Contents

Complex Analysis

1 Contour integration

3

1.1 Definition

1.2 Reversing a path
1.3 Joining two paths together.
1.4 Shifting the starting point of a (closed) path
1.5 More about straight-line paths
1.6 Relation to subpath construction
1.7 Cauchy’s theorem where there’s a primitive
1.8 Arithmetical combining theorems
1.9 Operations on path integrals
1.10 Arithmetic theorems for path integrability
1.11 Reversing a path integral
1.12 Reversing the order in a double path integral
1.13 Partial circle path
1.14 Special case of one complete circle
1.15 Uniform convergence of path integral

January 18, 2026

Complex Path Integrals and Cauchy’s Integral Theorem
2.1 The key quadrisection step
2.2 Cauchy’s theorem for triangles
2.3 Version needing function holomorphic in interior only

2.4 Version allowing finite number of exceptional points
2.5 Cauchy’s theorem for an open starlike set
2.6 Cauchy’s theorem for a convexset
2.7 Generalize integrability to local primitives
2.8 Homotopy forms of Cauchy’s theorem

Winding numbers

3.1 Definition

3.1.1

Useful sufficient conditions for the winding number to

be positive

10
14
17
18
22
24
25
27
30
32
35
45
48

51
53
55
60
66
68
71
74
84

3.2 The winding number is an integer 99
3.3 Continuity of winding number and invariance on connected sets105
3.4 The winding number is constant on a connected region 109
3.5 Winding number is zero "outside" a curve 110
3.6 More winding number properties 117
3.7 Winding number for a triangle 121
3.8 Winding numbers for simple closed paths 124
3.9 Winding number for rectangular paths 141
4 Cauchy’s Integral Formula 144
4.1 Proof. 144
4.2 General stepping result for derivative formulas 146
4.3 Existence of all higher derivatives 151
4.4 Morera’s theorem oo 155
4.5 Combining theorems for higher derivatives including Leibniz
rule ..o 157
4.6 A holomorphic function is analytic, i.e. has local power series 165
4.7 The Liouville theorem and the Fundamental Theorem of Al-
gebra 168
4.8 Weierstrass convergence theorem 169
4.9 Some more simple/convenient versions for applications 176
4.10 On analytic functions defined by a series 177
4.11 Equality between holomorphic functions, on open ball then
connected set Lo 182
4.12 Some basic lemmas about poles/singularities 183
4.13 General, homology form of Cauchy’s theorem 187
4.14 Cauchy’s inequality and more versions of Liouville 201
4.15 Complex functions and power series 205

5 Conformal Mappings and Consequences of Cauchy’s Inte-

gral Theorem 211
5.1 Analytic continuation 212
5.2 Open mapping theorem 215
5.3 Maximum modulus principle 219
5.4 Factoring out a zero according to its order 221
5.5 Entire proper functions are precisely the non-trivial polynomials230
5.6 Relating invertibility and nonvanishing of derivative 232

5.6.1 Hence a nice clean inverse function theorem 235

5.6.2 Holomorphism of covering maps and lifts. 236
5.7 The Schwarz Lemma 238
5.8 The Schwarz reflection principle 241
5.9 Bloch’s theorem00 247

6 The Great Picard Theorem and its Applications 256

6.1 Schottky’s theorem
6.2 The Little Picard Theorem
6.3 The Arzela—Ascoli theorem

6.3.1 Montel’s theorem
6.4 Some simple but useful cases of Hurwitz’s theorem
6.5 The Great Picard theorem

Moebius functions, Equivalents of Simply Connected Sets,
Riemann Mapping Theorem
7.1 Moebius functions are biholomorphisms of the unit disc
7.2 A big chain of equivalents of simple connectedness for an open
Set ..o e e
7.3 A further chain of equivalences about components of the com-
plement of a simply connected set
7.4 Further equivalences based on continuous logs and sqrts . . .
7.5 More Borsukian results.
7.6 Finally, the Riemann Mapping Theorem
7.7 Applications to Winding Numbers
7.8 The winding number defines a continuous logarithm for the
pathitself
7.9 Winding number equality is the same as path/loop homotopy
mC-0 . .. e
7.10 Non-essential singular points
7.11 Isolated singularities,
7.12 The order of non-essential singularities (i.e. removable singu-
larities or poles)
7.13 Isolated points
7.14 Isolated zeros
7.15 Definition of residues
7.16 Poles and residues of some well-known functions

The Residue Theorem, the Argument Principle and Rouché’s

Theorem

8.1 Cauchy’s residue theorem
8.2 The argument principle
8.3 Coeflicient asymptotics for generating functions
8.4 Rouche’s theorem L.
8.5 More Laurent expansions
8.6 Formal convergence versus analytic convergence
8.7 Remove singular points L Lo
8.8 Meromorphicity
8.9 Nice meromorphicityo L.
8.10 Closure properties and proofs for individual functions

8.11 Meromorphic functions and zorder

403

8.12 More on poles and zeros 513
The Weierstrafl Factorisation Theorem 522
9.1 The elementary factors 522
9.2 Infinite products of elementary factors 526
9.3 Writing a quotient as an exponential 532
9.4 Constructing the sequence of zeros 535
9.5 The factorisation theorem for holomorphic functions 541
9.6 The factorisation theorem for meromorphic functions 548

[Pure]
[To@
[tHou

[HOL-Library]

[HOL-Combinatorics] | | [HOL-Computational_Algebra]

[HOL-Analysis]
Contour_Integration

| Cauchy_Integral_Theorem |

Winding_Numbers

| Cauchy_Integral_Formula |

Conformal_Mappings

| Complex_Singularities | | Great_Picard |

| Complex_Residues | | Riemann_Mapping |

Residue_Theorem

Laurent_Convergence

| Weierstrass_Factorization |

Complex_Analysis

Contour__Integration.thy 6

1 Contour integration

theory Contour Integration
imports HOL— Analysis. Analysis
begin

lemma lhopital _complex__simple:
assumes (f has_field_derivative f') (at z)
assumes (g has_field derivative g’) (at z)
assumes fz2=0gz=0g"#20f"/ g =c¢
shows ((Aw. fw / gw) —— ¢) (at 2)
proof —
have eventually (Aw. w # 2) (at 2)
by (auto simp: eventually__at_ filter)
hence eventually Aw. (fw — f2) / (w—2))/ ((gw—92)/ (w—2)=fw
/ g w) (at z)
by eventually_elim (simp add: assms field_split_simps)
moreover have (A\w. (fw —fz2) /(w—2))/ ((gw—g2)/ (w—2)) —
1"/) (at 2)
by (intro tendsto divide has_field_derivativeD assms)
ultimately have ((Aw. fw / g w) —— '/ ¢) (at 2)
by (blast intro: Lim__transform__eventually)
with assms show ?thesis by simp
qed

1.1 Definition

This definition is for complex numbers only, and does not generalise to line
integrals in a vector field

definition has_contour_integral :: (complex = complex) = complex = (real =
complex) = bool
(infixr <has’_contour’_integraly 50)
where (f has_contour_integral ©) g =
((A\z. f(g z) * vector_derivative g (at z within {0..1}))
has__integral 7) {0..1}

definition contour_integrable on
(infixr <contour’ _integrable’ _ony 50)
where [contour_integrable_on g = 3. (f has__contour_integral ©) g

definition contour_integral
where contour_integral g f = SOME i. (f has_contour_integral i) g V — f
contour__integrable_on g A i=0

lemma not_integrable__contour integral: — f contour integrable _on g = con-
tour_integral g f = 0

unfolding contour_integrable _on__def contour_integral def by blast

lemma contour_integral_unique: (f has__contour _integral i) g = contour_integral

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 7

gf=1i
unfolding contour integral def has_contour integral def contour _integrable on__def
using has_integral _unique by blast

lemma has__contour_integral_cong:
assumes Az. z € path_image g = fz=f"2g=9¢" ¢ = ¢’
shows (f has__contour_integral ¢) g <— (f' has__contour__integral ¢') g
unfolding has_contour integral def assms(2,3)
by (intro has_integral _cong) (auto simp: assms path__image__def intro!: assms(1))

!

lemma has_contour_integral _eqpath:
[(f has__contour_integral y) p; f contour__integrable_on ~;
contour_integral p f = contour_integral v f]
= (f has__contour_integral y) =
using contour_integrable__on__def contour integral _unique by auto

lemma has_contour integral integral:
f contour__integrable _on i = (f has__contour_integral (contour_integral i f))
)
by (metis contour_integral _unique contour_integrable__on__def)

lemma has_contour_integral_unique:
(f has__contour_integral i) ¢ = (f has__contour_integral j) g = i = j
using has_integral_unique
by (auto simp: has__contour__integral__def)

lemma has_contour_integral_translate:
(f has__contour_integral I) ((4) z o g) <— ((Az. f (z + 2)) has_contour_integral

I)g
by (simp add: has_contour_integral_def add__ac)

lemma contour_integrable_translate:
f contour_integrable_on ((+) z o g) «— (Az. f (z + 2)) contour_integrable_on

g
by (simp add: contour_integrable _on__def has_contour__integral translate)

lemma contour integral translate:
contour_integral ((+) z o g) f = contour_integral g (\z. f (x + 2))
by (simp add: contour _integral_def contour _integrable_ translate has _contour _integral_translate)

lemma has_contour _integral integrable: (f has_contour integral i) g => f con-
tour_integrable _on g
using contour_integrable_on_ def by blast

Show that we can forget about the localized derivative.

lemma has_integral_localized vector _derivative:

((Az. f (g x) * vector_derivative p (at x within {a..b})) has_integral ©) {a..b}
—

((Az. f (g) * vector_derivative p (at z)) has_integral ©) {a..b}

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 8

proof —
have : {a..b} — {a,b} = interior {a..b}
by (simp add: atLeastAtMost_diff _ends)
show ?thesis
by (rule has_integral__spike__eq [of {a,b}]) (auto simp: at_within_interior [of

_ {a.b}])
qed

lemma integrable _on__localized__vector _derivative:
(Az. f (g z) % vector_derivative p (at z within {a..b})) integrable_on {a..b}
—
(Az. f (g) * vector_derivative p (at x)) integrable_on {a..b}
by (simp add: integrable _on__def has_integral localized__vector__derivative)

lemma has contour_integral:
(f has__contour_integral i) g +—
((Az. f (g =) * vector_derivative g (at x)) has_integral i) {0..1}
by (simp add: has_integral_localized _vector _derivative has__contour _integral_def)

lemma contour_integrable__on:
f contour_integrable _on g +—
(At. f(g t) * vector_derivative g (at t)) integrable _on {0..1}
by (simp add: has__contour_integral integrable _on__def contour _integrable__on__def)

lemma has_contour__integral _mirror_iff:
assumes valid__path g
shows (fhas_contour_integral I) (—g) «— ((Azx. —f (— x)) has__contour_integral
I)g
proof —
from assms have g piecewise_differentiable_on {0..1}
by (auto simp: valid_path__def piecewise__C1_imp__differentiable)
then obtain S where finite S and S: Az. z € {0..1} — S = g differentiable
at « within {0..1}
unfolding piecewise differentiable__on__def by blast
have S’ g differentiable at x if x € {0..1} — ({0, 1} U §) for x
proof —
from that have z € interior {0..1} by auto
with S[of z] that show ?thesis by (auto simp: at_within__interior[of __ {0..1}])
qed
have (f has__contour_integral I) (—g) +—
((Az. f (= g z) = vector_derivative (—g) (at x)) has_integral I) {0..1}
by (simp add: has__contour_integral)
also have ... +— ((A\z. —f (— g z) x vector_derivative g (at z)) has__integral
I){0..1}
by (intro has__integral _spike_ finite_eqlof S U {0, 1}])
(insert <finite S» S’, auto simp: o__def fun_ Compl_def)
also have ... +— ((Az. —f (—z)) has_contour_integral I) g
by (simp add: has__contour_integral)
finally show ?thesis .

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 9

qed

lemma contour_integral _on__mirror__iff:
assumes valid__path g
shows f contour_integrable_on (—g) «— (Az. —f (— z)) contour_integrable__on

g
by (auto simp: contour_integrable _on__def has__contour _integral _mirror_iff assms)

lemma contour_integral _mirror:

assumes valid__path g

shows contour_integral (—g) f = contour_integral g (A\z. —f (— z))
proof (cases f contour_integrable _on (—g))

case True with contour integral unique assms show ?thesis

by (auto simp: contour_integrable on__def has _contour _integral_mirror__iff)

next

case Fulse then show ?thesis

by (simp add: assms contour__integral _on_ mirror__iff not_integrable__contour _integral)
qed

1.2 Reversing a path

lemma has contour integral_reversepath:
assumes valid__path g and f: (f has__contour_integral) g
shows (f has__contour_integral (—i)) (reversepath g)
proof —
{fix Sz
assume zs: g C1_ differentiable_on ({0..1} — S)x ¢ (=) 1 ‘S0 <zz <1
have vector _derivative (A\z. g (1 — z)) (at z within {0..1}) =
— wvector_derivative g (at (1 — x) within {0..1})
proof —
obtain f’ where f”: (g has_vector_derivative f') (at (1 — x))
using zs
by (force simp: has_vector__derivative_def C1_ differentiable _on__def)
have (g o (Az. 1 —) has_vector_derivative —1 *g ') (at z)
by (intro vector_diff _chain_within has_vector_derivative__at_within [OF
1] derivative__eq_intros | simp)+
then have mf”: ((Az. g (I — z)) has_vector_derivative —f') (at)
by (simp add: o__def)
show ?thesis
using zs
by (auto simp: vector_derivative__at_within__ivl [OF mf’] vector_derivative__at_within__ivl
OF 1)
qed
} note x = this
obtain S where S: continuous_on {0..1} g finite S g C1_differentiable_on
{0..1} - S
using assms by (auto simp: valid__path__def piecewise_C1__differentiable_on__def)
have (Az. — (f (g (1 — z)) * vector_derivative g (at (1 — z) within {0..1})))
has__integral —1)

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 10

{0..1}
using has_integral_affinity0l [where m= —1 and c¢=1, OF f [unfolded
has__contour_integral__def])
by (simp add: has_integral_neg)
then show ?thesis
using S
unfolding reversepath__def has_contour integral def
by (rule_tac S = (Azx. 1 — z) ‘S in has_integral_spike_ finite) (auto simp: *)
qed

lemma contour_integrable reversepath:
valid_path g = [contour_integrable_on g = f contour_integrable_on
(reversepath g)
using has__contour_integral reversepath contour integrable on__def by blast

lemma contour_integrable reversepath__eq:
valid__path g = (f contour_integrable _on (reversepath g) +— f contour_integrable on

9)
using contour_integrable__reversepath valid__path__reversepath by fastforce

lemma contour_integral_reversepath:
assumes valid__path g
shows contour_integral (reversepath g) f = — (contour__integral g f)
proof (cases f contour__integrable _on g)
case True then show ?thesis
by (simp add: assms contour_integral_unique has__contour integral integral
has__contour__integral _reversepath)
next
case Fulse then have — f contour_integrable on (reversepath g)
by (simp add: assms contour_integrable_reversepath__eq)
with False show ?thesis by (simp add: not_integrable__contour_integral)
qed

1.3 Joining two paths together

lemma has__contour__integral__join:
assumes (f has__contour_integral i1) g1 (f has_contour _integral i2) g2
valid__path g1 valid__path g2
shows (f has_contour_integral (il + i2)) (g1 +++ g2)
proof —
obtain s1 s2
where s1: finite s1 Vz€{0..1} — s1. gl differentiable at z
and s2: finite s2 Vze{0..1} — s2. g2 differentiable at =
using assms
by (auto simp: valid_path__def piecewise_C1_differentiable__on__def C1__differentiable_on__eq)
have 1: ((Az. f (g1 z) % vector_derivative g1 (at x)) has_integral i1) {0..1}
and 2: ((\z. f (g2 z) * vector_derivative g2 (at x)) has_integral i2) {0..1}
using assms
by (auto simp: has_contour_integral)

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 11

have i1: ((Az. (2xf (g1 (2xz))) * vector_derivative g1 (at (2xz))) has_integral
i1) {0..1/2}
and 2: ((Az. (2xf (92 (2xx — 1))) * vector_derivative g2 (at (2xx — 1)))
has__integral i2) {1/2..1}
using has__integral _affinity01 [OF 1, where m= 2 and ¢=0, THEN has__integral _cmul
[where c=2]]
has__integral _affinity01 [OF 2, where m= 2 and ¢=—1, THEN has__integral__cmul
[where ¢=2]]
by (simp__all only: image__affinity__atLeastAtMost_div_ diff, simp_all add:
scaleR__conv_of _real mult_ac)
have g1: vector_derivative (Az. if zx2 < 1 then gl (2xz) else g2 (2xx — 1))
(at z) =
2 xp vector_derivative g1 (at (2%2))
if 0 < z2+¢2 < 12¢2 ¢ sl for z
proof (rule vector_derivative__at [OF has_vector_derivative_transform__within))
show 0 < |z — 1/2]
using that by auto
have ((x) 2 has_vector_derivative 2) (at z2)
by (simp add: has_vector_derivative_def has__derivative_def bounded_ linear _mult_left)
moreover have (g1 has_vector_derivative vector_derivative g1 (at (z x 2)))
(at (2 x 2))
using s! that by (auto simp: algebra__simps vector _derivative__works)
ultimately
show ((Az. g1 (2 * z)) has_vector_derivative 2 xgr vector_derivative g1 (at
(2 + 2))) (at 2)
by (intro vector_diff _chain__at [simplified o__def])
qed (use that in <simp__all add: dist_real_def abs_if split: if _split_asm))

have ¢2: vector_derivative (Az. if zx2 < 1 then gl (2xz) else g2 (2xx — 1))
(at z) =
2 xg vector_derivative g2 (at (zx2 — 1))
if 1 <2%22<12¢2 — 1 ¢ s2 for 2
proof (rule vector_derivative_at [OF has_vector__derivative _transform_ within))
show 0 < |z — 1/2]
using that by auto
have ((Az. 2 x x — 1) has_vector_derivative 2) (at z)
by (simp add: has_vector _derivative_def has__derivative def bounded_ linear _mult_left)
moreover have (g2 has_wvector _derivative vector _derivative g2 (at (z x 2 —
1) (at (2% % — 1))
using s2 that by (auto simp: algebra__simps vector _derivative__works)
ultimately
show ((Az. g2 (2 * x — 1)) has_vector__derivative 2 xg vector_derivative g2
(at (zx 2 — 1))) (at 2)
by (intro vector__diff chain__at [simplified o__def])
qed (use that in <simp__all add: dist_real_def abs_if split: if _split_asmy)

have ((Az. f ((g1 +++ ¢2) z) * vector__derivative (g1 +++ ¢2) (at z)) has__integral

i1) {0..1/2}
proof (rule has_integral spike_finite [OF __ _ il])

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 12

show finite (insert (1/2) ((x) 2 —‘s1))
using s1 by (force intro: finite_vimagel [where h = (x)2] inj_onl)
qed (auto simp add: joinpaths def scaleR__conv_of real mult_ac g1)
moreover have (A\z. f ((g1 +++ ¢2) x) * vector__derivative (g1 +++ ¢2) (at
x)) has_integral i2) {1/2..1}
proof (rule has_integral spike_finite [OF __ __ i2])
show finite (insert (1/2) ((Az. 2 x x — 1) —‘ s2))
using s2 by (force intro: finite_vimagel [where h = Az. 2xz—1] inj _onl)
qed (auto simp add: joinpaths_def scaleR__conv_of real mult_ac g2)
ultimately
show ?thesis
by (simp add: has_contour_integral has_integral_combine [where ¢ = 1/2])
qed

lemma contour_integrable_ joinlI:
assumes f contour_integrable_on gl f contour_integrable_on g2
valid_path g1 valid__path g2
shows [contour_integrable_on (g1 +++ ¢2)
using assms
by (meson has__contour_integral_join contour_integrable__on__def)

lemma contour_integrable joinD1:
assumes | contour_integrable _on (g1 +++ ¢2) valid_path g1
shows f contour_integrable _on g1
proof —
obtain s
where s1: finite s1 Vze€{0..1} — s1. g1 differentiable at
using assms by (auto simp: valid__path__def piecewise C1__differentiable_on__def
C1__differentiable_on__eq)
have (Az. f ((g1 +++ g2) (z/2)) * vector_derivative (g1 +++ g2) (at (z/2)))
integrable_on {0..1}
using assms integrable__affinity [of _ 0 1/2 1/2 0] integrable_on__subcbox
[where a=0 and b=1/2]
by (fastforce simp: contour _integrable_on)
then have x: (Az. (f ((g1 +++ g2) (z/2))/2) * vector_derivative (g1 +++
92) (at (z/2))) integrable_on {0..1}
by (auto dest: integrable__cmul [where c=1/2] simp: scaleR__conv_of _real)
have g1: vector_derivative (Az. if zx2 < 1 then gl (2xz) else g2 (2xx — 1))
(at (2/2)) =
2 xp vector_derivative g1 (at z)
if0<zz<1z¢ sl for z
proof (rule vector_derivative__at [OF has_vector_derivative_transform__within))
show 0 < |(z — 1)/2]
using that by auto
have §: ((Az. x % 2) has_vector_derivative 2) (at (2/2))
using s! by (auto simp: has_wvector__derivative def has_derivative _def
bounded__linear_mult_left)
have (g1 has_vector_derivative vector_derivative g1 (at z)) (at z)
using s! that by (auto simp: vector_ _derivative_works)

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 13

then show ((Az. g1 (2 x z)) has_vector_derivative 2 xgr vector_derivative g1
(at 2)) (at (2/2)
using vector__diff _chain__at [OF §] by (auto simp: field _simps o__def)
qed (use that in <simp__all add: field _simps dist_real__def abs__if split: if _split_asmy)
have fin01: finite ({0, 1} U s1)
by (simp add: s1)
show ?thesis
unfolding contour integrable on
by (intro integrable_spike_finite [OF fin01 __ %)) (auto simp: joinpaths _def
scaleR__conv_of real g1)
qged

lemma contour_integrable joinD2:
assumes | contour_integrable _on (g1 +++ ¢g2) valid_path g2
shows f contour_integrable _on g2
proof —
obtain s2
where s2: finite s2 Vaze{0..1} — s2. ¢2 differentiable at
using assms by (auto simp: valid_path__def piecewise C1__differentiable_on__def
C1__differentiable_on__eq)
have (Az. f ((g1 +++ ¢2) (z/2 + 1/2)) * vector_derivative (g1 +++ ¢2) (at
(/2 + 1/2))) integrable_on {0..1}
using assms integrable_affinity [of _ 1/2:real 1 1/2 1/2]
integrable__on__subcbox [where a=1/2 and b=1]
by (fastforce simp: contour_integrable__on image__affinity__atLeastAtMost_ diff)
then have x: (\z. (f ((g1 +++ ¢2) (z/2 + 1/2))/2) * vector_derivative (g1
+++ ¢2) (at (z/2 + 1/2)))
integrable_on {0..1}
by (auto dest: integrable_cmul [where c¢=1/2] simp: scaleR__conv_of real)
have ¢2: vector_derivative (Az. if z%2 < 1 then gl (2xz) else g2 (2%z — 1))
(at (2/24+1/2)) =
2 xg vector__derivative g2 (at z)
if0<zz<1z¢s2forz
proof (rule vector_ _derivative_at [OF has_vector__derivative _transform__ within))
show 0 < |z/2]
using that by auto
have § ((Az. z * 2 — 1) has_vector_derivative 2) (at ((1 + 2)/2))
using s2 by (auto simp: has_wvector _derivative_def has_derivative _def
bounded_linear _mult_left)
have (g2 has_vector__derivative vector _derivative g2 (at z)) (at z)
using s2 that by (auto simp: vector__derivative__works)
then show ((Az. g2 (2xz — 1)) has_vector_derivative 2 xg vector_derivative
92 (at 2)) (at (z/2 + 1/2))
using vector__diff _chain__at [OF §] by (auto simp: field_simps o__def)
qed (use that in <simp__all add: field _simps dist_real def abs_if split: if _split_asm>)
have fin01: finite ({0, 1} U s2)
by (simp add: s2)
show ?thesis
unfolding contour_integrable on

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 14

by (intro integrable_spike finite [OF fin01 __ «|) (auto simp: joinpaths_def
scaleR__conv_of real ¢g2)
qed

lemma contour_integrable_join [simp]:
[valid__path g1; valid_path g2]
= [contour_integrable_on (g1 +++ ¢2) «— f contour_integrable_on g1
A f contour_integrable _on g2
using contour_integrable_joinD1 contour_integrable_joinD2 contour integrable joinl
by blast

lemma contour_integral_join [simpl:
[f contour_integrable_on g1; f contour_integrable__on g2; valid__path g1; valid__path
92]
= contour_integral (g1 +++ ¢2) f = contour_integral g1 f + con-
tour__integral g2 f
by (simp add: has_contour_integral_integral has_contour _integral_join con-
tour_integral__unique)

