Functional Data Structures

Tobias Nipkow

January 18, 2026

Abstract

A collection of verified functional data structures. The emphasis is
on conciseness of algorithms and succinctness of proofs, more in the
style of a textbook than a library of efficient algorithms.

For more details see [13].

Contents

1 Sorting

2 Creating Almost Complete Trees

3 Three-Way Comparison

4 Lists Sorted wrt <

5 List Insertion and Deletion

6 Specifications of Set ADT

7 Unbalanced Tree Implementation of Set
8 Association List Update and Deletion

9 Specifications of Map ADT

10 Unbalanced Tree Implementation of Map

11 Tree Rotations

12 Augmented Tree (Tree2)

13 Function isin for Tree2

14 Interval Trees

13

19

20

21

24

26

29

33

34

36

39

40

41

15 AVL Tree Implementation of Sets

16 Function lookup for Tree2

17 AVL Tree Implementation of Maps

18 AVL Tree with Balance Factors (1)

19 AVL Tree with Balance Factors (2)

20 Height-Balanced Trees

21 Red-Black Trees

22 Red-Black Tree Implementation of Sets
23 Alternative Deletion in Red-Black Trees
24 Red-Black Tree Implementation of Maps
25 2-3 Trees

26 2-3 Tree Implementation of Sets

27 2-3 Tree Implementation of Maps

28 2-3 Tree from List

29 2-3-4 Trees

30 2-3-4 Tree Implementation of Sets

31 2-3-4 Tree Implementation of Maps

32 1-2 Brother Tree Implementation of Sets
33 1-2 Brother Tree Implementation of Maps
34 AA Tree Implementation of Sets

35 AA Tree Implementation of Maps

36 Join-Based Implementation of Sets

37 Join-Based Implementation of Sets via RBTs

38 Braun Trees

48

58

58

63

67

72

80

82

89

93

96

97

106

109

112

114

126

131

143

148

160

165

174

181

39 Arrays via Braun Trees

40 Tries via Functions

41 Binary Tries and Patricia Tries

42 Ternary Tries

43 Queue Specification

44 Queue Implementation via 2 Lists

45 Priority Queue Specifications

46 Heaps

47 Leftist Heap

48 Binomial Priority Queue

49 The Median-of-Medians Selection Algorithm
50 Time Functions in Locales — An Example

51 Bibliographic Notes

185

202

203

211

213

214

216

216

219

227

242

268

271

1 Sorting

theory Sorting
imports
Complex__Main
HOL— Library. Multiset
HOL— Library. Time_ Commands
begin

hide const List.insort

declare Let_def [simp]

1.1 Insertion Sort

fun insortl :: 'a::linorder = 'a list = 'a list where
insortl x [| = [z] |
insortl x (y#ys) =
(if © < y then x#y#ys else y#(insortl ys))

fun insort :: ‘a::linorder list = 'a list where
insort [| =[] |
insort (z#xs) = insortl x (insort xs)
1.1.1 Functional Correctness
lemma mset_insortl: mset (insortl x xs) = {#z#} + mset s

by (induction xs) auto

lemma mset_insort: mset (insort rs) = mset xs
by (induction xs) (auto simp: mset_insortl)

lemma set_insortl: set (insortl x zs) = {z} U set xs
by (simp add: mset_insortl flip: set_mset_mset)

lemma sorted insortl: sorted (insortl a xs) = sorted xs
by (induction xs) (auto simp: set_insortl)

lemma sorted_insort: sorted (insort xs)
by (induction xs) (auto simp: sorted_insortl)
1.1.2 Time Complexity

time_ fun insortl
time_ fun insort

lemma T insortl_length: T insortl x xs < length xs + 1
by (induction xs) auto

lemma length_insortl: length (insortl x xs) = length xs + 1
by (induction zs) auto

lemma length_insort: length (insort xs) = length xs
by (metis Sorting.mset _insort size__mset)

lemma T insort_length: T insort xs < (length zs + 1) ~ 2
proof (induction xs)
case Nil show ?case by simp
next
case (Cons x xs)
have T insort (z#xs) = T insort s + T _insortl x (insort xs) + 1 by
sTmp
also have ... < (length zs + 1) ~ 2 + T __insortl x (insort zs) + 1
using Cons.IH by simp
also have ... < (lengthxs + 1) ~ 2 + length s + 1 + 1
using T _insortl_length[of = insort xs| by (simp add: length__insort)
also have ... < (length(z#zs) + 1) ~ 2
by (simp add: power2__eq square)
finally show ?case .
qed

1.2 Merge Sort

fun merge :: ‘a::linorder list = 'a list = 'a list where
merge [] ys = ys |
merge xs [| = s |

merge (z#xs) (y#ys) = (if x < y then © # merge xs (y#ys) else y #
merge (x#xs) ys)

fun msort :: 'a::linorder list = 'a list where
msort xs = (let n = length xs in
if n < 1 then ws
else merge (msort (take (n div 2) xzs)) (msort (drop (n div 2) zs)))

declare msort.simps [simp del]

1.2.1 Functional Correctness

lemma mset__merge: mset(merge xs ys) = mset xs + mset ys

by (induction xs ys rule: merge.induct) auto

lemma mset_msort: mset (msort xs) = mset xs
proof (induction s rule: msort.induct)
case (I xs)
let ?n = length xs
let ?ys = take (%n div 2) xs
let ?zs = drop (?n div 2) xs
show ?case
proof cases
assume n < I
thus ?thesis by (simp add: msort.simps|of zs])
next
assume — n < I
hence mset (msort xs) = mset (msort ?ys) + mset (msort ?zs)
by (simp add: msort.simps|of xs| mset_merge)

also have ... = mset ?ys + mset ?zs
using <— ?n < 1) by(simp add: 1.1H)
also have ... = mset (?ys Q ?zs) by (simp del: append__take _drop_id)
also have ... = mset s by simp
finally show ?thesis .
qed
qed

Via the previous lemma or directly:

lemma set_merge: set(merge zs ys) = set xs U set ys
by (metz's mset__merge set__mset__mset set_mset_union)

lemma set(merge xs ys) = set xs U set ys
by (induction zs ys rule: merge.induct) (auto)

lemma sorted _merge: sorted (merge zs ys) «— (sorted xs A sorted ys)
by (induction zs ys rule: merge.induct) (auto simp: set_merge)

lemma sorted _msort: sorted (msort zs)
proof (induction xs rule: msort.induct)
case (I xs)
let ?n = length xs
show “case
proof cases
assume n < I
thus ?thesis by (simp add: msort.simps|of zs] sorted01)
next
assume - n < I

thus ?thesis using 1.IH
by (simp add: sorted__merge msort.simps|of xs|)
qed
qged

1.2.2 Time Complexity

We only count the number of comparisons between list elements.

fun C'_merge :: 'a::linorder list = 'a list = nat where

C_merge || ys = 0|

C _merge zs [= 0 |

C_merge (z#xs) (y#ys) = 1 + (if © < y then C_merge xs (y#ys) else
C_merge (z#xs) ys)

lemma C_merge_ub: C_merge xs ys < length xs + length ys
by (induction xs ys rule: C_merge.induct) auto

fun C _msort :: 'a::linorder list = nat where
C _msort s =
(let n = length ws;
ys = take (n div 2) xs;
zs = drop (n div 2) xs
inif n < 1 then 0
else C_msort ys + C_msort zs + C_merge (msort ys) (msort zs))

declare C_msort.simps [simp del]

lemma length_merge: length(merge zs ys) = length xs + length ys
by (induction xs ys rule: merge.induct) auto

lemma length__msort: length(msort xs) = length xs
proof (induction xs rule: msort.induct)
case (1 xs)
show ?case
by (auto simp: msort.simps [of xs] 1 length_merge)
qed

Why structured proof? To have the name "xs" to specialize msort.simps
with xs to ensure that msort.simps cannot be used recursively. Also works
without this precaution, but that is just luck.

lemma C_msort_le: length xs = 27k = C_msort zs < k x 27k
proof (induction k arbitrary: xs)

case 0 thus ?case by (simp add: C_msort.simps)
next

case (Suc k)
let ?n = length xs
let ?ys = take (?n div 2) xs
let %zs = drop (n div 2) xs
show Zcase
proof (cases ?n < 1)
case True
thus ?thesis by (simp add: C_msort.simps)
next
case Fulse
have C'_msort(zs) =
C_msort ?ys + C_msort ?zs + C_merge (msort ?ys) (msort ?zs)
by (simp add: C_msort.simps msort.simps)
also have ... < C_msort 2ys + C_msort ?zs + length ?ys + length
728
using C_merge__ub[of msort ?ys msort ?zs| length_msortlof ?ys]
length_msort[of ?zs]
by arith
also have ... < k* 27k + C_msort ?zs + length ?ys + length ?zs
using Suc.IH[of ?ys] Suc.prems by simp
alsohave ... < k=x* 27k + k x 27k + length ?ys + length ?zs
using Suc.IH|[of ?zs| Suc.prems by simp
alsohave ... = 2xkx 2k + 2% 2 "k
using Suc.prems by simp
finally show ?thesis by simp
qed
qed

lemma C_msort_log: length zs = 27k = C_msort xs < length zs * log
2 (length xs)

using C_msort_le[of xs k]

by (metis log2_of _power_eq mult.commute of _nat_mono of nat_mult)

1.3 Bottom-Up Merge Sort

fun merge_adj :: ('a::linorder) list list = 'a list list where
merge_adj [| =[] |
merge__adj [zs] = [xs] |
merge__adj (s # ys # zss) = merge xs ys # merge__adj zss

For the termination proof of merge all below.

lemma length _merge__adjacent][simp]: length (merge_adj zs) = (length xs
+ 1) div 2

by (induction xs rule: merge__adj.induct) auto

fun merge_all :: ('a::linorder) list list = 'a list where
merge_all [| =[] |
merge__all [zs] = xs |
merge__all zss = merge__all (merge__adj zss)

definition msort _bu :: ('a::linorder) list = 'a list where
msort_bu xs = merge__all (map (Az. [z]) xs)

1.3.1 Functional Correctness

abbreviation mset _mset :: ‘a list list = 'a multiset where
mset_mset xss =) 4 (image_mset mset (mset xss))

lemma mset_merge__adj:
mset_mset (merge__adj xss) = mset_mset xss
by (induction zss rule: merge__adj.induct) (auto simp: mset_merge)

lemma mset_merge_all:
mset (merge__all xss) = mset_mset zss
by (induction xss rule: merge__all.induct) (auto simp: mset_merge mset_merge__adj)

lemma mset_msort_bu: mset (msort_bu xs) = mset xs
by (simp add: msort_bu__def mset_merge__all multiset.map__comp comp__def)

lemma sorted__merge__adj:
Vs € set zss. sorted xs = Y xs € set (merge__adj xss). sorted xs
by (induction zss rule: merge__adj.induct) (auto simp: sorted__merge)

lemma sorted__merge_all:
YV axs € set xss. sorted xs = sorted (merge__all xss)
by (induction xss rule: merge__all.induct) (auto simp add: sorted_merge__adj)

lemma sorted _msort_bu: sorted (msort_bu xs)
by (simp add: msort_bu__def sorted_merge__all)

1.3.2 Time Complexity

fun C_merge_adj :: ('a::linorder) list list = nat where
C_merge_adj [] = 0 |
C_merge_adj [zs] = 0 |
C_merge_adj (xs # ys # zss) = C_merge zs ys + C_merge__adj zss

‘a::linorder) list list = nat where

fun C_merge_all :: ('a
C_merge_all [| = 0 |
C_merge_all [zs] = 0 |

C_merge_all zss = C_merge_adj zss + C_merge__all (merge__adj xss)

definition C'_msort_bu :: (‘a::linorder) list = nat where
C_msort_bu xs = C_merge_all (map (Az. [z]) zs)

lemma length merge__adj:
[even(length zss); Vs € set xzss. length xs = m |
= Vas € set (merge_adj xss). length s = 2xm
by (induction xzss rule: merge__adj.induct) (auto simp: length__merge)

lemma C' merge adj: Vs € set xss. length xs = m =— C_merge__adj xss
< m x length xss
proof (induction xss rule: C_merge__adj.induct)

case 1 thus ?case by simp

next
case 2 thus ?case by simp
next
case (3 z y) thus ?case using C_merge_ub[of z y] by (simp add: alge-
bra__simps)
qed

lemma C_merge_all: [Vs € set zss. length xs = m; length xss = 27k |
= C_merge_all zss < m x k x 27k
proof (induction xss arbitrary: k m rule: C_merge__all.induct)
case 1 thus ?case by simp
next
case 2 thus ?case by simp
next
case (3 xs ys xss)
let ?zss = xs # ys # xss
let ?xss2 = merge__adj ?xss
obtain k£’ where k" k = Suc k' using 3.prems(2)
by (metis length__ Cons nat.inject nat__power_eq Suc__0_iff nat.ezhaust)
have even (length ?zss) using 3.prems(2) k' by auto
from length merge_adj|OF this 3.prems(1)]
have x: Vz € set(merge adj ?xss). length x = 2xm .
have xx: length ?zss2 = 2 ~ k' using 3.prems(2) k' by auto
have C'_merge all ?zss = C_merge_adj ?xss + C_merge__all ?xss2 by
stmp
also have ... < m * 27k + C_merge_all ?zss52
using 3.prems(2) C_merge_adj[OF 3.prems(1)] by (auto simp: alge-

10

bra__simps)
also have ... < m * 27k + (2xm) x k' x 27k’
using 3.IH[OF * xx| by simp
also have ... = m x k x 27k
using k' by (simp add: algebra__simps)
finally show ?case .
qed

corollary C'_msort_bu: length xs = 2 ~k = C_msort_buxzs < k x 2~
k
using C'_merge_alllof map (Az. [z]) zs 1] by (simp add: C_msort_bu_ def)

1.4 Quicksort

fun quicksort :: (‘a::linorder) list = 'a list where

quicksort [| =] |

quicksort (z#xs) = quicksort (filter (A\y. y < z) xs) Q [z] Q quicksort
(filter (\y. z < y) xs)

lemma mset__quicksort: mset (quicksort xs) = mset xs
by (induction xs rule: quicksort.induct) (auto simp: not_le)

lemma set_quicksort: set (quicksort xs) = set zs
by (rule mset_eq _setD[OF mset__quicksort])

lemma sorted quicksort: sorted (quicksort xs)

proof (induction xs rule: quicksort.induct)

qed (auto simp: sorted__append set__quicksort)

1.5 Insertion Sort w.r.t. Keys and Stability

hide_ _const List.insort_key

fun insortl_key :: ('a = 'k:linorder) = 'a = 'a list = 'a list where

insortl_key fz [|] = [z] |

insortl_key fx (y # ys) = (if fo < fythenx # y # ys else y #
insortl__key f z ys)

fun insort_key :: ('a = 'k:linorder) = 'a list = 'a list where
insort_key f [] =[] |
insort_key f (x # xs) = insortl_key f z (insort_key f xs)

1.5.1 Standard functional correctness

lemma mset_insortl__key: mset (insortl_key f x xs) = {#z#} + mset xs

11

by (induction xs) simp__all

lemma mset_insort_key: mset (insort_key f xs) = mset xs
by (induction xs) (simp__all add: mset_insortl__key)

lemma set_insortl_key: set (insortl_key f z xs) = {x} U set xs
by (induction xs) auto

lemma sorted_insortl_key: sorted (map f (insortl_key f a xzs)) = sorted

(map f 25)
by (induction zs)(auto simp: set_insortl__key)

lemma sorted insort_key: sorted (map f (insort_key f xs))
by (induction xs)(simp__all add: sorted_insortl__key)

1.5.2 Stability

lemma insortl _is Cons: Vz€set xs. fa < fr = insortl _key fazs = a

w8

by (cases zs) auto

lemma filter insortl__key mneg:
- Pz = filter P (insortl_key f x xs) = filter P xs
by (induction xs) simp__all

lemma filter insortl_key pos:

sorted (map f xs) = P x = filter P (insortl_key f x xs) = insortl__key
fz (filter P xs)

by (induction xs) (auto, subst insortl__is_Cons, auto)

lemma sort_key_ stable: filter (\y. fy = k) (insort_key f xs) = filter (\y.
fy=k) zs
proof (induction xs)
case Nil thus ?case by simp
next
case (Cons a xs)
thus Zcase
proof (cases fa = k)
case Fulse thus ?thesis by (simp add: Cons.IH filter _insortl__key neg)
next
case True
have filter (\y. fy = k) (insort_key f (a # xs))
= filter (\y. fy = k) (insortl_key f a (insort_key f zs)) by simp

12

also have ... = insortl_key f a (filter (\y. fy = k) (insort_key f xs))
by (simp add: True filter_insortl__key_pos sorted_insort_key)

also have ... = insortl_key f a (filter (\y. fy = k) zs) by (simp add:

Cons.IH)
also have ... = a # (filter (\y. fy = k) xs) by(simp add: True

insortl__is_Cons)

also have ... = filter (A\y. fy = k) (a # xs) by (simp add: True)

finally show ?thesis .

qed

qged

1.6 Uniqueness of Sorting

lemma sorting unique:
assumes mset ys = mset s sorted xs sorted ys
shows zs = ys
using assms
proof (induction xs arbitrary: ys)
case (Cons x xs ys')
obtain y ys where ys” ys' = y # ys
using Cons.prems by (cases ys’) auto
have z = y
using Cons.prems unfolding ys’
proof (induction x y arbitrary: zs ys rule: linorder_ _wlog)
case (le x y xs ys)
have © €# mset (z # wxs)
by simp
also have mset (z # xs) = mset (y # ys)
using le by simp
finally show =z = y
using le by auto
qed (simp__all add: eq_commute)
thus Zcase
using Cons.prems Cons.IH|of ys] by (auto simp: ys’)
qed auto

end

2 Creating Almost Complete Trees
theory Balance

imports

HOL—-Library. Tree_ Real

13

begin

fun bal :: nat = 'a list = 'a tree * 'a list where
bal n xs = (if n=0 then (Leaf,zs) else
(let m = n div 2;
(1, ys) = bal m xs;
(r, zs) = bal (n—1—m) (t ys)
in (Node 1 (hd ys) r, 2s)))

declare bal.simps|[simp del]
declare Let_def[simp]

definition bal list :: nat = 'a list = 'a tree where
bal_list n xs = fst (bal n xs)

definition balance list :: 'a list = 'a tree where
balance__list xs = bal_list (length xs) s

definition bal tree :: nat = 'a tree = 'a tree where
bal_tree n t = bal_list n (inorder t)

definition balance tree :: 'a tree = 'a tree where
balance__tree t = bal_tree (size t) t

lemma bal_simps:
bal 0 s = (Leaf, xs)
n> 0=
bal n zs =
(let m = n div 2;
(1, ys) = bal m xs;
(r, zs) = bal (n—1—m) (t ys)
in (Node I (hd ys) r, 2s))
by (simp__all add: bal.simps)

lemma bal inorder:
[n < length zs; bal n xs = (t,2s) |
= x5 = inorder t Q zs A\ sizet = n
proof (induction n arbitrary: xs t zs rule: less_induct)
case (less n) show Zcase
proof cases
assume n = () thus ?thesis using less.prems by (simp add: bal__simps)
next
assume [arith]: n # 0
let m =ndiv2let #m’'=n — 1 — ?m

14

from less.prems(2) obtain [r ys where
b1: bal ?m zs = (l,ys) and
b2: bal ?m’ (tl ys) = (r,zs) and
t: t = (I, hd ys, T)
by (auto simp: bal__simps split: prod.splits)
have IHI1: xs = inorder | @ ys A size [= ?m
using b1 less.prems(1) by(intro less.IH) auto
have IH2: tl ys = inorder r Q zs A\ size r = ?m’
using b2 [H1 less.prems(1) by(intro less.IH) auto
show ?thesis using ¢t IH1 IH2 less.prems(1) hd_ Cons_tl[of ys| by
fastforce
qed
qged

corollary inorder__bal_list[simp):
n < length ts = inorder(bal_list n zs) = take n xs
unfolding bal_list _def
by (metis (mono__tags) prod.collapse[of bal n zs| append_eq conv__conj
bal__inorder length__inorder)

corollary inorder__balance_list[simp]: inorder(balance_list xs) = xs
by (simp add: balance_list__def)

corollary inorder_bal _tree:
n < size t = inorder(bal_tree n t) = take n (inorder t)
by (simp add: bal__tree__def)

corollary inorder__balance__tree[simp|: inorder(balance__tree t) = inorder t
by (simp add: balance__tree__def inorder__bal_ tree)

The length /size lemmas below do not require the precondition n < length
xs (or n < size t) that they come with. They could take advantage of the fact
that bal zs n yields a result even if length s < n. In that case the result will
contain one or more occurrences of hd []. However, this is counter-intuitive
and does not reflect the execution in an eager functional language.

lemma bal_length: [n < length xzs; bal n xs = (t,zs) | = length zs =
length Ts — n
using bal_inorder by fastforce

corollary size_bal list[simp]: n < length rs = size(bal_list n zs) = n
unfolding bal_list _def using bal inorder prod.exhaust_sel by blast

corollary size_balance_list[simp|: size(balance_list xs) = length xs
by (simp add: balance_list_def)

15

corollary size_bal tree[simp]: n < size t = size(bal_tree n t) = n
by (simp add: bal_tree_def)

corollary size_balance__tree[simp|: size(balance__tree t) = size t
by (simp add: balance__tree__def)

lemma min_ height bal:
[n < length zs; bal n xs = (t,zs) | = min__height t = nat(|log 2 (n +
1))
proof (induction n arbitrary: xs t zs rule: less_induct)
case (less n)
show ?Zcase
proof cases
assume n = 0 thus ?thesis using less.prems(2) by (simp add: bal_simps)
next
assume [arith]: n # 0
let ?m = n div 2 let #m’'=n — 1 — ?m
from [ess.prems obtain [r ys where
b1: bal ?m xs = (l,ys) and
b2: bal ?m’ (tl ys) = (r,zs) and
t: t = (I, hd ys, T)
by (auto simp: bal__simps split: prod.splits)
let ?hl = nat (floor(log 2 (?m + 1)))
let ?hr = nat (floor(log 2 (?m’ + 1)))
have [H1: min__height | = ?hl using less.IH[OF __ __ b1] less.prems(1)
by simp
have TH2: min__height r = %hr
using less.prems(1) bal_length[OF _ b1] b2 by(intro less.IH) auto
have (n+1) div 2 > 1 by arith
hence 0: log 2 ((n+1) div 2) > 0 by simp
have ?m’ < ?m by arith
hence le: ?hr < ?hl by(simp add: nat_mono floor_mono)
have min__height t = min ?hl ?hr + 1 by (simp add: ¢t I[H1 IH2)
also have ... = ?hr + 1 using le by (simp add: min__absorb2)
also have ?m’+ 1 = (n+1) div 2 by linarith
also have nat (floor(log 2 ((n+1) div 2))) + 1
= nat (floor(log 2 ((n+1) div 2) + 1))
using 0 by linarith
also have ... = nat (floor(log 2 (n + 1)))
using floor_log2 div2[of n+1] by (simp add: log_mult)
finally show ?thesis .
qed
qged

16

lemma height_ bal:
[n < length zs; bal n xs = (t,zs) | = height t = nat [log 2 (n + 1)]
proof (induction n arbitrary: zs t zs rule: less__induct)
case (less n) show Zcase
proof cases
assume n = 0 thus ?thesis
using less.prems by (simp add: bal__simps)
next
assume [arith]: n # 0
let m =ndiv2let #m’'=n — 1 — ?m
from [ess.prems obtain [r ys where
b1: bal ?m zs = (l,ys) and
b2: bal ?m’ (tl ys) = (r,zs) and
t: t = (I, hd ys, r)
by (auto simp: bal__simps split: prod.splits)
let ?hl = nat [log 2 (?m + 1)]
let ?hr = nat [log 2 (?m’ + 1)]
have [H1: height | = ?hl using less.IH[OF __ __ bl1] less.prems(1) by
simp
have IH2: height r = ?hr
using b2 bal_length[OF __ b1] less.prems(1) by(intro less.IH) auto
have 0: log 2 (m + 1) > 0 by simp
have ?m’ < ?m by arith
hence le: ?hr < %hl
by (simp add: nat_mono ceiling_mono del: nat__ceiling_le__eq)
have height t = maz ?hl ?hr + 1 by (simp add: t IH1 IH2)

also have ... = ?hl + 1 using le by (simp add: max_absorbl1)
also have ... = nat [log 2 (m + 1) + 1] using 0 by linarith
also have ... = nat [log 2 (n + 1)]

using ceiling_log2_div2[of n+1] by (simp)
finally show ?thesis .
qed
qed

lemma acomplete bal:
assumes n < length zs bal n zs = (t,ys) shows acomplete t
unfolding acomplete__def
using height_bal[OF assms| min__height_bal|OF assms]
by linarith

lemma height bal_list:

n < length xs = height (bal_list n xs) = nat [log 2 (n + 1)]
unfolding bal_list_def by (metis height_bal prod.collapse)

17

lemma height_balance_ list:
height (balance list zs) = nat [log 2 (length xs + 1)]
by (simp add: balance_list_def height_bal_ list)

corollary height__bal_tree:

n < size t = height (bal_tree n t) = nat[log 2 (n + 1)]
unfolding bal list_def bal_tree def
by (metis bal_list__def height__bal_list length__inorder)

corollary height__balance__tree:
height (balance_tree t) = nat[log 2 (size t + 1)]
by (simp add: bal_tree__def balance__tree__def height bal_list)

corollary acomplete_bal _list[simp]: n < length s = acomplete (bal_list
n xs)
unfolding bal_list _def by (metis acomplete__bal prod.collapse)

corollary acomplete_balance__list[simp|: acomplete (balance_list xs)
by (simp add: balance_list__def)

corollary acomplete_bal_tree[simp|: n < size t => acomplete (bal_tree n

t)
by (simp add: bal_tree__def)

corollary acomplete__balance__tree[simp]: acomplete (balance__tree t)
by (simp add: balance__tree__def)

lemma wbalanced _bal: [n < length xs; bal n xs = (t,ys) | = wbalanced t
proof (induction n arbitrary: xs t ys rule: less_induct)
case (less n)
show Zcase
proof cases
assume n = (
thus ?thesis using less.prems(2) by(simp add: bal__simps)
next
assume [arith]: n # 0
with less.prems obtain [ys r zs where
recl: bal (n div 2) xs = (I, ys) and
rec2: bal (n — 1 — n div 2) (tl ys) = (r, zs) and
t: t = (I, hd ys, 1)
by (auto simp add: bal__simps split: prod.splits)
have [: wbalanced | using less. IH[OF __ __ recl] less.prems(1) by linarith
have wbalanced r

18

using recl rec2 bal_length|OF __ recl] less.prems(1) by (intro less.IH)
auto
with [¢ bal_length[OF _ recl] less.prems(1) bal_inorder[OF __ recl]
bal_inorder|OF __ rec2]
show ?thesis by auto
qed
qed

An alternative proof via wbalanced 7t = acomplete ?t:

lemma [n < length xs; bal n zs = (t,ys) | = acomplete t
by (rule acomplete__if wbalanced| OF wbalanced__bal])

lemma wbalanced__bal_list[simp|: n < length ts = wbalanced (bal_list n

xs)
by (simp add: bal_list_def) (metis prod.collapse wbalanced__bal)

lemma wbalanced _balance_list[simp]: wbalanced (balance_list xs)
by (simp add: balance_list_def)

lemma wbalanced__bal_tree[simp]: n < size t = wbalanced (bal_tree n t)
by (simp add: bal_tree__def)

lemma wbalanced__balance__tree: wbalanced (balance__tree t)
by (simp add: balance_tree__def)

hide__const (open) bal

end

3 Three-Way Comparison

theory Cmp
imports Main
begin

datatype cmp_wval = LT | EQ | GT

definition cmp :: ‘a:: linorder = 'a = c¢mp_val where
emp xy = (if ¢ < y then LT else if z=y then EQ else GT)

lemma

LT[simp]: cmp zy = LT +— x < y
and EQ[simp|: cmpxy = EQ «— z =y
and GTl[simp: cmpxzy= GT +— x>y

19

by (auto simp: cmp__def)

lemma case_cmp_if[simp]: (case ¢ of EQ = e | LT = 1| GT = g) =
(if ¢ = LT then l else if c = GT then g else e)
by (simp split: ecmp_val.split)

end

4 Lists Sorted wrt <

theory Sorted Less
imports Less Fulse
begin

hide const sorted

Is a list sorted without duplicates, i.e., wrt <7.

abbreviation sorted :: 'a::linorder list = bool where
sorted = sorted__wrt (<)

lemmas sorted_wrt_Cons = sorted__wrt.simps(2)

The definition of sorted wrt relates each element to all the elements
after it. This causes a blowup of the formulas. Thus we simplify matters by
only comparing adjacent elements.

declare
sorted__wrt.simps(2)[simp del]
sorted__wrtl [simp] sorted _wrt2[OF transp__on__less, simp]

lemma sorted cons: sorted (z#xs) = sorted s
by (simp add: sorted _wrt_Cons)

lemma sorted_cons” ASSUMPTION (sorted (z#wxs)) = sorted xs
by(rule ASSUMPTION_D [THEN sorted__cons|)

lemma sorted snoc: sorted (zs Q [y]) = sorted xs
by (simp add: sorted__wrt_append)

lemma sorted_snoc’s ASSUMPTION (sorted (zs @Q [y])) = sorted xs
by (rule ASSUMPTION D [THEN sorted_snoc])

lemma sorted_mid_iff:

sorted(zs Q y # ys) = (sorted(zs @Q [y]) A sorted(y # ys))
by (fastforce simp add: sorted__wrt_Cons sorted__wrt_append)

20

lemma sorted mid_iff2:

sorted(x # xs Q y # ys) =

(sorted(z # xs) N x < y A sorted(zs Q [y]) A sorted(y # ys))
by (fastforce simp add: sorted__wrt_Cons sorted__wrt_append)

lemma sorted_mid_iff: NO_MATCH || ys =
sorted(zs Q y # ys) = (sorted(zs @Q [y]) A sorted(y # ys))
by (rule sorted_mid__iff)
lemmas sorted_lems = sorted_mid_iff’ sorted _mid__iff2 sorted__cons’ sorted__snoc’
Splay trees need two additional sorted lemmas:

lemma sorted snoc_le:
ASSUMPTION (sorted(zs Q [z])) = = < y = sorted (zs Q [y])
by (auto simp add: sorted_wrt_append ASSUMPTION _def)

lemma sorted Cons_le:
ASSUMPTION (sorted(z # zs)) = y < & = sorted (y # xs)
by (auto simp add: sorted_wrt_Cons ASSUMPTION__def)

end

5 List Insertion and Deletion

theory List _Ins Del
imports Sorted_ Less
begin

5.1 Elements in a list

lemma sorted_ Cons__iff:
sorted(z # xs) = (Vy € set xs. x < y) A sorted xs)
by (simp add: sorted_wrt_Cons)

lemma sorted_snoc_iff:
sorted(xzs @ [z]) = (sorted zs N (Vy € set xs. y < z))
by (simp add: sorted_wrt_append)

lemmas isin_simps = sorted_mid_iff’ sorted _Cons_iff sorted_snoc_iff

21

5.2 Inserting into an ordered list without duplicates:

fun ins_list :: 'a::linorder = 'a list = 'a list where
ins_list z [] = [z] |
ins_list © (aftxs) =
(if © < a then x#a#xs else if x=a then atxs else a # ins_list x xs)

lemma set_ins_list: set (ins_list x xs) = set xs U {x}
by (induction xs) auto

lemma sorted_ins_list: sorted xs = sorted(ins_list x xs)
by (induction xs rule: induct_list012) auto

lemma ins_list _sorted: sorted (zs Q [a]) =
ins_list x (zs Q a # ys) =
(if x < a then ins_list x xs Q (a#tys) else xs Q ins_list © (a#ys))
by (induction xs) (auto simp: sorted_lems)
In principle, sorted (?xs Q [%a]) = ins_list %z (?xs Q %a # ?ys) = (if
?r < %a then ins_list %z %xs Q 2a # ?ys else ?xs Q ins_list %z (%a # ?ys))
suffices, but the following two corollaries speed up proofs.

corollary ins_list _sortedl: sorted (zs Q [a]) = a < z =
ins_list x (zs Q a # ys) = xs Q ins_list x (a#ys)
by (auto simp add: ins_list_sorted)

corollary ins_list _sorted2: sorted (zs Q [a]) = = < a =
ins_list z (xs Q a # ys) = ins_list x xs Q (a#ys)
by (auto simp: ins_list_sorted)
lemmas ins_list_simps = sorted_lems ins_list _sortedl ins_list _sorted?2
Splay trees need two additional ins_list lemmas:
lemma ins_list_Cons: sorted (r # xs) = ins_list x ©s = © # wxs

by (induction xs) auto

lemma ins_list_snoc: sorted (xs Q [z]) = ins_list x s = zs Q [z]
by (induction xs) (auto simp add: sorted _mid_iff2)

5.3 Delete one occurrence of an element from a list:

fun del list :: 'a = 'a list = 'a list where
del_listz [] =1 |
del_list x (a#xs) = (if x=a then zs else a # del_list © xs)

lemma del list_idem: = ¢ set xs = del_list v s = xs

22

by (induct zs) simp__all

lemma set del list:
sorted rs = set (del_list x xs) = set s — {x}
by (induct xs) (auto simp: sorted_ Cons_iff)

lemma sorted del_list: sorted xs = sorted(del_list x xs)
apply (induction xs rule: induct_list012)

apply auto

by (meson order.strict_trans sorted__Cons__iff)

lemma del_list_sorted: sorted (zs Q a # ys) =

del_list x (xzs @ a # ys) = (if x < a then del_list z xs @ a # ys else xs
Q@ del_list x (a # ys))
by (induction xs)

(fastforce simp: sorted_lems sorted__Cons__iff introl: del list _idem)+

In principle, sorted (?xs @ ?a # ?ys) = del_list ?x (%zs Q 2a # ?ys)
= (if %z < %a then del list ?z %xs @ %a # %ys else ?zs Q del list %z (%a
?ys)) suffices, but the following corollaries speed up proofs.

corollary del list_sortedl: sorted (s Q a # ys) — a < z —
del_list x (xs @Q a # ys) = zs Q del_list © (a # ys)
by (auto simp: del list_sorted)

corollary del list_sorted2: sorted (zs Q a # ys) = =z < a =
del_list x (xs @Q a # ys) = del_list x xs Q a # ys
by (auto simp: del_list_sorted)

corollary del list _sorted3:

sorted (xs Q a # ys Q b # 2z5) = z < b =

del_list x (xs Q a # ys Q b # zs) = del_list x (xs Q a # ys) Q b # zs
by (auto simp: del_list_sorted sorted_lems)

corollary del list _sorted4:

sorted (xs Q a # ys Q b # 25 Q ¢ # us) = < ¢ =

del_list z (zs @ a # ys Q b # 2zs Q ¢ # us) = del_list x (xs Q a # ys Q
b# zs) Q¢ # us
by (auto simp: del_list_sorted sorted_lems)

corollary del list _sorted5:
sorted (xs Q a # ys Q b # 2s Q c # us Q d # vs) = z < d =
del_list z (xs Q a # ys Q b # 25 Q ¢ # us Q d # vs) =
del_list x (xs Q a # ys Q b # 2s Q ¢ # us) Q d # vs

by (auto simp: del_list_sorted sorted_lems)

23

lemmas del_list _simps = sorted__lems
del list _sortedl
del _list_sorted?2
del list sorted3
del_list _sorted4
del list sortedd

Splay trees need two additional del list lemmas:

lemma del_list_notin_Cons: sorted (z # xs) = del_list x xs = xs
by (induction xs)(fastforce simp: sorted_Cons__iff)+

lemma del list_sorted__app:
sorted(zs Q [z]) = del_list x (xs Q ys) = xs Q del_list x ys
by (induction zs) (auto simp: sorted mid_iff2)

end

6 Specifications of Set ADT

theory Set Specs
imports List_Ins Del
begin

The basic set interface with traditional set-based specification:

locale Set =

fixes empty :: 's

fixes insert :: 'a = 's = s

fixes delete :: 'a = 's = s

fixes isin :: 's = 'a = bool

fixes set :: 's = 'a set

fixes invar :: 's = bool

assumes set_empty: set empty = {}

assumes set_ 1sin: invar s = isin s x = (r € set s)
assumes set_insert: invar s = set(insert r s) = set s U {z}
assumes set_delete: invar s = set(delete x s) = set s — {z}
assumes nvar__empty: invar empty

assumes invar_insert: invar s = invar(insert x s)

assumes invar_delete: invar s => invar(delete = s)

lemmas (in Set) set_specs =
set_empty set_isin set_insert set_delete invar_empty invar_insert in-
var__delete

The basic set interface with inorder-based specification:

24

locale Set by Ordered =
fixes empty :: 't
fixes insert :: 'a::linorder = 't = 't
fixes delete :: 'a = 't = 't
fixes isin :: 't = 'a = bool
fixes inorder :: 't = 'a list
fixes inv :: 't = bool
assumes inorder_empty: inorder empty = ||
assumes isin: inv t A sorted(inorder t) =
isin t v = (z € set (inorder t))
assumes inorder _insert: inv t A\ sorted(inorder t) =
inorder(insert x t) = ins_list x (inorder t)
assumes inorder_delete: inv t A sorted(inorder t) —>
inorder(delete x t) = del_list x (inorder t)
assumes inorder__inv_empty: inv empty
assumes inorder _inv_insert: inv t A sorted(inorder t) = inv(insert x t)
assumes inorder_inv__delete: inv t A sorted(inorder t) = inv(delete x t)

begin
It implements the traditional specification:

definition set :: 't = 'a set where
set = List.set o inorder

definition invar :: 't = bool where
invar t = (inv t A sorted (inorder t))

sublocale Set

empty insert delete isin set invar
proof (standard, goal _cases)

case 1 show ?Zcase by (auto simp: inorder_empty set_ def)
next

case 2 thus ?case by(simp add: isin invar_def set_def)
next

case & thus Zcase by(simp add: inorder__insert set_ins_list set_def in-
var_def)
next

case (4 s z) thus ?case

by (auto simp: inorder_delete set__del_list invar_def set__def)

next

case 5 thus ?case by(simp add: inorder_empty inorder _inv_empty in-
var_def)
next

case 0 thus ?case by (simp add: inorder__insert inorder _inv_insert sorted__ins_list

25

invar_def)
next
case 7 thus Zcase by (auto simp: inorder_delete inorder _inv_ delete
sorted__del_list invar_def)
qed

end
Set2 = Set with binary operations:

locale Set2 = Set

where insert = insert for insert :: 'a = 's = 's +
fixes union :: 's = 's = 's
fixes inter :: 's = 's = s
fixes diff : 's = 's = 's
assumes set_union: [invar sl; invar s2 | = set(union s1 s2) = set sl
U set s2
assumes sel_inter: [invar s1; invar s2 | = set(inter s1 s2) = set sl
N set s2
assumes set_diff: [invar s1; invar s2 | = set(diff s1 s2) = set s1 —
set 52
assumes invar_union: [invar s1; invar s2 | = invar(union s1 s2)
assumes invar_inter: [invar s1; invar s2 | = invar(inter s1 s2)
assumes invar_diff: [invar s1; invar s2 | = invar(diff s1 s2)

end

7 Unbalanced Tree Implementation of Set

theory Tree Set

imports
HOL—Library. Tree
Cmp
Set__Specs

begin

definition empty :: ‘a trec where
empty = Leaf

fun isin :: 'a::linorder tree = 'a = bool where
isin Leaf © = False |
isin (Node la r) x =
(case cmp z a of
LT = isin l x|
EQ = True |

26

GT = isin r x)
hide__const (open) insert

fun insert :: 'a::linorder = 'a tree = 'a tree where
insert x Leaf = Node Leaf = Leaf |
insert x (Node l a 1) =
(case cmp = a of
LT = Node (insert z 1) a r |
EQ = Nodelar |
GT = Node | a (insert x 1))

Deletion by replacing;:

fun split_min :: 'a tree = 'a * 'a tree where
split_min (Node l a r) =
(if | = Leaf then (a,r) else let (z,l") = split_min 1 in (z, Node I’ a 1))

fun delete :: 'a::linorder = 'a tree = 'a tree where
delete © Leaf = Leaf |
delete © (Node | a r) =
(case cmp = a of
LT = Node (delete x 1) a 1 |
GT = Node l a (delete z r) |
EQ = if r = Leaf then [else let (a’,r") = split_min r in Node | a’ 1)

Deletion by joining:

fun join :: ('a::linorder)tree = 'a tree = 'a tree where
join t Leaf =t |
join Leaf t = t |
join (Node t1 a t2) (Node t3 b t4) =
(case join t2 t3 of
Leaf = Node t1 a (Node Leaf b t4) |
Node u2 z u3 = Node (Node t1 a u2) x (Node u3 b t4))

fun delete2 :: 'a::linorder = 'a tree = 'a tree where
delete2 x Leaf = Leaf |
delete2 x (Node l a r) =
(case cmp = a of
LT = Node (delete2 z 1) a r |
GT = Node l a (delete2 x r) |
EQ = join I 1)

7.1 Functional Correctness Proofs

lemma isin_set: sorted(inorder t) = isin t v = (z € set (inorder t))

27

by (induction t) (auto simp: isin__simps)

lemma inorder insert:
sorted(inorder t) = inorder(insert x t) = ins_list x (inorder t)
by (induction t) (auto simp: ins_list__simps)

lemma split_minD:

split_min t = (z,t") = t # Leaf = x # inorder t' = inorder t
by (induction t arbitrary: t’ rule: split_min.induct)

(auto simp: sorted_lems split: prod.splits if _splits)

lemma inorder _delete:
sorted(inorder t) = inorder(delete x t) = del list z (inorder t)
by (induction t) (auto simp: del_list_simps split_minD split: prod.splits)

interpretation S: Set by Ordered
where empty = empty and isin = isin and insert = insert and delete =
delete
and inorder = inorder and inv = A__. True
proof (standard, goal_cases)

case I show ?Zcase by (simp add: empty__def)
next

case 2 thus ?case by(simp add: isin__set)
next

case 3 thus ?case by(simp add: inorder_insert)
next

case / thus ?case by(simp add: inorder_delete)
qed (rule Truel)+

lemma inorder_join:
inorder(join | r) = inorder | @ inorder r
by (induction | v rule: join.induct) (auto split: tree.split)

lemma inorder delete2:
sorted(inorder t) = inorder(delete2 x t) = del list x (inorder t)
by (induction t) (auto simp: inorder_join del_list_simps)

interpretation S2: Set by Ordered
where empty = empty and isin = isin and insert = insert and delete =
delete?2
and inorder = inorder and inv = A__. True
proof (standard, goal_cases)
case I show ?Zcase by (simp add: empty__def)

28

next

case 2 thus ?case by(simp add: isin__set)
next

case 3 thus ?case by(simp add: inorder_insert)
next

case / thus ?case by(simp add: inorder_delete2)
qed (rule Truel)+

end

8 Association List Update and Deletion

theory AList Upd_Del
imports Sorted Less
begin

abbreviation sorted! ps = sorted(map fst ps)

Define own map_of function to avoid pulling in an unknown amount of
lemmas implicitly (via the simpset).

hide__const (open) map_ of

fun map_of :: (Yax'b)list = 'a = b option where

map__of [] = (Az. None) |

map_of ((a,b)#ps) = (A\z. if z=a then Some b else map__ of ps x)
Updating an association list:

fun upd_list :: 'a::linorder = 'b = (‘ax’b) list = (‘ax’d) list where
upd_list 7 y [= [(a,9)] |
upd_list x y ((a,b)#ps) =

(if x < a then (z,y)#(a,b)#ps else

if © = a then (z,y)#ps else (a,b) # upd_list x y ps)

fun del list :: 'a::linorder = ('ax'b)list = ('ax'b)list where
del_listz [] =1 |

del_list x ((a,b)#ps) = (if x = a then ps else (a,b) # del_list x ps)
8.1 Lemmas for map of

lemma map_of ins_list: map_of (upd_list z y ps) = (map_of ps)(z :=
Some)
by (induction ps) auto

lemma map_of append: map_of (ps Q gs) z =

29

(case map__of ps x of None = map__of qs = | Some y = Some y)
by (induction ps)(auto)

lemma map_of None: sorted (x # map fst ps) = map__of ps © = None
by (induction ps) (fastforce simp: sorted_lems sorted__wrt_Cons)+

lemma map_of None2: sorted (map fst ps Q [z]) = map_of ps z =
None
by (induction ps) (auto simp: sorted__lems)

lemma map_of del_list: sortedl ps =
map__of (del_list x ps) = (map__of ps)(x := None)
by (induction ps) (auto simp: map__of _None sorted_lems fun__eq iff)

lemma map_of sorted_Cons: sorted (a # map fst ps) —= = < a =
map__of ps x = None
by (simp add: map_ of None sorted_Cons_le)

lemma map_of sorted_snoc: sorted (map fst ps Q [a]) = a < z =
map__of ps x = None
by (simp add: map_of None2 sorted_snoc__le)

lemmas map_of sorteds = map__of sorted__Cons map__of _sorted__snoc
lemmas map_ of simps = sorted_lems map_of append map_of sorteds

8.2 Lemmas for upd_list

lemma sorted upd_list: sortedl ps = sortedl (upd_list x y ps)
apply (induction ps)

apply simp

apply(case__tac ps)

apply auto

done

lemma upd_list_sorted: sortedl (ps @ [(a,b)]) =
upd_list x y (ps Q (a,b) # qs) =
(if © < a then upd_list z y ps Q (a,b) # qs
else ps @ upd_list x y ((a,b) # ¢s))
by (induction ps) (auto simp: sorted_lems)

In principle, sorted1 (?ps @ [(%a, ?b)]) = upd_list %z ?y (?ps Q (?a,
70) # ?qs) = (if %z < %a then upd_list 2z %y ?ps Q (Za, 2b) # ?qs else ?ps
Q@ upd_list ?x ?y ((%a, ?b) # ?qs)) suffices, but the following two corollaries
speed up proofs.

30

corollary upd_list_sortedl: [sorted (map fst ps Q [a]); z < a | =
upd_list x y (ps Q (a,b) # qs) = wupd_list x y ps Q (a,b) # gs
by (auto simp: upd__list_sorted)

corollary upd_list_sorted2: | sorted (map fst ps Q [a]); a < z] =

upd_list x y (ps Q (a,b) # qs) = ps Q upd_list v y ((a,b) # gs)
by (auto simp: upd__list_sorted)

lemmas upd_list simps = sorted_lems upd_list _sortedl upd_list _sorted?
Splay trees need two additional upd_ list lemmas:

lemma upd_list Cons:
sortedl ((z,y) # xs) = upd_list v y xs = (z,y) # x5
by (induction xs) auto

lemma upd_ list_snoc:
sortedl (xs Q [(z,y)]) = upd_list v y zs = xs Q [(z,y)]
by (induction zs) (auto simp add: sorted_mid_iff2)

8.3 Lemmas for del list

lemma sorted del_list: sortedl ps = sortedl (del_list x ps)
apply (induction ps)

apply simp

apply(case_tac ps)

apply (auto simp: sorted_Cons__le)

done

lemma del list _idem: © ¢ set(map fst xs) => del list © xs = xs
by (induct zs) auto

lemma del list _sorted: sortedl (ps Q (a,b) # qs) =
del_list x (ps Q (a,b) # ¢s) =
(if © < a then del_list x ps Q (a,b) # gs
else ps @ del_list ((a,b) # ¢s))
by (induction ps)
(fastforce simp: sorted_lems sorted__wrt_Cons introl: del_list_idem)+

In principle, sortedl (?ps @ (%a, ?b) # ?qs) = del_list %z (?ps Q (?a,
7b) # ?qs) = (if %z < %a then del_list 7z ?ps Q (%a, ?b) # ?qs else ?ps @
del_list %z ((?a, ?b) # ?qs)) suffices, but the following corollaries speed up
proofs.

corollary del list_sortedl: sortedl (xs @Q (a,b) # ys) =

a < 11—
del_list x (xs Q (a,b) # ys) = xs Q del_list © ((a,b) # ys)

31

by (auto simp: del_list_sorted)

lemma del list_sorted2: sortedl (xs Q (a,b) # ys) = z < a =
del_list x (xs @Q (a,b) # ys) = del_list x zs Q (a,b) # ys
by (auto simp: del_list_sorted)

lemma del list sorted3:

sortedl (zs Q (a,a’) # ys Q (b,b) # 28) —= 2 < b =

del_list © (zs Q (a,a’) # ys @ (b,b") # 2s) = del_list x (zs Q (a,a’) #
ys) @Q (b,b") # zs

by (auto simp: del_list_sorted sorted_lems)

lemma del list _sorted/:
sortedl (zs Q (a,a’) # ys @Q (b,b") # 25 Q (¢,¢)) # us) = < ¢ =
del_list x (zs Q (a,a’) # ys Q (b,b") # 25 @Q (¢,¢’) # us) = del_list x (s
Q (a,a’) # ys @ (b,b") # zs) Q (¢,c’) # us

by (auto simp: del_list_sorted sorted_lems)

lemma del list _sorted):

sortedl (zs Q (a,a’) # ys Q (b,b") # zs Q (¢,¢’) # us Q (d,d’) # vs) =
r<d=

del_list z (zs @ (a,a’) # ys @ (b,b") # 25 Q (¢,¢') # us @ (d,d’) # vs)

del_list z (xs Q (a,a’) # ys Q (b,b") # 25 @ (¢,¢') # us) Q (d,d’) # vs

by (auto simp: del_list_sorted sorted_lems)

lemmas del list _simps = sorted__lems
del list _sortedl
del list sorted2
del list _sorted3
del list _sorted/
del list _sortedd

Splay trees need two additional del [list lemmas:

lemma del_list_notin__Cons: sorted (x # map fst xs) = del_list x zs =
z8
by (induction xs)(fastforce simp: sorted_wrt_Cons)+

lemma del list _sorted_ app:
sorted(map fst xs Q [z]) = del_list x (zs Q ys) = xs Q del_list x ys
by (induction zs) (auto simp: sorted mid_iff2)

end

32

9 Specifications of Map ADT

theory Map_Specs
imports AList Upd_Del
begin

The basic map interface with ‘a = b option based specification:

locale Map =

fixes empty :: 'm

fixes update :: 'a = 'b = 'm = 'm

fixes delete :: 'a = 'm = 'm

fixes lookup :: 'm = 'a = b option

fixes invar :: 'm = bool

assumes map__empty: lookup empty = (A_. None)

and map__update: invar m = lookup(update a b m) = (lookup m)(a :=
Some b)

and map__delete: invar m = lookup(delete a m) = (lookup m)(a := None)
and invar_empty: invar empty

and invar_update: invar m = invar(update a b m)

and invar_delete: invar m = invar(delete a m)

lemmas (in Map) map__specs =
map__empty map__update map__delete invar__empty invar_update invar__delete

The basic map interface with inorder-based specification:

locale Map_ by Ordered =
fixes empty :: 't
fixes update :: 'az:linorder = 'b = 't = 't
fixes delete :: 'a = 't = 't
fixes lookup :: 't = 'a = 'b option
fixes inorder :: 't = (a * 'b) list
fixes inv :: 't = bool
assumes inorder__empty: inorder empty = ||
and inorder_lookup: inv t A sortedl (inorder t) =
lookup t a = map__of (inorder t) a
and inorder_update: inv t A\ sortedl (inorder t) =
inorder(update a b t) = upd_list a b (inorder t)
and inorder_delete: inv t A sortedl (inorder t) —>
inorder(delete a t) = del_list a (inorder t)
and inorder_inv_empty: inv empty
and inorder__inv_update: inv t N sortedl (inorder t) = inv(update a b t)
and inorder_inv_delete: inv t A sortedl (inorder t) = inv(delete a t)

begin

33

It implements the traditional specification:

definition invar :: 't = bool where
invar t == inv t A sortedl (inorder t)

sublocale Map

empty update delete lookup invar
proof (standard, goal _cases)

case 1 show ?case by (auto simp: inorder_lookup inorder _empty in-
order_inv_empty)
next

case 2 thus ?Zcase

by (simp add: fun__eq iff inorder_ _update inorder _inv_update map__of _ins_list
inorder__lookup

sorted__upd__list invar_def)

next

case 3 thus ?case

by (simp add: fun__eq iff inorder__delete inorder _inv__delete map__of _del_list
inorder__lookup

sorted__del_list invar_def)

next

case 4 thus ?case by(simp add: inorder_empty inorder _inv_empty in-
var_def)
next

case 5 thus %case by(simp add: inorder_update inorder_inv_update
sorted__upd__list invar_def)
next

case 6 thus Zcase by (auto simp: inorder_delete inorder _inv_delete
sorted__del_list invar_def)
ged

end

end

10 Unbalanced Tree Implementation of Map

theory Tree Map
imports
Tree Set
Map__Specs
begin

fun lookup :: ('a::linorderx’d) tree = 'a = 'b option where

34

lookup Leaf © = None |
lookup (Node l (a,b) r) x =
(case cmp z a of LT = lookup l x | GT = lookup r x | EQ = Some b)

fun update :: 'a::linorder = 'b = (‘ax’d) tree = ('ax’b) tree where
update © y Leaf = Node Leaf (z,y) Leaf |
update x y (Node | (a,b) r) = (case cmp x a of

LT = Node (update x y 1) (a,b) r |

EQ = Node l (z,y) r |

GT = Node l (a,b) (update x y r))

fun delete :: 'a::linorder = ('ax'b) tree = ('ax’d) tree where
delete x Leaf = Leaf |
delete © (Node | (a,b)) = (case cmp x a of
LT = Node (delete z 1) (a,b) r |
GT = Node | (a,b) (delete z 1) |
EQ = if r = Leaf then [else let (ab’,r’) = split_min r in Node | ab’ r’)

10.1 Functional Correctness Proofs

lemma lookup map_ of:
sorted1 (inorder t) = lookup t x = map_ of (inorder t) x
by (induction t) (auto simp: map__of _simps split: option.split)

lemma inorder update:
sorted1 (inorder t) = inorder(update a b t) = upd_list a b (inorder t)
by (induction t) (auto simp: upd_list_simps)

lemma inorder_delete:
sortedl (inorder t) = inorder(delete x t) = del_list = (inorder t)
by (induction t) (auto simp: del_list_simps split_minD split: prod.splits)

interpretation M: Map by Ordered
where empty = empty and lookup = lookup and update = update and
delete = delete
and inorder = inorder and inv = A__. True
proof (standard, goal_cases)
case I show ?Zcase by (simp add: empty__def)

next

case 2 thus ?case by(simp add: lookup__map__of)
next

case 3 thus ?case by(simp add: inorder_update)
next

case / thus ?case by(simp add: inorder_delete)

35

qed auto

end

11 Tree Rotations

theory Tree Rotations
imports HOL— Library. Tree
begin

How to transform a tree into a list and into any other tree (with the
same inorder) by rotations.

fun is_list :: 'a tree = bool where
is_list (Node | _ r) = (I = Leaf N is_list) |
is_list Leaf = True

Termination proof via measure function. NB size t — rlen t works for
the actual rotation equation but not for the second equation.

fun rlen :: 'a tree = nat where

rlen Leaf = 0 |
rlen (Node | z r) = rlen r + 1

lemma rien_le size: rlen t < size t
by (induction t) auto

11.1 Without positions

function (sequential) list_of :: 'a tree = 'a tree where

list_of (Node (Node A a B) b C) = list_of (Node A a (Node Bb C)) |
list_of (Node Leaf a A) = Node Leaf a (list_of A) |

list_of Leaf = Leaf

by pat__completeness auto

termination
proof
let R = measure(At. 2xsize t — rlen t)
show wf R by (auto simp add: mlex_prod__def)

fix AaBbC
show (Node A a (Node B b C), Node (Node A a B) b C) € ?R
using rlen_le_size[of C] by(simp)

fix a A show (A, Node Leaf a A) € ?R using rlen_le_size[of A] by(simp)
qed

36

lemma is_list_rot: is_list(list_of t)
by (induction t rule: list_of .induct) auto

lemma inorder_rot: inorder(list_of t) = inorder t
by (induction t rule: list _of .induct) auto

11.2 With positions
datatype dir = L | R

type__synonym pos = dir list

function (sequential) rotR_poss :: 'a tree = pos list where

rotR__poss (Node (Node A a B) b C') = [| # rotR_poss (Node A a (Node B
b C)) |

rotR__poss (Node Leaf a A) = map (Cons R) (rotR_poss A) |

rotR__poss Leaf = []

by pat__completeness auto

termination
proof
let 7R = measure(\t. 2xsize t — rlen t)
show wf R by (auto simp add: mlex_prod_ def)

fix AaBbC
show (Node A a (Node B b C'), Node (Node A a B) b C) € 7R
using rlen_le_size[of C] by(simp)

fix a A show (A, Node Leaf a A) € ?R using rlen_le_size[of A] by(simp)
qged

fun rotR :: 'a tree = 'a tree where
rotR (Node (Node A a B) b C')) = Node A a (Node B b C)

fun rotL :: 'a tree = 'a tree where
rotL (Node A a (Node B b C)) = Node (Node A a B) b C

fun apply_at :: ('a tree = 'a tree) = pos = 'a tree = 'a tree where
apply_at f [J t = [t

| apply_at f (L # ds) (Node l a) = Node (apply_at fdsl) ar

| apply_at f (R # ds) (Node l a r) = Node | a (apply_at f ds r)

fun apply_ats :: (‘a tree = 'a tree) = pos list = 'a tree = 'a tree where

37

apply _ats _ [t =1 |
apply_ats f (p#ps) t = apply_ats f ps (apply_at fp t)

lemma apply_ats _append:

apply__ats f (ps1 Q psa) t = apply_ats f psy (apply_ats f psy t)
by (induction psi arbitrary: t) auto

abbreviation rotRs = apply_ats rotR
abbreviation rotLs = apply ats rotL

lemma apply_ats_map_ R: apply__ats f (map ((#) R) ps) (I, a, r) = Node

la (apply_ats fpsr)
by (induction ps arbitrary: r) auto

lemma inorder_rotRs_poss: inorder (rotRs (rotR__poss t) t) = inorder t
apply (induction t rule: rotR__poss.induct)

apply(auto simp: apply_ats _map_R)

done

lemma is_list_rotRs: is_list (rotRs (rotR_poss t) t)
apply (induction t rule: rotR__poss.induct)
apply(auto simp: apply__ats_map__R)

done

lemma is_list (rotRs ps t) — length ps < length(rotR__poss t)
quickcheck|ezpect=counterezample]
oops

lemma length _rotRs_poss: length (rotR__poss t) = size t — rlen t
proof (induction t rule: rotR__poss.induct)

case (1 AaBbC)

then show ?case using rlen_le_size[of C| by simp
qged auto

lemma is_list _inorder same:
is list t1 —> s list t2 — inorder t1 = inorder t2 — t1 = t2
proof (induction t1 arbitrary: t2)
case Leaf
then show ?case by simp
next
case Node
then show ?case by (cases t2) simp__all
qed

38

lemma rot_id: rotLs (rev (rotR_poss t)) (rotRs (rotR__poss t) t) = t
apply (induction t rule: rotR__poss.induct)

apply(auto simp: apply_ats_map_R rev_map apply__ats_append)
done

corollary tree_to_tree rotations: assumes inorder t1 = inorder t2
shows rotLs (rev (rotR_poss t2)) (rotRs (rotR_poss t1) t1) = t2
proof —
have rotRs (rotR_poss t1) t1 = rotRs (rotR_poss t2) t2 (is ?L = ?R)
by (simp add: assms inorder_rotRs_poss is_list_inorder _same is_list _rotRs)
hence rotLs (rev (rotR_poss t2)) ?L = rotLs (rev (rotR_poss t2)) ?R
by simp

also have ... = t2 by(rule rot_id)
finally show ?thesis .
qed

lemma size rlen_ better ub: size t — rlen t < size t — 1
by (cases t) auto

end

12 Augmented Tree (Tree2)

theory Tree2
imports HOL— Library. Tree
begin

This theory provides the basic infrastructure for the type (‘a x 'b) tree
of augmented trees where ’a is the key and b some additional information.

