
Functional Data Structures

Tobias Nipkow

January 18, 2026

Abstract

A collection of verified functional data structures. The emphasis is
on conciseness of algorithms and succinctness of proofs, more in the
style of a textbook than a library of efficient algorithms.

For more details see [13].

Contents
1 Sorting 4

2 Creating Almost Complete Trees 13

3 Three-Way Comparison 19

4 Lists Sorted wrt < 20

5 List Insertion and Deletion 21

6 Specifications of Set ADT 24

7 Unbalanced Tree Implementation of Set 26

8 Association List Update and Deletion 29

9 Specifications of Map ADT 33

10 Unbalanced Tree Implementation of Map 34

11 Tree Rotations 36

12 Augmented Tree (Tree2) 39

13 Function isin for Tree2 40

14 Interval Trees 41

1

15 AVL Tree Implementation of Sets 48

16 Function lookup for Tree2 58

17 AVL Tree Implementation of Maps 58

18 AVL Tree with Balance Factors (1) 63

19 AVL Tree with Balance Factors (2) 67

20 Height-Balanced Trees 72

21 Red-Black Trees 80

22 Red-Black Tree Implementation of Sets 82

23 Alternative Deletion in Red-Black Trees 89

24 Red-Black Tree Implementation of Maps 93

25 2-3 Trees 96

26 2-3 Tree Implementation of Sets 97

27 2-3 Tree Implementation of Maps 106

28 2-3 Tree from List 109

29 2-3-4 Trees 112

30 2-3-4 Tree Implementation of Sets 114

31 2-3-4 Tree Implementation of Maps 126

32 1-2 Brother Tree Implementation of Sets 131

33 1-2 Brother Tree Implementation of Maps 143

34 AA Tree Implementation of Sets 148

35 AA Tree Implementation of Maps 160

36 Join-Based Implementation of Sets 165

37 Join-Based Implementation of Sets via RBTs 174

38 Braun Trees 181

2

39 Arrays via Braun Trees 185

40 Tries via Functions 202

41 Binary Tries and Patricia Tries 203

42 Ternary Tries 211

43 Queue Specification 213

44 Queue Implementation via 2 Lists 214

45 Priority Queue Specifications 216

46 Heaps 216

47 Leftist Heap 219

48 Binomial Priority Queue 227

49 The Median-of-Medians Selection Algorithm 242

50 Time Functions in Locales — An Example 268

51 Bibliographic Notes 271

3

1 Sorting
theory Sorting

imports
Complex_Main
HOL−Library.Multiset
HOL−Library.Time_Commands

begin

hide_const List.insort

declare Let_def [simp]

1.1 Insertion Sort

fun insort1 :: ′a::linorder ⇒ ′a list ⇒ ′a list where
insort1 x [] = [x] |
insort1 x (y#ys) =
(if x ≤ y then x#y#ys else y#(insort1 x ys))

fun insort :: ′a::linorder list ⇒ ′a list where
insort [] = [] |
insort (x#xs) = insort1 x (insort xs)

1.1.1 Functional Correctness

lemma mset_insort1 : mset (insort1 x xs) = {#x#} + mset xs
by (induction xs) auto

lemma mset_insort: mset (insort xs) = mset xs
by (induction xs) (auto simp: mset_insort1)

lemma set_insort1 : set (insort1 x xs) = {x} ∪ set xs
by(simp add: mset_insort1 flip: set_mset_mset)

lemma sorted_insort1 : sorted (insort1 a xs) = sorted xs
by (induction xs) (auto simp: set_insort1)

lemma sorted_insort: sorted (insort xs)
by (induction xs) (auto simp: sorted_insort1)

1.1.2 Time Complexity

time_fun insort1
time_fun insort

4

lemma T_insort1_length: T_insort1 x xs ≤ length xs + 1
by (induction xs) auto

lemma length_insort1 : length (insort1 x xs) = length xs + 1
by (induction xs) auto

lemma length_insort: length (insort xs) = length xs
by (metis Sorting.mset_insort size_mset)

lemma T_insort_length: T_insort xs ≤ (length xs + 1) ^ 2
proof(induction xs)

case Nil show ?case by simp
next

case (Cons x xs)
have T_insort (x#xs) = T_insort xs + T_insort1 x (insort xs) + 1 by

simp
also have . . . ≤ (length xs + 1) ^ 2 + T_insort1 x (insort xs) + 1

using Cons.IH by simp
also have . . . ≤ (length xs + 1) ^ 2 + length xs + 1 + 1

using T_insort1_length[of x insort xs] by (simp add: length_insort)
also have . . . ≤ (length(x#xs) + 1) ^ 2

by (simp add: power2_eq_square)
finally show ?case .

qed

1.2 Merge Sort

fun merge :: ′a::linorder list ⇒ ′a list ⇒ ′a list where
merge [] ys = ys |
merge xs [] = xs |
merge (x#xs) (y#ys) = (if x ≤ y then x # merge xs (y#ys) else y #

merge (x#xs) ys)

fun msort :: ′a::linorder list ⇒ ′a list where
msort xs = (let n = length xs in
if n ≤ 1 then xs
else merge (msort (take (n div 2) xs)) (msort (drop (n div 2) xs)))

declare msort.simps [simp del]

1.2.1 Functional Correctness

lemma mset_merge: mset(merge xs ys) = mset xs + mset ys

5

by(induction xs ys rule: merge.induct) auto

lemma mset_msort: mset (msort xs) = mset xs
proof(induction xs rule: msort.induct)

case (1 xs)
let ?n = length xs
let ?ys = take (?n div 2) xs
let ?zs = drop (?n div 2) xs
show ?case
proof cases

assume ?n ≤ 1
thus ?thesis by(simp add: msort.simps[of xs])

next
assume ¬ ?n ≤ 1
hence mset (msort xs) = mset (msort ?ys) + mset (msort ?zs)

by(simp add: msort.simps[of xs] mset_merge)
also have . . . = mset ?ys + mset ?zs

using ‹¬ ?n ≤ 1 › by(simp add: 1 .IH)
also have . . . = mset (?ys @ ?zs) by (simp del: append_take_drop_id)
also have . . . = mset xs by simp
finally show ?thesis .

qed
qed

Via the previous lemma or directly:

lemma set_merge: set(merge xs ys) = set xs ∪ set ys
by (metis mset_merge set_mset_mset set_mset_union)

lemma set(merge xs ys) = set xs ∪ set ys
by(induction xs ys rule: merge.induct) (auto)

lemma sorted_merge: sorted (merge xs ys) ←→ (sorted xs ∧ sorted ys)
by(induction xs ys rule: merge.induct) (auto simp: set_merge)

lemma sorted_msort: sorted (msort xs)
proof(induction xs rule: msort.induct)

case (1 xs)
let ?n = length xs
show ?case
proof cases

assume ?n ≤ 1
thus ?thesis by(simp add: msort.simps[of xs] sorted01)

next
assume ¬ ?n ≤ 1

6

thus ?thesis using 1 .IH
by(simp add: sorted_merge msort.simps[of xs])

qed
qed

1.2.2 Time Complexity

We only count the number of comparisons between list elements.

fun C_merge :: ′a::linorder list ⇒ ′a list ⇒ nat where
C_merge [] ys = 0 |
C_merge xs [] = 0 |
C_merge (x#xs) (y#ys) = 1 + (if x ≤ y then C_merge xs (y#ys) else

C_merge (x#xs) ys)

lemma C_merge_ub: C_merge xs ys ≤ length xs + length ys
by (induction xs ys rule: C_merge.induct) auto

fun C_msort :: ′a::linorder list ⇒ nat where
C_msort xs =
(let n = length xs;

ys = take (n div 2) xs;
zs = drop (n div 2) xs

in if n ≤ 1 then 0
else C_msort ys + C_msort zs + C_merge (msort ys) (msort zs))

declare C_msort.simps [simp del]

lemma length_merge: length(merge xs ys) = length xs + length ys
by (induction xs ys rule: merge.induct) auto

lemma length_msort: length(msort xs) = length xs
proof (induction xs rule: msort.induct)

case (1 xs)
show ?case

by (auto simp: msort.simps [of xs] 1 length_merge)
qed

Why structured proof? To have the name "xs" to specialize msort.simps
with xs to ensure that msort.simps cannot be used recursively. Also works
without this precaution, but that is just luck.

lemma C_msort_le: length xs = 2^k =⇒ C_msort xs ≤ k ∗ 2^k
proof(induction k arbitrary: xs)

case 0 thus ?case by (simp add: C_msort.simps)
next

7

case (Suc k)
let ?n = length xs
let ?ys = take (?n div 2) xs
let ?zs = drop (?n div 2) xs
show ?case
proof (cases ?n ≤ 1)

case True
thus ?thesis by(simp add: C_msort.simps)

next
case False
have C_msort(xs) =

C_msort ?ys + C_msort ?zs + C_merge (msort ?ys) (msort ?zs)
by (simp add: C_msort.simps msort.simps)

also have . . . ≤ C_msort ?ys + C_msort ?zs + length ?ys + length
?zs

using C_merge_ub[of msort ?ys msort ?zs] length_msort[of ?ys]
length_msort[of ?zs]

by arith
also have . . . ≤ k ∗ 2^k + C_msort ?zs + length ?ys + length ?zs

using Suc.IH [of ?ys] Suc.prems by simp
also have . . . ≤ k ∗ 2^k + k ∗ 2^k + length ?ys + length ?zs

using Suc.IH [of ?zs] Suc.prems by simp
also have . . . = 2 ∗ k ∗ 2^k + 2 ∗ 2 ^ k

using Suc.prems by simp
finally show ?thesis by simp

qed
qed

lemma C_msort_log: length xs = 2^k =⇒ C_msort xs ≤ length xs ∗ log
2 (length xs)

using C_msort_le[of xs k]
by (metis log2_of_power_eq mult.commute of_nat_mono of_nat_mult)

1.3 Bottom-Up Merge Sort

fun merge_adj :: (′a::linorder) list list ⇒ ′a list list where
merge_adj [] = [] |
merge_adj [xs] = [xs] |
merge_adj (xs # ys # zss) = merge xs ys # merge_adj zss

For the termination proof of merge_all below.

lemma length_merge_adjacent[simp]: length (merge_adj xs) = (length xs
+ 1) div 2

8

by (induction xs rule: merge_adj.induct) auto

fun merge_all :: (′a::linorder) list list ⇒ ′a list where
merge_all [] = [] |
merge_all [xs] = xs |
merge_all xss = merge_all (merge_adj xss)

definition msort_bu :: (′a::linorder) list ⇒ ′a list where
msort_bu xs = merge_all (map (λx. [x]) xs)

1.3.1 Functional Correctness

abbreviation mset_mset :: ′a list list ⇒ ′a multiset where
mset_mset xss ≡

∑
(image_mset mset (mset xss))

lemma mset_merge_adj:
mset_mset (merge_adj xss) = mset_mset xss
by(induction xss rule: merge_adj.induct) (auto simp: mset_merge)

lemma mset_merge_all:
mset (merge_all xss) = mset_mset xss
by(induction xss rule: merge_all.induct) (auto simp: mset_merge mset_merge_adj)

lemma mset_msort_bu: mset (msort_bu xs) = mset xs
by(simp add: msort_bu_def mset_merge_all multiset.map_comp comp_def)

lemma sorted_merge_adj:
∀ xs ∈ set xss. sorted xs =⇒ ∀ xs ∈ set (merge_adj xss). sorted xs
by(induction xss rule: merge_adj.induct) (auto simp: sorted_merge)

lemma sorted_merge_all:
∀ xs ∈ set xss. sorted xs =⇒ sorted (merge_all xss)
by (induction xss rule: merge_all.induct) (auto simp add: sorted_merge_adj)

lemma sorted_msort_bu: sorted (msort_bu xs)
by(simp add: msort_bu_def sorted_merge_all)

1.3.2 Time Complexity

fun C_merge_adj :: (′a::linorder) list list ⇒ nat where
C_merge_adj [] = 0 |
C_merge_adj [xs] = 0 |
C_merge_adj (xs # ys # zss) = C_merge xs ys + C_merge_adj zss

9

fun C_merge_all :: (′a::linorder) list list ⇒ nat where
C_merge_all [] = 0 |
C_merge_all [xs] = 0 |
C_merge_all xss = C_merge_adj xss + C_merge_all (merge_adj xss)

definition C_msort_bu :: (′a::linorder) list ⇒ nat where
C_msort_bu xs = C_merge_all (map (λx. [x]) xs)

lemma length_merge_adj:
[[even(length xss); ∀ xs ∈ set xss. length xs = m]]
=⇒ ∀ xs ∈ set (merge_adj xss). length xs = 2∗m
by(induction xss rule: merge_adj.induct) (auto simp: length_merge)

lemma C_merge_adj: ∀ xs ∈ set xss. length xs = m =⇒ C_merge_adj xss
≤ m ∗ length xss
proof(induction xss rule: C_merge_adj.induct)

case 1 thus ?case by simp
next

case 2 thus ?case by simp
next

case (3 x y) thus ?case using C_merge_ub[of x y] by (simp add: alge-
bra_simps)
qed

lemma C_merge_all: [[∀ xs ∈ set xss. length xs = m; length xss = 2^k]]
=⇒ C_merge_all xss ≤ m ∗ k ∗ 2^k

proof (induction xss arbitrary: k m rule: C_merge_all.induct)
case 1 thus ?case by simp

next
case 2 thus ?case by simp

next
case (3 xs ys xss)
let ?xss = xs # ys # xss
let ?xss2 = merge_adj ?xss
obtain k ′ where k ′: k = Suc k ′ using 3 .prems(2)
by (metis length_Cons nat.inject nat_power_eq_Suc_0_iff nat.exhaust)

have even (length ?xss) using 3 .prems(2) k ′ by auto
from length_merge_adj[OF this 3 .prems(1)]
have ∗: ∀ x ∈ set(merge_adj ?xss). length x = 2∗m .
have ∗∗: length ?xss2 = 2 ^ k ′ using 3 .prems(2) k ′ by auto
have C_merge_all ?xss = C_merge_adj ?xss + C_merge_all ?xss2 by

simp
also have . . . ≤ m ∗ 2^k + C_merge_all ?xss2

using 3 .prems(2) C_merge_adj[OF 3 .prems(1)] by (auto simp: alge-

10

bra_simps)
also have . . . ≤ m ∗ 2^k + (2∗m) ∗ k ′ ∗ 2^k ′

using 3 .IH [OF ∗ ∗∗] by simp
also have . . . = m ∗ k ∗ 2^k

using k ′ by (simp add: algebra_simps)
finally show ?case .

qed

corollary C_msort_bu: length xs = 2 ^ k =⇒ C_msort_bu xs ≤ k ∗ 2 ^
k
using C_merge_all[of map (λx. [x]) xs 1] by (simp add: C_msort_bu_def)

1.4 Quicksort

fun quicksort :: (′a::linorder) list ⇒ ′a list where
quicksort [] = [] |
quicksort (x#xs) = quicksort (filter (λy. y < x) xs) @ [x] @ quicksort

(filter (λy. x ≤ y) xs)

lemma mset_quicksort: mset (quicksort xs) = mset xs
by (induction xs rule: quicksort.induct) (auto simp: not_le)

lemma set_quicksort: set (quicksort xs) = set xs
by(rule mset_eq_setD[OF mset_quicksort])

lemma sorted_quicksort: sorted (quicksort xs)
proof (induction xs rule: quicksort.induct)
qed (auto simp: sorted_append set_quicksort)

1.5 Insertion Sort w.r.t. Keys and Stability

hide_const List.insort_key

fun insort1_key :: (′a ⇒ ′k::linorder) ⇒ ′a ⇒ ′a list ⇒ ′a list where
insort1_key f x [] = [x] |
insort1_key f x (y # ys) = (if f x ≤ f y then x # y # ys else y #

insort1_key f x ys)

fun insort_key :: (′a ⇒ ′k::linorder) ⇒ ′a list ⇒ ′a list where
insort_key f [] = [] |
insort_key f (x # xs) = insort1_key f x (insort_key f xs)

1.5.1 Standard functional correctness

lemma mset_insort1_key: mset (insort1_key f x xs) = {#x#} + mset xs

11

by(induction xs) simp_all

lemma mset_insort_key: mset (insort_key f xs) = mset xs
by(induction xs) (simp_all add: mset_insort1_key)

lemma set_insort1_key: set (insort1_key f x xs) = {x} ∪ set xs
by (induction xs) auto

lemma sorted_insort1_key: sorted (map f (insort1_key f a xs)) = sorted
(map f xs)

by(induction xs)(auto simp: set_insort1_key)

lemma sorted_insort_key: sorted (map f (insort_key f xs))
by(induction xs)(simp_all add: sorted_insort1_key)

1.5.2 Stability

lemma insort1_is_Cons: ∀ x∈set xs. f a ≤ f x =⇒ insort1_key f a xs = a
xs

by (cases xs) auto

lemma filter_insort1_key_neg:
¬ P x =⇒ filter P (insort1_key f x xs) = filter P xs
by (induction xs) simp_all

lemma filter_insort1_key_pos:
sorted (map f xs) =⇒ P x =⇒ filter P (insort1_key f x xs) = insort1_key

f x (filter P xs)
by (induction xs) (auto, subst insort1_is_Cons, auto)

lemma sort_key_stable: filter (λy. f y = k) (insort_key f xs) = filter (λy.
f y = k) xs
proof (induction xs)

case Nil thus ?case by simp
next

case (Cons a xs)
thus ?case
proof (cases f a = k)
case False thus ?thesis by (simp add: Cons.IH filter_insort1_key_neg)

next
case True
have filter (λy. f y = k) (insort_key f (a # xs))
= filter (λy. f y = k) (insort1_key f a (insort_key f xs)) by simp

12

also have . . . = insort1_key f a (filter (λy. f y = k) (insort_key f xs))
by (simp add: True filter_insort1_key_pos sorted_insort_key)

also have . . . = insort1_key f a (filter (λy. f y = k) xs) by (simp add:
Cons.IH)

also have . . . = a # (filter (λy. f y = k) xs) by(simp add: True
insort1_is_Cons)

also have . . . = filter (λy. f y = k) (a # xs) by (simp add: True)
finally show ?thesis .

qed
qed

1.6 Uniqueness of Sorting

lemma sorting_unique:
assumes mset ys = mset xs sorted xs sorted ys
shows xs = ys
using assms

proof (induction xs arbitrary: ys)
case (Cons x xs ys ′)
obtain y ys where ys ′: ys ′ = y # ys

using Cons.prems by (cases ys ′) auto
have x = y

using Cons.prems unfolding ys ′

proof (induction x y arbitrary: xs ys rule: linorder_wlog)
case (le x y xs ys)
have x ∈# mset (x # xs)

by simp
also have mset (x # xs) = mset (y # ys)

using le by simp
finally show x = y

using le by auto
qed (simp_all add: eq_commute)
thus ?case

using Cons.prems Cons.IH [of ys] by (auto simp: ys ′)
qed auto

end

2 Creating Almost Complete Trees
theory Balance
imports

HOL−Library.Tree_Real

13

begin

fun bal :: nat ⇒ ′a list ⇒ ′a tree ∗ ′a list where
bal n xs = (if n=0 then (Leaf ,xs) else
(let m = n div 2 ;

(l, ys) = bal m xs;
(r , zs) = bal (n−1−m) (tl ys)

in (Node l (hd ys) r , zs)))

declare bal.simps[simp del]
declare Let_def [simp]

definition bal_list :: nat ⇒ ′a list ⇒ ′a tree where
bal_list n xs = fst (bal n xs)

definition balance_list :: ′a list ⇒ ′a tree where
balance_list xs = bal_list (length xs) xs

definition bal_tree :: nat ⇒ ′a tree ⇒ ′a tree where
bal_tree n t = bal_list n (inorder t)

definition balance_tree :: ′a tree ⇒ ′a tree where
balance_tree t = bal_tree (size t) t

lemma bal_simps:
bal 0 xs = (Leaf , xs)
n > 0 =⇒
bal n xs =
(let m = n div 2 ;

(l, ys) = bal m xs;
(r , zs) = bal (n−1−m) (tl ys)

in (Node l (hd ys) r , zs))
by(simp_all add: bal.simps)

lemma bal_inorder :
[[n ≤ length xs; bal n xs = (t,zs)]]
=⇒ xs = inorder t @ zs ∧ size t = n

proof(induction n arbitrary: xs t zs rule: less_induct)
case (less n) show ?case
proof cases
assume n = 0 thus ?thesis using less.prems by (simp add: bal_simps)

next
assume [arith]: n 6= 0
let ?m = n div 2 let ?m ′ = n − 1 − ?m

14

from less.prems(2) obtain l r ys where
b1 : bal ?m xs = (l,ys) and
b2 : bal ?m ′ (tl ys) = (r ,zs) and
t: t = 〈l, hd ys, r〉
by(auto simp: bal_simps split: prod.splits)

have IH1 : xs = inorder l @ ys ∧ size l = ?m
using b1 less.prems(1) by(intro less.IH) auto

have IH2 : tl ys = inorder r @ zs ∧ size r = ?m ′

using b2 IH1 less.prems(1) by(intro less.IH) auto
show ?thesis using t IH1 IH2 less.prems(1) hd_Cons_tl[of ys] by

fastforce
qed

qed

corollary inorder_bal_list[simp]:
n ≤ length xs =⇒ inorder(bal_list n xs) = take n xs

unfolding bal_list_def
by (metis (mono_tags) prod.collapse[of bal n xs] append_eq_conv_conj
bal_inorder length_inorder)

corollary inorder_balance_list[simp]: inorder(balance_list xs) = xs
by(simp add: balance_list_def)

corollary inorder_bal_tree:
n ≤ size t =⇒ inorder(bal_tree n t) = take n (inorder t)

by(simp add: bal_tree_def)

corollary inorder_balance_tree[simp]: inorder(balance_tree t) = inorder t
by(simp add: balance_tree_def inorder_bal_tree)

The length/size lemmas below do not require the precondition n ≤ length
xs (or n ≤ size t) that they come with. They could take advantage of the fact
that bal xs n yields a result even if length xs < n. In that case the result will
contain one or more occurrences of hd []. However, this is counter-intuitive
and does not reflect the execution in an eager functional language.

lemma bal_length: [[n ≤ length xs; bal n xs = (t,zs)]] =⇒ length zs =
length xs − n
using bal_inorder by fastforce

corollary size_bal_list[simp]: n ≤ length xs =⇒ size(bal_list n xs) = n
unfolding bal_list_def using bal_inorder prod.exhaust_sel by blast

corollary size_balance_list[simp]: size(balance_list xs) = length xs
by (simp add: balance_list_def)

15

corollary size_bal_tree[simp]: n ≤ size t =⇒ size(bal_tree n t) = n
by(simp add: bal_tree_def)

corollary size_balance_tree[simp]: size(balance_tree t) = size t
by(simp add: balance_tree_def)

lemma min_height_bal:
[[n ≤ length xs; bal n xs = (t,zs)]] =⇒ min_height t = nat(blog 2 (n +

1)c)
proof(induction n arbitrary: xs t zs rule: less_induct)

case (less n)
show ?case
proof cases
assume n = 0 thus ?thesis using less.prems(2) by (simp add: bal_simps)

next
assume [arith]: n 6= 0
let ?m = n div 2 let ?m ′ = n − 1 − ?m
from less.prems obtain l r ys where

b1 : bal ?m xs = (l,ys) and
b2 : bal ?m ′ (tl ys) = (r ,zs) and
t: t = 〈l, hd ys, r〉
by(auto simp: bal_simps split: prod.splits)

let ?hl = nat (floor(log 2 (?m + 1)))
let ?hr = nat (floor(log 2 (?m ′ + 1)))
have IH1 : min_height l = ?hl using less.IH [OF _ _ b1] less.prems(1)

by simp
have IH2 : min_height r = ?hr

using less.prems(1) bal_length[OF _ b1] b2 by(intro less.IH) auto
have (n+1) div 2 ≥ 1 by arith
hence 0 : log 2 ((n+1) div 2) ≥ 0 by simp
have ?m ′ ≤ ?m by arith
hence le: ?hr ≤ ?hl by(simp add: nat_mono floor_mono)
have min_height t = min ?hl ?hr + 1 by (simp add: t IH1 IH2)
also have . . . = ?hr + 1 using le by (simp add: min_absorb2)
also have ?m ′ + 1 = (n+1) div 2 by linarith
also have nat (floor(log 2 ((n+1) div 2))) + 1

= nat (floor(log 2 ((n+1) div 2) + 1))
using 0 by linarith

also have . . . = nat (floor(log 2 (n + 1)))
using floor_log2_div2 [of n+1] by (simp add: log_mult)

finally show ?thesis .
qed

qed

16

lemma height_bal:
[[n ≤ length xs; bal n xs = (t,zs)]] =⇒ height t = nat dlog 2 (n + 1)e

proof(induction n arbitrary: xs t zs rule: less_induct)
case (less n) show ?case
proof cases

assume n = 0 thus ?thesis
using less.prems by (simp add: bal_simps)

next
assume [arith]: n 6= 0
let ?m = n div 2 let ?m ′ = n − 1 − ?m
from less.prems obtain l r ys where

b1 : bal ?m xs = (l,ys) and
b2 : bal ?m ′ (tl ys) = (r ,zs) and
t: t = 〈l, hd ys, r〉
by(auto simp: bal_simps split: prod.splits)

let ?hl = nat dlog 2 (?m + 1)e
let ?hr = nat dlog 2 (?m ′ + 1)e
have IH1 : height l = ?hl using less.IH [OF _ _ b1] less.prems(1) by

simp
have IH2 : height r = ?hr

using b2 bal_length[OF _ b1] less.prems(1) by(intro less.IH) auto
have 0 : log 2 (?m + 1) ≥ 0 by simp
have ?m ′ ≤ ?m by arith
hence le: ?hr ≤ ?hl

by(simp add: nat_mono ceiling_mono del: nat_ceiling_le_eq)
have height t = max ?hl ?hr + 1 by (simp add: t IH1 IH2)
also have . . . = ?hl + 1 using le by (simp add: max_absorb1)
also have . . . = nat dlog 2 (?m + 1) + 1 e using 0 by linarith
also have . . . = nat dlog 2 (n + 1)e

using ceiling_log2_div2 [of n+1] by (simp)
finally show ?thesis .

qed
qed

lemma acomplete_bal:
assumes n ≤ length xs bal n xs = (t,ys) shows acomplete t

unfolding acomplete_def
using height_bal[OF assms] min_height_bal[OF assms]
by linarith

lemma height_bal_list:
n ≤ length xs =⇒ height (bal_list n xs) = nat dlog 2 (n + 1)e

unfolding bal_list_def by (metis height_bal prod.collapse)

17

lemma height_balance_list:
height (balance_list xs) = nat dlog 2 (length xs + 1)e

by (simp add: balance_list_def height_bal_list)

corollary height_bal_tree:
n ≤ size t =⇒ height (bal_tree n t) = natdlog 2 (n + 1)e

unfolding bal_list_def bal_tree_def
by (metis bal_list_def height_bal_list length_inorder)

corollary height_balance_tree:
height (balance_tree t) = natdlog 2 (size t + 1)e

by (simp add: bal_tree_def balance_tree_def height_bal_list)

corollary acomplete_bal_list[simp]: n ≤ length xs =⇒ acomplete (bal_list
n xs)
unfolding bal_list_def by (metis acomplete_bal prod.collapse)

corollary acomplete_balance_list[simp]: acomplete (balance_list xs)
by (simp add: balance_list_def)

corollary acomplete_bal_tree[simp]: n ≤ size t =⇒ acomplete (bal_tree n
t)
by (simp add: bal_tree_def)

corollary acomplete_balance_tree[simp]: acomplete (balance_tree t)
by (simp add: balance_tree_def)

lemma wbalanced_bal: [[n ≤ length xs; bal n xs = (t,ys)]] =⇒ wbalanced t
proof(induction n arbitrary: xs t ys rule: less_induct)

case (less n)
show ?case
proof cases

assume n = 0
thus ?thesis using less.prems(2) by(simp add: bal_simps)

next
assume [arith]: n 6= 0
with less.prems obtain l ys r zs where

rec1 : bal (n div 2) xs = (l, ys) and
rec2 : bal (n − 1 − n div 2) (tl ys) = (r , zs) and
t: t = 〈l, hd ys, r〉
by(auto simp add: bal_simps split: prod.splits)

have l: wbalanced l using less.IH [OF _ _ rec1] less.prems(1) by linarith
have wbalanced r

18

using rec1 rec2 bal_length[OF _ rec1] less.prems(1) by(intro less.IH)
auto

with l t bal_length[OF _ rec1] less.prems(1) bal_inorder [OF _ rec1]
bal_inorder [OF _ rec2]

show ?thesis by auto
qed

qed
An alternative proof via wbalanced ?t =⇒ acomplete ?t:

lemma [[n ≤ length xs; bal n xs = (t,ys)]] =⇒ acomplete t
by(rule acomplete_if_wbalanced[OF wbalanced_bal])

lemma wbalanced_bal_list[simp]: n ≤ length xs =⇒ wbalanced (bal_list n
xs)
by(simp add: bal_list_def) (metis prod.collapse wbalanced_bal)

lemma wbalanced_balance_list[simp]: wbalanced (balance_list xs)
by(simp add: balance_list_def)

lemma wbalanced_bal_tree[simp]: n ≤ size t =⇒ wbalanced (bal_tree n t)
by(simp add: bal_tree_def)

lemma wbalanced_balance_tree: wbalanced (balance_tree t)
by (simp add: balance_tree_def)

hide_const (open) bal

end

3 Three-Way Comparison
theory Cmp
imports Main
begin

datatype cmp_val = LT | EQ | GT

definition cmp :: ′a:: linorder ⇒ ′a ⇒ cmp_val where
cmp x y = (if x < y then LT else if x=y then EQ else GT)

lemma
LT [simp]: cmp x y = LT ←→ x < y

and EQ[simp]: cmp x y = EQ ←→ x = y
and GT [simp]: cmp x y = GT ←→ x > y

19

by (auto simp: cmp_def)

lemma case_cmp_if [simp]: (case c of EQ ⇒ e | LT ⇒ l | GT ⇒ g) =
(if c = LT then l else if c = GT then g else e)

by(simp split: cmp_val.split)

end

4 Lists Sorted wrt <

theory Sorted_Less
imports Less_False
begin

hide_const sorted

Is a list sorted without duplicates, i.e., wrt <?.

abbreviation sorted :: ′a::linorder list ⇒ bool where
sorted ≡ sorted_wrt (<)

lemmas sorted_wrt_Cons = sorted_wrt.simps(2)

The definition of sorted_wrt relates each element to all the elements
after it. This causes a blowup of the formulas. Thus we simplify matters by
only comparing adjacent elements.

declare
sorted_wrt.simps(2)[simp del]
sorted_wrt1 [simp] sorted_wrt2 [OF transp_on_less, simp]

lemma sorted_cons: sorted (x#xs) =⇒ sorted xs
by(simp add: sorted_wrt_Cons)

lemma sorted_cons ′: ASSUMPTION (sorted (x#xs)) =⇒ sorted xs
by(rule ASSUMPTION_D [THEN sorted_cons])

lemma sorted_snoc: sorted (xs @ [y]) =⇒ sorted xs
by(simp add: sorted_wrt_append)

lemma sorted_snoc ′: ASSUMPTION (sorted (xs @ [y])) =⇒ sorted xs
by(rule ASSUMPTION_D [THEN sorted_snoc])

lemma sorted_mid_iff :
sorted(xs @ y # ys) = (sorted(xs @ [y]) ∧ sorted(y # ys))

by(fastforce simp add: sorted_wrt_Cons sorted_wrt_append)

20

lemma sorted_mid_iff2 :
sorted(x # xs @ y # ys) =
(sorted(x # xs) ∧ x < y ∧ sorted(xs @ [y]) ∧ sorted(y # ys))

by(fastforce simp add: sorted_wrt_Cons sorted_wrt_append)

lemma sorted_mid_iff ′: NO_MATCH [] ys =⇒
sorted(xs @ y # ys) = (sorted(xs @ [y]) ∧ sorted(y # ys))

by(rule sorted_mid_iff)

lemmas sorted_lems = sorted_mid_iff ′ sorted_mid_iff2 sorted_cons ′ sorted_snoc ′

Splay trees need two additional sorted lemmas:

lemma sorted_snoc_le:
ASSUMPTION (sorted(xs @ [x])) =⇒ x ≤ y =⇒ sorted (xs @ [y])

by (auto simp add: sorted_wrt_append ASSUMPTION_def)

lemma sorted_Cons_le:
ASSUMPTION (sorted(x # xs)) =⇒ y ≤ x =⇒ sorted (y # xs)

by (auto simp add: sorted_wrt_Cons ASSUMPTION_def)

end

5 List Insertion and Deletion
theory List_Ins_Del
imports Sorted_Less
begin

5.1 Elements in a list

lemma sorted_Cons_iff :
sorted(x # xs) = ((∀ y ∈ set xs. x < y) ∧ sorted xs)

by(simp add: sorted_wrt_Cons)

lemma sorted_snoc_iff :
sorted(xs @ [x]) = (sorted xs ∧ (∀ y ∈ set xs. y < x))

by(simp add: sorted_wrt_append)

lemmas isin_simps = sorted_mid_iff ′ sorted_Cons_iff sorted_snoc_iff

21

5.2 Inserting into an ordered list without duplicates:

fun ins_list :: ′a::linorder ⇒ ′a list ⇒ ′a list where
ins_list x [] = [x] |
ins_list x (a#xs) =
(if x < a then x#a#xs else if x=a then a#xs else a # ins_list x xs)

lemma set_ins_list: set (ins_list x xs) = set xs ∪ {x}
by(induction xs) auto

lemma sorted_ins_list: sorted xs =⇒ sorted(ins_list x xs)
by(induction xs rule: induct_list012) auto

lemma ins_list_sorted: sorted (xs @ [a]) =⇒
ins_list x (xs @ a # ys) =
(if x < a then ins_list x xs @ (a#ys) else xs @ ins_list x (a#ys))

by(induction xs) (auto simp: sorted_lems)

In principle, sorted (?xs @ [?a]) =⇒ ins_list ?x (?xs @ ?a # ?ys) = (if
?x < ?a then ins_list ?x ?xs @ ?a # ?ys else ?xs @ ins_list ?x (?a # ?ys))
suffices, but the following two corollaries speed up proofs.

corollary ins_list_sorted1 : sorted (xs @ [a]) =⇒ a ≤ x =⇒
ins_list x (xs @ a # ys) = xs @ ins_list x (a#ys)

by(auto simp add: ins_list_sorted)

corollary ins_list_sorted2 : sorted (xs @ [a]) =⇒ x < a =⇒
ins_list x (xs @ a # ys) = ins_list x xs @ (a#ys)

by(auto simp: ins_list_sorted)

lemmas ins_list_simps = sorted_lems ins_list_sorted1 ins_list_sorted2

Splay trees need two additional ins_list lemmas:

lemma ins_list_Cons: sorted (x # xs) =⇒ ins_list x xs = x # xs
by (induction xs) auto

lemma ins_list_snoc: sorted (xs @ [x]) =⇒ ins_list x xs = xs @ [x]
by(induction xs) (auto simp add: sorted_mid_iff2)

5.3 Delete one occurrence of an element from a list:

fun del_list :: ′a ⇒ ′a list ⇒ ′a list where
del_list x [] = [] |
del_list x (a#xs) = (if x=a then xs else a # del_list x xs)

lemma del_list_idem: x /∈ set xs =⇒ del_list x xs = xs

22

by (induct xs) simp_all

lemma set_del_list:
sorted xs =⇒ set (del_list x xs) = set xs − {x}

by(induct xs) (auto simp: sorted_Cons_iff)

lemma sorted_del_list: sorted xs =⇒ sorted(del_list x xs)
apply(induction xs rule: induct_list012)
apply auto
by (meson order .strict_trans sorted_Cons_iff)

lemma del_list_sorted: sorted (xs @ a # ys) =⇒
del_list x (xs @ a # ys) = (if x < a then del_list x xs @ a # ys else xs

@ del_list x (a # ys))
by(induction xs)
(fastforce simp: sorted_lems sorted_Cons_iff intro!: del_list_idem)+

In principle, sorted (?xs @ ?a # ?ys) =⇒ del_list ?x (?xs @ ?a # ?ys)
= (if ?x < ?a then del_list ?x ?xs @ ?a # ?ys else ?xs @ del_list ?x (?a
?ys)) suffices, but the following corollaries speed up proofs.

corollary del_list_sorted1 : sorted (xs @ a # ys) =⇒ a ≤ x =⇒
del_list x (xs @ a # ys) = xs @ del_list x (a # ys)

by (auto simp: del_list_sorted)

corollary del_list_sorted2 : sorted (xs @ a # ys) =⇒ x < a =⇒
del_list x (xs @ a # ys) = del_list x xs @ a # ys

by (auto simp: del_list_sorted)

corollary del_list_sorted3 :
sorted (xs @ a # ys @ b # zs) =⇒ x < b =⇒
del_list x (xs @ a # ys @ b # zs) = del_list x (xs @ a # ys) @ b # zs

by (auto simp: del_list_sorted sorted_lems)

corollary del_list_sorted4 :
sorted (xs @ a # ys @ b # zs @ c # us) =⇒ x < c =⇒
del_list x (xs @ a # ys @ b # zs @ c # us) = del_list x (xs @ a # ys @

b # zs) @ c # us
by (auto simp: del_list_sorted sorted_lems)

corollary del_list_sorted5 :
sorted (xs @ a # ys @ b # zs @ c # us @ d # vs) =⇒ x < d =⇒
del_list x (xs @ a # ys @ b # zs @ c # us @ d # vs) =
del_list x (xs @ a # ys @ b # zs @ c # us) @ d # vs

by (auto simp: del_list_sorted sorted_lems)

23

lemmas del_list_simps = sorted_lems
del_list_sorted1
del_list_sorted2
del_list_sorted3
del_list_sorted4
del_list_sorted5

Splay trees need two additional del_list lemmas:
lemma del_list_notin_Cons: sorted (x # xs) =⇒ del_list x xs = xs
by(induction xs)(fastforce simp: sorted_Cons_iff)+

lemma del_list_sorted_app:
sorted(xs @ [x]) =⇒ del_list x (xs @ ys) = xs @ del_list x ys

by (induction xs) (auto simp: sorted_mid_iff2)

end

6 Specifications of Set ADT
theory Set_Specs
imports List_Ins_Del
begin

The basic set interface with traditional set-based specification:
locale Set =
fixes empty :: ′s
fixes insert :: ′a ⇒ ′s ⇒ ′s
fixes delete :: ′a ⇒ ′s ⇒ ′s
fixes isin :: ′s ⇒ ′a ⇒ bool
fixes set :: ′s ⇒ ′a set
fixes invar :: ′s ⇒ bool
assumes set_empty: set empty = {}
assumes set_isin: invar s =⇒ isin s x = (x ∈ set s)
assumes set_insert: invar s =⇒ set(insert x s) = set s ∪ {x}
assumes set_delete: invar s =⇒ set(delete x s) = set s − {x}
assumes invar_empty: invar empty
assumes invar_insert: invar s =⇒ invar(insert x s)
assumes invar_delete: invar s =⇒ invar(delete x s)

lemmas (in Set) set_specs =
set_empty set_isin set_insert set_delete invar_empty invar_insert in-

var_delete
The basic set interface with inorder-based specification:

24

locale Set_by_Ordered =
fixes empty :: ′t
fixes insert :: ′a::linorder ⇒ ′t ⇒ ′t
fixes delete :: ′a ⇒ ′t ⇒ ′t
fixes isin :: ′t ⇒ ′a ⇒ bool
fixes inorder :: ′t ⇒ ′a list
fixes inv :: ′t ⇒ bool
assumes inorder_empty: inorder empty = []
assumes isin: inv t ∧ sorted(inorder t) =⇒

isin t x = (x ∈ set (inorder t))
assumes inorder_insert: inv t ∧ sorted(inorder t) =⇒

inorder(insert x t) = ins_list x (inorder t)
assumes inorder_delete: inv t ∧ sorted(inorder t) =⇒

inorder(delete x t) = del_list x (inorder t)
assumes inorder_inv_empty: inv empty
assumes inorder_inv_insert: inv t ∧ sorted(inorder t) =⇒ inv(insert x t)
assumes inorder_inv_delete: inv t ∧ sorted(inorder t) =⇒ inv(delete x t)

begin

It implements the traditional specification:

definition set :: ′t ⇒ ′a set where
set = List.set o inorder

definition invar :: ′t ⇒ bool where
invar t = (inv t ∧ sorted (inorder t))

sublocale Set
empty insert delete isin set invar

proof(standard, goal_cases)
case 1 show ?case by (auto simp: inorder_empty set_def)

next
case 2 thus ?case by(simp add: isin invar_def set_def)

next
case 3 thus ?case by(simp add: inorder_insert set_ins_list set_def in-

var_def)
next

case (4 s x) thus ?case
by (auto simp: inorder_delete set_del_list invar_def set_def)

next
case 5 thus ?case by(simp add: inorder_empty inorder_inv_empty in-

var_def)
next
case 6 thus ?case by(simp add: inorder_insert inorder_inv_insert sorted_ins_list

25

invar_def)
next

case 7 thus ?case by (auto simp: inorder_delete inorder_inv_delete
sorted_del_list invar_def)
qed

end
Set2 = Set with binary operations:

locale Set2 = Set
where insert = insert for insert :: ′a ⇒ ′s ⇒ ′s +

fixes union :: ′s ⇒ ′s ⇒ ′s
fixes inter :: ′s ⇒ ′s ⇒ ′s
fixes diff :: ′s ⇒ ′s ⇒ ′s
assumes set_union: [[invar s1 ; invar s2]] =⇒ set(union s1 s2) = set s1
∪ set s2
assumes set_inter : [[invar s1 ; invar s2]] =⇒ set(inter s1 s2) = set s1
∩ set s2
assumes set_diff : [[invar s1 ; invar s2]] =⇒ set(diff s1 s2) = set s1 −
set s2
assumes invar_union: [[invar s1 ; invar s2]] =⇒ invar(union s1 s2)
assumes invar_inter : [[invar s1 ; invar s2]] =⇒ invar(inter s1 s2)
assumes invar_diff : [[invar s1 ; invar s2]] =⇒ invar(diff s1 s2)

end

7 Unbalanced Tree Implementation of Set
theory Tree_Set
imports

HOL−Library.Tree
Cmp
Set_Specs

begin

definition empty :: ′a tree where
empty = Leaf

fun isin :: ′a::linorder tree ⇒ ′a ⇒ bool where
isin Leaf x = False |
isin (Node l a r) x =
(case cmp x a of

LT ⇒ isin l x |
EQ ⇒ True |

26

GT ⇒ isin r x)

hide_const (open) insert

fun insert :: ′a::linorder ⇒ ′a tree ⇒ ′a tree where
insert x Leaf = Node Leaf x Leaf |
insert x (Node l a r) =
(case cmp x a of

LT ⇒ Node (insert x l) a r |
EQ ⇒ Node l a r |
GT ⇒ Node l a (insert x r))
Deletion by replacing:

fun split_min :: ′a tree ⇒ ′a ∗ ′a tree where
split_min (Node l a r) =
(if l = Leaf then (a,r) else let (x,l ′) = split_min l in (x, Node l ′ a r))

fun delete :: ′a::linorder ⇒ ′a tree ⇒ ′a tree where
delete x Leaf = Leaf |
delete x (Node l a r) =
(case cmp x a of

LT ⇒ Node (delete x l) a r |
GT ⇒ Node l a (delete x r) |
EQ ⇒ if r = Leaf then l else let (a ′,r ′) = split_min r in Node l a ′ r ′)

Deletion by joining:
fun join :: (′a::linorder)tree ⇒ ′a tree ⇒ ′a tree where
join t Leaf = t |
join Leaf t = t |
join (Node t1 a t2) (Node t3 b t4) =
(case join t2 t3 of

Leaf ⇒ Node t1 a (Node Leaf b t4) |
Node u2 x u3 ⇒ Node (Node t1 a u2) x (Node u3 b t4))

fun delete2 :: ′a::linorder ⇒ ′a tree ⇒ ′a tree where
delete2 x Leaf = Leaf |
delete2 x (Node l a r) =
(case cmp x a of

LT ⇒ Node (delete2 x l) a r |
GT ⇒ Node l a (delete2 x r) |
EQ ⇒ join l r)

7.1 Functional Correctness Proofs

lemma isin_set: sorted(inorder t) =⇒ isin t x = (x ∈ set (inorder t))

27

by (induction t) (auto simp: isin_simps)

lemma inorder_insert:
sorted(inorder t) =⇒ inorder(insert x t) = ins_list x (inorder t)

by(induction t) (auto simp: ins_list_simps)

lemma split_minD:
split_min t = (x,t ′) =⇒ t 6= Leaf =⇒ x # inorder t ′ = inorder t

by(induction t arbitrary: t ′ rule: split_min.induct)
(auto simp: sorted_lems split: prod.splits if_splits)

lemma inorder_delete:
sorted(inorder t) =⇒ inorder(delete x t) = del_list x (inorder t)

by(induction t) (auto simp: del_list_simps split_minD split: prod.splits)

interpretation S : Set_by_Ordered
where empty = empty and isin = isin and insert = insert and delete =
delete
and inorder = inorder and inv = λ_. True
proof (standard, goal_cases)

case 1 show ?case by (simp add: empty_def)
next

case 2 thus ?case by(simp add: isin_set)
next

case 3 thus ?case by(simp add: inorder_insert)
next

case 4 thus ?case by(simp add: inorder_delete)
qed (rule TrueI)+

lemma inorder_join:
inorder(join l r) = inorder l @ inorder r

by(induction l r rule: join.induct) (auto split: tree.split)

lemma inorder_delete2 :
sorted(inorder t) =⇒ inorder(delete2 x t) = del_list x (inorder t)

by(induction t) (auto simp: inorder_join del_list_simps)

interpretation S2 : Set_by_Ordered
where empty = empty and isin = isin and insert = insert and delete =
delete2
and inorder = inorder and inv = λ_. True
proof (standard, goal_cases)

case 1 show ?case by (simp add: empty_def)

28

next
case 2 thus ?case by(simp add: isin_set)

next
case 3 thus ?case by(simp add: inorder_insert)

next
case 4 thus ?case by(simp add: inorder_delete2)

qed (rule TrueI)+

end

8 Association List Update and Deletion
theory AList_Upd_Del
imports Sorted_Less
begin

abbreviation sorted1 ps ≡ sorted(map fst ps)

Define own map_of function to avoid pulling in an unknown amount of
lemmas implicitly (via the simpset).

hide_const (open) map_of

fun map_of :: (′a∗ ′b)list ⇒ ′a ⇒ ′b option where
map_of [] = (λx. None) |
map_of ((a,b)#ps) = (λx. if x=a then Some b else map_of ps x)

Updating an association list:

fun upd_list :: ′a::linorder ⇒ ′b ⇒ (′a∗ ′b) list ⇒ (′a∗ ′b) list where
upd_list x y [] = [(x,y)] |
upd_list x y ((a,b)#ps) =
(if x < a then (x,y)#(a,b)#ps else
if x = a then (x,y)#ps else (a,b) # upd_list x y ps)

fun del_list :: ′a::linorder ⇒ (′a∗ ′b)list ⇒ (′a∗ ′b)list where
del_list x [] = [] |
del_list x ((a,b)#ps) = (if x = a then ps else (a,b) # del_list x ps)

8.1 Lemmas for map_of

lemma map_of_ins_list: map_of (upd_list x y ps) = (map_of ps)(x :=
Some y)
by(induction ps) auto

lemma map_of_append: map_of (ps @ qs) x =

29

(case map_of ps x of None ⇒ map_of qs x | Some y ⇒ Some y)
by(induction ps)(auto)

lemma map_of_None: sorted (x # map fst ps) =⇒ map_of ps x = None
by (induction ps) (fastforce simp: sorted_lems sorted_wrt_Cons)+

lemma map_of_None2 : sorted (map fst ps @ [x]) =⇒ map_of ps x =
None
by (induction ps) (auto simp: sorted_lems)

lemma map_of_del_list: sorted1 ps =⇒
map_of (del_list x ps) = (map_of ps)(x := None)

by(induction ps) (auto simp: map_of_None sorted_lems fun_eq_iff)

lemma map_of_sorted_Cons: sorted (a # map fst ps) =⇒ x < a =⇒
map_of ps x = None

by (simp add: map_of_None sorted_Cons_le)

lemma map_of_sorted_snoc: sorted (map fst ps @ [a]) =⇒ a ≤ x =⇒
map_of ps x = None

by (simp add: map_of_None2 sorted_snoc_le)

lemmas map_of_sorteds = map_of_sorted_Cons map_of_sorted_snoc
lemmas map_of_simps = sorted_lems map_of_append map_of_sorteds

8.2 Lemmas for upd_list

lemma sorted_upd_list: sorted1 ps =⇒ sorted1 (upd_list x y ps)
apply(induction ps)
apply simp

apply(case_tac ps)
apply auto

done

lemma upd_list_sorted: sorted1 (ps @ [(a,b)]) =⇒
upd_list x y (ps @ (a,b) # qs) =
(if x < a then upd_list x y ps @ (a,b) # qs
else ps @ upd_list x y ((a,b) # qs))

by(induction ps) (auto simp: sorted_lems)

In principle, sorted1 (?ps @ [(?a, ?b)]) =⇒ upd_list ?x ?y (?ps @ (?a,
?b) # ?qs) = (if ?x < ?a then upd_list ?x ?y ?ps @ (?a, ?b) # ?qs else ?ps
@ upd_list ?x ?y ((?a, ?b) # ?qs)) suffices, but the following two corollaries
speed up proofs.

30

corollary upd_list_sorted1 : [[sorted (map fst ps @ [a]); x < a]] =⇒
upd_list x y (ps @ (a,b) # qs) = upd_list x y ps @ (a,b) # qs

by (auto simp: upd_list_sorted)

corollary upd_list_sorted2 : [[sorted (map fst ps @ [a]); a ≤ x]] =⇒
upd_list x y (ps @ (a,b) # qs) = ps @ upd_list x y ((a,b) # qs)

by (auto simp: upd_list_sorted)

lemmas upd_list_simps = sorted_lems upd_list_sorted1 upd_list_sorted2

Splay trees need two additional upd_list lemmas:

lemma upd_list_Cons:
sorted1 ((x,y) # xs) =⇒ upd_list x y xs = (x,y) # xs

by (induction xs) auto

lemma upd_list_snoc:
sorted1 (xs @ [(x,y)]) =⇒ upd_list x y xs = xs @ [(x,y)]

by(induction xs) (auto simp add: sorted_mid_iff2)

8.3 Lemmas for del_list

lemma sorted_del_list: sorted1 ps =⇒ sorted1 (del_list x ps)
apply(induction ps)
apply simp

apply(case_tac ps)
apply (auto simp: sorted_Cons_le)
done

lemma del_list_idem: x /∈ set(map fst xs) =⇒ del_list x xs = xs
by (induct xs) auto

lemma del_list_sorted: sorted1 (ps @ (a,b) # qs) =⇒
del_list x (ps @ (a,b) # qs) =
(if x < a then del_list x ps @ (a,b) # qs
else ps @ del_list x ((a,b) # qs))

by(induction ps)
(fastforce simp: sorted_lems sorted_wrt_Cons intro!: del_list_idem)+

In principle, sorted1 (?ps @ (?a, ?b) # ?qs) =⇒ del_list ?x (?ps @ (?a,
?b) # ?qs) = (if ?x < ?a then del_list ?x ?ps @ (?a, ?b) # ?qs else ?ps @
del_list ?x ((?a, ?b) # ?qs)) suffices, but the following corollaries speed up
proofs.

corollary del_list_sorted1 : sorted1 (xs @ (a,b) # ys) =⇒ a ≤ x =⇒
del_list x (xs @ (a,b) # ys) = xs @ del_list x ((a,b) # ys)

31

by (auto simp: del_list_sorted)

lemma del_list_sorted2 : sorted1 (xs @ (a,b) # ys) =⇒ x < a =⇒
del_list x (xs @ (a,b) # ys) = del_list x xs @ (a,b) # ys

by (auto simp: del_list_sorted)

lemma del_list_sorted3 :
sorted1 (xs @ (a,a ′) # ys @ (b,b ′) # zs) =⇒ x < b =⇒
del_list x (xs @ (a,a ′) # ys @ (b,b ′) # zs) = del_list x (xs @ (a,a ′) #

ys) @ (b,b ′) # zs
by (auto simp: del_list_sorted sorted_lems)

lemma del_list_sorted4 :
sorted1 (xs @ (a,a ′) # ys @ (b,b ′) # zs @ (c,c ′) # us) =⇒ x < c =⇒
del_list x (xs @ (a,a ′) # ys @ (b,b ′) # zs @ (c,c ′) # us) = del_list x (xs

@ (a,a ′) # ys @ (b,b ′) # zs) @ (c,c ′) # us
by (auto simp: del_list_sorted sorted_lems)

lemma del_list_sorted5 :
sorted1 (xs @ (a,a ′) # ys @ (b,b ′) # zs @ (c,c ′) # us @ (d,d ′) # vs) =⇒

x < d =⇒
del_list x (xs @ (a,a ′) # ys @ (b,b ′) # zs @ (c,c ′) # us @ (d,d ′) # vs)

=
del_list x (xs @ (a,a ′) # ys @ (b,b ′) # zs @ (c,c ′) # us) @ (d,d ′) # vs

by (auto simp: del_list_sorted sorted_lems)

lemmas del_list_simps = sorted_lems
del_list_sorted1
del_list_sorted2
del_list_sorted3
del_list_sorted4
del_list_sorted5

Splay trees need two additional del_list lemmas:

lemma del_list_notin_Cons: sorted (x # map fst xs) =⇒ del_list x xs =
xs
by(induction xs)(fastforce simp: sorted_wrt_Cons)+

lemma del_list_sorted_app:
sorted(map fst xs @ [x]) =⇒ del_list x (xs @ ys) = xs @ del_list x ys

by (induction xs) (auto simp: sorted_mid_iff2)

end

32

9 Specifications of Map ADT
theory Map_Specs
imports AList_Upd_Del
begin

The basic map interface with ′a ⇒ ′b option based specification:

locale Map =
fixes empty :: ′m
fixes update :: ′a ⇒ ′b ⇒ ′m ⇒ ′m
fixes delete :: ′a ⇒ ′m ⇒ ′m
fixes lookup :: ′m ⇒ ′a ⇒ ′b option
fixes invar :: ′m ⇒ bool
assumes map_empty: lookup empty = (λ_. None)
and map_update: invar m =⇒ lookup(update a b m) = (lookup m)(a :=
Some b)
and map_delete: invar m =⇒ lookup(delete a m) = (lookup m)(a := None)
and invar_empty: invar empty
and invar_update: invar m =⇒ invar(update a b m)
and invar_delete: invar m =⇒ invar(delete a m)

lemmas (in Map) map_specs =
map_empty map_update map_delete invar_empty invar_update invar_delete

The basic map interface with inorder-based specification:

locale Map_by_Ordered =
fixes empty :: ′t
fixes update :: ′a::linorder ⇒ ′b ⇒ ′t ⇒ ′t
fixes delete :: ′a ⇒ ′t ⇒ ′t
fixes lookup :: ′t ⇒ ′a ⇒ ′b option
fixes inorder :: ′t ⇒ (′a ∗ ′b) list
fixes inv :: ′t ⇒ bool
assumes inorder_empty: inorder empty = []
and inorder_lookup: inv t ∧ sorted1 (inorder t) =⇒

lookup t a = map_of (inorder t) a
and inorder_update: inv t ∧ sorted1 (inorder t) =⇒

inorder(update a b t) = upd_list a b (inorder t)
and inorder_delete: inv t ∧ sorted1 (inorder t) =⇒

inorder(delete a t) = del_list a (inorder t)
and inorder_inv_empty: inv empty
and inorder_inv_update: inv t ∧ sorted1 (inorder t) =⇒ inv(update a b t)
and inorder_inv_delete: inv t ∧ sorted1 (inorder t) =⇒ inv(delete a t)

begin

33

It implements the traditional specification:

definition invar :: ′t ⇒ bool where
invar t == inv t ∧ sorted1 (inorder t)

sublocale Map
empty update delete lookup invar

proof(standard, goal_cases)
case 1 show ?case by (auto simp: inorder_lookup inorder_empty in-

order_inv_empty)
next

case 2 thus ?case
by(simp add: fun_eq_iff inorder_update inorder_inv_update map_of_ins_list

inorder_lookup
sorted_upd_list invar_def)

next
case 3 thus ?case
by(simp add: fun_eq_iff inorder_delete inorder_inv_delete map_of_del_list

inorder_lookup
sorted_del_list invar_def)

next
case 4 thus ?case by(simp add: inorder_empty inorder_inv_empty in-

var_def)
next

case 5 thus ?case by(simp add: inorder_update inorder_inv_update
sorted_upd_list invar_def)
next

case 6 thus ?case by (auto simp: inorder_delete inorder_inv_delete
sorted_del_list invar_def)
qed

end

end

10 Unbalanced Tree Implementation of Map
theory Tree_Map
imports

Tree_Set
Map_Specs

begin

fun lookup :: (′a::linorder∗ ′b) tree ⇒ ′a ⇒ ′b option where

34

lookup Leaf x = None |
lookup (Node l (a,b) r) x =
(case cmp x a of LT ⇒ lookup l x | GT ⇒ lookup r x | EQ ⇒ Some b)

fun update :: ′a::linorder ⇒ ′b ⇒ (′a∗ ′b) tree ⇒ (′a∗ ′b) tree where
update x y Leaf = Node Leaf (x,y) Leaf |
update x y (Node l (a,b) r) = (case cmp x a of

LT ⇒ Node (update x y l) (a,b) r |
EQ ⇒ Node l (x,y) r |
GT ⇒ Node l (a,b) (update x y r))

fun delete :: ′a::linorder ⇒ (′a∗ ′b) tree ⇒ (′a∗ ′b) tree where
delete x Leaf = Leaf |
delete x (Node l (a,b) r) = (case cmp x a of

LT ⇒ Node (delete x l) (a,b) r |
GT ⇒ Node l (a,b) (delete x r) |
EQ ⇒ if r = Leaf then l else let (ab ′,r ′) = split_min r in Node l ab ′ r ′)

10.1 Functional Correctness Proofs

lemma lookup_map_of :
sorted1 (inorder t) =⇒ lookup t x = map_of (inorder t) x

by (induction t) (auto simp: map_of_simps split: option.split)

lemma inorder_update:
sorted1 (inorder t) =⇒ inorder(update a b t) = upd_list a b (inorder t)

by(induction t) (auto simp: upd_list_simps)

lemma inorder_delete:
sorted1 (inorder t) =⇒ inorder(delete x t) = del_list x (inorder t)

by(induction t) (auto simp: del_list_simps split_minD split: prod.splits)

interpretation M : Map_by_Ordered
where empty = empty and lookup = lookup and update = update and
delete = delete
and inorder = inorder and inv = λ_. True
proof (standard, goal_cases)

case 1 show ?case by (simp add: empty_def)
next

case 2 thus ?case by(simp add: lookup_map_of)
next

case 3 thus ?case by(simp add: inorder_update)
next

case 4 thus ?case by(simp add: inorder_delete)

35

qed auto

end

11 Tree Rotations
theory Tree_Rotations
imports HOL−Library.Tree
begin

How to transform a tree into a list and into any other tree (with the
same inorder) by rotations.

fun is_list :: ′a tree ⇒ bool where
is_list (Node l _ r) = (l = Leaf ∧ is_list r) |
is_list Leaf = True

Termination proof via measure function. NB size t − rlen t works for
the actual rotation equation but not for the second equation.

fun rlen :: ′a tree ⇒ nat where
rlen Leaf = 0 |
rlen (Node l x r) = rlen r + 1

lemma rlen_le_size: rlen t ≤ size t
by(induction t) auto

11.1 Without positions

function (sequential) list_of :: ′a tree ⇒ ′a tree where
list_of (Node (Node A a B) b C) = list_of (Node A a (Node B b C)) |
list_of (Node Leaf a A) = Node Leaf a (list_of A) |
list_of Leaf = Leaf
by pat_completeness auto

termination
proof

let ?R = measure(λt. 2∗size t − rlen t)
show wf ?R by (auto simp add: mlex_prod_def)

fix A a B b C
show (Node A a (Node B b C), Node (Node A a B) b C) ∈ ?R

using rlen_le_size[of C] by(simp)

fix a A show (A, Node Leaf a A) ∈ ?R using rlen_le_size[of A] by(simp)
qed

36

lemma is_list_rot: is_list(list_of t)
by (induction t rule: list_of .induct) auto

lemma inorder_rot: inorder(list_of t) = inorder t
by (induction t rule: list_of .induct) auto

11.2 With positions

datatype dir = L | R

type_synonym pos = dir list

function (sequential) rotR_poss :: ′a tree ⇒ pos list where
rotR_poss (Node (Node A a B) b C) = [] # rotR_poss (Node A a (Node B
b C)) |
rotR_poss (Node Leaf a A) = map (Cons R) (rotR_poss A) |
rotR_poss Leaf = []
by pat_completeness auto

termination
proof

let ?R = measure(λt. 2∗size t − rlen t)
show wf ?R by (auto simp add: mlex_prod_def)

fix A a B b C
show (Node A a (Node B b C), Node (Node A a B) b C) ∈ ?R

using rlen_le_size[of C] by(simp)

fix a A show (A, Node Leaf a A) ∈ ?R using rlen_le_size[of A] by(simp)
qed

fun rotR :: ′a tree ⇒ ′a tree where
rotR (Node (Node A a B) b C) = Node A a (Node B b C)

fun rotL :: ′a tree ⇒ ′a tree where
rotL (Node A a (Node B b C)) = Node (Node A a B) b C

fun apply_at :: (′a tree ⇒ ′a tree) ⇒ pos ⇒ ′a tree ⇒ ′a tree where
apply_at f [] t = f t
| apply_at f (L # ds) (Node l a r) = Node (apply_at f ds l) a r
| apply_at f (R # ds) (Node l a r) = Node l a (apply_at f ds r)

fun apply_ats :: (′a tree ⇒ ′a tree) ⇒ pos list ⇒ ′a tree ⇒ ′a tree where

37

apply_ats _ [] t = t |
apply_ats f (p#ps) t = apply_ats f ps (apply_at f p t)

lemma apply_ats_append:
apply_ats f (ps1 @ ps2) t = apply_ats f ps2 (apply_ats f ps1 t)

by (induction ps1 arbitrary: t) auto

abbreviation rotRs ≡ apply_ats rotR
abbreviation rotLs ≡ apply_ats rotL

lemma apply_ats_map_R: apply_ats f (map ((#) R) ps) 〈l, a, r〉 = Node
l a (apply_ats f ps r)
by(induction ps arbitrary: r) auto

lemma inorder_rotRs_poss: inorder (rotRs (rotR_poss t) t) = inorder t
apply(induction t rule: rotR_poss.induct)
apply(auto simp: apply_ats_map_R)
done

lemma is_list_rotRs: is_list (rotRs (rotR_poss t) t)
apply(induction t rule: rotR_poss.induct)
apply(auto simp: apply_ats_map_R)
done

lemma is_list (rotRs ps t) −→ length ps ≤ length(rotR_poss t)
quickcheck[expect=counterexample]
oops

lemma length_rotRs_poss: length (rotR_poss t) = size t − rlen t
proof(induction t rule: rotR_poss.induct)

case (1 A a B b C)
then show ?case using rlen_le_size[of C] by simp

qed auto

lemma is_list_inorder_same:
is_list t1 =⇒ is_list t2 =⇒ inorder t1 = inorder t2 =⇒ t1 = t2

proof(induction t1 arbitrary: t2)
case Leaf
then show ?case by simp

next
case Node
then show ?case by (cases t2) simp_all

qed

38

lemma rot_id: rotLs (rev (rotR_poss t)) (rotRs (rotR_poss t) t) = t
apply(induction t rule: rotR_poss.induct)
apply(auto simp: apply_ats_map_R rev_map apply_ats_append)
done

corollary tree_to_tree_rotations: assumes inorder t1 = inorder t2
shows rotLs (rev (rotR_poss t2)) (rotRs (rotR_poss t1) t1) = t2
proof −

have rotRs (rotR_poss t1) t1 = rotRs (rotR_poss t2) t2 (is ?L = ?R)
by (simp add: assms inorder_rotRs_poss is_list_inorder_same is_list_rotRs)

hence rotLs (rev (rotR_poss t2)) ?L = rotLs (rev (rotR_poss t2)) ?R
by simp

also have . . . = t2 by(rule rot_id)
finally show ?thesis .

qed

lemma size_rlen_better_ub: size t − rlen t ≤ size t − 1
by (cases t) auto

end

12 Augmented Tree (Tree2)
theory Tree2
imports HOL−Library.Tree
begin

This theory provides the basic infrastructure for the type (′a × ′b) tree
of augmented trees where ′a is the key and ′b some additional information.

