— l1Suc)

apply (erule converse-rtrancl-induct2)
apply (rule-tac z=[(R,t)] in bexl)
apply simp

apply(simp add:cp-def)

apply(rule CptnOne)

apply clarify

apply(rule-tac z=(a, b)#! in bexl)
apply (rule conjl)
apply/(case-tac l,simp add:cp-def)
apply(simp add:last-length)

apply clarify

apply/(case-tac i,simp)

apply(simp add:cp-def)

apply force

apply(simp add:cp-def)
apply(case-tac 1)

apply(force elim:cptn.cases)

apply simp

apply (erule CptnComp)

apply clarify

done

lemma Await-sound:
[stable pre rely; stable post rely;
VV.E Psat [prenbn{s. s=V} {(s t). s = t},
UNIV, {s. (V, s) € guar} N post] A

130

E Psat [prenbn{s. s=V} {(s). s = t},
UNIV, {s. (V, s) € guar} N post]]
= = Await b P sat [pre, rely, guar, post)
apply (unfold com-validity-def)
apply clarify
apply(simp add:comm-def)
apply(rule conjI)
apply clarify
apply(simp add:cp-def assum-def)
apply clarify
apply(frule-tac j=0 and k=i and p=pre in stability,simp-all)
apply(erule-tac x=ia in allE,simp)
apply(subgoal-tac z€ cp (Some(Await b P)) s)
apply (erule-tac i=i in unique-ctran-Await,force,simp-all)
apply(simp add:cp-def)
— here starts the different part.
apply(erule ctran.cases,simp-all)
apply(drule Star-imp-cptn)
apply clarify
apply(erule-tac z=sa in allE)
apply clarify
apply(erule-tac z=sa in allE)
apply(drule-tac c=I in subsetD)
apply (simp add:cp-def)
apply clarify
apply (erule-tac x=ia and P=\i. H i — (J i, [i)€ctran for H J I in allE,simp)
apply(erule etranE simp)
apply simp
apply clarify
apply(simp add:cp-def)
apply clarify
apply(frule-tac i=length x — 1 in ewists-ctran- Await-None,force)
apply (case-tac z,simp+)
apply/(rule last-fst-esp,simp add:last-length)
apply/(case-tac x, simp+)
apply clarify
apply(simp add:assum-def)
apply clarify
apply(frule-tac j=0 and k=j and p=pre in stability,simp-all)
apply(erule-tac =1 in allE,simp)
apply (erule-tac i=j in unique-ctran-Await,force,simp-all)
apply(case-tac x!j)
apply clarify
apply simp
apply(drule-tac s=Some (Await b P) in sym,simp)
apply/(case-tac z!Suc j,simp)
apply(rule ctran.cases,simp)
apply (simp-all)
apply(drule Star-imp-cptn)

131

apply clarify

apply(erule-tac z=sa in allE)

apply clarify

apply(erule-tac z=sa in allE)

apply(drule-tac c=I in subsetD)

apply (simp add:cp-def)

apply clarify

apply(erule-tac x=i and P=M\i. Hi — (J i, I i)Ectran for H J I in allE simp)
apply(erule etranE,simp)

apply simp

apply clarify

apply(frule-tac j=Suc j and k=length x — 1 and p=post in stability,simp-all)
apply/(case-tac x,simp+)

apply(erule-tac =i in allE)

apply (erule-tac i=j in unique-ctran-Await,force,simp-all)

apply arith-+

apply/(case-tac x)

apply(simp add:last-length)+

done

Soundness of the Conditional rule

lemma Cond-sound:

[stable pre rely; = P1 sat [pre N b, rely, guar, post];

E P2 sat [pre N — b, rely, guar, post]; V' s. (s,8)Eguar]

= |= (Cond b P1 P2) sat [pre, rely, guar, post]
apply (unfold com-validity-def)
apply clarify
apply(simp add:cp-def comm-def)
apply(case-tac 3 i. Suc i<length z A zli —c— z!Suc 7)
prefer 2
apply simp
apply clarify
apply(frule-tac j=0 and k=length + — 1 and p=pre in stability,simp+)

apply (case-tac z,simp+)
apply(simp add:assum-def)

apply(simp add:assum-def)

apply(erule-tac m=length x in etran-or-ctran,simp+)
apply/(case-tac z, (simp add:last-length)+)
apply(erule exE)
apply (drule-tac n=i and P=Xi. Hi A (J i, I i) € ctran for H J I in Ex-first-occurrence)
apply clarify
apply (simp add:assum-def)
apply(frule-tac j=0 and k=m and p=pre in stability,simp+)
apply(erule-tac m=Suc m in etran-or-ctran,simp+)
apply (erule ctran.cases,simp-all)
apply (erule-tac z=sa in allE)
apply(drule-tac c=drop (Suc m) x in subsetD)

apply simp

132

apply clarify
apply simp
apply clarify
apply(case-tac i<m)
apply(drule le-imp-less-or-eq)
apply(erule disjE)
apply(erule-tac =i in allE, erule impE, assumption)
apply simp+
apply (erule-tac x=i — (Suc m) and P=Xj. Hj — Jj — (I j)€guar for H J
I in dllE)
apply(subgoal-tac (Suc m)+(i — Suc m) < length x)
apply (subgoal-tac (Suc m)+Suc (i — Suc m) < length z)
apply(rotate-tac —2)
apply simp
apply arith
apply arith
apply (case-tac length (drop (Suc m) x),simp)
apply(erule-tac =sa in allE)
back
apply (drule-tac c=drop (Suc m) x in subsetD,simp)
apply clarify
apply simp
apply clarify
apply(case-tac i<m)
apply (drule le-imp-less-or-eq)
apply(erule disjE)
apply(erule-tac =i in allE, erule impE, assumption)
apply simp
apply simp
apply (erule-tac z=i — (Suc m) and P=X\j. Hj — Jj — (I j)€guar for H J I
in allE)
apply (subgoal-tac (Suc m)+(i — Suc m) < length)
apply (subgoal-tac (Suc m)+Suc (i — Suc m) < length z)
apply(rotate-tac —2)
apply simp
apply arith
apply arith
done

Soundness of the Sequential rule

inductive-cases Seg-cases [elim!]: (Some (Seq P Q), s) —c— t

lemma last-lift-not-None: fst ((lift Q) ((z#txs)!(length zs))) # None
apply (subgoal-tac length zs<length (x # zs))

apply(drule-tac Q=Q in lift-nth)

apply (erule ssubst)

apply (simp add:lift-def)

apply(case-tac (z # xzs) ! length xs,simp)