IMPORTANT: Inductions and cases analyses on augmented trees need
to use the following two rules explicitly. They generate nodes of the form
(l, (a, b),) rather than (I, a, r) for trees of type 'a tree.

lemmas tree2 induct = tree.inductjwhere 'a = 'a x 'b, split_format(complete)]
lemmas tree2_cases = tree.ezhaust[where 'a = 'a x 'b, split_format(complete)]
fun inorder :: (‘ax’b)tree = 'a list where

inorder Leaf =[] |

inorder (Node | (a,) r) = inorder | Q a # inorder r

fun set_tree :: (‘ax’b) tree = 'a set where

set_tree Leaf = {} |
set_tree (Node | (a,_) r) = {a} U set_tree | U set_tree r

39

fun bst :: (‘a::linorderx’d) tree = bool where

bst Leaf = True |

bst (Node l (a,) r) = ((Vz € set_treel. x < a) N (Vx € set_tree r. a <
x) A bst 1 A bstr)

lemma finite_set_tree[simp|: finite(set_tree t)
by (induction t) auto

lemma eq set_tree__empty[simpl: set_tree t = {} +— t = Leaf
by (cases t) auto

lemma set_inorder|simp|: set (inorder t) = set_tree t
by (induction t) auto

lemma length__inorder|simp]: length (inorder t) = size t
by (induction t) auto

end

13 Function zsin for Tree2

theory Isin2
imports
Tree2
Cmp
Set__Specs
begin

fun isin :: (‘a::linorderx’d) tree = 'a = bool where
isin Leaf © = False |
isin (Node l (a,) r) x =
(case cmp z a of
LT = isin l x|
EQ = True |
GT = isin r)

lemma isin__set_inorder: sorted(inorder t) = isin t = = (z € set(inorder
t))

by (induction t rule: tree2 induct) (auto simp: isin_simps)

lemma isin_set tree: bst t = isin t x +— x € set_tree t
by (induction t rule: tree2_induct) auto

40

end

14 Interval Trees

theory Interval Tree

imports
HOL—Data__Structures. Cmp
HOL—Data_ Structures.List _Ins Del
HOL—Data_ Structures.Isin2
HOL—Data__Structures.Set__Specs

begin

14.1 Intervals

The following definition of intervals uses the typedef command to define
the type of non-empty intervals as a subset of the type of pairs p where fst
p < snd p:

typedef (overloaded) ’a::linorder vl =
{p :: 'a x 'a. fst p < snd p} by auto

More precisely, 'a vl is isomorphic with that subset via the function
Rep_ivl. Hence the basic interval properties are not immediate but need
simple proofs:

definition low :: ‘a::linorder ivl = 'a where

low p = fst (Rep__ivl p)

definition high :: 'a::linorder vl = 'a where
high p = snd (Rep__ivl p)

lemma vl _is interval: low p < high p
by (metis Rep__ivl high__def low__def mem__Collect__eq)

lemma vl inj: low p = low ¢ = high p = high g = p = ¢
by (metis Rep_ivl_inverse high__def low__def prod__eql)
Now we can forget how exactly intervals were defined.

instantiation il :: (linorder) linorder begin

definition il less: (z < y) = (low z < low y | (low z = low y A high x <

high y))
definition vl _less _eq: (z < y) = (low x < low y | (low x = low y A high
x < high y))

41

instance proof
fix zy 2 :: 'a wl
show a: (z < y)=(z<yA-y<uzx)
using wl_less vl _less eq by force
show b: z < z
by (simp add: vl _less eq)
showc r<y=y<2z2=2<z2
using wl_less _eq by fastforce
show d: s <y—=y<zrz=z=y
using wl_less eq a wl_inj ivl_less by fastforce
show e: z < yVvVy<z
by (meson wl_less_eq lel not_less iff gr _or_eq)
ged end

definition overlap :: (‘a::linorder) vl = 'a il = bool where
overlap © y «— (high © > low y A high y > low x)

definition has_overlap :: (‘a::linorder) ivl set = 'a vl = bool where
has_overlap Sy <— (3z€S. overlap x y)

14.2 Interval Trees

type_ synonym ‘a ivl_tree = ('a ivl * 'a) tree

fun maz_hi :: ('a::order_bot) ivl_tree = ‘a where
max__hi Leaf = bot |
max_hi (Node _ (_,m) _)=m

definition maz3 :: (‘a::{linorder,order_bot}) il = 'a wl_tree = 'a ivl_tree
= 'a where
mazx3 a |l v = max (high a) (mazx (maz_hil) (max_hir))

fun inv_maz_hi :: ("a::{linorder,order _bot}) ivl_tree = bool where
inv_maz_hi Leaf +— True |

inv_maz_hi (Node | (a, m) r) <— (m = maz3 a l v A inv_maz_hi |l A
inv_maz_hir)

lemma maxz hi is max:
mv_max_hit = a € set_tree t = high a < max_hit

by (induct t, auto simp add: max3_def maz__def)

lemma max_hi_exists:
mu_max_hi t = t # Leaf = Ja€set_tree t. high a = max_hi t

42

proof (induction t rule: tree2 induct)
case Leaf
then show ?case by auto
next
case N: (Node l v m)
then show ?case
proof (cases [rule: tree2 cases)
case Leaf
then show ?thesis
using N.prems(1) N.IH(2) by (cases r, auto simp add: maz3_def
max__def le__bot)
next
case NI: Node
then show ?thesis
proof (cases r rule: tree2_cases)
case Leaf
then show ?thesis
using N.prems(1) N.IH(1) Nl by (auto simp add: maz3_def maz__def
le__bot)
next
case Nr: Node
obtain p! where pi1: p1 € set_tree | high p1 = max_hi [
using N.IH(1) N.prems(1) Nl by auto
obtain p2 where p2: p2 € set_tree r high p2 = max_hi r
using N.IH(2) N.prems(1) Nr by auto
then show ?thesis
using pI p2 N.prems(1) by (auto simp add: max3_def mazx_def)
qged
qed
qged

14.3 Imnsertion and Deletion

definition node where
[simp]: node | a r = Node | (a, max3 alr) r

fun insert :: ‘a::{linorder,order_bot} ivl = 'a ivl_tree = 'a ivl_tree where
insert x Leaf = Node Leaf (z, high x) Leaf |
insert x (Node 1 (a, m) r) =
(case cmp = a of
EQ = Node l (a, m) r |
LT = node (insert z 1) a r |
GT = node | a (insert x r))

43

lemma inorder insert:
sorted (inorder t) = inorder (insert x t) = ins_list x (inorder t)
by (induct t rule: tree2 induct) (auto simp: ins_list_simps)

lemma inv_max_hi insert:
inv_max_hi t = inv_max_hi (insert = t)
by (induct t rule: tree2 induct) (auto simp add: maz3 _def)

fun split_min :: 'a::{linorder,order_bot} ivl_tree = 'a wl x 'a ivl_tree
where
split_min (Node | (a, m) r) =

(if | = Leaf then (a, r)

else let (x,l") = split_min [in (x, node l" a 1))

fun delete :: 'a::{linorder,order_bot} vl = 'a ivl_tree = 'a ivl_tree where
delete © Leaf = Leaf |
delete x (Node | (a, m) r) =
(case cmp z a of

LT = node (delete z 1) a r |

GT = node | a (delete x 1) |

EQ = if r = Leaf then [else

let (a', r") = split_min r in node | a’ ')

lemma split_minD:

split_min t = (z,t") = t # Leaf = x # inorder t' = inorder t
by (induct t arbitrary: t' rule: split_min.induct)

(auto simp: sorted__lems split: prod.splits if _splits)

lemma inorder delete:

sorted (inorder t) = inorder (delete x t) = del_list z (inorder t)
by (induct t)

(auto simp: del_list__simps split_minD Let_ def split: prod.splits)

lemma inv_max_hi_split_min:
[t +# Leaf; inv_maz hit] = inv_maz_hi (snd (split_min t))
by (induct t) (auto split: prod.splits)

lemma inv_maz_ hi_ delete:
inv_max_hi t = inv_max_hi (delete z t)
apply (induct t)
apply simp
using inv_maz__hi_split_min by (fastforce simp add: Let__def split: prod.splits)

44

14.4 Search

Does interval z overlap with any interval in the tree?

fun search :: 'a::{linorder,order_bot} ivl_tree = 'a vl = bool where
search Leaf x = False |
search (Node | (a, m) r) z =

(if overlap x a then True

else if | # Leaf N maz_hi l > low x then search | x

else search r x)

lemma search__correct:
inv_maz__hit = sorted (inorder t) = search t x = has__overlap (set__tree
t) x
proof (induction t rule: tree2 induct)
case Leaf
then show ?Zcase by (auto simp add: has__overlap__def)
next
case (Node l a m r)
have search_l: search | x = has__overlap (set_tree l) x
using Node.IH(1) Node.prems by (auto simp: sorted_wrt_append)
have search_r: search r © = has_overlap (set_tree r) x
using Node.IH(2) Node.prems by (auto simp: sorted_wrt_append)
show ?case
proof (cases overlap a x)
case True
thus ?thesis by (auto simp: overlap def has_overlap__def)
next
case a__disjoint: False
then show ?thesis
proof cases
assume [simpl: | = Leaf
have search__eval: search (Node | (a, m) r) © = search r x
using a__ disjoint overlap def by auto
show ?thesis
unfolding search__eval search_r
by (auto simp add: has__overlap__def a__disjoint)
next
assume [# Leaf
then show ?thesis
proof (cases max_hi l > low x)
case max_hi_[_ge: True
have inv_max_hil
using Node.prems(1) by auto
then obtain p where p: p € set_tree [high p = max_hi]

45

using <l # Leafy max_hi_exists by auto
have search__eval: search (Node | (a, m) r) x = search | x
using a_ disjoint <l # Leafy maz_hi_ 1 _ge by (auto simp: over-
lap__def)
show ?thesis
proof (cases low p < high x)
case True
have overlap p x
unfolding overlap__def using True p(2) maz_hi_l_ge by auto
then show ?thesis
unfolding search__eval search__l
using p(1) by(auto simp: has_overlap__def overlap__def)
next
case Fulse
have —overlap z rp if asm: rp € set_tree r for rp
proof —
have low p < low rp
using asm p(1) Node(4) by(fastforce simp: sorted _wrt _append
wl_less)
then show ?thesis
using Fulse by (auto simp: overlap__def)
qed
then show ?thesis
unfolding search__eval search__l
using a_ disjoint by (auto simp: has__overlap__def overlap__def)
qed
next
case Fulse
have search__eval: search (Node | (a, m) r) © = search r x
using a_ disjoint False by (auto simp: overlap _def)
have —overlap x lp if asm: lp € set_tree | for Ip
using asm False Node.prems(1) max_hi_is_mazx
by (fastforce simp: overlap__def)
then show %thesis
unfolding search__eval search_r
using a_ disjoint by (auto simp: has_overlap__def overlap__def)
qed
qed
qed
qed

definition empty :: 'a ivl_tree where
empty = Leaf

46

14.5 Specification

locale Interval Set = Set +

fixes has_overlap :: 't = 'a::linorder vl = bool

assumes set_overlap: invar s = has__overlap s x = Interval_Tree.has__overlap
(set s)

fun invar :: ("a:{linorder,order_bot}) ivl_tree = bool where
invar t = (inv_maz_hi t A\ sorted(inorder t))

interpretation S: Interval Set

where empty = Leaf and insert = insert and delete = delete

and has_overlap = search and isin = isin and set = set_tree

and invar = invar
proof (standard, goal_cases)

case |

then show ?case by auto
next

case 2

then show ?Zcase by (simp add: isin__set__inorder)
next

case 3§

then show ?case by(simp add: inorder__insert set_ins__list flip: set_inorder)
next

case 4

then show ?case by(simp add: inorder_delete set__del_list flip: set__inorder)
next

case 9

then show ?case by auto
next

case 6

then show ?case by (simp add: inorder__insert inv_max__hi_insert sorted__ins_ list)
next

case 7

then show ?case by (simp add: inorder_delete inv_max__hi__delete sorted__del_list)
next

case §

then show ?Zcase by (simp add: search__correct)
qged

end

47

15 AVL Tree Implementation of Sets

theory AVL Set Code
imports

Cmp

Isin2
begin

15.1 Code

type__synonym ’‘a tree_ht = (‘axnat) tree

definition empty :: ‘a tree_ht where
empty = Leaf

fun ht :: 'a tree _ht = nat where
ht Leaf = 0 |
ht (Node I (a,n) r) = n

definition node :: ‘a tree_ht = 'a = 'a tree_ht = 'a tree_ht where
node l a v = Node | (a, max (htl) (ht 1) + 1) r

definition balL :: 'a tree._ht = 'a = 'a tree_ht = 'a tree_ ht where
ball AB ¢ C =
(if ht AB = ht C + 2 then
case AB of
Node A (a,) B =
if ht A > ht B then node A a (node B ¢ C)
else
case B of
Node By (b,) B2 = node (node A a B1) b (node Bs ¢ C)
else node AB ¢ C)

definition balR :: 'a tree_ht = 'a = 'a tree_ht = 'a tree_ht where
balR A a BC =
(if ht BC = ht A + 2 then
case BC of
Node B (¢,) C =
if ht B < ht C then node (node A a B) ¢ C
else
case B of
Node By (b,) B2 = node (node A a B1) b (node Bz ¢ C)
else node A a BC)

48

fun insert :: 'a::linorder = 'a tree_ht = 'a tree_ ht where
insert x Leaf = Node Leaf (z, 1) Leaf |
insert x (Node [(a, n) r) = (case cmp = a of

EQ = Node l (a, n) r |

LT = balL (insert zl) a r |

GT = balR | a (insert x 1))

fun split_maz :: 'a tree_ht = 'a tree_ht * 'a where
split_mazx (Node l (a,) r) =
(if r = Leaf then (l,a) else let (r',a’) = split_max rin (balL 1 a r', a’))

lemmas split_maz_induct = split_maz.induct[case_names Node Leaf)

fun delete :: 'a::linorder = 'a tree_ht = 'a tree_ht where
delete _ Leaf = Leaf |
delete © (Node | (a, n) r) =
(case cmp = a of
EQ = if | = Leaf then r
else let (I, a’) = split_maz 1 in balR 1" a’ r |
LT = balR (delete z 1) a r |
GT = balL 1 a (delete z 1))

15.2 Functional Correctness Proofs

Very different from the AFP/AVL proofs

15.2.1 Proofs for insert

lemma inorder balL:
inorder (balL | a) = inorder | @Q a # inorder r
by (auto simp: node__def ball,__def split:tree.splits)

lemma inorder balR:
inorder (balR | a r) = inorder | Q a # inorder r
by (auto simp: node__def balR__def split:tree.splits)

theorem inorder insert:

sorted(inorder t) = inorder(insert x t) = ins_list x (inorder t)
by (induct t)

(auto simp: ins__list__simps inorder__balL inorder_balR)

15.2.2 Proofs for delete

lemma inorder__split_mazD:

49

[split_max t = (t',a); t # Leaf | =
inorder t' @Q [a] = inorder t
by (induction t arbitrary: t' rule: split_maz.induct)
(auto simp: inorder balL split: if splits prod.splits tree.split)

theorem inorder delete:

sorted(inorder t) = inorder (delete x t) = del_list x (inorder t)
by (induction t)

(auto simp: del_list__simps inorder_balL inorder__balR inorder _split _maxD
split: prod.splits)

end

15.3 Invariant

theory AVL_Set
imports

AVL Set Code

HOL— Number_Theory.Fib
begin

fun avl :: ‘a tree_ht = bool where
avl Leaf = True |
avl (Node 1 (a,n) r) =
(abs(int(height 1) — int(height r)) < 1 A
n = max (height) (height) + 1 A avll A avl 1)

15.3.1 Insertion maintains AVL balance

declare Let_def [simp]

lemma ht_height[simp]: avl t => ht t = height t
by (cases t rule: tree2 cases) simp_all

First, a fast but relatively manual proof with many lemmas:

lemma height_balL:

[avl l; avl r; height | = height r + 2 | =

height (balL 1 a r) € {height r + 2, height r + 3}
by (auto simp:node__def balL__def split:tree.split)

lemma height balR:

[avl l; avl r; height r = height | + 2 | =

height (balR 1 a 1) : {height | + 2, height | + 3}
by (auto simp add:node__def balR__def split:tree.split)

50

lemma height _node[simp|: height(node | a v) = max (height 1) (height r)
+ 1
by (simp add: node__def)

lemma height balL2:

[avl l; avl r; height | # height r + 2 | =

height (balL 1 a) = 1 + max (height 1) (height)
by (simp__all add: balL,__def)

lemma height balR2:
[avl l; avlr; height r # height | + 2 | =
height (balR 1 a r) = 1 + max (height 1) (height r)
by (simp__all add: balR__def)

lemma avl balL:

[avl l; avl r; height r — 1 < height | A\ height | < height r + 2 | =
avl(balL 1 a)
by (auto simp: ball__def node__def split!: if _split tree.split)

lemma avl balR:

[avl l; avl r; height | — 1 < height r A height v < height | + 2 | =
avl(balR 1 a)
by (auto simp: balR__def node__def split!: if _split tree.split)

Insertion maintains the AVL property. Requires simultaneous proof.

theorem avl insert:
avl t = avl(insert t)
avl t = height (insert x t) € {height t, height t + 1}
proof (induction t rule: tree2 induct)
case (Node la _ 1)
case |
show “case
proof(cases © = a)
case True with I show ?thesis by simp
next
case Fulse
show ?thesis
proof (cases z<a)
case True with 1 Node(1,2) show ?thesis by (auto introl:avl_balL)
next
case Fualse with 1 Node(3,4) <z#a> show ?thesis by (auto in-
trol:avl_balR)
qged
qed

o1

case 2
show “case
proof(cases © = a)
case True with 2 show ?thesis by simp
next
case Fulse
show “thesis
proof (cases z<a)
case True
show ?thesis
proof (cases height (insert x) = height r + 2)
case False with 2 Node(1,2) <z < a> show ?thesis by (auto simp:
height__balL2)
next
case True
hence (height (balL (insert x 1) a r) = height r + 2) V
(height (balL (insert x 1) a r) = height r + 3) (is YA V ¢B)
using 2 Node(1,2) height balL[OF _ __ True|] by simp
thus “thesis
proof
assume ?A with 2 <z < a) show %thesis by (auto)
next
assume ?B with 2 Node(2) True <z < a> show ?thesis by (simp)
arith
qed
qed
next
case Fulse
show ?thesis
proof (cases height (insert x r) = height | + 2)
case Fulse with 2 Node(3,4) «—z < a» show ?thesis by (auto simp:
height__balR2)
next
case True
hence (height (balR 1 a (insert x r)) = height | + 2) V
(height (balR | a (insert z r)) = height | + 3) (is ?A V ?B)
using 2 Node(8) height_balR[OF _ __ True] by simp
thus “thesis
proof
assume ?A with 2 -z < a)» show ?thesis by (auto)
next
assume ?B with 2 Node(4) True (—x < a» show ?thesis by (simp)
arith
qed

52

qed
qged
qed
qed simp__all

Now an automatic proof without lemmas:

theorem avl insert auto: avl t =
avl(insert x t) A height (insert x t) € {height t, height t + 1}
apply (induction t rule: tree2_induct)

apply (auto simp: balL__def balR__def node__def max__absorb2 split!: if _split
tree.split)
done

15.3.2 Deletion maintains AVL balance

lemma avl_split_mazx:

[avl t; t # Leaf | =

avl (fst (split_maz t)) A

height t € {height(fst (split_max t)), height(fst (split_maz t)) + 1}
by (induct t rule: split_max_induct)

(auto simp: balL__def node__def max_absorb2 split!: prod.split if split
tree.split)

Deletion maintains the AVL property:

theorem avl delete:
avl t = avl(delete z t)
avl t = height t € {height (delete z t), height (delete x t) + 1}
proof (induct t rule: tree2_induct)
case (Node lan)
case [
show ?case
proof(cases © = a)
case True thus ?thesis
using 1 avl_split_maz[of l] by (auto intro!: avl_balR split: prod.split)
next
case Fulse thus ?thesis
using Node 1 by (auto introl: avl balL avl balR)
qed
case 2
show ?case
proof(cases © = a)
case True thus ?thesis using 2 avl_split_mazx|of []
by (auto simp: balR__def max_absorb2 split!: if _splits prod.split tree.split)

93

next
case Fulse
show ?thesis
proof (cases z<a)
case True
show %thesis
proof (cases height v = height (delete z 1) + 2)
case Faulse
thus ?thesis using 2 Node(1,2) <z < a» by(auto simp: balR__def)
next
case True
thus ?thesis using height balR[OF __ __ True, of a] 2 Node(1,2) <z
< a» by simp linarith
qed
next
case Fulse
show “thesis
proof (cases height | = height (delete x r) + 2)
case Fulse
thus Zthesis using 2 Node(3,4) <—x < a) «x # a> by(auto simp:
balL__def)
next
case True
thus ?thesis
using height_balL[OF __ __ True, of a] 2 Node(3,4) -z < a) «x #
a> by simp linarith
qed
qged
qed
qed simp_all

A more automatic proof. Complete automation as for insertion seems
hard due to resource requirements.

theorem avl delete _auto:

avl t = avl(delete z t)

avl t = height t € {height (delete x t), height (delete z t) + 1}
proof (induct t rule: tree2 induct)

case (Node l a nr)

case 1

thus “case

using Node avl__split_maz[of I] by (auto intro!: avl_balL avl_balR split:

prod.split)

case 2

show ?case

54

using 2 Node avl_split_mazx|of []
by auto
(auto simp: balL__def balR__def max__absorbl max__absorb2 split!:
tree.splits prod.splits if _splits)
qed simp_all

15.4 Overall correctness

interpretation S: Set by Ordered
where empty = empty and isin = isin and insert = insert and delete =
delete
and inorder = inorder and inv = avl
proof (standard, goal_cases)
case I show ?Zcase by (simp add: empty__def)

next

case 2 thus ?case by(simp add: isin__set_inorder)
next

case 3 thus ?case by(simp add: inorder_insert)
next

case / thus ?case by(simp add: inorder_delete)
next

case 5 thus ?case by (simp add: empty_def)
next

case 6 thus ?case by (simp add: avl_insert(1))
next

case 7 thus ?case by (simp add: avl_delete(1))
ged

15.5 Height-Size Relation
Any AVL tree of height n has at least fib (n+2) leaves:

theorem avl_fib_ bound:
avl t = fib(height t + 2) < sizel t
proof (induction rule: tree2 induct)
case (Node l a h 1)
have 1: height | + 1 < height r + 2 and 2: height r + 1 < height | + 2
using Node.prems by auto
have fib (max (height 1) (height) + 3) < sizel | + sizel r
proof cases
assume height | > height r
hence fib (maz (height 1) (height r) + 3) = fib (height | + 3)
by (simp add: max__absorbl)
also have ... = fib (height | + 2) + fib (height | + 1)
by (simp add: numeral _eq Suc)

95

also have ... < sizel | + fib (height | + 1)
using Node by (simp)

also have ... < sizel r + sizel |
using Node fib_mono[OF 1] by auto
also have ... = sizel (Node l (a,h) 1)
by simp
finally show ?thesis
by (simp)
next

assume — height | > height

hence fib (mazx (height 1) (height r) + 3) = fib (height r + 3)
by (simp add: max__absorbl)

also have ... = fib (height r + 2) + fib (height r + 1)
by (simp add: numeral_eq Suc)

also have ... < sizel r + fib (height r + 1)
using Node by (simp)

also have ... < sizel r + sizel |
using Node fib__mono[OF 2] by auto
also have ... = sizel (Node | (a,h) 1)
by simp
finally show ¢thesis
by (simp)
qed
also have ... = sizel (Node l (a,h) r)
by simp

finally show ?Zcase by (simp del: fib.simps add: numeral_eq_Suc)
qed auto

lemma avl_fib_bound__auto: avl t = fib (height t + 2) < sizel t
proof (induction t rule: tree2 induct)
case Leaf thus ?case by (simp)
next
case (Node l a h 1)
have 1: height | + 1 < height r + 2 and 2: height r + 1 < height | + 2
using Node.prems by auto
have left: height | > height r = ?case (is Zasm — _)
using Node fib_mono[OF 1] by (simp add: maz.absorbl)
have right: height | < height r = ?case
using Node fib_mono[OF 2] by (simp add: maz.absorb2)
show ?case using left right using Node.prems by simp linarith
qged

An exponential lower bound for fib:

lemma fib_lowerbound:

o6

defines p = (1 + sqrt 5) / 2

shows real (fib(n+2)) > ¢ " n
proof (induction n rule: fib.induct)

case [

then show ?case by simp
next

case 2

then show ?Zcase by (simp add: ¢__def real_le_lsqrt)
next

case (3 n)

have ¢ ~ Suc (Sucn) =¢ ~2*x¢p " n

by (simp add: field__simps power2_eq square)

alsohave ... = (¢ + 1) *xp " n
by (simp__all add: ¢__def power2__eq square field__simps)
alsohave ... = ¢ " Sucn+ ¢ " n

by (simp add: field__simps)
also have ... < real (fib (Suc n + 2)) + real (fib (n + 2))
by (intro add_mono 3.IH)
finally show ?case by simp
ged

The size of an AVL tree is (at least) exponential in its height:

lemma avl_size lowerbound:
defines ¢ = (1 + sqrt 5) / 2
assumes avl t
shows ¢ ~ (height t) < sizel t
proof —
have ¢ ~ height t < fib (height t + 2)
unfolding ¢_ def by(rule fib_lowerbound)
also have ... < sizel t
using avl_fib_bound[of t] assms by simp
finally show ?thesis .
qed

The height of an AVL tree is most 1 / log 2 ¢ ~ 1.44 times worse than
log 2 (real (sizel t)):

lemma avl_height upperbound:
defines ¢ = (1 + sqrt 5) / 2
assumes avl ¢
shows height t < (1/log 2) * log 2 (sizel t)
proof —
have ¢ > 0 ¢ > 1 by(auto simp: ¢__def pos_add__strict)
hence height t = log ¢ (¢ ~ height t) by (simp add: log_nat_power)
also have ... < log ¢ (sizel t)

o7

using avl_size_lowerbound[OF assms(2), folded ¢_ def] <1 < ¢»
by (simp add: le_log_of power)
also have ... = (1/log 2 @) * log 2 (sizel t)
by (simp add: log_base__change|of 2 ¢])
finally show “thesis .
qged

end

16 Function lookup for Tree2

theory Lookup?2
imports

Tree?2

Cmp

Map Specs
begin

fun lookup :: (('a::linorder x 'b) x 'c) tree = 'a = 'b option where
lookup Leaf © = None |
lookup (Node I ((a,b),) r) xz =

(case emp = a of LT = lookup l x | GT = lookup r z | EQ = Some b)

lemma lookup__map_ of:

sortedl (inorder t) = lookup t x = map_of (inorder t) z
by (induction t rule: tree2_induct) (auto simp: map_of simps split: op-
tion.split)

end

17 AVL Tree Implementation of Maps

theory AVL_Map
imports
AVL Set
Lookup2
begin

fun update :: 'a::linorder = 'b = (‘ax’b) tree_ht = ('ax'b) tree_ht where
update © y Leaf = Node Leaf ((z,y), 1) Leaf |
update x y (Node | ((a,b), h) r) = (case cmp = a of

EQ = Node l ((z,y), h) r |

LT = balL (update z y 1) (a,b) 7 |

o8

GT = balR I (a,b) (update x y T))

fun delete :: ‘a::linorder = ('ax’b) tree_ht = ('ax’b) tree_ht where
delete _ Leaf = Leaf |
delete © (Node | ((a,b), h)) = (case cmp z a of
EQ = if | = Leaf then r
else let (I, ab’) = split_mazx l in balR 1" ab’ r |
LT = balR (delete z 1) (a,b) r |
GT = balL | (a,b) (delete z r))

17.1 Functional Correctness

theorem inorder__update:
sortedl (inorder t) = inorder(update y t) = upd_list x y (inorder t)
by (induct t) (auto simp: upd_list_simps inorder _balL inorder__balR)

theorem inorder delete:
sortedl (inorder t) = inorder (delete x t) = del_list x (inorder t)
by (induction t)
(auto simp: del_list__simps inorder__balL inorder _balR
inorder__split_maxD split: prod.splits)

17.2 AVL invariants
17.2.1 Insertion maintains AVL balance

theorem avl update:
assumes avl t
shows avl(update z y t)
(height (update z y t) = height t V height (update z y t) = height t
+ 1)
using assms
proof (induction x y t rule: update.induct)
case eq2: (2zylabhr)
case I
show Zcase
proof(cases © = a)
case True with eq2 1 show ?thesis by simp
next
case Fulse
with eq2 1 show %thesis
proof (cases z<a)
case True with eq2 1 show ?thesis by (auto intro!: avl_balL)
next

99

case Fulse with eq2 1 <x#a> show ?thesis by (auto intro!: avl_balR)
qged
qed
case 2
show Zcase
proof(cases © = a)
case True with eq2 1 show ?thesis by simp
next
case Fulse
show ?thesis
proof (cases z<a)
case True
show “thesis
proof (cases height (update z y l) = height r + 2)
case Fulse with eq2 2 <z < a» show ?Zthesis by (auto simp:
height _balL2)
next
case True
hence (height (balL (update z y l) (a,b)) = height r + 2) V
(height (balL (update z y 1) (a,b) r) = height r + 3) (is YA V ¢B)
using eq2 2 «x<a> height_balL[OF _ _ True] by simp
thus ?thesis
proof
assume ?A with 2 <z < a> show %thesis by (auto)
next
assume 7B with True 1 eq2(2) <z < a> show ?thesis by (simp)
arith
qed
qed
next
case Fulse
show ?thesis
proof (cases height (update z y r) = height | + 2)
case False with eq2 2 «—x < a» show %thesis by (auto simp:
height__balR2)
next
case True
hence (height (balR [(a,b) (update x y r)) = height | + 2) V
(height (balR 1 (a,b) (update x y 1)) = height | + 3) (is A vV ?B)
using eg2 2 -z < @ «x # a> height_balR[OF _ __ True] by simp
thus ?thesis
proof
assume ?A with 2 -z < a) show ?thesis by (auto)
next

60

assume 7B with True 1 eq2(4) <z < a» show ?thesis by (simp)
arith
qed
qed
qed
qed
qed simp_all

17.2.2 Deletion maintains AVL balance

theorem avl delete:
assumes avl t
shows avl(delete x t) and height t = (height (delete x t)) V height t =
height (delete x t) + 1
using assms
proof (induct t rule: tree2 induct)
case (Node l ab h 1)
obtain a b where [simp|: ab = (a,b) by fastforce
case |
show Zcase
proof(cases © = a)
case True with Node 1 show ?thesis
using avl_split_mazx|of I] by (auto introl: avl_balR split: prod.split)
next
case Fulse
show ?thesis
proof (cases z<a)
case True with Node 1 show ?thesis by (auto intro!: avl _balR)
next
case Fulse with Node 1 <z#a> show ?thesis by (auto intro!: avl_balL)
qed
qed
case 2
show ?case
proof(cases . = a)
case True then show ?thesis using 1 avl_split_maz[of ||
by (auto simp: balR__def max_absorb2 split!: if _splits prod.split tree.split)
next
case Fulse
show ?thesis
proof (cases z<a)
case True
show ?thesis
proof (cases height v = height (delete z 1) + 2)

61

case Fualse with Node 1 <x < a)> show ?thesis by(auto simp:
balR__def)
next
case True
thus ?thesis using height _balR[OF _ __ True, of ab] 2 Node(1,2) «x
< ay by simp linarith
qed
next
case Fulse
show “thesis
proof (cases height | = height (delete x r) + 2)
case Fualse with Node 1 <—z < a) <x # a)> show ?thesis by(auto
simp: balL__def)
next
case True
thus ?thesis
using height_balL[OF _ __ True, of ab] 2 Node(3,4) <z < a) <z
% ay by auto
qed
ged
qed
qed simp_all

interpretation M: Map by Ordered
where empty = empty and lookup = lookup and update = update and
delete = delete
and inorder = inorder and inv = avl
proof (standard, goal_cases)
case 1 show ?Zcase by (simp add: empty_ def)

next

case 2 thus ?case by(simp add: lookup_map_of)
next

case 3 thus ?case by(simp add: inorder_ _update)
next

case 4 thus ?case by(simp add: inorder__delete)
next

case 5 show ?Zcase by (simp add: empty_ def)
next

case 6 thus ?case by(simp add: avl update(1))
next

case 7 thus ?case by(simp add: avl _delete(1))
qed

62

end

18 AVL Tree with Balance Factors (1)

theory AVL_ Bal Set

imports
Cmp
Isin2

begin

This version detects height increase/decrease from above via the change

in balance factors.

datatype bal = Lh | Bal | Rh

type__synonym ’‘a tree_bal = ('a x bal) tree

Invariant:

fun avl :: 'a tree_bal = bool where

avl Leaf =

True |

avl (Node [(a,b) r) =
((case b of
Bal = height v = height [|
Lh = height | = height r + 1 |
Rh = height r = height | + 1)
A avl I A avlT)

18.1 Code

fun is bal where
is_bal (Node l (a,b) r) = (b = Bal)

fun incr where
incr t t' = (t = Leaf V is_bal t N — is_bal t')

fun rot2 where
rot2 A a B ¢ C = (case B of

(Node By
let b1 =
by =

in Node

fun ball ::

(b, bb) By) =

if bb = Rh then Lh else Bal;

if bb = Lh then Rh else Bal

(Node A (a,b1) By) (b,Bal) (Node Bs (¢,ba) C))

‘a tree_bal = 'a = bal = 'a tree_bal = 'a tree_bal where

balL AB ¢ bc C = (case be of
Bal = Node AB (¢,Lh) C' |

63

Rh = Node AB (¢,Bal) C |

Lh = (case AB of
Node A (a,Lh) B = Node A (a,Bal) (Node B (c,Bal) C) |
Node A (a,Bal) B = Node A (a,Rh) (Node B (¢,Lh) C) |
Node A (a,Rh) B = rot2 A a B ¢ C))

fun balR :: 'a tree_bal = 'a = bal = 'a tree_bal = 'a tree_ bal where
balR A a ba BC = (case ba of
Bal = Node A (a,Rh) BC' |
Lh = Node A (a,Bal) BC'|
Rh = (case BC of
Node B (¢,Rh) C = Node (Node A (a,Bal) B) (¢,Bal) C |
Node B (¢,Bal) C = Node (Node A (a,Rh) B) (c¢,Lh) C' |
Node B (¢,Lh) C = rot2 A a B ¢ C))

fun insert :: 'a::linorder = 'a tree__bal = 'a tree_bal where
insert x Leaf = Node Leaf (z, Bal) Leaf |
insert x (Node | (a, b) r) = (case cmp x a of
EQ = Node l (a, b) r |
LT = let l' = insert x 1 in if incr 11" then balL 1" a b r else Node I’ (a,b)
-
|
GT = let ' = insert x rin if incr r v’ then balR l a b r’ else Node | (a,b)

)

fun decr where
decr t t' = (t # Leaf N incrt't)

fun split_maz :: 'a tree_bal = 'a tree_bal x 'a where
split_mazx (Node l (a, ba) r) =
(if r = Leaf then (l,a)
else let (r',a’) = split_maz r;
t" = if incr v’ r then balL | a ba r' else Node [(a,ba) r'

in (t', a"))

fun delete :: 'a::linorder = 'a tree_bal = 'a tree bal where
delete __ Leaf = Leaf |
delete x (Node [(a, ba) r) =
(case cmp = a of
EQ = if | = Leaf then r
else let (I’ a’) = split_maz 1 in
if incer 1" 1 then balR 1" o’ ba r else Node I’ (a’,ba) r |

LT = let I' = delete x 1 in if decr | 1’ then balR 1" a ba r else Node 1’
(a,ba) r |

GT = let v’ = delete z r in if decr v r' then balL | a ba r’ else Node |

64

(a,ba) r')

18.2 Proofs

lemmas split_mazx_induct = split_maz.induct[case_names Node Leaf]
lemmas splits = if _splits tree.splits bal.splits
declare Let_def [simp]

18.2.1 Proofs about insertion

lemma avl insert: avl t —
avl(insert x t) A
height(insert x t) = height t + (if incr t (insert x t) then 1 else 0)
by (induction x t rule: insert.induct)(auto split!: splits)

The following two auxiliary lemma merely simplify the proof of in-
order__insert.

lemma [simp): [| # ins_list z xs
by (cases xs) auto

lemma [simp]: avl t = insert z t # (I, (a, Rh), ()) A insert z t # ((), (a,
Lh), r)
by (drule avl_insert[of __ z|) (auto split: splits)

theorem inorder insert:
[avl t; sorted(inorder t) | = inorder(insert x t) = ins_list x (inorder
t)

by (induction t) (auto simp: ins_list_simps split!: splits)

18.2.2 Proofs about deletion

lemma inorder balR:

[ba = Rh — r # Leaf; avl r |

= inorder (balR | a ba r) = inorder | Q a # inorder r
by (auto split: splits)

lemma inorder_ balL:

[ba = Lh — 1 # Leaf; avl 1]

= inorder (balL | a ba r) = inorder | Q a # inorder r
by (auto split: splits)

lemma height 1 _iff: avl t = height t = Suc 0 «<— (3z. t = Node Leaf
(z,Bal) Leaf)

65

by (cases t) (auto split: splits prod.splits)

lemma avl_split_maz:
[split_max t = (t',a); avl t; t # Leaf | =
avl t'" N\ height t = height t" + (if incr t' t then 1 else 0)
proof (induction t arbitrary: t’' a rule: split_mazx_induct)
qed (auto simp: maz__absorbl max__absorb2 height__1__iff split!: splits prod.splits)

lemma avl delete: avl t —
avl (delete x t) A
height t = height (delete x t) + (if decr t (delete x t) then 1 else 0)
proof (induction x t rule: delete.induct)
qed (auto simp: maz_absorbl max__absorb2 height__1__iff dest: avl_split_maz
split!: splits prod.splits)

lemma inorder_split _maxD:

[split_max t = (t',a); t # Leaf; avl t | =

inorder t' @Q [a] = inorder t
proof (induction t arbitrary: t’ rule: split_max.induct)
qed (auto split!: splits prod.splits)

lemma neq Leaf if height _neq 0: height t # 0 = t # Leaf
by auto

lemma split_max_Leaf: | t # Leaf; avl t | = split_max t = ((),) +—
t = Node Leaf (z,Bal) Leaf
by (cases t) (auto split: splits prod.splits)

theorem inorder delete:

[avl t; sorted(inorder t) | = inorder (delete x t) = del_list x (inorder
£
proof (induction t rule: tree2 induct)

case Leaf

then show ?case by auto
next

case (Node z1 a b z3)

then show ?case

by (auto simp: del_list_simps inorder__balR inorder_ _balL avl_delete
inorder_split_maxD
split_maz_ Leaf neq Leaf if height neq 0
simp del: balL.simps balR.simps split!: splits prod.splits)

ged

66

18.2.3 Set Implementation

interpretation S: Set by Ordered
where empty = Leaf and isin = isin

and insert = insert

and delete = delete

and inorder = inorder and inv = avl
proof (standard, goal_cases)

case I show ?Zcase by (simp)
next

case 2 thus ?case by(simp add: isin__set_inorder)
next

case 3 thus ?case by(simp add: inorder_insert)
next

case / thus ?case by(simp add: inorder_delete)
next

case 5 thus ?case by (simp)
next

case 6 thus ?case by (simp add: avl_insert)
next

case 7 thus ?case by (simp add: avl_delete)
qged

end

19 AVL Tree with Balance Factors (2)

theory AVL Bal2 Set
imports

Cmp

Isin2
begin

This version passes a flag (Same/Diff) back up to signal if the height
changed.

datatype bal = Lh | Bal | Rh

type__synonym ’‘a tree_bal = ('a x bal) tree
Invariant:

fun avl :: 'a tree_bal = bool where
avl Leaf = True |
avl (Node [(a,b) r) =

((case b of

67

Bal = height v = height [|

Lh = height | = height r + 1 |

Rh = height r = height | + 1)
A avll A avlT)

19.1 Code
datatype ‘a alt = Same 'a | Diff 'a

type__synonym ’a tree_bal2 = 'a tree_bal alt
fun tree :: 'a
tree(Same t)
tree(Diff t) =t

alt = 'a where
=t ‘

fun rot2 where
rot2 A a B ¢ C = (case B of
(Node By (b, bb) Bs) =
let by = if bb = Rh then Lh else Bal;
bo = if bb = Lh then Rh else Bal
in Node (Node A (a,b1) B1) (b,Bal) (Node By (¢,b2) C))

fun balL :: 'a tree_bal2 = 'a = bal = 'a tree_bal = 'a tree_bal2 where
ballL. AB' ¢ bc C = (case AB’ of
Same AB = Same (Node AB (c,bc) C) |
Diff AB = (case be of
Bal = Diff (Node AB (c,Lh) C) |
Rh = Same (Node AB (c¢,Bal) C) |
Lh = (case AB of
Node A (a,Lh) B = Same(Node A (a,Bal) (Node B (c,Bal) C)) |
Node A (a,Rh) B = Same(rot2 A a B ¢ C))))

fun balR :: 'a tree_bal = 'a = bal = 'a tree_bal2 = 'a tree_bal2 where
balR A a ba BC' = (case BC' of
Same BC = Same (Node A (a,ba) BC) |
Diff BC = (case ba of
Bal = Diff (Node A (a,Rh) BC) |
Lh = Same (Node A (a,Bal) BC) |
Rh = (case BC of
Node B (¢,Rh) C = Same(Node (Node A (a,Bal) B) (¢,Bal) C) |
Node B (¢,Lh) C = Same(rot2 A a B ¢ C))))

fun ins :: 'a::linorder = 'a tree_bal = 'a tree_bal2 where

ins x Leaf = Diff(Node Leaf (x, Bal) Leaf) |

68

ins © (Node | (a, b) r) = (case cmp = a of
EQ = Same(Node | (a, b)) |
LT = ball (inszl) abr|
GT = balR la b (insz 1))

definition insert :: ‘a::linorder = 'a tree_bal = 'a tree_bal where
insert x t = tree(ins x t)

fun baldR :: 'a tree_bal = 'a = bal = 'a tree_bal2 = 'a tree_bal2 where
baldR AB ¢ bc C' = (case C' of
Same C' = Same (Node AB (c,bc) C) |
Diff C = (case be of
Bal = Same (Node AB (c¢,Lh) C) |
Rh = Diff (Node AB (¢,Bal) C) |
Lh = (case AB of
Node A (a,Lh) B = Diff(Node A (a,Bal) (Node B (c¢,Bal) C)) |
Node A (a,Bal) B = Same(Node A (a,Rh) (Node B (¢,Lh) C)) |
Node A (a,Rh) B = Diff(rot2 A a B ¢ ())))

fun baldL :: 'a tree_bal2 = 'a = bal = 'a tree__bal = 'a tree_bal2 where
baldL A’ a ba BC = (case A’ of
Same A = Same (Node A (a,ba) BC) |
Diff A = (case ba of
Bal = Same (Node A (a,Rh) BC) |
Lh = Diff (Node A (a,Bal) BC) |
Rh = (case BC of
Node B (¢,Rh) C = Diff(Node (Node A (a,Bal) B) (¢,Bal) C) |
Node B (¢,Bal) C = Same(Node (Node A (a,Rh) B) (¢,Lh) C) |
Node B (¢,Lh) C = Diff(rot2 A a B ¢ C))))

fun split _max :: 'a tree_bal = 'a tree_bal2 * 'a where
split_mazx (Node | (a, ba) r) =

(if r = Leaf then (Diff l,a) else let (r',a’) = split_maz r in (baldR | a ba
r', a’))

fun del :: 'a::linorder = 'a tree_bal = 'a tree_bal2 where
del __ Leaf = Same Leaf |
del z (Node | (a, ba) r) =
(case cmp = a of
EQ = if | = Leaf then Diff r
else let (I, a’) = split_maz 1 in baldL 1" a’ ba r |
LT = baldL (del x 1) a ba r |
GT = baldR [a ba (del z T))

69

definition delete :: 'a::linorder = 'a tree_bal = ’'a tree_bal where
delete z t = tree(del z t)

lemmas split_mazx_induct = split_maz.induct[case_names Node Leaf]

lemmas splits = if _splits tree.splits alt.splits bal.splits

19.2 Proofs
19.2.1 Proofs about insertion

lemma avl_ins case: avl t => case ins x t of
Same t' = avl t' A height t' = height t |
Diff t' = avl t' A height t' = height t + 1 A
(Vlar. t'= Nodel (a,Bal) r — a = x A | = Leaf N\ r = Leaf)
by (induction z t rule: ins.induct) (auto simp: maz__absorbl split!: splits)

corollary avl_insert: avl t = avl(insert z t)
using avl_ins_caselof t x| by (simp add: insert_def split: splits)

lemma ins_ Diff[simp]: avl t =

ins x t # Diff Leaf N

(ins x t = Diff (Node I (a,Bal) r) +— t = Leaf N a = x N l=Leaf A
r=Leaf) A

ins x t # Diff (Node l (a,Rh) Leaf) N

ins t # Diff (Node Leaf (a,Lh) 1)
by (drule avl_ins_caselof __ z]) (auto split: splits)

theorem inorder ins:
[avlt; sorted(inorder t) | = inorder(tree(ins z t)) = ins_list x (inorder

t)

by (induction t) (auto simp: ins_list_simps split!: splits)

19.2.2 Proofs about deletion

lemma inorder baldL:

[ba = Rh — r # Leaf; avl 1 |

= inorder (tree(baldL | a ba r)) = inorder (tree l) Q a # inorder r
by (auto split: splits)

lemma inorder baldR:

[ba = Lh — 1 # Leaf; avl]
= inorder (tree(baldR | a ba 1)) = inorder | Q@ a # inorder (tree r)

70

by (auto split: splits)

lemma avl_split_maz:
[split_max t = (t',a); avl t; t # Leaf | = case t’ of
Same t' = avl t' \ height t = height t' |
Diff t' = avl t' A height t = height t' + 1
proof (induction t arbitrary: t' a rule: split_mazx_induct)
qed (auto simp: maz__def split!: splits prod.splits)

lemma avl _del case: avl t = case del x t of
Same t' = avl t' A\ height t = height t' |
Diff t' = avl t' A height t = height t' + 1
proof (induction x t rule: del.induct)
qed (auto simp: maz__absorbl max__absorb?2 dest: avl_split_mazx split!: splits
prod.splits)

corollary avl_delete: avl t = avl(delete x t)
using avl_del_case|[of t x] by(simp add: delete__def split: splits)

lemma inorder_split _mazD:

[split_max t = (t',a); t # Leaf; avl t | =

inorder (tree t') @ [a] = inorder t
proof (induction t arbitrary: t’ rule: split_max.induct)
qed (auto split!: splits prod.splits)

lemma neq Leaf if height _neq 0[simp]: height t # 0 —> t # Leaf
by auto

theorem inorder del:

[avl t; sorted(inorder t) | = inorder (tree(del x t)) = del_list x (inorder
f
proof (induction t rule: tree2 induct)

case Leaf

then show ?case by simp
next

case (Node z1 a b z3)

then show ?case

by (auto simp: del_list__simps inorder__baldL inorder_baldR avl_delete
inorder_split_maxD
stmp del: baldL.simps split!: splits prod.splits)

qged

71

19.2.3 Set Implementation

interpretation S: Set by Ordered
where empty = Leaf and isin = isin
and insert = insert
and delete = delete
and inorder = inorder and inv = avl
proof (standard, goal_cases)
case I show ?Zcase by (simp)
next
case 2 thus ?case by(simp add: isin__set_inorder)
next
case 3 thus ?case by(simp add: inorder_ins insert_def)
next
case / thus ?case by(simp add: inorder_del delete__def)
next
case 5 thus ?case by (simp)
next
case 6 thus ?case by (simp add: avl_insert)
next
case 7 thus ?case by (simp add: avl_delete)
qged

end

20 Height-Balanced Trees

theory Height_Balanced__Tree
imports

Cmp

Isin2
begin

Height-balanced trees (HBTS) can be seen as a generalization of AVL
trees. The code and the proofs were obtained by small modifications of the
AVL theories. This is an implementation of sets via HBTs.

type__synonym ’a tree_ht = ('axnat) tree
definition empty :: ‘a tree_ht where
empty = Leaf
The maximal amount by which the height of two siblings may differ:

locale HBT =
fixes m :: nat

72

assumes [arith]: m > 0
begin

Invariant:

fun hbt :: 'a tree_ht = bool where
hbt Leaf = True |
hbt (Node l (a,n) r) =
(abs(int(height 1) — int(height r)) < int(m) A
n = max (height 1) (height) + 1 A hbt I A hbt r)

fun At :: 'a tree_ht = nat where
ht Leaf = 0 |
ht (Node I (a,n) 1) = n

definition node :: ‘a tree_ht = 'a = 'a tree_ht = 'a tree_ht where
node l a r = Node | (a, mazx (htl) (ht r) + 1) r

definition balL :: 'a tree ht = 'a = 'a tree_ ht = 'a tree ht where
balL AB b C =
(if ht AB = ht C + m + 1 then
case AB of
Node A (a,) B=
if ht A > ht B then node A a (node B b C)
else
case B of
Node By (ab,) By = node (node A a By) ab (node By b C)
else node AB b ()

definition balR :: 'a tree ht = 'a = 'a tree._ht = 'a tree ht where
balR A a BC =
(if ht BC = ht A + m + 1 then
case BC of
Node B (b,) C =
if ht B < ht C then node (node A a B) b C
else
case B of
Node B; (ab,) B2 = node (node A a Bi) ab (node By b C)
else node A a BC)

fun insert :: 'a::linorder = 'a tree_ht = 'a tree_ ht where
insert x Leaf = Node Leaf (z, 1) Leaf |
insert x (Node [(a, n) r) = (case cmp = a of