1.4 Shifting the starting point of a (closed) path

lemma has_contour_integral _shiftpath:
assumes f: (f has__contour_integral i) g valid_path g
and a: a € {0..1}
shows (f has__contour _integral i) (shiftpath a g)
proof —
obtain S
where S: finite S and ¢: Vz€{0..1} — S. g differentiable at x
using assms by (auto simp: valid__path__def piecewise__C1_differentiable__on__def
C1__differentiable_on__eq)
have x: ((A\z. f (g x) * vector_derivative g (at x)) has_integral i) {0..1}
using assms by (auto simp: has__contour _integral)
then have i: i = integral {a..1} (\z. f (g z) * vector__derivative g (at z)) +
integral {0..a} (Az. f (g z) * vector_derivative g (at T))
by (smt (verit, ccfu_threshold) Henstock_Kurzweil _Integration.integral _combine
a add.commute atLeastAtMost_iff has_integral iff)
have vd1: vector_derivative (shiftpath a g) (at x) = vector__derivative g (at (z
+ a)
fo<zz+a<izé¢g(dax.z—a) Sforz
unfolding shiftpath_def
proof (rule vector_derivative__at [OF has_vector_derivative_transform__within))
have ((Az. g (z + a)) has_vector_derivative vector _derivative g (at (a + x)))
(at z)
proof (rule vector _diff chain_at [of __ 1, simplified o__def scaleR__one])
show ((Az. 4+ a) has_vector_derivative 1) (at)
by (rule derivative__eq_intros | simp)+
have g differentiable at (z + a)
using g a that by force
then show (g has_vector_derivative vector _derivative g (at (a + z))) (at (z

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 15

+a)
by (metis add.commute vector _derivative _works)
qed
then show ((Az. g (a + z)) has_vector_derivative vector derivative g (at (x
T o)) (at 2)
by (auto simp: field _simps)
show 0 < dist (1 — a) z
using that by auto
qged (use that in <auto simp: dist_real _def»)

have vd2: vector__derivative (shiftpath a g) (at x) = vector__derivative g (at (z
+a—1))
ife<i1i<z+acsd¢ (M.xz—a+ 1) Sforz
unfolding shiftpath_def
proof (rule vector_derivative__at [OF has_vector_derivative_transform__within))
have ((Az. g (x + a — 1)) has_vector_derivative vector_derivative g (at
(at+a—1))) (at 2)
proof (rule vector diff chain_at [of _ 1, simplified o__def scaleR__one])
show ((Az. z + a — 1) has_vector_derivative 1) (at z)
by (rule derivative_eq intros | simp)+
have g differentiable at (z+a—1)
using g a that by force
then show (g has_wvector_derivative vector _derivative g (at (a+z—1))) (at
(4 a- 1))
by (metis add.commute vector__derivative__works)
qged
then show ((Az. g (a + z — 1)) has_vector_derivative vector _derivative g (at
(¢ +a— 1)) (ot 2)
by (auto simp: field _simps)
show 0 < dist (1 — a) z
using that by auto
qed (use that in <auto simp: dist_real__def»)

have val: (Az. f (g z) * vector_derivative g (at x)) integrable_on ({a..1})
using * a by (fastforce intro: integrable _subinterval_real)
have v0a: (Az. f (g z) * vector__derivative g (at z)) integrable_on ({0..a})
using * a by (force intro: integrable__subinterval_real)
have finite ({1 — a} U (Az. z — a) *9)
using S by blast
then have ((Az. f (shiftpath a g) * vector__derivative (shiftpath a g) (at x))
has__integral integral {a..1} (Az. f (g x) * vector_derivative g (at z))) {0..1
— a}
apply (rule has_integral _spike_ finite
[where f = Az. f(g(a+zx)) * vector_derivative g (at(a+1x))])
subgoal
using a by (simp add: vd1) (force simp: shiftpath_def add.commute)
subgoal
using has_integral_affinity [where m=1 and c=a] integrable_integral [OF
val]

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 16

by (force simp add: add.commute)
done
moreover
have finite ({1 — a} U (Az. 2 —a+ 1) ©9)
using S by blast
then have ((\z. f (shiftpath a g x) * vector__derivative (shiftpath a g) (at x))
has_integral integral {0..a} (Az. f (g x) * vector__derivative g (at x)))
{1 —a.l1}
apply (rule has_integral spike_ finite
[where [= Az. f(g(a+z—1)) * vector_derivative g (at(a+z—1))])
subgoal
using a by (simp add: vd2) (force simp: shiftpath__def add.commute)
subgoal
using has_integral_affinity [where m=1 and c=a—1, simplified, OF inte-
grable_integral [OF v0al]
by (force simp add: algebra__simps)

done
ultimately show ?thesis
using a
by (auto simp: i has_contour_integral intro: has_integral _combine [where ¢
— 1-d)
qged

lemma has_contour integral_shiftpath _D:
assumes (f has__contour_integral i) (shiftpath a g)
valid_path g pathfinish g = pathstart g a € {0..1}
shows (f has__contour_integral i) g
proof —
obtain S
where S: finite S and ¢: Vz€{0..1} — S. g differentiable at =
using assms by (auto simp: valid__path__def piecewise__C1__differentiable__on__def
C1__differentiable_on__eq)
{ fix z
assume z: 0 <zz < lz ¢S
then have gz: g differentiable at
using g by auto
have §: shiftpath (1 — a) (shiftpath a g) differentiable at x
using assms «
by (intro differentiable_transform_within [OF gz, of min z (1—z)])
(auto simp: dist_real_def shiftpath__shiftpath abs_if split: if split _asm)
have vector_derivative g (at z within {0..1}) =
vector_derivative (shiftpath (1 — a) (shiftpath a g)) (at z within {0..1})
apply (rule vector _derivative _at_within__ivl
[OF has_vector_derivative__transform__within__open
[where f = (shiftpath (1 — a) (shiftpath a g)) and S =
{0<..<1}-9]])
using S assms x §
apply (auto simp: finite_imp__closed open__ Diff shiftpath__shiftpath
at__within__interior [of _ {0..1}] vector_derivative_works

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 17

[symmetric])
done
} note vd = this
have fi: (f has__contour_integral i) (shiftpath (1 — a) (shiftpath a g))
using assms by (auto introl: has__contour_integral__shiftpath)
show ?thesis
unfolding has_contour_integral def
proof (rule has_integral_spike finite [of {0,1} U S, OF _ __ fi [unfolded
has__contour_integral _def]])
show finite ({0, 1} U S)
by (simp add: S)
qed (use S assms vd in <auto simp: shiftpath__shiftpathy)
qed

lemma has_contour integral_shiftpath__eq:
assumes valid__path g pathfinish g = pathstart g o € {0..1}
shows (f has__contour_integral i) (shiftpath a g) <— (f has__contour_integral
i) g
using assms has__contour__integral _shiftpath has contour integral_shiftpath D
by blast

lemma contour_integrable on__shiftpath__eq:
assumes valid_path g pathfinish g = pathstart g a € {0..1}
shows [contour_integrable _on (shiftpath a g) <— f contour_integrable on g
using assms contour_integrable_on__def has__contour_integral_shiftpath__eq by
auto

lemma contour_integral__shiftpath:
assumes valid_path g pathfinish g = pathstart g a € {0..1}
shows contour_integral (shiftpath a g) f = contour__integral g f
using assms
by (simp add: contour_integral__def contour _integrable__on__def has__contour _integral__shiftpath__eq)

1.5 More about straight-line paths

lemma has_contour integral_linepath:
shows (f has_contour_integral ©) (linepath a b) <—
((Az. f(linepath a b z) * (b — a)) has_integral i) {0..1}
by (simp add: has__contour_integral)

lemma has__contour_integral__trivial [iff]: (f has_contour_integral 0) (linepath a

a)

by (simp add: has_contour_integral_linepath)
lemma has__contour_integral _trivial_iff [simp]: (f has__contour_integral i) (linepath
aa) +— i=0

using has_contour_integral unique by blast

lemma contour_integral_trivial [simp|: contour_integral (linepath a a) f = 0

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 18

using has_contour_integral trivial contour integral unique by blast

1.6 Relation to subpath construction

lemma has_contour_integral__subpath__refl [iff]: (f has__contour _integral 0) (subpath

w1 g)
by (simp add: has_contour_integral subpath__def)

lemma contour _integrable__subpath_refl [iff]: f contour integrable on (subpath u

u g)
using has__contour_integral subpath_refl contour integrable _on__def by blast

lemma contour_integral_subpath__refl [simp]: contour _integral (subpath uw u g) f
=0

by (simp add: contour_integral_unique)

lemma has_contour_integral__subpath:
assumes f: f contour_integrable on g and g¢: valid_path g
and wv: u € {0..1} ve {0..1} u<w
shows (f has__contour_integral integral {u..v} (Az. f(g x) * vector_derivative
g (at)))
(subpath u v g)
proof (cases v=u)
case True
then show ?thesis
using [by (simp add: contour_integrable on__def subpath__def has__contour _integral)
next
case Fulse
obtain S where S: Az. z € {0..1} — S = g differentiable at z and fs: finite
S
using g unfolding piecewise_ C1__ differentiable _on_ def C1_ differentiable _on_ eq
valid__path__def by blast
have §: (\t. f (g t) % vector_derivative g (at t)) integrable_on {u..v}
using contour_integrable__on f integrable _on__subinterval uv by fastforce
then have «: ((Az. f (g (v — u) * £ + w)) * vector_derivative g (at ((v — u)
2+ w)
has__integral (1 / (v — w)) * integral {u..v} (\t. f (g t) * vector__derivative
g (at 1))
{0..1}
using wv False unfolding has integral integral
apply simp
apply (drule has_integral _affinity [where m=v—u and c=u, simplified])
apply (simp__all add: image__affinity__atLeastAtMost_div_diff scaleR__conv_of _real)
apply (simp add: divide__simps)
done

have vd: vector_derivative (Az. g ((v—u) * + w)) (at z) = (v—u) *r vec-
tor__derivative g (at ((v—u) * = + u))
ifze{0.1} z¢ (At. (v—u) *g t + u) —° S for z

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 19

proof (rule vector_derivative_at [OF vector_diff _chain__at [simplified o__def]])
show ((Az. (v — u) * ¢ + u) has_vector_derivative v — u) (at x)
by (intro derivative__eq intros | simp)+
qed (use S uv mult_left_le [of x v—u] that in <auto simp: vector_derivative_works»)

have fin: finite (At. (v — u) *gp t + u) —°9)
using fs by (auto simp: inj_on_ def False finite _vimagel)
show ?thesis
unfolding subpath_def has__contour_integral
apply (rule has_integral _spike_ finite [OF fin])
using has_integral _cmul [OF %, where ¢ = v—u] fs assms
by (auto simp: False vd scaleR__conv_of real)
qed

lemma contour_integrable_subpath:
assumes f contour integrable _on g valid_path g u € {0..1} v € {0..1}
shows [contour_integrable_on (subpath u v g)
by (smt (verit, ccfv_threshold) assms contour _integrable _on__def contour _integrable reversepath__eq
has__contour__integral _subpath reversepath__subpath valid _path__subpath)

lemma has_integral__contour__integral subpath:
assumes | contour_integrable _on g valid_path g w € {0..1} ve {0..1} u < w
shows ((A\z. f(g) * vector_derivative g (at x))
has__integral contour _integral (subpath u v g) f) {u..v}
(is (?fg has_integral _)_)
proof —
have (?fg has_integral integral {u..v} ?fg) {u..v}
using assms contour__integrable__on integrable on__subinterval by fastforce
then show ?thesis
by (metis (full_types) assms contour_integral _unique has__contour_integral _subpath)
qed

lemma contour_integral subcontour integral:
assumes | contour_integrable _on g valid_path g u € {0..1} ve {0..1} u < w
shows contour_integral (subpath u v g) f =
integral {u..v} (Az. f(g x) * vector_derivative g (at x))
using assms has__contour_integral__subpath contour integral unique by blast

lemma contour_integral subpath__combine_less:
assumes | contour_integrable _on ¢ valid_path g u € {0..1} v € {0..1} w €
{0..1}
u<v v<w
shows contour_integral (subpath u v g) f + contour__integral (subpath v w g)
f =
contour_integral (subpath u w g) f
by (smt (verit) Henstock_Kurzweil _Integration.integral _combine assms
has__integral _contour_integral__subpath has_integral iff)

lemma contour_integral _subpath__combine:

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 20

assumes | contour_integrable on g valid_path g uw € {0..1} v € {0..1} w €
{0..1}
shows contour_integral (subpath u v g) f + contour _integral (subpath v w g)
f =
contour_integral (subpath v w g) f
proof (cases u#£v A v£w A u#w)
case True
have *: subpath v u g = reversepath(subpath v v g) A
subpath w u g = reversepath(subpath u w g) A
subpath w v g = reversepath(subpath v w g)
by (auto simp: reversepath__subpath)
have u < v Av < wV
u<wAAw<ovV
r<uNu<wV
v<wNw<uV
w<uNu<ovV
w<vANv<u
using True assms by linarith
with assms show ?thesis
using contour__integral__subpath__combine_less [of f g u v w]
contour_integral_subpath__combine__less [of f g u w v]
contour_integral__subpath__combine_less [of f g v u w)
contour_integral__subpath__combine_less [of f g v w u]
contour_integral _subpath__combine_less [of f g w u v]
contour_integral_subpath__combine_less [of f g w v u]
by (elim disjE) (auto simp: x contour_integral_reversepath contour_integrable__subpath
valid__path__subpath algebra__simps)
next
case Fulse
with assms show ?thesis
by (metis add.right_neutral contour_integral _reversepath contour_integral__subpath__refl
diff 0 eq diff _eq add__0 reversepath__subpath valid _path__subpath)
qed

lemma contour_integral_integral:
contour_integral g f = integral {0..1} (Az. f (g x) x vector_derivative g (at
z))

by (simp add: contour__integral_def integral _def has__contour_integral contour _integrable__on)

lemma contour_integral_cong:
assumes g = ¢’ Az. z € path_image g = foz ="z
shows contour_integral g f = contour_integral g’ f'
unfolding contour_integral integral using assms
by (intro integral cong) (auto simp: path_image_def)

lemma contour_integral_spike finite _simple path:

assumes finite A simple_path g g = ¢’ \z. « € path_image g — A = fz = f'
x

shows contour_integral g f = contour_integral g’ f'

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 21

unfolding contour_integral integral
proof (rule integral _spike)
have finite (9 —¢ A N {0<..<1}) using <simple_path ¢» <finite A>
by (intro finite_vimage__Intl simple_path_inj _on) auto
hence finite ({0, 1} U g —“ AN {0<..<1}) by auto
thus negligible ({0, 1} U g —¢ A N {0<..<1}) by (rule negligible_ finite)
next
fix z assume z € {0..1} — ({0, 1} U g — AN {0<.<1})
hence g z € path_image ¢ — A by (auto simp: path_image_ def)
with assms show f’ (¢’ z) * wvector_derivative g’ (at x) = f (g z) * vec-
tor__derivative g (at x)
by simp
qed

Contour integral along a segment on the real axis

lemma has_contour_integral_linepath__Reals iff:
fixes a b :: complex and f :: compler = complex
assumes a € Reals b € Reals Re a < Re b
shows (f has__contour_integral I) (linepath a b) <—
((Az. f (of _real z)) has_integral I) {Re a..Re b}
proof —
have [simp]: of real (Re a) = a of real (Re b) = band a # b
using assms by (simp__all add: complex__eq iff)
have ((\z. f (of real z)) has_integral I) (cbox (Re a) (Re b)) +—
(M. f (a4 bx of real z — a x of _real z)) has_integral I /r (Re b — Re
a)) {0..1}
by (subst has_integral _affinity_iff [of Re b — Re a __ Re a, symmetric])
(insert assms, simp__all add: field _simps scaleR__conv_of _real)
also have (Az. f (a + b *x of real z — a * of real z)) =
Az. (f (a + b* of realx — a * of real z) x (b — a)) /r (Re b — Re
2)

using <a # by by (auto simp: field simps fun__eq iff scaleR__conv_of real)
also have (... has_integral I /g (Re b — Re a)) {0..1} +—
((Az. f (linepath a b) = (b — a)) has__integral I) {0..1} using assms
by (subst has__integral _cmul_iff) (auto simp: linepath__def scaleR__conv_of _real
algebra__simps)
also have ... «— (f has_contour_integral I) (linepath a b)
unfolding has_contour_integral def
using has_contour_integral_def has__contour integral linepath by presburger
finally show ?thesis by simp
qed

lemma contour_integrable_linepath__Reals iff:
fixes a b :: complex and [:: compler = complex
assumes a € Reals b € Reals Re a < Re b
shows (f contour_integrable on linepath a b) «—
(Az. f (of _real z)) integrable _on {Re a..Re b}
using has__contour_integral_linepath_ Reals_iff[OF assms, of f]
by (auto simp: contour_integrable _on__def integrable_on__def)

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 22

lemma contour_integral linepath Reals eq:
fixes a b :: complex and f :: complex = complex
assumes a € Reals b € Reals Re a < Re b
shows contour_integral (linepath a b) f = integral {Re a..Re b} (A\z. f (of _real
z))
proof (cases f contour_integrable on linepath a b)
case True
thus ¢thesis
by (metis assms has__contour _integral integral
has__contour_integral linepath_Reals_iff integral _unique)
next
case Fulse
thus ¢thesis
by (simp add: assms contour_integrable_linepath__Reals _iff
not__integrable _contour _integral not_integrable_integral)
qed

1.7 Cauchy’s theorem where there’s a primitive

lemma contour_integral_primitive lemma:
fixes f :: complex = complex and g :: real = complex
assumes a < b
and A\z. x € S = (f has_field__derivative f' x) (at x within S)
and g piecewise__differentiable_on {a..b} Az.z € {a..b} = gz € S
shows ((A\z. f'(g) * vector_derivative g (at x within {a..b}))
has__integral (f(g b) — f(g a))) {a..b}
proof —
obtain K where finite K and K: Vze{a..b} — K. g differentiable (at x within
{a..b}) and cg: continuous_on {a..b} g
using assms by (auto simp: piecewise_ differentiable _on__def)
have continuous_on (g ‘ {a..b}) f
using assms by (metis DERIV__continuous_on continuous_on__subset im-
age__subsetl)
then have cfg: continuous_on {a..b} (A\z. f (g z))
by (rule continuous_on__compose [OF cg, unfolded o__def])
{ fix z::real
assume a: ¢ < z and b: z < band zk: z ¢ K
then have g differentiable at x within {a..b}
using K by (simp add: differentiable at withinl)
then have (g has_wvector__derivative vector _derivative g (at x within {a..b}))
(at z within {a..b})
by (simp add: vector__derivative_works has_ field _derivative_def scaleR__conv_of real)
then have gdiff: (g has_derivative (Au. u * vector_derivative g (at x within
{a..b}))) (at z within {a..b})
by (simp add: has_vector__derivative def scaleR__conv_of real)
have (f has_ field_derivative (f' (g z))) (at (g x) within g ‘ {a..b})
using assms by (metis a atLeastAtMost_iff b DERIV__subset image__subset_iff
less_eq_real_def)

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 23

then have fdiff: (f has_derivative (x) (f' (g z))) (at (g x) within g ‘ {a..b})
by (simp add: has_field derivative_def)
have ((Az. f (g z)) has_vector__derivative f' (g z) * vector_derivative g (at x
within {a..b})) (at z within {a..b})
using diff _chain_within [OF gdiff fdiff]
by (simp add: has_vector__derivative _def scaleR__conv_of real o__def mult__ac)
} then show ?Zthesis
using assms cfg
by (force simp: at_within__Icc__at intro: fundamental _theorem__of calculus_interior__strong
[OF «finite K>»])
qged

lemma contour_integral_primitive:

assumes Az. ¢ € S = (f has_field_derivative f' x) (at x within S)

and wvalid_path g path_image g C S
shows (f' has__contour__integral (f(pathfinish g) — f(pathstart g))) ¢

using assms

apply (simp add: valid_path__def path_image def pathfinish__def pathstart def
has__contour_integral _def)

apply (auto introl: piecewise_C1_imp__differentiable contour_integral _primitive_lemma
lof 0.1 5))

done

corollary Cauchy_theorem__primitive:
assumes Az. z € S = (f has_field_derivative f' x) (at z within S)
and wvalid_path g path_image g C S pathfinish g = pathstart g
shows (f' has__contour_integral 0) g
using assms by (metis diff _self contour _integral primitive)

lemma contour_integrable__continuous_linepath:
assumes continuous_on (closed__segment a b) f
shows [contour_integrable _on (linepath a b)
proof —
have continuous_on (closed__segment a b) (Az. fz * (b — a))
by (rule continuous_intros | simp add: assms)+
then have continuous_on {0..1} (Az. f (linepath a b z) * (b — a))
by (metis (no__types, lifting) continuous_on__compose continuous__on__cong
continuous__on_linepath linepath_image 01 o__apply)
then have (Az. f (linepath a b z)
x vector__derivative (linepath a b) (at x within {0..1}))
integrable_on {0..1}
by (metis (no__types, lifting) continuous_on__cong integrable _continuous _real
vector_derivative_linepath__within)
then show ?thesis
by (simp add: contour_integrable_on__def has__contour_integral def integrable _on__def
[symmetric])
qed

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 24

lemma has_field _der_id: ((Az. 22/2) has_field_derivative z) (at z)
by (rule has__derivative__imp__has_ field_ derivative)
(rule derivative_intros | simp)+

lemma contour _integral id [simp]: contour _integral (linepath a b) (My. y) = (b™2
—a’2)/2

using contour_integral _primitive [of UNIV Az. 72/2 Az. z linepath a b] con-
tour_integral _unique

by (simp add: has_field_der id)

lemma contour_integrable _on__const [iff]: (A\z. ¢) contour__integrable__on (linepath
a b)
by (simp add: contour_integrable__continuous_linepath)

lemma contour_integrable__on_id [iff]: (Az. x) contour_integrable_on (linepath
ab)
by (simp add: contour_integrable continuous_linepath)

1.8 Arithmetical combining theorems

lemma has _contour_integral_neg:
(f has__contour_integral i) g = ((Az. —(f z)) has__contour_integral (—1)) ¢
by (simp add: has_integral_neg has__contour _integral _def)

lemma has contour integral add:
[(fI has_contour_integral i1) g; (f2 has__contour_integral i2) ¢
= ((\z. f1 = + f2 z) has_contour_integral (il + i2)) g
by (simp add: has_integral _add has__contour integral def algebra__simps)

lemma has _contour_integral__diff:
[(f1 has_contour_integral i1) g; (f2 has_contour_integral i2) g
= ((Az. fI © — f2 x) has_contour_integral (il — i2)) g
by (simp add: has_integral _diff has__contour_integral _def algebra__simps)

lemma has_contour _integral lmul:
(f has__contour_integral i) g = ((Az. ¢ * (f x)) has__contour _integral (cxi)) g
by (simp add: has__contour _integral_def algebra__simps has__integral _mult _right)

lemma has_contour_integral _rmul:
(f has__contour_integral i) g = ((Az. (f z) * ¢) has__contour__integral (ixc)) g
by (simp add: mult.commute has__contour _integral Imul)

lemma has_contour_integral__div:
(f has__contour_integral i) g = ((A\z. f x/c) has_contour_integral (i/c)) g
by (simp add: field_class.field__divide inverse) (metis has__contour_integral _rmul)

lemma has contour integral__eq:
[(f has__contour_integral y) p; Nz. x € path_image p = fz = g 2] = (g

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 25

has__contour_integral y) p
by (metis (mono__tags, lifting) has_contour integral def has_integral_eq im-
age__eql path__image_ def)

lemma has_contour_integral__bound__linepath:

assumes (f has__contour_integral i) (linepath a b)

0 < Band B: Az. z € closed_segment a b = norm(fz) < B
shows norm ¢ < B x norm(b — a)

proof —

have norm ¢ < (B * norm (b — a)) * measure lborel (cbox 0 (1::real))

proof (rule has_integral _bound

[of _ Az. f (linepath a b) x vector_derivative (linepath a b) (at x within

{0.-1})])

show cmod (f (linepath a b) * vector__derivative (linepath a b) (at x within
{0..1}))
< B * ¢mod (b — a)
if x € cbox 0 1 for xz::real
using that box_real(2) norm_mult
by (metis B linepath__in__path mult_right _mono norm__ge_zero vector__derivative linepath__within)
qged (use assms has__contour_integral__def in auto)
then show ?thesis
by (auto simp: content_real)
qed

lemma has__contour__integral__const_linepath: (Az. ¢) has__contour_integral cx(b
— a))(linepath a b)

unfolding has_contour integral linepath

by (metis content__real diff _0_right has_integral_const_real lambda__one of real 1
scaleR__conv_of real zero_le_one)

lemma has_contour_integral _0: ((Axz. 0) has_contour_integral 0) g
by (simp add: has__contour_integral__def)

lemma has_contour_integral_is 0:
(Az. z € path_image g = [z = 0) = (f has__contour_integral 0) g
by (rule has__contour_integral _eq [OF has__contour_integral_0]) auto

lemma has_contour integral _sum:
[finite s; Na. a € s = (f a has__contour_integral i a) p]
= ((Az. sum (Aa. fa x) s) has_contour_integral sum i s) p
by (induction s rule: finite_induct) (auto simp: has__contour_integral 0 has__contour_integral _add)