133

apply simp
done

lemma Seq-soundl [rule-format):
z€ cptn-mod => Vs P. z !0=(Some (Seq P Q), s) —
(Vi<length z. fst(z!i)#£Some Q) —
(zse cp (Some P) s. z=map (lift Q) xs)
supply [[simproc del: defined-all]]
apply (erule cptn-mod.induct)
apply (unfold cp-def)
apply safe
apply simp-all
apply(simp add:lift-def)
apply (rule-tac z=[(Some Pa, sa)] in ezl simp add:CptnOne)
apply (subgoal-tac (Vi < Suc (length xs). fst (((Some (Seq Pa @), t) # xs) ! 7)
Some Q))
apply clarify
apply(rule-tac z=(Some Pa, sa) #(Some Pa, t) # zs in exl,simp)
apply(rule conjl,erule CptnEnv)
apply(simp (no-asm-use) add:lift-def)
apply clarify
apply(erule-tac x==Suc i in allE, simp)
apply(ind-cases ((Some (Seq Pa Q), sa), None, t) € ctran for Pa sa t)
apply(rule-tac z=(Some P, sa) # xs in exl, simp add:cpin-iff-cptn-mod lift-def)
apply (erule-tac z=length zs in ollE, simp)
apply(simp only: Cons-lift-append)
apply (subgoal-tac length xs < length ((Some P, sa) # xs))
apply(simp only :nth-append length-map last-length nth-map)
apply(case-tac last((Some P, sa) # xs))
apply(simp add:lift-def)
apply simp
done

lemma Seg-sound2 [rule-format]:
z € cptn = Vs P i. z10=(Some (Seq P Q), s) — i<length x
— fst(zli)=Some @ —
(Vj<i. fst(z!j)#(Some Q)) —
(s ys. xs € cp (Some P) s A length zs=Suc i
A ys € cp (Some Q) (snd(zs 7)) A x=(map (lift Q) zs)Qtl ys)
supply [[simproc del: defined-all]]
apply (erule cptn.induct)
apply (unfold cp-def)
apply safe
apply simp-all
apply(case-tac i,simp+)
apply(erule allE,erule impE, assumption,simp)
apply clarify
apply (subgoal-tac (¥Vj < nat. fst (((Some (Seq Pa Q), t) # xs) | j) # Some
Q),clarify)

134

prefer 2
apply force
apply/(case-tac xsa,simp,simp)
apply (rename-tac list)
apply(rule-tac z=(Some Pa, sa) #(Some Pa, t) # list in exl,simp)
apply(rule conjl,erule CptnEnv)
apply(simp (no-asm-use) add:lift-def)
apply(rule-tac z=ys in exl,simp)
apply(ind-cases ((Some (Seq Pa Q), sa), t) € ctran for Pa sa t)
apply simp
apply (rule-tac x=(Some Pa, sa)#[(None, ta)] in ezl simp)
apply(rule conjI)
apply(drule-tac zs=[] in CptnComp,force simp add:CptnOne,simp)
apply/(case-tac i, simp+)
apply(case-tac nat,simp+)
apply(rule-tac z=(Some Q,ta)#xs in exl,simp add:lift-def)
apply(case-tac nat,simp+)
apply/(force)
apply(case-tac i, simp+)
apply (case-tac nat,simp+)
apply (erule-tac x=Suc nata in allE,simp)
apply clarify
apply(subgoal-tac (Vj<Suc nata. fst (((Some (Seq P2 @), ta) # zs) ! j) # Some
Q) clarify)
prefer 2
apply clarify
apply force
apply(rule-tac z=(Some Pa, sa)#(Some P2, ta)#(tl zsa) in exl,simp)
apply(rule conjl,erule CptnComp)
apply (rule nth-tl-if ,force,simp+)
apply (rule-tac x=ys in exl,simp)
apply(rule conjI)
apply (rule nth-tl-if ,force,simp+)
apply/(rule tl-zero,simp+)
apply force
apply(rule conjl,simp add:lift-def)
apply (subgoal-tac lift Q (Some P2, ta) =(Some (Seq P2 Q), ta))
apply(simp add: Cons-lift del:list.map)
apply(rule nth-ti-if)
apply force
apply simp+
apply(simp add:lift-def)
done

lemma last-lift-not-None2: fst ((lift Q) (last (z#xs))) # None
apply(simp only:last-length [THEN sym)])

apply (subgoal-tac length xs<length (z # xs))

apply(drule-tac Q=Q in lift-nth)

135

apply(erule ssubst)

apply (simp add:lift-def)

apply(case-tac (z # xs) ! length xs,simp)
apply simp

done

lemma Seg-sound:
[E P sat [pre, rely, guar, mid]; = Q sat [mid, rely, guar, post]]
= = Seq P Q sat [pre, rely, guar, post]
apply (unfold com-validity-def)
apply clarify
apply(case-tac Fi<length x. fst(z!i)=Some Q)
prefer 2
apply (simp add:cp-def cptn-iff-cptn-mod)
apply clarify
apply(frule-tac Seg-soundl,force)
apply force
apply clarify
apply(erule-tac x=s in allF,simp)
apply(drule-tac c=xs in subsetD,simp add:cp-def cptn-iff-cptn-mod)
apply(simp add:assum-def)
apply clarify
apply(erule-tac P=Xj. Hj — J j — I j for H J I in allE, erule impFE,
assumption)
apply(simp add:snd-lift)
apply(erule mp)
apply(force elim:etranE intro: Env simp add:lift-def)
apply(simp add:comm-def)
apply(rule conjI)
apply clarify
apply(erule-tac P=X\j. Hj — Jj — 1 j for H J I in allE, erule impFE,
assumption)
apply(simp add:snd-lift)
apply(erule mp)
apply/(case-tac (zs!i))
apply(case-tac (zs! Suc 7))
apply(case-tac fst(xs!i))
apply(erule-tac x=i in allE, simp add:lift-def)
apply(case-tac fst(zs!Suc 7))
apply(force simp add:lift-def)
apply(force simp add:lift-def)
apply clarify
apply/(case-tac xs,simp add:cp-def)
apply clarify
apply (simp del:list.map)
apply (rename-tac list)
apply (subgoal-tac (map (lift Q) ((a, b) # list))#[])
apply(drule last-conv-nth)
apply (simp del:list.map)

136

apply(simp only:last-lift-not-None)
apply simp
— Fi<length x. fst (x| ¢) = Some Q
apply (erule exFE)
apply (drule-tac n=i and P=M\i. { < length x A fst (z ! {) = Some Q in Ex-first-occurrence)
apply clarify
apply (simp add:cp-def)
apply clarify
apply(frule-tac i=m in Seg-sound2,force)
apply simp+
apply clarify
apply(simp add:comm-def)
apply(erule-tac z=s in allFE)
apply (drule-tac c=xs in subsetD,simp)
apply (case-tac zs=[|,simp)
apply(simp add:cp-def assum-def nth-append)
apply clarify
apply(erule-tac =i in allE)
back
apply(simp add:snd-lift)
apply(erule mp)
apply(force elim:etranE intro: Env simp add:lift-def)
apply simp
apply clarify
apply (erule-tac z=snd(zs!m) in allF)
apply(drule-tac c=ys in subsetD,simp add:cp-def assum-def)
apply(case-tac zs#]))
apply(drule last-conv-nth,simp)
apply(rule conjI)
apply(erule mp)
apply(case-tac zslm)
apply/(case-tac fst(xzs!m),simp)
apply(simp add:lift-def nth-append)
apply clarify
apply(erule-tac t=m+1i in allF)
back
back
apply(case-tac ys,(simp add:nth-append)+)
apply (case-tac i, (simp add:snd-lift)+)
apply(erule mp)
apply(case-tac zslm)
apply(force elim:etran.cases intro:Env simp add:lift-def)
apply simp
apply simp
apply clarify
apply(rule conjl,clarify)
apply(case-tac i<m,simp add:nth-append)
apply(simp add:snd-lift)
apply(erule allE, erule impE, assumption, erule mp)