EQ = Node l (a, n) r |

LT = balL (insert z 1) a r |

73

GT = balR | a (insert x 1))

fun split_maz :: 'a tree_ht = 'a tree_ht * 'a where
split_mazx (Node l (a, _) 1) =
(if r = Leaf then (l,a) else let (r',a’) = split_max rin (balL 1 a ', a’))

lemmas split_maz_induct = split_maz.induct[case_names Node Leaf)

fun delete :: 'a::linorder = 'a tree_ht = 'a tree__ht where
delete _ Leaf = Leaf |
delete z (Node l (a, n) r) =
(case cmp = a of
EQ = if | = Leaf then r
else let (I, a’) = split_maz 1 in balR 1" a’ r |
LT = balR (delete z 1) a r |
GT = balL | a (delete x 1))

20.1 Functional Correctness Proofs
20.1.1 Proofs for insert

lemma inorder balL:
inorder (balL | a) = inorder | @Q a # inorder r
by (auto simp: node__def ball,__def split:tree.splits)

lemma inorder balR:
inorder (balR 1 a r) = inorder | Q a # inorder r
by (auto simp: node__def balR__def split:tree.splits)

theorem inorder insert:

sorted(inorder t) = inorder(insert x t) = ins_list x (inorder t)
by (induct t)

(auto simp: ins_list _simps inorder__balL inorder _balR)

20.1.2 Proofs for delete

lemma inorder_split_maxD:
[split_max t = (t',a); t # Leaf | =
inorder t' @ [a] = inorder t
by (induction t arbitrary: t' rule: split_maz.induct)
(auto simp: inorder__balL split: if splits prod.splits tree.split)

theorem inorder delete:

sorted(inorder t) = inorder (delete x t) = del_list = (inorder t)
by (induction t)

74

(auto simp: del_list__simps inorder__balL inorder _balR inorder _split_maxD
split: prod.splits)

20.2 Invariant preservation
20.2.1 Insertion maintains balance

declare Let_def [simp]

lemma ht_height[simpl|: hbt t = ht t = height ¢
by (cases t rule: tree2_cases) simp__all

First, a fast but relatively manual proof with many lemmas:

lemma height_balL:

[kbt l; hbt r; height | = height r + m + 1 | =

height (balL 1 a r) € {height r + m + 1, height r + m + 2}
by (auto simp:node__def balL__def split:tree.split)

lemma height balR:

[hbt I; hbt r; height r = height | + m + 1 | =

height (balR 1 a r) € {height | + m + 1, height | + m + 2}
by (auto simp add:node__def balR__def split:tree.split)

lemma height _node[simp|: height(node | a v) = max (height 1) (height r)
+ 1
by (simp add: node__def)

lemma height balL2:
[hbt I; hbt r; height | # height r + m + 1 | =
height (balL 1 a) = 1 + max (height 1) (height)
by (simp__all add: balL,__def)

lemma height balR2:
[hbt l; hbt r; height r # height | + m + 1 | =
height (balR | a r) = 1 4+ max (height) (height T)
by (simp__all add: balR__def)

lemma hbt_balL:

[hbdt I; hbt r; height r — m < height | A\ height | < height 1 + m + 1]
= hbt(balL l a 7)
by (auto simp: balL__def node__def max__def split!: if _splits tree.split)

lemma hbt balR:

[hbt I; hbt r; height | — m < height r A height v < height | + m + 1]
= hbt(balR | a 1)

75

by (auto simp: balR__def node__def max__def split!: if _splits tree.split)
Insertion maintains hbt. Requires simultaneous proof.

theorem hbt_insert:
hbt t = hbt(insert x t)
hbt t = height (insert x t) € {height t, height t + 1}
proof (induction t rule: tree2 induct)
case (Node la __ 1)
case |
show “case
proof(cases © = a)
case True with Node 1 show ?thesis by simp
next
case Fulse
show “thesis
proof(cases z<a)
case True with 1 Node(1,2) show ?thesis by (auto intro!: hbt ballL)
next
case Fulse with 1 Node(3,}) <x#a> show ?thesis by (auto intro!:
hbt_balR)
qed
qed
case 2
show ?case
proof(cases © = a)
case True with 2 show ?thesis by simp
next
case Fulse
show ?thesis
proof (cases z<a)
case True
show ?thesis
proof (cases height (insert x) = height r + m + 1)
case Fualse with 2 Node(1,2) <z < a> show ?thesis by (auto simp:
height _balL2)
next
case True
hence (height (balL (insert x 1) a r) = height + m + 1) V
(height (balL (insert x 1) a r) = height r + m + 2) (is YA V ¢B)
using 2 Node(1,2) height _balL[OF _ _ True] by simp
thus “thesis
proof
assume ?A with 2 Node(2) True <z < a> show ?thesis by (auto)
next

76

assume ?B with 2 Node(2) True <z < a> show ?thesis by (simp)
arith
qed
qed
next
case Fulse
show ?thesis
proof (cases height (insert x r) = height | + m + 1)
case Fulse with 2 Node(3,4) «—z < a» show ?thesis by (auto simp:
height__balR2)
next
case True
hence (height (balR 1 a (insert x r)) = height | + m + 1) V
(height (balR | a (insert z r)) = height | + m + 2) (is A V ?B)
using Node 2 height_balR[OF __ __ True| by simp
thus “thesis
proof
assume ?A with 2 Node(4) True <—z < a> show ?thesis by (auto)
next
assume ?B with 2 Node(4) True (—x < a» show ?thesis by (simp)
arith
qged
qed
qed
qed
qed simp__all

Now an automatic proof without lemmas:

theorem hbt insert auto: hbt t —>
hbt(insert x t) A height (insert x t) € {height t, height t + 1}
apply (induction t rule: tree2_induct)

apply (auto simp: balL__def balR__def node__def max__absorbl maz__absorb2
split!: if _split tree.split)
done

20.2.2 Deletion maintains balance

lemma hbt_split_maz:
[hbt t; t # Leaf | =
hbt (fst (split_max t)) A
height t € {height(fst (split_max t)), height(fst (split_maz t)) + 1}
by (induct t rule: split_maz__induct)
(auto simp: balL__def node__def max_absorb2 split!: prod.split if split

77

tree.split)
Deletion maintains hbt:

theorem hbt _delete:
hbt t = hbt(delete x t)
hbt t = height t € {height (delete = t), height (delete x t) + 1}
proof (induct t rule: tree2 induct)
case (Node l a nr)
case !
thus Zcase
using Node hbt__split_maz[of l] by (auto intro!: hbt_balL hbt_balR split:
prod.split)
case 2
show ?Zcase
proof(cases z = a)
case True then show ?thesis using 1 hbt_split_maz[of []
by (auto simp: balR__def max__absorb2 split!: if _splits prod.split tree.split)
next
case Fulse
show ?thesis
proof (cases z<a)
case True
show %thesis
proof(cases height r = height (delete 1) + m + 1)
case Fulse with Node 1 «x < a)> show ?thesis by(auto simp:
balR__def)
next
case True
hence (height (balR (delete x 1) a) = height (delete 1) + m + 1)
\Y
height (balR (delete x 1) a r) = height (delete x 1) + m + 2 (is 74
V ?B)
using Node 2height_balR[OF _ __ True| by simp
thus ?thesis
proof
assume ?A with <z < a> Node 2 show ?thesis by(auto simp:
balR__def split!: if _splits)
next
assume ?B with «z < a> Node 2 show ?thesis by(auto simp:
balR__def split!: if _splits)
qged
qed
next
case Fulse

78

show ?thesis
proof(cases height | = height (delete z r) + m + 1)
case Fulse with Node 1 -z < a» «x # a» show ?thesis by(auto
simp: balL__def)

next
case True
hence (height (balL | a (delete z r)) = height (delete x r) + m + 1)
V
height (balL 1 a (delete x r)) = height (delete x r) + m + 2 (is 7A
vV ?B)

using Node 2 height_balL[OF __ __ True] by simp
thus ?thesis
proof
assume ?A with -z < a» <z # @> Node 2 show ?thesis by (auto
simp: balL__def split: if _splits)
next
assume ?B with (—x < a» «x # a> Node 2 show ?thesis by(auto
stmp: balL__def split: if _splits)
qed
qged
qed
qed
qed simp_all

A more automatic proof. Complete automation as for insertion seems
hard due to resource requirements.

theorem hbt delete auto:
hbt t = hbt(delete x t)
hbt t = height t € {height (delete = t), height (delete xz t) + 1}
proof (induct t rule: tree2_induct)
case (Node l a nr)
case [
thus ?case
using Node hbt__split_max]of I] by (auto intro!: hbt_balL hbt_balR split:
prod.split)
case 2
show ?case
proof(cases © = a)
case True thus ?thesis
using 2 hbt_split_maz[of]
by (auto simp: balR__def max__absorb2 split!: if _splits prod.split tree.split)
next
case Fulse thus ?thesis
using height_balL]of | delete x r a] height_balR|of delete x | v a] 2

79

Node
by (auto simp: balL__def balR__def split!: if _split)
qed
qed simp__all

20.3 Overall correctness

interpretation S: Set by Ordered
where empty = empty and isin = isin and insert = insert and delete =
delete
and inorder = inorder and inv = hbt
proof (standard, goal cases)

case I show ?Zcase by (simp add: empty_ def)
next

case 2 thus ?case by(simp add: isin_set_inorder)
next

case 3 thus ?case by(simp add: inorder insert)
next

case 4 thus ?case by(simp add: inorder__delete)
next

case 5 thus ?case by (simp add: empty__def)
next

case 6 thus ?case by (simp add: hbt_insert(1))
next

case 7 thus ?case by (simp add: hbt_delete(1))
qed

end

end

21 Red-Black Trees

theory RBT

imports Tree2

begin

datatype color = Red | Black

type__synonym ‘a rbt = ('axcolor)tree

abbreviation R where R [a r = Node | (a, Red) r
abbreviation B where B [a r = Node [(a, Black) r

80

fun baliL :: 'a bt = 'a = 'a rbt = 'a rbt where
baliL, (R (Rt1 at2) bt3) cti =R (Btlat2)b(Bt3cts)]
baliL (R t1 a (Rt20t3)) ct4 =R (Btlat2)b(Bt3ct))]
baliL t1 a t2 = B tl a t2

fun baliR :: 'a 70t = 'a = 'a rbt = 'a rbt where

baliR t1 a (Rt2b (Rt3ct4)) =R (Btlat2)b(Bt3ctq)|
baliR t1 a (R (Rt2bt3) ct)) =R (Btl at2)b(Bt3cts})]
baliR t1 a t2 = B t1 a t2

fun paint :: color = 'a rbt = 'a rbt where
paint ¢ Leaf = Leaf |
paint ¢ (Node | (a,_) r) = Node | (a,c) r

fun baldL :: 'a rbt = 'a = 'a rbt = 'a rbt where

baldL (R t1 at2) bt3 =R (Btlat2)bt3|

baldL t1 a (B 12 b 13) = baliR t1 a (R 12 b 13) |

baldL t1 a (R (Bt2bt3) ct4y) =R (Btlat2)b (baliR t3 ¢ (paint Red

t4)) |
baldL t1 a t2 = R t1 a t2

fun baldR :: 'a rbt = 'a = 'a rbt = 'a rbt where

baldR t1 a (Rt2bt3) = Rtl a (Bt2b1t3) |

baldR (B t1 a 12) b t3 = bakil (R t1 a 12) b {3 |

baldR (R t1 a (B t2 b t3)) c t4 = R (baliL (paint Red t1) a t2) b (B t3 ¢

t4) |
baldR t1 a t2 = R t1 a t2

fun join :: 'a rbt = 'a rbt = 'a rbt where
join Leaf t = t |
join t Leaf =t |
join (Rtl at2) (Rt3ct)) =
(case join t2 t3 of
Ru2bu3 = (R (Rtlau2)b(Rulcts}))]|
129 = Rtla (Rt29 ¢ t])) |
join (Bt1at2) (Bt3ct))=
(case join t2 t3 of
Ru2bu3 = R (Btlau2)b(Bu3cty)]
128 = baldL t1 a (B t23 c t4)) |
join t1 (R t2 a t3) = R (join t1 t2) a t3 |
join (R t1 a t2) t8 = R t1 a (join t2 t3)

end

81

22 Red-Black Tree Implementation of Sets

theory RBT Set
imports
Complexr__Main
RBT
Cmp
Isin2
begin

definition empty :: ‘a rbt where
empty = Leaf

fun ins :: ‘a::linorder = 'a rbt = 'a rbt where
ins © Leaf = R Leaf x Leaf |
insx (Blar)=
(case cmp = a of
LT = baliL (ins z 1) ar |
GT = baliR l a (insz) |
EQ= Blar)|
insz (Rlar)=
(case cmp = a of
LT = R (inszl) ar |
GT = Rla (inszr)|
EQ= Rlar)

definition insert :: 'a::linorder = 'a rbt = 'a rbt where
insert x t = paint Black (ins x t)

fun color :: 'a rbt = color where
color Leaf = Black |
color (Node _ (_,¢c)_)=c

fun del :: 'a::linorder = 'a rbt = 'a rbt where
del z Leaf = Leaf |
del x (Node | (a, _) r) =
(case cmp = a of
LT = if | # Leaf N color | = Black
then baldL (del x 1) a relse R (del z1) a r |
GT = if r # Leaf A color r = Black
then baldR | a (del x r) else Rl a (del x 1) |
EQ = joinlr)

definition delete :: 'a::linorder = 'a rbt = 'a rbt where

82

delete © t = paint Black (del x t)

22.1 Functional Correctness Proofs

lemma inorder_paint: inorder(paint ¢ t) = inorder t
by(cases t) (auto)

lemma inorder baliL:
inorder(baliL | a 1) = inorder | Q a # inorder r
by (cases (l,a,r) rule: baliL.cases) (auto)

lemma inorder baliR:
inorder(baliR | a r) = inorder | Q@ a # inorder r
by (cases (l,a,r) rule: baliR.cases) (auto)

lemma inorder _ins:

sorted(inorder t) = inorder(ins = t) = ins_list x (inorder t)
by (induction x t rule: ins.induct)

(auto simp: ins_list_simps inorder_baliL inorder _baliR)

lemma inorder insert:
sorted(inorder t) = inorder(insert x t) = ins_list x (inorder t)
by (simp add: insert_def inorder_ins inorder__paint)

lemma inorder baldL:
inorder(baldL | a r) = inorder | Q a # inorder r
by (cases (1,a,r) rule: baldL.cases)
(auto simp: inorder__baliL inorder _baliR inorder _paint)

lemma inorder baldR:

inorder(baldR | a) = inorder | Q a # inorder r
by(cases (l,a,r) rule: baldR.cases)

(auto simp: inorder_baliL inorder _baliR inorder__paint)

lemma inorder_join:
inorder(join I r) = inorder | @ inorder r
by (induction | v rule: join.induct)
(auto simp: inorder_baldL inorder _baldR split: tree.split color.split)

lemma inorder del:
sorted(inorder t) = inorder(del x t) = del_list x (inorder t)
by (induction x t rule: del.induct)
(auto simp: del_list__simps inorder_join inorder _baldL inorder__baldR)

83

lemma inorder delete:
sorted(inorder t) = inorder(delete z t) = del_list x (inorder t)
by (auto simp: delete__def inorder__del inorder__paint)

22.2 Structural invariants

lemma neq_Black[simp]: (¢ # Black) = (¢ = Red)
by (cases c) auto

The proofs are due to Markus Reiter and Alexander Krauss.

fun bheight :: 'a rbt = nat where
bheight Leaf = 0 |
bheight (Node | (z, ¢) r) = (if ¢ = Black then bheight | + 1 else bheight)

fun inve :: 'a rbt = bool where
inve Leaf = True |
inve (Node | (a,c) r) =
((¢ = Red — color | = Black N color r = Black) A inve [A inve 1)

Weaker version:
abbreviation invc?2 :: 'a rbt = bool where

inve2 t = inve(paint Black t)

fun invh :: 'a rbt = bool where
invh Leaf = True |
invh (Node | (z, ¢)) = (bheight | = bheight A invh I A invh)

lemma invc2l: invc t = invc2 t
by (cases t rule: tree2 cases) simp+

definition rbt :: ‘a rbt = bool where
rbt t = (invc t A invh t A color t = Black)

lemma color_paint_Black: color (paint Black t) = Black
by (cases t) auto

lemma paint2: paint c2 (paint c1 t) = paint c2 t
by (cases t) auto

lemma invh_ paint: invh t = invh (paint c t)
by (cases t) auto

lemma invc_baliL:
linve2 I; inve] = inve (baliL | a r)

84

by (induct [a r rule: baliL.induct) auto

lemma inve baliR:
[inve 1; inve2 r] = inve (baliR 1 a r)
by (induct | a r rule: baliR.induct) auto

lemma bheight balil:
bheight | = bheight r = bheight (baliL | a v) = Suc (bheight 1)
by (induct I a r rule: baliL.induct) auto

lemma bheight baliR:
bheight | = bheight 1 = bheight (baliR | a r) = Suc (bheight 1)
by (induct a r rule: baliR.induct) auto

lemma invh_baliL:
[invh I; invh r; bheight | = bheight r | = invh (baliL l a 1)
by (induct I a r rule: baliL.induct) auto

lemma invh baliR:
[invh I; invh r; bheight | = bheight r | = invh (baliR | a 1)
by (induct [a r rule: baliR.induct) auto

All in one:

lemma inv_baliR: [invh l; invh r; inve l; invc2 r; bheight | = bheight 1 |
= dnvc (baliR 1 a) A invh (baliR | a r) A bheight (baliR | a r) = Suc
(bheight 1)

by (induct [a r rule: baliR.induct) auto

lemma inv_baliL: [invh I; invh r; invc2 I; inve r; bheight | = bheight 7 |
= dnvc (balil 1 a) A invh (balil 1 a) N bheight (baliL 1 a r) = Suc
(bheight 1)

by (induct I a r rule: baliL.induct) auto

22.2.1 Insertion

lemma invc_ins: inve t — inve2 (ins z t) A (color t = Black — invc
(ins z t))
by (induct z t rule: ins.induct) (auto simp: invc_baliL invc_baliR invc2l)

lemma invh_ins: invh t = invh (ins x t) A bheight (ins x t) = bheight t
by (induct x t rule: ins.induct)

(auto simp: invh__baliL invh__baliR bheight_baliL bheight_baliR)

theorem rbt_insert: bt t = rbt (insert x t)

85

by (simp add: invc_ins invh_ins color_paint_Black invh__paint rbt_def
insert__def)

All in one:

lemma inv_ins: [inve t; invh t | =
invc2 (ins x t) A (color t = Black — invc (ins x t)) A
invh(ins x t) A bheight (ins x t) = bheight t
by (induct z t rule: ins.induct) (auto simp: inv__baliL inv__baliR invc2l)

theorem rbt_insert2: rbt t = rbt (insert x t)
by (simp add: inv_ins color_paint_Black invh__paint rbt__def insert__def)

22.2.2 Deletion

lemma bheight paint Red:
color t = Black = bheight (paint Red t) = bheight t — 1
by (cases t) auto

lemma invh_baldL_invc:
[invh I; dinvh r; bheight | + 1 = bheight ; invc r |
= invh (baldL | a r) A bheight (baldL | a r) = bheight r
by (induct [a r rule: baldL.induct)
(auto simp: invh__baliR invh__paint bheight_baliR bheight__paint _Red)

lemma invh_baldL _Black:
[invh I; invh r; bheight | + 1 = bheight r; color r = Black |
= invh (baldL | a r) A bheight (baldL | a) = bheight r
by (induct l a r rule: baldL.induct) (auto simp add: invh_baliR bheight baliR)

lemma invc_baldL: [invc2 I; inve r; color r = Black] = inve (baldL [a

r)

by (induct | a r rule: baldL.induct) (simp__all add: invc__baliR)

lemma invc2_baldL: [invc2 l; inve r | = inve2 (baldL [a 1)
by (induct a r rule: baldL.induct) (auto simp: invc__baliR paint2 invc2l)

lemma invh_baldR__invc:
[invh I; invh r; bheight | = bheight r + 1; invcl]
= invh (baldR 1 a r) A bheight (baldR | a r) = bheight [
by (induct | a r rule: baldR.induct)
(auto simp: invh__baliL bheight baliL invh__paint bheight paint Red)

lemma invc_baldR: [inve l; invc2 r; color | = Black] = inve (baldR [a

86

r)
by (induct I a r rule: baldR.induct) (simp__all add: invc__baliL)

lemma invc2 baldR: [inve I; inve2 r | =invc2 (baldR 1 a 1)
by (induct | a r rule: baldR.induct) (auto simp: invc_baliL paint2 invc2l)

lemma invh_join:
[invh I; invh r; bheight | = bheight r |
= invh (join I) A bheight (join | r) = bheight |
by (induct [r rule: join.induct)
(auto simp: invh__baldL__Black split: tree.splits color.splits)

lemma invc_join:

[inve l; inve r | =

(color | = Black N color r = Black — inve (join L 1)) A inve2 (join I 1)
by (induct [r rule: join.induct)

(auto simp: invc__baldL invc2l split: tree.splits color.splits)

All in one:

lemma inv_baldL:

[invh I; invh r; bheight | + 1 = bheight r; invc2 l; inve 1 |

= invh (baldL | a) A bheight (baldL | a r) = bheight r

A inve2 (baldL I a r) A (color r = Black — inve (baldL 1 a r))
by (induct | a r rule: baldL.induct)

(auto simp: inv__baliR invh__paint bheight_baliR bheight paint Red paint2
invc2l)

lemma inv baldR:

[invh I; invh r; bheight | = bheight r + 1; invc I; inve2 1 |

= invh (baldR 1 a) A bheight (baldR | a r) = bheight

A inve2 (baldR 1 a r) A (color | = Black — invc (baldR 1 a)
by (induct I a r rule: baldR.induct)

(auto simp: inv__baliL invh__paint bheight _baliL bheight_paint_Red paint2
invc2l)

lemma inv_join:

[invh I; invh r; bheight | = bheight r; invc l; inve 1 |

= invh (join I r) N bheight (join | r) = bheight I

A invc2 (join I r) A (color | = Black N color r = Black — invc (join [
r))
by (induct [r rule: join.induct)

(auto simp: invh__baldL__Black inv__baldL invc?2l split: tree.splits color.splits)

lemma neq LeafD: t # Leaf = Il x cr.t = Node |l (z,c) r

87

by(cases t rule: tree?icases) auto

lemma inv_del: | invh t; inve t | =
invh (del x t) A
(color t = Red — bheight (del x t) = bheight t A invc (del z t)) A
(color t = Black — bheight (del x t) = bheight t — 1 A invc2 (del x t))
by (induct x t rule: del.induct)
(auto simp: inv_baldL inv_baldR inv_join dest!: neq LeafD)

theorem rbt_delete: rbt t = rbt (delete z t)
by (metis delete__def rbt__def color_paint__Black inv__del invh__paint)

Overall correctness:

interpretation S: Set by Ordered
where empty = empty and isin = isin and insert = insert and delete =
delete
and inorder = inorder and inv = rbt
proof (standard, goal_cases)
case I show ?Zcase by (simp add: empty__def)

next

case 2 thus ?case by(simp add: isin__set_inorder)
next

case 3 thus ?case by(simp add: inorder_insert)
next

case / thus ?case by(simp add: inorder_delete)
next

case 5 thus ?case by (simp add: rbt_def empty def)
next

case 6 thus ?case by (simp add: rbt_insert)
next

case 7 thus ?case by (simp add: rbt_delete)
qged

22.3 Height-Size Relation

lemma rbt_height bheight_if: invec t = invh t =
height t < 2 x bheight t + (if color t = Black then 0 else 1)
by (induction t) (auto split: if _split_asm)

lemma rbt_height bheight: rbt t = height t / 2 < bheight t
by (auto simp: rbt__def dest: rbt__height_bheight_if)

lemma bheight_size__bound: inve t = invh t = 2 ~ (bheight t) < sizel
t

88

by (induction t) auto

lemma bheight le _min__height: invh t = bheight t < min__height t
by (induction t) auto

lemma rbt_height le: assumes rbt t shows height t < 2 x log 2 (sizel t)
proof —
have 2 powr (height t / 2) < 2 powr bheight t
using rbt_height_bheight[OF assms] by simp
also have ... < sizel t using assms
by (simp add: powr_realpow bheight _size__bound rbt__def)
finally have 2 powr (height t /| 2) < sizel t .
hence height t /| 2 < log 2 (sizel t)
by (simp add: le_log_iff sizel _size del: divide_le_eq numerall(1))
thus “thesis by simp
qed

lemma rbt_height le2: assumes rbt t shows height t < 2 * log 2 (sizel
t)
proof —
have height t < 2 x bheight t
using rbt__height_bheight_if assms[simplified rbt__def] by fastforce
also have ... < 2 x min_ height t
using bheight_le__min__height assms[simplified rbt__def] by auto
also have ... < 2 x log 2 (sizel t)
using le_log2_of power min__height sizel by auto
finally show ?thesis by simp
qged

end

23 Alternative Deletion in Red-Black Trees

theory RBT Set?2
imports RBT Set
begin
This is a conceptually simpler version of deletion. Instead of the tricky

join function this version follows the standard approach of replacing the
deleted element (in function del) by the minimal element in its right subtree.

fun split_min :: 'a rbt = 'a x 'a rbt where
split_min (Node l (a, _) 1) =

(if | = Leaf then (a,r)

else let (z,l") = split_min |

89

in (x, if color | = Black then baldL l" a r else R 1" a 1))

fun del :: 'a::linorder = 'a rbt = 'a rbt where
del x Leaf = Leaf |
del z (Node l (a, _) 1) =
(case cmp = a of
LT = letl’ = del x | in if | # Leaf A color | = Black
then baldL 1" a r else R 1" a 1 |
GT = let v' = del x v in if r # Leaf N color r = Black
then baldR 1 a r' else R 1 a r'|
EQ = if r = Leaf then [else let (a’,r") = split_min r in
if color r = Black then baldR | o’ r' else R 1 a’ ')

The first two lets speed up the automatic proof of inv_del below.

definition delete :: 'a::linorder = 'a rbt = 'a rbt where
delete x t = paint Black (del x t)

23.1 Functional Correctness Proofs

declare Let_def[simp]

lemma split _minD:

split_min t = (z,t") = t # Leaf = x # inorder t' = inorder t
by (induction t arbitrary: t’ rule: split_min.induct)

(auto simp: inorder_baldL sorted_lems split: prod.splits if _splits)

lemma inorder del:

sorted(inorder t) = inorder(del z t) = del_list x (inorder t)
by (induction z t rule: del.induct)

(auto simp: del_list_simps inorder__baldL inorder_baldR split_minD split:
prod.splits)

lemma inorder delete:
sorted(inorder t) = inorder(delete x t) = del_list x (inorder t)
by (auto simp: delete__def inorder_del inorder__paint)
23.2 Structural invariants
lemma neq Red[simp]: (¢ # Red) = (¢ = Black)
by (cases c) auto
23.2.1 Deletion
lemma inv_split_min: | split_min t = (x,t’); t # Leaf; invh t; inve t |

—

90

invh t' N\
(color t = Red — bheight t' = bheight t N invc t') A
(color t = Black —» bheight t' = bheight t — 1 A invc2 t’)
apply (induction t arbitrary: x t' rule: split_min.induct)
apply(auto simp: inv_baldR inv_baldL invc2l dest!: neq LeafD
split: if _splits prod.splits)
done

An automatic proof. It is quite brittle, e.g. inlining the lets in RBT _Set2.del
breaks it.

lemma inv_del: | invh t; inve t | =

invh (del x t) A

(color t = Red — bheight (del x t) = bheight t A invc (del z t)) A

(color t = Black — bheight (del x t) = bheight t — 1 A invc2 (del x t))
apply (induction z t rule: del.induct)
apply(auto simp: inv_baldR inv_baldL invc2l dest!: inv_split_min dest:
neq_LeafD

split!: prod.splits if _splits)

done

A structured proof where one can see what is used in each case.

lemma inv_del2: [invh t; inve t | =
invh (del z t) A
(color t = Red — bheight (del x t) = bheight t A inve (del z t)) A
(color t = Black — bheight (del x t) = bheight t — 1 A invc2 (del x t))
proof (induction x t rule: del.induct)
case (1 z)
then show ?case by simp
next
case (2zlacr)
note if _split[split del]
show ?case
proof cases
assume z < a
show ?thesis
proof cases
assume [= Leaf thus ?thesis using <z < a» 2.prems by(auto)
next
assume [: | # Leaf
show “thesis
proof (cases color 1)
assume *: color | = Black
hence bheight | > 0 using [neq_LeafD|of I] by auto
thus ?thesis using «x < a» 2.1H(1) 2.prems inv_baldL[of del z 1] *

91

[by (auto)
next
assume color | = Red
thus ?thesis using «x < a» 2.prems 2.IH(1) by(auto)
qed
qged
next
assume - z < a
show ?thesis
proof cases
assume 1 > a
show ?thesis using <a < x) 2.1H(2) 2.prems neq_LeafD[of r] inv__baldR[of
__delz 7]
by (auto split: if _split)

next
assume — 1 > a
show %thesis using 2.prems <— z < ay <0 T > @
by (auto simp: inv_baldR invc2l dest!: inv__split_min dest: neq LeafD
split: prod.split if _split)
qed
qed
qed

theorem rbt_delete: vbt t = rbt (delete x t)
by (metis delete_def rbt_def color_paint_Black inv_del invh__paint)

Overall correctness:

interpretation S: Set by Ordered
where empty = empty and isin = isin and insert = insert and delete =
delete
and inorder = inorder and inv = rbt
proof (standard, goal_cases)

case ! show ?case by (simp add: empty_def)
next

case 2 thus ?case by(simp add: isin__set_inorder)
next

case 3 thus ?case by(simp add: inorder__insert)
next

case 4 thus ?case by(simp add: inorder__delete)
next

case 5 thus ?case by (simp add: rbt__def empty def)
next

case 6 thus ?case by (simp add: rbt_insert)

92

next
case 7 thus ?case by (simp add: rbt_delete)
qed

end

24 Red-Black Tree Implementation of Maps

theory RBT Map
imports
RBT Set
Lookup2
begin

fun upd :: ‘a::linorder = 'b = (‘ax’b) rbt = ('ax’d) rbt where
upd = y Leaf = R Leaf (z,y) Leaf |
upd x y (Bl (a,b) r) = (case cmp z a of
LT = baliL (upd z y 1) (a,b) r |
GT = baliR 1 (a,b) (upd x y) |
BQ = Bl (ny) 1) |
upd zy (R 1 (a,b) r) = (case cmp x a of
LT = R (upd z y 1) (a,b) 7 |
GT = Rl (a,b) (upd zy r) |
EQ= Rl (zy)r)

definition update :: 'a::linorder = 'b = ('ax’b) rbt = (‘ax’b) rbt where
update x y t = paint Black (upd x y t)

fun del :: ‘a::linorder = ('ax'b)rbt = ('ax'b)rbt where
del x Leaf = Leaf |
del z (Node | (ab, _) r) = (case cmp x (fst ab) of
LT = if | # Leaf N color | = Black
then baldL (del z 1) ab r else R (del x 1) ab r |
GT = if r # Leaf\ color r = Black
then baldR 1 ab (del x r) else R 1 ab (del z 1) |
EQ = joinlr)

definition delete :: ‘a::linorder = ('ax'b) rbt = ('ax’'b) rbt where
delete x t = paint Black (del x t)

24.1 Functional Correctness Proofs

lemma inorder_upd:

93

sorted1 (inorder t) = inorder(upd = y t) = upd_list y (inorder t)
by (induction x y t rule: upd.induct)
(auto simp: upd__list__simps inorder__baliL inorder _baliR)

lemma inorder_update:
sorted1 (inorder t) = inorder(update x y t) = upd_list x y (inorder t)
by (simp add: update__def inorder _upd inorder _paint)

lemma del list_id: ¥V ab€set ps. y < fst ab = ¢ < y = del_list x ps =

ps
by (rule del_list_idem) auto

lemma inorder del:
sorted1 (inorder t) = inorder(del x t) = del_list x (inorder t)
by (induction z t rule: del.induct)
(auto simp: del_list_simps del list_id inorder join inorder baldL in-
order _baldR)

lemma inorder delete:
sorted1 (inorder t) = inorder(delete x t) = del_list x (inorder t)
by (simp add: delete__def inorder_del inorder_paint)

24.2 Structural invariants
24.2.1 Update

lemma invc_upd: assumes invc t
shows color t = Black = invc (upd z y t) inve2 (upd x y t)
using assms
by (induct x y t rule: upd.induct) (auto simp: inve__baliL invc__baliR invc2I)

lemma invh_upd: assumes invh t
shows invh (upd x y t) bheight (upd x y t) = bheight t
using assms
by (induct x y t rule: upd.induct)
(auto simp: invh__baliL invh__baliR bheight baliL bheight_baliR)

theorem rbt_update: bt t = rbt (update z y t)
by (simp add: invc_upd(2) invh_upd(1) color_paint_Black invh__paint
rbt__def update__def)

24.2.2 Deletion

lemma del inve_invh: invh t = inve t = invh (del z t) N

94

(color t = Red A bheight (del x t) = bheight t N invc (del x t) V
color t = Black N bheight (del x t) = bheight t — 1 A invc2 (del z t))
proof (induct z t rule: del.induct)
case (2z__ abc)
have z = fst ab V © < fst ab V x > fst ab by auto
thus ?case proof (elim disjE)
assume = fst ab
with 2 show ?thesis
by (cases c) (simp__all add: invh__join invc__join)
next
assume z < fst ab
with 2 show ?thesis
by (cases ¢)
(auto simp: invh__baldL__invc invc__baldL invc2_baldL dest: neq LeafD)
next
assume fst ab < x
with 2 show ?thesis
by (cases ¢)
(auto simp: invh__baldR__invc inve__baldR invc2_baldR dest: neq LeafD)
qed
qed auto

theorem rbt_delete: rbt t = rbt (delete k t)
by (metis delete__def rbt__def color_paint_Black del _invc__invh invc2l invh__paint)

interpretation M: Map by Ordered
where empty = empty and lookup = lookup and update = update and
delete = delete
and inorder = inorder and inv = rbt
proof (standard, goal_cases)
case I show ?Zcase by (simp add: empty_ def)

next

case 2 thus ?case by(simp add: lookup_map__of)
next

case 3 thus ?case by(simp add: inorder _update)
next

case / thus ?case by(simp add: inorder_delete)
next

case 5 thus ?case by (simp add: rbt_def empty def)
next

case 6 thus ?case by (simp add: rbt_update)
next

case 7 thus ?case by (simp add: rbt_delete)
qged

95

end

25 2-3 Trees

theory Tree23
imports Main
begin

class height =
fixes height :: 'a = nat

datatype ‘a tree23 =
Leaf (<()) |
Node2 'a tree23 'a 'a tree23 (<(_, _, _)»)|
Node3 'a tree23 'a 'a tree23 'a 'a tree23 (<(_, _, _, _, _))

fun inorder :: 'a tree23 = 'a list where

inorder Leaf =[] |

inorder(Node2 1 a r) = inorder | Q a # inorder r |

inorder(Node3 1 a m b r) = inorder | Q@ a # inorder m @Q b # inorder r

instantiation tree23 :: (type)height
begin

fun height_tree23 :: 'a tree23 = nat where

height Leaf = 0 |

height (Node2 | _ r) = Suc(mazx (height 1) (height r)) |

height (Node3 1 _ m _ r) = Suc(max (height l) (max (height m) (height
r))

instance ..

end
Completeness:

fun complete :: 'a tree23 = bool where
complete Leaf = True |
complete (Node2 | 1) = (height | = height r A complete | & complete r) |
complete (Node3 1 _m _ r) =

(height | = height m & height m = height r & complete | & complete m
& complete r)

96

lemma ht sz if complete: complete t = 2 ~ height t < size t + 1
by (induction t) auto

end

26 2-3 Tree Implementation of Sets

theory Tree23 Set
imports

Tree28

Cmp

Set__Specs
begin

declare sorted _wrt.simps(2)[simp del]

definition empty :: ‘a tree23 where
empty = Leaf

fun isin :: 'a::linorder tree23 = 'a = bool where
isin Leaf r = False |
isin (Node2lar) xz =
(case cmp z a of
LT = isinl x|
EQ = True |
GT = isin rx) |
isin (Node3lambr)z =
(case cmp = a of
LT = isin l z |
EQ = True |
GT =
(case cmp x b of
LT = isin m x|
EQ = True |
GT = isin r x))

datatype ‘a up; = Fq; 'a tree23 | Of 'a tree23 'a 'a tree23
fun tree; :: 'a up; = 'a tree23 where

tree; (Eq; t) =t |

tree; (Of l a r) = Node2l ar

fun ins :: ‘a::linorder = 'a tree23 = 'a up; where

97

ins © Leaf = Of Leaf z Leaf |
ins x (Node2 l a r) =
(case cmp = a of
LT =
(case ins z 1 of
Eq; ' => Eq; (Node21' ar) |
Of 11 b 12 => Eq; (Node311b12ar)) |
EQ = Eq; (Node2lar) |
GT =
(case ins z r of
Eq; v’ => Eq; (Node2lar’) |
Of r1 b r2 => Eq; (Node3 larl br2))) |
ins © (Node3 la mbr)=
(case cmp = a of
LT =
(case ins z 1 of
Eq; I => Eq; (Node3 1" ambr) |
Of l1 ¢ 12 => Of (Node2 11 ¢ 12) a (Node2 m b r)) |
EQ = Eq; (Node31lambr) |
GT =
(case cmp x b of
GT =
(case ins z r of
Eq; r' => Eq; (Node3 la m br') |
Of r1 ¢ r2 => Of (Node2l a m) b (Node2 r1 ¢ r2)) |
EQ = Eq; (Node31lambr) |
LT =
(case ins © m of
Eq; m' => Eq; (Node3 1lam'br) |
Of m1 ¢ m2 => Of (Node2 1 a m1) ¢ (Node2 m2 b r))))

hide_const insert

definition insert :: ‘a::linorder = 'a tree23 = 'a tree23 where
insert x t = tree;(ins x t)

datatype ‘a upg = Eqq 'a tree23 | Uf 'a tree23
fun treey :: 'a upy = 'a tree23 where
t

treeq (Eqa t) =1 |
treeq (Uft) =t

98

fun node2l :: 'a upy = 'a = 'a tree23 = 'a upy; where

node21 (Eqq t1) a t2 = Eq4(Node2 t1 a t2) |

node21 (Uf t1) a (Node2 t2 b t3) = Uf(Node3 t1 a t2 b t3) |

node21 (Uf t1) a (Node3 t2 b t3 ¢ t4) = Eqq(Node2 (Node2 t1 a t2) b
(Node2 t3 c t4))

fun node22 :: 'a tree23 = 'a = 'a upg = 'a upy where

node22 t1 a (Eqq t2) = Eqq(Node2 t1 a t2) |

node22 (Node2 t1 b t2) a (Uf t3) = Uf(Node3 t1 b t2 a t3) |

node22 (Node3 t1 b t2 ¢ t3) a (Uf t4) = Eqq4(Node2 (Node2 t1 b t2) ¢
(Node2 t3 a t4))

fun node31 :: 'a upg = 'a = 'a tree23 = 'a = 'a tree23 = 'a upy where
node31 (Eqq t1) a t2 b t3 = Eqq(Node3 t1 a t2 b t3) |

node31 (Uf t1) a (Node2 t2 b t3) ¢ t4 = Eqq(Node2 (Node3 t1 a t2 b t3)
¢ t4) |

node31 (Uf t1) a (Node3 t2 b t3 c t4) d t5 = Eqq(Node3 (Node2 t1 a t2)
b (Node2 t3 c t}) d t5)

fun node32 :: 'a tree23 = 'a = 'a upgy = 'a = 'a tree23 = 'a upy where
node32 t1 a (Eqq t2) b t3 = Eqq(Node3 t1 a t2 b t3) |

node32 t1 a (Uf t2) b (Node2 t3 ¢ t4) = Eqq(Node2 t1 a (Node3 t2 b t3 ¢
t4)) |

node32 t1 a (Uf t2) b (Node3 t3 ¢ t4 d t5) = Eqq(Node3 t1 a (Node2 t2 b
t3) ¢ (Node2 t} d t5))

fun node33 :: 'a tree23 = 'a = 'a tree23 = 'a = 'a upy; = 'a upy where
node33 t1 a t2 b (Eqq t3) = Eqq4(Node3 t1 a t2 b t3) |

node33 t1 a (Node2 t2 b t3) ¢ (Uf t4) = Eqq(Node2 t1 a (Node3 t2 b t3 ¢
t4)) |

node33 t1 a (Node3 t2 b t3 ¢ t4) d (Uf t5) = FEqq(Node3 t1 a (Node2 t2 b
t3) ¢ (Node2 t4 d t5))

fun split_min :: 'a tree23 = 'a x 'a upy where

split_min (Node2 Leaf a Leaf) = (a, Uf Leaf) |

split_min (Node3 Leaf a Leaf b Leaf) = (a, Eqq(Node2 Leaf b Leaf)) |
split_min (Node2 l a r) = (let (z,l") = split_min lin (z, node21 l" a 1)) |
split_min (Node3 1 a m b r) = (let (z,l") = split_min lin (z, node31 1" a
m b r))

In the base cases of split_min and del it is enough to check if one subtree
is a Leaf, in which case completeness implies that so are the others. Exercise.

fun del :: 'a::linorder = 'a tree23 = 'a upy; where
del z Leaf = Eqq Leaf |

99

del z (Node2 Leaf a Leaf) =
(if x = a then Uf Leaf else Eqq(Node2 Leaf a Leaf)) |
del z (Node3 Leaf a Leaf b Leaf) =
Eqq(if * = a then Node2 Leaf b Leaf else
if = b then Node2 Leaf a Leaf
else Node3 Leaf a Leaf b Leaf) |
del x (Node2 l a r) =
(case cmp = a of
LT = node21 (delzl) ar |
GT = node22 1l a (del z) |
EQ = let (a',r') = split_min r in node22 1 a’ r') |
del z (Node3 lambr) =
(case cmp z a of
LT = node31 (del z 1) ambr |
EQ = let (a’,m’) = split_min m in node32 1 a’" m' b r |
GT =
(case cmp x b of
LT = node32 1 a (del x m) br |
EQ = let (b',r") = split_min r in node33 1 a m b’ r'|
GT = node33 1 a m b (del z 1)))

definition delete :: ‘a::linorder = 'a tree23 = 'a tree23 where

delete © t = treeq(del x t)

26.1 Functional Correctness

26.1.1 Proofs for isin

lemma isin_set: sorted(inorder t) = isin t x = (z € set (inorder t))
by (induction t) (auto simp: isin__simps)

26.1.2 Proofs for insert

lemma inorder ins:
sorted(inorder t) = inorder(tree;(ins x t)) = ins_list x (inorder t)
by (induction t) (auto simp: ins_list_simps split: up;.splits)

lemma inorder_insert:

sorted(inorder t) = inorder(insert a t) = ins_list a (inorder t)
by (simp add: insert_def inorder_ins)
26.1.3 Proofs for delete

lemma inorder_mnode21: height r > 0 —>
inorder (treeq (node21 1’ a 1)) = inorder (treeq ') Q a # inorder r

100

by (induct I a r rule: node21 .induct) auto

lemma inorder node22: height | > 0 —
inorder (treeq (node22 1 a r')) = inorder | Q a # inorder (treeq r’)
by (induct | a r' rule: node22.induct) auto

lemma inorder node31: height m > 0 —

inorder (treeq (node311" a m b r)) = inorder (treeq l') @ a # inorder m
Q b # inorder r
by (induct " a m b r rule: node31.induct) auto

lemma inorder_node32: height r > 0 =
inorder (treeq (node32 1 a m' b r)) = inorder | @ a # inorder (treeq m’)

@ b # inorder r
by (induct I a m’ b r rule: node32.induct) auto

lemma inorder_node33: height m > 0 —>

inorder (treeq (node33 1 a m b r')) = inorder | @ a # inorder m Q b #
inorder (treeq ')
by (induct I a m b r’ rule: node33.induct) auto

lemmas inorder nodes = inorder node21 inorder mnode22
inorder node31 inorder node32 inorder node33

lemma split_minD:
split_min t = (z,t") = complete t = height t > 0 =
z # inorder(treeq t') = inorder t

by (induction t arbitrary: t' rule: split_min.induct)
(auto simp: inorder_nodes split: prod.splits)

lemma inorder_del: [complete t ; sorted(inorder t) | =
inorder(treeq (del x t)) = del_list x (inorder t)
by (induction t rule: del.induct)
(auto simp: del_list__simps inorder_nodes split_minD split!: if _split prod.splits)

lemma inorder_delete: | complete t ; sorted(inorder t) | =
inorder(delete x t) = del_list x (inorder t)

by (simp add: delete__def inorder_del)

26.2 Completeness

26.2.1 Proofs for insert

First a standard proof that ins preserves complete.

101

fun h; :: 'a up; = nat where
hi (Eq; t) = height t |
hi (Of la r) = height

lemma complete ins: complete t = complete (tree;(ins a t)) N h;i(ins a
t) = height t
by (induct t) (auto split!: if _split up;.split)

Now an alternative proof (by Brian Huffman) that runs faster because
two properties (completeness and height) are combined in one predicate.

inductive full :: nat = 'a tree23 = bool where

full 0 Leaf |

[full n l; full n r] = full (Suc n) (Node2 lp r) |

[full n l; full n m; full n r] = full (Suc n) (Node3 lp m qr)

inductive__cases full_elims:
full n Leaf
full n (Node2 1 p r)
full n (Node3 lp m qr)

inductive__cases full 0 elim: full 0t
inductive__cases full Suc_elim: full (Suc n) t

lemma full 0 _iff [simp]: full 0 t «— t = Leaf
by (auto elim: full _0__elim intro: full.intros)

lemma full Leaf iff [simp]: full n Leaf <— n = 0
by (auto elim: full _elims intro: full.intros)

lemma full Suc_Node2 iff [simp]:
full (Suc n) (Node2lpr) <— fullnl A full nr
by (auto elim: full _elims intro: full.intros)

lemma full Suc_Node3 _iff [simp]:
full (Suc n) (Node3 lp m qr)<«— fullnl A fulln m A full nr

by (auto elim: full _elims intro: full.intros)

lemma full _imp_height: full n t = height t = n
by (induct set: full, simp__all)

lemma full _imp complete: full n t = complete t
by (induct set: full, auto dest: full _imp__height)

lemma complete_imp_ full: complete t = full (height t) t

102

by (induct t, simp__all)

lemma complete iff full: complete t <— (I n. full n t)
by (auto elim!: complete__imp__full full_imp_ complete)

The insert function either preserves the height of the tree, or increases it
by one. The constructor returned by the insert function determines which:
A return value of the form Eg; ¢ indicates that the height will be the same.
A value of the form Of [p r indicates an increase in height.

fun full; :: nat = 'a up; = bool where
full; n (Eq; t) «— fulln t |
fully n (Of Lpr) <— fulln I A fullnr

lemma full, _ins: full n t = full; n (ins a t)
by (induct rule: full.induct) (auto split: up;.split)

The insert operation preserves completeance.

lemma complete_insert: complete t = complete (insert a t)
unfolding complete_iff full insert_def

apply (erule ezE)

apply (drule full;__ins [of _ __ a])

apply (cases ins a t)

apply (auto intro: full.intros)

done

26.3 Proofs for delete

fun hy :: 'a upgy = nat where
hqg (Eqq t) = height t |
ha (Uf t) = height t + 1

lemma complete tree; node21:

[complete r; complete (treeq 1'); height r = hq l' | = complete (treeq
(node21 1" ar))
by (induct I a r rule: node21 .induct) auto

lemma complete_treeq mnode22:

[complete(treeq r'); complete l; hg v’ = height | | = complete (treeq
(node22 1 ar’))
by (induct | a r' rule: node22.induct) auto

lemma complete_tree; node31:

[complete (treeq 1'); complete m; complete r; hq I’ = height r; height m
= height r]

103

= complete (treeq (node31 1" a m b r))
by (induct " a m b r rule: node31.induct) auto

lemma complete tree; node32:

[complete l; complete (treeq m'); complete r; height | = height r; hg m'
= height r |

= complete (treeq (node32 1 a m'br))
by (induct | a m’ b r rule: node32.induct) auto

lemma complete_tree; mnode33:

[complete I; complete m; complete(treeq rv'); height | = hg r'; height m =
hg ']

= complete (treeq (node33 1 a m b r'))
by (induct I a m b r’ rule: node33.induct) auto

lemmas completes = complete_treey node2l complete_treeq mode22
complete__treeq__node31 complete_tree; node32 complete treeg node38

lemma height’ _node21:
height r > 0 = hq(node21 " a r) = maz (hq 1) (height) + 1
by (induct I" a r rule: node21 .induct)(simp__all)

lemma height’ node22:
height | > 0 = hg(node22 | a r’) = maz (height 1) (hqg v') + 1
by (induct | a r' rule: node22.induct)(simp__all)

lemma height’ _node31:
height m > 0 = hg(node31 lambr) =
mazx (hg 1) (max (height m) (height r)) + 1
by (induct | a m b r rule: node31.induct)(simp__all add: maz__def)

lemma height’ node32:
height v > 0 = hq(node32 la m b r) =
maz (height 1) (maz (hq m) (height r)) + 1
by (induct | a m b r rule: node32.induct)(simp__all add: maz__def)

lemma height’ node33:
height m > 0 = hg(node33 la mbr) =
mazx (height 1) (mazx (height m) (hg 7)) + 1
by (induct | a m b r rule: node33.induct)(simp__all add: max_def)

lemmas heights = height’ _node21 height’ node22
height’ _node31 height’ node32 height’ _node33

104

lemma height split_min:

split_min t = (z, t') = height t > 0 => complete t => hq t' = height t
by (induct t arbitrary: z t' rule: split_min.induct)

(auto simp: heights split: prod.splits)

lemma height del: complete t => hy(del x t) = height t
by (induction z t rule: del.induct)
(auto simp: heights maz__def height__split_min split: prod.splits)

lemma complete__split_min:

[split_min t = (z, t'); complete t; height t > 0 | = complete (treeq t')
by (induct t arbitrary: z t' rule: split_min.induct)

(auto simp: heights height__split_min completes split: prod.splits)

lemma complete_treeq__del: complete t = complete(treeq(del x t))
by (induction z t rule: del.induct)

(auto simp: completes complete_split_min height del height_split _min
split: prod.splits)

corollary complete__delete: complete t = complete(delete z t)
by (simp add: delete_def complete_treeq del)

26.4 Overall Correctness

interpretation S: Set_ by Ordered
where empty = empty and isin = isin and insert = insert and delete =
delete
and inorder = inorder and inv = complete
proof (standard, goal_cases)

case 2 thus ?case by(simp add: isin__set)
next

case 3 thus ?case by(simp add: inorder_insert)
next

case 4 thus ?case by(simp add: inorder__delete)
next

case 6 thus ?case by(simp add: complete_insert)
next

case 7 thus %case by(simp add: complete_delete)
qed (simp add: empty_def)+

end

105

27 2-3 Tree Implementation of Maps

theory Tree23 Map
imports

Tree23 Set

Map Specs
begin

fun lookup :: ('a::linorder x 'b) tree28 = 'a = 'b option where
lookup Leaf © = None |
lookup (Node2 1 (a,b) r) x = (case cmp z a of
LT = lookup [z |
GT = lookup r x |
EQ = Some b) |
lookup (Node3 1 (al,b1) m (a2,b2) r) x = (case cmp x al of
LT = lookup | z |
EQ = Some b1 |
GT = (case cmp z a2 of
LT = lookup m x |
EQ = Some b2 |
GT = lookup r x))

fun upd :: 'a:linorder = 'b = ('ax'b) tree23 = (‘ax’b) up; where
upd x y Leaf = Of Leaf (z,y) Leaf |
upd z y (Node2 | ab r) = (case cmp z (fst ab) of
LT = (case upd x y | of
FEq; ' => Eq; (Node2 1" ab r)
| Of 11 ab’ 12 => Eq; (Node3 11 ab’ 12 ab 1)) |
EQ = Eq; (Node2 1 (z,y) r) |
GT = (case upd x y r of
Eq; v’ => Eq; (Node2 1 ab 1)
| Of 1 ab’ 12 => Eq; (Node3 l ab r1 ab’ r2))) |
upd z y (Node3 1 abl m ab2 r) = (case cmp x (fst abl) of
LT = (case upd x y 1 of
Eq; I' => Eq; (Node3 1" abl m ab2 r)
| Of Il ab’ 12 => Of (Node2 11 ab’ 12) abl (Node2 m ab2 r)) |
EQ = Eq; (Node3 | (z,y) m ab2 1) |
GT = (case cmp x (fst ab2) of
LT = (case upd x y m of
Eq; m' => Eq; (Node3 | abl m’ ab2 r)
| Of m1 ab’ m2 => Of (Node2 1l abl m1) ab’ (Node2 m2 ab2
r) |
EQ = Eq; (Node3 1 abl m (z,y) r) |
GT = (case upd x y r of

106

Eq; v’ => Eq; (Node3 1 abl m ab2 ')
| Of r1 ab’ 2 => Of (Node2 | abl m) ab2 (Node2 r1 ab’

r2))))

definition update :: 'a::linorder = 'b = (‘ax'b) tree23 = ('ax'b) tree23
where
update a b t = tree;(upd a b t)

fun del :: ‘a::linorder = ('ax’d) tree23 = ('ax’b) up; where
del x Leaf = Eqq Leaf |
del x (Node2 Leaf abl Leaf) = (if x=fst abl then Uf Leaf else Eqi(Node2
Leaf abl Leaf)) |
del © (Node3 Leaf abl Leaf ab2 Leaf) = Eqq(if z=fst abl then Node2 Leaf
ab2 Leaf
else if x=fst ab2 then Node2 Leaf abl Leaf else Node3 Leaf abl Leaf ab2
Leaf) |
del x (Node2 1 abl r) = (case cmp z (fst abl) of
LT = node21 (del x 1) abl r |
GT = node22 1 abl (del z r) |
EQ = let (abl',t) = split_min 1 in node22 1 abl’t) |
del © (Node3 | abl m ab2 r) = (case cmp z (fst abl) of
LT = node31 (del 1) abl m ab2 r |
EQ = let (abl';m’) = split_min m in node32 1 abl’ m' ab2 r |
GT = (case cmp z (fst ab2) of
LT = node32 1 abl (del x m) ab2 r |
EQ = let (ab2',r") = split_min r in node33 1 abl m ab2’ r'|
GT = node33 [abl m ab2 (del x 1)))

definition delete :: 'a::linorder = ('ax’b) tree23 = ('ax'b) tree23 where
delete x t = treeq(del x t)

27.1 Functional Correctness

lemma lookup map_ of:
sorted1 (inorder t) = lookup t x = map_ of (inorder t) x
by (induction t) (auto simp: map__of _simps split: option.split)

lemma inorder__upd:
sorted1 (inorder t) = inorder(tree;(upd x y t)) = upd_list x y (inorder t)
by (induction t) (auto simp: upd_list_simps split: up;.splits)

corollary inorder_update:
sorted1 (inorder t) = inorder(update x y t) = upd_list x y (inorder t)

107

by (simp add: update__def inorder _upd)

lemma inorder__del: [complete t ; sorted! (inorder t) | =
inorder(treeq (del x t)) = del_list z (inorder t)
by (induction t rule: del.induct)
(auto simp: del_list__simps inorder_nodes split_minD split!: if _split prod.splits)

corollary inorder_delete: [complete t ; sortedl (inorder t) | =
inorder(delete x t) = del_list x (inorder t)
by (simp add: delete__def inorder_del)

27.2 Balancedness

lemma complete_upd: complete t => complete (tree;(upd z y t)) A hi(upd
x y t) = height t
by (induct t) (auto split!: if _split up;.split)

corollary complete__update: complete t = complete (update x y t)
by (simp add: update_def complete_upd)

lemma height_del: complete t = hy(del x t) = height t
by (induction x t rule: del.induct)
(auto simp add: heights maz__def height__split_min split: prod.split)

lemma complete treeq del: complete t = complete(treeq(del x t))
by (induction x t rule: del.induct)

(auto simp: completes complete__split_min height__del height__split_min
split: prod.split)

corollary complete_delete: complete t = complete(delete z t)
by (simp add: delete__def complete_treeq__del)

27.3 Overall Correctness

interpretation M: Map by Ordered
where empty = empty and lookup = lookup and update = update and
delete = delete
and inorder = inorder and inv = complete
proof (standard, goal_cases)
case 1 thus ?case by(simp add: empty_ def)
next
case 2 thus ?case by(simp add: lookup__map_ of)

108

next

case 3 thus ?case by(simp add: inorder_update)
next

case / thus ?case by(simp add: inorder_delete)
next

case 5 thus ?case by(simp add: empty__def)
next

case 6 thus ?case by(simp add: complete_update)
next

case 7 thus ?case by(simp add: complete_delete)
qged

end

28 2-3 Tree from List

theory Tree23 of List
imports

Tree23

HOL—Library. Time_ Commands
begin

Linear-time bottom up conversion of a list of items into a complete 2-3
tree whose inorder traversal yields the list of items.

