
Notable Examples in Isabelle/HOL

January 18, 2026

Contents
1 Ad Hoc Overloading 3

1.1 Plain Ad Hoc Overloading . 4
1.2 Adhoc Overloading inside Locales 5

2 Permutation Types 7

3 A Tail-Recursive, Stack-Based Ackermann’s Function 8
3.1 Example of proving termination by reasoning about the domain 9
3.2 Example of proving termination using a multiset ordering . . 10

4 Cantor’s Theorem 12
4.1 Mathematical statement and proof 12
4.2 Automated proofs . 12
4.3 Elementary version in higher-order predicate logic 12
4.4 Classic Isabelle/HOL example 13

5 Coherent Logic Problems 14
5.1 Equivalence of two versions of Pappus’ Axiom 14
5.2 Preservation of the Diamond Property under reflexive closure 16

6 Some Isar command definitions 16
6.1 Diagnostic command: no state change 16
6.2 Old-style global theory declaration 16
6.3 Local theory specification . 17

7 The Drinker’s Principle 18

8 Examples of function definitions 18
8.1 Very basic . 19
8.2 Currying . 19
8.3 Nested recursion . 19

8.3.1 Here comes McCarthy’s 91-function 20

1

8.3.2 Here comes Takeuchi’s function 20
8.4 More general patterns . 21

8.4.1 Overlapping patterns 21
8.4.2 Guards . 21

8.5 Mutual Recursion . 22
8.6 Definitions in local contexts 22
8.7 fun_cases . 23

8.7.1 Predecessor . 23
8.7.2 List to option . 24
8.7.3 Boolean Functions . 24
8.7.4 Many parameters . 24

8.8 Partial Function Definitions 24
8.9 Regression tests . 25

8.9.1 Context recursion . 25
8.9.2 A combination of context and nested recursion 25
8.9.3 Context, but no recursive call 25
8.9.4 Tupled nested recursion 26
8.9.5 Let . 26
8.9.6 Abbreviations . 26
8.9.7 Simple Higher-Order Recursion 26
8.9.8 Pattern matching on records 27
8.9.9 The diagonal function 27
8.9.10 Many equations (quadratic blowup) 27
8.9.11 Automatic pattern splitting 28
8.9.12 Polymorphic partial-function 28

9 Gauss Numbers: integral gauss numbers 28
9.1 Basic arithmetic . 28
9.2 The Gauss Number i . 30
9.3 Gauss Conjugation . 32
9.4 Algebraic division . 34

10 Groebner Basis Examples 36
10.1 Basic examples . 36
10.2 Lemmas for Lagrange’s theorem 38
10.3 Colinearity is invariant by rotation 38

11 Example of Declaring an Oracle 39
11.1 Oracle declaration . 39
11.2 Oracle as low-level rule . 39
11.3 Oracle as proof method . 40

12 Examples of automatically derived induction rules 40
12.1 Some simple induction principles on nat 40

2

13 Textbook-style reasoning: the Knaster-Tarski Theorem 41
13.1 Prose version . 41
13.2 Formal versions . 42

14 Isabelle/ML basics 43
14.1 ML expressions . 43
14.2 Antiquotations . 44
14.3 Recursive ML evaluation . 44
14.4 IDE support . 44
14.5 Example: factorial and ackermann function in Isabelle/ML . 45
14.6 Parallel Isabelle/ML . 45
14.7 Function specifications in Isabelle/HOL 45

15 Peirce’s Law 46

16 Using extensible records in HOL – points and coloured points 47
16.1 Points . 48

16.1.1 Introducing concrete records and record schemes . . . 48
16.1.2 Record selection and record update 48
16.1.3 Some lemmas about records 48

16.2 Coloured points: record extension 50
16.2.1 Non-coercive structural subtyping 51

16.3 Other features . 51
16.4 Simprocs for update and equality 53
16.5 A more complex record expression 54
16.6 Some code generation . 54

17 The rewrite Proof Method by Example 55

18 Finite sequences 61

19 Square roots of primes are irrational 62

1 Ad Hoc Overloading
theory Adhoc_Overloading
imports

Main
HOL−Library.Infinite_Set

begin

Adhoc overloading allows to overload a constant depending on its type. Typ-
ically this involves to introduce an uninterpreted constant (used for input
and output) and then add some variants (used internally).

3

1.1 Plain Ad Hoc Overloading

Consider the type of first-order terms.
datatype (′a, ′b) term =

Var ′b |
Fun ′a (′a, ′b) term list

The set of variables of a term might be computed as follows.
fun term_vars :: (′a, ′b) term ⇒ ′b set where

term_vars (Var x) = {x} |
term_vars (Fun f ts) =

⋃
(set (map term_vars ts))

However, also for rules (i.e., pairs of terms) and term rewrite systems (i.e.,
sets of rules), the set of variables makes sense. Thus we introduce an un-
specified constant vars.
consts vars :: ′a ⇒ ′b set

Which is then overloaded with variants for terms, rules, and TRSs.
adhoc_overloading

vars
 term_vars

value [nbe] vars (Fun ′′f ′′ [Var 0 , Var 1])

fun rule_vars :: (′a, ′b) term × (′a, ′b) term ⇒ ′b set where
rule_vars (l, r) = vars l ∪ vars r

adhoc_overloading
vars
 rule_vars

value [nbe] vars (Var 1 , Var 0)

definition trs_vars :: ((′a, ′b) term × (′a, ′b) term) set ⇒ ′b set where
trs_vars R =

⋃
(rule_vars ‘ R)

adhoc_overloading
vars
 trs_vars

value [nbe] vars {(Var 1 , Var 0)}

Sometimes it is necessary to add explicit type constraints before a variant
can be determined.
value vars (R :: ((′a, ′b) term × (′a, ′b) term) set)

It is also possible to remove variants.
no_adhoc_overloading

vars
 term_vars rule_vars

4

As stated earlier, the overloaded constant is only used for input and output.
Internally, always a variant is used, as can be observed by the configuration
option show_variants.
adhoc_overloading

vars
 term_vars

declare [[show_variants]]

term vars (Var 1)

1.2 Adhoc Overloading inside Locales

As example we use permutations that are parametrized over an atom type
′a.
definition perms :: (′a ⇒ ′a) set where

perms = {f . bij f ∧ finite {x. f x 6= x}}

typedef ′a perm = perms :: (′a ⇒ ′a) set
by standard (auto simp: perms_def)

First we need some auxiliary lemmas.
lemma permsI [Pure.intro]:

assumes bij f and MOST x. f x = x
shows f ∈ perms
using assms by (auto simp: perms_def) (metis MOST_iff_finiteNeg)

lemma perms_imp_bij:
f ∈ perms =⇒ bij f
by (simp add: perms_def)

lemma perms_imp_MOST_eq:
f ∈ perms =⇒ MOST x . f x = x
by (simp add: perms_def) (metis MOST_iff_finiteNeg)

lemma id_perms [simp]:
id ∈ perms
(λx. x) ∈ perms
by (auto simp: perms_def bij_def)

lemma perms_comp [simp]:
assumes f : f ∈ perms and g: g ∈ perms
shows (f ◦ g) ∈ perms
apply (intro permsI bij_comp)
apply (rule perms_imp_bij [OF g])
apply (rule perms_imp_bij [OF f])
apply (rule MOST_rev_mp [OF perms_imp_MOST_eq [OF g]])
apply (rule MOST_rev_mp [OF perms_imp_MOST_eq [OF f]])
by simp

5

lemma perms_inv:
assumes f : f ∈ perms
shows inv f ∈ perms
apply (rule permsI)
apply (rule bij_imp_bij_inv)
apply (rule perms_imp_bij [OF f])
apply (rule MOST_mono [OF perms_imp_MOST_eq [OF f]])
apply (erule subst, rule inv_f_f)
apply (rule bij_is_inj [OF perms_imp_bij [OF f]])
done

lemma bij_Rep_perm: bij (Rep_perm p)
using Rep_perm [of p] unfolding perms_def by simp

instantiation perm :: (type) group_add
begin

definition 0 = Abs_perm id
definition − p = Abs_perm (inv (Rep_perm p))
definition p + q = Abs_perm (Rep_perm p ◦ Rep_perm q)
definition (p1 :: ′a perm) − p2 = p1 + − p2

lemma Rep_perm_0 : Rep_perm 0 = id
unfolding zero_perm_def by (simp add: Abs_perm_inverse)

lemma Rep_perm_add:
Rep_perm (p1 + p2) = Rep_perm p1 ◦ Rep_perm p2
unfolding plus_perm_def by (simp add: Abs_perm_inverse Rep_perm)

lemma Rep_perm_uminus:
Rep_perm (− p) = inv (Rep_perm p)
unfolding uminus_perm_def by (simp add: Abs_perm_inverse perms_inv Rep_perm)

instance
apply standard
unfolding Rep_perm_inject [symmetric]
unfolding minus_perm_def
unfolding Rep_perm_add
unfolding Rep_perm_uminus
unfolding Rep_perm_0
apply (simp_all add: o_assoc inv_o_cancel [OF bij_is_inj [OF bij_Rep_perm]])
done

end

lemmas Rep_perm_simps =
Rep_perm_0
Rep_perm_add

6

Rep_perm_uminus

2 Permutation Types

We want to be able to apply permutations to arbitrary types. To this end
we introduce a constant PERMUTE together with convenient infix syntax.
consts PERMUTE :: ′a perm ⇒ ′b ⇒ ′b (infixr ‹·› 75)

Then we add a locale for types ′b that support appliciation of permutations.
locale permute =

fixes permute :: ′a perm ⇒ ′b ⇒ ′b
assumes permute_zero [simp]: permute 0 x = x

and permute_plus [simp]: permute (p + q) x = permute p (permute q x)
begin

adhoc_overloading
PERMUTE
 permute

end

Permuting atoms.
definition permute_atom :: ′a perm ⇒ ′a ⇒ ′a where

permute_atom p a = (Rep_perm p) a

adhoc_overloading
PERMUTE
 permute_atom

interpretation atom_permute: permute permute_atom
by standard (simp_all add: permute_atom_def Rep_perm_simps)

Permuting permutations.
definition permute_perm :: ′a perm ⇒ ′a perm ⇒ ′a perm where

permute_perm p q = p + q − p

adhoc_overloading
PERMUTE
 permute_perm

interpretation perm_permute: permute permute_perm
apply standard
unfolding permute_perm_def
apply simp
apply (simp only: diff_conv_add_uminus minus_add add.assoc)
done

Permuting functions.
locale fun_permute =

dom: permute perm1 + ran: permute perm2

7

for perm1 :: ′a perm ⇒ ′b ⇒ ′b
and perm2 :: ′a perm ⇒ ′c ⇒ ′c

begin

adhoc_overloading
PERMUTE
 perm1 perm2

definition permute_fun :: ′a perm ⇒ (′b ⇒ ′c) ⇒ (′b ⇒ ′c) where
permute_fun p f = (λx. p · (f (−p · x)))

adhoc_overloading
PERMUTE
 permute_fun

end

sublocale fun_permute ⊆ permute permute_fun
by (unfold_locales, auto simp: permute_fun_def)

(metis dom.permute_plus minus_add)

lemma (Abs_perm id :: nat perm) · Suc 0 = Suc 0
unfolding permute_atom_def
by (metis Rep_perm_0 id_apply zero_perm_def)

interpretation atom_fun_permute: fun_permute permute_atom permute_atom
by (unfold_locales)

adhoc_overloading
PERMUTE
 atom_fun_permute.permute_fun

lemma (Abs_perm id :: ′a perm) · id = id
unfolding atom_fun_permute.permute_fun_def
unfolding permute_atom_def
by (metis Rep_perm_0 id_def inj_imp_inv_eq inj_on_id uminus_perm_def

zero_perm_def)

end

3 A Tail-Recursive, Stack-Based Ackermann’s Func-
tion

theory Ackermann
imports HOL−Library.Multiset_Order HOL−Library.Product_Lexorder

begin

This theory investigates a stack-based implementation of Ackermann’s func-
tion. Let’s recall the traditional definition, as modified by Péter Rózsa and
Raphael Robinson.
fun ack :: [nat, nat] ⇒ nat

8

where
ack 0 n = Suc n
| ack (Suc m) 0 = ack m 1
| ack (Suc m) (Suc n) = ack m (ack (Suc m) n)

3.1 Example of proving termination by reasoning about the
domain

The stack-based version uses lists.
function (domintros) ackloop :: nat list ⇒ nat

where
ackloop (n # 0 # l) = ackloop (Suc n # l)
| ackloop (0 # Suc m # l) = ackloop (1 # m # l)
| ackloop (Suc n # Suc m # l) = ackloop (n # Suc m # m # l)
| ackloop [m] = m
| ackloop [] = 0
by pat_completeness auto

The key task is to prove termination. In the first recursive call, the head
of the list gets bigger while the list gets shorter, suggesting that the length
of the list should be the primary termination criterion. But in the third
recursive call, the list gets longer. The idea of trying a multiset-based ter-
mination argument is frustrated by the second recursive call when m = 0 :
the list elements are simply permuted.
Fortunately, the function definition package allows us to define a function
and only later identify its domain of termination. Instead, it makes all the
recursion equations conditional on satisfying the function’s domain predi-
cate. Here we shall eventually be able to show that the predicate is always
satisfied.