IMPORTANT: Inductions and cases analyses on augmented trees need
to use the following two rules explicitly. They generate nodes of the form
〈l, (a, b), r〉 rather than 〈l, a, r〉 for trees of type ′a tree.

lemmas tree2_induct = tree.induct[where ′a = ′a ∗ ′b, split_format(complete)]

lemmas tree2_cases = tree.exhaust[where ′a = ′a ∗ ′b, split_format(complete)]

fun inorder :: (′a∗ ′b)tree ⇒ ′a list where
inorder Leaf = [] |
inorder (Node l (a,_) r) = inorder l @ a # inorder r

fun set_tree :: (′a∗ ′b) tree ⇒ ′a set where
set_tree Leaf = {} |
set_tree (Node l (a,_) r) = {a} ∪ set_tree l ∪ set_tree r

39

fun bst :: (′a::linorder∗ ′b) tree ⇒ bool where
bst Leaf = True |
bst (Node l (a, _) r) = ((∀ x ∈ set_tree l. x < a) ∧ (∀ x ∈ set_tree r . a <
x) ∧ bst l ∧ bst r)

lemma finite_set_tree[simp]: finite(set_tree t)
by(induction t) auto

lemma eq_set_tree_empty[simp]: set_tree t = {} ←→ t = Leaf
by (cases t) auto

lemma set_inorder [simp]: set (inorder t) = set_tree t
by (induction t) auto

lemma length_inorder [simp]: length (inorder t) = size t
by (induction t) auto

end

13 Function isin for Tree2
theory Isin2
imports

Tree2
Cmp
Set_Specs

begin

fun isin :: (′a::linorder∗ ′b) tree ⇒ ′a ⇒ bool where
isin Leaf x = False |
isin (Node l (a,_) r) x =
(case cmp x a of

LT ⇒ isin l x |
EQ ⇒ True |
GT ⇒ isin r x)

lemma isin_set_inorder : sorted(inorder t) =⇒ isin t x = (x ∈ set(inorder
t))
by (induction t rule: tree2_induct) (auto simp: isin_simps)

lemma isin_set_tree: bst t =⇒ isin t x ←→ x ∈ set_tree t
by(induction t rule: tree2_induct) auto

40

end

14 Interval Trees
theory Interval_Tree
imports

HOL−Data_Structures.Cmp
HOL−Data_Structures.List_Ins_Del
HOL−Data_Structures.Isin2
HOL−Data_Structures.Set_Specs

begin

14.1 Intervals

The following definition of intervals uses the typedef command to define
the type of non-empty intervals as a subset of the type of pairs p where fst
p ≤ snd p:

typedef (overloaded) ′a::linorder ivl =
{p :: ′a × ′a. fst p ≤ snd p} by auto

More precisely, ′a ivl is isomorphic with that subset via the function
Rep_ivl. Hence the basic interval properties are not immediate but need
simple proofs:

definition low :: ′a::linorder ivl ⇒ ′a where
low p = fst (Rep_ivl p)

definition high :: ′a::linorder ivl ⇒ ′a where
high p = snd (Rep_ivl p)

lemma ivl_is_interval: low p ≤ high p
by (metis Rep_ivl high_def low_def mem_Collect_eq)

lemma ivl_inj: low p = low q =⇒ high p = high q =⇒ p = q
by (metis Rep_ivl_inverse high_def low_def prod_eqI)

Now we can forget how exactly intervals were defined.

instantiation ivl :: (linorder) linorder begin

definition ivl_less: (x < y) = (low x < low y | (low x = low y ∧ high x <
high y))
definition ivl_less_eq: (x ≤ y) = (low x < low y | (low x = low y ∧ high
x ≤ high y))

41

instance proof
fix x y z :: ′a ivl
show a: (x < y) = (x ≤ y ∧ ¬ y ≤ x)

using ivl_less ivl_less_eq by force
show b: x ≤ x

by (simp add: ivl_less_eq)
show c: x ≤ y =⇒ y ≤ z =⇒ x ≤ z

using ivl_less_eq by fastforce
show d: x ≤ y =⇒ y ≤ x =⇒ x = y

using ivl_less_eq a ivl_inj ivl_less by fastforce
show e: x ≤ y ∨ y ≤ x

by (meson ivl_less_eq leI not_less_iff_gr_or_eq)
qed end

definition overlap :: (′a::linorder) ivl ⇒ ′a ivl ⇒ bool where
overlap x y ←→ (high x ≥ low y ∧ high y ≥ low x)

definition has_overlap :: (′a::linorder) ivl set ⇒ ′a ivl ⇒ bool where
has_overlap S y ←→ (∃ x∈S . overlap x y)

14.2 Interval Trees

type_synonym ′a ivl_tree = (′a ivl ∗ ′a) tree

fun max_hi :: (′a::order_bot) ivl_tree ⇒ ′a where
max_hi Leaf = bot |
max_hi (Node _ (_,m) _) = m

definition max3 :: (′a::{linorder ,order_bot}) ivl ⇒ ′a ivl_tree⇒ ′a ivl_tree
⇒ ′a where
max3 a l r = max (high a) (max (max_hi l) (max_hi r))

fun inv_max_hi :: (′a::{linorder ,order_bot}) ivl_tree ⇒ bool where
inv_max_hi Leaf ←→ True |
inv_max_hi (Node l (a, m) r) ←→ (m = max3 a l r ∧ inv_max_hi l ∧
inv_max_hi r)

lemma max_hi_is_max:
inv_max_hi t =⇒ a ∈ set_tree t =⇒ high a ≤ max_hi t

by (induct t, auto simp add: max3_def max_def)

lemma max_hi_exists:
inv_max_hi t =⇒ t 6= Leaf =⇒ ∃ a∈set_tree t. high a = max_hi t

42

proof (induction t rule: tree2_induct)
case Leaf
then show ?case by auto

next
case N : (Node l v m r)
then show ?case
proof (cases l rule: tree2_cases)

case Leaf
then show ?thesis

using N .prems(1) N .IH (2) by (cases r , auto simp add: max3_def
max_def le_bot)

next
case Nl: Node
then show ?thesis
proof (cases r rule: tree2_cases)

case Leaf
then show ?thesis
using N .prems(1) N .IH (1) Nl by (auto simp add: max3_def max_def

le_bot)
next

case Nr : Node
obtain p1 where p1 : p1 ∈ set_tree l high p1 = max_hi l

using N .IH (1) N .prems(1) Nl by auto
obtain p2 where p2 : p2 ∈ set_tree r high p2 = max_hi r

using N .IH (2) N .prems(1) Nr by auto
then show ?thesis

using p1 p2 N .prems(1) by (auto simp add: max3_def max_def)
qed

qed
qed

14.3 Insertion and Deletion

definition node where
[simp]: node l a r = Node l (a, max3 a l r) r

fun insert :: ′a::{linorder ,order_bot} ivl ⇒ ′a ivl_tree ⇒ ′a ivl_tree where
insert x Leaf = Node Leaf (x, high x) Leaf |
insert x (Node l (a, m) r) =
(case cmp x a of

EQ ⇒ Node l (a, m) r |
LT ⇒ node (insert x l) a r |
GT ⇒ node l a (insert x r))

43

lemma inorder_insert:
sorted (inorder t) =⇒ inorder (insert x t) = ins_list x (inorder t)

by (induct t rule: tree2_induct) (auto simp: ins_list_simps)

lemma inv_max_hi_insert:
inv_max_hi t =⇒ inv_max_hi (insert x t)

by (induct t rule: tree2_induct) (auto simp add: max3_def)

fun split_min :: ′a::{linorder ,order_bot} ivl_tree ⇒ ′a ivl × ′a ivl_tree
where
split_min (Node l (a, m) r) =
(if l = Leaf then (a, r)
else let (x,l ′) = split_min l in (x, node l ′ a r))

fun delete :: ′a::{linorder ,order_bot} ivl ⇒ ′a ivl_tree ⇒ ′a ivl_tree where
delete x Leaf = Leaf |
delete x (Node l (a, m) r) =
(case cmp x a of

LT ⇒ node (delete x l) a r |
GT ⇒ node l a (delete x r) |
EQ ⇒ if r = Leaf then l else

let (a ′, r ′) = split_min r in node l a ′ r ′)

lemma split_minD:
split_min t = (x,t ′) =⇒ t 6= Leaf =⇒ x # inorder t ′ = inorder t

by (induct t arbitrary: t ′ rule: split_min.induct)
(auto simp: sorted_lems split: prod.splits if_splits)

lemma inorder_delete:
sorted (inorder t) =⇒ inorder (delete x t) = del_list x (inorder t)

by (induct t)
(auto simp: del_list_simps split_minD Let_def split: prod.splits)

lemma inv_max_hi_split_min:
[[t 6= Leaf ; inv_max_hi t]] =⇒ inv_max_hi (snd (split_min t))

by (induct t) (auto split: prod.splits)

lemma inv_max_hi_delete:
inv_max_hi t =⇒ inv_max_hi (delete x t)

apply (induct t)
apply simp

using inv_max_hi_split_min by (fastforce simp add: Let_def split: prod.splits)

44

14.4 Search

Does interval x overlap with any interval in the tree?

fun search :: ′a::{linorder ,order_bot} ivl_tree ⇒ ′a ivl ⇒ bool where
search Leaf x = False |
search (Node l (a, m) r) x =
(if overlap x a then True
else if l 6= Leaf ∧ max_hi l ≥ low x then search l x
else search r x)

lemma search_correct:
inv_max_hi t =⇒ sorted (inorder t) =⇒ search t x = has_overlap (set_tree

t) x
proof (induction t rule: tree2_induct)

case Leaf
then show ?case by (auto simp add: has_overlap_def)

next
case (Node l a m r)
have search_l: search l x = has_overlap (set_tree l) x

using Node.IH (1) Node.prems by (auto simp: sorted_wrt_append)
have search_r : search r x = has_overlap (set_tree r) x

using Node.IH (2) Node.prems by (auto simp: sorted_wrt_append)
show ?case
proof (cases overlap a x)

case True
thus ?thesis by (auto simp: overlap_def has_overlap_def)

next
case a_disjoint: False
then show ?thesis
proof cases

assume [simp]: l = Leaf
have search_eval: search (Node l (a, m) r) x = search r x

using a_disjoint overlap_def by auto
show ?thesis

unfolding search_eval search_r
by (auto simp add: has_overlap_def a_disjoint)

next
assume l 6= Leaf
then show ?thesis
proof (cases max_hi l ≥ low x)

case max_hi_l_ge: True
have inv_max_hi l

using Node.prems(1) by auto
then obtain p where p: p ∈ set_tree l high p = max_hi l

45

using ‹l 6= Leaf › max_hi_exists by auto
have search_eval: search (Node l (a, m) r) x = search l x

using a_disjoint ‹l 6= Leaf › max_hi_l_ge by (auto simp: over-
lap_def)

show ?thesis
proof (cases low p ≤ high x)

case True
have overlap p x

unfolding overlap_def using True p(2) max_hi_l_ge by auto
then show ?thesis

unfolding search_eval search_l
using p(1) by(auto simp: has_overlap_def overlap_def)

next
case False
have ¬overlap x rp if asm: rp ∈ set_tree r for rp
proof −

have low p ≤ low rp
using asm p(1) Node(4) by(fastforce simp: sorted_wrt_append

ivl_less)
then show ?thesis

using False by (auto simp: overlap_def)
qed
then show ?thesis

unfolding search_eval search_l
using a_disjoint by (auto simp: has_overlap_def overlap_def)

qed
next

case False
have search_eval: search (Node l (a, m) r) x = search r x

using a_disjoint False by (auto simp: overlap_def)
have ¬overlap x lp if asm: lp ∈ set_tree l for lp

using asm False Node.prems(1) max_hi_is_max
by (fastforce simp: overlap_def)

then show ?thesis
unfolding search_eval search_r
using a_disjoint by (auto simp: has_overlap_def overlap_def)

qed
qed

qed
qed

definition empty :: ′a ivl_tree where
empty = Leaf

46

14.5 Specification

locale Interval_Set = Set +
fixes has_overlap :: ′t ⇒ ′a::linorder ivl ⇒ bool
assumes set_overlap: invar s =⇒ has_overlap s x = Interval_Tree.has_overlap

(set s) x

fun invar :: (′a::{linorder ,order_bot}) ivl_tree ⇒ bool where
invar t = (inv_max_hi t ∧ sorted(inorder t))

interpretation S : Interval_Set
where empty = Leaf and insert = insert and delete = delete
and has_overlap = search and isin = isin and set = set_tree
and invar = invar

proof (standard, goal_cases)
case 1
then show ?case by auto

next
case 2
then show ?case by (simp add: isin_set_inorder)

next
case 3
then show ?case by(simp add: inorder_insert set_ins_list flip: set_inorder)

next
case 4
then show ?case by(simp add: inorder_delete set_del_list flip: set_inorder)

next
case 5
then show ?case by auto

next
case 6
then show ?case by (simp add: inorder_insert inv_max_hi_insert sorted_ins_list)

next
case 7
then show ?case by (simp add: inorder_delete inv_max_hi_delete sorted_del_list)

next
case 8
then show ?case by (simp add: search_correct)

qed

end

47

15 AVL Tree Implementation of Sets
theory AVL_Set_Code
imports

Cmp
Isin2

begin

15.1 Code

type_synonym ′a tree_ht = (′a∗nat) tree

definition empty :: ′a tree_ht where
empty = Leaf

fun ht :: ′a tree_ht ⇒ nat where
ht Leaf = 0 |
ht (Node l (a,n) r) = n

definition node :: ′a tree_ht ⇒ ′a ⇒ ′a tree_ht ⇒ ′a tree_ht where
node l a r = Node l (a, max (ht l) (ht r) + 1) r

definition balL :: ′a tree_ht ⇒ ′a ⇒ ′a tree_ht ⇒ ′a tree_ht where
balL AB c C =
(if ht AB = ht C + 2 then

case AB of
Node A (a, _) B ⇒

if ht A ≥ ht B then node A a (node B c C)
else

case B of
Node B1 (b, _) B2 ⇒ node (node A a B1) b (node B2 c C)

else node AB c C)

definition balR :: ′a tree_ht ⇒ ′a ⇒ ′a tree_ht ⇒ ′a tree_ht where
balR A a BC =

(if ht BC = ht A + 2 then
case BC of

Node B (c, _) C ⇒
if ht B ≤ ht C then node (node A a B) c C
else

case B of
Node B1 (b, _) B2 ⇒ node (node A a B1) b (node B2 c C)

else node A a BC)

48

fun insert :: ′a::linorder ⇒ ′a tree_ht ⇒ ′a tree_ht where
insert x Leaf = Node Leaf (x, 1) Leaf |
insert x (Node l (a, n) r) = (case cmp x a of

EQ ⇒ Node l (a, n) r |
LT ⇒ balL (insert x l) a r |
GT ⇒ balR l a (insert x r))

fun split_max :: ′a tree_ht ⇒ ′a tree_ht ∗ ′a where
split_max (Node l (a, _) r) =
(if r = Leaf then (l,a) else let (r ′,a ′) = split_max r in (balL l a r ′, a ′))

lemmas split_max_induct = split_max.induct[case_names Node Leaf]

fun delete :: ′a::linorder ⇒ ′a tree_ht ⇒ ′a tree_ht where
delete _ Leaf = Leaf |
delete x (Node l (a, n) r) =
(case cmp x a of

EQ ⇒ if l = Leaf then r
else let (l ′, a ′) = split_max l in balR l ′ a ′ r |

LT ⇒ balR (delete x l) a r |
GT ⇒ balL l a (delete x r))

15.2 Functional Correctness Proofs

Very different from the AFP/AVL proofs

15.2.1 Proofs for insert

lemma inorder_balL:
inorder (balL l a r) = inorder l @ a # inorder r

by (auto simp: node_def balL_def split:tree.splits)

lemma inorder_balR:
inorder (balR l a r) = inorder l @ a # inorder r

by (auto simp: node_def balR_def split:tree.splits)

theorem inorder_insert:
sorted(inorder t) =⇒ inorder(insert x t) = ins_list x (inorder t)

by (induct t)
(auto simp: ins_list_simps inorder_balL inorder_balR)

15.2.2 Proofs for delete

lemma inorder_split_maxD:

49

[[split_max t = (t ′,a); t 6= Leaf]] =⇒
inorder t ′ @ [a] = inorder t

by(induction t arbitrary: t ′ rule: split_max.induct)
(auto simp: inorder_balL split: if_splits prod.splits tree.split)

theorem inorder_delete:
sorted(inorder t) =⇒ inorder (delete x t) = del_list x (inorder t)

by(induction t)
(auto simp: del_list_simps inorder_balL inorder_balR inorder_split_maxD

split: prod.splits)

end

15.3 Invariant

theory AVL_Set
imports

AVL_Set_Code
HOL−Number_Theory.Fib

begin

fun avl :: ′a tree_ht ⇒ bool where
avl Leaf = True |
avl (Node l (a,n) r) =
(abs(int(height l) − int(height r)) ≤ 1 ∧
n = max (height l) (height r) + 1 ∧ avl l ∧ avl r)

15.3.1 Insertion maintains AVL balance

declare Let_def [simp]

lemma ht_height[simp]: avl t =⇒ ht t = height t
by (cases t rule: tree2_cases) simp_all

First, a fast but relatively manual proof with many lemmas:
lemma height_balL:
[[avl l; avl r ; height l = height r + 2]] =⇒
height (balL l a r) ∈ {height r + 2 , height r + 3}

by (auto simp:node_def balL_def split:tree.split)

lemma height_balR:
[[avl l; avl r ; height r = height l + 2]] =⇒
height (balR l a r) : {height l + 2 , height l + 3}

by(auto simp add:node_def balR_def split:tree.split)

50

lemma height_node[simp]: height(node l a r) = max (height l) (height r)
+ 1
by (simp add: node_def)

lemma height_balL2 :
[[avl l; avl r ; height l 6= height r + 2]] =⇒
height (balL l a r) = 1 + max (height l) (height r)

by (simp_all add: balL_def)

lemma height_balR2 :
[[avl l; avl r ; height r 6= height l + 2]] =⇒
height (balR l a r) = 1 + max (height l) (height r)

by (simp_all add: balR_def)

lemma avl_balL:
[[avl l; avl r ; height r − 1 ≤ height l ∧ height l ≤ height r + 2]] =⇒

avl(balL l a r)
by(auto simp: balL_def node_def split!: if_split tree.split)

lemma avl_balR:
[[avl l; avl r ; height l − 1 ≤ height r ∧ height r ≤ height l + 2]] =⇒

avl(balR l a r)
by(auto simp: balR_def node_def split!: if_split tree.split)

Insertion maintains the AVL property. Requires simultaneous proof.

theorem avl_insert:
avl t =⇒ avl(insert x t)
avl t =⇒ height (insert x t) ∈ {height t, height t + 1}

proof (induction t rule: tree2_induct)
case (Node l a _ r)
case 1
show ?case
proof(cases x = a)

case True with 1 show ?thesis by simp
next

case False
show ?thesis
proof(cases x<a)

case True with 1 Node(1 ,2) show ?thesis by (auto intro!:avl_balL)
next

case False with 1 Node(3 ,4) ‹x 6=a› show ?thesis by (auto in-
tro!:avl_balR)

qed
qed

51

case 2
show ?case
proof(cases x = a)

case True with 2 show ?thesis by simp
next

case False
show ?thesis
proof(cases x<a)

case True
show ?thesis
proof(cases height (insert x l) = height r + 2)

case False with 2 Node(1 ,2) ‹x < a› show ?thesis by (auto simp:
height_balL2)

next
case True
hence (height (balL (insert x l) a r) = height r + 2) ∨
(height (balL (insert x l) a r) = height r + 3) (is ?A ∨ ?B)
using 2 Node(1 ,2) height_balL[OF _ _ True] by simp

thus ?thesis
proof

assume ?A with 2 ‹x < a› show ?thesis by (auto)
next
assume ?B with 2 Node(2) True ‹x < a› show ?thesis by (simp)

arith
qed

qed
next

case False
show ?thesis
proof(cases height (insert x r) = height l + 2)
case False with 2 Node(3 ,4) ‹¬x < a› show ?thesis by (auto simp:

height_balR2)
next

case True
hence (height (balR l a (insert x r)) = height l + 2) ∨
(height (balR l a (insert x r)) = height l + 3) (is ?A ∨ ?B)
using 2 Node(3) height_balR[OF _ _ True] by simp

thus ?thesis
proof

assume ?A with 2 ‹¬x < a› show ?thesis by (auto)
next
assume ?B with 2 Node(4) True ‹¬x < a› show ?thesis by (simp)

arith
qed

52

qed
qed

qed
qed simp_all

Now an automatic proof without lemmas:

theorem avl_insert_auto: avl t =⇒
avl(insert x t) ∧ height (insert x t) ∈ {height t, height t + 1}

apply (induction t rule: tree2_induct)

apply (auto simp: balL_def balR_def node_def max_absorb2 split!: if_split
tree.split)
done

15.3.2 Deletion maintains AVL balance

lemma avl_split_max:
[[avl t; t 6= Leaf]] =⇒
avl (fst (split_max t)) ∧
height t ∈ {height(fst (split_max t)), height(fst (split_max t)) + 1}

by(induct t rule: split_max_induct)
(auto simp: balL_def node_def max_absorb2 split!: prod.split if_split

tree.split)

Deletion maintains the AVL property:

theorem avl_delete:
avl t =⇒ avl(delete x t)
avl t =⇒ height t ∈ {height (delete x t), height (delete x t) + 1}

proof (induct t rule: tree2_induct)
case (Node l a n r)
case 1
show ?case
proof(cases x = a)

case True thus ?thesis
using 1 avl_split_max[of l] by (auto intro!: avl_balR split: prod.split)

next
case False thus ?thesis

using Node 1 by (auto intro!: avl_balL avl_balR)
qed
case 2
show ?case
proof(cases x = a)

case True thus ?thesis using 2 avl_split_max[of l]
by(auto simp: balR_def max_absorb2 split!: if_splits prod.split tree.split)

53

next
case False
show ?thesis
proof(cases x<a)

case True
show ?thesis
proof(cases height r = height (delete x l) + 2)

case False
thus ?thesis using 2 Node(1 ,2) ‹x < a› by(auto simp: balR_def)

next
case True
thus ?thesis using height_balR[OF _ _ True, of a] 2 Node(1 ,2) ‹x

< a› by simp linarith
qed

next
case False
show ?thesis
proof(cases height l = height (delete x r) + 2)

case False
thus ?thesis using 2 Node(3 ,4) ‹¬x < a› ‹x 6= a› by(auto simp:

balL_def)
next

case True
thus ?thesis
using height_balL[OF _ _ True, of a] 2 Node(3 ,4) ‹¬x < a› ‹x 6=

a› by simp linarith
qed

qed
qed

qed simp_all

A more automatic proof. Complete automation as for insertion seems
hard due to resource requirements.

theorem avl_delete_auto:
avl t =⇒ avl(delete x t)
avl t =⇒ height t ∈ {height (delete x t), height (delete x t) + 1}

proof (induct t rule: tree2_induct)
case (Node l a n r)
case 1
thus ?case
using Node avl_split_max[of l] by (auto intro!: avl_balL avl_balR split:

prod.split)
case 2
show ?case

54

using 2 Node avl_split_max[of l]
by auto

(auto simp: balL_def balR_def max_absorb1 max_absorb2 split!:
tree.splits prod.splits if_splits)
qed simp_all

15.4 Overall correctness

interpretation S : Set_by_Ordered
where empty = empty and isin = isin and insert = insert and delete =
delete
and inorder = inorder and inv = avl
proof (standard, goal_cases)

case 1 show ?case by (simp add: empty_def)
next

case 2 thus ?case by(simp add: isin_set_inorder)
next

case 3 thus ?case by(simp add: inorder_insert)
next

case 4 thus ?case by(simp add: inorder_delete)
next

case 5 thus ?case by (simp add: empty_def)
next

case 6 thus ?case by (simp add: avl_insert(1))
next

case 7 thus ?case by (simp add: avl_delete(1))
qed

15.5 Height-Size Relation

Any AVL tree of height n has at least fib (n+2) leaves:

theorem avl_fib_bound:
avl t =⇒ fib(height t + 2) ≤ size1 t

proof (induction rule: tree2_induct)
case (Node l a h r)
have 1 : height l + 1 ≤ height r + 2 and 2 : height r + 1 ≤ height l + 2

using Node.prems by auto
have fib (max (height l) (height r) + 3) ≤ size1 l + size1 r
proof cases

assume height l ≥ height r
hence fib (max (height l) (height r) + 3) = fib (height l + 3)

by(simp add: max_absorb1)
also have . . . = fib (height l + 2) + fib (height l + 1)

by (simp add: numeral_eq_Suc)

55

also have . . . ≤ size1 l + fib (height l + 1)
using Node by (simp)

also have . . . ≤ size1 r + size1 l
using Node fib_mono[OF 1] by auto

also have . . . = size1 (Node l (a,h) r)
by simp

finally show ?thesis
by (simp)

next
assume ¬ height l ≥ height r
hence fib (max (height l) (height r) + 3) = fib (height r + 3)

by(simp add: max_absorb1)
also have . . . = fib (height r + 2) + fib (height r + 1)

by (simp add: numeral_eq_Suc)
also have . . . ≤ size1 r + fib (height r + 1)

using Node by (simp)
also have . . . ≤ size1 r + size1 l

using Node fib_mono[OF 2] by auto
also have . . . = size1 (Node l (a,h) r)

by simp
finally show ?thesis

by (simp)
qed
also have . . . = size1 (Node l (a,h) r)

by simp
finally show ?case by (simp del: fib.simps add: numeral_eq_Suc)

qed auto

lemma avl_fib_bound_auto: avl t =⇒ fib (height t + 2) ≤ size1 t
proof (induction t rule: tree2_induct)

case Leaf thus ?case by (simp)
next

case (Node l a h r)
have 1 : height l + 1 ≤ height r + 2 and 2 : height r + 1 ≤ height l + 2

using Node.prems by auto
have left: height l ≥ height r =⇒ ?case (is ?asm =⇒ _)

using Node fib_mono[OF 1] by (simp add: max.absorb1)
have right: height l ≤ height r =⇒ ?case

using Node fib_mono[OF 2] by (simp add: max.absorb2)
show ?case using left right using Node.prems by simp linarith

qed

An exponential lower bound for fib:

lemma fib_lowerbound:

56

defines ϕ ≡ (1 + sqrt 5) / 2
shows real (fib(n+2)) ≥ ϕ ^ n

proof (induction n rule: fib.induct)
case 1
then show ?case by simp

next
case 2
then show ?case by (simp add: ϕ_def real_le_lsqrt)

next
case (3 n)
have ϕ ^ Suc (Suc n) = ϕ ^ 2 ∗ ϕ ^ n

by (simp add: field_simps power2_eq_square)
also have . . . = (ϕ + 1) ∗ ϕ ^ n

by (simp_all add: ϕ_def power2_eq_square field_simps)
also have . . . = ϕ ^ Suc n + ϕ ^ n

by (simp add: field_simps)
also have . . . ≤ real (fib (Suc n + 2)) + real (fib (n + 2))

by (intro add_mono 3 .IH)
finally show ?case by simp

qed

The size of an AVL tree is (at least) exponential in its height:

lemma avl_size_lowerbound:
defines ϕ ≡ (1 + sqrt 5) / 2
assumes avl t
shows ϕ ^ (height t) ≤ size1 t

proof −
have ϕ ^ height t ≤ fib (height t + 2)

unfolding ϕ_def by(rule fib_lowerbound)
also have . . . ≤ size1 t

using avl_fib_bound[of t] assms by simp
finally show ?thesis .

qed

The height of an AVL tree is most 1 / log 2 ϕ ≈ 1 .44 times worse than
log 2 (real (size1 t)):

lemma avl_height_upperbound:
defines ϕ ≡ (1 + sqrt 5) / 2
assumes avl t
shows height t ≤ (1/log 2 ϕ) ∗ log 2 (size1 t)

proof −
have ϕ > 0 ϕ > 1 by(auto simp: ϕ_def pos_add_strict)
hence height t = log ϕ (ϕ ^ height t) by(simp add: log_nat_power)
also have . . . ≤ log ϕ (size1 t)

57

using avl_size_lowerbound[OF assms(2), folded ϕ_def] ‹1 < ϕ›
by (simp add: le_log_of_power)

also have . . . = (1/log 2 ϕ) ∗ log 2 (size1 t)
by(simp add: log_base_change[of 2 ϕ])

finally show ?thesis .
qed

end

16 Function lookup for Tree2
theory Lookup2
imports

Tree2
Cmp
Map_Specs

begin

fun lookup :: ((′a::linorder ∗ ′b) ∗ ′c) tree ⇒ ′a ⇒ ′b option where
lookup Leaf x = None |
lookup (Node l ((a,b), _) r) x =
(case cmp x a of LT ⇒ lookup l x | GT ⇒ lookup r x | EQ ⇒ Some b)

lemma lookup_map_of :
sorted1 (inorder t) =⇒ lookup t x = map_of (inorder t) x

by(induction t rule: tree2_induct) (auto simp: map_of_simps split: op-
tion.split)

end

17 AVL Tree Implementation of Maps
theory AVL_Map
imports

AVL_Set
Lookup2

begin

fun update :: ′a::linorder ⇒ ′b ⇒ (′a∗ ′b) tree_ht ⇒ (′a∗ ′b) tree_ht where
update x y Leaf = Node Leaf ((x,y), 1) Leaf |
update x y (Node l ((a,b), h) r) = (case cmp x a of

EQ ⇒ Node l ((x,y), h) r |
LT ⇒ balL (update x y l) (a,b) r |

58

GT ⇒ balR l (a,b) (update x y r))

fun delete :: ′a::linorder ⇒ (′a∗ ′b) tree_ht ⇒ (′a∗ ′b) tree_ht where
delete _ Leaf = Leaf |
delete x (Node l ((a,b), h) r) = (case cmp x a of

EQ ⇒ if l = Leaf then r
else let (l ′, ab ′) = split_max l in balR l ′ ab ′ r |

LT ⇒ balR (delete x l) (a,b) r |
GT ⇒ balL l (a,b) (delete x r))

17.1 Functional Correctness

theorem inorder_update:
sorted1 (inorder t) =⇒ inorder(update x y t) = upd_list x y (inorder t)

by (induct t) (auto simp: upd_list_simps inorder_balL inorder_balR)

theorem inorder_delete:
sorted1 (inorder t) =⇒ inorder (delete x t) = del_list x (inorder t)

by(induction t)
(auto simp: del_list_simps inorder_balL inorder_balR

inorder_split_maxD split: prod.splits)

17.2 AVL invariants

17.2.1 Insertion maintains AVL balance

theorem avl_update:
assumes avl t
shows avl(update x y t)

(height (update x y t) = height t ∨ height (update x y t) = height t
+ 1)
using assms
proof (induction x y t rule: update.induct)

case eq2 : (2 x y l a b h r)
case 1
show ?case
proof(cases x = a)

case True with eq2 1 show ?thesis by simp
next

case False
with eq2 1 show ?thesis
proof(cases x<a)

case True with eq2 1 show ?thesis by (auto intro!: avl_balL)
next

59

case False with eq2 1 ‹x 6=a› show ?thesis by (auto intro!: avl_balR)
qed

qed
case 2
show ?case
proof(cases x = a)

case True with eq2 1 show ?thesis by simp
next

case False
show ?thesis
proof(cases x<a)

case True
show ?thesis
proof(cases height (update x y l) = height r + 2)

case False with eq2 2 ‹x < a› show ?thesis by (auto simp:
height_balL2)

next
case True
hence (height (balL (update x y l) (a,b) r) = height r + 2) ∨
(height (balL (update x y l) (a,b) r) = height r + 3) (is ?A ∨ ?B)
using eq2 2 ‹x<a› height_balL[OF _ _ True] by simp

thus ?thesis
proof

assume ?A with 2 ‹x < a› show ?thesis by (auto)
next

assume ?B with True 1 eq2 (2) ‹x < a› show ?thesis by (simp)
arith

qed
qed

next
case False
show ?thesis
proof(cases height (update x y r) = height l + 2)

case False with eq2 2 ‹¬x < a› show ?thesis by (auto simp:
height_balR2)

next
case True
hence (height (balR l (a,b) (update x y r)) = height l + 2) ∨
(height (balR l (a,b) (update x y r)) = height l + 3) (is ?A ∨ ?B)
using eq2 2 ‹¬x < a› ‹x 6= a› height_balR[OF _ _ True] by simp

thus ?thesis
proof

assume ?A with 2 ‹¬x < a› show ?thesis by (auto)
next

60

assume ?B with True 1 eq2 (4) ‹¬x < a› show ?thesis by (simp)
arith

qed
qed

qed
qed

qed simp_all

17.2.2 Deletion maintains AVL balance

theorem avl_delete:
assumes avl t
shows avl(delete x t) and height t = (height (delete x t)) ∨ height t =

height (delete x t) + 1
using assms
proof (induct t rule: tree2_induct)

case (Node l ab h r)
obtain a b where [simp]: ab = (a,b) by fastforce
case 1
show ?case
proof(cases x = a)

case True with Node 1 show ?thesis
using avl_split_max[of l] by (auto intro!: avl_balR split: prod.split)

next
case False
show ?thesis
proof(cases x<a)

case True with Node 1 show ?thesis by (auto intro!: avl_balR)
next
case False with Node 1 ‹x 6=a› show ?thesis by (auto intro!: avl_balL)

qed
qed
case 2
show ?case
proof(cases x = a)

case True then show ?thesis using 1 avl_split_max [of l]
by(auto simp: balR_def max_absorb2 split!: if_splits prod.split tree.split)

next
case False
show ?thesis
proof(cases x<a)

case True
show ?thesis
proof(cases height r = height (delete x l) + 2)

61

case False with Node 1 ‹x < a› show ?thesis by(auto simp:
balR_def)

next
case True
thus ?thesis using height_balR[OF _ _ True, of ab] 2 Node(1 ,2) ‹x

< a› by simp linarith
qed

next
case False
show ?thesis
proof(cases height l = height (delete x r) + 2)

case False with Node 1 ‹¬x < a› ‹x 6= a› show ?thesis by(auto
simp: balL_def)

next
case True
thus ?thesis

using height_balL[OF _ _ True, of ab] 2 Node(3 ,4) ‹¬x < a› ‹x
6= a› by auto

qed
qed

qed
qed simp_all

interpretation M : Map_by_Ordered
where empty = empty and lookup = lookup and update = update and
delete = delete
and inorder = inorder and inv = avl
proof (standard, goal_cases)

case 1 show ?case by (simp add: empty_def)
next

case 2 thus ?case by(simp add: lookup_map_of)
next

case 3 thus ?case by(simp add: inorder_update)
next

case 4 thus ?case by(simp add: inorder_delete)
next

case 5 show ?case by (simp add: empty_def)
next

case 6 thus ?case by(simp add: avl_update(1))
next

case 7 thus ?case by(simp add: avl_delete(1))
qed

62

end

18 AVL Tree with Balance Factors (1)
theory AVL_Bal_Set
imports

Cmp
Isin2

begin

This version detects height increase/decrease from above via the change
in balance factors.

datatype bal = Lh | Bal | Rh

type_synonym ′a tree_bal = (′a ∗ bal) tree

Invariant:

fun avl :: ′a tree_bal ⇒ bool where
avl Leaf = True |
avl (Node l (a,b) r) =
((case b of

Bal ⇒ height r = height l |
Lh ⇒ height l = height r + 1 |
Rh ⇒ height r = height l + 1)
∧ avl l ∧ avl r)

18.1 Code

fun is_bal where
is_bal (Node l (a,b) r) = (b = Bal)

fun incr where
incr t t ′ = (t = Leaf ∨ is_bal t ∧ ¬ is_bal t ′)

fun rot2 where
rot2 A a B c C = (case B of
(Node B1 (b, bb) B2) ⇒

let b1 = if bb = Rh then Lh else Bal;
b2 = if bb = Lh then Rh else Bal

in Node (Node A (a,b1) B1) (b,Bal) (Node B2 (c,b2) C))

fun balL :: ′a tree_bal ⇒ ′a ⇒ bal ⇒ ′a tree_bal ⇒ ′a tree_bal where
balL AB c bc C = (case bc of

Bal ⇒ Node AB (c,Lh) C |

63

Rh ⇒ Node AB (c,Bal) C |
Lh ⇒ (case AB of

Node A (a,Lh) B ⇒ Node A (a,Bal) (Node B (c,Bal) C) |
Node A (a,Bal) B ⇒ Node A (a,Rh) (Node B (c,Lh) C) |
Node A (a,Rh) B ⇒ rot2 A a B c C))

fun balR :: ′a tree_bal ⇒ ′a ⇒ bal ⇒ ′a tree_bal ⇒ ′a tree_bal where
balR A a ba BC = (case ba of

Bal ⇒ Node A (a,Rh) BC |
Lh ⇒ Node A (a,Bal) BC |
Rh ⇒ (case BC of

Node B (c,Rh) C ⇒ Node (Node A (a,Bal) B) (c,Bal) C |
Node B (c,Bal) C ⇒ Node (Node A (a,Rh) B) (c,Lh) C |
Node B (c,Lh) C ⇒ rot2 A a B c C))

fun insert :: ′a::linorder ⇒ ′a tree_bal ⇒ ′a tree_bal where
insert x Leaf = Node Leaf (x, Bal) Leaf |
insert x (Node l (a, b) r) = (case cmp x a of

EQ ⇒ Node l (a, b) r |
LT ⇒ let l ′ = insert x l in if incr l l ′ then balL l ′ a b r else Node l ′ (a,b)

r |
GT ⇒ let r ′ = insert x r in if incr r r ′ then balR l a b r ′ else Node l (a,b)

r ′)

fun decr where
decr t t ′ = (t 6= Leaf ∧ incr t ′ t)

fun split_max :: ′a tree_bal ⇒ ′a tree_bal ∗ ′a where
split_max (Node l (a, ba) r) =
(if r = Leaf then (l,a)
else let (r ′,a ′) = split_max r ;

t ′ = if incr r ′ r then balL l a ba r ′ else Node l (a,ba) r ′

in (t ′, a ′))

fun delete :: ′a::linorder ⇒ ′a tree_bal ⇒ ′a tree_bal where
delete _ Leaf = Leaf |
delete x (Node l (a, ba) r) =
(case cmp x a of

EQ ⇒ if l = Leaf then r
else let (l ′, a ′) = split_max l in

if incr l ′ l then balR l ′ a ′ ba r else Node l ′ (a ′,ba) r |
LT ⇒ let l ′ = delete x l in if decr l l ′ then balR l ′ a ba r else Node l ′

(a,ba) r |
GT ⇒ let r ′ = delete x r in if decr r r ′ then balL l a ba r ′ else Node l

64

(a,ba) r ′)

18.2 Proofs

lemmas split_max_induct = split_max.induct[case_names Node Leaf]

lemmas splits = if_splits tree.splits bal.splits

declare Let_def [simp]

18.2.1 Proofs about insertion

lemma avl_insert: avl t =⇒
avl(insert x t) ∧
height(insert x t) = height t + (if incr t (insert x t) then 1 else 0)
by (induction x t rule: insert.induct)(auto split!: splits)

The following two auxiliary lemma merely simplify the proof of in-
order_insert.

lemma [simp]: [] 6= ins_list x xs
by(cases xs) auto

lemma [simp]: avl t =⇒ insert x t 6= 〈l, (a, Rh), 〈〉〉 ∧ insert x t 6= 〈〈〉, (a,
Lh), r〉
by(drule avl_insert[of _ x]) (auto split: splits)

theorem inorder_insert:
[[avl t; sorted(inorder t)]] =⇒ inorder(insert x t) = ins_list x (inorder

t)
by (induction t) (auto simp: ins_list_simps split!: splits)

18.2.2 Proofs about deletion

lemma inorder_balR:
[[ba = Rh −→ r 6= Leaf ; avl r]]
=⇒ inorder (balR l a ba r) = inorder l @ a # inorder r

by (auto split: splits)

lemma inorder_balL:
[[ba = Lh −→ l 6= Leaf ; avl l]]
=⇒ inorder (balL l a ba r) = inorder l @ a # inorder r

by (auto split: splits)

lemma height_1_iff : avl t =⇒ height t = Suc 0 ←→ (∃ x. t = Node Leaf
(x,Bal) Leaf)

65

by(cases t) (auto split: splits prod.splits)

lemma avl_split_max:
[[split_max t = (t ′,a); avl t; t 6= Leaf]] =⇒
avl t ′ ∧ height t = height t ′ + (if incr t ′ t then 1 else 0)

proof (induction t arbitrary: t ′ a rule: split_max_induct)
qed (auto simp: max_absorb1 max_absorb2 height_1_iff split!: splits prod.splits)

lemma avl_delete: avl t =⇒
avl (delete x t) ∧
height t = height (delete x t) + (if decr t (delete x t) then 1 else 0)

proof (induction x t rule: delete.induct)
qed (auto simp: max_absorb1 max_absorb2 height_1_iff dest: avl_split_max
split!: splits prod.splits)

lemma inorder_split_maxD:
[[split_max t = (t ′,a); t 6= Leaf ; avl t]] =⇒
inorder t ′ @ [a] = inorder t

proof (induction t arbitrary: t ′ rule: split_max.induct)
qed (auto split!: splits prod.splits)

lemma neq_Leaf_if_height_neq_0 : height t 6= 0 =⇒ t 6= Leaf
by auto

lemma split_max_Leaf : [[t 6= Leaf ; avl t]] =⇒ split_max t = (〈〉, x) ←→
t = Node Leaf (x,Bal) Leaf
by(cases t) (auto split: splits prod.splits)

theorem inorder_delete:
[[avl t; sorted(inorder t)]] =⇒ inorder (delete x t) = del_list x (inorder

t)
proof (induction t rule: tree2_induct)

case Leaf
then show ?case by auto

next
case (Node x1 a b x3)
then show ?case

by (auto simp: del_list_simps inorder_balR inorder_balL avl_delete
inorder_split_maxD

split_max_Leaf neq_Leaf_if_height_neq_0
simp del: balL.simps balR.simps split!: splits prod.splits)

qed

66

18.2.3 Set Implementation

interpretation S : Set_by_Ordered
where empty = Leaf and isin = isin

and insert = insert
and delete = delete
and inorder = inorder and inv = avl

proof (standard, goal_cases)
case 1 show ?case by (simp)

next
case 2 thus ?case by(simp add: isin_set_inorder)

next
case 3 thus ?case by(simp add: inorder_insert)

next
case 4 thus ?case by(simp add: inorder_delete)

next
case 5 thus ?case by (simp)

next
case 6 thus ?case by (simp add: avl_insert)

next
case 7 thus ?case by (simp add: avl_delete)

qed

end

19 AVL Tree with Balance Factors (2)
theory AVL_Bal2_Set
imports

Cmp
Isin2

begin

This version passes a flag (Same/Diff) back up to signal if the height
changed.

datatype bal = Lh | Bal | Rh

type_synonym ′a tree_bal = (′a ∗ bal) tree

Invariant:

fun avl :: ′a tree_bal ⇒ bool where
avl Leaf = True |
avl (Node l (a,b) r) =
((case b of

67

Bal ⇒ height r = height l |
Lh ⇒ height l = height r + 1 |
Rh ⇒ height r = height l + 1)
∧ avl l ∧ avl r)

19.1 Code

datatype ′a alt = Same ′a | Diff ′a

type_synonym ′a tree_bal2 = ′a tree_bal alt

fun tree :: ′a alt ⇒ ′a where
tree(Same t) = t |
tree(Diff t) = t

fun rot2 where
rot2 A a B c C = (case B of
(Node B1 (b, bb) B2) ⇒

let b1 = if bb = Rh then Lh else Bal;
b2 = if bb = Lh then Rh else Bal

in Node (Node A (a,b1) B1) (b,Bal) (Node B2 (c,b2) C))

fun balL :: ′a tree_bal2 ⇒ ′a ⇒ bal ⇒ ′a tree_bal ⇒ ′a tree_bal2 where
balL AB ′ c bc C = (case AB ′ of

Same AB ⇒ Same (Node AB (c,bc) C) |
Diff AB ⇒ (case bc of

Bal ⇒ Diff (Node AB (c,Lh) C) |
Rh ⇒ Same (Node AB (c,Bal) C) |
Lh ⇒ (case AB of

Node A (a,Lh) B ⇒ Same(Node A (a,Bal) (Node B (c,Bal) C)) |
Node A (a,Rh) B ⇒ Same(rot2 A a B c C))))

fun balR :: ′a tree_bal ⇒ ′a ⇒ bal ⇒ ′a tree_bal2 ⇒ ′a tree_bal2 where
balR A a ba BC ′ = (case BC ′ of

Same BC ⇒ Same (Node A (a,ba) BC) |
Diff BC ⇒ (case ba of

Bal ⇒ Diff (Node A (a,Rh) BC) |
Lh ⇒ Same (Node A (a,Bal) BC) |
Rh ⇒ (case BC of

Node B (c,Rh) C ⇒ Same(Node (Node A (a,Bal) B) (c,Bal) C) |
Node B (c,Lh) C ⇒ Same(rot2 A a B c C))))

fun ins :: ′a::linorder ⇒ ′a tree_bal ⇒ ′a tree_bal2 where
ins x Leaf = Diff (Node Leaf (x, Bal) Leaf) |

68

ins x (Node l (a, b) r) = (case cmp x a of
EQ ⇒ Same(Node l (a, b) r) |
LT ⇒ balL (ins x l) a b r |
GT ⇒ balR l a b (ins x r))

definition insert :: ′a::linorder ⇒ ′a tree_bal ⇒ ′a tree_bal where
insert x t = tree(ins x t)

fun baldR :: ′a tree_bal ⇒ ′a ⇒ bal ⇒ ′a tree_bal2 ⇒ ′a tree_bal2 where
baldR AB c bc C ′ = (case C ′ of

Same C ⇒ Same (Node AB (c,bc) C) |
Diff C ⇒ (case bc of

Bal ⇒ Same (Node AB (c,Lh) C) |
Rh ⇒ Diff (Node AB (c,Bal) C) |
Lh ⇒ (case AB of

Node A (a,Lh) B ⇒ Diff (Node A (a,Bal) (Node B (c,Bal) C)) |
Node A (a,Bal) B ⇒ Same(Node A (a,Rh) (Node B (c,Lh) C)) |
Node A (a,Rh) B ⇒ Diff (rot2 A a B c C))))

fun baldL :: ′a tree_bal2 ⇒ ′a ⇒ bal ⇒ ′a tree_bal ⇒ ′a tree_bal2 where
baldL A ′ a ba BC = (case A ′ of

Same A ⇒ Same (Node A (a,ba) BC) |
Diff A ⇒ (case ba of

Bal ⇒ Same (Node A (a,Rh) BC) |
Lh ⇒ Diff (Node A (a,Bal) BC) |
Rh ⇒ (case BC of

Node B (c,Rh) C ⇒ Diff (Node (Node A (a,Bal) B) (c,Bal) C) |
Node B (c,Bal) C ⇒ Same(Node (Node A (a,Rh) B) (c,Lh) C) |
Node B (c,Lh) C ⇒ Diff (rot2 A a B c C))))

fun split_max :: ′a tree_bal ⇒ ′a tree_bal2 ∗ ′a where
split_max (Node l (a, ba) r) =
(if r = Leaf then (Diff l,a) else let (r ′,a ′) = split_max r in (baldR l a ba

r ′, a ′))

fun del :: ′a::linorder ⇒ ′a tree_bal ⇒ ′a tree_bal2 where
del _ Leaf = Same Leaf |
del x (Node l (a, ba) r) =
(case cmp x a of

EQ ⇒ if l = Leaf then Diff r
else let (l ′, a ′) = split_max l in baldL l ′ a ′ ba r |

LT ⇒ baldL (del x l) a ba r |
GT ⇒ baldR l a ba (del x r))

69

definition delete :: ′a::linorder ⇒ ′a tree_bal ⇒ ′a tree_bal where
delete x t = tree(del x t)

lemmas split_max_induct = split_max.induct[case_names Node Leaf]

lemmas splits = if_splits tree.splits alt.splits bal.splits

19.2 Proofs

19.2.1 Proofs about insertion

lemma avl_ins_case: avl t =⇒ case ins x t of
Same t ′⇒ avl t ′ ∧ height t ′ = height t |
Diff t ′⇒ avl t ′ ∧ height t ′ = height t + 1 ∧

(∀ l a r . t ′ = Node l (a,Bal) r −→ a = x ∧ l = Leaf ∧ r = Leaf)
by (induction x t rule: ins.induct) (auto simp: max_absorb1 split!: splits)

corollary avl_insert: avl t =⇒ avl(insert x t)
using avl_ins_case[of t x] by (simp add: insert_def split: splits)

lemma ins_Diff [simp]: avl t =⇒
ins x t 6= Diff Leaf ∧
(ins x t = Diff (Node l (a,Bal) r) ←→ t = Leaf ∧ a = x ∧ l=Leaf ∧

r=Leaf) ∧
ins x t 6= Diff (Node l (a,Rh) Leaf) ∧
ins x t 6= Diff (Node Leaf (a,Lh) r)

by(drule avl_ins_case[of _ x]) (auto split: splits)

theorem inorder_ins:
[[avl t; sorted(inorder t)]] =⇒ inorder(tree(ins x t)) = ins_list x (inorder

t)
by (induction t) (auto simp: ins_list_simps split!: splits)

19.2.2 Proofs about deletion

lemma inorder_baldL:
[[ba = Rh −→ r 6= Leaf ; avl r]]
=⇒ inorder (tree(baldL l a ba r)) = inorder (tree l) @ a # inorder r

by (auto split: splits)

lemma inorder_baldR:
[[ba = Lh −→ l 6= Leaf ; avl l]]
=⇒ inorder (tree(baldR l a ba r)) = inorder l @ a # inorder (tree r)

70

by (auto split: splits)

lemma avl_split_max:
[[split_max t = (t ′,a); avl t; t 6= Leaf]] =⇒ case t ′ of
Same t ′⇒ avl t ′ ∧ height t = height t ′ |
Diff t ′⇒ avl t ′ ∧ height t = height t ′ + 1

proof (induction t arbitrary: t ′ a rule: split_max_induct)
qed (auto simp: max_def split!: splits prod.splits)

lemma avl_del_case: avl t =⇒ case del x t of
Same t ′⇒ avl t ′ ∧ height t = height t ′ |
Diff t ′⇒ avl t ′ ∧ height t = height t ′ + 1

proof (induction x t rule: del.induct)
qed (auto simp: max_absorb1 max_absorb2 dest: avl_split_max split!: splits
prod.splits)

corollary avl_delete: avl t =⇒ avl(delete x t)
using avl_del_case[of t x] by(simp add: delete_def split: splits)

lemma inorder_split_maxD:
[[split_max t = (t ′,a); t 6= Leaf ; avl t]] =⇒
inorder (tree t ′) @ [a] = inorder t

proof (induction t arbitrary: t ′ rule: split_max.induct)
qed (auto split!: splits prod.splits)

lemma neq_Leaf_if_height_neq_0 [simp]: height t 6= 0 =⇒ t 6= Leaf
by auto

theorem inorder_del:
[[avl t; sorted(inorder t)]] =⇒ inorder (tree(del x t)) = del_list x (inorder

t)
proof (induction t rule: tree2_induct)

case Leaf
then show ?case by simp

next
case (Node x1 a b x3)
then show ?case

by (auto simp: del_list_simps inorder_baldL inorder_baldR avl_delete
inorder_split_maxD

simp del: baldL.simps split!: splits prod.splits)
qed

71

19.2.3 Set Implementation

interpretation S : Set_by_Ordered
where empty = Leaf and isin = isin

and insert = insert
and delete = delete
and inorder = inorder and inv = avl

proof (standard, goal_cases)
case 1 show ?case by (simp)

next
case 2 thus ?case by(simp add: isin_set_inorder)

next
case 3 thus ?case by(simp add: inorder_ins insert_def)

next
case 4 thus ?case by(simp add: inorder_del delete_def)

next
case 5 thus ?case by (simp)

next
case 6 thus ?case by (simp add: avl_insert)

next
case 7 thus ?case by (simp add: avl_delete)

qed

end

20 Height-Balanced Trees
theory Height_Balanced_Tree
imports

Cmp
Isin2

begin

Height-balanced trees (HBTs) can be seen as a generalization of AVL
trees. The code and the proofs were obtained by small modifications of the
AVL theories. This is an implementation of sets via HBTs.

type_synonym ′a tree_ht = (′a∗nat) tree

definition empty :: ′a tree_ht where
empty = Leaf

The maximal amount by which the height of two siblings may differ:

locale HBT =
fixes m :: nat

72

assumes [arith]: m > 0
begin

Invariant:

fun hbt :: ′a tree_ht ⇒ bool where
hbt Leaf = True |
hbt (Node l (a,n) r) =
(abs(int(height l) − int(height r)) ≤ int(m) ∧
n = max (height l) (height r) + 1 ∧ hbt l ∧ hbt r)

fun ht :: ′a tree_ht ⇒ nat where
ht Leaf = 0 |
ht (Node l (a,n) r) = n

definition node :: ′a tree_ht ⇒ ′a ⇒ ′a tree_ht ⇒ ′a tree_ht where
node l a r = Node l (a, max (ht l) (ht r) + 1) r

definition balL :: ′a tree_ht ⇒ ′a ⇒ ′a tree_ht ⇒ ′a tree_ht where
balL AB b C =
(if ht AB = ht C + m + 1 then

case AB of
Node A (a, _) B ⇒

if ht A ≥ ht B then node A a (node B b C)
else

case B of
Node B1 (ab, _) B2 ⇒ node (node A a B1) ab (node B2 b C)

else node AB b C)

definition balR :: ′a tree_ht ⇒ ′a ⇒ ′a tree_ht ⇒ ′a tree_ht where
balR A a BC =

(if ht BC = ht A + m + 1 then
case BC of

Node B (b, _) C ⇒
if ht B ≤ ht C then node (node A a B) b C
else

case B of
Node B1 (ab, _) B2 ⇒ node (node A a B1) ab (node B2 b C)

else node A a BC)

fun insert :: ′a::linorder ⇒ ′a tree_ht ⇒ ′a tree_ht where
insert x Leaf = Node Leaf (x, 1) Leaf |
insert x (Node l (a, n) r) = (case cmp x a of