137

apply/(case-tac (zs ! i))
apply(case-tac (zs ! Suc 7))
apply/(case-tac fst(zs | i),force simp add:lift-def)
apply(case-tac fst(zs ! Suc 1))
apply (force simp add:lift-def)
apply (force simp add:lift-def)
apply(erule-tac t=i—m in allF)
back
back
apply (subgoal-tac Suc (i — m) < length ys,simp)
prefer 2
apply arith
apply(simp add:nth-append snd-lift)
apply(rule conjl,clarify)
apply (subgoal-tac i=m)
prefer 2
apply arith
apply clarify
apply(simp add:cp-def)
apply (rule tl-zero)
apply(erule mp)
apply(case-tac lift @ (zs!'m),simp add:snd-lift)
apply(case-tac xs!m,case-tac fst(zs'm),simp add:lift-def snd-lift)
apply (case-tac ys,simp+)
apply (simp add:lift-def)
apply simp
apply force
apply clarify
apply(rule tl-zero)
apply(rule tl-zero)
apply (subgoal-tac i—m=Suc(i—Suc m))
apply simp
apply(erule mp)
apply (case-tac ys,simp+)
apply force
apply arith
apply force
apply clarify
apply(case-tac (map (lift Q) zs @ tl ys)#[])
apply(drule last-conv-nth)
apply(simp add: snd-lift nth-append)
apply(rule conjI,clarify)
apply/(case-tac ys,simp+)
apply clarify
apply(case-tac ys,simp+)
done

138

Soundness of the While rule

lemma last-append|rule-format):
Vas. ys#£[] — ((zsQys)!(length (zsQys) — (Suc 0)))=(ys!(length ys — (Suc 0)))
apply (induct ys)
apply simp
apply clarify
apply (simp add:nth-append)
done

lemma assum-after-body:
[E P sat [pre N b, rely, guar, prel;
(Some P, s) # xs € cptn-mod; fst (last ((Some P, s) # xs)) = None; s € b;
(Some (While b P), s) # (Some (Seq P (While b P)), s) #
map (lift (While b P)) zs Q ys € assum (pre, rely)]
= (Some (While b P), snd (last ((Some P, s) # xs))) # ys € assum (pre, rely)
apply(simp add:assum-def com-validity-def cp-def cptn-iff-cptn-mod)
apply clarify
apply(erule-tac z=s in allFE)
apply (drule-tac c=(Some P, s) # zs in subsetD,simp)
apply clarify
apply(erule-tac z=Suc i in allE)
apply simp
apply(simp add: Cons-lift-append nth-append snd-lift del:list.map)
apply(erule mp)
apply(erule etranE, simp)
apply/(case-tac fst(((Some P, s) # xs) ! 1))
apply(force intro:Env simp add:lift-def)
apply(force intro: Env simp add:lift-def)
apply(rule conjI)
apply clarify
apply(simp add:comm-def last-length)
apply clarify
apply(rule conjI)
apply(simp add:comm-def)
apply clarify
apply (erule-tac x=Suc(length xs +) in allE,simp)
apply(case-tac i, simp add:nth-append Cons-lift-append snd-lift last-conv-nth lift-def
split-def)
apply(simp add: Cons-lift-append nth-append snd-lift)
done

lemma While-sound-auz [rule-format]:

[pre N — b C post; = P sat [pre N b, rely, guar, pre|; Vs. (s, s) € guar;

stable pre rely; stable post rely; € cptn-mod |

= Vs xs. a=(Some(While b P),s)#xs — x€assum(pre, rely) — x € comm
(guar, post)

supply [[simproc del: defined-all]]
apply(erule cptn-mod.induct)

apply safe

139

apply (simp-all del:last.simps)
— 5 subgoals left
apply(simp add:comm-def)
— 4 subgoals left
apply(rule etran-in-comm)
apply(erule mp)
apply(erule ti-of-assum-in-assum,simp)
— While-None
apply(ind-cases ((Some (While b P), s), None, t) € ctran for s t)
apply(simp add:comm-def)
apply (simp add:cptn-iff-cptn-mod [THEN sym))
apply(rule conjl,clarify)
apply(force simp add:assum-def)
apply clarify
apply (rule conjl, clarify)
apply/(case-tac i,simp,simp)
apply(force simp add:not-ctran-None2)
apply (subgoal-tac ¥V i. Suc i < length ((None, t) # zs) — (((None, t) # zs) ! 1,
((None, t) # xs) ! Suc i)€ etran)
prefer 2
apply clarify
apply(rule-tac m=length ((None, s) # xs) in etran-or-ctran,simp+)
apply(erule not-ctran-None2,simp)
apply simp+
apply (frule-tac j=0 and k=length ((None, s) # zs) — 1 and p=post in stabil-
ity,simp+)
apply(force simp add:assum-def subsetD)
apply(simp add:assum-def)
apply clarify
apply(erule-tac =1 in allE,simp)
apply(erule-tac z=Suc i in allE, simp)
apply simp
apply clarify
apply (simp add:last-length)
— WhileOne
apply(rule ctran-in-comm,simp)
apply (simp add: Cons-lift del:list.map)
apply(simp add:comm-def del:list.map)
apply(rule conjI)
apply clarify
apply(case-tac fst(((Some P, sa) # xs) ! i))
apply(case-tac ((Some P, sa) # xs) ! ©)
apply (simp add:lift-def)
apply (ind-cases (Some (While b P), ba) —c— t for ba t)
apply simp
apply simp
apply(simp add:snd-lift del:list.map)
apply(simp only:com-validity-def cp-def cptn-iff-cptn-mod)
apply(erule-tac =sa in allE)

140

apply(drule-tac c=(Some P, sa) # xs in subsetD)
apply (simp add:assum-def del:list.map)
apply clarify
apply (erule-tac z=Suc ia in allE, simp add:snd-lift del:list.map)
apply(erule mp)
apply/(case-tac fst(((Some P, sa) # xs) ! ia))
apply(erule etranE simp add:lift-def)
apply(rule Env)
apply(erule etranE, simp add:lift-def)
apply(rule Env)
apply (simp add:comm-def del:list.map)
apply clarify
apply(erule allE erule impE, assumption)
apply(erule mp)
apply(case-tac ((Some P, sa) # xs) ! 7)
apply/(case-tac xs!i)
apply(simp add:lift-def)
apply(case-tac fst(zs!i))
apply force
apply force
— last=None
apply clarify
apply (subgoal-tac (map (lift (While b P)) ((Some P, sa) # xs))#[])
apply(drule last-conv-nth)
apply (simp del:list. map)
apply(simp only:last-lift-not-None)
apply simp
— WhileMore
apply(rule ctran-in-comm,simp del:last.simps)
— metiendo la hipotesis antes de dividir la conclusion.
apply (subgoal-tac (Some (While b P), snd (last ((Some P, sa) # xs))) # ys €
assum (pre, rely))
apply (simp del:last.simps)
prefer 2
apply(erule assum-after-body)
apply (simp del:last.simps)+
— lo de antes.
apply(simp add:comm-def del:list.map last.simps)
apply(rule conjI)
apply clarify
apply(simp only: Cons-lift-append)
apply(case-tac i<length xs)
apply(simp add:nth-append del:list.map last.simps)
apply(case-tac fst(((Some P, sa) # zs) | i))
apply(case-tac ((Some P, sa) # xs) ! 7)
apply (simp add:lift-def del:last.simps)
apply(ind-cases (Some (While b P), ba) —c— t for ba t)
apply simp
apply simp

