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Abstract
The Hahn-Banach Theorem is one of the most fundamental results in

functional analysis. We present a fully formal proof of two versions of the
theorem, one for general linear spaces and another for normed spaces. This
development is based on simply-typed classical set-theory, as provided by
Isabelle/HOL.
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1 Preface

This is a fully formal proof of the Hahn-Banach Theorem. It closely follows
the informal presentation given in Heuser’s textbook [1, § 36]. Another formal
proof of the same theorem has been done in Mizar [3]. A general overview of
the relevance and history of the Hahn-Banach Theorem is given by Narici and
Beckenstein [2].

The document is structured as follows. The first part contains definitions of
basic notions of linear algebra: vector spaces, subspaces, normed spaces, con-
tinuous linear-forms, norm of functions and an order on functions by domain
extension. The second part contains some lemmas about the supremum (w.r.t.
the function order) and extension of non-maximal functions. With these pre-
liminaries, the main proof of the theorem (in its two versions) is conducted in
the third part. The dependencies of individual theories are as follows.
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Part I

Basic Notions
2 Bounds
theory Bounds
imports Main HOL−Analysis.Continuum-Not-Denumerable
begin

locale lub =
fixes A and x
assumes least [intro?]: (

∧
a. a ∈ A =⇒ a ≤ b) =⇒ x ≤ b

and upper [intro?]: a ∈ A =⇒ a ≤ x

lemmas [elim?] = lub.least lub.upper

definition the-lub :: ′a::order set ⇒ ′a (‹
⊔

-› [90 ] 90 )
where the-lub A = The (lub A)

lemma the-lub-equality [elim?]:
assumes lub A x
shows

⊔
A = (x:: ′a::order)

proof −
interpret lub A x by fact
show ?thesis
proof (unfold the-lub-def )

from ‹lub A x› show The (lub A) = x
proof

fix x ′ assume lub ′: lub A x ′

show x ′ = x
proof (rule order-antisym)

from lub ′ show x ′ ≤ x
proof

fix a assume a ∈ A
then show a ≤ x ..

qed
show x ≤ x ′

proof
fix a assume a ∈ A
with lub ′ show a ≤ x ′ ..

qed
qed

qed
qed

qed

lemma the-lubI-ex:
assumes ex: ∃ x. lub A x
shows lub A (

⊔
A)

proof −
from ex obtain x where x: lub A x ..
also from x have [symmetric]:

⊔
A = x ..
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finally show ?thesis .
qed

lemma real-complete: ∃ a::real. a ∈ A =⇒ ∃ y. ∀ a ∈ A. a ≤ y =⇒ ∃ x. lub A x
by (intro exI [of - Sup A]) (auto intro!: cSup-upper cSup-least simp: lub-def )

end

3 Vector spaces
theory Vector-Space
imports Complex-Main Bounds
begin

3.1 Signature
For the definition of real vector spaces a type ′a of the sort {plus, minus, zero}
is considered, on which a real scalar multiplication · is declared.

consts
prod :: real ⇒ ′a::{plus,minus,zero} ⇒ ′a (infixr ‹·› 70 )

3.2 Vector space laws
A vector space is a non-empty set V of elements from ′a with the following vector
space laws: The set V is closed under addition and scalar multiplication, addition
is associative and commutative; − x is the inverse of x wrt. addition and 0 is
the neutral element of addition. Addition and multiplication are distributive;
scalar multiplication is associative and the real number 1 is the neutral element
of scalar multiplication.

locale vectorspace =
fixes V
assumes non-empty [iff , intro?]: V 6= {}

and add-closed [iff ]: x ∈ V =⇒ y ∈ V =⇒ x + y ∈ V
and mult-closed [iff ]: x ∈ V =⇒ a · x ∈ V
and add-assoc: x ∈ V =⇒ y ∈ V =⇒ z ∈ V =⇒ (x + y) + z = x + (y + z)
and add-commute: x ∈ V =⇒ y ∈ V =⇒ x + y = y + x
and diff-self [simp]: x ∈ V =⇒ x − x = 0
and add-zero-left [simp]: x ∈ V =⇒ 0 + x = x
and add-mult-distrib1 : x ∈ V =⇒ y ∈ V =⇒ a · (x + y) = a · x + a · y
and add-mult-distrib2 : x ∈ V =⇒ (a + b) · x = a · x + b · x
and mult-assoc: x ∈ V =⇒ (a ∗ b) · x = a · (b · x)
and mult-1 [simp]: x ∈ V =⇒ 1 · x = x
and negate-eq1 : x ∈ V =⇒ − x = (− 1 ) · x
and diff-eq1 : x ∈ V =⇒ y ∈ V =⇒ x − y = x + − y

begin

lemma negate-eq2 : x ∈ V =⇒ (− 1 ) · x = − x
by (rule negate-eq1 [symmetric])

lemma negate-eq2a: x ∈ V =⇒ −1 · x = − x
by (simp add: negate-eq1 )
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lemma diff-eq2 : x ∈ V =⇒ y ∈ V =⇒ x + − y = x − y
by (rule diff-eq1 [symmetric])

lemma diff-closed [iff ]: x ∈ V =⇒ y ∈ V =⇒ x − y ∈ V
by (simp add: diff-eq1 negate-eq1 )

lemma neg-closed [iff ]: x ∈ V =⇒ − x ∈ V
by (simp add: negate-eq1 )

lemma add-left-commute:
x ∈ V =⇒ y ∈ V =⇒ z ∈ V =⇒ x + (y + z) = y + (x + z)

proof −
assume xyz: x ∈ V y ∈ V z ∈ V
then have x + (y + z) = (x + y) + z

by (simp only: add-assoc)
also from xyz have . . . = (y + x) + z by (simp only: add-commute)
also from xyz have . . . = y + (x + z) by (simp only: add-assoc)
finally show ?thesis .

qed

lemmas add-ac = add-assoc add-commute add-left-commute

The existence of the zero element of a vector space follows from the non-
emptiness of carrier set.
lemma zero [iff ]: 0 ∈ V
proof −

from non-empty obtain x where x: x ∈ V by blast
then have 0 = x − x by (rule diff-self [symmetric])
also from x x have . . . ∈ V by (rule diff-closed)
finally show ?thesis .

qed

lemma add-zero-right [simp]: x ∈ V =⇒ x + 0 = x
proof −

assume x: x ∈ V
from this and zero have x + 0 = 0 + x by (rule add-commute)
also from x have . . . = x by (rule add-zero-left)
finally show ?thesis .

qed

lemma mult-assoc2 : x ∈ V =⇒ a · b · x = (a ∗ b) · x
by (simp only: mult-assoc)

lemma diff-mult-distrib1 : x ∈ V =⇒ y ∈ V =⇒ a · (x − y) = a · x − a · y
by (simp add: diff-eq1 negate-eq1 add-mult-distrib1 mult-assoc2 )

lemma diff-mult-distrib2 : x ∈ V =⇒ (a − b) · x = a · x − (b · x)
proof −

assume x: x ∈ V
have (a − b) · x = (a + − b) · x

by simp
also from x have . . . = a · x + (− b) · x

by (rule add-mult-distrib2 )
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also from x have . . . = a · x + − (b · x)
by (simp add: negate-eq1 mult-assoc2 )

also from x have . . . = a · x − (b · x)
by (simp add: diff-eq1 )

finally show ?thesis .
qed

lemmas distrib =
add-mult-distrib1 add-mult-distrib2
diff-mult-distrib1 diff-mult-distrib2

Further derived laws:
lemma mult-zero-left [simp]: x ∈ V =⇒ 0 · x = 0
proof −

assume x: x ∈ V
have 0 · x = (1 − 1 ) · x by simp
also have . . . = (1 + − 1 ) · x by simp
also from x have . . . = 1 · x + (− 1 ) · x

by (rule add-mult-distrib2 )
also from x have . . . = x + (− 1 ) · x by simp
also from x have . . . = x + − x by (simp add: negate-eq2a)
also from x have . . . = x − x by (simp add: diff-eq2 )
also from x have . . . = 0 by simp
finally show ?thesis .

qed

lemma mult-zero-right [simp]: a · 0 = (0 :: ′a)
proof −

have a · 0 = a · (0 − (0 :: ′a)) by simp
also have . . . = a · 0 − a · 0

by (rule diff-mult-distrib1 ) simp-all
also have . . . = 0 by simp
finally show ?thesis .

qed

lemma minus-mult-cancel [simp]: x ∈ V =⇒ (− a) · − x = a · x
by (simp add: negate-eq1 mult-assoc2 )

lemma add-minus-left-eq-diff : x ∈ V =⇒ y ∈ V =⇒ − x + y = y − x
proof −

assume xy: x ∈ V y ∈ V
then have − x + y = y + − x by (simp add: add-commute)
also from xy have . . . = y − x by (simp add: diff-eq1 )
finally show ?thesis .

qed

lemma add-minus [simp]: x ∈ V =⇒ x + − x = 0
by (simp add: diff-eq2 )

lemma add-minus-left [simp]: x ∈ V =⇒ − x + x = 0
by (simp add: diff-eq2 add-commute)

lemma minus-minus [simp]: x ∈ V =⇒ − (− x) = x
by (simp add: negate-eq1 mult-assoc2 )
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lemma minus-zero [simp]: − (0 :: ′a) = 0
by (simp add: negate-eq1 )

lemma minus-zero-iff [simp]:
assumes x: x ∈ V
shows (− x = 0 ) = (x = 0 )

proof
from x have x = − (− x) by simp
also assume − x = 0
also have − . . . = 0 by (rule minus-zero)
finally show x = 0 .

next
assume x = 0
then show − x = 0 by simp

qed

lemma add-minus-cancel [simp]: x ∈ V =⇒ y ∈ V =⇒ x + (− x + y) = y
by (simp add: add-assoc [symmetric])

lemma minus-add-cancel [simp]: x ∈ V =⇒ y ∈ V =⇒ − x + (x + y) = y
by (simp add: add-assoc [symmetric])

lemma minus-add-distrib [simp]: x ∈ V =⇒ y ∈ V =⇒ − (x + y) = − x + − y
by (simp add: negate-eq1 add-mult-distrib1 )

lemma diff-zero [simp]: x ∈ V =⇒ x − 0 = x
by (simp add: diff-eq1 )

lemma diff-zero-right [simp]: x ∈ V =⇒ 0 − x = − x
by (simp add: diff-eq1 )

lemma add-left-cancel:
assumes x: x ∈ V and y: y ∈ V and z: z ∈ V
shows (x + y = x + z) = (y = z)

proof
from y have y = 0 + y by simp
also from x y have . . . = (− x + x) + y by simp
also from x y have . . . = − x + (x + y) by (simp add: add.assoc)
also assume x + y = x + z
also from x z have − x + (x + z) = − x + x + z by (simp add: add.assoc)
also from x z have . . . = z by simp
finally show y = z .

next
assume y = z
then show x + y = x + z by (simp only:)

qed

lemma add-right-cancel:
x ∈ V =⇒ y ∈ V =⇒ z ∈ V =⇒ (y + x = z + x) = (y = z)

by (simp only: add-commute add-left-cancel)

lemma add-assoc-cong:
x ∈ V =⇒ y ∈ V =⇒ x ′ ∈ V =⇒ y ′ ∈ V =⇒ z ∈ V
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=⇒ x + y = x ′ + y ′ =⇒ x + (y + z) = x ′ + (y ′ + z)
by (simp only: add-assoc [symmetric])

lemma mult-left-commute: x ∈ V =⇒ a · b · x = b · a · x
by (simp add: mult.commute mult-assoc2 )

lemma mult-zero-uniq:
assumes x: x ∈ V x 6= 0 and ax: a · x = 0
shows a = 0

proof (rule classical)
assume a: a 6= 0
from x a have x = (inverse a ∗ a) · x by simp
also from ‹x ∈ V › have . . . = inverse a · (a · x) by (rule mult-assoc)
also from ax have . . . = inverse a · 0 by simp
also have . . . = 0 by simp
finally have x = 0 .
with ‹x 6= 0 › show a = 0 by contradiction

qed

lemma mult-left-cancel:
assumes x: x ∈ V and y: y ∈ V and a: a 6= 0
shows (a · x = a · y) = (x = y)

proof
from x have x = 1 · x by simp
also from a have . . . = (inverse a ∗ a) · x by simp
also from x have . . . = inverse a · (a · x)

by (simp only: mult-assoc)
also assume a · x = a · y
also from a y have inverse a · . . . = y

by (simp add: mult-assoc2 )
finally show x = y .