EQ ⇒ Node l (a, n) r |
LT ⇒ balL (insert x l) a r |

73

GT ⇒ balR l a (insert x r))

fun split_max :: ′a tree_ht ⇒ ′a tree_ht ∗ ′a where
split_max (Node l (a, _) r) =
(if r = Leaf then (l,a) else let (r ′,a ′) = split_max r in (balL l a r ′, a ′))

lemmas split_max_induct = split_max.induct[case_names Node Leaf]

fun delete :: ′a::linorder ⇒ ′a tree_ht ⇒ ′a tree_ht where
delete _ Leaf = Leaf |
delete x (Node l (a, n) r) =
(case cmp x a of

EQ ⇒ if l = Leaf then r
else let (l ′, a ′) = split_max l in balR l ′ a ′ r |

LT ⇒ balR (delete x l) a r |
GT ⇒ balL l a (delete x r))

20.1 Functional Correctness Proofs

20.1.1 Proofs for insert

lemma inorder_balL:
inorder (balL l a r) = inorder l @ a # inorder r

by (auto simp: node_def balL_def split:tree.splits)

lemma inorder_balR:
inorder (balR l a r) = inorder l @ a # inorder r

by (auto simp: node_def balR_def split:tree.splits)

theorem inorder_insert:
sorted(inorder t) =⇒ inorder(insert x t) = ins_list x (inorder t)

by (induct t)
(auto simp: ins_list_simps inorder_balL inorder_balR)

20.1.2 Proofs for delete

lemma inorder_split_maxD:
[[split_max t = (t ′,a); t 6= Leaf]] =⇒
inorder t ′ @ [a] = inorder t

by(induction t arbitrary: t ′ rule: split_max.induct)
(auto simp: inorder_balL split: if_splits prod.splits tree.split)

theorem inorder_delete:
sorted(inorder t) =⇒ inorder (delete x t) = del_list x (inorder t)

by(induction t)

74

(auto simp: del_list_simps inorder_balL inorder_balR inorder_split_maxD
split: prod.splits)

20.2 Invariant preservation

20.2.1 Insertion maintains balance

declare Let_def [simp]

lemma ht_height[simp]: hbt t =⇒ ht t = height t
by (cases t rule: tree2_cases) simp_all

First, a fast but relatively manual proof with many lemmas:

lemma height_balL:
[[hbt l; hbt r ; height l = height r + m + 1]] =⇒
height (balL l a r) ∈ {height r + m + 1 , height r + m + 2}

by (auto simp:node_def balL_def split:tree.split)

lemma height_balR:
[[hbt l; hbt r ; height r = height l + m + 1]] =⇒
height (balR l a r) ∈ {height l + m + 1 , height l + m + 2}

by(auto simp add:node_def balR_def split:tree.split)

lemma height_node[simp]: height(node l a r) = max (height l) (height r)
+ 1
by (simp add: node_def)

lemma height_balL2 :
[[hbt l; hbt r ; height l 6= height r + m + 1]] =⇒
height (balL l a r) = 1 + max (height l) (height r)

by (simp_all add: balL_def)

lemma height_balR2 :
[[hbt l; hbt r ; height r 6= height l + m + 1]] =⇒
height (balR l a r) = 1 + max (height l) (height r)

by (simp_all add: balR_def)

lemma hbt_balL:
[[hbt l; hbt r ; height r − m ≤ height l ∧ height l ≤ height r + m + 1]]

=⇒ hbt(balL l a r)
by(auto simp: balL_def node_def max_def split!: if_splits tree.split)

lemma hbt_balR:
[[hbt l; hbt r ; height l − m ≤ height r ∧ height r ≤ height l + m + 1]]

=⇒ hbt(balR l a r)

75

by(auto simp: balR_def node_def max_def split!: if_splits tree.split)

Insertion maintains hbt. Requires simultaneous proof.

theorem hbt_insert:
hbt t =⇒ hbt(insert x t)
hbt t =⇒ height (insert x t) ∈ {height t, height t + 1}

proof (induction t rule: tree2_induct)
case (Node l a _ r)
case 1
show ?case
proof(cases x = a)

case True with Node 1 show ?thesis by simp
next

case False
show ?thesis
proof(cases x<a)

case True with 1 Node(1 ,2) show ?thesis by (auto intro!: hbt_balL)
next

case False with 1 Node(3 ,4) ‹x 6=a› show ?thesis by (auto intro!:
hbt_balR)

qed
qed
case 2
show ?case
proof(cases x = a)

case True with 2 show ?thesis by simp
next

case False
show ?thesis
proof(cases x<a)

case True
show ?thesis
proof(cases height (insert x l) = height r + m + 1)

case False with 2 Node(1 ,2) ‹x < a› show ?thesis by (auto simp:
height_balL2)

next
case True
hence (height (balL (insert x l) a r) = height r + m + 1) ∨
(height (balL (insert x l) a r) = height r + m + 2) (is ?A ∨ ?B)
using 2 Node(1 ,2) height_balL[OF _ _ True] by simp

thus ?thesis
proof

assume ?A with 2 Node(2) True ‹x < a› show ?thesis by (auto)
next

76

assume ?B with 2 Node(2) True ‹x < a› show ?thesis by (simp)
arith

qed
qed

next
case False
show ?thesis
proof(cases height (insert x r) = height l + m + 1)
case False with 2 Node(3 ,4) ‹¬x < a› show ?thesis by (auto simp:

height_balR2)
next

case True
hence (height (balR l a (insert x r)) = height l + m + 1) ∨
(height (balR l a (insert x r)) = height l + m + 2) (is ?A ∨ ?B)
using Node 2 height_balR[OF _ _ True] by simp

thus ?thesis
proof
assume ?A with 2 Node(4) True ‹¬x < a› show ?thesis by (auto)
next
assume ?B with 2 Node(4) True ‹¬x < a› show ?thesis by (simp)

arith
qed

qed
qed

qed
qed simp_all

Now an automatic proof without lemmas:

theorem hbt_insert_auto: hbt t =⇒
hbt(insert x t) ∧ height (insert x t) ∈ {height t, height t + 1}

apply (induction t rule: tree2_induct)

apply (auto simp: balL_def balR_def node_def max_absorb1 max_absorb2
split!: if_split tree.split)
done

20.2.2 Deletion maintains balance

lemma hbt_split_max:
[[hbt t; t 6= Leaf]] =⇒
hbt (fst (split_max t)) ∧
height t ∈ {height(fst (split_max t)), height(fst (split_max t)) + 1}

by(induct t rule: split_max_induct)
(auto simp: balL_def node_def max_absorb2 split!: prod.split if_split

77

tree.split)

Deletion maintains hbt:

theorem hbt_delete:
hbt t =⇒ hbt(delete x t)
hbt t =⇒ height t ∈ {height (delete x t), height (delete x t) + 1}

proof (induct t rule: tree2_induct)
case (Node l a n r)
case 1
thus ?case
using Node hbt_split_max [of l] by (auto intro!: hbt_balL hbt_balR split:

prod.split)
case 2
show ?case
proof(cases x = a)

case True then show ?thesis using 1 hbt_split_max [of l]
by(auto simp: balR_def max_absorb2 split!: if_splits prod.split tree.split)

next
case False
show ?thesis
proof(cases x<a)

case True
show ?thesis
proof(cases height r = height (delete x l) + m + 1)

case False with Node 1 ‹x < a› show ?thesis by(auto simp:
balR_def)

next
case True
hence (height (balR (delete x l) a r) = height (delete x l) + m + 1)

∨
height (balR (delete x l) a r) = height (delete x l) + m + 2 (is ?A

∨ ?B)
using Node 2height_balR[OF _ _ True] by simp

thus ?thesis
proof

assume ?A with ‹x < a› Node 2 show ?thesis by(auto simp:
balR_def split!: if_splits)

next
assume ?B with ‹x < a› Node 2 show ?thesis by(auto simp:

balR_def split!: if_splits)
qed

qed
next

case False

78

show ?thesis
proof(cases height l = height (delete x r) + m + 1)

case False with Node 1 ‹¬x < a› ‹x 6= a› show ?thesis by(auto
simp: balL_def)

next
case True
hence (height (balL l a (delete x r)) = height (delete x r) + m + 1)

∨
height (balL l a (delete x r)) = height (delete x r) + m + 2 (is ?A

∨ ?B)
using Node 2 height_balL[OF _ _ True] by simp

thus ?thesis
proof

assume ?A with ‹¬x < a› ‹x 6= a› Node 2 show ?thesis by(auto
simp: balL_def split: if_splits)

next
assume ?B with ‹¬x < a› ‹x 6= a› Node 2 show ?thesis by(auto

simp: balL_def split: if_splits)
qed

qed
qed

qed
qed simp_all

A more automatic proof. Complete automation as for insertion seems
hard due to resource requirements.

theorem hbt_delete_auto:
hbt t =⇒ hbt(delete x t)
hbt t =⇒ height t ∈ {height (delete x t), height (delete x t) + 1}

proof (induct t rule: tree2_induct)
case (Node l a n r)
case 1
thus ?case
using Node hbt_split_max [of l] by (auto intro!: hbt_balL hbt_balR split:

prod.split)
case 2
show ?case
proof(cases x = a)

case True thus ?thesis
using 2 hbt_split_max [of l]

by(auto simp: balR_def max_absorb2 split!: if_splits prod.split tree.split)
next

case False thus ?thesis
using height_balL[of l delete x r a] height_balR[of delete x l r a] 2

79

Node
by(auto simp: balL_def balR_def split!: if_split)

qed
qed simp_all

20.3 Overall correctness

interpretation S : Set_by_Ordered
where empty = empty and isin = isin and insert = insert and delete =
delete
and inorder = inorder and inv = hbt
proof (standard, goal_cases)

case 1 show ?case by (simp add: empty_def)
next

case 2 thus ?case by(simp add: isin_set_inorder)
next

case 3 thus ?case by(simp add: inorder_insert)
next

case 4 thus ?case by(simp add: inorder_delete)
next

case 5 thus ?case by (simp add: empty_def)
next

case 6 thus ?case by (simp add: hbt_insert(1))
next

case 7 thus ?case by (simp add: hbt_delete(1))
qed

end

end

21 Red-Black Trees
theory RBT
imports Tree2
begin

datatype color = Red | Black

type_synonym ′a rbt = (′a∗color)tree

abbreviation R where R l a r ≡ Node l (a, Red) r
abbreviation B where B l a r ≡ Node l (a, Black) r

80

fun baliL :: ′a rbt ⇒ ′a ⇒ ′a rbt ⇒ ′a rbt where
baliL (R (R t1 a t2) b t3) c t4 = R (B t1 a t2) b (B t3 c t4) |
baliL (R t1 a (R t2 b t3)) c t4 = R (B t1 a t2) b (B t3 c t4) |
baliL t1 a t2 = B t1 a t2

fun baliR :: ′a rbt ⇒ ′a ⇒ ′a rbt ⇒ ′a rbt where
baliR t1 a (R t2 b (R t3 c t4)) = R (B t1 a t2) b (B t3 c t4) |
baliR t1 a (R (R t2 b t3) c t4) = R (B t1 a t2) b (B t3 c t4) |
baliR t1 a t2 = B t1 a t2

fun paint :: color ⇒ ′a rbt ⇒ ′a rbt where
paint c Leaf = Leaf |
paint c (Node l (a,_) r) = Node l (a,c) r

fun baldL :: ′a rbt ⇒ ′a ⇒ ′a rbt ⇒ ′a rbt where
baldL (R t1 a t2) b t3 = R (B t1 a t2) b t3 |
baldL t1 a (B t2 b t3) = baliR t1 a (R t2 b t3) |
baldL t1 a (R (B t2 b t3) c t4) = R (B t1 a t2) b (baliR t3 c (paint Red
t4)) |
baldL t1 a t2 = R t1 a t2

fun baldR :: ′a rbt ⇒ ′a ⇒ ′a rbt ⇒ ′a rbt where
baldR t1 a (R t2 b t3) = R t1 a (B t2 b t3) |
baldR (B t1 a t2) b t3 = baliL (R t1 a t2) b t3 |
baldR (R t1 a (B t2 b t3)) c t4 = R (baliL (paint Red t1) a t2) b (B t3 c
t4) |
baldR t1 a t2 = R t1 a t2

fun join :: ′a rbt ⇒ ′a rbt ⇒ ′a rbt where
join Leaf t = t |
join t Leaf = t |
join (R t1 a t2) (R t3 c t4) =
(case join t2 t3 of

R u2 b u3 ⇒ (R (R t1 a u2) b (R u3 c t4)) |
t23 ⇒ R t1 a (R t23 c t4)) |

join (B t1 a t2) (B t3 c t4) =
(case join t2 t3 of

R u2 b u3 ⇒ R (B t1 a u2) b (B u3 c t4) |
t23 ⇒ baldL t1 a (B t23 c t4)) |

join t1 (R t2 a t3) = R (join t1 t2) a t3 |
join (R t1 a t2) t3 = R t1 a (join t2 t3)

end

81

22 Red-Black Tree Implementation of Sets
theory RBT_Set
imports

Complex_Main
RBT
Cmp
Isin2

begin

definition empty :: ′a rbt where
empty = Leaf

fun ins :: ′a::linorder ⇒ ′a rbt ⇒ ′a rbt where
ins x Leaf = R Leaf x Leaf |
ins x (B l a r) =
(case cmp x a of

LT ⇒ baliL (ins x l) a r |
GT ⇒ baliR l a (ins x r) |
EQ ⇒ B l a r) |

ins x (R l a r) =
(case cmp x a of

LT ⇒ R (ins x l) a r |
GT ⇒ R l a (ins x r) |
EQ ⇒ R l a r)

definition insert :: ′a::linorder ⇒ ′a rbt ⇒ ′a rbt where
insert x t = paint Black (ins x t)

fun color :: ′a rbt ⇒ color where
color Leaf = Black |
color (Node _ (_, c) _) = c

fun del :: ′a::linorder ⇒ ′a rbt ⇒ ′a rbt where
del x Leaf = Leaf |
del x (Node l (a, _) r) =
(case cmp x a of

LT ⇒ if l 6= Leaf ∧ color l = Black
then baldL (del x l) a r else R (del x l) a r |

GT ⇒ if r 6= Leaf∧ color r = Black
then baldR l a (del x r) else R l a (del x r) |

EQ ⇒ join l r)

definition delete :: ′a::linorder ⇒ ′a rbt ⇒ ′a rbt where

82

delete x t = paint Black (del x t)

22.1 Functional Correctness Proofs

lemma inorder_paint: inorder(paint c t) = inorder t
by(cases t) (auto)

lemma inorder_baliL:
inorder(baliL l a r) = inorder l @ a # inorder r

by(cases (l,a,r) rule: baliL.cases) (auto)

lemma inorder_baliR:
inorder(baliR l a r) = inorder l @ a # inorder r

by(cases (l,a,r) rule: baliR.cases) (auto)

lemma inorder_ins:
sorted(inorder t) =⇒ inorder(ins x t) = ins_list x (inorder t)

by(induction x t rule: ins.induct)
(auto simp: ins_list_simps inorder_baliL inorder_baliR)

lemma inorder_insert:
sorted(inorder t) =⇒ inorder(insert x t) = ins_list x (inorder t)

by (simp add: insert_def inorder_ins inorder_paint)

lemma inorder_baldL:
inorder(baldL l a r) = inorder l @ a # inorder r

by(cases (l,a,r) rule: baldL.cases)
(auto simp: inorder_baliL inorder_baliR inorder_paint)

lemma inorder_baldR:
inorder(baldR l a r) = inorder l @ a # inorder r

by(cases (l,a,r) rule: baldR.cases)
(auto simp: inorder_baliL inorder_baliR inorder_paint)

lemma inorder_join:
inorder(join l r) = inorder l @ inorder r

by(induction l r rule: join.induct)
(auto simp: inorder_baldL inorder_baldR split: tree.split color .split)

lemma inorder_del:
sorted(inorder t) =⇒ inorder(del x t) = del_list x (inorder t)

by(induction x t rule: del.induct)
(auto simp: del_list_simps inorder_join inorder_baldL inorder_baldR)

83

lemma inorder_delete:
sorted(inorder t) =⇒ inorder(delete x t) = del_list x (inorder t)

by (auto simp: delete_def inorder_del inorder_paint)

22.2 Structural invariants

lemma neq_Black[simp]: (c 6= Black) = (c = Red)
by (cases c) auto

The proofs are due to Markus Reiter and Alexander Krauss.

fun bheight :: ′a rbt ⇒ nat where
bheight Leaf = 0 |
bheight (Node l (x, c) r) = (if c = Black then bheight l + 1 else bheight l)

fun invc :: ′a rbt ⇒ bool where
invc Leaf = True |
invc (Node l (a,c) r) =
((c = Red −→ color l = Black ∧ color r = Black) ∧ invc l ∧ invc r)

Weaker version:

abbreviation invc2 :: ′a rbt ⇒ bool where
invc2 t ≡ invc(paint Black t)

fun invh :: ′a rbt ⇒ bool where
invh Leaf = True |
invh (Node l (x, c) r) = (bheight l = bheight r ∧ invh l ∧ invh r)

lemma invc2I : invc t =⇒ invc2 t
by (cases t rule: tree2_cases) simp+

definition rbt :: ′a rbt ⇒ bool where
rbt t = (invc t ∧ invh t ∧ color t = Black)

lemma color_paint_Black: color (paint Black t) = Black
by (cases t) auto

lemma paint2 : paint c2 (paint c1 t) = paint c2 t
by (cases t) auto

lemma invh_paint: invh t =⇒ invh (paint c t)
by (cases t) auto

lemma invc_baliL:
[[invc2 l; invc r]] =⇒ invc (baliL l a r)

84

by (induct l a r rule: baliL.induct) auto

lemma invc_baliR:
[[invc l; invc2 r]] =⇒ invc (baliR l a r)

by (induct l a r rule: baliR.induct) auto

lemma bheight_baliL:
bheight l = bheight r =⇒ bheight (baliL l a r) = Suc (bheight l)

by (induct l a r rule: baliL.induct) auto

lemma bheight_baliR:
bheight l = bheight r =⇒ bheight (baliR l a r) = Suc (bheight l)

by (induct l a r rule: baliR.induct) auto

lemma invh_baliL:
[[invh l; invh r ; bheight l = bheight r]] =⇒ invh (baliL l a r)

by (induct l a r rule: baliL.induct) auto

lemma invh_baliR:
[[invh l; invh r ; bheight l = bheight r]] =⇒ invh (baliR l a r)

by (induct l a r rule: baliR.induct) auto

All in one:

lemma inv_baliR: [[invh l; invh r ; invc l; invc2 r ; bheight l = bheight r]]
=⇒ invc (baliR l a r) ∧ invh (baliR l a r) ∧ bheight (baliR l a r) = Suc
(bheight l)
by (induct l a r rule: baliR.induct) auto

lemma inv_baliL: [[invh l; invh r ; invc2 l; invc r ; bheight l = bheight r]]
=⇒ invc (baliL l a r) ∧ invh (baliL l a r) ∧ bheight (baliL l a r) = Suc
(bheight l)
by (induct l a r rule: baliL.induct) auto

22.2.1 Insertion

lemma invc_ins: invc t −→ invc2 (ins x t) ∧ (color t = Black −→ invc
(ins x t))
by (induct x t rule: ins.induct) (auto simp: invc_baliL invc_baliR invc2I)

lemma invh_ins: invh t =⇒ invh (ins x t) ∧ bheight (ins x t) = bheight t
by(induct x t rule: ins.induct)
(auto simp: invh_baliL invh_baliR bheight_baliL bheight_baliR)

theorem rbt_insert: rbt t =⇒ rbt (insert x t)

85

by (simp add: invc_ins invh_ins color_paint_Black invh_paint rbt_def
insert_def)

All in one:

lemma inv_ins: [[invc t; invh t]] =⇒
invc2 (ins x t) ∧ (color t = Black −→ invc (ins x t)) ∧
invh(ins x t) ∧ bheight (ins x t) = bheight t

by (induct x t rule: ins.induct) (auto simp: inv_baliL inv_baliR invc2I)

theorem rbt_insert2 : rbt t =⇒ rbt (insert x t)
by (simp add: inv_ins color_paint_Black invh_paint rbt_def insert_def)

22.2.2 Deletion

lemma bheight_paint_Red:
color t = Black =⇒ bheight (paint Red t) = bheight t − 1

by (cases t) auto

lemma invh_baldL_invc:
[[invh l; invh r ; bheight l + 1 = bheight r ; invc r]]
=⇒ invh (baldL l a r) ∧ bheight (baldL l a r) = bheight r

by (induct l a r rule: baldL.induct)
(auto simp: invh_baliR invh_paint bheight_baliR bheight_paint_Red)

lemma invh_baldL_Black:
[[invh l; invh r ; bheight l + 1 = bheight r ; color r = Black]]
=⇒ invh (baldL l a r) ∧ bheight (baldL l a r) = bheight r

by (induct l a r rule: baldL.induct) (auto simp add: invh_baliR bheight_baliR)

lemma invc_baldL: [[invc2 l; invc r ; color r = Black]] =⇒ invc (baldL l a
r)
by (induct l a r rule: baldL.induct) (simp_all add: invc_baliR)

lemma invc2_baldL: [[invc2 l; invc r]] =⇒ invc2 (baldL l a r)
by (induct l a r rule: baldL.induct) (auto simp: invc_baliR paint2 invc2I)

lemma invh_baldR_invc:
[[invh l; invh r ; bheight l = bheight r + 1 ; invc l]]
=⇒ invh (baldR l a r) ∧ bheight (baldR l a r) = bheight l

by(induct l a r rule: baldR.induct)
(auto simp: invh_baliL bheight_baliL invh_paint bheight_paint_Red)

lemma invc_baldR: [[invc l; invc2 r ; color l = Black]] =⇒ invc (baldR l a

86

r)
by (induct l a r rule: baldR.induct) (simp_all add: invc_baliL)

lemma invc2_baldR: [[invc l; invc2 r]] =⇒invc2 (baldR l a r)
by (induct l a r rule: baldR.induct) (auto simp: invc_baliL paint2 invc2I)

lemma invh_join:
[[invh l; invh r ; bheight l = bheight r]]
=⇒ invh (join l r) ∧ bheight (join l r) = bheight l

by (induct l r rule: join.induct)
(auto simp: invh_baldL_Black split: tree.splits color .splits)

lemma invc_join:
[[invc l; invc r]] =⇒
(color l = Black ∧ color r = Black −→ invc (join l r)) ∧ invc2 (join l r)

by (induct l r rule: join.induct)
(auto simp: invc_baldL invc2I split: tree.splits color .splits)

All in one:

lemma inv_baldL:
[[invh l; invh r ; bheight l + 1 = bheight r ; invc2 l; invc r]]
=⇒ invh (baldL l a r) ∧ bheight (baldL l a r) = bheight r
∧ invc2 (baldL l a r) ∧ (color r = Black −→ invc (baldL l a r))

by (induct l a r rule: baldL.induct)
(auto simp: inv_baliR invh_paint bheight_baliR bheight_paint_Red paint2

invc2I)

lemma inv_baldR:
[[invh l; invh r ; bheight l = bheight r + 1 ; invc l; invc2 r]]
=⇒ invh (baldR l a r) ∧ bheight (baldR l a r) = bheight l
∧ invc2 (baldR l a r) ∧ (color l = Black −→ invc (baldR l a r))

by (induct l a r rule: baldR.induct)
(auto simp: inv_baliL invh_paint bheight_baliL bheight_paint_Red paint2

invc2I)

lemma inv_join:
[[invh l; invh r ; bheight l = bheight r ; invc l; invc r]]
=⇒ invh (join l r) ∧ bheight (join l r) = bheight l
∧ invc2 (join l r) ∧ (color l = Black ∧ color r = Black −→ invc (join l

r))
by (induct l r rule: join.induct)
(auto simp: invh_baldL_Black inv_baldL invc2I split: tree.splits color .splits)

lemma neq_LeafD: t 6= Leaf =⇒ ∃ l x c r . t = Node l (x,c) r

87

by(cases t rule: tree2_cases) auto

lemma inv_del: [[invh t; invc t]] =⇒
invh (del x t) ∧
(color t = Red −→ bheight (del x t) = bheight t ∧ invc (del x t)) ∧
(color t = Black −→ bheight (del x t) = bheight t − 1 ∧ invc2 (del x t))

by(induct x t rule: del.induct)
(auto simp: inv_baldL inv_baldR inv_join dest!: neq_LeafD)

theorem rbt_delete: rbt t =⇒ rbt (delete x t)
by (metis delete_def rbt_def color_paint_Black inv_del invh_paint)

Overall correctness:

interpretation S : Set_by_Ordered
where empty = empty and isin = isin and insert = insert and delete =
delete
and inorder = inorder and inv = rbt
proof (standard, goal_cases)

case 1 show ?case by (simp add: empty_def)
next

case 2 thus ?case by(simp add: isin_set_inorder)
next

case 3 thus ?case by(simp add: inorder_insert)
next

case 4 thus ?case by(simp add: inorder_delete)
next

case 5 thus ?case by (simp add: rbt_def empty_def)
next

case 6 thus ?case by (simp add: rbt_insert)
next

case 7 thus ?case by (simp add: rbt_delete)
qed

22.3 Height-Size Relation

lemma rbt_height_bheight_if : invc t =⇒ invh t =⇒
height t ≤ 2 ∗ bheight t + (if color t = Black then 0 else 1)

by(induction t) (auto split: if_split_asm)

lemma rbt_height_bheight: rbt t =⇒ height t / 2 ≤ bheight t
by(auto simp: rbt_def dest: rbt_height_bheight_if)

lemma bheight_size_bound: invc t =⇒ invh t =⇒ 2 ^ (bheight t) ≤ size1
t

88

by (induction t) auto

lemma bheight_le_min_height: invh t =⇒ bheight t ≤ min_height t
by (induction t) auto

lemma rbt_height_le: assumes rbt t shows height t ≤ 2 ∗ log 2 (size1 t)
proof −

have 2 powr (height t / 2) ≤ 2 powr bheight t
using rbt_height_bheight[OF assms] by simp

also have . . . ≤ size1 t using assms
by (simp add: powr_realpow bheight_size_bound rbt_def)

finally have 2 powr (height t / 2) ≤ size1 t .
hence height t / 2 ≤ log 2 (size1 t)

by (simp add: le_log_iff size1_size del: divide_le_eq_numeral1 (1))
thus ?thesis by simp

qed

lemma rbt_height_le2 : assumes rbt t shows height t ≤ 2 ∗ log 2 (size1
t)
proof −

have height t ≤ 2 ∗ bheight t
using rbt_height_bheight_if assms[simplified rbt_def] by fastforce

also have . . . ≤ 2 ∗ min_height t
using bheight_le_min_height assms[simplified rbt_def] by auto

also have . . . ≤ 2 ∗ log 2 (size1 t)
using le_log2_of_power min_height_size1 by auto

finally show ?thesis by simp
qed

end

23 Alternative Deletion in Red-Black Trees
theory RBT_Set2
imports RBT_Set
begin

This is a conceptually simpler version of deletion. Instead of the tricky
join function this version follows the standard approach of replacing the
deleted element (in function del) by the minimal element in its right subtree.
fun split_min :: ′a rbt ⇒ ′a × ′a rbt where
split_min (Node l (a, _) r) =
(if l = Leaf then (a,r)
else let (x,l ′) = split_min l

89

in (x, if color l = Black then baldL l ′ a r else R l ′ a r))

fun del :: ′a::linorder ⇒ ′a rbt ⇒ ′a rbt where
del x Leaf = Leaf |
del x (Node l (a, _) r) =
(case cmp x a of

LT ⇒ let l ′ = del x l in if l 6= Leaf ∧ color l = Black
then baldL l ′ a r else R l ′ a r |

GT ⇒ let r ′ = del x r in if r 6= Leaf ∧ color r = Black
then baldR l a r ′ else R l a r ′ |

EQ ⇒ if r = Leaf then l else let (a ′,r ′) = split_min r in
if color r = Black then baldR l a ′ r ′ else R l a ′ r ′)

The first two lets speed up the automatic proof of inv_del below.

definition delete :: ′a::linorder ⇒ ′a rbt ⇒ ′a rbt where
delete x t = paint Black (del x t)

23.1 Functional Correctness Proofs

declare Let_def [simp]

lemma split_minD:
split_min t = (x,t ′) =⇒ t 6= Leaf =⇒ x # inorder t ′ = inorder t

by(induction t arbitrary: t ′ rule: split_min.induct)
(auto simp: inorder_baldL sorted_lems split: prod.splits if_splits)

lemma inorder_del:
sorted(inorder t) =⇒ inorder(del x t) = del_list x (inorder t)

by(induction x t rule: del.induct)
(auto simp: del_list_simps inorder_baldL inorder_baldR split_minD split:

prod.splits)

lemma inorder_delete:
sorted(inorder t) =⇒ inorder(delete x t) = del_list x (inorder t)

by (auto simp: delete_def inorder_del inorder_paint)

23.2 Structural invariants

lemma neq_Red[simp]: (c 6= Red) = (c = Black)
by (cases c) auto

23.2.1 Deletion

lemma inv_split_min: [[split_min t = (x,t ′); t 6= Leaf ; invh t; invc t]]
=⇒

90

invh t ′ ∧
(color t = Red −→ bheight t ′ = bheight t ∧ invc t ′) ∧
(color t = Black −→ bheight t ′ = bheight t − 1 ∧ invc2 t ′)

apply(induction t arbitrary: x t ′ rule: split_min.induct)
apply(auto simp: inv_baldR inv_baldL invc2I dest!: neq_LeafD

split: if_splits prod.splits)
done

An automatic proof. It is quite brittle, e.g. inlining the lets in RBT_Set2 .del
breaks it.

lemma inv_del: [[invh t; invc t]] =⇒
invh (del x t) ∧
(color t = Red −→ bheight (del x t) = bheight t ∧ invc (del x t)) ∧
(color t = Black −→ bheight (del x t) = bheight t − 1 ∧ invc2 (del x t))

apply(induction x t rule: del.induct)
apply(auto simp: inv_baldR inv_baldL invc2I dest!: inv_split_min dest:
neq_LeafD

split!: prod.splits if_splits)
done

A structured proof where one can see what is used in each case.

lemma inv_del2 : [[invh t; invc t]] =⇒
invh (del x t) ∧
(color t = Red −→ bheight (del x t) = bheight t ∧ invc (del x t)) ∧
(color t = Black −→ bheight (del x t) = bheight t − 1 ∧ invc2 (del x t))

proof(induction x t rule: del.induct)
case (1 x)
then show ?case by simp

next
case (2 x l a c r)
note if_split[split del]
show ?case
proof cases

assume x < a
show ?thesis
proof cases

assume l = Leaf thus ?thesis using ‹x < a› 2 .prems by(auto)
next

assume l: l 6= Leaf
show ?thesis
proof (cases color l)

assume ∗: color l = Black
hence bheight l > 0 using l neq_LeafD[of l] by auto
thus ?thesis using ‹x < a› 2 .IH (1) 2 .prems inv_baldL[of del x l] ∗

91

l by(auto)
next

assume color l = Red
thus ?thesis using ‹x < a› 2 .prems 2 .IH (1) by(auto)

qed
qed

next
assume ¬ x < a
show ?thesis
proof cases

assume x > a
show ?thesis using ‹a < x› 2 .IH (2) 2 .prems neq_LeafD[of r] inv_baldR[of

_ del x r]
by(auto split: if_split)

next
assume ¬ x > a
show ?thesis using 2 .prems ‹¬ x < a› ‹¬ x > a›
by(auto simp: inv_baldR invc2I dest!: inv_split_min dest: neq_LeafD

split: prod.split if_split)
qed

qed
qed

theorem rbt_delete: rbt t =⇒ rbt (delete x t)
by (metis delete_def rbt_def color_paint_Black inv_del invh_paint)

Overall correctness:

interpretation S : Set_by_Ordered
where empty = empty and isin = isin and insert = insert and delete =
delete
and inorder = inorder and inv = rbt
proof (standard, goal_cases)

case 1 show ?case by (simp add: empty_def)
next

case 2 thus ?case by(simp add: isin_set_inorder)
next

case 3 thus ?case by(simp add: inorder_insert)
next

case 4 thus ?case by(simp add: inorder_delete)
next

case 5 thus ?case by (simp add: rbt_def empty_def)
next

case 6 thus ?case by (simp add: rbt_insert)

92

next
case 7 thus ?case by (simp add: rbt_delete)

qed

end

24 Red-Black Tree Implementation of Maps
theory RBT_Map
imports

RBT_Set
Lookup2

begin

fun upd :: ′a::linorder ⇒ ′b ⇒ (′a∗ ′b) rbt ⇒ (′a∗ ′b) rbt where
upd x y Leaf = R Leaf (x,y) Leaf |
upd x y (B l (a,b) r) = (case cmp x a of

LT ⇒ baliL (upd x y l) (a,b) r |
GT ⇒ baliR l (a,b) (upd x y r) |
EQ ⇒ B l (x,y) r) |

upd x y (R l (a,b) r) = (case cmp x a of
LT ⇒ R (upd x y l) (a,b) r |
GT ⇒ R l (a,b) (upd x y r) |
EQ ⇒ R l (x,y) r)

definition update :: ′a::linorder ⇒ ′b ⇒ (′a∗ ′b) rbt ⇒ (′a∗ ′b) rbt where
update x y t = paint Black (upd x y t)

fun del :: ′a::linorder ⇒ (′a∗ ′b)rbt ⇒ (′a∗ ′b)rbt where
del x Leaf = Leaf |
del x (Node l (ab, _) r) = (case cmp x (fst ab) of

LT ⇒ if l 6= Leaf ∧ color l = Black
then baldL (del x l) ab r else R (del x l) ab r |

GT ⇒ if r 6= Leaf∧ color r = Black
then baldR l ab (del x r) else R l ab (del x r) |

EQ ⇒ join l r)

definition delete :: ′a::linorder ⇒ (′a∗ ′b) rbt ⇒ (′a∗ ′b) rbt where
delete x t = paint Black (del x t)

24.1 Functional Correctness Proofs

lemma inorder_upd:

93

sorted1 (inorder t) =⇒ inorder(upd x y t) = upd_list x y (inorder t)
by(induction x y t rule: upd.induct)
(auto simp: upd_list_simps inorder_baliL inorder_baliR)

lemma inorder_update:
sorted1 (inorder t) =⇒ inorder(update x y t) = upd_list x y (inorder t)

by(simp add: update_def inorder_upd inorder_paint)

lemma del_list_id: ∀ ab∈set ps. y < fst ab =⇒ x ≤ y =⇒ del_list x ps =
ps
by(rule del_list_idem) auto

lemma inorder_del:
sorted1 (inorder t) =⇒ inorder(del x t) = del_list x (inorder t)

by(induction x t rule: del.induct)
(auto simp: del_list_simps del_list_id inorder_join inorder_baldL in-

order_baldR)

lemma inorder_delete:
sorted1 (inorder t) =⇒ inorder(delete x t) = del_list x (inorder t)

by(simp add: delete_def inorder_del inorder_paint)

24.2 Structural invariants

24.2.1 Update

lemma invc_upd: assumes invc t
shows color t = Black =⇒ invc (upd x y t) invc2 (upd x y t)

using assms
by (induct x y t rule: upd.induct) (auto simp: invc_baliL invc_baliR invc2I)

lemma invh_upd: assumes invh t
shows invh (upd x y t) bheight (upd x y t) = bheight t

using assms
by(induct x y t rule: upd.induct)
(auto simp: invh_baliL invh_baliR bheight_baliL bheight_baliR)

theorem rbt_update: rbt t =⇒ rbt (update x y t)
by (simp add: invc_upd(2) invh_upd(1) color_paint_Black invh_paint
rbt_def update_def)

24.2.2 Deletion

lemma del_invc_invh: invh t =⇒ invc t =⇒ invh (del x t) ∧

94

(color t = Red ∧ bheight (del x t) = bheight t ∧ invc (del x t) ∨
color t = Black ∧ bheight (del x t) = bheight t − 1 ∧ invc2 (del x t))

proof (induct x t rule: del.induct)
case (2 x _ ab c)

have x = fst ab ∨ x < fst ab ∨ x > fst ab by auto
thus ?case proof (elim disjE)

assume x = fst ab
with 2 show ?thesis
by (cases c) (simp_all add: invh_join invc_join)

next
assume x < fst ab
with 2 show ?thesis

by(cases c)
(auto simp: invh_baldL_invc invc_baldL invc2_baldL dest: neq_LeafD)

next
assume fst ab < x
with 2 show ?thesis

by(cases c)
(auto simp: invh_baldR_invc invc_baldR invc2_baldR dest: neq_LeafD)

qed
qed auto

theorem rbt_delete: rbt t =⇒ rbt (delete k t)
by (metis delete_def rbt_def color_paint_Black del_invc_invh invc2I invh_paint)

interpretation M : Map_by_Ordered
where empty = empty and lookup = lookup and update = update and
delete = delete
and inorder = inorder and inv = rbt
proof (standard, goal_cases)

case 1 show ?case by (simp add: empty_def)
next

case 2 thus ?case by(simp add: lookup_map_of)
next

case 3 thus ?case by(simp add: inorder_update)
next

case 4 thus ?case by(simp add: inorder_delete)
next

case 5 thus ?case by (simp add: rbt_def empty_def)
next

case 6 thus ?case by (simp add: rbt_update)
next

case 7 thus ?case by (simp add: rbt_delete)
qed

95

end

25 2-3 Trees
theory Tree23
imports Main
begin

class height =
fixes height :: ′a ⇒ nat

datatype ′a tree23 =
Leaf (‹〈〉›) |
Node2 ′a tree23 ′a ′a tree23 (‹〈_, _, _〉›) |
Node3 ′a tree23 ′a ′a tree23 ′a ′a tree23 (‹〈_, _, _, _, _〉›)

fun inorder :: ′a tree23 ⇒ ′a list where
inorder Leaf = [] |
inorder(Node2 l a r) = inorder l @ a # inorder r |
inorder(Node3 l a m b r) = inorder l @ a # inorder m @ b # inorder r

instantiation tree23 :: (type)height
begin

fun height_tree23 :: ′a tree23 ⇒ nat where
height Leaf = 0 |
height (Node2 l _ r) = Suc(max (height l) (height r)) |
height (Node3 l _ m _ r) = Suc(max (height l) (max (height m) (height
r)))

instance ..

end
Completeness:

fun complete :: ′a tree23 ⇒ bool where
complete Leaf = True |
complete (Node2 l _ r) = (height l = height r ∧ complete l & complete r) |
complete (Node3 l _ m _ r) =
(height l = height m & height m = height r & complete l & complete m

& complete r)

96

lemma ht_sz_if_complete: complete t =⇒ 2 ^ height t ≤ size t + 1
by (induction t) auto

end

26 2-3 Tree Implementation of Sets
theory Tree23_Set
imports

Tree23
Cmp
Set_Specs

begin

declare sorted_wrt.simps(2)[simp del]

definition empty :: ′a tree23 where
empty = Leaf

fun isin :: ′a::linorder tree23 ⇒ ′a ⇒ bool where
isin Leaf x = False |
isin (Node2 l a r) x =
(case cmp x a of

LT ⇒ isin l x |
EQ ⇒ True |
GT ⇒ isin r x) |

isin (Node3 l a m b r) x =
(case cmp x a of

LT ⇒ isin l x |
EQ ⇒ True |
GT ⇒
(case cmp x b of

LT ⇒ isin m x |
EQ ⇒ True |
GT ⇒ isin r x))

datatype ′a upi = Eqi ′a tree23 | Of ′a tree23 ′a ′a tree23

fun treei :: ′a upi ⇒ ′a tree23 where
treei (Eqi t) = t |
treei (Of l a r) = Node2 l a r

fun ins :: ′a::linorder ⇒ ′a tree23 ⇒ ′a upi where

97

ins x Leaf = Of Leaf x Leaf |
ins x (Node2 l a r) =

(case cmp x a of
LT ⇒
(case ins x l of

Eqi l ′ => Eqi (Node2 l ′ a r) |
Of l1 b l2 => Eqi (Node3 l1 b l2 a r)) |

EQ ⇒ Eqi (Node2 l a r) |
GT ⇒
(case ins x r of

Eqi r ′ => Eqi (Node2 l a r ′) |
Of r1 b r2 => Eqi (Node3 l a r1 b r2))) |

ins x (Node3 l a m b r) =
(case cmp x a of

LT ⇒
(case ins x l of

Eqi l ′ => Eqi (Node3 l ′ a m b r) |
Of l1 c l2 => Of (Node2 l1 c l2) a (Node2 m b r)) |

EQ ⇒ Eqi (Node3 l a m b r) |
GT ⇒
(case cmp x b of

GT ⇒
(case ins x r of

Eqi r ′ => Eqi (Node3 l a m b r ′) |
Of r1 c r2 => Of (Node2 l a m) b (Node2 r1 c r2)) |

EQ ⇒ Eqi (Node3 l a m b r) |
LT ⇒
(case ins x m of

Eqi m ′ => Eqi (Node3 l a m ′ b r) |
Of m1 c m2 => Of (Node2 l a m1) c (Node2 m2 b r))))

hide_const insert

definition insert :: ′a::linorder ⇒ ′a tree23 ⇒ ′a tree23 where
insert x t = treei(ins x t)

datatype ′a upd = Eqd ′a tree23 | Uf ′a tree23

fun treed :: ′a upd ⇒ ′a tree23 where
treed (Eqd t) = t |
treed (Uf t) = t

98

fun node21 :: ′a upd ⇒ ′a ⇒ ′a tree23 ⇒ ′a upd where
node21 (Eqd t1) a t2 = Eqd(Node2 t1 a t2) |
node21 (Uf t1) a (Node2 t2 b t3) = Uf (Node3 t1 a t2 b t3) |
node21 (Uf t1) a (Node3 t2 b t3 c t4) = Eqd(Node2 (Node2 t1 a t2) b
(Node2 t3 c t4))

fun node22 :: ′a tree23 ⇒ ′a ⇒ ′a upd ⇒ ′a upd where
node22 t1 a (Eqd t2) = Eqd(Node2 t1 a t2) |
node22 (Node2 t1 b t2) a (Uf t3) = Uf (Node3 t1 b t2 a t3) |
node22 (Node3 t1 b t2 c t3) a (Uf t4) = Eqd(Node2 (Node2 t1 b t2) c
(Node2 t3 a t4))

fun node31 :: ′a upd ⇒ ′a ⇒ ′a tree23 ⇒ ′a ⇒ ′a tree23 ⇒ ′a upd where
node31 (Eqd t1) a t2 b t3 = Eqd(Node3 t1 a t2 b t3) |
node31 (Uf t1) a (Node2 t2 b t3) c t4 = Eqd(Node2 (Node3 t1 a t2 b t3)
c t4) |
node31 (Uf t1) a (Node3 t2 b t3 c t4) d t5 = Eqd(Node3 (Node2 t1 a t2)
b (Node2 t3 c t4) d t5)

fun node32 :: ′a tree23 ⇒ ′a ⇒ ′a upd ⇒ ′a ⇒ ′a tree23 ⇒ ′a upd where
node32 t1 a (Eqd t2) b t3 = Eqd(Node3 t1 a t2 b t3) |
node32 t1 a (Uf t2) b (Node2 t3 c t4) = Eqd(Node2 t1 a (Node3 t2 b t3 c
t4)) |
node32 t1 a (Uf t2) b (Node3 t3 c t4 d t5) = Eqd(Node3 t1 a (Node2 t2 b
t3) c (Node2 t4 d t5))

fun node33 :: ′a tree23 ⇒ ′a ⇒ ′a tree23 ⇒ ′a ⇒ ′a upd ⇒ ′a upd where
node33 t1 a t2 b (Eqd t3) = Eqd(Node3 t1 a t2 b t3) |
node33 t1 a (Node2 t2 b t3) c (Uf t4) = Eqd(Node2 t1 a (Node3 t2 b t3 c
t4)) |
node33 t1 a (Node3 t2 b t3 c t4) d (Uf t5) = Eqd(Node3 t1 a (Node2 t2 b
t3) c (Node2 t4 d t5))

fun split_min :: ′a tree23 ⇒ ′a ∗ ′a upd where
split_min (Node2 Leaf a Leaf) = (a, Uf Leaf) |
split_min (Node3 Leaf a Leaf b Leaf) = (a, Eqd(Node2 Leaf b Leaf)) |
split_min (Node2 l a r) = (let (x,l ′) = split_min l in (x, node21 l ′ a r)) |
split_min (Node3 l a m b r) = (let (x,l ′) = split_min l in (x, node31 l ′ a
m b r))

In the base cases of split_min and del it is enough to check if one subtree
is a Leaf, in which case completeness implies that so are the others. Exercise.

fun del :: ′a::linorder ⇒ ′a tree23 ⇒ ′a upd where
del x Leaf = Eqd Leaf |

99

del x (Node2 Leaf a Leaf) =
(if x = a then Uf Leaf else Eqd(Node2 Leaf a Leaf)) |

del x (Node3 Leaf a Leaf b Leaf) =
Eqd(if x = a then Node2 Leaf b Leaf else

if x = b then Node2 Leaf a Leaf
else Node3 Leaf a Leaf b Leaf) |

del x (Node2 l a r) =
(case cmp x a of

LT ⇒ node21 (del x l) a r |
GT ⇒ node22 l a (del x r) |
EQ ⇒ let (a ′,r ′) = split_min r in node22 l a ′ r ′) |

del x (Node3 l a m b r) =
(case cmp x a of

LT ⇒ node31 (del x l) a m b r |
EQ ⇒ let (a ′,m ′) = split_min m in node32 l a ′ m ′ b r |
GT ⇒
(case cmp x b of

LT ⇒ node32 l a (del x m) b r |
EQ ⇒ let (b ′,r ′) = split_min r in node33 l a m b ′ r ′ |
GT ⇒ node33 l a m b (del x r)))

definition delete :: ′a::linorder ⇒ ′a tree23 ⇒ ′a tree23 where
delete x t = treed(del x t)

26.1 Functional Correctness

26.1.1 Proofs for isin

lemma isin_set: sorted(inorder t) =⇒ isin t x = (x ∈ set (inorder t))
by (induction t) (auto simp: isin_simps)

26.1.2 Proofs for insert

lemma inorder_ins:
sorted(inorder t) =⇒ inorder(treei(ins x t)) = ins_list x (inorder t)

by(induction t) (auto simp: ins_list_simps split: upi.splits)

lemma inorder_insert:
sorted(inorder t) =⇒ inorder(insert a t) = ins_list a (inorder t)

by(simp add: insert_def inorder_ins)

26.1.3 Proofs for delete

lemma inorder_node21 : height r > 0 =⇒
inorder (treed (node21 l ′ a r)) = inorder (treed l ′) @ a # inorder r

100

by(induct l ′ a r rule: node21 .induct) auto

lemma inorder_node22 : height l > 0 =⇒
inorder (treed (node22 l a r ′)) = inorder l @ a # inorder (treed r ′)

by(induct l a r ′ rule: node22 .induct) auto

lemma inorder_node31 : height m > 0 =⇒
inorder (treed (node31 l ′ a m b r)) = inorder (treed l ′) @ a # inorder m

@ b # inorder r
by(induct l ′ a m b r rule: node31 .induct) auto

lemma inorder_node32 : height r > 0 =⇒
inorder (treed (node32 l a m ′ b r)) = inorder l @ a # inorder (treed m ′)

@ b # inorder r
by(induct l a m ′ b r rule: node32 .induct) auto

lemma inorder_node33 : height m > 0 =⇒
inorder (treed (node33 l a m b r ′)) = inorder l @ a # inorder m @ b #

inorder (treed r ′)
by(induct l a m b r ′ rule: node33 .induct) auto

lemmas inorder_nodes = inorder_node21 inorder_node22
inorder_node31 inorder_node32 inorder_node33

lemma split_minD:
split_min t = (x,t ′) =⇒ complete t =⇒ height t > 0 =⇒
x # inorder(treed t ′) = inorder t

by(induction t arbitrary: t ′ rule: split_min.induct)
(auto simp: inorder_nodes split: prod.splits)

lemma inorder_del: [[complete t ; sorted(inorder t)]] =⇒
inorder(treed (del x t)) = del_list x (inorder t)

by(induction t rule: del.induct)
(auto simp: del_list_simps inorder_nodes split_minD split!: if_split prod.splits)

lemma inorder_delete: [[complete t ; sorted(inorder t)]] =⇒
inorder(delete x t) = del_list x (inorder t)

by(simp add: delete_def inorder_del)

26.2 Completeness

26.2.1 Proofs for insert

First a standard proof that ins preserves complete.

101

fun hi ::
′a upi ⇒ nat where

hi (Eqi t) = height t |
hi (Of l a r) = height l

lemma complete_ins: complete t =⇒ complete (treei(ins a t)) ∧ hi(ins a
t) = height t
by (induct t) (auto split!: if_split upi.split)

Now an alternative proof (by Brian Huffman) that runs faster because
two properties (completeness and height) are combined in one predicate.

inductive full :: nat ⇒ ′a tree23 ⇒ bool where
full 0 Leaf |
[[full n l; full n r]] =⇒ full (Suc n) (Node2 l p r) |
[[full n l; full n m; full n r]] =⇒ full (Suc n) (Node3 l p m q r)

inductive_cases full_elims:
full n Leaf
full n (Node2 l p r)
full n (Node3 l p m q r)

inductive_cases full_0_elim: full 0 t
inductive_cases full_Suc_elim: full (Suc n) t

lemma full_0_iff [simp]: full 0 t ←→ t = Leaf
by (auto elim: full_0_elim intro: full.intros)

lemma full_Leaf_iff [simp]: full n Leaf ←→ n = 0
by (auto elim: full_elims intro: full.intros)

lemma full_Suc_Node2_iff [simp]:
full (Suc n) (Node2 l p r) ←→ full n l ∧ full n r
by (auto elim: full_elims intro: full.intros)

lemma full_Suc_Node3_iff [simp]:
full (Suc n) (Node3 l p m q r) ←→ full n l ∧ full n m ∧ full n r
by (auto elim: full_elims intro: full.intros)

lemma full_imp_height: full n t =⇒ height t = n
by (induct set: full, simp_all)

lemma full_imp_complete: full n t =⇒ complete t
by (induct set: full, auto dest: full_imp_height)

lemma complete_imp_full: complete t =⇒ full (height t) t

102

by (induct t, simp_all)

lemma complete_iff_full: complete t ←→ (∃n. full n t)
by (auto elim!: complete_imp_full full_imp_complete)

The insert function either preserves the height of the tree, or increases it
by one. The constructor returned by the insert function determines which:
A return value of the form Eqi t indicates that the height will be the same.
A value of the form Of l p r indicates an increase in height.

fun full i :: nat ⇒ ′a upi ⇒ bool where
full i n (Eqi t) ←→ full n t |
full i n (Of l p r) ←→ full n l ∧ full n r

lemma full i_ins: full n t =⇒ full i n (ins a t)
by (induct rule: full.induct) (auto split: upi.split)

The insert operation preserves completeance.

lemma complete_insert: complete t =⇒ complete (insert a t)
unfolding complete_iff_full insert_def
apply (erule exE)
apply (drule full i_ins [of _ _ a])
apply (cases ins a t)
apply (auto intro: full.intros)
done

26.3 Proofs for delete

fun hd :: ′a upd ⇒ nat where
hd (Eqd t) = height t |
hd (Uf t) = height t + 1

lemma complete_treed_node21 :
[[complete r ; complete (treed l ′); height r = hd l ′]] =⇒ complete (treed

(node21 l ′ a r))
by(induct l ′ a r rule: node21 .induct) auto

lemma complete_treed_node22 :
[[complete(treed r ′); complete l; hd r ′ = height l]] =⇒ complete (treed

(node22 l a r ′))
by(induct l a r ′ rule: node22 .induct) auto

lemma complete_treed_node31 :
[[complete (treed l ′); complete m; complete r ; hd l ′ = height r ; height m

= height r]]

103

=⇒ complete (treed (node31 l ′ a m b r))
by(induct l ′ a m b r rule: node31 .induct) auto

lemma complete_treed_node32 :
[[complete l; complete (treed m ′); complete r ; height l = height r ; hd m ′

= height r]]
=⇒ complete (treed (node32 l a m ′ b r))

by(induct l a m ′ b r rule: node32 .induct) auto

lemma complete_treed_node33 :
[[complete l; complete m; complete(treed r ′); height l = hd r ′; height m =

hd r ′]]
=⇒ complete (treed (node33 l a m b r ′))

by(induct l a m b r ′ rule: node33 .induct) auto

lemmas completes = complete_treed_node21 complete_treed_node22
complete_treed_node31 complete_treed_node32 complete_treed_node33

lemma height ′_node21 :
height r > 0 =⇒ hd(node21 l ′ a r) = max (hd l ′) (height r) + 1

by(induct l ′ a r rule: node21 .induct)(simp_all)

lemma height ′_node22 :
height l > 0 =⇒ hd(node22 l a r ′) = max (height l) (hd r ′) + 1

by(induct l a r ′ rule: node22 .induct)(simp_all)

lemma height ′_node31 :
height m > 0 =⇒ hd(node31 l a m b r) =
max (hd l) (max (height m) (height r)) + 1

by(induct l a m b r rule: node31 .induct)(simp_all add: max_def)

lemma height ′_node32 :
height r > 0 =⇒ hd(node32 l a m b r) =
max (height l) (max (hd m) (height r)) + 1

by(induct l a m b r rule: node32 .induct)(simp_all add: max_def)

lemma height ′_node33 :
height m > 0 =⇒ hd(node33 l a m b r) =
max (height l) (max (height m) (hd r)) + 1

by(induct l a m b r rule: node33 .induct)(simp_all add: max_def)

lemmas heights = height ′_node21 height ′_node22
height ′_node31 height ′_node32 height ′_node33

104

lemma height_split_min:
split_min t = (x, t ′) =⇒ height t > 0 =⇒ complete t =⇒ hd t ′ = height t

by(induct t arbitrary: x t ′ rule: split_min.induct)
(auto simp: heights split: prod.splits)

lemma height_del: complete t =⇒ hd(del x t) = height t
by(induction x t rule: del.induct)
(auto simp: heights max_def height_split_min split: prod.splits)

lemma complete_split_min:
[[split_min t = (x, t ′); complete t; height t > 0]] =⇒ complete (treed t ′)

by(induct t arbitrary: x t ′ rule: split_min.induct)
(auto simp: heights height_split_min completes split: prod.splits)

lemma complete_treed_del: complete t =⇒ complete(treed(del x t))
by(induction x t rule: del.induct)
(auto simp: completes complete_split_min height_del height_split_min

split: prod.splits)

corollary complete_delete: complete t =⇒ complete(delete x t)
by(simp add: delete_def complete_treed_del)

26.4 Overall Correctness

interpretation S : Set_by_Ordered
where empty = empty and isin = isin and insert = insert and delete =
delete
and inorder = inorder and inv = complete
proof (standard, goal_cases)

case 2 thus ?case by(simp add: isin_set)
next

case 3 thus ?case by(simp add: inorder_insert)
next

case 4 thus ?case by(simp add: inorder_delete)
next

case 6 thus ?case by(simp add: complete_insert)
next

case 7 thus ?case by(simp add: complete_delete)
qed (simp add: empty_def)+

end

105

27 2-3 Tree Implementation of Maps
theory Tree23_Map
imports

Tree23_Set
Map_Specs

begin

fun lookup :: (′a::linorder ∗ ′b) tree23 ⇒ ′a ⇒ ′b option where
lookup Leaf x = None |
lookup (Node2 l (a,b) r) x = (case cmp x a of

LT ⇒ lookup l x |
GT ⇒ lookup r x |
EQ ⇒ Some b) |

lookup (Node3 l (a1 ,b1) m (a2 ,b2) r) x = (case cmp x a1 of
LT ⇒ lookup l x |
EQ ⇒ Some b1 |
GT ⇒ (case cmp x a2 of

LT ⇒ lookup m x |
EQ ⇒ Some b2 |
GT ⇒ lookup r x))

fun upd :: ′a::linorder ⇒ ′b ⇒ (′a∗ ′b) tree23 ⇒ (′a∗ ′b) upi where
upd x y Leaf = Of Leaf (x,y) Leaf |
upd x y (Node2 l ab r) = (case cmp x (fst ab) of

LT ⇒ (case upd x y l of
Eqi l ′ => Eqi (Node2 l ′ ab r)
| Of l1 ab ′ l2 => Eqi (Node3 l1 ab ′ l2 ab r)) |

EQ ⇒ Eqi (Node2 l (x,y) r) |
GT ⇒ (case upd x y r of

Eqi r ′ => Eqi (Node2 l ab r ′)
| Of r1 ab ′ r2 => Eqi (Node3 l ab r1 ab ′ r2))) |

upd x y (Node3 l ab1 m ab2 r) = (case cmp x (fst ab1) of
LT ⇒ (case upd x y l of

Eqi l ′ => Eqi (Node3 l ′ ab1 m ab2 r)
| Of l1 ab ′ l2 => Of (Node2 l1 ab ′ l2) ab1 (Node2 m ab2 r)) |

EQ ⇒ Eqi (Node3 l (x,y) m ab2 r) |
GT ⇒ (case cmp x (fst ab2) of

LT ⇒ (case upd x y m of
Eqi m ′ => Eqi (Node3 l ab1 m ′ ab2 r)
| Of m1 ab ′ m2 => Of (Node2 l ab1 m1) ab ′ (Node2 m2 ab2

r)) |
EQ ⇒ Eqi (Node3 l ab1 m (x,y) r) |
GT ⇒ (case upd x y r of

106

Eqi r ′ => Eqi (Node3 l ab1 m ab2 r ′)
| Of r1 ab ′ r2 => Of (Node2 l ab1 m) ab2 (Node2 r1 ab ′

r2))))

definition update :: ′a::linorder ⇒ ′b ⇒ (′a∗ ′b) tree23 ⇒ (′a∗ ′b) tree23
where
update a b t = treei(upd a b t)

fun del :: ′a::linorder ⇒ (′a∗ ′b) tree23 ⇒ (′a∗ ′b) upd where
del x Leaf = Eqd Leaf |
del x (Node2 Leaf ab1 Leaf) = (if x=fst ab1 then Uf Leaf else Eqd(Node2
Leaf ab1 Leaf)) |
del x (Node3 Leaf ab1 Leaf ab2 Leaf) = Eqd(if x=fst ab1 then Node2 Leaf
ab2 Leaf

else if x=fst ab2 then Node2 Leaf ab1 Leaf else Node3 Leaf ab1 Leaf ab2
Leaf) |
del x (Node2 l ab1 r) = (case cmp x (fst ab1) of

LT ⇒ node21 (del x l) ab1 r |
GT ⇒ node22 l ab1 (del x r) |
EQ ⇒ let (ab1 ′,t) = split_min r in node22 l ab1 ′ t) |

del x (Node3 l ab1 m ab2 r) = (case cmp x (fst ab1) of
LT ⇒ node31 (del x l) ab1 m ab2 r |
EQ ⇒ let (ab1 ′,m ′) = split_min m in node32 l ab1 ′ m ′ ab2 r |
GT ⇒ (case cmp x (fst ab2) of

LT ⇒ node32 l ab1 (del x m) ab2 r |
EQ ⇒ let (ab2 ′,r ′) = split_min r in node33 l ab1 m ab2 ′ r ′ |
GT ⇒ node33 l ab1 m ab2 (del x r)))

definition delete :: ′a::linorder ⇒ (′a∗ ′b) tree23 ⇒ (′a∗ ′b) tree23 where
delete x t = treed(del x t)

27.1 Functional Correctness

lemma lookup_map_of :
sorted1 (inorder t) =⇒ lookup t x = map_of (inorder t) x

by (induction t) (auto simp: map_of_simps split: option.split)

lemma inorder_upd:
sorted1 (inorder t) =⇒ inorder(treei(upd x y t)) = upd_list x y (inorder t)

by(induction t) (auto simp: upd_list_simps split: upi.splits)

corollary inorder_update:
sorted1 (inorder t) =⇒ inorder(update x y t) = upd_list x y (inorder t)

107

by(simp add: update_def inorder_upd)

lemma inorder_del: [[complete t ; sorted1 (inorder t)]] =⇒
inorder(treed (del x t)) = del_list x (inorder t)

by(induction t rule: del.induct)
(auto simp: del_list_simps inorder_nodes split_minD split!: if_split prod.splits)

corollary inorder_delete: [[complete t ; sorted1 (inorder t)]] =⇒
inorder(delete x t) = del_list x (inorder t)

by(simp add: delete_def inorder_del)

27.2 Balancedness

lemma complete_upd: complete t =⇒ complete (treei(upd x y t)) ∧ hi(upd
x y t) = height t
by (induct t) (auto split!: if_split upi.split)

corollary complete_update: complete t =⇒ complete (update x y t)
by (simp add: update_def complete_upd)

lemma height_del: complete t =⇒ hd(del x t) = height t
by(induction x t rule: del.induct)
(auto simp add: heights max_def height_split_min split: prod.split)

lemma complete_treed_del: complete t =⇒ complete(treed(del x t))
by(induction x t rule: del.induct)
(auto simp: completes complete_split_min height_del height_split_min

split: prod.split)

corollary complete_delete: complete t =⇒ complete(delete x t)
by(simp add: delete_def complete_treed_del)

27.3 Overall Correctness

interpretation M : Map_by_Ordered
where empty = empty and lookup = lookup and update = update and
delete = delete
and inorder = inorder and inv = complete
proof (standard, goal_cases)

case 1 thus ?case by(simp add: empty_def)
next

case 2 thus ?case by(simp add: lookup_map_of)

108

next
case 3 thus ?case by(simp add: inorder_update)

next
case 4 thus ?case by(simp add: inorder_delete)

next
case 5 thus ?case by(simp add: empty_def)

next
case 6 thus ?case by(simp add: complete_update)

next
case 7 thus ?case by(simp add: complete_delete)

qed

end

28 2-3 Tree from List
theory Tree23_of_List
imports

Tree23
HOL−Library.Time_Commands

begin
Linear-time bottom up conversion of a list of items into a complete 2-3

tree whose inorder traversal yields the list of items.