141

apply(simp add:snd-lift del:list.map last.simps)
apply(thin-tac Vi. i < length ys — P i for P)
apply(simp only:com-validity-def cp-def cptn-iff-cptn-mod)
apply(erule-tac z=sa in allE)
apply(drule-tac c=(Some P, sa) # s in subsetD)
apply (simp add:assum-def del:list.map last.simps)
apply clarify
apply(erule-tac z==Suc ia in allE,simp add:nth-append snd-lift del:list.map
last.simps, erule mp)
apply(case-tac fst(((Some P, sa) # xs) ! ia))
apply(erule etranE simp add:lift-def)
apply(rule Env)
apply(erule etranE,simp add:lift-def)
apply(rule Env)
apply (simp add:comm-def del:list. map)
apply clarify
apply(erule allE,erule impFE, assumption)
apply(erule mp)
apply(case-tac ((Some P, sa) # xs) ! 7)
apply(case-tac s!i)
apply(simp add:lift-def)
apply(case-tac fst(xs!i))
apply force
apply force
— ¢ > length xs
apply (subgoal-tac i—length xs <length ys)
prefer 2
apply arith
apply(erule-tac z=i—length zs in allE,clarify)
apply(case-tac i=length xs)
apply (simp add:nth-append snd-lift del:list.map last.simps)
apply(simp add:last-length del:last.simps)
apply(erule mp)
apply(case-tac last((Some P, sa) # xs))
apply(simp add:lift-def del:last.simps)
— i>length zs
apply(case-tac i—length s)
apply arith
apply(simp add:nth-append del:list.map last.simps)
apply(rotate-tac —3)
apply (subgoal-tac i— Suc (length xs)=nat)
prefer 2
apply arith
apply simp
— last=None
apply clarify
apply(case-tac ys)
apply(simp add: Cons-lift del:list.map last.simps)
apply (subgoal-tac (map (lift (While b P)) ((Some P, sa) # xs))#[])

142

apply(drule last-conv-nth)
apply (simp del:list.map)
apply(simp only:last-lift-not-None)
apply simp
apply (subgoal-tac ((Some (Seq P (While b P)), sa) # map (lift (While b P)) xs
Q@ ys)#])
apply(drule last-conv-nth)
apply (simp del:list.map last.simps)
apply(simp add:nth-append del:last.simps)
apply(rename-tac a list)
apply(subgoal-tac ((Some (While b P), snd (last ((Some P, sa) # xs))) # a #
list)A[)
apply(drule last-conv-nth)
apply (simp del:list.map last.simps)
apply simp
apply simp
done

lemma While-sound:

[stable pre rely; pre N — b C post; stable post rely;
= P sat [pre N b, rely, guar, pre]; Vs. (s,8)Eguar]

= = While b P sat [pre, rely, guar, post)

apply (unfold com-validity-def)

apply clarify

apply (erule-tac xzs=tl x in While-sound-auz)
apply(simp add:com-validity-def)

apply force

apply simp-all

apply(simp add:cptn-iff-cptn-mod cp-def)

apply(simp add:cp-def)

apply clarify

apply(rule nth-equalityl)

apply simp-all

apply/(case-tac x,simp+)

apply(case-tac i,simp+)

apply (case-tac z,simp+)

done

Soundness of the Rule of Consequence

lemma Conseq-sound:
[pre C pre’; rely C rely’; guar’ C guar; post’ C post;
= P sat [pre’, rely’, guar’, post’]]
= = P sat [pre, rely, guar, post]
apply(simp add:com-validity-def assum-def comm-def)
apply clarify
apply (erule-tac z=s in allE)
apply(drule-tac c=x in subsetD)
apply force

143

apply force
done

Soundness of the system for sequential component programs

theorem rgsound:
F P sat [pre, rely, guar, post) = |= P sat [pre, rely, guar, post|
apply(erule rghoare.induct)
apply(force elim:Basic-sound)
apply(force elim:Seg-sound)
apply (force elim: Cond-sound)
apply(force elim: While-sound)
apply(force elim: Await-sound)
apply (erule Conseq-sound,simp—+)
done

3.5.2 Soundness of the System for Parallel Programs

definition ParallelCom :: ('a rgformula) list = 'a par-com where
ParallelCom Ps = map (Some o fst) Ps

lemma two:
[Vi<length xs. rely U (Jj€{j. j < length zs A j # i}. Guar (zs! j))
C Rely (zs ! i);
pre C (N i€{i. i < length zs}. Pre (zs ! i));
Vi<length xs.
E Com (xzs! i) sat [Pre (zs! i), Rely (xs! i), Guar (zs! i), Post (zs!7)];
length xs=length clist; © € par-cp (ParallelCom xs) s; x€par-assum(pre, rely);
Vi<length clist. clistliccp (Some(Com(zs!i))) s; x o clist |
= Vji. i<length clist A Suc j<length x — (clist!i!j) —c— (clist!i!Suc j)
— (snd(clist!ily), snd(clist!i!Suc j)) € Guar(xs'i)
apply (unfold par-cp-def)
apply (rule ccontr)
— By contradiction:
apply simp
apply(erule exE)
— the first c-tran that does not satisfy the guarantee-condition is from o-¢ at step
m.
apply(drule-tac n=j and P=M\j. 3i. H i j for H in Ex-first-occurrence)
apply(erule exE)
apply clarify
— o-i € A(pre, rely-1)
apply (subgoal-tac take (Suc (Suc m)) (clistli) € assum(Pre(zs!i), Rely(zs!i)))
— but this contradicts = o-i sat [pre-i,rely-i,guar-i,post-i]
apply (erule-tac x=i and P=Xi. Hi — |= (J i) sat [i,K {,M i,N {] for H J I
K M N in allE erule impE assumption)
apply(simp add:com-validity-def)
apply(erule-tac z=s in allFE)
apply(simp add:cp-def comm-def)
apply(drule-tac c=take (Suc (Suc m)) (clist ! i) in subsetD)

144

apply simp
apply (blast intro: takecptn-is-cptn)
apply simp
apply clarify
apply(erule-tac z=m and P=Xj. I j A Jj — Hjfor I J H in allE)
apply (simp add:conjoin-def same-length-def)
apply(simp add:assum-def)
apply(rule conjI)
apply (erule-tac z=i and P=X\j. Hj — I j €cp (K j) (Jj) for HI K J in allE)
apply(simp add:cp-def par-assum-def)
apply(drule-tac c=s in subsetD,simp)
apply simp
apply clarify
apply(erule-tac =i and P=X\j. Hj — M U U (T j) ‘(Sj) C(Lj) for HM
S T L in allE)
apply simp
apply(erule subsetD)
apply simp
apply(simp add:conjoin-def compat-label-def)
apply clarify
apply (erule-tac z=ia and P=\j. Hj — (P j) V Q j for H P @ in ollE,simp)
— each etran in o-1[0...m] corresponds to
apply(erule disjE)
— a c-tran in some o-{ib}
apply clarify
apply(case-tac i=1ib,simp)
apply(erule etranE simp)
apply (erule-tac z=ib and P=Xi. Hi — (i) vV (J %) for H 1 J in allE)
apply (erule etranE)
apply(case-tac ia=m,simp)
apply simp
apply(erule-tac x=ia and P=M\j. Hj — (Vi. P i j) for H P in allFE)
apply(subgoal-tac ia<m,simp)
prefer 2
apply arith
apply (erule-tac z=ib and P=\j. (I j, H j) € ctran — P i j for I H P in
allE,simp)
apply(simp add:same-state-def)
apply (erule-tac z=i and P=\j. (T j) — (Vi. (Hj i) — (snd (dji))=(snd (e
ji))) for T H d e in all-dupFE)
apply (erule-tac z=ib and P=MXj. (T j) — (Vi. (Hj i) — (snd (d j ©))=(snd
(ej1)) for T H d e in allE,simp)
— or an e-tran in o, therefore it satisfies rely vV guar-{ib}
apply (force simp add:par-assum-def same-state-def)
done

lemma three [rule-format]:
[zs#[]; Vi<length zs. rely U (Jje{j. 7 < length zs A j # i}. Guar (zs! j))