ackloop_dom (Suc n # l) =⇒ ackloop_dom (n # 0 # l)
ackloop_dom (Suc 0 # m # l) =⇒ ackloop_dom (0 # Suc m # l)
ackloop_dom (n # Suc m # m # l) =⇒ ackloop_dom (Suc n # Suc m # l)
ackloop_dom [m]
ackloop_dom []

declare ackloop.domintros [simp]

Termination is trivial if the length of the list is less then two. The following
lemma is the key to proving termination for longer lists.
lemma ackloop_dom (ack m n # l) =⇒ ackloop_dom (n # m # l)
proof (induction m arbitrary: n l)

case 0
then show ?case

by auto
next

9

case (Suc m)
show ?case

using Suc.prems
by (induction n arbitrary: l) (simp_all add: Suc)

qed

The proof above (which actually is unused) can be expressed concisely as
follows.
lemma ackloop_dom_longer :

ackloop_dom (ack m n # l) =⇒ ackloop_dom (n # m # l)
by (induction m n arbitrary: l rule: ack.induct) auto

This function codifies what ackloop is designed to do. Proving the two
functions equivalent also shows that ackloop can be used to compute Acker-
mann’s function.
fun acklist :: nat list ⇒ nat

where
acklist (n#m#l) = acklist (ack m n # l)
| acklist [m] = m
| acklist [] = 0

The induction rule for acklist is

[[
∧

n m l. P (ack m n # l) =⇒ P (n # m # l);
∧

m. P [m]; P []]] =⇒ P a0

.
lemma ackloop_dom: ackloop_dom l

by (induction l rule: acklist.induct) (auto simp: ackloop_dom_longer)

termination ackloop
by (simp add: ackloop_dom)

This result is trivial even by inspection of the function definitions (which
faithfully follow the definition of Ackermann’s function). All that we needed
was termination.
lemma ackloop_acklist: ackloop l = acklist l

by (induction l rule: ackloop.induct) auto

theorem ack: ack m n = ackloop [n,m]
by (simp add: ackloop_acklist)

3.2 Example of proving termination using a multiset order-
ing

This termination proof uses the argument from Nachum Dershowitz and Zo-
har Manna. Proving termination with multiset orderings. Communications
of the ACM 22 (8) 1979, 465–476.

10

Setting up the termination proof. Note that Dershowitz had z as a global
variable. The top two stack elements are treated differently from the rest.
fun ack_mset :: nat list ⇒ (nat×nat) multiset

where
ack_mset [] = {#}
| ack_mset [x] = {#}
| ack_mset (z#y#l) = mset ((y,z) # map (λx. (Suc x, 0)) l)

lemma case1 : ack_mset (Suc n # l) < add_mset (0 ,n) {# (Suc x, 0). x ∈#
mset l #}
proof (cases l)

case (Cons m list)
have {#(m, Suc n)#} < {#(Suc m, 0)#}

by auto
also have . . . ≤ {#(Suc m, 0), (0 ,n)#}

by auto
finally show ?thesis

by (simp add: Cons)
next

case Nil
then show ?thesis by auto

qed

The stack-based version again. We need a fresh copy because we’ve already
proved the termination of ackloop.
function Ackloop :: nat list ⇒ nat

where
Ackloop (n # 0 # l) = Ackloop (Suc n # l)
| Ackloop (0 # Suc m # l) = Ackloop (1 # m # l)
| Ackloop (Suc n # Suc m # l) = Ackloop (n # Suc m # m # l)
| Ackloop [m] = m
| Ackloop [] = 0
by pat_completeness auto

In each recursive call, the function ack_mset decreases according to the
multiset ordering.
termination

by (relation inv_image {(x,y). x<y} ack_mset) (auto simp: wf case1)

Another shortcut compared with before: equivalence follows directly from
this lemma.
lemma Ackloop_ack: Ackloop (n # m # l) = Ackloop (ack m n # l)

by (induction m n arbitrary: l rule: ack.induct) auto

theorem ack m n = Ackloop [n,m]
by (simp add: Ackloop_ack)

end

11

4 Cantor’s Theorem
theory Cantor

imports Main
begin

4.1 Mathematical statement and proof

Cantor’s Theorem states that there is no surjection from a set to its powerset.
The proof works by diagonalization. E.g. see

• http://mathworld.wolfram.com/CantorDiagonalMethod.html

• https://en.wikipedia.org/wiki/Cantor’s_diagonal_argument

theorem Cantor : @ f :: ′a ⇒ ′a set. ∀A. ∃ x. A = f x
proof

assume ∃ f :: ′a ⇒ ′a set. ∀A. ∃ x. A = f x
then obtain f :: ′a ⇒ ′a set where ∗: ∀A. ∃ x. A = f x ..
let ?D = {x. x /∈ f x}
from ∗ obtain a where ?D = f a by blast
moreover have a ∈ ?D ←→ a /∈ f a by blast
ultimately show False by blast

qed

4.2 Automated proofs

These automated proofs are much shorter, but lack information why and
how it works.
theorem @ f :: ′a ⇒ ′a set. ∀A. ∃ x. f x = A

by best

theorem @ f :: ′a ⇒ ′a set. ∀A. ∃ x. f x = A
by force

4.3 Elementary version in higher-order predicate logic

The subsequent formulation bypasses set notation of HOL; it uses elemen-
tary λ-calculus and predicate logic, with standard introduction and elim-
ination rules. This also shows that the proof does not require classical
reasoning.
lemma iff_contradiction:

assumes ∗: ¬ A ←→ A
shows False

proof (rule notE)
show ¬ A
proof

12

http://mathworld.wolfram.com/CantorDiagonalMethod.html
https://en.wikipedia.org/wiki/Cantor's_diagonal_argument

assume A
with ∗ have ¬ A ..
from this and ‹A› show False ..

qed
with ∗ show A ..

qed

theorem Cantor ′: @ f :: ′a ⇒ ′a ⇒ bool. ∀A. ∃ x. A = f x
proof

assume ∃ f :: ′a ⇒ ′a ⇒ bool. ∀A. ∃ x. A = f x
then obtain f :: ′a ⇒ ′a ⇒ bool where ∗: ∀A. ∃ x. A = f x ..
let ?D = λx. ¬ f x x
from ∗ have ∃ x. ?D = f x ..
then obtain a where ?D = f a ..
then have ?D a ←→ f a a by (rule arg_cong)
then have ¬ f a a ←→ f a a .
then show False by (rule iff_contradiction)

qed

4.4 Classic Isabelle/HOL example

The following treatment of Cantor’s Theorem follows the classic example
from the early 1990s, e.g. see the file 92/HOL/ex/set.ML in Isabelle92 or
[2, §18.7]. The old tactic scripts synthesize key information of the proof by
refinement of schematic goal states. In contrast, the Isar proof needs to say
explicitly what is proven.

Cantor’s Theorem states that every set has more subsets than it has ele-
ments. It has become a favourite basic example in pure higher-order logic
since it is so easily expressed:

∀ f ::α ⇒ α ⇒ bool. ∃S ::α ⇒ bool. ∀ x::α. f x 6= S

Viewing types as sets, α ⇒ bool represents the powerset of α. This version
of the theorem states that for every function from α to its powerset, some
subset is outside its range. The Isabelle/Isar proofs below uses HOL’s set
theory, with the type α set and the operator range :: (α ⇒ β) ⇒ β set.
theorem ∃S . S /∈ range (f :: ′a ⇒ ′a set)
proof

let ?S = {x. x /∈ f x}
show ?S /∈ range f
proof

assume ?S ∈ range f
then obtain y where ?S = f y ..
then show False
proof (rule equalityCE)

assume y ∈ f y

13

assume y ∈ ?S
then have y /∈ f y ..
with ‹y ∈ f y› show ?thesis by contradiction

next
assume y /∈ ?S
assume y /∈ f y
then have y ∈ ?S ..
with ‹y /∈ ?S› show ?thesis by contradiction

qed
qed

qed

How much creativity is required? As it happens, Isabelle can prove this theo-
rem automatically using best-first search. Depth-first search would diverge,
but best-first search successfully navigates through the large search space.
The context of Isabelle’s classical prover contains rules for the relevant con-
structs of HOL’s set theory.
theorem ∃S . S /∈ range (f :: ′a ⇒ ′a set)

by best

end

5 Coherent Logic Problems
theory Coherent
imports Main
begin

5.1 Equivalence of two versions of Pappus’ Axiom
no_notation comp (infixl ‹o› 55)
unbundle no relcomp_syntax

lemma p1p2 :
assumes col a b c l ∧ col d e f m

and col b f g n ∧ col c e g o
and col b d h p ∧ col a e h q
and col c d i r ∧ col a f i s
and el n o =⇒ goal
and el p q =⇒ goal
and el s r =⇒ goal
and

∧
A. el A A =⇒ pl g A =⇒ pl h A =⇒ pl i A =⇒ goal

and
∧

A B C D. col A B C D =⇒ pl A D
and

∧
A B C D. col A B C D =⇒ pl B D

and
∧

A B C D. col A B C D =⇒ pl C D
and

∧
A B. pl A B =⇒ ep A A

and
∧

A B. ep A B =⇒ ep B A
and

∧
A B C . ep A B =⇒ ep B C =⇒ ep A C

14

and
∧

A B. pl A B =⇒ el B B
and

∧
A B. el A B =⇒ el B A

and
∧

A B C . el A B =⇒ el B C =⇒ el A C
and

∧
A B C . ep A B =⇒ pl B C =⇒ pl A C

and
∧

A B C . pl A B =⇒ el B C =⇒ pl A C
and

∧
A B C D E F G H I J K L M N O P Q.

col A B C D =⇒ col E F G H =⇒ col B G I J =⇒ col C F I K =⇒
col B E L M =⇒ col A F L N =⇒ col C E O P =⇒ col A G O Q =⇒
(∃ R. col I L O R) ∨ pl A H ∨ pl B H ∨ pl C H ∨ pl E D ∨ pl F D ∨ pl

G D
and

∧
A B C D. pl A B =⇒ pl A C =⇒ pl D B =⇒ pl D C =⇒ ep A D ∨ el

B C
and

∧
A B. ep A A =⇒ ep B B =⇒ ∃C . pl A C ∧ pl B C

shows goal using assms
by coherent

lemma p2p1 :
assumes col a b c l ∧ col d e f m

and col b f g n ∧ col c e g o
and col b d h p ∧ col a e h q
and col c d i r ∧ col a f i s
and pl a m =⇒ goal
and pl b m =⇒ goal
and pl c m =⇒ goal
and pl d l =⇒ goal
and pl e l =⇒ goal
and pl f l =⇒ goal
and

∧
A. pl g A =⇒ pl h A =⇒ pl i A =⇒ goal

and
∧

A B C D. col A B C D =⇒ pl A D
and

∧
A B C D. col A B C D =⇒ pl B D

and
∧

A B C D. col A B C D =⇒ pl C D
and

∧
A B. pl A B =⇒ ep A A

and
∧

A B. ep A B =⇒ ep B A
and

∧
A B C . ep A B =⇒ ep B C =⇒ ep A C

and
∧

A B. pl A B =⇒ el B B
and

∧
A B. el A B =⇒ el B A

and
∧

A B C . el A B =⇒ el B C =⇒ el A C
and

∧
A B C . ep A B =⇒ pl B C =⇒ pl A C

and
∧

A B C . pl A B =⇒ el B C =⇒ pl A C
and

∧
A B C D E F G H I J K L M N O P Q.

col A B C J =⇒ col D E F K =⇒ col B F G L =⇒ col C E G M =⇒
col B D H N =⇒ col A E H O =⇒ col C D I P =⇒ col A F I Q =⇒
(∃ R. col G H I R) ∨ el L M ∨ el N O ∨ el P Q

and
∧

A B C D. pl C A =⇒ pl C B =⇒ pl D A =⇒ pl D B =⇒ ep C D ∨ el
A B

and
∧

A B C . ep A A =⇒ ep B B =⇒ ∃C . pl A C ∧ pl B C
shows goal using assms
by coherent

15

5.2 Preservation of the Diamond Property under reflexive
closure

lemma diamond:
assumes reflexive_rewrite a b reflexive_rewrite a c

and
∧

A. reflexive_rewrite b A =⇒ reflexive_rewrite c A =⇒ goal
and

∧
A. equalish A A

and
∧

A B. equalish A B =⇒ equalish B A
and

∧
A B C . equalish A B =⇒ reflexive_rewrite B C =⇒ reflexive_rewrite A

C
and

∧
A B. equalish A B =⇒ reflexive_rewrite A B

and
∧

A B. rewrite A B =⇒ reflexive_rewrite A B
and

∧
A B. reflexive_rewrite A B =⇒ equalish A B ∨ rewrite A B

and
∧

A B C . rewrite A B =⇒ rewrite A C =⇒ ∃D. rewrite B D ∧ rewrite C
D

shows goal using assms
by coherent

end

6 Some Isar command definitions
theory Commands
imports Main
keywords

print_test :: diag and
global_test :: thy_decl and
local_test :: thy_decl

begin

6.1 Diagnostic command: no state change
ML ‹

Outer_Syntax.command command_keyword ‹print_test› print term test
(Parse.term >> (fn s => Toplevel.keep (fn st =>

let
val ctxt = Toplevel.context_of st;
val t = Syntax.read_term ctxt s;
val ctxt ′ = Proof_Context.augment t ctxt;

in Pretty.writeln (Syntax.pretty_term ctxt ′ t) end)));
›

print_test x
print_test λx. x = a

6.2 Old-style global theory declaration
ML ‹

16

Outer_Syntax.command command_keyword ‹global_test› test constant decla-
ration

(Parse.binding >> (fn b => Toplevel.theory (fn thy =>
let

val thy ′ = Sign.add_consts [(b, typ ‹ ′a›, NoSyn)] thy;
in thy ′ end)));

