
Complex Analysis

January 18, 2026

Contents
1 Contour integration 6

1.1 Definition . 6
1.2 Reversing a path . 9
1.3 Joining two paths together . 10
1.4 Shifting the starting point of a (closed) path 14
1.5 More about straight-line paths 17
1.6 Relation to subpath construction 18
1.7 Cauchy’s theorem where there’s a primitive 22
1.8 Arithmetical combining theorems 24
1.9 Operations on path integrals 25
1.10 Arithmetic theorems for path integrability 27
1.11 Reversing a path integral . 30
1.12 Reversing the order in a double path integral 32
1.13 Partial circle path . 35
1.14 Special case of one complete circle 45
1.15 Uniform convergence of path integral 48

2 Complex Path Integrals and Cauchy’s Integral Theorem 51
2.1 The key quadrisection step 53
2.2 Cauchy’s theorem for triangles 55
2.3 Version needing function holomorphic in interior only 60
2.4 Version allowing finite number of exceptional points 66
2.5 Cauchy’s theorem for an open starlike set 68
2.6 Cauchy’s theorem for a convex set 71
2.7 Generalize integrability to local primitives 74
2.8 Homotopy forms of Cauchy’s theorem 84

3 Winding numbers 88
3.1 Definition . 89

3.1.1 Useful sufficient conditions for the winding number to
be positive . 97

1

2

3.2 The winding number is an integer 99
3.3 Continuity of winding number and invariance on connected sets105
3.4 The winding number is constant on a connected region 109
3.5 Winding number is zero "outside" a curve 110
3.6 More winding number properties 117
3.7 Winding number for a triangle 121
3.8 Winding numbers for simple closed paths 124
3.9 Winding number for rectangular paths 141

4 Cauchy’s Integral Formula 144
4.1 Proof . 144
4.2 General stepping result for derivative formulas 146
4.3 Existence of all higher derivatives 151
4.4 Morera’s theorem . 155
4.5 Combining theorems for higher derivatives including Leibniz

rule . 157
4.6 A holomorphic function is analytic, i.e. has local power series 165
4.7 The Liouville theorem and the Fundamental Theorem of Al-

gebra . 168
4.8 Weierstrass convergence theorem 169
4.9 Some more simple/convenient versions for applications 176
4.10 On analytic functions defined by a series 177
4.11 Equality between holomorphic functions, on open ball then

connected set . 182
4.12 Some basic lemmas about poles/singularities 183
4.13 General, homology form of Cauchy’s theorem 187
4.14 Cauchy’s inequality and more versions of Liouville 201
4.15 Complex functions and power series 205

5 Conformal Mappings and Consequences of Cauchy’s Inte-
gral Theorem 211
5.1 Analytic continuation . 212
5.2 Open mapping theorem . 215
5.3 Maximum modulus principle 219
5.4 Factoring out a zero according to its order 221
5.5 Entire proper functions are precisely the non-trivial polynomials230
5.6 Relating invertibility and nonvanishing of derivative 232

5.6.1 Hence a nice clean inverse function theorem 235
5.6.2 Holomorphism of covering maps and lifts. 236

5.7 The Schwarz Lemma . 238
5.8 The Schwarz reflection principle 241
5.9 Bloch’s theorem . 247

6 The Great Picard Theorem and its Applications 256

3

6.1 Schottky’s theorem . 256
6.2 The Little Picard Theorem 265
6.3 The Arzelà–Ascoli theorem 270

6.3.1 Montel’s theorem . 273
6.4 Some simple but useful cases of Hurwitz’s theorem 278
6.5 The Great Picard theorem . 283

7 Moebius functions, Equivalents of Simply Connected Sets,
Riemann Mapping Theorem 297
7.1 Moebius functions are biholomorphisms of the unit disc . . . 297
7.2 A big chain of equivalents of simple connectedness for an open

set . 299
7.3 A further chain of equivalences about components of the com-

plement of a simply connected set 315
7.4 Further equivalences based on continuous logs and sqrts . . . 324
7.5 More Borsukian results . 326
7.6 Finally, the Riemann Mapping Theorem 327
7.7 Applications to Winding Numbers 328
7.8 The winding number defines a continuous logarithm for the

path itself . 328
7.9 Winding number equality is the same as path/loop homotopy

in C - 0 . 331
7.10 Non-essential singular points 334
7.11 Isolated singularities . 339
7.12 The order of non-essential singularities (i.e. removable singu-

larities or poles) . 358
7.13 Isolated points . 387
7.14 Isolated zeros . 388
7.15 Definition of residues . 391
7.16 Poles and residues of some well-known functions 403

8 The Residue Theorem, the Argument Principle and Rouché’s
Theorem 403
8.1 Cauchy’s residue theorem . 405
8.2 The argument principle . 414
8.3 Coefficient asymptotics for generating functions 419
8.4 Rouche’s theorem . 422
8.5 More Laurent expansions . 479
8.6 Formal convergence versus analytic convergence 480
8.7 Remove singular points . 481
8.8 Meromorphicity . 489
8.9 Nice meromorphicity . 496
8.10 Closure properties and proofs for individual functions 500
8.11 Meromorphic functions and zorder 509

4

8.12 More on poles and zeros . 513

9 The Weierstraß Factorisation Theorem 522
9.1 The elementary factors . 522
9.2 Infinite products of elementary factors 526
9.3 Writing a quotient as an exponential 532
9.4 Constructing the sequence of zeros 535
9.5 The factorisation theorem for holomorphic functions 541
9.6 The factorisation theorem for meromorphic functions 548

5

Cauchy_Integral_Formula

Cauchy_Integral_Theorem

Complex_Analysis

Complex_Residues

Complex_Singularities

Conformal_Mappings

Contour_Integration

Great_Picard

Laurent_Convergence

Meromorphic

Residue_Theorem

Riemann_Mapping

Weierstrass_Factorization

Winding_Numbers

[HOL-Analysis]

[HOL-Combinatorics] [HOL-Computational_Algebra]

[HOL-Library]

[HOL-Real_Asymp]

[HOL]

[Pure]

[Tools]

Contour_Integration.thy 6

1 Contour integration
theory Contour_Integration

imports HOL−Analysis.Analysis
begin

lemma lhopital_complex_simple:
assumes (f has_field_derivative f ′) (at z)
assumes (g has_field_derivative g ′) (at z)
assumes f z = 0 g z = 0 g ′ 6= 0 f ′ / g ′ = c
shows ((λw. f w / g w) −−−→ c) (at z)

proof −
have eventually (λw. w 6= z) (at z)

by (auto simp: eventually_at_filter)
hence eventually (λw. ((f w − f z) / (w − z)) / ((g w − g z) / (w − z)) = f w

/ g w) (at z)
by eventually_elim (simp add: assms field_split_simps)

moreover have ((λw. ((f w − f z) / (w − z)) / ((g w − g z) / (w − z))) −−−→
f ′ / g ′) (at z)

by (intro tendsto_divide has_field_derivativeD assms)
ultimately have ((λw. f w / g w) −−−→ f ′ / g ′) (at z)

by (blast intro: Lim_transform_eventually)
with assms show ?thesis by simp

qed

1.1 Definition

This definition is for complex numbers only, and does not generalise to line
integrals in a vector field
definition has_contour_integral :: (complex ⇒ complex) ⇒ complex ⇒ (real ⇒
complex) ⇒ bool

(infixr ‹has ′_contour ′_integral› 50)
where (f has_contour_integral i) g ≡

((λx. f (g x) ∗ vector_derivative g (at x within {0 ..1}))
has_integral i) {0 ..1}

definition contour_integrable_on
(infixr ‹contour ′_integrable ′_on› 50)

where f contour_integrable_on g ≡ ∃ i. (f has_contour_integral i) g

definition contour_integral
where contour_integral g f ≡ SOME i. (f has_contour_integral i) g ∨ ¬ f

contour_integrable_on g ∧ i=0

lemma not_integrable_contour_integral: ¬ f contour_integrable_on g =⇒ con-
tour_integral g f = 0

unfolding contour_integrable_on_def contour_integral_def by blast

lemma contour_integral_unique: (f has_contour_integral i) g =⇒ contour_integral

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 7

g f = i
unfolding contour_integral_def has_contour_integral_def contour_integrable_on_def
using has_integral_unique by blast

lemma has_contour_integral_cong:
assumes

∧
z. z ∈ path_image g =⇒ f z = f ′ z g = g ′ c = c ′

shows (f has_contour_integral c) g ←→ (f ′ has_contour_integral c ′) g ′

unfolding has_contour_integral_def assms(2 ,3)
by (intro has_integral_cong) (auto simp: assms path_image_def intro!: assms(1))

lemma has_contour_integral_eqpath:
[[(f has_contour_integral y) p; f contour_integrable_on γ;

contour_integral p f = contour_integral γ f]]
=⇒ (f has_contour_integral y) γ

using contour_integrable_on_def contour_integral_unique by auto

lemma has_contour_integral_integral:
f contour_integrable_on i =⇒ (f has_contour_integral (contour_integral i f))

i
by (metis contour_integral_unique contour_integrable_on_def)

lemma has_contour_integral_unique:
(f has_contour_integral i) g =⇒ (f has_contour_integral j) g =⇒ i = j

using has_integral_unique
by (auto simp: has_contour_integral_def)

lemma has_contour_integral_translate:
(f has_contour_integral I) ((+) z ◦ g)←→ ((λx. f (x + z)) has_contour_integral

I) g
by (simp add: has_contour_integral_def add_ac)

lemma contour_integrable_translate:
f contour_integrable_on ((+) z ◦ g) ←→ (λx. f (x + z)) contour_integrable_on

g
by (simp add: contour_integrable_on_def has_contour_integral_translate)

lemma contour_integral_translate:
contour_integral ((+) z ◦ g) f = contour_integral g (λx. f (x + z))
by (simp add: contour_integral_def contour_integrable_translate has_contour_integral_translate)

lemma has_contour_integral_integrable: (f has_contour_integral i) g =⇒ f con-
tour_integrable_on g

using contour_integrable_on_def by blast

Show that we can forget about the localized derivative.
lemma has_integral_localized_vector_derivative:

((λx. f (g x) ∗ vector_derivative p (at x within {a..b})) has_integral i) {a..b}
←→

((λx. f (g x) ∗ vector_derivative p (at x)) has_integral i) {a..b}

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 8

proof −
have ∗: {a..b} − {a,b} = interior {a..b}

by (simp add: atLeastAtMost_diff_ends)
show ?thesis

by (rule has_integral_spike_eq [of {a,b}]) (auto simp: at_within_interior [of
_ {a..b}])
qed

lemma integrable_on_localized_vector_derivative:
(λx. f (g x) ∗ vector_derivative p (at x within {a..b})) integrable_on {a..b}

←→
(λx. f (g x) ∗ vector_derivative p (at x)) integrable_on {a..b}

by (simp add: integrable_on_def has_integral_localized_vector_derivative)

lemma has_contour_integral:
(f has_contour_integral i) g ←→
((λx. f (g x) ∗ vector_derivative g (at x)) has_integral i) {0 ..1}

by (simp add: has_integral_localized_vector_derivative has_contour_integral_def)

lemma contour_integrable_on:
f contour_integrable_on g ←→
(λt. f (g t) ∗ vector_derivative g (at t)) integrable_on {0 ..1}

by (simp add: has_contour_integral integrable_on_def contour_integrable_on_def)

lemma has_contour_integral_mirror_iff :
assumes valid_path g
shows (f has_contour_integral I) (−g)←→ ((λx. −f (− x)) has_contour_integral

I) g
proof −

from assms have g piecewise_differentiable_on {0 ..1}
by (auto simp: valid_path_def piecewise_C1_imp_differentiable)

then obtain S where finite S and S :
∧

x. x ∈ {0 ..1} − S =⇒ g differentiable
at x within {0 ..1}

unfolding piecewise_differentiable_on_def by blast
have S ′: g differentiable at x if x ∈ {0 ..1} − ({0 , 1} ∪ S) for x
proof −

from that have x ∈ interior {0 ..1} by auto
with S [of x] that show ?thesis by (auto simp: at_within_interior [of _ {0 ..1}])

qed
have (f has_contour_integral I) (−g) ←→

((λx. f (− g x) ∗ vector_derivative (−g) (at x)) has_integral I) {0 ..1}
by (simp add: has_contour_integral)

also have . . . ←→ ((λx. −f (− g x) ∗ vector_derivative g (at x)) has_integral
I) {0 ..1}

by (intro has_integral_spike_finite_eq[of S ∪ {0 , 1}])
(insert ‹finite S› S ′, auto simp: o_def fun_Compl_def)

also have . . . ←→ ((λx. −f (−x)) has_contour_integral I) g
by (simp add: has_contour_integral)

finally show ?thesis .

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 9

qed

lemma contour_integral_on_mirror_iff :
assumes valid_path g
shows f contour_integrable_on (−g)←→ (λx. −f (− x)) contour_integrable_on

g
by (auto simp: contour_integrable_on_def has_contour_integral_mirror_iff assms)

lemma contour_integral_mirror :
assumes valid_path g
shows contour_integral (−g) f = contour_integral g (λx. −f (− x))

proof (cases f contour_integrable_on (−g))
case True with contour_integral_unique assms show ?thesis

by (auto simp: contour_integrable_on_def has_contour_integral_mirror_iff)
next

case False then show ?thesis
by (simp add: assms contour_integral_on_mirror_iff not_integrable_contour_integral)

qed

1.2 Reversing a path
lemma has_contour_integral_reversepath:

assumes valid_path g and f : (f has_contour_integral i) g
shows (f has_contour_integral (−i)) (reversepath g)

proof −
{ fix S x

assume xs: g C1_differentiable_on ({0 ..1} − S) x /∈ (−) 1 ‘ S 0 ≤ x x ≤ 1
have vector_derivative (λx. g (1 − x)) (at x within {0 ..1}) =

− vector_derivative g (at (1 − x) within {0 ..1})
proof −

obtain f ′ where f ′: (g has_vector_derivative f ′) (at (1 − x))
using xs
by (force simp: has_vector_derivative_def C1_differentiable_on_def)

have (g ◦ (λx. 1 − x) has_vector_derivative −1 ∗R f ′) (at x)
by (intro vector_diff_chain_within has_vector_derivative_at_within [OF

f ′] derivative_eq_intros | simp)+
then have mf ′: ((λx. g (1 − x)) has_vector_derivative −f ′) (at x)

by (simp add: o_def)
show ?thesis

using xs
by (auto simp: vector_derivative_at_within_ivl [OF mf ′] vector_derivative_at_within_ivl

[OF f ′])
qed

} note ∗ = this
obtain S where S : continuous_on {0 ..1} g finite S g C1_differentiable_on
{0 ..1} − S

using assms by (auto simp: valid_path_def piecewise_C1_differentiable_on_def)
have ((λx. − (f (g (1 − x)) ∗ vector_derivative g (at (1 − x) within {0 ..1})))

has_integral −i)

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 10

{0 ..1}
using has_integral_affinity01 [where m= −1 and c=1 , OF f [unfolded

has_contour_integral_def]]
by (simp add: has_integral_neg)

then show ?thesis
using S
unfolding reversepath_def has_contour_integral_def
by (rule_tac S = (λx. 1 − x) ‘ S in has_integral_spike_finite) (auto simp: ∗)

qed

lemma contour_integrable_reversepath:
valid_path g =⇒ f contour_integrable_on g =⇒ f contour_integrable_on

(reversepath g)
using has_contour_integral_reversepath contour_integrable_on_def by blast

lemma contour_integrable_reversepath_eq:
valid_path g =⇒ (f contour_integrable_on (reversepath g)←→ f contour_integrable_on

g)
using contour_integrable_reversepath valid_path_reversepath by fastforce

lemma contour_integral_reversepath:
assumes valid_path g

shows contour_integral (reversepath g) f = − (contour_integral g f)
proof (cases f contour_integrable_on g)

case True then show ?thesis
by (simp add: assms contour_integral_unique has_contour_integral_integral

has_contour_integral_reversepath)
next

case False then have ¬ f contour_integrable_on (reversepath g)
by (simp add: assms contour_integrable_reversepath_eq)

with False show ?thesis by (simp add: not_integrable_contour_integral)
qed

1.3 Joining two paths together
lemma has_contour_integral_join:

assumes (f has_contour_integral i1) g1 (f has_contour_integral i2) g2
valid_path g1 valid_path g2

shows (f has_contour_integral (i1 + i2)) (g1 +++ g2)
proof −

obtain s1 s2
where s1 : finite s1 ∀ x∈{0 ..1} − s1 . g1 differentiable at x

and s2 : finite s2 ∀ x∈{0 ..1} − s2 . g2 differentiable at x
using assms

by (auto simp: valid_path_def piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
have 1 : ((λx. f (g1 x) ∗ vector_derivative g1 (at x)) has_integral i1) {0 ..1}
and 2 : ((λx. f (g2 x) ∗ vector_derivative g2 (at x)) has_integral i2) {0 ..1}
using assms
by (auto simp: has_contour_integral)

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 11

have i1 : ((λx. (2∗f (g1 (2∗x))) ∗ vector_derivative g1 (at (2∗x))) has_integral
i1) {0 ..1/2}

and i2 : ((λx. (2∗f (g2 (2∗x − 1))) ∗ vector_derivative g2 (at (2∗x − 1)))
has_integral i2) {1/2 ..1}

using has_integral_affinity01 [OF 1 , where m= 2 and c=0 , THEN has_integral_cmul
[where c=2]]

has_integral_affinity01 [OF 2 , where m= 2 and c=−1 , THEN has_integral_cmul
[where c=2]]

by (simp_all only: image_affinity_atLeastAtMost_div_diff , simp_all add:
scaleR_conv_of_real mult_ac)

have g1 : vector_derivative (λx. if x∗2 ≤ 1 then g1 (2∗x) else g2 (2∗x − 1))
(at z) =

2 ∗R vector_derivative g1 (at (z∗2))
if 0 ≤ z z∗2 < 1 z∗2 /∈ s1 for z

proof (rule vector_derivative_at [OF has_vector_derivative_transform_within])
show 0 < |z − 1/2 |

using that by auto
have ((∗) 2 has_vector_derivative 2) (at z)
by (simp add: has_vector_derivative_def has_derivative_def bounded_linear_mult_left)
moreover have (g1 has_vector_derivative vector_derivative g1 (at (z ∗ 2)))

(at (2 ∗ z))
using s1 that by (auto simp: algebra_simps vector_derivative_works)

ultimately
show ((λx. g1 (2 ∗ x)) has_vector_derivative 2 ∗R vector_derivative g1 (at

(z ∗ 2))) (at z)
by (intro vector_diff_chain_at [simplified o_def])

qed (use that in ‹simp_all add: dist_real_def abs_if split: if_split_asm›)

have g2 : vector_derivative (λx. if x∗2 ≤ 1 then g1 (2∗x) else g2 (2∗x − 1))
(at z) =

2 ∗R vector_derivative g2 (at (z∗2 − 1))
if 1 < z∗2 z ≤ 1 z∗2 − 1 /∈ s2 for z

proof (rule vector_derivative_at [OF has_vector_derivative_transform_within])
show 0 < |z − 1/2 |

using that by auto
have ((λx. 2 ∗ x − 1) has_vector_derivative 2) (at z)
by (simp add: has_vector_derivative_def has_derivative_def bounded_linear_mult_left)
moreover have (g2 has_vector_derivative vector_derivative g2 (at (z ∗ 2 −

1))) (at (2 ∗ z − 1))
using s2 that by (auto simp: algebra_simps vector_derivative_works)

ultimately
show ((λx. g2 (2 ∗ x − 1)) has_vector_derivative 2 ∗R vector_derivative g2

(at (z ∗ 2 − 1))) (at z)
by (intro vector_diff_chain_at [simplified o_def])

qed (use that in ‹simp_all add: dist_real_def abs_if split: if_split_asm›)

have ((λx. f ((g1 +++ g2) x) ∗ vector_derivative (g1 +++ g2) (at x)) has_integral
i1) {0 ..1/2}

proof (rule has_integral_spike_finite [OF _ _ i1])

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 12

show finite (insert (1/2) ((∗) 2 −‘ s1))
using s1 by (force intro: finite_vimageI [where h = (∗)2] inj_onI)

qed (auto simp add: joinpaths_def scaleR_conv_of_real mult_ac g1)
moreover have ((λx. f ((g1 +++ g2) x) ∗ vector_derivative (g1 +++ g2) (at

x)) has_integral i2) {1/2 ..1}
proof (rule has_integral_spike_finite [OF _ _ i2])

show finite (insert (1/2) ((λx. 2 ∗ x − 1) −‘ s2))
using s2 by (force intro: finite_vimageI [where h = λx. 2∗x−1] inj_onI)

qed (auto simp add: joinpaths_def scaleR_conv_of_real mult_ac g2)
ultimately
show ?thesis

by (simp add: has_contour_integral has_integral_combine [where c = 1/2])
qed

lemma contour_integrable_joinI :
assumes f contour_integrable_on g1 f contour_integrable_on g2

valid_path g1 valid_path g2
shows f contour_integrable_on (g1 +++ g2)

using assms
by (meson has_contour_integral_join contour_integrable_on_def)

lemma contour_integrable_joinD1 :
assumes f contour_integrable_on (g1 +++ g2) valid_path g1

shows f contour_integrable_on g1
proof −

obtain s1
where s1 : finite s1 ∀ x∈{0 ..1} − s1 . g1 differentiable at x

using assms by (auto simp: valid_path_def piecewise_C1_differentiable_on_def
C1_differentiable_on_eq)

have (λx. f ((g1 +++ g2) (x/2)) ∗ vector_derivative (g1 +++ g2) (at (x/2)))
integrable_on {0 ..1}

using assms integrable_affinity [of _ 0 1/2 1/2 0] integrable_on_subcbox
[where a=0 and b=1/2]

by (fastforce simp: contour_integrable_on)
then have ∗: (λx. (f ((g1 +++ g2) (x/2))/2) ∗ vector_derivative (g1 +++

g2) (at (x/2))) integrable_on {0 ..1}
by (auto dest: integrable_cmul [where c=1/2] simp: scaleR_conv_of_real)

have g1 : vector_derivative (λx. if x∗2 ≤ 1 then g1 (2∗x) else g2 (2∗x − 1))
(at (z/2)) =

2 ∗R vector_derivative g1 (at z)
if 0 < z z < 1 z /∈ s1 for z

proof (rule vector_derivative_at [OF has_vector_derivative_transform_within])
show 0 < |(z − 1)/2 |

using that by auto
have §: ((λx. x ∗ 2) has_vector_derivative 2) (at (z/2))

using s1 by (auto simp: has_vector_derivative_def has_derivative_def
bounded_linear_mult_left)

have (g1 has_vector_derivative vector_derivative g1 (at z)) (at z)
using s1 that by (auto simp: vector_derivative_works)

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 13

then show ((λx. g1 (2 ∗ x)) has_vector_derivative 2 ∗R vector_derivative g1
(at z)) (at (z/2))

using vector_diff_chain_at [OF §] by (auto simp: field_simps o_def)
qed (use that in ‹simp_all add: field_simps dist_real_def abs_if split: if_split_asm›)
have fin01 : finite ({0 , 1} ∪ s1)

by (simp add: s1)
show ?thesis

unfolding contour_integrable_on
by (intro integrable_spike_finite [OF fin01 _ ∗]) (auto simp: joinpaths_def

scaleR_conv_of_real g1)
qed

lemma contour_integrable_joinD2 :
assumes f contour_integrable_on (g1 +++ g2) valid_path g2

shows f contour_integrable_on g2
proof −

obtain s2
where s2 : finite s2 ∀ x∈{0 ..1} − s2 . g2 differentiable at x

using assms by (auto simp: valid_path_def piecewise_C1_differentiable_on_def
C1_differentiable_on_eq)

have (λx. f ((g1 +++ g2) (x/2 + 1/2)) ∗ vector_derivative (g1 +++ g2) (at
(x/2 + 1/2))) integrable_on {0 ..1}

using assms integrable_affinity [of _ 1/2 ::real 1 1/2 1/2]
integrable_on_subcbox [where a=1/2 and b=1]

by (fastforce simp: contour_integrable_on image_affinity_atLeastAtMost_diff)
then have ∗: (λx. (f ((g1 +++ g2) (x/2 + 1/2))/2) ∗ vector_derivative (g1

+++ g2) (at (x/2 + 1/2)))
integrable_on {0 ..1}

by (auto dest: integrable_cmul [where c=1/2] simp: scaleR_conv_of_real)
have g2 : vector_derivative (λx. if x∗2 ≤ 1 then g1 (2∗x) else g2 (2∗x − 1))

(at (z/2+1/2)) =
2 ∗R vector_derivative g2 (at z)

if 0 < z z < 1 z /∈ s2 for z
proof (rule vector_derivative_at [OF has_vector_derivative_transform_within])

show 0 < |z/2 |
using that by auto

have §: ((λx. x ∗ 2 − 1) has_vector_derivative 2) (at ((1 + z)/2))
using s2 by (auto simp: has_vector_derivative_def has_derivative_def

bounded_linear_mult_left)
have (g2 has_vector_derivative vector_derivative g2 (at z)) (at z)

using s2 that by (auto simp: vector_derivative_works)
then show ((λx. g2 (2∗x − 1)) has_vector_derivative 2 ∗R vector_derivative

g2 (at z)) (at (z/2 + 1/2))
using vector_diff_chain_at [OF §] by (auto simp: field_simps o_def)

qed (use that in ‹simp_all add: field_simps dist_real_def abs_if split: if_split_asm›)
have fin01 : finite ({0 , 1} ∪ s2)

by (simp add: s2)
show ?thesis

unfolding contour_integrable_on

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 14

by (intro integrable_spike_finite [OF fin01 _ ∗]) (auto simp: joinpaths_def
scaleR_conv_of_real g2)
qed

lemma contour_integrable_join [simp]:
[[valid_path g1 ; valid_path g2]]

=⇒ f contour_integrable_on (g1 +++ g2) ←→ f contour_integrable_on g1
∧ f contour_integrable_on g2
using contour_integrable_joinD1 contour_integrable_joinD2 contour_integrable_joinI

by blast

lemma contour_integral_join [simp]:
[[f contour_integrable_on g1 ; f contour_integrable_on g2 ; valid_path g1 ; valid_path

g2]]
=⇒ contour_integral (g1 +++ g2) f = contour_integral g1 f + con-

tour_integral g2 f
by (simp add: has_contour_integral_integral has_contour_integral_join con-

tour_integral_unique)

1.4 Shifting the starting point of a (closed) path
lemma has_contour_integral_shiftpath:

assumes f : (f has_contour_integral i) g valid_path g
and a: a ∈ {0 ..1}

shows (f has_contour_integral i) (shiftpath a g)
proof −

obtain S
where S : finite S and g: ∀ x∈{0 ..1} − S . g differentiable at x

using assms by (auto simp: valid_path_def piecewise_C1_differentiable_on_def
C1_differentiable_on_eq)

have ∗: ((λx. f (g x) ∗ vector_derivative g (at x)) has_integral i) {0 ..1}
using assms by (auto simp: has_contour_integral)

then have i: i = integral {a..1} (λx. f (g x) ∗ vector_derivative g (at x)) +
integral {0 ..a} (λx. f (g x) ∗ vector_derivative g (at x))

by (smt (verit, ccfv_threshold) Henstock_Kurzweil_Integration.integral_combine
a add.commute atLeastAtMost_iff has_integral_iff)

have vd1 : vector_derivative (shiftpath a g) (at x) = vector_derivative g (at (x
+ a))

if 0 ≤ x x + a < 1 x /∈ (λx. x − a) ‘ S for x
unfolding shiftpath_def

proof (rule vector_derivative_at [OF has_vector_derivative_transform_within])
have ((λx. g (x + a)) has_vector_derivative vector_derivative g (at (a + x)))

(at x)
proof (rule vector_diff_chain_at [of _ 1 , simplified o_def scaleR_one])

show ((λx. x + a) has_vector_derivative 1) (at x)
by (rule derivative_eq_intros | simp)+

have g differentiable at (x + a)
using g a that by force

then show (g has_vector_derivative vector_derivative g (at (a + x))) (at (x

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 15

+ a))
by (metis add.commute vector_derivative_works)

qed
then show ((λx. g (a + x)) has_vector_derivative vector_derivative g (at (x

+ a))) (at x)
by (auto simp: field_simps)

show 0 < dist (1 − a) x
using that by auto

qed (use that in ‹auto simp: dist_real_def ›)

have vd2 : vector_derivative (shiftpath a g) (at x) = vector_derivative g (at (x
+ a − 1))

if x ≤ 1 1 < x + a x /∈ (λx. x − a + 1) ‘ S for x
unfolding shiftpath_def

proof (rule vector_derivative_at [OF has_vector_derivative_transform_within])
have ((λx. g (x + a − 1)) has_vector_derivative vector_derivative g (at

(a+x−1))) (at x)
proof (rule vector_diff_chain_at [of _ 1 , simplified o_def scaleR_one])

show ((λx. x + a − 1) has_vector_derivative 1) (at x)
by (rule derivative_eq_intros | simp)+

have g differentiable at (x+a−1)
using g a that by force

then show (g has_vector_derivative vector_derivative g (at (a+x−1))) (at
(x + a − 1))

by (metis add.commute vector_derivative_works)
qed
then show ((λx. g (a + x − 1)) has_vector_derivative vector_derivative g (at

(x + a − 1))) (at x)
by (auto simp: field_simps)

show 0 < dist (1 − a) x
using that by auto

qed (use that in ‹auto simp: dist_real_def ›)

have va1 : (λx. f (g x) ∗ vector_derivative g (at x)) integrable_on ({a..1})
using ∗ a by (fastforce intro: integrable_subinterval_real)

have v0a: (λx. f (g x) ∗ vector_derivative g (at x)) integrable_on ({0 ..a})
using ∗ a by (force intro: integrable_subinterval_real)

have finite ({1 − a} ∪ (λx. x − a) ‘ S)
using S by blast

then have ((λx. f (shiftpath a g x) ∗ vector_derivative (shiftpath a g) (at x))
has_integral integral {a..1} (λx. f (g x) ∗ vector_derivative g (at x))) {0 ..1

− a}
apply (rule has_integral_spike_finite

[where f = λx. f (g(a+x)) ∗ vector_derivative g (at(a+x))])
subgoal

using a by (simp add: vd1) (force simp: shiftpath_def add.commute)
subgoal

using has_integral_affinity [where m=1 and c=a] integrable_integral [OF
va1]

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 16

by (force simp add: add.commute)
done

moreover
have finite ({1 − a} ∪ (λx. x − a + 1) ‘ S)

using S by blast
then have ((λx. f (shiftpath a g x) ∗ vector_derivative (shiftpath a g) (at x))

has_integral integral {0 ..a} (λx. f (g x) ∗ vector_derivative g (at x)))
{1 − a..1}

apply (rule has_integral_spike_finite
[where f = λx. f (g(a+x−1)) ∗ vector_derivative g (at(a+x−1))])

subgoal
using a by (simp add: vd2) (force simp: shiftpath_def add.commute)

subgoal
using has_integral_affinity [where m=1 and c=a−1 , simplified, OF inte-

grable_integral [OF v0a]]
by (force simp add: algebra_simps)

done
ultimately show ?thesis

using a
by (auto simp: i has_contour_integral intro: has_integral_combine [where c

= 1−a])
qed

lemma has_contour_integral_shiftpath_D:
assumes (f has_contour_integral i) (shiftpath a g)

valid_path g pathfinish g = pathstart g a ∈ {0 ..1}
shows (f has_contour_integral i) g

proof −
obtain S

where S : finite S and g: ∀ x∈{0 ..1} − S . g differentiable at x
using assms by (auto simp: valid_path_def piecewise_C1_differentiable_on_def

C1_differentiable_on_eq)
{ fix x

assume x: 0 < x x < 1 x /∈ S
then have gx: g differentiable at x

using g by auto
have §: shiftpath (1 − a) (shiftpath a g) differentiable at x

using assms x
by (intro differentiable_transform_within [OF gx, of min x (1−x)])

(auto simp: dist_real_def shiftpath_shiftpath abs_if split: if_split_asm)
have vector_derivative g (at x within {0 ..1}) =

vector_derivative (shiftpath (1 − a) (shiftpath a g)) (at x within {0 ..1})
apply (rule vector_derivative_at_within_ivl

[OF has_vector_derivative_transform_within_open
[where f = (shiftpath (1 − a) (shiftpath a g)) and S =

{0<..<1}−S]])
using S assms x §
apply (auto simp: finite_imp_closed open_Diff shiftpath_shiftpath

at_within_interior [of _ {0 ..1}] vector_derivative_works

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 17

[symmetric])
done

} note vd = this
have fi: (f has_contour_integral i) (shiftpath (1 − a) (shiftpath a g))

using assms by (auto intro!: has_contour_integral_shiftpath)
show ?thesis

unfolding has_contour_integral_def
proof (rule has_integral_spike_finite [of {0 ,1} ∪ S , OF _ _ fi [unfolded

has_contour_integral_def]])
show finite ({0 , 1} ∪ S)

by (simp add: S)
qed (use S assms vd in ‹auto simp: shiftpath_shiftpath›)

qed

lemma has_contour_integral_shiftpath_eq:
assumes valid_path g pathfinish g = pathstart g a ∈ {0 ..1}

shows (f has_contour_integral i) (shiftpath a g) ←→ (f has_contour_integral
i) g

using assms has_contour_integral_shiftpath has_contour_integral_shiftpath_D
by blast

lemma contour_integrable_on_shiftpath_eq:
assumes valid_path g pathfinish g = pathstart g a ∈ {0 ..1}
shows f contour_integrable_on (shiftpath a g) ←→ f contour_integrable_on g
using assms contour_integrable_on_def has_contour_integral_shiftpath_eq by

auto

lemma contour_integral_shiftpath:
assumes valid_path g pathfinish g = pathstart g a ∈ {0 ..1}

shows contour_integral (shiftpath a g) f = contour_integral g f
using assms

by (simp add: contour_integral_def contour_integrable_on_def has_contour_integral_shiftpath_eq)

1.5 More about straight-line paths
lemma has_contour_integral_linepath:

shows (f has_contour_integral i) (linepath a b) ←→
((λx. f (linepath a b x) ∗ (b − a)) has_integral i) {0 ..1}

by (simp add: has_contour_integral)

lemma has_contour_integral_trivial [iff]: (f has_contour_integral 0) (linepath a
a)

by (simp add: has_contour_integral_linepath)

lemma has_contour_integral_trivial_iff [simp]: (f has_contour_integral i) (linepath
a a) ←→ i=0

using has_contour_integral_unique by blast

lemma contour_integral_trivial [simp]: contour_integral (linepath a a) f = 0

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 18

using has_contour_integral_trivial contour_integral_unique by blast

1.6 Relation to subpath construction
lemma has_contour_integral_subpath_refl [iff]: (f has_contour_integral 0) (subpath
u u g)

by (simp add: has_contour_integral subpath_def)

lemma contour_integrable_subpath_refl [iff]: f contour_integrable_on (subpath u
u g)

using has_contour_integral_subpath_refl contour_integrable_on_def by blast

lemma contour_integral_subpath_refl [simp]: contour_integral (subpath u u g) f
= 0

by (simp add: contour_integral_unique)

lemma has_contour_integral_subpath:
assumes f : f contour_integrable_on g and g: valid_path g

and uv: u ∈ {0 ..1} v ∈ {0 ..1} u ≤ v
shows (f has_contour_integral integral {u..v} (λx. f (g x) ∗ vector_derivative

g (at x)))
(subpath u v g)

proof (cases v=u)
case True
then show ?thesis
using f by (simp add: contour_integrable_on_def subpath_def has_contour_integral)

next
case False
obtain S where S :

∧
x. x ∈ {0 ..1} − S =⇒ g differentiable at x and fs: finite

S
using g unfolding piecewise_C1_differentiable_on_def C1_differentiable_on_eq

valid_path_def by blast
have §: (λt. f (g t) ∗ vector_derivative g (at t)) integrable_on {u..v}

using contour_integrable_on f integrable_on_subinterval uv by fastforce
then have ∗: ((λx. f (g ((v − u) ∗ x + u)) ∗ vector_derivative g (at ((v − u)
∗ x + u)))

has_integral (1 / (v − u)) ∗ integral {u..v} (λt. f (g t) ∗ vector_derivative
g (at t)))

{0 ..1}
using uv False unfolding has_integral_integral
apply simp
apply (drule has_integral_affinity [where m=v−u and c=u, simplified])

apply (simp_all add: image_affinity_atLeastAtMost_div_diff scaleR_conv_of_real)
apply (simp add: divide_simps)
done

have vd: vector_derivative (λx. g ((v−u) ∗ x + u)) (at x) = (v−u) ∗R vec-
tor_derivative g (at ((v−u) ∗ x + u))

if x ∈ {0 ..1} x /∈ (λt. (v−u) ∗R t + u) −‘ S for x

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 19

proof (rule vector_derivative_at [OF vector_diff_chain_at [simplified o_def]])
show ((λx. (v − u) ∗ x + u) has_vector_derivative v − u) (at x)

by (intro derivative_eq_intros | simp)+
qed (use S uv mult_left_le [of x v−u] that in ‹auto simp: vector_derivative_works›)

have fin: finite ((λt. (v − u) ∗R t + u) −‘ S)
using fs by (auto simp: inj_on_def False finite_vimageI)

show ?thesis
unfolding subpath_def has_contour_integral
apply (rule has_integral_spike_finite [OF fin])
using has_integral_cmul [OF ∗, where c = v−u] fs assms
by (auto simp: False vd scaleR_conv_of_real)

qed

lemma contour_integrable_subpath:
assumes f contour_integrable_on g valid_path g u ∈ {0 ..1} v ∈ {0 ..1}

shows f contour_integrable_on (subpath u v g)
by (smt (verit, ccfv_threshold) assms contour_integrable_on_def contour_integrable_reversepath_eq

has_contour_integral_subpath reversepath_subpath valid_path_subpath)

lemma has_integral_contour_integral_subpath:
assumes f contour_integrable_on g valid_path g u ∈ {0 ..1} v ∈ {0 ..1} u ≤ v

shows ((λx. f (g x) ∗ vector_derivative g (at x))
has_integral contour_integral (subpath u v g) f) {u..v}

(is (?fg has_integral _)_)
proof −

have (?fg has_integral integral {u..v} ?fg) {u..v}
using assms contour_integrable_on integrable_on_subinterval by fastforce

then show ?thesis
by (metis (full_types) assms contour_integral_unique has_contour_integral_subpath)

qed

lemma contour_integral_subcontour_integral:
assumes f contour_integrable_on g valid_path g u ∈ {0 ..1} v ∈ {0 ..1} u ≤ v

shows contour_integral (subpath u v g) f =
integral {u..v} (λx. f (g x) ∗ vector_derivative g (at x))

using assms has_contour_integral_subpath contour_integral_unique by blast

lemma contour_integral_subpath_combine_less:
assumes f contour_integrable_on g valid_path g u ∈ {0 ..1} v ∈ {0 ..1} w ∈
{0 ..1}

u<v v<w
shows contour_integral (subpath u v g) f + contour_integral (subpath v w g)

f =
contour_integral (subpath u w g) f

by (smt (verit) Henstock_Kurzweil_Integration.integral_combine assms
has_integral_contour_integral_subpath has_integral_iff)

lemma contour_integral_subpath_combine:

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 20

assumes f contour_integrable_on g valid_path g u ∈ {0 ..1} v ∈ {0 ..1} w ∈
{0 ..1}

shows contour_integral (subpath u v g) f + contour_integral (subpath v w g)
f =

contour_integral (subpath u w g) f
proof (cases u 6=v ∧ v 6=w ∧ u 6=w)

case True
have ∗: subpath v u g = reversepath(subpath u v g) ∧

subpath w u g = reversepath(subpath u w g) ∧
subpath w v g = reversepath(subpath v w g)

by (auto simp: reversepath_subpath)
have u < v ∧ v < w ∨

u < w ∧ w < v ∨
v < u ∧ u < w ∨
v < w ∧ w < u ∨
w < u ∧ u < v ∨
w < v ∧ v < u

using True assms by linarith
with assms show ?thesis

using contour_integral_subpath_combine_less [of f g u v w]
contour_integral_subpath_combine_less [of f g u w v]
contour_integral_subpath_combine_less [of f g v u w]
contour_integral_subpath_combine_less [of f g v w u]
contour_integral_subpath_combine_less [of f g w u v]
contour_integral_subpath_combine_less [of f g w v u]

by (elim disjE) (auto simp: ∗ contour_integral_reversepath contour_integrable_subpath
valid_path_subpath algebra_simps)

next
case False
with assms show ?thesis
by (metis add.right_neutral contour_integral_reversepath contour_integral_subpath_refl

diff_0 eq_diff_eq add_0 reversepath_subpath valid_path_subpath)
qed

lemma contour_integral_integral:
contour_integral g f = integral {0 ..1} (λx. f (g x) ∗ vector_derivative g (at

x))
by (simp add: contour_integral_def integral_def has_contour_integral contour_integrable_on)

lemma contour_integral_cong:
assumes g = g ′ ∧x. x ∈ path_image g =⇒ f x = f ′ x
shows contour_integral g f = contour_integral g ′ f ′

unfolding contour_integral_integral using assms
by (intro integral_cong) (auto simp: path_image_def)

lemma contour_integral_spike_finite_simple_path:
assumes finite A simple_path g g = g ′ ∧x. x ∈ path_image g − A =⇒ f x = f ′

x
shows contour_integral g f = contour_integral g ′ f ′

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 21

unfolding contour_integral_integral
proof (rule integral_spike)

have finite (g −‘ A ∩ {0<..<1}) using ‹simple_path g› ‹finite A›
by (intro finite_vimage_IntI simple_path_inj_on) auto

hence finite ({0 , 1} ∪ g −‘ A ∩ {0<..<1}) by auto
thus negligible ({0 , 1} ∪ g −‘ A ∩ {0<..<1}) by (rule negligible_finite)

next
fix x assume x ∈ {0 ..1} − ({0 , 1} ∪ g −‘ A ∩ {0<..<1})
hence g x ∈ path_image g − A by (auto simp: path_image_def)
with assms show f ′ (g ′ x) ∗ vector_derivative g ′ (at x) = f (g x) ∗ vec-

tor_derivative g (at x)
by simp

qed

Contour integral along a segment on the real axis
lemma has_contour_integral_linepath_Reals_iff :

fixes a b :: complex and f :: complex ⇒ complex
assumes a ∈ Reals b ∈ Reals Re a < Re b
shows (f has_contour_integral I) (linepath a b) ←→

((λx. f (of_real x)) has_integral I) {Re a..Re b}
proof −

have [simp]: of_real (Re a) = a of_real (Re b) = b and a 6= b
using assms by (simp_all add: complex_eq_iff)

have ((λx. f (of_real x)) has_integral I) (cbox (Re a) (Re b)) ←→
((λx. f (a + b ∗ of_real x − a ∗ of_real x)) has_integral I /R (Re b − Re

a)) {0 ..1}
by (subst has_integral_affinity_iff [of Re b − Re a _ Re a, symmetric])

(insert assms, simp_all add: field_simps scaleR_conv_of_real)
also have (λx. f (a + b ∗ of_real x − a ∗ of_real x)) =

(λx. (f (a + b ∗ of_real x − a ∗ of_real x) ∗ (b − a)) /R (Re b − Re
a))

using ‹a 6= b› by (auto simp: field_simps fun_eq_iff scaleR_conv_of_real)
also have (. . . has_integral I /R (Re b − Re a)) {0 ..1} ←→

((λx. f (linepath a b x) ∗ (b − a)) has_integral I) {0 ..1} using assms
by (subst has_integral_cmul_iff) (auto simp: linepath_def scaleR_conv_of_real

algebra_simps)
also have . . . ←→ (f has_contour_integral I) (linepath a b)

unfolding has_contour_integral_def
using has_contour_integral_def has_contour_integral_linepath by presburger

finally show ?thesis by simp
qed

lemma contour_integrable_linepath_Reals_iff :
fixes a b :: complex and f :: complex ⇒ complex
assumes a ∈ Reals b ∈ Reals Re a < Re b
shows (f contour_integrable_on linepath a b) ←→

(λx. f (of_real x)) integrable_on {Re a..Re b}
using has_contour_integral_linepath_Reals_iff [OF assms, of f]
by (auto simp: contour_integrable_on_def integrable_on_def)

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 22

lemma contour_integral_linepath_Reals_eq:
fixes a b :: complex and f :: complex ⇒ complex
assumes a ∈ Reals b ∈ Reals Re a < Re b
shows contour_integral (linepath a b) f = integral {Re a..Re b} (λx. f (of_real

x))
proof (cases f contour_integrable_on linepath a b)

case True
thus ?thesis

by (metis assms has_contour_integral_integral
has_contour_integral_linepath_Reals_iff integral_unique)

next
case False
thus ?thesis

by (simp add: assms contour_integrable_linepath_Reals_iff
not_integrable_contour_integral not_integrable_integral)

qed

1.7 Cauchy’s theorem where there’s a primitive
lemma contour_integral_primitive_lemma:

fixes f :: complex ⇒ complex and g :: real ⇒ complex
assumes a ≤ b

and
∧

x. x ∈ S =⇒ (f has_field_derivative f ′ x) (at x within S)
and g piecewise_differentiable_on {a..b}

∧
x. x ∈ {a..b} =⇒ g x ∈ S

shows ((λx. f ′(g x) ∗ vector_derivative g (at x within {a..b}))
has_integral (f (g b) − f (g a))) {a..b}

proof −
obtain K where finite K and K : ∀ x∈{a..b} − K . g differentiable (at x within
{a..b}) and cg: continuous_on {a..b} g

using assms by (auto simp: piecewise_differentiable_on_def)
have continuous_on (g ‘ {a..b}) f

using assms by (metis DERIV_continuous_on continuous_on_subset im-
age_subsetI)

then have cfg: continuous_on {a..b} (λx. f (g x))
by (rule continuous_on_compose [OF cg, unfolded o_def])

{ fix x::real
assume a: a < x and b: x < b and xk: x /∈ K
then have g differentiable at x within {a..b}

using K by (simp add: differentiable_at_withinI)
then have (g has_vector_derivative vector_derivative g (at x within {a..b}))

(at x within {a..b})
by (simp add: vector_derivative_works has_field_derivative_def scaleR_conv_of_real)
then have gdiff : (g has_derivative (λu. u ∗ vector_derivative g (at x within

{a..b}))) (at x within {a..b})
by (simp add: has_vector_derivative_def scaleR_conv_of_real)

have (f has_field_derivative (f ′ (g x))) (at (g x) within g ‘ {a..b})
using assms by (metis a atLeastAtMost_iff b DERIV_subset image_subset_iff

less_eq_real_def)

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 23

then have fdiff : (f has_derivative (∗) (f ′ (g x))) (at (g x) within g ‘ {a..b})
by (simp add: has_field_derivative_def)

have ((λx. f (g x)) has_vector_derivative f ′ (g x) ∗ vector_derivative g (at x
within {a..b})) (at x within {a..b})

using diff_chain_within [OF gdiff fdiff]
by (simp add: has_vector_derivative_def scaleR_conv_of_real o_def mult_ac)

} then show ?thesis
using assms cfg

by (force simp: at_within_Icc_at intro: fundamental_theorem_of_calculus_interior_strong
[OF ‹finite K ›])
qed

lemma contour_integral_primitive:
assumes

∧
x. x ∈ S =⇒ (f has_field_derivative f ′ x) (at x within S)

and valid_path g path_image g ⊆ S
shows (f ′ has_contour_integral (f (pathfinish g) − f (pathstart g))) g

using assms
apply (simp add: valid_path_def path_image_def pathfinish_def pathstart_def

has_contour_integral_def)
apply (auto intro!: piecewise_C1_imp_differentiable contour_integral_primitive_lemma

[of 0 1 S])
done

corollary Cauchy_theorem_primitive:
assumes

∧
x. x ∈ S =⇒ (f has_field_derivative f ′ x) (at x within S)

and valid_path g path_image g ⊆ S pathfinish g = pathstart g
shows (f ′ has_contour_integral 0) g

using assms by (metis diff_self contour_integral_primitive)

lemma contour_integrable_continuous_linepath:
assumes continuous_on (closed_segment a b) f
shows f contour_integrable_on (linepath a b)

proof −
have continuous_on (closed_segment a b) (λx. f x ∗ (b − a))

by (rule continuous_intros | simp add: assms)+
then have continuous_on {0 ..1} (λx. f (linepath a b x) ∗ (b − a))

by (metis (no_types, lifting) continuous_on_compose continuous_on_cong
continuous_on_linepath linepath_image_01 o_apply)

then have (λx. f (linepath a b x)
∗ vector_derivative (linepath a b) (at x within {0 ..1}))
integrable_on {0 ..1}

by (metis (no_types, lifting) continuous_on_cong integrable_continuous_real
vector_derivative_linepath_within)

then show ?thesis
by (simp add: contour_integrable_on_def has_contour_integral_def integrable_on_def

[symmetric])
qed

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 24

lemma has_field_der_id: ((λx. x2/2) has_field_derivative x) (at x)
by (rule has_derivative_imp_has_field_derivative)

(rule derivative_intros | simp)+

lemma contour_integral_id [simp]: contour_integral (linepath a b) (λy. y) = (b^2
− a^2)/2

using contour_integral_primitive [of UNIV λx. x^2/2 λx. x linepath a b] con-
tour_integral_unique

by (simp add: has_field_der_id)

lemma contour_integrable_on_const [iff]: (λx. c) contour_integrable_on (linepath
a b)

by (simp add: contour_integrable_continuous_linepath)

lemma contour_integrable_on_id [iff]: (λx. x) contour_integrable_on (linepath
a b)

by (simp add: contour_integrable_continuous_linepath)

1.8 Arithmetical combining theorems
lemma has_contour_integral_neg:

(f has_contour_integral i) g =⇒ ((λx. −(f x)) has_contour_integral (−i)) g
by (simp add: has_integral_neg has_contour_integral_def)

lemma has_contour_integral_add:
[[(f1 has_contour_integral i1) g; (f2 has_contour_integral i2) g]]
=⇒ ((λx. f1 x + f2 x) has_contour_integral (i1 + i2)) g

by (simp add: has_integral_add has_contour_integral_def algebra_simps)

lemma has_contour_integral_diff :
[[(f1 has_contour_integral i1) g; (f2 has_contour_integral i2) g]]

=⇒ ((λx. f1 x − f2 x) has_contour_integral (i1 − i2)) g
by (simp add: has_integral_diff has_contour_integral_def algebra_simps)

lemma has_contour_integral_lmul:
(f has_contour_integral i) g =⇒ ((λx. c ∗ (f x)) has_contour_integral (c∗i)) g
by (simp add: has_contour_integral_def algebra_simps has_integral_mult_right)

lemma has_contour_integral_rmul:
(f has_contour_integral i) g =⇒ ((λx. (f x) ∗ c) has_contour_integral (i∗c)) g
by (simp add: mult.commute has_contour_integral_lmul)

lemma has_contour_integral_div:
(f has_contour_integral i) g =⇒ ((λx. f x/c) has_contour_integral (i/c)) g
by (simp add: field_class.field_divide_inverse) (metis has_contour_integral_rmul)

lemma has_contour_integral_eq:
[[(f has_contour_integral y) p;

∧
x. x ∈ path_image p =⇒ f x = g x]] =⇒ (g

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 25

has_contour_integral y) p
by (metis (mono_tags, lifting) has_contour_integral_def has_integral_eq im-

age_eqI path_image_def)

lemma has_contour_integral_bound_linepath:
assumes (f has_contour_integral i) (linepath a b)

0 ≤ B and B:
∧

x. x ∈ closed_segment a b =⇒ norm(f x) ≤ B
shows norm i ≤ B ∗ norm(b − a)

proof −
have norm i ≤ (B ∗ norm (b − a)) ∗ measure lborel (cbox 0 (1 ::real))
proof (rule has_integral_bound

[of _ λx. f (linepath a b x) ∗ vector_derivative (linepath a b) (at x within
{0 ..1})])

show cmod (f (linepath a b x) ∗ vector_derivative (linepath a b) (at x within
{0 ..1}))

≤ B ∗ cmod (b − a)
if x ∈ cbox 0 1 for x::real
using that box_real(2) norm_mult

by (metis B linepath_in_path mult_right_mono norm_ge_zero vector_derivative_linepath_within)
qed (use assms has_contour_integral_def in auto)
then show ?thesis

by (auto simp: content_real)
qed

lemma has_contour_integral_const_linepath: ((λx. c) has_contour_integral c∗(b
− a))(linepath a b)

unfolding has_contour_integral_linepath
by (metis content_real diff_0_right has_integral_const_real lambda_one of_real_1

scaleR_conv_of_real zero_le_one)

lemma has_contour_integral_0 : ((λx. 0) has_contour_integral 0) g
by (simp add: has_contour_integral_def)

lemma has_contour_integral_is_0 :
(
∧

z. z ∈ path_image g =⇒ f z = 0) =⇒ (f has_contour_integral 0) g
by (rule has_contour_integral_eq [OF has_contour_integral_0]) auto

lemma has_contour_integral_sum:
[[finite s;

∧
a. a ∈ s =⇒ (f a has_contour_integral i a) p]]

=⇒ ((λx. sum (λa. f a x) s) has_contour_integral sum i s) p
by (induction s rule: finite_induct) (auto simp: has_contour_integral_0 has_contour_integral_add)

1.9 Operations on path integrals
lemma contour_integral_const_linepath [simp]: contour_integral (linepath a b)
(λx. c) = c∗(b − a)

by (rule contour_integral_unique [OF has_contour_integral_const_linepath])

lemma contour_integral_neg: contour_integral g (λz. −f z) = −contour_integral

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 26

g f
by (simp add: contour_integral_integral)

lemma contour_integral_add:
f1 contour_integrable_on g =⇒ f2 contour_integrable_on g =⇒ contour_integral

g (λx. f1 x + f2 x) =
contour_integral g f1 + contour_integral g f2

by (simp add: contour_integral_unique has_contour_integral_integral has_contour_integral_add)

lemma contour_integral_diff :
f1 contour_integrable_on g =⇒ f2 contour_integrable_on g =⇒ contour_integral

g (λx. f1 x − f2 x) =
contour_integral g f1 − contour_integral g f2

by (simp add: contour_integral_unique has_contour_integral_integral has_contour_integral_diff)

lemma contour_integral_lmul:
shows f contour_integrable_on g

=⇒ contour_integral g (λx. c ∗ f x) = c∗contour_integral g f
by (simp add: contour_integral_unique has_contour_integral_integral has_contour_integral_lmul)

lemma contour_integral_rmul:
shows f contour_integrable_on g

=⇒ contour_integral g (λx. f x ∗ c) = contour_integral g f ∗ c
by (simp add: contour_integral_unique has_contour_integral_integral has_contour_integral_rmul)

lemma contour_integral_div:
shows f contour_integrable_on g

=⇒ contour_integral g (λx. f x / c) = contour_integral g f / c
by (simp add: contour_integral_unique has_contour_integral_integral has_contour_integral_div)

lemma contour_integral_eq:
(
∧

x. x ∈ path_image p =⇒ f x = g x) =⇒ contour_integral p f = con-
tour_integral p g

using contour_integral_cong contour_integral_def by fastforce

lemma contour_integral_eq_0 :
(
∧

z. z ∈ path_image g =⇒ f z = 0) =⇒ contour_integral g f = 0
by (simp add: has_contour_integral_is_0 contour_integral_unique)

lemma contour_integral_bound_linepath:
shows
[[f contour_integrable_on (linepath a b);

0 ≤ B;
∧

x. x ∈ closed_segment a b =⇒ norm(f x) ≤ B]]
=⇒ norm(contour_integral (linepath a b) f) ≤ B∗norm(b − a)

by (meson has_contour_integral_bound_linepath has_contour_integral_integral)

lemma contour_integral_0 [simp]: contour_integral g (λx. 0) = 0
by (simp add: contour_integral_unique has_contour_integral_0)

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 27

lemma contour_integral_sum:
[[finite s;

∧
a. a ∈ s =⇒ (f a) contour_integrable_on p]]

=⇒ contour_integral p (λx. sum (λa. f a x) s) = sum (λa. contour_integral p
(f a)) s
by (auto simp: contour_integral_unique has_contour_integral_sum has_contour_integral_integral)

lemma contour_integrable_eq:
[[f contour_integrable_on p;

∧
x. x ∈ path_image p =⇒ f x = g x]] =⇒ g

contour_integrable_on p
unfolding contour_integrable_on_def
by (metis has_contour_integral_eq)

1.10 Arithmetic theorems for path integrability
lemma contour_integrable_neg:

f contour_integrable_on g =⇒ (λx. −(f x)) contour_integrable_on g
using has_contour_integral_neg contour_integrable_on_def by blast

lemma contour_integrable_add:
[[f1 contour_integrable_on g; f2 contour_integrable_on g]] =⇒ (λx. f1 x + f2

x) contour_integrable_on g
using has_contour_integral_add contour_integrable_on_def
by fastforce

lemma contour_integrable_diff :
[[f1 contour_integrable_on g; f2 contour_integrable_on g]] =⇒ (λx. f1 x − f2

x) contour_integrable_on g
using has_contour_integral_diff contour_integrable_on_def
by fastforce

lemma contour_integrable_lmul:
f contour_integrable_on g =⇒ (λx. c ∗ f x) contour_integrable_on g

using has_contour_integral_lmul contour_integrable_on_def
by fastforce

lemma contour_integrable_rmul:
f contour_integrable_on g =⇒ (λx. f x ∗ c) contour_integrable_on g

using has_contour_integral_rmul contour_integrable_on_def
by fastforce

lemma contour_integrable_div:
f contour_integrable_on g =⇒ (λx. f x / c) contour_integrable_on g

using has_contour_integral_div contour_integrable_on_def
by fastforce

lemma contour_integrable_sum:
[[finite s;

∧
a. a ∈ s =⇒ (f a) contour_integrable_on p]]

=⇒ (λx. sum (λa. f a x) s) contour_integrable_on p
unfolding contour_integrable_on_def by (metis has_contour_integral_sum)

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 28

lemma contour_integrable_neg_iff :
(λx. −f x) contour_integrable_on g ←→ f contour_integrable_on g
using contour_integrable_neg[of f g] contour_integrable_neg[of λx. −f x g] by

auto

lemma contour_integrable_lmul_iff :
c 6= 0 =⇒ (λx. c ∗ f x) contour_integrable_on g ←→ f contour_integrable_on

g
using contour_integrable_lmul[of f g c] contour_integrable_lmul[of λx. c ∗ f x

g inverse c]
by (auto simp: field_simps)

lemma contour_integrable_rmul_iff :
c 6= 0 =⇒ (λx. f x ∗ c) contour_integrable_on g ←→ f contour_integrable_on

g
using contour_integrable_rmul[of f g c] contour_integrable_rmul[of λx. c ∗ f x

g inverse c]
by (auto simp: field_simps)

lemma contour_integrable_div_iff :
c 6= 0 =⇒ (λx. f x / c) contour_integrable_on g ←→ f contour_integrable_on

g
using contour_integrable_rmul_iff [of inverse c] by (simp add: field_simps)

lemma uniform_limit_contour_integral_linepath:
assumes u: uniform_limit (path_image (linepath a b)) f g F
assumes c:

∧
n. continuous_on (path_image (linepath a b)) (f n)

assumes [simp]: F 6= bot
obtains I J where∧

n. (f n has_contour_integral I n) (linepath a b)
(g has_contour_integral J) (linepath a b)
(I −−−→ J) F

proof (rule uniform_limit_integral)
note [continuous_intros] = continuous_on_compose2 [OF c]

show uniform_limit {0 ..1} (λx t. f x (linepath a b t) ∗ (b − a))
(λt. g (linepath a b t) ∗ (b − a)) F

proof (rule uniform_limit_intros)
show uniform_limit {0 ..1} (λx t. f x (linepath a b t))

(λt. g (linepath a b t)) F
using u unfolding path_image_def by (rule uniform_limit_compose ′) auto

qed

show continuous_on {0 ..1} (λt. f n (linepath a b t) ∗ (b − a)) for n
by (intro continuous_intros; unfold path_image_def) auto

fix I J

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 29

assume I :
∧

n. ((λt. f n (linepath a b t) ∗ (b − a)) has_integral I n) {0 ..1}
and J : ((λt. g (linepath a b t) ∗ (b − a)) has_integral J) {0 ..1}
and lim: (I −−−→ J) F

show ?thesis
by (rule that[of I J]) (use I J lim in ‹auto simp: has_contour_integral›)

qed auto

lemma contour_integral_sums_linepath:
assumes u: uniform_limit (closed_segment a b) (λN w.

∑
n<N . f n w) g se-

quentially
assumes c:

∧
n. continuous_on (closed_segment a b) (f n)

obtains J where
(g has_contour_integral J) (linepath a b)
(λn. contour_integral (linepath a b) (f n)) sums J

proof (rule uniform_limit_contour_integral_linepath)
show uniform_limit (path_image (linepath a b)) (λN w.

∑
n<N . f n w) g se-

quentially
using u by simp

next
show continuous_on (path_image (linepath a b)) (λw.

∑
n<N . f n w) for N

by (intro continuous_intros continuous_on_subset[OF c]) simp_all
next

fix I J
assume 1 :

∧
N . ((λw.

∑
n<N . f n w) has_contour_integral I N) (linepath a b)

assume 2 : (g has_contour_integral J) (linepath a b) and 3 : (I −−−→ J) sequen-
tially

have 4 : I = (λN . (
∑

n<N . contour_integral (linepath a b) (f n)))
proof

fix N :: nat
have f n contour_integrable_on (linepath a b) for n

by (intro contour_integrable_continuous_linepath assms)
hence ((λw.

∑
n<N . f n w) has_contour_integral

(
∑

n<N . contour_integral (linepath a b) (f n))) (linepath a b)
using c by (intro has_contour_integral_sum) (simp_all add: has_contour_integral_integral)
with 1 [of N] show I N = (

∑
n<N . contour_integral (linepath a b) (f n))

using contour_integral_unique by metis
qed
have 5 : (λn. contour_integral (linepath a b) (f n)) sums J

using 1 2 3 4 unfolding sums_def by blast
from that[OF 2 5] show ?thesis .

qed auto

lemma contour_integral_linepath_same_Re:
assumes Re z = c Re z ′ = c Im z = a Im z ′ = b a < b
shows contour_integral (linepath z z ′) f =

i ∗ integral {a..b} (λx. f (Complex c x))
proof −

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 30

have zz ′: z = Complex c a z ′ = Complex c b
using assms by (auto simp: complex_eq_iff)

have contour_integral (linepath z z ′) f =
(z ′ − z) ∗ integral {0 ..1} (λx. f (linepath z z ′ x))

by (simp add: contour_integral_integral)
also have z ′ − z = i ∗ of_real (b − a)

by (simp add: zz ′ Complex_eq algebra_simps)
also have integral {0 ..1} (λx. f (linepath z z ′ x)) =

integral {0 ..1} (λx. f (Complex c (linepath a b x)))
by (simp add: linepath_def Complex_eq scaleR_conv_of_real algebra_simps

zz ′)
also have . . . = integral {0 ..(b − a) / (b − a)} (λx. f (Complex c (a + (b − a)
∗ x)))

using ‹a < b› by (simp add: algebra_simps linepath_def)
also have {0 ..(b − a) / (b − a)} = (λx. x / (b − a)) ‘ {0 ..b − a}

using ‹a < b› by simp
also have integral . . . (λx. f (Complex c (a + (b − a) ∗ x))) =

integral {a−a..b−a} (λx. f (Complex c (x + a))) / of_real (b − a)
using ‹a < b› by (subst integral_stretch_real) (auto simp: scaleR_conv_of_real

add_ac)
also have . . . = integral {a..b} (λx. f (Complex c x)) / of_real (b − a)

by (subst integral_shift_real_ivl) (rule refl)
finally show ?thesis

using ‹a < b› by simp
qed

1.11 Reversing a path integral
lemma has_contour_integral_reverse_linepath:

(f has_contour_integral i) (linepath a b)
=⇒ (f has_contour_integral (−i)) (linepath b a)

using has_contour_integral_reversepath valid_path_linepath by fastforce

lemma contour_integral_reverse_linepath:
continuous_on (closed_segment a b) f =⇒ contour_integral (linepath a b) f =

− (contour_integral(linepath b a) f)
using contour_integral_reversepath by fastforce

Splitting a path integral in a flat way.*)
lemma has_contour_integral_split:

assumes f : (f has_contour_integral i) (linepath a c) (f has_contour_integral j)
(linepath c b)

and k: 0 ≤ k k ≤ 1
and c: c − a = k ∗R (b − a)

shows (f has_contour_integral (i + j)) (linepath a b)
proof (cases k = 0 ∨ k = 1)

case True
then show ?thesis

using assms by auto

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 31

next
case False
then have k: 0 < k k < 1

using assms by auto
have c ′: c = k ∗R (b − a) + a

by (metis diff_add_cancel c)
have bc: (b − c) = (1 − k) ∗R (b − a)

by (simp add: algebra_simps c ′)
{ assume ∗: ((λx. f ((1 − x) ∗R a + x ∗R c) ∗ (c − a)) has_integral i) {0 ..1}

have
∧

x. (x / k) ∗R a + ((k − x) / k) ∗R a = a
using False by (simp add: field_split_simps flip: real_vector .scale_left_distrib)
then have

∧
x. ((k − x) / k) ∗R a + (x / k) ∗R c = (1 − x) ∗R a + x ∗R b

using False by (simp add: c ′ algebra_simps)
then have ((λx. f ((1 − x) ∗R a + x ∗R b) ∗ (b − a)) has_integral i) {0 ..k}

using k has_integral_affinity01 [OF ∗, of inverse k 0]
by (force dest: has_integral_cmul [where c = inverse k]

simp add: divide_simps mult.commute [of _ k] image_affinity_atLeastAtMost
c)

} note fi = this
{ assume ∗: ((λx. f ((1 − x) ∗R c + x ∗R b) ∗ (b − c)) has_integral j) {0 ..1}

have ∗∗:
∧

x. (((1 − x) / (1 − k)) ∗R c + ((x − k) / (1 − k)) ∗R b) = ((1 −
x) ∗R a + x ∗R b)

using k
apply (simp add: c ′ scaleR_conv_of_real divide_simps)

apply (simp add: distrib_right distrib_left right_diff_distrib left_diff_distrib)
done

have ((λx. f ((1 − x) ∗R a + x ∗R b) ∗ (b − a)) has_integral j) {k..1}
using k has_integral_affinity01 [OF ∗, of inverse(1 − k) −(k/(1 − k))]

apply (simp add: divide_simps mult.commute [of _ 1−k] image_affinity_atLeastAtMost
∗∗ bc)

apply (auto dest: has_integral_cmul [where k = (1 − k) ∗R j and c =
inverse (1 − k)])

done
}
then show ?thesis

using f k unfolding has_contour_integral_linepath
by (simp add: linepath_def has_integral_combine [OF _ _ fi])

qed

lemma continuous_on_closed_segment_transform:
assumes f : continuous_on (closed_segment a b) f

and k: 0 ≤ k k ≤ 1
and c: c − a = k ∗R (b − a)

shows continuous_on (closed_segment a c) f
proof −

have c ′: c = (1 − k) ∗R a + k ∗R b
using c by (simp add: algebra_simps)

have closed_segment a c ⊆ closed_segment a b
by (metis c ′ ends_in_segment(1) in_segment(1) k subset_closed_segment)

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 32

then show continuous_on (closed_segment a c) f
by (rule continuous_on_subset [OF f])

qed

lemma contour_integral_split:
assumes f : continuous_on (closed_segment a b) f

and k: 0 ≤ k k ≤ 1
and c: c − a = k ∗R (b − a)

shows contour_integral(linepath a b) f = contour_integral(linepath a c) f +
contour_integral(linepath c b) f
proof −

have c ′: c = (1 − k) ∗R a + k ∗R b
using c by (simp add: algebra_simps)

have closed_segment a c ⊆ closed_segment a b
by (metis c ′ ends_in_segment(1) in_segment(1) k subset_closed_segment)

moreover have closed_segment c b ⊆ closed_segment a b
by (metis c ′ ends_in_segment(2) in_segment(1) k subset_closed_segment)

ultimately
have continuous_on (closed_segment a c) f continuous_on (closed_segment c

b) f
by (auto intro: continuous_on_subset [OF f])

then have (f has_contour_integral
contour_integral (linepath a c) f + contour_integral (linepath c b) f)

(linepath a b)
by (meson c contour_integrable_continuous_linepath

has_contour_integral_integral has_contour_integral_split k)
then show ?thesis

by (metis contour_integral_unique)
qed

lemma contour_integral_split_linepath:
assumes f : continuous_on (closed_segment a b) f

and c: c ∈ closed_segment a b
shows contour_integral(linepath a b) f = contour_integral(linepath a c) f +

contour_integral(linepath c b) f
using c by (auto simp: closed_segment_def algebra_simps intro!: contour_integral_split

[OF f])

1.12 Reversing the order in a double path integral

The condition is stronger than needed but it’s often true in typical situations
lemma fst_im_cbox [simp]: cbox c d 6= {} =⇒ (fst ‘ cbox (a,c) (b,d)) = cbox a b

by (auto simp: cbox_Pair_eq)

lemma snd_im_cbox [simp]: cbox a b 6= {} =⇒ (snd ‘ cbox (a,c) (b,d)) = cbox c
d

by (auto simp: cbox_Pair_eq)

proposition contour_integral_swap:

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 33

assumes fcon: continuous_on (path_image g × path_image h) (λ(y1 ,y2). f y1
y2)

and vp: valid_path g valid_path h
and gvcon: continuous_on {0 ..1} (λt. vector_derivative g (at t))
and hvcon: continuous_on {0 ..1} (λt. vector_derivative h (at t))

shows contour_integral g (λw. contour_integral h (f w)) =
contour_integral h (λz. contour_integral g (λw. f w z))

proof −
have gcon: continuous_on {0 ..1} g and hcon: continuous_on {0 ..1} h
using assms by (auto simp: valid_path_def piecewise_C1_differentiable_on_def)

have fgh1 :
∧

x. (λt. f (g x) (h t)) = (λ(y1 ,y2). f y1 y2) ◦ (λt. (g x, h t))
by (rule ext) simp

have fgh2 :
∧

x. (λt. f (g t) (h x)) = (λ(y1 ,y2). f y1 y2) ◦ (λt. (g t, h x))
by (rule ext) simp

have fcon_im1 :
∧

x. 0 ≤ x =⇒ x ≤ 1 =⇒ continuous_on ((λt. (g x, h t)) ‘
{0 ..1}) (λ(x, y). f x y)

by (rule continuous_on_subset [OF fcon]) (auto simp: path_image_def)
have fcon_im2 :

∧
x. 0 ≤ x =⇒ x ≤ 1 =⇒ continuous_on ((λt. (g t, h x)) ‘

{0 ..1}) (λ(x, y). f x y)
by (rule continuous_on_subset [OF fcon]) (auto simp: path_image_def)

have continuous_on (cbox (0 , 0) (1 , 1 ::real)) ((λx. vector_derivative g (at x))
◦ fst)

continuous_on (cbox (0 , 0) (1 ::real, 1)) ((λx. vector_derivative h (at x)) ◦
snd)

by (rule continuous_intros | simp add: gvcon hvcon)+
then have gvcon ′: continuous_on (cbox (0 , 0) (1 , 1 ::real)) (λz. vector_derivative

g (at (fst z)))
and hvcon ′: continuous_on (cbox (0 , 0) (1 ::real, 1)) (λx. vector_derivative

h (at (snd x)))
by auto

have continuous_on ((λx. (g (fst x), h (snd x))) ‘ cbox (0 ,0) (1 ,1)) (λ(y1 , y2).
f y1 y2)

by (auto simp: path_image_def intro: continuous_on_subset [OF fcon])
then have continuous_on (cbox (0 , 0) (1 , 1)) ((λ(y1 , y2). f y1 y2) ◦ (λw. ((g
◦ fst) w, (h ◦ snd) w)))

by (intro gcon hcon continuous_intros | simp)+
then have fgh: continuous_on (cbox (0 , 0) (1 , 1)) (λx. f (g (fst x)) (h (snd

x)))
by auto

have integral {0 ..1} (λx. contour_integral h (f (g x)) ∗ vector_derivative g (at
x)) =

integral {0 ..1} (λx. contour_integral h (λy. f (g x) y ∗ vector_derivative g
(at x)))

proof (rule integral_cong [OF contour_integral_rmul [symmetric]])
have

∧
x. x ∈ {0 ..1} =⇒

continuous_on {0 ..1} (λxa. f (g x) (h xa))
by (subst fgh1) (rule fcon_im1 hcon continuous_intros | simp)+
then show

∧
x. x ∈ {0 ..1} =⇒ f (g x) contour_integrable_on h

unfolding contour_integrable_on

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 34

using continuous_on_mult hvcon integrable_continuous_real by blast
qed
also have . . . = integral {0 ..1}

(λy. contour_integral g (λx. f x (h y) ∗ vector_derivative h (at
y)))

unfolding contour_integral_integral
apply (subst integral_swap_continuous [where ′a = real and ′b = real, of 0

0 1 1 , simplified])
subgoal

by (rule fgh gvcon ′ hvcon ′ continuous_intros | simp add: split_def)+
by (simp add: mult.commute mult.left_commute)

also have . . . = contour_integral h (λz. contour_integral g (λw. f w z))
unfolding contour_integral_integral integral_mult_left [symmetric]
by (simp add: algebra_simps)

finally show ?thesis
by (simp add: contour_integral_integral)

qed

lemma valid_path_negatepath: valid_path γ =⇒ valid_path (uminus ◦ γ)
unfolding o_def using piecewise_C1_differentiable_neg valid_path_def by

blast

lemma has_contour_integral_negatepath:
assumes γ: valid_path γ and cint: ((λz. f (− z)) has_contour_integral − i) γ
shows (f has_contour_integral i) (uminus ◦ γ)

proof −
obtain S where cont: continuous_on {0 ..1} γ and finite S and diff : γ C1_differentiable_on
{0 ..1} − S

using γ by (auto simp: valid_path_def piecewise_C1_differentiable_on_def)
have ((λx. − (f (− γ x) ∗ vector_derivative γ (at x within {0 ..1}))) has_integral

i) {0 ..1}
using cint by (auto simp: has_contour_integral_def dest: has_integral_neg)

then
have ((λx. f (− γ x) ∗ vector_derivative (uminus ◦ γ) (at x within {0 ..1}))

has_integral i) {0 ..1}
proof (rule rev_iffD1 [OF _ has_integral_spike_eq])

show negligible S
by (simp add: ‹finite S› negligible_finite)

show f (− γ x) ∗ vector_derivative (uminus ◦ γ) (at x within {0 ..1}) =
− (f (− γ x) ∗ vector_derivative γ (at x within {0 ..1}))

if x ∈ {0 ..1} − S for x
proof −

have vector_derivative (uminus ◦ γ) (at x within cbox 0 1) = − vec-
tor_derivative γ (at x within cbox 0 1)

proof (rule vector_derivative_within_cbox)
show (uminus ◦ γ has_vector_derivative − vector_derivative γ (at x within

cbox 0 1)) (at x within cbox 0 1)
using that unfolding o_def

by (metis C1_differentiable_on_eq UNIV_I diff differentiable_subset

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 35

has_vector_derivative_minus subsetI that vector_derivative_works)
qed (use that in auto)
then show ?thesis

by simp
qed

qed
then show ?thesis by (simp add: has_contour_integral_def)

qed

lemma contour_integrable_negatepath:
assumes γ: valid_path γ and pi: (λz. f (− z)) contour_integrable_on γ
shows f contour_integrable_on (uminus ◦ γ)
by (metis γ add.inverse_inverse contour_integrable_on_def has_contour_integral_negatepath

pi)

lemma C1_differentiable_polynomial_function:
fixes p :: real ⇒ ′a::euclidean_space
shows polynomial_function p =⇒ p C1_differentiable_on S
by (metis continuous_on_polymonial_function C1_differentiable_on_def has_vector_derivative_polynomial_function)

lemma valid_path_polynomial_function:
fixes p :: real ⇒ ′a::euclidean_space
shows polynomial_function p =⇒ valid_path p
by (force simp: valid_path_def piecewise_C1_differentiable_on_def continu-

ous_on_polymonial_function C1_differentiable_polynomial_function)

lemma valid_path_subpath_trivial [simp]:
fixes g :: real ⇒ ′a::euclidean_space
shows z 6= g x =⇒ valid_path (subpath x x g)

by (simp add: subpath_def valid_path_polynomial_function)

1.13 Partial circle path
definition part_circlepath :: [complex, real, real, real, real] ⇒ complex

where part_circlepath z r s t ≡ λx. z + of_real r ∗ exp (i ∗ of_real (linepath s
t x))

lemma pathstart_part_circlepath [simp]:
pathstart(part_circlepath z r s t) = z + r∗exp(i ∗ s)
by (metis part_circlepath_def pathstart_def pathstart_linepath)

lemma pathfinish_part_circlepath [simp]:
pathfinish(part_circlepath z r s t) = z + r∗exp(i∗t)
by (metis part_circlepath_def pathfinish_def pathfinish_linepath)

lemma reversepath_part_circlepath[simp]:
reversepath (part_circlepath z r s t) = part_circlepath z r t s
unfolding part_circlepath_def reversepath_def linepath_def
by (auto simp:algebra_simps)

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 36

lemma has_vector_derivative_part_circlepath [derivative_intros]:
((part_circlepath z r s t) has_vector_derivative
(i ∗ r ∗ (of_real t − of_real s) ∗ exp(i ∗ linepath s t x)))
(at x within X)

unfolding part_circlepath_def linepath_def scaleR_conv_of_real
by (rule has_vector_derivative_real_field derivative_eq_intros | simp)+

lemma differentiable_part_circlepath:
part_circlepath c r a b differentiable at x within A
using has_vector_derivative_part_circlepath[of c r a b x A] differentiableI_vector

by blast

lemma vector_derivative_part_circlepath:
vector_derivative (part_circlepath z r s t) (at x) =

i ∗ r ∗ (of_real t − of_real s) ∗ exp(i ∗ linepath s t x)
using has_vector_derivative_part_circlepath vector_derivative_at by blast

lemma vector_derivative_part_circlepath01 :
[[0 ≤ x; x ≤ 1]]
=⇒ vector_derivative (part_circlepath z r s t) (at x within {0 ..1}) =

i ∗ r ∗ (of_real t − of_real s) ∗ exp(i ∗ linepath s t x)
using has_vector_derivative_part_circlepath
by (auto simp: vector_derivative_at_within_ivl)

lemma valid_path_part_circlepath [simp]: valid_path (part_circlepath z r s t)
unfolding valid_path_def
by (auto simp: C1_differentiable_on_eq vector_derivative_works vector_derivative_part_circlepath

has_vector_derivative_part_circlepath
intro!: C1_differentiable_imp_piecewise continuous_intros)

lemma path_part_circlepath [simp]: path (part_circlepath z r s t)
by (simp add: valid_path_imp_path)

proposition path_image_part_circlepath:
assumes s ≤ t

shows path_image (part_circlepath z r s t) = {z + r ∗ exp(i ∗ of_real x) | x.
s ≤ x ∧ x ≤ t}
proof −

{ fix z::real
assume 0 ≤ z z ≤ 1
with ‹s ≤ t› have ∃ x. (exp (i ∗ linepath s t z) = exp (i ∗ of_real x)) ∧ s ≤ x

∧ x ≤ t
apply (rule_tac x=(1 − z) ∗ s + z ∗ t in exI)
apply (simp add: linepath_def scaleR_conv_of_real algebra_simps)
by (metis (no_types) affine_ineq mult.commute mult_left_mono)

}
moreover
{ fix z

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 37

assume s ≤ z z ≤ t
then have z + of_real r ∗ exp (i ∗ of_real z) ∈ (λx. z + of_real r ∗ exp (i ∗

linepath s t x)) ‘ {0 ..1}
apply (rule_tac x=(z − s)/(t − s) in image_eqI)
apply (simp add: linepath_def scaleR_conv_of_real divide_simps exp_eq)
apply (auto simp: field_split_simps)
done

}
ultimately show ?thesis

by (fastforce simp add: path_image_def part_circlepath_def)
qed

lemma path_image_part_circlepath ′:
path_image (part_circlepath z r s t) = (λx. z + r ∗ cis x) ‘ closed_segment s t
by (metis (no_types, lifting) ext cis_conv_exp image_image linepath_image_01

part_circlepath_def path_image_def)

lemma path_image_part_circlepath_subset:
[[s ≤ t; 0 ≤ r]] =⇒ path_image(part_circlepath z r s t) ⊆ sphere z r

by (auto simp: path_image_part_circlepath sphere_def dist_norm algebra_simps
norm_mult)

lemma in_path_image_part_circlepath:
assumes w ∈ path_image(part_circlepath z r s t) s ≤ t 0 ≤ r

shows norm(w − z) = r
by (smt (verit) assms dist_norm mem_Collect_eq norm_minus_commute path_image_part_circlepath_subset

sphere_def subsetD)

lemma path_image_part_circlepath_subset ′:
assumes r ≥ 0
shows path_image (part_circlepath z r s t) ⊆ sphere z r
by (smt (verit) assms path_image_part_circlepath_subset reversepath_part_circlepath

reversepath_simps(2))

lemma part_circlepath_cnj: cnj (part_circlepath c r a b x) = part_circlepath (cnj
c) r (−a) (−b) x

by (simp add: part_circlepath_def exp_cnj linepath_def algebra_simps)

lemma contour_integrable_on_compose_cnj_iff :
assumes valid_path γ
shows f contour_integrable_on (cnj ◦ γ)←→ (cnj ◦ f ◦ cnj) contour_integrable_on
γ
proof −

from assms obtain S where S : finite S γ C1_differentiable_on {0 ..1} − S
unfolding valid_path_def piecewise_C1_differentiable_on_def by blast

have f contour_integrable_on (cnj ◦ γ) ←→
((λt. cnj (cnj (f (cnj (γ t))) ∗ vector_derivative γ (at t))) integrable_on

{0 ..1})
unfolding contour_integrable_on o_def

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 38

proof (intro integrable_spike_finite_eq [OF S(1)])
fix t :: real assume t ∈ {0 ..1} − S
hence γ differentiable at t

using S(2) by (meson C1_differentiable_on_eq)
hence vector_derivative (λx. cnj (γ x)) (at t) = cnj (vector_derivative γ (at

t))
by (rule vector_derivative_cnj)

thus f (cnj (γ t)) ∗ vector_derivative (λx. cnj (γ x)) (at t) =
cnj (cnj (f (cnj (γ t))) ∗ vector_derivative γ (at t))

by simp
qed
also have . . . ←→ ((λt. cnj (f (cnj (γ t))) ∗ vector_derivative γ (at t)) inte-

grable_on {0 ..1})
by (rule integrable_on_cnj_iff)

also have . . . ←→ (cnj ◦ f ◦ cnj) contour_integrable_on γ
by (simp add: contour_integrable_on o_def)

finally show ?thesis .
qed

lemma contour_integral_cnj:
assumes valid_path γ
shows contour_integral (cnj ◦ γ) f = cnj (contour_integral γ (cnj ◦ f ◦ cnj))

proof −
from assms obtain S where S : finite S γ C1_differentiable_on {0 ..1} − S

unfolding valid_path_def piecewise_C1_differentiable_on_def by blast
have contour_integral (cnj ◦ γ) f =

integral {0 ..1} (λt. cnj (cnj (f (cnj (γ t))) ∗ vector_derivative γ (at t)))
unfolding contour_integral_integral

proof (intro integral_spike)
fix t assume t ∈ {0 ..1} − S
hence γ differentiable at t

using S(2) by (meson C1_differentiable_on_eq)
hence vector_derivative (λx. cnj (γ x)) (at t) = cnj (vector_derivative γ (at

t))
by (rule vector_derivative_cnj)

thus cnj (cnj (f (cnj (γ t))) ∗ vector_derivative γ (at t)) =
f ((cnj ◦ γ) t) ∗ vector_derivative (cnj ◦ γ) (at t)

by (simp add: o_def)
qed (use S(1) in auto)
also have . . . = cnj (integral {0 ..1} (λt. cnj (f (cnj (γ t))) ∗ vector_derivative

γ (at t)))
by (subst integral_cnj [symmetric]) auto

also have . . . = cnj (contour_integral γ (cnj ◦ f ◦ cnj))
by (simp add: contour_integral_integral)

finally show ?thesis .
qed

lemma contour_integral_negatepath:
assumes valid_path γ

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 39

shows contour_integral (uminus ◦ γ) f = −(contour_integral γ (λx. f (−x)))
(is ?lhs = ?rhs)
proof (cases f contour_integrable_on (uminus ◦ γ))

case True
hence ∗: (f has_contour_integral ?lhs) (uminus ◦ γ)

using has_contour_integral_integral by blast
have ((λz. f (−z)) has_contour_integral − contour_integral (uminus ◦ γ) f)

(uminus ◦ (uminus ◦ γ))
by (rule has_contour_integral_negatepath) (use ∗ assms in auto)

hence ((λx. f (−x)) has_contour_integral −?lhs) γ
by (simp add: o_def)

thus ?thesis
by (simp add: contour_integral_unique)

next
case False
hence ¬(λz. f (− z)) contour_integrable_on γ

using contour_integrable_negatepath[of γ f] assms by auto
with False show ?thesis

by (simp add: not_integrable_contour_integral)
qed

lemma contour_integral_bound_part_circlepath:
assumes f contour_integrable_on part_circlepath c r a b
assumes B ≥ 0 r ≥ 0

∧
x. x ∈ path_image (part_circlepath c r a b) =⇒ norm

(f x) ≤ B
shows norm (contour_integral (part_circlepath c r a b) f) ≤ B ∗ r ∗ |b − a|

proof −
let ?I = integral {0 ..1} (λx. f (part_circlepath c r a b x) ∗ i ∗ of_real (r ∗ (b
− a)) ∗

exp (i ∗ linepath a b x))
have norm ?I ≤ integral {0 ..1} (λx::real. B ∗ 1 ∗ (r ∗ |b − a|) ∗ 1)
proof (rule integral_norm_bound_integral, goal_cases)

case 1
with assms(1) show ?case
by (simp add: contour_integrable_on vector_derivative_part_circlepath mult_ac)

next
case (3 x)
with assms(2−) show ?case unfolding norm_mult norm_of_real abs_mult

by (intro mult_mono) (auto simp: path_image_def)
qed auto
also have ?I = contour_integral (part_circlepath c r a b) f

by (simp add: contour_integral_integral vector_derivative_part_circlepath
mult_ac)

finally show ?thesis by simp
qed

lemma has_contour_integral_part_circlepath_iff :
assumes a < b
shows (f has_contour_integral I) (part_circlepath c r a b) ←→

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 40

((λt. f (c + r ∗ cis t) ∗ r ∗ i ∗ cis t) has_integral I) {a..b}
proof −

have (f has_contour_integral I) (part_circlepath c r a b) ←→
((λx. f (part_circlepath c r a b x) ∗ vector_derivative (part_circlepath c r

a b)
(at x within {0 ..1})) has_integral I) {0 ..1}

unfolding has_contour_integral_def ..
also have . . . ←→ ((λx. f (part_circlepath c r a b x) ∗ r ∗ (b − a) ∗ i ∗

cis (linepath a b x)) has_integral I) {0 ..1}
by (intro has_integral_cong, subst vector_derivative_part_circlepath01)

(simp_all add: cis_conv_exp)
also have . . . ←→ ((λx. f (c + r ∗ exp (i ∗ linepath (of_real a) (of_real b) x))
∗

r ∗ i ∗ exp (i ∗ linepath (of_real a) (of_real b) x) ∗
vector_derivative (linepath (of_real a) (of_real b))
(at x within {0 ..1})) has_integral I) {0 ..1}

by (intro has_integral_cong, subst vector_derivative_linepath_within)
(auto simp: part_circlepath_def cis_conv_exp of_real_linepath [symmetric])

also have . . . ←→ ((λz. f (c + r ∗ exp (i ∗ z)) ∗ r ∗ i ∗ exp (i ∗ z)) has_contour_integral
I)

(linepath (of_real a) (of_real b))
by (simp add: has_contour_integral_def)

also have . . . ←→ ((λt. f (c + r ∗ cis t) ∗ r ∗ i ∗ cis t) has_integral I) {a..b}
using assms

by (subst has_contour_integral_linepath_Reals_iff) (simp_all add: cis_conv_exp)
finally show ?thesis .

qed

lemma contour_integrable_part_circlepath_iff :
assumes a < b
shows f contour_integrable_on (part_circlepath c r a b) ←→

(λt. f (c + r ∗ cis t) ∗ r ∗ i ∗ cis t) integrable_on {a..b}
using assms by (auto simp: contour_integrable_on_def integrable_on_def

has_contour_integral_part_circlepath_iff)

lemma contour_integral_part_circlepath_eq:
assumes a < b
shows contour_integral (part_circlepath c r a b) f =

integral {a..b} (λt. f (c + r ∗ cis t) ∗ r ∗ i ∗ cis t)
proof (cases f contour_integrable_on part_circlepath c r a b)

case True
hence (λt. f (c + r ∗ cis t) ∗ r ∗ i ∗ cis t) integrable_on {a..b}

using assms by (simp add: contour_integrable_part_circlepath_iff)
with True show ?thesis

using has_contour_integral_part_circlepath_iff [OF assms]
contour_integral_unique has_integral_integrable_integral by blast

next
case False
hence ¬(λt. f (c + r ∗ cis t) ∗ r ∗ i ∗ cis t) integrable_on {a..b}

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 41

using assms by (simp add: contour_integrable_part_circlepath_iff)
with False show ?thesis

by (simp add: not_integrable_contour_integral not_integrable_integral)
qed

lemma contour_integral_part_circlepath_reverse:
contour_integral (part_circlepath c r a b) f = −contour_integral (part_circlepath

c r b a) f
by (metis contour_integral_reversepath reversepath_part_circlepath valid_path_part_circlepath)

lemma contour_integral_part_circlepath_reverse ′:
b < a =⇒ contour_integral (part_circlepath c r a b) f =

−contour_integral (part_circlepath c r b a) f
by (rule contour_integral_part_circlepath_reverse)

lemma finite_bounded_log: finite {z::complex. norm z ≤ b ∧ exp z = w}
proof (cases w = 0)

case True then show ?thesis by auto
next

case False
have ∗: finite {x. cmod ((2 ∗ real_of_int x ∗ pi) ∗ i) ≤ b + cmod (Ln w)}
proof (simp add: norm_mult finite_int_iff_bounded_le)

have abs ‘ {x. 2 ∗ |real_of_int x| ∗ pi ≤ b + cmod (Ln w)}
⊆ {..b(b + cmod (Ln w)) / (2 ∗ pi)c}

by (auto simp: field_split_simps le_floor_iff)
then show ∃ k. abs ‘ {x. 2 ∗ |of_int x| ∗ pi ≤ b + cmod (Ln w)} ⊆ {..k}

by blast
qed
have [simp]:

∧
P f . {z. P z ∧ (∃n. z = f n)} = f ‘ {n. P (f n)}

by blast
have finite {z. cmod z ≤ b ∧ exp z = exp (Ln w)}
using norm_add_leD by (fastforce intro: finite_subset [OF _ ∗] simp: exp_eq)

then show ?thesis
using False by auto

qed

lemma finite_bounded_log2 :
fixes a::complex

assumes a 6= 0
shows finite {z. norm z ≤ b ∧ exp(a∗z) = w}

proof −
have ∗: finite ((λz. z / a) ‘ {z. cmod z ≤ b ∗ cmod a ∧ exp z = w})

by (rule finite_imageI [OF finite_bounded_log])
show ?thesis

by (rule finite_subset [OF _ ∗]) (force simp: assms norm_mult)
qed

lemma has_contour_integral_bound_part_circlepath_strong:
assumes fi: (f has_contour_integral i) (part_circlepath z r s t)

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 42

and finite k and le: 0 ≤ B 0 < r s ≤ t
and B:

∧
x. x ∈ path_image(part_circlepath z r s t) − k =⇒ norm(f x) ≤ B

shows cmod i ≤ B ∗ r ∗ (t − s)
proof −

consider s = t | s < t using ‹s ≤ t› by linarith
then show ?thesis
proof cases

case 1 with fi [unfolded has_contour_integral]
have i = 0 by (simp add: vector_derivative_part_circlepath)
with assms show ?thesis by simp

next
case 2
have [simp]: |r | = r using ‹r > 0 › by linarith
have [simp]: cmod (of_real t − of_real s) = t−s

by (metis 2 abs_of_pos diff_gt_0_iff_gt norm_of_real of_real_diff)
have finite (part_circlepath z r s t −‘ {y} ∩ {0 ..1}) if y ∈ k for y
proof −

let ?w = (y − z)/of_real r / exp(i ∗ of_real s)
have fin: finite (of_real −‘ {z. cmod z ≤ 1 ∧ exp (i ∗ of_real (t − s) ∗ z) =

?w})
using ‹s < t›

by (intro finite_vimageI [OF finite_bounded_log2]) (auto simp: inj_of_real)
show ?thesis

unfolding part_circlepath_def linepath_def vimage_def
using le

by (intro finite_subset [OF _ fin]) (auto simp: algebra_simps scaleR_conv_of_real
exp_add exp_diff)

qed
then have fin01 : finite ((part_circlepath z r s t) −‘ k ∩ {0 ..1})

by (rule finite_finite_vimage_IntI [OF ‹finite k›])
have ∗∗: ((λx. if (part_circlepath z r s t x) ∈ k then 0

else f (part_circlepath z r s t x) ∗
vector_derivative (part_circlepath z r s t) (at x)) has_integral

i) {0 ..1}
by (rule has_integral_spike [OF negligible_finite [OF fin01]]) (use fi has_contour_integral

in auto)
have ∗:

∧
x. [[0 ≤ x; x ≤ 1 ; part_circlepath z r s t x /∈ k]] =⇒ cmod (f

(part_circlepath z r s t x)) ≤ B
by (auto intro!: B [unfolded path_image_def image_def])

show ?thesis
using has_integral_bound [where ′a=real, simplified, OF _ ∗∗]

using assms le ∗ 2 ‹r > 0 › by (auto simp add: norm_mult vector_derivative_part_circlepath)
qed

qed

corollary contour_integral_bound_part_circlepath_strong:
assumes f contour_integrable_on part_circlepath z r s t

and finite k and 0 ≤ B 0 < r s ≤ t
and

∧
x. x ∈ path_image(part_circlepath z r s t) − k =⇒ norm(f x) ≤ B

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 43

shows cmod (contour_integral (part_circlepath z r s t) f) ≤ B ∗ r ∗ (t − s)
using assms has_contour_integral_bound_part_circlepath_strong has_contour_integral_integral

by blast

lemma has_contour_integral_bound_part_circlepath:
[[(f has_contour_integral i) (part_circlepath z r s t);

0 ≤ B; 0 < r ; s ≤ t;∧
x. x ∈ path_image(part_circlepath z r s t) =⇒ norm(f x) ≤ B]]

=⇒ norm i ≤ B∗r∗(t − s)
by (auto intro: has_contour_integral_bound_part_circlepath_strong)

lemma contour_integrable_continuous_part_circlepath:
continuous_on (path_image (part_circlepath z r s t)) f
=⇒ f contour_integrable_on (part_circlepath z r s t)

unfolding contour_integrable_on has_contour_integral_def vector_derivative_part_circlepath
path_image_def
by (best intro: integrable_continuous_real path_part_circlepath [unfolded path_def]

continuous_intros
continuous_on_compose2 [where g=f , OF _ _ order_refl])

lemma simple_path_part_circlepath:
simple_path(part_circlepath z r s t) ←→ (r 6= 0 ∧ s 6= t ∧ |s − t| ≤ 2∗pi)

proof (cases r = 0 ∨ s = t)
case True
then show ?thesis

unfolding part_circlepath_def simple_path_def loop_free_def
by (rule disjE) (force intro: bexI [where x = 1/4] bexI [where x = 1/3])+

next
case False then have r 6= 0 s 6= t by auto
have ∗:

∧
x y z s t. i∗((1 − x) ∗ s + x ∗ t) = i∗(((1 − y) ∗ s + y ∗ t)) + z ←→

i∗(x − y) ∗ (t − s) = z
by (simp add: algebra_simps)

have abs01 :
∧

x y::real. 0 ≤ x ∧ x ≤ 1 ∧ 0 ≤ y ∧ y ≤ 1
=⇒ (x = y ∨ x = 0 ∧ y = 1 ∨ x = 1 ∧ y = 0 ←→ |x − y| ∈

{0 ,1})
by auto

have ∗∗:
∧

x y. (∃n. (complex_of_real x − of_real y) ∗ (of_real t − of_real s)
= 2 ∗ (of_int n ∗ of_real pi)) ←→

(∃n. |x − y| ∗ (t − s) = 2 ∗ (of_int n ∗ pi))
by (force simp: algebra_simps abs_if dest: arg_cong [where f=Re] arg_cong

[where f=complex_of_real]
intro: exI [where x = −n for n])

have 1 : |s − t| ≤ 2 ∗ pi
if

∧
x. 0 ≤ x ∧ x ≤ 1 =⇒ (∃n. x ∗ (t − s) = 2 ∗ (real_of_int n ∗ pi)) −→ x

= 0 ∨ x = 1
proof (rule ccontr)

assume ¬ |s − t| ≤ 2 ∗ pi
then have ∗:

∧
n. t − s 6= of_int n ∗ |s − t|

using False that [of 2∗pi / |t − s|]

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 44

by (simp add: abs_minus_commute divide_simps)
show False

using ∗ [of 1] ∗ [of −1] by auto
qed
have 2 : |s − t| = |2 ∗ (real_of_int n ∗ pi) / x| if x 6= 0 x ∗ (t − s) = 2 ∗

(real_of_int n ∗ pi) for x n
proof −

have t−s = 2 ∗ (real_of_int n ∗ pi)/x
using that by (simp add: field_simps)

then show ?thesis by (metis abs_minus_commute)
qed
have abs_away:

∧
P. (∀ x∈{0 ..1}. ∀ y∈{0 ..1}. P |x − y|) ←→ (∀ x::real. 0 ≤ x

∧ x ≤ 1 −→ P x)
by force

have
∧

x n. [[s 6= t; |s − t| ≤ 2 ∗ pi; 0 ≤ x; x < 1 ;
x ∗ (t − s) = 2 ∗ (real_of_int n ∗ pi)]]
=⇒ x = 0

by (rule ccontr) (auto simp: 2 field_split_simps abs_mult dest: of_int_leD)
then
show ?thesis using False

apply (simp add: simple_path_def loop_free_def)
apply (simp add: part_circlepath_def linepath_def exp_eq ∗ ∗∗ abs01 del:

Set.insert_iff)
apply (subst abs_away)
apply (auto simp: 1)
done

qed

lemma arc_part_circlepath:
assumes r 6= 0 s 6= t |s − t| < 2∗pi

shows arc (part_circlepath z r s t)
proof −

have ∗: x = y if eq: i ∗ (linepath s t x) = i ∗ (linepath s t y) + 2 ∗ of_int n ∗
of_real pi ∗ i

and x: x ∈ {0 ..1} and y: y ∈ {0 ..1} for x y n
proof (rule ccontr)

assume x 6= y
have (linepath s t x) = (linepath s t y) + 2 ∗ of_int n ∗ complex_of_real pi
by (metis add_divide_eq_iff complex_i_not_zero mult.commute nonzero_mult_div_cancel_left

eq)
then have s∗y + t∗x = s∗x + (t∗y + of_int n ∗ (pi ∗ 2))

by (force simp: algebra_simps linepath_def dest: arg_cong [where f=Re])
with ‹x 6= y› have st: s−t = (of_int n ∗ (pi ∗ 2) / (y−x))

by (force simp: field_simps)
have |real_of_int n| < |y − x|

using assms ‹x 6= y› by (simp add: st abs_mult field_simps)
then show False

using assms x y st by (auto dest: of_int_lessD)
qed

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 45

then have inj_on (part_circlepath z r s t) {0 ..1}
using assms by (force simp add: part_circlepath_def inj_on_def exp_eq)

then show ?thesis
by (simp add: arc_def)

qed

1.14 Special case of one complete circle
definition circlepath :: [complex, real, real] ⇒ complex

where circlepath z r ≡ part_circlepath z r 0 (2∗pi)

lemma circlepath: circlepath z r = (λx. z + r ∗ exp(2 ∗ of_real pi ∗ i ∗ of_real
x))

by (simp add: circlepath_def part_circlepath_def linepath_def algebra_simps)

lemma pathstart_circlepath [simp]: pathstart (circlepath z r) = z + r
by (simp add: circlepath_def)

lemma pathfinish_circlepath [simp]: pathfinish (circlepath z r) = z + r
by (simp add: circlepath_def) (metis exp_two_pi_i mult.commute)

lemma circlepath_minus: circlepath z (−r) x = circlepath z r (x + 1/2)
proof −

have z + of_real r ∗ exp (2 ∗ pi ∗ i ∗ (x + 1/2)) =
z + of_real r ∗ exp (2 ∗ pi ∗ i ∗ x + pi ∗ i)

by (simp add: divide_simps) (simp add: algebra_simps)
also have . . . = z − r ∗ exp (2 ∗ pi ∗ i ∗ x)

by (simp add: exp_add)
finally show ?thesis

by (simp add: circlepath path_image_def sphere_def dist_norm)
qed

lemma circlepath_add1 : circlepath z r (x+1) = circlepath z r x
using circlepath_minus [of z r x+1/2] circlepath_minus [of z −r x]
by (simp add: add.commute)

lemma circlepath_add_half : circlepath z r (x + 1/2) = circlepath z r (x − 1/2)
using circlepath_add1 [of z r x−1/2]
by (simp add: add.commute)

lemma path_image_circlepath_minus_subset:
path_image (circlepath z (−r)) ⊆ path_image (circlepath z r)

proof −
have ∃ x∈{0 ..1}. circlepath z r (y + 1/2) = circlepath z r x

if 0 ≤ y y ≤ 1 for y
proof (cases y ≤ 1/2)

case False
with that show ?thesis

by (force simp: circlepath_add_half)

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 46

qed (use that in force)
then show ?thesis

by (auto simp add: path_image_def image_def circlepath_minus)
qed

lemma path_image_circlepath_minus: path_image (circlepath z (−r)) = path_image
(circlepath z r)

using path_image_circlepath_minus_subset by fastforce

lemma has_vector_derivative_circlepath [derivative_intros]:
((circlepath z r) has_vector_derivative (2 ∗ pi ∗ i ∗ r ∗ exp (2 ∗ of_real pi ∗ i ∗

x)))
(at x within X)

unfolding circlepath_def scaleR_conv_of_real
by (rule derivative_eq_intros) (simp add: algebra_simps)

lemma vector_derivative_circlepath:
vector_derivative (circlepath z r) (at x) =

2 ∗ pi ∗ i ∗ r ∗ exp(2 ∗ of_real pi ∗ i ∗ x)
using has_vector_derivative_circlepath vector_derivative_at by blast

lemma vector_derivative_circlepath01 :
[[0 ≤ x; x ≤ 1]]
=⇒ vector_derivative (circlepath z r) (at x within {0 ..1}) =

2 ∗ pi ∗ i ∗ r ∗ exp(2 ∗ of_real pi ∗ i ∗ x)
using has_vector_derivative_circlepath
by (auto simp: vector_derivative_at_within_ivl)

lemma valid_path_circlepath [simp]: valid_path (circlepath z r)
by (simp add: circlepath_def)

lemma path_circlepath [simp]: path (circlepath z r)
by (simp add: valid_path_imp_path)

lemma path_image_circlepath_nonneg:
assumes 0 ≤ r shows path_image (circlepath z r) = sphere z r

proof −
have ∗: x ∈ (λu. z + (cmod (x − z)) ∗ exp (i ∗ (of_real u ∗ (of_real pi ∗ 2))))

‘ {0 ..1} for x
proof (cases x = z)

case True then show ?thesis by force
next

case False
define w where w = x − z
then have w 6= 0 by (simp add: False)
have ∗∗:

∧
t. [[Re w = cos t ∗ cmod w; Im w = sin t ∗ cmod w]] =⇒ w = of_real

(cmod w) ∗ exp (i ∗ t)
using cis_conv_exp complex_eq_iff by auto

obtain t where 0 ≤ t t < 2∗pi Re(w/norm w) = cos t Im(w/norm w) = sin t

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 47

apply (rule sincos_total_2pi [of Re(w/(norm w)) Im(w/(norm w))])
by (auto simp add: divide_simps ‹w 6= 0 › cmod_power2 [symmetric])

then
show ?thesis

using False ∗∗ w_def ‹w 6= 0 ›
by (rule_tac x=t / (2∗pi) in image_eqI) (auto simp add: field_simps)

qed
show ?thesis

unfolding circlepath path_image_def sphere_def dist_norm
by (force simp: assms algebra_simps norm_mult norm_minus_commute intro:

∗)
qed

lemma path_image_circlepath [simp]:
path_image (circlepath z r) = sphere z |r |

using path_image_circlepath_minus
by (force simp: path_image_circlepath_nonneg abs_if)

lemma has_contour_integral_bound_circlepath_strong:
[[(f has_contour_integral i) (circlepath z r);

finite k; 0 ≤ B; 0 < r ;∧
x. [[norm(x − z) = r ; x /∈ k]] =⇒ norm(f x) ≤ B]]

=⇒ norm i ≤ B∗(2∗pi∗r)
unfolding circlepath_def
by (auto simp: algebra_simps in_path_image_part_circlepath dest!: has_contour_integral_bound_part_circlepath_strong)

lemma has_contour_integral_bound_circlepath:
[[(f has_contour_integral i) (circlepath z r);

0 ≤ B; 0 < r ;
∧

x. norm(x − z) = r =⇒ norm(f x) ≤ B]]
=⇒ norm i ≤ B∗(2∗pi∗r)

by (auto intro: has_contour_integral_bound_circlepath_strong)

lemma contour_integrable_continuous_circlepath:
continuous_on (path_image (circlepath z r)) f
=⇒ f contour_integrable_on (circlepath z r)

by (simp add: circlepath_def contour_integrable_continuous_part_circlepath)

lemma simple_path_circlepath: simple_path(circlepath z r) ←→ (r 6= 0)
by (simp add: circlepath_def simple_path_part_circlepath)

lemma notin_path_image_circlepath [simp]: cmod (w − z) < r =⇒ w /∈ path_image
(circlepath z r)

by (simp add: sphere_def dist_norm norm_minus_commute)

lemma contour_integral_circlepath:
assumes r > 0
shows contour_integral (circlepath z r) (λw. 1 / (w − z)) = 2 ∗ of_real pi ∗ i

proof (rule contour_integral_unique)
show ((λw. 1 / (w − z)) has_contour_integral 2 ∗ of_real pi ∗ i) (circlepath z

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 48

r)
unfolding has_contour_integral_def using assms has_integral_const_real [of

_ 0 1]
apply (subst has_integral_cong)
apply (simp add: vector_derivative_circlepath01)

apply (force simp: circlepath)
done

qed

1.15 Uniform convergence of path integral

Uniform convergence when the derivative of the path is bounded, and in
particular for the special case of a circle.
proposition contour_integral_uniform_limit:

assumes ev_fint: eventually (λn:: ′a. (f n) contour_integrable_on γ) F
and ul_f : uniform_limit (path_image γ) f l F
and noleB:

∧
t. t ∈ {0 ..1} =⇒ norm (vector_derivative γ (at t)) ≤ B

and γ: valid_path γ
and [simp]: ¬ trivial_limit F

shows l contour_integrable_on γ ((λn. contour_integral γ (f n)) −−−→ con-
tour_integral γ l) F
proof −

have 0 ≤ B by (meson noleB [of 0] atLeastAtMost_iff norm_ge_zero order_refl
order_trans zero_le_one)

{ fix e::real
assume 0 < e
then have 0 < e / (|B| + 1) by simp
then have §: ∀ F n in F . ∀ x∈path_image γ. cmod (f n x − l x) < e / (|B| +

1)
using ul_f [unfolded uniform_limit_iff dist_norm] by auto

obtain a where fga:
∧

x. x ∈ {0 ..1} =⇒ cmod (f a (γ x) − l (γ x)) < e /
(|B| + 1)

and inta: (λt. f a (γ t) ∗ vector_derivative γ (at t)) integrable_on
{0 ..1}

using eventually_happens [OF eventually_conj [OF ev_fint §]]
by (fastforce simp: contour_integrable_on path_image_def)

have ∃ h. (∀ x∈{0 ..1}. cmod (l (γ x) ∗ vector_derivative γ (at x) − h x) ≤ e)
∧ h integrable_on {0 ..1}

proof (intro exI conjI ballI)
show cmod (l (γ x) ∗ vector_derivative γ (at x) − f a (γ x) ∗ vector_derivative

γ (at x)) ≤ e
if x ∈ {0 ..1} for x

proof −
have cmod (l (γ x) ∗ vector_derivative γ (at x) − f a (γ x) ∗ vector_derivative

γ (at x)) ≤ B ∗ e / (|B| + 1)
using noleB [OF that] fga [OF that] ‹0 ≤ B› ‹0 < e›
by (fastforce simp: mult_ac dest: mult_mono [OF less_imp_le] simp add:

norm_mult left_diff_distrib [symmetric] norm_minus_commute divide_simps)
also have . . . ≤ e

Contour{_}{\kern 0pt}Integration.html

Contour_Integration.thy 49

using ‹0 ≤ B› ‹0 < e› by (simp add: field_split_simps)
finally show ?thesis .

qed
qed (rule inta)

}
then show lintg: l contour_integrable_on γ
unfolding contour_integrable_on by (metis (mono_tags, lifting)integrable_uniform_limit_real)

{ fix e::real
define B ′ where B ′ = B + 1
have B ′: B ′ > 0 B ′ > B using ‹0 ≤ B› by (auto simp: B ′_def)
assume 0 < e
then have ev_no ′: ∀ F n in F . ∀ x∈path_image γ. 2 ∗ cmod (f n x − l x) < e

/ B ′

using ul_f [unfolded uniform_limit_iff dist_norm, rule_format, of e / B ′/2]
B ′

by (simp add: field_simps)
have ie: integral {0 ..1 ::real} (λx. e/2) < e using ‹0 < e› by simp

have ∗: cmod (f x (γ t) ∗ vector_derivative γ (at t) − l (γ t) ∗ vector_derivative
γ (at t)) ≤ e/2

if t: t∈{0 ..1} and leB ′: 2 ∗ cmod (f x (γ t) − l (γ t)) < e / B ′ for x t
proof −

have 2 ∗ cmod (f x (γ t) − l (γ t)) ∗ cmod (vector_derivative γ (at t)) ≤ e
∗ (B/ B ′)

using mult_mono [OF less_imp_le [OF leB ′] noleB] B ′ ‹0 < e› t by auto
also have . . . < e

by (simp add: B ′ ‹0 < e› mult_imp_div_pos_less)
finally have 2 ∗ cmod (f x (γ t) − l (γ t)) ∗ cmod (vector_derivative γ (at

t)) < e .
then show ?thesis

by (simp add: left_diff_distrib [symmetric] norm_mult)
qed
have le_e:

∧
x. [[∀ u∈{0 ..1}. 2 ∗ cmod (f x (γ u) − l (γ u)) < e / B ′; f x

contour_integrable_on γ]]
=⇒ cmod (integral {0 ..1}

(λu. f x (γ u) ∗ vector_derivative γ (at u) − l (γ u) ∗ vector_derivative
γ (at u))) < e

apply (rule le_less_trans [OF integral_norm_bound_integral ie])
apply (simp add: lintg integrable_diff contour_integrable_on [symmetric])

apply (blast intro: ∗)+
done

have ∀ F x in F . dist (contour_integral γ (f x)) (contour_integral γ l) < e
apply (rule eventually_mono [OF eventually_conj [OF ev_no ′ ev_fint]])
apply (simp add: dist_norm contour_integrable_on path_image_def con-

tour_integral_integral)
apply (simp add: lintg integral_diff [symmetric] contour_integrable_on

[symmetric] le_e)
done

}
then show ((λn. contour_integral γ (f n)) −−−→ contour_integral γ l) F

Contour{_}{\kern 0pt}Integration.html

Cauchy_Integral_Theorem.thy 50

by (rule tendstoI)
qed

corollary contour_integral_uniform_limit_circlepath:
assumes ∀ F n:: ′a in F . (f n) contour_integrable_on (circlepath z r)

and uniform_limit (sphere z r) f l F
and ¬ trivial_limit F 0 < r

shows l contour_integrable_on (circlepath z r)
((λn. contour_integral (circlepath z r) (f n)) −−−→ contour_integral

(circlepath z r) l) F
using assms by (auto simp: vector_derivative_circlepath norm_mult intro!: con-

tour_integral_uniform_limit)

lemma has_contour_integral_linepath_same_Re_iff :
assumes Re z = c Re z ′ = c Im z = a Im z ′ = b a < b
shows (f has_contour_integral I) (linepath z z ′) ←→

((λx. f (Complex c x)) has_integral (−i ∗ I)) {a..b}
proof −

have (f has_contour_integral I) (linepath z z ′) ←→
((λx. f (linepath z z ′ x) ∗ (z ′ − z)) has_integral I) {0 ..1}

by (subst has_contour_integral_linepath) simp_all
also have . . . ←→ ((λx. f (c + (a + (b − a) ∗ x) ∗R i) ∗ (i ∗ (b − a)))

has_integral I) {0 ..1}
using assms
by (intro has_integral_cong arg_cong2 [of _ _ _ _ (∗)] arg_cong[of _ _ f])

(auto simp: linepath_def complex_eq_iff algebra_simps)
also have {0 ..1} = (λx. x / (b − a)) ‘ {0 ..b−a}

using assms by simp
also have ((λx. f (c + (a + (b−a) ∗ x) ∗R i) ∗ (i ∗ (b−a))) has_integral I) . . .
←→

((λx. f (c + (a + x) ∗R i) ∗ (i ∗ (b−a))) has_integral ((b−a) ∗R I))
{0 ..b−a}

by (subst has_integral_stretch_real_iff) (use assms in simp_all)
also have . . . ←→ ((λx. of_real (b−a) ∗ i ∗ (f (c + x ∗R i))) has_integral (b−a)
∗R I) {a..b}

by (subst has_integral_shift_real_ivl_iff [where c = −a])
(simp_all add: scaleR_conv_of_real mult_ac)

also have . . . ←→ ((λx. f (c + x ∗R i)) has_integral (−i ∗ I)) {a..b}
by (subst has_integral_mult_right_iff) (use assms in ‹auto simp: scaleR_conv_of_real›)

finally show ?thesis
by (simp add: scaleR_conv_of_real Complex_eq mult.commute)

qed

end

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 51

2 Complex Path Integrals and Cauchy’s Integral
Theorem

By John Harrison et al. Ported from HOL Light by L C Paulson (2015)
theory Cauchy_Integral_Theorem
imports

HOL−Analysis.Analysis
Contour_Integration

begin

lemma leibniz_rule_holomorphic:
fixes f ::complex ⇒ ′b::euclidean_space ⇒ complex
assumes

∧
x t. x ∈ U =⇒ t ∈ cbox a b =⇒ ((λx. f x t) has_field_derivative fx

x t) (at x within U)
assumes

∧
x. x ∈ U =⇒ (f x) integrable_on cbox a b

assumes continuous_on (U × (cbox a b)) (λ(x, t). fx x t)
assumes convex U
shows (λx. integral (cbox a b) (f x)) holomorphic_on U
using leibniz_rule_field_differentiable[OF assms(1−3) _ assms(4)]
by (auto simp: holomorphic_on_def)

lemma Ln_measurable [measurable]: Ln ∈ measurable borel borel
proof −

have ∗: Ln (−of_real x) = of_real (ln x) + i ∗ pi if x > 0 for x
using that by (subst Ln_minus) (auto simp: Ln_of_real)

have ∗∗: Ln (of_real x) = of_real (ln (−x)) + i ∗ pi if x < 0 for x
using ∗[of −x] that by simp

have cont: (λx. indicat_real (− �≤0) x ∗R Ln x) ∈ borel_measurable borel
by (intro borel_measurable_continuous_on_indicator continuous_intros) auto

have (λx. if x ∈ �≤0 then ln (−Re x) + i ∗ pi else indicator (−�≤0) x ∗R Ln
x) ∈ borel →M borel

(is ?f ∈ _) by (rule measurable_If_set[OF _ cont]) auto
hence (λx. if x = 0 then Ln 0 else ?f x) ∈ borel →M borel by measurable
also have (λx. if x = 0 then Ln 0 else ?f x) = Ln

by (auto simp: fun_eq_iff ∗∗ nonpos_Reals_def)
finally show ?thesis .

qed

lemma powr_complex_measurable [measurable]:
assumes [measurable]: f ∈ measurable M borel g ∈ measurable M borel
shows (λx. f x powr g x :: complex) ∈ measurable M borel
using assms by (simp add: powr_def)

The special case of midpoints used in the main quadrisection
lemma has_contour_integral_midpoint:

assumes (f has_contour_integral i) (linepath a (midpoint a b))
(f has_contour_integral j) (linepath (midpoint a b) b)

shows (f has_contour_integral (i + j)) (linepath a b)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 52

proof (rule has_contour_integral_split)
show midpoint a b − a = (1/2) ∗R (b − a)
using assms by (auto simp: midpoint_def scaleR_conv_of_real)

qed (use assms in auto)

lemma contour_integral_midpoint:
assumes continuous_on (closed_segment a b) f
shows contour_integral (linepath a b) f =

contour_integral (linepath a (midpoint a b)) f + contour_integral (linepath
(midpoint a b) b) f
proof (rule contour_integral_split)

show midpoint a b − a = (1/2) ∗R (b − a)
using assms by (auto simp: midpoint_def scaleR_conv_of_real)

qed (use assms in auto)

A couple of special case lemmas that are useful below
lemma triangle_linear_has_chain_integral:

((λx. m∗x + d) has_contour_integral 0) (linepath a b +++ linepath b c +++
linepath c a)
proof (rule Cauchy_theorem_primitive)

show
∧

x. x ∈ UNIV =⇒ ((λx. m / 2 ∗ x2 + d ∗ x) has_field_derivative m ∗
x + d) (at x)

by (auto intro!: derivative_eq_intros)
qed auto

lemma has_chain_integral_chain_integral3 :
assumes (f has_contour_integral i) (linepath a b +++ linepath b c +++ linepath

c d)
(is (f has_contour_integral i) ?g)

shows contour_integral (linepath a b) f + contour_integral (linepath b c) f +
contour_integral (linepath c d) f = i

(is ?lhs = _)
proof −

have f contour_integrable_on ?g
using assms contour_integrable_on_def by blast

then have ?lhs = contour_integral ?g f
by (simp add: valid_path_join has_contour_integral_integrable)

then show ?thesis
using assms contour_integral_unique by blast

qed

lemma has_chain_integral_chain_integral4 :
assumes (f has_contour_integral i) (linepath a b +++ linepath b c +++ linepath

c d +++ linepath d e)
(is (f has_contour_integral i) ?g)

shows contour_integral (linepath a b) f + contour_integral (linepath b c) f +
contour_integral (linepath c d) f + contour_integral (linepath d e) f = i

(is ?lhs = _)
proof −

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 53

have f contour_integrable_on ?g
using assms contour_integrable_on_def by blast

then have ?lhs = contour_integral ?g f
by (simp add: valid_path_join has_contour_integral_integrable)

then show ?thesis
using assms contour_integral_unique by blast

qed

2.1 The key quadrisection step
lemma norm_sum_half :

assumes norm(a + b) ≥ e
shows norm a ≥ e/2 ∨ norm b ≥ e/2

proof −
have e ≤ norm (− a − b)

by (simp add: add.commute assms norm_minus_commute)
thus ?thesis

using norm_triangle_ineq4 order_trans by fastforce
qed

lemma norm_sum_lemma:
assumes e ≤ norm (a + b + c + d)

shows e / 4 ≤ norm a ∨ e / 4 ≤ norm b ∨ e / 4 ≤ norm c ∨ e / 4 ≤ norm d
proof −

have e ≤ norm ((a + b) + (c + d)) using assms
by (simp add: algebra_simps)

then show ?thesis
by (auto dest!: norm_sum_half)

qed

lemma Cauchy_theorem_quadrisection:
assumes f : continuous_on (convex hull {a,b,c}) f

and dist: dist a b ≤ K dist b c ≤ K dist c a ≤ K
and e: e ∗ K^2 ≤

norm (contour_integral(linepath a b) f + contour_integral(linepath b
c) f + contour_integral(linepath c a) f)

shows ∃ a ′ b ′ c ′.
a ′ ∈ convex hull {a,b,c} ∧ b ′ ∈ convex hull {a,b,c} ∧ c ′ ∈ convex hull

{a,b,c} ∧
dist a ′ b ′ ≤ K/2 ∧ dist b ′ c ′ ≤ K/2 ∧ dist c ′ a ′ ≤ K/2 ∧

e ∗ (K/2)^2 ≤ norm(contour_integral(linepath a ′ b ′) f + contour_integral(linepath
b ′ c ′) f + contour_integral(linepath c ′ a ′) f)

(is ∃ x y z. ?Φ x y z)
proof −

note divide_le_eq_numeral1 [simp del]
define a ′ where a ′ = midpoint b c
define b ′ where b ′ = midpoint c a
define c ′ where c ′ = midpoint a b
have fabc: continuous_on (closed_segment a b) f continuous_on (closed_segment

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 54

b c) f continuous_on (closed_segment c a) f
using f continuous_on_subset segments_subset_convex_hull by metis+

have fcont ′: continuous_on (closed_segment c ′ b ′) f
continuous_on (closed_segment a ′ c ′) f
continuous_on (closed_segment b ′ a ′) f

unfolding a ′_def b ′_def c ′_def
by (rule continuous_on_subset [OF f],

metis midpoints_in_convex_hull convex_hull_subset hull_subset in-
sert_subset segment_convex_hull)+

define pathint where pathint x y ≡ contour_integral(linepath x y) f for x y
have ∗: pathint a b + pathint b c + pathint c a =

(pathint a c ′ + pathint c ′ b ′ + pathint b ′ a) +
(pathint a ′ c ′ + pathint c ′ b + pathint b a ′) +
(pathint a ′ c + pathint c b ′ + pathint b ′ a ′) +
(pathint a ′ b ′ + pathint b ′ c ′ + pathint c ′ a ′)

unfolding pathint_def
by (simp add: fcont ′ contour_integral_reverse_linepath) (simp add: a ′_def

b ′_def c ′_def contour_integral_midpoint fabc)
have [simp]:

∧
x y. cmod (x ∗ 2 − y ∗ 2) = cmod (x − y) ∗ 2

by (metis left_diff_distrib mult.commute norm_mult_numeral1)
have [simp]:

∧
x y. cmod (x − y) = cmod (y − x)

by (simp add: norm_minus_commute)
consider e ∗ K2 / 4 ≤ cmod (pathint a c ′ + pathint c ′ b ′ + pathint b ′ a) |

e ∗ K2 / 4 ≤ cmod (pathint a ′ c ′ + pathint c ′ b + pathint b a ′) |
e ∗ K2 / 4 ≤ cmod (pathint a ′ c + pathint c b ′ + pathint b ′ a ′) |
e ∗ K2 / 4 ≤ cmod (pathint a ′ b ′ + pathint b ′ c ′ + pathint c ′ a ′)

using assms by (metis ∗ norm_sum_lemma pathint_def)
then show ?thesis
proof cases

case 1 then have ?Φ a c ′ b ′

using assms unfolding pathint_def [symmetric]
apply (clarsimp simp: c ′_def b ′_def midpoints_in_convex_hull hull_subset

[THEN subsetD])
apply (auto simp: midpoint_def dist_norm scaleR_conv_of_real field_split_simps)

done
then show ?thesis by blast

next
case 2 then have ?Φ a ′ c ′ b

using assms unfolding pathint_def [symmetric]
apply (clarsimp simp: a ′_def c ′_def midpoints_in_convex_hull hull_subset

[THEN subsetD])
apply (auto simp: midpoint_def dist_norm scaleR_conv_of_real field_split_simps)

done
then show ?thesis by blast

next
case 3 then have ?Φ a ′ c b ′

using assms unfolding pathint_def [symmetric]
apply (clarsimp simp: a ′_def b ′_def midpoints_in_convex_hull hull_subset

[THEN subsetD])

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 55

apply (auto simp: midpoint_def dist_norm scaleR_conv_of_real field_split_simps)
done

then show ?thesis by blast
next

case 4 then have ?Φ a ′ b ′ c ′

using assms unfolding pathint_def [symmetric]
apply (clarsimp simp: a ′_def c ′_def b ′_def midpoints_in_convex_hull

hull_subset [THEN subsetD])
apply (auto simp: midpoint_def dist_norm scaleR_conv_of_real field_split_simps)

done
then show ?thesis by blast

qed
qed

2.2 Cauchy’s theorem for triangles
lemma triangle_points_closer :

fixes a::complex
shows [[x ∈ convex hull {a,b,c}; y ∈ convex hull {a,b,c}]]

=⇒ norm(x − y) ≤ norm(a − b) ∨
norm(x − y) ≤ norm(b − c) ∨
norm(x − y) ≤ norm(c − a)

using simplex_extremal_le [of {a,b,c}]
by (auto simp: norm_minus_commute)

lemma holomorphic_point_small_triangle:
assumes x: x ∈ S

and f : continuous_on S f
and cd: f field_differentiable (at x within S)
and e: 0 < e

shows ∃ k>0 . ∀ a b c. dist a b ≤ k ∧ dist b c ≤ k ∧ dist c a ≤ k ∧
x ∈ convex hull {a,b,c} ∧ convex hull {a,b,c} ⊆ S
−→ norm(contour_integral(linepath a b) f + contour_integral(linepath

b c) f +
contour_integral(linepath c a) f)

≤ e∗(dist a b + dist b c + dist c a)^2
(is ∃ k>0 . ∀ a b c. _ −→ ?normle a b c)

proof −
have le_of_3 :

∧
a x y z . [[0 ≤ x∗y; 0 ≤ x∗z; 0 ≤ y∗z; a ≤ (e∗(x + y + z))∗x

+ (e∗(x + y + z))∗y + (e∗(x + y + z))∗z]]
=⇒ a ≤ e∗(x + y + z)^2

by (simp add: algebra_simps power2_eq_square)
have disj_le: [[x ≤ a ∨ x ≤ b ∨ x ≤ c; 0 ≤ a; 0 ≤ b; 0 ≤ c]] =⇒ x ≤ a + b + c

for x::real and a b c
by linarith

have fabc: f contour_integrable_on linepath a b f contour_integrable_on linepath
b c f contour_integrable_on linepath c a

if convex hull {a, b, c} ⊆ S for a b c

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 56

using segments_subset_convex_hull that
by (metis continuous_on_subset f contour_integrable_continuous_linepath)+

note path_bound = has_contour_integral_bound_linepath [simplified norm_minus_commute,
OF has_contour_integral_integral]

{ fix f ′ a b c d
assume d: 0 < d

and f ′:
∧

y. [[cmod (y − x) ≤ d; y ∈ S]] =⇒ cmod (f y − f x − f ′ ∗ (y − x))
≤ e ∗ cmod (y − x)

and le: cmod (a − b) ≤ d cmod (b − c) ≤ d cmod (c − a) ≤ d
and xc: x ∈ convex hull {a, b, c}
and S : convex hull {a, b, c} ⊆ S

have pa: contour_integral (linepath a b) f + contour_integral (linepath b c) f
+ contour_integral (linepath c a) f =

contour_integral (linepath a b) (λy. f y − f x − f ′ ∗ (y−x)) +
contour_integral (linepath b c) (λy. f y − f x − f ′ ∗ (y−x)) +
contour_integral (linepath c a) (λy. f y − f x − f ′ ∗ (y−x))

apply (simp add: contour_integral_diff contour_integral_lmul contour_integrable_lmul
contour_integrable_diff fabc [OF S])

apply (simp add: field_simps)
done

{ fix y
assume yc: y ∈ convex hull {a,b,c}
have cmod (f y − f x − f ′ ∗ (y − x)) ≤ e∗norm(y − x)
proof (rule f ′)

show cmod (y − x) ≤ d
by (metis triangle_points_closer [OF xc yc] le norm_minus_commute

order_trans)
qed (use S yc in blast)
also have . . . ≤ e ∗ (cmod (a − b) + cmod (b − c) + cmod (c − a))

by (simp add: yc e xc disj_le [OF triangle_points_closer])
finally have cmod (f y − f x − f ′ ∗ (y − x)) ≤ e ∗ (cmod (a − b) + cmod

(b − c) + cmod (c − a)) .
} note cm_le = this
have ?normle a b c

unfolding dist_norm pa
using f ′ xc S e
apply (intro le_of_3 norm_triangle_le add_mono path_bound)

apply (simp_all add: contour_integral_diff contour_integral_lmul con-
tour_integrable_lmul contour_integrable_diff fabc)

apply (blast intro: cm_le elim: dest: segments_subset_convex_hull [THEN
subsetD])+

done
} note ∗ = this
show ?thesis

using cd e
apply (simp add: field_differentiable_def has_field_derivative_def has_derivative_within_alt

approachable_lt_le2 Ball_def)
apply (clarify dest!: spec mp)
using ∗ unfolding dist_norm

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 57

apply blast
done

qed

Hence the most basic theorem for a triangle.
locale Chain =

fixes x0 At Follows
assumes At0 : At x0 0

and AtSuc:
∧

x n. At x n =⇒ ∃ x ′. At x ′ (Suc n) ∧ Follows x ′ x
begin

primrec f where
f 0 = x0
| f (Suc n) = (SOME x. At x (Suc n) ∧ Follows x (f n))

lemma At: At (f n) n
proof (induct n)

case 0 show ?case
by (simp add: At0)

next
case (Suc n) show ?case

by (metis (no_types, lifting) AtSuc [OF Suc] f .simps(2) someI_ex)
qed

lemma Follows: Follows (f (Suc n)) (f n)
by (metis (no_types, lifting) AtSuc [OF At [of n]] f .simps(2) someI_ex)

declare f .simps(2) [simp del]
end

lemma Chain3 :
assumes At0 : At x0 y0 z0 0

and AtSuc:
∧

x y z n. At x y z n =⇒ ∃ x ′ y ′ z ′. At x ′ y ′ z ′ (Suc n) ∧ Follows
x ′ y ′ z ′ x y z

obtains f g h where
f 0 = x0 g 0 = y0 h 0 = z0∧

n. At (f n) (g n) (h n) n∧
n. Follows (f (Suc n)) (g(Suc n)) (h(Suc n)) (f n) (g n) (h n)

proof −
interpret three: Chain (x0 ,y0 ,z0) λ(x,y,z). At x y z λ(x ′,y ′,z ′). λ(x,y,z). Follows

x ′ y ′ z ′ x y z
proof qed (use At0 AtSuc in auto)
show ?thesis
proof

show
∧

n. Follows (fst (three.f (Suc n))) (fst (snd (three.f (Suc n))))
(snd (snd (three.f (Suc n)))) (fst (three.f n))
(fst (snd (three.f n))) (snd (snd (three.f n)))∧

n. At (fst (three.f n)) (fst (snd (three.f n))) (snd (snd (three.f n))) n
using three.At three.Follows
by (simp_all add: split_beta ′)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 58

qed auto
qed

proposition Cauchy_theorem_triangle:
assumes f holomorphic_on (convex hull {a,b,c})
shows (f has_contour_integral 0) (linepath a b +++ linepath b c +++ linepath

c a)
proof −

have contf : continuous_on (convex hull {a,b,c}) f
by (metis assms holomorphic_on_imp_continuous_on)

let ?pathint = λx y. contour_integral(linepath x y) f
{ fix y::complex

assume fy: (f has_contour_integral y) (linepath a b +++ linepath b c +++
linepath c a)

and ynz: y 6= 0
define K where K = 1 + max (dist a b) (max (dist b c) (dist c a))
define e where e = norm y / K^2
have K1 : K ≥ 1 by (simp add: K_def max.coboundedI1)
then have K : K > 0 by linarith
have [iff]: dist a b ≤ K dist b c ≤ K dist c a ≤ K

by (simp_all add: K_def)
have e: e > 0

unfolding e_def using ynz K1 by simp
define At where At x y z n ←→

convex hull {x,y,z} ⊆ convex hull {a,b,c} ∧
dist x y ≤ K/2^n ∧ dist y z ≤ K/2^n ∧ dist z x ≤ K/2^n ∧
norm(?pathint x y + ?pathint y z + ?pathint z x) ≥ e∗(K/2^n)^2

for x y z n
have At0 : At a b c 0

using fy
by (simp add: At_def e_def has_chain_integral_chain_integral3)

{ fix x y z n
assume At: At x y z n
then have contf ′: continuous_on (convex hull {x,y,z}) f

using contf At_def continuous_on_subset by metis
have ∃ x ′ y ′ z ′. At x ′ y ′ z ′ (Suc n) ∧ convex hull {x ′,y ′,z ′} ⊆ convex hull

{x,y,z}
using At Cauchy_theorem_quadrisection [OF contf ′, of K/2^n e]
apply (simp add: At_def algebra_simps)
apply (meson convex_hull_subset empty_subsetI insert_subset subsetCE)
done

} note AtSuc = this
obtain fa fb fc

where f0 [simp]: fa 0 = a fb 0 = b fc 0 = c
and cosb:

∧
n. convex hull {fa n, fb n, fc n} ⊆ convex hull {a,b,c}

and dist:
∧

n. dist (fa n) (fb n) ≤ K/2^n∧
n. dist (fb n) (fc n) ≤ K/2^n∧
n. dist (fc n) (fa n) ≤ K/2^n

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 59

and no:
∧

n. norm(?pathint (fa n) (fb n) +
?pathint (fb n) (fc n) +
?pathint (fc n) (fa n)) ≥ e ∗ (K/2^n)^2

and conv_le:
∧

n. convex hull {fa(Suc n), fb(Suc n), fc(Suc n)} ⊆ convex
hull {fa n, fb n, fc n}

by (rule Chain3 [of At, OF At0 AtSuc]) (auto simp: At_def)
obtain x where x:

∧
n. x ∈ convex hull {fa n, fb n, fc n}

proof (rule bounded_closed_nest)
show

∧
n. closed (convex hull {fa n, fb n, fc n})

by (simp add: compact_imp_closed finite_imp_compact_convex_hull)
show

∧
m n. m ≤ n =⇒ convex hull {fa n, fb n, fc n} ⊆ convex hull {fa m,

fb m, fc m}
by (erule transitive_stepwise_le) (auto simp: conv_le)

qed (fastforce intro: finite_imp_bounded_convex_hull)+
then have xin: x ∈ convex hull {a,b,c}

using assms f0 by blast
then have fx: f field_differentiable at x within (convex hull {a,b,c})

using assms holomorphic_on_def by blast
{ fix k n

assume k: 0 < k
and le:∧

x ′ y ′ z ′.
[[dist x ′ y ′ ≤ k; dist y ′ z ′ ≤ k; dist z ′ x ′ ≤ k;
x ∈ convex hull {x ′,y ′,z ′};
convex hull {x ′,y ′,z ′} ⊆ convex hull {a,b,c}]]
=⇒
cmod (?pathint x ′ y ′ + ?pathint y ′ z ′ + ?pathint z ′ x ′) ∗ 10

≤ e ∗ (dist x ′ y ′ + dist y ′ z ′ + dist z ′ x ′)2

and Kk: K / k < 2 ^ n
have K / 2 ^ n < k using Kk k

by (auto simp: field_simps)
then have DD: dist (fa n) (fb n) ≤ k dist (fb n) (fc n) ≤ k dist (fc n) (fa n)

≤ k
using dist [of n] k
by linarith+

have dle: (dist (fa n) (fb n) + dist (fb n) (fc n) + dist (fc n) (fa n))2
≤ (3 ∗ K / 2 ^ n)2

using dist [of n] e K
by (simp add: abs_le_square_iff [symmetric])

have less10 :
∧

x y::real. 0 < x =⇒ y ≤ 9∗x =⇒ y < x∗10
by linarith

have e ∗ (dist (fa n) (fb n) + dist (fb n) (fc n) + dist (fc n) (fa n))2 ≤ e ∗
(3 ∗ K / 2 ^ n)2

using ynz dle e mult_le_cancel_left_pos by blast
also have . . . <

cmod (?pathint (fa n) (fb n) + ?pathint (fb n) (fc n) + ?pathint (fc n) (fa
n)) ∗ 10

using no [of n] e K
by (simp add: e_def field_simps) (simp only: zero_less_norm_iff [symmetric])

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 60

finally have False
using le [OF DD x cosb] by auto

} then
have ?thesis

using holomorphic_point_small_triangle [OF xin contf fx, of e/10] e
apply clarsimp
apply (rule_tac y1=K/k in exE [OF real_arch_pow[of 2]], force+)
done

}
moreover have f contour_integrable_on (linepath a b +++ linepath b c +++

linepath c a)
by simp (meson contf continuous_on_subset contour_integrable_continuous_linepath

segments_subset_convex_hull(1)
segments_subset_convex_hull(3) segments_subset_convex_hull(5))

ultimately show ?thesis
using has_contour_integral_integral by fastforce

qed

2.3 Version needing function holomorphic in interior only
lemma Cauchy_theorem_flat_lemma:

assumes f : continuous_on (convex hull {a,b,c}) f
and c: c − a = k ∗R (b − a)
and k: 0 ≤ k

shows contour_integral (linepath a b) f + contour_integral (linepath b c) f +
contour_integral (linepath c a) f = 0

proof −
have fabc: continuous_on (closed_segment a b) f continuous_on (closed_segment

b c) f continuous_on (closed_segment c a) f
using f continuous_on_subset segments_subset_convex_hull by metis+

show ?thesis
proof (cases k ≤ 1)

case True show ?thesis
by (simp add: contour_integral_split [OF fabc(1) k True c] contour_integral_reverse_linepath

fabc)
next

case False
show ?thesis
proof (subst contour_integral_split [symmetric])

show b − a = (1/k) ∗R (c − a)
using False c by force

show contour_integral (linepath a c) f + contour_integral (linepath c a) f =
0

by (simp add: contour_integral_reverse_linepath fabc(3))
show continuous_on (closed_segment a c) f

by (metis closed_segment_commute fabc(3))
qed (use False in auto)

qed
qed

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 61

lemma Cauchy_theorem_flat:
assumes f : continuous_on (convex hull {a,b,c}) f

and c: c − a = k ∗R (b − a)
shows contour_integral (linepath a b) f +

contour_integral (linepath b c) f +
contour_integral (linepath c a) f = 0

proof (cases 0 ≤ k)
case True with assms show ?thesis

by (blast intro: Cauchy_theorem_flat_lemma)
next

case False
have continuous_on (closed_segment a b) f continuous_on (closed_segment b

c) f continuous_on (closed_segment c a) f
using f continuous_on_subset segments_subset_convex_hull by metis+

moreover have contour_integral (linepath b a) f + contour_integral (linepath
a c) f +

contour_integral (linepath c b) f = 0
proof (rule Cauchy_theorem_flat_lemma [of b a c f 1−k])

show continuous_on (convex hull {b, a, c}) f
by (simp add: f insert_commute)

show c − b = (1 − k) ∗R (a − b)
using c by (auto simp: algebra_simps)

qed (use False in auto)
ultimately show ?thesis
by (metis (no_types, lifting) contour_integral_reverse_linepath eq_neg_iff_add_eq_0

minus_add_cancel)
qed

proposition Cauchy_theorem_triangle_interior :
assumes contf : continuous_on (convex hull {a,b,c}) f

and holf : f holomorphic_on interior (convex hull {a,b,c})
shows (f has_contour_integral 0) (linepath a b +++ linepath b c +++ linepath

c a)
proof −

define pathint where pathint ≡ λx y. contour_integral(linepath x y) f
have fabc: continuous_on (closed_segment a b) f continuous_on (closed_segment

b c) f continuous_on (closed_segment c a) f
using contf continuous_on_subset segments_subset_convex_hull by metis+

have bounded (f ‘ (convex hull {a,b,c}))
by (simp add: compact_continuous_image compact_convex_hull compact_imp_bounded

contf)
then obtain B where 0 < B and Bnf :

∧
x. x ∈ convex hull {a,b,c} =⇒ norm

(f x) ≤ B
by (auto simp: dest!: bounded_pos [THEN iffD1])

have bounded (convex hull {a,b,c})
by (simp add: bounded_convex_hull)

then obtain C where C : 0 < C and Cno:
∧

y. y ∈ convex hull {a,b,c} =⇒

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 62

norm y < C
using bounded_pos_less by blast

then have diff_2C : norm(x − y) ≤ 2∗C
if x: x ∈ convex hull {a, b, c} and y: y ∈ convex hull {a, b, c} for x y

proof −
have cmod x ≤ C

using x by (meson Cno not_le not_less_iff_gr_or_eq)
hence cmod (x − y) ≤ C + C
using y by (meson Cno add_mono_thms_linordered_field(4) less_eq_real_def

norm_triangle_ineq4 order_trans)
thus cmod (x − y) ≤ 2 ∗ C

by (metis mult_2)
qed
have contf ′: continuous_on (convex hull {b,a,c}) f

using contf by (simp add: insert_commute)
{ fix y::complex

assume fy: (f has_contour_integral y) (linepath a b +++ linepath b c +++
linepath c a)

and ynz: y 6= 0
have pi_eq_y: pathint a b + pathint b c + pathint c a= y

unfolding pathint_def by (rule has_chain_integral_chain_integral3 [OF
fy])

have ?thesis
proof (cases c=a ∨ a=b ∨ b=c)

case True then show ?thesis
using Cauchy_theorem_flat [OF contf , of 0]
using has_chain_integral_chain_integral3 [OF fy] ynz
by (force simp: fabc contour_integral_reverse_linepath)

next
case False
then have car3 : card {a, b, c} = Suc (DIM (complex))

by auto
{ assume interior(convex hull {a,b,c}) = {}

then have collinear{a,b,c}
using interior_convex_hull_eq_empty [OF car3]
by (simp add: collinear_3_eq_affine_dependent)

with False obtain d where c 6= a a 6= b b 6= c c − b = d ∗R (a − b)
by (auto simp: collinear_3 collinear_lemma)

then have False
using False Cauchy_theorem_flat [OF contf ′] pi_eq_y ynz

by (simp add: fabc add_eq_0_iff contour_integral_reverse_linepath
pathint_def)

}
then obtain d where d: d ∈ interior (convex hull {a, b, c})

by blast
{ fix d1

assume d1_pos: 0 < d1
and d1 :

∧
x x ′. [[x∈convex hull {a, b, c}; x ′∈convex hull {a, b, c}; cmod

(x ′ − x) < d1]]

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 63

=⇒ cmod (f x ′ − f x) < cmod y / (24 ∗ C)
define e where e = min 1 (min (d1/(4∗C)) ((norm y / 24 / C) / B))
define shrink where shrink x = x − e ∗R (x − d) for x
have e: 0 < e e ≤ 1 e ≤ d1 / (4 ∗ C) e ≤ cmod y / 24 / C / B

using d1_pos ‹C>0 › ‹B>0 › ynz by (simp_all add: e_def)
have e_le_d1 : e ∗ (4 ∗ C) ≤ d1

using e ‹C>0 › by (simp add: field_simps)
have shrink a ∈ interior(convex hull {a,b,c})

shrink b ∈ interior(convex hull {a,b,c})
shrink c ∈ interior(convex hull {a,b,c})

using d e by (auto simp: hull_inc mem_interior_convex_shrink shrink_def)
then have fhp0 : (f has_contour_integral 0)

(linepath (shrink a) (shrink b) +++ linepath (shrink b) (shrink c)
+++ linepath (shrink c) (shrink a))

by (simp add: Cauchy_theorem_triangle holomorphic_on_subset [OF holf]
hull_minimal)

then have f_0_shrink: pathint (shrink a) (shrink b) + pathint (shrink b)
(shrink c) + pathint (shrink c) (shrink a) = 0

by (simp add: has_chain_integral_chain_integral3 pathint_def)
have fpi_abc: f contour_integrable_on linepath (shrink a) (shrink b)

f contour_integrable_on linepath (shrink b) (shrink c)
f contour_integrable_on linepath (shrink c) (shrink a)

using fhp0 by (auto simp: valid_path_join dest: has_contour_integral_integrable)
have cmod_shr :

∧
x y. cmod (shrink y − shrink x − (y − x)) = e ∗ cmod

(x − y)
using e by (simp add: shrink_def real_vector .scale_right_diff_distrib

[symmetric])
have sh_eq:

∧
a b d::complex. (b − e ∗R (b − d)) − (a − e ∗R (a − d)) −

(b − a) = e ∗R (a − b)
by (simp add: algebra_simps)

have cmod y / (24 ∗ C) ≤ cmod y / cmod (b − a) / 12
using False ‹C>0 › diff_2C [of b a] ynz
by (auto simp: field_split_simps hull_inc)

have less_C : x ∗ cmod u < C if u ∈ convex hull {a,b,c} 0 ≤ x x ≤ 1 for
x u

proof (cases x=0)
case False
with that show ?thesis

using Cno [of u] mult_left_le_one_le [of cmod u x] le_less_trans
norm_ge_zero by blast

qed (simp add: ‹0<C ›)
{ fix u v

assume uv: u ∈ convex hull {a, b, c} v ∈ convex hull {a, b, c} u 6=v
and fpi_uv: f contour_integrable_on linepath (shrink u) (shrink v)

have shr_uv: shrink u ∈ interior(convex hull {a,b,c})
shrink v ∈ interior(convex hull {a,b,c})

using d e uv
by (auto simp: hull_inc mem_interior_convex_shrink shrink_def)
have cmod_fuv:

∧
x. 0≤x =⇒ x≤1 =⇒ cmod (f (linepath (shrink u)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 64

(shrink v) x)) ≤ B
using shr_uv by (blast intro: Bnf linepath_in_convex_hull interior_subset

[THEN subsetD])
{ fix x::real assume x: 0≤x x≤1

have |1 − x| ∗ cmod u < C |x| ∗ cmod v < C
using uv x by (auto intro!: less_C)

moreover have |x| ∗ cmod d < C |1 − x| ∗ cmod d < C
using x d interior_subset by (auto intro!: less_C)

ultimately
have cmod_less_4C : cmod ((1 − x) ∗R u − (1 − x) ∗R d) + cmod (x

∗R v − x ∗R d) < (C+C) + (C+C)
by (metis add_strict_mono le_less_trans norm_scaleR norm_triangle_ineq4)

have ll: linepath (shrink u) (shrink v) x − linepath u v x = −e ∗ ((1 −
x) ∗R (u − d) + x ∗R (v − d))

by (simp add: linepath_def shrink_def algebra_simps scaleR_conv_of_real)
have cmod_less_dt: cmod (linepath (shrink u) (shrink v) x − linepath u

v x) < d1
unfolding ll norm_mult scaleR_diff_right

using ‹e>0 › cmod_less_4C by (force intro: norm_triangle_lt
less_le_trans [OF _ e_le_d1])

have cmod (f (linepath (shrink u) (shrink v) x)) ∗ cmod (shrink v −
shrink u − (v − u)) +

cmod (v − u) ∗ cmod (f (linepath (shrink u) (shrink v) x) −
f (linepath u v x))

≤ B ∗ (cmod y / 24 / C / B ∗ 2 ∗ C) + 2 ∗ C ∗ (cmod y /
24 / C)

proof (intro add_mono [OF mult_mono])
show cmod (f (linepath (shrink u) (shrink v) x)) ≤ B

using cmod_fuv x by blast
have B ∗ (12 ∗ (e ∗ cmod (u − v))) ≤ 24 ∗ e ∗ C ∗ B

using e ‹B>0 › diff_2C [of u v] uv by (auto simp: field_simps)
also have . . . ≤ cmod y

using ‹C>0 › ‹B>0 › e by (simp add: field_simps)
finally show cmod (shrink v − shrink u − (v − u)) ≤ cmod y / 24 /

C / B ∗ 2 ∗ C
using ‹0 < B› ‹0 < C › by (simp add: cmod_shr mult_ac divide_simps)

have cmod (f (linepath (shrink u) (shrink v) x) − f (linepath u v x))
< cmod y / (24 ∗ C)

using x uv shr_uv cmod_less_dt
by (auto simp: hull_inc intro: d1 interior_subset [THEN subsetD]

linepath_in_convex_hull)
also have . . . ≤ cmod y / cmod (v − u) / 12

using False uv ‹C>0 › diff_2C [of v u] ynz
by (auto simp: field_split_simps hull_inc)

finally have cmod (f (linepath (shrink u) (shrink v) x) − f (linepath
u v x)) ≤ cmod y / cmod (v − u) / 12

by simp
then show cmod (v − u) ∗ cmod (f (linepath (shrink u) (shrink v) x)

− f (linepath u v x))

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 65

≤ 2 ∗ C ∗ (cmod y / 24 / C)
using uv C by (simp add: field_simps)

qed (use ‹0 < B› in auto)
also have . . . ≤ cmod y / 6

by simp
finally have cmod (f (linepath (shrink u) (shrink v) x)) ∗ cmod (shrink

v − shrink u − (v − u)) +
cmod (v − u) ∗ cmod (f (linepath (shrink u) (shrink v) x) −

f (linepath u v x))
≤ cmod y / 6 .

} note cmod_diff_le = this
have f_uv: continuous_on (closed_segment u v) f

by (blast intro: uv continuous_on_subset [OF contf closed_segment_subset_convex_hull])
have ∗∗:

∧
f ′ x ′ f x::complex. f ′∗x ′ − f ∗x = f ′ ∗ (x ′ − x) + x ∗ (f ′ − f)

by (simp add: algebra_simps)
have norm (pathint (shrink u) (shrink v) − pathint u v)
≤ (B∗(norm y /24/C/B)∗2∗C + (2∗C)∗(norm y/24/C)) ∗ measure

lborel (cbox 0 (1 ::real))
apply (rule has_integral_bound

[of _ λx. f (linepath (shrink u) (shrink v) x) ∗ (shrink v − shrink
u) − f (linepath u v x)∗(v − u)

_ 0 1])
using ynz ‹0 < B› ‹0 < C ›

apply (simp_all add: pathint_def has_integral_diff has_contour_integral_linepath
[symmetric] has_contour_integral_integral

fpi_uv f_uv contour_integrable_continuous_linepath del: le_divide_eq_numeral1)
apply (auto simp: ∗∗ norm_triangle_le norm_mult cmod_diff_le simp

del: le_divide_eq_numeral1)
done

also have . . . ≤ norm y / 6
by simp

finally have norm (pathint (shrink u) (shrink v) − pathint u v) ≤ norm
y / 6 .

} note ∗ = this
have norm (pathint (shrink a) (shrink b) − pathint a b) ≤ norm y / 6

using False fpi_abc by (rule_tac ∗) (auto simp: hull_inc)
moreover
have norm (pathint (shrink b) (shrink c) − pathint b c) ≤ norm y / 6

using False fpi_abc by (rule_tac ∗) (auto simp: hull_inc)
moreover
have norm (pathint (shrink c) (shrink a) − pathint c a) ≤ norm y / 6

using False fpi_abc by (rule_tac ∗) (auto simp: hull_inc)
ultimately
have norm((pathint (shrink a) (shrink b) − pathint a b) +

(pathint (shrink b) (shrink c) − pathint b c) + (pathint (shrink c)
(shrink a) − pathint c a))

≤ norm y / 6 + norm y / 6 + norm y / 6
by (metis norm_triangle_le add_mono)

also have . . . = norm y / 2

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 66

by simp
finally have norm((pathint (shrink a) (shrink b) + pathint (shrink b)

(shrink c) + pathint (shrink c) (shrink a)) −
(pathint a b + pathint b c + pathint c a))

≤ norm y / 2
by (simp add: algebra_simps)

then
have norm(pathint a b + pathint b c + pathint c a) ≤ norm y / 2

by (simp add: f_0_shrink) (metis (mono_tags) add.commute mi-
nus_add_distrib norm_minus_cancel uminus_add_conv_diff)

then have False
using pi_eq_y ynz by auto

}
note ∗ = this
have uniformly_continuous_on (convex hull {a,b,c}) f
by (simp add: contf compact_convex_hull compact_uniformly_continuous)
moreover have norm y / (24 ∗ C) > 0

using ynz ‹C > 0 › by auto
ultimately obtain δ where δ > 0 and
∀ x∈convex hull {a, b, c}. ∀ x ′∈convex hull {a, b, c}.

dist x ′ x < δ −→ dist (f x ′) (f x) < cmod y / (24 ∗ C)
using ‹C > 0 › ynz unfolding uniformly_continuous_on_def dist_norm

by blast
hence False using ∗[of δ] by (auto simp: dist_norm)
then show ?thesis ..

qed
}
moreover have f contour_integrable_on (linepath a b +++ linepath b c +++

linepath c a)
using fabc contour_integrable_continuous_linepath by auto

ultimately show ?thesis
using has_contour_integral_integral by fastforce

qed

2.4 Version allowing finite number of exceptional points
proposition Cauchy_theorem_triangle_cofinite:

assumes continuous_on (convex hull {a,b,c}) f
and finite S
and (

∧
x. x ∈ interior(convex hull {a,b,c}) − S =⇒ f field_differentiable (at

x))
shows (f has_contour_integral 0) (linepath a b +++ linepath b c +++ linepath

c a)
using assms
proof (induction card S arbitrary: a b c S rule: less_induct)

case (less S a b c)
show ?case
proof (cases S={})

case True with less show ?thesis

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 67

by (fastforce simp: holomorphic_on_def field_differentiable_at_within Cauchy_theorem_triangle_interior)
next

case False
then obtain d S ′ where d: S = insert d S ′ d /∈ S ′

by (meson Set.set_insert all_not_in_conv)
then show ?thesis
proof (cases d ∈ convex hull {a,b,c})

case False
show (f has_contour_integral 0) (linepath a b +++ linepath b c +++ linepath

c a)
proof (rule less.hyps)
show

∧
x. x ∈ interior (convex hull {a, b, c}) − S ′ =⇒ f field_differentiable

at x
using False d interior_subset by (auto intro!: less.prems)

qed (use d less.prems in auto)
next

case True
have ∗: convex hull {a, b, d} ⊆ convex hull {a, b, c}

by (meson True hull_subset insert_subset convex_hull_subset)
have abd: (f has_contour_integral 0) (linepath a b +++ linepath b d +++

linepath d a)
proof (rule less.hyps)
show

∧
x. x ∈ interior (convex hull {a, b, d}) − S ′ =⇒ f field_differentiable

at x
using d not_in_interior_convex_hull_3

by (clarsimp intro!: less.prems) (metis ∗ insert_absorb insert_subset
interior_mono)

qed (use d continuous_on_subset [OF _ ∗] less.prems in auto)
have ∗: convex hull {b, c, d} ⊆ convex hull {a, b, c}

by (meson True hull_subset insert_subset convex_hull_subset)
have bcd: (f has_contour_integral 0) (linepath b c +++ linepath c d +++

linepath d b)
proof (rule less.hyps)
show

∧
x. x ∈ interior (convex hull {b, c, d}) − S ′ =⇒ f field_differentiable

at x
using d not_in_interior_convex_hull_3

by (clarsimp intro!: less.prems) (metis ∗ insert_absorb insert_subset
interior_mono)

qed (use d continuous_on_subset [OF _ ∗] less.prems in auto)
have ∗: convex hull {c, a, d} ⊆ convex hull {a, b, c}

by (meson True hull_subset insert_subset convex_hull_subset)
have cad: (f has_contour_integral 0) (linepath c a +++ linepath a d +++

linepath d c)
proof (rule less.hyps)
show

∧
x. x ∈ interior (convex hull {c, a, d}) − S ′ =⇒ f field_differentiable

at x
using d not_in_interior_convex_hull_3

by (clarsimp intro!: less.prems) (metis ∗ insert_absorb insert_subset
interior_mono)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 68

qed (use d continuous_on_subset [OF _ ∗] less.prems in auto)
have f contour_integrable_on linepath a b
using less.prems abd contour_integrable_joinD1 contour_integrable_on_def

by blast
moreover have f contour_integrable_on linepath b c
using less.prems bcd contour_integrable_joinD1 contour_integrable_on_def

by blast
moreover have f contour_integrable_on linepath c a
using less.prems cad contour_integrable_joinD1 contour_integrable_on_def

by blast
ultimately have fpi: f contour_integrable_on (linepath a b +++ linepath b

c +++ linepath c a)
by auto

{ fix y::complex
assume fy: (f has_contour_integral y) (linepath a b +++ linepath b c +++

linepath c a)
and ynz: y 6= 0

have cont_ad: continuous_on (closed_segment a d) f
by (meson ∗ continuous_on_subset less.prems(1) segments_subset_convex_hull(3))
have cont_bd: continuous_on (closed_segment b d) f
by (meson True closed_segment_subset_convex_hull continuous_on_subset

hull_subset insert_subset less.prems(1))
have cont_cd: continuous_on (closed_segment c d) f

by (meson ∗ continuous_on_subset less.prems(1) segments_subset_convex_hull(2))
have contour_integral (linepath a b) f = − (contour_integral (linepath b

d) f + (contour_integral (linepath d a) f))
contour_integral (linepath b c) f = − (contour_integral (linepath c d)

f + (contour_integral (linepath d b) f))
contour_integral (linepath c a) f = − (contour_integral (linepath a d)

f + contour_integral (linepath d c) f)
using has_chain_integral_chain_integral3 [OF abd]

has_chain_integral_chain_integral3 [OF bcd]
has_chain_integral_chain_integral3 [OF cad]

by (simp_all add: algebra_simps add_eq_0_iff)
then have ?thesis

using cont_ad cont_bd cont_cd fy has_chain_integral_chain_integral3
contour_integral_reverse_linepath by fastforce

}
then show ?thesis

using fpi contour_integrable_on_def by blast
qed

qed
qed

2.5 Cauchy’s theorem for an open starlike set
lemma starlike_convex_subset:
assumes S : a ∈ S closed_segment b c ⊆ S and subs:

∧
x. x ∈ S =⇒ closed_segment

a x ⊆ S

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 69

shows convex hull {a,b,c} ⊆ S
proof −

have convex hull {b, c} ⊆ S
using assms(2) segment_convex_hull by auto

then have
∧

u v d. [[0 ≤ u; 0 ≤ v; u + v = 1 ; d ∈ convex hull {b, c}]] =⇒ u
∗R a + v ∗R d ∈ S

by (meson subs convexD convex_closed_segment ends_in_segment subsetCE)
then show ?thesis

by (auto simp add: convex_hull_insert [of {b,c} a])
qed

lemma triangle_contour_integrals_starlike_primitive:
assumes contf : continuous_on S f

and S : a ∈ S open S
and x: x ∈ S
and subs:

∧
y. y ∈ S =⇒ closed_segment a y ⊆ S

and zer :
∧

b c. closed_segment b c ⊆ S
=⇒ contour_integral (linepath a b) f + contour_integral (linepath

b c) f +
contour_integral (linepath c a) f = 0

shows ((λx. contour_integral(linepath a x) f) has_field_derivative f x) (at x)
proof −

let ?pathint = λx y. contour_integral(linepath x y) f
{ fix e y

assume e: 0 < e and bxe: ball x e ⊆ S and close: cmod (y − x) < e
have y: y ∈ S

using bxe close by (force simp: dist_norm norm_minus_commute)
have cont_ayf : continuous_on (closed_segment a y) f

using contf continuous_on_subset subs y by blast
have xys: closed_segment x y ⊆ S
by (metis bxe centre_in_ball close closed_segment_subset convex_ball dist_norm

dual_order .trans e mem_ball norm_minus_commute)
have ?pathint a y − ?pathint a x = ?pathint x y
using zer [OF xys] contour_integral_reverse_linepath [OF cont_ayf] add_eq_0_iff

by force
} note [simp] = this
{ fix e::real

assume e: 0 < e
have cont_atx: continuous (at x) f

using x S contf continuous_on_eq_continuous_at by blast
then obtain d1 where d1 : d1>0 and d1_less:

∧
y. cmod (y − x) < d1 =⇒

cmod (f y − f x) < e/2
unfolding continuous_at Lim_at dist_norm using e
by (drule_tac x=e/2 in spec) force

obtain d2 where d2 : d2>0 ball x d2 ⊆ S using ‹open S› x
by (auto simp: open_contains_ball)

have dpos: min d1 d2 > 0 using d1 d2 by simp
{ fix y

assume yx: y 6= x and close: cmod (y − x) < min d1 d2

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 70

have y: y ∈ S
using d2 close by (force simp: dist_norm norm_minus_commute)

have closed_segment x y ⊆ S
using close d2 by (auto simp: dist_norm norm_minus_commute dest!:

segment_bound(1))
then have fxy: f contour_integrable_on linepath x y

by (metis contour_integrable_continuous_linepath continuous_on_subset
[OF contf])

then obtain i where i: (f has_contour_integral i) (linepath x y)
by (auto simp: contour_integrable_on_def)
then have ((λw. f w − f x) has_contour_integral (i − f x ∗ (y − x)))

(linepath x y)
by (rule has_contour_integral_diff [OF _ has_contour_integral_const_linepath])
then have cmod (i − f x ∗ (y − x)) ≤ e / 2 ∗ cmod (y − x)
proof (rule has_contour_integral_bound_linepath)

show
∧

u. u ∈ closed_segment x y =⇒ cmod (f u − f x) ≤ e / 2
by (meson close d1_less le_less_trans less_imp_le min.strict_boundedE

segment_bound1)
qed (use e in simp)
also have . . . < e ∗ cmod (y − x)

by (simp add: e yx)
finally have cmod (?pathint x y − f x ∗ (y−x)) / cmod (y−x) < e

using i yx by (simp add: contour_integral_unique divide_less_eq)
}
then have ∃ d>0 . ∀ y. y 6= x ∧ cmod (y−x) < d −→ cmod (?pathint x y − f

x ∗ (y−x)) / cmod (y−x) < e
using dpos by blast

}
then have (λy. (?pathint x y − f x ∗ (y − x)) /R cmod (y − x)) −x→ 0

by (simp add: Lim_at dist_norm inverse_eq_divide)
then have (λy. (1 / cmod (y − x)) ∗R (?pathint a y − (?pathint a x + f x ∗ (y
− x)))) −x→ 0

using ‹open S› x
by (force simp: dist_norm open_contains_ball inverse_eq_divide [symmetric]

eventually_at intro: Lim_transform [OF _ tendsto_eventually])
then show ?thesis
by (simp add: has_field_derivative_def has_derivative_at2 bounded_linear_mult_right)

qed

Existence of a primitive
lemma holomorphic_starlike_primitive:

fixes f :: complex ⇒ complex
assumes contf : continuous_on S f

and S : starlike S and os: open S
and k: finite k
and fcd:

∧
x. x ∈ S − k =⇒ f field_differentiable at x

shows ∃ g. ∀ x ∈ S . (g has_field_derivative f x) (at x)
proof −

obtain a where a: a∈S and a_cs:
∧

x. x∈S =⇒ closed_segment a x ⊆ S

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 71

using S by (auto simp: starlike_def)
{ fix x b c

assume x ∈ S closed_segment b c ⊆ S
then have abcs: convex hull {a, b, c} ⊆ S

by (simp add: a a_cs starlike_convex_subset)
then have continuous_on (convex hull {a, b, c}) f

by (simp add: continuous_on_subset [OF contf])
then have (f has_contour_integral 0) (linepath a b +++ linepath b c +++

linepath c a)
using abcs interior_subset by (force intro: fcd Cauchy_theorem_triangle_cofinite

[OF _ k])
} note 0 = this
show ?thesis
proof (intro exI ballI)
show

∧
x. x ∈ S =⇒ ((λx. contour_integral (linepath a x) f) has_field_derivative

f x) (at x)
using 0 a a_cs contf has_chain_integral_chain_integral3 os triangle_contour_integrals_starlike_primitive

by force
qed

qed

lemma Cauchy_theorem_starlike:
[[open S ; starlike S ; finite k; continuous_on S f ;∧

x. x ∈ S − k =⇒ f field_differentiable at x;
valid_path g; path_image g ⊆ S ; pathfinish g = pathstart g]]
=⇒ (f has_contour_integral 0) g

by (metis holomorphic_starlike_primitive Cauchy_theorem_primitive at_within_open)

lemma Cauchy_theorem_starlike_simple:
[[open S ; starlike S ; f holomorphic_on S ; valid_path g; path_image g ⊆ S ; pathfin-

ish g = pathstart g]]
=⇒ (f has_contour_integral 0) g

using Cauchy_theorem_starlike [OF _ _ finite.emptyI]
by (simp add: holomorphic_on_imp_continuous_on holomorphic_on_imp_differentiable_at)

2.6 Cauchy’s theorem for a convex set

For a convex set we can avoid assuming openness and boundary analyticity
lemma triangle_contour_integrals_convex_primitive:

assumes contf : continuous_on S f
and S : a ∈ S convex S
and x: x ∈ S
and zer :

∧
b c. [[b ∈ S ; c ∈ S]]
=⇒ contour_integral (linepath a b) f + contour_integral (linepath

b c) f +
contour_integral (linepath c a) f = 0

shows ((λx. contour_integral(linepath a x) f) has_field_derivative f x) (at x
within S)
proof −

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 72

let ?pathint = λx y. contour_integral(linepath x y) f
{ fix y

assume y: y ∈ S
have cont_ayf : continuous_on (closed_segment a y) f
using S y by (meson contf continuous_on_subset convex_contains_segment)

have xys: closed_segment x y ⊆ S
using convex_contains_segment S x y by auto

have ?pathint a y − ?pathint a x = ?pathint x y
using zer [OF x y] contour_integral_reverse_linepath [OF cont_ayf] add_eq_0_iff

by force
} note [simp] = this
{ fix e::real

assume e: 0 < e
have cont_atx: continuous (at x within S) f

using x S contf by (simp add: continuous_on_eq_continuous_within)
then obtain d1 where d1 : d1>0 and d1_less:

∧
y. [[y ∈ S ; cmod (y − x) <

d1]] =⇒ cmod (f y − f x) < e/2
unfolding continuous_within Lim_within dist_norm using e
by (drule_tac x=e/2 in spec) force

{ fix y
assume yx: y 6= x and close: cmod (y − x) < d1 and y: y ∈ S
have fxy: f contour_integrable_on linepath x y

using convex_contains_segment S x y
by (blast intro!: contour_integrable_continuous_linepath continuous_on_subset

[OF contf])
then obtain i where i: (f has_contour_integral i) (linepath x y)

by (auto simp: contour_integrable_on_def)
then have ((λw. f w − f x) has_contour_integral (i − f x ∗ (y − x)))

(linepath x y)
by (rule has_contour_integral_diff [OF _ has_contour_integral_const_linepath])
then have cmod (i − f x ∗ (y − x)) ≤ e / 2 ∗ cmod (y − x)
proof (rule has_contour_integral_bound_linepath)

show
∧

u. u ∈ closed_segment x y =⇒ cmod (f u − f x) ≤ e / 2
by (meson assms(3) close convex_contains_segment d1_less le_less_trans

less_imp_le segment_bound1 subset_iff x y)
qed (use e in simp)
also have . . . < e ∗ cmod (y − x)

by (simp add: e yx)
finally have cmod (?pathint x y − f x ∗ (y−x)) / cmod (y−x) < e

using i yx by (simp add: contour_integral_unique divide_less_eq)
}
then have ∃ d>0 . ∀ y∈S . y 6= x ∧ cmod (y−x) < d −→ cmod (?pathint x y −

f x ∗ (y−x)) / cmod (y−x) < e
using d1 by blast

}
then have ((λy. (?pathint x y − f x ∗ (y − x)) /R cmod (y − x)) −−−→ 0) (at

x within S)
by (simp add: Lim_within dist_norm inverse_eq_divide)

then have ((λy. (1 / cmod (y − x)) ∗R (?pathint a y − (?pathint a x + f x ∗

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 73

(y − x)))) −−−→ 0)
(at x within S)

using linordered_field_no_ub
by (force simp: inverse_eq_divide [symmetric] eventually_at intro: Lim_transform

[OF _ tendsto_eventually])
then show ?thesis
by (simp add: has_field_derivative_def has_derivative_within bounded_linear_mult_right)

qed

lemma contour_integral_convex_primitive:
assumes convex S continuous_on S f∧

a b c. [[a ∈ S ; b ∈ S ; c ∈ S]] =⇒ (f has_contour_integral 0) (linepath a
b +++ linepath b c +++ linepath c a)

obtains g where
∧

x. x ∈ S =⇒ (g has_field_derivative f x) (at x within S)
proof (cases S={})

case False
with assms that show ?thesis
by (blast intro: triangle_contour_integrals_convex_primitive has_chain_integral_chain_integral3)

qed auto

lemma holomorphic_convex_primitive:
fixes f :: complex ⇒ complex
assumes convex S finite K and contf : continuous_on S f

and fd:
∧

x. x ∈ interior S − K =⇒ f field_differentiable at x
obtains g where

∧
x. x ∈ S =⇒ (g has_field_derivative f x) (at x within S)

proof (rule contour_integral_convex_primitive [OF ‹convex S› contf Cauchy_theorem_triangle_cofinite])
have ∗: convex hull {a, b, c} ⊆ S if a ∈ S b ∈ S c ∈ S for a b c

by (simp add: ‹convex S› hull_minimal that)
show continuous_on (convex hull {a, b, c}) f if a ∈ S b ∈ S c ∈ S for a b c

by (meson ∗ contf continuous_on_subset that)
show f field_differentiable at x if a ∈ S b ∈ S c ∈ S x ∈ interior (convex hull
{a, b, c}) − K for a b c x

by (metis ∗ DiffD1 DiffD2 DiffI fd interior_mono subsetCE that)
qed (use assms in ‹force+›)

lemma holomorphic_convex_primitive ′:
fixes f :: complex ⇒ complex
assumes convex S and open S and f holomorphic_on S
obtains g where

∧
x. x ∈ S =⇒ (g has_field_derivative f x) (at x within S)

proof (rule holomorphic_convex_primitive)
fix x assume x ∈ interior S − {}
with assms show f field_differentiable at x

by (auto intro!: holomorphic_on_imp_differentiable_at simp: interior_open)
qed (use assms in ‹auto intro: holomorphic_on_imp_continuous_on›)

corollary Cauchy_theorem_convex:
[[continuous_on S f ; convex S ; finite K ;∧

x. x ∈ interior S − K =⇒ f field_differentiable at x;
valid_path g; path_image g ⊆ S ; pathfinish g = pathstart g]]

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 74

=⇒ (f has_contour_integral 0) g
by (metis holomorphic_convex_primitive Cauchy_theorem_primitive)

corollary Cauchy_theorem_convex_simple:
assumes holf : f holomorphic_on S

and convex S valid_path g path_image g ⊆ S pathfinish g = pathstart g
shows (f has_contour_integral 0) g

proof −
have f holomorphic_on interior S

by (meson holf holomorphic_on_subset interior_subset)
with Cauchy_theorem_convex [where K = {}] show ?thesis

using assms
by (metis Diff_empty finite.emptyI holomorphic_on_imp_continuous_on holo-

morphic_on_imp_differentiable_at open_interior)
qed

In particular for a disc
corollary Cauchy_theorem_disc:

[[finite K ; continuous_on (cball a e) f ;∧
x. x ∈ ball a e − K =⇒ f field_differentiable at x;

valid_path g; path_image g ⊆ cball a e;
pathfinish g = pathstart g]] =⇒ (f has_contour_integral 0) g

by (auto intro: Cauchy_theorem_convex)

corollary Cauchy_theorem_disc_simple:
[[f holomorphic_on (ball a e); valid_path g; path_image g ⊆ ball a e;
pathfinish g = pathstart g]] =⇒ (f has_contour_integral 0) g

by (simp add: Cauchy_theorem_convex_simple)

2.7 Generalize integrability to local primitives
lemma contour_integral_local_primitive_lemma:

fixes f :: complex⇒complex
assumes gpd: g piecewise_differentiable_on {a..b}

and dh:
∧

x. x ∈ S =⇒ (f has_field_derivative f ′ x) (at x within S)
and gs:

∧
x. x ∈ {a..b} =⇒ g x ∈ S

shows (λx. f ′ (g x) ∗ vector_derivative g (at x within {a..b})) integrable_on
{a..b}
proof (cases cbox a b = {})

case False
then show ?thesis
unfolding integrable_on_def by (auto intro: assms contour_integral_primitive_lemma)

qed auto

lemma contour_integral_local_primitive_any:
fixes f :: complex ⇒ complex
assumes gpd: g piecewise_differentiable_on {a..b}

and dh:
∧

x. x ∈ S
=⇒ ∃ d h. 0 < d ∧

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 75

(∀ y. norm(y − x) < d −→ (h has_field_derivative f y) (at y
within S))

and gs:
∧

x. x ∈ {a..b} =⇒ g x ∈ S
shows (λx. f (g x) ∗ vector_derivative g (at x)) integrable_on {a..b}

proof −
{ fix x

assume x: a ≤ x x ≤ b
obtain d h where d: 0 < d

and h: (
∧

y. norm(y − g x) < d =⇒ (h has_field_derivative f y) (at
y within S))

using x gs dh by (metis atLeastAtMost_iff)
have continuous_on {a..b} g using gpd piecewise_differentiable_on_def by

blast
then obtain e where e: e>0 and lessd:

∧
x ′. x ′ ∈ {a..b} =⇒ |x ′ − x| < e

=⇒ cmod (g x ′ − g x) < d
using x d by (fastforce simp: dist_norm continuous_on_iff)

have ∃ e>0 . ∀ u v. u ≤ x ∧ x ≤ v ∧ {u..v} ⊆ ball x e ∧ (u ≤ v −→ a ≤ u ∧
v ≤ b) −→

(λx. f (g x) ∗ vector_derivative g (at x)) integrable_on {u..v}
proof −

have (λx. f (g x) ∗ vector_derivative g (at x within {u..v})) integrable_on
{u..v}

if u ≤ x x ≤ v and ball: {u..v} ⊆ ball x e and auvb: u ≤ v =⇒ a ≤ u ∧ v
≤ b

for u v
proof (rule contour_integral_local_primitive_lemma)

show g piecewise_differentiable_on {u..v}
by (metis atLeastatMost_subset_iff gpd piecewise_differentiable_on_subset

auvb)
show

∧
x. x ∈ g ‘ {u..v} =⇒ (h has_field_derivative f x) (at x within g ‘

{u..v})
using that by (force simp: ball_def dist_norm intro: lessd gs DERIV_subset

[OF h])
qed auto
then show ?thesis

using e integrable_on_localized_vector_derivative by blast
qed

} then
show ?thesis

by (force simp: intro!: integrable_on_little_subintervals [of a b, simplified])
qed

lemma contour_integral_local_primitive:
fixes f :: complex ⇒ complex
assumes g: valid_path g path_image g ⊆ S

and dh:
∧

x. x ∈ S
=⇒ ∃ d h. 0 < d ∧

(∀ y. norm(y − x) < d −→ (h has_field_derivative f y) (at y
within S))

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 76

shows f contour_integrable_on g
proof −

have (λx. f (g x) ∗ vector_derivative g (at x)) integrable_on {0 ..1}
using contour_integral_local_primitive_any [OF _ dh] g
unfolding path_image_def valid_path_def

by (metis (no_types, lifting) image_subset_iff piecewise_C1_imp_differentiable)
then show ?thesis

using contour_integrable_on by presburger
qed

In particular if a function is holomorphic
lemma contour_integrable_holomorphic:

assumes contf : continuous_on S f
and os: open S
and k: finite k
and g: valid_path g path_image g ⊆ S
and fcd:

∧
x. x ∈ S − k =⇒ f field_differentiable at x

shows f contour_integrable_on g
proof −

{ fix z
assume z: z ∈ S
obtain d where d>0 and d: ball z d ⊆ S using ‹open S› z

by (auto simp: open_contains_ball)
then have contfb: continuous_on (ball z d) f

using contf continuous_on_subset by blast
obtain h where ∀ y∈ball z d. (h has_field_derivative f y) (at y within ball z d)

by (metis holomorphic_convex_primitive [OF convex_ball k contfb fcd] d
interior_subset Diff_iff subsetD)

then have ∀ y∈ball z d. (h has_field_derivative f y) (at y within S)
by (metis open_ball at_within_open d os subsetCE)

then have ∃ h. (∀ y. cmod (y − z) < d −→ (h has_field_derivative f y) (at y
within S))

by (force simp: dist_norm norm_minus_commute)
then have ∃ d h. 0 < d ∧ (∀ y. cmod (y − z) < d −→ (h has_field_derivative

f y) (at y within S))
using ‹0 < d› by blast

}
then show ?thesis

by (rule contour_integral_local_primitive [OF g])
qed

lemma contour_integrable_holomorphic_simple:
assumes fh: f holomorphic_on S

and os: open S
and g: valid_path g path_image g ⊆ S

shows f contour_integrable_on g
proof −

have
∧

x. x ∈ S =⇒ f field_differentiable at x
using fh holomorphic_on_imp_differentiable_at os by blast

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 77

moreover have continuous_on S f
by (simp add: fh holomorphic_on_imp_continuous_on)

ultimately show ?thesis
by (metis Diff_empty contour_integrable_holomorphic finite.emptyI g os)

qed

lemma analytic_imp_contour_integrable:
assumes f analytic_on path_image p valid_path p
shows f contour_integrable_on p
by (meson analytic_on_holomorphic assms contour_integrable_holomorphic_simple)

lemma continuous_on_inversediff :
fixes z:: ′a::real_normed_field shows z /∈ S =⇒ continuous_on S (λw. 1 / (w
− z))

by (rule continuous_intros | force)+

lemma contour_integrable_inversediff :
assumes g: valid_path g

and notin: z /∈ path_image g
shows (λw. 1 / (w−z)) contour_integrable_on g

proof (rule contour_integrable_holomorphic_simple)
show (λw. 1 / (w−z)) holomorphic_on UNIV − {z}
by (auto simp: holomorphic_on_open open_delete intro!: derivative_eq_intros)

qed (use assms in auto)

Key fact that path integral is the same for a "nearby" path. This is the main
lemma for the homotopy form of Cauchy’s theorem and is also useful if we
want "without loss of generality" to assume some nice properties of a path
(e.g. smoothness). It can also be used to define the integrals of analytic
functions over arbitrary continuous paths. This is just done for winding
numbers now.