28.1 Code

Nonempty lists of 2-3 trees alternating with items, starting and ending with
a 2-3 tree:

datatype ′a tree23s = T ′a tree23 | TTs ′a tree23 ′a ′a tree23s

abbreviation not_T ts == ¬(∃ t. ts = T t)

fun len :: ′a tree23s ⇒ nat where
len (T _) = 1 |
len (TTs _ _ ts) = len ts + 1

fun trees :: ′a tree23s ⇒ ′a tree23 set where
trees (T t) = {t} |
trees (TTs t a ts) = {t} ∪ trees ts

Join pairs of adjacent trees:

fun join_adj :: ′a tree23s ⇒ ′a tree23s where
join_adj (TTs t1 a (T t2)) = T (Node2 t1 a t2) |

109

join_adj (TTs t1 a (TTs t2 b (T t3))) = T (Node3 t1 a t2 b t3) |
join_adj (TTs t1 a (TTs t2 b ts)) = TTs (Node2 t1 a t2) b (join_adj ts)

Towards termination of join_all:

lemma len_ge2 :
not_T ts =⇒ len ts ≥ 2

by(cases ts rule: join_adj.cases) auto

lemma [measure_function]: is_measure len
by(rule is_measure_trivial)

lemma len_join_adj_div2 :
not_T ts =⇒ len(join_adj ts) ≤ len ts div 2

by(induction ts rule: join_adj.induct) auto

lemma len_join_adj1 : not_T ts =⇒ len(join_adj ts) < len ts
using len_join_adj_div2 [of ts] len_ge2 [of ts] by simp

corollary len_join_adj2 [termination_simp]: len(join_adj (TTs t a ts)) ≤
len ts
using len_join_adj1 [of TTs t a ts] by simp

fun join_all :: ′a tree23s ⇒ ′a tree23 where
join_all (T t) = t |
join_all ts = join_all (join_adj ts)

fun leaves :: ′a list ⇒ ′a tree23s where
leaves [] = T Leaf |
leaves (a # as) = TTs Leaf a (leaves as)

definition tree23_of_list :: ′a list ⇒ ′a tree23 where
tree23_of_list as = join_all(leaves as)

28.2 Functional correctness

28.2.1 inorder:

fun inorder2 :: ′a tree23s ⇒ ′a list where
inorder2 (T t) = inorder t |
inorder2 (TTs t a ts) = inorder t @ a # inorder2 ts

lemma inorder2_join_adj: not_T ts =⇒ inorder2 (join_adj ts) = inorder2
ts
by (induction ts rule: join_adj.induct) auto

110

lemma inorder_join_all: inorder (join_all ts) = inorder2 ts
proof (induction ts rule: join_all.induct)

case 1 thus ?case by simp
next

case (2 t a ts)
thus ?case using inorder2_join_adj[of TTs t a ts]

by (simp add: le_imp_less_Suc)
qed

lemma inorder2_leaves: inorder2 (leaves as) = as
by(induction as) auto

lemma inorder : inorder(tree23_of_list as) = as
by(simp add: tree23_of_list_def inorder_join_all inorder2_leaves)

28.2.2 Completeness:

lemma complete_join_adj:
∀ t ∈ trees ts. complete t ∧ height t = n =⇒ not_T ts =⇒
∀ t ∈ trees (join_adj ts). complete t ∧ height t = Suc n

by (induction ts rule: join_adj.induct) auto

lemma complete_join_all:
∀ t ∈ trees ts. complete t ∧ height t = n =⇒ complete (join_all ts)

proof (induction ts arbitrary: n rule: join_all.induct)
case 1 thus ?case by simp

next
case (2 t a ts)
thus ?case

apply simp using complete_join_adj[of TTs t a ts n, simplified] by
blast
qed

lemma complete_leaves: t ∈ trees (leaves as) =⇒ complete t ∧ height t =
0
by (induction as) auto

corollary complete: complete(tree23_of_list as)
by(simp add: tree23_of_list_def complete_leaves complete_join_all[of _
0])

28.3 Linear running time

time_fun join_adj

111

time_fun join_all
time_fun leaves
time_fun tree23_of_list

lemma T_join_adj: not_T ts =⇒ T_join_adj ts ≤ len ts div 2
by(induction ts rule: T_join_adj.induct) auto

lemma len_ge_1 : len ts ≥ 1
by(cases ts) auto

lemma T_join_all: T_join_all ts ≤ 2 ∗ len ts
proof(induction ts rule: join_all.induct)

case 1 thus ?case by simp
next

case (2 t a ts)
let ?ts = TTs t a ts
have T_join_all ?ts = T_join_adj ?ts + T_join_all (join_adj ?ts) +

1
by simp

also have . . . ≤ len ?ts div 2 + T_join_all (join_adj ?ts) + 1
using T_join_adj[of ?ts] by simp

also have . . . ≤ len ?ts div 2 + 2 ∗ len (join_adj ?ts) + 1
using 2 .IH by simp

also have . . . ≤ len ?ts div 2 + 2 ∗ (len ?ts div 2) + 1
using len_join_adj_div2 [of ?ts] by simp

also have . . . ≤ 2 ∗ len ?ts using len_ge_1 [of ?ts] by linarith
finally show ?case .

qed

lemma T_leaves: T_leaves as = length as + 1
by(induction as) auto

lemma len_leaves: len(leaves as) = length as + 1
by(induction as) auto

lemma T_tree23_of_list: T_tree23_of_list as ≤ 3∗(length as) + 3
using T_join_all[of leaves as] by(simp add: T_leaves len_leaves)

end

29 2-3-4 Trees
theory Tree234

112

imports Main
begin

class height =
fixes height :: ′a ⇒ nat

datatype ′a tree234 =
Leaf (‹〈〉›) |
Node2 ′a tree234 ′a ′a tree234 (‹〈_, _, _〉›) |
Node3 ′a tree234 ′a ′a tree234 ′a ′a tree234 (‹〈_, _, _, _, _〉›) |
Node4 ′a tree234 ′a ′a tree234 ′a ′a tree234 ′a ′a tree234
(‹〈_, _, _, _, _, _, _〉›)

fun inorder :: ′a tree234 ⇒ ′a list where
inorder Leaf = [] |
inorder(Node2 l a r) = inorder l @ a # inorder r |
inorder(Node3 l a m b r) = inorder l @ a # inorder m @ b # inorder r |
inorder(Node4 l a m b n c r) = inorder l @ a # inorder m @ b # inorder
n @ c # inorder r

instantiation tree234 :: (type)height
begin

fun height_tree234 :: ′a tree234 ⇒ nat where
height Leaf = 0 |
height (Node2 l _ r) = Suc(max (height l) (height r)) |
height (Node3 l _ m _ r) = Suc(max (height l) (max (height m) (height
r))) |
height (Node4 l _ m _ n _ r) = Suc(max (height l) (max (height m) (max
(height n) (height r))))

instance ..

end

Balanced:

fun bal :: ′a tree234 ⇒ bool where
bal Leaf = True |
bal (Node2 l _ r) = (bal l & bal r & height l = height r) |
bal (Node3 l _ m _ r) = (bal l & bal m & bal r & height l = height m &
height m = height r) |
bal (Node4 l _ m _ n _ r) = (bal l & bal m & bal n & bal r & height l =
height m & height m = height n & height n = height r)

113

end

30 2-3-4 Tree Implementation of Sets
theory Tree234_Set
imports

Tree234
Cmp
Set_Specs

begin

declare sorted_wrt.simps(2)[simp del]

30.1 Set operations on 2-3-4 trees

definition empty :: ′a tree234 where
empty = Leaf

fun isin :: ′a::linorder tree234 ⇒ ′a ⇒ bool where
isin Leaf x = False |
isin (Node2 l a r) x =
(case cmp x a of LT ⇒ isin l x | EQ ⇒ True | GT ⇒ isin r x) |

isin (Node3 l a m b r) x =
(case cmp x a of LT ⇒ isin l x | EQ ⇒ True | GT ⇒ (case cmp x b of
LT ⇒ isin m x | EQ ⇒ True | GT ⇒ isin r x)) |

isin (Node4 t1 a t2 b t3 c t4) x =
(case cmp x b of

LT ⇒
(case cmp x a of

LT ⇒ isin t1 x |
EQ ⇒ True |
GT ⇒ isin t2 x) |

EQ ⇒ True |
GT ⇒
(case cmp x c of

LT ⇒ isin t3 x |
EQ ⇒ True |
GT ⇒ isin t4 x))

datatype ′a upi = T i
′a tree234 | Upi

′a tree234 ′a ′a tree234

fun treei :: ′a upi ⇒ ′a tree234 where
treei (T i t) = t |

114

treei (Upi l a r) = Node2 l a r

fun ins :: ′a::linorder ⇒ ′a tree234 ⇒ ′a upi where
ins x Leaf = Upi Leaf x Leaf |
ins x (Node2 l a r) =

(case cmp x a of
LT ⇒ (case ins x l of

T i l ′ => T i (Node2 l ′ a r)
| Upi l1 b l2 => T i (Node3 l1 b l2 a r)) |

EQ ⇒ T i (Node2 l x r) |
GT ⇒ (case ins x r of

T i r ′ => T i (Node2 l a r ′)
| Upi r1 b r2 => T i (Node3 l a r1 b r2))) |

ins x (Node3 l a m b r) =
(case cmp x a of

LT ⇒ (case ins x l of
T i l ′ => T i (Node3 l ′ a m b r)
| Upi l1 c l2 => Upi (Node2 l1 c l2) a (Node2 m b r)) |

EQ ⇒ T i (Node3 l a m b r) |
GT ⇒ (case cmp x b of

GT ⇒ (case ins x r of
T i r ′ => T i (Node3 l a m b r ′)
| Upi r1 c r2 => Upi (Node2 l a m) b (Node2 r1 c r2)) |

EQ ⇒ T i (Node3 l a m b r) |
LT ⇒ (case ins x m of

T i m ′ => T i (Node3 l a m ′ b r)
| Upi m1 c m2 => Upi (Node2 l a m1) c (Node2 m2 b

r)))) |
ins x (Node4 t1 a t2 b t3 c t4) =
(case cmp x b of

LT ⇒
(case cmp x a of

LT ⇒
(case ins x t1 of

T i t => T i (Node4 t a t2 b t3 c t4) |
Upi l y r => Upi (Node2 l y r) a (Node3 t2 b t3 c t4)) |

EQ ⇒ T i (Node4 t1 a t2 b t3 c t4) |
GT ⇒
(case ins x t2 of

T i t => T i (Node4 t1 a t b t3 c t4) |
Upi l y r => Upi (Node2 t1 a l) y (Node3 r b t3 c t4))) |

EQ ⇒ T i (Node4 t1 a t2 b t3 c t4) |
GT ⇒
(case cmp x c of

115

LT ⇒
(case ins x t3 of

T i t => T i (Node4 t1 a t2 b t c t4) |
Upi l y r => Upi (Node2 t1 a t2) b (Node3 l y r c t4)) |

EQ ⇒ T i (Node4 t1 a t2 b t3 c t4) |
GT ⇒
(case ins x t4 of

T i t => T i (Node4 t1 a t2 b t3 c t) |
Upi l y r => Upi (Node2 t1 a t2) b (Node3 t3 c l y r))))

hide_const insert

definition insert :: ′a::linorder ⇒ ′a tree234 ⇒ ′a tree234 where
insert x t = treei(ins x t)

datatype ′a upd = Td
′a tree234 | Upd

′a tree234

fun treed :: ′a upd ⇒ ′a tree234 where
treed (Td t) = t |
treed (Upd t) = t

fun node21 :: ′a upd ⇒ ′a ⇒ ′a tree234 ⇒ ′a upd where
node21 (Td l) a r = Td(Node2 l a r) |
node21 (Upd l) a (Node2 lr b rr) = Upd(Node3 l a lr b rr) |
node21 (Upd l) a (Node3 lr b mr c rr) = Td(Node2 (Node2 l a lr) b (Node2
mr c rr)) |
node21 (Upd t1) a (Node4 t2 b t3 c t4 d t5) = Td(Node2 (Node2 t1 a t2)
b (Node3 t3 c t4 d t5))

fun node22 :: ′a tree234 ⇒ ′a ⇒ ′a upd ⇒ ′a upd where
node22 l a (Td r) = Td(Node2 l a r) |
node22 (Node2 ll b rl) a (Upd r) = Upd(Node3 ll b rl a r) |
node22 (Node3 ll b ml c rl) a (Upd r) = Td(Node2 (Node2 ll b ml) c (Node2
rl a r)) |
node22 (Node4 t1 a t2 b t3 c t4) d (Upd t5) = Td(Node2 (Node2 t1 a t2)
b (Node3 t3 c t4 d t5))

fun node31 :: ′a upd ⇒ ′a ⇒ ′a tree234 ⇒ ′a ⇒ ′a tree234 ⇒ ′a upd where
node31 (Td t1) a t2 b t3 = Td(Node3 t1 a t2 b t3) |
node31 (Upd t1) a (Node2 t2 b t3) c t4 = Td(Node2 (Node3 t1 a t2 b t3)
c t4) |
node31 (Upd t1) a (Node3 t2 b t3 c t4) d t5 = Td(Node3 (Node2 t1 a t2)
b (Node2 t3 c t4) d t5) |
node31 (Upd t1) a (Node4 t2 b t3 c t4 d t5) e t6 = Td(Node3 (Node2 t1 a

116

t2) b (Node3 t3 c t4 d t5) e t6)

fun node32 :: ′a tree234 ⇒ ′a ⇒ ′a upd ⇒ ′a ⇒ ′a tree234 ⇒ ′a upd where
node32 t1 a (Td t2) b t3 = Td(Node3 t1 a t2 b t3) |
node32 t1 a (Upd t2) b (Node2 t3 c t4) = Td(Node2 t1 a (Node3 t2 b t3 c
t4)) |
node32 t1 a (Upd t2) b (Node3 t3 c t4 d t5) = Td(Node3 t1 a (Node2 t2 b
t3) c (Node2 t4 d t5)) |
node32 t1 a (Upd t2) b (Node4 t3 c t4 d t5 e t6) = Td(Node3 t1 a (Node2
t2 b t3) c (Node3 t4 d t5 e t6))

fun node33 :: ′a tree234 ⇒ ′a ⇒ ′a tree234 ⇒ ′a ⇒ ′a upd ⇒ ′a upd where
node33 l a m b (Td r) = Td(Node3 l a m b r) |
node33 t1 a (Node2 t2 b t3) c (Upd t4) = Td(Node2 t1 a (Node3 t2 b t3 c
t4)) |
node33 t1 a (Node3 t2 b t3 c t4) d (Upd t5) = Td(Node3 t1 a (Node2 t2 b
t3) c (Node2 t4 d t5)) |
node33 t1 a (Node4 t2 b t3 c t4 d t5) e (Upd t6) = Td(Node3 t1 a (Node2
t2 b t3) c (Node3 t4 d t5 e t6))

fun node41 :: ′a upd ⇒ ′a ⇒ ′a tree234 ⇒ ′a ⇒ ′a tree234 ⇒ ′a ⇒ ′a
tree234 ⇒ ′a upd where
node41 (Td t1) a t2 b t3 c t4 = Td(Node4 t1 a t2 b t3 c t4) |
node41 (Upd t1) a (Node2 t2 b t3) c t4 d t5 = Td(Node3 (Node3 t1 a t2 b
t3) c t4 d t5) |
node41 (Upd t1) a (Node3 t2 b t3 c t4) d t5 e t6 = Td(Node4 (Node2 t1 a
t2) b (Node2 t3 c t4) d t5 e t6) |
node41 (Upd t1) a (Node4 t2 b t3 c t4 d t5) e t6 f t7 = Td(Node4 (Node2
t1 a t2) b (Node3 t3 c t4 d t5) e t6 f t7)

fun node42 :: ′a tree234 ⇒ ′a ⇒ ′a upd ⇒ ′a ⇒ ′a tree234 ⇒ ′a ⇒ ′a
tree234 ⇒ ′a upd where
node42 t1 a (Td t2) b t3 c t4 = Td(Node4 t1 a t2 b t3 c t4) |
node42 (Node2 t1 a t2) b (Upd t3) c t4 d t5 = Td(Node3 (Node3 t1 a t2 b
t3) c t4 d t5) |
node42 (Node3 t1 a t2 b t3) c (Upd t4) d t5 e t6 = Td(Node4 (Node2 t1 a
t2) b (Node2 t3 c t4) d t5 e t6) |
node42 (Node4 t1 a t2 b t3 c t4) d (Upd t5) e t6 f t7 = Td(Node4 (Node2
t1 a t2) b (Node3 t3 c t4 d t5) e t6 f t7)

fun node43 :: ′a tree234 ⇒ ′a ⇒ ′a tree234 ⇒ ′a ⇒ ′a upd ⇒ ′a ⇒ ′a
tree234 ⇒ ′a upd where
node43 t1 a t2 b (Td t3) c t4 = Td(Node4 t1 a t2 b t3 c t4) |
node43 t1 a (Node2 t2 b t3) c (Upd t4) d t5 = Td(Node3 t1 a (Node3 t2 b

117

t3 c t4) d t5) |
node43 t1 a (Node3 t2 b t3 c t4) d (Upd t5) e t6 = Td(Node4 t1 a (Node2
t2 b t3) c (Node2 t4 d t5) e t6) |
node43 t1 a (Node4 t2 b t3 c t4 d t5) e (Upd t6) f t7 = Td(Node4 t1 a
(Node2 t2 b t3) c (Node3 t4 d t5 e t6) f t7)

fun node44 :: ′a tree234 ⇒ ′a ⇒ ′a tree234 ⇒ ′a ⇒ ′a tree234 ⇒ ′a ⇒ ′a
upd ⇒ ′a upd where
node44 t1 a t2 b t3 c (Td t4) = Td(Node4 t1 a t2 b t3 c t4) |
node44 t1 a t2 b (Node2 t3 c t4) d (Upd t5) = Td(Node3 t1 a t2 b (Node3
t3 c t4 d t5)) |
node44 t1 a t2 b (Node3 t3 c t4 d t5) e (Upd t6) = Td(Node4 t1 a t2 b
(Node2 t3 c t4) d (Node2 t5 e t6)) |
node44 t1 a t2 b (Node4 t3 c t4 d t5 e t6) f (Upd t7) = Td(Node4 t1 a t2
b (Node2 t3 c t4) d (Node3 t5 e t6 f t7))

fun split_min :: ′a tree234 ⇒ ′a ∗ ′a upd where
split_min (Node2 Leaf a Leaf) = (a, Upd Leaf) |
split_min (Node3 Leaf a Leaf b Leaf) = (a, Td(Node2 Leaf b Leaf)) |
split_min (Node4 Leaf a Leaf b Leaf c Leaf) = (a, Td(Node3 Leaf b Leaf c
Leaf)) |
split_min (Node2 l a r) = (let (x,l ′) = split_min l in (x, node21 l ′ a r)) |
split_min (Node3 l a m b r) = (let (x,l ′) = split_min l in (x, node31 l ′ a
m b r)) |
split_min (Node4 l a m b n c r) = (let (x,l ′) = split_min l in (x, node41 l ′
a m b n c r))

fun del :: ′a::linorder ⇒ ′a tree234 ⇒ ′a upd where
del k Leaf = Td Leaf |
del k (Node2 Leaf p Leaf) = (if k=p then Upd Leaf else Td(Node2 Leaf p
Leaf)) |
del k (Node3 Leaf p Leaf q Leaf) = Td(if k=p then Node2 Leaf q Leaf

else if k=q then Node2 Leaf p Leaf else Node3 Leaf p Leaf q Leaf) |
del k (Node4 Leaf a Leaf b Leaf c Leaf) =

Td(if k=a then Node3 Leaf b Leaf c Leaf else
if k=b then Node3 Leaf a Leaf c Leaf else
if k=c then Node3 Leaf a Leaf b Leaf
else Node4 Leaf a Leaf b Leaf c Leaf) |

del k (Node2 l a r) = (case cmp k a of
LT ⇒ node21 (del k l) a r |
GT ⇒ node22 l a (del k r) |
EQ ⇒ let (a ′,t) = split_min r in node22 l a ′ t) |

del k (Node3 l a m b r) = (case cmp k a of
LT ⇒ node31 (del k l) a m b r |

118

EQ ⇒ let (a ′,m ′) = split_min m in node32 l a ′ m ′ b r |
GT ⇒ (case cmp k b of

LT ⇒ node32 l a (del k m) b r |
EQ ⇒ let (b ′,r ′) = split_min r in node33 l a m b ′ r ′ |
GT ⇒ node33 l a m b (del k r))) |

del k (Node4 l a m b n c r) = (case cmp k b of
LT ⇒ (case cmp k a of

LT ⇒ node41 (del k l) a m b n c r |
EQ ⇒ let (a ′,m ′) = split_min m in node42 l a ′ m ′ b n c r |
GT ⇒ node42 l a (del k m) b n c r) |

EQ ⇒ let (b ′,n ′) = split_min n in node43 l a m b ′ n ′ c r |
GT ⇒ (case cmp k c of

LT ⇒ node43 l a m b (del k n) c r |
EQ ⇒ let (c ′,r ′) = split_min r in node44 l a m b n c ′ r ′ |
GT ⇒ node44 l a m b n c (del k r)))

definition delete :: ′a::linorder ⇒ ′a tree234 ⇒ ′a tree234 where
delete x t = treed(del x t)

30.2 Functional correctness

30.2.1 Functional correctness of isin:

lemma isin_set: sorted(inorder t) =⇒ isin t x = (x ∈ set (inorder t))
by (induction t) (auto simp: isin_simps)

30.2.2 Functional correctness of insert:

lemma inorder_ins:
sorted(inorder t) =⇒ inorder(treei(ins x t)) = ins_list x (inorder t)

by(induction t) (auto, auto simp: ins_list_simps split!: if_splits upi.splits)

lemma inorder_insert:
sorted(inorder t) =⇒ inorder(insert a t) = ins_list a (inorder t)

by(simp add: insert_def inorder_ins)

30.2.3 Functional correctness of delete

lemma inorder_node21 : height r > 0 =⇒
inorder (treed (node21 l ′ a r)) = inorder (treed l ′) @ a # inorder r

by(induct l ′ a r rule: node21 .induct) auto

lemma inorder_node22 : height l > 0 =⇒
inorder (treed (node22 l a r ′)) = inorder l @ a # inorder (treed r ′)

by(induct l a r ′ rule: node22 .induct) auto

119

lemma inorder_node31 : height m > 0 =⇒
inorder (treed (node31 l ′ a m b r)) = inorder (treed l ′) @ a # inorder m

@ b # inorder r
by(induct l ′ a m b r rule: node31 .induct) auto

lemma inorder_node32 : height r > 0 =⇒
inorder (treed (node32 l a m ′ b r)) = inorder l @ a # inorder (treed m ′)

@ b # inorder r
by(induct l a m ′ b r rule: node32 .induct) auto

lemma inorder_node33 : height m > 0 =⇒
inorder (treed (node33 l a m b r ′)) = inorder l @ a # inorder m @ b #

inorder (treed r ′)
by(induct l a m b r ′ rule: node33 .induct) auto

lemma inorder_node41 : height m > 0 =⇒
inorder (treed (node41 l ′ a m b n c r)) = inorder (treed l ′) @ a # inorder

m @ b # inorder n @ c # inorder r
by(induct l ′ a m b n c r rule: node41 .induct) auto

lemma inorder_node42 : height l > 0 =⇒
inorder (treed (node42 l a m b n c r)) = inorder l @ a # inorder (treed

m) @ b # inorder n @ c # inorder r
by(induct l a m b n c r rule: node42 .induct) auto

lemma inorder_node43 : height m > 0 =⇒
inorder (treed (node43 l a m b n c r)) = inorder l @ a # inorder m @ b

inorder(treed n) @ c # inorder r
by(induct l a m b n c r rule: node43 .induct) auto

lemma inorder_node44 : height n > 0 =⇒
inorder (treed (node44 l a m b n c r)) = inorder l @ a # inorder m @ b

inorder n @ c # inorder (treed r)
by(induct l a m b n c r rule: node44 .induct) auto

lemmas inorder_nodes = inorder_node21 inorder_node22
inorder_node31 inorder_node32 inorder_node33
inorder_node41 inorder_node42 inorder_node43 inorder_node44

lemma split_minD:
split_min t = (x,t ′) =⇒ bal t =⇒ height t > 0 =⇒
x # inorder(treed t ′) = inorder t

by(induction t arbitrary: t ′ rule: split_min.induct)

120

(auto simp: inorder_nodes split: prod.splits)

lemma inorder_del: [[bal t ; sorted(inorder t)]] =⇒
inorder(treed (del x t)) = del_list x (inorder t)

by(induction t rule: del.induct)
(auto simp: inorder_nodes del_list_simps split_minD split!: if_split prod.splits)

lemma inorder_delete: [[bal t ; sorted(inorder t)]] =⇒
inorder(delete x t) = del_list x (inorder t)

by(simp add: delete_def inorder_del)

30.3 Balancedness

30.3.1 Proofs for insert

First a standard proof that ins preserves bal.

instantiation upi :: (type)height
begin

fun height_upi ::
′a upi ⇒ nat where

height (T i t) = height t |
height (Upi l a r) = height l

instance ..

end

lemma bal_ins: bal t =⇒ bal (treei(ins a t)) ∧ height(ins a t) = height t
by (induct t) (auto split!: if_split upi.split)

Now an alternative proof (by Brian Huffman) that runs faster because
two properties (balance and height) are combined in one predicate.

inductive full :: nat ⇒ ′a tree234 ⇒ bool where
full 0 Leaf |
[[full n l; full n r]] =⇒ full (Suc n) (Node2 l p r) |
[[full n l; full n m; full n r]] =⇒ full (Suc n) (Node3 l p m q r) |
[[full n l; full n m; full n m ′; full n r]] =⇒ full (Suc n) (Node4 l p m q m ′ q ′

r)

inductive_cases full_elims:
full n Leaf
full n (Node2 l p r)
full n (Node3 l p m q r)

121

full n (Node4 l p m q m ′ q ′ r)

inductive_cases full_0_elim: full 0 t
inductive_cases full_Suc_elim: full (Suc n) t

lemma full_0_iff [simp]: full 0 t ←→ t = Leaf
by (auto elim: full_0_elim intro: full.intros)

lemma full_Leaf_iff [simp]: full n Leaf ←→ n = 0
by (auto elim: full_elims intro: full.intros)

lemma full_Suc_Node2_iff [simp]:
full (Suc n) (Node2 l p r) ←→ full n l ∧ full n r
by (auto elim: full_elims intro: full.intros)

lemma full_Suc_Node3_iff [simp]:
full (Suc n) (Node3 l p m q r) ←→ full n l ∧ full n m ∧ full n r
by (auto elim: full_elims intro: full.intros)

lemma full_Suc_Node4_iff [simp]:
full (Suc n) (Node4 l p m q m ′ q ′ r) ←→ full n l ∧ full n m ∧ full n m ′

∧ full n r
by (auto elim: full_elims intro: full.intros)

lemma full_imp_height: full n t =⇒ height t = n
by (induct set: full, simp_all)

lemma full_imp_bal: full n t =⇒ bal t
by (induct set: full, auto dest: full_imp_height)

lemma bal_imp_full: bal t =⇒ full (height t) t
by (induct t, simp_all)

lemma bal_iff_full: bal t ←→ (∃n. full n t)
by (auto elim!: bal_imp_full full_imp_bal)

The insert function either preserves the height of the tree, or increases it
by one. The constructor returned by the insert function determines which:
A return value of the form T i t indicates that the height will be the same.
A value of the form Upi l p r indicates an increase in height.

primrec full i :: nat ⇒ ′a upi ⇒ bool where
full i n (T i t) ←→ full n t |
full i n (Upi l p r) ←→ full n l ∧ full n r

122

lemma full i_ins: full n t =⇒ full i n (ins a t)
by (induct rule: full.induct) (auto, auto split: upi.split)

The insert operation preserves balance.

lemma bal_insert: bal t =⇒ bal (insert a t)
unfolding bal_iff_full insert_def
apply (erule exE)
apply (drule full i_ins [of _ _ a])
apply (cases ins a t)
apply (auto intro: full.intros)
done

30.3.2 Proofs for delete

instantiation upd :: (type)height
begin

fun height_upd :: ′a upd ⇒ nat where
height (Td t) = height t |
height (Upd t) = height t + 1

instance ..

end

lemma bal_treed_node21 :
[[bal r ; bal (treed l); height r = height l]] =⇒ bal (treed (node21 l a r))

by(induct l a r rule: node21 .induct) auto

lemma bal_treed_node22 :
[[bal(treed r); bal l; height r = height l]] =⇒ bal (treed (node22 l a r))

by(induct l a r rule: node22 .induct) auto

lemma bal_treed_node31 :
[[bal (treed l); bal m; bal r ; height l = height r ; height m = height r]]
=⇒ bal (treed (node31 l a m b r))

by(induct l a m b r rule: node31 .induct) auto

lemma bal_treed_node32 :
[[bal l; bal (treed m); bal r ; height l = height r ; height m = height r]]
=⇒ bal (treed (node32 l a m b r))

by(induct l a m b r rule: node32 .induct) auto

lemma bal_treed_node33 :

123

[[bal l; bal m; bal(treed r); height l = height r ; height m = height r]]
=⇒ bal (treed (node33 l a m b r))

by(induct l a m b r rule: node33 .induct) auto

lemma bal_treed_node41 :
[[bal (treed l); bal m; bal n; bal r ; height l = height r ; height m = height

r ; height n = height r]]
=⇒ bal (treed (node41 l a m b n c r))

by(induct l a m b n c r rule: node41 .induct) auto

lemma bal_treed_node42 :
[[bal l; bal (treed m); bal n; bal r ; height l = height r ; height m = height

r ; height n = height r]]
=⇒ bal (treed (node42 l a m b n c r))

by(induct l a m b n c r rule: node42 .induct) auto

lemma bal_treed_node43 :
[[bal l; bal m; bal (treed n); bal r ; height l = height r ; height m = height

r ; height n = height r]]
=⇒ bal (treed (node43 l a m b n c r))

by(induct l a m b n c r rule: node43 .induct) auto

lemma bal_treed_node44 :
[[bal l; bal m; bal n; bal (treed r); height l = height r ; height m = height

r ; height n = height r]]
=⇒ bal (treed (node44 l a m b n c r))

by(induct l a m b n c r rule: node44 .induct) auto

lemmas bals = bal_treed_node21 bal_treed_node22
bal_treed_node31 bal_treed_node32 bal_treed_node33
bal_treed_node41 bal_treed_node42 bal_treed_node43 bal_treed_node44

lemma height_node21 :
height r > 0 =⇒ height(node21 l a r) = max (height l) (height r) + 1

by(induct l a r rule: node21 .induct)(simp_all add: max.assoc)

lemma height_node22 :
height l > 0 =⇒ height(node22 l a r) = max (height l) (height r) + 1

by(induct l a r rule: node22 .induct)(simp_all add: max.assoc)

lemma height_node31 :
height m > 0 =⇒ height(node31 l a m b r) =
max (height l) (max (height m) (height r)) + 1

by(induct l a m b r rule: node31 .induct)(simp_all add: max_def)

124

lemma height_node32 :
height r > 0 =⇒ height(node32 l a m b r) =
max (height l) (max (height m) (height r)) + 1

by(induct l a m b r rule: node32 .induct)(simp_all add: max_def)

lemma height_node33 :
height m > 0 =⇒ height(node33 l a m b r) =
max (height l) (max (height m) (height r)) + 1

by(induct l a m b r rule: node33 .induct)(simp_all add: max_def)

lemma height_node41 :
height m > 0 =⇒ height(node41 l a m b n c r) =
max (height l) (max (height m) (max (height n) (height r))) + 1

by(induct l a m b n c r rule: node41 .induct)(simp_all add: max_def)

lemma height_node42 :
height l > 0 =⇒ height(node42 l a m b n c r) =
max (height l) (max (height m) (max (height n) (height r))) + 1

by(induct l a m b n c r rule: node42 .induct)(simp_all add: max_def)

lemma height_node43 :
height m > 0 =⇒ height(node43 l a m b n c r) =
max (height l) (max (height m) (max (height n) (height r))) + 1

by(induct l a m b n c r rule: node43 .induct)(simp_all add: max_def)

lemma height_node44 :
height n > 0 =⇒ height(node44 l a m b n c r) =
max (height l) (max (height m) (max (height n) (height r))) + 1

by(induct l a m b n c r rule: node44 .induct)(simp_all add: max_def)

lemmas heights = height_node21 height_node22
height_node31 height_node32 height_node33
height_node41 height_node42 height_node43 height_node44

lemma height_split_min:
split_min t = (x, t ′) =⇒ height t > 0 =⇒ bal t =⇒ height t ′ = height t

by(induct t arbitrary: x t ′ rule: split_min.induct)
(auto simp: heights split: prod.splits)

lemma height_del: bal t =⇒ height(del x t) = height t
by(induction x t rule: del.induct)
(auto simp add: heights height_split_min split!: if_split prod.split)

125

lemma bal_split_min:
[[split_min t = (x, t ′); bal t; height t > 0]] =⇒ bal (treed t ′)

by(induct t arbitrary: x t ′ rule: split_min.induct)
(auto simp: heights height_split_min bals split: prod.splits)

lemma bal_treed_del: bal t =⇒ bal(treed(del x t))
by(induction x t rule: del.induct)
(auto simp: bals bal_split_min height_del height_split_min split!: if_split

prod.split)

corollary bal_delete: bal t =⇒ bal(delete x t)
by(simp add: delete_def bal_treed_del)

30.4 Overall Correctness

interpretation S : Set_by_Ordered
where empty = empty and isin = isin and insert = insert and delete =
delete
and inorder = inorder and inv = bal
proof (standard, goal_cases)

case 2 thus ?case by(simp add: isin_set)
next

case 3 thus ?case by(simp add: inorder_insert)
next

case 4 thus ?case by(simp add: inorder_delete)
next

case 6 thus ?case by(simp add: bal_insert)
next

case 7 thus ?case by(simp add: bal_delete)
qed (simp add: empty_def)+

end

31 2-3-4 Tree Implementation of Maps
theory Tree234_Map
imports

Tree234_Set
Map_Specs

begin

31.1 Map operations on 2-3-4 trees

fun lookup :: (′a::linorder ∗ ′b) tree234 ⇒ ′a ⇒ ′b option where

126

lookup Leaf x = None |
lookup (Node2 l (a,b) r) x = (case cmp x a of

LT ⇒ lookup l x |
GT ⇒ lookup r x |
EQ ⇒ Some b) |

lookup (Node3 l (a1 ,b1) m (a2 ,b2) r) x = (case cmp x a1 of
LT ⇒ lookup l x |
EQ ⇒ Some b1 |
GT ⇒ (case cmp x a2 of

LT ⇒ lookup m x |
EQ ⇒ Some b2 |
GT ⇒ lookup r x)) |

lookup (Node4 t1 (a1 ,b1) t2 (a2 ,b2) t3 (a3 ,b3) t4) x = (case cmp x a2 of
LT ⇒ (case cmp x a1 of

LT ⇒ lookup t1 x | EQ ⇒ Some b1 | GT ⇒ lookup t2 x) |
EQ ⇒ Some b2 |
GT ⇒ (case cmp x a3 of

LT ⇒ lookup t3 x | EQ ⇒ Some b3 | GT ⇒ lookup t4 x))

fun upd :: ′a::linorder ⇒ ′b ⇒ (′a∗ ′b) tree234 ⇒ (′a∗ ′b) upi where
upd x y Leaf = Upi Leaf (x,y) Leaf |
upd x y (Node2 l ab r) = (case cmp x (fst ab) of

LT ⇒ (case upd x y l of
T i l ′ => T i (Node2 l ′ ab r)
| Upi l1 ab ′ l2 => T i (Node3 l1 ab ′ l2 ab r)) |

EQ ⇒ T i (Node2 l (x,y) r) |
GT ⇒ (case upd x y r of

T i r ′ => T i (Node2 l ab r ′)
| Upi r1 ab ′ r2 => T i (Node3 l ab r1 ab ′ r2))) |

upd x y (Node3 l ab1 m ab2 r) = (case cmp x (fst ab1) of
LT ⇒ (case upd x y l of

T i l ′ => T i (Node3 l ′ ab1 m ab2 r)
| Upi l1 ab ′ l2 => Upi (Node2 l1 ab ′ l2) ab1 (Node2 m ab2 r)) |

EQ ⇒ T i (Node3 l (x,y) m ab2 r) |
GT ⇒ (case cmp x (fst ab2) of

LT ⇒ (case upd x y m of
T i m ′ => T i (Node3 l ab1 m ′ ab2 r)
| Upi m1 ab ′ m2 => Upi (Node2 l ab1 m1) ab ′ (Node2 m2

ab2 r)) |
EQ ⇒ T i (Node3 l ab1 m (x,y) r) |
GT ⇒ (case upd x y r of

T i r ′ => T i (Node3 l ab1 m ab2 r ′)
| Upi r1 ab ′ r2 => Upi (Node2 l ab1 m) ab2 (Node2 r1 ab ′

r2)))) |

127

upd x y (Node4 t1 ab1 t2 ab2 t3 ab3 t4) = (case cmp x (fst ab2) of
LT ⇒ (case cmp x (fst ab1) of

LT ⇒ (case upd x y t1 of
T i t1 ′ => T i (Node4 t1 ′ ab1 t2 ab2 t3 ab3 t4)

| Upi t11 q t12 => Upi (Node2 t11 q t12) ab1 (Node3 t2 ab2
t3 ab3 t4)) |

EQ ⇒ T i (Node4 t1 (x,y) t2 ab2 t3 ab3 t4) |
GT ⇒ (case upd x y t2 of

T i t2 ′ => T i (Node4 t1 ab1 t2 ′ ab2 t3 ab3 t4)
| Upi t21 q t22 => Upi (Node2 t1 ab1 t21) q (Node3 t22 ab2

t3 ab3 t4))) |
EQ ⇒ T i (Node4 t1 ab1 t2 (x,y) t3 ab3 t4) |
GT ⇒ (case cmp x (fst ab3) of

LT ⇒ (case upd x y t3 of
T i t3 ′⇒ T i (Node4 t1 ab1 t2 ab2 t3 ′ ab3 t4)
| Upi t31 q t32 => Upi (Node2 t1 ab1 t2) ab2/q (Node3 t31

q t32 ab3 t4)) |
EQ ⇒ T i (Node4 t1 ab1 t2 ab2 t3 (x,y) t4) |
GT ⇒ (case upd x y t4 of

T i t4 ′ => T i (Node4 t1 ab1 t2 ab2 t3 ab3 t4 ′)
| Upi t41 q t42 => Upi (Node2 t1 ab1 t2) ab2 (Node3 t3 ab3

t41 q t42))))

definition update :: ′a::linorder ⇒ ′b ⇒ (′a∗ ′b) tree234 ⇒ (′a∗ ′b) tree234
where
update x y t = treei(upd x y t)

fun del :: ′a::linorder ⇒ (′a∗ ′b) tree234 ⇒ (′a∗ ′b) upd where
del x Leaf = Td Leaf |
del x (Node2 Leaf ab1 Leaf) = (if x=fst ab1 then Upd Leaf else Td(Node2
Leaf ab1 Leaf)) |
del x (Node3 Leaf ab1 Leaf ab2 Leaf) = Td(if x=fst ab1 then Node2 Leaf
ab2 Leaf

else if x=fst ab2 then Node2 Leaf ab1 Leaf else Node3 Leaf ab1 Leaf ab2
Leaf) |
del x (Node4 Leaf ab1 Leaf ab2 Leaf ab3 Leaf) =

Td(if x = fst ab1 then Node3 Leaf ab2 Leaf ab3 Leaf else
if x = fst ab2 then Node3 Leaf ab1 Leaf ab3 Leaf else
if x = fst ab3 then Node3 Leaf ab1 Leaf ab2 Leaf
else Node4 Leaf ab1 Leaf ab2 Leaf ab3 Leaf) |

del x (Node2 l ab1 r) = (case cmp x (fst ab1) of
LT ⇒ node21 (del x l) ab1 r |
GT ⇒ node22 l ab1 (del x r) |
EQ ⇒ let (ab1 ′,t) = split_min r in node22 l ab1 ′ t) |

128

del x (Node3 l ab1 m ab2 r) = (case cmp x (fst ab1) of
LT ⇒ node31 (del x l) ab1 m ab2 r |
EQ ⇒ let (ab1 ′,m ′) = split_min m in node32 l ab1 ′ m ′ ab2 r |
GT ⇒ (case cmp x (fst ab2) of

LT ⇒ node32 l ab1 (del x m) ab2 r |
EQ ⇒ let (ab2 ′,r ′) = split_min r in node33 l ab1 m ab2 ′ r ′ |
GT ⇒ node33 l ab1 m ab2 (del x r))) |

del x (Node4 t1 ab1 t2 ab2 t3 ab3 t4) = (case cmp x (fst ab2) of
LT ⇒ (case cmp x (fst ab1) of

LT ⇒ node41 (del x t1) ab1 t2 ab2 t3 ab3 t4 |
EQ ⇒ let (ab ′,t2 ′) = split_min t2 in node42 t1 ab ′ t2 ′ ab2 t3 ab3

t4 |
GT ⇒ node42 t1 ab1 (del x t2) ab2 t3 ab3 t4) |

EQ ⇒ let (ab ′,t3 ′) = split_min t3 in node43 t1 ab1 t2 ab ′ t3 ′ ab3 t4 |
GT ⇒ (case cmp x (fst ab3) of

LT ⇒ node43 t1 ab1 t2 ab2 (del x t3) ab3 t4 |
EQ ⇒ let (ab ′,t4 ′) = split_min t4 in node44 t1 ab1 t2 ab2 t3 ab ′

t4 ′ |
GT ⇒ node44 t1 ab1 t2 ab2 t3 ab3 (del x t4)))

definition delete :: ′a::linorder ⇒ (′a∗ ′b) tree234 ⇒ (′a∗ ′b) tree234 where
delete x t = treed(del x t)

31.2 Functional correctness

lemma lookup_map_of :
sorted1 (inorder t) =⇒ lookup t x = map_of (inorder t) x

by (induction t) (auto simp: map_of_simps split: option.split)

lemma inorder_upd:
sorted1 (inorder t) =⇒ inorder(treei(upd a b t)) = upd_list a b (inorder t)

by(induction t)
(auto simp: upd_list_simps, auto simp: upd_list_simps split: upi.splits)

lemma inorder_update:
sorted1 (inorder t) =⇒ inorder(update a b t) = upd_list a b (inorder t)

by(simp add: update_def inorder_upd)

lemma inorder_del: [[bal t ; sorted1 (inorder t)]] =⇒
inorder(treed (del x t)) = del_list x (inorder t)

by(induction t rule: del.induct)
(auto simp: del_list_simps inorder_nodes split_minD split!: if_splits prod.splits)

129

lemma inorder_delete: [[bal t ; sorted1 (inorder t)]] =⇒
inorder(delete x t) = del_list x (inorder t)

by(simp add: delete_def inorder_del)

31.3 Balancedness

lemma bal_upd: bal t =⇒ bal (treei(upd x y t)) ∧ height(upd x y t) = height
t
by (induct t) (auto, auto split!: if_split upi.split)

lemma bal_update: bal t =⇒ bal (update x y t)
by (simp add: update_def bal_upd)

lemma height_del: bal t =⇒ height(del x t) = height t
by(induction x t rule: del.induct)
(auto simp add: heights height_split_min split!: if_split prod.split)

lemma bal_treed_del: bal t =⇒ bal(treed(del x t))
by(induction x t rule: del.induct)
(auto simp: bals bal_split_min height_del height_split_min split!: if_split

prod.split)

corollary bal_delete: bal t =⇒ bal(delete x t)
by(simp add: delete_def bal_treed_del)

31.4 Overall Correctness

interpretation M : Map_by_Ordered
where empty = empty and lookup = lookup and update = update and
delete = delete
and inorder = inorder and inv = bal
proof (standard, goal_cases)

case 2 thus ?case by(simp add: lookup_map_of)
next

case 3 thus ?case by(simp add: inorder_update)
next

case 4 thus ?case by(simp add: inorder_delete)
next

case 6 thus ?case by(simp add: bal_update)
next

case 7 thus ?case by(simp add: bal_delete)
qed (simp add: empty_def)+

130

end

32 1-2 Brother Tree Implementation of Sets
theory Brother12_Set

imports
Cmp
Set_Specs
HOL−Number_Theory.Fib

begin

32.1 Data Type and Operations

datatype ′a bro =
N0 |
N1 ′a bro |
N2 ′a bro ′a ′a bro |

L2 ′a |
N3 ′a bro ′a ′a bro ′a ′a bro

definition empty :: ′a bro where
empty = N0

fun inorder :: ′a bro ⇒ ′a list where
inorder N0 = [] |
inorder (N1 t) = inorder t |
inorder (N2 l a r) = inorder l @ a # inorder r |
inorder (L2 a) = [a] |
inorder (N3 t1 a1 t2 a2 t3) = inorder t1 @ a1 # inorder t2 @ a2 #

inorder t3

fun isin :: ′a bro ⇒ ′a::linorder ⇒ bool where
isin N0 x = False |
isin (N1 t) x = isin t x |
isin (N2 l a r) x =
(case cmp x a of

LT ⇒ isin l x |
EQ ⇒ True |
GT ⇒ isin r x)

fun n1 :: ′a bro ⇒ ′a bro where
n1 (L2 a) = N2 N0 a N0 |
n1 (N3 t1 a1 t2 a2 t3) = N2 (N2 t1 a1 t2) a2 (N1 t3) |

131

n1 t = N1 t

hide_const (open) insert

locale insert
begin

fun n2 :: ′a bro ⇒ ′a ⇒ ′a bro ⇒ ′a bro where
n2 (L2 a1) a2 t = N3 N0 a1 N0 a2 t |
n2 (N3 t1 a1 t2 a2 t3) a3 (N1 t4) = N2 (N2 t1 a1 t2) a2 (N2 t3 a3 t4) |
n2 (N3 t1 a1 t2 a2 t3) a3 t4 = N3 (N2 t1 a1 t2) a2 (N1 t3) a3 t4 |
n2 t1 a1 (L2 a2) = N3 t1 a1 N0 a2 N0 |
n2 (N1 t1) a1 (N3 t2 a2 t3 a3 t4) = N2 (N2 t1 a1 t2) a2 (N2 t3 a3 t4) |
n2 t1 a1 (N3 t2 a2 t3 a3 t4) = N3 t1 a1 (N1 t2) a2 (N2 t3 a3 t4) |
n2 t1 a t2 = N2 t1 a t2

fun ins :: ′a::linorder ⇒ ′a bro ⇒ ′a bro where
ins x N0 = L2 x |
ins x (N1 t) = n1 (ins x t) |
ins x (N2 l a r) =
(case cmp x a of

LT ⇒ n2 (ins x l) a r |
EQ ⇒ N2 l a r |
GT ⇒ n2 l a (ins x r))

fun tree :: ′a bro ⇒ ′a bro where
tree (L2 a) = N2 N0 a N0 |
tree (N3 t1 a1 t2 a2 t3) = N2 (N2 t1 a1 t2) a2 (N1 t3) |
tree t = t

definition insert :: ′a::linorder ⇒ ′a bro ⇒ ′a bro where
insert x t = tree(ins x t)

end

locale delete
begin

fun n2 :: ′a bro ⇒ ′a ⇒ ′a bro ⇒ ′a bro where
n2 (N1 t1) a1 (N1 t2) = N1 (N2 t1 a1 t2) |
n2 (N1 (N1 t1)) a1 (N2 (N1 t2) a2 (N2 t3 a3 t4)) =
N1 (N2 (N2 t1 a1 t2) a2 (N2 t3 a3 t4)) |
n2 (N1 (N1 t1)) a1 (N2 (N2 t2 a2 t3) a3 (N1 t4)) =
N1 (N2 (N2 t1 a1 t2) a2 (N2 t3 a3 t4)) |

132

n2 (N1 (N1 t1)) a1 (N2 (N2 t2 a2 t3) a3 (N2 t4 a4 t5)) =
N2 (N2 (N1 t1) a1 (N2 t2 a2 t3)) a3 (N1 (N2 t4 a4 t5)) |
n2 (N2 (N1 t1) a1 (N2 t2 a2 t3)) a3 (N1 (N1 t4)) =
N1 (N2 (N2 t1 a1 t2) a2 (N2 t3 a3 t4)) |
n2 (N2 (N2 t1 a1 t2) a2 (N1 t3)) a3 (N1 (N1 t4)) =
N1 (N2 (N2 t1 a1 t2) a2 (N2 t3 a3 t4)) |
n2 (N2 (N2 t1 a1 t2) a2 (N2 t3 a3 t4)) a5 (N1 (N1 t5)) =
N2 (N1 (N2 t1 a1 t2)) a2 (N2 (N2 t3 a3 t4) a5 (N1 t5)) |
n2 t1 a1 t2 = N2 t1 a1 t2

fun split_min :: ′a bro ⇒ (′a × ′a bro) option where
split_min N0 = None |
split_min (N1 t) =
(case split_min t of

None ⇒ None |
Some (a, t ′) ⇒ Some (a, N1 t ′)) |

split_min (N2 t1 a t2) =
(case split_min t1 of

None ⇒ Some (a, N1 t2) |
Some (b, t1 ′) ⇒ Some (b, n2 t1 ′ a t2))

fun del :: ′a::linorder ⇒ ′a bro ⇒ ′a bro where
del _ N0 = N0 |
del x (N1 t) = N1 (del x t) |
del x (N2 l a r) =
(case cmp x a of

LT ⇒ n2 (del x l) a r |
GT ⇒ n2 l a (del x r) |
EQ ⇒ (case split_min r of

None ⇒ N1 l |
Some (b, r ′) ⇒ n2 l b r ′))

fun tree :: ′a bro ⇒ ′a bro where
tree (N1 t) = t |
tree t = t

definition delete :: ′a::linorder ⇒ ′a bro ⇒ ′a bro where
delete a t = tree (del a t)

end

32.2 Invariants

fun B :: nat ⇒ ′a bro set

133

and U :: nat ⇒ ′a bro set where
B 0 = {N0} |
B (Suc h) = { N2 t1 a t2 | t1 a t2 .
t1 ∈ B h ∪ U h ∧ t2 ∈ B h ∨ t1 ∈ B h ∧ t2 ∈ B h ∪ U h} |
U 0 = {} |
U (Suc h) = N1 ‘ B h

abbreviation T h ≡ B h ∪ U h

fun Bp :: nat ⇒ ′a bro set where
Bp 0 = B 0 ∪ L2 ‘ UNIV |
Bp (Suc 0) = B (Suc 0) ∪ {N3 N0 a N0 b N0 |a b. True} |
Bp (Suc(Suc h)) = B (Suc(Suc h)) ∪
{N3 t1 a t2 b t3 | t1 a t2 b t3 . t1 ∈ B (Suc h) ∧ t2 ∈ U (Suc h) ∧ t3 ∈

B (Suc h)}

fun Um :: nat ⇒ ′a bro set where
Um 0 = {} |
Um (Suc h) = N1 ‘ T h

32.3 Functional Correctness Proofs

32.3.1 Proofs for isin

lemma isin_set:
t ∈ T h =⇒ sorted(inorder t) =⇒ isin t x = (x ∈ set(inorder t))
by(induction h arbitrary: t) (fastforce simp: isin_simps split: if_splits)+

32.3.2 Proofs for insertion

lemma inorder_n1 : inorder(n1 t) = inorder t
by(cases t rule: n1 .cases) (auto simp: sorted_lems)

context insert
begin

lemma inorder_n2 : inorder(n2 l a r) = inorder l @ a # inorder r
by(cases (l,a,r) rule: n2 .cases) (auto simp: sorted_lems)

lemma inorder_tree: inorder(tree t) = inorder t
by(cases t) auto

lemma inorder_ins: t ∈ T h =⇒
sorted(inorder t) =⇒ inorder(ins a t) = ins_list a (inorder t)

134

by(induction h arbitrary: t) (auto simp: ins_list_simps inorder_n1 in-
order_n2)

lemma inorder_insert: t ∈ T h =⇒
sorted(inorder t) =⇒ inorder(insert a t) = ins_list a (inorder t)
by(simp add: insert_def inorder_ins inorder_tree)

end

32.3.3 Proofs for deletion

context delete
begin

lemma inorder_tree: inorder(tree t) = inorder t
by(cases t) auto

lemma inorder_n2 : inorder(n2 l a r) = inorder l @ a # inorder r
by(cases (l,a,r) rule: n2 .cases) (auto)

lemma inorder_split_min:
t ∈ T h =⇒ (split_min t = None ←→ inorder t = []) ∧
(split_min t = Some(a,t ′) −→ inorder t = a # inorder t ′)
by(induction h arbitrary: t a t ′) (auto simp: inorder_n2 split: option.splits)

lemma inorder_del:
t ∈ T h =⇒ sorted(inorder t) =⇒ inorder(del x t) = del_list x (inorder

t)
apply (induction h arbitrary: t)
apply (auto simp: del_list_simps inorder_n2 split: option.splits)
apply (auto simp: del_list_simps inorder_n2

inorder_split_min[OF UnI1] inorder_split_min[OF UnI2] split: op-
tion.splits)

done

lemma inorder_delete:
t ∈ T h =⇒ sorted(inorder t) =⇒ inorder(delete x t) = del_list x (inorder

t)
by(simp add: delete_def inorder_del inorder_tree)

end

135

32.4 Invariant Proofs

32.4.1 Proofs for insertion

lemma n1_type: t ∈ Bp h =⇒ n1 t ∈ T (Suc h)
by(cases h rule: Bp.cases) auto

context insert
begin

lemma tree_type: t ∈ Bp h =⇒ tree t ∈ B h ∪ B (Suc h)
by(cases h rule: Bp.cases) auto

lemma n2_type:
(t1 ∈ Bp h ∧ t2 ∈ T h −→ n2 t1 a t2 ∈ Bp (Suc h)) ∧
(t1 ∈ T h ∧ t2 ∈ Bp h −→ n2 t1 a t2 ∈ Bp (Suc h))

apply(cases h rule: Bp.cases)
apply (auto)[2]

apply(rule conjI impI | erule conjE exE imageE | simp | erule disjE)+
done

lemma Bp_if_B: t ∈ B h =⇒ t ∈ Bp h
by (cases h rule: Bp.cases) simp_all

An automatic proof:

lemma
(t ∈ B h −→ ins x t ∈ Bp h) ∧ (t ∈ U h −→ ins x t ∈ T h)

proof (induction h arbitrary: t)
case 0
then show ?case by simp

next
case (Suc h)
then show ?case by (fastforce simp: Bp_if_B n2_type dest: n1_type)

qed

A detailed proof:

lemma ins_type:
shows t ∈ B h =⇒ ins x t ∈ Bp h and t ∈ U h =⇒ ins x t ∈ T h

proof(induction h arbitrary: t)
case 0
{ case 1 thus ?case by simp
next

case 2 thus ?case by simp }
next

case (Suc h)

136

{ case 1
then obtain t1 a t2 where [simp]: t = N2 t1 a t2 and

t1 : t1 ∈ T h and t2 : t2 ∈ T h and t12 : t1 ∈ B h ∨ t2 ∈ B h
by auto

have ?case if x < a
proof −

have n2 (ins x t1) a t2 ∈ Bp (Suc h)
proof cases

assume t1 ∈ B h
with t2 show ?thesis by (simp add: Suc.IH (1) n2_type)

next
assume t1 /∈ B h
hence 1 : t1 ∈ U h and 2 : t2 ∈ B h using t1 t12 by auto
show ?thesis by (metis Suc.IH (2)[OF 1] Bp_if_B[OF 2] n2_type)

qed
with ‹x < a› show ?case by simp

qed
moreover
have ?case if a < x
proof −

have n2 t1 a (ins x t2) ∈ Bp (Suc h)
proof cases

assume t2 ∈ B h
with t1 show ?thesis by (simp add: Suc.IH (1) n2_type)

next
assume t2 /∈ B h
hence 1 : t1 ∈ B h and 2 : t2 ∈ U h using t2 t12 by auto
show ?thesis by (metis Bp_if_B[OF 1] Suc.IH (2)[OF 2] n2_type)

qed
with ‹a < x› show ?case by simp

qed
moreover
have ?case if x = a
proof −

from 1 have t ∈ Bp (Suc h) by(rule Bp_if_B)
thus ?case using ‹x = a› by simp

qed
ultimately show ?case by auto

next
case 2 thus ?case using Suc(1) n1_type by fastforce }

qed

lemma insert_type:
t ∈ B h =⇒ insert x t ∈ B h ∪ B (Suc h)