28.1 Code

Nonempty lists of 2-3 trees alternating with items, starting and ending with
a 2-3 tree:

datatype ‘a tree23s = T 'a tree23 | TTs 'a tree23 'a 'a tree23s
abbreviation not_T ts == —(3t. ts = T t)

fun len :: 'a tree23s = nat where
len (T_)=1|
len (TTs _ __ ts) = lents + 1

fun trees :: 'a tree23s = 'a tree23 set where
trees (T t) = {t} |
trees (TTs t a ts) = {t} U trees ts

Join pairs of adjacent trees:

fun join_adj :: 'a tree23s = 'a tree23s where
join_adj (TTs t1 a (T t2)) = T(Node2 t1 a t2) |

109

join_adj (TTs t1 a (TTs t2b (T t3))) = T(Node3 t1 a t2 b t3) |
join_adj (TTs t1 a (TTs t2 b ts)) = TTs (Node2 t1 a t2) b (join__adj ts)

Towards termination of join__all:

lemma len_ge2:
not T ts = len ts > 2
by (cases ts rule: join__adj.cases) auto

lemma [measure_function]: is_measure len
by (rule is_measure__trivial)

lemma len_join_adj div2:
not_ T ts = len(join__adj ts) < len ts div 2
by (induction ts rule: join__adj.induct) auto

lemma len_join__adjl: not_T ts = len(join__adj ts) < len ts
using len_join__adj_div2[of ts] len__ge2[of ts| by simp

corollary len_join_adj2[termination_simp]: len(join_adj (TTs t a ts)) <
len ts
using len_join__adjl[of TTs t a ts] by simp

fun join_all :: 'a tree23s = 'a tree23 where
join_all (T't) =t |
join__all ts = join__all (join__adj ts)

fun leaves :: 'a list = 'a tree23s where
leaves [| = T Leaf |
leaves (a # as) = TTs Leaf a (leaves as)

definition tree23 of list :: 'a list = 'a tree23 where
tree23 _of list as = join__all(leaves as)

28.2 Functional correctness

28.2.1 inorder:

fun inorder2 :: 'a tree23s = 'a list where
inorder2 (T t) = inorder t |
inorder2 (TTs t a ts) = inorder t Q a # inorder2 ts

lemma inorder2_join__adj: not_ T ts = inorder2(join__adj ts) = inorder2

ts
by (induction ts rule: join__adj.induct) auto

110

lemma inorder_join__all: inorder (join__all ts) = inorder2 ts
proof (induction ts rule: join__all.induct)

case 1 thus ?case by simp
next

case (2t ats)

thus ?case using inorder2_join__adjlof TTs t a ts]

by (simp add: le_imp_less_Suc)

qed

lemma inorder2_leaves: inorder2(leaves as) = as
by (induction as) auto

lemma inorder: inorder(tree23 _of _list as) = as
by (simp add: tree23_of list_def inorder_join__all inorder2_leaves)

28.2.2 Completeness:

lemma complete_join__adj:
Vit € trees ts. complete t N\ height t = n = not_T ts —>
V't € trees (join__adj ts). complete t N\ height t = Suc n
by (induction ts rule: join__adj.induct) auto

lemma complete_join__all:

V't € trees ts. complete t N\ height t = n => complete (join__all ts)
proof (induction ts arbitrary: n rule: join__all.induct)

case 1 thus ?case by simp
next

case (2t ats)

thus Zcase

apply simp using complete_join__adjlof TTs t a ts n, simplified] by

blast
qged

lemma complete_leaves: t € trees (leaves as) => complete t N\ height t =
0

by (induction as) auto

corollary complete: complete(tree23 _of list as)
by (simp add: tree23_of list_def complete_leaves complete_join__all[of __

0])

28.3 Linear running time

time__fun join_adj

111

time__fun join_ all
time_ fun leaves
time_ fun tree23 of list

lemma T join_ adj: not T ts = T join_adj ts < len ts div 2
by (induction ts rule: T _join__adj.induct) auto

lemma len_ge 1:lents > 1
by (cases ts) auto

lemma T join_all: T join_all ts < 2 x len ts
proof (induction ts rule: join__all.induct)
case 1 thus ?case by simp
next
case (2t ats)
let ?ts = TTst ats
have T join_all ?ts = T join_adj ?ts + T join__all (join__adj ?ts) +
1
by simp
also have ... < len ?ts div 2 + T _join__all (join_adj ?ts) + 1
using T _join__adjlof ?ts| by simp
also have ... < len ?ts div 2 + 2 x len (join_adj ?ts) + 1
using 2.IH by simp
also have ... < len ?ts div 2 + 2 x (len ?ts div 2) + 1
using len_join__adj_div2|of ?ts| by simp

also have ... < 2 x len ?ts using len__ge_1[of ?ts] by linarith
finally show ?case .
qged

lemma T leaves: T leaves as = length as + 1
by (induction as) auto

lemma len_leaves: len(leaves as) = length as + 1
by (induction as) auto

lemma T tree23 of list: T tree23 of list as < 3x(length as) + 3
using T_join__all[of leaves as] by(simp add: T _leaves len__leaves)

end

29 2-3-4 Trees

theory Tree23

112

imports Main
begin

class height =
fixes height :: 'a = nat

datatype ‘a tree23) =
Leaf (<)) |
Node2 'a tree234 'a 'a tree234 (<(_, _, _»)|
Node3 'a tree234 'a 'a tree234 'a 'a tree234 («{_, _, ., .,)|

Nodej 'a tree234 'a 'a tree23 'a 'a tree23] 'a 'a tree23
(<<7, .y 1y 7>>)

fun inorder :: 'a tree23/ = 'a list where

inorder Leaf =[] |

inorder(Node2 | a r) = inorder | Q a # inorder r |

inorder(Node3 1 a m b r) = inorder | Q a # inorder m @ b # inorder r |
inorder(Node4 l a m b n ¢ r) = inorder | Q a # inorder m Q b # inorder
n Q ¢ # inorder r

instantiation tree23 :: (type)height
begin

fun height_tree23/ :: 'a tree23/ = nat where

height Leaf = 0 |

height (Node2 | _ r) = Suc(max (height 1) (height r)) |

height (Node3 1 _ m __ r) = Suc(max (height 1) (max (height m) (height
7)) |

height (Node4 1 _ m __ n__ r) = Suc(maz (height) (max (height m) (max
(height n) (height r))))

instance ..

end
Balanced:

fun bal :: 'a tree23} = bool where

bal Leaf = True |

bal (Node2l__ r) = (bal | & bal r & height | = height r) |
bal (Node3 1 _m 1) = (bal | & bal m & bal r & height | = height m &
height m = height r) |

bal (Node4 I _m _n__r)= (ball & bal m & bal n & bal r & height | =
height m & height m = height n & height n = height r)

113

end

30 2-3-4 Tree Implementation of Sets

theory Tree234 Set
imports

Tree234

Cmp

Set__Specs
begin

declare sorted_wrt.simps(2)[simp del]

30.1 Set operations on 2-3-4 trees

definition empty :: ‘a tree23/ where
empty = Leaf

fun isin :: 'a::linorder tree23/ = 'a = bool where
isin Leaf r = False |
isin (Node2lar) x =
(case emp z a of LT = isin lz | EQ = True | GT = isin r) |
isin (Node3 lambr)z =
(case cmp z a of LT = isinlz | EQ = True | GT = (case cmp z b of
LT = isinmz | EQ = True | GT = isin r x)) |
isin (Node4 t1 a t2bt3 ctf) xz =
(case cmp x b of
LT =
(case cmp = a of
LT = isin t1 x|
EQ = True |
GT = isin t2 x) |
EQ = True |
GT =
(case cmp x ¢ of
LT = isin t3 x|
EQ = True |
GT = isin t} x))

datatype ‘a up; = T; 'a tree23 | Up; 'a tree23] 'a 'a tree23

fun tree; :: 'a up; = 'a tree234 where
tree; (T t) =t |

114

tree; (Up; Lar) = Node2lar

fun ins :: ‘a::linorder = 'a tree234 = 'a up; where
ins x Leaf = Up; Leaf x Leaf |
ins x (Node2 l a r) =
(case cmp = a of
LT = (case ins x | of
T; l'!=> T; (Node2l ar)
| Up; 11 012 =>T; (Node3l1bl2ar))|
EQ = T; (Node2lxr) |
GT = (case ins z r of
T; r'=> T; (Node2 1 ar’)
| Upi 71 br2 => T; (Node3 larlbr2))) |
ins x (Node3 lambr)=
(case emp = a of
LT = (case ins z | of
T;!'=> T; (Node3 1" ambr)
| Up; U1 ¢ 12 => Up; (Node2 11 ¢ 12) a (Node2 m b)) |
EQ = T; (Node3lambr)|
GT = (case cmp x b of
GT = (case ins x r of
Tir'=> T; (Node3lambr
| Upi 71 ¢ v2 => Up; (Node2 1 a m) b (Node2 rl c 12)) |
EQ = T; (Node3lambr)]|
LT = (case ins x m of
T; m"=> T; (Node3 1l am'br)
| Upi m1 ¢ m2 => Up; (Node2 la ml1) ¢ (Node2 m2 b
7)) |
ins x (Node4 t1 a t2 b t3 ct4) =
(case cmp x b of
LT =
(case cmp = a of
LT =
(case ins z t1 of
T;t=> T; (Node4 tat2bt3ct})]
Upi Ly r=> Up; (Node2 1y r) a (Node3t2bt3ct})) |
EQ = T; (Nodej t1 a t2bt3ct]) |
GT =
(case ins z t2 of
T;t=>T; (Node4 t1 atbt3cty)]
Upi Ly r=> Up; (Node2 t1 al) y (Node3 rbt3ct}))) |
EQ = T; (Node t1 at2bt3ctq) |
GT =
(case cmp x ¢ of

115

LT =
(case ins z t3 of
T;t=>T; (Node4 t1 at2btcty)]
Upi Ly r => Up; (Node2 t1 a t2) b (Node3 lyrct4)) |
EQ = T; (Node4 t1 a t2bt3ct4)]|
GT =
(case ins x t4 of
T; t => T; (Nodej t1 a t2bt3ct) |
Upi Ly r => Up; (Node2 t1 a t2) b (Node3 t3 clyr))))

hide_const insert

definition insert :: ‘a::linorder = 'a tree23 = 'a tree23/ where
insert x t = tree;(ins x t)

datatype ‘a upg = Ty 'a tree23/ | Upg 'a tree23)

fun treeg :: 'a upg = 'a tree234 where
treeq (Tq t) =t |
treeq (Upg t) =t

fun node2l :: 'a upy = 'a = 'a tree23/ = 'a upy where
node21 (Tql) ar = Ty(Node2lar) |

node21 (Upq 1) a (Node2 lr b rr) = Upqg(Node3 L a lr b rr) |
node21 (Upq 1) a (Node3 Ir b mr ¢ rr) = T3(Node2 (Node2 1 a lr) b (Node2
mr ¢ rr)) |

node21 (Upg t1) a (Node4 t2 b t3 c t4 d t5) = Ty(Node2 (Node2 t1 a t2)
b (Node3 t3 ¢ t4 d t5))

fun node22 :: 'a tree23} = 'a = 'a upy = 'a up; where

node22la (Tq r) = Tq(Node2lar) |

node22 (Node2 1l b rl) a (Upg r) = Upg(Node3 1l bl ar) |

node22 (Node3 1l b ml crl) a (Upg r) = Tq(Node2 (Node2 1l b ml) ¢ (Node2
rlar)) |

node22 (Node4 t1 a t2 b t3 ctf) d (Upg t5) = T4(Node2 (Node2 t1 a t2)
b (Node3 t3 ¢ t4 d t5))

fun node31 :: 'a upg = 'a = 'a tree23} = 'a = 'a tree234 = 'a upy where
node31 (T4 t1) a t2 b t3 = Ty(Node3 t1 a t2 b t3) |

node31 (Upg t1) a (Node2 t2 b t3) c t4 = Tq(Node2 (Node3 t1 a t2 b t3)
ct4) |

node31 (Upg t1) a (Node3 t2 b t3 ¢ t4) d t5 = Tq(Node3 (Node2 t1 a t2)
b (Node2 t3 c t}) d t5) |

node31 (Upq t1) a (Node4 t2 b t3 c t4 dt5) e t6 = Ty(Node3 (Node2 t1 a

116

t2) b (Node3 t3 c t4 d t5) e t6)

fun node32 :: 'a tree234 = 'a = 'a upy = 'a = 'a tree234 = 'a upy where
node32 t1 a (Tq t2) b t3 = Ty(Node3 t1 a t2 b t3) |

node32 t1 a (Upq t2) b (Node2 t3 ¢ t4) = Tq4(Node2 t1 a (Node3 t2 b t3 ¢
) |

node32 t1 a (Upg t2) b (Node3 t3 ¢ t4 d t5) = Tq(Node3 t1 a (Node2 t2 b
t3) ¢ (Node2 t4 d t5)) |

node32 t1 a (Upg t2) b (Node4 t3 ¢ t4 d t5 e t6) = Tq(Node3 t1 a (Node2
t2 b t3) ¢ (Node3 t4 d t5 e t06))

fun node33 :: 'a tree234 = 'a = 'a tree234 = 'a = 'a upgy = 'a up, where
node331amb (Tqyr)= Tqy(Node3lambr)|

node33 t1 a (Node2 t2 b t3) ¢ (Upg t4) = Tq(Node2 t1 a (Node3 t2 b t3 ¢
t4)) |

node33 t1 a (Node3 t2 b t3 ¢ t4) d (Upg t5) = T4(Node3 t1 a (Node2 t2 b
t3) ¢ (Node2 t4 d t5)) |

node33 t1 a (Node4 t2 b t3 c t4 d t5) e (Upg t6) = Tq(Node3 t1 a (Node2
t2 b t3) ¢ (Node3 t4 d t5 e t06))

fun node41 :: 'a upg = 'a = 'a tree234 = 'a = 'a tree234 = 'a = a
tree23/ = 'a upy where

node41 (Ty t1) at2bt3 cti = Tq(Nodej t1 a t2bt3 cts) |

node41 (Upg t1) a (Node2 t2 b t3) ¢ t4 d t5 = Ty4(Node3 (Node3 t1 a t2'b
t3) ¢t} d td) |

node41 (Upg t1) a (Node3 t2 b t3 c t4) d t5 e t6 = Ty(Node4 (Node2 t1 a
t2) b (Node2 t3 c t4) d t5 e t6) |

node41 (Upg t1) a (Node t2 b t3 c t4 dt5) e t6 ft7 = Ty(Nodej (Node2
t1 a t2) b (Node3 t3 c t4 d t5) e t6 ft7)

fun node42 :: 'a tree23) = 'a = 'a upg = 'a = 'a tree234 = 'a = a
tree234 = 'a up; where

node42 tl1 a (Tq t2) bt3 ct) = Tq(Node4 t1 at2bt3 ct]) |

node42 (Node2 t1 a t2) b (Upg t3) ¢ t4 d t5 = Ty(Node3 (Node3 t1 a t2 b
t3) c t4 d t5) |

node42 (Node3 t1 a t2 b t3) ¢ (Upg t4) d t5 e t6 = Ty(Node4 (Node2 t1 a
t2) b (Node2 t3 c t4) d t5 e t6) |

node42 (Node4 t1 a t2bt3 c t4) d (Upg t5) e t6 ft7 = Tq(Node (Node2
t1 a t2) b (Node3 t3 c t4 d t5) e t6 ft7)

fun node43 :: 'a tree23) = 'a = 'a tree234 = 'a = 'a upg = 'a = a
tree234 = 'a upy where

node43 t1 a t2b (Tq t3) ¢ t4 = Tq(Node4 t1 a t2 b t3 c t4) |

node43 t1 a (Node2 t2 b t3) ¢ (Upg t4) d t5 = Tq(Node3 t1 a (Node3 t2 b

117

t3ct)) dt5) |

node43 t1 a (Node3 t2 b t3 c t4) d (Upg t5) e t6 = Ty(Node4 t1 a (Node2
t2 b t3) ¢ (Node2 t4 d t5) e t6) |

node43 t1 a (Node4 t2 b t3 ¢ t4 d t5) e (Upq t6) f t7 = Ty(Nodes t1 a
(Node2 t2 b t3) ¢ (Node3 t4 d t5 e t6) ft7)

fun node4/ :: 'a tree234 = 'a = 'a tree23) = 'a = 'a tree23} = 'a = a
upg = 'a upg where

node44 t1 a t2 b t3 ¢ (Tq t4) = Ta(Node4 t1 a t2 b t3 ct}) |

node44 t1 a t2 b (Node2 t3 ¢ t}) d (Upg t5) = T4q(Noded t1 a t2 b (Node3
t9 ¢ t4 d t5)) |

node44 t1 a t2 b (Node3 t3 ¢ t4 d t5) e (Upg t6) = Ty(Nodej t1 a t2 b
(Node2 t3 c t4) d (Node2 t5 e t6)) |

node44 t1 a t2 b (Node4 t3 c t} d t5 e t6) f (Upqg t7) = Tq(Nodej t1 a t2
b (Node2 t3 c t4) d (Node3 t5 e t6 f 7))

fun split_min :: 'a tree234 = 'a * 'a upy; where

split_min (Node2 Leaf a Leaf) = (a, Upg Leaf) |

split_min (Node3 Leaf a Leaf b Leaf) = (a, Ty(Node2 Leaf b Leaf)) |
split_min (Node4 Leaf a Leaf b Leaf ¢ Leaf) = (a, Ty(Node3 Leaf b Leaf c
Leaf)) |

split_min (Node2 1 a r) = (let (x,l") = split_min l in (z, node21 ' a r)) |
split_min (Node3 1l a m b r) = (let (x,l") = split_min 1 in (z, node31 ' a
mr) |

split_min (Nodej lambn cr)= (let (z,l") = split_min | in (z, node41 1’
ambncr))

fun del :: a::linorder = 'a tree234 = 'a up, where
del k Leaf = Ty Leaf |
del k (Node2 Leaf p Leaf) = (if k=p then Upy Leaf else Ty(Node2 Leaf p
Leaf)) |
del k (Node3 Leaf p Leaf q Leaf) = Tg4(if k=p then Node2 Leaf q Leaf
else if k=q then Node2 Leaf p Leaf else Node3 Leaf p Leaf q Leaf) |
del k (Node4 Leaf a Leaf b Leaf ¢ Leaf) =
Tq(if k=a then Node3 Leaf b Leaf c¢ Leaf else
if k=b then Node83 Leaf a Leaf ¢ Leaf else
if k=c then Node83 Leaf a Leaf b Leaf
else Node4 Leaf a Leaf b Leaf ¢ Leaf) |
del k (Node2 l a r) = (case cmp k a of
LT = node21 (del k1) ar |
GT = node22 1l a (del k) |
EQ = let (a';t) = split_min r in node22 1 a’ t) |
del k (Node3 1l a m b r) = (case cmp k a of
LT = node31 (del k1) ambr |

118

EQ = let (a’,m") = split_min m in node32 1 a’ m' b r |

GT = (case cmp k b of
LT = node32 1 a (del km) br |
EQ = let (b',r") = split_min r in node33 1 a m b’ r’|
GT = node331amb (del kr))) |

del k (Node4 la m bn cr)= (case cmp k b of

LT = (case cmp k a of
LT = nodef1 (delkl) ambncr]|
EQ = let (a’,m’) = split_min m in nodef2 1 a’ m' bncr
GT = node42la (delkm) bncr)|

EQ = let (b',n) = split_min n in nodef3 1l amb' n' cr |

GT = (case cmp k ¢ of
LT = node431lamb (delkn)cr|
EQ = let (¢',r') = split_min rin node44 la mbnc' r'|
GT = nodef4 lambnc (delkr)))

definition delete :: 'a::linorder = 'a tree23/ = 'a tree23/ where
delete © t = treeq(del x t)

30.2 Functional correctness

30.2.1 Functional correctness of isin:

lemma isin__set: sorted(inorder t) = isin t v = (z € set (inorder t))
by (induction t) (auto simp: isin__simps)

30.2.2 Functional correctness of insert:

lemma inorder _ins:
sorted(inorder t) = inorder(tree;(ins x t)) = ins_list x (inorder t)
by (induction t) (auto, auto simp: ins_list__simps split!: if _splits up;.splits)

lemma inorder insert:
sorted(inorder t) = inorder(insert a t) = ins_list a (inorder t)
by (simp add: insert_def inorder_ins)

30.2.3 Functional correctness of delete

lemma inorder_node21: height r > 0 =
inorder (treeq (node21 1’ a 1)) = inorder (treeq ') Q@ a # inorder r
by (induct I a r rule: node21 .induct) auto

lemma inorder node22: height | > 0 —

inorder (treeq (node22 1 a r')) = inorder | Q a # inorder (treeq r’)
by (induct | a r' rule: node22.induct) auto

119

lemma inorder_mnode31: height m > 0 —
inorder (treeq (node31 1" a m b r)) = inorder (treeq l') @ a # inorder m
@ b # inorder r

by (induct " a m b r rule: node31.induct) auto

lemma inorder node32: height r > 0 —
inorder (treeq (node32 1 a m' b r)) = inorder | Q a # inorder (treeq m’)

Q b # inorder r
by (induct I a m’ b r rule: node32.induct) auto

lemma inorder_node33: height m > 0 =

inorder (treeq (node33 1 a m b r')) = inorder | Q a # inorder m Q b #
inorder (treeq ')
by (induct | a m b r’ rule: node33.induct) auto

lemma inorder_mnode41: height m > 0 —>

inorder (treeq (node411" a mbn cr)) = inorder (treeq l") @Q a # inorder
m Q b # inorder n Q ¢ # inorder r
by (induct " a m b n ¢ r rule: node41.induct) auto

lemma inorder _node42: height | > 0 —
inorder (treeq (node42 1 a m bn cr)) = inorder | Q a # inorder (treey
m) Q b # inorder n Q ¢ # inorder r

by (induct l a m b n ¢ r rule: node42.induct) auto

lemma inorder node43: height m > 0 —

inorder (treeq (node43 1 a m bn cr)) = inorder | Q a # inorder m @ b
inorder(treeq n) Q ¢ # inorder r
by (induct I a m b n ¢ r rule: node43.induct) auto

lemma inorder_mnode4: height n > 0 =

inorder (treeq (node44 1l a m b n cr)) = inorder | Q a # inorder m Q b
inorder n @Q ¢ # inorder (treeq r)
by (induct I a m b n ¢ r rule: node4 .induct) auto

lemmas inorder _nodes = inorder _node21 inorder_ _node22
inorder node31 inorder mnode32 inorder node33
inorder_node4 1 inorder_node42 inorder_node4 3 inorder _nodej

lemma split_minD:
split_min t = (z,t') = bal t = height t > 0 =
x # inorder(treeq t') = inorder t

by (induction t arbitrary: t’ rule: split_min.induct)

120

(auto simp: inorder_nodes split: prod.splits)

lemma inorder _del: [bal t ; sorted(inorder t) | =
inorder(treeq (del z t)) = del _list x (inorder t)
by (induction t rule: del.induct)
(auto simp: inorder_nodes del_list_simps split_minD split!: if _split prod.splits)

lemma inorder_delete: [bal t ; sorted(inorder t) | =
inorder(delete x t) = del_list x (inorder t)
by (simp add: delete__def inorder_del)

30.3 Balancedness
30.3.1 Proofs for insert
First a standard proof that ins preserves bal.

instantiation up; :: (type)height
begin

fun height_up; :: 'a up; = nat where
height (T; t) = height t |
height (Up; 1 a r) = height [

instance ..
end

lemma bal_ins: bal t = bal (tree;(ins a t)) A height(ins a t) = height t
by (induct t) (auto split!: if _split up;.split)

Now an alternative proof (by Brian Huffman) that runs faster because
two properties (balance and height) are combined in one predicate.

inductive full :: nat = 'a tree234 = bool where
full 0 Leaf |
[full n l; full n] = full (Suc n) (Node2lp r) |
[full n l; full n m; full n r] = full (Suc n) (Node3 lp m qr) |
[full n l; full n m; full n m’; full n r] = full (Suc n) (Node4 Ilp m gm’q’
-
)

inductive__cases full_elims:
full n Leaf
full n (Node2 I p r)
full n (Node3 lp m qr)

121

full n (Node4 Lp m qm' q'r)

inductive__cases full 0 elim: full 0t
inductive__cases full _Suc__elim: full (Suc n) t

lemma full _0_iff [simp]: full 0t «— t = Leaf
by (auto elim: full_0_elim intro: full.intros)

lemma full Leaf iff [simp]: full n Leaf «+— n = 0
by (auto elim: full _elims intro: full.intros)

lemma full Suc_Node2 iff [simp]:
full (Suc n) (Node2lp) «— fullnl A full nr

by (auto elim: full _elims intro: full.intros)

lemma full Suc_Node3 iff [simp]:
full (Suc n) (Node3 lp m qr)<«— fullnl A fulln m A full nr
by (auto elim: full _elims intro: full.intros)

lemma full Suc_ Nodej__iff [simp]:

full (Suc n) (Node4 lpmqm' q'r)+— fullnl A fulln m A full nm’
A full nr

by (auto elim: full _elims intro: full.intros)

lemma full imp height: full n t = height t = n
by (induct set: full, simp__all)

lemma full _imp_bal: full n t = bal t
by (induct set: full, auto dest: full _imp__height)

lemma bal_imp_full: bal t = full (height t) t
by (induct t, simp__all)

lemma bal_iff full: bal t <— (I n. full n t)
by (auto elim!: bal_imp_ full full _imp__bal)

The insert function either preserves the height of the tree, or increases it
by one. The constructor returned by the insert function determines which:
A return value of the form T'; t indicates that the height will be the same.
A value of the form Up; [p r indicates an increase in height.

primrec full; :: nat = 'a up; = bool where
fully n (T; t) «— fulln t |
fully n (Up; Lpr) «— fulln I A full nr

122

lemma full; ins: full n t = full; n (ins a t)
by (induct rule: full.induct) (auto, auto split: up;.split)

The insert operation preserves balance.

lemma bal_insert: bal t => bal (insert a t)
unfolding bal iff full insert def

apply (erule exFE)

apply (drule full;_ins [of _ __ a])

apply (cases ins a t)

apply (auto intro: full.intros)

done

30.3.2 Proofs for delete

instantiation up, :: (type)height
begin

fun height_upg :: 'a upy = nat where
height (Ty4 t) = height t |
height (Upq t) = height t + 1

instance ..
end

lemma bal tree; mnode2l:
[bal r; bal (treeq 1); height r = height | | = bal (treeq (node21 1 a 1))
by (induct | a r rule: node21.induct) auto

lemma bal tree; node22:
[bal(treeq r); bal l; height v = height | | = bal (tree; (node22 1 a 1))
by (induct | a r rule: node22.induct) auto

lemma bal treeg; node31:
[bal (treeq l); bal m; bal r; height | = height r; height m = height r |
= bal (treeq (node31 la mbr))

by (induct | a m b r rule: node31.induct) auto

lemma bal tree; node32:
[bal l; bal (treeq m); bal r; height | = height r; height m = height r]
= bal (treeq (node321a m br))

by (induct | a m b r rule: node32.induct) auto

lemma bal tree; mnode33:

123

[bal l; bal m; bal(treeq 7); height | = height r; height m = height r |
= bal (treeq (node33 1 a m b r))
by (induct | a m b r rule: node33.induct) auto

lemma bal_tree; node41:

[bal (treeq 1); bal m; bal n; bal r; height | = height r; height m = height
r; height n = height r |

= bal (treeq (nodef1lambn cr))
by (induct I a m b n c r rule: node41.induct) auto

lemma bal_tree; nodel2:

[bal l; bal (treeq m); bal n; bal r; height | = height r; height m = height
r; height n = height r]

= bal (treeq (node421lambmncr))
by (induct I a m b n ¢ r rule: node42.induct) auto

lemma bal_tree; nodes3:

[bal I; bal m; bal (treeq m); bal r; height | = height r; height m = height
r; height n = height r]

= bal (treeq (node431lambncr))
by (induct I a m b n ¢ r rule: node43.induct) auto

lemma bal_treeg nodej4:

[bal l; bal m; bal n; bal (treeq r); height | = height r; height m = height
r; height n = height 7 |

= bal (treeq (node44 la mbn cr))
by (induct I a m b n c r rule: nodef4.induct) auto

lemmas bals = bal tree; mnode21 bal tree; mnode22
bal tree; mnode31 bal treey mnode32 bal treeg node33
bal_treey node41 bal treey node42 bal treey node8 bal tree; nodel/

lemma height node21:
height r > 0 = height(node21 | a) = max (height 1) (height r) + 1
by (induct | a r rule: node21.induct)(simp__all add: maz.assoc)

lemma height_node22:
height | > 0 = height(node22 | a r) = maxz (height l) (height r) + 1
by (induct | a r rule: node22.induct)(simp__all add: maz.assoc)

lemma height node31:
height m > 0 = height(node31 la m b r) =
mazx (height 1) (max (height m) (height r)) + 1
by (induct | a m b r rule: node31.induct)(simp__all add: max_def)

124

lemma height__node32:
height v > 0 = height(node32 1 a m b r) =
maz (height 1) (maz (height m) (height r)) + 1
by (induct | a m b r rule: node32.induct)(simp__all add: max_def)

lemma height node33:
height m > 0 = height(node33 1l a m b r) =
mazx (height 1) (mazx (height m) (height r)) + 1
by (induct Il a m b r rule: node33.induct)(simp__all add: maz_ def)

lemma height nodej1:

height m > 0 = height(node41 la mbn cr) =

max (height 1) (maz (height m) (maz (height n) (height r))) + 1
by (induct I a m b n ¢ r rule: node1.induct)(simp__all add: maz__def)

lemma height_node42:

height | > 0 = height(node42lambn cr) =

mazx (height 1) (mazx (height m) (maz (height n) (height r))) + 1
by (induct | a m b n ¢ r rule: node42.induct)(simp_all add: maz_def)

lemma height node43:

height m > 0 = height(node43 la mbmncr) =

mazx (height 1) (mazx (height m) (max (height n) (height r))) + 1
by (induct I a m b n ¢ r rule: node43.induct)(simp__all add: maz_def)

lemma height _nodej4:

height n > 0 = height(nodef4 lambn cr) =

mazx (height 1) (mazx (height m) (max (height n) (height r))) + 1
by (induct L a m b n ¢ r rule: nodef4 .induct)(simp__all add: maz__def)

lemmas heights = height_node21 height _node22
height_node31 height _node32 height node33
height_node41 height_node42 height node48 height _node44

lemma height _split_min:

split_min t = (z, t') = height t > 0 = bal t = height t' = height t
by (induct t arbitrary: = t' rule: split_min.induct)

(auto simp: heights split: prod.splits)

lemma height del: bal t = height(del z t) = height t

by (induction x t rule: del.induct)
(auto simp add: heights height__split_min split!: if _split prod.split)

125

lemma bal_split__min:

[split_min t = (z, t'); bal t; height t > 0 | = bal (treeq t')
by (induct t arbitrary: z t' rule: split_min.induct)

(auto simp: heights height split _min bals split: prod.splits)

lemma bal_treeq del: bal t = bal(treey(del z t))
by (induction z t rule: del.induct)

(auto simp: bals bal__split_min height__del height__split _min split!: if _split
prod.split)

corollary bal delete: bal t = bal(delete z t)
by (simp add: delete__def bal_treey del)

30.4 Overall Correctness

interpretation S: Set by Ordered
where empty = empty and isin = isin and insert = insert and delete =
delete
and inorder = inorder and inv = bal
proof (standard, goal cases)

case 2 thus ?case by(simp add: isin__set)
next

case 3 thus ?case by(simp add: inorder insert)
next

case 4 thus ?case by(simp add: inorder__delete)
next

case 0 thus Zcase by(simp add: bal_insert)
next

case 7 thus ?case by(simp add: bal__delete)
qed (simp add: empty_def)+

end

31 2-3-4 Tree Implementation of Maps

theory Tree23/_Map
imports

Tree234__Set

Map Specs
begin

31.1 Map operations on 2-3-4 trees

fun lookup :: ('a::linorder x 'b) tree23/ = 'a = 'b option where

126

lookup Leaf © = None |
lookup (Node2 1 (a,b) r) x = (case cmp x a of
LT = lookup | z |
GT = lookup r z |
EQ = Some b) |
lookup (Node3 1 (a1,b1) m (a2,b2) r) x = (case cmp x al of
LT = lookup | z |
EQ = Some b1 |
GT = (case cmp = a2 of
LT = lookup m z |
EQ = Some b2 |
GT = lookup r x)) |
lookup (Node4 t1 (a1,b1) t2 (a2,b2) t3 (a3,b3) t4) x = (case cmp x a2 of
LT = (case cmp x al of
LT = lookup t1 z | EQ = Some b1 | GT = lookup t2 z) |
EQ = Some b2 |
GT = (case cmp z a8 of
LT = lookup t3 x | EQ = Some b3 | GT = lookup t4 x))

fun upd :: ‘a::linorder = 'b = (‘ax’b) tree234 = ('ax’b) up; where
upd x y Leaf = Up; Leaf (z,y) Leaf |
upd z y (Node2 1 ab 1) = (case cmp z (fst ab) of
LT = (case upd x y | of
T; U'!=> T; (Node2 1" ab)
| Up; 11 ab’ 12 => T; (Node3 11 ab" 12 ab 1)) |
EQ = T; (Node2l (z,y) r) |
GT = (case upd x y r of
T; r'=> T; (Node2 1l ab r’)
| Up; 1 ab’ r2 => T; (Node3 1 ab r1 ab’ r2))) |
upd z y (Node3 1 abl m ab2 r) = (case cmp x (fst abl) of
LT = (case upd x y 1 of
T; l'!=> T; (Node3 l' abl m ab2 r)
| Up; U1 ab’ 12 => Up; (Node2 11 ab’ 12) abl (Node2 m ab2 r)) |
EQ = T; (Node3 I (z,y) m ab2r) |
GT = (case cmp x (fst ab2) of
LT = (case upd x y m of
T; m'"=> T; (Node3 l abl m' ab2 r)
| Upi m1 ab’ m2 => Up; (Node2 1l abl m1) ab’ (Node2 m2
ab2 r)) |
EQ = T; (Node3 l abl m (z,y) r) |
GT = (case upd z y r of
T; r'=> T; (Node3 1 abl m ab2 r’')
| Up; r1 ab’ 12 => Up; (Node2 | abl m) ab2 (Node2 r1 ab’

r2)))) |

127

upd x y (Node4 t1 abl t2 ab2 t3 ab3 t4) = (case cmp z (fst ab2) of
LT = (case cmp x (fst abl) of
LT = (case upd x y t1 of
T; t1'=> T; (Nodej t1' abl t2 ab2 t3 ab3 t4)
| Up; t11 q t12 => Up; (Node2 t11 q t12) abl (Node3 t2 ab2
t3 ab3 t})) |
EQ = T; (Node4 t1 (z,y) t2 ab2 t3 ab3 t}) |
GT = (case upd z y t2 of
T; t2' => T; (Node/ t1 abl t2' ab2 t3 ab3 t})
| Up; t21 q t22 => Up; (Node2 t1 abl t21) q (Node3 t22 ab2
t3 ab3 t4))) |
EQ = T; (Node4 t1 abl t2 (z,y) t3 ab3 t}) |
GT = (case cmp x (fst ab3) of
LT = (case upd x y t3 of
T; t3" = T; (Node t1 abl t2 ab2 t3' ab3 t])
| Upi t31 q t32 => Up; (Node2 t1 abl t2) ab24 (Node3 t31
q t32 ab3 t})) |
EQ = T; (Node4 t1 abl t2 ab2 t3 (z,y) t4) |
GT = (case upd z y t4 of
T; t}' => T; (Nodej t1 abl t2 ab2 t3 ab3 t}’)
| Up; t41 q t42 => Up; (Node2 t1 abl t2) ab2 (Node3 t3 ab3

t41 q t42))))

definition update :: ‘a::linorder = 'b = ('ax'b) tree23/ = ('ax'b) tree23/
where
update x y t = tree;(upd z y t)

fun del :: ‘a::linorder = ('ax'b) tree234 = (‘ax’b) upy where
del © Leaf = Ty Leaf |
del x (Node2 Leaf abl Leaf) = (if z=fst abl then Upy Leaf else T y(Node2
Leaf abl Leaf)) |
del x (Node3 Leaf abl Leaf ab2 Leaf) = Ty(if z=fst abl then Node2 Leaf
ab?2 Leaf
else if x=fst ab2 then Node2 Leaf abl Leaf else Node3 Leaf abl Leaf ab2
Leaf) |
del © (Nodej Leaf abl Leaf ab2 Leaf ab3 Leaf) =
T4(if x = fst abl then Node3 Leaf ab2 Leaf ab3 Leaf else
if © = fst ab2 then Node3 Leaf abl Leaf ab3 Leaf else
if ¢ = fst ab3 then Node3 Leaf abl Leaf ab2 Leaf
else Nodej Leaf abl Leaf ab2 Leaf ab3 Leaf) |
del © (Node2 | abl r) = (case cmp z (fst abl) of
LT = node21 (del x 1) abl r |
GT = node22 1 abl (del z) |
EQ = let (abl’,t) = split_min r in node22 | abl’t) |

128

del z (Node3 1 abl m ab2 r) = (case cmp x (fst abl) of
LT = node31 (del z 1) abl m ab2 r |
EQ = let (abl';m’) = split_min m in node32 1 abl’ m' ab2 r |
GT = (case cmp x (fst ab2) of
LT = node32 1 abl (del x m) ab2 r |
EQ = let (ab2',r") = split_min r in node33 1 abl m ab2’ r'|
GT = node33 1 abl m ab2 (del z 1))) |
del © (Nodej t1 abl t2 ab2 t3 ab3 t}) = (case cmp x (fst ab2) of
LT = (case cmp x (fst abl) of
LT = node41 (del x t1) abl t2 ab2 t3 ab3 tj |
EQ = let (ab’t2") = split_min t2 in node42 t1 ab’ t2' ab2 t3 abs
|
GT = nodef2 t1 abl (del z t2) ab2 t3 ab3 t4) |
EQ = let (ab',t3") = split_min t3 in node3 t1 abl t2 ab’ t3' ab3 t] |
GT = (case ecmp x (fst ab3) of
LT = node43 t1 abl t2 ab2 (del z t3) ab3 t4 |
EQ = let (ab’;t}") = split_min t4 in node44 t1 abl t2 ab2 t3 ab’
t4" |
GT = nodej4 t1 abl t2 ab2 t3 ab3 (del z t})))

definition delete :: 'a::linorder = ('ax'b) tree234 = (‘ax’'b) tree234 where
delete © t = treeq(del x t)

31.2 Functional correctness

lemma lookup map_ of:
sortedl (inorder t) = lookup t x = map_of (inorder t) x
by (induction t) (auto simp: map__of _simps split: option.split)

lemma inorder__upd:

sortedl (inorder t) = inorder(tree;(upd a b t)) = upd_list a b (inorder t)
by (induction t)

(auto simp: upd__list__simps, auto simp: upd_list_simps split: up;.splits)

lemma inorder update:
sorted1 (inorder t) = inorder(update a b t) = upd_list a b (inorder t)
by (simp add: update__def inorder _upd)

lemma inorder__del: [bal t ; sorted! (inorder t) | =
inorder(treeq (del x t)) = del_list z (inorder t)
by (induction t rule: del.induct)
(auto simp: del_list__simps inorder_nodes split_minD split!: if _splits prod.splits)

129

lemma inorder__delete: | bal t ; sorted1(inorder t) | =
inorder(delete x t) = del_list x (inorder t)
by (simp add: delete__def inorder__del)

31.3 Balancedness

lemma bal_upd: bal t = bal (tree;(upd x y t)) A height(upd x y t) = height
t
by (induct t) (auto, auto split!: if _split up;.split)

lemma bal_update: bal t = bal (update = y t)
by (simp add: update__def bal _upd)

lemma height _del: bal t = height(del z t) = height t
by (induction x t rule: del.induct)
(auto simp add: heights height__split_min split!: if _split prod.split)

lemma bal_tree; del: bal t = bal(treeq(del z t))
by (induction x t rule: del.induct)

(auto simp: bals bal__split_min height__del height__split _min split!: if _split
prod.split)

corollary bal_delete: bal t = bal(delete x t)
by (simp add: delete__def bal_treey del)

31.4 Overall Correctness

interpretation M: Map by Ordered
where empty = empty and lookup = lookup and update = update and
delete = delete
and inorder = inorder and inv = bal
proof (standard, goal_cases)

case 2 thus ?case by(simp add: lookup__map__of)
next

case 3 thus ?case by(simp add: inorder__update)
next

case / thus ?case by(simp add: inorder_delete)
next

case 0 thus ?case by(simp add: bal_update)
next

case 7 thus ?case by(simp add: bal__delete)
qed (simp add: empty_def)+

130

end

32 1-2 Brother Tree Implementation of Sets

theory Brother12_Set
imports
Cmp
Set__Specs
HOL— Number__Theory.Fib
begin

32.1 Data Type and Operations

datatype 'a bro =
NO |
N1 'a bro |
N2 'a bro 'a 'a bro |

L2 'a |
N3 'a bro 'a 'a bro 'a 'a bro

definition empty :: ‘a bro where
empty = NO

fun inorder :: 'a bro = 'a list where

inorder NO =[] |

inorder (N1 t) = inorder t |

inorder (N2 1 a r) = inorder | Q a # inorder r |

inorder (L2 a) = [a] |

inorder (N8 t1 al t2 a2 t3) = inorder t1 Q al # inorder t2 Q a2 #
inorder t3

fun isin :: 'a bro = 'a::linorder = bool where
isin NO © = False |
isin (N1t) z = isint x|
isin (N2lar)z=
(case cmp z a of
LT = isin l z |
EQ = True |
GT = isin r)

fun n! :: 'a bro = 'a bro where

nl (L2 a) = N2 NO a NO |
nl (N3 t1 al t2 a2 t3) = N2 (N2 t1 al t2) a2 (N1 t3) |

131

nlt= NIt
hide__const (open) insert

locale insert
begin

fun n2 :: 'a bro = 'a = 'a bro = 'a bro where
n2 (L2 al) a2t = N3 NO al NO a2 t |
n2 (N3 t1 al t2 a2 13) a3 (N1 t4) = N2 (N2 t1 al 12) a2 (N2 t3 a3 t}) |
n2 (N3 t1 al t2 a2 t3) a3t} = N3 (N2 t1 al t2) a2 (N1 t3) a3 t/ |
n2tl al (L2 a2) = N3 t1 al NO a2 NO |
n2 (N1t1) al (N3 12 a2 3 a3 1)) = N2 (N2 t1 al 12) a2 (N2 13 a3 1) |
n2 t1 al (N3 t2 a2 t3 a3 tf) = N3 t1 al (N1 t2) a2 (N2 t3 a3 t}) |
n2tl at?2 = N2tl at2

fun ins :: ‘a::linorder = 'a bro = 'a bro where
ins x NO = L2 z |
ins x (N1t) =mnl (inszt) |
insx (N2lar)=
(case cmp = a of
LT = n2 (inszl) ar|
EQ = N2lar|
GT = n2la (inszr))

fun tree :: 'a bro = 'a bro where
tree (L2 a) = N2 NO a NO |
tree (N3 t1 al t2 a2 t3) = N2 (N2 t1 al t2) a2 (N1 t3) |
treet =t

definition insert :: ‘a::linorder = 'a bro = 'a bro where
insert x t = tree(ins x t)

end

locale delete
begin

fun n2 :: 'a bro = 'a = 'a bro = 'a bro where
n2 (N1 t1) al (N11t2) = N1 (N2 t1 al £2) |
n2 (N1 (N1 1)) al (N2 (N1 t2) a2 (N2 13 a3 t])) =
N1 (N2 (N2 t1 al t2) a2 (N2 t3 a3 t})) |
n2 (N1 (N1 t1)) al (N2 (N2 {2 a2 t3) a3 (N1 t4)) =
N1 (N2 (N2 t1 al t2) a2 (N2 t3 a3 t})) |

132

(N1 t1)) a1 (N2 (N2 12 a2 t3) a3 (N2 t} aj t5)) =
(N1 t1) al (N2 12 a2 t3)) a3 (N1 (N2t} aj t5)) |
(N1 t1) a1 (N2 12 a2 t3)) a3 (N1 (N1 t})) =

(N2 t1 al t2) a2 (N2 13 a3 t

(N2 1t1 alt2) a2 (N11t3)) a3
(N2 t1 al t2) a2 (N2 13 a3 t
(N2 t1 al t2) a2 (N2 t3 a3 t4)) a5 (N1 (N1 t5)) =
(N2 t1 al t2)) a2 (N2 (N2 t3 a3 t}) a5 (N1 t5)) |
n? t1 al t2 = N2 tl al t2

3 =3
=2

2RER
~T N~

)

S
NS
—~~

(N1 t4)) =

T
EEFEFEFE
=z=%

fun split_min :: 'a bro = (‘a x 'a bro) option where
split_min NO = None |
split_min (N1 t) =
(case split_min t of
None = None |
Some (a, t') = Some (a, N1 t")) |
split_min (N2 t1 a t2) =
(case split_min t1 of
None = Some (a, N1 t2) |
Some (b, t1") = Some (b, n2 t1’ a t2))

fun del :: ‘a::linorder = 'a bro = 'a bro where
del _ NO = NO |
delz (N1t) = N1 (delzxt)]
delz (N2lar)=
(case cmp z a of
LT = n2 (delzl) ar|
GT = n2la (delzr) |
EQ = (case split_min r of
None = N11|
Some (b, r') = n21br’)

fun tree :: 'a bro = 'a bro where
tree (N1t) =1 |

treet =t

definition delete :: 'a::linorder = 'a bro = 'a bro where
delete a t = tree (del a t)

end

32.2 Invariants

fun B :: nat = 'a bro set

133

and U :: nat = ’a bro set where

B0 ={N0} |

B (Such) ={ N2tlat2|tlatl.

t1 e BhUUMANt2€ BhV il €BhANt2e€ BhUUh} |
Uo={}|

U (Suc h) = N1 ‘Bh

abbreviation Th = Bh U Uh

fun Bp :: nat = ’a bro set where

Bp 0 =B0UL2*‘UNIV |

Bp (Suc 0) = B (Suc 0) U {N3 NO a NO b NO|a b. True} |

Bp (Suc(Suc h)) = B (Suc(Suc h)) U

{N3t1at2bt3|tlat2bt3. t1 € B (Such) ANt2 € U (Such) A t3 €
B (Suc h)}

fun Um :: nat = 'a bro set where
Um 0 = {} |
Um (Suc h) = N1 T h
32.3 Functional Correctness Proofs

32.3.1 Proofs for isin

lemma isin__set:

t € T h = sorted(inorder t) = isin t © = (z € set(inorder t))

by (induction h arbitrary: t) (fastforce simp: isin__simps split: if _splits)+
32.3.2 Proofs for insertion
lemma inorder_nl1: inorder(nl t) = inorder t

by (cases t rule: nl.cases) (auto simp: sorted_lems)

context insert
begin

lemma inorder_n2: inorder(n2 1 a r) = inorder | Q a # inorder r
by (cases (l,a,r) rule: n2.cases) (auto simp: sorted_lems)

lemma inorder_tree: inorder(tree t) = inorder t
by (cases t) auto

lemma inorder _ins: t € T h =
sorted(inorder t) = inorder(ins a t) = ins_list a (inorder t)

134

by (induction h arbitrary: t) (auto simp: ins_list_simps inorder_nl in-
order_n2)

lemma inorder insert: t € T h —
sorted(inorder t) = inorder(insert a t) = ins_list a (inorder t)
by (simp add: insert_def inorder_ins inorder _tree)

end

32.3.3 Proofs for deletion

context delete
begin

lemma inorder_tree: inorder(tree t) = inorder t
by (cases t) auto

lemma inorder _n2: inorder(n2 1 a r) = inorder | Q a # inorder r
by (cases (l,a,r) rule: n2.cases) (auto)

lemma inorder__split_min:
t € T h = (split_min t = None <— inorder t = []) A
(split_min t = Some(a,t’) — inorder t = a # inorder t’)
by (induction h arbitrary: t a t') (auto simp: inorder_n2 split: option.splits)

lemma inorder del:

t € T h = sorted(inorder t) = inorder(del x t) = del_list = (inorder
t)

apply (induction h arbitrary: t)

apply (auto simp: del_list_simps inorder _n2 split: option.splits)

apply (auto simp: del_list_simps inorder_n2

inorder_split_min[OF Unll1] inorder_split_min[OF UnlI2] split: op-

tion.splits)

done

lemma inorder delete:
t € T h = sorted(inorder t) = inorder(delete x t) = del_list x (inorder
t)

by(simp add: delete_def inorder _del inorder _tree)

end

135

32.4 Invariant Proofs
32.4.1 Proofs for insertion

lemma nl type:t € Bp h = n1t € T (Suc h)
by (cases h rule: Bp.cases) auto

context insert
begin

lemma tree_type: t € Bp h = tree t € B h U B (Suc h)
by(cases h rule: Bp.cases) auto

lemma n2_type:
(t1 e BphANt2 € Th— n2tlat2 € Bp (Such)) A
(t1 e ThANt2 e Bph— n2tl at2 € Bp (Such))
apply(cases h rule: Bp.cases)
apply (auto)[2]
apply(rule congl impl | erule conjE exE imageE | simp | erule disjE)+
done

lemma Bp if B:t€ Bh=t€ Bph
by (cases h rule: Bp.cases) simp__all

An automatic proof:

lemma
(te Bh—insxte€ Bph)AN(t€ Uh — insxzt e Th)
proof (induction h arbitrary: t)
case (
then show ?case by simp
next
case (Suc h)
then show ?Zcase by (fastforce simp: Bp_if B n2_type dest: n1_type)
qged

A detailed proof:

lemma ins_type:

showst € Bh=— inszxte Bphandte€ Uh= insxte Th
proof (induction h arbitrary: t)

case (

{ case I thus ?Zcase by simp

next

case 2 thus Zcase by simp }

next

case (Suc h)

136

{ case I
then obtain ¢1 a t2 where [simp]: t = N2 t1 a t2 and
t1:t1 € Thand t2: t2 € Thand ti2: t1 € BhV t2 € Bh
by auto
have ?Zcase if x < a
proof —
have n2 (ins z t1) a t2 € Bp (Suc h)
proof cases
assume t1 € B h
with t2 show ?thesis by (simp add: Suc.IH(1) n2_type)
next
assume t1 ¢ B h
hence 1: t1 € Uh and 2: t2 € B h using t1 t12 by auto
show ?thesis by (metis Suc.IH(2)[OF 1] Bp_if B[OF 2] n2_type)
qed
with «z < o) show Zcase by simp
qged
moreover
have Zcase if o < x
proof —
have n2 t1 a (ins z t2) € Bp (Suc h)
proof cases
assume t2 € B h
with ¢1 show ?thesis by (simp add: Suc.IH(1) n2_type)
next
assume t2 ¢ B h
hence 1: t1 € Bh and 2: t2 € U h using t2 t12 by auto
show ?thesis by (metis Bp_if B[OF 1] Suc.IH(2)[OF 2] n2_type)
qed
with (e < > show ?case by simp
qed
moreover
have ?Zcase if x = a
proof —
from 1 have t € Bp (Suc h) by(rule Bp_if B)
thus ?case using <x = a» by simp
qged
ultimately show ?case by auto
next
case 2 thus ?case using Suc(1) nl_type by fastforce }
qged

lemma insert_type:
t€ Bh= insertzt € BhU B (Such)