A technical definition to avoid duplication of similar proofs, for paths joined
at the ends versus looping paths
definition linked_paths :: bool ⇒ (real ⇒ ′a) ⇒ (real ⇒ ′a::topological_space) ⇒
bool

where linked_paths atends g h ==
(if atends then pathstart h = pathstart g ∧ pathfinish h = pathfinish g

else pathfinish g = pathstart g ∧ pathfinish h = pathstart h)

This formulation covers two cases: g and h share their start and end points;
g and h both loop upon themselves.
lemma contour_integral_nearby:

assumes os: open S and p: path p path_image p ⊆ S
shows ∃ d. 0 < d ∧

(∀ g h. valid_path g ∧ valid_path h ∧
(∀ t ∈ {0 ..1}. norm(g t − p t) < d ∧ norm(h t − p t) < d) ∧
linked_paths atends g h

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 78

−→ path_image g ⊆ S ∧ path_image h ⊆ S ∧
(∀ f . f holomorphic_on S −→ contour_integral h f = contour_integral

g f))
proof −

have ∀ z. ∃ e. z ∈ path_image p −→ 0 < e ∧ ball z e ⊆ S
using open_contains_ball os p(2) by blast

then obtain ee where ee:
∧

z. z ∈ path_image p =⇒ 0 < ee z ∧ ball z (ee z)
⊆ S

by metis
define cover where cover = (λz. ball z (ee z/3)) ‘ (path_image p)
have compact (path_image p)

by (metis p(1) compact_path_image)
moreover have path_image p ⊆ (

⋃
c∈path_image p. ball c (ee c / 3))

using ee by auto
ultimately have ∃D ⊆ cover . finite D ∧ path_image p ⊆

⋃
D

by (simp add: compact_eq_Heine_Borel cover_def)
then obtain D where D: D ⊆ cover finite D path_image p ⊆

⋃
D

by blast
then obtain k where k: k ⊆ {0 ..1} finite k and D_eq: D = ((λz. ball z (ee z

/ 3)) ◦ p) ‘ k
unfolding cover_def path_image_def image_comp
by (meson finite_subset_image)

then have kne: k 6= {}
using D by auto

have pi:
∧

i. i ∈ k =⇒ p i ∈ path_image p
using k by (auto simp: path_image_def)

then have eepi:
∧

i. i ∈ k =⇒ 0 < ee((p i))
by (metis ee)

define e where e = Min((ee ◦ p) ‘ k)
have fin_eep: finite ((ee ◦ p) ‘ k)

using k by blast
have 0 < e

using ee k by (simp add: kne e_def Min_gr_iff [OF fin_eep] eepi)
have uniformly_continuous_on {0 ..1} p

using p by (simp add: path_def compact_uniformly_continuous)
then obtain d::real where d: d>0

and de:
∧

x x ′. |x ′ − x| < d =⇒ x∈{0 ..1} =⇒ x ′∈{0 ..1} =⇒ cmod (p x ′

− p x) < e/3
unfolding uniformly_continuous_on_def dist_norm real_norm_def
by (metis divide_pos_pos ‹0 < e› zero_less_numeral)

then obtain N ::nat where N : N>0 inverse N < d
using real_arch_inverse [of d] by auto

show ?thesis
proof (intro exI conjI allI ; clarify?)

show e/3 > 0
using ‹0 < e› by simp

fix g h
assume g: valid_path g and ghp: ∀ t∈{0 ..1}. cmod (g t − p t) < e / 3 ∧ cmod

(h t − p t) < e / 3

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 79

and h: valid_path h
and joins: linked_paths atends g h

{ fix t::real
assume t: 0 ≤ t t ≤ 1
then obtain u where u: u ∈ k and ptu: p t ∈ ball(p u) (ee(p u) / 3)

using ‹path_image p ⊆
⋃

D› D_eq by (force simp: path_image_def)
then have ele: e ≤ ee (p u) using fin_eep

by (simp add: e_def)
have cmod (g t − p t) < e / 3 cmod (h t − p t) < e / 3

using ghp t by auto
with ele have cmod (g t − p t) < ee (p u) / 3

cmod (h t − p t) < ee (p u) / 3
by linarith+

then have g t ∈ ball(p u) (ee(p u)) h t ∈ ball(p u) (ee(p u))
using norm_diff_triangle_ineq [of g t p t p t p u]

norm_diff_triangle_ineq [of h t p t p t p u] ptu eepi u
by (force simp: dist_norm ball_def norm_minus_commute)+

then have g t ∈ S h t ∈ S using ee u k
by (auto simp: path_image_def ball_def)

}
then have ghs: path_image g ⊆ S path_image h ⊆ S

by (auto simp: path_image_def)
moreover
{ fix f

assume fhols: f holomorphic_on S
then have fpa: f contour_integrable_on g f contour_integrable_on h
using g ghs h holomorphic_on_imp_continuous_on os contour_integrable_holomorphic_simple

by blast+
have contf : continuous_on S f

by (simp add: fhols holomorphic_on_imp_continuous_on)
{ fix z

assume z: z ∈ path_image p
have f holomorphic_on ball z (ee z)

using fhols ee z holomorphic_on_subset by blast
then have ∃ff . (∀w ∈ ball z (ee z). (ff has_field_derivative f w) (at w))

using holomorphic_convex_primitive [of ball z (ee z) {} f , simplified]
by (metis open_ball at_within_open holomorphic_on_def holomor-

phic_on_imp_continuous_on mem_ball)
}
then obtain ff where ff :∧

z w. [[z ∈ path_image p; w ∈ ball z (ee z)]] =⇒ (ff z has_field_derivative
f w) (at w)

by metis
{ fix n

assume n: n ≤ N
then have contour_integral(subpath 0 (n/N) h) f − contour_integral(subpath

0 (n/N) g) f =
contour_integral(linepath (g(n/N)) (h(n/N))) f − con-

tour_integral(linepath (g 0) (h 0)) f

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 80

proof (induct n)
case 0 show ?case by simp

next
case (Suc n)
obtain t where t: t ∈ k and p (n/N) ∈ ball(p t) (ee(p t) / 3)
using ‹path_image p ⊆

⋃
D› [THEN subsetD, where c=p (n/N)] D_eq

N Suc.prems
by (force simp: path_image_def)

then have ptu: cmod (p t − p (n/N)) < ee (p t) / 3
by (simp add: dist_norm)

have e3le: e/3 ≤ ee (p t) / 3 using fin_eep t
by (simp add: e_def)

{ fix x
assume x: n/N ≤ x x ≤ (1 + n)/N
then have nN01 : 0 ≤ n/N (1 + n)/N ≤ 1

using Suc.prems by auto
then have x01 : 0 ≤ x x ≤ 1

using x by linarith+
have cmod (p t − p x) < ee (p t) / 3 + e/3
proof (rule norm_diff_triangle_less [OF ptu de])

show |real n / real N − x| < d
using x N by (auto simp: field_simps)

qed (use x01 Suc.prems in auto)
then have ptx: cmod (p t − p x) < 2∗ee (p t)/3

using e3le eepi [OF t] by simp
have cmod (p t − g x) < 2∗ee (p t)/3 + e/3

using ghp x01
by (force simp add: norm_minus_commute intro!: norm_diff_triangle_less

[OF ptx])
also have . . . ≤ ee (p t)

using e3le eepi [OF t] by simp
finally have gg: cmod (p t − g x) < ee (p t) .
have cmod (p t − h x) < 2∗ee (p t)/3 + e/3

using ghp x01
by (force simp add: norm_minus_commute intro!: norm_diff_triangle_less

[OF ptx])
also have . . . ≤ ee (p t)

using e3le eepi [OF t] by simp
finally have cmod (p t − g x) < ee (p t) cmod (p t − h x) < ee (p t)

using gg by auto
} note ptgh_ee = this

have closed_segment (g (n/N)) (h (n/N)) = path_image (linepath (h
(n/N)) (g (n/N)))

by (simp add: closed_segment_commute)
also have pi_hgn: . . . ⊆ ball (p t) (ee (p t))

using ptgh_ee [of n/N] Suc.prems
by (auto simp: field_simps dist_norm dest: segment_furthest_le [where

y=p t])
finally have gh_ns: closed_segment (g (n/N)) (h (n/N)) ⊆ S

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 81

using ee pi t by blast
have pi_ghn ′: path_image (linepath (g ((1 + n) / N)) (h ((1 + n) / N)))

⊆ ball (p t) (ee (p t))
using ptgh_ee [of (1+n)/N] Suc.prems

by (auto simp: field_simps dist_norm dest: segment_furthest_le [where
y=p t])

then have gh_n ′s: closed_segment (g ((1 + n) / N)) (h ((1 + n) / N))
⊆ S

using ‹N>0 › Suc.prems ee pi t
by (auto simp: Path_Connected.path_image_join field_simps)

have pi_subset_ball:
path_image (subpath (n/N) ((1+n) / N) g +++ linepath (g ((1+n)

/ N)) (h ((1+n) / N)) +++
subpath ((1+n) / N) (n/N) h +++ linepath (h (n/N)) (g

(n/N)))
⊆ ball (p t) (ee (p t))

proof (intro subset_path_image_join pi_hgn pi_ghn ′)
show path_image (subpath (n/N) ((1+n) / N) g) ⊆ ball (p t) (ee (p t))

path_image (subpath ((1+n) / N) (n/N) h) ⊆ ball (p t) (ee (p t))
using ‹N>0 › Suc.prems
by (auto simp: path_image_subpath dist_norm field_simps ptgh_ee)

qed
have pi0 : (f has_contour_integral 0)

(subpath (n/ N) ((Suc n)/N) g +++ linepath(g ((Suc n) / N))
(h((Suc n) / N)) +++

subpath ((Suc n) / N) (n/N) h +++ linepath(h (n/N)) (g
(n/N)))

proof (rule Cauchy_theorem_primitive)
show

∧
x. x ∈ ball (p t) (ee (p t))
=⇒ (ff (p t) has_field_derivative f x) (at x within ball (p t) (ee

(p t)))
by (metis ff open_ball at_within_open pi t)

qed (use Suc.prems pi_subset_ball in ‹simp_all add: valid_path_subpath
g h›)

have fpa1 : f contour_integrable_on subpath (n/N) (real (Suc n) / real N)
g

using Suc.prems by (simp add: contour_integrable_subpath g fpa)
have fpa2 : f contour_integrable_on linepath (g (real (Suc n) / real N)) (h

(real (Suc n) / real N))
using gh_n ′s

by (auto intro!: contour_integrable_continuous_linepath continu-
ous_on_subset [OF contf])

have fpa3 : f contour_integrable_on linepath (h (n/N)) (g (n/N))
using gh_ns

by (auto simp: closed_segment_commute intro!: contour_integrable_continuous_linepath
continuous_on_subset [OF contf])

have eq0 : contour_integral (subpath (n/N) ((Suc n) / real N) g) f +
contour_integral (linepath (g ((Suc n) / N)) (h ((Suc n) / N))) f

+

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 82

contour_integral (subpath ((Suc n) / N) (n/N) h) f +
contour_integral (linepath (h (n/N)) (g (n/N))) f = 0

using contour_integral_unique [OF pi0] Suc.prems
by (simp add: g h fpa valid_path_subpath contour_integrable_subpath

fpa1 fpa2 fpa3 algebra_simps del: of_nat_Suc)
have ∗:

∧
hn he hn ′ gn gd gn ′ hgn ghn gh0 ghn ′.

[[hn − gn = ghn − gh0 ;
gd + ghn ′ + he + hgn = (0 ::complex);
hn − he = hn ′; gn + gd = gn ′; hgn = −ghn]] =⇒ hn ′ − gn ′ =

ghn ′ − gh0
by (auto simp: algebra_simps)

have contour_integral (subpath 0 (n/N) h) f − contour_integral (subpath
((Suc n) / N) (n/N) h) f =

contour_integral (subpath 0 (n/N) h) f + contour_integral (subpath
(n/N) ((Suc n) / N) h) f

unfolding reversepath_subpath [symmetric, of ((Suc n) / N)]
using Suc.prems by (simp add: h fpa contour_integral_reversepath

valid_path_subpath contour_integrable_subpath)
also have . . . = contour_integral (subpath 0 ((Suc n) / N) h) f

using Suc.prems by (simp add: contour_integral_subpath_combine h
fpa)

finally have pi0_eq:
contour_integral (subpath 0 (n/N) h) f − contour_integral (subpath

((Suc n) / N) (n/N) h) f =
contour_integral (subpath 0 ((Suc n) / N) h) f .

show ?case
proof (rule ∗ [OF Suc.hyps eq0 pi0_eq])

show contour_integral (subpath 0 (n/N) g) f +
contour_integral (subpath (n/N) ((Suc n) / N) g) f =
contour_integral (subpath 0 ((Suc n) / N) g) f

using Suc.prems contour_integral_subpath_combine fpa(1) g by auto
show contour_integral (linepath (h (n/N)) (g (n/N))) f = − con-

tour_integral (linepath (g (n/N)) (h (n/N))) f
by (metis contour_integral_unique fpa3 has_contour_integral_integral

has_contour_integral_reverse_linepath)
qed (use Suc.prems in auto)

qed
} note ind = this
have contour_integral h f = contour_integral g f

using ind [OF order_refl] N joins
by (simp add: linked_paths_def pathstart_def pathfinish_def split: if_split_asm)

}
ultimately
show path_image g ⊆ S ∧ path_image h ⊆ S ∧ (∀ f . f holomorphic_on S −→

contour_integral h f = contour_integral g f)
by metis

qed
qed

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 83

lemma
assumes open S path p path_image p ⊆ S

shows contour_integral_nearby_ends:
∃ d. 0 < d ∧

(∀ g h. valid_path g ∧ valid_path h ∧
(∀ t ∈ {0 ..1}. norm(g t − p t) < d ∧ norm(h t − p t) < d) ∧
pathstart h = pathstart g ∧ pathfinish h = pathfinish g
−→ path_image g ⊆ S ∧

path_image h ⊆ S ∧
(∀ f . f holomorphic_on S
−→ contour_integral h f = contour_integral g f))

and contour_integral_nearby_loops:
∃ d. 0 < d ∧

(∀ g h. valid_path g ∧ valid_path h ∧
(∀ t ∈ {0 ..1}. norm(g t − p t) < d ∧ norm(h t − p t) < d) ∧
pathfinish g = pathstart g ∧ pathfinish h = pathstart h
−→ path_image g ⊆ S ∧

path_image h ⊆ S ∧
(∀ f . f holomorphic_on S
−→ contour_integral h f = contour_integral g f))

using contour_integral_nearby [OF assms, where atends=True]
using contour_integral_nearby [OF assms, where atends=False]
unfolding linked_paths_def by simp_all

lemma contour_integral_bound_exists:
assumes S : open S

and g: valid_path g
and pag: path_image g ⊆ S

shows ∃L. 0 < L ∧
(∀ f B. f holomorphic_on S ∧ (∀ z ∈ S . norm(f z) ≤ B)
−→ norm(contour_integral g f) ≤ L∗B)

proof −
have path g using g

by (simp add: valid_path_imp_path)
then obtain d::real and p

where d: 0 < d
and p: polynomial_function p path_image p ⊆ S
and pi:

∧
f . f holomorphic_on S =⇒ contour_integral g f = contour_integral

p f
using contour_integral_nearby_ends [OF S ‹path g› pag]

by (metis cancel_comm_monoid_add_class.diff_cancel g norm_zero path_approx_polynomial_function
valid_path_polynomial_function)

then obtain p ′ where p ′: polynomial_function p ′∧
x. (p has_vector_derivative (p ′ x)) (at x)

by (blast intro: has_vector_derivative_polynomial_function that)
then have bounded(p ′ ‘ {0 ..1})

using continuous_on_polymonial_function
by (force simp: intro!: compact_imp_bounded compact_continuous_image)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 84

then obtain L where L: L>0 and nop ′:
∧

x. [[0 ≤ x; x ≤ 1]] =⇒ norm (p ′ x)
≤ L

by (force simp: bounded_pos)
{ fix f B

assume f : f holomorphic_on S and B:
∧

z. z∈S =⇒ cmod (f z) ≤ B
then have f contour_integrable_on p ∧ valid_path p

using p S
by (blast intro: valid_path_polynomial_function contour_integrable_holomorphic_simple

holomorphic_on_imp_continuous_on)
moreover have cmod (vector_derivative p (at x)) ∗ cmod (f (p x)) ≤ L ∗ B

if 0 ≤ x x ≤ 1 for x
proof (rule mult_mono)

show cmod (vector_derivative p (at x)) ≤ L
by (metis nop ′ p ′(2) that vector_derivative_at)

show cmod (f (p x)) ≤ B
by (metis B atLeastAtMost_iff imageI p(2) path_defs(4) subset_eq that)

qed (use ‹L>0 › in auto)
ultimately
have cmod (integral {0 ..1} (λx. f (p x) ∗ vector_derivative p (at x))) ≤ L ∗ B

by (intro order_trans [OF integral_norm_bound_integral])
(auto simp: mult.commute norm_mult contour_integrable_on)

then have cmod (contour_integral g f) ≤ L ∗ B
using contour_integral_integral f pi by presburger

} then
show ?thesis using ‹L > 0 ›

by (intro exI [of _ L]) auto
qed

2.8 Homotopy forms of Cauchy’s theorem
lemma Cauchy_theorem_homotopic:

assumes hom: if atends then homotopic_paths S g h else homotopic_loops S g
h

and open S and f : f holomorphic_on S
and vpg: valid_path g and vph: valid_path h

shows contour_integral g f = contour_integral h f
proof −

have pathsf : linked_paths atends g h
using hom by (auto simp: linked_paths_def homotopic_paths_imp_pathstart

homotopic_paths_imp_pathfinish homotopic_loops_imp_loop)
obtain k :: real × real ⇒ complex

where contk: continuous_on ({0 ..1} × {0 ..1}) k
and ks: k ‘ ({0 ..1} × {0 ..1}) ⊆ S
and k [simp]: ∀ x. k (0 , x) = g x ∀ x. k (1 , x) = h x
and ksf : ∀ t∈{0 ..1}. linked_paths atends g (λx. k (t, x))

using hom pathsf by (auto simp: linked_paths_def homotopic_paths_def
homotopic_loops_def homotopic_with_def split: if_split_asm)

have ucontk: uniformly_continuous_on ({0 ..1} × {0 ..1}) k
by (blast intro: compact_Times compact_uniformly_continuous [OF contk])

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 85

{ fix t::real assume t: t ∈ {0 ..1}
have Pair t ‘ {0 ..1} ⊆ {0 ..1} × {0 ..1}

using t by force
then have pak: path (k ◦ (λu. (t, u)))

unfolding path_def
by (intro continuous_intros continuous_on_subset [OF contk])+

have pik: path_image (k ◦ Pair t) ⊆ S
using ks t by (auto simp: path_image_def)

obtain e where e>0 and e:∧
g h. [[valid_path g; valid_path h;

∀ u∈{0 ..1}. cmod (g u − (k ◦ Pair t) u) < e ∧ cmod (h u − (k ◦
Pair t) u) < e;

linked_paths atends g h]]
=⇒ contour_integral h f = contour_integral g f

using contour_integral_nearby [OF ‹open S› pak pik, of atends] f by metis
obtain d where d>0 and d:∧

x x ′. [[x ∈ {0 ..1} × {0 ..1}; x ′ ∈ {0 ..1} × {0 ..1}; norm (x ′−x) < d]] =⇒
norm (k x ′ − k x) < e/4

by (rule uniformly_continuous_onE [OF ucontk, of e/4]) (auto simp: dist_norm
‹e>0 ›)

{ fix t1 t2
assume t1 : 0 ≤ t1 t1 ≤ 1 and t2 : 0 ≤ t2 t2 ≤ 1 and ltd: |t1 − t| < d |t2

− t| < d
have no2 : norm(g1 − kt) < e if norm(g1 − k1) < e/4 norm(k1 − kt) <

e/4 for g1 k1 kt :: complex
proof (rule norm_triangle_half_l)

show cmod (g1 − k1) < e/2 cmod (kt − k1) < e/2
using ‹e > 0 › that by (auto simp: norm_minus_commute intro: or-

der_less_trans)
qed
have ∃ d>0 . ∀ g1 g2 . valid_path g1 ∧ valid_path g2 ∧

(∀ u∈{0 ..1}. cmod (g1 u − k (t1 , u)) < d ∧ cmod (g2 u − k
(t2 , u)) < d) ∧

linked_paths atends g1 g2 −→
contour_integral g2 f = contour_integral g1 f

using t t1 t2 ltd ‹e > 0 ›
by (rule_tac x=e/4 in exI) (auto intro!: e simp: d no2 simp del: less_divide_eq_numeral1)

}
then have ∃ e. 0 < e ∧

(∀ t1 t2 . t1 ∈ {0 ..1} ∧ t2 ∈ {0 ..1} ∧ |t1 − t| < e ∧ |t2 − t| < e
−→ (∃ d. 0 < d ∧

(∀ g1 g2 . valid_path g1 ∧ valid_path g2 ∧
(∀ u ∈ {0 ..1}.
norm(g1 u − k((t1 ,u))) < d ∧ norm(g2 u − k((t2 ,u))) < d) ∧

linked_paths atends g1 g2
−→ contour_integral g2 f = contour_integral g1 f)))

by (rule_tac x=d in exI) (simp add: ‹d > 0 ›)
}
then obtain ee where ee:

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 86

∧
t. t ∈ {0 ..1} =⇒ ee t > 0 ∧
(∀ t1 t2 . t1 ∈ {0 ..1} −→ t2 ∈ {0 ..1} −→ |t1 − t| < ee t −→ |t2 − t| <

ee t
−→ (∃ d. 0 < d ∧

(∀ g1 g2 . valid_path g1 ∧ valid_path g2 ∧
(∀ u ∈ {0 ..1}.

norm(g1 u − k((t1 ,u))) < d ∧ norm(g2 u − k((t2 ,u))) < d) ∧
linked_paths atends g1 g2
−→ contour_integral g2 f = contour_integral g1 f)))

by metis
note ee_rule = ee [THEN conjunct2 , rule_format, of 0 0 0]
define C where C = (λt. ball t (ee t / 3)) ‘ {0 ..1}
obtain C ′ where C ′: C ′ ⊆ C finite C ′ and C ′01 : {0 ..1} ⊆

⋃
C ′

proof (rule compactE [OF compact_interval])
show {0 ..1} ⊆

⋃
C

using ee [THEN conjunct1] by (auto simp: C_def dist_norm)
qed (use C_def in auto)
define kk where kk = {t ∈ {0 ..1}. ball t (ee t / 3) ∈ C ′}
have kk01 : kk ⊆ {0 ..1} by (auto simp: kk_def)
define e where e = Min (ee ‘ kk)
have C ′_eq: C ′ = (λt. ball t (ee t / 3)) ‘ kk

using C ′ by (auto simp: kk_def C_def)
have ee_pos[simp]:

∧
t. t ∈ {0 ..1} =⇒ ee t > 0

by (simp add: kk_def ee)
moreover have finite kk
using ‹finite C ′› kk01 by (force simp: C ′_eq inj_on_def ball_eq_ball_iff dest:

ee_pos finite_imageD)
moreover have kk 6= {} using ‹{0 ..1} ⊆

⋃
C ′› C ′_eq by force

ultimately have e > 0
using finite_less_Inf_iff [of ee ‘ kk 0] kk01 by (force simp: e_def)

then obtain N ::nat where N > 0 and N : 1/N < e/3
by (meson divide_pos_pos nat_approx_posE zero_less_Suc zero_less_numeral)

have e_le_ee:
∧

i. i ∈ kk =⇒ e ≤ ee i
using ‹finite kk› by (simp add: e_def Min_le_iff [of ee ‘ kk])

have plus: ∃ t ∈ kk. x ∈ ball t (ee t / 3) if x ∈ {0 ..1} for x
using C ′ subsetD [OF C ′01 that] unfolding C ′_eq by blast

have [OF order_refl]:
∃ d. 0 < d ∧ (∀ j. valid_path j ∧ (∀ u ∈ {0 ..1}. norm(j u − k (n/N , u)) <

d) ∧ linked_paths atends g j
−→ contour_integral j f = contour_integral g f)

if n ≤ N for n
using that
proof (induct n)

case 0 show ?case
using ee_rule
by clarsimp (metis diff_self norm_eq_zero vpg)

next
case (Suc n)
then have N01 : n/N ∈ {0 ..1} (Suc n)/N ∈ {0 ..1} by auto

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy_Integral_Theorem.thy 87

then obtain t where t: t ∈ kk n/N ∈ ball t (ee t / 3)
using plus [of n/N] by blast

then have nN_less: |n/N − t| < ee t
by (simp add: dist_norm del: less_divide_eq_numeral1)

have n ′N_less: |real (Suc n) / real N − t| < ee t
using t N ‹N > 0 › e_le_ee [of t]

by (simp add: dist_norm add_divide_distrib abs_diff_less_iff del: less_divide_eq_numeral1)
(simp add: field_simps)

have t01 : t ∈ {0 ..1} using ‹kk ⊆ {0 ..1}› ‹t ∈ kk› by blast
obtain d1 where d1 > 0 and d1 :∧

g1 g2 . [[valid_path g1 ; valid_path g2 ;
∀ u∈{0 ..1}. cmod (g1 u − k (n/N , u)) < d1 ∧ cmod (g2 u − k

((Suc n) / N , u)) < d1 ;
linked_paths atends g1 g2]]
=⇒ contour_integral g2 f = contour_integral g1 f

using ee [THEN conjunct2 , rule_format, OF t01 N01 nN_less n ′N_less] by
fastforce

have n ≤ N using Suc.prems by auto
with Suc.hyps
obtain d2 where d2 > 0

and d2 :
∧

j. [[valid_path j; ∀ u∈{0 ..1}. cmod (j u − k (n/N , u)) < d2 ;
linked_paths atends g j]]

=⇒ contour_integral j f = contour_integral g f
by auto

have Pair (n/ N) ‘ {0 ..1} ⊆ {0 ..1} × {0 ..1}
using N01 by auto

then have continuous_on {0 ..1} (k ◦ (λu. (n/N , u)))
by (intro continuous_intros continuous_on_subset [OF contk])

then have pkn: path (λu. k (n/N , u))
by (simp add: path_def)

have min12 : min d1 d2 > 0 by (simp add: ‹0 < d1 › ‹0 < d2 ›)
obtain p where polynomial_function p

and psf : pathstart p = pathstart (λu. k (n/N , u))
pathfinish p = pathfinish (λu. k (n/N , u))

and pk_le:
∧

t. t∈{0 ..1} =⇒ cmod (p t − k (n/N , t)) < min d1 d2
using path_approx_polynomial_function [OF pkn min12] by blast

then have vpp: valid_path p using valid_path_polynomial_function by blast
have lpa: linked_paths atends g p

by (metis (mono_tags, lifting) N01 (1) ksf linked_paths_def pathfinish_def
pathstart_def psf)

show ?case
proof (intro exI ; safe)

fix j
assume valid_path j linked_paths atends g j

and ∀ u∈{0 ..1}. cmod (j u − k (real (Suc n) / real N , u)) < min d1 d2
then have contour_integral j f = contour_integral p f
using pk_le N01 (1) ksf by (force intro!: vpp d1 simp add: linked_paths_def

psf)
also have ... = contour_integral g f

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Winding_Numbers.thy 88

using pk_le by (force intro!: vpp d2 lpa)
finally show contour_integral j f = contour_integral g f .

qed (simp add: ‹0 < d1 › ‹0 < d2 ›)
qed
then obtain d where 0 < d∧

j. valid_path j ∧ (∀ u ∈ {0 ..1}. norm(j u − k (1 ,u)) < d) ∧
linked_paths atends g j

=⇒ contour_integral j f = contour_integral g f
using ‹N>0 › by auto

then have linked_paths atends g h =⇒ contour_integral h f = contour_integral
g f

using ‹N>0 › vph by fastforce
then show ?thesis

by (simp add: pathsf)
qed

proposition Cauchy_theorem_homotopic_paths:
assumes hom: homotopic_paths S g h

and open S and f : f holomorphic_on S
and vpg: valid_path g and vph: valid_path h

shows contour_integral g f = contour_integral h f
using Cauchy_theorem_homotopic [of True S g h] assms by simp

proposition Cauchy_theorem_homotopic_loops:
assumes hom: homotopic_loops S g h

and open S and f : f holomorphic_on S
and vpg: valid_path g and vph: valid_path h

shows contour_integral g f = contour_integral h f
using Cauchy_theorem_homotopic [of False S g h] assms by simp

lemma has_contour_integral_newpath:
[[(f has_contour_integral y) h; f contour_integrable_on g; contour_integral g f

= contour_integral h f]]
=⇒ (f has_contour_integral y) g

using has_contour_integral_integral contour_integral_unique by auto

lemma Cauchy_theorem_null_homotopic:
[[f holomorphic_on S ; open S ; valid_path g; homotopic_loops S g (linepath a

a)]]
=⇒ (f has_contour_integral 0) g

by (metis Cauchy_theorem_homotopic_loops contour_integrable_holomorphic_simple
valid_path_linepath

contour_integral_trivial has_contour_integral_integral homotopic_loops_imp_subset)

end

3 Winding numbers
theory Winding_Numbers

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 89

imports Cauchy_Integral_Theorem
begin

3.1 Definition
definition winding_number_prop :: [real ⇒ complex, complex, real, real ⇒ com-
plex, complex] ⇒ bool where

winding_number_prop γ z e p n ≡
valid_path p ∧ z /∈ path_image p ∧
pathstart p = pathstart γ ∧
pathfinish p = pathfinish γ ∧
(∀ t ∈ {0 ..1}. norm(γ t − p t) < e) ∧
contour_integral p (λw. 1/(w − z)) = 2 ∗ pi ∗ i ∗ n

definition winding_number :: [real ⇒ complex, complex] ⇒ complex where
winding_number γ z ≡ SOME n. ∀ e > 0 . ∃ p. winding_number_prop γ z e p n

lemma winding_number :
assumes path γ z /∈ path_image γ 0 < e

shows ∃ p. winding_number_prop γ z e p (winding_number γ z)
proof −

have path_image γ ⊆ UNIV − {z}
using assms by blast

then obtain d
where d: d>0

and pi_eq:
∧

h1 h2 . valid_path h1 ∧ valid_path h2 ∧
(∀ t∈{0 ..1}. cmod (h1 t − γ t) < d ∧ cmod (h2 t − γ t) < d) ∧
pathstart h2 = pathstart h1 ∧ pathfinish h2 = pathfinish h1 −→

path_image h1 ⊆ UNIV − {z} ∧ path_image h2 ⊆ UNIV −
{z} ∧

(∀ f . f holomorphic_on UNIV − {z} −→ contour_integral h2 f
= contour_integral h1 f)

using contour_integral_nearby_ends [of UNIV − {z} γ] assms by (auto simp:
open_delete)

then obtain h where h: polynomial_function h ∧ pathstart h = pathstart γ ∧
pathfinish h = pathfinish γ ∧

(∀ t ∈ {0 ..1}. norm(h t − γ t) < d/2)
using path_approx_polynomial_function [OF ‹path γ›, of d/2] d by (metis

half_gt_zero_iff)
define nn where nn = 1/(2∗ pi∗i) ∗ contour_integral h (λw. 1/(w − z))
have ∃n. ∀ e > 0 . ∃ p. winding_number_prop γ z e p n

proof (rule_tac x=nn in exI , clarify)
fix e::real
assume e: e>0
obtain p where p: polynomial_function p ∧

pathstart p = pathstart γ ∧ pathfinish p = pathfinish γ ∧ (∀ t∈{0 ..1}.
cmod (p t − γ t) < min e (d/2))

using path_approx_polynomial_function [OF ‹path γ›, of min e (d/2)] d

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 90

‹0<e›
by (metis min_less_iff_conj zero_less_divide_iff zero_less_numeral)

have (λw. 1 / (w − z)) holomorphic_on UNIV − {z}
by (auto simp: intro!: holomorphic_intros)

then have winding_number_prop γ z e p nn
using pi_eq [of h p] h p d

by (auto simp: valid_path_polynomial_function norm_minus_commute
nn_def winding_number_prop_def)

then show ∃ p. winding_number_prop γ z e p nn
by metis

qed
then show ?thesis

unfolding winding_number_def by (rule someI2_ex) (blast intro: ‹0<e›)
qed

lemma winding_number_unique:
assumes γ: path γ z /∈ path_image γ

and pi:
∧

e. e>0 =⇒ ∃ p. winding_number_prop γ z e p n
shows winding_number γ z = n

proof −
have path_image γ ⊆ UNIV − {z}

using assms by blast
then obtain e

where e: e>0
and pi_eq:

∧
h1 h2 f . [[valid_path h1 ; valid_path h2 ;

(∀ t∈{0 ..1}. cmod (h1 t − γ t) < e ∧ cmod (h2 t − γ t) < e);
pathstart h2 = pathstart h1 ; pathfinish h2 = pathfinish h1 ; f

holomorphic_on UNIV − {z}]] =⇒
contour_integral h2 f = contour_integral h1 f

using contour_integral_nearby_ends [of UNIV − {z} γ] assms by (auto simp:
open_delete)

obtain p where p: winding_number_prop γ z e p n
using pi [OF e] by blast

obtain q where q: winding_number_prop γ z e q (winding_number γ z)
using winding_number [OF γ e] by blast

have 2 ∗ complex_of_real pi ∗ i ∗ n = contour_integral p (λw. 1 / (w − z))
using p by (auto simp: winding_number_prop_def)

also have . . . = contour_integral q (λw. 1 / (w − z))
proof (rule pi_eq)

show (λw. 1 / (w − z)) holomorphic_on UNIV − {z}
by (auto intro!: holomorphic_intros)

qed (use p q in ‹auto simp: winding_number_prop_def norm_minus_commute›)
also have . . . = 2 ∗ complex_of_real pi ∗ i ∗ winding_number γ z

using q by (auto simp: winding_number_prop_def)
finally have 2 ∗ complex_of_real pi ∗ i ∗ n = 2 ∗ complex_of_real pi ∗ i ∗

winding_number γ z .
then show ?thesis

by simp
qed

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 91

lemma winding_number_prop_reversepath:
assumes winding_number_prop γ z e p n
shows winding_number_prop (reversepath γ) z e (reversepath p) (−n)

proof −
have p: valid_path p z /∈ path_image p pathstart p = pathstart γ

pathfinish p = pathfinish γ
∧

t. t ∈ {0 ..1} =⇒ norm (γ t − p t) < e
contour_integral p (λw. 1 / (w − z)) = 2 ∗ complex_of_real pi ∗ i ∗ n

using assms by (auto simp: winding_number_prop_def)
show ?thesis

unfolding winding_number_prop_def
proof (intro conjI strip)

show norm (reversepath γ t − reversepath p t) < e if t ∈ {0 ..1} for t
unfolding reversepath_def using p(5)[of 1 − t] that by auto

show contour_integral (reversepath p) (λw. 1 / (w − z)) =
complex_of_real (2 ∗ pi) ∗ i ∗ − n

using p by (subst contour_integral_reversepath) auto
qed (use p in auto)

qed

lemma winding_number_prop_reversepath_iff :
winding_number_prop (reversepath γ) z e p n ←→ winding_number_prop γ z e

(reversepath p) (−n)
using winding_number_prop_reversepath[of reversepath γ z e p n]

winding_number_prop_reversepath[of γ z e reversepath p −n] by auto

lemma winding_number_unique_loop:
assumes γ: path γ z /∈ path_image γ

and loop: pathfinish γ = pathstart γ
and pi:∧

e. e>0 =⇒ ∃ p. valid_path p ∧ z /∈ path_image p ∧
pathfinish p = pathstart p ∧
(∀ t ∈ {0 ..1}. norm (γ t − p t) < e) ∧
contour_integral p (λw. 1/(w − z)) = 2 ∗ pi ∗ i ∗ n

shows winding_number γ z = n
proof −

have path_image γ ⊆ UNIV − {z}
using assms by blast

then obtain e
where e: e>0

and pi_eq:
∧

h1 h2 f . [[valid_path h1 ; valid_path h2 ;
(∀ t∈{0 ..1}. cmod (h1 t − γ t) < e ∧ cmod (h2 t − γ t) < e);

pathfinish h1 = pathstart h1 ; pathfinish h2 = pathstart h2 ; f
holomorphic_on UNIV − {z}]] =⇒

contour_integral h2 f = contour_integral h1 f
using contour_integral_nearby_loops [of UNIV − {z} γ] assms by (auto simp:

open_delete)
obtain p where p:

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 92

valid_path p ∧ z /∈ path_image p ∧ pathfinish p = pathstart p ∧
(∀ t ∈ {0 ..1}. norm (γ t − p t) < e) ∧
contour_integral p (λw. 1/(w − z)) = 2 ∗ pi ∗ i ∗ n

using pi [OF e] by blast
obtain q where q: winding_number_prop γ z e q (winding_number γ z)

using winding_number [OF γ e] by blast
have 2 ∗ complex_of_real pi ∗ i ∗ n = contour_integral p (λw. 1 / (w − z))

using p by auto
also have . . . = contour_integral q (λw. 1 / (w − z))
proof (rule pi_eq)

show (λw. 1 / (w − z)) holomorphic_on UNIV − {z}
by (auto intro!: holomorphic_intros)

qed (use p q loop in ‹auto simp: winding_number_prop_def norm_minus_commute›)
also have . . . = 2 ∗ complex_of_real pi ∗ i ∗ winding_number γ z

using q by (auto simp: winding_number_prop_def)
finally have 2 ∗ complex_of_real pi ∗ i ∗ n = 2 ∗ complex_of_real pi ∗ i ∗

winding_number γ z .
then show ?thesis

by simp
qed

proposition winding_number_valid_path:
assumes valid_path γ z /∈ path_image γ
shows winding_number γ z = 1/(2∗pi∗i) ∗ contour_integral γ (λw. 1/(w − z))
by (rule winding_number_unique)
(use assms in ‹auto simp: valid_path_imp_path winding_number_prop_def ›)

proposition has_contour_integral_winding_number :
assumes γ: valid_path γ z /∈ path_image γ

shows ((λw. 1/(w − z)) has_contour_integral (2∗pi∗i∗winding_number γ z))
γ
by (simp add: winding_number_valid_path has_contour_integral_integral con-
tour_integrable_inversediff assms)

lemma winding_number_trivial [simp]: z 6= a =⇒ winding_number(linepath a a)
z = 0

by (simp add: winding_number_valid_path)

lemma winding_number_subpath_trivial [simp]: z 6= g x =⇒ winding_number
(subpath x x g) z = 0

by (simp add: path_image_subpath winding_number_valid_path)

lemma winding_number_join:
assumes γ1 : path γ1 z /∈ path_image γ1

and γ2 : path γ2 z /∈ path_image γ2
and pathfinish γ1 = pathstart γ2
shows winding_number(γ1 +++ γ2) z = winding_number γ1 z + wind-

ing_number γ2 z
proof (rule winding_number_unique)

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 93

show ∃ p. winding_number_prop (γ1 +++ γ2) z e p
(winding_number γ1 z + winding_number γ2 z) if e > 0 for e

proof −
obtain p1 where winding_number_prop γ1 z e p1 (winding_number γ1 z)

using ‹0 < e› γ1 winding_number by blast
moreover
obtain p2 where winding_number_prop γ2 z e p2 (winding_number γ2 z)

using ‹0 < e› γ2 winding_number by blast
ultimately
have winding_number_prop (γ1+++γ2) z e (p1+++p2) (winding_number

γ1 z + winding_number γ2 z)
using assms
apply (simp add: winding_number_prop_def not_in_path_image_join con-

tour_integrable_inversediff algebra_simps)
apply (auto simp: joinpaths_def)
done

then show ?thesis
by blast

qed
qed (use assms in ‹auto simp: not_in_path_image_join›)

lemma winding_number_reversepath:
assumes path γ z /∈ path_image γ

shows winding_number(reversepath γ) z = − (winding_number γ z)
proof (rule winding_number_unique)

show ∃ p. winding_number_prop (reversepath γ) z e p (− winding_number γ z)
if e > 0 for e

proof −
obtain p where winding_number_prop γ z e p (winding_number γ z)

using ‹0 < e› assms winding_number by blast
then have winding_number_prop (reversepath γ) z e (reversepath p) (− wind-

ing_number γ z)
using assms unfolding winding_number_prop_def

apply (simp add: contour_integral_reversepath contour_integrable_inversediff
valid_path_imp_reverse)

apply (auto simp: reversepath_def)
done

then show ?thesis
by blast

qed
qed (use assms in auto)

lemma winding_number_shiftpath:
assumes γ: path γ z /∈ path_image γ

and pathfinish γ = pathstart γ a ∈ {0 ..1}
shows winding_number(shiftpath a γ) z = winding_number γ z

proof (rule winding_number_unique_loop)
show ∃ p. valid_path p ∧ z /∈ path_image p ∧ pathfinish p = pathstart p ∧

(∀ t∈{0 ..1}. cmod (shiftpath a γ t − p t) < e) ∧

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 94

contour_integral p (λw. 1 / (w − z)) =
2 ∗ pi ∗ i ∗ winding_number γ z

if e > 0 for e
proof −

obtain p where winding_number_prop γ z e p (winding_number γ z)
using ‹0 < e› assms winding_number by blast

then show ?thesis
apply (rule_tac x=shiftpath a p in exI)
using assms that
apply (auto simp: winding_number_prop_def path_image_shiftpath pathfin-

ish_shiftpath pathstart_shiftpath contour_integral_shiftpath)
apply (simp add: shiftpath_def)
done

qed
qed (use assms in ‹auto simp: path_shiftpath path_image_shiftpath pathfinish_shiftpath
pathstart_shiftpath›)

lemma winding_number_split_linepath:
assumes c ∈ closed_segment a b z /∈ closed_segment a b

shows winding_number(linepath a b) z = winding_number(linepath a c) z +
winding_number(linepath c b) z
proof −

have z /∈ closed_segment a c z /∈ closed_segment c b
using assms by (meson convex_contains_segment convex_segment ends_in_segment

subsetCE)+
then show ?thesis

using assms
by (simp add: winding_number_valid_path contour_integral_split_linepath

[symmetric] continuous_on_inversediff field_simps)
qed

lemma winding_number_cong:
(
∧

t. [[0 ≤ t; t ≤ 1]] =⇒ p t = q t) =⇒ winding_number p z = winding_number
q z

by (simp add: winding_number_def winding_number_prop_def pathstart_def
pathfinish_def)

lemma winding_number_constI :
assumes c 6=z and g:

∧
t. [[0≤t; t≤1]] =⇒ g t = c

shows winding_number g z = 0
proof −

have winding_number g z = winding_number (linepath c c) z
using g winding_number_cong by fastforce

moreover have winding_number (linepath c c) z = 0
using ‹c 6=z› by auto

ultimately show ?thesis by auto
qed

lemma winding_number_offset: winding_number p z = winding_number (λw. p

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 95

w − z) 0
unfolding winding_number_def

proof (intro ext arg_cong [where f = Eps] arg_cong [where f = All] imp_cong
refl, safe)

fix n e g
assume 0 < e and g: winding_number_prop p z e g n
then show ∃ r . winding_number_prop (λw. p w − z) 0 e r n

by (rule_tac x=λt. g t − z in exI)
(force simp: winding_number_prop_def contour_integral_integral valid_path_def

path_defs
vector_derivative_def has_vector_derivative_diff_const piece-

wise_C1_differentiable_diff C1_differentiable_imp_piecewise)
next

fix n e g
assume 0 < e and g: winding_number_prop (λw. p w − z) 0 e g n
then have winding_number_prop p z e (λt. g t + z) n
apply (simp add: winding_number_prop_def contour_integral_integral valid_path_def

path_defs
piecewise_C1_differentiable_add vector_derivative_def has_vector_derivative_add_const

C1_differentiable_imp_piecewise)
apply (force simp: algebra_simps)
done

then show ∃ r . winding_number_prop p z e r n
by metis

qed

lemma winding_number_offset_NO_MATCH :
NO_MATCH 0 z =⇒ winding_number p z = winding_number (λw. p w − z) 0
using winding_number_offset by metis

lemma winding_number_negatepath:
assumes γ: valid_path γ and 0 : 0 /∈ path_image γ
shows winding_number(uminus ◦ γ) 0 = winding_number γ 0

proof −
have (/) 1 contour_integrable_on γ

using 0 γ contour_integrable_inversediff by fastforce
then have ((λz. 1/z) has_contour_integral contour_integral γ ((/) 1)) γ

by (rule has_contour_integral_integral)
then have ((λz. 1 / − z) has_contour_integral − contour_integral γ ((/) 1))

γ
using has_contour_integral_neg by auto

then have contour_integral (uminus ◦ γ) ((/) 1) =
contour_integral γ ((/) 1)

using γ by (simp add: contour_integral_unique has_contour_integral_negatepath)
then show ?thesis
using assms by (simp add: winding_number_valid_path valid_path_negatepath

image_def path_defs)
qed

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 96

lemma winding_number_cnj:
assumes path γ z /∈ path_image γ
shows winding_number (cnj ◦ γ) (cnj z) = −cnj (winding_number γ z)

proof (rule winding_number_unique)
show ∃ p. winding_number_prop (cnj ◦ γ) (cnj z) e p (−cnj (winding_number

γ z))
if e > 0 for e

proof −
from winding_number [OF assms(1 ,2) ‹e > 0 ›]
obtain p where winding_number_prop γ z e p (winding_number γ z)

by blast
then have p: valid_path p z /∈ path_image p

pathstart p = pathstart γ
pathfinish p = pathfinish γ∧

t. t ∈ {0 ..1} =⇒ cmod (γ t − p t) < e and
p_cont:contour_integral p (λw. 1 / (w − z)) =

complex_of_real (2 ∗ pi) ∗ i ∗ winding_number γ z
unfolding winding_number_prop_def by auto

have valid_path (cnj ◦ p)
using p(1) by (subst valid_path_cnj) auto

moreover have cnj z /∈ path_image (cnj ◦ p)
using p(2) by (auto simp: path_image_def)

moreover have pathstart (cnj ◦ p) = pathstart (cnj ◦ γ)
using p(3) by (simp add: pathstart_compose)

moreover have pathfinish (cnj ◦ p) = pathfinish (cnj ◦ γ)
using p(4) by (simp add: pathfinish_compose)

moreover have cmod ((cnj ◦ γ) t − (cnj ◦ p) t) < e
if t: t ∈ {0 ..1} for t

proof −
have (cnj ◦ γ) t − (cnj ◦ p) t = cnj (γ t − p t)

by simp
also have norm . . . = norm (γ t − p t)

by (subst complex_mod_cnj) auto
also have . . . < e

using p(5)[OF t] by simp
finally show ?thesis .

qed
moreover have contour_integral (cnj ◦ p) (λw. 1 / (w − cnj z)) =

cnj (complex_of_real (2 ∗ pi) ∗ i ∗ winding_number γ z) (is ?L=?R)
proof −

have ?L = contour_integral (cnj ◦ p) (cnj ◦ (λw. 1 / (cnj w − z)))
by (simp add: o_def)

also have . . . = cnj (contour_integral p (λx. 1 / (x − z)))
using p(1) by (subst contour_integral_cnj) (auto simp: o_def)

also have . . . = ?R
using p_cont by simp

finally show ?thesis .
qed

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 97

ultimately show ?thesis
by (intro exI [of _ cnj ◦ p]) (auto simp: winding_number_prop_def)

qed
show path (cnj ◦ γ)

by (intro path_continuous_image continuous_intros) (use assms in auto)
show cnj z /∈ path_image (cnj ◦ γ)

using ‹z /∈ path_image γ› unfolding path_image_def by auto
qed

A combined theorem deducing several things piecewise.
lemma winding_number_join_pos_combined:

[[valid_path γ1 ; z /∈ path_image γ1 ; 0 < Re(winding_number γ1 z);
valid_path γ2 ; z /∈ path_image γ2 ; 0 < Re(winding_number γ2 z); pathfinish

γ1 = pathstart γ2]]
=⇒ valid_path(γ1 +++ γ2) ∧ z /∈ path_image(γ1 +++ γ2) ∧ 0 <

Re(winding_number(γ1 +++ γ2) z)
by (simp add: valid_path_join path_image_join winding_number_join valid_path_imp_path)

3.1.1 Useful sufficient conditions for the winding number to be
positive

lemma Re_winding_number :
[[valid_path γ; z /∈ path_image γ]]
=⇒ Re(winding_number γ z) = Im(contour_integral γ (λw. 1/(w − z))) /

(2∗pi)
by (simp add: winding_number_valid_path field_simps Re_divide power2_eq_square)

lemma winding_number_pos_le:
assumes γ: valid_path γ z /∈ path_image γ

and ge:
∧

x. [[0 < x; x < 1]] =⇒ 0 ≤ Im (vector_derivative γ (at x) ∗ cnj(γ
x − z))

shows 0 ≤ Re(winding_number γ z)
proof −

have ge0 : 0 ≤ Im (vector_derivative γ (at x) / (γ x − z)) if x: 0 < x x < 1
for x

using ge by (simp add: Complex.Im_divide algebra_simps x)
let ?vd = λx. 1 / (γ x − z) ∗ vector_derivative γ (at x)
let ?int = λz. contour_integral γ (λw. 1 / (w − z))
have 0 ≤ Im (?int z)
proof (rule has_integral_component_nonneg [of i, simplified])

show
∧

x. x ∈ cbox 0 1 =⇒ 0 ≤ Im (if 0 < x ∧ x < 1 then ?vd x else 0)
by (force simp: ge0)

have ((λa. 1 / (a − z)) has_contour_integral contour_integral γ (λw. 1 / (w
− z))) γ

using γ by (simp flip: add: contour_integrable_inversediff has_contour_integral_integral)
then have hi: (?vd has_integral ?int z) (cbox 0 1)

using has_contour_integral by auto
show ((λx. if 0 < x ∧ x < 1 then ?vd x else 0) has_integral ?int z) (cbox 0 1)

by (rule has_integral_spike_interior [OF hi]) simp

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 98

qed
then show ?thesis

by (simp add: Re_winding_number [OF γ] field_simps)
qed

lemma winding_number_pos_lt_lemma:
assumes γ: valid_path γ z /∈ path_image γ

and e: 0 < e
and ge:

∧
x. [[0 < x; x < 1]] =⇒ e ≤ Im (vector_derivative γ (at x) / (γ x

− z))
shows 0 < Re(winding_number γ z)

proof −
let ?vd = λx. 1 / (γ x − z) ∗ vector_derivative γ (at x)
let ?int = λz. contour_integral γ (λw. 1 / (w − z))
have e ≤ Im (contour_integral γ (λw. 1 / (w − z)))
proof (rule has_integral_component_le [of i λx. i∗e i∗e {0 ..1}, simplified])

have ((λa. 1 / (a − z)) has_contour_integral contour_integral γ (λw. 1 / (w
− z))) γ

thm has_integral_component_le [of i λx. i∗e i∗e {0 ..1}, simplified]
using γ by (simp add: contour_integrable_inversediff has_contour_integral_integral)
then have hi: (?vd has_integral ?int z) (cbox 0 1)

using has_contour_integral by auto
show ((λx. if 0 < x ∧ x < 1 then ?vd x else i ∗ e) has_integral ?int z) {0 ..1}

by (rule has_integral_spike_interior [OF hi, simplified box_real]) (use e in
simp)

show
∧

x. 0 ≤ x ∧ x ≤ 1 =⇒ e ≤ Im (if 0 < x ∧ x < 1 then ?vd x else i ∗ e)
by (simp add: ge)

qed (use has_integral_const_real [of _ 0 1] in auto)
with e show ?thesis

by (simp add: Re_winding_number [OF γ] field_simps)
qed

lemma winding_number_pos_lt:
assumes γ: valid_path γ z /∈ path_image γ

and e: 0 < e
and ge:

∧
x. [[0 < x; x < 1]] =⇒ e ≤ Im (vector_derivative γ (at x) ∗ cnj(γ

x − z))
shows 0 < Re (winding_number γ z)

proof −
have bm: bounded ((λw. w − z) ‘ (path_image γ))
using bounded_translation [of _ −z] γ by (simp add: bounded_valid_path_image)

then obtain B where B: B > 0 and Bno:
∧

x. x ∈ (λw. w − z) ‘ (path_image
γ) =⇒ norm x ≤ B

using bounded_pos [THEN iffD1 , OF bm] by blast
{ fix x::real assume x: 0 < x x < 1

then have B2 : cmod (γ x − z)^2 ≤ B^2 using Bno [of γ x − z]
by (simp add: path_image_def power2_eq_square mult_mono ′)

with x have γ x 6= z using γ
using path_image_def by fastforce

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 99

then have e / B2 ≤ e / (cmod (γ x − z))2
using B B2 e by (auto simp: divide_left_mono)

also have ... ≤ Im (vector_derivative γ (at x) ∗ cnj (γ x − z)) / (cmod (γ x
− z))2

using ge [OF x] by (auto simp: divide_right_mono)
finally have e / B2 ≤ Im (vector_derivative γ (at x) ∗ cnj (γ x − z)) / (cmod

(γ x − z))2 .
then have e / B2 ≤ Im (vector_derivative γ (at x) / (γ x − z))

by (simp add: complex_div_cnj [of _ γ x − z for x] del: complex_cnj_diff
times_complex.sel)

} note ∗ = this
show ?thesis
using e B by (simp add: ∗ winding_number_pos_lt_lemma [OF γ, of e/B^2])

qed

3.2 The winding number is an integer

Proof from the book Complex Analysis by Lars V. Ahlfors, Chapter 4, sec-
tion 2.1, Also on page 134 of Serge Lang’s book with the name title, etc.
lemma exp_fg:

fixes z::complex
assumes g: (g has_vector_derivative g ′) (at x within s)

and f : (f has_vector_derivative (g ′ / (g x − z))) (at x within s)
and z: g x 6= z

shows ((λx. exp(−f x) ∗ (g x − z)) has_vector_derivative 0) (at x within s)
proof −

have ∗: (exp ◦ (λx. (− f x)) has_vector_derivative − (g ′ / (g x − z)) ∗ exp (−
f x)) (at x within s)

using assms unfolding has_vector_derivative_def scaleR_conv_of_real
by (auto intro!: derivative_eq_intros)

show ?thesis
using z by (auto intro!: derivative_eq_intros ∗ [unfolded o_def] g)

qed

lemma winding_number_exp_integral:
fixes z::complex
assumes γ: γ piecewise_C1_differentiable_on {a..b}

and ab: a ≤ b
and z: z /∈ γ ‘ {a..b}

shows (λx. vector_derivative γ (at x) / (γ x − z)) integrable_on {a..b}
(is ?thesis1)
exp (− (integral {a..b} (λx. vector_derivative γ (at x) / (γ x − z)))) ∗ (γ

b − z) = γ a − z
(is ?thesis2)

proof −
let ?Dγ = λx. vector_derivative γ (at x)
have [simp]:

∧
x. a ≤ x =⇒ x ≤ b =⇒ γ x 6= z

using z by force
have con_g: continuous_on {a..b} γ

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 100

using γ by (simp add: piecewise_C1_differentiable_on_def)
obtain k where fink: finite k and g_C1_diff : γ C1_differentiable_on ({a..b}
− k)

using γ by (force simp: piecewise_C1_differentiable_on_def)
have ◦: open ({a<..<b} − k)

using ‹finite k› by (simp add: finite_imp_closed open_Diff)
moreover have {a<..<b} − k ⊆ {a..b} − k

by force
ultimately have g_diff_at:

∧
x. [[x /∈ k; x ∈ {a<..<b}]] =⇒ γ differentiable at

x
by (metis Diff_iff differentiable_on_subset C1_diff_imp_diff [OF g_C1_diff]

differentiable_on_def at_within_open)
{ fix w

assume w 6= z
have continuous_on (ball w (cmod (w − z))) (λw. 1 / (w − z))

by (auto simp: dist_norm intro!: continuous_intros)
moreover have

∧
x. cmod (w − x) < cmod (w − z) =⇒ ∃ f ′. ((λw. 1 / (w −

z)) has_field_derivative f ′) (at x)
by (auto simp: intro!: derivative_eq_intros)

ultimately have ∃ h. ∀ y. norm(y − w) < norm(w − z) −→ (h has_field_derivative
1/(y − z)) (at y)

using holomorphic_convex_primitive [of ball w (norm(w − z)) {} λw. 1/(w
− z)]

by (force simp: field_differentiable_def Ball_def dist_norm at_within_open_NO_MATCH
norm_minus_commute)

}
then obtain h where h:

∧
w y. w 6= z =⇒ norm(y − w) < norm(w − z) =⇒

(h w has_field_derivative 1/(y − z)) (at y)
by meson

have exy: ∃ y. ((λx. inverse (γ x − z) ∗ ?Dγ x) has_integral y) {a..b}
unfolding integrable_on_def [symmetric]

proof (rule contour_integral_local_primitive_any [OF piecewise_C1_imp_differentiable
[OF γ]])

show ∃ d h. 0 < d ∧
(∀ y. cmod (y − w) < d −→ (h has_field_derivative inverse (y −

z))(at y within − {z}))
if w ∈ − {z} for w

using that inverse_eq_divide has_field_derivative_at_within h
by (metis Compl_insert DiffD2 insertCI right_minus_eq zero_less_norm_iff)

qed simp
have vg_int: (λx. ?Dγ x / (γ x − z)) integrable_on {a..b}

unfolding box_real [symmetric] divide_inverse_commute
by (auto intro!: exy integrable_subinterval simp add: integrable_on_def ab)

with ab show ?thesis1
by (simp add: divide_inverse_commute integral_def integrable_on_def)

{ fix t
assume t: t ∈ {a..b}
have cball: continuous_on (ball (γ t) (dist (γ t) z)) (λx. inverse (x − z))

using z by (auto intro!: continuous_intros simp: dist_norm)

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 101

have icd:
∧

x. cmod (γ t − x) < cmod (γ t − z) =⇒ (λw. inverse (w − z))
field_differentiable at x

unfolding field_differentiable_def by (force simp: intro!: derivative_eq_intros)
obtain h where h:

∧
x. cmod (γ t − x) < cmod (γ t − z) =⇒

(h has_field_derivative inverse (x − z)) (at x within {y. cmod
(γ t − y) < cmod (γ t − z)})

using holomorphic_convex_primitive [where f = λw. inverse(w − z), OF
convex_ball finite.emptyI cball icd]

by simp (auto simp: ball_def dist_norm that)
have exp (− (integral {a..t} (λx. ?Dγ x / (γ x − z)))) ∗ (γ t − z) =γ a − z
proof (rule has_derivative_zero_unique_strong_interval [of {a,b} ∪ k a b])

show continuous_on {a..b} (λb. exp (− integral {a..b} (λx. ?Dγ x / (γ x −
z))) ∗ (γ b − z))

by (auto intro!: continuous_intros con_g indefinite_integral_continuous_1
[OF vg_int])

show ((λb. exp (− integral {a..b} (λx. ?Dγ x / (γ x − z))) ∗ (γ b − z))
has_derivative (λh. 0))

(at x within {a..b})
if x ∈ {a..b} − ({a, b} ∪ k) for x

proof −
have x: x /∈ k a < x x < b

using that by auto
then have x ∈ interior ({a..b} − k)

using open_subset_interior [OF ◦] by fastforce
then have con: isCont ?Dγ x
using g_C1_diff x by (auto simp: C1_differentiable_on_eq intro: contin-

uous_on_interior)
then have con_vd: continuous (at x within {a..b}) (λx. ?Dγ x)

by (rule continuous_at_imp_continuous_within)
have gdx: γ differentiable at x

using x by (simp add: g_diff_at)
then obtain d where d: (γ has_derivative (λx. x ∗R d)) (at x)

by (auto simp add: differentiable_iff_scaleR)
show ((λc. exp (− integral {a..c} (λx. ?Dγ x / (γ x − z))) ∗ (γ c − z))

has_derivative (λh. 0))
(at x within {a..b})

proof (rule exp_fg [unfolded has_vector_derivative_def , simplified])
show (γ has_derivative (λc. c ∗R d)) (at x within {a..b})

using d by (blast intro: has_derivative_at_withinI)
have ((λx. integral {a..x} (λx. ?Dγ x / (γ x − z))) has_vector_derivative

d / (γ x − z))
(at x within {a..b})

proof (rule has_vector_derivative_eq_rhs [OF integral_has_vector_derivative_continuous_at
[where S = {}, simplified]])

show continuous (at x within {a..b}) (λx. vector_derivative γ (at x) /
(γ x − z))

using continuous_at_imp_continuous_at_within differentiable_imp_continuous_within
gdx x

by (intro con_vd continuous_intros) (force+)

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 102

show vector_derivative γ (at x) / (γ x − z) = d / (γ x − z)
using d vector_derivative_at
by (simp add: vector_derivative_at has_vector_derivative_def)

qed (use x vg_int in auto)
then show ((λx. integral {a..x} (λx. ?Dγ x / (γ x − z))) has_derivative

(λc. c ∗R (d / (γ x − z))))
(at x within {a..b})

by (auto simp: has_vector_derivative_def)
qed (use x in auto)

qed
qed (use fink t in auto)

}
with ab show ?thesis2

by (simp add: divide_inverse_commute integral_def)
qed

lemma winding_number_exp_2pi:
[[path p; z /∈ path_image p]]
=⇒ pathfinish p − z = exp (2 ∗ pi ∗ i ∗ winding_number p z) ∗ (pathstart p

− z)
using winding_number [of p z 1] unfolding valid_path_def path_image_def path-
start_def pathfinish_def winding_number_prop_def

by (force dest: winding_number_exp_integral(2) [of _ 0 1 z] simp: field_simps
contour_integral_integral exp_minus)

lemma integer_winding_number_eq:
assumes γ: path γ and z: z /∈ path_image γ
shows winding_number γ z ∈ � ←→ pathfinish γ = pathstart γ

proof −
obtain p where p: valid_path p z /∈ path_image p

pathstart p = pathstart γ pathfinish p = pathfinish γ
and eq: contour_integral p (λw. 1 / (w − z)) = complex_of_real (2 ∗

pi) ∗ i ∗ winding_number γ z
using winding_number [OF assms, of 1] unfolding winding_number_prop_def

by auto
then have wneq: winding_number γ z = winding_number p z

using eq winding_number_valid_path by force
have iff : (winding_number γ z ∈ �) ←→ (exp (contour_integral p (λw. 1 / (w
− z))) = 1)

using eq by (simp add: exp_eq_1 complex_is_Int_iff)
have γ 0 6= z

by (metis pathstart_def pathstart_in_path_image z)
then have exp (contour_integral p (λw. 1 / (w − z))) = (γ 1 − z) / (γ 0 − z)

using p winding_number_exp_integral(2) [of p 0 1 z]
by (simp add: valid_path_def path_defs contour_integral_integral exp_minus

field_split_simps)
then have winding_number p z ∈ � ←→ pathfinish p = pathstart p

using p wneq iff by (auto simp: path_defs)
then show ?thesis using p eq

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 103

by (auto simp: winding_number_valid_path)
qed

theorem integer_winding_number :
[[path γ; pathfinish γ = pathstart γ; z /∈ path_image γ]] =⇒ winding_number γ

z ∈ �
by (metis integer_winding_number_eq)

If the winding number’s magnitude is at least one, then the path must
contain points in every direction.*) We can thus bound the winding number
of a path that doesn’t intersect a given ray.
lemma winding_number_pos_meets:

fixes z::complex
assumes γ: valid_path γ and z: z /∈ path_image γ and 1 : Re (winding_number
γ z) ≥ 1

and w: w 6= z
shows ∃ a::real. 0 < a ∧ z + of_real a ∗ (w − z) ∈ path_image γ

proof −
have [simp]:

∧
x. 0 ≤ x =⇒ x ≤ 1 =⇒ γ x 6= z

using z by (auto simp: path_image_def)
have [simp]: z /∈ γ ‘ {0 ..1}

using path_image_def z by auto
have gpd: γ piecewise_C1_differentiable_on {0 ..1}

using γ valid_path_def by blast
define r where r = (w − z) / (γ 0 − z)
have [simp]: r 6= 0

using w z by (auto simp: r_def)
have cont: continuous_on {0 ..1}

(λx. Im (integral {0 ..x} (λx. vector_derivative γ (at x) / (γ x − z))))
by (intro continuous_intros indefinite_integral_continuous_1 winding_number_exp_integral

[OF gpd]; simp)
have Arg2pi r ≤ 2∗pi

by (simp add: Arg2pi less_eq_real_def)
also have . . . ≤ Im (integral {0 ..1} (λx. vector_derivative γ (at x) / (γ x −

z)))
using 1
by (simp add: winding_number_valid_path [OF γ z] contour_integral_integral

Complex.Re_divide field_simps power2_eq_square)
finally have Arg2pi r ≤ Im (integral {0 ..1} (λx. vector_derivative γ (at x) /

(γ x − z))) .
then have ∃ t. t ∈ {0 ..1} ∧ Im(integral {0 ..t} (λx. vector_derivative γ (at x)/(γ

x − z))) = Arg2pi r
by (simp add: Arg2pi_ge_0 cont IVT ′)

then obtain t where t: t ∈ {0 ..1}
and eqArg: Im (integral {0 ..t} (λx. vector_derivative γ (at x)/(γ x

− z))) = Arg2pi r
by blast

define i where i = integral {0 ..t} (λx. vector_derivative γ (at x) / (γ x − z))
have gpdt: γ piecewise_C1_differentiable_on {0 ..t}

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 104

by (metis atLeastAtMost_iff atLeastatMost_subset_iff order_refl piecewise_C1_differentiable_on_subset
gpd t)

have exp (− i) ∗ (γ t − z) = γ 0 − z
unfolding i_def

proof (rule winding_number_exp_integral [OF gpdt])
show z /∈ γ ‘ {0 ..t}

using t z unfolding path_image_def by force
qed (use t in auto)
then have ∗: γ t − z = exp i ∗ (γ 0 − z)

by (simp add: exp_minus field_simps)
then have (w − z) = r ∗ (γ 0 − z)

by (simp add: r_def)
moreover have z + exp (Re i) ∗ (exp (i ∗ Im i) ∗ (γ 0 − z)) = γ t

using ∗ by (simp add: exp_eq_polar field_simps)
moreover have Arg2pi r = Im i

using eqArg by (simp add: i_def)
ultimately have z + complex_of_real (exp (Re i)) ∗ (w − z) / complex_of_real

(cmod r) = γ t
using Complex_Transcendental.Arg2pi_eq [of r] ‹r 6= 0 ›
by (metis mult.left_commute nonzero_mult_div_cancel_left norm_eq_zero

of_real_0 of_real_eq_iff times_divide_eq_left)
with t show ?thesis

by (rule_tac x=exp(Re i) / norm r in exI) (auto simp: path_image_def)
qed

lemma winding_number_big_meets:
fixes z::complex
assumes γ: valid_path γ and z: z /∈ path_image γ and |Re (winding_number

γ z)| ≥ 1
and w: w 6= z

shows ∃ a::real. 0 < a ∧ z + of_real a ∗ (w − z) ∈ path_image γ
proof −

{ assume Re (winding_number γ z) ≤ − 1
then have Re (winding_number (reversepath γ) z) ≥ 1

by (simp add: γ valid_path_imp_path winding_number_reversepath z)
moreover have valid_path (reversepath γ)

using γ valid_path_imp_reverse by auto
moreover have z /∈ path_image (reversepath γ)

by (simp add: z)
ultimately have ∃ a::real. 0 < a ∧ z + of_real a ∗ (w − z) ∈ path_image

(reversepath γ)
using winding_number_pos_meets w by blast

then have ?thesis
by simp

}
then show ?thesis

using assms
by (simp add: abs_if winding_number_pos_meets split: if_split_asm)

qed

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 105

lemma winding_number_less_1 :
fixes z::complex
shows
[[valid_path γ; z /∈ path_image γ; w 6= z;∧

a::real. 0 < a =⇒ z + of_real a ∗ (w − z) /∈ path_image γ]]
=⇒ Re(winding_number γ z) < 1
by (auto simp: not_less dest: winding_number_big_meets)

One way of proving that WN=1 for a loop.
lemma winding_number_eq_1 :

fixes z::complex
assumes γ: valid_path γ and z: z /∈ path_image γ and loop: pathfinish γ =

pathstart γ
and 0 : 0 < Re(winding_number γ z) and 2 : Re(winding_number γ z) < 2

shows winding_number γ z = 1
proof −

have winding_number γ z ∈ Ints
by (simp add: γ integer_winding_number loop valid_path_imp_path z)

then show ?thesis
using 0 2 by (auto simp: Ints_def)

qed

3.3 Continuity of winding number and invariance on con-
nected sets

theorem continuous_at_winding_number :
fixes z::complex
assumes γ: path γ and z: z /∈ path_image γ
shows continuous (at z) (winding_number γ)

proof −
obtain e where e>0 and cbg: cball z e ⊆ − path_image γ

using open_contains_cball [of − path_image γ] z
by (force simp: closed_def [symmetric] closed_path_image [OF γ])

then have ppag: path_image γ ⊆ − cball z (e/2)
by (force simp: cball_def dist_norm)

have oc: open (− cball z (e/2))
by (simp add: closed_def [symmetric])

obtain d where d>0 and pi_eq:∧
h1 h2 . [[valid_path h1 ; valid_path h2 ;

(∀ t∈{0 ..1}. cmod (h1 t − γ t) < d ∧ cmod (h2 t − γ t) < d);
pathstart h2 = pathstart h1 ; pathfinish h2 = pathfinish h1]]
=⇒

path_image h1 ⊆ − cball z (e/2) ∧
path_image h2 ⊆ − cball z (e/2) ∧
(∀ f . f holomorphic_on − cball z (e/2) −→ contour_integral h2 f =

contour_integral h1 f)
using contour_integral_nearby_ends [OF oc γ ppag] by metis

obtain p where valid_path p z /∈ path_image p

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 106

and p: pathstart p = pathstart γ pathfinish p = pathfinish γ
and pg:

∧
t. t∈{0 ..1} =⇒ cmod (γ t − p t) < min d e/2

and pi: contour_integral p (λx. 1 / (x − z)) = complex_of_real (2 ∗
pi) ∗ i ∗ winding_number γ z

using winding_number [OF γ z, of min d e/2] ‹d>0 › ‹e>0 › by (auto simp:
winding_number_prop_def)

{ fix w
assume d2 : cmod (w − z) < d/2 and e2 : cmod (w − z) < e/2
have wnotp: w /∈ path_image p
proof (clarsimp simp add: path_image_def)

show False if w: w = p x and 0 ≤ x x ≤ 1 for x
proof −

have cmod (γ x − p x) < min d e/2
using pg that by auto

then have cmod (z − γ x) < e
by (metis e2 less_divide_eq_numeral1 (1) min_less_iff_conj norm_minus_commute

norm_triangle_half_l w)
then show ?thesis

using cbg that by (auto simp add: path_image_def cball_def dist_norm
less_eq_real_def)

qed
qed
have wnotg: w /∈ path_image γ

using cbg e2 ‹e>0 › by (force simp: dist_norm norm_minus_commute)
{ fix k::real

assume k: k>0
then obtain q where q: valid_path q w /∈ path_image q

pathstart q = pathstart γ ∧ pathfinish q = pathfinish γ
and qg:

∧
t. t ∈ {0 ..1} =⇒ cmod (γ t − q t) < min k (min d e)

/ 2
and qi: contour_integral q (λu. 1 / (u − w)) = complex_of_real

(2 ∗ pi) ∗ i ∗ winding_number γ w
using winding_number [OF γ wnotg, of min k (min d e) / 2] ‹d>0 › ‹e>0 ›

k
by (force simp: min_divide_distrib_right winding_number_prop_def)

moreover have
∧

t. t ∈ {0 ..1} =⇒ cmod (q t − γ t) < d ∧ cmod (p t − γ
t) < d

using pg qg ‹0 < d› by (fastforce simp add: norm_minus_commute)
moreover have (λu. 1 / (u−w)) holomorphic_on − cball z (e/2)

using e2 by (auto simp: dist_norm norm_minus_commute intro!: holo-
morphic_intros)

ultimately have contour_integral p (λu. 1 / (u − w)) = contour_integral q
(λu. 1 / (u − w))

by (metis p ‹valid_path p› pi_eq)
then have contour_integral p (λx. 1 / (x − w)) = complex_of_real (2 ∗ pi)

∗ i ∗ winding_number γ w
by (simp add: pi qi)

} note pip = this
have path p

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 107

by (simp add: ‹valid_path p› valid_path_imp_path)
moreover have

∧
e. e > 0 =⇒ winding_number_prop p w e p (winding_number

γ w)
by (simp add: ‹valid_path p› pip winding_number_prop_def wnotp)

ultimately have winding_number p w = winding_number γ w
using winding_number_unique wnotp by blast

} note wnwn = this
obtain pe where pe>0 and cbp: cball z (3 / 4 ∗ pe) ⊆ − path_image p
using ‹valid_path p› ‹z /∈ path_image p› open_contains_cball [of − path_image

p]
by (force simp: closed_def [symmetric] closed_path_image [OF valid_path_imp_path])

obtain L
where L>0

and L:
∧

f B. [[f holomorphic_on − cball z (3 / 4 ∗ pe);
∀ z ∈ − cball z (3 / 4 ∗ pe). cmod (f z) ≤ B]] =⇒
cmod (contour_integral p f) ≤ L ∗ B

using contour_integral_bound_exists [of − cball z (3/4∗pe) p] cbp ‹valid_path
p› by blast

{ fix e::real and w::complex
assume e: 0 < e and w: cmod (w − z) < pe/4 cmod (w − z) < e ∗ pe2 / (8

∗ L)
then have [simp]: w /∈ path_image p

using cbp p(2) ‹0 < pe›
by (force simp: dist_norm norm_minus_commute path_image_def cball_def)
have [simp]: contour_integral p (λx. 1/(x − w)) − contour_integral p (λx.

1/(x − z)) =
contour_integral p (λx. 1/(x − w) − 1/(x − z))

by (simp add: ‹valid_path p› ‹z /∈ path_image p› contour_integrable_inversediff
contour_integral_diff)

{ fix x
assume pe: 3/4 ∗ pe < cmod (z − x)
have cmod (w − x) < pe/4 + cmod (z − x)

by (meson add_less_cancel_right norm_diff_triangle_le order_refl or-
der_trans_rules(21) w(1))

then have wx: cmod (w − x) < 4/3 ∗ cmod (z − x) using pe by simp
have cmod (z − x) ≤ cmod (z − w) + cmod (w − x)

using norm_diff_triangle_le by blast
also have . . . < pe/4 + cmod (w − x)

using w by (simp add: norm_minus_commute)
finally have pe/2 < cmod (w − x)

using pe by auto
then have pe_less: (pe/2)^2 < cmod (w − x) ^ 2

by (simp add: ‹0 < pe› less_eq_real_def power_strict_mono)
then have pe2 : pe^2 < 4 ∗ cmod (w − x) ^ 2

by (simp add: power_divide)
have 8 ∗ L ∗ cmod (w − z) < e ∗ pe2

using w ‹L>0 › by (simp add: field_simps)
also have . . . < e ∗ 4 ∗ cmod (w − x) ∗ cmod (w − x)

using pe2 ‹e>0 › by (simp add: power2_eq_square)

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 108

also have . . . < e ∗ 4 ∗ cmod (w − x) ∗ (4/3 ∗ cmod (z − x))
using ‹0 < pe› pe_less e less_eq_real_def wx by fastforce

finally have L ∗ cmod (w − z) < 2/3 ∗ e ∗ cmod (w − x) ∗ cmod (z − x)
by simp

also have . . . ≤ e ∗ cmod (w − x) ∗ cmod (z − x)
using e by simp

finally have Lwz: L ∗ cmod (w − z) < e ∗ cmod (w − x) ∗ cmod (z − x) .
have L ∗ cmod (1 / (x − w) − 1 / (x − z)) ≤ e
proof (cases x=z ∨ x=w)

case True
with pe ‹pe>0 › w ‹L>0 ›
show ?thesis

by (force simp: norm_minus_commute)
next

case False
with wx w(2) ‹L>0 › pe pe2 Lwz
show ?thesis

by (auto simp: divide_simps mult_less_0_iff norm_minus_commute
norm_divide norm_mult power2_eq_square)

qed
} note L_cmod_le = this
let ?f = (λx. 1 / (x − w) − 1 / (x − z))
have cmod (contour_integral p ?f) ≤ L ∗ (e ∗ pe2 / L / 4 ∗ (inverse (pe /

2))2)
proof (rule L)

show ?f holomorphic_on − cball z (3 / 4 ∗ pe)
using ‹pe>0 › w

by (force simp: dist_norm norm_minus_commute intro!: holomorphic_intros)
show ∀ u ∈− cball z (3 / 4 ∗ pe). cmod (?f u) ≤ e ∗ pe2 / L / 4 ∗ (inverse

(pe / 2))2
using ‹pe>0 › w ‹L>0 ›

by (auto simp: cball_def dist_norm field_simps L_cmod_le simp del:
less_divide_eq_numeral1 le_divide_eq_numeral1)

qed
also have . . . < 2∗e

using ‹L>0 › e by (force simp: field_simps)
finally have cmod (winding_number p w − winding_number p z) < e

using pi_ge_two e
by (force simp: winding_number_valid_path ‹valid_path p› ‹z /∈ path_image

p› field_simps norm_divide norm_mult intro: less_le_trans)
} note cmod_wn_diff = this
have isCont (winding_number p) z
proof (clarsimp simp add: continuous_at_eps_delta)

fix e::real assume e>0
show ∃ d>0 . ∀ x ′. dist x ′ z < d −→ dist (winding_number p x ′) (winding_number

p z) < e
using ‹pe>0 › ‹L>0 › ‹e>0 ›
by (rule_tac x=min (pe/4) (e/2∗pe^2/L/4) in exI) (simp add: dist_norm

cmod_wn_diff)

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 109

qed
then show ?thesis

apply (rule continuous_transform_within [where δ = min d e/2])
apply (auto simp: ‹d>0 › ‹e>0 › dist_norm wnwn)
done

qed

corollary continuous_on_winding_number :
path γ =⇒ continuous_on (− path_image γ) (λw. winding_number γ w)

by (simp add: continuous_at_imp_continuous_on continuous_at_winding_number)

3.4 The winding number is constant on a connected region
lemma winding_number_constant:

assumes γ: path γ and loop: pathfinish γ = pathstart γ and cs: connected S
and sg: S ∩ path_image γ = {}

shows winding_number γ constant_on S
proof −

have ∗: 1 ≤ cmod (winding_number γ y − winding_number γ z)
if ne: winding_number γ y 6= winding_number γ z and y ∈ S z ∈ S for y z

proof −
have winding_number γ y ∈ � winding_number γ z ∈ �

using that integer_winding_number [OF γ loop] sg ‹y ∈ S› by auto
with ne show ?thesis

by (auto simp: Ints_def simp flip: of_int_diff)
qed
have cont: continuous_on S (λw. winding_number γ w)

using continuous_on_winding_number [OF γ] sg
by (meson continuous_on_subset disjoint_eq_subset_Compl)

show ?thesis
using ∗ zero_less_one
by (blast intro: continuous_discrete_range_constant [OF cs cont])

qed

lemma winding_number_eq:
[[path γ; pathfinish γ = pathstart γ; w ∈ S ; z ∈ S ; connected S ; S ∩ path_image

γ = {}]]
=⇒ winding_number γ w = winding_number γ z

using winding_number_constant by (metis constant_on_def)

lemma open_winding_number_levelsets:
assumes γ: path γ and loop: pathfinish γ = pathstart γ
shows open {z. z /∈ path_image γ ∧ winding_number γ z = k}

proof (clarsimp simp: open_dist)
fix z assume z: z /∈ path_image γ and k: k = winding_number γ z
have open (− path_image γ)

by (simp add: closed_path_image γ open_Compl)
then obtain e where e>0 ball z e ⊆ − path_image γ

using open_contains_ball [of − path_image γ] z by blast

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 110

then show ∃ e>0 . ∀ y. dist y z < e −→ y /∈ path_image γ ∧ winding_number
γ y = winding_number γ z

using ‹e>0 › by (force simp: norm_minus_commute dist_norm intro: wind-
ing_number_eq [OF assms, where S = ball z e])
qed

3.5 Winding number is zero "outside" a curve
proposition winding_number_zero_in_outside:

assumes γ: path γ and loop: pathfinish γ = pathstart γ and z: z ∈ outside
(path_image γ)

shows winding_number γ z = 0
proof −

obtain B::real where 0 < B and B: path_image γ ⊆ ball 0 B
using bounded_subset_ballD [OF bounded_path_image [OF γ]] by auto

obtain w::complex where w: w /∈ ball 0 (B + 1)
by (metis abs_of_nonneg le_less less_irrefl mem_ball_0 norm_of_real)

have − ball 0 (B + 1) ⊆ outside (path_image γ)
using B subset_ball by (intro outside_subset_convex) auto

then have wout: w ∈ outside (path_image γ)
using w by blast

moreover have winding_number γ constant_on outside (path_image γ)
using winding_number_constant [OF γ loop, of outside(path_image γ)] con-

nected_outside
by (metis DIM_complex bounded_path_image dual_order .refl γ outside_no_overlap)

ultimately have winding_number γ z = winding_number γ w
by (metis (no_types, opaque_lifting) constant_on_def z)

also have . . . = 0
proof −

have wnot: w /∈ path_image γ using wout by (simp add: outside_def)
{ fix e::real assume 0<e
obtain p where p: polynomial_function p pathstart p = pathstart γ pathfinish

p = pathfinish γ
and pg1 : (

∧
t. [[0 ≤ t; t ≤ 1]] =⇒ cmod (p t − γ t) < 1)

and pge: (
∧

t. [[0 ≤ t; t ≤ 1]] =⇒ cmod (p t − γ t) < e)
using path_approx_polynomial_function [OF γ, of min 1 e] ‹e>0 ›
by (metis atLeastAtMost_iff min_less_iff_conj zero_less_one)

have ∃ p. valid_path p ∧ w /∈ path_image p ∧
pathstart p = pathstart γ ∧ pathfinish p = pathfinish γ ∧
(∀ t∈{0 ..1}. cmod (γ t − p t) < e) ∧ contour_integral p (λwa. 1

/ (wa − w)) = 0
proof (intro exI conjI)

have
∧

x. [[0 ≤ x; x ≤ 1]] =⇒ cmod (p x) < B + 1
using B unfolding image_subset_iff path_image_def

by (meson add_strict_mono atLeastAtMost_iff le_less_trans mem_ball_0
norm_triangle_sub pg1)

then have pip: path_image p ⊆ ball 0 (B + 1)
by (auto simp add: path_image_def dist_norm ball_def)

then show w /∈ path_image p using w by blast

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 111

show vap: valid_path p
by (simp add: p(1) valid_path_polynomial_function)

show ∀ t∈{0 ..1}. cmod (γ t − p t) < e
by (metis atLeastAtMost_iff norm_minus_commute pge)

show contour_integral p (λwa. 1 / (wa − w)) = 0
proof (rule contour_integral_unique [OF Cauchy_theorem_convex_simple

[OF _ convex_ball [of 0 B+1]]])
have

∧
z. cmod z < B + 1 =⇒ z 6= w

using mem_ball_0 w by blast
then show (λz. 1 / (z − w)) holomorphic_on ball 0 (B + 1)

by (intro holomorphic_intros; simp add: dist_norm)
qed (use p vap pip loop in auto)

qed (use p in auto)
}
then show ?thesis
by (auto intro: winding_number_unique [OF γ] simp add: winding_number_prop_def

wnot)
qed
finally show ?thesis .

qed

corollary winding_number_zero_const: a 6= z =⇒ winding_number (λt. a) z =
0

by (rule winding_number_zero_in_outside)
(auto simp: pathfinish_def pathstart_def path_polynomial_function)

corollary winding_number_zero_outside:
[[path γ; convex s; pathfinish γ = pathstart γ; z /∈ s; path_image γ ⊆ s]] =⇒

winding_number γ z = 0
by (meson convex_in_outside outside_mono subsetCE winding_number_zero_in_outside)

lemma winding_number_zero_at_infinity:
assumes γ: path γ and loop: pathfinish γ = pathstart γ

shows ∃B. ∀ z. B ≤ norm z −→ winding_number γ z = 0
proof −

obtain B::real where 0 < B and B: path_image γ ⊆ ball 0 B
using bounded_subset_ballD [OF bounded_path_image [OF γ]] by auto

have winding_number γ z = 0 if B + 1 ≤ cmod z for z
proof (rule winding_number_zero_outside [OF γ convex_cball loop])

show z /∈ cball 0 B
using that by auto

show path_image γ ⊆ cball 0 B
using B order .trans by blast

qed
then show ?thesis

by metis
qed

lemma bounded_winding_number_nz:

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 112

assumes path g pathfinish g = pathstart g
shows bounded {z. winding_number g z 6= 0}

proof −
obtain B where

∧
x. norm x ≥ B =⇒ winding_number g x = 0

using winding_number_zero_at_infinity[OF assms] by auto
thus ?thesis

unfolding bounded_iff by (intro exI [of _ B + 1]) force
qed

lemma winding_number_zero_point:
[[path γ; convex S ; pathfinish γ = pathstart γ; open S ; path_image γ ⊆ S]]
=⇒ ∃ z. z ∈ S ∧ winding_number γ z = 0

using outside_compact_in_open [of path_image γ S] path_image_nonempty
winding_number_zero_in_outside

by (fastforce simp add: compact_path_image)

If a path winds round a set, it winds rounds its inside.
lemma winding_number_around_inside:

assumes γ: path γ and loop: pathfinish γ = pathstart γ
and cls: closed S and cos: connected S and S_disj: S ∩ path_image γ = {}
and z: z ∈ S and wn_nz: winding_number γ z 6= 0 and w: w ∈ S ∪ inside

S
shows winding_number γ w = winding_number γ z

proof −
have ssb: S ⊆ inside(path_image γ)
proof

fix x :: complex
assume x ∈ S
hence x /∈ path_image γ

by (meson disjoint_iff_not_equal S_disj)
thus x ∈ inside (path_image γ)

by (metis Compl_iff S_disj UnE γ ‹x ∈ S› cos inside_outside loop wind-
ing_number_eq winding_number_zero_in_outside wn_nz z)

qed
show ?thesis
proof (rule winding_number_eq [OF γ loop w])

show z ∈ S ∪ inside S
using z by blast

show connected (S ∪ inside S)
by (simp add: cls connected_with_inside cos)

show (S ∪ inside S) ∩ path_image γ = {}
unfolding disjoint_iff Un_iff
by (metis ComplD UnI1 γ cls compact_path_image connected_path_image

inside_Un_outside inside_inside_compact_connected ssb subsetD)
qed

qed

Bounding a WN by 1/2 for a path and point in opposite halfspaces.
lemma winding_number_subpath_continuous:

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 113

assumes γ: valid_path γ and z: z /∈ path_image γ
shows continuous_on {0 ..1} (λx. winding_number(subpath 0 x γ) z)

proof (rule continuous_on_eq)
let ?f = λx. integral {0 ..x} (λt. vector_derivative γ (at t) / (γ t − z))
show continuous_on {0 ..1} (λx. 1 / (2 ∗ pi ∗ i) ∗ ?f x)
proof (intro indefinite_integral_continuous_1 winding_number_exp_integral

continuous_intros)
show γ piecewise_C1_differentiable_on {0 ..1}

using γ valid_path_def by blast
qed (use path_image_def z in auto)
show 1 / (2 ∗ pi ∗ i) ∗ ?f x = winding_number (subpath 0 x γ) z

if x: x ∈ {0 ..1} for x
proof −

have 1 / (2∗pi∗i) ∗ ?f x = 1 / (2∗pi∗i) ∗ contour_integral (subpath 0 x γ)
(λw. 1/(w − z))

using assms x
by (simp add: contour_integral_subcontour_integral [OF contour_integrable_inversediff])
also have . . . = winding_number (subpath 0 x γ) z
proof (subst winding_number_valid_path)

show z /∈ path_image (subpath 0 x γ)
using assms x atLeastAtMost_iff path_image_subpath_subset by force

qed (use assms x valid_path_subpath in ‹force+›)
finally show ?thesis .

qed
qed

lemma winding_number_ivt_pos:
assumes γ: valid_path γ and z: z /∈ path_image γ and 0 ≤ w w ≤ Re(winding_number

γ z)
shows ∃ t ∈ {0 ..1}. Re(winding_number(subpath 0 t γ) z) = w

proof −
have continuous_on {0 ..1} (λx. winding_number (subpath 0 x γ) z)

using γ winding_number_subpath_continuous z by blast
moreover have Re (winding_number (subpath 0 0 γ) z) ≤ w w ≤ Re (winding_number

(subpath 0 1 γ) z)
using assms by (auto simp: path_image_def image_def)

ultimately show ?thesis
using ivt_increasing_component_on_1 [of 0 1 , where ?k = 1] by force

qed

lemma winding_number_ivt_neg:
assumes γ: valid_path γ and z: z /∈ path_image γ and Re(winding_number

γ z) ≤ w w ≤ 0
shows ∃ t ∈ {0 ..1}. Re(winding_number(subpath 0 t γ) z) = w

proof −
have continuous_on {0 ..1} (λx. winding_number (subpath 0 x γ) z)

using γ winding_number_subpath_continuous z by blast
moreover have Re (winding_number (subpath 0 0 γ) z) ≥ w w ≥ Re (winding_number

(subpath 0 1 γ) z)

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 114

using assms by (auto simp: path_image_def image_def)
ultimately show ?thesis

using ivt_decreasing_component_on_1 [of 0 1 , where ?k = 1] by force
qed

lemma winding_number_ivt_abs:
assumes γ: valid_path γ and z: z /∈ path_image γ and 0 ≤ w w ≤ |Re(winding_number

γ z)|
shows ∃ t ∈ {0 ..1}. |Re (winding_number (subpath 0 t γ) z)| = w

using assms winding_number_ivt_pos [of γ z w] winding_number_ivt_neg [of
γ z −w]

by force

lemma winding_number_lt_half_lemma:
assumes γ: valid_path γ and z: z /∈ path_image γ and az: a · z ≤ b and pag:

path_image γ ⊆ {w. a · w > b}
shows Re(winding_number γ z) < 1/2

proof −
{ assume Re(winding_number γ z) ≥ 1/2

then obtain t::real where t: 0 ≤ t t ≤ 1 and sub12 : Re (winding_number
(subpath 0 t γ) z) = 1/2

using winding_number_ivt_pos [OF γ z, of 1/2] by auto
have gt: γ t − z = − (of_real (exp (− (2 ∗ pi ∗ Im (winding_number (subpath

0 t γ) z)))) ∗ (γ 0 − z))
using winding_number_exp_2pi [of subpath 0 t γ z]
apply (simp add: t γ valid_path_imp_path)
using closed_segment_eq_real_ivl path_image_def t z by (fastforce simp:

path_image_subpath Euler sub12)
have b < a · γ 0
proof −

have γ 0 ∈ {c. b < a · c}
by (metis (no_types) pag atLeastAtMost_iff image_subset_iff order_refl

path_image_def zero_le_one)
thus ?thesis

by blast
qed
moreover have b < a · γ t
by (metis atLeastAtMost_iff image_eqI mem_Collect_eq pag path_image_def

subset_iff t)
ultimately have 0 < a · (γ 0 − z) 0 < a · (γ t − z) using az

by (simp add: inner_diff_right)+
then have False

by (simp add: gt inner_mult_right mult_less_0_iff)
}
then show ?thesis by force

qed

lemma winding_number_lt_half :
assumes valid_path γ a · z ≤ b path_image γ ⊆ {w. a · w > b}

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 115

shows |Re (winding_number γ z)| < 1/2
proof −

have z /∈ path_image γ using assms by auto
with assms have Re (winding_number γ z) < 0 =⇒ − Re (winding_number γ

z) < 1/2
by (metis complex_inner_1_right winding_number_lt_half_lemma [OF valid_path_imp_reverse,

of γ z a b]
winding_number_reversepath valid_path_imp_path inner_minus_left path_image_reversepath)

with assms show ?thesis
using ‹z /∈ path_image γ› winding_number_lt_half_lemma by fastforce

qed

lemma winding_number_le_half :
assumes γ: valid_path γ and z: z /∈ path_image γ

and anz: a 6= 0 and azb: a · z ≤ b and pag: path_image γ ⊆ {w. a · w ≥ b}
shows |Re (winding_number γ z)| ≤ 1/2

proof −
{ assume wnz_12 : |Re (winding_number γ z)| > 1/2

have isCont (winding_number γ) z
by (metis continuous_at_winding_number valid_path_imp_path γ z)

then obtain d where d>0 and d:
∧

x ′. dist x ′ z < d =⇒ dist (winding_number
γ x ′) (winding_number γ z) < |Re(winding_number γ z)| − 1/2

using continuous_at_eps_delta wnz_12 diff_gt_0_iff_gt by blast
define z ′ where z ′ = z − (d / (2 ∗ cmod a)) ∗R a
have a · z ∗ 6 ≤ d ∗ cmod a + b ∗ 6
by (metis ‹0 < d› add_increasing azb less_eq_real_def mult_nonneg_nonneg

mult_right_mono norm_ge_zero norm_numeral)
with anz have ∗: a · z ′ ≤ b − d / 3 ∗ cmod a

unfolding z ′_def inner_mult_right ′ divide_inverse
by (simp add: field_split_simps algebra_simps dot_square_norm power2_eq_square)

have cmod (winding_number γ z ′− winding_number γ z) < |Re (winding_number
γ z)| − 1/2

using d [of z ′] anz ‹d>0 › by (simp add: dist_norm z ′_def)
then have 1/2 < |Re (winding_number γ z)| − cmod (winding_number γ z ′

− winding_number γ z)
by simp

then have 1/2 < |Re (winding_number γ z)| − |Re (winding_number γ z ′)
− Re (winding_number γ z)|

using abs_Re_le_cmod [of winding_number γ z ′ − winding_number γ z]
by simp

then have wnz_12 ′: |Re (winding_number γ z ′)| > 1/2
by linarith

moreover have |Re (winding_number γ z ′)| < 1/2
proof (rule winding_number_lt_half [OF γ ∗])

show path_image γ ⊆ {w. b − d / 3 ∗ cmod a < a · w}
using azb ‹d>0 › pag by (auto simp: add_strict_increasing anz field_split_simps

dest!: subsetD)
qed
ultimately have False

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 116

by simp
}
then show ?thesis by force

qed

lemma winding_number_lt_half_linepath:
assumes z /∈ closed_segment a b shows |Re (winding_number (linepath a b) z)|
< 1/2
proof −

obtain u v where u · z ≤ v and uv:
∧

x. x ∈ closed_segment a b =⇒ inner u
x > v

using separating_hyperplane_closed_point assms closed_segment convex_closed_segment
less_eq_real_def by metis

moreover have path_image (linepath a b) ⊆ {w. v < u · w}
using in_segment(1) uv by auto

ultimately show ?thesis
using winding_number_lt_half by auto

qed

Positivity of WN for a linepath.
lemma winding_number_linepath_pos_lt:

assumes 0 < Im ((b − a) ∗ cnj (b − z))
shows 0 < Re(winding_number(linepath a b) z)

proof −
have z: z /∈ path_image (linepath a b)

using assms
by (simp add: closed_segment_def) (force simp: algebra_simps)

show ?thesis
by (intro winding_number_pos_lt [OF valid_path_linepath z assms]) (simp

add: linepath_def algebra_simps)
qed

lemma winding_number_linepath_neg_lt:
assumes 0 < Im ((a − b) ∗ cnj (a − z))

shows Re(winding_number(linepath a b) z) < 0
proof −

have z: z /∈ path_image (linepath a b)
using assms
by (simp add: closed_segment_def) (force simp: algebra_simps)

have Re(winding_number(linepath a b) z) =
−Re(winding_number(reversepath (linepath a b)) z)

by (subst winding_number_reversepath) (use z in auto)
also have . . . = − Re(winding_number(linepath b a) z)

by simp
finally have Re (winding_number (linepath a b) z)

= − Re (winding_number (linepath b a) z) .
moreover have 0 < Re (winding_number (linepath b a) z)

using winding_number_linepath_pos_lt[OF assms] .
ultimately show ?thesis by auto

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 117

qed

3.6 More winding number properties

including the fact that it’s +-1 inside a simple closed curve.
lemma winding_number_homotopic_paths:

assumes homotopic_paths (−{z}) g h
shows winding_number g z = winding_number h z

proof −
have path g path h using homotopic_paths_imp_path [OF assms] by auto
moreover have pag: z /∈ path_image g and pah: z /∈ path_image h

using homotopic_paths_imp_subset [OF assms] by auto
ultimately obtain d e where d > 0 e > 0

and d:
∧

p. [[path p; pathstart p = pathstart g; pathfinish p = pathfinish g;
∀ t∈{0 ..1}. norm (p t − g t) < d]]

=⇒ homotopic_paths (−{z}) g p
and e:

∧
q. [[path q; pathstart q = pathstart h; pathfinish q = pathfinish h;

∀ t∈{0 ..1}. norm (q t − h t) < e]]
=⇒ homotopic_paths (−{z}) h q

using homotopic_nearby_paths [of g −{z}] homotopic_nearby_paths [of h
−{z}] by force

obtain p where p:
valid_path p z /∈ path_image p
pathstart p = pathstart g pathfinish p = pathfinish g
and gp_less:∀ t∈{0 ..1}. cmod (g t − p t) < d
and pap: contour_integral p (λw. 1 / (w − z)) = complex_of_real (2 ∗ pi)

∗ i ∗ winding_number g z
using winding_number [OF ‹path g› pag ‹0 < d›] unfolding winding_number_prop_def

by blast
obtain q where q:

valid_path q z /∈ path_image q
pathstart q = pathstart h pathfinish q = pathfinish h
and hq_less: ∀ t∈{0 ..1}. cmod (h t − q t) < e
and paq: contour_integral q (λw. 1 / (w − z)) = complex_of_real (2 ∗ pi)

∗ i ∗ winding_number h z
using winding_number [OF ‹path h› pah ‹0 < e›] unfolding winding_number_prop_def

by blast
have homotopic_paths (− {z}) g p

by (simp add: d p valid_path_imp_path norm_minus_commute gp_less)
moreover have homotopic_paths (− {z}) h q

by (simp add: e q valid_path_imp_path norm_minus_commute hq_less)
ultimately have homotopic_paths (− {z}) p q

by (blast intro: homotopic_paths_trans homotopic_paths_sym assms)
then have contour_integral p (λw. 1/(w − z)) = contour_integral q (λw. 1/(w
− z))

by (rule Cauchy_theorem_homotopic_paths) (auto intro!: holomorphic_intros
simp: p q)

then show ?thesis
by (simp add: pap paq)

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 118

qed

lemma winding_number_homotopic_loops:
assumes homotopic_loops (−{z}) g h

shows winding_number g z = winding_number h z
proof −

have path g path h using homotopic_loops_imp_path [OF assms] by auto
moreover have pag: z /∈ path_image g and pah: z /∈ path_image h

using homotopic_loops_imp_subset [OF assms] by auto
moreover have gloop: pathfinish g = pathstart g and hloop: pathfinish h =

pathstart h
using homotopic_loops_imp_loop [OF assms] by auto

ultimately obtain d e where d > 0 e > 0
and d:

∧
p. [[path p; pathfinish p = pathstart p; ∀ t∈{0 ..1}. norm (p t − g t)

< d]]
=⇒ homotopic_loops (−{z}) g p

and e:
∧

q. [[path q; pathfinish q = pathstart q; ∀ t∈{0 ..1}. norm (q t − h t)
< e]]

=⇒ homotopic_loops (−{z}) h q
using homotopic_nearby_loops [of g −{z}] homotopic_nearby_loops [of h

−{z}] by force
obtain p where p:

valid_path p z /∈ path_image p
pathstart p = pathstart g pathfinish p = pathfinish g
and gp_less:∀ t∈{0 ..1}. cmod (g t − p t) < d
and pap: contour_integral p (λw. 1 / (w − z)) = complex_of_real (2 ∗ pi)

∗ i ∗ winding_number g z
using winding_number [OF ‹path g› pag ‹0 < d›] unfolding winding_number_prop_def

by blast
obtain q where q:

valid_path q z /∈ path_image q
pathstart q = pathstart h pathfinish q = pathfinish h
and hq_less: ∀ t∈{0 ..1}. cmod (h t − q t) < e
and paq: contour_integral q (λw. 1 / (w − z)) = complex_of_real (2 ∗ pi)

∗ i ∗ winding_number h z
using winding_number [OF ‹path h› pah ‹0 < e›] unfolding winding_number_prop_def

by blast
have gp: homotopic_loops (− {z}) g p
by (simp add: gloop d gp_less norm_minus_commute p valid_path_imp_path)

have hq: homotopic_loops (− {z}) h q
by (simp add: e hloop hq_less norm_minus_commute q valid_path_imp_path)

have contour_integral p (λw. 1/(w − z)) = contour_integral q (λw. 1/(w − z))
proof (rule Cauchy_theorem_homotopic_loops)

show homotopic_loops (− {z}) p q
by (blast intro: homotopic_loops_trans homotopic_loops_sym gp hq assms)

qed (auto intro!: holomorphic_intros simp: p q)
then show ?thesis

by (simp add: pap paq)
qed

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 119

lemma winding_number_paths_linear_eq:
[[path g; path h; pathstart h = pathstart g; pathfinish h = pathfinish g;∧

t. t ∈ {0 ..1} =⇒ z /∈ closed_segment (g t) (h t)]]
=⇒ winding_number h z = winding_number g z

by (blast intro: sym homotopic_paths_linear winding_number_homotopic_paths)

lemma winding_number_loops_linear_eq:
[[path g; path h; pathfinish g = pathstart g; pathfinish h = pathstart h;∧

t. t ∈ {0 ..1} =⇒ z /∈ closed_segment (g t) (h t)]]
=⇒ winding_number h z = winding_number g z

by (blast intro: sym homotopic_loops_linear winding_number_homotopic_loops)

lemma winding_number_nearby_paths_eq:
[[path g; path h; pathstart h = pathstart g; pathfinish h = pathfinish g;∧

t. t ∈ {0 ..1} =⇒ norm(h t − g t) < norm(g t − z)]]
=⇒ winding_number h z = winding_number g z

by (metis segment_bound(2) norm_minus_commute not_le winding_number_paths_linear_eq)

lemma winding_number_nearby_loops_eq:
[[path g; path h; pathfinish g = pathstart g; pathfinish h = pathstart h;∧

t. t ∈ {0 ..1} =⇒ norm(h t − g t) < norm(g t − z)]]
=⇒ winding_number h z = winding_number g z

by (metis segment_bound(2) norm_minus_commute not_le winding_number_loops_linear_eq)

lemma winding_number_subpath_combine:
assumes path g and notin: z /∈ path_image g and u ∈ {0 ..1} v ∈ {0 ..1} w ∈
{0 ..1}

shows winding_number (subpath u v g) z + winding_number (subpath v w g) z
=

winding_number (subpath u w g) z (is ?lhs = ?rhs)
proof −

have ?lhs = winding_number (subpath u v g +++ subpath v w g) z
using assms
by (metis (no_types, lifting) path_image_subpath_subset path_subpath pathfin-

ish_subpath pathstart_subpath subsetD winding_number_join)
also have ... = ?rhs

by (meson assms homotopic_join_subpaths subset_Compl_singleton wind-
ing_number_homotopic_paths)

finally show ?thesis .
qed

Winding numbers of circular contours
proposition winding_number_part_circlepath_pos_less:

assumes s < t and no: norm(w − z) < r
shows 0 < Re (winding_number(part_circlepath z r s t) w)

proof −
have 0 < r by (meson no norm_not_less_zero not_le order .strict_trans2)

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 120

note valid_path_part_circlepath
moreover have w /∈ path_image (part_circlepath z r s t)

using assms by (auto simp: path_image_def image_def part_circlepath_def
norm_mult linepath_def)

moreover have 0 < r ∗ (t − s) ∗ (r − cmod (w − z))
using assms by (metis ‹0 < r› diff_gt_0_iff_gt mult_pos_pos)

ultimately show ?thesis
apply (rule winding_number_pos_lt [where e = r∗(t − s)∗(r − norm(w −

z))])
apply (simp add: vector_derivative_part_circlepath right_diff_distrib [symmetric]

mult_ac mult_le_cancel_left_pos assms ‹0<r›)
using Re_Im_le_cmod [of w−z linepath s t x for x]
by (simp add: exp_Euler cos_of_real sin_of_real part_circlepath_def alge-

bra_simps cos_squared_eq [unfolded power2_eq_square])
qed

lemma winding_number_circlepath_centre: 0 < r =⇒ winding_number (circlepath
z r) z = 1

apply (rule winding_number_unique_loop)
apply (simp_all add: sphere_def valid_path_imp_path)
apply (rule_tac x=circlepath z r in exI)
apply (simp add: sphere_def contour_integral_circlepath)
done

proposition winding_number_circlepath:
assumes norm(w − z) < r shows winding_number(circlepath z r) w = 1

proof (cases w = z)
case True then show ?thesis

using assms winding_number_circlepath_centre by auto
next

case False
have [simp]: r > 0

using assms le_less_trans norm_ge_zero by blast
define r ′ where r ′ = norm(w − z)
have r ′ < r

by (simp add: assms r ′_def)
have disjo: cball z r ′ ∩ sphere z r = {}

using ‹r ′ < r› by (force simp: cball_def sphere_def)
have winding_number(circlepath z r) w = winding_number(circlepath z r) z
proof (rule winding_number_around_inside [where S = cball z r ′])

show winding_number (circlepath z r) z 6= 0
by (simp add: winding_number_circlepath_centre)

show cball z r ′ ∩ path_image (circlepath z r) = {}
by (simp add: disjo less_eq_real_def)

qed (auto simp: r ′_def dist_norm norm_minus_commute)
also have . . . = 1

by (simp add: winding_number_circlepath_centre)
finally show ?thesis .

qed

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 121

lemma no_bounded_connected_component_imp_winding_number_zero:
assumes g: path g path_image g ⊆ S pathfinish g = pathstart g z /∈ S

and nb:
∧

z. bounded (connected_component_set (− S) z) =⇒ z ∈ S
shows winding_number g z = 0

proof −
have z ∈ outside (path_image g)

by (metis nb [of z] ‹path_image g ⊆ S› ‹z /∈ S› subsetD mem_Collect_eq
outside outside_mono)

then show ?thesis
by (simp add: g winding_number_zero_in_outside)

qed

lemma no_bounded_path_component_imp_winding_number_zero:
assumes g: path g path_image g ⊆ S pathfinish g = pathstart g z /∈ S

and nb:
∧

z. bounded (path_component_set (− S) z) =⇒ z ∈ S
shows winding_number g z = 0
by (simp add: bounded_subset nb path_component_subset_connected_component

no_bounded_connected_component_imp_winding_number_zero [OF
g])

3.7 Winding number for a triangle
lemma wn_triangle1 :

assumes 0 ∈ interior(convex hull {a,b,c})
shows ¬ (Im(a/b) ≤ 0 ∧ 0 ≤ Im(b/c))

proof −
{ assume 0 : Im(a/b) ≤ 0 0 ≤ Im(b/c)

have 0 /∈ interior (convex hull {a,b,c})
proof (cases a=0 ∨ b=0 ∨ c=0)

case True then show ?thesis
by (auto simp: not_in_interior_convex_hull_3)

next
case False
then have b 6= 0 by blast
{ fix x y::complex and u::real

assume eq_f ′: Im x ∗ Re b ≤ Im b ∗ Re x Im y ∗ Re b ≤ Im b ∗ Re y 0 ≤
u u ≤ 1

then have ((1 − u) ∗ Im x) ∗ Re b ≤ Im b ∗ ((1 − u) ∗ Re x)
by (simp add: mult_left_mono mult.assoc mult.left_commute [of Im b])

then have ((1 − u) ∗ Im x + u ∗ Im y) ∗ Re b ≤ Im b ∗ ((1 − u) ∗ Re x
+ u ∗ Re y)

using eq_f ′ ordered_comm_semiring_class.comm_mult_left_mono
by (fastforce simp add: algebra_simps)

}
then have convex {z. Im z ∗ Re b ≤ Im b ∗ Re z}

by (auto simp: algebra_simps convex_alt)
with False 0 have convex hull {a,b,c} ≤ {z. Im z ∗ Re b ≤ Im b ∗ Re z}

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 122

by (simp add: subset_hull mult.commute Complex .Im_divide divide_simps
complex_neq_0 [symmetric])

moreover have 0 /∈ interior({z. Im z ∗ Re b ≤ Im b ∗ Re z})
proof

assume 0 ∈ interior {z. Im z ∗ Re b ≤ Im b ∗ Re z}
then obtain e where e>0 and e: ball 0 e ⊆ {z. Im z ∗ Re b ≤ Im b ∗ Re

z}
by (meson mem_interior)

define z where z ≡ − sgn (Im b) ∗ (e/3) + sgn (Re b) ∗ (e/3) ∗ i
have cmod z = cmod (e/3) ∗ cmod (− sgn (Im b) + sgn (Re b) ∗ i)

unfolding z_def norm_mult [symmetric] by (simp add: algebra_simps)
also have ... < e

using ‹e>0 › by (auto simp: norm_mult intro: le_less_trans [OF
norm_triangle_ineq4])

finally have z ∈ ball 0 e
using ‹e>0 › by simp

then have Im z ∗ Re b ≤ Im b ∗ Re z
using e by blast

then have b: 0 < Re b 0 < Im b and disj: e ∗ Re b < − (Im b ∗ e) ∨ e ∗
Re b = − (Im b ∗ e)

using ‹e>0 › ‹b 6= 0 ›
by (auto simp add: z_def dist_norm sgn_if less_eq_real_def mult_less_0_iff

complex.expand split: if_split_asm)
show False — or just one smt line

using disj
proof

assume e ∗ Re b < − (Im b ∗ e)
with b ‹0 < e› less_trans [of _ 0] show False

by (metis (no_types) mult_pos_pos neg_less_0_iff_less not_less_iff_gr_or_eq)
next

assume e ∗ Re b = − (Im b ∗ e)
with b ‹0 < e› show False

by (metis mult_pos_pos neg_less_0_iff_less not_less_iff_gr_or_eq)
qed

qed
ultimately show ?thesis

using interior_mono by blast
qed

} with assms show ?thesis by blast
qed

lemma wn_triangle2_0 :
assumes 0 ∈ interior(convex hull {a,b,c})
shows

0 < Im((b − a) ∗ cnj (b)) ∧
0 < Im((c − b) ∗ cnj (c)) ∧
0 < Im((a − c) ∗ cnj (a))
∨
Im((b − a) ∗ cnj (b)) < 0 ∧

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 123

0 < Im((b − c) ∗ cnj (b)) ∧
0 < Im((a − b) ∗ cnj (a)) ∧
0 < Im((c − a) ∗ cnj (c))

proof −
have [simp]: {b,c,a} = {a,b,c} {c,a,b} = {a,b,c} by auto
show ?thesis

using wn_triangle1 [OF assms] wn_triangle1 [of b c a] wn_triangle1 [of c a
b] assms

by (auto simp: algebra_simps Im_complex_div_gt_0 Im_complex_div_lt_0
not_le not_less)
qed

lemma wn_triangle2 :
assumes z ∈ interior(convex hull {a,b,c})
shows 0 < Im((b − a) ∗ cnj (b − z)) ∧

0 < Im((c − b) ∗ cnj (c − z)) ∧
0 < Im((a − c) ∗ cnj (a − z))
∨
Im((b − a) ∗ cnj (b − z)) < 0 ∧
0 < Im((b − c) ∗ cnj (b − z)) ∧
0 < Im((a − b) ∗ cnj (a − z)) ∧
0 < Im((c − a) ∗ cnj (c − z))

proof −
have 0 : 0 ∈ interior(convex hull {a−z, b−z, c−z})

using assms convex_hull_translation [of −z {a,b,c}]
interior_translation [of −z]

by (simp cong: image_cong_simp)
show ?thesis using wn_triangle2_0 [OF 0]

by simp
qed

lemma wn_triangle3 :
assumes z: z ∈ interior(convex hull {a,b,c})

and 0 < Im((b−a) ∗ cnj (b−z))
0 < Im((c−b) ∗ cnj (c−z))
0 < Im((a−c) ∗ cnj (a−z))

shows winding_number (linepath a b +++ linepath b c +++ linepath c a) z
= 1
proof −
have znot[simp]: z /∈ closed_segment a b z /∈ closed_segment b c z /∈ closed_segment

c a
using z interior_of_triangle [of a b c]
by (auto simp: closed_segment_def)

have gt0 : 0 < Re (winding_number (linepath a b +++ linepath b c +++ linepath
c a) z)

using assms
by (simp add: winding_number_linepath_pos_lt path_image_join winding_number_join_pos_combined)
have lt2 : Re (winding_number (linepath a b +++ linepath b c +++ linepath c

a) z) < 2

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 124

using winding_number_lt_half_linepath [of _ a b]
using winding_number_lt_half_linepath [of _ b c]
using winding_number_lt_half_linepath [of _ c a] znot
by (fastforce simp add: winding_number_join path_image_join)

show ?thesis
by (rule winding_number_eq_1) (simp_all add: path_image_join gt0 lt2)

qed

proposition winding_number_triangle:
assumes z: z ∈ interior(convex hull {a,b,c})

shows winding_number(linepath a b +++ linepath b c +++ linepath c a) z =
(if 0 < Im((b − a) ∗ cnj (b − z)) then 1 else −1)

proof −
have [simp]: {a,c,b} = {a,b,c} by auto
have znot[simp]: z /∈ closed_segment a b z /∈ closed_segment b c z /∈ closed_segment

c a
using z interior_of_triangle [of a b c]
by (auto simp: closed_segment_def)

then have [simp]: z /∈ closed_segment b a z /∈ closed_segment c b z /∈ closed_segment
a c

using closed_segment_commute by blast+
have ∗: winding_number (linepath a b +++ linepath b c +++ linepath c a) z =

winding_number (reversepath (linepath a c +++ linepath c b +++
linepath b a)) z

by (simp add: reversepath_joinpaths winding_number_join not_in_path_image_join)
show ?thesis

apply (rule disjE [OF wn_triangle2 [OF z]])
subgoal

by (simp add: wn_triangle3 z)
subgoal
by (simp add: path_image_join winding_number_reversepath ∗ wn_triangle3

z)
done

qed

3.8 Winding numbers for simple closed paths
lemma winding_number_from_innerpath:

assumes simple_path c1 and c1 : pathstart c1 = a pathfinish c1 = b
and simple_path c2 and c2 : pathstart c2 = a pathfinish c2 = b
and simple_path c and c: pathstart c = a pathfinish c = b
and c1c2 : path_image c1 ∩ path_image c2 = {a,b}
and c1c: path_image c1 ∩ path_image c = {a,b}
and c2c: path_image c2 ∩ path_image c = {a,b}
and ne_12 : path_image c ∩ inside(path_image c1 ∪ path_image c2) 6= {}
and z: z ∈ inside(path_image c1 ∪ path_image c)
and wn_d: winding_number (c1 +++ reversepath c) z = d
and a 6= b d 6= 0

obtains z ∈ inside(path_image c1 ∪ path_image c2) winding_number (c1 +++

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 125

reversepath c2) z = d
proof −

obtain 0 : inside(path_image c1 ∪ path_image c) ∩ inside(path_image c2 ∪
path_image c) = {}

and 1 : inside(path_image c1 ∪ path_image c) ∪ inside(path_image c2 ∪
path_image c) ∪

(path_image c − {a,b}) = inside(path_image c1 ∪ path_image c2)
by (rule split_inside_simple_closed_curve

[OF ‹simple_path c1 › c1 ‹simple_path c2 › c2 ‹simple_path c› c ‹a 6=
b› c1c2 c1c c2c ne_12])

have znot: z /∈ path_image c z /∈ path_image c1 z /∈ path_image c2
using union_with_outside z 1 by auto

then have zout: z ∈ outside (path_image c ∪ path_image c2)
by (metis 0 ComplI UnE disjoint_iff_not_equal sup.commute union_with_inside

z)
have wn_cc2 : winding_number (c +++ reversepath c2) z = 0

by (rule winding_number_zero_in_outside; simp add: zout ‹simple_path c2 ›
c c2 ‹simple_path c› simple_path_imp_path path_image_join)

show ?thesis
proof

show z ∈ inside (path_image c1 ∪ path_image c2)
using 1 z by blast

have winding_number c1 z − winding_number c z = d
using assms znot

by (metis wn_d winding_number_join simple_path_imp_path winding_number_reversepath
add.commute path_image_reversepath path_reversepath pathstart_reversepath umi-
nus_add_conv_diff)

then show winding_number (c1 +++ reversepath c2) z = d
using wn_cc2 by (simp add: winding_number_join simple_path_imp_path

assms znot winding_number_reversepath)
qed

qed

lemma simple_closed_path_wn1 :
fixes a::complex and e::real
assumes 0 < e

and sp_pl: simple_path(p +++ linepath (a − e) (a + e)) (is simple_path
?pae)

and psp: pathstart p = a + e
and pfp: pathfinish p = a − e
and disj: ball a e ∩ path_image p = {}

obtains z where z ∈ inside (path_image ?pae) cmod (winding_number ?pae z)
= 1
proof −

have arc p and arc_lp: arc (linepath (a − e) (a + e))
and pap: path_image p ∩ path_image (linepath (a − e) (a + e)) ⊆ {pathstart

p, a−e}
using simple_path_join_loop_eq [of linepath (a − e) (a + e) p] assms by auto

have mid_eq_a: midpoint (a − e) (a + e) = a

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 126

by (simp add: midpoint_def)
with assms have a ∈ path_image ?pae

by (simp add: assms path_image_join) (metis midpoint_in_closed_segment)
then have a ∈ frontier(inside (path_image ?pae))

using assms by (simp add: Jordan_inside_outside)
with ‹0 < e› obtain c where c: c ∈ inside (path_image ?pae)

and dac: dist a c < e
by (auto simp: frontier_straddle)

then have c /∈ path_image ?pae
using inside_no_overlap by blast

then have c /∈ path_image p c /∈ closed_segment (a − e) (a + e)
by (simp_all add: assms path_image_join)

with ‹0 < e› dac have c /∈ affine hull {a − e, a + e}
by (simp add: segment_as_ball not_le)

with ‹0 < e› have ∗: ¬ collinear {a − e, c,a + e}
using collinear_3_affine_hull [of a−e a+e] by (auto simp: insert_commute)

have 13 : 1/3 + 1/3 + 1/3 = (1 ::real) by simp
have (1/3) ∗R (a − of_real e) + (1/3) ∗R c + (1/3) ∗R (a + of_real e) ∈

interior(convex hull {a − e, c, a + e})
using interior_convex_hull_3_minimal [OF ∗ DIM_complex]
by clarsimp (metis 13 zero_less_divide_1_iff zero_less_numeral)

then obtain z where z: z ∈ interior(convex hull {a − e, c, a + e}) by force
have [simp]: z /∈ closed_segment (a − e) c

by (metis DIM_complex Diff_iff IntD2 inf_sup_absorb interior_of_triangle
z)

have [simp]: z /∈ closed_segment (a + e) (a − e)
by (metis DIM_complex DiffD2 Un_iff interior_of_triangle z)

have [simp]: z /∈ closed_segment c (a + e)
by (metis (no_types, lifting) DIM_complex DiffD2 Un_insert_right inf_sup_aci(5)

insertCI interior_of_triangle mk_disjoint_insert z)
show thesis
proof
have norm (winding_number (linepath (a − e) c +++ linepath c (a + e) +++

linepath (a + e) (a − e)) z) = 1
using winding_number_triangle [OF z] by simp

have zin: z ∈ inside (path_image (linepath (a + e) (a − e)) ∪ path_image p)
and zeq: winding_number (linepath (a + e) (a − e) +++ reversepath p) z =

winding_number (linepath (a − e) c +++ linepath c (a + e) +++
linepath (a + e) (a − e)) z

proof (rule winding_number_from_innerpath
[of linepath (a + e) (a − e) a+e a−e p

linepath (a + e) c +++ linepath c (a − e) z
winding_number (linepath (a − e) c +++ linepath c (a + e) +++

linepath (a + e) (a − e)) z])
show sp_aec: simple_path (linepath (a + e) c +++ linepath c (a − e))
proof (rule arc_imp_simple_path [OF arc_join])

show arc (linepath (a + e) c)
by (metis ‹c /∈ path_image p› arc_linepath pathstart_in_path_image psp)

show arc (linepath c (a − e))

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 127

by (metis ‹c /∈ path_image p› arc_linepath pathfinish_in_path_image pfp)
show path_image (linepath (a + e) c) ∩ path_image (linepath c (a − e))

⊆ {pathstart (linepath c (a − e))}
by clarsimp (metis ∗ IntI Int_closed_segment closed_segment_commute

singleton_iff)
qed auto
show simple_path p

using ‹arc p› arc_simple_path by blast
show sp_ae2 : simple_path (linepath (a + e) (a − e))

using ‹arc p› arc_distinct_ends pfp psp by fastforce
show pa: pathfinish (linepath (a + e) (a − e)) = a − e

pathstart (linepath (a + e) c +++ linepath c (a − e)) = a + e
pathfinish (linepath (a + e) c +++ linepath c (a − e)) = a − e
pathstart p = a + e pathfinish p = a − e
pathstart (linepath (a + e) (a − e)) = a + e

by (simp_all add: assms)
show 1 : path_image (linepath (a + e) (a − e)) ∩ path_image p = {a + e,

a − e}
proof

show path_image (linepath (a + e) (a − e)) ∩ path_image p ⊆ {a + e, a
− e}

using pap closed_segment_commute psp segment_convex_hull by fastforce
show {a + e, a − e} ⊆ path_image (linepath (a + e) (a − e)) ∩ path_image

p
using pap pathfinish_in_path_image pathstart_in_path_image pfp psp

by fastforce
qed
show 2 : path_image (linepath (a + e) (a − e)) ∩ path_image (linepath (a +

e) c +++ linepath c (a − e)) =
{a + e, a − e} (is ?lhs = ?rhs)

proof
have ¬ collinear {c, a + e, a − e}

using ∗ by (simp add: insert_commute)
then have convex hull {a + e, a − e} ∩ convex hull {a + e, c} = {a + e}

convex hull {a + e, a − e} ∩ convex hull {c, a − e} = {a − e}
by (metis (full_types) Int_closed_segment insert_commute segment_convex_hull)+
then show ?lhs ⊆ ?rhs

by (metis Int_Un_distrib equalityD1 insert_is_Un path_image_join
path_image_linepath path_join_eq path_linepath segment_convex_hull simple_path_def
sp_aec)

show ?rhs ⊆ ?lhs
using segment_convex_hull by (simp add: path_image_join)

qed
have path_image p ∩ path_image (linepath (a + e) c) ⊆ {a + e}
proof (clarsimp simp: path_image_join)

fix x
assume x ∈ path_image p and x_ac: x ∈ closed_segment (a + e) c
then have dist x a ≥ e

by (metis IntI all_not_in_conv disj dist_commute mem_ball not_less)

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 128

with x_ac dac ‹e > 0 › show x = a + e
by (auto simp: norm_minus_commute dist_norm closed_segment_eq_open

dest: open_segment_furthest_le [where y=a])
qed
moreover
have path_image p ∩ path_image (linepath c (a − e)) ⊆ {a − e}
proof (clarsimp simp: path_image_join)

fix x
assume x ∈ path_image p and x_ac: x ∈ closed_segment c (a − e)
then have dist x a ≥ e

by (metis IntI all_not_in_conv disj dist_commute mem_ball not_less)
with x_ac dac ‹e > 0 › show x = a − e
by (auto simp: norm_minus_commute dist_norm closed_segment_eq_open

dest: open_segment_furthest_le [where y=a])
qed
ultimately
have path_image p ∩ path_image (linepath (a + e) c +++ linepath c (a −

e)) ⊆ {a + e, a − e}
by (force simp: path_image_join)

then show 3 : path_image p ∩ path_image (linepath (a + e) c +++ linepath
c (a − e)) = {a + e, a − e}

using 1 2 by blast
show 4 : path_image (linepath (a + e) c +++ linepath c (a − e)) ∩

inside (path_image (linepath (a + e) (a − e)) ∪ path_image p) 6= {}
apply (clarsimp simp: path_image_join segment_convex_hull disjoint_iff_not_equal)
by (metis (no_types, opaque_lifting) UnI1 Un_commute c closed_segment_commute

ends_in_segment(1) path_image_join
path_image_linepath pathstart_linepath pfp segment_convex_hull)

show zin_inside: z ∈ inside (path_image (linepath (a + e) (a − e)) ∪
path_image (linepath (a + e) c +++ linepath c (a −

e)))
proof (simp add: path_image_join)

show z ∈ inside (closed_segment (a + e) (a − e) ∪ (closed_segment (a +
e) c ∪ closed_segment c (a − e)))

by (metis z inside_of_triangle DIM_complex Un_commute closed_segment_commute)
qed
show 5 : winding_number

(linepath (a + e) (a − e) +++ reversepath (linepath (a + e) c +++
linepath c (a − e))) z =

winding_number (linepath (a − e) c +++ linepath c (a + e) +++
linepath (a + e) (a − e)) z

by (simp add: reversepath_joinpaths path_image_join winding_number_join)
show 6 : winding_number (linepath (a − e) c +++ linepath c (a + e) +++

linepath (a + e) (a − e)) z 6= 0
by (simp add: winding_number_triangle z)

show winding_number (linepath (a + e) (a − e) +++ reversepath p) z =
winding_number (linepath (a − e) c +++ linepath c (a + e) +++

linepath (a + e) (a − e)) z
by (metis 1 2 3 4 5 6 pa sp_aec sp_ae2 ‹arc p› ‹simple_path p› arc_distinct_ends

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 129

winding_number_from_innerpath zin_inside)
qed (use assms ‹e > 0 › in auto)
show z_inside: z ∈ inside (path_image ?pae)
using zin by (simp add: assms path_image_join Un_commute closed_segment_commute)
have cmod (winding_number ?pae z) = cmod ((winding_number(reversepath

?pae) z))
proof (subst winding_number_reversepath)

show path ?pae
using simple_path_imp_path sp_pl by blast

show z /∈ path_image ?pae
by (metis IntI emptyE inside_no_overlap z_inside)

qed (simp add: inside_def)
also have ... = cmod (winding_number(linepath (a + e) (a − e) +++ re-

versepath p) z)
by (simp add: pfp reversepath_joinpaths)

also have ... = cmod (winding_number (linepath (a − e) c +++ linepath c (a
+ e) +++ linepath (a + e) (a − e)) z)

by (simp add: zeq)
also have ... = 1

using z by (simp add: interior_of_triangle winding_number_triangle)
finally show cmod (winding_number ?pae z) = 1 .

qed
qed

lemma simple_closed_path_wn2 :
fixes a::complex and d e::real
assumes 0 < d 0 < e

and sp_pl: simple_path(p +++ linepath (a − d) (a + e))
and psp: pathstart p = a + e
and pfp: pathfinish p = a − d

obtains z where z ∈ inside (path_image (p +++ linepath (a − d) (a + e)))
cmod (winding_number (p +++ linepath (a − d) (a + e)) z) = 1

proof −
have [simp]: a + of_real x ∈ closed_segment (a − α) (a − β) ←→ x ∈

closed_segment (−α) (−β) for x α β::real
using closed_segment_translation_eq [of a]
by (metis (no_types, opaque_lifting) add_uminus_conv_diff of_real_minus

of_real_closed_segment)
have [simp]: a − of_real x ∈ closed_segment (a + α) (a + β) ←→ −x ∈

closed_segment α β for x α β::real
by (metis closed_segment_translation_eq diff_conv_add_uminus of_real_closed_segment

of_real_minus)
have arc p and arc_lp: arc (linepath (a − d) (a + e)) and path p

and pap: path_image p ∩ closed_segment (a − d) (a + e) ⊆ {a+e, a−d}
using simple_path_join_loop_eq [of linepath (a − d) (a + e) p] assms

arc_imp_path by auto
have 0 ∈ closed_segment (−d) e

using ‹0 < d› ‹0 < e› closed_segment_eq_real_ivl by auto
then have a ∈ path_image (linepath (a − d) (a + e))

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 130

using of_real_closed_segment [THEN iffD2]
by (force dest: closed_segment_translation_eq [of a, THEN iffD2] simp del:

of_real_closed_segment)
then have a /∈ path_image p

using ‹0 < d› ‹0 < e› pap by auto
then obtain k where 0 < k and k: ball a k ∩ (path_image p) = {}

using ‹0 < e› ‹path p› not_on_path_ball by blast
define kde where kde ≡ (min k (min d e)) / 2
have 0 < kde kde < k kde < d kde < e

using ‹0 < k› ‹0 < d› ‹0 < e› by (auto simp: kde_def)
let ?q = linepath (a + kde) (a + e) +++ p +++ linepath (a − d) (a − kde)
have − kde ∈ closed_segment (−d) e

using ‹0 < kde› ‹kde < d› ‹kde < e› closed_segment_eq_real_ivl by auto
then have a_diff_kde: a − kde ∈ closed_segment (a − d) (a + e)

using of_real_closed_segment [THEN iffD2]
by (force dest: closed_segment_translation_eq [of a, THEN iffD2] simp del:

of_real_closed_segment)
then have clsub2 : closed_segment (a − d) (a − kde) ⊆ closed_segment (a −

d) (a + e)
by (simp add: subset_closed_segment)

then have path_image p ∩ closed_segment (a − d) (a − kde) ⊆ {a + e, a −
d}

using pap by force
moreover
have a + e /∈ path_image p ∩ closed_segment (a − d) (a − kde)
using ‹0 < kde› ‹kde < d› ‹0 < e› by (auto simp: closed_segment_eq_real_ivl)

ultimately have sub_a_diff_d: path_image p ∩ closed_segment (a − d) (a −
kde) ⊆ {a − d}

by blast
have kde ∈ closed_segment (−d) e

using ‹0 < kde› ‹kde < d› ‹kde < e› closed_segment_eq_real_ivl by auto
then have a_diff_kde: a + kde ∈ closed_segment (a − d) (a + e)

using of_real_closed_segment [THEN iffD2]
by (force dest: closed_segment_translation_eq [of a, THEN iffD2] simp del:

of_real_closed_segment)
then have clsub1 : closed_segment (a + kde) (a + e) ⊆ closed_segment (a −

d) (a + e)
by (simp add: subset_closed_segment)

then have closed_segment (a + kde) (a + e) ∩ path_image p ⊆ {a + e, a −
d}

using pap by force
moreover
have closed_segment (a + kde) (a + e) ∩ closed_segment (a − d) (a − kde) =
{}

proof (clarsimp intro!: equals0I)
fix y
assume y1 : y ∈ closed_segment (a + kde) (a + e)

and y2 : y ∈ closed_segment (a − d) (a − kde)
obtain u::real where u: y = a + u and 0 < u

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 131

proof −
obtain ξ where ξ: y = (1 − ξ) ∗R (a + kde) + ξ ∗R (a + e) and 0 ≤ ξ ξ

≤ 1
using y1 by (auto simp: in_segment)

show thesis
proof

show y = a + ((1 − ξ)∗kde + ξ∗e)
using ξ by (auto simp: scaleR_conv_of_real algebra_simps)

have (1 − ξ)∗kde + ξ∗e ≥ 0
using ‹0 < kde› ‹0 ≤ ξ› ‹ξ ≤ 1 › ‹0 < e› by auto

moreover have (1 − ξ)∗kde + ξ∗e 6= 0
using ‹0 < kde› ‹0 ≤ ξ› ‹ξ ≤ 1 › ‹0 < e› by (auto simp: add_nonneg_eq_0_iff)
ultimately show (1 − ξ)∗kde + ξ∗e > 0 by simp

qed
qed
moreover
obtain v::real where v: y = a + v and v ≤ 0
proof −

obtain ξ where ξ: y = (1 − ξ) ∗R (a − d) + ξ ∗R (a − kde) and 0 ≤ ξ ξ
≤ 1

using y2 by (auto simp: in_segment)
show thesis
proof

show y = a + (− ((1 − ξ)∗d + ξ∗kde))
using ξ by (force simp: scaleR_conv_of_real algebra_simps)

show − ((1 − ξ)∗d + ξ∗kde) ≤ 0
using ‹0 < kde› ‹0 ≤ ξ› ‹ξ ≤ 1 › ‹0 < d›

by (metis add.left_neutral add_nonneg_nonneg le_diff_eq less_eq_real_def
neg_le_0_iff_le split_mult_pos_le)

qed
qed
ultimately show False

by auto
qed
moreover have a − d /∈ closed_segment (a + kde) (a + e)
using ‹0 < kde› ‹kde < d› ‹0 < e› by (auto simp: closed_segment_eq_real_ivl)

ultimately have sub_a_plus_e:
closed_segment (a + kde) (a + e) ∩ (path_image p ∪ closed_segment (a − d)

(a − kde)) ⊆ {a + e}
by auto

have kde ∈ closed_segment (−kde) e
using ‹0 < kde› ‹kde < d› ‹kde < e› closed_segment_eq_real_ivl by auto

then have a_add_kde: a + kde ∈ closed_segment (a − kde) (a + e)
using of_real_closed_segment [THEN iffD2]
by (force dest: closed_segment_translation_eq [of a, THEN iffD2] simp del:

of_real_closed_segment)
have closed_segment (a − kde) (a + kde) ∩ closed_segment (a + kde) (a + e)

= {a + kde}

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 132

by (metis a_add_kde Int_closed_segment)
moreover
have path_image p ∩ closed_segment (a − kde) (a + kde) = {}
proof (rule equals0I , clarify)

fix y assume y ∈ path_image p y ∈ closed_segment (a − kde) (a + kde)
with equals0D [OF k, of y] ‹0 < kde› ‹kde < k› show False
by (auto simp: dist_norm dest: dist_decreases_closed_segment [where c=a])

qed
moreover
have − kde ∈ closed_segment (−d) kde

using ‹0 < kde› ‹kde < d› ‹kde < e› closed_segment_eq_real_ivl by auto
then have a_diff_kde ′: a − kde ∈ closed_segment (a − d) (a + kde)

using of_real_closed_segment [THEN iffD2]
by (force dest: closed_segment_translation_eq [of a, THEN iffD2] simp del:

of_real_closed_segment)
then have closed_segment (a − d) (a − kde) ∩ closed_segment (a − kde) (a +

kde) = {a − kde}
by (metis Int_closed_segment)

ultimately
have pa_subset_pm_kde: path_image ?q ∩ closed_segment (a − kde) (a + kde)
⊆ {a − kde, a + kde}

by (auto simp: path_image_join assms)
have ge_kde1 : ∃ y. x = a + of_real y ∧ y ≥ kde if x: x ∈ closed_segment (a +

kde) (a + e) for x
proof −

obtain u where 0 ≤ u u ≤ 1 and u: x = (1 − u) ∗R (a + kde) + u ∗R (a
+ e)

using x by (auto simp: in_segment)
then have kde ≤ (1 − u) ∗ kde + u ∗ e

using ‹kde < e› segment_bound_lemma by auto
moreover have x = a + ((1 − u) ∗ kde + u ∗ e)

by (fastforce simp: u algebra_simps scaleR_conv_of_real)
ultimately
show ?thesis by blast

qed
have ge_kde2 : ∃ y. x = a + of_real y ∧ y ≤ −kde if x: x ∈ closed_segment (a
− d) (a − kde) for x

proof −
obtain u where 0 ≤ u u ≤ 1 and u: x = (1 − u) ∗R (a − d) + u ∗R (a −

kde)
using x by (auto simp: in_segment)

then have kde ≤ ((1−u)∗d + u∗kde)
using ‹kde < d› segment_bound_lemma by auto

moreover have x = a − ((1−u)∗d + u∗kde)
by (fastforce simp: u algebra_simps scaleR_conv_of_real)

ultimately show ?thesis
by (metis add_uminus_conv_diff neg_le_iff_le of_real_minus)

qed
have notin_paq: x /∈ path_image ?q if dist a x < kde for x

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 133

proof −
have x /∈ path_image p

using k ‹kde < k› that by force
then show ?thesis

using that assms by (auto simp: path_image_join dist_norm dest!: ge_kde1
ge_kde2)

qed
obtain z where zin: z ∈ inside (path_image (?q +++ linepath (a − kde) (a +

kde)))
and z1 : cmod (winding_number (?q +++ linepath (a − kde) (a + kde))

z) = 1
proof (rule simple_closed_path_wn1 [of kde ?q a])

show simple_path (?q +++ linepath (a − kde) (a + kde))
proof (intro simple_path_join_loop conjI)

show arc ?q
proof (rule arc_join)

show arc (linepath (a + kde) (a + e))
using ‹kde < e› ‹arc p› by (force simp: pfp)

show arc (p +++ linepath (a − d) (a − kde))
using ‹kde < d› ‹kde < e› ‹arc p› sub_a_diff_d by (force simp: pfp intro:

arc_join)
qed (auto simp: psp pfp path_image_join sub_a_plus_e)
show arc (linepath (a − kde) (a + kde))

using ‹0 < kde› by auto
qed (use pa_subset_pm_kde in auto)

qed (use ‹0 < kde› notin_paq in auto)
have eq: path_image (?q +++ linepath (a − kde) (a + kde)) = path_image (p

+++ linepath (a − d) (a + e))
(is ?lhs = ?rhs)

proof
show ?lhs ⊆ ?rhs

using clsub1 clsub2 apply (auto simp: path_image_join assms)
by (meson subsetCE subset_closed_segment)

show ?rhs ⊆ ?lhs
apply (simp add: path_image_join assms Un_ac)

by (metis Un_closed_segment Un_assoc a_diff_kde a_diff_kde ′ le_supI2
subset_refl)

qed
show thesis
proof

show zzin: z ∈ inside (path_image (p +++ linepath (a − d) (a + e)))
by (metis eq zin)

then have znotin: z /∈ path_image p
by (metis ComplD Un_iff inside_Un_outside path_image_join pathfin-

ish_linepath pathstart_reversepath pfp reversepath_linepath)
have znotin_d_kde: z /∈ closed_segment (a − d) (a + kde)
by (metis ComplD Un_iff Un_closed_segment a_diff_kde inside_Un_outside

path_image_join path_image_linepath pathstart_linepath pfp zzin)
have znotin_d_e: z /∈ closed_segment (a − d) (a + e)

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 134

by (metis IntI UnCI emptyE inside_no_overlap path_image_join path_image_linepath
pathstart_linepath pfp zzin)

have znotin_kde_e: z /∈ closed_segment (a + kde) (a + e) and znotin_d_kde ′:
z /∈ closed_segment (a − d) (a − kde)

using clsub1 clsub2 zzin
by (metis (no_types, opaque_lifting) IntI Un_iff emptyE inside_no_overlap

path_image_join path_image_linepath pathstart_linepath pfp subsetD)+
have winding_number (linepath (a − d) (a + e)) z =

winding_number (linepath (a − d) (a + kde)) z + winding_number
(linepath (a + kde) (a + e)) z

proof (rule winding_number_split_linepath)
show a + complex_of_real kde ∈ closed_segment (a − d) (a + e)

by (simp add: a_diff_kde)
show z /∈ closed_segment (a − d) (a + e)
by (metis ComplD Un_iff inside_Un_outside path_image_join path_image_linepath

pathstart_linepath pfp zzin)
qed
also have ... = winding_number (linepath (a + kde) (a + e)) z +

(winding_number (linepath (a − d) (a − kde)) z + winding_number
(linepath (a − kde) (a + kde)) z)

by (simp add: winding_number_split_linepath [of a−kde, symmetric] znotin_d_kde
a_diff_kde ′)

finally have winding_number (p +++ linepath (a − d) (a + e)) z =
winding_number p z + winding_number (linepath (a + kde) (a +

e)) z +
(winding_number (linepath (a − d) (a − kde)) z +
winding_number (linepath (a − kde) (a + kde)) z)

by (metis (no_types, lifting) ComplD Un_iff ‹arc p› add.assoc arc_imp_path
eq path_image_join path_join_path_ends path_linepath simple_path_imp_path
sp_pl union_with_outside winding_number_join zin)

also have ... = winding_number (linepath (a + kde) (a + e)) z
+ winding_number (p +++ linepath (a − d) (a − kde)) z
+ winding_number (linepath (a − kde) (a + kde)) z

using ‹path p› znotin assms
by simp (metis Un_iff Un_closed_segment a_diff_kde ′ path_image_linepath

path_linepath pathstart_linepath winding_number_join znotin_d_kde)
also have ... = winding_number ?q z + winding_number (linepath (a − kde)

(a + kde)) z
using ‹path p› znotin assms by (simp add: path_image_join winding_number_join

znotin_kde_e znotin_d_kde ′)
also have ... = winding_number (?q +++ linepath (a − kde) (a + kde)) z

by (metis (mono_tags, lifting) ComplD UnCI ‹path p› eq inside_outside
path_image_join path_join_eq path_linepath pathfinish_join pathfinish_linepath
pathstart_join pathstart_linepath pfp psp winding_number_join zzin)

finally have winding_number (p +++ linepath (a − d) (a + e)) z =
winding_number (?q +++ linepath (a − kde) (a + kde)) z .

then show cmod (winding_number (p +++ linepath (a − d) (a + e)) z) = 1
by (simp add: z1)

qed

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 135

qed

lemma simple_closed_path_wn3 :
fixes p :: real ⇒ complex
assumes simple_path p and loop: pathfinish p = pathstart p
obtains z where z ∈ inside (path_image p) cmod (winding_number p z) = 1

proof −
have ins: inside(path_image p) 6= {} open(inside(path_image p))

connected(inside(path_image p))
and out: outside(path_image p) 6= {} open(outside(path_image p))

connected(outside(path_image p))
and bo: bounded(inside(path_image p)) ¬ bounded(outside(path_image p))
and ins_out: inside(path_image p) ∩ outside(path_image p) = {}

inside(path_image p) ∪ outside(path_image p) = − path_image p
and fro: frontier(inside(path_image p)) = path_image p

frontier(outside(path_image p)) = path_image p
using Jordan_inside_outside [OF assms] by auto

obtain a where a: a ∈ inside(path_image p)
using ‹inside (path_image p) 6= {}› by blast

obtain d::real where 0 < d and d_fro: a − d ∈ frontier (inside (path_image
p))

and d_int:
∧
ε. [[0 ≤ ε; ε < d]] =⇒ (a − ε) ∈ inside (path_image p)

using ray_to_frontier [of inside (path_image p) a −1] bo ins a interior_eq
by (metis ab_group_add_class.ab_diff_conv_add_uminus of_real_def scale_minus_right

zero_neq_neg_one)
obtain e::real where 0 < e and e_fro: a + e ∈ frontier (inside (path_image

p))
and e_int:

∧
ε. [[0 ≤ ε; ε < e]] =⇒ (a + ε) ∈ inside (path_image p)

using ray_to_frontier [of inside (path_image p) a 1] bo ins a interior_eq
by (metis of_real_def zero_neq_one)

obtain t0 where 0 ≤ t0 t0 ≤ 1 and pt: p t0 = a − d
using a d_fro fro by (auto simp: path_image_def)

obtain q where simple_path q and q_ends: pathstart q = a − d pathfinish q =
a − d

and q_eq_p: path_image q = path_image p
and wn_q_eq_wn_p:

∧
z. z ∈ inside(path_image p) =⇒ winding_number q z

= winding_number p z
proof

show simple_path (shiftpath t0 p)
by (simp add: pathstart_shiftpath pathfinish_shiftpath

simple_path_shiftpath path_image_shiftpath ‹0 ≤ t0 › ‹t0 ≤ 1 › assms)
show pathstart (shiftpath t0 p) = a − d

using pt by (simp add: ‹t0 ≤ 1 › pathstart_shiftpath)
show pathfinish (shiftpath t0 p) = a − d

by (simp add: ‹0 ≤ t0 › loop pathfinish_shiftpath pt)
show path_image (shiftpath t0 p) = path_image p

by (simp add: ‹0 ≤ t0 › ‹t0 ≤ 1 › loop path_image_shiftpath)
show winding_number (shiftpath t0 p) z = winding_number p z

if z ∈ inside (path_image p) for z

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 136

by (metis ComplD Un_iff ‹0 ≤ t0 › ‹t0 ≤ 1 › ‹simple_path p› atLeastAt-
Most_iff inside_Un_outside

loop simple_path_imp_path that winding_number_shiftpath)
qed
have ad_not_ae: a − d 6= a + e
by (metis ‹0 < d› ‹0 < e› add.left_inverse add_left_cancel add_uminus_conv_diff

le_add_same_cancel2 less_eq_real_def not_less of_real_add of_real_def
of_real_eq_0_iff pt)

have ad_ae_q: {a − d, a + e} ⊆ path_image q
using ‹path_image q = path_image p› d_fro e_fro fro(1) by auto

have ada: open_segment (a − d) a ⊆ inside (path_image p)
proof (clarsimp simp: in_segment)

fix u::real assume 0 < u u < 1
with d_int have a − (1 − u) ∗ d ∈ inside (path_image p)
by (metis ‹0 < d› add.commute diff_add_cancel left_diff_distrib ′ less_add_same_cancel2

less_eq_real_def mult.left_neutral zero_less_mult_iff)
then show (1 − u) ∗R (a − d) + u ∗R a ∈ inside (path_image p)

by (simp add: diff_add_eq of_real_def real_vector .scale_right_diff_distrib)
qed
have aae: open_segment a (a + e) ⊆ inside (path_image p)
proof (clarsimp simp: in_segment)

fix u::real assume 0 < u u < 1
with e_int have a + u ∗ e ∈ inside (path_image p)

by (meson ‹0 < e› less_eq_real_def mult_less_cancel_right2 not_less
zero_less_mult_iff)

then show (1 − u) ∗R a + u ∗R (a + e) ∈ inside (path_image p)
by (metis (mono_tags, lifting) add.assoc of_real_mult pth_6 scaleR_collapse

scaleR_conv_of_real)
qed
have complex_of_real (d ∗ d + (e ∗ e + d ∗ (e + e))) 6= 0

using ad_not_ae
by (metis ‹0 < d› ‹0 < e› add_strict_left_mono less_add_same_cancel1

not_sum_squares_lt_zero
of_real_eq_0_iff zero_less_double_add_iff_zero_less_single_add zero_less_mult_iff)

moreover have ∃ u>0 . u < 1 ∧ d = u ∗ d + u ∗ e
using ‹0 < d› ‹0 < e›

by (rule_tac x=d / (d+e) in exI) (simp add: divide_simps scaleR_conv_of_real
flip: distrib_left)

ultimately have a_in_de: a ∈ open_segment (a − d) (a + e)
using ad_not_ae by (simp add: in_segment algebra_simps scaleR_conv_of_real

flip: of_real_add of_real_mult)
then have open_segment (a − d) (a + e) ⊆ inside (path_image p)

using ada a aae Un_open_segment [of a a−d a+e] by blast
then have path_image q ∩ open_segment (a − d) (a + e) = {}

using inside_no_overlap by (fastforce simp: q_eq_p)
with ad_ae_q have paq_Int_cs: path_image q ∩ closed_segment (a − d) (a +

e) = {a − d, a + e}
by (simp add: closed_segment_eq_open)

obtain t where 0 ≤ t t ≤ 1 and qt: q t = a + e

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 137

using a e_fro fro ad_ae_q by (auto simp: path_defs)
then have t 6= 0

by (metis ad_not_ae pathstart_def q_ends(1))
then have t 6= 1

by (metis ad_not_ae pathfinish_def q_ends(2) qt)
have q01 : q 0 = a − d q 1 = a − d

using q_ends by (auto simp: pathstart_def pathfinish_def)
obtain z where zin: z ∈ inside (path_image (subpath t 0 q +++ linepath (a −

d) (a + e)))
and z1 : cmod (winding_number (subpath t 0 q +++ linepath (a − d)

(a + e)) z) = 1
proof (rule simple_closed_path_wn2 [of d e subpath t 0 q a], simp_all add: q01)

show simple_path (subpath t 0 q +++ linepath (a − d) (a + e))
proof (rule simple_path_join_loop, simp_all add: qt q01)

have inj_on q (closed_segment t 0)
using ‹0 ≤ t› ‹simple_path q› ‹t ≤ 1 › ‹t 6= 0 › ‹t 6= 1 ›

by (fastforce simp: simple_path_def loop_free_def inj_on_def closed_segment_eq_real_ivl)
then show arc (subpath t 0 q)

using ‹0 ≤ t› ‹simple_path q› ‹t ≤ 1 › ‹t 6= 0 ›
by (simp add: arc_subpath_eq simple_path_imp_path)

show arc (linepath (a − d) (a + e))
by (simp add: ad_not_ae)

show path_image (subpath t 0 q) ∩ closed_segment (a − d) (a + e) ⊆ {a +
e, a − d}

using qt paq_Int_cs ‹simple_path q› ‹0 ≤ t› ‹t ≤ 1 ›
by (force simp: dest: rev_subsetD [OF _ path_image_subpath_subset] intro:

simple_path_imp_path)
qed

qed (auto simp: ‹0 < d› ‹0 < e› qt)
have pa01_Un: path_image (subpath 0 t q) ∪ path_image (subpath 1 t q) =

path_image q
unfolding path_image_subpath
using ‹0 ≤ t› ‹t ≤ 1 › by (force simp: path_image_def image_iff)

with paq_Int_cs have pa_01q:
(path_image (subpath 0 t q) ∪ path_image (subpath 1 t q)) ∩ closed_segment

(a − d) (a + e) = {a − d, a + e}
by metis

have z_notin_ed: z /∈ closed_segment (a + e) (a − d)
using zin q01 by (simp add: path_image_join closed_segment_commute in-

side_def)
have z_notin_0t: z /∈ path_image (subpath 0 t q)

by (metis (no_types, opaque_lifting) IntI Un_upper1 subsetD empty_iff in-
side_no_overlap path_image_join

path_image_subpath_commute pathfinish_subpath pathstart_def pathstart_linepath
q_ends(1) qt subpath_trivial zin)

have [simp]: − winding_number (subpath t 0 q) z = winding_number (subpath
0 t q) z

by (metis ‹0 ≤ t› ‹simple_path q› ‹t ≤ 1 › atLeastAtMost_iff zero_le_one
path_image_subpath_commute path_subpath real_eq_0_iff_le_ge_0

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 138

reversepath_subpath simple_path_imp_path winding_number_reversepath
z_notin_0t)

obtain z_in_q: z ∈ inside(path_image q)
and wn_q: winding_number (subpath 0 t q +++ subpath t 1 q) z = −

winding_number (subpath t 0 q +++ linepath (a − d) (a + e)) z
proof (rule winding_number_from_innerpath

[of subpath 0 t q a−d a+e subpath 1 t q linepath (a − d) (a + e)
z − winding_number (subpath t 0 q +++ linepath (a − d) (a + e)) z],

simp_all add: q01 qt pa01_Un reversepath_subpath)
show simple_path (subpath 0 t q) simple_path (subpath 1 t q)

by (simp_all add: ‹0 ≤ t› ‹simple_path q› ‹t ≤ 1 › ‹t 6= 0 › ‹t 6= 1 › sim-
ple_path_subpath)

show simple_path (linepath (a − d) (a + e))
using ad_not_ae by blast

show path_image (subpath 0 t q) ∩ path_image (subpath 1 t q) = {a − d, a +
e} (is ?lhs = ?rhs)

proof
show ?lhs ⊆ ?rhs

using ‹0 ≤ t› ‹simple_path q› ‹t ≤ 1 › ‹t 6= 1 › q_ends qt q01
by (force simp: pathfinish_def qt simple_path_def loop_free_def path_image_subpath)
show ?rhs ⊆ ?lhs

using ‹0 ≤ t› ‹t ≤ 1 › q01 qt by (force simp: path_image_subpath)
qed
show path_image (subpath 0 t q) ∩ closed_segment (a − d) (a + e) = {a −

d, a + e} (is ?lhs = ?rhs)
proof

show ?lhs ⊆ ?rhs using paq_Int_cs pa01_Un by fastforce
show ?rhs ⊆ ?lhs using ‹0 ≤ t› ‹t ≤ 1 › q01 qt by (force simp: path_image_subpath)
qed
show path_image (subpath 1 t q) ∩ closed_segment (a − d) (a + e) = {a −

d, a + e} (is ?lhs = ?rhs)
proof

show ?lhs ⊆ ?rhs by (auto simp: pa_01q [symmetric])
show ?rhs ⊆ ?lhs using ‹0 ≤ t› ‹t ≤ 1 › q01 qt by (force simp: path_image_subpath)
qed
show closed_segment (a − d) (a + e) ∩ inside (path_image q) 6= {}

using a a_in_de open_closed_segment pa01_Un q_eq_p by fastforce
show z ∈ inside (path_image (subpath 0 t q) ∪ closed_segment (a − d) (a +

e))
by (metis path_image_join path_image_linepath path_image_subpath_commute

pathfinish_subpath pathstart_linepath q01 (1) zin)
show winding_number (subpath 0 t q +++ linepath (a + e) (a − d)) z =
− winding_number (subpath t 0 q +++ linepath (a − d) (a + e)) z
using z_notin_ed z_notin_0t ‹0 ≤ t› ‹simple_path q› ‹t ≤ 1 ›
by (simp add: simple_path_imp_path qt q01 path_image_subpath_commute

closed_segment_commute winding_number_join winding_number_reversepath [symmetric])
show − d 6= e

using ad_not_ae by auto
show winding_number (subpath t 0 q +++ linepath (a − d) (a + e)) z 6= 0

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 139

using z1 by auto
qed
show ?thesis
proof

show z ∈ inside (path_image p)
using q_eq_p z_in_q by auto

then have [simp]: z /∈ path_image q
by (metis disjoint_iff_not_equal inside_no_overlap q_eq_p)

have [simp]: z /∈ path_image (subpath 1 t q)
using inside_def pa01_Un z_in_q by fastforce

have winding_number(subpath 0 t q +++ subpath t 1 q) z = winding_number(subpath
0 1 q) z

using z_notin_0t ‹0 ≤ t› ‹simple_path q› ‹t ≤ 1 ›
by (simp add: simple_path_imp_path qt path_image_subpath_commute wind-

ing_number_join winding_number_subpath_combine)
with wn_q have winding_number (subpath t 0 q +++ linepath (a − d) (a +

e)) z = − winding_number q z
by auto

with z1 have cmod (winding_number q z) = 1
by simp

with z1 wn_q_eq_wn_p show cmod (winding_number p z) = 1
using z1 wn_q_eq_wn_p by (simp add: ‹z ∈ inside (path_image p)›)

qed
qed

proposition simple_closed_path_winding_number_inside:
assumes simple_path γ
obtains

∧
z. z ∈ inside(path_image γ) =⇒ winding_number γ z = 1

|
∧

z. z ∈ inside(path_image γ) =⇒ winding_number γ z = −1
proof (cases pathfinish γ = pathstart γ)

case True
have path γ

by (simp add: assms simple_path_imp_path)
then have const: winding_number γ constant_on inside(path_image γ)
proof (rule winding_number_constant)

show connected (inside(path_image γ))
by (simp add: Jordan_inside_outside True assms)

qed (use inside_no_overlap True in auto)
obtain z where zin: z ∈ inside (path_image γ) and z1 : cmod (winding_number
γ z) = 1

using simple_closed_path_wn3 [of γ] True assms by blast
have winding_number γ z ∈ �

using zin integer_winding_number [OF ‹path γ› True] inside_def by blast
moreover have real_of_int x = − 1 ←→ x = −1 for x

by linarith
ultimately consider winding_number γ z = 1 | winding_number γ z = −1

using z1 by (auto simp: Ints_def abs_if split: if_split_asm)
with that const zin show ?thesis

unfolding constant_on_def by metis

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 140

next
case False
then show ?thesis

using inside_simple_curve_imp_closed assms that(2) by blast
qed

lemma simple_closed_path_abs_winding_number_inside:
assumes simple_path γ z ∈ inside(path_image γ)

shows |Re (winding_number γ z)| = 1
by (metis assms norm_minus_cancel norm_one one_complex.simps(1) real_norm_def

simple_closed_path_winding_number_inside uminus_complex.simps(1))

lemma simple_closed_path_norm_winding_number_inside:
assumes simple_path γ z ∈ inside(path_image γ)
shows norm (winding_number γ z) = 1

proof −
have pathfinish γ = pathstart γ

using assms inside_simple_curve_imp_closed by blast
with assms integer_winding_number have winding_number γ z ∈ �

by (simp add: inside_def simple_path_def)
then show ?thesis
by (metis assms norm_minus_cancel norm_one simple_closed_path_winding_number_inside)

qed

lemma simple_closed_path_winding_number_cases:
assumes simple_path γ pathfinish γ = pathstart γ z /∈ path_image γ
shows winding_number γ z ∈ {−1 ,0 ,1}

proof −
consider z ∈ inside (path_image γ) | z ∈ outside (path_image γ)

by (metis ComplI UnE assms(3) inside_Un_outside)
then show ?thesis
proof cases

case 1
then show ?thesis

using assms simple_closed_path_winding_number_inside by auto
next

case 2
then show ?thesis

using assms simple_path_def winding_number_zero_in_outside by blast
qed

qed

lemma simple_closed_path_winding_number_pos:
[[simple_path γ; pathfinish γ = pathstart γ; z /∈ path_image γ; 0 < Re(winding_number

γ z)]]
=⇒ winding_number γ z = 1

using simple_closed_path_winding_number_cases
by fastforce

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 141

lemma simple_closed_path_winding_number_neg:
[[simple_path γ; pathfinish γ = pathstart γ; z /∈ path_image γ; Re (winding_number

γ z) < 0]]
=⇒ winding_number γ z = −1

using simple_closed_path_winding_number_cases by fastforce

3.9 Winding number for rectangular paths
proposition winding_number_rectpath:

assumes z ∈ box a1 a3
shows winding_number (rectpath a1 a3) z = 1

proof −
from assms have less: Re a1 < Re a3 Im a1 < Im a3

by (auto simp: in_box_complex_iff)
define a2 a4 where a2 = Complex (Re a3) (Im a1) and a4 = Complex (Re

a1) (Im a3)
let ?l1 = linepath a1 a2 and ?l2 = linepath a2 a3
and ?l3 = linepath a3 a4 and ?l4 = linepath a4 a1
from assms and less have z /∈ path_image (rectpath a1 a3)

by (auto simp: path_image_rectpath_cbox_minus_box)
also have path_image (rectpath a1 a3) =

path_image ?l1 ∪ path_image ?l2 ∪ path_image ?l3 ∪ path_image
?l4

by (simp add: rectpath_def Let_def path_image_join Un_assoc a2_def a4_def)
finally have z /∈
moreover have ∀ l∈{?l1 ,?l2 ,?l3 ,?l4}. Re (winding_number l z) > 0

unfolding ball_simps HOL.simp_thms a2_def a4_def
by (intro conjI ; (rule winding_number_linepath_pos_lt;

(insert assms, auto simp: a2_def a4_def in_box_complex_iff mult_neg_neg))+)
ultimately have Re (winding_number (rectpath a1 a3) z) > 0

by (simp add: winding_number_join path_image_join rectpath_def Let_def
a2_def a4_def)

thus winding_number (rectpath a1 a3) z = 1 using assms less
by (intro simple_closed_path_winding_number_pos simple_path_rectpath)

(auto simp: path_image_rectpath_cbox_minus_box)
qed

proposition winding_number_rectpath_outside:
assumes Re a1 ≤ Re a3 Im a1 ≤ Im a3
assumes z /∈ cbox a1 a3
shows winding_number (rectpath a1 a3) z = 0
using assms by (intro winding_number_zero_outside[OF _ _ _ assms(3)]

path_image_rectpath_subset_cbox) simp_all

A per-function version for continuous logs, a kind of monodromy
proposition winding_number_compose_exp:

assumes path p
shows winding_number (exp ◦ p) 0 = (pathfinish p − pathstart p) / (2 ∗ of_real

pi ∗ i)

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 142

proof −
obtain e where 0 < e and e:

∧
t. t ∈ {0 ..1} =⇒ e ≤ norm(exp(p t))

proof
have closed (path_image (exp ◦ p))

by (simp add: assms closed_path_image holomorphic_on_exp holomor-
phic_on_imp_continuous_on path_continuous_image)

then show 0 < setdist {0} (path_image (exp ◦ p))
by (metis exp_not_eq_zero imageE image_comp infdist_eq_setdist infdist_pos_not_in_closed

path_defs(4) path_image_nonempty)
next

fix t::real
assume t ∈ {0 ..1}
have setdist {0} (path_image (exp ◦ p)) ≤ dist 0 (exp (p t))
proof (rule setdist_le_dist)

show exp (p t) ∈ path_image (exp ◦ p)
using ‹t ∈ {0 ..1}› path_image_def by fastforce+

qed auto
then show setdist {0} (path_image (exp ◦ p)) ≤ cmod (exp (p t))

by simp
qed
have bounded (path_image p)

by (simp add: assms bounded_path_image)
then obtain B where 0 < B and B: path_image p ⊆ cball 0 B

by (meson bounded_pos mem_cball_0 subsetI)
let ?B = cball (0 ::complex) (B+1)
have uniformly_continuous_on ?B exp

using holomorphic_on_exp holomorphic_on_imp_continuous_on
by (force intro: compact_uniformly_continuous)

then obtain d where d > 0
and d:

∧
x x ′. [[x∈?B; x ′∈?B; dist x ′ x < d]] =⇒ norm (exp x ′ − exp x) < e

using ‹e > 0 › by (auto simp: uniformly_continuous_on_def dist_norm)
then have min 1 d > 0

by force
then obtain g where pfg: polynomial_function g and g 0 = p 0 g 1 = p 1

and gless:
∧

t. t ∈ {0 ..1} =⇒ norm(g t − p t) < min 1 d
using path_approx_polynomial_function [OF ‹path p›] ‹d > 0 › ‹0 < e›
unfolding pathfinish_def pathstart_def by blast

have winding_number (exp ◦ p) 0 = winding_number (exp ◦ g) 0
proof (rule winding_number_nearby_paths_eq [symmetric])

show path (exp ◦ p) path (exp ◦ g)
by (simp_all add: pfg assms holomorphic_on_exp holomorphic_on_imp_continuous_on

path_continuous_image path_polynomial_function)
next

fix t :: real
assume t: t ∈ {0 ..1}
with gless have norm(g t − p t) < 1

using min_less_iff_conj by blast
moreover have ptB: norm (p t) ≤ B

using B t by (force simp: path_image_def)

Winding{_}{\kern 0pt}Numbers.html

Winding_Numbers.thy 143

ultimately have cmod (g t) ≤ B + 1
by (meson add_mono_thms_linordered_field(4) le_less_trans less_imp_le

norm_triangle_sub)
with ptB gless t have cmod ((exp ◦ g) t − (exp ◦ p) t) < e

by (auto simp: dist_norm d)
with e t show cmod ((exp ◦ g) t − (exp ◦ p) t) < cmod ((exp ◦ p) t − 0)

by fastforce
qed (use ‹g 0 = p 0 › ‹g 1 = p 1 › in ‹auto simp: pathfinish_def pathstart_def ›)
also have ... = 1 / (of_real (2 ∗ pi) ∗ i) ∗ contour_integral (exp ◦ g) (λw. 1 /

(w − 0))
proof (rule winding_number_valid_path)

have continuous_on (path_image g) (deriv exp)
by (metis DERIV_exp DERIV_imp_deriv continuous_on_cong holomor-

phic_on_exp holomorphic_on_imp_continuous_on)
then show valid_path (exp ◦ g)
by (simp add: field_differentiable_within_exp pfg valid_path_compose valid_path_polynomial_function)
show 0 /∈ path_image (exp ◦ g)

by (auto simp: path_image_def)
qed
also have ... = 1 / (of_real (2 ∗ pi) ∗ i) ∗ integral {0 ..1} (λx. vector_derivative

g (at x))
proof (simp add: contour_integral_integral, rule integral_cong)

fix t :: real
assume t: t ∈ {0 ..1}
show vector_derivative (exp ◦ g) (at t) / exp (g t) = vector_derivative g (at t)
proof −
have (exp ◦ g has_vector_derivative vector_derivative (exp ◦ g) (at t)) (at t)

by (meson DERIV_exp differentiable_def field_vector_diff_chain_at
has_vector_derivative_def

has_vector_derivative_polynomial_function pfg vector_derivative_works)
moreover have (exp ◦ g has_vector_derivative vector_derivative g (at t) ∗

exp (g t)) (at t)
by (metis DERIV_exp field_vector_diff_chain_at has_vector_derivative_polynomial_function

pfg vector_derivative_at)
ultimately show ?thesis

by (simp add: divide_simps, rule vector_derivative_unique_at)
qed

qed
also have ... = (pathfinish p − pathstart p) / (2 ∗ of_real pi ∗ i)
proof −

have ((λx. vector_derivative g (at x)) has_integral g 1 − g 0) {0 ..1}
by (meson differentiable_at_polynomial_function fundamental_theorem_of_calculus

has_vector_derivative_at_within pfg vector_derivative_works
zero_le_one)

then show ?thesis
unfolding pathfinish_def pathstart_def
using ‹g 0 = p 0 › ‹g 1 = p 1 › by auto

qed

Winding{_}{\kern 0pt}Numbers.html

Cauchy_Integral_Formula.thy 144

finally show ?thesis .
qed

end

4 Cauchy’s Integral Formula
theory Cauchy_Integral_Formula

imports Winding_Numbers
begin

4.1 Proof
lemma Cauchy_integral_formula_weak:

assumes S : convex S and finite k and conf : continuous_on S f
and fcd: (

∧
x. x ∈ interior S − k =⇒ f field_differentiable at x)

and z: z ∈ interior S − k and vpg: valid_path γ
and pasz: path_image γ ⊆ S − {z} and loop: pathfinish γ = pathstart γ

shows ((λw. f w / (w−z)) has_contour_integral (2∗pi ∗ i ∗ winding_number
γ z ∗ f z)) γ
proof −

let ?fz = λw. (f w − f z)/(w−z)
obtain f ′ where f ′: (f has_field_derivative f ′) (at z)

using fcd [OF z] by (auto simp: field_differentiable_def)
have pas: path_image γ ⊆ S and znotin: z /∈ path_image γ using pasz by

blast+
have c: continuous (at x within S) (λw. if w = z then f ′ else (f w − f z) / (w−z))

if x ∈ S for x
proof (cases x = z)

case True then show ?thesis
using LIM_equal [of z ?fz λw. if w = z then f ′ else ?fz w] has_field_derivativeD

[OF f ′]
by (force simp add: continuous_within Lim_at_imp_Lim_at_within)

next
case False
then have dxz: dist x z > 0 by auto
have cf : continuous (at x within S) f

using conf continuous_on_eq_continuous_within that by blast
have continuous (at x within S) (λw. (f w − f z) / (w−z))

by (rule cf continuous_intros | simp add: False)+
then show ?thesis
using continuous_transform_within [OF _ dxz that] by (force simp: dist_commute)

qed
have fink ′: finite (insert z k) using ‹finite k› by blast
have ∗: ((λw. if w = z then f ′ else ?fz w) has_contour_integral 0) γ
proof (rule Cauchy_theorem_convex [OF _ S fink ′ _ vpg pas loop])

show (λw. if w = z then f ′ else ?fz w) field_differentiable at w
if w ∈ interior S − insert z k for w

proof (rule field_differentiable_transform_within)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 145

show (λw. ?fz w) field_differentiable at w
using that by (intro derivative_intros fcd; simp)

qed (use that in ‹auto simp add: dist_pos_lt dist_commute›)
qed (use c in ‹force simp: continuous_on_eq_continuous_within›)
note ∗∗ = has_contour_integral_add [OF has_contour_integral_lmul [OF has_contour_integral_winding_number

[OF vpg znotin], of f z] ∗]
show ?thesis

apply (rule has_contour_integral_eq)
using znotin ∗∗ apply (auto simp: ac_simps divide_simps)
done

qed

theorem Cauchy_integral_formula_convex_simple:
assumes convex S and holf : f holomorphic_on S and z ∈ interior S valid_path

γ path_image γ ⊆ S − {z}
pathfinish γ = pathstart γ

shows ((λw. f w / (w−z)) has_contour_integral (2∗pi ∗ i ∗ winding_number
γ z ∗ f z)) γ
proof −

have
∧

x. x ∈ interior S =⇒ f field_differentiable at x
using holf at_within_interior holomorphic_onD interior_subset by fastforce

then show ?thesis
using assms
by (intro Cauchy_integral_formula_weak [where k = {}]) (auto simp: holo-

morphic_on_imp_continuous_on)
qed

Hence the Cauchy formula for points inside a circle.
theorem Cauchy_integral_circlepath:

assumes contf : continuous_on (cball z r) f and holf : f holomorphic_on (ball z
r) and wz: norm(w−z) < r

shows ((λu. f u/(u−w)) has_contour_integral (2 ∗ of_real pi ∗ i ∗ f w))
(circlepath z r)

proof −
have r > 0

using assms le_less_trans norm_ge_zero by blast
have ((λu. f u / (u−w)) has_contour_integral (2 ∗ pi) ∗ i ∗ winding_number

(circlepath z r) w ∗ f w)
(circlepath z r)

proof (rule Cauchy_integral_formula_weak [where S = cball z r and k = {}])
show

∧
x. x ∈ interior (cball z r) − {} =⇒

f field_differentiable at x
using holf holomorphic_on_imp_differentiable_at by auto

have w /∈ sphere z r
by simp (metis dist_commute dist_norm not_le order_refl wz)

then show path_image (circlepath z r) ⊆ cball z r − {w}
using ‹r > 0 › by (auto simp add: cball_def sphere_def)

qed (use wz in ‹simp_all add: dist_norm norm_minus_commute contf ›)
then show ?thesis

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 146

by (simp add: winding_number_circlepath assms)
qed

corollary Cauchy_integral_circlepath_simple:
assumes f holomorphic_on cball z r norm(w−z) < r
shows ((λu. f u/(u−w)) has_contour_integral (2 ∗ of_real pi ∗ i ∗ f w))

(circlepath z r)
using assms by (force simp: holomorphic_on_imp_continuous_on holomorphic_on_subset
Cauchy_integral_circlepath)

4.2 General stepping result for derivative formulas
lemma Cauchy_next_derivative:

fixes f ′ :: complex ⇒ complex
defines h ≡ λk w u. f ′ u / (u−w)^k
assumes continuous_on (path_image γ) f ′

and leB:
∧

t. t ∈ {0 ..1} =⇒ norm (vector_derivative γ (at t)) ≤ B
and int:

∧
w. w ∈ S − path_image γ =⇒ (h k w has_contour_integral f w) γ

and k: k 6= 0
and open S
and γ: valid_path γ
and w: w ∈ S − path_image γ

shows h (Suc k) w contour_integrable_on γ
and (f has_field_derivative (k ∗ contour_integral γ (h (Suc k) w))) (at w)

(is ?thes2)
proof −

have open (S − path_image γ) using ‹open S› closed_valid_path_image γ by
blast

then obtain d where d>0 and d: ball w d ⊆ S − path_image γ using w
using open_contains_ball by blast

have [simp]:
∧

n. cmod (1 + of_nat n) = 1 + of_nat n
by (metis norm_of_nat of_nat_Suc)

have cint: (λz. (h k x z − h k w z) / (x ∗ k − w ∗ k)) contour_integrable_on γ
if x 6= w cmod (x−w) < d for x::complex

proof −
have x ∈ S − path_image γ

by (metis d dist_commute dist_norm mem_ball subsetD that(2))
then show ?thesis
using contour_integrable_diff contour_integrable_div contour_integrable_on_def

int w
by meson

qed
then have 1 : ∀ F x in at w. (λz. (h k x z − h k w z) / (x−w) / of_nat k)

contour_integrable_on γ
unfolding eventually_at
by (force intro: exI [where x=d] simp add: ‹d > 0 › dist_norm field_simps)

have bim_g: bounded (image f ′ (path_image γ))
by (simp add: compact_imp_bounded compact_continuous_image compact_valid_path_image

assms)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 147

then obtain C where C > 0 and C :
∧

x. [[0 ≤ x; x ≤ 1]] =⇒ cmod (f ′ (γ x))
≤ C

by (force simp: bounded_pos path_image_def)
have twom: ∀ F n in at w.

