The Hahn-Banach Theorem
for Real Vector Spaces

Gertrud Bauer

January 18, 2026

Abstract

The Hahn-Banach Theorem is one of the most fundamental results in
functional analysis. We present a fully formal proof of two versions of the
theorem, one for general linear spaces and another for normed spaces. This
development is based on simply-typed classical set-theory, as provided by

Isabelle/HOL.

Contents

1 Preface

Basic Notions
Bounds

Vector spaces
3.1 Signature
3.2 Vector space laws

Subspaces

4.1 Definition
4.2 Linear closure
4.3 Sum of two vectorspaces
4.4 Direct sums

Normed vector spaces

5.1 Quasinorms
52 Norms,
5.3 Normed vector spaces

Linearforms

An order on functions

7.1 The graph of a function
7.2 Functions ordered by domain extension
7.3 Domain and function of a graph
7.4 Norm-preserving extensions of a function

(=}

12
13
15
16
18

21
21
22
22

23

8 The norm of a function
8.1 Continuous linear forms
8.2 The norm of a linear form

9 Zorn’s Lemma

II Lemmas for the Proof
10 The supremum wrt. the function order

11 Extending non-maximal functions

IIT The Main Proof

12 The Hahn-Banach Theorem
12.1 The Hahn-Banach Theorem for vector spaces
12.2 Alternative formulation
12.3 The Hahn-Banach Theorem for normed spaces

CONTENTS

26
26
27

31

33
33

40

1 Preface

This is a fully formal proof of the Hahn-Banach Theorem. It closely follows
the informal presentation given in Heuser’s textbook [1, § 36]. Another formal
proof of the same theorem has been done in Mizar [3]. A general overview of
the relevance and history of the Hahn-Banach Theorem is given by Narici and
Beckenstein [2].

The document is structured as follows. The first part contains definitions of
basic notions of linear algebra: vector spaces, subspaces, normed spaces, con-
tinuous linear-forms, norm of functions and an order on functions by domain
extension. The second part contains some lemmas about the supremum (w.r.t.
the function order) and extension of non-maximal functions. With these pre-
liminaries, the main proof of the theorem (in its two versions) is conducted in
the third part. The dependencies of individual theories are as follows.

1 PREFACE

[Pure]

[tHoL]

Zorn_Lemma | | [HOL-Library] |

[HOL-Analysis]
[HoL-Analysi1 |
@nds

Vector_Space

| Linearform | | Subspace |

| Function_Order | | Normed_Space |

| Function_Norm |

Hahn_Banach_Sup_Lemmas | | Hahn_Banach_Ext_Lemmas

| Hahn_Banach_Lemmas |

Hahn_Banach

Part 1
Basic Notions

2 Bounds

theory Bounds

imports Main HOL— Analysis. Continuum-Not-Denumerable

begin

locale lub =
fixes A and z

assumes least [intro?): (Na. a € A= a < b) =z < b
and upper [intro?): a € A = a < z

lemmas [elim?] = lub.least lub.upper

definition the-lub :: ‘a::order set = ‘a («|_|-» [90] 90)

where the-lub A = The (lub A)

lemma the-lub-equality [elim?]:
assumes [ub A z
shows | | A = (z::'a::order)
proof —
interpret lub A z by fact
show ?thesis
proof (unfold the-lub-def)

from <«lub A z» show The (lub A) = z

proof

fix ' assume lub”: lub A z’

show z’ = 2
proof (rule order-antisym)
from lub’ show z’ < z
proof
fix a assume a € A
then show a < z ..
qed
show z < z’
proof
fix a assume a € A
with lub’ show a < 2/ ..
qed
qged
qed
qed
qed

lemma the-lubl-ex:
assumes ex: Jz. lub A z
shows lub A (| | A)
proof —

from ez obtain z where z: lub A z ..
also from z have [symmetric): | |A = z ..

6 3 VECTOR SPACES

finally show ?thesis .
qged

lemma real-complete: Ja:real. a € A = Jy.Va € A. a < y= Fz. lub Az
by (intro exI[of - Sup A]) (auto intro!: cSup-upper cSup-least simp: lub-def)

end

3 Vector spaces

theory Vector-Space
imports Complex-Main Bounds
begin

3.1 Signature

For the definition of real vector spaces a type 'a of the sort {plus, minus, zero}
is considered, on which a real scalar multiplication - is declared.

consts
prod :: real = 'a:{plus,minus,zero} = ‘a (infixr <> 70)

3.2 Vector space laws

A wvector space is a non-empty set V of elements from 'a with the following vector
space laws: The set V is closed under addition and scalar multiplication, addition
is associative and commutative; — z is the inverse of z wrt. addition and 0 is
the neutral element of addition. Addition and multiplication are distributive;
scalar multiplication is associative and the real number I is the neutral element
of scalar multiplication.

locale vectorspace =
fixes V
assumes non-empty [iff, intro?): V # {}
and add-closed [iff 2 € V=—=ye V=12a+4+yec V
and mult-closed [iff: z € V= a-z€ V
and add-assoc: 2 € V= ye V=2 V= (z+y)+z2=z+ (y+2)
and add-commute: x € V —=ye V =z +y=y+ =z
and diff-self [simpl: 2 € V=2 -2 =10
and add-zero-left [simp]: z € V = 0 + z ==z
and add-mult-distribl: z € V=—=ye€V =1a-(z+y)=a-z+a-y
and add-mult-distrib2: t € V= (a+b) -z =a-x+ b-x
and mult-assoc: t € V= (a x b) -z =a - (b - x)
and mult-1 [simpl: z € V =1 -z =12
and negate-eql: z € V— —z=(—1) -z
and diff-eql:z € V=yeV=2a2—-y=a0+ —y
begin

lemma negate-eq2: z € V= (- 1) -z =— =z
by (rule negate-eql [symmetric])

lemma negate-eq2a: x € V —= —1 -2 = — 2
by (simp add: negate-eql)

3.2 Vector space laws 7

lemma diff-eq2: 2 € V—yec V=—=uao+-—y=z—y
by (rule diff-eql [symmetric])

lemma diff-closed [iffj € V =y V=—1ua—-yeV
by (simp add: diff-eql negate-eql)

lemma neg-closed [iff|; 2 € V= —z € V
by (simp add: negate-eql)

lemma add-left-commute:
teV=yeV=zeV=uax+(y+2)=y+ (z+2)
proof —
assume zyz:z € V ye V ze V
then have z + (y + 2) = (z + y) + 2
by (simp only: add-assoc)

also from zyz have ... = (y + z) + z by (simp only: add-commute)
also from zyz have ... = y + (z + z) by (simp only: add-assoc)
finally show ?thesis .

qed

lemmas add-ac = add-assoc add-commute add-left-commute

The existence of the zero element of a vector space follows from the non-
emptiness of carrier set.

lemma zero [iff]: 0 € V

proof —
from non-empty obtain x where z: z € V by blast
then have 0 = z — z by (rule diff-self [symmetric])
also from z z have ... € V by (rule diff-closed)
finally show ?%thesis .

qed

lemma add-zero-right [simp: 2 € V = z 4+ 0 ==z
proof —
assume z: z € V
from this and zero have z + 0 = 0 + z by (rule add-commute)
also from z have ... = z by (rule add-zero-left)
finally show ?thesis .
qed

lemma mult-assoc2: x € V= a-b-z=(ax*xb) -z
by (simp only: mult-assoc)

lemma diff-mult-distribl: z € V—=y€eV =0a-(z—y)=a-z—a-y
by (simp add: diff-eql negate-eql add-mult-distribl mult-assoc2)

lemma diff-mult-distrib2: c € V= (a —b) -z =a-z — (b- 1)
proof —
assume z: ¢ € V
have (¢ —b) - z=(a+—-0b) -z
by simp
also from z have ... =a-z+ (— b) - z
by (rule add-mult-distrib2)

8 3 VECTOR SPACES

also from z have ... =a -z + — (b - 2)
by (simp add: negate-eql mult-assoc2)
also from z have ... =a -z — (b - z)

by (simp add: diff-eql)
finally show ?thesis .
qed

lemmas distrib =
add-mult-distrib1l add-mult-distrib2
diff-mult-distrib1 diff-mult-distrib2

Further derived laws:

lemma mult-zero-left [simp]: 2 € V=0 -2z =10
proof —

assume z: z € V

have 0 -z = (1 — 1) - z by simp

also have ... = (1 + — 1) - z by simp
also fromzhave...= 1 -z + (- 1) -z
by (rule add-mult-distrib2)
also from z have ... =z + (— 1) - z by simp
also from z have ... = z + — z by (simp add: negate-eq2a)
also from z have ... = z — z by (simp add: diff-eq2)
also from z have ... = 0 by simp
finally show ?thesis .
qged
lemma mult-zero-right [simp]: a - 0 = (0::'a)
proof —
have a - 0 = a - (0 — (0::'a)) by simp
alsohave...= a-0 —a-0
by (rule diff-mult-distrib1) simp-all
also have ... = 0 by simp
finally show ?thesis .
qged
lemma minus-mult-cancel [simp]: t € V = (—a) - —z =a -z

by (simp add: negate-eql mult-assoc2)

lemma add-minus-left-eq-diff: t € V —=y eV =—= -z 4+ y=y —z
proof —

assume zy: x € V ye V

then have — z + y = y + — z by (simp add: add-commute)

also from zy have ... = y — z by (simp add: diff-eql)

finally show ?thesis .
qed

lemma add-minus [simp]: z € V =2+ —z =0
by (simp add: diff-eq2)

lemma add-minus-left [simpl: z € V= —z + 2 =10
by (simp add: diff-eq2 add-commute)

lemma minus-minus [simp]: z € V = — (— z) =z
by (simp add: negate-eql mult-assoc2)