›

global_test a
global_test b
print_test a

6.3 Local theory specification
ML ‹

Outer_Syntax.local_theory command_keyword ‹local_test› test local definition
(Parse.binding −− (keyword ‹=› |−− Parse.term) >> (fn (b, s) => fn lthy

=>
let

val t = Syntax.read_term lthy s;
val (def , lthy ′) = Local_Theory.define ((b, NoSyn), ((Thm.def_binding b,

[]), t)) lthy;
in lthy ′ end));

›

local_test true = True
print_test true
thm true_def

local_test identity = λx. x
print_test identity x
thm identity_def

context fixes x y :: nat
begin

local_test test = x + y
print_test test
thm test_def

end

print_test test 0 1
thm test_def

end

17

7 The Drinker’s Principle
theory Drinker

imports Main
begin

Here is another example of classical reasoning: the Drinker’s Principle says
that for some person, if he is drunk, everybody else is drunk!
We first prove a classical part of de-Morgan’s law.
lemma de_Morgan:

assumes ¬ (∀ x. P x)
shows ∃ x. ¬ P x

proof (rule classical)
assume @ x. ¬ P x
have ∀ x. P x
proof

fix x show P x
proof (rule classical)

assume ¬ P x
then have ∃ x. ¬ P x ..
with ‹@ x. ¬ P x› show ?thesis by contradiction

qed
qed
with ‹¬ (∀ x. P x)› show ?thesis by contradiction

qed

theorem Drinker ′s_Principle: ∃ x. drunk x −→ (∀ x. drunk x)
proof cases

assume ∀ x. drunk x
then have drunk a −→ (∀ x. drunk x) for a ..
then show ?thesis ..

next
assume ¬ (∀ x. drunk x)
then have ∃ x. ¬ drunk x by (rule de_Morgan)
then obtain a where ¬ drunk a ..
have drunk a −→ (∀ x. drunk x)
proof

assume drunk a
with ‹¬ drunk a› show ∀ x. drunk x by contradiction

qed
then show ?thesis ..

qed

end

8 Examples of function definitions
theory Functions

18

imports Main HOL−Library.Monad_Syntax
begin

8.1 Very basic
fun fib :: nat ⇒ nat
where

fib 0 = 1
| fib (Suc 0) = 1
| fib (Suc (Suc n)) = fib n + fib (Suc n)

Partial simp and induction rules:
thm fib.psimps
thm fib.pinduct

There is also a cases rule to distinguish cases along the definition:
thm fib.cases

Total simp and induction rules:
thm fib.simps
thm fib.induct

Elimination rules:
thm fib.elims

8.2 Currying
fun add
where

add 0 y = y
| add (Suc x) y = Suc (add x y)

thm add.simps
thm add.induct — Note the curried induction predicate

8.3 Nested recursion
function nz
where

nz 0 = 0
| nz (Suc x) = nz (nz x)
by pat_completeness auto

lemma nz_is_zero: — A lemma we need to prove termination
assumes trm: nz_dom x
shows nz x = 0

using trm
by induct (auto simp: nz.psimps)

19

termination nz
by (relation less_than) (auto simp:nz_is_zero)

thm nz.simps
thm nz.induct

8.3.1 Here comes McCarthy’s 91-function
function f91 :: nat ⇒ nat
where

f91 n = (if 100 < n then n − 10 else f91 (f91 (n + 11)))
by pat_completeness auto

Prove a lemma before attempting a termination proof:
lemma f91_estimate:

assumes trm: f91_dom n
shows n < f91 n + 11

using trm by induct (auto simp: f91 .psimps)

termination
proof

let ?R = measure (λx. 101 − x)
show wf ?R ..

fix n :: nat
assume ¬ 100 < n — Inner call
then show (n + 11 , n) ∈ ?R by simp

assume inner_trm: f91_dom (n + 11) — Outer call
with f91_estimate have n + 11 < f91 (n + 11) + 11 .
with ‹¬ 100 < n› show (f91 (n + 11), n) ∈ ?R by simp

qed

Now trivial (even though it does not belong here):
lemma f91 n = (if 100 < n then n − 10 else 91)

by (induct n rule: f91 .induct) auto

8.3.2 Here comes Takeuchi’s function
definition tak_m1 where tak_m1 = (λ(x,y,z). if x ≤ y then 0 else 1)
definition tak_m2 where tak_m2 = (λ(x,y,z). nat (Max {x, y, z} − Min {x, y,
z}))
definition tak_m3 where tak_m3 = (λ(x,y,z). nat (x − Min {x, y, z}))

function tak :: int ⇒ int ⇒ int ⇒ int where
tak x y z = (if x ≤ y then y else tak (tak (x−1) y z) (tak (y−1) z x) (tak (z−1)

x y))
by auto

20

lemma tak_pcorrect:
tak_dom (x, y, z) =⇒ tak x y z = (if x ≤ y then y else if y ≤ z then z else x)
by (induction x y z rule: tak.pinduct) (auto simp: tak.psimps)

termination
by (relation tak_m1 <∗mlex∗> tak_m2 <∗mlex∗> tak_m3 <∗mlex∗> {})
(auto simp: mlex_iff wf_mlex tak_pcorrect tak_m1_def tak_m2_def tak_m3_def

min_def max_def)

theorem tak_correct: tak x y z = (if x ≤ y then y else if y ≤ z then z else x)
by (induction x y z rule: tak.induct) auto

8.4 More general patterns
8.4.1 Overlapping patterns

Currently, patterns must always be compatible with each other, since no
automatic splitting takes place. But the following definition of GCD is OK,
although patterns overlap:
fun gcd2 :: nat ⇒ nat ⇒ nat
where

gcd2 x 0 = x
| gcd2 0 y = y
| gcd2 (Suc x) (Suc y) = (if x < y then gcd2 (Suc x) (y − x)

else gcd2 (x − y) (Suc y))

thm gcd2 .simps
thm gcd2 .induct

8.4.2 Guards

We can reformulate the above example using guarded patterns:
function gcd3 :: nat ⇒ nat ⇒ nat
where

gcd3 x 0 = x
| gcd3 0 y = y
| gcd3 (Suc x) (Suc y) = gcd3 (Suc x) (y − x) if x < y
| gcd3 (Suc x) (Suc y) = gcd3 (x − y) (Suc y) if ¬ x < y

apply (case_tac x, case_tac a, auto)
apply (case_tac ba, auto)
done

termination by lexicographic_order

thm gcd3 .simps
thm gcd3 .induct

General patterns allow even strange definitions:
function ev :: nat ⇒ bool

21

where
ev (2 ∗ n) = True
| ev (2 ∗ n + 1) = False
proof − — completeness is more difficult here . . .

fix P :: bool
fix x :: nat
assume c1 :

∧
n. x = 2 ∗ n =⇒ P

and c2 :
∧

n. x = 2 ∗ n + 1 =⇒ P
have divmod: x = 2 ∗ (x div 2) + (x mod 2) by auto
show P
proof (cases x mod 2 = 0)

case True
with divmod have x = 2 ∗ (x div 2) by simp
with c1 show P .

next
case False
then have x mod 2 = 1 by simp
with divmod have x = 2 ∗ (x div 2) + 1 by simp
with c2 show P .

qed
qed presburger+ — solve compatibility with presburger
termination by lexicographic_order

thm ev.simps
thm ev.induct
thm ev.cases

8.5 Mutual Recursion
fun evn od :: nat ⇒ bool
where

evn 0 = True
| od 0 = False
| evn (Suc n) = od n
| od (Suc n) = evn n

thm evn.simps
thm od.simps

thm evn_od.induct
thm evn_od.termination

thm evn.elims
thm od.elims

8.6 Definitions in local contexts
locale my_monoid =

fixes opr :: ′a ⇒ ′a ⇒ ′a
and un :: ′a

22

assumes assoc: opr (opr x y) z = opr x (opr y z)
and lunit: opr un x = x
and runit: opr x un = x

begin

fun foldR :: ′a list ⇒ ′a
where

foldR [] = un
| foldR (x # xs) = opr x (foldR xs)

fun foldL :: ′a list ⇒ ′a
where

foldL [] = un
| foldL [x] = x
| foldL (x # y # ys) = foldL (opr x y # ys)

thm foldL.simps

lemma foldR_foldL: foldR xs = foldL xs
by (induct xs rule: foldL.induct) (auto simp:lunit runit assoc)

thm foldR_foldL

end

thm my_monoid.foldL.simps
thm my_monoid.foldR_foldL

8.7 fun_cases
8.7.1 Predecessor
fun pred :: nat ⇒ nat
where

pred 0 = 0
| pred (Suc n) = n

thm pred.elims

lemma
assumes pred x = y
obtains x = 0 y = 0 | n where x = Suc n y = n
by (fact pred.elims[OF assms])

If the predecessor of a number is 0, that number must be 0 or 1.
fun_cases pred0E [elim]: pred n = 0

lemma pred n = 0 =⇒ n = 0 ∨ n = Suc 0
by (erule pred0E) metis+

23

Other expressions on the right-hand side also work, but whether the gener-
ated rule is useful depends on how well the simplifier can simplify it. This
example works well:
fun_cases pred42E [elim]: pred n = 42

lemma pred n = 42 =⇒ n = 43
by (erule pred42E)

8.7.2 List to option
fun list_to_option :: ′a list ⇒ ′a option
where

list_to_option [x] = Some x
| list_to_option _ = None

fun_cases list_to_option_NoneE : list_to_option xs = None
and list_to_option_SomeE : list_to_option xs = Some x

lemma list_to_option xs = Some y =⇒ xs = [y]
by (erule list_to_option_SomeE)

8.7.3 Boolean Functions
fun xor :: bool ⇒ bool ⇒ bool
where

xor False False = False
| xor True True = False
| xor _ _ = True

thm xor .elims

fun_cases does not only recognise function equations, but also works with
functions that return a boolean, e.g.:
fun_cases xor_TrueE : xor a b and xor_FalseE : ¬xor a b
print_theorems

8.7.4 Many parameters
fun sum4 :: nat ⇒ nat ⇒ nat ⇒ nat ⇒ nat

where sum4 a b c d = a + b + c + d

fun_cases sum40E : sum4 a b c d = 0

lemma sum4 a b c d = 0 =⇒ a = 0
by (erule sum40E)

8.8 Partial Function Definitions

Partial functions in the option monad:

24

partial_function (option)
collatz :: nat ⇒ nat list option

where
collatz n =
(if n ≤ 1 then Some [n]
else if even n

then do { ns ← collatz (n div 2); Some (n # ns) }
else do { ns ← collatz (3 ∗ n + 1); Some (n # ns)})

declare collatz.simps[code]
value collatz 23

Tail-recursive functions:
partial_function (tailrec) fixpoint :: (′a ⇒ ′a) ⇒ ′a ⇒ ′a
where

fixpoint f x = (if f x = x then x else fixpoint f (f x))

8.9 Regression tests

The following examples mainly serve as tests for the function package.
fun listlen :: ′a list ⇒ nat
where

listlen [] = 0
| listlen (x#xs) = Suc (listlen xs)

8.9.1 Context recursion
fun f :: nat ⇒ nat
where

zero: f 0 = 0
| succ: f (Suc n) = (if f n = 0 then 0 else f n)

8.9.2 A combination of context and nested recursion
function h :: nat ⇒ nat
where

h 0 = 0
| h (Suc n) = (if h n = 0 then h (h n) else h n)
by pat_completeness auto

8.9.3 Context, but no recursive call
fun i :: nat ⇒ nat
where

i 0 = 0
| i (Suc n) = (if n = 0 then 0 else i n)

25

8.9.4 Tupled nested recursion
fun fa :: nat ⇒ nat ⇒ nat
where

fa 0 y = 0
| fa (Suc n) y = (if fa n y = 0 then 0 else fa n y)

8.9.5 Let
fun j :: nat ⇒ nat
where

j 0 = 0
| j (Suc n) = (let u = n in Suc (j u))

There were some problems with fresh names . . .
function k :: nat ⇒ nat
where

k x = (let a = x; b = x in k x)
by pat_completeness auto

function f2 :: (nat × nat) ⇒ (nat × nat)
where

f2 p = (let (x,y) = p in f2 (y,x))
by pat_completeness auto

8.9.6 Abbreviations
fun f3 :: ′a set ⇒ bool
where

f3 x = finite x

8.9.7 Simple Higher-Order Recursion
datatype ′a tree = Leaf ′a | Branch ′a tree list

fun treemap :: (′a ⇒ ′a) ⇒ ′a tree ⇒ ′a tree
where

treemap fn (Leaf n) = (Leaf (fn n))
| treemap fn (Branch l) = (Branch (map (treemap fn) l))

fun tinc :: nat tree ⇒ nat tree
where

tinc (Leaf n) = Leaf (Suc n)
| tinc (Branch l) = Branch (map tinc l)

fun testcase :: ′a tree ⇒ ′a list
where

testcase (Leaf a) = [a]
| testcase (Branch x) =

26

(let xs = concat (map testcase x);
ys = concat (map testcase x) in

xs @ ys)