∀ x∈path_image γ.
cmod ((inverse (x−n) ^ k − inverse (x−w) ^ k) / (n−w) / k −

inverse (x−w) ^ Suc k) < e
if 0 < e for e

proof −
have ∗: cmod ((inverse (x−u) ^ k − inverse (x−w) ^ k) / ((u−w) ∗ k) −

inverse (x−w) ^ Suc k) < e
if x: x ∈ path_image γ and u 6= w and uwd: cmod (u−w) < d/2

and uw_less: cmod (u−w) < e ∗ (d/2) ^ (k+2) / (1 + real k)
for u x

proof −
define ff where [abs_def]:

ff n w =
(if n = 0 then inverse(x−w)^k
else if n = 1 then k / (x−w)^(Suc k)
else (k ∗ of_real(Suc k)) / (x−w)^(k + 2)) for n :: nat and w

have km1 :
∧

z::complex. z 6= 0 =⇒ z ^ (k − Suc 0) = z ^ k / z
by (simp add: field_simps) (metis Suc_pred ‹k 6= 0 › neq0_conv power_Suc)

have ff1 : (ff i has_field_derivative ff (Suc i) z) (at z within ball w (d/2))
if z ∈ ball w (d/2) i ≤ 1 for i z

proof −
have z /∈ path_image γ

using ‹x ∈ path_image γ› d that ball_divide_subset_numeral by blast
then have xz[simp]: x 6= z using ‹x ∈ path_image γ› by blast
then have neq: x ∗ x + z ∗ z 6= x ∗ (z ∗ 2)

by (blast intro: dest!: sum_sqs_eq)
with xz have

∧
v. v 6= 0 =⇒ (x ∗ x + z ∗ z) ∗ v 6= (x ∗ (z ∗ 2) ∗ v) by

auto
then have neqq:

∧
v. v 6= 0 =⇒ x ∗ (x ∗ v) + z ∗ (z ∗ v) 6= x ∗ (z ∗ (2 ∗

v))
by (simp add: algebra_simps)

show ?thesis using ‹i ≤ 1 ›
apply (simp add: ff_def dist_norm Nat.le_Suc_eq, safe)
apply (rule derivative_eq_intros | simp add: km1 | simp add: field_simps

neq neqq)+
done

qed
{ fix a::real and b::real assume ab: a > 0 b > 0

then have k ∗ (1 + real k) ∗ (1 / a) ≤ k ∗ (1 + real k) ∗ (4 / b) ←→ b
≤ 4 ∗ a

by (subst mult_le_cancel_left_pos)
(use ‹k 6= 0 › in ‹auto simp: divide_simps›)

with ab have real k ∗ (1 + real k) / a ≤ (real k ∗ 4 + real k ∗ real k ∗ 4)
/ b ←→ b ≤ 4 ∗ a

by (simp add: field_simps)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 148

} note canc = this
have ff2 : cmod (ff (Suc 1) v) ≤ real (k ∗ (k + 1)) / (d/2) ^ (k + 2)

if v ∈ ball w (d/2) for v
proof −

have lessd:
∧

z. cmod (γ z − v) < d/2 =⇒ cmod (w − γ z) < d
by (metis that norm_minus_commute norm_triangle_half_r dist_norm

mem_ball)
have d/2 ≤ cmod (x−v) using d x that

using lessd d x unfolding path_image_def
by (smt (verit, best) dist_norm imageE insert_Diff mem_ball sub-

set_Diff_insert)
then have d ≤ cmod (x−v) ∗ 2

by (simp add: field_split_simps)
then have dpow_le: d ^ (k+2) ≤ (cmod (x−v) ∗ 2) ^ (k+2)

using ‹0 < d› order_less_imp_le power_mono by blast
have x 6= v using that

using ‹x ∈ path_image γ› ball_divide_subset_numeral d by fastforce
then show ?thesis

using ‹d > 0 › apply (simp add: ff_def norm_mult norm_divide norm_power
dist_norm canc)

using dpow_le apply (simp add: field_split_simps)
done

qed
have ub: u ∈ ball w (d/2)

using uwd by (simp add: dist_commute dist_norm)
have cmod (inverse (x−u) ^ k − (inverse (x−w) ^ k + of_nat k ∗ (u−w) /

((x−w) ∗ (x−w) ^ k)))
≤ (real k ∗ 4 + real k ∗ real k ∗ 4) ∗ (cmod (u−w) ∗ cmod (u−w))

/ (d ∗ (d ∗ (d/2) ^ k))
using complex_Taylor [OF _ ff1 ff2 _ ub, of w, simplified]
by (simp add: ff_def ‹0 < d›)

then have cmod (inverse (x−u) ^ k − (inverse (x−w) ^ k + of_nat k ∗
(u−w) / ((x−w) ∗ (x−w) ^ k)))

≤ (cmod (u−w) ∗ real k) ∗ (1 + real k) ∗ cmod (u−w) / (d/2) ^
(k+2)

by (simp add: field_simps)
then have cmod (inverse (x−u) ^ k − (inverse (x−w) ^ k + of_nat k ∗

(u−w) / ((x−w) ∗ (x−w) ^ k)))
/ (cmod (u−w) ∗ real k)
≤ (1 + real k) ∗ cmod (u−w) / (d/2) ^ (k+2)

using ‹k 6= 0 › ‹u 6= w› by (simp add: mult_ac zero_less_mult_iff
pos_divide_le_eq)

also have . . . < e
using uw_less ‹0 < d› by (simp add: mult_ac divide_simps)

finally have e: cmod (inverse (x−u)^k − (inverse (x−w)^k + of_nat k ∗
(u−w) / ((x−w) ∗ (x−w)^k)))

/ cmod ((u−w) ∗ real k) < e
by (simp add: norm_mult)

have x 6= u

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 149

using uwd ‹0 < d› x d by (force simp: dist_norm ball_def norm_minus_commute)
show ?thesis

using ‹k 6= 0 › ‹x 6= u› ‹u 6= w› le_less_trans [OF _ e]
by (simp add: field_simps flip: norm_divide)

qed
show ?thesis

unfolding eventually_at
apply (rule_tac x = min (d/2) ((e∗(d/2)^(k + 2))/(Suc k)) in exI)
apply (force simp: ‹d > 0 › dist_norm that simp del: power_Suc intro: ∗)
done

qed
have 2 : uniform_limit (path_image γ) (λx z. (h k x z − h k w z) / (x−w) / k)

(h (Suc k) w) (at w)
unfolding uniform_limit_iff dist_norm

proof clarify
fix e::real
assume 0 < e
have ∗: cmod ((h k x (γ u) − h k w (γ u)) / ((x−w) ∗ k) − h (Suc k) w (γ

u)) < e
if ec: cmod ((inverse (γ u − x) ^ k − inverse (γ u − w) ^ k) / ((x−w) ∗

k) −
inverse (γ u − w) ∗ inverse (γ u − w) ^ k) < e / C

and x: 0 ≤ u u ≤ 1
for x u

proof (cases (f ′ (γ u)) = 0)
case True then show ?thesis by (simp add: ‹0 < e› h_def)

next
case False
have cmod ((h k x (γ u) − h k w (γ u)) / ((x−w) ∗ k) − h (Suc k) w (γ u))

=
cmod (f ′ (γ u) ∗ ((inverse (γ u − x) ^ k − inverse (γ u − w) ^ k) /

((x−w) ∗ k) −
inverse (γ u − w) ∗ inverse (γ u − w) ^ k))

by (simp add: h_def field_simps)
also have . . . = cmod (f ′ (γ u)) ∗

cmod ((inverse (γ u − x) ^ k − inverse (γ u − w) ^ k) / ((x−w)
∗ k) −

inverse (γ u − w) ∗ inverse (γ u − w) ^ k)
by (simp add: norm_mult)

also have . . . < cmod (f ′ (γ u)) ∗ (e/C)
using False mult_strict_left_mono [OF ec] by force

also have . . . ≤ e using C
by (metis False ‹0 < e› frac_le less_eq_real_def mult.commute pos_le_divide_eq

x zero_less_norm_iff)
finally show ?thesis .

qed
show ∀ F u in at w.

∀ x∈path_image γ.
cmod ((h k u x − h k w x) / (u−w) / of_nat k − h (Suc k) w x) < e

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 150

using twom [OF divide_pos_pos [OF ‹0 < e› ‹C > 0 ›]] ∗
unfolding path_image_def h_def
by (force elim: eventually_mono)

qed
show h (Suc k) w contour_integrable_on γ

using contour_integral_uniform_limit [OF 1 2 leB γ] by (simp add: h_def)
have ∗: (λu. contour_integral γ (λx. (h k u x − h k w x) / (u−w) / k))

−w→ contour_integral γ (h (Suc k) w)
by (rule contour_integral_uniform_limit [OF 1 2 leB γ]) auto

have ∗∗: contour_integral γ (λx. (h k u x − h k w x) / ((u−w) ∗ k)) =
(f u − f w) / (u−w) / k

if dist u w < d for u
proof −

have u ∈ S − path_image γ
by (metis subsetD d dist_commute mem_ball that)

then have (h k u has_contour_integral f u) γ (h k w has_contour_integral f
w) γ

using w by (simp_all add: field_simps int)
then show ?thesis

using contour_integral_unique has_contour_integral_diff
has_contour_integral_div by force

qed
show ?thes2

unfolding has_field_derivative_iff
by (simp add: ‹k 6= 0 › ∗∗ Lim_transform_within [OF tendsto_mult_left [OF

∗] ‹0 < d›])
qed

lemma Cauchy_next_derivative_circlepath:
assumes contf : continuous_on (path_image (circlepath z r)) f

and int:
∧

w. w ∈ ball z r =⇒ ((λu. f u / (u−w)^k) has_contour_integral g
w) (circlepath z r)

and k: k 6= 0
and w: w ∈ ball z r

shows (λu. f u / (u−w)^(Suc k)) contour_integrable_on (circlepath z r)
(is ?thes1)

and (g has_field_derivative (k ∗ contour_integral (circlepath z r) (λu. f
u/(u−w)^(Suc k)))) (at w)

(is ?thes2)
proof −

have r > 0 using w
using ball_eq_empty by fastforce

have wim: w ∈ ball z r − path_image (circlepath z r)
using w by (auto simp: dist_norm)

show ?thes1 ?thes2
by (rule Cauchy_next_derivative [OF contf _ int k open_ball valid_path_circlepath

wim, where B = 2 ∗ pi ∗ |r |];
auto simp: vector_derivative_circlepath norm_mult)+

qed

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 151

In particular, the first derivative formula.
lemma Cauchy_derivative_integral_circlepath:

assumes contf : continuous_on (cball z r) f
and holf : f holomorphic_on ball z r
and w: w ∈ ball z r

shows (λu. f u/(u−w)^2) contour_integrable_on (circlepath z r)
(is ?thes1)

and (f has_field_derivative (1 / (2 ∗ of_real pi ∗ i) ∗ contour_integral(circlepath
z r) (λu. f u / (u−w)^2))) (at w)

(is ?thes2)
proof −

have [simp]: r ≥ 0 using w
using ball_eq_empty by fastforce

have f : continuous_on (path_image (circlepath z r)) f
by (rule continuous_on_subset [OF contf]) (force simp: cball_def sphere_def)

have int:
∧

w. dist z w < r =⇒
((λu. f u / (u−w)) has_contour_integral (λx. 2 ∗ of_real pi ∗ i ∗ f

x) w) (circlepath z r)
by (rule Cauchy_integral_circlepath [OF contf holf]) (simp add: dist_norm

norm_minus_commute)
show ?thes1

unfolding power2_eq_square
using int Cauchy_next_derivative_circlepath [OF f _ _ w, where k=1]
by fastforce

have ((λx. 2 ∗ of_real pi ∗ i ∗ f x) has_field_derivative contour_integral
(circlepath z r) (λu. f u / (u−w)^2)) (at w)

unfolding power2_eq_square
using int Cauchy_next_derivative_circlepath [OF f _ _ w, where k=1 and

g = λx. 2 ∗ of_real pi ∗ i ∗ f x]
by fastforce

then have fder : (f has_field_derivative contour_integral (circlepath z r) (λu. f
u / (u−w)^2) / (2 ∗ of_real pi ∗ i)) (at w)

by (rule DERIV_cdivide [where f = λx. 2 ∗ of_real pi ∗ i ∗ f x and c = 2 ∗
of_real pi ∗ i, simplified])

show ?thes2
by simp (rule fder)

qed

4.3 Existence of all higher derivatives
proposition derivative_is_holomorphic:

assumes open S
and fder :

∧
z. z ∈ S =⇒ (f has_field_derivative f ′ z) (at z)

shows f ′ holomorphic_on S
proof −

have ∗: ∃ h. (f ′ has_field_derivative h) (at z) if z ∈ S for z
proof −

obtain r where r > 0 and r : cball z r ⊆ S
using open_contains_cball ‹z ∈ S› ‹open S› by blast

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 152

then have holf_cball: f holomorphic_on cball z r
unfolding holomorphic_on_def
using field_differentiable_at_within field_differentiable_def fder by fastforce

then have continuous_on (path_image (circlepath z r)) f
using ‹r > 0 › by (force elim: holomorphic_on_subset [THEN holomor-

phic_on_imp_continuous_on])
then have contfpi: continuous_on (path_image (circlepath z r)) (λx. 1/(2 ∗

of_real pi∗i) ∗ f x)
by (auto intro: continuous_intros)+

have contf_cball: continuous_on (cball z r) f using holf_cball
by (simp add: holomorphic_on_imp_continuous_on holomorphic_on_subset)
have holf_ball: f holomorphic_on ball z r using holf_cball

using ball_subset_cball holomorphic_on_subset by blast
{ fix w assume w: w ∈ ball z r

have intf : (λu. f u / (u−w)2) contour_integrable_on circlepath z r
by (blast intro: w Cauchy_derivative_integral_circlepath [OF contf_cball

holf_ball])
have fder ′: (f has_field_derivative 1 / (2 ∗ of_real pi ∗ i) ∗ contour_integral

(circlepath z r) (λu. f u / (u−w)2))
(at w)

by (blast intro: w Cauchy_derivative_integral_circlepath [OF contf_cball
holf_ball])

have f ′_eq: f ′ w = contour_integral (circlepath z r) (λu. f u / (u−w)2) / (2
∗ of_real pi ∗ i)

using fder ′ ball_subset_cball r w by (force intro: DERIV_unique [OF fder])
have ((λu. f u / (u−w)2 / (2 ∗ of_real pi ∗ i)) has_contour_integral

contour_integral (circlepath z r) (λu. f u / (u−w)2) / (2 ∗ of_real pi
∗ i))

(circlepath z r)
by (rule has_contour_integral_div [OF has_contour_integral_integral [OF

intf]])
then have ((λu. f u / (2 ∗ of_real pi ∗ i ∗ (u−w)2)) has_contour_integral

contour_integral (circlepath z r) (λu. f u / (u−w)2) / (2 ∗ of_real pi
∗ i))

(circlepath z r)
by (simp add: algebra_simps)

then have ((λu. f u / (2 ∗ of_real pi ∗ i ∗ (u−w)2)) has_contour_integral
f ′ w) (circlepath z r)

by (simp add: f ′_eq)
} note ∗ = this
show ?thesis

using Cauchy_next_derivative_circlepath [OF contfpi, of 2 f ′] ‹0 < r› ∗
using centre_in_ball mem_ball by force

qed
show ?thesis

by (simp add: holomorphic_on_open [OF ‹open S›] ∗)
qed

lemma holomorphic_deriv [holomorphic_intros]:

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 153

[[f holomorphic_on S ; open S]] =⇒ (deriv f) holomorphic_on S
by (metis DERIV_deriv_iff_field_differentiable at_within_open derivative_is_holomorphic

holomorphic_on_def)

lemma holomorphic_deriv_compose:
assumes g: g holomorphic_on B and f : f holomorphic_on A and f ‘ A ⊆ B

open B
shows (λx. deriv g (f x)) holomorphic_on A
using holomorphic_on_compose_gen [OF f holomorphic_deriv[OF g]] assms
by (auto simp: o_def)

lemma analytic_deriv [analytic_intros]: f analytic_on S =⇒ (deriv f) analytic_on
S

using analytic_on_holomorphic holomorphic_deriv by auto

lemma holomorphic_higher_deriv [holomorphic_intros]: [[f holomorphic_on S ; open
S]] =⇒ (deriv ^^ n) f holomorphic_on S

by (induction n) (auto simp: holomorphic_deriv)

lemma analytic_higher_deriv [analytic_intros]: f analytic_on S =⇒ (deriv ^^ n)
f analytic_on S

unfolding analytic_on_def using holomorphic_higher_deriv by blast

lemma has_field_derivative_higher_deriv:
[[f holomorphic_on S ; open S ; x ∈ S]]
=⇒ ((deriv ^^ n) f has_field_derivative (deriv ^^ (Suc n)) f x) (at x)

using holomorphic_derivI holomorphic_higher_deriv by fastforce

lemma higher_deriv_cmult:
assumes f holomorphic_on A x ∈ A open A
shows (deriv ^^ j) (λx. c ∗ f x) x = c ∗ (deriv ^^ j) f x
using assms

proof (induction j arbitrary: f x)
case (Suc j f x)
have deriv ((deriv ^^ j) (λx. c ∗ f x)) x = deriv (λx. c ∗ (deriv ^^ j) f x) x

using eventually_nhds_in_open[of A x] assms(2 ,3) Suc.prems
by (intro deriv_cong_ev refl) (auto elim!: eventually_mono simp: Suc.IH)

also have . . . = c ∗ deriv ((deriv ^^ j) f) x using Suc.prems assms(2 ,3)
by (intro deriv_cmult holomorphic_on_imp_differentiable_at holomorphic_higher_deriv)

auto
finally show ?case by simp

qed simp_all

lemma higher_deriv_cmult ′:
assumes f analytic_on {x}
shows (deriv ^^ j) (λx. c ∗ f x) x = c ∗ (deriv ^^ j) f x
using assms higher_deriv_cmult[of f _ x j c] assms
using analytic_at_two by blast

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 154

lemma deriv_cmult ′:
assumes f analytic_on {x}
shows deriv (λx. c ∗ f x) x = c ∗ deriv f x
using higher_deriv_cmult ′[OF assms, of 1 c] by simp

lemma analytic_derivI :
assumes f analytic_on {z}
shows (f has_field_derivative (deriv f z)) (at z within A)
using assms holomorphic_derivI [of f _ z] analytic_at by blast

lemma deriv_compose_analytic:
fixes f g :: complex ⇒ complex
assumes f analytic_on {g z} g analytic_on {z}
shows deriv (λx. f (g x)) z = deriv f (g z) ∗ deriv g z

proof −
have ((f ◦ g) has_field_derivative (deriv f (g z) ∗ deriv g z)) (at z)

by (intro DERIV_chain analytic_derivI assms)
thus ?thesis

by (auto intro!: DERIV_imp_deriv simp add: o_def)
qed

lemma valid_path_compose_holomorphic:
assumes valid_path g f holomorphic_on S and open S path_image g ⊆ S
shows valid_path (f ◦ g)
by (meson assms holomorphic_deriv holomorphic_on_imp_continuous_on holo-

morphic_on_imp_differentiable_at
holomorphic_on_subset subsetD valid_path_compose)

lemma valid_path_compose_analytic:
assumes valid_path g and holo:f analytic_on S and path_image g ⊆ S
shows valid_path (f ◦ g)

proof (rule valid_path_compose[OF ‹valid_path g›])
fix x assume x ∈ path_image g
then show f field_differentiable at x

using analytic_on_imp_differentiable_at analytic_on_open assms holo by
blast
next

show continuous_on (path_image g) (deriv f)
by (intro holomorphic_on_imp_continuous_on analytic_imp_holomorphic an-

alytic_intros
analytic_on_subset[OF holo] assms)

qed

lemma analytic_on_deriv [analytic_intros]:
assumes f analytic_on g ‘ A
assumes g analytic_on A
shows (λx. deriv f (g x)) analytic_on A

proof −
have (deriv f ◦ g) analytic_on A

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 155

by (rule analytic_on_compose_gen[OF assms(2) analytic_deriv[OF assms(1)]])
auto

thus ?thesis
by (simp add: o_def)

qed

lemma contour_integral_comp_analyticW :
assumes f analytic_on s valid_path γ path_image γ ⊆ s
shows contour_integral (f ◦ γ) g = contour_integral γ (λw. deriv f w ∗ g (f w))

proof −
obtain spikes where finite spikes and γ_diff : γ C1_differentiable_on {0 ..1}
− spikes

using ‹valid_path γ› unfolding valid_path_def piecewise_C1_differentiable_on_def
by auto

show contour_integral (f ◦ γ) g
= contour_integral γ (λw. deriv f w ∗ g (f w))

unfolding contour_integral_integral
proof (rule integral_spike[rule_format,OF negligible_finite[OF ‹finite spikes›]])

fix t::real assume t:t ∈ {0 ..1} − spikes
then have γ differentiable at t

using γ_diff unfolding C1_differentiable_on_eq by auto
moreover have f field_differentiable at (γ t)
proof −

have γ t ∈ s using t assms unfolding path_image_def by auto
thus ?thesis

using ‹f analytic_on s› analytic_on_imp_differentiable_at by blast
qed
ultimately show deriv f (γ t) ∗ g (f (γ t)) ∗ vector_derivative γ (at t) =

g ((f ◦ γ) t) ∗ vector_derivative (f ◦ γ) (at t)
by (subst vector_derivative_chain_at_general) (simp_all add:field_simps)

qed
qed

4.4 Morera’s theorem
lemma Morera_local_triangle_ball:

assumes
∧

z. z ∈ S
=⇒ ∃ e a. 0 < e ∧ z ∈ ball a e ∧ continuous_on (ball a e) f ∧

(∀ b c. closed_segment b c ⊆ ball a e
−→ contour_integral (linepath a b) f +

contour_integral (linepath b c) f +
contour_integral (linepath c a) f = 0)

shows f analytic_on S
proof −

{ fix z assume z ∈ S
with assms obtain e a where

0 < e and z: z ∈ ball a e and contf : continuous_on (ball a e) f
and 0 :

∧
b c. closed_segment b c ⊆ ball a e
=⇒ contour_integral (linepath a b) f +

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 156

contour_integral (linepath b c) f +
contour_integral (linepath c a) f = 0

by blast
have az: dist a z < e using mem_ball z by blast
have ∃ e>0 . f holomorphic_on ball z e
proof (intro exI conjI)

show f holomorphic_on ball z (e − dist a z)
proof (rule holomorphic_on_subset)

show ball z (e − dist a z) ⊆ ball a e
by (simp add: dist_commute ball_subset_ball_iff)

have sub_ball:
∧

y. dist a y < e =⇒ closed_segment a y ⊆ ball a e
by (meson ‹0 < e› centre_in_ball convex_ball convex_contains_segment

mem_ball)
show f holomorphic_on ball a e
using triangle_contour_integrals_starlike_primitive [OF contf _ open_ball,

of a]
derivative_is_holomorphic[OF open_ball]

by (force simp add: 0 ‹0 < e› sub_ball)
qed

qed (simp add: az)
}
then show ?thesis

by (simp add: analytic_on_def)
qed

lemma Morera_local_triangle:
assumes

∧
z. z ∈ S

=⇒ ∃ t. open t ∧ z ∈ t ∧ continuous_on t f ∧
(∀ a b c. convex hull {a,b,c} ⊆ t

−→ contour_integral (linepath a b) f +
contour_integral (linepath b c) f +
contour_integral (linepath c a) f = 0)

shows f analytic_on S
proof −

{ fix z assume z ∈ S
with assms obtain t where

open t and z: z ∈ t and contf : continuous_on t f
and 0 :

∧
a b c. convex hull {a,b,c} ⊆ t
=⇒ contour_integral (linepath a b) f +

contour_integral (linepath b c) f +
contour_integral (linepath c a) f = 0

by force
then obtain e where e>0 and e: ball z e ⊆ t

using open_contains_ball by blast
have [simp]: continuous_on (ball z e) f using contf

using continuous_on_subset e by blast
have eq0 :

∧
b c. closed_segment b c ⊆ ball z e =⇒

contour_integral (linepath z b) f +
contour_integral (linepath b c) f +

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 157

contour_integral (linepath c z) f = 0
by (meson 0 z ‹0 < e› centre_in_ball closed_segment_subset convex_ball

dual_order .trans e starlike_convex_subset)
have ∃ e a. 0 < e ∧ z ∈ ball a e ∧ continuous_on (ball a e) f ∧

(∀ b c. closed_segment b c ⊆ ball a e −→
contour_integral (linepath a b) f + contour_integral (linepath b

c) f + contour_integral (linepath c a) f = 0)
using ‹e > 0 › eq0 by force

}
then show ?thesis

by (simp add: Morera_local_triangle_ball)
qed

proposition Morera_triangle:
[[continuous_on S f ; open S ;∧

a b c. convex hull {a,b,c} ⊆ S
−→ contour_integral (linepath a b) f +

contour_integral (linepath b c) f +
contour_integral (linepath c a) f = 0]]

=⇒ f analytic_on S
using Morera_local_triangle by blast

4.5 Combining theorems for higher derivatives including Leib-
niz rule

lemma higher_deriv_linear [simp]:
(deriv ^^ n) (λw. c∗w) = (λz. if n = 0 then c∗z else if n = 1 then c else 0)

by (induction n) auto

lemma higher_deriv_const [simp]: (deriv ^^ n) (λw. c) = (λw. if n=0 then c else
0)

by (induction n) auto

lemma higher_deriv_ident [simp]:
(deriv ^^ n) (λw. w) z = (if n = 0 then z else if n = 1 then 1 else 0)

proof (induction n)
case (Suc n)
then show ?case by (metis higher_deriv_linear lambda_one)

qed auto

lemma higher_deriv_id [simp]:
(deriv ^^ n) id z = (if n = 0 then z else if n = 1 then 1 else 0)

by (simp add: id_def)

lemma has_complex_derivative_funpow_1 :
[[(f has_field_derivative 1) (at z); f z = z]] =⇒ (f^^n has_field_derivative 1)

(at z)
proof (induction n)

case 0

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 158

then show ?case
by (simp add: id_def)

next
case (Suc n)
then show ?case

by (metis DERIV_chain funpow_Suc_right mult.right_neutral)
qed

lemma higher_deriv_uminus:
assumes f holomorphic_on S open S and z: z ∈ S

shows (deriv ^^ n) (λw. −(f w)) z = − ((deriv ^^ n) f z)
using z
proof (induction n arbitrary: z)

case 0 then show ?case by simp
next

case (Suc n z)
have ∗: ((deriv ^^ n) f has_field_derivative deriv ((deriv ^^ n) f) z) (at z)

using Suc.prems assms has_field_derivative_higher_deriv by auto
have

∧
x. x ∈ S =⇒ − (deriv ^^ n) f x = (deriv ^^ n) (λw. − f w) x

by (auto simp add: Suc)
then have ((deriv ^^ n) (λw. − f w) has_field_derivative − deriv ((deriv ^^ n)

f) z) (at z)
using has_field_derivative_transform_within_open [of λw. −((deriv ^^ n) f

w)]
using ∗ DERIV_minus Suc.prems ‹open S› by blast

then show ?case
by (simp add: DERIV_imp_deriv)

qed

lemma higher_deriv_add:
fixes z::complex
assumes f holomorphic_on S g holomorphic_on S open S and z: z ∈ S

shows (deriv ^^ n) (λw. f w + g w) z = (deriv ^^ n) f z + (deriv ^^ n) g z
using z
proof (induction n arbitrary: z)

case 0 then show ?case by simp
next

case (Suc n z)
have ∗: ((deriv ^^ n) f has_field_derivative deriv ((deriv ^^ n) f) z) (at z)

((deriv ^^ n) g has_field_derivative deriv ((deriv ^^ n) g) z) (at z)
using Suc.prems assms has_field_derivative_higher_deriv by auto

have
∧

x. x ∈ S =⇒ (deriv ^^ n) f x + (deriv ^^ n) g x = (deriv ^^ n) (λw. f
w + g w) x

by (auto simp add: Suc)
then have ((deriv ^^ n) (λw. f w + g w) has_field_derivative

deriv ((deriv ^^ n) f) z + deriv ((deriv ^^ n) g) z) (at z)
using has_field_derivative_transform_within_open [of λw. (deriv ^^ n) f w

+ (deriv ^^ n) g w]
using ∗ Deriv.field_differentiable_add Suc.prems ‹open S› by blast

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 159

then show ?case
by (simp add: DERIV_imp_deriv)

qed

lemma higher_deriv_diff :
fixes z::complex
assumes f holomorphic_on S g holomorphic_on S open S z ∈ S

shows (deriv ^^ n) (λw. f w − g w) z = (deriv ^^ n) f z − (deriv ^^ n) g z
unfolding diff_conv_add_uminus higher_deriv_add
using assms higher_deriv_add higher_deriv_uminus holomorphic_on_minus

by presburger

lemma Suc_choose: Suc n choose k = (n choose k) + (if k = 0 then 0 else (n
choose (k−1)))

by (cases k) simp_all

lemma higher_deriv_mult:
fixes z::complex
assumes f holomorphic_on S g holomorphic_on S open S and z: z ∈ S

shows (deriv ^^ n) (λw. f w ∗ g w) z =
(
∑

i = 0 ..n. of_nat (n choose i) ∗ (deriv ^^ i) f z ∗ (deriv ^^ (n−i)) g z)
using z
proof (induction n arbitrary: z)

case 0 then show ?case by simp
next

case (Suc n z)
have ∗:

∧
n. ((deriv ^^ n) f has_field_derivative deriv ((deriv ^^ n) f) z) (at z)∧

n. ((deriv ^^ n) g has_field_derivative deriv ((deriv ^^ n) g) z) (at z)
using Suc.prems assms has_field_derivative_higher_deriv by auto

have sumeq: (
∑

i = 0 ..n.
of_nat (n choose i) ∗ (deriv ((deriv ^^ i) f) z ∗ (deriv ^^ (n−i)) g z

+ deriv ((deriv ^^ (n−i)) g) z ∗ (deriv ^^ i) f z)) =
g z ∗ deriv ((deriv ^^ n) f) z + (

∑
i = 0 ..n. (deriv ^^ i) f z ∗ (of_nat

(Suc n choose i) ∗ (deriv ^^ (Suc n − i)) g z))
apply (simp add: Suc_choose algebra_simps sum.distrib)
apply (subst (4) sum_Suc_reindex)
apply (auto simp: algebra_simps Suc_diff_le intro: sum.cong)
done

have ((deriv ^^ n) (λw. f w ∗ g w) has_field_derivative
(
∑

i = 0 ..Suc n. (Suc n choose i) ∗ (deriv ^^ i) f z ∗ (deriv ^^ (Suc n −
i)) g z))

(at z)
apply (rule has_field_derivative_transform_within_open

[of λw. (
∑

i = 0 ..n. of_nat (n choose i) ∗ (deriv ^^ i) f w ∗ (deriv ^^
(n−i)) g w) _ _ S])

apply (simp add: algebra_simps)
apply (rule derivative_eq_intros | simp)+
apply (auto intro: DERIV_mult ∗ ‹open S› Suc.prems Suc.IH [symmetric])

by (metis (no_types, lifting) mult.commute sum.cong sumeq)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 160

then show ?case
unfolding funpow.simps o_apply
by (simp add: DERIV_imp_deriv)

qed

lemma higher_deriv_transform_within_open:
fixes z::complex
assumes f holomorphic_on S g holomorphic_on S open S and z: z ∈ S

and fg:
∧

w. w ∈ S =⇒ f w = g w
shows (deriv ^^ i) f z = (deriv ^^ i) g z

using z
by (induction i arbitrary: z)
(auto simp: fg intro: complex_derivative_transform_within_open holomorphic_higher_deriv

assms)

lemma higher_deriv_compose_linear ′:
fixes z::complex
assumes f : f holomorphic_on T and S : open S and T : open T and z: z ∈ S

and fg:
∧

w. w ∈ S =⇒ u∗w + c ∈ T
shows (deriv ^^ n) (λw. f (u∗w + c)) z = u^n ∗ (deriv ^^ n) f (u∗z + c)

using z
proof (induction n arbitrary: z)

case 0 then show ?case by simp
next

case (Suc n z)
have holo0 : f holomorphic_on (λw. u ∗ w+c) ‘ S

by (meson fg f holomorphic_on_subset image_subset_iff)
have holo2 : (deriv ^^ n) f holomorphic_on (λw. u ∗ w+c) ‘ S
by (meson f fg holomorphic_higher_deriv holomorphic_on_subset image_subset_iff

T)
have holo3 : (λz. u ^ n ∗ (deriv ^^ n) f (u ∗ z+c)) holomorphic_on S

by (intro holo2 holomorphic_on_compose [where g=(deriv ^^ n) f , unfolded
o_def] holomorphic_intros)

have (λw. u ∗ w+c) holomorphic_on S f holomorphic_on (λw. u ∗ w+c) ‘ S
by (rule holo0 holomorphic_intros)+

then have holo1 : (λw. f (u ∗ w+c)) holomorphic_on S
by (rule holomorphic_on_compose [where g=f , unfolded o_def])

have deriv ((deriv ^^ n) (λw. f (u ∗ w+c))) z = deriv (λz. u^n ∗ (deriv ^^ n)
f (u∗z+c)) z
proof (rule complex_derivative_transform_within_open [OF _ holo3 S Suc.prems])

show (deriv ^^ n) (λw. f (u ∗ w+c)) holomorphic_on S
by (rule holomorphic_higher_deriv [OF holo1 S])

qed (simp add: Suc.IH)
also have . . . = u^n ∗ deriv (λz. (deriv ^^ n) f (u ∗ z+c)) z
proof −

have (deriv ^^ n) f analytic_on T
by (simp add: analytic_on_open f holomorphic_higher_deriv T)

then have (λw. (deriv ^^ n) f (u ∗ w+c)) analytic_on S
using holomorphic_on_compose[OF _ holo2] ‹(λw. u ∗ w+c) holomor-

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 161

phic_on S›
by (simp add: S analytic_on_open o_def)

then show ?thesis
by (intro deriv_cmult analytic_on_imp_differentiable_at [OF _ Suc.prems])

qed
also have . . . = u ∗ u ^ n ∗ deriv ((deriv ^^ n) f) (u ∗ z+c)
proof −

have (deriv ^^ n) f field_differentiable at (u ∗ z+c)
using Suc.prems T f fg holomorphic_higher_deriv holomorphic_on_imp_differentiable_at

by blast
then show ?thesis

by (simp add: deriv_compose_linear ′)
qed
finally show ?case

by simp
qed

lemma higher_deriv_compose_linear :
fixes z::complex
assumes f : f holomorphic_on T and S : open S and T : open T and z: z ∈ S

and fg:
∧

w. w ∈ S =⇒ u ∗ w ∈ T
shows (deriv ^^ n) (λw. f (u ∗ w)) z = u^n ∗ (deriv ^^ n) f (u ∗ z)

using higher_deriv_compose_linear ′ [where c=0] assms by simp

lemma higher_deriv_add_at:
assumes f analytic_on {z} g analytic_on {z}

shows (deriv ^^ n) (λw. f w + g w) z = (deriv ^^ n) f z + (deriv ^^ n) g z
using analytic_at_two assms higher_deriv_add by blast

lemma higher_deriv_diff_at:
assumes f analytic_on {z} g analytic_on {z}

shows (deriv ^^ n) (λw. f w − g w) z = (deriv ^^ n) f z − (deriv ^^ n) g z
using analytic_at_two assms higher_deriv_diff by blast

lemma higher_deriv_uminus_at:
f analytic_on {z} =⇒ (deriv ^^ n) (λw. −(f w)) z = − ((deriv ^^ n) f z)

using higher_deriv_uminus by (auto simp: analytic_at)

lemma higher_deriv_mult_at:
assumes f analytic_on {z} g analytic_on {z}

shows (deriv ^^ n) (λw. f w ∗ g w) z =
(
∑

i = 0 ..n. of_nat (n choose i) ∗ (deriv ^^ i) f z ∗ (deriv ^^ (n−i)) g z)
using analytic_at_two assms higher_deriv_mult by blast

Nonexistence of isolated singularities and a stronger integral formula.
proposition no_isolated_singularity:

fixes z::complex
assumes f : continuous_on S f and holf : f holomorphic_on (S−K) and S : open

S and K : finite K

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 162

shows f holomorphic_on S
proof −

{ fix z
assume z ∈ S and cdf :

∧
x. x ∈ S − K =⇒ f field_differentiable at x

have f field_differentiable at z
proof (cases z ∈ K)

case False then show ?thesis by (blast intro: cdf ‹z ∈ S›)
next

case True
with finite_set_avoid [OF K , of z]
obtain d where d>0 and d:

∧
x. [[x∈K ; x 6= z]] =⇒ d ≤ dist z x

by blast
obtain e where e>0 and e: ball z e ⊆ S

using S ‹z ∈ S› by (force simp: open_contains_ball)
have fde: continuous_on (ball z (min d e)) f

by (metis Int_iff ball_min_Int continuous_on_subset e f subsetI)
have cont: {a,b,c} ⊆ ball z (min d e) =⇒ continuous_on (convex hull {a, b,

c}) f for a b c
by (simp add: hull_minimal continuous_on_subset [OF fde])

have fd: [[{a,b,c} ⊆ ball z (min d e); x ∈ interior (convex hull {a, b, c}) −
K]]

=⇒ f field_differentiable at x for a b c x
by (metis cdf Diff_iff Int_iff ball_min_Int subsetD convex_ball e inte-

rior_mono interior_subset subset_hull)
obtain g where

∧
w. w ∈ ball z (min d e) =⇒ (g has_field_derivative f w)

(at w within ball z (min d e))
apply (rule contour_integral_convex_primitive

[OF convex_ball fde Cauchy_theorem_triangle_cofinite [OF _
K]])

using cont fd by auto
then have f holomorphic_on ball z (min d e)

by (metis open_ball at_within_open derivative_is_holomorphic)
then show ?thesis

unfolding holomorphic_on_def
by (metis open_ball ‹0 < d› ‹0 < e› at_within_open centre_in_ball

min_less_iff_conj)
qed

}
with holf S K show ?thesis
by (simp add: holomorphic_on_open open_Diff finite_imp_closed field_differentiable_def

[symmetric])
qed

lemma no_isolated_singularity ′:
fixes z::complex
assumes f :

∧
z. z ∈ K =⇒ (f −−−→ f z) (at z within S)

and holf : f holomorphic_on (S−K) and S : open S and K : finite K
shows f holomorphic_on S

proof (rule no_isolated_singularity[OF _ assms(2−)])

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 163

have continuous_on (S−K) f
using holf holomorphic_on_imp_continuous_on by auto

then show continuous_on S f
by (metis Diff_iff K S at_within_open continuous_on_eq_continuous_at

continuous_within f finite_imp_closed open_Diff)
qed

proposition Cauchy_integral_formula_convex:
assumes S : convex S and K : finite K and contf : continuous_on S f

and fcd: (
∧

x. x ∈ interior S − K =⇒ f field_differentiable at x)
and z: z ∈ interior S and vpg: valid_path γ
and pasz: path_image γ ⊆ S − {z} and loop: pathfinish γ = pathstart γ

shows ((λw. f w / (w−z)) has_contour_integral (2∗pi ∗ i ∗ winding_number γ
z ∗ f z)) γ
proof −

have ∗:
∧

x. x ∈ interior S =⇒ f field_differentiable at x
unfolding holomorphic_on_open [symmetric] field_differentiable_def
using no_isolated_singularity [where S = interior S]

by (meson K contf continuous_on_subset fcd field_differentiable_def open_interior
has_field_derivative_at_within holomorphic_derivI holomorphic_onI inte-

rior_subset)
show ?thesis

by (rule Cauchy_integral_formula_weak [OF S finite.emptyI contf]) (use ∗
assms in auto)
qed

Formula for higher derivatives.
lemma Cauchy_has_contour_integral_higher_derivative_circlepath:

assumes contf : continuous_on (cball z r) f
and holf : f holomorphic_on ball z r
and w: w ∈ ball z r

shows ((λu. f u / (u−w) ^ (Suc k)) has_contour_integral ((2 ∗ pi ∗ i) / (fact
k) ∗ (deriv ^^ k) f w))

(circlepath z r)
using w
proof (induction k arbitrary: w)

case 0 then show ?case
using assms by (auto simp: Cauchy_integral_circlepath dist_commute dist_norm)

next
case (Suc k)
have [simp]: r > 0 using w

using ball_eq_empty by fastforce
have f : continuous_on (path_image (circlepath z r)) f

by (rule continuous_on_subset [OF contf]) (force simp: cball_def sphere_def
less_imp_le)

obtain X where X : ((λu. f u / (u−w) ^ Suc (Suc k)) has_contour_integral X)
(circlepath z r)

using Cauchy_next_derivative_circlepath(1) [OF f Suc.IH _ Suc.prems]
by (auto simp: contour_integrable_on_def)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 164

then have con: contour_integral (circlepath z r) ((λu. f u / (u−w) ^ Suc (Suc
k))) = X

by (rule contour_integral_unique)
have

∧
n. ((deriv ^^ n) f has_field_derivative deriv ((deriv ^^ n) f) w) (at w)

using Suc.prems assms has_field_derivative_higher_deriv by auto
then have dnf_diff :

∧
n. (deriv ^^ n) f field_differentiable (at w)

by (force simp: field_differentiable_def)
have deriv (λw. complex_of_real (2 ∗ pi) ∗ i / (fact k) ∗ (deriv ^^ k) f w) w =

of_nat (Suc k) ∗ contour_integral (circlepath z r) (λu. f u / (u−w) ^ Suc
(Suc k))

by (force intro!: DERIV_imp_deriv Cauchy_next_derivative_circlepath [OF f
Suc.IH _ Suc.prems])

also have . . . = of_nat (Suc k) ∗ X
by (simp only: con)

finally have deriv (λw. ((2 ∗ pi) ∗ i / (fact k)) ∗ (deriv ^^ k) f w) w = of_nat
(Suc k) ∗ X .

then have ((2 ∗ pi) ∗ i / (fact k)) ∗ deriv (λw. (deriv ^^ k) f w) w = of_nat
(Suc k) ∗ X

by (metis deriv_cmult dnf_diff)
then have deriv (λw. (deriv ^^ k) f w) w = of_nat (Suc k) ∗ X / ((2 ∗ pi) ∗ i

/ (fact k))
by (simp add: field_simps)

then show ?case
using of_nat_eq_0_iff X by fastforce

qed

lemma Cauchy_higher_derivative_integral_circlepath:
assumes contf : continuous_on (cball z r) f

and holf : f holomorphic_on ball z r
and w: w ∈ ball z r

shows (λu. f u / (u−w)^(Suc k)) contour_integrable_on (circlepath z r)
(is ?thes1)

and (deriv ^^ k) f w = (fact k) / (2 ∗ pi ∗ i) ∗ contour_integral(circlepath z
r) (λu. f u/(u−w)^(Suc k))

(is ?thes2)
proof −

have ∗: ((λu. f u / (u−w) ^ Suc k) has_contour_integral (2 ∗ pi) ∗ i / (fact k)
∗ (deriv ^^ k) f w)

(circlepath z r)
using Cauchy_has_contour_integral_higher_derivative_circlepath [OF assms]
by simp

show ?thes1 using ∗
using contour_integrable_on_def by blast

show ?thes2
unfolding contour_integral_unique [OF ∗] by (simp add: field_split_simps)

qed

corollary Cauchy_contour_integral_circlepath:
assumes continuous_on (cball z r) f f holomorphic_on ball z r w ∈ ball z r

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 165

shows contour_integral(circlepath z r) (λu. f u/(u−w)^(Suc k)) = (2 ∗ pi ∗ i)
∗ (deriv ^^ k) f w / (fact k)

by (simp add: Cauchy_higher_derivative_integral_circlepath [OF assms])

lemma Cauchy_contour_integral_circlepath_2 :
assumes continuous_on (cball z r) f f holomorphic_on ball z r w ∈ ball z r

shows contour_integral(circlepath z r) (λu. f u/(u−w)^2) = (2 ∗ pi ∗ i) ∗
deriv f w

using Cauchy_contour_integral_circlepath [OF assms, of 1]
by (simp add: power2_eq_square)

4.6 A holomorphic function is analytic, i.e. has local power
series

theorem holomorphic_power_series:
assumes holf : f holomorphic_on ball z r

and w: w ∈ ball z r
shows ((λn. (deriv ^^ n) f z / (fact n) ∗ (w−z)^n) sums f w)

proof −
— Replacing r and the original (weak) premises with stronger ones
obtain r where r > 0 and holfc: f holomorphic_on cball z r and w: w ∈ ball

z r
proof

have cball z ((r + dist w z) / 2) ⊆ ball z r
using w by (simp add: dist_commute field_sum_of_halves subset_eq)

then show f holomorphic_on cball z ((r + dist w z) / 2)
by (rule holomorphic_on_subset [OF holf])

have r > 0
by (metis w dist_norm mem_ball norm_ge_zero not_less_iff_gr_or_eq

order_less_le_trans)
then show 0 < (r + dist w z) / 2

by simp (use zero_le_dist [of w z] in linarith)
qed (use w in ‹auto simp: dist_commute›)
then have holf : f holomorphic_on ball z r

using ball_subset_cball holomorphic_on_subset by blast
have contf : continuous_on (cball z r) f

by (simp add: holfc holomorphic_on_imp_continuous_on)
have cint:

∧
k. (λu. f u / (u−z) ^ Suc k) contour_integrable_on circlepath z r

by (rule Cauchy_higher_derivative_integral_circlepath [OF contf holf]) (simp
add: ‹0 < r›)

obtain B where 0 < B and B:
∧

u. u ∈ cball z r =⇒ norm(f u) ≤ B
by (metis (no_types) bounded_pos compact_cball compact_continuous_image

compact_imp_bounded contf image_eqI)
obtain k where k: 0 < k k ≤ r and wz_eq: norm(w−z) = r − k

and kle:
∧

u. norm(u−z) = r =⇒ k ≤ norm(u−w)
proof

show
∧

u. cmod (u−z) = r =⇒ r − dist z w ≤ cmod (u−w)
by (metis add_diff_eq diff_add_cancel dist_norm norm_diff_ineq)

qed (use w in ‹auto simp: dist_norm norm_minus_commute›)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 166

have ul: uniform_limit (sphere z r) (λn x. (
∑

k<n. (w−z) ^ k ∗ (f x / (x−z) ^
Suc k))) (λx. f x / (x−w)) sequentially

unfolding uniform_limit_iff dist_norm
proof clarify

fix e::real
assume 0 < e
have rr : 0 ≤ (r−k) / r (r−k) / r < 1 using k by auto
obtain n where n: ((r−k) / r) ^ n < e / B ∗ k

using real_arch_pow_inv [of e/B∗k (r−k)/r] ‹0 < e› ‹0 < B› k by force
have norm ((

∑
k<N . (w−z) ^ k ∗ f u / (u−z) ^ Suc k) − f u / (u−w)) < e

if n ≤ N and r : r = dist z u for N u
proof −

have N : ((r−k) / r) ^ N < e / B ∗ k
using le_less_trans [OF power_decreasing n]
using ‹n ≤ N › k by auto

have u [simp]: (u 6= z) ∧ (u 6= w)
using ‹0 < r› r w by auto

have wzu_not1 : (w−z) / (u−z) 6= 1
by (metis (no_types) dist_norm divide_eq_1_iff less_irrefl mem_ball

norm_minus_commute r w)
have norm ((

∑
k<N . (w−z) ^ k ∗ f u / (u−z) ^ Suc k) ∗ (u−w) − f u)

= norm ((
∑

k<N . (((w−z) / (u−z)) ^ k)) ∗ f u ∗ (u−w) / (u−z) − f u)
unfolding sum_distrib_right sum_divide_distrib power_divide by (simp

add: algebra_simps)
also have . . . = norm ((((w−z) / (u−z)) ^ N − 1) ∗ (u−w) / (((w−z) /

(u−z) − 1) ∗ (u−z)) − 1) ∗ norm (f u)
using ‹0 < B›
apply (simp add: geometric_sum [OF wzu_not1] flip: norm_mult)
apply (simp add: field_simps)
done

also have . . . = norm ((u−z) ^ N ∗ (w−u) − ((w−z) ^ N − (u−z) ^ N) ∗
(u−w)) / (r ^ N ∗ norm (u−w)) ∗ norm (f u)

using ‹0 < r› r by (simp add: divide_simps norm_mult norm_divide
norm_power dist_norm norm_minus_commute)

also have . . . = norm ((w−z) ^ N ∗ (w−u)) / (r ^ N ∗ norm (u−w)) ∗
norm (f u)

by (simp add: algebra_simps)
also have . . . = norm (w−z) ^ N ∗ norm (f u) / r ^ N

by (simp add: norm_mult norm_power norm_minus_commute)
also have . . . ≤ (((r−k)/r)^N) ∗ B

using ‹0 < r› w k
by (simp add: B divide_simps mult_mono r wz_eq)

also have . . . < e ∗ k
using ‹0 < B› N by (simp add: divide_simps)

also have . . . ≤ e ∗ norm (u−w)
using r kle ‹0 < e› by (simp add: dist_commute dist_norm)

finally show ?thesis
by (simp add: field_split_simps norm_divide del: power_Suc)

qed

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 167

with ‹0 < r› show ∀ F n in sequentially. ∀ x∈sphere z r .
norm ((

∑
k<n. (w−z) ^ k ∗ (f x / (x−z) ^ Suc k)) − f x / (x−w))

< e
by (auto simp: mult_ac less_imp_le eventually_sequentially Ball_def)

qed
have §:

∧
x k. k∈ {..<x} =⇒

(λu. (w−z) ^ k ∗ (f u / (u−z) ^ Suc k)) contour_integrable_on circlepath
z r

using contour_integrable_lmul [OF cint, of (w−z) ^ a for a] by (simp add:
field_simps)

have eq:
∧

n.
(
∑

k<n. contour_integral (circlepath z r) (λu. f u / (u−z) ^ Suc k) ∗
(w−z) ^ k) =

contour_integral (circlepath z r) (λu.
∑

k<n. (w−z) ^ k ∗ (f u / (u−z)
^ Suc k))

apply (subst contour_integral_sum)
apply (simp_all only: § finite_lessThan contour_integral_lmul cint alge-

bra_simps)
done

have
∧

u k. k ∈ {..<u} =⇒ (λx. f x / (x−z) ^ Suc k) contour_integrable_on
circlepath z r

using ‹0 < r› by (force intro!: Cauchy_higher_derivative_integral_circlepath
[OF contf holf])
then have

∧
u. (λy.

∑
k<u. (w−z) ^ k ∗ (f y / (y−z) ^ Suc k)) contour_integrable_on

circlepath z r
by (intro contour_integrable_sum contour_integrable_lmul, simp)

then have (λk. contour_integral (circlepath z r) (λu. f u/(u−z)^(Suc k)) ∗
(w−z)^k)

sums contour_integral (circlepath z r) (λu. f u/(u−w))
unfolding sums_def eq
using ‹0 < r› contour_integral_uniform_limit_circlepath [OF eventuallyI ul]

by fastforce
then have (λk. contour_integral (circlepath z r) (λu. f u/(u−z)^(Suc k)) ∗

(w−z)^k)
sums (2 ∗ of_real pi ∗ i ∗ f w)

using w by (auto simp: dist_commute dist_norm contour_integral_unique [OF
Cauchy_integral_circlepath_simple [OF holfc]])

then have (λk. contour_integral (circlepath z r) (λu. f u / (u−z) ^ Suc k) ∗
(w−z)^k / (i ∗ (of_real pi ∗ 2)))

sums ((2 ∗ of_real pi ∗ i ∗ f w) / (i ∗ (complex_of_real pi ∗ 2)))
by (rule sums_divide)

then have (λn. (w−z) ^ n ∗ contour_integral (circlepath z r) (λu. f u / (u−z)
^ Suc n) / (i ∗ (of_real pi ∗ 2)))

sums f w
by (simp add: field_simps)

then show ?thesis
by (simp add: field_simps ‹0 < r› Cauchy_higher_derivative_integral_circlepath

[OF contf holf])

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 168

qed

4.7 The Liouville theorem and the Fundamental Theorem of
Algebra

These weak Liouville versions don’t even need the derivative formula.
lemma Liouville_weak_0 :

assumes holf : f holomorphic_on UNIV and inf : (f −−−→ 0) at_infinity
shows f z = 0

proof (rule ccontr)
assume fz: f z 6= 0
with inf [unfolded Lim_at_infinity, rule_format, of norm(f z)/2]
obtain B where B:

∧
x. B ≤ cmod x =⇒ norm (f x) ∗ 2 < cmod (f z)

by (auto simp: dist_norm)
define R where R = 1 + |B| + norm z
have R > 0

unfolding R_def by (smt (verit) norm_ge_zero)
have ∗: ((λu. f u / (u−z)) has_contour_integral 2 ∗ complex_of_real pi ∗ i ∗ f

z) (circlepath z R)
using continuous_on_subset holf holomorphic_on_subset ‹0 < R›

by (force intro: holomorphic_on_imp_continuous_on Cauchy_integral_circlepath)
have cmod (x−z) = R =⇒ cmod (f x) ∗ 2 < cmod (f z) for x

unfolding R_def by (rule B) (use norm_triangle_ineq4 [of x z] in auto)
with ‹R > 0 › fz show False

using has_contour_integral_bound_circlepath [OF ∗, of norm(f z)/2/R]
by (auto simp: less_imp_le norm_mult norm_divide field_split_simps)

qed

proposition Liouville_weak:
assumes f holomorphic_on UNIV and (f −−−→ l) at_infinity

shows f z = l
using Liouville_weak_0 [of λz. f z − l]
by (simp add: assms holomorphic_on_diff LIM_zero)

proposition Liouville_weak_inverse:
assumes f holomorphic_on UNIV and unbounded:

∧
B. eventually (λx. norm

(f x) ≥ B) at_infinity
obtains z where f z = 0

proof −
{ assume f :

∧
z. f z 6= 0

have 1 : (λx. 1 / f x) holomorphic_on UNIV
by (simp add: holomorphic_on_divide assms f)

have 2 : ((λx. 1 / f x) −−−→ 0) at_infinity
proof (rule tendstoI [OF eventually_mono])

fix e::real
assume e > 0
show eventually (λx. 2/e ≤ cmod (f x)) at_infinity

by (rule_tac B=2/e in unbounded)
qed (simp add: dist_norm norm_divide field_split_simps)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 169

have False
using Liouville_weak_0 [OF 1 2] f by simp

}
then show ?thesis

using that by blast
qed

In particular we get the Fundamental Theorem of Algebra.
theorem fundamental_theorem_of_algebra:

fixes a :: nat ⇒ complex
assumes a 0 = 0 ∨ (∃ i ∈ {1 ..n}. a i 6= 0)
obtains z where (

∑
i≤n. a i ∗ z^i) = 0

using assms
proof (elim disjE bexE)

assume a 0 = 0 then show ?thesis
by (auto simp: that [of 0])

next
fix i
assume i: i ∈ {1 ..n} and nz: a i 6= 0
have 1 : (λz.

∑
i≤n. a i ∗ z^i) holomorphic_on UNIV

by (rule holomorphic_intros)+
show thesis
proof (rule Liouville_weak_inverse [OF 1])

show ∀ F x in at_infinity. B ≤ cmod (
∑

i≤n. a i ∗ x ^ i) for B
using i nz by (intro polyfun_extremal exI [of _ i]) auto

qed (use that in auto)
qed

4.8 Weierstrass convergence theorem
lemma holomorphic_uniform_limit:

assumes cont: eventually (λn. continuous_on (cball z r) (f n) ∧ (f n) holomor-
phic_on ball z r) F

and ulim: uniform_limit (cball z r) f g F
and F : ¬ trivial_limit F

obtains continuous_on (cball z r) g g holomorphic_on ball z r
proof (cases r 0 ::real rule: linorder_cases)

case less then show ?thesis by (force simp: ball_empty less_imp_le continu-
ous_on_def holomorphic_on_def intro: that)
next

case equal then show ?thesis
by (force simp: holomorphic_on_def intro: that)

next
case greater
have contg: continuous_on (cball z r) g

using cont uniform_limit_theorem [OF eventually_mono ulim F] by blast
have path_image (circlepath z r) ⊆ cball z r

using ‹0 < r› by auto
then have 1 : continuous_on (path_image (circlepath z r)) (λx. 1 / (2 ∗ com-

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 170

plex_of_real pi ∗ i) ∗ g x)
by (intro continuous_intros continuous_on_subset [OF contg])

have 2 : ((λu. 1 / (2 ∗ of_real pi ∗ i) ∗ g u / (u−w) ^ 1) has_contour_integral
g w) (circlepath z r)

if w: w ∈ ball z r for w
proof −

define d where d = (r − norm(w−z))
have 0 < d d ≤ r using w by (auto simp: norm_minus_commute d_def

dist_norm)
have dle:

∧
u. cmod (z−u) = r =⇒ d ≤ cmod (u−w)

unfolding d_def by (metis add_diff_eq diff_add_cancel norm_diff_ineq
norm_minus_commute)

have ev_int: ∀ F n in F . (λu. f n u / (u−w)) contour_integrable_on circlepath
z r

using w
by (auto intro: eventually_mono [OF cont] Cauchy_higher_derivative_integral_circlepath

[where k=0 , simplified])
have

∧
e. [[0 < r ; 0 < d; 0 < e]]

=⇒ ∀ F n in F .
∀ x∈sphere z r .

x 6= w −→
cmod (f n x − g x) < e ∗ cmod (x−w)

apply (rule_tac e1=e ∗ d in eventually_mono [OF uniform_limitD [OF
ulim]])

apply (force simp: dist_norm intro: dle mult_left_mono less_le_trans)+
done

then have ul_less: uniform_limit (sphere z r) (λn x. f n x / (x−w)) (λx. g x
/ (x−w)) F

using greater ‹0 < d›
by (auto simp add: uniform_limit_iff dist_norm norm_divide diff_divide_distrib

[symmetric] divide_simps)
have g_cint: (λu. g u/(u−w)) contour_integrable_on circlepath z r
by (rule contour_integral_uniform_limit_circlepath [OF ev_int ul_less F ‹0

< r›])
have cif_tends_cig: ((λn. contour_integral(circlepath z r) (λu. f n u / (u−w)))

−−−→ contour_integral(circlepath z r) (λu. g u/(u−w))) F
by (rule contour_integral_uniform_limit_circlepath [OF ev_int ul_less F ‹0

< r›])
have f_tends_cig: ((λn. 2 ∗ of_real pi ∗ i ∗ f n w) −−−→ contour_integral

(circlepath z r) (λu. g u / (u−w))) F
proof (rule Lim_transform_eventually)

show ∀ F x in F . contour_integral (circlepath z r) (λu. f x u / (u−w))
= 2 ∗ of_real pi ∗ i ∗ f x w

using w‹0 < d› d_def
by (auto intro: eventually_mono [OF cont contour_integral_unique [OF

Cauchy_integral_circlepath]])
qed (auto simp: cif_tends_cig)
have

∧
e. 0 < e =⇒ ∀ F n in F . dist (f n w) (g w) < e

by (rule eventually_mono [OF uniform_limitD [OF ulim]]) (use w in auto)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 171

then have ((λn. 2 ∗ of_real pi ∗ i ∗ f n w) −−−→ 2 ∗ of_real pi ∗ i ∗ g w) F
by (rule tendsto_mult_left [OF tendstoI])

then have ((λu. g u / (u−w)) has_contour_integral 2 ∗ of_real pi ∗ i ∗ g w)
(circlepath z r)

using has_contour_integral_integral [OF g_cint] tendsto_unique [OF F
f_tends_cig] w

by fastforce
then have ((λu. g u / (2 ∗ of_real pi ∗ i ∗ (u−w))) has_contour_integral g

w) (circlepath z r)
using has_contour_integral_div [where c = 2 ∗ of_real pi ∗ i]
by (force simp: field_simps)

then show ?thesis
by (simp add: dist_norm)

qed
show ?thesis

using Cauchy_next_derivative_circlepath(2) [OF 1 2 , simplified]
by (fastforce simp add: holomorphic_on_open contg intro: that)

qed

lemma higher_deriv_complex_uniform_limit:
assumes ulim: uniform_limit A f g F

and f_holo: eventually (λn. f n holomorphic_on A) F
and F : F 6= bot
and A: open A z ∈ A

shows ((λn. (deriv ^^ m) (f n) z) −−−→ (deriv ^^ m) g z) F
proof −

obtain r where r : r > 0 cball z r ⊆ A
using A by (meson open_contains_cball)

have r ′: ball z r ⊆ A
using r by auto

define h where h = (λn z. f n z − g z)
define c where c = of_real (2∗pi) ∗ i / fact m
have [simp]: c 6= 0

by (simp add: c_def)
have g holomorphic_on ball z r ∧ continuous_on (cball z r) g
proof (rule holomorphic_uniform_limit)

show uniform_limit (cball z r) f g F
by (rule uniform_limit_on_subset[OF ulim r(2)])

show ∀ F n in F . continuous_on (cball z r) (f n) ∧ f n holomorphic_on ball z
r using f_holo

by eventually_elim
(use holomorphic_on_subset[OF _ r(2)] holomorphic_on_subset[OF _ r ′]

in ‹auto intro!: holomorphic_on_imp_continuous_on›)
qed (use F in auto)
hence g_holo: g holomorphic_on ball z r and g_cont: continuous_on (cball z

r) g
by blast+

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 172

have ulim ′: uniform_limit (sphere z r) (λn x. h n x / (x − z) ^ (Suc m)) (λ_.
0) F

proof −
have uniform_limit (sphere z r) (λn x. f n x / (x − z) ^ Suc m) (λx. g x / (x

− z) ^ Suc m) F
proof (intro uniform_lim_divide uniform_limit_intros uniform_limit_on_subset[OF

ulim])
have compact (g ‘ sphere z r)

by (intro compact_continuous_image continuous_on_subset[OF g_cont])
auto

thus bounded (g ‘ sphere z r)
by (rule compact_imp_bounded)

show r ^ Suc m ≤ norm ((x − z) ^ Suc m) if x ∈ sphere z r for x unfolding
norm_power

by (intro power_mono) (use that r(1) in ‹auto simp: dist_norm norm_minus_commute›)
qed (use r in auto)
hence uniform_limit (sphere z r) (λn x. f n x / (x − z) ^ Suc m − g x / (x

− z) ^ Suc m)
(λx. g x / (x − z) ^ Suc m − g x / (x − z) ^ Suc m) F

by (intro uniform_limit_intros)
thus ?thesis

by (simp add: h_def diff_divide_distrib)
qed

have has_integral: eventually (λn. ((λu. h n u / (u − z) ^ Suc m) has_contour_integral

c ∗ (deriv ^^ m) (h n) z) (circlepath z r)) F
using f_holo

proof eventually_elim
case (elim n)
show ?case

unfolding c_def
proof (rule Cauchy_has_contour_integral_higher_derivative_circlepath)

show continuous_on (cball z r) (h n) unfolding h_def
by (intro continuous_intros g_cont holomorphic_on_imp_continuous_on

holomorphic_on_subset[OF elim] r)
show h n holomorphic_on ball z r
unfolding h_def by (intro holomorphic_intros g_holo holomorphic_on_subset[OF

elim] r ′)
qed (use r(1) in auto)

qed

have ((λn. contour_integral (circlepath z r) (λu. h n u / (u − z) ^ Suc m))
−−−→

contour_integral (circlepath z r) (λu. 0 / (u − z) ^ Suc m)) F
proof (rule contour_integral_uniform_limit_circlepath)

show ∀ F n in F . (λu. h n u / (u − z) ^ Suc m) contour_integrable_on
circlepath z r

using has_integral by eventually_elim (blast intro: has_contour_integral_integrable)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 173

qed (use r(1) ‹F 6= bot› ulim ′ in simp_all)
hence ((λn. contour_integral (circlepath z r) (λu. h n u / (u − z) ^ Suc m))
−−−→ 0) F

by simp
also have ?this ←→ ((λn. c ∗ (deriv ^^ m) (h n) z) −−−→ 0) F
proof (rule tendsto_cong)

show ∀ F x in F . contour_integral (circlepath z r) (λu. h x u / (u − z) ^ Suc
m) =

c ∗ (deriv ^^ m) (h x) z
using has_integral by eventually_elim (simp add: contour_integral_unique)

qed
finally have ((λn. (deriv ^^ m) g z + c ∗ (deriv ^^ m) (h n) z / c) −−−→

(deriv ^^ m) g z + 0 / c) F
by (intro tendsto_intros) auto

also have ?this ←→ ((λn. (deriv ^^ m) (f n) z) −−−→ (deriv ^^ m) g z) F
proof (intro filterlim_cong)

show ∀ F n in F . (deriv ^^ m) g z + c ∗ (deriv ^^ m) (h n) z / c = (deriv ^^
m) (f n) z

using f_holo
proof eventually_elim

case (elim n)
have (deriv ^^ m) (h n) z = (deriv ^^ m) (f n) z − (deriv ^^ m) g z

unfolding h_def
by (rule higher_deriv_diff holomorphic_on_subset[OF elim r ′] g_holo A)+

(use r(1) in auto)
thus ?case

by simp
qed

qed auto
finally show ?thesis .

qed

lemma deriv_complex_uniform_limit:
assumes ulim: uniform_limit A f g F

and f_holo: eventually (λn. f n holomorphic_on A) F
and F : F 6= bot
and A: open A z ∈ A

shows ((λn. deriv (f n) z) −−−→ deriv g z) F
using higher_deriv_complex_uniform_limit[OF assms, of 1] by simp

lemma logderiv_prodinf_complex_uniform_limit:
fixes f :: nat ⇒ complex ⇒ complex
assumes lim: uniform_limit A (λn x.

∏
k<n. f k x) P sequentially

assumes holo:
∧

k. f k holomorphic_on A
assumes nz: P z 6= 0
assumes A: open A z ∈ A
shows (λk. deriv (f k) z / f k z) sums (deriv P z / P z)

proof −
define f ′ where f ′ = (λk. deriv (f k))

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 174

note [derivative_intros] = has_field_derivative_prod ′

have [derivative_intros]:
(f k has_field_derivative f ′ k z) (at z within B) if z ∈ A for B z k
using that holomorphic_derivI [OF holo[of k], of z B] A unfolding f ′_def by

auto
have lim ′: (λn.

∏
k<n. f k z) −−−−→ P z

using lim by (rule tendsto_uniform_limitI) fact+

have nz ′: f k z 6= 0 for k
proof

assume f k z = 0
have eventually (λn. (

∏
k<n. f k z) = 0) sequentially

using eventually_gt_at_top[of k] by eventually_elim (use ‹f k z = 0 › in
auto)

hence (λn. (
∏

k<n. f k z)) −−−−→ 0
by (rule tendsto_eventually)

with lim ′ have P z = 0
using tendsto_unique sequentially_bot by blast

with nz show False
by simp

qed

from lim have (λn. deriv (λx.
∏

k<n. f k x) z) −−−−→ deriv P z
by (rule deriv_complex_uniform_limit)

(use A in ‹auto intro!: always_eventually holomorphic_intros holo›)
also have (λn. deriv (λx.

∏
k<n. f k x) z) = (λn. (

∏
k<n. f k z) ∗ (

∑
k<n. f ′

k z / f k z))
using ‹z ∈ A› by (auto intro!: ext DERIV_imp_deriv derivative_eq_intros

simp: nz ′)
finally have (λn. (

∏
k<n. f k z) ∗ (

∑
k<n. f ′ k z / f k z)) −−−−→ deriv P z .

hence (λn. (
∏

k<n. f k z) ∗ (
∑

k<n. f ′ k z / f k z) / (
∏

k<n. f k z)) −−−−→
deriv P z / P z

by (intro tendsto_intros) (use nz lim ′ in auto)
also have (λn. (

∏
k<n. f k z) ∗ (

∑
k<n. f ′ k z / f k z) / (

∏
k<n. f k z)) =

(λn. (
∑

k<n. f ′ k z / f k z))
by (simp add: nz ′)

finally show (λk. f ′ k z / f k z) sums (deriv P z / P z)
unfolding sums_def .

qed

Version showing that the limit is the limit of the derivatives.
proposition has_complex_derivative_uniform_limit:

fixes z::complex
assumes cont: eventually (λn. continuous_on (cball z r) (f n) ∧

(∀w ∈ ball z r . ((f n) has_field_derivative (f ′ n w)) (at
w))) F

and ulim: uniform_limit (cball z r) f g F
and F : ¬ trivial_limit F and 0 < r

obtains g ′ where

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 175

continuous_on (cball z r) g∧
w. w ∈ ball z r =⇒ (g has_field_derivative (g ′ w)) (at w) ∧ ((λn. f ′ n w)

−−−→ g ′ w) F
proof −

let ?conint = contour_integral (circlepath z r)
have g: continuous_on (cball z r) g g holomorphic_on ball z r

by (rule holomorphic_uniform_limit [OF eventually_mono [OF cont] ulim F];
auto simp: holomorphic_on_open field_differentiable_def)+

then obtain g ′ where g ′:
∧

x. x ∈ ball z r =⇒ (g has_field_derivative g ′ x) (at
x)

using DERIV_deriv_iff_has_field_derivative
by (fastforce simp add: holomorphic_on_open)

then have derg:
∧

x. x ∈ ball z r =⇒ deriv g x = g ′ x
by (simp add: DERIV_imp_deriv)

have tends_f ′n_g ′: ((λn. f ′ n w) −−−→ g ′ w) F if w: w ∈ ball z r for w
proof −

have eq_f ′: ?conint (λx. f n x / (x−w)2) − ?conint (λx. g x / (x−w)2) = (f ′

n w − g ′ w) ∗ (2 ∗ of_real pi ∗ i)
if cont_fn: continuous_on (cball z r) (f n)
and fnd:

∧
w. w ∈ ball z r =⇒ (f n has_field_derivative f ′ n w) (at w)

for n
proof −

have hol_fn: f n holomorphic_on ball z r
using fnd by (force simp: holomorphic_on_open)

have (f n has_field_derivative 1 / (2 ∗ of_real pi ∗ i) ∗ ?conint (λu. f n u
/ (u−w)2)) (at w)

by (rule Cauchy_derivative_integral_circlepath [OF cont_fn hol_fn w])
then have f ′: f ′ n w = 1 / (2 ∗ of_real pi ∗ i) ∗ ?conint (λu. f n u / (u−w)2)

using DERIV_unique [OF fnd] w by blast
show ?thesis
by (simp add: f ′ Cauchy_contour_integral_circlepath_2 [OF g w] derg [OF

w] field_split_simps)
qed
define d where d = (r − norm(w−z))^2
have d > 0

using w by (simp add: dist_commute dist_norm d_def)
have dle: d ≤ cmod ((y−w)2) if r = cmod (z−y) for y
by (smt (verit, best) d_def diff_add_cancel diff_diff_eq2 dist_norm mem_ball

norm_minus_commute norm_power norm_triangle_ineq2 power_mono
that w)

have 1 : ∀ F n in F . (λx. f n x / (x−w)2) contour_integrable_on circlepath z r
by (force simp: holomorphic_on_open intro: w Cauchy_derivative_integral_circlepath

eventually_mono [OF cont])
have 2 : uniform_limit (sphere z r) (λn x. f n x / (x−w)2) (λx. g x / (x−w)2)

F
unfolding uniform_limit_iff

proof clarify
fix e::real
assume e > 0

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 176

with ‹r > 0 ›
have ∀ F n in F . ∀ x. x 6= w −→ cmod (z−x) = r −→ cmod (f n x − g x) <

e ∗ cmod ((x−w)2)
by (force simp: ‹0 < d› dist_norm dle intro: less_le_trans eventually_mono

[OF uniform_limitD [OF ulim], of e∗d])
with ‹r > 0 › ‹e > 0 ›
show ∀ F n in F . ∀ x∈sphere z r . dist (f n x / (x−w)2) (g x / (x−w)2) < e

by (simp add: norm_divide field_split_simps sphere_def dist_norm)
qed
have ((λn. contour_integral (circlepath z r) (λx. f n x / (x−w)2))

−−−→ contour_integral (circlepath z r) ((λx. g x / (x−w)2))) F
by (rule contour_integral_uniform_limit_circlepath [OF 1 2 F ‹0 < r›])

then have tendsto_0 : ((λn. 1 / (2 ∗ of_real pi ∗ i) ∗ (?conint (λx. f n x /
(x−w)2) − ?conint (λx. g x / (x−w)2))) −−−→ 0) F

using Lim_null by (force intro!: tendsto_mult_right_zero)
have ((λn. f ′ n w − g ′ w) −−−→ 0) F

by (force simp: divide_simps
intro: eq_f ′ eventually_mono [OF cont] Lim_transform_eventually [OF

tendsto_0])
then show ?thesis using Lim_null by blast

qed
obtain g ′ where

∧
w. w ∈ ball z r =⇒ (g has_field_derivative (g ′ w)) (at w) ∧

((λn. f ′ n w) −−−→ g ′ w) F
by (blast intro: tends_f ′n_g ′ g ′)

then show ?thesis using g
using that by blast

qed

4.9 Some more simple/convenient versions for applications
lemma holomorphic_uniform_sequence:

assumes S : open S
and hol_fn:

∧
n. (f n) holomorphic_on S

and ulim_g:
∧

x. x ∈ S =⇒ ∃ d. 0 < d ∧ cball x d ⊆ S ∧ uniform_limit
(cball x d) f g sequentially

shows g holomorphic_on S
proof −

have ∃ f ′. (g has_field_derivative f ′) (at z) if z ∈ S for z
proof −

obtain r where 0 < r and r : cball z r ⊆ S
and ul: uniform_limit (cball z r) f g sequentially

using ulim_g [OF ‹z ∈ S›] by blast
have ∗: ∀ F n in sequentially. continuous_on (cball z r) (f n) ∧ f n holomor-

phic_on ball z r
by (smt (verit, best) ball_subset_cball hol_fn holomorphic_on_imp_continuous_on

holomorphic_on_subset not_eventuallyD r)
show ?thesis

using ‹0 < r› centre_in_ball ul

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 177

by (auto simp: holomorphic_on_open intro: holomorphic_uniform_limit [OF
∗])

qed
with S show ?thesis

by (simp add: holomorphic_on_open)
qed

lemma has_complex_derivative_uniform_sequence:
fixes S :: complex set
assumes S : open S

and hfd:
∧

n x. x ∈ S =⇒ ((f n) has_field_derivative f ′ n x) (at x)
and ulim_g:

∧
x. x ∈ S

=⇒ ∃ d. 0 < d ∧ cball x d ⊆ S ∧ uniform_limit (cball x d) f g sequentially
shows ∃ g ′. ∀ x ∈ S . (g has_field_derivative g ′ x) (at x) ∧ ((λn. f ′ n x) −−−→

g ′ x) sequentially
proof −

have y: ∃ y. (g has_field_derivative y) (at z) ∧ (λn. f ′ n z) −−−−→ y if z ∈ S
for z

proof −
obtain r where 0 < r and r : cball z r ⊆ S

and ul: uniform_limit (cball z r) f g sequentially
using ulim_g [OF ‹z ∈ S›] by blast

have ∗: ∀ F n in sequentially. continuous_on (cball z r) (f n) ∧
(∀w ∈ ball z r . ((f n) has_field_derivative (f ′ n w))

(at w))
proof (intro eventuallyI conjI ballI)

show continuous_on (cball z r) (f x) for x
by (meson S continuous_on_subset hfd holomorphic_on_imp_continuous_on

holomorphic_on_open r)
show w ∈ ball z r =⇒ (f x has_field_derivative f ′ x w) (at w) for w x

using ball_subset_cball hfd r by blast
qed
show ?thesis

by (rule has_complex_derivative_uniform_limit [OF ∗, of g]) (use ‹0 < r›
ul in ‹force+›)

qed
show ?thesis

by (rule bchoice) (blast intro: y)
qed

4.10 On analytic functions defined by a series
lemma series_and_derivative_comparison:

fixes S :: complex set
assumes S : open S

and h: summable h
and hfd:

∧
n x. x ∈ S =⇒ (f n has_field_derivative f ′ n x) (at x)

and to_g: ∀ F n in sequentially. ∀ x∈S . norm (f n x) ≤ h n
obtains g g ′ where ∀ x ∈ S . ((λn. f n x) sums g x) ∧ ((λn. f ′ n x) sums g ′ x)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 178

∧ (g has_field_derivative g ′ x) (at x)
proof −

obtain g where g: uniform_limit S (λn x.
∑

i<n. f i x) g sequentially
using Weierstrass_m_test_ev [OF to_g h] by force

have ∗: ∃ d>0 . cball x d ⊆ S ∧ uniform_limit (cball x d) (λn x.
∑

i<n. f i x)
g sequentially

if x ∈ S for x
using open_contains_cball [of S] ‹x ∈ S› S g uniform_limit_on_subset by

blast
have

∧
x. x ∈ S =⇒ (λn.

∑
i<n. f i x) −−−−→ g x

by (metis tendsto_uniform_limitI [OF g])
moreover have ∃ g ′. ∀ x∈S . (g has_field_derivative g ′ x) (at x) ∧ (λn.

∑
i<n.

f ′ i x) −−−−→ g ′ x
by (rule has_complex_derivative_uniform_sequence [OF S]) (auto intro: ∗ hfd

DERIV_sum)+
ultimately show ?thesis

by (metis sums_def that)
qed

A version where we only have local uniform/comparative convergence.
lemma series_and_derivative_comparison_local:

fixes S :: complex set
assumes S : open S

and hfd:
∧

n x. x ∈ S =⇒ (f n has_field_derivative f ′ n x) (at x)
and to_g:

∧
x. x ∈ S =⇒ ∃ d h. 0 < d ∧ summable h ∧ (∀ F n in sequentially.

∀ y∈ball x d ∩ S . norm (f n y) ≤ h n)
shows ∃ g g ′. ∀ x ∈ S . ((λn. f n x) sums g x) ∧ ((λn. f ′ n x) sums g ′ x) ∧ (g

has_field_derivative g ′ x) (at x)
proof −

have ∃ y. (λn. f n z) sums (
∑

n. f n z) ∧ (λn. f ′ n z) sums y ∧ ((λx.
∑

n. f n
x) has_field_derivative y) (at z)

if z ∈ S for z
proof −

obtain d h where 0 < d summable h and le_h: ∀ F n in sequentially. ∀ y∈ball
z d ∩ S . norm (f n y) ≤ h n

using to_g ‹z ∈ S› by meson
then obtain r where r>0 and r : ball z r ⊆ ball z d ∩ S using ‹z ∈ S› S
by (metis Int_iff open_ball centre_in_ball open_Int open_contains_ball_eq)

have 1 : open (ball z d ∩ S)
by (simp add: open_Int S)

have 2 :
∧

n x. x ∈ ball z d ∩ S =⇒ (f n has_field_derivative f ′ n x) (at x)
by (auto simp: hfd)

obtain g g ′ where gg ′: ∀ x ∈ ball z d ∩ S . ((λn. f n x) sums g x) ∧
((λn. f ′ n x) sums g ′ x) ∧ (g has_field_derivative g ′

x) (at x)
by (auto intro: le_h series_and_derivative_comparison [OF 1 ‹summable h›

hfd])
then have (λn. f ′ n z) sums g ′ z

by (meson ‹0 < r› centre_in_ball contra_subsetD r)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 179

moreover have (λn. f n z) sums (
∑

n. f n z)
using summable_sums centre_in_ball ‹0 < d› ‹summable h› le_h
by (metis (full_types) Int_iff gg ′ summable_def that)

moreover have ((λx.
∑

n. f n x) has_field_derivative g ′ z) (at z)
by (metis (no_types, lifting) 1 r ‹0 < r› gg ′ has_field_derivative_transform_within_open

open_contains_ball_eq sums_unique)
ultimately show ?thesis by auto

qed
then show ?thesis

by meson
qed

Sometimes convenient to compare with a complex series of positive reals.
(?)
lemma series_and_derivative_comparison_complex:

fixes S :: complex set
assumes S : open S

and hfd:
∧

n x. x ∈ S =⇒ (f n has_field_derivative f ′ n x) (at x)
and to_g:

∧
x. x ∈ S =⇒ ∃ d h. 0 < d ∧ summable h ∧ range h ⊆ �≥0 ∧ (∀ F

n in sequentially. ∀ y∈ball x d ∩ S . cmod(f n y) ≤ cmod (h n))
shows ∃ g g ′. ∀ x ∈ S . ((λn. f n x) sums g x) ∧ ((λn. f ′ n x) sums g ′ x) ∧ (g

has_field_derivative g ′ x) (at x)
apply (rule series_and_derivative_comparison_local [OF S hfd], assumption)
apply (rule ex_forward [OF to_g], assumption)
apply (erule exE)
apply (rule_tac x=Re ◦ h in exI)
apply (force simp: summable_Re o_def nonneg_Reals_cmod_eq_Re image_subset_iff)
done

Sometimes convenient to compare with a complex series of positive reals.
(?)
lemma series_differentiable_comparison_complex:

fixes S :: complex set
assumes S : open S

and hfd:
∧

n x. x ∈ S =⇒ f n field_differentiable (at x)
and to_g:

∧
x. x ∈ S =⇒ ∃ d h. 0 < d ∧ summable h ∧ range h ⊆ �≥0 ∧ (∀ F

n in sequentially. ∀ y∈ball x d ∩ S . cmod(f n y) ≤ cmod (h n))
obtains g where ∀ x ∈ S . ((λn. f n x) sums g x) ∧ g field_differentiable (at x)

proof −
have hfd ′:

∧
n x. x ∈ S =⇒ (f n has_field_derivative deriv (f n) x) (at x)

using hfd field_differentiable_derivI by blast
show ?thesis
by (metis field_differentiable_def that series_and_derivative_comparison_complex

[OF S hfd ′ to_g])
qed

In particular, a power series is analytic inside circle of convergence.
lemma power_series_and_derivative_0 :

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 180

fixes a :: nat ⇒ complex and r ::real
assumes summable (λn. a n ∗ r^n)

shows ∃ g g ′. ∀ z. cmod z < r −→
((λn. a n ∗ z^n) sums g z) ∧ ((λn. of_nat n ∗ a n ∗ z^(n−1)) sums g ′

z) ∧ (g has_field_derivative g ′ z) (at z)
proof (cases 0 < r)

case True
have der :

∧
n z. ((λx. a n ∗ x ^ n) has_field_derivative of_nat n ∗ a n ∗ z ^

(n−1)) (at z)
by (rule derivative_eq_intros | simp)+

have y_le: cmod y ≤ cmod (of_real r + of_real (cmod z)) / 2
if cmod (z−y) ∗ 2 < r − cmod z for z y

by (smt (verit, best) field_sum_of_halves norm_minus_commute norm_of_real
norm_triangle_ineq2 of_real_add that)

have summable (λn. a n ∗ complex_of_real r ^ n)
using assms ‹r > 0 › by simp

moreover have
∧

z. cmod z < r =⇒ cmod ((of_real r + of_real (cmod z)) /
2) < cmod (of_real r)

using ‹r > 0 ›
by (simp flip: of_real_add)

ultimately have sum:
∧

z. cmod z < r =⇒ summable (λn. of_real (cmod (a
n)) ∗ ((of_real r + complex_of_real (cmod z)) / 2) ^ n)

by (rule power_series_conv_imp_absconv_weak)
have ∃ g g ′. ∀ z ∈ ball 0 r . (λn. (a n) ∗ z ^ n) sums g z ∧

(λn. of_nat n ∗ (a n) ∗ z ^ (n−1)) sums g ′ z ∧ (g has_field_derivative
g ′ z) (at z)

apply (rule series_and_derivative_comparison_complex [OF open_ball der])
apply (rule_tac x=(r − norm z)/2 in exI)
apply (rule_tac x=λn. of_real(norm(a n)∗((r + norm z)/2)^n) in exI)
using ‹r > 0 ›

apply (auto simp: sum eventually_sequentially norm_mult norm_power
dist_norm intro!: mult_left_mono power_mono y_le)

done
then show ?thesis

by (simp add: ball_def)
next

case False then show ?thesis
unfolding not_less using less_le_trans norm_not_less_zero by blast

qed

proposition power_series_and_derivative:
fixes a :: nat ⇒ complex and r ::real
assumes summable (λn. a n ∗ r^n)

obtains g g ′ where ∀ z ∈ ball w r .
((λn. a n ∗ (z−w) ^ n) sums g z) ∧ ((λn. of_nat n ∗ a n ∗ (z−w) ^

(n−1)) sums g ′ z) ∧
(g has_field_derivative g ′ z) (at z)

using power_series_and_derivative_0 [OF assms]
apply clarify

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 181

apply (rule_tac g=(λz. g(z−w)) in that)
using DERIV_shift [where z=−w]
apply (auto simp: norm_minus_commute Ball_def dist_norm)
done

proposition power_series_holomorphic:
assumes

∧
w. w ∈ ball z r =⇒ ((λn. a n∗(w−z)^n) sums f w)

shows f holomorphic_on ball z r
proof −

have ∃ f ′. (f has_field_derivative f ′) (at w) if w: dist z w < r for w
proof −

have wz: cmod (w−z) < r using w
by (auto simp: field_split_simps dist_norm norm_minus_commute)

then have 0 ≤ r
by (meson less_eq_real_def norm_ge_zero order_trans)

have inb: z + complex_of_real ((dist z w + r) / 2) ∈ ball z r
using w by (simp add: dist_norm ‹0≤r› flip: of_real_add)

have sum: summable (λn. a n ∗ of_real (((cmod (z−w) + r) / 2) ^ n))
using assms [OF inb] by (force simp: summable_def dist_norm)

obtain g g ′ where gg ′:
∧

u. u ∈ ball z ((cmod (z−w) + r) / 2) =⇒
(λn. a n ∗ (u−z) ^ n) sums g u ∧
(λn. of_nat n ∗ a n ∗ (u−z) ^ (n−1)) sums g ′ u ∧ (g

has_field_derivative g ′ u) (at u)
by (rule power_series_and_derivative [OF sum, of z]) fastforce

have [simp]: g u = f u if cmod (u−w) < (r − cmod (z−w)) / 2 for u
proof −

have less: cmod (z−u) ∗ 2 < cmod (z−w) + r
using that dist_triangle2 [of z u w]
by (simp add: dist_norm [symmetric] algebra_simps)

have (λn. a n ∗ (u−z) ^ n) sums g u (λn. a n ∗ (u−z) ^ n) sums f u
using gg ′ [of u] less w by (auto simp: assms dist_norm)

then show ?thesis
by (metis sums_unique2)

qed
have (f has_field_derivative g ′ w) (at w)

proof (rule has_field_derivative_transform_within [where d=(r − norm(z−w))/2])
qed (use w gg ′ [of w] in ‹(force simp: dist_norm)+›)
then show ?thesis ..

qed
then show ?thesis by (simp add: holomorphic_on_open)

qed

corollary holomorphic_iff_power_series:
f holomorphic_on ball z r ←→
(∀w ∈ ball z r . (λn. (deriv ^^ n) f z / (fact n) ∗ (w−z)^n) sums f w)

using power_series_holomorphic [where a = λn. (deriv ^^ n) f z / (fact n)]
holomorphic_power_series

by blast

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 182

lemma power_series_analytic:
(
∧

w. w ∈ ball z r =⇒ (λn. a n∗(w−z)^n) sums f w) =⇒ f analytic_on ball z r
by (force simp: analytic_on_open intro!: power_series_holomorphic)

lemma analytic_iff_power_series:
f analytic_on ball z r ←→
(∀w ∈ ball z r . (λn. (deriv ^^ n) f z / (fact n) ∗ (w−z)^n) sums f w)

by (simp add: analytic_on_open holomorphic_iff_power_series)

4.11 Equality between holomorphic functions, on open ball
then connected set

lemma holomorphic_fun_eq_on_ball:
[[f holomorphic_on ball z r ; g holomorphic_on ball z r ;

w ∈ ball z r ;∧
n. (deriv ^^ n) f z = (deriv ^^ n) g z]]

=⇒ f w = g w
by (auto simp: holomorphic_iff_power_series sums_unique2 [of λn. (deriv ^^

n) f z / (fact n) ∗ (w−z)^n])

lemma holomorphic_fun_eq_0_on_ball:
[[f holomorphic_on ball z r ; w ∈ ball z r ;∧

n. (deriv ^^ n) f z = 0]]
=⇒ f w = 0

using holomorphic_fun_eq_on_ball [where g = λz. 0] by simp

lemma holomorphic_fun_eq_0_on_connected:
assumes holf : f holomorphic_on S and open S

and cons: connected S
and der :

∧
n. (deriv ^^ n) f z = 0

and z ∈ S w ∈ S
shows f w = 0

proof −
have ∗: ball x e ⊆ (

⋂
n. {w ∈ S . (deriv ^^ n) f w = 0})

if ∀ u. (deriv ^^ u) f x = 0 ball x e ⊆ S for x e
proof −

have (deriv ^^ m) ((deriv ^^ n) f) x = 0 for m n
by (metis funpow_add o_apply that(1))

then have
∧

x ′ n. dist x x ′ < e =⇒ (deriv ^^ n) f x ′ = 0
using ‹open S›
by (meson holf holomorphic_fun_eq_0_on_ball holomorphic_higher_deriv

holomorphic_on_subset mem_ball that(2))
with that show ?thesis by auto

qed
obtain e where e>0 and e: ball w e ⊆ S using openE [OF ‹open S› ‹w ∈ S›]

.
then have holfb: f holomorphic_on ball w e

using holf holomorphic_on_subset by blast
have open (

⋂
n. {w ∈ S . (deriv ^^ n) f w = 0})

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 183

using ‹open S›
apply (simp add: open_contains_ball Ball_def image_iff)
by (metis (mono_tags) ∗ mem_Collect_eq)

then have openin (top_of_set S) (
⋂

n. {w ∈ S . (deriv ^^ n) f w = 0})
by (force intro: open_subset)

moreover have closedin (top_of_set S) (
⋂

n. {w ∈ S . (deriv ^^ n) f w = 0})
using assms

by (auto intro: continuous_closedin_preimage_constant holomorphic_on_imp_continuous_on
holomorphic_higher_deriv)

moreover have (
⋂

n. {w ∈ S . (deriv ^^ n) f w = 0}) = S =⇒ f w = 0
using ‹e>0 › e by (force intro: holomorphic_fun_eq_0_on_ball [OF holfb])

ultimately show ?thesis
using cons der ‹z ∈ S›
by (auto simp add: connected_clopen)

qed

lemma holomorphic_fun_eq_on_connected:
assumes f holomorphic_on S g holomorphic_on S and open S connected S

and
∧

n. (deriv ^^ n) f z = (deriv ^^ n) g z
and z ∈ S w ∈ S

shows f w = g w
proof (rule holomorphic_fun_eq_0_on_connected [of λx. f x − g x S z, simpli-
fied])

show (λx. f x − g x) holomorphic_on S
by (intro assms holomorphic_intros)

show
∧

n. (deriv ^^ n) (λx. f x − g x) z = 0
using assms higher_deriv_diff by auto

qed (use assms in auto)

lemma holomorphic_fun_eq_const_on_connected:
assumes holf : f holomorphic_on S and open S

and cons: connected S
and der :

∧
n. 0 < n =⇒ (deriv ^^ n) f z = 0

and z ∈ S w ∈ S
shows f w = f z

proof (rule holomorphic_fun_eq_0_on_connected [of λw. f w − f z S z, simpli-
fied])

show (λw. f w − f z) holomorphic_on S
by (intro assms holomorphic_intros)

show
∧

n. (deriv ^^ n) (λw. f w − f z) z = 0
by (subst higher_deriv_diff) (use assms in ‹auto intro: holomorphic_intros›)

qed (use assms in auto)

4.12 Some basic lemmas about poles/singularities
lemma pole_lemma:

assumes holf : f holomorphic_on S and a: a ∈ interior S
shows (λz. if z = a then deriv f a

else (f z − f a) / (z−a)) holomorphic_on S (is ?F holomorphic_on S)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 184

proof −
have ∗: ?F field_differentiable (at u within S) if u ∈ S u 6= a for u
proof −

have fcd: f field_differentiable at u within S
using holf holomorphic_on_def by (simp add: ‹u ∈ S›)

have cd: (λz. (f z − f a) / (z−a)) field_differentiable at u within S
by (rule fcd derivative_intros | simp add: that)+

have 0 < dist a u using that dist_nz by blast
then show ?thesis

by (rule field_differentiable_transform_within [OF _ _ _ cd]) (auto simp:
‹u ∈ S›)

qed
moreover
have ?F field_differentiable at a if 0 < e ball a e ⊆ S for e
proof −

have holfb: f holomorphic_on ball a e
by (rule holomorphic_on_subset [OF holf ‹ball a e ⊆ S›])

have 2 : ?F holomorphic_on ball a e − {a}
using mem_ball that
by (auto simp add: holomorphic_on_def simp flip: field_differentiable_def

intro: ∗ field_differentiable_within_subset)
have isCont (λz. if z = a then deriv f a else (f z − f a) / (z−a)) x

if dist a x < e for x
proof (cases x=a)

case True
then have f field_differentiable at a

using holfb ‹0 < e› holomorphic_on_imp_differentiable_at by auto
with True show ?thesis

by (smt (verit) DERIV_deriv_iff_field_differentiable LIM_equal continu-
ous_at has_field_derivativeD)

next
case False with 2 that show ?thesis
by (simp add: field_differentiable_imp_continuous_at holomorphic_on_imp_differentiable_at

open_Diff)
qed
then have 1 : continuous_on (ball a e) ?F

by (clarsimp simp: continuous_on_eq_continuous_at)
have ?F holomorphic_on ball a e

by (auto intro: no_isolated_singularity [OF 1 2])
with that show ?thesis

by (simp add: holomorphic_on_imp_differentiable_at)
qed
ultimately show ?thesis

by (metis (lifting) a at_within_interior holomorphic_onI mem_interior)
qed

lemma pole_theorem:
assumes holg: g holomorphic_on S and a: a ∈ interior S

and eq:
∧

z. z ∈ S − {a} =⇒ g z = (z−a) ∗ f z

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 185

shows (λz. if z = a then deriv g a
else f z − g a/(z−a)) holomorphic_on S

using pole_lemma [OF holg a]
by (rule holomorphic_transform) (simp add: eq field_split_simps)

lemma pole_lemma_open:
assumes f holomorphic_on S open S

shows (λz. if z = a then deriv f a else (f z − f a)/(z−a)) holomorphic_on S
proof (cases a ∈ S)

case True with assms interior_eq pole_lemma
show ?thesis by fastforce

next
case False
then have (λz. (f z − f a) / (z−a)) field_differentiable at x within S

if x ∈ S for x
using assms that unfolding holomorphic_on_def
by (intro derivative_intros) auto

with False show ?thesis
using holomorphic_on_def holomorphic_transform by presburger

qed

lemma pole_theorem_open:
assumes holg: g holomorphic_on S and S : open S

and eq:
∧

z. z ∈ S − {a} =⇒ g z = (z−a) ∗ f z
shows (λz. if z = a then deriv g a

else f z − g a/(z−a)) holomorphic_on S
using pole_lemma_open [OF holg S]
by (rule holomorphic_transform) (auto simp: eq divide_simps)

lemma pole_theorem_0 :
assumes holg: g holomorphic_on S and a: a ∈ interior S

and eq:
∧

z. z ∈ S − {a} =⇒ g z = (z−a) ∗ f z
and [simp]: f a = deriv g a g a = 0

shows f holomorphic_on S
using pole_theorem [OF holg a eq]
by (rule holomorphic_transform) (auto simp: eq field_split_simps)

lemma pole_theorem_open_0 :
assumes holg: g holomorphic_on S and S : open S

and eq:
∧

z. z ∈ S − {a} =⇒ g z = (z−a) ∗ f z
and [simp]: f a = deriv g a g a = 0

shows f holomorphic_on S
using pole_theorem_open [OF holg S eq]
by (rule holomorphic_transform) (auto simp: eq field_split_simps)

lemma pole_theorem_analytic:
assumes g: g analytic_on S

and eq:
∧

z. z ∈ S
=⇒ ∃ d. 0 < d ∧ (∀w ∈ ball z d − {a}. g w = (w−a) ∗ f w)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 186

shows (λz. if z = a then deriv g a else f z − g a/(z−a)) analytic_on S (is ?F
analytic_on S)

unfolding analytic_on_def
proof

fix x
assume x ∈ S
with g obtain e where 0 < e and e: g holomorphic_on ball x e

by (auto simp add: analytic_on_def)
obtain d where 0 < d and d:

∧
w. w ∈ ball x d − {a} =⇒ g w = (w−a) ∗ f w

using ‹x ∈ S› eq by blast
have ?F holomorphic_on ball x (min d e)
using d e ‹x ∈ S› by (fastforce simp: holomorphic_on_subset subset_ball intro!:

pole_theorem_open)
then show ∃ e>0 . ?F holomorphic_on ball x e

using ‹0 < d› ‹0 < e› not_le by fastforce
qed

lemma pole_theorem_analytic_0 :
assumes g: g analytic_on S

and eq:
∧

z. z ∈ S =⇒ ∃ d. 0 < d ∧ (∀w ∈ ball z d − {a}. g w = (w−a) ∗ f
w)

and [simp]: f a = deriv g a g a = 0
shows f analytic_on S

proof −
have [simp]: (λz. if z = a then deriv g a else f z − g a / (z−a)) = f

by auto
show ?thesis

using pole_theorem_analytic [OF g eq] by simp
qed

lemma pole_theorem_analytic_open_superset:
assumes g: g analytic_on S and S ⊆ T open T

and eq:
∧

z. z ∈ T − {a} =⇒ g z = (z−a) ∗ f z
shows (λz. if z = a then deriv g a else f z − g a/(z−a)) analytic_on S

proof (rule pole_theorem_analytic [OF g])
fix z
assume z ∈ S
then obtain e where 0 < e and e: ball z e ⊆ T

using assms openE by blast
then show ∃ d>0 . ∀w∈ball z d − {a}. g w = (w−a) ∗ f w

using eq by auto
qed

lemma pole_theorem_analytic_open_superset_0 :
assumes g: g analytic_on S S ⊆ T open T

∧
z. z ∈ T − {a} =⇒ g z = (z−a)

∗ f z
and [simp]: f a = deriv g a g a = 0

shows f analytic_on S
proof −

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 187

have [simp]: (λz. if z = a then deriv g a else f z − g a / (z−a)) = f
by auto

have (λz. if z = a then deriv g a else f z − g a/(z−a)) analytic_on S
by (rule pole_theorem_analytic_open_superset [OF g])

then show ?thesis by simp
qed

4.13 General, homology form of Cauchy’s theorem

Proof is based on Dixon’s, as presented in Lang’s "Complex Analysis" book
(page 147).
lemma contour_integral_continuous_on_linepath_2D:

assumes open U and cont_dw:
∧

w. w ∈ U =⇒ F w contour_integrable_on
(linepath a b)

and cond_uu: continuous_on (U × U) (λ(x,y). F x y)
and abu: closed_segment a b ⊆ U

shows continuous_on U (λw. contour_integral (linepath a b) (F w))
proof −

have ∃ d>0 . ∀ x ′∈U . dist x ′ w < d −→
dist (contour_integral (linepath a b) (F x ′))

(contour_integral (linepath a b) (F w)) ≤ ε
if w ∈ U 0 < ε a 6= b for w ε

proof −
obtain δ where δ>0 and δ: cball w δ ⊆ U using open_contains_cball ‹open

U › ‹w ∈ U › by force
let ?TZ = cball w δ × closed_segment a b
have uniformly_continuous_on ?TZ (λ(x,y). F x y)
by (metis Sigma_mono δ abu compact_Times compact_cball compact_segment

compact_uniformly_continuous
cond_uu continuous_on_subset)

then obtain η where η>0
and η:

∧
x x ′. [[x∈?TZ ; x ′∈?TZ ; dist x ′ x < η]] =⇒

dist ((λ(x,y). F x y) x ′) ((λ(x,y). F x y) x) < ε/norm(b−a)
using ‹0 < ε› ‹a 6= b›
by (auto elim: uniformly_continuous_onE [where ε = ε/norm(b−a)])

have η: [[norm (w − x1) ≤ δ; x2 ∈ closed_segment a b;
norm (w − x1 ′) ≤ δ; x2 ′ ∈ closed_segment a b; norm ((x1 ′, x2 ′) −

(x1 , x2)) < η]]
=⇒ norm (F x1 ′ x2 ′ − F x1 x2) ≤ ε / cmod (b−a)

for x1 x2 x1 ′ x2 ′

using η [of (x1 ,x2) (x1 ′,x2 ′)] by (force simp: dist_norm)
have le_ee: cmod (contour_integral (linepath a b) (λx. F x ′ x − F w x)) ≤ ε

if x ′ ∈ U cmod (x ′ − w) < δ cmod (x ′ − w) < η for x ′

proof −
have (λx. F x ′ x − F w x) contour_integrable_on linepath a b

by (simp add: ‹w ∈ U › cont_dw contour_integrable_diff that)
then have cmod (contour_integral (linepath a b) (λx. F x ′ x − F w x)) ≤

ε/norm(b−a) ∗ norm(b−a)
using has_contour_integral_bound_linepath [OF has_contour_integral_integral

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 188

_ η]
using ‹0 < ε› ‹0 < δ› that by (force simp: norm_minus_commute)

also have . . . = ε using ‹a 6= b› by simp
finally show ?thesis .

qed
show ?thesis

using ‹0 < δ› ‹0 < η› ‹w ∈ U ›
apply (intro exI [where x=min δ η])

by (auto simp: dist_norm contour_integral_diff [OF cont_dw cont_dw,
symmetric] intro: le_ee)

qed
then show ?thesis

by (metis (no_types, lifting) continuous_onI continuous_on_iff
contour_integral_trivial dist_self)

qed

This version has polynomial_function γ as an additional assumption.
lemma Cauchy_integral_formula_global_weak:

assumes open U and holf : f holomorphic_on U
and z: z ∈ U and γ: polynomial_function γ
and pasz: path_image γ ⊆ U − {z} and loop: pathfinish γ = pathstart γ
and zero:

∧
w. w /∈ U =⇒ winding_number γ w = 0

shows ((λw. f w / (w−z)) has_contour_integral (2∗pi ∗ i ∗ winding_number
γ z ∗ f z)) γ
proof −
obtain γ ′ where pf γ ′: polynomial_function γ ′ and γ ′:

∧
x. (γ has_vector_derivative

(γ ′ x)) (at x)
using has_vector_derivative_polynomial_function [OF γ] by blast

then have bounded(path_image γ ′)
by (simp add: path_image_def compact_imp_bounded compact_continuous_image

continuous_on_polymonial_function)
then obtain B where B>0 and B:

∧
x. x ∈ path_image γ ′ =⇒ norm x ≤ B

using bounded_pos by force
define d where [abs_def]: d z w = (if w = z then deriv f z else (f w − f z)/(w−z))

for z w
define v where v = {w. w /∈ path_image γ ∧ winding_number γ w = 0}
have path γ valid_path γ using γ

by (auto simp: path_polynomial_function valid_path_polynomial_function)
then have ov: open v

by (simp add: v_def open_winding_number_levelsets loop)
have uv_Un: U ∪ v = UNIV

using pasz zero by (auto simp: v_def)
have conf : continuous_on U f

by (metis holf holomorphic_on_imp_continuous_on)
have hol_d: (d y) holomorphic_on U if y ∈ U for y
proof −

have ∗: (λc. if c = y then deriv f y else (f c − f y) / (c−y)) holomorphic_on U
by (simp add: holf pole_lemma_open ‹open U ›)

then have isCont (λx. if x = y then deriv f y else (f x − f y) / (x−y)) y

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 189

using at_within_open field_differentiable_imp_continuous_at holomor-
phic_on_def that ‹open U › by fastforce

then have continuous_on U (d y)
using ∗ d_def holomorphic_on_imp_continuous_on by auto

moreover have d y holomorphic_on U − {y}
proof −
have (λw. if w = y then deriv f y else (f w − f y) / (w−y)) field_differentiable

at w
if w ∈ U − {y} for w

proof (rule field_differentiable_transform_within)
show (λw. (f w − f y) / (w−y)) field_differentiable at w

using that ‹open U › holf
by (auto intro!: holomorphic_on_imp_differentiable_at derivative_intros)

show dist w y > 0
using that by auto

qed (auto simp: dist_commute)
then show ?thesis
unfolding field_differentiable_def by (simp add: d_def holomorphic_on_open

‹open U › open_delete)
qed
ultimately show ?thesis

by (rule no_isolated_singularity) (auto simp: ‹open U ›)
qed
have cint_fxy: (λx. (f x − f y) / (x−y)) contour_integrable_on γ if y /∈

path_image γ for y
proof (rule contour_integrable_holomorphic_simple [where S = U−{y}])

show (λx. (f x − f y) / (x−y)) holomorphic_on U − {y}
by (force intro: holomorphic_intros holomorphic_on_subset [OF holf])

show path_image γ ⊆ U − {y}
using pasz that by blast

qed (auto simp: ‹open U › open_delete ‹valid_path γ›)
define h where

h z = (if z ∈ U then contour_integral γ (d z) else contour_integral γ (λw. f
w/(w−z))) for z

have U : ((d z) has_contour_integral h z) γ if z ∈ U for z
proof −

have d z holomorphic_on U
by (simp add: hol_d that)

with that show ?thesis
by (metis Diff_subset ‹valid_path γ› ‹open U › contour_integrable_holomorphic_simple

h_def
has_contour_integral_integral pasz subset_trans)

qed
have V : ((λw. f w / (w−z)) has_contour_integral h z) γ if z: z ∈ v for z
proof −

have 0 : 0 = (f z) ∗ 2 ∗ of_real (2 ∗ pi) ∗ i ∗ winding_number γ z
using v_def z by auto

then have ((λx. 1 / (x−z)) has_contour_integral 0) γ
using z v_def has_contour_integral_winding_number [OF ‹valid_path γ›]

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 190

by fastforce
then have ((λx. f z ∗ (1 / (x−z))) has_contour_integral 0) γ

using has_contour_integral_lmul by fastforce
then have ((λx. f z / (x−z)) has_contour_integral 0) γ

by (simp add: field_split_simps)
moreover have ((λx. (f x − f z) / (x−z)) has_contour_integral contour_integral

γ (d z)) γ
by (metis (no_types, lifting) z cint_fxy contour_integral_eq d_def has_contour_integral_integral

mem_Collect_eq v_def)
ultimately have ∗: ((λx. f z / (x−z) + (f x − f z) / (x−z)) has_contour_integral

(0 + contour_integral γ (d z))) γ
by (rule has_contour_integral_add)

have ((λw. f w / (w−z)) has_contour_integral contour_integral γ (d z)) γ
if z ∈ U
using ∗ by (auto simp: divide_simps has_contour_integral_eq)

moreover have ((λw. f w / (w−z)) has_contour_integral contour_integral γ
(λw. f w / (w−z))) γ

if z /∈ U
proof (rule has_contour_integral_integral [OF contour_integrable_holomorphic_simple

[where S=U]])
show (λw. f w / (w−z)) holomorphic_on U

by (rule holomorphic_intros assms | use that in force)+
qed (use ‹open U › pasz ‹valid_path γ› in auto)
ultimately show ?thesis

using z by (simp add: h_def)
qed
have znot: z /∈ path_image γ

using pasz by blast
obtain d0 where d0>0 and d0 :

∧
x y. x ∈ path_image γ =⇒ y ∈ − U =⇒ d0

≤ dist x y
using separate_compact_closed [of path_image γ −U] pasz ‹open U › ‹path γ›

compact_path_image
by blast

obtain dd where 0 < dd and dd: {y + k | y k. y ∈ path_image γ ∧ k ∈ ball 0
dd} ⊆ U

proof
show 0 < d0 / 2 using ‹0 < d0 › by auto

qed (use ‹0 < d0 › d0 in ‹force simp: dist_norm›)
define T where T ≡ {y + k |y k. y ∈ path_image γ ∧ k ∈ cball 0 (dd / 2)}
have

∧
x x ′. [[x ∈ path_image γ; dist x x ′ ∗ 2 < dd]]
=⇒ ∃ y k. x ′ = y + k ∧ y ∈ path_image γ ∧ dist 0 k ∗ 2 ≤ dd

by (metis add.commute diff_add_cancel dist_0_norm dist_commute dist_norm
less_eq_real_def)

then have subt: path_image γ ⊆ interior T
using ‹0 < dd›
apply (clarsimp simp add: mem_interior T_def)
apply (rule_tac x=dd/2 in exI , auto)
done

have compact T

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 191

unfolding T_def
using ‹valid_path γ› compact_cball compact_sums compact_valid_path_image

by blast
have T : T ⊆ U

unfolding T_def using ‹0 < dd› dd by fastforce
obtain L where L>0

and L:
∧

f B. [[f holomorphic_on interior T ;
∧

z. z∈interior T =⇒ cmod
(f z) ≤ B]] =⇒

cmod (contour_integral γ f) ≤ L ∗ B
using contour_integral_bound_exists [OF open_interior ‹valid_path γ› subt]
by blast

have bounded(f ‘ T)
by (meson ‹compact T › compact_continuous_image compact_imp_bounded

conf continuous_on_subset T)
then obtain D where D>0 and D:

∧
x. x ∈ T =⇒ norm (f x) ≤ D

by (auto simp: bounded_pos)
obtain C where C>0 and C :

∧
x. x ∈ T =⇒ norm x ≤ C

using ‹compact T › bounded_pos compact_imp_bounded by force
have dist (h y) 0 ≤ e if 0 < e and le: D ∗ L / e + C ≤ cmod y for e y
proof −

have D ∗ L / e > 0 using ‹D>0 › ‹L>0 › ‹e>0 › by simp
with le have ybig: norm y > C by force
with C have y /∈ T by force
then have ynot: y /∈ path_image γ

using subt interior_subset by blast
have [simp]: winding_number γ y = 0
proof (rule winding_number_zero_outside)

show path_image γ ⊆ cball 0 C
by (meson C interior_subset mem_cball_0 subset_eq subt)

qed (use ybig loop ‹path γ› in auto)
have [simp]: h y = contour_integral γ (λw. f w/(w−y))

by (rule contour_integral_unique [symmetric]) (simp add: v_def ynot V)
have holint: (λw. f w / (w−y)) holomorphic_on interior T
proof (intro holomorphic_intros)

show f holomorphic_on interior T
using holf holomorphic_on_subset interior_subset T by blast

qed (use ‹y /∈ T › interior_subset in auto)
have leD: cmod (f z / (z−y)) ≤ D ∗ (e / L / D) if z: z ∈ interior T for z
proof −

have D ∗ L / e + cmod z ≤ cmod y
using le C [of z] z using interior_subset by force

then have DL2 : D ∗ L / e ≤ cmod (z−y)
using norm_triangle_ineq2 [of y z] by (simp add: norm_minus_commute)

have cmod (f z / (z−y)) = cmod (f z) ∗ inverse (cmod (z−y))
by (simp add: norm_mult norm_inverse Fields.field_class.field_divide_inverse)
also have . . . ≤ D ∗ (e / L / D)
proof (rule mult_mono)

show cmod (f z) ≤ D
using D interior_subset z by blast

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 192

show inverse (cmod (z−y)) ≤ e / L / D D ≥ 0
using ‹L>0 › ‹e>0 › ‹D>0 › DL2 by (auto simp: norm_divide field_split_simps)

qed auto
finally show ?thesis .

qed
have dist (h y) 0 = cmod (contour_integral γ (λw. f w / (w−y)))

by (simp add: dist_norm)
also have . . . ≤ L ∗ (D ∗ (e / L / D))

by (rule L [OF holint leD])
also have . . . = e

using ‹L>0 › ‹0 < D› by auto
finally show ?thesis .

qed
then have (h −−−→ 0) at_infinity

by (meson Lim_at_infinityI)
moreover have h holomorphic_on UNIV
proof −

have con_ff : continuous (at (x,z)) (λ(x,y). (f y − f x) / (y−x))
if x ∈ U z ∈ U x 6= z for x z

using that conf
apply (simp add: split_def continuous_on_eq_continuous_at ‹open U ›)
apply (simp | rule continuous_intros continuous_within_compose2 [where

g=f])+
done

have con_fstsnd: continuous_on UNIV (λx. (fst x − snd x) ::complex)
by (rule continuous_intros)+

have open_uu_Id: open (U × U − Id)
proof (rule open_Diff)

show open (U × U)
by (simp add: open_Times ‹open U ›)

show closed (Id :: complex rel)
using continuous_closed_preimage_constant [OF con_fstsnd closed_UNIV ,

of 0]
by (auto simp: Id_fstsnd_eq algebra_simps)

qed
have con_derf : continuous (at z) (deriv f) if z ∈ U for z

by (meson analytic_at analytic_at_imp_isCont assms(1) holf holomor-
phic_deriv that)

have tendsto_f ′: ((λ(x,y). if y = x then deriv f (x)
else (f (y) − f (x)) / (y−x)) −−−→ deriv f x)

(at (x, x) within U × U) if x ∈ U for x
proof (rule Lim_withinI)

fix e::real assume 0 < e
obtain k1 where k1>0 and k1 :

∧
x ′. norm (x ′ − x) ≤ k1 =⇒ norm (deriv

f x ′ − deriv f x) < e
using ‹0 < e› continuous_within_E [OF con_derf [OF ‹x ∈ U ›]]
by (metis UNIV_I dist_norm)

obtain k2 where k2>0 and k2 : ball x k2 ⊆ U
by (blast intro: openE [OF ‹open U ›] ‹x ∈ U ›)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 193

have neq: norm ((f z ′ − f x ′) / (z ′ − x ′) − deriv f x) ≤ e
if z ′ 6= x ′ and less_k1 : norm (x ′−x, z ′−x) < k1 and less_k2 :

norm (x ′−x, z ′−x) < k2
for x ′ z ′

proof −
have cs_less: w ∈ closed_segment x ′ z ′ =⇒ cmod (w−x) ≤ norm (x ′−x,

z ′−x) for w
using segment_furthest_le [of w x ′ z ′ x]

by (metis (no_types) dist_commute dist_norm norm_fst_le norm_snd_le
order_trans)

have derf_le: w ∈ closed_segment x ′ z ′ =⇒ z ′ 6= x ′ =⇒ cmod (deriv f w −
deriv f x) ≤ e for w

by (blast intro: cs_less less_k1 k1 [unfolded divide_const_simps dist_norm]
less_imp_le le_less_trans)

have f_has_der :
∧

x. x ∈ U =⇒ (f has_field_derivative deriv f x) (at x
within U)

by (metis DERIV_deriv_iff_field_differentiable at_within_open holf
holomorphic_on_def ‹open U ›)

have closed_segment x ′ z ′ ⊆ U
by (rule order_trans [OF _ k2]) (simp add: cs_less le_less_trans [OF _

less_k2] dist_complex_def norm_minus_commute subset_iff)
then have cint_derf : (deriv f has_contour_integral f z ′ − f x ′) (linepath x ′

z ′)
using contour_integral_primitive [OF f_has_der valid_path_linepath]

pasz by simp
then have ∗: ((λx. deriv f x / (z ′ − x ′)) has_contour_integral (f z ′ − f x ′)

/ (z ′ − x ′)) (linepath x ′ z ′)
by (rule has_contour_integral_div)
have norm ((f z ′ − f x ′) / (z ′ − x ′) − deriv f x) ≤ e/norm(z ′ − x ′) ∗

norm(z ′ − x ′)
apply (rule has_contour_integral_bound_linepath [OF has_contour_integral_diff

[OF ∗]])
using has_contour_integral_div [where c = z ′− x ′, OF has_contour_integral_const_linepath

[of deriv f x z ′ x ′]]
‹e > 0 › ‹z ′ 6= x ′›

apply (auto simp: norm_divide divide_simps derf_le)
done

also have . . . ≤ e using ‹0 < e› by simp
finally show ?thesis .

qed
show ∃ d>0 . ∀ xa∈U × U .

0 < dist xa (x, x) ∧ dist xa (x, x) < d −→
dist (case xa of (x, y) ⇒ if y = x then deriv f x else (f y − f x) /

(y−x)) (deriv f x) ≤ e
apply (rule_tac x=min k1 k2 in exI)
using ‹k1>0 › ‹k2>0 › ‹e>0 ›

by (force simp: dist_norm neq intro: dual_order .strict_trans2 k1 less_imp_le
norm_fst_le)

qed

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 194

have con_pa_f : continuous_on (path_image γ) f
by (meson holf holomorphic_on_imp_continuous_on holomorphic_on_subset

interior_subset subt T)
have le_B:

∧
T . T ∈ {0 ..1} =⇒ cmod (vector_derivative γ (at T)) ≤ B

using γ ′ B by (simp add: path_image_def vector_derivative_at rev_image_eqI)
have f_has_cint:

∧
w. w ∈ v − path_image γ =⇒ ((λu. f u / (u−w) ^ 1)

has_contour_integral h w) γ
by (simp add: V)

have
∧

x y. [[x ∈ U ; y ∈ U ; y 6= x]] =⇒ (λ(x, y). d x y) −(x, y)→ (f y − f x)
/ (y − x)

unfolding d_def
apply (rule Lim_transform_within_open [OF _ open_uu_Id, where f =

(λ(x,y). (f y − f x) / (y−x))])
using con_ff by (auto simp: continuous_within)

then have cond_uu: continuous_on (U × U) (λ(x,y). d x y)
unfolding continuous_on_eq_continuous_within continuous_within d_def
by (fastforce simp add: tendsto_f ′ intro: Lim_at_imp_Lim_at_within)

have hol_dw: (λz. d z w) holomorphic_on U if w ∈ U for w
proof −

have continuous_on U ((λ(x,y). d x y) ◦ (λz. (w,z)))
by (rule continuous_on_compose continuous_intros continuous_on_subset

[OF cond_uu] | force intro: that)+
then have ∗: continuous_on U (λz. if w = z then deriv f z else (f w − f z)

/ (w−z))
by (rule rev_iffD1 [OF _ continuous_on_cong [OF refl]]) (simp add: d_def

field_simps)
have ∗∗: (λz. if w = z then deriv f z else (f w − f z) / (w−z)) field_differentiable

at x
if x ∈ U x 6= w for x

proof (rule_tac f = λx. (f w − f x)/(w−x) and d = dist x w in field_differentiable_transform_within)
show (λx. (f w − f x) / (w−x)) field_differentiable at x

using that ‹open U ›
by (intro derivative_intros holomorphic_on_imp_differentiable_at [OF

holf]; force)
qed (use that ‹open U › in ‹auto simp: dist_commute›)
show ?thesis

unfolding d_def
proof (rule no_isolated_singularity [OF ∗ _ ‹open U ›])
show (λz. if w = z then deriv f z else (f w − f z) / (w−z)) holomorphic_on

U − {w}
by (auto simp: field_differentiable_def [symmetric] holomorphic_on_open

open_Diff ‹open U › ∗∗)
qed auto

qed
{ fix a b

assume abu: closed_segment a b ⊆ U
have cont_cint_d: continuous_on U (λw. contour_integral (linepath a b)

(λz. d z w))
proof (rule contour_integral_continuous_on_linepath_2D [OF ‹open U › _

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 195

_ abu])
show

∧
w. w ∈ U =⇒ (λz. d z w) contour_integrable_on (linepath a b)

by (metis abu hol_dw continuous_on_subset contour_integrable_continuous_linepath
holomorphic_on_imp_continuous_on)

show continuous_on (U × U) (λ(x, y). d y x)
by (auto intro: continuous_on_swap_args cond_uu)

qed
have cont_cint_dγ: continuous_on {0 ..1} ((λw. contour_integral (linepath

a b) (λz. d z w)) ◦ γ)
by (metis Diff_subset ‹path γ› cont_cint_d continuous_on_compose con-

tinuous_on_subset pasz path_def path_image_def)
have continuous_on {0 ..1} (λx. vector_derivative γ (at x))
using pf γ ′ by (simp add: continuous_on_polymonial_function vector_derivative_at

[OF γ ′])
then have cint_cint: (λw. contour_integral (linepath a b) (λz. d z w))

contour_integrable_on γ
apply (simp add: contour_integrable_on)
apply (rule integrable_continuous_real)
by (rule continuous_on_mult [OF cont_cint_dγ [unfolded o_def]])

have contour_integral (linepath a b) h = contour_integral (linepath a b) (λz.
contour_integral γ (d z))

using abu by (force simp: h_def intro: contour_integral_eq)
also have . . . = contour_integral γ (λw. contour_integral (linepath a b) (λz.

d z w))
proof (rule contour_integral_swap)

show continuous_on (path_image (linepath a b) × path_image γ) (λ(y1 ,
y2). d y1 y2)

using abu pasz by (auto intro: continuous_on_subset [OF cond_uu])
show continuous_on {0 ..1} (λt. vector_derivative (linepath a b) (at t))

by (auto intro!: continuous_intros)
show continuous_on {0 ..1} (λt. vector_derivative γ (at t))

by (metis γ ′ continuous_on_eq path_def path_polynomial_function pf γ ′

vector_derivative_at)
qed (use ‹valid_path γ› in auto)
finally have cint_h_eq:

contour_integral (linepath a b) h =
contour_integral γ (λw. contour_integral (linepath a b) (λz. d z

w)) .
note cint_cint cint_h_eq

} note cint_h = this
have conthu: continuous_on U h
proof (simp add: continuous_on_sequentially, clarify)

fix a x
assume x: x ∈ U and au: ∀n. a n ∈ U and ax: a −−−−→ x
then have A1 : ∀ F n in sequentially. d (a n) contour_integrable_on γ

by (meson U contour_integrable_on_def eventuallyI)
obtain dd where dd>0 and dd: cball x dd ⊆ U using open_contains_cball

‹open U › x by force
have A2 : uniform_limit (path_image γ) (λn. d (a n)) (d x) sequentially

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 196

unfolding uniform_limit_iff dist_norm
proof clarify

fix ee::real
assume 0 < ee
show ∀ F n in sequentially. ∀ ξ∈path_image γ. cmod (d (a n) ξ − d x ξ) <

ee
proof −

let ?ddpa = {(w,z) |w z . w ∈ cball x dd ∧ z ∈ path_image γ}
have uniformly_continuous_on ?ddpa (λ(x,y). d x y)

proof (rule compact_uniformly_continuous [OF continuous_on_subset[OF
cond_uu]])

show compact {(w, z) |w z . w ∈ cball x dd ∧ z ∈ path_image γ}
using ‹valid_path γ›
by (auto simp: compact_Times compact_valid_path_image simp del:

mem_cball)
qed (use dd pasz in auto)
then obtain kk where kk>0

and kk:
∧

x x ′. [[x ∈ ?ddpa; x ′ ∈ ?ddpa; dist x ′ x < kk]] =⇒
dist ((λ(x,y). d x y) x ′) ((λ(x,y). d x y) x) < ee

by (rule uniformly_continuous_onE [where ε = ee]) (use ‹0 < ee› in
auto)

have kk: [[norm (w−x) ≤ dd; z ∈ path_image γ; norm ((w, z) − (x, z))
< kk]] =⇒ norm (d w z − d x z) < ee

for w z
using ‹dd>0 › kk [of (x,z) (w,z)] by (force simp: norm_minus_commute

dist_norm)
obtain no where ∀n≥no. dist (a n) x < min dd kk

using ax unfolding lim_sequentially
by (meson ‹0 < dd› ‹0 < kk› min_less_iff_conj)

then show ?thesis
using ‹dd > 0 › ‹kk > 0 › by (fastforce simp: eventually_sequentially kk

dist_norm)
qed

qed
have (λn. contour_integral γ (d (a n))) −−−−→ contour_integral γ (d x)

by (rule contour_integral_uniform_limit [OF A1 A2 le_B]) (auto simp:
‹valid_path γ›)

then have tendsto_hx: (λn. contour_integral γ (d (a n))) −−−−→ h x
by (simp add: h_def x)

then show (h ◦ a) −−−−→ h x
by (simp add: h_def x au o_def)

qed
show ?thesis
proof (simp add: holomorphic_on_open field_differentiable_def [symmetric],

clarify)
fix z0
consider z0 ∈ v | z0 ∈ U using uv_Un by blast
then show h field_differentiable at z0
proof cases

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 197

assume z0 ∈ v then show ?thesis
using Cauchy_next_derivative [OF con_pa_f le_B f_has_cint _ ov] V

f_has_cint ‹valid_path γ›
by (auto simp: field_differentiable_def v_def)

next
assume z0 ∈ U then
obtain e where e>0 and e: ball z0 e ⊆ U by (blast intro: openE [OF

‹open U ›])
have ∗: contour_integral (linepath a b) h + contour_integral (linepath b c)

h + contour_integral (linepath c a) h = 0
if abc_subset: convex hull {a, b, c} ⊆ ball z0 e for a b c

proof −
have ∗:

∧
x1 x2 z. z ∈ U =⇒ closed_segment x1 x2 ⊆ U =⇒ (λw. d w z)

contour_integrable_on linepath x1 x2
using hol_dw holomorphic_on_imp_continuous_on ‹open U ›
by (auto intro!: contour_integrable_holomorphic_simple)

have abc: closed_segment a b ⊆ U closed_segment b c ⊆ U closed_segment
c a ⊆ U

using that e segments_subset_convex_hull by fastforce+
have eq0 :

∧
w. w ∈ U =⇒ contour_integral (linepath a b +++ linepath b

c +++ linepath c a) (λz. d z w) = 0
proof (rule contour_integral_unique [OF Cauchy_theorem_triangle])
show

∧
w. w ∈ U =⇒ (λz. d z w) holomorphic_on convex hull {a, b, c}

using e abc_subset by (auto intro: holomorphic_on_subset [OF
hol_dw])

qed
have

∧
z. z ∈ path_image γ =⇒

contour_integral (linepath a b) (λx. d x z) +
(contour_integral (linepath b c) (λx. d x z) +
contour_integral (linepath c a) (λx. d x z)) = 0

using abc pasz U ∗ eq0 by auto
then show ?thesis
by (simp add: contour_integral_eq_0 cint_h abc contour_integrable_add

contour_integral_add [symmetric] add_ac)
qed
show ?thesis

using e ‹e > 0 ›
by (auto intro!: holomorphic_on_imp_differentiable_at [OF _ open_ball]

analytic_imp_holomorphic
Morera_triangle continuous_on_subset [OF conthu] ∗)

qed
qed

qed
ultimately have [simp]: h z = 0 for z

by (meson Liouville_weak)
have ((λw. 1 / (w−z)) has_contour_integral complex_of_real (2 ∗ pi) ∗ i ∗

winding_number γ z) γ
by (rule has_contour_integral_winding_number [OF ‹valid_path γ› znot])

then have ((λw. f z ∗ (1 / (w−z))) has_contour_integral complex_of_real (2

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 198

∗ pi) ∗ i ∗ winding_number γ z ∗ f z) γ
by (metis mult.commute has_contour_integral_lmul)

then have 1 : ((λw. f z / (w−z)) has_contour_integral complex_of_real (2 ∗
pi) ∗ i ∗ winding_number γ z ∗ f z) γ

by (simp add: field_split_simps)
moreover have 2 : ((λw. (f w − f z) / (w−z)) has_contour_integral 0) γ

using U [OF z] pasz d_def by (force elim: has_contour_integral_eq [where
g = λw. (f w − f z)/(w−z)])

show ?thesis
using has_contour_integral_add [OF 1 2] by (simp add: diff_divide_distrib)

qed

theorem Cauchy_integral_formula_global:
assumes S : open S and holf : f holomorphic_on S

and z: z ∈ S and vpg: valid_path γ
and pasz: path_image γ ⊆ S − {z} and loop: pathfinish γ = pathstart γ
and zero:

∧
w. w /∈ S =⇒ winding_number γ w = 0

shows ((λw. f w / (w−z)) has_contour_integral (2∗pi ∗ i ∗ winding_number
γ z ∗ f z)) γ
proof −

have path γ using vpg by (blast intro: valid_path_imp_path)
have hols: (λw. f w / (w−z)) holomorphic_on S − {z} (λw. 1 / (w−z)) holo-

morphic_on S − {z}
by (rule holomorphic_intros holomorphic_on_subset [OF holf] | force)+

then have cint_fw: (λw. f w / (w−z)) contour_integrable_on γ
by (meson contour_integrable_holomorphic_simple holomorphic_on_imp_continuous_on

open_delete S vpg pasz)
obtain d where d>0

and d:
∧

g h. [[valid_path g; valid_path h; ∀ t∈{0 ..1}. cmod (g t − γ t) < d
∧ cmod (h t − γ t) < d;

pathstart h = pathstart g ∧ pathfinish h = pathfinish g]]
=⇒ path_image h ⊆ S − {z} ∧ (∀ f . f holomorphic_on S − {z}

−→ contour_integral h f = contour_integral g f)
using contour_integral_nearby_ends [OF _ ‹path γ› pasz] S by (simp add:

open_Diff) metis
obtain p where polyp: polynomial_function p

and ps: pathstart p = pathstart γ and pf : pathfinish p = pathfinish γ
and led: ∀ t∈{0 ..1}. cmod (p t − γ t) < d

using path_approx_polynomial_function [OF ‹path γ› ‹d > 0 ›] by metis
then have ploop: pathfinish p = pathstart p using loop by auto
have vpp: valid_path p using polyp valid_path_polynomial_function by blast
have [simp]: z /∈ path_image γ using pasz by blast
have paps: path_image p ⊆ S − {z} and cint_eq: (

∧
f . f holomorphic_on S −

{z} =⇒ contour_integral p f = contour_integral γ f)
using pf ps led d [OF vpg vpp] ‹d > 0 › by auto

have wn_eq: winding_number p z = winding_number γ z
using vpp paps
by (simp add: subset_Diff_insert vpg valid_path_polynomial_function wind-

ing_number_valid_path cint_eq hols)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 199

have winding_number p w = winding_number γ w if w /∈ S for w
proof −

have hol: (λv. 1 / (v−w)) holomorphic_on S − {z}
using that by (force intro: holomorphic_intros holomorphic_on_subset [OF

holf])
have w /∈ path_image p w /∈ path_image γ using paps pasz that by auto
then show ?thesis
using vpp vpg by (simp add: subset_Diff_insert valid_path_polynomial_function

winding_number_valid_path cint_eq [OF hol])
qed
then have wn0 :

∧
w. w /∈ S =⇒ winding_number p w = 0

by (simp add: zero)
show ?thesis

using Cauchy_integral_formula_global_weak [OF S holf z polyp paps ploop
wn0] hols

by (metis wn_eq cint_eq has_contour_integral_eqpath cint_fw cint_eq)
qed

theorem Cauchy_theorem_global:
assumes S : open S and holf : f holomorphic_on S

and vpg: valid_path γ and loop: pathfinish γ = pathstart γ
and pas: path_image γ ⊆ S
and zero:

∧
w. w /∈ S =⇒ winding_number γ w = 0

shows (f has_contour_integral 0) γ
proof −

have path_image γ 6= S
by (metis compact_valid_path_image vpg compact_open path_image_nonempty

S)
then obtain z where z ∈ S and znot: z /∈ path_image γ and pasz: path_image
γ ⊆ S − {z}

using pas by blast
have hol: (λw. (w−z) ∗ f w) holomorphic_on S

by (rule holomorphic_intros holf)+
show ?thesis

using Cauchy_integral_formula_global [OF S hol ‹z ∈ S› vpg pasz loop zero]
by (auto simp: znot elim!: has_contour_integral_eq)

qed

corollary Cauchy_theorem_global_outside:
assumes open S f holomorphic_on S valid_path γ pathfinish γ = pathstart γ

path_image γ ⊆ S∧
w. w /∈ S =⇒ w ∈ outside(path_image γ)

shows (f has_contour_integral 0) γ
by (metis Cauchy_theorem_global assms winding_number_zero_in_outside valid_path_imp_path)

lemma simply_connected_imp_winding_number_zero:
assumes simply_connected S path g

path_image g ⊆ S pathfinish g = pathstart g z /∈ S
shows winding_number g z = 0

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 200

proof −
have hom: homotopic_loops S g (linepath (pathstart g) (pathstart g))

by (meson assms homotopic_paths_imp_homotopic_loops pathfinish_linepath
simply_connected_eq_contractible_path)

then have homotopic_paths (− {z}) g (linepath (pathstart g) (pathstart g))
by (meson ‹z /∈ S› homotopic_loops_imp_homotopic_paths_null homotopic_paths_subset

subset_Compl_singleton)
then have winding_number g z = winding_number(linepath (pathstart g) (pathstart

g)) z
by (rule winding_number_homotopic_paths)

also have . . . = 0
using assms by (force intro: winding_number_trivial)

finally show ?thesis .
qed

lemma Cauchy_theorem_simply_connected:
assumes open S simply_connected S f holomorphic_on S valid_path g

path_image g ⊆ S pathfinish g = pathstart g
shows (f has_contour_integral 0) g

by (meson assms Cauchy_theorem_global simply_connected_imp_winding_number_zero
valid_path_imp_path)

proposition holomorphic_logarithm_exists:
assumes A: convex A open A

and f : f holomorphic_on A
∧

x. x ∈ A =⇒ f x 6= 0
and z0 : z0 ∈ A

obtains g where g holomorphic_on A and
∧

x. x ∈ A =⇒ exp (g x) = f x
proof −

note f ′ = holomorphic_derivI [OF f (1) A(2)]
obtain g where g:

∧
x. x ∈ A =⇒ (g has_field_derivative deriv f x / f x) (at x)

proof (rule holomorphic_convex_primitive ′ [OF A])
show (λx. deriv f x / f x) holomorphic_on A

by (intro holomorphic_intros f A)
qed (auto simp: A at_within_open[of _ A])
define h where h = (λx. −g z0 + ln (f z0) + g x)
from g and A have g_holo: g holomorphic_on A
by (auto simp: holomorphic_on_def at_within_open[of _ A] field_differentiable_def)

hence h_holo: h holomorphic_on A
by (auto simp: h_def intro!: holomorphic_intros)
note [simp] = at_within_open[OF _ ‹open A›]
have ∃ c. ∀ x∈A. f x / exp (h x) − 1 = c

using ‹convex A› z0 f
by (force simp: h_def exp_diff field_simps intro!: has_field_derivative_zero_constant

derivative_eq_intros g f ′)
then obtain c where c:

∧
x. x ∈ A =⇒ f x / exp (h x) − 1 = c

by blast
from c[OF z0] and z0 and f have c = 0

by (simp add: h_def)
with c have

∧
x. x ∈ A =⇒ exp (h x) = f x by simp

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 201

from that[OF h_holo this] show ?thesis .
qed

4.14 Cauchy’s inequality and more versions of Liouville
lemma Cauchy_higher_deriv_bound:

assumes holf : f holomorphic_on (ball z r)
and contf : continuous_on (cball z r) f
and fin :

∧
w. w ∈ ball z r =⇒ f w ∈ ball y B0

and 0 < r and 0 < n
shows cmod ((deriv ^^ n) f z) ≤ (fact n) ∗ B0 / r^n

proof −
have 0 < B0

using ‹0 < r› fin [of z] by (metis ball_eq_empty ex_in_conv fin not_less)
have le_B0 : cmod (f w − y) ≤ B0 if cmod (w−z) ≤ r for w
proof (rule continuous_on_closure_norm_le [of ball z r λw. f w − y], use ‹0

< r› in simp_all)
show continuous_on (cball z r) (λw. f w − y)

by (intro continuous_intros contf)
show dist z w ≤ r

by (simp add: dist_commute dist_norm that)
qed (use fin in ‹auto simp: dist_norm less_eq_real_def norm_minus_commute›)

have (deriv ^^ n) f z = (deriv ^^ n) (λw. f w) z − (deriv ^^ n) (λw. y) z
using ‹0 < n› by simp

also have ... = (deriv ^^ n) (λw. f w − y) z
using ‹0 < r› higher_deriv_diff holf by auto

finally have (deriv ^^ n) f z = (deriv ^^ n) (λw. f w − y) z .
have contf ′: continuous_on (cball z r) (λu. f u − y)

by (rule contf continuous_intros)+
have holf ′: (λu. (f u − y)) holomorphic_on (ball z r)

by (simp add: holf holomorphic_on_diff)
define a where a = (2 ∗ pi)/(fact n)
have 0 < a by (simp add: a_def)
have B0/r^(Suc n)∗2 ∗ pi ∗ r = a∗((fact n)∗B0/r^n)

using ‹0 < r› by (simp add: a_def field_split_simps)
have der_dif : (deriv ^^ n) (λw. f w − y) z = (deriv ^^ n) f z

using ‹0 < r› ‹0 < n›
by (auto simp: higher_deriv_diff [OF holf holomorphic_on_const])

have norm ((2 ∗ of_real pi ∗ i)/(fact n) ∗ (deriv ^^ n) (λw. f w − y) z)
≤ (B0/r^(Suc n)) ∗ (2 ∗ pi ∗ r)

apply (rule has_contour_integral_bound_circlepath [of (λu. (f u − y)/(u−z)^(Suc
n)) _ z])

using Cauchy_has_contour_integral_higher_derivative_circlepath [OF contf ′

holf ′]
using ‹0 < B0 › ‹0 < r›
apply (auto simp: norm_divide norm_mult norm_power divide_simps le_B0)
done

then show ?thesis
using ‹0 < r›

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 202

by (auto simp: norm_divide norm_mult norm_power field_simps der_dif
le_B0)
qed

lemma Cauchy_inequality:
assumes holf : f holomorphic_on (ball ξ r)

and contf : continuous_on (cball ξ r) f
and 0 < r
and nof :

∧
x. norm(ξ−x) = r =⇒ norm(f x) ≤ B

shows norm ((deriv ^^ n) f ξ) ≤ (fact n) ∗ B / r^n
proof −

obtain x where norm (ξ−x) = r
by (metis ‹0 < r› dist_norm order_less_imp_le vector_choose_dist)

then have 0 ≤ B
by (metis nof norm_not_less_zero not_le order_trans)

have ξ ∈ ball ξ r
using ‹0 < r› by simp

then have ((λu. f u / (u−ξ) ^ Suc n) has_contour_integral (2 ∗ pi) ∗ i / fact
n ∗ (deriv ^^ n) f ξ)

(circlepath ξ r)
by (rule Cauchy_has_contour_integral_higher_derivative_circlepath [OF contf

holf])
have norm ((2 ∗ pi ∗ i)/(fact n) ∗ (deriv ^^ n) f ξ) ≤ (B / r^(Suc n)) ∗ (2 ∗

pi ∗ r)
proof (rule has_contour_integral_bound_circlepath)

have ξ ∈ ball ξ r
using ‹0 < r› by simp

then show ((λu. f u / (u−ξ) ^ Suc n) has_contour_integral (2 ∗ pi) ∗ i /
fact n ∗ (deriv ^^ n) f ξ)

(circlepath ξ r)
by (rule Cauchy_has_contour_integral_higher_derivative_circlepath [OF

contf holf])
show

∧
x. cmod (x−ξ) = r =⇒ cmod (f x / (x−ξ) ^ Suc n) ≤ B / r ^ Suc n

using ‹0 ≤ B› ‹0 < r›
by (simp add: norm_divide norm_power nof frac_le norm_minus_commute

del: power_Suc)
qed (use ‹0 ≤ B› ‹0 < r› in auto)
then show ?thesis using ‹0 < r›

by (simp add: norm_divide norm_mult field_simps)
qed

lemma Liouville_polynomial:
assumes holf : f holomorphic_on UNIV

and nof :
∧

z. A ≤ norm z =⇒ norm(f z) ≤ B ∗ norm z ^ n
shows f ξ = (

∑
k≤n. (deriv^^k) f 0 / fact k ∗ ξ ^ k)

proof (cases rule: le_less_linear [THEN disjE])
assume B ≤ 0
then have

∧
z. A ≤ norm z =⇒ norm(f z) = 0

by (metis nof less_le_trans zero_less_mult_iff neqE norm_not_less_zero

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 203

norm_power not_le)
then have f0 : (f −−−→ 0) at_infinity

using Lim_at_infinity by force
then have [simp]: f = (λw. 0)

using Liouville_weak [OF holf , of 0]
by (simp add: eventually_at_infinity f0) meson

show ?thesis by simp
next

assume 0 < B
have ((λk. (deriv ^^ k) f 0 / (fact k) ∗ (ξ − 0)^k) sums f ξ)
proof (rule holomorphic_power_series [where r = norm ξ + 1])

show f holomorphic_on ball 0 (cmod ξ + 1) ξ ∈ ball 0 (cmod ξ + 1)
using holf holomorphic_on_subset by auto

qed
then have sumsf : ((λk. (deriv ^^ k) f 0 / (fact k) ∗ ξ^k) sums f ξ) by simp
have (deriv ^^ k) f 0 / fact k ∗ ξ ^ k = 0 if k>n for k
proof (cases (deriv ^^ k) f 0 = 0)

case True then show ?thesis by simp
next

case False
define w where w = complex_of_real (fact k ∗ B / cmod ((deriv ^^ k) f 0)

+ (|A| + 1))
have 1 ≤ abs (fact k ∗ B / cmod ((deriv ^^ k) f 0) + (|A| + 1))

using ‹0 < B› by simp
then have wge1 : 1 ≤ norm w

by (metis norm_of_real w_def)
then have w 6= 0 by auto
have kB: 0 < fact k ∗ B

using ‹0 < B› by simp
then have 0 ≤ fact k ∗ B / cmod ((deriv ^^ k) f 0)

by simp
then have wgeA: A ≤ cmod w

by (simp only: w_def norm_of_real)
have fact k ∗ B / cmod ((deriv ^^ k) f 0) < abs (fact k ∗ B / cmod ((deriv ^^

k) f 0) + (|A| + 1))
using ‹0 < B› by simp

then have wge: fact k ∗ B / cmod ((deriv ^^ k) f 0) < norm w
by (metis norm_of_real w_def)

then have fact k ∗ B / norm w < cmod ((deriv ^^ k) f 0)
using False by (simp add: field_split_simps mult.commute split: if_split_asm)
also have ... ≤ fact k ∗ (B ∗ norm w ^ n) / norm w ^ k
proof (rule Cauchy_inequality)

show f holomorphic_on ball 0 (cmod w)
using holf holomorphic_on_subset by force

show continuous_on (cball 0 (cmod w)) f
using holf holomorphic_on_imp_continuous_on holomorphic_on_subset

by blast
show

∧
x. cmod (0−x) = cmod w =⇒ cmod (f x) ≤ B ∗ cmod w ^ n

by (metis nof wgeA dist_0_norm dist_norm)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 204

qed (use ‹w 6= 0 › in auto)
also have ... = fact k ∗ B / cmod w ^ (k−n)

using ‹k>n› by (simp add: divide_simps flip: power_add)
finally have fact k ∗ B / cmod w < fact k ∗ B / cmod w ^ (k−n) .
then have 1 / cmod w < 1 / cmod w ^ (k−n)

by (metis kB divide_inverse inverse_eq_divide mult_less_cancel_left_pos)
then have cmod w ^ (k−n) < cmod w

by (smt (verit, best) ‹w 6= 0 › frac_le zero_less_norm_iff)
with self_le_power [OF wge1] show ?thesis

by (meson diff_is_0_eq not_gr0 not_le that)
qed
then have (deriv ^^ (k + Suc n)) f 0 / fact (k + Suc n) ∗ ξ ^ (k + Suc n) =