next
assume x = y
then show a · x = a · y by (simp only:)

qed

lemma mult-right-cancel:
assumes x: x ∈ V and neq: x 6= 0
shows (a · x = b · x) = (a = b)

proof
from x have (a − b) · x = a · x − b · x

by (simp add: diff-mult-distrib2 )
also assume a · x = b · x
with x have a · x − b · x = 0 by simp
finally have (a − b) · x = 0 .
with x neq have a − b = 0 by (rule mult-zero-uniq)
then show a = b by simp

next
assume a = b
then show a · x = b · x by (simp only:)

qed

lemma eq-diff-eq:
assumes x: x ∈ V and y: y ∈ V and z: z ∈ V
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shows (x = z − y) = (x + y = z)
proof

assume x = z − y
then have x + y = z − y + y by simp
also from y z have . . . = z + − y + y

by (simp add: diff-eq1 )
also have . . . = z + (− y + y)

by (rule add-assoc) (simp-all add: y z)
also from y z have . . . = z + 0

by (simp only: add-minus-left)
also from z have . . . = z

by (simp only: add-zero-right)
finally show x + y = z .

next
assume x + y = z
then have z − y = (x + y) − y by simp
also from x y have . . . = x + y + − y

by (simp add: diff-eq1 )
also have . . . = x + (y + − y)

by (rule add-assoc) (simp-all add: x y)
also from x y have . . . = x by simp
finally show x = z − y ..

qed

lemma add-minus-eq-minus:
assumes x: x ∈ V and y: y ∈ V and xy: x + y = 0
shows x = − y

proof −
from x y have x = (− y + y) + x by simp
also from x y have . . . = − y + (x + y) by (simp add: add-ac)
also note xy
also from y have − y + 0 = − y by simp
finally show x = − y .

qed

lemma add-minus-eq:
assumes x: x ∈ V and y: y ∈ V and xy: x − y = 0
shows x = y

proof −
from x y xy have eq: x + − y = 0 by (simp add: diff-eq1 )
with - - have x = − (− y)

by (rule add-minus-eq-minus) (simp-all add: x y)
with x y show x = y by simp

qed

lemma add-diff-swap:
assumes vs: a ∈ V b ∈ V c ∈ V d ∈ V

and eq: a + b = c + d
shows a − c = d − b

proof −
from assms have − c + (a + b) = − c + (c + d)

by (simp add: add-left-cancel)
also have . . . = d using ‹c ∈ V › ‹d ∈ V › by (rule minus-add-cancel)
finally have eq: − c + (a + b) = d .



12 4 SUBSPACES

from vs have a − c = (− c + (a + b)) + − b
by (simp add: add-ac diff-eq1 )

also from vs eq have . . . = d + − b
by (simp add: add-right-cancel)

also from vs have . . . = d − b by (simp add: diff-eq2 )
finally show a − c = d − b .

qed

lemma vs-add-cancel-21 :
assumes vs: x ∈ V y ∈ V z ∈ V u ∈ V
shows (x + (y + z) = y + u) = (x + z = u)

proof
from vs have x + z = − y + y + (x + z) by simp
also have . . . = − y + (y + (x + z))

by (rule add-assoc) (simp-all add: vs)
also from vs have y + (x + z) = x + (y + z)

by (simp add: add-ac)
also assume x + (y + z) = y + u
also from vs have − y + (y + u) = u by simp
finally show x + z = u .

next
assume x + z = u
with vs show x + (y + z) = y + u

by (simp only: add-left-commute [of x])
qed

lemma add-cancel-end:
assumes vs: x ∈ V y ∈ V z ∈ V
shows (x + (y + z) = y) = (x = − z)

proof
assume x + (y + z) = y
with vs have (x + z) + y = 0 + y by (simp add: add-ac)
with vs have x + z = 0 by (simp only: add-right-cancel add-closed zero)
with vs show x = − z by (simp add: add-minus-eq-minus)

next
assume eq: x = − z
then have x + (y + z) = − z + (y + z) by simp
also have . . . = y + (− z + z) by (rule add-left-commute) (simp-all add: vs)
also from vs have . . . = y by simp
finally show x + (y + z) = y .

qed

end

end

4 Subspaces

theory Subspace
imports Vector-Space HOL−Library.Set-Algebras
begin
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4.1 Definition
A non-empty subset U of a vector space V is a subspace of V, iff U is closed
under addition and scalar multiplication.
locale subspace =

fixes U :: ′a::{minus, plus, zero, uminus} set and V
assumes non-empty [iff , intro]: U 6= {}

and subset [iff ]: U ⊆ V
and add-closed [iff ]: x ∈ U =⇒ y ∈ U =⇒ x + y ∈ U
and mult-closed [iff ]: x ∈ U =⇒ a · x ∈ U

notation (symbols)
subspace (infix ‹�› 50 )

declare vectorspace.intro [intro?] subspace.intro [intro?]

lemma subspace-subset [elim]: U � V =⇒ U ⊆ V
by (rule subspace.subset)

lemma (in subspace) subsetD [iff ]: x ∈ U =⇒ x ∈ V
using subset by blast

lemma subspaceD [elim]: U � V =⇒ x ∈ U =⇒ x ∈ V
by (rule subspace.subsetD)

lemma rev-subspaceD [elim?]: x ∈ U =⇒ U � V =⇒ x ∈ V
by (rule subspace.subsetD)

lemma (in subspace) diff-closed [iff ]:
assumes vectorspace V
assumes x: x ∈ U and y: y ∈ U
shows x − y ∈ U

proof −
interpret vectorspace V by fact
from x y show ?thesis by (simp add: diff-eq1 negate-eq1 )

qed

Similar as for linear spaces, the existence of the zero element in every subspace
follows from the non-emptiness of the carrier set and by vector space laws.
lemma (in subspace) zero [intro]:

assumes vectorspace V
shows 0 ∈ U

proof −
interpret V : vectorspace V by fact
have U 6= {} by (rule non-empty)
then obtain x where x: x ∈ U by blast
then have x ∈ V .. then have 0 = x − x by simp
also from ‹vectorspace V › x x have . . . ∈ U by (rule diff-closed)
finally show ?thesis .

qed

lemma (in subspace) neg-closed [iff ]:
assumes vectorspace V
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assumes x: x ∈ U
shows − x ∈ U

proof −
interpret vectorspace V by fact
from x show ?thesis by (simp add: negate-eq1 )

qed

Further derived laws: every subspace is a vector space.
lemma (in subspace) vectorspace [iff ]:

assumes vectorspace V
shows vectorspace U

proof −
interpret vectorspace V by fact
show ?thesis
proof

show U 6= {} ..
fix x y z assume x: x ∈ U and y: y ∈ U and z: z ∈ U
fix a b :: real
from x y show x + y ∈ U by simp
from x show a · x ∈ U by simp
from x y z show (x + y) + z = x + (y + z) by (simp add: add-ac)
from x y show x + y = y + x by (simp add: add-ac)
from x show x − x = 0 by simp
from x show 0 + x = x by simp
from x y show a · (x + y) = a · x + a · y by (simp add: distrib)
from x show (a + b) · x = a · x + b · x by (simp add: distrib)
from x show (a ∗ b) · x = a · b · x by (simp add: mult-assoc)
from x show 1 · x = x by simp
from x show − x = − 1 · x by (simp add: negate-eq1 )
from x y show x − y = x + − y by (simp add: diff-eq1 )

qed
qed

The subspace relation is reflexive.
lemma (in vectorspace) subspace-refl [intro]: V � V
proof

show V 6= {} ..
show V ⊆ V ..
fix a :: real and x y assume x: x ∈ V and y: y ∈ V
from x y show x + y ∈ V by simp
from x show a · x ∈ V by simp

qed

The subspace relation is transitive.
lemma (in vectorspace) subspace-trans [trans]:

U � V =⇒ V � W =⇒ U � W
proof

assume uv: U � V and vw: V � W
from uv show U 6= {} by (rule subspace.non-empty)
show U ⊆ W
proof −

from uv have U ⊆ V by (rule subspace.subset)
also from vw have V ⊆ W by (rule subspace.subset)



4.2 Linear closure 15

finally show ?thesis .
qed
fix x y assume x: x ∈ U and y: y ∈ U
from uv and x y show x + y ∈ U by (rule subspace.add-closed)
from uv and x show a · x ∈ U for a by (rule subspace.mult-closed)

qed

4.2 Linear closure
The linear closure of a vector x is the set of all scalar multiples of x.
definition lin :: ( ′a::{minus,plus,zero}) ⇒ ′a set

where lin x = {a · x | a. True}

lemma linI [intro]: y = a · x =⇒ y ∈ lin x
unfolding lin-def by blast

lemma linI ′ [iff ]: a · x ∈ lin x
unfolding lin-def by blast

lemma linE [elim]:
assumes x ∈ lin v
obtains a :: real where x = a · v
using assms unfolding lin-def by blast

Every vector is contained in its linear closure.
lemma (in vectorspace) x-lin-x [iff ]: x ∈ V =⇒ x ∈ lin x
proof −

assume x ∈ V
then have x = 1 · x by simp
also have . . . ∈ lin x ..
finally show ?thesis .

qed

lemma (in vectorspace) 0-lin-x [iff ]: x ∈ V =⇒ 0 ∈ lin x
proof

assume x ∈ V
then show 0 = 0 · x by simp

qed

Any linear closure is a subspace.
lemma (in vectorspace) lin-subspace [intro]:

assumes x: x ∈ V
shows lin x � V

proof
from x show lin x 6= {} by auto
show lin x ⊆ V
proof

fix x ′ assume x ′ ∈ lin x
then obtain a where x ′ = a · x ..
with x show x ′ ∈ V by simp

qed

fix x ′ x ′′ assume x ′: x ′ ∈ lin x and x ′′: x ′′ ∈ lin x
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show x ′ + x ′′ ∈ lin x
proof −

from x ′ obtain a ′ where x ′ = a ′ · x ..
moreover from x ′′ obtain a ′′ where x ′′ = a ′′ · x ..
ultimately have x ′ + x ′′ = (a ′ + a ′′) · x

using x by (simp add: distrib)
also have . . . ∈ lin x ..
finally show ?thesis .

qed
show a · x ′ ∈ lin x for a :: real
proof −

from x ′ obtain a ′ where x ′ = a ′ · x ..
with x have a · x ′ = (a ∗ a ′) · x by (simp add: mult-assoc)
also have . . . ∈ lin x ..
finally show ?thesis .

qed
qed

Any linear closure is a vector space.
lemma (in vectorspace) lin-vectorspace [intro]:

assumes x ∈ V
shows vectorspace (lin x)

proof −
from ‹x ∈ V › have subspace (lin x) V

by (rule lin-subspace)
from this and vectorspace-axioms show ?thesis

by (rule subspace.vectorspace)
qed

4.3 Sum of two vectorspaces
The sum of two vectorspaces U and V is the set of all sums of elements from
U and V.
lemma sum-def : U + V = {u + v | u v. u ∈ U ∧ v ∈ V}

unfolding set-plus-def by auto

lemma sumE [elim]:
x ∈ U + V =⇒ (

∧
u v. x = u + v =⇒ u ∈ U =⇒ v ∈ V =⇒ C ) =⇒ C

unfolding sum-def by blast

lemma sumI [intro]:
u ∈ U =⇒ v ∈ V =⇒ x = u + v =⇒ x ∈ U + V

unfolding sum-def by blast

lemma sumI ′ [intro]:
u ∈ U =⇒ v ∈ V =⇒ u + v ∈ U + V

unfolding sum-def by blast

U is a subspace of U + V.
lemma subspace-sum1 [iff ]:

assumes vectorspace U vectorspace V
shows U � U + V

proof −
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interpret vectorspace U by fact
interpret vectorspace V by fact
show ?thesis
proof

show U 6= {} ..
show U ⊆ U + V
proof

fix x assume x: x ∈ U
moreover have 0 ∈ V ..
ultimately have x + 0 ∈ U + V ..
with x show x ∈ U + V by simp

qed
fix x y assume x: x ∈ U and y ∈ U
then show x + y ∈ U by simp
from x show a · x ∈ U for a by simp

qed
qed

The sum of two subspaces is again a subspace.
lemma sum-subspace [intro?]:

assumes subspace U E vectorspace E subspace V E
shows U + V � E

proof −
interpret subspace U E by fact
interpret vectorspace E by fact
interpret subspace V E by fact
show ?thesis
proof

have 0 ∈ U + V
proof

show 0 ∈ U using ‹vectorspace E› ..
show 0 ∈ V using ‹vectorspace E› ..
show (0 :: ′a) = 0 + 0 by simp

qed
then show U + V 6= {} by blast
show U + V ⊆ E
proof

fix x assume x ∈ U + V
then obtain u v where x = u + v and

u ∈ U and v ∈ V ..
then show x ∈ E by simp

qed

fix x y assume x: x ∈ U + V and y: y ∈ U + V
show x + y ∈ U + V
proof −

from x obtain ux vx where x = ux + vx and ux ∈ U and vx ∈ V ..
moreover
from y obtain uy vy where y = uy + vy and uy ∈ U and vy ∈ V ..
ultimately
have ux + uy ∈ U

and vx + vy ∈ V
and x + y = (ux + uy) + (vx + vy)
using x y by (simp-all add: add-ac)
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then show ?thesis ..
qed
show a · x ∈ U + V for a
proof −

from x obtain u v where x = u + v and u ∈ U and v ∈ V ..
then have a · u ∈ U and a · v ∈ V

and a · x = (a · u) + (a · v) by (simp-all add: distrib)
then show ?thesis ..