137

unfolding insert_def by (metis ins_type(1) tree_type)

end

32.4.2 Proofs for deletion

lemma B_simps[simp]:
N1 t ∈ B h = False
L2 y ∈ B h = False
(N3 t1 a1 t2 a2 t3) ∈ B h = False
N0 ∈ B h ←→ h = 0
by (cases h, auto)+

context delete
begin

lemma n2_type1 :
[[t1 ∈ Um h; t2 ∈ B h]] =⇒ n2 t1 a t2 ∈ T (Suc h)
apply(cases h rule: Bp.cases)

apply auto[2]
apply(erule exE bexE conjE imageE | simp | erule disjE)+
done

lemma n2_type2 :
[[t1 ∈ B h ; t2 ∈ Um h]] =⇒ n2 t1 a t2 ∈ T (Suc h)
apply(cases h rule: Bp.cases)
using Um.simps(1) apply blast
apply force

apply(erule exE bexE conjE imageE | simp | erule disjE)+
done

lemma n2_type3 :
[[t1 ∈ T h ; t2 ∈ T h]] =⇒ n2 t1 a t2 ∈ T (Suc h)
apply(cases h rule: Bp.cases)

apply auto[2]
apply(erule exE bexE conjE imageE | simp | erule disjE)+
done

lemma split_minNoneN0 : [[t ∈ B h; split_min t = None]] =⇒ t = N0
by (cases t) (auto split: option.splits)

lemma split_minNoneN1 : [[t ∈ U h; split_min t = None]] =⇒ t = N1 N0
by (cases h) (auto simp: split_minNoneN0 split: option.splits)

138

lemma split_min_type:
t ∈ B h =⇒ split_min t = Some (a, t ′) =⇒ t ′ ∈ T h
t ∈ U h =⇒ split_min t = Some (a, t ′) =⇒ t ′ ∈ Um h

proof (induction h arbitrary: t a t ′)
case (Suc h)
{ case 1

then obtain t1 a t2 where [simp]: t = N2 t1 a t2 and
t12 : t1 ∈ T h t2 ∈ T h t1 ∈ B h ∨ t2 ∈ B h
by auto

show ?case
proof (cases split_min t1)

case None
show ?thesis
proof cases

assume t1 ∈ B h
with split_minNoneN0 [OF this None] 1 show ?thesis by(auto)

next
assume t1 /∈ B h
thus ?thesis using 1 None by (auto)

qed
next

case [simp]: (Some bt ′)
obtain b t1 ′ where [simp]: bt ′ = (b,t1 ′) by fastforce
show ?thesis
proof cases

assume t1 ∈ B h
from Suc.IH (1)[OF this] 1 have t1 ′ ∈ T h by simp
from n2_type3 [OF this t12 (2)] 1 show ?thesis by auto

next
assume t1 /∈ B h
hence t1 : t1 ∈ U h and t2 : t2 ∈ B h using t12 by auto
from Suc.IH (2)[OF t1] have t1 ′ ∈ Um h by simp
from n2_type1 [OF this t2] 1 show ?thesis by auto

qed
qed

}
{ case 2

then obtain t1 where [simp]: t = N1 t1 and t1 : t1 ∈ B h by auto
show ?case
proof (cases split_min t1)

case None
with split_minNoneN0 [OF t1 None] 2 show ?thesis by(auto)

next
case [simp]: (Some bt ′)

139

obtain b t1 ′ where [simp]: bt ′ = (b,t1 ′) by fastforce
from Suc.IH (1)[OF t1] have t1 ′ ∈ T h by simp
thus ?thesis using 2 by auto

qed
}

qed auto

lemma del_type:
t ∈ B h =⇒ del x t ∈ T h
t ∈ U h =⇒ del x t ∈ Um h

proof (induction h arbitrary: x t)
case (Suc h)
{ case 1

then obtain l a r where [simp]: t = N2 l a r and
lr : l ∈ T h r ∈ T h l ∈ B h ∨ r ∈ B h by auto

have ?case if x < a
proof cases

assume l ∈ B h
from n2_type3 [OF Suc.IH (1)[OF this] lr(2)]
show ?thesis using ‹x<a› by(simp)

next
assume l /∈ B h
hence l ∈ U h r ∈ B h using lr by auto
from n2_type1 [OF Suc.IH (2)[OF this(1)] this(2)]
show ?thesis using ‹x<a› by(simp)

qed
moreover
have ?case if x > a
proof cases

assume r ∈ B h
from n2_type3 [OF lr(1) Suc.IH (1)[OF this]]
show ?thesis using ‹x>a› by(simp)

next
assume r /∈ B h
hence l ∈ B h r ∈ U h using lr by auto
from n2_type2 [OF this(1) Suc.IH (2)[OF this(2)]]
show ?thesis using ‹x>a› by(simp)

qed
moreover
have ?case if [simp]: x=a
proof (cases split_min r)

case None
show ?thesis
proof cases

140

assume r ∈ B h
with split_minNoneN0 [OF this None] lr show ?thesis by(simp)

next
assume r /∈ B h
hence r ∈ U h using lr by auto
with split_minNoneN1 [OF this None] lr(3) show ?thesis by (simp)

qed
next

case [simp]: (Some br ′)
obtain b r ′ where [simp]: br ′ = (b,r ′) by fastforce
show ?thesis
proof cases

assume r ∈ B h
from split_min_type(1)[OF this] n2_type3 [OF lr(1)]
show ?thesis by simp

next
assume r /∈ B h
hence l ∈ B h and r ∈ U h using lr by auto
from split_min_type(2)[OF this(2)] n2_type2 [OF this(1)]
show ?thesis by simp

qed
qed
ultimately show ?case by auto

}
{ case 2 with Suc.IH (1) show ?case by auto }

qed auto

lemma tree_type: t ∈ T (h+1) =⇒ tree t ∈ B (h+1) ∪ B h
by(auto)

lemma delete_type: t ∈ B h =⇒ delete x t ∈ B h ∪ B(h−1)
unfolding delete_def
by (cases h) (simp, metis del_type(1) tree_type Suc_eq_plus1 diff_Suc_1)

end

32.5 Overall correctness

interpretation Set_by_Ordered
where empty = empty and isin = isin and insert = insert.insert

and delete = delete.delete and inorder = inorder and inv = λt. ∃ h. t
∈ B h
proof (standard, goal_cases)

case 2 thus ?case by(auto intro!: isin_set)

141

next
case 3 thus ?case by(auto intro!: insert.inorder_insert)

next
case 4 thus ?case by(auto intro!: delete.inorder_delete)

next
case 6 thus ?case using insert.insert_type by blast

next
case 7 thus ?case using delete.delete_type by blast

qed (auto simp: empty_def)

32.6 Height-Size Relation

By Daniel Stüwe
fun fib_tree :: nat ⇒ unit bro where

fib_tree 0 = N0
| fib_tree (Suc 0) = N2 N0 () N0
| fib_tree (Suc(Suc h)) = N2 (fib_tree (h+1)) () (N1 (fib_tree h))

fun fib ′ :: nat ⇒ nat where
fib ′ 0 = 0
| fib ′ (Suc 0) = 1
| fib ′ (Suc(Suc h)) = 1 + fib ′ (Suc h) + fib ′ h

fun size :: ′a bro ⇒ nat where
size N0 = 0
| size (N1 t) = size t
| size (N2 t1 _ t2) = 1 + size t1 + size t2

lemma fib_tree_B: fib_tree h ∈ B h
by (induction h rule: fib_tree.induct) auto

declare [[names_short]]

lemma size_fib ′: size (fib_tree h) = fib ′ h
by (induction h rule: fib_tree.induct) auto

lemma fibfib: fib ′ h + 1 = fib (Suc(Suc h))
by (induction h rule: fib_tree.induct) auto

lemma B_N2_cases[consumes 1]:
assumes N2 t1 a t2 ∈ B (Suc n)
obtains
(BB) t1 ∈ B n and t2 ∈ B n |
(UB) t1 ∈ U n and t2 ∈ B n |

142

(BU) t1 ∈ B n and t2 ∈ U n
using assms by auto

lemma size_bounded: t ∈ B h =⇒ size t ≥ size (fib_tree h)
unfolding size_fib ′ proof (induction h arbitrary: t rule: fib ′.induct)
case (3 h t ′)
note main = 3
then obtain t1 a t2 where t ′: t ′ = N2 t1 a t2 by auto
with main have N2 t1 a t2 ∈ B (Suc (Suc h)) by auto
thus ?case proof (cases rule: B_N2_cases)

case BB
then obtain x y z where t2 : t2 = N2 x y z ∨ t2 = N2 z y x x ∈ B h

by auto
show ?thesis unfolding t ′ using main(1)[OF BB(1)] main(2)[OF

t2 (2)] t2 (1) by auto
next

case UB
then obtain t11 where t1 : t1 = N1 t11 t11 ∈ B h by auto
show ?thesis unfolding t ′ t1 (1) using main(2)[OF t1 (2)] main(1)[OF

UB(2)] by simp
next

case BU
then obtain t22 where t2 : t2 = N1 t22 t22 ∈ B h by auto
show ?thesis unfolding t ′ t2 (1) using main(2)[OF t2 (2)] main(1)[OF

BU (1)] by simp
qed

qed auto

theorem t ∈ B h =⇒ fib (h + 2) ≤ size t + 1
using size_bounded
by (simp add: size_fib ′ fibfib[symmetric] del: fib.simps)

end

33 1-2 Brother Tree Implementation of Maps
theory Brother12_Map
imports

Brother12_Set
Map_Specs

begin

fun lookup :: (′a × ′b) bro ⇒ ′a::linorder ⇒ ′b option where

143

lookup N0 x = None |
lookup (N1 t) x = lookup t x |
lookup (N2 l (a,b) r) x =
(case cmp x a of

LT ⇒ lookup l x |
EQ ⇒ Some b |
GT ⇒ lookup r x)

locale update = insert
begin

fun upd :: ′a::linorder ⇒ ′b ⇒ (′a× ′b) bro ⇒ (′a× ′b) bro where
upd x y N0 = L2 (x,y) |
upd x y (N1 t) = n1 (upd x y t) |
upd x y (N2 l (a,b) r) =
(case cmp x a of

LT ⇒ n2 (upd x y l) (a,b) r |
EQ ⇒ N2 l (a,y) r |
GT ⇒ n2 l (a,b) (upd x y r))

definition update :: ′a::linorder ⇒ ′b ⇒ (′a× ′b) bro ⇒ (′a× ′b) bro where
update x y t = tree(upd x y t)

end

context delete
begin

fun del :: ′a::linorder ⇒ (′a× ′b) bro ⇒ (′a× ′b) bro where
del _ N0 = N0 |
del x (N1 t) = N1 (del x t) |
del x (N2 l (a,b) r) =
(case cmp x a of

LT ⇒ n2 (del x l) (a,b) r |
GT ⇒ n2 l (a,b) (del x r) |
EQ ⇒ (case split_min r of

None ⇒ N1 l |
Some (ab, r ′) ⇒ n2 l ab r ′))

definition delete :: ′a::linorder ⇒ (′a× ′b) bro ⇒ (′a× ′b) bro where
delete a t = tree (del a t)

end

144

33.1 Functional Correctness Proofs

33.1.1 Proofs for lookup

lemma lookup_map_of : t ∈ T h =⇒
sorted1 (inorder t) =⇒ lookup t x = map_of (inorder t) x

by(induction h arbitrary: t) (auto simp: map_of_simps split: option.splits)

33.1.2 Proofs for update

context update
begin

lemma inorder_upd: t ∈ T h =⇒
sorted1 (inorder t) =⇒ inorder(upd x y t) = upd_list x y (inorder t)

by(induction h arbitrary: t) (auto simp: upd_list_simps inorder_n1 in-
order_n2)

lemma inorder_update: t ∈ T h =⇒
sorted1 (inorder t) =⇒ inorder(update x y t) = upd_list x y (inorder t)

by(simp add: update_def inorder_upd inorder_tree)

end

33.1.3 Proofs for deletion

context delete
begin

lemma inorder_del:
t ∈ T h =⇒ sorted1 (inorder t) =⇒ inorder(del x t) = del_list x (inorder

t)
apply (induction h arbitrary: t)
apply (auto simp: del_list_simps inorder_n2)
apply (auto simp: del_list_simps inorder_n2

inorder_split_min[OF UnI1] inorder_split_min[OF UnI2] split: op-
tion.splits)

done

lemma inorder_delete:
t ∈ T h =⇒ sorted1 (inorder t) =⇒ inorder(delete x t) = del_list x (inorder

t)
by(simp add: delete_def inorder_del inorder_tree)

end

145

33.2 Invariant Proofs

33.2.1 Proofs for update

context update
begin

lemma upd_type:
(t ∈ B h −→ upd x y t ∈ Bp h) ∧ (t ∈ U h −→ upd x y t ∈ T h)

apply(induction h arbitrary: t)
apply (simp)

apply (fastforce simp: Bp_if_B n2_type dest: n1_type)
done

lemma update_type:
t ∈ B h =⇒ update x y t ∈ B h ∪ B (Suc h)

unfolding update_def by (metis upd_type tree_type)

end

33.2.2 Proofs for deletion

context delete
begin

lemma del_type:
t ∈ B h =⇒ del x t ∈ T h
t ∈ U h =⇒ del x t ∈ Um h

proof (induction h arbitrary: x t)
case (Suc h)
{ case 1

then obtain l a b r where [simp]: t = N2 l (a,b) r and
lr : l ∈ T h r ∈ T h l ∈ B h ∨ r ∈ B h by auto

have ?case if x < a
proof cases

assume l ∈ B h
from n2_type3 [OF Suc.IH (1)[OF this] lr(2)]
show ?thesis using ‹x<a› by(simp)

next
assume l /∈ B h
hence l ∈ U h r ∈ B h using lr by auto
from n2_type1 [OF Suc.IH (2)[OF this(1)] this(2)]
show ?thesis using ‹x<a› by(simp)

qed
moreover

146

have ?case if x > a
proof cases

assume r ∈ B h
from n2_type3 [OF lr(1) Suc.IH (1)[OF this]]
show ?thesis using ‹x>a› by(simp)

next
assume r /∈ B h
hence l ∈ B h r ∈ U h using lr by auto
from n2_type2 [OF this(1) Suc.IH (2)[OF this(2)]]
show ?thesis using ‹x>a› by(simp)

qed
moreover
have ?case if [simp]: x=a
proof (cases split_min r)

case None
show ?thesis
proof cases

assume r ∈ B h
with split_minNoneN0 [OF this None] lr show ?thesis by(simp)

next
assume r /∈ B h
hence r ∈ U h using lr by auto
with split_minNoneN1 [OF this None] lr(3) show ?thesis by (simp)

qed
next

case [simp]: (Some br ′)
obtain b r ′ where [simp]: br ′ = (b,r ′) by fastforce
show ?thesis
proof cases

assume r ∈ B h
from split_min_type(1)[OF this] n2_type3 [OF lr(1)]
show ?thesis by simp

next
assume r /∈ B h
hence l ∈ B h and r ∈ U h using lr by auto
from split_min_type(2)[OF this(2)] n2_type2 [OF this(1)]
show ?thesis by simp

qed
qed
ultimately show ?case by auto

}
{ case 2 with Suc.IH (1) show ?case by auto }

qed auto

147

lemma delete_type:
t ∈ B h =⇒ delete x t ∈ B h ∪ B(h−1)

unfolding delete_def
by (cases h) (simp, metis del_type(1) tree_type Suc_eq_plus1 diff_Suc_1)

end

33.3 Overall correctness

interpretation Map_by_Ordered
where empty = empty and lookup = lookup and update = update.update
and delete = delete.delete and inorder = inorder and inv = λt. ∃ h. t ∈
B h
proof (standard, goal_cases)

case 2 thus ?case by(auto intro!: lookup_map_of)
next

case 3 thus ?case by(auto intro!: update.inorder_update)
next

case 4 thus ?case by(auto intro!: delete.inorder_delete)
next

case 6 thus ?case using update.update_type by (metis Un_iff)
next

case 7 thus ?case using delete.delete_type by blast
qed (auto simp: empty_def)

end

34 AA Tree Implementation of Sets
theory AA_Set
imports

Isin2
Cmp

begin

type_synonym ′a aa_tree = (′a∗nat) tree

definition empty :: ′a aa_tree where
empty = Leaf

fun lvl :: ′a aa_tree ⇒ nat where
lvl Leaf = 0 |
lvl (Node _ (_, lv) _) = lv

148

fun invar :: ′a aa_tree ⇒ bool where
invar Leaf = True |
invar (Node l (a, h) r) =
(invar l ∧ invar r ∧
h = lvl l + 1 ∧ (h = lvl r + 1 ∨ (∃ lr b rr . r = Node lr (b,h) rr ∧ h =

lvl rr + 1)))

fun skew :: ′a aa_tree ⇒ ′a aa_tree where
skew (Node (Node t1 (b, lvb) t2) (a, lva) t3) =
(if lva = lvb then Node t1 (b, lvb) (Node t2 (a, lva) t3) else Node (Node

t1 (b, lvb) t2) (a, lva) t3) |
skew t = t

fun split :: ′a aa_tree ⇒ ′a aa_tree where
split (Node t1 (a, lva) (Node t2 (b, lvb) (Node t3 (c, lvc) t4))) =

(if lva = lvb ∧ lvb = lvc — lva = lvc suffices
then Node (Node t1 (a,lva) t2) (b,lva+1) (Node t3 (c, lva) t4)
else Node t1 (a,lva) (Node t2 (b,lvb) (Node t3 (c,lvc) t4))) |

split t = t

hide_const (open) insert

fun insert :: ′a::linorder ⇒ ′a aa_tree ⇒ ′a aa_tree where
insert x Leaf = Node Leaf (x, 1) Leaf |
insert x (Node t1 (a,lv) t2) =
(case cmp x a of

LT ⇒ split (skew (Node (insert x t1) (a,lv) t2)) |
GT ⇒ split (skew (Node t1 (a,lv) (insert x t2))) |
EQ ⇒ Node t1 (x, lv) t2)

fun sngl :: ′a aa_tree ⇒ bool where
sngl Leaf = False |
sngl (Node _ _ Leaf) = True |
sngl (Node _ (_, lva) (Node _ (_, lvb) _)) = (lva > lvb)

definition adjust :: ′a aa_tree ⇒ ′a aa_tree where
adjust t =
(case t of
Node l (x,lv) r ⇒
(if lvl l >= lv−1 ∧ lvl r >= lv−1 then t else
if lvl r < lv−1 ∧ sngl l then skew (Node l (x,lv−1) r) else
if lvl r < lv−1
then case l of

Node t1 (a,lva) (Node t2 (b,lvb) t3)

149

⇒ Node (Node t1 (a,lva) t2) (b,lvb+1) (Node t3 (x,lv−1) r)
else
if lvl r < lv then split (Node l (x,lv−1) r)
else

case r of
Node t1 (b,lvb) t4 ⇒
(case t1 of

Node t2 (a,lva) t3
⇒ Node (Node l (x,lv−1) t2) (a,lva+1)

(split (Node t3 (b, if sngl t1 then lva else lva+1) t4)))))

In the paper, the last case of adjust is expressed with the help of an
incorrect auxiliary function nlvl.

Function split_max below is called dellrg in the paper. The latter is
incorrect for two reasons: dellrg is meant to delete the largest element but
recurses on the left instead of the right subtree; the invariant is not restored.

fun split_max :: ′a aa_tree ⇒ ′a aa_tree ∗ ′a where
split_max (Node l (a,lv) Leaf) = (l,a) |
split_max (Node l (a,lv) r) = (let (r ′,b) = split_max r in (adjust(Node l
(a,lv) r ′), b))

fun delete :: ′a::linorder ⇒ ′a aa_tree ⇒ ′a aa_tree where
delete _ Leaf = Leaf |
delete x (Node l (a,lv) r) =
(case cmp x a of

LT ⇒ adjust (Node (delete x l) (a,lv) r) |
GT ⇒ adjust (Node l (a,lv) (delete x r)) |
EQ ⇒ (if l = Leaf then r

else let (l ′,b) = split_max l in adjust (Node l ′ (b,lv) r)))

fun pre_adjust where
pre_adjust (Node l (a,lv) r) = (invar l ∧ invar r ∧

((lv = lvl l + 1 ∧ (lv = lvl r + 1 ∨ lv = lvl r + 2 ∨ lv = lvl r ∧ sngl
r)) ∨

(lv = lvl l + 2 ∧ (lv = lvl r + 1 ∨ lv = lvl r ∧ sngl r))))

declare pre_adjust.simps [simp del]

34.1 Auxiliary Proofs

lemma split_case: split t = (case t of
Node t1 (x,lvx) (Node t2 (y,lvy) (Node t3 (z,lvz) t4)) ⇒
(if lvx = lvy ∧ lvy = lvz
then Node (Node t1 (x,lvx) t2) (y,lvx+1) (Node t3 (z,lvx) t4)

150

else t)
| t ⇒ t)

by(auto split: tree.split)

lemma skew_case: skew t = (case t of
Node (Node t1 (y,lvy) t2) (x,lvx) t3 ⇒
(if lvx = lvy then Node t1 (y, lvx) (Node t2 (x,lvx) t3) else t)
| t ⇒ t)

by(auto split: tree.split)

lemma lvl_0_iff : invar t =⇒ lvl t = 0 ←→ t = Leaf
by(cases t) auto

lemma lvl_Suc_iff : lvl t = Suc n ←→ (∃ l a r . t = Node l (a,Suc n) r)
by(cases t) auto

lemma lvl_skew: lvl (skew t) = lvl t
by(cases t rule: skew.cases) auto

lemma lvl_split: lvl (split t) = lvl t ∨ lvl (split t) = lvl t + 1 ∧ sngl (split
t)
by(cases t rule: split.cases) auto

lemma invar_2Nodes:invar (Node l (x,lv) (Node rl (rx, rlv) rr)) =
(invar l ∧ invar 〈rl, (rx, rlv), rr〉 ∧ lv = Suc (lvl l) ∧
(lv = Suc rlv ∨ rlv = lv ∧ lv = Suc (lvl rr)))

by simp

lemma invar_NodeLeaf [simp]:
invar (Node l (x,lv) Leaf) = (invar l ∧ lv = Suc (lvl l) ∧ lv = Suc 0)

by simp

lemma sngl_if_invar : invar (Node l (a, n) r) =⇒ n = lvl r =⇒ sngl r
by(cases r rule: sngl.cases) clarsimp+

34.2 Invariance

34.2.1 Proofs for insert

lemma lvl_insert_aux:
lvl (insert x t) = lvl t ∨ lvl (insert x t) = lvl t + 1 ∧ sngl (insert x t)

apply(induction t)
apply (auto simp: lvl_skew)
apply (metis Suc_eq_plus1 lvl.simps(2) lvl_split lvl_skew)+

151

done

lemma lvl_insert: obtains
(Same) lvl (insert x t) = lvl t |
(Incr) lvl (insert x t) = lvl t + 1 sngl (insert x t)

using lvl_insert_aux by blast

lemma lvl_insert_sngl: invar t =⇒ sngl t =⇒ lvl(insert x t) = lvl t
proof (induction t rule: insert.induct)

case (2 x t1 a lv t2)
consider (LT) x < a | (GT) x > a | (EQ) x = a

using less_linear by blast
thus ?case proof cases

case LT
thus ?thesis using 2 by (auto simp add: skew_case split_case split:

tree.splits)
next

case GT
thus ?thesis using 2
proof (cases t1 rule: tree2_cases)

case Node
thus ?thesis using 2 GT

apply (auto simp add: skew_case split_case split: tree.splits)
by (metis less_not_refl2 lvl.simps(2) lvl_insert_aux n_not_Suc_n

sngl.simps(3))+
qed (auto simp add: lvl_0_iff)

qed simp
qed simp

lemma skew_invar : invar t =⇒ skew t = t
by(cases t rule: skew.cases) auto

lemma split_invar : invar t =⇒ split t = t
by(cases t rule: split.cases) clarsimp+

lemma invar_NodeL:
[[invar(Node l (x, n) r); invar l ′; lvl l ′ = lvl l]] =⇒ invar(Node l ′ (x, n)

r)
by(auto)

lemma invar_NodeR:
[[invar(Node l (x, n) r); n = lvl r + 1 ; invar r ′; lvl r ′ = lvl r]] =⇒

invar(Node l (x, n) r ′)
by(auto)

152

lemma invar_NodeR2 :
[[invar(Node l (x, n) r); sngl r ′; n = lvl r + 1 ; invar r ′; lvl r ′ = n]] =⇒

invar(Node l (x, n) r ′)
by(cases r ′ rule: sngl.cases) clarsimp+

lemma lvl_insert_incr_iff : (lvl(insert a t) = lvl t + 1) ←→
(∃ l x r . insert a t = Node l (x, lvl t + 1) r ∧ lvl l = lvl r)

apply(cases t rule: tree2_cases)
apply(auto simp add: skew_case split_case split: if_splits)
apply(auto split: tree.splits if_splits)
done

lemma invar_insert: invar t =⇒ invar(insert a t)
proof(induction t rule: tree2_induct)

case N : (Node l x n r)
hence il: invar l and ir : invar r by auto
note iil = N .IH (1)[OF il]
note iir = N .IH (2)[OF ir]
let ?t = Node l (x, n) r
have a < x ∨ a = x ∨ x < a by auto
moreover
have ?case if a < x
proof (cases rule: lvl_insert[of a l])

case (Same) thus ?thesis
using ‹a<x› invar_NodeL[OF N .prems iil Same]
by (simp add: skew_invar split_invar del: invar .simps)

next
case (Incr)
then obtain t1 w t2 where ial[simp]: insert a l = Node t1 (w, n) t2

using N .prems by (auto simp: lvl_Suc_iff)
have l12 : lvl t1 = lvl t2

by (metis Incr(1) ial lvl_insert_incr_iff tree.inject)
have insert a ?t = split(skew(Node (insert a l) (x,n) r))

by(simp add: ‹a<x›)
also have skew(Node (insert a l) (x,n) r) = Node t1 (w,n) (Node t2

(x,n) r)
by(simp)

also have invar(split . . .)
proof (cases r rule: tree2_cases)

case Leaf
hence l = Leaf using N .prems by(auto simp: lvl_0_iff)
thus ?thesis using Leaf ial by simp

153

next
case [simp]: (Node t3 y m t4)
show ?thesis
proof cases

assume m = n thus ?thesis using N (3) iil by(auto)
next

assume m 6= n thus ?thesis using N (3) iil l12 by(auto)
qed

qed
finally show ?thesis .

qed
moreover
have ?case if x < a
proof −

from ‹invar ?t› have n = lvl r ∨ n = lvl r + 1 by auto
thus ?case
proof

assume 0 : n = lvl r
have insert a ?t = split(skew(Node l (x, n) (insert a r)))

using ‹a>x› by(auto)
also have skew(Node l (x,n) (insert a r)) = Node l (x,n) (insert a r)

using N .prems by(simp add: skew_case split: tree.split)
also have invar(split . . .)
proof −

from lvl_insert_sngl[OF ir sngl_if_invar [OF ‹invar ?t› 0], of a]
obtain t1 y t2 where iar : insert a r = Node t1 (y,n) t2

using N .prems 0 by (auto simp: lvl_Suc_iff)
from N .prems iar 0 iir
show ?thesis by (auto simp: split_case split: tree.splits)

qed
finally show ?thesis .

next
assume 1 : n = lvl r + 1
hence sngl ?t by(cases r) auto
show ?thesis
proof (cases rule: lvl_insert[of a r])

case (Same)
show ?thesis using ‹x<a› il ir invar_NodeR[OF N .prems 1 iir Same]

by (auto simp add: skew_invar split_invar)
next

case (Incr)
thus ?thesis using invar_NodeR2 [OF ‹invar ?t› Incr(2) 1 iir] 1 ‹x

< a›
by (auto simp add: skew_invar split_invar split: if_splits)

154

qed
qed

qed
moreover
have a = x =⇒ ?case using N .prems by auto
ultimately show ?case by blast

qed simp

34.2.2 Proofs for delete

lemma invarL: ASSUMPTION (invar 〈l, (a, lv), r〉) =⇒ invar l
by(simp add: ASSUMPTION_def)

lemma invarR: ASSUMPTION (invar 〈l, (a,lv), r〉) =⇒ invar r
by(simp add: ASSUMPTION_def)

lemma sngl_NodeI :
sngl (Node l (a,lv) r) =⇒ sngl (Node l ′ (a ′, lv) r)

by(cases r rule: tree2_cases) (simp_all)

declare invarL[simp] invarR[simp]

lemma pre_cases:
assumes pre_adjust (Node l (x,lv) r)
obtains
(tSngl) invar l ∧ invar r ∧

lv = Suc (lvl r) ∧ lvl l = lvl r |
(tDouble) invar l ∧ invar r ∧

lv = lvl r ∧ Suc (lvl l) = lvl r ∧ sngl r |
(rDown) invar l ∧ invar r ∧

lv = Suc (Suc (lvl r)) ∧ lv = Suc (lvl l) |
(lDown_tSngl) invar l ∧ invar r ∧

lv = Suc (lvl r) ∧ lv = Suc (Suc (lvl l)) |
(lDown_tDouble) invar l ∧ invar r ∧

lv = lvl r ∧ lv = Suc (Suc (lvl l)) ∧ sngl r
using assms unfolding pre_adjust.simps
by auto

declare invar .simps(2)[simp del] invar_2Nodes[simp add]

lemma invar_adjust:
assumes pre: pre_adjust (Node l (a,lv) r)
shows invar(adjust (Node l (a,lv) r))

155

using pre proof (cases rule: pre_cases)
case (tDouble) thus ?thesis unfolding adjust_def by (cases r) (auto

simp: invar .simps(2))
next

case (rDown)
from rDown obtain llv ll la lr where l: l = Node ll (la, llv) lr by (cases

l) auto
from rDown show ?thesis unfolding adjust_def by (auto simp: l in-

var .simps(2) split: tree.splits)
next

case (lDown_tDouble)
from lDown_tDouble obtain rlv rr ra rl where r : r = Node rl (ra, rlv)

rr by (cases r) auto
from lDown_tDouble and r obtain rrlv rrr rra rrl where

rr :rr = Node rrr (rra, rrlv) rrl by (cases rr) auto
from lDown_tDouble show ?thesis unfolding adjust_def r rr
apply (cases rl rule: tree2_cases) apply (auto simp add: invar .simps(2)

split!: if_split)
using lDown_tDouble by (auto simp: split_case lvl_0_iff elim:lvl.elims

split: tree.split)
qed (auto simp: split_case invar .simps(2) adjust_def split: tree.splits)

lemma lvl_adjust:
assumes pre_adjust (Node l (a,lv) r)
shows lv = lvl (adjust(Node l (a,lv) r)) ∨ lv = lvl (adjust(Node l (a,lv)

r)) + 1
using assms(1)
proof(cases rule: pre_cases)

case lDown_tSngl thus ?thesis
using lvl_split[of 〈l, (a, lvl r), r〉] by (auto simp: adjust_def)

next
case lDown_tDouble thus ?thesis

by (auto simp: adjust_def invar .simps(2) split: tree.split)
qed (auto simp: adjust_def split: tree.splits)

lemma sngl_adjust: assumes pre_adjust (Node l (a,lv) r)
sngl 〈l, (a, lv), r〉 lv = lvl (adjust 〈l, (a, lv), r〉)
shows sngl (adjust 〈l, (a, lv), r〉)

using assms proof (cases rule: pre_cases)
case rDown
thus ?thesis using assms(2 ,3) unfolding adjust_def

by (auto simp add: skew_case) (auto split: tree.split)
qed (auto simp: adjust_def skew_case split_case split: tree.split)

156

definition post_del t t ′ ==
invar t ′ ∧
(lvl t ′ = lvl t ∨ lvl t ′ + 1 = lvl t) ∧
(lvl t ′ = lvl t ∧ sngl t −→ sngl t ′)

lemma pre_adj_if_postR:
invar〈lv, (l, a), r〉 =⇒ post_del r r ′ =⇒ pre_adjust 〈lv, (l, a), r ′〉

by(cases sngl r)
(auto simp: pre_adjust.simps post_del_def invar .simps(2) elim: sngl.elims)

lemma pre_adj_if_postL:
invar〈l, (a, lv), r〉 =⇒ post_del l l ′ =⇒ pre_adjust 〈l ′, (b, lv), r〉

by(cases sngl r)
(auto simp: pre_adjust.simps post_del_def invar .simps(2) elim: sngl.elims)

lemma post_del_adjL:
[[invar〈l, (a, lv), r〉; pre_adjust 〈l ′, (b, lv), r〉]]
=⇒ post_del 〈l, (a, lv), r〉 (adjust 〈l ′, (b, lv), r〉)

unfolding post_del_def
by (metis invar_adjust lvl_adjust sngl_NodeI sngl_adjust lvl.simps(2))

lemma post_del_adjR:
assumes invar〈l, (a,lv), r〉 pre_adjust 〈l, (a,lv), r ′〉 post_del r r ′

shows post_del 〈l, (a,lv), r〉 (adjust 〈l, (a,lv), r ′〉)
proof(unfold post_del_def , safe del: disjCI)

let ?t = 〈l, (a,lv), r〉
let ?t ′ = adjust 〈l, (a,lv), r ′〉
show invar ?t ′ by(rule invar_adjust[OF assms(2)])
show lvl ?t ′ = lvl ?t ∨ lvl ?t ′ + 1 = lvl ?t

using lvl_adjust[OF assms(2)] by auto
show sngl ?t ′ if as: lvl ?t ′ = lvl ?t sngl ?t
proof −

have s: sngl 〈l, (a,lv), r ′〉
proof(cases r ′ rule: tree2_cases)

case Leaf thus ?thesis by simp
next

case Node thus ?thesis using as(2) assms(1 ,3)
by (cases r rule: tree2_cases) (auto simp: post_del_def)

qed
show ?thesis using as(1) sngl_adjust[OF assms(2) s] by simp

qed
qed

declare prod.splits[split]

157

theorem post_split_max:
[[invar t; (t ′, x) = split_max t; t 6= Leaf]] =⇒ post_del t t ′

proof (induction t arbitrary: t ′ rule: split_max.induct)
case (2 l a lv rl bl rr)
let ?r = 〈rl, bl, rr〉
let ?t = 〈l, (a, lv), ?r〉
from 2 .prems(2) obtain r ′ where r ′: (r ′, x) = split_max ?r

and [simp]: t ′ = adjust 〈l, (a, lv), r ′〉 by auto
from 2 .IH [OF _ r ′] ‹invar ?t› have post: post_del ?r r ′ by simp
note preR = pre_adj_if_postR[OF ‹invar ?t› post]
show ?case by (simp add: post_del_adjR[OF 2 .prems(1) preR post])

qed (auto simp: post_del_def)

theorem post_delete: invar t =⇒ post_del t (delete x t)
proof (induction t rule: tree2_induct)

case (Node l a lv r)

let ?l ′ = delete x l and ?r ′ = delete x r
let ?t = Node l (a,lv) r let ?t ′ = delete x ?t

from Node.prems have inv_l: invar l and inv_r : invar r by (auto)

note post_l ′ = Node.IH (1)[OF inv_l]
note preL = pre_adj_if_postL[OF Node.prems post_l ′]

note post_r ′ = Node.IH (2)[OF inv_r]
note preR = pre_adj_if_postR[OF Node.prems post_r ′]

show ?case
proof (cases rule: linorder_cases[of x a])

case less
thus ?thesis using Node.prems by (simp add: post_del_adjL preL)

next
case greater
thus ?thesis using Node.prems by (simp add: post_del_adjR preR

post_r ′)
next

case equal
show ?thesis
proof cases

assume l = Leaf thus ?thesis using equal Node.prems
by(auto simp: post_del_def invar .simps(2))

next

158

assume l 6= Leaf thus ?thesis using equal
by simp (metis Node.prems inv_l post_del_adjL post_split_max

pre_adj_if_postL)
qed

qed
qed (simp add: post_del_def)

declare invar_2Nodes[simp del]

34.3 Functional Correctness

34.3.1 Proofs for insert

lemma inorder_split: inorder(split t) = inorder t
by(cases t rule: split.cases) (auto)

lemma inorder_skew: inorder(skew t) = inorder t
by(cases t rule: skew.cases) (auto)

lemma inorder_insert:
sorted(inorder t) =⇒ inorder(insert x t) = ins_list x (inorder t)

by(induction t) (auto simp: ins_list_simps inorder_split inorder_skew)

34.3.2 Proofs for delete

lemma inorder_adjust: t 6= Leaf =⇒ pre_adjust t =⇒ inorder(adjust t)
= inorder t
by(cases t)
(auto simp: adjust_def inorder_skew inorder_split invar .simps(2) pre_adjust.simps

split: tree.splits)

lemma split_maxD:
[[split_max t = (t ′,x); t 6= Leaf ; invar t]] =⇒ inorder t ′ @ [x] = inorder

t
by(induction t arbitrary: t ′ rule: split_max.induct)
(auto simp: sorted_lems inorder_adjust pre_adj_if_postR post_split_max

split: prod.splits)

lemma inorder_delete:
invar t =⇒ sorted(inorder t) =⇒ inorder(delete x t) = del_list x (inorder

t)
by(induction t)
(auto simp: del_list_simps inorder_adjust pre_adj_if_postL pre_adj_if_postR

post_split_max post_delete split_maxD split: prod.splits)

159

interpretation S : Set_by_Ordered
where empty = empty and isin = isin and insert = insert and delete =
delete
and inorder = inorder and inv = invar
proof (standard, goal_cases)

case 1 show ?case by (simp add: empty_def)
next

case 2 thus ?case by(simp add: isin_set_inorder)
next

case 3 thus ?case by(simp add: inorder_insert)
next

case 4 thus ?case by(simp add: inorder_delete)
next

case 5 thus ?case by(simp add: empty_def)
next

case 6 thus ?case by(simp add: invar_insert)
next

case 7 thus ?case using post_delete by(auto simp: post_del_def)
qed

end

35 AA Tree Implementation of Maps
theory AA_Map
imports

AA_Set
Lookup2

begin

fun update :: ′a::linorder ⇒ ′b ⇒ (′a∗ ′b) aa_tree ⇒ (′a∗ ′b) aa_tree where
update x y Leaf = Node Leaf ((x,y), 1) Leaf |
update x y (Node t1 ((a,b), lv) t2) =
(case cmp x a of

LT ⇒ split (skew (Node (update x y t1) ((a,b), lv) t2)) |
GT ⇒ split (skew (Node t1 ((a,b), lv) (update x y t2))) |
EQ ⇒ Node t1 ((x,y), lv) t2)

fun delete :: ′a::linorder ⇒ (′a∗ ′b) aa_tree ⇒ (′a∗ ′b) aa_tree where
delete _ Leaf = Leaf |
delete x (Node l ((a,b), lv) r) =
(case cmp x a of

160

LT ⇒ adjust (Node (delete x l) ((a,b), lv) r) |
GT ⇒ adjust (Node l ((a,b), lv) (delete x r)) |
EQ ⇒ (if l = Leaf then r

else let (l ′,ab ′) = split_max l in adjust (Node l ′ (ab ′, lv) r)))

35.1 Invariance

35.1.1 Proofs for insert

lemma lvl_update_aux:
lvl (update x y t) = lvl t ∨ lvl (update x y t) = lvl t + 1 ∧ sngl (update x

y t)
apply(induction t)
apply (auto simp: lvl_skew)
apply (metis Suc_eq_plus1 lvl.simps(2) lvl_split lvl_skew)+
done

lemma lvl_update: obtains
(Same) lvl (update x y t) = lvl t |
(Incr) lvl (update x y t) = lvl t + 1 sngl (update x y t)

using lvl_update_aux by fastforce

declare invar .simps(2)[simp]

lemma lvl_update_sngl: invar t =⇒ sngl t =⇒ lvl(update x y t) = lvl t
proof (induction t rule: update.induct)

case (2 x y t1 a b lv t2)
consider (LT) x < a | (GT) x > a | (EQ) x = a

using less_linear by blast
thus ?case proof cases

case LT
thus ?thesis using 2 by (auto simp add: skew_case split_case split:

tree.splits)
next

case GT
thus ?thesis using 2 proof (cases t1)

case Node
thus ?thesis using 2 GT

apply (auto simp add: skew_case split_case split: tree.splits)
by (metis less_not_refl2 lvl.simps(2) lvl_update_aux n_not_Suc_n

sngl.simps(3))+
qed (auto simp add: lvl_0_iff)

qed simp
qed simp

161

lemma lvl_update_incr_iff : (lvl(update a b t) = lvl t + 1) ←→
(∃ l x r . update a b t = Node l (x,lvl t + 1) r ∧ lvl l = lvl r)

apply(cases t)
apply(auto simp add: skew_case split_case split: if_splits)
apply(auto split: tree.splits if_splits)
done

lemma invar_update: invar t =⇒ invar(update a b t)
proof(induction t rule: tree2_induct)

case N : (Node l xy n r)
hence il: invar l and ir : invar r by auto
note iil = N .IH (1)[OF il]
note iir = N .IH (2)[OF ir]
obtain x y where [simp]: xy = (x,y) by fastforce
let ?t = Node l (xy, n) r
have a < x ∨ a = x ∨ x < a by auto
moreover
have ?case if a < x
proof (cases rule: lvl_update[of a b l])

case (Same) thus ?thesis
using ‹a<x› invar_NodeL[OF N .prems iil Same]
by (simp add: skew_invar split_invar del: invar .simps)

next
case (Incr)
then obtain t1 w t2 where ial[simp]: update a b l = Node t1 (w, n) t2

using N .prems by (auto simp: lvl_Suc_iff)
have l12 : lvl t1 = lvl t2

by (metis Incr(1) ial lvl_update_incr_iff tree.inject)
have update a b ?t = split(skew(Node (update a b l) (xy, n) r))

by(simp add: ‹a<x›)
also have skew(Node (update a b l) (xy, n) r) = Node t1 (w, n) (Node

t2 (xy, n) r)
by(simp)

also have invar(split . . .)
proof (cases r rule: tree2_cases)

case Leaf
hence l = Leaf using N .prems by(auto simp: lvl_0_iff)
thus ?thesis using Leaf ial by simp

next
case [simp]: (Node t3 y m t4)
show ?thesis
proof cases

assume m = n thus ?thesis using N (3) iil by(auto)

162

next
assume m 6= n thus ?thesis using N (3) iil l12 by(auto)

qed
qed
finally show ?thesis .

qed
moreover
have ?case if x < a
proof −

from ‹invar ?t› have n = lvl r ∨ n = lvl r + 1 by auto
thus ?case
proof

assume 0 : n = lvl r
have update a b ?t = split(skew(Node l (xy, n) (update a b r)))

using ‹a>x› by(auto)
also have skew(Node l (xy, n) (update a b r)) = Node l (xy, n) (update

a b r)
using N .prems by(simp add: skew_case split: tree.split)

also have invar(split . . .)
proof −

from lvl_update_sngl[OF ir sngl_if_invar [OF ‹invar ?t› 0], of a b]
obtain t1 p t2 where iar : update a b r = Node t1 (p, n) t2

using N .prems 0 by (auto simp: lvl_Suc_iff)
from N .prems iar 0 iir
show ?thesis by (auto simp: split_case split: tree.splits)

qed
finally show ?thesis .

next
assume 1 : n = lvl r + 1
hence sngl ?t by(cases r) auto
show ?thesis
proof (cases rule: lvl_update[of a b r])

case (Same)
show ?thesis using ‹x<a› il ir invar_NodeR[OF N .prems 1 iir Same]

by (auto simp add: skew_invar split_invar)
next

case (Incr)
thus ?thesis using invar_NodeR2 [OF ‹invar ?t› Incr(2) 1 iir] 1 ‹x

< a›
by (auto simp add: skew_invar split_invar split: if_splits)

qed
qed

qed
moreover

163

have a = x =⇒ ?case using N .prems by auto
ultimately show ?case by blast

qed simp

35.1.2 Proofs for delete

declare invar .simps(2)[simp del]

theorem post_delete: invar t =⇒ post_del t (delete x t)
proof (induction t rule: tree2_induct)

case (Node l ab lv r)

obtain a b where [simp]: ab = (a,b) by fastforce

let ?l ′ = delete x l and ?r ′ = delete x r
let ?t = Node l (ab, lv) r let ?t ′ = delete x ?t

from Node.prems have inv_l: invar l and inv_r : invar r by (auto)

note post_l ′ = Node.IH (1)[OF inv_l]
note preL = pre_adj_if_postL[OF Node.prems post_l ′]

note post_r ′ = Node.IH (2)[OF inv_r]
note preR = pre_adj_if_postR[OF Node.prems post_r ′]

show ?case
proof (cases rule: linorder_cases[of x a])

case less
thus ?thesis using Node.prems by (simp add: post_del_adjL preL)

next
case greater
thus ?thesis using Node.prems preR by (simp add: post_del_adjR

post_r ′)
next

case equal
show ?thesis
proof cases

assume l = Leaf thus ?thesis using equal Node.prems
by(auto simp: post_del_def invar .simps(2))

next
assume l 6= Leaf thus ?thesis using equal Node.prems
by simp (metis inv_l post_del_adjL post_split_max pre_adj_if_postL)

qed
qed

164

qed (simp add: post_del_def)

35.2 Functional Correctness Proofs

theorem inorder_update:
sorted1 (inorder t) =⇒ inorder(update x y t) = upd_list x y (inorder t)

by (induct t) (auto simp: upd_list_simps inorder_split inorder_skew)

theorem inorder_delete:
[[invar t; sorted1 (inorder t)]] =⇒
inorder (delete x t) = del_list x (inorder t)

by(induction t)
(auto simp: del_list_simps inorder_adjust pre_adj_if_postL pre_adj_if_postR

post_split_max post_delete split_maxD split: prod.splits)

interpretation I : Map_by_Ordered
where empty = empty and lookup = lookup and update = update and
delete = delete
and inorder = inorder and inv = invar
proof (standard, goal_cases)

case 1 show ?case by (simp add: empty_def)
next

case 2 thus ?case by(simp add: lookup_map_of)
next

case 3 thus ?case by(simp add: inorder_update)
next

case 4 thus ?case by(simp add: inorder_delete)
next

case 5 thus ?case by(simp add: empty_def)
next

case 6 thus ?case by(simp add: invar_update)
next

case 7 thus ?case using post_delete by(auto simp: post_del_def)
qed

end

36 Join-Based Implementation of Sets
theory Set2_Join
imports

Isin2
begin

165

This theory implements the set operations insert, delete, union, intersection
and diff erence. The implementation is based on binary search trees. All op-
erations are reduced to a single operation join l x r that joins two BSTs l
and r and an element x such that l < x < r.

The theory is based on theory HOL−Data_Structures.Tree2 where nodes
have an additional field. This field is ignored here but it means that this the-
ory can be instantiated with red-black trees (see theory Set2_Join_RBT.thy)
and other balanced trees. This approach is very concrete and fixes the type
of trees. Alternatively, one could assume some abstract type ′t of trees with
suitable decomposition and recursion operators on it.
locale Set2_Join =
fixes join :: (′a::linorder∗ ′b) tree ⇒ ′a ⇒ (′a∗ ′b) tree ⇒ (′a∗ ′b) tree
fixes inv :: (′a∗ ′b) tree ⇒ bool
assumes set_join: set_tree (join l a r) = set_tree l ∪ {a} ∪ set_tree r
assumes bst_join: bst (Node l (a, b) r) =⇒ bst (join l a r)
assumes inv_Leaf : inv 〈〉
assumes inv_join: [[inv l; inv r]] =⇒ inv (join l a r)
assumes inv_Node: [[inv (Node l (a,b) r)]] =⇒ inv l ∧ inv r
begin

declare set_join [simp] Let_def [simp]

36.1 split_min

fun split_min :: (′a∗ ′b) tree ⇒ ′a × (′a∗ ′b) tree where
split_min (Node l (a, _) r) =
(if l = Leaf then (a,r) else let (m,l ′) = split_min l in (m, join l ′ a r))

lemma split_min_set:
[[split_min t = (m,t ′); t 6= Leaf]] =⇒ m ∈ set_tree t ∧ set_tree t =
{m} ∪ set_tree t ′
proof(induction t arbitrary: t ′ rule: tree2_induct)

case Node thus ?case by(auto split: prod.splits if_splits dest: inv_Node)
next

case Leaf thus ?case by simp
qed

lemma split_min_bst:
[[split_min t = (m,t ′); bst t; t 6= Leaf]] =⇒ bst t ′ ∧ (∀ x ∈ set_tree t ′.

m < x)
proof(induction t arbitrary: t ′ rule: tree2_induct)

case Node thus ?case by(fastforce simp: split_min_set bst_join split:
prod.splits if_splits)
next

166

case Leaf thus ?case by simp
qed

lemma split_min_inv:
[[split_min t = (m,t ′); inv t; t 6= Leaf]] =⇒ inv t ′

proof(induction t arbitrary: t ′ rule: tree2_induct)
case Node thus ?case by(auto simp: inv_join split: prod.splits if_splits

dest: inv_Node)
next

case Leaf thus ?case by simp
qed

36.2 join2

definition join2 :: (′a∗ ′b) tree ⇒ (′a∗ ′b) tree ⇒ (′a∗ ′b) tree where
join2 l r = (if r = Leaf then l else let (m,r ′) = split_min r in join l m r ′)

lemma set_join2 [simp]: set_tree (join2 l r) = set_tree l ∪ set_tree r
by(cases r)(simp_all add: split_min_set join2_def split: prod.split)

lemma bst_join2 : [[bst l; bst r ; ∀ x ∈ set_tree l. ∀ y ∈ set_tree r . x < y]]
=⇒ bst (join2 l r)

by(cases r)(simp_all add: bst_join split_min_set split_min_bst join2_def
split: prod.split)

lemma inv_join2 : [[inv l; inv r]] =⇒ inv (join2 l r)
by(cases r)(simp_all add: inv_join split_min_set split_min_inv join2_def
split: prod.split)

36.3 split

fun split :: ′a ⇒ (′a∗ ′b)tree ⇒ (′a∗ ′b)tree × bool × (′a∗ ′b)tree where
split x Leaf = (Leaf , False, Leaf) |
split x (Node l (a, _) r) =
(case cmp x a of

LT ⇒ let (l1 ,b,l2) = split x l in (l1 , b, join l2 a r) |
GT ⇒ let (r1 ,b,r2) = split x r in (join l a r1 , b, r2) |
EQ ⇒ (l, True, r))

lemma split: split x t = (l,b,r) =⇒ bst t =⇒
set_tree l = {a ∈ set_tree t. a < x} ∧ set_tree r = {a ∈ set_tree t. x <

a}
∧ (b = (x ∈ set_tree t)) ∧ bst l ∧ bst r

proof(induction t arbitrary: l b r rule: tree2_induct)

167

case Leaf thus ?case by simp
next

case (Node y a b z l c r)
consider (LT) l1 xin l2 where (l1 ,xin,l2) = split x y

and split x 〈y, (a, b), z〉 = (l1 , xin, join l2 a z) and cmp x a = LT
| (GT) r1 xin r2 where (r1 ,xin,r2) = split x z

and split x 〈y, (a, b), z〉 = (join y a r1 , xin, r2) and cmp x a = GT
| (EQ) split x 〈y, (a, b), z〉 = (y, True, z) and cmp x a = EQ

by (force split: cmp_val.splits prod.splits if_splits)

thus ?case
proof cases

case (LT l1 xin l2)
with Node.IH (1)[OF ‹(l1 ,xin,l2) = split x y›[symmetric]] Node.prems
show ?thesis by (force intro!: bst_join)

next
case (GT r1 xin r2)
with Node.IH (2)[OF ‹(r1 ,xin,r2) = split x z›[symmetric]] Node.prems
show ?thesis by (force intro!: bst_join)

next
case EQ
with Node.prems show ?thesis by auto

qed
qed

lemma split_inv: split x t = (l,b,r) =⇒ inv t =⇒ inv l ∧ inv r
proof(induction t arbitrary: l b r rule: tree2_induct)

case Leaf thus ?case by simp
next

case Node
thus ?case by(force simp: inv_join split!: prod.splits if_splits dest!: inv_Node)

qed

declare split.simps[simp del]

36.4 insert

definition insert :: ′a ⇒ (′a∗ ′b) tree ⇒ (′a∗ ′b) tree where
insert x t = (let (l,_,r) = split x t in join l x r)

lemma set_tree_insert: bst t =⇒ set_tree (insert x t) = {x} ∪ set_tree t
by(auto simp add: insert_def split split: prod.split)

lemma bst_insert: bst t =⇒ bst (insert x t)

168

by(auto simp add: insert_def bst_join dest: split split: prod.split)

lemma inv_insert: inv t =⇒ inv (insert x t)
by(force simp: insert_def inv_join dest: split_inv split: prod.split)

36.5 delete

definition delete :: ′a ⇒ (′a∗ ′b) tree ⇒ (′a∗ ′b) tree where
delete x t = (let (l,_,r) = split x t in join2 l r)

lemma set_tree_delete: bst t =⇒ set_tree (delete x t) = set_tree t − {x}
by(auto simp: delete_def split split: prod.split)

lemma bst_delete: bst t =⇒ bst (delete x t)
by(force simp add: delete_def intro: bst_join2 dest: split split: prod.split)

lemma inv_delete: inv t =⇒ inv (delete x t)
by(force simp: delete_def inv_join2 dest: split_inv split: prod.split)

36.6 union

fun union :: (′a∗ ′b)tree ⇒ (′a∗ ′b)tree ⇒ (′a∗ ′b)tree where
union t1 t2 =
(if t1 = Leaf then t2 else
if t2 = Leaf then t1 else
case t1 of Node l1 (a, _) r1 ⇒
let (l2 ,_ ,r2) = split a t2 ;

l ′ = union l1 l2 ; r ′ = union r1 r2
in join l ′ a r ′)

declare union.simps [simp del]

lemma set_tree_union: bst t2 =⇒ set_tree (union t1 t2) = set_tree t1 ∪
set_tree t2
proof(induction t1 t2 rule: union.induct)

case (1 t1 t2)
then show ?case

by (auto simp: union.simps[of t1 t2] split split: tree.split prod.split)
qed

lemma bst_union: [[bst t1 ; bst t2]] =⇒ bst (union t1 t2)
proof(induction t1 t2 rule: union.induct)

case (1 t1 t2)
thus ?case

169

by(fastforce simp: union.simps[of t1 t2] set_tree_union split intro!:
bst_join

split: tree.split prod.split)
qed

lemma inv_union: [[inv t1 ; inv t2]] =⇒ inv (union t1 t2)
proof(induction t1 t2 rule: union.induct)

case (1 t1 t2)
thus ?case

by(auto simp:union.simps[of t1 t2] inv_join split_inv
split!: tree.split prod.split dest: inv_Node)

qed

36.7 inter

fun inter :: (′a∗ ′b)tree ⇒ (′a∗ ′b)tree ⇒ (′a∗ ′b)tree where
inter t1 t2 =
(if t1 = Leaf then Leaf else
if t2 = Leaf then Leaf else
case t1 of Node l1 (a, _) r1 ⇒
let (l2 ,b,r2) = split a t2 ;

l ′ = inter l1 l2 ; r ′ = inter r1 r2
in if b then join l ′ a r ′ else join2 l ′ r ′)

declare inter .simps [simp del]

lemma set_tree_inter :
[[bst t1 ; bst t2]] =⇒ set_tree (inter t1 t2) = set_tree t1 ∩ set_tree t2

proof(induction t1 t2 rule: inter .induct)
case (1 t1 t2)
show ?case
proof (cases t1 rule: tree2_cases)

case Leaf thus ?thesis by (simp add: inter .simps)
next

case [simp]: (Node l1 a _ r1)
show ?thesis
proof (cases t2 = Leaf)

case True thus ?thesis by (simp add: inter .simps)
next

case False
let ?L1 = set_tree l1 let ?R1 = set_tree r1
have ∗: a /∈ ?L1 ∪ ?R1 using ‹bst t1 › by (fastforce)
obtain l2 b r2 where sp: split a t2 = (l2 ,b,r2) using prod_cases3

by blast

170

let ?L2 = set_tree l2 let ?R2 = set_tree r2 let ?A = if b then {a}
else {}

have t2 : set_tree t2 = ?L2 ∪ ?R2 ∪ ?A and
∗∗: ?L2 ∩ ?R2 = {} a /∈ ?L2 ∪ ?R2 ?L1 ∩ ?R2 = {} ?L2 ∩ ?R1

= {}
using split[OF sp] ‹bst t1 › ‹bst t2 › by (force, force, force, force,

force)
have IHl: set_tree (inter l1 l2) = set_tree l1 ∩ set_tree l2
using 1 .IH (1)[OF _ False _ _ sp[symmetric]] 1 .prems(1 ,2) split[OF

sp] by simp
have IHr : set_tree (inter r1 r2) = set_tree r1 ∩ set_tree r2
using 1 .IH (2)[OF _ False _ _ sp[symmetric]] 1 .prems(1 ,2) split[OF

sp] by simp
have set_tree t1 ∩ set_tree t2 = (?L1 ∪ ?R1 ∪ {a}) ∩ (?L2 ∪ ?R2

∪ ?A)
by(simp add: t2)

also have . . . = (?L1 ∩ ?L2) ∪ (?R1 ∩ ?R2) ∪ ?A
using ∗ ∗∗ by auto

also have . . . = set_tree (inter t1 t2)
using IHl IHr sp inter .simps[of t1 t2] False by(simp)
finally show ?thesis by simp

qed
qed

qed

lemma bst_inter : [[bst t1 ; bst t2]] =⇒ bst (inter t1 t2)
proof(induction t1 t2 rule: inter .induct)

case (1 t1 t2)
thus ?case

by(fastforce simp: inter .simps[of t1 t2] set_tree_inter split
intro!: bst_join bst_join2 split: tree.split prod.split)

qed

lemma inv_inter : [[inv t1 ; inv t2]] =⇒ inv (inter t1 t2)
proof(induction t1 t2 rule: inter .induct)

case (1 t1 t2)
thus ?case

by(auto simp: inter .simps[of t1 t2] inv_join inv_join2 split_inv
split!: tree.split prod.split dest: inv_Node)

qed

36.8 diff

fun diff :: (′a∗ ′b)tree ⇒ (′a∗ ′b)tree ⇒ (′a∗ ′b)tree where

171

diff t1 t2 =
(if t1 = Leaf then Leaf else
if t2 = Leaf then t1 else
case t2 of Node l2 (a, _) r2 ⇒
let (l1 ,_,r1) = split a t1 ;

l ′ = diff l1 l2 ; r ′ = diff r1 r2
in join2 l ′ r ′)

declare diff .simps [simp del]

lemma set_tree_diff :
[[bst t1 ; bst t2]] =⇒ set_tree (diff t1 t2) = set_tree t1 − set_tree t2

proof(induction t1 t2 rule: diff .induct)
case (1 t1 t2)
show ?case
proof (cases t2 rule: tree2_cases)

case Leaf thus ?thesis by (simp add: diff .simps)
next

case [simp]: (Node l2 a _ r2)
show ?thesis
proof (cases t1 = Leaf)

case True thus ?thesis by (simp add: diff .simps)
next

case False
let ?L2 = set_tree l2 let ?R2 = set_tree r2
obtain l1 b r1 where sp: split a t1 = (l1 ,b,r1) using prod_cases3

by blast
let ?L1 = set_tree l1 let ?R1 = set_tree r1 let ?A = if b then {a}

else {}
have t1 : set_tree t1 = ?L1 ∪ ?R1 ∪ ?A and
∗∗: a /∈ ?L1 ∪ ?R1 ?L1 ∩ ?R2 = {} ?L2 ∩ ?R1 = {}

using split[OF sp] ‹bst t1 › ‹bst t2 › by (force, force, force, force)
have IHl: set_tree (diff l1 l2) = set_tree l1 − set_tree l2
using 1 .IH (1)[OF False _ _ _ sp[symmetric]] 1 .prems(1 ,2) split[OF

sp] by simp
have IHr : set_tree (diff r1 r2) = set_tree r1 − set_tree r2
using 1 .IH (2)[OF False _ _ _ sp[symmetric]] 1 .prems(1 ,2) split[OF

sp] by simp
have set_tree t1 − set_tree t2 = (?L1 ∪ ?R1) − (?L2 ∪ ?R2 ∪ {a})

by(simp add: t1)
also have . . . = (?L1 − ?L2) ∪ (?R1 − ?R2)

using ∗∗ by auto
also have . . . = set_tree (diff t1 t2)
using IHl IHr sp diff .simps[of t1 t2] False by(simp)