137

unfolding insert_def by (metis ins_type(1) tree_type)
end

32.4.2 Proofs for deletion

lemma B_simps|simp]:
Nite Bh = False
L2y € B h = False
(N3 t1 al t2a2t3) € B h = False
N)Oe Bh<«—h=20
by (cases h, auto)+

context delete
begin

lemma n2_typel:
[t1 € Unh; t2 € Bh] = n2tl at2 € T (Such)
apply(cases h rule: Bp.cases)
apply auto[2]
apply(erule exE bexE conjE imageE | simp | erule disjE)+
done

lemma n2_type2:
[t1 e Bh;t2€ Unh] = n2tl at?2 € T (Such)
apply(cases h rule: Bp.cases)
using Um.simps(1) apply blast
apply force
apply(erule exE bexE conjE imageE | simp | erule disjE)+
done

lemma n2_types:
[t1 e Th;t2€ Th] = n2tlat2 e T (Such)
apply(cases h rule: Bp.cases)
apply auto[2]
apply(erule exE bexE conjE imageE | simp | erule disjE)+
done

lemma split_minNoneNO: [t € B h; split_min t = None] = t = NO
by (cases t) (auto split: option.splits)

lemma split_minNoneN1 : [t € U h; split_min t = None] = t = N1 N0
by (cases h) (auto simp: split_minNoneNO split: option.splits)

138

lemma split__min__type:
t € Bh = split_min t = Some (a, t") = t' € Th
t € Uh = split_min t = Some (a, t') = t' € Un h
proof (induction h arbitrary: t a t')
case (Suc h)
{ case 1
then obtain ¢1 a t2 where [simp|: t = N2 t1 a t2 and
t12: 11 €e Tht2 € Thti e BhVt2ecBh
by auto
show “case
proof (cases split_min t1)
case None
show ?thesis
proof cases
assume t1 € B h
with split_minNoneNO[OF this None|] 1 show ?thesis by(auto)
next
assume t1 ¢ B h
thus ?thesis using 1 None by (auto)
qged
next
case [simp|: (Some bt’)
obtain b t1’ where [simp]: bt' = (b,t1’) by fastforce
show “thesis
proof cases
assume t1 € B h
from Suc.IH(1)[OF this| 1 have t1' € T h by simp
from n2_type3[OF this t12(2)] 1 show ?thesis by auto
next
assume t1 ¢ Bh
hence t1: t1 € U h and t2: t2 € B h using t12 by auto
from Suc.IH(2)[OF t1] have t1’' € Um h by simp
from n2 typel [OF this t2] 1 show ?thesis by auto
qed
qged
}
{ case 2
then obtain ¢/ where [simp]: ¢t = N1 ¢t1 and t1: t1 € B h by auto
show “case
proof (cases split_min t1)
case None
with split_minNoneNO[OF t1 None| 2 show ?thesis by (auto)
next
case [simp|: (Some bt’)

139

obtain b t1’/ where [simp]: bt' = (b,t1’) by fastforce
from Suc.IH(1)[OF t1] have t1' € T h by simp
thus ?thesis using 2 by auto

qged

}

qged auto

lemma del type:
te Bh= delzte Th
te Uh = delxt e Unh
proof (induction h arbitrary: z t)
case (Suc h)
{ case 1
then obtain [/ a r where [simp]: t = N2 a r and
Ir:le Thre Thle BhV r e Bh by auto
have ?Zcase if x < a
proof cases
assume [€ B h
from n2_type3[OF Suc.IH(1)[OF this] ir(2)]
show ?thesis using <x<a» by(simp)
next
assume [¢ B h
hence [€ U h r € B h using Ir by auto
from n2_typel[OF Suc.IH(2)[OF this(1)] this(2)]
show ?thesis using «x<a> by(simp)
qed
moreover
have Zcase if x > a
proof cases
assume r € B h
from n2 type3[OF Ir(1) Suc.IH(1)[OF this]]
show ?thesis using «z>a> by(simp)
next
assume r ¢ B h
hence | € B h r € U h using Ir by auto
from n2_ type2[OF this(1) Suc.IH(2)[OF this(2)]]
show ?thesis using <x>a» by(simp)
qed
moreover
have ?case if [simp]: z=a
proof (cases split_min r)
case None
show ?thesis
proof cases

140

assume 7 € B h
with split_minNoneNO|[OF this None] Ir show ?thesis by (simp)
next
assume 1 ¢ B h
hence r € U h using Ir by auto
with split_minNoneN1[OF this None] lr(3) show ?thesis by (simp)
qed
next
case [simp|: (Some br’)
obtain b r’ where [simp|: br’ = (b,r') by fastforce
show %thesis
proof cases
assume r € B h
from split_min_type(1)[OF this] n2_type3[OF Ir(1)]
show ?thesis by simp
next
assume r ¢ B h
hence [€ B hand r € U h using Ir by auto
from split_min__type(2)[OF this(2)] n2_type2[OF this(1)]
show ?thesis by simp
qed
qged
ultimately show ?case by auto
}
{ case 2 with Suc.IH(1) show ?case by auto }
qed auto

lemma tree_type: t € T (h+1) = treet € B (h+1) U B h
by (auto)

lemma delete type: t € B h = delete xt € Bh U B(h—1)
unfolding delete def
by (cases h) (simp, metis del__type(1) tree_type Suc__eq plusl diff Suc_1)

end

32.5 Overall correctness

interpretation Set by Ordered
where empty = empty and isin = isin and insert = insert.insert
and delete = delete.delete and inorder = inorder and inv = At. Jh. t
€ Bh
proof (standard, goal_cases)
case 2 thus ?case by(auto intro!: isin__set)

141

next

case 3 thus ?case by(auto intro!: insert.inorder_insert)
next

case / thus ?case by(auto introl: delete.inorder__delete)
next

case 6 thus ?case using insert.insert_type by blast
next

case 7 thus ?case using delete.delete__type by blast
qed (auto simp: empty__def)

32.6 Height-Size Relation
By Daniel Stiiwe

fun fib_ tree :: nat = unit bro where
fib_tree 0 = NO
| fib_tree (Suc 0) = N2 NO () NO
| fib_tree (Suc(Suc h)) = N2 (fib_tree (h+1)) () (N1 (fib_tree h))

fun fib’ :: nat = nat where
fib' 0 =0
| fib" (Suc 0) = 1
| fib" (Suc(Suc h)) = 1 + fib’ (Suc h) + fib" h

fun size :: 'a bro = nat where
size NO = 0
| size (N1t) = sizet
| size (N2t1 __ t2) = 1 + size t1 + size t2

lemma fib_tree B: fib_tree h € B h
by (induction h rule: fib_tree.induct) auto

declare [[names_short]]

lemma size_fib" size (fib_tree h) = fib’ h
by (induction h rule: fib_tree.induct) auto

lemma fibfib: fib’ h + 1 = fib (Suc(Suc h))
by (induction h rule: fib_tree.induct) auto

lemma B N2 cases|consumes 1]:
assumes N2 t1 a t2 € B (Suc n)
obtains

(BB)t1 € Bnand t2 € Bn |
(UB) t1 € Unand t2 € Bn |

142

(BU) t!1 €e Bnand t2 € Un
using assms by auto

lemma size_bounded: t € B h = size t > size (fib_tree h)
unfolding size_fib’ proof (induction h arbitrary: t rule: fib".induct)
case (3 h t')
note main = 3
then obtain t1 a t2 where t" t' = N2 t1 a t2 by auto
with main have N2 t1 a t2 € B (Suc (Suc h)) by auto
thus ?case proof (cases rule: B_N2_cases)
case BB
then obtain z y z where t2: t2 = N2z y2V 2 =N2zyxx € Bh
by auto
show ?thesis unfolding ¢’ using main(1)[OF BB(1)] main(2)[OF
t2(2)] t2(1) by auto
next
case UB
then obtain t171 where t1: t1 = N1 t11 t11 € B h by auto
show ?thesis unfolding ¢’ t1(1) using main(2)[OF t1(2)] main(1)[OF
UB(2)] by simp
next
case BU
then obtain t22 where t2: t2 = N1 t22 t22 € B h by auto
show ?thesis unfolding ¢’ t2(1) using main(2)[OF t2(2)] main(1)[OF
BU(1)] by simp
qed
qed auto

theorem t € Bh = fib (h + 2) < size t + 1
using size_ bounded
by (simp add: size_fib’ fibfib[symmetric] del: fib.simps)

end

33 1-2 Brother Tree Implementation of Maps

theory Brother12_Map
imports
Brother12 Set
Map__Specs
begin

fun lookup :: ("a x 'b) bro = 'a::linorder = 'b option where

143

lookup NO x = None |
lookup (N1 t) z = lookup t z |
lookup (N2l (a,b) r) z =
(case cmp = a of
LT = lookup | z |
EQ = Some b |
GT = lookup r x)

locale update = insert
begin

fun upd :: ‘a:linorder = 'b = (‘ax'd) bro = ('ax’b) bro where
upd x y NO = L2 (z,y) |
upd zy (N1t) =nl (updzyt)]|
upd x y (N2 1 (a,b) 7) =
(case cmp = a of
LT = n2 (upd z y 1) (a,b) r |
EQ = N21 (a,y) r |
GT = n21 (a,b) (upd z y 1))

definition update :: 'a::linorder = 'b = (‘ax’b) bro = ('ax’b) bro where
update x y t = tree(upd = y t)

end

context delete
begin

fun del :: 'a::linorder = ('ax’d) bro = ('ax’d) bro where
del N0 — NO |
delz (N1t) = NI (delzt) |
del z (N21 (a,b) r) =
(case cmp z a of
LT = n2 (del x 1) (a,b) r |
GT = n21 (a,b) (del z r) |
EQ = (case split_min r of
None = N11 |
Some (ab, r') = n2 1 ab r'))

definition delete :: 'a::linorder = (‘ax’b) bro = (‘ax’b) bro where
delete a t = tree (del a t)

end

144

33.1 Functional Correctness Proofs
33.1.1 Proofs for lookup

lemma lookup _map_of: t € T h =
sorted1 (inorder t) = lookup t x = map__of (inorder t) x
by (induction h arbitrary: t) (auto simp: map__of _simps split: option.splits)

33.1.2 Proofs for update

context update
begin

lemma inorder _upd: t € T h —

sorted1 (inorder t) = inorder(upd z y t) = upd_list x y (inorder t)
by (induction h arbitrary: t) (auto simp: upd_list_simps inorder_nl in-
order_n2)

lemma inorder_update: t € T h =
sortedl (inorder t) = inorder(update r y t) = upd_list x y (inorder t)
by (simp add: update__def inorder _upd inorder__tree)

end

33.1.3 Proofs for deletion

context delete
begin

lemma inorder del:

t € T h = sortedl (inorder t) = inorder(del z t) = del_list x (inorder
f

apply (induction h arbitrary: t)

apply (auto simp: del_list_simps inorder_n2)

apply (auto simp: del_list_simps inorder_n2

inorder__split_min|OF Unll1] inorder_split_min|OF Unl2] split: op-

tion.splits)

done

lemma inorder delete:
t € T h = sorted1(inorder t) = inorder(delete x t) = del_list x (inorder
)

by (simp add: delete__def inorder_del inorder_tree)

end

145

33.2 Invariant Proofs
33.2.1 Proofs for update

context update
begin

lemma upd_ type:
(te Bh— updzyte Bph)AN(t€ Uh — updzyte Th)
apply(induction h arbitrary: t)
apply (simp)
apply (fastforce simp: Bp_if B n2_type dest: nl__type)
done

lemma update_type:
t € Bh= updatexyt € BhU B (Suc h)
unfolding update__def by (metis upd__type tree_ type)

end

33.2.2 Proofs for deletion

context delete
begin

lemma del type:
te Bh= delzte Th
te Uh=delztec Unh
proof (induction h arbitrary: z t)
case (Suc h)
{ case 1
then obtain [a b r where [simp]: t = N2 [(a,b) r and
Ir:le Thre Thle BhV r e Bh by auto
have ?Zcase if x < a
proof cases
assume [€ B h
from n2_type3[OF Suc.IH(1)[OF this] ir(2)]
show ?thesis using <x<a» by(simp)
next
assume [¢ B h
hence [€ U h r € B h using Ir by auto
from n2_typel[OF Suc.IH(2)[OF this(1)] this(2)]
show ?thesis using «x<a> by(simp)
qed
moreover

146

have ?case if z > a
proof cases
assume r € B h
from n2_type3[OF Ir(1) Suc.IH(1)[OF this|]
show ?thesis using <z>a> by(simp)
next
assume 7 ¢ B h
hence [€ B hr € U h using Ir by auto
from n2_ type2|OF this(1) Suc.IH(2)[OF this(2)]]
show ?thesis using «z>a> by(simp)
qged
moreover
have Zcase if [simp]: z=a
proof (cases split_min r)
case None
show “thesis
proof cases
assume 7 € B h
with split_minNoneNO[OF this None] Ir show ?thesis by (simp)
next
assume r ¢ B h
hence r € U h using Ir by auto
with split_minNoneN1[OF this None] Ir(3) show ?thesis by (simp)
qed
next
case [simp|: (Some br’)
obtain b r’ where [simp]: br’ = (b,r') by fastforce
show %thesis
proof cases
assume r € B h
from split_min_ type(1)[OF this] n2_type3[OF lr(1)]
show ?thesis by simp
next
assume r ¢ B h
hence | € B h and r € U h using Ir by auto
from split_min_type(2)[OF this(2)] n2_type2[OF this(1)]
show ?thesis by simp
qed
qged
ultimately show ?case by auto
}
{ case 2 with Suc.IH(1) show ?case by auto }
qed auto

147

lemma delete type:
t € Bh = deletext € BhU B(h—1)
unfolding delete_ def
by (cases h) (simp, metis del _type(1) tree_type Suc__eq plusl diff _Suc_1)

end

33.3 Overall correctness

interpretation Map_ by Ordered
where empty = empty and lookup = lookup and update = update.update
and delete = delete.delete and inorder = inorder and inv = At. Ih. t €
Bh
proof (standard, goal_cases)
case 2 thus ?case by(auto intro!: lookup__map__ of)
next
case 3 thus ?case by(auto intro!: update.inorder__update)
next
case 4 thus ?case by(auto intro!: delete.inorder_delete)
next
case 6 thus ?case using update.update__type by (metis Un__iff)
next
case 7 thus ?case using delete.delete_type by blast
qed (auto simp: empty_ def)

end

34 AA Tree Implementation of Sets

theory AA_ Set
imports

Isin2

Cmp
begin

type__synonym ‘a aa_tree = ('axnat) tree

definition empty :: ‘a aa_tree where
empty = Leaf

fun Wl :: 'a aa_tree = nat where

Wl Leaf = 0 |
Wl (Node _ (_,lv))=

148

fun invar :: 'a aa_tree = bool where
invar Leaf = True |
invar (Node [(a, h)) =
(invar I A invar r A
h=Wwl+1ANMh=Wwr+ 1V (3lrbrr.r= Nodelr (bh) rm N h =
Wl rr + 1)))

fun skew :: 'a aa_tree = 'a aa_ tree where
skew (Node (Node t1 (b, lwb) t2) (a, la) t3) =
(if lva = lwb then Node t1 (b, lvb) (Node t2 (a, lva) t3) else Node (Node
t1 (b, lwb) t2) (a, lva) t3) |
skew t =t

fun split :: 'a aa_tree = 'a aa_tree where

split (Node t1 (a, lva) (Node t2 (b, lvb) (Node t3 (c, lve) t4))) =
(if lwa = lwb A b = lvc — lva = lvc suffices
then Node (Node t1 (a,lva) t2) (b,lva+1) (Node t3 (c, lva) t4)
else Node t1 (a,lva) (Node t2 (b,lvb) (Node t3 (c,lvc) t4))) |

splitt =t

hide__const (open) insert

fun insert :: 'a::linorder = 'a aa_ tree = 'a aa_ tree where
insert x Leaf = Node Leaf (z, 1) Leaf |
insert x (Node t1 (a,lv) t2) =
(case cmp z a of
LT = split (skew (Node (insert z t1) (a,lv) t2)) |
GT = split (skew (Node t1 (a,lv) (insert x t2))) |
EQ = Node t1 (z, lv) t2)

fun sngl :: 'a aa_tree = bool where

sngl Leaf = False |

sngl (Node __ __ Leaf) = True |

sngl (Node __ (__, lwa) (Node __ (__, lwb) _)) = (lva > lvb)

definition adjust :: 'a aa_tree = 'a aa_tree where
adjust t =
(case t of
Node | (z,lv) r =
(if Wil >= lv—1 N Wwlr >= lv—1 then t else
if Wl r < lv—1 A sngl [then skew (Node | (z,lv—1) r) else
if l r < lv—1
then case I of
Node t1 (a,lva) (Node t2 (b,lvb) t3)

149

= Node (Node t1 (a,lva) t2) (b,lvb+1) (Node t3 (z,lv—1) r)
else
if Wl r < lv then split (Node | (z,lv—1))
else

case T of
Node t1 (b,lvd) t} =
(case t1 of
Node t2 (a,lva) t3
= Node (Node [(z,lv—1) t2) (a,lva+1)
(split (Node t3 (b, if sngl t1 then lva else lva+1) t4)))))

In the paper, the last case of adjust is expressed with the help of an
incorrect auxiliary function nlvl.

Function split_max below is called dellrg in the paper. The latter is
incorrect for two reasons: dellrg is meant to delete the largest element but
recurses on the left instead of the right subtree; the invariant is not restored.

fun split _max :: 'a aa_tree = 'a aa_tree x 'a where

split_mazx (Node | (a,lv) Leaf) = (l,a) |

split_maz (Node | (a,lv) r) = (let (r',b) = split_maz r in (adjust(Node I
(a,lv) '), b))

fun delete :: 'a::linorder = 'a aa_tree = 'a aa_ tree where
delete _ Leaf = Leaf |
delete © (Node | (a,lv)) =
(case cmp = a of

LT = adjust (Node (delete x 1) (a,lv)) |

GT = adjust (Node [(a,lv) (delete x 1)) |

EQ = (if | = Leaf then r

else let (1',b) = split_maz | in adjust (Node 1’ (b,lv) T)))

fun pre_adjust where
pre__adjust (Node [(a,lv) r) = (invar I A invar r A
(w=Wl+1AN(lw=Wlr+1Vi=Wr+2VIi=1WrAsng
r)) V
(w=Wl+2AN(lw=Wlr+1Vi=1IWrAsnglr))))

declare pre__adjust.simps [simp del]

34.1 Auxiliary Proofs

lemma split_case: split t = (case t of
Node t1 (z,lvx) (Node t2 (y,lvy) (Node t3 (z,lvz) t})) =
(if x = lvy A lvy = vz
then Node (Node t1 (z,lvz) t2) (y,lvz+1) (Node t3 (z,lvx) t4)

150

else t)
| t = 1)
by (auto split: tree.split)

lemma skew _case: skew t = (case t of

Node (Node t1 (y,lvy) t2) (z,lvz) t3 =

(if lwx = lvy then Node t1 (y, lvx) (Node t2 (z,lvz) t3) else t)
|t =1t)
by (auto split: tree.split)

lemma Wl 0 iff: invar t = lwlt = 0 <— t = Leaf
by (cases t) auto

lemma vl Suc_iff: Wit = Sucn <— (3 lar. t= Nodel (a,Suc n) r)
by (cases t) auto

lemma vl_skew: Wl (skew t) = Il t
by (cases t rule: skew.cases) auto

lemma vl split: Wl (split t) = Wit Vv Wl (split t) = lwlt + 1 A sngl (split
t)

by (cases t rule: split.cases) auto

lemma invar_2Nodes:invar (Node | (z,lv) (Node rl (rz, rlv) rr)) =
(invar I A invar (rl, (rz, rlv), rr) A lv = Suc (Wl 1) A
(lv = Suc rlv V rlv = lv A lv = Suc (ll rr)))

by simp

lemma invar_NodeLeaf|simpl:
invar (Node | (z,lv) Leaf) = (invar I A lv = Suc (lwl 1) A lv = Suc 0)
by simp

lemma sngl_if invar: invar (Node l (a, n) 1) = n = Wwlr = sngl r
by (cases r rule: sngl.cases) clarsimp+

34.2 Invariance
34.2.1 Proofs for insert

lemma vl _insert aux:
Wl (insert x t) = Wl t V Wl (insert x t) = Wl t + 1 A sngl (insert z t)
apply (induction t)
apply (auto simp: ll_skew)
apply (metis Suc_eq_plusl lvl.simps(2) Wwl_split Wwl_skew)+

151

done

lemma vl insert: obtains

(Same) Wl (insert x t) = Wit |

(Incr) Wl (insert x t) = Wl t + 1 sngl (insert x t)
using wl_insert__aux by blast

lemma [vl_insert_sngl: invar t = sngl t = Wi(insert z t) = lvl t
proof (induction t rule: insert.induct)
case (2 x tl alv t2)
consider (LT) z < a | (GT) z > a | (EQ) z = a
using less linear by blast
thus “case proof cases
case LT
thus ?thesis using 2 by (auto simp add: skew__case split_case split:
tree.splits)
next
case GT
thus ?thesis using 2
proof (cases t1 rule: tree2 cases)
case Node
thus ?thesis using 2 GT
apply (auto simp add: skew__case split__case split: tree.splits)
by (metis less_not_refl2 ll.simps(2) Wwl_insert_auzx n_not_Suc_n
sngl.simps(3))+
qged (auto simp add: lwl_0__iff)
qed simp
qed simp

lemma skew invar: invar t — skew t = t
by (cases t rule: skew.cases) auto

lemma split_invar: invar t = split t =t
by (cases t rule: split.cases) clarsimp+

lemma invar NodelL:

[invar(Node I (z, n) r); invar l'; Wwll' = Wl 1] = invar(Node 1’ (z, n)
r)
by (auto)

lemma invar NodeR:

[invar(Node 1 (z, n) r); n = Wl r + 1; invar r'; Wl v’ = Wl r | =
invar(Node | (z, n) r’)
by (auto)

152

lemma invar NodeR2:

[invar(Node I (z, n) r); sngl r's n = Wl r + 1; invar r'; Wl r' = n]| =
invar(Node 1 (z, n) r’)
by (cases r' rule: sngl.cases) clarsimp+

lemma [vl_insert_incr_iff: (Wwi(insert a t) = lwlt + 1) +—
(3lzr. insert at = Node | (z, lwlt + 1) r AN Wwll=Wlr)

apply(cases t rule: tree2_cases)

apply(auto simp add: skew__case split_case split: if _splits)

apply(auto split: tree.splits if _splits)

done

lemma invar_insert: invar t = invar(insert a t)
proof (induction t rule: tree2 induct)
case N: (Node l z n r)
hence il: invar | and ir: invar r by auto
note iil = N.IH(1)[OF il]
note #r = N.IH(2)[OF ir]
let ?t = Node l (z, n) r
have a < x V a =z V z < a by auto
moreover
have “case if a < x
proof (cases rule: lwl_insert|of a l])
case (Same) thus ?thesis
using «a<z) invar_NodeL|OF N.prems iil Same]
by (simp add: skew__invar split_invar del: invar.simps)
next
case (Incr)
then obtain ¢! w t2 where ial[simp]: insert a | = Node t1 (w, n) t2
using N.prems by (auto simp: Wwl_Suc_iff)
have 112: vl t1 = Wl t2
by (metis Incr(1) ial lvl_insert_incr_iff tree.inject)
have insert a ?t = split(skew(Node (insert a l) (z,n) r))
by (simp add: <a<z))
also have skew(Node (insert a l) (z,n) r) = Node t1 (w,n) (Node t2
(z,n) 7)
by (simp)
also have invar(split ...)
proof (cases r rule: tree2_cases)
case Leaf
hence | = Leaf using N.prems by(auto simp: Wwl_0_iff)
thus ?thesis using Leaf ial by simp

153

next
case [simp|: (Node t3 y m t4)
show “thesis
proof cases
assume m = n thus ?thesis using N(3) il by(auto)
next
assume m # n thus ?thesis using N(3) ul 112 by(auto)
qed
ged
finally show ?thesis .
qed
moreover
have Zcase if x < a
proof —
from <invar ?ty have n = lwlr V n = lwlr + 1 by auto
thus ?Zcase
proof
assume 0: n = ll r
have insert a ?t = split(skew(Node | (z, n) (insert a r)))
using «a>z> by(auto)
also have skew(Node | (z,n) (insert a r)) = Node | (x,n) (insert a r)
using N.prems by(simp add: skew__case split: tree.split)
also have invar(split ...)
proof —
from [vl_insert_sngl[OF ir sngl_if invar|OF <invar ?t> 0], of al
obtain t1 y t2 where iar: insert a r = Node t1 (y,n) t2
using N.prems 0 by (auto simp: lWwl_Suc_iff)
from N.prems iar 0 iir
show ?thesis by (auto simp: split__case split: tree.splits)
qed
finally show ?thesis .
next
assume 1:n=Wlr + 1
hence sngl ?t by(cases r) auto
show %thesis
proof (cases rule: ll_insert|of a r])
case (Same)
show ?thesis using <z<a» il ir invar_NodeR[OF N .prems 1 iir Same]
by (auto simp add: skew__invar split_invar)
next
case (Incr)
thus ?thesis using invar_NodeR2[OF <invar 2t Incr(2) 1 dir] 1 «x
< &
by (auto simp add: skew__invar split__invar split: if _splits)

154

qed
qged
qed
moreover
have ¢ = r = ?case using N.prems by auto
ultimately show ?case by blast
qed simp

34.2.2 Proofs for delete

lemma invarL: ASSUMPTION (invar (1, (a, lv), r)) = invar 1
by (simp add: ASSUMPTION __def)

lemma invarR: ASSUMPTION (invar (I, (a,lv), r)) = invar r
by (simp add: ASSUMPTION__def)

lemma sngl Nodel:
sngl (Node l (a,lv) 1) = sngl (Node I’ (a’, v) T)
by (cases r rule: tree2__cases) (simp__all)

declare invarL[simp] invarR[simp]

lemma pre_ cases:
assumes pre__adjust (Node [(z,lv) r)
obtains
(tSngl) invar I A invar r A

lv= Suc (lwlr) AN Wwll=1Wlr]
(tDouble) invar I A invar r A

lv=1MWlr A Suc (lll) =Wl r A snglr |
(rDown) invar I A invar r A

lv = Suc (Suc (Wl r)) A lv= Suc (lwll) |
(IDown__tSngl) invar I A invar r A

v = Suc (lwl r) A lv= Suc (Suc (lvl 1)) |
(IDown__tDouble) invar I N invar r A

lv=Wlr A= Suc (Suc (Wl 1)) N snglr
using assms unfolding pre adjust.simps
by auto

declare invar.simps(2)[simp del] invar_2Nodes[simp add]
lemma invar_adjust:

assumes pre: pre_adjust (Node | (a,lv) r)
shows invar(adjust (Node [(a,lv) T))

155

using pre proof (cases rule: pre__cases)
case (tDouble) thus ?thesis unfolding adjust_def by (cases r) (auto
simp: invar.simps(2))
next
case (rDown)
from rDown obtain [lv Il la Ir where I: | = Node Il (la, llv) Ir by (cases
l) auto
from rDown show f?thesis unfolding adjust_def by (auto simp: [in-
var.simps(2) split: tree.splits)
next
case ((Down__tDouble)
from [Down__tDouble obtain rlv rr ra rl where r: r = Node rl (ra, rlv)
rr by (cases 1) auto
from [Down_tDouble and r obtain rrlv rrr rra rrl where
rr:rr = Node rrr (rra, rriv) rrl by (cases rr) auto
from [Down_tDouble show ?thesis unfolding adjust def r rr
apply (cases rl rule: tree2 cases) apply (auto simp add: invar.simps(2)
split!: if _split)
using [Down__tDouble by (auto simp: split_case lvl_0_iff elim:lvl.elims
split: tree.split)
qed (auto simp: split_case invar.simps(2) adjust__def split: tree.splits)

lemma vl_adjust:
assumes pre__adjust (Node [(a,lv))
shows lv = [l (adjust(Node | (a,lv) 7)) V lv = Wl (adjust(Node 1 (a,lv)
r)) + 1
using assms(1)
proof (cases rule: pre__cases)
case [Down_ tSngl thus ?thesis
using lwl_splitjof (I, (a, Wl r), r)] by (auto simp: adjust_def)
next
case [Down_tDouble thus ?thesis
by (auto simp: adjust_def invar.simps(2) split: tree.split)
qed (auto simp: adjust_def split: tree.splits)

lemma sngl_adjust: assumes pre__adjust (Node | (a,lv) 1)
sngl (1, (a, W), ry lv = Wl (adjust (I, (a,), T))
shows sngl (adjust (I, (a,), 7))
using assms proof (cases rule: pre__cases)
case rDouwn
thus ?thesis using assms(2,3) unfolding adjust_def
by (auto simp add: skew__case) (auto split: tree.split)
qed (auto simp: adjust_def skew__case split__case split: tree.split)

156

definition post_del t t' ==
invar t' A
(Wlt'=MWwltVv Wt +1=1MWlt)A
(Wl t"= Wl t A sngl t — sngl t')

lemma pre_adj if postR:
invar(lv, (I, a), ry = post_del r r' = pre__adjust (lv, (1, a), ')
by (cases sngl r)
(auto simp: pre__adjust.simps post__del__def invar.simps(2) elim: sngl.elims)

lemma pre_adj if postL:
invar(l, (a,), r) = post_del | ' = pre__adjust (l', (b, W), r)
by (cases sngl r)
(auto simp: pre__adjust.simps post__del__def invar.simps(2) elim: sngl.elims)

lemma post_del _adjL:
[invar(l, (a, W), r); pre_adjust (I', (b, W), r)]
= post_del (I, (a, W), r) (adjust (I', (b, W), 1))
unfolding post_del def
by (metis invar_adjust Wwl_adjust sngl_Nodel sngl__adjust lvl.simps(2))

lemma post_del__adjR:
assumes invar(l, (a,lv), r) pre_adjust (I, (a,lv), r') post_del r r'
shows post_del (I, (a,lv), r) (adjust (I, (a,lv),)
proof (unfold post_del def, safe del: disjCI)
let 7t = (I, (a,lv), r)
let ?t' = adjust (I, (a,l), ')
show invar ?t' by(rule invar_adjust[OF assms(2)])
show [l 2t = vl 2t vV Wl 2t' + 1 = Wl 7t
using lwl_adjust|OF assms(2)] by auto
show sngl ?t’ if as: vl ?t' = vl 7t sngl 7t
proof —
have s: sngl (I . (a,lv),)
proof(cases ' rule: tree?fcases)
case Leaf thus ?thesis by simp
next
case Node thus ?thesis using as(2) assms(1,3)
by (cases r rule: tree2 cases) (auto simp: post_del def)
qged
show ?thesis using as(1) sngl_adjust|OF assms(2) s] by simp
qed
ged

declare prod.splits|split]

157

theorem post_split _max:
[invar t; (t', z) = split_maz t; t # Leaf | = post_del t t'
proof (induction t arbitrary: t' rule: split_maz.induct)
case (2l alvrlblrr)
let ?r = (rl, bl, rr)
let 7t = (I, (a, W), 7r)
from 2.prems(2) obtain r’ where r": (r', z) = split_maz ?r
and [simp]: t' = adjust (I, (a, W), r') by auto
from 2.IH[OF _ r'] <invar ?t) have post: post_del ?r r' by simp
note preR = pre_adj_if postR[OF <invar ?t) post]
show ?case by (simp add: post_del_adjR[OF 2.prems(1) preR post])
qged (auto simp: post__del _def)

theorem post_delete: invar t = post__del t (delete x t)
proof (induction t rule: tree2 induct)
case (Node l a lv)

let 21’ = delete z | and ?r' = delete x r
let 9t = Node [(a,lv) r let ?t' = delete x 7t

from Node.prems have iny_I: invar [and inv_r: invar r by (auto)

note post_l"' = Node.IH(1)[OF inv_l]
note prel = pre_adj_if postL[OF Node.prems post_1’]

note post_r’ = Node.IH(2)[OF inv_r]
note preR = pre_adj if postR[OF Node.prems post_r’|

show ?case
proof (cases rule: linorder _cases|of x a])
case less
thus ?thesis using Node.prems by (simp add: post_del__adjL preL)
next
case greater
thus ?thesis using Node.prems by (simp add: post_del_adjR preR
post_r')
next
case equal
show ?thesis
proof cases
assume | = Leaf thus ?thesis using equal Node.prems
by (auto simp: post_del def invar.simps(2))
next

158

assume [# Leaf thus ?thesis using equal
by simp (metis Node.prems inv_1 post_del _adjL post_split_max
pre__adj_if postL)
qged
qed
qed (simp add: post_del_def)

declare invar_2Nodes[simp del]

34.3 Functional Correctness
34.3.1 Proofs for insert

lemma inorder_split: inorder(split t) = inorder t
by (cases t rule: split.cases) (auto)

lemma inorder_skew: inorder(skew t) = inorder t
by (cases t rule: skew.cases) (auto)

lemma inorder insert:
sorted(inorder t) = inorder(insert x t) = ins_list x (inorder t)
by (induction t) (auto simp: ins_list_simps inorder _split inorder__skew)

34.3.2 Proofs for delete

lemma inorder _adjust: t # Leaf = pre__adjust t = inorder(adjust t)
= inorder t
by (cases t)
(auto simp: adjust__def inorder__skew inorder__split invar.simps(2) pre__adjust.simps
split: tree.splits)

lemma split_mazD:

[split_max t = (t',x); t # Leaf; invar t | = inorder t' Q [z] = inorder
t
by (induction t arbitrary: t’ rule: split_maz.induct)

(auto simp: sorted__lems inorder_adjust pre__adj_if postR post__split_mazx
split: prod.splits)

lemma inorder delete:
invar t = sorted(inorder t) = inorder(delete x t) = del_list x (inorder

t)
by (induction t)
(auto simp: del_list__simps inorder_adjust pre__adj_if postL pre_adj if postR

post__split_maz post__delete split_mazD split: prod.splits)

159

interpretation S: Set by Ordered
where empty = empty and isin = isin and insert = insert and delete =
delete
and inorder = inorder and inv = invar
proof (standard, goal_cases)
case I show ?Zcase by (simp add: empty_ def)

next

case 2 thus ?case by(simp add: isin_set_inorder)
next

case 3 thus ?case by(simp add: inorder insert)
next

case / thus ?case by(simp add: inorder_delete)
next

case 5 thus ?case by(simp add: empty__def)
next

case 6 thus ?case by(simp add: invar_insert)
next

case 7 thus ?case using post_ delete by (auto simp: post_del_def)
ged

end

35 AA Tree Implementation of Maps

theory AA_ Map
imports
AA_ Set
Lookup2
begin

fun update :: 'a::linorder = 'b = (‘ax’b) aa_tree = ('ax’b) aa_ tree where
update © y Leaf = Node Leaf ((z,y), 1) Leaf |
update z y (Node t1 ((a,b),) t2) =
(case cmp = a of
LT = split (skew (Node (update z y t1) ((a,b), W) t2)) |
GT = split (skew (Node t1 ((a,b), lv) (update z y t2))) |
EQ = Node t1 ((z,y),) t2)

fun delete :: 'a::linorder = ('ax’d) aa_tree = ('ax’'b) aa__tree where
delete __ Leaf = Leaf |
delete x (Node | ((a,b), lv)) =

case cmp T a o,
D

160

LT = adjust (Node (delete z 1) ((a,b),) r) |
GT = adjust (Node I ((a,b), lv) (delete z 1)) |
EQ = (if | = Leaf then r
else let (I';ab’) = split_maz | in adjust (Node 1’ (ab’, lv) r)))

35.1 Invariance
35.1.1 Proofs for insert

lemma vl_update auz:
Wl (update z y t) = lwl t V Wl (update z y t) = lwl t + 1 A sngl (update x
yt)
apply (induction t)
apply (auto simp: lwl_skew)
apply (metis Suc__eq_plusl lvl.simps(2) wl_split lwl_skew)+
done

lemma [vl_update: obtains

(Same) ll (update x y t) = ol t |

(Incr) Wl (update y t) = Wl t + 1 sngl (update x y t)
using lvl_update _aux by fastforce

declare invar.simps(2)[simp]

lemma vl_update_sngl: invar t = sngl t = Wwl(update z y t) = Wl t
proof (induction t rule: update.induct)
case (2xytl ablvt2)
consider (LT) z < a | (GT) z > a | (EQ) z = a
using less_linear by blast
thus ?case proof cases
case LT
thus ?thesis using 2 by (auto simp add: skew__case split__case split:
tree.splits)
next
case GT
thus ?thesis using 2 proof (cases t1)
case Node
thus ?thesis using 2 GT
apply (auto simp add: skew__case split__case split: tree.splits)
by (metis less_not_refl2 lvl.simps(2) Wwl_update__aux n_not_Suc_n
sngl.simps(3))+
qed (auto simp add: lwl_0__iff)
qed simp
qed simp

161

lemma wl_update_incr_iff: (ll(update a b t) = Wit + 1) «—
(3l z r. update a bt = Node | (z,llt + 1) r A lWwll=1Wlr

apply(cases t)

apply(auto simp add: skew__case split_case split: if _splits)

apply (auto split: tree.splits if _splits)

done

lemma invar_update: invar t = invar(update a b t)
proof (induction t rule: tree2_induct)
case N: (Node l zy n r)
hence il: invar [and ir: invar r by auto
note iil = N.IH(1)[OF il]
note iir = N.IH(2)[OF ir|
obtain z y where [simp]: zy = (x,y) by fastforce
let ?t = Node | (zy, n) r
have a < 2V a =12V x < a by auto
moreover
have ?case if a < z
proof (cases rule: lvl_update[of a b 1])
case (Same) thus ?thesis
using «a<z) invar_NodeL|OF N.prems iil Same]
by (simp add: skew__invar split_invar del: invar.simps)
next
case (Incr)
then obtain ¢! w t2 where ial[simp]: update a b | = Node t1 (w, n) t2
using N.prems by (auto simp: Wwl_Suc__iff)
have 112: vl t1 = Wl t2
by (metis Incr(1) ial lvl_update__incr_iff tree.inject)
have update a b ?t = split(skew(Node (update a b l) (zy, n) 7))
by (simp add: <a<x))
also have skew(Node (update a b 1) (zy, n) r) = Node t1 (w, n) (Node
t2 (zy, n))
by (simp)
also have invar(split ...)
proof (cases r rule: tree2_cases)
case Leaf
hence [= Leaf using N.prems by(auto simp: lwl_0_iff)
thus ?thesis using Leaf ial by simp
next
case [simp|: (Node t3 y m t4)
show ?thesis
proof cases
assume m = n thus ?thesis using N(3) il by(auto)

162

next
assume m # n thus ?thesis using N(3) il 112 by(auto)
qed
qged
finally show ?thesis .
qed
moreover
have Zcase if x < a
proof —
from <invar ?t» have n = lwl r V n = lwlr 4+ 1 by auto
thus ?Zcase
proof
assume 0: n = i r
have update a b ?t = split(skew(Node | (zy, n) (update a b r)))
using <a>z> by(auto)
also have skew(Node | (zy, n) (update a b r)) = Node | (zy, n) (update
abr)
using N.prems by(simp add: skew__case split: tree.split)
also have invar(split ...)
proof —
from lwl_update__sngl|OF ir sngl_if invar[OF <invar ?t> 0], of a b
obtain t1 p t2 where iar: update a b r = Node t1 (p, n) t2
using N.prems 0 by (auto simp: lWwl_Suc_iff)
from N.prems iar 0 iir
show ?thesis by (auto simp: split__case split: tree.splits)
qed
finally show ?thesis .
next
assume 1:n=Wwlr + 1
hence sngl ?t by(cases r) auto
show “thesis
proof (cases rule: lvl_update[of a b 7])
case (Same)
show ?thesis using «x<a» il ir invar_NodeR[OF N.prems 1 iir Same]
by (auto simp add: skew__invar split_invar)
next
case (Incr)
thus ?thesis using invar_NodeR2[OF <invar ?t) Incr(2) 1 iir] 1 <z
< a)
by (auto simp add: skew__invar split__invar split: if _splits)
qed
ged
qed
moreover

163

have ¢ = © = ?case using N.prems by auto
ultimately show ?case by blast
qed simp

35.1.2 Proofs for delete

declare invar.simps(2)[simp del]

theorem post_delete: invar t = post_del t (delete x t)
proof (induction t rule: tree2 induct)
case (Node l ab lv 1)

obtain a b where [simp]: ab = (a,b) by fastforce

let 21’ = delete z | and ?r' = delete x r
let ¢t = Node | (ab, lv) r let 7t' = delete x 7t

from Node.prems have inv_I[: invar [and inv_r: invar r by (auto)

note post 1" = Node.IH(1)[OF inv_lI]
note prel = pre_adj if postL|OF Node.prems post_1'|

note post_r’ = Node.IH(2)[OF inv_r]
note preR = pre_adj _if postR[OF Node.prems post_r’|

show ?case
proof (cases rule: linorder__cases|of x a)
case less
thus ?thesis using Node.prems by (simp add: post_del_adjL preL)
next
case greater
thus ?thesis using Node.prems preR by (simp add: post_del adjR
post_r')
next
case equal
show ?thesis
proof cases
assume | = Leaf thus ?thesis using equal Node.prems
by (auto simp: post__del def invar.simps(2))
next
assume | # Leaf thus ?thesis using equal Node.prems
by simp (metis inv_I post__del__adjL post__split _mazx pre__adj_if postL)
qged
qged

164

qed (simp add: post_del_def)

35.2 Functional Correctness Proofs

theorem inorder__update:
sortedl (inorder t) = inorder(update y t) = upd_list x y (inorder t)
by (induct t) (auto simp: upd_list__simps inorder__split inorder _skew)

theorem inorder delete:
[invar t; sortedl (inorder t)] =
inorder (delete x t) = del_list x (inorder t)
by (induction t)
(auto simp: del_list__simps inorder__adjust pre__adj_if postL pre_adj if postR

post__split_maz post__delete split_mazD split: prod.splits)

interpretation I: Map_ by Ordered
where empty = empty and lookup = lookup and update = update and
delete = delete
and inorder = inorder and inv = invar
proof (standard, goal_cases)
case 1 show ?Zcase by (simp add: empty_ def)

next

case 2 thus ?case by(simp add: lookup_map_of)
next

case 3 thus ?case by(simp add: inorder_update)
next

case 4 thus ?case by(simp add: inorder__delete)
next

case 5 thus ?case by(simp add: empty__def)
next

case 6 thus ?case by(simp add: invar_update)
next

case 7 thus ?case using post_delete by(auto simp: post__del _def)
qed

end

36 Join-Based Implementation of Sets

theory Set2 Join
imports

Isin2
begin

165

This theory implements the set operations insert, delete, union, intersection
and difference. The implementation is based on binary search trees. All op-
erations are reduced to a single operation join [x r that joins two BSTs [
and r and an element x such that | < z < r.

The theory is based on theory HOL— Data_ Structures. Tree2 where nodes
have an additional field. This field is ignored here but it means that this the-
ory can be instantiated with red-black trees (see theory Set2_Join_RBT.thy)
and other balanced trees. This approach is very concrete and fixes the type
of trees. Alternatively, one could assume some abstract type 't of trees with
suitable decomposition and recursion operators on it.

locale Set2 Join =

fixes join :: (‘a:linorderx'd) tree = 'a = ('ax'b) tree = ('ax’b) tree
fixes inv :: (‘ax’b) tree = bool

assumes set_join: set_tree (join l a r) = set_tree | U {a} U set_tree r
assumes bst_join: bst (Node | (a, b)) = bst (join l a r)

assumes inv_Leaf: inv ()

assumes inv_join: [inv l; inv r | = inv (join l a 1)

assumes inv_Node: [inv (Node | (a,b) r)] = invl A inv r

begin

declare set_join [simp] Let_def|[simp]

36.1 split_min

fun split_min :: ("ax’d) tree = 'a x (‘ax’d) tree where
split_min (Node l (a, _) r) =
(if | = Leaf then (a,r) else let (m,l’) = split_min 1 in (m, join l" a 1))

lemma split_min__ set:

[split_min t = (m,t"); t # Leaf | = m € set_tree t N set_tree t =
{m} U set_tree t'
proof (induction t arbitrary: t' rule: tree2 induct)

case Node thus ?case by(auto split: prod.splits if _splits dest: inv_Node)
next

case Leaf thus ?case by simp
qed

lemma split_min_ bst:

[split_min t = (m,t’); bstt; t# Leaf | = bstt' N (Va € set_tree t'.
m < x)
proof (induction t arbitrary: t' rule: tree2 induct)

case Node thus ?case by(fastforce simp: split_min__set bst_join split:
prod.splits if _splits)
next

166

case Leaf thus ?case by simp
qged

lemma split _min__inv:

[split_min t = (m,t’); invt; t # Leaf | = inv t’
proof (induction t arbitrary: t' rule: tree2_induct)

case Node thus ?case by(auto simp: inv_join split: prod.splits if _splits
dest: inv__Node)

next

case Leaf thus ?case by simp
qged
36.2 join2

definition join2 :: (‘ax’d) tree = (‘ax’b) tree = ('ax'b) tree where
join2 lr = (if r = Leaf then [else let (m,r’) = split_min r in join I m r’)

lemma set_join2|[simp|: set_tree (join2 1 r) = set_tree | U set_tree r
by (cases r)(simp__all add: split_min__set join2__def split: prod.split)

lemma bst_join2: [bst l; bst r; Vo € set_tree l.Vy € set_treer. z < y |
= bst (join2 1)

by (cases r)(simp__all add: bst_join split_min__set split_min__bst join2_def

split: prod.split)

lemma inv_join2: [inv l; inv r | = inv (join2 1 1)
by (cases r)(simp__all add: inv__join split_min__set split_min__inv join2__def
split: prod.split)

36.3 split

fun split :: 'a = (ax’b)tree = (‘ax’b)tree x bool x ('ax'b)tree where
split x Leaf = (Leaf, False, Leaf) |
split z (Node | (a, _) r) =
(case cmp = a of
LT = let (11,b,12) = split z 1 in (11, b, join 12 a) |
GT = let (r1,b,r2) = split x rin (join la rl, b, 72) |
EQ = (1, True, r))

lemma split: split x t = (1,b,r) = bst t =

set_tree | = {a € set_tree t. a < x} A set_tree r = {a € set_tree t. x <
a}

A (b= (z € set_treet)) N bstl A bstr
proof (induction t arbitrary: | b r rule: tree2 induct)

167

case Leaf thus ?case by simp
next
case (Node yabzlcr)
consider (LT) 1 zin I2 where (I1,zin,l2) = split z y
and split z (y, (a, b), z) = (l1, zin, join I2 a z) and cmp v a = LT
| (GT) r1 zin r2 where (r1,zin,r2) = split z z
and split x (y, (a, b), z) = (join y a r1, zin, r2) and cmp x a = GT
| (EQ) split x (y, (a, b), z) = (y, True, z) and cmp z a = EQ
by (force split: cmp__val.splits prod.splits if _splits)

thus Zcase

proof cases
case (LT I1 xin 12)
with Node.IH(1)[OF «(l1,xin,l2) = split x y>[symmetric]] Node.prems
show ?Zthesis by (force introl: bst_join)

next
case (GT rl zin r2)
with Node.IH(2)[OF «(r1,zin,r2) = split © z>[symmetric]] Node.prems
show ?thesis by (force intro!: bst_join)

next
case F(Q
with Node.prems show ?thesis by auto

qed

qed

lemma split_inv: split x t = (I,b,r) = inv t = inv l A inv r
proof (induction t arbitrary: 1 b r rule: tree2 induct)
case Leaf thus ?case by simp
next
case Node
thus ?case by (force simp: inv__join split!: prod.splits if _splits dest!: inu_Node)
qged

declare split.simps[simp del]

36.4 insert

definition insert :: 'a = ('ax'b) tree = (‘ax’b) tree where
insert x t = (let (I,_,r) = split x t in join l z r)

lemma set tree insert: bst t = set_tree (insert x t) = {x} U set_tree t
by (auto simp add: insert_def split split: prod.split)

lemma bst_insert: bst t = bst (insert z t)

168

by (auto simp add: insert_def bst_join dest: split split: prod.split)

lemma inv_insert: inv t = inv (insert x t)
by (force simp: insert_def inv_join dest: split__inv split: prod.split)

36.5 delete

definition delete :: 'a = (‘ax’b) tree = (‘ax’b) tree where
delete x t = (let (I,__,r) = split x t in join2 1)

lemma set_tree_delete: bst t = set_tree (delete x t) = set_tree t — {z}
by (auto simp: delete__def split split: prod.split)

lemma bst_delete: bst t = bst (delete x t)
by (force simp add: delete_def intro: bst_join2 dest: split split: prod.split)

lemma inv_delete: inv t = inv (delete z t)
by (force simp: delete__def inv_join2 dest: split__inv split: prod.split)

36.6 union

fun union :: (‘ax’b)tree = ('ax’b)tree = ('ax’b)tree where
union t1 t2 =

(if t1 = Leaf then t2 else

if t2 = Leaf then t1 else

case t1 of Node l1 (a,)1l =

let (12, ,r2) = split a t2;

I = wunion 11 12; v’ = union r1 r2
in join ' a r')

declare union.simps [simp del]

lemma set_tree__union: bst t2 = set__tree (union t1 t2) = set_tree t1 U
set__tree t2
proof (induction t1 t2 rule: union.induct)
case (1 t1t2)
then show ?case
by (auto simp: union.simps|of t1 t2] split split: tree.split prod.split)
qed

lemma bst_union: [bst t1; bst t2 | = bst (union t1 t2)
proof (induction t1 t2 rule: union.induct)

case (1 t1t2)

thus “case

169

by (fastforce simp: union.simps[of t1 t2] set_tree__union split intro!:
bst_join
split: tree.split prod.split)
qged

lemma inv_union: [inv t1; inv t2 | = inv (union t1 t2)
proof (induction t1 t2 rule: union.induct)
case (1 t1 t2)
thus ?case
by (auto simp:union.simps|of t1 t2] inv_join split_inv
split!: tree.split prod.split dest: inv__Node)
qed

36.7 inter

fun inter :: (‘ax’b)tree = (‘ax’b)tree = (‘ax’b)tree where
inter t1 t2 =

(if t1 = Leaf then Leaf else

if t2 = Leaf then Leaf else

case t1 of Node l1 (a,) rl =

let (12,b,r2) = split a t2;

l' = inter 11 12; r' = inter r1 r2
in if b then join l" a 1’ else join2 I’ r')

declare inter.simps [simp del]

lemma set_tree inter:
[bst t1; bst t2 | = set_tree (inter t1 t2) = set_tree t1 N set_tree 2
proof (induction t1 t2 rule: inter.induct)
case (1 t1t2)
show ?Zcase
proof (cases t1 rule: tree2 cases)
case Leaf thus ?thesis by (simp add: inter.simps)
next
case [simp]: (Node l1 a __ rl)
show ?thesis
proof (cases t2 = Leaf)
case True thus ?thesis by (simp add: inter.simps)
next
case Fulse
let 2L1 = set tree l1 let ?R1 = set tree rl
have *: a ¢ ?L1 U ?R1 using <bst t1) by (fastforce)
obtain 2 b r2 where sp: split a t2 = (12,b,72) using prod__cases3
by blast

170

let 7L2 = set_tree 12 let ?R2 = set_tree r2 let ?A = if b then {a}
else {}
have t2: set_tree t2 = ?L2 U ?R2 U ?A and
sk L2 N 7R2 ={} a ¢ L2 U ?R2 L1 N ?R2 = {} ?L2 N 7RI
={}
using split[OF sp] <bst t1) <bst t2» by (force, force, force, force,
force)
have IHI: set_tree (inter 11 12) = set_tree I1 N set_tree 12
using 1.IH(1)[OF _ False _ __ sp[symmetric]] 1.prems(1,2) split[OF
sp] by simp
have [Hr: set_tree (inter r1 r2) = set_tree r1 N set_tree 12
using 1.IH(2)[OF __ False __ __ sp[symmetric]] 1.prems(1,2) split{OF
sp] by simp
have set_tree t1 N set_tree t2 = (L1 U R1 U {a}) N (?L2 U ?R2
U ?4)
by (simp add: t2)
also have ... = (L1 n ?L2) U (YR1 N R2) U 7A
using * xx by auto
also have ... = set_tree (inter t1 t2)
using [HI IHr sp inter.simps|of t1 t2] False by(simp)
finally show ?thesis by simp
qged
qed
qed

lemma bst_inter: [bst t1; bst t2 | = bst (inter t1 t2)
proof (induction t1 t2 rule: inter.induct)
case (1 t1t2)
thus ?case
by (fastforce simp: inter.simps|of t1 t2] set_tree_inter split
introl: bst_join bst_join2 split: tree.split prod.split)
qged

lemma inv_inter: [inv t1; inv t2 | = inv (inter t1 t2)
proof (induction t1 t2 rule: inter.induct)
case (1 t1t2)
thus Zcase
by (auto simp: inter.simps|of t1 t2] inv_join inv_join2 split_inv
split!: tree.split prod.split dest: inv_Node)
qed

36.8 diff

fun diff :: (‘ax’b)tree = (‘ax'b)tree = (‘ax’'b)tree where

171

diff t1 t2 =
(if t1 = Leaf then Leaf else
if t2 = Leaf then t1 else
case t2 of Node 12 (a,) r2 =
let (11, _,r1) = split a t1;
U'=diff 11 12; ' = diff 1 r2
in join2 1" r')

declare diff.simps [simp del]

lemma set_tree diff:

[bst t1; bst t2 | = set_tree (diff t1 t2) = set_tree t1 — set_tree t2
proof (induction t1 t2 rule: diff.induct)
case (1 t1t2)
show ?case
proof (cases t2 rule: tree2 cases)
case Leaf thus ?thesis by (simp add: diff.simps)
next
case [simp]: (Node 12 a _ r2)
show ?thesis
proof (cases t1 = Leaf)

case True thus ?thesis by (simp add: diff.simps)
next

case Fulse
let 202 = set_tree 12 let ?R2 = set tree r2

obtain 1 b r1 where sp: split a t1 = (l1,b,r1) using prod__cases3
by blast

let ?L1 = set_tree l1 let ?R1 = set_tree r1 let ?A = if b then {a}
else {}
have t1: set tree t1 = ?L1 U ?R1 U ?A and
skiad ?L1 U ?R1 ?L1 N ?R2 = {} 702 N ?R1 = {}
using split[OF sp| <bst t1» <bst t2> by (force, force, force, force)
have [HI: set_tree (diff 11 [2) = set_tree 11 — set__tree (2

using 1.IH(1)[OF False _ __ __ sp[symmetric]] 1.prems(1,2) split{OF
sp] by simp

have IHr: set_tree (diff r1 r2) = set_tree r1 — set_tree r2

using 1.IH(2)[OF False _ __ __ sp[symmetric]] 1.prems(1,2) split{OF
sp] by simp

have set_tree t1 — set_tree t2 = (L1 U ?R1) — (?L2 U ?R2 U {a})
by (simp add: t1)

also have ... = (L1 — ?L2) U (YR1 — ?R2)
using *xx by auto
also have ... = set_tree (diff t1 t2)

using [HI IHr sp diff .simps|of t1 t2] False by(simp)