3.2 Vector space laws

lemma minus-zero [simp]: — (0::'a) = 0
by (simp add: negate-eql)

lemma minus-zero-iff [simp):
assumes z: ¢ € V
shows (— z=0) = (z = 0)

proof
from z have z = — (— z) by simp
also assume — z = 0
also have — ... = 0 by (rule minus-zero)
finally show =z = 0 .
next

assume z = 0
then show — z = 0 by simp
qed

lemma add-minus-cancel [simp]: z € V =y V=1ua+(—z+y) =y
by (simp add: add-assoc [symmetric])

lemma minus-add-cancel [simp]: z € V =y V= -2+ (z+y) =y
by (simp add: add-assoc [symmetric])

lemma minus-add-distrib [simp]: z € V =y V= —-(z+y)=—z+ —y
by (simp add: negate-eql add-mult-distribl)

lemma diff-zero [simp]: z € V =2z — 0 =z
by (simp add: diff-eql)

lemma diff-zero-right [simp: z € V = 0 —z = — =z
by (simp add: diff-eql)

lemma add-left-cancel:
assumes ©: x € Vandy:y€ Vand z: z € V
shows (z + y =z + 2) = (y = 2)

proof
from y have y = 0 4+ y by simp
also from z y have ... = (— z + z) + y by simp
also from z y have ... = — z + (z + y) by (simp add: add.assoc)
also assume z + y = z + 2
also from z z have — z + (z + 2) = — ¢ + 2 + z by (simp add: add.assoc)
also from z z have ... = 2z by simp
finally show y = z .
next

assume y = 2
then show z + y = = + z by (simp only:)
qed

lemma add-right-cancel:
zeV=yeV=zeV= (yt+z=2z+2z)=(y=2)
by (simp only: add-commute add-left-cancel)

lemma add-assoc-cong:
zeV=—=yeV=2'cV=yecV=12cV

10 3 VECTOR SPACES

—zt+y=z'+y =z+W+2)=3"+ (y + 2)
by (simp only: add-assoc [symmetric])

lemma mult-left-commute: t € V= a-b-z=b-a-x
by (simp add: mult.commute mult-assoc2)

lemma mult-zero-uniq:
assumes z: z € V z# 0 and az: a - z = 0
shows a = 0
proof (rule classical)
assume a: a # 0
from z a have z = (inverse a * a) - z by simp

also from <z € V) have ... = inverse a - (a - z) by (rule mult-assoc)
also from ax have ... = inverse a - 0 by simp
also have ... = 0 by simp

finally have x = 0 .
with <z # 0» show a = 0 by contradiction
qed

lemma mult-left-cancel:
assumes z: ¢ € V and y: y € V and a: a # 0
shows (¢ -z =a-y) = (z=y)

proof
from x have z = 1 - = by simp
also from a have ... = (inverse a * a) - © by simp
also from z have ... = inverse a - (a - z)

by (simp only: mult-assoc)
also assume a -z =a - y
also from a y have inverse a - ... =
by (simp add: mult-assoc2)
finally show z = y .
next

|
<

assume = y
then show a - z = a - y by (simp only:)
qed

lemma mult-right-cancel:
assumes z: ¢ € V and neq: z # 0
shows (a -z =b-12) = (a=0)
proof
from z have (a — b) -z =a-z—-b -z
by (simp add: diff-mult-distrib2)
alsoassume a -z =0z
with x have a - © — b - x = 0 by simp
finally have (¢ — b) -z =0 .
with z neq have a — b = 0 by (rule mult-zero-uniq)
then show a = b by simp
next
assume a = b
then show a - z = b - z by (simp only:)
qed

lemma eq-diff-eq:
assumes z: z € Vand y: y € Vand z: z € V

3.2 Vector space laws

shows (z =2 —y) = (z + y = 2)
proof

assume r = z — y

then have z + y = 2z — y + y by simp

also from yz have ... =2+ —y + y
by (simp add: diff-eql)
alsohave ... =z 4+ (—y + y)
by (rule add-assoc) (simp-all add: y z)
also from y z have ... = 2z + 0
by (simp only: add-minus-left)
also from z have ... = z

by (simp only: add-zero-right)
finally show =z + y = z .
next
assume r + y = 2z
then have z — y = (z + y) — y by simp

also from zy have ... =z +y+ — y
by (simp add: diff-eql)
also have ... =z + (y + — y)
by (rule add-assoc) (simp-all add: z y)
also from z y have ... = z by simp
finally show z =z — y ..
qed

lemma add-minus-eq-minus:
assumes z: z € Vand y: y € Vand zy: z + y = 0

shows z = — y
proof —
from z y have z = (— y + y) + = by simp
also from z y have ... = — y + (z + y) by (simp add: add-ac)
also note zy
also from y have — y + 0 = — y by simp
finally show z = — y .
qed

lemma add-minus-eq:
assumes r: x € Vandy:y€ Vand zy: v — y = 0
shows z = y
proof —
from z y zy have eq: x + — y = 0 by (simp add: diff-eql)
with - - have z = — (— y)
by (rule add-minus-eg-minus) (simp-all add: = y)
with z y show z = y by simp
qed

lemma add-diff-swap:

assumes vs:a € V beV ceV deV
and eq: a + b=c+ d
shows a —c=d — b

proof —
from assms have — ¢ + (a + b) = — ¢ + (¢ + d)
by (simp add: add-left-cancel)
also have ... = d using «c € V) «d € V) by (rule minus-add-cancel)

finally have eq: — ¢+ (a + b) = d .

11

12 4 SUBSPACES

from vshave a —c=(—c+ (a+ b))+ — b
by (simp add: add-ac diff-eql)

also from vs eq have ... =d + — b
by (simp add: add-right-cancel)
also from vs have ... = d — b by (simp add: diff-eq2)
finally show a —c=d — b .
qed

lemma vs-add-cancel-21:
assumes vs:z € V yeV ze V ueV
shows (z+ (y+ 2) =y + u) =(z + z=u)

proof
from vs have z + 2 = — y + y + (z + 2) by simp
also have ... = — y + (y + (z + 2))

by (rule add-assoc) (simp-all add: vs)
also from vs have y + (z + 2) =z + (y + 2)
by (simp add: add-ac)
alsoassume z + (y + 2) =y + u
also from vs have — y + (y + u) = u by simp
finally show z + z = u .
next
assume r + z = u
with vs show z + (y + 2) = y + u
by (simp only: add-left-commute [of x])
qed

lemma add-cancel-end:
assumes vs:z € V yeV ze V
shows (z + (y + 2) = y) = (z = — 2)
proof
assume z + (y + 2) =y
with vs have (z + 2) + y = 0 + y by (simp add: add-ac)
with vs have z + z = 0 by (simp only: add-right-cancel add-closed zero)

with vs show © = — z by (simp add: add-minus-eg-minus)
next
assume eq: T = — 2
then have z + (y + 2) = — z + (y + 2) by simp
also have ... = y + (— z + 2) by (rule add-left-commute) (simp-all add: vs)
also from vs have ... = y by simp
finally show z + (y + 2) = y .
qed
end
end

4 Subspaces

theory Subspace
imports Vector-Space HOL— Library.Set-Algebras
begin

4.1 Definition

4.1 Definition

13

A non-empty subset U of a vector space V is a subspace of V, iff U is closed

under addition and scalar multiplication.

locale subspace =
fixes U :: 'a::{minus, plus, zero, uminus} set and V
assumes non-empty [iff, intro]: U # {}
and subset [iff]: U C V
and add-closed [iff: z € U= ye U= z+ye U
and mult-closed [iff]: 2 € U = a -z € U

notation (symbols)
subspace (infix << 50)

declare vectorspace.intro [intro?] subspace.intro [intro?]

lemma subspace-subset [elim|: U IV = U C V
by (rule subspace.subset)

lemma (in subspace) subsetD [iff|: z € U =z € V
using subset by blast

lemma subspaceD [elim]: ULV =z U= 2z€ V
by (rule subspace.subsetD)

lemma rev-subspaceD [elim?: x € U = U IV =z € V
by (rule subspace.subsetD)

lemma (in subspace) diff-closed [iff]:

assumes vectorspace V

assumes z: z € Uand y: y € U

shows z — y € U
proof —

interpret vectorspace V by fact

from z y show ?%thesis by (simp add: diff-eql negate-eql)
qed

Similar as for linear spaces, the existence of the zero element in every subspace

follows from the non-emptiness of the carrier set and by vector space laws.

lemma (in subspace) zero [intro]:
assumes vectorspace V
shows 0 € U
proof —
interpret V: vectorspace V by fact
have U # {} by (rule non-empty)
then obtain z where z: z € U by blast
then have z € V .. then have 0 = z — z by simp

also from <vectorspace Vy z z have ... € U by (rule diff-closed)

finally show ?thesis .
qed

lemma (in subspace) neg-closed [iff]:
assumes vectorspace V

14 4 SUBSPACES

assumes z: ¢ € U

shows —z € U
proof —

interpret vectorspace V by fact

from z show ?thesis by (simp add: negate-eql)
qed

Further derived laws: every subspace is a vector space.

lemma (in subspace) vectorspace [iff]:
assumes vectorspace V
shows vectorspace U
proof —

interpret vectorspace V by fact

show %thesis

proof
show U # {} ..
fixxyzassume z: x € Uand y: y € Uand z: z€ U
fix a b :: real
from z y show z + y € U by simp
from z show a - x € U by simp
from z y z show (z + y) + z = z + (y + 2) by (simp add: add-ac)
from z y show z + y = y + z by (simp add: add-ac)
from z show z — z = 0 by simp
from z show 0 + z = z by simp
from z y show a - (z + y) = a -z + a - y by (simp add: distrib)
from z show (a + b) -z =a -z + b - z by (simp add: distrib)
from z show (a * b) - 2 = a - b - x by (simp add: mult-assoc)
from z show 1 - x = z by simp

from z show — z = — [- z by (simp add: negate-eql)
from z y show z — y = 2 + — y by (simp add: diff-eql)
qged
qed

The subspace relation is reflexive.

lemma (in vectorspace) subspace-refl [introl: V < V
proof
show V # {} ..
show V C V ..
fix a :: real and z y assume z: z € Vand y: y € V
from z y show z + y € V by simp
from z show a - x € V by simp
qed

The subspace relation is transitive.

lemma (in vectorspace) subspace-trans [trans]:
UAQV=VIW=UIW
proof
assume uv: U J Vand vw: V4 W
from uv show U # {} by (rule subspace.non-empty)
show U C W
proof —
from uv have U C V by (rule subspace.subset)
also from vw have V C W by (rule subspace.subset)

4.2 Linear closure 15

finally show ?thesis .
qged
fixxyassume z: z € Uand y: y € U
from wv and z y show z + y € U by (rule subspace.add-closed)
from wv and z show a - z € U for a by (rule subspace.mult-closed)
qed

4.2 Linear closure

The linear closure of a vector z is the set of all scalar multiples of z.

definition lin :: ('a::{minus,plus,zero}) = 'a set
where lin z = {a - z | a. True}

lemma linl [intro]: y =a -z = y € linz
unfolding lin-def by blast

lemma linl’ [iff]: a - = € lin z
unfolding lin-def by blast

lemma linE [elim]:
assumes z € lin v
obtains a :: real where z = a - v
using assms unfolding lin-def by blast

Every vector is contained in its linear closure.

lemma (in vectorspace) z-lin-z [iff|: x € V = z € lin z
proof —

assume z € V

then have z = 1 - = by simp

also have ... € lin z ..

finally show ?%thesis .
qed

lemma (in vectorspace) 0-lin-z [iff]: t € V = 0 € linz
proof

assume z € V

then show 0 = 0 - z by simp
qed

Any linear closure is a subspace.

lemma (in vectorspace) lin-subspace [intro]:
assumes 7: 7 € V
shows lin x I V
proof
from z show lin z # {} by auto
show linx C V

proof
fix =’ assume z’ € lin z
then obtain ¢ where z' =a - z ..
with z show z’ € V by simp

qed

fix 2’ ¢/ assume z": 2z’ € linz and 2’ 2’ € lin z

16

show z’ 4+ 2’/ € lin z

proof —
from z’ obtain o’ where 2’ =a’ - z ..
moreover from z'’ obtain o'’ where z'' = o’ - z ..

ultimately have 2’ + 2" = (a’ + a') - z
using z by (simp add: distrib)

also have ... € lin z ..
finally show %thesis .

qed

show a - 2’ € lin x for a :: real

proof —
from z’ obtain o’ where 2’ =o' - z ..
with z have a - 2’ = (a * a’) - = by (simp add: mult-assoc)
also have ... € lin z ..
finally show ?thesis .

qed

qged

Any linear closure is a vector space.