172

finally show ?thesis by simp
qed

qed
qed

lemma bst_diff : [[bst t1 ; bst t2]] =⇒ bst (diff t1 t2)
proof(induction t1 t2 rule: diff .induct)

case (1 t1 t2)
thus ?case

by(fastforce simp: diff .simps[of t1 t2] set_tree_diff split
intro!: bst_join bst_join2 split: tree.split prod.split)

qed

lemma inv_diff : [[inv t1 ; inv t2]] =⇒ inv (diff t1 t2)
proof(induction t1 t2 rule: diff .induct)

case (1 t1 t2)
thus ?case

by(auto simp: diff .simps[of t1 t2] inv_join inv_join2 split_inv
split!: tree.split prod.split dest: inv_Node)

qed

Locale Set2_Join implements locale Set2 :

sublocale Set2
where empty = Leaf and insert = insert and delete = delete and isin =
isin
and union = union and inter = inter and diff = diff
and set = set_tree and invar = λt. inv t ∧ bst t
proof (standard, goal_cases)

case 1 show ?case by (simp)
next

case 2 thus ?case by(simp add: isin_set_tree)
next

case 3 thus ?case by (simp add: set_tree_insert)
next

case 4 thus ?case by (simp add: set_tree_delete)
next

case 5 thus ?case by (simp add: inv_Leaf)
next

case 6 thus ?case by (simp add: bst_insert inv_insert)
next

case 7 thus ?case by (simp add: bst_delete inv_delete)
next

case 8 thus ?case by(simp add: set_tree_union)
next

173

case 9 thus ?case by(simp add: set_tree_inter)
next

case 10 thus ?case by(simp add: set_tree_diff)
next

case 11 thus ?case by (simp add: bst_union inv_union)
next

case 12 thus ?case by (simp add: bst_inter inv_inter)
next

case 13 thus ?case by (simp add: bst_diff inv_diff)
qed

end

interpretation unbal: Set2_Join
where join = λl x r . Node l (x, ()) r and inv = λt. True
proof (standard, goal_cases)

case 1 show ?case by simp
next

case 2 thus ?case by simp
next

case 3 thus ?case by simp
next

case 4 thus ?case by simp
next

case 5 thus ?case by simp
qed

end

37 Join-Based Implementation of Sets via RBTs
theory Set2_Join_RBT
imports

Set2_Join
RBT_Set

begin

37.1 Code

Function joinL joins two trees (and an element). Precondition: bheight l ≤
bheight r. Method: Descend along the left spine of r until you find a subtree
with the same bheight as l, then combine them into a new red node.

fun joinL :: ′a rbt ⇒ ′a ⇒ ′a rbt ⇒ ′a rbt where

174

joinL l x r =
(if bheight l ≥ bheight r then R l x r
else case r of

B l ′ x ′ r ′⇒ baliL (joinL l x l ′) x ′ r ′ |
R l ′ x ′ r ′⇒ R (joinL l x l ′) x ′ r ′)

fun joinR :: ′a rbt ⇒ ′a ⇒ ′a rbt ⇒ ′a rbt where
joinR l x r =
(if bheight l ≤ bheight r then R l x r
else case l of

B l ′ x ′ r ′⇒ baliR l ′ x ′ (joinR r ′ x r) |
R l ′ x ′ r ′⇒ R l ′ x ′ (joinR r ′ x r))

definition join :: ′a rbt ⇒ ′a ⇒ ′a rbt ⇒ ′a rbt where
join l x r =
(if bheight l > bheight r
then paint Black (joinR l x r)
else if bheight l < bheight r
then paint Black (joinL l x r)
else B l x r)

declare joinL.simps[simp del]
declare joinR.simps[simp del]

37.2 Properties

37.2.1 Color and height invariants

lemma invc2_joinL:
[[invc l; invc r ; bheight l ≤ bheight r]] =⇒
invc2 (joinL l x r)
∧ (bheight l 6= bheight r ∧ color r = Black −→ invc(joinL l x r))

proof (induct l x r rule: joinL.induct)
case (1 l x r) thus ?case

by(auto simp: invc_baliL invc2I joinL.simps[of l x r] split!: tree.splits
if_splits)
qed

lemma invc2_joinR:
[[invc l; invh l; invc r ; invh r ; bheight l ≥ bheight r]] =⇒
invc2 (joinR l x r)
∧ (bheight l 6= bheight r ∧ color l = Black −→ invc(joinR l x r))

proof (induct l x r rule: joinR.induct)
case (1 l x r) thus ?case

175

by(fastforce simp: invc_baliR invc2I joinR.simps[of l x r] split!: tree.splits
if_splits)
qed

lemma bheight_joinL:
[[invh l; invh r ; bheight l ≤ bheight r]] =⇒ bheight (joinL l x r) = bheight

r
proof (induct l x r rule: joinL.induct)

case (1 l x r) thus ?case
by(auto simp: bheight_baliL joinL.simps[of l x r] split!: tree.split)

qed

lemma invh_joinL:
[[invh l; invh r ; bheight l ≤ bheight r]] =⇒ invh (joinL l x r)

proof (induct l x r rule: joinL.induct)
case (1 l x r) thus ?case

by(auto simp: invh_baliL bheight_joinL joinL.simps[of l x r] split!:
tree.split color .split)
qed

lemma bheight_joinR:
[[invh l; invh r ; bheight l ≥ bheight r]] =⇒ bheight (joinR l x r) =

bheight l
proof (induct l x r rule: joinR.induct)

case (1 l x r) thus ?case
by(fastforce simp: bheight_baliR joinR.simps[of l x r] split!: tree.split)

qed

lemma invh_joinR:
[[invh l; invh r ; bheight l ≥ bheight r]] =⇒ invh (joinR l x r)

proof (induct l x r rule: joinR.induct)
case (1 l x r) thus ?case

by(fastforce simp: invh_baliR bheight_joinR joinR.simps[of l x r]
split!: tree.split color .split)

qed

All invariants in one:

lemma inv_joinL: [[invc l; invc r ; invh l; invh r ; bheight l ≤ bheight r]]
=⇒ invc2 (joinL l x r) ∧ (bheight l 6= bheight r ∧ color r = Black −→

invc (joinL l x r))
∧ invh (joinL l x r) ∧ bheight (joinL l x r) = bheight r

proof (induct l x r rule: joinL.induct)
case (1 l x r) thus ?case

by(auto simp: inv_baliL invc2I joinL.simps[of l x r] split!: tree.splits

176

if_splits)
qed

lemma inv_joinR: [[invc l; invc r ; invh l; invh r ; bheight l ≥ bheight r]]
=⇒ invc2 (joinR l x r) ∧ (bheight l 6= bheight r ∧ color l = Black −→

invc (joinR l x r))
∧ invh (joinR l x r) ∧ bheight (joinR l x r) = bheight l

proof (induct l x r rule: joinR.induct)
case (1 l x r) thus ?case

by(auto simp: inv_baliR invc2I joinR.simps[of l x r] split!: tree.splits
if_splits)
qed

lemma rbt_join: [[invc l; invh l; invc r ; invh r]] =⇒ rbt(join l x r)
by(simp add: inv_joinL inv_joinR invh_paint rbt_def color_paint_Black
join_def)

To make sure the the black height is not increased unnecessarily:

lemma bheight_paint_Black: bheight(paint Black t) ≤ bheight t + 1
by(cases t) auto

lemma [[rbt l; rbt r]] =⇒ bheight(join l x r) ≤ max (bheight l) (bheight r)
+ 1
using bheight_paint_Black[of joinL l x r] bheight_paint_Black[of joinR l
x r]

bheight_joinL[of l r x] bheight_joinR[of l r x]
by(auto simp: max_def rbt_def join_def)

37.2.2 Inorder properties

Currently unused. Instead Tree2 .set_tree and Tree2 .bst properties are proved
directly.

lemma inorder_joinL: bheight l ≤ bheight r =⇒ inorder(joinL l x r) =
inorder l @ x # inorder r
proof(induction l x r rule: joinL.induct)

case (1 l x r)
thus ?case by(auto simp: inorder_baliL joinL.simps[of l x r] split!: tree.splits

color .splits)
qed

lemma inorder_joinR:
inorder(joinR l x r) = inorder l @ x # inorder r

proof(induction l x r rule: joinR.induct)

177

case (1 l x r)
thus ?case by (force simp: inorder_baliR joinR.simps[of l x r] split!:

tree.splits color .splits)
qed

lemma inorder(join l x r) = inorder l @ x # inorder r
by(auto simp: inorder_joinL inorder_joinR inorder_paint join_def

split!: tree.splits color .splits if_splits
dest!: arg_cong[where f = inorder])

37.2.3 Set and bst properties

lemma set_baliL:
set_tree(baliL l a r) = set_tree l ∪ {a} ∪ set_tree r

by(cases (l,a,r) rule: baliL.cases) (auto)

lemma set_joinL:
bheight l ≤ bheight r =⇒ set_tree (joinL l x r) = set_tree l ∪ {x} ∪

set_tree r
proof(induction l x r rule: joinL.induct)

case (1 l x r)
thus ?case by(auto simp: set_baliL joinL.simps[of l x r] split!: tree.splits

color .splits)
qed

lemma set_baliR:
set_tree(baliR l a r) = set_tree l ∪ {a} ∪ set_tree r

by(cases (l,a,r) rule: baliR.cases) (auto)

lemma set_joinR:
set_tree (joinR l x r) = set_tree l ∪ {x} ∪ set_tree r

proof(induction l x r rule: joinR.induct)
case (1 l x r)
thus ?case by(force simp: set_baliR joinR.simps[of l x r] split!: tree.splits

color .splits)
qed

lemma set_paint: set_tree (paint c t) = set_tree t
by (cases t) auto

lemma set_join: set_tree (join l x r) = set_tree l ∪ {x} ∪ set_tree r
by(simp add: set_joinL set_joinR set_paint join_def)

lemma bst_baliL:

178

[[bst l; bst r ; ∀ x∈set_tree l. x < a; ∀ x∈set_tree r . a < x]]
=⇒ bst (baliL l a r)

by(cases (l,a,r) rule: baliL.cases) (auto simp: ball_Un)

lemma bst_baliR:
[[bst l; bst r ; ∀ x∈set_tree l. x < a; ∀ x∈set_tree r . a < x]]
=⇒ bst (baliR l a r)

by(cases (l,a,r) rule: baliR.cases) (auto simp: ball_Un)

lemma bst_joinL:
[[bst (Node l (a, n) r); bheight l ≤ bheight r]]
=⇒ bst (joinL l a r)

proof(induction l a r rule: joinL.induct)
case (1 l a r)
thus ?case

by(auto simp: set_baliL joinL.simps[of l a r] set_joinL ball_Un intro!:
bst_baliL

split!: tree.splits color .splits)
qed

lemma bst_joinR:
[[bst l; bst r ; ∀ x∈set_tree l. x < a; ∀ y∈set_tree r . a < y]]
=⇒ bst (joinR l a r)

proof(induction l a r rule: joinR.induct)
case (1 l a r)
thus ?case

by(auto simp: set_baliR joinR.simps[of l a r] set_joinR ball_Un intro!:
bst_baliR

split!: tree.splits color .splits)
qed

lemma bst_paint: bst (paint c t) = bst t
by(cases t) auto

lemma bst_join:
bst (Node l (a, n) r) =⇒ bst (join l a r)

by(auto simp: bst_paint bst_joinL bst_joinR join_def)

lemma inv_join: [[invc l; invh l; invc r ; invh r]] =⇒ invc(join l x r) ∧
invh(join l x r)
by (simp add: inv_joinL inv_joinR invh_paint join_def)

179

37.2.4 Interpretation of Set2_Join with Red-Black Tree

global_interpretation RBT : Set2_Join
where join = join and inv = λt. invc t ∧ invh t
defines insert_rbt = RBT .insert and delete_rbt = RBT .delete and split_rbt
= RBT .split
and join2_rbt = RBT .join2 and split_min_rbt = RBT .split_min
and inter_rbt = RBT .inter and union_rbt = RBT .union and diff_rbt =
RBT .diff
proof (standard, goal_cases)

case 1 show ?case by (rule set_join)
next

case 2 thus ?case by (simp add: bst_join)
next

case 3 show ?case by simp
next

case 4 thus ?case by (simp add: inv_join)
next

case 5 thus ?case by simp
qed

The invariant does not guarantee that the root node is black. This is not
required to guarantee that the height is logarithmic in the size — Exercise.
end
theory Array_Specs
imports Main
begin

Array Specifications
locale Array =
fixes lookup :: ′ar ⇒ nat ⇒ ′a
fixes update :: nat ⇒ ′a ⇒ ′ar ⇒ ′ar
fixes len :: ′ar ⇒ nat
fixes array :: ′a list ⇒ ′ar

fixes list :: ′ar ⇒ ′a list
fixes invar :: ′ar ⇒ bool

assumes lookup: invar ar =⇒ n < len ar =⇒ lookup ar n = list ar ! n
assumes update: invar ar =⇒ n < len ar =⇒ list(update n x ar) = (list
ar)[n:=x]
assumes len_array: invar ar =⇒ len ar = length (list ar)
assumes array: list (array xs) = xs

assumes invar_update: invar ar =⇒ n < len ar =⇒ invar(update n x ar)

180

assumes invar_array: invar(array xs)

locale Array_Flex = Array +
fixes add_lo :: ′a ⇒ ′ar ⇒ ′ar
fixes del_lo :: ′ar ⇒ ′ar
fixes add_hi :: ′a ⇒ ′ar ⇒ ′ar
fixes del_hi :: ′ar ⇒ ′ar

assumes add_lo: invar ar =⇒ list(add_lo a ar) = a # list ar
assumes del_lo: invar ar =⇒ list(del_lo ar) = tl (list ar)
assumes add_hi: invar ar =⇒ list(add_hi a ar) = list ar @ [a]
assumes del_hi: invar ar =⇒ list(del_hi ar) = butlast (list ar)

assumes invar_add_lo: invar ar =⇒ invar (add_lo a ar)
assumes invar_del_lo: invar ar =⇒ invar (del_lo ar)
assumes invar_add_hi: invar ar =⇒ invar (add_hi a ar)
assumes invar_del_hi: invar ar =⇒ invar (del_hi ar)

end

38 Braun Trees
theory Braun_Tree

imports HOL−Library.Tree_Real
begin

Braun Trees were studied by Braun and Rem [5] and later Hoogerwo-
ord [10].

fun braun :: ′a tree ⇒ bool where
braun Leaf = True |
braun (Node l x r) = ((size l = size r ∨ size l = size r + 1) ∧ braun l ∧

braun r)

lemma braun_Node ′:
braun (Node l x r) = (size r ≤ size l ∧ size l ≤ size r + 1 ∧ braun l ∧

braun r)
by auto

The shape of a Braun-tree is uniquely determined by its size:

lemma braun_unique: [[braun (t1 ::unit tree); braun t2 ; size t1 = size t2]]
=⇒ t1 = t2
proof (induction t1 arbitrary: t2)

case Leaf thus ?case by simp
next

181

case (Node l1 _ r1)
from Node.prems(3) have t2 6= Leaf by auto
then obtain l2 x2 r2 where [simp]: t2 = Node l2 x2 r2 by (meson

neq_Leaf_iff)
with Node.prems have size l1 = size l2 ∧ size r1 = size r2 by auto
thus ?case using Node.prems(1 ,2) Node.IH by auto

qed

Braun trees are almost complete:

lemma acomplete_if_braun: braun t =⇒ acomplete t
proof(induction t)

case Leaf show ?case by (simp add: acomplete_def)
next

case (Node l x r) thus ?case using acomplete_Node_if_wbal2 by force
qed

38.1 Numbering Nodes

We show that a tree is a Braun tree iff a parity-based numbering (braun_indices)
of nodes yields an interval of numbers.

fun braun_indices :: ′a tree ⇒ nat set where
braun_indices Leaf = {} |
braun_indices (Node l _ r) = {1} ∪ (∗) 2 ‘ braun_indices l ∪ Suc ‘ (∗)

2 ‘ braun_indices r

lemma braun_indices1 : 0 /∈ braun_indices t
by (induction t) auto

lemma finite_braun_indices: finite(braun_indices t)
by (induction t) auto

One direction:

lemma braun_indices_if_braun: braun t =⇒ braun_indices t = {1 ..size
t}
proof(induction t)

case Leaf thus ?case by simp
next

have ∗: (∗) 2 ‘ {a..b} ∪ Suc ‘ (∗) 2 ‘ {a..b} = {2∗a..2∗b+1} (is ?l = ?r)
for a b

proof
show ?l ⊆ ?r by auto

next
have ∃ x2∈{a..b}. x ∈ {Suc (2∗x2), 2∗x2} if ∗: x ∈ {2∗a .. 2∗b+1}

for x

182

proof −
have x div 2 ∈ {a..b} using ∗ by auto
moreover have x ∈ {2 ∗ (x div 2), Suc(2 ∗ (x div 2))} by auto
ultimately show ?thesis by blast

qed
thus ?r ⊆ ?l by fastforce

qed
case (Node l x r)
hence size l = size r ∨ size l = size r + 1 (is ?A ∨ ?B) by auto
thus ?case
proof

assume ?A
with Node show ?thesis by (auto simp: ∗)

next
assume ?B
with Node show ?thesis by (auto simp: ∗ atLeastAtMostSuc_conv)

qed
qed

The other direction is more complicated. The following proof is due to
Thomas Sewell.

lemma disj_evens_odds: (∗) 2 ‘ A ∩ Suc ‘ (∗) 2 ‘ B = {}
using double_not_eq_Suc_double by auto

lemma card_braun_indices: card (braun_indices t) = size t
proof (induction t)

case Leaf thus ?case by simp
next

case Node
thus ?case
by(auto simp: UNION_singleton_eq_range finite_braun_indices card_Un_disjoint

card_insert_if disj_evens_odds card_image inj_on_def braun_indices1)
qed

lemma braun_indices_intvl_base_1 :
assumes bi: braun_indices t = {m..n}
shows {m..n} = {1 ..size t}

proof (cases t = Leaf)
case True then show ?thesis using bi by simp

next
case False
note eqs = eqset_imp_iff [OF bi]
from eqs[of 0] have 0 : 0 < m

by (simp add: braun_indices1)

183

from eqs[of 1] have 1 : m ≤ 1
by (cases t; simp add: False)

from 0 1 have eq1 : m = 1 by simp
from card_braun_indices[of t] show ?thesis

by (simp add: bi eq1)
qed

lemma even_of_intvl_intvl:
fixes S :: nat set
assumes S = {m..n} ∩ {i. even i}
shows ∃m ′ n ′. S = (λi. i ∗ 2) ‘ {m ′..n ′}

proof −
have S = (λi. i ∗ 2) ‘ {Suc m div 2 ..n div 2}

by (fastforce simp add: assms mult.commute)
then show ?thesis

by blast
qed

lemma odd_of_intvl_intvl:
fixes S :: nat set
assumes S = {m..n} ∩ {i. odd i}
shows ∃m ′ n ′. S = Suc ‘ (λi. i ∗ 2) ‘ {m ′..n ′}

proof −
have S = Suc ‘ ({if n = 0 then 1 else m − 1 ..n − 1} ∩ Collect even)

by (auto simp: assms image_def elim!: oddE)
thus ?thesis

by (metis even_of_intvl_intvl)
qed

lemma image_int_eq_image:
(∀ i ∈ S . f i ∈ T) =⇒ (f ‘ S) ∩ T = f ‘ S
(∀ i ∈ S . f i /∈ T) =⇒ (f ‘ S) ∩ T = {}
by auto

lemma braun_indices1_le:
i ∈ braun_indices t =⇒ Suc 0 ≤ i
using braun_indices1 not_less_eq_eq by blast

lemma braun_if_braun_indices: braun_indices t = {1 ..size t} =⇒ braun
t
proof(induction t)

case Leaf
then show ?case by simp

next

184

case (Node l x r)
obtain t where t: t = Node l x r by simp
then have insert (Suc 0) ((∗) 2 ‘ braun_indices l ∪ Suc ‘ (∗) 2 ‘

braun_indices r) ∩ {2 ..}
= {Suc 0 ..Suc (size l + size r)} ∩ {2 ..}

by (metis Node.prems One_nat_def Suc_eq_plus1 Un_insert_left braun_indices.simps(2)
sup_bot_left tree.size(4))

then have eq: {2 .. size t} = (λi. i ∗ 2) ‘ braun_indices l ∪ Suc ‘ (λi. i
∗ 2) ‘ braun_indices r

(is ?R = ?S ∪ ?T)
by (simp add: t mult.commute Int_Un_distrib2 image_int_eq_image

braun_indices1_le)
then have ST : ?S = ?R ∩ {i. even i} ?T = ?R ∩ {i. odd i}

by (simp_all add: Int_Un_distrib2 image_int_eq_image)
from ST have l: braun_indices l = {1 .. size l}
by (fastforce dest: braun_indices_intvl_base_1 dest!: even_of_intvl_intvl

simp: mult.commute inj_image_eq_iff [OF inj_onI])
from ST have r : braun_indices r = {1 .. size r}
by (fastforce dest: braun_indices_intvl_base_1 dest!: odd_of_intvl_intvl

simp: mult.commute inj_image_eq_iff [OF inj_onI])
note STa = ST [THEN eqset_imp_iff , THEN iffD2]
note STb = STa[of size t] STa[of size t − 1]
then have size l = size r ∨ size l = size r + 1

using t l r by atomize auto
with l r show ?case

by (clarsimp simp: Node.IH)
qed

lemma braun_iff_braun_indices: braun t ←→ braun_indices t = {1 ..size
t}

using braun_if_braun_indices braun_indices_if_braun by blast

end

39 Arrays via Braun Trees
theory Array_Braun
imports

HOL−Library.Time_Functions
Array_Specs
Braun_Tree

begin

185

39.1 Array

fun lookup1 :: ′a tree ⇒ nat ⇒ ′a where
lookup1 (Node l x r) n = (if n=1 then x else lookup1 (if even n then l else

r) (n div 2))

fun update1 :: nat ⇒ ′a ⇒ ′a tree ⇒ ′a tree where
update1 n x Leaf = Node Leaf x Leaf |
update1 n x (Node l a r) =
(if n=1 then Node l x r else
if even n then Node (update1 (n div 2) x l) a r

else Node l a (update1 (n div 2) x r))

fun adds :: ′a list ⇒ nat ⇒ ′a tree ⇒ ′a tree where
adds [] n t = t |
adds (x#xs) n t = adds xs (n+1) (update1 (n+1) x t)

fun list :: ′a tree ⇒ ′a list where
list Leaf = [] |
list (Node l x r) = x # splice (list l) (list r)

39.1.1 Functional Correctness

lemma size_list: size(list t) = size t
by(induction t)(auto)

lemma minus1_div2 : (n − Suc 0) div 2 = (if odd n then n div 2 else n
div 2 − 1)

by auto arith

lemma nth_splice: [[n < size xs + size ys; size ys ≤ size xs; size xs ≤
size ys + 1]]
=⇒ splice xs ys ! n = (if even n then xs else ys) ! (n div 2)

proof(induction xs ys arbitrary: n rule: splice.induct)
qed (auto simp: nth_Cons ′ minus1_div2)

lemma div2_in_bounds:
[[braun (Node l x r); n ∈ {1 ..size(Node l x r)}; n > 1]] =⇒
(odd n −→ n div 2 ∈ {1 ..size r}) ∧ (even n −→ n div 2 ∈ {1 ..size l})

by auto arith

declare upt_Suc[simp del]

186

lookup1 lemma nth_list_lookup1 : [[braun t; i < size t]] =⇒ list t ! i =
lookup1 t (i+1)
proof(induction t arbitrary: i)

case Leaf thus ?case by simp
next

case Node
thus ?case using div2_in_bounds[OF Node.prems(1), of i+1]

by (auto simp: nth_splice minus1_div2 size_list)
qed

lemma list_eq_map_lookup1 : braun t =⇒ list t = map (lookup1 t) [1 ..<size
t + 1]

by(auto simp add: list_eq_iff_nth_eq size_list nth_list_lookup1)

update1 lemma size_update1 : [[braun t; n ∈ {1 .. size t}]] =⇒ size(update1
n x t) = size t
proof(induction t arbitrary: n)

case Leaf thus ?case by simp
next

case Node thus ?case using div2_in_bounds[OF Node.prems] by simp
qed

lemma braun_update1 : [[braun t; n ∈ {1 .. size t}]] =⇒ braun(update1 n
x t)
proof(induction t arbitrary: n)

case Leaf thus ?case by simp
next

case Node thus ?case
using div2_in_bounds[OF Node.prems] by (simp add: size_update1)

qed

lemma lookup1_update1 : [[braun t; n ∈ {1 .. size t}]] =⇒
lookup1 (update1 n x t) m = (if n=m then x else lookup1 t m)

proof(induction t arbitrary: m n)
case Leaf
then show ?case by simp

next
have aux: [[odd n; odd m]] =⇒ n div 2 = (m::nat) div 2 ←→ m=n for

m n
using odd_two_times_div_two_succ by fastforce

case Node
thus ?case using div2_in_bounds[OF Node.prems] by (auto simp: aux)

qed

187

lemma list_update1 : [[braun t; n ∈ {1 .. size t}]] =⇒ list(update1 n x t)
= (list t)[n−1 := x]
by(auto simp add: list_eq_map_lookup1 list_eq_iff_nth_eq lookup1_update1

size_update1 braun_update1)

A second proof of [[braun ?t; ?n ∈ {1 ..size ?t}]] =⇒ list (update1 ?n ?x
?t) = (list ?t)[?n − 1 := ?x]:

lemma diff1_eq_iff : n > 0 =⇒ n − Suc 0 = m ←→ n = m+1
by arith

lemma list_update_splice:
[[n < size xs + size ys; size ys ≤ size xs; size xs ≤ size ys + 1]] =⇒
(splice xs ys) [n := x] =
(if even n then splice (xs[n div 2 := x]) ys else splice xs (ys[n div 2 := x]))
by(induction xs ys arbitrary: n rule: splice.induct) (auto split: nat.split)

lemma list_update2 : [[braun t; n ∈ {1 .. size t}]] =⇒ list(update1 n x t)
= (list t)[n−1 := x]
proof(induction t arbitrary: n)

case Leaf thus ?case by simp
next

case (Node l a r) thus ?case using div2_in_bounds[OF Node.prems]
by(auto simp: list_update_splice diff1_eq_iff size_list split: nat.split)

qed

adds lemma splice_last: shows
size ys ≤ size xs =⇒ splice (xs @ [x]) ys = splice xs ys @ [x]
and size ys+1 ≥ size xs =⇒ splice xs (ys @ [y]) = splice xs ys @ [y]
by(induction xs ys arbitrary: x y rule: splice.induct) (auto)

lemma list_add_hi: braun t =⇒ list(update1 (Suc(size t)) x t) = list t @
[x]

by(induction t)(auto simp: splice_last size_list)

lemma size_add_hi: braun t =⇒ m = size t =⇒ size(update1 (Suc m) x
t) = size t + 1

by(induction t arbitrary: m)(auto)

lemma braun_add_hi: braun t =⇒ braun(update1 (Suc(size t)) x t)
by(induction t)(auto simp: size_add_hi)

lemma size_braun_adds:
[[braun t; size t = n]] =⇒ size(adds xs n t) = size t + length xs ∧ braun

188

(adds xs n t)
by(induction xs arbitrary: t n)(auto simp: braun_add_hi size_add_hi)

lemma list_adds: [[braun t; size t = n]] =⇒ list(adds xs n t) = list t @ xs
by(induction xs arbitrary: t n)(auto simp: size_braun_adds list_add_hi

size_add_hi braun_add_hi)

39.1.2 Array Implementation

interpretation A: Array
where lookup = λ(t,l) n. lookup1 t (n+1)

and update = λn x (t,l). (update1 (n+1) x t, l)
and len = λ(t,l). l
and array = λxs. (adds xs 0 Leaf , length xs)
and invar = λ(t,l). braun t ∧ l = size t
and list = λ(t,l). list t

proof (standard, goal_cases)
case 1 thus ?case by (simp add: nth_list_lookup1 split: prod.splits)

next
case 2 thus ?case by (simp add: list_update1 split: prod.splits)

next
case 3 thus ?case by (simp add: size_list split: prod.splits)

next
case 4 thus ?case by (simp add: list_adds)

next
case 5 thus ?case by (simp add: braun_update1 size_update1 split:

prod.splits)
next

case 6 thus ?case by (simp add: size_braun_adds split: prod.splits)
qed

39.2 Flexible Array

fun add_lo where
add_lo x Leaf = Node Leaf x Leaf |
add_lo x (Node l a r) = Node (add_lo a r) x l

fun merge where
merge Leaf r = r |
merge (Node l a r) rr = Node rr a (merge l r)

fun del_lo where
del_lo Leaf = Leaf |
del_lo (Node l a r) = merge l r

189

fun del_hi :: nat ⇒ ′a tree ⇒ ′a tree where
del_hi n Leaf = Leaf |
del_hi n (Node l x r) =
(if n = 1 then Leaf
else if even n

then Node (del_hi (n div 2) l) x r
else Node l x (del_hi (n div 2) r))

39.2.1 Functional Correctness

add_lo lemma list_add_lo: braun t =⇒ list (add_lo a t) = a # list t
by(induction t arbitrary: a) auto

lemma braun_add_lo: braun t =⇒ braun(add_lo x t)
by(induction t arbitrary: x) (auto simp add: list_add_lo simp flip: size_list)

del_lo lemma list_merge: braun (Node l x r) =⇒ list(merge l r) = splice
(list l) (list r)

by (induction l r rule: merge.induct) auto

lemma braun_merge: braun (Node l x r) =⇒ braun(merge l r)
by (induction l r rule: merge.induct)(auto simp add: list_merge simp flip:

size_list)

lemma list_del_lo: braun t =⇒ list(del_lo t) = tl (list t)
by (cases t) (simp_all add: list_merge)

lemma braun_del_lo: braun t =⇒ braun(del_lo t)
by (cases t) (simp_all add: braun_merge)

del_hi lemma list_Nil_iff : list t = [] ←→ t = Leaf
by(cases t) simp_all

lemma butlast_splice: butlast (splice xs ys) =
(if size xs > size ys then splice (butlast xs) ys else splice xs (butlast ys))
by(induction xs ys rule: splice.induct) (auto)

lemma list_del_hi: braun t =⇒ size t = st =⇒ list(del_hi st t) = but-
last(list t)
by (induction t arbitrary: st) (auto simp: list_Nil_iff size_list butlast_splice)

lemma braun_del_hi: braun t =⇒ size t = st =⇒ braun(del_hi st t)
by (induction t arbitrary: st) (auto simp: list_del_hi simp flip: size_list)

190

39.2.2 Flexible Array Implementation

interpretation AF : Array_Flex
where lookup = λ(t,l) n. lookup1 t (n+1)

and update = λn x (t,l). (update1 (n+1) x t, l)
and len = λ(t,l). l
and array = λxs. (adds xs 0 Leaf , length xs)
and invar = λ(t,l). braun t ∧ l = size t
and list = λ(t,l). list t
and add_lo = λx (t,l). (add_lo x t, l+1)
and del_lo = λ(t,l). (del_lo t, l−1)
and add_hi = λx (t,l). (update1 (Suc l) x t, l+1)
and del_hi = λ(t,l). (del_hi l t, l−1)

proof (standard, goal_cases)
case 1 thus ?case by (simp add: list_add_lo split: prod.splits)

next
case 2 thus ?case by (simp add: list_del_lo split: prod.splits)

next
case 3 thus ?case by (simp add: list_add_hi braun_add_hi split: prod.splits)

next
case 4 thus ?case by (simp add: list_del_hi split: prod.splits)

next
case 5 thus ?case by (simp add: braun_add_lo list_add_lo flip: size_list

split: prod.splits)
next

case 6 thus ?case by (simp add: braun_del_lo list_del_lo flip: size_list
split: prod.splits)
next
case 7 thus ?case by (simp add: size_add_hi braun_add_hi split: prod.splits)

next
case 8 thus ?case by (simp add: braun_del_hi list_del_hi flip: size_list

split: prod.splits)
qed

39.3 Faster

39.3.1 Size

fun diff :: ′a tree ⇒ nat ⇒ nat where
diff Leaf _ = 0 |
diff (Node l x r) n = (if n=0 then 1 else if even n then diff r (n div 2 −

1) else diff l (n div 2))

fun size_fast :: ′a tree ⇒ nat where
size_fast Leaf = 0 |

191

size_fast (Node l x r) = (let n = size_fast r in 1 + 2∗n + diff l n)

declare Let_def [simp]

lemma diff : braun t =⇒ size t : {n, n + 1} =⇒ diff t n = size t − n
by (induction t arbitrary: n) auto

lemma size_fast: braun t =⇒ size_fast t = size t
by (induction t) (auto simp add: diff)

39.3.2 Initialization with 1 element

fun braun_of_naive :: ′a ⇒ nat ⇒ ′a tree where
braun_of_naive x n = (if n=0 then Leaf
else let m = (n−1) div 2

in if odd n then Node (braun_of_naive x m) x (braun_of_naive x m)
else Node (braun_of_naive x (m + 1)) x (braun_of_naive x m))

fun braun2_of :: ′a ⇒ nat ⇒ ′a tree ∗ ′a tree where
braun2_of x n = (if n = 0 then (Leaf , Node Leaf x Leaf)
else let (s,t) = braun2_of x ((n−1) div 2)

in if odd n then (Node s x s, Node t x s) else (Node t x s, Node t x t))

definition braun_of :: ′a ⇒ nat ⇒ ′a tree where
braun_of x n = fst (braun2_of x n)

declare braun2_of .simps [simp del]

lemma braun2_of_size_braun: braun2_of x n = (s,t) =⇒ size s = n ∧
size t = n+1 ∧ braun s ∧ braun t
proof(induction x n arbitrary: s t rule: braun2_of .induct)

case (1 x n)
then show ?case

by (auto simp: braun2_of .simps[of x n] split: prod.splits if_splits) pres-
burger+
qed

lemma braun2_of_replicate:
braun2_of x n = (s,t) =⇒ list s = replicate n x ∧ list t = replicate (n+1)

x
proof(induction x n arbitrary: s t rule: braun2_of .induct)

case (1 x n)
have x # replicate m x = replicate (m+1) x for m by simp
with 1 show ?case

192

apply (auto simp: braun2_of .simps[of x n] replicate.simps(2)[of 0 x]
simp del: replicate.simps(2) split: prod.splits if_splits)

by presburger+
qed

corollary braun_braun_of : braun(braun_of x n)
unfolding braun_of_def by (metis eq_fst_iff braun2_of_size_braun)

corollary list_braun_of : list(braun_of x n) = replicate n x
unfolding braun_of_def by (metis eq_fst_iff braun2_of_replicate)

39.3.3 Proof Infrastructure

Originally due to Thomas Sewell.

take_nths fun take_nths :: nat ⇒ nat ⇒ ′a list ⇒ ′a list where
take_nths i k [] = [] |
take_nths i k (x # xs) = (if i = 0 then x # take_nths (2^k − 1) k xs
else take_nths (i − 1) k xs)

This is the more concise definition but seems to complicate the proofs:

lemma take_nths_eq_nths: take_nths i k xs = nths xs (
⋃

n. {n∗2^k + i})
proof(induction xs arbitrary: i)

case Nil
then show ?case by simp

next
case (Cons x xs)
show ?case
proof cases

assume [simp]: i = 0
have

∧
x n. Suc x = n ∗ 2 ^ k =⇒ ∃ xa. x = Suc xa ∗ 2 ^ k − Suc 0

by (metis diff_Suc_Suc diff_zero mult_eq_0_iff not0_implies_Suc)
then have (

⋃
n. {(n+1) ∗ 2 ^ k − 1}) = {m. ∃n. Suc m = n ∗ 2 ^ k}

by (auto simp del: mult_Suc)
thus ?thesis by (simp add: Cons.IH ac_simps nths_Cons)

next
assume [arith]: i 6= 0
have

∧
x n. Suc x = n ∗ 2 ^ k + i =⇒ ∃ xa. x = xa ∗ 2 ^ k + i − Suc

0
by (metis diff_Suc_Suc diff_zero)

then have (
⋃

n. {n ∗ 2 ^ k + i − 1}) = {m. ∃n. Suc m = n ∗ 2 ^ k
+ i}

by auto
thus ?thesis by (simp add: Cons.IH nths_Cons)

193

qed
qed

lemma take_nths_drop:
take_nths i k (drop j xs) = take_nths (i + j) k xs
by (induct xs arbitrary: i j; simp add: drop_Cons split: nat.split)

lemma take_nths_00 :
take_nths 0 0 xs = xs
by (induct xs; simp)

lemma splice_take_nths:
splice (take_nths 0 (Suc 0) xs) (take_nths (Suc 0) (Suc 0) xs) = xs
by (induct xs; simp)

lemma take_nths_take_nths:
take_nths i m (take_nths j n xs) = take_nths ((i ∗ 2^n) + j) (m + n) xs
by (induct xs arbitrary: i j; simp add: algebra_simps power_add)

lemma take_nths_empty:
(take_nths i k xs = []) = (length xs ≤ i)
by (induction xs arbitrary: i k) auto

lemma hd_take_nths:
i < length xs =⇒ hd(take_nths i k xs) = xs ! i
by (induction xs arbitrary: i k) auto

lemma take_nths_01_splice:
[[length xs = length ys ∨ length xs = length ys + 1]] =⇒
take_nths 0 (Suc 0) (splice xs ys) = xs ∧
take_nths (Suc 0) (Suc 0) (splice xs ys) = ys

by (induct xs arbitrary: ys; case_tac ys; simp)

lemma length_take_nths_00 :
length (take_nths 0 (Suc 0) xs) = length (take_nths (Suc 0) (Suc 0) xs)
∨

length (take_nths 0 (Suc 0) xs) = length (take_nths (Suc 0) (Suc 0) xs)
+ 1

by (induct xs) auto

braun_list fun braun_list :: ′a tree ⇒ ′a list ⇒ bool where
braun_list Leaf xs = (xs = []) |
braun_list (Node l x r) xs = (xs 6= [] ∧ x = hd xs ∧

194

braun_list l (take_nths 1 1 xs) ∧
braun_list r (take_nths 2 1 xs))

lemma braun_list_eq:
braun_list t xs = (braun t ∧ xs = list t)

proof (induct t arbitrary: xs)
case Leaf
show ?case by simp

next
case Node
show ?case

using length_take_nths_00 [of xs] splice_take_nths[of xs]
by (auto simp: neq_Nil_conv Node.hyps size_list[symmetric] take_nths_01_splice)

qed

39.3.4 Converting a list of elements into a Braun tree

fun nodes :: ′a tree list ⇒ ′a list ⇒ ′a tree list ⇒ ′a tree list where
nodes (l#ls) (x#xs) (r#rs) = Node l x r # nodes ls xs rs |
nodes (l#ls) (x#xs) [] = Node l x Leaf # nodes ls xs [] |
nodes [] (x#xs) (r#rs) = Node Leaf x r # nodes [] xs rs |
nodes [] (x#xs) [] = Node Leaf x Leaf # nodes [] xs [] |
nodes ls [] rs = []

fun brauns :: nat ⇒ ′a list ⇒ ′a tree list where
brauns k xs = (if xs = [] then [] else
let ys = take (2^k) xs;

zs = drop (2^k) xs;
ts = brauns (k+1) zs

in nodes ts ys (drop (2^k) ts))

declare brauns.simps[simp del]

definition brauns1 :: ′a list ⇒ ′a tree where
brauns1 xs = (if xs = [] then Leaf else brauns 0 xs ! 0)

Functional correctness The proof is originally due to Thomas Sewell.
lemma length_nodes:

length (nodes ls xs rs) = length xs
by (induct ls xs rs rule: nodes.induct; simp)

lemma nth_nodes:
i < length xs =⇒ nodes ls xs rs ! i =
Node (if i < length ls then ls ! i else Leaf) (xs ! i)

195

(if i < length rs then rs ! i else Leaf)
by (induct ls xs rs arbitrary: i rule: nodes.induct;

simp add: nth_Cons split: nat.split)

theorem length_brauns:
length (brauns k xs) = min (length xs) (2 ^ k)

proof (induct xs arbitrary: k rule: measure_induct_rule[where f=length])
case (less xs) thus ?case by (simp add: brauns.simps[of k xs] length_nodes)

qed

theorem brauns_correct:
i < min (length xs) (2 ^ k) =⇒ braun_list (brauns k xs ! i) (take_nths i

k xs)
proof (induct xs arbitrary: i k rule: measure_induct_rule[where f=length])

case (less xs)
have xs 6= [] using less.prems by auto
let ?zs = drop (2^k) xs
let ?ts = brauns (Suc k) ?zs
from less.hyps[of ?zs _ Suc k]
have IH : [[j = i + 2 ^ k; i < min (length ?zs) (2 ^ (k+1))]] =⇒

braun_list (?ts ! i) (take_nths j (Suc k) xs) for i j
using ‹xs 6= []› by (simp add: take_nths_drop)

show ?case
using less.prems
by (auto simp: brauns.simps[of k xs] nth_nodes take_nths_take_nths

IH take_nths_empty hd_take_nths length_brauns)
qed

corollary brauns1_correct:
braun (brauns1 xs) ∧ list (brauns1 xs) = xs
using brauns_correct[of 0 xs 0]
by (simp add: brauns1_def braun_list_eq take_nths_00)

Running Time Analysis time_fun_0 (^)

time_fun nodes

lemma T_nodes: T_nodes ls xs rs = length xs + 1
by(induction ls xs rs rule: T_nodes.induct) auto

time_fun brauns

lemma T_brauns_simple: T_brauns k xs = (if xs = [] then 0 else

196

3 ∗ (min (2^k) (length xs) + 1) + (min (2^k) (length xs − 2^k) + 1)
+ T_brauns (k+1) (drop (2^k) xs)) + 1
by(simp add: T_nodes T_take T_drop length_brauns min_def)

theorem T_brauns_ub:
T_brauns k xs ≤ 9 ∗ (length xs + 1)

proof (induction xs arbitrary: k rule: measure_induct_rule[where f =
length])

case (less xs)
show ?case
proof cases

assume xs = []
thus ?thesis by(simp)

next
assume xs 6= []
let ?n = length xs let ?zs = drop (2^k) xs
have ∗: ?n − 2^k + 1 ≤ ?n

using ‹xs 6= []› less_eq_Suc_le by fastforce
have T_brauns k xs =

3 ∗ (min (2^k) ?n + 1) + (min (2^k) (?n − 2^k) + 1) + T_brauns
(k+1) ?zs + 1

unfolding T_brauns_simple[of k xs] using ‹xs 6= []› by(simp del:
T_brauns.simps)

also have . . . ≤ 4 ∗ min (2^k) ?n + T_brauns (k+1) ?zs + 5
by(simp add: min_def)

also have . . . ≤ 4 ∗ min (2^k) ?n + 9 ∗ (length ?zs + 1) + 5
using less[of ?zs k+1] ‹xs 6= []›
by (simp del: T_brauns.simps)

also have . . . = 4 ∗ min (2^k) ?n + 9 ∗ (?n − 2^k + 1) + 5
by(simp)

also have . . . = 4 ∗ min (2^k) ?n + 4 ∗ (?n − 2^k) + 5 ∗ (?n − 2^k
+ 1) + 9

by(simp)
also have . . . = 4 ∗ ?n + 5 ∗ (?n − 2^k + 1) + 9

by(simp)
also have . . . ≤ 4 ∗ ?n + 5 ∗ ?n + 9

using ∗ by(simp)
also have . . . = 9 ∗ (?n + 1)

by (simp add: Suc_leI)
finally show ?thesis .

qed
qed

197

39.3.5 Converting a Braun Tree into a List of Elements

The code and the proof are originally due to Thomas Sewell (except running
time).

function list_fast_rec :: ′a tree list ⇒ ′a list where
list_fast_rec ts = (let us = filter (λt. t 6= Leaf) ts in
if us = [] then [] else
map value us @ list_fast_rec (map left us @ map right us))
by (pat_completeness, auto)

lemma list_fast_rec_term1 : ts 6= [] =⇒ Leaf /∈ set ts =⇒
sum_list (map (size o left) ts) + sum_list (map (size o right) ts) <

sum_list (map size ts)
apply (clarsimp simp: sum_list_addf [symmetric] sum_list_map_filter ′)
apply (rule sum_list_strict_mono; clarsimp?)
apply (case_tac x; simp)
done

lemma list_fast_rec_term: us 6= [] =⇒ us = filter (λt. t 6= 〈〉) ts =⇒
sum_list (map (size o left) us) + sum_list (map (size o right) us) <

sum_list (map size ts)
apply (rule order_less_le_trans, rule list_fast_rec_term1 , simp_all)
apply (rule sum_list_filter_le_nat)
done

termination
by (relation measure (sum_list o map size); simp add: list_fast_rec_term)

declare list_fast_rec.simps[simp del]

definition list_fast :: ′a tree ⇒ ′a list where
list_fast t = list_fast_rec [t]

definition filter_not_Leaf = filter (λt. t 6= Leaf)

definition map_left = map left
definition map_right = map right
definition map_value = map value

definition T_filter_not_Leaf ts = length ts + 1
definition T_map_left ts = length ts + 1
definition T_map_right ts = length ts + 1

198

definition T_map_value ts = length ts + 1

lemmas defs = filter_not_Leaf_def map_left_def map_right_def map_value_def
T_filter_not_Leaf_def T_map_value_def T_map_left_def T_map_right_def

lemma list_fast_rec_simp:
list_fast_rec ts = (let us = filter_not_Leaf ts in

if us = [] then [] else
map_value us @ list_fast_rec (map_left us @ map_right us))

unfolding defs list_fast_rec.simps[of ts] by(rule refl)

time_function list_fast_rec equations list_fast_rec_simp
termination

by (relation measure (sum_list o map size); simp add: list_fast_rec_term
defs)

declare T_list_fast_rec.simps[simp del]

Functional Correctness lemma list_fast_rec_all_Leaf :
∀ t ∈ set ts. t = Leaf =⇒ list_fast_rec ts = []
by (simp add: filter_empty_conv list_fast_rec.simps)

lemma take_nths_eq_single:
length xs − i < 2^n =⇒ take_nths i n xs = take 1 (drop i xs)
by (induction xs arbitrary: i n; simp add: drop_Cons ′)

lemma braun_list_Nil:
braun_list t [] = (t = Leaf)
by (cases t; simp)

lemma braun_list_not_Nil: xs 6= [] =⇒
braun_list t xs =

(∃ l x r . t = Node l x r ∧ x = hd xs ∧
braun_list l (take_nths 1 1 xs) ∧
braun_list r (take_nths 2 1 xs))

by(cases t; simp)

theorem list_fast_rec_correct:
[[length ts = 2 ^ k; ∀ i < 2 ^ k. braun_list (ts ! i) (take_nths i k xs)]]
=⇒ list_fast_rec ts = xs

proof (induct xs arbitrary: k ts rule: measure_induct_rule[where f=length])

199

case (less xs)
show ?case
proof (cases length xs < 2 ^ k)

case True
from less.prems True have filter :
∃n. ts = map (λx. Node Leaf x Leaf) xs @ replicate n Leaf
apply (rule_tac x=length ts − length xs in exI)
apply (clarsimp simp: list_eq_iff_nth_eq)

apply(auto simp: nth_append braun_list_not_Nil take_nths_eq_single
braun_list_Nil hd_drop_conv_nth)

done
thus ?thesis
by (clarsimp simp: list_fast_rec.simps[of ts] o_def list_fast_rec_all_Leaf)

next
case False
with less.prems(2) have ∗:
∀ i < 2 ^ k. ts ! i 6= Leaf
∧ value (ts ! i) = xs ! i
∧ braun_list (left (ts ! i)) (take_nths (i + 2 ^ k) (Suc k) xs)
∧ (∀ ys. ys = take_nths (i + 2 ∗ 2 ^ k) (Suc k) xs

−→ braun_list (right (ts ! i)) ys)
by (auto simp: take_nths_empty hd_take_nths braun_list_not_Nil

take_nths_take_nths
algebra_simps)

have 1 : map value ts = take (2 ^ k) xs
using less.prems(1) False by (simp add: list_eq_iff_nth_eq ∗)

have 2 : list_fast_rec (map left ts @ map right ts) = drop (2 ^ k) xs
using less.prems(1) False
by (auto intro!: Nat.diff_less less.hyps[where k= Suc k]

simp: nth_append ∗ take_nths_drop algebra_simps)
from less.prems(1) False show ?thesis

by (auto simp: list_fast_rec.simps[of ts] 1 2 ∗ all_set_conv_all_nth)
qed

qed

corollary list_fast_correct:
braun t =⇒ list_fast t = list t
by (simp add: list_fast_def take_nths_00 braun_list_eq list_fast_rec_correct[where

k=0])

Running Time Analysis lemma sum_tree_list_children: ∀ t ∈ set ts.
t 6= Leaf =⇒
(
∑

t←ts. k ∗ size t) = (
∑

t ← map left ts @ map right ts. k ∗ size t) +

200

k ∗ length ts
by(induction ts)(auto simp add: neq_Leaf_iff algebra_simps)

theorem T_list_fast_rec_ub:
T_list_fast_rec ts ≤ sum_list (map (λt. 14∗size t + 1) ts) + 2

proof (induction ts rule: measure_induct_rule[where f=sum_list o map
size])

case (less ts)
let ?us = filter (λt. t 6= Leaf) ts
show ?case
proof cases

assume ?us = []
thus ?thesis using T_list_fast_rec.simps[of ts]

by(simp add: defs sum_list_Suc)
next

assume ?us 6= []
let ?children = map left ?us @ map right ?us
have 1 : 1 ≤ length ?us

using ‹?us 6= []› linorder_not_less by auto
have T_list_fast_rec ts = T_list_fast_rec ?children + 5 ∗ length ?us

+ length ts + 7
using ‹?us 6= []› T_list_fast_rec.simps[of ts] by(simp add: defs

T_append)
also have . . . ≤ (

∑
t←?children. 14 ∗ size t + 1) + 5 ∗ length ?us +

length ts + 9
using less[of ?children] list_fast_rec_term[of ?us] ‹?us 6= []›
by (simp)

also have . . . = (
∑

t←?children. 14 ∗ size t) + 7 ∗ length ?us + length
ts + 9

by(simp add: sum_list_Suc o_def)
also have . . . ≤ (

∑
t←?children. 14 ∗ size t) + 14 ∗ length ?us +

length ts + 2
using 1 by(simp add: sum_list_Suc o_def)

also have . . . = (
∑

t←?us. 14 ∗ size t) + length ts + 2
by(simp add: sum_tree_list_children)

also have . . . ≤ (
∑

t←ts. 14 ∗ size t) + length ts + 2
by(simp add: sum_list_filter_le_nat)

also have . . . = (
∑

t←ts. 14 ∗ size t + 1) + 2
by(simp add: sum_list_Suc)

finally show ?case .
qed

qed

end

201

40 Tries via Functions
theory Trie_Fun
imports

Set_Specs
begin

A trie where each node maps a key to sub-tries via a function. Nice
abstract model. Not efficient because of the function space.

datatype ′a trie = Nd bool ′a ⇒ ′a trie option

definition empty :: ′a trie where
[simp]: empty = Nd False (λ_. None)

fun isin :: ′a trie ⇒ ′a list ⇒ bool where
isin (Nd b m) [] = b |
isin (Nd b m) (k # xs) = (case m k of None ⇒ False | Some t ⇒ isin t xs)

fun insert :: ′a list ⇒ ′a trie ⇒ ′a trie where
insert [] (Nd b m) = Nd True m |
insert (x#xs) (Nd b m) =

(let s = (case m x of None ⇒ empty | Some t ⇒ t) in Nd b (m(x :=
Some(insert xs s))))

fun delete :: ′a list ⇒ ′a trie ⇒ ′a trie where
delete [] (Nd b m) = Nd False m |
delete (x#xs) (Nd b m) = Nd b

(case m x of
None ⇒ m |
Some t ⇒ m(x := Some(delete xs t)))

Use (a tuned version of) isin as an abstraction function:

lemma isin_case: isin (Nd b m) xs =
(case xs of
[] ⇒ b |
x # ys ⇒ (case m x of None ⇒ False | Some t ⇒ isin t ys))

by(cases xs)auto

definition set_trie :: ′a trie ⇒ ′a list set where
[simp]: set_trie t = {xs. isin t xs}

lemma isin_set_trie: isin t xs = (xs ∈ set_trie t)
by simp

202

lemma set_trie_insert: set_trie (insert xs t) = set_trie t ∪ {xs}
by (induction xs t rule: insert.induct)

(auto simp: isin_case split!: if_splits option.splits list.splits)

lemma set_trie_delete: set_trie (delete xs t) = set_trie t − {xs}
by (induction xs t rule: delete.induct)

(auto simp: isin_case split!: if_splits option.splits list.splits)

interpretation S : Set
where empty = empty and isin = isin and insert = insert and delete =
delete
and set = set_trie and invar = λ_. True
proof (standard, goal_cases)

case 1 show ?case by (simp add: isin_case split: list.split)
next

case 2 show ?case by(rule isin_set_trie)
next

case 3 show ?case by(rule set_trie_insert)
next

case 4 show ?case by(rule set_trie_delete)
qed (rule TrueI)+

end

41 Binary Tries and Patricia Tries
theory Tries_Binary

imports Set_Specs
begin

hide_const (open) insert

declare Let_def [simp]

fun sel2 :: bool ⇒ ′a ∗ ′a ⇒ ′a where
sel2 b (a1 ,a2) = (if b then a2 else a1)

fun mod2 :: (′a ⇒ ′a) ⇒ bool ⇒ ′a ∗ ′a ⇒ ′a ∗ ′a where
mod2 f b (a1 ,a2) = (if b then (a1 ,f a2) else (f a1 ,a2))

41.1 Trie

datatype trie = Lf | Nd bool trie ∗ trie

203

definition empty :: trie where
[simp]: empty = Lf

fun isin :: trie ⇒ bool list ⇒ bool where
isin Lf ks = False |
isin (Nd b lr) ks =
(case ks of

[] ⇒ b |
k#ks ⇒ isin (sel2 k lr) ks)

fun insert :: bool list ⇒ trie ⇒ trie where
insert [] Lf = Nd True (Lf ,Lf) |
insert [] (Nd b lr) = Nd True lr |
insert (k#ks) Lf = Nd False (mod2 (insert ks) k (Lf ,Lf)) |
insert (k#ks) (Nd b lr) = Nd b (mod2 (insert ks) k lr)

lemma isin_insert: isin (insert xs t) ys = (xs = ys ∨ isin t ys)
proof (induction xs t arbitrary: ys rule: insert.induct)
qed (auto split: list.splits if_splits)

A simple implementation of delete; does not shrink the trie!

fun delete0 :: bool list ⇒ trie ⇒ trie where
delete0 ks Lf = Lf |
delete0 ks (Nd b lr) =
(case ks of

[] ⇒ Nd False lr |
k#ks ′⇒ Nd b (mod2 (delete0 ks ′) k lr))

lemma isin_delete0 : isin (delete0 as t) bs = (as 6= bs ∧ isin t bs)
proof (induction as t arbitrary: bs rule: delete0 .induct)
qed (auto split: list.splits if_splits)

Now deletion with shrinking:

fun node :: bool ⇒ trie ∗ trie ⇒ trie where
node b lr = (if ¬ b ∧ lr = (Lf ,Lf) then Lf else Nd b lr)

fun delete :: bool list ⇒ trie ⇒ trie where
delete ks Lf = Lf |
delete ks (Nd b lr) =
(case ks of

[] ⇒ node False lr |
k#ks ′⇒ node b (mod2 (delete ks ′) k lr))

lemma isin_delete: isin (delete xs t) ys = (xs 6= ys ∧ isin t ys)

204

apply(induction xs t arbitrary: ys rule: delete.induct)
apply (auto split: list.splits if_splits)
apply (metis isin.simps(1))+

done

definition set_trie :: trie ⇒ bool list set where
set_trie t = {xs. isin t xs}

lemma set_trie_empty: set_trie empty = {}
by(simp add: set_trie_def)

lemma set_trie_isin: isin t xs = (xs ∈ set_trie t)
by(simp add: set_trie_def)

lemma set_trie_insert: set_trie(insert xs t) = set_trie t ∪ {xs}
by(auto simp add: isin_insert set_trie_def)

lemma set_trie_delete: set_trie(delete xs t) = set_trie t − {xs}
by(auto simp add: isin_delete set_trie_def)

Invariant: tries are fully shrunk:

fun invar where
invar Lf = True |
invar (Nd b (l,r)) = (invar l ∧ invar r ∧ (l = Lf ∧ r = Lf −→ b))

lemma insert_Lf : insert xs t 6= Lf
using insert.elims by blast

lemma invar_insert: invar t =⇒ invar(insert xs t)
proof(induction xs t rule: insert.induct)

case 1 thus ?case by simp
next

case (2 b lr)
thus ?case by(cases lr ; simp)

next
case (3 k ks)
thus ?case by(simp; cases ks; auto)

next
case (4 k ks b lr)
then show ?case by(cases lr ; auto simp: insert_Lf)

qed

lemma invar_delete: invar t =⇒ invar(delete xs t)
proof(induction t arbitrary: xs)

205

case Lf thus ?case by simp
next

case (Nd b lr)
thus ?case by(cases lr)(auto split: list.split)

qed

interpretation S : Set
where empty = empty and isin = isin and insert = insert and delete

= delete
and set = set_trie and invar = invar

unfolding Set_def
by (smt (verit, best) Tries_Binary.empty_def invar .simps(1) invar_delete

invar_insert set_trie_delete set_trie_empty set_trie_insert set_trie_isin)

41.2 Patricia Trie

datatype trieP = LfP | NdP bool list bool trieP ∗ trieP

Fully shrunk:

fun invarP where
invarP LfP = True |
invarP (NdP ps b (l,r)) = (invarP l ∧ invarP r ∧ (l = LfP ∨ r = LfP
−→ b))

fun isinP :: trieP ⇒ bool list ⇒ bool where
isinP LfP ks = False |
isinP (NdP ps b lr) ks =
(let n = length ps in
if ps = take n ks
then case drop n ks of [] ⇒ b | k#ks ′⇒ isinP (sel2 k lr) ks ′

else False)

definition emptyP :: trieP where
[simp]: emptyP = LfP

fun lcp :: ′a list ⇒ ′a list ⇒ ′a list × ′a list × ′a list where
lcp [] ys = ([],[],ys) |
lcp xs [] = ([],xs,[]) |
lcp (x#xs) (y#ys) =
(if x 6=y then ([],x#xs,y#ys)
else let (ps,xs ′,ys ′) = lcp xs ys in (x#ps,xs ′,ys ′))

lemma mod2_cong[fundef_cong]:

206

[[lr = lr ′; k = k ′;
∧

a b. lr ′=(a,b) =⇒ f (a) = f ′ (a) ;
∧

a b. lr ′=(a,b) =⇒
f (b) = f ′ (b)]]
=⇒ mod2 f k lr= mod2 f ′ k ′ lr ′

by(cases lr , cases lr ′, auto)

fun insertP :: bool list ⇒ trieP ⇒ trieP where
insertP ks LfP = NdP ks True (LfP,LfP) |
insertP ks (NdP ps b lr) =
(case lcp ks ps of

(qs, k#ks ′, p#ps ′) ⇒
let tp = NdP ps ′ b lr ; tk = NdP ks ′ True (LfP,LfP) in
NdP qs False (if k then (tp,tk) else (tk,tp)) |

(qs, k#ks ′, []) ⇒
NdP ps b (mod2 (insertP ks ′) k lr) |

(qs, [], p#ps ′) ⇒
let t = NdP ps ′ b lr in
NdP qs True (if p then (LfP,t) else (t,LfP)) |

(qs,[],[]) ⇒ NdP ps True lr)

Smart constructor that shrinks:

definition nodeP :: bool list ⇒ bool ⇒ trieP ∗ trieP ⇒ trieP where
nodeP ps b lr =
(if b then NdP ps b lr
else case lr of
(LfP,LfP) ⇒ LfP |
(LfP, NdP ks b lr) ⇒ NdP (ps @ True # ks) b lr |
(NdP ks b lr , LfP) ⇒ NdP (ps @ False # ks) b lr |
_ ⇒ NdP ps b lr)

fun deleteP :: bool list ⇒ trieP ⇒ trieP where
deleteP ks LfP = LfP |
deleteP ks (NdP ps b lr) =
(case lcp ks ps of

(_, _, _#_) ⇒ NdP ps b lr |
(_, k#ks ′, []) ⇒ nodeP ps b (mod2 (deleteP ks ′) k lr) |
(_, [], []) ⇒ nodeP ps False lr)

41.2.1 Functional Correctness

First step: trieP implements trie via the abstraction function abs_trieP:

fun prefix_trie :: bool list ⇒ trie ⇒ trie where
prefix_trie [] t = t |
prefix_trie (k#ks) t =

207

(let t ′ = prefix_trie ks t in Nd False (if k then (Lf ,t ′) else (t ′,Lf)))

fun abs_trieP :: trieP ⇒ trie where
abs_trieP LfP = Lf |
abs_trieP (NdP ps b (l,r)) = prefix_trie ps (Nd b (abs_trieP l, abs_trieP

r))

Correctness of isinP:

lemma isin_prefix_trie:
isin (prefix_trie ps t) ks
= (ps = take (length ps) ks ∧ isin t (drop (length ps) ks))

by (induction ps arbitrary: ks) (auto split: list.split)

lemma abs_trieP_isinP:
isinP t ks = isin (abs_trieP t) ks

proof (induction t arbitrary: ks rule: abs_trieP.induct)
qed (auto simp: isin_prefix_trie split: list.split)

Correctness of insertP:

lemma prefix_trie_Lfs: prefix_trie ks (Nd True (Lf ,Lf)) = insert ks Lf
by (induction ks) auto

lemma insert_prefix_trie_same:
insert ps (prefix_trie ps (Nd b lr)) = prefix_trie ps (Nd True lr)
by (induction ps) auto

lemma insert_append: insert (ks @ ks ′) (prefix_trie ks t) = prefix_trie ks
(insert ks ′ t)

by (induction ks) auto

lemma prefix_trie_append: prefix_trie (ps @ qs) t = prefix_trie ps (prefix_trie
qs t)

by (induction ps) auto

lemma lcp_if : lcp ks ps = (qs, ks ′, ps ′) =⇒
ks = qs @ ks ′ ∧ ps = qs @ ps ′ ∧ (ks ′ 6= [] ∧ ps ′ 6= [] −→ hd ks ′ 6= hd ps ′)

proof (induction ks ps arbitrary: qs ks ′ ps ′ rule: lcp.induct)
qed (auto split: prod.splits if_splits)

lemma abs_trieP_insertP:
abs_trieP (insertP ks t) = insert ks (abs_trieP t)

proof (induction t arbitrary: ks)
qed (auto simp: prefix_trie_Lfs insert_prefix_trie_same insert_append
prefix_trie_append

208

dest!: lcp_if split: list.split prod.split if_splits)

Correctness of deleteP:

lemma prefix_trie_Lf : prefix_trie xs t = Lf ←→ xs = [] ∧ t = Lf
by(cases xs)(auto)

lemma abs_trieP_Lf : abs_trieP t = Lf ←→ t = LfP
by(cases t) (auto simp: prefix_trie_Lf)

lemma delete_prefix_trie:
delete xs (prefix_trie xs (Nd b (l,r)))
= (if (l,r) = (Lf ,Lf) then Lf else prefix_trie xs (Nd False (l,r)))

by(induction xs)(auto simp: prefix_trie_Lf)

lemma delete_append_prefix_trie:
delete (xs @ ys) (prefix_trie xs t)
= (if delete ys t = Lf then Lf else prefix_trie xs (delete ys t))

by(induction xs)(auto simp: prefix_trie_Lf)

lemma nodeP_LfP2 : nodeP xs False (LfP, LfP) = LfP
by(simp add: nodeP_def)

Some non-inductive aux. lemmas:

lemma abs_trieP_nodeP: a 6=LfP ∨ b 6= LfP =⇒
abs_trieP (nodeP xs f (a, b)) = prefix_trie xs (Nd f (abs_trieP a,

abs_trieP b))
by(auto simp add: nodeP_def prefix_trie_append split: trieP.split)

lemma nodeP_True: nodeP ps True lr = NdP ps True lr
by(simp add: nodeP_def)

lemma delete_abs_trieP:
delete ks (abs_trieP t) = abs_trieP (deleteP ks t)

proof (induction t arbitrary: ks)
qed (auto simp: delete_prefix_trie delete_append_prefix_trie

prefix_trie_append prefix_trie_Lf abs_trieP_Lf nodeP_LfP2 abs_trieP_nodeP
nodeP_True

dest!: lcp_if split: if_splits list.split prod.split)

Invariant preservation:

lemma insertP_LfP: insertP xs t 6= LfP
by(cases t)(auto split: prod.split list.split)

lemma invarP_insertP: invarP t =⇒ invarP(insertP xs t)

209

proof(induction t arbitrary: xs)
case LfP thus ?case by simp

next
case (NdP bs b lr)
then show ?case

by(cases lr)(auto simp: insertP_LfP split: prod.split list.split)
qed

lemma invarP_nodeP: [[invarP t1 ; invarP t2]] =⇒ invarP (nodeP xs b
(t1 , t2))

by (auto simp add: nodeP_def split: trieP.split)

lemma invarP_deleteP: invarP t =⇒ invarP(deleteP xs t)
proof(induction t arbitrary: xs)

case LfP thus ?case by simp
next

case (NdP ks b lr)
thus ?case by(cases lr)(auto simp: invarP_nodeP split: prod.split list.split)

qed

The overall correctness proof. Simply composes correctness lemmas.

definition set_trieP :: trieP ⇒ bool list set where
set_trieP = set_trie o abs_trieP

lemma isinP_set_trieP: isinP t xs = (xs ∈ set_trieP t)
by(simp add: abs_trieP_isinP set_trie_isin set_trieP_def)

lemma set_trieP_insertP: set_trieP (insertP xs t) = set_trieP t ∪ {xs}
by(simp add: abs_trieP_insertP set_trie_insert set_trieP_def)

lemma set_trieP_deleteP: set_trieP (deleteP xs t) = set_trieP t − {xs}
by(auto simp: set_trie_delete set_trieP_def simp flip: delete_abs_trieP)

interpretation SP: Set
where empty = emptyP and isin = isinP and insert = insertP and

delete = deleteP
and set = set_trieP and invar = invarP

proof (standard, goal_cases)
case 1 show ?case by (simp add: set_trieP_def set_trie_def)

next
case 2 show ?case by(rule isinP_set_trieP)

next
case 3 thus ?case by (auto simp: set_trieP_insertP)

210

next
case 4 thus ?case by(auto simp: set_trieP_deleteP)

next
case 5 thus ?case by(simp)

next
case 6 thus ?case by(rule invarP_insertP)

next
case 7 thus ?case by(rule invarP_deleteP)

qed

end

42 Ternary Tries
theory Trie_Ternary
imports

Tree_Map
Trie_Fun

begin

An implementation of tries for an arbitrary alphabet ′a where the map-
ping from an element of type ′a to the sub-trie is implemented by an (un-
balanced) binary search tree. In principle, other search trees (e.g. red-black
trees) work just as well, with some small adjustments (Exercise!).