qed
qed

qed

The sum of two subspaces is a vectorspace.
lemma sum-vs [intro?]:

U � E =⇒ V � E =⇒ vectorspace E =⇒ vectorspace (U + V )
by (rule subspace.vectorspace) (rule sum-subspace)

4.4 Direct sums
The sum of U and V is called direct, iff the zero element is the only common
element of U and V. For every element x of the direct sum of U and V the
decomposition in x = u + v with u ∈ U and v ∈ V is unique.
lemma decomp:

assumes vectorspace E subspace U E subspace V E
assumes direct: U ∩ V = {0}

and u1 : u1 ∈ U and u2 : u2 ∈ U
and v1 : v1 ∈ V and v2 : v2 ∈ V
and sum: u1 + v1 = u2 + v2

shows u1 = u2 ∧ v1 = v2
proof −

interpret vectorspace E by fact
interpret subspace U E by fact
interpret subspace V E by fact
show ?thesis
proof

have U : vectorspace U
using ‹subspace U E› ‹vectorspace E› by (rule subspace.vectorspace)

have V : vectorspace V
using ‹subspace V E› ‹vectorspace E› by (rule subspace.vectorspace)

from u1 u2 v1 v2 and sum have eq: u1 − u2 = v2 − v1
by (simp add: add-diff-swap)

from u1 u2 have u: u1 − u2 ∈ U
by (rule vectorspace.diff-closed [OF U ])

with eq have v ′: v2 − v1 ∈ U by (simp only:)
from v2 v1 have v: v2 − v1 ∈ V

by (rule vectorspace.diff-closed [OF V ])
with eq have u ′: u1 − u2 ∈ V by (simp only:)

show u1 = u2
proof (rule add-minus-eq)

from u1 show u1 ∈ E ..
from u2 show u2 ∈ E ..
from u u ′ and direct show u1 − u2 = 0 by blast
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qed
show v1 = v2
proof (rule add-minus-eq [symmetric])

from v1 show v1 ∈ E ..
from v2 show v2 ∈ E ..
from v v ′ and direct show v2 − v1 = 0 by blast

qed
qed

qed

An application of the previous lemma will be used in the proof of the Hahn-
Banach Theorem (see page 42): for any element y + a · x0 of the direct sum of
a vectorspace H and the linear closure of x0 the components y ∈ H and a are
uniquely determined.
lemma decomp-H ′:

assumes vectorspace E subspace H E
assumes y1 : y1 ∈ H and y2 : y2 ∈ H

and x ′: x ′ /∈ H x ′ ∈ E x ′ 6= 0
and eq: y1 + a1 · x ′ = y2 + a2 · x ′

shows y1 = y2 ∧ a1 = a2
proof −

interpret vectorspace E by fact
interpret subspace H E by fact
show ?thesis
proof

have c: y1 = y2 ∧ a1 · x ′ = a2 · x ′

proof (rule decomp)
show a1 · x ′ ∈ lin x ′ ..
show a2 · x ′ ∈ lin x ′ ..
show H ∩ lin x ′ = {0}
proof

show H ∩ lin x ′ ⊆ {0}
proof

fix x assume x: x ∈ H ∩ lin x ′

then obtain a where xx ′: x = a · x ′

by blast
have x = 0
proof (cases a = 0 )

case True
with xx ′ and x ′ show ?thesis by simp

next
case False
from x have x ∈ H ..
with xx ′ have inverse a · a · x ′ ∈ H by simp
with False and x ′ have x ′ ∈ H by (simp add: mult-assoc2 )
with ‹x ′ /∈ H › show ?thesis by contradiction

qed
then show x ∈ {0} ..

qed
show {0} ⊆ H ∩ lin x ′

proof −
have 0 ∈ H using ‹vectorspace E› ..
moreover have 0 ∈ lin x ′ using ‹x ′ ∈ E› ..
ultimately show ?thesis by blast
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qed
qed
show lin x ′ � E using ‹x ′ ∈ E› ..

qed (rule ‹vectorspace E›, rule ‹subspace H E›, rule y1 , rule y2 , rule eq)
then show y1 = y2 ..
from c have a1 · x ′ = a2 · x ′ ..
with x ′ show a1 = a2 by (simp add: mult-right-cancel)

qed
qed

Since for any element y + a · x ′ of the direct sum of a vectorspace H and the
linear closure of x ′ the components y ∈ H and a are unique, it follows from y
∈ H that a = 0.

lemma decomp-H ′-H :
assumes vectorspace E subspace H E
assumes t: t ∈ H

and x ′: x ′ /∈ H x ′ ∈ E x ′ 6= 0
shows (SOME (y, a). t = y + a · x ′ ∧ y ∈ H ) = (t, 0 )

proof −
interpret vectorspace E by fact
interpret subspace H E by fact
show ?thesis
proof (rule, simp-all only: split-paired-all split-conv)

from t x ′ show t = t + 0 · x ′ ∧ t ∈ H by simp
fix y and a assume ya: t = y + a · x ′ ∧ y ∈ H
have y = t ∧ a = 0
proof (rule decomp-H ′)

from ya x ′ show y + a · x ′ = t + 0 · x ′ by simp
from ya show y ∈ H ..

qed (rule ‹vectorspace E›, rule ‹subspace H E›, rule t, (rule x ′)+)
with t x ′ show (y, a) = (y + a · x ′, 0 ) by simp

qed
qed

The components y ∈ H and a in y + a · x ′ are unique, so the function h ′ defined
by h ′ (y + a · x ′) = h y + a · ξ is definite.

lemma h ′-definite:
fixes H
assumes h ′-def :∧

x. h ′ x =
(let (y, a) = SOME (y, a). (x = y + a · x ′ ∧ y ∈ H )
in (h y) + a ∗ xi)

and x: x = y + a · x ′

assumes vectorspace E subspace H E
assumes y: y ∈ H

and x ′: x ′ /∈ H x ′ ∈ E x ′ 6= 0
shows h ′ x = h y + a ∗ xi

proof −
interpret vectorspace E by fact
interpret subspace H E by fact
from x y x ′ have x ∈ H + lin x ′ by auto
have ∃ !(y, a). x = y + a · x ′ ∧ y ∈ H (is ∃ !p. ?P p)
proof (rule ex-ex1I )
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from x y show ∃ p. ?P p by blast
fix p q assume p: ?P p and q: ?P q
show p = q
proof −

from p have xp: x = fst p + snd p · x ′ ∧ fst p ∈ H
by (cases p) simp

from q have xq: x = fst q + snd q · x ′ ∧ fst q ∈ H
by (cases q) simp

have fst p = fst q ∧ snd p = snd q
proof (rule decomp-H ′)

from xp show fst p ∈ H ..
from xq show fst q ∈ H ..
from xp and xq show fst p + snd p · x ′ = fst q + snd q · x ′

by simp
qed (rule ‹vectorspace E›, rule ‹subspace H E›, (rule x ′)+)
then show ?thesis by (cases p, cases q) simp

qed
qed
then have eq: (SOME (y, a). x = y + a · x ′ ∧ y ∈ H ) = (y, a)

by (rule some1-equality) (simp add: x y)
with h ′-def show h ′ x = h y + a ∗ xi by (simp add: Let-def )

qed

end

5 Normed vector spaces
theory Normed-Space
imports Subspace
begin

5.1 Quasinorms
A seminorm ‖·‖ is a function on a real vector space into the reals that has the
following properties: it is positive definite, absolute homogeneous and subaddi-
tive.
locale seminorm =

fixes V :: ′a::{minus, plus, zero, uminus} set
fixes norm :: ′a ⇒ real (‹‖-‖›)
assumes ge-zero [intro?]: x ∈ V =⇒ 0 ≤ ‖x‖

and abs-homogenous [intro?]: x ∈ V =⇒ ‖a · x‖ = |a| ∗ ‖x‖
and subadditive [intro?]: x ∈ V =⇒ y ∈ V =⇒ ‖x + y‖ ≤ ‖x‖ + ‖y‖

declare seminorm.intro [intro?]

lemma (in seminorm) diff-subadditive:
assumes vectorspace V
shows x ∈ V =⇒ y ∈ V =⇒ ‖x − y‖ ≤ ‖x‖ + ‖y‖

proof −
interpret vectorspace V by fact
assume x: x ∈ V and y: y ∈ V
then have x − y = x + − 1 · y

by (simp add: diff-eq2 negate-eq2a)
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also from x y have ‖. . .‖ ≤ ‖x‖ + ‖− 1 · y‖
by (simp add: subadditive)

also from y have ‖− 1 · y‖ = |− 1 | ∗ ‖y‖
by (rule abs-homogenous)

also have . . . = ‖y‖ by simp
finally show ?thesis .

qed

lemma (in seminorm) minus:
assumes vectorspace V
shows x ∈ V =⇒ ‖− x‖ = ‖x‖

proof −
interpret vectorspace V by fact
assume x: x ∈ V
then have − x = − 1 · x by (simp only: negate-eq1 )
also from x have ‖. . .‖ = |− 1 | ∗ ‖x‖ by (rule abs-homogenous)
also have . . . = ‖x‖ by simp
finally show ?thesis .

qed

5.2 Norms
A norm ‖·‖ is a seminorm that maps only the 0 vector to 0.
locale norm = seminorm +

assumes zero-iff [iff ]: x ∈ V =⇒ (‖x‖ = 0 ) = (x = 0 )

5.3 Normed vector spaces
A vector space together with a norm is called a normed space.
locale normed-vectorspace = vectorspace + norm

declare normed-vectorspace.intro [intro?]

lemma (in normed-vectorspace) gt-zero [intro?]:
assumes x: x ∈ V and neq: x 6= 0
shows 0 < ‖x‖

proof −
from x have 0 ≤ ‖x‖ ..
also have 0 6= ‖x‖
proof

assume 0 = ‖x‖
with x have x = 0 by simp
with neq show False by contradiction

qed
finally show ?thesis .

qed

Any subspace of a normed vector space is again a normed vectorspace.
lemma subspace-normed-vs [intro?]:

fixes F E norm
assumes subspace F E normed-vectorspace E norm
shows normed-vectorspace F norm
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proof −
interpret subspace F E by fact
interpret normed-vectorspace E norm by fact
show ?thesis
proof

show vectorspace F
by (rule vectorspace) unfold-locales

have Normed-Space.norm E norm ..
with subset show Normed-Space.norm F norm

by (simp add: norm-def seminorm-def norm-axioms-def )
qed

qed

end

6 Linearforms
theory Linearform
imports Vector-Space
begin

A linear form is a function on a vector space into the reals that is additive and
multiplicative.

locale linearform =
fixes V :: ′a::{minus, plus, zero, uminus} set and f
assumes add [iff ]: x ∈ V =⇒ y ∈ V =⇒ f (x + y) = f x + f y

and mult [iff ]: x ∈ V =⇒ f (a · x) = a ∗ f x

declare linearform.intro [intro?]