8.9.8 Pattern matching on records
record point =

Xcoord :: int
Ycoord :: int

function swp :: point ⇒ point
where

swp (| Xcoord = x, Ycoord = y |) = (| Xcoord = y, Ycoord = x |)
proof −

fix P x
assume

∧
xa y. x = (|Xcoord = xa, Ycoord = y|) =⇒ P

then show P by (cases x)
qed auto
termination by rule auto

8.9.9 The diagonal function
fun diag :: bool ⇒ bool ⇒ bool ⇒ nat
where

diag x True False = 1
| diag False y True = 2
| diag True False z = 3
| diag True True True = 4
| diag False False False = 5

8.9.10 Many equations (quadratic blowup)
datatype DT =

A | B | C | D | E | F | G | H | I | J | K | L | M | N | P
| Q | R | S | T | U | V

fun big :: DT ⇒ nat
where

big A = 0
| big B = 0
| big C = 0
| big D = 0
| big E = 0
| big F = 0
| big G = 0
| big H = 0
| big I = 0
| big J = 0
| big K = 0
| big L = 0

27

| big M = 0
| big N = 0
| big P = 0
| big Q = 0
| big R = 0
| big S = 0
| big T = 0
| big U = 0
| big V = 0

8.9.11 Automatic pattern splitting
fun f4 :: nat ⇒ nat ⇒ bool
where

f4 0 0 = True
| f4 _ _ = False

8.9.12 Polymorphic partial-function
partial_function (option) f5 :: ′a list ⇒ ′a option
where

f5 x = f5 x

end

9 Gauss Numbers: integral gauss numbers
theory Gauss_Numbers

imports HOL−Library.Centered_Division
begin

codatatype gauss = Gauss (Re: int) (Im: int)

lemma gauss_eqI [intro?]:
‹x = y› if ‹Re x = Re y› ‹Im x = Im y›
by (rule gauss.expand) (use that in simp)

lemma gauss_eq_iff :
‹x = y ←→ Re x = Re y ∧ Im x = Im y›
by (auto intro: gauss_eqI)

9.1 Basic arithmetic
instantiation gauss :: comm_ring_1
begin

primcorec zero_gauss :: ‹gauss›
where

‹Re 0 = 0 ›

28

| ‹Im 0 = 0 ›

primcorec one_gauss :: ‹gauss›
where

‹Re 1 = 1 ›
| ‹Im 1 = 0 ›

primcorec plus_gauss :: ‹gauss ⇒ gauss ⇒ gauss›
where

‹Re (x + y) = Re x + Re y›
| ‹Im (x + y) = Im x + Im y›

primcorec uminus_gauss :: ‹gauss ⇒ gauss›
where

‹Re (− x) = − Re x›
| ‹Im (− x) = − Im x›

primcorec minus_gauss :: ‹gauss ⇒ gauss ⇒ gauss›
where

‹Re (x − y) = Re x − Re y›
| ‹Im (x − y) = Im x − Im y›

primcorec times_gauss :: ‹gauss ⇒ gauss ⇒ gauss›
where

‹Re (x ∗ y) = Re x ∗ Re y − Im x ∗ Im y›
| ‹Im (x ∗ y) = Re x ∗ Im y + Im x ∗ Re y›

instance
by standard (simp_all add: gauss_eq_iff algebra_simps)

end

lemma of_nat_gauss:
‹of_nat n = Gauss (int n) 0 ›
by (induction n) (simp_all add: gauss_eq_iff)

lemma numeral_gauss:
‹numeral n = Gauss (numeral n) 0 ›

proof −
have ‹numeral n = (of_nat (numeral n) :: gauss)›

by simp
also have ‹. . . = Gauss (of_nat (numeral n)) 0 ›

by (simp add: of_nat_gauss)
finally show ?thesis

by simp
qed

lemma of_int_gauss:
‹of_int k = Gauss k 0 ›

29

by (simp add: gauss_eq_iff of_int_of_nat of_nat_gauss)

lemma conversion_simps [simp]:
‹Re (numeral m) = numeral m›
‹Im (numeral m) = 0 ›
‹Re (of_nat n) = int n›
‹Im (of_nat n) = 0 ›
‹Re (of_int k) = k›
‹Im (of_int k) = 0 ›
by (simp_all add: numeral_gauss of_nat_gauss of_int_gauss)

lemma gauss_eq_0 :
‹z = 0 ←→ (Re z)2 + (Im z)2 = 0 ›
by (simp add: gauss_eq_iff sum_power2_eq_zero_iff)

lemma gauss_neq_0 :
‹z 6= 0 ←→ (Re z)2 + (Im z)2 > 0 ›
by (simp add: gauss_eq_0 sum_power2_ge_zero less_le)

lemma Re_sum [simp]:
‹Re (sum f s) = (

∑
x∈s. Re (f x))›

by (induct s rule: infinite_finite_induct) auto

lemma Im_sum [simp]:
‹Im (sum f s) = (

∑
x∈s. Im (f x))›

by (induct s rule: infinite_finite_induct) auto

instance gauss :: idom
proof

fix x y :: gauss
assume ‹x 6= 0 › ‹y 6= 0 ›
then show ‹x ∗ y 6= 0 ›

by (simp_all add: gauss_eq_iff)
(smt (verit, best) mult_eq_0_iff mult_neg_neg mult_neg_pos mult_pos_neg

mult_pos_pos)
qed

9.2 The Gauss Number i

primcorec imaginary_unit :: gauss (‹i›)
where

‹Re i = 0 ›
| ‹Im i = 1 ›

lemma Gauss_eq:
‹Gauss a b = of_int a + i ∗ of_int b›
by (simp add: gauss_eq_iff)

lemma gauss_eq:

30

‹a = of_int (Re a) + i ∗ of_int (Im a)›
by (simp add: gauss_eq_iff)

lemma gauss_i_not_zero [simp]:
‹i 6= 0 ›
by (simp add: gauss_eq_iff)

lemma gauss_i_not_one [simp]:
‹i 6= 1 ›
by (simp add: gauss_eq_iff)

lemma gauss_i_not_numeral [simp]:
‹i 6= numeral n›
by (simp add: gauss_eq_iff)

lemma gauss_i_not_neg_numeral [simp]:
‹i 6= − numeral n›
by (simp add: gauss_eq_iff)

lemma i_mult_i_eq [simp]:
‹i ∗ i = − 1 ›
by (simp add: gauss_eq_iff)

lemma gauss_i_mult_minus [simp]:
‹i ∗ (i ∗ x) = − x›
by (simp flip: mult.assoc)

lemma i_squared [simp]:
‹i2 = − 1 ›
by (simp add: power2_eq_square)

lemma i_even_power [simp]:
‹i ^ (n ∗ 2) = (− 1) ^ n›
unfolding mult.commute [of n] power_mult by simp

lemma Re_i_times [simp]:
‹Re (i ∗ z) = − Im z›
by simp

lemma Im_i_times [simp]:
‹Im (i ∗ z) = Re z›
by simp

lemma i_times_eq_iff :
‹i ∗ w = z ←→ w = − (i ∗ z)›
by auto

lemma is_unit_i [simp]:
‹i dvd 1 ›

31

by (rule dvdI [of _ _ ‹− i›]) simp

lemma gauss_numeral [code_post]:
‹Gauss 0 0 = 0 ›
‹Gauss 1 0 = 1 ›
‹Gauss (− 1) 0 = − 1 ›
‹Gauss (numeral n) 0 = numeral n›
‹Gauss (− numeral n) 0 = − numeral n›
‹Gauss 0 1 = i›
‹Gauss 0 (− 1) = − i›
‹Gauss 0 (numeral n) = numeral n ∗ i›
‹Gauss 0 (− numeral n) = − numeral n ∗ i›
‹Gauss 1 1 = 1 + i›
‹Gauss (− 1) 1 = − 1 + i›
‹Gauss (numeral n) 1 = numeral n + i›
‹Gauss (− numeral n) 1 = − numeral n + i›
‹Gauss 1 (− 1) = 1 − i›
‹Gauss 1 (numeral n) = 1 + numeral n ∗ i›
‹Gauss 1 (− numeral n) = 1 − numeral n ∗ i›
‹Gauss (− 1) (− 1) = − 1 − i›
‹Gauss (numeral n) (− 1) = numeral n − i›
‹Gauss (− numeral n) (− 1) = − numeral n − i›
‹Gauss (− 1) (numeral n) = − 1 + numeral n ∗ i›
‹Gauss (− 1) (− numeral n) = − 1 − numeral n ∗ i›
‹Gauss (numeral m) (numeral n) = numeral m + numeral n ∗ i›
‹Gauss (− numeral m) (numeral n) = − numeral m + numeral n ∗ i›
‹Gauss (numeral m) (− numeral n) = numeral m − numeral n ∗ i›
‹Gauss (− numeral m) (− numeral n) = − numeral m − numeral n ∗ i›
by (simp_all add: gauss_eq_iff)

9.3 Gauss Conjugation
primcorec cnj :: ‹gauss ⇒ gauss›

where
‹Re (cnj z) = Re z›
| ‹Im (cnj z) = − Im z›

lemma gauss_cnj_cancel_iff [simp]:
‹cnj x = cnj y ←→ x = y›
by (simp add: gauss_eq_iff)

lemma gauss_cnj_cnj [simp]:
‹cnj (cnj z) = z›
by (simp add: gauss_eq_iff)

lemma gauss_cnj_zero [simp]:
‹cnj 0 = 0 ›
by (simp add: gauss_eq_iff)

32

lemma gauss_cnj_zero_iff [iff]:
‹cnj z = 0 ←→ z = 0 ›
by (simp add: gauss_eq_iff)

lemma gauss_cnj_one_iff [simp]:
‹cnj z = 1 ←→ z = 1 ›
by (simp add: gauss_eq_iff)

lemma gauss_cnj_add [simp]:
‹cnj (x + y) = cnj x + cnj y›
by (simp add: gauss_eq_iff)

lemma cnj_sum [simp]:
‹cnj (sum f s) = (

∑
x∈s. cnj (f x))›

by (induct s rule: infinite_finite_induct) auto

lemma gauss_cnj_diff [simp]:
‹cnj (x − y) = cnj x − cnj y›
by (simp add: gauss_eq_iff)

lemma gauss_cnj_minus [simp]:
‹cnj (− x) = − cnj x›
by (simp add: gauss_eq_iff)

lemma gauss_cnj_one [simp]:
‹cnj 1 = 1 ›
by (simp add: gauss_eq_iff)

lemma gauss_cnj_mult [simp]:
‹cnj (x ∗ y) = cnj x ∗ cnj y›
by (simp add: gauss_eq_iff)

lemma cnj_prod [simp]:
‹cnj (prod f s) = (

∏
x∈s. cnj (f x))›

by (induct s rule: infinite_finite_induct) auto

lemma gauss_cnj_power [simp]:
‹cnj (x ^ n) = cnj x ^ n›
by (induct n) simp_all

lemma gauss_cnj_numeral [simp]:
‹cnj (numeral w) = numeral w›
by (simp add: gauss_eq_iff)

lemma gauss_cnj_of_nat [simp]:
‹cnj (of_nat n) = of_nat n›
by (simp add: gauss_eq_iff)

lemma gauss_cnj_of_int [simp]:

33

‹cnj (of_int z) = of_int z›
by (simp add: gauss_eq_iff)

lemma gauss_cnj_i [simp]:
‹cnj i = − i›
by (simp add: gauss_eq_iff)

lemma gauss_add_cnj:
‹z + cnj z = of_int (2 ∗ Re z)›
by (simp add: gauss_eq_iff)

lemma gauss_diff_cnj:
‹z − cnj z = of_int (2 ∗ Im z) ∗ i›
by (simp add: gauss_eq_iff)

lemma gauss_mult_cnj:
‹z ∗ cnj z = of_int ((Re z)2 + (Im z)2)›
by (simp add: gauss_eq_iff power2_eq_square)

lemma cnj_add_mult_eq_Re:
‹z ∗ cnj w + cnj z ∗ w = of_int (2 ∗ Re (z ∗ cnj w))›
by (simp add: gauss_eq_iff)

lemma gauss_In_mult_cnj_zero [simp]:
‹Im (z ∗ cnj z) = 0 ›
by simp

9.4 Algebraic division
instantiation gauss :: idom_modulo
begin

primcorec divide_gauss :: ‹gauss ⇒ gauss ⇒ gauss›
where

‹Re (x div y) = (Re x ∗ Re y + Im x ∗ Im y) cdiv ((Re y)2 + (Im y)2)›
| ‹Im (x div y) = (Im x ∗ Re y − Re x ∗ Im y) cdiv ((Re y)2 + (Im y)2)›

primcorec modulo_gauss :: ‹gauss ⇒ gauss ⇒ gauss›
where

‹Re (x mod y) = Re x −
((Re x ∗ Re y + Im x ∗ Im y) cdiv ((Re y)2 + (Im y)2) ∗ Re y −
(Im x ∗ Re y − Re x ∗ Im y) cdiv ((Re y)2 + (Im y)2) ∗ Im y)›

| ‹Im (x mod y) = Im x −
((Re x ∗ Re y + Im x ∗ Im y) cdiv ((Re y)2 + (Im y)2) ∗ Im y +
(Im x ∗ Re y − Re x ∗ Im y) cdiv ((Re y)2 + (Im y)2) ∗ Re y)›

instance proof
fix x y :: gauss
show ‹x div 0 = 0 ›

34

by (simp add: gauss_eq_iff)
show ‹x ∗ y div y = x› if ‹y 6= 0 ›
proof −

define Y where ‹Y = (Re y)2 + (Im y)2›
moreover have ‹Y > 0 ›

using that by (simp add: gauss_eq_0 less_le Y_def)
have ∗: ‹Im y ∗ (Im y ∗ Re x) + Re x ∗ (Re y ∗ Re y) = Re x ∗ Y ›