lemma (in vectorspace) lin-vectorspace [intro]:
assumes z € V
shows vectorspace (lin z)
proof —
from «x € V) have subspace (lin z) V
by (rule lin-subspace)
from this and vectorspace-azrioms show ?thesis
by (rule subspace.vectorspace)
qed

4.3 Sum of two vectorspaces

4 SUBSPACES

The sum of two vectorspaces U and V is the set of all sums of elements from

U and V.

lemma sum-def: U+ V={u+v|uv.uec UAve TV}
unfolding set-plus-def by auto

lemma sumkFE [elim]:

rel+ V= Nuv=u+tv=uvel=velV=20)=C

unfolding sum-def by blast

lemma suml [intro]:
vel =veV=o=utv=2cU+V
unfolding sum-def by blast

lemma suml’ [intro|:
velU=veV=ut+velU+V
unfolding sum-def by blast

U is a subspace of U + V.

lemma subspace-sum1 [iff]:
assumes vectorspace U vectorspace V
shows U U + V

proof —

4.3 Sum of two vectorspaces

interpret vectorspace U by fact
interpret vectorspace V by fact
show %thesis
proof
show U # {} ..
show UC U + V
proof
fix z assume z: z € U
moreover have 0 € V ..
ultimately have x + 0 € U + V ..
with z show z € U + V by simp
qed
fix zyassume z: z € Uand y € U
then show z + y € U by simp
from z show a - z € U for a by simp
qed
qed

The sum of two subspaces is again a subspace.

lemma sum-subspace [intro?):
assumes subspace U E vectorspace E subspace V E
shows U + V 4 FE
proof —
interpret subspace U E by fact
interpret vectorspace E by fact
interpret subspace V E by fact
show ?thesis
proof
have 0 ¢ U + V
proof
show 0 € U using (vectorspace E» ..
show 0 € V using (vectorspace E» ..
show (0::'a) = 0 + 0 by simp
qed
then show U + V # {} by blast
show U + V C FE
proof
fix x assume x € U + V
then obtain u v where z = v 4+ v and
vue Uandve V..
then show z € F by simp
qed

fixzyassumez: 2 € U+ Vand y: yc U + V
show x +yec U+ V

proof —
from z obtain ux vz where x = uz + vz and ux € U and vz € V ..
moreover
from y obtain uy vy where y = uy + vy and vy € U and vy € V ..
ultimately

have ux + uy € U
and vz + vy € V
and z + y = (uz + uy) + (vz + vy)
using z y by (simp-all add: add-ac)

18 4 SUBSPACES

then show ?thesis ..

qged

show a -z € U + V for a

proof —
from z obtain v v where z = v + vand v € Uand v e V ..
then have a - u€ Uanda-ve V

and a - z = (a - u) + (a - v) by (simp-all add: distrib)

then show ?thesis ..

qed

qed
qged

The sum of two subspaces is a vectorspace.

lemma sum-vs [intro?):
U< E = V < E = vectorspace E = vectorspace (U + V)
by (rule subspace.vectorspace) (rule sum-subspace)

4.4 Direct sums

The sum of U and V is called direct, iff the zero element is the only common
element of U and V. For every element z of the direct sum of U and V the
decomposition in z = uw + v with v € U and v € V is unique.

lemma decomp:
assumes vectorspace E subspace U E subspace V E
assumes direct: U NV = {0}
and ul: vl € U and u2: u2 € U
and vl: vl € Vand v2: v2 € V
and sum: ul + vl = u2 + v2
shows ul = u2 A vl = v2
proof —
interpret vectorspace E by fact
interpret subspace U E by fact
interpret subspace V E by fact
show %thesis
proof
have U: vectorspace U
using <subspace U E» <vectorspace E> by (rule subspace.vectorspace)
have V: wvectorspace V
using (subspace V E) <vectorspace E> by (rule subspace.vectorspace)
from u! u2 vl v2 and sum have eq: ul — u2 = v2 — vl
by (simp add: add-diff-swap)
from u! u2 have w: ul — u2 € U
by (rule vectorspace.diff-closed [OF Ul)
with eq have v": v2 — vl € U by (simp only:)
from v2 vl have v: v2 — vl € V
by (rule vectorspace.diff-closed [OF V1)
with eq have u: w1l — u2 € V by (simp only:)

show ul = u2
proof (rule add-minus-eq)
from u! show ul € E ..
from u2 show u2 € E ..
from u v’ and direct show ul — u2 = 0 by blast

4.4 Direct sums 19

qed
show vl = v2
proof (rule add-minus-eq [symmetric])
from v! show vl € E ..
from v2 show v2 € E ..
from v v’ and direct show v2 — vl = 0 by blast
qed
qged
qed

An application of the previous lemma will be used in the proof of the Hahn-
Banach Theorem (see page 42): for any element y + a - zg of the direct sum of
a vectorspace H and the linear closure of xg the components y € H and a are
uniquely determined.

lemma decomp-H"
assumes vectorspace E subspace H E
assumes yI: yl € H and y2: y2 € H
andz:z' ¢ H '€ E ' # 0
and eq: yl +al -3'=y2 + a2 - 2’
shows y1 = y2 A al = a2
proof —
interpret vectorspace E by fact
interpret subspace H E by fact
show ?thesis
proof
have c: yI = y2 Aal -2’ =a2 - x
proof (rule decomp)
show al -z’ € linx’ ..
show a2 - z' € lin x’ ..
show H N lin ' = {0}
proof
show H N lin z' C {0}
proof
fix z assume z: z € H N lin z’
then obtain a where 2" 2 = a - 7’
by blast
have z = 0
proof (cases a = 0)
case True
with 2z’ and =’ show ?thesis by simp
next
case False
from z have z € H ..
with zz’ have inverse a - a - ' € H by simp
with Fulse and z’ have ' € H by (simp add: mult-assoc2)
with <z’ ¢ H)> show ?thesis by contradiction
qed
then show z € {0} ..
qed
show {0} C H N lin z’
proof —
have 0 € H using <vectorspace E» ..
moreover have 0 € lin 2’ using z' € E» ..
ultimately show ?thesis by blast

!/

20 4 SUBSPACES

qed
qed
show lin 2’ < E using z' € E» ..
qed (rule <vectorspace E», rule <subspace H E», rule y1, rule y2, rule eq)
then show yI = y2 ..

from c have af -z’ = a2 - z' ..
with z’ show al = a2 by (simp add: mult-right-cancel)
qged
qed

Since for any element y + a - z’ of the direct sum of a vectorspace H and the
linear closure of z’ the components y € H and a are unique, it follows from y
€ H that a = 0.

lemma decomp-H'-H:
assumes vectorspace E subspace H E
assumes t: t € H
andz z'¢ H z' € E z'#0
shows (SOME (y,a). t=y+a-z' Ay € H) = (t, 0)
proof —
interpret vectorspace E by fact
interpret subspace H E by fact
show %thesis
proof (rule, simp-all only: split-paired-all split-conv)
from tz'show t =t + 0 - ' At € H by simp
fix yand a assume ya: t =y +a-z' ANy € H
have y =t Aa=0
proof (rule decomp-H')
from ya z' show y + a -z’ =t + 0 - 2’ by simp
from ya show y € H ..
qed (rule <vectorspace E>, rule <subspace H E», rule t, (rule z)+)
with ¢t 2’ show (y, a) = (y + a - z', 0) by simp
qed
qed

The components y € H and ain y + a - 2’ are unique, so the function h’ defined
by h' (y + a-z') = hy + a - £ is definite.

lemma h'-definite:
fixes H
assumes h’-def:
Nz. bz =
(let (y, a) = SOME (y,a). (zx=y+a-z' ANy € H)
in (hy) + ax i)
andz:z=y+a-x
assumes vectorspace F subspace H E
assumes y: y € H
andz z'¢ H z' € E 2’ #0
shows h'z = hy + a * xi
proof —
interpret vectorspace E by fact
interpret subspace H E by fact
from z y ' have z € H + lin 2’ by auto
have 3!(y,a). z=y +a-z' Ay € H (is I!p. ?P p)
proof (rule ex-exlI)

’

21

from z y show Ip. ?P p by blast
fix p ¢ assume p: ?P p and ¢: ?P q
show p = ¢
proof —
from p have zp: x = fst p + sndp - 2’ A fst p € H
by (cases p) simp
from ¢ have zq: x = fst ¢ + snd q - o' N fst g € H
by (cases q) simp
have fst p = fst ¢ A snd p = snd q
proof (rule decomp-H')
from xp show fst p € H ..
from zq show fst ¢ € H ..
from zp and zq show fst p + sndp -z’ = fst ¢ + snd q - =’
by simp
qed (rule (vectorspace E>, rule <subspace H E», (rule z)+)
then show ?thesis by (cases p, cases q) simp
qed
qed
then have eq: (SOME (y,a). z =y +a-z' Ay € H) = (y, a)
by (rule somel-equality) (simp add: = y)
with h'-def show b/ z = h y + a * zi by (simp add: Let-def)
qed

end

5 Normed vector spaces

theory Normed-Space
imports Subspace
begin

5.1 Quasinorms

A seminorm ||| is a function on a real vector space into the reals that has the
following properties: it is positive definite, absolute homogeneous and subaddi-
tive.

locale seminorm =
fixes V :: ‘a::{minus, plus, zero, uminus} set
fixes norm :: 'a = real (<||-|])
assumes ge-zero [intro?): x € V = 0 < ||z
and abs-homogenous [intro?): z € V = |la - z|| = |a] * ||z|
and subadditive [intro?): z € V =y € V = ||z + y|| < ||z|]| + ||¥l|

declare seminorm.intro [intro?

lemma (in seminorm) diff-subadditive:

assumes vectorspace V

shows z € V = y € V = |z — y|l < |zl + [yl
proof —

interpret vectorspace V by fact

assume z: z € Vand y: y € V

then havezx —y=2+ — 1 -y

by (simp add: diff-eq2 negate-eq2a)

22 5 NORMED VECTOR SPACES

also from z y have ||...| < ||z + |- 1 -]
by (simp add: subadditive)
also from y have |— 1 - y|| = |— 1| * ||yl
by (rule abs-homogenous)
also have ... = ||y|| by simp
finally show ?thesis .
qed

lemma (in seminorm) minus:
assumes vectorspace V
shows z € V = ||— z| = ||z]|
proof —
interpret vectorspace V by fact
assume z: z € V
then have — z = — 1 - z by (simp only: negate-eql)
also from z have ||...| = |- 1| * ||z|| by (rule abs-homogenous)
also have ... = ||z|| by simp
finally show ?thesis .
qed

5.2 Norms

A norm ||-|| is a seminorm that maps only the 0 vector to 0.

locale norm = seminorm +
assumes zero-iff [iff]: z € V = (||z]| = 0) = (z = 0)

5.3 Normed vector spaces

A vector space together with a norm is called a normed space.

locale normed-vectorspace = vectorspace + norm
declare normed-vectorspace.intro [intro?|

lemma (in normed-vectorspace) gt-zero [intro?):
assumes z: ¢ € V and neq: z # 0
shows 0 < ||z||
proof —
from z have 0 < ||z ..
also have 0 # | z||
proof
assume 0 = ||z||
with z have = = 0 by simp
with neq show False by contradiction
qed
finally show ?thesis .
qed

Any subspace of a normed vector space is again a normed vectorspace.