lemma (in linearform) neg [iff ]:
assumes vectorspace V
shows x ∈ V =⇒ f (− x) = − f x

proof −
interpret vectorspace V by fact
assume x: x ∈ V
then have f (− x) = f ((− 1 ) · x) by (simp add: negate-eq1 )
also from x have . . . = (− 1 ) ∗ (f x) by (rule mult)
also from x have . . . = − (f x) by simp
finally show ?thesis .

qed

lemma (in linearform) diff [iff ]:
assumes vectorspace V
shows x ∈ V =⇒ y ∈ V =⇒ f (x − y) = f x − f y

proof −
interpret vectorspace V by fact
assume x: x ∈ V and y: y ∈ V
then have x − y = x + − y by (rule diff-eq1 )
also have f . . . = f x + f (− y) by (rule add) (simp-all add: x y)
also have f (− y) = − f y using ‹vectorspace V › y by (rule neg)
finally show ?thesis by simp

qed
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Every linear form yields 0 for the 0 vector.
lemma (in linearform) zero [iff ]:

assumes vectorspace V
shows f 0 = 0

proof −
interpret vectorspace V by fact
have f 0 = f (0 − 0 ) by simp
also have . . . = f 0 − f 0 using ‹vectorspace V › by (rule diff ) simp-all
also have . . . = 0 by simp
finally show ?thesis .

qed

end

7 An order on functions
theory Function-Order
imports Subspace Linearform
begin

7.1 The graph of a function
We define the graph of a (real) function f with domain F as the set

{(x, f x). x ∈ F}

So we are modeling partial functions by specifying the domain and the mapping
function. We use the term “function” also for its graph.
type-synonym ′a graph = ( ′a × real) set

definition graph :: ′a set ⇒ ( ′a ⇒ real) ⇒ ′a graph
where graph F f = {(x, f x) | x. x ∈ F}

lemma graphI [intro]: x ∈ F =⇒ (x, f x) ∈ graph F f
unfolding graph-def by blast

lemma graphI2 [intro?]: x ∈ F =⇒ ∃ t ∈ graph F f . t = (x, f x)
unfolding graph-def by blast

lemma graphE [elim?]:
assumes (x, y) ∈ graph F f
obtains x ∈ F and y = f x
using assms unfolding graph-def by blast

7.2 Functions ordered by domain extension
A function h ′ is an extension of h, iff the graph of h is a subset of the graph of
h ′.
lemma graph-extI :
(
∧

x. x ∈ H =⇒ h x = h ′ x) =⇒ H ⊆ H ′

=⇒ graph H h ⊆ graph H ′ h ′
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unfolding graph-def by blast

lemma graph-extD1 [dest?]: graph H h ⊆ graph H ′ h ′ =⇒ x ∈ H =⇒ h x = h ′ x
unfolding graph-def by blast

lemma graph-extD2 [dest?]: graph H h ⊆ graph H ′ h ′ =⇒ H ⊆ H ′

unfolding graph-def by blast

7.3 Domain and function of a graph
The inverse functions to graph are domain and funct.
definition domain :: ′a graph ⇒ ′a set

where domain g = {x. ∃ y. (x, y) ∈ g}

definition funct :: ′a graph ⇒ ( ′a ⇒ real)
where funct g = (λx. (SOME y. (x, y) ∈ g))

The following lemma states that g is the graph of a function if the relation
induced by g is unique.
lemma graph-domain-funct:

assumes uniq:
∧

x y z. (x, y) ∈ g =⇒ (x, z) ∈ g =⇒ z = y
shows graph (domain g) (funct g) = g
unfolding domain-def funct-def graph-def

proof auto
fix a b assume g: (a, b) ∈ g
from g show (a, SOME y. (a, y) ∈ g) ∈ g by (rule someI2 )
from g show ∃ y. (a, y) ∈ g ..
from g show b = (SOME y. (a, y) ∈ g)
proof (rule some-equality [symmetric])

fix y assume (a, y) ∈ g
with g show y = b by (rule uniq)

qed
qed

7.4 Norm-preserving extensions of a function
Given a linear form f on the space F and a seminorm p on E. The set of all
linear extensions of f, to superspaces H of F, which are bounded by p, is defined
as follows.
definition

norm-pres-extensions ::
′a::{plus,minus,uminus,zero} set ⇒ ( ′a ⇒ real) ⇒ ′a set ⇒ ( ′a ⇒ real)
⇒ ′a graph set

where
norm-pres-extensions E p F f
= {g. ∃H h. g = graph H h

∧ linearform H h
∧ H � E
∧ F � H
∧ graph F f ⊆ graph H h
∧ (∀ x ∈ H . h x ≤ p x)}
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lemma norm-pres-extensionE [elim]:
assumes g ∈ norm-pres-extensions E p F f
obtains H h

where g = graph H h
and linearform H h
and H � E
and F � H
and graph F f ⊆ graph H h
and ∀ x ∈ H . h x ≤ p x

using assms unfolding norm-pres-extensions-def by blast

lemma norm-pres-extensionI2 [intro]:
linearform H h =⇒ H � E =⇒ F � H
=⇒ graph F f ⊆ graph H h =⇒ ∀ x ∈ H . h x ≤ p x
=⇒ graph H h ∈ norm-pres-extensions E p F f

unfolding norm-pres-extensions-def by blast

lemma norm-pres-extensionI :
∃H h. g = graph H h
∧ linearform H h
∧ H � E
∧ F � H
∧ graph F f ⊆ graph H h
∧ (∀ x ∈ H . h x ≤ p x) =⇒ g ∈ norm-pres-extensions E p F f

unfolding norm-pres-extensions-def by blast

end

8 The norm of a function
theory Function-Norm
imports Normed-Space Function-Order
begin

8.1 Continuous linear forms
A linear form f on a normed vector space (V , ‖·‖) is continuous, iff it is bounded,
i.e.

∃ c ∈ R. ∀ x ∈ V . |f x| ≤ c · ‖x‖

In our application no other functions than linear forms are considered, so we
can define continuous linear forms as bounded linear forms:
locale continuous = linearform +

fixes norm :: - ⇒ real (‹‖-‖›)
assumes bounded: ∃ c. ∀ x ∈ V . |f x| ≤ c ∗ ‖x‖

declare continuous.intro [intro?] continuous-axioms.intro [intro?]

lemma continuousI [intro]:
fixes norm :: - ⇒ real (‹‖-‖›)
assumes linearform V f
assumes r :

∧
x. x ∈ V =⇒ |f x| ≤ c ∗ ‖x‖
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shows continuous V f norm
proof

show linearform V f by fact
from r have ∃ c. ∀ x∈V . |f x| ≤ c ∗ ‖x‖ by blast
then show continuous-axioms V f norm ..

qed

8.2 The norm of a linear form
The least real number c for which holds

∀ x ∈ V . |f x| ≤ c · ‖x‖

is called the norm of f.
For non-trivial vector spaces V 6= {0} the norm can be defined as

‖f ‖ = sup x 6= 0 . |f x| / ‖x‖

For the case V = {0} the supremum would be taken from an empty set. Since
� is unbounded, there would be no supremum. To avoid this situation it must
be guaranteed that there is an element in this set. This element must be {} ≥
0 so that fn-norm has the norm properties. Furthermore it does not have to
change the norm in all other cases, so it must be 0, as all other elements are {}
≥ 0.
Thus we define the set B where the supremum is taken from as follows:

{0} ∪ {|f x| / ‖x‖. x 6= 0 ∧ x ∈ F}

fn-norm is equal to the supremum of B, if the supremum exists (otherwise it is
undefined).
locale fn-norm =

fixes norm :: - ⇒ real (‹‖-‖›)
fixes B defines B V f ≡ {0} ∪ {|f x| / ‖x‖ | x. x 6= 0 ∧ x ∈ V}
fixes fn-norm (‹‖-‖--› [0 , 1000 ] 999 )
defines ‖f ‖-V ≡

⊔
(B V f )

locale normed-vectorspace-with-fn-norm = normed-vectorspace + fn-norm

lemma (in fn-norm) B-not-empty [intro]: 0 ∈ B V f
by (simp add: B-def )

The following lemma states that every continuous linear form on a normed space
(V , ‖·‖) has a function norm.
lemma (in normed-vectorspace-with-fn-norm) fn-norm-works:

assumes continuous V f norm
shows lub (B V f ) (‖f ‖-V )

proof −
interpret continuous V f norm by fact

The existence of the supremum is shown using the completeness of the reals. Com-
pleteness means, that every non-empty bounded set of reals has a supremum.

have ∃ a. lub (B V f ) a
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proof (rule real-complete)

First we have to show that B is non-empty:

have 0 ∈ B V f ..
then show ∃ x. x ∈ B V f ..

Then we have to show that B is bounded:

show ∃ c. ∀ y ∈ B V f . y ≤ c
proof −

We know that f is bounded by some value c.

from bounded obtain c where c: ∀ x ∈ V . |f x| ≤ c ∗ ‖x‖ ..

To prove the thesis, we have to show that there is some b, such that y ≤ b for all y ∈
B. Due to the definition of B there are two cases.

define b where b = max c 0
have ∀ y ∈ B V f . y ≤ b
proof

fix y assume y: y ∈ B V f
show y ≤ b
proof (cases y = 0 )

case True
then show ?thesis unfolding b-def by arith

next

The second case is y = |f x| / ‖x‖ for some x ∈ V with x 6= 0.

case False
with y obtain x where y-rep: y = |f x| ∗ inverse ‖x‖

and x: x ∈ V and neq: x 6= 0
by (auto simp add: B-def divide-inverse)

from x neq have gt: 0 < ‖x‖ ..

The thesis follows by a short calculation using the fact that f is bounded.

note y-rep
also have |f x| ∗ inverse ‖x‖ ≤ (c ∗ ‖x‖) ∗ inverse ‖x‖
proof (rule mult-right-mono)

from c x show |f x| ≤ c ∗ ‖x‖ ..
from gt have 0 < inverse ‖x‖

by (rule positive-imp-inverse-positive)
then show 0 ≤ inverse ‖x‖ by (rule order-less-imp-le)

qed
also have . . . = c ∗ (‖x‖ ∗ inverse ‖x‖)

by (rule Groups.mult.assoc)
also
from gt have ‖x‖ 6= 0 by simp
then have ‖x‖ ∗ inverse ‖x‖ = 1 by simp
also have c ∗ 1 ≤ b by (simp add: b-def )
finally show y ≤ b .

qed
qed
then show ?thesis ..

qed
qed
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then show ?thesis unfolding fn-norm-def by (rule the-lubI-ex)
qed

lemma (in normed-vectorspace-with-fn-norm) fn-norm-ub [intro?]:
assumes continuous V f norm
assumes b: b ∈ B V f
shows b ≤ ‖f ‖-V

proof −
interpret continuous V f norm by fact
have lub (B V f ) (‖f ‖-V )

using ‹continuous V f norm› by (rule fn-norm-works)
from this and b show ?thesis ..

qed

lemma (in normed-vectorspace-with-fn-norm) fn-norm-leastB:
assumes continuous V f norm
assumes b:

∧
b. b ∈ B V f =⇒ b ≤ y

shows ‖f ‖-V ≤ y
proof −

interpret continuous V f norm by fact
have lub (B V f ) (‖f ‖-V )

using ‹continuous V f norm› by (rule fn-norm-works)
from this and b show ?thesis ..

qed

The norm of a continuous function is always ≥ 0.
lemma (in normed-vectorspace-with-fn-norm) fn-norm-ge-zero [iff ]:

assumes continuous V f norm
shows 0 ≤ ‖f ‖-V

proof −
interpret continuous V f norm by fact

The function norm is defined as the supremum of B. So it is ≥ 0 if all elements in B
are ≥ 0, provided the supremum exists and B is not empty.

have lub (B V f ) (‖f ‖-V )
using ‹continuous V f norm› by (rule fn-norm-works)

moreover have 0 ∈ B V f ..
ultimately show ?thesis ..

qed

The fundamental property of function norms is:

|f x| ≤ ‖f ‖ · ‖x‖

lemma (in normed-vectorspace-with-fn-norm) fn-norm-le-cong:
assumes continuous V f norm linearform V f
assumes x: x ∈ V
shows |f x| ≤ ‖f ‖-V ∗ ‖x‖

proof −
interpret continuous V f norm by fact
interpret linearform V f by fact
show ?thesis
proof (cases x = 0 )
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case True
then have |f x| = |f 0 | by simp
also have f 0 = 0 by rule unfold-locales
also have |. . .| = 0 by simp
also have a: 0 ≤ ‖f ‖-V

using ‹continuous V f norm› by (rule fn-norm-ge-zero)
from x have 0 ≤ norm x ..
with a have 0 ≤ ‖f ‖-V ∗ ‖x‖ by (simp add: zero-le-mult-iff )
finally show |f x| ≤ ‖f ‖-V ∗ ‖x‖ .