This is an implementation of the “ternary search trees” by Bentley and
Sedgewick [SODA 1997, Dr. Dobbs 1998]. The name derives from the fact
that a node in the BST can now be drawn to have 3 children, where the
middle child is the sub-trie that the node maps its key to. Hence the name
trie3.

Example from https://en.wikipedia.org/wiki/Ternary_search_tree#Description:
c / | a u h | | | t. t e. u / / | / | s. p. e. i. s.
Characters with a dot are final. Thus the tree represents the set of

strings "cute","cup","at","as","he","us" and "i".

datatype ′a trie3 = Nd3 bool (′a ∗ ′a trie3) tree

The development below works almost verbatim for any search tree im-
plementation, eg RBT_Map, and not just Tree_Map, except for the termi-
nation lemma lookup_size.

term size_tree
lemma lookup_size[termination_simp]:

fixes t :: (′a::linorder ∗ ′a trie3) tree
shows lookup t a = Some b =⇒ size b < Suc (size_tree (λab. Suc (size

(snd(ab)))) t)
by (induction t a rule: lookup.induct)(auto split: if_splits)

211

https://en.wikipedia.org/wiki/Ternary_search_tree#Description

definition empty3 :: ′a trie3 where
[simp]: empty3 = Nd3 False Leaf

fun isin3 :: (′a::linorder) trie3 ⇒ ′a list ⇒ bool where
isin3 (Nd3 b m) [] = b |
isin3 (Nd3 b m) (x # xs) = (case lookup m x of None ⇒ False | Some t ⇒
isin3 t xs)

fun insert3 :: (′a::linorder) list ⇒ ′a trie3 ⇒ ′a trie3 where
insert3 [] (Nd3 b m) = Nd3 True m |
insert3 (x#xs) (Nd3 b m) =

Nd3 b (update x (insert3 xs (case lookup m x of None ⇒ empty3 | Some
t ⇒ t)) m)

fun delete3 :: (′a::linorder) list ⇒ ′a trie3 ⇒ ′a trie3 where
delete3 [] (Nd3 b m) = Nd3 False m |
delete3 (x#xs) (Nd3 b m) = Nd3 b

(case lookup m x of
None ⇒ m |
Some t ⇒ update x (delete3 xs t) m)

42.1 Correctness

Proof by stepwise refinement. First abs3tract to type ′a trie.
fun abs3 :: ′a::linorder trie3 ⇒ ′a trie where

abs3 (Nd3 b t) = Nd b (λa. map_option abs3 (lookup t a))

fun invar3 :: (′a::linorder)trie3 ⇒ bool where
invar3 (Nd3 b m) = (M .invar m ∧ (∀ a t. lookup m a = Some t −→ invar3

t))

lemma isin_abs3 : isin3 t xs = isin (abs3 t) xs
by (induction t xs rule: isin3 .induct)(auto split: option.split)

lemma abs3_insert3 : invar3 t =⇒ abs3 (insert3 xs t) = insert xs (abs3 t)
proof (induction xs t rule: insert3 .induct)
qed (auto simp: M .map_specs Tree_Set.empty_def [symmetric] split: op-
tion.split)

lemma abs3_delete3 : invar3 t =⇒ abs3 (delete3 xs t) = delete xs (abs3 t)
by (induction xs t rule: delete3 .induct)(auto simp: M .map_specs split:

option.split)

212

lemma invar3_insert3 : invar3 t =⇒ invar3 (insert3 xs t)
proof (induction xs t rule: insert3 .induct)
qed (auto simp: M .map_specs simp flip: Tree_Set.empty_def split: op-
tion.split)

lemma invar3_delete3 : invar3 t =⇒ invar3 (delete3 xs t)
by (induction xs t rule: delete3 .induct)(auto simp: M .map_specs split:

option.split)

Overall correctness w.r.t. the Set ADT:

interpretation S2 : Set
where empty = empty3 and isin = isin3 and insert = insert3 and delete
= delete3
and set = set_trie o abs3 and invar = invar3
proof (standard, goal_cases)

case 1 show ?case by (simp add: isin_case split: list.split)
next

case 2 thus ?case by (simp add: isin_abs3)
next
case 3 thus ?case by (simp add: set_trie_insert abs3_insert3 del: set_trie_def)

next
case 4 thus ?case by (simp add: set_trie_delete abs3_delete3 del: set_trie_def)

next
case 5 thus ?case by (simp add: M .map_specs Tree_Set.empty_def [symmetric])

next
case 6 thus ?case by (simp add: invar3_insert3)

next
case 7 thus ?case by (simp add: invar3_delete3)

qed

end

43 Queue Specification
theory Queue_Spec
imports Main
begin

The basic queue interface with list-based specification:

locale Queue =
fixes empty :: ′q
fixes enq :: ′a ⇒ ′q ⇒ ′q
fixes first :: ′q ⇒ ′a

213

fixes deq :: ′q ⇒ ′q
fixes is_empty :: ′q ⇒ bool
fixes list :: ′q ⇒ ′a list
fixes invar :: ′q ⇒ bool
assumes list_empty: list empty = []
assumes list_enq: invar q =⇒ list(enq x q) = list q @ [x]
assumes list_deq: invar q =⇒ list(deq q) = tl(list q)
assumes list_first: invar q =⇒ ¬ list q = [] =⇒ first q = hd(list q)
assumes list_is_empty: invar q =⇒ is_empty q = (list q = [])
assumes invar_empty: invar empty
assumes invar_enq: invar q =⇒ invar(enq x q)
assumes invar_deq: invar q =⇒ invar(deq q)

end

44 Queue Implementation via 2 Lists
theory Queue_2Lists
imports

Queue_Spec
HOL−Library.Time_Functions

begin
Definitions:

type_synonym ′a queue = ′a list × ′a list

fun norm :: ′a queue ⇒ ′a queue where
norm (fs,rs) = (if fs = [] then (itrev rs [], []) else (fs,rs))

fun enq :: ′a ⇒ ′a queue ⇒ ′a queue where
enq a (fs,rs) = norm(fs, a # rs)

fun deq :: ′a queue ⇒ ′a queue where
deq (fs,rs) = (if fs = [] then (fs,rs) else norm(tl fs,rs))

fun first :: ′a queue ⇒ ′a where
first (a # fs,rs) = a

fun is_empty :: ′a queue ⇒ bool where
is_empty (fs,rs) = (fs = [])

fun list :: ′a queue ⇒ ′a list where
list (fs,rs) = fs @ rev rs

214

fun invar :: ′a queue ⇒ bool where
invar (fs,rs) = (fs = [] −→ rs = [])

Implementation correctness:

interpretation Queue
where empty = ([],[]) and enq = enq and deq = deq and first = first
and is_empty = is_empty and list = list and invar = invar
proof (standard, goal_cases)

case 1 show ?case by (simp)
next

case (2 q) thus ?case by(cases q) (simp)
next

case (3 q) thus ?case by(cases q) (simp add: itrev_Nil)
next

case (4 q) thus ?case by(cases q) (auto simp: neq_Nil_conv)
next

case (5 q) thus ?case by(cases q) (auto)
next

case 6 show ?case by(simp)
next

case (7 q) thus ?case by(cases q) (simp)
next

case (8 q) thus ?case by(cases q) (simp)
qed

Running times:

time_fun norm
time_fun enq
time_fun deq

Amortized running times:

fun Φ :: ′a queue ⇒ nat where
Φ(fs,rs) = length rs

lemma a_enq: T_enq a (fs,rs) + Φ(enq a (fs,rs)) − Φ(fs,rs) ≤ 2
by(auto simp: T_itrev)

lemma a_deq: T_deq (fs,rs) + Φ(deq (fs,rs)) − Φ(fs,rs) ≤ 1
by(auto simp: T_itrev T_tl)

end

215

45 Priority Queue Specifications
theory Priority_Queue_Specs
imports HOL−Library.Multiset
begin

Priority queue interface + specification:

locale Priority_Queue =
fixes empty :: ′q
and is_empty :: ′q ⇒ bool
and insert :: ′a::linorder ⇒ ′q ⇒ ′q
and get_min :: ′q ⇒ ′a
and del_min :: ′q ⇒ ′q
and invar :: ′q ⇒ bool
and mset :: ′q ⇒ ′a multiset
assumes mset_empty: mset empty = {#}
and is_empty: invar q =⇒ is_empty q = (mset q = {#})
and mset_insert: invar q =⇒ mset (insert x q) = mset q + {#x#}
and mset_del_min: invar q =⇒ mset q 6= {#} =⇒

mset (del_min q) = mset q − {# get_min q #}
and mset_get_min: invar q =⇒ mset q 6= {#} =⇒ get_min q = Min_mset
(mset q)
and invar_empty: invar empty
and invar_insert: invar q =⇒ invar (insert x q)
and invar_del_min: invar q =⇒ mset q 6= {#} =⇒ invar (del_min q)

Extend locale with merge. Need to enforce that ′q is the same in both
locales.

locale Priority_Queue_Merge = Priority_Queue where empty = empty
for empty :: ′q +
fixes merge :: ′q ⇒ ′q ⇒ ′q
assumes mset_merge: [[invar q1 ; invar q2]] =⇒ mset (merge q1 q2) =
mset q1 + mset q2
and invar_merge: [[invar q1 ; invar q2]] =⇒ invar (merge q1 q2)

end

46 Heaps
theory Heaps
imports

HOL−Library.Tree_Multiset
Priority_Queue_Specs

begin

216

Heap = priority queue on trees:

locale Heap =
fixes insert :: (′a::linorder) ⇒ ′a tree ⇒ ′a tree
and del_min :: ′a tree ⇒ ′a tree
assumes mset_insert: heap q =⇒ mset_tree (insert x q) = {#x#} +
mset_tree q
and mset_del_min: [[heap q; q 6= Leaf]] =⇒ mset_tree (del_min q) =
mset_tree q − {#value q#}
and heap_insert: heap q =⇒ heap(insert x q)
and heap_del_min: heap q =⇒ heap(del_min q)
begin

definition empty :: ′a tree where
empty = Leaf

fun is_empty :: ′a tree ⇒ bool where
is_empty t = (t = Leaf)

fun get_min :: ′a tree ⇒ ′a where
get_min (Node l a r) = a

sublocale Priority_Queue where empty = empty and is_empty = is_empty
and insert = insert
and get_min = get_min and del_min = del_min and invar = heap and
mset = mset_tree
proof (standard, goal_cases)

case 1 thus ?case by (simp add: empty_def)
next

case 2 thus ?case by(auto)
next

case 3 thus ?case by(simp add: mset_insert)
next

case 4 thus ?case by(auto simp add: mset_del_min neq_Leaf_iff)
next

case 5 thus ?case by(auto simp: neq_Leaf_iff Min_insert2 simp del:
Un_iff)
next

case 6 thus ?case by(simp add: empty_def)
next

case 7 thus ?case by(simp add: heap_insert)
next

case 8 thus ?case by(simp add: heap_del_min)
qed

217

end

Once you have merge, insert and del_min are easy:

locale Heap_Merge =
fixes merge :: ′a::linorder tree ⇒ ′a tree ⇒ ′a tree
assumes mset_merge: [[heap q1 ; heap q2]] =⇒ mset_tree (merge q1 q2)
= mset_tree q1 + mset_tree q2
and invar_merge: [[heap q1 ; heap q2]] =⇒ heap (merge q1 q2)
begin

fun insert :: ′a ⇒ ′a tree ⇒ ′a tree where
insert x t = merge (Node Leaf x Leaf) t

fun del_min :: ′a tree ⇒ ′a tree where
del_min Leaf = Leaf |
del_min (Node l x r) = merge l r

interpretation Heap insert del_min
proof(standard, goal_cases)

case 1 thus ?case by(simp add:mset_merge)
next

case (2 q) thus ?case by(cases q)(auto simp: mset_merge)
next

case 3 thus ?case by (simp add: invar_merge)
next

case (4 q) thus ?case by (cases q)(auto simp: invar_merge)
qed

lemmas local_empty_def = local.empty_def
lemmas local_get_min_def = local.get_min.simps

sublocale PQM : Priority_Queue_Merge where empty = empty and is_empty
= is_empty and insert = insert
and get_min = get_min and del_min = del_min and invar = heap and
mset = mset_tree and merge = merge
proof(standard, goal_cases)

case 1 thus ?case by (simp add: mset_merge)
next

case 2 thus ?case by (simp add: invar_merge)
qed

end

218

end

47 Leftist Heap
theory Leftist_Heap
imports

HOL−Library.Pattern_Aliases
Tree2
Priority_Queue_Specs
Complex_Main
HOL−Library.Time_Commands

begin

fun mset_tree :: (′a∗ ′b) tree ⇒ ′a multiset where
mset_tree Leaf = {#} |
mset_tree (Node l (a, _) r) = {#a#} + mset_tree l + mset_tree r

type_synonym ′a lheap = (′a∗nat)tree

fun mht :: ′a lheap ⇒ nat where
mht Leaf = 0 |
mht (Node _ (_, n) _) = n

The invariants:
fun (in linorder) heap :: (′a∗ ′b) tree ⇒ bool where
heap Leaf = True |
heap (Node l (m, _) r) =
((∀ x ∈ set_tree l ∪ set_tree r . m ≤ x) ∧ heap l ∧ heap r)

fun ltree :: ′a lheap ⇒ bool where
ltree Leaf = True |
ltree (Node l (a, n) r) =
(min_height l ≥ min_height r ∧ n = min_height r + 1 ∧ ltree l & ltree

r)

definition empty :: ′a lheap where
empty = Leaf

definition node :: ′a lheap ⇒ ′a ⇒ ′a lheap ⇒ ′a lheap where
node l a r =
(let mhl = mht l; mhr = mht r
in if mhl ≥ mhr then Node l (a,mhr+1) r else Node r (a,mhl+1) l)

fun get_min :: ′a lheap ⇒ ′a where

219

get_min(Node l (a, n) r) = a

For function merge:

unbundle pattern_aliases

fun merge :: ′a::ord lheap ⇒ ′a lheap ⇒ ′a lheap where
merge Leaf t = t |
merge t Leaf = t |
merge (Node l1 (a1 , n1) r1 =: t1) (Node l2 (a2 , n2) r2 =: t2) =

(if a1 ≤ a2 then node l1 a1 (merge r1 t2)
else node l2 a2 (merge t1 r2))

Termination of merge: by sum or lexicographic product of the sizes of
the two arguments. Isabelle uses a lexicographic product.

lemma merge_code: merge t1 t2 = (case (t1 ,t2) of
(Leaf , _) ⇒ t2 |
(_, Leaf) ⇒ t1 |
(Node l1 (a1 , n1) r1 , Node l2 (a2 , n2) r2) ⇒

if a1 ≤ a2 then node l1 a1 (merge r1 t2) else node l2 a2 (merge t1 r2))
by(induction t1 t2 rule: merge.induct) (simp_all split: tree.split)

hide_const (open) insert

definition insert :: ′a::ord ⇒ ′a lheap ⇒ ′a lheap where
insert x t = merge (Node Leaf (x,1) Leaf) t

fun del_min :: ′a::ord lheap ⇒ ′a lheap where
del_min Leaf = Leaf |
del_min (Node l _ r) = merge l r

47.1 Lemmas

lemma mset_tree_empty: mset_tree t = {#} ←→ t = Leaf
by(cases t) auto

lemma mht_eq_min_height: ltree t =⇒ mht t = min_height t
by(cases t) auto

lemma ltree_node: ltree (node l a r) ←→ ltree l ∧ ltree r
by(auto simp add: node_def mht_eq_min_height)

lemma heap_node: heap (node l a r) ←→
heap l ∧ heap r ∧ (∀ x ∈ set_tree l ∪ set_tree r . a ≤ x)

by(auto simp add: node_def)

220

lemma set_tree_mset: set_tree t = set_mset(mset_tree t)
by(induction t) auto

47.2 Functional Correctness

lemma mset_merge: mset_tree (merge t1 t2) = mset_tree t1 + mset_tree
t2
by (induction t1 t2 rule: merge.induct) (auto simp add: node_def ac_simps)

lemma mset_insert: mset_tree (insert x t) = mset_tree t + {#x#}
by (auto simp add: insert_def mset_merge)

lemma get_min: [[heap t; t 6= Leaf]] =⇒ get_min t = Min(set_tree t)
by (cases t) (auto simp add: eq_Min_iff)

lemma mset_del_min: mset_tree (del_min t) = mset_tree t − {# get_min
t #}
by (cases t) (auto simp: mset_merge)

lemma ltree_merge: [[ltree l; ltree r]] =⇒ ltree (merge l r)
by(induction l r rule: merge.induct)(auto simp: ltree_node)

lemma heap_merge: [[heap l; heap r]] =⇒ heap (merge l r)
proof(induction l r rule: merge.induct)
case 3 thus ?case by(auto simp: heap_node mset_merge ball_Un set_tree_mset)

qed simp_all

lemma ltree_insert: ltree t =⇒ ltree(insert x t)
by(simp add: insert_def ltree_merge del: merge.simps split: tree.split)

lemma heap_insert: heap t =⇒ heap(insert x t)
by(simp add: insert_def heap_merge del: merge.simps split: tree.split)

lemma ltree_del_min: ltree t =⇒ ltree(del_min t)
by(cases t)(auto simp add: ltree_merge simp del: merge.simps)

lemma heap_del_min: heap t =⇒ heap(del_min t)
by(cases t)(auto simp add: heap_merge simp del: merge.simps)

Last step of functional correctness proof: combine all the above lemmas
to show that leftist heaps satisfy the specification of priority queues with
merge.

interpretation lheap: Priority_Queue_Merge

221

where empty = empty and is_empty = λt. t = Leaf
and insert = insert and del_min = del_min
and get_min = get_min and merge = merge
and invar = λt. heap t ∧ ltree t and mset = mset_tree
proof(standard, goal_cases)

case 1 show ?case by (simp add: empty_def)
next

case (2 q) show ?case by (cases q) auto
next

case 3 show ?case by(rule mset_insert)
next

case 4 show ?case by(rule mset_del_min)
next
case 5 thus ?case by(simp add: get_min mset_tree_empty set_tree_mset)

next
case 6 thus ?case by(simp add: empty_def)

next
case 7 thus ?case by(simp add: heap_insert ltree_insert)

next
case 8 thus ?case by(simp add: heap_del_min ltree_del_min)

next
case 9 thus ?case by (simp add: mset_merge)

next
case 10 thus ?case by (simp add: heap_merge ltree_merge)

qed

47.3 Complexity

Auxiliary time functions (which are both 0):

time_fun mht
time_fun node

lemma T_mht_0 [simp]: T_mht t = 0
by(cases t)auto

Define timing function

time_fun merge
time_fun insert
time_fun del_min

lemma T_merge_min_height: ltree l =⇒ ltree r =⇒ T_merge l r ≤ min_height
l + min_height r + 1
proof(induction l r rule: merge.induct)

case 3 thus ?case by(auto)

222

qed simp_all

corollary T_merge_log: assumes ltree l ltree r
shows T_merge l r ≤ log 2 (size1 l) + log 2 (size1 r) + 1

using le_log2_of_power [OF min_height_size1 [of l]]
le_log2_of_power [OF min_height_size1 [of r]] T_merge_min_height[of

l r] assms
by linarith

corollary T_insert_log: ltree t =⇒ T_insert x t ≤ log 2 (size1 t) + 2
using T_merge_log[of Node Leaf (x, 1) Leaf t]
by(simp split: tree.split)

corollary T_del_min_log: assumes ltree t
shows T_del_min t ≤ 2 ∗ log 2 (size1 t) + 1

proof(cases t rule: tree2_cases)
case Leaf thus ?thesis using assms by simp

next
case [simp]: (Node l _ _ r)
show ?thesis

using ‹ltree t› T_merge_log[of l r]
log_mono[of 2 size1 l size1 t] log_mono[of 2 size1 r size1 t]

by (simp del: T_merge.simps)
qed

end

theory Leftist_Heap_List
imports

Leftist_Heap
Complex_Main

begin

47.4 Converting a list into a leftist heap

fun merge_adj :: (′a::ord) lheap list ⇒ ′a lheap list where
merge_adj [] = [] |
merge_adj [t] = [t] |
merge_adj (t1 # t2 # ts) = merge t1 t2 # merge_adj ts

For the termination proof of merge_all below.

lemma length_merge_adjacent[termination_simp]: length (merge_adj ts)
= (length ts + 1) div 2

223

by (induction ts rule: merge_adj.induct) auto

fun merge_all :: (′a::ord) lheap list ⇒ ′a lheap where
merge_all [] = Leaf |
merge_all [t] = t |
merge_all ts = merge_all (merge_adj ts)

47.4.1 Functional correctness

lemma heap_merge_adj: ∀ t ∈ set ts. heap t =⇒ ∀ t ∈ set (merge_adj ts).
heap t
by(induction ts rule: merge_adj.induct) (auto simp: heap_merge)

lemma ltree_merge_adj: ∀ t ∈ set ts. ltree t =⇒ ∀ t ∈ set (merge_adj ts).
ltree t
by(induction ts rule: merge_adj.induct) (auto simp: ltree_merge)

lemma heap_merge_all: ∀ t ∈ set ts. heap t =⇒ heap (merge_all ts)
apply(induction ts rule: merge_all.induct)
using [[simp_depth_limit=3]] by (auto simp add: heap_merge_adj)

lemma ltree_merge_all: ∀ t ∈ set ts. ltree t =⇒ ltree (merge_all ts)
apply(induction ts rule: merge_all.induct)
using [[simp_depth_limit=3]] by (auto simp add: ltree_merge_adj)

lemma mset_merge_adj:∑
(image_mset mset_tree (mset (merge_adj ts))) =∑
(image_mset mset_tree (mset ts))

by(induction ts rule: merge_adj.induct) (auto simp: mset_merge)

lemma mset_merge_all:
mset_tree (merge_all ts) =

∑
(mset (map mset_tree ts))

by(induction ts rule: merge_all.induct) (auto simp: mset_merge mset_merge_adj)

fun lheap_list :: ′a::ord list ⇒ ′a lheap where
lheap_list xs = merge_all (map (λx. Node Leaf (x,1) Leaf) xs)

lemma mset_lheap_list: mset_tree (lheap_list xs) = mset xs
by (simp add: mset_merge_all o_def)

lemma ltree_lheap_list: ltree (lheap_list ts)
by(simp add: ltree_merge_all)

lemma heap_lheap_list: heap (lheap_list ts)

224

by(simp add: heap_merge_all)

lemma size_merge: size(merge t1 t2) = size t1 + size t2
by(induction t1 t2 rule: merge.induct) (auto simp: node_def)

47.4.2 Running time

Not defined automatically because we only count the time for merge.
fun T_merge_adj :: (′a::ord) lheap list ⇒ nat where
T_merge_adj [] = 0 |
T_merge_adj [t] = 0 |
T_merge_adj (t1 # t2 # ts) = T_merge t1 t2 + T_merge_adj ts

fun T_merge_all :: (′a::ord) lheap list ⇒ nat where
T_merge_all [] = 0 |
T_merge_all [t] = 0 |
T_merge_all ts = T_merge_adj ts + T_merge_all (merge_adj ts)

fun T_lheap_list :: ′a::ord list ⇒ nat where
T_lheap_list xs = T_merge_all (map (λx. Node Leaf (x,1) Leaf) xs)

abbreviation Tm where
Tm n == 2 ∗ log 2 (n+1) + 1

lemma T_merge_adj: [[∀ t ∈ set ts. ltree t; ∀ t ∈ set ts. size t = n]]
=⇒ T_merge_adj ts ≤ (length ts div 2) ∗ Tm n

proof(induction ts rule: T_merge_adj.induct)
case 1 thus ?case by simp

next
case 2 thus ?case by simp

next
case (3 t1 t2) thus ?case using T_merge_log[of t1 t2] by (simp add:

algebra_simps size1_size)
qed

lemma size_merge_adj:
[[even(length ts); ∀ t ∈ set ts. ltree t; ∀ t ∈ set ts. size t = n]]
=⇒ ∀ t ∈ set (merge_adj ts). size t = 2∗n

by(induction ts rule: merge_adj.induct) (auto simp: size_merge)

lemma T_merge_all:
[[∀ t ∈ set ts. ltree t; ∀ t ∈ set ts. size t = n; length ts = 2^k]]
=⇒ T_merge_all ts ≤ (

∑
i=1 ..k. 2^(k−i) ∗ Tm(2 ^ (i−1) ∗ n))

proof (induction ts arbitrary: k n rule: merge_all.induct)

225

case 1 thus ?case by simp
next

case 2 thus ?case by simp
next

case (3 t1 t2 ts)
let ?ts = t1 # t2 # ts
let ?ts2 = merge_adj ?ts
obtain k ′ where k ′: k = Suc k ′ using 3 .prems(3)
by (metis length_Cons nat.inject nat_power_eq_Suc_0_iff nat.exhaust)

have 1 : ∀ x ∈ set(merge_adj ?ts). ltree x
by(rule ltree_merge_adj[OF 3 .prems(1)])

have even (length ts) using 3 .prems(3) even_Suc_Suc_iff by fastforce
from 3 .prems(2) size_merge_adj[OF this] 3 .prems(1)
have 2 : ∀ x ∈ set(merge_adj ?ts). size x = 2∗n by(auto simp: size_merge)
have 3 : length ?ts2 = 2 ^ k ′ using 3 .prems(3) k ′ by (simp add: length_merge_adjacent)
have 4 : length ?ts div 2 = 2 ^ k ′

using 3 .prems(3) k ′ by(simp add: power_eq_if [of 2 k] split: if_splits)
have T_merge_all ?ts = T_merge_adj ?ts + T_merge_all ?ts2 by simp
also have . . . ≤ 2^k ′ ∗ Tm n + T_merge_all ?ts2

using 4 T_merge_adj[OF 3 .prems(1 ,2)] by auto
also have . . . ≤ 2^k ′ ∗ Tm n + (

∑
i=1 ..k ′. 2^(k ′−i) ∗ Tm(2 ^ (i−1) ∗

(2∗n)))
using 3 .IH [OF 1 2 3] by simp

also have . . . = 2^k ′ ∗ Tm n + (
∑

i=1 ..k ′. 2^(k ′−i) ∗ Tm(2 ^ (Suc(i−1))
∗ n))

by (simp add: mult_ac cong del: sum.cong)
also have . . . = 2^k ′ ∗ Tm n + (

∑
i=1 ..k ′. 2^(k ′−i) ∗ Tm(2 ^ i ∗ n))

by (simp)
also have . . . = (

∑
i=1 ..k. 2^(k−i) ∗ Tm(2 ^ (i−1) ∗ real n))

by(simp add: sum.atLeast_Suc_atMost[of Suc 0 Suc k ′] sum.atLeast_Suc_atMost_Suc_shift[of
_ Suc 0] k ′

del: sum.cl_ivl_Suc)
finally show ?case .

qed

lemma summation: (
∑

i=1 ..k. 2^(k−i) ∗ ((2 ::real)∗i+1)) = 5∗2^k −
(2 ::real)∗k − 5
proof (induction k)

case 0 thus ?case by simp
next

case (Suc k)
have (

∑
i=1 ..Suc k. 2^(Suc k − i) ∗ ((2 ::real)∗i+1))

= (
∑

i=1 ..k. 2^(k+1−i) ∗ ((2 ::real)∗i+1)) + 2∗k+3
by(simp)

226

also have . . . = (
∑

i=1 ..k. (2 ::real)∗(2^(k−i) ∗ ((2 ::real)∗i+1))) +
2∗k+3

by (simp add: Suc_diff_le mult.assoc)
also have . . . = 2∗(

∑
i=1 ..k. 2^(k−i) ∗ ((2 ::real)∗i+1)) + 2∗k+3

by(simp add: sum_distrib_left)
also have . . . = (2 ::real)∗(5∗2^k − (2 ::real)∗k − 5) + 2∗k+3

using Suc.IH by simp
also have . . . = 5∗2^(Suc k) − (2 ::real)∗(Suc k) − 5

by simp
finally show ?case .

qed

lemma T_lheap_list: assumes length xs = 2 ^ k
shows T_lheap_list xs ≤ 5 ∗ length xs − 2 ∗ log 2 (length xs)
proof −

let ?ts = map (λx. Node Leaf (x,1) Leaf) xs
have T_lheap_list xs = T_merge_all ?ts by simp
also have . . . ≤ (

∑
i = 1 ..k. 2^(k−i) ∗ (2 ∗ log 2 (2^(i−1) + 1) + 1))

using T_merge_all[of ?ts 1 k] assms by (simp)
also have . . . ≤ (

∑
i = 1 ..k. 2^(k−i) ∗ (2 ∗ log 2 (2∗2^(i−1)) + 1))

apply(rule sum_mono)
using zero_le_power [of 2 ::real] by (simp add: add_pos_nonneg)

also have . . . = (
∑

i = 1 ..k. 2^(k−i) ∗ (2 ∗ log 2 (2^(1+(i−1))) + 1))
by (simp del: Suc_pred)

also have . . . = (
∑

i = 1 ..k. 2^(k−i) ∗ (2 ∗ log 2 (2^i) + 1))
by (simp)

also have . . . = (
∑

i = 1 ..k. 2^(k−i) ∗ ((2 ::real)∗i+1))
by (simp add:log_nat_power algebra_simps)

also have . . . = 5∗(2 ::real)^k − (2 ::real)∗k − 5
using summation by (simp)

finally show ?thesis
using assms of_nat_le_iff by simp

qed

end

48 Binomial Priority Queue
theory Binomial_Heap
imports

HOL−Library.Pattern_Aliases
Complex_Main
Priority_Queue_Specs

227

HOL−Library.Time_Functions
begin

We formalize the presentation from Okasaki’s book. We show the func-
tional correctness and complexity of all operations.

The presentation is engineered for simplicity, and most proofs are straight-
forward and automatic.

48.1 Binomial Tree and Forest Types

datatype ′a tree = Node (rank: nat) (root: ′a) (children: ′a tree list)

type_synonym ′a forest = ′a tree list

48.1.1 Multiset of elements

fun mset_tree :: ′a::linorder tree ⇒ ′a multiset where
mset_tree (Node _ a ts) = {#a#} + (

∑
t∈#mset ts. mset_tree t)

definition mset_forest :: ′a::linorder forest ⇒ ′a multiset where
mset_forest ts = (

∑
t∈#mset ts. mset_tree t)

lemma mset_tree_simp_alt[simp]:
mset_tree (Node r a ts) = {#a#} + mset_forest ts
unfolding mset_forest_def by auto

declare mset_tree.simps[simp del]

lemma mset_tree_nonempty[simp]: mset_tree t 6= {#}
by (cases t) auto

lemma mset_forest_Nil[simp]:
mset_forest [] = {#}

by (auto simp: mset_forest_def)

lemma mset_forest_Cons[simp]: mset_forest (t#ts) = mset_tree t + mset_forest
ts
by (auto simp: mset_forest_def)

lemma mset_forest_empty_iff [simp]: mset_forest ts = {#} ←→ ts=[]
by (auto simp: mset_forest_def)

lemma root_in_mset[simp]: root t ∈# mset_tree t
by (cases t) auto

lemma mset_forest_rev_eq[simp]: mset_forest (rev ts) = mset_forest ts

228

by (auto simp: mset_forest_def)

48.1.2 Invariants

Binomial tree

fun btree :: ′a::linorder tree ⇒ bool where
btree (Node r x ts) ←→

(∀ t∈set ts. btree t) ∧ map rank ts = rev [0 ..<r]

Heap invariant

fun heap :: ′a::linorder tree ⇒ bool where
heap (Node _ x ts) ←→ (∀ t∈set ts. heap t ∧ x ≤ root t)

definition bheap t ←→ btree t ∧ heap t

Binomial Forest invariant:

definition invar ts ←→ (∀ t∈set ts. bheap t) ∧ (sorted_wrt (<) (map rank
ts))

A binomial forest is often called a binomial heap, but this overloads the
latter term.

The children of a binomial heap node are a valid forest:

lemma invar_children:
bheap (Node r v ts) =⇒ invar (rev ts)
by (auto simp: bheap_def invar_def rev_map[symmetric])

48.2 Operations and Their Functional Correctness

48.2.1 link

context
includes pattern_aliases
begin

fun link :: (′a::linorder) tree ⇒ ′a tree ⇒ ′a tree where
link (Node r x1 ts1 =: t1) (Node r ′ x2 ts2 =: t2) =
(if x1≤x2 then Node (r+1) x1 (t2#ts1) else Node (r+1) x2 (t1#ts2))

end

lemma invar_link:
assumes bheap t1
assumes bheap t2
assumes rank t1 = rank t2
shows bheap (link t1 t2)

229

using assms unfolding bheap_def
by (cases (t1, t2) rule: link.cases) auto

lemma rank_link[simp]: rank (link t1 t2) = rank t1 + 1
by (cases (t1, t2) rule: link.cases) simp

lemma mset_link[simp]: mset_tree (link t1 t2) = mset_tree t1 + mset_tree
t2
by (cases (t1, t2) rule: link.cases) simp

48.2.2 ins_tree

fun ins_tree :: ′a::linorder tree ⇒ ′a forest ⇒ ′a forest where
ins_tree t [] = [t]
| ins_tree t1 (t2#ts) =
(if rank t1 < rank t2 then t1#t2#ts else ins_tree (link t1 t2) ts)

lemma bheap0 [simp]: bheap (Node 0 x [])
unfolding bheap_def by auto

lemma invar_Cons[simp]:
invar (t#ts)
←→ bheap t ∧ invar ts ∧ (∀ t ′∈set ts. rank t < rank t ′)

by (auto simp: invar_def)

lemma invar_ins_tree:
assumes bheap t
assumes invar ts
assumes ∀ t ′∈set ts. rank t ≤ rank t ′
shows invar (ins_tree t ts)

using assms
by (induction t ts rule: ins_tree.induct) (auto simp: invar_link less_eq_Suc_le[symmetric])

lemma mset_forest_ins_tree[simp]:
mset_forest (ins_tree t ts) = mset_tree t + mset_forest ts

by (induction t ts rule: ins_tree.induct) auto

lemma ins_tree_rank_bound:
assumes t ′ ∈ set (ins_tree t ts)
assumes ∀ t ′∈set ts. rank t0 < rank t ′
assumes rank t0 < rank t
shows rank t0 < rank t ′

using assms
by (induction t ts rule: ins_tree.induct) (auto split: if_splits)

230

48.2.3 insert

hide_const (open) insert

definition insert :: ′a::linorder ⇒ ′a forest ⇒ ′a forest where
insert x ts = ins_tree (Node 0 x []) ts

lemma invar_insert[simp]: invar t =⇒ invar (insert x t)
by (auto intro!: invar_ins_tree simp: insert_def)

lemma mset_forest_insert[simp]: mset_forest (insert x t) = {#x#} +
mset_forest t
by(auto simp: insert_def)

48.2.4 merge

context
includes pattern_aliases
begin

fun merge :: ′a::linorder forest ⇒ ′a forest ⇒ ′a forest where
merge ts1 [] = ts1
| merge [] ts2 = ts2
| merge (t1#ts1 =: f 1) (t2#ts2 =: f 2) = (

if rank t1 < rank t2 then t1 # merge ts1 f 2 else
if rank t2 < rank t1 then t2 # merge f 1 ts2
else ins_tree (link t1 t2) (merge ts1 ts2)

)

end

lemma merge_simp2 [simp]: merge [] ts2 = ts2
by (cases ts2) auto

lemma merge_rank_bound:
assumes t ′ ∈ set (merge ts1 ts2)
assumes ∀ t12∈set ts1 ∪ set ts2. rank t < rank t12
shows rank t < rank t ′

using assms
by (induction ts1 ts2 arbitrary: t ′ rule: merge.induct)

(auto split: if_splits simp: ins_tree_rank_bound)

lemma invar_merge[simp]:
assumes invar ts1

231

assumes invar ts2
shows invar (merge ts1 ts2)

using assms
by (induction ts1 ts2 rule: merge.induct)
(auto 0 3 simp: Suc_le_eq intro!: invar_ins_tree invar_link elim!: merge_rank_bound)

Longer, more explicit proof of invar_merge, to illustrate the application
of the merge_rank_bound lemma.

lemma
assumes invar ts1
assumes invar ts2
shows invar (merge ts1 ts2)
using assms

proof (induction ts1 ts2 rule: merge.induct)
case (3 t1 ts1 t2 ts2)
— Invariants of the parts can be shown automatically
from 3 .prems have [simp]:

bheap t1 bheap t2

by auto

— These are the three cases of the merge function
consider (LT) rank t1 < rank t2

| (GT) rank t1 > rank t2
| (EQ) rank t1 = rank t2

using antisym_conv3 by blast
then show ?case proof cases

case LT
— merge takes the first tree from the left heap
then have merge (t1 # ts1) (t2 # ts2) = t1 # merge ts1 (t2 # ts2) by

simp
also have invar . . . proof (simp, intro conjI)

— Invariant follows from induction hypothesis
show invar (merge ts1 (t2 # ts2))

using LT 3 .IH 3 .prems by simp

— It remains to show that t1 has smallest rank.
show ∀ t ′∈set (merge ts1 (t2 # ts2)). rank t1 < rank t ′

— Which is done by auxiliary lemma merge_rank_bound
using LT 3 .prems by (force elim!: merge_rank_bound)

qed
finally show ?thesis .

next
— merge takes the first tree from the right heap

232

case GT
— The proof is anaologous to the LT case

then show ?thesis using 3 .prems 3 .IH by (force elim!: merge_rank_bound)
next

case [simp]: EQ
— merge links both first forest, and inserts them into the merged re-

maining heaps
have merge (t1 # ts1) (t2 # ts2) = ins_tree (link t1 t2) (merge ts1 ts2)

by simp
also have invar . . . proof (intro invar_ins_tree invar_link)

— Invariant of merged remaining heaps follows by IH
show invar (merge ts1 ts2)

using EQ 3 .prems 3 .IH by auto

— For insertion, we have to show that the rank of the linked tree is ≤
the ranks in the merged remaining heaps

show ∀ t ′∈set (merge ts1 ts2). rank (link t1 t2) ≤ rank t ′
proof −

— Which is, again, done with the help of merge_rank_bound
have rank (link t1 t2) = Suc (rank t2) by simp

thus ?thesis using 3 .prems by (auto simp: Suc_le_eq elim!:
merge_rank_bound)

qed
qed simp_all
finally show ?thesis .

qed
qed auto

lemma mset_forest_merge[simp]:
mset_forest (merge ts1 ts2) = mset_forest ts1 + mset_forest ts2

by (induction ts1 ts2 rule: merge.induct) auto

48.2.5 get_min

fun get_min :: ′a::linorder forest ⇒ ′a where
get_min [t] = root t
| get_min (t#ts) = min (root t) (get_min ts)

lemma bheap_root_min:
assumes bheap t
assumes x ∈# mset_tree t
shows root t ≤ x

using assms unfolding bheap_def

233

by (induction t arbitrary: x rule: mset_tree.induct) (fastforce simp: mset_forest_def)

lemma get_min_mset:
assumes ts 6=[]
assumes invar ts
assumes x ∈# mset_forest ts
shows get_min ts ≤ x
using assms

apply (induction ts arbitrary: x rule: get_min.induct)
apply (auto

simp: bheap_root_min min_def intro: order_trans;
meson linear order_trans bheap_root_min
)+

done

lemma get_min_member :
ts 6=[] =⇒ get_min ts ∈# mset_forest ts

by (induction ts rule: get_min.induct) (auto simp: min_def)

lemma get_min:
assumes mset_forest ts 6= {#}
assumes invar ts
shows get_min ts = Min_mset (mset_forest ts)

using assms get_min_member get_min_mset
by (auto simp: eq_Min_iff)

48.2.6 get_min_rest

fun get_min_rest :: ′a::linorder forest ⇒ ′a tree × ′a forest where
get_min_rest [t] = (t,[])
| get_min_rest (t#ts) = (let (t ′,ts ′) = get_min_rest ts

in if root t ≤ root t ′ then (t,ts) else (t ′,t#ts ′))

lemma get_min_rest_get_min_same_root:
assumes ts 6=[]
assumes get_min_rest ts = (t ′,ts ′)
shows root t ′ = get_min ts

using assms
by (induction ts arbitrary: t ′ ts ′ rule: get_min.induct) (auto simp: min_def
split: prod.splits)

lemma mset_get_min_rest:
assumes get_min_rest ts = (t ′,ts ′)
assumes ts 6=[]

234

shows mset ts = {#t ′#} + mset ts ′

using assms
by (induction ts arbitrary: t ′ ts ′ rule: get_min.induct) (auto split: prod.splits
if_splits)

lemma set_get_min_rest:
assumes get_min_rest ts = (t ′, ts ′)
assumes ts 6=[]
shows set ts = Set.insert t ′ (set ts ′)

using mset_get_min_rest[OF assms, THEN arg_cong[where f=set_mset]]
by auto

lemma invar_get_min_rest:
assumes get_min_rest ts = (t ′,ts ′)
assumes ts 6=[]
assumes invar ts
shows bheap t ′ and invar ts ′

proof −
have bheap t ′ ∧ invar ts ′

using assms
proof (induction ts arbitrary: t ′ ts ′ rule: get_min.induct)

case (2 t v va)
then show ?case

apply (clarsimp split: prod.splits if_splits)
apply (drule set_get_min_rest; fastforce)
done

qed auto
thus bheap t ′ and invar ts ′ by auto

qed

48.2.7 del_min

definition del_min :: ′a::linorder forest ⇒ ′a::linorder forest where
del_min ts = (case get_min_rest ts of

(Node r x ts1, ts2) ⇒ merge (itrev ts1 []) ts2)

lemma invar_del_min[simp]:
assumes ts 6= []
assumes invar ts
shows invar (del_min ts)

using assms
unfolding del_min_def itrev_Nil
by (auto

split: prod.split tree.split

235

intro!: invar_merge invar_children
dest: invar_get_min_rest

)

lemma mset_forest_del_min:
assumes ts 6= []
shows mset_forest ts = mset_forest (del_min ts) + {# get_min ts #}

using assms
unfolding del_min_def itrev_Nil
apply (clarsimp split: tree.split prod.split)
apply (frule (1) get_min_rest_get_min_same_root)
apply (frule (1) mset_get_min_rest)
apply (auto simp: mset_forest_def)
done

48.2.8 Instantiating the Priority Queue Locale

Last step of functional correctness proof: combine all the above lemmas to
show that binomial heaps satisfy the specification of priority queues with
merge.
interpretation bheaps: Priority_Queue_Merge

where empty = [] and is_empty = (=) [] and insert = insert
and get_min = get_min and del_min = del_min and merge = merge
and invar = invar and mset = mset_forest

proof (unfold_locales, goal_cases)
case 1 thus ?case by simp

next
case 2 thus ?case by auto

next
case 3 thus ?case by auto

next
case (4 q)
thus ?case using mset_forest_del_min[of q] get_min[OF _ ‹invar q›]

by (auto simp: union_single_eq_diff)
next

case (5 q) thus ?case using get_min[of q] by auto
next

case 6 thus ?case by (auto simp add: invar_def)
next

case 7 thus ?case by simp
next

case 8 thus ?case by simp
next

case 9 thus ?case by simp

236

next
case 10 thus ?case by simp

qed

48.3 Complexity

The size of a binomial tree is determined by its rank

lemma size_mset_btree:
assumes btree t
shows size (mset_tree t) = 2^rank t
using assms

proof (induction t)
case (Node r v ts)
hence IH : size (mset_tree t) = 2^rank t if t ∈ set ts for t

using that by auto

from Node have COMPL: map rank ts = rev [0 ..<r] by auto

have size (mset_forest ts) = (
∑

t←ts. size (mset_tree t))
by (induction ts) auto

also have . . . = (
∑

t←ts. 2^rank t) using IH
by (auto cong: map_cong)

also have . . . = (
∑

r←map rank ts. 2^r)
by (induction ts) auto

also have . . . = (
∑

i∈{0 ..<r}. 2^i)
unfolding COMPL

by (auto simp: rev_map[symmetric] interv_sum_list_conv_sum_set_nat)
also have . . . = 2^r − 1

by (induction r) auto
finally show ?case

by (simp)
qed

lemma size_mset_tree:
assumes bheap t
shows size (mset_tree t) = 2^rank t

using assms unfolding bheap_def
by (simp add: size_mset_btree)

The length of a binomial heap is bounded by the number of its elements

lemma size_mset_forest:
assumes invar ts
shows length ts ≤ log 2 (size (mset_forest ts) + 1)

proof −

237

from ‹invar ts› have
ASC : sorted_wrt (<) (map rank ts) and
TINV : ∀ t∈set ts. bheap t
unfolding invar_def by auto

have (2 ::nat)^length ts = (
∑

i∈{0 ..<length ts}. 2^i) + 1
by (simp add: sum_power2)

also have . . . = (
∑

i←[0 ..<length ts]. 2^i) + 1 (is _ = ?S + 1)
by (simp add: interv_sum_list_conv_sum_set_nat)

also have ?S ≤ (
∑

t←ts. 2^rank t) (is _ ≤ ?T)
using sorted_wrt_less_idx[OF ASC] by(simp add: sum_list_mono2)

also have ?T + 1 ≤ (
∑

t←ts. size (mset_tree t)) + 1 using TINV
by (auto cong: map_cong simp: size_mset_tree)

also have . . . = size (mset_forest ts) + 1
unfolding mset_forest_def by (induction ts) auto

finally have 2^length ts ≤ size (mset_forest ts) + 1 by simp
then show ?thesis using le_log2_of_power by blast

qed

48.3.1 Timing Functions

time_fun link

lemma T_link[simp]: T_link t1 t2 = 0
by(cases t1; cases t2, auto)

time_fun rank

lemma T_rank[simp]: T_rank t = 0
by(cases t, auto)

time_fun ins_tree

time_fun insert

lemma T_ins_tree_simple_bound: T_ins_tree t ts ≤ length ts + 1
by (induction t ts rule: T_ins_tree.induct) auto

48.3.2 T_insert

lemma T_insert_bound:
assumes invar ts
shows T_insert x ts ≤ log 2 (size (mset_forest ts) + 1) + 1

proof −

238

have real (T_insert x ts) ≤ real (length ts) + 1
unfolding T_insert.simps using T_ins_tree_simple_bound
by (metis of_nat_1 of_nat_add of_nat_mono)

also note size_mset_forest[OF ‹invar ts›]
finally show ?thesis by simp

qed

48.3.3 T_merge

time_fun merge

A crucial idea is to estimate the time in correlation with the result length,
as each carry reduces the length of the result.

lemma T_ins_tree_length:
T_ins_tree t ts + length (ins_tree t ts) = 2 + length ts

by (induction t ts rule: ins_tree.induct) auto

lemma T_merge_length:
T_merge ts1 ts2 + length (merge ts1 ts2) ≤ 2 ∗ (length ts1 + length ts2)

+ 1
by (induction ts1 ts2 rule: merge.induct)

(auto simp: T_ins_tree_length algebra_simps)

Finally, we get the desired logarithmic bound

lemma T_merge_bound:
fixes ts1 ts2
defines n1 ≡ size (mset_forest ts1)
defines n2 ≡ size (mset_forest ts2)
assumes invar ts1 invar ts2
shows T_merge ts1 ts2 ≤ 4∗log 2 (n1 + n2 + 1) + 1

proof −
note n_defs = assms(1 ,2)

have T_merge ts1 ts2 ≤ 2 ∗ real (length ts1) + 2 ∗ real (length ts2) + 1
using T_merge_length[of ts1 ts2] by simp

also note size_mset_forest[OF ‹invar ts1›]
also note size_mset_forest[OF ‹invar ts2›]
finally have T_merge ts1 ts2 ≤ 2 ∗ log 2 (n1 + 1) + 2 ∗ log 2 (n2 +

1) + 1
unfolding n_defs by (simp add: algebra_simps)

also have log 2 (n1 + 1) ≤ log 2 (n1 + n2 + 1)
unfolding n_defs by (simp add: algebra_simps)

also have log 2 (n2 + 1) ≤ log 2 (n1 + n2 + 1)
unfolding n_defs by (simp add: algebra_simps)

239

finally show ?thesis by (simp add: algebra_simps)
qed

48.3.4 T_get_min

time_fun root

lemma T_root[simp]: T_root t = 0
by(cases t)(simp_all)

time_fun min

time_fun get_min

lemma T_get_min_estimate: ts 6=[] =⇒ T_get_min ts = length ts
by (induction ts rule: T_get_min.induct) auto

lemma T_get_min_bound:
assumes invar ts
assumes ts 6=[]
shows T_get_min ts ≤ log 2 (size (mset_forest ts) + 1)

proof −
have 1 : T_get_min ts = length ts using assms T_get_min_estimate by

auto
also note size_mset_forest[OF ‹invar ts›]
finally show ?thesis .

qed

48.3.5 T_del_min

time_fun get_min_rest

lemma T_get_min_rest_estimate: ts 6=[] =⇒ T_get_min_rest ts = length
ts

by (induction ts rule: T_get_min_rest.induct) auto

lemma T_get_min_rest_bound:
assumes invar ts
assumes ts 6=[]
shows T_get_min_rest ts ≤ log 2 (size (mset_forest ts) + 1)

proof −
have 1 : T_get_min_rest ts = length ts using assms T_get_min_rest_estimate

by auto
also note size_mset_forest[OF ‹invar ts›]

240

finally show ?thesis .
qed

time_fun del_min

lemma T_del_min_bound:
fixes ts
defines n ≡ size (mset_forest ts)
assumes invar ts and ts 6=[]
shows T_del_min ts ≤ 6 ∗ log 2 (n+1) + 2

proof −
obtain r x ts1 ts2 where GM : get_min_rest ts = (Node r x ts1, ts2)

by (metis surj_pair tree.exhaust_sel)

have I1 : invar (rev ts1) and I2 : invar ts2
using invar_get_min_rest[OF GM ‹ts 6=[]› ‹invar ts›] invar_children
by auto

define n1 where n1 = size (mset_forest ts1)
define n2 where n2 = size (mset_forest ts2)

have n1 ≤ n n1 + n2 ≤ n unfolding n_def n1_def n2_def
using mset_get_min_rest[OF GM ‹ts 6=[]›]
by (auto simp: mset_forest_def)

have T_del_min ts = real (T_get_min_rest ts) + real (T_itrev ts1 [])
+ real (T_merge (rev ts1) ts2)

unfolding T_del_min.simps GM T_itrev itrev_Nil
by simp

also have T_get_min_rest ts ≤ log 2 (n+1)
using T_get_min_rest_bound[OF ‹invar ts› ‹ts 6=[]›] unfolding n_def

by simp
also have T_itrev ts1 [] ≤ 1 + log 2 (n1 + 1)

unfolding T_itrev n1_def using size_mset_forest[OF I1] by simp
also have T_merge (rev ts1) ts2 ≤ 4∗log 2 (n1 + n2 + 1) + 1

unfolding n1_def n2_def using T_merge_bound[OF I1 I2] by (simp
add: algebra_simps)

finally have T_del_min ts ≤ log 2 (n+1) + log 2 (n1 + 1) + 4∗log 2
(real (n1 + n2) + 1) + 2

by (simp add: algebra_simps)
also note ‹n1 + n2 ≤ n›
also note ‹n1 ≤ n›
finally show ?thesis by (simp add: algebra_simps)

qed

241

end

49 The Median-of-Medians Selection Algorithm
theory Selection

imports Complex_Main HOL−Library.Time_Functions Sorting
begin

Note that there is significant overlap between this theory (which is in-
tended mostly for the Functional Data Structures book) and the Median-of-
Medians AFP entry.