lemma subspace-normed-vs [intro?]:
fixes F' E norm
assumes subspace F' E normed-vectorspace E norm
shows normed-vectorspace F norm

23

proof —
interpret subspace F' E by fact
interpret normed-vectorspace E norm by fact
show ?thesis
proof
show vectorspace F'
by (rule vectorspace) unfold-locales
have Normed-Space.norm E norm ..
with subset show Normed-Space.norm F norm
by (simp add: norm-def seminorm-def norm-azioms-def)
qged
qed

end

6 Linearforms

theory Linearform
imports Vector-Space
begin

A linear form is a function on a vector space into the reals that is additive and
multiplicative.

locale linearform =
fixes V :: ‘a::{minus, plus, zero, uminus} set and f
assumes add [ifff 2 € V=ye V=f(z+y) =fz+fy
and mult [iff; 2 € V= f(a-z) =ax*fz

declare linearform.intro [intro?

lemma (in linearform) neg [iff]:
assumes vectorspace V
showsz € V= f(—2)=—fz
proof —
interpret vectorspace V by fact
assume z: € V
then have [(— z) = f ((— 1) - z) by (simp add: negate-eql)

also from z have ... = (— 1) * (f z) by (rule mult)
also from z have ... = — (f z) by simp
finally show ?thesis .

qed

lemma (in linearform) diff [iff]:
assumes vectorspace V
showszeV—yeV=f(z—y) =fz—fy
proof —
interpret vectorspace V by fact
assume z: z € Vand y: y € V
then have z — y = z + — y by (rule diff-eql)
also have f ... = fz + f (— y) by (rule add) (simp-all add: z y)
also have f (— y) = — f y using <vectorspace V) y by (rule neg)
finally show ?thesis by simp
qed

24 7 AN ORDER ON FUNCTIONS

Every linear form yields 0 for the 0 vector.

lemma (in linearform) zero [iff]:
assumes vectorspace V
shows f0 = 0

proof —
interpret vectorspace V by fact
have f0 = f (0 — 0) by simp

also have ... = f 0 — f 0 using (vectorspace Vs by (rule diff) simp-all
also have ... = 0 by simp
finally show ?thesis .

qed

end

7 An order on functions

theory Function-Order
imports Subspace Linearform
begin

7.1 The graph of a function

We define the graph of a (real) function f with domain F' as the set

{(z, fz). z € F}

So we are modeling partial functions by specifying the domain and the mapping
function. We use the term “function” also for its graph.

type-synonym ‘a graph = ('a x real) set

definition graph :: 'a set = (‘a = real) = 'a graph
where graph F [= {(z, fz) | z. z € F}

lemma graphl [intro|: ¢ € F = (z, fz) € graph F f
unfolding graph-def by blast

lemma graphlI?2 [intro?): € F = 3t € graph F f. t = (z, f z)
unfolding graph-def by blast

lemma graphE [elim?]:
assumes (z, y) € graph F f
obtains x € Fand y = fz
using assms unfolding graph-def by blast

7.2 Functions ordered by domain extension

A function h’is an extension of h, iff the graph of & is a subset of the graph of
h'.

lemma graph-extl:
(At.2€ H=hz=h'z)=— HCH'
= graph H h C graph H' h’

7.3 Domain and function of a graph 25

unfolding graph-def by blast

lemma graph-extD1 [dest?]: graph Hh C graph H' h' =z € H = hz =h'z
unfolding graph-def by blast

lemma graph-extD2 [dest?): graph Hh C graph H' h' =— H C H’
unfolding graph-def by blast

7.3 Domain and function of a graph

The inverse functions to graph are domain and funct.

definition domain :: ‘a graph = 'a set
where domain g = {z. Jy. (z, y) € g}

definition funct :: ‘a graph = ('a = real)
where funct g = (A\z. (SOME y. (z, y) € g))

The following lemma states that ¢ is the graph of a function if the relation
induced by g is unique.

lemma graph-domain-funct:
assumes unig: A\zy z (z,y) € g = (z,2) Eg=—= 2=y
shows graph (domain g) (funct g) = ¢
unfolding domain-def funct-def graph-def
proof auto
fix a b assume g: (a, b) € g
from g show (a, SOME y. (a, y) € g) € g by (rule somel2)
from g show Jy. (a, y) € g ..
from g show b = (SOME y. (a, y) € g)
proof (rule some-equality [symmetric])
fix y assume (a, y) € ¢
with g show y = b by (rule uniq)
qed
qed

7.4 Norm-preserving extensions of a function

Given a linear form f on the space F' and a seminorm p on E. The set of all
linear extensions of f, to superspaces H of F, which are bounded by p, is defined
as follows.

definition
norm-pres-extensions ::
‘a::{plus,minus,uminus,zero} set = (‘a = real) = 'a set = (‘a = real)
= 'a graph set
where
norm-pres-extensions E p F f
={g.3Hh. g = graph Hh
A linearform H h
ANHJE
ANFIH
A graph F f C graph H h
ANz e H hz<puz)}

26 8 THE NORM OF A FUNCTION

lemma norm-pres-ectensionE [elim]:

assumes g € norm-pres-extensions E p F f

obtains H h
where g = graph H h
and linearform H h
and H < F
and F < H
and graph F f C graph H h
andVze H hz<pz

using assms unfolding norm-pres-extensions-def by blast

lemma norm-pres-extensionl2 [intro]:
linearform Hh — H 1 E —= F 1 H
= graph F f C graph Hh = Vz e H hx < pzx
= graph H h € norm-pres-extensions E p F f
unfolding norm-pres-extensions-def by blast

lemma norm-pres-extensionl:
JdH h. g = graph Hh
A linearform H h
ANHLJLE
NFJH
A graph F f C graph H h
AN(Vz € H. hz <pz) = g € norm-pres-extensions Ep F f
unfolding norm-pres-extensions-def by blast

end

8 The norm of a function

theory Function-Norm
imports Normed-Space Function-Order
begin

8.1 Continuous linear forms

A linear form f on a normed vector space (V, ||-||) is continuous, iff it is bounded,
ie.

dce R Vze V. |fz|<c- |z

In our application no other functions than linear forms are considered, so we
can define continuous linear forms as bounded linear forms:

locale continuous = linearform +
fixes norm :: - = real (<||-|]»)
assumes bounded: Jc. Vz € V. |fz| < ¢ * ||z

declare continuous.intro [intro?] continuous-azioms.intro [intro?]

lemma continuousI [intro]:
fixes norm :: - = real (<||-|]»)
assumes linearform V f
assumes r: \z. 2 € V = |fz| < ¢ * ||z

8.2 The norm of a linear form 27

shows continuous V f norm
proof
show linearform V f by fact
from r have Jc. Vze V. |fz| < ¢ * ||z|| by blast
then show continuous-axioms V f norm ..
qed

8.2 The norm of a linear form

The least real number ¢ for which holds
Vee V. |fz| <c- |z

is called the norm of f.
For non-trivial vector spaces V # {0} the norm can be defined as

Il = supz # 0. |f x| / ||

For the case V = {0} the supremum would be taken from an empty set. Since
R is unbounded, there would be no supremum. To avoid this situation it must
be guaranteed that there is an element in this set. This element must be {} >
0 so that fn-norm has the norm properties. Furthermore it does not have to
change the norm in all other cases, so it must be 0, as all other elements are {}
> 0.

Thus we define the set B where the supremum is taken from as follows:

foyullfal /llell- = # 0 ANz e F}

fn-norm is equal to the supremum of B, if the supremum exists (otherwise it is
undefined).

locale fn-norm =

fixes norm :: - = real (<]|-|]»)
fixes Bdefines BV f={0}uU{|fz|/||z|| | z.2# 0Nz V}
fixes fn-norm (<||-|-- [0, 1000] 999)

defines ||f||-V = | | (B V)
locale normed-vectorspace-with-fn-norm = normed-vectorspace + fn-norm

lemma (in fn-norm) B-not-empty [intro]: 0 € B V f
by (simp add: B-def)

The following lemma states that every continuous linear form on a normed space
(V, ||-]l) has a function norm.

lemma (in normed-vectorspace-with-fn-norm) fn-norm-works:
assumes continuous V f norm
shows lub (B V f) (|If]-V)

proof —
interpret continuous V f norm by fact

The existence of the supremum is shown using the completeness of the reals. Com-
pleteness means, that every non-empty bounded set of reals has a supremum.

have Ja. lub (BV f) a

28 8 THE NORM OF A FUNCTION

proof (rule real-complete)

First we have to show that B is non-empty:

have 0 e BV f ..
then show Jz. 2 € BV f ..

Then we have to show that B is bounded:

show Jc. Vye BV f y<c
proof —

We know that f is bounded by some value c.

from bounded obtain ¢ where ¢: Vz € V. |fz| < ¢ x ||z ..

To prove the thesis, we have to show that there is some b, such that y < b for all y €
B. Due to the definition of B there are two cases.

define b where b = maz c 0
haveVye BV f. y<b
proof
fix y assume y: y € BV f
show y < b
proof (cases y = 0)
case True
then show ?thesis unfolding b-def by arith
next

The second case is y = |f z| / ||z|| for some z € V with z # 0.

case Fulse
with y obtain z where y-rep: y = |f z| * inverse ||z||
and z: z € V and neq: # 0
by (auto simp add: B-def divide-inverse)
from z neq have gt: 0 < ||z ..

The thesis follows by a short calculation using the fact that f is bounded.

note y-rep
also have |f z| * inverse ||z|| < (c * ||z||) * inverse ||z|
proof (rule mult-right-mono)
from ¢ z show |fz| < ¢ * ||z ..
from gt have 0 < inverse ||z||
by (rule positive-imp-inverse-positive)
then show 0 < inverse ||z|| by (rule order-less-imp-le)

qed

also have ... = ¢ * (||z| * inverse ||z||)
by (rule Groups.mult.assoc)

also

from gt have ||z|| # 0 by simp

then have ||z|| * inverse ||z|]| = 1 by simp

also have ¢ x 1 < b by (simp add: b-def)
finally show y < b .
qed
qed
then show ?thesis ..
qed
qed

8.2 The norm of a linear form 29

then show ?thesis unfolding fn-norm-def by (rule the-lubl-ex)
qed

lemma (in normed-vectorspace-with-fn-norm) fn-norm-ub [intro?):
assumes continuous V f norm
assumes b: b€ BV f
shows b < ||f|I-V
proof —
interpret continuous V f norm by fact
have tub (B V f) (If|-V)
using <continuous V f norm» by (rule fn-norm-works)
from this and b show ?%thesis ..
qed

lemma (in normed-vectorspace-with-fn-norm) fn-norm-leastB:
assumes continuous V f norm
assumes b: A\b.be BVf=b<y
shows [|f|-V < y
proof —
interpret continuous V f norm by fact
have tb (B V f) (|f[-V)
using <continuous V f norm» by (rule fn-norm-works)
from this and b show ?%thesis ..
qed

The norm of a continuous function is always > 0.

lemma (in normed-vectorspace-with-fn-norm) fn-norm-ge-zero [iff]:
assumes continuous V f norm
shows 0 < ||f|-V

proof —
interpret continuous V f norm by fact

The function norm is defined as the supremum of B. So it is > 0 if all elements in B
are > (), provided the supremum exists and B is not empty.

have b (B V) (|f[-V)
using <continuous V f norm» by (rule fn-norm-works)
moreover have 0 € BV f ..
ultimately show ?Zthesis ..
qed