next
case False
with x have neq: ‖x‖ 6= 0 by simp
then have |f x| = (|f x| ∗ inverse ‖x‖) ∗ ‖x‖ by simp
also have . . . ≤ ‖f ‖-V ∗ ‖x‖
proof (rule mult-right-mono)

from x show 0 ≤ ‖x‖ ..
from x and neq have |f x| ∗ inverse ‖x‖ ∈ B V f

by (auto simp add: B-def divide-inverse)
with ‹continuous V f norm› show |f x| ∗ inverse ‖x‖ ≤ ‖f ‖-V

by (rule fn-norm-ub)
qed
finally show ?thesis .

qed
qed

The function norm is the least positive real number for which the following
inequality holds:

|f x| ≤ c · ‖x‖

lemma (in normed-vectorspace-with-fn-norm) fn-norm-least [intro?]:
assumes continuous V f norm
assumes ineq:

∧
x. x ∈ V =⇒ |f x| ≤ c ∗ ‖x‖ and ge: 0 ≤ c

shows ‖f ‖-V ≤ c
proof −

interpret continuous V f norm by fact
show ?thesis
proof (rule fn-norm-leastB [folded B-def fn-norm-def ])

fix b assume b: b ∈ B V f
show b ≤ c
proof (cases b = 0 )

case True
with ge show ?thesis by simp

next
case False
with b obtain x where b-rep: b = |f x| ∗ inverse ‖x‖

and x-neq: x 6= 0 and x: x ∈ V
by (auto simp add: B-def divide-inverse)

note b-rep
also have |f x| ∗ inverse ‖x‖ ≤ (c ∗ ‖x‖) ∗ inverse ‖x‖
proof (rule mult-right-mono)

have 0 < ‖x‖ using x x-neq ..
then show 0 ≤ inverse ‖x‖ by simp
from x show |f x| ≤ c ∗ ‖x‖ by (rule ineq)
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qed
also have . . . = c
proof −

from x-neq and x have ‖x‖ 6= 0 by simp
then show ?thesis by simp

qed
finally show ?thesis .

qed
qed (use ‹continuous V f norm› in ‹simp-all add: continuous-def ›)

qed

end

9 Zorn’s Lemma
theory Zorn-Lemma
imports Main
begin

Zorn’s Lemmas states: if every linear ordered subset of an ordered set S has an
upper bound in S, then there exists a maximal element in S. In our application,
S is a set of sets ordered by set inclusion. Since the union of a chain of sets is
an upper bound for all elements of the chain, the conditions of Zorn’s lemma
can be modified: if S is non-empty, it suffices to show that for every non-empty
chain c in S the union of c also lies in S.
theorem Zorn ′s-Lemma:

assumes r :
∧

c. c ∈ chains S =⇒ ∃ x. x ∈ c =⇒
⋃

c ∈ S
and aS : a ∈ S

shows ∃ y ∈ S . ∀ z ∈ S . y ⊆ z −→ z = y
proof (rule Zorn-Lemma2 )

show ∀ c ∈ chains S . ∃ y ∈ S . ∀ z ∈ c. z ⊆ y
proof

fix c assume c ∈ chains S
show ∃ y ∈ S . ∀ z ∈ c. z ⊆ y
proof (cases c = {})

If c is an empty chain, then every element in S is an upper bound of c.

case True
with aS show ?thesis by fast

next

If c is non-empty, then
⋃

c is an upper bound of c, lying in S.

case False
show ?thesis
proof

show ∀ z ∈ c. z ⊆
⋃

c by fast
show

⋃
c ∈ S

proof (rule r)
from ‹c 6= {}› show ∃ x. x ∈ c by fast
show c ∈ chains S by fact

qed
qed
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qed
qed

qed

end
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Part II

Lemmas for the Proof
10 The supremum wrt. the function order
theory Hahn-Banach-Sup-Lemmas
imports Function-Norm Zorn-Lemma
begin

This section contains some lemmas that will be used in the proof of the Hahn-
Banach Theorem. In this section the following context is presumed. Let E be
a real vector space with a seminorm p on E. F is a subspace of E and f a linear
form on F. We consider a chain c of norm-preserving extensions of f, such that⋃

c = graph H h. We will show some properties about the limit function h, i.e.
the supremum of the chain c.

Let c be a chain of norm-preserving extensions of the function f and let graph H
h be the supremum of c. Every element in H is member of one of the elements
of the chain.
lemmas [dest?] = chainsD
lemmas chainsE2 [elim?] = chainsD2 [elim-format]

lemma some-H ′h ′t:
assumes M : M = norm-pres-extensions E p F f

and cM : c ∈ chains M
and u: graph H h =

⋃
c

and x: x ∈ H
shows ∃H ′ h ′. graph H ′ h ′ ∈ c
∧ (x, h x) ∈ graph H ′ h ′

∧ linearform H ′ h ′ ∧ H ′ � E
∧ F � H ′ ∧ graph F f ⊆ graph H ′ h ′

∧ (∀ x ∈ H ′. h ′ x ≤ p x)
proof −

from x have (x, h x) ∈ graph H h ..
also from u have . . . =

⋃
c .

finally obtain g where gc: g ∈ c and gh: (x, h x) ∈ g by blast

from cM have c ⊆ M ..
with gc have g ∈ M ..
also from M have . . . = norm-pres-extensions E p F f .
finally obtain H ′ and h ′ where g: g = graph H ′ h ′

and ∗ : linearform H ′ h ′ H ′ � E F � H ′

graph F f ⊆ graph H ′ h ′ ∀ x ∈ H ′. h ′ x ≤ p x ..

from gc and g have graph H ′ h ′ ∈ c by (simp only:)
moreover from gh and g have (x, h x) ∈ graph H ′ h ′ by (simp only:)
ultimately show ?thesis using ∗ by blast

qed

Let c be a chain of norm-preserving extensions of the function f and let graph
H h be the supremum of c. Every element in the domain H of the supremum
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function is member of the domain H ′ of some function h ′, such that h extends
h ′.
lemma some-H ′h ′:

assumes M : M = norm-pres-extensions E p F f
and cM : c ∈ chains M
and u: graph H h =

⋃
c

and x: x ∈ H
shows ∃H ′ h ′. x ∈ H ′ ∧ graph H ′ h ′ ⊆ graph H h
∧ linearform H ′ h ′ ∧ H ′ � E ∧ F � H ′

∧ graph F f ⊆ graph H ′ h ′ ∧ (∀ x ∈ H ′. h ′ x ≤ p x)
proof −

from M cM u x obtain H ′ h ′ where
x-hx: (x, h x) ∈ graph H ′ h ′

and c: graph H ′ h ′ ∈ c
and ∗ : linearform H ′ h ′ H ′ � E F � H ′

graph F f ⊆ graph H ′ h ′ ∀ x ∈ H ′. h ′ x ≤ p x
by (rule some-H ′h ′t [elim-format]) blast

from x-hx have x ∈ H ′ ..
moreover from cM u c have graph H ′ h ′ ⊆ graph H h by blast
ultimately show ?thesis using ∗ by blast

qed

Any two elements x and y in the domain H of the supremum function h are
both in the domain H ′ of some function h ′, such that h extends h ′.
lemma some-H ′h ′2 :

assumes M : M = norm-pres-extensions E p F f
and cM : c ∈ chains M
and u: graph H h =

⋃
c

and x: x ∈ H
and y: y ∈ H

shows ∃H ′ h ′. x ∈ H ′ ∧ y ∈ H ′

∧ graph H ′ h ′ ⊆ graph H h
∧ linearform H ′ h ′ ∧ H ′ � E ∧ F � H ′

∧ graph F f ⊆ graph H ′ h ′ ∧ (∀ x ∈ H ′. h ′ x ≤ p x)
proof −

y is in the domain H ′′ of some function h ′′, such that h extends h ′′.

from M cM u and y obtain H ′ h ′ where
y-hy: (y, h y) ∈ graph H ′ h ′

and c ′: graph H ′ h ′ ∈ c
and ∗ :

linearform H ′ h ′ H ′ � E F � H ′

graph F f ⊆ graph H ′ h ′ ∀ x ∈ H ′. h ′ x ≤ p x
by (rule some-H ′h ′t [elim-format]) blast

x is in the domain H ′ of some function h ′, such that h extends h ′.

from M cM u and x obtain H ′′ h ′′ where
x-hx: (x, h x) ∈ graph H ′′ h ′′

and c ′′: graph H ′′ h ′′ ∈ c
and ∗∗ :

linearform H ′′ h ′′ H ′′ � E F � H ′′

graph F f ⊆ graph H ′′ h ′′ ∀ x ∈ H ′′. h ′′ x ≤ p x
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by (rule some-H ′h ′t [elim-format]) blast

Since both h ′ and h ′′ are elements of the chain, h ′′ is an extension of h ′ or vice versa.
Thus both x and y are contained in the greater one.

from cM c ′′ c ′ consider graph H ′′ h ′′ ⊆ graph H ′ h ′ | graph H ′ h ′ ⊆ graph H ′′ h ′′

by (blast dest: chainsD)
then show ?thesis
proof cases

case 1
have (x, h x) ∈ graph H ′′ h ′′ by fact
also have . . . ⊆ graph H ′ h ′ by fact
finally have xh:(x, h x) ∈ graph H ′ h ′ .
then have x ∈ H ′ ..
moreover from y-hy have y ∈ H ′ ..
moreover from cM u and c ′ have graph H ′ h ′ ⊆ graph H h by blast
ultimately show ?thesis using ∗ by blast

next
case 2
from x-hx have x ∈ H ′′ ..
moreover have y ∈ H ′′

proof −
have (y, h y) ∈ graph H ′ h ′ by (rule y-hy)
also have . . . ⊆ graph H ′′ h ′′ by fact
finally have (y, h y) ∈ graph H ′′ h ′′ .
then show ?thesis ..

qed
moreover from u c ′′ have graph H ′′ h ′′ ⊆ graph H h by blast
ultimately show ?thesis using ∗∗ by blast

qed
qed

The relation induced by the graph of the supremum of a chain c is definite, i.e.
it is the graph of a function.

lemma sup-definite:
assumes M-def : M = norm-pres-extensions E p F f

and cM : c ∈ chains M
and xy: (x, y) ∈

⋃
c

and xz: (x, z) ∈
⋃

c
shows z = y

proof −
from cM have c: c ⊆ M ..
from xy obtain G1 where xy ′: (x, y) ∈ G1 and G1 : G1 ∈ c ..
from xz obtain G2 where xz ′: (x, z) ∈ G2 and G2 : G2 ∈ c ..

from G1 c have G1 ∈ M ..
then obtain H1 h1 where G1-rep: G1 = graph H1 h1

unfolding M-def by blast

from G2 c have G2 ∈ M ..
then obtain H2 h2 where G2-rep: G2 = graph H2 h2

unfolding M-def by blast

G1 is contained in G2 or vice versa, since both G1 and G2 are members of c.
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from cM G1 G2 consider G1 ⊆ G2 | G2 ⊆ G1
by (blast dest: chainsD)

then show ?thesis
proof cases

case 1
with xy ′ G2-rep have (x, y) ∈ graph H2 h2 by blast
then have y = h2 x ..
also
from xz ′ G2-rep have (x, z) ∈ graph H2 h2 by (simp only:)
then have z = h2 x ..
finally show ?thesis .

next
case 2
with xz ′ G1-rep have (x, z) ∈ graph H1 h1 by blast
then have z = h1 x ..
also
from xy ′ G1-rep have (x, y) ∈ graph H1 h1 by (simp only:)
then have y = h1 x ..
finally show ?thesis ..

qed
qed

The limit function h is linear. Every element x in the domain of h is in the
domain of a function h ′ in the chain of norm preserving extensions. Furthermore,
h is an extension of h ′ so the function values of x are identical for h ′ and h.
Finally, the function h ′ is linear by construction of M.