1.9 Operations on path integrals

lemma contour_integral_const_linepath [simp]: contour_integral (linepath a b)
(Az. ¢) = ex(b — a)

by (rule contour_integral _unique [OF has__contour _integral const_linepath))

lemma contour_integral_neg: contour _integral g (Az. —f z) = —contour_integral

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 26

gf

by (simp add: contour_integral_integral)

lemma contour_integral_add:
f1 contour__integrable__on g = f2 contour_integrable__on g = contour_integral
g (Mz. flz+ f2z) =
contour__integral g f1 + contour_integral g f2
by (simp add: contour__integral _unique has__contour _integral integral has__contour _integral__add)

lemma contour_integral_diff:
f1 contour__integrable__on g = f2 contour_integrable__on g = contour_integral
g (Az. flz — f2x) =
contour__integral g f1 — contour_integral g f2
by (simp add: contour_integral_unique has__contour_integral _integral has__contour__integral_ diff)

lemma contour_integral Imul:
shows f contour_integrable_on g
= contour_integral g (Az. ¢ * fx) = cxcontour__integral g f
by (simp add: contour__integral _unique has__contour _integral integral has__contour _integral_Imul)

lemma contour_integral _rmul:
shows f contour_integrable_on g
= contour__integral g (Az. fz * ¢) = contour_integral g f * ¢
by (simp add: contour _integral _unique has__contour _integral integral has__contour _integral_rmul)

lemma contour_integral _div:
shows f contour_integrable_on g
= contour__integral g (Az. fz / ¢) = contour_integral g f / ¢
by (simp add: contour__integral_unique has__contour__integral integral has__contour _integral_div)

lemma contour_integral_eq:
(Az. = € path_image p = fx = g) = contour_integral p f = con-
tour__integral p g
using contour_integral cong contour integral _def by fastforce

lemma contour_integral_eq 0:
(Az. z € path_image ¢ = f 2z = 0) = contour_integral g f = 0
by (simp add: has__contour_integral_is 0 contour _integral_unique)

lemma contour_integral__bound__ linepath:
shows
[f contour_integrable_on (linepath a b);
0 < B; A\z. z € closed_segment a b = norm(f z) < B]
= norm(contour_integral (linepath a b) f) < Bxnorm(b — a)
by (meson has__contour_integral _bound_linepath has__contour _integral_integral)

lemma contour_integral_0 [simp]: contour_integral g (Az. 0) = 0
by (simp add: contour_integral_unique has__contour _integral_0)

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 27

lemma contour _integral _sum:

[finite s; Na. a € s => (f a) contour_integrable_on p]|

= contour_integral p (A\z. sum (Aa. fa) s) = sum (Aa. contour_integral p
(fa) s

by (auto simp: contour_integral_unique has__contour_integral _sum has__contour_integral _integral)

lemma contour_integrable_eq:
[f contour_integrable_on p; Nz. © € path_image p = fz = gz] = ¢
contour__integrable__on p
unfolding contour integrable_on__def
by (metis has__contour_integral _eq)

1.10 Arithmetic theorems for path integrability

lemma contour_integrable_neg:
f contour__integrable _on g = (Ax. —(f x)) contour_integrable_on g
using has__contour_integral meg contour _integrable _on __def by blast

lemma contour_integrable add:
[f1 contour_integrable _on g; f2 contour_integrable_on g] = (Az. fl = + f2
x) contour_integrable_on g
using has__contour_integral add contour integrable _on__def
by fastforce

lemma contour_integrable diff:
[f1 contour_integrable on g; f2 contour integrable on g] = (Az. fl z — f2
x) contour_integrable_on g
using has_contour_integral diff contour integrable on__def
by fastforce

lemma contour integrable Imul:
f contour_integrable _on g = (A\z. ¢ x f z) contour_integrable on g
using has__contour_integral Imul contour integrable_on_ def
by fastforce

lemma contour _integrable _rmul:
f contour_integrable _on g = (A\z. fx * ¢) contour_integrable on g
using has__contour__integral rmul contour integrable on__def
by fastforce

lemma contour_integrable div:
f contour_integrable _on g = (Az. fx / ¢) contour_integrable on g
using has__contour__integral div contour _integrable on__def
by fastforce

lemma contour_integrable_sum:
[finite s; Na. a € s => (f a) contour_integrable__on p]
= (Az. sum (Xa. fa z) s) contour_integrable _on p
unfolding contour_integrable on_ def by (metis has_contour _integral sum)

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 28

lemma contour_integrable _neq iff:

(Az. —f z) contour_integrable_on g «— f contour_integrable_on g

using contour_integrable_neglof f g] contour_integrable_neg[of A\x. —f x g] by
auto

lemma contour_integrable_Imul_iff:
¢ # 0 = (A\z. ¢ x fx) contour_integrable_on g <— [contour_integrable_on
g
using contour_integrable_Imul[of f g c] contour_integrable_Imullof Az. ¢ * fx
g inverse c]
by (auto simp: field__simps)

lemma contour_integrable _rmul_iff:
c# 0 = (Ax. fx x c) contour_integrable_on g +— f contour_integrable_on
g
using contour_integrable _rmullof f g c| contour _integrable _rmullof Az. ¢ * fx
g tnverse c|
by (auto simp: field__simps)

lemma contour_integrable div_iff:
¢c# 0 = (A\z. fz | ¢) contour_integrable_on g <— f contour_integrable_on
g
using contour_integrable__rmul_iff[of inverse c] by (simp add: field__simps)

lemma uniform__limit_contour__integral_linepath:
assumes u: uniform__limit (path_image (linepath a b)) f g F
assumes c¢: An. continuous_on (path__image (linepath a b)) (f n)
assumes [simp|: F # bot
obtains I J where
An. (f n has__contour_integral I n) (linepath a b)
(g has__contour_integral J) (linepath a b)
(I——J)F
proof (rule uniform_ limit_integral)
note [continuous_intros] = continuous__on__compose2|OF (]

show uniform_limit {0..1} (Az t. fz (linepath a b t) * (b — a))
(Mt. g (linepath a b t) x (b — a)) F
proof (rule uniform__limit_intros)
show uniform_limit {0..1} (Az t. f x (linepath a b t))
(At. g (linepath a b t)) F
using u unfolding path_image_def by (rule uniform__limit_compose’) auto
qed

show continuous_on {0..1} (At. fn (linepath a b t) * (b — a)) for n
by (intro continuous__intros; unfold path_image def) auto

fix IJ

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 29

assume I: An. ((At. fn (linepath a b t) = (b — a)) has_integral I n) {0..1}
and J: ((At. g (linepath a b t) x (b — a)) has_integral J) {0..1}
and lim: (I —— J) F
show ?thesis
by (rule that[of I J]) (use I J lim in <auto simp: has__contour_integral)
qed auto

lemma contour_integral__sums_ linepath:
assumes u: uniform_limit (closed_segment a b) (AN w. Y n<N. fn w) g se-
quentially
assumes c¢: An. continuous_on (closed_segment a b) (f n)
obtains J where
(g has_contour_integral J) (linepath a b)
(An. contour_integral (linepath a b) (f n)) sums J
proof (rule uniform__limit_contour _integral_linepath)
show uniform__limit (path_image (linepath a b)) (AN w. > n<N. fn w) g se-
quentially
using u by simp
next
show continuous on (path_image (linepath a b)) (Aw. > n<N. fn w) for N
by (intro continuous__intros continuous _on__subset|OF cl|) simp__all
next
fix IJ
assume I: AN. (Aw. > n<N. fn w) has_contour integral I N) (linepath a b)
assume 2: (g has__contour_integral J) (linepath a b) and 3: (I —— J) sequen-
tially
have /: I = (AN. (3 n<N. contour_integral (linepath a b) (f n)))
proof
fix N :: nat
have f n contour_integrable__on (linepath a b) for n
by (intro contour _integrable_continuous_linepath assms)
hence ((Aw. > n<N. fn w) has_contour_integral
(>°n<N. contour_integral (linepath a b) (f n))) (linepath a b)
using ¢ by (intro has__contour__integral _sum) (simp__all add: has__contour_integral integral)
with 1[of N] show I N = (> n<N. contour_integral (linepath a b) (f n))
using contour_integral unique by metis
qed
have 5: (An. contour_integral (linepath a b) (f n)) sums J
using ! 2 3 4 unfolding sums _def by blast
from that[OF 2 5] show %thesis .
qged auto

lemma contour_integral_linepath__same_Re:
assumes Rez=cRez' =cImz=almz =ba<b
shows contour_integral (linepath z z') f =
i * integral {a..b} (\z. f (Complex c x))
proof —

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 30

have zz": z = Complex ¢ a 2z’ = Complex ¢ b
using assms by (auto simp: complex__eq iff)
have contour_integral (linepath z 2’) f =
(2" = z) * integral {0..1} (Mz. f (linepath z 2’ x))
by (simp add: contour_integral_integral)
also have 2’ — z =i % of _real (b — a)
by (simp add: zz' Complex__eq algebra__simps)
also have integral {0..1} (A\z. f (linepath z 2’ z)) =
integral {0..1} (A\z. f (Complex ¢ (linepath a b x)))
by (simp add: linepath_def Complex_eq scaleR__conv_of real algebra_simps
22"
also have ... = integral {0..(b — a) / (b — a)} (Az. f (Complez ¢ (a + (b — a)
o))
using <a < b by (simp add: algebra__simps linepath__def)
also have {0..(b —a) / (b—a)} = (Az. 2/ (b — a)) ‘{0..b — a}
using <a < b» by simp
also have integral ... (Az. f (Complex ¢ (a + (b — a) x x))) =
integral {a—a..b—a} (Az. f (Complex ¢ (z + a))) / of real (b — a)
using <a < b» by (subst integral _stretch_real) (auto simp: scaleR__conv_of real
add__ac)
also have ... = integral {a..b} (\z. f (Complex c x)) / of _real (b — a)
by (subst integral__shift _real_ivl) (rule refl)
finally show ?thesis
using <a < by by simp
qed

1.11 Reversing a path integral

lemma has_contour_integral_reverse__linepath:
(f has__contour_integral i) (linepath a b)
= (f has__contour_integral (—1i)) (linepath b a)
using has__contour integral reversepath valid__path_linepath by fastforce

lemma contour_integral_reverse_linepath:
continuous__on (closed__segment a b) f = contour_integral (linepath a b) f =
— (contour_integral(linepath b a) f)
using contour_integral reversepath by fastforce

Splitting a path integral in a flat way.*)

lemma has contour _integral_split:
assumes f: (f has_contour_integral i) (linepath a ¢) (f has_contour_integral j)
(linepath ¢ b)
and k: 0 < kk <1
and ¢: ¢ — a =k xg (b — a)
shows (f has_contour_integral (i + 7)) (linepath a b)
proof (casesk =0V k=1)
case True
then show ?thesis
using assms by auto

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 31

next
case Fulse
then have k: 0 < kk < 1
using assms by auto
have ¢ ¢c =k *g (b — a) + a
by (metis diff _add__cancel c)
have be: (b — ¢) = (1 — k) g (b — a)
by (simp add: algebra__simps c’)
{ assume x: ((Az. f (I — z) *g a + = *g ¢) x (¢ — a)) has_integral i) {0..1}
have N\z. (z / k) g a+ (k—x) / k) *xr a=a
using Fulse by (simp add: field _split_simps flip: real_vector.scale_left_ distrib)
then have Az. (k—2z) /k)*pa+ (z /k)*pc=(1 —z) *xga+ x*p b
using Fualse by (simp add: ¢’ algebra__simps)
then have ((A\z. f (1 — z) *g a + z *g b) x (b — a)) has_integral 7) {0..k}
using k has_integral_affinity01 [OF x, of inverse k 0]
by (force dest: has_integral _cmul [where ¢ = inverse k|
simp add: divide__simps mult.commute [of __ k] image__affinity__atLeastAtMost
)
} note fi = this
{ assume *: (Az. f (I — 2) xg ¢+ z x5 b) * (b — ¢)) has_integral j) {0..1}
have sxx: Az. (1 —z) /(1 = k) *gpc+ (= k) /(I — k) g b) = ((1 —
z) *p a + = *g b)
using £
apply (simp add: ¢’ scaleR__conv_of real divide__simps)
apply (simp add: distrib__right distrib_left right _diff _distrib left_ diff _distrib)
done
have ((Az. f (1 — z) *xg a + = *r b) *x (b — a)) has_integral j) {k..1}
using k has__integral _affinity01 [OF x, of inverse(1 — k) —(k/(1 — k))]
apply (simp add: divide__simps mult.commute [of _ 1—k] image__affinity _atLeastAtMost
*x Dc)
apply (auto dest: has_integral _cmul [where k = (1 — k) *p j and ¢ =
inverse (1 — k)])
done
}

then show ?thesis
using f k unfolding has contour_integral_linepath
by (simp add: linepath__def has_integral_combine [OF _ __ fi])
qged

lemma continuous on__closed__segment__transform:
assumes f: continuous_on (closed_segment a b) f
and k: 0 < kk <1
and ¢: ¢ — a =k xg (b — a)
shows continuous_on (closed _segment a c) f
proof —
have ¢ ¢ = (1 — k) *ra+ k*g b
using ¢ by (simp add: algebra__simps)
have closed_segment a ¢ C closed__segment a b
by (metis ¢’ ends_in__segment(1) in_segment(1) k subset_closed__segment)

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 32

then show continuous_on (closed_segment a ¢) f
by (rule continuous_on__subset [OF f])
qed

lemma contour_integral _split:
assumes f: continuous_on (closed_segment a b) f
and k: 0 <kk <1
and ¢: ¢ — a =k xg (b — a)
shows contour_integral(linepath a b) f = contour_integral(linepath a c) f +
contour_integral(linepath ¢ b) f
proof —
have ¢ ¢c=(1 —k)*pa+ k+*r b
using ¢ by (simp add: algebra__simps)
have closed_segment a ¢ C closed__segment a b
by (metis ¢’ ends_in__segment(1) in_segment(1) k subset_closed__segment)
moreover have closed segment ¢ b C closed__segment a b
by (metis ¢’ ends_in__segment(2) in_segment(1) k subset_closed__segment)
ultimately
have continuous_on (closed_segment a c) f continuous_on (closed__segment ¢
b) f
by (auto intro: continuous_on__subset [OF f])
then have (f has__contour_integral
contour_integral (linepath a ¢) f + contour_integral (linepath ¢ b) f)
(linepath a b)
by (meson ¢ contour_integrable__continuous_linepath
has__contour_integral__integral has__contour_integral__split k)
then show ?thesis
by (metis contour _integral _unique)
qed

lemma contour_integral_split_linepath:
assumes f: continuous_on (closed_segment a b) f
and c: ¢ € closed_segment a b
shows contour_integral(linepath a b) f = contour__integral(linepath a ¢) f +
contour_integral(linepath ¢ b) f
using ¢ by (auto simp: closed__segment__def algebra__simps introl: contour__integral__split

[OF f])

1.12 Reversing the order in a double path integral

The condition is stronger than needed but it’s often true in typical situations
lemma fst_im__cbox [simp]: cbox ¢ d # {} = (fst ¢ cbox (a,c) (b,d)) = cbox a b
by (auto simp: cbox_Pair_eq)

lemma snd_im_ cbox [simp]: cboz a b # {} = (snd * cboz (a,c) (b,d)) = cbox ¢
d
by (auto simp: cbox_Pair_eq)

proposition contour integral _swap:

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 33

assumes fcon: continuous_on (path_image g x path_image h) (M(y1,y2). fyl
y2)
and vp: walid_path g valid__path h
and guvcon: continuous _on {0..1} (At. vector_derivative g (at t))
and hvcon: continuous_on {0..1} (At. vector_derivative h (at t))
shows contour_integral g (Aw. contour__integral h (f w)) =
contour_integral h (Az. contour _integral g (Aw. fw z))
proof —
have gcon: continuous_on {0..1} g and hcon: continuous_on {0..1} h
using assms by (auto simp: valid__path__def piecewise__C1__differentiable__on__def)
have fgh1: Az. (At. f (g z) (ht)) = (M(yl,y2). fyl y2) o (At. (g z, ht))
by (rule ext) simp
have fgh2: Az. (At. f (g t) (b)) = (Myl,y2). fyl y2) o (At. (gt, hx))
by (rule ext) simp
have fcon_iml: A\z. 0 < x = x < 1 = continuous_on ((At. (g z, h t)) *
{0-1}) (N, 9). fo)
by (rule continuous_on__subset [OF fcon]) (auto simp: path__image_def)
have fcon_im2: \z. 0 < x = x < 1 = continuous_on ((At. (g ¢, h z)) *
{0..1}) (M2, y)- fzy)
by (rule continuous on__subset [OF fcon]) (auto simp: path__image def)
have continuous_on (cbox (0, 0) (1, 1:real)) ((Az. vector_derivative g (at x))
o fst)
continuous_on (cbox (0, 0) (1:real, 1)) ((Az. vector_derivative h (at z)) o
snd)
by (rule continuous_intros | simp add: gucon hvcon)+
then have gucon”: continuous_on (cbox (0, 0) (1, 1::real)) (Az. vector_derivative
g (at (fst 2)))
and hwvcon”: continuous_on (cbox (0, 0) (1::real, 1)) (Az. vector_derivative
h (at (snd x)))
by auto
have continuous_on ((Ax. (g (fst x), h (snd z))) * cbozx (0,0) (1,1)) (A(y1, y2).
fy1y2)
by (auto simp: path_image__def intro: continuous_on__subset [OF fcon])
then have continuous_on (cbox (0, 0) (1, 1)) (Myl, y2). fyl y2) o (Aw. ((g
o fst) w, (h o snd) w)))
by (intro gcon hcon continuous_intros | simp)+
then have fgh: continuous _on (cbox (0, 0) (1, 1)) (Az. f (g (fst x)) (h (snd
z)))
by auto
have integral {0..1} (Az. contour_integral h (f (g x)) * vector_derivative g (at

) =
integral {0..1} (Az. contour_integral h (Ay. f (g x) y * vector_derivative g
(at)))
proof (rule integral _cong [OF contour_integral_rmul [symmetric]))
have \z. z € {0..1} =
continuous_on {0..1} (Aza. f (g z) (h za))
by (subst fght) (rule feon__im1 hecon continuous_intros | simp)+
then show Az. z € {0..1} = f (g =) contour_integrable_on h
unfolding contour_integrable on

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 34

using continuous__on_ mult hvcon integrable__continuous real by blast
qed
also have ... = integral {0..1}
(Ay. contour_integral g (Az. fx (h y) * vector_derivative h (at
v)))

unfolding contour integral integral
apply (subst integral swap__continuous [where ‘a = real and 'b = real, of 0
011, simplified])
subgoal
by (rule fgh gvcon’ hvcon’ continuous_intros | simp add: split_def)+
by (simp add: mult.commute mult.left_commute)
also have ... = contour_integral h (Az. contour_integral g (Aw. f w 2))
unfolding contour_integral_integral integral mult_left [symmetric]
by (simp add: algebra__simps)
finally show ?thesis
by (simp add: contour_integral_integral)
qed

lemma valid_path_negatepath: valid_path v = valid_path (uminus o)
unfolding o_def using piecewise C1__differentiable _neg valid_path__def by
blast

lemma has _contour _integral_negatepath:
assumes v: valid_path v and cint: (Az. f (— 2)) has_contour_integral — i) 7
shows (f has_contour_integral i) (uminus o =)
proof —
obtain S where cont: continuous_on {0..1} v and finite S and diff: v C1__differentiable_on
{0..1} — S
using v by (auto simp: valid_path_def piecewise_C1__differentiable_on_ def)
have ((A\z. — (f (— v z) * vector__derivative v (at z within {0..1}))) has__integral
i) {0..1}
using cint by (auto simp: has__contour_integral_def dest: has_integral _neg)
then
have ((Az. f (— v z) * vector_derivative (uminus o) (at x within {0..1}))
has__integral i) {0..1}
proof (rule rev_iff DI [OF __ has_integral _spike_eq])
show negligible S
by (simp add: <finite S» negligible_ finite)
show f (— v z) * vector_derivative (uminus o v) (at z within {0..1}) =
— (f (= v o) * vector__derivative vy (at x within {0..1}))
ifze{0.1} — Sforz
proof —
have wvector_derivative (uminus o) (at z within cbox 0 1) = — wvec-
tor_derivative vy (at x within cbox 0 1)
proof (rule vector_derivative _within__cboz)
show (uminus o v has_vector_derivative — vector__derivative v (at x within
cbox 0 1)) (at x within cbox 0 1)
using that unfolding o def
by (metis C1_differentiable _on__eq UNIV__I diff differentiable_subset

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 35

has_vector__derivative__minus subsetl that vector _derivative__works)
ged (use that in auto)
then show Zthesis
by simp
qed
qed
then show %thesis by (simp add: has__contour _integral _def)
qed

lemma contour_integrable_mnegatepath:
assumes 7: valid_path v and pi: (A\z. f (= 2)) contour_integrable on ~
shows f contour_integrable _on (uminus o)
by (metis v add.inverse__inverse contour _integrable__on__def has__contour_integral _negatepath

pi)

lemma C1__ differentiable__polynomial_function:
fixes p :: real = 'a::euclidean__space
shows polynomial _function p = p C1__differentiable_on S
by (metis continuous__on__polymonial _function C1_differentiable_on__def has vector_ _derivative__polynomsi

lemma valid__path__polynomial _function:

fixes p :: real = ’a::euclidean space

shows polynomial _function p = wvalid__path p

by (force simp: wvalid_path_def piecewise_C1_ differentiable on_ def continu-
ous__on__polymonial_function C1__differentiable polynomial function)

lemma valid_path__subpath__trivial [simp]:
fixes ¢ :: real = 'a::euclidean__space
shows z # g x = walid_path (subpath z z g)
by (simp add: subpath__def valid__path__polynomial _function)

1.13 Partial circle path

definition part_circlepath :: [complex, real, real, real, real] = complex
where part_circlepath z r s t = Ax. z + of _real r x exp (i * of real (linepath s

t 7))

lemma pathstart_part_circlepath [simp):
pathstart(part_circlepath z r s t) = z + rxexp(i * s)
by (metis part_ circlepath__def pathstart def pathstart linepath)

lemma pathfinish__part_ circlepath [simp]:
pathfinish(part__circlepath z v s t) = z + rxexp(ixt)
by (metis part_circlepath__def pathfinish__def pathfinish__linepath)

lemma reversepath__part__circlepath]simp]:
reversepath (part_circlepath z v s t) = part__circlepath z r t s
unfolding part circlepath__def reversepath__def linepath__def
by (auto simp:algebra__simps)

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 36

lemma has_vector__derivative part circlepath [derivative_intros):
((part__circlepath z r s t) has_vector__derivative
(i*rx (of_real t — of real s) x exp(i * linepath s t x)))
(at © within X)
unfolding part circlepath_def linepath__def scaleR__conv_of real
by (rule has_vector _derivative_real_field derivative _eq intros | simp)+

lemma differentiable__part circlepath:

part__circlepath ¢ r a b differentiable at x within A

using has_vector_derivative__part_circlepath[of ¢ r a b x A] differentiablel _vector
by blast

lemma vector_derivative_part_circlepath:
vector_derivative (part_circlepath z r s t) (at) =
i*x 71 (of_real t — of real s) x exp(i * linepath s t x)
using has_vector__derivative__part_circlepath vector _derivative__at by blast

lemma vector_derivative_part_circlepath01:
[0 < z<1]
= vector_derivative (part_circlepath z v s t) (at x within {0..1}) =
ix 7« (of_real t — of real s) * exp(i * linepath s t x)
using has_vector__derivative__part_circlepath
by (auto simp: vector _derivative _at_within__ivl)

lemma wvalid_path__part_circlepath [simp]: valid__path (part_circlepath z r s t)
unfolding valid_path__ def
by (auto simp: C1__differentiable _on__eq vector__derivative__works vector _derivative__part_ circlepath
has__wvector__derivative _part_ circlepath
introl: C1_ differentiable _imp piecewise continuous__intros)

lemma path_part_circlepath [simp]: path (part_circlepath z r s t)
by (simp add: valid_path_imp_path)

proposition path__image_ part_circlepath:
assumes s < ¢
shows path_image (part_circlepath z v s t) = {z + r * exp(i * of real z) | z.
s<zAz<t}
proof —
{ fix z:real
assume 0 < zz < 1
with «s < ¢» have Jx. (exp (i * linepath s t z) = exp (i * of _real z)) N s < z
Nr <t
apply (rule_tac x=(1 — 2z) * s + z * t in exl)
apply (simp add: linepath__def scaleR__conv_of real algebra__simps)
by (metis (no__types) affine_ineq mult.commute mult_left _mono)

}

moreover

{ fix 2

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 37

assume s < zz < t
then have z + of real r x exp (i % of real z) € (Az. z + of real r x exp (i *
linepath s t z)) < {0..1}
apply (rule_tac z=(z — s)/(t — s) in image_eql)
apply (simp add: linepath__def scaleR__conv_of _real divide__simps exp__eq)
apply (auto simp: field split_simps)
done
}
ultimately show ?thesis
by (fastforce simp add: path__image_def part_circlepath__def)
qged

lemma path_image_part_ circlepath”:
path__image (part_circlepath z r s t) = (Az. z + r % cis x) closed__segment s t
by (metis (no__types, lifting) ext cis_conv__exp image__image linepath__image_ 01
part__circlepath__def path__image__def)

lemma path__image part_circlepath__subset:

[s < t; 0 < r] = path_image(part_circlepath z v s t) C sphere z r
by (auto simp: path_image_part_circlepath sphere_def dist_norm algebra__simps
norm__mult)

lemma in_ path__image_part_circlepath:
assumes w € path_image(part_circlepath zr st) s <t 0 < r
shows norm(w — z) = r
by (smt (verit) assms dist_norm mem__Collect__eq norm__minus__commute path__image__part_circlepath__sub
sphere__def subsetD)

lemma path_image_part_ circlepath__subset”:

assumes r > ()

shows path_image (part_circlepath z v s t) C sphere z r

by (smt (verit) assms path__image_part_circlepath__subset reversepath__part_ circlepath
reversepath__simps(2))

lemma part_circlepath__cnj: cnj (part_circlepath ¢ v a b ©) = part_circlepath (cnj

¢) r(—a) (=b) x

by (simp add: part_circlepath__def exp__cnj linepath__def algebra__simps)

lemma contour _integrable _on__compose__cnj iff:

assumes valid__path ~

shows f contour_integrable__on (cnj o v) +— (cnj o f o cnj) contour_integrable _on
Y
proof —

from assms obtain S where S: finite S v C1__differentiable_on {0..1} — S

unfolding valid_path_def piecewise_C1__ differentiable _on__def by blast
have f contour_integrable _on (cnj o v) «—
((At. eng (eng (f (enj (v t))) = vector__derivative v (at t))) integrable_on

{0..1})

unfolding contour_integrable on o__def

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 38

proof (intro integrable__spike_finite_eq [OF S(1)])
fix t :: real assume t € {0..1} — S
hence v differentiable at t
using S(2) by (meson C1__differentiable_on__eq)
hence vector_derivative (A\z. cnj (v z)) (at t) = cnj (vector_derivative v (at

t)
by (rule vector _derivative _cnj)
thus f (¢nj (v t)) * vector_derivative (Az. cnj (v z)) (at t) =
enj (enj (f (enj (v t))) * vector_derivative v (at t))
by simp
qed
also have ... +— ((At. enj (f (enj (v t))) * vector_derivative v (at t)) inte-
grable_on {0..1})
by (rule integrable_on__cnj iff)
also have ... +— (cnj o f o cnj) contour_integrable_on ~
by (simp add: contour _integrable _on o__def)
finally show ?thesis .
qed

lemma contour_integral_cnj:
assumes valid__path ~y
shows contour_integral (cnj o) f = enj (contour _integral v (cnj o f o cnj))
proof —
from assms obtain S where S: finite S v C1_ differentiable _on {0..1} — S
unfolding valid_path_def piecewise_C1__differentiable _on__def by blast
have contour_integral (cnj o) f =
integral {0..1} (At. enj (enj (f (eng (v t))) * vector_derivative v (at t)))
unfolding contour integral integral
proof (intro integral spike)
fix t assume t € {0..1} — S
hence v differentiable at t
using S(2) by (meson C1__differentiable_on__eq)
hence vector__derivative (A\x. cnj (v x)) (at t) = cnj (vector_derivative v (at

)
by (rule vector__derivative _cnj)
thus cnj (enj (f (enj (v t))) * vector_derivative v (at t)) =
f ((enj o 7) t) * vector_derivative (cnj o y) (at t)
by (simp add: o_def)
qed (use S(1) in auto)
also have ... = cnj (integral {0..1} (At. ecnj (f (eng (v £))) * vector_derivative
7 (at 1))
by (subst integral _cnj [symmetric]) auto
also have ... = cnj (contour_integral v (cnj o f o cnj))
by (simp add: contour _integral_integral)
finally show ?thesis .
qed

lemma contour_integral _negatepath:
assumes valid__path ~

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 39

shows contour_integral (uminus o) f = —(contour_integral v (\z. f (—x)))
(is ?lhs = ?rhs)
proof (cases f contour_integrable on (uminus o 7))
case True
hence x: (f has__contour_integral ?lhs) (uminus o)
using has_contour_integral integral by blast
have ((Az. f (—2)) has_contour_integral — contour_integral (uminus o) f)
(uminus o (uminus o 7))
by (rule has__contour_integral _negatepath) (use x assms in auto)
hence ((Az. f (—x)) has_contour_integral — ?lhs)
by (simp add: o_def)
thus ?thesis
by (simp add: contour_integral _unique)
next
case Fulse
hence —(\z. f (— 2)) contour_integrable _on =
using contour_integrable negatepath[of v f] assms by auto
with False show ?thesis
by (simp add: not_integrable__contour _integral)
qed

lemma contour_integral _bound_part_circlepath:

assumes f contour_integrable on part_circlepath ¢ r a b

assumes B > 0r > 0 N\z. z € path_image (part_circlepath ¢ r a b) = norm
(fz) < B

shows norm (contour integral (part_circlepath ¢ ra b) f) < B xr x |b — q
proof —

let ?I = integral {0..1} (Az. f (part_circlepath ¢ v a b) * i % of real (r * (b

—) »
exp (1 * linepath a b x))
have norm ?I < integral {0..1} (Az:real. B x 1 % (r % |b — a]) x 1)
proof (rule integral_norm__bound__integral, goal_cases)
case |
with assms(1) show ?case
by (simp add: contour_integrable__on vector__derivative__part_ circlepath mult__ac)
next
case (3 z)
with assms(2—) show ?case unfolding norm_ mult norm__of real abs_mult
by (intro mult _mono) (auto simp: path_image_def)
qged auto
also have ?I = contour_integral (part_circlepath ¢ r a b) f
by (simp add: contour_integral_integral vector _derivative_part circlepath
mult_ac)
finally show ?thesis by simp
qed

lemma has_contour_integral part circlepath_iff:
assumes g < b
shows (f has__contour_integral I) (part_circlepath ¢ v a b) «—

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 40

(Mt f (c+ 7 *cist)*r*ix* cist) has_integral I) {a..b}
proof —
have (f has__contour_integral I) (part_circlepath ¢ r a b) «—
((Az. f (part_circlepath ¢ v a b x) x vector_derivative (part_circlepath ¢ r
ab)
(at x within {0..1})) has_integral I) {0..1}
unfolding has_contour integral def ..
also have ... «— ((Az. f (part_circlepath ¢ 7 a b x) * v * (b — a) * i *
cis (linepath a b x)) has_integral I) {0..1}
by (intro has_integral _cong, subst vector_derivative__part_circlepath01)
(simp__all add: cis_conv__exp)
also have ... +— ((Az. f (¢ + r *x exp (i * linepath (of real a) (of real b) z))
*
r* 1% exp (1 * linepath (of _real a) (of _real b)) *
vector_derivative (linepath (of _real a) (of _real b))
(at © within {0..1})) has_integral I) {0..1}
by (intro has__integral _cong, subst vector_ _derivative_linepath__within)
(auto simp: part_circlepath__def cis_conv__exp of real linepath [symmetric))
alsohave ... «— ((Az. f (c+ rxexp (i*x2)) *x 7T xi*exp (i*2)) has_contour_integral
n
(linepath (of _real a) (of _real b))
by (simp add: has__contour _integral_def)
also have ... «— ((Mt. f (¢ + r *x cis t) = r % 1 * cis t) has_integral I) {a..b}
using assms
by (subst has__contour_integral_linepath__Reals iff) (simp__all add: cis__conv__exp)
finally show ?thesis .
qged

lemma contour_integrable_part_ circlepath_iff:
assumes a < b
shows f contour_integrable__on (part_circlepath ¢ r a b) +—
(M. f (c+ 7r = cis t) *x 7 * 1 x cis t) integrable_on {a..b}
using assms by (auto simp: contour_integrable _on__def integrable _on__def
has__contour_integral _part circlepath__iff)

lemma contour_integral_part_circlepath__eq:
assumes a < b
shows contour_integral (part_circlepath ¢ v a b) f =
integral {a..b} (Mt. f (¢ + r* cist) * r * 1% cis t)
proof (cases f contour_integrable _on part_circlepath c r a b)
case True
hence (At. f (¢ + 7 x cis t) * 7 * 1 x cis t) integrable_on {a..b}
using assms by (simp add: contour_integrable part circlepath__iff)
with True show ?thesis
using has__contour_integral _part_circlepath_iff[OF assms]
contour__integral _unique has_integral_integrable_integral by blast
next
case Fulse
hence —(\t. f (¢ + 7 * cis t) * r x 1 % cis t) integrable_on {a..b}

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 41

using assms by (simp add: contour_integrable part circlepath__iff)
with False show ?Zthesis
by (simp add: not_integrable_contour _integral not_integrable_ integral)
qed

lemma contour_integral part_ circlepath__reverse:
contour_integral (part__circlepath ¢ r a b) f = —contour_integral (part_circlepath
crba)f
by (metis contour_integral _reversepath reversepath__part_circlepath valid__path__part_circlepath)

lemma contour_integral _part_ circlepath__reverse’:
b < a = contour_integral (part_circlepath ¢ r a b) f =
—contour_integral (part_circlepath c v b a) f
by (rule contour _integral part_circlepath_reverse)

lemma finite_bounded_log: finite {z::complex. norm z < b A exp z = w}
proof (cases w = 0)
case True then show ?thesis by auto
next
case Fulse
have «: finite {x. cmod ((2 * real_of _int x * pi) * i) < b + cmod (Ln w)}
proof (simp add: norm__mult finite_int_iff bounded_le)
have abs ‘ {z. 2 x |real_of int x| x pi < b + cmod (Ln w)}
C {..[(b + cmod (Ln w)) / (2 = pi)]}
by (auto simp: field_split_simps le_floor_iff)
then show 3 k. abs ‘ {z. 2 x |of _int 2| * pi < b + emod (Ln w)} C {..k}
by blast
qed
have [simp]: AP f. {z. Pz A (3n.z=fn)}=f{n. P (fn)}
by blast
have finite {z. cmod z < b A exp z = exp (Ln w)}
using norm__add_leD by (fastforce intro: finite__subset [OF _ *] simp: exp__eq)
then show ?thesis
using False by auto
qed

lemma finite bounded_log2:
fixes a::complex
assumes a # 0
shows finite {z. norm z < b A ezp(axz) = w}
proof —
have «: finite (M\z. z / a) ‘{z. emod z < b * cmod a N exp z = w})
by (rule finite_imagel [OF finite_bounded_log])
show ?thesis
by (rule finite_subset [OF __ x]) (force simp: assms norm_ mult)
qed

lemma has_contour_integral _bound__part_ circlepath__strong:
assumes fi: (f has__contour_integral i) (part_circlepath z v s t)

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 42

and finite kand le: 0 < B0 <rs<t
and B: A\z. z € path_image(part_circlepath z r s t) — k = norm(fz) < B
shows cmod i < B * 1 % (t — s)
proof —
consider s = t | s < t using <s < ¢ by linarith
then show ?thesis
proof cases
case 1 with fi [unfolded has__contour_integral]
have i = 0 by (simp add: vector_derivative_part__circlepath)
with assms show ?thesis by simp
next
case 2
have [simp]: |r| = r using <r > 0» by linarith
have [simp]: ¢cmod (of real t — of real s) = t—s
by (metis 2 abs_of _pos diff _gt_0_iff gt norm_of real of _real diff)
have finite (part_circlepath z v st —“{y} N {0..1}) if y € k for y
proof —
let w = (y — 2)/of _real v | exp(i * of real s)
have fin: finite (of _real —“{z. emod z < 1 A exp (i * of _real (t — s) * z) =
7u})
using <s < t»
by (intro finite_vimagel [OF finite _bounded_log2)) (auto simp: inj of real)
show ?thesis
unfolding part_circlepath__def linepath__def vimage__def
using le
by (intro finite__subset [OF __ fin]) (auto simp: algebra__simps scaleR__conv_of _real
exp__add exp_ diff)
qed
then have fin01: finite ((part_circlepath zrst) —k N {0..1})
by (rule finite_ finite__vimage__Intl [OF «finite k»])
have *x: ((Az. if (part_circlepath z v s t x) € k then 0
else f(part_circlepath z v s t x) x
vector_derivative (part_circlepath z v s t) (at x)) has_integral
i) {0..1}
by (rule has__integral _spike [OF negligible_ finite [OF fin01]]) (use fi has__contour_integral
in auto)
have «: Az. [0 < z; o < 1; part_circlepath z r s t © ¢ k] = cmod (f
(part__circlepath z r s t ©)) < B
by (auto intro!: B [unfolded path image_def image_def])
show ?thesis
using has_integral _bound [where 'a=real, simplified, OF __ x|
using assms le x 2 <r > 0> by (auto simp add: norm_ mult vector_derivative_part_circlepath)
qed
qed

corollary contour_integral bound__part_ circlepath__strong:
assumes f contour_integrable _on part_circlepath z r s t
and finite kand 0 < B0 <rs<t
and Az. x € path_image(part_circlepath z v s t) — k = norm(f z) < B

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 43

shows cmod (contour_integral (part_circlepath zr st) f) < Bxr * (t — 8)
using assms has__contour__integral _bound__part__circlepath__strong has__contour__integral integral
by blast

lemma has_contour_integral _bound__part_ circlepath:
[(f has_contour_integral i) (part_circlepath z r s t);
0<B;0<mr;s<t
Nz. © € path_image(part_circlepath z r s t) = norm(f z) < B]
= norm i < Bxrx(t — s)
by (auto intro: has_contour_integral _bound__part_ circlepath__strong)

lemma contour_integrable continuous_part circlepath:
continuous__on (path_image (part_circlepath z r s t)) f
= f contour_integrable__on (part_circlepath z v s t)
unfolding contour_integrable_on has__contour_integral def vector _derivative part_circlepath
path__image__def
by (best intro: integrable__continuous__real path__part_circlepath [unfolded path__def]
continuous__tntros
continuous__on__compose? [where g=f, OF _ _ order_refl])

lemma simple_path__part_circlepath:
simple__path(part__circlepath z r s t) «— (r £ 0 AN s # t N |s — t| < 2xpi)
proof (casesr =0V s = t)
case True
then show ?thesis
unfolding part circlepath__def simple_path__def loop_ free def
by (rule disjE) (force intro: bexI [where x = 1/4] bexl [where z = 1/3])+
next
case Fualse then have r # 0 s # t by auto
have x: Azyzst. ix((I —2)xs+z+t)=(((1 —y)*xs+yxt) + 2z +—
ix(z —y) x (t —) =2
by (simp add: algebra__simps)
have abs01: Nz yzreal. 0 <z ANz <1 ANO0<yAy<1
= (ez=yVe=0ANy=1Vz=1ANy=0+—|z—y|l €
{0,1})

by auto
have *x: Az y. (In. (complex_of real x — of real y) * (of _real t — of real s)
= 2 % (of _int n * of real pi)) +—
3n. |z —yl = (t —s) = 2 % (of _int n * pi))
by (force simp: algebra__simps abs_if dest: arg_cong [where f=Re| arg_cong
[where f=complex_of real)
intro: ezl [where x = —n for n])
have 1:|s — t| < 2 x pi
fAz. 0 <zAz<1= (Tn.axx(t—35) =2x(real_of intnx pi)) — x
=0Vz=1
proof (rule ccontr)
assume - |s — t| < 2 * pi
then have x: An. t — s # of intn*|s — ¢
using Fulse that [of 2xpi [|t — s|]

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 44

by (simp add: abs_minus _commute divide__simps)
show Fulse
using * [of 1] * [of —1] by auto
qed
have 2: |s — t| = |2 * (real_of int n x pi) /x| ifx # 0z x (t —s) = 2 %
(real _of int n * pi) for z n
proof —
have t—s = 2 x (real_of int n x pi)/x
using that by (simp add: field_simps)
then show ?thesis by (metis abs_minus__commute)
qed
have abs_away: AP. (Vze{0..1}. Vye{0..1}. P |z — y|) — (Vaureal. 0 < z
Nz <1 — Pz
by force
have Az n. [s £ t;|s — t| < 2% pi; 0 < z; z < 1
zx (t —) = 2 * (real_of _int n * pi)]
= z=10
by (rule ccontr) (auto simp: 2 field split _simps abs_mult dest: of int_leD)
then
show ?thesis using Fualse
apply (simp add: simple_path__def loop_free_def)
apply (simp add: part_circlepath__def linepath_def exp _eq = xx abs01 del:
Set.insert__iff)
apply (subst abs _away)
apply (auto simp: 1)
done
qged

lemma arc_part_ circlepath:
assumes 1 # 0 s £ t|s — t| < 2xpi
shows arc (part_circlepath z r s t)
proof —
have x: z = y if eq: 1 * (linepath s t x) = 1 * (linepath s t y) + 2 * of int n *
of real pi * i
and z: z € {0..1} and y: y € {0..1} for z y n
proof (rule ccontr)
assume # y
have (linepath s t x) = (linepath s t y) + 2 % of _int n * complex_of _real pi
by (metis add__divide _eq iff complex_i_not_zero mult.commute nonzero _mult_div__cancel left
eq)
then have sxy + txz = sxx + (txy + of _int n * (pi x 2))
by (force simp: algebra__simps linepath__def dest: arg_cong [where f=Re])
with <z # > have st: s—t = (of _int n x (pi * 2) / (y—x))
by (force simp: field _simps)
have |real _of int n| < |y — z|
using assms <z # y» by (simp add: st abs_mult field _simps)
then show False
using assms x y st by (auto dest: of int_lessD)
qed

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 45

then have inj_on (part_circlepath z v s t) {0..1}
using assms by (force simp add: part_circlepath__def inj _on_ def exp eq)
then show ?thesis
by (simp add: arc_def)
qed

1.14 Special case of one complete circle

definition circlepath :: [complex, real, real] = complex
where circlepath z v = part_circlepath z v 0 (2+pi)

lemma circlepath: circlepath z r = (Az. z + r x exp(2 * of real pi x 1 * of real

z))

by (simp add: circlepath__def part_circlepath__def linepath__def algebra__simps)

lemma pathstart_circlepath [simp]: pathstart (circlepath z r) = z + r
by (simp add: circlepath__def)

lemma pathfinish__circlepath [simp]: pathfinish (circlepath z r) = z + r
by (simp add: circlepath__def) (metis exp_ two_ pi_i mult.commute)

lemma circlepath__minus: circlepath z (—r) © = circlepath z v (z + 1/2)
proof —
have z + of realr x exp (2 x pi xix (x + 1/2)) =
z+4 of realr x exp (2 * pi xixx + pi*1)
by (simp add: divide simps) (simp add: algebra__simps)
also have ... =z — rx exp (2 x pi *1*)
by (simp add: exp_add)
finally show ?thesis
by (simp add: circlepath path_image_def sphere_def dist_norm)
qed

lemma circlepath _add1: circlepath z r (z+1) = circlepath z v
using circlepath__minus [of z r x+1/2] circlepath_minus [of z —r z]
by (simp add: add.commute)

lemma circlepath__add_half: circlepath z v (x + 1/2) = circlepath z v (x — 1/2)
using circlepath_addl [of z r z—1/2)]
by (simp add: add.commute)

lemma path_image_ circlepath__minus_subset:
path__image (circlepath z (—r)) C path__image (circlepath z r)
proof —
have 3z€{0..1}. circlepath z v (y + 1/2) = circlepath z r x
ifo<yy<1fory
proof (cases y < 1/2)
case Fulse
with that show ?Zthesis
by (force simp: circlepath__add__half)

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 46

qed (use that in force)
then show ?thesis
by (auto simp add: path_image_def image__def circlepath__minus)
qed

lemma path_image_circlepath__minus: path__image (circlepath z (—r)) = path__image
(circlepath z r)
using path__image_ circlepath _minus_subset by fastforce

lemma has_vector_derivative__circlepath [derivative_intros|:
((circlepath z) has_vector _derivative (2 % pi x i r x exp (2 * of real pi * 1 *
7))

(at z within X)

unfolding circlepath_def scaleR__conv_of real

by (rule derivative__eq intros) (simp add: algebra__simps)

lemma vector _derivative circlepath:
vector_derivative (circlepath z r) (at x) =
2% pixixrxexp(2 * of _real pi 1% x)
using has_vector__derivative__circlepath vector__derivative at by blast

lemma vector_derivative circlepath01:
[0 <z <]
= vector_derivative (circlepath z r) (at x within {0..1}) =
2 % pixi*xr*exp(2 * of real pi *1 % x)
using has_vector _derivative__circlepath
by (auto simp: vector _derivative _at_within__ivl)

lemma wvalid_path_circlepath [simpl: valid_path (circlepath z r)
by (simp add: circlepath__def)

lemma path__circlepath [simp]: path (circlepath z r)
by (simp add: valid_path_imp_path)

lemma path__image circlepath__nonneg:
assumes 0 < r shows path_image (circlepath z r) = sphere z r
proof —
have *: z € (\u. z + (cmod (z — 2)) * exp (i * (of real u * (of real pi x 2))))
“{0..1} for z
proof (cases z = z)
case True then show ?thesis by force
next
case Fulse
define w where w =z — 2
then have w # 0 by (simp add: False)
have sx: At. [Re w = cos t * ecmod w; Im w = sin t * cmod w] = w = of _real
(cmod w) x exp (i * 1)
using cis_conv__exp complex__eq iff by auto
obtain t where 0 < tt < 2x%pi Re(w/norm w) = cos t Im(w/norm w) = sin t

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 47

apply (rule sincos_total _2pi [of Re(w/(norm w)) Im(w/(norm w))])
by (auto simp add: divide__simps <w # 0> cmod__power2 [symmetric))
then
show ?thesis
using False xx w_def «w # 0>
by (rule_tac x=t / (2xpi) in image_eql) (auto simp add: field simps)
qed
show ?thesis
unfolding circlepath path__image_ def sphere__def dist _norm
by (force simp: assms algebra__simps norm_mult norm_minus_commute intro:
0
qed

lemma path_image_circlepath [simp]:
path__image (circlepath z r) = sphere z |r|
using path__image__circlepath__minus
by (force simp: path_image_circlepath _nonneg abs_if)

lemma has _contour__integral__bound__circlepath__strong:
[(f has__contour_integral i) (circlepath z r);
finite k; 0 < B; 0 < 1
Nz. [norm(z — 2) = r; x ¢ k] = norm(f z) < B]
= norm i < Bx(2xpixr)
unfolding circlepath _def
by (auto simp: algebra__simps in__path__image__part_ circlepath dest!: has__contour _integral _bound__part_circ

lemma has_contour_integral_bound__circlepath:
[(f has__contour__integral ©) (circlepath z r);
0 < B; 0 < r; Az. norm(z — z) = r = norm(f z) < B]
= norm 1 < Bx(2%pixr)
by (auto intro: has_contour_integral _bound__circlepath__strong)

lemma contour_integrable continuous_circlepath:
continuous__on (path_image (circlepath z r)) f
= f contour_integrable _on (circlepath z)
by (simp add: circlepath__def contour__integrable__continuous__part_circlepath)

lemma simple path__circlepath: simple_path(circlepath z r) +— (r # 0)
by (simp add: circlepath__def simple path_part_circlepath)

lemma notin__path_image__ circlepath [simpl: cmod (w — z) < r = w ¢ path__image
(circlepath z 1)
by (simp add: sphere__def dist_norm norm_ minus__commute)

lemma contour_integral_ circlepath:

assumes r > (

shows contour_integral (circlepath z r) (Aw. 1 / (w — z)) = 2 % of _real pi i
proof (rule contour_integral _unique)

show ((Aw. 1 / (w — 2)) has_contour_integral 2 x of _real pi = i) (circlepath z

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 48

r
)

unfolding has_contour _integral def using assms has_integral const_real [of
_01]

apply (subst has__integral__cong)

apply (simp add: vector__derivative_circlepath01)

apply (force simp: circlepath)

done
qed

1.15 Uniform convergence of path integral

Uniform convergence when the derivative of the path is bounded, and in
particular for the special case of a circle.

proposition contour_integral _uniform__limait:
assumes ev_fint: eventually (An::'a. (f n) contour _integrable_on) F
and ul_f: uniform_limit (path_image ~) f 1 F
and noleB: At. t € {0..1} = norm (vector_derivative v (at t)) < B
and ~y: valid_path v
and [simp]: — trivial_limit F
shows [contour_integrable_on ~v ((An. contour _integral ~v (f n)) —— con-
tour_integral v 1) F
proof —
have 0 < B by (meson noleB [of 0] atLeastAtMost_iff norm__ge_ zero order_refl
order_trans zero__le__one)
{ fix e::real
assume 0 < e
then have 0 < e / (|B| + 1) by simp
then have §: Vg nin F. VY z€path_image v. cmod (fnz — lz) < e/ (|B] +
1
using ul_f [unfolded uniform__limit_iff dist_norm| by auto
obtain « where fga: Az. z € {0..1} = cmod (fa (yz) — 1 (y) <e/
(1Bl + 1)