0 for k
using not_less_eq by blast

then have (λi. (deriv ^^ (i + Suc n)) f 0 / fact (i + Suc n) ∗ ξ ^ (i + Suc n))
sums 0

by (rule sums_0)
with sums_split_initial_segment [OF sumsf , where n = Suc n]
show ?thesis

using atLeast0AtMost lessThan_Suc_atMost sums_unique2 by fastforce
qed

Every bounded entire function is a constant function.
theorem Liouville_theorem:

assumes holf : f holomorphic_on UNIV
and bf : bounded (range f)

shows f constant_on UNIV
using Liouville_polynomial [OF holf , of 0 _ 0 , simplified]
by (metis bf bounded_iff constant_on_def rangeI)

A holomorphic function f has only isolated zeros unless f is 0.
lemma powser_0_nonzero:

fixes a :: nat ⇒ ′a::{real_normed_field,banach}
assumes r : 0 < r

and sm:
∧

x. norm (x−ξ) < r =⇒ (λn. a n ∗ (x−ξ) ^ n) sums (f x)
and [simp]: f ξ = 0
and m0 : a m 6= 0 and m>0

obtains s where 0 < s and
∧

z. z ∈ cball ξ s − {ξ} =⇒ f z 6= 0
proof −

have r ≤ conv_radius a
using sm sums_summable by (auto simp: le_conv_radius_iff [where ξ=ξ])

obtain m where am: a m 6= 0 and az [simp]: (
∧

n. n<m =⇒ a n = 0)
proof

show a (LEAST n. a n 6= 0) 6= 0
by (metis (mono_tags, lifting) m0 LeastI)

qed (fastforce dest!: not_less_Least)
define b where b i = a (i+m) / a m for i
define g where g x = suminf (λi. b i ∗ (x−ξ) ^ i) for x
have [simp]: b 0 = 1

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 205

by (simp add: am b_def)
{ fix x:: ′a

assume norm (x−ξ) < r
then have (λn. (a m ∗ (x−ξ)^m) ∗ (b n ∗ (x−ξ)^n)) sums (f x)

using am az sm sums_zero_iff_shift [of m (λn. a n ∗ (x−ξ) ^ n) f x]
by (simp add: b_def monoid_mult_class.power_add algebra_simps)

then have x 6= ξ =⇒ (λn. b n ∗ (x−ξ)^n) sums (f x / (a m ∗ (x−ξ)^m))
using am by (simp add: sums_mult_D)

} note bsums = this
then have norm (x−ξ) < r =⇒ summable (λn. b n ∗ (x−ξ)^n) for x

using sums_summable by (cases x=ξ) auto
then have r ≤ conv_radius b

by (simp add: le_conv_radius_iff [where ξ=ξ])
then have r/2 < conv_radius b

using not_le order_trans r by fastforce
then have continuous_on (cball ξ (r/2)) g

using powser_continuous_suminf [of r/2 b ξ] by (simp add: g_def)
then obtain s where s>0

∧
x. [[norm (x−ξ) ≤ s; norm (x−ξ) ≤ r/2]] =⇒ dist

(g x) (g ξ) < 1/2
proof (rule continuous_onE)

show ξ ∈ cball ξ (r / 2) 1/2 > (0 ::real)
using r by auto

qed (auto simp: dist_commute dist_norm)
moreover have g ξ = 1

by (simp add: g_def)
ultimately have gnz:

∧
x. [[norm (x−ξ) ≤ s; norm (x−ξ) ≤ r/2]] =⇒ (g x) 6= 0

by fastforce
show ?thesis
proof

have ∗: f x 6= 0 if x 6= ξ norm (x−ξ) ≤ s norm (x−ξ) ≤ r/2 for x
using bsums [of x] that gnz [of x] r sums_iff unfolding g_def by fastforce

show
∧

z. z ∈ cball ξ (min s (r / 2)) − {ξ} =⇒ f z 6= 0
by (simp add: ∗ dist_norm norm_minus_commute)

qed (use ‹0 < r› ‹0 < s› in auto)
qed

4.15 Complex functions and power series

The following defines the power series expansion of a complex function at a
given point (assuming that it is analytic at that point).
definition fps_expansion :: (complex ⇒ complex) ⇒ complex ⇒ complex fps
where

fps_expansion f z0 = Abs_fps (λn. (deriv ^^ n) f z0 / fact n)

lemma fps_expansion_cong:
assumes ∀ F w in nhds x. f w =g w
shows fps_expansion f x = fps_expansion g x
unfolding fps_expansion_def using assms higher_deriv_cong_ev by fastforce

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 206

lemma
fixes r :: ereal
assumes f holomorphic_on eball z0 r
shows conv_radius_fps_expansion: fps_conv_radius (fps_expansion f z0) ≥ r
and eval_fps_expansion:

∧
z. z ∈ eball z0 r =⇒ eval_fps (fps_expansion f z0)

(z − z0) = f z
and eval_fps_expansion ′:

∧
z. norm z < r =⇒ eval_fps (fps_expansion f z0)

z = f (z0 + z)
proof −

have (λn. fps_nth (fps_expansion f z0) n ∗ (z − z0) ^ n) sums f z
if z ∈ ball z0 r ′ ereal r ′ < r for z r ′

proof −
have f holomorphic_on ball z0 r ′

using holomorphic_on_subset[OF _ ball_eball_mono] assms that by force
then show ?thesis

using fps_expansion_def holomorphic_power_series that by auto
qed
hence ∗: (λn. fps_nth (fps_expansion f z0) n ∗ (z − z0) ^ n) sums f z

if z ∈ eball z0 r for z
using that by (subst (asm) eball_conv_UNION_balls) blast

show fps_conv_radius (fps_expansion f z0) ≥ r unfolding fps_conv_radius_def
proof (rule conv_radius_geI_ex)

fix r ′ :: real assume r ′: r ′ > 0 ereal r ′ < r
thus ∃ z. norm z = r ′ ∧ summable (λn. fps_nth (fps_expansion f z0) n ∗ z ^

n)
using ∗[of z0 + of_real r ′]
by (intro exI [of _ of_real r ′]) (auto simp: summable_def dist_norm)

qed
show eval_fps (fps_expansion f z0) (z − z0) = f z if z ∈ eball z0 r for z

using ∗[OF that] by (simp add: eval_fps_def sums_iff)
show eval_fps (fps_expansion f z0) z = f (z0 + z) if ereal (norm z) < r for z

using ∗[of z0 + z] and that by (simp add: eval_fps_def sums_iff dist_norm)
qed

We can now show several more facts about power series expansions (at least
in the complex case) with relative ease that would have been trickier without
complex analysis.
lemma

fixes f :: complex fps and r :: ereal
assumes

∧
z. ereal (norm z) < r =⇒ eval_fps f z 6= 0

shows fps_conv_radius_inverse: fps_conv_radius (inverse f) ≥ min r (fps_conv_radius
f)

and eval_fps_inverse:
∧

z. ereal (norm z) < fps_conv_radius f =⇒ ereal
(norm z) < r =⇒

eval_fps (inverse f) z = inverse (eval_fps f z)
proof −

define R where R = min (fps_conv_radius f) r
have ∗: fps_conv_radius (inverse f) ≥ min r (fps_conv_radius f) ∧

(∀ z∈eball 0 (min (fps_conv_radius f) r). eval_fps (inverse f) z = inverse

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 207

(eval_fps f z))
proof (cases min r (fps_conv_radius f) > 0)

case True
define f ′ where f ′ = fps_expansion (λz. inverse (eval_fps f z)) 0

have holo: (λz. inverse (eval_fps f z)) holomorphic_on eball 0 (min r (fps_conv_radius
f))

using assms by (intro holomorphic_intros) auto
from holo have radius: fps_conv_radius f ′ ≥ min r (fps_conv_radius f)

unfolding f ′_def by (rule conv_radius_fps_expansion)
have eval_f ′: eval_fps f ′ z = inverse (eval_fps f z)

if norm z < fps_conv_radius f norm z < r for z
using that unfolding f ′_def by (subst eval_fps_expansion ′[OF holo]) auto

have f ∗ f ′ = 1
proof (rule eval_fps_eqD)

from radius and True have 0 < min (fps_conv_radius f) (fps_conv_radius
f ′)

by (auto simp: min_def split: if_splits)
also have . . . ≤ fps_conv_radius (f ∗ f ′) by (rule fps_conv_radius_mult)
finally show . . . > 0 .

next
from True have R > 0 by (auto simp: R_def)
hence eventually (λz. z ∈ eball 0 R) (nhds 0)

by (intro eventually_nhds_in_open) (auto simp: zero_ereal_def)
thus eventually (λz. eval_fps (f ∗ f ′) z = eval_fps 1 z) (nhds 0)
proof eventually_elim

case (elim z)
hence eval_fps (f ∗ f ′) z = eval_fps f z ∗ eval_fps f ′ z

using radius by (intro eval_fps_mult)
(auto simp: R_def min_def split: if_splits intro: less_trans)

also have eval_fps f ′ z = inverse (eval_fps f z)
using elim by (intro eval_f ′) (auto simp: R_def)

also from elim have eval_fps f z 6= 0
by (intro assms) (auto simp: R_def)

hence eval_fps f z ∗ inverse (eval_fps f z) = eval_fps 1 z
by simp

finally show eval_fps (f ∗ f ′) z = eval_fps 1 z .
qed

qed simp_all
hence f ′ = inverse f

by (intro fps_inverse_unique [symmetric]) (simp_all add: mult_ac)
with eval_f ′ and radius show ?thesis by simp

next
case False
hence ∗: eball 0 R = {}

by (intro eball_empty) (auto simp: R_def min_def split: if_splits)
show ?thesis
proof

from False have min r (fps_conv_radius f) ≤ 0

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 208

by (simp add: min_def)
also have 0 ≤ fps_conv_radius (inverse f)

by (simp add: fps_conv_radius_def conv_radius_nonneg)
finally show min r (fps_conv_radius f) ≤

qed (unfold ∗ [unfolded R_def], auto)
qed

show fps_conv_radius (inverse f) ≥ min r (fps_conv_radius f)
using ∗ by blast

show eval_fps (inverse f) z = inverse (eval_fps f z)
if ereal (norm z) < fps_conv_radius f ereal (norm z) < r for z
using that ∗ by auto

qed

lemma
fixes f g :: complex fps and r :: ereal
defines R ≡ Min {r , fps_conv_radius f , fps_conv_radius g}
assumes fps_conv_radius f > 0 fps_conv_radius g > 0 r > 0
assumes nz:

∧
z. z ∈ eball 0 r =⇒ eval_fps g z 6= 0

shows fps_conv_radius_divide ′: fps_conv_radius (f / g) ≥ R
and eval_fps_divide ′:

ereal (norm z) < R =⇒ eval_fps (f / g) z = eval_fps f z / eval_fps g z
proof −

from nz[of 0] and ‹r > 0 › have nz ′: fps_nth g 0 6= 0
by (auto simp: eval_fps_at_0 zero_ereal_def)

have R ≤ min r (fps_conv_radius g)
by (auto simp: R_def intro: min.coboundedI2)

also have min r (fps_conv_radius g) ≤ fps_conv_radius (inverse g)
by (intro fps_conv_radius_inverse assms) (auto simp: zero_ereal_def)

finally have radius: fps_conv_radius (inverse g) ≥ R .
have R ≤ min (fps_conv_radius f) (fps_conv_radius (inverse g))

by (intro radius min.boundedI) (auto simp: R_def intro: min.coboundedI1
min.coboundedI2)

also have . . . ≤ fps_conv_radius (f ∗ inverse g)
by (rule fps_conv_radius_mult)

also have f ∗ inverse g = f / g
by (intro fps_divide_unit [symmetric] nz ′)

finally show fps_conv_radius (f / g) ≥ R .

assume z: ereal (norm z) < R
have eval_fps (f ∗ inverse g) z = eval_fps f z ∗ eval_fps (inverse g) z

using radius by (intro eval_fps_mult less_le_trans[OF z])
(auto simp: R_def intro: min.coboundedI1 min.coboundedI2)

also have eval_fps (inverse g) z = inverse (eval_fps g z) using ‹r > 0 ›
by (intro eval_fps_inverse[where r = r] less_le_trans[OF z] nz)

(auto simp: R_def intro: min.coboundedI1 min.coboundedI2)
also have f ∗ inverse g = f / g by fact
finally show eval_fps (f / g) z = eval_fps f z / eval_fps g z

by (simp add: field_split_simps)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 209

qed

lemma
fixes f g :: complex fps and r :: ereal
defines R ≡ Min {r , fps_conv_radius f , fps_conv_radius g}
assumes subdegree g ≤ subdegree f
assumes fps_conv_radius f > 0 fps_conv_radius g > 0 r > 0
assumes

∧
z. z ∈ eball 0 r =⇒ z 6= 0 =⇒ eval_fps g z 6= 0

shows fps_conv_radius_divide: fps_conv_radius (f / g) ≥ R
and eval_fps_divide:

ereal (norm z) < R =⇒ c = fps_nth f (subdegree g) / fps_nth g (subdegree
g) =⇒

eval_fps (f / g) z = (if z = 0 then c else eval_fps f z / eval_fps g z)
proof −

define f ′ g ′ where f ′ = fps_shift (subdegree g) f and g ′ = fps_shift (subdegree
g) g

have f_eq: f = f ′ ∗ fps_X ^ subdegree g and g_eq: g = g ′ ∗ fps_X ^ subdegree
g

unfolding f ′_def g ′_def by (rule subdegree_decompose ′ le_refl | fact)+
have subdegree: subdegree f ′ = subdegree f − subdegree g subdegree g ′ = 0

using assms(2) by (simp_all add: f ′_def g ′_def)
have [simp]: fps_conv_radius f ′ = fps_conv_radius f fps_conv_radius g ′ =

fps_conv_radius g
by (simp_all add: f ′_def g ′_def)

have [simp]: fps_nth f ′ 0 = fps_nth f (subdegree g)
fps_nth g ′ 0 = fps_nth g (subdegree g) by (simp_all add: f ′_def

g ′_def)
have g_nz: g 6= 0
proof −

define z :: complex where z = (if r = ∞ then 1 else of_real (real_of_ereal r
/ 2))

have z ∈ eball 0 r
using ‹r > 0 › ereal_less_real_iff z_def by fastforce

moreover have z 6= 0 using ‹r > 0 ›
by (cases r) (auto simp: z_def)

ultimately have eval_fps g z 6= 0 by (rule assms(6))
thus g 6= 0 by auto

qed
have fg: f / g = f ′ ∗ inverse g ′

by (subst f_eq, subst (2) g_eq) (insert g_nz, simp add: fps_divide_unit)

have g ′_nz: eval_fps g ′ z 6= 0 if z: norm z < min r (fps_conv_radius g) for z
proof (cases z = 0)

case False
with assms and z have eval_fps g z 6= 0 by auto
also from z have eval_fps g z = eval_fps g ′ z ∗ z ^ subdegree g

by (subst g_eq) (auto simp: eval_fps_mult)
finally show ?thesis by auto

qed (use ‹g 6= 0 › in ‹auto simp: g ′_def eval_fps_at_0 ›)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy_Integral_Formula.thy 210

have R ≤ min (min r (fps_conv_radius g)) (fps_conv_radius g ′)
by (auto simp: R_def min.coboundedI1 min.coboundedI2)

also have . . . ≤ fps_conv_radius (inverse g ′)
using g ′_nz by (rule fps_conv_radius_inverse)

finally have conv_radius_inv: R ≤ fps_conv_radius (inverse g ′) .
hence R ≤ fps_conv_radius (f ′ ∗ inverse g ′)

by (intro order .trans[OF _ fps_conv_radius_mult])
(auto simp: R_def intro: min.coboundedI1 min.coboundedI2)

thus fps_conv_radius (f / g) ≥ R by (simp add: fg)

fix z c :: complex assume z: ereal (norm z) < R
assume c: c = fps_nth f (subdegree g) / fps_nth g (subdegree g)
show eval_fps (f / g) z = (if z = 0 then c else eval_fps f z / eval_fps g z)
proof (cases z = 0)

case False
from z and conv_radius_inv have ereal (norm z) < fps_conv_radius (inverse

g ′)
by simp

with z have eval_fps (f / g) z = eval_fps f ′ z ∗ eval_fps (inverse g ′) z
unfolding fg by (subst eval_fps_mult) (auto simp: R_def)

also have eval_fps (inverse g ′) z = inverse (eval_fps g ′ z)
using z by (intro eval_fps_inverse[of min r (fps_conv_radius g ′)] g ′_nz)

(auto simp: R_def)
also have eval_fps f ′ z ∗ . . . = eval_fps f z / eval_fps g z

using z False assms(2) by (simp add: f ′_def g ′_def eval_fps_shift R_def)
finally show ?thesis using False by simp

qed (simp_all add: eval_fps_at_0 fg field_simps c)
qed

lemma has_fps_expansion_fps_expansion [intro]:
assumes open A 0 ∈ A f holomorphic_on A
shows f has_fps_expansion fps_expansion f 0

proof −
from assms obtain r where r > 0 and r : ball 0 r ⊆ A

by (auto simp: open_contains_ball)
with assms have holo: f holomorphic_on eball 0 (ereal r)

by auto
have r ≤ fps_conv_radius (fps_expansion f 0)

using holo by (intro conv_radius_fps_expansion) auto
then have . . . > 0

by (simp add: ereal_le_less ‹r > 0 › zero_ereal_def)
moreover have eventually (λz. z ∈ ball 0 r) (nhds 0)

using ‹r > 0 › by (intro eventually_nhds_in_open) auto
hence eventually (λz. eval_fps (fps_expansion f 0) z = f z) (nhds 0)

by eventually_elim (subst eval_fps_expansion ′[OF holo], auto)
ultimately show ?thesis

using ‹r > 0 › by (auto simp: has_fps_expansion_def)
qed

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Conformal_Mappings.thy 211

lemma fps_conv_radius_tan:
fixes c :: complex
assumes c 6= 0
shows fps_conv_radius (fps_tan c) ≥ pi / (2 ∗ norm c)

proof −
have fps_conv_radius (fps_tan c) ≥

Min {pi / (2 ∗ norm c), fps_conv_radius (fps_sin c), fps_conv_radius
(fps_cos c)}

unfolding fps_tan_def
proof (rule fps_conv_radius_divide)

fix z :: complex assume z ∈ eball 0 (pi / (2 ∗ norm c))
with cos_eq_zero_imp_norm_ge[of c∗z] assms

show eval_fps (fps_cos c) z 6= 0 by (auto simp: norm_mult field_simps)
qed (insert assms, auto)
thus ?thesis by (simp add: min_def)

qed

lemma eval_fps_tan:
fixes c :: complex
assumes norm z < pi / (2 ∗ norm c)
shows eval_fps (fps_tan c) z = tan (c ∗ z)

proof (cases c = 0)
case False
show ?thesis unfolding fps_tan_def
proof (subst eval_fps_divide ′[where r = pi / (2 ∗ norm c)])

fix z :: complex assume z ∈ eball 0 (pi / (2 ∗ norm c))
with cos_eq_zero_imp_norm_ge[of c∗z] assms
show eval_fps (fps_cos c) z 6= 0 using False by (auto simp: norm_mult

field_simps)
qed (use False assms in ‹auto simp: field_simps tan_def ›)

qed simp_all

end

5 Conformal Mappings and Consequences of Cauchy’s
Integral Theorem

By John Harrison et al. Ported from HOL Light by L C Paulson (2016)

Also Cauchy’s residue theorem by Wenda Li (2016)
theory Conformal_Mappings
imports Cauchy_Integral_Formula

begin

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 212

5.1 Analytic continuation
proposition isolated_zeros:

assumes holf : f holomorphic_on S
and open S connected S ξ ∈ S f ξ = 0 β ∈ S f β 6= 0

obtains r where 0 < r and ball ξ r ⊆ S and∧
z. z ∈ ball ξ r − {ξ} =⇒ f z 6= 0

proof −
obtain r where 0 < r and r : ball ξ r ⊆ S

using ‹open S› ‹ξ ∈ S› open_contains_ball_eq by blast
have powf : ((λn. (deriv ^^ n) f ξ / (fact n) ∗ (z − ξ)^n) sums f z) if z ∈ ball

ξ r for z
by (intro holomorphic_power_series [OF _ that] holomorphic_on_subset [OF

holf r])
obtain m where m: (deriv ^^ m) f ξ / (fact m) 6= 0

using holomorphic_fun_eq_0_on_connected [OF holf ‹open S› ‹connected S›
_ ‹ξ ∈ S› ‹β ∈ S›] ‹f β 6= 0 ›

by auto
then have m 6= 0 using assms(5) funpow_0 by fastforce
obtain s where 0 < s and s:

∧
z. z ∈ cball ξ s − {ξ} =⇒ f z 6= 0

using powser_0_nonzero [OF ‹0 < r› powf ‹f ξ = 0 › m]
by (metis ‹m 6= 0 › dist_norm mem_ball norm_minus_commute not_gr_zero)

have 0 < min r s by (simp add: ‹0 < r› ‹0 < s›)
then show thesis
proof qed (use r s in auto)

qed

proposition analytic_continuation:
assumes holf : f holomorphic_on S

and open S and connected S
and U ⊆ S and ξ ∈ S
and ξ islimpt U
and fU0 [simp]:

∧
z. z ∈ U =⇒ f z = 0

and w ∈ S
shows f w = 0

proof −
obtain e where 0 < e and e: cball ξ e ⊆ S

using ‹open S› ‹ξ ∈ S› open_contains_cball_eq by blast
define T where T = cball ξ e ∩ U
have contf : continuous_on (closure T) f
by (metis T_def closed_cball closure_minimal e holf holomorphic_on_imp_continuous_on

holomorphic_on_subset inf .cobounded1)
have fT0 [simp]:

∧
x. x ∈ T =⇒ f x = 0

by (simp add: T_def)
have

∧
r . [[∀ e>0 . ∃ x ′∈U . x ′ 6= ξ ∧ dist x ′ ξ < e; 0 < r]] =⇒ ∃ x ′∈cball ξ e ∩

U . x ′ 6= ξ ∧ dist x ′ ξ < r
by (metis ‹0 < e› IntI dist_commute less_eq_real_def mem_cball min_less_iff_conj)

then have ξ islimpt T using ‹ξ islimpt U ›
by (auto simp: T_def islimpt_approachable)

then have ξ ∈ closure T

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 213

by (simp add: closure_def)
then have f ξ = 0

by (auto simp: continuous_constant_on_closure [OF contf])
moreover have

∧
r . [[0 < r ;

∧
z. z ∈ ball ξ r − {ξ} =⇒ f z 6= 0]] =⇒ False

by (metis open_ball ‹ξ islimpt T › centre_in_ball fT0 insertE insert_Diff
islimptE)

ultimately show ?thesis
by (metis ‹open S› ‹connected S› ‹ξ ∈ S› ‹w ∈ S› holf isolated_zeros)

qed

corollary analytic_continuation_open:
assumes open s and open s ′ and s 6= {} and connected s ′

and s ⊆ s ′

assumes f holomorphic_on s ′ and g holomorphic_on s ′

and
∧

z. z ∈ s =⇒ f z = g z
assumes z ∈ s ′

shows f z = g z
proof −

from ‹s 6= {}› obtain ξ where ξ ∈ s by auto
with ‹open s› have ξ: ξ islimpt s

by (intro interior_limit_point) (auto simp: interior_open)
have f z − g z = 0

by (rule analytic_continuation[of λz. f z − g z s ′ s ξ])
(insert assms ‹ξ ∈ s› ξ, auto intro: holomorphic_intros)

thus ?thesis by simp
qed

corollary analytic_continuation ′:
assumes f holomorphic_on S open S connected S

and U ⊆ S ξ ∈ S ξ islimpt U
and f constant_on U

shows f constant_on S
proof −

obtain c where c:
∧

x. x ∈ U =⇒ f x − c = 0
by (metis ‹f constant_on U › constant_on_def diff_self)

have (λz. f z − c) holomorphic_on S
using assms by (intro holomorphic_intros)

with c analytic_continuation assms have
∧

x. x ∈ S =⇒ f x − c = 0
by blast

then show ?thesis
unfolding constant_on_def by force

qed

lemma holomorphic_compact_finite_zeros:
assumes S : f holomorphic_on S open S connected S

and compact K K ⊆ S
and ¬ f constant_on S

shows finite {z∈K . f z = 0}
proof (rule ccontr)

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 214

assume infinite {z∈K . f z = 0}
then obtain z where z ∈ K and z: z islimpt {z∈K . f z = 0}

using ‹compact K › by (auto simp: compact_eq_Bolzano_Weierstrass)
moreover have {z∈K . f z = 0} ⊆ S

using ‹K ⊆ S› by blast
ultimately show False
using assms analytic_continuation [OF S] unfolding constant_on_def
by blast

qed

lemma holomorphic_countable_zeros:
assumes S : f holomorphic_on S open S connected S and fsigma S

and ¬ f constant_on S
shows countable {z∈S . f z = 0}

proof −
obtain F ::nat ⇒ complex set

where F : range F ⊆ Collect compact and Seq: S = (
⋃

i. F i)
using ‹fsigma S› by (meson fsigma_Union_compact)

have fin: finite {z ∈ F i. f z = 0} for i
using holomorphic_compact_finite_zeros assms F Seq Union_iff by blast

have {z ∈ S . f z = 0} = (
⋃

i. {z ∈ F i. f z = 0})
using Seq by auto

with fin show ?thesis
by (simp add: countable_finite)

qed

lemma holomorphic_countable_equal:
assumes f holomorphic_on S g holomorphic_on S open S connected S and fsigma

S
and eq: uncountable {z∈S . f z = g z}

shows S ⊆ {z∈S . f z = g z}
proof −

obtain z where z: z∈S f z = g z
using eq not_finite_existsD uncountable_infinite by blast

have (λx. f x − g x) holomorphic_on S
by (simp add: assms holomorphic_on_diff)

then have (λx. f x − g x) constant_on S
using holomorphic_countable_zeros assms by force

with z have
∧

x. x∈S =⇒ f x − g x = 0
unfolding constant_on_def by force

then show ?thesis
by auto

qed

lemma holomorphic_countable_equal_UNIV :
assumes fg: f holomorphic_on UNIV g holomorphic_on UNIV

and eq: uncountable {z. f z = g z}
shows f=g
using holomorphic_countable_equal [OF fg] eq by fastforce

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 215

5.2 Open mapping theorem
lemma holomorphic_contract_to_zero:

assumes contf : continuous_on (cball ξ r) f
and holf : f holomorphic_on ball ξ r
and 0 < r
and norm_less:

∧
z. norm(ξ − z) = r =⇒ norm(f ξ) < norm(f z)

obtains z where z ∈ ball ξ r f z = 0
proof −

{ assume fnz:
∧

w. w ∈ ball ξ r =⇒ f w 6= 0
then have 0 < norm (f ξ)

by (simp add: ‹0 < r›)
have fnz ′:

∧
w. w ∈ cball ξ r =⇒ f w 6= 0

using dist_complex_def fnz norm_less order_le_less by fastforce
have frontier(cball ξ r) 6= {}

using ‹0 < r› by simp
define g where [abs_def]: g z = inverse (f z) for z
have contg: continuous_on (cball ξ r) g

unfolding g_def using contf continuous_on_inverse fnz ′ by blast
have holg: g holomorphic_on ball ξ r

unfolding g_def using fnz holf holomorphic_on_inverse by blast
have frontier (cball ξ r) ⊆ cball ξ r

by (simp add: subset_iff)
then have contf ′: continuous_on (frontier (cball ξ r)) f

and contg ′: continuous_on (frontier (cball ξ r)) g
by (blast intro: contf contg continuous_on_subset)+

have froc: frontier(cball ξ r) 6= {}
using ‹0 < r› by simp

moreover have continuous_on (frontier (cball ξ r)) (norm o f)
using contf ′ continuous_on_compose continuous_on_norm_id by blast

ultimately obtain w where w: w ∈ frontier(cball ξ r)
and now:

∧
x. x ∈ frontier(cball ξ r) =⇒ norm (f w) ≤ norm

(f x)
using continuous_attains_inf [OF compact_frontier [OF compact_cball]]
by (metis comp_apply)

then have fw: 0 < norm (f w)
by (simp add: fnz ′)

have continuous_on (frontier (cball ξ r)) (norm o g)
using contg ′ continuous_on_compose continuous_on_norm_id by blast

then obtain v where v: v ∈ frontier(cball ξ r)
and nov:

∧
x. x ∈ frontier(cball ξ r) =⇒ norm (g v) ≥ norm (g x)

using continuous_attains_sup [OF compact_frontier [OF compact_cball]
froc] by force

then have fv: 0 < norm (f v)
by (simp add: fnz ′)

have norm ((deriv ^^ 0) g ξ) ≤ fact 0 ∗ norm (g v) / r ^ 0
by (rule Cauchy_inequality [OF holg contg ‹0 < r›]) (simp add: dist_norm

nov)
then have cmod (g ξ) ≤ cmod (g v)

by simp

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 216

moreover have cmod (ξ − w) = r
by (metis (no_types) dist_norm frontier_cball mem_sphere w)

ultimately obtain wr : norm (ξ − w) = r and nfw: norm (f w) ≤ norm (f ξ)
unfolding g_def

by (smt (verit, del_insts) ‹0 < cmod (f ξ)› inverse_le_imp_le norm_inverse
now v)

with fw have False
using norm_less by force

}
with that show ?thesis by blast

qed

theorem open_mapping_thm:
assumes holf : f holomorphic_on S

and S : open S and connected S
and open U and U ⊆ S
and fne: ¬ f constant_on S

shows open (f ‘ U)
proof −

have ∗: open (f ‘ U)
if U 6= {} and U : open U connected U and f holomorphic_on U and

fneU :
∧

x. ∃ y ∈ U . f y 6= x
for U

proof (clarsimp simp: open_contains_ball)
fix ξ assume ξ: ξ ∈ U
show ∃ e>0 . ball (f ξ) e ⊆ f ‘ U
proof −

have hol: (λz. f z − f ξ) holomorphic_on U
by (rule holomorphic_intros that)+

obtain s where 0 < s and sbU : ball ξ s ⊆ U
and sne:

∧
z. z ∈ ball ξ s − {ξ} =⇒ (λz. f z − f ξ) z 6= 0

using isolated_zeros [OF hol U ξ] by (metis fneU right_minus_eq)
obtain r where 0 < r and r : cball ξ r ⊆ ball ξ s

using ‹0 < s› by (rule_tac r=s/2 in that) auto
have cball ξ r ⊆ U

using sbU r by blast
then have frsbU : frontier (cball ξ r) ⊆ U

using Diff_subset frontier_def order_trans by fastforce
then have cof : compact (frontier(cball ξ r))

by blast
have frne: frontier (cball ξ r) 6= {}

using ‹0 < r› by auto
have contfr : continuous_on (frontier (cball ξ r)) (λz. norm (f z − f ξ))

by (metis continuous_on_norm continuous_on_subset frsbU hol holomor-
phic_on_imp_continuous_on)

obtain w where norm (ξ − w) = r
and w: (

∧
z. norm (ξ − z) = r =⇒ norm (f w − f ξ) ≤ norm(f z −

f ξ))
using continuous_attains_inf [OF cof frne contfr] by (auto simp: dist_norm)

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 217

moreover define ε where ε ≡ norm (f w − f ξ) / 3
ultimately have 0 < ε

using ‹0 < r› dist_complex_def r sne by auto
have ball (f ξ) ε ⊆ f ‘ U
proof

fix γ
assume γ: γ ∈ ball (f ξ) ε
have ∗: cmod (γ − f ξ) < cmod (γ − f z) if cmod (ξ − z) = r for z
proof −

have lt: cmod (f w − f ξ) / 3 < cmod (γ − f z)
using w [OF that] γ
using dist_triangle2 [of f ξ γ f z] dist_triangle2 [of f ξ f z γ]
by (simp add: ε_def dist_norm norm_minus_commute)

show ?thesis
by (metis ε_def dist_commute dist_norm less_trans lt mem_ball γ)

qed
have continuous_on (cball ξ r) (λz. γ − f z)

using ‹cball ξ r ⊆ U › ‹f holomorphic_on U ›
by (force intro: continuous_intros continuous_on_subset holomorphic_on_imp_continuous_on)
moreover have (λz. γ − f z) holomorphic_on ball ξ r

using ‹cball ξ r ⊆ U › ball_subset_cball holomorphic_on_subset that(4)
by (intro holomorphic_intros) blast

ultimately obtain z where z ∈ ball ξ r γ − f z = 0
using ∗ ‹0 < r› holomorphic_contract_to_zero by blast

then show γ ∈ f ‘ U
using ‹cball ξ r ⊆ U › by fastforce

qed
then show ?thesis using ‹0 < ε› by blast

qed
qed
have open (f ‘ X) if X ∈ components U for X
proof −

have holfU : f holomorphic_on U
using ‹U ⊆ S› holf holomorphic_on_subset by blast

have X 6= {}
using that by (simp add: in_components_nonempty)

moreover have open X
using that ‹open U › open_components by auto

moreover have connected X
using that in_components_maximal by blast

moreover have f holomorphic_on X
by (meson that holfU holomorphic_on_subset in_components_maximal)

moreover have ∃ y∈X . f y 6= x for x
proof (rule ccontr)

assume not: ¬ (∃ y∈X . f y 6= x)
have X ⊆ S

using ‹U ⊆ S› in_components_subset that by blast
obtain w where w: w ∈ X using ‹X 6= {}› by blast
have wis: w islimpt X

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 218

using w ‹open X› interior_eq by auto
have hol: (λz. f z − x) holomorphic_on S

by (simp add: holf holomorphic_on_diff)
with fne [unfolded constant_on_def]

analytic_continuation[OF hol S ‹connected S› ‹X ⊆ S› _ wis] not ‹X ⊆
S› w

show False by auto
qed
ultimately show ?thesis

by (rule ∗)
qed
then have open (f ‘

⋃
(components U))

by (metis (no_types, lifting) imageE image_Union open_Union)
then show ?thesis

by force
qed

No need for S to be connected. But the nonconstant condition is stronger.
corollary open_mapping_thm2 :

assumes holf : f holomorphic_on S
and S : open S
and open U U ⊆ S
and fnc:

∧
X . [[open X ; X ⊆ S ; X 6= {}]] =⇒ ¬ f constant_on X

shows open (f ‘ U)
proof −

have S =
⋃
(components S) by simp

with ‹U ⊆ S› have U = (
⋃

C ∈ components S . C ∩ U) by auto
then have f ‘ U = (

⋃
C ∈ components S . f ‘ (C ∩ U))

using image_UN by fastforce
moreover
{ fix C assume C ∈ components S

with S ‹C ∈ components S› open_components in_components_connected
have C : open C connected C by auto
have C ⊆ S

by (metis ‹C ∈ components S› in_components_maximal)
have nf : ¬ f constant_on C

using ‹open C › ‹C ∈ components S› ‹C ⊆ S› fnc in_components_nonempty
by blast

have f holomorphic_on C
by (metis holf holomorphic_on_subset ‹C ⊆ S›)

then have open (f ‘ (C ∩ U))
by (meson C ‹open U › inf_le1 nf open_Int open_mapping_thm)

} ultimately show ?thesis
by force

qed

corollary open_mapping_thm3 :
assumes f holomorphic_on S

and open S and inj_on f S

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 219

shows open (f ‘ S)
by (meson assms inj_on_subset injective_not_constant open_mapping_thm2

order .refl)

5.3 Maximum modulus principle

If f is holomorphic, then its norm (modulus) cannot exhibit a true local
maximum that is properly within the domain of f.
proposition maximum_modulus_principle:

assumes holf : f holomorphic_on S
and S : open S and connected S
and open U and U ⊆ S and ξ ∈ U
and no:

∧
z. z ∈ U =⇒ norm(f z) ≤ norm(f ξ)

shows f constant_on S
proof (rule ccontr)

assume ¬ f constant_on S
then have open (f ‘ U)

using open_mapping_thm assms by blast
moreover have ¬ open (f ‘ U)
proof −

have ∃ t. cmod (f ξ − t) < e ∧ t /∈ f ‘ U if 0 < e for e
using that
apply (rule_tac x=if 0 < Re(f ξ) then f ξ + (e/2) else f ξ − (e/2) in exI)
apply (simp add: dist_norm)
apply (fastforce simp: cmod_Re_le_iff dest!: no dest: sym)
done

then show ?thesis
unfolding open_contains_ball by (metis ‹ξ ∈ U › contra_subsetD dist_norm

imageI mem_ball)
qed
ultimately show False

by blast
qed

proposition maximum_modulus_frontier :
assumes holf : f holomorphic_on (interior S)

and contf : continuous_on (closure S) f
and bos: bounded S
and leB:

∧
z. z ∈ frontier S =⇒ norm(f z) ≤ B

and ξ ∈ S
shows norm(f ξ) ≤ B

proof −
have compact (closure S) using bos

by (simp add: bounded_closure compact_eq_bounded_closed)
moreover have continuous_on (closure S) (cmod ◦ f)

using contf continuous_on_compose continuous_on_norm_id by blast
ultimately obtain z where z ∈ closure S and z:

∧
y. y ∈ closure S =⇒ (cmod

◦ f) y ≤ (cmod ◦ f) z
using continuous_attains_sup [of closure S norm o f] ‹ξ ∈ S› by auto

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 220

then consider z ∈ frontier S | z ∈ interior S using frontier_def by auto
then have norm(f z) ≤ B
proof cases

case 1 then show ?thesis using leB by blast
next

case 2
have f constant_on (connected_component_set (interior S) z)
proof (rule maximum_modulus_principle)

show f holomorphic_on connected_component_set (interior S) z
by (metis connected_component_subset holf holomorphic_on_subset)

show zin: z ∈ connected_component_set (interior S) z
by (simp add: 2)

show
∧

W . W ∈ connected_component_set (interior S) z =⇒ cmod (f W)
≤ cmod (f z)

using closure_def connected_component_subset z by fastforce
qed (auto simp: open_connected_component)
then obtain c where c:

∧
w. w ∈ connected_component_set (interior S) z

=⇒ f w = c
by (auto simp: constant_on_def)

have f ‘ closure(connected_component_set (interior S) z) ⊆ {c}
proof (rule image_closure_subset)

show continuous_on (closure (connected_component_set (interior S) z)) f
by (meson closure_mono connected_component_subset contf continu-

ous_on_subset interior_subset)
qed (use c in auto)
then have cc:

∧
w. w ∈ closure(connected_component_set (interior S) z) =⇒

f w = c by blast
have connected_component (interior S) z z

by (simp add: 2)
moreover have connected_component_set (interior S) z 6= UNIV
by (metis bos bounded_interior connected_component_eq_UNIV not_bounded_UNIV)
ultimately have frontier(connected_component_set (interior S) z) 6= {}

by (meson 2 connected_component_eq_empty frontier_not_empty)
then obtain w where w: w ∈ frontier(connected_component_set (interior S)

z)
by auto

then have norm (f z) = norm (f w) by (simp add: 2 c cc frontier_def)
also have . . . ≤ B

using w frontier_interior_subset frontier_of_connected_component_subset
by (blast intro: leB)

finally show ?thesis .
qed
then show ?thesis

using z ‹ξ ∈ S› closure_subset by fastforce
qed

corollary maximum_real_frontier :
assumes holf : f holomorphic_on (interior S)

and contf : continuous_on (closure S) f

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 221

and bos: bounded S
and leB:

∧
z. z ∈ frontier S =⇒ Re(f z) ≤ B

and ξ ∈ S
shows Re(f ξ) ≤ B
using maximum_modulus_frontier [of exp o f S exp B]
Transcendental.continuous_on_exp holomorphic_on_compose holomorphic_on_exp

assms
by auto

5.4 Factoring out a zero according to its order
lemma holomorphic_factor_order_of_zero:

assumes holf : f holomorphic_on S
and os: open S
and ξ ∈ S 0 < n
and dnz: (deriv ^^ n) f ξ 6= 0
and dfz:

∧
i. [[0 < i; i < n]] =⇒ (deriv ^^ i) f ξ = 0

obtains g r where 0 < r
g holomorphic_on ball ξ r∧

w. w ∈ ball ξ r =⇒ f w − f ξ = (w − ξ)^n ∗ g w∧
w. w ∈ ball ξ r =⇒ g w 6= 0

proof −
obtain r where r>0 and r : ball ξ r ⊆ S using assms by (blast elim!: openE)
then have holfb: f holomorphic_on ball ξ r

using holf holomorphic_on_subset by blast
define g where g w = suminf (λi. (deriv ^^ (i + n)) f ξ / (fact(i + n)) ∗ (w
− ξ)^i) for w

have sumsg: (λi. (deriv ^^ (i + n)) f ξ / (fact(i + n)) ∗ (w − ξ)^i) sums g w
and feq: f w − f ξ = (w − ξ)^n ∗ g w

if w: w ∈ ball ξ r for w
proof −

define powf where powf = (λi. (deriv ^^ i) f ξ/(fact i) ∗ (w − ξ)^i)
have [simp]: powf 0 = f ξ

by (simp add: powf_def)
have sing: {..<n} − {i. powf i = 0} = (if f ξ = 0 then {} else {0})

unfolding powf_def using ‹0 < n› dfz by (auto simp: dfz; metis funpow_0
not_gr0)

have powf sums f w
unfolding powf_def by (rule holomorphic_power_series [OF holfb w])

moreover have (
∑

i<n. powf i) = f ξ
by (subst sum.setdiff_irrelevant [symmetric]; simp add: dfz sing)

ultimately have fsums: (λi. powf (i+n)) sums (f w − f ξ)
using w sums_iff_shift ′ by metis

then have ∗: summable (λi. (w − ξ) ^ n ∗ ((deriv ^^ (i + n)) f ξ ∗ (w − ξ)
^ i / fact (i + n)))

unfolding powf_def using sums_summable
by (auto simp: power_add mult_ac)

have summable (λi. (deriv ^^ (i + n)) f ξ ∗ (w − ξ) ^ i / fact (i + n))
proof (cases w=ξ)

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 222

case False then show ?thesis
using summable_mult [OF ∗, of 1 / (w − ξ) ^ n] by simp

next
case True then show ?thesis
by (auto simp: Power .semiring_1_class.power_0_left intro!: summable_finite

[of {0}]
split: if_split_asm)

qed
then show sumsg: (λi. (deriv ^^ (i + n)) f ξ / (fact(i + n)) ∗ (w − ξ)^i)

sums g w
by (simp add: summable_sums_iff g_def)

show f w − f ξ = (w − ξ)^n ∗ g w
using sums_mult [OF sumsg, of (w − ξ) ^ n]

by (intro sums_unique2 [OF fsums]) (auto simp: power_add mult_ac powf_def)
qed
then have holg: g holomorphic_on ball ξ r

by (meson sumsg power_series_holomorphic)
then have contg: continuous_on (ball ξ r) g

by (blast intro: holomorphic_on_imp_continuous_on)
have g ξ 6= 0

using dnz unfolding g_def
by (subst suminf_finite [of {0}]) auto

obtain d where 0 < d and d:
∧

w. w ∈ ball ξ d =⇒ g w 6= 0
using ‹0 < r› continuous_on_avoid [OF contg _ ‹g ξ 6= 0 ›]
by (metis centre_in_ball le_cases mem_ball mem_ball_leI)

show ?thesis
proof

show g holomorphic_on ball ξ (min r d)
using holg by (auto simp: feq holomorphic_on_subset subset_ball d)

qed (use ‹0 < r› ‹0 < d› in ‹auto simp: feq d›)
qed

lemma holomorphic_factor_order_of_zero_strong:
assumes holf : f holomorphic_on S open S ξ ∈ S 0 < n

and (deriv ^^ n) f ξ 6= 0
and

∧
i. [[0 < i; i < n]] =⇒ (deriv ^^ i) f ξ = 0

obtains g r where 0 < r
g holomorphic_on ball ξ r∧

w. w ∈ ball ξ r =⇒ f w − f ξ = ((w − ξ) ∗ g w) ^ n∧
w. w ∈ ball ξ r =⇒ g w 6= 0

proof −
obtain g r where 0 < r

and holg: g holomorphic_on ball ξ r
and feq:

∧
w. w ∈ ball ξ r =⇒ f w − f ξ = (w − ξ)^n ∗ g w

and gne:
∧

w. w ∈ ball ξ r =⇒ g w 6= 0
by (auto intro: holomorphic_factor_order_of_zero [OF assms])

have con: continuous_on (ball ξ r) (λz. deriv g z / g z)
by (rule continuous_intros) (auto simp: gne holg holomorphic_deriv holomor-

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 223

phic_on_imp_continuous_on)
have cd: (λz. deriv g z / g z) field_differentiable at x if dist ξ x < r for x
proof (intro derivative_intros)

show deriv g field_differentiable at x
using that holg mem_ball by (blast intro: holomorphic_deriv holomor-

phic_on_imp_differentiable_at)
show g field_differentiable at x
by (metis that open_ball at_within_open holg holomorphic_on_def mem_ball)
qed (simp add: gne that)
obtain h where h:

∧
x. x ∈ ball ξ r =⇒ (h has_field_derivative deriv g x / g

x) (at x)
using holomorphic_convex_primitive [of ball ξ r {} λz. deriv g z / g z]

by (metis (no_types, lifting) Diff_empty at_within_interior cd con con-
vex_ball infinite_imp_nonempty interior_ball mem_ball)

then have continuous_on (ball ξ r) h
by (metis open_ball holomorphic_on_imp_continuous_on holomorphic_on_open)

then have con: continuous_on (ball ξ r) (λx. exp (h x) / g x)
by (auto intro!: continuous_intros simp add: holg holomorphic_on_imp_continuous_on

gne)
have gfd: dist ξ x < r =⇒ g field_differentiable at x if dist ξ x < r for x

using holg holomorphic_on_imp_differentiable_at by auto
have 0 : dist ξ x < r =⇒ ((λx. exp (h x) / g x) has_field_derivative 0) (at x)

for x
by (rule gfd h derivative_eq_intros DERIV_deriv_iff_field_differentiable [THEN

iffD2] | simp add: gne)+
obtain c where c:

∧
x. x ∈ ball ξ r =⇒ exp (h x) / g x = c

by (rule DERIV_zero_connected_constant [of ball ξ r {} λx. exp(h x) / g x])
(auto simp: con 0)

have hol: (λz. exp ((Ln (inverse c) + h z) / of_nat n)) holomorphic_on ball ξ r
proof (intro holomorphic_intros holomorphic_on_compose [unfolded o_def ,

where g = exp])
show h holomorphic_on ball ξ r

using h holomorphic_on_open by blast
qed (use ‹0 < n› in auto)
show ?thesis
proof

show
∧

w. w ∈ ball ξ r =⇒ f w − f ξ = ((w − ξ) ∗ exp ((Ln (inverse c) + h
w) / of_nat n)) ^ n

using ‹0 < n›
by (auto simp: feq power_mult_distrib exp_divide_power_eq exp_add gne

simp flip: c)
qed (use hol ‹0 < r› in auto)

qed

lemma
fixes k :: ′a::wellorder
assumes a_def : a == LEAST x. P x and P: P k
shows def_LeastI : P a and def_Least_le: a ≤ k

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 224

unfolding a_def
by (rule LeastI Least_le; rule P)+

lemma holomorphic_factor_zero_nonconstant:
assumes holf : f holomorphic_on S and S : open S connected S

and ξ ∈ S f ξ = 0
and nonconst: ¬ f constant_on S

obtains g r n
where 0 < n 0 < r ball ξ r ⊆ S

g holomorphic_on ball ξ r∧
w. w ∈ ball ξ r =⇒ f w = (w − ξ)^n ∗ g w∧
w. w ∈ ball ξ r =⇒ g w 6= 0

proof (cases ∀n>0 . (deriv ^^ n) f ξ = 0)
case True then show ?thesis

using holomorphic_fun_eq_const_on_connected [OF holf S _ ‹ξ ∈ S›] non-
const by (simp add: constant_on_def)
next

case False
then obtain n0 where n0 > 0 and n0 : (deriv ^^ n0) f ξ 6= 0 by blast
obtain r0 where r0 > 0 ball ξ r0 ⊆ S using S openE ‹ξ ∈ S› by auto
define n where n ≡ LEAST n. (deriv ^^ n) f ξ 6= 0
have n_ne: (deriv ^^ n) f ξ 6= 0

by (rule def_LeastI [OF n_def]) (rule n0)
then have 0 < n using ‹f ξ = 0 ›

using funpow_0 by fastforce
have n_min:

∧
k. k < n =⇒ (deriv ^^ k) f ξ = 0

using def_Least_le [OF n_def] not_le by blast
then obtain g r1

where g: 0 < r1 g holomorphic_on ball ξ r1
and geq:

∧
w. w ∈ ball ξ r1 =⇒ f w = (w − ξ) ^ n ∗ g w

and g0 :
∧

w. w ∈ ball ξ r1 =⇒ g w 6= 0
by (auto intro: holomorphic_factor_order_of_zero [OF holf ‹open S› ‹ξ ∈ S›

‹n > 0 › n_ne] simp: ‹f ξ = 0 ›)
show ?thesis
proof

show g holomorphic_on ball ξ (min r0 r1)
using g by auto

show
∧

w. w ∈ ball ξ (min r0 r1) =⇒ f w = (w − ξ) ^ n ∗ g w
by (simp add: geq)

qed (use ‹0 < n› ‹0 < r0 › ‹0 < r1 › ‹ball ξ r0 ⊆ S› g0 in auto)
qed

lemma holomorphic_lower_bound_difference:
assumes holf : f holomorphic_on S and S : open S connected S

and ξ ∈ S and ϕ ∈ S
and fne: f ϕ 6= f ξ

obtains k n r
where 0 < k 0 < r

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 225

ball ξ r ⊆ S∧
w. w ∈ ball ξ r =⇒ k ∗ norm(w − ξ)^n ≤ norm(f w − f ξ)

proof −
define n where n = (LEAST n. 0 < n ∧ (deriv ^^ n) f ξ 6= 0)
obtain n0 where 0 < n0 and n0 : (deriv ^^ n0) f ξ 6= 0

using fne holomorphic_fun_eq_const_on_connected [OF holf S] ‹ξ ∈ S› ‹ϕ ∈
S› by blast

then have 0 < n and n_ne: (deriv ^^ n) f ξ 6= 0
unfolding n_def by (metis (mono_tags, lifting) LeastI)+

have n_min:
∧

k. [[0 < k; k < n]] =⇒ (deriv ^^ k) f ξ = 0
unfolding n_def by (blast dest: not_less_Least)

then obtain g r
where 0 < r and holg: g holomorphic_on ball ξ r

and fne:
∧

w. w ∈ ball ξ r =⇒ f w − f ξ = (w − ξ) ^ n ∗ g w
and gnz:

∧
w. w ∈ ball ξ r =⇒ g w 6= 0

by (auto intro: holomorphic_factor_order_of_zero [OF holf ‹open S› ‹ξ ∈
S› ‹n > 0 › n_ne])

obtain e where e>0 and e: ball ξ e ⊆ S using assms by (blast elim!: openE)
then have holfb: f holomorphic_on ball ξ e

using holf holomorphic_on_subset by blast
define d where d = (min e r) / 2
have 0 < d using ‹0 < r› ‹0 < e› by (simp add: d_def)
have d < r

using ‹0 < r› by (auto simp: d_def)
then have cbb: cball ξ d ⊆ ball ξ r

by (auto simp: cball_subset_ball_iff)
then have g holomorphic_on cball ξ d

by (rule holomorphic_on_subset [OF holg])
then have closed (g ‘ cball ξ d)
by (simp add: compact_imp_closed compact_continuous_image holomorphic_on_imp_continuous_on)

moreover have g ‘ cball ξ d 6= {}
using ‹0 < d› by auto

ultimately obtain x where x: x ∈ g ‘ cball ξ d and
∧

y. y ∈ g ‘ cball ξ d =⇒
dist 0 x ≤ dist 0 y

by (rule distance_attains_inf) blast
then have leg:

∧
w. w ∈ cball ξ d =⇒ norm x ≤ norm (g w)

by auto
have ball ξ d ⊆ cball ξ d by auto
also have . . . ⊆ ball ξ e using ‹0 < d› d_def by auto
also have . . . ⊆ S by (rule e)
finally have dS : ball ξ d ⊆ S .
have x 6= 0 using gnz x ‹d < r› by auto
show thesis
proof

show
∧

w. w ∈ ball ξ d =⇒ cmod x ∗ cmod (w − ξ) ^ n ≤ cmod (f w − f ξ)
using ‹d < r› leg by (auto simp: fne norm_mult norm_power algebra_simps

mult_right_mono)
qed (use dS ‹x 6= 0 › ‹d > 0 › in auto)

qed

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 226

lemma
assumes holf : f holomorphic_on (S − {ξ}) and ξ: ξ ∈ interior S

shows holomorphic_on_extend_lim:
(∃ g. g holomorphic_on S ∧ (∀ z ∈ S − {ξ}. g z = f z)) ←→
((λz. (z − ξ) ∗ f z) −−−→ 0) (at ξ)
(is ?P = ?Q)

and holomorphic_on_extend_bounded:
(∃ g. g holomorphic_on S ∧ (∀ z ∈ S − {ξ}. g z = f z)) ←→
(∃B. eventually (λz. norm(f z) ≤ B) (at ξ))
(is ?P = ?R)

proof −
obtain δ where 0 < δ and δ: ball ξ δ ⊆ S

using ξ mem_interior by blast
have ?R if holg: g holomorphic_on S and gf :

∧
z. z ∈ S − {ξ} =⇒ g z = f z

for g
proof −

have §: cmod (f x) ≤ cmod (g ξ) + 1 if x 6= ξ dist x ξ < δ dist (g x) (g ξ) <
1 for x

proof −
have x ∈ S

by (metis δ dist_commute mem_ball subsetD that(2))
with that gf [of x] show ?thesis

using norm_triangle_ineq2 [of f x g ξ] dist_complex_def by auto
qed
then have ∗: ∀ F z in at ξ. dist (g z) (g ξ) < 1 −→ cmod (f z) ≤ cmod (g ξ)

+ 1
using ‹0 < δ› eventually_at by blast

have continuous_on (interior S) g
by (meson continuous_on_subset holg holomorphic_on_imp_continuous_on

interior_subset)
then have

∧
x. x ∈ interior S =⇒ (g −−−→ g x) (at x)

using continuous_on_interior continuous_within holg holomorphic_on_imp_continuous_on
by blast

then have (g −−−→ g ξ) (at ξ)
by (simp add: ξ)

then have ∀ F z in at ξ. cmod (f z) ≤ cmod (g ξ) + 1
by (rule eventually_mp [OF ∗ tendstoD [where e=1]], auto)

then show ?thesis
by blast

qed
moreover have ?Q if ∀ F z in at ξ. cmod (f z) ≤ B for B

by (rule lim_null_mult_right_bounded [OF _ that]) (simp add: LIM_zero)
moreover have ?P if (λz. (z − ξ) ∗ f z) −ξ→ 0
proof −

define h where [abs_def]: h z = (z − ξ)^2 ∗ f z for z
have (λy. (y − ξ)2 ∗ f y / (y − ξ)) −ξ→ 0

by (simp add: LIM_cong power2_eq_square that)
then have h0 : (h has_field_derivative 0) (at ξ)

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 227

by (simp add: h_def has_field_derivative_iff)
have holh: h holomorphic_on S
proof (simp add: holomorphic_on_def , clarify)

fix z assume z ∈ S
show h field_differentiable at z within S
proof (cases z = ξ)

case True then show ?thesis
using field_differentiable_at_within field_differentiable_def h0 by blast

next
case False
then have f field_differentiable at z within S

using holomorphic_onD [OF holf , of z] ‹z ∈ S›
unfolding field_differentiable_def has_field_derivative_iff
by (force intro: exI [where x=dist ξ z] elim: Lim_transform_within_set

[unfolded eventually_at])
then show ?thesis

by (simp add: h_def power2_eq_square derivative_intros)
qed

qed
define g where [abs_def]: g z = (if z = ξ then deriv h ξ else (h z − h ξ) / (z

− ξ)) for z
have §: ∀ z∈S − {ξ}. (g z − g ξ) / (z − ξ) = f z
using h0 by (auto simp: g_def power2_eq_square divide_simps DERIV_imp_deriv

h_def)
have g holomorphic_on S

unfolding g_def by (rule pole_lemma [OF holh ξ])
then have (λz. if z = ξ then deriv g ξ else (g z − g ξ) / (z − ξ)) holomorphic_on

S
using ξ pole_lemma by blast

then show ?thesis
using § by (smt (verit, best) DiffD2 singletonI)

qed
ultimately show ?P = ?Q and ?P = ?R

by meson+
qed

lemma pole_at_infinity:
assumes holf : f holomorphic_on UNIV and lim: ((inverse o f) −−−→ l) at_infinity
obtains a n where

∧
z. f z = (

∑
i≤n. a i ∗ z^i)

proof (cases l = 0)
case False
show thesis
proof

show f z = (
∑

i≤0 . inverse l ∗ z ^ i) for z
using False tendsto_inverse [OF lim] by (simp add: Liouville_weak [OF

holf])
qed

next
case True

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 228

then have [simp]: l = 0 .
show ?thesis
proof (cases ∃ r . 0 < r ∧ (∀ z ∈ ball 0 r − {0}. f (inverse z) 6= 0))

case True
then obtain r where 0 < r and r :

∧
z. z ∈ ball 0 r − {0} =⇒ f (inverse

z) 6= 0
by auto

have 1 : inverse ◦ f ◦ inverse holomorphic_on ball 0 r − {0}
by (rule holomorphic_on_compose holomorphic_intros holomorphic_on_subset

[OF holf] | force simp: r)+
have 2 : 0 ∈ interior (ball 0 r)

using ‹0 < r› by simp
obtain g where holg: g holomorphic_on ball 0 r

and geq:
∧

z. z ∈ ball 0 r − {0} =⇒ g z = (inverse ◦ f ◦ inverse) z
using tendstoD [OF lim [unfolded lim_at_infinity_0] zero_less_one] holo-

morphic_on_extend_bounded [OF 1 2]
by (smt (verit, del_insts) ‹l = 0 › eventually_mono norm_conv_dist)

have ifi0 : (inverse ◦ f ◦ inverse) −0→ 0
using ‹l = 0 › lim lim_at_infinity_0 by blast

have g2g0 : g −0→ g 0
using ‹0 < r› centre_in_ball continuous_at continuous_on_eq_continuous_at

holg
by (blast intro: holomorphic_on_imp_continuous_on)

have g2g1 : g −0→ 0
proof (rule Lim_transform_within_open [OF ifi0 open_ball])

show
∧

x. [[x ∈ ball 0 r ; x 6= 0]] =⇒ (inverse ◦ f ◦ inverse) x = g x
by (auto simp: geq)

qed (auto simp: ‹0 < r›)
have [simp]: g 0 = 0

by (rule tendsto_unique [OF _ g2g0 g2g1]) simp
have ball 0 r − {0 ::complex} 6= {}
using ‹0 < r› by (metis 2 Diff_iff insert_Diff interior_ball interior_singleton)
then obtain w::complex where w 6= 0 and w: norm w < r by force
then have g w 6= 0 by (simp add: geq r)
obtain B n e where 0 < B 0 < e e ≤ r

and leg:
∧

w. norm w < e =⇒ B ∗ cmod w ^ n ≤ cmod (g w)
proof (rule holomorphic_lower_bound_difference [OF holg open_ball con-

nected_ball])
show g w 6= g 0

by (simp add: ‹g w 6= 0 ›)
show w ∈ ball 0 r

using mem_ball_0 w by blast
qed (use ‹0 < r› in ‹auto simp: ball_subset_ball_iff ›)
have §: cmod (f z) ≤ cmod z ^ n / B if 2/e ≤ cmod z for z
proof −

have ize: inverse z ∈ ball 0 e − {0} using that ‹0 < e›
by (auto simp: norm_divide field_split_simps algebra_simps)

then have [simp]: z 6= 0 and izr : inverse z ∈ ball 0 r − {0} using ‹e ≤
r›

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 229

by auto
then have [simp]: f z 6= 0

using r [of inverse z] by simp
have [simp]: f z = inverse (g (inverse z))

using izr geq [of inverse z] by simp
show ?thesis using ize leg [of inverse z] ‹0 < B› ‹0 < e›

by (simp add: field_split_simps norm_divide algebra_simps)
qed
show thesis
proof

show f z = (
∑

i≤n. (deriv ^^ i) f 0 / fact i ∗ z ^ i) for z
using § by (rule_tac A = 2/e and B = 1/B in Liouville_polynomial

[OF holf], simp)
qed

next
case False
then have fi0 :

∧
r . r > 0 =⇒ ∃ z∈ball 0 r − {0}. f (inverse z) = 0

by simp
have fz0 : f z = 0 if 0 < r and lt1 :

∧
x. x 6= 0 =⇒ cmod x < r =⇒ inverse

(cmod (f (inverse x))) < 1
for z r

proof −
have f0 : (f −−−→ 0) at_infinity
proof −
have DIM_complex[intro]: 2 ≤ DIM (complex) — should not be necessary!

by simp
have f (inverse x) 6= 0 =⇒ x 6= 0 =⇒ cmod x < r =⇒ 1 < cmod (f (inverse

x)) for x
using lt1 [of x] by (auto simp: field_simps)

then have ∗∗: cmod (f (inverse x)) ≤ 1 =⇒ x 6= 0 =⇒ cmod x < r =⇒ f
(inverse x) = 0 for x

by force
then have ∗: (f ◦ inverse) ‘ (ball 0 r − {0}) ⊆ {0} ∪ − ball 0 1

by force
have continuous_on (inverse ‘ (ball 0 r − {0})) f

using continuous_on_subset holf holomorphic_on_imp_continuous_on
by blast

then have connected ((f ◦ inverse) ‘ (ball 0 r − {0}))
using connected_punctured_ball
by (intro connected_continuous_image continuous_intros; force)

then have {0} ∩ (f ◦ inverse) ‘ (ball 0 r − {0}) = {} ∨ − ball 0 1 ∩ (f ◦
inverse) ‘ (ball 0 r − {0}) = {}

by (rule connected_closedD) (use ∗ in auto)
then have f (inverse w) = 0 if w 6= 0 cmod w < r for w

using ∗∗[of w] fi0 ‹0 < r› that by force
then show ?thesis

unfolding lim_at_infinity_0
using eventually_at ‹r > 0 › by (force simp: intro: tendsto_eventually)

qed

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 230

obtain w where w ∈ ball 0 r − {0} and f (inverse w) = 0
using False ‹0 < r› by blast

then show ?thesis
by (auto simp: f0 Liouville_weak [OF holf , of 0])

qed
show thesis
proof

show
∧

z. f z = (
∑

i≤0 . 0 ∗ z ^ i)
using lim
apply (simp add: lim_at_infinity_0 Lim_at dist_norm norm_inverse)
using fz0 zero_less_one by blast

qed
qed

qed

5.5 Entire proper functions are precisely the non-trivial poly-
nomials

lemma proper_map_polyfun:
fixes c :: nat ⇒ ′a::{real_normed_div_algebra,heine_borel}

assumes closed S and compact K and c: c i 6= 0 1 ≤ i i ≤ n
shows compact (S ∩ {z. (

∑
i≤n. c i ∗ z^i) ∈ K})

proof −
obtain B where B > 0 and B:

∧
x. x ∈ K =⇒ norm x ≤ B

by (metis compact_imp_bounded ‹compact K › bounded_pos)
have ∗: norm x ≤ b

if
∧

x. b ≤ norm x =⇒ B + 1 ≤ norm (
∑

i≤n. c i ∗ x ^ i)
(
∑

i≤n. c i ∗ x ^ i) ∈ K for b x
proof −

have norm (
∑

i≤n. c i ∗ x ^ i) ≤ B
using B that by blast

moreover have ¬ B + 1 ≤ B
by simp

ultimately show norm x ≤ b
using that by (metis (no_types) less_eq_real_def not_less order_trans)

qed
have bounded {z. (

∑
i≤n. c i ∗ z ^ i) ∈ K}

using Limits.polyfun_extremal [where c=c and B=B+1 , OF c]
by (auto simp: bounded_pos eventually_at_infinity_pos ∗)

moreover have closed ((λz. (
∑

i≤n. c i ∗ z ^ i)) −‘ K)
using ‹compact K › compact_eq_bounded_closed
by (intro allI continuous_closed_vimage continuous_intros; force)

ultimately show ?thesis
using closed_Int_compact [OF ‹closed S›] compact_eq_bounded_closed
by (auto simp add: vimage_def)

qed

lemma proper_map_polyfun_univ:
fixes c :: nat ⇒ ′a::{real_normed_div_algebra,heine_borel}

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 231

assumes compact K c i 6= 0 1 ≤ i i ≤ n
shows compact ({z. (

∑
i≤n. c i ∗ z^i) ∈ K})

using proper_map_polyfun [of UNIV K c i n] assms by simp

lemma proper_map_polyfun_eq:
assumes f holomorphic_on UNIV

shows (∀ k. compact k −→ compact {z. f z ∈ k}) ←→
(∃ c n. 0 < n ∧ (c n 6= 0) ∧ f = (λz.

∑
i≤n. c i ∗ z^i))

(is ?lhs = ?rhs)
proof

assume compf [rule_format]: ?lhs
have 2 : ∃ k. 0 < k ∧ a k 6= 0 ∧ f = (λz.

∑
i ≤ k. a i ∗ z ^ i)

if
∧

z. f z = (
∑

i≤n. a i ∗ z ^ i) for a n
proof (cases ∀ i≤n. 0<i −→ a i = 0)

case True
then have [simp]:

∧
z. f z = a 0

by (simp add: that sum.atMost_shift)
have False using compf [of {a 0}] by simp
then show ?thesis ..

next
case False
then obtain k where k: 0 < k k≤n a k 6= 0 by force
define m where m = (GREATEST k. k≤n ∧ a k 6= 0)
have m: m≤n ∧ a m 6= 0

unfolding m_def
using GreatestI_nat [where b = n] k by (metis (mono_tags, lifting))

have [simp]: a i = 0 if m < i i ≤ n for i
using Greatest_le_nat [where b = n and P = λk. k≤n ∧ a k 6= 0]
using m_def not_le that by auto

have k ≤ m
unfolding m_def
using Greatest_le_nat [where b = n] k by (metis (mono_tags, lifting))

with k m show ?thesis
by (rule_tac x=m in exI) (auto simp: that comm_monoid_add_class.sum.mono_neutral_right)

qed
have ∗: ((inverse ◦ f) −−−→ 0) at_infinity
proof (rule Lim_at_infinityI)

fix e::real assume 0 < e
with compf [of cball 0 (inverse e)]
show ∃B. ∀ x. B ≤ cmod x −→ dist ((inverse ◦ f) x) 0 ≤ e
apply (clarsimp simp: compact_eq_bounded_closed norm_divide divide_simps

mult.commute elim!: bounded_normE_less)
by (meson linorder_not_le nle_le)

qed
then obtain a n where

∧
z. f z = (

∑
i≤n. a i ∗ z^i)

using assms pole_at_infinity by blast
with ∗ 2 show ?rhs by blast

next
assume ?rhs

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 232

then obtain c n where 0 < n c n 6= 0 f = (λz.
∑

i≤n. c i ∗ z ^ i) by blast
then have compact {z. f z ∈ k} if compact k for k

by (auto intro: proper_map_polyfun_univ [OF that])
then show ?lhs by blast

qed

5.6 Relating invertibility and nonvanishing of derivative
lemma has_complex_derivative_locally_injective:

assumes holf : f holomorphic_on S
and S : ξ ∈ S open S
and dnz: deriv f ξ 6= 0

obtains r where r > 0 ball ξ r ⊆ S inj_on f (ball ξ r)
proof −

have ∗: ∃ d>0 . ∀ x. dist ξ x < d −→ onorm (λv. deriv f x ∗ v − deriv f ξ ∗ v)
< e if e > 0 for e

proof −
have contdf : continuous_on S (deriv f)

by (simp add: holf holomorphic_deriv holomorphic_on_imp_continuous_on
‹open S›)

obtain δ where δ>0 and δ:
∧

x. [[x ∈ S ; dist x ξ ≤ δ]] =⇒ cmod (deriv f x −
deriv f ξ) ≤ e/2

using continuous_onE [OF contdf ‹ξ ∈ S›, of e/2] ‹0 < e›
by (metis dist_complex_def half_gt_zero less_imp_le)

have §:
∧
ζ z. [[ζ ∈ S ; dist ξ ζ < δ]] =⇒ cmod (deriv f ζ − deriv f ξ) ∗ cmod

z ≤ e/2 ∗ cmod z
by (intro mult_right_mono [OF δ]) (auto simp: dist_commute)

obtain ε where ε>0 ball ξ ε ⊆ S
by (metis openE [OF ‹open S› ‹ξ ∈ S›])

with ‹δ>0 › have ∃ δ>0 . ∀ x. dist ξ x < δ −→ onorm (λv. deriv f x ∗ v − deriv
f ξ ∗ v) ≤ e/2

using §
apply (rule_tac x=min δ ε in exI)
apply (intro conjI allI impI Operator_Norm.onorm_le)

apply (force simp: mult_right_mono norm_mult [symmetric] left_diff_distrib
δ)+

done
with ‹e>0 › show ?thesis by force

qed
have inj ((∗) (deriv f ξ))

using dnz by simp
then obtain g ′ where g ′: linear g ′ g ′ ◦ (∗) (deriv f ξ) = id

using linear_injective_left_inverse [of (∗) (deriv f ξ)] by auto

have fder :
∧

x. x ∈ S =⇒ (f has_derivative (∗) (deriv f x)) (at x)
using ‹open S› has_field_derivative_imp_has_derivative holf holomorphic_derivI

by blast
show ?thesis

apply (rule has_derivative_locally_injective [OF S , where f=f and f ′ = λz

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 233

h. deriv f z ∗ h and g ′ = g ′])
using g ′ ∗ by (simp_all add: fder linear_conv_bounded_linear that)

qed

lemma has_complex_derivative_locally_invertible:
assumes holf : f holomorphic_on S

and S : ξ ∈ S open S
and dnz: deriv f ξ 6= 0

obtains r where r > 0 ball ξ r ⊆ S open (f ‘ (ball ξ r)) inj_on f (ball ξ r)
proof −

obtain r where r > 0 ball ξ r ⊆ S inj_on f (ball ξ r)
by (blast intro: that has_complex_derivative_locally_injective [OF assms])

then have ξ: ξ ∈ ball ξ r by simp
then have nc: ¬ f constant_on ball ξ r

using ‹inj_on f (ball ξ r)› injective_not_constant by fastforce
have holf ′: f holomorphic_on ball ξ r

using ‹ball ξ r ⊆ S› holf holomorphic_on_subset by blast
have open (f ‘ ball ξ r)

by (simp add: ‹inj_on f (ball ξ r)› holf ′ open_mapping_thm3)
then show ?thesis

using ‹0 < r› ‹ball ξ r ⊆ S› ‹inj_on f (ball ξ r)› that by blast
qed

lemma holomorphic_injective_imp_regular :
assumes holf : f holomorphic_on S

and open S and injf : inj_on f S
and ξ ∈ S

shows deriv f ξ 6= 0
proof −

obtain r where r>0 and r : ball ξ r ⊆ S using assms by (blast elim!: openE)
have holf ′: f holomorphic_on ball ξ r

using ‹ball ξ r ⊆ S› holf holomorphic_on_subset by blast
show ?thesis
proof (cases ∀n>0 . (deriv ^^ n) f ξ = 0)

case True
have fcon: f w = f ξ if w ∈ ball ξ r for w

by (meson open_ball True ‹0 < r› centre_in_ball connected_ball holf ′

holomorphic_fun_eq_const_on_connected that)
have False

using fcon [of ξ + r/2] ‹0 < r› r injf unfolding inj_on_def
by (metis ‹ξ ∈ S› contra_subsetD dist_commute fcon mem_ball perfect_choose_dist)
then show ?thesis ..

next
case False
then obtain n0 where n0 : n0 > 0 ∧ (deriv ^^ n0) f ξ 6= 0 by blast
define n where [abs_def]: n = (LEAST n. n > 0 ∧ (deriv ^^ n) f ξ 6= 0)
have n_ne: n > 0 (deriv ^^ n) f ξ 6= 0

using def_LeastI [OF n_def n0] by auto
have n_min:

∧
k. 0 < k =⇒ k < n =⇒ (deriv ^^ k) f ξ = 0

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 234

using def_Least_le [OF n_def] not_le by auto
obtain g δ where 0 < δ

and holg: g holomorphic_on ball ξ δ
and fd:

∧
w. w ∈ ball ξ δ =⇒ f w − f ξ = ((w − ξ) ∗ g w) ^ n

and gnz:
∧

w. w ∈ ball ξ δ =⇒ g w 6= 0
by (blast intro: n_min holomorphic_factor_order_of_zero_strong [OF holf

‹open S› ‹ξ ∈ S› n_ne])
show ?thesis
proof (cases n=1)

case True
with n_ne show ?thesis by auto

next
case False
have g holomorphic_on ball ξ (min r δ)

using holg by (simp add: holomorphic_on_subset subset_ball)
then have holgw: (λw. (w − ξ) ∗ g w) holomorphic_on ball ξ (min r δ)

by (intro holomorphic_intros)
have gd:

∧
w. dist ξ w < δ =⇒ (g has_field_derivative deriv g w) (at w)

using holg
by (simp add: DERIV_deriv_iff_field_differentiable holomorphic_on_def

at_within_open_NO_MATCH)
have ∗:

∧
w. w ∈ ball ξ (min r δ)

=⇒ ((λw. (w − ξ) ∗ g w) has_field_derivative ((w − ξ) ∗ deriv g w + g
w))

(at w)
by (rule gd derivative_eq_intros | simp)+

have [simp]: deriv (λw. (w − ξ) ∗ g w) ξ 6= 0
using ∗ [of ξ] ‹0 < δ› ‹0 < r› by (simp add: DERIV_imp_deriv gnz)

obtain T where ξ ∈ T open T and Tsb: T ⊆ ball ξ (min r δ) and oimT :
open ((λw. (w − ξ) ∗ g w) ‘ T)

using ‹0 < r› ‹0 < δ› has_complex_derivative_locally_invertible [OF
holgw, of ξ]

by force
define U where U = (λw. (w − ξ) ∗ g w) ‘ T
have open U by (metis oimT U_def)
moreover have 0 ∈ U

using ‹ξ ∈ T › by (auto simp: U_def intro: image_eqI [where x = ξ])
ultimately obtain ε where ε>0 and ε: cball 0 ε ⊆ U

using ‹open U › open_contains_cball by blast
then have ε ∗ exp(2 ∗ of_real pi ∗ i ∗ (0/n)) ∈ cball 0 ε

ε ∗ exp(2 ∗ of_real pi ∗ i ∗ (1/n)) ∈ cball 0 ε
by (auto simp: norm_mult)

with ε have ε ∗ exp(2 ∗ of_real pi ∗ i ∗ (0/n)) ∈ U
ε ∗ exp(2 ∗ of_real pi ∗ i ∗ (1/n)) ∈ U by blast+

then obtain y0 y1 where y0 ∈ T and y0 : (y0 − ξ) ∗ g y0 = ε ∗ exp(2 ∗
of_real pi ∗ i ∗ (0/n))

and y1 ∈ T and y1 : (y1 − ξ) ∗ g y1 = ε ∗ exp(2 ∗ of_real
pi ∗ i ∗ (1/n))

by (auto simp: U_def)

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 235

then have y0 ∈ ball ξ δ y1 ∈ ball ξ δ using Tsb by auto
then have f y0 − f ξ = ((y0 − ξ) ∗ g y0) ^ n f y1 − f ξ = ((y1 − ξ) ∗ g

y1) ^ n
using fd by blast+

moreover have y0 6= y1
using y0 y1 ‹ε > 0 › complex_root_unity_eq_1 [of n 1] ‹n > 0 › False by

auto
moreover have T ⊆ S

by (meson Tsb min.cobounded1 order_trans r subset_ball)
ultimately have False

using inj_onD [OF injf , of y0 y1] ‹y0 ∈ T › ‹y1 ∈ T ›
using complex_root_unity [of n 1]
by (auto simp: y0 y1 power_mult_distrib diff_eq_eq n_ne)

then show ?thesis ..
qed

qed
qed

5.6.1 Hence a nice clean inverse function theorem
lemma has_field_derivative_inverse_strong:

fixes f :: ′a::{euclidean_space,real_normed_field} ⇒ ′a
shows [[DERIV f x :> f ′; f ′ 6= 0 ; open S ; x ∈ S ; continuous_on S f ;∧

z. z ∈ S =⇒ g (f z) = z]]
=⇒ DERIV g (f x) :> inverse (f ′)

unfolding has_field_derivative_def
by (rule has_derivative_inverse_strong [of S x f g]) auto

lemma has_field_derivative_inverse_strong_x:
fixes f :: ′a::{euclidean_space,real_normed_field} ⇒ ′a
shows [[DERIV f (g y) :> f ′; f ′ 6= 0 ; open S ; continuous_on S f ; g y ∈ S ; f (g

y) = y; ∧
z. z ∈ S =⇒ g (f z) = z]]

=⇒ DERIV g y :> inverse (f ′)
unfolding has_field_derivative_def
by (rule has_derivative_inverse_strong_x [of S g y f]) auto

proposition holomorphic_has_inverse:
assumes holf : f holomorphic_on S

and open S and injf : inj_on f S
obtains g where g holomorphic_on (f ‘ S)∧

z. z ∈ S =⇒ deriv f z ∗ deriv g (f z) = 1∧
z. z ∈ S =⇒ g(f z) = z

proof −
have ofs: open (f ‘ S)

by (rule open_mapping_thm3 [OF assms])
have contf : continuous_on S f

by (simp add: holf holomorphic_on_imp_continuous_on)
have ∗: (the_inv_into S f has_field_derivative inverse (deriv f z)) (at (f z)) if

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 236

z ∈ S for z
proof −

have 1 : (f has_field_derivative deriv f z) (at z)
using DERIV_deriv_iff_field_differentiable ‹z ∈ S› ‹open S› holf holomor-

phic_on_imp_differentiable_at
by blast

have 2 : deriv f z 6= 0
using ‹z ∈ S› ‹open S› holf holomorphic_injective_imp_regular injf by blast

show ?thesis
proof (rule has_field_derivative_inverse_strong [OF 1 2 ‹open S› ‹z ∈ S›])

show continuous_on S f
by (simp add: holf holomorphic_on_imp_continuous_on)

show
∧

z. z ∈ S =⇒ the_inv_into S f (f z) = z
by (simp add: injf the_inv_into_f_f)

qed
qed
show ?thesis

proof
show the_inv_into S f holomorphic_on f ‘ S

by (simp add: holomorphic_on_open ofs) (blast intro: ∗)
next

fix z assume z ∈ S
have deriv f z 6= 0

using ‹z ∈ S› ‹open S› holf holomorphic_injective_imp_regular injf by
blast

then show deriv f z ∗ deriv (the_inv_into S f) (f z) = 1
using ∗ [OF ‹z ∈ S›] by (simp add: DERIV_imp_deriv)

next
fix z assume z ∈ S
show the_inv_into S f (f z) = z

by (simp add: ‹z ∈ S› injf the_inv_into_f_f)
qed

qed

5.6.2 Holomorphism of covering maps and lifts.
lemma covering_space_lift_is_holomorphic:

assumes cov: covering_space C p S
and C : open C p holomorphic_on C
and holf : f holomorphic_on U and fim: f ∈ U → S and gim: g ∈ U → C
and contg: continuous_on U g and pg_f :

∧
x. x ∈ U =⇒ p(g x) = f x

shows g holomorphic_on U
unfolding holomorphic_on_def

proof (intro strip)
fix z
assume z ∈ U
with fim have f z ∈ S by blast
then obtain T V where f z ∈ T and opeT : openin (top_of_set S) T

and UV :
⋃
V = C ∩ p −‘ T

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 237

and
∧

W . W ∈ V =⇒ openin (top_of_set C) W
and disV : pairwise disjnt V and homeV :

∧
W . W ∈ V =⇒ ∃ q. homeomor-

phism W T p q
using cov fim unfolding covering_space_def by meson

then have
∧

W . W ∈ V =⇒ open W ∧ W ⊆ C
by (metis ‹open C › inf_le1 open_Int openin_open)

then obtain V where V ∈ V g z ∈ V open V V ⊆ C
by (metis IntI UnionE image_subset_iff vimageI UV ‹f z ∈ T › ‹z ∈ U › gim

pg_f image_subset_iff_funcset)
have holp: p holomorphic_on V

using ‹V ⊆ C › ‹p holomorphic_on C › holomorphic_on_subset by blast
moreover have injp: inj_on p V

by (metis ‹V ∈ V› homeV homeomorphism_def inj_on_inverseI)
ultimately
obtain p ′ where holp ′: p ′ holomorphic_on (p ‘ V) and pp ′:

∧
z. z ∈ V =⇒ p ′(p

z) = z
using ‹open V › holomorphic_has_inverse by metis

have z ∈ U ∩ g −‘ V
using ‹g z ∈ V › ‹z ∈ U › by blast

moreover have openin (top_of_set U) (U ∩ g −‘ V)
using continuous_openin_preimage [OF contg gim]
by (meson ‹open V › contg continuous_openin_preimage_eq)

ultimately obtain ε where ε>0 and e: ball z ε ∩ U ⊆ g −‘ V
by (force simp: openin_contains_ball)

show g field_differentiable at z within U
proof (rule field_differentiable_transform_within)

show (0 ::real) < ε
by (simp add: ‹0 < ε›)

show z ∈ U
by (simp add: ‹z ∈ U ›)

show (p ′ o f) x ′ = g x ′ if x ′ ∈ U dist x ′ z < ε for x ′

using that
by (metis Int_iff comp_apply dist_commute e mem_ball pg_f pp ′ subsetD

vimage_eq)
have open (p ‘ V)

using ‹open V › holp injp open_mapping_thm3 by force
moreover have f z ∈ p ‘ V

by (metis ‹z ∈ U › image_iff pg_f ‹g z ∈ V ›)
ultimately have p ′ field_differentiable at (f z)

using holomorphic_on_imp_differentiable_at holp ′ by blast
moreover have f field_differentiable at z within U

by (metis (no_types) ‹z ∈ U › holf holomorphic_on_def)
ultimately show (p ′ o f) field_differentiable at z within U
by (metis (no_types) field_differentiable_at_within field_differentiable_compose_within)

qed
qed

lemma covering_space_lift_holomorphic:
assumes cov: covering_space C p S

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 238

and C : open C p holomorphic_on C
and f : f holomorphic_on U f ∈ U → S
and U : simply_connected U locally path_connected U

obtains g where g holomorphic_on U g ∈ U → C
∧

y. y ∈ U =⇒ p(g y) = f y
proof −

obtain g where continuous_on U g g ∈ U → C
∧

y. y ∈ U =⇒ p(g y) = f y
using covering_space_lift [OF cov U] f holomorphic_on_imp_continuous_on

by blast
then show ?thesis
by (metis C cov covering_space_lift_is_holomorphic f image_subset_iff_funcset

that)
qed

5.7 The Schwarz Lemma
lemma Schwarz1 :

assumes holf : f holomorphic_on S
and contf : continuous_on (closure S) f
and S : open S connected S
and boS : bounded S
and S 6= {}

obtains w where w ∈ frontier S∧
z. z ∈ closure S =⇒ norm (f z) ≤ norm (f w)

proof −
have connf : continuous_on (closure S) (norm o f)

using contf continuous_on_compose continuous_on_norm_id by blast
have coc: compact (closure S)

by (simp add: ‹bounded S› bounded_closure compact_eq_bounded_closed)
then obtain x where x: x ∈ closure S and xmax:

∧
z. z ∈ closure S =⇒ norm(f

z) ≤ norm(f x)
using continuous_attains_sup [OF _ _ connf] ‹S 6= {}› by auto

then show ?thesis
proof (cases x ∈ frontier S)

case True
then show ?thesis using that xmax by blast

next
case False
then have x ∈ S

using ‹open S› frontier_def interior_eq x by auto
then have f constant_on S
proof (rule maximum_modulus_principle [OF holf S ‹open S› order_refl])

show
∧

z. z ∈ S =⇒ cmod (f z) ≤ cmod (f x)
using closure_subset by (blast intro: xmax)

qed
then have f constant_on (closure S)

by (rule constant_on_closureI [OF _ contf])
then obtain c where c:

∧
x. x ∈ closure S =⇒ f x = c

by (meson constant_on_def)
obtain w where w ∈ frontier S

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 239

by (metis coc all_not_in_conv assms(6) closure_UNIV frontier_eq_empty
not_compact_UNIV)

then show ?thesis
by (simp add: c frontier_def that)

qed
qed

lemma Schwarz2 :
[[f holomorphic_on ball 0 r ;

0 < s; ball w s ⊆ ball 0 r ;∧
z. norm (w−z) < s =⇒ norm(f z) ≤ norm(f w)]]

=⇒ f constant_on ball 0 r
by (rule maximum_modulus_principle [where U = ball w s and ξ = w]) (simp_all
add: dist_norm)

lemma Schwarz3 :
assumes holf : f holomorphic_on (ball 0 r) and [simp]: f 0 = 0
obtains h where h holomorphic_on (ball 0 r) and

∧
z. norm z < r =⇒ f z =

z ∗ (h z) and deriv f 0 = h 0
proof −

define h where h z = (if z = 0 then deriv f 0 else f z / z) for z
have d0 : deriv f 0 = h 0

by (simp add: h_def)
moreover have h holomorphic_on (ball 0 r)

by (rule pole_theorem_open_0 [OF holf , of 0]) (auto simp: h_def)
moreover have norm z < r =⇒ f z = z ∗ h z for z

by (simp add: h_def)
ultimately show ?thesis

using that by blast
qed

proposition Schwarz_Lemma:
assumes holf : f holomorphic_on (ball 0 1) and [simp]: f 0 = 0

and no:
∧

z. norm z < 1 =⇒ norm (f z) < 1
and ξ: norm ξ < 1

shows norm (f ξ) ≤ norm ξ and norm(deriv f 0) ≤ 1
and ((∃ z. norm z < 1 ∧ z 6= 0 ∧ norm(f z) = norm z)

∨ norm(deriv f 0) = 1)
=⇒ ∃α. (∀ z. norm z < 1 −→ f z = α ∗ z) ∧ norm α = 1

(is ?P =⇒ ?Q)
proof −

obtain h where holh: h holomorphic_on (ball 0 1)
and fz_eq:

∧
z. norm z < 1 =⇒ f z = z ∗ (h z) and df0 : deriv f 0 = h

0
by (rule Schwarz3 [OF holf]) auto

have noh_le: norm (h z) ≤ 1 if z: norm z < 1 for z
proof −

have norm (h z) < a if a: 1 < a for a
proof −

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 240

have max (inverse a) (norm z) < 1
using z a by (simp_all add: inverse_less_1_iff)

then obtain r where r : max (inverse a) (norm z) < r and r < 1
using Rats_dense_in_real by blast

then have nzr : norm z < r and ira: inverse r < a
using z a less_imp_inverse_less by force+

then have 0 < r
by (meson norm_not_less_zero not_le order .strict_trans2)

have holh ′: h holomorphic_on ball 0 r
by (meson holh ‹r < 1 › holomorphic_on_subset less_eq_real_def sub-

set_ball)
have conth ′: continuous_on (cball 0 r) h
by (meson ‹r < 1 › dual_order .trans holh holomorphic_on_imp_continuous_on

holomorphic_on_subset mem_ball_0 mem_cball_0 not_less subsetI)
obtain w where w: norm w = r and lenw:

∧
z. norm z < r =⇒ norm(h z)

≤ norm(h w)
using conth ′ ‹0 < r› by (auto simp add: intro: Schwarz1 [OF holh ′])

have h w = f w / w using fz_eq ‹r < 1 › nzr w by auto
then have cmod (h z) < inverse r

by (metis ‹0 < r› ‹r < 1 › divide_strict_right_mono inverse_eq_divide
le_less_trans lenw no norm_divide nzr w)

then show ?thesis using ira by linarith
qed
then show norm (h z) ≤ 1

using not_le by blast
qed
show cmod (f ξ) ≤ cmod ξ
proof (cases ξ = 0)

case True then show ?thesis by auto
next

case False
then show ?thesis

by (simp add: noh_le fz_eq ξ mult_left_le norm_mult)
qed
show no_df0 : norm(deriv f 0) ≤ 1

by (simp add: ‹
∧

z. cmod z < 1 =⇒ cmod (h z) ≤ 1 › df0)
show ?Q if ?P

using that
proof

assume ∃ z. cmod z < 1 ∧ z 6= 0 ∧ cmod (f z) = cmod z
then obtain γ where γ: cmod γ < 1 γ 6= 0 cmod (f γ) = cmod γ by blast
then have [simp]: norm (h γ) = 1

by (simp add: fz_eq norm_mult)
have §: ball γ (1 − cmod γ) ⊆ ball 0 1

by (simp add: ball_subset_ball_iff)
moreover have

∧
z. cmod (γ − z) < 1 − cmod γ =⇒ cmod (h z) ≤ cmod (h

γ)
by (metis ‹cmod (h γ) = 1 › § dist_0_norm dist_complex_def in_mono

mem_ball noh_le)

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 241

ultimately obtain c where c:
∧

z. norm z < 1 =⇒ h z = c
using Schwarz2 [OF holh, of 1 − norm γ γ, unfolded constant_on_def] γ

by auto
then have norm c = 1

using γ by force
with c show ?thesis

using fz_eq by auto
next

assume [simp]: cmod (deriv f 0) = 1
then obtain c where c:

∧
z. norm z < 1 =⇒ h z = c

using Schwarz2 [OF holh zero_less_one, of 0 , unfolded constant_on_def]
df0 noh_le

by auto
moreover have norm c = 1 using df0 c by auto
ultimately show ?thesis

using fz_eq by auto
qed

qed

corollary Schwarz_Lemma ′:
assumes holf : f holomorphic_on (ball 0 1) and [simp]: f 0 = 0

and no:
∧

z. norm z < 1 =⇒ norm (f z) < 1
shows ((∀ ξ. norm ξ < 1 −→ norm (f ξ) ≤ norm ξ)

∧ norm(deriv f 0) ≤ 1)
∧ (((∃ z. norm z < 1 ∧ z 6= 0 ∧ norm(f z) = norm z)
∨ norm(deriv f 0) = 1)
−→ (∃α. (∀ z. norm z < 1 −→ f z = α ∗ z) ∧ norm α = 1))

using Schwarz_Lemma [OF assms]
by (metis (no_types) norm_eq_zero zero_less_one)

5.8 The Schwarz reflection principle
lemma hol_pal_lem0 :

assumes d · a ≤ k k ≤ d · b
obtains c where

c ∈ closed_segment a b d · c = k∧
z. z ∈ closed_segment a c =⇒ d · z ≤ k∧
z. z ∈ closed_segment c b =⇒ k ≤ d · z

proof −
obtain c where cin: c ∈ closed_segment a b and keq: k = d · c

using connected_ivt_hyperplane [of closed_segment a b a b d k]
by (auto simp: assms)

have closed_segment a c ⊆ {z. d · z ≤ k} closed_segment c b ⊆ {z. k ≤ d · z}
unfolding segment_convex_hull using assms keq
by (auto simp: convex_halfspace_le convex_halfspace_ge hull_minimal)

then show ?thesis using cin that by fastforce
qed

lemma hol_pal_lem1 :

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 242

assumes convex S open S
and abc: a ∈ S b ∈ S c ∈ S

d 6= 0 and lek: d · a ≤ k d · b ≤ k d · c ≤ k
and holf1 : f holomorphic_on {z. z ∈ S ∧ d · z < k}
and contf : continuous_on S f

shows contour_integral (linepath a b) f +
contour_integral (linepath b c) f +
contour_integral (linepath c a) f = 0

proof −
have interior (convex hull {a, b, c}) ⊆ interior(S ∩ {x. d · x ≤ k})
proof (intro interior_mono hull_minimal)

show {a, b, c} ⊆ S ∩ {x. d · x ≤ k}
by (simp add: abc lek)

show convex (S ∩ {x. d · x ≤ k})
by (rule convex_Int [OF ‹convex S› convex_halfspace_le])

qed
also have . . . ⊆ {z ∈ S . d · z < k}

by (force simp: interior_open [OF ‹open S›] ‹d 6= 0 ›)
finally have ∗: interior (convex hull {a, b, c}) ⊆ {z ∈ S . d · z < k} .
have continuous_on (convex hull {a,b,c}) f

using ‹convex S› contf abc continuous_on_subset subset_hull
by fastforce

moreover have f holomorphic_on interior (convex hull {a,b,c})
by (rule holomorphic_on_subset [OF holf1 ∗])

ultimately show ?thesis
using Cauchy_theorem_triangle_interior has_chain_integral_chain_integral3

by blast
qed

lemma hol_pal_lem2 :
assumes S : convex S open S

and abc: a ∈ S b ∈ S c ∈ S
and d 6= 0 and lek: d · a ≤ k d · b ≤ k
and holf1 : f holomorphic_on {z. z ∈ S ∧ d · z < k}
and holf2 : f holomorphic_on {z. z ∈ S ∧ k < d · z}
and contf : continuous_on S f

shows contour_integral (linepath a b) f +
contour_integral (linepath b c) f +
contour_integral (linepath c a) f = 0

proof (cases d · c ≤ k)
case True show ?thesis

by (rule hol_pal_lem1 [OF S abc ‹d 6= 0 › lek True holf1 contf])
next

case False
then have d · c > k by force
obtain a ′ where a ′: a ′ ∈ closed_segment b c and d · a ′ = k

and ba ′:
∧

z. z ∈ closed_segment b a ′ =⇒ d · z ≤ k
and a ′c:

∧
z. z ∈ closed_segment a ′ c =⇒ k ≤ d · z

using False hol_pal_lem0 [of d b k c, OF ‹d · b ≤ k›] by auto

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 243

obtain b ′ where b ′: b ′ ∈ closed_segment a c and d · b ′ = k
and ab ′:

∧
z. z ∈ closed_segment a b ′ =⇒ d · z ≤ k

and b ′c:
∧

z. z ∈ closed_segment b ′ c =⇒ k ≤ d · z
using False hol_pal_lem0 [of d a k c, OF ‹d · a ≤ k›] by auto

have a ′b ′: a ′ ∈ S ∧ b ′ ∈ S
using a ′ abc b ′ convex_contains_segment ‹convex S› by auto

have continuous_on (closed_segment c a) f
by (meson abc contf continuous_on_subset convex_contains_segment ‹convex

S›)
then have 1 : contour_integral (linepath c a) f =

contour_integral (linepath c b ′) f + contour_integral (linepath b ′ a) f
using b ′ closed_segment_commute contour_integral_split_linepath by blast

have continuous_on (closed_segment b c) f
by (meson abc contf continuous_on_subset convex_contains_segment ‹convex

S›)
then have 2 : contour_integral (linepath b c) f =

contour_integral (linepath b a ′) f + contour_integral (linepath a ′ c) f
by (rule contour_integral_split_linepath [OF _ a ′])

have 3 : contour_integral (reversepath (linepath b ′ a ′)) f =
− contour_integral (linepath b ′ a ′) f

by (rule contour_integral_reversepath [OF valid_path_linepath])
have fcd_le: f field_differentiable at x

if x ∈ interior S ∧ x ∈ interior {x. d · x ≤ k} for x
proof −

have f holomorphic_on S ∩ {c. d · c < k}
by (metis (no_types) Collect_conj_eq Collect_mem_eq holf1)

then have ∃C D. x ∈ interior C ∩ interior D ∧ f holomorphic_on interior C
∩ interior D

using that
by (metis Collect_mem_eq Int_Collect ‹d 6= 0 › interior_halfspace_le inte-

rior_open ‹open S›)
then show f field_differentiable at x
by (metis at_within_interior holomorphic_on_def interior_Int interior_interior)

qed
have ab_le:

∧
x. x ∈ closed_segment a b =⇒ d · x ≤ k

proof −
fix x :: complex
assume x ∈ closed_segment a b
then have

∧
C . x ∈ C ∨ b /∈ C ∨ a /∈ C ∨ ¬ convex C

by (meson contra_subsetD convex_contains_segment)
then show d · x ≤ k

by (metis lek convex_halfspace_le mem_Collect_eq)
qed
have cs: closed_segment a ′ b ′ ⊆ {x. d · x ≤ k} ∧ closed_segment b ′ a ⊆ {x. d

· x ≤ k}
by (simp add: ‹d · a ′= k› ‹d · b ′= k› closed_segment_subset convex_halfspace_le

lek(1))
have continuous_on (S ∩ {x. d · x ≤ k}) f using contf

by (simp add: continuous_on_subset)

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 244

then have (f has_contour_integral 0)
(linepath a b +++ linepath b a ′ +++ linepath a ′ b ′ +++ linepath b ′ a)

apply (rule Cauchy_theorem_convex [where K = {}])
by (simp_all add: path_image_join convex_Int convex_halfspace_le ‹convex

S› fcd_le ab_le
closed_segment_subset abc a ′b ′ ba ′ cs)

then have 4 : contour_integral (linepath a b) f +
contour_integral (linepath b a ′) f +
contour_integral (linepath a ′ b ′) f +
contour_integral (linepath b ′ a) f = 0

by (rule has_chain_integral_chain_integral4)
have fcd_ge: f field_differentiable at x

if x ∈ interior S ∧ x ∈ interior {x. k ≤ d · x} for x
proof −

have f2 : f holomorphic_on S ∩ {c. k < d · c}
by (metis (full_types) Collect_conj_eq Collect_mem_eq holf2)

have f3 : interior S = S
by (simp add: interior_open ‹open S›)

then have x ∈ S ∩ interior {c. k ≤ d · c}
using that by simp

then show f field_differentiable at x
using f3 f2 unfolding holomorphic_on_def

by (metis (no_types) ‹d 6= 0 › at_within_interior interior_Int interior_halfspace_ge
interior_interior)

qed
have cs: closed_segment c b ′ ⊆ {x. k ≤ d · x} ∧ closed_segment b ′ a ′ ⊆ {x. k
≤ d · x}

by (simp add: ‹d · a ′ = k› b ′c closed_segment_subset convex_halfspace_ge)
have continuous_on (S ∩ {x. k ≤ d · x}) f using contf

by (simp add: continuous_on_subset)
then have (f has_contour_integral 0) (linepath a ′ c +++ linepath c b ′ +++

linepath b ′ a ′)
apply (rule Cauchy_theorem_convex [where K = {}])
by (simp_all add: path_image_join convex_Int convex_halfspace_ge ‹convex

S›
fcd_ge closed_segment_subset abc a ′b ′ a ′c cs)

then have 5 : contour_integral (linepath a ′ c) f + contour_integral (linepath c
b ′) f + contour_integral (linepath b ′ a ′) f = 0

by (rule has_chain_integral_chain_integral3)
show ?thesis
using 1 2 3 4 5 by (metis add.assoc eq_neg_iff_add_eq_0 reversepath_linepath)

qed

lemma hol_pal_lem3 :
assumes S : convex S open S

and abc: a ∈ S b ∈ S c ∈ S
and d 6= 0 and lek: d · a ≤ k
and holf1 : f holomorphic_on {z. z ∈ S ∧ d · z < k}
and holf2 : f holomorphic_on {z. z ∈ S ∧ k < d · z}

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 245

and contf : continuous_on S f
shows contour_integral (linepath a b) f +

contour_integral (linepath b c) f +
contour_integral (linepath c a) f = 0

proof (cases d · b ≤ k)
case True show ?thesis

by (rule hol_pal_lem2 [OF S abc ‹d 6= 0 › lek True holf1 holf2 contf])
next

case False
show ?thesis
proof (cases d · c ≤ k)

case True
have contour_integral (linepath c a) f +

contour_integral (linepath a b) f +
contour_integral (linepath b c) f = 0

by (rule hol_pal_lem2 [OF S ‹c ∈ S› ‹a ∈ S› ‹b ∈ S› ‹d 6= 0 › ‹d · c ≤ k›
lek holf1 holf2 contf])

then show ?thesis
by (simp add: algebra_simps)

next
case False
have contour_integral (linepath b c) f +

contour_integral (linepath c a) f +
contour_integral (linepath a b) f = 0

using hol_pal_lem2 [OF S ‹b ∈ S› ‹c ∈ S› ‹a ∈ S›, of −d −k]
using ‹d 6= 0 › ‹¬ d · b ≤ k› False by (simp_all add: holf1 holf2 contf)

then show ?thesis
by (simp add: algebra_simps)

qed
qed

lemma hol_pal_lem4 :
assumes S : convex S open S

and abc: a ∈ S b ∈ S c ∈ S and d 6= 0
and holf1 : f holomorphic_on {z. z ∈ S ∧ d · z < k}
and holf2 : f holomorphic_on {z. z ∈ S ∧ k < d · z}
and contf : continuous_on S f

shows contour_integral (linepath a b) f +
contour_integral (linepath b c) f +
contour_integral (linepath c a) f = 0

proof (cases d · a ≤ k)
case True show ?thesis

by (rule hol_pal_lem3 [OF S abc ‹d 6= 0 › True holf1 holf2 contf])
next

case False
show ?thesis

using ‹d 6= 0 › hol_pal_lem3 [OF S abc, of −d −k] False
by (simp_all add: holf1 holf2 contf)

qed

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 246

lemma holomorphic_on_paste_across_line:
assumes S : open S and d 6= 0

and holf1 : f holomorphic_on (S ∩ {z. d · z < k})
and holf2 : f holomorphic_on (S ∩ {z. k < d · z})
and contf : continuous_on S f

shows f holomorphic_on S
proof −

have ∗: ∃ t. open t ∧ p ∈ t ∧ continuous_on t f ∧
(∀ a b c. convex hull {a, b, c} ⊆ t −→

contour_integral (linepath a b) f +
contour_integral (linepath b c) f +
contour_integral (linepath c a) f = 0)

if p ∈ S for p
proof −

obtain e where e>0 and e: ball p e ⊆ S
using ‹p ∈ S› openE S by blast

then have continuous_on (ball p e) f
using contf continuous_on_subset by blast

moreover
have {z. dist p z < e ∧ d · z < k} ⊆ S ∩ {z. d · z < k}
{z. dist p z < e ∧ k < d · z} ⊆ S ∩ {z. k < d · z}

using e by auto
then have f holomorphic_on {z. dist p z < e ∧ d · z < k}

f holomorphic_on {z. dist p z < e ∧ k < d · z}
using holomorphic_on_subset holf1 holf2 by presburger+

ultimately show ?thesis
apply (rule_tac x=ball p e in exI)
using ‹e > 0 › e ‹d 6= 0 › hol_pal_lem4 [of ball p e _ _ _ d _ k]
by (force simp: subset_hull)

qed
show ?thesis

by (blast intro: ∗ Morera_local_triangle analytic_imp_holomorphic)
qed

proposition Schwarz_reflection:
assumes open S and cnjs: cnj ‘ S ⊆ S

and holf : f holomorphic_on (S ∩ {z. 0 < Im z})
and contf : continuous_on (S ∩ {z. 0 ≤ Im z}) f
and f :

∧
z. [[z ∈ S ; z ∈ �]] =⇒ (f z) ∈ �

shows (λz. if 0 ≤ Im z then f z else cnj(f (cnj z))) holomorphic_on S
proof −

have 1 : (λz. if 0 ≤ Im z then f z else cnj (f (cnj z))) holomorphic_on (S ∩ {z.
0 < Im z})

by (force intro: iffD1 [OF holomorphic_cong [OF refl] holf])
have cont_cfc: continuous_on (S ∩ {z. Im z ≤ 0}) (cnj o f o cnj)

using cnjs
by (intro continuous_intros continuous_on_compose continuous_on_subset

[OF contf]) auto

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 247

have cnj ◦ f ◦ cnj field_differentiable at x within S ∩ {z. Im z < 0}
if x ∈ S Im x < 0 f field_differentiable at (cnj x) within S ∩ {z. 0 < Im z}

for x
using that
apply (clarsimp simp add: field_differentiable_def has_field_derivative_iff

Lim_within dist_norm)
apply (rule_tac x=cnj f ′ in exI)
apply (elim all_forward ex_forward conj_forward imp_forward asm_rl, clar-

ify)
apply (drule_tac x=cnj xa in bspec)
using cnjs apply force
apply (metis complex_cnj_cnj complex_cnj_diff complex_cnj_divide com-

plex_mod_cnj)
done

then have hol_cfc: (cnj o f o cnj) holomorphic_on (S ∩ {z. Im z < 0})
using holf cnjs
by (force simp: holomorphic_on_def)

have 2 : (λz. if 0 ≤ Im z then f z else cnj (f (cnj z))) holomorphic_on (S ∩ {z.
Im z < 0})

by (smt (verit) Int_Collect comp_def hol_cfc holomorphic_cong)
have [simp]: (S ∩ {z. 0 ≤ Im z}) ∪ (S ∩ {z. Im z ≤ 0}) = S

by force
have eq:

∧
z. [[z ∈ S ; Im z ≤ 0 ; 0 ≤ Im z]] =⇒ f z = cnj (f (cnj z))

using f Reals_cnj_iff complex_is_Real_iff by auto
have continuous_on ((S ∩ {z. 0 ≤ Im z}) ∪ (S ∩ {z. Im z ≤ 0}))

(λz. if 0 ≤ Im z then f z else cnj (f (cnj z)))
apply (rule continuous_on_cases_local)
using cont_cfc contf

by (simp_all add: closedin_closed_Int closed_halfspace_Im_le closed_halfspace_Im_ge
eq)

then have 3 : continuous_on S (λz. if 0 ≤ Im z then f z else cnj (f (cnj z)))
by force

show ?thesis
using holomorphic_on_paste_across_line [OF ‹open S›, of − i _ 0]
using 1 2 3 by auto

qed

5.9 Bloch’s theorem
lemma Bloch_lemma_0 :

assumes holf : f holomorphic_on cball 0 r and 0 < r
and [simp]: f 0 = 0
and le:

∧
z. norm z < r =⇒ norm(deriv f z) ≤ 2 ∗ norm(deriv f 0)

shows ball 0 ((3 − 2 ∗ sqrt 2) ∗ r ∗ norm(deriv f 0)) ⊆ f ‘ ball 0 r
proof −

have sqrt 2 < 3/2
by (rule real_less_lsqrt) (auto simp: power2_eq_square)

then have sq3 : 0 < 3 − 2 ∗ sqrt 2 by simp
show ?thesis

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 248

proof (cases deriv f 0 = 0)
case True then show ?thesis by simp

next
case False
define C where C = 2 ∗ norm(deriv f 0)
have 0 < C using False by (simp add: C_def)
have holf ′: f holomorphic_on ball 0 r using holf

using ball_subset_cball holomorphic_on_subset by blast
then have holdf ′: deriv f holomorphic_on ball 0 r

by (rule holomorphic_deriv [OF _ open_ball])
have Le1 : norm(deriv f z − deriv f 0) ≤ norm z / (r − norm z) ∗ C

if norm z < r for z
proof −

have T1 : norm(deriv f z − deriv f 0) ≤ norm z / (R − norm z) ∗ C
if R: norm z < R R < r for R

proof −
have 0 < R using R

by (metis less_trans norm_zero zero_less_norm_iff)
have df_le:

∧
x. norm x < r =⇒ norm (deriv f x) ≤ C

using le by (simp add: C_def)
have hol_df : deriv f holomorphic_on cball 0 R

using R holdf ′ holomorphic_on_subset by auto
have ∗: ((λw. deriv f w / (w − z)) has_contour_integral 2 ∗ pi ∗ i ∗ deriv

f z) (circlepath 0 R)
if norm z < R for z

using ‹0 < R› that Cauchy_integral_formula_convex_simple [OF con-
vex_cball hol_df , of _ circlepath 0 R]

by (force simp: winding_number_circlepath)
have ∗∗: ((λx. deriv f x / (x − z) − deriv f x / x) has_contour_integral

of_real (2 ∗ pi) ∗ i ∗ (deriv f z − deriv f 0))
(circlepath 0 R)

using has_contour_integral_diff [OF ∗ [of z] ∗ [of 0]] ‹0 < R› that
by (simp add: algebra_simps)

have [simp]:
∧

x. norm x = R =⇒ x 6= z using that(1) by blast
have norm (deriv f x / (x − z) − deriv f x / x)

≤ C ∗ norm z / (R ∗ (R − norm z))
if norm x = R for x

proof −
have [simp]: norm (deriv f x ∗ x − deriv f x ∗ (x − z)) =

norm (deriv f x) ∗ norm z
by (simp add: norm_mult right_diff_distrib ′)

show ?thesis
using ‹0 < R› ‹0 < C › R that

by (auto simp add: norm_mult norm_divide divide_simps df_le
mult_mono norm_triangle_ineq2)

qed
then show ?thesis

using has_contour_integral_bound_circlepath
[OF ∗∗, of C ∗ norm z/(R∗(R − norm z))]

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 249

‹0 < R› ‹0 < C › R
apply (simp add: norm_mult norm_divide)
apply (simp add: divide_simps mult.commute)
done

qed
obtain r ′ where r ′: norm z < r ′ r ′ < r

using Rats_dense_in_real [of norm z r] ‹norm z < r› by blast
then have [simp]: closure {r ′<..<r} = {r ′..r} by simp
show ?thesis

apply (rule continuous_ge_on_closure
[where f = λr . norm z / (r − norm z) ∗ C and S = {r ′<..<r},
OF _ _ T1])

using that r ′

by (auto simp: not_le intro!: continuous_intros)
qed
have ∗: (norm z − norm z^2/(r − norm z)) ∗ norm(deriv f 0) ≤ norm(f z)

if r : norm z < r for z
proof −

have 1 :
∧

x. x ∈ ball 0 r =⇒
((λz. f z − deriv f 0 ∗ z) has_field_derivative deriv f x − deriv f 0)
(at x within ball 0 r)

by (rule derivative_eq_intros holomorphic_derivI holf ′ | simp)+
have 2 : closed_segment 0 z ⊆ ball 0 r
by (metis ‹0 < r› convex_ball convex_contains_segment dist_self mem_ball

mem_ball_0 that)
have 4 : norm (deriv f (x ∗R z) − deriv f 0) ∗ norm z ≤ norm z ∗ norm z ∗

x ∗ C / (r − norm z)
if x: 0 ≤ x x ≤ 1 for x

proof −
have [simp]: x ∗ norm z < r

using r x by (meson le_less_trans mult_le_cancel_right2 norm_not_less_zero)
then have cmod (x ∗R z) < r

by (simp add: x)
then have norm (deriv f (x ∗R z) − deriv f 0) ≤ norm (x ∗R z) / (r −

norm (x ∗R z)) ∗ C
by (metis Le1)

also have . . . ≤ norm (x ∗R z) / (r − norm z) ∗ C
using r x ‹0 < r› ‹0 < C › by (simp add: frac_le mult_left_le_one_le)

finally have norm (deriv f (x ∗R z) − deriv f 0) ∗ norm z ≤ norm (x ∗R
z) / (r − norm z) ∗ C ∗ norm z

by (rule mult_right_mono) simp
with x show ?thesis by (simp add: algebra_simps)

qed
have le_norm: abc ≤ norm d − e =⇒ norm(f − d) ≤ e =⇒ abc ≤ norm f

for abc d e and f ::complex
by (metis add_diff_cancel_left ′ add_diff_eq diff_left_mono norm_diff_ineq

order_trans)
have norm (integral {0 ..1} (λx. (deriv f (x ∗R z) − deriv f 0) ∗ z))

≤ integral {0 ..1} (λt. (norm z)2 ∗ t / (r − norm z) ∗ C)

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 250

proof (rule integral_norm_bound_integral)
show (λx. (deriv f (x ∗R z) − deriv f 0) ∗ z) integrable_on {0 ..1}

using contour_integral_primitive [OF 1 , of linepath 0 z] 2
by (simp add: has_contour_integral_linepath has_integral_integrable_integral)
have (∗) ((cmod z)2) integrable_on {0 ..1}

by (metis ident_integrable_on integrable_0 integrable_eq integrable_on_cmult_iff
lambda_zero)

then show (λt. (norm z)2 ∗ t / (r − norm z) ∗ C) integrable_on {0 ..1}
using integrable_on_cmult_right[where ′b=real, simplified] integrable_on_divide

[where ′b=real, simplified]
by blast

qed (simp add: norm_mult power2_eq_square 4)
then have int_le: norm (f z − deriv f 0 ∗ z) ≤ (norm z)2 ∗ norm(deriv f 0)

/ ((r − norm z))
using contour_integral_primitive [OF 1 , of linepath 0 z] 2

by (simp add: has_contour_integral_linepath has_integral_integrable_integral
C_def)

have norm z ∗ (norm (deriv f 0) ∗ (r − norm z − norm z)) ≤ norm z ∗
(norm (deriv f 0) ∗ (r − norm z) − norm (deriv f 0) ∗ norm z)

by (simp add: algebra_simps)
then have §: (norm z ∗ (r − norm z) − norm z ∗ norm z) ∗ norm (deriv f

0) ≤ norm (deriv f 0) ∗ norm z ∗ (r − norm z) − norm z ∗ norm z ∗ norm (deriv
f 0)

by (simp add: algebra_simps)
show ?thesis

using ‹norm z < r›
by (force simp add: power2_eq_square divide_simps C_def norm_mult §

intro!: le_norm [OF _ int_le])
qed
have sq201 [simp]: 0 < (1 − sqrt 2 / 2) (1 − sqrt 2 / 2) < 1

by (auto simp: sqrt2_less_2)
have 1 : continuous_on (closure (ball 0 ((1 − sqrt 2 / 2) ∗ r))) f
proof (rule continuous_on_subset [OF holomorphic_on_imp_continuous_on

[OF holf]])
show closure (ball 0 ((1 − sqrt 2 / 2) ∗ r)) ⊆ cball 0 r
proof −

have (1 − sqrt 2 / 2) ∗ r ≤ r
by (simp add: ‹0 < r›)

then show ?thesis
by (meson ball_subset_cball closed_cball closure_minimal dual_order .trans

subset_ball)
qed

qed
have 2 : open (f ‘ interior (ball 0 ((1 − sqrt 2 / 2) ∗ r)))
proof (rule open_mapping_thm [OF holf ′ open_ball connected_ball])

show interior (ball 0 ((1 − sqrt 2 / 2) ∗ r)) ⊆ ball (0 ::complex) r
using ‹0 < r› mult_pos_pos sq201 by (simp add: ball_subset_ball_iff)

show ¬ f constant_on ball 0 r
using False ‹0 < r› centre_in_ball holf ′ holomorphic_nonconstant by blast

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 251

qed auto
have ball 0 ((3 − 2 ∗ sqrt 2) ∗ r ∗ norm (deriv f 0)) =

ball (f 0) ((3 − 2 ∗ sqrt 2) ∗ r ∗ norm (deriv f 0))
by simp

also have . . . ⊆ f ‘ ball 0 ((1 − sqrt 2 / 2) ∗ r)
proof −

have 3 : (3 − 2 ∗ sqrt 2) ∗ r ∗ norm (deriv f 0) ≤ norm (f z)
if norm z = (1 − sqrt 2 / 2) ∗ r for z

proof (rule order_trans [OF _ ∗])
show (3 − 2 ∗ sqrt 2) ∗ r ∗ cmod (deriv f 0)
≤ (cmod z − (cmod z)2 / (r − cmod z)) ∗ cmod (deriv f 0)

by (simp add: le_less algebra_simps divide_simps power2_eq_square that)
qed (use ‹0 < r› that in auto)
show ?thesis

using ‹0 < r› sq201 3 C_def ‹0 < C › sq3
by (intro ball_subset_open_map_image [OF 1 2 _ bounded_ball]) auto

qed
also have . . . ⊆ f ‘ ball 0 r
proof −

have
∧

x. (1 − sqrt 2 / 2) ∗ r ≤ r
using ‹0 < r› by (auto simp: field_simps)

then show ?thesis
by auto

qed
finally show ?thesis .

qed
qed

lemma Bloch_lemma:
assumes holf : f holomorphic_on cball a r and 0 < r

and le:
∧

z. z ∈ ball a r =⇒ norm(deriv f z) ≤ 2 ∗ norm(deriv f a)
shows ball (f a) ((3 − 2 ∗ sqrt 2) ∗ r ∗ norm(deriv f a)) ⊆ f ‘ ball a r (is ?lhs
⊆ ?rhs)
proof −

have fz: (λz. f (a + z)) = f o (λz. (a + z))
by (simp add: o_def)

have hol0 : (λz. f (a + z)) holomorphic_on cball 0 r
unfolding fz by (intro holomorphic_intros holf holomorphic_on_compose |

simp)+
then have [simp]:

∧
x. norm x < r =⇒ (λz. f (a + z)) field_differentiable at x

by (metis open_ball at_within_open ball_subset_cball diff_0 dist_norm holo-
morphic_on_def holomorphic_on_subset mem_ball norm_minus_cancel)

have [simp]:
∧

z. norm z < r =⇒ f field_differentiable at (a + z)
by (metis holf open_ball add_diff_cancel_left ′ dist_complex_def holomor-

phic_on_imp_differentiable_at holomorphic_on_subset interior_cball interior_subset
mem_ball norm_minus_commute)

then have [simp]: f field_differentiable at a
by (metis add.comm_neutral ‹0 < r› norm_eq_zero)

have hol1 : (λz. f (a + z) − f a) holomorphic_on cball 0 r

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 252

by (intro holomorphic_intros hol0)
moreover have

∧
z. cmod z < r =⇒

cmod (deriv (λz. f (a + z)) z) ≤ 2 ∗ cmod (deriv (λz. f (a + z)) 0)
by (simp add: fz deriv_chain dist_norm le)

ultimately have §: ball 0 ((3 − 2 ∗ sqrt 2) ∗ r ∗ norm (deriv (λz. f (a + z)
− f a) 0))

⊆ (λz. f (a + z) − f a) ‘ ball 0 r
using ‹0 < r› by (intro Bloch_lemma_0) auto

show ?thesis
proof clarify

fix x
assume x ∈ ?lhs
with subsetD [OF §, of x − f a] show x ∈ ?rhs
by (force simp: fz ‹0 < r› dist_norm deriv_chain field_differentiable_compose)

qed
qed

proposition Bloch_unit:
assumes holf : f holomorphic_on ball a 1 and [simp]: deriv f a = 1
obtains b r where 1/12 < r and ball b r ⊆ f ‘ (ball a 1)

proof −
define r :: real where r = 249/256
have 0 < r r < 1 by (auto simp: r_def)
define g where g z = deriv f z ∗ of_real(r − norm(z − a)) for z
have deriv f holomorphic_on ball a 1

by (rule holomorphic_deriv [OF holf open_ball])
then have continuous_on (ball a 1) (deriv f)

using holomorphic_on_imp_continuous_on by blast
then have continuous_on (cball a r) (deriv f)

by (rule continuous_on_subset) (simp add: cball_subset_ball_iff ‹r < 1 ›)
then have continuous_on (cball a r) g

by (simp add: g_def continuous_intros)
then have 1 : compact (g ‘ cball a r)

by (rule compact_continuous_image [OF _ compact_cball])
have 2 : g ‘ cball a r 6= {}

using ‹r > 0 › by auto
obtain p where pr : p ∈ cball a r

and pge:
∧

y. y ∈ cball a r =⇒ norm (g y) ≤ norm (g p)
using distance_attains_sup [OF 1 2 , of 0] by force

define t where t = (r − norm(p − a)) / 2
have norm (p − a) 6= r

using pge [of a] ‹r > 0 › by (auto simp: g_def norm_mult)
then have norm (p − a) < r using pr

by (simp add: norm_minus_commute dist_norm)
then have 0 < t

by (simp add: t_def)
have cpt: cball p t ⊆ ball a r
using ‹0 < t› by (simp add: cball_subset_ball_iff dist_norm t_def field_simps)

have gen_le_dfp: norm (deriv f y) ∗ (r − norm (y − a)) / (r − norm (p − a))

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 253

≤ norm (deriv f p)
if y ∈ cball a r for y

proof −
have [simp]: norm (y − a) ≤ r

using that by (simp add: dist_norm norm_minus_commute)
have norm (g y) ≤ norm (g p)

using pge [OF that] by simp
then have norm (deriv f y) ∗ abs (r − norm (y − a)) ≤ norm (deriv f p) ∗

abs (r − norm (p − a))
by (simp only: dist_norm g_def norm_mult norm_of_real)

with that ‹norm (p − a) < r› show ?thesis
by (simp add: dist_norm field_split_simps)

qed
have le_norm_dfp: r / (r − norm (p − a)) ≤ norm (deriv f p)

using gen_le_dfp [of a] ‹r > 0 › by auto
have 1 : f holomorphic_on cball p t

using cpt ‹r < 1 › order_subst1 subset_ball
by (force simp: intro!: holomorphic_on_subset [OF holf])

have 2 : norm (deriv f z) ≤ 2 ∗ norm (deriv f p) if z ∈ ball p t for z
proof −

have z: z ∈ cball a r
by (meson ball_subset_cball subsetD cpt that)

then have norm(z − a) < r
by (metis ball_subset_cball contra_subsetD cpt dist_norm mem_ball norm_minus_commute

that)
have norm (deriv f z) ∗ (r − norm (z − a)) / (r − norm (p − a)) ≤ norm

(deriv f p)
using gen_le_dfp [OF z] by simp

with ‹norm (z − a) < r› ‹norm (p − a) < r›
have norm (deriv f z) ≤ (r − norm (p − a)) / (r − norm (z − a)) ∗ norm

(deriv f p)
by (simp add: field_simps)

also have . . . ≤ 2 ∗ norm (deriv f p)
proof (rule mult_right_mono)

show (r − cmod (p − a)) / (r − cmod (z − a)) ≤ 2
using that ‹norm (p − a) < r› ‹norm(z − a) < r› dist_triangle3 [of z a p]
by (simp add: field_simps t_def dist_norm [symmetric])

qed auto
finally show ?thesis .

qed
have sqrt2 : sqrt 2 < 2113/1494

by (rule real_less_lsqrt) (auto simp: power2_eq_square)
then have sq3 : 0 < 3 − 2 ∗ sqrt 2 by simp
have 1 / 12 / ((3 − 2 ∗ sqrt 2) / 2) < r

using sq3 sqrt2 by (auto simp: field_simps r_def)
also have . . . ≤ cmod (deriv f p) ∗ (r − cmod (p − a))

using ‹norm (p − a) < r› le_norm_dfp by (simp add: pos_divide_le_eq)
finally have 1 / 12 < cmod (deriv f p) ∗ (r − cmod (p − a)) ∗ ((3 − 2 ∗ sqrt

2) / 2)

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 254

using pos_divide_less_eq half_gt_zero_iff sq3 by blast
then have ∗∗: 1 / 12 < (3 − 2 ∗ sqrt 2) ∗ t ∗ norm (deriv f p)

using sq3 by (simp add: mult.commute t_def)
have ball (f p) ((3 − 2 ∗ sqrt 2) ∗ t ∗ norm (deriv f p)) ⊆ f ‘ ball p t

by (rule Bloch_lemma [OF 1 ‹0 < t› 2])
also have . . . ⊆ f ‘ ball a 1
by (meson ‹r < 1 › ball_subset_cball cpt dual_order .trans image_mono less_le_not_le

subset_ball)
finally have ball (f p) ((3 − 2 ∗ sqrt 2) ∗ t ∗ norm (deriv f p)) ⊆ f ‘ ball a 1 .
with ∗∗ show ?thesis

by (rule that)
qed

theorem Bloch:
assumes holf : f holomorphic_on ball a r and 0 < r

and r ′: r ′ ≤ r ∗ norm (deriv f a) / 12
obtains b where ball b r ′ ⊆ f ‘ (ball a r)

proof (cases deriv f a = 0)
case True with r ′ show ?thesis

using ball_eq_empty that by fastforce
next

case False
define C where C = deriv f a
have 0 < norm C using False by (simp add: C_def)
have dfa: f field_differentiable at a

using ‹0 < r› holomorphic_on_imp_differentiable_at [OF holf] by auto
have fo: (λz. f (a + of_real r ∗ z)) = f o (λz. (a + of_real r ∗ z))

by (simp add: o_def)
have holf ′: f holomorphic_on (λz. a + complex_of_real r ∗ z) ‘ ball 0 1

using ‹0 < r› holomorphic_on_subset [OF holf] by (force simp: dist_norm
norm_mult)

have 1 : (λz. f (a + r ∗ z) / (C ∗ r)) holomorphic_on ball 0 1
using ‹0 < r› ‹0 < norm C ›
by (intro holomorphic_intros holomorphic_on_compose holf ′; simp add: fo)+

have ((λz. f (a + of_real r ∗ z) / (C ∗ of_real r)) has_field_derivative
(deriv f (a + of_real r ∗ z) / C)) (at z)

if norm z < 1 for z
proof −

have fd: f field_differentiable at (a + complex_of_real r ∗ z)
using ‹0 < r› by (simp_all add: dist_norm norm_mult holomorphic_on_imp_differentiable_at

[OF holf] that)
have ∗: ((λx. f (a + of_real r ∗ x)) has_field_derivative

(deriv f (a + of_real r ∗ z) ∗ of_real r)) (at z)
by (rule fd DERIV_chain [OF field_differentiable_derivI]derivative_eq_intros

| simp add: fo)+
show ?thesis

apply (rule derivative_eq_intros ∗ | simp)+
using ‹0 < r› by (auto simp: C_def False)

qed

Conformal{_}{\kern 0pt}Mappings.html

Conformal_Mappings.thy 255

obtain f ′ where (f has_field_derivative f ′) (at a)
using dfa field_differentiable_def by blast

then have ∃ c. ((λc. f (a + complex_of_real r ∗ c)) has_field_derivative c) (at
0)

by (metis (no_types) DERIV_chain2 add_cancel_left_right field_differentiable_add_const

field_differentiable_def field_differentiable_linear mult_eq_0_iff)
then have (λw. f (a + complex_of_real r ∗ w)) field_differentiable at 0

by (simp add: field_differentiable_def)
then have deriv (λz. f (a + of_real r ∗ z) / (C ∗ of_real r)) 0

= deriv (λz. f (a + of_real r ∗ z)) 0 / (C ∗ of_real r)
by (rule deriv_cdivide_right)

also have . . . = 1
using ‹0 < r› by (simp add: C_def False fo derivative_intros dfa deriv_chain)

finally have 2 : deriv (λz. f (a + of_real r ∗ z) / (C ∗ of_real r)) 0 = 1 .
have sb1 : (∗) (C ∗ r) ‘ (λz. f (a + of_real r ∗ z) / (C ∗ r)) ‘ ball 0 1

⊆ f ‘ ball a r
using ‹0 < r› by (auto simp: dist_norm norm_mult C_def False)

have sb2 : ball (C ∗ r ∗ b) r ′ ⊆ (∗) (C ∗ r) ‘ ball b t
if 1 / 12 < t for b t

proof −
have ∗: r ∗ cmod (deriv f a) / 12 ≤ r ∗ (t ∗ cmod (deriv f a))
using that ‹0 < r› less_eq_real_def mult.commute mult.right_neutral mult_left_mono

norm_ge_zero times_divide_eq_right
by auto

show ?thesis
apply clarify
apply (rule_tac x=x / (C ∗ r) in image_eqI)
using ‹0 < r› apply (simp_all add: dist_norm norm_mult norm_divide

C_def False field_simps)
using ∗ r ′ by linarith

qed
show ?thesis

apply (rule Bloch_unit [OF 1 2])
using image_mono sb1 sb2 that by fastforce

qed

corollary Bloch_general:
assumes holf : f holomorphic_on S and a ∈ S

and tle:
∧

z. z ∈ frontier S =⇒ t ≤ dist a z
and rle: r ≤ t ∗ norm(deriv f a) / 12

obtains b where ball b r ⊆ f ‘ S
proof −

consider r ≤ 0 | 0 < t ∗ norm(deriv f a) / 12 using rle by force
then show ?thesis
proof cases

case 1 then show ?thesis
by (simp add: ball_empty that)

next

Conformal{_}{\kern 0pt}Mappings.html

Great_Picard.thy 256

case 2
show ?thesis
proof (cases deriv f a = 0)

case True then show ?thesis
using rle by (simp add: ball_empty that)

next
case False
then have t > 0

using 2 by (force simp: zero_less_mult_iff)
have ¬ ball a t ⊆ S =⇒ ball a t ∩ frontier S 6= {}
by (metis Diff_eq_empty_iff ‹0 < t› ‹a ∈ S› closure_Int_ball_not_empty

closure_subset connected_Int_frontier connected_ball inf .commute)
with tle have ∗: ball a t ⊆ S by fastforce
then have 1 : f holomorphic_on ball a t

using holf using holomorphic_on_subset by blast
show ?thesis
using Bloch [OF 1 ‹t > 0 › rle] ∗ by (metis image_mono order_trans that)

qed
qed

qed

end

6 The Great Picard Theorem and its Applications

Ported from HOL Light (cauchy.ml) by L C Paulson, 2017
theory Great_Picard

imports Conformal_Mappings
begin

6.1 Schottky’s theorem
lemma Schottky_lemma0 :

assumes holf : f holomorphic_on S and cons: contractible S and a ∈ S
and f :

∧
z. z ∈ S =⇒ f z 6= 1 ∧ f z 6= −1

obtains g where g holomorphic_on S
norm(g a) ≤ 1 + norm(f a) / 3∧

z. z ∈ S =⇒ f z = cos(of_real pi ∗ g z)
proof −

obtain g where holg: g holomorphic_on S and g: norm(g a) ≤ pi + norm(f a)
and f_eq_cos:

∧
z. z ∈ S =⇒ f z = cos(g z)

using contractible_imp_holomorphic_arccos_bounded [OF assms]
by blast

show ?thesis
proof

show (λz. g z / pi) holomorphic_on S
by (auto intro: holomorphic_intros holg)

have 3 ≤ pi

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 257

using pi_approx by force
have 3 ∗ norm(g a) ≤ 3 ∗ (pi + norm(f a))

using g by auto
also have ... ≤ pi ∗ 3 + pi ∗ cmod (f a)

using ‹3 ≤ pi› by (simp add: mult_right_mono algebra_simps)
finally show cmod (g a / complex_of_real pi) ≤ 1 + cmod (f a) / 3

by (simp add: field_simps norm_divide)
show

∧
z. z ∈ S =⇒ f z = cos (complex_of_real pi ∗ (g z / complex_of_real

pi))
by (simp add: f_eq_cos)

qed
qed

lemma Schottky_lemma1 :
fixes n::nat
assumes 0 < n
shows 0 < n + sqrt(real n ^ 2 − 1)

proof −
have 0 < n ∗ n

by (simp add: assms)
then show ?thesis
by (metis add.commute add.right_neutral add_pos_nonneg assms diff_ge_0_iff_ge

nat_less_real_le of_nat_0 of_nat_0_less_iff of_nat_power power2_eq_square
real_sqrt_ge_0_iff)
qed

lemma Schottky_lemma2 :
fixes x::real
assumes 0 ≤ x
obtains n where 0 < n |x − ln (real n + sqrt ((real n)2 − 1)) / pi| < 1/2

proof −
obtain n0 ::nat where 0 < n0 ln(n0 + sqrt(real n0 ^ 2 − 1)) / pi ≤ x
proof

show ln(real 1 + sqrt(real 1 ^ 2 − 1))/pi ≤ x
by (auto simp: assms)

qed auto
moreover
obtain M ::nat where

∧
n. [[0 < n; ln(n + sqrt(real n ^ 2 − 1)) / pi ≤ x]] =⇒

n ≤ M
proof

fix n::nat
assume 0 < n ln (n + sqrt ((real n)2 − 1)) / pi ≤ x
then have ln (n + sqrt ((real n)2 − 1)) ≤ x ∗ pi

by (simp add: field_split_simps)
then have ∗: exp (ln (n + sqrt ((real n)2 − 1))) ≤ exp (x ∗ pi)

by blast
have 0 : 0 ≤ sqrt ((real n)2 − 1)

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 258

using ‹0 < n› by auto
have n + sqrt ((real n)2 − 1) = exp (ln (n + sqrt ((real n)2 − 1)))

by (simp add: Suc_leI ‹0 < n› add_pos_nonneg real_of_nat_ge_one_iff)
also have ... ≤ exp (x ∗ pi)

using ∗ by blast
finally have real n ≤ exp (x ∗ pi)

using 0 by linarith
then show n ≤ nat (ceiling (exp(x ∗ pi)))

by linarith
qed
ultimately obtain n where

0 < n and le_x: ln(n + sqrt(real n ^ 2 − 1)) / pi ≤ x
and le_n:

∧
k. [[0 < k; ln(k + sqrt(real k ^ 2 − 1)) / pi ≤ x]] =⇒ k ≤

n
using bounded_Max_nat [of λn. 0<n ∧ ln (n + sqrt ((real n)2 − 1)) / pi ≤

x] by metis
define a where a ≡ ln(n + sqrt(real n ^ 2 − 1)) / pi
define b where b ≡ ln (1 + real n + sqrt ((1 + real n)2 − 1)) / pi
have le_xa: a ≤ x
and le_na:

∧
k. [[0 < k; ln(k + sqrt(real k ^ 2 − 1)) / pi ≤ x]] =⇒ k ≤ n

using le_x le_n by (auto simp: a_def)
moreover have x < b

using le_n [of Suc n] by (force simp: b_def)
moreover have b − a < 1
proof −

have ln (1 + real n + sqrt ((1 + real n)2 − 1)) − ln (real n + sqrt ((real n)2
− 1)) =

ln ((1 + real n + sqrt ((1 + real n)2 − 1)) / (real n + sqrt ((real n)2 −
1)))

by (simp add: ‹0 < n› Schottky_lemma1 add_pos_nonneg ln_divide_pos
[symmetric])

also have ... ≤ 3
proof (cases n = 1)

case True
have sqrt 3 ≤ 2

by (simp add: real_le_lsqrt)
then have (2 + sqrt 3) ≤ 4

by simp
also have ... ≤ exp 3

using exp_ge_add_one_self [of 3 ::real] by simp
finally have ln (2 + sqrt 3) ≤ 3

by (metis add_nonneg_nonneg add_pos_nonneg dbl_def dbl_inc_def
dbl_inc_simps(3)

dbl_simps(3) exp_gt_zero ln_exp ln_le_cancel_iff real_sqrt_ge_0_iff
zero_le_one zero_less_one)

then show ?thesis
by (simp add: True)

next
case False with ‹0 < n› have 1 < n 2 ≤ n

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 259

by linarith+
then have 1 : 1 ≤ real n ∗ real n
by (metis less_imp_le_nat one_le_power power2_eq_square real_of_nat_ge_one_iff)
have ∗: 4 + (m+2) ∗ 2 ≤ (m+2) ∗ ((m+2) ∗ 3) for m::nat

by simp
have 4 + n ∗ 2 ≤ n ∗ (n ∗ 3)

using ∗ [of n−2] ‹2 ≤ n›
by (metis le_add_diff_inverse2)

then have ∗∗: 4 + real n ∗ 2 ≤ real n ∗ (real n ∗ 3)
by (metis (mono_tags, opaque_lifting) of_nat_le_iff of_nat_add of_nat_mult

of_nat_numeral)
have sqrt ((1 + real n)2 − 1) ≤ 2 ∗ sqrt ((real n)2 − 1)

by (auto simp: real_le_lsqrt power2_eq_square algebra_simps 1 ∗∗)
then
have ((1 + real n + sqrt ((1 + real n)2 − 1)) / (real n + sqrt ((real n)2 −

1))) ≤ 2
using Schottky_lemma1 ‹0 < n› by (simp add: field_split_simps)

then have ln ((1 + real n + sqrt ((1 + real n)2 − 1)) / (real n + sqrt ((real
n)2 − 1))) ≤ ln 2

using Schottky_lemma1 [of n] ‹0 < n›
by (simp add: field_split_simps add_pos_nonneg)

also have ... ≤ 3
using ln_add_one_self_le_self [of 1] by auto

finally show ?thesis .
qed
also have ... < pi

using pi_approx by simp
finally show ?thesis

by (simp add: a_def b_def field_split_simps)
qed
ultimately have |x − a| < 1/2 ∨ |x − b| < 1/2

by (auto simp: abs_if)
then show thesis
proof

assume |x − a| < 1/2
then show ?thesis

by (rule_tac n=n in that) (auto simp: a_def ‹0 < n›)
next

assume |x − b| < 1/2
then show ?thesis

by (rule_tac n=Suc n in that) (auto simp: b_def ‹0 < n›)
qed

qed

lemma Schottky_lemma3 :
fixes z::complex
assumes z ∈ (

⋃
m ∈ Ints.

⋃
n ∈ {0<..}. {Complex m (ln(n + sqrt(real n ^ 2

− 1)) / pi)})

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 260

∪ (
⋃

m ∈ Ints.
⋃

n ∈ {0<..}. {Complex m (−ln(n + sqrt(real n ^ 2 −
1)) / pi)})

shows cos(pi ∗ cos(pi ∗ z)) = 1 ∨ cos(pi ∗ cos(pi ∗ z)) = −1
proof −

have sqrt2 [simp]: complex_of_real (sqrt x) ∗ complex_of_real (sqrt x) = x if x
≥ 0 for x::real

by (metis abs_of_nonneg of_real_mult real_sqrt_mult_self that)
define plusi where plusi (e::complex) ≡ e + inverse e for e
have 1 : ∃ k. plusi (exp (i ∗ (of_int m ∗ complex_of_real pi) − ln (real n + sqrt

((real n)2 − 1)))) = of_int k ∗ 2
(is ∃ k. ?Φ k)

if n > 0 for m n
proof −
have eeq: e 6= 0 =⇒ plusi e = n ←→ (inverse e) ^ 2 = n/e − 1 for n e::complex

by (auto simp: plusi_def field_simps power2_eq_square)
have [simp]: 1 ≤ real n ∗ real n

using nat_0_less_mult_iff nat_less_real_le that by force
consider odd m | even m

by blast
then have ∃ k. ?Φ k
proof cases

case 1
then have ?Φ (− n)

using Schottky_lemma1 [OF that]
by (simp add: eeq) (simp add: power2_eq_square exp_diff exp_Euler

exp_of_real algebra_simps sin_int_times_real cos_int_times_real)
then show ?thesis ..

next
case 2
then have ?Φ n

using Schottky_lemma1 [OF that]
by (simp add: eeq) (simp add: power2_eq_square exp_diff exp_Euler

exp_of_real algebra_simps)
then show ?thesis ..

qed
then show ?thesis by blast

qed
have 2 : ∃ k. plusi (exp (i ∗ (of_int m ∗ complex_of_real pi) +

(ln (real n + sqrt ((real n)2 − 1))))) = of_int k ∗ 2
(is ∃ k. ?Φ k)
if n > 0 for m n

proof −
have eeq: e 6= 0 =⇒ plusi e = n ←→ e^2 − n∗e + 1 = 0 for n e::complex

by (auto simp: plusi_def field_simps power2_eq_square)
have [simp]: 1 ≤ real n ∗ real n
by (metis One_nat_def add.commute nat_less_real_le of_nat_1 of_nat_Suc

one_le_power power2_eq_square that)
consider odd m | even m

by blast

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 261

then have ∃ k. ?Φ k
proof cases

case 1
then have ?Φ (− n)

using Schottky_lemma1 [OF that]
by (simp add: eeq) (simp add: power2_eq_square exp_add exp_Euler

exp_of_real algebra_simps sin_int_times_real cos_int_times_real)
then show ?thesis ..

next
case 2
then have ?Φ n

using Schottky_lemma1 [OF that]
by (simp add: eeq) (simp add: power2_eq_square exp_add exp_Euler

exp_of_real algebra_simps)
then show ?thesis ..

qed
then show ?thesis by blast

qed
have ∃ x. cos (complex_of_real pi ∗ z) = of_int x

using assms
apply (auto simp: Ints_def cos_exp_eq exp_minus Complex_eq simp flip:

plusi_def)
apply (auto simp: algebra_simps dest: 1 2)

done
then have sin(pi ∗ cos(pi ∗ z)) ^ 2 = 0

by (simp add: Complex_Transcendental.sin_eq_0)
then have 1 − cos(pi ∗ cos(pi ∗ z)) ^ 2 = 0

by (simp add: sin_squared_eq)
then show ?thesis

using power2_eq_1_iff by auto
qed

theorem Schottky:
assumes holf : f holomorphic_on cball 0 1

and nof0 : norm(f 0) ≤ r
and not01 :

∧
z. z ∈ cball 0 1 =⇒ ¬(f z = 0 ∨ f z = 1)

and 0 < t t < 1 norm z ≤ t
shows norm(f z) ≤ exp(pi ∗ exp(pi ∗ (2 + 2 ∗ r + 12 ∗ t / (1 − t))))

proof −
obtain h where holf : h holomorphic_on cball 0 1

and nh0 : norm (h 0) ≤ 1 + norm(2 ∗ f 0 − 1) / 3
and h:

∧
z. z ∈ cball 0 1 =⇒ 2 ∗ f z − 1 = cos(of_real pi ∗ h z)

proof (rule Schottky_lemma0 [of λz. 2 ∗ f z − 1 cball 0 1 0])
show (λz. 2 ∗ f z − 1) holomorphic_on cball 0 1

by (intro holomorphic_intros holf)
show contractible (cball (0 ::complex) 1)

by (auto simp: convex_imp_contractible)
show

∧
z. z ∈ cball 0 1 =⇒ 2 ∗ f z − 1 6= 1 ∧ 2 ∗ f z − 1 6= − 1

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 262

using not01 by force
qed auto
obtain g where holg: g holomorphic_on cball 0 1

and ng0 : norm(g 0) ≤ 1 + norm(h 0) / 3
and g:

∧
z. z ∈ cball 0 1 =⇒ h z = cos(of_real pi ∗ g z)

proof (rule Schottky_lemma0 [OF holf convex_imp_contractible, of 0])
show

∧
z. z ∈ cball 0 1 =⇒ h z 6= 1 ∧ h z 6= − 1

using h not01 by fastforce+
qed auto
have g0_2_f0 : norm(g 0) ≤ 2 + norm(f 0)
proof −

have cmod (2 ∗ f 0 − 1) ≤ cmod (2 ∗ f 0) + 1
by (metis norm_one norm_triangle_ineq4)

also have ... ≤ 6 + 9 ∗ cmod (f 0)
by auto

finally have 1 + norm(2 ∗ f 0 − 1) / 3 ≤ (2 + norm(f 0) − 1) ∗ 3
by (simp add: divide_simps)

with nh0 have norm(h 0) ≤ (2 + norm(f 0) − 1) ∗ 3
by linarith

then have 1 + norm(h 0) / 3 ≤ 2 + norm(f 0)
by simp

with ng0 show ?thesis
by auto

qed
have z ∈ ball 0 1

using assms by auto
have norm_g_12 : norm(g z − g 0) ≤ (12 ∗ t) / (1 − t)
proof −

obtain g ′ where g ′:
∧

x. x ∈ cball 0 1 =⇒ (g has_field_derivative g ′ x) (at x
within cball 0 1)

using holg [unfolded holomorphic_on_def field_differentiable_def] by metis
have int_g ′: (g ′ has_contour_integral g z − g 0) (linepath 0 z)

using contour_integral_primitive [OF g ′ valid_path_linepath, of 0 z]
using ‹z ∈ ball 0 1 › segment_bound1 by fastforce

have cmod (g ′ w) ≤ 12 / (1 − t) if w ∈ closed_segment 0 z for w
proof −

have w: w ∈ ball 0 1
using segment_bound [OF that] ‹z ∈ ball 0 1 › by simp

have ∗: [[
∧

b. (∃w ∈ T ∪ U . w ∈ ball b 1);
∧

x. x ∈ D =⇒ g x /∈ T ∪ U]]
=⇒ @ b. ball b 1 ⊆ g ‘ D for T U D

by force
have ttt: 1 − t ≤ dist w u if cmod u = 1 for u

using ‹norm z ≤ t› segment_bound1 [OF ‹w ∈ closed_segment 0 z›]
norm_triangle_ineq2 [of u w] that

by (simp add: dist_norm norm_minus_commute)
have @ b. ball b 1 ⊆ g ‘ cball 0 1
proof (rule ∗)

show (∃w ∈ (
⋃

m ∈ Ints.
⋃

n ∈ {0<..}. {Complex m (ln(n + sqrt(real n
^ 2 − 1)) / pi)}) ∪

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 263

(
⋃

m ∈ Ints.
⋃

n ∈ {0<..}. {Complex m (−ln(n + sqrt(real n ^ 2
− 1)) / pi)}). w ∈ ball b 1) for b

proof −
obtain m where m: m ∈ � |Re b − m| ≤ 1/2

by (metis Ints_of_int abs_minus_commute of_int_round_abs_le)
show ?thesis
proof (cases 0 ::real Im b rule: le_cases)

case le
then obtain n where 0 < n and n: |Im b − ln (n + sqrt ((real n)2 −

1)) / pi| < 1/2
using Schottky_lemma2 [of Im b] by blast

have dist b (Complex m (Im b)) ≤ 1/2
by (metis cancel_comm_monoid_add_class.diff_cancel cmod_eq_Re

complex.sel(1) complex.sel(2) dist_norm m(2) minus_complex.code)
moreover
have dist (Complex m (Im b)) (Complex m (ln (n + sqrt ((real n)2 −

1)) / pi)) < 1/2
using n by (simp add: complex_norm cmod_eq_Re complex_diff

dist_norm del: Complex_eq)
ultimately have dist b (Complex m (ln (real n + sqrt ((real n)2 − 1))

/ pi)) < 1
by (simp add: dist_triangle_lt [of b Complex m (Im b)] dist_commute)

with le m ‹0 < n› show ?thesis
apply (rule_tac x = Complex m (ln (real n + sqrt ((real n)2 − 1)) /

pi) in bexI)
by (force simp del: Complex_eq greaterThan_0)+

next
case ge
then obtain n where 0 < n and n: |− Im b − ln (real n + sqrt ((real

n)2 − 1)) / pi| < 1/2
using Schottky_lemma2 [of − Im b] by auto

have dist b (Complex m (Im b)) ≤ 1/2
by (metis cancel_comm_monoid_add_class.diff_cancel cmod_eq_Re

complex.sel(1) complex.sel(2) dist_norm m(2) minus_complex.code)
moreover
have dist (Complex m (− ln (n + sqrt ((real n)2 − 1)) / pi)) (Complex

m (Im b))
= | − Im b − ln (real n + sqrt ((real n)2 − 1)) / pi|

by (simp add: complex_norm dist_norm cmod_eq_Re complex_diff)
ultimately have dist b (Complex m (− ln (real n + sqrt ((real n)2 −

1)) / pi)) < 1
using n by (simp add: dist_triangle_lt [of b Complex m (Im b)]

dist_commute)
with ge m ‹0 < n› show ?thesis

by (rule_tac x = Complex m (− ln (real n + sqrt ((real n)2 − 1)) /
pi) in bexI) auto

qed
qed
show g v /∈ (

⋃
m ∈ Ints.

⋃
n ∈ {0<..}. {Complex m (ln(n + sqrt(real n ^

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 264

2 − 1)) / pi)}) ∪
(
⋃

m ∈ Ints.
⋃

n ∈ {0<..}. {Complex m (−ln(n + sqrt(real n ^ 2
− 1)) / pi)})

if v ∈ cball 0 1 for v
using not01 [OF that]

by (force simp: g [OF that, symmetric] h [OF that, symmetric] dest!:
Schottky_lemma3 [of g v])

qed
then have 12 : (1 − t) ∗ cmod (deriv g w) / 12 < 1

using Bloch_general [OF holg _ ttt, of 1] w by force
have g field_differentiable at w within cball 0 1

using holg w by (simp add: holomorphic_on_def)
then have g field_differentiable at w within ball 0 1

using ball_subset_cball field_differentiable_within_subset by blast
with w have der_gw: (g has_field_derivative deriv g w) (at w)
by (simp add: field_differentiable_within_open [of _ ball 0 1] field_differentiable_derivI)
with DERIV_unique [OF der_gw] g ′ w have deriv g w = g ′ w
by (metis open_ball at_within_open ball_subset_cball has_field_derivative_subset

subsetCE)
then show cmod (g ′ w) ≤ 12 / (1 − t)

using g ′ 12 ‹t < 1 › by (simp add: field_simps)
qed
then have cmod (g z − g 0) ≤ 12 / (1 − t) ∗ cmod z
using has_contour_integral_bound_linepath [OF int_g ′, of 12/(1 − t)] assms
by simp

with ‹cmod z ≤ t› ‹t < 1 › show ?thesis
by (simp add: field_split_simps)

qed
have fz: f z = (1 + cos(of_real pi ∗ h z)) / 2

using h ‹z ∈ ball 0 1 › by (auto simp: field_simps)
have cmod (f z) ≤ exp (cmod (complex_of_real pi ∗ h z))

by (simp add: fz mult.commute norm_cos_plus1_le)
also have ... ≤ exp (pi ∗ exp (pi ∗ (2 + 2 ∗ r + 12 ∗ t / (1 − t))))
proof (simp add: norm_mult)

have cmod (g z − g 0) ≤ 12 ∗ t / (1 − t)
using norm_g_12 ‹t < 1 › by (simp add: norm_mult)

then have cmod (g z) − cmod (g 0) ≤ 12 ∗ t / (1 − t)
using norm_triangle_ineq2 order_trans by blast

then have ∗: cmod (g z) ≤ 2 + 2 ∗ r + 12 ∗ t / (1 − t)
using g0_2_f0 norm_ge_zero [of f 0] nof0

by linarith
have cmod (h z) ≤ exp (cmod (complex_of_real pi ∗ g z))

using ‹z ∈ ball 0 1 › by (simp add: g norm_cos_le)
also have ... ≤ exp (pi ∗ (2 + 2 ∗ r + 12 ∗ t / (1 − t)))

using ‹t < 1 › nof0 ∗ by (simp add: norm_mult)
finally show cmod (h z) ≤ exp (pi ∗ (2 + 2 ∗ r + 12 ∗ t / (1 − t))) .

qed
finally show ?thesis .

qed

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 265

6.2 The Little Picard Theorem
theorem Landau_Picard:

obtains R
where

∧
z. 0 < R z∧

f . [[f holomorphic_on cball 0 (R(f 0));∧
z. norm z ≤ R(f 0) =⇒ f z 6= 0 ∧ f z 6= 1]] =⇒ norm(deriv f 0)

< 1
proof −

define R where R ≡ λz. 3 ∗ exp(pi ∗ exp(pi∗(2 + 2 ∗ cmod z + 12)))
show ?thesis
proof

show Rpos:
∧

z. 0 < R z
by (auto simp: R_def)

show norm(deriv f 0) < 1
if holf : f holomorphic_on cball 0 (R(f 0))
and Rf :

∧
z. norm z ≤ R(f 0) =⇒ f z 6= 0 ∧ f z 6= 1 for f

proof −
let ?r = R(f 0)
define g where g ≡ f ◦ (λz. of_real ?r ∗ z)
have 0 < ?r

using Rpos by blast
have holg: g holomorphic_on cball 0 1

unfolding g_def
proof (intro holomorphic_intros holomorphic_on_compose holomorphic_on_subset

[OF holf])
show (∗) (complex_of_real (R (f 0))) ‘ cball 0 1 ⊆ cball 0 (R (f 0))

using Rpos by (auto simp: less_imp_le norm_mult)
qed
have ∗: norm(g z) ≤ exp(pi ∗ exp(pi ∗ (2 + 2 ∗ norm (f 0) + 12 ∗ t / (1

− t))))
if 0 < t t < 1 norm z ≤ t for t z

proof (rule Schottky [OF holg])
show cmod (g 0) ≤ cmod (f 0)

by (simp add: g_def)
show

∧
z. z ∈ cball 0 1 =⇒ ¬ (g z = 0 ∨ g z = 1)

using Rpos by (simp add: g_def less_imp_le norm_mult Rf)
qed (auto simp: that)
have C1 : g holomorphic_on ball 0 (1/2)

by (rule holomorphic_on_subset [OF holg]) auto
have C2 : continuous_on (cball 0 (1/2)) g
by (meson cball_divide_subset_numeral holg holomorphic_on_imp_continuous_on

holomorphic_on_subset)
have C3 : cmod (g z) ≤ R (f 0) / 3 if cmod (0 − z) = 1/2 for z
proof −

have norm(g z) ≤ exp(pi ∗ exp(pi ∗ (2 + 2 ∗ norm (f 0) + 12)))
using ∗ [of 1/2] that by simp

also have ... = ?r / 3
by (simp add: R_def)

finally show ?thesis .

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 266

qed
then have cmod_g ′_le: cmod (deriv g 0) ∗ 3 ≤ R (f 0) ∗ 2

using Cauchy_inequality [OF C1 C2 _ C3 , of 1] by simp
have holf ′: f holomorphic_on ball 0 (R(f 0))

by (rule holomorphic_on_subset [OF holf]) auto
then have fd0 : f field_differentiable at 0

by (rule holomorphic_on_imp_differentiable_at [OF _ open_ball])
(auto simp: Rpos [of f 0])

have g_eq: deriv g 0 = of_real ?r ∗ deriv f 0
unfolding g_def

by (metis DERIV_imp_deriv DERIV_chain DERIV_cmult_Id fd0 field_differentiable_derivI
mult.commute mult_zero_right)

show ?thesis
using cmod_g ′_le Rpos [of f 0] by (simp add: g_eq norm_mult)

qed
qed

qed

lemma little_Picard_01 :
assumes holf : f holomorphic_on UNIV and f01 :

∧
z. f z 6= 0 ∧ f z 6= 1

obtains c where f = (λx. c)
proof −

obtain R
where Rpos:

∧
z. 0 < R z

and R:
∧

h. [[h holomorphic_on cball 0 (R(h 0));∧
z. norm z ≤ R(h 0) =⇒ h z 6= 0 ∧ h z 6= 1]] =⇒ norm(deriv

h 0) < 1
using Landau_Picard by metis

have contf : continuous_on UNIV f
by (simp add: holf holomorphic_on_imp_continuous_on)

show ?thesis
proof (cases ∀ x. deriv f x = 0)

case True
have (f has_field_derivative 0) (at x) for x

by (metis True UNIV_I holf holomorphic_derivI open_UNIV)
then obtain c where

∧
x. f (x) = c

by (meson UNIV_I DERIV_zero_connected_constant [OF connected_UNIV
open_UNIV finite.emptyI contf])

then show ?thesis
using that by auto

next
case False
then obtain w where w: deriv f w 6= 0 by auto
define fw where fw ≡ (f ◦ (λz. w + z / deriv f w))
have norm_let1 : norm(deriv fw 0) < 1
proof (rule R)

show fw holomorphic_on cball 0 (R (fw 0))
unfolding fw_def

by (intro holomorphic_intros holomorphic_on_compose w holomorphic_on_subset

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 267

[OF holf] subset_UNIV)
show fw z 6= 0 ∧ fw z 6= 1 if cmod z ≤ R (fw 0) for z

using f01 by (simp add: fw_def)
qed
have (fw has_field_derivative deriv f w ∗ inverse (deriv f w)) (at 0)

unfolding fw_def
apply (intro DERIV_chain derivative_eq_intros w)+
using holf holomorphic_derivI by (force simp: field_simps)+

then show ?thesis
using norm_let1 w by (simp add: DERIV_imp_deriv)

qed
qed

theorem little_Picard:
assumes holf : f holomorphic_on UNIV

and a 6= b range f ∩ {a,b} = {}
obtains c where f = (λx. c)

proof −
let ?g = λx. 1/(b − a)∗(f x − b) + 1
obtain c where ?g = (λx. c)
proof (rule little_Picard_01)

show ?g holomorphic_on UNIV
by (intro holomorphic_intros holf)

show
∧

z. ?g z 6= 0 ∧ ?g z 6= 1
using assms by (auto simp: field_simps)

qed auto
then have ?g x = c for x

by meson
then have f x = c ∗ (b−a) + a for x

using assms by (auto simp: field_simps)
then show ?thesis

using that by blast
qed

A couple of little applications of Little Picard
lemma holomorphic_periodic_fixpoint:

assumes holf : f holomorphic_on UNIV
and p 6= 0 and per :

∧
z. f (z + p) = f z

obtains x where f x = x
proof −

have False if non:
∧

x. f x 6= x
proof −

obtain c where (λz. f z − z) = (λz. c)
proof (rule little_Picard)

show (λz. f z − z) holomorphic_on UNIV
by (simp add: holf holomorphic_on_diff)

show range (λz. f z − z) ∩ {p,0} = {}
using assms non by auto (metis add.commute diff_eq_eq)

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 268

qed (auto simp: assms)
with per show False

by (metis add.commute add_cancel_left_left ‹p 6= 0 › diff_add_cancel)
qed
then show ?thesis

using that by blast
qed

lemma holomorphic_involution_point:
assumes holfU : f holomorphic_on UNIV and non:

∧
a. f 6= (λx. a + x)

obtains x where f (f x) = x
proof −

{ assume non_ff [simp]:
∧

x. f (f x) 6= x
then have non_fp [simp]: f z 6= z for z

by metis
have holf : f holomorphic_on X for X

using assms holomorphic_on_subset by blast
obtain c where c: (λx. (f (f x) − x)/(f x − x)) = (λx. c)
proof (rule little_Picard_01)

show (λx. (f (f x) − x)/(f x − x)) holomorphic_on UNIV
using non_fp

by (intro holomorphic_intros holf holomorphic_on_compose [unfolded o_def ,
OF holf]) auto

qed auto
then obtain c 6= 0 c 6= 1
by (metis (no_types, opaque_lifting) non_ff diff_zero divide_eq_0_iff right_inverse_eq)
have eq: f (f x) − c ∗ f x = x∗(1 − c) for x

using fun_cong [OF c, of x] by (simp add: field_simps)
have df_times_dff : deriv f z ∗ (deriv f (f z) − c) = 1 ∗ (1 − c) for z
proof (rule DERIV_unique)

show ((λx. f (f x) − c ∗ f x) has_field_derivative
deriv f z ∗ (deriv f (f z) − c)) (at z)

by (rule derivative_eq_intros holomorphic_derivI [OF holfU]
DERIV_chain [unfolded o_def , where f=f and g=f] | simp add:

algebra_simps)+
show ((λx. f (f x) − c ∗ f x) has_field_derivative 1 ∗ (1 − c)) (at z)

by (simp add: eq mult_commute_abs)
qed
{ fix z::complex

obtain k where k: deriv f ◦ f = (λx. k)
proof (rule little_Picard)

show (deriv f ◦ f) holomorphic_on UNIV
by (meson holfU holomorphic_deriv holomorphic_on_compose holomor-

phic_on_subset open_UNIV subset_UNIV)
obtain deriv f (f x) 6= 0 deriv f (f x) 6= c for x

using df_times_dff ‹c 6= 1 › eq_iff_diff_eq_0
by (metis lambda_one mult_zero_left mult_zero_right)

then show range (deriv f ◦ f) ∩ {0 ,c} = {}

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 269

by force
qed (use ‹c 6= 0 › in auto)
have ¬ f constant_on UNIV

by (meson UNIV_I non_ff constant_on_def)
with holf open_mapping_thm have open(range f)

by blast
obtain l where l:

∧
x. f x − k ∗ x = l

proof (rule DERIV_zero_connected_constant [of UNIV {} λx. f x − k ∗ x],
simp_all)

have deriv f w − k = 0 for w
proof (rule analytic_continuation [OF _ open_UNIV connected_UNIV

subset_UNIV , of λz. deriv f z − k f z range f w])
show (λz. deriv f z − k) holomorphic_on UNIV

by (intro holomorphic_intros holf open_UNIV)
show f z islimpt range f

by (metis (no_types, lifting) IntI UNIV_I ‹open (range f)› im-
age_eqI inf .absorb_iff2 inf_aci(1) islimpt_UNIV islimpt_eq_acc_point open_Int
top_greatest)

show
∧

z. z ∈ range f =⇒ deriv f z − k = 0
by (metis comp_def diff_self image_iff k)

qed auto
moreover
have ((λx. f x − k ∗ x) has_field_derivative deriv f x − k) (at x) for x

by (metis DERIV_cmult_Id Deriv.field_differentiable_diff UNIV_I
field_differentiable_derivI holf holomorphic_on_def)

ultimately
show ∀ x. ((λx. f x − k ∗ x) has_field_derivative 0) (at x)

by auto
show continuous_on UNIV (λx. f x − k ∗ x)

by (simp add: continuous_on_diff holf holomorphic_on_imp_continuous_on)
qed (auto simp: connected_UNIV)
have False
proof (cases k=1)

case True
then have ∃ x. k ∗ x + l 6= a + x for a

using l non [of a] ext [of f (+) a]
by (metis add.commute diff_eq_eq)

with True show ?thesis by auto
next

case False
have

∧
x. (1 − k) ∗ x 6= f 0

using l [of 0]
by (simp add: algebra_simps) (metis diff_add_cancel l mult.commute

non_fp)
then show False

by (metis False eq_iff_diff_eq_0 mult.commute nonzero_mult_div_cancel_right
times_divide_eq_right)

qed
}

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 270

}
then show thesis

using that by blast
qed

6.3 The Arzelà–Ascoli theorem
lemma subsequence_diagonalization_lemma:

fixes P :: nat ⇒ (nat ⇒ ′a) ⇒ bool
assumes sub:

∧
i r . ∃ k. strict_mono (k :: nat ⇒ nat) ∧ P i (r ◦ k)

and P_P:
∧

i r ::nat ⇒ ′a.
∧

k1 k2 N .
[[P i (r ◦ k1);

∧
j. N ≤ j =⇒ ∃ j ′. j ≤ j ′ ∧ k2 j = k1 j ′]] =⇒ P i (r

◦ k2)
obtains k where strict_mono (k :: nat ⇒ nat)

∧
i. P i (r ◦ k)

proof −
obtain kk where

∧
i r . strict_mono (kk i r :: nat ⇒ nat) ∧ P i (r ◦ (kk i r))

using sub by metis
then have sub_kk:

∧
i r . strict_mono (kk i r) and P_kk:

∧
i r . P i (r ◦ (kk i

r))
by auto

define rr where rr ≡ rec_nat (kk 0 r) (λn x. x ◦ kk (Suc n) (r ◦ x))
then have [simp]: rr 0 = kk 0 r

∧
n. rr(Suc n) = rr n ◦ kk (Suc n) (r ◦ rr n)

by auto
show thesis
proof

have sub_rr : strict_mono (rr i) for i
using sub_kk by (induction i) (auto simp: strict_mono_def o_def)

have P_rr : P i (r ◦ rr i) for i
using P_kk by (induction i) (auto simp: o_def)

have i ≤ i+d =⇒ rr i n ≤ rr (i+d) n for d i n
proof (induction d)

case 0 then show ?case
by simp

next
case (Suc d) then show ?case

using seq_suble [OF sub_kk] strict_mono_less_eq [OF sub_rr]
by (simp add: order_subst1)

qed
then have

∧
i j n. i ≤ j =⇒ rr i n ≤ rr j n

by (metis le_iff_add)
show strict_mono (λn. rr n n)

unfolding strict_mono_Suc_iff
by (simp add: Suc_le_lessD strict_monoD strict_mono_imp_increasing

sub_kk sub_rr)
have ∃ j. i ≤ j ∧ rr (n+d) i = rr n j for d n i
proof (induction d arbitrary: i)

case (Suc d)
then show ?case

using seq_suble [OF sub_kk] by simp (meson order_trans)

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 271

qed auto
then have

∧
m n i. n ≤ m =⇒ ∃ j. i ≤ j ∧ rr m i = rr n j

by (metis le_iff_add)
then show P i (r ◦ (λn. rr n n)) for i

by (meson P_rr P_P)
qed

qed

lemma function_convergent_subsequence:
fixes f :: [nat, ′a] ⇒ ′b::{real_normed_vector ,heine_borel}
assumes countable S and M :

∧
n::nat.