49.1 Auxiliary material

lemma replicate_numeral: replicate (numeral n) x = x # replicate (pred_numeral
n) x

by (simp add: numeral_eq_Suc)

lemma insort_correct: insort xs = sort xs
using sorted_insort mset_insort by (metis properties_for_sort)

lemma sum_list_replicate [simp]: sum_list (replicate n x) = n ∗ x
by (induction n) auto

lemma mset_concat: mset (concat xss) = sum_list (map mset xss)
by (induction xss) simp_all

lemma set_mset_sum_list [simp]: set_mset (sum_list xs) = (
⋃

x∈set xs.
set_mset x)

by (induction xs) auto

lemma filter_mset_image_mset:
filter_mset P (image_mset f A) = image_mset f (filter_mset (λx. P (f

x)) A)
by (induction A) auto

lemma filter_mset_sum_list: filter_mset P (sum_list xs) = sum_list (map
(filter_mset P) xs)

by (induction xs) simp_all

lemma sum_mset_mset_mono:
assumes (

∧
x. x ∈# A =⇒ f x ⊆# g x)

shows (
∑

x∈#A. f x) ⊆# (
∑

x∈#A. g x)

242

using assms by (induction A) (auto intro!: subset_mset.add_mono)

lemma mset_filter_mono:
assumes A ⊆# B

∧
x. x ∈# A =⇒ P x =⇒ Q x

shows filter_mset P A ⊆# filter_mset Q B
by (rule mset_subset_eqI) (insert assms, auto simp: mset_subset_eq_count

count_eq_zero_iff)

lemma size_mset_sum_mset_distrib: size (sum_mset A :: ′a multiset) =
sum_mset (image_mset size A)

by (induction A) auto

lemma sum_mset_mono:
assumes

∧
x. x ∈# A =⇒ f x ≤ (g x :: ′a :: {ordered_ab_semigroup_add,comm_monoid_add})

shows (
∑

x∈#A. f x) ≤ (
∑

x∈#A. g x)
using assms by (induction A) (auto intro!: add_mono)

lemma filter_mset_is_empty_iff : filter_mset P A = {#} ←→ (∀ x. x ∈#
A −→ ¬P x)

by (auto simp: multiset_eq_iff count_eq_zero_iff)

lemma sort_eq_Nil_iff [simp]: sort xs = [] ←→ xs = []
by (metis set_empty set_sort)

lemma sort_mset_cong: mset xs = mset ys =⇒ sort xs = sort ys
by (metis sorted_list_of_multiset_mset)

lemma Min_set_sorted: sorted xs =⇒ xs 6= [] =⇒ Min (set xs) = hd xs
by (cases xs; force intro: Min_insert2)

lemma hd_sort:
fixes xs :: ′a :: linorder list
shows xs 6= [] =⇒ hd (sort xs) = Min (set xs)
by (subst Min_set_sorted [symmetric]) auto

lemma length_filter_conv_size_filter_mset: length (filter P xs) = size (filter_mset
P (mset xs))

by (induction xs) auto

lemma sorted_filter_less_subset_take:
assumes sorted xs and i < length xs
shows {#x ∈# mset xs. x < xs ! i#} ⊆# mset (take i xs)
using assms

proof (induction xs arbitrary: i rule: list.induct)

243

case (Cons x xs i)
show ?case
proof (cases i)

case 0
thus ?thesis using Cons.prems by (auto simp: filter_mset_is_empty_iff)

next
case (Suc i ′)
have {#y ∈# mset (x # xs). y < (x # xs) ! i#} ⊆# add_mset x {#y

∈# mset xs. y < xs ! i ′#}
using Suc Cons.prems by (auto)

also have . . . ⊆# add_mset x (mset (take i ′ xs))
unfolding mset_subset_eq_add_mset_cancel using Cons.prems Suc
by (intro Cons.IH) (auto)

also have . . . = mset (take i (x # xs)) by (simp add: Suc)
finally show ?thesis .

qed
qed auto

lemma sorted_filter_greater_subset_drop:
assumes sorted xs and i < length xs
shows {#x ∈# mset xs. x > xs ! i#} ⊆# mset (drop (Suc i) xs)
using assms

proof (induction xs arbitrary: i rule: list.induct)
case (Cons x xs i)
show ?case
proof (cases i)

case 0
thus ?thesis by (auto simp: sorted_append filter_mset_is_empty_iff)

next
case (Suc i ′)
have {#y ∈# mset (x # xs). y > (x # xs) ! i#} ⊆# {#y ∈# mset xs.

y > xs ! i ′#}
using Suc Cons.prems by (auto simp: set_conv_nth)

also have . . . ⊆# mset (drop (Suc i ′) xs)
using Cons.prems Suc by (intro Cons.IH) (auto)

also have . . . = mset (drop (Suc i) (x # xs)) by (simp add: Suc)
finally show ?thesis .

qed
qed auto

49.2 Chopping a list into equally-sized bits

fun chop :: nat ⇒ ′a list ⇒ ′a list list where
chop 0 _ = []

244

| chop _ [] = []
| chop n xs = take n xs # chop n (drop n xs)

lemmas [simp del] = chop.simps
lemmas [simp] = chop.simps(1)

This is an alternative induction rule for chop, which is often nicer to use.

lemma chop_induct ′ [case_names trivial reduce]:
assumes

∧
n xs. n = 0 ∨ xs = [] =⇒ P n xs

assumes
∧

n xs. n > 0 =⇒ xs 6= [] =⇒ P n (drop n xs) =⇒ P n xs
shows P n xs
using assms

proof induction_schema
show wf (measure (length ◦ snd))

by auto
qed (blast | simp)+

lemma chop_eq_Nil_iff [simp]: chop n xs = [] ←→ n = 0 ∨ xs = []
by (induction n xs rule: chop.induct; subst chop.simps) auto

lemma chop_Nil [simp]: chop n [] = []
by (cases n) auto

lemma chop_reduce: n > 0 =⇒ xs 6= [] =⇒ chop n xs = take n xs # chop
n (drop n xs)

by (cases n; cases xs) (auto simp: chop.simps)

lemma concat_chop [simp]: n > 0 =⇒ concat (chop n xs) = xs
by (induction n xs rule: chop.induct; subst chop.simps) auto

lemma chop_elem_not_Nil [dest]: ys ∈ set (chop n xs) =⇒ ys 6= []
by (induction n xs rule: chop.induct; subst (asm) chop.simps)

(auto simp: eq_commute[of []] split: if_splits)

lemma length_chop_part_le: ys ∈ set (chop n xs) =⇒ length ys ≤ n
by (induction n xs rule: chop.induct; subst (asm) chop.simps) (auto split:

if_splits)

lemma length_chop:
assumes n > 0
shows length (chop n xs) = nat dlength xs / ne

proof −
from ‹n > 0 › have real n ∗ length (chop n xs) ≥ length xs

by (induction n xs rule: chop.induct; subst chop.simps) (auto simp:

245

field_simps)
moreover from ‹n > 0 › have real n ∗ length (chop n xs) < length xs +

n
by (induction n xs rule: chop.induct; subst chop.simps)

(auto simp: field_simps split: nat_diff_split_asm)+
ultimately have length (chop n xs) ≥ length xs / n and length (chop n

xs) < length xs / n + 1
using assms by (auto simp: field_simps)

thus ?thesis by linarith
qed

lemma sum_msets_chop: n > 0 =⇒ (
∑

ys←chop n xs. mset ys) = mset
xs

by (subst mset_concat [symmetric]) simp_all

lemma UN_sets_chop: n > 0 =⇒ (
⋃

ys∈set (chop n xs). set ys) = set xs
by (simp only: set_concat [symmetric] concat_chop)

lemma chop_append: d dvd length xs =⇒ chop d (xs @ ys) = chop d xs @
chop d ys
by (induction d xs rule: chop_induct ′) (auto simp: chop_reduce dvd_imp_le)

lemma chop_replicate [simp]: d > 0 =⇒ chop d (replicate d xs) = [replicate
d xs]

by (subst chop_reduce) auto

lemma chop_replicate_dvd [simp]:
assumes d dvd n
shows chop d (replicate n x) = replicate (n div d) (replicate d x)

proof (cases d = 0)
case False
from assms obtain k where k: n = d ∗ k

by blast
have chop d (replicate (d ∗ k) x) = replicate k (replicate d x)

using False by (induction k) (auto simp: replicate_add chop_append)
thus ?thesis using False by (simp add: k)

qed auto

lemma chop_concat:
assumes ∀ xs∈set xss. length xs = d and d > 0
shows chop d (concat xss) = xss
using assms

proof (induction xss)
case (Cons xs xss)

246

have chop d (concat (xs # xss)) = chop d (xs @ concat xss)
by simp

also have . . . = chop d xs @ chop d (concat xss)
using Cons.prems by (intro chop_append) auto

also have chop d xs = [xs]
using Cons.prems by (subst chop_reduce) auto

also have chop d (concat xss) = xss
using Cons.prems by (intro Cons.IH) auto

finally show ?case by simp
qed auto

49.3 Selection

definition select :: nat ⇒ (′a :: linorder) list ⇒ ′a where
select k xs = sort xs ! k

lemma select_0 : xs 6= [] =⇒ select 0 xs = Min (set xs)
by (simp add: hd_sort select_def flip: hd_conv_nth)

lemma select_mset_cong: mset xs = mset ys =⇒ select k xs = select k ys
using sort_mset_cong[of xs ys] unfolding select_def by auto

lemma select_in_set [intro,simp]:
assumes k < length xs
shows select k xs ∈ set xs

proof −
from assms have sort xs ! k ∈ set (sort xs) by (intro nth_mem) auto
also have set (sort xs) = set xs by simp
finally show ?thesis by (simp add: select_def)

qed

lemma
assumes n < length xs
shows size_less_than_select: size {#y ∈# mset xs. y < select n xs#}
≤ n

and size_greater_than_select: size {#y ∈# mset xs. y > select n xs#}
< length xs − n
proof −

have size {#y ∈# mset (sort xs). y < select n xs#} ≤ size (mset (take
n (sort xs)))

unfolding select_def using assms
by (intro size_mset_mono sorted_filter_less_subset_take) auto

thus size {#y ∈# mset xs. y < select n xs#} ≤ n
by simp

247

have size {#y ∈# mset (sort xs). y > select n xs#} ≤ size (mset (drop
(Suc n) (sort xs)))

unfolding select_def using assms
by (intro size_mset_mono sorted_filter_greater_subset_drop) auto

thus size {#y ∈# mset xs. y > select n xs#} < length xs − n
using assms by simp

qed

49.4 The designated median of a list

definition median where median xs = select ((length xs − 1) div 2) xs

lemma median_in_set [intro, simp]:
assumes xs 6= []
shows median xs ∈ set xs

proof −
from assms have length xs > 0 by auto
hence (length xs − 1) div 2 < length xs by linarith
thus ?thesis by (simp add: median_def)

qed

lemma size_less_than_median: size {#y ∈# mset xs. y < median xs#}
≤ (length xs − 1) div 2
proof (cases xs = [])

case False
hence length xs > 0

by auto
hence less: (length xs − 1) div 2 < length xs

by linarith
show size {#y ∈# mset xs. y < median xs#} ≤ (length xs − 1) div 2

using size_less_than_select[OF less] by (simp add: median_def)
qed auto

lemma size_greater_than_median: size {#y ∈# mset xs. y > median
xs#} ≤ length xs div 2
proof (cases xs = [])

case False
hence length xs > 0

by auto
hence less: (length xs − 1) div 2 < length xs

by linarith
have size {#y ∈# mset xs. y > median xs#} < length xs − (length xs −

1) div 2
using size_greater_than_select[OF less] by (simp add: median_def)

248

also have . . . = length xs div 2 + 1
using ‹length xs > 0 › by linarith

finally show size {#y ∈# mset xs. y > median xs#} ≤ length xs div 2
by simp

qed auto

lemmas median_props = size_less_than_median size_greater_than_median

49.5 A recurrence for selection

definition partition3 :: ′a ⇒ ′a :: linorder list ⇒ ′a list × ′a list × ′a list
where

partition3 x xs = (filter (λy. y < x) xs, filter (λy. y = x) xs, filter (λy. y
> x) xs)

lemma partition3_code [code]:
partition3 x [] = ([], [], [])
partition3 x (y # ys) =

(case partition3 x ys of (ls, es, gs) ⇒
if y < x then (y # ls, es, gs) else if x = y then (ls, y # es, gs) else

(ls, es, y # gs))
by (auto simp: partition3_def)

lemma length_partition3 :
assumes partition3 x xs = (ls, es, gs)
shows length xs = length ls + length es + length gs
using assms by (induction xs arbitrary: ls es gs)

(auto simp: partition3_code split: if_splits prod.splits)

lemma sort_append:
assumes ∀ x∈set xs. ∀ y∈set ys. x ≤ y
shows sort (xs @ ys) = sort xs @ sort ys
using assms by (intro properties_for_sort) (auto simp: sorted_append)

lemma select_append:
assumes ∀ y∈set ys. ∀ z∈set zs. y ≤ z
shows k < length ys =⇒ select k (ys @ zs) = select k ys

and k ∈ {length ys..<length ys + length zs} =⇒
select k (ys @ zs) = select (k − length ys) zs

using assms by (simp_all add: select_def sort_append nth_append)

lemma select_append ′:
assumes ∀ y∈set ys. ∀ z∈set zs. y ≤ z and k < length ys + length zs
shows select k (ys @ zs) = (if k < length ys then select k ys else select

249

(k − length ys) zs)
using assms by (auto intro!: select_append)

theorem select_rec_partition:
assumes k < length xs
shows select k xs = (

let (ls, es, gs) = partition3 x xs
in

if k < length ls then select k ls
else if k < length ls + length es then x
else select (k − length ls − length es) gs

) (is _ = ?rhs)
proof −

define ls es gs where ls = filter (λy. y < x) xs and es = filter (λy. y =
x) xs

and gs = filter (λy. y > x) xs
define nl ne where [simp]: nl = length ls ne = length es
have mset_eq: mset xs = mset ls + mset es + mset gs

unfolding ls_def es_def gs_def by (induction xs) auto
have length_eq: length xs = length ls + length es + length gs

unfolding ls_def es_def gs_def
using [[simp_depth_limit = 1]] by (induction xs) auto

have [simp]: select i es = x if i < length es for i
proof −

have select i es ∈ set (sort es) unfolding select_def
using that by (intro nth_mem) auto

thus ?thesis
by (auto simp: es_def)

qed

have select k xs = select k (ls @ (es @ gs))
by (intro select_mset_cong) (simp_all add: mset_eq)

also have . . . = (if k < nl then select k ls else select (k − nl) (es @ gs))
unfolding nl_ne_def using assms
by (intro select_append ′) (auto simp: ls_def es_def gs_def length_eq)

also have . . . = (if k < nl then select k ls else if k < nl + ne then x
else select (k − nl − ne) gs)

proof (rule if_cong)
assume ¬k < nl
have select (k − nl) (es @ gs) =

(if k − nl < ne then select (k − nl) es else select (k − nl −
ne) gs)

unfolding nl_ne_def using assms ‹¬k < nl›
by (intro select_append ′) (auto simp: ls_def es_def gs_def length_eq)

250

also have . . . = (if k < nl + ne then x else select (k − nl − ne) gs)
using ‹¬k < nl› by auto

finally show select (k − nl) (es @ gs) =
qed simp_all
also have . . . = ?rhs

by (simp add: partition3_def ls_def es_def gs_def)
finally show ?thesis .

qed

49.6 The size of the lists in the recursive calls

We now derive an upper bound for the number of elements of a list that
are smaller (resp. bigger) than the median of medians with chopping size
5. To avoid having to do the same proof twice, we do it generically for an
operation ≺ that we will later instantiate with either < or >.

context
fixes xs :: ′a :: linorder list
fixes M defines M ≡ median (map median (chop 5 xs))

begin

lemma size_median_of_medians_aux:
fixes R :: ′a :: linorder ⇒ ′a ⇒ bool (infix ‹≺› 50)
assumes R: R ∈ {(<), (>)}
shows size {#y ∈# mset xs. y ≺ M#} ≤ nat d0 .7 ∗ length xs + 3 e

proof −
define n and m where [simp]: n = length xs and m = length (chop 5

xs)

We define an abbreviation for the multiset of all the chopped-up groups:

We then split that multiset into those groups whose medians is less than
M and the rest.

define Y_small (‹Y≺›) where Y≺ = filter_mset (λys. median ys ≺ M)
(mset (chop 5 xs))

define Y_big (‹Y�›) where Y� = filter_mset (λys. ¬(median ys ≺ M))
(mset (chop 5 xs))

have m = size (mset (chop 5 xs)) by (simp add: m_def)
also have mset (chop 5 xs) = Y≺ + Y� unfolding Y_small_def Y_big_def

by (rule multiset_partition)
finally have m_eq: m = size Y≺ + size Y� by simp

At most half of the lists have a median that is smaller than the median
of medians:

have size Y≺ = size (image_mset median Y≺) by simp

251

also have image_mset median Y≺ = {#y ∈# mset (map median (chop
5 xs)). y ≺ M#}

unfolding Y_small_def by (subst filter_mset_image_mset [symmetric])
simp_all

also have size . . . ≤ (length (map median (chop 5 xs))) div 2
unfolding M_def using median_props[of map median (chop 5 xs)] R

by auto
also have . . . = m div 2 by (simp add: m_def)
finally have size_Y _small: size Y≺ ≤ m div 2 .

We estimate the number of elements less than M by grouping them into
elements coming from Y≺ and elements coming from Y�:

have {#y ∈# mset xs. y ≺ M#} = {#y ∈# (
∑

ys←chop 5 xs. mset ys).
y ≺ M#}

by (subst sum_msets_chop) simp_all
also have . . . = (

∑
ys←chop 5 xs. {#y ∈# mset ys. y ≺ M#})

by (subst filter_mset_sum_list) (simp add: o_def)
also have . . . = (

∑
ys∈#mset (chop 5 xs). {#y ∈# mset ys. y ≺ M#})

by (subst sum_mset_sum_list [symmetric]) simp_all
also have mset (chop 5 xs) = Y≺ + Y�

by (simp add: Y_small_def Y_big_def not_le)
also have (

∑
ys∈#. . . . {#y ∈# mset ys. y ≺ M#}) =

(
∑

ys∈#Y≺. {#y ∈# mset ys. y ≺ M#}) + (
∑

ys∈#Y�.
{#y ∈# mset ys. y ≺ M#})

by simp

Next, we overapproximate the elements contributed by Y≺: instead of
those elements that are smaller than the median, we take all the elements
of each group. For the elements contributed by Y�, we overapproximate by
taking all those that are less than their median instead of only those that
are less than M.

also have . . . ⊆# (
∑

ys∈#Y≺. mset ys) + (
∑

ys∈#Y�. {#y ∈# mset
ys. y ≺ median ys#})

using R
by (intro subset_mset.add_mono sum_mset_mset_mono mset_filter_mono)

(auto simp: Y_big_def)
finally have size {# y ∈# mset xs. y ≺ M#} ≤ size . . .

by (rule size_mset_mono)
hence size {# y ∈# mset xs. y ≺ M#} ≤

(
∑

ys∈#Y≺. length ys) + (
∑

ys∈#Y�. size {#y ∈# mset ys. y
≺ median ys#})

by (simp add: size_mset_sum_mset_distrib multiset.map_comp o_def)

Next, we further overapproximate the first sum by noting that each group
has at most size 5.

252

also have (
∑

ys∈#Y≺. length ys) ≤ (
∑

ys∈#Y≺. 5)
by (intro sum_mset_mono) (auto simp: Y_small_def length_chop_part_le)

also have . . . = 5 ∗ size Y≺ by simp

Next, we note that each group in Y� can have at most 2 elements that
are smaller than its median.

also have (
∑

ys∈#Y�. size {#y ∈# mset ys. y ≺ median ys#}) ≤
(
∑

ys∈#Y�. length ys div 2)
proof (intro sum_mset_mono, goal_cases)

fix ys assume ys ∈# Y�
hence ys 6= []

by (auto simp: Y_big_def)
thus size {#y ∈# mset ys. y ≺ median ys#} ≤ length ys div 2

using R median_props[of ys] by auto
qed
also have . . . ≤ (

∑
ys∈#Y�. 2)

by (intro sum_mset_mono div_le_mono diff_le_mono)
(auto simp: Y_big_def dest: length_chop_part_le)

also have . . . = 2 ∗ size Y� by simp

Simplifying gives us the main result.

also have 5 ∗ size Y≺ + 2 ∗ size Y� = 2 ∗ m + 3 ∗ size Y≺
by (simp add: m_eq)

also have . . . ≤ 3 .5 ∗ m
using ‹size Y≺ ≤ m div 2 › by linarith

also have . . . = 3 .5 ∗ dn / 5 e
by (simp add: m_def length_chop)

also have . . . ≤ 0 .7 ∗ n + 3 .5
by linarith

finally have size {#y ∈# mset xs. y ≺ M#} ≤ 0 .7 ∗ n + 3 .5
by simp

thus size {#y ∈# mset xs. y ≺ M#} ≤ nat d0 .7 ∗ n + 3 e
by linarith

qed

lemma size_less_than_median_of_medians:
size {#y ∈# mset xs. y < M#} ≤ nat d0 .7 ∗ length xs + 3 e
using size_median_of_medians_aux[of (<)] by simp

lemma size_greater_than_median_of_medians:
size {#y ∈# mset xs. y > M#} ≤ nat d0 .7 ∗ length xs + 3 e
using size_median_of_medians_aux[of (>)] by simp

end

253

49.7 Efficient algorithm

We handle the base cases and computing the median for the chopped-up
sublists of size 5 using the naive selection algorithm where we sort the list
using insertion sort.

definition slow_select where
slow_select k xs = insort xs ! k

definition slow_median where
slow_median xs = slow_select ((length xs − 1) div 2) xs

lemma slow_select_correct: slow_select k xs = select k xs
by (simp add: slow_select_def select_def insort_correct)

lemma slow_median_correct: slow_median xs = median xs
by (simp add: median_def slow_median_def slow_select_correct)

The definition of the selection algorithm is complicated somewhat by the
fact that its termination is contingent on its correctness: if the first recursive
call were to return an element for x that is e.g. smaller than all list elements,
the algorithm would not terminate.

Therefore, we first prove partial correctness, then termination, and then
combine the two to obtain total correctness.

function mom_select where
mom_select k xs = (

let n = length xs
in if n ≤ 20 then

slow_select k xs
else

let M = mom_select (((n + 4) div 5 − 1) div 2) (map slow_median
(chop 5 xs));

(ls, es, gs) = partition3 M xs;
nl = length ls

in
if k < nl then mom_select k ls
else let ne = length es in if k < nl + ne then M
else mom_select (k − nl − ne) gs

)
by auto

If mom_select terminates, it agrees with select:

lemma mom_select_correct_aux:
assumes mom_select_dom (k, xs) and k < length xs
shows mom_select k xs = select k xs

254

using assms
proof (induction rule: mom_select.pinduct)

case (1 k xs)
show mom_select k xs = select k xs
proof (cases length xs ≤ 20)

case True
thus mom_select k xs = select k xs using 1 .prems 1 .hyps
by (subst mom_select.psimps) (auto simp: select_def slow_select_correct)

next
case False
define x where
x = mom_select (((length xs + 4) div 5 − 1) div 2) (map slow_median

(chop 5 xs))
define ls es gs where ls = filter (λy. y < x) xs and es = filter (λy. y

= x) xs
and gs = filter (λy. y > x) xs

define nl ne where nl = length ls and ne = length es
note defs = nl_def ne_def x_def ls_def es_def gs_def
have tw: (ls, es, gs) = partition3 x xs

unfolding partition3_def defs One_nat_def ..
have length_eq: length xs = nl + ne + length gs

unfolding nl_def ne_def ls_def es_def gs_def
using [[simp_depth_limit = 1]] by (induction xs) auto

note IH = 1 .IH (2)[OF refl False x_def tw refl refl refl]
1 .IH (3)[OF refl False x_def tw refl refl refl _ refl]

have mom_select k xs = (if k < nl then mom_select k ls else if k < nl
+ ne then x

else mom_select (k − nl − ne) gs) using 1 .hyps
False

by (subst mom_select.psimps) (simp_all add: partition3_def flip: defs
One_nat_def)

also have . . . = (if k < nl then select k ls else if k < nl + ne then x
else select (k − nl − ne) gs)

using IH length_eq 1 .prems by (simp add: ls_def es_def gs_def nl_def
ne_def)

try0
also have . . . = select k xs using ‹k < length xs›

by (subst (3) select_rec_partition[of _ _ x]) (simp_all add: nl_def
ne_def flip: tw)

finally show mom_select k xs = select k xs .
qed

qed

255

mom_select indeed terminates for all inputs:
lemma mom_select_termination: All mom_select_dom
proof (relation measure (length ◦ snd); (safe)?)

fix k :: nat and xs :: ′a list
assume ¬ length xs ≤ 20
thus ((((length xs + 4) div 5 − 1) div 2 , map slow_median (chop 5 xs)),

k, xs)
∈ measure (length ◦ snd)

by (auto simp: length_chop nat_less_iff ceiling_less_iff)
next

fix k :: nat and xs ls es gs :: ′a list
define x where x = mom_select (((length xs + 4) div 5 − 1) div 2)

(map slow_median (chop 5 xs))
assume A: ¬ length xs ≤ 20

(ls, es, gs) = partition3 x xs
mom_select_dom (((length xs + 4) div 5 − 1) div 2 ,

map slow_median (chop 5 xs))
have less: ((length xs + 4) div 5 − 1) div 2 < nat dlength xs / 5 e

using A(1) by linarith
For termination, it suffices to prove that x is in the list.

have x = select (((length xs + 4) div 5 − 1) div 2) (map slow_median
(chop 5 xs))

using less unfolding x_def by (intro mom_select_correct_aux A)
(auto simp: length_chop)

also have . . . ∈ set (map slow_median (chop 5 xs))
using less by (intro select_in_set) (simp_all add: length_chop)

also have . . . ⊆ set xs
unfolding set_map

proof safe
fix ys assume ys: ys ∈ set (chop 5 xs)
hence median ys ∈ set ys

by auto
also have set ys ⊆

⋃
(set ‘ set (chop 5 xs))

using ys by blast
also have . . . = set xs

by (rule UN_sets_chop) simp_all
finally show slow_median ys ∈ set xs

by (simp add: slow_median_correct)
qed
finally have x ∈ set xs .
thus ((k, ls), k, xs) ∈ measure (length ◦ snd)
and ((k − length ls − length es, gs), k, xs) ∈ measure (length ◦ snd)
using A(1 ,2) by (auto simp: partition3_def intro!: length_filter_less[of

256

x])
qed

termination mom_select by (rule mom_select_termination)

lemmas [simp del] = mom_select.simps

lemma mom_select_correct: k < length xs =⇒ mom_select k xs = select
k xs

using mom_select_correct_aux and mom_select_termination by blast

49.8 Running time analysis

time_fun partition3 equations partition3_code

lemma T_partition3 : T_partition3 x xs = length xs + 1
by (induction x xs rule: T_partition3 .induct) auto

time_definition slow_select

lemmas T_slow_select_def [simp del] = T_slow_select.simps

time_fun slow_median

lemma T_slow_select_le:
assumes k < length xs
shows T_slow_select k xs ≤ length xs ^ 2 + 3 ∗ length xs + 1

proof −
have T_slow_select k xs = T_insort xs + T_nth (Sorting.insort xs) k

unfolding T_slow_select_def ..
also have T_insort xs ≤ (length xs + 1) ^ 2

by (rule T_insort_length)
also have T_nth (Sorting.insort xs) k = k + 1

using assms by (subst T_nth) (auto simp: length_insort)
also have k + 1 ≤ length xs

using assms by linarith
also have (length xs + 1) ^ 2 + length xs = length xs ^ 2 + 3 ∗ length

xs + 1
by (simp add: algebra_simps power2_eq_square)

finally show ?thesis by − simp_all
qed

lemma T_slow_median_le:

257

assumes xs 6= []
shows T_slow_median xs ≤ length xs ^ 2 + 4 ∗ length xs + 2

proof −
have T_slow_median xs = length xs + T_slow_select ((length xs − 1)

div 2) xs + 1
by (simp add: T_length)

also from assms have length xs > 0
by simp

hence (length xs − 1) div 2 < length xs
by linarith

hence T_slow_select ((length xs − 1) div 2) xs ≤ length xs ^ 2 + 3 ∗
length xs + 1

by (intro T_slow_select_le) auto
also have length xs + . . . + 1 = length xs ^ 2 + 4 ∗ length xs + 2

by (simp add: algebra_simps)
finally show ?thesis by − simp_all

qed

time_fun chop

lemmas [simp del] = T_chop.simps

lemma T_chop_Nil [simp]: T_chop d [] = 1
by (cases d) (auto simp: T_chop.simps)

lemma T_chop_0 [simp]: T_chop 0 xs = 1
by (auto simp: T_chop.simps)

lemma T_chop_reduce:
n > 0 =⇒ xs 6= [] =⇒ T_chop n xs = T_take n xs + T_drop n xs +

T_chop n (drop n xs) + 1
by (cases n; cases xs) (auto simp: T_chop.simps)

lemma T_chop_le: T_chop d xs ≤ 5 ∗ length xs + 1
by (induction d xs rule: T_chop.induct) (auto simp: T_chop_reduce

T_take T_drop)

time_fun mom_select

lemmas [simp del] = T_mom_select.simps

lemma T_mom_select_simps:
length xs ≤ 20 =⇒ T_mom_select k xs = T_slow_select k xs + T_length

258

xs + 1
length xs > 20 =⇒ T_mom_select k xs = (

let xss = chop 5 xs;
ms = map slow_median xss;
idx = (((length xs + 4) div 5 − 1) div 2);
x = mom_select idx ms;
(ls, es, gs) = partition3 x xs;
nl = length ls;
ne = length es

in
(if k < nl then T_mom_select k ls
else T_length es + (if k < nl + ne then 0 else T_mom_select (k

− nl − ne) gs)) +
T_mom_select idx ms + T_chop 5 xs + T_map T_slow_median

xss +
T_partition3 x xs + T_length ls + T_length xs + 1

)
by (subst T_mom_select.simps; simp add: Let_def case_prod_unfold)+

function T ′_mom_select :: nat ⇒ nat where
T ′_mom_select n =

(if n ≤ 20 then
483

else
T ′_mom_select (nat d0 .2∗ne) + T ′_mom_select (nat d0 .7∗n+3 e)

+ 19 ∗ n + 54)
by force+

termination by (relation measure id; simp; linarith)

lemmas [simp del] = T ′_mom_select.simps

lemma T ′_mom_select_ge: T ′_mom_select n ≥ 483
by (induction n rule: T ′_mom_select.induct; subst T ′_mom_select.simps)

auto

lemma T ′_mom_select_mono:
m ≤ n =⇒ T ′_mom_select m ≤ T ′_mom_select n

proof (induction n arbitrary: m rule: less_induct)
case (less n m)
show ?case
proof (cases m ≤ 20)

case True
hence T ′_mom_select m = 483

259

by (subst T ′_mom_select.simps) auto
also have . . . ≤ T ′_mom_select n

by (rule T ′_mom_select_ge)
finally show ?thesis .

next
case False
hence T ′_mom_select m =

T ′_mom_select (nat d0 .2∗me) + T ′_mom_select (nat d0 .7∗m
+ 3 e) + 19 ∗ m + 54

by (subst T ′_mom_select.simps) auto
also have . . . ≤ T ′_mom_select (nat d0 .2∗ne) + T ′_mom_select (nat

d0 .7∗n + 3 e) + 19 ∗ n + 54
using ‹m ≤ n› and False by (intro add_mono less.IH ; linarith)

also have . . . = T ′_mom_select n
using ‹m ≤ n› and False by (subst T ′_mom_select.simps) auto

finally show ?thesis .
qed

qed

lemma T_mom_select_le_aux:
assumes k < length xs
shows T_mom_select k xs ≤ T ′_mom_select (length xs)
using assms

proof (induction k xs rule: T_mom_select.induct)
case (1 k xs)
define n where [simp]: n = length xs
define x where

x = mom_select (((n + 4) div 5 − 1) div 2) (map slow_median (chop
5 xs))

define ls es gs where ls = filter (λy. y < x) xs and es = filter (λy. y =
x) xs

and gs = filter (λy. y > x) xs
define nl ne where nl = length ls and ne = length es
note defs = nl_def ne_def x_def ls_def es_def gs_def
have tw: (ls, es, gs) = partition3 x xs

unfolding partition3_def defs One_nat_def ..
note IH = 1 .IH (1)[OF n_def]

1 .IH (2)[OF n_def _ x_def tw refl refl nl_def]
1 .IH (3)[OF n_def _ x_def tw refl refl nl_def _ ne_def]

show ?case
proof (cases length xs ≤ 20)

case True — base case
hence T_mom_select k xs ≤ (length xs)2 + 4 ∗ length xs + 3

260

using T_slow_select_le[of k xs] ‹k < length xs›
by (subst T_mom_select_simps(1)) (auto simp: T_length)

also have . . . ≤ 20 2 + 4 ∗ 20 + 3
using True by (intro add_mono power_mono) auto

also have . . . = 483
by simp

also have . . . = T ′_mom_select (length xs)
using True by (simp add: T ′_mom_select.simps)

finally show ?thesis by simp
next

case False — recursive case
have ((n + 4) div 5 − 1) div 2 < nat dn / 5 e

using False unfolding n_def by linarith
hence x = select (((n + 4) div 5 − 1) div 2) (map slow_median (chop

5 xs))
unfolding x_def n_def by (intro mom_select_correct) (auto simp:

length_chop)
also have ((n + 4) div 5 − 1) div 2 = (nat dn / 5 e − 1) div 2

by linarith
also have select . . . (map slow_median (chop 5 xs)) = median (map

slow_median (chop 5 xs))
by (auto simp: median_def length_chop)

finally have x_eq: x = median (map slow_median (chop 5 xs)) .

The cost of computing the medians of all the subgroups:

define T_ms where T_ms = T_map T_slow_median (chop 5 xs)
have T_ms ≤ 10 ∗ n + 48
proof −

have T_ms = (
∑

ys←chop 5 xs. T_slow_median ys) + length (chop
5 xs) + 1

by (simp add: T_ms_def T_map)
also have (

∑
ys←chop 5 xs. T_slow_median ys) ≤ (

∑
ys←chop 5

xs. 47)
proof (intro sum_list_mono)

fix ys assume ys ∈ set (chop 5 xs)
hence length ys ≤ 5 ys 6= []

using length_chop_part_le[of ys 5 xs] by auto
from ‹ys 6= []› have T_slow_median ys ≤ (length ys) ^ 2 + 4 ∗

length ys + 2
by (rule T_slow_median_le)

also have . . . ≤ 5 ^ 2 + 4 ∗ 5 + 2
using ‹length ys ≤ 5 › by (intro add_mono power_mono) auto

finally show T_slow_median ys ≤ 47 by simp
qed

261

also have (
∑

ys←chop 5 xs. 47) + length (chop 5 xs) + 1 =
48 ∗ nat dreal n / 5 e + 1

by (simp add: map_replicate_const length_chop)
also have . . . ≤ 10 ∗ n + 48

by linarith
finally show T_ms ≤ 10 ∗ n + 48 by simp

qed

The cost of the first recursive call (to compute the median of medians):

define T_rec1 where
T_rec1 = T_mom_select (((n + 4) div 5 − 1) div 2) (map slow_median

(chop 5 xs))
from False have ((length xs + 4) div 5 − Suc 0) div 2 < nat dreal

(length xs) / 5 e
by linarith

hence T_rec1 ≤ T ′_mom_select (length (map slow_median (chop 5
xs)))

using False unfolding T_rec1_def by (intro IH (1)) (auto simp:
length_chop)

hence T_rec1 ≤ T ′_mom_select (nat d0 .2 ∗ ne)
by (simp add: length_chop)

The cost of the second recursive call (to compute the final result):

define T_rec2 where T_rec2 = (if k < nl then T_mom_select k ls
else if k < nl + ne then 0
else T_mom_select (k − nl − ne) gs)

consider k < nl | k ∈ {nl..<nl+ne} | k ≥ nl+ne
by force

hence T_rec2 ≤ T ′_mom_select (nat d0 .7 ∗ n + 3 e)
proof cases

assume k < nl
hence T_rec2 = T_mom_select k ls

by (simp add: T_rec2_def)
also have . . . ≤ T ′_mom_select (length ls)

by (rule IH (2)) (use ‹k < nl› False in ‹auto simp: defs›)
also have length ls ≤ nat d0 .7 ∗ n + 3 e

unfolding ls_def using size_less_than_median_of_medians[of xs]
by (auto simp: length_filter_conv_size_filter_mset slow_median_correct[abs_def]

x_eq)
hence T ′_mom_select (length ls) ≤ T ′_mom_select (nat d0 .7 ∗ n

+ 3 e)
by (rule T ′_mom_select_mono)

finally show ?thesis .
next

262

assume k ∈ {nl..<nl + ne}
hence T_rec2 = 0

by (simp add: T_rec2_def)
thus ?thesis

using T ′_mom_select_ge[of nat d0 .7 ∗ n + 3 e] by simp
next

assume k ≥ nl + ne
hence T_rec2 = T_mom_select (k − nl − ne) gs

by (simp add: T_rec2_def)
also have . . . ≤ T ′_mom_select (length gs)
proof (rule IH (3))

show ¬n ≤ 20
using False by auto

show ¬ k < nl ¬k < nl + ne
using ‹k ≥ nl + ne› by (auto simp: nl_def ne_def)

have length xs = nl + ne + length gs
unfolding defs by (rule length_partition3) (simp_all add: parti-

tion3_def)
thus k − nl − ne < length gs
using ‹k ≥ nl + ne› ‹k < length xs› by (auto simp: nl_def ne_def)

qed
also have length gs ≤ nat d0 .7 ∗ n + 3 e
unfolding gs_def using size_greater_than_median_of_medians[of

xs]
by (auto simp: length_filter_conv_size_filter_mset slow_median_correct[abs_def]

x_eq)
hence T ′_mom_select (length gs) ≤ T ′_mom_select (nat d0 .7 ∗ n

+ 3 e)
by (rule T ′_mom_select_mono)

finally show ?thesis .
qed

Now for the final inequality chain:

have T_mom_select k xs =
(if k < nl then T_mom_select k ls
else T_length es +
(if k < nl + ne then 0 else T_mom_select (k − nl − ne) gs))

+
T_mom_select (((n + 4) div 5 − 1) div 2) (map slow_median

(chop 5 xs)) +
T_chop 5 xs + T_map T_slow_median (chop 5 xs) + T_partition3

x xs +
T_length ls + T_length xs + 1 using False

by (subst T_mom_select_simps;

263

unfold Let_def n_def [symmetric] x_def [symmetric] nl_def
[symmetric]

ne_def [symmetric] prod.case tw [symmetric]) simp_all
also have . . . ≤ T_rec2 + T_rec1 + T_ms + 2 ∗ n + nl + ne +

T_chop 5 xs + 5 using False
by (auto simp add: T_rec1_def T_rec2_def T_partition3

T_length T_ms_def nl_def ne_def)
also have nl ≤ n by (simp add: nl_def ls_def)
also have ne ≤ n by (simp add: ne_def es_def)
also note ‹T_ms ≤ 10 ∗ n + 48 ›
also have T_chop 5 xs ≤ 5 ∗ n + 1

using T_chop_le[of 5 xs] by simp
also note ‹T_rec1 ≤ T ′_mom_select (nat d0 .2∗ne)›
also note ‹T_rec2 ≤ T ′_mom_select (nat d0 .7∗n + 3 e)›
finally have T_mom_select k xs ≤

T ′_mom_select (nat d0 .7∗n + 3 e) + T ′_mom_select (nat
d0 .2∗ne) + 19 ∗ n + 54

by simp
also have . . . = T ′_mom_select n

using False by (subst T ′_mom_select.simps) auto
finally show ?thesis by simp

qed
qed

49.9 Akra–Bazzi Light

lemma akra_bazzi_light_aux1 :
fixes a b :: real and n n0 :: nat
assumes ab: a > 0 a < 1 n > n0
assumes n0 ≥ (max 0 b + 1) / (1 − a)
shows nat da∗n+be < n

proof −
have a ∗ real n + max 0 b ≥ 0

using ab by simp
hence real (nat da∗n+be) ≤ a ∗ n + max 0 b + 1

by linarith
also {

have n0 ≥ (max 0 b + 1) / (1 − a)
by fact

also have . . . < real n
using assms by simp

finally have a ∗ real n + max 0 b + 1 < real n
using ab by (simp add: field_simps)

}

264

finally show nat da∗n+be < n
using ‹n > n0 › by linarith

qed

lemma akra_bazzi_light_aux2 :
fixes f :: nat ⇒ real
fixes n0 :: nat and a b c d :: real and C1 C2 C 1 C 2 :: real
assumes bounds: a > 0 c > 0 a + c < 1 C 1 ≥ 0
assumes rec: ∀n>n0. f n = f (nat da∗n+be) + f (nat dc∗n+de) + C 1 ∗

n + C 2

assumes ineqs: n0 > (max 0 b + max 0 d + 2) / (1 − a − c)
C 3 ≥ C 1 / (1 − a − c)
C 3 ≥ (C 1 ∗ n0 + C 2 + C 4) / ((1 − a − c) ∗ n0 − max 0 b

− max 0 d − 2)
∀n≤n0. f n ≤ C 4

shows f n ≤ C 3 ∗ n + C 4

proof (induction n rule: less_induct)
case (less n)
have 0 ≤ C 1 / (1 − a − c)

using bounds by auto
also have . . . ≤ C 3

by fact
finally have C 3 ≥ 0 .

show ?case
proof (cases n > n0)

case False
hence f n ≤ C 4

using ineqs(4) by auto
also have . . . ≤ C 3 ∗ real n + C 4

using bounds ‹C 3 ≥ 0 › by auto
finally show ?thesis .

next
case True
have nonneg: a ∗ n ≥ 0 c ∗ n ≥ 0

using bounds by simp_all

have (max 0 b + 1) / (1 − a) ≤ (max 0 b + max 0 d + 2) / (1 − a
− c)

using bounds by (intro frac_le) auto
hence n0 ≥ (max 0 b + 1) / (1 − a)

using ineqs(1) by linarith
hence rec_less1 : nat da∗n+be < n
using bounds ‹n > n0› by (intro akra_bazzi_light_aux1 [of _ n0]) auto

265

have (max 0 d + 1) / (1 − c) ≤ (max 0 b + max 0 d + 2) / (1 − a
− c)

using bounds by (intro frac_le) auto
hence n0 ≥ (max 0 d + 1) / (1 − c)

using ineqs(1) by linarith
hence rec_less2 : nat dc∗n+de < n
using bounds ‹n > n0› by (intro akra_bazzi_light_aux1 [of _ n0]) auto

have f n = f (nat da∗n+be) + f (nat dc∗n+de) + C 1 ∗ n + C 2

using ‹n > n0› by (subst rec) auto
also have . . . ≤ (C 3 ∗ nat da∗n+be + C 4) + (C 3 ∗ nat dc∗n+de +

C 4) + C 1 ∗ n + C 2

using rec_less1 rec_less2 by (intro add_mono less.IH) auto
also have . . . ≤ (C 3 ∗ (a∗n+max 0 b+1) + C 4) + (C 3 ∗ (c∗n+max 0

d+1) + C 4) + C 1 ∗ n + C 2

using bounds ‹C 3 ≥ 0 › nonneg by (intro add_mono mult_left_mono
order .refl; linarith)

also have . . . = C 3 ∗ n + ((C 3 ∗ (max 0 b + max 0 d + 2) + 2 ∗
C 4 + C 2) −

(C 3 ∗ (1 − a − c) − C 1) ∗ n)
by (simp add: algebra_simps)

also have . . . ≤ C 3 ∗ n + ((C 3 ∗ (max 0 b + max 0 d + 2) + 2 ∗
C 4 + C 2) −

(C 3 ∗ (1 − a − c) − C 1) ∗ n0)
using ‹n > n0› ineqs(2) bounds

by (intro add_mono diff_mono order .refl mult_left_mono) (auto simp:
field_simps)

also have (C 3 ∗ (max 0 b + max 0 d + 2) + 2 ∗ C 4 + C 2) − (C 3 ∗
(1 − a − c) − C 1) ∗ n0 ≤ C 4

using ineqs bounds by (simp add: field_simps)
finally show f n ≤ C 3 ∗ real n + C 4

by (simp add: mult_right_mono)
qed

qed

lemma akra_bazzi_light:
fixes f :: nat ⇒ real
fixes n0 :: nat and a b c d C 1 C 2 :: real
assumes bounds: a > 0 c > 0 a + c < 1 C 1 ≥ 0
assumes rec: ∀n>n0. f n = f (nat da∗n+be) + f (nat dc∗n+de) + C 1 ∗

n + C 2

shows ∃C 3 C 4. ∀n. f n ≤ C 3 ∗ real n + C 4

proof −

266

define n0
′ where n0

′ = max n0 (nat d(max 0 b + max 0 d + 2) / (1 −
a − c) + 1 e)

define C 4 where C 4 = Max (f ‘ {..n0
′})

define C 3 where C 3 = max (C 1 / (1 − a − c))
((C 1 ∗ n0

′ + C 2 + C 4) / ((1 − a − c) ∗ n0
′ − max 0

b − max 0 d − 2))

have f n ≤ C 3 ∗ n + C 4 for n
proof (rule akra_bazzi_light_aux2 [OF bounds _])

show ∀n>n0
′. f n = f (nat da∗n+be) + f (nat dc∗n+de) + C 1 ∗ n +

C 2

using rec by (auto simp: n0
′_def)

next
show C 3 ≥ C 1 / (1 − a − c)
and C 3 ≥ (C 1 ∗ n0

′ + C 2 + C 4) / ((1 − a − c) ∗ n0
′ − max 0 b −

max 0 d − 2)
by (simp_all add: C 3_def)

next
have (max 0 b + max 0 d + 2) / (1 − a − c) < nat d(max 0 b + max

0 d + 2) / (1 − a − c) + 1 e
by linarith

also have . . . ≤ n0
′

by (simp add: n0
′_def)

finally show (max 0 b + max 0 d + 2) / (1 − a − c) < real n0
′ .

next
show ∀n≤n0

′. f n ≤ C 4

by (auto simp: C 4_def)
qed
thus ?thesis by blast

qed

lemma akra_bazzi_light_nat:
fixes f :: nat ⇒ nat
fixes n0 :: nat and a b c d :: real and C 1 C 2 :: nat
assumes bounds: a > 0 c > 0 a + c < 1 C 1 ≥ 0
assumes rec: ∀n>n0. f n = f (nat da∗n+be) + f (nat dc∗n+de) + C 1 ∗

n + C 2

shows ∃C 3 C 4. ∀n. f n ≤ C 3 ∗ n + C 4

proof −
have ∃C 3 C 4. ∀n. real (f n) ≤ C 3 ∗ real n + C 4

using assms by (intro akra_bazzi_light[of a c C 1 n0 f b d C 2]) auto
then obtain C 3 C 4 where le: ∀n. real (f n) ≤ C 3 ∗ real n + C 4

by blast
have f n ≤ nat dC 3e ∗ n + nat dC 4e for n

267

proof −
have real (f n) ≤ C 3 ∗ real n + C 4

using le by blast
also have . . . ≤ real (nat dC 3e) ∗ real n + real (nat dC 4e)

by (intro add_mono mult_right_mono; linarith)
also have . . . = real (nat dC 3e ∗ n + nat dC 4e)

by simp
finally show ?thesis by linarith

qed
thus ?thesis by blast

qed

lemma T ′_mom_select_le ′: ∃C 1 C 2. ∀n. T ′_mom_select n ≤ C 1 ∗ n +
C 2

proof (rule akra_bazzi_light_nat)
show ∀n>20 . T ′_mom_select n = T ′_mom_select (nat d0 .2 ∗ n + 0 e)

+
T ′_mom_select (nat d0 .7 ∗ n + 3 e) + 19 ∗ n + 54

using T ′_mom_select.simps by auto
qed auto

end

50 Time Functions in Locales — An Example
theory Time_Locale_Example
imports

HOL−Library.Time_Functions
HOL−Library.AList
Map_Specs

begin
If you want to reason about the time complexity of functions in a locale,

you need to parameterize the locale with time functions for all functions
that are utilized. More precisely, if you are in a locale parameterized by
some function f and you define a function g that uses f, and you want to
define T_g, it will depend on T_f, which you have to make an additional
parameter of the locale. Only then will time_fun g work. Below we show a
realistic example.

50.1 Basic Time Functions

time_fun AList.update
time_fun needs uncurried defining equations

268

lemma
map_of_simps ′: map_of [] (x:: ′a) = (None :: ′b option)

map_of ((a:: ′a,b:: ′b)#ps) x = (if x=a then Some b else map_of ps x)
by auto

time_fun map_of equations map_of_simps ′

lemma T_map_ub: T_map_of ps a ≤ length ps + 1
by(induction ps) auto

lemma T_update_ub: T_update a b ps ≤ length ps + 1
by(induction ps) auto

lemma length_AList_update_ub: length (AList.update a b ps) ≤ length ps
+ 1
by(induction ps) auto

50.2 Locale

Counting the elements in a list by means of a map that associates elements
with their multiplicities in the list, like a ‘histogram’. The locale is parame-
terized with the map ADT and the timing functions for lookup and update.

locale Count_List = Map where update = update for update :: ′a ⇒ nat
⇒ ′m ⇒ ′m +
fixes T_lookup :: ′m ⇒ ′a ⇒ nat
and T_update :: ′a ⇒ nat ⇒ ′m ⇒ nat
begin

definition lookup_nat :: ′m ⇒ ′a ⇒ nat where
lookup_nat m x = (case lookup m x of None ⇒ 0 | Some n ⇒ n)

time_definition lookup_nat

fun count :: ′m ⇒ ′a list ⇒ ′m where
count m [] = m |
count m (x#xs) = count (update x (lookup_nat m x + 1) m) xs

time_fun count

end

50.3 Interpretation

Interpretation of Count_List with association lists as maps.

269

lemma map_of_AList_update: map_of (AList.update a b ps) = ((map_of
ps)(a 7→ b))
by(induction ps) auto

lemma map_of_AList_delete: map_of (AList.delete a ps) = (map_of
ps)(a := None)
by(induction ps) auto

global_interpretation CL: Count_List
where empty = [] and lookup = map_of
and update = AList.update and delete = AList.delete and invar = λ_.
True
and T_lookup = T_map_of and T_update = T_update
defines CL_count = CL.count and CL_T_count = CL.T_count
proof (standard, goal_cases)

case 1
show ?case by (rule ext) simp

next
case (2 m a b)
show ?case by (rule map_of_AList_update)

next
case (3 m a)
show ?case by (rule map_of_AList_delete)

next
case 4
show ?case by(rule TrueI)

next
case (5 m a b)
show ?case by(rule TrueI)

next
case (6 m a)
show ?case by(rule TrueI)

qed

50.4 Complexity Proof

lemma CL.T_count ps xs ≤ 2 ∗ length xs ∗ (length xs + length ps + 1)
+ 1
proof(induction xs arbitrary: ps)

case Nil
then show ?case by simp

next
case (Cons a xs)
let ?lps ′ = length ps + 1

270

let ?na ′ = CL.lookup_nat ps a + 1
let ?ps ′ = AList.update a ?na ′ ps
have CL_T_count ps (a # xs) =

T_map_of ps a + T_update a ?na ′ ps + CL_T_count (AList.update
a ?na ′ ps) xs + 1

by simp
also have . . . ≤ 2 ∗ ?lps ′ + CL_T_count ?ps ′ xs + 1
using T_map_ub T_update_ub add_mono by (fastforce simp: mult_2)

also have . . . ≤ 2 ∗ ?lps ′ + 2 ∗ length xs ∗ (length xs + length ?ps ′ +
1) + 1 + 1

using Cons.IH by (metis (no_types, lifting) add.assoc add_mono_thms_linordered_semiring(3)
nat_add_left_cancel_le)

also have . . . ≤ 2 ∗ ?lps ′ + 2 ∗ length xs ∗ (length xs + ?lps ′ + 1) + 1
+ 1

using length_AList_update_ub
by (metis add_mono_thms_linordered_semiring(2) add_right_mono

mult_le_mono2)
also have . . . ≤ 2 ∗ length (a # xs) ∗ (length (a # xs) + length ps + 1)

+ 1
by (auto simp: algebra_simps)

finally show ?case .
qed

end

51 Bibliographic Notes
Red-black trees The insert function follows Okasaki [15]. The delete
function in theory RBT_Set follows Kahrs [11, 12], an alternative delete
function is given in theory RBT_Set2.

2-3 trees Equational definitions were given by Hoffmann and O’Don-
nell [9] (only insertion) and Reade [19]. Our formalisation is based on the
teaching material by Turbak [22] and the article by Hinze [8].

1-2 brother trees They were invented by Ottmann and Six [16, 17]. The
functional version is due to Hinze [7].

AA trees They were invented by Arne Anderson [3]. Our formalisation
follows Ragde [18] but fixes a number of mistakes.

Splay trees They were invented by Sleator and Tarjan [21]. Our formal-
isation follows Schoenmakers [20].

271

Join-based BSTs They were invented by Adams [1, 2] and analyzed by
Blelloch et al. [4].

Leftist heaps They were invented by Crane [6]. A first functional imple-
mentation is due to Núñez et al. [14].

References
[1] S. Adams. Implementing sets efficiently in a functional language. Tech-

nical Report CSTR 92-10, University of Southampton, Department of
Electronics and Computer Science, 1992.

[2] S. Adams. Efficient sets - A balancing act. J. Funct. Program.,
3(4):553–561, 1993.

[3] A. Andersson. Balanced search trees made simple. In Algorithms
and Data Structures (WADS ’93), volume 709 of LNCS, pages 60–71.
Springer, 1993.

[4] G. E. Blelloch, D. Ferizovic, and Y. Sun. Just join for parallel ordered
sets. In SPAA, pages 253–264. ACM, 2016.

[5] W. Braun and M. Rem. A logarithmic implementation of flexible arrays.
Memorandum MR83/4. Eindhoven University of Techology, 1983.

[6] C. A. Crane. Linear Lists and Prorty Queues as Balanced Binary Trees.
PhD thesis, Computer Science Department, Stanford University, 1972.

[7] R. Hinze. Purely functional 1-2 brother trees. J. Functional Program-
ming, 19(6):633–644, 2009.

[8] R. Hinze. On constructing 2-3 trees. J. Funct. Program., 28:e19, 2018.

[9] C. M. Hoffmann and M. J. O’Donnell. Programming with equations.
ACM Trans. Program. Lang. Syst., 4(1):83–112, 1982.

[10] R. R. Hoogerwoord. A logarithmic implementation of flexible arrays. In
R. Bird, C. Morgan, and J. Woodcock, editors, Mathematics of Program
Construction, Second International Conference, volume 669 of LNCS,
pages 191–207. Springer, 1992.

[11] S. Kahrs. Red black trees. http://www.cs.ukc.ac.uk/people/staff/smk/
redblack/rb.html.

[12] S. Kahrs. Red-black trees with types. J. Functional Programming,
11(4):425–432, 2001.

272

http://www.cs.ukc.ac.uk/people/staff/smk/redblack/rb.html
http://www.cs.ukc.ac.uk/people/staff/smk/redblack/rb.html

[13] T. Nipkow. Automatic functional correctness proofs for functional
search trees. http://www.in.tum.de/~nipkow/pubs/trees.html, Feb.
2016.

[14] M. Núñez, P. Palao, and R. Pena. A second year course on data struc-
tures based on functional programming. In P. H. Hartel and M. J.
Plasmeijer, editors, Functional Programming Languages in Education,
volume 1022 of LNCS, pages 65–84. Springer, 1995.

[15] C. Okasaki. Purely Functional Data Structures. Cambridge University
Press, 1998.

[16] T. Ottmann and H.-W. Six. Eine neue Klasse von ausgeglichenen Binär-
bäumen. Angewandte Informatik, 18(9):395–400, 1976.

[17] T. Ottmann and D. Wood. 1-2 brother trees or AVL trees revisited.
Comput. J., 23(3):248–255, 1980.

[18] P. Ragde. Simple balanced binary search trees. In Caldwell, Hölzen-
spies, and Achten, editors, Trends in Functional Programming in Edu-
cation, volume 170 of EPTCS, pages 78–87, 2014.

[19] C. Reade. Balanced trees with removals: An exercise in rewriting and
proof. Sci. Comput. Program., 18(2):181–204, 1992.

[20] B. Schoenmakers. A systematic analysis of splaying. Information Pro-
cessing Letters, 45:41–50, 1993.

[21] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. J.
ACM, 32(3):652–686, 1985.

[22] F. Turbak. CS230 Handouts — Spring 2007, 2007. http://cs.wellesley.
edu/~cs230/spring07/handouts.html.

273

http://www.in.tum.de/~nipkow/pubs/trees.html
http://cs.wellesley.edu/~cs230/spring07/handouts.html
http://cs.wellesley.edu/~cs230/spring07/handouts.html

	Sorting
	Creating Almost Complete Trees
	Three-Way Comparison
	Lists Sorted wrt <
	List Insertion and Deletion
	Specifications of Set ADT
	Unbalanced Tree Implementation of Set
	Association List Update and Deletion
	Specifications of Map ADT
	Unbalanced Tree Implementation of Map
	Tree Rotations
	Augmented Tree (Tree2)
	Function isin for Tree2
	Interval Trees
	AVL Tree Implementation of Sets
	Function lookup for Tree2
	AVL Tree Implementation of Maps
	AVL Tree with Balance Factors (1)
	AVL Tree with Balance Factors (2)
	Height-Balanced Trees
	Red-Black Trees
	Red-Black Tree Implementation of Sets
	Alternative Deletion in Red-Black Trees
	Red-Black Tree Implementation of Maps
	2-3 Trees
	2-3 Tree Implementation of Sets
	2-3 Tree Implementation of Maps
	2-3 Tree from List
	2-3-4 Trees
	2-3-4 Tree Implementation of Sets
	2-3-4 Tree Implementation of Maps
	1-2 Brother Tree Implementation of Sets
	1-2 Brother Tree Implementation of Maps
	AA Tree Implementation of Sets
	AA Tree Implementation of Maps
	Join-Based Implementation of Sets
	Join-Based Implementation of Sets via RBTs
	Braun Trees
	Arrays via Braun Trees
	Tries via Functions
	Binary Tries and Patricia Tries
	Ternary Tries
	Queue Specification
	Queue Implementation via 2 Lists
	Priority Queue Specifications
	Heaps
	Leftist Heap
	Binomial Priority Queue
	The Median-of-Medians Selection Algorithm
	Time Functions in Locales — An Example
	Bibliographic Notes