145

C Rely (zs !);
pre C (N i€{i. i < length zs}. Pre (zs ! i));
Vi<length xs.
E Com (xs! i) sat [Pre (zs ! i), Rely (zs!), Guar (zs! i), Post (zs! i)];
length xs=length clist; x € par-cp (ParallelCom xs) s; x € par-assum(pre, rely);
Vi<length clist. clistliccp (Some(Com(zsli))) s; x o clist |
= Vji. i<length clist A Suc j<length x —> (clist!i!j) —e— (clist!i!Suc)
— (snd(clist!ily), snd(clistli!Suc j)) € rely U (Uje{j. 7 < length xs A j # i}.
Guar (zs ! j))
apply(drule two)
apply simp-all
apply clarify
apply(simp add:conjoin-def compat-label-def)
apply clarify
apply (erule-tac z=j and P=X\j. Hj — (Jj A (3i. Pij)) vV Ijfor HJ P I in
allE,simp)
apply(erule disjE)
prefer 2
apply(force simp add:same-state-def par-assum-def)
apply clarify
apply(case-tac i=ia,simp)
apply(erule etranE simp)
apply (erule-tac z=ia and P=Xi. Hi — ([i) V (J i) for H I J in allE,simp)
apply(erule-tac z=j and P=MNj. Vi. Sji — ([ji, Hj1i) € ctran — P i j for
S 1 HPin allE)
apply (erule-tac x=ia and P=Xj. Sj — (I j, H j) € ctran — P jfor ST H P
in allE)
apply(simp add:same-state-def)
apply(erule-tac =i and P=\j. T j — (Vi. Hj i — (snd (d j 7))=(snd (e j
1))) for T H d e in all-dupF)
apply (erule-tac x=ia and P=\j. Tj — (Vi. Hji — (snd (d j i))=(snd (e j
i))) for T H d e in allE,simp)
done

lemma four:
[xs#[); Vi < length xs. rely U (Uj€{j. j < length xs A\ j # i}. Guar (zs ! j))
C Rely (zs ! i);
(Ujedlj. j < length zs}. Guar (zs!j)) C guar;
pre C (N i€{i. i < length zs}. Pre (zs ! i));
Vi < length zs.
E Com (xs! i) sat [Pre (zs! i), Rely (zs! i), Guar (zs! i), Post (zs! i)];
z € par-cp (ParallelCom xs) s; x € par-assum (pre, rely); Suc i < length x;
z ! i —pc— x| Suc]
= (snd (z ! i), snd (z! Suc 7)) € guar
apply(simp add: ParallelCom-def)
apply(subgoal-tac (map (Some o fst) xs)#]])
prefer 2
apply simp
apply(frule rev-subsetD)

146

apply(erule one [THEN equalityD1])
apply(erule subsetD)
apply simp
apply clarify
apply (drule-tac pre=pre and rely=rely and z=z and s=s and zs=xzs and clist=clist
in two)
apply (assumption+)
apply(erule sym)

apply(simp add: ParallelCom-def)

apply assumption

apply(simp add: Com-def)
apply assumption
apply(simp add:conjoin-def same-program-def)
apply clarify
apply (erule-tac z=i and P=Xj. H j — fst(I j)=(J j) for H I J in all-dupFE)
apply(erule-tac z==Suc i and P=\j. H j — fst(I j)=(J j) for H I J in allF)
apply(erule par-ctranE, simp)
apply(erule-tac z=i and P=MNj. Vi. Sji — ([ji, Hji) € ctran — P i j for
S 1 HPin allE)
apply (erule-tac x=ia and P=Xj. Sj — (I j, H j) € ctran — P jfor ST H P
in allE)
apply(rule-tac z=1ia in exl)
apply(simp add:same-state-def)
apply (erule-tac x=ia and P=\j. T j — (Vi. Hji — (snd (d j i))=(snd (e j
1))) for T H d e in all-dupFE,simp)
apply (erule-tac x=ia and P=\j. Tj — (Vi. Hji — (snd (d j i))=(snd (e j
i))) for T H d e in ollE,simp)
apply(erule-tac x=i and P=\j. H j — (snd (d j))=(snd (e j)) for H d e in
all-dupE)
apply (erule-tac z=i and P=M\j. H j — (snd (d j))=(snd (e j)) for H d e in
all-dupE, simp)
apply(erule-tac z=Suc i and P=\j. Hj — (snd (d j))=(snd (e j)) for Hd e in
allE,simp)
apply (erule mp)
apply (subgoal-tac r=fst(clist | ia | Suc 7),simp)
apply (drule-tac i=ia in list-eq-if)
back
apply simp-all
done

lemma parcptn-not-empty [simp):[] ¢ par-cptn
apply (force elim:par-cptn.cases)
done

lemma five:
[xs#[); Vi<length xs. rely U ((JjF€{j. j < length xs A j # i}. Guar (zs! §))
C Rely (zs ! 1);
pre C (N i€{i. i < length zs}. Pre (zs ! i));
(Ni€fi. i < length zs}. Post (zs ! i)) C post;

147

Vi < length xs.
= Com (xs ! i) sat [Pre (zs ! i), Rely (zs! i), Guar (zs! %), Post (zs ! 7)];
z € par-cp (ParallelCom xs) s; © € par-assum (pre, rely);
All-None (fst (last z)) | = snd (last x) € post
apply(simp add: ParallelCom-def)
apply (subgoal-tac (map (Some o fst) xzs)#[])
prefer 2
apply simp
apply (frule rev-subsetD)
apply(erule one [THEN equalityD1])
apply(erule subsetD)
apply simp
apply clarify
apply(subgoal-tac ¥V i<length clist. clist!i€ assum(Pre(zsli), Rely(zs!i)))
apply (erule-tac x=za and P=\i. H i — | (J i) sat [I i,K i,M i,N i] for H J
I K M N in allE erule impFE, assumption)
apply(simp add:com-validity-def)
apply(erule-tac z=s in allFE)
apply(erule-tac z=za and P=\j. Hj — (I j) € ¢p (Jj) sfor HIJ in allE simp)
apply (drule-tac c=clist!za in subsetD)
apply (force simp add: Com-def)
apply(simp add:comm-def conjoin-def same-program-def del:last.simps)
apply clarify
apply(erule-tac z=length x — 1 and P=\j. H j — fst(I j)=(J j) for H I J in
allE)
apply (simp add:All-None-def same-length-def)
apply(erule-tac z=xa and P=Xj. H j — length(J j)=(K j) for H J K in allE)
apply(subgoal-tac length © — 1 < length x,simp)
apply(case-tac x#]])
apply(simp add: last-conv-nth)
apply (erule-tac z=clist!za in ballE)
apply(simp add:same-state-def)
apply(subgoal-tac clist!za+|])
apply(simp add: last-conv-nth)
apply(case-tac x)
apply (force simp add:par-cp-def)
apply (force simp add:par-cp-def)
apply force
apply (force simp add:par-cp-def)
apply/(case-tac x)
apply (force simp add:par-cp-def)
apply (force simp add:par-cp-def)
apply clarify
apply(simp add:assum-def)
apply(rule conjI)
apply(simp add:conjoin-def same-state-def par-cp-def)
apply clarify
apply (erule-tac =i and P=Xj. T j — (Vi. Hji — (snd (d j i))=(snd (e j
i))) for T H d e in ollE,simp)