‹Im x ∗ (Im y ∗ Im y) + Im x ∗ (Re y ∗ Re y) = Im x ∗ Y ›
‹(Im y)2 + (Re y)2 = Y ›
by (simp_all add: power2_eq_square algebra_simps Y_def)

from ‹Y > 0 › show ?thesis
by (simp add: gauss_eq_iff algebra_simps) (simp add: ∗ nonzero_mult_cdiv_cancel_right)

qed
show ‹x div y ∗ y + x mod y = x›

by (simp add: gauss_eq_iff)
qed

end

instantiation gauss :: euclidean_ring
begin

definition euclidean_size_gauss :: ‹gauss ⇒ nat›
where ‹euclidean_size x = nat ((Re x)2 + (Im x)2)›

instance proof
show ‹euclidean_size (0 ::gauss) = 0 ›

by (simp add: euclidean_size_gauss_def)
show ‹euclidean_size (x mod y) < euclidean_size y› if ‹y 6= 0 › for x y :: gauss
proof−

define X and Y and R and I
where ‹X = (Re x)2 + (Im x)2› and ‹Y = (Re y)2 + (Im y)2›

and ‹R = Re x ∗ Re y + Im x ∗ Im y› and ‹I = Im x ∗ Re y − Re x ∗ Im
y›

with that have ‹0 < Y › and rhs: ‹int (euclidean_size y) = Y ›
by (simp_all add: gauss_neq_0 euclidean_size_gauss_def)

have ‹X ∗ Y = R2 + I 2›
by (simp add: R_def I_def X_def Y_def power2_eq_square algebra_simps)

let ?lhs = ‹X − I ∗ (I cdiv Y) − R ∗ (R cdiv Y)
− I cdiv Y ∗ (I cmod Y) − R cdiv Y ∗ (R cmod Y)›

have ‹?lhs = X + Y ∗ (R cdiv Y) ∗ (R cdiv Y) + Y ∗ (I cdiv Y) ∗ (I cdiv Y)
− 2 ∗ (R cdiv Y ∗ R + I cdiv Y ∗ I)›

by (simp flip: minus_cmod_eq_mult_cdiv add: algebra_simps)
also have ‹. . . = (Re (x mod y))2 + (Im (x mod y))2›

by (simp add: X_def Y_def R_def I_def algebra_simps power2_eq_square)
finally have lhs: ‹int (euclidean_size (x mod y)) = ?lhs›

by (simp add: euclidean_size_gauss_def)
have ‹?lhs ∗ Y = (I cmod Y)2 + (R cmod Y)2›

apply (simp add: algebra_simps power2_eq_square ‹X ∗ Y = R2 + I 2›)

35

apply (simp flip: mult.assoc add.assoc minus_cmod_eq_mult_cdiv)
apply (simp add: algebra_simps)
done

also have ‹. . . ≤ (Y div 2)2 + (Y div 2)2›
by (rule add_mono) (use ‹Y > 0 › abs_cmod_less_equal [of Y] in ‹simp_all

add: power2_le_iff_abs_le›)
also have ‹. . . < Y 2›

using ‹Y > 0 › by (cases ‹Y = 1 ›) (simp_all add: power2_eq_square
mult_le_less_imp_less flip: mult.assoc)

finally have ‹?lhs ∗ Y < Y 2› .
with ‹Y > 0 › have ‹?lhs < Y ›

by (simp add: power2_eq_square)
then have ‹int (euclidean_size (x mod y)) < int (euclidean_size y)›

by (simp only: lhs rhs)
then show ?thesis

by simp
qed
show ‹euclidean_size x ≤ euclidean_size (x ∗ y)› if ‹y 6= 0 › for x y :: gauss
proof −

from that have ‹euclidean_size y > 0 ›
by (simp add: euclidean_size_gauss_def gauss_neq_0)

then have ‹euclidean_size x ≤ euclidean_size x ∗ euclidean_size y›
by simp

also have ‹. . . = nat (((Re x)2 + (Im x)2) ∗ ((Re y)2 + (Im y)2))›
by (simp add: euclidean_size_gauss_def nat_mult_distrib)

also have ‹. . . = euclidean_size (x ∗ y)›
by (simp add: euclidean_size_gauss_def eq_nat_nat_iff) (simp add: alge-

bra_simps power2_eq_square)
finally show ?thesis .

qed
qed

end

end

10 Groebner Basis Examples
theory Groebner_Examples
imports Main
begin

10.1 Basic examples
lemma

fixes x :: int
shows x ^ 3 = x ^ 3
apply (tactic ‹ALLGOALS (CONVERSION
(Conv.arg_conv (Conv.arg1_conv (Semiring_Normalizer .semiring_normalize_conv

36

context))))›)
by (rule refl)

lemma
fixes x :: int
shows (x − (−2))^5 = x ^ 5 + (10 ∗ x ^ 4 + (40 ∗ x ^ 3 + (80 ∗ x2 + (80
∗ x + 32))))

apply (tactic ‹ALLGOALS (CONVERSION
(Conv.arg_conv (Conv.arg1_conv (Semiring_Normalizer .semiring_normalize_conv

context))))›)
by (rule refl)

schematic_goal
fixes x :: int
shows (x − (−2))^5 ∗ (y − 78) ^ 8 = ?X
apply (tactic ‹ALLGOALS (CONVERSION
(Conv.arg_conv (Conv.arg1_conv (Semiring_Normalizer .semiring_normalize_conv

context))))›)
by (rule refl)

lemma ((−3) ^ (Suc (Suc (Suc 0)))) == (X :: ′a::{comm_ring_1})
apply (simp only: power_Suc power_0)
apply (simp only: semiring_norm)
oops

lemma ((x::int) + y)^3 − 1 = (x − z)^2 − 10 =⇒ x = z + 3 =⇒ x = − y
by algebra

lemma (4 ::nat) + 4 = 3 + 5
by algebra

lemma (4 ::int) + 0 = 4
apply algebra?
by simp

lemma
assumes a ∗ x2 + b ∗ x + c = (0 ::int) and d ∗ x2 + e ∗ x + f = 0
shows d2 ∗ c2 − 2 ∗ d ∗ c ∗ a ∗ f + a2 ∗ f 2 − e ∗ d ∗ b ∗ c − e ∗ b ∗ a ∗ f +

a ∗ e2 ∗ c + f ∗ d ∗ b2 = 0
using assms by algebra

lemma (x::int)^3 − x^2 − 5∗x − 3 = 0 ←→ (x = 3 ∨ x = −1)
by algebra

theorem x∗ (x2 − x − 5) − 3 = (0 ::int) ←→ (x = 3 ∨ x = −1)
by algebra

lemma
fixes x:: ′a::idom

37

shows x2∗y = x2 & x∗y2 = y2 ←→ x = 1 & y = 1 | x = 0 & y = 0
by algebra

10.2 Lemmas for Lagrange’s theorem
definition

sq :: ′a::times => ′a where
sq x == x∗x

lemma
fixes x1 :: ′a::{idom}
shows
(sq x1 + sq x2 + sq x3 + sq x4) ∗ (sq y1 + sq y2 + sq y3 + sq y4) =

sq (x1∗y1 − x2∗y2 − x3∗y3 − x4∗y4) +
sq (x1∗y2 + x2∗y1 + x3∗y4 − x4∗y3) +
sq (x1∗y3 − x2∗y4 + x3∗y1 + x4∗y2) +
sq (x1∗y4 + x2∗y3 − x3∗y2 + x4∗y1)

by (algebra add: sq_def)

lemma
fixes p1 :: ′a::{idom}
shows
(sq p1 + sq q1 + sq r1 + sq s1 + sq t1 + sq u1 + sq v1 + sq w1) ∗
(sq p2 + sq q2 + sq r2 + sq s2 + sq t2 + sq u2 + sq v2 + sq w2)
= sq (p1∗p2 − q1∗q2 − r1∗r2 − s1∗s2 − t1∗t2 − u1∗u2 − v1∗v2 − w1∗w2)

+
sq (p1∗q2 + q1∗p2 + r1∗s2 − s1∗r2 + t1∗u2 − u1∗t2 − v1∗w2 + w1∗v2)

+
sq (p1∗r2 − q1∗s2 + r1∗p2 + s1∗q2 + t1∗v2 + u1∗w2 − v1∗t2 − w1∗u2)

+
sq (p1∗s2 + q1∗r2 − r1∗q2 + s1∗p2 + t1∗w2 − u1∗v2 + v1∗u2 − w1∗t2)

+
sq (p1∗t2 − q1∗u2 − r1∗v2 − s1∗w2 + t1∗p2 + u1∗q2 + v1∗r2 + w1∗s2)

+
sq (p1∗u2 + q1∗t2 − r1∗w2 + s1∗v2 − t1∗q2 + u1∗p2 − v1∗s2 + w1∗r2)

+
sq (p1∗v2 + q1∗w2 + r1∗t2 − s1∗u2 − t1∗r2 + u1∗s2 + v1∗p2 − w1∗q2)

+
sq (p1∗w2 − q1∗v2 + r1∗u2 + s1∗t2 − t1∗s2 − u1∗r2 + v1∗q2 + w1∗p2)

by (algebra add: sq_def)

10.3 Colinearity is invariant by rotation
type_synonym point = int × int

definition collinear ::point ⇒ point ⇒ point ⇒ bool where
collinear ≡ λ(Ax,Ay) (Bx,By) (Cx,Cy).
((Ax − Bx) ∗ (By − Cy) = (Ay − By) ∗ (Bx − Cx))

lemma collinear_inv_rotation:

38

assumes collinear (Ax, Ay) (Bx, By) (Cx, Cy) and c2 + s2 = 1
shows collinear (Ax ∗ c − Ay ∗ s, Ay ∗ c + Ax ∗ s)
(Bx ∗ c − By ∗ s, By ∗ c + Bx ∗ s) (Cx ∗ c − Cy ∗ s, Cy ∗ c + Cx ∗ s)

using assms
by (algebra add: collinear_def split_def fst_conv snd_conv)

lemma ∃ (d::int). a∗y − a∗x = n∗d =⇒ ∃ u v. a∗u + n∗v = 1 =⇒ ∃ e. y − x =
n∗e

by algebra

end

11 Example of Declaring an Oracle
theory Iff_Oracle

imports Main
begin

11.1 Oracle declaration

This oracle makes tautologies of the form P = (P = (P = P)). The length
is specified by an integer, which is checked to be even and positive.
oracle iff_oracle = ‹

let
fun mk_iff 1 = Var ((P, 0), typ ‹bool›)
| mk_iff n = HOLogic.mk_eq (Var ((P, 0), typ ‹bool›), mk_iff (n − 1));

in
fn (thy, n) =>

if n > 0 andalso n mod 2 = 0
then Thm.global_cterm_of thy (HOLogic.mk_Trueprop (mk_iff n))
else raise Fail (iff_oracle: ^ string_of_int n)

end
›

11.2 Oracle as low-level rule
ML ‹iff_oracle (theory , 2)›
ML ‹iff_oracle (theory , 10)›

ML ‹
assert (map (#1 o #1) (Thm_Deps.all_oracles [iff_oracle (theory , 10)]) =

[oracle_name ‹iff_oracle›]);
›

These oracle calls had better fail.
ML ‹
(iff_oracle (theory , 5); error Bad oracle)

handle Fail _ => writeln Oracle failed, as expected

39

›

ML ‹
(iff_oracle (theory , 1); error Bad oracle)

handle Fail _ => writeln Oracle failed, as expected
›

11.3 Oracle as proof method
method_setup iff =

‹Scan.lift Parse.nat >> (fn n => fn ctxt =>
SIMPLE_METHOD

(HEADGOAL (resolve_tac ctxt [iff_oracle (Proof_Context.theory_of ctxt,
n)])

handle Fail _ => no_tac))›

lemma A ←→ A
by (iff 2)

lemma A ←→ A ←→ A ←→ A ←→ A ←→ A ←→ A ←→ A ←→ A ←→ A
by (iff 10)

lemma A ←→ A ←→ A ←→ A ←→ A
apply (iff 5)?
oops

lemma A
apply (iff 1)?
oops

end

12 Examples of automatically derived induction
rules

theory Induction_Schema
imports Main
begin

12.1 Some simple induction principles on nat
lemma nat_standard_induct:
[[P 0 ;

∧
n. P n =⇒ P (Suc n)]] =⇒ P x

by induction_schema (pat_completeness, lexicographic_order)

lemma nat_induct2 :
[[P 0 ; P (Suc 0);

∧
k. P k ==> P (Suc k) ==> P (Suc (Suc k))]]

=⇒ P n

40

by induction_schema (pat_completeness, lexicographic_order)

lemma minus_one_induct:
[[
∧

n::nat. (n 6= 0 =⇒ P (n − 1)) =⇒ P n]] =⇒ P x
by induction_schema (pat_completeness, lexicographic_order)

theorem diff_induct:
(!!x. P x 0) ==> (!!y. P 0 (Suc y)) ==>
(!!x y. P x y ==> P (Suc x) (Suc y)) ==> P m n

by induction_schema (pat_completeness, lexicographic_order)

lemma list_induct2 ′:
[[P [] [];∧

x xs. P (x#xs) [];∧
y ys. P [] (y#ys);∧
x xs y ys. P xs ys =⇒ P (x#xs) (y#ys)]]

=⇒ P xs ys
by induction_schema (pat_completeness, lexicographic_order)

theorem even_odd_induct:
assumes R 0
assumes Q 0
assumes

∧
n. Q n =⇒ R (Suc n)

assumes
∧

n. R n =⇒ Q (Suc n)
shows R n Q n
using assms

by induction_schema (pat_completeness+, lexicographic_order)

end

13 Textbook-style reasoning: the Knaster-Tarski
Theorem

theory Knaster_Tarski
imports Main

begin

unbundle lattice_syntax

13.1 Prose version

According to the textbook [1, pages 93–94], the Knaster-Tarski fixpoint the-
orem is as follows.1

The Knaster-Tarski Fixpoint Theorem. Let L be a complete lattice
and f : L → L an order-preserving map. Then

d
{x ∈ L | f (x) ≤ x} is a

fixpoint of f.
1We have dualized the argument, and tuned the notation a little bit.