172

finally show ?thesis by simp
qged
qed
qged

lemma bst_diff: [bst t1; bst t2 | = bst (diff t1 t2)
proof (induction t1 t2 rule: diff.induct)
case (1 t1 t2)
thus ?case
by (fastforce simp: diff.simps[of t1 t2] set_tree diff split
introl: bst_join bst_join2 split: tree.split prod.split)
qed

lemma inv_diff: [inv t1; inv t2 | = inv (diff t1 t2)
proof (induction t1 t2 rule: diff.induct)
case (1 t1t2)
thus Zcase
by (auto simp: diff .simps|of t1 t2] inv_join inv_join2 split_inv
split!: tree.split prod.split dest: inv_ Node)
ged

Locale Set2 _Join implements locale Set2:

sublocale Set2
where empty = Leaf and insert = insert and delete = delete and isin =
510
and union = union and inter = inter and diff = diff
and set = set_tree and invar = At. inv t A bst t
proof (standard, goal_cases)

case 1 show ?Zcase by (simp)
next

case 2 thus ?case by(simp add: isin__set_tree)
next

case 3 thus ?case by (simp add: set_tree insert)
next

case 4 thus ?case by (simp add: set_tree_ delete)
next

case 5 thus ?case by (simp add: inv_Leaf)
next

case 6 thus ?case by (simp add: bst_insert inv_insert)
next

case 7 thus %case by (simp add: bst_delete inv_delete)
next

case 8 thus ?case by(simp add: set_tree__union)
next

173

case 9 thus ?case by(simp add: set_tree_inter)
next

case 10 thus ?case by(simp add: set_tree_ diff)
next

case 11 thus ?case by (simp add: bst_union inv_union)
next

case 12 thus ?case by (simp add: bst_inter inv_inter)
next

case 13 thus ?Zcase by (simp add: bst__diff inv__diff)
qged

end

interpretation unbal: Set2 Join
where join = Al z r. Node | (z, () r and inv = At. True
proof (standard, goal_cases)

case 1 show ?case by simp
next

case 2 thus ?case by simp
next

case 3 thus ?case by simp
next

case 4 thus ?case by simp
next

case 5 thus “case by simp
qed

end

37 Join-Based Implementation of Sets via RBTs

theory Set2 Join_ RBT
imports

Set2 Join

RBT Set
begin

37.1 Code

Function joinL joins two trees (and an element). Precondition: bheight [<
bheight r. Method: Descend along the left spine of r until you find a subtree
with the same bheight as [, then combine them into a new red node.

fun joinL :: 'a rbt = 'a = 'a rbt = 'a rbt where

174

joinL lx r =
(if bheight | > bheight r then R [z r
else case r of
Bl z' r" = baliL (joinL Iz 1) =’ r'|
RU'z"r"= R (joinL Lz 1) z' 1)

fun joinR :: 'a rbt = 'a = 'a rbt = 'a rbt where
joinR lxr =
(if bheight | < bheight r then Rl x r
else case | of
Bl'z' r" = baliR ' z' (joinR r' x 1) |
RlU'z'r'"= Rl z' (joinR v’ z 1))

definition join :: 'a rbt = 'a = 'a Tbt = 'a rbt where
joinlxr =

(if bheight | > bheight r

then paint Black (joinR l x)

else if bheight | < bheight r

then paint Black (joinL 1 x r)

else Blzr)

declare joinL.simps[simp del]
declare joinR.simps[simp del]

37.2 Properties
37.2.1 Color and height invariants

lemma invc2_joinL:

[inve I; inve r; bheight | < bheight r | =

inve2 (joinL 1 x)

A (bheight | # bheight r A color r = Black — invc(joinL |z r))
proof (induct | z r rule: joinL.induct)

case (I [z r) thus Zcase

by (auto simp: inve__baliL invc2l joinL.simps|of | x r| split!: tree.splits

if _splits)
qed

lemma invc2 joinR:

[inve I; invh I; inve r; invh r; bheight | > bheight r | =

invc2 (joinR 1 x T)

A (bheight | # bheight r A color | = Black — invc(joinR [z r))
proof (induct | z r rule: joinR.induct)

case (1 [z r) thus Zcase

175

by (fastforce simp: invc__baliR invc2l joinR.simps|of | z r| split!: tree.splits

if _splits)
qed

lemma bheight joinL:
[invh I; invh r; bheight | < bheight r | = bheight (joinL | x r) = bheight
-
proof (induct I x r rule: joinL.induct)
case (I [z r) thus Zcase
by (auto simp: bheight_baliL joinL.simps|of | x r] split!: tree.split)
qged

lemma invh_joinL:
[invh l; invh r; bheight | < bheight r | = invh (joinL |l x r)
proof (induct | z r rule: joinL.induct)
case (I [z r) thus Zcase
by (auto simp: invh_balil. bheight_joinL joinL.simps[of | x r] split!:
tree.split color.split)
qged

lemma bheight_joinR:
[invh l; invh r; bheight | > bheight r | = bheight (joinR | z 1) =
bheight [
proof (induct | x r rule: joinR.induct)
case (I [z r) thus Zcase
by (fastforce simp: bheight_baliR joinR.simps[of | x r] split!: tree.split)
qed

lemma invh_joinR:
[invh l; invh r; bheight | > bheight r | = invh (joinR | x r)
proof (induct | z r rule: joinR.induct)
case (1l z r) thus ?case
by (fastforce simp: invh__baliR bheight_joinR joinR.simps|of | z 7]
split!: tree.split color.split)
qged

All invariants in one:

lemma inv_joinL: [invc l; inve r; invh [; invh r; bheight | < bheight r |
= invc2 (joinL | x r) A (bheight | # bheight v A color r = Black —
inve (joinL Lz T))
A invh (joinL L x r) A bheight (joinL | x r) = bheight r
proof (induct | z r rule: joinL.induct)
case (1 Iz r) thus %case
by (auto simp: inv_baliL invc2l joinL.simps[of | © r| split!: tree.splits

176

if _splits)
qged

lemma inv_joinR: [inve l; inve r; invh I; invh r; bheight | > bheight r |
= invc2 (joinR |z r) A (bheight | # bheight r N color | = Black —
inve (joinR 1 x 1))

A invh (joinR | x) A bheight (joinR | x r) = bheight |
proof (induct | x r rule: joinR.induct)

case (I [z r) thus Zcase

by (auto simp: inv_baliR invc2l joinR.simps|of | x r| split!: tree.splits
if _splits)
qed

lemma rbt_join: [invc I; invh I; inve r; invh v | = rbt(join | x 1)
by (simp add: inv_joinL inv_joinR invh__paint rbt_def color _paint_Black
join__def)

To make sure the the black height is not increased unnecessarily:

lemma bheight_paint_Black: bheight(paint Black t) < bheight t + 1
by (cases t) auto

lemma [bt [; rbt r | = bheight(join | x r) < max (bheight) (bheight r)
+ 1
using bheight_paint_Black[of joinL [z r] bheight__paint_Black[of joinR |
z 7]

bheight_joinL[of | r x| bheight_joinR[of | r]
by (auto simp: max__def rbt__def join__def)

37.2.2 Inorder properties

Currently unused. Instead Tree2.set_tree and Tree2.bst properties are proved
directly.

lemma inorder_joinL: bheight | < bheight r = inorder(joinL | x r) =
inorder | Q x # inorder r
proof (induction | z r rule: joinL.induct)

case (I lzr)

thus Zcase by (auto simp: inorder _baliL joinL.simps|of l x] split!: tree.splits
color.splits)
qed

lemma inorder_joinR:

inorder(joinR | x r) = inorder | Q x # inorder r
proof (induction | x r rule: joinR.induct)

177

case (I lzr)

thus ?case by (force simp: inorder_baliR joinR.simpslof | x r]| split!:
tree.splits color.splits)
qged

lemma inorder(join | z r) = inorder | Q z # inorder r

by (auto simp: inorder_joinL inorder_joinR inorder__paint join__def
split!: tree.splits color.splits if _splits
dest!: arg_cong[where f = inorder])

37.2.3 Set and bst properties

lemma set_baliL:
set_tree(baliL | a) = set_tree | U {a} U set_tree r
by (cases (l,a,r) rule: baliL.cases) (auto)

lemma set_joinL:

bheight | < bheight 1 => set_tree (joinL | x r) = set_tree | U {z} U
set_tree r
proof (induction | z r rule: joinL.induct)

case (I lxzr)

thus Zcase by (auto simp: set_baliL joinL.simps[of | z r] split!: tree.splits
color.splits)
ged

lemma set_baliR:
set_tree(baliR | a r) = set_tree | U {a} U set_tree r
by (cases (l,a,r) rule: baliR.cases) (auto)

lemma set_joinR:
set_tree (joinR l x r) = set_tree | U {z} U set_tree r
proof (induction | z r rule: joinR.induct)
case (I lzr)
thus ?case by(force simp: set_baliR joinR.simps[of | x r| split!: tree.splits
color.splits)
qed

lemma set_paint: set_tree (paint ¢ t) = set_tree t
by (cases t) auto

lemma set_join: set_tree (join l x r) = set_tree | U {z} U set_tree r
by (simp add: set_joinL set_joinR set_paint join__def)

lemma bst_baliL:

178

[bst I; bst r; VY x€set_tree l. © < a; Vx€set_tree r. a <]
= bst (baliL l a 1)
by(cases (l,a,r) rule: baliL.cases) (auto simp: ball_Un)

lemma bst baliR:
[bst I; bst r; Vx€set_tree l. © < a; VaEset_tree r. a <]
= bst (baliR l a 1)

by (cases (l,a,r) rule: baliR.cases) (auto simp: ball _Un)

lemma bst_joinL:

[bst (Node I (a, n) r); bheight | < bheight r]

= bst (joinL l a 1)
proof (induction | a r rule: joinL.induct)

case (I lar)

thus Zcase

by (auto simp: set_baliL joinL.simps|of | a r| set_joinL ball_Un intro!:
bst_baliL
split!: tree.splits color.splits)

qged

lemma bst_joinR:

[bst I; bst r; Vxcset_tree l. © < a; Vy€Eset_tree r. a < y |

= bst (joinR lar)
proof (induction | a r rule: joinR.induct)

case (I lar)

thus Zcase

by (auto simp: set_baliR joinR.simps[of | a 7] set_joinR ball _Un intro!:
bst_baliR
split!: tree.splits color.splits)

qged

lemma bst_paint: bst (paint ¢ t) = bst t
by (cases t) auto

lemma bst_join:
bst (Node | (a, n) r) = bst (join la)
by (auto simp: bst_paint bst_joinL bst_joinR join__def)

lemma inv_join: [invc l; invh I; inve r; invh v | = inve(join | x r) A

invh(join L x r)
by (simp add: inv_joinL inv_joinR invh__paint join__def)

179

37.2.4 Interpretation of Set2 Join with Red-Black Tree

global__interpretation RBT: Set2 Join
where join = join and inv = At. tnvc t A invh t
defines insert _rbt = RBT.insert and delete_rbt = RBT.delete and split_rbt
= RBT.split
and join2_ rbt = RBT.join2 and split_min_rbt = RBT.split_min
and inter_rbt = RBT.inter and union_rbt = RBT.union and diff _rbt =
RBT.diff
proof (standard, goal cases)
case I show ?case by (rule set_join)
next
case 2 thus ?case by (simp add: bst_join)
next
case 3 show ?case by simp
next
case 4 thus ?case by (simp add: inv_join)
next
case 5 thus ?case by simp
qged

The invariant does not guarantee that the root node is black. This is not
required to guarantee that the height is logarithmic in the size — Exercise.

end

theory Array_ Specs
imports Main
begin

Array Specifications

locale Array =

fixes lookup :: 'ar = nat = a

fixes update :: nat = 'a = 'ar = 'ar
fixes len :: 'ar = nat

fixes array :: 'a list = 'ar

fixes list :: 'ar = 'a list
fixes invar :: ‘ar = bool

assumes lookup: invar ar = n < len ar = lookup ar n = list ar ! n
assumes update: invar ar => n < len ar = list(update n x ar) = (list
ar)[n:=x]

assumes len__array: invar ar = len ar = length (list ar)

assumes array: list (array zs) = xs

assumes invar_update: invar ar => n < len ar => invar(update n T ar)

180

assumes invar_array: invar(array xs)

locale Array Flex = Array +
fixes add _lo :: 'a = 'ar = 'ar
fixes del_lo :: 'ar = 'ar
fixes add_hi :: 'a = 'ar = 'ar
fixes del hi :: 'ar = 'ar

assumes add_lo: invar ar = list(add_lo a ar) = a # list ar
assumes del_lo: invar ar = list(del_lo ar) = tl (list ar)
assumes add_ hi: invar ar = list(add_hi a ar) = list ar Q [a]
assumes del__hi: invar ar = list(del_hi ar) = butlast (list ar)

assumes invar_add_lo: invar ar = invar (add_lo a ar)
assumes invar_del_lo: invar ar = invar (del_lo ar)
assumes invar_add__hi: invar ar = invar (add_hi a ar)
assumes invar__del _hi: invar ar = invar (del_hi ar)

end

38 Braun Trees

theory Braun_ Tree
imports HOL— Library. Tree_ Real
begin

Braun Trees were studied by Braun and Rem [5] and later Hoogerwo-
ord [10].

fun braun :: ‘a tree = bool where

braun Leaf = True |

braun (Node l z r) = ((size | = size v V size | = size r + 1) A braun [A
braun r)

lemma braun_Node”:

braun (Node | z 1) = (size r < size | A\ size | < size v + 1 A braun [A
braun r)

by auto

The shape of a Braun-tree is uniquely determined by its size:

lemma braun_unique: [braun (t1::unit tree); braun t2; size t1 = size t2 |
— t1 =12
proof (induction t1 arbitrary: t2)
case Leaf thus ?case by simp
next

181

case (Node l1 _ 1)
from Node.prems(3) have t2 # Leaf by auto
then obtain [2 z2 r2 where [simp|: t2 = Node 12 22 2 by (meson
neq_Leaf iff)
with Node.prems have size [1 = size 12 N size r]1 = size 72 by auto
thus ?case using Node.prems(1,2) Node.IH by auto
qed

Braun trees are almost complete:

lemma acomplete_if braun: braun t = acomplete t
proof (induction t)
case Leaf show Zcase by (simp add: acomplete__def)
next
case (Node | z) thus Zcase using acomplete_Node__if wbal2 by force
qed

38.1 Numbering Nodes

We show that a tree is a Braun tree iff a parity-based numbering (braun__indices)
of nodes yields an interval of numbers.

fun braun indices :: 'a tree = nat set where

braun__indices Leaf = {} |

braun__indices (Node | __ r) = {1} U (%) 2 ‘ braun_indices | U Suc * (%)
2 ‘ braun__indices r

lemma braun_indicesl: 0 ¢ braun__indices t
by (induction t) auto

lemma finite_braun__indices: finite(braun__indices t)
by (induction t) auto

One direction:

lemma braun_indices_if braun: braun t = braun__indices t = {1..size
t}
proof (induction t)
case Leaf thus ?case by simp
next
have *: (x) 2 ‘ {a..b} U Suc ‘(%) 2 ‘{a..b} = {2%a..2%b+1} (is 7l = ?r)
for a b
proof
show ?] C %r by auto
next
have JFz2€{a..b}. z € {Suc (2x22), 2xx2} if x: z € {2%a .. 2xb+1}
for z

182

proof —
have z div 2 € {a..b} using * by auto
moreover have z € {2 x (z div 2), Suc(2 * (z div 2))} by auto
ultimately show ?thesis by blast
qed
thus 9r C 2] by fastforce
qed
case (Node l z)
hence size | = size v V size | = size r + 1 (is YA V ?B) by auto
thus “case
proof
assume 74
with Node show ?thesis by (auto simp: x)
next
assume B
with Node show ?thesis by (auto simp: x atLeastAtMostSuc__conv)
qed
qed

The other direction is more complicated. The following proof is due to
Thomas Sewell.

lemma disj evens odds: (x) 2 AN Suc ‘(%) 2 ‘B = {}
using double _not_eq Suc _double by auto

lemma card_braun__indices: card (braun__indices t) = size t
proof (induction t)
case Leaf thus ?case by simp
next
case Node
thus “case
by (auto simp: UNION_singleton__eq _range finite__braun__indices card__Un__disjoint
card__insert__if disj _evens__odds card__image inj _on__def braun__indices1)
qed

lemma braun_indices intvl base 1:

assumes bi: braun__indices t = {m..n}

shows {m..n} = {1..size t}
proof (cases t = Leaf)

case True then show ?thesis using bi by simp
next

case Fulse

note eqs = egset__imp__iff [OF bi]

from egs[of 0] have 0: 0 < m

by (simp add: braun__indices1)

183

from egs[of 1] have 1: m < 1
by (cases t; simp add: False)
from 0 1 have eq1: m = 1 by simp
from card_braun__indices|of t| show ?thesis
by (simp add: bi eql)
qged

lemma cven_ of intvl _intvl:
fixes S :: nat set
assumes S = {m..n} N {i. even i}
shows 3m’n’. S = (Xi. i % 2) “{m’.n'}
proof —
have S = (\i. i x 2) ‘{Suc m div 2..n div 2}
by (fastforce simp add: assms mult.commute)
then show ?thesis
by blast
qged

lemma odd_of intvl _intvl:
fixes S :: nat set
assumes S = {m..n} N {i. odd i}
shows 3m’n’. S = Suc “ (Ni. i x 2) “{m’.n'}
proof —
have S = Suc ‘ ({if n = 0 then 1 else m — 1..n — 1} N Collect even)
by (auto simp: assms image__def elim!: oddE)
thus ?thesis
by (metis even__of _intvl_intvl)
qged

lemma image int_eq image:
VieS. fieT)= (f<9)nN
VieS. fi¢T) = (f°S)nN
by auto

T=fS
T={

}

lemma braun_indicesl le:
1 € braun_indices t =—> Suc 0 < ¢
using braun__indicesl not_less _eq eq by blast

lemma braun__if braun__indices: braun__indices t = {1..size t} = braun
t
proof (induction t)
case Leaf
then show ?case by simp
next

184

case (Node l z)
obtain ¢t where ¢: t = Node [x r by simp
then have insert (Suc 0) ((x) 2 ¢ braun_indices | U Suc * (x) 2 °
braun__indices r) N {2..}
= {Suc 0..Suc (size | + size r)} N {2..}
by (metis Node.prems One__nat__def Suc__eq _plusl Un__insert_left braun__indices.simps(2)
sup__bot__left tree.size(4))
then have eq: {2 .. size t} = (N\i. i x 2) ‘ braun__indices | U Suc ‘ (\i. ¢
x 2) ¢ braun__indices r
(is PR = 25U ?T)
by (simp add: t mult.commute Int_Un__distrib2 image_int__eq _image
braun__indices1_le)
then have ST: 75 = R N {i. even i} T = ?R N {i. odd i}
by (simp__all add: Int_Un__distrib2 image__int_eq image)
from ST have [: braun__indices | = {1 .. size [}
by (fastforce dest: braun__indices__intvl_base__1 dest!: even__of intvl_intvl
simp: mult.commute inj_image__eq_iff[OF inj_onl))
from ST have r: braun_indices r = {1 .. size }
by (fastforce dest: braun__indices__intvl_base 1 dest!: odd__of _intvl_intvl
simp: mult.commute inj_image__eq_iff[OF inj_onl))
note STa = ST[THEN egset_imp__iff, THEN iffD2)]
note STb = STa[of size t] STa[of size t — 1]
then have size [= size r V size | = size r + 1
using ¢ [r by atomize auto
with [r show “case
by (clarsimp simp: Node.IH)
qed

lemma braun__iff braun__indices: braun t <— braun__indices t = {1..size

t}

using braun__if braun__indices braun__indices if braun by blast

end

39 Arrays via Braun Trees

theory Array_ Braun

imports
HOL— Library. Time__Functions
Array_ Specs
Braun_ Tree

begin

185

39.1 Array

fun lookupl :: 'a tree = nat = ’'a where
lookupl (Node l x r) n = (if n=1 then x else lookup1 (if even n then [else
r) (n div 2))

fun updatel :: nat = ’'a = 'a tree = 'a tree where
updatel n x Leaf = Node Leaf © Leaf |
updatel n x (Node la 1) =
(if n=1 then Node | x r else
if even n then Node (updatel (n div 2) z 1) ar
else Node | a (updatel (n div 2) x 1))

fun adds :: 'a list = nat = 'a tree = 'a tree where
adds [nt =1 |
adds (z#xs) n t = adds xs (n+1) (updatel (n+1) z t)

fun list :: 'a tree = 'a list where
list Leaf = || |
list (Node | z r) = x # splice (list 1) (list r)

39.1.1 Functional Correctness

lemma size_list: size(list t) = size t
by (induction t)(auto)

lemma minusl _divw2: (n — Suc 0) div 2 = (if odd n then n div 2 else n
div2 — 1)
by auto arith

lemma nth_splice: [n < size xs + size ys; size ys < size xs; size xs <
size ys + 1
= splice xs ys | n = (if even n then xs else ys) ! (n div 2)
proof (induction xs ys arbitrary: n rule: splice.induct)
qed (auto simp: nth__Cons’ minus1__div2)

lemma div2_in_bounds:
[braun (Node l xz r); n € {1..size(Node lz1)}; n > 1] =
(oddn — n div 2 € {1..size r}) N\ (even n — n div 2 € {1..size l})
by auto arith

declare upt_Suc[simp del]

186

lookupl lemma nth_list _lookupl: [braun t; i < size t] = list t | i =
lookupl t (i+1)
proof (induction t arbitrary: i)

case Leaf thus ?case by simp
next

case Node

thus ?case using div2_in_bounds[OF Node.prems(1), of i+1]

by (auto simp: nth__splice minusl__div2 size_list)

ged

lemma list_eq_map_lookup1: braun t = list t = map (lookup1 t) [1..<size
t+ 1]
by (auto simp add: list_eq_iff _nth__eq size_list nth_list_lookupl)

updatel lemma size_updatel: [braunt; n € {1.. size t} | = size(updatel
nxt)= sizet
proof (induction t arbitrary: n)

case Leaf thus “case by simp
next

case Node thus ?case using div2_in_bounds[OF Node.prems| by simp
qged

lemma braun__updatel: [braun t; n € {1.. size t} | = braun(updatel n
z t)
proof (induction t arbitrary: n)

case Leaf thus ?case by simp
next

case Node thus ?Zcase

using div2_in_bounds[OF Node.prems| by (simp add: size__updatel)

qed

lemma lookupl__updatel: [braun t; n € {1.. size t} | =

lookup1 (updatel n x t) m = (if n=m then x else lookupl t m)
proof (induction t arbitrary: m n)

case Leaf

then show ?case by simp
next

have auz: [odd n; odd m | = n div 2 = (m::nat) div 2 <— m=n for
mn

using odd_two__times__div_two__succ by fastforce

case Node

thus ?case using div2_in_bounds[OF Node.prems] by (auto simp: aur)
qged

187

lemma list _updatel: [braun t; n € {1.. size t} | = list(updatel n x t)
= (list t)[n—1 = z]

by (auto simp add: list_eq map_ lookupl list_eq iff nth_eqlookupl updatel
size__updatel braun__updatel)

A second proof of [braun ?t; ?n € {1..size ?t}] = list (updatel ?n 7z
2t) = (list 2t)[%n — 1 = ?x]:

lemma diffl_eq iff: n > 0 = n — Suc 0 = m <— n = m+1
by arith

lemma list _update_ splice:
[n < size s + size ys; size ys < size xs; size s < size ys + 1 | =
(splice zs ys) [n = x| =
(if even n then splice (zs[n div 2 := z]) ys else splice xs (ys[n div 2 := z]))
by (induction zs ys arbitrary: n rule: splice.induct) (auto split: nat.split)

lemma list_update2: [braun t; n € {1.. size t} | = list(updatel n x t)
= (list t)[n—1 = x]
proof (induction t arbitrary: n)

case Leaf thus “case by simp
next

case (Node | a r) thus ?case using div2_in_bounds[OF Node.prems|

by (auto simp: list_update__splice diff1__eq iff size_list split: nat.split)

qed

adds lemma splice_last: shows
size ys < size xs = splice (zs Q [z]) ys = splice zs ys Q [z]
and size ys+1 > size xs = splice zs (ys Q [y]) = splice xs ys Q [y]
by (induction xzs ys arbitrary: x y rule: splice.induct) (auto)

lemma list _add_hi: braun t = list(updatel (Suc(size t)) xz t) = list t Q

[]

by (induction t)(auto simp: splice_last size__list)
lemma size_add_hi: braun t = m = size t = size(updatel (Suc m) x
t) = size t + 1

by (induction t arbitrary: m)(auto)

lemma braun_add_hi: braun t = braun(updatel (Suc(size t)) z t)
by (induction t)(auto simp: size__add__hi)

lemma size braun_adds:
[braun t; size t = n | = size(adds xs n t) = size t + length zs A\ braun

188

(adds zs n t)
by (induction xs arbitrary: t n)(auto simp: braun__add__hi size__add__hi)

lemma list_adds: | braun t; size t = n | = list(adds zs n t) = list t @ zxs
by (induction xs arbitrary: t n)(auto simp: size__braun__adds list_add__hi

size__add__hi braun__add__hi)

39.1.2 Array Implementation

interpretation A: Array
where lookup = \(t,]) n. lookupl t (n+1)
and update = A\n x (t,1). (updatel (n+1) x t, 1)
and len = A(t,0). 1
and array = Azs. (adds xs 0 Leaf, length xs)
and invar = A(t,l). braun t N | = size t
and list = \(t,0). list t
proof (standard, goal_cases)
case I thus ?case by (simp add: nth_list_lookupl split: prod.splits)
next
case 2 thus ?case by (simp add: list_updatel split: prod.splits)
next
case 3 thus ?case by (simp add: size_list split: prod.splits)
next
case / thus ?case by (simp add: list_adds)
next
case 5 thus %case by (simp add: braun_updatel size updatel split:
prod.splits)
next
case 6 thus ?case by (simp add: size__braun__adds split: prod.splits)
qged

39.2 Flexible Array

fun add_lo where
add_lo x Leaf = Node Leaf x Leaf |
add_lo z (Node | a r) = Node (add_lo ar) xl

fun merge where
merge Leaf r = r |
merge (Node | a r) rr = Node rr a (merge [r)

fun del lo where

del_lo Leaf = Leaf |
del_lo (Node l a r) = merge | r

189

fun del hi :: nat = 'a tree = 'a tree where
del_hi n Leaf = Leaf |
del_hin (Node l z r) =
(if n = 1 then Leaf
else if even n
then Node (del _hi (n div 2) 1) x r
else Node | z (del_hi (n div 2) 1))

39.2.1 Functional Correctness

add_lo lemma list_add_lo: braun t = list (add_lo a t) = a # list t
by (induction t arbitrary: a) auto

lemma braun__add_lo: braun t = braun(add_lo x t)
by (induction t arbitrary: x) (auto simp add: list_add__lo simp flip: size__list)

del_lo lemma list _merge: braun (Node | x r) = list(merge |) = splice
(list 1) (list r)

by (induction | r rule: merge.induct) auto

lemma braun_merge: braun (Node | x r) = braun(merge [1)
by (induction | r rule: merge.induct)(auto simp add: list_merge simp flip:
size__list)

lemma list _del lo: braun t = list(del lo t) = tl (list t)
by (cases t) (simp__all add: list _merge)

lemma braun__del lo: braun t = braun(del_lo t)
by (cases t) (simp__all add: braun__merge)

del_hi lemma list_Nil_iff: list t = || +— t = Leaf
by (cases t) simp__all

lemma butlast__splice: butlast (splice zs ys) =
(if size xs > size ys then splice (butlast zs) ys else splice xs (butlast ys))
by (induction xs ys rule: splice.induct) (auto)

lemma list_del hi: braun t = size t = st = list(del_hi st t) = but-
last(list t)
by (induction t arbitrary: st) (auto simp: list__Nil_iff size_list butlast__splice)

lemma braun__del_hi: braun t —> size t = st = braun(del_hi st t)
by (induction t arbitrary: st) (auto simp: list_del_hi simp flip: size_list)

190

39.2.2 Flexible Array Implementation

interpretation AF: Array Flex
where lookup = \(t,0) n. lookupl t (n+1)
and update = An z (t,1). (updatel (n+1) z t, 1)
and len = \(t,1). [
and array = Azs. (adds xs 0 Leaf, length xs)
and invar = A\(t,0). braun t N\ | = size t
and list = A(t,0). list t
and add_lo = Az (t,1). (add_lo x t, I4+1)
and del_lo = \(t,l). (del_lo t, I—1)
and add_hi = Az (t,0). (updatel (Sucl) zt, I+1)
and del_hi = \(t,0). (del_hilt,1—1)
proof (standard, goal_cases)
case [thus ?case by (simp add: list_add_lo split: prod.splits)
next
case 2 thus ?case by (simp add: list_del lo split: prod.splits)
next
case 3 thus ?case by (simp add: list_add__hi braun__add__hi split: prod.splits)
next
case 4 thus ?case by (simp add: list__del hi split: prod.splits)
next
case 5 thus ?case by (simp add: braun__add_lo list_add_lo flip: size_list
split: prod.splits)
next
case 0 thus Zcase by (simp add: braun__del_lo list_del_lo flip: size_list
split: prod.splits)
next
case 7 thus ?case by (simp add: size__add__hi braun__add__hi split: prod.splits)
next
case 8 thus ?case by (simp add: braun__del hi list_del _hi flip: size_list
split: prod.splits)

qged
39.3 Faster
39.3.1 Size

fun diff :: 'a tree = nat = nat where

diff Leaf _ = 0|

diff (Node l x) n = (if n=0 then 1 else if even n then diff r (n div 2 —
1) else diff I (n div 2))

fun size fast :: 'a tree = nat where
size__fast Leaf = 0 |

191

size__fast (Node | z r) = (let n = size_fast rin 1 + 2xn + diff I n)
declare Let_def[simp]

lemma diff: braun t = size t : {n, n + 1} = diff t n = sizet — n
by (induction t arbitrary: n) auto

lemma size fast: braun t = size__fast t = size t
by (induction t) (auto simp add: diff)

39.3.2 Initialization with 1 element

fun braun_of naive :: 'a = nat = 'a tree where
braun__of naive x n = (if n=0 then Leaf
else let m = (n—1) div 2
in if odd n then Node (braun_of naive x m) z (braun__of naive m)
else Node (braun_of naive x (m + 1)) x (braun_of naive x m))

fun braun2_of :: 'a = nat = 'a tree * 'a trec where
braun2_of x n = (if n = 0 then (Leaf, Node Leaf x Leaf)
else let (s,t) = braun2_of x ((n—1) div 2)
in if odd n then (Node s x s, Node t x s) else (Node t z s, Node t x t))

definition braun_of :: 'a = nat = 'a tree where
braun__of x n = fst (braun2_of = n)

declare braun2_of.simps [simp del]

lemma braun2_of size_braun: braun2_of x n = (s,t) = size s = n A
size t = n+1 A braun s A braun t
proof (induction x n arbitrary: s t rule: braun2_of .induct)

case (1 zn)

then show ?case

by (auto simp: braun2__of .simps|of x n] split: prod.splits if _splits) pres-

burger+
qed

lemma braun2 of replicate:

braun2_of x n = (s,t) = list s = replicate n x A list t = replicate (n+1)
T
proof (induction x n arbitrary: s t rule: braun2_of .induct)

case (I z n)

have x # replicate m © = replicate (m+1) x for m by simp

with 1 show ?Zcase

192

apply (auto simp: braun2_of .simps[of x n] replicate.simps(2)[of 0 x]
simp del: replicate.simps(2) split: prod.splits if _splits)
by presburger+
qged

corollary braun_ braun_ of: braun(braun_ of x n)
unfolding braun_of def by (metis eq_fst_iff braun2_of size_braun)

corollary list_braun__of: list(braun_of n) = replicate n x
unfolding braun_of def by (metis eq_fst_iff braun2_of replicate)

39.3.3 Proof Infrastructure

Originally due to Thomas Sewell.

take _nths fun teke nths :: nat = nat = 'a list = 'a list where
take_nths i k [| =] |
take_nths i k (z # xs) = (if i = 0 then x # take_nths (27k — 1) k xs
else take_nths (i — 1) k xs)

This is the more concise definition but seems to complicate the proofs:

lemma take_ nths eq nths: take_nths i k xs = nths xs ((Jn. {nx27k + i})
proof (induction s arbitrary: i)
case Nil
then show ?case by simp
next
case (Cons x zs)
show “case
proof cases
assume [simp]: ¢ = 0
have Az n. Sucx =n* 2 "k = Jza. v = Suc za * 2 ~ k — Suc 0
by (metis diff _Suc_Suc diff _zero mult_eq 0 __iff not0_implies Suc)
then have ((Jn. {(n+1) * 2 "k — 1})={m. 3In. Sucm =nx* 2 "k}
by (auto simp del: mult_Suc)
thus ?thesis by (simp add: Cons.IH ac__simps nths__Cons)
next
assume [arith]: i # 0
have Az n. Sucx =n 2 "k+ (= Jza. c =za* 2 "k + i — Suc
0
by (metis diff _Suc_Suc diff _zero)
then have (Un. {nx 2 "k+i—1})={m.In. Sucem=nx2 "k
+ i}
by auto
thus ?thesis by (simp add: Cons.IH nths Cons)

193

qed
qged

lemma take_nths drop:
take_nths i k (drop j xs) = take_nths (i + j) k zs
by (induct xs arbitrary: i j; simp add: drop__Cons split: nat.split)

lemma take nths 00:
take nths 0 0 xs = xs
by (induct xs; simp)

lemma splice_take_nths:
splice (take_nths 0 (Suc 0) xs) (take_nths (Suc 0) (Suc 0) xs) = xs
by (induct xs; simp)

lemma take nths take nths:
take__nths i m (take_nths j n xs) = take_nths ((i * 2°n) + j) (m + n) xs
by (induct xs arbitrary: i j; simp add: algebra__simps power_add)

lemma take nths empty:
(take_nths i k zs = []) = (length xs < 17)
by (induction xs arbitrary: i k) auto

lemma hd_take nths:
i < length xs => hd(take_nths i k xs) = zs | i
by (induction xs arbitrary: i k) auto

lemma take_nths 01_ splice:
[length xs = length ys V length zs = length ys + 1 | =
take_nths 0 (Suc 0) (splice xs ys) = xs A
take_nths (Suc 0) (Suc 0) (splice xs ys) = ys
by (induct xs arbitrary: ys; case_tac ys; simp)

lemma length_take_nths 00:

length (take_nths 0 (Suc 0) zs) = length (take_nths (Suc 0) (Suc 0) zs)
V

length (take__nths 0 (Suc 0) xs) = length (take_nths (Suc 0) (Suc 0) xs)
+ 1

by (induct zs) auto

braun_list fun braun_ list :: 'a tree = 'a list = bool where
braun__list Leaf s = (xs = []) |
braun_list (Node l x 1) s = (zs # [] A ¢ = hd xs A

194

braun__list | (take_nths 1 1 xzs) A
braun__list v (take_nths 2 1 xs))

lemma braun_ list_eq:
braun_list t xs = (braun t A xs = list t)
proof (induct t arbitrary: xs)
case Leaf
show ?case by simp
next
case Node
show ?case
using length__take_nths_00[of xs| splice_take_nths|of zs]
by (auto simp: neq_Nil_conv Node.hyps size__list[symmetric] take_nths_01__splice)
qed

39.3.4 Converting a list of elements into a Braun tree

fun nodes :: 'a tree list = 'a list = 'a tree list = 'a tree list where
nodes (I#l1s) (x#xs) (r#rs) = Node l x v # nodes ls s rs |
nodes (I1#ls) (z#axs) [| = Node | x Leaf # nodes Is xs [] |
nodes [| (z#xs) (r#rs) = Node Leaf x r # nodes [] xs rs |
nodes [| (x#xs) [| = Node Leaf x Leaf # nodes [] zs [] |
nodes Is [ms = []

fun brauns :: nat = 'a list = 'a tree list where
brauns k xs = (if xzs = [] then || else
let ys = take (27k) zs;
zs = drop (27k) xs;
ts = brauns (k+1) zs
in nodes ts ys (drop (27k) ts))

declare brauns.simps|[simp del]

definition braunsi :: 'a list = 'a tree where
braunsl xs = (if xs = [] then Leaf else brauns 0 zs ! 0)

Functional correctness The proof is originally due to Thomas Sewell.

lemma length nodes:
length (nodes s xs rs) = length xs
by (induct ls zs rs rule: nodes.induct; simp)

lemma nth nodes:

1 < length ts = nodes ls xs rs | i =
Node (if i < length Is then ls ! i else Leaf) (zs! i)

195

(if © < length rs then rs ! i else Leaf)
by (induct ls xs rs arbitrary: i rule: nodes.induct;
stmp add: nth__Cons split: nat.split)

theorem length_brauns:
length (brauns k xs) = min (length xzs) (2 ~ k)
proof (induct xs arbitrary: k rule: measure__induct__rule[where f=length))
case (less zs) thus Zcase by (simp add: brauns.simps|of k xs| length__nodes)
ged

theorem brauns__correct:
i < min (length zs) (2 ~ k) = braun__list (brauns k zs ! i) (take_nths i
k xs)
proof (induct zs arbitrary: i k rule: measure__induct_rulelwhere f=length])
case (less zs)
have xs # [| using less.prems by auto
let ?zs = drop (27k) s
let ?ts = brauns (Suc k) ?zs
from less.hyps[of ?zs _ Suc k]
have IH: [j =i+ 2 " k; i < min (length ?zs) (2 ~(k+1)) | =
braun_list (?ts ! i) (take_nths j (Suc k) zs) for i j
using «xs # [» by (simp add: take_nths__drop)
show ?case
using less.prems
by (auto simp: brauns.simps|of k xs| nth_nodes take_nths_take nths
IH take_nths empty hd_take nths length__brauns)
qed

corollary braunsl__correct:

braun (braunsl xs) A list (braunsl zs) = xs

using brauns__correct[of 0 zs 0]

by (simp add: braunsl__def braun__list _eq take_nths_00)
Running Time Analysis time_fun_0 (")

time_ fun nodes

lemma T nodes: T nodes ls xs rs = length xs + 1
by (induction ls zs rs rule: T _nodes.induct) auto

time_ fun brauns

lemma T _brauns_simple: T _brauns k xs = (if xs = || then 0 else

196

3 x (min (27k) (length zs) + 1) + (min (27k) (length zs — 27k) + 1)
+ T brauns (k+1) (drop (27%) xzs)) + 1
by(simp add: T _nodes T _take T _drop length brauns min__def)

theorem T brauns ub:
T brauns k xs < 9 = (length xs + 1)
proof (induction zs arbitrary: k rule: measure_induct_rule[where f =
length])
case (less zs)
show ?case
proof cases
assume zs = ||
thus Zthesis by(simp)
next
assume s # ||
let ?n = length zs let ?zs = drop (27k) xs
have x: 2n — 27k + 1 < %n
using <xs # [|» less_eq Suc_le by fastforce
have T brauns k zs =
3 x (min (27k) %n + 1) + (min (27k) (n — 27k) + 1) + T brauns
(k+1) %zs + 1
unfolding T brauns_simple[of k xs] using <xzs # [|» by(simp del:
T _brauns.simps)
also have ... < / x min (27k) %n + T brauns (k+1) %zs + 5
by (simp add: min__def)
also have ... < 4 x min (27k) %n + 9 % (length %zs + 1) + 5
using less[of 7zs k+1] <zs # [»
by (simp del: T _brauns.simps)
also have ... =/ «min (27k) n+ 9% (n — 27k + 1)+ 5
by (simp)
also have ... = 4 xmin (27k) n+ 4 * (n — 27k) + 5 (n — 27k
+ 1)+ 9
by (simp)
alsohave ... =/« n+5*x(n—2k+ 1)+ 9
by (simp)
alsohave ... < / x n+ 5% n+ 9
using * by(simp)
also have ... = 9 % (n + 1)
by (simp add: Suc_lel)
finally show ?thesis .
qed
ged

197

39.3.5 Converting a Braun Tree into a List of Elements

The code and the proof are originally due to Thomas Sewell (except running
time).

function list_fast_rec :: 'a tree list = 'a list where
list_fast_rec ts = (let us = filter (\t. t # Leaf) ts in
if us =[] then [else
map value us Q list_fast_rec (map left us @ map right us))
by (pat__completeness, auto)

lemma list_fast_rec_terml: ts # [| = Leaf ¢ set ts —>
sum__list (map (size o left) ts) + sum_list (map (size o right) ts) <
sum,__list (map size ts)
apply (clarsimp simp: sum__list_addf[symmetric] sum__list_map__filter’)
apply (rule sum__list_strict_mono; clarsimp?)
apply (case_tac z; simp)
done

lemma list_fast _rec_term: us # [| = us = filter (At. t # ()) ts =
sum_list (map (size o left) us) + sum_list (map (size o right) us) <
sum,__list (map size ts)
apply (rule order_less_le_trans, rule list_fast_rec_terml, simp__all)
apply (rule sum__list_filter _le_nat)
done

termination
by (relation measure (sum__list o map size); simp add: list__fast_rec__term)

declare list_fast_rec.simps[simp del]

definition list_fast :: 'a tree = 'a list where
list_fast t = list_fast_rec [t]

definition filter _not_Leaf = filter (A\t. t # Leaf)

definition map_left = map left
definition map_right = map right
definition map_value = map value

definition T _filter _not_Leaf ts = length ts + 1

definition T _map left ts = length ts + 1
definition T _map_right ts = length ts + 1

198

definition T _map_ wvalue ts = length ts + 1

lemmas defs = filter _not_Leaf def map_left def map_ right_def map_value _def
T filter_not_Leaf def T _map_value_def T _map_left def T _map_right def

lemma list_fast_rec_ simp:
list_fast_rec ts = (let us = filter_not__Leaf ts in

if us =[] then [] else

map__value us Q list_fast_rec (map__left us @ map__right us))
unfolding defs list_fast_rec.simps|of ts] by(rule refl)

time_ function list _fast rec equations list_fast rec_simp
termination
by (relation measure (sum__list o map size); simp add: list_fast_rec_term

defs)
declare T list_fast_rec.simps[simp del]

Functional Correctness lemma list_fast rec all Leaf:
Vit € set ts. t = Leaf = list_fast rec ts = []
by (simp add: filter _empty conv list_fast_rec.simps)

lemma take nths eq single:
length s — i < 27°n = take_nths i n s = take 1 (drop i xs)
by (induction xs arbitrary: i n; simp add: drop_Cons’)

lemma braun_list Nil:
braun_list t [| = (t = Leaf)
by (cases t; simp)

lemma braun__list_not_Nil: zs # [| =
braun_list t xs =
(3lzr.t = Nodelzr Nxz=hdzs N\
braun__list | (take_nths 1 1 xzs) A
braun_list v (take_nths 2 1 xs))
by (cases t; simp)

theorem list_ fast rec correct:
[length ts = 2 ~k; Vi < 2 " k. braun_list (ts! i) (take_nths i k xs) |
= list_fast rec ts = xs
proof (induct xs arbitrary: k ts rule: measure__induct__rule[where f=length))

199

case (less zs)
show ?case
proof (cases length xs < 2 " k)
case True
from less.prems True have filter:
In. ts = map (A\z. Node Leaf x Leaf) xs Q replicate n Leaf
apply (rule_tac x=length ts — length zs in exl)
apply (clarsimp simp: list_eq iff nth_eq)
apply(auto simp: nth__append braun__list_not_Nil take_nths__eq single
braun__list _Nil hd__drop__conv_nth)
done
thus ?thesis
by (clarsimp simp: list_fast_rec.simps[of ts| o__def list_fast_rec__all_Leaf)
next
case Fulse
with less.prems(2) have x:
Vi< 2 "k ts!i+# Leaf
A value (ts! i) = zs ! i
A braun__list (left (ts! i) (take_nths (i + 2 ~ k) (Suc k) xs)
N (Vys. ys = take _nths (i + 2 x 2 ~ k) (Suc k) xs
— braun__list (right (ts ! 7)) ys)
by (auto simp: take nths _empty hd_take_nths braun_list_not_Nil
take mths take nths
algebra__simps)
have 1: map value ts = take (2 ~ k) zs
using less.prems(1) False by (simp add: list_eq iff nth_eq *)
have 2: list_fast_rec (map left ts Q map right ts) = drop (2 ~ k) xs
using less.prems(1) False
by (auto intro!: Nat.diff less less.hyps[where k= Suc k]
simp: nth__append x take_nths drop algebra__simps)
from less.prems(1) False show ?thesis
by (auto simp: list_fast_rec.simps|of ts] 1 2 % all_set__conv_all_nth)
qed
qed

corollary list _fast correct:
braun t = list_fast t = list t

by (simp add: list_fast_def take_nths__00 braun__list_eq list_fast_rec_correct[where
k=0])

Running Time Analysis lemma sum_ tree_list children: Vit € set ts.

t # Leaf =
(> tts. k * size t) = (Dt < map left ts Q@ map right ts. k x size t) +

200

k x length ts
by (induction ts)(auto simp add: neq_Leaf iff algebra__simps)

theorem T list fast rec ub:
T list_fast_rec ts < sum__list (map (\t. 14*size t + 1) ts) + 2
proof (induction ts rule: measure__induct_rule[where f=sum__list o map
size))
case (less ts)
let %us = filter (At. t # Leaf) ts
show Zcase
proof cases
assume 7us = [|
thus ?thesis using T _list_fast_rec.simps|of ts]
by (simp add: defs sum__list _Suc)
next
assume ?us # ||
let ?children = map left ?us @ map right ?us
have 1: 1 < length ?us
using «?us # [|> linorder _not_less by auto
have T list fast _rec ts = T list_fast _rec ?children + 5 x length ?us
+ length ts + 7
using «%us # [|» T _list_fast_rec.simps[of ts| by(simp add: defs
T _append)
also have ... < (> t«Zchildren. 1 * size t + 1) + 5 * length ?us +
length ts + 9
using less[of ?children] list_fast_rec__term[of Zus] «Zus # []»
by (simp)
also have ... = (}_ t<?children. 14 * size t) + 7 * length ?us + length
ts + 9
by (simp add: sum__list _Suc o__def)
also have ... < (3 t«?children. 14 * size t) + 14 * length %us +
length ts + 2
using 1 by(simp add: sum__list_Suc o__def)
also have ... = () t«%us. 14 x size t) + length ts + 2
by (simp add: sum__tree_list_children)
also have ... < () t«ts. 1 * size t) + length ts + 2
by (simp add: sum__list_filter_le_nat)
also have ... = () t«ts. 14 x sizet + 1) + 2
by (simp add: sum__list_Suc)
finally show ?case .
qed
ged

end

201

40 Tries via Functions

theory Trie_ Fun
imports

Set__Specs
begin

A trie where each node maps a key to sub-tries via a function. Nice
abstract model. Not efficient because of the function space.

datatype ‘a trie = Nd bool 'a = 'a trie option

definition empty :: a trie where
[simp]: empty = Nd False (A_. None)

fun isin :: 'a trie = 'a list = bool where
isin (Nd b m) [] = b |
isin (Nd b m) (k # xzs) = (case m k of None = False | Some t = isin t xs)

fun insert :: 'a list = 'a trie = 'a trie where
insert [| (Nd b m) = Nd True m |
insert (z#xs) (Nd b m) =
(let s = (case m x of None = empty | Some t = t) in Nd b (m(z :=
Some(insert s s))))

fun delete :: 'a list = 'a trie = 'a trie where
delete [| (Nd b m) = Nd False m |
delete (z#xs) (Nd b m) = Nd b
(case m x of
None = m |
Some t = m(z := Some(delete xs t)))

Use (a tuned version of) isin as an abstraction function:

lemma isin__case: isin (Nd b m) zs =

(case zs of

1= b

z # ys = (case m z of None = Fualse | Some t = isin t ys))
by (cases xs)auto

definition set trie :: ‘a trie = 'a list set where
[simp]: set_trie t = {xs. isin t xs}

lemma isin_set_trie: isin t zs = (xs € set__trie t)
by simp

202

lemma set_trie_insert: set_trie (insert xs t) = set_trie t U {xs}
by (induction s t rule: insert.induct)
(auto simp: isin__case split: if _splits option.splits list.splits)

lemma set_trie_delete: set_trie (delete zs t) = set_trie t — {zs}
by (induction s t rule: delete.induct)
(auto simp: isin__case split!: if _splits option.splits list.splits)

interpretation S: Set
where empty = empty and isin = isin and insert = insert and delete =
delete
and set = set_trie and invar = _. True
proof (standard, goal_cases)
case 1 show ?Zcase by (simp add: isin__case split: list.split)
next
case 2 show ?case by(rule isin_set_trie)
next
case 3 show ?case by(rule set_trie_insert)
next
case 4 show ?Zcase by(rule set_trie_delete)
qed (rule Truel)+

end

41 Binary Tries and Patricia Tries

theory Tries Binary
imports Set_Specs

begin

hide_ const (open) insert

declare Let def[simp]

fun sel2 :: bool = 'a * 'a = 'a where
sel2 b (al,a2) = (if b then a2 else al)

fun mod2 :: ('a = 'a) = bool = 'a x 'a = 'a * 'a where
mod2 f b (al,a2) = (if b then (al.f a2) else (f al,a2))

41.1 Trie
datatype trie = Lf | Nd bool trie x trie

203

definition empty :: trie where
[simp]: empty = Lf

fun isin :: trie = bool list = bool where
isin Lf ks = False |
isin (Nd b lr) ks =
(case ks of
l=10]
k#ks = isin (sel2 k Ir) ks)

fun insert :: bool list = trie = trie where

insert [| Lf = Nd True (Lf,Lf) |

insert [| (Nd b lr) = Nd True Ir |

insert (k#ks) Lf = Nd False (mod2 (insert ks) k (Lf,Lf)) |
insert (k#ks) (Nd b lr) = Nd b (mod2 (insert ks) k Ir)

lemma isin__insert: isin (insert xs t) ys = (xzs = ys V isin t ys)
proof (induction xs t arbitrary: ys rule: insert.induct)
qed (auto split: list.splits if _splits)

A simple implementation of delete; does not shrink the trie!

fun delete0 :: bool list = trie = trie where
delete0 ks Lf = Lf |
delete0 ks (Nd b Ir) =
(case ks of
[| = Nd False Ir |
k#ks' = Nd b (mod2 (delete0 ks") k Ir))

lemma isin_delete0: isin (delete0 as t) bs = (as # bs A isin t bs)
proof (induction as t arbitrary: bs rule: delete0.induct)
qed (auto split: list.splits if _splits)

Now deletion with shrinking:

fun node :: bool = trie * trie = trie where
node b lr = (if = b N\ lr = (Lf,Lf) then Lf else Nd b Ir)

fun delete :: bool list = trie = trie where
delete ks Lf = Lf |
delete ks (Nd b Ir) =
(case ks of
[| = node False Ir |
k#ks' = node b (mod2 (delete ks’) k Ir))

lemma isin__delete: isin (delete xs t) ys = (zs # ys A isin t ys)

204

apply (induction zs t arbitrary: ys rule: delete.induct)
apply (auto split: list.splits if _splits)

apply (metis isin.simps(1))+

done

definition set trie :: trie = bool list set where
set_trie t = {zs. isin t zs}

lemma set_trie_empty: set_trie empty = {}
by (simp add: set_trie_def)

lemma set_trie_isin: isin t xs = (zs € set_trie t)
by (simp add: set_trie_def)

lemma set_trie_insert: set_trie(insert xs t) = set_trie t U {xs}
by (auto simp add: isin_insert set_trie_def)

lemma set_trie_delete: set_trie(delete xs t) = set_trie t — {xs}
by (auto simp add: isin__delete set_trie_def)

Invariant: tries are fully shrunk:

fun invar where
invar Lf = True |
invar (Nd b (I,r)) = (invar I A invar v A (I = Lf N r = Lf — b))

lemma insert_Lf: insert xs t # Lf
using insert.elims by blast

lemma invar_insert: invar t = invar(insert xs t)
proof (induction s t rule: insert.induct)

case ! thus ?case by simp
next

case (2 b Ir)

thus ?case by(cases Ir; simp)
next

case (3 k ks)

thus ?case by(simp; cases ks; auto)
next

case (4 k ks b Ir)

then show ?Zcase by(cases Ir; auto simp: insert_Lf)
ged

lemma invar_delete: invar t = invar(delete zs t)
proof (induction t arbitrary: xs)

205

case Lf thus “case by simp
next

case (Nd b Ir)

thus Zcase by(cases Ir)(auto split: list.split)
qed

interpretation S: Set
where empty = empty and isin = isin and insert = insert and delete
= delete
and set = set_trie and invar = invar
unfolding Set_ def
by (smt (verit, best) Tries_Binary.empty_def invar.simps(1) invar_delete
tnvar_insert set__trie__delete set_trie__empty set__trie_insert set_trz’e_ism)

41.2 Patricia Trie

datatype trieP = LfP | NdP bool list bool trieP x trieP
Fully shrunk:

fun invarP where

invarP LfP = True |

invarP (NdP ps b (I,r)) = (invarP | A invarP r A (I = LfP V r = LfP
— b))

fun isinP :: trieP = bool list = bool where
isinP LfP ks = False |
isinP (NdP ps b lr) ks =
(let n = length ps in
if ps = take n ks
then case drop n ks of [] = b | k#tks' = isinP (sel2 k Ir) ks’
else False)

definition emptyP :: trieP where
[simp]: emptyP = LfP

fun lcp :: 'a list = 'a list = 'a list x 'a list x 'a list where

lep [ys = ([.[lys) |

lep s [] = ([J,2s,]]) |

lep (a#xs) (y#ys) =

(if ay then ([],.z#ws,y#ys)

else let (ps,xs’,ys’) = lep xs ys in (z#ps,zs’,ys’))

lemma mod2_cong[fundef _cong]:

206

[lr=10"k=Fk; Nab. lr'=(a,b) = f (a) = f"(a); Nab. Ir'=(a,b) =
f) =r()]1

= mod2 [k lr= mod2 f' k' Ir’

by (cases Ir, cases Ir', auto)

fun insertP :: bool list = trieP = trieP where
insertP ks LfP = NdP ks True (LfP,LfP) |
insertP ks (NdP ps b lr) =
(case lep ks ps of
(gs, k#ks', p#ps’) =
let tp = NdP ps' b lr; tk = NdP ks’ True (LfP,LfP) in
NdP gs False (if k then (tp,tk) else (tk,tp)) |
(a5, khs', [}) =
NdP ps b (mod2 (insertP ks’) k Ir) |
(g5, [, p#ps’) =
let t = NdP ps" b lr in
NdP qs True (if p then (LfP,t) else (t,LfP)) |
(gs,[),[]) = NdP ps True Ir)

Smart constructor that shrinks:

definition nodeP :: bool list = bool = trieP x trieP = trieP where
nodeP ps b Ir =
(if b then NdP ps b lr
else case lr of
(LfP,LfP) = LfP |
(LfP, NdP ks b lr) = NdP (ps Q True # ks) b Ir |
(NdP ks b lr, LfP) = NdP (ps Q False # ks) b Ir |
__ = NdP ps b Ir)

fun deleteP :: bool list = trieP = trieP where
deleteP ks LfP = LfP |
deleteP ks (NdP ps b lr) =
(case lcp ks ps of
(., _,_F#)= NdPpsblr|
(_, k#ks', []) = nodeP ps b (mod2 (deleteP ks’) k Ir) |
(_, [, []) = nodeP ps False Ir)

41.2.1 Functional Correctness

First step: trieP implements ¢rie via the abstraction function abs trieP:

fun prefiz_trie :: bool list = trie = trie where
prefiz_trie [| t = ¢ |
prefiz__trie (k#ks) t =

207

(let t' = prefiz_trie ks t in Nd False (if k then (Lf,t") else (t',Lf)))

fun abs trieP :: trieP = trie where

abs__trieP LfP = Lf |

abs__trieP (NdP ps b (I,r)) = prefiz_trie ps (Nd b (abs__trieP l, abs_trieP
r))

Correctness of isinP:

lemma isin_prefix_trie:
isin (prefiz_trie ps t) ks
= (ps = take (length ps) ks A isin t (drop (length ps) ks))
by (induction ps arbitrary: ks) (auto split: list.split)

lemma abs_trieP_isinP:

isinP t ks = isin (abs_trieP t) ks
proof (induction t arbitrary: ks rule: abs_trieP.induct)
qed (auto simp: isin__prefiz_trie split: list.split)

Correctness of insertP:

lemma prefix_trie_Lfs: prefiz_trie ks (Nd True (Lf,Lf)) = insert ks Lf
by (induction ks) auto

lemma insert_prefiz_trie same:
insert ps (prefix_trie ps (Nd b Ir)) = prefiz_trie ps (Nd True Ir)
by (induction ps) auto

lemma insert_append: insert (ks Q ks') (prefiz_trie ks t) = prefiz_trie ks
(insert ks’ t)
by (induction ks) auto

lemma prefiz_trie_append: prefix_trie (ps Q gs) t = prefix__trie ps (prefiz__trie

gs t)
by (induction ps) auto

lemma Icp if: lep ks ps = (gs, ks', ps’) =

ks = qs Q ks’ A ps = qs @ ps" A (ks" # [| A ps’ # [| — hd ks’ # hd ps’)
proof (induction ks ps arbitrary: qs ks’ ps’ rule: lep.induct)
qed (auto split: prod.splits if _splits)

lemma abs_trieP__insertP:
abs_trieP (insertP ks t) = insert ks (abs_trieP t)
proof (induction t arbitrary: ks)
qed (auto simp: prefix_trie_Lfs insert_prefix_trie_same insert_append
prefix__trie__append

208

dest!: lep_if split: list.split prod.split if _splits)
Correctness of deleteP:

lemma prefiz_trie Lf: prefiz_trie xs t = Lf <— xs =[] A t = Lf
by (cases xs)(auto)

lemma abs_trieP_Lf: abs trieP t = Lf «+— t = LfP
by (cases t) (auto simp: prefix_trie_Lf)

lemma delete_prefiz_trie:
delete zs (prefix_trie xs (Nd b (1,r)))
= (if (I,r) = (Lf,Lf) then Lf else prefix_trie s (Nd False (I,r)))
by (induction zs)(auto simp: prefix_trie_Lf)

lemma delete append_prefix_trie:
delete (xs @ ys) (prefiz_trie xs t)
= (if delete ys t = Lf then Lf else prefix_trie xs (delete ys t))
by (induction zs)(auto simp: prefix_trie_Lf)

lemma nodeP_LfP2: nodeP xs False (LfP, LfP) = LfP
by (simp add: nodeP__def)

Some non-inductive aux. lemmas:
lemma abs_trieP_nodeP: a#LfP V b # LfP —>
abs_trieP (nodeP zs f (a, b)) = prefiz_trie xs (Nd f (abs_trieP a,

abs__trieP b))
by (auto simp add: nodeP__def prefix_trie__append split: trieP.split)

lemma nodeP__True: nodeP ps True lr = NdP ps True Ir
by (simp add: nodeP__def)

lemma delete _abs_trieP:
delete ks (abs_trieP t) = abs_trieP (deleteP ks t)
proof (induction t arbitrary: ks)
qed (auto simp: delete_prefiz_trie delete__append_prefiz_trie
prefix__trie__append prefix_trie_ Lf abs_trieP_Lf nodeP__LfP2 abs_trieP__nodeP
nodeP_True
dest!: lep_if split: if _splits list.split prod.split)

Invariant preservation:

lemma insertP_ LfP: insertP xs t # LfP
by (cases t)(auto split: prod.split list.split)

lemma invarP _insertP: invarP t = invarP(insertP zs t)

209

proof (induction t arbitrary: xs)
case LfP thus ?case by simp
next
case (NdP bs b Ir)
then show ?case
by (cases Ir)(auto simp: insertP_LfP split: prod.split list.split)
qed

lemma invarP_nodeP: | invarP t1; invarP t2] = invarP (nodeP xs b
(t1, t2))
by (auto simp add: nodeP__def split: trieP.split)

lemma invarP _deleteP: invarP t = invarP(deleteP xs t)
proof (induction t arbitrary: xs)
case LfP thus ?case by simp
next
case (NdP ks b Ir)
thus ?case by(cases Ir)(auto simp: invarP_nodeP split: prod.split list.split)
ged

The overall correctness proof. Simply composes correctness lemmas.

definition set trieP :: trieP = bool list set where
set_trieP = set_trie o abs_trieP

lemma isinP__set_trieP: isinP t xs = (zs € set_trieP t)
by(simp add: abs_trieP_isinP set_trie_isin set_trieP _def)

lemma set_trieP insertP: set_trieP (insertP xzs t) = set_trieP t U {zs}
by (simp add: abs_trieP_insertP set_trie_insert set_trieP__def)

lemma set_trieP_deleteP: set_trieP (deleteP zs t) = set_trieP t — {xs}
by (auto simp: set_trie_delete set_trieP__def simp flip: delete__abs__trieP)

interpretation SP: Set

where empty = emptyP and isin = isinP and insert = insertP and
delete = deleteP

and set = set_trieP and invar = invarP

proof (standard, goal_cases)

case 1 show ?case by (simp add: set_trieP _def set_trie_def)
next

case 2 show ?case by(rule isinP_set_trieP)
next

case 3 thus ?case by (auto simp: set_trieP_insertP)

210

next
case / thus ?case by(auto simp: set_trieP_deleteP)
next
case 5 thus ?case by(simp)
next
case 0 thus “case by(rule invarP _insertP)
next
case 7 thus ?case by(rule invarP__deleteP)
ged

end

42 Ternary Tries

theory Trie_Ternary
imports

Tree_ Map

Trie Fun
begin

An implementation of tries for an arbitrary alphabet ‘a where the map-
ping from an element of type ‘a to the sub-trie is implemented by an (un-
balanced) binary search tree. In principle, other search trees (e.g. red-black
trees) work just as well, with some small adjustments (Exercise!).