148

apply(erule-tac =0 and P=Xj. H j — (snd (d j))=(snd (e 7)) for H d e in
allE)

apply/(case-tac x,simp+)

apply (simp add:par-assum-def)

apply clarify

apply(drule-tac c=snd (clist ! i ! 0) in subsetD)

apply assumption

apply simp

apply clarify

apply (erule-tac z=1 in all-dupF)

apply(rule subsetD, erule mp, assumption)

apply(erule-tac pre=pre and rely=rely and z=z and s=s in three)
apply(erule-tac x=ib in allE, erule mp)

apply simp-all

apply(simp add: ParallelCom-def)

apply(force simp add:Com-def)

apply(simp add:conjoin-def same-length-def)

done

lemma ParallelEmpty [rule-format]:
Vis. z € par-cp (ParallelCom []) s —
Suc i < length x — (z ! i, ! Suc i) ¢ par-ctran
apply (induct-tac x)
apply(simp add:par-cp-def ParallelCom-def)
apply clarify
apply (case-tac list,simp,simp)
apply(case-tac 1)
apply(simp add:par-cp-def ParallelCom-def)
apply(erule par-ctranE, simp)
apply(simp add:par-cp-def ParallelCom-def)
apply clarify
apply (erule par-cptn.cases,simp)
apply simp
apply(erule par-ctranE)
back
apply simp
done

theorem par-rgsound:

F ¢ SAT [pre, rely, guar, post] =

E (ParallelCom ¢) SAT [pre, rely, guar, post]
apply (erule par-rghoare.induct)
apply(case-tac xs,simp)
apply(simp add:par-com-validity-def par-comm-def)
apply clarify
apply(case-tac post=UNIV simp)

apply clarify

apply(drule ParallelEmpty)

apply assumption

149

apply simp
apply clarify
apply simp
apply (subgoal-tac xs#())
prefer 2
apply simp
apply(rename-tac a list)
apply(thin-tac xs = a # list)
apply(simp add:par-com-validity-def par-comm-def)
apply clarify
apply(rule conjI)
apply clarify
apply(erule-tac pre=pre and rely=rely and guar=guar and z=z and s=s and
xzs=zs in four)
apply (assumption+)
apply clarify
apply (erule allE, erule impE, assumption,erule rgsound)
apply (assumption+)
apply clarify
apply(erule-tac pre=pre and rely=rely and post=post and z=z and s=s and
xs=zs in five)
apply (assumption+)
apply clarify
apply (erule allE, erule impE, assumption,erule rgsound)
apply (assumption+)
done

end

3.6 Concrete Syntax

theory RG-Syntax
imports RG-Hoare Quote-Antiquote
begin

abbreviation Skip :: ‘a com ((SKIP»)
where SKIP = Basic id

notation Seq («(-;;/ -)» [60,61] 60)

syntax

-Assign idt = 'b = 'a com («(7-:=/ -p [70, 65] 61)

-Cond 2 'a bexp = 'a com = 'a com = 'a com («(OIF -/ THEN -/ ELSE
_JFI)> [0, 0, 0] 61)

-Cond2 :: 'a bexp = 'a com = 'a com («(0IF - THEN - FI)» [0,0]
56)

-While :: 'a bexp = 'a com = 'a com («(OWHILE - /DO - /OD)»
[0, 0] 61)

-Await 'a bexp = 'a com = 'a com (<«(OAWAIT - /THEN /-

150

JEND)) [0,0] 61)

-Atom it 'a com = 'a com («({-))» 61)
- Wait i 'a bexp = 'a com («(OWAIT - END) 61)
translations

“z := a — CONST Basic « (-update-name x (A-. a))»
IF b THEN c1 ELSE ¢2 FI — CONST Cond {b} c1 c2
IF b THEN ¢ FI = IF b THEN ¢ ELSE SKIP FI
WHILE b DO ¢ OD — CONST While {b}} ¢

AWAIT b THEN ¢ END = CONST Await {b} c

(¢) = AWAIT CONST True THEN ¢ END

WAIT b END = AWAIT b THEN SKIP END

nonterminal prgs

syntax
-PAR oprgs = a («COBEGIN//-//COEND> 60)
-prg 'a = prgs (<> 57)
-prygs i ['a, prgs] = prys («-//Il/ /- [60,57] 57)
translations
-prg a — [a]
-prgs a ps — a # ps
-PAR ps — ps
syntax

-prg-scheme :: ['a, 'a, 'a, 'a] = prgs ((SCHEME [- < - < -] - [0,0,0,60] 57)

translations
-prg-scheme j i k ¢ = (CONST map (\i. ¢) [j..<Kk])

Translations for variables before and after a transition:

syntax
-before i1 id = 'a (¢9-)
-after ::id = 'a (*-)

translations
°r = x "CONST fst
2 = ¢ "CONST snd

print-translation «
let
fun quote-tr’ f (t :: ts) =
Term.list-comb (f $ Syntaz-Trans.quote-tr’ syntax-const <-antiquotes t,
ts)
| quote-tr' - - = raise Match;

val assert-tr’ = quote-tr’ (Syntax.const syntax-const -Assert));

151

fun bexp-tr’ name ((Const (const-syntax <Collecty, -) $ t) :: ts) =
quote-tr’ (Syntaz.const name) (¢ :: ts)
| bexp-tr’ - - = raise Match;

fun assign-tr’ (Abs (z, -, f $ k£ $ Bound 0) :: ts) =

quote-tr' (Syntaz.const syntax-const -Assigny $ Syntaz- Trans.update-name-tr’

)
(Abs (z, dummyT, Syntaz-Trans.const-abs-tr’ k) :: ts)
| assign-tr’ - = raise Match;
m
[(const-syntax «Collecty, K assert-tr'),
(const-syntax «Basicy, K assign-tr’),
(const-syntax «Condr, K (bexp-tr’ syntaxr-const<-Cond)),
(const-syntaxr « Whiley, K (bexp-tr’' syntaz-const - While))]
end
)

end

3.7 Examples

theory RG-FExamples
imports RG-Syntax
begin

lemmas definitions [simp|= stable-def Pre-def Rely-def Guar-def Post-def Com-def

3.7.1 Set Elements of an Array to Zero

lemma le-less-trans2: [(j::nat)<k; i< j] = i<k
by simp

lemma add-le-less-mono: [(a:nat) < ¢; b<d] = a+b<c+ d
by simp

record Eramplel =
A :: nat list

lemma Eramplel:
+ COBEGIN
SCHEME [0 < i < n]
("A:="Ai:= 0],
{ n < length “A |},
{ length °A = length 2PA N°A Vi =244,
{ length °A = length *A N (Vj<n.i#j— 2Alj=2417§) |,
{Ali=01})
COEND
SAT [{ n < length "A}, { A =2A}, { True |}, {Vi<n. "Ali=201}]
apply(rule Parallel)