The fundamental property of function norms is:
\fal < IFIF - [lll

lemma (in normed-vectorspace-with-fn-norm) fn-norm-le-cong:
assumes continuous V f norm linearform V f
assumes z: z € V
shows |f z| < ||f[|-V * ||z
proof —
interpret continuous V f norm by fact
interpret linearform V f by fact
show ?thesis
proof (cases z = 0)

30 8 THE NORM OF A FUNCTION

case True
then have |f z| = |f 0| by simp
also have f 0 = 0 by rule unfold-locales
also have |...| = 0 by simp
also have a: 0 < ||f||-V
using <continuous V f norm» by (rule fn-norm-ge-zero)
from z have 0 < norm z ..
with a have 0 < ||f||-V * ||z|| by (simp add: zero-le-mult-iff)
finally show | a| < [|f[-V + [lo]| -

next
case Fulse
with z have neq: ||z|| # 0 by simp
then have |f z| = (|f z| * inverse ||z||) * ||z|| by simp
also have ... < [[f||-V * ||z

proof (rule mult-right-mono)
from z show 0 < ||z ..
from z and neq have |f z| * inverse ||z|| € B V f
by (auto simp add: B-def divide-inverse)
with <continuous V f norm> show |f z| x inverse ||z|| < ||f]|-V
by (rule fn-norm-ub)
qed
finally show ?thesis .
qed
qed

The function norm is the least positive real number for which the following
inequality holds:

lemma (in normed-vectorspace-with-fn-norm) fn-norm-least [intro?):
assumes continuous V f norm
assumes ineq: \z. z € V = |fz| < ¢ x ||z]| and ge: 0 < ¢
shows ||f||-V < ¢
proof —
interpret continuous V f norm by fact
show ?thesis
proof (rule fn-norm-leastB [folded B-def fn-norm-def])
fix b assume b: be BV f
show b < ¢
proof (cases b = 0)
case True
with ge show ?thesis by simp
next
case False
with b obtain z where b-rep: b = |f z| * inverse ||z]|
and z-neq: x # 0 and z: x € V
by (auto simp add: B-def divide-inverse)
note b-rep
also have |f z| * inverse ||z|| < (¢ * ||z]|) * inverse ||z||
proof (rule mult-right-mono)
have 0 < ||z|| using z z-neq ..
then show 0 < inverse ||z|| by simp
from z show |f z| < ¢ * ||z|| by (rule ineq)

31

qed

also have ... = ¢

proof —
from z-neq and z have ||z|| # 0 by simp
then show ?thesis by simp

qged

finally show ?thesis .

qed
qed (use <continuous V f norm» in <simp-all add: continuous-def»)
qed

end

9 Zorn’s Lemma

theory Zorn-Lemma
imports Main
begin

Zorn’s Lemmas states: if every linear ordered subset of an ordered set S has an
upper bound in S, then there exists a maximal element in S. In our application,
S is a set of sets ordered by set inclusion. Since the union of a chain of sets is
an upper bound for all elements of the chain, the conditions of Zorn’s lemma
can be modified: if S is non-empty, it suffices to show that for every non-empty
chain ¢ in S the union of ¢ also lies in S.

theorem Zorn's-Lemma:
assumes 1 Nc. ¢ € chains S = Jz. 2 € c = |Jc e S
and aS: a € S
shows dy e S.Vze S.yCz— 2=y
proof (rule Zorn-LemmaZ2)
show V¢ € chains S. 3y € S.Vz€c. 2Cy
proof
fix ¢ assume c € chains S
show dJy e S.Vz€c. 2Cy
proof (cases ¢ = {})

If ¢ is an empty chain, then every element in .S is an upper bound of c.

case True
with aS show ?thesis by fast
next

If ¢ is non-empty, then | J ¢ is an upper bound of ¢, lying in S.

case False
show ?thesis
proof
show Vz € c. z C |Jc by fast
show (Jc e S
proof (rule r)
from <c # {}» show 3z. = € ¢ by fast
show ¢ € chains S by fact
qed
qed

32

qed
ged
qed

end

9 ZORN’S LEMMA

33

Part 11
Lemmas for the Proof

10 The supremum wrt. the function order

theory Hahn-Banach-Sup-Lemmas
imports Function-Norm Zorn-Lemma
begin

This section contains some lemmas that will be used in the proof of the Hahn-
Banach Theorem. In this section the following context is presumed. Let F be
a real vector space with a seminorm p on F. F is a subspace of E and f a linear
form on F. We consider a chain ¢ of norm-preserving extensions of f, such that
U ¢ = graph H h. We will show some properties about the limit function h, i.e.
the supremum of the chain c.

Let ¢ be a chain of norm-preserving extensions of the function f and let graph H
h be the supremum of c¢. Every element in H is member of one of the elements
of the chain.

lemmas [dest?] = chainsD
lemmas chainsE2 [elim?] = chainsD2 [elim-format]

lemma some-H'h't:

assumes M: M = norm-pres-extensions E p F f
and cM: ¢ € chains M
and u: graph Hh = J c
and z: z € H

shows 3H' h'. graph H' h' € ¢
A (z, h) € graph H' b’
A linearform H' W' N H' < E
AN F < H' A graph F f C graph H' b’
ANz eH hz<paz)

proof —
from z have (z, h) € graph H h ..
also from v have ... = Jc.

finally obtain g where gc: g € ¢ and gh: (z, h) € g by blast

from cM have ¢ C M ..
with gc have g € M ..
also from M have ... = norm-pres-extensions £ p F f .
finally obtain ' and h’ where g: ¢ = graph H' b’
and * : linearform H'h' H' < E F <1 H'
graph F f C graph H'h' Yz e H. Wz <pz ..

from gc and g have graph H' h’ € ¢ by (simp only:)
moreover from gh and g have (z, h z) € graph H' b’ by (simp only:)
ultimately show ?thesis using * by blast

qed

Let ¢ be a chain of norm-preserving extensions of the function f and let graph
H h be the supremum of ¢. Every element in the domain H of the supremum

34 10 THE SUPREMUM WRT. THE FUNCTION ORDER

function is member of the domain H' of some function &', such that h extends
h'.

lemma some-H'h’:
assumes M: M = norm-pres-extensions E p F f
and cM: ¢ € chains M
and w: graph Hh = Jc
and z: z € H
shows 3H'h'. x € H' A graph H' h' C graph H h
A linearform H' W' N H' < EANF < H’
A graph F f C graph H' A’ A (Vx € H. h' z < p 1)
proof —
from M cM u x obtain H' h' where
z-hz: (z, h z) € graph H' b’
and c: graph H' b’ € ¢
and * : linearform H'h' H' < E F < H'
graph Ff C graph H' ' Yz € H. h'z < p=x
by (rule some-H'h't [elim-format]) blast
from z-hz have x € H' ..
moreover from cM u ¢ have graph H' h' C graph H h by blast
ultimately show ?thesis using * by blast
qged

Any two elements z and y in the domain H of the supremum function h are
both in the domain H'’ of some function h’, such that h extends h'.

lemma some-H'h'2:
assumes M: M = norm-pres-extensions E p F f
and cM: ¢ € chains M
and w: graph Hh = Jc
and z: z € H
and y: y € H
shows 3H' h. 2z ¢ H' Ny c H’
A graph H' h' C graph H h
A linearform H' W' N H' < EANF < H’
A graph F f C graph H' A’ A (Vx € H. h' z < p 1)
proof —

y is in the domain H'’ of some function h”/, such that h extends h"’.

from M cM u and y obtain H' h’ where
y-hy: (y, h y) € graph H' b’
and c”: graph H' h' € ¢
and * :
linearform H'h' H' A E F < H'
graph F f C graph H' ' Yz € H. h'z < p=x
by (rule some-H'h't [elim-format]) blast

z is in the domain H' of some function A’, such that h extends h'.

from M cM u and z obtain H” h'’ where
z-hz: (z, h z) € graph H" h"
and ¢ graph H'' h" € ¢
and *x :
linearform H'" h" H" < E F <1 H"”
graph F f C graph H'" h" Yz e H" h" z<pz

35

by (rule some-H'h't [elim-format]) blast

Since both A’ and h’’ are elements of the chain, h’’ is an extension of A’ or vice versa.
Thus both z and y are contained in the greater one.

from cM ¢’ ¢’ consider graph H'' h'' C graph H' h'| graph H' h' C graph H"' h"
by (blast dest: chainsD)
then show ?thesis
proof cases
case 1
have (z, h z) € graph H'' "' by fact
also have ... C graph H' h' by fact
finally have zh:(z, h z) € graph H' h'.
then have z € H' ..
moreover from y-hy have y € H' ..
moreover from cM u and ¢’ have graph H' h' C graph H h by blast
ultimately show #thesis using * by blast
next
case 2
from z-hz have z € H' ..
moreover have y € H"
proof —
have (y, h y) € graph H' b’ by (rule y-hy)
also have ... C graph H"' h'' by fact
finally have (y, h y) € graph H"' h"".
then show %thesis ..
qed
moreover from u ¢’ have graph H'' h'' C graph H h by blast
ultimately show ?thesis using ** by blast
qed
qed

The relation induced by the graph of the supremum of a chain c is definite, i.e.
it is the graph of a function.

lemma sup-definite:
assumes M-def: M = norm-pres-extensions Ep F f
and cM: ¢ € chains M
and zy: (z, y) € Jc
and zz: (z, 2) € Jc
shows z = y
proof —
from cM have c: ¢ C M ..
from zy obtain G1 where zy” (z, y) € G1 and G1: G1 € ¢ ..
from zz obtain G2 where zz": (z, z) € G2 and G2: G2 € ¢ ..

from G1 c have GI € M ..
then obtain H! h1 where G1-rep: G1 = graph H1 hl
unfolding M-def by blast

from G2 c have G2 € M ..
then obtain H2 h2 where G2-rep: G2 = graph H2 h2
unfolding M-def by blast

(31 is contained in G2 or vice versa, since both G; and G2 are members of c.