This is an implementation of the “ternary search trees” by Bentley and
Sedgewick [SODA 1997, Dr. Dobbs 1998]. The name derives from the fact
that a node in the BST can now be drawn to have 3 children, where the
middle child is the sub-trie that the node maps its key to. Hence the name
tries.

Example from https://en.wikipedia.org/wiki/Ternary__search_ tree#Description:

c/|auh||] t.teeu//|/|s p.e is.

Characters with a dot are final. Thus the tree represents the set of

non non

strings "cute","cup","at","as","he","us" and "i".
datatype 'a trie3 = Nd3 bool ('a x 'a trie3) tree

The development below works almost verbatim for any search tree im-
plementation, eg RBT Map, and not just Tree Map, except for the termi-
nation lemma lookup _size.

term size tree
lemma lookup__size[termination__simpl:
fixes ¢ :: (‘a::linorder x 'a trie3) tree
shows lookup t a = Some b = size b < Suc (size_tree (Aab. Suc (size

(snd(ab)))) t)

by (induction t a rule: lookup.induct)(auto split: if _splits)

211

https://en.wikipedia.org/wiki/Ternary_search_tree#Description

definition empty3 :: ‘a trie3 where
[simp]: empty3 = Nd3 False Leaf

fun isin3 :: (‘a::linorder) trie3 = 'a list = bool where

isin3 (Nd3bm) [] =b |

isind (Nd3 b m) (x # xs) = (case lookup m = of None = Fulse | Some t =
isin3 t xs)

fun insert3 :: (‘a::linorder) list = 'a trie3 = 'a trie3 where

insert3 [] (Nd3 b m) = Nd3 True m |

insert3 (z#xs) (Nd3 b m) =
Nd3 b (update z (insert3 xs (case lookup m = of None = empty3 | Some

t=t)) m)

fun delete3 :: (‘a::linorder) list = 'a trie3 = 'a trie3 where
delete3 [| (Nd3 b m) = Nd3 False m |
delete3 (x#xs) (Nd3 b m) = Nd3 b
(case lookup m z of
None = m |
Some t = update x (delete3 xs t) m)

42.1 Correctness

Proof by stepwise refinement. First abs3tract to type ‘a trie.

fun abs? :: 'a::linorder trie3 = 'a trie where
abs3 (Nd3 b t) = Nd b (Aa. map__option abs3 (lookup t a))

fun invars :: (‘a::linorder)trie3 = bool where
invar3 (Nd3 b m) = (M.invar m A (Y a t. lookup m a = Some t — invar3

t))

lemma isin__abs3: isin3 t zs = isin (abs3 t) xs
by (induction t xs rule: isin3.induct)(auto split: option.split)

lemma abs3_insert3: invard t = abs3(insert3 xs t) = insert zs (abs3 t)
proof (induction xs t rule: insert3.induct)

qged (auto simp: M.map__specs Tree_Set.empty_def[symmetric] split: op-
tion.split)

lemma abs3 delete3: invar3 t = abs3(delete3 xs t) = delete xs (abs3 t)
by (induction xs t rule: delete3.induct)(auto simp: M.map__specs split:

option.split)

212

lemma invars_insert3: invar3 t = invar3 (insert3 xs t)

proof (induction zs t rule: insert3.induct)

qged (auto simp: M.map__specs simp flip: Tree_Set.empty_def split: op-
tion.split)

lemma invar3 _delete3: invar3 t = invar3 (delete3 zs t)
by (induction xs t rule: delete3.induct)(auto simp: M.map__specs split:
option.split)

Overall correctness w.r.t. the Set ADT:

interpretation S2: Set
where empty = emptys and isin = ising and insert = insert3 and delete
= delete3
and set = set_trie o abs3 and invar = invar3
proof (standard, goal_cases)
case 1 show ?Zcase by (simp add: isin__case split: list.split)
next
case 2 thus ?case by (simp add: isin__abs3)
next
case 3 thus ?case by (simp add: set_trie_insert abs3_insert3 del: set__trie_ def)
next
case 4 thus ?case by (simp add: set_trie__delete abs3_delete3 del: set_trie_def)
next
case 5 thus ?case by (simp add: M.map__specs Tree__Set.empty__def[symmetric))
next
case 6 thus ?case by (simp add: invar3 insert3)
next
case 7 thus ?case by (simp add: invar3 _delete3)
qed

end

43 Queue Specification

theory Queue_ Spec
imports Main
begin

The basic queue interface with list-based specification:

locale Queue =

fixes empty :: 'q

fixes eng :: 'a = ‘g = 'q
fixes first : ‘¢ = 'a

213

fixes deq :: 'q = 'q

fixes is_empty :: "¢ = bool

fixes list :: 'q = 'a list

fixes invar :: "¢ = bool

assumes list_empty: list empty = ||

assumes list_eng: invar ¢ = list(enq x q) = list ¢ Q [z]
assumes list_deq: invar ¢ = list(deq q) = ti(list q)

assumes list_first: invar ¢ = = list ¢ = [| = first ¢ = hd(list q)
assumes list_is_empty: invar ¢ = is_empty q = (list ¢ = [])
assumes nvar_empty: invar empty

assumes nvar_eng: invar ¢ = invar(enq x q)

assumes invar_deq: invar ¢ = invar(deq q)

end

44 Queue Implementation via 2 Lists

theory Queue 2Lists
imports

Queue__Spec

HOL— Library. Time__ Functions
begin

Definitions:

type_synonym ’a queue = 'a list x 'a list

fun norm :: ‘a queue = 'a queue where

norm (fs,rs) = (if fs =[] then (itrev rs [], []) else (fs,rs))

fun eng :: 'a = 'a queue = 'a queue where
eng a (fs,rs) = norm(fs, a # rs)

fun deq :: 'a queue = 'a queue where
deq (fs,rs) = (if fs =[] then (fs,rs) else norm(tl fs,rs))

fun first :: 'a queue = 'a where

first (a # fs,rs) = a

fun is_empty :: 'a queue = bool where
is_empty (fs,rs) = (fs = [])

fun list :: 'a queue = 'a list where
list (fs,rs) = fs @Q rev rs

214

fun invar :: 'a queue = bool where
invar (fs,rs) = (fs =1 — rs = 1))

Implementation correctness:

interpretation Queue
where empty = ([],]]) and eng = eng and deq = deq and first = first
and is_empty = is_empty and list = list and invar = invar
proof (standard, goal_cases)

case ! show ?case by (simp)
next

case (2 q) thus ?case by(cases q) (simp)
next

case (3 q) thus ?case by(cases q) (simp add: itrev_ Nil)
next

case (4 q) thus ?case by(cases q) (auto simp: neq Nil__conv)
next

case (5 ¢) thus Zcase by(cases q) (auto)
next

case 6 show ?case by(simp)
next

case (7 q) thus ?case by(cases q) (simp)
next

case (8 q) thus ?case by(cases q) (simp)
qed

Running times:

time_fun norm
time_ fun eng
time_ fun deq

Amortized running times:

fun ® :: ‘a queue = nat where
O(fs,rs) = length rs

lemma a_eng: T enq a (fs,rs) + ®(enq a (fs,rs)) — ®(fs,rs) < 2
by (auto simp: T _itrev)

lemma a_deq: T deq (fs,rs) + ®(deq (fs,rs)) — ®(fs,rs) < 1
by (auto simp: T _itrev T _tl)

end

215

45 Priority Queue Specifications

theory Priority Queue_ Specs
imports HOL— Library. Multiset
begin

Priority queue interface + specification:

locale Priority Queue =
fixes empty :: 'q
and is_empty :: '¢ = bool
and insert :: 'a::linorder = 'qg = 'q
and get_min :: '¢ = 'a
and del_min :: "¢ = q
and invar :: 'q = bool
and mset :: 'qg = 'a multiset
assumes mset__empty: mset empty = {#}
and is_empty: invar ¢ = is_empty q = (mset ¢ = {#})
and mset_insert: invar ¢ = mset (insert x q) = mset q¢ + {#az#}
and mset_del_min: invar ¢ = mset q # {#} =
mset (del _min q) = mset ¢ — {# get_min q #}
and mset__get__min: invar ¢ = mset ¢ # {#} = get_min ¢ = Min_mset
(mset q)
and invar_empty: invar empty
and invar_insert: invar ¢ = invar (insert T q)
and invar_del_min: invar ¢ = mset q¢ # {#} = invar (del_min q)

Extend locale with merge. Need to enforce that ‘q is the same in both
locales.

locale Priority Queue__Merge = Priority_Queue where empty = empty
for empty :: 'q +

fixes merge :: 'q = ¢ = 'q

assumes mset_merge: [invar q1; invar ¢2 | = mset (merge q1 ¢2) =
mset g1 + mset g2

and invar_merge: [invar q1; invar ¢2 | = invar (merge q1 ¢2)

end

46 Heaps

theory Heaps
imports
HOL— Library. Tree_ Multiset
Priority Queue__ Specs
begin

216

Heap = priority queue on trees:

locale Heap =

fixes insert :: ('a::linorder) = 'a tree = 'a tree

and del min :: 'a tree = 'a tree

assumes mset_insert: heap ¢ = mset_tree (insert x q) = {#Fa#} +
mset__tree q

and mset_del_min: [heap q; q # Leaf | = mset__tree (del_min q) =
mset__tree ¢ — {#value q#}

and heap__insert: heap ¢ = heap(insert x q)

and heap_del_min: heap ¢ = heap(del_min q)

begin

definition empty :: ‘a tree where
empty = Leaf

fun is_empty :: ‘a tree = bool where
is_empty t = (t = Leaf)

fun get_min :: 'a tree = 'a where
get_min (Node la 1) = a

sublocale Priority Queue where empty = empty and is__empty = is_empty
and insert = insert
and get _min = get__min and del_min = del_min and invar = heap and
mset = mset__tree
proof (standard, goal_cases)
case I thus ?case by (simp add: empty__def)
next
case 2 thus ?case by(auto)
next
case 3 thus ?case by(simp add: mset_insert)
next
case / thus ?case by(auto simp add: mset_del _min neq Leaf iff)
next
case 5 thus ?case by(auto simp: neq Leaf iff Min_insert2 simp del:
Un__iff)
next
case 6 thus ?case by(simp add: empty_ def)
next
case 7 thus ?case by(simp add: heap_ insert)
next
case 8 thus ?case by(simp add: heap del min)
qed

217

end
Once you have merge, insert and del min are easy:

locale Heap Merge =

fixes merge :: 'a::linorder tree = 'a tree = 'a tree

assumes mset_merge: [heap q1; heap q2 | = mset_tree (merge q1 ¢2)
= mset_tree q1 + mset_tree q2

and invar_merge: | heap q1; heap q2 | = heap (merge q1 q2)

begin

fun insert :: 'a = 'a tree = 'a tree where
insert x t = merge (Node Leaf © Leaf) t

fun del _min :: 'a tree = 'a tree where
del_min Leaf = Leaf |
del_min (Node | z) = merge | r

interpretation Heap insert del _min
proof (standard, goal _cases)

case [thus ?case by(simp add:mset_merge)
next

case (2 q) thus ?Zcase by(cases q)(auto simp: mset_merge)
next

case 3 thus ?case by (simp add: invar_merge)
next

case (4 q) thus ?case by (cases q)(auto simp: invar_merge)
ged

lemmas local _empty def = local.empty def
lemmas local__get_min__def = local.get__min.simps

sublocale PQM: Priority _Queue_Merge where empty = empty and is__empty
= is_empty and insert = insert
and get _min = get_min and del_min = del_min and invar = heap and
mset = mset__tree and merge = merge
proof (standard, goal _cases)
case I thus ?case by (simp add: mset_merge)
next
case 2 thus ?case by (simp add: invar_merge)
ged

end

218

end

47 Leftist Heap

theory Leftist Heap
imports
HOL- Library. Pattern__Aliases
Tree2
Priority__ Queue__Specs
Complexr_Main
HOL— Library. Time__ Commands
begin

fun mset_tree :: ("ax'b) tree = 'a multiset where
mset__tree Leaf = {#} |
mset_tree (Node | (a,) r) = {#a#} + mset_tree | + mset_tree r

type__synonym ’a lheap = ('axnat)tree

fun mht :: 'a lheap = nat where
mht Leaf = 0 |
mht (Node _ (_,n)_)=mn

The invariants:

fun (in linorder) heap :: (‘ax’b) tree = bool where
heap Leaf = True |
heap (Node | (m,) r) =
(Vz € set_tree I U set_tree r. m < x) A heap I A\ heap r)

fun ltree :: 'a lheap = bool where

ltree Leaf = True |

ltree (Node [(a, n) r) =

(min__height | > min__height r A n = min__height r + 1 A ltree | & ltree

r)

definition empty :: ‘a lheap where
empty = Leaf

definition node :: 'a lheap = 'a = 'a lheap = 'a lheap where
node l a r =
(let mhl = mht l; mhr = mht r
in if mhl > mhr then Node | (a,mhr+1) r else Node r (a,mhl+1) 1)

fun get_min :: 'a lheap = 'a where

219

get_min(Node | (a, n) r) = a
For function merge:

unbundle pattern__aliases

fun merge :: 'a::ord lheap = 'a lheap = 'a lheap where

merge Leaf t = t |

merge t Leaf =t |

merge (Node 11 (al, nl) r1 =: t1) (Node 12 (a2, n2) r2 =: t2) =
(if al < a2 then node l1 al (merge r1 t2)
else node 12 a2 (merge t1 r2))

Termination of merge: by sum or lexicographic product of the sizes of
the two arguments. Isabelle uses a lexicographic product.

lemma merge_code: merge t1 t2 = (case (t1,t2) of
(Leaf,) = t2 |
(_, Leaf) = t1 |
(Node l1 (a1, nl) r1, Node 12 (a2, n2) r2) =
if al < a2 then node l1 al (merge r1 t2) else node 12 a2 (merge t1 12))
by (induction t1 t2 rule: merge.induct) (simp__all split: tree.split)

hide_ const (open) insert

definition insert :: ‘a::ord = 'a lheap = 'a lheap where
insert x t = merge (Node Leaf (z,1) Leaf) t

fun del _min :: 'a::ord lheap = 'a lheap where
del_min Leaf = Leaf |
del_min (Node |l __ 1) = merge l r

47.1 Lemmas
lemma mset_tree__empty: mset_tree t = {#} «— t = Leaf

by (cases t) auto

lemma mht_eq min_ height: ltree t = mht t = min__height t
by (cases t) auto

lemma ltree node: ltree (node | a r) <— ltree | A ltree r
by (auto simp add: node__def mht_eq min__height)

lemma heap_node: heap (node l a r) <—

heap I A heap r N (Vx € set_tree | U set_tree r. a < x)
by (auto simp add: node__def)

220

lemma set_tree_mset: set_tree t = set_mset(mset_tree t)
by (induction t) auto

47.2 Functional Correctness

lemma mset_merge: mset_tree (merge t1 t2) = mset_tree t1 + mset_tree
t2
by (induction t1 t2 rule: merge.induct) (auto simp add: node__def ac__simps)

lemma mset_insert: mset_tree (insert x t) = mset_tree t + {#z#}
by (auto simp add: insert_def mset_merge)

lemma get_min: [heap t; t # Leaf | = get_min t = Min(set_tree t)
by (cases t) (auto simp add: eq Min__iff)

lemma mset__del_min: mset_tree (del_min t) = mset_tree t — {# get_min

t #}

by (cases t) (auto simp: mset_merge)

lemma ltree_merge: [ltree l; ltree v | = ltree (merge | 1)
by (induction | r rule: merge.induct)(auto simp: ltree_node)

lemma heap _merge: [heap l; heap r | = heap (merge [1)
proof (induction | r rule: merge.induct)

case 3 thus ?case by (auto simp: heap_node mset_merge ball _Un set__tree__mset)
qed simp_all

lemma ltree_insert: ltree t = ltree(insert x t)
by (simp add: insert_def ltree__merge del: merge.simps split: tree.split)

lemma heap_insert: heap t = heap(insert z t)
by (simp add: insert_def heap__merge del: merge.simps split: tree.split)

lemma ltree del_min: ltree t = ltree(del_min t)
by (cases t)(auto simp add: ltree_merge simp del: merge.simps)

lemma heap__del_min: heap t = heap(del_min t)
by (cases t)(auto simp add: heap__merge simp del: merge.simps)

Last step of functional correctness proof: combine all the above lemmas
to show that leftist heaps satisfy the specification of priority queues with
merge.

interpretation lheap: Priority_ Queue_Merge

221

where empty = empty and is_empty = At. t = Leaf
and insert = insert and del _min = del _min
and get_min = get_min and merge = merge
and invar = At. heap t A ltree t and mset = mset_tree
proof (standard, goal _cases)

case I show ?case by (simp add: empty_def)
next

case (2 q) show Zcase by (cases q) auto
next

case 3 show ?Zcase by(rule mset_insert)
next

case 4 show ?case by(rule mset_del min)
next

case 5 thus ?case by (simp add: get_min mset_tree__empty set_tree_mset)
next

case 6 thus ?case by(simp add: empty_ def)
next

case 7 thus ?case by(simp add: heap__insert ltree_insert)
next

case 8 thus ?case by(simp add: heap__del _min ltree__del_min)
next

case 9 thus ?case by (simp add: mset_merge)
next

case 10 thus ?case by (simp add: heap merge ltree__merge)
qed

47.3 Complexity
Auxiliary time functions (which are both 0):

time_ fun mht
time_ fun node

lemma T_mht_0[simp|: T _mht t = 0
by (cases t)auto

Define timing function

time__fun merge
time_ fun insert
time_ fun del min

lemma T _merge__min__height: ltree | = ltree r => T_merge I r < min__height
I + min__height r + 1
proof (induction | r rule: merge.induct)

case 3 thus ?case by(auto)

222

qed simp_all

corollary T merge_log: assumes ltree [ltree r
shows T _merge [v < log 2 (sizel l) + log 2 (sizel r) + 1
using le_log2_of power|OF min__height_sizel[of []]
le_log2_of power[OF min__height_sizel[of r]] T _merge_min__height|of
[r] assms
by linarith

corollary T insert log: ltree t = T _insert z t < log 2 (sizel t) + 2
using T_merge_loglof Node Leaf (z, 1) Leaf t]
by (simp split: tree.split)

corollary T del_min_log: assumes ltree t
shows T _del_min t < 2 x log 2 (sizel t) + 1
proof (cases t rule: tree2 cases)
case Leaf thus ?thesis using assms by simp
next
case [simp|: (Node Il _ __)
show ?thesis
using «ltree t» T _merge_loglof |]
log_monolof 2 sizel | sizel t| log_monolof 2 sizel r sizel t]
by (simp del: T _merge.simps)
qed

end

theory Leftist Heap List
imports
Leftist__Heap
Complex__Main
begin

47.4 Converting a list into a leftist heap

fun merge_adj :: ('a::ord) lheap list = 'a lheap list where
merge_adj [| = [|

merge__adj [t] = [t] |

merge__adj (t1 # t2 # ts) = merge t1 t2 # merge_adj ts

For the termination proof of merge all below.

lemma length _merge__adjacent[termination__simpl: length (merge_adj ts)
= (length ts + 1) div 2

223

by (induction ts rule: merge__adj.induct) auto

fun merge_all :: ('a::ord) lheap list = 'a lheap where
merge__all [| = Leaf |

merge__all [t] =t |

merge__all ts = merge__all (merge__adj ts)

47.4.1 Functional correctness

lemma heap merge _adj: V't € set ts. heap t = V't € set (merge__adj ts).
heap t
by (induction ts rule: merge__adj.induct) (auto simp: heap__merge)

lemma ltree_merge_adj: V't € set ts. ltree t = V't € set (merge__adj ts).
ltree t
by (induction ts rule: merge__adj.induct) (auto simp: ltree__merge)

lemma heap__merge_all: V't € set ts. heap t => heap (merge__all ts)
apply (induction ts rule: merge _all.induct)
using [[simp__depth__limit=3]] by (auto simp add: heap__merge__adj)

lemma ltree_merge_all: V't € set ts. ltree t = ltree (merge__all ts)
apply (induction ts rule: merge__all.induct)
using [[simp_ depth_limit=3]] by (auto simp add: ltree_merge__ady)

lemma mset__merge__adj:
> # (image_mset mset_tree (mset (merge_adj ts))) =
>4 (image_mset mset_tree (mset ts))
by (induction ts rule: merge__adj.induct) (auto simp: mset_merge)

lemma mset_merge_all:
mset__tree (merge_all ts) = Y 4 (mset (map mset_tree ts))

by (induction ts rule: merge__all.induct) (auto simp: mset_merge mset_merge__ady)

fun lheap list :: 'a::ord list = 'a lheap where
lheap list xs = merge__all (map (A\z. Node Leaf (z,1) Leaf) xs)

lemma mset_lheap_ list: mset_tree (lheap list xs) = mset zs
by (simp add: mset_merge__all o__def)

lemma ltree_lheap_list: ltree (lheap list ts)
by (simp add: ltree_merge__all)

lemma heap__lheap__list: heap (lheap_ list ts)

224

by (simp add: heap__merge__all)

lemma size_merge: size(merge t1 t2) = size t1 + size t2
by (induction t1 t2 rule: merge.induct) (auto simp: node__def)

47.4.2 Running time

Not defined automatically because we only count the time for merge.

fun T merge_adj :: ('a::ord) lheap list = nat where

T merge_adj [|] = 0 |

T merge_adj [t] = 0 |

T _merge_adj (t1 # t2 # ts) = T _merge t1 t2 + T _merge_adj ts

fun T _merge_all :: (‘a::ord) lheap list = nat where

T _merge_all [| = 0

T merge_all [t] = 0 |

T merge_all ts = T _merge_adj ts + T _merge all (merge__adj ts)

fun T lheap list :: 'a::ord list = nat where
T lheap_list xs = T_merge_all (map (Az. Node Leaf (x,1) Leaf) xs)

abbreviation 7m where
Tmn==2xlog 2 (n+1) + 1

lemma T merge_adj: [Vt € set ts. ltree t; V't € set ts. sizet = n |
= T _merge_adj ts < (length ts div 2) * Tm n
proof (induction ts rule: T _merge__adj.induct)
case 1 thus ?case by simp
next
case 2 thus ?case by simp
next
case (3 t1 t2) thus ?case using T _merge_log[of t1 t2] by (simp add:
algebra__simps sizel__size)
qed

lemma size _merge _adj:
[even(length ts); ¥Vt € set ts. ltree t; V't € set ts. sizet = n]
= V't € set (merge_adj ts). size t = 2xn

by (induction ts rule: merge__adj.induct) (auto simp: size_merge)

lemma T merge_all:

[Vt e setts. ltree t; Vit € set ts. size t = n; length ts = 27k |

= T _merge_all ts < (> i=1..k. 27(k—i) x Tm(2 ~ (i—1) * n))
proof (induction ts arbitrary: k n rule: merge__all.induct)

225

case I thus ?case by simp
next
case 2 thus “case by simp
next
case (3 t1 t2 ts)
let ?ts = t1 # 12 # ts
let ?ts2 = merge_adj ?ts
obtain k' where k": k = Suc k' using 3.prems(3)
by (metis length__Cons nat.inject nat__power_eq Suc__0_iff nat.ezhaust)
have 1: Yz € set(merge_adj ?ts). ltree x
by (rule ltree_merge_adj|OF 3.prems(1)])
have even (length ts) using 3.prems(3) even_Suc_Suc_iff by fastforce
from 3.prems(2) size_merge__adj|OF this| 3.prems(1)
have 2:V z € set(merge__adj ?ts). size x = 2xn by (auto simp: size_merge)
have 3: length 7ts2 = 2 " k' using 3.prems(3) k' by (simp add: length__merge__adjacent)
have /: length ?ts div 2 = 2 ~ k'
using 3.prems(3) k' by(simp add: power_eq__if[of 2 k] split: if _splits)
have T merge all %ts = T merge_adj ?ts + T _merge_all ?ts2 by simp
also have ... < 27k’ x Tm n + T _merge_all ?ts2
using 4 T merge_adj|OF 3.prems(1,2)] by auto
also have ... < 27k'« Tmn 4+ (O i=1..k". 27(k'—i) * Tm(2 ~ (i—1) =
(24m)))
using 3.IH[OF 1 2 3] by simp
alsohave ... = 27k'*« Tmn+ (> i=1..k". 27(k'—i) x Tm(2 ~ (Suc(i—1))
)

by (simp add: mult_ac cong del: sum.cong)

also have ... = 27k'« Tmn + (O i=1..k". 27 (k') * Tm(2 ~i % n))
by (simp)
also have ... = (D i=1..k. 27(k—i) * Tm(2 ~ (i—1) * real n))

by (simp add: sum.atLeast_Suc__atMost[of Suc 0 Suc k'] sum.atLeast_Suc__atMost_Suc__shift[of
_ Suc 0] k'
del: sum.cl_ivl_Suc)
finally show “case .
qed

lemma summation: (> i=1.k. 27 (k—i) *x ((2:real)*i+1)) = 5x27k —
(2:real)xk — 5
proof (induction k)
case 0 thus ?case by simp
next
case (Suc k)
have (> i=1..Suc k. 27 (Suc k — i) % ((2::real)xi+1))
= (>l i=1..k. 27(k+1—i) % ((2::real)xi+1)) + 2xk+3
by (simp)

226

also have ... = (> i=1..k. (2:real)x(27(k—i) * ((2::real)xi+1))) +

2xk+3
by (simp add: Suc__diff le mult.assoc)
also have ... = 2x()_i=1..k. 27(k—1i) x ((2:real)xi+1)) + 2xk+3
by (simp add: sum__distrib__left)
also have ... = (2:ureal)*x(5%27k — (2::real)xk — 5) + 2xk+3
using Suc.IH by simp
also have ... = 5x27(Suc k) — (2::real)x(Suc k) — &
by simp
finally show ?case .
qged

lemma T lheap list: assumes length zs = 2 ~ k
shows T [heap_list xs < 5 x length xs — 2 * log 2 (length xs)
proof —
let ?ts = map (A\z. Node Leaf (z,1) Leaf) zs
have T lheap list xs = T _merge__all ?ts by simp
alsohave ... < (D i= 1.k 27(k—i)* (2xlog2 (27(i—1)+ 1)+ 1))
using T _merge_all[of ?ts 1 k| assms by (simp)
also have ... < (3 i = 1.k 27(k—i) % (2 xlog 2 (2x27(i—1)) + 1))
apply(rule sum__mono)
using zero_le_power|of 2::real] by (simp add: add_pos nonneg)

alsohave ... = (3 i = 1..k. 27(k—i) x (2 x log 2 (27 (1+(i—1))) + 1))
by (simp del: Suc__pred)

also have ... = (D i=1..k. 27(k—i) * (2 xlog 2 (27%) + 1))
by (simp)

also have ... = (D7 = 1..k. 27(k—i) * ((2::real)*i+1))
by (simp add:log_nat_power algebra__simps)

also have ... = 5x(2:real) k — (2::real)xk — 5

using summation by (simp)
finally show ?thesis
using assms of _nat_le_iff by simp
ged

end

48 Binomial Priority Queue

theory Binomial Heap
imports
HOL— Library. Pattern__Aliases
Complex_ Main
Priority Queue_ Specs

227

HOL— Library. Time__Functions
begin

We formalize the presentation from Okasaki’s book. We show the func-
tional correctness and complexity of all operations.

The presentation is engineered for simplicity, and most proofs are straight-
forward and automatic.

48.1 Binomial Tree and Forest Types
datatype ‘a tree = Node (rank: nat) (root: 'a) (children: 'a tree list)

type_ synonym ’a forest = 'a tree list

48.1.1 Multiset of elements

fun mset_tree :: 'a:linorder tree = 'a multiset where
mset_tree (Node _ a ts) = {#a#} + (O te#mset ts. mset_tree t)

definition mset_forest :: 'a::linorder forest = 'a multiset where
mset_forest ts = (Y te#mset ts. mset_tree t)

lemma mset__tree__simp__alt[simp):
mset__tree (Node r a ts) = {#a#} + mset_forest ts
unfolding mset_forest def by auto

declare mset__tree.simps|[simp del]

lemma mset_tree__nonempty|simp|: mset_tree t # {#}
by (cases t) auto

lemma mset_forest_ Nil[simp]:
mset__forest [| = {#}
by (auto simp: mset_ forest_def)
lemma mset_forest__Cons|simp|: mset_forest (t#ts) = mset__tree t + mset_ forest
ts
by (auto simp: mset_ forest_def)

lemma mset_forest_empty__iff [simp|: mset_forest ts = {#} +— ts=]]
by (auto simp: mset_forest_def)

lemma root_in_mset[simp]: root t €# mset_tree t
by (cases t) auto

lemma mset_forest_rev_eq[simp]: mset_forest (rev ts) = mset__forest ts

228

by (auto simp: mset_ forest_def)

48.1.2 Invariants

Binomial tree

fun biree :: 'a::linorder tree = bool where
btree (Node r x ts) +—
(Vteset ts. btree t) A map rank ts = rev [0..<7]

Heap invariant

fun heap :: 'a::linorder tree = bool where
heap (Node __ x ts) <— (VY t€set ts. heap t N x < root t)

definition bheap t <— btree t N\ heap t
Binomial Forest invariant:

definition invar ts <— (V t€set ts. bheap t) A (sorted_wrt (<) (map rank
ts))

A binomial forest is often called a binomial heap, but this overloads the
latter term.

The children of a binomial heap node are a valid forest:

lemma invar_children:
bheap (Node r v ts) = invar (rev ts)
by (auto simp: bheap__def invar_def rev_map[symmetric])

48.2 Operations and Their Functional Correctness
48.2.1 link

context
includes pattern_aliases
begin

fun link :: ('a::linorder) tree = 'a tree = 'a tree where
link (Node r x1 ts1 =: t1) (Node r’ zo tsg =: tg) =
(if ©1<zo then Node (r+1) 1 (ta#ts1) else Node (r+1) zo (t1#ts2))

end

lemma invar_link:
assumes bheap t;
assumes bheap to
assumes rank t1 = rank to
shows bheap (link t1 t2)

229

using assms unfolding bheap_ def
by (cases (t1, to) rule: link.cases) auto

lemma rank_link[simp]: rank (link t1 t2) = rank t; + 1
by (cases (t1, ta) rule: link.cases) simp

lemma mset__link[simpl|: mset__tree (link t, t2) = mset_tree t; + mset_tree
to
by (cases (t1, ta2) rule: link.cases) simp

48.2.2 ins_tree

fun ins_tree :: 'a::linorder tree = 'a forest = 'a forest where
ins_tree t [| = [t]

| ins_tree t1 (to#ts) =
(if rank t1 < rank to then t1#ta#ts else ins_tree (link ty ta) ts)

lemma bheap0[simp): bheap (Node 0 x [])
unfolding bheap def by auto

lemma invar__Cons|simp]:

invar (t#ts)

< bheap t A invar ts A (Vt'eset ts. rank t < rank t')
by (auto simp: invar_def)

lemma invar_ins_tree:
assumes bheap t
assumes novar ts
assumes VY t'Cset ts. rank t < rank t’
shows invar (ins_tree t ts)
using assms
by (induction t ts rule: ins__tree.induct) (auto simp: invar_link less_eq_Suc__le[symmetric])

lemma mset_forest_ins_tree[simp):
mset__forest (ins_tree t ts) = mset_tree t + mset_forest ts
by (induction t ts rule: ins_tree.induct) auto

lemma ins tree rank bound:
assumes t’ € set (ins_tree t ts)
assumes V t'cset ts. rank tg < rank t’
assumes rank tg < rank t
shows rank ty < rank t’
using assms
by (induction t ts rule: ins_tree.induct) (auto split: if _splits)

230

48.2.3 insert

hide__const (open) insert

definition insert :: ‘a::linorder = 'a forest = 'a forest where
insert x ts = ins_tree (Node 0 x []) ts

lemma invar_insert[simp|: invar t = invar (insert x t)
by (auto intro!: invar_ins__tree simp: insert_def)

lemma mset_forest_insert[simp]: mset_forest (insert x t) = {#Hx#} +
mset__forest t
by (auto simp: insert_def)

48.2.4 merge

context
includes pattern__aliases
begin

fun merge :: 'a::linorder forest = 'a forest = 'a forest where
merge ts1 [= ts1
| merge [| tso = tso
| merge (t1#ts1 =: f1) (to#ttsy =: f2) = (
if rank t1 < rank to then t1 # merge tsy fo else
if rank to < rank t1 then to # merge f1 tso
else ins__tree (link t1 to) (merge ts; tsa)

)

end

lemma merge__simp2|[simp|: merge [] tsy = tso
by (cases ts3) auto

lemma merge_rank__bound:
assumes t’ € set (merge tsy tsa)
assumes VY t1o€set ts1 U set tsy. rank t < rank tio
shows rank t < rank t’

using assms

by (induction tsy tsy arbitrary: t' rule: merge.induct)
(auto split: if splits simp: ins_tree__rank__bound)

lemma invar_merge[simpl:
assumes invar tsy

231

assumes nvar tsg
shows invar (merge tsy tsq)
using assms
by (induction ts; tsy rule: merge.induct)
(auto 0 3 simp: Suc__le__eq intro!: invar_ins__tree invar_link elim!: merge__rank__bound)

Longer, more explicit proof of invar_merge, to illustrate the application
of the merge__rank__bound lemma.

lemma
assumes invar ts;
assumes nvar tsg
shows invar (merge ts; tsq)
using assms
proof (induction tsy tss rule: merge.induct)
case (3 t; tsy ty tso)
— Invariants of the parts can be shown automatically
from 3.prems have [simp]:
bheap t1 bheap to

by auto

— These are the three cases of the merge function
consider (LT) rank t; < rank to
| (GT) rank t1 > rank to
| (EQ) rank t; = rank to
using antisym__conv3 by blast
then show ?case proof cases
case LT
— merge takes the first tree from the left heap
then have merge (t; # ts1) (to # tsa) = t1 # merge tsy (to # ts2) by
simp
also have invar ... proof (simp, intro conjl)
— Invariant follows from induction hypothesis
show invar (merge tsy (ta # ts2))
using LT 3.IH 3.prems by simp

— It remains to show that ¢; has smallest rank.
show Vt'eset (merge ts1 (ta # ts2)). rank t1 < rank t’
— Which is done by auxiliary lemma merge rank bound
using LT 3.prems by (force elim!: merge_rank_bound)
ged
finally show ?thesis .
next
— merge takes the first tree from the right heap

232

case GT
— The proof is anaologous to the LT case
then show ?thesis using 3.prems 3.1H by (force elim!: merge__rank__bound)
next
case [simp]: EQ
— merge links both first forest, and inserts them into the merged re-
maining heaps
have merge (t1 # ts1) (to # tso) = ins_tree (link t1 t2) (merge tsy tsq)
by simp
also have invar ... proof (intro invar_ins_tree invar_link)
— Invariant of merged remaining heaps follows by IH
show invar (merge ts tsg)
using EQ 3.prems 3.IH by auto

— For insertion, we have to show that the rank of the linked tree is <
the ranks in the merged remaining heaps
show V t'eset (merge tsy tse). rank (link t1 t2) < rank t’
proof —
— Which is, again, done with the help of merge rank_bound
have rank (link t1 t2) = Suc (rank t2) by simp
thus ?thesis using 3.prems by (auto simp: Suc_le eq elim!:
merge__rank__bound)
qed
qed simp__all
finally show ?thesis .
qed
qed auto

lemma mset_forest_merge[simp]:
mset__forest (merge ts; tsy) = mset_forest ts; + mset_forest tsy
by (induction tsi tsy rule: merge.induct) auto

48.2.5 get_min

fun get_min :: 'a::linorder forest = 'a where
get_min [t] = root t
| get_min (t#ts) = min (root t) (get_min ts)

lemma bheap root _min:
assumes bheap t
assumes r €# mset_tree t
shows root t < z

using assms unfolding bheap_ def

233

by (induction t arbitrary: x rule: mset__tree.induct) (fastforce simp: mset_ forest_def)

lemma get__min__mset:
assumes (s#[]
assumes nvar ts
assumes r €# mset_forest ts
shows get _min ts < x
using assms
apply (induction ts arbitrary: x rule: get__min.induct)
apply (auto
simp: bheap__root__min min__def intro: order trans;
meson linear order__trans bheap__root__min
)+
done

lemma get__min__member:
ts#[] = get_min ts €# mset_forest ts
by (induction ts rule: get_min.induct) (auto simp: min__def)

lemma get_min:

assumes mset_ forest ts # {#}

assumes invar ts

shows get_min ts = Min_mset (mset_forest ts)
using assms get__min_member get__min__mset
by (auto simp: eq _Min__iff)

48.2.6 get _min_rest

fun get_min_rest :: 'a::linorder forest = 'a tree x 'a forest where
get_min__rest [t] = (1,]])
| get_min_rest (t#ts) = (let (t',ts’) = get_min_rest ts
in if root t < root t' then (t,ts) else (t' t#ts’))

lemma get__min_ rest_get_min__same__root:
assumes ts#[]
assumes get_min_rest ts = (t',ts’)
shows root t' = get_min ts
using assms
by (induction ts arbitrary: t' ts' rule: get_min.induct) (auto simp: min__def
split: prod.splits)

lemma mset_get _min__rest:

assumes get_min_rest ts = (t',ts’)
assumes ts#£[|

234

shows mset ts = {#t'#} + mset ts’
using assms
by (induction ts arbitrary: t' ts' rule: get__min.induct) (auto split: prod.splits

if _splits)

lemma set _get min_ rest:

assumes get_min_rest ts = (t', ts')

assumes {s#|]

shows set ts = Set.insert t' (set ts')
using mset__get_min_ rest|OF assms, THEN arg__cong[where f=set_mset]]
by auto

lemma invar_get _min_ rest:
assumes get_min_rest ts = (t',ts’)
assumes (s#£[]
assumes invar ts
shows bheap t’ and invar ts’
proof —
have bheap t’' A invar ts’
using assms
proof (induction ts arbitrary: t' ts’ rule: get _min.induct)
case (2t v va)
then show ?case
apply (clarsimp split: prod.splits if _splits)
apply (drule set_get _min__rest; fastforce)
done
qed auto
thus bheap t’ and invar ts’ by auto
qed

48.2.7 del _min

definition del_min :: 'a::linorder forest = 'a:linorder forest where
del_min ts = (case get_min_rest ts of
(Node r x ts1, tsa) = merge (itrev tsy []) tsa)

lemma invar_del_min[simp]:

assumes ts # ||

assumes nvar ts

shows invar (del_min ts)
using assms
unfolding del__min_ def itrev_ Nil
by (auto

split: prod.split tree.split

235

introl: invar_merge invar_children
dest: invar__get_min__rest

)

lemma mset_forest_del min:
assumes ts # ||
shows mset_forest ts = mset_forest (del_min ts) + {# get_min ts #}
using assms
unfolding del__min_ def itrev_ Nil
apply (clarsimp split: tree.split prod.split)
apply (frule (1) get_min_rest_get _min__same_root)
apply (frule (1) mset_get _min__rest)
apply (auto simp: mset_forest__def)
done

48.2.8 Instantiating the Priority Queue Locale

Last step of functional correctness proof: combine all the above lemmas to
show that binomial heaps satisfy the specification of priority queues with
merge.

interpretation bheaps: Priority Queue_Merge
where empty = [| and is_empty = (=) || and insert = insert
and get_min = get_min and del _min = del_min and merge = merge
and invar = invar and mset = mset_forest
proof (unfold_locales, goal_cases)
case 1 thus ?case by simp
next
case 2 thus ?case by auto
next
case 3 thus ?case by auto
next
case (4 q)
thus ?case using mset_forest del_minlof q| get_min[OF __ <invar @]
by (auto simp: union__single _eq _diff)
next
case (4 q) thus ?case using get_min|of q] by auto
next
case 6 thus ?case by (auto simp add: invar_def)
next
case 7 thus “case by simp
next
case 8 thus “case by simp
next
case 9 thus “case by simp

236

next
case 10 thus ?case by simp
qed

48.3 Complexity
The size of a binomial tree is determined by its rank

lemma size _mset_btree:
assumes biree t
shows size (mset_tree t) = 2 rank t
using assms
proof (induction t)
case (Node r v ts)
hence IH: size (mset_tree t) = 2 rank t if t € set ts for ¢
using that by auto

from Node have COMPL: map rank ts = rev [0..<r] by auto

have size (mset_forest ts) = (D t<—ts. size (mset_tree t))
by (induction ts) auto
also have ... = (> t«ts. 27rank t) using IH
by (auto cong: map__cong)
also have ... = (3 r<—map rank ts. 27r)
by (induction ts) auto
also have ... = (> ie{0..<r}. 27%)
unfolding COMPL
by (auto simp: rev_map[symmetric] interv__sum__list_conv_sum__set_nat)
also have ... = 27r — 1
by (induction r) auto
finally show ?case
by (simp)
qed

lemma size _mset__tree:

assumes bheap t

shows size (mset_tree t) = 2 rank t
using assms unfolding bheap_ def
by (simp add: size_mset__btree)

The length of a binomial heap is bounded by the number of its elements

lemma size_mset_forest:

assumes invar ts

shows length ts < log 2 (size (mset_forest ts) + 1)
proof —

237

from <invar ts) have
ASC: sorted_wrt (<) (map rank ts) and
TINV: ¥V teset ts. bheap t

unfolding invar_def by auto

have (2::nat) length ts = (D ic€{0..<length ts}. 27%) + 1
by (simp add: sum__power2)

also have ... = (D i« [0..<length ts]. 27%) + 1 (is _ = 95 + 1)
by (simp add: interv_sum__list__cony__sum__set_nat)

also have 75 < (D> t«ts. 27rank t) (is _ < ?T)
using sorted_wrt_less _idz[OF ASC] by(simp add: sum__list_mono?2)

also have ?T + 1 < () t«ts. size (mset_tree t)) + 1 using TINV
by (auto cong: map__cong simp: size_mset__tree)

also have ... = size (mset_forest ts) + 1
unfolding mset_forest_def by (induction ts) auto

finally have 27length ts < size (mset_forest ts) + 1 by simp

then show ?thesis using le_log2 of power by blast

qed

48.3.1 Timing Functions

time_ fun link

lemma T _link[simp|: T link t; to = 0
by (cases t1; cases ta, auto)

time_ fun rank

lemma T rank[simp|: T rank t = 0
by (cases t, auto)

time_ fun ins tree
time_ fun insert

lemma T ins tree_simple _bound: T ins tree t ts < length ts + 1
by (induction t ts rule: T _ins_tree.induct) auto

48.3.2 T insert

lemma T insert bound:

assumes nvar ts

shows T insert x ts < log 2 (size (mset_forest ts) + 1) + 1
proof —

238

have real (T _insert x ts) < real (length ts) + 1
unfolding T insert.simps using T ins_tree_simple_bound
by (metis of nat_1 of nat_add of nat_mono)
also note size_mset_forest[OF <invar ts)]
finally show ?thesis by simp
qged

48.3.3 T merge
time_ fun merge

A crucial idea is to estimate the time in correlation with the result length,
as each carry reduces the length of the result.

lemma T ins tree_length:
T ins_tree t ts + length (ins_tree t ts) = 2 + length ts
by (induction t ts rule: ins_tree.induct) auto

lemma T merge_length:

T _merge tsy tsy + length (merge tsy tsy) < 2 x (length ts; + length tsy)
+ 1
by (induction ts; tsy rule: merge.induct)

(auto simp: T ins_tree_length algebra__simps)

Finally, we get the desired logarithmic bound

lemma T merge_bound:

fixes ts1 tso

defines n; = size (mset_forest tsy)

defines ny = size (mset_forest tsy)

assumes invar tsy invar tsg

shows T _merge ts; tso < 4xlog 2 (ng + ny + 1) + 1
proof —

note n_defs = assms(1,2)

have T _merge ts; tso < 2 x real (length ts1) + 2 x real (length tsy) + 1
using T _merge__length[of ts1 ts2] by simp
also note size_mset_forest[OF <invar tsi»]
also note size_mset_forest[OF <invar tsy»]
finally have T _merge tsy tso < 2 x log 2 (n1 + 1) + 2 % log 2 (n2 +
1)+ 1
unfolding n_ defs by (simp add: algebra__simps)
also have log 2 (n1 + 1) <log 2 (n1 + n2 + 1)
unfolding n__defs by (simp add: algebra__simps)
also have log 2 (na + 1) <log 2 (n1 + n2 + 1)
unfolding n_ defs by (simp add: algebra__simps)

239

finally show ?thesis by (simp add: algebra__simps)
qged

48.3.4 T get _min

time_ fun root

lemma T _root[simp]: T _root t = 0
by (cases t)(simp__all)

time_ fun min
time_ fun get _min

lemma T _get _min__estimate: ts#[] = T_get_min ts = length ts
by (induction ts rule: T _get _min.induct) auto

lemma T get min_bound:
assumes invar ts
assumes ts#|]
shows T get_min ts < log 2 (size (mset_forest ts) + 1)
proof —
have 1: T get min ts = length ts using assms T__get__min__estimate by
auto
also note size_mset_forest[OF <invar ts)]
finally show ?thesis .
qed

48.3.5 T del min

time_ fun get _min_ rest

lemma T __get_min_rest_estimate: ts#[] = T_get_min__rest ts = length
ts
by (induction ts rule: T _get _min__rest.induct) auto

lemma T get min_ rest_bound:

assumes nvar ts

assumes (s#[]

shows T get min_rest ts < log 2 (size (mset_forest ts) + 1)
proof —

have 1: T get min_ rest ts = length ts using assms T__get__min_ rest__estimate
by auto

also note size _mset_forest|OF <invar ts)]

240

finally show ?thesis .
qged

time_ fun del _min

lemma T del min_bound:
fixes ts
defines n = size (mset_ forest ts)
assumes invar ts and ts#||
shows T del _min ts < 6 x log 2 (n+1) + 2
proof —
obtain r z ts; tsy where GM: get_min_rest ts = (Node r x ts1, tsa)
by (metis surj_pair tree.exhaust_sel)

have I1: invar (rev ts1) and I2: invar tso
using invar_get_min_rest{OF GM <ts#[]» <invar ts)] invar_children
by auto

define n; where ny = size (mset_forest tsq)
define ny where ny = size (mset_forest tsy)

have n; < n ny + ny < n unfolding n_ def ny_ def no__def
using mset__get_min_rest{OF GM <ts#[])]
by (auto simp: mset_forest_def)

have T _del_min ts = real (T _get_min_rest ts) + real (T _itrev ts; [])
+ real (T _merge (rev tsy) tsa)
unfolding T del _min.simps GM T _itrev itrev_ Nil
by simp
also have T get _min_rest ts < log 2 (n+1)
using T __get_min__rest_bound[OF <invar ts) <ts#[]>] unfolding n__ def
by simp
also have T itrevits; [| < 1 + log 2 (n1 + 1)
unfolding T itrev ni__def using size_mset_ forest[OF I1] by simp
also have T _merge (rev ts1) tsa < 4xlog 2 (n1 + no + 1) + 1
unfolding n,_ def no__def using T _merge_bound[OF 11 I2] by (simp
add: algebra__simps)
finally have T del_min ts < log 2 (n+1) + log 2 (n1 + 1) + 4x*log 2
(real (n1 + n2) + 1) + 2
by (simp add: algebra__simps)
also note <n; + no < n»
also note <n; < n»
finally show %thesis by (simp add: algebra__simps)
qged

241

end

49 The Median-of-Medians Selection Algorithm

theory Selection
imports Compler Main HOL— Library. Time__ Functions Sorting
begin

Note that there is significant overlap between this theory (which is in-
tended mostly for the Functional Data Structures book) and the Median-of-
Medians AFP entry.