41

Proof. Let H = {x ∈ L | f (x) ≤ x} and a =
d

H. For all x ∈ H we have
a ≤ x, so f (a) ≤ f (x) ≤ x. Thus f (a) is a lower bound of H, whence f (a)
≤ a. We now use this inequality to prove the reverse one (!) and thereby
complete the proof that a is a fixpoint. Since f is order-preserving, f (f (a))
≤ f (a). This says f (a) ∈ H, so a ≤ f (a).

13.2 Formal versions

The Isar proof below closely follows the original presentation. Virtually all
of the prose narration has been rephrased in terms of formal Isar language
elements. Just as many textbook-style proofs, there is a strong bias towards
forward proof, and several bends in the course of reasoning.
theorem Knaster_Tarski:

fixes f :: ′a::complete_lattice ⇒ ′a
assumes mono f
shows ∃ a. f a = a

proof
let ?H = {u. f u ≤ u}
let ?a =

d
?H

show f ?a = ?a
proof −

{
fix x
assume x ∈ ?H
then have ?a ≤ x by (rule Inf_lower)
with ‹mono f › have f ?a ≤ f x ..
also from ‹x ∈ ?H › have . . . ≤ x ..
finally have f ?a ≤ x .

}
then have f ?a ≤ ?a by (rule Inf_greatest)
{

also presume . . . ≤ f ?a
finally (order_antisym) show ?thesis .

}
from ‹mono f › and ‹f ?a ≤ ?a› have f (f ?a) ≤ f ?a ..
then have f ?a ∈ ?H ..
then show ?a ≤ f ?a by (rule Inf_lower)

qed
qed

Above we have used several advanced Isar language elements, such as ex-
plicit block structure and weak assumptions. Thus we have mimicked the
particular way of reasoning of the original text.
In the subsequent version the order of reasoning is changed to achieve struc-
tured top-down decomposition of the problem at the outer level, while only
the inner steps of reasoning are done in a forward manner. We are cer-
tainly more at ease here, requiring only the most basic features of the Isar

42

language.
theorem Knaster_Tarski ′:

fixes f :: ′a::complete_lattice ⇒ ′a
assumes mono f
shows ∃ a. f a = a

proof
let ?H = {u. f u ≤ u}
let ?a =

d
?H

show f ?a = ?a
proof (rule order_antisym)

show f ?a ≤ ?a
proof (rule Inf_greatest)

fix x
assume x ∈ ?H
then have ?a ≤ x by (rule Inf_lower)
with ‹mono f › have f ?a ≤ f x ..
also from ‹x ∈ ?H › have . . . ≤ x ..
finally show f ?a ≤ x .

qed
show ?a ≤ f ?a
proof (rule Inf_lower)

from ‹mono f › and ‹f ?a ≤ ?a› have f (f ?a) ≤ f ?a ..
then show f ?a ∈ ?H ..

qed
qed

qed

end

14 Isabelle/ML basics
theory ML

imports Main
begin

14.1 ML expressions

The Isabelle command ML allows to embed Isabelle/ML source into the
formal text. It is type-checked, compiled, and run within that environment.
Note that side-effects should be avoided, unless the intention is to change
global parameters of the run-time environment (rare).
ML top-level bindings are managed within the theory context.
ML ‹1 + 1 ›

ML ‹val a = 1 ›
ML ‹val b = 1 ›
ML ‹val c = a + b›

43

14.2 Antiquotations

There are some language extensions (via antiquotations), as explained in
the “Isabelle/Isar implementation manual”, chapter 0.
ML ‹length []›
ML ‹assert (length [] = 0)›

Formal entities from the surrounding context may be referenced as follows:
term 1 + 1 — term within theory source

ML ‹term ‹1 + 1 › (∗ term as symbolic ML datatype value ∗)›

ML ‹term ‹1 + (1 ::int)››

ML ‹
(∗ formal source with position information ∗)
val s = ‹1 + 1 ›;

(∗ read term via old−style string interface ∗)
val t = Syntax.read_term context (Syntax.implode_input s);

›

14.3 Recursive ML evaluation
ML ‹

ML ‹ML ‹val a = @{thm refl}››;
ML ‹val b = @{thm sym}›;
val c = @{thm trans}
val thms = [a, b, c];

›

14.4 IDE support

ML embedded into the Isabelle environment is connected to the Prover IDE.
Poly/ML provides:

• precise positions for warnings / errors

• markup for defining positions of identifiers

• markup for inferred types of sub-expressions

• pretty-printing of ML values with markup

• completion of ML names

• source-level debugger

ML ‹fn i => fn list => length list + i›

44

14.5 Example: factorial and ackermann function in Isabelle/ML
ML ‹

fun factorial 0 = 1
| factorial n = n ∗ factorial (n − 1)

›

ML ‹factorial 42 ›
ML ‹factorial 10000 div factorial 9999 ›

See http://mathworld.wolfram.com/AckermannFunction.html.
ML ‹

fun ackermann 0 n = n + 1
| ackermann m 0 = ackermann (m − 1) 1
| ackermann m n = ackermann (m − 1) (ackermann m (n − 1))

›

ML ‹timeit (fn () => ackermann 3 10)›

14.6 Parallel Isabelle/ML

Future.fork/join/cancel manage parallel evaluation.
Note that within Isabelle theory documents, the top-level command bound-
ary may not be transgressed without special precautions. This is normally
managed by the system when performing parallel proof checking.
ML ‹

val x = Future.fork (fn () => ackermann 3 10);
val y = Future.fork (fn () => ackermann 3 10);
val z = Future.join x + Future.join y

›

The Par_List module provides high-level combinators for parallel list oper-
ations.
ML ‹timeit (fn () => map (fn n => ackermann 3 n) (1 upto 10))›
ML ‹timeit (fn () => Par_List.map (fn n => ackermann 3 n) (1 upto 10))›

14.7 Function specifications in Isabelle/HOL
fun factorial :: nat ⇒ nat
where

factorial 0 = 1
| factorial (Suc n) = Suc n ∗ factorial n

term factorial 4 — symbolic term
value factorial 4 — evaluation via ML code generation in the background

declare [[ML_source_trace]]
ML ‹term ‹factorial 4 ›› — symbolic term in ML

45

http://mathworld.wolfram.com/AckermannFunction.html

ML ‹@{code factorial}› — ML code from function specification

fun ackermann :: nat ⇒ nat ⇒ nat
where

ackermann 0 n = n + 1
| ackermann (Suc m) 0 = ackermann m 1
| ackermann (Suc m) (Suc n) = ackermann m (ackermann (Suc m) n)

value ackermann 3 5

end

15 Peirce’s Law
theory Peirce

imports Main
begin

We consider Peirce’s Law: ((A −→ B) −→ A) −→ A. This is an inherently
non-intuitionistic statement, so its proof will certainly involve some form of
classical contradiction.
The first proof is again a well-balanced combination of plain backward and
forward reasoning. The actual classical step is where the negated goal may
be introduced as additional assumption. This eventually leads to a contra-
diction.2

theorem ((A −→ B) −→ A) −→ A
proof

assume (A −→ B) −→ A
show A
proof (rule classical)

assume ¬ A
have A −→ B
proof

assume A
with ‹¬ A› show B by contradiction

qed
with ‹(A −→ B) −→ A› show A ..

qed
qed

In the subsequent version the reasoning is rearranged by means of “weak
assumptions” (as introduced by presume). Before assuming the negated
goal ¬ A, its intended consequence A −→ B is put into place in order to
solve the main problem. Nevertheless, we do not get anything for free, but

2The rule involved there is negation elimination; it holds in intuitionistic logic as well.

46

have to establish A −→ B later on. The overall effect is that of a logical
cut.
Technically speaking, whenever some goal is solved by show in the context
of weak assumptions then the latter give rise to new subgoals, which may
be established separately. In contrast, strong assumptions (as introduced by
assume) are solved immediately.
theorem ((A −→ B) −→ A) −→ A
proof

assume (A −→ B) −→ A
show A
proof (rule classical)

presume A −→ B
with ‹(A −→ B) −→ A› show A ..

next
assume ¬ A
show A −→ B
proof

assume A
with ‹¬ A› show B by contradiction

qed
qed

qed

Note that the goals stemming from weak assumptions may be even left until
qed time, where they get eventually solved “by assumption” as well. In
that case there is really no fundamental difference between the two kinds of
assumptions, apart from the order of reducing the individual parts of the
proof configuration.
Nevertheless, the “strong” mode of plain assumptions is quite important in
practice to achieve robustness of proof text interpretation. By forcing both
the conclusion and the assumptions to unify with the pending goal to be
solved, goal selection becomes quite deterministic. For example, decomposi-
tion with rules of the “case-analysis” type usually gives rise to several goals
that only differ in there local contexts. With strong assumptions these may
be still solved in any order in a predictable way, while weak ones would
quickly lead to great confusion, eventually demanding even some backtrack-
ing.
end

16 Using extensible records in HOL – points and
coloured points

theory Records
imports Main

begin

47

16.1 Points
record point =

xpos :: nat
ypos :: nat

Apart many other things, above record declaration produces the following
theorems:
thm point.simps
thm point.iffs
thm point.defs

The set of theorems point.simps is added automatically to the standard
simpset, point.iffs is added to the Classical Reasoner and Simplifier context.

Record declarations define new types and type abbreviations:

point = (|xpos :: nat, ypos :: nat|) = () point_ext_type
′a point_scheme = (|xpos :: nat, ypos :: nat, ... :: ′a|) = ′a point_ext_type

consts foo2 :: (|xpos :: nat, ypos :: nat|)
consts foo4 :: ′a ⇒ (|xpos :: nat, ypos :: nat, . . . :: ′a|)

16.1.1 Introducing concrete records and record schemes
definition foo1 :: point

where foo1 = (|xpos = 1 , ypos = 0 |)

definition foo3 :: ′a ⇒ ′a point_scheme
where foo3 ext = (|xpos = 1 , ypos = 0 , . . . = ext|)

16.1.2 Record selection and record update
definition getX :: ′a point_scheme ⇒ nat

where getX r = xpos r

definition setX :: ′a point_scheme ⇒ nat ⇒ ′a point_scheme
where setX r n = r (|xpos := n|)

16.1.3 Some lemmas about records

Basic simplifications.
lemma point.make n p = (|xpos = n, ypos = p|)

by (simp only: point.make_def)

lemma xpos (|xpos = m, ypos = n, . . . = p|) = m
by simp

lemma (|xpos = m, ypos = n, . . . = p|)(|xpos:= 0 |) = (|xpos = 0 , ypos = n, . . . =
p|)

48

by simp

Equality of records.
lemma n = n ′ =⇒ p = p ′ =⇒ (|xpos = n, ypos = p|) = (|xpos = n ′, ypos = p ′|)

— introduction of concrete record equality
by simp

lemma (|xpos = n, ypos = p|) = (|xpos = n ′, ypos = p ′|) =⇒ n = n ′

— elimination of concrete record equality
by simp

lemma r(|xpos := n|)(|ypos := m|) = r(|ypos := m|)(|xpos := n|)
— introduction of abstract record equality
by simp

lemma r(|xpos := n|) = r(|xpos := n ′|) if n = n ′

— elimination of abstract record equality (manual proof)
proof −

let ?lhs = ?rhs = ?thesis
from that have xpos ?lhs = xpos ?rhs by simp
then show ?thesis by simp

qed

Surjective pairing
lemma r = (|xpos = xpos r , ypos = ypos r |)

by simp

lemma r = (|xpos = xpos r , ypos = ypos r , . . . = point.more r |)
by simp

Representation of records by cases or (degenerate) induction.
lemma r(|xpos := n|)(|ypos := m|) = r(|ypos := m|)(|xpos := n|)
proof (cases r)

fix xpos ypos more
assume r = (|xpos = xpos, ypos = ypos, . . . = more|)
then show ?thesis by simp

qed

lemma r(|xpos := n|)(|ypos := m|) = r(|ypos := m|)(|xpos := n|)
proof (induct r)

fix xpos ypos more
show (|xpos = xpos, ypos = ypos, . . . = more|)(|xpos := n, ypos := m|) =