∧
x. x ∈ S =⇒ norm(f n x) ≤ M

obtains k where strict_mono (k::nat⇒nat)
∧

x. x ∈ S =⇒ ∃ l. (λn. f (k n) x)
−−−−→ l
proof (cases S = {})

case True
then show ?thesis

using strict_mono_id that by fastforce
next

case False
with ‹countable S› obtain σ :: nat ⇒ ′a where σ: S = range σ

using uncountable_def by blast
obtain k where strict_mono k and k:

∧
i. ∃ l. (λn. (f ◦ k) n (σ i)) −−−−→ l

proof (rule subsequence_diagonalization_lemma
[of λi r . ∃ l. ((λn. (f ◦ r) n (σ i)) −−−→ l) sequentially id])

show ∃ k::nat⇒nat. strict_mono k ∧ (∃ l. (λn. (f ◦ (r ◦ k)) n (σ i)) −−−−→ l)
for i r

proof −
have f (r n) (σ i) ∈ cball 0 M for n

by (simp add: σ M)
then show ?thesis

using compact_def [of cball (0 :: ′b) M] by (force simp: o_def)
qed
show ∃ l. (λn. (f ◦ (r ◦ k2)) n (σ i)) −−−−→ l
if ∃ l. (λn. (f ◦ (r ◦ k1)) n (σ i)) −−−−→ l

∧
j. N ≤ j =⇒ ∃ j ′≥j. k2 j = k1 j ′

for i N and r k1 k2 :: nat⇒nat
using that
by (simp add: lim_sequentially) (metis (no_types, opaque_lifting) le_cases

order_trans)
qed auto
with σ that show ?thesis

by force
qed

theorem Arzela_Ascoli:
fixes F :: [nat, ′a::euclidean_space] ⇒ ′b::{real_normed_vector ,heine_borel}
assumes compact S

and M :
∧

n x. x ∈ S =⇒ norm(F n x) ≤ M
and equicont:

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 272

∧
x e. [[x ∈ S ; 0 < e]]

=⇒ ∃ d. 0 < d ∧ (∀n y. y ∈ S ∧ norm(x − y) < d −→ norm(F n
x − F n y) < e)

obtains g k where continuous_on S g strict_mono (k :: nat ⇒ nat)∧
e. 0 < e =⇒ ∃N . ∀n x. n ≥ N ∧ x ∈ S −→ norm(F(k n) x −

g x) < e
proof −

have UEQ:
∧

e. 0 < e =⇒ ∃ d. 0 < d ∧ (∀n. ∀ x ∈ S . ∀ x ′ ∈ S . dist x ′ x < d
−→ dist (F n x ′) (F n x) < e)

apply (rule compact_uniformly_equicontinuous [OF ‹compact S›, of range F])
using equicont by (force simp: dist_commute dist_norm)+

have continuous_on S g
if

∧
e. 0 < e =⇒ ∃N . ∀n x. n ≥ N ∧ x ∈ S −→ norm(F(r n) x − g x) < e

for g:: ′a ⇒ ′b and r :: nat ⇒ nat
proof (rule uniform_limit_theorem [of _ F ◦ r])

have continuous_on S (F (r n)) for n
using UEQ by (force simp: continuous_on_iff)

then show ∀ F n in sequentially. continuous_on S ((F ◦ r) n)
by (simp add: eventually_sequentially)

show uniform_limit S (F ◦ r) g sequentially
using that by (metis (mono_tags, opaque_lifting) comp_apply dist_norm

uniform_limit_sequentially_iff)
qed auto
moreover
obtain R where countable R R ⊆ S and SR: S ⊆ closure R

by (metis separable that)
obtain k where strict_mono k and k:

∧
x. x ∈ R =⇒ ∃ l. (λn. F (k n) x)

−−−−→ l
using ‹R ⊆ S› by (force intro: function_convergent_subsequence [OF ‹countable

R› M])
then have Cauchy: Cauchy ((λn. F (k n) x)) if x ∈ R for x

using convergent_eq_Cauchy that by blast
have ∃N . ∀m n x. N ≤ m ∧ N ≤ n ∧ x ∈ S −→ dist ((F ◦ k) m x) ((F ◦ k)

n x) < e
if 0 < e for e

proof −
obtain d where 0 < d

and d:
∧

n. ∀ x ∈ S . ∀ x ′ ∈ S . dist x ′ x < d −→ dist (F n x ′) (F n x) < e/3
by (metis UEQ ‹0 < e› divide_pos_pos zero_less_numeral)

obtain T where T ⊆ R and finite T and T : S ⊆ (
⋃

c∈T . ball c d)
proof (rule compactE_image [OF ‹compact S›, of R (λx. ball x d)])

have closure R ⊆ (
⋃

c∈R. ball c d)
using ‹0 < d› by (auto simp: closure_approachable)

with SR show S ⊆ (
⋃

c∈R. ball c d)
by auto

qed auto
have ∃M . ∀m≥M . ∀n≥M . dist (F (k m) x) (F (k n) x) < e/3 if x ∈ R for x

using Cauchy ‹0 < e› that unfolding Cauchy_def
by (metis less_divide_eq_numeral1 (1) mult_zero_left)

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 273

then obtain MF where MF :
∧

x m n. [[x ∈ R; m ≥ MF x; n ≥ MF x]] =⇒
norm (F (k m) x − F (k n) x) < e/3

using dist_norm by metis
have dist ((F ◦ k) m x) ((F ◦ k) n x) < e

if m: Max (MF ‘ T) ≤ m and n: Max (MF ‘ T) ≤ n x ∈ S for m n x
proof −

obtain t where t ∈ T and t: x ∈ ball t d
using ‹x ∈ S› T by auto

have norm(F (k m) t − F (k m) x) < e / 3
by (metis ‹R ⊆ S› ‹T ⊆ R› ‹t ∈ T › d dist_norm mem_ball subset_iff t ‹x

∈ S›)
moreover
have norm(F (k n) t − F (k n) x) < e / 3

by (metis ‹R ⊆ S› ‹T ⊆ R› ‹t ∈ T › subsetD d dist_norm mem_ball t ‹x
∈ S›)

moreover
have norm(F (k m) t − F (k n) t) < e / 3
proof (rule MF)

show t ∈ R
using ‹T ⊆ R› ‹t ∈ T › by blast

show MF t ≤ m MF t ≤ n
by (meson Max_ge ‹finite T › ‹t ∈ T › finite_imageI imageI le_trans m

n)+
qed
ultimately
show ?thesis

unfolding dist_norm [symmetric] o_def
by (metis dist_triangle_third dist_commute)

qed
then show ?thesis

by force
qed
then obtain g where ∀ e>0 . ∃N . ∀n x. N ≤ n ∧ x ∈ S −→ norm ((F ◦ k) n

x − g x) < e
using uniformly_convergent_eq_cauchy [of λx. x ∈ S F ◦ k] by (auto simp

add: dist_norm)
ultimately show thesis

by (metis ‹strict_mono k› comp_apply that)
qed

6.3.1 Montel’s theorem

a sequence of holomorphic functions uniformly bounded on compact subsets
of an open set S has a subsequence that converges to a holomorphic function,
and converges uniformly on compact subsets of S.
theorem Montel:

fixes F :: [nat,complex] ⇒ complex
assumes open S

and H:
∧

h. h ∈ H =⇒ h holomorphic_on S

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 274

and bounded:
∧

K . [[compact K ; K ⊆ S]] =⇒ ∃B. ∀ h ∈ H. ∀ z ∈ K . norm(h
z) ≤ B

and rng_f : range F ⊆ H
obtains g r

where g holomorphic_on S strict_mono (r :: nat ⇒ nat)∧
x. x ∈ S =⇒ ((λn. F (r n) x) −−−→ g x) sequentially∧
K . [[compact K ; K ⊆ S]] =⇒ uniform_limit K (F ◦ r) g sequentially

proof −
obtain K where comK :

∧
n. compact(K n) and KS :

∧
n::nat. K n ⊆ S

and subK :
∧

X . [[compact X ; X ⊆ S]] =⇒ ∃N . ∀n≥N . X ⊆ K n
using open_Union_compact_subsets [OF ‹open S›] by metis

then have
∧

i. ∃B. ∀ h ∈ H. ∀ z ∈ K i. norm(h z) ≤ B
by (simp add: bounded)

then obtain B where B:
∧

i h z. [[h ∈ H; z ∈ K i]] =⇒ norm(h z) ≤ B i
by metis

have ∗: ∃ r g. strict_mono (r ::nat⇒nat) ∧ (∀ e > 0 . ∃N . ∀n≥N . ∀ x ∈ K i.
norm((F ◦ r) n x − g x) < e)

if
∧

n. F n ∈ H for F i
proof −

obtain g k where continuous_on (K i) g strict_mono (k::nat⇒nat)∧
e. 0 < e =⇒ ∃N . ∀n≥N . ∀ x ∈ K i. norm(F(k n) x − g x) < e

proof (rule Arzela_Ascoli [of K i F B i])
show ∃ d>0 . ∀n y. y ∈ K i ∧ cmod (z − y) < d −→ cmod (F n z − F n

y) < e
if z: z ∈ K i and 0 < e for z e

proof −
obtain r where 0 < r and r : cball z r ⊆ S

using z KS [of i] ‹open S› by (force simp: open_contains_cball)
have cball z (2/3 ∗ r) ⊆ cball z r

using ‹0 < r› by (simp add: cball_subset_cball_iff)
then have z23S : cball z (2/3 ∗ r) ⊆ S

using r by blast
obtain M where 0 < M and M :

∧
n w. dist z w ≤ 2/3 ∗ r =⇒ norm(F

n w) ≤ M
proof −

obtain N where N : ∀n≥N . cball z (2/3 ∗ r) ⊆ K n
using subK compact_cball [of z (2/3 ∗ r)] z23S by force

have cmod (F n w) ≤ |B N | + 1 if dist z w ≤ 2/3 ∗ r for n w
proof −

have w ∈ K N
using N mem_cball that by blast

then have cmod (F n w) ≤ B N
using B ‹

∧
n. F n ∈ H› by blast

also have ... ≤ |B N | + 1
by simp

finally show ?thesis .
qed
then show ?thesis

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 275

by (rule_tac M=|B N | + 1 in that) auto
qed
have cmod (F n z − F n y) < e

if y ∈ K i and y_near_z: cmod (z − y) < r/3 cmod (z − y) < e ∗ r
/ (6 ∗ M)

for n y
proof −

have ((λw. F n w / (w − ξ)) has_contour_integral
(2 ∗ pi) ∗ i ∗ winding_number (circlepath z (2/3 ∗ r)) ξ ∗ F n ξ)

(circlepath z (2/3 ∗ r))
if dist ξ z < (2/3 ∗ r) for ξ

proof (rule Cauchy_integral_formula_convex_simple)
have F n holomorphic_on S

by (simp add: H ‹
∧

n. F n ∈ H›)
with z23S show F n holomorphic_on cball z (2/3 ∗ r)

using holomorphic_on_subset by blast
qed (use that ‹0 < r› in ‹auto simp: dist_commute›)
then have ∗: ((λw. F n w / (w − ξ)) has_contour_integral (2 ∗ pi) ∗ i

∗ F n ξ)
(circlepath z (2/3 ∗ r))

if dist ξ z < (2/3 ∗ r) for ξ
using that by (simp add: winding_number_circlepath dist_norm)
have y: ((λw. F n w / (w − y)) has_contour_integral (2 ∗ pi) ∗ i ∗ F

n y)
(circlepath z (2/3 ∗ r))

proof (rule ∗)
show dist y z < 2/3 ∗ r
using that ‹0 < r› by (simp only: dist_norm norm_minus_commute)

qed
have z: ((λw. F n w / (w − z)) has_contour_integral (2 ∗ pi) ∗ i ∗ F n

z)
(circlepath z (2/3 ∗ r))

using ‹0 < r› by (force intro!: ∗)
have le_er : cmod (F n x / (x − y) − F n x / (x − z)) ≤ e / r

if cmod (x − z) = r/3 + r/3 for x
proof −

have ¬ (cmod (x − y) < r/3)
using y_near_z(1) that ‹M > 0 › ‹r > 0 ›

by (metis (full_types) norm_diff_triangle_less norm_minus_commute
order_less_irrefl)

then have r4_le_xy: r/4 ≤ cmod (x − y)
using ‹r > 0 › by simp

then have neq: x 6= y x 6= z
using that ‹r > 0 › by (auto simp: field_split_simps norm_minus_commute)

have leM : cmod (F n x) ≤ M
by (simp add: M dist_commute dist_norm that)

have cmod (F n x / (x − y) − F n x / (x − z)) = cmod (F n x) ∗
cmod (1 / (x − y) − 1 / (x − z))

by (metis (no_types, lifting) divide_inverse mult.left_neutral norm_mult

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 276

right_diff_distrib ′)
also have ... = cmod (F n x) ∗ cmod ((y − z) / ((x − y) ∗ (x − z)))

using neq by (simp add: field_split_simps)
also have ... = cmod (F n x) ∗ (cmod (y − z) / (cmod(x − y) ∗ (2/3

∗ r)))
by (simp add: norm_mult norm_divide that)

also have ... ≤ M ∗ (cmod (y − z) / (cmod(x − y) ∗ (2/3 ∗ r)))
using ‹r > 0 › ‹M > 0 › by (intro mult_mono [OF leM]) auto

also have ... < M ∗ ((e ∗ r / (6 ∗ M)) / (cmod(x − y) ∗ (2/3 ∗ r)))
unfolding mult_less_cancel_left
using y_near_z(2) ‹M > 0 › ‹r > 0 › neq
by (simp add: field_simps mult_less_0_iff norm_minus_commute)

also have ... ≤ e/r
using ‹e > 0 › ‹r > 0 › r4_le_xy by (simp add: field_split_simps)

finally show ?thesis by simp
qed
have (2 ∗ pi) ∗ cmod (F n y − F n z) = cmod ((2 ∗ pi) ∗ i ∗ F n y −

(2 ∗ pi) ∗ i ∗ F n z)
by (simp add: right_diff_distrib [symmetric] norm_mult)

also have cmod ((2 ∗ pi) ∗ i ∗ F n y − (2 ∗ pi) ∗ i ∗ F n z) ≤ e / r ∗
(2 ∗ pi ∗ (2/3 ∗ r))

proof (rule has_contour_integral_bound_circlepath [OF has_contour_integral_diff
[OF y z]])

show
∧

x. cmod (x − z) = 2/3 ∗ r =⇒ cmod (F n x / (x − y) − F n
x / (x − z)) ≤ e / r

using le_er by auto
qed (use ‹e > 0 › ‹r > 0 › in auto)
also have ... = (2 ∗ pi) ∗ e ∗ ((2/3))

using ‹r > 0 › by (simp add: field_split_simps)
finally have cmod (F n y − F n z) ≤ e ∗ (2/3)

by simp
also have ... < e

using ‹e > 0 › by simp
finally show ?thesis by (simp add: norm_minus_commute)

qed
then show ?thesis

apply (rule_tac x=min (r/3) ((e ∗ r)/(6 ∗ M)) in exI)
using ‹0 < e› ‹0 < r› ‹0 < M › by simp

qed
show

∧
n x. x ∈ K i =⇒ cmod (F n x) ≤ B i

using B ‹
∧

n. F n ∈ H› by blast
next

fix g :: complex ⇒ complex and k :: nat ⇒ nat
assume ∗:

∧
(g::complex⇒complex) (k::nat⇒nat). continuous_on (K i) g =⇒

strict_mono k =⇒
(
∧

e. 0 < e =⇒ ∃N . ∀n≥N . ∀ x∈K i. cmod (F (k n) x − g x) <
e) =⇒ thesis

continuous_on (K i) g

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 277

strict_mono k∧
e. 0 < e =⇒ ∃N . ∀n x. N ≤ n ∧ x ∈ K i −→ cmod (F (k n) x − g

x) < e
show ?thesis

by (rule ∗(1)[OF ∗(2 ,3)], drule ∗(4)) auto
qed (use comK in simp_all)
then show ?thesis

by auto
qed
define Φ where Φ ≡ λg i r . λk::nat⇒nat. ∀ e>0 . ∃N . ∀n≥N . ∀ x∈K i. cmod

((F ◦ (r ◦ k)) n x − g x) < e
obtain k :: nat ⇒ nat where strict_mono k and k:

∧
i. ∃ g. Φ g i id k

proof (rule subsequence_diagonalization_lemma [where r=id])
show ∃ g. Φ g i id (r ◦ k2)

if ex: ∃ g. Φ g i id (r ◦ k1) and
∧

j. N ≤ j =⇒ ∃ j ′≥j. k2 j = k1 j ′
for i k1 k2 N and r ::nat⇒nat

proof −
obtain g where Φ g i id (r ◦ k1)

using ex by blast
then have Φ g i id (r ◦ k2)

using that
by (simp add: Φ_def) (metis (no_types, opaque_lifting) le_trans linear)

then show ?thesis
by metis

qed
have ∃ k g. strict_mono (k::nat⇒nat) ∧ Φ g i id (r ◦ k) for i r

unfolding Φ_def o_assoc using rng_f by (force intro!: ∗)
then show

∧
i r . ∃ k. strict_mono (k::nat⇒nat) ∧ (∃ g. Φ g i id (r ◦ k))

by force
qed fastforce
have ∃ l. ∀ e>0 . ∃N . ∀n≥N . norm(F (k n) z − l) < e if z ∈ S for z
proof −

obtain G where G:
∧

i e. e > 0 =⇒ ∃M . ∀n≥M . ∀ x∈K i. cmod ((F ◦ k) n
x − G i x) < e

using k unfolding Φ_def by (metis id_comp)
obtain N where

∧
n. n ≥ N =⇒ z ∈ K n

using subK [of {z}] that ‹z ∈ S› by auto
moreover have

∧
e. e > 0 =⇒ ∃M . ∀n≥M . ∀ x∈K N . cmod ((F ◦ k) n x −

G N x) < e
using G by auto

ultimately show ?thesis
by (metis comp_apply order_refl)

qed
then obtain g where g:

∧
z e. [[z ∈ S ; e > 0]] =⇒ ∃N . ∀n≥N . norm(F (k n)

z − g z) < e
by metis

show ?thesis
proof

show g_lim:
∧

x. x ∈ S =⇒ (λn. F (k n) x) −−−−→ g x

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 278

by (simp add: lim_sequentially g dist_norm)
have dg_le_e: ∃N . ∀n≥N . ∀ x∈T . cmod (F (k n) x − g x) < e

if T : compact T T ⊆ S and 0 < e for T e
proof −

obtain N where N :
∧

n. n ≥ N =⇒ T ⊆ K n
using subK [OF T] by blast

obtain h where h:
∧

e. e>0 =⇒ ∃M . ∀n≥M . ∀ x∈K N . cmod ((F ◦ k) n x
− h x) < e

using k unfolding Φ_def by (metis id_comp)
have geq: g w = h w if w ∈ T for w
proof (rule LIMSEQ_unique)

show (λn. F (k n) w) −−−−→ g w
using ‹T ⊆ S› g_lim that by blast

show (λn. F (k n) w) −−−−→ h w
using h N that by (force simp: lim_sequentially dist_norm)

qed
show ?thesis

using T h N ‹0 < e› by (fastforce simp add: geq)
qed
then show

∧
K . [[compact K ; K ⊆ S]]

=⇒ uniform_limit K (F ◦ k) g sequentially
by (simp add: uniform_limit_iff dist_norm eventually_sequentially)

show g holomorphic_on S
proof (rule holomorphic_uniform_sequence [OF ‹open S› H])

show
∧

n. (F ◦ k) n ∈ H
by (simp add: range_subsetD rng_f)

show ∃ d>0 . cball z d ⊆ S ∧ uniform_limit (cball z d) (λn. (F ◦ k) n) g
sequentially

if z ∈ S for z
proof −

obtain d where d: d>0 cball z d ⊆ S
using ‹open S› ‹z ∈ S› open_contains_cball by blast

then have uniform_limit (cball z d) (F ◦ k) g sequentially
using dg_le_e compact_cball by (auto simp: uniform_limit_iff eventu-

ally_sequentially dist_norm)
with d show ?thesis by blast

qed
qed

qed (auto simp: ‹strict_mono k›)
qed

6.4 Some simple but useful cases of Hurwitz’s theorem
proposition Hurwitz_no_zeros:

assumes S : open S connected S
and holf :

∧
n::nat. F n holomorphic_on S

and holg: g holomorphic_on S
and ul_g:

∧
K . [[compact K ; K ⊆ S]] =⇒ uniform_limit K F g sequentially

and nonconst: ¬ g constant_on S

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 279

and nz:
∧

n z. z ∈ S =⇒ F n z 6= 0
and z0 ∈ S
shows g z0 6= 0

proof
assume g0 : g z0 = 0
obtain h r m

where 0 < m 0 < r and subS : ball z0 r ⊆ S
and holh: h holomorphic_on ball z0 r
and geq:

∧
w. w ∈ ball z0 r =⇒ g w = (w − z0)^m ∗ h w

and hnz:
∧

w. w ∈ ball z0 r =⇒ h w 6= 0
by (blast intro: holomorphic_factor_zero_nonconstant [OF holg S ‹z0 ∈ S› g0

nonconst])
then have holf0 : F n holomorphic_on ball z0 r for n

by (meson holf holomorphic_on_subset)
have ∗: ((λz. deriv (F n) z / F n z) has_contour_integral 0) (circlepath z0

(r/2)) for n
proof (rule Cauchy_theorem_disc_simple)

show (λz. deriv (F n) z / F n z) holomorphic_on ball z0 r
by (metis (no_types) ‹open S› holf holomorphic_deriv holomorphic_on_divide

holomorphic_on_subset nz subS)
qed (use ‹0 < r› in auto)
have hol_dg: deriv g holomorphic_on S

by (simp add: ‹open S› holg holomorphic_deriv)
have continuous_on (sphere z0 (r/2)) (deriv g)

using ‹0 < r› subS
by (intro holomorphic_on_imp_continuous_on holomorphic_on_subset [OF

hol_dg]) auto
then have compact (deriv g ‘ (sphere z0 (r/2)))

by (rule compact_continuous_image [OF _ compact_sphere])
then have bo_dg: bounded (deriv g ‘ (sphere z0 (r/2)))

using compact_imp_bounded by blast
have continuous_on (sphere z0 (r/2)) (cmod ◦ g)

using ‹0 < r› subS
by (intro continuous_intros holomorphic_on_imp_continuous_on holomor-

phic_on_subset [OF holg]) auto
then have compact ((cmod ◦ g) ‘ sphere z0 (r/2))

by (rule compact_continuous_image [OF _ compact_sphere])
moreover have (cmod ◦ g) ‘ sphere z0 (r/2) 6= {}

using ‹0 < r› by auto
ultimately obtain b where b: b ∈ (cmod ◦ g) ‘ sphere z0 (r/2)∧

t. t ∈ (cmod ◦ g) ‘ sphere z0 (r/2) =⇒ b ≤ t
using compact_attains_inf [of (norm ◦ g) ‘ (sphere z0 (r/2))] by blast

have (λn. contour_integral (circlepath z0 (r/2)) (λz. deriv (F n) z / F n z))
−−−−→

contour_integral (circlepath z0 (r/2)) (λz. deriv g z / g z)
proof (rule contour_integral_uniform_limit_circlepath)

show ∀ F n in sequentially. (λz. deriv (F n) z / F n z) contour_integrable_on
circlepath z0 (r/2)

using ∗ contour_integrable_on_def eventually_sequentiallyI by meson

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 280

show uniform_limit (sphere z0 (r/2)) (λn z. deriv (F n) z / F n z) (λz. deriv
g z / g z) sequentially

proof (rule uniform_lim_divide [OF _ _ bo_dg])
show uniform_limit (sphere z0 (r/2)) (λa. deriv (F a)) (deriv g) sequentially
proof (rule uniform_limitI)

fix e::real
assume 0 < e

show ∀ F n in sequentially. ∀ x ∈ sphere z0 (r/2). dist (deriv (F n) x)
(deriv g x) < e

proof −
have dist (deriv (F n) w) (deriv g w) < e

if e8 :
∧

x. dist z0 x ≤ 3 ∗ r / 4 =⇒ dist (F n x) (g x) ∗ 8 < r ∗ e
and w: w ∈ sphere z0 (r/2) for n w

proof −
have ball w (r/4) ⊆ ball z0 r cball w (r/4) ⊆ ball z0 r

using ‹0 < r› w by (simp_all add: ball_subset_ball_iff cball_subset_ball_iff
dist_commute)

with subS have wr4_sub: ball w (r/4) ⊆ S cball w (r/4) ⊆ S by force+
moreover
have (λz. F n z − g z) holomorphic_on S

by (intro holomorphic_intros holf holg)
ultimately have hol: (λz. F n z − g z) holomorphic_on ball w (r/4)

and cont: continuous_on (cball w (r / 4)) (λz. F n z − g z)
using holomorphic_on_subset by (blast intro: holomorphic_on_imp_continuous_on)+

have w ∈ S
using ‹0 < r› wr4_sub by auto

have dist z0 y ≤ 3 ∗ r / 4 if dist w y < r/4 for y
proof (rule dist_triangle_le [where z=w])

show dist z0 w + dist y w ≤ 3 ∗ r / 4
using w that by (simp add: dist_commute)

qed
with e8 have in_ball:

∧
y. y ∈ ball w (r/4) =⇒ F n y − g y ∈ ball 0

(r/4 ∗ e/2)
by (simp add: dist_norm [symmetric])

have F n field_differentiable at w
by (metis holomorphic_on_imp_differentiable_at ‹w ∈ S› holf ‹open

S›)
moreover
have g field_differentiable at w

using ‹w ∈ S› ‹open S› holg holomorphic_on_imp_differentiable_at
by auto

moreover
have cmod (deriv (λw. F n w − g w) w) ∗ 2 ≤ e

using Cauchy_higher_deriv_bound [OF hol cont in_ball, of 1] ‹r >
0 › by auto

ultimately have dist (deriv (F n) w) (deriv g w) ≤ e/2
by (simp add: dist_norm)

then show ?thesis

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 281

using ‹e > 0 › by auto
qed
moreover
have cball z0 (3 ∗ r / 4) ⊆ ball z0 r

by (simp add: cball_subset_ball_iff ‹0 < r›)
with subS have uniform_limit (cball z0 (3 ∗ r/4)) F g sequentially

by (force intro: ul_g)
then have ∀ F n in sequentially. ∀ x∈cball z0 (3 ∗ r / 4). dist (F n x) (g

x) < r / 4 ∗ e / 2
using ‹0 < e› ‹0 < r› by (force simp: intro!: uniform_limitD)

ultimately show ?thesis
by (force simp add: eventually_sequentially)

qed
qed
show uniform_limit (sphere z0 (r/2)) F g sequentially
proof (rule uniform_limitI)

fix e::real
assume 0 < e
have sphere z0 (r/2) ⊆ ball z0 r

using ‹0 < r› by auto
with subS have uniform_limit (sphere z0 (r/2)) F g sequentially

by (force intro: ul_g)
then show ∀ F n in sequentially. ∀ x ∈ sphere z0 (r/2). dist (F n x) (g x)

< e
using ‹0 < e› uniform_limit_iff by blast

qed
show b > 0

∧
x. x ∈ sphere z0 (r/2) =⇒ b ≤ cmod (g x)

using b ‹0 < r› by (fastforce simp: geq hnz)+
qed

qed (use ‹0 < r› in auto)
then have (λn. 0) −−−−→ contour_integral (circlepath z0 (r/2)) (λz. deriv g z

/ g z)
by (simp add: contour_integral_unique [OF ∗])

then have contour_integral (circlepath z0 (r/2)) (λz. deriv g z / g z) = 0
by (simp add: LIMSEQ_const_iff)

moreover
have contour_integral (circlepath z0 (r/2)) (λz. deriv g z / g z) =

contour_integral (circlepath z0 (r/2)) (λz. m / (z − z0) + deriv h z / h z)
proof (rule contour_integral_eq, use ‹0 < r› in simp)

fix w
assume w: dist z0 w ∗ 2 = r
then have w_inb: w ∈ ball z0 r

using ‹0 < r› by auto
have h_der : (h has_field_derivative deriv h w) (at w)

using holh holomorphic_derivI w_inb by blast
have deriv g w = ((of_nat m ∗ h w + deriv h w ∗ (w − z0)) ∗ (w − z0) ^ m)

/ (w − z0)
if r = dist z0 w ∗ 2 w 6= z0

proof −

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 282

have ((λw. (w − z0) ^ m ∗ h w) has_field_derivative
(m ∗ h w + deriv h w ∗ (w − z0)) ∗ (w − z0) ^ m / (w − z0)) (at w)

apply (rule derivative_eq_intros h_der refl)+
using that ‹m > 0 › ‹0 < r› apply (simp add: divide_simps distrib_right)
by (metis Suc_pred mult.commute power_Suc)

then show ?thesis
proof (rule DERIV_imp_deriv [OF has_field_derivative_transform_within_open])

show
∧

x. x ∈ ball z0 r =⇒ (x − z0) ^ m ∗ h x = g x
by (simp add: hnz geq)

qed (use that ‹m > 0 › ‹0 < r› in auto)
qed
with ‹0 < r› ‹0 < m› w w_inb show deriv g w / g w = of_nat m / (w − z0)

+ deriv h w / h w
by (auto simp: geq field_split_simps hnz)

qed
moreover
have contour_integral (circlepath z0 (r/2)) (λz. m / (z − z0) + deriv h z / h

z) =
2 ∗ of_real pi ∗ i ∗ m + 0

proof (rule contour_integral_unique [OF has_contour_integral_add])
show ((λx. m / (x − z0)) has_contour_integral 2 ∗ of_real pi ∗ i ∗ m)

(circlepath z0 (r/2))
by (force simp: ‹0 < r› intro: Cauchy_integral_circlepath_simple)

show ((λx. deriv h x / h x) has_contour_integral 0) (circlepath z0 (r/2))
using hnz holh holomorphic_deriv holomorphic_on_divide ‹0 < r›
by (fastforce intro!: Cauchy_theorem_disc_simple [of _ z0 r])

qed
ultimately show False using ‹0 < m› by auto

qed

corollary Hurwitz_injective:
assumes S : open S connected S

and holf :
∧

n::nat. F n holomorphic_on S
and holg: g holomorphic_on S
and ul_g:

∧
K . [[compact K ; K ⊆ S]] =⇒ uniform_limit K F g sequentially

and nonconst: ¬ g constant_on S
and inj:

∧
n. inj_on (F n) S

shows inj_on g S
proof −

have False if z12 : z1 ∈ S z2 ∈ S z1 6= z2 g z2 = g z1 for z1 z2
proof −

obtain z0 where z0 ∈ S and z0 : g z0 6= g z2
using constant_on_def nonconst by blast

have (λz. g z − g z1) holomorphic_on S
by (intro holomorphic_intros holg)

then obtain r where 0 < r ball z2 r ⊆ S
∧

z. dist z2 z < r ∧ z 6= z2 =⇒ g
z 6= g z1

using isolated_zeros [of λz. g z − g z1 S z2 z0] S ‹z0 ∈ S› z0 z12 by auto
have g z2 − g z1 6= 0

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 283

proof (rule Hurwitz_no_zeros [of S − {z1} λn z. F n z − F n z1 λz. g z −
g z1])

show open (S − {z1})
by (simp add: S open_delete)

show connected (S − {z1})
by (simp add: connected_open_delete [OF S])

show
∧

n. (λz. F n z − F n z1) holomorphic_on S − {z1}
by (intro holomorphic_intros holomorphic_on_subset [OF holf]) blast

show (λz. g z − g z1) holomorphic_on S − {z1}
by (intro holomorphic_intros holomorphic_on_subset [OF holg]) blast

show uniform_limit K (λn z. F n z − F n z1) (λz. g z − g z1) sequentially
if compact K K ⊆ S − {z1} for K

proof (rule uniform_limitI)
fix e::real
assume e > 0
have uniform_limit K F g sequentially

using that ul_g by fastforce
then have K : ∀ F n in sequentially. ∀ x ∈ K . dist (F n x) (g x) < e/2

using ‹0 < e› by (force simp: intro!: uniform_limitD)
have uniform_limit {z1} F g sequentially

by (intro ul_g) (auto simp: z12)
then have ∀ F n in sequentially. ∀ x ∈ {z1}. dist (F n x) (g x) < e/2

using ‹0 < e› by (force simp: intro!: uniform_limitD)
then have z1 : ∀ F n in sequentially. dist (F n z1) (g z1) < e/2

by simp
show ∀ F n in sequentially. ∀ x∈K . dist (F n x − F n z1) (g x − g z1) < e

apply (intro eventually_mono [OF eventually_conj [OF K z1]])
by (metis (no_types, opaque_lifting) diff_add_eq diff_diff_eq2 dist_commute

dist_norm dist_triangle_add_half)
qed
show ¬ (λz. g z − g z1) constant_on S − {z1}

unfolding constant_on_def
by (metis Diff_iff ‹z0 ∈ S› empty_iff insert_iff right_minus_eq z0 z12)

show
∧

n z. z ∈ S − {z1} =⇒ F n z − F n z1 6= 0
by (metis DiffD1 DiffD2 eq_iff_diff_eq_0 inj inj_onD insertI1 ‹z1 ∈ S›)

show z2 ∈ S − {z1}
using ‹z2 ∈ S› ‹z1 6= z2 › by auto

qed
with z12 show False by auto

qed
then show ?thesis by (auto simp: inj_on_def)

qed

6.5 The Great Picard theorem
lemma GPicard1 :

assumes S : open S connected S and w ∈ S 0 < r Y ⊆ X
and holX :

∧
h. h ∈ X =⇒ h holomorphic_on S

and X01 :
∧

h z. [[h ∈ X ; z ∈ S]] =⇒ h z 6= 0 ∧ h z 6= 1

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 284

and r :
∧

h. h ∈ Y =⇒ norm(h w) ≤ r
obtains B Z where 0 < B open Z w ∈ Z Z ⊆ S

∧
h z. [[h ∈ Y ; z ∈ Z]] =⇒

norm(h z) ≤ B
proof −

obtain e where e > 0 and e: cball w e ⊆ S
using assms open_contains_cball_eq by blast

show ?thesis
proof

show 0 < exp(pi ∗ exp(pi ∗ (2 + 2 ∗ r + 12)))
by simp

show ball w (e / 2) ⊆ S
using e ball_divide_subset_numeral ball_subset_cball by blast

show cmod (h z) ≤ exp (pi ∗ exp (pi ∗ (2 + 2 ∗ r + 12)))
if h ∈ Y z ∈ ball w (e / 2) for h z

proof −
have h ∈ X

using ‹Y ⊆ X› ‹h ∈ Y › by blast
have hol_h_o: (h ◦ (λz. (w + of_real e ∗ z))) holomorphic_on cball 0 1
proof (intro holomorphic_intros holomorphic_on_compose)

have h holomorphic_on S
using holX ‹h ∈ X› by auto

then have h holomorphic_on cball w e
by (metis e holomorphic_on_subset)

moreover have (λz. w + complex_of_real e ∗ z) ‘ cball 0 1 ⊆ cball w e
using that ‹e > 0 › by (auto simp: dist_norm norm_mult)
ultimately show h holomorphic_on (λz. w + complex_of_real e ∗ z) ‘

cball 0 1
by (rule holomorphic_on_subset)

qed
have norm_le_r : cmod ((h ◦ (λz. w + complex_of_real e ∗ z)) 0) ≤ r

by (auto simp: r ‹h ∈ Y ›)
have le12 : norm (of_real(inverse e) ∗ (z − w)) ≤ 1/2
using that ‹e > 0 › by (simp add: inverse_eq_divide dist_norm norm_minus_commute

norm_divide)
have non01 : h (w + e ∗ z) 6= 0 ∧ h (w + e ∗ z) 6= 1 if z ∈ cball 0 1 for

z::complex
proof (rule X01 [OF ‹h ∈ X›])

have w + complex_of_real e ∗ z ∈ cball w e
using ‹0 < e› that by (auto simp: dist_norm norm_mult)

then show w + complex_of_real e ∗ z ∈ S
by (rule subsetD [OF e])

qed
have cmod (h z) ≤ cmod (h (w + of_real e ∗ (inverse e ∗ (z − w))))

using ‹0 < e› by (simp add: field_split_simps)
also have ... ≤ exp (pi ∗ exp (pi ∗ (14 + 2 ∗ r)))
using r [OF ‹h ∈ Y ›] Schottky [OF hol_h_o norm_le_r _ _ _ le12] non01

by auto
finally
show ?thesis by simp

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 285

qed
qed (use ‹e > 0 › in auto)

qed

lemma GPicard2 :
assumes S ⊆ T connected T S 6= {} open S

∧
x. [[x islimpt S ; x ∈ T]] =⇒ x ∈ S

shows S = T
by (metis assms open_subset connected_clopen closedin_limpt)

lemma GPicard3 :
assumes S : open S connected S w ∈ S and Y ⊆ X

and holX :
∧

h. h ∈ X =⇒ h holomorphic_on S
and X01 :

∧
h z. [[h ∈ X ; z ∈ S]] =⇒ h z 6= 0 ∧ h z 6= 1

and no_hw_le1 :
∧

h. h ∈ Y =⇒ norm(h w) ≤ 1
and compact K K ⊆ S

obtains B where
∧

h z. [[h ∈ Y ; z ∈ K]] =⇒ norm(h z) ≤ B
proof −

define U where U ≡ {z ∈ S . ∃B Z . 0 < B ∧ open Z ∧ z ∈ Z ∧ Z ⊆ S ∧
(∀ h z ′. h ∈ Y ∧ z ′ ∈ Z −→ norm(h z ′) ≤ B)}

then have U ⊆ S by blast
have U = S
proof (rule GPicard2 [OF ‹U ⊆ S› ‹connected S›])

show U 6= {}
proof −

obtain B Z where 0 < B open Z w ∈ Z Z ⊆ S
and

∧
h z. [[h ∈ Y ; z ∈ Z]] =⇒ norm(h z) ≤ B

using GPicard1 [OF S zero_less_one ‹Y ⊆ X› holX] X01 no_hw_le1 by
blast

then show ?thesis
unfolding U_def using ‹w ∈ S› by blast

qed
show open U

unfolding open_subopen [of U] by (auto simp: U_def)
fix v
assume v: v islimpt U v ∈ S
have ¬ (∀ r>0 . ∃ h∈Y . r < cmod (h v))
proof

assume ∀ r>0 . ∃ h∈Y . r < cmod (h v)
then have ∀n. ∃ h∈Y . Suc n < cmod (h v)

by simp
then obtain F where FY :

∧
n. F n ∈ Y and ltF :

∧
n. Suc n < cmod (F

n v)
by metis

define G where G ≡ λn z. inverse(F n z)
have holG: G n holomorphic_on S for n
proof (simp add: G_def)

show (λz. inverse (F n z)) holomorphic_on S
using FY X01 ‹Y ⊆ X› holX by (blast intro: holomorphic_on_inverse)

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 286

qed
have Gnot0 : G n z 6= 0 and Gnot1 : G n z 6= 1 if z ∈ S for n z

using FY X01 ‹Y ⊆ X› that by (force simp: G_def)+
have G_le1 : cmod (G n v) ≤ 1 for n

using less_le_trans linear ltF
by (fastforce simp add: G_def norm_inverse inverse_le_1_iff)

define W where W ≡ {h. h holomorphic_on S ∧ (∀ z ∈ S . h z 6= 0 ∧ h z
6= 1)}

obtain B Z where 0 < B open Z v ∈ Z Z ⊆ S
and B:

∧
h z. [[h ∈ range G; z ∈ Z]] =⇒ norm(h z) ≤ B

apply (rule GPicard1 [OF ‹open S› ‹connected S› ‹v ∈ S› zero_less_one,
of range G W])

using holG Gnot0 Gnot1 G_le1 by (force simp: W_def)+
then obtain e where e > 0 and e: ball v e ⊆ Z

by (meson open_contains_ball)
obtain h j where holh: h holomorphic_on ball v e and strict_mono j

and lim:
∧

x. x ∈ ball v e =⇒ (λn. G (j n) x) −−−−→ h x
and ulim:

∧
K . [[compact K ; K ⊆ ball v e]]
=⇒ uniform_limit K (G ◦ j) h sequentially

proof (rule Montel)
show

∧
h. h ∈ range G =⇒ h holomorphic_on ball v e

by (metis ‹Z ⊆ S› e holG holomorphic_on_subset imageE)
show

∧
K . [[compact K ; K ⊆ ball v e]] =⇒ ∃B. ∀ h∈range G. ∀ z∈K . cmod

(h z) ≤ B
using B e by blast

qed auto
have h v = 0
proof (rule LIMSEQ_unique)

show (λn. G (j n) v) −−−−→ h v
using ‹e > 0 › lim by simp

have lt_Fj: real x ≤ cmod (F (j x) v) for x
by (metis of_nat_Suc ltF ‹strict_mono j› add.commute less_eq_real_def

less_le_trans nat_le_real_less seq_suble)
show (λn. G (j n) v) −−−−→ 0

proof (rule Lim_null_comparison [OF eventually_sequentiallyI lim_inverse_n])
show cmod (G (j x) v) ≤ inverse (real x) if 1 ≤ x for x

using that by (simp add: G_def norm_inverse_le_norm [OF lt_Fj])
qed

qed
have h v 6= 0
proof (rule Hurwitz_no_zeros [of ball v e G ◦ j h])

show
∧

n. (G ◦ j) n holomorphic_on ball v e
using ‹Z ⊆ S› e holG by force

show
∧

n z. z ∈ ball v e =⇒ (G ◦ j) n z 6= 0
using Gnot0 ‹Z ⊆ S› e by fastforce

show ¬ h constant_on ball v e
proof (clarsimp simp: constant_on_def)

fix c
have False if

∧
z. dist v z < e =⇒ h z = c

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 287

proof −
have h v = c

by (simp add: ‹0 < e› that)
obtain y where y ∈ U y 6= v and y: dist y v < e

using v ‹e > 0 › by (auto simp: islimpt_approachable)
then obtain C T where y ∈ S C > 0 open T y ∈ T T ⊆ S

and
∧

h z ′. [[h ∈ Y ; z ′ ∈ T]] =⇒ cmod (h z ′) ≤ C
using ‹y ∈ U › by (auto simp: U_def)

then have le_C :
∧

n. cmod (F n y) ≤ C
using FY by blast

have ∀ F n in sequentially. dist (G (j n) y) (h y) < inverse C
using uniform_limitD [OF ulim [of {y}], of inverse C] ‹C > 0 › y
by (simp add: dist_commute)

then obtain n where dist (G (j n) y) (h y) < inverse C
by (meson eventually_at_top_linorder order_refl)

moreover
have h y = h v

by (metis ‹h v = c› dist_commute that y)
ultimately have cmod (inverse (F (j n) y)) < inverse C

by (simp add: ‹h v = 0 › G_def)
then have C < norm (F (j n) y)

by (metis G_def Gnot0 ‹y ∈ S› inverse_less_imp_less inverse_zero
norm_inverse zero_less_norm_iff)

show False
using ‹C < cmod (F (j n) y)› le_C not_less by blast

qed
then show ∃ x∈ball v e. h x 6= c by force

qed
show h holomorphic_on ball v e

by (simp add: holh)
show

∧
K . [[compact K ; K ⊆ ball v e]] =⇒ uniform_limit K (G ◦ j) h

sequentially
by (simp add: ulim)

qed (use ‹e > 0 › in auto)
with ‹h v = 0 › show False by blast

qed
then obtain r where 0 < r and r :

∧
h. h ∈ Y =⇒ cmod (h v) ≤ r

by (metis not_le)
moreover
obtain B Z where 0 < B open Z v ∈ Z Z ⊆ S

∧
h z. [[h ∈ Y ; z ∈ Z]] =⇒

norm(h z) ≤ B
using X01
by (auto simp: r intro: GPicard1 [OF ‹open S› ‹connected S› ‹v ∈ S› ‹r>0 ›

‹Y ⊆ X› holX] X01)
ultimately show v ∈ U

using v by (simp add: U_def) meson
qed
have

∧
x. x ∈ K −→ x ∈ U

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 288

using ‹U = S› ‹K ⊆ S› by blast
then have

∧
x. x ∈ K −→ (∃B Z . 0 < B ∧ open Z ∧ x ∈ Z ∧

(∀ h z ′. h ∈ Y ∧ z ′ ∈ Z −→ norm(h z ′) ≤ B))
unfolding U_def by blast

then obtain F Z where F :
∧

x. x ∈ K =⇒ open (Z x) ∧ x ∈ Z x ∧
(∀ h z ′. h ∈ Y ∧ z ′ ∈ Z x −→ norm(h z ′) ≤ F x)

by metis
then obtain L where L ⊆ K finite L and L: K ⊆ (

⋃
c ∈ L. Z c)

by (auto intro: compactE_image [OF ‹compact K ›, of K Z])
then have ∗:

∧
x h z ′. [[x ∈ L; h ∈ Y ∧ z ′ ∈ Z x]] =⇒ cmod (h z ′) ≤ F x

using F by blast
have ∃B. ∀ h z. h ∈ Y ∧ z ∈ K −→ norm(h z) ≤ B
proof (cases L = {})

case True with L show ?thesis by simp
next

case False
then have ∀ h z. h ∈ Y ∧ z ∈ K −→ (∃ x∈L. cmod (h z) ≤ F x)

by (metis ∗ L UN_E subset_iff)
with False ‹finite L› show ?thesis
by (rule_tac x = Max (F ‘ L) in exI) (simp add: linorder_class.Max_ge_iff)

qed
with that show ?thesis by metis

qed

lemma GPicard4 :
assumes 0 < k and holf : f holomorphic_on (ball 0 k − {0})

and AE :
∧

e. [[0 < e; e < k]] =⇒ ∃ d. 0 < d ∧ d < e ∧ (∀ z ∈ sphere 0 d.
norm(f z) ≤ B)

obtains ε where 0 < ε ε < k
∧

z. z ∈ ball 0 ε − {0} =⇒ norm(f z) ≤ B
proof −

obtain ε where 0 < ε ε < k/2 and ε:
∧

z. norm z = ε =⇒ norm(f z) ≤ B
using AE [of k/2] ‹0 < k› by auto

show ?thesis
proof

show ε < k
using ‹0 < k› ‹ε < k/2 › by auto

show cmod (f ξ) ≤ B if ξ: ξ ∈ ball 0 ε − {0} for ξ
proof −

obtain d where 0 < d d < norm ξ and d:
∧

z. norm z = d =⇒ norm(f z)
≤ B

using AE [of norm ξ] ‹ε < k› ξ by auto
have [simp]: closure (cball 0 ε − ball 0 d) = cball 0 ε − ball 0 d

by (blast intro!: closure_closed)
have [simp]: interior (cball 0 ε − ball 0 d) = ball 0 ε − cball (0 ::complex) d

using ‹0 < ε› ‹0 < d› by (simp add: interior_diff)
have ∗: norm(f w) ≤ B if w ∈ cball 0 ε − ball 0 d for w
proof (rule maximum_modulus_frontier [of f cball 0 ε − ball 0 d])

show f holomorphic_on interior (cball 0 ε − ball 0 d)

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 289

using ‹ε < k› ‹0 < d› that by (auto intro: holomorphic_on_subset [OF
holf])

show continuous_on (closure (cball 0 ε − ball 0 d)) f
proof (intro holomorphic_on_imp_continuous_on holomorphic_on_subset

[OF holf])
show closure (cball 0 ε − ball 0 d) ⊆ ball 0 k − {0}

using ‹0 < d› ‹ε < k› by auto
qed
show

∧
z. z ∈ frontier (cball 0 ε − ball 0 d) =⇒ cmod (f z) ≤ B

unfolding frontier_def
using ε d less_eq_real_def by force

qed (use that in auto)
show ?thesis

using ∗ ‹d < cmod ξ› that by auto
qed

qed (use ‹0 < ε› in auto)
qed

lemma GPicard5 :
assumes holf : f holomorphic_on (ball 0 1 − {0})

and f01 :
∧

z. z ∈ ball 0 1 − {0} =⇒ f z 6= 0 ∧ f z 6= 1
obtains e B where 0 < e e < 1 0 < B

(∀ z ∈ ball 0 e − {0}. norm(f z) ≤ B) ∨
(∀ z ∈ ball 0 e − {0}. norm(f z) ≥ B)

proof −
have [simp]: 1 + of_nat n 6= (0 ::complex) for n

using of_nat_eq_0_iff by fastforce
have [simp]: cmod (1 + of_nat n) = 1 + of_nat n for n

by (metis norm_of_nat of_nat_Suc)
have ∗: (λx::complex. x / of_nat (Suc n)) ‘ (ball 0 1 − {0}) ⊆ ball 0 1 − {0}

for n
by (auto simp: norm_divide field_split_simps split: if_split_asm)

define h where h ≡ λn z::complex. f (z / (Suc n))
have holh: (h n) holomorphic_on ball 0 1 − {0} for n

unfolding h_def
proof (rule holomorphic_on_compose_gen [unfolded o_def , OF _ holf ∗])

show (λx. x / of_nat (Suc n)) holomorphic_on ball 0 1 − {0}
by (intro holomorphic_intros) auto

qed
have h01 :

∧
n z. z ∈ ball 0 1 − {0} =⇒ h n z 6= 0 ∧ h n z 6= 1

unfolding h_def
using ∗ by (force intro!: f01)

obtain w where w: w ∈ ball 0 1 − {0 ::complex}
by (rule_tac w = 1/2 in that) auto

consider infinite {n. norm(h n w) ≤ 1} | infinite {n. 1 ≤ norm(h n w)}
by (metis (mono_tags, lifting) infinite_nat_iff_unbounded_le le_cases mem_Collect_eq)

then show ?thesis
proof cases

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 290

case 1
with infinite_enumerate obtain r :: nat ⇒ nat

where strict_mono r and r :
∧

n. r n ∈ {n. norm(h n w) ≤ 1}
by blast

obtain B where B:
∧

j z. [[norm z = 1/2 ; j ∈ range (h ◦ r)]] =⇒ norm(j z)
≤ B

proof (rule GPicard3 [OF _ _ w, where K = sphere 0 (1/2)])
show range (h ◦ r) ⊆

{g. g holomorphic_on ball 0 1 − {0} ∧ (∀ z ∈ ball 0 1 − {0}. g z 6= 0
∧ g z 6= 1)}

using h01 by (auto intro: holomorphic_intros holomorphic_on_compose
holh)

show connected (ball 0 1 − {0 ::complex})
by (simp add: connected_open_delete)

qed (use r in auto)
have normf_le_B: cmod(f z) ≤ B if norm z = 1 / (2 ∗ (1 + of_nat (r n)))

for z n
proof −

have ∗:
∧

w. norm w = 1/2 =⇒ cmod((f (w / (1 + of_nat (r n))))) ≤ B
using B by (auto simp: h_def o_def)

have half : norm (z ∗ (1 + of_nat (r n))) = 1/2
by (simp add: norm_mult divide_simps that)

show ?thesis
using ∗ [OF half] by simp

qed
obtain ε where 0 < ε ε < 1

∧
z. z ∈ ball 0 ε − {0} =⇒ cmod(f z) ≤ B

proof (rule GPicard4 [OF zero_less_one holf , of B])
fix e::real
assume 0 < e e < 1
obtain n where (1/e − 2) / 2 < real n

using reals_Archimedean2 by blast
also have ... ≤ r n

using ‹strict_mono r› by (simp add: seq_suble)
finally have (1/e − 2) / 2 < real (r n) .
with ‹0 < e› have e: e > 1 / (2 + 2 ∗ real (r n))

by (simp add: field_simps)
show ∃ d>0 . d < e ∧ (∀ z∈sphere 0 d. cmod (f z) ≤ B)

apply (rule_tac x=1 / (2 ∗ (1 + of_nat (r n))) in exI)
using normf_le_B by (simp add: e)

qed blast
then have ε: cmod (f z) ≤ |B| + 1 if cmod z < ε z 6= 0 for z

using that by fastforce
have 0 < |B| + 1

by simp
then show ?thesis

using ε by (force intro!: that [OF ‹0 < ε› ‹ε < 1 ›])
next

case 2
with infinite_enumerate obtain r :: nat ⇒ nat

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 291

where strict_mono r and r :
∧

n. r n ∈ {n. norm(h n w) ≥ 1}
by blast

obtain B where B:
∧

j z. [[norm z = 1/2 ; j ∈ range (λn. inverse ◦ h (r n))]]
=⇒ norm(j z) ≤ B

proof (rule GPicard3 [OF _ _ w, where K = sphere 0 (1/2)])
show range (λn. inverse ◦ h (r n)) ⊆

{g. g holomorphic_on ball 0 1 − {0} ∧ (∀ z∈ball 0 1 − {0}. g z 6= 0 ∧
g z 6= 1)}

using h01 by (auto intro!: holomorphic_intros holomorphic_on_compose_gen
[unfolded o_def , OF _ holh] holomorphic_on_compose)

show connected (ball 0 1 − {0 ::complex})
by (simp add: connected_open_delete)

show
∧

j. j ∈ range (λn. inverse ◦ h (r n)) =⇒ cmod (j w) ≤ 1
using r norm_inverse_le_norm by fastforce

qed (use r in auto)
have norm_if_le_B: cmod(inverse (f z)) ≤ B if norm z = 1 / (2 ∗ (1 +

of_nat (r n))) for z n
proof −

have ∗: inverse (cmod((f (z / (1 + of_nat (r n)))))) ≤ B if norm z = 1/2
for z

using B [OF that] by (force simp: norm_inverse h_def)
have half : norm (z ∗ (1 + of_nat (r n))) = 1/2

by (simp add: norm_mult divide_simps that)
show ?thesis

using ∗ [OF half] by (simp add: norm_inverse)
qed
have hol_if : (inverse ◦ f) holomorphic_on (ball 0 1 − {0})

by (metis (no_types, lifting) holf comp_apply f01 holomorphic_on_inverse
holomorphic_transform)

obtain ε where 0 < ε ε < 1 and leB:
∧

z. z ∈ ball 0 ε − {0} =⇒ cmod((inverse
◦ f) z) ≤ B

proof (rule GPicard4 [OF zero_less_one hol_if , of B])
fix e::real
assume 0 < e e < 1
obtain n where (1/e − 2) / 2 < real n

using reals_Archimedean2 by blast
also have ... ≤ r n

using ‹strict_mono r› by (simp add: seq_suble)
finally have (1/e − 2) / 2 < real (r n) .
with ‹0 < e› have e: e > 1 / (2 + 2 ∗ real (r n))

by (simp add: field_simps)
show ∃ d>0 . d < e ∧ (∀ z∈sphere 0 d. cmod ((inverse ◦ f) z) ≤ B)

apply (rule_tac x=1 / (2 ∗ (1 + of_nat (r n))) in exI)
using norm_if_le_B by (simp add: e)

qed blast
have ε: cmod (f z) ≥ inverse B and B > 0 if cmod z < ε z 6= 0 for z
proof −

have inverse (cmod (f z)) ≤ B
using leB that by (simp add: norm_inverse)

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 292

moreover
have f z 6= 0

using ‹ε < 1 › f01 that by auto
ultimately show cmod (f z) ≥ inverse B

by (simp add: norm_inverse inverse_le_imp_le)
show B > 0

using ‹f z 6= 0 › ‹inverse (cmod (f z)) ≤ B› not_le order .trans by fastforce
qed
then have B > 0

by (metis ‹0 < ε› dense leI order .asym vector_choose_size)
then have inverse B > 0

by (simp add: field_split_simps)
then show ?thesis

using ε that [OF ‹0 < ε› ‹ε < 1 ›]
by (metis Diff_iff dist_0_norm insert_iff mem_ball)

qed
qed

lemma GPicard6 :
assumes open M z ∈ M a 6= 0 and holf : f holomorphic_on (M − {z})

and f0a:
∧

w. w ∈ M − {z} =⇒ f w 6= 0 ∧ f w 6= a
obtains r where 0 < r ball z r ⊆ M

bounded(f ‘ (ball z r − {z})) ∨
bounded((inverse ◦ f) ‘ (ball z r − {z}))

proof −
obtain r where 0 < r and r : ball z r ⊆ M

using assms openE by blast
let ?g = λw. f (z + of_real r ∗ w) / a
obtain e B where 0 < e e < 1 0 < B

and B: (∀ z ∈ ball 0 e − {0}. norm(?g z) ≤ B) ∨ (∀ z ∈ ball 0 e − {0}.
norm(?g z) ≥ B)

proof (rule GPicard5)
show ?g holomorphic_on ball 0 1 − {0}

proof (intro holomorphic_intros holomorphic_on_compose_gen [unfolded o_def ,
OF _ holf])

show (λx. z + complex_of_real r ∗ x) ‘ (ball 0 1 − {0}) ⊆ M − {z}
using ‹0 < r› r
by (auto simp: dist_norm norm_mult subset_eq)

qed (use ‹a 6= 0 › in auto)
show

∧
w. w ∈ ball 0 1 − {0} =⇒ f (z + of_real r ∗ w) / a 6= 0 ∧ f (z +

of_real r ∗ w) / a 6= 1
using f0a ‹0 < r› ‹a 6= 0 › r
by (auto simp: field_split_simps dist_norm norm_mult subset_eq)

qed
show ?thesis
proof

show 0 < e∗r
by (simp add: ‹0 < e› ‹0 < r›)

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 293

have ball z (e ∗ r) ⊆ ball z r
by (simp add: ‹0 < r› ‹e < 1 › order .strict_implies_order subset_ball)

then show ball z (e ∗ r) ⊆ M
using r by blast

consider
∧

z. z ∈ ball 0 e − {0} =⇒ norm(?g z) ≤ B |
∧

z. z ∈ ball 0 e − {0}
=⇒ norm(?g z) ≥ B

using B by blast
then show bounded (f ‘ (ball z (e ∗ r) − {z})) ∨

bounded ((inverse ◦ f) ‘ (ball z (e ∗ r) − {z}))
proof cases

case 1
have [[dist z w < e ∗ r ; w 6= z]] =⇒ cmod (f w) ≤ B ∗ norm a for w

using ‹a 6= 0 › ‹0 < r› 1 [of (w − z) / r]
by (simp add: norm_divide dist_norm field_split_simps)

then show ?thesis
by (force simp: intro!: boundedI)

next
case 2
have [[dist z w < e ∗ r ; w 6= z]] =⇒ cmod (f w) ≥ B ∗ norm a for w

using ‹a 6= 0 › ‹0 < r› 2 [of (w − z) / r]
by (simp add: norm_divide dist_norm field_split_simps)

then have [[dist z w < e ∗ r ; w 6= z]] =⇒ inverse (cmod (f w)) ≤ inverse (B
∗ norm a) for w

by (metis ‹0 < B› ‹a 6= 0 › mult_pos_pos norm_inverse norm_inverse_le_norm
zero_less_norm_iff)

then show ?thesis
by (force simp: norm_inverse intro!: boundedI)

qed
qed

qed

theorem great_Picard:
assumes open M z ∈ M a 6= b and holf : f holomorphic_on (M − {z})

and fab:
∧

w. w ∈ M − {z} =⇒ f w 6= a ∧ f w 6= b
obtains l where (f −−−→ l) (at z) ∨ ((inverse ◦ f) −−−→ l) (at z)

proof −
obtain r where 0 < r and zrM : ball z r ⊆ M

and r : bounded((λz. f z − a) ‘ (ball z r − {z})) ∨
bounded((inverse ◦ (λz. f z − a)) ‘ (ball z r − {z}))

proof (rule GPicard6 [OF ‹open M › ‹z ∈ M ›])
show b − a 6= 0

using assms by auto
show (λz. f z − a) holomorphic_on M − {z}

by (intro holomorphic_intros holf)
qed (use fab in auto)
have holfb: f holomorphic_on ball z r − {z}

using zrM by (auto intro: holomorphic_on_subset [OF holf])
have holfb_i: (λz. inverse(f z − a)) holomorphic_on ball z r − {z}

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 294

using fab zrM by (fastforce intro!: holomorphic_intros holfb)
show ?thesis

using r
proof

assume bounded ((λz. f z − a) ‘ (ball z r − {z}))
then obtain B where B:

∧
w. w ∈ (λz. f z − a) ‘ (ball z r − {z}) =⇒ norm

w ≤ B
by (force simp: bounded_iff)

then have ∀ x. x 6= z ∧ dist x z < r −→ cmod (f x − a) ≤ B
by (simp add: dist_commute)

with ‹0 < r› have ∀ F w in at z. cmod (f w − a) ≤ B
by (force simp add: eventually_at)

moreover have
∧

x. cmod (f x − a) ≤ B =⇒ cmod (f x) ≤ B + cmod a
by (metis add.commute add_le_cancel_right norm_triangle_sub order .trans)

ultimately have ∃B. ∀ F w in at z. cmod (f w) ≤ B
by (metis (mono_tags, lifting) eventually_at)

then obtain g where holg: g holomorphic_on ball z r and gf :
∧

w. w ∈ ball
z r − {z} =⇒ g w = f w

using ‹0 < r› holomorphic_on_extend_bounded [OF holfb] by auto
then have g −z→ g z

unfolding continuous_at [symmetric]
using ‹0 < r› centre_in_ball field_differentiable_imp_continuous_at

holomorphic_on_imp_differentiable_at by blast
then have (f −−−→ g z) (at z)

using Lim_transform_within_open [of g g z z]
using ‹0 < r› centre_in_ball gf by blast

then show ?thesis
using that by blast

next
assume bounded((inverse ◦ (λz. f z − a)) ‘ (ball z r − {z}))
then obtain B where B:

∧
w. w ∈ (inverse ◦ (λz. f z − a)) ‘ (ball z r − {z})

=⇒ norm w ≤ B
by (force simp: bounded_iff)

then have ∀ x. x 6= z ∧ dist x z < r −→ cmod (inverse (f x − a)) ≤ B
by (simp add: dist_commute)

with ‹0 < r› have ∀ F w in at z. cmod (inverse (f w − a)) ≤ B
by (auto simp add: eventually_at)

then have ∃B. ∀ F z in at z. cmod (inverse (f z − a)) ≤ B
by blast

then obtain g where holg: g holomorphic_on ball z r and gf :
∧

w. w ∈ ball
z r − {z} =⇒ g w = inverse (f w − a)

using ‹0 < r› holomorphic_on_extend_bounded [OF holfb_i] by auto
then have gz: g −z→ g z

unfolding continuous_at [symmetric]
using ‹0 < r› centre_in_ball field_differentiable_imp_continuous_at

holomorphic_on_imp_differentiable_at by blast
have gnz:

∧
w. w ∈ ball z r − {z} =⇒ g w 6= 0

using gf fab zrM by fastforce
show ?thesis

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 295

proof (cases g z = 0)
case True
have ∗: [[g 6= 0 ; inverse g = f − a]] =⇒ g / (1 + a ∗ g) = inverse f for f

g::complex
by (auto simp: field_simps)

have (inverse ◦ f) −z→ 0
proof (rule Lim_transform_within_open [of λw. g w / (1 + a ∗ g w) _ _

UNIV ball z r])
show (λw. g w / (1 + a ∗ g w)) −z→ 0

using True by (auto simp: intro!: tendsto_eq_intros gz)
show

∧
x. [[x ∈ ball z r ; x 6= z]] =⇒ g x / (1 + a ∗ g x) = (inverse ◦ f) x

using ∗ gf gnz by simp
qed (use ‹0 < r› in auto)
with that show ?thesis by blast

next
case False
show ?thesis
proof (cases 1 + a ∗ g z = 0)

case True
have (f −−−→ 0) (at z)
proof (rule Lim_transform_within_open [of λw. (1 + a ∗ g w) / g w _ _

_ ball z r])
show (λw. (1 + a ∗ g w) / g w) −z→ 0

by (rule tendsto_eq_intros refl gz ‹g z 6= 0 › | simp add: True)+
show

∧
x. [[x ∈ ball z r ; x 6= z]] =⇒ (1 + a ∗ g x) / g x = f x

using fab fab zrM by (fastforce simp add: gf field_split_simps)
qed (use ‹0 < r› in auto)
then show ?thesis

using that by blast
next

case False
have ∗: [[g 6= 0 ; inverse g = f − a]] =⇒ g / (1 + a ∗ g) = inverse f for f

g::complex
by (auto simp: field_simps)

have (inverse ◦ f) −z→ g z / (1 + a ∗ g z)
proof (rule Lim_transform_within_open [of λw. g w / (1 + a ∗ g w) _ _

UNIV ball z r])
show (λw. g w / (1 + a ∗ g w)) −z→ g z / (1 + a ∗ g z)

using False by (auto simp: False intro!: tendsto_eq_intros gz)
show

∧
x. [[x ∈ ball z r ; x 6= z]] =⇒ g x / (1 + a ∗ g x) = (inverse ◦ f) x

using ∗ gf gnz by simp
qed (use ‹0 < r› in auto)
with that show ?thesis by blast

qed
qed

qed
qed

Great{_}{\kern 0pt}Picard.html

Great_Picard.thy 296

corollary great_Picard_alt:
assumes M : open M z ∈ M and holf : f holomorphic_on (M − {z})

and non:
∧

l. ¬ (f −−−→ l) (at z)
∧

l. ¬ ((inverse ◦ f) −−−→ l) (at z)
obtains a where − {a} ⊆ f ‘ (M − {z})

unfolding subset_iff image_iff
by (metis great_Picard [OF M _ holf] non Compl_iff insertI1)

corollary great_Picard_infinite:
assumes M : open M z ∈ M and holf : f holomorphic_on (M − {z})

and non:
∧

l. ¬ (f −−−→ l) (at z)
∧

l. ¬ ((inverse ◦ f) −−−→ l) (at z)
obtains a where

∧
w. w 6= a =⇒ infinite {x. x ∈ M − {z} ∧ f x = w}

proof −
have False if a 6= b and ab: finite {x. x ∈ M − {z} ∧ f x = a} finite {x. x ∈ M
− {z} ∧ f x = b} for a b

proof −
have finab: finite {x. x ∈ M − {z} ∧ f x ∈ {a,b}}

using finite_UnI [OF ab] unfolding mem_Collect_eq insert_iff empty_iff
by (simp add: conj_disj_distribL)

obtain r where 0 < r and zrM : ball z r ⊆ M and r :
∧

x. [[x ∈ M − {z}; f x
∈ {a,b}]] =⇒ x /∈ ball z r

proof −
obtain e where e > 0 and e: ball z e ⊆ M

using assms openE by blast
show ?thesis
proof (cases {x ∈ M − {z}. f x ∈ {a, b}} = {})

case True
then show ?thesis

using e ‹e > 0 › that by fastforce
next

case False
let ?r = min e (Min (dist z ‘ {x ∈ M − {z}. f x ∈ {a,b}}))
show ?thesis
proof

show 0 < ?r
using min_less_iff_conj Min_gr_iff finab False ‹0 < e› by auto

have ball z ?r ⊆ ball z e
by (simp add: subset_ball)

with e show ball z ?r ⊆ M by blast
show

∧
x. [[x ∈ M − {z}; f x ∈ {a, b}]] =⇒ x /∈ ball z ?r

using min_less_iff_conj Min_gr_iff finab False ‹0 < e› by auto
qed

qed
qed
have holfb: f holomorphic_on (ball z r − {z})

apply (rule holomorphic_on_subset [OF holf])
using zrM by auto

show ?thesis
apply (rule great_Picard [OF open_ball _ ‹a 6= b› holfb])

Great{_}{\kern 0pt}Picard.html

Riemann_Mapping.thy 297

using non ‹0 < r› r zrM by auto
qed
with that show thesis

by meson
qed

theorem Casorati_Weierstrass:
assumes open M z ∈ M f holomorphic_on (M − {z})

and
∧

l. ¬ (f −−−→ l) (at z)
∧

l. ¬ ((inverse ◦ f) −−−→ l) (at z)
shows closure(f ‘ (M − {z})) = UNIV

proof −
obtain a where a: − {a} ⊆ f ‘ (M − {z})

using great_Picard_alt [OF assms] .
have UNIV = closure(− {a})

by (simp add: closure_interior)
also have ... ⊆ closure(f ‘ (M − {z}))

by (simp add: a closure_mono)
finally show ?thesis

by blast
qed

end

7 Moebius functions, Equivalents of Simply Con-
nected Sets, Riemann Mapping Theorem

theory Riemann_Mapping
imports Great_Picard
begin

7.1 Moebius functions are biholomorphisms of the unit disc
definition Moebius_function :: [real,complex,complex] ⇒ complex where

Moebius_function ≡ λt w z. exp(i ∗ of_real t) ∗ (z − w) / (1 − cnj w ∗ z)

lemma Moebius_function_simple:
Moebius_function 0 w z = (z − w) / (1 − cnj w ∗ z)

by (simp add: Moebius_function_def)

lemma Moebius_function_eq_zero:
Moebius_function t w w = 0

by (simp add: Moebius_function_def)

lemma Moebius_function_of_zero:
Moebius_function t w 0 = − exp(i ∗ of_real t) ∗ w

by (simp add: Moebius_function_def)

lemma Moebius_function_norm_lt_1 :

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 298

assumes w1 : norm w < 1 and z1 : norm z < 1
shows norm (Moebius_function t w z) < 1

proof −
have 1 − cnj w ∗ z 6= 0

by (metis complex_cnj_cnj complex_mod_sqrt_Re_mult_cnj mult.commute
mult_less_cancel_right1 norm_ge_zero norm_mult norm_one order .asym right_minus_eq
w1 z1)

then have VV : 1 − w ∗ cnj z 6= 0
by (metis complex_cnj_cnj complex_cnj_mult complex_cnj_one right_minus_eq)

then have 1 − norm (Moebius_function t w z) ^ 2 =
((1 − norm w ^ 2) / (norm (1 − cnj w ∗ z) ^ 2)) ∗ (1 − norm z ^ 2)

apply (cases w)
apply (cases z)

apply (simp add: Moebius_function_def divide_simps norm_divide norm_mult)
apply (simp add: complex_norm complex_diff complex_mult one_complex.code

complex_cnj)
apply (auto simp: algebra_simps power2_eq_square)
done

then have 1 − (cmod (Moebius_function t w z))2 = (1 − cmod (w ∗ w)) /
(cmod (1 − cnj w ∗ z))2 ∗ (1 − cmod (z ∗ z))

by (simp add: norm_mult power2_eq_square)
moreover have 0 < 1 − cmod (z ∗ z)

by (metis (no_types) z1 diff_gt_0_iff_gt mult.left_neutral norm_mult_less)
ultimately have 0 < 1 − norm (Moebius_function t w z) ^ 2

using ‹1 − cnj w ∗ z 6= 0 › w1 norm_mult_less by fastforce
then show ?thesis

using linorder_not_less by fastforce
qed

lemma Moebius_function_holomorphic:
assumes norm w < 1
shows Moebius_function t w holomorphic_on ball 0 1

proof −
have ∗: 1 − z ∗ w 6= 0 if norm z < 1 for z
proof −

have norm (1 ::complex) 6= norm (z ∗ w)
using assms that norm_mult_less by fastforce

then show ?thesis by auto
qed
show ?thesis

unfolding Moebius_function_def
proof (intro holomorphic_intros)

show
∧

z. z ∈ ball 0 1 =⇒ 1 − cnj w ∗ z 6= 0
by (metis ∗ complex_cnj_cnj complex_cnj_mult complex_mod_cnj mem_ball_0

mult.commute mult_1 right_minus_eq)
qed

qed

lemma Moebius_function_compose:

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 299

assumes meq: −w1 = w2 and norm w1 < 1 norm z < 1
shows Moebius_function 0 w1 (Moebius_function 0 w2 z) = z

proof −
have norm w2 < 1

using assms by auto
then have −w1 = z if cnj w2 ∗ z = 1
by (metis assms(3) complex_mod_cnj less_irrefl mult.right_neutral norm_mult_less

norm_one that)
moreover have z=0 if 1 − cnj w2 ∗ z = cnj w1 ∗ (z − w2)
proof −

have w2 ∗ cnj w2 = 1
using that meq by (auto simp: algebra_simps)

then show z = 0
using ‹cmod w2 < 1 › complex_mod_sqrt_Re_mult_cnj by force

qed
moreover have z − w2 − w1 ∗ (1 − cnj w2 ∗ z) = z ∗ (1 − cnj w2 ∗ z − cnj

w1 ∗ (z − w2))
using meq by (fastforce simp: algebra_simps)

ultimately
show ?thesis

by (simp add: Moebius_function_def divide_simps norm_divide norm_mult)
qed

lemma ball_biholomorphism_exists:
assumes a ∈ ball 0 1
obtains f g where f a = 0

f holomorphic_on ball 0 1 f ‘ ball 0 1 ⊆ ball 0 1
g holomorphic_on ball 0 1 g ‘ ball 0 1 ⊆ ball 0 1∧

z. z ∈ ball 0 1 =⇒ f (g z) = z∧
z. z ∈ ball 0 1 =⇒ g (f z) = z

proof
show Moebius_function 0 a holomorphic_on ball 0 1 Moebius_function 0 (−a)

holomorphic_on ball 0 1
using Moebius_function_holomorphic assms mem_ball_0 by auto

show Moebius_function 0 a a = 0
by (simp add: Moebius_function_eq_zero)

show Moebius_function 0 a ‘ ball 0 1 ⊆ ball 0 1
Moebius_function 0 (− a) ‘ ball 0 1 ⊆ ball 0 1

using Moebius_function_norm_lt_1 assms by auto
show Moebius_function 0 a (Moebius_function 0 (− a) z) = z

Moebius_function 0 (− a) (Moebius_function 0 a z) = z if z ∈ ball 0 1 for
z

using Moebius_function_compose assms that by auto
qed

7.2 A big chain of equivalents of simple connectedness for
an open set

lemma biholomorphic_to_disc_aux:

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 300

assumes open S connected S 0 ∈ S and S01 : S ⊆ ball 0 1
and prev:

∧
f . [[f holomorphic_on S ;

∧
z. z ∈ S =⇒ f z 6= 0 ; inj_on f S]]

=⇒ ∃ g. g holomorphic_on S ∧ (∀ z ∈ S . f z = (g z)2)
shows ∃ f g. f holomorphic_on S ∧ g holomorphic_on ball 0 1 ∧

(∀ z ∈ S . f z ∈ ball 0 1 ∧ g(f z) = z) ∧
(∀ z ∈ ball 0 1 . g z ∈ S ∧ f (g z) = z)

proof −
define F where F ≡ {h. h holomorphic_on S ∧ h ‘ S ⊆ ball 0 1 ∧ h 0 = 0 ∧

inj_on h S}
have idF : id ∈ F

using S01 by (auto simp: F_def)
then have F 6= {}

by blast
have imF_ne: ((λh. norm(deriv h 0)) ‘ F) 6= {}

using idF by auto
have holF :

∧
h. h ∈ F =⇒ h holomorphic_on S

by (auto simp: F_def)
obtain f where f ∈ F and normf :

∧
h. h ∈ F =⇒ norm(deriv h 0) ≤ norm(deriv

f 0)
proof −

obtain r where r > 0 and r : ball 0 r ⊆ S
using ‹open S› ‹0 ∈ S› openE by auto

have bdd: bdd_above ((λh. norm(deriv h 0)) ‘ F)
proof (intro bdd_aboveI exI ballI , clarify)

show norm (deriv f 0) ≤ 1 / r if f ∈ F for f
proof −

have r01 : (∗) (complex_of_real r) ‘ ball 0 1 ⊆ S
using that ‹r > 0 › by (auto simp: norm_mult r [THEN subsetD])

then have f holomorphic_on (∗) (complex_of_real r) ‘ ball 0 1
using holomorphic_on_subset [OF holF] by (simp add: that)

then have holf : f ◦ (λz. (r ∗ z)) holomorphic_on (ball 0 1)
by (intro holomorphic_intros holomorphic_on_compose)

have f0 : (f ◦ (∗) (complex_of_real r)) 0 = 0
using F_def that by auto

have f ‘ S ⊆ ball 0 1
using F_def that by blast

with r01 have fr1 :
∧

z. norm z < 1 =⇒ norm ((f ◦ (∗)(of_real r))z) < 1
by force

have ∗: ((λw. f (r ∗ w)) has_field_derivative deriv f (r ∗ z) ∗ r) (at z)
if z ∈ ball 0 1 for z::complex
using DERIV_chain ′ [where g=f] ‹open S›

by (meson DERIV_cmult_Id ‹f ∈ F› holF holomorphic_derivI im-
age_subset_iff

r01 that)
have df0 : ((λw. f (r ∗ w)) has_field_derivative deriv f 0 ∗ r) (at 0)

using ∗ [of 0] by simp
have deq: deriv (λx. f (complex_of_real r ∗ x)) 0 = deriv f 0 ∗ com-

plex_of_real r
using DERIV_imp_deriv df0 by blast

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 301

have norm (deriv (f ◦ (∗) (complex_of_real r)) 0) ≤ 1
by (auto intro: Schwarz_Lemma [OF holf f0 fr1 , of 0])

with ‹r > 0 › show ?thesis
by (simp add: deq norm_mult divide_simps o_def)

qed
qed
define l where l ≡ SUP h∈F . norm (deriv h 0)
have eql: norm (deriv f 0) = l if le: l ≤ norm (deriv f 0) and f ∈ F for f
proof (rule order_antisym [OF _ le])

show cmod (deriv f 0) ≤ l
using ‹f ∈ F› bdd cSUP_upper by (fastforce simp: l_def)

qed
obtain F where F in:

∧
n. F n ∈ F and F lim: (λn. norm (deriv (F n) 0))

−−−−→ l
proof −

have ∃ f . f ∈ F ∧ |norm (deriv f 0) − l| < 1 / (Suc n) for n
proof −

obtain f where f ∈ F and f : l < norm (deriv f 0) + 1/(Suc n)
using cSup_least [OF imF_ne, of l − 1/(Suc n)] by (fastforce simp:

l_def)
then have |norm (deriv f 0) − l| < 1 / (Suc n)

by (fastforce simp: abs_if not_less eql)
with ‹f ∈ F› show ?thesis

by blast
qed
then obtain F where fF :

∧
n. (F n) ∈ F

and fless:
∧

n. |norm (deriv (F n) 0) − l| < 1 / (Suc n)
by metis

have (λn. norm (deriv (F n) 0)) −−−−→ l
proof (rule metric_LIMSEQ_I)

fix e::real
assume e > 0
then obtain N ::nat where N : e > 1/(Suc N)

using nat_approx_posE by blast
show ∃N . ∀n≥N . dist (norm (deriv (F n) 0)) l < e
proof (intro exI allI impI)

fix n assume N ≤ n
have dist (norm (deriv (F n) 0)) l < 1 / (Suc n)

using fless by (simp add: dist_norm)
also have . . . < e

using N ‹N ≤ n› inverse_of_nat_le le_less_trans by blast
finally show dist (norm (deriv (F n) 0)) l < e .

qed
qed
with fF show ?thesis

using that by blast
qed
have

∧
K . [[compact K ; K ⊆ S]] =⇒ ∃B. ∀ h∈F . ∀ z∈K . norm (h z) ≤ B

by (rule_tac x=1 in exI) (force simp: F_def)

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 302

moreover have range F ⊆ F
using ‹

∧
n. F n ∈ F› by blast

ultimately obtain f and r :: nat ⇒ nat
where holf : f holomorphic_on S and r : strict_mono r

and limf :
∧

x. x ∈ S =⇒ (λn. F (r n) x) −−−−→ f x
and ulimf :

∧
K . [[compact K ; K ⊆ S]] =⇒ uniform_limit K (F ◦ r) f

sequentially
using Montel [of S F F , OF ‹open S› holF] by auto+

have der :
∧

n x. x ∈ S =⇒ ((F ◦ r) n has_field_derivative ((λn. deriv (F n))
◦ r) n x) (at x)

using ‹
∧

n. F n ∈ F› ‹open S› holF holomorphic_derivI by fastforce
have ulim:

∧
x. x ∈ S =⇒ ∃ d>0 . cball x d ⊆ S ∧ uniform_limit (cball x d)

(F ◦ r) f sequentially
by (meson ulimf ‹open S› compact_cball open_contains_cball)

obtain f ′ :: complex⇒complex where f ′: (f has_field_derivative f ′ 0) (at 0)
and tof ′0 : (λn. ((λn. deriv (F n)) ◦ r) n 0) −−−−→ f ′ 0
using has_complex_derivative_uniform_sequence [OF ‹open S› der ulim] ‹0

∈ S› by metis
then have derf0 : deriv f 0 = f ′ 0

by (simp add: DERIV_imp_deriv)
have f field_differentiable (at 0)

using field_differentiable_def f ′ by blast
have (λx. (norm (deriv (F (r x)) 0))) −−−−→ norm (deriv f 0)
using isCont_tendsto_compose [OF continuous_norm [OF continuous_ident]

tof ′0] derf0 by auto
with LIMSEQ_subseq_LIMSEQ [OF F lim r] have no_df0 : norm(deriv f 0)

= l
by (force simp: o_def intro: tendsto_unique)

have nonconstf : ¬ f constant_on S
using ‹open S› ‹0 ∈ S› no_df0 holomorphic_nonconstant [OF holf] eql [OF

_ idF]
by force

show ?thesis
proof

show f ∈ F
unfolding F_def

proof (intro CollectI conjI holf)
have norm(f z) ≤ 1 if z ∈ S for z
proof (intro Lim_norm_ubound [OF _ limf] always_eventually allI that)

fix n
have F (r n) ∈ F

by (simp add: F in)
then show norm (F (r n) z) ≤ 1

using that by (auto simp: F_def)
qed simp
then have fless1 : norm(f z) < 1 if z ∈ S for z
using maximum_modulus_principle [OF holf ‹open S› ‹connected S› ‹open

S›] nonconstf that
by fastforce

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 303

then show f ‘ S ⊆ ball 0 1
by auto

have (λn. F (r n) 0) −−−−→ 0
using F in by (auto simp: F_def)

then show f 0 = 0
using tendsto_unique [OF _ limf] ‹0 ∈ S› trivial_limit_sequentially by

blast
show inj_on f S
proof (rule Hurwitz_injective [OF ‹open S› ‹connected S› _ holf])

show
∧

n. (F ◦ r) n holomorphic_on S
by (simp add: F in holF)

show
∧

K . [[compact K ; K ⊆ S]] =⇒ uniform_limit K (F ◦ r) f sequentially
by (metis ulimf)

show ¬ f constant_on S
using nonconstf by auto

show
∧

n. inj_on ((F ◦ r) n) S
using F in by (auto simp: F_def)

qed
qed
show

∧
h. h ∈ F =⇒ norm (deriv h 0) ≤ norm (deriv f 0)

by (metis eql le_cases no_df0)
qed

qed
have holf : f holomorphic_on S and injf : inj_on f S and f01 : f ‘ S ⊆ ball 0 1

using ‹f ∈ F› by (auto simp: F_def)
obtain g where holg: g holomorphic_on (f ‘ S)

and derg:
∧

z. z ∈ S =⇒ deriv f z ∗ deriv g (f z) = 1
and gf :

∧
z. z ∈ S =⇒ g(f z) = z

using holomorphic_has_inverse [OF holf ‹open S› injf] by metis
have ball 0 1 ⊆ f ‘ S
proof

fix a::complex
assume a: a ∈ ball 0 1
have False if

∧
x. x ∈ S =⇒ f x 6= a

proof −
obtain h k where h a = 0

and holh: h holomorphic_on ball 0 1 and h01 : h ‘ ball 0 1 ⊆ ball 0 1
and holk: k holomorphic_on ball 0 1 and k01 : k ‘ ball 0 1 ⊆ ball 0 1
and hk:

∧
z. z ∈ ball 0 1 =⇒ h (k z) = z

and kh:
∧

z. z ∈ ball 0 1 =⇒ k (h z) = z
using ball_biholomorphism_exists [OF a] by blast

have nf1 :
∧

z. z ∈ S =⇒ norm(f z) < 1
using ‹f ∈ F› by (auto simp: F_def)

have 1 : h ◦ f holomorphic_on S
using F_def ‹f ∈ F› holh holomorphic_on_compose holomorphic_on_subset

by blast
have 2 :

∧
z. z ∈ S =⇒ (h ◦ f) z 6= 0

by (metis ‹h a = 0 › a comp_eq_dest_lhs nf1 kh mem_ball_0 that)
have 3 : inj_on (h ◦ f) S

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 304

by (metis (no_types, lifting) F_def ‹f ∈ F› comp_inj_on inj_on_inverseI
injf kh mem_Collect_eq inj_on_subset)

obtain ψ where holψ: ψ holomorphic_on ((h ◦ f) ‘ S)
and ψ2 :

∧
z. z ∈ S =⇒ ψ(h (f z)) ^ 2 = h(f z)

proof (rule exE [OF prev [OF 1 2 3]], safe)
fix ϑ
assume holϑ: ϑ holomorphic_on S and ϑ2 : (∀ z∈S . (h ◦ f) z = (ϑ z)2)
show thesis
proof

show (ϑ ◦ g ◦ k) holomorphic_on (h ◦ f) ‘ S
proof (intro holomorphic_on_compose)

show k holomorphic_on (h ◦ f) ‘ S
using holomorphic_on_subset [OF holk] f01 h01 by force

show g holomorphic_on k ‘ (h ◦ f) ‘ S
using holomorphic_on_subset [OF holg] by (force simp: kh nf1)

show ϑ holomorphic_on g ‘ k ‘ (h ◦ f) ‘ S
using holomorphic_on_subset [OF holϑ] by (force simp: gf kh nf1)

qed
show ((ϑ ◦ g ◦ k) (h (f z)))2 = h (f z) if z ∈ S for z

using ϑ2 gf kh nf1 that by fastforce
qed

qed
have normψ1 : norm(ψ (h (f z))) < 1 if z ∈ S for z
by (metis ψ2 h01 image_subset_iff mem_ball_0 nf1 norm_power power_less1_D

that)
then have ψ01 : ψ (h (f 0)) ∈ ball 0 1

by (simp add: ‹0 ∈ S›)
obtain p q where p0 : p (ψ (h (f 0))) = 0

and holp: p holomorphic_on ball 0 1 and p01 : p ‘ ball 0 1 ⊆ ball 0 1
and holq: q holomorphic_on ball 0 1 and q01 : q ‘ ball 0 1 ⊆ ball 0 1
and pq:

∧
z. z ∈ ball 0 1 =⇒ p (q z) = z

and qp:
∧

z. z ∈ ball 0 1 =⇒ q (p z) = z
using ball_biholomorphism_exists [OF ψ01] by metis

have p ◦ ψ ◦ h ◦ f ∈ F
unfolding F_def

proof (intro CollectI conjI holf)
show p ◦ ψ ◦ h ◦ f holomorphic_on S
proof (intro holomorphic_on_compose holf)

show h holomorphic_on f ‘ S
using holomorphic_on_subset [OF holh] f01 by fastforce

show ψ holomorphic_on h ‘ f ‘ S
using holomorphic_on_subset [OF holψ] by fastforce

show p holomorphic_on ψ ‘ h ‘ f ‘ S
using holomorphic_on_subset [OF holp] by (simp add: image_subset_iff

normψ1)
qed
show (p ◦ ψ ◦ h ◦ f) ‘ S ⊆ ball 0 1

using normψ1 p01 by fastforce
show (p ◦ ψ ◦ h ◦ f) 0 = 0

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 305

by (simp add: ‹p (ψ (h (f 0))) = 0 ›)
show inj_on (p ◦ ψ ◦ h ◦ f) S

unfolding inj_on_def o_def
by (metis ψ2 dist_0_norm gf kh mem_ball nf1 normψ1 qp)

qed
then have le_norm_df0 : norm (deriv (p ◦ ψ ◦ h ◦ f) 0) ≤ norm (deriv f 0)

by (rule normf)
have 1 : k ◦ power2 ◦ q holomorphic_on ball 0 1
proof (intro holomorphic_on_compose holq)

show power2 holomorphic_on q ‘ ball 0 1
using holomorphic_on_subset holomorphic_on_power
by (blast intro: holomorphic_on_ident)

show k holomorphic_on power2 ‘ q ‘ ball 0 1
using q01 holomorphic_on_subset [OF holk]
by (force simp: norm_power abs_square_less_1)

qed
have 2 : (k ◦ power2 ◦ q) 0 = 0

using p0 F_def ‹f ∈ F› ψ01 ψ2 ‹0 ∈ S› kh qp by force
have 3 : norm ((k ◦ power2 ◦ q) z) < 1 if norm z < 1 for z
proof −

have norm ((power2 ◦ q) z) < 1
using that q01 by (force simp: norm_power abs_square_less_1)

with k01 show ?thesis
by fastforce

qed
have False if c: ∀ z. norm z < 1 −→ (k ◦ power2 ◦ q) z = c ∗ z and norm

c = 1 for c
proof −

have c 6= 0 using that by auto
have norm (p(1/2)) < 1 norm (p(−1/2)) < 1

using p01 by force+
then have (k ◦ power2 ◦ q) (p(1/2)) = c ∗ p(1/2) (k ◦ power2 ◦ q)

(p(−1/2)) = c ∗ p(−1/2)
using c by force+

then have p (1/2) = p (− (1/2))
by (auto simp: ‹c 6= 0 › qp o_def)

then have q (p (1/2)) = q (p (− (1/2)))
by simp

then have 1/2 = − (1/2 ::complex)
by (auto simp: qp)

then show False
by simp

qed
moreover
have False if norm (deriv (k ◦ power2 ◦ q) 0) 6= 1 norm (deriv (k ◦ power2

◦ q) 0) ≤ 1
and le:

∧
ξ. norm ξ < 1 =⇒ norm ((k ◦ power2 ◦ q) ξ) ≤ norm ξ

proof −
have norm (deriv (k ◦ power2 ◦ q) 0) < 1

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 306

using that by simp
moreover have eq: deriv f 0 = deriv (k ◦ (λz. z ^ 2) ◦ q) 0 ∗ deriv (p ◦

ψ ◦ h ◦ f) 0
proof (intro DERIV_imp_deriv has_field_derivative_transform_within_open

[OF DERIV_chain])
show (k ◦ power2 ◦ q has_field_derivative deriv (k ◦ power2 ◦ q) 0) (at

((p ◦ ψ ◦ h ◦ f) 0))
using 1 holomorphic_derivI p0 by auto

show (p ◦ ψ ◦ h ◦ f has_field_derivative deriv (p ◦ ψ ◦ h ◦ f) 0) (at 0)
using ‹p ◦ ψ ◦ h ◦ f ∈ F› ‹open S› ‹0 ∈ S› holF holomorphic_derivI

by blast
show

∧
x. x ∈ S =⇒ (k ◦ power2 ◦ q ◦ (p ◦ ψ ◦ h ◦ f)) x = f x

using ψ2 f01 kh normψ1 qp by auto
qed (use assms in simp_all)
ultimately have cmod (deriv (p ◦ ψ ◦ h ◦ f) 0) ≤ 0

using le_norm_df0
by (metis linorder_not_le mult.commute mult_less_cancel_left2 norm_mult)
moreover have 1 ≤ norm (deriv f 0)

using normf [of id] by (simp add: idF)
ultimately show False

by (simp add: eq)
qed
ultimately show ?thesis

using Schwarz_Lemma [OF 1 2 3] norm_one by blast
qed
then show a ∈ f ‘ S

by blast
qed
then have fS : f ‘ S = ball 0 1

using F_def ‹f ∈ F› by blast
then have ∀ z∈ball 0 1 . g z ∈ S ∧ f (g z) = z

by (metis gf imageE)
with fS show ?thesis

by (metis gf holf holg image_eqI)
qed

locale SC_Chain =
fixes S :: complex set
assumes openS : open S

begin

lemma winding_number_zero:
assumes simply_connected S
shows connected S ∧

(∀ γ z. path γ ∧ path_image γ ⊆ S ∧
pathfinish γ = pathstart γ ∧ z /∈ S −→ winding_number γ z = 0)

using assms
by (auto simp: simply_connected_imp_connected simply_connected_imp_winding_number_zero)

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 307

lemma contour_integral_zero:
assumes valid_path g path_image g ⊆ S pathfinish g = pathstart g f holomor-

phic_on S∧
γ z. [[path γ; path_image γ ⊆ S ; pathfinish γ = pathstart γ; z /∈ S]] =⇒

winding_number γ z = 0
shows (f has_contour_integral 0) g
using assms by (meson Cauchy_theorem_global openS valid_path_imp_path)

lemma global_primitive:
assumes connected S and holf : f holomorphic_on S
and prev:

∧
γ f . [[valid_path γ; path_image γ ⊆ S ; pathfinish γ = pathstart γ; f

holomorphic_on S]] =⇒ (f has_contour_integral 0) γ
shows ∃ h. ∀ z ∈ S . (h has_field_derivative f z) (at z)

proof (cases S = {})
case True then show ?thesis

by simp
next

case False
then obtain a where a ∈ S

by blast
show ?thesis
proof (intro exI ballI)

fix x assume x ∈ S
then obtain d where d > 0 and d: cball x d ⊆ S

using openS open_contains_cball_eq by blast
let ?g = λz. (SOME g. polynomial_function g ∧ path_image g ⊆ S ∧ pathstart

g = a ∧ pathfinish g = z)
show ((λz. contour_integral (?g z) f) has_field_derivative f x)

(at x)
proof (simp add: has_field_derivative_def has_derivative_at2 bounded_linear_mult_right,

rule Lim_transform)
show (λy. inverse(norm(y − x)) ∗R (contour_integral(linepath x y) f − f x

∗ (y − x))) −x→ 0
proof (clarsimp simp add: Lim_at)

fix e::real assume e > 0
moreover have continuous (at x) f

using openS ‹x ∈ S› holf continuous_on_eq_continuous_at holomor-
phic_on_imp_continuous_on by auto

ultimately obtain d1 where d1 > 0
and d1 :

∧
x ′. dist x ′ x < d1 =⇒ dist (f x ′) (f x) < e/2

unfolding continuous_at_eps_delta
by (metis less_divide_eq_numeral1 (1) mult_zero_left)

obtain d2 where d2 > 0 and d2 : ball x d2 ⊆ S
using openS ‹x ∈ S› open_contains_ball_eq by blast

have inverse (norm (y − x)) ∗ norm (contour_integral (linepath x y) f − f
x ∗ (y − x)) < e

if 0 < d1 0 < d2 y 6= x dist y x < d1 dist y x < d2 for y
proof −

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 308

have f contour_integrable_on linepath x y
proof (rule contour_integrable_continuous_linepath [OF continuous_on_subset])

show continuous_on S f
by (simp add: holf holomorphic_on_imp_continuous_on)

have closed_segment x y ⊆ ball x d2
by (meson dist_commute_lessI dist_in_closed_segment le_less_trans

mem_ball subsetI that(5))
with d2 show closed_segment x y ⊆ S

by blast
qed
then obtain z where z: (f has_contour_integral z) (linepath x y)

by (force simp: contour_integrable_on_def)
have con: ((λw. f x) has_contour_integral f x ∗ (y − x)) (linepath x y)

using has_contour_integral_const_linepath [of f x y x] by metis
have norm (z − f x ∗ (y − x)) ≤ (e/2) ∗ norm (y − x)
proof (rule has_contour_integral_bound_linepath)
show ((λw. f w − f x) has_contour_integral z − f x ∗ (y − x)) (linepath

x y)
by (rule has_contour_integral_diff [OF z con])

show
∧

w. w ∈ closed_segment x y =⇒ norm (f w − f x) ≤ e/2
by (metis d1 dist_norm less_le_trans not_less not_less_iff_gr_or_eq

segment_bound1 that(4))
qed (use ‹e > 0 › in auto)
with ‹e > 0 › have inverse (norm (y − x)) ∗ norm (z − f x ∗ (y − x))

≤ e/2
by (simp add: field_split_simps)

also have . . . < e
using ‹e > 0 › by simp

finally show ?thesis
by (simp add: contour_integral_unique [OF z])

qed
with ‹d1 > 0 › ‹d2 > 0 ›
show ∃ d>0 . ∀ z. z 6= x ∧ dist z x < d −→

inverse (norm (z − x)) ∗ norm (contour_integral (linepath x z) f −
f x ∗ (z − x)) < e

by (rule_tac x=min d1 d2 in exI) auto
qed

next
have ∗: (1 / norm (y − x)) ∗R (contour_integral (?g y) f −

(contour_integral (?g x) f + f x ∗ (y − x))) =
(contour_integral (linepath x y) f − f x ∗ (y − x)) /R norm (y − x)

if 0 < d y 6= x and yx: dist y x < d for y
proof −

have y ∈ S
by (metis subsetD d dist_commute less_eq_real_def mem_cball yx)

have gxy: polynomial_function (?g x) ∧ path_image (?g x) ⊆ S ∧ pathstart
(?g x) = a ∧ pathfinish (?g x) = x

polynomial_function (?g y) ∧ path_image (?g y) ⊆ S ∧ pathstart
(?g y) = a ∧ pathfinish (?g y) = y

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 309

using someI_ex [OF connected_open_polynomial_connected [OF openS
‹connected S› ‹a ∈ S›]] ‹x ∈ S› ‹y ∈ S›

by meson+
then have vp: valid_path (?g x) valid_path (?g y)

by (simp_all add: valid_path_polynomial_function)
have f0 : (f has_contour_integral 0) ((?g x) +++ linepath x y +++

reversepath (?g y))
proof (rule prev)

show valid_path ((?g x) +++ linepath x y +++ reversepath (?g y))
using gxy vp by (auto simp: valid_path_join)

have closed_segment x y ⊆ cball x d
using yx by (auto simp: dist_commute dest!: dist_in_closed_segment)

then have closed_segment x y ⊆ S
using d by blast

then show path_image ((?g x) +++ linepath x y +++ reversepath (?g
y)) ⊆ S

using gxy by (auto simp: path_image_join)
qed (use gxy holf in auto)
then have fintxy: f contour_integrable_on linepath x y

using gxy(2) has_contour_integral_integrable vp by fastforce
have fintgx: f contour_integrable_on (?g x) f contour_integrable_on (?g y)
using openS contour_integrable_holomorphic_simple gxy holf vp by blast+
show ?thesis

apply (clarsimp simp add: divide_simps)
using contour_integral_unique [OF f0]

apply (simp add: fintxy gxy contour_integrable_reversepath contour_integral_reversepath
fintgx vp)

apply (simp add: algebra_simps)
done

qed
show (λz. (1 / norm (z − x)) ∗R

(contour_integral (?g z) f − (contour_integral (?g x) f + f x ∗ (z
− x))) −

(contour_integral (linepath x z) f − f x ∗ (z − x)) /R norm (z − x))
−x→ 0

apply (rule tendsto_eventually)
apply (simp add: eventually_at)
apply (rule_tac x=d in exI)
using ‹d > 0 › ∗ by simp

qed
qed

qed

lemma holomorphic_log:
assumes connected S and holf : f holomorphic_on S and nz:

∧
z. z ∈ S =⇒ f z

6= 0
and prev:

∧
f . f holomorphic_on S =⇒ ∃ h. ∀ z ∈ S . (h has_field_derivative f z)

(at z)
shows ∃ g. g holomorphic_on S ∧ (∀ z ∈ S . f z = exp(g z))

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 310

proof −
have (λz. deriv f z / f z) holomorphic_on S

by (simp add: openS holf holomorphic_deriv holomorphic_on_divide nz)
then obtain g where g:

∧
z. z ∈ S =⇒ (g has_field_derivative deriv f z / f z)

(at z)
using prev [of λz. deriv f z / f z] by metis

have Df :
∧

x. x ∈ S =⇒ DERIV f x :> deriv f x
using holf holomorphic_derivI openS by force

have hfd:
∧

x. x ∈ S =⇒ ((λz. exp (g z) / f z) has_field_derivative 0) (at x)
by (rule derivative_eq_intros Df g nz| simp)+

obtain c where c:
∧

x. x ∈ S =⇒ exp (g x) / f x = c
proof (rule DERIV_zero_connected_constant[OF ‹connected S› openS finite.emptyI])

show continuous_on S (λz. exp (g z) / f z)
by (metis (full_types) openS g continuous_on_divide continuous_on_exp holf

holomorphic_on_imp_continuous_on holomorphic_on_open nz)
then show ∀ x∈S − {}. ((λz. exp (g z) / f z) has_field_derivative 0) (at x)

using hfd by (blast intro: DERIV_zero_connected_constant [OF ‹connected
S› openS finite.emptyI , of λz. exp(g z) / f z])

qed auto
show ?thesis
proof (intro exI ballI conjI)

have g holomorphic_on S
using openS g holomorphic_on_open by blast

then show (λz. Ln(inverse c) + g z) holomorphic_on S
by (intro holomorphic_intros)

fix z :: complex
assume z ∈ S
then have exp (g z) / c = f z
by (metis c divide_divide_eq_right exp_not_eq_zero nonzero_mult_div_cancel_left)
moreover have 1 / c 6= 0

using ‹z ∈ S› c nz by fastforce
ultimately show f z = exp (Ln (inverse c) + g z)

by (simp add: exp_add inverse_eq_divide)
qed

qed

lemma holomorphic_sqrt:
assumes holf : f holomorphic_on S and nz:

∧
z. z ∈ S =⇒ f z 6= 0

and prev:
∧

f . [[f holomorphic_on S ; ∀ z ∈ S . f z 6= 0]] =⇒ ∃ g. g holomorphic_on
S ∧ (∀ z ∈ S . f z = exp(g z))

shows ∃ g. g holomorphic_on S ∧ (∀ z ∈ S . f z = (g z)2)
proof −

obtain g where holg: g holomorphic_on S and g:
∧

z. z ∈ S =⇒ f z = exp (g
z)

using prev [of f] holf nz by metis
show ?thesis
proof (intro exI ballI conjI)

show (λz. exp(g z/2)) holomorphic_on S
by (intro holomorphic_intros) (auto simp: holg)

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 311

show
∧

z. z ∈ S =⇒ f z = (exp (g z/2))2
by (metis (no_types) g exp_double nonzero_mult_div_cancel_left times_divide_eq_right

zero_neq_numeral)
qed

qed

lemma biholomorphic_to_disc:
assumes connected S and S : S 6= {} S 6= UNIV
and prev:

∧
f . [[f holomorphic_on S ; ∀ z ∈ S . f z 6= 0]] =⇒ ∃ g. g holomorphic_on

S ∧ (∀ z ∈ S . f z = (g z)2)
shows ∃ f g. f holomorphic_on S ∧ g holomorphic_on ball 0 1 ∧

(∀ z ∈ S . f z ∈ ball 0 1 ∧ g(f z) = z) ∧
(∀ z ∈ ball 0 1 . g z ∈ S ∧ f (g z) = z)

proof −
obtain a b where a ∈ S b /∈ S

using S by blast
then obtain δ where δ > 0 and δ: ball a δ ⊆ S

using openS openE by blast
obtain g where holg: g holomorphic_on S and eqg:

∧
z. z ∈ S =⇒ z − b = (g

z)2
proof (rule exE [OF prev [of λz. z − b]])

show (λz. z − b) holomorphic_on S
by (intro holomorphic_intros)

qed (use ‹b /∈ S› in auto)
have ¬ g constant_on S
proof −

have (a + δ/2) ∈ ball a δ a + (δ/2) 6= a
using ‹δ > 0 › by (simp_all add: dist_norm)

then show ?thesis
unfolding constant_on_def
using eqg [of a] eqg [of a + δ/2] ‹a ∈ S› δ
by (metis diff_add_cancel subset_eq)

qed
then have open (g ‘ ball a δ)

using open_mapping_thm [of g S ball a δ, OF holg openS ‹connected S›] δ by
blast

then obtain r where r > 0 and r : ball (g a) r ⊆ (g ‘ ball a δ)
by (metis ‹0 < δ› centre_in_ball imageI openE)

have g_not_r : g z /∈ ball (−(g a)) r if z ∈ S for z
proof

assume g z ∈ ball (−(g a)) r
then have − g z ∈ ball (g a) r

by (metis add.inverse_inverse dist_minus mem_ball)
with r have − g z ∈ (g ‘ ball a δ)

by blast
then obtain w where w: − g z = g w dist a w < δ

by auto
with δ have w ∈ S

by force

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 312

then have w = z
by (metis diff_add_cancel eqg power_minus_Bit0 that w(1))

then have g z = 0
using ‹− g z = g w› by auto

with eqg that ‹b /∈ S› show False
by force

qed
then have nz:

∧
z. z ∈ S =⇒ g z + g a 6= 0

by (metis ‹0 < r› add.commute add_diff_cancel_left ′ centre_in_ball diff_0)
let ?f = λz. (r/3) / (g z + g a) − (r/3) / (g a + g a)
obtain h where holh: h holomorphic_on S and h a = 0 and h01 : h ‘ S ⊆ ball

0 1 and inj_on h S
proof

show ?f holomorphic_on S
by (intro holomorphic_intros holg nz)

have 3 : [[norm x ≤ 1/3 ; norm y ≤ 1/3]] =⇒ norm(x − y) < 1 for x y::complex
using norm_triangle_ineq4 [of x y] by simp

have norm ((r/3) / (g z + g a) − (r/3) / (g a + g a)) < 1 if z ∈ S for z
apply (rule 3)
unfolding norm_divide
using ‹r > 0 › g_not_r [OF ‹z ∈ S›] g_not_r [OF ‹a ∈ S›]
by (simp_all add: field_split_simps dist_commute dist_norm)

then show ?f ‘ S ⊆ ball 0 1
by auto

show inj_on ?f S
using ‹r > 0 › eqg apply (clarsimp simp: inj_on_def)
by (metis diff_add_cancel)

qed auto
obtain k where holk: k holomorphic_on (h ‘ S)

and derk:
∧

z. z ∈ S =⇒ deriv h z ∗ deriv k (h z) = 1
and kh:

∧
z. z ∈ S =⇒ k(h z) = z

using holomorphic_has_inverse [OF holh openS ‹inj_on h S›] by metis

have 1 : open (h ‘ S)
by (simp add: ‹inj_on h S› holh openS open_mapping_thm3)

have 2 : connected (h ‘ S)
by (simp add: connected_continuous_image ‹connected S› holh holomorphic_on_imp_continuous_on)

have 3 : 0 ∈ h ‘ S
using ‹a ∈ S› ‹h a = 0 › by auto

have 4 : ∃ g. g holomorphic_on h ‘ S ∧ (∀ z∈h ‘ S . f z = (g z)2)
if holf : f holomorphic_on h ‘ S and nz:

∧
z. z ∈ h ‘ S =⇒ f z 6= 0 inj_on f (h

‘ S) for f
proof −

obtain g where holg: g holomorphic_on S and eqg:
∧

z. z ∈ S =⇒ (f ◦ h) z
= (g z)2

by (smt (verit) comp_def holf holh holomorphic_on_compose image_eqI
nz(1) prev)

show ?thesis
proof (intro exI conjI)

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 313

show g ◦ k holomorphic_on h ‘ S
by (smt (verit) holg holk holomorphic_on_compose holomorphic_on_subset

imageE image_subset_iff kh)
show ∀ z ∈ h ‘ S . f z = ((g ◦ k) z)2

using eqg kh by auto
qed

qed
obtain f g where f : f holomorphic_on h ‘ S and g: g holomorphic_on ball 0 1

and gf : ∀ z∈h ‘ S . f z ∈ ball 0 1 ∧ g (f z) = z and fg:∀ z∈ball 0 1 . g z ∈ h
‘ S ∧ f (g z) = z

using biholomorphic_to_disc_aux [OF 1 2 3 h01 4] by blast
show ?thesis
proof (intro exI conjI)

show f ◦ h holomorphic_on S
by (simp add: f holh holomorphic_on_compose)

show k ◦ g holomorphic_on ball 0 1
by (metis holomorphic_on_subset image_subset_iff fg holk g holomor-

phic_on_compose)
qed (use fg gf kh in auto)

qed

lemma homeomorphic_to_disc:
assumes S = UNIV ∨

(∃ f g. f holomorphic_on S ∧ g holomorphic_on ball 0 1 ∧
(∀ z ∈ S . f z ∈ ball 0 1 ∧ g(f z) = z) ∧
(∀ z ∈ ball 0 1 . g z ∈ S ∧ f (g z) = z)) (is _ ∨ ?P)

shows S homeomorphic ball (0 ::complex) 1
by (smt (verit, ccfv_SIG) holomorphic_on_imp_continuous_on homeomorphic_ball01_UNIV

homeomorphic_minimal assms)

lemma homeomorphic_to_disc_imp_simply_connected:
assumes S = {} ∨ S homeomorphic ball (0 ::complex) 1
shows simply_connected S
using assms homeomorphic_simply_connected_eq convex_imp_simply_connected

by auto

end

proposition
assumes open S
shows simply_connected_eq_winding_number_zero:

simply_connected S ←→
connected S ∧
(∀ g z. path g ∧ path_image g ⊆ S ∧

pathfinish g = pathstart g ∧ (z /∈ S)
−→ winding_number g z = 0) (is ?wn0)

and simply_connected_eq_contour_integral_zero:
simply_connected S ←→

connected S ∧

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 314

(∀ g f . valid_path g ∧ path_image g ⊆ S ∧
pathfinish g = pathstart g ∧ f holomorphic_on S
−→ (f has_contour_integral 0) g) (is ?ci0)

and simply_connected_eq_global_primitive:
simply_connected S ←→

connected S ∧
(∀ f . f holomorphic_on S −→

(∃ h. ∀ z. z ∈ S −→ (h has_field_derivative f z) (at z))) (is ?gp)
and simply_connected_eq_holomorphic_log:

simply_connected S ←→
connected S ∧
(∀ f . f holomorphic_on S ∧ (∀ z ∈ S . f z 6= 0)
−→ (∃ g. g holomorphic_on S ∧ (∀ z ∈ S . f z = exp(g z)))) (is ?log)

and simply_connected_eq_holomorphic_sqrt:
simply_connected S ←→

connected S ∧
(∀ f . f holomorphic_on S ∧ (∀ z ∈ S . f z 6= 0)
−→ (∃ g. g holomorphic_on S ∧ (∀ z ∈ S . f z = (g z)2))) (is ?sqrt)

and simply_connected_eq_biholomorphic_to_disc:
simply_connected S ←→

S = {} ∨ S = UNIV ∨
(∃ f g. f holomorphic_on S ∧ g holomorphic_on ball 0 1 ∧

(∀ z ∈ S . f z ∈ ball 0 1 ∧ g(f z) = z) ∧
(∀ z ∈ ball 0 1 . g z ∈ S ∧ f (g z) = z)) (is ?bih)

and simply_connected_eq_homeomorphic_to_disc:
simply_connected S ←→ S = {} ∨ S homeomorphic ball (0 ::complex) 1

(is ?disc)
proof −

interpret SC_Chain
using assms by (simp add: SC_Chain_def)

have ?wn0 ∧ ?ci0 ∧ ?gp ∧ ?log ∧ ?sqrt ∧ ?bih ∧ ?disc
proof −

have ∗: [[α =⇒ β; β =⇒ γ; γ =⇒ δ; δ =⇒ ζ; ζ =⇒ η; η =⇒ ϑ; ϑ =⇒ ξ; ξ =⇒
α]]

=⇒ (α ←→ β) ∧ (α ←→ γ) ∧ (α ←→ δ) ∧ (α ←→ ζ) ∧
(α ←→ η) ∧ (α ←→ ϑ) ∧ (α ←→ ξ) for α β γ δ ζ η ϑ ξ

by blast
show ?thesis

apply (rule ∗)
using winding_number_zero apply metis
using contour_integral_zero apply metis
using global_primitive apply metis
using holomorphic_log apply metis
using holomorphic_sqrt apply simp
using biholomorphic_to_disc apply blast
using homeomorphic_to_disc apply blast
using homeomorphic_to_disc_imp_simply_connected apply blast
done

qed

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 315

then show ?wn0 ?ci0 ?gp ?log ?sqrt ?bih ?disc
by safe

qed

corollary contractible_eq_simply_connected_2d:
fixes S :: complex set
assumes open S
shows contractible S ←→ simply_connected S

proof
show contractible S =⇒ simply_connected S

by (simp add: contractible_imp_simply_connected)
show simply_connected S =⇒ contractible S

using assms convex_imp_contractible homeomorphic_contractible_eq
simply_connected_eq_homeomorphic_to_disc by auto

qed

7.3 A further chain of equivalences about components of the
complement of a simply connected set

(following 1.35 in Burckel’S book)
context SC_Chain
begin

lemma frontier_properties:
assumes simply_connected S
shows if bounded S then connected(frontier S)

else ∀C ∈ components(frontier S). ¬ bounded C
proof −

have S = {} ∨ S homeomorphic ball (0 ::complex) 1
using simply_connected_eq_homeomorphic_to_disc assms openS by blast

then show ?thesis
proof

assume S = {}
then show ?thesis

by simp
next

assume S01 : S homeomorphic ball (0 ::complex) 1
then obtain g f

where gim: g ‘ S = ball 0 1 and fg:
∧

x. x ∈ S =⇒ f (g x) = x
and fim: f ‘ ball 0 1 = S and gf :

∧
y. cmod y < 1 =⇒ g(f y) = y

and contg: continuous_on S g and contf : continuous_on (ball 0 1) f
by (fastforce simp: homeomorphism_def homeomorphic_def)

define D where D ≡ λn. ball (0 ::complex) (1 − 1/(of_nat n + 2))
define A where A ≡ λn. {z::complex. 1 − 1/(of_nat n + 2) < norm z ∧

norm z < 1}
define X where X ≡ λn::nat. closure(f ‘ A n)
have D01 : D n ⊆ ball 0 1 for n

by (simp add: D_def ball_subset_ball_iff)
have A01 : A n ⊆ ball 0 1 for n

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 316

by (auto simp: A_def)
have cloX : closed(X n) for n

by (simp add: X_def)
have Xsubclo: X n ⊆ closure S for n

unfolding X_def by (metis A01 closure_mono fim image_mono)
have connected (A n) for n

using connected_annulus [of _ 0 ::complex] by (simp add: A_def)
then have connX : connected(X n) for n

unfolding X_def
by (metis A01 connected_continuous_image connected_imp_connected_closure

contf continuous_on_subset)
have nestX : X n ⊆ X m if m ≤ n for m n
proof −

have 1 − 1 / (real m + 2) ≤ 1 − 1 / (real n + 2)
using that by (auto simp: field_simps)

then show ?thesis
by (auto simp: X_def A_def intro!: closure_mono)

qed
have closure S − S ⊆ (

⋂
n. X n)

proof
fix x
assume x ∈ closure S − S
then have x ∈ closure S x /∈ S by auto
show x ∈ (

⋂
n. X n)

proof
fix n
have ball 0 1 = closure (D n) ∪ A n

by (auto simp: D_def A_def le_less_trans)
with fim have Seq: S = f ‘ (closure (D n)) ∪ f ‘ (A n)

by (simp add: image_Un)
have continuous_on (closure (D n)) f

by (simp add: D_def cball_subset_ball_iff continuous_on_subset [OF
contf])

moreover have compact (closure (D n))
by (simp add: D_def)

ultimately have clo_fim: closed (f ‘ closure (D n))
using compact_continuous_image compact_imp_closed by blast

have ∗: (f ‘ cball 0 (1 − 1 / (real n + 2))) ⊆ S
by (force simp: D_def Seq)

show x ∈ X n
using Seq X_def ‹x ∈ closure S› ‹x /∈ S› clo_fim by fastforce

qed
qed
moreover have (

⋂
n. X n) ⊆ closure S − S

proof −
have (

⋂
n. X n) ⊆ closure S

using Xsubclo by blast
moreover have (

⋂
n. X n) ∩ S ⊆ {}

proof (clarify, clarsimp simp: X_def fim [symmetric])

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 317

fix x assume x [rule_format]: ∀n. f x ∈ closure (f ‘ A n) and cmod x < 1
then obtain n where n: 1 / (1 − norm x) < of_nat n

using reals_Archimedean2 by blast
with ‹cmod x < 1 › gr0I have XX : 1 / of_nat n < 1 − norm x and n > 0

by (fastforce simp: field_split_simps algebra_simps)+
have f x ∈ f ‘ (D n)

using n ‹cmod x < 1 › by (auto simp: field_split_simps algebra_simps
D_def)

moreover have f ‘ D n ∩ closure (f ‘ A n) = {}
proof −

haveinj_on f (D n)
unfolding inj_on_def using D01 by (metis gf mem_ball_0 subsetCE)

then have op_fDn: open(f ‘ (D n))
by (metis invariance_of_domain D_def Elementary_Metric_Spaces.open_ball

continuous_on_subset [OF contf D01])
have injf : inj_on f (ball 0 1)

by (metis mem_ball_0 inj_on_def gf)
have D n ∪ A n ⊆ ball 0 1

using D01 A01 by simp
moreover have D n ∩ A n = {}

by (auto simp: D_def A_def)
ultimately have f ‘ D n ∩ f ‘ A n = {}

by (metis A01 D01 image_is_empty inj_on_image_Int injf)
then show ?thesis

by (simp add: open_Int_closure_eq_empty [OF op_fDn])
qed
ultimately show False

using x [of n] by blast
qed
ultimately
show (

⋂
n. X n) ⊆ closure S − S

using closure_subset disjoint_iff_not_equal by blast
qed
ultimately have closure S − S = (

⋂
n. X n) by blast

then have frontierS : frontier S = (
⋂

n. X n)
by (simp add: frontier_def openS interior_open)

show ?thesis
proof (cases bounded S)

case True
have bouX : bounded (X n) for n

by (meson True Xsubclo bounded_closure bounded_subset)
have compaX : compact (X n) for n

by (simp add: bouX cloX compact_eq_bounded_closed)
have connected (

⋂
n. X n)

by (metis nestX compaX connX connected_nest)
then show ?thesis

by (simp add: True ‹frontier S = (
⋂

n. X n)›)
next

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 318

case False
have unboundedX : ¬ bounded(X n) for n
proof

assume bXn: bounded(X n)
have continuous_on (cball 0 (1 − 1 / (2 + real n))) f

by (simp add: cball_subset_ball_iff continuous_on_subset [OF contf])
then have bounded (f ‘ cball 0 (1 − 1 / (2 + real n)))

by (simp add: compact_imp_bounded [OF compact_continuous_image])
moreover have bounded (f ‘ A n)

by (auto simp: X_def closure_subset image_subset_iff bounded_subset
[OF bXn])

ultimately have bounded (f ‘ (cball 0 (1 − 1/(2 + real n)) ∪ A n))
by (simp add: image_Un)

then have bounded (f ‘ ball 0 1)
apply (rule bounded_subset)
apply (auto simp: A_def algebra_simps)
done

then show False
using False by (simp add: fim [symmetric])

qed
have clo_INTX : closed(

⋂
(range X))

by (metis cloX closed_INT)
then have lcX : locally compact (

⋂
(range X))

by (metis closed_imp_locally_compact)
have False if C : C ∈ components (frontier S) and boC : bounded C for C
proof −

have closed C
by (metis C closed_components frontier_closed)

then have compact C
by (metis boC compact_eq_bounded_closed)

have Cco: C ∈ components (
⋂

(range X))
by (metis frontierS C)

obtain K where C ⊆ K compact K
and Ksub: K ⊆

⋂
(range X) and clo: closed(

⋂
(range X) − K)

proof (cases {k. C ⊆ k ∧ compact k ∧ openin (top_of_set (
⋂

(range X)))
k} = {})

case True
then show ?thesis

using Sura_Bura [OF lcX Cco ‹compact C ›] boC
by (simp add: True)

next
case False

then obtain L where compact L C ⊆ L and K : openin (top_of_set
(
⋂

x. X x)) L
by blast

show ?thesis
proof

show L ⊆
⋂
(range X)

by (metis K openin_imp_subset)

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 319

show closed (
⋂
(range X) − L)

by (metis closedin_diff closedin_self closedin_closed_trans [OF _
clo_INTX] K)

qed (use ‹compact L› ‹C ⊆ L› in auto)
qed
obtain U V where open U open V and compact (closure U)

and V :
⋂

(range X) − K ⊆ V and U : K ⊆ U U ∩ V = {}
by (metis Diff_disjoint separation_normal_compact [OF ‹compact K ›

clo])
then have U ∩ (

⋂
(range X) − K) = {}

by blast
have (closure U − U) ∩ (

⋂
n. X n ∩ closure U) 6= {}

proof (rule compact_imp_fip)
show compact (closure U − U)

by (metis ‹compact (closure U)› ‹open U › compact_diff)
show

∧
T . T ∈ range (λn. X n ∩ closure U) =⇒ closed T

by clarify (metis cloX closed_Int closed_closure)
show (closure U − U) ∩

⋂
F 6= {}

if finite F and F : F ⊆ range (λn. X n ∩ closure U) for F
proof

assume empty: (closure U − U) ∩
⋂
F = {}

obtain J where finite J and J : F = (λn. X n ∩ closure U) ‘ J
using finite_subset_image [OF ‹finite F› F] by auto

show False
proof (cases J = {})

case True
with J empty have closed U

by (simp add: closure_subset_eq)
have C 6= {}

using C in_components_nonempty by blast
then have U 6= {}

using ‹K ⊆ U › ‹C ⊆ K › by blast
moreover have U 6= UNIV

using ‹compact (closure U)› by auto
ultimately show False

using ‹open U › ‹closed U › clopen by blast
next

case False
define j where j ≡ Max J
have j ∈ J

by (simp add: False ‹finite J › j_def)
have jmax:

∧
m. m ∈ J =⇒ m ≤ j

by (simp add: j_def ‹finite J ›)
have

⋂
((λn. X n ∩ closure U) ‘ J) = X j ∩ closure U

using False jmax nestX ‹j ∈ J › by auto
then have XU : X j ∩ closure U = X j ∩ U

using J closure_subset empty by fastforce
then have openin (top_of_set (X j)) (X j ∩ closure U)

by (simp add: openin_open_Int ‹open U ›)

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 320

moreover have closedin (top_of_set (X j)) (X j ∩ closure U)
by (simp add: closedin_closed_Int)

moreover have X j ∩ closure U 6= X j
by (metis unboundedX ‹compact (closure U)› bounded_subset

compact_eq_bounded_closed inf .order_iff)
moreover have X j ∩ closure U 6= {}

by (metis Cco Ksub UNIV_I ‹C ⊆ K › ‹K ⊆ U › XU bot.extremum_uniqueI
in_components_maximal le_INF_iff le_inf_iff)

ultimately show False
using connX [of j] by (force simp: connected_clopen)

qed
qed

qed
moreover have (

⋂
n. X n ∩ closure U) = (

⋂
n. X n) ∩ closure U

by blast
moreover have x ∈ U if

∧
n. x ∈ X n x ∈ closure U for x

by (metis Diff_iff INT_I U V ‹open V › closure_iff_nhds_not_empty
order .refl subsetD that)

ultimately show False
by (auto simp: open_Int_closure_eq_empty [OF ‹open V ›, of U])

qed
then show ?thesis

by (auto simp: False)
qed

qed
qed

lemma unbounded_complement_components:
assumes C : C ∈ components (− S) and S : connected S

and prev: if bounded S then connected(frontier S)
else ∀C ∈ components(frontier S). ¬ bounded C

shows ¬ bounded C
proof (cases bounded S)

case True
with prev have S 6= UNIV and confr : connected(frontier S)

by auto
obtain w where C_ccsw: C = connected_component_set (− S) w and w /∈ S

using C by (auto simp: components_def)
show ?thesis
proof (cases S = {})

case True with C show ?thesis by auto
next

case False
show ?thesis
proof

assume bounded C
then have outside C 6= {}

using outside_bounded_nonempty by metis

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 321

then obtain z where z: ¬ bounded (connected_component_set (− C) z)
and z /∈ C

by (auto simp: outside_def)
have clo_ccs: closed (connected_component_set (− S) x) for x

by (simp add: closed_Compl closed_connected_component openS)
have connected_component_set (− S) w = connected_component_set (− S)

z
proof (rule joinable_connected_component_eq [OF confr])

show frontier S ⊆ − S
using openS by (auto simp: frontier_def interior_open)

have False if connected_component_set (− S) w ∩ frontier (− S) = {}
proof −

have C ∩ frontier S = {}
using that by (simp add: C_ccsw)

moreover have closed C
using C_ccsw clo_ccs by blast

ultimately show False
by (metis C ‹S 6= {}› ‹S 6= UNIV › C_ccsw bot_eq_sup_iff con-

nected_component_eq_UNIV frontier_Int_closed
frontier_closed frontier_complement frontier_eq_empty fron-

tier_of_components_subset in_components_maximal inf .orderE)
qed
then show connected_component_set (− S) w ∩ frontier S 6= {}

by auto
have ∗: [[frontier C ⊆ C ; frontier C ⊆ F ; frontier C 6= {}]] =⇒ C ∩ F 6=

{} for C F ::complex set
by blast

have connected_component_set (− S) z ∩ frontier (− S) 6= {}
proof (rule ∗)

show frontier (connected_component_set (− S) z) ⊆ connected_component_set
(− S) z

by (auto simp: closed_Compl closed_connected_component frontier_def
openS)

show frontier (connected_component_set (− S) z) ⊆ frontier (− S)
using frontier_of_connected_component_subset by fastforce

have connected (closure S − S)
by (metis confr frontier_def interior_open openS)

moreover have ¬ bounded (−S)
by (simp add: True cobounded_imp_unbounded)

moreover have bounded (connected_component_set (− S) w)
using C_ccsw ‹bounded C › by auto

ultimately have z /∈ S
using ‹w /∈ S› openS

by (metis ComplI Compl_eq_Diff_UNIV connected_UNIV closed_closure
closure_subset

connected_component_eq_self connected_diff_open_from_closed
subset_UNIV)

then have connected_component_set (− S) z 6= {}
by (metis ComplI connected_component_eq_empty)

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 322

then show frontier (connected_component_set (− S) z) 6= {}
by (metis False ‹S 6= UNIV › connected_component_eq_UNIV fron-

tier_complement frontier_eq_empty)
qed
then show connected_component_set (− S) z ∩ frontier S 6= {}

by auto
qed
then show False
by (metis C_ccsw Compl_iff ‹w /∈ S› ‹z /∈ C › connected_component_eq_empty

connected_component_idemp)
qed

qed
next

case False
obtain w where C_ccsw: C = connected_component_set (− S) w and w /∈ S

using C by (auto simp: components_def)
have frontier (connected_component_set (− S) w) ⊆ connected_component_set

(− S) w
by (simp add: closed_Compl closed_connected_component frontier_subset_eq

openS)
moreover have frontier (connected_component_set (− S) w) ⊆ frontier S
using frontier_complement frontier_of_connected_component_subset by blast

moreover have frontier (connected_component_set (− S) w) 6= {}
by (metis C C_ccsw False bounded_empty compl_top_eq connected_component_eq_UNIV

double_compl frontier_not_empty in_components_nonempty)
ultimately obtain z where zin: z ∈ frontier S and z: z ∈ connected_component_set

(− S) w
by blast

have connected_component_set (frontier S) z ∈ components(frontier S)
by (simp add: ‹z ∈ frontier S› componentsI)

with prev False have ¬ bounded (connected_component_set (frontier S) z)
by simp

moreover have connected_component (− S) w = connected_component (− S)
z

using connected_component_eq [OF z] by force
ultimately show ?thesis
by (metis C_ccsw SC_Chain.openS SC_Chain_axioms bounded_subset closed_Compl

connected_component_mono frontier_complement frontier_subset_eq)
qed

lemma empty_inside:
assumes connected S

∧
C . C ∈ components (− S) =⇒ ¬ bounded C

shows inside S = {}
using assms by (auto simp: components_def inside_def)

lemma empty_inside_imp_simply_connected:
[[connected S ; inside S = {}]] =⇒ simply_connected S
by (metis ComplI inside_Un_outside openS outside_mono simply_connected_eq_winding_number_zero

subsetCE sup_bot.left_neutral winding_number_zero_in_outside)

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 323

end

proposition
fixes S :: complex set
assumes open S
shows simply_connected_eq_frontier_properties:

simply_connected S ←→
connected S ∧

(if bounded S then connected(frontier S)
else (∀C ∈ components(frontier S). ¬bounded C)) (is ?fp)

and simply_connected_eq_unbounded_complement_components:
simply_connected S ←→
connected S ∧ (∀C ∈ components(− S). ¬bounded C) (is ?ucc)

and simply_connected_eq_empty_inside:
simply_connected S ←→
connected S ∧ inside S = {} (is ?ei)

proof −
interpret SC_Chain

using assms by (simp add: SC_Chain_def)
have ?fp ∧ ?ucc ∧ ?ei

using empty_inside empty_inside_imp_simply_connected frontier_properties

unbounded_complement_components winding_number_zero by blast
then show ?fp ?ucc ?ei

by blast+
qed

lemma simply_connected_iff_simple:
fixes S :: complex set
assumes open S bounded S
shows simply_connected S ←→ connected S ∧ connected(− S) (is ?lhs = ?rhs)

proof
show ?lhs =⇒ ?rhs
by (metis DIM_complex assms cobounded_has_bounded_component double_complement

dual_order .order_iff_strict
simply_connected_eq_unbounded_complement_components)

show ?rhs =⇒ ?lhs
by (simp add: assms connected_frontier_simple simply_connected_eq_frontier_properties)

qed

lemma subset_simply_connected_imp_inside_subset:
fixes A :: complex set
assumes simply_connected A open A B ⊆ A
shows inside B ⊆ A
by (metis assms Diff_eq_empty_iff inside_mono subset_empty simply_connected_eq_empty_inside)

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 324

7.4 Further equivalences based on continuous logs and sqrts
context SC_Chain
begin

lemma continuous_log:
fixes f :: complex⇒complex
assumes S : simply_connected S

and contf : continuous_on S f and nz:
∧

z. z ∈ S =⇒ f z 6= 0
shows ∃ g. continuous_on S g ∧ (∀ z ∈ S . f z = exp(g z))

proof −
consider S = {} | S homeomorphic ball (0 ::complex) 1

using simply_connected_eq_homeomorphic_to_disc [OF openS] S by metis
then show ?thesis
proof cases

case 1 then show ?thesis
by simp

next
case 2
then obtain h k :: complex⇒complex

where kh:
∧

x. x ∈ S =⇒ k(h x) = x and him: h ‘ S = ball 0 1
and conth: continuous_on S h
and hk:

∧
y. y ∈ ball 0 1 =⇒ h(k y) = y and kim: k ‘ ball 0 1 = S

and contk: continuous_on (ball 0 1) k
unfolding homeomorphism_def homeomorphic_def by metis

obtain g where contg: continuous_on (ball 0 1) g
and expg:

∧
z. z ∈ ball 0 1 =⇒ (f ◦ k) z = exp (g z)

proof (rule continuous_logarithm_on_ball)
show continuous_on (ball 0 1) (f ◦ k)

using contf continuous_on_compose contk kim by blast
show

∧
z. z ∈ ball 0 1 =⇒ (f ◦ k) z 6= 0

using kim nz by auto
qed auto
then show ?thesis

by (metis comp_apply conth continuous_on_compose him imageI kh)
qed

qed

lemma continuous_sqrt:
fixes f :: complex⇒complex
assumes contf : continuous_on S f and nz:

∧
z. z ∈ S =⇒ f z 6= 0

and prev:
∧

f ::complex⇒complex.
[[continuous_on S f ;

∧
z. z ∈ S =⇒ f z 6= 0]]

=⇒ ∃ g. continuous_on S g ∧ (∀ z ∈ S . f z = exp(g z))
shows ∃ g. continuous_on S g ∧ (∀ z ∈ S . f z = (g z)2)

proof −
obtain g where contg: continuous_on S g and geq:

∧
z. z ∈ S =⇒ f z = exp(g

z)
using contf nz prev by metis

show ?thesis

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 325

proof (intro exI ballI conjI)
show continuous_on S (λz. exp(g z/2))

by (intro continuous_intros) (auto simp: contg)
show

∧
z. z ∈ S =⇒ f z = (exp (g z/2))2

by (metis (no_types, lifting) divide_inverse exp_double geq mult.left_commute
mult.right_neutral right_inverse zero_neq_numeral)

qed
qed

lemma continuous_sqrt_imp_simply_connected:
assumes connected S

and prev:
∧

f ::complex⇒complex. [[continuous_on S f ; ∀ z ∈ S . f z 6= 0]]
=⇒ ∃ g. continuous_on S g ∧ (∀ z ∈ S . f z = (g z)2)

shows simply_connected S
proof (clarsimp simp add: simply_connected_eq_holomorphic_sqrt [OF openS]
‹connected S›)

fix f
assume f holomorphic_on S and nz: ∀ z∈S . f z 6= 0
then obtain g where contg: continuous_on S g and geq:

∧
z. z ∈ S =⇒ f z =

(g z)2
by (metis holomorphic_on_imp_continuous_on prev)

show ∃ g. g holomorphic_on S ∧ (∀ z∈S . f z = (g z)2)
proof (intro exI ballI conjI)

show g holomorphic_on S
proof (clarsimp simp add: holomorphic_on_open [OF openS])

fix z
assume z ∈ S
with nz geq have g z 6= 0

by auto
obtain δ where 0 < δ

∧
w. [[w ∈ S ; dist w z < δ]] =⇒ dist (g w) (g z) <

cmod (g z)
using contg [unfolded continuous_on_iff] by (metis ‹g z 6= 0 › ‹z ∈ S›

zero_less_norm_iff)
then have δ:

∧
w. [[w ∈ S ; w ∈ ball z δ]] =⇒ g w + g z 6= 0

by (metis add.commute add_cancel_right_left dist_commute dist_complex_def
mem_ball

norm_increases_online norm_not_less_zero norm_zero order_less_asym)
have ∗: (λx. (f x − f z) / (x − z) / (g x + g z)) −z→ deriv f z / (g z + g z)
proof (intro tendsto_intros)

show (λx. (f x − f z) / (x − z)) −z→ deriv f z
using ‹f holomorphic_on S› ‹z ∈ S› has_field_derivative_iff holomor-

phic_derivI openS by blast
show g −z→ g z

using ‹z ∈ S› contg continuous_on_eq_continuous_at isCont_def openS
by blast

qed (simp add: ‹g z 6= 0 ›)
then have (g has_field_derivative deriv f z / (g z + g z)) (at z)

unfolding has_field_derivative_iff
proof (rule Lim_transform_within_open)

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 326

show open (ball z δ ∩ S)
by (simp add: openS open_Int)

show z ∈ ball z δ ∩ S
using ‹z ∈ S› ‹0 < δ› by simp

show
∧

x. [[x ∈ ball z δ ∩ S ; x 6= z]]
=⇒ (f x − f z) / (x − z) / (g x + g z) = (g x − g z) / (x − z)

using δ ‹z ∈ S›
apply (simp add: geq field_split_simps power2_eq_square)
by (metis distrib_left mult_cancel_right)

qed
then show ∃ f ′. (g has_field_derivative f ′) (at z) ..

qed
qed (use geq in auto)

qed

end

proposition
fixes S :: complex set
assumes open S
shows simply_connected_eq_continuous_log:

simply_connected S ←→
connected S ∧
(∀ f ::complex⇒complex. continuous_on S f ∧ (∀ z ∈ S . f z 6= 0)
−→ (∃ g. continuous_on S g ∧ (∀ z ∈ S . f z = exp (g z)))) (is ?log)

and simply_connected_eq_continuous_sqrt:
simply_connected S ←→
connected S ∧
(∀ f ::complex⇒complex. continuous_on S f ∧ (∀ z ∈ S . f z 6= 0)
−→ (∃ g. continuous_on S g ∧ (∀ z ∈ S . f z = (g z)2))) (is ?sqrt)

proof −
interpret SC_Chain

using assms by (simp add: SC_Chain_def)
show ?log ?sqrt

using local.continuous_log winding_number_zero continuous_sqrt continu-
ous_sqrt_imp_simply_connected

by auto
qed

7.5 More Borsukian results
lemma Borsukian_componentwise_eq:

fixes S :: ′a::euclidean_space set
assumes S : locally connected S ∨ compact S
shows Borsukian S ←→ (∀C ∈ components S . Borsukian C)

proof −
have ∗: ANR(−{0 ::complex})

by (simp add: ANR_delete open_Compl open_imp_ANR)
show ?thesis

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 327

using cohomotopically_trivial_on_components [OF assms ∗] by (auto simp:
Borsukian_alt)
qed

lemma Borsukian_componentwise:
fixes S :: ′a::euclidean_space set
assumes locally connected S ∨ compact S

∧
C . C ∈ components S =⇒ Borsukian

C
shows Borsukian S
by (metis Borsukian_componentwise_eq assms)

lemma simply_connected_eq_Borsukian:
fixes S :: complex set
shows open S =⇒ (simply_connected S ←→ connected S ∧ Borsukian S)
by (auto simp: simply_connected_eq_continuous_log Borsukian_continuous_logarithm)

lemma Borsukian_eq_simply_connected:
fixes S :: complex set
shows open S =⇒ Borsukian S ←→ (∀C ∈ components S . simply_connected C)
by (meson Borsukian_componentwise_eq in_components_connected open_components

open_imp_locally_connected simply_connected_eq_Borsukian)

lemma Borsukian_separation_open_closed:
fixes S :: complex set
assumes S : open S ∨ closed S and bounded S
shows Borsukian S ←→ connected(− S)
using S

proof
assume open S
show ?thesis

unfolding Borsukian_eq_simply_connected [OF ‹open S›]
by (metis ‹open S› ‹bounded S› bounded_subset in_components_maximal non-

separation_by_component_eq open_components simply_connected_iff_simple)
next

assume closed S
with ‹bounded S› show ?thesis

by (simp add: Borsukian_separation_compact compact_eq_bounded_closed)
qed

7.6 Finally, the Riemann Mapping Theorem
theorem Riemann_mapping_theorem:

open S ∧ simply_connected S ←→
S = {} ∨ S = UNIV ∨
(∃ f g. f holomorphic_on S ∧ g holomorphic_on ball 0 1 ∧

(∀ z ∈ S . f z ∈ ball 0 1 ∧ g(f z) = z) ∧
(∀ z ∈ ball 0 1 . g z ∈ S ∧ f (g z) = z))

(is _ = ?rhs)
proof −

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 328

have simply_connected S ←→ ?rhs if open S
by (simp add: simply_connected_eq_biholomorphic_to_disc that)

moreover have open S if ?rhs
proof −

{ fix f g
assume g: g holomorphic_on ball 0 1 ∀ z∈ball 0 1 . g z ∈ S ∧ f (g z) = z

and ∀ z∈S . cmod (f z) < 1 ∧ g (f z) = z
then have S = g ‘ (ball 0 1)

by force
then have open S

by (metis open_ball g inj_on_def open_mapping_thm3)
}
with that show open S by auto

qed
ultimately show ?thesis by metis

qed

7.7 Applications to Winding Numbers
lemma simply_connected_inside_simple_path:

fixes p :: real ⇒ complex
shows simple_path p =⇒ simply_connected(inside(path_image p))
using Jordan_inside_outside connected_simple_path_image inside_simple_curve_imp_closed

simply_connected_eq_frontier_properties
by fastforce

lemma simply_connected_Int:
fixes S :: complex set
assumes open S open T simply_connected S simply_connected T connected (S
∩ T)

shows simply_connected (S ∩ T)
using assms by (force simp: simply_connected_eq_winding_number_zero open_Int)

7.8 The winding number defines a continuous logarithm for
the path itself

lemma winding_number_as_continuous_log:
assumes path p and ζ: ζ /∈ path_image p
obtains q where path q

pathfinish q − pathstart q = 2 ∗ of_real pi ∗ i ∗ winding_number p ζ∧
t. t ∈ {0 ..1} =⇒ p t = ζ + exp(q t)

proof −
let ?q = λt. 2 ∗ of_real pi ∗ i ∗ winding_number(subpath 0 t p) ζ + Ln(pathstart

p − ζ)
show ?thesis
proof

have ∗: continuous (at t within {0 ..1}) (λx. winding_number (subpath 0 x p)
ζ)

if t: t ∈ {0 ..1} for t

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 329

proof −
let ?B = ball (p t) (norm(p t − ζ))
have p t 6= ζ

using path_image_def that ζ by blast
then have simply_connected ?B

by (simp add: convex_imp_simply_connected)
then have

∧
f ::complex⇒complex. continuous_on ?B f ∧ (∀ ζ ∈ ?B. f ζ 6=

0)
−→ (∃ g. continuous_on ?B g ∧ (∀ ζ ∈ ?B. f ζ = exp (g ζ)))

by (simp add: simply_connected_eq_continuous_log)
moreover have continuous_on ?B (λw. w − ζ)

by (intro continuous_intros)
moreover have (∀ z ∈ ?B. z − ζ 6= 0)

by (auto simp: dist_norm)
ultimately obtain g where contg: continuous_on ?B g

and geq:
∧

z. z ∈ ?B =⇒ z − ζ = exp (g z) by blast
obtain d where 0 < d and d:∧

x. [[x ∈ {0 ..1}; dist x t < d]] =⇒ dist (p x) (p t) < cmod (p t − ζ)
using ‹path p› t unfolding path_def continuous_on_iff
by (metis ‹p t 6= ζ› right_minus_eq zero_less_norm_iff)

have ((λx. winding_number (λw. subpath 0 x p w − ζ) 0 −
winding_number (λw. subpath 0 t p w − ζ) 0) −−−→ 0)

(at t within {0 ..1})
proof (rule Lim_transform_within [OF _ ‹d > 0 ›])

have continuous (at t within {0 ..1}) (g o p)
proof (rule continuous_within_compose)

show continuous (at t within {0 ..1}) p
using ‹path p› continuous_on_eq_continuous_within path_def that by

blast
show continuous (at (p t) within p ‘ {0 ..1}) g
by (metis (no_types, lifting) open_ball UNIV_I ‹p t 6= ζ› centre_in_ball

contg continuous_on_eq_continuous_at continuous_within_topological right_minus_eq
zero_less_norm_iff)

qed
with LIM_zero have ((λu. (g (subpath t u p 1) − g (subpath t u p 0)))

−−−→ 0) (at t within {0 ..1})
by (auto simp: subpath_def continuous_within o_def)

then show ((λu. (g (subpath t u p 1) − g (subpath t u p 0)) / (2 ∗ of_real
pi ∗ i)) −−−→ 0)

(at t within {0 ..1})
by (simp add: tendsto_divide_zero)

show (g (subpath t u p 1) − g (subpath t u p 0)) / (2 ∗ of_real pi ∗ i) =
winding_number (λw. subpath 0 u p w − ζ) 0 − winding_number (λw.

subpath 0 t p w − ζ) 0
if u ∈ {0 ..1} 0 < dist u t dist u t < d for u

proof −
have closed_segment t u ⊆ {0 ..1}

using closed_segment_eq_real_ivl t that by auto
then have

∧
r . [[r ∈ closed_segment t u]] =⇒ dist (p t) (p r) < cmod (p

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 330

t − ζ)
by (smt (verit, best) d dist_commute dist_in_closed_segment subsetD

‹dist u t < d›)
then have piB: path_image(subpath t u p) ⊆ ?B

by (auto simp: path_image_subpath_gen)
have ∗: path (g ◦ subpath t u p)
proof (rule path_continuous_image)

show path (subpath t u p)
using ‹path p› t that by auto

show continuous_on (path_image (subpath t u p)) g
using piB contg continuous_on_subset by blast

qed
have (g (subpath t u p 1) − g (subpath t u p 0)) / (2 ∗ of_real pi ∗ i)

= winding_number (exp ◦ g ◦ subpath t u p) 0
using winding_number_compose_exp [OF ∗]
by (simp add: pathfinish_def pathstart_def o_assoc)

also have . . . = winding_number (λw. subpath t u p w − ζ) 0
proof (rule winding_number_cong)

have exp(g y) = y − ζ if y ∈ (subpath t u p) ‘ {0 ..1} for y
by (metis that geq path_image_def piB subset_eq)

then show
∧

x. [[0 ≤ x; x ≤ 1]] =⇒ (exp ◦ g ◦ subpath t u p) x = subpath
t u p x − ζ

by auto
qed
also have . . . = winding_number (λw. subpath 0 u p w − ζ) 0 −

winding_number (λw. subpath 0 t p w − ζ) 0
apply (simp add: winding_number_offset [symmetric])
using winding_number_subpath_combine [OF ‹path p› ζ, of 0 t u] ‹t ∈

{0 ..1}› ‹u ∈ {0 ..1}›
by (simp add: add.commute eq_diff_eq)

finally show ?thesis .
qed

qed
then show ?thesis
by (subst winding_number_offset) (simp add: continuous_within LIM_zero_iff)

qed
show path ?q

unfolding path_def
by (intro continuous_intros) (simp add: continuous_on_eq_continuous_within

∗)

have ζ 6= p 0
by (metis ζ pathstart_def pathstart_in_path_image)

then show pathfinish ?q − pathstart ?q = 2 ∗ of_real pi ∗ i ∗ winding_number
p ζ

by (simp add: pathfinish_def pathstart_def)
show p t = ζ + exp (?q t) if t ∈ {0 ..1} for t
proof −

have path (subpath 0 t p)

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 331

using ‹path p› that by auto
moreover
have ζ /∈ path_image (subpath 0 t p)
using ζ [unfolded path_image_def] that by (auto simp: path_image_subpath)
ultimately show ?thesis

using winding_number_exp_2pi [of subpath 0 t p ζ] ‹ζ 6= p 0 ›
by (auto simp: exp_add algebra_simps pathfinish_def pathstart_def sub-

path_def)
qed

qed
qed

7.9 Winding number equality is the same as path/loop ho-
motopy in C - 0

lemma winding_number_homotopic_loops_null_eq:
assumes path p and ζ: ζ /∈ path_image p
shows winding_number p ζ = 0 ←→ (∃ a. homotopic_loops (−{ζ}) p (λt. a))
(is ?lhs = ?rhs)

proof
assume [simp]: ?lhs
obtain q where path q

and qeq: pathfinish q − pathstart q = 2 ∗ of_real pi ∗ i ∗ winding_number
p ζ

and peq:
∧

t. t ∈ {0 ..1} =⇒ p t = ζ + exp(q t)
using winding_number_as_continuous_log [OF assms] by blast

have ∗: homotopic_with_canon (λr . pathfinish r = pathstart r)
{0 ..1} (−{ζ}) ((λw. ζ + exp w) ◦ q) ((λw. ζ + exp w) ◦ (λt. 0))

proof (rule homotopic_with_compose_continuous_left)
show homotopic_with_canon (λf . pathfinish ((λw. ζ + exp w) ◦ f) = pathstart

((λw. ζ + exp w) ◦ f))
{0 ..1} UNIV q (λt. 0)

proof (rule homotopic_with_mono, simp_all add: pathfinish_def pathstart_def)
have homotopic_loops UNIV q (λt. 0)
by (rule homotopic_loops_linear) (use qeq ‹path q› in ‹auto simp: path_defs›)
then have homotopic_with (λr . r 1 = r 0) (top_of_set {0 ..1}) euclidean q

(λt. 0)
by (simp add: homotopic_loops_def pathfinish_def pathstart_def)

then show homotopic_with (λh. exp (h 1) = exp (h 0)) (top_of_set {0 ..1})
euclidean q (λt. 0)

by (rule homotopic_with_mono) simp
qed
show continuous_on UNIV (λw. ζ + exp w)

by (rule continuous_intros)+
qed auto
then have homotopic_with_canon (λr . pathfinish r = pathstart r) {0 ..1} (−{ζ})

p (λx. ζ + 1)
by (rule homotopic_with_eq) (auto simp: o_def peq pathfinish_def pathstart_def)

then have homotopic_loops (−{ζ}) p (λt. ζ + 1)

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 332

by (simp add: homotopic_loops_def)
then show ?rhs ..

next
assume ?rhs
then obtain a where homotopic_loops (−{ζ}) p (λt. a) ..
then have winding_number p ζ = winding_number (λt. a) ζ a 6= ζ

using winding_number_homotopic_loops homotopic_loops_imp_subset by
(force simp:)+

then show ?lhs
using winding_number_zero_const by auto

qed

lemma winding_number_homotopic_paths_null_explicit_eq:
assumes path p and ζ: ζ /∈ path_image p
shows winding_number p ζ = 0 ←→ homotopic_paths (−{ζ}) p (linepath

(pathstart p) (pathstart p))
(is ?lhs = ?rhs)

proof
assume ?lhs
then show ?rhs

using homotopic_loops_imp_homotopic_paths_null
by (force simp: linepath_refl winding_number_homotopic_loops_null_eq [OF

assms])
next

assume ?rhs
then show ?lhs
by (metis ζ pathstart_in_path_image winding_number_homotopic_paths wind-

ing_number_trivial)
qed

lemma winding_number_homotopic_paths_null_eq:
assumes path p and ζ: ζ /∈ path_image p
shows winding_number p ζ = 0 ←→ (∃ a. homotopic_paths (−{ζ}) p (λt. a))
(is ?lhs = ?rhs)

proof
assume ?lhs
then show ?rhs
by (auto simp: winding_number_homotopic_paths_null_explicit_eq [OF assms]

linepath_refl)
next

assume ?rhs
then show ?lhs
by (metis ζ homotopic_paths_imp_pathfinish pathfinish_def pathfinish_in_path_image

winding_number_homotopic_paths winding_number_zero_const)
qed

proposition winding_number_homotopic_paths_eq:
assumes path p and ζp: ζ /∈ path_image p

and path q and ζq: ζ /∈ path_image q

Riemann{_}{\kern 0pt}Mapping.html

Riemann_Mapping.thy 333

and qp: pathstart q = pathstart p pathfinish q = pathfinish p
shows winding_number p ζ = winding_number q ζ ←→ homotopic_paths

(−{ζ}) p q
(is ?lhs = ?rhs)

proof
assume ?lhs
then have winding_number (p +++ reversepath q) ζ = 0
using assms by (simp add: winding_number_join winding_number_reversepath)

moreover
have path (p +++ reversepath q) ζ /∈ path_image (p +++ reversepath q)

using assms by (auto simp: not_in_path_image_join)
ultimately obtain a where homotopic_paths (− {ζ}) (p +++ reversepath q)

(linepath a a)
using winding_number_homotopic_paths_null_explicit_eq by blast

then show ?rhs
using homotopic_paths_imp_pathstart assms

by (fastforce simp: dest: homotopic_paths_imp_homotopic_loops homotopic_paths_loop_parts)
qed (simp add: winding_number_homotopic_paths)

lemma winding_number_homotopic_loops_eq:
assumes path p and ζp: ζ /∈ path_image p

and path q and ζq: ζ /∈ path_image q
and loops: pathfinish p = pathstart p pathfinish q = pathstart q
shows winding_number p ζ = winding_number q ζ ←→ homotopic_loops

(−{ζ}) p q
(is ?lhs = ?rhs)

proof
assume L: ?lhs
have pathstart p 6= ζ pathstart q 6= ζ

using ζp ζq by blast+
moreover have path_connected (−{ζ})

by (simp add: path_connected_punctured_universe)
ultimately obtain r where path r and rim: path_image r ⊆ −{ζ}

and pas: pathstart r = pathstart p and paf : pathfinish r =
pathstart q

by (auto simp: path_connected_def)
then have pathstart r 6= ζ by blast
have homotopic_loops (− {ζ}) p (r +++ q +++ reversepath r)
proof (rule homotopic_paths_imp_homotopic_loops)

have path (r +++ q +++ reversepath r)
by (simp add: ‹path r› ‹path q› loops paf)

moreover have ζ /∈ path_image (r +++ q +++ reversepath r)
by (metis ζq not_in_path_image_join path_image_reversepath rim sub-

set_Compl_singleton)
moreover have homotopic_loops (− {ζ}) (r +++ q +++ reversepath r) q

using ‹path q› ‹path r› ζq homotopic_loops_conjugate loops(2) paf rim by
blast

ultimately show homotopic_paths (− {ζ}) p (r +++ q +++ reversepath r)
using loops pathfinish_join pathfinish_reversepath pathstart_join

Riemann{_}{\kern 0pt}Mapping.html

Complex_Singularities.thy 334

by (metis L ζp ‹path p› pas winding_number_homotopic_loops winding_number_homotopic_paths_eq)
qed (use loops pas in auto)
moreover have homotopic_loops (− {ζ}) (r +++ q +++ reversepath r) q

using rim ζq by (auto simp: homotopic_loops_conjugate paf ‹path q› ‹path r›
loops)

ultimately show ?rhs
using homotopic_loops_trans by metis

qed (simp add: winding_number_homotopic_loops)

end
theory Complex_Singularities

imports Conformal_Mappings
begin

7.10 Non-essential singular points
lemma at_to_0 ′: NO_MATCH 0 z =⇒ at z = filtermap (λx. x + z) (at 0)

for z :: ′a::real_normed_vector
by (rule at_to_0)

lemma nhds_to_0 : nhds (x :: ′a :: real_normed_vector) = filtermap ((+) x) (nhds
0)
proof −

have (λxa. xa − − x) = (+) x
by auto

thus ?thesis
using filtermap_nhds_shift[of −x 0] by simp

qed

lemma nhds_to_0 ′: NO_MATCH 0 x =⇒ nhds (x :: ′a :: real_normed_vector)
= filtermap ((+) x) (nhds 0)

by (rule nhds_to_0)

definition
is_pole :: (′a::topological_space ⇒ ′b::real_normed_vector) ⇒ ′a ⇒ bool
where is_pole f a = (LIM x (at a). f x :> at_infinity)

lemma is_pole_cong:
assumes eventually (λx. f x = g x) (at a) a=b
shows is_pole f a ←→ is_pole g b
unfolding is_pole_def using assms by (intro filterlim_cong,auto)

lemma is_pole_transform:
assumes is_pole f a eventually (λx. f x = g x) (at a) a=b
shows is_pole g b
using is_pole_cong assms by auto

lemma is_pole_shift_iff :

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 335

fixes f :: (′a::real_normed_vector ⇒ ′b::real_normed_vector)
shows is_pole (f ◦ (+) d) a = is_pole f (a + d)
by (metis add_diff_cancel_right ′ filterlim_shift_iff is_pole_def)

lemma is_pole_tendsto:
fixes f :: (′a::topological_space ⇒ ′b::real_normed_div_algebra)
shows is_pole f x =⇒ ((inverse o f) −−−→ 0) (at x)
unfolding is_pole_def
by (auto simp add: filterlim_inverse_at_iff [symmetric] comp_def filterlim_at)

lemma is_pole_shift_0 :
fixes f :: (′a::real_normed_vector ⇒ ′b::real_normed_vector)
shows is_pole f z ←→ is_pole (λx. f (z + x)) 0
unfolding is_pole_def by (subst at_to_0) (auto simp: filterlim_filtermap add_ac)

lemma is_pole_shift_0 ′:
fixes f :: (′a::real_normed_vector ⇒ ′b::real_normed_vector)
shows NO_MATCH 0 z =⇒ is_pole f z ←→ is_pole (λx. f (z + x)) 0
by (metis is_pole_shift_0)

lemma is_pole_compose_iff :
assumes filtermap g (at x) = (at y)
shows is_pole (f ◦ g) x ←→ is_pole f y
unfolding is_pole_def filterlim_def filtermap_compose assms ..

lemma is_pole_inverse_holomorphic:
assumes open s

and f_holo: f holomorphic_on (s−{z})
and pole: is_pole f z
and non_z: ∀ x∈s−{z}. f x 6=0

shows (λx. if x=z then 0 else inverse (f x)) holomorphic_on s
proof −

define g where g ≡ λx. if x=z then 0 else inverse (f x)
have isCont g z unfolding isCont_def using is_pole_tendsto[OF pole]

by (simp add: g_def cong: LIM_cong)
moreover have continuous_on (s−{z}) f using f_holo holomorphic_on_imp_continuous_on

by auto
hence continuous_on (s−{z}) (inverse o f) unfolding comp_def

by (auto elim!:continuous_on_inverse simp add: non_z)
hence continuous_on (s−{z}) g unfolding g_def

using continuous_on_eq by fastforce
ultimately have continuous_on s g using open_delete[OF ‹open s›] ‹open s›

by (auto simp add: continuous_on_eq_continuous_at)
moreover have (inverse o f) holomorphic_on (s−{z})

unfolding comp_def using f_holo
by (auto elim!:holomorphic_on_inverse simp add: non_z)

hence g holomorphic_on (s−{z})
using g_def holomorphic_transform by force

ultimately show ?thesis unfolding g_def using ‹open s›

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 336

by (auto elim!: no_isolated_singularity)
qed

lemma not_is_pole_holomorphic:
assumes open A x ∈ A f holomorphic_on A
shows ¬is_pole f x

proof −
have continuous_on A f

by (intro holomorphic_on_imp_continuous_on) fact
with assms have isCont f x

by (simp add: continuous_on_eq_continuous_at)
hence f −x→ f x

by (simp add: isCont_def)
thus ¬is_pole f x

unfolding is_pole_def
using not_tendsto_and_filterlim_at_infinity[of at x f f x] by auto

qed

lemma is_pole_inverse_power : n > 0 =⇒ is_pole (λz::complex. 1 / (z − a) ^
n) a

unfolding is_pole_def inverse_eq_divide [symmetric]
by (intro filterlim_compose[OF filterlim_inverse_at_infinity] tendsto_intros)

(auto simp: filterlim_at eventually_at intro!: exI [of _ 1] tendsto_eq_intros)

lemma is_pole_cmult_iff [simp]:
assumes c 6= 0
shows is_pole (λz. c ∗ f z :: ′a :: real_normed_field) z ←→ is_pole f z

proof
assume is_pole (λz. c ∗ f z) z
with ‹c 6=0 › have is_pole (λz. inverse c ∗ (c ∗ f z)) z

unfolding is_pole_def
by (force intro: tendsto_mult_filterlim_at_infinity)

thus is_pole f z
using ‹c 6=0 › by (simp add: field_simps)

next
assume is_pole f z
with ‹c 6=0 › show is_pole (λz. c ∗ f z) z

by (auto intro!: tendsto_mult_filterlim_at_infinity simp: is_pole_def)
qed

lemma is_pole_uminus_iff [simp]: is_pole (λz. −f z :: ′a :: real_normed_field)
z ←→ is_pole f z

using is_pole_cmult_iff [of −1 f] by (simp del: is_pole_cmult_iff)

lemma is_pole_inverse: is_pole (λz::complex. 1 / (z − a)) a
using is_pole_inverse_power [of 1 a] by simp

lemma is_pole_divide:
fixes f :: ′a :: t2_space ⇒ ′b :: real_normed_field

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 337

assumes isCont f z filterlim g (at 0) (at z) f z 6= 0
shows is_pole (λz. f z / g z) z

proof −
have filterlim (λz. f z ∗ inverse (g z)) at_infinity (at z)

using assms filterlim_compose filterlim_inverse_at_infinity isCont_def
tendsto_mult_filterlim_at_infinity by blast

thus ?thesis by (simp add: field_split_simps is_pole_def)
qed

lemma is_pole_basic:
assumes f holomorphic_on A open A z ∈ A f z 6= 0 n > 0
shows is_pole (λw. f w / (w−z) ^ n) z

proof (rule is_pole_divide)
have continuous_on A f by (rule holomorphic_on_imp_continuous_on) fact
with assms show isCont f z by (auto simp: continuous_on_eq_continuous_at)
have filterlim (λw. (w−z) ^ n) (nhds 0) (at z)

using assms by (auto intro!: tendsto_eq_intros)
thus filterlim (λw. (w−z) ^ n) (at 0) (at z)

by (intro filterlim_atI tendsto_eq_intros)
(use assms in ‹auto simp: eventually_at_filter›)

qed fact+

lemma is_pole_basic ′:
assumes f holomorphic_on A open A 0 ∈ A f 0 6= 0 n > 0
shows is_pole (λw. f w / w ^ n) 0
using is_pole_basic[of f A 0] assms by simp

lemma is_pole_compose:
assumes is_pole f w g −z→ w eventually (λz. g z 6= w) (at z)
shows is_pole (λx. f (g x)) z
using assms(1) unfolding is_pole_def
by (rule filterlim_compose) (use assms in ‹auto simp: filterlim_at›)

lemma is_pole_plus_const_iff :
is_pole f z ←→ is_pole (λx. f x + c) z

proof
assume is_pole f z
then have filterlim f at_infinity (at z) unfolding is_pole_def .
moreover have ((λ_. c) −−−→ c) (at z) by auto
ultimately have LIM x (at z). f x + c :> at_infinity

using tendsto_add_filterlim_at_infinity ′[of f at z] by auto
then show is_pole (λx. f x + c) z unfolding is_pole_def .

next
assume is_pole (λx. f x + c) z
then have filterlim (λx. f x + c) at_infinity (at z)

unfolding is_pole_def .
moreover have ((λ_. −c) −−−→ −c) (at z) by auto
ultimately have LIM x (at z). f x :> at_infinity

using tendsto_add_filterlim_at_infinity ′[of (λx. f x + c)

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 338

at z (λ_. − c) −c]
by auto

then show is_pole f z unfolding is_pole_def .
qed

lemma is_pole_minus_const_iff :
is_pole (λx. f x − c) z ←→ is_pole f z
using is_pole_plus_const_iff [of f z −c] by simp

lemma is_pole_alt:
is_pole f x = (∀B>0 . ∃U . open U ∧ x∈U ∧ (∀ y∈U . y 6=x −→ norm (f y)≥B))
unfolding is_pole_def
unfolding filterlim_at_infinity[of 0 ,simplified] eventually_at_topological
by auto

lemma is_pole_mult_analytic_nonzero1 :
assumes is_pole g x f analytic_on {x} f x 6= 0
shows is_pole (λx. f x ∗ g x) x
unfolding is_pole_def

proof (rule tendsto_mult_filterlim_at_infinity)
show f −x→ f x

using assms by (simp add: analytic_at_imp_isCont isContD)
qed (use assms in ‹auto simp: is_pole_def ›)

lemma is_pole_mult_analytic_nonzero2 :
assumes is_pole f x g analytic_on {x} g x 6= 0
shows is_pole (λx. f x ∗ g x) x

proof −
have g: g analytic_on {x}

using assms by auto
show ?thesis

using is_pole_mult_analytic_nonzero1 [OF ‹is_pole f x› g] ‹g x 6= 0 ›
by (simp add: mult.commute)

qed

lemma is_pole_mult_analytic_nonzero1_iff :
assumes f analytic_on {x} f x 6= 0
shows is_pole (λx. f x ∗ g x) x ←→ is_pole g x

proof
assume is_pole g x
thus is_pole (λx. f x ∗ g x) x

by (intro is_pole_mult_analytic_nonzero1 assms)
next

assume is_pole (λx. f x ∗ g x) x
hence is_pole (λx. inverse (f x) ∗ (f x ∗ g x)) x

by (rule is_pole_mult_analytic_nonzero1)
(use assms in ‹auto intro!: analytic_intros›)

also have ?this ←→ is_pole g x
proof (rule is_pole_cong)

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 339

have eventually (λx. f x 6= 0) (at x)
using assms by (simp add: analytic_at_neq_imp_eventually_neq)

thus eventually (λx. inverse (f x) ∗ (f x ∗ g x) = g x) (at x)
by eventually_elim auto

qed auto
finally show is_pole g x .

qed

lemma is_pole_mult_analytic_nonzero2_iff :
assumes g analytic_on {x} g x 6= 0
shows is_pole (λx. f x ∗ g x) x ←→ is_pole f x
by (subst mult.commute, rule is_pole_mult_analytic_nonzero1_iff) (fact assms)+

lemma frequently_const_imp_not_is_pole:
fixes z :: ′a::first_countable_topology
assumes frequently (λw. f w = c) (at z)
shows ¬ is_pole f z

proof
assume is_pole f z
from assms have z islimpt {w. f w = c}

by (simp add: islimpt_conv_frequently_at)
then obtain g where g:

∧
n. g n ∈ {w. f w = c} − {z} g −−−−→ z

unfolding islimpt_sequential by blast
then have (f ◦ g) −−−−→ c

by (simp add: tendsto_eventually)
moreover have filterlim g (at z) sequentially

using g by (auto simp: filterlim_at)
then have filterlim (f ◦ g) at_infinity sequentially

unfolding o_def
using ‹is_pole f z› filterlim_compose is_pole_def by blast

ultimately show False
using not_tendsto_and_filterlim_at_infinity trivial_limit_sequentially by

blast
qed

7.11 Isolated singularities

The proposition ∃ x. f −z→ x ∨ is_pole f z can be interpreted as the com-
plex function f has a non-essential singularity at z (i.e. the singularity is
either removable or a pole).
definition not_essential:: [complex ⇒ complex, complex] ⇒ bool where

not_essential f z = (∃ x. f−z→x ∨ is_pole f z)

definition isolated_singularity_at:: [complex ⇒ complex, complex]⇒ bool where
isolated_singularity_at f z = (∃ r>0 . f analytic_on ball z r−{z})

lemma not_essential_cong:
assumes eventually (λx. f x = g x) (at z) z = z ′

shows not_essential f z ←→ not_essential g z ′

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 340

unfolding not_essential_def using assms filterlim_cong is_pole_cong by fast-
force

lemma not_essential_compose_iff :
assumes filtermap g (at z) = at z ′

shows not_essential (f ◦ g) z = not_essential f z ′

unfolding not_essential_def filterlim_def filtermap_compose assms is_pole_compose_iff [OF
assms]

by blast

lemma isolated_singularity_at_cong:
assumes eventually (λx. f x = g x) (at z) z = z ′

shows isolated_singularity_at f z ←→ isolated_singularity_at g z ′

proof −
have isolated_singularity_at g z

if isolated_singularity_at f z eventually (λx. f x = g x) (at z) for f g
proof −

from that(1) obtain r where r : r > 0 f analytic_on ball z r − {z}
by (auto simp: isolated_singularity_at_def)

from that(2) obtain r ′ where r ′: r ′ > 0 ∀ x∈ball z r ′−{z}. f x = g x
unfolding eventually_at_filter eventually_nhds_metric by (auto simp:

dist_commute)

have f holomorphic_on ball z r − {z}
using r(2) by (subst (asm) analytic_on_open) auto

hence f holomorphic_on ball z (min r r ′) − {z}
by (rule holomorphic_on_subset) auto

also have ?this ←→ g holomorphic_on ball z (min r r ′) − {z}
using r ′ by (intro holomorphic_cong) auto

also have . . . ←→ g analytic_on ball z (min r r ′) − {z}
by (subst analytic_on_open) auto

finally show ?thesis
unfolding isolated_singularity_at_def
by (intro exI [of _ min r r ′]) (use ‹r > 0 › ‹r ′ > 0 › in auto)

qed
from this[of f g] this[of g f] assms show ?thesis

by (auto simp: eq_commute)
qed

lemma removable_singularity:
assumes f holomorphic_on A − {x} open A
assumes f −x→ c
shows (λy. if y = x then c else f y) holomorphic_on A (is ?g holomorphic_on