152

apply (auto intro!: Basic)
done

lemma Ezxamplel-parameterized:
E<t=
F COBEGIN
SCHEME [kxn<i<(Suc k)xn] ("A:="A[i:=0],
{txn < length ~ A},
{txn < length °A A length ©A=length *A N ©Ali = *Al4},
{txn < length °A A length ¢A=length *A N (Vj<length °A . i#j — °Alj =
2A1),
{ Ali=0])
COEND
SAT [{txn < length ~Al},
{txn < length °A A length °A=length A N (Vi<n. °Al(kxn—+i)=2Al(kxn+1))},
{txn < length °A A length ®A=length *A A
(Vi<length °A . (i<kxn — °Ali = *Ali) A ((Suc k)xn < i— °Ali = 2Al))},
{Vi<n. “Al(kxn+i) = 0}]
apply(rule Parallel)
apply auto
apply (erule-tac x=kxn +i in allE)
apply(subgoal-tac kxn+i <length (A b))
apply force
apply(erule le-less-trans2)
apply(case-tac t,simp+)
apply (simp add:add.commute)
apply(simp add: add-le-mono)
apply(rule Basic)
apply simp
apply clarify
apply (subgoal-tac kxn+i< length (A z))
apply simp
apply(erule le-less-trans2)
apply/(case-tac t,simp+)
apply (simp add:add.commute)
apply(rule add-le-mono, auto)
done

3.7.2 Increment a Variable in Parallel

Two components

record Ezample2 =

T :: nat
c-0 :: nat
c-1 :: nat

lemma Erample2:
+ COBEGIN
("z:="z+1;; "c-0:="¢c-0 + 1),

153

‘t="¢-0 + "c-1 N "¢c-0=0],
-0 = 2c-0 N

{%c-1 = 2¢c-1 A
(°x=°c-0 + °c-1
— 2z =%c-0 + *c-1)],
{'2="¢c-0 + "¢c-1 N "c-0=11})
|
("m="z+1;; "c-1:="c-1+1),
{'2="¢c-0 + "c-1 N "c-1=0 |},
{%¢c-1 = 2¢c-1 A
(°z=c-0 + °c-1
— g = 2¢-0 + 2c-1)],
{%-0 = 2c-0 A
(°x=2c-0 + ©c-1
— 2z =%¢-0 + %c-1)},
{’2="¢c-0 + "c-1 N "c-1=1})
COEND
SAT [{"2=0 A "¢c-0=0 A "c-1=0},
{oz="z N ©c-0= 2¢c-0 A %c-1="c-1],
{ Truel,
I z=2}]
apply(rule Parallel)
apply simp-all
apply clarify
apply/(case-tac i)
apply simp
apply(rule conjl)
apply clarify
apply simp
apply clarify
apply simp
apply simp
apply(rule conjI)
apply clarify
apply simp
apply clarify
apply simp
apply(subgoal-tac =0)
apply simp
apply arith
apply clarify
apply(case-tac za, simp, simp)
apply clarify
apply simp
apply (erule-tac z=0 in all-dupE)
apply(erule-tac =1 in allE,simp)
apply clarify

154

apply/(case-tac i,simp)
apply(rule Await)

apply simp-all
apply (clarify)

apply(rule Seq)
prefer 2

apply(rule Basic)
apply simp-all
apply (rule subset-refl)
apply(rule Basic)
apply simp-all
apply clarify
apply simp
apply(rule Await)
apply simp-all
apply (clarify)

apply(rule Seq)
prefer 2

apply(rule Basic)

apply simp-all
apply(rule subset-refl)
apply(auto intro!: Basic)
done

Parameterized

lemma Ezxample2-lemma2-aux: j<n —>
(> i=0..<n. (b iznat)) =

Oi=0..<j. bi) + bj+ O i=0..<n—(Sucj) . b (Sucj+ 7))

apply (induct n)

apply simp-all

apply(simp add:less-Suc-eq)

apply(auto)

apply(subgoal-tac n — j = Suc(n— Suc j))
apply simp

apply arith

done

lemma Ezample2-lemma2-aux2:
i< s = (X innat=0..<j. (b (s:=t)) i) = (> i=0..<j. b Q)
by (induct j) simp-all

lemma Ezample2-lemma2:

li<n; b j=0] = Suc (> iznat=0..<n. b))=(>_i=0..<n. (b (j := Suc 0)) 1)
apply (frule-tac b=(b (j:=(Suc 0))) in Example2-lemma2-auz)

apply (erule-tac t=sum (b(j := (Suc 0))) {0..<n} in ssubst)

apply(frule-tac b=b in Ezxample2-lemma2-auzr)

apply(erule-tac t=sum b {0..<n} in ssubst)

apply(subgoal-tac Suc (sum b {0..<j} + bj+ O_i=0..<n — Suc j. b (Suc j +

155

0)))=(sum b {0..<j} + Suc (b j) + (>_i=0..<n — Suc j. b (Suc j + 7))))
apply(rotate-tac —1)

apply(erule ssubst)

apply (subgoal-tac j<j)

apply(drule-tac b=b and t=(Suc 0) in Ezample2-lemma2-auz2)
apply(rotate-tac —1)

apply(erule ssubst)

apply simp-all

done

lemma FEzample2-lemma2-Suc0: [j<n; b j=0] =
Suc (O innat=0..< n. b))=(>_ i=0..< n. (b (j:=Suc 0)) 7)
by (simp add: Example2-lemma?2)

record Ezample2-parameterized =
C :: nat = nat
y nat

lemma Ezample2-parameterized: 0<n —>
F COBEGIN SCHEME [0<i<n]
((“y="y+1; "C:="C (i:=1)),
{'y=0"i=0..<n. "C i) A "C i=0},
{eCi=2C1iAn
(Cy=(>"i=0..<n. °C i) — 2y =3 i=0..<n. 2C1Q))},
{(Vj<n. ij — °Cj = >Cj) A
Cy=0>"i=0..<n. °C i) — 2y =3 i=0..<n. 2C)},
{'y=0"i=0..<n. "Ci) AN "Ci=1})
C

SAT [{ y=0 N (> i=0..<n. "Ci)=0 [}, {2C=2C A °y=2y|, { True}, { y=n}]
apply(rule Parallel)
apply force
apply force
apply (force)
apply clarify
apply simp
apply simp
apply clarify
apply simp
apply(rule Await)
apply simp-all
apply clarify
apply(rule Seq)
prefer 2

apply(rule Basic)
apply(rule subset-refl)
apply simp+
apply(rule Basic)
apply simp

apply clarify

156

apply simp

apply(simp add: Ezample2-lemma2-Suc0 cong:if-cong)
apply simp-all

done

3.7.3 Find Least Element

A previous lemma:

lemma mod-aux :[i < (n:nat); amodn =14; j<a+ n;jmodn=71a<j] =
False

apply(subgoal-tac a=a div nxn + a mod n)
prefer 2 apply (simp (no-asm-use))
apply(subgoal-tac j=j div nxn + j mod n)
prefer 2 apply (simp (no-asm-use))

apply simp

apply(subgoal-tac a div nxn < j div nxn)
prefer 2 apply arith

apply (subgoal-tac j div n¥n < (a div n + 1)%n)
prefer 2 apply simp

apply (simp only:mult-less-cancel2)