(|xpos = xpos, ypos = ypos, . . . = more|)(|ypos := m, xpos := n|)
by simp

qed

lemma r(|xpos := n|)(|xpos := m|) = r(|xpos := m|)

49

proof (cases r)
fix xpos ypos more
assume r = (|xpos = xpos, ypos = ypos, . . . = more|)
then show ?thesis by simp

qed

lemma r(|xpos := n|)(|xpos := m|) = r(|xpos := m|)
proof (cases r)

case fields
then show ?thesis by simp

qed

lemma r(|xpos := n|)(|xpos := m|) = r(|xpos := m|)
by (cases r) simp

Concrete records are type instances of record schemes.
definition foo5 :: nat

where foo5 = getX (|xpos = 1 , ypos = 0 |)

Manipulating the “...” (more) part.
definition incX :: ′a point_scheme ⇒ ′a point_scheme

where incX r = (|xpos = xpos r + 1 , ypos = ypos r , . . . = point.more r |)

lemma incX r = setX r (Suc (getX r))
by (simp add: getX_def setX_def incX_def)

An alternative definition.
definition incX ′ :: ′a point_scheme ⇒ ′a point_scheme

where incX ′ r = r(|xpos := xpos r + 1 |)

16.2 Coloured points: record extension
datatype colour = Red | Green | Blue

record cpoint = point +
colour :: colour

The record declaration defines a new type constructor and abbreviations:

cpoint = (|xpos :: nat, ypos :: nat, colour :: colour |) =
() cpoint_ext_type point_ext_type

′a cpoint_scheme = (|xpos :: nat, ypos :: nat, colour :: colour , . . . :: ′a|) =
′a cpoint_ext_type point_ext_type

consts foo6 :: cpoint
consts foo7 :: (|xpos :: nat, ypos :: nat, colour :: colour |)
consts foo8 :: ′a cpoint_scheme

50

consts foo9 :: (|xpos :: nat, ypos :: nat, colour :: colour , . . . :: ′a|)

Functions on point schemes work for cpoints as well.
definition foo10 :: nat

where foo10 = getX (|xpos = 2 , ypos = 0 , colour = Blue|)

16.2.1 Non-coercive structural subtyping

Term foo11 has type cpoint, not type point — Great!
definition foo11 :: cpoint

where foo11 = setX (|xpos = 2 , ypos = 0 , colour = Blue|) 0

16.3 Other features

Field names contribute to record identity.
record point ′ =

xpos ′ :: nat
ypos ′ :: nat

May not apply getX to (|xpos ′ = 2 , ypos ′ = 0 |) — type error.

Polymorphic records.
record ′a point ′′ = point +

content :: ′a

type_synonym cpoint ′′ = colour point ′′

Updating a record field with an identical value is simplified.
lemma r(|xpos := xpos r |) = r

by simp

Only the most recent update to a component survives simplification.
lemma r(|xpos := x, ypos := y, xpos := x ′|) = r(|ypos := y, xpos := x ′|)

by simp

In some cases its convenient to automatically split (quantified) records.
For this purpose there is the simproc Record.split_simproc and the tac-
tic Record.split_simp_tac. The simplification procedure only splits the
records, whereas the tactic also simplifies the resulting goal with the stan-
dard record simplification rules. A (generalized) predicate on the record is
passed as parameter that decides whether or how ‘deep’ to split the record.
It can peek on the subterm starting at the quantified occurrence of the record
(including the quantifier). The value 0 indicates no split, a value greater 0
splits up to the given bound of record extension and finally the value ~1
completely splits the record. Record.split_simp_tac additionally takes a
list of equations for simplification and can also split fixed record variables.

51

lemma (∀ r . P (xpos r)) −→ (∀ x. P x)
apply (tactic ‹simp_tac (put_simpset HOL_basic_ss context
|> Simplifier .add_proc (Record.split_simproc (K ∼1))) 1 ›)

apply simp
done

lemma (∀ r . P (xpos r)) −→ (∀ x. P x)
apply (tactic ‹Record.split_simp_tac context [] (K ∼1) 1 ›)
apply simp
done

lemma (∃ r . P (xpos r)) −→ (∃ x. P x)
apply (tactic ‹simp_tac (put_simpset HOL_basic_ss context
|> Simplifier .add_proc (Record.split_simproc (K ∼1))) 1 ›)

apply simp
done

lemma (∃ r . P (xpos r)) −→ (∃ x. P x)
apply (tactic ‹Record.split_simp_tac context [] (K ∼1) 1 ›)
apply simp
done

lemma
∧

r . P (xpos r) =⇒ (∃ x. P x)
apply (tactic ‹simp_tac (put_simpset HOL_basic_ss context
|> Simplifier .add_proc (Record.split_simproc (K ∼1))) 1 ›)

apply auto
done

lemma
∧

r . P (xpos r) =⇒ (∃ x. P x)
apply (tactic ‹Record.split_simp_tac context [] (K ∼1) 1 ›)
apply auto
done

lemma P (xpos r) =⇒ (∃ x. P x)
apply (tactic ‹Record.split_simp_tac context [] (K ∼1) 1 ›)
apply auto
done

notepad
begin

have ∃ x. P x
if P (xpos r) for P r
apply (insert that)
apply (tactic ‹Record.split_simp_tac context [] (K ∼1) 1 ›)
apply auto
done

end

The effect of simproc Record.ex_sel_eq_simproc is illustrated by the fol-

52

lowing lemma.
lemma ∃ r . xpos r = x

supply [[simproc add: Record.ex_sel_eq]]
apply (simp)
done

16.4 Simprocs for update and equality
record alph1 =

a :: nat
b :: nat

record alph2 = alph1 +
c :: nat
d :: nat

record alph3 = alph2 +
e :: nat
f :: nat

The simprocs that are activated by default are:

• Record.simproc: field selection of (nested) record updates.

• Record.upd_simproc: nested record updates.

• Record.eq_simproc: (componentwise) equality of records.

By default record updates are not ordered by simplification.
schematic_goal r(|b := x, a:= y|) = ?X

by simp

Normalisation towards an update ordering (string ordering of update func-
tion names) can be configured as follows.
schematic_goal r(|b := y, a := x|) = ?X

supply [[record_sort_updates]]
by simp

Note the interplay between update ordering and record equality. Without
update ordering the following equality is handled by Record.eq_simproc.
Record equality is thus solved by componentwise comparison of all the fields
of the records which can be expensive in the presence of many fields.
lemma r(|f := x1 , a:= x2 |) = r(|a := x2 , f := x1 |)

by simp

lemma r(|f := x1 , a:= x2 |) = r(|a := x2 , f := x1 |)
supply [[simproc del: Record.eq]]

53

apply (simp?)
oops

With update ordering the equality is already established after update nor-
malisation. There is no need for componentwise comparison.
lemma r(|f := x1 , a:= x2 |) = r(|a := x2 , f := x1 |)

supply [[record_sort_updates, simproc del: Record.eq]]
apply simp
done

schematic_goal r(|f := x1 , e := x2 , d:= x3 , c:= x4 , b:=x5 , a:= x6 |) = ?X
supply [[record_sort_updates]]
by simp

schematic_goal r(|f := x1 , e := x2 , d:= x3 , c:= x4 , e:=x5 , a:= x6 |) = ?X
supply [[record_sort_updates]]
by simp

schematic_goal r(|f := x1 , e := x2 , d:= x3 , c:= x4 , e:=x5 , a:= x6 |) = ?X
by simp

16.5 A more complex record expression
record (′a, ′b, ′c) bar = bar1 :: ′a

bar2 :: ′b
bar3 :: ′c
bar21 :: ′b × ′a
bar32 :: ′c × ′b
bar31 :: ′c × ′a

print_record (′a, ′b, ′c) bar

16.6 Some code generation
export_code foo1 foo3 foo5 foo10 checking SML

Code generation can also be switched off, for instance for very large records:
declare [[record_codegen = false]]

record not_so_large_record =
bar520 :: nat
bar521 :: nat × nat

setup ‹
let
val N = 300

in
Record.add_record {overloaded = false} ([], binding ‹large_record›) NONE

54

(map (fn i => (Binding.make (fld_ ^ string_of_int i, here), @{typ nat},
Mixfix.NoSyn))

(1 upto N))
end

›

declare [[record_codegen]]

schematic_goal ‹fld_1 (r(|fld_300 := x300 , fld_20 := x20 , fld_200 := x200 |))
= ?X›

by simp

schematic_goal ‹r(|fld_300 := x300 , fld_20 := x20 , fld_200 := x200 |) = ?X›
supply [[record_sort_updates]]
by simp

end
theory Rewrite_Examples
imports Main HOL−Library.Rewrite
begin

17 The rewrite Proof Method by Example

This theory gives an overview over the features of the pattern-based rewrite
proof method.
Documentation: https://arxiv.org/abs/2111.04082
lemma

fixes a::int and b::int and c::int
assumes P (b + a)
shows P (a + b)

by (rewrite at a + b add.commute)
(rule assms)

lemma
fixes a b c :: int
assumes f (a − a + (a − a)) + f (0 + c) = f 0 + f c
shows f (a − a + (a − a)) + f ((a − a) + c) = f 0 + f c
by (rewrite in f _ + f ◊ = _ diff_self) fact

lemma
fixes a b c :: int
assumes f (a − a + 0) + f ((a − a) + c) = f 0 + f c
shows f (a − a + (a − a)) + f ((a − a) + c) = f 0 + f c
by (rewrite at f (_ + ◊) + f _ = _ diff_self) fact

lemma
fixes a b c :: int

55

https://arxiv.org/abs/2111.04082

assumes f (0 + (a − a)) + f ((a − a) + c) = f 0 + f c
shows f (a − a + (a − a)) + f ((a − a) + c) = f 0 + f c
by (rewrite in f (◊ + _) + _ = _ diff_self) fact

lemma
fixes a b c :: int
assumes f (a − a + 0) + f ((a − a) + c) = f 0 + f c
shows f (a − a + (a − a)) + f ((a − a) + c) = f 0 + f c
by (rewrite in f (_ + ◊) + _ = _ diff_self) fact

lemma
fixes x y :: nat
showsx + y > c =⇒ y + x > c
by (rewrite at ◊ > c add.commute) assumption

lemma
fixes x y :: nat
assumes y + x > c =⇒ y + x > c
shows x + y > c =⇒ y + x > c
by (rewrite in asm add.commute) fact

lemma
fixes x y :: nat
assumes y + x > c =⇒ y + x > c
shows x + y > c =⇒ y + x > c
by (rewrite in x + y > c at asm add.commute) fact

lemma
fixes x y :: nat
assumes y + x > c =⇒ y + x > c
shows x + y > c =⇒ y + x > c
by (rewrite at ◊ > c at asm add.commute) fact

lemma
assumes P {x::int. y + 1 = 1 + x}
shows P {x::int. y + 1 = x + 1}
by (rewrite at x+1 in {x::int. ◊ } add.commute) fact

lemma
assumes P {x::int. y + 1 = 1 + x}
shows P {x::int. y + 1 = x + 1}
by (rewrite at any_identifier_will_work+1 in {any_identifier_will_work::int.