_)
proof −

have continuous_on A ?g
unfolding continuous_on_def

proof
fix y assume y: y ∈ A

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 341

show (?g −−−→ ?g y) (at y within A)
proof (cases y = x)

case False
have continuous_on (A − {x}) f

using assms(1) by (meson holomorphic_on_imp_continuous_on)
hence (f −−−→ ?g y) (at y within A − {x})

using False y by (auto simp: continuous_on_def)
also have ?this ←→ (?g −−−→ ?g y) (at y within A − {x})

by (intro filterlim_cong refl) (auto simp: eventually_at_filter)
also have at y within A − {x} = at y within A

using y assms False
by (intro at_within_nhd[of _ A − {x}]) auto

finally show ?thesis .
next

case [simp]: True
have f −x→ c

by fact
also have ?this ←→ (?g −−−→ ?g y) (at y)

by (simp add: LIM_equal)
finally show ?thesis

by (meson Lim_at_imp_Lim_at_within)
qed

qed
moreover {

have ?g holomorphic_on A − {x}
using assms(1) holomorphic_transform by fastforce

}
ultimately show ?thesis

using assms by (simp add: no_isolated_singularity)
qed

lemma removable_singularity ′:
assumes isolated_singularity_at f z
assumes f −z→ c
shows (λy. if y = z then c else f y) analytic_on {z}

proof −
from assms obtain r where r : r > 0 f analytic_on ball z r − {z}

by (auto simp: isolated_singularity_at_def)
have (λy. if y = z then c else f y) holomorphic_on ball z r
proof (rule removable_singularity)

show f holomorphic_on ball z r − {z}
using r(2) by (subst (asm) analytic_on_open) auto

qed (use assms in auto)
thus ?thesis

using r(1) unfolding analytic_at by (intro exI [of _ ball z r]) auto
qed

named_theorems singularity_intros introduction rules for singularities

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 342

lemma holomorphic_factor_unique:
fixes f :: complex ⇒ complex and z::complex and r ::real and m n::int
assumes r>0 g z 6=0 h z 6=0

and asm: ∀w∈ball z r−{z}. f w = g w ∗ (w−z) powi n ∧ g w 6=0 ∧ f w = h w
∗ (w−z) powi m ∧ h w 6=0

and g_holo: g holomorphic_on ball z r and h_holo: h holomorphic_on ball z r
shows n=m

proof −
have [simp]: at z within ball z r 6= bot using ‹r>0 ›

by (auto simp add: at_within_ball_bot_iff)
have False when n>m
proof −

have (h −−−→ 0) (at z within ball z r)
proof (rule Lim_transform_within[OF _ ‹r>0 ›, where f=λw. (w−z) powi

(n − m) ∗ g w])
have ∀w∈ball z r−{z}. h w = (w−z)powi(n−m) ∗ g w

using ‹n>m› asm ‹r>0 › by (simp add: field_simps power_int_diff) force
then show [[x ′ ∈ ball z r ; 0 < dist x ′ z;dist x ′ z < r]]

=⇒ (x ′ − z) powi (n − m) ∗ g x ′ = h x ′ for x ′ by auto
next

define F where F ≡ at z within ball z r
define f ′ where f ′ ≡ λx. (x − z) powi (n−m)
have f ′ z=0 using ‹n>m› unfolding f ′_def by auto
moreover have continuous F f ′ unfolding f ′_def F_def continuous_def

using ‹n>m›
by (auto simp add: Lim_ident_at intro!:tendsto_powr_complex_0 tend-

sto_eq_intros)
ultimately have (f ′ −−−→ 0) F unfolding F_def

by (simp add: continuous_within)
moreover have (g −−−→ g z) F

unfolding F_def
using ‹r>0 › centre_in_ball continuous_on_def g_holo holomorphic_on_imp_continuous_on

by blast
ultimately show ((λw. f ′ w ∗ g w) −−−→ 0) F using tendsto_mult by

fastforce
qed
moreover have (h −−−→ h z) (at z within ball z r)

using holomorphic_on_imp_continuous_on[OF h_holo]
by (auto simp add: continuous_on_def ‹r>0 ›)

ultimately have h z=0 by (auto intro!: tendsto_unique)
thus False using ‹h z 6=0 › by auto

qed
moreover have False when m>n
proof −

have (g −−−→ 0) (at z within ball z r)
proof (rule Lim_transform_within[OF _ ‹r>0 ›, where f=λw. (w−z) powi

(m − n) ∗ h w])
have ∀w∈ball z r −{z}. g w = (w−z) powi (m−n) ∗ h w using ‹m>n› asm

by (simp add: field_simps power_int_diff) force

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 343

then show [[x ′ ∈ ball z r ; 0 < dist x ′ z;dist x ′ z < r]]
=⇒ (x ′ − z) powi (m − n) ∗ h x ′ = g x ′ for x ′ by auto

next
define F where F ≡ at z within ball z r
define f ′ where f ′ ≡λx. (x − z) powi (m−n)
have f ′ z=0 using ‹m>n› unfolding f ′_def by auto
moreover have continuous F f ′ unfolding f ′_def F_def continuous_def

using ‹m>n›
by (auto simp: Lim_ident_at intro!:tendsto_powr_complex_0 tendsto_eq_intros)
ultimately have (f ′ −−−→ 0) F unfolding F_def

by (simp add: continuous_within)
moreover have (h −−−→ h z) F

using holomorphic_on_imp_continuous_on[OF h_holo,unfolded continu-
ous_on_def] ‹r>0 ›

unfolding F_def by auto
ultimately show ((λw. f ′ w ∗ h w) −−−→ 0) F using tendsto_mult by

fastforce
qed
moreover have (g −−−→ g z) (at z within ball z r)

using holomorphic_on_imp_continuous_on[OF g_holo]
by (auto simp add: continuous_on_def ‹r>0 ›)

ultimately have g z=0 by (auto intro!: tendsto_unique)
thus False using ‹g z 6=0 › by auto

qed
ultimately show n=m by fastforce

qed

lemma holomorphic_factor_puncture:
assumes f_iso: isolated_singularity_at f z

and not_essential f z — f has either a removable singularity or a pole at z
and non_zero: ∃ F w in (at z). f w 6=0 — f will not be constantly zero in a

neighbour of z
shows ∃ !n::int. ∃ g r . 0 < r ∧ g holomorphic_on cball z r ∧ g z 6=0

∧ (∀w∈cball z r−{z}. f w = g w ∗ (w−z) powi n ∧ g w 6=0)
proof −

define P where P = (λf n g r . 0 < r ∧ g holomorphic_on cball z r ∧ g z 6=0
∧ (∀w∈cball z r − {z}. f w = g w ∗ (w−z) powi n ∧ g w 6=0))

have imp_unique: ∃ !n::int. ∃ g r . P f n g r when ∃n g r . P f n g r
proof (rule ex_ex1I [OF that])

fix n1 n2 :: int
assume g1_asm: ∃ g1 r1 . P f n1 g1 r1 and g2_asm: ∃ g2 r2 . P f n2 g2 r2
define fac where fac ≡ λn g r . ∀w∈cball z r−{z}. f w = g w ∗ (w−z) powi n

∧ g w 6= 0
obtain g1 r1 where 0 < r1 and g1_holo: g1 holomorphic_on cball z r1 and

g1 z 6=0
and fac n1 g1 r1 using g1_asm unfolding P_def fac_def by auto

obtain g2 r2 where 0 < r2 and g2_holo: g2 holomorphic_on cball z r2 and
g2 z 6=0

and fac n2 g2 r2 using g2_asm unfolding P_def fac_def by auto

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 344

define r where r ≡ min r1 r2
have r>0 using ‹r1>0 › ‹r2>0 › unfolding r_def by auto
moreover have ∀w∈ball z r−{z}. f w = g1 w ∗ (w−z) powi n1 ∧ g1 w 6=0
∧ f w = g2 w ∗ (w−z) powi n2 ∧ g2 w 6=0

using ‹fac n1 g1 r1 › ‹fac n2 g2 r2 › unfolding fac_def r_def
by fastforce

ultimately show n1=n2
using g1_holo g2_holo ‹g1 z 6=0 › ‹g2 z 6=0 ›
apply (elim holomorphic_factor_unique)
by (auto simp add: r_def)

qed

have P_exist: ∃ n g r . P h n g r when
∃ z ′. (h −−−→ z ′) (at z) isolated_singularity_at h z ∃ F w in (at z). h w 6=0

for h
proof −

from that(2) obtain r where r>0 and r : h analytic_on ball z r − {z}
unfolding isolated_singularity_at_def by auto

obtain z ′ where (h −−−→ z ′) (at z) using ‹∃ z ′. (h −−−→ z ′) (at z)› by auto
define h ′ where h ′=(λx. if x=z then z ′ else h x)
have h ′ holomorphic_on ball z r
proof (rule no_isolated_singularity ′[of {z}])

show
∧

w. w ∈ {z} =⇒ (h ′ −−−→ h ′ w) (at w within ball z r)
by (simp add: LIM_cong Lim_at_imp_Lim_at_within ‹h −z→ z ′› h ′_def)
show h ′ holomorphic_on ball z r − {z}

using r analytic_imp_holomorphic h ′_def holomorphic_transform by
fastforce

qed auto
have ?thesis when z ′=0
proof −

have h ′ z=0 using that unfolding h ′_def by auto
moreover have ¬ h ′ constant_on ball z r

using ‹∃ F w in (at z). h w 6=0 › unfolding constant_on_def frequently_def
eventually_at h ′_def

by (metis ‹0 < r› centre_in_ball dist_commute mem_ball that)
moreover note ‹h ′ holomorphic_on ball z r›
ultimately obtain g r1 n where 0 < n 0 < r1 ball z r1 ⊆ ball z r and

g: g holomorphic_on ball z r1∧
w. w ∈ ball z r1 =⇒ h ′ w = (w−z) ^ n ∗ g w∧
w. w ∈ ball z r1 =⇒ g w 6= 0

using holomorphic_factor_zero_nonconstant[of _ ball z r z thesis,simplified,
OF ‹h ′ holomorphic_on ball z r› ‹r>0 › ‹h ′ z=0 › ‹¬ h ′ constant_on

ball z r›]
by (auto simp add: dist_commute)

define rr where rr=r1/2
have P h ′ n g rr

unfolding P_def rr_def
using ‹n>0 › ‹r1>0 › g by (auto simp add: powr_nat)

then have P h n g rr

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 345

unfolding h ′_def P_def by auto
then show ?thesis unfolding P_def by blast

qed
moreover have ?thesis when z ′6=0
proof −

have h ′ z 6=0 using that unfolding h ′_def by auto
obtain r1 where r1>0 cball z r1 ⊆ ball z r ∀ x∈cball z r1 . h ′ x 6=0
proof −

have isCont h ′ z h ′ z 6=0
by (auto simp add: Lim_cong_within ‹h −z→ z ′› ‹z ′6=0 › continuous_at

h ′_def)
then obtain r2 where r2 : r2>0 ∀ x∈ball z r2 . h ′ x 6=0

using continuous_at_avoid[of z h ′ 0] unfolding ball_def by auto
define r1 where r1=min r2 r / 2
have 0 < r1 cball z r1 ⊆ ball z r

using ‹r2>0 › ‹r>0 › unfolding r1_def by auto
moreover have ∀ x∈cball z r1 . h ′ x 6= 0

using r2 unfolding r1_def by simp
ultimately show ?thesis using that by auto

qed
then have P h ′ 0 h ′ r1 using ‹h ′ holomorphic_on ball z r› unfolding P_def

by auto
then have P h 0 h ′ r1 unfolding P_def h ′_def by auto
then show ?thesis unfolding P_def by blast

qed
ultimately show ?thesis by auto

qed

have ?thesis when ∃ x. (f −−−→ x) (at z)
apply (rule_tac imp_unique[unfolded P_def])
using P_exist[OF that(1) f_iso non_zero] unfolding P_def .

moreover have ?thesis when is_pole f z
proof (rule imp_unique[unfolded P_def])

obtain e where [simp]: e>0 and e_holo: f holomorphic_on ball z e − {z}
and e_nz: ∀ x∈ball z e−{z}. f x 6=0

proof −
have ∀ F z in at z. f z 6= 0

using ‹is_pole f z› filterlim_at_infinity_imp_eventually_ne unfolding
is_pole_def

by auto
then obtain e1 where e1 : e1>0 ∀ x∈ball z e1−{z}. f x 6=0

using that eventually_at[of λx. f x 6=0 z UNIV ,simplified] by (auto simp
add: dist_commute)

obtain e2 where e2 : e2>0 f holomorphic_on ball z e2 − {z}
using f_iso analytic_imp_holomorphic unfolding isolated_singularity_at_def

by auto
show ?thesis

using e1 e2 by (force intro: that[of min e1 e2])
qed

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 346

define h where h ≡ λx. inverse (f x)
have ∃n g r . P h n g r
proof −

have (λx. inverse (f x)) analytic_on ball z e − {z}
by (metis e_holo e_nz open_ball analytic_on_open holomorphic_on_inverse

open_delete)
moreover have h −z→ 0

using Lim_transform_within_open assms(2) h_def is_pole_tendsto that
by fastforce

moreover have ∃ F w in (at z). h w 6=0
using non_zero by (simp add: h_def)

ultimately show ?thesis
using P_exist[of h] ‹e > 0 ›
unfolding isolated_singularity_at_def h_def
by blast

qed
then obtain n g r

where 0 < r and
g_holo: g holomorphic_on cball z r and g z 6=0 and
g_fac: (∀w∈cball z r−{z}. h w = g w ∗ (w−z) powi n ∧ g w 6= 0)

unfolding P_def by auto
have P f (−n) (inverse o g) r
proof −
have f w = inverse (g w) ∗ (w−z) powi (− n) when w∈cball z r − {z} for w
by (metis g_fac h_def inverse_inverse_eq inverse_mult_distrib power_int_minus

that)
then show ?thesis

unfolding P_def comp_def
using ‹r>0 › g_holo g_fac ‹g z 6=0 › by (auto intro: holomorphic_intros)

qed
then show ∃ x g r . 0 < r ∧ g holomorphic_on cball z r ∧ g z 6= 0

∧ (∀w∈cball z r − {z}. f w = g w ∗ (w−z) powi x ∧ g w 6= 0)
unfolding P_def by blast

qed
ultimately show ?thesis

using ‹not_essential f z› unfolding not_essential_def by presburger
qed

lemma not_essential_transform:
assumes not_essential g z
assumes ∀ F w in (at z). g w = f w
shows not_essential f z
using assms unfolding not_essential_def
by (simp add: filterlim_cong is_pole_cong)

lemma isolated_singularity_at_transform:
assumes isolated_singularity_at g z
assumes ∀ F w in (at z). g w = f w

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 347

shows isolated_singularity_at f z
using assms isolated_singularity_at_cong by blast

lemma not_essential_powr [singularity_intros]:
assumes LIM w (at z). f w :> (at x)
shows not_essential (λw. (f w) powi n) z

proof −
define fp where fp=(λw. (f w) powi n)
have ?thesis when n>0
proof −

have (λw. (f w) ^ (nat n)) −z→ x ^ nat n
using that assms unfolding filterlim_at by (auto intro!:tendsto_eq_intros)

then have fp −z→ x ^ nat n unfolding fp_def
by (smt (verit) LIM_cong power_int_def that)

then show ?thesis unfolding not_essential_def fp_def by auto
qed
moreover have ?thesis when n=0
proof −

have ∀ F x in at z. fp x = 1
using that filterlim_at_within_not_equal[OF assms] by (auto simp: fp_def)

then have fp −z→ 1
by (simp add: tendsto_eventually)

then show ?thesis unfolding fp_def not_essential_def by auto
qed
moreover have ?thesis when n<0
proof (cases x=0)

case True
have (λx. f x ^ nat (− n)) −z→ 0
using assms True that unfolding filterlim_at by (auto intro!:tendsto_eq_intros)
moreover have ∀ F x in at z. f x ^ nat (− n) 6= 0
by (smt (verit) True assms eventually_at_topological filterlim_at power_eq_0_iff)
ultimately have LIM w (at z). inverse ((f w) ^ (nat (−n))) :> at_infinity

by (metis filterlim_atI filterlim_compose filterlim_inverse_at_infinity)
then have LIM w (at z). fp w :> at_infinity
proof (elim filterlim_mono_eventually)

show ∀ F x in at z. inverse (f x ^ nat (− n)) = fp x
using filterlim_at_within_not_equal[OF assms,of 0] unfolding fp_def
by (smt (verit) eventuallyI power_int_def power_inverse that)

qed auto
then show ?thesis unfolding fp_def not_essential_def is_pole_def by auto

next
case False
let ?xx= inverse (x ^ (nat (−n)))
have (λw. inverse ((f w) ^ (nat (−n)))) −z→?xx
using assms False unfolding filterlim_at by (auto intro!:tendsto_eq_intros)

then have fp −z→ ?xx
by (smt (verit, best) LIM_cong fp_def power_int_def power_inverse that)

then show ?thesis unfolding fp_def not_essential_def by auto
qed

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 348

ultimately show ?thesis by linarith
qed

lemma isolated_singularity_at_powr [singularity_intros]:
assumes isolated_singularity_at f z ∀ F w in (at z). f w 6=0
shows isolated_singularity_at (λw. (f w) powi n) z

proof −
obtain r1 where r1>0 f analytic_on ball z r1 − {z}

using assms(1) unfolding isolated_singularity_at_def by auto
then have r1 : f holomorphic_on ball z r1 − {z}

using analytic_on_open[of ball z r1−{z} f] by blast
obtain r2 where r2>0 and r2 : ∀w. w 6= z ∧ dist w z < r2 −→ f w 6= 0

using assms(2) unfolding eventually_at by auto
define r3 where r3=min r1 r2
have (λw. (f w) powi n) holomorphic_on ball z r3 − {z}
by (intro holomorphic_on_power_int) (use r1 r2 in ‹auto simp: dist_commute

r3_def ›)
moreover have r3>0 unfolding r3_def using ‹0 < r1 › ‹0 < r2 › by linarith
ultimately show ?thesis
by (meson open_ball analytic_on_open isolated_singularity_at_def open_delete)

qed

lemma non_zero_neighbour :
assumes f_iso: isolated_singularity_at f z

and f_ness: not_essential f z
and f_nconst: ∃ F w in (at z). f w 6=0

shows ∀ F w in (at z). f w 6=0
proof −

obtain fn fp fr
where [simp]: fp z 6= 0 and fr > 0

and fr : fp holomorphic_on cball z fr∧
w. w ∈ cball z fr − {z} =⇒ f w = fp w ∗ (w−z) powi fn ∧ fp w 6= 0

using holomorphic_factor_puncture[OF f_iso f_ness f_nconst] by auto
have f w 6= 0 when w 6= z dist w z < fr for w
proof −

have f w = fp w ∗ (w−z) powi fn fp w 6= 0
using fr that by (auto simp add: dist_commute)

moreover have (w−z) powi fn 6=0
unfolding powr_eq_0_iff using ‹w 6=z› by auto

ultimately show ?thesis by auto
qed
then show ?thesis using ‹fr>0 › unfolding eventually_at by auto

qed

lemma non_zero_neighbour_pole:
assumes is_pole f z
shows ∀ F w in (at z). f w 6=0
using assms filterlim_at_infinity_imp_eventually_ne[of f at z 0]
unfolding is_pole_def by auto

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 349

lemma non_zero_neighbour_alt:
assumes holo: f holomorphic_on S

and open S connected S z ∈ S β ∈ S f β 6= 0
shows ∀ F w in (at z). f w 6=0 ∧ w∈S

proof (cases f z = 0)
case True
from isolated_zeros[OF holo ‹open S› ‹connected S› ‹z ∈ S› True ‹β ∈ S› ‹f β
6= 0 ›]

obtain r where 0 < r ball z r ⊆ S ∀w ∈ ball z r − {z}.f w 6= 0 by metis
then show ?thesis

by (smt (verit) open_ball centre_in_ball eventually_at_topological insertE
insert_Diff subsetD)
next

case False
obtain r1 where r1 : r1>0 ∀ y. dist z y < r1 −→ f y 6= 0
using continuous_at_avoid[of z f , OF _ False] assms continuous_on_eq_continuous_at

holo holomorphic_on_imp_continuous_on by blast
obtain r2 where r2 : r2>0 ball z r2 ⊆ S

using assms openE by blast
show ?thesis unfolding eventually_at

by (metis (no_types) dist_commute order .strict_trans linorder_less_linear
mem_ball r1 r2 subsetD)
qed

lemma not_essential_times[singularity_intros]:
assumes f_ness: not_essential f z and g_ness: not_essential g z
assumes f_iso: isolated_singularity_at f z and g_iso: isolated_singularity_at g

z
shows not_essential (λw. f w ∗ g w) z

proof −
define fg where fg = (λw. f w ∗ g w)
have ?thesis when ¬ ((∃ F w in (at z). f w 6=0) ∧ (∃ F w in (at z). g w 6=0))
proof −

have ∀ F w in (at z). fg w=0
using fg_def frequently_elim1 not_eventually that by fastforce

from tendsto_cong[OF this] have fg −z→0 by auto
then show ?thesis unfolding not_essential_def fg_def by auto

qed
moreover have ?thesis when f_nconst: ∃ F w in (at z). f w 6=0 and g_nconst:
∃ F w in (at z). g w 6=0

proof −
obtain fn fp fr where [simp]: fp z 6= 0 and fr > 0

and fr : fp holomorphic_on cball z fr
∀w∈cball z fr − {z}. f w = fp w ∗ (w−z) powi fn ∧ fp w 6= 0

using holomorphic_factor_puncture[OF f_iso f_ness f_nconst] by auto
obtain gn gp gr where [simp]: gp z 6= 0 and gr > 0

and gr : gp holomorphic_on cball z gr
∀w∈cball z gr − {z}. g w = gp w ∗ (w−z) powi gn ∧ gp w 6= 0

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 350

using holomorphic_factor_puncture[OF g_iso g_ness g_nconst] by auto

define r1 where r1=(min fr gr)
have r1>0 unfolding r1_def using ‹fr>0 › ‹gr>0 › by auto
have fg_times: fg w = (fp w ∗ gp w) ∗ (w−z) powi (fn+gn) and fgp_nz: fp

w∗gp w 6=0
when w∈ball z r1 − {z} for w

proof −
have f w = fp w ∗ (w−z) powi fn fp w 6=0

using fr that unfolding r1_def by auto
moreover have g w = gp w ∗ (w−z) powi gn gp w 6= 0

using gr that unfolding r1_def by auto
ultimately show fg w = (fp w ∗ gp w) ∗ (w−z) powi (fn+gn) fp w∗gp w 6=0

using that by (auto simp add: fg_def power_int_add)
qed

obtain [intro]: fp −z→fp z gp −z→gp z
using fr(1) ‹fr>0 › gr(1) ‹gr>0 ›
by (metis centre_in_ball continuous_at continuous_on_interior

holomorphic_on_imp_continuous_on interior_cball)
have ?thesis when fn+gn>0
proof −

have (λw. (fp w ∗ gp w) ∗ (w−z) ^ (nat (fn+gn))) −z→0
using that by (auto intro!:tendsto_eq_intros)

then have fg −z→ 0
using Lim_transform_within[OF _ ‹r1>0 ›]

by (smt (verit, best) Diff_iff dist_commute fg_times mem_ball power_int_def
singletonD that zero_less_dist_iff)

then show ?thesis unfolding not_essential_def fg_def by auto
qed
moreover have ?thesis when fn+gn=0
proof −

have (λw. fp w ∗ gp w) −z→fp z∗gp z
using that by (auto intro!:tendsto_eq_intros)

then have fg −z→ fp z∗gp z
apply (elim Lim_transform_within[OF _ ‹r1>0 ›])
apply (subst fg_times)
by (auto simp add: dist_commute that)

then show ?thesis unfolding not_essential_def fg_def by auto
qed
moreover have ?thesis when fn+gn<0
proof −

have LIM x at z. (x − z) ^ nat (− (fn + gn)) :> at 0
using eventually_at_topological that
by (force intro!: tendsto_eq_intros filterlim_atI)

moreover have ∃ c. (λc. fp c ∗ gp c) −z→ c ∧ 0 6= c
using ‹fp −z→ fp z› ‹gp −z→ gp z› tendsto_mult by fastforce

ultimately have LIM w (at z). fp w ∗ gp w / (w−z)^nat (−(fn+gn)) :>
at_infinity

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 351

using filterlim_divide_at_infinity by blast
then have is_pole fg z unfolding is_pole_def

apply (elim filterlim_transform_within[OF _ _ ‹r1>0 ›])
using that

by (simp_all add: dist_commute fg_times of_int_of_nat divide_simps
power_int_def del: minus_add_distrib)

then show ?thesis unfolding not_essential_def fg_def by auto
qed
ultimately show ?thesis unfolding not_essential_def fg_def by fastforce

qed
ultimately show ?thesis by auto

qed

lemma not_essential_inverse[singularity_intros]:
assumes f_ness: not_essential f z
assumes f_iso: isolated_singularity_at f z
shows not_essential (λw. inverse (f w)) z

proof −
define vf where vf = (λw. inverse (f w))
have ?thesis when ¬(∃ F w in (at z). f w 6=0)
proof −

have ∀ F w in (at z). f w=0
using not_eventually that by fastforce

then have vf −z→0
unfolding vf_def by (simp add: tendsto_eventually)

then show ?thesis
unfolding not_essential_def vf_def by auto

qed
moreover have ?thesis when is_pole f z
by (metis (mono_tags, lifting) filterlim_at filterlim_inverse_at_iff is_pole_def

not_essential_def that)
moreover have ?thesis when ∃ x. f−z→x and f_nconst: ∃ F w in (at z). f w 6=0
proof −

from that obtain fz where fz: f−z→fz by auto
have ?thesis when fz=0

proof −
have (λw. inverse (vf w)) −z→0

using fz that unfolding vf_def by auto
moreover have ∀ F w in at z. inverse (vf w) 6= 0

using non_zero_neighbour [OF f_iso f_ness f_nconst]
unfolding vf_def by auto

ultimately show ?thesis unfolding not_essential_def vf_def
using filterlim_atI filterlim_inverse_at_iff is_pole_def by blast

qed
moreover have ?thesis when fz 6=0

using fz not_essential_def tendsto_inverse that by blast
ultimately show ?thesis by auto

qed

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 352

ultimately show ?thesis using f_ness unfolding not_essential_def by auto
qed

lemma isolated_singularity_at_inverse[singularity_intros]:
assumes f_iso: isolated_singularity_at f z

and f_ness: not_essential f z
shows isolated_singularity_at (λw. inverse (f w)) z

proof −
define vf where vf = (λw. inverse (f w))
have ?thesis when ¬(∃ F w in (at z). f w 6=0)
proof −

have ∀ F w in (at z). f w=0
using that[unfolded frequently_def , simplified] by (auto elim: eventually_rev_mp)
then have ∀ F w in (at z). vf w=0

unfolding vf_def by auto
then obtain d1 where d1>0 and d1 : ∀ x. x 6= z ∧ dist x z < d1 −→ vf x =

0
unfolding eventually_at by auto

then have vf holomorphic_on ball z d1−{z}
using holomorphic_transform[of λ_. 0]

by (metis Diff_iff dist_commute holomorphic_on_const insert_iff mem_ball)
then have vf analytic_on ball z d1 − {z}

by (simp add: analytic_on_open open_delete)
then show ?thesis

using ‹d1>0 › unfolding isolated_singularity_at_def vf_def by auto
qed
moreover have ?thesis when f_nconst: ∃ F w in (at z). f w 6=0
proof −

have ∀ F w in at z. f w 6= 0 using non_zero_neighbour [OF f_iso f_ness
f_nconst] .

then obtain d1 where d1 : d1>0 ∀ x. x 6= z ∧ dist x z < d1 −→ f x 6= 0
unfolding eventually_at by auto

obtain d2 where d2>0 and d2 : f analytic_on ball z d2 − {z}
using f_iso unfolding isolated_singularity_at_def by auto

define d3 where d3=min d1 d2
have d3>0 unfolding d3_def using ‹d1>0 › ‹d2>0 › by auto
moreover
have f analytic_on ball z d3 − {z}

by (smt (verit, best) Diff_iff analytic_on_analytic_at d2 d3_def mem_ball)
then have vf analytic_on ball z d3 − {z}

unfolding vf_def
by (intro analytic_on_inverse; simp add: d1 (2) d3_def dist_commute)

ultimately show ?thesis
unfolding isolated_singularity_at_def vf_def by auto

qed
ultimately show ?thesis by auto

qed

lemma not_essential_divide[singularity_intros]:

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 353

assumes f_ness: not_essential f z and g_ness: not_essential g z
assumes f_iso: isolated_singularity_at f z and g_iso: isolated_singularity_at g

z
shows not_essential (λw. f w / g w) z

proof −
have not_essential (λw. f w ∗ inverse (g w)) z

by (simp add: f_iso f_ness g_iso g_ness isolated_singularity_at_inverse
not_essential_inverse not_essential_times)

then show ?thesis by (simp add: field_simps)
qed

lemma
assumes f_iso: isolated_singularity_at f z

and g_iso: isolated_singularity_at g z
shows isolated_singularity_at_times[singularity_intros]:

isolated_singularity_at (λw. f w ∗ g w) z
and isolated_singularity_at_add[singularity_intros]:

isolated_singularity_at (λw. f w + g w) z
proof −

obtain d1 d2 where d1>0 d2>0
and d1 : f analytic_on ball z d1 − {z} and d2 : g analytic_on ball z d2 − {z}

using f_iso g_iso unfolding isolated_singularity_at_def by auto
define d3 where d3=min d1 d2
have d3>0 unfolding d3_def using ‹d1>0 › ‹d2>0 › by auto

have fan: f analytic_on ball z d3 − {z}
by (smt (verit, best) Diff_iff analytic_on_analytic_at d1 d3_def mem_ball)

have gan: g analytic_on ball z d3 − {z}
by (smt (verit, best) Diff_iff analytic_on_analytic_at d2 d3_def mem_ball)

have (λw. f w ∗ g w) analytic_on ball z d3 − {z}
using analytic_on_mult fan gan by blast

then show isolated_singularity_at (λw. f w ∗ g w) z
using ‹d3>0 › unfolding isolated_singularity_at_def by auto

have (λw. f w + g w) analytic_on ball z d3 − {z}
using analytic_on_add fan gan by blast

then show isolated_singularity_at (λw. f w + g w) z
using ‹d3>0 › unfolding isolated_singularity_at_def by auto

qed

lemma isolated_singularity_at_uminus[singularity_intros]:
assumes f_iso: isolated_singularity_at f z
shows isolated_singularity_at (λw. − f w) z
using assms unfolding isolated_singularity_at_def using analytic_on_neg by

blast

lemma isolated_singularity_at_id[singularity_intros]:
isolated_singularity_at (λw. w) z

unfolding isolated_singularity_at_def by (simp add: gt_ex)

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 354

lemma isolated_singularity_at_minus[singularity_intros]:
assumes isolated_singularity_at f z and isolated_singularity_at g z
shows isolated_singularity_at (λw. f w − g w) z
unfolding diff_conv_add_uminus
using assms isolated_singularity_at_add isolated_singularity_at_uminus by

blast

lemma isolated_singularity_at_divide[singularity_intros]:
assumes isolated_singularity_at f z

and isolated_singularity_at g z
and not_essential g z

shows isolated_singularity_at (λw. f w / g w) z
unfolding divide_inverse
by (simp add: assms isolated_singularity_at_inverse isolated_singularity_at_times)

lemma isolated_singularity_at_const[singularity_intros]:
isolated_singularity_at (λw. c) z

unfolding isolated_singularity_at_def by (simp add: gt_ex)

lemma isolated_singularity_at_holomorphic:
assumes f holomorphic_on s−{z} open s z∈s
shows isolated_singularity_at f z
using assms unfolding isolated_singularity_at_def
by (metis analytic_on_holomorphic centre_in_ball insert_Diff openE open_delete

subset_insert_iff)

lemma isolated_singularity_at_altdef :
isolated_singularity_at f z ←→ eventually (λz. f analytic_on {z}) (at z)

proof
assume isolated_singularity_at f z
then obtain r where r : r > 0 f analytic_on ball z r − {z}

unfolding isolated_singularity_at_def by blast
have eventually (λw. w ∈ ball z r − {z}) (at z)

using r(1) by (intro eventually_at_in_open) auto
thus eventually (λz. f analytic_on {z}) (at z)

by eventually_elim (use r analytic_on_subset in auto)
next

assume eventually (λz. f analytic_on {z}) (at z)
then obtain A where A: open A z ∈ A

∧
w. w ∈ A − {z} =⇒ f analytic_on

{w}
unfolding eventually_at_topological by blast

then show isolated_singularity_at f z
by (meson analytic_imp_holomorphic analytic_on_analytic_at isolated_singularity_at_holomorphic)

qed

lemma isolated_singularity_at_shift:
assumes isolated_singularity_at (λx. f (x + w)) z
shows isolated_singularity_at f (z + w)

proof −

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 355

from assms obtain r where r : r > 0 and ana: (λx. f (x + w)) analytic_on
ball z r − {z}

unfolding isolated_singularity_at_def by blast
have ((λx. f (x + w)) ◦ (λx. x − w)) analytic_on (ball (z + w) r − {z + w})

by (rule analytic_on_compose_gen[OF _ ana])
(auto simp: dist_norm algebra_simps intro!: analytic_intros)

hence f analytic_on (ball (z + w) r − {z + w})
by (simp add: o_def)

thus ?thesis using r
unfolding isolated_singularity_at_def by blast

qed

lemma isolated_singularity_at_shift_iff :
isolated_singularity_at f (z + w) ←→ isolated_singularity_at (λx. f (x + w)) z
using isolated_singularity_at_shift[of f w z]

isolated_singularity_at_shift[of λx. f (x + w) −w w + z]
by (auto simp: algebra_simps)

lemma isolated_singularity_at_shift_0 :
NO_MATCH 0 z =⇒ isolated_singularity_at f z ←→ isolated_singularity_at

(λx. f (z + x)) 0
using isolated_singularity_at_shift_iff [of f 0 z] by (simp add: add_ac)

lemma not_essential_shift:
assumes not_essential (λx. f (x + w)) z
shows not_essential f (z + w)

proof −
from assms consider c where (λx. f (x + w)) −z→ c | is_pole (λx. f (x +

w)) z
unfolding not_essential_def by blast

thus ?thesis
proof cases

case (1 c)
hence f −z + w→ c

by (smt (verit, ccfv_SIG) LIM_cong add.assoc filterlim_at_to_0)
thus ?thesis

by (auto simp: not_essential_def)
next

case 2
hence is_pole f (z + w)

by (subst is_pole_shift_iff [symmetric]) (auto simp: o_def add_ac)
thus ?thesis

by (auto simp: not_essential_def)
qed

qed

lemma not_essential_shift_iff : not_essential f (z + w) ←→ not_essential (λx.
f (x + w)) z

using not_essential_shift[of f w z]

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 356

not_essential_shift[of λx. f (x + w) −w w + z]
by (auto simp: algebra_simps)

lemma not_essential_shift_0 :
NO_MATCH 0 z =⇒ not_essential f z ←→ not_essential (λx. f (z + x)) 0
using not_essential_shift_iff [of f 0 z] by (simp add: add_ac)

lemma not_essential_holomorphic:
assumes f holomorphic_on A x ∈ A open A
shows not_essential f x
by (metis assms at_within_open continuous_on holomorphic_on_imp_continuous_on

not_essential_def)

lemma not_essential_analytic:
assumes f analytic_on {z}
shows not_essential f z
using analytic_at assms not_essential_holomorphic by blast

lemma not_essential_id [singularity_intros]: not_essential (λw. w) z
by (simp add: not_essential_analytic)

lemma is_pole_imp_not_essential [intro]: is_pole f z =⇒ not_essential f z
by (auto simp: not_essential_def)

lemma tendsto_imp_not_essential [intro]: f −z→ c =⇒ not_essential f z
by (auto simp: not_essential_def)

lemma eventually_not_pole:
assumes isolated_singularity_at f z
shows eventually (λw. ¬is_pole f w) (at z)

proof −
from assms obtain r where r > 0 and r : f analytic_on ball z r − {z}

by (auto simp: isolated_singularity_at_def)
then have eventually (λw. w ∈ ball z r − {z}) (at z)

by (intro eventually_at_in_open) auto
thus eventually (λw. ¬is_pole f w) (at z)

by (metis (no_types, lifting) analytic_at analytic_on_analytic_at eventu-
ally_mono not_is_pole_holomorphic r)
qed

lemma not_islimpt_poles:
assumes isolated_singularity_at f z
shows ¬z islimpt {w. is_pole f w}
using eventually_not_pole [OF assms]
by (auto simp: islimpt_conv_frequently_at frequently_def)

lemma analytic_at_imp_no_pole: f analytic_on {z} =⇒ ¬is_pole f z
using analytic_at not_is_pole_holomorphic by blast

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 357

lemma not_essential_const [singularity_intros]: not_essential (λ_. c) z
by blast

lemma not_essential_uminus [singularity_intros]:
assumes f_ness: not_essential f z
assumes f_iso: isolated_singularity_at f z
shows not_essential (λw. −f w) z

proof −
have not_essential (λw. −1 ∗ f w) z

by (intro assms singularity_intros)
thus ?thesis by simp

qed

lemma isolated_singularity_at_analytic:
assumes f analytic_on {z}
shows isolated_singularity_at f z
by (meson Diff_subset analytic_at assms holomorphic_on_subset isolated_singularity_at_holomorphic)

lemma isolated_singularity_sum [singularity_intros]:
assumes

∧
x. x ∈ A =⇒ isolated_singularity_at (f x) z

shows isolated_singularity_at (λw.
∑

x∈A. f x w) z
using assms by (induction A rule: infinite_finite_induct) (auto intro!: singular-

ity_intros)

lemma isolated_singularity_prod [singularity_intros]:
assumes

∧
x. x ∈ A =⇒ isolated_singularity_at (f x) z

shows isolated_singularity_at (λw.
∏

x∈A. f x w) z
using assms by (induction A rule: infinite_finite_induct) (auto intro!: singular-

ity_intros)

lemma isolated_singularity_sum_list [singularity_intros]:
assumes

∧
f . f ∈ set fs =⇒ isolated_singularity_at f z

shows isolated_singularity_at (λw.
∑

f←fs. f w) z
using assms by (induction fs) (auto intro!: singularity_intros)

lemma isolated_singularity_prod_list [singularity_intros]:
assumes

∧
f . f ∈ set fs =⇒ isolated_singularity_at f z

shows isolated_singularity_at (λw.
∏

f←fs. f w) z
using assms by (induction fs) (auto intro!: singularity_intros)

lemma isolated_singularity_sum_mset [singularity_intros]:
assumes

∧
f . f ∈# F =⇒ isolated_singularity_at f z

shows isolated_singularity_at (λw.
∑

f∈#F . f w) z
using assms by (induction F) (auto intro!: singularity_intros)

lemma isolated_singularity_prod_mset [singularity_intros]:
assumes

∧
f . f ∈# F =⇒ isolated_singularity_at f z

shows isolated_singularity_at (λw.
∏

f∈#F . f w) z
using assms by (induction F) (auto intro!: singularity_intros)

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 358

lemma analytic_nhd_imp_isolated_singularity:
assumes f analytic_on A − {x} x ∈ A open A
shows isolated_singularity_at f x
unfolding isolated_singularity_at_def using assms
using analytic_imp_holomorphic isolated_singularity_at_def isolated_singularity_at_holomorphic

by blast

lemma isolated_singularity_at_iff_analytic_nhd:
isolated_singularity_at f x ←→ (∃A. x ∈ A ∧ open A ∧ f analytic_on A − {x})
by (meson open_ball analytic_nhd_imp_isolated_singularity

centre_in_ball isolated_singularity_at_def)

7.12 The order of non-essential singularities (i.e. removable
singularities or poles)

definition zorder :: (complex ⇒ complex) ⇒ complex ⇒ int where
zorder f z = (THE n. (∃ h r . r>0 ∧ h holomorphic_on cball z r ∧ h z 6=0

∧ (∀w∈cball z r − {z}. f w = h w ∗ (w−z) powi n
∧ h w 6=0)))

definition zor_poly
:: [complex ⇒ complex, complex] ⇒ complex ⇒ complex where

zor_poly f z = (SOME h. ∃ r . r > 0 ∧ h holomorphic_on cball z r ∧ h z 6= 0
∧ (∀w∈cball z r − {z}. f w = h w ∗ (w−z) powi (zorder f z)
∧ h w 6=0))

lemma zorder_exist:
fixes f :: complex ⇒ complex and z::complex
defines n ≡ zorder f z and g ≡ zor_poly f z
assumes f_iso: isolated_singularity_at f z

and f_ness: not_essential f z
and f_nconst: ∃ F w in (at z). f w 6=0

shows g z 6=0 ∧ (∃ r . r>0 ∧ g holomorphic_on cball z r
∧ (∀w∈cball z r − {z}. f w = g w ∗ (w−z) powi n ∧ g w 6=0))

proof −
define P where P = (λn g r . 0 < r ∧ g holomorphic_on cball z r ∧ g z 6=0

∧ (∀w∈cball z r − {z}. f w = g w ∗ (w−z) powi n ∧ g w 6=0))
have ∃ !k. ∃ g r . P k g r
using holomorphic_factor_puncture[OF assms(3−)] unfolding P_def by auto

then have ∃ g r . P n g r
unfolding n_def P_def zorder_def by (rule theI ′)

then have ∃ r . P n g r
unfolding P_def zor_poly_def g_def n_def by (rule someI_ex)

then obtain r1 where P n g r1
by auto

then show ?thesis
unfolding P_def by auto

qed

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 359

lemma zorder_shift:
shows zorder f z = zorder (λu. f (u + z)) 0
unfolding zorder_def
apply (rule arg_cong [of concl: The])
apply (auto simp: fun_eq_iff Ball_def dist_norm)
subgoal for x h r

apply (rule_tac x=h o (+)z in exI)
apply (rule_tac x=r in exI)
apply (intro conjI holomorphic_on_compose holomorphic_intros)

apply (simp_all flip: cball_translation)
apply (simp add: add.commute)
done

subgoal for x h r
apply (rule_tac x=h o (λu. u−z) in exI)
apply (rule_tac x=r in exI)
apply (intro conjI holomorphic_on_compose holomorphic_intros)

apply (simp_all flip: cball_translation_subtract)
by (metis diff_add_cancel eq_iff_diff_eq_0 norm_minus_commute)

done

lemma zorder_shift ′: NO_MATCH 0 z =⇒ zorder f z = zorder (λu. f (u + z)) 0
by (rule zorder_shift)

lemma
fixes f :: complex ⇒ complex and z::complex
assumes f_iso: isolated_singularity_at f z

and f_ness: not_essential f z
and f_nconst: ∃ F w in (at z). f w 6=0

shows zorder_inverse: zorder (λw. inverse (f w)) z = − zorder f z
and zor_poly_inverse: ∀ F w in (at z). zor_poly (λw. inverse (f w)) z w

= inverse (zor_poly f z w)
proof −

define vf where vf = (λw. inverse (f w))
define fn vfn where

fn = zorder f z and vfn = zorder vf z
define fp vfp where

fp = zor_poly f z and vfp = zor_poly vf z

obtain fr where [simp]: fp z 6= 0 and fr > 0
and fr : fp holomorphic_on cball z fr

∀w∈cball z fr − {z}. f w = fp w ∗ (w−z) powi fn ∧ fp w 6= 0
using zorder_exist[OF f_iso f_ness f_nconst,folded fn_def fp_def]
by auto

have fr_inverse: vf w = (inverse (fp w)) ∗ (w−z) powi (−fn)
and fr_nz: inverse (fp w) 6= 0

when w∈ball z fr − {z} for w
proof −

have f w = fp w ∗ (w−z) powi fn fp w 6= 0

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 360

using fr(2) that by auto
then show vf w = (inverse (fp w)) ∗ (w−z) powi (−fn) inverse (fp w) 6=0

by (simp_all add: power_int_minus vf_def)
qed
obtain vfr where [simp]: vfp z 6= 0 and vfr>0 and vfr : vfp holomorphic_on

cball z vfr
(∀w∈cball z vfr − {z}. vf w = vfp w ∗ (w−z) powi vfn ∧ vfp w 6= 0)

proof −
have isolated_singularity_at vf z

using isolated_singularity_at_inverse[OF f_iso f_ness] unfolding vf_def .
moreover have not_essential vf z

using not_essential_inverse[OF f_ness f_iso] unfolding vf_def .
moreover have ∃ F w in at z. vf w 6= 0

using f_nconst unfolding vf_def by (auto elim: frequently_elim1)
ultimately show ?thesis using zorder_exist[of vf z, folded vfn_def vfp_def]

that by auto
qed

define r1 where r1 = min fr vfr
have r1>0 using ‹fr>0 › ‹vfr>0 › unfolding r1_def by simp
show vfn = − fn
proof (rule holomorphic_factor_unique)

have §:
∧

w. [[fp w = 0 ; dist z w < fr]] =⇒ False
using fr_nz by force

then show ∀w∈ball z r1 − {z}.
vf w = vfp w ∗ (w−z) powi vfn ∧
vfp w 6= 0 ∧ vf w = inverse (fp w) ∗ (w−z) powi (− fn) ∧
inverse (fp w) 6= 0

using fr_inverse r1_def vfr(2)
by (smt (verit) Diff_iff inverse_nonzero_iff_nonzero mem_ball mem_cball)

show vfp holomorphic_on ball z r1
using r1_def vfr(1) by auto

show (λw. inverse (fp w)) holomorphic_on ball z r1
by (metis § ball_subset_cball fr(1) holomorphic_on_inverse holomorphic_on_subset

mem_ball min.cobounded2 min.commute r1_def subset_ball)
qed (use ‹r1>0 › in auto)
have vfp w = inverse (fp w) when w∈ball z r1−{z} for w
proof −

have w ∈ ball z fr − {z} w ∈ cball z vfr − {z} w 6=z
using that unfolding r1_def by auto

then show ?thesis
by (metis ‹vfn = − fn› power_int_not_zero right_minus_eq fr_inverse

vfr(2)
vector_space_over_itself .scale_right_imp_eq)

qed
then show ∀ F w in (at z). vfp w = inverse (fp w)

unfolding eventually_at by (metis DiffI dist_commute mem_ball singletonD
‹r1>0 ›)
qed

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 361

lemma zor_poly_shift:
assumes iso1 : isolated_singularity_at f z

and ness1 : not_essential f z
and nzero1 : ∃ F w in at z. f w 6= 0

shows ∀ F w in nhds z. zor_poly f z w = zor_poly (λu. f (z + u)) 0 (w−z)
proof −

obtain r1 where r1>0 zor_poly f z z 6= 0 and
holo1 : zor_poly f z holomorphic_on cball z r1 and
rball1 : ∀w∈cball z r1 − {z}.

f w = zor_poly f z w ∗ (w−z) powi (zorder f z) ∧
zor_poly f z w 6= 0

using zorder_exist[OF iso1 ness1 nzero1] by blast

define ff where ff=(λu. f (z + u))
have isolated_singularity_at ff 0

unfolding ff_def
using iso1 isolated_singularity_at_shift_iff [of f 0 z]
by (simp add: algebra_simps)

moreover have not_essential ff 0
unfolding ff_def
using ness1 not_essential_shift_iff [of f 0 z]
by (simp add: algebra_simps)

moreover have ∃ F w in at 0 . ff w 6= 0
unfolding ff_def using nzero1
by (smt (verit, ccfv_SIG) add.commute eventually_at_to_0

eventually_mono not_frequently)
ultimately
obtain r2 where r2>0 zor_poly ff 0 0 6= 0

and holo2 : zor_poly ff 0 holomorphic_on cball 0 r2
and rball2 : ∀w∈cball 0 r2 − {0}.

ff w = zor_poly ff 0 w ∗ w powi (zorder ff 0) ∧ zor_poly ff 0 w 6= 0
using zorder_exist[of ff 0] by auto

define r where r=min r1 r2
have r>0 using ‹r1>0 › ‹r2>0 › unfolding r_def by auto

have zor_poly f z w = zor_poly ff 0 (w−z)
if w∈ball z r − {z} for w

proof −
define n where n ≡ zorder f z

have f w = zor_poly f z w ∗ (w−z) powi n
using n_def r_def rball1 that by auto

moreover have f w = zor_poly ff 0 (w−z) ∗ (w−z) powi n
proof −

have w−z∈cball 0 r2 − {0}
using r_def that by (auto simp: dist_complex_def)

then have ff (w−z) = zor_poly ff 0 (w−z) ∗ (w−z) powi (zorder ff 0)

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 362

using rball2 by blast
moreover have of_int (zorder ff 0) = n

unfolding n_def ff_def by (simp add:zorder_shift ′ add.commute)
ultimately show ?thesis unfolding ff_def by auto

qed
ultimately have zor_poly f z w ∗ (w−z) powi n = zor_poly ff 0 (w−z) ∗

(w−z) powi n
by auto

moreover have (w−z) powi n 6=0
using that by auto

ultimately show ?thesis
using mult_cancel_right by blast

qed
then have ∀ F w in at z. zor_poly f z w = zor_poly ff 0 (w−z)

unfolding eventually_at
by (metis DiffI ‹0 < r› dist_commute mem_ball singletonD)

moreover have isCont (zor_poly f z) z
using holo1 [THEN holomorphic_on_imp_continuous_on]
by (simp add: ‹0 < r1 › continuous_on_interior)

moreover
have isCont (zor_poly ff 0) 0
using ‹0 < r2 › continuous_on_interior holo2 holomorphic_on_imp_continuous_on
by fastforce

then have isCont (λw. zor_poly ff 0 (w−z)) z
unfolding isCont_iff by simp

ultimately show ∀ F w in nhds z. zor_poly f z w = zor_poly ff 0 (w−z)
by (elim at_within_isCont_imp_nhds;auto)

qed

lemma
fixes f g:: complex ⇒ complex and z::complex
assumes f_iso: isolated_singularity_at f z and g_iso: isolated_singularity_at g

z
and f_ness: not_essential f z and g_ness: not_essential g z
and fg_nconst: ∃ F w in (at z). f w ∗ g w 6= 0

shows zorder_times: zorder (λw. f w ∗ g w) z = zorder f z + zorder g z and
zor_poly_times: ∀ F w in (at z). zor_poly (λw. f w ∗ g w) z w

= zor_poly f z w ∗zor_poly g z w
proof −

define fg where fg = (λw. f w ∗ g w)
define fn gn fgn where

fn = zorder f z and gn = zorder g z and fgn = zorder fg z
define fp gp fgp where

fp = zor_poly f z and gp = zor_poly g z and fgp = zor_poly fg z
have f_nconst: ∃ F w in (at z). f w 6= 0 and g_nconst: ∃ F w in (at z).g w 6= 0

using fg_nconst by (auto elim!:frequently_elim1)
obtain fr where [simp]: fp z 6= 0 and fr > 0

and fr : fp holomorphic_on cball z fr
∀w∈cball z fr − {z}. f w = fp w ∗ (w−z) powi fn ∧ fp w 6= 0

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 363

using zorder_exist[OF f_iso f_ness f_nconst,folded fp_def fn_def] by auto
obtain gr where [simp]: gp z 6= 0 and gr > 0

and gr : gp holomorphic_on cball z gr
∀w∈cball z gr − {z}. g w = gp w ∗ (w−z) powi gn ∧ gp w 6= 0

using zorder_exist[OF g_iso g_ness g_nconst,folded gn_def gp_def] by auto
define r1 where r1=min fr gr
have r1>0 unfolding r1_def using ‹fr>0 › ‹gr>0 › by auto
have fg_times: fg w = (fp w ∗ gp w) ∗ (w−z) powi (fn+gn) and fgp_nz: fp w∗gp

w 6=0
when w∈ball z r1 − {z} for w

proof −
have f w = fp w ∗ (w−z) powi fn fp w 6= 0

using fr(2) r1_def that by auto
moreover have g w = gp w ∗ (w−z) powi gn gp w 6= 0

using gr(2) that unfolding r1_def by auto
ultimately show fg w = (fp w ∗ gp w) ∗ (w−z) powi (fn+gn) fp w∗gp w 6=0

using that unfolding fg_def by (auto simp add: power_int_add)
qed

obtain fgr where [simp]: fgp z 6= 0 and fgr > 0
and fgr : fgp holomorphic_on cball z fgr

∀w∈cball z fgr − {z}. fg w = fgp w ∗ (w−z) powi fgn ∧ fgp w 6= 0
proof −

have isolated_singularity_at fg z
unfolding fg_def using isolated_singularity_at_times[OF f_iso g_iso] .

moreover have not_essential fg z
by (simp add: f_iso f_ness fg_def g_iso g_ness not_essential_times)

moreover have ∃ F w in at z. fg w 6= 0
using fg_def fg_nconst by blast

ultimately show ?thesis
using that zorder_exist[of fg z] fgn_def fgp_def by fastforce

qed
define r2 where r2 = min fgr r1
have r2>0 using ‹r1>0 › ‹fgr>0 › unfolding r2_def by simp
show fgn = fn + gn
proof (rule holomorphic_factor_unique)

show ∀w ∈ ball z r2 − {z}. fg w = fgp w ∗ (w − z) powi fgn ∧ fgp w 6= 0 ∧
fg w = fp w ∗ gp w ∗ (w − z) powi (fn + gn) ∧ fp w ∗ gp w 6= 0

using fg_times fgp_nz fgr(2) r2_def by fastforce
next

show fgp holomorphic_on ball z r2
using fgr(1) r2_def by auto

next
show (λw. fp w ∗ gp w) holomorphic_on ball z r2

by (metis ball_subset_cball fr(1) gr(1) holomorphic_on_mult holomor-
phic_on_subset

min.cobounded1 min.cobounded2 r1_def r2_def subset_ball)
qed (auto simp add: ‹0 < r2 ›)

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 364

have fgp w = fp w ∗gp w when w: w ∈ ball z r2−{z} for w
proof −

have w ∈ ball z r1 − {z} w ∈ cball z fgr − {z} w 6=z
using w unfolding r2_def by auto

then show ?thesis
by (metis ‹fgn = fn + gn› eq_iff_diff_eq_0 fg_times fgr(2) power_int_eq_0_iff

mult_right_cancel)
qed
then show ∀ F w in (at z). fgp w = fp w ∗ gp w

using ‹r2>0 › unfolding eventually_at by (auto simp add: dist_commute)
qed

lemma
fixes f g:: complex ⇒ complex and z::complex
assumes f_iso: isolated_singularity_at f z and g_iso: isolated_singularity_at g

z
and f_ness: not_essential f z and g_ness: not_essential g z
and fg_nconst: ∃ F w in (at z). f w ∗ g w 6= 0

shows zorder_divide: zorder (λw. f w / g w) z = zorder f z − zorder g z and
zor_poly_divide: ∀ F w in (at z). zor_poly (λw. f w / g w) z w

= zor_poly f z w / zor_poly g z w
proof −

have f_nconst: ∃ F w in (at z). f w 6= 0 and g_nconst: ∃ F w in (at z).g w 6= 0
using fg_nconst by (auto elim!:frequently_elim1)

define vg where vg=(λw. inverse (g w))
have 1 : isolated_singularity_at vg z

by (simp add: g_iso g_ness isolated_singularity_at_inverse vg_def)
moreover have 2 : not_essential vg z

by (simp add: g_iso g_ness not_essential_inverse vg_def)
moreover have 3 : ∃ F w in at z. f w ∗ vg w 6= 0

using fg_nconst vg_def by auto
ultimately have zorder (λw. f w ∗ vg w) z = zorder f z + zorder vg z

using zorder_times[OF f_iso _ f_ness] by blast
then show zorder (λw. f w / g w) z = zorder f z − zorder g z

using zorder_inverse[OF g_iso g_ness g_nconst,folded vg_def] unfolding
vg_def

by (auto simp add: field_simps)
have ∀ F w in at z. zor_poly (λw. f w ∗ vg w) z w = zor_poly f z w ∗ zor_poly

vg z w
using zor_poly_times[OF f_iso _ f_ness,of vg] 1 2 3 by blast

then show ∀ F w in (at z). zor_poly (λw. f w / g w) z w = zor_poly f z w /
zor_poly g z w

using zor_poly_inverse[OF g_iso g_ness g_nconst,folded vg_def] unfolding
vg_def

by eventually_elim (auto simp add: field_simps)
qed

lemma zorder_exist_zero:
fixes f :: complex ⇒ complex and z::complex

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 365

defines n ≡ zorder f z and g ≡ zor_poly f z
assumes holo: f holomorphic_on S and open S connected S z∈S

and non_const: ∃w∈S . f w 6= 0
shows (if f z=0 then n > 0 else n=0) ∧ (∃ r . r>0 ∧ cball z r ⊆ S ∧ g holomor-

phic_on cball z r
∧ (∀w∈cball z r . f w = g w ∗ (w−z) ^ nat n ∧ g w 6=0))

proof −
obtain r where g z 6= 0 and r : r>0 cball z r ⊆ S g holomorphic_on cball z r

(∀w∈cball z r − {z}. f w = g w ∗ (w−z) powi n ∧ g w 6= 0)
proof −

have g z 6= 0 ∧ (∃ r>0 . g holomorphic_on cball z r
∧ (∀w∈cball z r − {z}. f w = g w ∗ (w−z) powi n ∧ g w 6= 0))

proof (rule zorder_exist[of f z,folded g_def n_def])
show isolated_singularity_at f z
using ‹open S› ‹z∈S› holo holomorphic_on_imp_analytic_at isolated_singularity_at_analytic

by force
show not_essential f z unfolding not_essential_def

using ‹open S› ‹z∈S› at_within_open continuous_on holo holomor-
phic_on_imp_continuous_on

by fastforce
have ∀ F w in at z. f w 6= 0 ∧ w∈S

using assms(4 ,5 ,6) holo non_const non_zero_neighbour_alt by blast
then show ∃ F w in at z. f w 6= 0

by (auto elim: eventually_frequentlyE)
qed
then obtain r1 where g z 6= 0 r1>0 and r1 : g holomorphic_on cball z r1

(∀w∈cball z r1 − {z}. f w = g w ∗ (w−z) powi n ∧ g w 6= 0)
by auto

obtain r2 where r2 : r2>0 cball z r2 ⊆ S
using assms(4 ,6) open_contains_cball_eq by blast

define r3 where r3 ≡ min r1 r2
have r3>0 cball z r3 ⊆ S using ‹r1>0 › r2 unfolding r3_def by auto
moreover have g holomorphic_on cball z r3

using r1 (1) unfolding r3_def by auto
moreover have (∀w∈cball z r3 − {z}. f w = g w ∗ (w−z) powi n ∧ g w 6= 0)

using r1 (2) unfolding r3_def by auto
ultimately show ?thesis using that[of r3] ‹g z 6=0 › by auto

qed

have fz_lim: f− z → f z
by (metis assms(4 ,6) at_within_open continuous_on holo holomorphic_on_imp_continuous_on)

have gz_lim: g −z→g z
using r

by (meson Elementary_Metric_Spaces.open_ball analytic_at analytic_at_imp_isCont

ball_subset_cball centre_in_ball holomorphic_on_subset isContD)
have if_0 : if f z=0 then n > 0 else n=0
proof −

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 366

have (λw. g w ∗ (w−z) powi n) −z→ f z
using fz_lim Lim_transform_within_open[where s=ball z r] r by fastforce

then have (λw. (g w ∗ (w−z) powi n) / g w) −z→ f z/g z
using gz_lim ‹g z 6= 0 › tendsto_divide by blast

then have powi_tendsto: (λw. (w−z) powi n) −z→ f z/g z
using Lim_transform_within_open[where s=ball z r] r by fastforce

have ?thesis when n≥0 f z=0
proof −

have (λw. (w−z) ^ nat n) −z→ f z/g z
using Lim_transform_within[OF powi_tendsto, where d=r]
by (meson power_int_def r(1) that(1))

then have ∗: (λw. (w−z) ^ nat n) −z→ 0 using ‹f z=0 › by simp
moreover have False when n=0
proof −

have (λw. (w−z) ^ nat n) −z→ 1
using ‹n=0 › by auto

then show False using ∗ using LIM_unique zero_neq_one by blast
qed
ultimately show ?thesis using that by fastforce

qed
moreover have ?thesis when n≥0 f z 6=0
proof −

have False when n>0
proof −

have (λw. (w−z) ^ nat n) −z→ f z/g z
using Lim_transform_within[OF powi_tendsto, where d=r]
by (meson ‹0 ≤ n› power_int_def r(1))

moreover have (λw. (w−z) ^ nat n) −z→ 0
using ‹n>0 › by (auto intro!:tendsto_eq_intros)

ultimately show False
using ‹f z 6=0 › ‹g z 6=0 › LIM_unique divide_eq_0_iff by blast

qed
then show ?thesis using that by force

qed
moreover have False when n<0
proof −

have (λw. inverse ((w−z) ^ nat (− n))) −z→ f z/g z
by (smt (verit) LIM_cong power_int_def power_inverse powi_tendsto that)

moreover
have (λw.((w−z) ^ nat (− n))) −z→ 0

using that by (auto intro!:tendsto_eq_intros)
ultimately
have (λx. inverse ((x − z) ^ nat (− n)) ∗ (x − z) ^ nat (− n)) −z→ 0

using tendsto_mult by fastforce
then have (λx. 1 ::complex) −z→ 0

using Lim_transform_within_open by fastforce
then show False

using LIM_const_eq by fastforce

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 367

qed
ultimately show ?thesis by fastforce

qed
moreover have f w = g w ∗ (w−z) ^ nat n ∧ g w 6=0 when w∈cball z r for w
proof (cases w=z)

case True
then have f −z→f w

using fz_lim by blast
then have (λw. g w ∗ (w−z) ^ nat n) −z→f w
proof (elim Lim_transform_within[OF _ ‹r>0 ›])

fix x assume 0 < dist x z dist x z < r
then have x ∈ cball z r − {z} x 6=z

unfolding cball_def by (auto simp add: dist_commute)
then have f x = g x ∗ (x − z) powi n

using r(4)[rule_format,of x] by simp
also have ... = g x ∗ (x − z) ^ nat n

by (smt (verit, best) if_0 int_nat_eq power_int_of_nat)
finally show f x = g x ∗ (x − z) ^ nat n .

qed
moreover have (λw. g w ∗ (w−z) ^ nat n) −z→ g w ∗ (w−z) ^ nat n

using True by (auto intro!:tendsto_eq_intros gz_lim)
ultimately have f w = g w ∗ (w−z) ^ nat n using LIM_unique by blast
then show ?thesis using ‹g z 6=0 › True by auto

next
case False
then have f w = g w ∗ (w−z) powi n g w 6= 0

using r(4) that by auto
then show ?thesis

by (smt (verit, best) False if_0 int_nat_eq power_int_of_nat)
qed
ultimately show ?thesis using r by auto

qed

lemma zorder_exist_pole:
fixes f :: complex ⇒ complex and z::complex
defines n≡zorder f z and g≡zor_poly f z
assumes holo: f holomorphic_on S−{z} and open S z∈S and is_pole f z
shows n < 0 ∧ g z 6=0 ∧ (∃ r . r>0 ∧ cball z r ⊆ S ∧ g holomorphic_on cball z r
∧ (∀w∈cball z r − {z}. f w = g w / (w−z) ^ nat (− n) ∧ g w 6=0))

proof −
obtain r where g z 6= 0 and r : r>0 cball z r ⊆ S g holomorphic_on cball z r

(∀w∈cball z r − {z}. f w = g w ∗ (w−z) powi n ∧ g w 6= 0)
proof −

have g z 6= 0 ∧ (∃ r>0 . g holomorphic_on cball z r
∧ (∀w∈cball z r − {z}. f w = g w ∗ (w−z) powi n ∧ g w 6= 0))

proof (rule zorder_exist[of f z,folded g_def n_def])
show isolated_singularity_at f z unfolding isolated_singularity_at_def

using holo assms(4 ,5)
by (metis analytic_on_holomorphic centre_in_ball insert_Diff openE

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 368

open_delete subset_insert_iff)
show not_essential f z unfolding not_essential_def
using assms(4 ,6) at_within_open continuous_on holo holomorphic_on_imp_continuous_on

by fastforce
from non_zero_neighbour_pole[OF ‹is_pole f z›] show ∃ F w in at z. f w 6=

0
by (auto elim: eventually_frequentlyE)

qed
then obtain r1 where g z 6= 0 r1>0 and r1 : g holomorphic_on cball z r1

(∀w∈cball z r1 − {z}. f w = g w ∗ (w−z) powi n ∧ g w 6= 0)
by auto

obtain r2 where r2 : r2>0 cball z r2 ⊆ S
using assms(4 ,5) open_contains_cball_eq by metis

define r3 where r3=min r1 r2
have r3>0 cball z r3 ⊆ S using ‹r1>0 › r2 unfolding r3_def by auto
moreover have g holomorphic_on cball z r3

using r1 (1) unfolding r3_def by auto
moreover have (∀w∈cball z r3 − {z}. f w = g w ∗ (w−z) powi n ∧ g w 6= 0)

using r1 (2) unfolding r3_def by auto
ultimately show ?thesis

using that[of r3] ‹g z 6=0 › by auto
qed

have n<0
proof (rule ccontr)

assume ¬ n < 0
define c where c=(if n=0 then g z else 0)
have [simp]: g −z→ g z

using r
by (metis centre_in_ball continuous_on_interior holomorphic_on_imp_continuous_on

interior_cball isContD)
have ∀ x ∈ ball z r . x 6= z −→ f x = g x ∗ (x − z) ^ nat n

by (simp add: ‹¬ n < 0 › linorder_not_le power_int_def r)
then have ∀ F x in at z. f x = g x ∗ (x − z) ^ nat n

using centre_in_ball eventually_at_topological r(1) by blast
moreover have (λx. g x ∗ (x − z) ^ nat n) −z→ c
proof (cases n=0)

case True
then show ?thesis unfolding c_def by simp

next
case False
then have (λx. (x − z) ^ nat n) −z→ 0 using ‹¬ n < 0 ›

by (auto intro!:tendsto_eq_intros)
from tendsto_mult[OF _ this,of g g z,simplified]
show ?thesis unfolding c_def using False by simp

qed
ultimately have f −z→c using tendsto_cong by fast

then show False using ‹is_pole f z› at_neq_bot not_tendsto_and_filterlim_at_infinity
unfolding is_pole_def by blast

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 369

qed
moreover have ∀w∈cball z r − {z}. f w = g w / (w−z) ^ nat (− n) ∧ g w 6=0

using r(4) ‹n<0 ›
by (smt (verit) inverse_eq_divide mult.right_neutral power_int_def power_inverse

times_divide_eq_right)
ultimately show ?thesis

using r ‹g z 6=0 › by auto
qed

lemma zorder_eqI :
assumes open S z ∈ S g holomorphic_on S g z 6= 0
assumes fg_eq:

∧
w. [[w ∈ S ;w 6=z]] =⇒ f w = g w ∗ (w−z) powi n

shows zorder f z = n
proof −

have continuous_on S g by (rule holomorphic_on_imp_continuous_on) fact
moreover have open (−{0 ::complex}) by auto
ultimately have open ((g −‘ (−{0})) ∩ S)

unfolding continuous_on_open_vimage[OF ‹open S›] by blast
moreover from assms have z ∈ (g −‘ (−{0})) ∩ S by auto
ultimately obtain r where r : r > 0 cball z r ⊆ S ∩ (g −‘ (−{0}))

unfolding open_contains_cball by blast

let ?gg= (λw. g w ∗ (w−z) powi n)
define P where P = (λn g r . 0 < r ∧ g holomorphic_on cball z r ∧ g z 6=0

∧ (∀w∈cball z r − {z}. f w = g w ∗ (w−z) powi n ∧ g w 6=0))
have P n g r

unfolding P_def using r assms(3 ,4 ,5) by auto
then have ∃ g r . P n g r by auto
moreover have unique: ∃ !n. ∃ g r . P n g r unfolding P_def
proof (rule holomorphic_factor_puncture)

have ball z r−{z} ⊆ S using r using ball_subset_cball by blast
then have ?gg holomorphic_on ball z r−{z}

using ‹g holomorphic_on S› r by (auto intro!: holomorphic_intros)
then have f holomorphic_on ball z r − {z}

by (smt (verit, best) DiffD2 ‹ball z r−{z} ⊆ S› fg_eq holomorphic_cong
singleton_iff subset_iff)

then show isolated_singularity_at f z unfolding isolated_singularity_at_def
using analytic_on_open open_delete r(1) by blast

next
have not_essential ?gg z
proof (intro singularity_intros)

show not_essential g z
by (meson ‹continuous_on S g› assms continuous_on_eq_continuous_at

isCont_def not_essential_def)
show ∀ F w in at z. w − z 6= 0 by (simp add: eventually_at_filter)
then show LIM w at z. w − z :> at 0

unfolding filterlim_at by (auto intro: tendsto_eq_intros)
show isolated_singularity_at g z

by (meson Diff_subset open_ball analytic_on_holomorphic

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 370

assms holomorphic_on_subset isolated_singularity_at_def openE)
qed
moreover
have ∀ F w in at z. g w ∗ (w−z) powi n = f w

unfolding eventually_at_topological using assms fg_eq by force
ultimately show not_essential f z

using not_essential_transform by blast
show ∃ F w in at z. f w 6= 0 unfolding frequently_at
proof (intro strip)

fix d::real assume 0 < d
define z ′ where z ′ ≡ z+min d r / 2
have z ′ 6= z dist z ′ z < d

unfolding z ′_def using ‹d>0 › ‹r>0 › by (auto simp add: dist_norm)
moreover have f z ′ 6= 0
proof (subst fg_eq[OF _ ‹z ′6=z›])

have z ′ ∈ cball z r
unfolding z ′_def using ‹r>0 › ‹d>0 › by (auto simp add: dist_norm)

then show z ′ ∈ S using r(2) by blast
show g z ′ ∗ (z ′ − z) powi n 6= 0

using P_def ‹P n g r› ‹z ′ ∈ cball z r› ‹z ′ 6= z› by auto
qed
ultimately show ∃ x∈UNIV . x 6= z ∧ dist x z < d ∧ f x 6= 0 by auto

qed
qed
ultimately have (THE n. ∃ g r . P n g r) = n

by (rule_tac the1_equality)
then show ?thesis unfolding zorder_def P_def by blast

qed

lemma simple_zeroI :
assumes open S z ∈ S g holomorphic_on S g z 6= 0
assumes

∧
w. w ∈ S =⇒ f w = g w ∗ (w−z)

shows zorder f z = 1
using assms zorder_eqI by force

lemma higher_deriv_power :
shows (deriv ^^ j) (λw. (w−z) ^ n) w =

pochhammer (of_nat (Suc n − j)) j ∗ (w−z) ^ (n − j)
proof (induction j arbitrary: w)

case 0
thus ?case by auto

next
case (Suc j w)
have (deriv ^^ Suc j) (λw. (w−z) ^ n) w = deriv ((deriv ^^ j) (λw. (w−z) ^

n)) w
by simp

also have (deriv ^^ j) (λw. (w−z) ^ n) =
(λw. pochhammer (of_nat (Suc n − j)) j ∗ (w−z) ^ (n − j))

using Suc by (intro Suc.IH ext)

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 371

also {
have (. . . has_field_derivative of_nat (n − j) ∗

pochhammer (of_nat (Suc n − j)) j ∗ (w−z) ^ (n − Suc j)) (at w)
using Suc.prems by (auto intro!: derivative_eq_intros)

also have of_nat (n − j) ∗ pochhammer (of_nat (Suc n − j)) j =
pochhammer (of_nat (Suc n − Suc j)) (Suc j)

by (cases Suc j ≤ n, subst pochhammer_rec)
(use Suc.prems in ‹simp_all add: algebra_simps Suc_diff_le pochham-

mer_0_left›)
finally have deriv (λw. pochhammer (of_nat (Suc n − j)) j ∗ (w−z) ^ (n −

j)) w =
. . . ∗ (w−z) ^ (n − Suc j)

by (rule DERIV_imp_deriv)
}
finally show ?case .

qed

lemma zorder_zero_eqI :
assumes f_holo: f holomorphic_on S and open S z ∈ S
assumes zero:

∧
i. i < nat n =⇒ (deriv ^^ i) f z = 0

assumes nz: (deriv ^^ nat n) f z 6= 0 and n≥0
shows zorder f z = n

proof −
obtain r where [simp]: r>0 and ball z r ⊆ S

using ‹open S› ‹z∈S› openE by blast
have nz ′: ∃w∈ball z r . f w 6= 0
proof (rule ccontr)

assume ¬ (∃w∈ball z r . f w 6= 0)
then have eventually (λu. f u = 0) (nhds z)

using open_ball ‹0 < r› centre_in_ball eventually_nhds by blast
then have (deriv ^^ nat n) f z = (deriv ^^ nat n) (λ_. 0) z

by (intro higher_deriv_cong_ev) auto
also have (deriv ^^ nat n) (λ_. 0) z = 0

by (induction n) simp_all
finally show False using nz by contradiction

qed

define zn g where zn = zorder f z and g = zor_poly f z
obtain e where e_if : if f z = 0 then 0 < zn else zn = 0 and

[simp]: e>0 and cball z e ⊆ ball z r and
g_holo: g holomorphic_on cball z e and
e_fac: (∀w∈cball z e. f w = g w ∗ (w−z) ^ nat zn ∧ g w 6= 0)

proof −
have f holomorphic_on ball z r

using f_holo ‹ball z r ⊆ S› by auto
from that zorder_exist_zero[of f ball z r z,simplified,OF this nz ′,folded zn_def

g_def]
show thesis by blast

qed

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 372

then obtain zn ≥ 0 g z 6= 0
by (metis centre_in_cball less_le_not_le order_refl)

define A where A ≡ (λi. of_nat (i choose (nat zn)) ∗ fact (nat zn) ∗ (deriv ^^
(i − nat zn)) g z)

have deriv_A: (deriv ^^ i) f z = (if zn ≤ int i then A i else 0) for i
proof −

have eventually (λw. w ∈ ball z e) (nhds z)
using ‹cball z e ⊆ ball z r› ‹e>0 › by (intro eventually_nhds_in_open) auto

hence eventually (λw. f w = (w−z) ^ (nat zn) ∗ g w) (nhds z)
using e_fac eventually_mono by fastforce

hence (deriv ^^ i) f z = (deriv ^^ i) (λw. (w−z) ^ nat zn ∗ g w) z
by (intro higher_deriv_cong_ev) auto

also have . . . = (
∑

j=0 ..i. of_nat (i choose j) ∗
(deriv ^^ j) (λw. (w−z) ^ nat zn) z ∗ (deriv ^^ (i − j)) g z)

using g_holo ‹e>0 ›
by (intro higher_deriv_mult[of _ ball z e]) (auto intro!: holomorphic_intros)

also have . . . = (
∑

j=0 ..i. if j = nat zn then
of_nat (i choose nat zn) ∗ fact (nat zn) ∗ (deriv ^^ (i − nat zn))

g z else 0)
proof (intro sum.cong refl, goal_cases)

case (1 j)
have (deriv ^^ j) (λw. (w−z) ^ nat zn) z =

pochhammer (of_nat (Suc (nat zn) − j)) j ∗ 0 ^ (nat zn − j)
by (subst higher_deriv_power) auto

also have . . . = (if j = nat zn then fact j else 0)
by (auto simp: not_less pochhammer_0_left pochhammer_fact)

also have of_nat (i choose j) ∗ . . . ∗ (deriv ^^ (i − j)) g z =
(if j = nat zn then of_nat (i choose (nat zn)) ∗ fact (nat zn)
∗ (deriv ^^ (i − nat zn)) g z else 0)

by simp
finally show ?case .

qed
also have . . . = (if i ≥ zn then A i else 0)

by (auto simp: A_def)
finally show (deriv ^^ i) f z =

qed

have False when n<zn
using deriv_A[of nat n] that ‹n≥0 › by (simp add: nz)

moreover have n≤zn
proof −

have g z 6= 0
by (simp add: ‹g z 6= 0 ›)

then have (deriv ^^ nat zn) f z 6= 0
using deriv_A[of nat zn] by(auto simp add: A_def)

then have nat zn ≥ nat n using zero[of nat zn] by linarith
moreover have zn≥0 using e_if by (auto split: if_splits)
ultimately show ?thesis using nat_le_eq_zle by blast

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 373

qed
ultimately show ?thesis unfolding zn_def by fastforce

qed

lemma
assumes eventually (λz. f z = g z) (at z) z = z ′

shows zorder_cong: zorder f z = zorder g z ′ and zor_poly_cong: zor_poly f z
= zor_poly g z ′

proof −
define P where P = (λff n h r . 0 < r ∧ h holomorphic_on cball z r ∧ h z 6=0

∧ (∀w∈cball z r − {z}. ff w = h w ∗ (w−z) powi n ∧ h w 6=0))
have (∃ r . P f n h r) = (∃ r . P g n h r) for n h
proof −

have ∗: ∃ r . P g n h r if ∃ r . P f n h r and eventually (λx. f x = g x) (at z)
for f g

proof −
from that(1) obtain r1 where r1_P: P f n h r1 by auto
from that(2) obtain r2 where r2>0 and r2_dist: ∀ x. x 6= z ∧ dist x z ≤

r2 −→ f x = g x
unfolding eventually_at_le by auto

define r where r=min r1 r2
have r>0 h z 6=0 using r1_P ‹r2>0 › unfolding r_def P_def by auto
moreover have h holomorphic_on cball z r

using r1_P unfolding P_def r_def by auto
moreover have g w = h w ∗ (w−z) powi n ∧ h w 6= 0 when w∈cball z r −

{z} for w
proof −

have f w = h w ∗ (w−z) powi n ∧ h w 6= 0
using r1_P that unfolding P_def r_def by auto

moreover have f w=g w
using r2_dist that by (simp add: dist_commute r_def)

ultimately show ?thesis by simp
qed
ultimately show ?thesis unfolding P_def by auto

qed
from assms have eq ′: eventually (λz. g z = f z) (at z)

by (simp add: eq_commute)
show ?thesis

using ∗ assms(1) eq ′ by blast
qed
then show zorder f z = zorder g z ′ zor_poly f z = zor_poly g z ′

using ‹z=z ′› unfolding P_def zorder_def zor_poly_def by auto
qed

lemma zorder_times_analytic ′:
assumes isolated_singularity_at f z not_essential f z
assumes g analytic_on {z} frequently (λz. f z ∗ g z 6= 0) (at z)
shows zorder (λx. f x ∗ g x) z = zorder f z + zorder g z
using assms isolated_singularity_at_analytic not_essential_analytic zorder_times

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 374

by blast

lemma zorder_cmult:
assumes c 6= 0
shows zorder (λz. c ∗ f z) z = zorder f z

proof −
define P where

P = (λf n h r . 0 < r ∧ h holomorphic_on cball z r ∧
h z 6= 0 ∧ (∀w∈cball z r − {z}. f w = h w ∗ (w−z) powi n ∧ h w

6= 0))
have ∗: P (λx. c ∗ f x) n (λx. c ∗ h x) r

if P f n h r c 6= 0 for f n h r c
using that unfolding P_def by (auto intro!: holomorphic_intros)

have (∃ h r . P (λx. c ∗ f x) n h r) ←→ (∃ h r . P f n h r) for n
using ∗[of f n _ _ c] ∗[of λx. c ∗ f x n _ _ inverse c] ‹c 6= 0 ›
by (fastforce simp: field_simps)

hence (THE n. ∃ h r . P (λx. c ∗ f x) n h r) = (THE n. ∃ h r . P f n h r)
by simp

thus ?thesis
by (simp add: zorder_def P_def)

qed

lemma zorder_uminus [simp]: zorder (λz. −f z) z = zorder f z
using zorder_cmult[of −1 f] by simp

lemma zorder_nonzero_div_power :
assumes sz: open S z ∈ S f holomorphic_on S f z 6= 0 and n > 0
shows zorder (λw. f w / (w−z) ^ n) z = − n
by (intro zorder_eqI [OF sz]) (simp add: inverse_eq_divide power_int_minus)

lemma zor_poly_eq:
assumes isolated_singularity_at f z not_essential f z ∃ F w in at z. f w 6= 0
shows eventually (λw. zor_poly f z w = f w ∗ (w−z) powi − zorder f z) (at z)

proof −
obtain r where r : r>0

(∀w∈cball z r − {z}. f w = zor_poly f z w ∗ (w−z) powi (zorder f z))
using zorder_exist[OF assms] by blast

then have ∗: ∀w∈ball z r − {z}. zor_poly f z w = f w ∗ (w−z) powi − zorder f
z

by (auto simp: field_simps power_int_minus)
have eventually (λw. w ∈ ball z r − {z}) (at z)

using r eventually_at_ball ′[of r z UNIV] by auto
thus ?thesis by eventually_elim (insert ∗, auto)

qed

lemma zor_poly_zero_eq:
assumes f holomorphic_on S open S connected S z ∈ S ∃w∈S . f w 6= 0
shows eventually (λw. zor_poly f z w = f w / (w−z) ^ nat (zorder f z)) (at z)

proof −

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 375

obtain r where r : r>0
(∀w∈cball z r − {z}. f w = zor_poly f z w ∗ (w−z) ^ nat (zorder f z))

using zorder_exist_zero[OF assms] by auto
then have ∗: ∀w∈ball z r − {z}. zor_poly f z w = f w / (w−z) ^ nat (zorder f

z)
by (auto simp: field_simps powr_minus)

have eventually (λw. w ∈ ball z r − {z}) (at z)
using r eventually_at_ball ′[of r z UNIV] by auto

thus ?thesis by eventually_elim (insert ∗, auto)
qed

lemma zor_poly_pole_eq:
assumes f_iso: isolated_singularity_at f z is_pole f z
shows eventually (λw. zor_poly f z w = f w ∗ (w−z) ^ nat (− zorder f z)) (at z)

proof −
obtain e where [simp]: e>0 and f_holo: f holomorphic_on ball z e − {z}
using f_iso analytic_imp_holomorphic unfolding isolated_singularity_at_def

by blast
obtain r where r : r>0

(∀w∈cball z r − {z}. f w = zor_poly f z w / (w−z) ^ nat (− zorder f z))
using zorder_exist_pole[OF f_holo,simplified,OF ‹is_pole f z›] by auto

then have ∗: ∀w∈ball z r − {z}. zor_poly f z w = f w ∗ (w−z) ^ nat (− zorder
f z)

by (auto simp: field_simps)
have eventually (λw. w ∈ ball z r − {z}) (at z)

using r eventually_at_ball ′[of r z UNIV] by auto
thus ?thesis by eventually_elim (insert ∗, auto)

qed

lemma zor_poly_eqI :
fixes f :: complex ⇒ complex and z0 :: complex
defines n ≡ zorder f z0
assumes isolated_singularity_at f z0 not_essential f z0 ∃ F w in at z0 . f w 6= 0
assumes lim: ((λx. f (g x) ∗ (g x − z0) powi − n) −−−→ c) F
assumes g: filterlim g (at z0) F and F 6= bot
shows zor_poly f z0 z0 = c

proof −
from zorder_exist[OF assms(2−4)] obtain r where

r : r > 0 zor_poly f z0 holomorphic_on cball z0 r∧
w. w ∈ cball z0 r − {z0} =⇒ f w = zor_poly f z0 w ∗ (w − z0) powi n

unfolding n_def by blast
from r(1) have eventually (λw. w ∈ ball z0 r ∧ w 6= z0) (at z0)

using eventually_at_ball ′[of r z0 UNIV] by auto
hence eventually (λw. zor_poly f z0 w = f w ∗ (w − z0) powi − n) (at z0)

by eventually_elim (insert r , auto simp: field_simps power_int_minus)
moreover have continuous_on (ball z0 r) (zor_poly f z0)

using r by (intro holomorphic_on_imp_continuous_on) auto
with r have isCont (zor_poly f z0) z0

by (auto simp: continuous_on_eq_continuous_at)

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 376

hence (zor_poly f z0 −−−→ zor_poly f z0 z0) (at z0)
unfolding isCont_def .

ultimately have ((λw. f w ∗ (w − z0) powi − n) −−−→ zor_poly f z0 z0) (at
z0)

by (blast intro: Lim_transform_eventually)
hence ((λx. f (g x) ∗ (g x − z0) powi − n) −−−→ zor_poly f z0 z0) F

by (rule filterlim_compose[OF _ g])
from tendsto_unique[OF ‹F 6= bot› this lim] show ?thesis .

qed

lemma zor_poly_zero_eqI :
fixes f :: complex ⇒ complex and z0 :: complex
defines n ≡ zorder f z0
assumes f holomorphic_on A open A connected A z0 ∈ A ∃ z∈A. f z 6= 0
assumes lim: ((λx. f (g x) / (g x − z0) ^ nat n) −−−→ c) F
assumes g: filterlim g (at z0) F and F 6= bot
shows zor_poly f z0 z0 = c

proof −
from zorder_exist_zero[OF assms(2−6)] obtain r where

r : r > 0 cball z0 r ⊆ A zor_poly f z0 holomorphic_on cball z0 r∧
w. w ∈ cball z0 r =⇒ f w = zor_poly f z0 w ∗ (w − z0) ^ nat n

unfolding n_def by blast
from r(1) have eventually (λw. w ∈ ball z0 r ∧ w 6= z0) (at z0)

using eventually_at_ball ′[of r z0 UNIV] by auto
hence eventually (λw. zor_poly f z0 w = f w / (w − z0) ^ nat n) (at z0)

by eventually_elim (insert r , auto simp: field_simps)
moreover have continuous_on (ball z0 r) (zor_poly f z0)

using r by (intro holomorphic_on_imp_continuous_on) auto
with r(1 ,2) have isCont (zor_poly f z0) z0

by (auto simp: continuous_on_eq_continuous_at)
hence (zor_poly f z0 −−−→ zor_poly f z0 z0) (at z0)

unfolding isCont_def .
ultimately have ((λw. f w / (w − z0) ^ nat n) −−−→ zor_poly f z0 z0) (at z0)

by (blast intro: Lim_transform_eventually)
hence ((λx. f (g x) / (g x − z0) ^ nat n) −−−→ zor_poly f z0 z0) F

by (rule filterlim_compose[OF _ g])
from tendsto_unique[OF ‹F 6= bot› this lim] show ?thesis .

qed

lemma zor_poly_pole_eqI :
fixes f :: complex ⇒ complex and z0 :: complex
defines n ≡ zorder f z0
assumes f_iso: isolated_singularity_at f z0 and is_pole f z0
assumes lim: ((λx. f (g x) ∗ (g x − z0) ^ nat (−n)) −−−→ c) F
assumes g: filterlim g (at z0) F and F 6= bot
shows zor_poly f z0 z0 = c

proof −
obtain r where r : r > 0 zor_poly f z0 holomorphic_on cball z0 r
proof −

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 377

have ∃ F w in at z0 . f w 6= 0
using non_zero_neighbour_pole[OF ‹is_pole f z0 ›]
by (auto elim: eventually_frequentlyE)

moreover have not_essential f z0
unfolding not_essential_def using ‹is_pole f z0 › by simp

ultimately show ?thesis
using that zorder_exist[OF f_iso,folded n_def] by auto

qed
from r(1) have eventually (λw. w ∈ ball z0 r ∧ w 6= z0) (at z0)

using eventually_at_ball ′[of r z0 UNIV] by auto
have eventually (λw. zor_poly f z0 w = f w ∗ (w − z0) ^ nat (−n)) (at z0)

using zor_poly_pole_eq[OF f_iso ‹is_pole f z0 ›] unfolding n_def .
moreover have continuous_on (ball z0 r) (zor_poly f z0)

using r by (intro holomorphic_on_imp_continuous_on) auto
with r(1 ,2) have isCont (zor_poly f z0) z0

by (auto simp: continuous_on_eq_continuous_at)
hence (zor_poly f z0 −−−→ zor_poly f z0 z0) (at z0)

unfolding isCont_def .
ultimately have ((λw. f w ∗ (w − z0) ^ nat (−n)) −−−→ zor_poly f z0 z0) (at

z0)
by (blast intro: Lim_transform_eventually)

hence ((λx. f (g x) ∗ (g x − z0) ^ nat (−n)) −−−→ zor_poly f z0 z0) F
by (rule filterlim_compose[OF _ g])

from tendsto_unique[OF ‹F 6= bot› this lim] show ?thesis .
qed

lemma
assumes is_pole f (x :: complex) open A x ∈ A
assumes

∧
y. y ∈ A − {x} =⇒ (f has_field_derivative f ′ y) (at y)

shows is_pole_deriv ′: is_pole f ′ x
and zorder_deriv ′: zorder f ′ x = zorder f x − 1

proof −
have holo: f holomorphic_on A − {x}

using assms by (subst holomorphic_on_open) auto
obtain r where r : r > 0 ball x r ⊆ A

using assms(2 ,3) openE by blast
moreover have open (ball x r − {x})

by auto
ultimately have isolated_singularity_at f x

by (auto simp: isolated_singularity_at_def analytic_on_open
intro!: exI [of _ r] holomorphic_on_subset[OF holo])

hence ev: ∀ F w in at x. zor_poly f x w = f w ∗ (w−x) ^ nat (− zorder f x)
using ‹is_pole f x› zor_poly_pole_eq by blast

define P where P = zor_poly f x
define n where n = nat (−zorder f x)

obtain r where r : r > 0 cball x r ⊆ A P holomorphic_on cball x r zorder f x
< 0 P x 6= 0

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 378

∀w∈cball x r − {x}. f w = P w / (w−x) ^ n ∧ P w 6= 0
using P_def assms holo n_def zorder_exist_pole by blast

have n: n > 0
using r(4) by (auto simp: n_def)

have [derivative_intros]: (P has_field_derivative deriv P w) (at w)
if w ∈ ball x r for w
using that by (intro holomorphic_derivI [OF holomorphic_on_subset[OF r(3),

of ball x r]]) auto

define D where D = (λw. (deriv P w ∗ (w−x) − of_nat n ∗ P w) / (w−x) ^
(n + 1))

define n ′ where n ′ = n − 1
have n ′: n = Suc n ′

using n by (simp add: n ′_def)

have eventually (λw. w ∈ ball x r) (nhds x)
using ‹r > 0 › by (intro eventually_nhds_in_open) auto

hence ev ′′: eventually (λw. w ∈ ball x r − {x}) (at x)
by (auto simp: eventually_at_filter elim: eventually_mono)

{
fix w assume w: w ∈ ball x r − {x}
have ev ′: eventually (λw. w ∈ ball x r − {x}) (nhds w)

using w by (intro eventually_nhds_in_open) auto

have §: (deriv P w ∗ (w−x) ^ n − P w ∗ (n ∗ (w−x) ^ (n−1))) / ((w−x) ^ n
∗ (w−x) ^ n) = D w

using w n ′ by (simp add: divide_simps D_def) (simp add: algebra_simps)
have ((λw. P w / (w−x) ^ n) has_field_derivative D w) (at w)

by (rule derivative_eq_intros refl | use w § in force)+
also have ?this ←→ (f has_field_derivative D w) (at w)

using r by (intro has_field_derivative_cong_ev refl eventually_mono[OF
ev ′]) auto

finally have (f has_field_derivative D w) (at w) .
moreover have (f has_field_derivative f ′ w) (at w)

using w r by (intro assms) auto
ultimately have D w = f ′ w

using DERIV_unique by blast
} note D_eq = this

have is_pole D x
unfolding D_def using n ‹r > 0 › ‹P x 6= 0 ›
by (intro is_pole_basic[where A = ball x r] holomorphic_intros holomor-

phic_on_subset[OF r(3)]) auto
also have ?this ←→ is_pole f ′ x

by (intro is_pole_cong eventually_mono[OF ev ′′] D_eq) auto
finally show is_pole f ′ x .

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 379

have zorder f ′ x = −int (Suc n)
proof (rule zorder_eqI)

show open (ball x r) x ∈ ball x r
using ‹r > 0 › by auto

show f ′ w = (deriv P w ∗ (w−x) − of_nat n ∗ P w) ∗ (w−x) powi (− int (Suc
n))

if w ∈ ball x r w 6= x for w
using that D_eq[of w] n by (auto simp: D_def power_int_diff power_int_minus

powr_nat ′ divide_simps)
qed (use r n in ‹auto intro!: holomorphic_intros›)
thus zorder f ′ x = zorder f x − 1

using n by (simp add: n_def)
qed

lemma
assumes is_pole f (x :: complex) isolated_singularity_at f x
shows is_pole_deriv: is_pole (deriv f) x

and zorder_deriv: zorder (deriv f) x = zorder f x − 1
proof −

from assms(2) obtain r where r : r > 0 f analytic_on ball x r − {x}
by (auto simp: isolated_singularity_at_def)

hence holo: f holomorphic_on ball x r − {x}
by (subst (asm) analytic_on_open) auto

have ∗: x ∈ ball x r open (ball x r) open (ball x r − {x})
using ‹r > 0 › by auto

show is_pole (deriv f) x zorder (deriv f) x = zorder f x − 1
by (meson ∗ assms(1) holo holomorphic_derivI is_pole_deriv ′ zorder_deriv ′)+

qed

lemma removable_singularity_deriv ′:
assumes f −x→ c x ∈ A open (A :: complex set)
assumes

∧
y. y ∈ A − {x} =⇒ (f has_field_derivative f ′ y) (at y)

shows ∃ c. f ′ −x→ c
proof −

have holo: f holomorphic_on A − {x}
using assms by (subst holomorphic_on_open) auto

define g where g = (λy. if y = x then c else f y)
have deriv_g_eq: deriv g y = f ′ y if y ∈ A − {x} for y
proof −

have ev: eventually (λy. y ∈ A − {x}) (nhds y)
using that assms by (intro eventually_nhds_in_open) auto

have (f has_field_derivative f ′ y) (at y)
using assms that by auto

also have ?this ←→ (g has_field_derivative f ′ y) (at y)
by (intro has_field_derivative_cong_ev refl eventually_mono[OF ev]) (auto

simp: g_def)
finally show ?thesis

by (intro DERIV_imp_deriv assms)

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 380

qed

have g holomorphic_on A
unfolding g_def using assms assms(1) holo
by (intro removable_singularity) auto

hence deriv g holomorphic_on A
by (intro holomorphic_deriv assms)

hence continuous_on A (deriv g)
by (meson holomorphic_on_imp_continuous_on)

hence (deriv g −−−→ deriv g x) (at x within A)
using assms by (auto simp: continuous_on_def)

also have ?this ←→ (f ′ −−−→ deriv g x) (at x within A)
by (intro filterlim_cong refl) (auto simp: eventually_at_filter deriv_g_eq)

finally have f ′ −x→ deriv g x
using ‹open A› ‹x ∈ A› by (meson tendsto_within_open)

thus ?thesis
by blast

qed

lemma removable_singularity_deriv:
assumes f −x→ c isolated_singularity_at f x
shows ∃ c. deriv f −x→ c

proof −
from assms(2) obtain r where r : r > 0 f analytic_on ball x r − {x}

by (auto simp: isolated_singularity_at_def)
hence holo: f holomorphic_on ball x r − {x}

using analytic_imp_holomorphic by blast
show ?thesis

using assms(1)
proof (rule removable_singularity_deriv ′)

show x ∈ ball x r open (ball x r)
using ‹r > 0 › by auto

qed (auto intro!: holomorphic_derivI [OF holo])
qed

lemma not_essential_deriv ′:
assumes not_essential f x x ∈ A open A
assumes

∧
y. y ∈ A − {x} =⇒ (f has_field_derivative f ′ y) (at y)

shows not_essential f ′ x
proof −

have holo: f holomorphic_on A − {x}
using assms by (subst holomorphic_on_open) auto

from assms consider is_pole f x | c where f −x→ c
by (auto simp: not_essential_def)

thus ?thesis
proof cases

case 1
thus ?thesis

using assms is_pole_deriv ′ by blast

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 381

next
case (2 c)
thus ?thesis

by (meson assms removable_singularity_deriv ′ tendsto_imp_not_essential)
qed

qed

lemma not_essential_deriv[singularity_intros]:
assumes not_essential f x isolated_singularity_at f x
shows not_essential (deriv f) x

proof −
from assms(2) obtain r where r : r > 0 f analytic_on ball x r − {x}

by (auto simp: isolated_singularity_at_def)
hence holo: f holomorphic_on ball x r − {x}

by (subst (asm) analytic_on_open) auto
show ?thesis

using assms(1)
proof (rule not_essential_deriv ′)

show x ∈ ball x r open (ball x r)
using ‹r > 0 › by auto

qed (auto intro!: holomorphic_derivI [OF holo])
qed

lemma not_essential_frequently_0_imp_tendsto_0 :
fixes f :: complex ⇒ complex
assumes sing: isolated_singularity_at f z not_essential f z
assumes freq: frequently (λz. f z = 0) (at z)
shows f −z→ 0

proof −
from freq obtain g :: nat ⇒ complex where g: filterlim g (at z) at_top

∧
n. f

(g n) = 0
using frequently_atE by blast

have eventually (λx. f (g x) = 0) sequentially
using g by auto

hence fg: (λx. f (g x)) −−−−→ 0
by (simp add: tendsto_eventually)

from assms(2) consider c where f −z→ c | is_pole f z
unfolding not_essential_def by blast

thus ?thesis
proof cases

case (1 c)
have (λx. f (g x)) −−−−→ c

by (rule filterlim_compose[OF 1 g(1)])
with fg have c = 0

using LIMSEQ_unique by blast
with 1 show ?thesis by simp

next
case 2

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 382

have filterlim (λx. f (g x)) at_infinity sequentially
using 2 filterlim_compose g(1) is_pole_def by blast

with fg have False
by (meson not_tendsto_and_filterlim_at_infinity sequentially_bot)

thus ?thesis ..
qed

qed

lemma not_essential_frequently_0_imp_eventually_0 :
fixes f :: complex ⇒ complex
assumes sing: isolated_singularity_at f z not_essential f z
assumes freq: frequently (λz. f z = 0) (at z)
shows eventually (λz. f z = 0) (at z)

proof −
from sing obtain r where r : r > 0 and f analytic_on ball z r − {z}

by (auto simp: isolated_singularity_at_def)
hence holo: f holomorphic_on ball z r − {z}

by (subst (asm) analytic_on_open) auto
have eventually (λw. w ∈ ball z r − {z}) (at z)

using r by (intro eventually_at_in_open) auto
from freq and this have frequently (λw. f w = 0 ∧ w ∈ ball z r − {z}) (at z)

using frequently_eventually_frequently by blast
hence frequently (λw. w ∈ {w∈ball z r − {z}. f w = 0}) (at z)

by (simp add: conj_commute)
hence limpt: z islimpt {w∈ball z r − {z}. f w = 0}

using islimpt_conv_frequently_at by blast

define g where g = (λw. if w = z then 0 else f w)
have f −z→ 0

by (intro not_essential_frequently_0_imp_tendsto_0 assms)
hence g_holo: g holomorphic_on ball z r

unfolding g_def by (intro removable_singularity holo) auto

have g_eq_0 : g w = 0 if w ∈ ball z r for w
proof (rule analytic_continuation[where f = g])

show open (ball z r) connected (ball z r)
using r by auto

show z islimpt {w∈ball z r − {z}. f w = 0}
by fact

show g w = 0 if w ∈ {w ∈ ball z r − {z}. f w = 0} for w
using that by (auto simp: g_def)

qed (use r that g_holo in auto)

have eventually (λw. w ∈ ball z r − {z}) (at z)
using r by (intro eventually_at_in_open) auto

thus eventually (λw. f w = 0) (at z)
by (metis freq non_zero_neighbour not_eventually not_frequently sing)

qed

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 383

lemma pole_imp_not_constant:
fixes f :: ′a :: {perfect_space} ⇒ _
assumes is_pole f x open A x ∈ A A ⊆ insert x B
shows ¬f constant_on B

proof
assume ∗: f constant_on B
then obtain c where c: ∀ x∈B. f x = c

by (auto simp: constant_on_def)
have eventually (λy. y ∈ A − {x}) (at x)

using assms by (intro eventually_at_in_open) auto
hence eventually (λy. f y = c) (at x)

by eventually_elim (use c assms in auto)
hence ∗∗: f −x→ c

by (simp add: tendsto_eventually)
show False

using ∗∗ ‹is_pole f x› at_neq_bot is_pole_def
not_tendsto_and_filterlim_at_infinity by blast

qed

lemma neg_zorder_imp_is_pole:
assumes iso: isolated_singularity_at f z and f_ness: not_essential f z

and zorder f z < 0 and fre_nz: ∃ F w in at z. f w 6= 0
shows is_pole f z

proof −
define P where P = zor_poly f z
define n where n = zorder f z
have n<0 unfolding n_def by (simp add: assms(3))
define nn where nn = nat (−n)

obtain r where r : P z 6= 0 r>0 and r_holo: P holomorphic_on cball z r and
w_Pn: (∀w∈cball z r − {z}. f w = P w ∗ (w−z) powi n ∧ P w 6= 0)

using zorder_exist[OF iso f_ness fre_nz,folded P_def n_def] by auto

have is_pole (λw. P w ∗ (w−z) powi n) z
unfolding is_pole_def

proof (rule tendsto_mult_filterlim_at_infinity)
show P −z→ P z

by (metis ‹r>0 › r_holo centre_in_ball continuous_on_interior
holomorphic_on_imp_continuous_on interior_cball isContD)

show P z 6=0 by (simp add: ‹P z 6= 0 ›)

have LIM x at z. inverse ((x − z) ^ nat (−n)) :> at_infinity
apply (subst filterlim_inverse_at_iff [symmetric])
using ‹n<0 ›
by (auto intro!:tendsto_eq_intros filterlim_atI

simp add: eventually_at_filter)
then show LIM x at z. (x − z) powi n :> at_infinity
proof (elim filterlim_mono_eventually)

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 384

have inverse ((x − z) ^ nat (−n)) = (x − z) powi n
if x 6=z for x
by (metis ‹n < 0 › linorder_not_le power_int_def power_inverse)

then show ∀ F x in at z. inverse ((x − z) ^ nat (−n))
= (x − z) powi n

by (simp add: eventually_at_filter)
qed auto

qed
moreover have ∀ F w in at z. f w = P w ∗ (w−z) powi n

unfolding eventually_at_le
using w_Pn ‹r>0 › by (force simp add: dist_commute)

ultimately show ?thesis using is_pole_cong by fast
qed

lemma is_pole_divide_zorder :
fixes f g:: complex ⇒ complex and z::complex
assumes f_iso: isolated_singularity_at f z and g_iso: isolated_singularity_at g

z
and f_ness: not_essential f z and g_ness: not_essential g z
and fg_nconst: ∃ F w in (at z). f w ∗ g w 6= 0
and z_less: zorder f z < zorder g z

shows is_pole (λz. f z / g z) z
proof −

define fn gn fg where fn=zorder f z and gn=zorder g z
and fg=(λw. f w / g w)

have isolated_singularity_at fg z
unfolding fg_def using f_iso g_iso g_ness
by (auto intro: singularity_intros)

moreover have not_essential fg z
unfolding fg_def using f_iso g_iso g_ness f_ness
by (auto intro: singularity_intros)

moreover have zorder fg z < 0
proof −

have zorder fg z = fn − gn
using zorder_divide[OF f_iso g_iso f_ness g_ness fg_nconst]
by (simp add: fg_def fn_def gn_def)

then show ?thesis
using z_less by (simp add: fn_def gn_def)

qed
moreover have ∃ F w in at z. fg w 6= 0

using fg_nconst unfolding fg_def by force
ultimately show is_pole fg z

using neg_zorder_imp_is_pole by auto
qed

lemma isolated_pole_imp_nzero_times:
assumes f_iso: isolated_singularity_at f z

and is_pole f z

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 385

shows ∃ F w in (at z). deriv f w ∗ f w 6= 0
proof (rule ccontr)

assume ¬ (∃ F w in at z. deriv f w ∗ f w 6= 0)
then have ∀ F x in at z. deriv f x ∗ f x = 0

unfolding not_frequently by simp
moreover have ∀ F w in at z. f w 6= 0

using non_zero_neighbour_pole[OF ‹is_pole f z›] .
moreover have ∀ F w in at z. deriv f w 6= 0

using is_pole_deriv[OF ‹is_pole f z› f_iso,THEN non_zero_neighbour_pole]
.

ultimately have ∀ F w in at z. False
by eventually_elim auto

then show False by auto
qed

lemma isolated_pole_imp_neg_zorder :
assumes isolated_singularity_at f z and is_pole f z
shows zorder f z < 0
using analytic_imp_holomorphic assms centre_in_ball isolated_singularity_at_def

zorder_exist_pole by blast

lemma isolated_singularity_at_deriv[singularity_intros]:
assumes isolated_singularity_at f x
shows isolated_singularity_at (deriv f) x
by (meson analytic_deriv assms isolated_singularity_at_def)

lemma zorder_deriv_minus_1 :
fixes f g:: complex ⇒ complex and z::complex
assumes f_iso: isolated_singularity_at f z

and f_ness: not_essential f z
and f_nconst: ∃ F w in at z. f w 6= 0
and f_ord: zorder f z 6=0

shows zorder (deriv f) z = zorder f z − 1
proof −

define P where P = zor_poly f z
define n where n = zorder f z
have n 6=0 unfolding n_def using f_ord by auto

obtain r where P z 6= 0 r>0 and P_holo: P holomorphic_on cball z r
and (∀w∈cball z r − {z}. f w

= P w ∗ (w−z) powi n ∧ P w 6= 0)
using zorder_exist[OF f_iso f_ness f_nconst,folded P_def n_def] by auto

from this(4)
have f_eq: (∀w∈cball z r − {z}. f w

= P w ∗ (w−z) powi n ∧ P w 6= 0)
using complex_powr_of_int f_ord n_def by presburger

define D where D = (λw. (deriv P w ∗ (w−z) + of_int n ∗ P w)

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 386

∗ (w−z) powi (n − 1))

have deriv_f_eq: deriv f w = D w if w ∈ ball z r − {z} for w
proof −

have ev ′: eventually (λw. w ∈ ball z r − {z}) (nhds w)
using that by (intro eventually_nhds_in_open) auto

define wz where wz = w − z

have wz 6=0 unfolding wz_def using that by auto
moreover have (P has_field_derivative deriv P w) (at w)

by (meson DiffD1 Elementary_Metric_Spaces.open_ball P_holo
ball_subset_cball holomorphic_derivI holomorphic_on_subset that)

ultimately have ((λw. P w ∗ (w−z) powi n) has_field_derivative D w) (at w)
unfolding D_def using that
apply (auto intro!: derivative_eq_intros)
by (auto simp: algebra_simps simp flip:power_int_add_1 ′ wz_def)

also have ?this ←→ (f has_field_derivative D w) (at w)
using f_eq
by (intro has_field_derivative_cong_ev refl eventually_mono[OF ev ′]) auto

ultimately have (f has_field_derivative D w) (at w) by simp
moreover have (f has_field_derivative deriv f w) (at w)

by (metis DERIV_imp_deriv calculation)
ultimately show ?thesis using DERIV_imp_deriv by blast

qed

show zorder (deriv f) z = n − 1
proof (rule zorder_eqI)

show open (ball z r) z ∈ ball z r
using ‹r > 0 › by auto

define g where g=(λw. (deriv P w ∗ (w−z) + of_int n ∗ P w))
show g holomorphic_on ball z r

unfolding g_def using P_holo
by (auto intro!:holomorphic_intros)

show g z 6= 0
unfolding g_def using ‹P z 6= 0 › ‹n 6=0 › by auto

show deriv f w = (deriv P w ∗ (w−z) + of_int n ∗ P w) ∗ (w−z) powi (n −
1)

if w ∈ ball z r w 6= z for w
using D_def deriv_f_eq that by blast

qed
qed

lemma deriv_divide_is_pole: — Generalises [[is_pole ?f ?x; isolated_singularity_at
?f ?x]] =⇒ zorder (deriv ?f) ?x = zorder ?f ?x − 1

fixes f g:: complex ⇒ complex and z::complex
assumes f_iso: isolated_singularity_at f z

and f_ness: not_essential f z

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 387

and fg_nconst: ∃ F w in (at z). deriv f w ∗ f w 6= 0
and f_ord: zorder f z 6= 0

shows is_pole (λz. deriv f z / f z) z
proof (rule neg_zorder_imp_is_pole)

define ff where ff=(λw. deriv f w / f w)
show isolated_singularity_at ff z

using f_iso f_ness unfolding ff_def
by (auto intro: singularity_intros)

show not_essential ff z
unfolding ff_def using f_ness f_iso by (auto intro: singularity_intros)

have zorder ff z = zorder (deriv f) z − zorder f z
unfolding ff_def using f_iso f_ness fg_nconst

using isolated_singularity_at_deriv not_essential_deriv zorder_divide by blast
moreover have zorder (deriv f) z = zorder f z − 1

using f_iso f_ness f_ord fg_nconst frequently_elim1 zorder_deriv_minus_1
by fastforce

ultimately show zorder ff z < 0 by auto

show ∃ F w in at z. ff w 6= 0
unfolding ff_def using fg_nconst by auto

qed

lemma is_pole_deriv_divide_is_pole:
fixes f g:: complex ⇒ complex and z::complex
assumes f_iso: isolated_singularity_at f z

and is_pole f z
shows is_pole (λz. deriv f z / f z) z

proof (rule deriv_divide_is_pole[OF f_iso])
show not_essential f z

using ‹is_pole f z› unfolding not_essential_def by auto
show ∃ F w in at z. deriv f w ∗ f w 6= 0

using assms f_iso isolated_pole_imp_nzero_times by blast
show zorder f z 6= 0

using isolated_pole_imp_neg_zorder assms by fastforce
qed

7.13 Isolated points
definition isolated_points_of :: complex set ⇒ complex set where

isolated_points_of A = {z∈A. eventually (λw. w /∈ A) (at z)}

lemma isolated_points_of_altdef : isolated_points_of A = {z∈A. ¬z islimpt A}
unfolding isolated_points_of_def islimpt_def eventually_at_filter eventually_nhds

by blast

lemma isolated_points_of_empty [simp]: isolated_points_of {} = {}
and isolated_points_of_UNIV [simp]: isolated_points_of UNIV = {}
by (auto simp: isolated_points_of_def)

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 388

lemma isolated_points_of_open_is_empty [simp]: open A =⇒ isolated_points_of
A = {}

unfolding isolated_points_of_altdef
by (simp add: interior_limit_point interior_open)

lemma isolated_points_of_subset: isolated_points_of A ⊆ A
by (auto simp: isolated_points_of_def)

lemma isolated_points_of_discrete:
assumes discrete A
shows isolated_points_of A = A
using assms by (auto simp: isolated_points_of_def discrete_altdef)

lemmas uniform_discreteI1 = uniformI1
lemmas uniform_discreteI2 = uniformI2

lemma zorder_zero_eqI ′:
assumes f analytic_on {z}
assumes

∧
i. i < nat n =⇒ (deriv ^^ i) f z = 0

assumes (deriv ^^ nat n) f z 6= 0 and n ≥ 0
shows zorder f z = n

proof −
from assms(1) obtain A where open A z ∈ A f holomorphic_on A

using analytic_at by blast
thus ?thesis

using zorder_zero_eqI [of f A z n] assms by blast
qed

7.14 Isolated zeros
definition isolated_zero :: (′a::topological_space ⇒ ′b::real_normed_div_algebra)
⇒ ′a ⇒ bool where

isolated_zero f a ←→ f −a→ 0 ∧ eventually (λx. f x 6= 0) (at a)

lemma isolated_zero_shift:
fixes z :: ′a :: real_normed_vector
shows isolated_zero f z ←→ isolated_zero (λw. f (z + w)) 0
unfolding isolated_zero_def
by (simp add: at_to_0 ′ eventually_filtermap filterlim_filtermap add_ac)

lemma isolated_zero_shift ′:
fixes z :: ′a :: real_normed_vector
assumes NO_MATCH 0 z
shows isolated_zero f z ←→ isolated_zero (λw. f (z + w)) 0
by (rule isolated_zero_shift)

lemma isolated_zero_imp_not_essential [intro]:
isolated_zero f z =⇒ not_essential f z

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 389

unfolding isolated_zero_def not_essential_def
using tendsto_nhds_iff by blast

lemma pole_is_not_zero:
fixes f :: ′a::perfect_space ⇒ ′b::real_normed_field
assumes is_pole f z
shows ¬isolated_zero f z

proof
assume isolated_zero f z
then have filterlim f (nhds 0) (at z)

unfolding isolated_zero_def using tendsto_nhds_iff by blast
moreover have filterlim f at_infinity (at z)

using ‹is_pole f z› unfolding is_pole_def .
ultimately show False

using not_tendsto_and_filterlim_at_infinity[OF at_neq_bot]
by auto

qed

lemma isolated_zero_imp_pole_inverse:
fixes f :: _ ⇒ ′b::{real_normed_div_algebra, division_ring}
assumes isolated_zero f z
shows is_pole (λz. inverse (f z)) z

proof −
from assms have ev: eventually (λz. f z 6= 0) (at z)

by (auto simp: isolated_zero_def)
have filterlim f (nhds 0) (at z)

using assms by (simp add: isolated_zero_def)
with ev have filterlim f (at 0) (at z)

using filterlim_atI by blast
also have ?this ←→ filterlim (λz. inverse (inverse (f z))) (at 0) (at z)

by (rule filterlim_cong) (use ev in ‹auto elim!: eventually_mono›)
finally have filterlim (λz. inverse (f z)) at_infinity (at z)

by (subst filterlim_inverse_at_iff [symmetric])
thus ?thesis

by (simp add: is_pole_def)
qed

lemma is_pole_imp_isolated_zero_inverse:
fixes f :: _ ⇒ ′b::{real_normed_div_algebra, division_ring}
assumes is_pole f z
shows isolated_zero (λz. inverse (f z)) z

proof −
from assms have ev: eventually (λz. f z 6= 0) (at z)

by (simp add: non_zero_neighbour_pole)
have filterlim f at_infinity (at z)

using assms by (simp add: is_pole_def)
also have ?this ←→ filterlim (λz. inverse (inverse (f z))) at_infinity (at z)

by (rule filterlim_cong) (use ev in ‹auto elim!: eventually_mono›)
finally have filterlim (λz. inverse (f z)) (at 0) (at z)

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 390

by (subst (asm) filterlim_inverse_at_iff [symmetric]) auto
hence filterlim (λz. inverse (f z)) (nhds 0) (at z)

using filterlim_at by blast
moreover have eventually (λz. inverse (f z) 6= 0) (at z)

using ev by eventually_elim auto
ultimately show ?thesis

by (simp add: isolated_zero_def)
qed

lemma is_pole_inverse_iff : is_pole (λz. inverse (f z)) z ←→ isolated_zero f z
using is_pole_imp_isolated_zero_inverse isolated_zero_imp_pole_inverse by

fastforce

lemma isolated_zero_inverse_iff : isolated_zero (λz. inverse (f z)) z ←→ is_pole
f z

using is_pole_imp_isolated_zero_inverse isolated_zero_imp_pole_inverse by
fastforce

lemma zero_isolated_zero:
fixes f :: ′a :: {t2_space, perfect_space} ⇒ _
assumes isolated_zero f z isCont f z
shows f z = 0

proof (rule tendsto_unique)
show f −z→ f z

using assms(2) by (rule isContD)
show f −z→ 0

using assms(1) by (simp add: isolated_zero_def)
qed auto

lemma zero_isolated_zero_analytic:
assumes isolated_zero f z f analytic_on {z}
shows f z = 0
using assms(1) analytic_at_imp_isCont[OF assms(2)] by (rule zero_isolated_zero)

lemma isolated_zero_analytic_iff :
assumes f analytic_on {z}
shows isolated_zero f z ←→ f z = 0 ∧ eventually (λz. f z 6= 0) (at z)

proof safe
assume f z = 0 eventually (λz. f z 6= 0) (at z)
with assms show isolated_zero f z

unfolding isolated_zero_def by (metis analytic_at_imp_isCont isCont_def)
qed (use zero_isolated_zero_analytic[OF _ assms] in ‹auto simp: isolated_zero_def ›)

lemma non_isolated_zero_imp_eventually_zero:
assumes f analytic_on {z} f z = 0 ¬isolated_zero f z
shows eventually (λz. f z = 0) (at z)

proof (rule not_essential_frequently_0_imp_eventually_0)
from assms(1) show isolated_singularity_at f z not_essential f z

by (simp_all add: isolated_singularity_at_analytic not_essential_analytic)

Complex{_}{\kern 0pt}Singularities.html

Complex_Residues.thy 391

from assms(1 ,2) have f −z→ 0
by (metis analytic_at_imp_isCont continuous_within)

thus frequently (λz. f z = 0) (at z)
using assms(2 ,3) by (auto simp: isolated_zero_def frequently_def)

qed

lemma non_isolated_zero_imp_eventually_zero ′:
assumes f analytic_on {z} f z = 0 ¬isolated_zero f z
shows eventually (λz. f z = 0) (nhds z)
using non_isolated_zero_imp_eventually_zero[OF assms] assms(2)
using eventually_nhds_conv_at by blast

end
theory Complex_Residues

imports Complex_Singularities
begin

7.15 Definition of residues

Wenda Li and LC Paulson (2016). A Formal Proof of Cauchy’s Residue
Theorem. Interactive Theorem Proving
definition residue :: (complex ⇒ complex) ⇒ complex ⇒ complex where

residue f z = (SOME int. ∃ e>0 . ∀ ε>0 . ε<e
−→ (f has_contour_integral 2∗pi∗ i ∗int) (circlepath z ε))

lemma residue_cong:
assumes eq: eventually (λz. f z = g z) (at z) and z = z ′

shows residue f z = residue g z ′

proof −
from assms have eq ′: eventually (λz. g z = f z) (at z)

by (simp add: eq_commute)
let ?P = λf c e. (∀ ε>0 . ε < e −→
(f has_contour_integral of_real (2 ∗ pi) ∗ i ∗ c) (circlepath z ε))

have residue f z = residue g z unfolding residue_def
proof (rule Eps_cong)

fix c :: complex
have ∃ e>0 . ?P g c e

if ∃ e>0 . ?P f c e and eventually (λz. f z = g z) (at z) for f g
proof −

from that(1) obtain e where e: e > 0 ?P f c e
by blast

from that(2) obtain e ′ where e ′: e ′ > 0
∧

z ′. z ′ 6= z =⇒ dist z ′ z < e ′ =⇒
f z ′ = g z ′

unfolding eventually_at by blast
have ?P g c (min e e ′)
proof (intro allI exI impI , goal_cases)

case (1 ε)
hence (f has_contour_integral of_real (2 ∗ pi) ∗ i ∗ c) (circlepath z ε)

using e(2) by auto

Complex{_}{\kern 0pt}Residues.html

Complex_Residues.thy 392

thus ?case
proof (rule has_contour_integral_eq)

fix z ′ assume z ′ ∈ path_image (circlepath z ε)
hence dist z ′ z < e ′ and z ′ 6= z

using 1 by (auto simp: dist_commute)
with e ′(2)[of z ′] show f z ′ = g z ′ by simp

qed
qed
moreover from e and e ′ have min e e ′ > 0 by auto
ultimately show ?thesis by blast

qed
from this[OF _ eq] and this[OF _ eq ′]

show (∃ e>0 . ?P f c e) ←→ (∃ e>0 . ?P g c e)
by blast

qed
with assms show ?thesis by simp

qed

lemma residue_shift_0 : residue f z = residue (λx. f (z + x)) 0
proof −

define Q where
Q = (λr f z ε. (f has_contour_integral complex_of_real (2 ∗ pi) ∗ i ∗ r)

(circlepath z ε))
define P where

P = (λr f z. ∃ e>0 . ∀ ε>0 . ε < e −→ Q r f z ε)
have path_eq: circlepath (z − w) ε = (+) (−w) ◦ circlepath z ε for z w ε

by (simp add: circlepath_def o_def part_circlepath_def algebra_simps)
have ∗: P r f z if P r (λx. f (x + w)) (z − w) for r w f z
using that by (auto simp: P_def Q_def path_eq has_contour_integral_translate)

have (SOME r . P r f z) = (SOME r . P r (λx. f (z + x)) 0)
using ∗[of _ f z z] ∗[of _ λx. f (z + x) −z]
by (intro arg_cong[where f = Eps] ext iffI) (simp_all add: add_ac)

thus ?thesis
by (simp add: residue_def P_def Q_def)

qed

lemma residue_shift_0 ′: NO_MATCH 0 z =⇒ residue f z = residue (λx. f (z +
x)) 0

by (rule residue_shift_0)

lemma contour_integral_circlepath_eq:
assumes open s and f_holo:f holomorphic_on (s−{z}) and 0<e1 e1≤e2

and e2_cball:cball z e2 ⊆ s
shows

f contour_integrable_on circlepath z e1
f contour_integrable_on circlepath z e2
contour_integral (circlepath z e2) f = contour_integral (circlepath z e1) f

proof −
define l where l ≡ linepath (z+e2) (z+e1)

Complex{_}{\kern 0pt}Residues.html

Complex_Residues.thy 393

have [simp]:valid_path l pathstart l=z+e2 pathfinish l=z+e1 unfolding l_def
by auto

have e2>0 using ‹e1>0 › ‹e1≤e2 › by auto
have zl_img:z /∈path_image l

proof
assume z ∈ path_image l
then have e2 ≤ cmod (e2 − e1)
using segment_furthest_le[of z z+e2 z+e1 z+e2 ,simplified] ‹e1>0 › ‹e2>0 ›

unfolding l_def
by (auto simp add:closed_segment_commute)

thus False using ‹e2>0 › ‹e1>0 › ‹e1≤e2 ›
apply (subst (asm) norm_of_real)
by auto

qed
define g where g ≡ circlepath z e2 +++ l +++ reversepath (circlepath z e1)

+++ reversepath l
show [simp]: f contour_integrable_on circlepath z e2 f contour_integrable_on

(circlepath z e1)
proof −

show f contour_integrable_on circlepath z e2
apply (intro contour_integrable_continuous_circlepath[OF

continuous_on_subset[OF holomorphic_on_imp_continuous_on[OF
f_holo]]])

using ‹e2>0 › e2_cball by auto
show f contour_integrable_on (circlepath z e1)

apply (intro contour_integrable_continuous_circlepath[OF
continuous_on_subset[OF holomorphic_on_imp_continuous_on[OF

f_holo]]])
using ‹e1>0 › ‹e1≤e2 › e2_cball by auto

qed
have [simp]:f contour_integrable_on l

proof −
have closed_segment (z + e2) (z + e1) ⊆ cball z e2 using ‹e2>0 › ‹e1>0 ›

‹e1≤e2 ›
by (intro closed_segment_subset,auto simp add:dist_norm)

hence closed_segment (z + e2) (z + e1) ⊆ s − {z} using zl_img e2_cball
unfolding l_def

by auto
then show f contour_integrable_on l unfolding l_def

apply (intro contour_integrable_continuous_linepath[OF
continuous_on_subset[OF holomorphic_on_imp_continuous_on[OF

f_holo]]])
by auto

qed
let ?ig=λg. contour_integral g f
have (f has_contour_integral 0) g

proof (rule Cauchy_theorem_global[OF _ f_holo])
show open (s − {z}) using ‹open s› by auto
show valid_path g unfolding g_def l_def by auto

Complex{_}{\kern 0pt}Residues.html

Complex_Residues.thy 394

show pathfinish g = pathstart g unfolding g_def l_def by auto
next

have path_img:path_image g ⊆ cball z e2
proof −
have closed_segment (z + e2) (z + e1) ⊆ cball z e2 using ‹e2>0 › ‹e1>0 ›

‹e1≤e2 ›
by (intro closed_segment_subset,auto simp add:dist_norm)

moreover have sphere z |e1 | ⊆ cball z e2 using ‹e2>0 › ‹e1≤e2 › ‹e1>0 ›
by auto

ultimately show ?thesis unfolding g_def l_def using ‹e2>0 ›
by (simp add: path_image_join closed_segment_commute)

qed
show path_image g ⊆ s − {z}

proof −
have z /∈path_image g using zl_img

unfolding g_def l_def by (auto simp add: path_image_join closed_segment_commute)
moreover note ‹cball z e2 ⊆ s› and path_img
ultimately show ?thesis by auto

qed
show winding_number g w = 0 whenw /∈ s − {z} for w

proof −
have winding_number g w = 0 when w /∈s using that e2_cball

apply (intro winding_number_zero_outside[OF _ _ _ _ path_img])
by (auto simp add:g_def l_def)

moreover have winding_number g z=0
proof −

let ?Wz=λg. winding_number g z
have ?Wz g = ?Wz (circlepath z e2) + ?Wz l + ?Wz (reversepath

(circlepath z e1))
+ ?Wz (reversepath l)

using ‹e2>0 › ‹e1>0 › zl_img unfolding g_def l_def
by (subst winding_number_join,auto simp add:path_image_join

closed_segment_commute)+
also have ... = ?Wz (circlepath z e2) + ?Wz (reversepath (circlepath

z e1))
using zl_img
apply (subst (2) winding_number_reversepath)
by (auto simp add:l_def closed_segment_commute)

also have ... = 0
proof −

have ?Wz (circlepath z e2) = 1 using ‹e2>0 ›
by (auto intro: winding_number_circlepath_centre)

moreover have ?Wz (reversepath (circlepath z e1)) = −1 using
‹e1>0 ›

apply (subst winding_number_reversepath)
by (auto intro: winding_number_circlepath_centre)

ultimately show ?thesis by auto
qed

finally show ?thesis .

Complex{_}{\kern 0pt}Residues.html

Complex_Residues.thy 395

qed
ultimately show ?thesis using that by auto

qed
qed

then have 0 = ?ig g using contour_integral_unique by simp
also have ... = ?ig (circlepath z e2) + ?ig l + ?ig (reversepath (circlepath z e1))

+ ?ig (reversepath l)
unfolding g_def
by (auto simp add:contour_integrable_reversepath_eq)

also have ... = ?ig (circlepath z e2) − ?ig (circlepath z e1)
by (auto simp add:contour_integral_reversepath)

finally show contour_integral (circlepath z e2) f = contour_integral (circlepath
z e1) f

by simp
qed

lemma base_residue:
assumes open s z∈s r>0 and f_holo:f holomorphic_on (s − {z})

and r_cball:cball z r ⊆ s
shows (f has_contour_integral 2 ∗ pi ∗ i ∗ (residue f z)) (circlepath z r)

proof −
obtain e where e>0 and e_cball:cball z e ⊆ s

using open_contains_cball[of s] ‹open s› ‹z∈s› by auto
define c where c ≡ 2 ∗ pi ∗ i
define i where i ≡ contour_integral (circlepath z e) f / c
have (f has_contour_integral c∗i) (circlepath z ε) when ε>0 ε<e for ε

proof −
have contour_integral (circlepath z e) f = contour_integral (circlepath z ε) f

f contour_integrable_on circlepath z ε
f contour_integrable_on circlepath z e

using ‹ε<e›
by (intro contour_integral_circlepath_eq[OF ‹open s› f_holo ‹ε>0 › _

e_cball],auto)+
then show ?thesis unfolding i_def c_def

by (auto intro:has_contour_integral_integral)
qed

then have ∃ e>0 . ∀ ε>0 . ε<e −→ (f has_contour_integral c ∗ (residue f z))
(circlepath z ε)

unfolding residue_def c_def
apply (rule_tac someI [of _ i],intro exI [where x=e])
by (auto simp add:‹e>0 › c_def)

then obtain e ′ where e ′>0
and e ′_def :∀ ε>0 . ε<e ′ −→ (f has_contour_integral c ∗ (residue f z))

(circlepath z ε)
by auto

let ?int=λe. contour_integral (circlepath z e) f
define ε where ε ≡ Min {r ,e ′} / 2
have ε>0 ε≤r ε<e ′ using ‹r>0 › ‹e ′>0 › unfolding ε_def by auto
have (f has_contour_integral c ∗ (residue f z)) (circlepath z ε)

Complex{_}{\kern 0pt}Residues.html

Complex_Residues.thy 396

using e ′_def [rule_format,OF ‹ε>0 › ‹ε<e ′›] .
then show ?thesis unfolding c_def
using contour_integral_circlepath_eq[OF ‹open s› f_holo ‹ε>0 › ‹ε≤r› r_cball]
by (auto elim: has_contour_integral_eqpath[of _ _ circlepath z ε circlepath z

r])
qed

lemma residue_holo:
assumes open s z ∈ s and f_holo: f holomorphic_on s
shows residue f z = 0

proof −
define c where c ≡ 2 ∗ pi ∗ i
obtain e where e>0 and e_cball:cball z e ⊆ s using ‹open s› ‹z∈s›

using open_contains_cball_eq by blast
have (f has_contour_integral c∗residue f z) (circlepath z e)

using f_holo
by (auto intro: base_residue[OF ‹open s› ‹z∈s› ‹e>0 › _ e_cball,folded c_def])

moreover have (f has_contour_integral 0) (circlepath z e)
using f_holo e_cball ‹e>0 ›
by (auto intro: Cauchy_theorem_convex_simple[of _ cball z e])

ultimately have c∗residue f z =0
using has_contour_integral_unique by blast

thus ?thesis unfolding c_def by auto
qed

lemma residue_const:residue (λ_. c) z = 0
by (intro residue_holo[of UNIV ::complex set],auto intro:holomorphic_intros)

lemma residue_add:
assumes open s z ∈ s and f_holo: f holomorphic_on s − {z}

and g_holo:g holomorphic_on s − {z}
shows residue (λz. f z + g z) z= residue f z + residue g z

proof −
define c where c ≡ 2 ∗ pi ∗ i
define fg where fg ≡ (λz. f z+g z)
obtain e where e>0 and e_cball:cball z e ⊆ s using ‹open s› ‹z∈s›

using open_contains_cball_eq by blast
have (fg has_contour_integral c ∗ residue fg z) (circlepath z e)

unfolding fg_def using f_holo g_holo
apply (intro base_residue[OF ‹open s› ‹z∈s› ‹e>0 › _ e_cball,folded c_def])
by (auto intro:holomorphic_intros)

moreover have (fg has_contour_integral c∗residue f z + c∗ residue g z) (circlepath
z e)

unfolding fg_def using f_holo g_holo
by (auto intro: has_contour_integral_add base_residue[OF ‹open s› ‹z∈s›

‹e>0 › _ e_cball,folded c_def])
ultimately have c∗(residue f z + residue g z) = c ∗ residue fg z

using has_contour_integral_unique by (auto simp add:distrib_left)
thus ?thesis unfolding fg_def

Complex{_}{\kern 0pt}Residues.html

Complex_Residues.thy 397

by (auto simp add:c_def)
qed

lemma residue_lmul:
assumes open s z ∈ s and f_holo: f holomorphic_on s − {z}
shows residue (λz. c ∗ (f z)) z= c ∗ residue f z

proof (cases c=0)
case True
thus ?thesis using residue_const by auto

next
case False
define c ′ where c ′ ≡ 2 ∗ pi ∗ i
define f ′ where f ′ ≡ (λz. c ∗ (f z))
obtain e where e>0 and e_cball:cball z e ⊆ s using ‹open s› ‹z∈s›

using open_contains_cball_eq by blast
have (f ′ has_contour_integral c ′ ∗ residue f ′ z) (circlepath z e)

unfolding f ′_def using f_holo
apply (intro base_residue[OF ‹open s› ‹z∈s› ‹e>0 › _ e_cball,folded c ′_def])
by (auto intro:holomorphic_intros)

moreover have (f ′ has_contour_integral c ∗ (c ′ ∗ residue f z)) (circlepath z e)
unfolding f ′_def using f_holo
by (auto intro: has_contour_integral_lmul

base_residue[OF ‹open s› ‹z∈s› ‹e>0 › _ e_cball,folded c ′_def])
ultimately have c ′ ∗ residue f ′ z = c ∗ (c ′ ∗ residue f z)

using has_contour_integral_unique by auto
thus ?thesis unfolding f ′_def c ′_def using False

by (auto simp add:field_simps)
qed

lemma residue_rmul:
assumes open s z ∈ s and f_holo: f holomorphic_on s − {z}
shows residue (λz. (f z) ∗ c) z= residue f z ∗ c

using residue_lmul[OF assms,of c] by (auto simp add:algebra_simps)

lemma residue_div:
assumes open s z ∈ s and f_holo: f holomorphic_on s − {z}
shows residue (λz. (f z) / c) z= residue f z / c

using residue_lmul[OF assms,of 1/c] by (auto simp add:algebra_simps)

lemma residue_neg:
assumes open s z ∈ s and f_holo: f holomorphic_on s − {z}
shows residue (λz. − (f z)) z= − residue f z

using residue_lmul[OF assms,of −1] by auto

lemma residue_diff :
assumes open s z ∈ s and f_holo: f holomorphic_on s − {z}

and g_holo:g holomorphic_on s − {z}
shows residue (λz. f z − g z) z= residue f z − residue g z

using residue_add[OF assms(1 ,2 ,3),of λz. − g z] residue_neg[OF assms(1 ,2 ,4)]

Complex{_}{\kern 0pt}Residues.html

Complex_Residues.thy 398

by (auto intro:holomorphic_intros g_holo)

lemma residue_simple:
assumes open s z∈s and f_holo:f holomorphic_on s
shows residue (λw. f w / (w − z)) z = f z

proof −
define c where c ≡ 2 ∗ pi ∗ i
define f ′ where f ′ ≡ λw. f w / (w − z)
obtain e where e>0 and e_cball:cball z e ⊆ s using ‹open s› ‹z∈s›

using open_contains_cball_eq by blast
have (f ′ has_contour_integral c ∗ f z) (circlepath z e)

unfolding f ′_def c_def using ‹e>0 › f_holo e_cball
by (auto intro!: Cauchy_integral_circlepath_simple holomorphic_intros)

moreover have (f ′ has_contour_integral c ∗ residue f ′ z) (circlepath z e)
unfolding f ′_def using f_holo
apply (intro base_residue[OF ‹open s› ‹z∈s› ‹e>0 › _ e_cball,folded c_def])
by (auto intro!:holomorphic_intros)

ultimately have c ∗ f z = c ∗ residue f ′ z
using has_contour_integral_unique by blast

thus ?thesis unfolding c_def f ′_def by auto
qed

lemma residue_simple ′:
assumes s: open s z ∈ s and holo: f holomorphic_on (s − {z})

and lim: ((λw. f w ∗ (w − z)) −−−→ c) (at z)
shows residue f z = c

proof −
define g where g = (λw. if w = z then c else f w ∗ (w − z))
from holo have (λw. f w ∗ (w − z)) holomorphic_on (s − {z}) (is ?P)

by (force intro: holomorphic_intros)
also have ?P ←→ g holomorphic_on (s − {z})

by (intro holomorphic_cong refl) (simp_all add: g_def)
finally have ∗: g holomorphic_on (s − {z}) .

note lim
also have (λw. f w ∗ (w − z)) −z→ c ←→ g −z→ g z
by (intro filterlim_cong refl) (simp_all add: g_def [abs_def] eventually_at_filter)

finally have ∗∗: g −z→ g z .

have g_holo: g holomorphic_on s
by (rule no_isolated_singularity ′[where K = {z}])

(insert assms ∗ ∗∗, simp_all add: at_within_open_NO_MATCH)
from s and this have residue (λw. g w / (w − z)) z = g z

by (rule residue_simple)
also have ∀ F za in at z. g za / (za − z) = f za

unfolding eventually_at by (auto intro!: exI [of _ 1] simp: field_simps g_def)
hence residue (λw. g w / (w − z)) z = residue f z

by (intro residue_cong refl)
finally show ?thesis

Complex{_}{\kern 0pt}Residues.html

Complex_Residues.thy 399

by (simp add: g_def)
qed

lemma residue_holomorphic_over_power :
assumes open A z0 ∈ A f holomorphic_on A
shows residue (λz. f z / (z − z0) ^ Suc n) z0 = (deriv ^^ n) f z0 / fact n

proof −
let ?f = λz. f z / (z − z0) ^ Suc n
from assms(1 ,2) obtain r where r : r > 0 cball z0 r ⊆ A

by (auto simp: open_contains_cball)
have (?f has_contour_integral 2 ∗ pi ∗ i ∗ residue ?f z0) (circlepath z0 r)

using r assms by (intro base_residue[of A]) (auto intro!: holomorphic_intros)
moreover have (?f has_contour_integral 2 ∗ pi ∗ i / fact n ∗ (deriv ^^ n) f

z0) (circlepath z0 r)
using assms r
by (intro Cauchy_has_contour_integral_higher_derivative_circlepath)
(auto intro!: holomorphic_on_subset[OF assms(3)] holomorphic_on_imp_continuous_on)

ultimately have 2 ∗ pi ∗ i ∗ residue ?f z0 = 2 ∗ pi ∗ i / fact n ∗ (deriv ^^ n)
f z0

by (rule has_contour_integral_unique)
thus ?thesis by (simp add: field_simps)

qed

lemma residue_holomorphic_over_power ′:
assumes open A 0 ∈ A f holomorphic_on A
shows residue (λz. f z / z ^ Suc n) 0 = (deriv ^^ n) f 0 / fact n
using residue_holomorphic_over_power [OF assms] by simp

theorem residue_fps_expansion_over_power_at_0 :
assumes f has_fps_expansion F
shows residue (λz. f z / z ^ Suc n) 0 = fps_nth F n

proof −
from has_fps_expansion_imp_holomorphic[OF assms] obtain s

where open s 0 ∈ s f holomorphic_on s
∧

z. z ∈ s =⇒ f z = eval_fps F z
by auto

with assms have residue (λz. f z / (z − 0) ^ Suc n) 0 = (deriv ^^ n) f 0 / fact
n

unfolding has_fps_expansion_def
by (intro residue_holomorphic_over_power [of s]) (auto simp: zero_ereal_def)

also from assms have . . . = fps_nth F n
by (subst fps_nth_fps_expansion) auto

finally show ?thesis by simp
qed

lemma residue_pole_order :
fixes f ::complex ⇒ complex and z::complex
defines n ≡ nat (− zorder f z) and h ≡ zor_poly f z
assumes f_iso:isolated_singularity_at f z

and pole:is_pole f z

Complex{_}{\kern 0pt}Residues.html

Complex_Residues.thy 400

shows residue f z = ((deriv ^^ (n − 1)) h z / fact (n−1))
proof −

define g where g ≡ λx. if x=z then 0 else inverse (f x)
obtain e where [simp]:e>0 and f_holo:f holomorphic_on ball z e − {z}
using f_iso analytic_imp_holomorphic unfolding isolated_singularity_at_def

by blast
obtain r where 0 < n 0 < r and r_cball:cball z r ⊆ ball z e and h_holo: h

holomorphic_on cball z r
and h_divide:(∀w∈cball z r . (w 6=z −→ f w = h w / (w − z) ^ n) ∧ h w 6= 0)

proof −
obtain r where r :zorder f z < 0 h z 6= 0 r>0 cball z r ⊆ ball z e h holomor-

phic_on cball z r
(∀w∈cball z r − {z}. f w = h w / (w − z) ^ n ∧ h w 6= 0)

using zorder_exist_pole[OF f_holo,simplified,OF ‹is_pole f z›,folded n_def
h_def] by auto

have n>0 using ‹zorder f z < 0 › unfolding n_def by simp
moreover have (∀w∈cball z r . (w 6=z −→ f w = h w / (w − z) ^ n) ∧ h w 6=

0)
using ‹h z 6=0 › r(6) by blast

ultimately show ?thesis using r(3 ,4 ,5) that by blast
qed
have r_nonzero:

∧
w. w ∈ ball z r − {z} =⇒ f w 6= 0

using h_divide by simp
define c where c ≡ 2 ∗ pi ∗ i
define der_f where der_f ≡ ((deriv ^^ (n − 1)) h z / fact (n−1))
define h ′ where h ′ ≡ λu. h u / (u − z) ^ n
have (h ′ has_contour_integral c / fact (n − 1) ∗ (deriv ^^ (n − 1)) h z)

(circlepath z r)
unfolding h ′_def
proof (rule Cauchy_has_contour_integral_higher_derivative_circlepath[of z r

h z n−1 ,
folded c_def Suc_pred ′[OF ‹n>0 ›]])

show continuous_on (cball z r) h using holomorphic_on_imp_continuous_on
h_holo by simp

show h holomorphic_on ball z r using h_holo by auto
show z ∈ ball z r using ‹r>0 › by auto

qed
then have (h ′ has_contour_integral c ∗ der_f) (circlepath z r) unfolding

der_f_def by auto
then have (f has_contour_integral c ∗ der_f) (circlepath z r)

proof (elim has_contour_integral_eq)
fix x assume x ∈ path_image (circlepath z r)
hence x∈cball z r − {z} using ‹r>0 › by auto
then show h ′ x = f x using h_divide unfolding h ′_def by auto

qed
moreover have (f has_contour_integral c ∗ residue f z) (circlepath z r)

using base_residue[of ‹ball z e› z,simplified,OF ‹r>0 › f_holo r_cball,folded
c_def]

unfolding c_def by simp

Complex{_}{\kern 0pt}Residues.html

Complex_Residues.thy 401

ultimately have c ∗ der_f = c ∗ residue f z using has_contour_integral_unique
by blast

hence der_f = residue f z unfolding c_def by auto
thus ?thesis unfolding der_f_def by auto

qed

lemma residue_simple_pole:
assumes isolated_singularity_at f z0
assumes is_pole f z0 zorder f z0 = − 1
shows residue f z0 = zor_poly f z0 z0
using assms by (subst residue_pole_order) simp_all

lemma residue_simple_pole_limit:
assumes isolated_singularity_at f z0
assumes is_pole f z0 zorder f z0 = − 1
assumes ((λx. f (g x) ∗ (g x − z0)) −−−→ c) F
assumes filterlim g (at z0) F F 6= bot
shows residue f z0 = c

proof −
have residue f z0 = zor_poly f z0 z0

by (rule residue_simple_pole assms)+
also have . . . = c

apply (rule zor_poly_pole_eqI)
using assms by auto

finally show ?thesis .
qed

lemma
assumes f_holo:f holomorphic_on s and g_holo:g holomorphic_on s

and open s connected s z ∈ s
assumes g_deriv:(g has_field_derivative g ′) (at z)
assumes f z 6= 0 g z = 0 g ′ 6= 0
shows porder_simple_pole_deriv: zorder (λw. f w / g w) z = − 1

and residue_simple_pole_deriv: residue (λw. f w / g w) z = f z / g ′

proof −
have [simp]:isolated_singularity_at f z isolated_singularity_at g z
using isolated_singularity_at_holomorphic[OF _ ‹open s› ‹z∈s›] f_holo g_holo
by (meson Diff_subset holomorphic_on_subset)+

have [simp]:not_essential f z not_essential g z
unfolding not_essential_def using f_holo g_holo assms(3 ,5)

by (meson continuous_on_eq_continuous_at continuous_within holomorphic_on_imp_continuous_on)+
have g_nconst:∃ F w in at z. g w 6=0
proof (rule ccontr)

assume ¬ (∃ F w in at z. g w 6= 0)
then have ∀ F w in nhds z. g w = 0

unfolding eventually_at eventually_nhds frequently_at using ‹g z = 0 ›
by (metis open_ball UNIV_I centre_in_ball dist_commute mem_ball)

then have deriv g z = deriv (λ_. 0) z
by (intro deriv_cong_ev) auto

Complex{_}{\kern 0pt}Residues.html

Complex_Residues.thy 402

then have deriv g z = 0 by auto
then have g ′ = 0 using g_deriv DERIV_imp_deriv by blast
then show False using ‹g ′6=0 › by auto

qed

have zorder (λw. f w / g w) z = zorder f z − zorder g z
proof −

have ∀ F w in at z. f w 6=0 ∧ w∈s
apply (rule non_zero_neighbour_alt)
using assms by auto

with g_nconst have ∃ F w in at z. f w ∗ g w 6= 0
by (elim frequently_rev_mp eventually_rev_mp,auto)

then show ?thesis using zorder_divide[of f z g] by auto
qed
moreover have zorder f z=0

apply (rule zorder_zero_eqI [OF f_holo ‹open s› ‹z∈s›])
using ‹f z 6=0 › by auto

moreover have zorder g z=1
apply (rule zorder_zero_eqI [OF g_holo ‹open s› ‹z∈s›])
subgoal using assms(8) by auto
subgoal using DERIV_imp_deriv assms(9) g_deriv by auto
subgoal by simp
done

ultimately show zorder (λw. f w / g w) z = − 1 by auto

show residue (λw. f w / g w) z = f z / g ′

proof (rule residue_simple_pole_limit[where g=id and F=at z,simplified])
show zorder (λw. f w / g w) z = − 1 by fact
show isolated_singularity_at (λw. f w / g w) z

by (auto intro: singularity_intros)
show is_pole (λw. f w / g w) z
proof (rule is_pole_divide)

have ∀ F x in at z. g x 6= 0
apply (rule non_zero_neighbour)
using g_nconst by auto

moreover have g −z→ 0
using DERIV_isCont assms(8) continuous_at g_deriv by force

ultimately show filterlim g (at 0) (at z) unfolding filterlim_at by simp
show isCont f z

using assms(3 ,5) continuous_on_eq_continuous_at f_holo holomor-
phic_on_imp_continuous_on

by auto
show f z 6= 0 by fact

qed
show filterlim id (at z) (at z) by (simp add: filterlim_iff)
have ((λw. (f w ∗ (w − z)) / g w) −−−→ f z / g ′) (at z)
proof (rule lhopital_complex_simple)

show ((λw. f w ∗ (w − z)) has_field_derivative f z) (at z)
using assms by (auto intro!: derivative_eq_intros holomorphic_derivI [OF

Complex{_}{\kern 0pt}Residues.html

Residue_Theorem.thy 403

f_holo])
show (g has_field_derivative g ′) (at z) by fact

qed (insert assms, auto)
then show ((λw. (f w / g w) ∗ (w − z)) −−−→ f z / g ′) (at z)

by (simp add: field_split_simps)
qed

qed

7.16 Poles and residues of some well-known functions
lemma is_pole_Gamma: is_pole Gamma (−of_nat n)

unfolding is_pole_def using Gamma_poles .

lemma Gamma_residue:
residue Gamma (−of_nat n) = (−1) ^ n / fact n

proof (rule residue_simple ′)
show open (− (�≤0 − {−of_nat n}) :: complex set)

by (intro open_Compl closed_subset_Ints) auto
show Gamma holomorphic_on (− (�≤0 − {−of_nat n}) − {− of_nat n})

by (rule holomorphic_Gamma) auto
show (λw. Gamma w ∗ (w − (−of_nat n))) −(−of_nat n)→ (− 1) ^ n / fact n

using Gamma_residues[of n] by simp
qed auto

end

8 The Residue Theorem, the Argument Principle
and Rouché’s Theorem

theory Residue_Theorem
imports Complex_Residues HOL−Library.Landau_Symbols

begin

Several theorems that could be moved up, IF there were a previous theory
importing both Landau Symbols and Elementary Metric Spaces
lemma continuous_bounded_at_infinity_imp_bounded:

fixes f :: real ⇒ ′a :: real_normed_field
assumes f ∈ O[at_bot](λ_. 1)
assumes f ∈ O[at_top](λ_. 1)
assumes cf : continuous_on UNIV f
shows bounded (range f)

proof −
obtain c1 c2

where eventually (λx. norm (f x) ≤ c1) at_bot eventually (λx. norm (f x) ≤
c2) at_top

using assms by (auto elim!: landau_o.bigE)
then obtain x1 x2 where x1 :

∧
x. x ≤ x1 =⇒ norm (f x) ≤ c1 and x2 :

∧
x. x

≥ x2 =⇒ norm (f x) ≤ c2

Residue{_}{\kern 0pt}Theorem.html

Residue_Theorem.thy 404

by (auto simp: eventually_at_bot_linorder eventually_at_top_linorder)
have compact (f ‘ {x1 ..x2})

by (intro compact_continuous_image continuous_on_subset[OF cf]) auto
hence bounded (f ‘ {x1 ..x2})

by (rule compact_imp_bounded)
then obtain c3 where c3 :

∧
x. x ∈ {x1 ..x2} =⇒ norm (f x) ≤ c3

unfolding bounded_iff by fast
have norm (f x) ≤ Max {c1 , c2 , c3} for x
by (cases x ≤ x1 ; cases x ≥ x2) (use x1 x2 c3 in ‹auto simp: le_max_iff_disj›)

thus ?thesis
unfolding bounded_iff by blast

qed

lemma holomorphic_on_extend:
assumes f holomorphic_on S − {ξ} ξ ∈ interior S f ∈ O[at ξ](λ_. 1)
shows (∃ g. g holomorphic_on S ∧ (∀ z∈S − {ξ}. g z = f z))
by (subst holomorphic_on_extend_bounded) (insert assms, auto elim!: landau_o.bigE)

lemma removable_singularities:
assumes finite X X ⊆ interior S f holomorphic_on (S − X)
assumes

∧
z. z ∈ X =⇒ f ∈ O[at z](λ_. 1)

shows ∃ g. g holomorphic_on S ∧ (∀ z∈S−X . g z = f z)
using assms

proof (induction arbitrary: f rule: finite_induct)
case empty
thus ?case by auto

next
case (insert z0 X f)
from insert.prems and insert.hyps have z0 : z0 ∈ interior (S − X)

by (auto simp: interior_diff finite_imp_closed)
hence ∃ g. g holomorphic_on (S − X) ∧ (∀ z∈S − X − {z0}. g z = f z)

using insert.prems insert.hyps by (intro holomorphic_on_extend) auto
then obtain g where g: g holomorphic_on (S − X) ∀ z∈S − X − {z0}. g z =

f z by blast
have ∃ h. h holomorphic_on S ∧ (∀ z∈S − X . h z = g z)
proof (rule insert.IH)

fix z0 ′ assume z0 ′: z0 ′ ∈ X
hence eventually (λz. z ∈ interior S − (X − {z0 ′}) − {z0}) (nhds z0 ′)

using insert.prems insert.hyps
by (intro eventually_nhds_in_open open_Diff finite_imp_closed) auto

hence ev: eventually (λz. z ∈ S − X − {z0}) (at z0 ′)
unfolding eventually_at_filter
by eventually_elim (insert z0 ′ insert.hyps interior_subset[of S], auto)

have g ∈ Θ[at z0 ′](f)
by (intro bigthetaI_cong eventually_mono[OF ev]) (insert g, auto)

also have f ∈ O[at z0 ′](λ_. 1)
using z0 ′ by (intro insert.prems) auto

finally show g ∈
qed (use insert.prems g in auto)

Residue{_}{\kern 0pt}Theorem.html

Residue_Theorem.thy 405

then obtain h where h holomorphic_on S ∀ z∈S − X . h z = g z by blast
with g have h holomorphic_on S ∀ z∈S − insert z0 X . h z = f z by auto
thus ?case by blast

qed

lemma continuous_imp_bigo_1 :
assumes continuous (at x within A) f
shows f ∈ O[at x within A](λ_. 1)

proof (rule bigoI_tendsto)
from assms show ((λx. f x / 1) −−−→ f x) (at x within A)

by (auto simp: continuous_within)
qed auto

lemma taylor_bigo_linear :
assumes f field_differentiable at x0 within A
shows (λx. f x − f x0) ∈ O[at x0 within A](λx. x − x0)

proof −
from assms obtain f ′ where (f has_field_derivative f ′) (at x0 within A)

by (auto simp: field_differentiable_def)
hence ((λx. (f x − f x0) / (x − x0)) −−−→ f ′) (at x0 within A)

by (auto simp: has_field_derivative_iff)
thus ?thesis by (intro bigoI_tendsto[where c = f ′]) (auto simp: eventually_at_filter)

qed

8.1 Cauchy’s residue theorem
lemma get_integrable_path:
assumes open S connected (S−pts) finite pts f holomorphic_on (S−pts) a∈S−pts

b∈S−pts
obtains g where valid_path g pathstart g = a pathfinish g = b

path_image g ⊆ S−pts f contour_integrable_on g using assms
proof (induct arbitrary:S thesis a rule:finite_induct[OF ‹finite pts›])

case 1
obtain g where valid_path g path_image g ⊆ S pathstart g = a pathfinish g =

b
using connected_open_polynomial_connected[OF ‹open S›,of a b] ‹connected

(S − {})›
valid_path_polynomial_function 1 .prems(6) 1 .prems(7) by auto

moreover have f contour_integrable_on g
using contour_integrable_holomorphic_simple[OF _ ‹open S› ‹valid_path g›

‹path_image g ⊆ S›,of f]
‹f holomorphic_on S − {}›

by auto
ultimately show ?case using 1 (1)[of g] by auto

next
case idt:(2 p pts)
obtain e where e>0 and e:∀w∈ball a e. w ∈ S ∧ (w 6= a −→ w /∈ insert p pts)

using finite_ball_avoid[OF ‹open S› ‹finite (insert p pts)›, of a]
‹a ∈ S − insert p pts›

Residue{_}{\kern 0pt}Theorem.html

Residue_Theorem.thy 406

by auto
define a ′ where a ′ ≡ a+e/2
have a ′∈S−{p} −pts using e[rule_format,of a+e/2] ‹e>0 ›

by (auto simp add:dist_complex_def a ′_def)
then obtain g ′ where g ′[simp]:valid_path g ′ pathstart g ′ = a ′ pathfinish g ′ = b

path_image g ′ ⊆ S − {p} − pts f contour_integrable_on g ′

using idt.hyps(3)[of a ′ S−{p}] idt.prems idt.hyps(1)
by (metis Diff_insert2 open_delete)

define g where g ≡ linepath a a ′ +++ g ′

have valid_path g unfolding g_def by (auto intro: valid_path_join)
moreover have pathstart g = a and pathfinish g = b unfolding g_def by auto
moreover have path_image g ⊆ S − insert p pts

unfolding g_def
proof (rule subset_path_image_join)

have closed_segment a a ′ ⊆ ball a e using ‹e>0 ›
by (auto dest!:segment_bound1 simp:a ′_def dist_complex_def norm_minus_commute)
then show path_image (linepath a a ′) ⊆ S − insert p pts using e idt(9)

by auto
next

show path_image g ′ ⊆ S − insert p pts using g ′(4) by blast
qed
moreover have f contour_integrable_on g
proof −

have closed_segment a a ′ ⊆ ball a e using ‹e>0 ›
by (auto dest!:segment_bound1 simp:a ′_def dist_complex_def norm_minus_commute)
then have closed_segment a a ′ ⊆ S − insert p pts

using e idt.prems(6) by auto
then have continuous_on (closed_segment a a ′) f
using holomorphic_on_imp_continuous_on holomorphic_on_subset idt.prems(5)

by presburger
then show ?thesis

using contour_integrable_continuous_linepath by (simp add: g_def)
qed
ultimately show ?case using idt.prems(1)[of g] by auto

qed

lemma Cauchy_theorem_aux:
assumes open S connected (S−pts) finite pts pts ⊆ S f holomorphic_on S−pts

valid_path g pathfinish g = pathstart g path_image g ⊆ S−pts
∀ z. (z /∈ S) −→ winding_number g z = 0
∀ p∈S . h p>0 ∧ (∀w∈cball p (h p). w∈S ∧ (w 6=p −→ w /∈ pts))

shows contour_integral g f = (
∑

p∈pts. winding_number g p ∗ contour_integral
(circlepath p (h p)) f)

using assms
proof (induct arbitrary:S g rule:finite_induct[OF ‹finite pts›])

case 1
then show ?case by (simp add: Cauchy_theorem_global contour_integral_unique)

next
case (2 p pts)

Residue{_}{\kern 0pt}Theorem.html

Residue_Theorem.thy 407

note fin[simp] = ‹finite (insert p pts)›
and connected = ‹connected (S − insert p pts)›
and valid[simp] = ‹valid_path g›
and g_loop[simp] = ‹pathfinish g = pathstart g›
and holo[simp]= ‹f holomorphic_on S − insert p pts›
and path_img = ‹path_image g ⊆ S − insert p pts›
and winding = ‹∀ z. z /∈ S −→ winding_number g z = 0 ›
and h = ‹∀ pa∈S . 0 < h pa ∧ (∀w∈cball pa (h pa). w ∈ S ∧ (w 6= pa −→ w

/∈ insert p pts))›
have h p>0 and p∈S

and h_p: ∀w∈cball p (h p). w ∈ S ∧ (w 6= p −→ w /∈ insert p pts)
using h ‹insert p pts ⊆ S› by auto

obtain pg where pg[simp]: valid_path pg pathstart pg = pathstart g pathfinish
pg=p+h p

path_image pg ⊆ S−insert p pts f contour_integrable_on pg
proof −

have p + h p∈cball p (h p) using h[rule_format,of p]
by (simp add: ‹p ∈ S› dist_norm)

then have p + h p ∈ S − insert p pts using h[rule_format,of p] ‹insert p pts
⊆ S›

by fastforce
moreover have pathstart g ∈ S − insert p pts using path_img by auto
ultimately show ?thesis

using get_integrable_path[OF ‹open S› connected fin holo,of pathstart g p+h
p] that

by blast
qed
obtain n::int where n=winding_number g p

using integer_winding_number [OF _ g_loop,of p] valid path_img
by (metis DiffD2 Ints_cases insertI1 subset_eq valid_path_imp_path)

define p_circ where p_circ ≡ circlepath p (h p)
define p_circ_pt where p_circ_pt ≡ linepath (p+h p) (p+h p)
define n_circ where n_circ ≡ λn. ((+++) p_circ ^^ n) p_circ_pt
define cp where cp ≡ if n≥0 then reversepath (n_circ (nat n)) else n_circ (nat

(− n))

have n_circ:valid_path (n_circ k)
winding_number (n_circ k) p = k
pathstart (n_circ k) = p + h p pathfinish (n_circ k) = p + h p
path_image (n_circ k) = (if k=0 then {p + h p} else sphere p (h p))
p /∈ path_image (n_circ k)∧

p ′. p ′/∈S − pts =⇒ winding_number (n_circ k) p ′=0 ∧ p ′/∈path_image
(n_circ k)

f contour_integrable_on (n_circ k)
contour_integral (n_circ k) f = k ∗ contour_integral p_circ f
for k

proof (induct k)
case 0
show valid_path (n_circ 0)

Residue{_}{\kern 0pt}Theorem.html

Residue_Theorem.thy 408

and path_image (n_circ 0) = (if 0=0 then {p + h p} else sphere p (h p))
and winding_number (n_circ 0) p = of_nat 0
and pathstart (n_circ 0) = p + h p
and pathfinish (n_circ 0) = p + h p
and p /∈ path_image (n_circ 0)
unfolding n_circ_def p_circ_pt_def using ‹h p > 0 ›
by (auto simp add: dist_norm)

show winding_number (n_circ 0) p ′=0 ∧ p ′/∈path_image (n_circ 0) when
p ′/∈S− pts for p ′

unfolding n_circ_def p_circ_pt_def
apply (auto intro!:winding_number_trivial)

by (metis Diff_iff pathfinish_in_path_image pg(3) pg(4) subsetCE sub-
set_insertI that)+

show f contour_integrable_on (n_circ 0)
unfolding n_circ_def p_circ_pt_def

by (auto intro!:contour_integrable_continuous_linepath simp add:continuous_on_sing)
show contour_integral (n_circ 0) f = of_nat 0 ∗ contour_integral p_circ f

unfolding n_circ_def p_circ_pt_def by auto
next

case (Suc k)
have n_Suc:n_circ (Suc k) = p_circ +++ n_circ k unfolding n_circ_def

by auto
have pcirc:p /∈ path_image p_circ valid_path p_circ pathfinish p_circ =

pathstart (n_circ k)
using Suc(3) unfolding p_circ_def using ‹h p > 0 › by (auto simp add:

p_circ_def)
have pcirc_image:path_image p_circ ⊆ S − insert p pts

proof −
have path_image p_circ ⊆ cball p (h p) using ‹0 < h p› p_circ_def by

auto
then show ?thesis using h_p pcirc(1) by auto

qed
have pcirc_integrable:f contour_integrable_on p_circ

by (auto simp add:p_circ_def intro!: pcirc_image[unfolded p_circ_def]
contour_integrable_continuous_circlepath holomorphic_on_imp_continuous_on

holomorphic_on_subset[OF holo])
show valid_path (n_circ (Suc k))
using valid_path_join[OF pcirc(2) Suc(1) pcirc(3)] unfolding n_circ_def

by auto
show path_image (n_circ (Suc k))

= (if Suc k = 0 then {p + complex_of_real (h p)} else sphere p (h p))
proof −

have path_image p_circ = sphere p (h p)
unfolding p_circ_def using ‹0 < h p› by auto

then show ?thesis unfolding n_Suc using Suc.hyps(5) ‹h p>0 ›
by (auto simp add: path_image_join[OF pcirc(3)] dist_norm)

qed
then show p /∈ path_image (n_circ (Suc k)) using ‹h p>0 › by auto
show winding_number (n_circ (Suc k)) p = of_nat (Suc k)

Residue{_}{\kern 0pt}Theorem.html

Residue_Theorem.thy 409

proof −
have winding_number p_circ p = 1
by (simp add: ‹h p > 0 › p_circ_def winding_number_circlepath_centre)
moreover have p /∈ path_image (n_circ k) using Suc(5) ‹h p>0 › by

auto
then have winding_number (p_circ +++ n_circ k) p

= winding_number p_circ p + winding_number (n_circ k) p
using valid_path_imp_path Suc.hyps(1) Suc.hyps(2) pcirc
apply (intro winding_number_join)
by auto

ultimately show ?thesis using Suc(2) unfolding n_circ_def
by auto

qed
show pathstart (n_circ (Suc k)) = p + h p

by (simp add: n_circ_def p_circ_def)
show pathfinish (n_circ (Suc k)) = p + h p

using Suc(4) unfolding n_circ_def by auto
show winding_number (n_circ (Suc k)) p ′=0 ∧ p ′/∈path_image (n_circ

(Suc k)) when p ′/∈S−pts for p ′

proof −
have p ′ /∈ path_image p_circ using ‹p ∈ S› h p_circ_def that using

pcirc_image by blast
moreover have p ′ /∈ path_image (n_circ k)

using Suc.hyps(7) that by blast
moreover have winding_number p_circ p ′ = 0

proof −
have path_image p_circ ⊆ cball p (h p)

using h unfolding p_circ_def using ‹p ∈ S› by fastforce
moreover have p ′/∈cball p (h p) using ‹p ∈ S› h that 2 .hyps(2) by

fastforce
ultimately show ?thesis

unfolding p_circ_def
by (intro winding_number_zero_outside) auto

qed
ultimately show ?thesis

unfolding n_Suc using Suc.hyps pcirc
by (metis add.right_neutral not_in_path_image_join that valid_path_imp_path

winding_number_join)
qed

show f contour_integrable_on (n_circ (Suc k))
unfolding n_Suc

by (rule contour_integrable_joinI [OF pcirc_integrable Suc(8) pcirc(2)
Suc(1)])

show contour_integral (n_circ (Suc k)) f = (Suc k) ∗ contour_integral
p_circ f

by (simp add: Rings.ring_distribs(2) Suc.hyps n_Suc pcirc pcirc_integrable)
qed

have cp[simp]:pathstart cp = p + h p pathfinish cp = p + h p
valid_path cp path_image cp ⊆ S − insert p pts