36 10 THE SUPREMUM WRT. THE FUNCTION ORDER

from cM G1 G2 consider G1 C G2 | G2 C G1
by (blast dest: chainsD)

then show %thesis

proof cases
case 1
with zy’ G2-rep have (z, y) € graph H2 h2 by blast
then have y = h2 z ..
also
from 1z’ G2-rep have (z, z) € graph H2 h2 by (simp only:)
then have z = h2 z ..
finally show %thesis .

next
case 2
with zz’ G1-rep have (=, z) € graph H1 h1 by blast
then have z = hi z ..
also
from 1y’ G1-rep have (z, y) € graph H1 hi1 by (simp only:)
then have y = hl z ..
finally show ?thesis ..

qed

qed

The limit function A is linear. Every element z in the domain of A is in the
domain of a function A’ in the chain of norm preserving extensions. Furthermore,
h is an extension of h’ so the function values of z are identical for h’ and h.
Finally, the function A’ is linear by construction of M.

lemma sup-If:
assumes M: M = norm-pres-extensions E p F f
and cM: ¢ € chains M
and w: graph Hh = Jc
shows linearform H h
proof
fix x y assume z: x € H and y: y € H
with M cM u obtain H' b’ where
2z € H and y: y € H’
and b: graph H' h' C graph H h
and linearform: linearform H' h'
and subspace: H' < E
by (rule some-H'h'2 [elim-format]) blast

show h (z +y)=hax+ hy
proof —
from linearform z' y' have h' (z + y) = h'z + h'y
by (rule linearform.add)
also from b ' have h' z = h 7 ..
also from by’ have h' y = hy ..
also from subspace z’ y' have z + y € H'
by (rule subspace.add-closed)
with b have h' (z + y) = h (z + y) ..
finally show ?thesis .
qed
next
fix x a assume z: x € H

37

with M c¢cM u obtain H' h’ where
zz e H'
and b: graph H' h' C graph H h
and linearform: linearform H' b’
and subspace: H' < E
by (rule some-H'h' [elim-format]) blast

show h (a-z) =ax*xhz
proof —
from linearform ' have h' (a - z) = a* h'x
by (rule linearform.mult)
also from bz’ have h' z = h x ..
also from subspace 2’ have a - z € H'
by (rule subspace.mult-closed)
with b have b’ (a - z) = h (a - z) ..
finally show ?thesis .
qged
qed

The limit of a non-empty chain of norm preserving extensions of f is an extension
of f, since every element of the chain is an extension of f and the supremum is
an extension for every element of the chain.

lemma sup-ext:
assumes graph: graph Hh = |J ¢
and M: M = norm-pres-extensions E p F f
and cM: ¢ € chains M
and ex: dz. z € ¢
shows graph F f C graph H h
proof —
from ex obtain z where zc: x € ¢ ..
from cM have ¢ C M ..
with zc have z € M ..
with M have z € norm-pres-extensions Ep F f
by (simp only:)
then obtain G g where x = graph G g and graph F f C graph G g ..
then have graph F f C z by (simp only:)
also from zc have ... C U ¢ by blast
also from graph have ... = graph H h ..
finally show ?thesis .
qed

The domain H of the limit function is a superspace of F, since F is a subset of
H. The existence of the 0 element in F' and the closure properties follow from
the fact that F' is a vector space.

lemma sup-supF":
assumes graph: graph H h = U c
and M: M = norm-pres-extensions E p F f
and cM: ¢ € chains M
and er: dz. z € ¢
and FE: F < FE
shows FF <1 H
proof

38 10 THE SUPREMUM WRT. THE FUNCTION ORDER

from FE show F # {} by (rule subspace.non-empty)
from graph M cM ex have graph F f C graph H h by (rule sup-ext)
then show F C H ..
show ¢ + y€ Fifz € Fand y € F for z y
using FFE that by (rule subspace.add-closed)
show a -z € Fifz € Ffor za
using FE that by (rule subspace.mult-closed)
qed

The domain H of the limit function is a subspace of E.

lemma sup-subFE:
assumes graph: graph Hh = |J ¢
and M: M = norm-pres-extensions E p F f
and cM: ¢ € chains M
and ez: dz. x € ¢
and FE: F < E
and FE: vectorspace F
shows H < F
proof
show H # {}
proof —
from FE E have 0 € F by (rule subspace.zero)
also from graph M cM ex FE have F < H by (rule sup-supF)
then have FF C H ..
finally show ?thesis by blast
qed
show H C F
proof
fix x assume z € H
with M cM graph
obtain H' where 7: x € H'and H'E: H' < FE
by (rule some-H'h' [elim-format]) blast
from H'E have H' C E ..
with z show z € F ..
qed
fix zyassume z: z € Hand y: y € H
show z +ye H
proof —
from M cM graph z y obtain H' b’ where
rz z€ H and y: y€ H and H'E: H' < E
and graphs: graph H' h' C graph H h
by (rule some-H'h'2 [elim-format]) blast
from H'Ez'y' have z + y € H’
by (rule subspace.add-closed)
also from graphs have H' C H ..
finally show ?thesis .
qed
next
fix x o assume z: v € H
show a -z € H
proof —
from M cM graph z
obtain H' h' where z: z €¢ H' and H'E: H' < E
and graphs: graph H' h' C graph H h

39

by (rule some-H'h' [elim-format]) blast
from H'E z’ have a - © € H' by (rule subspace.mult-closed)
also from graphs have H' C H ..
finally show ?thesis .
qged
qed

The limit function is bounded by the norm p as well, since all elements in the
chain are bounded by p.

lemma sup-norm-pres:
assumes graph: graph Hh = |J ¢
and M: M = norm-pres-extensions E p F f
and cM: ¢ € chains M
shows Ve e H hz<pz
proof
fix z assume z € H
with M cM graph obtain H' h’ where z": € H’
and graphs: graph H' h' C graph H h
and a:Vz e H. h'z<pz
by (rule some-H'h' [elim-format]) blast
from graphs =’ have [symmetric]: h' z = h z ..
also from a ' have h' z < pz ..
finally show hz < pz.
qed

The following lemma is a property of linear forms on real vector spaces. It will
be used for the lemma abs-Hahn-Banach (see page 51). For real vector spaces
the following inequality are equivalent:

Vee H lhz|]<pzx and Ve H. hzx<pzx

lemma abs-ineq-iff:
assumes subspace H E and vectorspace E and seminorm E p
and linearform H h
shows (Vz € H. |hz| < pz)=Vz e H hz <pzx)(is 2L = ?R)
proof
interpret subspace H E by fact
interpret vectorspace E by fact
interpret seminorm E p by fact
interpret linearform H h by fact
have H: vectorspace H using (vectorspace F» ..
show ?R if I: ?L
proof
fix z assume z: z € H
have h z < |h z| by arith
also from [z have ... < pz ..
finally show hz < p z .
qed
show ?L if r: ?R
proof
fix x assume z: t € H
show |b] < a when — a < b b < afor a b :: real
using that by arith

40 11 EXTENDING NON-MAXIMAL FUNCTIONS

from <linearform H hy and H z
have — h z = h (— z) by (rule linearform.neg [symmetric])
also
from H z have — x € H by (rule vectorspace.neg-closed)
with r have h (— z) < p (— z) ..
also have ... =px
using «seminorm E p» (vectorspace E»
proof (rule seminorm.minus)
from z show z € E ..
qed
finally have — hz < px .
then show — p x < h x by simp
from r z show hz < px ..
qged
qed

end

11 Extending non-maximal functions

theory Hahn-Banach-Ext-Lemmas
imports Function-Norm
begin

In this section the following context is presumed. Let E be a real vector space
with a seminorm ¢ on E. F' is a subspace of E and f a linear function on F. We
consider a subspace H of F that is a superspace of F' and a linear form A on
H. H is a not equal to E and z is an element in F — H. H is extended to the
direct sum H' = H + lin xg, so for any z € H’ the decomposition of z = y +
a - ¢ with y € H is unique. h’is defined on H' by h/ z = h y + a - £ for a
certain &.

Subsequently we show some properties of this extension h’ of h.

This lemma will be used to show the existence of a linear extension of f (see
page 48). It is a consequence of the completeness of R. To show

JEVyeF.oay<EéENEL<Dby
it suffices to show that

Vue F.Yve F.au<buw

lemma ez-zi:
assumes vectorspace F'
assumesr:/\uv.uEF:>v€F:>au§bv
shows Jdzitireal. Vy € F.ay < ziANzi < by
proof —
interpret vectorspace F by fact

From the completeness of the reals follows: The set S = {a u. u € F'} has a supremum,
if it is non-empty and has an upper bound.

let S ={au|u ueF}
have Jzi. lub 25 xi

41

proof (rule real-complete)
have a 0 € ?S by blast
then show 3 X. X € 25 ..
haveVy € 25. y < b 0
proof
fix y assume y: y € 25
then obtain u where u: v € F and y: y = a u by blast
from u and zero have a u < b 0 by (rule r)
with y show y < b 0 by (simp only:)
qed
then show Ju. Vy € 25. y < u ..
qed
then obtain zi where zi: lub ¢S i ..
have a y < xi if y € F for y
proof —
from that have a y € 25 by blast
with zi show ?thesis by (rule lub.upper)
qed
moreover have i < b y if y: y € F for y
proof —
from xi
show %thesis
proof (rule lub.least)
fix au assume au € 2S5
then obtain v where u: v € F' and au: au = a u by blast
from u y have a u < b y by (rule r)
with au show au < b y by (simp only:)
qed
qed
ultimately show Jzi. Vy € F. ay < zi A 2t < b y by blast
qed

The function A’ is defined asa h' z = hy + a - £ wherex =y + a - £ is a
linear extension of h to H'.

lemma h'-If:
assumes h'-def: N\z. h' z = (let (y, a) =
SOME (y,a). 2=y + a-z0 Ny € Hin hy + a * x7)
and H'-def: H' = H + lin 20
and HE: H < E
assumes linearform H h
assumes z0: 20 ¢ H 20 € E 20 # 0
assumes E: vectorspace E
shows linearform H' b’
proof —
interpret linearform H h by fact
interpret vectorspace E by fact
show ?thesis
proof
note E = <wectorspace E>»
have H': vectorspace H'
proof (unfold H'-def)
from <z0 € E»
have lin 20 < E ..

42

11 EXTENDING NON-MAXIMAL FUNCTIONS

with HE show vectorspace (H + lin z0) using E ..
qged
show h' (z1 + 22) = h' z1 + h' 22 if 21: 21 € H' and 22: 22 € H' for z1 22
proof —
from H' z1 z2 have z1 + z2 € H’
by (rule vectorspace.add-closed)
with z1 z2 obtain y yI y2 a al a2 where
xlx2: x1 + 22 =y + a-20 and y: y € H
and zl-rep: 1 =yl + al - z0 and yI: yI € H
and z2-rep: 2 = y2 + a2 - z0 and y2: y2 € H
unfolding H'-def sum-def lin-def by blast

have ya: yI + y2 =y N al + a2 = a using F HE - y z0
proof (rule decomp-H') from HE yl y2 show yl + y2 € H
by (rule subspace.add-closed)
from z0 and HE y y1 y2
have 20 ¢ F y€ E yl € E y2 € E by auto
with z1-rep z2-rep have (yI + y2) + (al + a2) - 20 = z1 + z2
by (simp add: add-ac add-mult-distrib2)
also note ziz2
finally show (y! + y2) + (al + a2) - 20 =y + a - 20 .
qed

from h'-def z122 E HE y z0
have b/ (z1 + z2) = hy + a * zi
by (rule h'-definite)
also have ... = h (yI + y2) + (al + a2) * zi
by (simp only: ya)
also from y! y2 have h (yl + y2) = hyl + h y2
by simp
also have ... + (al + a2) * 2t = (hyl + al * zi) + (h y2 + a2 * i)
by (simp add: distrib-right)
also from h’-def x1-rep E HE y1 z0
have h yl + al * xi = h' z1
by (rule h'-definite [symmetric])
also from h’-def x2-rep E HE y2 z0
have h y2 + a2 * 2i = h' 22
by (rule h'-definite [symmetric])
finally show ?thesis .
qed
show h' (¢ - x1) = ¢ * (h' z1) if z1: z1 € H' for =1 c
proof —
from H' z1 have azl: c-z1 € H'
by (rule vectorspace.mult-closed)
with z1 obtain y a yI al where
cxl-rep: c-xl =y+ a-20 and y: y € H
and zl-rep: 1 = yl + al - z0 and yI: yl € H
unfolding H'-def sum-def lin-def by blast

have ya: ¢ - yI =y A ¢ *x al = a using £ HE - y 20
proof (rule decomp-H')
from HE yI show ¢ -yl € H
by (rule subspace.mult-closed)
from 20 and HE y y1

have 20 € F y € E yl € FE by auto
with zI-rep have ¢ - yI + (¢ *x al) - 20 = ¢ - z1
by (simp add: mult-assoc add-mult-distrib1)
also note cxl-rep
finally show ¢ - yI + (¢*xal)-20 =y + a- 20 .
qged

from h'-def cxi-rep E HE y v0 have h' (¢ - 1) = hy + a * xi
by (rule h'-definite)

also have ... =h (c- yl) + (¢ *x al) * i
by (simp only: ya)

also from y! have h (¢ - y1) = ¢ * h yl
by simp

also have ... + (c* al) * zi = ¢ x (hyl + al * xi)
by (simp only: distrib-left)

also from h'-def z1-rep E HE y1 20 have h yl + al * i = h' z1
by (rule h'-definite [symmetric])

finally show ?thesis .