◊ } add.commute)
fact

lemma
assumes P {(x::nat, y::nat, z). x + z ∗ 3 = Q (λs t. s ∗ t + y − 3)}
shows P {(x::nat, y::nat, z). x + z ∗ 3 = Q (λs t. y + s ∗ t − 3)}

56

by (rewrite at b + d ∗ e in λ(a, b, c). _ = Q (λd e. ◊) add.commute) fact

lemma
assumes PROP P ≡ PROP Q
shows PROP R =⇒ PROP P =⇒ PROP Q

by (rewrite at asm assms)

lemma
assumes PROP P ≡ PROP Q
shows PROP R =⇒ PROP R =⇒ PROP P =⇒ PROP Q

by (rewrite at asm assms)

lemma
assumes (PROP P =⇒ PROP Q) ≡ (PROP S =⇒ PROP R)
shows PROP S =⇒ (PROP P =⇒ PROP Q) =⇒ PROP R
apply (rewrite at asm assms)
apply assumption
done

lemma test_theorem:
fixes x :: nat
shows x ≤ y =⇒ x ≥ y =⇒ x = y
by (rule Orderings.order_antisym)

lemma
fixes f :: nat ⇒ nat
shows f x ≤ 0 =⇒ f x ≥ 0 =⇒ f x = 0
apply (rewrite at f x to 0 test_theorem)
apply assumption
apply assumption
apply (rule refl)
done

lemma
assumes rewr : PROP P =⇒ PROP Q =⇒ PROP R ≡ PROP R ′

assumes A1 : PROP S =⇒ PROP T =⇒ PROP U =⇒ PROP P
assumes A2 : PROP S =⇒ PROP T =⇒ PROP U =⇒ PROP Q
assumes C : PROP S =⇒ PROP R ′ =⇒ PROP T =⇒ PROP U =⇒ PROP V
shows PROP S =⇒ PROP R =⇒ PROP T =⇒ PROP U =⇒ PROP V
apply (rewrite at asm rewr)
apply (fact A1)
apply (fact A2)

57

apply (fact C)
done

fun f :: nat ⇒ nat where f n = n
definition f_inv (I :: nat ⇒ bool) n ≡ f n

lemma annotate_f : f = f_inv I
by (simp add: f_inv_def fun_eq_iff)

lemma
assumes P (λn. f_inv (λ_. True) n + 1) = x
shows P (λn. f n + 1) = x
by (rewrite to f_inv (λ_. True) annotate_f) fact

lemma
assumes P (λn. f_inv (λx. n < x + 1) n + 1) = x
shows P (λn. f n + 1) = x
by (rewrite in λn. ◊ to f_inv (λx. n < x + 1) annotate_f) fact

lemma
assumes P (λn. f_inv (λx. n < x + 1) n + 1) = x
shows P (λn. f n + 1) = x
by (rewrite in λabc. ◊ to f_inv (λx. abc < x + 1) annotate_f) fact

lemma
assumes P (2 + 1)
shows

∧
x y. P (1 + 2 :: nat)

by (rewrite in P (1 + 2) at for (x) add.commute) fact

lemma
assumes

∧
x y. P (y + x)

shows
∧

x y. P (x + y :: nat)
by (rewrite in P (x + _) at for (x y) add.commute) fact

lemma
assumes

∧
x y z. y + x + z = z + y + (x::int)

shows
∧

x y z. x + y + z = z + y + (x::int)
by (rewrite at x + y in x + y + z in for (x y z) add.commute) fact

lemma
assumes

∧
x y z. z + (x + y) = z + y + (x::int)

58

shows
∧

x y z. x + y + z = z + y + (x::int)
by (rewrite at (_ + y) + z in for (y z) add.commute) fact

lemma
assumes

∧
x y z. x + y + z = y + z + (x::int)

shows
∧

x y z. x + y + z = z + y + (x::int)
by (rewrite at ◊ + _ at _ = ◊ in for () add.commute) fact

lemma
assumes eq:

∧
x. P x =⇒ g x = x

assumes f1 :
∧

x. Q x =⇒ P x
assumes f2 :

∧
x. Q x =⇒ x

shows
∧

x. Q x =⇒ g x
apply (rewrite at g x in for (x) eq)
apply (fact f1)
apply (fact f2)
done

lemma
assumes (

∧
(x::int). x < 1 + x)

and (x::int) + 1 > x
shows (

∧
(x::int). x + 1 > x) =⇒ (x::int) + 1 > x

by (rewrite at x + 1 in for (x) at asm add.commute)
(rule assms)

lemma
assumes

∧
a b. P ((a + 1) ∗ (1 + b))

shows
∧

a b :: nat. P ((a + 1) ∗ (b + 1))
apply (tactic ‹

let
val (x, ctxt) = yield_singleton Variable.add_fixes x context
(∗ Note that the pattern order is reversed ∗)
val pat = [

Rewrite.For [(x, SOME Type ‹nat›)],
Rewrite.In,
Rewrite.Term (Const ‹plus Type ‹nat› for ‹Free (x, Type ‹nat›)› term ‹1

:: nat››, [])]
val to = NONE

in CCONVERSION (Rewrite.rewrite_conv ctxt (pat, to) @{thms add.commute})
1 end

›)
apply (fact assms)
done

lemma
assumes Q (λb :: int. P (λa. a + b) (λa. a + b))
shows Q (λb :: int. P (λa. a + b) (λa. b + a))

59

apply (tactic ‹
let

val (x, ctxt) = yield_singleton Variable.add_fixes x context
val pat = [

Rewrite.Concl,
Rewrite.In,

Rewrite.Term (Free (Q, (Type ‹int› −−> TVar ((′b,0), [])) −−> Type ‹bool›)
$ Abs (x, Type ‹int›, Rewrite.mk_hole 1 (Type ‹int› −−> TVar ((′b,0),

[])) $ Bound 0), [(x, Type ‹int›)]),
Rewrite.In,
Rewrite.Term (Const ‹plus Type ‹int› for ‹Free (x, Type ‹int›)› ‹Var ((c,

0), Type ‹int›)››, [])
]

val to = NONE
in CCONVERSION (Rewrite.rewrite_conv ctxt (pat, to) @{thms add.commute})

1 end
›)
apply (fact assms)
done

ML ‹
val ct = cprop ‹Q (λb :: int. P (λa. a + b) (λa. b + a))›
val (x, ctxt) = yield_singleton Variable.add_fixes x context
val pat = [

Rewrite.Concl,
Rewrite.In,
Rewrite.Term (Free (Q, (typ ‹int› −−> TVar ((′b,0), [])) −−> typ ‹bool›)
$ Abs (x, typ ‹int›, Rewrite.mk_hole 1 (typ ‹int› −−> TVar ((′b,0), [])) $

Bound 0), [(x, typ ‹int›)]),
Rewrite.In,
Rewrite.Term (Const ‹plus Type ‹int› for ‹Free (x, Type ‹int›)› ‹Var ((c, 0),

Type ‹int›)››, [])
]

val to = NONE
val th = Rewrite.rewrite_conv ctxt (pat, to) @{thms add.commute} ct

›

Some regression tests
ML ‹

val ct = cterm ‹(λb :: int. (λa. b + a))›
val (x, ctxt) = yield_singleton Variable.add_fixes x context
val pat = [

Rewrite.In,
Rewrite.Term (Const ‹plus Type ‹int› for ‹Var ((c, 0), Type ‹int›)› ‹Var ((c,

0), Type ‹int›)››, [])
]

val to = NONE
val _ =

60

case try (Rewrite.rewrite_conv ctxt (pat, to) @{thms add.commute}) ct of
NONE => ()
| _ => error should not have matched anything

›

ML ‹
Rewrite.params_pconv (Conv.all_conv |> K |> K) context (Vartab.empty, [])

cterm ‹
∧

x. PROP A›
›

lemma
assumes eq: PROP A =⇒ PROP B ≡ PROP C
assumes f1 : PROP D =⇒ PROP A
assumes f2 : PROP D =⇒ PROP C
shows

∧
x. PROP D =⇒ PROP B

apply (rewrite eq)
apply (fact f1)
apply (fact f2)
done

end

18 Finite sequences
theory Seq

imports Main
begin

datatype ′a seq = Empty | Seq ′a ′a seq

fun conc :: ′a seq ⇒ ′a seq ⇒ ′a seq
where

conc Empty ys = ys
| conc (Seq x xs) ys = Seq x (conc xs ys)

fun reverse :: ′a seq ⇒ ′a seq
where

reverse Empty = Empty
| reverse (Seq x xs) = conc (reverse xs) (Seq x Empty)

lemma conc_empty: conc xs Empty = xs
by (induct xs) simp_all

lemma conc_assoc: conc (conc xs ys) zs = conc xs (conc ys zs)
by (induct xs) simp_all

lemma reverse_conc: reverse (conc xs ys) = conc (reverse ys) (reverse xs)
by (induct xs) (simp_all add: conc_empty conc_assoc)

61

lemma reverse_reverse: reverse (reverse xs) = xs
by (induct xs) (simp_all add: reverse_conc)

end

19 Square roots of primes are irrational
theory Sqrt

imports Complex_Main HOL−Computational_Algebra.Primes
begin

The square root of any prime number (including 2) is irrational.
theorem sqrt_prime_irrational:

fixes p :: nat
assumes prime p
shows sqrt p /∈ �

proof
from ‹prime p› have p: p > 1 by (rule prime_gt_1_nat)
assume sqrt p ∈ �
then obtain m n :: nat

where n: n 6= 0
and sqrt_rat: |sqrt p| = m / n
and coprime m n by (rule Rats_abs_nat_div_natE)

have eq: m2 = p ∗ n2

proof −
from n and sqrt_rat have m = |sqrt p| ∗ n by simp
then have m2 = (sqrt p)2 ∗ n2 by (simp add: power_mult_distrib)
also have (sqrt p)2 = p by simp
also have . . . ∗ n2 = p ∗ n2 by simp
finally show ?thesis by linarith

qed
have p dvd m ∧ p dvd n
proof

from eq have p dvd m2 ..
with ‹prime p› show p dvd m by (rule prime_dvd_power)
then obtain k where m = p ∗ k ..
with eq have p ∗ n2 = p2 ∗ k2 by algebra
with p have n2 = p ∗ k2 by (simp add: power2_eq_square)
then have p dvd n2 ..
with ‹prime p› show p dvd n by (rule prime_dvd_power)

qed
then have p dvd gcd m n by simp
with ‹coprime m n› have p = 1 by simp
with p show False by simp

qed

corollary sqrt_2_not_rat: sqrt 2 /∈ �
using sqrt_prime_irrational [of 2] by simp

62

Here is an alternative version of the main proof, using mostly linear forward-
reasoning. While this results in less top-down structure, it is probably closer
to proofs seen in mathematics.
theorem

fixes p :: nat
assumes prime p
shows sqrt p /∈ �

proof
from ‹prime p› have p: p > 1 by (rule prime_gt_1_nat)
assume sqrt p ∈ �
then obtain m n :: nat

where n: n 6= 0
and sqrt_rat: |sqrt p| = m / n
and coprime m n by (rule Rats_abs_nat_div_natE)

from n and sqrt_rat have m = |sqrt p| ∗ n by simp
then have m2 = (sqrt p)2 ∗ n2 by (auto simp add: power2_eq_square)
also have (sqrt p)2 = p by simp
also have . . . ∗ n2 = p ∗ n2 by simp
finally have eq: m2 = p ∗ n2 by linarith
then have p dvd m2 ..
with ‹prime p› have dvd_m: p dvd m by (rule prime_dvd_power)
then obtain k where m = p ∗ k ..
with eq have p ∗ n2 = p2 ∗ k2 by algebra
with p have n2 = p ∗ k2 by (simp add: power2_eq_square)
then have p dvd n2 ..
with ‹prime p› have p dvd n by (rule prime_dvd_power)
with dvd_m have p dvd gcd m n by (rule gcd_greatest)
with ‹coprime m n› have p = 1 by simp
with p show False by simp

qed

Another old chestnut, which is a consequence of the irrationality of sqrt 2.
lemma ∃ a b::real. a /∈ � ∧ b /∈ � ∧ a powr b ∈ � (is ∃ a b. ?P a b)
proof (cases sqrt 2 powr sqrt 2 ∈ �)

case True
with sqrt_2_not_rat have ?P (sqrt 2) (sqrt 2) by simp
then show ?thesis by blast

next
case False
with sqrt_2_not_rat powr_powr have ?P (sqrt 2 powr sqrt 2) (sqrt 2) by simp
then show ?thesis by blast

qed

end

63

References

[1] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, 1990.

[2] L. C. Paulson. Isabelle: A Generic Theorem Prover. Springer, 1994.
LNCS 828.

64

	Ad Hoc Overloading
	Plain Ad Hoc Overloading
	Adhoc Overloading inside Locales

	Permutation Types
	A Tail-Recursive, Stack-Based Ackermann's Function
	Example of proving termination by reasoning about the domain
	Example of proving termination using a multiset ordering

	Cantor's Theorem
	Mathematical statement and proof
	Automated proofs
	Elementary version in higher-order predicate logic
	Classic Isabelle/HOL example

	Coherent Logic Problems
	Equivalence of two versions of Pappus' Axiom
	Preservation of the Diamond Property under reflexive closure

	Some Isar command definitions
	Diagnostic command: no state change
	Old-style global theory declaration
	Local theory specification

	The Drinker's Principle
	Examples of function definitions
	Very basic
	Currying
	Nested recursion
	Here comes McCarthy's 91-function
	Here comes Takeuchi's function

	More general patterns
	Overlapping patterns
	Guards

	Mutual Recursion
	Definitions in local contexts
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 fun_cases
	Predecessor
	List to option
	Boolean Functions
	Many parameters

	Partial Function Definitions
	Regression tests
	Context recursion
	A combination of context and nested recursion
	Context, but no recursive call
	Tupled nested recursion
	Let
	Abbreviations
	Simple Higher-Order Recursion
	Pattern matching on records
	The diagonal function
	Many equations (quadratic blowup)
	Automatic pattern splitting
	Polymorphic partial-function

	Gauss Numbers: integral gauss numbers
	Basic arithmetic
	The Gauss Number i
	Gauss Conjugation
	Algebraic division

	Groebner Basis Examples
	Basic examples
	Lemmas for Lagrange's theorem
	Colinearity is invariant by rotation

	Example of Declaring an Oracle
	Oracle declaration
	Oracle as low-level rule
	Oracle as proof method

	Examples of automatically derived induction rules
	Some simple induction principles on nat

	Textbook-style reasoning: the Knaster-Tarski Theorem
	Prose version
	Formal versions

	Isabelle/ML basics
	ML expressions
	Antiquotations
	Recursive ML evaluation
	IDE support
	Example: factorial and ackermann function in Isabelle/ML
	Parallel Isabelle/ML
	Function specifications in Isabelle/HOL

	Peirce's Law
	Using extensible records in HOL – points and coloured points
	Points
	Introducing concrete records and record schemes
	Record selection and record update
	Some lemmas about records

	Coloured points: record extension
	Non-coercive structural subtyping

	Other features
	Simprocs for update and equality
	A more complex record expression
	Some code generation

	The rewrite Proof Method by Example
	Finite sequences
	Square roots of primes are irrational