Residue{_}{\kern 0pt}Theorem.html

Residue_Theorem.thy 410

winding_number cp p = − n∧
p ′. p ′/∈S − pts =⇒ winding_number cp p ′=0 ∧ p ′ /∈ path_image cp

f contour_integrable_on cp
contour_integral cp f = − n ∗ contour_integral p_circ f

proof −
show pathstart cp = p + h p and pathfinish cp = p + h p and valid_path cp

using n_circ unfolding cp_def by auto
next

have sphere p (h p) ⊆ S − insert p pts
using h[rule_format,of p] ‹insert p pts ⊆ S› by force

moreover have p + complex_of_real (h p) ∈ S − insert p pts
using pg(3) pg(4) by (metis pathfinish_in_path_image subsetCE)

ultimately show path_image cp ⊆ S − insert p pts unfolding cp_def
using n_circ(5) by auto

next
show winding_number cp p = − n

unfolding cp_def using winding_number_reversepath n_circ ‹h p>0 ›
by (auto simp: valid_path_imp_path)

next
show winding_number cp p ′=0 ∧ p ′ /∈ path_image cp when p ′/∈S − pts for

p ′

proof −
have winding_number (reversepath (n_circ (nat n))) p ′ = 0

using n_circ that
by (metis add.inverse_neutral valid_path_imp_path winding_number_reversepath)
then show ?thesis

using cp_def n_circ(7) that by force
qed

next
show f contour_integrable_on cp unfolding cp_def

using contour_integrable_reversepath_eq n_circ(1 ,8) by auto
next

show contour_integral cp f = − n ∗ contour_integral p_circ f
unfolding cp_def using contour_integral_reversepath[OF n_circ(1)]

n_circ(9)
by auto

qed
define g ′ where g ′ ≡ g +++ pg +++ cp +++ (reversepath pg)
have contour_integral g ′ f = (

∑
p∈pts. winding_number g ′ p ∗ contour_integral

(circlepath p (h p)) f)
proof (rule 2 .hyps(3)[of S−{p} g ′,OF _ _ ‹finite pts›])

show connected (S − {p} − pts) using connected by (metis Diff_insert2)
show open (S − {p}) using ‹open S› by auto
show pts ⊆ S − {p} using ‹insert p pts ⊆ S› ‹ p /∈ pts› by blast

show f holomorphic_on S − {p} − pts using holo ‹p /∈ pts› by (metis
Diff_insert2)

show valid_path g ′

unfolding g ′_def cp_def using n_circ valid pg g_loop
by (auto intro!:valid_path_join)

Residue{_}{\kern 0pt}Theorem.html

Residue_Theorem.thy 411

show pathfinish g ′ = pathstart g ′

unfolding g ′_def cp_def using pg(2) by simp
show path_image g ′ ⊆ S − {p} − pts

proof −
define s ′ where s ′ ≡ S − {p} − pts
have s ′:s ′ = S−insert p pts unfolding s ′_def by auto
then show ?thesis using path_img pg(4) cp(4)

by (simp add: g ′_def s ′_def subset_path_image_join)
qed

note path_join_imp[simp]
show ∀ z. z /∈ S − {p} −→ winding_number g ′ z = 0

proof clarify
fix z assume z:z /∈S − {p}
have z_notin_cp: z /∈ path_image cp

using cp(6) cp_def n_circ(6) z by auto
have z_notin_pg: z /∈ path_image pg

by (metis Diff_iff Diff_insert2 pg(4) subsetD z)
have winding_number (g +++ pg +++ cp +++ reversepath pg) z =

winding_number g z
+ winding_number (pg +++ cp +++ (reversepath pg)) z

proof (rule winding_number_join)
show path g using ‹valid_path g› by (simp add: valid_path_imp_path)

show z /∈ path_image g using z path_img by auto
show path (pg +++ cp +++ reversepath pg) using pg(3) cp

by (simp add: valid_path_imp_path)
next
have path_image (pg +++ cp +++ reversepath pg) ⊆ S − insert p pts

using pg(4) cp(4) by (auto simp:subset_path_image_join)
then show z /∈ path_image (pg +++ cp +++ reversepath pg) using

z by auto
next
show pathfinish g = pathstart (pg +++ cp +++ reversepath pg) using

g_loop by auto
qed

also have . . . = winding_number g z + (winding_number pg z
+ winding_number (cp +++ (reversepath pg)) z)

proof (subst add_left_cancel,rule winding_number_join)
show path pg and path (cp +++ reversepath pg)
and pathfinish pg = pathstart (cp +++ reversepath pg)
by (auto simp add: valid_path_imp_path)

show z /∈ path_image pg using pg(4) z by blast
show z /∈ path_image (cp +++ reversepath pg) using z
by (metis Diff_iff ‹z /∈ path_image pg› contra_subsetD cp(4) insertI1

not_in_path_image_join path_image_reversepath singletonD)
qed

also have . . . = winding_number g z + (winding_number pg z
+ (winding_number cp z + winding_number (reversepath pg) z))

by (simp add: valid_path_imp_path winding_number_join z_notin_cp
z_notin_pg)

Residue{_}{\kern 0pt}Theorem.html

Residue_Theorem.thy 412

also have . . . = winding_number g z + winding_number cp z
by (simp add: valid_path_imp_path winding_number_reversepath

z_notin_pg)
finally have winding_number g ′ z = winding_number g z + wind-

ing_number cp z
unfolding g ′_def .

moreover have winding_number g z + winding_number cp z = 0
using winding z ‹n=winding_number g p› by auto

ultimately show winding_number g ′ z = 0 unfolding g ′_def by auto
qed

show ∀ pa ∈ S − {p}. 0 < h pa ∧ (∀w∈cball pa (h pa). w ∈ S − {p} ∧ (w
6= pa −→ w /∈ pts))

using h by fastforce
qed

moreover have contour_integral g ′ f = contour_integral g f
− winding_number g p ∗ contour_integral p_circ f

proof −
have ∗: f contour_integrable_on g f contour_integrable_on pg f contour_integrable_on

cp
by (auto simp add: open_Diff [OF ‹open S›,OF finite_imp_closed[OF fin]]

intro!: contour_integrable_holomorphic_simple[OF holo _ _ path_img])
have contour_integral g ′ f = contour_integral g f + contour_integral pg f

+ contour_integral cp f + contour_integral (reversepath pg) f
using ∗ by (simp add: g ′_def contour_integrable_reversepath_eq)

also have . . . = contour_integral g f + contour_integral cp f
using contour_integral_reversepath
by (auto simp add:contour_integrable_reversepath)

also have . . . = contour_integral g f − winding_number g p ∗ contour_integral
p_circ f

using ‹n=winding_number g p› by auto
finally show ?thesis .

qed
moreover have winding_number g ′ p ′ = winding_number g p ′ when p ′∈pts for

p ′

proof −
obtain [simp]: p ′ /∈ path_image g p ′ /∈ path_image pg p ′/∈path_image cp

using 2 .prems(8) that by (metis Diff_iff Diff_insert2 ‹p ′ ∈ pts› cp(4)
pg(4) subsetD)

have winding_number g ′ p ′ = winding_number g p ′ + winding_number pg p ′

+ winding_number (cp +++ reversepath pg) p ′

by (simp add: g ′_def not_in_path_image_join valid_path_imp_path wind-
ing_number_join)

also have . . . = winding_number g p ′ using that
by (simp add: valid_path_imp_path winding_number_join winding_number_reversepath)
finally show ?thesis .

qed
ultimately show ?case unfolding p_circ_def

apply (subst (asm) sum.cong[OF refl,
of pts _ λp. winding_number g p ∗ contour_integral (circlepath p (h p)) f])

Residue{_}{\kern 0pt}Theorem.html

Residue_Theorem.thy 413

by (auto simp: sum.insert[OF ‹finite pts› ‹p/∈pts›] algebra_simps)
qed

lemma Cauchy_theorem_singularities:
assumes open S connected S finite pts and

holo: f holomorphic_on S−pts and
valid_path g and
loop:pathfinish g = pathstart g and
path_image g ⊆ S−pts and
homo:∀ z. (z /∈ S) −→ winding_number g z = 0 and
avoid:∀ p∈S . h p>0 ∧ (∀w∈cball p (h p). w∈S ∧ (w 6=p −→ w /∈ pts))

shows contour_integral g f = (
∑

p∈pts. winding_number g p ∗ contour_integral
(circlepath p (h p)) f)

(is ?L=?R)
proof −

define circ where circ ≡ λp. winding_number g p ∗ contour_integral (circlepath
p (h p)) f

define pts1 where pts1 ≡ pts ∩ S
define pts2 where pts2 ≡ pts − pts1
have pts=pts1 ∪ pts2 pts1 ∩ pts2 = {} pts2 ∩ S={} pts1⊆S

unfolding pts1_def pts2_def by auto
have contour_integral g f = (

∑
p∈pts1 . circ p) unfolding circ_def

proof (rule Cauchy_theorem_aux[OF ‹open S› _ _ ‹pts1⊆S› _ ‹valid_path
g› loop _ homo])

have finite pts1 unfolding pts1_def using ‹finite pts› by auto
then show connected (S − pts1)

using ‹open S› ‹connected S› connected_open_delete_finite[of S] by auto
next

show finite pts1 using ‹pts = pts1 ∪ pts2 › assms(3) by auto
show f holomorphic_on S − pts1 by (metis Diff_Int2 Int_absorb holo

pts1_def)
show path_image g ⊆ S − pts1 using assms(7) pts1_def by auto
show ∀ p∈S . 0 < h p ∧ (∀w∈cball p (h p). w ∈ S ∧ (w 6= p −→ w /∈ pts1))

by (simp add: avoid pts1_def)
qed

moreover have sum circ pts2 = 0
by (metis ‹pts2 ∩ S = {}› circ_def disjoint_iff_not_equal homo mult_zero_left

sum.neutral)
moreover have ?R=sum circ pts1 + sum circ pts2

unfolding circ_def
using sum.union_disjoint[OF _ _ ‹pts1 ∩ pts2 = {}›] ‹finite pts› ‹pts=pts1

∪ pts2 ›
by blast

ultimately show ?thesis
by simp

qed

theorem Residue_theorem:
fixes S pts::complex set and f ::complex ⇒ complex

Residue{_}{\kern 0pt}Theorem.html

Residue_Theorem.thy 414

and g::real ⇒ complex
assumes open S connected S finite pts and

holo:f holomorphic_on S−pts and
valid_path g and
loop:pathfinish g = pathstart g and
path_image g ⊆ S−pts and
homo:∀ z. (z /∈ S) −→ winding_number g z = 0

shows contour_integral g f = 2 ∗ pi ∗ i ∗(
∑

p∈pts. winding_number g p ∗
residue f p)
proof −

define c where c ≡ 2 ∗ pi ∗ i
obtain h where avoid:∀ p∈S . h p>0 ∧ (∀w∈cball p (h p). w∈S ∧ (w 6=p −→ w
/∈ pts))

using finite_cball_avoid[OF ‹open S› ‹finite pts›] by metis
have contour_integral g f

= (
∑

p∈pts. winding_number g p ∗ contour_integral (circlepath p (h p)) f)
using Cauchy_theorem_singularities[OF assms avoid] .

also have . . . = (
∑

p∈pts. c ∗ winding_number g p ∗ residue f p)
proof (intro sum.cong)

show pts = pts by simp
next

fix x assume x ∈ pts
show winding_number g x ∗ contour_integral (circlepath x (h x)) f

= c ∗ winding_number g x ∗ residue f x
proof (cases x∈S)

case False
then have winding_number g x=0 using homo by auto
thus ?thesis by auto

next
case True
have contour_integral (circlepath x (h x)) f = c∗ residue f x

using ‹x∈pts› ‹finite pts› avoid[rule_format, OF True]
apply (intro base_residue[of S−(pts−{x}),THEN contour_integral_unique,folded

c_def])
by (auto intro:holomorphic_on_subset[OF holo] open_Diff [OF ‹open S›

finite_imp_closed])
then show ?thesis by auto

qed
qed

also have . . . = c ∗ (
∑

p∈pts. winding_number g p ∗ residue f p)
by (simp add: sum_distrib_left algebra_simps)

finally show ?thesis unfolding c_def .
qed

8.2 The argument principle
theorem argument_principle:

fixes f ::complex ⇒ complex and poles S :: complex set
defines pz ≡ {w∈S . f w = 0 ∨ w ∈ poles} — pz is the set of poles and zeros

Residue{_}{\kern 0pt}Theorem.html

Residue_Theorem.thy 415

assumes open S connected S and
f_holo:f holomorphic_on S−poles and
h_holo:h holomorphic_on S and
valid_path g and
loop:pathfinish g = pathstart g and
path_img:path_image g ⊆ S − pz and
homo:∀ z. (z /∈ S) −→ winding_number g z = 0 and
finite:finite pz and
poles:∀ p∈S∩poles. is_pole f p

shows contour_integral g (λx. deriv f x ∗ h x / f x) = 2 ∗ pi ∗ i ∗
(
∑

p∈pz. winding_number g p ∗ h p ∗ zorder f p)
(is ?L=?R)

proof −
define c where c ≡ 2 ∗ complex_of_real pi ∗ i
define ff where ff ≡ (λx. deriv f x ∗ h x / f x)
define cont where cont ≡ λff p e. (ff has_contour_integral c ∗ zorder f p ∗ h p

) (circlepath p e)
define avoid where avoid ≡ λp e. ∀w∈cball p e. w ∈ S ∧ (w 6= p −→ w /∈ pz)

have ∃ e>0 . avoid p e ∧ (p∈pz −→ cont ff p e) when p∈S for p
proof −

obtain e1 where e1>0 and e1_avoid:avoid p e1
using finite_cball_avoid[OF ‹open S› finite] ‹p∈S› unfolding avoid_def by

auto
have ∃ e2>0 . cball p e2 ⊆ ball p e1 ∧ cont ff p e2 when p∈pz
proof −

define po where po ≡ zorder f p
define pp where pp ≡ zor_poly f p
define f ′ where f ′ ≡ λw. pp w ∗ (w − p) powi po
define ff ′ where ff ′ ≡ (λx. deriv f ′ x ∗ h x / f ′ x)
obtain r where pp p 6=0 r>0 and

r<e1 and
pp_holo:pp holomorphic_on cball p r and
pp_po:(∀w∈cball p r−{p}. f w = pp w ∗ (w − p) powi po ∧ pp w 6= 0)

proof −
have isolated_singularity_at f p
proof −

have ball p e1 − {p} ⊆ S − poles
using avoid_def e1_avoid pz_def by fastforce

then have f holomorphic_on ball p e1 − {p}
by (intro holomorphic_on_subset[OF f_holo])

then show ?thesis unfolding isolated_singularity_at_def
using ‹e1>0 › analytic_on_open open_delete by blast

qed
moreover have not_essential f p
proof (cases is_pole f p)

case True
then show ?thesis unfolding not_essential_def by auto

next

Residue{_}{\kern 0pt}Theorem.html

Residue_Theorem.thy 416

case False
then have p∈S−poles using ‹p∈S› poles unfolding pz_def by auto
moreover have open (S−poles)
proof −

have closed (S ∩ poles)
using finite by (simp add: pz_def finite_imp_closed rev_finite_subset

subset_eq)
then show ?thesis

by (metis Diff_Compl Diff_Diff_Int Diff_eq ‹open S› open_Diff)
qed
ultimately have isCont f p

using holomorphic_on_imp_continuous_on[OF f_holo] continu-
ous_on_eq_continuous_at

by auto
then show ?thesis unfolding isCont_def not_essential_def by auto

qed
moreover have ∃ F w in at p. f w 6= 0
proof (rule ccontr)

assume ¬ (∃ F w in at p. f w 6= 0)
then have ∀ F w in at p. f w= 0 unfolding frequently_def by auto
then obtain r1 where r1>0 and r1 :∀w∈ball p r1 − {p}. f w =0

unfolding eventually_at by (auto simp add:dist_commute)
obtain r2 where r2>0 and r2 : ball p r2 ⊆ S

using ‹p∈S› ‹open S› openE by blast
define rr where rr=min r1 r2

from r1 r2
have ball p rr − {p} ⊆ {w∈ S ∩ ball p rr−{p}. f w=0}

unfolding rr_def by auto
moreover have infinite (ball p rr − {p})

using ‹r1>0 › ‹r2>0 › finite_imp_not_open
unfolding rr_def by fastforce
ultimately have infinite {w∈S ∩ ball p rr−{p}. f w=0} using infi-

nite_super by blast
then have infinite pz
unfolding pz_def by (smt (verit) infinite_super Collect_mono_iff DiffE

Int_iff)
then show False using ‹finite pz› by auto

qed
ultimately obtain r where pp p 6= 0 and r :r>0 pp holomorphic_on cball

p r
(∀w∈cball p r − {p}. f w = pp w ∗ (w − p) powi po ∧ pp w 6= 0)

using zorder_exist[of f p,folded po_def pp_def] by auto
define r1 where r1=min r e1 / 2
have r1<e1 unfolding r1_def using ‹e1>0 › ‹r>0 › by auto
moreover have r1>0 pp holomorphic_on cball p r1

(∀w∈cball p r1 − {p}. f w = pp w ∗ (w − p) powi po ∧ pp w 6= 0)
unfolding r1_def using ‹e1>0 › r by auto

ultimately show ?thesis using that ‹pp p 6=0 › by auto

Residue{_}{\kern 0pt}Theorem.html

Residue_Theorem.thy 417

qed

define e2 where e2 ≡ r/2
have e2>0 using ‹r>0 › unfolding e2_def by auto
define anal where anal ≡ λw. deriv pp w ∗ h w / pp w
define prin where prin ≡ λw. po ∗ h w / (w − p)
have ((λw. prin w + anal w) has_contour_integral c ∗ po ∗ h p) (circlepath

p e2)
proof (rule has_contour_integral_add[of _ _ _ _ 0 ,simplified])

have ball p r ⊆ S
using ‹r<e1 › avoid_def ball_subset_cball e1_avoid by (simp add:

subset_eq)
then have cball p e2 ⊆ S

using ‹r>0 › unfolding e2_def by auto
then have (λw. po ∗ h w) holomorphic_on cball p e2

using h_holo by (auto intro!: holomorphic_intros)
then show (prin has_contour_integral c ∗ po ∗ h p) (circlepath p e2)

using Cauchy_integral_circlepath_simple[folded c_def , of λw. po ∗ h w]
‹e2>0 ›

unfolding prin_def by (auto simp add: mult.assoc)
have anal holomorphic_on ball p r unfolding anal_def

using pp_holo h_holo pp_po ‹ball p r ⊆ S› ‹pp p 6=0 ›
by (auto intro!: holomorphic_intros)

then show (anal has_contour_integral 0) (circlepath p e2)
using e2_def ‹r>0 ›
by (auto elim!: Cauchy_theorem_disc_simple)

qed
then have cont ff ′ p e2 unfolding cont_def po_def
proof (elim has_contour_integral_eq)

fix w assume w ∈ path_image (circlepath p e2)
then have w∈ball p r and w 6=p unfolding e2_def using ‹r>0 › by auto
define wp where wp ≡ w−p
have wp 6=0 and pp w 6=0

unfolding wp_def using ‹w 6=p› ‹w∈ball p r› pp_po by auto
moreover have der_f ′:deriv f ′ w = po ∗ pp w ∗ (w−p) powi (po − 1) +

deriv pp w ∗ (w−p) powi po
proof (rule DERIV_imp_deriv)

have (pp has_field_derivative (deriv pp w)) (at w)
using DERIV_deriv_iff_has_field_derivative pp_holo ‹w 6=p›

by (meson open_ball ‹w ∈ ball p r› ball_subset_cball holomorphic_derivI
holomorphic_on_subset)

then show (f ′ has_field_derivative of_int po ∗ pp w ∗ (w − p) powi (po
− 1)

+ deriv pp w ∗ (w − p) powi po) (at w)
unfolding f ′_def using ‹w 6=p›

by (auto intro!: derivative_eq_intros DERIV_cong[OF has_field_derivative_powr_of_int])
qed
ultimately show prin w + anal w = ff ′ w

unfolding f ′_def ff ′_def prin_def anal_def

Residue{_}{\kern 0pt}Theorem.html

Residue_Theorem.thy 418

apply (simp add: field_simps flip: wp_def)
by (metis (no_types, lifting) mult.commute power_int_minus_mult)

qed
then have cont ff p e2 unfolding cont_def
proof (elim has_contour_integral_eq)

fix w assume w ∈ path_image (circlepath p e2)
then have w∈ball p r and w 6=p unfolding e2_def using ‹r>0 › by auto
have deriv f ′ w = deriv f w
proof (rule complex_derivative_transform_within_open[where s=ball p r

− {p}])
show f ′ holomorphic_on ball p r − {p} unfolding f ′_def using pp_holo

by (auto intro!: holomorphic_intros)
next

have ball p e1 − {p} ⊆ S − poles
using ball_subset_cball e1_avoid[unfolded avoid_def] unfolding pz_def
by auto

then have ball p r − {p} ⊆ S − poles
using ‹r<e1 › by force

then show f holomorphic_on ball p r − {p} using f_holo
by auto

next
show open (ball p r − {p}) by auto
show w ∈ ball p r − {p} using ‹w∈ball p r› ‹w 6=p› by auto

next
fix x assume x ∈ ball p r − {p}
then show f ′ x = f x

using pp_po unfolding f ′_def by auto
qed
moreover have f ′ w = f w

using ‹w ∈ ball p r› ball_subset_cball subset_iff pp_po ‹w 6=p›
unfolding f ′_def by auto

ultimately show ff ′ w = ff w
unfolding ff ′_def ff_def by simp

qed
moreover have cball p e2 ⊆ ball p e1

using ‹0 < r› ‹r<e1 › e2_def by auto
ultimately show ?thesis using ‹e2>0 › by auto

qed
then obtain e2 where e2 :p∈pz −→ e2>0 ∧ cball p e2 ⊆ ball p e1 ∧ cont ff

p e2
by auto

define e4 where e4 ≡ if p∈pz then e2 else e1
have e4>0 using e2 ‹e1>0 › unfolding e4_def by auto
moreover have avoid p e4 using e2 ‹e1>0 › e1_avoid unfolding e4_def

avoid_def by auto
moreover have p∈pz −→ cont ff p e4

by (auto simp add: e2 e4_def)
ultimately show ?thesis by auto

qed

Residue{_}{\kern 0pt}Theorem.html

Residue_Theorem.thy 419

then obtain get_e where get_e:∀ p∈S . get_e p>0 ∧ avoid p (get_e p)
∧ (p∈pz −→ cont ff p (get_e p))

by metis
define ci where ci ≡ λp. contour_integral (circlepath p (get_e p)) ff
define w where w ≡ λp. winding_number g p
have contour_integral g ff = (

∑
p∈pz. w p ∗ ci p) unfolding ci_def w_def

proof (rule Cauchy_theorem_singularities[OF ‹open S› ‹connected S› finite _
‹valid_path g› loop

path_img homo])
have open (S − pz) using open_Diff [OF _ finite_imp_closed[OF finite]] ‹open

S› by auto
then show ff holomorphic_on S − pz unfolding ff_def using f_holo h_holo

by (auto intro!: holomorphic_intros simp add:pz_def)
next

show ∀ p∈S . 0 < get_e p ∧ (∀w∈cball p (get_e p). w ∈ S ∧ (w 6= p −→ w /∈
pz))

using get_e using avoid_def by blast
qed
also have . . . = (

∑
p∈pz. c ∗ w p ∗ h p ∗ zorder f p)

proof (rule sum.cong[of pz pz,simplified])
fix p assume p ∈ pz
show w p ∗ ci p = c ∗ w p ∗ h p ∗ (zorder f p)
proof (cases p∈S)

assume p ∈ S
have ci p = c ∗ h p ∗ (zorder f p)

unfolding ci_def
using ‹p ∈ S› ‹p ∈ pz› cont_def contour_integral_unique get_e by fastforce
thus ?thesis by auto

next
assume p/∈S
then have w p=0 using homo unfolding w_def by auto
then show ?thesis by auto

qed
qed
also have . . . = c∗(

∑
p∈pz. w p ∗ h p ∗ zorder f p)

unfolding sum_distrib_left by (simp add:algebra_simps)
finally have contour_integral g ff = c ∗ (

∑
p∈pz. w p ∗ h p ∗ of_int (zorder f

p)) .
then show ?thesis unfolding ff_def c_def w_def by simp

qed

8.3 Coefficient asymptotics for generating functions

For a formal power series that has a meromorphic continuation on some disc
in the context plane, we can use the Residue Theorem to extract precise
asymptotic information from the residues at the poles. This can be used
to derive the asymptotic behaviour of the coefficients (an ∼ . . .). If the
function is meromorphic on the entire complex plane, one can even derive a

Residue{_}{\kern 0pt}Theorem.html

Residue_Theorem.thy 420

full asymptotic expansion.
We will first show the relationship between the coefficients and the sum over
the residues with an explicit remainder term (the contour integral along the
circle used in the Residue theorem).
theorem

fixes f :: complex ⇒ complex and n :: nat and r :: real
defines g ≡ (λw. f w / w ^ Suc n) and γ ≡ circlepath 0 r
assumes open A connected A cball 0 r ⊆ A r > 0
assumes f holomorphic_on A − S S ⊆ ball 0 r finite S 0 /∈ S
shows fps_coeff_conv_residues:

(deriv ^^ n) f 0 / fact n =
contour_integral γ g / (2 ∗ pi ∗ i) − (

∑
z∈S . residue g z) (is ?thesis1)

and fps_coeff_residues_bound:
(
∧

z. norm z = r =⇒ z /∈ k =⇒ norm (f z) ≤ C) =⇒ C ≥ 0 =⇒ finite
k =⇒

norm ((deriv ^^ n) f 0 / fact n + (
∑

z∈S . residue g z)) ≤ C / r ^ n
proof −

have holo: g holomorphic_on A − insert 0 S
unfolding g_def using assms by (auto intro!: holomorphic_intros)

have contour_integral γ g = 2 ∗ pi ∗ i ∗ (
∑

z∈insert 0 S . winding_number γ
z ∗ residue g z)

proof (rule Residue_theorem)
show g holomorphic_on A − insert 0 S by fact
from assms show ∀ z. z /∈ A −→ winding_number γ z = 0

unfolding γ_def by (intro allI impI winding_number_zero_outside[of _
cball 0 r]) auto

qed (insert assms, auto simp: γ_def)
also have winding_number γ z = 1 if z ∈ insert 0 S for z
unfolding γ_def using assms that by (intro winding_number_circlepath) auto

hence (
∑

z∈insert 0 S . winding_number γ z ∗ residue g z) = (
∑

z∈insert 0 S .
residue g z)

by (intro sum.cong) simp_all
also have . . . = residue g 0 + (

∑
z∈S . residue g z)

using ‹0 /∈ S› and ‹finite S› by (subst sum.insert) auto
also from ‹r > 0 › have 0 ∈ cball 0 r by simp
with assms have 0 ∈ A − S by blast
with assms have residue g 0 = (deriv ^^ n) f 0 / fact n

unfolding g_def by (subst residue_holomorphic_over_power ′[of A − S])
(auto simp: finite_imp_closed)

finally show ?thesis1
by (simp add: field_simps)

assume C :
∧

z. norm z = r =⇒ z /∈ k =⇒ norm (f z) ≤ C C ≥ 0 and k: finite
k

have (deriv ^^ n) f 0 / fact n + (
∑

z∈S . residue g z) = contour_integral γ g /
(2 ∗ pi ∗ i)

using ‹?thesis1 › by (simp add: algebra_simps)
also have norm . . . = norm (contour_integral γ g) / (2 ∗ pi)

Residue{_}{\kern 0pt}Theorem.html

Residue_Theorem.thy 421

by (simp add: norm_divide norm_mult)
also have norm (contour_integral γ g) ≤ C / r ^ Suc n ∗ (2 ∗ pi ∗ r)
proof (rule has_contour_integral_bound_circlepath_strong)

from ‹open A› and ‹finite S› have open (A − insert 0 S)
by (blast intro: finite_imp_closed)

with assms show (g has_contour_integral contour_integral γ g) (circlepath 0
r)

unfolding γ_def
by (intro has_contour_integral_integral contour_integrable_holomorphic_simple

[OF holo]) auto
next

fix z assume z: norm (z − 0) = r z /∈ k
hence norm (g z) = norm (f z) / r ^ Suc n

by (simp add: norm_divide g_def norm_mult norm_power)
also have . . . ≤ C / r ^ Suc n

using k and ‹r > 0 › and z by (intro divide_right_mono C zero_le_power)
auto

finally show norm (g z) ≤ C / r ^ Suc n .
qed (insert C (2) k ‹r > 0 ›, auto)
also from ‹r > 0 › have C / r ^ Suc n ∗ (2 ∗ pi ∗ r) / (2 ∗ pi) = C / r ^ n

by simp
finally show norm ((deriv ^^ n) f 0 / fact n + (

∑
z∈S . residue g z)) ≤ . . .

by − (simp_all add: divide_right_mono)
qed

Since the circle is fixed, we can get an upper bound on the values of the
generating function on the circle and therefore show that the integral is
O(r−n).
corollary fps_coeff_residues_bigo:

fixes f :: complex ⇒ complex and r :: real
assumes open A connected A cball 0 r ⊆ A r > 0
assumes f holomorphic_on A − S S ⊆ ball 0 r finite S 0 /∈ S
assumes g: eventually (λn. g n = −(

∑
z∈S . residue (λz. f z / z ^ Suc n) z))

sequentially
(is eventually (λn. _ = −?g ′ n) _)

shows (λn. (deriv ^^ n) f 0 / fact n − g n) ∈ O(λn. 1 / r ^ n) (is (λn. ?c n
− _) ∈ O(_))
proof −

from assms have compact (f ‘ sphere 0 r)
by (intro compact_continuous_image holomorphic_on_imp_continuous_on

holomorphic_on_subset[OF ‹f holomorphic_on A − S›]) auto
hence bounded (f ‘ sphere 0 r) by (rule compact_imp_bounded)
then obtain C where C :

∧
z. z ∈ sphere 0 r =⇒ norm (f z) ≤ C

by (auto simp: bounded_iff sphere_def)
have 0 ≤ norm (f (of_real r)) by simp
also from C [of of_real r] and ‹r > 0 › have . . . ≤ C by simp
finally have C_nonneg: C ≥ 0 .

have (λn. ?c n + ?g ′ n) ∈ O(λn. of_real (1 / r ^ n))

Residue{_}{\kern 0pt}Theorem.html

Residue_Theorem.thy 422

proof (intro bigoI [of _ C] always_eventually allI)
fix n :: nat
from assms and C and C_nonneg have norm (?c n + ?g ′ n) ≤ C / r ^ n

by (intro fps_coeff_residues_bound[where A = A and k = {}]) auto
also have . . . = C ∗ norm (complex_of_real (1 / r ^ n))

using ‹r > 0 › by (simp add: norm_divide norm_power)
finally show norm (?c n + ?g ′ n) ≤

qed
also have ?this ←→ (λn. ?c n − g n) ∈ O(λn. of_real (1 / r ^ n))

by (intro landau_o.big.in_cong eventually_mono[OF g]) simp_all
finally show ?thesis .

qed

corollary fps_coeff_residues_bigo ′:
fixes f :: complex ⇒ complex and r :: real
assumes exp: f has_fps_expansion F
assumes open A connected A cball 0 r ⊆ A r > 0
assumes f holomorphic_on A − S S ⊆ ball 0 r finite S 0 /∈ S
assumes eventually (λn. g n = −(

∑
z∈S . residue (λz. f z / z ^ Suc n) z))

sequentially
(is eventually (λn. _ = −?g ′ n) _)

shows (λn. fps_nth F n − g n) ∈ O(λn. 1 / r ^ n) (is (λn. ?c n − _) ∈
O(_))
proof −

have fps_nth F = (λn. (deriv ^^ n) f 0 / fact n)
using fps_nth_fps_expansion[OF exp] by (intro ext) simp_all

with fps_coeff_residues_bigo[OF assms(2−)] show ?thesis by simp
qed

8.4 Rouche’s theorem
theorem Rouche_theorem:

fixes f g::complex ⇒ complex and s:: complex set
defines fg≡(λp. f p + g p)
defines zeros_fg≡{p∈s. fg p = 0} and zeros_f≡{p∈s. f p = 0}
assumes

open s and connected s and
finite zeros_fg and
finite zeros_f and
f_holo:f holomorphic_on s and
g_holo:g holomorphic_on s and
valid_path γ and
loop:pathfinish γ = pathstart γ and
path_img:path_image γ ⊆ s and
path_less:∀ z∈path_image γ. cmod(f z) > cmod(g z) and
homo:∀ z. (z /∈ s) −→ winding_number γ z = 0

shows (
∑

p∈zeros_fg. winding_number γ p ∗ zorder fg p)
= (

∑
p∈zeros_f . winding_number γ p ∗ zorder f p)

proof −

Residue{_}{\kern 0pt}Theorem.html

Residue_Theorem.thy 423

have path_fg:path_image γ ⊆ s − zeros_fg
proof −

have False when z∈path_image γ and f z + g z=0 for z
proof −

have cmod (f z) > cmod (g z) using ‹z∈path_image γ› path_less by auto
moreover have f z = − g z using ‹f z + g z =0 › by (simp add:

eq_neg_iff_add_eq_0)
then have cmod (f z) = cmod (g z) by auto
ultimately show False by auto

qed
then show ?thesis unfolding zeros_fg_def fg_def using path_img by auto

qed
have path_f :path_image γ ⊆ s − zeros_f
proof −

have False when z∈path_image γ and f z =0 for z
proof −

have cmod (g z) < cmod (f z) using ‹z∈path_image γ› path_less by auto
then have cmod (g z) < 0 using ‹f z=0 › by auto
then show False by auto

qed
then show ?thesis unfolding zeros_f_def using path_img by auto

qed
define w where w ≡ λp. winding_number γ p
define c where c ≡ 2 ∗ complex_of_real pi ∗ i
define h where h ≡ λp. g p / f p + 1
obtain spikes

where finite spikes and spikes: ∀ x∈{0 ..1} − spikes. γ differentiable at x
using ‹valid_path γ›

by (auto simp: valid_path_def piecewise_C1_differentiable_on_def C1_differentiable_on_eq)
have h_contour :((λx. deriv h x / h x) has_contour_integral 0) γ
proof −

have outside_img:0 ∈ outside (path_image (h o γ))
proof −

have h p ∈ ball 1 1 when p∈path_image γ for p
proof −

have cmod (g p/f p) <1
by (smt (verit) divide_less_eq_1_pos norm_divide norm_ge_zero

path_less that)
then show ?thesis

unfolding h_def by (auto simp add:dist_complex_def)
qed
then have path_image (h o γ) ⊆ ball 1 1

by (simp add: image_subset_iff path_image_compose)
moreover have (0 ::complex) /∈ ball 1 1 by (simp add: dist_norm)
ultimately show ?thesis

using convex_in_outside[of ball 1 1 0] outside_mono by blast
qed
have valid_h:valid_path (h ◦ γ)

proof (rule valid_path_compose_holomorphic[OF ‹valid_path γ› _ _ path_f])

Residue{_}{\kern 0pt}Theorem.html

Residue_Theorem.thy 424

show h holomorphic_on s − zeros_f
unfolding h_def using f_holo g_holo
by (auto intro!: holomorphic_intros simp add:zeros_f_def)

next
show open (s − zeros_f) using ‹finite zeros_f › ‹open s› finite_imp_closed

by auto
qed
have ((λz. 1/z) has_contour_integral 0) (h ◦ γ)
proof −
have 0 /∈ path_image (h ◦ γ) using outside_img by (simp add: outside_def)
then have ((λz. 1/z) has_contour_integral c ∗ winding_number (h ◦ γ) 0)

(h ◦ γ)
using has_contour_integral_winding_number [of h o γ 0 ,simplified] valid_h
unfolding c_def by auto

moreover have winding_number (h o γ) 0 = 0
proof −

have 0 ∈ outside (path_image (h ◦ γ)) using outside_img .
moreover have path (h o γ)

using valid_h by (simp add: valid_path_imp_path)
moreover have pathfinish (h o γ) = pathstart (h o γ)

by (simp add: loop pathfinish_compose pathstart_compose)
ultimately show ?thesis using winding_number_zero_in_outside by auto

qed
ultimately show ?thesis by auto

qed
moreover have vector_derivative (h ◦ γ) (at x) = vector_derivative γ (at x)

∗ deriv h (γ x)
when x∈{0 ..1} − spikes for x

proof (rule vector_derivative_chain_at_general)
show γ differentiable at x using that ‹valid_path γ› spikes by auto

next
define der where der ≡ λp. (deriv g p ∗ f p − g p ∗ deriv f p)/(f p ∗ f p)
define t where t ≡ γ x
have f t 6=0 unfolding zeros_f_def t_def

by (metis DiffD1 image_eqI norm_not_less_zero norm_zero path_defs(4)
path_less that)

moreover have t∈s
using contra_subsetD path_image_def path_fg t_def that by fastforce

ultimately have (h has_field_derivative der t) (at t)
unfolding h_def der_def using g_holo f_holo ‹open s›
by (auto intro!: holomorphic_derivI derivative_eq_intros)

then show h field_differentiable at (γ x)
unfolding t_def field_differentiable_def by blast

qed
then have ((/) 1 has_contour_integral 0) (h ◦ γ)

= ((λx. deriv h x / h x) has_contour_integral 0) γ
unfolding has_contour_integral

by (force intro!: has_integral_spike_eq[OF negligible_finite, OF ‹finite spikes›])
ultimately show ?thesis by auto

Residue{_}{\kern 0pt}Theorem.html

Residue_Theorem.thy 425

qed
then have contour_integral γ (λx. deriv h x / h x) = 0

using contour_integral_unique by simp
moreover have contour_integral γ (λx. deriv fg x / fg x) = contour_integral γ

(λx. deriv f x / f x)
+ contour_integral γ (λp. deriv h p / h p)

proof −
have (λp. deriv f p / f p) contour_integrable_on γ
proof (rule contour_integrable_holomorphic_simple[OF _ _ ‹valid_path γ›

path_f])
show open (s − zeros_f)

using finite_imp_closed[OF ‹finite zeros_f ›] ‹open s› by auto
then show (λp. deriv f p / f p) holomorphic_on s − zeros_f

using f_holo
by (auto intro!: holomorphic_intros simp add:zeros_f_def)

qed
moreover have (λp. deriv h p / h p) contour_integrable_on γ

using h_contour
by (simp add: has_contour_integral_integrable)

ultimately have contour_integral γ (λx. deriv f x / f x + deriv h x / h x) =
contour_integral γ (λp. deriv f p / f p) + contour_integral γ

(λp. deriv h p / h p)
using contour_integral_add[of (λp. deriv f p / f p) γ (λp. deriv h p / h p)]
by auto

moreover have deriv fg p / fg p = deriv f p / f p + deriv h p / h p
when p∈ path_image γ for p

proof −
have fg p 6= 0 and f p 6= 0

using path_f path_fg that unfolding zeros_f_def zeros_fg_def by auto
have h p 6= 0
proof (rule ccontr)

assume ¬ h p 6= 0
then have cmod (g p/f p) = 1

by (simp add: add_eq_0_iff2 h_def)
then show False

by (smt (verit) divide_eq_1_iff norm_divide path_less that)
qed
have der_fg:deriv fg p = deriv f p + deriv g p unfolding fg_def

using f_holo g_holo holomorphic_on_imp_differentiable_at[OF _ ‹open
s›] path_img that

by auto
have der_h:deriv h p = (deriv g p ∗ f p − g p ∗ deriv f p)/(f p ∗ f p)
proof −

define der where der ≡ λp. (deriv g p ∗ f p − g p ∗ deriv f p)/(f p ∗ f p)
have p∈s using path_img that by auto
then have (h has_field_derivative der p) (at p)

unfolding h_def der_def using g_holo f_holo ‹open s› ‹f p 6=0 ›
by (auto intro!: derivative_eq_intros holomorphic_derivI)

then show ?thesis unfolding der_def using DERIV_imp_deriv by auto

Residue{_}{\kern 0pt}Theorem.html

Laurent_Convergence.thy 426

qed
show ?thesis

using ‹h p 6=0 › ‹f p 6=0 › ‹fg p 6=0 ›
unfolding der_fg der_h
apply (simp add: divide_simps h_def fg_def)

by (simp add: mult.commute mult.left_commute ring_class.ring_distribs(1))
qed
then have contour_integral γ (λp. deriv fg p / fg p)

= contour_integral γ (λp. deriv f p / f p + deriv h p / h p)
by (elim contour_integral_eq)

ultimately show ?thesis by auto
qed
moreover have contour_integral γ (λx. deriv fg x / fg x) = c ∗ (

∑
p∈zeros_fg.

w p ∗ zorder fg p)
proof −

have fg holomorphic_on s
unfolding fg_def using f_holo g_holo holomorphic_on_add by auto

moreover
have path_image γ ⊆ s − {p∈s. fg p = 0}

using path_fg unfolding zeros_fg_def .
moreover
have finite {p∈s. fg p = 0}

using ‹finite zeros_fg› unfolding zeros_fg_def .
ultimately show ?thesis

unfolding c_def zeros_fg_def w_def
using argument_principle[OF ‹open s› ‹connected s› _ _ ‹valid_path γ› loop

_ homo, of _ {} λ_. 1]
by simp

qed
moreover have contour_integral γ (λx. deriv f x / f x) = c ∗ (

∑
p∈zeros_f . w

p ∗ zorder f p)
unfolding c_def zeros_f_def w_def

proof (rule argument_principle[OF ‹open s› ‹connected s› _ _ ‹valid_path γ›
loop _ homo

, of _ {} λ_. 1 ,simplified])
show f holomorphic_on s

using f_holo g_holo holomorphic_on_add by auto
show path_image γ ⊆ s − {p∈s. f p = 0}

using path_f unfolding zeros_f_def .
show finite {p∈s. f p = 0}

using ‹finite zeros_f › unfolding zeros_f_def .
qed
ultimately have c∗ (

∑
p∈zeros_fg. w p ∗ (zorder fg p)) = c∗ (

∑
p∈zeros_f .

w p ∗ (zorder f p))
by auto

then show ?thesis unfolding c_def using w_def by auto
qed

end

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 427

theory Laurent_Convergence
imports HOL−Computational_Algebra.Formal_Laurent_Series HOL−Library.Landau_Symbols

Residue_Theorem

begin

definition fls_conv_radius :: complex fls ⇒ ereal where
fls_conv_radius f = fps_conv_radius (fls_regpart f)

definition eval_fls :: complex fls ⇒ complex ⇒ complex where
eval_fls F z = eval_fps (fls_base_factor_to_fps F) z ∗ z powi fls_subdegree F

definition
has_laurent_expansion :: (complex ⇒ complex) ⇒ complex fls ⇒ bool
(infixl ‹has ′_laurent ′_expansion› 60)
where (f has_laurent_expansion F) ←→

fls_conv_radius F > 0 ∧ eventually (λz. eval_fls F z = f z) (at 0)

lemma has_laurent_expansion_schematicI :
f has_laurent_expansion F =⇒ F = G =⇒ f has_laurent_expansion G
by simp

lemma has_laurent_expansion_cong:
assumes eventually (λx. f x = g x) (at 0) F = G
shows (f has_laurent_expansion F) ←→ (g has_laurent_expansion G)

proof −
have eventually (λz. eval_fls F z = g z) (at 0)

if eventually (λz. eval_fls F z = f z) (at 0) eventually (λx. f x = g x) (at 0)
for f g

using that by eventually_elim auto
from this[of f g] this[of g f] show ?thesis

using assms by (auto simp: eq_commute has_laurent_expansion_def)
qed

lemma has_laurent_expansion_cong ′:
assumes eventually (λx. f x = g x) (at z) F = G z = z ′

shows ((λx. f (z + x)) has_laurent_expansion F) ←→ ((λx. g (z ′ + x))
has_laurent_expansion G)

by (intro has_laurent_expansion_cong)
(use assms in ‹auto simp: at_to_0 ′ eventually_filtermap add_ac›)

lemma fls_conv_radius_altdef :
fls_conv_radius F = fps_conv_radius (fls_base_factor_to_fps F)

proof −
have conv_radius (λn. fls_nth F (int n)) = conv_radius (λn. fls_nth F (int n

+ fls_subdegree F))
proof (cases fls_subdegree F ≥ 0)

case True

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 428

hence conv_radius (λn. fls_nth F (int n + fls_subdegree F)) =
conv_radius (λn. fls_nth F (int (n + nat (fls_subdegree F))))

by auto
thus ?thesis

by (subst (asm) conv_radius_shift) auto
next

case False
hence conv_radius (λn. fls_nth F (int n)) =

conv_radius (λn. fls_nth F (fls_subdegree F + int (n + nat (−fls_subdegree
F))))

by auto
thus ?thesis

by (subst (asm) conv_radius_shift) (auto simp: add_ac)
qed
thus ?thesis

by (simp add: fls_conv_radius_def fps_conv_radius_def)
qed

lemma eval_fps_of_nat [simp]: eval_fps (of_nat n) z = of_nat n
and eval_fps_of_int [simp]: eval_fps (of_int m) z = of_int m
by (simp_all flip: fps_of_nat fps_of_int)

lemma fps_conv_radius_of_nat [simp]: fps_conv_radius (of_nat n) = ∞
and fps_conv_radius_of_int [simp]: fps_conv_radius (of_int m) = ∞
by (simp_all flip: fps_of_nat fps_of_int)

lemma fps_conv_radius_fls_regpart: fps_conv_radius (fls_regpart F) = fls_conv_radius
F

by (simp add: fls_conv_radius_def)

lemma fls_conv_radius_0 [simp]: fls_conv_radius 0 = ∞
and fls_conv_radius_1 [simp]: fls_conv_radius 1 = ∞
and fls_conv_radius_const [simp]: fls_conv_radius (fls_const c) = ∞
and fls_conv_radius_numeral [simp]: fls_conv_radius (numeral num) = ∞
and fls_conv_radius_of_nat [simp]: fls_conv_radius (of_nat n) = ∞
and fls_conv_radius_of_int [simp]: fls_conv_radius (of_int m) = ∞
and fls_conv_radius_X [simp]: fls_conv_radius fls_X = ∞
and fls_conv_radius_X_inv [simp]: fls_conv_radius fls_X_inv = ∞
and fls_conv_radius_X_intpow [simp]: fls_conv_radius (fls_X_intpow m) =
∞

by (simp_all add: fls_conv_radius_def fls_X_intpow_regpart)

lemma fls_conv_radius_shift [simp]: fls_conv_radius (fls_shift n F) = fls_conv_radius
F
unfolding fls_conv_radius_altdef by (subst fls_base_factor_to_fps_shift) (rule

refl)

lemma fls_conv_radius_fps_to_fls [simp]: fls_conv_radius (fps_to_fls F) = fps_conv_radius
F

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 429

by (simp add: fls_conv_radius_def)

lemma fls_conv_radius_deriv [simp]: fls_conv_radius (fls_deriv F) ≥ fls_conv_radius
F
proof −

have fls_conv_radius (fls_deriv F) = fps_conv_radius (fls_regpart (fls_deriv
F))

by (simp add: fls_conv_radius_def)
also have fls_regpart (fls_deriv F) = fps_deriv (fls_regpart F)

by (intro fps_ext) (auto simp: add_ac)
also have fps_conv_radius . . . ≥ fls_conv_radius F

by (simp add: fls_conv_radius_def fps_conv_radius_deriv)
finally show ?thesis .

qed

lemma fls_conv_radius_uminus [simp]: fls_conv_radius (−F) = fls_conv_radius
F

by (simp add: fls_conv_radius_def)

lemma fls_conv_radius_add: fls_conv_radius (F + G) ≥ min (fls_conv_radius
F) (fls_conv_radius G)

by (simp add: fls_conv_radius_def fps_conv_radius_add)

lemma fls_conv_radius_diff : fls_conv_radius (F − G) ≥ min (fls_conv_radius
F) (fls_conv_radius G)

by (simp add: fls_conv_radius_def fps_conv_radius_diff)

lemma fls_conv_radius_mult: fls_conv_radius (F ∗ G) ≥ min (fls_conv_radius
F) (fls_conv_radius G)
proof (cases F = 0 ∨ G = 0)

case False
hence [simp]: F 6= 0 G 6= 0

by auto
have fls_conv_radius (F ∗ G) = fps_conv_radius (fls_regpart (fls_shift (fls_subdegree

F + fls_subdegree G) (F ∗ G)))
by (simp add: fls_conv_radius_altdef)

also have fls_regpart (fls_shift (fls_subdegree F + fls_subdegree G) (F ∗ G))
=

fls_base_factor_to_fps F ∗ fls_base_factor_to_fps G
by (simp add: fls_times_def)

also have fps_conv_radius . . . ≥ min (fls_conv_radius F) (fls_conv_radius G)
unfolding fls_conv_radius_altdef by (rule fps_conv_radius_mult)

finally show ?thesis .
qed auto

lemma fps_conv_radius_add_ge:
fps_conv_radius F ≥ r =⇒ fps_conv_radius G ≥ r =⇒ fps_conv_radius (F +

G) ≥ r
using fps_conv_radius_add[of F G] by (simp add: min_def split: if_splits)

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 430

lemma fps_conv_radius_diff_ge:
fps_conv_radius F ≥ r =⇒ fps_conv_radius G ≥ r =⇒ fps_conv_radius (F −

G) ≥ r
using fps_conv_radius_diff [of F G] by (simp add: min_def split: if_splits)

lemma fps_conv_radius_mult_ge:
fps_conv_radius F ≥ r =⇒ fps_conv_radius G ≥ r =⇒ fps_conv_radius (F ∗

G) ≥ r
using fps_conv_radius_mult[of F G] by (simp add: min_def split: if_splits)

lemma fls_conv_radius_add_ge:
fls_conv_radius F ≥ r =⇒ fls_conv_radius G ≥ r =⇒ fls_conv_radius (F +

G) ≥ r
using fls_conv_radius_add[of F G] by (simp add: min_def split: if_splits)

lemma fls_conv_radius_diff_ge:
fls_conv_radius F ≥ r =⇒ fls_conv_radius G ≥ r =⇒ fls_conv_radius (F −

G) ≥ r
using fls_conv_radius_diff [of F G] by (simp add: min_def split: if_splits)

lemma fls_conv_radius_mult_ge:
fls_conv_radius F ≥ r =⇒ fls_conv_radius G ≥ r =⇒ fls_conv_radius (F ∗

G) ≥ r
using fls_conv_radius_mult[of F G] by (simp add: min_def split: if_splits)

lemma fls_conv_radius_power : fls_conv_radius (F ^ n) ≥ fls_conv_radius F
by (induction n) (auto intro!: fls_conv_radius_mult_ge)

lemma eval_fls_0 [simp]: eval_fls 0 z = 0
and eval_fls_1 [simp]: eval_fls 1 z = 1
and eval_fls_const [simp]: eval_fls (fls_const c) z = c
and eval_fls_numeral [simp]: eval_fls (numeral num) z = numeral num
and eval_fls_of_nat [simp]: eval_fls (of_nat n) z = of_nat n
and eval_fls_of_int [simp]: eval_fls (of_int m) z = of_int m
and eval_fls_X [simp]: eval_fls fls_X z = z
and eval_fls_X_intpow [simp]: eval_fls (fls_X_intpow m) z = z powi m
by (simp_all add: eval_fls_def)

lemma eval_fls_at_0 : eval_fls F 0 = (if fls_subdegree F ≥ 0 then fls_nth F 0
else 0)

by (cases fls_subdegree F = 0)
(simp_all add: eval_fls_def fls_regpart_def eval_fps_at_0)

lemma eval_fps_to_fls:
assumes norm z < fps_conv_radius F
shows eval_fls (fps_to_fls F) z = eval_fps F z

proof (cases F = 0)
case [simp]: False

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 431

have eval_fps F z = eval_fps (unit_factor F ∗ normalize F) z
by (metis unit_factor_mult_normalize)

also have . . . = eval_fps (unit_factor F ∗ fps_X ^ subdegree F) z
by simp

also have . . . = eval_fps (unit_factor F) z ∗ z ^ subdegree F
using assms by (subst eval_fps_mult) auto

also have . . . = eval_fls (fps_to_fls F) z
unfolding eval_fls_def fls_base_factor_to_fps_to_fls fls_subdegree_fls_to_fps

power_int_of_nat ..
finally show ?thesis ..

qed auto

lemma eval_fls_shift:
assumes [simp]: z 6= 0
shows eval_fls (fls_shift n F) z = eval_fls F z ∗ z powi −n

proof (cases F = 0)
case [simp]: False
show ?thesis
unfolding eval_fls_def
by (subst fls_base_factor_to_fps_shift, subst fls_shift_subdegree[OF ‹F 6= 0 ›],

subst power_int_diff)
(auto simp: power_int_minus divide_simps)

qed auto

lemma eval_fls_add:
assumes ereal (norm z) < fls_conv_radius F ereal (norm z) < fls_conv_radius

G z 6= 0
shows eval_fls (F + G) z = eval_fls F z + eval_fls G z
using assms

proof (induction fls_subdegree F fls_subdegree G arbitrary: F G rule: linorder_wlog)
case (sym F G)
show ?case

using sym(1)[of G F] sym(2−) by (simp add: add_ac)
next

case (le F G)
show ?case
proof (cases F = 0 ∨ G = 0)

case False
hence [simp]: F 6= 0 G 6= 0

by auto
note [simp] = ‹z 6= 0 ›

define F ′ G ′ where F ′= fls_base_factor_to_fps F G ′= fls_base_factor_to_fps
G

define m n where m = fls_subdegree F n = fls_subdegree G
have m ≤ n

using le by (auto simp: m_n_def)
have conv1 : ereal (cmod z) < fps_conv_radius F ′ ereal (cmod z) < fps_conv_radius

G ′

using assms le by (simp_all add: F ′_G ′_def fls_conv_radius_altdef)

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 432

have conv2 : ereal (cmod z) < fps_conv_radius (G ′ ∗ fps_X ^ nat (n − m))
using conv1 by (intro less_le_trans[OF _ fps_conv_radius_mult]) auto

have conv3 : ereal (cmod z) < fps_conv_radius (F ′ + G ′ ∗ fps_X ^ nat (n −
m))

using conv1 conv2 by (intro less_le_trans[OF _ fps_conv_radius_add])
auto

have eval_fls F z + eval_fls G z = eval_fps F ′ z ∗ z powi m + eval_fps G ′ z
∗ z powi n

unfolding eval_fls_def m_n_def [symmetric] F ′_G ′_def [symmetric]
by (simp add: power_int_add algebra_simps)

also have . . . = (eval_fps F ′ z + eval_fps G ′ z ∗ z powi (n − m)) ∗ z powi m
by (simp add: algebra_simps power_int_diff)

also have eval_fps G ′ z ∗ z powi (n − m) = eval_fps (G ′ ∗ fps_X ^ nat (n
− m)) z

using assms ‹m ≤ n› conv1 by (subst eval_fps_mult) (auto simp: power_int_def)
also have eval_fps F ′ z + . . . = eval_fps (F ′ + G ′ ∗ fps_X ^ nat (n − m)) z

using conv1 conv2 by (subst eval_fps_add) auto
also have . . . = eval_fls (fps_to_fls (F ′ + G ′ ∗ fps_X ^ nat (n − m))) z

using conv3 by (subst eval_fps_to_fls) auto
also have . . . ∗ z powi m = eval_fls (fls_shift (−m) (fps_to_fls (F ′ + G ′ ∗

fps_X ^ nat (n − m)))) z
by (subst eval_fls_shift) auto

also have fls_shift (−m) (fps_to_fls (F ′ + G ′ ∗ fps_X ^ nat (n − m))) = F
+ G

using ‹m ≤ n›
by (simp add: fls_times_fps_to_fls fps_to_fls_power fls_X_power_conv_shift_1

fls_shifted_times_simps F ′_G ′_def m_n_def)
finally show ?thesis ..

qed auto
qed

lemma eval_fls_minus:
assumes ereal (norm z) < fls_conv_radius F
shows eval_fls (−F) z = −eval_fls F z
using assms by (simp add: eval_fls_def eval_fps_minus fls_conv_radius_altdef)

lemma eval_fls_diff :
assumes ereal (norm z) < fls_conv_radius F ereal (norm z) < fls_conv_radius

G
and [simp]: z 6= 0

shows eval_fls (F − G) z = eval_fls F z − eval_fls G z
proof −

have eval_fls (F + (−G)) z = eval_fls F z − eval_fls G z
using assms by (subst eval_fls_add) (auto simp: eval_fls_minus)

thus ?thesis
by simp

qed

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 433

lemma eval_fls_mult:
assumes ereal (norm z) < fls_conv_radius F ereal (norm z) < fls_conv_radius

G z 6= 0
shows eval_fls (F ∗ G) z = eval_fls F z ∗ eval_fls G z

proof (cases F = 0 ∨ G = 0)
case False
hence [simp]: F 6= 0 G 6= 0

by auto
note [simp] = ‹z 6= 0 ›
define F ′ G ′ where F ′= fls_base_factor_to_fps F G ′= fls_base_factor_to_fps

G
define m n where m = fls_subdegree F n = fls_subdegree G
have eval_fls F z ∗ eval_fls G z = (eval_fps F ′ z ∗ eval_fps G ′ z) ∗ z powi (m

+ n)
unfolding eval_fls_def m_n_def [symmetric] F ′_G ′_def [symmetric]
by (simp add: power_int_add algebra_simps)

also have . . . = eval_fps (F ′ ∗ G ′) z ∗ z powi (m + n)
using assms by (subst eval_fps_mult) (auto simp: F ′_G ′_def fls_conv_radius_altdef)

also have . . . = eval_fls (F ∗ G) z
by (simp add: eval_fls_def F ′_G ′_def m_n_def) (simp add: fls_times_def)

finally show ?thesis ..
qed auto

lemma eval_fls_power :
assumes ereal (norm z) < fls_conv_radius F z 6= 0
shows eval_fls (F ^ n) z = eval_fls F z ^ n

proof (induction n)
case (Suc n)
have eval_fls (F ^ Suc n) z = eval_fls (F ∗ F ^ n) z

by simp
also have . . . = eval_fls F z ∗ eval_fls (F ^ n) z
using assms by (subst eval_fls_mult) (auto intro!: less_le_trans[OF _ fls_conv_radius_power])

finally show ?case
using Suc by simp

qed auto

lemma eval_fls_eq:
assumes N ≤ fls_subdegree F fls_subdegree F ≥ 0 ∨ z 6= 0
assumes (λn. fls_nth F (int n + N) ∗ z powi (int n + N)) sums S
shows eval_fls F z = S

proof (cases z = 0)
case [simp]: True
have (λn. fls_nth F (int n + N) ∗ z powi (int n + N)) =

(λn. if n ∈ (if N ≤ 0 then {nat (−N)} else {}) then fls_nth F (int n + N)
else 0)

by (auto simp: fun_eq_iff split: if_splits)
also have . . . sums (

∑
n∈(if N ≤ 0 then {nat (−N)} else {}). fls_nth F (int n

+ N))
by (rule sums_If_finite_set) auto

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 434

also have . . . = fls_nth F 0
using assms by auto

also have . . . = eval_fls F z
using assms by (auto simp: eval_fls_def eval_fps_at_0 power_int_0_left_if)

finally show ?thesis
using assms by (simp add: sums_iff)

next
case [simp]: False
define N ′ where N ′ = fls_subdegree F
define d where d = nat (N ′ − N)

have (λn. fls_nth F (int n + N) ∗ z powi (int n + N)) sums S
by fact

also have ?this ←→ (λn. fls_nth F (int (n+d) + N) ∗ z powi (int (n+d) +
N)) sums S

by (rule sums_zero_iff_shift [symmetric]) (use assms in ‹auto simp: d_def
N ′_def ›)

also have (λn. int (n+d) + N) = (λn. int n + N ′)
using assms by (auto simp: N ′_def d_def)

finally have (λn. fls_nth F (int n + N ′) ∗ z powi (int n + N ′)) sums S .
hence (λn. z powi (−N ′) ∗ (fls_nth F (int n + N ′) ∗ z powi (int n + N ′)))

sums (z powi (−N ′) ∗ S)
by (intro sums_mult)

hence (λn. fls_nth F (int n + N ′) ∗ z ^ n) sums (z powi (−N ′) ∗ S)
by (simp add: power_int_add power_int_minus field_simps)

thus ?thesis
by (simp add: eval_fls_def eval_fps_def sums_iff power_int_minus N ′_def)

qed

lemma norm_summable_fls:
norm z < fls_conv_radius f =⇒ summable (λn. norm (fls_nth f n ∗ z ^ n))
using norm_summable_fps[of z fls_regpart f] by (simp add: fls_conv_radius_def)

lemma norm_summable_fls ′:
norm z < fls_conv_radius f =⇒ summable (λn. norm (fls_nth f (n + fls_subdegree

f) ∗ z ^ n))
using norm_summable_fps[of z fls_base_factor_to_fps f] by (simp add: fls_conv_radius_altdef)

lemma summable_fls:
norm z < fls_conv_radius f =⇒ summable (λn. fls_nth f n ∗ z ^ n)
by (rule summable_norm_cancel[OF norm_summable_fls])

theorem sums_eval_fls:
fixes f
defines n ≡ fls_subdegree f
assumes norm z < fls_conv_radius f and z 6= 0 ∨ n ≥ 0
shows (λk. fls_nth f (int k + n) ∗ z powi (int k + n)) sums eval_fls f z

proof (cases z = 0)
case [simp]: False

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 435

have (λk. fps_nth (fls_base_factor_to_fps f) k ∗ z ^ k ∗ z powi n) sums
(eval_fps (fls_base_factor_to_fps f) z ∗ z powi n)

using assms(2) by (intro sums_eval_fps sums_mult2) (auto simp: fls_conv_radius_altdef)
thus ?thesis

by (simp add: power_int_add n_def eval_fls_def mult_ac)
next

case [simp]: True
with assms have n ≥ 0

by auto
have (λk. fls_nth f (int k + n) ∗ z powi (int k + n)) sums

(
∑

k∈(if n ≤ 0 then {nat (−n)} else {}). fls_nth f (int k + n) ∗ z powi
(int k + n))

by (intro sums_finite) (auto split: if_splits)
also have . . . = eval_fls f z

using ‹n ≥ 0 › by (auto simp: eval_fls_at_0 n_def not_le)
finally show ?thesis .

qed

lemma holomorphic_on_eval_fls:
fixes f
defines n ≡ fls_subdegree f
assumes A ⊆ eball 0 (fls_conv_radius f) − (if n ≥ 0 then {} else {0})
shows eval_fls f holomorphic_on A

proof (cases n ≥ 0)
case True
have eval_fls f = (λz. eval_fps (fls_base_factor_to_fps f) z ∗ z ^ nat n)

using True by (simp add: fun_eq_iff eval_fls_def power_int_def n_def)
moreover have . . . holomorphic_on A
using True assms(2) by (intro holomorphic_intros) (auto simp: fls_conv_radius_altdef)

ultimately show ?thesis
by simp

next
case False
show ?thesis using assms
unfolding eval_fls_def by (intro holomorphic_intros) (auto simp: fls_conv_radius_altdef)

qed

lemma holomorphic_on_eval_fls ′ [holomorphic_intros]:
assumes g holomorphic_on A
assumes g ‘ A ⊆ eball 0 (fls_conv_radius f) − (if fls_subdegree f ≥ 0 then {}

else {0})
shows (λx. eval_fls f (g x)) holomorphic_on A
by (meson assms holomorphic_on_compose holomorphic_on_eval_fls holomor-

phic_transform o_def)

lemma continuous_on_eval_fls:
fixes f
defines n ≡ fls_subdegree f
assumes A ⊆ eball 0 (fls_conv_radius f) − (if n ≥ 0 then {} else {0})

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 436

shows continuous_on A (eval_fls f)
using assms holomorphic_on_eval_fls holomorphic_on_imp_continuous_on

by blast

lemma continuous_on_eval_fls ′ [continuous_intros]:
fixes f
defines n ≡ fls_subdegree f
assumes g ‘ A ⊆ eball 0 (fls_conv_radius f) − (if n ≥ 0 then {} else {0})
assumes continuous_on A g
shows continuous_on A (λx. eval_fls f (g x))
by (metis assms continuous_on_compose2 continuous_on_eval_fls order .refl)

lemmas has_field_derivative_eval_fps ′ [derivative_intros] =
DERIV_chain2 [OF has_field_derivative_eval_fps]

lemma has_field_derivative_eval_fls:
assumes z ∈ eball 0 (fls_conv_radius f) − {0}
shows (eval_fls f has_field_derivative eval_fls (fls_deriv f) z) (at z within A)

proof −
define g where g = fls_base_factor_to_fps f
define n where n = fls_subdegree f
have [simp]: fps_conv_radius g = fls_conv_radius f

by (simp add: fls_conv_radius_altdef g_def)
have conv1 : fps_conv_radius (fps_deriv g ∗ fps_X) ≥ fls_conv_radius f
by (intro fps_conv_radius_mult_ge order .trans[OF _ fps_conv_radius_deriv])

auto
have conv2 : fps_conv_radius (of_int n ∗ g) ≥ fls_conv_radius f

by (intro fps_conv_radius_mult_ge) auto
have conv3 : fps_conv_radius (fps_deriv g ∗ fps_X + of_int n ∗ g) ≥ fls_conv_radius

f
by (intro fps_conv_radius_add_ge conv1 conv2)

have [simp]: fps_conv_radius g = fls_conv_radius f
by (simp add: g_def fls_conv_radius_altdef)

have ((λz. eval_fps g z ∗ z powi fls_subdegree f) has_field_derivative
(eval_fps (fps_deriv g) z ∗ z powi n + of_int n ∗ z powi (n − 1) ∗ eval_fps

g z))
(at z within A)

using assms by (auto intro!: derivative_eq_intros simp: n_def)
also have (λz. eval_fps g z ∗ z powi fls_subdegree f) = eval_fls f

by (simp add: eval_fls_def g_def fun_eq_iff)
also have eval_fps (fps_deriv g) z ∗ z powi n + of_int n ∗ z powi (n − 1) ∗

eval_fps g z =
(z ∗ eval_fps (fps_deriv g) z + of_int n ∗ eval_fps g z) ∗ z powi (n −

1)
using assms by (auto simp: power_int_diff field_simps)

also have (z ∗ eval_fps (fps_deriv g) z + of_int n ∗ eval_fps g z) =
eval_fps (fps_deriv g ∗ fps_X + of_int n ∗ g) z

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 437

using conv1 conv2 assms fps_conv_radius_deriv[of g]
by (subst eval_fps_add) (auto simp: eval_fps_mult)

also have . . . = eval_fls (fps_to_fls (fps_deriv g ∗ fps_X + of_int n ∗ g)) z
using conv3 assms by (subst eval_fps_to_fls) auto

also have . . . ∗ z powi (n − 1) = eval_fls (fls_shift (1 − n) (fps_to_fls
(fps_deriv g ∗ fps_X + of_int n ∗ g))) z

using assms by (subst eval_fls_shift) auto
also have fls_shift (1 − n) (fps_to_fls (fps_deriv g ∗ fps_X + of_int n ∗ g))

= fls_deriv f
by (intro fls_eqI) (auto simp: g_def n_def algebra_simps eq_commute[of _

fls_subdegree f])
finally show ?thesis .

qed

lemma eval_fls_deriv:
assumes z ∈ eball 0 (fls_conv_radius F) − {0}
shows eval_fls (fls_deriv F) z = deriv (eval_fls F) z
by (metis DERIV_imp_deriv assms has_field_derivative_eval_fls)

lemma analytic_on_eval_fls:
assumes A ⊆ eball 0 (fls_conv_radius f) − (if fls_subdegree f ≥ 0 then {} else
{0})

shows eval_fls f analytic_on A
proof (rule analytic_on_subset [OF _ assms])

show eval_fls f analytic_on eball 0 (fls_conv_radius f) − (if fls_subdegree f ≥
0 then {} else {0})

using holomorphic_on_eval_fls[OF order .refl]
by (subst analytic_on_open) auto

qed

lemma analytic_on_eval_fls ′ [analytic_intros]:
assumes g analytic_on A
assumes g ‘ A ⊆ eball 0 (fls_conv_radius f) − (if fls_subdegree f ≥ 0 then {}

else {0})
shows (λx. eval_fls f (g x)) analytic_on A

proof −
have eval_fls f ◦ g analytic_on A
by (intro analytic_on_compose[OF assms(1) analytic_on_eval_fls]) (use assms

in auto)
thus ?thesis

by (simp add: o_def)
qed

lemma continuous_eval_fls [continuous_intros]:
assumes z ∈ eball 0 (fls_conv_radius F) − (if fls_subdegree F ≥ 0 then {} else
{0})

shows continuous (at z within A) (eval_fls F)
proof −

have isCont (eval_fls F) z

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 438

using continuous_on_eval_fls[OF order .refl] assms
by (subst (asm) continuous_on_eq_continuous_at) auto

thus ?thesis
using continuous_at_imp_continuous_at_within by blast

qed

named_theorems laurent_expansion_intros

lemma has_laurent_expansion_imp_asymp_equiv_0 :
assumes F : f has_laurent_expansion F
defines n ≡ fls_subdegree F
shows f ∼[at 0] (λz. fls_nth F n ∗ z powi n)

proof (cases F = 0)
case True
thus ?thesis using assms

by (auto simp: has_laurent_expansion_def)
next

case [simp]: False
define G where G = fls_base_factor_to_fps F
have fls_conv_radius F > 0

using F by (auto simp: has_laurent_expansion_def)
hence isCont (eval_fps G) 0

by (intro continuous_intros) (auto simp: G_def fps_conv_radius_fls_regpart
zero_ereal_def)

hence lim: eval_fps G −0→ eval_fps G 0
by (meson isContD)

have [simp]: fps_nth G 0 6= 0
by (auto simp: G_def)

have f ∼[at 0] eval_fls F
using F by (intro asymp_equiv_refl_ev) (auto simp: has_laurent_expansion_def

eq_commute)
also have . . . = (λz. eval_fps G z ∗ z powi n)

by (intro ext) (simp_all add: eval_fls_def G_def n_def)
also have . . . ∼[at 0] (λz. fps_nth G 0 ∗ z powi n) using lim

by (intro asymp_equiv_intros tendsto_imp_asymp_equiv_const) (auto simp:
eval_fps_at_0)

also have fps_nth G 0 = fls_nth F n
by (simp add: G_def n_def)

finally show ?thesis
by simp

qed

lemma has_laurent_expansion_imp_asymp_equiv:
assumes F : (λw. f (z + w)) has_laurent_expansion F
defines n ≡ fls_subdegree F

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 439

shows f ∼[at z] (λw. fls_nth F n ∗ (w − z) powi n)
using has_laurent_expansion_imp_asymp_equiv_0 [OF assms(1)] unfolding

n_def
by (simp add: at_to_0 [of z] asymp_equiv_filtermap_iff add_ac)

lemmas [tendsto_intros del] = tendsto_power_int

lemma has_laurent_expansion_imp_tendsto_0 :
assumes F : f has_laurent_expansion F and fls_subdegree F ≥ 0
shows f −0→ fls_nth F 0

proof (rule asymp_equiv_tendsto_transfer)
show (λz. fls_nth F (fls_subdegree F) ∗ z powi fls_subdegree F) ∼[at 0] f
by (rule asymp_equiv_symI , rule has_laurent_expansion_imp_asymp_equiv_0)

fact
show (λz. fls_nth F (fls_subdegree F) ∗ z powi fls_subdegree F) −0→ fls_nth

F 0
by (rule tendsto_eq_intros refl | use assms(2) in simp)+

(use assms(2) in ‹auto simp: power_int_0_left_if ›)
qed

lemma has_laurent_expansion_imp_tendsto:
assumes F : (λw. f (z + w)) has_laurent_expansion F and fls_subdegree F ≥

0
shows f −z→ fls_nth F 0
using has_laurent_expansion_imp_tendsto_0 [OF assms]
by (simp add: at_to_0 [of z] filterlim_filtermap add_ac)

lemma has_laurent_expansion_imp_filterlim_infinity_0 :
assumes F : f has_laurent_expansion F and fls_subdegree F < 0
shows filterlim f at_infinity (at 0)

proof (rule asymp_equiv_at_infinity_transfer)
have [simp]: F 6= 0

using assms(2) by auto
show (λz. fls_nth F (fls_subdegree F) ∗ z powi fls_subdegree F) ∼[at 0] f
by (rule asymp_equiv_symI , rule has_laurent_expansion_imp_asymp_equiv_0)

fact
show filterlim (λz. fls_nth F (fls_subdegree F) ∗ z powi fls_subdegree F) at_infinity

(at 0)
by (rule tendsto_mult_filterlim_at_infinity tendsto_const

filterlim_power_int_neg_at_infinity | use assms(2) in simp)+
(auto simp: eventually_at_filter)

qed

lemma has_laurent_expansion_imp_neg_fls_subdegree:
assumes F : f has_laurent_expansion F

and infy:filterlim f at_infinity (at 0)
shows fls_subdegree F < 0

proof (rule ccontr)

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 440

assume asm:¬ fls_subdegree F < 0
define ff where ff=(λz. fls_nth F (fls_subdegree F)

∗ z powi fls_subdegree F)

have (ff −−−→ (if fls_subdegree F =0 then fls_nth F 0 else 0)) (at 0)
using asm unfolding ff_def
by (auto intro!: tendsto_eq_intros)

moreover have filterlim ff at_infinity (at 0)
proof (rule asymp_equiv_at_infinity_transfer)

show f ∼[at 0] ff unfolding ff_def
using has_laurent_expansion_imp_asymp_equiv_0 [OF F] unfolding ff_def

.
show filterlim f at_infinity (at 0) by fact

qed
ultimately show False

using not_tendsto_and_filterlim_at_infinity[of at (0 ::complex)] by auto
qed

lemma has_laurent_expansion_imp_filterlim_infinity:
assumes F : (λw. f (z + w)) has_laurent_expansion F and fls_subdegree F <

0
shows filterlim f at_infinity (at z)
using has_laurent_expansion_imp_filterlim_infinity_0 [OF assms]
by (simp add: at_to_0 [of z] filterlim_filtermap add_ac)

lemma has_laurent_expansion_imp_is_pole_0 :
assumes F : f has_laurent_expansion F and fls_subdegree F < 0
shows is_pole f 0
using has_laurent_expansion_imp_filterlim_infinity_0 [OF assms]
by (simp add: is_pole_def)

lemma is_pole_0_imp_neg_fls_subdegree:
assumes F : f has_laurent_expansion F and is_pole f 0
shows fls_subdegree F < 0
using F assms(2) has_laurent_expansion_imp_neg_fls_subdegree is_pole_def
by blast

lemma has_laurent_expansion_imp_is_pole:
assumes F : (λx. f (z + x)) has_laurent_expansion F and fls_subdegree F < 0
shows is_pole f z
using has_laurent_expansion_imp_is_pole_0 [OF assms]
by (simp add: is_pole_shift_0 ′)

lemma is_pole_imp_neg_fls_subdegree:
assumes F : (λx. f (z + x)) has_laurent_expansion F and is_pole f z
shows fls_subdegree F < 0

proof −
have is_pole (λx. f (z + x)) 0

using assms(2) is_pole_shift_0 by blast

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 441

then show ?thesis
using F is_pole_0_imp_neg_fls_subdegree by blast

qed

lemma is_pole_fls_subdegree_iff :
assumes (λx. f (z + x)) has_laurent_expansion F
shows is_pole f z ←→ fls_subdegree F < 0
using assms is_pole_imp_neg_fls_subdegree has_laurent_expansion_imp_is_pole
by auto

lemma
assumes f has_laurent_expansion F
shows has_laurent_expansion_isolated_0 : isolated_singularity_at f 0

and has_laurent_expansion_not_essential_0 : not_essential f 0
proof −

from assms have eventually (λz. eval_fls F z = f z) (at 0)
by (auto simp: has_laurent_expansion_def)

then obtain r where r : r > 0
∧

z. z ∈ ball 0 r − {0} =⇒ eval_fls F z = f z
by (auto simp: eventually_at_filter ball_def eventually_nhds_metric)

have fls_conv_radius F > 0
using assms by (auto simp: has_laurent_expansion_def)

then obtain R :: real where R: R > 0 R ≤ min r (fls_conv_radius F)
using ‹r > 0 › by (metis dual_order .strict_implies_order ereal_dense2 ereal_less(2)

min_def)

have eval_fls F holomorphic_on ball 0 R − {0}
using r R by (intro holomorphic_intros ball_eball_mono Diff_mono) (auto

simp: ereal_le_less)
also have ?this ←→ f holomorphic_on ball 0 R − {0}

using r R by (intro holomorphic_cong) auto
also have . . . ←→ f analytic_on ball 0 R − {0}

by (subst analytic_on_open) auto
finally show isolated_singularity_at f 0

unfolding isolated_singularity_at_def using ‹R > 0 › by blast

show not_essential f 0
proof (cases fls_subdegree F ≥ 0)

case True
hence f −0→ fls_nth F 0

by (intro has_laurent_expansion_imp_tendsto_0 [OF assms])
thus ?thesis

by (auto simp: not_essential_def)
next

case False
hence is_pole f 0

by (intro has_laurent_expansion_imp_is_pole_0 [OF assms]) auto
thus ?thesis

by (auto simp: not_essential_def)

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 442

qed
qed

lemma
assumes (λw. f (z + w)) has_laurent_expansion F
shows has_laurent_expansion_isolated: isolated_singularity_at f z

and has_laurent_expansion_not_essential: not_essential f z
using has_laurent_expansion_isolated_0 [OF assms] has_laurent_expansion_not_essential_0 [OF

assms]
by (simp_all add: isolated_singularity_at_shift_0 not_essential_shift_0)

lemma has_laurent_expansion_fps:
assumes f has_fps_expansion F
shows f has_laurent_expansion fps_to_fls F

proof −
from assms have radius: 0 < fps_conv_radius F and eval: ∀ F z in nhds 0 .

eval_fps F z = f z
by (auto simp: has_fps_expansion_def)

from eval have eval ′: ∀ F z in at 0 . eval_fps F z = f z
using eventually_at_filter eventually_mono by fastforce

moreover have eventually (λz. z ∈ eball 0 (fps_conv_radius F) − {0}) (at 0)
using radius by (intro eventually_at_in_open) (auto simp: zero_ereal_def)

ultimately have eventually (λz. eval_fls (fps_to_fls F) z = f z) (at 0)
by eventually_elim (auto simp: eval_fps_to_fls)

thus ?thesis using radius
by (auto simp: has_laurent_expansion_def)

qed

lemma has_laurent_expansion_const [simp, intro, laurent_expansion_intros]:
(λ_. c) has_laurent_expansion fls_const c
by (auto simp: has_laurent_expansion_def)

lemma has_laurent_expansion_0 [simp, intro, laurent_expansion_intros]:
(λ_. 0) has_laurent_expansion 0
by (auto simp: has_laurent_expansion_def)

lemma has_fps_expansion_0_iff : f has_fps_expansion 0 ←→ eventually (λz. f
z = 0) (nhds 0)

by (auto simp: has_fps_expansion_def)

lemma has_laurent_expansion_1 [simp, intro, laurent_expansion_intros]:
(λ_. 1) has_laurent_expansion 1
by (auto simp: has_laurent_expansion_def)

lemma has_laurent_expansion_numeral [simp, intro, laurent_expansion_intros]:
(λ_. numeral n) has_laurent_expansion numeral n
by (auto simp: has_laurent_expansion_def)

lemma has_laurent_expansion_fps_X_power [laurent_expansion_intros]:

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 443

(λx. x ^ n) has_laurent_expansion (fls_X_intpow n)
by (auto simp: has_laurent_expansion_def)

lemma has_laurent_expansion_fps_X_power_int [laurent_expansion_intros]:
(λx. x powi n) has_laurent_expansion (fls_X_intpow n)
by (auto simp: has_laurent_expansion_def)

lemma has_laurent_expansion_fps_X [laurent_expansion_intros]:
(λx. x) has_laurent_expansion fls_X
by (auto simp: has_laurent_expansion_def)

lemma has_laurent_expansion_cmult_left [laurent_expansion_intros]:
assumes f has_laurent_expansion F
shows (λx. c ∗ f x) has_laurent_expansion fls_const c ∗ F

proof −
from assms have eventually (λz. z ∈ eball 0 (fls_conv_radius F) − {0}) (at 0)

by (intro eventually_at_in_open) (auto simp: has_laurent_expansion_def
zero_ereal_def)

moreover from assms have eventually (λz. eval_fls F z = f z) (at 0)
by (auto simp: has_laurent_expansion_def)

ultimately have eventually (λz. eval_fls (fls_const c ∗ F) z = c ∗ f z) (at 0)
by eventually_elim (simp_all add: eval_fls_mult)

with assms show ?thesis
by (auto simp: has_laurent_expansion_def intro!: less_le_trans[OF _ fls_conv_radius_mult])

qed

lemma has_laurent_expansion_cmult_right [laurent_expansion_intros]:
assumes f has_laurent_expansion F
shows (λx. f x ∗ c) has_laurent_expansion F ∗ fls_const c

proof −
have F ∗ fls_const c = fls_const c ∗ F

by (intro fls_eqI) (auto simp: mult.commute)
with has_laurent_expansion_cmult_left [OF assms] show ?thesis

by (simp add: mult.commute)
qed

lemma has_fps_expansion_scaleR [fps_expansion_intros]:
fixes F :: ′a :: {banach, real_normed_div_algebra, comm_ring_1} fps
shows f has_fps_expansion F =⇒ (λx. c ∗R f x) has_fps_expansion fps_const

(of_real c) ∗ F
unfolding scaleR_conv_of_real by (intro fps_expansion_intros)

lemma has_laurent_expansion_scaleR [laurent_expansion_intros]:
f has_laurent_expansion F =⇒ (λx. c ∗R f x) has_laurent_expansion fls_const

(of_real c) ∗ F
unfolding scaleR_conv_of_real by (intro laurent_expansion_intros)

lemma has_laurent_expansion_minus [laurent_expansion_intros]:
assumes f has_laurent_expansion F

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 444

shows (λx. − f x) has_laurent_expansion −F
proof −

from assms have eventually (λx. x ∈ eball 0 (fls_conv_radius F) − {0}) (at
0)

by (intro eventually_at_in_open) (auto simp: has_laurent_expansion_def
zero_ereal_def)

moreover from assms have eventually (λx. eval_fls F x = f x) (at 0)
by (auto simp: has_laurent_expansion_def)

ultimately have eventually (λx. eval_fls (−F) x = −f x) (at 0)
by eventually_elim (auto simp: eval_fls_minus)

thus ?thesis using assms by (auto simp: has_laurent_expansion_def)
qed

lemma has_laurent_expansion_add [laurent_expansion_intros]:
assumes f has_laurent_expansion F g has_laurent_expansion G
shows (λx. f x + g x) has_laurent_expansion F + G

proof −
from assms have 0 < min (fls_conv_radius F) (fls_conv_radius G)

by (auto simp: has_laurent_expansion_def)
also have . . . ≤ fls_conv_radius (F + G)

by (rule fls_conv_radius_add)
finally have radius: . . . > 0 .

from assms have eventually (λx. x ∈ eball 0 (fls_conv_radius F) − {0}) (at
0)

eventually (λx. x ∈ eball 0 (fls_conv_radius G) − {0}) (at 0)
by (intro eventually_at_in_open; force simp: has_laurent_expansion_def zero_ereal_def)+

moreover have eventually (λx. eval_fls F x = f x) (at 0)
and eventually (λx. eval_fls G x = g x) (at 0)

using assms by (auto simp: has_laurent_expansion_def)
ultimately have eventually (λx. eval_fls (F + G) x = f x + g x) (at 0)

by eventually_elim (auto simp: eval_fls_add)
with radius show ?thesis by (auto simp: has_laurent_expansion_def)

qed

lemma has_laurent_expansion_diff [laurent_expansion_intros]:
assumes f has_laurent_expansion F g has_laurent_expansion G
shows (λx. f x − g x) has_laurent_expansion F − G
using has_laurent_expansion_add[of f F λx. − g x −G] assms
by (simp add: has_laurent_expansion_minus)

lemma has_laurent_expansion_mult [laurent_expansion_intros]:
assumes f has_laurent_expansion F g has_laurent_expansion G
shows (λx. f x ∗ g x) has_laurent_expansion F ∗ G

proof −
from assms have 0 < min (fls_conv_radius F) (fls_conv_radius G)

by (auto simp: has_laurent_expansion_def)
also have . . . ≤ fls_conv_radius (F ∗ G)

by (rule fls_conv_radius_mult)

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 445

finally have radius: . . . > 0 .

from assms have eventually (λx. x ∈ eball 0 (fls_conv_radius F) − {0}) (at
0)

eventually (λx. x ∈ eball 0 (fls_conv_radius G) − {0}) (at 0)
by (intro eventually_at_in_open; force simp: has_laurent_expansion_def zero_ereal_def)+

moreover have eventually (λx. eval_fls F x = f x) (at 0)
and eventually (λx. eval_fls G x = g x) (at 0)

using assms by (auto simp: has_laurent_expansion_def)
ultimately have eventually (λx. eval_fls (F ∗ G) x = f x ∗ g x) (at 0)

by eventually_elim (auto simp: eval_fls_mult)
with radius show ?thesis by (auto simp: has_laurent_expansion_def)

qed

lemma has_fps_expansion_power [fps_expansion_intros]:
fixes F :: ′a :: {banach, real_normed_div_algebra, comm_ring_1} fps
shows f has_fps_expansion F =⇒ (λx. f x ^ m) has_fps_expansion F ^ m
by (induction m) (auto intro!: fps_expansion_intros)

lemma has_laurent_expansion_power [laurent_expansion_intros]:
assumes f has_laurent_expansion F
shows (λx. f x ^ n) has_laurent_expansion F ^ n
by (induction n) (auto intro!: laurent_expansion_intros assms)

lemma has_laurent_expansion_sum [laurent_expansion_intros]:
assumes

∧
x. x ∈ I =⇒ f x has_laurent_expansion F x

shows (λy.
∑

x∈I . f x y) has_laurent_expansion (
∑

x∈I . F x)
using assms by (induction I rule: infinite_finite_induct) (auto intro!: laurent_expansion_intros)

lemma has_laurent_expansion_prod [laurent_expansion_intros]:
assumes

∧
x. x ∈ I =⇒ f x has_laurent_expansion F x

shows (λy.
∏

x∈I . f x y) has_laurent_expansion (
∏

x∈I . F x)
using assms by (induction I rule: infinite_finite_induct) (auto intro!: laurent_expansion_intros)

lemma has_laurent_expansion_deriv [laurent_expansion_intros]:
assumes f has_laurent_expansion F
shows deriv f has_laurent_expansion fls_deriv F

proof −
have eventually (λz. z ∈ eball 0 (fls_conv_radius F) − {0}) (at 0)

using assms by (intro eventually_at_in_open)
(auto simp: has_laurent_expansion_def zero_ereal_def)

moreover from assms have eventually (λz. eval_fls F z = f z) (at 0)
by (auto simp: has_laurent_expansion_def)

then obtain s where open s 0 ∈ s and s:
∧

w. w ∈ s − {0} =⇒ eval_fls F w
= f w

by (auto simp: eventually_nhds eventually_at_filter)
hence eventually (λw. w ∈ s − {0}) (at 0)

by (intro eventually_at_in_open) auto
ultimately have eventually (λz. eval_fls (fls_deriv F) z = deriv f z) (at 0)

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 446

proof eventually_elim
case (elim z)
hence eval_fls (fls_deriv F) z = deriv (eval_fls F) z

by (simp add: eval_fls_deriv)
also have eventually (λw. w ∈ s − {0}) (nhds z)

using elim and ‹open s› by (intro eventually_nhds_in_open) auto
hence eventually (λw. eval_fls F w = f w) (nhds z)

by eventually_elim (use s in auto)
hence deriv (eval_fls F) z = deriv f z

by (intro deriv_cong_ev refl)
finally show ?case .

qed
with assms show ?thesis
by (auto simp: has_laurent_expansion_def intro!: less_le_trans[OF _ fls_conv_radius_deriv])

qed

lemma has_laurent_expansion_shift [laurent_expansion_intros]:
assumes f has_laurent_expansion F
shows (λx. f x ∗ x powi n) has_laurent_expansion (fls_shift (−n) F)

proof −
have eventually (λx. x ∈ eball 0 (fls_conv_radius F) − {0}) (at 0)
using assms by (intro eventually_at_in_open) (auto simp: has_laurent_expansion_def

zero_ereal_def)
moreover have eventually (λx. eval_fls F x = f x) (at 0)

using assms by (auto simp: has_laurent_expansion_def)
ultimately have eventually (λx. eval_fls (fls_shift (−n) F) x = f x ∗ x powi

n) (at 0)
by eventually_elim (auto simp: eval_fls_shift assms)

with assms show ?thesis by (auto simp: has_laurent_expansion_def)
qed

lemma has_laurent_expansion_shift ′ [laurent_expansion_intros]:
assumes f has_laurent_expansion F
shows (λx. f x ∗ x powi (−n)) has_laurent_expansion (fls_shift n F)
using has_laurent_expansion_shift[OF assms, of −n] by simp

lemma has_laurent_expansion_deriv ′:
assumes f has_laurent_expansion F
assumes open A 0 ∈ A

∧
x. x ∈ A − {0} =⇒ (f has_field_derivative f ′ x) (at

x)
shows f ′ has_laurent_expansion fls_deriv F

proof −
have deriv f has_laurent_expansion fls_deriv F

by (intro laurent_expansion_intros assms)
also have ?this ←→ ?thesis
proof (intro has_laurent_expansion_cong refl)

have eventually (λz. z ∈ A − {0}) (at 0)
by (intro eventually_at_in_open assms)

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 447

thus eventually (λz. deriv f z = f ′ z) (at 0)
by eventually_elim (auto intro!: DERIV_imp_deriv assms)

qed
finally show ?thesis .

qed

definition laurent_expansion :: (complex ⇒ complex) ⇒ complex ⇒ complex fls
where

laurent_expansion f z =
(if eventually (λz. f z = 0) (at z) then 0
else fls_shift (−zorder f z) (fps_to_fls (fps_expansion (zor_poly f z) z)))

lemma laurent_expansion_cong:
assumes eventually (λw. f w = g w) (at z) z = z ′

shows laurent_expansion f z = laurent_expansion g z ′

unfolding laurent_expansion_def
using zor_poly_cong[OF assms(1 ,2)] zorder_cong[OF assms] assms
by (intro if_cong refl) (auto elim: eventually_elim2)

theorem not_essential_has_laurent_expansion_0 :
assumes isolated_singularity_at f 0 not_essential f 0
shows f has_laurent_expansion laurent_expansion f 0

proof (cases ∃ F w in at 0 . f w 6= 0)
case False
have (λ_. 0) has_laurent_expansion 0

by simp
also have ?this ←→ f has_laurent_expansion 0
using False by (intro has_laurent_expansion_cong) (auto simp: frequently_def)

finally show ?thesis
using False by (simp add: laurent_expansion_def frequently_def)

next
case True
define n where n = zorder f 0
obtain r where r : zor_poly f 0 0 6= 0 zor_poly f 0 holomorphic_on cball 0 r r

> 0
∀w∈cball 0 r − {0}. f w = zor_poly f 0 w ∗ w powi n ∧

zor_poly f 0 w 6= 0
using zorder_exist[OF assms True] unfolding n_def by auto

have holo: zor_poly f 0 holomorphic_on ball 0 r
by (rule holomorphic_on_subset[OF r(2)]) auto

define F where F = fps_expansion (zor_poly f 0) 0
have F : zor_poly f 0 has_fps_expansion F

unfolding F_def by (rule has_fps_expansion_fps_expansion[OF _ _ holo])
(use ‹r > 0 › in auto)

have (λz. zor_poly f 0 z ∗ z powi n) has_laurent_expansion fls_shift (−n)
(fps_to_fls F)

by (intro laurent_expansion_intros has_laurent_expansion_fps[OF F])
also have ?this ←→ f has_laurent_expansion fls_shift (−n) (fps_to_fls F)

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 448

by (intro has_laurent_expansion_cong refl eventually_mono[OF eventually_at_in_open[of
ball 0 r]])

(use r in ‹auto simp: complex_powr_of_int›)
finally show ?thesis using True

by (simp add: laurent_expansion_def F_def n_def frequently_def)
qed

lemma not_essential_has_laurent_expansion:
assumes isolated_singularity_at f z not_essential f z
shows (λx. f (z + x)) has_laurent_expansion laurent_expansion f z

proof −
from assms(1) have iso:isolated_singularity_at (λx. f (z + x)) 0

by (simp add: isolated_singularity_at_shift_0)
moreover from assms(2) have ness:not_essential (λx. f (z + x)) 0

by (simp add: not_essential_shift_0)
ultimately have (λx. f (z + x)) has_laurent_expansion laurent_expansion (λx.

f (z + x)) 0
by (rule not_essential_has_laurent_expansion_0)

also have . . . = laurent_expansion f z
proof (cases ∃ F w in at z. f w 6= 0)

case False
then have ∀ F w in at z. f w = 0 using not_frequently by force
then have laurent_expansion (λx. f (z + x)) 0 = 0

by (smt (verit, best) add.commute eventually_at_to_0 eventually_mono
laurent_expansion_def)

moreover have laurent_expansion f z = 0
using ‹∀ F w in at z. f w = 0 › unfolding laurent_expansion_def by auto

ultimately show ?thesis by auto
next

case True
define df where df=zor_poly (λx. f (z + x)) 0
define g where g=(λu. u−z)

have fps_expansion df 0
= fps_expansion (df o g) z

proof −
have ∃ F w in at 0 . f (z + w) 6= 0 using True

by (smt (verit, best) add.commute eventually_at_to_0
eventually_mono not_frequently)

from zorder_exist[OF iso ness this,folded df_def]
obtain r where r>0 and df_holo:df holomorphic_on cball 0 r and df 0 6=

0
∀w∈cball 0 r − {0}.

f (z + w) = df w ∗ w powi (zorder (λw. f (z + w)) 0) ∧
df w 6= 0

by auto
then have df_nz:∀w∈ball 0 r . df w 6=0 by auto

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 449

have (deriv ^^ n) df 0 = (deriv ^^ n) (df ◦ g) z for n
unfolding comp_def g_def

proof (subst higher_deriv_compose_linear ′[where u=1 and c=−z,simplified])
show df holomorphic_on ball 0 r

using df_holo by auto
show open (ball z r) open (ball 0 r) z ∈ ball z r

using ‹r>0 › by auto
show

∧
w. w ∈ ball z r =⇒ w − z ∈ ball 0 r

by (simp add: dist_norm)
qed auto
then show ?thesis

unfolding fps_expansion_def by auto
qed
also have ... = fps_expansion (zor_poly f z) z
proof (rule fps_expansion_cong)

have ∀ F w in nhds z. zor_poly f z w
= zor_poly (λu. f (z + u)) 0 (w − z)

apply (rule zor_poly_shift)
using True assms by auto

then show ∀ F w in nhds z. (df ◦ g) w = zor_poly f z w
unfolding df_def g_def comp_def
by (auto elim:eventually_mono)

qed
finally show ?thesis unfolding df_def

by (auto simp: laurent_expansion_def at_to_0 [of z]
eventually_filtermap add_ac zorder_shift ′)

qed
finally show ?thesis .

qed

lemma has_fps_expansion_to_laurent:
f has_fps_expansion F ←→ f has_laurent_expansion fps_to_fls F ∧ f 0 =

fps_nth F 0
proof safe

assume ∗: f has_laurent_expansion fps_to_fls F f 0 = fps_nth F 0
have eventually (λz. z ∈ eball 0 (fps_conv_radius F)) (nhds 0)
using ∗ by (intro eventually_nhds_in_open) (auto simp: has_laurent_expansion_def

zero_ereal_def)
moreover have eventually (λz. z 6= 0 −→ eval_fls (fps_to_fls F) z = f z) (nhds

0)
using ∗ by (auto simp: has_laurent_expansion_def eventually_at_filter)

ultimately have eventually (λz. f z = eval_fps F z) (nhds 0)
by eventually_elim

(auto simp: has_laurent_expansion_def eventually_at_filter eval_fps_at_0
eval_fps_to_fls ∗(2))

thus f has_fps_expansion F
using ∗ by (auto simp: has_fps_expansion_def has_laurent_expansion_def

eq_commute)
next

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 450

assume f has_fps_expansion F
thus f 0 = fps_nth F 0

by (metis eval_fps_at_0 has_fps_expansion_imp_holomorphic)
qed (auto intro: has_laurent_expansion_fps)

lemma eval_fps_fls_base_factor [simp]:
assumes z 6= 0
shows eval_fps (fls_base_factor_to_fps F) z = eval_fls F z ∗ z powi −fls_subdegree

F
using assms unfolding eval_fls_def by (simp add: power_int_minus field_simps)

lemma has_fps_expansion_imp_analytic_0 :
assumes f has_fps_expansion F
shows f analytic_on {0}
by (meson analytic_at_two assms has_fps_expansion_imp_holomorphic)

lemma has_fps_expansion_imp_analytic:
assumes (λx. f (z + x)) has_fps_expansion F
shows f analytic_on {z}

proof −
have (λx. f (z + x)) analytic_on {0}

by (rule has_fps_expansion_imp_analytic_0) fact
hence (λx. f (z + x)) ◦ (λx. x − z) analytic_on {z}

by (intro analytic_on_compose_gen analytic_intros) auto
thus ?thesis

by (simp add: o_def)
qed

lemma is_pole_cong_asymp_equiv:
assumes f ∼[at z] g z = z ′

shows is_pole f z = is_pole g z ′

using asymp_equiv_at_infinity_transfer [OF assms(1)]
asymp_equiv_at_infinity_transfer [OF asymp_equiv_symI [OF assms(1)]]

assms(2)
unfolding is_pole_def by auto

lemma not_is_pole_const [simp]: ¬is_pole (λ_:: ′a::perfect_space. c :: complex)
z

using not_tendsto_and_filterlim_at_infinity[of at z λ_:: ′a. c c] by (auto simp:
is_pole_def)

lemma has_laurent_expansion_imp_is_pole_iff :
assumes F : (λx. f (z + x)) has_laurent_expansion F
shows is_pole f z ←→ fls_subdegree F < 0

proof
assume pole: is_pole f z
have [simp]: F 6= 0
proof

assume F = 0

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 451

hence is_pole f z ←→ is_pole (λ_. 0 :: complex) z using assms
by (intro is_pole_cong)
(auto simp: has_laurent_expansion_def at_to_0 [of z] eventually_filtermap

add_ac)
with pole show False

by simp
qed

note pole
also have is_pole f z ←→

is_pole (λw. fls_nth F (fls_subdegree F) ∗ (w − z) powi fls_subdegree
F) z

using has_laurent_expansion_imp_asymp_equiv[OF F] by (intro is_pole_cong_asymp_equiv
refl)

also have . . . ←→ is_pole (λw. (w − z) powi fls_subdegree F) z
by simp

finally have pole ′:

have False if fls_subdegree F ≥ 0
proof −

have (λw. (w − z) powi fls_subdegree F) holomorphic_on UNIV
using that by (intro holomorphic_intros) auto

hence ¬is_pole (λw. (w − z) powi fls_subdegree F) z
by (meson UNIV_I not_is_pole_holomorphic open_UNIV)

with pole ′ show False
by simp

qed
thus fls_subdegree F < 0

by force
qed (use has_laurent_expansion_imp_is_pole[OF assms] in auto)

lemma analytic_at_imp_has_fps_expansion_0 :
assumes f analytic_on {0}
shows f has_fps_expansion fps_expansion f 0
using assms has_fps_expansion_fps_expansion analytic_at by fast

lemma analytic_at_imp_has_fps_expansion:
assumes f analytic_on {z}
shows (λx. f (z + x)) has_fps_expansion fps_expansion f z

proof −
have f ◦ (λx. z + x) analytic_on {0}

by (intro analytic_on_compose_gen[OF _ assms] analytic_intros) auto
hence (f ◦ (λx. z + x)) has_fps_expansion fps_expansion (f ◦ (λx. z + x)) 0

unfolding o_def by (intro analytic_at_imp_has_fps_expansion_0) auto
also have . . . = fps_expansion f z

by (simp add: fps_expansion_def higher_deriv_shift_0 ′)
finally show ?thesis by (simp add: add_ac)

qed

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 452

lemma has_laurent_expansion_zorder_0 :
assumes f has_laurent_expansion F F 6= 0
shows zorder f 0 = fls_subdegree F

proof −
define G where G = fls_base_factor_to_fps F
from assms obtain A where A: 0 ∈ A open A

∧
x. x ∈ A − {0} =⇒ eval_fls

F x = f x
unfolding has_laurent_expansion_def eventually_at_filter eventually_nhds
by blast

show ?thesis
proof (rule zorder_eqI)
show open (A ∩ eball 0 (fls_conv_radius F)) 0 ∈ A ∩ eball 0 (fls_conv_radius

F)
using assms A by (auto simp: has_laurent_expansion_def zero_ereal_def)

show eval_fps G holomorphic_on A ∩ eball 0 (fls_conv_radius F)
by (intro holomorphic_intros) (auto simp: fls_conv_radius_altdef G_def)

show eval_fps G 0 6= 0 using ‹F 6= 0 ›
by (auto simp: eval_fps_at_0 G_def)

next
fix w :: complex assume w ∈ A ∩ eball 0 (fls_conv_radius F) w 6= 0
thus f w = eval_fps G w ∗ (w − 0) powi (fls_subdegree F)

using A unfolding G_def
by (subst eval_fps_fls_base_factor)

(auto simp: complex_powr_of_int power_int_minus field_simps)
qed

qed

lemma has_laurent_expansion_zorder :
assumes (λw. f (z + w)) has_laurent_expansion F F 6= 0
shows zorder f z = fls_subdegree F
using has_laurent_expansion_zorder_0 [OF assms] by (simp add: zorder_shift ′

add_ac)

lemma has_fps_expansion_zorder_0 :
assumes f has_fps_expansion F F 6= 0
shows zorder f 0 = int (subdegree F)
using assms has_laurent_expansion_zorder_0 [of f fps_to_fls F]
by (auto simp: has_fps_expansion_to_laurent fls_subdegree_fls_to_fps)

lemma has_fps_expansion_zorder :
assumes (λw. f (z + w)) has_fps_expansion F F 6= 0
shows zorder f z = int (subdegree F)
using has_fps_expansion_zorder_0 [OF assms]
by (simp add: zorder_shift ′ add_ac)

lemma has_fps_expansion_fls_base_factor_to_fps:
assumes f has_laurent_expansion F
defines n ≡ fls_subdegree F

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 453

defines c ≡ fps_nth (fls_base_factor_to_fps F) 0
shows (λz. if z = 0 then c else f z ∗ z powi −n) has_fps_expansion fls_base_factor_to_fps

F
proof −

have (λz. f z ∗ z powi −n) has_laurent_expansion fls_shift (−(−n)) F
by (intro laurent_expansion_intros assms)

also have fls_shift (−(−n)) F = fps_to_fls (fls_base_factor_to_fps F)
by (simp add: n_def fls_shift_nonneg_subdegree)

also have (λz. f z ∗ z powi − n) has_laurent_expansion fps_to_fls (fls_base_factor_to_fps
F) ←→

(λz. if z = 0 then c else f z ∗ z powi −n) has_laurent_expansion
fps_to_fls (fls_base_factor_to_fps F)

by (intro has_laurent_expansion_cong) (auto simp: eventually_at_filter)
also have . . . ←→ (λz. if z = 0 then c else f z ∗ z powi −n) has_fps_expansion

fls_base_factor_to_fps F
by (subst has_fps_expansion_to_laurent) (auto simp: c_def)

finally show ?thesis .
qed

lemma zero_has_laurent_expansion_imp_eq_0 :
assumes (λ_. 0) has_laurent_expansion F
shows F = 0

proof −
have at (0 :: complex) 6= bot

by auto
moreover have (λz. if z = 0 then fls_nth F (fls_subdegree F) else 0) has_fps_expansion

fls_base_factor_to_fps F (is ?f has_fps_expansion _)
using has_fps_expansion_fls_base_factor_to_fps[OF assms] by (simp cong:

if_cong)
hence isCont ?f 0

using has_fps_expansion_imp_continuous by blast
hence ?f −0→ fls_nth F (fls_subdegree F)

by (auto simp: isCont_def)
moreover have ?f −0→ 0 ←→ (λ_::complex. 0 :: complex) −0→ 0

by (intro filterlim_cong) (auto simp: eventually_at_filter)
hence ?f −0→ 0

by simp
ultimately have fls_nth F (fls_subdegree F) = 0

by (rule tendsto_unique)
thus ?thesis

by (meson nth_fls_subdegree_nonzero)
qed

lemma has_laurent_expansion_unique:
assumes f has_laurent_expansion F f has_laurent_expansion G
shows F = G

proof −
from assms have (λx. f x − f x) has_laurent_expansion F − G

by (intro laurent_expansion_intros)

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 454

hence (λ_. 0) has_laurent_expansion F − G
by simp

hence F − G = 0
by (rule zero_has_laurent_expansion_imp_eq_0)

thus ?thesis
by simp

qed

lemma laurent_expansion_eqI :
assumes (λx. f (z + x)) has_laurent_expansion F
shows laurent_expansion f z = F
using assms has_laurent_expansion_isolated has_laurent_expansion_not_essential

has_laurent_expansion_unique not_essential_has_laurent_expansion by
blast

lemma laurent_expansion_0_eqI :
assumes f has_laurent_expansion F
shows laurent_expansion f 0 = F
using assms laurent_expansion_eqI [of f 0] by simp

lemma has_laurent_expansion_nonzero_imp_eventually_nonzero:
assumes f has_laurent_expansion F F 6= 0
shows eventually (λx. f x 6= 0) (at 0)

proof (rule ccontr)
assume ¬eventually (λx. f x 6= 0) (at 0)
with assms have eventually (λx. f x = 0) (at 0)
by (intro not_essential_frequently_0_imp_eventually_0 has_laurent_expansion_isolated

has_laurent_expansion_not_essential)
(auto simp: frequently_def)

hence (f has_laurent_expansion 0) ←→ ((λ_. 0) has_laurent_expansion 0)
by (intro has_laurent_expansion_cong) auto

hence f has_laurent_expansion 0
by simp

with assms(1) have F = 0
using has_laurent_expansion_unique by blast

with ‹F 6= 0 › show False
by contradiction

qed

lemma has_laurent_expansion_eventually_nonzero_iff ′:
assumes f has_laurent_expansion F
shows eventually (λx. f x 6= 0) (at 0) ←→ F 6= 0

proof
assume ∀ F x in at 0 . f x 6= 0
moreover have ¬ (∀ F x in at 0 . f x 6= 0) if F=0
proof −

have ∀ F x in at 0 . f x = 0
using assms that unfolding has_laurent_expansion_def by simp

then show ?thesis unfolding not_eventually

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 455

by (auto elim:eventually_frequentlyE)
qed
ultimately show F 6= 0 by auto

qed (simp add:has_laurent_expansion_nonzero_imp_eventually_nonzero[OF assms])

lemma has_laurent_expansion_eventually_nonzero_iff :
assumes (λw. f (z+w)) has_laurent_expansion F
shows eventually (λx. f x 6= 0) (at z) ←→ F 6= 0
apply (subst eventually_at_to_0)
apply (rule has_laurent_expansion_eventually_nonzero_iff ′)
using assms by (simp add:add.commute)

lemma has_laurent_expansion_inverse [laurent_expansion_intros]:
assumes f has_laurent_expansion F
shows (λx. inverse (f x)) has_laurent_expansion inverse F

proof (cases F = 0)
case True
thus ?thesis using assms

by (auto simp: has_laurent_expansion_def)
next

case False
define G where G = laurent_expansion (λx. inverse (f x)) 0
from False have ev: eventually (λz. f z 6= 0) (at 0)
by (intro has_laurent_expansion_nonzero_imp_eventually_nonzero[OF assms])

have ∗: (λx. inverse (f x)) has_laurent_expansion G unfolding G_def
by (intro not_essential_has_laurent_expansion_0 isolated_singularity_at_inverse

not_essential_inverse
has_laurent_expansion_isolated_0 [OF assms] has_laurent_expansion_not_essential_0 [OF

assms])
have (λx. f x ∗ inverse (f x)) has_laurent_expansion F ∗ G

by (intro laurent_expansion_intros assms ∗)
also have ?this ←→ (λx. 1) has_laurent_expansion F ∗ G

by (intro has_laurent_expansion_cong refl eventually_mono[OF ev]) auto
finally have (λ_. 1) has_laurent_expansion F ∗ G .
moreover have (λ_. 1) has_laurent_expansion 1

by simp
ultimately have F ∗ G = 1

using has_laurent_expansion_unique by blast
hence G = inverse F

using inverse_unique by blast
with ∗ show ?thesis

by simp
qed

lemma has_laurent_expansion_power_int [laurent_expansion_intros]:
f has_laurent_expansion F =⇒ (λx. f x powi n) has_laurent_expansion (F powi

n)
by (auto simp: power_int_def intro!: laurent_expansion_intros)

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 456

lemma has_fps_expansion_0_analytic_continuation:
assumes f has_fps_expansion 0 f holomorphic_on A
assumes open A connected A 0 ∈ A x ∈ A
shows f x = 0

proof −
have eventually (λz. z ∈ A ∧ f z = 0) (nhds 0) using assms
by (intro eventually_conj eventually_nhds_in_open) (auto simp: has_fps_expansion_def)

then obtain B where B: open B 0 ∈ B ∀ z∈B. z ∈ A ∧ f z = 0
unfolding eventually_nhds by blast

show ?thesis
proof (rule analytic_continuation_open[where f = f and g = λ_. 0])

show B 6= {}
using ‹open B› B by auto

show connected A
using assms by auto

qed (use assms B in auto)
qed

lemma has_laurent_expansion_0_analytic_continuation:
assumes f has_laurent_expansion 0 f holomorphic_on A − {0}
assumes open A connected A 0 ∈ A x ∈ A − {0}
shows f x = 0

proof −
have eventually (λz. z ∈ A − {0} ∧ f z = 0) (at 0) using assms
by (intro eventually_conj eventually_at_in_open) (auto simp: has_laurent_expansion_def)

then obtain B where B: open B 0 ∈ B ∀ z∈B − {0}. z ∈ A − {0} ∧ f z = 0
unfolding eventually_at_filter eventually_nhds by blast

show ?thesis
proof (rule analytic_continuation_open[where f = f and g = λ_. 0])

show B − {0} 6= {}
using ‹open B› ‹0 ∈ B› by (metis insert_Diff not_open_singleton)

show connected (A − {0})
using assms by (intro connected_open_delete) auto

qed (use assms B in auto)
qed

lemma has_fps_expansion_cong:
assumes eventually (λx. f x = g x) (nhds 0) F = G
shows f has_fps_expansion F ←→ g has_fps_expansion G
using assms(2) by (auto simp: has_fps_expansion_def elim!: eventually_elim2 [OF

assms(1)])

lemma zor_poly_has_fps_expansion:
assumes f has_laurent_expansion F F 6= 0
shows zor_poly f 0 has_fps_expansion fls_base_factor_to_fps F

proof −
note [simp] = ‹F 6= 0 ›

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 457

have eventually (λz. f z 6= 0) (at 0)
by (rule has_laurent_expansion_nonzero_imp_eventually_nonzero[OF assms])

hence freq: frequently (λz. f z 6= 0) (at 0)
by (rule eventually_frequently[rotated]) auto

have ∗: isolated_singularity_at f 0 not_essential f 0
using has_laurent_expansion_isolated_0 [OF assms(1)] has_laurent_expansion_not_essential_0 [OF

assms(1)]
by auto

define G where G = fls_base_factor_to_fps F
define n where n = zorder f 0
have n_altdef : n = fls_subdegree F

using has_laurent_expansion_zorder_0 [OF assms(1)] by (simp add: n_def)
obtain r where r : zor_poly f 0 0 6= 0 zor_poly f 0 holomorphic_on cball 0 r r

> 0
∀w∈cball 0 r − {0}. f w = zor_poly f 0 w ∗ w powi n ∧

zor_poly f 0 w 6= 0
using zorder_exist[OF ∗ freq] unfolding n_def by auto

obtain r ′ where r ′: r ′ > 0 ∀ x∈ball 0 r ′−{0}. eval_fls F x = f x
using assms(1) unfolding has_laurent_expansion_def eventually_at_filter

eventually_nhds_metric ball_def
by (auto simp: dist_commute)

have holo: zor_poly f 0 holomorphic_on ball 0 r
by (rule holomorphic_on_subset[OF r(2)]) auto

have (λz. if z = 0 then fps_nth G 0 else f z ∗ z powi −n) has_fps_expansion G
unfolding G_def n_altdef by (intro has_fps_expansion_fls_base_factor_to_fps

assms)
also have ?this ←→ zor_poly f 0 has_fps_expansion G
proof (intro has_fps_expansion_cong)

have eventually (λz. z ∈ ball 0 (min r r ′)) (nhds 0)
using ‹r > 0 › ‹r ′ > 0 › by (intro eventually_nhds_in_open) auto

thus ∀ F x in nhds 0 . (if x = 0 then G $ 0 else f x ∗ x powi − n) = zor_poly f
0 x

proof eventually_elim
case (elim w)
have w: w ∈ ball 0 r w ∈ ball 0 r ′

using elim by auto
show ?case
proof (cases w = 0)

case False
hence f w = zor_poly f 0 w ∗ w powi n

using r w by auto
thus ?thesis using False

by (simp add: powr_minus complex_powr_of_int power_int_minus)
next

case [simp]: True
obtain R where R: R > 0 R ≤ r R ≤ r ′ R ≤ fls_conv_radius F

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 458

using ‹r > 0 › ‹r ′ > 0 › assms(1) unfolding has_laurent_expansion_def
by (smt (verit, ccfv_SIG) ereal_dense2 ereal_less(2) less_ereal.simps(1)

order .strict_implies_order order_trans)
have eval_fps G 0 = zor_poly f 0 0
proof (rule analytic_continuation_open[where f = eval_fps G and g =

zor_poly f 0])
show connected (ball 0 R :: complex set)

by auto
have of_real R / 2 ∈ ball 0 R − {0 :: complex}

using R by auto
thus ball 0 R − {0 :: complex} 6= {}

by blast
show eval_fps G holomorphic_on ball 0 R

using R less_le_trans[OF _ R(4)] unfolding G_def
by (intro holomorphic_intros) (auto simp: fls_conv_radius_altdef)

show zor_poly f 0 holomorphic_on ball 0 R
by (rule holomorphic_on_subset[OF holo]) (use R in auto)

show eval_fps G z = zor_poly f 0 z if z ∈ ball 0 R − {0} for z
using that r r ′ R n_altdef unfolding G_def
by (subst eval_fps_fls_base_factor)

(auto simp: complex_powr_of_int field_simps power_int_minus
n_def)

qed (use R in auto)
hence zor_poly f 0 0 = fps_nth G 0

by (simp add: eval_fps_at_0)
thus ?thesis by simp

qed
qed

qed (use r ′ in auto)
finally show ?thesis

by (simp add: G_def)
qed

lemma zorder_geI_0 :
assumes f analytic_on {0} f holomorphic_on A open A connected A 0 ∈ A z ∈

A f z 6= 0
assumes

∧
k. k < n =⇒ (deriv ^^ k) f 0 = 0

shows zorder f 0 ≥ n
proof −

define F where F = fps_expansion f 0
from assms have f has_fps_expansion F

unfolding F_def using analytic_at_imp_has_fps_expansion_0 by blast
hence laurent: f has_laurent_expansion fps_to_fls F and [simp]: f 0 = fps_nth

F 0
by (simp_all add: has_fps_expansion_to_laurent)

have [simp]: F 6= 0
proof

assume [simp]: F = 0

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 459

hence f z = 0
proof (cases z = 0)

case False
have f has_laurent_expansion 0

using laurent by simp
thus ?thesis
proof (rule has_laurent_expansion_0_analytic_continuation)

show f holomorphic_on A − {0}
using assms(2) by (rule holomorphic_on_subset) auto

qed (use assms False in auto)
qed auto
with ‹f z 6= 0 › show False by contradiction

qed

have zorder f 0 = int (subdegree F)
using has_laurent_expansion_zorder_0 [OF laurent] by (simp add: fls_subdegree_fls_to_fps)

also have subdegree F ≥ n
using assms by (intro subdegree_geI ‹F 6= 0 ›) (auto simp: F_def fps_expansion_def)

hence int (subdegree F) ≥ int n
by simp

finally show ?thesis .
qed

lemma zorder_geI :
assumes f analytic_on {x} f holomorphic_on A open A connected A x ∈ A z ∈

A f z 6= 0
assumes

∧
k. k < n =⇒ (deriv ^^ k) f x = 0

shows zorder f x ≥ n
proof −

have zorder f x = zorder (f ◦ (λu. u + x)) 0
by (subst zorder_shift) (auto simp: o_def)

also have . . . ≥ n
proof (rule zorder_geI_0)

show (f ◦ (λu. u + x)) analytic_on {0}
by (intro analytic_on_compose_gen[OF _ assms(1)] analytic_intros) auto

show f ◦ (λu. u + x) holomorphic_on ((+) (−x)) ‘ A
by (intro holomorphic_on_compose_gen[OF _ assms(2)] holomorphic_intros)

auto
show connected ((+) (− x) ‘ A)

by (intro connected_continuous_image continuous_intros assms)
show open ((+) (− x) ‘ A)

by (intro open_translation assms)
show z − x ∈ (+) (− x) ‘ A

using ‹z ∈ A› by auto
show 0 ∈ (+) (− x) ‘ A

using ‹x ∈ A› by auto
show (f ◦ (λu. u + x)) (z − x) 6= 0

using ‹f z 6= 0 › by auto
next

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 460

fix k :: nat assume k < n
hence (deriv ^^ k) f x = 0

using assms by simp
also have (deriv ^^ k) f x = (deriv ^^ k) (f ◦ (+) x) 0

by (subst higher_deriv_shift_0) auto
finally show (deriv ^^ k) (f ◦ (λu. u + x)) 0 = 0

by (subst add.commute) auto
qed
finally show ?thesis .

qed

lemma has_laurent_expansion_divide [laurent_expansion_intros]:
assumes f has_laurent_expansion F and g has_laurent_expansion G
shows (λx. f x / g x) has_laurent_expansion (F / G)

proof −
have (λx. f x ∗ inverse (g x)) has_laurent_expansion (F ∗ inverse G)

by (intro laurent_expansion_intros assms)
thus ?thesis

by (simp add: field_simps)
qed

lemma has_laurent_expansion_residue_0 :
assumes f has_laurent_expansion F
shows residue f 0 = fls_residue F

proof (cases fls_subdegree F ≥ 0)
case True
have residue f 0 = residue (eval_fls F) 0

using assms by (intro residue_cong) (auto simp: has_laurent_expansion_def
eq_commute)

also have . . . = 0
by (rule residue_holo[OF _ _ holomorphic_on_eval_fls[OF order .refl]])
(use True assms in ‹auto simp: has_laurent_expansion_def zero_ereal_def ›)

also have . . . = fls_residue F
using True by simp

finally show ?thesis .
next

case False
hence F 6= 0

by auto
have ∗: zor_poly f 0 has_fps_expansion fls_base_factor_to_fps F

by (intro zor_poly_has_fps_expansion False assms ‹F 6= 0 ›)

have residue f 0 = (deriv ^^ (nat (−zorder f 0) − 1)) (zor_poly f 0) 0 / fact
(nat (− zorder f 0) − 1)

by (intro residue_pole_order has_laurent_expansion_isolated_0 [OF assms]
has_laurent_expansion_imp_is_pole_0 [OF assms]) (use False in auto)

also have . . . = fls_residue F
using has_laurent_expansion_zorder_0 [OF assms ‹F 6= 0 ›] False
by (subst fps_nth_fps_expansion [OF ∗, symmetric]) (auto simp: of_nat_diff)

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 461

finally show ?thesis .
qed

lemma has_laurent_expansion_residue:
assumes (λx. f (z + x)) has_laurent_expansion F
shows residue f z = fls_residue F
using has_laurent_expansion_residue_0 [OF assms] by (simp add: residue_shift_0 ′)

lemma eval_fls_has_laurent_expansion [laurent_expansion_intros]:
assumes fls_conv_radius F > 0
shows eval_fls F has_laurent_expansion F
using assms by (auto simp: has_laurent_expansion_def)

lemma fps_expansion_unique_complex:
fixes F G :: complex fps
assumes f has_fps_expansion F f has_fps_expansion G
shows F = G
using assms unfolding fps_eq_iff by (auto simp: fps_eq_iff fps_nth_fps_expansion)

lemma fps_expansion_eqI :
assumes f has_fps_expansion F
shows fps_expansion f 0 = F
using assms unfolding fps_eq_iff
by (auto simp: fps_eq_iff fps_nth_fps_expansion fps_expansion_def)

lemma holomorphic_on_imp_fps_conv_radius_ge:
assumes f has_fps_expansion F f holomorphic_on eball 0 r
shows fps_conv_radius F ≥ r

proof −
define n where n = subdegree F
have fps_conv_radius (fps_expansion f 0) ≥ r

by (intro conv_radius_fps_expansion assms)
also have fps_expansion f 0 = F

using assms by (intro fps_expansion_eqI)
finally show ?thesis

by simp
qed

lemma has_fps_expansion_imp_eval_fps_eq:
assumes f has_fps_expansion F norm z < r
assumes f holomorphic_on ball 0 r
shows eval_fps F z = f z

proof −
have [simp]: fps_expansion f 0 = F

by (rule fps_expansion_eqI) fact
have ∗: f holomorphic_on eball 0 (ereal r)

using assms by simp
from conv_radius_fps_expansion[OF ∗] have fps_conv_radius F ≥ ereal r

by simp

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 462

have eval_fps (fps_expansion f 0) z = f (0 + z)
by (rule eval_fps_expansion ′[OF ∗]) (use assms in auto)

thus ?thesis
by simp

qed

lemma has_fps_expansion_imp_sums_complex:
fixes F :: complex fps
assumes f has_fps_expansion F f holomorphic_on eball 0 r ereal (norm z) < r
shows (λn. fps_nth F n ∗ z ^ n) sums f z

proof −
have r : fps_conv_radius F ≥ r

using assms(1 ,2) by (rule holomorphic_on_imp_fps_conv_radius_ge)
from assms obtain R where R: norm z < R ereal R < r

using ereal_dense2 less_ereal.simps(1) by blast
have z: norm z < fps_conv_radius F

using r R assms(3) by order

have summable (λn. fps_nth F n ∗ z ^ n)
by (rule summable_fps) (use z in auto)

moreover have eval_fps F z = f z
proof (rule has_fps_expansion_imp_eval_fps_eq[where r = R])

have ∗: ereal (norm z) < r if norm z < R for z :: complex
using that R ereal_le_less less_imp_le by blast

show f holomorphic_on ball 0 R
using assms(2) by (rule holomorphic_on_subset) (use ∗ in auto)

qed (use R assms(1) in auto)
ultimately show ?thesis

unfolding eval_fps_def sums_iff by simp
qed

lemma fls_conv_radius_ge:
assumes f has_laurent_expansion F
assumes f holomorphic_on eball 0 r − {0}
shows fls_conv_radius F ≥ r

proof −
define n where n = fls_subdegree F
define G where G = fls_base_factor_to_fps F
define g where g = (λz. if z = 0 then fps_nth G 0 else f z ∗ z powi −n)
have G: g has_fps_expansion G

unfolding G_def g_def n_def
by (intro has_fps_expansion_fls_base_factor_to_fps assms)

have (λz. f z ∗ z powi −n) holomorphic_on eball 0 r − {0}
by (intro holomorphic_intros assms) auto

also have ?this ←→ g holomorphic_on eball 0 r − {0}
by (intro holomorphic_cong) (auto simp: g_def)

finally have g analytic_on eball 0 r − {0}
by (subst analytic_on_open) auto

moreover have g analytic_on {0}

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 463

using G has_fps_expansion_imp_analytic_0 by auto
ultimately have g analytic_on (eball 0 r − {0} ∪ {0})

by (subst analytic_on_Un) auto
hence g analytic_on eball 0 r

by (rule analytic_on_subset) auto
hence g holomorphic_on eball 0 r

by (subst (asm) analytic_on_open) auto
hence fps_conv_radius (fps_expansion g 0) ≥ r

by (intro conv_radius_fps_expansion)
also have fps_expansion g 0 = G

using G by (intro fps_expansion_eqI)
finally show ?thesis

by (simp add: fls_conv_radius_altdef G_def)
qed

lemma eval_fls_eqI :
assumes f has_laurent_expansion F f holomorphic_on eball 0 r − {0}
assumes z ∈ eball 0 r − {0}
shows eval_fls F z = f z

proof −
have conv: fls_conv_radius F ≥ r

by (intro fls_conv_radius_ge[OF assms(1 ,2)])
have (λz. eval_fls F z − f z) has_laurent_expansion F − F
using assms by (intro laurent_expansion_intros assms) (auto simp: has_laurent_expansion_def)

hence (λz. eval_fls F z − f z) has_laurent_expansion 0
by simp

hence eval_fls F z − f z = 0
proof (rule has_laurent_expansion_0_analytic_continuation)

have ereal 0 ≤ ereal (norm z)
by simp

also have norm z < r
using assms by auto

finally have r > 0
by (simp add: zero_ereal_def)

thus open (eball 0 r :: complex set) connected (eball 0 r :: complex set)
0 ∈ eball 0 r z ∈ eball 0 r − {0}

using assms by (auto simp: zero_ereal_def)
qed (auto intro!: holomorphic_intros assms less_le_trans[OF _ conv] split:

if_splits)
thus ?thesis by simp

qed

lemma fls_nth_as_contour_integral:
assumes F : f has_laurent_expansion F
assumes holo: f holomorphic_on ball 0 r − {0}
assumes R: 0 < R R < r
shows ((λz. f z ∗ z powi (−(n+1))) has_contour_integral

complex_of_real (2 ∗ pi) ∗ i ∗ fls_nth F n) (circlepath 0 R)
proof −

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 464

define I where I = (λz. f z ∗ z powi (−(n+1)))
have (I has_contour_integral complex_of_real (2 ∗ pi) ∗ i ∗ residue I 0)

(circlepath 0 R)
proof (rule base_residue)

show open (ball (0 ::complex) r) 0 ∈ ball (0 ::complex) r
using R F by (auto simp: has_laurent_expansion_def zero_ereal_def)

qed (use R in ‹auto intro!: holomorphic_intros holomorphic_on_subset[OF holo]
simp: I_def split: if_splits›)

also have residue I 0 = fls_residue (fls_shift (n + 1) F)
unfolding I_def by (intro has_laurent_expansion_residue_0 laurent_expansion_intros

F)
also have . . . = fls_nth F n

by simp
finally show ?thesis

by (simp add: I_def)
qed

lemma tendsto_0_subdegree_iff_0 :
assumes F :f has_laurent_expansion F and F 6=0
shows (f −0→ 0) ←→ fls_subdegree F > 0

proof −
have ?thesis if is_pole f 0
proof −

have fls_subdegree F <0
using is_pole_0_imp_neg_fls_subdegree[OF F that] .

moreover then have ¬ f −0→0
using ‹is_pole f 0 › F at_neq_bot

has_laurent_expansion_imp_filterlim_infinity_0
not_tendsto_and_filterlim_at_infinity that

by blast
ultimately show ?thesis by auto

qed
moreover have ?thesis if ¬is_pole f 0 ∃ x. f −0→x
proof −

have fls_subdegree F ≥0
using has_laurent_expansion_imp_is_pole_0 [OF F] that(1)
by linarith

have f −0→0 if fls_subdegree F > 0
using fls_eq0_below_subdegree[OF that]
by (metis F ‹0 ≤ fls_subdegree F› has_laurent_expansion_imp_tendsto_0)

moreover have fls_subdegree F > 0 if f −0→0
proof −

have False if fls_subdegree F = 0
proof −

have f −0→ fls_nth F 0
using has_laurent_expansion_imp_tendsto_0

[OF F ‹fls_subdegree F ≥0 ›] .
then have fls_nth F 0 = 0 using ‹f −0→0 ›

using LIM_unique by blast

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 465

then have F = 0
using nth_fls_subdegree_zero_iff ‹fls_subdegree F = 0 ›
by metis

with ‹F 6=0 › show False by auto
qed
with ‹fls_subdegree F ≥0 ›
show ?thesis by fastforce

qed
ultimately show ?thesis by auto

qed
moreover have is_pole f 0 ∨ (∃ x. f −0→x)
proof −

have not_essential f 0
using F has_laurent_expansion_not_essential_0 by auto

then show ?thesis unfolding not_essential_def
by auto

qed
ultimately show ?thesis by auto

qed

lemma tendsto_0_subdegree_iff :
assumes F : (λw. f (z+w)) has_laurent_expansion F and F 6= 0
shows (f −z→ 0) ←→ fls_subdegree F > 0
apply (subst Lim_at_zero)
apply (rule tendsto_0_subdegree_iff_0)
using assms by auto

lemma is_pole_0_deriv_divide_iff :
assumes F : f has_laurent_expansion F and F 6= 0
shows is_pole (λx. deriv f x / f x) 0 ←→ is_pole f 0 ∨ (f −0→ 0)

proof −
have (λx. deriv f x / f x) has_laurent_expansion fls_deriv F / F

using F by (auto intro:laurent_expansion_intros)

have is_pole (λx. deriv f x / f x) 0 ←→
fls_subdegree (fls_deriv F / F) < 0

apply (rule is_pole_fls_subdegree_iff)
using F by (auto intro:laurent_expansion_intros)

also have ... ←→ is_pole f 0 ∨ (f −0→0)
proof (cases fls_subdegree F = 0)

case True
then have fls_subdegree (fls_deriv F / F) ≥ 0

by (metis diff_zero div_0 ‹F 6=0 › fls_deriv_subdegree0
fls_divide_subdegree)

moreover then have ¬ is_pole f 0
by (metis F True is_pole_0_imp_neg_fls_subdegree less_le)

moreover have ¬ (f −0→0)
using tendsto_0_subdegree_iff_0 [OF F ‹F 6=0 ›] True by auto

ultimately show ?thesis by auto

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 466

next
case False
then have fls_deriv F 6= 0

by (metis fls_const_subdegree fls_deriv_eq_0_iff)
then have fls_subdegree (fls_deriv F / F) =

fls_subdegree (fls_deriv F) − fls_subdegree F
by (rule fls_divide_subdegree[OF _ ‹F 6=0 ›])

moreover have fls_subdegree (fls_deriv F) = fls_subdegree F − 1
using fls_subdegree_deriv[OF False] .

ultimately have fls_subdegree (fls_deriv F / F) < 0 by auto
moreover have f −0→ 0 = (0 < fls_subdegree F)

using tendsto_0_subdegree_iff_0 [OF F ‹F 6= 0 ›] .
moreover have is_pole f 0 = (fls_subdegree F < 0)

using is_pole_fls_subdegree_iff F by auto
ultimately show ?thesis using False by auto

qed
finally show ?thesis .

qed

lemma is_pole_deriv_divide_iff :
assumes F :(λw. f (z+w)) has_laurent_expansion F and F 6=0
shows is_pole (λx. deriv f x / f x) z ←→ is_pole f z ∨ (f −z→0)

proof −
define ff df where ff=(λw. f (z+w)) and df=(λw. deriv f (z + w))
have is_pole (λx. deriv f x / f x) z

←→ is_pole (λx. deriv ff x / ff x) 0
unfolding ff_def df_def
by (simp add:deriv_shift_0 ′ is_pole_shift_0 ′ comp_def algebra_simps)

moreover have is_pole f z ←→ is_pole ff 0
unfolding ff_def by (auto simp:is_pole_shift_0 ′)

moreover have (f −z→0) ←→ (ff −0→0)
unfolding ff_def by (simp add: LIM_offset_zero_iff)

moreover have is_pole (λx. deriv ff x / ff x) 0 = (is_pole ff 0 ∨ ff −0→ 0)
apply (rule is_pole_0_deriv_divide_iff)
using F ff_def ‹F 6=0 › by blast+

ultimately show ?thesis by auto
qed

lemma subdegree_imp_eventually_deriv_nzero_0 :
assumes F :f has_laurent_expansion F and fls_subdegree F 6=0
shows eventually (λz. deriv f z 6= 0) (at 0)

proof −
have deriv f has_laurent_expansion fls_deriv F

using has_laurent_expansion_deriv[OF F] .
moreover have fls_deriv F 6=0

using ‹fls_subdegree F 6=0 ›
by (metis fls_const_subdegree fls_deriv_eq_0_iff)

ultimately show ?thesis
using has_laurent_expansion_eventually_nonzero_iff ′ by blast

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 467

qed

lemma subdegree_imp_eventually_deriv_nzero:
assumes F :(λw. f (z+w)) has_laurent_expansion F

and fls_subdegree F 6=0
shows eventually (λw. deriv f w 6= 0) (at z)

proof −
have ∀ F x in at 0 . deriv (λw. f (z + w)) x 6= 0

using subdegree_imp_eventually_deriv_nzero_0 assms by auto
then show ?thesis

apply (subst eventually_at_to_0)
by (simp add:deriv_shift_0 ′ comp_def algebra_simps)

qed

lemma has_fps_expansion_imp_asymp_equiv_0 :
fixes f :: complex ⇒ complex
assumes F : f has_fps_expansion F
defines n ≡ subdegree F
shows f ∼[nhds 0] (λz. fps_nth F n ∗ z ^ n)

proof −
have F ′: f has_laurent_expansion fps_to_fls F

using F has_laurent_expansion_fps by blast

have f ∼[at 0] (λz. fps_nth F n ∗ z ^ n)
using has_laurent_expansion_imp_asymp_equiv_0 [OF F ′]
by (simp add: fls_subdegree_fls_to_fps n_def)

moreover have f 0 = fps_nth F n ∗ 0 ^ n
using F by (auto simp: n_def has_fps_expansion_to_laurent power_0_left)

ultimately show ?thesis
by (auto simp: asymp_equiv_nhds_iff)

qed

lemma has_fps_expansion_imp_tendsto_0 :
fixes f :: complex ⇒ complex
assumes f has_fps_expansion F
shows (f −−−→ fps_nth F 0) (nhds 0)

proof (rule asymp_equiv_tendsto_transfer)
show (λz. fps_nth F (subdegree F) ∗ z ^ subdegree F) ∼[nhds 0] f

by (rule asymp_equiv_symI , rule has_fps_expansion_imp_asymp_equiv_0)
fact

have ((λz. F $ subdegree F ∗ z ^ subdegree F) −−−→ F $ 0) (at 0)
by (rule tendsto_eq_intros refl | simp)+ (auto simp: power_0_left)

thus ((λz. F $ subdegree F ∗ z ^ subdegree F) −−−→ F $ 0) (nhds 0)
by (auto simp: tendsto_nhds_iff power_0_left)

qed

lemma has_fps_expansion_imp_0_eq_fps_nth_0 :
assumes f has_fps_expansion F
shows f 0 = fps_nth F 0

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 468

proof −
have eventually (λx. f x = eval_fps F x) (nhds 0)

using assms by (auto simp: has_fps_expansion_def eq_commute)
then obtain A where open A 0 ∈ A ∀ x∈A. f x = eval_fps F x

unfolding eventually_nhds by blast
hence f 0 = eval_fps F 0

by blast
thus ?thesis

by (simp add: eval_fps_at_0)
qed

lemma fls_nth_compose_aux:
assumes f has_fps_expansion F
assumes G: g has_fps_expansion G fps_nth G 0 = 0 fps_deriv G 6= 0
assumes (f ◦ g) has_laurent_expansion H
shows fls_nth H (int n) = fps_nth (fps_compose F G) n
using assms(1 ,5)

proof (induction n arbitrary: f F H rule: less_induct)
case (less n f F H)
have [simp]: g 0 = 0

using has_fps_expansion_imp_0_eq_fps_nth_0 [OF G(1)] G(2) by simp
have ana_f : f analytic_on {0}

using less.prems by (meson has_fps_expansion_imp_analytic_0)
have ana_g: g analytic_on {0}

using G by (meson has_fps_expansion_imp_analytic_0)
have (f ◦ g) has_laurent_expansion fps_to_fls (fps_expansion (f ◦ g) 0)
by (rule analytic_at_imp_has_fps_expansion_0 analytic_intros has_laurent_expansion_fps

analytic_on_compose_gen ana_f ana_g)+ auto
with less.prems have H = fps_to_fls (fps_expansion (f ◦ g) 0)

using has_laurent_expansion_unique by blast
also have fls_subdegree . . . ≥ 0

by (simp add: fls_subdegree_fls_to_fps)
finally have subdeg: fls_subdegree H ≥ 0 .

show ?case
proof (cases n = 0)

case [simp]: True
have lim_g: g −0→ 0

using has_laurent_expansion_imp_tendsto_0 [of g fps_to_fls G] G
by (auto simp: fls_subdegree_fls_to_fps_gt0 has_fps_expansion_to_laurent)

have lim_f : (f −−−→ fps_nth F 0) (nhds 0)
by (intro has_fps_expansion_imp_tendsto_0 less.prems)

have (λx. f (g x)) −0→ fps_nth F 0
by (rule filterlim_compose[OF lim_f lim_g])

moreover have (f ◦ g) −0→ fls_nth H 0
by (intro has_laurent_expansion_imp_tendsto_0 less.prems subdeg)

ultimately have fps_nth F 0 = fls_nth H 0
using tendsto_unique by (force simp: o_def)

thus ?thesis

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 469

by simp
next

case n: False
define GH where GH = (fls_deriv H / fls_deriv (fps_to_fls G))
define GH ′ where GH ′ = fls_regpart GH

have (λx. deriv (f ◦ g) x / deriv g x) has_laurent_expansion
fls_deriv H / fls_deriv (fps_to_fls G)

by (intro laurent_expansion_intros less.prems has_laurent_expansion_fps[of
_ G] G)

also have ?this ←→ (deriv f ◦ g) has_laurent_expansion fls_deriv H /
fls_deriv (fps_to_fls G)

proof (rule has_laurent_expansion_cong)
from ana_f obtain r1 where r1 : r1 > 0 f holomorphic_on ball 0 r1

unfolding analytic_on_def by blast
from ana_g obtain r2 where r2 : r2 > 0 g holomorphic_on ball 0 r2

unfolding analytic_on_def by blast
have lim_g: g −0→ 0

using has_laurent_expansion_imp_tendsto_0 [of g fps_to_fls G] G
by (auto simp: fls_subdegree_fls_to_fps_gt0 has_fps_expansion_to_laurent)
moreover have open (ball 0 r1) 0 ∈ ball 0 r1

using r1 by auto
ultimately have eventually (λx. g x ∈ ball 0 r1) (at 0)

unfolding tendsto_def by blast
moreover have eventually (λx. deriv g x 6= 0) (at 0)
using G fps_to_fls_eq_0_iff has_fps_expansion_deriv has_fps_expansion_to_laurent

has_laurent_expansion_nonzero_imp_eventually_nonzero by blast
moreover have eventually (λx. x ∈ ball 0 (min r1 r2) − {0}) (at 0)

by (intro eventually_at_in_open) (use r1 r2 in auto)
ultimately show eventually (λx. deriv (f ◦ g) x / deriv g x = (deriv f ◦ g)

x) (at 0)
proof eventually_elim

case (elim x)
thus ?case using r1 r2

by (subst deriv_chain)
(auto simp: field_simps holomorphic_on_def at_within_open[of _ ball

_ _])
qed

qed auto
finally have GH : (deriv f ◦ g) has_laurent_expansion GH

unfolding GH_def .

have (deriv f ◦ g) has_laurent_expansion fps_to_fls (fps_expansion (deriv f
◦ g) 0)

by (rule analytic_at_imp_has_fps_expansion_0 analytic_intros has_laurent_expansion_fps
analytic_on_compose_gen ana_f ana_g)+ auto

with GH have GH = fps_to_fls (fps_expansion (deriv f ◦ g) 0)
using has_laurent_expansion_unique by blast

also have fls_subdegree . . . ≥ 0

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 470

by (simp add: fls_subdegree_fls_to_fps)
finally have subdeg ′: fls_subdegree GH ≥ 0 .

have deriv f has_fps_expansion fps_deriv F
by (intro fps_expansion_intros less.prems)

from this and GH have IH : fls_nth GH (int k) = fps_nth (fps_compose
(fps_deriv F) G) k

if k < n for k
by (intro less.IH that)

have fps_nth (fps_compose (fps_deriv F) G) n = (
∑

i=0 ..n. of_nat (Suc i)
∗ F $ Suc i ∗ G ^ i $ n)

by (simp add: fps_compose_nth)

have fps_nth (fps_compose F G) n =
fps_nth (fps_deriv (fps_compose F G)) (n − 1) / of_nat n

using n by (cases n) (auto simp del: of_nat_Suc)
also have fps_deriv (fps_compose F G) = fps_compose (fps_deriv F) G ∗

fps_deriv G
using G by (subst fps_compose_deriv) auto

also have fps_nth . . . (n − 1) = (
∑

i=0 ..n−1 . (fps_deriv F oo G) $ i ∗
fps_deriv G $ (n − 1 − i))

unfolding fps_mult_nth ..
also have . . . = (

∑
i=0 ..n−1 . fps_nth GH ′ i ∗ of_nat (n − i) ∗ G $ (n −

i))
using n by (intro sum.cong) (auto simp: IH Suc_diff_Suc GH ′_def)

also have . . . = (
∑

i=0 ..n. fps_nth GH ′ i ∗ of_nat (n − i) ∗ G $ (n − i))
by (intro sum.mono_neutral_left) auto

also have . . . = fps_nth (GH ′ ∗ Abs_fps (λi. of_nat i ∗ fps_nth G i)) n
by (simp add: fps_mult_nth mult_ac)

also have Abs_fps (λi. of_nat i ∗ fps_nth G i) = fps_X ∗ fps_deriv G
by (simp add: fps_mult_fps_X_deriv_shift)

also have fps_nth (GH ′ ∗ (fps_X ∗ fps_deriv G)) n =
fls_nth (fps_to_fls (GH ′ ∗ (fps_X ∗ fps_deriv G))) (int n)

by simp
also have fps_to_fls (GH ′ ∗ (fps_X ∗ fps_deriv G)) =

GH ∗ fps_to_fls (fps_deriv G) ∗ fls_X
using subdeg ′ by (simp add: mult_ac fls_times_fps_to_fls GH ′_def)

also have GH ∗ fps_to_fls (fps_deriv G) = fls_deriv H
unfolding GH_def using G by (simp add: fls_deriv_fps_to_fls)

also have fls_deriv H ∗ fls_X = fls_shift (−1) (fls_deriv H)
using fls_X_times_conv_shift(2) by blast

finally show ?thesis
using n by simp

qed
qed

lemma has_fps_expansion_compose [fps_expansion_intros]:
fixes f g :: complex ⇒ complex

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 471

assumes F : f has_fps_expansion F
assumes G: g has_fps_expansion G fps_nth G 0 = 0
shows (f ◦ g) has_fps_expansion fps_compose F G

proof (cases fps_deriv G = 0)
case False
have [simp]: g 0 = 0

using has_fps_expansion_imp_0_eq_fps_nth_0 [OF G(1)] G(2) False by
simp

have ana_f : f analytic_on {0}
using F by (meson has_fps_expansion_imp_analytic_0)

have ana_g: g analytic_on {0}
using G by (meson has_fps_expansion_imp_analytic_0)

have fg: (f ◦ g) has_fps_expansion fps_expansion (f ◦ g) 0
by (rule analytic_at_imp_has_fps_expansion_0 analytic_intros

analytic_on_compose_gen ana_f ana_g)+ auto

have fls_nth (fps_to_fls (fps_expansion (f ◦ g) 0)) (int n) = fps_nth (fps_compose
F G) n for n

by (rule fls_nth_compose_aux has_laurent_expansion_fps F G False fg)+
hence fps_expansion (f ◦ g) 0 = fps_compose F G

by (simp add: fps_eq_iff)
thus ?thesis using fg

by simp
next

case True
have [simp]: f 0 = fps_nth F 0

using F by (auto dest: has_fps_expansion_imp_0_eq_fps_nth_0)
from True have fps_nth G n = 0 for n

using G(2) by (cases n) (auto simp del: of_nat_Suc)
hence [simp]: G = 0

by (auto simp: fps_eq_iff)
have (λ_. f 0) has_fps_expansion fps_const (f 0)

by (intro fps_expansion_intros)
also have eventually (λx. g x = 0) (nhds 0)

using G by (auto simp: has_fps_expansion_def)
hence (λ_. f 0) has_fps_expansion fps_const (f 0)←→ (f ◦ g) has_fps_expansion

fps_const (f 0)
by (intro has_fps_expansion_cong) (auto elim!: eventually_mono)

thus ?thesis
by simp

qed

lemma has_fps_expansion_fps_to_fls:
assumes f has_laurent_expansion fps_to_fls F
shows (λz. if z = 0 then fps_nth F 0 else f z) has_fps_expansion F
(is ?f ′ has_fps_expansion _)

proof −
have f has_laurent_expansion fps_to_fls F ←→ ?f ′ has_laurent_expansion

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 472

fps_to_fls F
by (intro has_laurent_expansion_cong) (auto simp: eventually_at_filter)

with assms show ?thesis
by (auto simp: has_fps_expansion_to_laurent)

qed

lemma has_laurent_expansion_compose [laurent_expansion_intros]:
fixes f g :: complex ⇒ complex
assumes F : f has_laurent_expansion F
assumes G: g has_laurent_expansion fps_to_fls G fps_nth G 0 = 0 G 6= 0
shows (f ◦ g) has_laurent_expansion fls_compose_fps F G

proof −
from assms have lim_g: g −0→ 0

by (subst tendsto_0_subdegree_iff_0 [OF G(1)])
(auto simp: fls_subdegree_fls_to_fps subdegree_pos_iff)

have ev1 : eventually (λz. g z 6= 0) (at 0)
using ‹G 6= 0 › G(1) fps_to_fls_eq_0_iff has_laurent_expansion_fps

has_laurent_expansion_nonzero_imp_eventually_nonzero by blast
moreover have eventually (λz. z 6= 0) (at (0 :: complex))

by (auto simp: eventually_at_filter)
ultimately have ev: eventually (λz. z 6= 0 ∧ g z 6= 0) (at 0)

by eventually_elim blast
from ev1 and lim_g have lim_g ′: filterlim g (at 0) (at 0)

by (auto simp: filterlim_at)
define g ′ where g ′ = (λz. if z = 0 then fps_nth G 0 else g z)

show ?thesis
proof (cases F = 0)

assume [simp]: F = 0
have eventually (λz. f z = 0) (at 0)

using F by (auto simp: has_laurent_expansion_def)
hence eventually (λz. f (g z) = 0) (at 0)

using lim_g ′ by (rule eventually_compose_filterlim)
thus ?thesis

by (auto simp: has_laurent_expansion_def)
next

assume [simp]: F 6= 0
define n where n = fls_subdegree F
define f ′ where
f ′ = (λz. if z = 0 then fps_nth (fls_base_factor_to_fps F) 0 else f z ∗ z powi

−n)
have ((λz. (f ′ ◦ g ′) z ∗ g z powi n)) has_laurent_expansion fls_compose_fps

F G
unfolding f ′_def n_def fls_compose_fps_def g ′_def

by (intro fps_expansion_intros laurent_expansion_intros has_fps_expansion_fps_to_fls
has_fps_expansion_fls_base_factor_to_fps assms has_laurent_expansion_fps)

also have ?this ←→ ?thesis
by (intro has_laurent_expansion_cong eventually_mono[OF ev])

(auto simp: f ′_def power_int_minus g ′_def)

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 473

finally show ?thesis .
qed

qed

lemma has_laurent_expansion_fls_X_inv [laurent_expansion_intros]:
inverse has_laurent_expansion fls_X_inv
using has_laurent_expansion_inverse[OF has_laurent_expansion_fps_X]
by (simp add: fls_inverse_X)

lemma zorder_times_analytic:
assumes f analytic_on {z} g analytic_on {z}
assumes eventually (λz. f z ∗ g z 6= 0) (at z)
shows zorder (λz. f z ∗ g z) z = zorder f z + zorder g z

proof −
have ∗: (λw. f (z + w)) has_fps_expansion fps_expansion f z

(λw. g (z + w)) has_fps_expansion fps_expansion g z
(λw. f (z + w) ∗ g (z + w)) has_fps_expansion fps_expansion f z ∗

fps_expansion g z
by (intro fps_expansion_intros analytic_at_imp_has_fps_expansion assms)+

have [simp]: fps_expansion f z 6= 0
proof

assume fps_expansion f z = 0
hence eventually (λz. f z ∗ g z = 0) (at z) using ∗(1)

by (auto simp: has_fps_expansion_0_iff nhds_to_0 ′ eventually_filtermap
eventually_at_filter

elim: eventually_mono)
with assms(3) have eventually (λz. False) (at z)

by eventually_elim auto
thus False by simp

qed
have [simp]: fps_expansion g z 6= 0
proof

assume fps_expansion g z = 0
hence eventually (λz. f z ∗ g z = 0) (at z) using ∗(2)

by (auto simp: has_fps_expansion_0_iff nhds_to_0 ′ eventually_filtermap
eventually_at_filter

elim: eventually_mono)
with assms(3) have eventually (λz. False) (at z)

by eventually_elim auto
thus False by simp

qed
from ∗[THEN has_fps_expansion_zorder] show ?thesis

by auto
qed

lemma zorder_const [simp]: c 6= 0 =⇒ zorder (λ_. c) z = 0
by (intro zorder_eqI [where S = UNIV]) auto

lemma zorder_prod_analytic:

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 474

assumes
∧

x. x ∈ A =⇒ f x analytic_on {z}
assumes eventually (λz. (

∏
x∈A. f x z) 6= 0) (at z)

shows zorder (λz.
∏

x∈A. f x z) z = (
∑

x∈A. zorder (f x) z)
using assms

proof (induction A rule: infinite_finite_induct)
case (insert x A)
have zorder (λz. f x z ∗ (

∏
x∈A. f x z)) z = zorder (f x) z + zorder (λz.

∏
x∈A.

f x z) z
using insert.prems insert.hyps by (intro zorder_times_analytic analytic_intros)

auto
also have zorder (λz.

∏
x∈A. f x z) z = (

∑
x∈A. zorder (f x) z)

using insert.prems insert.hyps by (intro insert.IH) (auto elim!: eventually_mono)
finally show ?case using insert

by simp
qed auto

lemma zorder_eq_0I :
assumes g analytic_on {z} g z 6= 0
shows zorder g z = 0
using analytic_at assms zorder_eqI by fastforce

lemma zorder_pos_iff :
assumes f holomorphic_on A open A z ∈ A frequently (λz. f z 6= 0) (at z)
shows zorder f z > 0 ←→ f z = 0

proof −
have f analytic_on {z}

using assms analytic_at by blast
hence ∗: (λw. f (z + w)) has_fps_expansion fps_expansion f z

using analytic_at_imp_has_fps_expansion by blast
have nz: fps_expansion f z 6= 0
proof

assume fps_expansion f z = 0
hence eventually (λz. f z = 0) (nhds z)
using ∗ by (auto simp: has_fps_expansion_def nhds_to_0 ′ eventually_filtermap

add_ac)
hence eventually (λz. f z = 0) (at z)

by (auto simp: eventually_at_filter elim: eventually_mono)
with assms show False

by (auto simp: frequently_def)
qed
from has_fps_expansion_zorder [OF ∗ this] have eq: zorder f z = int (subdegree

(fps_expansion f z))
by auto

moreover have subdegree (fps_expansion f z) = 0 ←→ fps_nth (fps_expansion
f z) 0 6= 0

using nz by (auto simp: subdegree_eq_0_iff)
moreover have fps_nth (fps_expansion f z) 0 = f z

by (auto simp: fps_expansion_def)
ultimately show ?thesis

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 475

by auto
qed

lemma zorder_pos_iff ′:
assumes f analytic_on {z} frequently (λz. f z 6= 0) (at z)
shows zorder f z > 0 ←→ f z = 0
using analytic_at assms zorder_pos_iff by blast

lemma zorder_ge_0 :
assumes f analytic_on {z} frequently (λz. f z 6= 0) (at z)
shows zorder f z ≥ 0

proof −
have ∗: (λw. f (z + w)) has_laurent_expansion fps_to_fls (fps_expansion f z)
using assms by (simp add: analytic_at_imp_has_fps_expansion has_laurent_expansion_fps)

from ∗ assms(2) have fps_to_fls (fps_expansion f z) 6= 0
by (auto simp: has_laurent_expansion_def frequently_def at_to_0 ′ eventu-

ally_filtermap add_ac)
with has_laurent_expansion_zorder [OF ∗] show ?thesis

by (simp add: fls_subdegree_fls_to_fps)
qed

lemma zorder_eq_0_iff :
assumes f analytic_on {z} frequently (λw. f w 6= 0) (at z)
shows zorder f z = 0 ←→ f z 6= 0
using assms zorder_eq_0I zorder_pos_iff ′ by fastforce

lemma zorder_scale:
assumes f analytic_on {a ∗ z} eventually (λw. f w 6= 0) (at (a ∗ z)) a 6= 0
shows zorder (λw. f (a ∗ w)) z = zorder f (a ∗ z)

proof −
from assms(1) obtain r where r : r > 0 f holomorphic_on ball (a ∗ z) r

by (auto simp: analytic_on_def)
have ∗: open (ball (a ∗ z) r) connected (ball (a ∗ z) r) a ∗ z ∈ ball (a ∗ z) r

using r ‹a 6= 0 › by (auto simp: dist_norm)
from assms(2) have eventually (λw. f w 6= 0 ∧ w ∈ ball (a ∗ z) r − {a ∗ z})

(at (a ∗ z))
using ‹r > 0 › by (intro eventually_conj eventually_at_in_open) auto

then obtain z0 where f z0 6= 0 ∧ z0 ∈ ball (a ∗ z) r − {a ∗ z}
using eventually_happens[of _ at (a ∗ z)] by force

hence ∗∗: ∃w∈ball (a ∗ z) r . f w 6= 0
by blast

define n where n = nat (zorder f (a ∗ z))
obtain r ′ where r ′:

(if f (a ∗ z) = 0 then 0 < zorder f (a ∗ z) else zorder f (a ∗ z) = 0)
r ′ > 0 cball (a ∗ z) r ′ ⊆ ball (a ∗ z) r zor_poly f (a ∗ z) holomorphic_on

cball (a ∗ z) r ′∧
w. w ∈ cball (a ∗ z) r ′ =⇒
f w = zor_poly f (a ∗ z) w ∗ (w − a ∗ z) ^ n ∧ zor_poly f (a ∗ z) w 6= 0

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 476

unfolding n_def using zorder_exist_zero[OF r(2) ∗ ∗∗] by blast

show ?thesis
proof (rule zorder_eqI)

show open (ball z (r ′ / norm a)) z ∈ ball z (r ′ / norm a)
using r ‹r ′ > 0 › ‹a 6= 0 › by auto

have (∗) a ‘ ball z (r ′ / cmod a) ⊆ cball (a ∗ z) r ′

proof safe
fix w assume w ∈ ball z (r ′ / cmod a)
thus a ∗ w ∈ cball (a ∗ z) r ′

using dist_mult_left[of a z w] ‹a 6= 0 › by (auto simp: divide_simps mult_ac)
qed
thus (λw. a ^ n ∗ (zor_poly f (a ∗ z) ◦ (λw. a ∗ w)) w) holomorphic_on ball

z (r ′ / norm a)
using ‹a 6= 0 › by (intro holomorphic_on_compose_gen[OF _ r ′(4)] holo-

morphic_intros) auto
show a ^ n ∗ (zor_poly f (a ∗ z) ◦ (λw. a ∗ w)) z 6= 0

using r ′ ‹a 6= 0 › by auto
show f (a ∗ w) = a ^ n ∗ (zor_poly f (a ∗ z) ◦ (∗) a) w ∗ (w − z) powi (zorder

f (a ∗ z))
if w ∈ ball z (r ′ / norm a) w 6= z for w

proof −
have f (a ∗ w) = zor_poly f (a ∗ z) (a ∗ w) ∗ (a ∗ (w − z)) ^ n

using that r ′(5)[of a ∗ w] dist_mult_left[of a z w] ‹a 6= 0 › unfolding
ring_distribs

by (auto simp: divide_simps mult_ac)
also have . . . = a ^ n ∗ zor_poly f (a ∗ z) (a ∗ w) ∗ (w − z) ^ n

by (subst power_mult_distrib) (auto simp: mult_ac)
also have (w − z) ^ n = (w − z) powi of_nat n

by simp
also have of_nat n = zorder f (a ∗ z)

using r ′(1) by (auto simp: n_def split: if_splits)
finally show ?thesis

unfolding o_def n_def .
qed

qed
qed

lemma zorder_compose_aux:
assumes isolated_singularity_at f 0 not_essential f 0
assumes G: g has_fps_expansion G G 6= 0 g 0 = 0
assumes eventually (λw. f w 6= 0) (at 0)
shows zorder (f ◦ g) 0 = zorder f 0 ∗ subdegree G

proof −
obtain F where F : f has_laurent_expansion F

using not_essential_has_laurent_expansion_0 [OF assms(1 ,2)] by blast
have [simp]: fps_nth G 0 = 0
using G ‹g 0 = 0 › by (simp add: has_fps_expansion_imp_0_eq_fps_nth_0)

note [simp] = ‹G 6= 0 › ‹g 0 = 0 ›

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 477

have [simp]: F 6= 0
using has_laurent_expansion_eventually_nonzero_iff [of f 0 F] F assms by

simp
have FG: (f ◦ g) has_laurent_expansion fls_compose_fps F G

by (intro has_laurent_expansion_compose has_laurent_expansion_fps F G)
auto

have zorder (f ◦ g) 0 = fls_subdegree (fls_compose_fps F G)
using has_laurent_expansion_zorder_0 [OF FG] by (auto simp: fls_compose_fps_eq_0_iff)

also have . . . = fls_subdegree F ∗ int (subdegree G)
by simp

also have fls_subdegree F = zorder f 0
using has_laurent_expansion_zorder_0 [OF F] by auto

finally show ?thesis .
qed

lemma zorder_compose:
assumes isolated_singularity_at f (g z) not_essential f (g z)
assumes G: (λx. g (z + x) − g z) has_fps_expansion G G 6= 0
assumes eventually (λw. f w 6= 0) (at (g z))
shows zorder (f ◦ g) z = zorder f (g z) ∗ subdegree G

proof −
define f ′ where f ′ = (λw. f (g z + w))
define g ′ where g ′ = (λw. g (z + w) − g z)
have zorder f (g z) = zorder f ′ 0

by (simp add: f ′_def zorder_shift ′ add_ac)
have zorder (λx. g x − g z) z = zorder g ′ 0

by (simp add: g ′_def zorder_shift ′ add_ac)
have zorder (f ◦ g) z = zorder (f ′ ◦ g ′) 0

by (simp add: zorder_shift ′ f ′_def g ′_def add_ac o_def)
also have . . . = zorder f ′ 0 ∗ int (subdegree G)
proof (rule zorder_compose_aux)

show isolated_singularity_at f ′ 0 unfolding f ′_def
using assms has_laurent_expansion_isolated_0 not_essential_has_laurent_expansion

by blast
show not_essential f ′ 0 unfolding f ′_def
using assms has_laurent_expansion_not_essential_0 not_essential_has_laurent_expansion

by blast
qed (use assms in ‹auto simp: f ′_def g ′_def at_to_0 ′ eventually_filtermap

add_ac›)
also have zorder f ′ 0 = zorder f (g z)

by (simp add: f ′_def zorder_shift ′ add_ac)
finally show ?thesis .

qed

lemma fps_to_fls_eq_fls_const_iff [simp]: fps_to_fls F = fls_const c ←→ F =
fps_const c

using fps_to_fls_eq_iff by fastforce

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 478

lemma zorder_compose ′:
assumes isolated_singularity_at f (g z) not_essential f (g z)
assumes g analytic_on {z}
assumes eventually (λw. f w 6= 0) (at (g z))
assumes eventually (λw. g w 6= g z) (at z)
shows zorder (f ◦ g) z = zorder f (g z) ∗ zorder (λx. g x − g z) z

proof −
obtain G where G [fps_expansion_intros]: (λx. g (z + x)) has_fps_expansion

G
using assms analytic_at_imp_has_fps_expansion by blast

have G ′: (λx. g (z + x) − g z) has_fps_expansion G − fps_const (g z)
by (intro fps_expansion_intros)

hence G ′′: (λx. g (z + x) − g z) has_laurent_expansion fps_to_fls (G −
fps_const (g z))

using has_laurent_expansion_fps by blast
have nz: G − fps_const (g z) 6= 0

using has_laurent_expansion_eventually_nonzero_iff [OF G ′′] assms by auto
have zorder (f ◦ g) z = zorder f (g z) ∗ subdegree (G − fps_const (g z))
proof (rule zorder_compose)

show (λx. g (z + x) − g z) has_fps_expansion G − fps_const (g z)
by (intro fps_expansion_intros)

qed (use assms nz in auto)
also have int (subdegree (G − fps_const (g z))) = fls_subdegree (fps_to_fls G
− fls_const (g z))

by (simp flip: fls_subdegree_fls_to_fps)
also have . . . = zorder (λx. g x − g z) z

using has_laurent_expansion_zorder [OF G ′′] nz by auto
finally show ?thesis .

qed

lemma analytic_at_cong:
assumes eventually (λx. f x = g x) (nhds x) x = y
shows f analytic_on {x} ←→ g analytic_on {y}

proof −
have g analytic_on {x} if f analytic_on {x} eventually (λx. f x = g x) (nhds x)

for f g
proof −

have (λy. f (x + y)) has_fps_expansion fps_expansion f x
by (rule analytic_at_imp_has_fps_expansion) fact

also have ?this ←→ (λy. g (x + y)) has_fps_expansion fps_expansion f x
using that by (intro has_fps_expansion_cong refl) (auto simp: nhds_to_0 ′

eventually_filtermap)
finally show ?thesis

by (rule has_fps_expansion_imp_analytic)
qed
from this[of f g] this[of g f] show ?thesis using assms

by (auto simp: eq_commute)
qed

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 479

lemma has_laurent_expansion_sin ′ [laurent_expansion_intros]:
sin has_laurent_expansion fps_to_fls (fps_sin 1)
using has_fps_expansion_sin ′ has_fps_expansion_to_laurent by blast

lemma has_laurent_expansion_cos ′ [laurent_expansion_intros]:
cos has_laurent_expansion fps_to_fls (fps_cos 1)
using has_fps_expansion_cos ′ has_fps_expansion_to_laurent by blast

lemma has_laurent_expansion_sin [laurent_expansion_intros]:
(λz. sin (c ∗ z)) has_laurent_expansion fps_to_fls (fps_sin c)
by (intro has_laurent_expansion_fps has_fps_expansion_sin)

lemma has_laurent_expansion_cos [laurent_expansion_intros]:
(λz. cos (c ∗ z)) has_laurent_expansion fps_to_fls (fps_cos c)
by (intro has_laurent_expansion_fps has_fps_expansion_cos)

lemma has_laurent_expansion_tan ′ [laurent_expansion_intros]:
tan has_laurent_expansion fps_to_fls (fps_tan 1)
using has_fps_expansion_tan ′ has_fps_expansion_to_laurent by blast

lemma has_laurent_expansion_tan [laurent_expansion_intros]:
(λz. tan (c ∗ z)) has_laurent_expansion fps_to_fls (fps_tan c)
by (intro has_laurent_expansion_fps has_fps_expansion_tan)

8.5 More Laurent expansions
lemma has_laurent_expansion_frequently_zero_iff :

assumes (λw. f (z + w)) has_laurent_expansion F
shows frequently (λz. f z = 0) (at z) ←→ F = 0
using assms by (simp add: frequently_def has_laurent_expansion_eventually_nonzero_iff)

lemma has_laurent_expansion_eventually_zero_iff :
assumes (λw. f (z + w)) has_laurent_expansion F
shows eventually (λz. f z = 0) (at z) ←→ F = 0
using assms
by (metis has_laurent_expansion_frequently_zero_iff has_laurent_expansion_isolated

has_laurent_expansion_not_essential laurent_expansion_def
not_essential_frequently_0_imp_eventually_0 not_essential_has_laurent_expansion)

lemma has_laurent_expansion_frequently_nonzero_iff :
assumes (λw. f (z + w)) has_laurent_expansion F
shows frequently (λz. f z 6= 0) (at z) ←→ F 6= 0
using assms by (metis has_laurent_expansion_eventually_zero_iff not_eventually)

lemma has_laurent_expansion_sum_list [laurent_expansion_intros]:
assumes

∧
x. x ∈ set xs =⇒ f x has_laurent_expansion F x

shows (λy.
∑

x←xs. f x y) has_laurent_expansion (
∑

x←xs. F x)
using assms by (induction xs) (auto intro!: laurent_expansion_intros)

Laurent{_}{\kern 0pt}Convergence.html

Laurent_Convergence.thy 480

lemma has_laurent_expansion_prod_list [laurent_expansion_intros]:
assumes

∧
x. x ∈ set xs =⇒ f x has_laurent_expansion F x

shows (λy.
∏

x←xs. f x y) has_laurent_expansion (
∏

x←xs. F x)
using assms by (induction xs) (auto intro!: laurent_expansion_intros)

lemma has_laurent_expansion_sum_mset [laurent_expansion_intros]:
assumes

∧
x. x ∈# I =⇒ f x has_laurent_expansion F x

shows (λy.
∑

x∈#I . f x y) has_laurent_expansion (
∑

x∈#I . F x)
using assms by (induction I) (auto intro!: laurent_expansion_intros)

lemma has_laurent_expansion_prod_mset [laurent_expansion_intros]:
assumes

∧
x. x ∈# I =⇒ f x has_laurent_expansion F x

shows (λy.
∏

x∈#I . f x y) has_laurent_expansion (
∏

x∈#I . F x)
using assms by (induction I) (auto intro!: laurent_expansion_intros)

8.6 Formal convergence versus analytic convergence

The convergence of a sequence of formal power series and the convergence
of the functions in the complex plane do not imply each other:

• If we have the sequence of constant power series (1/n)n≥0, this clearly
converges to the zero function analytically, but as a series of formal
power series it is divergent (since the 0-th coefficient never stabilises).