qed
qed
qed

The linear extension h’ of h is bounded by the seminorm p.

lemma h’-norm-pres:
assumes h'-def: N\z. h' z = (let (y, a) =
SOME (y,a). 2=y + a-20 Ny € Hin hy + a * x7)
and H'-def: H' = H + lin 20
and z0: z0 ¢ H 20 € E 20 # 0
assumes E: vectorspace E and HE: subspace H E
and seminorm E p and linearform H h
assumes a:Vy e H. hy <py
and a"Vye H. —p(y+20) —hy<ziAzi<p(y+z0)—hy
showsVze H. h'z<pz
proof —
interpret vectorspace E by fact
interpret subspace H E by fact
interpret seminorm E p by fact
interpret linearform H h by fact
show ?thesis
proof
fix z assume z": z € H’
show h/z < pz
proof —
from o' have al:Vya € H. — p (ya + 20) — h ya < zi
and a2: Vya € H. zi < p (ya + z0) — h ya by auto
from 1z’ obtain y a where
zrep: =y +a-z0 and y: y € H
unfolding H'-def sum-def lin-def by blast
from y have y: y € E ..
from y have ay: inverse a - y € H by simp

from h'-def z-rep E HE y 0 have h' z = h y + a * =i
by (rule h'-definite)
also have ... < p (y + a - 20)

43

44 11 EXTENDING NON-MAXIMAL FUNCTIONS

proof (rule linorder-cases)
assume 2: ¢ = 0
then have h y + a *x i = h y by simp
also from a y have ... < py ..
also from z0 y’ z have p y = p (y + a - 20) by simp
finally show ?thesis .
next

In the case a < 0, we use a1 with ya taken as y / a:

assume [z: a < 0 then have nz: a # 0 by simp
from al ay
have — p (inverse a - y + z0) — h (inverse a - y) < i ..
with [z have a x zi <
a * (— p (inverse a - y + z0) — h (inverse a - y))
by (simp add: mult-left-mono-neg order-less-imp-le)

also have ... =
— a x (p (inverse a - y + z0)) — a * (h (inverse a - y))
by (simp add: right-diff-distrib)

also from Iz z0 y' have — a * (p (inverse a - y + z0)) =
p (a - (inverse a - y + z0))
by (simp add: abs-homogenous)

also from nz z0 y' have ... = p (y + a - 20)

by (simp add: add-mult-distribl mult-assoc [symmetric])
also from nz y have a * (h (inverse a - y)) = hy

by simp

finally have a x 21 < p (y + a - z0) — h y .
then show ¢thesis by simp
next

In the case a > 0, we use a2 with ya taken as y / a:

assume gz: 0 < a then have nz: a # 0 by simp
from a2 ay
have zi < p (inverse a - y + x0) — h (inverse a - y) ..
with gz have a x zi <
a x (p (inverse a - y + z0) — h (inverse a - y))
by simp
also have ... = a % p (inverse a - y + z0) — a * h (inverse a - y)
by (simp add: right-diff-distrib)
also from gz z0 y’
have a * p (inverse a - y + z0) = p (a - (inverse a - y + z0))
by (simp add: abs-homogenous)
also from nz 20 y' have ... = p (y + a - 20)
by (simp add: add-mult-distribl mult-assoc [symmetric])
also from nz y have a * h (inverse a - y) = h y
by simp
finally have a x 2t < p (y + a - 20) — h y .
then show ?thesis by simp

qed
also from z-rep have ... = p z by (simp only:)
finally show ?thesis .
qed
qed

qed

end

45

46 12 THE HAHN-BANACH THEOREM

Part 111
The Main Proof

12 The Hahn-Banach Theorem

theory Hahn-Banach
imports Hahn-Banach-Lemmas
begin

We present the proof of two different versions of the Hahn-Banach Theorem,
closely following [1, §36].

12.1 The Hahn-Banach Theorem for vector spaces

Hahn-Banach Theorem. Let F' be a subspace of a real vector space E, let
p be a semi-norm on F, and f be a linear form defined on F such that f is
bounded by p, i.e. Vo € F. fz < p 2. Then f can be extended to a linear form
h on E such that h is norm-preserving, i.e. h is also bounded by p.

Proof Sketch.

1. Define M as the set of norm-preserving extensions of f to subspaces of F.
The linear forms in M are ordered by domain extension.

2. We show that every non-empty chain in M has an upper bound in M.
3. With Zorn’s Lemma we conclude that there is a maximal function g in M.

4. The domain H of g is the whole space F, as shown by classical contradic-
tion:

e Assuming g is not defined on whole E, it can still be extended in a
norm-preserving way to a super-space H’ of H.

e Thus g can not be maximal. Contradiction!

theorem Hahn-Banach:

assumes FE: vectorspace E and subspace F E
and seminorm E p and linearform F f

assumes fp: Ve € F. fe < pz

shows 3 h. linearform Eh N Vz € F.hz = fz) AN Vz € E. hz < p x)
— Let E be a vector space, F' a subspace of E, p a seminorm on F,
— and f a linear form on F' such that f is bounded by p,
— then f can be extended to a linear form h on E in a norm-preserving way.

proof —
interpret vectorspace E by fact
interpret subspace F' E by fact
interpret seminorm E p by fact
interpret linearform F f by fact
define M where M = norm-pres-extensions E p F f
then have M: M = ... by (simp only:)

12.1 The Hahn-Banach Theorem for vector spaces 47

from E have F: vectorspace F ..
note FE = <F < E»
have | Jc € M if cM: ¢ € chains M and ez: 3z. z € ¢ for ¢
— Show that every non-empty chain ¢ of M has an upper bound in M:
— |J ¢ is greater than any element of the chain ¢, so it suffices to show | Jc € M.
unfolding M-def
proof (rule norm-pres-extensionl)
let ?H = domain (| c)
let ¢h = funct ({|J¢)

have a: graph ?H ?h = |Jc
proof (rule graph-domain-funct)
fix z y z assume (z, y) € Jcand (z, 2) € Jc
with M-def cM show z = y by (rule sup-definite)
qed
moreover from M cM a have linearform ?H ?h
by (rule sup-If)
moreover from a M cM ex FE E have ?H < E
by (rule sup-subE)
moreover from a M cM ex FE have F < ?H
by (rule sup-supF)
moreover from a M cM ex have graph F f C graph ?H ?h
by (rule sup-ext)
moreover from a M cM haveVz € ?H. ?hz < pzx
by (rule sup-norm-pres)
ultimately show 3 H h. | Jc = graph H h
A linearform H h
ANHQE
ANF<H
A graph F f C graph H h
AN (Vz e H hz <pz) by blast
qed
then have 3ge M. Ve e M. gCz —z =g
— With Zorn’s Lemma we can conclude that there is a maximal element in M.

proof (rule Zorn's-Lemma)
— We show that M is non-empty:
show graph F f € M
unfolding M-def
proof (rule norm-pres-extensionl2)
show linearform F f by fact
show F < E by fact
from F show F < F by (rule vectorspace.subspace-refl)
show graph F f C graph F f ..
show VzeF. fz < p z by fact
qed
qed
then obtain g where gM: g€ M and gz: Ve € M. g C 2z — g=12
by blast
from gM obtain H h where
g-rep: g = graph H h
and linearform: linearform H h
and HE: H < Fand FH: F < H
and graphs: graph F f C graph H h
and hp: Vz € H. h z < p z unfolding M-def ..

48 12 THE HAHN-BANACH THEOREM

— ¢ is a norm-preserving extension of f, in other words:
— g is the graph of some linear form h defined on a subspace H of E,
— and h is an extension of f that is again bounded by p.

from HE E have H: vectorspace H
by (rule subspace.vectorspace)

have HFE-eq: H = F
— We show that h is defined on whole E by classical contradiction.

proof (rule classical)
assume neq: H # E
— Assume h is not defined on whole E. Then show that h can be extended
— in a norm-preserving way to a function h’ with the graph g’.

have 3g'e M. g C g'ANg# g’
proof —
from HE have H C E ..
with neq obtain z’ where z'E: ' € F and z’ ¢ H by blast
obtain z": 2’ # 0
proof
show z’ # 0
proof
assume z’ = 0
with H have z' € H by (simp only: vectorspace.zero)
with «z’ ¢ H» show Fualse by contradiction
qed
qed

define H where H' = H + lin 2’
— Define H' as the direct sum of H and the linear closure of z’.
have HH: H < H'
proof (unfold H'-def)
from z'FE have vectorspace (lin z) ..
with H show H < H + lin z’ ..
qed

obtain zi where
:Vye H. —p(y+2)—hy<ui
Nei<p(y+z)—hy
— Pick a real number £ that fulfills certain inequality; this will
— be used to establish that h’ is a norm-preserving extension of A.

proof —
from H have 3zi. Vye H. —p (y + z) — hy < zi
ANwi<p(y+az)—hy
proof (rule ex-xi)
fix u v assume u: v € H and v: v € H
with HE have uFE: u € F and vE: v € E by auto
from H u v linearform have hv — hu = h (v — u)
by (simp add: linearform.diff)
also from hp and H u v have ... < p (v — u)
by (simp only: vectorspace.diff-closed)
also from z’F uE vE have v —u=2"+ —z'+ v+ — u
by (simp add: diff-eql)
also from z'E uE vE have ... = v + 2’ + — (u + z')
by (simp add: add-ac)

12.1 The Hahn-Banach Theorem for vector spaces

also from z’E uE vE have ... = (v + z') — (u + ')
by (simp add: diff-eql)
also from z’E uEvE E havep ... <p (v+2') + p (u +)
by (simp add: diff-subadditive)
finally have hv — hu <p(v+z')+p (u+ z’) .
then show — p (u + ') — hu < p (v + z’) — h v by simp
qed
then show thesis by (blast intro: that)
qged

define b’ where h' z = (let (y, a) =
SOME (y,a). z=y+a-2'ANy€ Hinhy+ a* zi) for x
— Define the extension h’ of h to H' using &.

have g C graph H' h' A g # graph H' b’
— h’is an extension of h ...

proof
show g C graph H' h’
proof —
have graph H h C graph H' b’
proof (rule graph-extl)
fix t assume t: t € H
from FE HE t have (SOME (y, a). t=y+a-z' Ay € H) = (t, 0)
using «z' ¢ Hy <z’ € B> <z’ # 0> by (rule decomp-H'-H)
with h'-def show h t = h’ t by (simp add: Let-def)
next
from HH' show H C H' ..
qed
with g-rep show ?thesis by (simp only:)
qed

show g # graph H' h’
proof —
have graph H h # graph H' b’
proof
assume eq: graph H h = graph H' b’
have z' € H'
unfolding H'-def
proof
from H show 0 € H by (rule vectorspace.zero)
from z'E show z' € lin 2’ by (rule z-lin-z)
from z'E show z’ = 0 + z’ by simp
qed
then have (z’, h' z’) € graph H' b’ ..
with eq have (z', b’ ') € graph H h by (simp only:)
then have z' € H ..
with <z’ ¢ H» show Fualse by contradiction
qged
with g-rep show ?thesis by simp
qed
qed
moreover have graph H' h' ¢ M
— and h’ is norm-preserving.