49.1 Auxiliary material

lemma replicate_numeral: replicate (numeral n) x = x # replicate (pred_numeral
n)
by (simp add: numeral _eq Suc)

lemma insort_correct: insort xs = sort xs
using sorted__insort mset_insort by (metis properties_for__sort)

lemma sum__list_replicate [simp|: sum__list (replicate n) = n * x
by (induction n) auto

lemma mset__concat: mset (concat zss) = sum__list (map mset xss)
by (induction xss) simp__all

lemma set_mset__sum__list [simp]: set_mset (sum__list xs) = (|J xE€set wxs.
set_mset x)
by (induction xs) auto

lemma filter _mset_image mset:
filter_mset P (image_mset f A) = image_mset f (filter _mset (A\x. P (f
z)) A)

by (induction A) auto

lemma filter _mset__sum__list: filler _mset P (sum__list zs) = sum__list (map
(filter _mset P) xs)
by (induction xs) simp__all

lemma sum__mset _mset_mono:
assumes (A\z. z €# A = fa C# g x)

shows (Y ze#A. fz) C# O xe#A. g x)

242

using assms by (induction A) (auto introl: subset _mset.add_mono)

lemma mset_filter _mono:

assumes A C# BN\z. 2 €e# A= Pz — Qu

shows filter _mset P A C# filter _mset Q B

by (rule mset__subset__eql) (insert assms, auto simp: mset__subset__eq__count
count__eq_zero__iff)

lemma size_mset__sum__mset__distrib: size (sum_mset A :: 'a multiset) =
sum__mset (image_mset size A)
by (induction A) auto

lemma sum_ mset_mono:
assumes A\z. z €# A= fz < (g :: 'a:: {ordered_ab_semigroup__add,comm__monoid_add})

shows (Y ze#A. fz) < (D ze#A. g x)

using assms by (induction A) (auto introl: add_mono)

lemma filter _mset_is_empty_iff: filter _mset P A = {#} «+— (Vz. x €#
A — =P 1)
by (auto simp: multiset__eq_iff count__eq_zero__iff)

lemma sort_eq Nil_iff [simp]: sort zs = [| +— xs = ||
by (metis set__empty set_sort)

lemma sort _mset cong: mset xs = mset ys = sort s = sort ys
by (metis sorted_list_of _multiset_mset)

lemma Min__set_sorted: sorted xs = xs # [| = Min (set xs) = hd zs
by (cases ws; force intro: Min__insert2)

lemma hd_sort:
fixes xs :: ‘a :: linorder list
shows zs # [| = hd (sort zs) = Min (set xs)
by (subst Min__set_sorted [symmetric]) auto

lemma length_filter _conv_size_filter _mset: length (filter P zs) = size (filter _mset
P (mset xs))
by (induction xs) auto

lemma sorted_ filter less subset take:
assumes sorted zs and ¢ < length xs
shows {#xz €# mset zs. x < xs | i#} CH# mset (take i xs)
using assms

proof (induction xs arbitrary: i rule: list.induct)

243

case (Cons x xs 1)
show ?Zcase
proof (cases i)
case (
thus ?thesis using Cons.prems by (auto simp: filter _mset_is_empty__iff)
next
case (Suc i’)
have {#y €# mset (z # zs). y < (x # xs) | i#} CH# add_mset x {#y
E# mset xs. y < zs | i'#}
using Suc Cons.prems by (auto)
also have ... C# add_mset z (mset (take i’ xs))
unfolding mset_subset_eq add_mset_cancel using Cons.prems Suc
by (intro Cons.IH) (auto)

also have ... = mset (take i (z # ws)) by (simp add: Suc)
finally show ?thesis .
qed
qged auto

lemma sorted_filter greater subset drop:
assumes sorted zs and ¢ < length xs
shows {#x €# mset xs. © > xs ! i#} CH mset (drop (Suc i) xs)
using assms
proof (induction xs arbitrary: i rule: list.induct)
case (Cons x xs i)
show ?case
proof (cases 1)
case (
thus ?thesis by (auto simp: sorted__append filter _mset__is_empty_iff)
next
case (Suc i')
have {#y €# mset (x # xs). y > (z # xs) | i#} CH# {#y €# mset zs.
y > xs | i'#}
using Suc Cons.prems by (auto simp: set _conv_nth)
also have ... C# mset (drop (Suc i) zs)
using Cons.prems Suc by (intro Cons.IH) (auto)

also have ... = mset (drop (Suc i) (z # ws)) by (simp add: Suc)
finally show ?thesis .
qed
qed auto

49.2 Chopping a list into equally-sized bits

fun chop :: nat = 'a list = 'a list list where
chop 0 _ =]

244

| chop _ [=]
| chop n xs = take n xs # chop n (drop n xs)

lemmas [simp del] = chop.simps
lemmas [simp] = chop.simps(1)

This is an alternative induction rule for chop, which is often nicer to use.

lemma chop_induct’ [case__names trivial reduce]:
assumes Anzs.n =0V zs =[] = Pnus
assumes Anaxs.n > 0 = zs # [| = P n (drop nzs) = P n xs
shows P n xs
using assms
proof induction__schema
show wf (measure (length o snd))
by auto
qed (blast | simp)+

lemma chop__eq Nil_iff [simp]: chop nxs =[] +— n =0V xs = ||
by (induction n xs rule: chop.induct; subst chop.simps) auto

lemma chop_ Nil [simp]: chop n [] = []
by (cases n) auto

lemma chop_reduce: n > 0 = zs # [| = chop n xs = take n xs # chop
n (drop n xs)
by (cases n; cases zs) (auto simp: chop.simps)

lemma concat_chop [simp]: n > 0 = concat (chop n zs) = zs
by (induction n zs rule: chop.induct; subst chop.simps) auto

lemma chop__elem_not_Nil [dest]: ys € set (chop n xs) = ys # []
by (induction n xs rule: chop.induct; subst (asm) chop.simps)
(auto simp: eq_commute|of []] split: if _splits)

lemma length__chop_part_le: ys € set (chop n xs) = length ys < n
by (induction n xs rule: chop.induct; subst (asm) chop.simps) (auto split:

if _splits)

lemma length_chop:
assumes n > ()
shows length (chop n zs) = nat [length zs /| n|
proof —
from <n > 0> have real n * length (chop n xs) > length xs
by (induction n xs rule: chop.induct; subst chop.simps) (auto simp:

245

field__simps)
moreover from ¢(n > 0> have real n * length (chop n xs) < length zs +
n
by (induction n xs rule: chop.induct; subst chop.simps)
(auto simp: field__simps split: nat__diff _split_asm)+
ultimately have length (chop n zs) > length zs / n and length (chop n
xs) < length zs /| n + 1
using assms by (auto simp: field _simps)
thus ?thesis by linarith
qged

lemma sum_msets_chop: n > 0 = (>_ ys«—chop n zs. mset ys) = mset
xs
by (subst mset__concat [symmetric]) simp__all

lemma UN_sets chop: n > 0 = (|J ys€set (chop n xs). set ys) = set xs
by (simp only: set_concat [symmetric] concat__chop)

lemma chop__append: d dvd length ts = chop d (xs Q ys) = chop d zs @
chop d ys
by (induction d zs rule: chop__induct’) (auto simp: chop__reduce dvd__imp_le)

lemma chop__replicate [simp|: d > 0 = chop d (replicate d xs) = [replicate
d xs
by (subst chop__reduce) auto

lemma chop__replicate__dvd [simp]:
assumes d dvd n
shows chop d (replicate n z) = replicate (n div d) (replicate d x)
proof (cases d = 0)
case Fulse
from assms obtain k where k: n = d x k
by blast
have chop d (replicate (d = k) x) = replicate k (replicate d x)
using False by (induction k) (auto simp: replicate__add chop__append)
thus ?thesis using False by (simp add: k)
qged auto

lemma chop_concat:
assumes VY zs€set zss. length s = d and d > 0
shows chop d (concat xss) = xss
using assms
proof (induction xss)
case (Cons xs xss)

246

have chop d (concat (zs # xss)) = chop d (zs Q concat zss)
by simp

also have ... = chop d zs @Q chop d (concat xss)
using Cons.prems by (intro chop__append) auto

also have chop d zs = [zs]
using Cons.prems by (subst chop__reduce) auto

also have chop d (concat xss) = xss
using Cons.prems by (intro Cons.IH) auto

finally show ?case by simp

qed auto

49.3 Selection

definition select :: nat = (a :: linorder) list = 'a where
select k zs = sort xs | k

lemma select _0: zs # [| = select 0 zs = Min (set xs)
by (simp add: hd__sort select__def flip: hd__conv_nth)

lemma select__mset _cong: mset xs = mset ys = select k s = select k ys
using sort_mset__conglof zs ys] unfolding select def by auto

lemma select_in__set [intro,simp]:
assumes k < length s
shows select k zs € set xs
proof —
from assms have sort zs | k € set (sort zs) by (intro nth_mem) auto
also have set (sort zs) = set xs by simp
finally show ?thesis by (simp add: select_def)
qed

lemma
assumes n < length zs
shows size_less than_select: size {#y €# mset xs. y < select n xs#}
<n
and size_greater__than__select: size {#y €# mset xs. y > select n zs#}
< length xs — n
proof —
have size {#y €# mset (sort zs). y < select n zs#} < size (mset (take
n (sort xs)))
unfolding select def using assms
by (intro size_mset_mono sorted_ filter _less__subset_take) auto
thus size {#y €# mset xs. y < select n zs#} < n
by simp

247

have size {#y €# mset (sort xs). y > select n xs#} < size (mset (drop
(Suc n) (sort xs)))
unfolding select def using assms
by (intro size_mset_mono sorted_ filter__greater_ _subset__drop) auto
thus size {#y €# mset xs. y > select n xs#} < length zs — n
using assms by simp
qed

49.4 The designated median of a list

definition median where median xs = select ((length xs — 1) div 2) xs

lemma median__in__set [intro, simp|:
assumes zs # ||
shows median zs € set s
proof —
from assms have length xs > 0 by auto
hence (length xs — 1) div 2 < length zs by linarith
thus ?thesis by (simp add: median__def)
qed

lemma size_less _than_median: size {#y €# mset zs. y < median xs#}
< (length zs — 1) div 2
proof (cases xs = [])
case Fulse
hence length zs > 0
by auto
hence less: (length xs — 1) div 2 < length zs
by linarith
show size {#y €# mset xs. y < median zs#} < (length s — 1) div 2
using size_less _than__select]OF less] by (simp add: median__def)
qed auto

lemma size_greater than_median: size {#y €# mset xs. y > median
zs#} < length zs div 2
proof (cases xs = [])
case Fulse
hence length xs > 0
by auto
hence less: (length zs — 1) div 2 < length xs
by linarith
have size {#y €# mset zs. y > median zs#} < length zs — (length xs —
1) div 2
using size__greater__than__select[OF less] by (simp add: median__def)

248

also have ... = length zs div 2 + 1
using (length xs > 0> by linarith
finally show size {#y €# mset zs. y > median xs#} < length zs div 2
by simp
qed auto

lemmas median__props = size__less_than__median size__greater__than_ median

49.5 A recurrence for selection

definition partition3 :: 'a = 'a :: linorder list = 'a list x 'a list x 'a list
where

partitiond x xs = (filter (A\y. y < x) wxs, filter (\y. y = x) zs, filter (\y. y
> x) xs)

lemma partition3 code [code]:
partition? || = (I, [},)
partition3 x (y # ys) =
(case partition3 x ys of (Is, es, gs) =
if y < x then (y # s, es, gs) else if v = y then (Is, y # es, gs) else
(Is, es, y # gs))
by (auto simp: partition3_def)

lemma length_ partition3:
assumes partition3 xs = (ls, es, gs)
shows length xs = length Is + length es + length gs
using assms by (induction xs arbitrary: ls es gs)
(auto simp: partition3 _code split: if _splits prod.splits)

lemma sort_append:
assumes VYV z€set zs. Vyeset ys. x < y
shows sort (zs Q ys) = sort zs Q sort ys
using assms by (intro properties_for _sort) (auto simp: sorted__append)

lemma select__append:
assumes YV yEset ys. V z€set zs. y < z
shows k& < length ys = select k (ys Q zs) = select k ys
and k € {length ys..<length ys + length zs} —
select k (ys Q zs) = select (k — length ys) zs
using assms by (simp__all add: select__def sort_append nth__append)

lemma select_append”:

assumes YV yeset ys. V z€set zs. y < z and k < length ys + length zs
shows select k (ys @ zs) = (if k < length ys then select k ys else select

249

(k — length ys) zs)
using assms by (auto intro!: select _append)

theorem select_rec_partition:
assumes k < length zs
shows select k zs = (
let (Is, es, gs) = partition3 x zs
m
if k < length ls then select k s
else if k < length ls + length es then x
else select (k — length ls — length es) gs
) (is _ = ?rhs)
proof —
define Is es gs where Is = filter (\y. y < x) zs and es = filter (A\y. y =
x) 8
and gs = filter (A\y. y > z) zs
define nl ne where [simp]: nl = length Is ne = length es
have mset_eq: mset xs = mset Is + mset es + mset gs
unfolding Is def es def gs_def by (induction xs) auto
have length__eq: length s = length ls + length es + length gs
unfolding Is def es def gs_def
using [[simp__depth_limit = 1]] by (induction zs) auto
have [simp]: select i es = z if i < length es for i
proof —
have select i es € set (sort es) unfolding select def
using that by (intro nth_mem) auto
thus ?thesis
by (auto simp: es__def)
qed

have select k xs = select k (Is @ (es @ gs))
by (intro select_mset_cong) (simp__all add: mset_eq)
also have ... = (if k < nl then select k s else select (k — nl) (es @ gs))
unfolding nl ne_def using assms
by (intro select _append’) (auto simp: ls_def es_def gs_def length__eq)
also have ... = (if k < nl then select k Is else if k < nl + ne then z
else select (k — nl — ne) gs)
proof (rule if _cong)
assume —k < nl
have select (k — nl) (es @ gs) =
(if k — nl < ne then select (k — nl) es else select (k — nl —
ne) gs)
unfolding nl_ne_def using assms =k < nl
by (intro select_append’) (auto simp: ls_def es_def gs_def length__eq)

250

also have ... = (if k < nl + ne then z else select (k — nl — ne) gs)
using <=k < nl> by auto

finally show select (k — nl) (es @ gs) =

qed simp__all

also have ... = %rhs
by (simp add: partition3 def ls_def es def gs_def)

finally show ?thesis .

qed

49.6 The size of the lists in the recursive calls

We now derive an upper bound for the number of elements of a list that
are smaller (resp. bigger) than the median of medians with chopping size
5. To avoid having to do the same proof twice, we do it generically for an
operation < that we will later instantiate with either < or >.

context

fixes zs :: ‘a :: linorder list

fixes M defines M = median (map median (chop 5 zs))
begin

lemma size _median_of medians__auz:

fixes R :: 'a :: linorder = 'a = bool (infix «<» 50)

assumes R: R € {(<), (>)}

shows size {#y €# mset zs. y < M#} < nat [0.7 x length zs + 3]
proof —

define n and m where [simp|: n = length s and m = length (chop 5
xs)

We define an abbreviation for the multiset of all the chopped-up groups:

We then split that multiset into those groups whose medians is less than
M and the rest.

define Y _small (<Y <») where Y = filter_mset (Ays. median ys < M)
(mset (chop 5 zs))

define Y big (<Y~>) where Y- = filter_mset (Ays. —(median ys < M))
(mset (chop 5 zs))

have m = size (mset (chop 5 zs)) by (simp add: m__def)

also have mset (chop 5 zs) = Y + Y unfolding Y small def Y big def

by (rule multiset__partition)
finally have m_eq: m = size Y + size Y by simp

At most half of the lists have a median that is smaller than the median
of medians:

have size Y = size (image_mset median Y <) by simp

251

also have image__mset median Y 5 = {#y €# mset (map median (chop
51s)). y < M#}

unfolding Y _small_def by (subst filter _mset_image__mset [symmetric|)
stmp__all

also have size ... < (length (map median (chop 5 xs))) div 2

unfolding M _def using median__props|of map median (chop 5 zs)] R

by auto

also have ... = m div 2 by (simp add: m__def)

finally have size_ Y small: size Y < m div 2 .

We estimate the number of elements less than M by grouping them into
elements coming from Y and elements coming from Y:

have {#y €# mset xs. y < M#} = {#y €# (O_ ys<—chop 5 xs. mset ys).
y < M#}
by (subst sum__msets_chop) simp__all
also have ... = (3 ys<—chop 5 zs. {#y €# mset ys. y < M#})
by (subst filter_mset__sum__list) (simp add: o__def)
also have ... = (3 yse#mset (chop 5 xs). {#y €# mset ys. y < M#})
by (subst sum__mset_sum__list [symmetric]) simp__all
also have mset (chop 5 zs) = Yo + Y
by (simp add: Y_small_def Y _big _def not_le)
also have (D> ysc#.... {#y €# mset ys. y < M#}) =
(S yse#t V. {#y e mset ys. y < M#E}) + (X yseht Vi,
{#y €# mset ys. y < M#})
by simp
Next, we overapproximate the elements contributed by Y .: instead of
those elements that are smaller than the median, we take all the elements
of each group. For the elements contributed by Y, we overapproximate by
taking all those that are less than their median instead of only those that
are less than M.

also have ... C# (D yse# Y. mset ys) + (O ys€e# Y. {#y €# mset
ys. y < median ys#})
using R
by (intro subset_mset.add_mono sum_mset_mset_mono mset_filter _mono)
(auto simp: Y_big_ def)
finally have size {# y €# mset xs. y < M#} < size ...
by (rule size_mset_mono)
hence size {# y €# mset zs. y < M#} <
O yse# Y. length ys) + (O yse# Y. size {#y €# mset ys. y
< median ys#})
by (simp add: size_mset__sum__mset__distrib multiset.map__comp o__def)

Next, we further overapproximate the first sum by noting that each group
has at most size 5.

252

also have (Y yse#Y <. length ys) < O yse# Y. H)
by (intro sum_mset_mono) (auto simp: Y_small_def length__chop__part_le)
also have ... = § x size Y~ by simp

Next, we note that each group in Y, can have at most 2 elements that
are smaller than its median.

also have () yse# Y. size {#y €# mset ys. y < median ys#}) <
(O yse# Y. length ys div 2)
proof (intro sum__mset_mono, goal _cases)
fix ys assume ys €# Y
hence ys #]
by (auto simp: Y__big_def)
thus size {#y €# mset ys. y < median ys#} < length ys div 2
using R median__props|of ys] by auto
qed
also have ... < (D yse#Y-. 2)
by (intro sum__mset_mono div_le_mono diff _le_mono)
(auto simp: Y __big def dest: length__chop_part_le)
also have ... = 2 * size Y by simp

Simplifying gives us the main result.

also have 5 x size Y + 2 x size Y- = 2 x m + 3 x size Y4
by (simp add: m__eq)

also have ... < 3.5 xm
using <size Y= < m div 2> by linarith
also have ... = 3.5 % [n / 5]

by (simp add: m__def length__chop)

also have ... < 0.7 xn + 3.5
by linarith

finally have size {#y €# mset zs. y < M#} < 0.7 x n + 3.5
by simp

thus size {#y €# mset xs. y < M#} < nat [0.7 x n + 3|
by linarith

qed

lemma size less than__median__of medians:
size {#y €# mset xs. y < M#} < nat [0.7 * length zs + 3]
using size_median_of medians_aux]of (<)] by simp
lemma size greater than__median_ of medians:
size {#y €# mset xs. y > M#} < nat [0.7 * length zs + 3]

using size__median__of _medians_auz[of (>)] by simp

end

253

49.7 Efficient algorithm

We handle the base cases and computing the median for the chopped-up
sublists of size 5 using the naive selection algorithm where we sort the list
using insertion sort.

definition slow select where
slow_select k zs = insort xs ! k

definition slow median where
slow_median zs = slow__select ((length s — 1) div 2) zs

lemma slow_select__correct: slow select k xs = select k xs
by (simp add: slow__select def select__def insort__correct)

lemma slow median_correct: slow median s = median xs
by (simp add: median__def slow__median__def slow__select__correct)

The definition of the selection algorithm is complicated somewhat by the
fact that its termination is contingent on its correctness: if the first recursive
call were to return an element for z that is e.g. smaller than all list elements,
the algorithm would not terminate.

Therefore, we first prove partial correctness, then termination, and then
combine the two to obtain total correctness.

function mom__select where
mom,__select k zs = (
let n = length xs
in if n < 20 then
slow__select k xs
else
let M = mom__select (((n + 4) div5 — 1) div 2) (map slow_median
(chop 5 xs));
(Is, es, gs) = partition3 M zs;
nl = length ls
in
if k < nl then mom__select k Is
else let ne = length es in if k < nl + ne then M
else mom__select (k — nl — ne) gs

)

by auto
If mom__select terminates, it agrees with select:

lemma mom_ select correct _auz:
assumes mom_ select_dom (k, zs) and k < length xs
shows mom_select k xs = select k xs

254

using assms
proof (induction rule: mom__select.pinduct)
case (1 k zs)
show mom__select k xs = select k xs
proof (cases length xs < 20)
case True
thus mom__select k s = select k xs using 1.prems 1.hyps
by (subst mom,__select.psimps) (auto simp: select _def slow__select__correct)
next
case Fulse
define z where
z = mom__select (((length zs + 4) div 5 — 1) div 2) (map slow_median
(chop 5 xs))
define Is es gs where Is = filter (\y. y < z) xs and es = filter (A\y. y
=) xs
and gs = filter (\y. y > x) zs
define nl ne where nl = length Is and ne = length es
note defs = nl_def ne_def x_def ls_def es_def gs_def
have tw: (Is, es, gs) = partition3 z xs
unfolding partition3 def defs One_nat_def ..
have length__eq: length s = nl + ne + length gs
unfolding nl_def ne_def Is_def es_def gs_def
using [[simp__depth_limit = 1]] by (induction zs) auto
note IH = 1.IH(2)[OF refl False z__def tw refl refl refl]
1.IH(3)[OF refl False z_def tw refl refl refl __ refl]

have mom__select k xs = (if k < nl then mom__select k Is else if k < nl
+ ne then
else mom__select (k — nl — ne) gs) using 1.hyps
False
by (subst mom__select.psimps) (simp__all add: partition3_def flip: defs
One__nat__def)
also have ... = (if k < nl then select k s else if k < nl + ne then z
else select (k — nl — ne) gs)
using [H length__eq 1.prems by (simp add: ls__def es_def gs_def nl__def
ne__def)
try0
also have ... = select k zs using <k < length zs»
by (subst (3) select_rec_partitionlof _ __ x]) (simp__all add: nl_def
ne__def flip: tw)
finally show mom__select k s = select k xs .
qged
qed

255

mom,__select indeed terminates for all inputs:

lemma mom__select _termination: All mom__select__dom
proof (relation measure (length o snd); (safe)?)
fix &k :: nat and zs :: a list
assume — length zs < 20
thus ((((length xs + 4) div 5 — 1) div 2, map slow_median (chop 5 xs)),
k, xs)
€ measure (length o snd)
by (auto simp: length__chop nat_less__iff ceiling less _iff)
next
fix k :: nat and ws Is es gs :: 'a list
define z where © = mom__select (((length zs + 4) div 5 — 1) div 2)
(map slow_median (chop 5 xs))
assume A: - length s < 20
(Is, es, gs) = partition3 x xs
mom,__select_dom (((length xs + 4) div 5 — 1) div 2,
map slow_median (chop 5 xs))
have less: ((length xs + 4) div 5 — 1) div 2 < nat [length xs | 5]
using A(1) by linarith

For termination, it suffices to prove that z is in the list.

have = = select (((length zs + 4) div 5 — 1) div 2) (map slow median
(chop 5 xs))
using less unfolding z_def by (intro mom__select_correct_aux A)
(auto simp: length__chop)
also have ... € set (map slow_median (chop 5 zs))
using less by (intro select_in__set) (simp__all add: length__chop)
also have ... C set zs
unfolding set _map
proof safe
fix ys assume ys: ys € set (chop 5 xs)
hence median ys € set ys
by auto
also have set ys C |J(set ‘ set (chop 5 xs))
using ys by blast
also have ... = set s
by (rule UN_sets_chop) simp__all
finally show slow_median ys € set xs
by (simp add: slow_median__correct)
qed
finally have z € set zs .
thus ((k, Is), k, zs) € measure (length o snd)
and ((k — length ls — length es, gs), k, xs) € measure (length o snd)
using A(1,2) by (auto simp: partition3_def introl: length__filter _less[of

256

z})
qged

termination mom__select by (rule mom__select_termination)
lemmas [simp del] = mom__select.simps

lemma mom__select correct: k < length rs = mom__select k xs = select
k xs
using mom__select__correct__auxr and mom__select _termination by blast

49.8 Running time analysis

time_ fun partition3 equations partition3 code

lemma T partition3: T _partition3 x xs = length s + 1
by (induction x xs rule: T _partition3.induct) auto

time_ definition slow select
lemmas T _slow_select_def [simp del] = T _slow__select.simps
time_ fun slow median

lemma T slow select le:
assumes k < length zs
shows T slow select k s < length s ~ 2 + 3 * length zs + 1
proof —
have T _slow_select k xs = T __insort zs + T _nth (Sorting.insort zs) k
unfolding T slow select def ..
also have T insort zs < (length zs + 1) ~ 2
by (rule T insort_length)
also have T nth (Sorting.insort xs) k = k + 1
using assms by (subst T _nth) (auto simp: length__insort)
also have k£ + 1 < length xs
using assms by linarith
also have (length xs + 1) — 2 + length xs = length xs ~— 2 + 3 * length
x5 + 1
by (simp add: algebra__simps power2_eq _square)
finally show ?thesis by — simp_all
qged

lemma T slow median_le:

257

assumes zs # ||
shows T slow median zs < length zs — 2 + 4 x length s + 2
proof —
have T _slow_median xs = length s + T _slow__select ((length xs — 1)
div 2) zs + 1
by (simp add: T _length)
also from assms have length zs > 0
by simp
hence (length xs — 1) div 2 < length xs
by linarith
hence T slow_select ((length xs — 1) div 2) zs < length zs — 2 + & *
length xs + 1
by (intro T _slow__select_le) auto
also have length s + ... + 1 = length xs ~ 2 + 4 * length s + 2
by (simp add: algebra__simps)
finally show ?thesis by — simp_all
qged

time_ fun chop

lemmas [simp del] = T__chop.simps

lemma T _chop_ Nil [simp]: T _chop d [] = 1
by (cases d) (auto simp: T _chop.simps)

lemma T chop_0 [simp]: T _chop 0 xs = 1
by (auto simp: T__chop.simps)

lemma T chop_ reduce:

n>0= xs #[| = T _chop nxs = T take n xs + T _drop n zs +
T _chop n (drop n xs) + 1

by (cases n; cases xs) (auto simp: T _chop.simps)
lemma T chop_le: T chop d xs < & * length s + 1

by (induction d zs rule: T _chop.induct) (auto simp: T _chop_ reduce
T take T drop)
time_ fun mom_ select

lemmas [simp del] = T_mom__select.simps

lemma T _mom__select simps:
length s < 20 = T_mom__select k xs = T _slow__select k xs + T _length

258

s + 1
length xs > 20 — T_mom__select k xs = (
let xss = chop &5 ws;
ms = map slow_median xss;
ide = (((length s + 4) div 5 — 1) div 2);
x = mom,__select idx ms;
(Is, es, gs) = partition3 z xs;
nl = length ls;
ne = length es
m
(if k < nl then T _mom__select k s
else T length es + (if k < nl 4+ ne then 0 else T _mom__select (k
— nl — ne) gs)) +
T _mom,__select idx ms + T _chop 5 zs + T _map T _slow median
88 +

)

by (subst T _mom__select.simps; simp add: Let__def case_prod__unfold)+

T partition3 x s + T length Is + T length xs + 1

function T/ mom_select :: nat = nat where
T' mom_select n =
(if n < 20 then
483
else
T’ _mom__select (nat [0.2xn]) + T'_mom__select (nat [0.7+xn+3])
+ 19 x n + 54)
by force+
termination by (relation measure id; simp; linarith)

!

lemmas [simp del] = T' mom_ select.simps

lemma T’ mom_select _ge: T' mom_ select n > /83
by (induction n rule: T' _mom,__select.induct; subst T'_mom__select.simps)
auto

lemma 7' mom_select _mono:
m<n= T' mom_select m < T' mom_select n
proof (induction n arbitrary: m rule: less_induct)
case (less n m)
show ?case
proof (cases m < 20)
case True
hence T’ mom_select m = 483

259

by (subst T'_mom__select.simps) auto
also have ... < T’ mom_ select n
by (rule T’ _mom__select ge)
finally show ?thesis .
next
case Fulse
hence T/ mom_select m =
T’ _mom_select (nat [0.2xm]) + T'_mom__select (nat [0.7xm
+ 31) + 19 * m + 54
by (subst T’ _mom__select.simps) auto
also have ... < T’ _mom_ select (nat [0.2%n]) + T'_mom__select (nat
[0.7%n + 3]) + 19 * n + 54
using «m < n) and Fualse by (intro add_mono less.IH; linarith)
also have ... = T’ mom_select n
using <m < n) and Fualse by (subst T'_mom.__select.simps) auto
finally show ?thesis .
qed
qed

lemma T _mom_select_le aux:

assumes k < length s

shows T _mom_select k zs < T'_mom,__select (length xs)

using assms
proof (induction k zs rule: T _mom__select.induct)

case (1 k zs)

define n where [simp|: n = length xs

define z where

x = mom__select ((n + 4) div5 — 1) div 2) (map slow_median (chop

5 xs))

define Is es gs where Is = filter (\y. y < x) xzs and es = filter (A\y. y =
x) xs

and gs = filter (A\y. y > x) xs

define nl ne where nl = length Is and ne = length es

note defs = nl_def ne_def x_def ls_def es_def gs_def

have tw: (Is, es, gs) = partition3 z s

unfolding partition3 def defs One_nat_def ..
note [H = 1.IH(1)[OF n_ def]
1.IH(2)[OF n_def _ x_def tw refl refl nl_def]
1.IH(3)[OF n_def _ x_def tw refl refl nl_def __ ne__def]

show ?case
proof (cases length xs < 20)
case True — base case
hence T_mom__select k zs < (length 1:5)2 + 4 * length xs + &

260

using T _slow_select_le[of k xs| <k < length xs»
by (subst T__mom__select_simps(1)) (auto simp: T _length)
also have ... < 202 + / % 20 + 3
using True by (intro add_mono power_mono) auto
also have ... = 483
by simp
also have ... = T'_mom__select (length xs)
using True by (simp add: T’ _mom__ select.simps)
finally show ?thesis by simp
next
case False — recursive case
have ((n + 4) div5 — 1) div 2 < nat [n / 5|
using Fulse unfolding n_ def by linarith
hence z = select (((n + 4) div5 — 1) div 2) (map slow_median (chop
5 xs))
unfolding z_def n_def by (intro mom__select_correct) (auto simp:
length__chop)
also have ((n + 4) div5 — 1) div2 = (nat [n / 5| — 1) div 2
by linarith
also have select ... (map slow_median (chop 5 xs)) = median (map
slow_median (chop 5 xs))
by (auto simp: median__def length__chop)
finally have z_eq: © = median (map slow_median (chop 5 xs)) .

The cost of computing the medians of all the subgroups:

define T'_ms where T_ms = T _map T _slow_median (chop 5 xs)
have T ms < 10 * n + 48
proof —
have T _ms = (D> ys<—chop 5 zs. T _slow_median ys) + length (chop
5xs) + 1
by (simp add: T _ms_def T _map)
also have () ys<—chop 5 xs. T _slow_median ys) < (> ys«chop 5
xs. 47)
proof (intro sum__list_mono)
fix ys assume ys € set (chop 5 xs)
hence length ys < 5 ys # |]
using length__chop__part_le[of ys 5 xs| by auto
from «ys # [have T _slow_median ys < (length ys) ~ 2 + 4 x
length ys + 2
by (rule T _slow_median__le)
alsohave ... <572+ 4 %5+ 2
using <length ys < 5> by (intro add_mono power_mono) auto
finally show T slow median ys < 47 by simp
qed

261

also have () ys<—chop 5 xs. 47) + length (chop 5 xs) + 1 =
48 % nat [realn | 5] + 1
by (simp add: map_ replicate__const length__chop)
also have ... < 10 * n + 48
by linarith
finally show T _ms < 10 x n + 48 by simp
qed

The cost of the first recursive call (to compute the median of medians):

define T rec! where
T recl =T mom_select (n+ 4) div5 — 1) div 2) (map slow_median
(chop 5 xs))
from Fulse have ((length zs + 4) div 5 — Suc 0) div 2 < nat [real
(length xs) | 5]
by linarith
hence T reci < T' mom_ select (length (map slow_median (chop 5
2)))
using Fualse unfolding T reci_def by (intro IH(1)) (auto simp:
length__chop)
hence T _recl < T' _mom_select (nat [0.2 * n])
by (simp add: length__chop)

The cost of the second recursive call (to compute the final result):

define T rec?2 where T rec2 = (if k < nl then T _mom.__select k Is
else if k < nl + ne then 0
else T _mom__select (k — nl — ne) gs)
consider k < nl | k € {nl..<nl+ne} | k > nl+ne
by force
hence T rec2 < T' _mom_select (nat [0.7 * n + 3])
proof cases
assume k < nl
hence T rec?2 = T mom_select k s
by (simp add: T rec2 def)
also have ... < T’ _mom__select (length ls)
by (rule IH(2)) (use <k < nl» False in <auto simp: defs»)
also have length Is < nat [0.7 x n + 3]
unfolding Is def using size_less than_median__of medians|[of xs]
by (auto simp: length__filter _conv__size_filter _mset slow__median__correct[abs__def]
z_eq)
hence T’ _mom__select (length Is) < T’ _mom_select (nat [0.7 * n
+ 31)
by (rule T'_mom__select_mono)
finally show ?thesis .
next

262

assume k € {nl..<nl + ne}
hence T rec2 = 0
by (simp add: T _rec2_def)
thus ?thesis
using T’ _mom__select_gelof nat [0.7 x n + 3] by simp
next
assume k£ > nl + ne
hence T rec2 = T _mom__select (k — nl — ne) gs
by (simp add: T rec2 def)
also have ... < T’ mom_ select (length gs)
proof (rule IH(3))
show —n < 20
using Fulse by auto
show = k£ < nl =k < nl 4+ ne
using <k > nl + ne> by (auto simp: nl_def ne_def)
have length xs = nl + ne + length gs
unfolding defs by (rule length_partition3) (simp__all add: parti-
tion3 _def)
thus £ — nl — ne < length gs
using <k > nl + ne> <k < length xs» by (auto simp: nl_def ne__def)
qed
also have length gs < nat [0.7 x n + 3|
unfolding gs def using size_greater _than_median__of medians|of
xs
]
by (auto simp: length_filter _conv__size_filter _mset slow__median__correct[abs__def]
z_eq)
hence T’ _mom__select (length gs) < T'_mom__select (nat [0.7 * n
+ 31)
by (rule T'_mom__select_mono)
finally show ?thesis .
qed

Now for the final inequality chain:

have T _mom__select k s =
(if k < nl then T _mom__select k ls
else T length es +
(if k < nl + ne then 0 else T _mom__select (k — nl — ne) gs))
|
T mom_select (((n + 4) div5 — 1) div 2) (map slow_median
(chop 5 xs)) +
T _chop 5xs+ T _map T _slow_median (chop 5 zs) + T _partition3
T TS +
T length Is + T length xs + 1 using Fulse
by (subst T__mom__select__simps;

263

unfold Let _def n_def [symmetric] z_def [symmetric] nl_def
[symmetric]
ne__def [symmetric| prod.case tw [symmetric]) simp__all
also have ... < T rec2 + T recl1 + T ms+ 2 xn + nl + ne +
T chop 5 s + 5 using False
by (auto simp add: T _recl_def T _rec2_def T _partition3
T length T _ms_def nl_def ne__def)
also have nl < n by (simp add: nl_def ls_def)
also have ne < n by (simp add: ne__def es_def)
also note <T"_ms < 10 x n + 48>
also have T chop 5 s < 5 xn + 1
using T _chop__lelof 5 zs] by simp
also note <T _recl < T’ _mom_ select (nat [0.2xn])>
also note <T_rec2 < T' _mom__select (nat [0.7xn + 3])»
finally have T _mom_ select k zs <
T' _mom_select (nat [0.7+«n + 31) + T'_mom__select (nat
[0.2xn]) + 19 x n + 5/
by simp
also have ... = T’ mom_ select n
using Fualse by (subst T'_mom__select.simps) auto
finally show ?thesis by simp
qed
qed

49.9 Akra—Bazzi Light

lemma akra__bazzi light auxl:
fixes a b :: real and n n0 :: nat
assumes ab: a > 0a < 1 n > nl
assumes n0 > (max 0b+ 1)/ (1 — a)
shows nat [axn+b] < n
proof —
have a * real n + max 0 b > 0
using ab by simp
hence real (nat [axn+b]) < a*xn+ max 0b + 1
by linarith

also {
have n0 > (maz 0b+ 1) / (1 — a)
by fact
also have ... < real n

using assms by simp
finally have a * real n + maz 0 b + 1 < real n
using ab by (simp add: field__simps)

}

264

finally show nat [axn+b| < n
using «n > n0»> by linarith
qed

lemma akra_bazzi light auz2:
fixes f :: nat = real
fixes ng :: nat and a b c d :: real and C1 C2 Cq1 Csy :: real
assumes bounds: a > 0c>0a+c< 1Cy >0
assumes rec: Vn>ng. fn = f (nat [axn+0b]) + f (nat [cxn+d]) + Cy *
n + Co
assumes inegs: ng > (mazx 0b + max 0d + 2) / (1 —a — ¢)
C3>C1 /(1 —a-—c
C3>(Cixng+ Co+Cyq) /(1 —a—c)xng— maz0b
—maz 0d — 2)
Vn<ng. fn< Cy
shows fn < C3xn+ C4
proof (induction n rule: less induct)
case (less n)
have 0 < C1 /(1 — a — ¢)
using bounds by auto
also have ... < (3
by fact
finally have C5 > 0 .

show Zcase
proof (cases n > ny)
case Fulse
hence fn < C4
using ineqs(4) by auto
also have ... < Cg *x realn + C4
using bounds «C3 > 0) by auto
finally show ?thesis .
next
case True
have nonneg: a x n > 0 c*xn > 0
using bounds by simp__all

have (max 0b+ 1) / (1 —a) < (mazx 0b+ max 0d+ 2) /(1 — a
— ¢
using bounds by (intro frac_le) auto
hence ny > (mazx 0b + 1) / (1 — a)
using inegs(1) by linarith
hence rec_lessl: nat [axn+b] < n
using bounds <n > ng» by (intro akra_bazzi_light auzl|of _ ng]) auto

265

have (max 0d + 1) / (1 —¢) < (max 0b+ max 0d + 2) / (1 — a
— ¢)
using bounds by (intro frac_le) auto
hence ng > (max 0d + 1)/ (1 — ¢)
using ineqs(1) by linarith
hence rec_less2: nat [cxn+d] < n
using bounds <n > ny» by (intro akra__bazzi_light _auxl[of _ ng]) auto

have fn = f (nat [axn+b]) + f (nat [exn+d]) + C1 * n + Co
using «n > ng> by (subst rec) auto
also have ... < (C3 % nat [axn+b] + C4) + (Cs * nat [cxn+d] +
Cy) + Crxn+ Cy
using rec_less1 rec_less2 by (intro add_mono less.IH) auto
also have ... < (C3 * (axn+maz 0 b+1) + C4) + (Cs * (cxn+maz 0
d+1) + C4) + C1 x n + Co
using bounds <C3 > 0> nonneg by (intro add_mono mult_left _mono
order.refl; linarith)
also have ... = C3xn + ((C3 % (maz 0b+ max 0d + 2) + 2 x
Cy + Co) —
(C3 % (1 —a—c¢)— Cyq)*n)
by (simp add: algebra__simps)
also have ... < C3xn + ((C3* (max 0b+ mar 0d + 2) + 2 %
Cy + C) —
(Cg % (1 —a—c)— Cq) * ng)
using «n > ng» inegs(2) bounds
by (intro add_mono diff _mono order.refl mult_left_mono) (auto simp:
field__simps)
also have (C3 x (maz 0 b + maz 0 d + 2) + 2 % Cy + C2) — (C3 *
(1 —a—c¢)— Cq1) xng < Cy
using inegs bounds by (simp add: field__simps)
finally show fn < C3 % real n + Cy4
by (simp add: mult_right _mono)
qed
qged

lemma akra_bazzi light:

fixes f :: nat = real

fixes ng :: nat and a b ¢ d C1 Cqy :: real

assumes bounds: a > 0c > 0a+c< 1Cy >0

assumes rec: Vn>ng. fn = f (nat [axn+b]) + f (nat [exn+d]) + Cy *
n + Co

shows 3C3 C4. Vn. fn < C3xrealn + Cy
proof —

266

define ny’ where ny’ = maz ng (nat [(maz 0 b + max 0d + 2) / (1 —
a—c)+ 1])
define C4 where Cy = Maz (f ‘ {..n0"})
define C3 where C3 = maz (C1 / (1 — a — ¢))
(Crxng’+ Ca+ Cq) /(1 —a—c)x*ny’ — maz 0
b— mazx 0d— 2))

have fn < C3xn + C4 for n
proof (rule akra_bazzi_light auz2[OF bounds _])
show Vn>ng'. fn = f (nat [axn+b]) + f (nat [exn+d]) + C1 x n +
Cs
using rec by (auto simp: ng’_def)
next
show C3 > C; / (I —a — ¢)
and C3 > (Cyxng’+ Co+ Cy) / (1 —a— ¢) xng’ — maz 0b —
maz 0 d — 2)
by (simp__all add: Cs__def)
next
have (maz 0 b+ max 0d + 2) / (1 — a — ¢) < nat [(maz 0 b + mazx
0d+2)/ (1 —a—c)+ 1]
by linarith
also have ... < ng’
by (simp add: ng'_def)
finally show (maz 0 b+ maz 0d + 2) / (1 —a — ¢) < real ny’ .
next
show Vn<ng' fn < Oy
by (auto simp: Cy__def)
qed
thus ?thesis by blast
qged

lemma akra__bazzi light nat:
fixes f :: nat = nat
fixes ng :: nat and a b ¢ d :: real and C7 Cs :: nat
assumes bounds: a > 0c>0a+c< 1Cy >0
assumes rec: Vn>ng. fn = f (nat [axn+b]) + f (nat [exn+d]) + Cq *
n + Co
shows 3C3 Cy. Vn. fn < Cs3xn+ Cy
proof —
have 3C3 Cy4. Vn. real (fn) < C3 x real n + Cy
using assms by (intro akra__bazzi_light[of a ¢ C1 ng fb d Cq]) auto
then obtain C3 C4 where le: Vn. real (fn) < Cg * real n + Cy
by blast
have fn < nat [C3] * n + nat [Cy4] for n

267

proof —
have real (fn) < Cs % real n + C4
using le by blast
also have ... < real (nat [C3]) * real n + real (nat [Cy4])
by (intro add_mono mult_right _mono; linarith)

also have ... = real (nat [C3] * n + nat [C4])
by simp
finally show ?thesis by linarith
qed
thus “thesis by blast
qged

lemma 7' mom_select le’: 3C1 Cy. ¥ n. T' mom_selectn < C1 xn +
Co
proof (rule akra_bazzi light nat)

show VY n>20. T' _mom_select n = T' _mom__select (nat [0.2 x n + 0])
I

T' mom_select (nat [0.7 * n + 3|) + 19 x n + 5
using T mom__select.simps by auto

qed auto

end

50 Time Functions in Locales — An Example

theory Time_Locale Ezxample
imports
HOL— Library. Time__Functions
HOL- Library.AList
Map Specs
begin

If you want to reason about the time complexity of functions in a locale,
you need to parameterize the locale with time functions for all functions
that are utilized. More precisely, if you are in a locale parameterized by
some function f and you define a function ¢ that uses f, and you want to
define T g, it will depend on T _f, which you have to make an additional
parameter of the locale. Only then will time_ fun g work. Below we show a
realistic example.

50.1 Basic Time Functions

time_ fun AList.update

time__fun needs uncurried defining equations

268

lemma

map__of _simps”. map_of [] (z::'a) = (None :: 'b option)

map__of ((a::'a,b::'b)#ps) x = (if x=a then Some b else map_of ps x)
by auto

time_ fun map of equations map_of simps’

lemma T map_ub: T _map_of ps a < length ps + 1
by (induction ps) auto

lemma T update ub: T update a b ps < length ps + 1
by (induction ps) auto

lemma length_AList_update_ub: length (AList.update a b ps) < length ps
+ 1
by (induction ps) auto

50.2 Locale

Counting the elements in a list by means of a map that associates elements
with their multiplicities in the list, like a ‘histogram’. The locale is parame-
terized with the map ADT and the timing functions for lookup and update.

locale Count_List = Map where update = update for update :: 'a = nat
='m="m+

fixes T lookup :: 'm = 'a = nat

and T update :: 'a = nat = 'm = nat

begin

definition lookup nat :: 'm = 'a = nat where
lookup_nat m x = (case lookup m = of None = 0 | Some n = n)

time__definition lookup nat

fun count :: 'm = 'a list = 'm where

count m [| = m |

count m (z#xs) = count (update x (lookup_nat m x + 1) m) xs

time_ fun count

end

50.3 Interpretation

Interpretation of Count_List with association lists as maps.

269

lemma map_ of AList_update: map__of (AList.update a b ps) = ((map__of

ps)(a = b))
by (induction ps) auto

lemma map_of AList_delete: map_of (AList.delete a ps) = (map_of
ps)(a := None)
by (induction ps) auto

global__interpretation CL: Count_ List
where empty = [| and lookup = map__of
and update = AList.update and delete = AlList.delete and invar = A_.
True
and T lookup = T map_of and T update = T _update
defines CL count = CL.count and CL T count = CL.T count
proof (standard, goal cases)
case 1
show ?case by (rule ext) simp
next
case (2 m a b)
show ?case by (rule map_of AList_update)
next
case (3 m a)
show ?case by (rule map_of AList_delete)
next
case 4
show ?case by(rule Truel)
next
case (5 m a b)
show ?case by(rule Truel)
next
case (6 m a)
show ?case by(rule Truel)
ged

50.4 Complexity Proof

lemma CL.T _count ps xs < 2 x length xs * (length zs + length ps + 1)
+ 1
proof (induction xs arbitrary: ps)
case Nil
then show ?case by simp
next
case (Cons a 1s)
let ?lps’ = length ps + 1

270

let ?na’ = CL.lookup nat ps a + 1
let ?ps’ = AList.update a ?na’ ps
have CL_T count ps (a # xs) =
T _map_of ps a + T _update a ?na’ ps + CL_T _count (AList.update
a ?na’ ps) xs + 1
by simp
also have ... < 2 x ?lps’ + CL_T count ?ps’ xs + 1
using T_map_ub T _update__ub add_mono by (fastforce simp: mult_2)
also have ... < 2 x %lps’ + 2 x length xs x (length xs + length ?ps’ +
1)+ 1+ 1
using Cons.IH by (metis (no__types, lifting) add.assoc add_mono__thms__linordered__semiring(3)
nat__add__left_cancel le)
also have ... < 2 x ?lps’ + 2 x length xs * (length zs + ?lps’ + 1) + 1
+ 1
using length AList_update_ub
by (metis add_mono__thms_linordered__semiring(2) add_right_mono
mult_le _mono2)
also have ... < 2 x length (a # xs) x (length (a # xs) + length ps + 1)
+ 1
by (auto simp: algebra__simps)
finally show ?case .
qged

end

51 Bibliographic Notes

Red-black trees The insert function follows Okasaki [15]. The delete
function in theory RBT Set follows Kahrs [11, 12], an alternative delete
function is given in theory RBT _Set2.

2-3 trees Equational definitions were given by Hoffmann and O’Don-
nell [9] (only insertion) and Reade [19]. Our formalisation is based on the
teaching material by Turbak [22] and the article by Hinze [8].

1-2 brother trees They were invented by Ottmann and Six [16, 17]. The
functional version is due to Hinze [7].

AA trees They were invented by Arne Anderson [3]. Our formalisation
follows Ragde [18] but fixes a number of mistakes.

Splay trees They were invented by Sleator and Tarjan [21]. Our formal-
isation follows Schoenmakers [20].

271

Join-based BSTs They were invented by Adams [1, 2] and analyzed by
Blelloch et al. [4].

Leftist heaps They were invented by Crane [6]. A first functional imple-
mentation is due to Nunez et al. [14].

References

[1]

[4]

[5]

[11]

[12]

S. Adams. Implementing sets efficiently in a functional language. Tech-
nical Report CSTR 92-10, University of Southampton, Department of
Electronics and Computer Science, 1992.

S. Adams. Efficient sets - A balancing act. J. Funct. Program.,
3(4):553-561, 1993.

A. Andersson. Balanced search trees made simple. In Algorithms
and Data Structures (WADS ’93), volume 709 of LNCS, pages 60-71.
Springer, 1993.

G. E. Blelloch, D. Ferizovic, and Y. Sun. Just join for parallel ordered
sets. In SPAA, pages 253-264. ACM, 2016.

W. Braun and M. Rem. A logarithmic implementation of flexible arrays.
Memorandum MR83/4. Eindhoven University of Techology, 1983.

C. A. Crane. Linear Lists and Prorty Queues as Balanced Binary Trees.
PhD thesis, Computer Science Department, Stanford University, 1972.

R. Hinze. Purely functional 1-2 brother trees. J. Functional Program-
ming, 19(6):633-644, 2009.

R. Hinze. On constructing 2-3 trees. J. Funct. Program., 28:e19, 2018.

C. M. Hoffmann and M. J. O’Donnell. Programming with equations.
ACM Trans. Program. Lang. Syst., 4(1):83-112, 1982.

R. R. Hoogerwoord. A logarithmic implementation of flexible arrays. In
R. Bird, C. Morgan, and J. Woodcock, editors, Mathematics of Program
Construction, Second International Conference, volume 669 of LNCS,
pages 191-207. Springer, 1992.

S. Kahrs. Red black trees. http://www.cs.ukc.ac.uk/people/staff/smk/
redblack/rb.html.

S. Kahrs. Red-black trees with types. J. Functional Programming,
11(4):425-432, 2001.

272

http://www.cs.ukc.ac.uk/people/staff/smk/redblack/rb.html
http://www.cs.ukc.ac.uk/people/staff/smk/redblack/rb.html

[13]

[14]

[20]

[21]

[22]

T. Nipkow. Automatic functional correctness proofs for functional
search trees. http://www.in.tum.de/~nipkow/pubs/trees.html, Feb.
2016.

M. Nunez, P. Palao, and R. Pena. A second year course on data struc-
tures based on functional programming. In P. H. Hartel and M. J.
Plasmeijer, editors, Functional Programming Languages in Education,
volume 1022 of LNCS, pages 65-84. Springer, 1995.

C. Okasaki. Purely Functional Data Structures. Cambridge University
Press, 1998.

T. Ottmann and H.-W. Six. Eine neue Klasse von ausgeglichenen Binér-
bédumen. Angewandte Informatik, 18(9):395-400, 1976.

T. Ottmann and D. Wood. 1-2 brother trees or AVL trees revisited.
Comput. J., 23(3):248-255, 1980.

P. Ragde. Simple balanced binary search trees. In Caldwell, Hblzen-
spies, and Achten, editors, Trends in Functional Programming in FEdu-
cation, volume 170 of EPTCS, pages 7887, 2014.

C. Reade. Balanced trees with removals: An exercise in rewriting and
proof. Sci. Comput. Program., 18(2):181-204, 1992.

B. Schoenmakers. A systematic analysis of splaying. Information Pro-
cessing Letters, 45:41-50, 1993.

D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. J.
ACM, 32(3):652-686, 1985.

F. Turbak. CS230 Handouts — Spring 2007, 2007. http://cs.wellesley.
edu/~cs230/spring07/handouts.html.

273

http://www.in.tum.de/~nipkow/pubs/trees.html
http://cs.wellesley.edu/~cs230/spring07/handouts.html
http://cs.wellesley.edu/~cs230/spring07/handouts.html

	Sorting
	Creating Almost Complete Trees
	Three-Way Comparison
	Lists Sorted wrt <
	List Insertion and Deletion
	Specifications of Set ADT
	Unbalanced Tree Implementation of Set
	Association List Update and Deletion
	Specifications of Map ADT
	Unbalanced Tree Implementation of Map
	Tree Rotations
	Augmented Tree (Tree2)
	Function isin for Tree2
	Interval Trees
	AVL Tree Implementation of Sets
	Function lookup for Tree2
	AVL Tree Implementation of Maps
	AVL Tree with Balance Factors (1)
	AVL Tree with Balance Factors (2)
	Height-Balanced Trees
	Red-Black Trees
	Red-Black Tree Implementation of Sets
	Alternative Deletion in Red-Black Trees
	Red-Black Tree Implementation of Maps
	2-3 Trees
	2-3 Tree Implementation of Sets
	2-3 Tree Implementation of Maps
	2-3 Tree from List
	2-3-4 Trees
	2-3-4 Tree Implementation of Sets
	2-3-4 Tree Implementation of Maps
	1-2 Brother Tree Implementation of Sets
	1-2 Brother Tree Implementation of Maps
	AA Tree Implementation of Sets
	AA Tree Implementation of Maps
	Join-Based Implementation of Sets
	Join-Based Implementation of Sets via RBTs
	Braun Trees
	Arrays via Braun Trees
	Tries via Functions
	Binary Tries and Patricia Tries
	Ternary Tries
	Queue Specification
	Queue Implementation via 2 Lists
	Priority Queue Specifications
	Heaps
	Leftist Heap
	Binomial Priority Queue
	The Median-of-Medians Selection Algorithm
	Time Functions in Locales — An Example
	Bibliographic Notes