apply arith

done

record Exampled =
X :: nat = nat
Y :: nat = nat

lemma Ezample3: m mod n=0 —
F COBEGIN
SCHEME [0<i<n]
(WHILE (Vj<n. ‘X i< 'Yj) DO
IF P(B\("X 1)) THEN "Y:="Y (i:="X i)
ELSE "X:= "X (i:=("X i)+ n) FI
OD,
{("X i) mod n=i N (Vj< X i. jmod n=i — —P(Blj)) A ("Yi<m — P(BI("Y
D) A Y i< mti),
1(Vj<n. i#j — 2Yj <OV) A°X i =28XiA
°y § =2y i},
{(Vj<n. i#j — °Xj=2XjA°Yj=2Yj) A
2y i <Y i},
{(" X %) mod n=i A (Vj< X i.jmod n=i{ — —P(Bj)) A ("Yi<m — P(B!("Y
) A Y i< mi) A (Jj<n. 'Y< X))}
COEND
SAT [{ Vi<n. "X i=i A 'Y i=m+i }{oX=2X A °Y=2Y} { True]},
{Vi<n. ("X i) mod n=i A (Vj< X i. j mod n=i — —P(Blj)) A
(Yi<m —s P(BI('Y i) A 'Y i< mti) A 3j<n. Y j < X D)}
apply(rule Parallel)
— 5 subgoals left

apply force+

157

apply clarify
apply simp
apply(rule While)
apply force
apply force
apply force
apply (erule dvdE)
apply(rule-tac pre’'={ "X i mod n = i A (Vj. j<'X i — jmod n =i —
“PBY)AN(Yi<nxk— P(BI('Y1)) A Xi< Yi} in Conseq)
apply force
apply(rule subset-refl)+
apply(rule Cond)
apply force
apply(rule Basic)
apply force
apply fastforce
apply force
apply force
apply(rule Basic)
apply simp
apply clarify
apply simp
apply (case-tac X z (j mod n) < j)
apply (drule le-imp-less-or-eq)
apply (erule disjE)
apply (drule-tac j=j and n=n and i=j mod n and a=X z (j mod n) in
mod-aux)
apply auto
done

Same but with a list as auxiliary variable:

record Ezxample3-list =
X :: nat list
Y :: nat list

lemma Ezample3-list: m mod n=0 = + (COBEGIN SCHEME [0<i<n]
(WHILE (Yj<n. "X'i < "Ylj) DO
IF P(B\("X'7)) THEN “Y:="Y[i:="X] ELSE “X:= " X|i:=(" X'i)+ n] FI
OD,
{n<length "X A n<length 'Y A (X)) mod n=i A (Vj< Xi. j mod n=i —
=P(B)) A (" Yli<m — P(BI("Y!)) A " Yi< m+1)],
{(Vj<n. i#j — 2Y1j < °Yl) A °X1i = 2X1i A
2Yli = 2Y1i A length °X = length 2X A length °Y = length 2 Y],
1(Vj<n. i#j — °X1j = 8X1j A OY1j = 2¥15) A
2Yli < °Yli A length °X = length X A length °Y = length Y},
{(" X)) mod n=i A (Vi< Xli. j mod n=i — —P(B!j)) A (" Yli<m — P(B!("Y!i))
A YHS mti) A (3j<n. Y1 < “X1) }) COEND)
SAT [{n<length "X A n<length "Y A (Vi<n. "Xli=i A " Yli=m+i) |},
{PX=2X A °Y=2Y],

158

{ Truel,
Vi<n. (" X1%) mod n=i A (Vj< Xli. j mod n=i — —~P(Blj)) A
("YVi<m — P(B!("Y!Y)) A "YH< m+i) A (Fji<n. Yl < "X}
apply (rule Parallel)
apply (auto cong del: image-cong-simp)
apply force
apply (rule While)
apply force
apply force
apply force
apply (erule dvdE)
apply(rule-tac pre’={n<length "X A n<length Y AN "X 1 imodn =i A (¥].
<'Xli—jmodn=i7— P B!'j)AN(Y!i<nxk—PB!('Y
i))) A " Xli<” Y} in Conseq)
apply force
apply(rule subset-refl)+
apply(rule Cond)
apply force
apply(rule Basic)
apply force
apply force
apply force
apply force
apply(rule Basic)
apply simp
apply clarify
apply simp
apply(rule alll)
apply(rule impl)+
apply(case-tac X z ! i< j)
apply (drule le-imp-less-or-eq)
apply(erule disjE)
apply(drule-tac j=j and n=n and i=i and =X z ! ¢ in mod-auz)
apply auto
done

J
!

end

theory Hoare-Parallel

imports OG-Examples Gar-Coll Mul-Gar-Coll RG-Examples
begin

end

159

Bibliography

1]

Leonor Prensa Nieto. Verification of Parallel Programs with the Owicki-

Gries and Rely-Guarantee Methods in Isabelle/HOL. PhD thesis, Tech-
nische Universitat Miinchen, 2002.

Tobias Nipkow and Leonor Prensa Nieto. Owicki/Gries in Isabelle/HOL.
In J.-P. Finance, editor, Fundamental Approaches to Software Engineer-
ing (FASE’99), volume 1577 of LNCS, pages 188-203. Springer, 1999.

Leonor Prensa Nieto. The Rely-Guarantee method in Isabelle/HOL. In
P. Degano, editor, Furopean Symposium on Programming (ESOP’03),
volume 2618, pages 348-362, 2003.

Leonor Prensa Nieto and Javier Esparza. Verifying single and multi-
mutator garbage collectors with Owicki/Gries in Isabelle/HOL. In
M. Nielsen and B. Rovan, editors, Mathematical Foundations of Com-
puter Science (MFCS 2000), volume 1893 of LNCS, pages 619-628.
Springer-Verlag, 2000.

160

	The Owicki-Gries Method
	Abstract Syntax
	Operational Semantics
	The Transition Relation
	Definition of Semantics

	Validity of Correctness Formulas
	The Proof System
	Soundness
	Soundness of the System for Atomic Programs
	Soundness of the System for Component Programs
	Soundness of the System for Parallel Programs

	Generation of Verification Conditions
	Concrete Syntax
	Examples
	Mutual Exclusion
	Parallel Zero Search
	Producer/Consumer
	Parameterized Examples

	Case Study: Single and Multi-Mutator Garbage Collection Algorithms
	Formalization of the Memory
	Proofs about Graphs

	The Single Mutator Case
	The Mutator
	The Collector
	Interference Freedom

	The Multi-Mutator Case
	The Mutators
	The Collector
	Interference Freedom

	The Rely-Guarantee Method
	Abstract Syntax
	Operational Semantics
	Semantics of Component Programs
	Semantics of Parallel Programs
	Computations
	Modular Definition of Computation
	Equivalence of Both Definitions.

	Validity of Correctness Formulas
	Validity for Component Programs.
	Validity for Parallel Programs.
	Compositionality of the Semantics
	The Semantics is Compositional

	The Proof System
	Proof System for Component Programs
	Proof System for Parallel Programs

	Soundness
	Soundness of the System for Component Programs
	Soundness of the System for Parallel Programs

	Concrete Syntax
	Examples
	Set Elements of an Array to Zero
	Increment a Variable in Parallel
	Find Least Element