lemma sup-lf :
assumes M : M = norm-pres-extensions E p F f

and cM : c ∈ chains M
and u: graph H h =

⋃
c

shows linearform H h
proof

fix x y assume x: x ∈ H and y: y ∈ H
with M cM u obtain H ′ h ′ where

x ′: x ∈ H ′ and y ′: y ∈ H ′

and b: graph H ′ h ′ ⊆ graph H h
and linearform: linearform H ′ h ′

and subspace: H ′ � E
by (rule some-H ′h ′2 [elim-format]) blast

show h (x + y) = h x + h y
proof −

from linearform x ′ y ′ have h ′ (x + y) = h ′ x + h ′ y
by (rule linearform.add)

also from b x ′ have h ′ x = h x ..
also from b y ′ have h ′ y = h y ..
also from subspace x ′ y ′ have x + y ∈ H ′

by (rule subspace.add-closed)
with b have h ′ (x + y) = h (x + y) ..
finally show ?thesis .

qed
next

fix x a assume x: x ∈ H
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with M cM u obtain H ′ h ′ where
x ′: x ∈ H ′

and b: graph H ′ h ′ ⊆ graph H h
and linearform: linearform H ′ h ′

and subspace: H ′ � E
by (rule some-H ′h ′ [elim-format]) blast

show h (a · x) = a ∗ h x
proof −

from linearform x ′ have h ′ (a · x) = a ∗ h ′ x
by (rule linearform.mult)

also from b x ′ have h ′ x = h x ..
also from subspace x ′ have a · x ∈ H ′

by (rule subspace.mult-closed)
with b have h ′ (a · x) = h (a · x) ..
finally show ?thesis .

qed
qed

The limit of a non-empty chain of norm preserving extensions of f is an extension
of f, since every element of the chain is an extension of f and the supremum is
an extension for every element of the chain.
lemma sup-ext:

assumes graph: graph H h =
⋃

c
and M : M = norm-pres-extensions E p F f
and cM : c ∈ chains M
and ex: ∃ x. x ∈ c

shows graph F f ⊆ graph H h
proof −

from ex obtain x where xc: x ∈ c ..
from cM have c ⊆ M ..
with xc have x ∈ M ..
with M have x ∈ norm-pres-extensions E p F f

by (simp only:)
then obtain G g where x = graph G g and graph F f ⊆ graph G g ..
then have graph F f ⊆ x by (simp only:)
also from xc have . . . ⊆

⋃
c by blast

also from graph have . . . = graph H h ..
finally show ?thesis .

qed

The domain H of the limit function is a superspace of F, since F is a subset of
H. The existence of the 0 element in F and the closure properties follow from
the fact that F is a vector space.
lemma sup-supF :

assumes graph: graph H h =
⋃

c
and M : M = norm-pres-extensions E p F f
and cM : c ∈ chains M
and ex: ∃ x. x ∈ c
and FE : F � E

shows F � H
proof



38 10 THE SUPREMUM WRT. THE FUNCTION ORDER

from FE show F 6= {} by (rule subspace.non-empty)
from graph M cM ex have graph F f ⊆ graph H h by (rule sup-ext)
then show F ⊆ H ..
show x + y ∈ F if x ∈ F and y ∈ F for x y

using FE that by (rule subspace.add-closed)
show a · x ∈ F if x ∈ F for x a

using FE that by (rule subspace.mult-closed)
qed

The domain H of the limit function is a subspace of E.
lemma sup-subE :

assumes graph: graph H h =
⋃

c
and M : M = norm-pres-extensions E p F f
and cM : c ∈ chains M
and ex: ∃ x. x ∈ c
and FE : F � E
and E : vectorspace E

shows H � E
proof

show H 6= {}
proof −

from FE E have 0 ∈ F by (rule subspace.zero)
also from graph M cM ex FE have F � H by (rule sup-supF)
then have F ⊆ H ..
finally show ?thesis by blast

qed
show H ⊆ E
proof

fix x assume x ∈ H
with M cM graph
obtain H ′ where x: x ∈ H ′ and H ′E : H ′ � E

by (rule some-H ′h ′ [elim-format]) blast
from H ′E have H ′ ⊆ E ..
with x show x ∈ E ..

qed
fix x y assume x: x ∈ H and y: y ∈ H
show x + y ∈ H
proof −

from M cM graph x y obtain H ′ h ′ where
x ′: x ∈ H ′ and y ′: y ∈ H ′ and H ′E : H ′ � E

and graphs: graph H ′ h ′ ⊆ graph H h
by (rule some-H ′h ′2 [elim-format]) blast

from H ′E x ′ y ′ have x + y ∈ H ′

by (rule subspace.add-closed)
also from graphs have H ′ ⊆ H ..
finally show ?thesis .

qed
next

fix x a assume x: x ∈ H
show a · x ∈ H
proof −

from M cM graph x
obtain H ′ h ′ where x ′: x ∈ H ′ and H ′E : H ′ � E

and graphs: graph H ′ h ′ ⊆ graph H h
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by (rule some-H ′h ′ [elim-format]) blast
from H ′E x ′ have a · x ∈ H ′ by (rule subspace.mult-closed)
also from graphs have H ′ ⊆ H ..
finally show ?thesis .

qed
qed

The limit function is bounded by the norm p as well, since all elements in the
chain are bounded by p.
lemma sup-norm-pres:

assumes graph: graph H h =
⋃

c
and M : M = norm-pres-extensions E p F f
and cM : c ∈ chains M

shows ∀ x ∈ H . h x ≤ p x
proof

fix x assume x ∈ H
with M cM graph obtain H ′ h ′ where x ′: x ∈ H ′

and graphs: graph H ′ h ′ ⊆ graph H h
and a: ∀ x ∈ H ′. h ′ x ≤ p x

by (rule some-H ′h ′ [elim-format]) blast
from graphs x ′ have [symmetric]: h ′ x = h x ..
also from a x ′ have h ′ x ≤ p x ..
finally show h x ≤ p x .

qed

The following lemma is a property of linear forms on real vector spaces. It will
be used for the lemma abs-Hahn-Banach (see page 51). For real vector spaces
the following inequality are equivalent:

∀ x ∈ H . |h x| ≤ p x and ∀ x ∈ H . h x ≤ p x

lemma abs-ineq-iff :
assumes subspace H E and vectorspace E and seminorm E p

and linearform H h
shows (∀ x ∈ H . |h x| ≤ p x) = (∀ x ∈ H . h x ≤ p x) (is ?L = ?R)

proof
interpret subspace H E by fact
interpret vectorspace E by fact
interpret seminorm E p by fact
interpret linearform H h by fact
have H : vectorspace H using ‹vectorspace E› ..
show ?R if l: ?L
proof

fix x assume x: x ∈ H
have h x ≤ |h x| by arith
also from l x have . . . ≤ p x ..
finally show h x ≤ p x .

qed
show ?L if r : ?R
proof

fix x assume x: x ∈ H
show |b| ≤ a when − a ≤ b b ≤ a for a b :: real

using that by arith
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from ‹linearform H h› and H x
have − h x = h (− x) by (rule linearform.neg [symmetric])
also
from H x have − x ∈ H by (rule vectorspace.neg-closed)
with r have h (− x) ≤ p (− x) ..
also have . . . = p x

using ‹seminorm E p› ‹vectorspace E›
proof (rule seminorm.minus)

from x show x ∈ E ..
qed
finally have − h x ≤ p x .
then show − p x ≤ h x by simp
from r x show h x ≤ p x ..

qed
qed

end

11 Extending non-maximal functions
theory Hahn-Banach-Ext-Lemmas
imports Function-Norm
begin

In this section the following context is presumed. Let E be a real vector space
with a seminorm q on E. F is a subspace of E and f a linear function on F. We
consider a subspace H of E that is a superspace of F and a linear form h on
H. H is a not equal to E and x0 is an element in E − H. H is extended to the
direct sum H ′ = H + lin x0, so for any x ∈ H ′ the decomposition of x = y +
a · x with y ∈ H is unique. h ′ is defined on H ′ by h ′ x = h y + a · ξ for a
certain ξ.
Subsequently we show some properties of this extension h ′ of h.

This lemma will be used to show the existence of a linear extension of f (see
page 48). It is a consequence of the completeness of �. To show

∃ ξ. ∀ y ∈ F . a y ≤ ξ ∧ ξ ≤ b y

it suffices to show that

∀ u ∈ F . ∀ v ∈ F . a u ≤ b v

lemma ex-xi:
assumes vectorspace F
assumes r :

∧
u v. u ∈ F =⇒ v ∈ F =⇒ a u ≤ b v

shows ∃ xi::real. ∀ y ∈ F . a y ≤ xi ∧ xi ≤ b y
proof −

interpret vectorspace F by fact

From the completeness of the reals follows: The set S = {a u. u ∈ F} has a supremum,
if it is non-empty and has an upper bound.

let ?S = {a u | u. u ∈ F}
have ∃ xi. lub ?S xi
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proof (rule real-complete)
have a 0 ∈ ?S by blast
then show ∃X . X ∈ ?S ..
have ∀ y ∈ ?S . y ≤ b 0
proof

fix y assume y: y ∈ ?S
then obtain u where u: u ∈ F and y: y = a u by blast
from u and zero have a u ≤ b 0 by (rule r)
with y show y ≤ b 0 by (simp only:)

qed
then show ∃ u. ∀ y ∈ ?S . y ≤ u ..

qed
then obtain xi where xi: lub ?S xi ..
have a y ≤ xi if y ∈ F for y
proof −

from that have a y ∈ ?S by blast
with xi show ?thesis by (rule lub.upper)

qed
moreover have xi ≤ b y if y: y ∈ F for y
proof −

from xi
show ?thesis
proof (rule lub.least)

fix au assume au ∈ ?S
then obtain u where u: u ∈ F and au: au = a u by blast
from u y have a u ≤ b y by (rule r)
with au show au ≤ b y by (simp only:)

qed
qed
ultimately show ∃ xi. ∀ y ∈ F . a y ≤ xi ∧ xi ≤ b y by blast

qed

The function h ′ is defined as a h ′ x = h y + a · ξ where x = y + a · ξ is a
linear extension of h to H ′.

lemma h ′-lf :
assumes h ′-def :

∧
x. h ′ x = (let (y, a) =

SOME (y, a). x = y + a · x0 ∧ y ∈ H in h y + a ∗ xi)
and H ′-def : H ′ = H + lin x0
and HE : H � E

assumes linearform H h
assumes x0 : x0 /∈ H x0 ∈ E x0 6= 0
assumes E : vectorspace E
shows linearform H ′ h ′

proof −
interpret linearform H h by fact
interpret vectorspace E by fact
show ?thesis
proof

note E = ‹vectorspace E›
have H ′: vectorspace H ′

proof (unfold H ′-def )
from ‹x0 ∈ E›
have lin x0 � E ..
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with HE show vectorspace (H + lin x0 ) using E ..
qed
show h ′ (x1 + x2 ) = h ′ x1 + h ′ x2 if x1 : x1 ∈ H ′ and x2 : x2 ∈ H ′ for x1 x2
proof −

from H ′ x1 x2 have x1 + x2 ∈ H ′

by (rule vectorspace.add-closed)
with x1 x2 obtain y y1 y2 a a1 a2 where

x1x2 : x1 + x2 = y + a · x0 and y: y ∈ H
and x1-rep: x1 = y1 + a1 · x0 and y1 : y1 ∈ H
and x2-rep: x2 = y2 + a2 · x0 and y2 : y2 ∈ H
unfolding H ′-def sum-def lin-def by blast

have ya: y1 + y2 = y ∧ a1 + a2 = a using E HE - y x0
proof (rule decomp-H ′) from HE y1 y2 show y1 + y2 ∈ H

by (rule subspace.add-closed)
from x0 and HE y y1 y2
have x0 ∈ E y ∈ E y1 ∈ E y2 ∈ E by auto
with x1-rep x2-rep have (y1 + y2 ) + (a1 + a2 ) · x0 = x1 + x2

by (simp add: add-ac add-mult-distrib2 )
also note x1x2
finally show (y1 + y2 ) + (a1 + a2 ) · x0 = y + a · x0 .