{0..1}

using eventually _happens [OF eventually__conj [OF ev_fint §]]
by (fastforce simp: contour _integrable__on path__image_ def)
have 3h. (Vz€{0..1}. emod (I (v) * vector_derivative v (at x) — h z) < e)
A h integrable_on {0..1}
proof (intro exl conjl balll)
show cmod (1 (v) * vector_derivative v (at) — fa (v x) * vector_derivative
7 (atz)) < e
if v € {0..1} for z
proof —
have cmod (I (v z) * vector _derivative v (at) — fa (v x) * vector_derivative
v (atw) < Bxe/ (Bl +1)
using noleB [OF that] fga [OF that] <0 < B> <0 < e
by (fastforce simp: mult_ac dest: mult_mono [OF less_imp_le] simp add:
norm__mult left_diff _distrib [symmetric] norm_minus__commute divide _simps)
also have ... < e

and inta: (A\t. fa (v t) * vector_derivative v (at t)) integrable_on

Contour{_}{\kern 0pt}Integration.html

Contour__Integration.thy 49

using <0 < By <0 < e by (simp add: field_split_simps)
finally show ?thesis .
qed
qed (rule inta)

then show lintg: | contour__integrable on
unfolding contour integrable _on by (metis (mono__tags, lifting)integrable__uniform_limit_real)
{ fix e::real
define B’ where B’ = B + 1
have B B’ > (0 B’ > B using <0 < B) by (auto simp: B'_def)
assume 0 < e
then have ev_no”: Vg nin F. VzE€path_image v. 2 * cmod (fnz —lz) < e
/B
using ul_f [unfolded uniform_limit_iff dist_norm, rule_format, of e / B'/2]
B/
by (simp add: field _simps)
have ie: integral {0..1::real} (Az. ¢/2) < e using <0 < e» by simp
have x: cmod (f x (7y t) * vector _derivative v (at t) — I (7y t) * vector__derivative
v (at 1) < /2
if t: t€{0..1} and leB": 2 x cmod (fz (yt) —1(yt) <e/ B'forzt
proof —
have 2 x ¢cmod (fz (v t) — 1 (v t)) * cmod (vector__derivative v (at t)) < e
* (B/ B)
using mult_mono [OF less_imp_le [OF leB’] noleB] B’ <0 < e) t by auto
also have ... < e
by (simp add: B’ <0 < e» mult_imp__div_pos_less)
finally have 2 x cmod (fx (v t) — 1 (v t)) * cmod (vector_derivative vy (at
t) < e.
then show ?thesis
by (simp add: left _diff _distrib [symmetric] norm_mult)
qed
have le_e: Nz. [Vue{0..1}. 2 x cmod (fz (yu) — I (yu) <e/ B, fx
contour_integrable__on]
= cmod (integral {0..1}
(Au. fz (v u) x vector_derivative v (at u) — I (7y u) * vector__derivative
Y (at) < e
apply (rule le_less_trans [OF integral_norm__bound_integral ie])
apply (simp add: lintg integrable_diff contour_integrable__on [symmetric])
apply (blast intro:)+
done
have Vr z in F. dist (contour_integral v (f z)) (contour_integral v 1) < e
apply (rule eventually _mono [OF eventually_conj [OF ev_no' ev_fint]])
apply (simp add: dist_norm contour_integrable on path__image_def con-
tour_integral__integral)
apply (simp add: lintg integral diff [symmelric] contour _integrable on
[symmetric] le__e)
done
}

then show ((An. contour_integral v (f n)) —— contour_integral v 1) F

Contour{_}{\kern 0pt}Integration.html

Cauchy Integral Theorem.thy 50

by (rule tendstol)
qed

corollary contour_integral uniform__limit_circlepath:
assumes YV p n::'a in F. (f n) contour_integrable__on (circlepath z 1)
and uniform__limit (sphere zr) f1 F
and - trivial_ limit F 0 < r
shows [contour_integrable on (circlepath z)
((An. contour_integral (circlepath z r) (f n)) —— contour_integral
(circlepath z r) 1) F
using assms by (auto simp: vector__derivative__circlepath norm_ mult intro!: con-
tour_integral__uniform_ limit)

lemma has_contour_integral linepath _same Re_ iff:
assumes Rez=cRez' =cImz=almz' =ba<b
shows (f has__contour_integral I) (linepath z z’) «—
((Az. f (Complex ¢ x)) has_integral (—1 x I)) {a..b}
proof —
have (f has__contour_integral I) (linepath z z') +—
((Az. f (linepath z 2") * (2’ — 2)) has_integral I) {0..1}
by (subst has__contour_integral_linepath) simp__all
also have ... «— (Az. f (c+ (a + (b —a) * z) xg i) * (I *x (b — a)))
has_integral IT) {0..1}
using assms
by (intro has_integral _cong arg_cong2[of _ _ _ _ (x)] arg_conglof _ _ f])
(auto simp: linepath__def complex__eq iff algebra__simps)
also have {0..1} = (Az. z / (b — a)) ‘{0..b—a}
using assms by simp
also have ((Az. f (¢ 4+ (a + (b—a) x z) *xg i) * (1 * (b—a))) has_integral I) ...
—
((Az. f (¢ + (a 4+ z) *xg 1) * (1 * (b—a))) has_integral ((b—a) *g I))
{0..b—a}
by (subst has__integral _stretch_real iff) (use assms in simp__all)
also have ... +— ((Az. of _real (b—a) * i (f (¢ + z *g 1))) has_integral (b—a)
by (subst has_integral _shift_real ivl_iff[where ¢ = —al)
(simp__all add: scaleR__conv_of real mult _ac)
also have ... «— ((Az. f (¢ + = xg 1)) has_integral (—i x I)) {a..b}
by (subst has__integral _mult _right iff) (use assms in <auto simp: scaleR__conv_of real))
finally show ?thesis
by (simp add: scaleR__conv_of real Complex__eq mult.commute)
qged

end

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 51

2 Complex Path Integrals and Cauchy’s Integral
Theorem

By John Harrison et al. Ported from HOL Light by L C Paulson (2015)

theory Cauchy_ Integral Theorem
imports
HOL—- Analysis. Analysis
Contour__Integration
begin

lemma leibniz_rule_holomorphic:

fixes f::complex = 'b::euclidean_space = complex

assumes \zt. 2 € U=t € cbox a b = ((A\z. fz t) has_field derivative fx
z t) (at z within U)

assumes A\z. x € U = (f z) integrable_on cbox a b

assumes continuous_on (U x (cboz a b)) (A(z, t). fr z t)

assumes convex U

shows (Az. integral (cbox a b) (f x)) holomorphic_on U

using leibniz_rule_field_differentiable]OF assms(1—3) __ assms(4)]

by (auto simp: holomorphic__on__def)

lemma Ln_measurable [measurable]: Ln € measurable borel borel
proof —
have x: Ln (—of _real £) = of real (In z) + 1 % pi if £ > 0 for z
using that by (subst Ln_minus) (auto simp: Ln__of _real)
have xx: Ln (of real) = of real (In (—z)) + 1% piif x < 0 for z
using *[of —z| that by simp
have cont: (Az. indicat_real (— R<g) = *r Ln x) € borel _measurable borel
by (intro borel_measurable_continuous_on__indicator continuous__intros) auto
have (Az. if z € R<q then In (—Re z) + i * pi else indicator (—R<() = *g Ln
z) € borel —pr borel
(is ?f € _) by (rule measurable_If set|OF _ cont]) auto
hence (Az. if x = 0 then Ln 0 else ?f x) € borel — s borel by measurable
also have (Az. if x = 0 then Ln 0 else ?f z) = Ln
by (auto simp: fun__eq iff **x nonpos_Reals def)
finally show ?thesis .
qed

lemma powr_complex__measurable [measurable]:
assumes [measurable]: f € measurable M borel g € measurable M borel
shows (Az. fz powr g z :: complex) € measurable M borel
using assms by (simp add: powr_def)

The special case of midpoints used in the main quadrisection

lemma has contour_integral _midpoint:
assumes (f has__contour_integral i) (linepath a (midpoint a b))
(f has__contour_integral) (linepath (midpoint a b) b)
shows (f has_contour integral (i + j)) (linepath a b)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 52

proof (rule has_contour_integral split)

show midpoint a b — a = (1/2) *g (b — a)

using assms by (auto simp: midpoint_def scaleR__conv_of real)
qed (use assms in auto)

lemma contour_integral midpoint:

assumes continuous_on (closed__segment a b) f

shows contour_integral (linepath a b) f =

contour_integral (linepath a (midpoint a b)) f + contour_integral (linepath

(midpoint a b) b) f
proof (rule contour_integral__split)

show midpoint a b — a = (1/2) *xg (b — a)

using assms by (auto simp: midpoint_def scaleR__conv_of real)
qed (use assms in auto)

A couple of special case lemmas that are useful below

lemma triangle linear _has chain__integral:

((Az. mxx + d) has__contour_integral 0) (linepath a b +++ linepath b ¢ +++
linepath ¢ a)
proof (rule Cauchy_theorem__primitive)

show Az. z € UNIV = ((Az. m / 2 * 2> + d * 1) has_field derivative m *

z + d) (at z)

by (auto introl: derivative eq intros)
qged auto

lemma has _chain__integral _chain__integral3:
assumes (f has__contour_integral i) (linepath a b +++ linepath b ¢ +++ linepath
¢ d)
(is (f has__contour__integral i) %g)
shows contour_integral (linepath a b) f + contour _integral (linepath b ¢) f +
contour_integral (linepath ¢ d) f = i
(is ?lhs = _)
proof —
have f contour_integrable_on ?g
using assms contour__integrable _on__def by blast
then have ?lhs = contour_integral ?q f
by (simp add: valid_path_join has_contour_integral_integrable)
then show ?thesis
using assms contour_integral unique by blast
qged

lemma has _chain__integral chain__integrals:

assumes (f has__contour_integral i) (linepath a b +++ linepath b ¢ +++ linepath
¢ d +++ linepath d e)

(is (f has__contour_integral i) ?g)

shows contour_integral (linepath a b) f + contour _integral (linepath b ¢) f +

contour_integral (linepath ¢ d) f + contour_integral (linepath d e) f = i
(is ?lhs = _)

proof —

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 53

have f contour__integrable_on %g
using assms contour_integrable _on__def by blast
then have ?lhs = contour_integral ?qg f
by (simp add: valid_path_join has_contour_integral _integrable)
then show ?thesis
using assms contour_integral unique by blast
qed

2.1 The key quadrisection step

lemma norm__sum__half:
assumes norm(a + b) > e
shows norm a > e/2 V norm b > e/2
proof —
have e < norm (— a — b)
by (simp add: add.commute assms norm__minus__commute)
thus ?thesis
using norm__triangle ineqj order trans by fastforce
qed

lemma norm_sum_lemma:
assumes ¢ < norm (a + b + ¢ + d)
shows e/ 4 <normaV e/ 4 <normbVe/,<normcVe/4<normd
proof —
have e < norm ((a + b) + (¢ + d)) using assms
by (simp add: algebra__simps)
then show ?thesis
by (auto dest!: norm__sum__half)
qged

lemma Cauchy_theorem__quadrisection:
assumes f: continuous_on (convez hull {a,b,c}) f
and dist: dist a b < K distbec < Kdistca < K
and e: e x K2 <
norm (contour_integral(linepath a b) f + contour_integral(linepath b
¢) f + contour_integral(linepath ¢ a) f)
shows Ja’ b’ ¢’.
a’ € conver hull {a,b,c} N b' € convex hull {a,b,c} A ¢’ € convex hull
{a,b,c} A
dista’ b’ < K/2 N distb' ¢/’ < K/2 N distc’ o’ < K/2 A
ex (K/2)72 < norm(contour_integral(linepath o’ b") f + contour_integral(linepath
b’ ¢') f + contour_integral(linepath ¢’ a’) f)
(isJzyz Dzyz)
proof —
note divide_le_eq numerall [simp del]
define o’ where o’ = midpoint b c
define b’ where b’ = midpoint c a
define ¢’ where ¢’ = midpoint a b
have fabc: continuous _on (closed__segment a b) f continuous__on (closed__segment

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 54

b ¢) f continuous_on (closed__segment c a) f
using f continuous on__subset segments subset__convex__hull by metis+
have feont”: continuous_on (closed_segment ¢’ b’) f
continuous__on (closed__segment a’ ¢’) f
continuous__on (closed__segment b’ a’) f
unfolding a’_def b’_def ¢'_def
by (rule continuous_on__subset [OF f],
metis midpoints_in__convex__hull convexr__hull subset hull _subset in-
sert__subset segment__convex__hull)+
define pathint where pathint y = contour_integral(linepath z y) f for z y
have x: pathint a b 4+ pathint b ¢ + pathint ¢ a =
(pathint a ¢’ + pathint ¢’ b’ + pathint b’ a) +
(pathint o’ ¢’ + pathint ¢’ b + pathint b a’) +
(pathint o’ ¢ + pathint ¢ b’ + pathint b' a’) +
(pathint o’ b’ + pathint b’ ¢’ + pathint ¢’ a’)
unfolding pathint def
by (simp add: feont’ contour _integral reverse_linepath) (simp add: a’_def
b'_def ¢’_def contour_integral_midpoint fabc)
have [simp]: Az y. cmod (z % 2 — y * 2) = ecmod (z — y) * 2
by (metis left_diff _distrib mult.commute norm_mult_numerall)
have [simp]: Az y. emod (z — y) = ecmod (y — x)
by (simp add: norm__minus__commute)
consider ¢ * K2 / / < cmod (pathint a ¢’ + pathint ¢’ b’ + pathint b’ a) |
ex K2/ 4 < emod (pathint o’ ¢’ + pathint ¢’ b + pathint b a’) |
ex K2/ < emod (pathint o’ ¢ + pathint ¢ b’ + pathint b’ a') |
ex K2/ / < cmod (pathint o’ b’ + pathint b’ ¢’ + pathint ¢’ a’)
using assms by (metis * norm__sum__lemma pathint_def)
then show ?thesis
proof cases
case I then have ?® a ¢’ b’
using assms unfolding pathint__def [symmetric]
apply (clarsimp simp: ¢’ _def b'_def midpoints_in__convexr__hull hull_subset
[THEN subsetD])
apply (auto simp: midpoint__def dist_norm scaleR__conv_of real field__split_simps)
done
then show ?thesis by blast
next
case 2 then have 7O a’ ¢’ b
using assms unfolding pathint def [symmetric]
apply (clarsimp simp: a’_def ¢’ _def midpoints_in__convex__hull hull_subset
[THEN subsetD))
apply (auto simp: midpoint__def dist_norm scaleR__conv_of _real field__split__simps)
done
then show ¢thesis by blast
next
case 3 then have ?® a’ ¢ b’
using assms unfolding pathint_def [symmetric]
apply (clarsimp simp: a’_def b’_def midpoints__in__convex__hull hull_subset
[THEN subsetD))

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 55

apply (auto simp: midpoint__def dist_norm scaleR__conv_of real field__split_simps)
done
then show %thesis by blast
next
case 4 then have ?® o’ b’ ¢’
using assms unfolding pathint def [symmetric]
apply (clarsimp simp: o’ _def ¢’ _def b’ _def midpoints in_ convex hull
hull_subset [THEN subsetD])
apply (auto simp: midpoint_def dist_norm scaleR__conv_of _real field__split_simps)
done
then show ?thesis by blast
qed
qed

2.2 Cauchy’s theorem for triangles

lemma triangle points_closer:
fixes a::complex
shows [z € convex hull {a,b,c}; y € convex hull {a,b,c}]
= norm(z — y) < norm(a — b) V
norm(z — y) < norm(b — ¢) V
norm(z — y) < norm(c — a)
using simplex_extremal_le [of {a,b,c}]
by (auto simp: norm_minus__commute)

lemma holomorphic__point__small_triangle:
assumes z: £ € S
and f: continuous _on S f
and cd: f field_differentiable (at x within S)
and e: 0 < e
shows 3k>0.Vabec. distab < kANdistbc<kANdistca<kAN
z € convex hull {a,b,c} A convex hull {a,b,c} C S
— norm(contour_integral(linepath a b) f + contour_integral(linepath
be)f+
contour_integral(linepath ¢ a) f)
< ex(dist a b + dist b ¢ + dist ¢ a)”2
(is3k>0.Yabc _ — ?normlea b c)
proof —
have le_of 3: Nazyz [0 < xxy; 0 < xxz; 0 < yxz; a < (ex(z + y + 2))*z
+ (ex(z + y + 2))*xy + (ex(z + y + 2))*2]
= a<ex(z+y+ 272
by (simp add: algebra__simps power2__eq square)
have disj le: [z <aVze<bVae<c¢g0<a0<h0<c]=z<a+b+c
for z::real and a b ¢
by linarith
have fabc: f contour integrable_on linepath a b f contour__integrable on linepath
b ¢ f contour__integrable on linepath ¢ a
if convex hull {a, b, ¢} C S for a b ¢

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 56

using segments_subset convex__hull that
by (metis continuous__on__subset f contour _integrable_ continuous_linepath)+
note path__bound = has__contour_integral _bound_ linepath [simplified norm_minus__commute,
OF has__contour_integral_integral]
{fixf'abcd
assume d: 0 < d
and " Ay. [emod (y — z) < d;y € S] = cmod (fy — fz — f' * (y — x))
< ex cmod (y — x)
and le: emod (a — b) < d emod (b — ¢) < d emod (¢ — a) < d
and zc: x € convex hull {a, b, c}
and S: convezx hull {a, b, ¢} C S
have pa: contour_integral (linepath a b) f + contour_integral (linepath b c) f
+ contour_integral (linepath ¢ a) f =
contour_integral (linepath a b) (Ay. fy — fx — f'* (y—=x)
contour_integral (linepath b ¢) (\y. fy — fz — f' x (y—x)
contour_integral (linepath ¢ a) Ay. fy — fz — f'x (y—2)
apply (simp add: contour _integral _diff contour _integral_Imul contour _integrable_Imul
contour_integrable_diff fabc [OF S])
apply (simp add: field _simps)
done
{fix y
assume yc: y € convex hull {a,b,c}
have cmod (fy — fz — f' % (y — 2)) < exnorm(y —)
proof (rule f')
show cmod (y — z) < d
by (metis triangle_points_closer [OF zc yc] le norm_minus_commute
order_trans)
qged (use S yc in blast)
also have ... < e * (emod (a — b) + cmod (b — ¢) + cmod (¢ — a))
by (simp add: yc e xc disj_le [OF triangle_points_closer])
finally have cmod (fy — fz — f'* (y — z)) < e x (cmod (a — b) + cmod
(b —¢) + cmod (¢ — a)) .
} note cm__le = this
have ?normle a b ¢
unfolding dist _norm pa
using f' zc S e
apply (intro le_of 3 norm__triangle_le add_mono path__bound)
apply (simp_all add: contour_integral diff contour _integral Imul con-
tour_integrable lmul contour integrable diff fabc)
apply (blast intro: cm__le elim: dest: segments__subset__convex__hull [THEN
subsetD])+
done
} note x = this
show ?thesis
using cd e
apply (simp add: field differentiable_def has_field derivative_def has_derivative__within__alt
approachable_lt_le2 Ball__def)
apply (clarify dest!: spec mp)
using * unfolding dist_norm

) +
y—7)) +
y—1))

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 57

apply blast
done
qed

Hence the most basic theorem for a triangle.

locale Chain =

fixes z0 At Follows

assumes At0: At z0 0

and AtSuc: Az n. At x n = Jz’. At 2’ (Suc n) A Follows z'

begin

primrec f where

f0=z0
| f (Suc n) = (SOME z. At z (Suc n) A Follows z (f n))

lemma At: At (fn) n
proof (induct n)
case 0 show ?case
by (simp add: At0)
next
case (Suc n) show ?case
by (metis (no_types, lifting) AtSuc [OF Suc] f.simps(2) somel _ex)
qed

lemma Follows: Follows (f(Suc n)) (f n)
by (metis (no__types, lifting) AtSuc [OF At [of n]] f.simps(2) somel _ex)

declare f.simps(2) [simp del]
end

lemma Chain3:
assumes At0: At x0 y0 z0 0
and AtSuc: Nz y zn. Atz yzn = 3z’ y' 2. At 2’ y’ 2’ (Suc n) A Follows
'y 2z yz
obtains f g h where
fO=20g0=y0h0=20
An. At (fn) (g n) (hn) n
An. Follows (f(Suc n)) (g(Suc n)) (h(Suc n)) (fn) (g n) (h n)
proof —
interpret three: Chain (z0,y0,20) X(z,y,2). At x y z Mz',y",2"). A(z,y,2). Follows
'y 2 zyz
proof qed (use At0 AtSuc in auto)
show ?thesis
proof
show An. Follows (fst (three.f (Suc n))) (fst (snd (three.f (Suc n))))
(snd (snd (three.f (Suc n)))) (fst (three.f n))
(fst (snd (three.f n))) (snd (snd (three.f n)))
An. At (fst (three.f n)) (fst (snd (three.f n))) (snd (snd (three.f n))) n
using three. At three.Follows
by (simp__all add: split_beta’)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 58

qged auto
qed

proposition Cauchy theorem,__triangle:
assumes | holomorphic_on (convex hull {a,b,c})
shows (f has__contour__integral 0) (linepath a b +++ linepath b ¢ +++ linepath
¢ a)
proof —
have contf: continuous_on (convex hull {a,b,c}) f
by (metis assms holomorphic__on__imp__continuous__on)
let ?pathint = Az y. contour_integral(linepath x y) f
{ fix y::complex
assume fy: (f has_contour_integral y) (linepath a b +++ linepath b ¢ +++
linepath ¢ a)
and ynz: y £ 0
define K where K = 1 + max (dist a b) (maz (dist b ¢) (dist ¢ a))
define e where ¢ = normy / K2
have K1: K > 1 by (simp add: K_ def maz.coboundedI1)
then have K: K > 0 by linarith
have [iff]: dista b < K distb ¢ < Kdistca < K
by (simp__all add: K__def)
have e: e > 0
unfolding e_def using ynz K1 by simp
define At where Atz y z n «—
conver hull {z,y,z} C convex hull {a,b,c} N
distxy < K/2nANdistyz<K/2nAdistzz < K/2™nA
norm(?pathint T y + ?pathint y z + ?pathint z) > ex(K /2 n) 2
for zyzn
have At0: Atabc0
using fy
by (simp add: At_def e def has_chain__integral__chain__integral3)
{fixzyzn
assume At: Atxyzn
then have contf”: continuous_on (convex hull {z,y,z}) f
using contf At_def continuous on__subset by metis
have Jz2’ y' 2/. At 2’ y' 2’ (Suc n) A convex hull {x',y’,2"} C convex hull
{z.y.2}
using At Cauchy_theorem__quadrisection [OF contf’, of K/2 n e
apply (simp add: At_def algebra__simps)
apply (meson convex__hull _subset empty subsetl insert_subset subsetCE)
done
} note AtSuc = this
obtain fa fb fc
where f0 [simp]: fa 0 = a fb 0 =0bfc0=c
and cosb: An. convex hull {fa n, fo n, fc n} C convex hull {a,b,c}
and dist: An. dist (fan) (fon) < K/2™n
An. dist (fbn) (fen) < K/2™n
An. dist (fen) (fan) < K/2™n

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 59

and no: An. norm(?pathint (fa n) (fo n) +
Zpathint (fo n) (fe n) +
?pathint (fc n) (fa n)) > e x (K/2™n) 2
and conv_le: An. convex hull {fa(Suc n), fb(Suc n), fe(Suc n)} C convex
hull {fa n, fb n, fc n}
by (rule Chain3 [of At, OF At0 AtSuc]) (auto simp: At_def)
obtain x where z: An. z € convezx hull {fa n, fo n, fc n}
proof (rule bounded closed_nest)
show An. closed (convexr hull {fa n, fb n, fc n})
by (simp add: compact_imp__closed finite__imp__compact__convex__hull)
show Am n. m < n = convez hull {fa n, fb n, fc n} C convexr hull {fa m,
fo m, fc m}
by (erule transitive_stepwise_le) (auto simp: conv_le)
qed (fastforce intro: finite_imp_ bounded _convex__hull)+
then have zin: € convex hull {a,b,c}
using assms f0 by blast
then have fr: f field_ differentiable at x within (convezr hull {a,b,c})
using assms holomorphic__on__def by blast
{fix kn
assume k: 0 < k
and le:
AV AR T8
[dist " y' < k; dist y' 2z’ < k; dist 2" ' < k;
z € convex hull {z'y’,2'};
convez hull {x',y’,2"} C convex hull {a,b,c}]
.
cmod (Zpathint x' y' + Zpathint y' z' + Ppathint 2z’ z’) = 10
< ex* (dist x' y' + dist y' 2’ + dist 2’ z')?
and Kk: K /| k<2 "n
have K / 2 " n < k using Kk k
by (auto simp: field__simps)
then have DD: dist (fa n) (fo n) < k dist (fb n) (fe n) < k dist (fc n) (fa n)
<k
using dist [of n] k
by linarith+
have dle: (dist (fa n) (fb n) + dist (fb n) (fe n) + dist (fc n) (fa n))?
< (3% K /2 n)?
using dist [of n] e K
by (simp add: abs_le square_iff [symmetric])
have less10: Az yureal. 0 < 2 —= y < 9%z = y < xx10
by linarith
have e * (dist (fa n) (fb n) + dist (fo n) (fe n) + dist (fc n) (fan))? < e *
(8% K /2 n)?
using ynz dle e mult_le_cancel _left _pos by blast

also have ... <
cmod (?pathint (fa n) (fo n) + Zpathint (fb n) (fc n) + ?pathint (fc n) (fa
n)) * 10

using no [of n] e K
by (simp add: e__def field _simps) (simp only: zero_less _norm__iff [symmetric])