• Conversely, the sequence of series (n!xn)n≥0 converges formally to 0,
but the corresponding sequence of functions diverges for every x 6= 0.
However, if the sequence of series converges to some limit series h and
the corresponding series of functions converges uniformly to some limit
function g(x), then h is also a series expansion of g(x), i.e. in that case,
formal and analytic convergence agree.

proposition uniform_limit_imp_fps_expansion_eq:
fixes f :: ′a ⇒ complex fps
assumes lim1 : (f −−−→ h) F
assumes lim2 : uniform_limit A (λx z. f ′ x z) g ′ F
assumes expansions: eventually (λx. f ′ x has_fps_expansion f x) F g ′ has_fps_expansion

g
assumes holo: eventually (λx. f ′ x holomorphic_on A) F
assumes A: open A 0 ∈ A
assumes nontriv [simp]: F 6= bot
shows g = h

proof (rule fps_ext)
fix n :: nat
have eventually (λx. fps_nth (f x) n = fps_nth h n) F

using lim1 unfolding tendsto_fps_iff by blast
hence eventually (λx. (deriv ^^ n) (f ′ x) 0 / fact n = fps_nth h n) F

Laurent{_}{\kern 0pt}Convergence.html

Meromorphic.thy 481

using expansions(1)
proof eventually_elim

case (elim x)
have fps_nth (f x) n = (deriv ^^ n) (f ′ x) 0 / fact n

by (rule fps_nth_fps_expansion) (use elim in auto)
with elim show ?case

by simp
qed
hence ((λx. (deriv ^^ n) (f ′ x) 0 / fact n) −−−→ fps_nth h n) F

by (simp add: tendsto_eventually)

moreover have ((λx. (deriv ^^ n) (f ′ x) 0) −−−→ (deriv ^^ n) g ′ 0) F
using lim2

proof (rule higher_deriv_complex_uniform_limit)
show eventually (λx. f ′ x holomorphic_on A) F

using holo by eventually_elim auto
qed (use A in auto)
hence ((λx. (deriv ^^ n) (f ′ x) 0 / fact n) −−−→ (deriv ^^ n) g ′ 0 / fact n) F

by (intro tendsto_divide) auto

ultimately have fps_nth h n = (deriv ^^ n) g ′ 0 / fact n
using tendsto_unique[OF nontriv] by blast

also have . . . = fps_nth g n
by (rule fps_nth_fps_expansion [symmetric]) fact

finally show fps_nth g n = fps_nth h n ..
qed

end

theory Meromorphic imports
Laurent_Convergence
Cauchy_Integral_Formula
HOL−Analysis.Sparse_In

begin

8.7 Remove singular points

This function takes a complex function and returns a version of it where all
removable singularities have been removed and all other singularities (to be
more precise, unremovable discontinuities) are set to 0.
This is very useful since it is sometimes difficult to avoid introducing re-
movable singularities. For example, consider the meromorphic functions
f(z) = z and g(z) = 1/z. Then a mathematician would write f(z)g(z) = 1,
but in Isabelle of course this is not so.
Using the remove_sings function, we indeed have remove_sings (λz. f z ∗
g z) = (λ_. 1).
definition remove_sings :: (complex ⇒ complex) ⇒ complex ⇒ complex where

Meromorphic.html

Meromorphic.thy 482

remove_sings f z = (if ∃ c. f −z→ c then Lim (at z) f else 0)

lemma remove_sings_eqI [intro]:
assumes f −z→ c
shows remove_sings f z = c
using assms unfolding remove_sings_def by (auto simp: tendsto_Lim)

lemma remove_sings_at_analytic [simp]:
assumes f analytic_on {z}
shows remove_sings f z = f z
using assms by (intro remove_sings_eqI) (simp add: analytic_at_imp_isCont

isContD)

lemma remove_sings_at_pole [simp]:
assumes is_pole f z
shows remove_sings f z = 0
using assms unfolding remove_sings_def is_pole_def
by (meson at_neq_bot not_tendsto_and_filterlim_at_infinity)

lemma eventually_remove_sings_eq_at:
assumes isolated_singularity_at f z
shows eventually (λw. remove_sings f w = f w) (at z)

proof −
from assms obtain r where r : r > 0 f analytic_on ball z r − {z}

by (auto simp: isolated_singularity_at_def)
hence ∗: f analytic_on {w} if w ∈ ball z r − {z} for w

using r that by (auto intro: analytic_on_subset)
have eventually (λw. w ∈ ball z r − {z}) (at z)

using r by (intro eventually_at_in_open) auto
thus ?thesis

by eventually_elim (auto simp: remove_sings_at_analytic ∗)
qed

lemma eventually_remove_sings_eq_nhds:
assumes f analytic_on {z}
shows eventually (λw. remove_sings f w = f w) (nhds z)

proof −
from assms obtain A where A: open A z ∈ A f holomorphic_on A

by (auto simp: analytic_at)
have eventually (λz. z ∈ A) (nhds z)

by (intro eventually_nhds_in_open A)
thus ?thesis
proof eventually_elim

case (elim w)
from elim have f analytic_on {w}

using A analytic_at by blast
thus ?case by auto

qed
qed

Meromorphic.html

Meromorphic.thy 483

lemma remove_sings_compose:
assumes filtermap g (at z) = at z ′

shows remove_sings (f ◦ g) z = remove_sings f z ′

proof (cases ∃ c. f −z ′→ c)
case True
then obtain c where c: f −z ′→ c

by auto
from c have remove_sings f z ′ = c

by blast
moreover from c have remove_sings (f ◦ g) z = c
using c by (intro remove_sings_eqI) (auto simp: filterlim_def filtermap_compose

assms)
ultimately show ?thesis

by simp
next

case False
hence ¬(∃ c. (f ◦ g) −z→ c)

by (auto simp: filterlim_def filtermap_compose assms)
with False show ?thesis

by (auto simp: remove_sings_def)
qed

lemma remove_sings_cong:
assumes eventually (λx. f x = g x) (at z) z = z ′

shows remove_sings f z = remove_sings g z ′

proof (cases ∃ c. f −z→ c)
case True
then obtain c where c: f −z→ c by blast
hence remove_sings f z = c

by blast
moreover have f −z→ c ←→ g −z ′→ c

using assms by (intro filterlim_cong refl) auto
with c have remove_sings g z ′ = c

by (intro remove_sings_eqI) auto
ultimately show ?thesis

by simp
next

case False
have f −z→ c ←→ g −z ′→ c for c

using assms by (intro filterlim_cong) auto
with False show ?thesis

by (auto simp: remove_sings_def)
qed

lemma deriv_remove_sings_at_analytic [simp]:
assumes f analytic_on {z}
shows deriv (remove_sings f) z = deriv f z

Meromorphic.html

Meromorphic.thy 484

apply (rule deriv_cong_ev)
apply (rule eventually_remove_sings_eq_nhds)
using assms by auto

lemma isolated_singularity_at_remove_sings [simp, intro]:
assumes isolated_singularity_at f z
shows isolated_singularity_at (remove_sings f) z
using isolated_singularity_at_cong[OF eventually_remove_sings_eq_at[OF assms]

refl] assms
by simp

lemma not_essential_remove_sings_iff [simp]:
assumes isolated_singularity_at f z
shows not_essential (remove_sings f) z ←→ not_essential f z
using not_essential_cong[OF eventually_remove_sings_eq_at[OF assms(1)]

refl]
by simp

lemma not_essential_remove_sings [intro]:
assumes isolated_singularity_at f z not_essential f z
shows not_essential (remove_sings f) z
by (subst not_essential_remove_sings_iff) (use assms in auto)

lemma
assumes isolated_singularity_at f z
shows is_pole_remove_sings_iff [simp]:

is_pole (remove_sings f) z ←→ is_pole f z
and zorder_remove_sings [simp]:

zorder (remove_sings f) z = zorder f z
and zor_poly_remove_sings [simp]:

zor_poly (remove_sings f) z = zor_poly f z
and has_laurent_expansion_remove_sings_iff [simp]:

(λw. remove_sings f (z + w)) has_laurent_expansion F ←→
(λw. f (z + w)) has_laurent_expansion F

and tendsto_remove_sings_iff [simp]:
remove_sings f −z→ c ←→ f −z→ c

by (intro is_pole_cong eventually_remove_sings_eq_at refl zorder_cong
zor_poly_cong has_laurent_expansion_cong ′ tendsto_cong assms)+

lemma remove_sings_has_laurent_expansion [laurent_expansion_intros]:
assumes f has_laurent_expansion F
shows remove_sings f has_laurent_expansion F

proof −
have remove_sings f has_laurent_expansion F ←→ f has_laurent_expansion F
proof (rule has_laurent_expansion_cong)

have isolated_singularity_at f 0
using assms by (metis has_laurent_expansion_isolated_0)

thus eventually (λx. remove_sings f x = f x) (at 0)
by (rule eventually_remove_sings_eq_at)

Meromorphic.html

Meromorphic.thy 485

qed auto
with assms show ?thesis

by simp
qed

lemma get_all_poles_from_remove_sings:
fixes f :: complex ⇒ complex
defines ff≡remove_sings f
assumes f_holo:f holomorphic_on s − pts and finite pts

pts⊆s open s and not_ess:∀ x∈pts. not_essential f x
obtains pts ′ where

pts ′ ⊆ pts finite pts ′ ff holomorphic_on s − pts ′ ∀ x∈pts ′. is_pole ff x
proof −

define pts ′ where pts ′ = {x∈pts. is_pole f x}

have pts ′ ⊆ pts unfolding pts ′_def by auto
then have finite pts ′ using ‹finite pts›

using rev_finite_subset by blast
then have open (s − pts ′) using ‹open s›

by (simp add: finite_imp_closed open_Diff)

have isolated:isolated_singularity_at f z if z∈pts for z
proof (rule isolated_singularity_at_holomorphic)

show f holomorphic_on (s−(pts−{z})) − {z}
by (metis Diff_insert f_holo insert_Diff that)

show open (s − (pts − {z}))
by (meson assms(3) assms(5) finite_Diff finite_imp_closed open_Diff)

show z ∈ s − (pts − {z})
using assms(4) that by auto

qed

have ff holomorphic_on s − pts ′

proof (rule no_isolated_singularity ′)
show (ff −−−→ ff z) (at z within s − pts ′) if z ∈ pts−pts ′ for z
proof −

have at z within s − pts ′ = at z
apply (rule at_within_open)
using ‹open (s − pts ′)› that ‹pts⊆s› by auto

moreover have ff −z→ ff z
unfolding ff_def

proof (subst tendsto_remove_sings_iff)
show isolated_singularity_at f z

apply (rule isolated)
using that by auto

have not_essential f z
using not_ess that by auto

moreover have ¬is_pole f z
using that unfolding pts ′_def by auto

ultimately have ∃ c. f −z→ c

Meromorphic.html

Meromorphic.thy 486

unfolding not_essential_def by auto
then show f −z→ remove_sings f z

using remove_sings_eqI by blast
qed
ultimately show ?thesis by auto

qed
have ff holomorphic_on s − pts

using f_holo
proof (elim holomorphic_transform)

fix x assume x ∈ s − pts
then have f analytic_on {x}

using assms(3) assms(5) f_holo
by (meson finite_imp_closed

holomorphic_on_imp_analytic_at open_Diff)
from remove_sings_at_analytic[OF this]
show f x = ff x unfolding ff_def by auto

qed
then show ff holomorphic_on s − pts ′ − (pts − pts ′)

apply (elim holomorphic_on_subset)
by blast

show open (s − pts ′)
by (simp add: ‹open (s − pts ′)›)

show finite (pts − pts ′)
by (simp add: assms(3))

qed
moreover have ∀ x∈pts ′. is_pole ff x

unfolding pts ′_def
using ff_def is_pole_remove_sings_iff isolated by blast

moreover note ‹pts ′ ⊆ pts› ‹finite pts ′›
ultimately show ?thesis using that by auto

qed

lemma remove_sings_eq_0_iff :
assumes not_essential f w
shows remove_sings f w = 0 ←→ is_pole f w ∨ f −w→ 0

proof (cases is_pole f w)
case False
then obtain c where c:f −w→ c

using ‹not_essential f w› unfolding not_essential_def by auto
then show ?thesis

using False remove_sings_eqI by auto
qed simp

lemma remove_sings_analytic_at:
assumes isolated_singularity_at f z f −z→ c
shows remove_sings f analytic_on {z}

proof −
from assms(1) obtain A where A: open A z ∈ A f holomorphic_on (A − {z})
using analytic_imp_holomorphic isolated_singularity_at_iff_analytic_nhd by

Meromorphic.html

Meromorphic.thy 487

auto
have ana: f analytic_on (A − {z})

by (subst analytic_on_open) (use A in auto)

have remove_sings f holomorphic_on A
proof (rule no_isolated_singularity)

have f holomorphic_on (A − {z})
by fact

moreover have remove_sings f holomorphic_on (A − {z}) ←→ f holomor-
phic_on (A − {z})

by (intro holomorphic_cong remove_sings_at_analytic) (auto intro!: ana-
lytic_on_subset[OF ana])

ultimately show remove_sings f holomorphic_on (A − {z})
by blast

hence continuous_on (A−{z}) (remove_sings f)
by (intro holomorphic_on_imp_continuous_on)

moreover have isCont (remove_sings f) z
using assms isCont_def remove_sings_eqI tendsto_remove_sings_iff by

blast
ultimately show continuous_on A (remove_sings f)

by (metis A(1) DiffI closed_singleton continuous_on_eq_continuous_at
open_Diff singletonD)

qed (use A(1) in auto)
thus ?thesis

using A(1 ,2) analytic_at by blast
qed

lemma remove_sings_analytic_on:
assumes f analytic_on A
shows remove_sings f analytic_on A

proof −
from assms obtain B where B: open B A ⊆ B f holomorphic_on B

by (metis analytic_on_holomorphic)
have remove_sings f holomorphic_on B ←→ f holomorphic_on B
proof (rule holomorphic_cong)

fix z assume z ∈ B
have f analytic_on {z}

using ‹z ∈ B› B holomorphic_on_imp_analytic_at by blast
thus remove_sings f z = f z

by (rule remove_sings_at_analytic)
qed auto
thus ?thesis

using B analytic_on_holomorphic by blast
qed

lemma residue_remove_sings [simp]:
assumes isolated_singularity_at f z
shows residue (remove_sings f) z = residue f z

proof −

Meromorphic.html

Meromorphic.thy 488

from assms have eventually (λw. remove_sings f w = f w) (at z)
using eventually_remove_sings_eq_at by blast

then obtain A where A: open A z ∈ A
∧

w. w ∈ A − {z} =⇒ remove_sings f
w = f w

by (subst (asm) eventually_at_topological) blast
from A(1 ,2) obtain ε where ε: ε > 0 cball z ε ⊆ A

using open_contains_cball_eq by blast
hence eq: remove_sings f w = f w if w ∈ cball z ε − {z} for w

using that A ε by blast

define P where P = (λf c ε. (f has_contour_integral of_real (2 ∗ pi) ∗ i ∗ c)
(circlepath z ε))

have P (remove_sings f) c δ ←→ P f c δ if 0 < δ δ < ε for c δ
unfolding P_def using ‹ε > 0 › that by (intro has_contour_integral_cong)

(auto simp: eq)
hence ∗: (∀ ε>0 . ε < e −→ P (remove_sings f) c ε) ←→ (∀ ε>0 . ε < e −→ P

f c ε) if e ≤ ε for c e
using that by force

have ∗∗: (∃ e>0 . ∀ ε>0 . ε < e −→ P (remove_sings f) c ε) ←→ (∃ e>0 . ∀ ε>0 .
ε < e −→ P f c ε) for c

proof
assume (∃ e>0 . ∀ ε>0 . ε < e −→ P (remove_sings f) c ε)
then obtain e where e > 0 ∀ ε>0 . ε < e −→ P (remove_sings f) c ε

by blast
thus (∃ e>0 . ∀ ε>0 . ε < e −→ P f c ε)

by (intro exI [of _ min e ε]) (use ∗[of min e ε c] ε(1) in auto)
next

assume (∃ e>0 . ∀ ε>0 . ε < e −→ P f c ε)
then obtain e where e > 0 ∀ ε>0 . ε < e −→ P f c ε

by blast
thus (∃ e>0 . ∀ ε>0 . ε < e −→ P (remove_sings f) c ε)

by (intro exI [of _ min e ε]) (use ∗[of min e ε c] ε(1) in auto)
qed
show ?thesis
unfolding residue_def by (intro arg_cong[of _ _ Eps] ext ∗∗[unfolded P_def])

qed

lemma remove_sings_shift_0 :
remove_sings f z = remove_sings (λw. f (z + w)) 0

proof (cases ∃ c. f −z→ c)
case True
then obtain c where c: f −z→ c

by blast
from c have remove_sings f z = c

by (rule remove_sings_eqI)
moreover have remove_sings (λw. f (z + w)) 0 = c
by (rule remove_sings_eqI) (use c in ‹simp_all add: at_to_0 ′ filterlim_filtermap

add_ac›)
ultimately show ?thesis

Meromorphic.html

Meromorphic.thy 489

by simp
next

case False
hence ¬(∃ c. (λw. f (z + w)) −0→ c)

by (simp add: at_to_0 ′ filterlim_filtermap add_ac)
with False show ?thesis

by (simp add: remove_sings_def)
qed

lemma remove_sings_shift_0 ′:
NO_MATCH 0 z =⇒ remove_sings f z = remove_sings (λw. f (z + w)) 0
by (rule remove_sings_shift_0)

8.8 Meromorphicity

We define meromorphicity in terms of Laurent series expansions. This has
the advantage of giving us a particularly simple definition that makes many
of the lemmas below trivial because they reduce to similar statements about
Laurent series that are already in the library.
On open domains, this definition coincides with the usual one from the
literature, namely that the function be holomorphic on its domain except
for a set of non-essential singularities that is sparse, i.e. that has no limit
point inside the domain.
However, unlike the definitions found in the literature, our definition also
makes sense for non-open domains: similarly to (analytic_on), we consider
a function meromorphic on a non-open domain if it is meromorphic on some
open superset of that domain.
We will prove all of this below.
definition meromorphic_on :: (complex ⇒ complex) ⇒ complex set ⇒ bool
(infixl ‹(meromorphic ′_on)› 50) where
f meromorphic_on A ←→ (∀ z∈A. ∃F . (λw. f (z + w)) has_laurent_expansion

F)

lemma meromorphic_at_iff : f meromorphic_on {z} ←→ isolated_singularity_at
f z ∧ not_essential f z

unfolding meromorphic_on_def
by (metis has_laurent_expansion_isolated has_laurent_expansion_not_essential

insertI1 singletonD not_essential_has_laurent_expansion)

named_theorems meromorphic_intros

lemma meromorphic_on_empty [simp, intro]: f meromorphic_on {}
by (auto simp: meromorphic_on_def)

lemma meromorphic_on_def ′:
f meromorphic_on A ←→ (∀ z∈A. (λw. f (z + w)) has_laurent_expansion lau-

rent_expansion f z)

Meromorphic.html

Meromorphic.thy 490

unfolding meromorphic_on_def using laurent_expansion_eqI by blast

lemma meromorphic_on_meromorphic_at: f meromorphic_on A ←→ (∀ x∈A. f
meromorphic_on {x})

by (auto simp: meromorphic_on_def)

lemma meromorphic_on_altdef :
f meromorphic_on A ←→ (∀ z∈A. isolated_singularity_at f z ∧ not_essential f

z)
by (subst meromorphic_on_meromorphic_at) (auto simp: meromorphic_at_iff)

lemma meromorphic_on_cong:
assumes

∧
z. z ∈ A =⇒ eventually (λw. f w = g w) (at z) A = B

shows f meromorphic_on A ←→ g meromorphic_on B
unfolding meromorphic_on_def using assms
by (intro ball_cong refl arg_cong[of _ _ Ex] has_laurent_expansion_cong ext)

(simp_all add: at_to_0 ′ eventually_filtermap add_ac)

lemma meromorphic_on_subset: f meromorphic_on A =⇒ B ⊆ A =⇒ f mero-
morphic_on B

by (auto simp: meromorphic_on_def)

lemma meromorphic_on_Un:
assumes f meromorphic_on A f meromorphic_on B
shows f meromorphic_on (A ∪ B)
using assms unfolding meromorphic_on_def by blast

lemma meromorphic_on_Union:
assumes

∧
A. A ∈ B =⇒ f meromorphic_on A

shows f meromorphic_on (
⋃

B)
using assms unfolding meromorphic_on_def by blast

lemma meromorphic_on_UN :
assumes

∧
x. x ∈ X =⇒ f meromorphic_on (A x)

shows f meromorphic_on (
⋃

x∈X . A x)
using assms unfolding meromorphic_on_def by blast

lemma meromorphic_on_imp_has_laurent_expansion:
assumes f meromorphic_on A z ∈ A
shows (λw. f (z + w)) has_laurent_expansion laurent_expansion f z
using assms laurent_expansion_eqI unfolding meromorphic_on_def by blast

lemma meromorphic_on_open_nhd:
assumes f meromorphic_on A
obtains B where open B A ⊆ B f meromorphic_on B

proof −
obtain F where F :

∧
z. z ∈ A =⇒ (λw. f (z + w)) has_laurent_expansion F z

using assms unfolding meromorphic_on_def by metis
have ∃Z . open Z ∧ z ∈ Z ∧ (∀w∈Z−{z}. eval_fls (F z) (w − z) = f w) if z: z

Meromorphic.html

Meromorphic.thy 491

∈ A for z
proof −

obtain Z where Z : open Z 0 ∈ Z
∧

w. w ∈ Z − {0} =⇒ eval_fls (F z) w =
f (z + w)

using F [OF z] unfolding has_laurent_expansion_def eventually_at_topological
by blast

hence open ((+) z ‘ Z) and z ∈ (+) z ‘ Z
using open_translation by auto

moreover have eval_fls (F z) (w − z) = f w if w ∈ (+) z ‘ Z − {z} for w
using Z (3)[of w − z] that by auto

ultimately show ?thesis by blast
qed
then obtain Z where Z :∧

z. z ∈ A =⇒ open (Z z) ∧ z ∈ Z z ∧ (∀w∈Z z−{z}. eval_fls (F z) (w − z)
= f w)

by metis

define B where B = (
⋃

z∈A. Z z ∩ eball z (fls_conv_radius (F z)))
show ?thesis
proof (rule that[of B])

show open B
using Z unfolding B_def by auto

show A ⊆ B
unfolding B_def using F Z by (auto simp: has_laurent_expansion_def

zero_ereal_def)
show f meromorphic_on B

unfolding meromorphic_on_def
proof

fix z assume z: z ∈ B
show ∃F . (λw. f (z + w)) has_laurent_expansion F
proof (cases z ∈ A)

case True
thus ?thesis using F by blast

next
case False

then obtain z0 where z0 : z0 ∈ A z ∈ Z z0 − {z0} dist z0 z <
fls_conv_radius (F z0)

using z False Z unfolding B_def by auto
hence (λw. eval_fls (F z0) (w − z0)) analytic_on {z}

by (intro analytic_on_eval_fls ′ analytic_intros) (auto simp: dist_norm)
also have ?this ←→ f analytic_on {z}
proof (intro analytic_at_cong refl)

have eventually (λw. w ∈ Z z0 − {z0}) (nhds z)
using Z [of z0] z0 by (intro eventually_nhds_in_open) auto

thus ∀ F x in nhds z. eval_fls (F z0) (x − z0) = f x
by eventually_elim (use Z [of z0] z0 in auto)

qed
finally show ?thesis
using analytic_at_imp_has_fps_expansion has_fps_expansion_to_laurent

Meromorphic.html

Meromorphic.thy 492

by blast
qed

qed
qed

qed

lemma meromorphic_on_not_essential:
assumes f meromorphic_on {z}
shows not_essential f z
using assms has_laurent_expansion_not_essential unfolding meromorphic_on_def

by blast

lemma meromorphic_on_isolated_singularity:
assumes f meromorphic_on {z}
shows isolated_singularity_at f z
using assms has_laurent_expansion_isolated unfolding meromorphic_on_def

by blast

lemma meromorphic_on_imp_not_islimpt_singularities:
assumes f meromorphic_on A z ∈ A
shows ¬z islimpt {w. ¬f analytic_on {w}}

proof −
obtain B where B: open B A ⊆ B f meromorphic_on B

using assms meromorphic_on_open_nhd by blast
obtain F where F : (λw. f (z + w)) has_laurent_expansion F

using B assms(2) unfolding meromorphic_on_def by blast
from F have isolated_singularity_at f z

using has_laurent_expansion_isolated assms(2) by blast
then obtain r where r : r > 0 f analytic_on ball z r − {z}

unfolding isolated_singularity_at_def by blast
have f analytic_on {w} if w ∈ ball z r − {z} for w

by (rule analytic_on_subset[OF r(2)]) (use that in auto)
hence eventually (λw. f analytic_on {w}) (at z)

using eventually_at_in_open[of ball z r z] ‹r > 0 › by (auto elim!: eventu-
ally_mono)

thus ¬z islimpt {w. ¬f analytic_on {w}}
by (auto simp: islimpt_conv_frequently_at frequently_def)

qed

lemma meromorphic_on_imp_sparse_singularities:
assumes f meromorphic_on A
shows {w. ¬f analytic_on {w}} sparse_in A
by (metis assms meromorphic_on_imp_not_islimpt_singularities

meromorphic_on_open_nhd sparse_in_open sparse_in_subset)

lemma meromorphic_on_imp_sparse_singularities ′:
assumes f meromorphic_on A
shows {w∈A. ¬f analytic_on {w}} sparse_in A
using meromorphic_on_imp_sparse_singularities[OF assms]

Meromorphic.html

Meromorphic.thy 493

by (rule sparse_in_subset2) auto

lemma meromorphic_onE :
assumes f meromorphic_on A
obtains pts where pts ⊆ A pts sparse_in A f analytic_on A − pts∧

z. z ∈ A =⇒ not_essential f z
∧

z. z ∈ A =⇒ isolated_singularity_at f z
proof (rule that)

show {z ∈ A. ¬ f analytic_on {z}} sparse_in A
using assms by (rule meromorphic_on_imp_sparse_singularities ′)

show f analytic_on A − {z ∈ A. ¬ f analytic_on {z}}
by (subst analytic_on_analytic_at) auto

qed (use assms in ‹auto intro: meromorphic_on_isolated_singularity meromor-
phic_on_not_essential meromorphic_on_subset›)

lemma meromorphic_onI_weak:
assumes f analytic_on A − pts

∧
z. z ∈ pts =⇒ not_essential f z pts sparse_in

A
pts ∩ frontier A = {}

shows f meromorphic_on A
unfolding meromorphic_on_def

proof
fix z assume z: z ∈ A
show (∃F . (λw. f (z + w)) has_laurent_expansion F)
proof (cases z ∈ pts)

case False
have f analytic_on {z}

using assms(1) by (rule analytic_on_subset) (use False z in auto)
thus ?thesis

using isolated_singularity_at_analytic not_essential_analytic
not_essential_has_laurent_expansion by blast

next
case True
show ?thesis
proof (rule exI , rule not_essential_has_laurent_expansion)

show not_essential f z
using assms(2) True by blast

next
show isolated_singularity_at f z
proof (rule isolated_singularity_at_holomorphic)

show open (interior A − (pts − {z}))
proof (rule open_diff_sparse_pts)

show pts − {z} sparse_in interior A
using sparse_in_subset sparse_in_subset2 assms interior_subset

Diff_subset by metis
qed auto

next
have f analytic_on interior A − (pts − {z}) − {z}

using assms(1) by (rule analytic_on_subset) (use interior_subset in
blast)

Meromorphic.html

Meromorphic.thy 494

thus f holomorphic_on interior A − (pts − {z}) − {z}
by (rule analytic_imp_holomorphic)

next
from assms(4) and True have z ∈ interior A

unfolding frontier_def using closure_subset z by blast
thus z ∈ interior A − (pts − {z})

by blast
qed

qed
qed

qed

lemma meromorphic_onI_open:
assumes open A f analytic_on A − pts

∧
z. z ∈ pts =⇒ not_essential f z

assumes
∧

z. z ∈ A =⇒ ¬z islimpt pts ∩ A
shows f meromorphic_on A

proof (rule meromorphic_onI_weak)
have ∗: A − pts ∩ A = A − pts

by blast
show f analytic_on A − pts ∩ A

unfolding ∗ by fact
show pts ∩ A sparse_in A

using assms(1 ,4) by (subst sparse_in_open) auto
show not_essential f z if z ∈ pts ∩ A for z

using assms(3) that by blast
show pts ∩ A ∩ frontier A = {}

using ‹open A› frontier_disjoint_eq by blast
qed

lemma meromorphic_at_isCont_imp_analytic:
assumes f meromorphic_on {z} isCont f z
shows f analytic_on {z}

proof −
have ∗: (λw. f (z + w)) has_laurent_expansion laurent_expansion f z

using assms by (auto intro: meromorphic_on_imp_has_laurent_expansion)
from assms have ¬is_pole f z

using is_pole_def not_tendsto_and_filterlim_at_infinity trivial_limit_at by
(metis isContD)

with ∗ have fls_subdegree (laurent_expansion f z) ≥ 0
using has_laurent_expansion_imp_is_pole linorder_not_le by blast

hence ∗∗: (λw. eval_fls (laurent_expansion f z) (w − z)) analytic_on {z}
by (intro analytic_intros)+ (use ∗ in ‹auto simp: has_laurent_expansion_def

zero_ereal_def ›)
have (λw. eval_fls (laurent_expansion f z) (w − z)) −z→ eval_fls (laurent_expansion

f z) (z − z)
by (intro isContD analytic_at_imp_isCont ∗∗)

also have ?this ←→ f −z→ eval_fls (laurent_expansion f z) (z − z)
by (intro filterlim_cong refl)
(use ∗ in ‹auto simp: has_laurent_expansion_def at_to_0 ′ eventually_filtermap

Meromorphic.html

Meromorphic.thy 495

add_ac›)
finally have f −z→ eval_fls (laurent_expansion f z) 0

by simp
moreover from assms have f −z→ f z

by (auto intro: isContD)
ultimately have ∗∗∗: eval_fls (laurent_expansion f z) 0 = f z

by (rule LIM_unique)

have eventually (λw. f w = eval_fls (laurent_expansion f z) (w − z)) (at z)
using ∗ by (simp add: has_laurent_expansion_def at_to_0 ′ eventually_filtermap

add_ac eq_commute)
hence eventually (λw. f w = eval_fls (laurent_expansion f z) (w − z)) (nhds z)

unfolding eventually_at_filter by eventually_elim (use ∗∗∗ in auto)
hence f analytic_on {z} ←→ (λw. eval_fls (laurent_expansion f z) (w − z))

analytic_on {z}
by (intro analytic_at_cong refl)

with ∗∗ show ?thesis
by simp

qed

lemma analytic_on_imp_meromorphic_on:
assumes f analytic_on A
shows f meromorphic_on A
by (rule meromorphic_onI_weak[of _ _ {}]) (use assms in auto)

lemma meromorphic_on_compose:
assumes g meromorphic_on A f analytic_on B f ‘ B ⊆ A
shows (λw. g (f w)) meromorphic_on B
unfolding meromorphic_on_def

proof safe
fix z assume z: z ∈ B
have f analytic_on {z}

using assms(2) by (rule analytic_on_subset) (use assms(3) z in auto)
hence (λw. f w − f z) analytic_on {z}

by (intro analytic_intros)
then obtain F where F : (λw. f (z + w) − f z) has_fps_expansion F

using analytic_at_imp_has_fps_expansion by blast

from assms(3) and z have f z ∈ A
by auto

with assms(1) obtain G where G: (λw. g (f z + w)) has_laurent_expansion
G

using z by (auto simp: meromorphic_on_def)

have ∃H . ((λw. g (f z + w)) ◦ (λw. f (z + w) − f z)) has_laurent_expansion H
proof (cases F = 0)

case False
show ?thesis
proof (rule exI , rule has_laurent_expansion_compose)

Meromorphic.html

Meromorphic.thy 496

show (λw. f (z + w) − f z) has_laurent_expansion fps_to_fls F
using F by (rule has_laurent_expansion_fps)

show fps_nth F 0 = 0
using has_fps_expansion_imp_0_eq_fps_nth_0 [OF F] by simp

qed fact+
next

case True
have (λw. g (f z)) has_laurent_expansion fls_const (g (f z))

by auto
also have ?this ←→ (λw. ((λw. g (f z + w)) ◦ (λw. f (z + w) − f z)) w)

has_laurent_expansion fls_const (g (f z))
proof (rule has_laurent_expansion_cong, goal_cases)

case 1
from F and True have eventually (λw. f (z + w) − f z = 0) (nhds 0)

by (simp add: has_fps_expansion_0_iff)
hence eventually (λw. f (z + w) − f z = 0) (at 0)

by (simp add: eventually_nhds_conv_at)
thus ?case

by eventually_elim auto
qed auto
finally show ?thesis

by blast
qed
thus ∃H . (λw. g (f (z + w))) has_laurent_expansion H

by (simp add: o_def)
qed

lemma constant_on_imp_meromorphic_on:
assumes f constant_on A open A
shows f meromorphic_on A
using assms analytic_on_imp_meromorphic_on

constant_on_imp_analytic_on
by blast

8.9 Nice meromorphicity

This is probably very non-standard, but we call a function “nicely mero-
morphic” if it is meromorphic and has no removable singularities. That
means that the only singularities are poles. We furthermore require that
the function return 0 at any pole, for convenience.
definition nicely_meromorphic_on :: (complex ⇒ complex)⇒ complex set ⇒ bool

(infixl ‹(nicely ′_meromorphic ′_on)› 50)
where f nicely_meromorphic_on A ←→ f meromorphic_on A
∧ (∀ z∈A. (is_pole f z ∧ f z=0) ∨ f −z→ f z)

lemma nicely_meromorphic_on_subset:
f nicely_meromorphic_on A =⇒ B ⊆ A =⇒ f nicely_meromorphic_on B
using meromorphic_on_subset unfolding nicely_meromorphic_on_def by blast

Meromorphic.html

Meromorphic.thy 497

lemma constant_on_imp_nicely_meromorphic_on:
assumes f constant_on A open A
shows f nicely_meromorphic_on A
by (meson analytic_at_imp_isCont assms

constant_on_imp_holomorphic_on
constant_on_imp_meromorphic_on
holomorphic_on_imp_analytic_at isCont_def
nicely_meromorphic_on_def)

lemma nicely_meromorphic_on_imp_analytic_at:
assumes f nicely_meromorphic_on A z ∈ A ¬is_pole f z
shows f analytic_on {z}

proof (rule meromorphic_at_isCont_imp_analytic)
show f meromorphic_on {z}
by (rule meromorphic_on_subset[of _ A]) (use assms in ‹auto simp: nicely_meromorphic_on_def ›)

next
from assms have f −z→ f z

by (auto simp: nicely_meromorphic_on_def)
thus isCont f z

by (auto simp: isCont_def)
qed

lemma analytic_on_imp_nicely_meromorphic_on:
f analytic_on A =⇒ f nicely_meromorphic_on A
by (meson analytic_at_imp_isCont analytic_on_analytic_at

analytic_on_imp_meromorphic_on isContD nicely_meromorphic_on_def)

lemma remove_sings_meromorphic [meromorphic_intros]:
assumes f meromorphic_on A
shows remove_sings f meromorphic_on A
unfolding meromorphic_on_def

proof safe
fix z assume z: z ∈ A
show ∃F . (λw. remove_sings f (z + w)) has_laurent_expansion F
using assms meromorphic_on_isolated_singularity meromorphic_on_not_essential

not_essential_has_laurent_expansion z meromorphic_on_subset by blast
qed

lemma remove_sings_nicely_meromorphic:
assumes f meromorphic_on A
shows remove_sings f nicely_meromorphic_on A

proof −
have remove_sings f meromorphic_on A

by (simp add: assms remove_sings_meromorphic)
moreover have is_pole (remove_sings f) z

∧ remove_sings f z = 0 ∨
remove_sings f −z→ remove_sings f z

if z∈A for z

Meromorphic.html

Meromorphic.thy 498

proof (cases ∃ c. f −z→ c)
case True
then have remove_sings f −z→ remove_sings f z

by (metis remove_sings_eqI tendsto_remove_sings_iff
assms meromorphic_onE that)

then show ?thesis by simp
next

case False
then have is_pole (remove_sings f) z
∧ remove_sings f z = 0

by (meson is_pole_remove_sings_iff remove_sings_def
remove_sings_eq_0_iff assms meromorphic_onE that)

then show ?thesis by simp
qed
ultimately show ?thesis

unfolding nicely_meromorphic_on_def by simp
qed

A nicely meromorphic function that frequently takes the same value in the
neighbourhood of some point is constant.
lemma frequently_eq_meromorphic_imp_constant:

assumes frequently (λz. f z = c) (at z)
assumes f nicely_meromorphic_on A open A connected A z ∈ A
shows

∧
w. w ∈ A =⇒ f w = c

proof −
from assms(2) have mero: f meromorphic_on A

by (auto simp: nicely_meromorphic_on_def)
have sparse: {z. is_pole f z} sparse_in A

using assms(2) mero
by (meson assms(3) meromorphic_on_isolated_singularity meromorphic_on_meromorphic_at

not_islimpt_poles sparse_in_open)

have eq: f w = c if w: w ∈ A ¬is_pole f w for w
proof −

have f w − c = 0
proof (rule analytic_continuation[of λw. f w − c])

show (λw. f w − c) holomorphic_on {z∈A. ¬is_pole f z} using assms(2)
by (intro holomorphic_intros)
(metis (mono_tags, lifting) analytic_imp_holomorphic analytic_on_analytic_at

mem_Collect_eq nicely_meromorphic_on_imp_analytic_at)
next

from sparse and assms(3) have open (A − {z. is_pole f z})
by (simp add: open_diff_sparse_pts)

also have A − {z. is_pole f z} = {z∈A. ¬is_pole f z}
by blast

finally show open
next

from sparse have connected (A − {z. is_pole f z})

Meromorphic.html

Meromorphic.thy 499

using assms(3 ,4) by (intro sparse_imp_connected) auto
also have A − {z. is_pole f z} = {z∈A. ¬is_pole f z}

by blast
finally show connected

next
have eventually (λw. w ∈ A) (at z)

using assms by (intro eventually_at_in_open ′) auto
moreover have eventually (λw. ¬is_pole f w) (at z) using mero

by (metis assms(5) eventually_not_pole meromorphic_onE)
ultimately have ev: eventually (λw. w ∈ A ∧ ¬is_pole f w) (at z)

by eventually_elim auto
show z islimpt {z∈A. ¬is_pole f z ∧ f z = c}

using frequently_eventually_frequently[OF assms(1) ev]
unfolding islimpt_conv_frequently_at by (rule frequently_elim1) auto

next
from assms(1) have ¬is_pole f z

by (simp add: frequently_const_imp_not_is_pole)
with ‹z ∈ A› show z ∈ {z ∈ A. ¬ is_pole f z}

by auto
qed (use w in auto)
thus f w = c

by simp
qed

have not_pole: ¬is_pole f w if w: w ∈ A for w
proof −

have eventually (λw. ¬is_pole f w) (at w)
using mero by (metis eventually_not_pole meromorphic_onE that)

moreover have eventually (λw. w ∈ A) (at w)
using w ‹open A› by (intro eventually_at_in_open ′)

ultimately have eventually (λw. f w = c) (at w)
by eventually_elim (auto simp: eq)

hence is_pole f w ←→ is_pole (λ_. c) w
by (intro is_pole_cong refl)

thus ?thesis
by simp

qed

show f w = c if w: w ∈ A for w
using eq[OF w not_pole[OF w]] .

qed

lemma nicely_meromorphic_on_unop:
assumes f nicely_meromorphic_on A
assumes f meromorphic_on A =⇒ (λz. h (f z)) meromorphic_on A
assumes

∧
z. z ∈ A =⇒ is_pole f z =⇒ is_pole (λz. h (f z)) z

assumes
∧

z. z ∈ f ‘ A =⇒ isCont h z
assumes h 0 = 0
shows (λz. h (f z)) nicely_meromorphic_on A

Meromorphic.html

Meromorphic.thy 500

unfolding nicely_meromorphic_on_def
proof (intro conjI ballI)

show (λz. h (f z)) meromorphic_on A
using assms(1 ,2) by (auto simp: nicely_meromorphic_on_def)

next
fix z assume z: z ∈ A
hence is_pole f z ∧ f z = 0 ∨ f −z→ f z

using assms by (auto simp: nicely_meromorphic_on_def)
thus is_pole (λz. h (f z)) z ∧ h (f z) = 0 ∨ (λz. h (f z)) −z→ h (f z)
proof (rule disj_forward)

assume is_pole f z ∧ f z = 0
thus is_pole (λz. h (f z)) z ∧ h (f z) = 0

using assms z by auto
next

assume ∗: f −z→ f z
from z assms have isCont h (f z)

by auto
with ∗ show (λz. h (f z)) −z→ h (f z)

using continuous_within continuous_within_compose3 by blast
qed

qed

8.10 Closure properties and proofs for individual functions
lemma meromorphic_on_const [intro, meromorphic_intros]: (λ_. c) meromor-
phic_on A

by (rule analytic_on_imp_meromorphic_on) auto

lemma meromorphic_on_id [intro, meromorphic_intros]: (λw. w) meromorphic_on
A

by (auto simp: meromorphic_on_def intro!: exI laurent_expansion_intros)

lemma meromorphic_on_id ′ [intro, meromorphic_intros]: id meromorphic_on A
by (auto simp: meromorphic_on_def intro!: exI laurent_expansion_intros)

lemma meromorphic_on_add [meromorphic_intros]:
assumes f meromorphic_on A g meromorphic_on A
shows (λw. f w + g w) meromorphic_on A
unfolding meromorphic_on_def
by (rule laurent_expansion_intros exI ballI

assms[THEN meromorphic_on_imp_has_laurent_expansion] | assump-
tion)+

lemma meromorphic_on_uminus [meromorphic_intros]:
assumes f meromorphic_on A
shows (λw. −f w) meromorphic_on A
unfolding meromorphic_on_def
by (rule laurent_expansion_intros exI ballI

assms[THEN meromorphic_on_imp_has_laurent_expansion] | assump-

Meromorphic.html

Meromorphic.thy 501

tion)+

lemma meromorphic_on_diff [meromorphic_intros]:
assumes f meromorphic_on A g meromorphic_on A
shows (λw. f w − g w) meromorphic_on A
using meromorphic_on_add[OF assms(1) meromorphic_on_uminus[OF assms(2)]]

by simp

lemma meromorphic_on_mult [meromorphic_intros]:
assumes f meromorphic_on A g meromorphic_on A
shows (λw. f w ∗ g w) meromorphic_on A
unfolding meromorphic_on_def
by (rule laurent_expansion_intros exI ballI

assms[THEN meromorphic_on_imp_has_laurent_expansion] | assump-
tion)+

lemma meromorphic_on_power [meromorphic_intros]:
assumes f meromorphic_on A
shows (λw. f w ^ n) meromorphic_on A
unfolding meromorphic_on_def
by (rule laurent_expansion_intros exI ballI

assms[THEN meromorphic_on_imp_has_laurent_expansion] | assump-
tion)+

lemma meromorphic_on_powi [meromorphic_intros]:
assumes f meromorphic_on A
shows (λw. f w powi n) meromorphic_on A
unfolding meromorphic_on_def
by (rule laurent_expansion_intros exI ballI

assms[THEN meromorphic_on_imp_has_laurent_expansion] | assump-
tion)+

lemma meromorphic_on_scaleR [meromorphic_intros]:
assumes f meromorphic_on A
shows (λw. scaleR x (f w)) meromorphic_on A
unfolding meromorphic_on_def
by (rule laurent_expansion_intros exI ballI

assms[THEN meromorphic_on_imp_has_laurent_expansion] | assump-
tion)+

lemma meromorphic_on_inverse [meromorphic_intros]:
assumes f meromorphic_on A
shows (λw. inverse (f w)) meromorphic_on A
unfolding meromorphic_on_def
by (rule laurent_expansion_intros exI ballI

assms[THEN meromorphic_on_imp_has_laurent_expansion] | assump-
tion)+

lemma meromorphic_on_divide [meromorphic_intros]:

Meromorphic.html

Meromorphic.thy 502

assumes f meromorphic_on A g meromorphic_on A
shows (λw. f w / g w) meromorphic_on A
using meromorphic_on_mult[OF assms(1) meromorphic_on_inverse[OF assms(2)]]
by (simp add: field_simps)

lemma meromorphic_on_sum [meromorphic_intros]:
assumes

∧
i. i ∈ I =⇒ f i meromorphic_on A

shows (λw.
∑

i∈I . f i w) meromorphic_on A
unfolding meromorphic_on_def
by (rule laurent_expansion_intros exI ballI

assms[THEN meromorphic_on_imp_has_laurent_expansion] | assump-
tion)+

lemma meromorphic_on_sum_list [meromorphic_intros]:
assumes

∧
i. i ∈ set fs =⇒ f i meromorphic_on A

shows (λw.
∑

i←fs. f i w) meromorphic_on A
unfolding meromorphic_on_def
by (rule laurent_expansion_intros exI ballI

assms[THEN meromorphic_on_imp_has_laurent_expansion] | assump-
tion)+

lemma meromorphic_on_sum_mset [meromorphic_intros]:
assumes

∧
i. i ∈# I =⇒ f i meromorphic_on A

shows (λw.
∑

i∈#I . f i w) meromorphic_on A
unfolding meromorphic_on_def
by (rule laurent_expansion_intros exI ballI

assms[THEN meromorphic_on_imp_has_laurent_expansion] | assump-
tion)+

lemma meromorphic_on_prod [meromorphic_intros]:
assumes

∧
i. i ∈ I =⇒ f i meromorphic_on A

shows (λw.
∏

i∈I . f i w) meromorphic_on A
unfolding meromorphic_on_def
by (rule laurent_expansion_intros exI ballI

assms[THEN meromorphic_on_imp_has_laurent_expansion] | assump-
tion)+

lemma meromorphic_on_prod_list [meromorphic_intros]:
assumes

∧
i. i ∈ set fs =⇒ f i meromorphic_on A

shows (λw.
∏

i←fs. f i w) meromorphic_on A
unfolding meromorphic_on_def
by (rule laurent_expansion_intros exI ballI

assms[THEN meromorphic_on_imp_has_laurent_expansion] | assump-
tion)+

lemma meromorphic_on_prod_mset [meromorphic_intros]:
assumes

∧
i. i ∈# I =⇒ f i meromorphic_on A

shows (λw.
∏

i∈#I . f i w) meromorphic_on A
unfolding meromorphic_on_def

Meromorphic.html

Meromorphic.thy 503

by (rule laurent_expansion_intros exI ballI
assms[THEN meromorphic_on_imp_has_laurent_expansion] | assump-

tion)+

lemma nicely_meromorphic_on_const [intro]: (λ_. c) nicely_meromorphic_on
A

unfolding nicely_meromorphic_on_def by auto

lemma nicely_meromorphic_on_cmult_left [intro]:
assumes f nicely_meromorphic_on A
shows (λz. c ∗ f z) nicely_meromorphic_on A

proof (cases c = 0)
case [simp]: False
show ?thesis

using assms by (rule nicely_meromorphic_on_unop) (auto intro!: meromor-
phic_intros)
qed (auto intro!: nicely_meromorphic_on_const)

lemma nicely_meromorphic_on_cmult_right [intro]:
assumes f nicely_meromorphic_on A
shows (λz. f z ∗ c) nicely_meromorphic_on A
using nicely_meromorphic_on_cmult_left[OF assms, of c] by (simp add: mult.commute)

lemma nicely_meromorphic_on_scaleR [intro]:
assumes f nicely_meromorphic_on A
shows (λz. c ∗R f z) nicely_meromorphic_on A
using assms by (auto simp: scaleR_conv_of_real)

lemma nicely_meromorphic_on_uminus [intro]:
assumes f nicely_meromorphic_on A
shows (λz. −f z) nicely_meromorphic_on A
using nicely_meromorphic_on_cmult_left[OF assms, of −1] by simp

lemma meromorphic_on_If [meromorphic_intros]:
assumes f meromorphic_on A g meromorphic_on B
assumes

∧
z. z ∈ A =⇒ z ∈ B =⇒ f z = g z open A open B C ⊆ A ∪ B

shows (λz. if z ∈ A then f z else g z) meromorphic_on C
proof (rule meromorphic_on_subset)

show (λz. if z ∈ A then f z else g z) meromorphic_on (A ∪ B)
proof (rule meromorphic_on_Un)
have (λz. if z ∈ A then f z else g z) meromorphic_on A ←→ f meromorphic_on

A
proof (rule meromorphic_on_cong)

fix z assume z ∈ A
hence eventually (λz. z ∈ A) (at z)

using ‹open A› by (intro eventually_at_in_open ′) auto
thus ∀ F w in at z. (if w ∈ A then f w else g w) = f w

by eventually_elim auto
qed auto

Meromorphic.html

Meromorphic.thy 504

with assms(1) show (λz. if z ∈ A then f z else g z) meromorphic_on A
by blast

next
have (λz. if z ∈ A then f z else g z) meromorphic_on B ←→ g meromorphic_on

B
proof (rule meromorphic_on_cong)

fix z assume z ∈ B
hence eventually (λz. z ∈ B) (at z)

using ‹open B› by (intro eventually_at_in_open ′) auto
thus ∀ F w in at z. (if w ∈ A then f w else g w) = g w

by eventually_elim (use assms(3) in auto)
qed auto
with assms(2) show (λz. if z ∈ A then f z else g z) meromorphic_on B

by blast
qed

qed fact

lemma meromorphic_on_deriv [meromorphic_intros]:
f meromorphic_on A =⇒ deriv f meromorphic_on A
by (metis meromorphic_on_def isolated_singularity_at_deriv meromorphic_on_isolated_singularity

meromorphic_on_meromorphic_at meromorphic_on_not_essential
not_essential_deriv

not_essential_has_laurent_expansion)

lemma meromorphic_on_higher_deriv [meromorphic_intros]:
f meromorphic_on A =⇒ (deriv ^^ n) f meromorphic_on A
by (induction n) (auto intro!: meromorphic_intros)

lemma analytic_on_eval_fps [analytic_intros]:
assumes f analytic_on A
assumes

∧
z. z ∈ A =⇒ norm (f z) < fps_conv_radius F

shows (λw. eval_fps F (f w)) analytic_on A
by (rule analytic_on_compose[OF assms(1) analytic_on_eval_fps, unfolded

o_def])
(use assms(2) in auto)

lemma meromorphic_on_eval_fps [meromorphic_intros]:
assumes f analytic_on A
assumes

∧
z. z ∈ A =⇒ norm (f z) < fps_conv_radius F

shows (λw. eval_fps F (f w)) meromorphic_on A
by (rule analytic_on_imp_meromorphic_on analytic_intros analytic_on_eval_fps

assms)+

lemma meromorphic_on_eval_fls [meromorphic_intros]:
assumes f analytic_on A
assumes

∧
z. z ∈ A =⇒ norm (f z) < fls_conv_radius F

shows (λw. eval_fls F (f w)) meromorphic_on A
proof (cases fls_conv_radius F > 0)

Meromorphic.html

Meromorphic.thy 505

case False
with assms(2) have A = {}

by (metis all_not_in_conv ereal_less(2) norm_eq_zero order .strict_trans
zero_ereal_def zero_less_norm_iff)

thus ?thesis
by auto

next
case True
have F : eval_fls F has_laurent_expansion F

using True by (rule eval_fls_has_laurent_expansion)
show ?thesis
proof (rule meromorphic_on_compose[OF _ assms(1)])

show eval_fls F meromorphic_on eball 0 (fls_conv_radius F)
proof (rule meromorphic_onI_open)

show eval_fls F analytic_on eball 0 (fls_conv_radius F) − {0}
by (rule analytic_on_eval_fls) auto

show not_essential (eval_fls F) z if z ∈ {0} for z
using that F has_laurent_expansion_not_essential_0 by blast

qed (auto simp: islimpt_finite)
qed (use assms(2) in auto)

qed

lemma meromorphic_on_imp_analytic_cosparse:
assumes f meromorphic_on A
shows eventually (λz. f analytic_on {z}) (cosparse A)
unfolding eventually_cosparse using assms meromorphic_on_imp_sparse_singularities

by auto

lemma meromorphic_on_imp_not_pole_cosparse:
assumes f meromorphic_on A
shows eventually (λz. ¬is_pole f z) (cosparse A)

proof −
have eventually (λz. f analytic_on {z}) (cosparse A)

by (rule meromorphic_on_imp_analytic_cosparse) fact
thus ?thesis

by eventually_elim (blast dest: analytic_at_imp_no_pole)
qed

lemma eventually_remove_sings_eq:
assumes f meromorphic_on A
shows eventually (λz. remove_sings f z = f z) (cosparse A)

proof −
have eventually (λz. f analytic_on {z}) (cosparse A)

using assms by (rule meromorphic_on_imp_analytic_cosparse)
thus ?thesis

by eventually_elim auto
qed

lemma remove_sings_constant_on_open_iff :

Meromorphic.html

Meromorphic.thy 506

assumes f meromorphic_on A open A
shows remove_sings f constant_on A ←→ (∃ c. ∀≈x∈A. f x = c)

proof
assume remove_sings f constant_on A
then obtain c where c: remove_sings f z = c if z ∈ A for z

using that by (auto simp: constant_on_def)
have ∀≈x∈A. x ∈ A

using ‹open A› by (simp add: eventually_in_cosparse)
hence ∀≈x∈A. f x = c

using eventually_remove_sings_eq[OF assms(1)] by eventually_elim (use c
in auto)

thus ∃ c. ∀≈x∈A. f x = c
by blast

next
assume ∃ c. ∀≈x∈A. f x = c
then obtain c where c: ∀≈x∈A. f x = c

by blast
have ∀≈x∈A. remove_sings f x = c

using eventually_remove_sings_eq[OF assms(1)] c by eventually_elim auto
hence remove_sings f z = c if z ∈ A for z using that

by (meson assms(2) c eventually_cosparse_open_eq remove_sings_eqI tend-
sto_eventually)

thus remove_sings f constant_on A
unfolding constant_on_def by blast

qed

A meromorphic function on a connected domain takes any given value either
almost everywhere or almost nowhere.
lemma meromorphic_imp_constant_or_avoid:

assumes mero: f meromorphic_on A and A: open A connected A
shows eventually (λz. f z = c) (cosparse A) ∨ eventually (λz. f z 6= c) (cosparse

A)
proof −

have eventually (λz. f z = c) (cosparse A) if freq: frequently (λz. f z = c)
(cosparse A)

proof −
let ?f = remove_sings f

have ev: eventually (λz. ?f z = f z) (cosparse A)
by (rule eventually_remove_sings_eq) fact

have frequently (λz. ?f z = c) (cosparse A)
using frequently_eventually_frequently[OF freq ev] by (rule frequently_elim1)

auto
then obtain z0 where z0 : z0 ∈ A frequently (λz. ?f z = c) (at z0)

using A by (auto simp: eventually_cosparse_open_eq frequently_def)
have mero ′: ?f nicely_meromorphic_on A

using mero remove_sings_nicely_meromorphic by blast
have eq: ?f w = c if w: w ∈ A for w

using frequently_eq_meromorphic_imp_constant[OF z0 (2) mero ′] A z0 (1)
w by blast

Meromorphic.html

Meromorphic.thy 507

have eventually (λz. z ∈ A) (cosparse A)
by (rule eventually_in_cosparse) (use A in auto)

thus eventually (λz. f z = c) (cosparse A)
using ev by eventually_elim (use eq in auto)

qed
thus ?thesis

by (auto simp: frequently_def)
qed

lemma nicely_meromorphic_imp_constant_or_avoid:
assumes f nicely_meromorphic_on A open A connected A
shows (∀ x∈A. f x = c) ∨ (∀≈x∈A. f x 6= c)

proof −
have (∀≈x∈A. f x = c) ∨ (∀≈x∈A. f x 6= c)

by (intro meromorphic_imp_constant_or_avoid)
(use assms in ‹auto simp: nicely_meromorphic_on_def ›)

thus ?thesis
proof

assume ev: ∀≈x∈A. f x = c
have ∀ x∈A. f x = c
proof

fix x assume x: x ∈ A
have not_essential f x

using assms x unfolding nicely_meromorphic_on_def by blast
moreover have is_pole f x ←→ is_pole (λ_. c) x
by (intro is_pole_cong) (use ev x in ‹auto simp: eventually_cosparse_open_eq

assms›)
hence ¬is_pole f x

by auto
ultimately have f analytic_on {x}

using assms(1) nicely_meromorphic_on_imp_analytic_at x by blast
hence f −x→ f x

by (intro isContD analytic_at_imp_isCont)
also have ?this ←→ (λ_. c) −x→ f x
by (intro tendsto_cong) (use ev x in ‹auto simp: eventually_cosparse_open_eq

assms›)
finally have (λ_. c) −x→ f x .
moreover have (λ_. c) −x→ c

by simp
ultimately show f x = c

using LIM_unique by blast
qed
thus ?thesis

by blast
qed blast

qed

lemma nicely_meromorphic_onE :
assumes f nicely_meromorphic_on A

Meromorphic.html

Meromorphic.thy 508

obtains pts where pts ⊆ A pts sparse_in A
f analytic_on A − pts∧

z. z ∈ pts =⇒ is_pole f z ∧ f z=0
proof −

define pts where pts = {z ∈ A. ¬ f analytic_on {z}}
have pts ⊆ A pts sparse_in A

using assms unfolding pts_def nicely_meromorphic_on_def
by (auto intro:meromorphic_on_imp_sparse_singularities ′)

moreover have f analytic_on A − pts unfolding pts_def
by (subst analytic_on_analytic_at) auto

moreover have
∧

z. z ∈ pts =⇒ is_pole f z ∧ f z=0
by (metis (no_types, lifting) remove_sings_eqI

remove_sings_eq_0_iff assms is_pole_imp_not_essential
mem_Collect_eq nicely_meromorphic_on_def
nicely_meromorphic_on_imp_analytic_at pts_def)

ultimately show ?thesis using that by auto
qed

lemma nicely_meromorphic_onI_open:
assumes open A and

analytic:f analytic_on A − pts and
pole:

∧
x. x∈pts =⇒ is_pole f x ∧ f x = 0 and

isolated:
∧

x. x∈A =⇒ isolated_singularity_at f x
shows f nicely_meromorphic_on A

proof −
have f meromorphic_on A
proof (rule meromorphic_onI_open)

show
∧

z. z ∈ pts =⇒ not_essential f z
using pole unfolding not_essential_def by auto

show
∧

z. z ∈ A =⇒ ¬ z islimpt pts ∩ A
by (metis assms(3) assms(4) inf_commute inf_le2

islimpt_subset mem_Collect_eq not_islimpt_poles subsetI)
qed fact+
moreover have (∀ z∈A. (is_pole f z ∧ f z=0) ∨ f −z→ f z)

by (meson DiffI analytic analytic_at_imp_isCont
analytic_on_analytic_at assms(3) isContD)

ultimately show ?thesis unfolding nicely_meromorphic_on_def
by auto

qed

lemma nicely_meromorphic_without_singularities:
assumes f nicely_meromorphic_on A ∀ z∈A. ¬ is_pole f z
shows f analytic_on A
by (meson analytic_on_analytic_at assms

nicely_meromorphic_on_imp_analytic_at)

lemma meromorphic_on_cong ′:
assumes eventually (λz. f z = g z) (cosparse A) A = B
shows f meromorphic_on A ←→ g meromorphic_on B

Meromorphic.html

Meromorphic.thy 509

unfolding assms(2)[symmetric]
by (rule meromorphic_on_cong eventually_cosparse_imp_eventually_at assms)+

auto

8.11 Meromorphic functions and zorder
lemma zorder_power_int:

assumes f meromorphic_on {z} frequently (λz. f z 6= 0) (at z)
shows zorder (λz. f z powi n) z = n ∗ zorder f z

proof −
from assms(1) obtain L where L: (λw. f (z + w)) has_laurent_expansion L

by (auto simp: meromorphic_on_def)
from assms(2) and L have [simp]: L 6= 0

by (metis assms(1) has_laurent_expansion_eventually_nonzero_iff meromor-
phic_at_iff

not_essential_frequently_0_imp_eventually_0 not_eventually not_frequently)
from L have L ′: (λw. f (z + w) powi n) has_laurent_expansion L powi n

by (intro laurent_expansion_intros)
have zorder f z = fls_subdegree L

using L assms(2) ‹L 6= 0 › by (simp add: has_laurent_expansion_zorder)
moreover have zorder (λz. f z powi n) z = fls_subdegree (L powi n)

using L ′ assms(2) ‹L 6= 0 › by (simp add: has_laurent_expansion_zorder)
moreover have fls_subdegree (L powi n) = n ∗ fls_subdegree L

by simp
ultimately show ?thesis

by simp
qed

lemma zorder_power :
assumes f meromorphic_on {z} frequently (λz. f z 6= 0) (at z)
shows zorder (λz. f z ^ n) z = n ∗ zorder f z
using zorder_power_int[OF assms, of int n] by simp

lemma zorder_add1 :
assumes f meromorphic_on {z} frequently (λz. f z 6= 0) (at z)
assumes g meromorphic_on {z} frequently (λz. g z 6= 0) (at z)
assumes zorder f z < zorder g z
shows zorder (λz. f z + g z) z = zorder f z

proof −
from assms(1) obtain F where F : (λw. f (z + w)) has_laurent_expansion F

by (auto simp: meromorphic_on_def)
from assms(3) obtain G where G: (λw. g (z + w)) has_laurent_expansion G

by (auto simp: meromorphic_on_def)
have [simp]: F 6= 0 G 6= 0

by (metis assms has_laurent_expansion_eventually_nonzero_iff meromor-
phic_at_iff

not_essential_frequently_0_imp_eventually_0 not_eventually not_frequently
F G)+

have ∗: zorder f z = fls_subdegree F zorder g z = fls_subdegree G

Meromorphic.html

Meromorphic.thy 510

using F G assms by (simp_all add: has_laurent_expansion_zorder)
from assms ∗ have F 6= −G

by auto
hence [simp]: F + G 6= 0

by (simp add: add_eq_0_iff2)
moreover have zorder (λz. f z + g z) z = fls_subdegree (F + G)

using has_laurent_expansion_zorder [OF has_laurent_expansion_add[OF F
G]] ‹F 6= −G› by simp

moreover have fls_subdegree (F + G) = fls_subdegree F
using assms by (simp add: ∗ fls_subdegree_add_eq1)

ultimately show ?thesis
by (simp add: ∗)

qed

lemma zorder_add2 :
assumes f meromorphic_on {z} frequently (λz. f z 6= 0) (at z)
assumes g meromorphic_on {z} frequently (λz. g z 6= 0) (at z)
assumes zorder f z > zorder g z
shows zorder (λz. f z + g z) z = zorder g z
using zorder_add1 [OF assms(3 ,4) assms(1 ,2)] assms(5−) by (simp add: add.commute)

lemma zorder_add_ge:
fixes f g :: complex ⇒ complex
assumes f meromorphic_on {z} frequently (λz. f z 6= 0) (at z)
assumes g meromorphic_on {z} frequently (λz. g z 6= 0) (at z)
assumes frequently (λz. f z + g z 6= 0) (at z) zorder f z ≥ c zorder g z ≥ c
shows zorder (λz. f z + g z) z ≥ c

proof −
from assms(1) obtain F where F : (λw. f (z + w)) has_laurent_expansion F

by (auto simp: meromorphic_on_def)
from assms(3) obtain G where G: (λw. g (z + w)) has_laurent_expansion G

by (auto simp: meromorphic_on_def)
have [simp]: F 6= 0 G 6= 0

using assms F G has_laurent_expansion_frequently_nonzero_iff by blast+
have FG: (λw. f (z + w) + g (z + w)) has_laurent_expansion F + G

by (intro laurent_expansion_intros F G)
have [simp]: F + G 6= 0

using assms(5) has_laurent_expansion_frequently_nonzero_iff [OF FG] by
blast

have ∗: zorder f z = fls_subdegree F zorder g z = fls_subdegree G
zorder (λz. f z + g z) z = fls_subdegree (F + G)

using F G FG has_laurent_expansion_zorder by simp_all
moreover have zorder (λz. f z + g z) z = fls_subdegree (F + G)

using has_laurent_expansion_zorder [OF has_laurent_expansion_add[OF F
G]] by simp

moreover have fls_subdegree (F + G) ≥ min (fls_subdegree F) (fls_subdegree
G)

Meromorphic.html

Meromorphic.thy 511

by (intro fls_plus_subdegree) simp
ultimately show ?thesis

using assms(6 ,7) unfolding ∗ by linarith
qed

lemma zorder_diff_ge:
fixes f g :: complex ⇒ complex
assumes f meromorphic_on {z} frequently (λz. f z 6= 0) (at z)
assumes g meromorphic_on {z} frequently (λz. g z 6= 0) (at z)
assumes frequently (λz. f z 6= g z) (at z) zorder f z ≥ c zorder g z ≥ c
shows zorder (λz. f z − g z) z ≥ c

proof −
have (λz. − g z) meromorphic_on {z}

by (auto intro: meromorphic_intros assms)
thus ?thesis

using zorder_add_ge[of f z λz. −g z c] assms by simp
qed

lemma zorder_diff1 :
assumes f meromorphic_on {z} frequently (λz. f z 6= 0) (at z)
assumes g meromorphic_on {z} frequently (λz. g z 6= 0) (at z)
assumes zorder f z < zorder g z
shows zorder (λz. f z − g z) z = zorder f z

proof −
have zorder (λz. f z + (−g z)) z = zorder f z

by (intro zorder_add1 meromorphic_intros assms) (use assms in auto)
thus ?thesis

by simp
qed

lemma zorder_diff2 :
assumes f meromorphic_on {z} frequently (λz. f z 6= 0) (at z)
assumes g meromorphic_on {z} frequently (λz. g z 6= 0) (at z)
assumes zorder f z > zorder g z
shows zorder (λz. f z − g z) z = zorder g z

proof −
have zorder (λz. f z + (−g z)) z = zorder (λz. −g z) z

by (intro zorder_add2 meromorphic_intros assms) (use assms in auto)
thus ?thesis

by simp
qed

lemma zorder_mult:
assumes f meromorphic_on {z} frequently (λz. f z 6= 0) (at z)
assumes g meromorphic_on {z} frequently (λz. g z 6= 0) (at z)
shows zorder (λz. f z ∗ g z) z = zorder f z + zorder g z

proof −
from assms(1) obtain F where F : (λw. f (z + w)) has_laurent_expansion F

by (auto simp: meromorphic_on_def)

Meromorphic.html

Meromorphic.thy 512

from assms(3) obtain G where G: (λw. g (z + w)) has_laurent_expansion G
by (auto simp: meromorphic_on_def)

have [simp]: F 6= 0 G 6= 0
by (metis assms has_laurent_expansion_eventually_nonzero_iff meromor-

phic_at_iff
not_essential_frequently_0_imp_eventually_0 not_eventually not_frequently

F G)+
have ∗: zorder f z = fls_subdegree F zorder g z = fls_subdegree G

using F G assms by (simp_all add: has_laurent_expansion_zorder)
moreover have zorder (λz. f z ∗ g z) z = fls_subdegree (F ∗ G)

using has_laurent_expansion_zorder [OF has_laurent_expansion_mult[OF F
G]] by simp

moreover have fls_subdegree (F ∗ G) = fls_subdegree F + fls_subdegree G
using assms by simp

ultimately show ?thesis
by (simp add: ∗)

qed

lemma zorder_divide:
assumes f meromorphic_on {z} frequently (λz. f z 6= 0) (at z)
assumes g meromorphic_on {z} frequently (λz. g z 6= 0) (at z)
shows zorder (λz. f z / g z) z = zorder f z − zorder g z

proof −
from assms(1) obtain F where F : (λw. f (z + w)) has_laurent_expansion F

by (auto simp: meromorphic_on_def)
from assms(3) obtain G where G: (λw. g (z + w)) has_laurent_expansion G

by (auto simp: meromorphic_on_def)
have [simp]: F 6= 0 G 6= 0

by (metis assms has_laurent_expansion_eventually_nonzero_iff meromor-
phic_at_iff

not_essential_frequently_0_imp_eventually_0 not_eventually not_frequently
F G)+

have ∗: zorder f z = fls_subdegree F zorder g z = fls_subdegree G
using F G assms by (simp_all add: has_laurent_expansion_zorder)

moreover have zorder (λz. f z / g z) z = fls_subdegree (F / G)
using has_laurent_expansion_zorder [OF has_laurent_expansion_divide[OF F

G]] by simp
moreover have fls_subdegree (F / G) = fls_subdegree F − fls_subdegree G

using assms by (simp add: fls_divide_subdegree)
ultimately show ?thesis

by (simp add: ∗)
qed

lemma constant_on_extend_nicely_meromorphic_on:
assumes f nicely_meromorphic_on B f constant_on A
assumes open A open B connected B A 6= {} A ⊆ B
shows f constant_on B

proof −
from assms obtain c where c:

∧
z. z ∈ A =⇒ f z = c

Meromorphic.html

Meromorphic.thy 513

by (auto simp: constant_on_def)
have eventually (λz. z ∈ A) (cosparse A)

by (intro eventually_in_cosparse assms order .refl)
hence eventually (λz. f z = c) (cosparse A)

by eventually_elim (use c in auto)
hence freq: frequently (λz. f z = c) (cosparse A)

by (intro eventually_frequently) (use assms in auto)
then obtain z0 where z0 : z0 ∈ A frequently (λz. f z = c) (at z0)

using assms by (auto simp: frequently_def eventually_cosparse_open_eq)

have f z = c if z ∈ B for z
proof (rule frequently_eq_meromorphic_imp_constant[OF _ assms(1)])

show z0 ∈ B frequently (λz. f z = c) (at z0)
using z0 assms by auto

qed (use assms that in auto)
thus f constant_on B

by (auto simp: constant_on_def)
qed

8.12 More on poles and zeros
lemma zorder_prod:

assumes
∧

x. x ∈ A =⇒ f x meromorphic_on {z}
assumes eventually (λz. (

∏
x∈A. f x z) 6= 0) (at z)

shows zorder (λz.
∏

x∈A. f x z) z = (
∑

x∈A. zorder (f x) z)
using assms

proof (induction A rule: infinite_finite_induct)
case (insert a A)
have zorder (λz.

∏
x∈insert a A. f x z) z = zorder (λz. f a z ∗ (

∏
x∈A. f x z)) z

using insert.hyps by simp
also have . . . = zorder (f a) z + zorder (λz.

∏
x∈A. f x z) z

proof (subst zorder_mult)
have ∀ F z in at z. f a z 6= 0

using insert.prems(2) by eventually_elim (use insert.hyps in auto)
thus ∃ F z in at z. f a z 6= 0

using eventually_frequently at_neq_bot by blast
next

have ∀ F z in at z. (
∏

x∈A. f x z) 6= 0
using insert.prems(2) by eventually_elim (use insert.hyps in auto)

thus ∃ F z in at z. (
∏

x∈A. f x z) 6= 0
using eventually_frequently at_neq_bot by blast

qed (use insert.prems in ‹auto intro!: meromorphic_intros›)
also have zorder (λz.

∏
x∈A. f x z) z = (

∑
x∈A. zorder (f x) z)

by (intro insert.IH) (use insert.prems insert.hyps in ‹auto elim!: eventu-
ally_mono›)

also have zorder (f a) z + . . . = (
∑

x∈insert a A. zorder (f x) z)
using insert.hyps by simp

finally show ?case .
qed auto

Meromorphic.html

Meromorphic.thy 514

lemma zorder_scale:
assumes f meromorphic_on {a ∗ z} a 6= 0
shows zorder (λw. f (a ∗ w)) z = zorder f (a ∗ z)

proof (cases eventually (λz. f z = 0) (at (a ∗ z)))
case True
hence ev: eventually (λz. f (a ∗ z) = 0) (at z)
proof (rule eventually_compose_filterlim)

show filterlim ((∗) a) (at (a ∗ z)) (at z)
proof (rule filterlim_atI)

show ∀ F x in at z. a ∗ x 6= a ∗ z
using eventually_neq_at_within[of z z] by eventually_elim (use ‹a 6= 0 ›

in auto)
qed (auto intro!: tendsto_intros)

qed

have zorder (λw. f (a ∗ w)) z = zorder (λ_. 0) z
by (rule zorder_cong) (use ev in auto)

also have . . . = zorder (λ_. 0) (a ∗ z)
by (simp add: zorder_shift ′)

also have . . . = zorder f (a ∗ z)
by (rule zorder_cong) (use True in auto)

finally show ?thesis .
next

case False
define G where G = fps_const a ∗ fps_X
have zorder (f ◦ (λz. a ∗ z)) z = zorder f (a ∗ z) ∗ int (subdegree G)
proof (rule zorder_compose)

show isolated_singularity_at f (a ∗ z) not_essential f (a ∗ z)
using assms(1) by (auto simp: meromorphic_on_altdef)

next
have (λx. a ∗ x) has_fps_expansion G

unfolding G_def by (intro fps_expansion_intros)
thus (λx. a ∗ (z + x) − a ∗ z) has_fps_expansion G

by (simp add: algebra_simps)
next

show ∀ F w in at (a ∗ z). f w 6= 0 using False
by (metis assms(1) has_laurent_expansion_isolated has_laurent_expansion_not_essential

meromorphic_on_def non_zero_neighbour not_eventually singletonI)
qed (use ‹a 6= 0 › in ‹auto simp: G_def ›)
also have subdegree G = 1

using ‹a 6= 0 › by (simp add: G_def)
finally show ?thesis

by (simp add: o_def)
qed

lemma zorder_uminus:
assumes f meromorphic_on {−z}
shows zorder (λw. f (−w)) z = zorder f (−z)

Meromorphic.html

Meromorphic.thy 515

using assms zorder_scale[of f −1 z] by simp

lemma is_pole_deriv_iff :
assumes f meromorphic_on {z}
shows is_pole (deriv f) z ←→ is_pole f z

proof −
from assms obtain F where F : (λw. f (z + w)) has_laurent_expansion F

by (auto simp: meromorphic_on_def)
have deriv (λw. f (z + w)) has_laurent_expansion fls_deriv F

using F by (rule has_laurent_expansion_deriv)
also have deriv (λw. f (z + w)) = (λw. deriv f (z + w))

by (simp add: deriv_shift_0 ′ add_ac o_def fun_eq_iff)
finally have F ′: (λw. deriv f (z + w)) has_laurent_expansion fls_deriv F .
have is_pole (deriv f) z ←→ fls_subdegree (fls_deriv F) < 0

using is_pole_fls_subdegree_iff [OF F ′] by simp
also have . . . ←→ fls_subdegree F < 0

using fls_deriv_subdegree0 fls_subdegree_deriv linorder_less_linear by fast-
force

also have . . . ←→ is_pole f z
using F by (simp add: has_laurent_expansion_imp_is_pole_iff)

finally show ?thesis .
qed

lemma isolated_zero_remove_sings_iff [simp]:
assumes isolated_singularity_at f z
shows isolated_zero (remove_sings f) z ←→ isolated_zero f z

proof −
have ∗: (∀ F x in at z. remove_sings f x 6= 0) ←→ (∀ F x in at z. f x 6= 0)
proof

assume (∀ F x in at z. f x 6= 0)
thus (∀ F x in at z. remove_sings f x 6= 0)

using eventually_remove_sings_eq_at[OF assms]
by eventually_elim auto

next
assume (∀ F x in at z. remove_sings f x 6= 0)
thus (∀ F x in at z. f x 6= 0)

using eventually_remove_sings_eq_at[OF assms]
by eventually_elim auto

qed
show ?thesis

unfolding isolated_zero_def using assms ∗ by simp
qed

lemma zorder_isolated_zero_pos:
assumes isolated_zero f z f analytic_on {z}
shows zorder f z > 0

proof (subst zorder_pos_iff ′ [OF assms(2)])
show f z = 0

using assms by (simp add: zero_isolated_zero_analytic)

Meromorphic.html

Meromorphic.thy 516

next
have ∀ F z in at z. f z 6= 0

using assms by (auto simp: isolated_zero_def)
thus ∃ F z in at z. f z 6= 0

by (simp add: eventually_frequently)
qed

lemma zorder_isolated_zero_pos ′:
assumes isolated_zero f z isolated_singularity_at f z
shows zorder f z > 0

proof −
from assms(1) have f −z→ 0

by (simp add: isolated_zero_def)
with assms(2) have remove_sings f analytic_on {z}

by (intro remove_sings_analytic_at)
hence zorder (remove_sings f) z > 0

using assms by (intro zorder_isolated_zero_pos) auto
thus ?thesis

using assms by simp
qed

lemma zero_isolated_zero_nicely_meromorphic:
assumes isolated_zero f z f nicely_meromorphic_on {z}
shows f z = 0

proof −
have ¬is_pole f z

using assms pole_is_not_zero by blast
with assms(2) have f analytic_on {z}

by (simp add: nicely_meromorphic_on_imp_analytic_at)
with zero_isolated_zero_analytic assms(1) show ?thesis

by blast
qed

lemma meromorphic_on_imp_not_zero_cosparse:
assumes f meromorphic_on A
shows eventually (λz. ¬isolated_zero f z) (cosparse A)

proof −
have eventually (λz. ¬is_pole (λz. inverse (f z)) z) (cosparse A)
by (intro meromorphic_on_imp_not_pole_cosparse meromorphic_intros assms)

thus ?thesis
by (simp add: is_pole_inverse_iff)

qed

lemma nicely_meromorphic_on_inverse [meromorphic_intros]:
assumes f nicely_meromorphic_on A
shows (λx. inverse (f x)) nicely_meromorphic_on A
unfolding nicely_meromorphic_on_def

proof (intro conjI ballI)
fix z assume z: z ∈ A

Meromorphic.html

Meromorphic.thy 517

have is_pole f z ∧ f z = 0 ∨ f −z→ f z
using assms z by (auto simp: nicely_meromorphic_on_def)

thus is_pole (λx. inverse (f x)) z ∧ inverse (f z) = 0 ∨
(λx. inverse (f x)) −z→ inverse (f z)

proof
assume is_pole f z ∧ f z = 0
hence isolated_zero (λz. inverse (f z)) z ∧ inverse (f z) = 0

by (auto simp: isolated_zero_inverse_iff)
hence (λx. inverse (f x)) −z→ inverse (f z)

by (simp add: isolated_zero_def)
thus ?thesis ..

next
assume lim: f −z→ f z
hence ana: f analytic_on {z}

using assms is_pole_def nicely_meromorphic_on_imp_analytic_at
not_tendsto_and_filterlim_at_infinity trivial_limit_at z by blast

show ?thesis
proof (cases isolated_zero f z)

case True
with lim have f z = 0

using continuous_within zero_isolated_zero by blast
with True have is_pole (λz. inverse (f z)) z ∧ inverse (f z) = 0

by (auto simp: is_pole_inverse_iff)
thus ?thesis ..

next
case False
hence f z 6= 0 ∨ (f z = 0 ∧ eventually (λz. f z = 0) (at z))

using non_isolated_zero_imp_eventually_zero[OF ana] by blast
thus ?thesis
proof (elim disjE conjE)

assume f z 6= 0
hence (λz. inverse (f z)) −z→ inverse (f z)

by (intro tendsto_intros lim)
thus ?thesis ..

next
assume ∗: f z = 0 eventually (λz. f z = 0) (at z)
have eventually (λz. inverse (f z) = 0) (at z)

using ∗(2) by eventually_elim auto
hence (λz. inverse (f z)) −z→ 0

by (simp add: tendsto_eventually)
with ∗(1) show ?thesis

by auto
qed

qed
qed

qed (use assms in ‹auto simp: nicely_meromorphic_on_def intro!: meromorphic_intros›)

lemma is_pole_zero_at_nicely_mero:
assumes f nicely_meromorphic_on A is_pole f z z ∈ A

Meromorphic.html

Meromorphic.thy 518

shows f z = 0
by (meson assms at_neq_bot

is_pole_def nicely_meromorphic_on_def
not_tendsto_and_filterlim_at_infinity)

lemma zero_or_pole:
assumes mero: f nicely_meromorphic_on A

and z ∈ A f z = 0 and event: ∀ F x in at z. f x 6= 0
shows isolated_zero f z ∨ is_pole f z

proof −
from mero ‹z∈A›
have (is_pole f z ∧ f z=0) ∨ f −z→ f z

unfolding nicely_meromorphic_on_def by simp
moreover have isolated_zero f z if f −z→ f z

unfolding isolated_zero_def
using ‹f z=0 › that event tendsto_nhds_iff by auto

ultimately show ?thesis by auto
qed

lemma isolated_zero_fls_subdegree_iff :
assumes (λx. f (z + x)) has_laurent_expansion F
shows isolated_zero f z ←→ fls_subdegree F > 0
using assms unfolding isolated_zero_def
by (metis Lim_at_zero fls_zero_subdegree has_laurent_expansion_eventually_nonzero_iff

not_le
order .refl tendsto_0_subdegree_iff_0)

lemma zorder_pos_imp_isolated_zero:
assumes f meromorphic_on {z} eventually (λz. f z 6= 0) (at z) zorder f z > 0
shows isolated_zero f z
using assms isolated_zero_fls_subdegree_iff
by (metis has_laurent_expansion_eventually_nonzero_iff

has_laurent_expansion_zorder insertI1
meromorphic_on_def)

lemma zorder_neg_imp_is_pole:
assumes f meromorphic_on {z} eventually (λz. f z 6= 0) (at z) zorder f z < 0
shows is_pole f z
using assms is_pole_fls_subdegree_iff at_neq_bot eventually_frequently mero-

morphic_at_iff
neg_zorder_imp_is_pole by blast

lemma not_pole_not_isolated_zero_imp_zorder_eq_0 :
assumes f meromorphic_on {z} ¬is_pole f z ¬isolated_zero f z frequently (λz.

f z 6= 0) (at z)
shows zorder f z = 0

proof −
have remove_sings f analytic_on {z}
using assms meromorphic_at_iff not_essential_def remove_sings_analytic_at

Meromorphic.html

Meromorphic.thy 519

by blast
moreover from this and assms have remove_sings f z 6= 0
using isolated_zero_def meromorphic_at_iff non_zero_neighbour remove_sings_eq_0_iff

by blast
moreover have frequently (λz. remove_sings f z 6= 0) (at z)

using assms analytic_at_neq_imp_eventually_neq calculation(1 ,2)
eventually_frequently trivial_limit_at by blast

ultimately have zorder (remove_sings f) z = 0
using zorder_eq_0_iff by blast

thus ?thesis
using assms(1) meromorphic_at_iff by auto

qed

lemma not_essential_compose:
assumes not_essential f (g z) g analytic_on {z}
shows not_essential (λx. f (g x)) z

proof (cases isolated_zero (λw. g w − g z) z)
case False
hence eventually (λw. g w − g z = 0) (nhds z)
by (intro non_isolated_zero_imp_eventually_zero ′ analytic_intros assms) auto

hence not_essential (λx. f (g x)) z ←→ not_essential (λ_. f (g z)) z
by (intro not_essential_cong refl)

(auto elim!: eventually_mono simp: eventually_at_filter)
thus ?thesis

by (simp add: not_essential_const)
next

case True
hence ev: eventually (λw. g w 6= g z) (at z)

by (auto simp: isolated_zero_def)
from assms consider c where f −g z→ c | is_pole f (g z)

by (auto simp: not_essential_def)
have isCont g z

by (rule analytic_at_imp_isCont) fact
hence lim: g −z→ g z

using isContD by blast

from assms(1) consider c where f −g z→ c | is_pole f (g z)
unfolding not_essential_def by blast

thus ?thesis
proof cases

fix c assume f −g z→ c
hence (λx. f (g x)) −z→ c

by (rule filterlim_compose) (use lim ev in ‹auto simp: filterlim_at›)
thus ?thesis

by (auto simp: not_essential_def)
next

assume is_pole f (g z)
hence is_pole (λx. f (g x)) z

by (rule is_pole_compose) fact+

Meromorphic.html

Meromorphic.thy 520

thus ?thesis
by (auto simp: not_essential_def)

qed
qed

lemma isolated_singularity_at_compose:
assumes isolated_singularity_at f (g z) g analytic_on {z}
shows isolated_singularity_at (λx. f (g x)) z

proof (cases isolated_zero (λw. g w − g z) z)
case False
hence eventually (λw. g w − g z = 0) (nhds z)
by (intro non_isolated_zero_imp_eventually_zero ′) (use assms in ‹auto intro!:

analytic_intros›)
hence isolated_singularity_at (λx. f (g x)) z ←→ isolated_singularity_at (λ_.

f (g z)) z
by (intro isolated_singularity_at_cong refl)

(auto elim!: eventually_mono simp: eventually_at_filter)
thus ?thesis

by (simp add: isolated_singularity_at_const)
next

case True
from assms(1) obtain r where r : r > 0 f analytic_on ball (g z) r − {g z}

by (auto simp: isolated_singularity_at_def)
hence holo_f : f holomorphic_on ball (g z) r − {g z}

by (subst (asm) analytic_on_open) auto
from assms(2) obtain r ′ where r ′: r ′ > 0 g holomorphic_on ball z r ′

by (auto simp: analytic_on_def)

have continuous_on (ball z r ′) g
using holomorphic_on_imp_continuous_on r ′ by blast

hence isCont g z
using r ′ by (subst (asm) continuous_on_eq_continuous_at) auto

hence g −z→ g z
using isContD by blast

hence eventually (λw. g w ∈ ball (g z) r) (at z)
using ‹r > 0 › unfolding tendsto_def by force

moreover have eventually (λw. g w 6= g z) (at z) using True
by (auto simp: isolated_zero_def elim!: eventually_mono)

ultimately have eventually (λw. g w ∈ ball (g z) r − {g z}) (at z)
by eventually_elim auto

then obtain r ′′ where r ′′: r ′′ > 0 ∀w∈ball z r ′′−{z}. g w ∈ ball (g z) r − {g
z}

unfolding eventually_at_filter eventually_nhds_metric ball_def
by (auto simp: dist_commute)

have f ◦ g holomorphic_on ball z (min r ′ r ′′) − {z}
proof (rule holomorphic_on_compose_gen)

show g holomorphic_on ball z (min r ′ r ′′) − {z}
by (rule holomorphic_on_subset[OF r ′(2)]) auto

Meromorphic.html

Meromorphic.thy 521

show f holomorphic_on ball (g z) r − {g z}
by fact

show g ‘ (ball z (min r ′ r ′′) − {z}) ⊆ ball (g z) r − {g z}
using r ′′ by force

qed
hence f ◦ g analytic_on ball z (min r ′ r ′′) − {z}

by (subst analytic_on_open) auto
thus ?thesis using ‹r ′ > 0 › ‹r ′′ > 0 ›

by (auto simp: isolated_singularity_at_def o_def intro!: exI [of _ min r ′ r ′′])
qed

lemma is_pole_power_int_0 :
assumes f analytic_on {x} isolated_zero f x n < 0
shows is_pole (λx. f x powi n) x

proof −
have f −x→ f x

using assms(1) by (simp add: analytic_at_imp_isCont isContD)
with assms show ?thesis

unfolding is_pole_def
by (intro filterlim_power_int_neg_at_infinity) (auto simp: isolated_zero_def)

qed

lemma isolated_zero_imp_not_constant_on:
fixes f :: ′a :: perfect_space ⇒ ′b :: real_normed_div_algebra
assumes isolated_zero f x x ∈ A open A
shows ¬f constant_on A

proof
assume f constant_on A
then obtain c where c:

∧
x. x ∈ A =⇒ f x = c

by (auto simp: constant_on_def)
have eventually (λz. z ∈ A − {x}) (at x)

by (intro eventually_at_in_open assms)
hence eventually (λz. f z = c) (at x)

by eventually_elim (use c in auto)
hence f −x→ c

using tendsto_eventually by blast
moreover from assms have f −x→ 0

by (simp add: isolated_zero_def)
ultimately have [simp]: c = 0

using tendsto_unique[of at x f c 0] by (simp add: at_neq_bot)

have eventually (λx. f x 6= 0) (at x)
using assms by (auto simp: isolated_zero_def)

moreover have eventually (λx. x ∈ A) (at x)
using assms by (intro eventually_at_in_open ′) auto

ultimately have eventually (λx. False) (at x)
by eventually_elim (use c in auto)

thus False
by simp

Meromorphic.html

Weierstrass_Factorization.thy 522

qed

end

9 The Weierstraß Factorisation Theorem
theory Weierstrass_Factorization

imports Meromorphic
begin

9.1 The elementary factors

The Weierstraß elementary factors are the family of entire functions

En(z) = (1− z) exp
(
z +

z2

2
+ . . .+

zn

n

)
with the key properties that they have a single zero at z = 1 and satisfy
En(z) = 1 +O(zn+1) around the origin.
definition weierstrass_factor :: nat ⇒ complex ⇒ complex where

weierstrass_factor n z = (1 − z) ∗ exp (
∑

k=1 ..n. z ^ k / of_nat k)

lemma weierstrass_factor_continuous_on [continuous_intros]:
continuous_on A f =⇒ continuous_on A (λz. weierstrass_factor n (f z))
by (auto simp: weierstrass_factor_def intro!: continuous_intros)

lemma weierstrass_factor_holomorphic [holomorphic_intros]:
f holomorphic_on A =⇒ (λz. weierstrass_factor n (f z)) holomorphic_on A
by (auto simp: weierstrass_factor_def intro!: holomorphic_intros)

lemma weierstrass_factor_analytic [analytic_intros]:
f analytic_on A =⇒ (λz. weierstrass_factor n (f z)) analytic_on A
by (auto simp: weierstrass_factor_def intro!: analytic_intros)

lemma weierstrass_factor_0 [simp]: weierstrass_factor n 0 = 1
by (auto simp: weierstrass_factor_def power_0_left)

lemma weierstrass_factor_1 [simp]: weierstrass_factor n 1 = 0
by (simp add: weierstrass_factor_def)

lemma weierstrass_factor_eq_0_iff [simp]: weierstrass_factor n z = 0 ←→ z =
1

by (simp add: weierstrass_factor_def)

lemma zorder_weierstrass_factor [simp]: zorder (weierstrass_factor n) 1 = 1
proof (rule zorder_eqI)

show (λz. −exp (
∑

k=1 ..n. z ^ k / of_nat k)) holomorphic_on UNIV
by (intro holomorphic_intros) auto

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 523

qed (auto simp: weierstrass_factor_def algebra_simps)

lemma
fixes z :: ′a :: {banach, real_normed_field}
assumes norm z ≤ 1 / 2
shows norm_exp_bounds_lemma: norm (exp z − 1 − z) ≤ norm z / 2

and norm_exp_bounds: norm (exp z − 1) ≥ 1 / 2 ∗ norm z
norm (exp z − 1) ≤ 3 / 2 ∗ norm z

proof −
show ∗: norm (exp z − 1 − z) ≤ norm z / 2
proof (cases z = 0)

case False
have sums: (λk. z ^ (k + 2) /R fact (k + 2)) sums (exp z − (

∑
k<2 . z ^ k

/R fact k))
by (intro sums_split_initial_segment exp_converges)

have summable (λk. norm z ^ (k + 2) /R fact (k + 2))
using summable_norm_exp[of z]
by (intro summable_norm summable_ignore_initial_segment)

(auto simp: norm_power norm_divide divide_simps)
also have ?this ←→ summable (λk. norm z ^ 2 ∗ (norm z ^ k / fact (k +2)))

by (simp add: power_add mult_ac divide_simps power2_eq_square del:
of_nat_Suc of_nat_add)

also have . . . ←→ summable (λk. norm z ^ k / fact (k + 2))
by (subst summable_cmult_iff) (use ‹z 6= 0 › in auto)

finally have summable: summable (λk. norm z ^ k / fact (k + 2)) .

have exp z − 1 − z = (
∑

k. z ^ (k + 2) / fact (k + 2))
using sums by (simp add: sums_iff scaleR_conv_of_real divide_simps

eval_nat_numeral)
also have norm . . . ≤ (

∑
k. norm (z ^ (k + 2) / fact (k + 2)))

using summable_norm_exp[of z]
by (intro summable_norm summable_ignore_initial_segment)

(auto simp: norm_power norm_divide divide_simps)
also have . . . = (

∑
k. norm z ^ 2 ∗ (norm z ^ k / fact (k + 2)))

by (simp add: power_add norm_power norm_divide mult_ac norm_mult
power2_eq_square del: of_nat_Suc)

also have . . . = norm z ^ 2 ∗ (
∑

k. norm z ^ k / fact (k + 2))
using summable by (rule suminf_mult)

also have . . . ≤ norm z ^ 2 ∗ (1 / (1 − norm z) / 2)
proof (intro mult_left_mono, rule sums_le)
show (λk. norm z ^ k / fact (k + 2)) sums (

∑
k. norm z ^ k / fact (k + 2))

using summable by blast
show (λk. norm z ^ k / 2) sums (1 / (1 − norm z) / 2)

using assms by (intro geometric_sums sums_divide) auto
next

fix k :: nat
have norm z ^ k / fact (k + 2) ≤ norm z ^ k / fact 2

by (intro divide_left_mono fact_mono) auto

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 524

thus norm z ^ k / fact (k + 2) ≤ norm z ^ k / 2
by simp

qed (auto simp: divide_simps)
also have . . . = norm z ∗ (norm z / (1 − norm z)) / 2

by (simp add: power2_eq_square)
also have . . . ≤ norm z ∗ ((1 / 2) / (1 − (1 / 2))) / 2

using assms by (intro mult_mono frac_le diff_mono) auto
also have . . . = norm z / 2

by simp
finally show norm (exp z − 1 − z) ≤ norm z / 2 .

qed auto

have norm (exp z − 1) ≤ norm z + norm (exp z − 1 − z)
by (rule norm_triangle_sub)

with ∗ show norm (exp z − 1) ≤ 3 / 2 ∗ norm z
by simp

have norm z − norm (exp z − 1 − z) ≤ norm (exp z − 1)
using norm_triangle_ineq3 [of exp z − 1 − z −z] by simp

with ∗ show norm (exp z − 1) ≥ 1 / 2 ∗ norm z
by simp

qed

lemma weierstrass_factor_bound:
assumes norm z ≤ 1 / 2
shows norm (weierstrass_factor n z − 1) ≤ 3 ∗ norm z ^ Suc n

proof (cases n = 0 ∨ z = 0)
case True
thus ?thesis
proof

assume n = 0
thus ?thesis by (auto simp: weierstrass_factor_def)

qed auto
next

case False
with assms have z 6= 1 n > 0 z 6= 0

by auto

have summable (λk. cmod z ^ (k + Suc n) / real (k + Suc n))
using ln_series ′[of −norm z] assms
by (intro summable_norm summable_ignore_initial_segment)

(simp_all add: sums_iff summable_minus_iff power_minus ′ norm_divide
norm_power)

also have ?this ←→ summable (λk. norm z ^ Suc n ∗ (norm z ^ k / real (k +
Suc n)))

by (simp add: power_add mult_ac)
also have . . . ←→ summable (λk. norm z ^ k / real (k + Suc n))

by (subst summable_cmult_iff) (use ‹z 6= 0 › in auto)
finally have summable: summable (λk. norm z ^ k / real (k + Suc n)) .

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 525

have (λk. z ^ k / of_nat k) sums − Ln (1 − z)
using sums_minus[OF Ln_series[of −z]] assms by (simp add: power_minus ′)

hence (λk. z ^ (k + Suc n) / of_nat (k + Suc n)) sums (− Ln (1 − z) −
(
∑

k<Suc n. z ^ k / of_nat k))
by (intro sums_split_initial_segment)

also have (
∑

k<Suc n. z ^ k / of_nat k) = (
∑

k=1 ..n. z ^ k / of_nat k)
by (intro sum.mono_neutral_right) auto

finally have norm (ln (1 − z) + (
∑

k=1 ..n. z ^ k / of_nat k)) =
norm (

∑
k. z ^ (k + Suc n) / of_nat (k + Suc n))

by (simp add: sums_iff norm_uminus_minus)

also have . . . ≤ (
∑

k. norm (z ^ (k + Suc n) / of_nat (k + Suc n)))
using ln_series ′[of −norm z] assms
by (intro summable_norm summable_ignore_initial_segment)

(simp_all add: sums_iff summable_minus_iff power_minus ′ norm_divide
norm_power)

also have . . . = (
∑

k. norm z ^ Suc n ∗ (norm z ^ k / real (k + Suc n)))
by (simp add: algebra_simps norm_mult norm_power norm_divide power_add

del: of_nat_add of_nat_Suc)
also have . . . = norm z ^ Suc n ∗ (

∑
k. norm z ^ k / real (k + Suc n))

by (intro suminf_mult summable)
also have . . . ≤ norm z ^ Suc n ∗ (1 / (1 − norm z))
proof (intro mult_left_mono[OF sums_le])

show (λk. norm z ^ k / real (k + Suc n)) sums (
∑

k. norm z ^ k / real (k +
Suc n))

using summable by blast
show (λk. norm z ^ k) sums (1 / (1 − norm z))

by (rule geometric_sums) (use assms in auto)
qed (auto simp: field_simps)
also have norm z ^ Suc n ∗ (1 / (1 − norm z)) ≤ norm z ^ Suc n ∗ (1 / (1 −

(1 / 2)))
using assms by (intro mult_mono power_mono divide_left_mono diff_mono

mult_pos_pos) auto
also have . . . = 2 ∗ norm z ^ Suc n

by simp
finally have norm_le: norm (ln (1 − z) + (

∑
k=1 ..n. z ^ k / of_nat k)) ≤ 2

∗ norm z ^ Suc n .

also have . . . ≤ 2 ∗ norm z ^ 2
using ‹n > 0 › assms by (intro mult_left_mono power_decreasing) auto

also have . . . ≤ 2 ∗ (1 / 2) ^ 2
by (intro mult_left_mono assms power_mono) auto

finally have norm_le ′: norm (ln (1 − z) + (
∑

k=1 ..n. z ^ k / of_nat k)) ≤ 1
/ 2

by (simp add: power2_eq_square)

have weierstrass_factor n z = exp (ln (1 − z) + (
∑

k=1 ..n. z ^ k / of_nat k))
using ‹z 6= 1 › by (simp add: exp_add weierstrass_factor_def)

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 526

also have norm (. . . − 1) ≤ (3 / 2) ∗ norm (ln (1 − z) + (
∑

k=1 ..n. z ^ k /
of_nat k))

by (intro norm_exp_bounds norm_le ′)
also have . . . ≤ (3 / 2) ∗ (2 ∗ norm z ^ Suc n)

by (intro mult_left_mono norm_le) auto
finally show ?thesis

by simp
qed

9.2 Infinite products of elementary factors

We now show that the elementary factors can be used to construct an entire
function with its zeros at a certain set of points (given by a sequence of
non-zero numbers an with no accumulation point).
locale weierstrass_product =

fixes a :: nat ⇒ complex
fixes p :: nat ⇒ nat
assumes a_nonzero:

∧
n. a n 6= 0

assumes filterlim_a: filterlim a at_infinity at_top
assumes summable_a_p:

∧
r . r > 0 =⇒ summable (λn. (r / norm (a n)) ^ Suc

(p n))
begin

definition f :: complex ⇒ complex where
f z = (

∏
n. weierstrass_factor (p n) (z / a n))

lemma abs_convergent: abs_convergent_prod (λn. weierstrass_factor (p n) (z /
a n))

unfolding abs_convergent_prod_conv_summable
proof (rule summable_comparison_test_ev)

have eventually (λn. norm (a n) > 2 ∗ norm z) at_top
using filterlim_a by (metis filterlim_at_infinity_imp_norm_at_top filter-

lim_at_top_dense)
thus eventually (λn. norm (norm (weierstrass_factor (p n) (z / a n) − 1)) ≤

3 ∗ norm (z / a n) ^ Suc (p n)) at_top
proof eventually_elim

case (elim n)
hence norm (z / a n) ≤ 1 / 2

by (auto simp: norm_divide divide_simps)
thus ?case using weierstrass_factor_bound[of z / a n p n]

by simp
qed

next
show summable (λn. 3 ∗ norm (z / a n) ^ Suc (p n))

using summable_mult[OF summable_a_p[of norm z], of 3]
by (cases z = 0) (auto simp: norm_divide)

qed

lemma convergent: convergent_prod (λn. weierstrass_factor (p n) (z / a n))

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 527

using abs_convergent[of z] abs_convergent_prod_imp_convergent_prod by blast

lemma has_prod: (λn. weierstrass_factor (p n) (z / a n)) has_prod f z
using convergent[of z] unfolding f_def by auto

lemma finite_occs_a: finite (a −‘ {z})
proof −

have eventually (λn. norm (a n) > norm z) at_top
using filterlim_a by (metis filterlim_at_infinity_imp_norm_at_top filter-

lim_at_top_dense)
then obtain N where N :

∧
n. n ≥ N =⇒ norm (a n) > norm z

by (auto simp: eventually_at_top_linorder)
have n < N if n ∈ a −‘ {z} for n

using N [of n] that by (cases n < N) auto
hence a −‘ {z} ⊆ {..<N} finite {..<N}

by auto
thus ?thesis

using finite_subset by blast
qed

context
fixes P
defines P ≡ (λN z.

∏
n<N . weierstrass_factor (p n) (z / a n))

begin

lemma uniformly_convergent:
assumes R > 0
shows uniformly_convergent_on (cball 0 R) P
unfolding P_def

proof (rule uniformly_convergent_on_prod ′)
show uniformly_convergent_on (cball 0 R) (λN z.

∑
n<N . norm (weierstrass_factor

(p n) (z / a n) − 1))
proof (rule Weierstrass_m_test ′_ev)

have eventually (λn. norm (a n) ≥ 2 ∗ R) sequentially
using filterlim_a by (metis filterlim_at_infinity_imp_norm_at_top filter-

lim_at_top)
thus ∀ F n in sequentially. ∀ z∈cball 0 R. norm (norm (weierstrass_factor (p

n) (z / a n) − 1)) ≤
3 ∗ (R / norm (a n)) ^ Suc (p n)

proof eventually_elim
case (elim n)
show ?case
proof safe

fix z :: complex assume z: z ∈ cball 0 R
have 2 ∗ norm z ≤ 2 ∗ R

using z by auto
also have . . . ≤ norm (a n)

using elim by simp
finally have norm (a n) ≥ 2 ∗ norm z .

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 528

hence norm (weierstrass_factor (p n) (z / a n) − 1) ≤ 3 ∗ norm (z / a
n) ^ Suc (p n)

by (intro weierstrass_factor_bound) (auto simp: norm_divide divide_simps)
also have . . . = 3 ∗ (norm z / norm (a n)) ^ Suc (p n)

by (simp add: norm_divide)
also have . . . ≤ 3 ∗ (R / norm (a n)) ^ Suc (p n)

by (intro mult_left_mono power_mono divide_right_mono) (use z in
auto)

finally show norm (norm (weierstrass_factor (p n) (z / a n) − 1)) ≤
3 ∗ (R / norm (a n)) ^ Suc (p n) by simp

qed
qed

next
show summable (λn. 3 ∗ (R / norm (a n)) ^ Suc (p n))

by (intro summable_mult summable_a_p assms)
qed

qed (auto intro!: continuous_intros simp: a_nonzero)

lemma uniform_limit:
assumes R > 0
shows uniform_limit (cball 0 R) P f at_top

proof −
obtain g where g: uniform_limit (cball 0 R) P g at_top
using uniformly_convergent[OF assms] by (auto simp: uniformly_convergent_on_def)

also have ?this ←→ uniform_limit (cball 0 R) P f at_top
proof (intro uniform_limit_cong)

fix z :: complex assume z ∈ cball 0 R
with g have (λn. P (Suc n) z) −−−−→ g z

by (metis tendsto_uniform_limitI filterlim_sequentially_Suc)
moreover have (λn. P (Suc n) z) −−−−→ f z

using convergent_prod_LIMSEQ[OF convergent[of z]] unfolding P_def
lessThan_Suc_atMost

by (simp add: f_def)
ultimately show g z = f z

using tendsto_unique by force
qed auto
finally show ?thesis .

qed

lemma holomorphic [holomorphic_intros]: f holomorphic_on A
proof (rule holomorphic_on_subset)

show f holomorphic_on UNIV
proof (rule holomorphic_uniform_sequence)

fix z :: complex
have ∗: uniform_limit (cball 0 (norm z + 1)) P f sequentially

by (rule uniform_limit) (auto intro: add_nonneg_pos)
hence uniform_limit (cball z 1) P f sequentially

by (rule uniform_limit_on_subset) (simp add: cball_subset_cball_iff)
thus ∃ d>0 . cball z d ⊆ UNIV ∧ uniform_limit (cball z d) P f sequentially

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 529

by (intro exI [of _ 1]) auto
qed (auto intro!: holomorphic_intros simp: P_def)

qed auto

lemma analytic [analytic_intros]: f analytic_on A
using holomorphic[of UNIV] analytic_on_holomorphic by blast

end

lemma zero: f z = 0 ←→ z ∈ range a
using has_prod_eq_0_iff [OF has_prod, of z] by (auto simp: a_nonzero)

lemma not_islimpt_range_a: ¬z islimpt (range a)
proof

assume z islimpt (range a)
then obtain r :: nat ⇒ nat where r : strict_mono r (a ◦ r) −−−−→ z

using islimpt_range_imp_convergent_subsequence by metis
moreover have filterlim (a ◦ r) at_infinity sequentially
unfolding o_def by (rule filterlim_compose[OF filterlim_a filterlim_subseq[OF

r(1)]])
ultimately show False

by (meson not_tendsto_and_filterlim_at_infinity trivial_limit_sequentially)
qed

lemma isolated_zero:
assumes z ∈ range a
shows isolated_zero f z

proof −
have eventually (λz. f z 6= 0) (at z)

using not_islimpt_range_a[of z] by (auto simp: islimpt_iff_eventually zero)
moreover have f −z→ f z

by (intro isContD analytic_at_imp_isCont analytic)
hence f −z→ 0

using assms zero[of z] by auto
ultimately show ?thesis

by (auto simp: isolated_zero_def)
qed

lemma zorder : zorder f z = card (a −‘ {z})
proof −

obtain N where N : a −‘ {z} ⊆ {..N}
using finite_occs_a[of z] by (meson finite_nat_iff_bounded_le)

define g where g = (λz n. weierstrass_factor (p n) (z / a n))
define h1 where h1 = (λw. (

∏
n∈{..N} − a−‘{z}. g w n) ∗ (

∏
n. g w (n +

Suc N)))
define h2 where h2 = (λw. (

∏
n∈{..N} ∩ a−‘{z}. g w n))

have has_prod_h1 ′: (λn. g w (n + Suc N)) has_prod (
∏

n. g w (n + Suc N))

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 530

for w
unfolding g_def
by (intro convergent_prod_has_prod convergent_prod_ignore_initial_segment

convergent)

have f_eq: f w = h1 w ∗ h2 w for w
proof −

have f w = (
∏

n<Suc N . g w n) ∗ (
∏

n. g w (n + Suc N))
proof (rule has_prod_unique2)
show (λn. g w n) has_prod ((

∏
n<Suc N . g w n) ∗ (

∏
n. g w (n + Suc N)))

unfolding g_def by (intro has_prod_ignore_initial_segment ′ convergent)
show g w has_prod f w

unfolding g_def by (rule has_prod)
qed
also have {..<Suc N} = ({..N} − a−‘{z}) ∪ ({..N} ∩ a−‘{z})

by auto
also have (

∏
k∈. . . . g w k) = (

∏
k∈{..N} − a−‘{z}. g w k) ∗ (

∏
k∈{..N} ∩

a−‘{z}. g w k)
by (intro prod.union_disjoint) auto

finally show ?thesis
by (simp add: h1_def h2_def mult_ac)

qed

have ana_h1 : h1 analytic_on {z}
proof −

interpret h1 : weierstrass_product λn. a (n + Suc N) λn. p (n + Suc N)
proof

have filterlim (λn. n + Suc N) at_top at_top
by (rule filterlim_add_const_nat_at_top)

thus filterlim (λn. a (n + Suc N)) at_infinity at_top
by (intro filterlim_compose[OF filterlim_a])

show summable (λn. (r / cmod (a (n + Suc N))) ^ Suc (p (n + Suc N))) if
r > 0 for r

by (intro summable_ignore_initial_segment summable_a_p that)
qed (auto simp: a_nonzero)

show ?thesis using h1 .analytic
unfolding h1_def g_def h1 .f_def by (intro analytic_intros) (auto simp:

a_nonzero)
qed

have ana_h2 : h2 analytic_on {z}
unfolding h2_def g_def by (intro analytic_intros) (auto simp: a_nonzero)

have zorder f z = zorder (λw. h1 w ∗ h2 w) z
by (simp add: f_eq [abs_def])

also have . . . = zorder h1 z + zorder h2 z
proof (rule zorder_times_analytic)

have eventually (λw. f w 6= 0) (at z)

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 531

using not_islimpt_range_a[of z] by (auto simp: islimpt_conv_frequently_at
frequently_def zero)

thus eventually (λw. h1 w ∗ h2 w 6= 0) (at z)
by (simp add: f_eq)

qed fact+
also have zorder h2 z = (

∑
n∈{..N} ∩ a −‘ {z}. zorder (λw. g w n) z)

unfolding h2_def
by (intro zorder_prod_analytic)

(auto simp: a_nonzero g_def eventually_at_filter intro!: analytic_intros)
also have h1 z 6= 0 using N has_prod_eq_0_iff [OF has_prod_h1 ′[of z]]

by (auto simp: h1_def g_def)
hence zorder h1 z = 0

by (intro zorder_eq_0I ana_h1)
also have (

∑
n∈{..N} ∩ a −‘ {z}. zorder (λw. g w n) z) = (

∑
n∈{..N} ∩ a −‘

{z}. 1)
proof (intro sum.cong refl)

fix n :: nat
assume n: n ∈ {..N} ∩ a −‘ {z}
have zorder (λw. weierstrass_factor (p n) (1 / a n ∗ w)) z =

zorder (weierstrass_factor (p n)) (1 / a n ∗ z)
using a_nonzero[of n] eventually_neq_at_within[of 1 z / a n UNIV]
by (intro zorder_scale analytic_intros analytic_on_imp_meromorphic_on)

auto
hence zorder (λw. g w n) z = zorder (weierstrass_factor (p n)) 1

using n a_nonzero[of n] by (auto simp: g_def)
thus zorder (λw. g w n) z = 1

by simp
qed
also have . . . = card ({..N} ∩ a −‘ {z})

by simp
also have {..N} ∩ a −‘ {z} = a −‘ {z}

using N by blast
finally show ?thesis

by simp
qed

end

The following locale is the most common case of p(n) = n.
locale weierstrass_product ′ =

fixes a :: nat ⇒ complex
assumes a_nonzero:

∧
n. a n 6= 0

assumes filterlim_a: filterlim a at_infinity at_top
assumes finite_occs_a ′:

∧
z. z ∈ range a =⇒ finite (a −‘ {z})

begin

lemma finite_occs_a: finite (a −‘ {z})
proof (cases z ∈ range a)

case False

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 532

hence a −‘ {z} = {}
by auto

thus ?thesis by simp
qed (use finite_occs_a ′[of z] in auto)

sublocale weierstrass_product a λn. n
proof

fix r :: real assume r : r > 0
show summable (λn. (r / norm (a n)) ^ Suc n)
proof (rule summable_comparison_test_ev)

have eventually (λn. norm (a n) > 2 ∗ r) at_top
using filterlim_a by (metis filterlim_at_infinity_imp_norm_at_top filter-

lim_at_top_dense)
thus eventually (λn. norm ((r / norm (a n)) ^ Suc n) ≤ (1 / 2) ^ Suc n)

at_top
proof eventually_elim

case (elim n)
have norm ((r / norm (a n)) ^ Suc n) = (r / norm (a n)) ^ Suc n

using ‹r > 0 › by (simp add: abs_mult)
also have . . . ≤ (1 / 2) ^ Suc n

using ‹r > 0 › elim by (intro power_mono) (auto simp: divide_simps)
finally show ?case .

qed
next

show summable (λn. (1 / 2) ^ Suc n :: real)
unfolding summable_Suc_iff by (intro summable_geometric) auto

qed
qed (use a_nonzero filterlim_a finite_occs_a in auto)

end

9.3 Writing a quotient as an exponential

If two holomorphic functions f and g on a simply connected domain have
the same zeros with the same multiplicities, they can be written as g(x) =
eh(x)f(x) for some holomorphic function h(x).
lemma holomorphic_zorder_factorization:

assumes g holomorphic_on A open A connected A
assumes f holomorphic_on A

∧
z. z ∈ A =⇒ f z = 0 ←→ g z = 0∧

z. z ∈ A =⇒ zorder f z = zorder g z
obtains h where h holomorphic_on A

∧
z. z ∈ A =⇒ h z 6= 0

∧
z. z ∈ A =⇒

g z = h z ∗ f z
proof (cases ∃ z∈A. g z 6= 0)

case False
show ?thesis

by (rule that[of λ_. 1]) (use False assms in auto)
next

case True
define F where F = fps_expansion f

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 533

define G where G = fps_expansion g
define c where c = (λz. fps_nth (G z) (subdegree (G z)) / fps_nth (F z)

(subdegree (F z)))
define h where h = (λz. if f z = 0 then c z else g z / f z)

have ev_nonzero: eventually (λw. g w 6= 0 ∧ w ∈ A) (at z) if z ∈ A for z
proof −

from True obtain z0 where z0 : z0 ∈ A g z0 6= 0
by auto

show ?thesis
by (rule non_zero_neighbour_alt[where ?β = z0])

(use assms that z0 in ‹auto intro: simply_connected_imp_connected›)
qed

have g_ana: g analytic_on {z} if z ∈ A for z
using assms ‹open A› analytic_at that by blast

have f_ana: f analytic_on {z} if z ∈ A for z
using assms ‹open A› analytic_at that by blast

have F : (λw. f (z + w)) has_fps_expansion F z if z ∈ A for z
unfolding F_def by (rule analytic_at_imp_has_fps_expansion[OF f_ana[OF

that]])
have G: (λw. g (z + w)) has_fps_expansion G z if z ∈ A for z
unfolding G_def by (rule analytic_at_imp_has_fps_expansion[OF g_ana[OF

that]])

have [simp]: G z 6= 0 if z ∈ A for z
proof

assume G z = 0
hence eventually (λw. g w = 0) (at z) using G[OF that]

by (auto simp: has_fps_expansion_0_iff at_to_0 ′ eventually_filtermap
add_ac

eventually_at_filter nhds_to_0 ′ elim: eventually_mono)
hence eventually (λ_. False) (at z)
using ev_nonzero[OF that] unfolding eventually_at_filter by eventually_elim

auto
thus False

by simp
qed
have [simp]: F z 6= 0 if z ∈ A for z
proof

assume F z = 0
hence eventually (λw. f w = 0) (at z) using F [of z] that

by (auto simp: has_fps_expansion_0_iff at_to_0 ′ eventually_filtermap
add_ac

eventually_at_filter nhds_to_0 ′ elim: eventually_mono)
hence eventually (λ_. False) (at z)

using ev_nonzero[OF that] unfolding eventually_at_filter
by eventually_elim (use assms in auto)

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 534

thus False
by simp

qed
have [simp]: c z 6= 0 if z ∈ A for z

using that by (simp add: c_def)

have h: h analytic_on {z} ∧ h z 6= 0 if z ∈ A for z
proof −

show ?thesis
proof (cases f z = 0)

case False
from False that have (λz. g z / f z) analytic_on {z}

by (intro analytic_intros g_ana f_ana) auto
also have ?this ←→ h analytic_on {z}
proof (rule analytic_at_cong)

have eventually (λw. f w 6= 0) (nhds z)
using ev_nonzero[OF ‹z ∈ A›] unfolding eventually_at_filter
by eventually_elim (use False ‹z ∈ A› assms in auto)

thus eventually (λz. g z / f z = h z) (nhds z)
by eventually_elim (auto simp: h_def)

qed auto
finally have h analytic_on {z} .
moreover have h z 6= 0

using that assms by (simp add: h_def)
ultimately show ?thesis by blast

next
case True
with that have z: z ∈ A f z = 0

by auto
have zorder f z = int (subdegree (F z))

using F by (rule has_fps_expansion_zorder) (use z in auto)
also have zorder f z = zorder g z

using z assms by auto
also have zorder g z = subdegree (G z)

using G by (rule has_fps_expansion_zorder) (use z in auto)
finally have subdegree_eq: subdegree (F z) = subdegree (G z)

by simp

have (λw. if w = 0 then c z else g (z + w) / f (z + w)) has_fps_expansion
G z / F z (is ?P)

using subdegree_eq z by (intro has_fps_expansion_divide F G) (auto simp:
c_def)

also have ?this ←→ (λw. h (z + w)) has_fps_expansion G z / F z
proof (intro has_fps_expansion_cong)

have eventually (λw. w 6= z −→ f w 6= 0) (nhds z)
using ev_nonzero[OF ‹z ∈ A›] unfolding eventually_at_filter
by eventually_elim (use ‹z ∈ A› assms in auto)

hence eventually (λw. w 6= 0 −→ f (z + w) 6= 0) (nhds 0)
by (simp add: nhds_to_0 ′ eventually_filtermap)

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 535

thus eventually (λw. (if w = 0 then c z else g (z + w) / f (z + w)) = h (z
+ w)) (nhds 0)

unfolding h_def by eventually_elim (use z in ‹auto simp: c_def h_def ›)
qed auto
finally have h analytic_on {z}

using has_fps_expansion_imp_analytic by blast
moreover have h z 6= 0

using that z by (auto simp: h_def c_def)
ultimately show ?thesis by blast

qed
qed

from h have h_ana: h analytic_on A and h_nz: ∀ z∈A. h z 6= 0
using analytic_on_analytic_at by blast+

moreover have g z = h z ∗ f z if z ∈ A for z
using assms that by (auto simp: h_def)

ultimately show ?thesis
using ‹open A› by (intro that[of h]) (auto simp: analytic_on_open)

qed

9.4 Constructing the sequence of zeros

The form of the Weierstraß Factorisation Theorem that we derived above
requires an explicit sequence of the zeros that tends to infinity. We will now
show that under mild conditions, such a sequence always exists.
More precisely: if A is an infinite closed set that is sparse in the sense that
its intersection with any compact set is finite, then there exists an injective
sequence f enumerating the values of A in ascending order by absolute value,
and f tends to infinity for n → ∞.
lemma sequence_of_sparse_set_exists:

fixes A :: complex set
assumes infinite A closed A

∧
r . r ≥ 0 =⇒ finite (A ∩ cball 0 r)

obtains f :: nat ⇒ complex
where mono (norm ◦ f) inj f range f = A filterlim f at_infinity at_top

proof −
have ∃ f ::nat ⇒ complex. ∀n.

f n ∈ A ∧
f n /∈ f ‘ {..<n} ∧
{z∈A. norm z < norm (f n)} ⊆ f ‘ {..<n} ∧
(∀ k<n. norm (f k) ≤ norm (f n))

proof (rule dependent_wf_choice[OF wf], goal_cases)
case (1 f g n r)
thus ?case by auto

next
case (2 n f)
have f : f k ∈ A {z ∈ A. norm z < norm (f k)} ⊆ f ‘ {..<k} ∀ k ′<k. cmod (f

k ′) ≤ cmod (f k)
if k < n for k

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 536

using 2 [of k] that by simp_all

have infinite (A − f ‘ {..<n})
using assms(1) by (intro Diff_infinite_finite) auto

then obtain z0 where z0 : z0 ∈ A − f ‘ {..<n}
by (meson finite.intros(1) finite_subset subsetI)

have finite (A ∩ cball 0 (norm z0))
by (intro assms(3)) auto

hence finite (A ∩ cball 0 (norm z0) − f ‘ {..<n})
using finite_subset by blast

moreover from z0 have A ∩ cball 0 (norm z0) − f ‘ {..<n} 6= {}
by auto

ultimately obtain z where is_arg_min norm (λz. z ∈ A ∩ cball 0 (norm
z0) − f ‘ {..<n}) z

using ex_is_arg_min_if_finite by blast
hence z: z ∈ A norm z ≤ norm z0 z /∈ f ‘ {..<n}∧

w. w ∈ A =⇒ norm w ≤ norm z0 =⇒ w /∈ f ‘ {..<n} =⇒ norm w ≥
norm z

by (auto simp: is_arg_min_def)

show ?case
proof (rule exI [of _ z], safe)

fix w assume w: w ∈ A norm w < norm z
with z(4)[of w] z w show w ∈ f ‘ {..<n}

by linarith
next

fix k assume k: k < n
show norm (f k) ≤ norm z

using f (2)[of k] z(1 ,3) k by auto
qed (use z in auto)

qed
then obtain f :: nat ⇒ complex where f :∧

n. f n ∈ A∧
n. f n /∈ f ‘ {..<n}∧
n. {z∈A. norm z < norm (f n)} ⊆ f ‘ {..<n}∧
k n. k < n =⇒ norm (f k) ≤ norm (f n)

by meson
from f (2) have f_neq: f n 6= f k if k < n for k n

using that by blast

have inj: inj f
proof (rule injI)

fix m n :: nat
assume f m = f n
thus m = n

using f_neq[of m n] f_neq[of n m] by (cases m n rule: linorder_cases) auto
qed

have range: range f = A

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 537

proof safe
fix z assume z: z ∈ A
show z ∈ range f
proof (rule ccontr)

assume z /∈ range f
hence norm (f n) ≤ norm z for n

using f (3)[of n] z by auto
hence range f ⊆ A ∩ cball 0 (norm z)

using f (1) by auto
moreover have finite (A ∩ cball 0 (norm z))

by (intro assms) auto
ultimately have finite (range f)

using finite_subset by blast
moreover have infinite (range f)

using inj by (subst finite_image_iff) auto
ultimately show False by contradiction

qed
qed (use f (1) in auto)

have mono: mono (norm ◦ f)
proof (rule monoI , unfold o_def)

fix m n :: nat
assume m ≤ n
thus norm (f m) ≤ norm (f n)

using f (4)[of m n] by (cases m < n) auto
qed

have ¬bounded A
proof

assume bounded A
hence bdd_above (norm ‘ A)

by (meson bdd_above_norm)
hence norm z ≤ Sup (norm ‘ A) if z ∈ A for z

using that by (meson cSUP_upper)
hence A ⊆ cball 0 (Sup (norm ‘ A))

by auto
also have . . . ⊆ cball 0 (max 1 (Sup (norm ‘ A)))

by auto
finally have A ⊆ A ∩ cball 0 (max 1 (Sup (norm ‘ A)))

by blast
moreover have finite (A ∩ cball 0 (max 1 (Sup (norm ‘ A))))

by (intro assms) auto
ultimately have finite A

using finite_subset by blast
hence finite (range f)

by (simp add: range)
thus False

using inj by (subst (asm) finite_image_iff) auto
qed

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 538

have lim: filterlim f at_infinity at_top
unfolding filterlim_at_infinity_conv_norm_at_top filterlim_at_top

proof
fix C :: real
from ‹¬bounded A› obtain z where z ∈ A norm z > C

unfolding bounded_iff by (auto simp: not_le)
obtain n where [simp]: z = f n

using range ‹z ∈ A› by auto
show eventually (λn. norm (f n) ≥ C) at_top

using eventually_ge_at_top[of n]
proof eventually_elim

case (elim k)
have C ≤ norm (f n)

using ‹norm z > C › by simp
also have . . . ≤ norm (f k)

using monoD[OF ‹mono (norm ◦ f)›, of n k] elim by auto
finally show ?case .

qed
qed

show ?thesis
by (intro that[of f] inj range mono lim)

qed

lemma strict_mono_sequence_partition:
assumes strict_mono (f :: nat ⇒ ′a :: {linorder , no_top})
assumes x ≥ f 0
assumes filterlim f at_top at_top
shows ∃ k. x ∈ {f k..<f (Suc k)}

proof −
define k where k = (LEAST k. f (Suc k) > x)
{

obtain n where x ≤ f n
using assms by (auto simp: filterlim_at_top eventually_at_top_linorder)

also have f n < f (Suc n)
using assms by (auto simp: strict_mono_Suc_iff)

finally have ∃n. f (Suc n) > x by auto
}
from LeastI_ex[OF this] have x < f (Suc k)

by (simp add: k_def)
moreover have f k ≤ x
proof (cases k)

case (Suc k ′)
have k ≤ k ′ if f (Suc k ′) > x

using that unfolding k_def by (rule Least_le)
with Suc show f k ≤ x by (cases f k ≤ x) (auto simp: not_le)

qed (use assms in auto)

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 539

ultimately show ?thesis by auto
qed

lemma strict_mono_sequence_partition ′:
assumes strict_mono (f :: nat ⇒ ′a :: {linorder , no_top})
assumes x ≥ f 0
assumes filterlim f at_top at_top
shows ∃ !k. x ∈ {f k..<f (Suc k)}

proof (rule ex_ex1I)
show ∃ k. x ∈ {f k..<f (Suc k)}

using strict_mono_sequence_partition[OF assms] .
fix k1 k2 assume x ∈ {f k1 ..<f (Suc k1)} x ∈ {f k2 ..<f (Suc k2)}
thus k1 = k2
proof (induction k1 k2 rule: linorder_wlog)

case (le k1 k2)
hence f k2 < f (Suc k1)

by auto
hence k2 < Suc k1

using assms(1) strict_mono_less by blast
with le show k1 = k2

by linarith
qed auto

qed

lemma sequence_of_sparse_set_exists ′:
fixes A :: complex set and c :: complex ⇒ nat
assumes infinite A closed A

∧
r . r ≥ 0 =⇒ finite (A ∩ cball 0 r)

assumes c_pos:
∧

x. x ∈ A =⇒ c x > 0
obtains f :: nat ⇒ complex where

mono (norm ◦ f) range f = A filterlim f at_infinity at_top∧
z. z ∈ A =⇒ finite (f −‘ {z}) ∧ card (f −‘ {z}) = c z

proof −
obtain f :: nat ⇒ complex where f :

mono (norm ◦ f) inj f range f = A filterlim f at_infinity at_top
using assms sequence_of_sparse_set_exists by blast

have f_eq_iff [simp]: f m = f n ←→ m = n for m n
using ‹inj f › by (auto simp: inj_def)

define h :: nat ⇒ nat where h = (λn.
∑

k<n. c (f k))

have [simp]: h 0 = 0
by (simp add: h_def)

have h_ge: h n ≥ n for n
proof −

have h n ≥ (
∑

k<n. 1)
unfolding h_def by (intro sum_mono) (use c_pos f in ‹auto simp: Suc_le_eq›)
thus ?thesis by simp

qed

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 540

have strict_mono h
unfolding strict_mono_Suc_iff using f by (auto simp: h_def c_pos)

moreover from this have filterlim h at_top at_top
using filterlim_subseq by blast

ultimately have Ex1 : ∃ !k. n ∈ {h k..<h (Suc k)} for n
by (intro strict_mono_sequence_partition ′) auto

define g :: nat ⇒ nat where g = (λn. THE k. n ∈ {h k..<h (Suc k)})
have g: n ∈ {h (g n)..<h (Suc (g n))} for n

using theI ′[OF Ex1 [of n]] by (simp add: g_def)
have g_eqI : g n = k if n ∈ {h k..<h (Suc k)} for n k

using the1_equality[OF Ex1 that] by (simp add: g_def)
have g_h: g (h n) = n for n

by (rule g_eqI) (auto intro: strict_monoD[OF ‹strict_mono h›])

have mono g
unfolding incseq_Suc_iff

proof safe
fix n :: nat
have h (g n) + 1 ≤ Suc n

using g[of n] by auto
also have Suc n < h (Suc (g (Suc n)))

using g[of Suc n] by auto
finally show g n ≤ g (Suc n)

by (metis ‹strict_mono h› add_lessD1 less_Suc_eq_le strict_mono_less)
qed

have filterlim g at_top at_top
unfolding filterlim_at_top

proof
fix n :: nat
show eventually (λm. g m ≥ n) at_top

using eventually_ge_at_top[of h n]
proof eventually_elim

case (elim m)
have n ≤ g (h n)

by (simp add: g_h)
also have g (h n) ≤ g m

by (intro monoD[OF ‹mono g›] elim)
finally show ?case .

qed
qed

have vimage: (f ◦ g) −‘ {f n} = {h n..<h (Suc n)} for n
using g by (auto intro!: g_eqI)

show ?thesis
proof (rule that[of f ◦ g])

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 541

have incseq (λn. (norm ◦ f) (g n))
by (intro monoI monoD[OF f (1)] monoD[OF ‹incseq g›])

thus incseq (norm ◦ (f ◦ g))
by (simp add: o_def)

next
have range (f ◦ g) ⊆ A

using f (3) by auto
moreover have A ⊆ range (f ◦ g)
proof

fix z assume z ∈ A
then obtain n where [simp]: z = f n

using f (3) by auto
have f (g (h n)) ∈ range (f ◦ g)

unfolding o_def by blast
thus z ∈ range (f ◦ g)

by (simp add: g_h)
qed
ultimately show range (f ◦ g) = A by blast

next
fix z assume z ∈ A
then obtain n where [simp]: z = f n

using f (3) by auto
have finite {h n..<h (Suc n)}

by auto
moreover have card {h n..<h (Suc n)} = c z

by (simp add: h_def)
ultimately show finite ((f ◦ g) −‘ {z}) ∧ card ((f ◦ g) −‘ {z}) = c z

using vimage[of n] by simp
next

show filterlim (f ◦ g) at_infinity at_top
unfolding o_def by (rule filterlim_compose[OF f (4) ‹filterlim g at_top

at_top›])
qed

qed

9.5 The factorisation theorem for holomorphic functions

If g is a holomorphic function on an open connected domain whose zeros do
not have an accumulation point on the frontier of A, then we can write g as
a product of a function h holomorphic on A and an entire function f such
that h is non-zero everywhere in A and the zeros of f are precisely the zeros
of A with the same multiplicity.
In other words, we can get rid of all the zeros of g by dividing it with a
suitable entire function f.
theorem weierstrass_factorization:

assumes g holomorphic_on A open A connected A
assumes

∧
z. z ∈ frontier A =⇒ ¬z islimpt {w∈A. g w = 0}

obtains h f where

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 542

h holomorphic_on A f holomorphic_on UNIV
∀ z. f z = 0 ←→ (∀ z∈A. g z = 0) ∨ (z ∈ A ∧ g z = 0)
∀ z∈A. zorder f z = zorder g z
∀ z∈A. h z 6= 0
∀ z∈A. g z = h z ∗ f z

proof (cases ∀ z∈A. g z = 0)
case True
show ?thesis
proof (rule that[of λ_. 1 λ_. 0]; (intro ballI allI impI)?)

fix z assume z: z ∈ A
have ev: eventually (λw. w ∈ A) (at z)

using z assms by (intro eventually_at_in_open ′) auto
show zorder (λ_::complex. 0 :: complex) z = zorder g z

by (intro zorder_cong eventually_mono[OF ev] refl) (use True in auto)
qed (use assms True in auto)

next
case not_identically_zero: False
define Z where Z = {z∈A. g z = 0}
have freq_nz: frequently (λz. g z 6= 0) (at z) if z ∈ A for z
proof −

have ∀ F w in at z. g w 6= 0 ∧ w ∈ A
using non_zero_neighbour_alt[OF assms(1 ,2 ,3) that(1)] not_identically_zero

by auto
hence ∀ F w in at z. g w 6= 0

by eventually_elim auto
thus ?thesis

using eventually_frequently by force
qed

have zorder_pos_iff : zorder g z > 0 ←→ g z = 0 if z ∈ A for z
by (subst zorder_pos_iff [OF assms(1 ,2) that]) (use freq_nz[of z] that in auto)

show ?thesis
proof (cases finite Z)

case True
define f where f = (λz.

∏
w∈Z . (z − w) powi (zorder g w))

have eq_zero_iff : f z = 0 ←→ z ∈ A ∧ g z = 0 for z
using True local.zorder_pos_iff
unfolding f_def Z_def by fastforce

have zorder_eq: zorder f z = zorder g z if z ∈ A for z
proof (cases g z = 0)

case False
have g analytic_on {z}

using that assms analytic_at by blast
hence [simp]: zorder g z = 0

using False by (intro zorder_eq_0I) auto
moreover have f analytic_on {z}

unfolding f_def by (auto intro!: analytic_intros)

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 543

hence zorder f z = 0
using False by (intro zorder_eq_0I) (auto simp: eq_zero_iff)

ultimately show ?thesis
by simp

next
case zero: True
have g analytic_on {z}

using that assms(1 ,2) analytic_at by blast
hence zorder g z ≥ 0

using that by (intro zorder_ge_0 freq_nz) auto
define f ′ where f ′ = (λz ′. (

∏
w∈Z−{z}. (z ′ − w) powi (zorder g w)))

have zorder (λz ′. (z ′ − z) powi (zorder g z) ∗ f ′ z ′) z = zorder g z
proof (rule zorder_eqI)

show open (UNIV :: complex set) f ′ holomorphic_on UNIV z ∈ UNIV
using local.zorder_pos_iff
by (fastforce intro!: holomorphic_intros simp: f ′_def Z_def)+

show f ′ z 6= 0
using True unfolding f ′_def by (subst prod_zero_iff) auto

qed (use ‹zorder g z ≥ 0 › in ‹auto simp: powr_of_int›)
also have (λz ′. (z ′ − z) powi (zorder g z) ∗ f ′ z ′) = f
proof

fix z ′ :: complex
have Z = insert z (Z − {z})

using that zero by (auto simp: Z_def)
also have (

∏
w∈. . . . (z ′ − w) powi (zorder g w)) = (z ′ − z) powi (zorder

g z) ∗ f ′ z ′

using True by (subst prod.insert) (auto simp: f ′_def)
finally show (z ′ − z) powi (zorder g z) ∗ f ′ z ′ = f z ′

by (simp add: f_def)
qed
finally show ?thesis .

qed

obtain h :: complex ⇒ complex where h:
h holomorphic_on A

∧
z. z ∈ A =⇒ h z 6= 0

∧
z. z ∈ A =⇒ g z = h z ∗ f z

proof (rule holomorphic_zorder_factorization[OF assms(1−3)])
show f holomorphic_on A

using local.zorder_pos_iff
unfolding f_def Z_def by (fastforce intro: holomorphic_intros)

show f z = 0 ←→ g z = 0 if z ∈ A for z
using that by (subst eq_zero_iff) auto

show zorder f z = zorder g z if z ∈ A for z
by (rule zorder_eq) fact

qed metis

show ?thesis
proof (rule that[of h f]; (intro ballI)?)

show h holomorphic_on A
by fact

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 544

show f holomorphic_on UNIV
using local.zorder_pos_iff
unfolding f_def Z_def by (fastforce intro: holomorphic_intros)

qed (use True not_identically_zero in ‹auto simp: eq_zero_iff zorder_eq h(2)
h(3)[symmetric]›)

next
case False
note infinite_zeroes = not_identically_zero False
define c where c = (λz. nat (zorder g z))

have ev_nz: eventually (λw. g w 6= 0) (at z) if z ∈ A for z
proof −

from infinite_zeroes(1) obtain z0 where z0 : z0 ∈ A g z0 6= 0
by auto

have eventually (λw. g w 6= 0 ∧ w ∈ A) (at z)
by (rule non_zero_neighbour_alt[where ?β = z0]) (use assms z0 that in

auto)
thus ?thesis

by eventually_elim auto
qed

have no_limpt_Z : ¬z islimpt Z for z
proof

assume z islimpt Z
show False
proof (cases z ∈ A)

case False
have z islimpt A

by (rule islimpt_subset[OF ‹z islimpt Z ›]) (auto simp: Z_def)
hence z ∈ closure A

by (simp add: closure_def)
with ‹z /∈ A› have z ∈ frontier A

by (simp add: closure_Un_frontier)
with assms and ‹z islimpt Z › show False

by (auto simp: Z_def)
next

case True
from True have eventually (λw. g w 6= 0) (at z)

using ev_nz by blast
hence ¬z islimpt Z

by (auto simp: islimpt_iff_eventually Z_def elim!: eventually_mono)
with ‹z islimpt Z › show False by blast

qed
qed
have closed Z

using no_limpt_Z unfolding closed_limpt by blast

obtain a where a:

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 545

incseq (norm ◦ a) range a = Z − {0}∧
z. z ∈ Z − {0} =⇒ finite (a −‘ {z}) ∧ card (a −‘ {z}) = c z

filterlim a at_infinity at_top
proof (rule sequence_of_sparse_set_exists ′)

show infinite (Z − {0})
using infinite_zeroes(2) by auto

next
show closed (Z − {0})

unfolding closed_limpt using no_limpt_Z islimpt_subset by blast
next

show finite ((Z − {0}) ∩ cball 0 R) if R ≥ 0 for R
proof (rule ccontr)

assume ∗: infinite ((Z − {0}) ∩ cball 0 R)
have ∃ z∈cball 0 R. z islimpt ((Z − {0}) ∩ cball 0 R)

by (rule Heine_Borel_imp_Bolzano_Weierstrass) (use ∗ in auto)
then obtain z where z islimpt ((Z − {0}) ∩ cball 0 R)

by blast
hence z islimpt Z

using islimpt_subset by blast
thus False

using no_limpt_Z by blast
qed

next
show c z > 0 if z ∈ Z − {0} for z

using zorder_pos_iff [of z] that by (auto simp: c_def Z_def)
qed metis

interpret f : weierstrass_product ′ a
proof

show a n 6= 0 for n
using a(2) by auto

show finite (a −‘ {z}) if z ∈ range a for z
using a(3)[of z] a(2) that by simp

qed fact+

define m where m = (if 0 ∈ A then nat (zorder g 0) else 0)

have zorder_eq: zorder (λz. z ^ m ∗ f .f z) z = zorder g z if z ∈ A for z
proof (cases g z = 0)

case False
have g analytic_on {z}

using ‹z ∈ A› analytic_at assms by blast
hence zorder g z = 0

by (intro zorder_eq_0I False)
have z /∈ range a

using False Z_def a(2) by blast
hence zorder (λz. z ^ m ∗ f .f z) z = 0

using False ‹zorder g z = 0 ›
by (intro zorder_eq_0I analytic_intros) (auto simp: f .zero m_def)

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 546

with ‹zorder g z = 0 › show ?thesis
by simp

next
case True
define F where F = fps_expansion f .f z
have frequently (λw. g w 6= 0) (at z)

using ev_nz[OF that] eventually_frequently by force
hence zorder g z ≥ 0

by (intro zorder_ge_0) (use assms that in ‹auto simp: analytic_at›)

have ev: eventually (λz. z ∈ A) (nhds z)
using that assms by (intro eventually_nhds_in_open) auto

have exp1 : (λw. f .f (z + w)) has_fps_expansion F
unfolding F_def by (intro analytic_at_imp_has_fps_expansion[OF

f .analytic])
have exp2 : (λw. (z + w) ^ m ∗ f .f (z + w)) has_fps_expansion (fps_const

z + fps_X) ^ m ∗ F
by (intro fps_expansion_intros exp1)

have [simp]: F 6= 0
proof

assume F = 0
hence eventually (λz. f .f z = 0) (nhds z)

using exp1 by (auto simp: has_fps_expansion_def nhds_to_0 ′ eventu-
ally_filtermap)

hence eventually (λz. g z = 0) (at z)
by (auto simp: f .zero a Z_def eventually_at_filter elim!: eventually_mono)
hence eventually (λz::complex. False) (at z)

using ev_nz[OF ‹z ∈ A›] by eventually_elim auto
thus False by simp

qed

have zorder (λw. w ^ m ∗ f .f w) z = int (subdegree ((fps_const z + fps_X)
^ m ∗ F))

using has_fps_expansion_zorder [OF exp2] by simp
also have . . . = int (subdegree F) + (if z = 0 then m else 0)

by auto
also have int (subdegree F) = zorder f .f z

using has_fps_expansion_zorder [OF exp1] by simp
also have . . . = int (card (a −‘ {z}))

by (rule f .zorder)
also have card (a −‘ {z}) = (if z = 0 then 0 else c z)
proof (cases z = 0)

case True
hence a −‘ {z} = {}

using a(2) by auto
thus ?thesis using True by simp

next
case False
thus ?thesis

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 547

by (subst a(3)) (use True that in ‹auto simp: Z_def ›)
qed
also have int . . . + (if z = 0 then m else 0) = zorder g z

using ‹zorder g z ≥ 0 › that by (auto simp: c_def m_def)
finally show ?thesis .

qed

have eq_zero_iff : z ^ m ∗ f .f z = 0 ←→ g z = 0 if z ∈ A for z
using that by (auto simp add: f .zero a m_def zorder_pos_iff Z_def)

obtain h :: complex ⇒ complex where h:
h holomorphic_on A

∧
z. z ∈ A =⇒ h z 6= 0

∧
z. z ∈ A =⇒ g z = h z ∗ (z

^ m ∗ f .f z)
proof (rule holomorphic_zorder_factorization[OF assms(1−3)])

show (λz. z ^ m ∗ f .f z) holomorphic_on A
by (intro holomorphic_intros)

show z ^ m ∗ f .f z = 0 ←→ g z = 0 if z ∈ A for z
by (rule eq_zero_iff) fact+

show zorder (λz. z ^ m ∗ f .f z) z = zorder g z if z ∈ A for z
by (rule zorder_eq) fact+

qed metis

show ?thesis
proof (rule that[of h λz. z ^ m ∗ f .f z]; (intro ballI allI impI)?)

show h holomorphic_on A
by fact

show (λz. z ^ m ∗ f .f z) holomorphic_on UNIV
by (intro holomorphic_intros)

next
fix z :: complex
show (z ^ m ∗ f .f z = 0) = ((∀ z∈A. g z = 0) ∨ z ∈ A ∧ g z = 0)

using infinite_zeroes(1) a(2)
by (auto simp: m_def zorder_eq eq_zero_iff zorder_pos_iff Z_def f .zero)

qed (use zorder_eq eq_zero_iff h in auto)
qed

qed

The following is a simpler version for entire functions.
theorem weierstrass_factorization_UNIV :

assumes g holomorphic_on UNIV
obtains h f where

h holomorphic_on UNIV f holomorphic_on UNIV
∀ z. f z = 0 ←→ g z = 0
∀ z. zorder f z = zorder g z
∀ z. h z 6= 0
∀ z. g z = h z ∗ f z

using assms by (rule weierstrass_factorization, goal_cases) auto

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 548

9.6 The factorisation theorem for meromorphic functions

Let g be a meromorphic function on a connected open domain A. Assume
that the poles and zeros of g have no accumulation point on the border of
A. Then g can be written in the form g(z) = h(z)f1(z)/f2(z) where h is
holomorphic on A with no zeroes and f1 and f2 are entire.
Moreover, as direct consequences of that, the zeroes of f1 are precisely the
zeroes of g and the zeros of f2 are precisely the poles of g (with the corre-
sponding multiplicity).
theorem weierstrass_factorization_meromorphic:

assumes mero: g nicely_meromorphic_on A and A: open A connected A
assumes no_limpt:

∧
z. z ∈ frontier A =⇒ ¬z islimpt {w∈A. g w = 0 ∨ is_pole

g w}
obtains h f1 f2 where

h holomorphic_on A f1 holomorphic_on UNIV f2 holomorphic_on UNIV
∀ z∈A. f1 z = 0 ←→ ¬is_pole g z ∧ g z = 0
∀ z∈A. f2 z = 0 ←→ is_pole g z
∀ z∈A. ¬is_pole g z −→ zorder f1 z = zorder g z
∀ z∈A. is_pole g z −→ zorder f2 z = −zorder g z
∀ z∈A. h z 6= 0
∀ z∈A. g z = h z ∗ f1 z / f2 z

proof −
have mero ′: g meromorphic_on A

using mero unfolding nicely_meromorphic_on_def by auto
define pts where pts = {z∈A. is_pole g z}
have {z. is_pole g z} sparse_in A

using meromorphic_on_imp_not_pole_cosparse[OF mero ′]
by (auto simp: eventually_cosparse)

hence pts sparse_in A
unfolding pts_def by (rule sparse_in_subset2) auto

have open_diff_pts: open (A − pts ′) if pts ′ ⊆ pts for pts ′

proof (rule open_diff_sparse_pts)
show pts ′ sparse_in A

using ‹pts sparse_in A› by (rule sparse_in_subset2) fact
qed (use ‹open A› in auto)

have ev: eventually (λw. w ∈ A − pts) (at z) if z ∈ A for z
proof (cases z ∈ pts)

case False
thus ?thesis

using that open_diff_pts[of pts] by (intro eventually_at_in_open ′) auto
next

case True
have eventually (λw. w ∈ (A − (pts − {z})) − {z}) (at z)

using that by (intro eventually_at_in_open open_diff_pts) auto
also have A − (pts − {z}) − {z} = A − pts

using True by auto
finally show ?thesis .

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 549

qed

show ?thesis
proof (cases ∀ z∈A−pts. g z = 0)

case True
have no_poles: ¬is_pole g z if z ∈ A for z
proof −

have is_pole g z ←→ is_pole (λ_::complex. 0 :: complex) z
by (intro is_pole_cong[OF eventually_mono[OF ev]]) (use that True in

auto)
thus ?thesis

by simp
qed
hence [simp]: pts = {}

by (auto simp: pts_def)
have [simp]: zorder g z = zorder (λ_::complex. 0 :: complex) z if z ∈ A for z

by (intro zorder_cong[OF eventually_mono[OF ev]]) (use True that in auto)
show ?thesis

by (rule that[of λ_. 1 λ_. 0 λ_. 1]) (use True in ‹auto simp: no_poles›)

next

case False
have is_pole_iff : is_pole g z ←→ z ∈ pts if z ∈ A for z

using that by (auto simp: pts_def)

obtain h f1 where h_f1 :
h holomorphic_on A − pts f1 holomorphic_on UNIV
∀ z. f1 z = 0 ←→ (∀ z∈A−pts. g z = 0) ∨ (z ∈ A − pts ∧ g z = 0)
∀ z∈A−pts. zorder f1 z = zorder g z
∀ z∈A−pts. h z 6= 0
∀ z∈A−pts. g z = h z ∗ f1 z

proof (rule weierstrass_factorization)
have g analytic_on A − pts

by (rule nicely_meromorphic_without_singularities)
(use mero in ‹auto simp: pts_def dest: nicely_meromorphic_on_subset›)

thus holo: g holomorphic_on A − pts
by (rule analytic_imp_holomorphic)

show open (A − pts)
by (rule open_diff_pts) auto

show connected (A − pts)
by (rule sparse_imp_connected) (use A ‹pts sparse_in A› in auto)

show ¬ z islimpt {w ∈ A − pts. g w = 0} if z ∈ frontier (A − pts) for z
proof −

from that have z ∈ frontier A − pts ∪ pts
using ‹open (A − pts)› ‹open A› closure_mono[of A − pts A]
by (auto simp: frontier_def interior_open)

thus ?thesis
proof

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 550

assume z ∈ pts
hence is_pole g z

by (auto simp: pts_def)
hence eventually (λz. g z 6= 0) (at z)

using non_zero_neighbour_pole by blast
hence ¬z islimpt {w. g w = 0}

by (auto simp: islimpt_iff_eventually)
thus ?thesis

using islimpt_subset[of z {w∈A−pts. g w = 0} {w. g w = 0}] by blast
next

assume z: z ∈ frontier A − pts
show ¬ z islimpt {w ∈ A − pts. g w = 0}
proof

assume z islimpt {w ∈ A − pts. g w = 0}
hence z islimpt {w ∈ A. g w = 0 ∨ is_pole g w}

by (rule islimpt_subset) (auto simp: pts_def)
thus False using no_limpt z by blast

qed
qed

qed
qed

have f1_eq_0_iff : f1 z = 0 ←→ (z ∈ A − pts ∧ g z = 0) for z
using h_f1 (3) False by auto

define h ′ where h ′ = (λz. if z ∈ pts then 0 else inverse (h z))

have isolated_h: isolated_singularity_at h z if z ∈ pts for z
proof −

have open (A − (pts − {z}))
by (rule open_diff_pts) auto

moreover have z ∈ (A − (pts − {z}))
using that by (auto simp: pts_def)

moreover have h holomorphic_on (A − (pts − {z})) − {z}
by (rule holomorphic_on_subset[OF h_f1 (1)]) (use that in auto)

ultimately show isolated_singularity_at h z
using isolated_singularity_at_holomorphic by blast

qed

have is_pole_h: is_pole h z if z ∈ A is_pole g z for z
proof −

have f1 : f1 analytic_on {z}
by (meson analytic_on_holomorphic h_f1 (2) open_UNIV top_greatest)

have eventually (λw. g w 6= 0) (at z)
using ‹is_pole g z› non_zero_neighbour_pole by blast

with ev[OF that(1)] have ev ′: eventually (λw. g w ∗ f1 w 6= 0) (at z)
by eventually_elim (use h_f1 (3) in auto)

have is_pole (λw. g w / f1 w) z

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 551

proof (rule is_pole_divide_zorder)
show isolated_singularity_at f1 z not_essential f1 z

using f1 by (simp_all add: isolated_singularity_at_analytic not_essential_analytic)
show isolated_singularity_at g z not_essential g z

using mero ′ that unfolding meromorphic_on_altdef by blast+
show freq: frequently (λw. g w ∗ f1 w 6= 0) (at z)

using ev ′ by (rule eventually_frequently[rotated]) auto
from freq have freq ′: frequently (λw. f1 w 6= 0) (at z)

using frequently_elim1 by fastforce
have zorder g z < 0

using ‹is_pole g z› ‹isolated_singularity_at g z› isolated_pole_imp_neg_zorder
by auto

also have 0 ≤ zorder f1 z
by (rule zorder_ge_0 [OF f1 freq ′])

finally show zorder g z < zorder f1 z .
qed
also have ?this ←→ is_pole h z

proof (intro is_pole_cong refl eventually_mono[OF eventually_conj[OF
ev[OF that(1)] ev ′]])

fix w assume w ∈ A − pts ∧ g w ∗ f1 w 6= 0
thus g w / f1 w = h w using h_f1 (6)

by (auto simp: divide_simps)
qed
finally show is_pole h z .

qed

have h ′ analytic_on {z} if z ∈ A for z
proof (cases z ∈ pts)

case False
moreover have open (A − pts)

by (rule open_diff_pts) auto
ultimately have (λz. inverse (h z)) analytic_on {z}

using that h_f1 (1 ,2 ,5) ‹open (A − pts)› analytic_at False
by (intro analytic_intros) (auto simp: f1_eq_0_iff)

also have eventually (λz. z ∈ A − pts) (nhds z)
using that False ‹open (A − pts)› by (intro eventually_nhds_in_open) auto

hence (λz. inverse (h z)) analytic_on {z} ←→ h ′ analytic_on {z}
by (intro analytic_at_cong) (auto elim!: eventually_mono simp: h ′_def)

finally show ?thesis .
next

case True
have (λw. if w = z then 0 else inverse (h w)) holomorphic_on (A − (pts −

{z}))
proof (rule is_pole_inverse_holomorphic)

from True have A − (pts − {z}) − {z} = A − pts
by auto

thus h holomorphic_on A − (pts − {z}) − {z}
using h_f1 (1) by simp

next

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 552

show open (A − (pts − {z}))
by (rule open_diff_pts) auto

next
have is_pole g z

using True that by (simp add: is_pole_iff)
thus is_pole h z

using is_pole_h that by auto
next

show ∀w∈A−(pts−{z})−{z}. h w 6= 0
using h_f1 (5) by auto

qed
also have ?this ←→ h ′ holomorphic_on A − (pts − {z})
proof (intro holomorphic_cong refl)

fix w assume w: w ∈ A − (pts − {z})
show (if w = z then 0 else inverse (h w)) = h ′ w

using True w by (cases w = z) (auto simp: h ′_def)
qed
finally have h ′ holomorphic_on A − (pts − {z}) .
moreover have z ∈ A − (pts − {z}) open (A − (pts − {z}))

using True that by (auto intro!: open_diff_pts)
ultimately show h ′ analytic_on {z}

using analytic_at by blast
qed
hence h ′: h ′ analytic_on A

using analytic_on_analytic_at by blast

have h ′_eq_0_iff : h ′ w = 0 ←→ is_pole g w if w ∈ A for w
using that h_f1 (5) is_pole_iff [of w] by (auto simp: h ′_def)

obtain h ′′ f2 where h ′′_f2 :
h ′′ holomorphic_on A f2 holomorphic_on UNIV
∀ z. f2 z = 0 ←→ (∀ z∈A. h ′ z = 0) ∨ (z ∈ A ∧ h ′ z = 0)
∀ z∈A. h ′ z = 0 −→ zorder f2 z = zorder h ′ z
∀ z∈A. h ′′ z 6= 0 ∀ z∈A. h ′ z = h ′′ z ∗ f2 z

proof (rule weierstrass_factorization[of h ′ A])
show open A connected A

by fact+
show h ′ holomorphic_on A

using h ′ ‹open A› by (simp add: analytic_on_open)
show ¬z islimpt {w∈A. h ′ w = 0} if z ∈ frontier A for z
proof

assume z islimpt {w∈A. h ′ w = 0}
also have {w∈A. h ′ w = 0} = pts

by (auto simp: h ′_eq_0_iff pts_def)
finally have z islimpt {w ∈ A. g w = 0 ∨ is_pole g w}

by (rule islimpt_subset) (auto simp: pts_def)
thus False using no_limpt[of z] that

by blast
qed

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 553

qed blast

show ?thesis
proof (rule that[of λw. inverse (h ′′ w) f1 f2]; (intro ballI allI impI)?)

show (λw. inverse (h ′′ w)) holomorphic_on A
using h ′′_f2 (1 ,2 ,5) by (intro holomorphic_intros) auto

next
show f1 holomorphic_on UNIV f2 holomorphic_on UNIV

by fact+
next

show f1 z = 0 ←→ ¬ is_pole g z ∧ g z = 0 if z ∈ A for z
using that by (subst f1_eq_0_iff) (auto simp: pts_def)

next
show f2 z = 0 ←→ is_pole g z if z ∈ A for z
proof −

have ¬(∀ z∈A. h ′ z = 0)
using False h ′′_f2 (6) h_f1 (6) h ′_eq_0_iff is_pole_iff by auto

hence f2 z = 0 ←→ h ′ z = 0
using h ′′_f2 (3) that by auto

also have . . . ←→ is_pole g z
using that by (simp add: is_pole_iff h ′_eq_0_iff)

finally show ?thesis .
qed

next
show zorder f1 z = zorder g z if z ∈ A ¬is_pole g z for z

using h_f1 (4) that by (auto simp: pts_def)
next

show zorder f2 z = −zorder g z if z ∈ A is_pole g z for z
proof −

have zorder f2 z = zorder h ′ z
using h ′′_f2 (4) that h ′_eq_0_iff [of z] is_pole_iff [of z] by auto

also have . . . = zorder (λw. inverse (h w)) z
using that by (intro zorder_cong eventually_mono[OF ev]) (auto simp:

h ′_def)
also have . . . = −zorder h z
proof (intro zorder_inverse)

have is_pole h z
using that is_pole_iff [of z] is_pole_h[of z] by auto

thus not_essential h z
by force

show frequently (λw. h w 6= 0) (at z)
using non_zero_neighbour_pole[OF ‹is_pole h z›] eventually_frequently

by force
qed (use that in ‹auto intro!: isolated_h simp: pts_def ›)
also have zorder f1 z = 0
proof (rule zorder_eq_0I)

show f1 analytic_on {z}
using that h_f1 (2) holomorphic_on_imp_analytic_at by blast

show f1 z 6= 0

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass_Factorization.thy 554

using that h_f1 (3) False by (auto simp: pts_def)
qed
hence zorder h z = zorder f1 z + zorder h z

by simp
also have . . . = zorder (λw. f1 w ∗ h w) z
proof (rule zorder_times [symmetric])

have f1 analytic_on {z}
using that h_f1 (2) holomorphic_on_imp_analytic_at by blast

thus isolated_singularity_at f1 z not_essential f1 z
using isolated_singularity_at_analytic not_essential_analytic by blast+
show isolated_singularity_at h z

using that by (intro isolated_h) (auto simp: pts_def)
have is_pole h z

using is_pole_iff [of z] that by (intro is_pole_h) auto
thus not_essential h z

by force
have z ∈ A

using that by auto
have eventually (λw. g w 6= 0) (at z)

using non_zero_neighbour_pole[of g z] that by auto
hence eventually (λw. f1 w ∗ h w 6= 0) (at z)

using ev[OF ‹z ∈ A›] by eventually_elim (use h_f1 (6) in auto)
thus frequently (λw. f1 w ∗ h w 6= 0) (at z)

using eventually_frequently by force
qed
also have . . . = zorder g z
proof (rule zorder_cong)

have eventually (λw. w ∈ A − pts) (at z)
using ev[of z] that by auto

thus eventually (λw. f1 w ∗ h w = g w) (at z)
by eventually_elim (use h_f1 (6) in auto)

qed auto
finally show ?thesis .

qed
next

show inverse (h ′′ z) 6= 0 if z ∈ A for z
using h ′′_f2 (5) that by auto

next
show g z = inverse (h ′′ z) ∗ f1 z / f2 z if z: z ∈ A for z
proof (cases is_pole g z)

case False
have ∗: g z = h z ∗ f1 z h ′ z = h ′′ z ∗ f2 z h ′′ z 6= 0 h z 6= 0

using that h ′′_f2 (5 ,6) h_f1 (5 ,6) False unfolding pts_def by blast+
have g z = h z ∗ f1 z

by fact
also have . . . = f1 z / h ′ z

using ∗ that False by (simp add: h ′_def field_simps pts_def)
also have h ′ z = h ′′ z ∗ f2 z

by fact

Weierstrass{_}{\kern 0pt}Factorization.html

Complex_Analysis.thy 555

also have f1 z / (h ′′ z ∗ f2 z) = inverse (h ′′ z) ∗ f1 z / f2 z
by (simp add: divide_inverse_commute)

finally show ?thesis .
next

case True
have ¬g −z→ g z
using True at_neq_bot is_pole_def not_tendsto_and_filterlim_at_infinity

by blast
with mero and z and True have g z = 0

by (auto simp: nicely_meromorphic_on_def)
moreover have f2 z = 0

using True z by (simp add: h ′′_f2 (3) h ′_eq_0_iff)
ultimately show ?thesis by simp

qed
qed

qed
qed

Again, we derive an easier version for functions meromorphic on the entire
complex plane.
theorem weierstrass_factorization_meromorphic_UNIV :

assumes g nicely_meromorphic_on UNIV
obtains h f1 f2 where

h holomorphic_on UNIV f1 holomorphic_on UNIV f2 holomorphic_on UNIV
∀ z. f1 z = 0 ←→ ¬is_pole g z ∧ g z = 0
∀ z. f2 z = 0 ←→ is_pole g z
∀ z. ¬is_pole g z −→ zorder f1 z = zorder g z
∀ z. is_pole g z −→ zorder f2 z = −zorder g z
∀ z. h z 6= 0
∀ z. g z = h z ∗ f1 z / f2 z

proof (rule weierstrass_factorization_meromorphic)
show g nicely_meromorphic_on UNIV

by fact
show connected (UNIV :: complex set)

by (simp add: Convex.connected_UNIV)
show ¬ z islimpt {w ∈ UNIV . g w = 0 ∨ is_pole g w} if z ∈ frontier UNIV for

z
using that by simp

show open (UNIV :: complex set)
by simp

qed auto

end
theory Complex_Analysis

imports
Riemann_Mapping
Residue_Theorem
Weierstrass_Factorization

begin

Complex{_}{\kern 0pt}Analysis.html

REFERENCES 556

end

References

[1]

	Contour integration
	Definition
	Reversing a path
	Joining two paths together
	Shifting the starting point of a (closed) path
	More about straight-line paths
	Relation to subpath construction
	Cauchy's theorem where there's a primitive
	Arithmetical combining theorems
	Operations on path integrals
	Arithmetic theorems for path integrability
	Reversing a path integral
	Reversing the order in a double path integral
	Partial circle path
	Special case of one complete circle
	Uniform convergence of path integral

	Complex Path Integrals and Cauchy's Integral Theorem
	The key quadrisection step
	Cauchy's theorem for triangles
	Version needing function holomorphic in interior only
	Version allowing finite number of exceptional points
	Cauchy's theorem for an open starlike set
	Cauchy's theorem for a convex set
	Generalize integrability to local primitives
	Homotopy forms of Cauchy's theorem

	Winding numbers
	Definition
	Useful sufficient conditions for the winding number to be positive

	The winding number is an integer
	Continuity of winding number and invariance on connected sets
	The winding number is constant on a connected region
	Winding number is zero "outside" a curve
	More winding number properties
	Winding number for a triangle
	Winding numbers for simple closed paths
	Winding number for rectangular paths

	Cauchy's Integral Formula
	Proof
	General stepping result for derivative formulas
	Existence of all higher derivatives
	Morera's theorem
	Combining theorems for higher derivatives including Leibniz rule
	A holomorphic function is analytic, i.e. has local power series
	The Liouville theorem and the Fundamental Theorem of Algebra
	Weierstrass convergence theorem
	Some more simple/convenient versions for applications
	On analytic functions defined by a series
	Equality between holomorphic functions, on open ball then connected set
	Some basic lemmas about poles/singularities
	General, homology form of Cauchy's theorem
	Cauchy's inequality and more versions of Liouville
	Complex functions and power series

	Conformal Mappings and Consequences of Cauchy's Integral Theorem
	Analytic continuation
	Open mapping theorem
	Maximum modulus principle
	Factoring out a zero according to its order
	Entire proper functions are precisely the non-trivial polynomials
	Relating invertibility and nonvanishing of derivative
	Hence a nice clean inverse function theorem
	Holomorphism of covering maps and lifts.

	The Schwarz Lemma
	The Schwarz reflection principle
	Bloch's theorem

	The Great Picard Theorem and its Applications
	Schottky's theorem
	The Little Picard Theorem
	The Arzelà–Ascoli theorem
	Montel's theorem

	Some simple but useful cases of Hurwitz's theorem
	The Great Picard theorem

	Moebius functions, Equivalents of Simply Connected Sets, Riemann Mapping Theorem
	Moebius functions are biholomorphisms of the unit disc
	A big chain of equivalents of simple connectedness for an open set
	A further chain of equivalences about components of the complement of a simply connected set
	Further equivalences based on continuous logs and sqrts
	More Borsukian results
	Finally, the Riemann Mapping Theorem
	Applications to Winding Numbers
	The winding number defines a continuous logarithm for the path itself
	Winding number equality is the same as path/loop homotopy in C - 0
	Non-essential singular points
	Isolated singularities
	The order of non-essential singularities (i.e. removable singularities or poles)
	Isolated points
	Isolated zeros
	Definition of residues
	Poles and residues of some well-known functions

	The Residue Theorem, the Argument Principle and Rouché's Theorem
	Cauchy's residue theorem
	The argument principle
	Coefficient asymptotics for generating functions
	Rouche's theorem
	More Laurent expansions
	Formal convergence versus analytic convergence
	Remove singular points
	Meromorphicity
	Nice meromorphicity
	Closure properties and proofs for individual functions
	Meromorphic functions and zorder
	More on poles and zeros

	The Weierstraß Factorisation Theorem
	The elementary factors
	Infinite products of elementary factors
	Writing a quotient as an exponential
	Constructing the sequence of zeros
	The factorisation theorem for holomorphic functions
	The factorisation theorem for meromorphic functions