qed

from h ′-def x1x2 E HE y x0
have h ′ (x1 + x2 ) = h y + a ∗ xi

by (rule h ′-definite)
also have . . . = h (y1 + y2 ) + (a1 + a2 ) ∗ xi

by (simp only: ya)
also from y1 y2 have h (y1 + y2 ) = h y1 + h y2

by simp
also have . . . + (a1 + a2 ) ∗ xi = (h y1 + a1 ∗ xi) + (h y2 + a2 ∗ xi)

by (simp add: distrib-right)
also from h ′-def x1-rep E HE y1 x0
have h y1 + a1 ∗ xi = h ′ x1

by (rule h ′-definite [symmetric])
also from h ′-def x2-rep E HE y2 x0
have h y2 + a2 ∗ xi = h ′ x2

by (rule h ′-definite [symmetric])
finally show ?thesis .

qed
show h ′ (c · x1 ) = c ∗ (h ′ x1 ) if x1 : x1 ∈ H ′ for x1 c
proof −

from H ′ x1 have ax1 : c · x1 ∈ H ′

by (rule vectorspace.mult-closed)
with x1 obtain y a y1 a1 where

cx1-rep: c · x1 = y + a · x0 and y: y ∈ H
and x1-rep: x1 = y1 + a1 · x0 and y1 : y1 ∈ H
unfolding H ′-def sum-def lin-def by blast

have ya: c · y1 = y ∧ c ∗ a1 = a using E HE - y x0
proof (rule decomp-H ′)

from HE y1 show c · y1 ∈ H
by (rule subspace.mult-closed)

from x0 and HE y y1
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have x0 ∈ E y ∈ E y1 ∈ E by auto
with x1-rep have c · y1 + (c ∗ a1 ) · x0 = c · x1

by (simp add: mult-assoc add-mult-distrib1 )
also note cx1-rep
finally show c · y1 + (c ∗ a1 ) · x0 = y + a · x0 .

qed

from h ′-def cx1-rep E HE y x0 have h ′ (c · x1 ) = h y + a ∗ xi
by (rule h ′-definite)

also have . . . = h (c · y1 ) + (c ∗ a1 ) ∗ xi
by (simp only: ya)

also from y1 have h (c · y1 ) = c ∗ h y1
by simp

also have . . . + (c ∗ a1 ) ∗ xi = c ∗ (h y1 + a1 ∗ xi)
by (simp only: distrib-left)

also from h ′-def x1-rep E HE y1 x0 have h y1 + a1 ∗ xi = h ′ x1
by (rule h ′-definite [symmetric])

finally show ?thesis .
qed

qed
qed

The linear extension h ′ of h is bounded by the seminorm p.
lemma h ′-norm-pres:

assumes h ′-def :
∧

x. h ′ x = (let (y, a) =
SOME (y, a). x = y + a · x0 ∧ y ∈ H in h y + a ∗ xi)

and H ′-def : H ′ = H + lin x0
and x0 : x0 /∈ H x0 ∈ E x0 6= 0

assumes E : vectorspace E and HE : subspace H E
and seminorm E p and linearform H h

assumes a: ∀ y ∈ H . h y ≤ p y
and a ′: ∀ y ∈ H . − p (y + x0 ) − h y ≤ xi ∧ xi ≤ p (y + x0 ) − h y

shows ∀ x ∈ H ′. h ′ x ≤ p x
proof −

interpret vectorspace E by fact
interpret subspace H E by fact
interpret seminorm E p by fact
interpret linearform H h by fact
show ?thesis
proof

fix x assume x ′: x ∈ H ′

show h ′ x ≤ p x
proof −

from a ′ have a1 : ∀ ya ∈ H . − p (ya + x0 ) − h ya ≤ xi
and a2 : ∀ ya ∈ H . xi ≤ p (ya + x0 ) − h ya by auto

from x ′ obtain y a where
x-rep: x = y + a · x0 and y: y ∈ H

unfolding H ′-def sum-def lin-def by blast
from y have y ′: y ∈ E ..
from y have ay: inverse a · y ∈ H by simp

from h ′-def x-rep E HE y x0 have h ′ x = h y + a ∗ xi
by (rule h ′-definite)

also have . . . ≤ p (y + a · x0 )
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proof (rule linorder-cases)
assume z: a = 0
then have h y + a ∗ xi = h y by simp
also from a y have . . . ≤ p y ..
also from x0 y ′ z have p y = p (y + a · x0 ) by simp
finally show ?thesis .

next

In the case a < 0, we use a1 with ya taken as y / a:

assume lz: a < 0 then have nz: a 6= 0 by simp
from a1 ay
have − p (inverse a · y + x0 ) − h (inverse a · y) ≤ xi ..
with lz have a ∗ xi ≤

a ∗ (− p (inverse a · y + x0 ) − h (inverse a · y))
by (simp add: mult-left-mono-neg order-less-imp-le)

also have . . . =
− a ∗ (p (inverse a · y + x0 )) − a ∗ (h (inverse a · y))
by (simp add: right-diff-distrib)

also from lz x0 y ′ have − a ∗ (p (inverse a · y + x0 )) =
p (a · (inverse a · y + x0 ))
by (simp add: abs-homogenous)

also from nz x0 y ′ have . . . = p (y + a · x0 )
by (simp add: add-mult-distrib1 mult-assoc [symmetric])

also from nz y have a ∗ (h (inverse a · y)) = h y
by simp

finally have a ∗ xi ≤ p (y + a · x0 ) − h y .
then show ?thesis by simp

next

In the case a > 0, we use a2 with ya taken as y / a:

assume gz: 0 < a then have nz: a 6= 0 by simp
from a2 ay
have xi ≤ p (inverse a · y + x0 ) − h (inverse a · y) ..
with gz have a ∗ xi ≤

a ∗ (p (inverse a · y + x0 ) − h (inverse a · y))
by simp

also have . . . = a ∗ p (inverse a · y + x0 ) − a ∗ h (inverse a · y)
by (simp add: right-diff-distrib)

also from gz x0 y ′

have a ∗ p (inverse a · y + x0 ) = p (a · (inverse a · y + x0 ))
by (simp add: abs-homogenous)

also from nz x0 y ′ have . . . = p (y + a · x0 )
by (simp add: add-mult-distrib1 mult-assoc [symmetric])

also from nz y have a ∗ h (inverse a · y) = h y
by simp

finally have a ∗ xi ≤ p (y + a · x0 ) − h y .
then show ?thesis by simp

qed
also from x-rep have . . . = p x by (simp only:)
finally show ?thesis .

qed
qed

qed
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end
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Part III

The Main Proof
12 The Hahn-Banach Theorem
theory Hahn-Banach
imports Hahn-Banach-Lemmas
begin

We present the proof of two different versions of the Hahn-Banach Theorem,
closely following [1, §36].

12.1 The Hahn-Banach Theorem for vector spaces
Hahn-Banach Theorem. Let F be a subspace of a real vector space E, let
p be a semi-norm on E, and f be a linear form defined on F such that f is
bounded by p, i.e. ∀ x ∈ F . f x ≤ p x. Then f can be extended to a linear form
h on E such that h is norm-preserving, i.e. h is also bounded by p.

Proof Sketch.

1. Define M as the set of norm-preserving extensions of f to subspaces of E.
The linear forms in M are ordered by domain extension.

2. We show that every non-empty chain in M has an upper bound in M.

3. With Zorn’s Lemma we conclude that there is a maximal function g in M.

4. The domain H of g is the whole space E, as shown by classical contradic-
tion:

• Assuming g is not defined on whole E, it can still be extended in a
norm-preserving way to a super-space H ′ of H.

• Thus g can not be maximal. Contradiction!

theorem Hahn-Banach:
assumes E : vectorspace E and subspace F E

and seminorm E p and linearform F f
assumes fp: ∀ x ∈ F . f x ≤ p x
shows ∃ h. linearform E h ∧ (∀ x ∈ F . h x = f x) ∧ (∀ x ∈ E . h x ≤ p x)

— Let E be a vector space, F a subspace of E, p a seminorm on E,
— and f a linear form on F such that f is bounded by p,
— then f can be extended to a linear form h on E in a norm-preserving way.

proof −
interpret vectorspace E by fact
interpret subspace F E by fact
interpret seminorm E p by fact
interpret linearform F f by fact
define M where M = norm-pres-extensions E p F f
then have M : M = . . . by (simp only:)
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from E have F : vectorspace F ..
note FE = ‹F � E›
have

⋃
c ∈ M if cM : c ∈ chains M and ex: ∃ x. x ∈ c for c

— Show that every non-empty chain c of M has an upper bound in M :
—

⋃
c is greater than any element of the chain c, so it suffices to show

⋃
c ∈ M.

unfolding M-def
proof (rule norm-pres-extensionI )

let ?H = domain (
⋃

c)
let ?h = funct (

⋃
c)

have a: graph ?H ?h =
⋃

c
proof (rule graph-domain-funct)

fix x y z assume (x, y) ∈
⋃

c and (x, z) ∈
⋃

c
with M-def cM show z = y by (rule sup-definite)

qed
moreover from M cM a have linearform ?H ?h

by (rule sup-lf )
moreover from a M cM ex FE E have ?H � E

by (rule sup-subE)
moreover from a M cM ex FE have F � ?H

by (rule sup-supF)
moreover from a M cM ex have graph F f ⊆ graph ?H ?h

by (rule sup-ext)
moreover from a M cM have ∀ x ∈ ?H . ?h x ≤ p x

by (rule sup-norm-pres)
ultimately show ∃H h.

⋃
c = graph H h

∧ linearform H h
∧ H � E
∧ F � H
∧ graph F f ⊆ graph H h
∧ (∀ x ∈ H . h x ≤ p x) by blast

qed
then have ∃ g ∈ M . ∀ x ∈ M . g ⊆ x −→ x = g
— With Zorn’s Lemma we can conclude that there is a maximal element in M.

proof (rule Zorn ′s-Lemma)
— We show that M is non-empty:

show graph F f ∈ M
unfolding M-def

proof (rule norm-pres-extensionI2 )
show linearform F f by fact
show F � E by fact
from F show F � F by (rule vectorspace.subspace-refl)
show graph F f ⊆ graph F f ..
show ∀ x∈F . f x ≤ p x by fact

qed
qed
then obtain g where gM : g ∈ M and gx: ∀ x ∈ M . g ⊆ x −→ g = x

by blast
from gM obtain H h where

g-rep: g = graph H h
and linearform: linearform H h
and HE : H � E and FH : F � H
and graphs: graph F f ⊆ graph H h
and hp: ∀ x ∈ H . h x ≤ p x unfolding M-def ..
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— g is a norm-preserving extension of f, in other words:
— g is the graph of some linear form h defined on a subspace H of E,
— and h is an extension of f that is again bounded by p.

from HE E have H : vectorspace H
by (rule subspace.vectorspace)

have HE-eq: H = E
— We show that h is defined on whole E by classical contradiction.

proof (rule classical)
assume neq: H 6= E

— Assume h is not defined on whole E. Then show that h can be extended
— in a norm-preserving way to a function h ′ with the graph g ′.

have ∃ g ′ ∈ M . g ⊆ g ′ ∧ g 6= g ′

proof −
from HE have H ⊆ E ..
with neq obtain x ′ where x ′E : x ′ ∈ E and x ′ /∈ H by blast
obtain x ′: x ′ 6= 0
proof

show x ′ 6= 0
proof

assume x ′ = 0
with H have x ′ ∈ H by (simp only: vectorspace.zero)
with ‹x ′ /∈ H › show False by contradiction

qed
qed

define H ′ where H ′ = H + lin x ′

— Define H ′ as the direct sum of H and the linear closure of x ′.
have HH ′: H � H ′

proof (unfold H ′-def )
from x ′E have vectorspace (lin x ′) ..
with H show H � H + lin x ′ ..

qed

obtain xi where
xi: ∀ y ∈ H . − p (y + x ′) − h y ≤ xi
∧ xi ≤ p (y + x ′) − h y

— Pick a real number ξ that fulfills certain inequality; this will
— be used to establish that h ′ is a norm-preserving extension of h.