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 60

finally have Fulse
using le [OF DD z cosb] by auto
} then
have ?thesis
using holomorphic_point__small_triangle [OF xin contf fr, of e¢/10] e
apply clarsimp
apply (rule_tac y1=K/k in exE [OF real_arch_pow|of 2]|, force+)
done
}
moreover have [contour integrable on (linepath a b +++ linepath b ¢ +++
linepath ¢ a)
by simp (meson contf continuous__on__subset contour__integrable__continuous_linepath
segments__subset__convex__hull(1)
segments__subset__convex__hull(3) segments subset _convex__hull(5))
ultimately show “thesis
using has__contour_integral integral by fastforce
qed

2.3 Version needing function holomorphic in interior only

lemma Cauchy_theorem_ flat lemma:
assumes f: continuous_on (conver hull {a,b,c}) f
and ¢: ¢ —a=k=x*g (b — a)
and k: 0 < k
shows contour_integral (linepath a b) f + contour_integral (linepath b c) f +
contour_integral (linepath ¢ a) f = 0
proof —
have fabc: continuous _on (closed__segment a b) f continuous__on (closed__segment
b ¢) f continuous_on (closed__segment ¢ a) f
using f continuous_on__subset segments__subset__convexr__hull by metis+
show ?thesis
proof (cases k < 1)
case True show ?thesis
by (simp add: contour_integral__split [OF fabe(1) k True c] contour_integral _reverse_linepath
fabe)
next
case Fulse
show ?thesis
proof (subst contour_integral _split [symmetric])
show b — a = (1/k) *g (¢ — a)
using False ¢ by force
show contour_integral (linepath a ¢) f + contour _integral (linepath ¢ a) f =

by (simp add: contour_integral_reverse_linepath fabc(3))
show continuous_on (closed_segment a ¢) f
by (metis closed__segment__commute fabe(3))
qed (use False in auto)
qed
qed

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 61

lemma Cauchy_theorem_ flat:
assumes J: continuous_on (conver hull {a,b,c}) f
and ¢: ¢ —a=k=x*g (b — a)
shows contour_integral (linepath a b) f +
contour_integral (linepath b ¢) f +
contour_integral (linepath ¢ a) f =
proof (cases 0 < k)
case True with assms show ?thesis
by (blast intro: Cauchy_theorem_ flat_lemma)
next
case Fulse
have continuous_on (closed_segment a b) f continuous on (closed__segment b
¢) f continuous__on (closed _segment ¢ a) f
using f continuous__on__subset segments_subset__convexr__hull by metis+
moreover have contour_integral (linepath b a) f + contour_integral (linepath
ac)f+

0

contour_integral (linepath ¢ b) f = 0
proof (rule Cauchy_theorem_ flat_lemma [of b a ¢ f 1—k])
show continuous_on (convex hull {b, a, c}) f
by (simp add: finsert_commute)
show ¢ — b= (1 — k) xg (a — D)
using ¢ by (auto simp: algebra__simps)
qed (use False in auto)
ultimately show ?thesis
by (metis (no__types, lifting) contour_integral_reverse_linepath eq_neg_iff add_eq 0
minus_add__cancel)
qed

proposition Cauchy theorem__ triangle interior:
assumes contf: continuous_on (convex hull {a,b,c}) f
and holf: f holomorphic_on interior (convex hull {a,b,c})
shows (f has__contour_integral 0) (linepath a b +++ linepath b ¢ +++ linepath
¢ a)
proof —
define pathint where pathint = Az y. contour_integral(linepath z y) f
have fabe: continuous _on (closed__segment a b) f continuous__on (closed__segment
b ¢) f continuous_on (closed__segment c a) f
using contf continuous on__subset segments subset_convex__hull by metis+
have bounded (f ¢ (convex hull {a,b,c}))
by (simp add: compact__continuous__image compact__convex__hull compact__imp_ bounded
contf)
then obtain B where 0 < B and Bnf: A\z. z € convex hull {a,b,c} = norm
(f7) < B
by (auto simp: dest!: bounded pos [THEN iffD1])
have bounded (convex hull {a,b,c})
by (simp add: bounded__convex__hull)
then obtain C' where C: 0 < C and Cno: A\y. y € conver hull {a,b,c} =

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 62

norm y < C
using bounded__pos_less by blast
then have diff 2C: norm(z — y) < 2xC
if 2: © € convex hull {a, b, ¢} and y: y € convex hull {a, b, ¢} for z y
proof —
have cmod z < C
using z by (meson Cno not_le not_less iff gr _or_eq)
hence cmod (z — y) < C + C
using y by (meson Cno add_mono__thms_linordered_field(4) less_eq_real_def
norm__triangle__ineq4 order_trans)
thus cmod (x — y) < 2% C
by (metis mult_2)
qed
have contf”: continuous_on (convex hull {b,a,c}) f
using contf by (simp add: insert_commute)
{ fix y::complex
assume fy: (f has_contour_integral y) (linepath a b +++ linepath b ¢ +++
linepath ¢ a)
and ynz: y # 0
have pi_eq y: pathint a b + pathint b ¢ + pathint ¢ a= y
unfolding pathint_def by (rule has_chain__integral__chain__integral3 [OF
)
have ?thesis
proof (cases c=a V a=b V b=c)
case True then show ?thesis
using Cauchy__theorem__flat [OF contf, of 0]
using has__chain__integral_chain__integral3 [OF fy] ynz
by (force simp: fabc contour _integral reverse_linepath)
next
case Fulse
then have car3: card {a, b, ¢} = Suc (DIM (complez))
by auto
{ assume interior(conver hull {a,b,c}) = {}
then have collinear{a,b,c}
using interior__convex__hull_eq empty [OF car$]
by (simp add: collinear_3_eq _affine_dependent)
with Fulse obtain d where c Zaa #bb#cc—b=d=x*g (a —b)
by (auto simp: collinear 3 collinear__lemma)
then have Fulse
using False Cauchy_theorem_ flat [OF contf’] pi_eq y ynz
by (simp add: fabc add_eq 0_iff contour_integral_reverse_linepath
pathint__def)
}
then obtain d where d: d € interior (conver hull {a, b, c})
by blast
{ fix d?
assume dI_pos: 0 < d1
and di: Az z’. [z€conver hull {a, b, c}; z'€convex hull {a, b, c}; cmod
() — z) < d1]

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 63

= cmod (fz' — fz) < cmody | (24 % C)
define e where e = min 1 (min (d1/(4*C)) ((normy / 24 / C) / B))
define shrink where shrink © = v — e xg (¢ — d) for z
havee: 0 <ee<le<dl /(4 *xC)e<cmody/ 2{/C /B
using dI_pos «C>0» «B>0» ynz by (simp__all add: e_def)
have ¢ le dI:ex (4 x C) < dl
using e «C>0> by (simp add: field__simps)
have shrink a € interior(convex hull {a,b,c})
shrink b € interior(convex hull {a,b,c})
shrink ¢ € interior(convex hull {a,b,c})
using d e by (auto simp: hull _inc mem__interior _convex_shrink shrink__def)
then have fhp0: (f has_contour_integral 0)
(linepath (shrink a) (shrink b) +++ linepath (shrink b) (shrink c)
+++ linepath (shrink c¢) (shrink a))
by (simp add: Cauchy_theorem__triangle holomorphic__on__subset [OF holf]
hull_minimal)
then have f 0 _shrink: pathint (shrink a) (shrink b) + pathint (shrink b)
(shrink c¢) + pathint (shrink c¢) (shrink a) = 0
by (simp add: has_chain__integral chain__integral3 pathint_def)
have fpi_abc: f contour_integrable__on linepath (shrink a) (shrink b)
f contour_integrable__on linepath (shrink b) (shrink c)
f contour_integrable _on linepath (shrink c) (shrink a)
using fhp0 by (auto simp: valid_path_join dest: has__contour _integral integrable)
have cmod_shr: Az y. cmod (shrink y — shrink ¢ — (y — z)) = e * cmod
(z —y)
using e by (simp add: shrink_def real_vector.scale _right _diff distrib
[symmetric])
have sh_eq: Na b d::complex. (b — e xg (b — d)) — (a — e xg (a — d)) —
(b —a) =exgp (a—Db)
by (simp add: algebra__simps)
have cmod y / (24 * C) < emod y / ¢cmod (b — a) / 12
using Fualse «C>0> diff _2C [of b a] ynz
by (auto simp: field_split_simps hull_inc)
have less C: z x cmod uw < C if u € convez hull {a,b,c} 0 < z 2 < 1 for

proof (cases ©=0)
case False
with that show ?thesis
using Cno [of u] mult_left _le_one_le [of cmod u z] le_less trans
norm__ge__zero by blast
qed (simp add: <0<C»)
{ fix uv
assume uv: u € conver hull {a, b, ¢} v € convex hull {a, b, ¢} u#v
and fpi_uv: f contour_integrable _on linepath (shrink u) (shrink v)
have shr_uv: shrink u € interior(convez hull {a,b,c})
shrink v € interior(convexr hull {a,b,c})
using d e uv
by (auto simp: hull_inc mem__interior__convex__shrink shrink__def)
have cmod_fuv: \z. 0<z = <1 = cmod (f (linepath (shrink u)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 64

(shrink v) z)) < B
using shr_uwv by (blast intro: Bnf linepath__in__convex__hull interior _subset
[THEN subsetD))
{ fix z::real assume z: 0<z <1
have |1 — z| * emod v < C |z| * cmod v < C
using uv x by (auto introl: less C)
moreover have |z| * cmod d < C |1 — z| * ¢cmod d < C
using z d interior_subset by (auto introl: less C)
ultimately
have cmod_less 4C: ecmod ((1 — z) g u — (1 — x) xg d) + cmod (z
xp v — xxp d) < (C+C) + (C+C)
by (metis add__strict_mono le_less trans norm__scaleR norm__triangle ineq4)
have [I: linepath (shrink u) (shrink v) ¢ — linepath v vz = —e x ((1 —
z) xg (u— d) + z *g (v — d))
by (simp add: linepath__def shrink__def algebra__simps scaleR__conv__of _real)
have cmod_less dt: cmod (linepath (shrink u) (shrink v) z — linepath u
vz) < dl
unfolding [l norm_ mult scaleR__diff right
using «e>0» cmod_less 4C by (force intro: norm__triangle It
less_le_trans [OF __ e _le_d1])
have cmod (f (linepath (shrink u) (shrink v) x)) * cmod (shrink v —
shrink v — (v — u)) +
cmod (v — u) * cmod (f (linepath (shrink u) (shrink v) x) —
f (linepath u v x))
<Bsx(cmody/ 24/ C/Bx*x2x%xC)+ 2x%Cx*(cmody/
2/ C)
proof (intro add_mono [OF mult_mono))
show cmod (f (linepath (shrink u) (shrink v) z)) < B
using cmod_ fuv x by blast
have B x (12 * (e x ecmod (u — v))) < 2/ x e*x C x B
using e «0» diff _2C [of u v] wv by (auto simp: field__simps)
also have ... < cmod y
using «C>0» «(B>0> e by (simp add: field_simps)
finally show cmod (shrink v — shrink v — (v — w)) < cmod y / 24 /
C/Bx*2xC
using <0 < By <0 < C» by (simp add: cmod__shr mult__ac divide__simps)
have cmod (f (linepath (shrink u) (shrink v) x) — f (linepath u v 1))
< cmody /(24 % C)
using z uv shr_uv cmod_less dt
by (auto simp: hull_inc intro: d1 interior__subset [THEN subsetD]
linepath__in__convex__hull)
also have ... < cmod y / cmod (v — u) / 12
using False uwv <C>0» diff _2C [of v u] ynz
by (auto simp: field_split_simps hull_inc)
finally have cmod (f (linepath (shrink u) (shrink v) z) — f (linepath
uvz)) < cmody / cmod (v — u) / 12
by simp
then show cmod (v — u) * cmod (f (linepath (shrink w) (shrink v))
— f (linepath u v x))

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 65

< 2% Cx*(cmody/ 24/ C)
using uv C' by (simp add: field_simps)
qed (use <0 < B> in auto)
also have ... < cmody / 6
by simp
finally have cmod (f (linepath (shrink u) (shrink v) z)) * cmod (shrink
v — shrink u — (v — w)) +
cmod (v — u) * cmod (f (linepath (shrink u) (shrink v) x) —
f (linepath u v x))
< cmody/ 6 .
} note cmod__diff le = this
have f wv: continuous_on (closed__segment u v) f
by (blast intro: uv continuous__on__subset [OF contf closed _segment__subset__convex__hull])
have *x: Af’ z’ f z::complex. fxa’ — fxx = f'*x (&' —) + 2« (f' — f)
by (simp add: algebra__simps)
have norm (pathint (shrink u) (shrink v) — pathint u v)
< (Bx(normy /24/C/B)x2xC + (2xC)x(norm y/24/C)) * measure
lborel (cbox 0 (1::real))
apply (rule has_integral _bound
[of _ Az. f(linepath (shrink u) (shrink v) z) * (shrink v — shrink
u) — f(linepath u v x)*(v — u)
o)
using ynz 0 < B> <0 < C»
apply (simp__all add: pathint _def has__integral _diff has _contour _integral_linepath
[symmetric] has_contour_integral _integral
foi_uv f_uv contour _integrable__continuous_linepath del: le divide eq numerall)
apply (auto simp: =x norm__triangle_le norm_mult cmod__diff le simp
del: le_divide__eq _numerall)
done
also have ... < normy /6
by simp
finally have norm (pathint (shrink u) (shrink v) — pathint u v) < norm
y/ 6.
} note x = this
have norm (pathint (shrink a) (shrink b) — pathint a b) < norm vy / 6
using Fualse fpi_abe by (rule_tac x) (auto simp: hull_inc)
moreover
have norm (pathint (shrink b) (shrink ¢) — pathint b ¢) < normy / 6
using False fpi_abc by (rule_tac x) (auto simp: hull_inc)
moreover
have norm (pathint (shrink c) (shrink a) — pathint ¢ a) < normy / 6
using Fualse fpi_abe by (rule_tac x) (auto simp: hull_inc)
ultimately
have norm((pathint (shrink a) (shrink b) — pathint a b) +
(pathint (shrink b) (shrink ¢) — pathint b ¢) + (pathint (shrink c)
(shrink a) — pathint c a))
<normy /6 +mnormy/ 6+ normy/ 6
by (metis norm__triangle_le add_mono)
also have ... = normy / 2

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 66

by simp
finally have norm((pathint (shrink a) (shrink b) + pathint (shrink b)
(shrink ¢) + pathint (shrink c) (shrink a)) —
(pathint a b + pathint b ¢ + pathint ¢ a))
<normy/ 2
by (simp add: algebra__simps)
then
have norm(pathint a b + pathint b ¢ + pathint ¢ a) < normy / 2
by (simp add: f_0_shrink) (metis (mono_tags) add.commute mi-
nus__add__distrib norm__minus__cancel uminus__add__conv__diff)
then have Fulse
using pi_eq y ynz by auto
}
note x = this
have uniformly_ continuous_on (convex hull {a,b,c}) f
by (simp add: contf compact__convex__hull compact _uniformly_continuous)
moreover have norm y / (24 « C) > 0
using ynz «C > 0» by auto
ultimately obtain § where § > 0 and
Y z€convex hull {a, b, c}. Va'€convex hull {a, b, c}.
distz' © <6 — dist (fz') (fz) < cecmody [(24 % C)
using <C' > 0) ynz unfolding uniformly continuous_on_ def dist _norm
by blast
hence Fualse using *[of §] by (auto simp: dist_norm)
then show ?thesis ..
qed
}
moreover have [contour_integrable _on (linepath a b +++ linepath b ¢ +++
linepath ¢ a)
using fabc contour _integrable__continuous_linepath by auto
ultimately show “thesis
using has__contour_integral integral by fastforce
qed

2.4 Version allowing finite number of exceptional points

proposition Cauchy theorem__triangle cofinite:
assumes continuous_on (convezx hull {a,b,c}) f
and finite S
and (Az. z € interior(conver hull {a,b,c}) — S = f field_ differentiable (at
z))
shows (f has__contour__integral 0) (linepath a b +++ linepath b ¢ +++ linepath
¢ a)
using assms
proof (induction card S arbitrary: a b ¢ S rule: less_induct)
case (less S a b c)
show Zcase
proof (cases S={})
case True with less show ?thesis

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 67

by (fastforce simp: holomorphic__on__def field_ differentiable _at _within Cauchy_theorem__triangle_interio
next
case Fulse
then obtain d S’ where d: S = insert d S' d ¢ S’
by (meson Set.set_insert all_not__in__conv)
then show ?thesis
proof (cases d € convex hull {a,b,c})

case Fulse
show (f has__contour_integral 0) (linepath a b +++ linepath b ¢ +++ linepath
¢ a)
proof (rule less.hyps)
show Az. z € interior (convex hull {a, b, c}) — S' = f field_differentiable
at x

using Fualse d interior_subset by (auto introl: less.prems)
qged (use d less.prems in auto)
next
case True
have *: convex hull {a, b, d} C convez hull {a, b, c}
by (meson True hull_subset insert_subset convex_hull subset)
have abd: (f has__contour_integral 0) (linepath a b +++ linepath b d +++
linepath d a)
proof (rule less.hyps)
show Az. z € interior (convex hull {a, b, d}) — S’ = f field_differentiable
at x
using d not_in__interior__convex__hull 3
by (clarsimp introl: less.prems) (metis x insert_absorb insert_subset
interior_mono)
qed (use d continuous_on__subset [OF __] less.prems in auto)
have *: convex hull {b, ¢, d} C convez hull {a, b, c}
by (meson True hull _subset insert_subset convex_ _hull _subset)
have bed: (f has__contour_integral 0) (linepath b ¢ +++ linepath ¢ d +++
linepath d b)
proof (rule less.hyps)
show Az. z € interior (convex hull {b, ¢, d}) — S’ = f field__differentiable
at x
using d not_in_interior__convex__hull 3
by (clarsimp introl: less.prems) (metis x insert_absorb insert_subset
interior_mono)
qed (use d continuous_on_subset [OF __] less.prems in auto)
have *: convex hull {c, a, d} C convezx hull {a, b, c}
by (meson True hull _subset insert_subset convex _hull subset)
have cad: (f has_contour_integral 0) (linepath ¢ a +++ linepath a d +++
linepath d c)
proof (rule less.hyps)
show Az. z € interior (convex hull {c, a, d}) — S’ = [field__differentiable
at x
using d not_in_interior__convex__hull 3
by (clarsimp intro!: less.prems) (metis * insert_absorb insert_subset
interior_mono)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 68

qed (use d continuous_on__subset [OF __] less.prems in auto)
have f contour_integrable _on linepath a b
using less.prems abd contour _integrable_joinD1 contour integrable__on__def
by blast
moreover have f contour_integrable_on linepath b c
using less.prems bed contour _integrable_joinD1 contour integrable__on_ def
by blast
moreover have f contour_integrable on linepath ¢ a
using less.prems cad contour__integrable_joinD1 contour integrable__on__def
by blast
ultimately have fpi: f contour_integrable _on (linepath a b +++ linepath b
¢ +++ linepath ¢ a)
by auto
{ fix y::complex
assume fy: (f has_contour_integral y) (linepath a b +++ linepath b ¢ +++
linepath ¢ a)
and ynz: y # 0
have cont_ad: continuous_on (closed _segment a d) f
by (meson * continuous__on__subset less.prems(1) segments__subset_convex__hull(3))
have cont_bd: continuous_on (closed__segment b d) f
by (meson True closed__segment__subset__convex__hull continuous__on__subset
hull _subset insert _subset less.prems(1))
have cont_cd: continuous_on (closed_segment ¢ d) f
by (meson x continuous__on__subset less.prems(1) segments__subset_convex__hull(2))
have contour_integral (linepath a b) f = — (contour_integral (linepath b
d) f + (contour_integral (linepath d a) f))
contour_integral (linepath b ¢) f
f + (contour_integral (linepath d b) f))
contour_integral (linepath ¢ a) f
|+ contour_integral (linepath d ¢) f)
using has__chain__integral _chain__integral3 [OF abd]
has__chain__integral _chain__integral3 [OF bcd]
has__chain__integral__chain__integral3 [OF cad)
by (simp__all add: algebra__simps add__eq 0 _iff)
then have ?thesis
using cont_ad cont_bd cont_cd fy has_chain__integral chain__integral3
contour__integral__reverse_ linepath by fastforce
}
then show ?thesis
using fpi contour_integrable on__def by blast
qed
qed
qged

= — (contour_integral (linepath ¢ d)

= — (contour_integral (linepath a d)

2.5 Cauchy’s theorem for an open starlike set

lemma starlike convex_subset:
assumes S: a € S closed__segment b ¢ C S and subs: A\z. x € S = closed__segment
axrCS

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 69

shows conver hull {a,b,c} C S
proof —
have convex hull {b, ¢} C S
using assms(2) segment__convex__hull by auto
then have Auv d. [0 < u; 0 < wv; u+ v=1;d € conver hull {b, c}] = u
xpa+vxgpdesS
by (meson subs convexD convex_closed__segment ends_in__segment subsetCE)
then show ?thesis
by (auto simp add: convex__hull_insert [of {b,c} a])
qged

lemma triangle contour integrals starlike primitive:
assumes contf: continuous_on S f
and S: a € S open S
and z: z € S
and subs: \y. y € S = closed_segment a y C S
and zer: A\b c. closed _segment b ¢ C S
= contour__integral (linepath a b) f + contour_integral (linepath
be)f+
contour_integral (linepath ¢ a) f = 0
shows ((Az. contour_integral(linepath a x) f) has_field _derivative f x) (at)
proof —
let ?pathint = Az y. contour_integral(linepath x y) f
{fixey
assume e: 0 < e and bze: ball z ¢ C S and close: cmod (y — z) < e
have y: y € §
using bzxe close by (force simp: dist_norm norm__minus__commute)
have cont_ayf: continuous_on (closed_segment a y) f
using contf continuous on__subset subs y by blast
have zys: closed _segment x y C §
by (metis bze centre__in__ball close closed__segment__subset convex__ball dist_norm
dual__order.trans e mem__ball norm_ minus__commute)
have ?pathint a y — ?pathint a © = ?pathint x y
using zer [OF xys| contour_integral_reverse_linepath [OF cont__ayf] add_eq 0 _iff
by force
} note [simp] = this
{ fix e::real
assume e: (< e
have cont_atz: continuous (at x) f
using z S contf continuous_on__eq continuous__at by blast
then obtain dI where d1: d1>0 and dI less: \y. cmod (y — z) < dl =
emod (fy — fz) <e/2
unfolding continuous at Lim__at dist_norm using e
by (drule_tac xz=e/2 in spec) force
obtain d2 where d2: d2>0 ball x d2 C S using <open S) x
by (auto simp: open__contains_ball)
have dpos: min d1 d2 > 0 using dI d2 by simp
{fix y
assume yz: y # x and close: ¢cmod (y — z) < min d1I d2

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 70

have y: y € S
using d2 close by (force simp: dist_norm norm_minus_commute)
have closed__segment zy C S
using close d2 by (auto simp: dist_norm norm_minus_commute dest!:
segment__bound(1))
then have fry: f contour_integrable__on linepath x y
by (metis contour_integrable continuous_linepath continuous_on__subset
[OF contf])
then obtain ¢ where i: (f has_contour_integral i) (linepath x y)
by (auto simp: contour_integrable _on__def)
then have ((Aw. f w — f x) has_contour_integral (i — fz x (y — z)))
(linepath z y)
by (rule has__contour__integral _diff [OF __ has__contour__integral _const_linepath))
then have cmod (i — fz * (y — x)) < e/ 2 % cmod (y — x)
proof (rule has__contour_integral__bound__linepath)
show Au. u € closed_segment x y = cmod (fu — fz) < e/ 2
by (meson close d1_less le_less trans less _imp__le min.strict _boundedE
segment__boundl)
qged (use e in simp)
also have ... < e * cmod (y — x)
by (simp add: e yr)
finally have cmod (?pathint zy — fz * (y—z)) / cmod (y—z) < e
using ¢ yz by (simp add: contour _integral_unique divide_less _eq)
}

then have 3d>0.Vy. y # z A emod (y—z) < d — cmod (?pathint x y — f
z x (y—x)) / emod (y—z) < e
using dpos by blast

then have (\y. (%pathint xy — fz x (y — 2)) /g cmod (y — z)) —z— 0
by (simp add: Lim__at dist_norm inverse__eq divide)
then have (Ay. (1 / cmod (y — x)) *xg (?pathint a y — (?pathint a z + fx x (y
- 1)) —z— 0
using <open S» x
by (force simp: dist_norm open__contains_ball inverse _eq divide [symmetric]
eventually__at intro: Lim__transform [OF __ tendsto__eventually])
then show ?thesis
by (simp add: has_field_derivative_def has__derivative__at2 bounded_linear_mult_right)
qged