50 12 THE HAHN-BANACH THEOREM

proof (unfold M-def)
show graph H' h' € norm-pres-extensions E p F f
proof (rule norm-pres-extensionl2)
show linearform H' b’
using h'-def H'-def HE linearform «z' ¢ H) <z’ € E» <z’ # 0> E
by (rule h'-If)
show H' < E
unfolding H'-def
proof
show H < F by fact
show vectorspace E by fact
from z'E show linz' < F ..
qed
from H <F < Hy HH' show FH": F < H'
by (rule vectorspace.subspace-trans)
show graph F f C graph H' b’
proof (rule graph-extl)
fix x assume z: z € F
with graphs have fz = hz ..
also have ... = hz + 0 * zi by simp
also have ... = (let (y, a) = (z, 0) in h y + a * i)
by (simp add: Let-def)
also have (z, 0) =
(SOME (y, a). 2=y +a-2' ANy € H)
using £ HE
proof (rule decomp-H'-H [symmetric))
from FH z show z € H ..
from z’ show z’ # 0 .
show z’ ¢ H by fact
show z’ € E by fact
qed
also have
(let (y, a) = (SOME (y, a). z =y + a-2' ANy € H)
inhy+ axzi) =h'z by (simp only: h'-def)
finally show fz = h' z .
next
from FH' show F C H' ..
qed
showVze H. hz<pux
using h'-def H'-def <z’ ¢ H) «x' € E» <z’ # 0> E HE
<seminorm E py linearform and hp xi
by (rule h'-norm-pres)
qed
qed
ultimately show ?thesis ..
qed
then have - (Vz € M. ¢ C z — g =) by simp
— So the graph g of h cannot be maximal. Contradiction!

with gz show H = E by contradiction
qed

from HE-eq and linearform have linearform E h
by (simp only:)
moreover have Vz € F. hz = fz

12.2 Alternative formulation 51

proof
fix z assume z € F
with graphs have fz = h z ..
then show hz = fz ..

qged

moreover from HFE-eq and hp haveVz € F. hx < pz
by (simp only:)

ultimately show ?thesis by blast

qed

12.2 Alternative formulation

The following alternative formulation of the Hahn-Banach Theorem uses the
fact that for a real linear form f and a seminorm p the following inequality are
equivalent:

Vee H. |hz|<pz and Vze H hz<pux

theorem abs-Hahn-Banach:
assumes FE: vectorspace E and FE: subspace F' E
and If: linearform F f and sn: seminorm E p
assumes fp: Vz € F. |fz| < puz
shows dg. linearform E g
ANNVzeF gz=fx)
NNz € E. |gz| <px)
proof —
interpret vectorspace E by fact
interpret subspace F' E by fact
interpret linearform F f by fact
interpret seminorm E p by fact
have 3g. linearform EgA Vz € F. gz =fz) N Vz € E. gz < p 1)
using E FFE sn If
proof (rule Hahn-Banach)
showVz e F. fz<pz
using FE E sn If and fp by (rule abs-ineg-iff [THEN iffD1])
qged
then obtain g where lg: linearform £ g and »: Ve € F. gz = fx
and *x: Vo € E. gz < p z by blast
haveVz € E. |gz| <p=z
using - E sn lg *x
proof (rule abs-ineg-iff [THEN iffD2])
show F < F ..
qed
with lg * show ?thesis by blast
qed

12.3 The Hahn-Banach Theorem for normed spaces

Every continuous linear form f on a subspace F of a norm space F, can be
extended to a continuous linear form ¢g on E such that ||f|| = ||g||.

theorem norm-Hahn-Banach:

IThis was shown in lemma abs-ineq-iff (see page 39).

52 12 THE HAHN-BANACH THEOREM

fixes V and norm (<||-||»)
fixes B defines AV f. BV f={0}u{|fz|/|lz| |5.2#0Anze V}
fixes fn-norm (<||-|-- [0, 1000] 999)

defines AV f. |If|-V = |(B V)
assumes E-norm: normed-vectorspace FE norm and FE: subspace F' E
and linearform: linearform F f and continuous F f norm
shows dg. linearform E g
A continuous E g norm
NNz eF. gz=fz)
A lgll-B = [fI-F
proof —
interpret normed-vectorspace E norm by fact
interpret normed-vectorspace-with-fn-norm E norm B fn-norm
by (auto simp: B-def fn-norm-def) intro-locales
interpret subspace F' E by fact
interpret linearform F f by fact
interpret continuous F f norm by fact
have E: vectorspace E by intro-locales
have F': vectorspace F by rule intro-locales
have F-norm: normed-vectorspace F norm
using FE E-norm by (rule subspace-normed-vs)
have ge-zero: 0 < ||f||-F
by (rule normed-vectorspace-with-fn-norm.fn-norm-ge-zero
[OF normed-vectorspace-with-fn-norm.intro,
OF F-norm <continuous F f norm) , folded B-def fn-norm-def])

We define a function p on E as follows: p z = ||f|| - ||zl

define p where p z = ||f||-F * ||z| for z

p is a seminorm on E:

have ¢: seminorm E p
proof
fix xyaassume z: z € Fand y: y € £

p is positive definite:

have 0 < ||f||-F by (rule ge-zero)
moreover from z have 0 < ||z ..
ultimately show 0 < p z

by (simp add: p-def zero-le-mult-iff)

p is absolutely homogeneous:

show p (a - z) =la| xpz

proof —
have p (a -) = ||f|[-F' * |la - z|| by (simp only: p-def)
also from z have |ja - z|| = |a| * ||z|| by (rule abs-homogenous)
also have ||f[-F + (|al « [lal)) = |a| * ([fI-F + a]) by simp
also have ... = |a| *x p z by (simp only: p-def)
finally show ¢thesis .

qed

Furthermore, p is subadditive:

showp (z+y)<pz+py
proof —

12.3 The Hahn-Banach Theorem for normed spaces 53

have p (z + y) = [If[l-F * [l + y|| by (simp only: p-def)

also have a: 0 < ||f||-F by (rule ge-zero)

from z y have ||z + yl| < |lz|| + [|y]| ..

with a have |f[|-F = |lz + yl| < [If[-F = (=] + [[y]})
by (simp add: mult-left-mono)

also have ... = [|f||-F «* ||z|| + ||f|I-F = ||ly|]| by (simp only: distrib-left)
also have ... = p z + p y by (simp only: p-def)
finally show ?thesis .
qed
qed

f is bounded by p.

haveVz € F. |fz| <pux
proof
fix z assume z € F
with (continuous F f norm> and linearform
show |fz| < px
unfolding p-def by (rule normed-vectorspace-with-fn-norm.fn-norm-le-cong
[OF normed-vectorspace-with-fn-norm.intro,
OF F-norm, folded B-def fn-norm-def])
qed

Using the fact that p is a seminorm and f is bounded by p we can apply the Hahn-
Banach Theorem for real vector spaces. So f can be extended in a norm-preserving
way to some function g on the whole vector space F.

with E FFE linearform q obtain g where
linearformkE: linearform E g
and a: Ve € F.gz = fx
and b:Vz € E. |gz| < pz
by (rule abs-Hahn-Banach [elim-format]) iprover

We furthermore have to show that g is also continuous:

have g-cont: continuous E g norm using linearformFE
proof
fix z assume z € F
with b show |g z| < ||f||-F * ||=]|
by (simp only: p-def)
qed

To complete the proof, we show that ||g|| = ||f]|-

have |[¢|-E = |If|-F
proof (rule order-antisym)

First we show ||g]| < ||f]l. The function norm || g|| is defined as the smallest ¢ € R such
that

Ve e E. |gz| < c- |z
Furthermore holds

Ve e B |ga|l < | - [«

from g-cont - ge-zero
show ||g-E < [|f[-F

54 REFERENCES

proof
fix z assume z € F
with b show |g z| < ||f||-F * ||=]|
by (simp only: p-def)
qged

The other direction is achieved by a similar argument.

show ||f|-F < |gl-E
proof (rule normed-vectorspace-with-fn-norm.fn-norm-least
[OF normed-vectorspace-with-fn-norm.intro,
OF F-norm, folded B-def fn-norm-def])
fix x assume z: z € F
show |f z| < lgll-E * |2
proof —
from a z have gz = fx ..
then have |f z| = |g z| by (simp only:)
also from g-cont have ... < ||g|-E * ||z]
proof (rule fn-norm-le-cong [OF - linearformE, folded B-def fn-norm-def])
from FE z show z € E ..
qged
finally show ?thesis .
qed
next
show 0 < ||g|-E
using g-cont by (rule fn-norm-ge-zero [of g, folded B-def fn-norm-def])
show continuous F f norm by fact
qed
qed
with linearformFE a g-cont show ?thesis by blast
qed

end

References

[1] H. Heuser. Funktionalanalysis: Theorie und Anwendung. Teubner, 1986.

[2] L. Narici and E. Beckenstein. The Hahn-Banach Theorem: The life and
times. In Topology Atlas. York University, Toronto, Ontario, Canada,
1996. http://at.yorku.ca/topology/preprint.htm and http://at.yorku.ca/p/
a/a/a/16.htm.

[3] B. Nowak and A. Trybulec. Hahn-Banach theorem. Journal of Formalized
Mathematics, 5, 1993. http://mizar.uwb.edu.pl/JEM/Vol5/hahnban.html.

http://at.yorku.ca/topology/preprint.htm
http://at.yorku.ca/p/a/a/a/16.htm
http://at.yorku.ca/p/a/a/a/16.htm
http://mizar.uwb.edu.pl/JFM/Vol5/hahnban.html

	Preface
	I Basic Notions
	Bounds
	Vector spaces
	Signature
	Vector space laws

	Subspaces
	Definition
	Linear closure
	Sum of two vectorspaces
	Direct sums

	Normed vector spaces
	Quasinorms
	Norms
	Normed vector spaces

	Linearforms
	An order on functions
	The graph of a function
	Functions ordered by domain extension
	Domain and function of a graph
	Norm-preserving extensions of a function

	The norm of a function
	Continuous linear forms
	The norm of a linear form

	Zorn's Lemma

	II Lemmas for the Proof
	The supremum wrt. the function order
	Extending non-maximal functions

	III The Main Proof
	The Hahn-Banach Theorem
	The Hahn-Banach Theorem for vector spaces
	Alternative formulation
	The Hahn-Banach Theorem for normed spaces