proof −
from H have ∃ xi. ∀ y ∈ H . − p (y + x ′) − h y ≤ xi

∧ xi ≤ p (y + x ′) − h y
proof (rule ex-xi)

fix u v assume u: u ∈ H and v: v ∈ H
with HE have uE : u ∈ E and vE : v ∈ E by auto
from H u v linearform have h v − h u = h (v − u)

by (simp add: linearform.diff )
also from hp and H u v have . . . ≤ p (v − u)

by (simp only: vectorspace.diff-closed)
also from x ′E uE vE have v − u = x ′ + − x ′ + v + − u

by (simp add: diff-eq1 )
also from x ′E uE vE have . . . = v + x ′ + − (u + x ′)

by (simp add: add-ac)
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also from x ′E uE vE have . . . = (v + x ′) − (u + x ′)
by (simp add: diff-eq1 )

also from x ′E uE vE E have p . . . ≤ p (v + x ′) + p (u + x ′)
by (simp add: diff-subadditive)

finally have h v − h u ≤ p (v + x ′) + p (u + x ′) .
then show − p (u + x ′) − h u ≤ p (v + x ′) − h v by simp

qed
then show thesis by (blast intro: that)

qed

define h ′ where h ′ x = (let (y, a) =
SOME (y, a). x = y + a · x ′ ∧ y ∈ H in h y + a ∗ xi) for x

— Define the extension h ′ of h to H ′ using ξ.

have g ⊆ graph H ′ h ′ ∧ g 6= graph H ′ h ′

— h ′ is an extension of h . . .

proof
show g ⊆ graph H ′ h ′

proof −
have graph H h ⊆ graph H ′ h ′

proof (rule graph-extI )
fix t assume t: t ∈ H
from E HE t have (SOME (y, a). t = y + a · x ′ ∧ y ∈ H ) = (t, 0 )

using ‹x ′ /∈ H › ‹x ′ ∈ E› ‹x ′ 6= 0 › by (rule decomp-H ′-H )
with h ′-def show h t = h ′ t by (simp add: Let-def )

next
from HH ′ show H ⊆ H ′ ..

qed
with g-rep show ?thesis by (simp only:)

qed

show g 6= graph H ′ h ′

proof −
have graph H h 6= graph H ′ h ′

proof
assume eq: graph H h = graph H ′ h ′

have x ′ ∈ H ′

unfolding H ′-def
proof

from H show 0 ∈ H by (rule vectorspace.zero)
from x ′E show x ′ ∈ lin x ′ by (rule x-lin-x)
from x ′E show x ′ = 0 + x ′ by simp

qed
then have (x ′, h ′ x ′) ∈ graph H ′ h ′ ..
with eq have (x ′, h ′ x ′) ∈ graph H h by (simp only:)
then have x ′ ∈ H ..
with ‹x ′ /∈ H › show False by contradiction

qed
with g-rep show ?thesis by simp

qed
qed
moreover have graph H ′ h ′ ∈ M

— and h ′ is norm-preserving.
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proof (unfold M-def )
show graph H ′ h ′ ∈ norm-pres-extensions E p F f
proof (rule norm-pres-extensionI2 )

show linearform H ′ h ′

using h ′-def H ′-def HE linearform ‹x ′ /∈ H › ‹x ′ ∈ E› ‹x ′ 6= 0 › E
by (rule h ′-lf )

show H ′ � E
unfolding H ′-def
proof

show H � E by fact
show vectorspace E by fact
from x ′E show lin x ′ � E ..

qed
from H ‹F � H › HH ′ show FH ′: F � H ′

by (rule vectorspace.subspace-trans)
show graph F f ⊆ graph H ′ h ′

proof (rule graph-extI )
fix x assume x: x ∈ F
with graphs have f x = h x ..
also have . . . = h x + 0 ∗ xi by simp
also have . . . = (let (y, a) = (x, 0 ) in h y + a ∗ xi)

by (simp add: Let-def )
also have (x, 0 ) =

(SOME (y, a). x = y + a · x ′ ∧ y ∈ H )
using E HE

proof (rule decomp-H ′-H [symmetric])
from FH x show x ∈ H ..
from x ′ show x ′ 6= 0 .
show x ′ /∈ H by fact
show x ′ ∈ E by fact

qed
also have
(let (y, a) = (SOME (y, a). x = y + a · x ′ ∧ y ∈ H )
in h y + a ∗ xi) = h ′ x by (simp only: h ′-def )

finally show f x = h ′ x .
next

from FH ′ show F ⊆ H ′ ..
qed
show ∀ x ∈ H ′. h ′ x ≤ p x

using h ′-def H ′-def ‹x ′ /∈ H › ‹x ′ ∈ E› ‹x ′ 6= 0 › E HE
‹seminorm E p› linearform and hp xi

by (rule h ′-norm-pres)
qed

qed
ultimately show ?thesis ..

qed
then have ¬ (∀ x ∈ M . g ⊆ x −→ g = x) by simp

— So the graph g of h cannot be maximal. Contradiction!

with gx show H = E by contradiction
qed

from HE-eq and linearform have linearform E h
by (simp only:)

moreover have ∀ x ∈ F . h x = f x
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proof
fix x assume x ∈ F
with graphs have f x = h x ..
then show h x = f x ..

qed
moreover from HE-eq and hp have ∀ x ∈ E . h x ≤ p x

by (simp only:)
ultimately show ?thesis by blast

qed

12.2 Alternative formulation
The following alternative formulation of the Hahn-Banach Theorem uses the
fact that for a real linear form f and a seminorm p the following inequality are
equivalent:1

∀ x ∈ H . |h x| ≤ p x and ∀ x ∈ H . h x ≤ p x

theorem abs-Hahn-Banach:
assumes E : vectorspace E and FE : subspace F E

and lf : linearform F f and sn: seminorm E p
assumes fp: ∀ x ∈ F . |f x| ≤ p x
shows ∃ g. linearform E g
∧ (∀ x ∈ F . g x = f x)
∧ (∀ x ∈ E . |g x| ≤ p x)

proof −
interpret vectorspace E by fact
interpret subspace F E by fact
interpret linearform F f by fact
interpret seminorm E p by fact
have ∃ g. linearform E g ∧ (∀ x ∈ F . g x = f x) ∧ (∀ x ∈ E . g x ≤ p x)

using E FE sn lf
proof (rule Hahn-Banach)

show ∀ x ∈ F . f x ≤ p x
using FE E sn lf and fp by (rule abs-ineq-iff [THEN iffD1 ])

qed
then obtain g where lg: linearform E g and ∗: ∀ x ∈ F . g x = f x

and ∗∗: ∀ x ∈ E . g x ≤ p x by blast
have ∀ x ∈ E . |g x| ≤ p x

using - E sn lg ∗∗
proof (rule abs-ineq-iff [THEN iffD2 ])

show E � E ..
qed
with lg ∗ show ?thesis by blast

qed

12.3 The Hahn-Banach Theorem for normed spaces
Every continuous linear form f on a subspace F of a norm space E, can be
extended to a continuous linear form g on E such that ‖f ‖ = ‖g‖.
theorem norm-Hahn-Banach:

1This was shown in lemma abs-ineq-iff (see page 39).
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fixes V and norm (‹‖-‖›)
fixes B defines

∧
V f . B V f ≡ {0} ∪ {|f x| / ‖x‖ | x. x 6= 0 ∧ x ∈ V}

fixes fn-norm (‹‖-‖--› [0 , 1000 ] 999 )
defines

∧
V f . ‖f ‖-V ≡

⊔
(B V f )

assumes E-norm: normed-vectorspace E norm and FE : subspace F E
and linearform: linearform F f and continuous F f norm

shows ∃ g. linearform E g
∧ continuous E g norm
∧ (∀ x ∈ F . g x = f x)
∧ ‖g‖-E = ‖f ‖-F

proof −
interpret normed-vectorspace E norm by fact
interpret normed-vectorspace-with-fn-norm E norm B fn-norm

by (auto simp: B-def fn-norm-def ) intro-locales
interpret subspace F E by fact
interpret linearform F f by fact
interpret continuous F f norm by fact
have E : vectorspace E by intro-locales
have F : vectorspace F by rule intro-locales
have F-norm: normed-vectorspace F norm

using FE E-norm by (rule subspace-normed-vs)
have ge-zero: 0 ≤ ‖f ‖-F

by (rule normed-vectorspace-with-fn-norm.fn-norm-ge-zero
[OF normed-vectorspace-with-fn-norm.intro,
OF F-norm ‹continuous F f norm› , folded B-def fn-norm-def ])

We define a function p on E as follows: p x = ‖f ‖ · ‖x‖

define p where p x = ‖f ‖-F ∗ ‖x‖ for x

p is a seminorm on E :

have q: seminorm E p
proof

fix x y a assume x: x ∈ E and y: y ∈ E

p is positive definite:

have 0 ≤ ‖f ‖-F by (rule ge-zero)
moreover from x have 0 ≤ ‖x‖ ..
ultimately show 0 ≤ p x

by (simp add: p-def zero-le-mult-iff )

p is absolutely homogeneous:

show p (a · x) = |a| ∗ p x
proof −

have p (a · x) = ‖f ‖-F ∗ ‖a · x‖ by (simp only: p-def )
also from x have ‖a · x‖ = |a| ∗ ‖x‖ by (rule abs-homogenous)
also have ‖f ‖-F ∗ (|a| ∗ ‖x‖) = |a| ∗ (‖f ‖-F ∗ ‖x‖) by simp
also have . . . = |a| ∗ p x by (simp only: p-def )
finally show ?thesis .

qed

Furthermore, p is subadditive:

show p (x + y) ≤ p x + p y
proof −
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have p (x + y) = ‖f ‖-F ∗ ‖x + y‖ by (simp only: p-def )
also have a: 0 ≤ ‖f ‖-F by (rule ge-zero)
from x y have ‖x + y‖ ≤ ‖x‖ + ‖y‖ ..
with a have ‖f ‖-F ∗ ‖x + y‖ ≤ ‖f ‖-F ∗ (‖x‖ + ‖y‖)

by (simp add: mult-left-mono)
also have . . . = ‖f ‖-F ∗ ‖x‖ + ‖f ‖-F ∗ ‖y‖ by (simp only: distrib-left)
also have . . . = p x + p y by (simp only: p-def )
finally show ?thesis .

qed
qed

f is bounded by p.

have ∀ x ∈ F . |f x| ≤ p x
proof

fix x assume x ∈ F
with ‹continuous F f norm› and linearform
show |f x| ≤ p x

unfolding p-def by (rule normed-vectorspace-with-fn-norm.fn-norm-le-cong
[OF normed-vectorspace-with-fn-norm.intro,
OF F-norm, folded B-def fn-norm-def ])

qed

Using the fact that p is a seminorm and f is bounded by p we can apply the Hahn-
Banach Theorem for real vector spaces. So f can be extended in a norm-preserving
way to some function g on the whole vector space E.

with E FE linearform q obtain g where
linearformE : linearform E g

and a: ∀ x ∈ F . g x = f x
and b: ∀ x ∈ E . |g x| ≤ p x
by (rule abs-Hahn-Banach [elim-format]) iprover

We furthermore have to show that g is also continuous:

have g-cont: continuous E g norm using linearformE
proof

fix x assume x ∈ E
with b show |g x| ≤ ‖f ‖-F ∗ ‖x‖

by (simp only: p-def )
qed

To complete the proof, we show that ‖g‖ = ‖f ‖.

have ‖g‖-E = ‖f ‖-F
proof (rule order-antisym)

First we show ‖g‖ ≤ ‖f ‖. The function norm ‖g‖ is defined as the smallest c ∈ � such
that

∀ x ∈ E . |g x| ≤ c · ‖x‖

Furthermore holds

∀ x ∈ E . |g x| ≤ ‖f ‖ · ‖x‖

from g-cont - ge-zero
show ‖g‖-E ≤ ‖f ‖-F
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proof
fix x assume x ∈ E
with b show |g x| ≤ ‖f ‖-F ∗ ‖x‖

by (simp only: p-def )
qed

The other direction is achieved by a similar argument.

show ‖f ‖-F ≤ ‖g‖-E
proof (rule normed-vectorspace-with-fn-norm.fn-norm-least

[OF normed-vectorspace-with-fn-norm.intro,
OF F-norm, folded B-def fn-norm-def ])

fix x assume x: x ∈ F
show |f x| ≤ ‖g‖-E ∗ ‖x‖
proof −

from a x have g x = f x ..
then have |f x| = |g x| by (simp only:)
also from g-cont have . . . ≤ ‖g‖-E ∗ ‖x‖
proof (rule fn-norm-le-cong [OF - linearformE , folded B-def fn-norm-def ])

from FE x show x ∈ E ..
qed
finally show ?thesis .

qed
next

show 0 ≤ ‖g‖-E
using g-cont by (rule fn-norm-ge-zero [of g, folded B-def fn-norm-def ])

show continuous F f norm by fact
qed

qed
with linearformE a g-cont show ?thesis by blast

qed

end
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