Existence of a primitive

lemma holomorphic__starlike__primitive:
fixes f :: complex = complex
assumes contf: continuous_on S f
and S: starlike S and os: open S
and k: finite k
and fed: Nz. x € S — k = [field_differentiable at
shows 3¢. Vz € S. (g has_field_derivative f x) (at z)
proof —
obtain a where a: a€S and a_cs: A\x. z€S = closed_segment a x C S

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 71

using S by (auto simp: starlike_def)
{fixzbc
assume z € S closed_segment b ¢ C S
then have abcs: convex hull {a, b, ¢} C S
by (simp add: a a__cs starlike__convex__subset)
then have continuous _on (convex hull {a, b, c}) f
by (simp add: continuous_on__subset [OF conif])
then have (f has_contour _integral 0) (linepath a b +++ linepath b ¢ +++
linepath ¢ a)
using abes interior_subset by (force intro: fed Cauchy__theorem__triangle cofinite
[OF _ k])
} note 0 = this
show ?thesis
proof (intro exl balll)
show A\z. z € S = ((Az. contour_integral (linepath a x) f) has_field _derivative
fz) (at z)
using 0 a a__cs contf has__chain__integral chain__integral3 os triangle contour integrals starlike primitit
by force
qed
qed

lemma Cauchy_theorem__starlike:
[open S; starlike S; finite k; continuous_on S f;
Nz. z € S — k = [field_differentiable at z;
valid_path g; path_image g C S; pathfinish g = pathstart g
= (f has__contour_integral 0) g
by (metis holomorphic__starlike__primitive Cauchy__theorem__primitive at_within__open)

lemma Cauchy theorem __starlike__simple:
[open S; starlike S; f holomorphic__on S; valid_path g; path__image g C S; pathfin-
ish g = pathstart g]
= (f has__contour_integral 0) g
using Cauchy_theorem__starlike [OF _ __ finite.emptyl|
by (simp add: holomorphic_on_imp__continuous__on holomorphic__on__imp__differentiable _at)

2.6 Cauchy’s theorem for a convex set

For a convex set we can avoid assuming openness and boundary analyticity

lemma triangle contour integrals _convex__primitive:
assumes contf: continuous_on S f
and S: a € S convex S
and z: z € S
and zer: Nbc. [be S; ce 9]
= contour__integral (linepath a b) f + contour_integral (linepath
be)f+
contour_integral (linepath ¢ a) f = 0
shows ((Az. contour_integral(linepath a) f) has_field_derivative f z) (at x
within)
proof —

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 72

let ?pathint = Az y. contour_integral(linepath x y) f

{fixy
assume y: y € S
have cont_ayf: continuous_on (closed_segment a y) f

using S y by (meson contf continuous__on__subset convex__contains _segment)
have zys: closed _segment x y C S
using convezr contains _segment S x y by auto

have ?pathint a y — ?pathint a x = ?pathint z y
using zer [OF z y| contour_integral _reverse_linepath [OF cont__ayf] add_eq 0_iff

by force
} note [simp] = this
{ fix e:real

assume e: 0 < e
have cont_atz: continuous (at x within S) f
using = S contf by (simp add: continuous_on__eq _continuous_within)

then obtain df where dI: d1>0 and d1_less: \y. [y € S; cmod (y — z) <

dl] = cmod (fy — fz) < e/2
unfolding continuous within Lim_ within dist_norm using e

by (drule_tac x=e/2 in spec) force

{ fix y
assume yz: y # x and close: cmod (y — z) < dl and y: y € S

have fry: f contour_integrable__on linepath x y

using convezr_contains_segment S x y
by (blast intro!: contour _integrable_continuous_linepath continuous _on__subset

[OF contf))
then obtain ¢ where i: (f has_contour_integral i) (linepath x y)
by (auto simp: contour_integrable on__def)
then have ((Aw. f w — f x) has_contour_integral (i — fz x (y — z)))

(linepath z y)
by (rule has__contour_integral_diff [OF __ has__contour__integral__const_linepath))

then have cmod (i — fz * (y — x)) < e/ 2 % cmod (y — x)
proof (rule has__contour_integral_bound__linepath)
show Au. u € closed_segment x y = cmod (fu — fz) < e/ 2
by (meson assms(3) close convex__contains _segment d1_less le_less trans
less_imp__le segment_boundl subset iff x y)
ged (use e in simp)
also have ... < e *x cmod (y — x)

by (simp add: e yz)
finally have cmod (?pathint zy — fz x (y—z)) / cmod (y—z) < e
using ¢ yz by (simp add: contour _integral_unique divide_less _eq)

}
then have 3d>0. VyeS. y # x A ecmod (y—z) < d — cmod (Ppathint Ty —
fzx*x(y—x)) / cmod (y—z) < e
using dI by blast
}
then have ((\y. (?pathint zy — fz x (y — z)) /g cmod (y — z)) —— 0) (at

x within S)
by (simp add: Lim_ within dist_norm inverse__eq divide)

then have ((Ay. (1 / cmod (y — z)) *g (%pathint a y — (Ppathint a x + [z *

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 73

(y — 2))) — 0)
(at x within S)
using linordered_ field_no_ub

by (force simp: inverse__eq _divide [symmetric] eventually _at intro: Lim__transform
[OF __ tendsto__eventually))

then show ?thesis

by (simp add: has_field derivative_def has__derivative _within bounded_ linear _mult _right)
qed

lemma contour_integral__convex_primitive:

assumes convex S continuous_on S f

Nabc Jae S;beS; ce S] = (f has_contour_integral 0) (linepath a

b +++ linepath b ¢ +++ linepath ¢ a)

obtains g where Az. x € S = (g has_field_derivative f x) (at x within S)
proof (cases S={})

case Fulse

with assms that show ?thesis

by (blast intro: triangle_contour _integrals _convex_primitive has_chain__integral _chain__integral3)
qed auto

lemma holomorphic__convex__primitive:
fixes f :: compler = complex
assumes convex S finite K and contf: continuous _on S f
and fd: N\z. z € interior S — K = f field_differentiable at z
obtains g where Az. x € S = (g has_field_derivative f z) (at x within S)
proof (rule contour_integral _convex__primitive [OF <convex S) contf Cauchy__theorem__triangle_ cofinite])
have x: conver hull {a, b, c} CSifaec Sbe Sce Sforabc
by (simp add: <convex S» hull_minimal that)
show continuous_on (convex hull {a, b, ¢}) fifaec Sbe Sce Sforabc
by (meson * contf continuous_on__subset that)
show f field differentiable at z if a € S b € S ¢ € Sz € interior (convex hull
{a, b, c}) — Kforabcz
by (metis x DiffD1 DiffD2 DiffI fd interior_mono subsetCE that)
qed (use assms in (force+»)

lemma holomorphic_convez_primitive”:

fixes f :: compler = complex

assumes convex S and open S and f holomorphic_on S

obtains ¢ where Az. x € S = (¢ has_field _derivative f x) (at x within S)
proof (rule holomorphic__convex__primitive)

fix z assume z € interior S — {}

with assms show f field differentiable at x

by (auto intro!: holomorphic__on__imp_differentiable_at simp: interior_ _open)

qed (use assms in <auto intro: holomorphic_on_imp__continuous_on))

corollary Cauchy_theorem__convex:
[continuous_on S f; convex S; finite K;
Nz. © € interior S — K = [field__differentiable at z;
valid__path g; path__image g C S; pathfinish g = pathstart g]

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 74

= (f has__contour_integral 0) g
by (metis holomorphic__convex__primitive Cauchy_ theorem__primitive)

corollary Cauchy_theorem__convex__simple:
assumes holf: f holomorphic_on S
and convex S valid__path g path_image g C S pathfinish g = pathstart g
shows (f has__contour_integral 0) g
proof —
have f holomorphic_on interior S
by (meson holf holomorphic__on__subset interior _subset)
with Cauchy_theorem__conver [where K = {}] show ?thesis
using assms
by (metis Diff _empty finite.emptyl holomorphic_on__imp__continuous__on holo-
morphic__on__imp__ differentiable_at open__interior)
qed

In particular for a disc

corollary Cauchy_theorem__disc:
[finite K; continuous_on (cball a €) f;
Nz. z € ball a e — K = f field_ differentiable at x;
valid__path g; path__image g C cball a e;
pathfinish g = pathstart g] = (f has__contour_integral 0) g
by (auto intro: Cauchy__theorem__convex)

corollary Cauchy_ theorem__disc__simple:
[f holomorphic_on (ball a e); valid_path g; path_image g C ball a e;
pathfinish g = pathstart g] = (f has__contour_integral 0) g

by (simp add: Cauchy__theorem__convex__simple)

2.7 Generalize integrability to local primitives

lemma contour_integral local _primitive_lemma:
fixes f :: complexr=complex
assumes gpd: g piecewise__differentiable_on {a..b}
and dh: Az. z € S = (f has_field_derivative f' x) (at x within S)
and gs: Az. z € {a.b} = gz € S
shows (Az. f' (g x) * vector_derivative g (at x within {a..b})) integrable_on
{a..b}
proof (cases chbox a b = {})
case Fulse
then show ?thesis
unfolding integrable__on__def by (auto intro: assms contour_integral _primitive_lemma)
qged auto

lemma contour_integral local primitive _any:
fixes f :: complex = complex
assumes gpd: g piecewise__differentiable_on {a..b}
and dh: Az.z € S
= 3ddh. 0<dA

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 75

(Vy. norm(y — z) < d — (h has_field_derivative f y) (at y
within S))
and gs: Az. z € {a.b} = gz €S
shows (Az. f(g x) * vector_derivative g (at x)) integrable_on {a..b}
proof —
{ fix z
assume z: a <z < b
obtain d h where d: 0 < d
and h: (Ay. norm(y — g ©) < d = (h has_field derivative f y) (at
y within S))
using z gs dh by (metis atLeastAtMost_iff)
have continuous_on {a..b} g using gpd piecewise _differentiable_on_def by
blast
then obtain e where e: e>0 and lessd: Az’. 2’ € {a..b} = |2/ — z| < e
= cmod (g2’ — gz) < d
using z d by (fastforce simp: dist_norm continuous__on__iff)
have 3e>0.Vuv. u <z Az <vA{u.v} ChallzeN(u<v—a<uA
v<b) —
(Az. f (g z) * vector_derivative g (at z)) integrable_on {u..v}
proof —
have (\z. f (g x) * vector_derivative g (at x within {u..v})) integrable_on
{u..v}
if u <z2<wvand ball: {u..v} C ball z e and auvb: u < v=—=a < u A v
<b
for u v
proof (rule contour_integral local _primitive_lemma)
show g piecewise__differentiable_on {u..v}
by (metis atLeastatMost__subset_iff gpd piecewise _differentiable_on_ subset
auvb)
show Az. z € g ‘ {u..v} = (h has_field derivative f z) (at © within g *
{u..v})
using that by (force simp: ball_def dist_norm intro: lessd gs DERIV__subset
O 1))
qed auto
then show ?thesis
using e integrable__on__localized__vector__derivative by blast
qged
} then
show ?thesis
by (force simp: introl: integrable__on_ little_subintervals [of a b, simplified])
qed

lemma contour_integral_local _primitive:
fixes f :: compler = complex
assumes ¢: valid_path g path_image g C S
and dh: N\z.z € S
= 3dh. 0 < dA
(Vy. norm(y — z) < d — (h has_field_derivative f y) (at y
within S))

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 76

shows f contour_integrable_on g
proof —
have (Az. f (g x) * vector_derivative g (at x)) integrable_on {0..1}
using contour__integral_local _primitive_any [OF _ dh] g
unfolding path_image def valid__path__def
by (metis (no__types, lifting) image__subset__iff piecewise_ C1__imp__differentiable)
then show ?thesis
using contour_integrable__on by presburger
qed

In particular if a function is holomorphic

lemma contour_integrable__holomorphic:
assumes contf: continuous_on S f
and os: open S
and k: finite k
and g: valid_path g path_image g C S
and fed: N\z. © € S — k = f field_differentiable at x
shows f contour_integrable_on g
proof —
{ fix 2
assume z: z € §
obtain d where d>0 and d: ball z d C S using <open S) z
by (auto simp: open__contains_ball)
then have contfb: continuous_on (ball z d) f
using contf continuous_on__subset by blast
obtain h where V ycball z d. (h has_field _derivative fy) (at y within ball z d)
by (metis holomorphic__convex__primitive [OF convex_ball k contfb fed] d
interior_subset Diff _iff subsetD)
then have Vycball z d. (h has_field _derivative fy) (at y within S)
by (metis open__ball at_within__open d os subsetCE)
then have 3h. (Vy. cmod (y — z) < d — (h has_field_derivative f y) (at y
within S))
by (force simp: dist_norm norm_minus__commute)
then have 3d h. 0 < d A (Vy. emod (y — 2) < d — (h has_field__derivative
fv) (at y within S))
using <0 < d» by blast
}

then show ?Zthesis
by (rule contour_integral_local _primitive [OF g])
qged

lemma contour_integrable__holomorphic__simple:
assumes fh: f holomorphic_on S
and os: open S
and ¢: valid_path g path__image g C S
shows f contour_integrable_on g
proof —
have Az. © € S = f field_differentiable at
using fh holomorphic__on_imp_ differentiable_at os by blast

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 7

moreover have continuous_on S f
by (simp add: fh holomorphic_on_imp__continuous_on)
ultimately show ?thesis
by (metis Diff _empty contour_integrable__holomorphic finite.emptyl g os)
qed

lemma analytic _imp__contour _integrable:
assumes f analytic_on path__image p valid__path p
shows f contour_integrable_on p
by (meson analytic__on__holomorphic assms contour_integrable__holomorphic__simple)

lemma continuous on__inversediff:
fixes z:: 'a::ireal_normed_field shows z ¢ S = continuous_on S (Aw. 1 / (w
- 2))

by (rule continuous__intros | force)+

lemma contour_integrable inversediff:

assumes ¢: valid_path g

and notin: z ¢ path__image g

shows (Aw. 1 / (w—2z)) contour_integrable_on g
proof (rule contour_integrable__holomorphic__simple)

show (Aw. 1 / (w—2)) holomorphic_on UNIV — {z}

by (auto simp: holomorphic__on__open open__delete introl: derivative__eq intros)
qed (use assms in auto)

Key fact that path integral is the same for a "nearby" path. This is the main
lemma for the homotopy form of Cauchy’s theorem and is also useful if we
want "without loss of generality" to assume some nice properties of a path
(e.g. smoothness). It can also be used to define the integrals of analytic
functions over arbitrary continuous paths. This is just done for winding
numbers now.

A technical definition to avoid duplication of similar proofs, for paths joined
at the ends versus looping paths

definition linked_ paths :: bool = (real = 'a) = (real = 'a::topological _space) =
bool
where linked paths atends g h ==
(if atends then pathstart h = pathstart g A pathfinish h = pathfinish g
else pathfinish g = pathstart g A pathfinish h = pathstart h)

This formulation covers two cases: g and h share their start and end points;
g and h both loop upon themselves.

lemma contour_integral nearby:
assumes o0s: open S and p: path p path_image p C S
shows 3d. 0 < d A
(Vg h. valid_path g A valid_path h A
(Vte{0..1}. norm(gt —pt) <dAnorm(ht —pt) <d) A
linked__paths atends g h

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 78

— path_image g C S A path_image h C S A
(Vf. fholomorphic_on S — contour__integral h f = contour__integral
9f))
proof —
have Vz. de. z € path_imagep — 0 < e ANball ze C §
using open__contains_ball os p(2) by blast
then obtain ee where ee: Az. z € path_image p = 0 < ee z A ball z (ee z)
cSs
by metis
define cover where cover = (Az. ball z (ee 2/8)) ¢ (path_image p)
have compact (path__image p)
by (metis p(1) compact_path__image)
moreover have path_image p C (|J c€path_image p. ball c (ee ¢ | 3))
using ee by auto
ultimately have 3D C cover. finite D A path_image p C |JD
by (simp add: compact_eq Heine Borel cover _def)
then obtain D where D: D C cover finite D path_image p C |J D
by blast
then obtain k where k: k C {0..1} finite k and D_eq: D = ((Az. ball z (ee z
/8))op) k
unfolding cover_def path__image_def image__comp
by (meson finite__subset__image)
then have kne: k # {}
using D by auto
have pi: \i. i € k = p i € path_image p
using k by (auto simp: path__image_def)
then have eepi: N\i. i € k = 0 < ee((p 7))
by (metis ee)
define e where e = Min((ee o p) ‘ k)
have fin_eep: finite ((ee o p) ‘ k)
using k£ by blast
have 0 < e
using ee k by (simp add: kne e_def Min_gr_iff [OF fin__eep] eepi)
have uniformly_continuous _on {0..1} p
using p by (simp add: path__def compact_uniformly_continuous)
then obtain d::real where d: d>0
and de: Nz z’. |2/ — z| < d = z€{0..1} = z'€{0..1} = cmod (p =’
—pzx)<eld
unfolding uniformly continuous on__def dist_norm real norm__def
by (metis divide _pos_pos <0 < e» zero_less_numeral)
then obtain N::nat where N: N>0 inverse N < d
using real _arch_inverse [of d] by auto
show ?thesis
proof (intro exl conjl alll; clarify?)
show ¢/38 > 0
using <0 < e» by simp
fix g h
assume g: valid_path g and ghp: Vt€{0..1}. emod (gt —pt) < e/ 3 A cmod
(ht—pt)<e/3

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 79

and h: valid_path h
and joins: linked_ paths atends g h
{ fix t::real
assume t: 0 < tt < 1
then obtain « where u: v € k and ptu: p t € ball(p u) (ee(p u) / 3)
using <path_image p C |J D> D_eq by (force simp: path_image_ def)
then have ele: e < ee (p u) using fin_eep
by (simp add: e_def)
have cmod (gt —pt)<e/ 3cmod (ht —pt)<e/ 3
using ghp t by auto
with ele have ¢cmod (gt —pt) <ee(pu)/ 3
cmod (ht —pt)<ee(pu)/ 3
by linarith+
then have g ¢ € ball(p u) (ee(p v)) ht € ball(p u) (ee(p u))
using norm__diff _triangle_ineq [of gt p t p t p u]
norm__diff _triangle_ineq [of h t p t p t p u] ptu eepi u
by (force simp: dist_norm ball_def norm__minus__commute)+
then have gt € Sht € S using ec u k
by (auto simp: path_image _def ball_def)

then have ghs: path_image g C S path_image h C S
by (auto simp: path_image_def)
moreover
{ fix f
assume fhols: f holomorphic_on S
then have fpa: f contour integrable_on g f contour_integrable on h

using g ghs h holomorphic_on__imp_ continuous__on os contour__integrable__holomorphic__simple
by blast+

have contf: continuous _on S f
by (simp add: fhols holomorphic__on__imp__continuous__on)
{ fix 2
assume z: z € path__image p
have f holomorphic_on ball z (ee z)
using fhols ee z holomorphic__on__subset by blast
then have 3ff. (Yw € ball z (ee z). (ff has_field_derivative f w) (at w))
using holomorphic__convex__primitive [of ball z (ee z) {} f, simplified)
by (metis open_ball at_within_open holomorphic_on__def holomor-
phic_on__imp__continuous__on mem,__ball)
}
then obtain ff where ff:
Nz w. [z € path_image p; w € ball z (ee z)] = (ff z has_field _derivative
fw) (at w)
by metis
{fix n
assume n: n < N

then have contour _integral(subpath 0 (n/N) h) f — contour_integral(subpath

0 (n/N)g)f=
contour_integral(linepath (g(n/N)) (h(n/N))) f — con-
tour_integral(linepath (g 0) (h 0)) f

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 80

proof (induct n)
case 0 show ?Zcase by simp
next
case (Suc n)
obtain ¢ where ¢: t € k and p (n/N) € ball(p t) (ee(p t) / 3)
using <path__image p C |J Dy [THEN subsetD, where c=p (n/N)] D_eq
N Suc.prems
by (force simp: path_image_def)
then have ptu: emod (pt — p (n/N)) < ee (pt)/ 3
by (simp add: dist_norm)
have e3le: ¢/3 < ee (pt) / 3 using fin_eep t
by (simp add: e_ def)
{ fix z
assume z: n/N < zz < (1 + n)/N
then have nNOI1: 0 < n/N (1 + n)/N < 1
using Suc.prems by auto
then have 201: 0 < zx < 1
using z by linarith+
have cmod (pt —pz) <ee(pt)/ 3+ ¢e/3
proof (rule norm__diff _triangle_less [OF ptu de))
show [real n [/ real N — z| < d
using z N by (auto simp: field__simps)
qed (use 01 Suc.prems in auto)
then have ptz: cmod (pt — p x) < 2xee (p t)/3
using eSle eepi [OF t] by simp
have cmod (pt — g z) < 2xee (p t)/3 + ¢/3
using ghp 201
by (force simp add: norm_minus__commute introl: norm__diff _triangle less
[OF ptz))
also have ... < ee (pt)
using eSle eepi [OF t] by simp
finally have gg: cmod (pt — gz) < ee (pt).
have cmod (pt — hz) < 2xee (p t)/3 + ¢/3
using ghp 201
by (force simp add: norm_minus__commute introl: norm__diff _triangle less
[OF ptx])
also have ... < ee (p ?)
using eSle eepi [OF t] by simp
finally have cmod (pt — gz) < ee (pt) cmod (pt — hz) < ee(pt)
using gg by auto
} note pigh_ee = this
have closed_segment (g (n/N)) (h (n/N)) = path_image (linepath (h
(/M) (g (n/N)))
by (simp add: closed _segment__commute)
also have pi_hgn: ... C ball (p t) (ee (p t))
using ptgh__ee [of n/N| Suc.prems
by (auto simp: field_simps dist_norm dest: segment_furthest_le [where
y=p t])
finally have gh_ns: closed_segment (¢ (n/N)) (h (n/N)) C S

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 81

using ee pi t by blast
have pi_ghn” path_image (linepath (g ((1 +n) / N)) (b (1 + n) / N)))
C ball (p t) (ee (pt))
using ptgh_ee [of (14n)/N] Suc.prems
by (auto simp: field__simps dist_norm dest: segment__furthest_le [where
y=p t])
then have gh_n's: closed _segment (g (1 + n) / N)) (h (({ + n) / N))
cSs
using <N>0> Suc.prems ee pi t
by (auto simp: Path__Connected.path__image_join field_simps)
have pi_subset_ball:
path_image (subpath (n/N) ((14n) / N) g +++ linepath (g ((1+n)
/ N)) (h ((1+n) / N)) +++
subpath ((1+n) / N) (n/N) h +++ linepath (h (n/N)) (g
(n/N)))
Coball (pt) (ee (pt)

proof (intro subset_path_image_join pi_hgn pi_ghn')
show path_image (subpath (n/N) ((14+n) / N) g) C ball (p t) (ee (p 1))
path_image (subpath ((14+n) / N) (n/N) h) C ball (p t) (ee (p t))
using (N>0» Suc.prems
by (auto simp: path__image__subpath dist_norm field_simps ptgh__ee)
qed
have pi0: (f has__contour_integral 0)
(subpath (n/ N) ((Suc n)/N) g +++ linepath(g ((Suc n) / N))
(h((Suc n) / N)) +++
subpath ((Suc n) / N) (n/N) h +++ linepath(h (n/N)) (g
(n/N)))

proof (rule Cauchy_theorem__primitive)
show Az. z € ball (p t) (ee (pt))
= (ff (pt) has_field_derivative f x) (at x within ball (p t) (ee

(p 1))
by (metis ff open__ball at_within__open pi t)
qged (use Suc.prems pi__subset_ball in <simp__all add: valid__path__subpath
g)
have fpal: f contour integrable_on subpath (n/N) (real (Suc n) / real N)
g

using Suc.prems by (simp add: contour_integrable__subpath g fpa)
have fpa2: f contour_integrable_on linepath (g (real (Suc n) / real N)) (h
(real (Suc n) / real N))
using gh_n's
by (auto intro!: contour integrable_continuous_linepath continu-
ous__on__subset [OF contf])
have fpa3: f contour_integrable on linepath (h (n/N)) (g (n/N))
using gh_ns
by (auto simp: closed__segment__commute intro!: contour _integrable _continuous_linepath
continuous__on__subset [OF contf])
have eq0: contour_integral (subpath (n/N) ((Suc n) / real N) g) f +
contour_integral (linepath (g ((Suc n) / N)) (h ((Suc n) / N))) f

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 82

contour_integral (subpath ((Suc n) / N) (n/N) h) f +
contour_integral (linepath (h (n/N)) (g (n/N))) f =0
using contour_integral_unique [OF pi0] Suc.prems
by (simp add: g h fpa valid_path__subpath contour _integrable _subpath
foal fpa2 fpa3 algebra__simps del: of _nat_Suc)
have x: Ahn he hn' gn gd gn’ hgn ghn gh0 ghn'.
[An — gn = ghn — gh0;
gd + ghn' + he + hgn = (0::complex);
hn — he = hn'; gn + gd = gn'; hgn = —ghn] = hn’ — gn’ =
ghn' — gh0
by (auto simp: algebra__simps)
have contour_integral (subpath 0 (n/N) h) f — contour_integral (subpath
((Suc n) / N) (n/N) h) f =
contour _integral (subpath 0 (n/N) h) f + contour_integral (subpath
(n/N) ((Suc n) / N) h) f
unfolding reversepath__subpath [symmetric, of ((Suc n) / N)]
using Suc.prems by (simp add: h fpa contour integral reversepath
valid _path__subpath contour integrable subpath)
also have ... = contour_integral (subpath 0 ((Suc n) / N) h) f
using Suc.prems by (simp add: contour_integral _subpath__combine h
fpa)
finally have pi0_eq:
contour_integral (subpath 0 (n/N) h) f — contour_integral (subpath
((Suc n) / N) (n/N) h) f =
contour_integral (subpath 0 ((Suc n) / N) h) f .
show ?Zcase
proof (rule x [OF Suc.hyps eq0 pi0_eq])
show contour_integral (subpath 0 (n/N) g) f +
contour_integral (subpath (n/N) ((Sucn) / N) g) f =
contour_integral (subpath 0 ((Sucn) / N) g) f
using Suc.prems contour_integral__subpath__combine fpa(1) g by auto
show contour_integral (linepath (h (n/N)) (¢ (n/N))) f = — con-
tour__integral (linepath (g (n/N)) (h (n/N))) f
by (metis contour _integral _unique fpa3 has__contour_integral_integral
has__contour_integral _reverse__linepath)
qged (use Suc.prems in auto)
qed
} note ind = this
have contour integral h f = contour_integral g f
using ind [OF order_refl] N joins
by (simp add: linked__paths__def pathstart_def pathfinish__def split: if _split_asm)

ultimately
show path_image g C S A path_image h C S A (Vf. f holomorphic_on S —
contour_integral h f = contour_integral g f)
by metis
qed
qged

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 83

lemma
assumes open S path p path__image p C S
shows contour_integral nearby__ends:
Jd. 0 < d A
(Vg h. valid_path g A valid__path h A
(Vte{0..1}. norm(gt —pt) <dAnorm(ht —pt) <d) A
pathstart h = pathstart g A\ pathfinish h = pathfinish g
— path_image g € S A
path__image h C S A
(Vf. f holomorphic_on S
— contour_integral h f = contour_integral g f))
and contour_integral_nearby_loops:
dd. 0 < d A
(Y g h. valid__path g N valid__path h A
(Vte{0..1}. norm(gt —pt) <dAnorm(ht —pt)<d) A
pathfinish g = pathstart g A pathfinish h = pathstart h
— path_image g C S A
path__image h C S A
(Vf. f holomorphic_on S
— contour_integral h f = contour_integral g f))
using contour_integral_nearby [OF assms, where atends=True]
using contour_integral_nearby [OF assms, where atends=False]
unfolding linked_paths def by simp__all

lemma contour_integral_bound __exists:
assumes S: open S
and g¢: valid__path g
and pag: path_image g C S
shows 3L. 0 < L A
(Vf B. f holomorphic_on S N (Vz € S. norm(f z) < B)
— norm(contour_integral g f) < LxB)
proof —
have path g using g
by (simp add: valid_path_imp__path)
then obtain d::real and p
where d: 0 < d
and p: polynomial function p path_image p C S
and pi: A\f. f holomorphic_on S => contour_integral g f = contour _integral
pf
using contour_integral_nearby__ends [OF S <path g> pag]
by (metis cancel _comm_monoid__add__class.diff _cancel g norm__zero path__approz__polynomial_function
valid__path__polynomial__function)
then obtain p’ where p’: polynomial function p’
Nz. (p has_vector__derivative (p’ x)) (at z)
by (blast intro: has_wvector__derivative__polynomial_function that)
then have bounded(p’ < {0..1})
using continuous__on__polymonial _function
by (force simp: introl: compact imp_bounded compact _continuous _image)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 84

then obtain L where L: L>0 and nop” A\z. [0 < z; 2 < 1] = norm (p’ z)
<L
by (force simp: bounded__pos)
{fixfB
assume f: f holomorphic_on S and B: A\z. z6S = c¢mod (f 2) < B
then have f contour_integrable _on p A wvalid__path p
using p S
by (blast intro: valid__path__polynomial _function contour _integrable__holomorphic__simple
holomorphic__on__imp__continuous__on)
moreover have cmod (vector derivative p (at z)) * cmod (f (p z)) < L * B
ifo<zz<1forzx
proof (rule mult_mono)
show cmod (vector__derivative p (at z)) < L
by (metis nop’ p'(2) that vector__derivative__at)
show cmod (f (p z)) < B
by (metis B atLeastAtMost_iff imagel p(2) path_defs(4) subset eq that)
ged (use <L>0» in auto)
ultimately
have cmod (integral {0..1} (Az. f (p z) * vector_derivative p (at z))) < L * B
by (intro order_trans [OF integral_norm__bound_integral])
(auto simp: mult.commute norm_mult contour__integrable _on)
then have cmod (contour _integral g f) < L x B
using contour_integral integral f pi by presburger
} then
show ?thesis using <L > 0>
by (intro exI[of __ L)) auto
qged

2.8 Homotopy forms of Cauchy’s theorem

lemma Cauchy_theorem__homotopic:
assumes hom: if atends then homotopic_paths S g h else homotopic__loops S g
h
and open S and f: f holomorphic_on S
and wvpg: valid_path g and vph: valid__path h
shows contour_integral g f = contour_integral h f
proof —
have pathsf: linked__paths atends g h
using hom by (auto simp: linked paths__def homotopic__paths imp__pathstart
homotopic__paths_imp__pathfinish homotopic_loops_imp__loop)
obtain k :: real X real = complex
where contk: continuous_on ({0..1} x {0..1}) k
and ks: k ‘ ({0..1} x {0..1}) C S
and k [simp]: Vz. k (0, 2) = gaVa. k (1,z)=hz
and ksf: Vt€{0..1}. linked_paths atends g (\z. k (t, x))
using hom pathsf by (auto simp: linked _paths def homotopic_paths _def
homotopic_loops _def homotopic__with__def split: if _split_asm)
have ucontk: uniformly_continuous_on ({0..1} x {0..1}) k
by (blast intro: compact_Times compact__uniformly__continuous [OF contk])

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 85

{ fix t::real assume t: t € {0..1}
have Pairt < {0..1} C{0..1} x {0..1}
using ¢ by force
then have pak: path (k o (Au. (¢, u)))
unfolding path_ def
by (intro continuous__intros continuous__on__subset [OF contk])+
have pik: path_image (k o Pairt) C S
using ks t by (auto simp: path_image_ def)
obtain e where e>0 and e:
Ag h. [valid_path g; valid_path h;
Vue{0..1}. emod (g u — (k o Pairt) u) < e A cmod (h u — (k o
Pair t) u) < e;
linked__paths atends g h]
= contour_integral h f = contour__integral g f
using contour_integral_nearby [OF <open S» pak pik, of atends] f by metis
obtain d where d>0 and d:
Nez' [z e{0..1} x{0..1}; 2" € {0..1} x {0..1}; norm (z'-2) < d] =
norm (kx' — k) < e/4
by (rule uniformly_continuous_onE [OF ucontk, of e/4]) (auto simp: dist_norm
e>0))
{ fix t1t2
assume t1: 0 < t1t1 < 1 and t2: 0 < t2t2 < 1 and ltd: |t — t| < d |¢2
-t < d
have no2: norm(g1 — kt) < e if norm(g1 — k1) < e/4 norm(kl — kt) <
e/4 for g1 ki1 kt :: complex
proof (rule norm__triangle__half 1)
show cmod (g1 — k1) < e/2 cmod (kt — k1) < ¢/2
using <e > 0» that by (auto simp: norm_minus_commute intro: or-
der_less_trans)
qed
have 3d>0. Vg1 g2. valid_path g1 A valid_path g2 N
(Vue{0..1}. ecmod (g1 v — k (t1, u)) < d A cmod (g2 u — k
(2, w)) < d) A
linked__paths atends g1 g2 —
contour_integral g2 f = contour_integral g1 f
using t t1 t2 ltd <e > 0>
by (rule_tac xz=e/4 in exI) (auto introl: e simp: d no2 simp del: less__divide__eq _numerall)

then have Je. 0 < e A
(Vt1t2.t1 e {0. 1} ANt2 € {01} Nt —t|<eA|t2 —t| <e
— (3d. 0 < dA
(Vg1 g2. valid_path g1 A valid_path g2 A

(Vue {0..1}.

norm(gl u — k((t1,u))) < d A norm(g2 v — k((t2,u))) < d) A
linked__paths atends g1 g2
— contour_integral g2 f = contour_integral g1 f)))

by (rule_tac x=d in exl) (simp add: <d > 0»)

}

then obtain ece where ece:

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 86

Nt.te{0..1} = et > 0N
(VE112. 11 € {01} —> 12 € (0.1} — |t1 — t| < ee t — |t2 — t| <

eet
— (3d. 0 < dA
(Vg1 g2. valid_path g1 A valid_path g2 N
(Vu e {0..1}.

norm(gl u — k((t1,u))) < d A norm(g2 u — k((t2,u))) < d) A
linked__paths atends g1 g2

— contour_integral g2 f = contour_integral g1 f)))

by metis

note ee_rule = ee [THEN conjunct2, rule_format, of 0 0 0]
define C where C = (At. ball t (ee t / 3)) ‘{0..1}
obtain C’ where C: C' C C finite C' and C'01: {0..1} C |J C"’
proof (rule compactE [OF compact_interval])
show {0..1} CUC
using ee [THEN conjunctl] by (auto simp: C_def dist_norm)
qed (use C_def in auto)
define kk where kk = {t € {0..1}. ball t (ee t / 3) € C'}
have kk01: kk C {0..1} by (auto simp: kk_ def)
define e where e = Min (ee ‘ kk)
have C’_eq: C' = (\t. ball t (ee t | 3)) ‘ kk
using C' by (auto simp: kk_def C_def)
have ee_pos[simp]: At. t € {0..1} = eet > 0
by (simp add: kk_def ee)
moreover have finite kk
using «<finite C'"y kk01 by (force simp: C’_eq inj_on__def ball_eq ball_iff dest:
ee_pos finite__imageD)
moreover have kk # {} using <{0..1} C|JC" C’_eq by force
ultimately have e > 0
using finite_less _Inf iff [of ee ‘ kk 0] kkO1 by (force simp: e_def)
then obtain N::nat where N > 0 and N: I /N < ¢/8
by (meson divide__pos__pos nat__approx__posE zero_less Suc zero_less _numeral)
have e le ee: N\i.i € kk = e < ee i
using «finite kk> by (simp add: e_def Min_le iff [of ee ¢ kk])
have plus: 3t € kk. € ball t (ee t / 3) if z € {0..1} for x
using C' subsetD [OF C'01 that] unfolding C’_eq by blast
have [OF order_refl]:
3d. 0 < d A (V). valid_path j A (Vu € {0..1}. norm(j u — k (n/N, u)) <
d) A linked_paths atends g j
— contour_integral j f = contour_integral g f)
if n < N for n
using that
proof (induct n)
case 0 show ?Zcase
using ee_ rule
by clarsimp (metis diff _self norm__eq zero vpg)
next
case (Suc n)
then have NOI: n/N € {0..1} (Suc n)/N € {0..1} by auto

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Cauchy Integral Theorem.thy 87

then obtain ¢ where #: t € kk n/N € ball t (eet / 3)
using plus [of n/N] by blast
then have nN_less: |[n/N — t| < ee t
by (simp add: dist_norm del: less_divide__eq numerall)
have n'N_less: |real (Suc n) / real N — t| < ee t
using ¢t N <N > 0> e_le_ee [of t]
by (simp add: dist_norm add__divide_distrib abs__diff less iff del: less_divide _eq numerall)
(simp add: field_simps)
have t01: t € {0..1} using <kk C {0..1}> <t € kk> by blast
obtain d! where dI > 0 and dI:
Nyl g2. [valid_path g1; valid_path ¢2;
Vue{0..1}. emod (g1 v — k (n/N, u)) < dI A cmod (g2 u — k
((Sucn) / N, u)) < dI;
linked__paths atends g1 ¢2]
= contour_integral g2 f = contour_integral g1 f
using ee [THEN conjunct2, rule_format, OF t01 NOI nN_less n’N_less] by
fastforce
have n < N using Suc.prems by auto
with Suc.hyps
obtain d2 where d2 > 0
and d2: Aj. [valid_path j; Vue{0..1}. cmod (j v — k (n/N, u)) < d2;
linked__paths atends g j]
= contour_integral j f = contour_integral g f
by auto
have Pair (n/ N) “{0..1} C{0..1} x {0..1}
using N0OI by auto
then have continuous_on {0..1} (k o (Au. (n/N, u)))
by (intro continuous__intros continuous_on__subset [OF contk))
then have pkn: path (Au. k (n/N, u))
by (simp add: path__def)
have min12: min d1 d2 > 0 by (simp add: <0 < dI» <0 < d2»)
obtain p where polynomial_function p
and psf: pathstart p = pathstart (Au. k (n/N, u))
pathfinish p = pathfinish (Au. k (n/N, u))
and pk_le: At. t€{0..1} = cmod (p t — k (n/N, t)) < min dI d2
using path__approx_polynomial_function [OF pkn min12] by blast
then have vpp: valid_path p using valid_path__polynomial function by blast
have lpa: linked paths atends g p
by (metis (mono__tags, lifting) NO1(1) ksf linked paths def pathfinish__def
pathstart__def psf)
show ?case
proof (intro exl; safe)
fix j
assume valid__path j linked__paths atends g j
and Yue{0..1}. cmod (j u — k (real (Suc n) / real N, w)) < min d1 d2
then have contour_integral j f = contour_integral p f
using pk_le NO1(1) ksf by (force introl: vpp d1 simp add: linked_paths__def
psf)

also have ... = contour_integral g f

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Theorem.html

Winding Numbers.thy 88

using pk_le by (force intro!: vpp d2 lpa)
finally show contour_integral j f = contour_integral g f .
qged (simp add: <0 < d1y <0 < d2»)
qed
then obtain d where 0 < d
Nj. valid_path j A (Vu € {0..1}. norm(ju — k (1,u)) < d) A
linked__paths atends g j
= contour_integral j f = contour__integral g f
using «(N>0) by auto
then have linked paths atends g h = contour_integral h f = contour_integral
9f
using «N>0) vph by fastforce
then show ?thesis
by (simp add: pathsf)
qed

proposition Cauchy theorem__homotopic_paths:
assumes hom: homotopic_paths S g h
and open S and f: f holomorphic_on S
and wvpg: valid_path g and vph: valid__path h
shows contour_integral g f = contour_integral h f
using Cauchy_theorem__homotopic [of True S g h| assms by simp

proposition Cauchy_theorem__homotopic_loops:
assumes hom: homotopic_loops S g h
and open S and f: f holomorphic_on S
and wvpg: valid_path g and vph: valid__path h
shows contour_integral g f = contour__integral h f
using Cauchy_theorem__homotopic [of False S g h] assms by simp

lemma has contour _integral _newpath:
[(f has_contour_integral y) h; f contour_integrable__on g; contour_integral g f
= contour_integral h f]
= (f has__contour_integral y) ¢
using has__contour_integral integral contour integral unique by auto

lemma Cauchy_theorem__null _homotopic:
[f holomorphic_on S; open S; valid_path g; homotopic_loops S g (linepath a

a)
= (f has__contour__integral 0) g
by (metis Cauchy__theorem__homotopic__loops contour_integrable__holomorphic__simple
valid__path__linepath

contour_integral__trivial has__contour _integral_integral homotopic_loops_imp_ subset)

end

3 Winding numbers

theory Winding_ Numbers

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 89

imports Cauchy_ Integral Theorem
begin

3.1 Definition

definition winding_number_prop :: [real = complex, complez, real, real = com-
plex, complex] = bool where
winding_number_prop v zep n =
valid_path p A z & path_image p A
pathstart p = pathstart v N
pathfinish p = pathfinish v A
(Vte{0..1}. norm(yt —pt) <e) A
contour_integral p (Aw. 1/(w — z)) = 2 x pi xi % n

definition winding number:: [real = complex, complex] = complex where
winding _number v z = SOME n. ¥ e > 0. A p. winding_number_prop v zep n

lemma winding number:
assumes path v z ¢ path_image v 0 < e
shows Jp. winding_number_prop v z e p (winding_number v z)
proof —
have path_image v C UNIV — {z}
using assms by blast
then obtain d
where d: d>0
and pi_eq: Ah1 h2. valid_path h1 A valid_path h2 A
(Vte{0..1}. cmod (h1t — v t) < d A cmod (h2t —~v t) < d) A
pathstart h2 = pathstart h1 A pathfinish h2 = pathfinish hi —
path_image h1 C UNIV — {z} A path_image h2 C UNIV —
{z} A
(Vf. f holomorphic_on UNIV — {z} — contour_integral h2 f
= contour_integral h1 f)
using contour_integral _nearby_ends [of UNIV — {z} 7] assms by (auto simp:
open,__delete)
then obtain h where h: polynomial_function h A pathstart h = pathstart v A
pathfinish h = pathfinish v A
(Vte{0..1}. norm(ht — v t) < d/2)
using path__approx__polynomial _function [OF <path v, of d/2] d by (metis
half gt _zero_iff)
define nn where nn = 1/(2x pixi) = contour_integral h (Aw. 1/(w — 2))
have 3dn. Ve > 0. dp. winding _number_prop v zepn
proof (rule_tac z=nn in ezl, clarify)
fix e::real
assume e: e>(
obtain p where p: polynomial_function p N
pathstart p = pathstart v A pathfinish p = pathfinish v A (Vt€{0..1}.
cmod (pt —yt) < mine (d/2))
using path__approz_polynomial__function [OF <path v+, of min e (d/2)] d

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 90

0<e
by (metis min_less iff conj zero_less divide iff zero_less _numeral)
have (Aw. I / (w — 2)) holomorphic_on UNIV — {z}
by (auto simp: intro!: holomorphic_intros)
then have winding number_prop v z e p nn
using pi_eq [of h p] hp d
by (auto simp: valid_path_polynomial function norm__minus_commute
nn__def winding_number_prop__def)
then show dp. winding number_prop v z e p nn
by metis
qed
then show ?thesis
unfolding winding_number_def by (rule somel2_ex) (blast intro: <0<e»)
qed

lemma winding number__unique:
assumes 7: path v z ¢ path_image v
and pi: Ae. e>0 = I p. winding_number_prop v zep n
shows winding _number v z = n
proof —
have path__image v C UNIV — {z}
using assms by blast
then obtain e
where e: e>0
and pi_eq: \h1 h2 f. [valid_path hi; valid_path h2;
(Vte{0..1}. cmod (h1t — v t) < e A cmod (h2t — v 1) < e);
pathstart h2 = pathstart hi; pathfinish h2 = pathfinish hi; f
holomorphic_on UNIV — {z}] =
contour__integral h2 f = contour__integral h1 f
using contour_integral _nearby__ends [of UNIV — {z} 4] assms by (auto simp:
open__delete)
obtain p where p: winding number_prop v z e p n
using pi [OF ¢] by blast
obtain ¢ where ¢: winding number_prop v z e q (winding_number v 2)
using winding_number [OF v e] by blast
have 2 % complex_of real pi * i * n = contour_integral p (Aw. 1 |/ (w — 2))
using p by (auto simp: winding_number_prop__def)
also have ... = contour_integral ¢ (Mw. 1 / (w — 2))
proof (rule pi_eq)
show (Aw. 1 / (w — z)) holomorphic_on UNIV — {z}
by (auto intro!: holomorphic_intros)
qed (use p g in <auto simp: winding _number _prop_ def norm_minus__commutey)
also have ... = 2 % complex_of real pi * i *x winding_number ~y z
using ¢ by (auto simp: winding_number_prop__def)
finally have 2 x complex of real pi x i x n = 2 % complex_of real pi * i %
winding__number v z .
then show ?thesis
by simp
qed

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 91

lemma winding number _prop_ reversepath:
assumes winding _number_prop y zep n
shows winding _number_prop (reversepath vy) z e (reversepath p) (—n)
proof —
have p: valid_path p z ¢ path_image p pathstart p = pathstart v
pathfinish p = pathfinish v \t. t € {0..1} = norm (vt — pt) < e
contour_integral p (Aw. 1 / (w — z)) = 2 % complex_of real pi 1% n
using assms by (auto simp: winding_number_prop__def)
show ?thesis
unfolding winding number_prop_ def
proof (intro conjI strip)
show norm (reversepath v t — reversepath p t) < eif t € {0..1} for ¢
unfolding reversepath__def using p(5)[of 1 — t] that by auto
show contour_integral (reversepath p) (Aw. 1 / (w — 2)) =
complex_of real (2 % pi) x1i* — n
using p by (subst contour_integral reversepath) auto
qed (use p in auto)
qed

lemma winding number__prop__reversepath__iff:
winding_number_prop (reversepath) z e p n +— winding_number_prop v z e
(reversepath p) (—n)
using winding _number_prop__reversepath|of reversepath v z e p n|
winding_number_prop__reversepath|of v z e reversepath p —n| by auto

lemma winding number _unique__loop:
assumes 7: path v z ¢ path_image
and loop: pathfinish v = pathstart ~y
and pi:
Ne. e>0 = I p. valid_path p A\ z & path__image p N
pathfinish p = pathstart p A
(Vte{0..1}. norm (vt —pt) <e) A
contour_integral p (Aw. 1/(w — 2z)) = 2 * pi xi % n
shows winding _number v z = n
proof —
have path_image v C UNIV — {z}
using assms by blast
then obtain e
where e: e>0
and pi_eq: Nh1 h2 f. [valid_path h1; valid_path h2;
(Vte{0..1}. ecmod (h1t — vy t) < e A cmod (h2t — v t) < e);
pathfinish h1 = pathstart h1; pathfinish h2 = pathstart h2; f
holomorphic_on UNIV — {z}] =
contour__integral h2 f = contour_integral hi f
using contour_integral_nearby_loops [of UNIV — {z} v] assms by (auto simp:
open,__delete)
obtain p where p:

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 92

valid_path p A z & path_image p A pathfinish p = pathstart p A
(Vte{0..1}. norm (vt —pt) <e) A
contour _integral p (Aw. 1/(w — 2z)) = 2 * pi xi % n
using pi [OF e] by blast
obtain ¢ where ¢: winding_number_prop v z e q (winding_number =y z)
using winding_number [OF ~ ¢] by blast
have 2 x complex_of real pi x i * n = contour_integral p (Aw. 1 / (w — 2))
using p by auto
also have ... = contour_integral ¢ (Aw. 1 |/ (w — 2))
proof (rule pi_eq)
show (Aw. 1 / (w — 2)) holomorphic_on UNIV — {z}
by (auto intro!: holomorphic_intros)
qged (use p q loop in <auto simp: winding _number _prop__def norm__minus__commute))
also have ... = 2 x complex_of real pi x i x winding_number v z
using ¢ by (auto simp: winding_number_prop__def)
finally have 2 x complex_of real pi x i x n = 2 % complexr_of real pi * i %
winding _number v z .
then show ?thesis
by simp
qed

proposition winding number__valid__path:
assumes valid_path v z ¢ path_image ~y
shows winding_number v z = 1/(2xpixi) * contour_integral v (Aw. 1/(w — 2))
by (rule winding _number_unique)
(use assms in <auto simp: valid_path_imp_ path winding _number _prop_ def»)

proposition has_contour_integral winding number:
assumes v: valid_path v z ¢ path_image
shows ((Aw. 1/(w — 2)) has_contour_integral (2xpixixwinding number v z))
Y
by (simp add: winding _number _wvalid_path has__contour integral integral con-
tour_integrable _inversediff assms)

lemma winding number _trivial [simp: z # « = winding_number(linepath a a)
z=10
by (simp add: winding number_valid_ path)

lemma winding _number _subpath_trivial [simp]: z # g © = winding_number
(subpath x x g) z = 0
by (simp add: path_image_subpath winding number_valid__path)

lemma winding number_join:
assumes y1: path v1 z ¢ path_image 1
and v2: path v2 z ¢ path_image 2
and pathfinish v1 = pathstart v2
shows winding_number(yl +++ v2) z = winding_number v1 z + wind-
ing__number v2 z
proof (rule winding_number_unique)

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 93

show I p. winding_number_prop (v1 +++ v2) zep
(winding_number v1 z + winding_number v2 z) if e > 0 for e
proof —
obtain p! where winding_number_prop v1 z e p1 (winding_number v1 z)
using <0 < ey v1 winding _number by blast
moreover
obtain p2 where winding_number_prop v2 z e p2 (winding_number 2 z)
using <0 < e» v2 winding _number by blast
ultimately
have winding_number_prop (y14++++2) z e (p1+++p2) (winding _number
~v1 z + winding _number 2 z)
using assms
apply (simp add: winding_number_prop_ def not_in_ path_image_join con-
tour_integrable _inversediff algebra__simps)
apply (auto simp: joinpaths__def)
done
then show ?thesis
by blast
qed
qed (use assms in <auto simp: not_in__path_image_joiny)

lemma winding number__reversepath:
assumes path v z ¢ path_image ~
shows winding_number(reversepath v) z = — (winding_number =y z)
proof (rule winding_number_unique)
show 3 p. winding_number_prop (reversepath v) z e p (— winding_number v z)
ife> 0 for e
proof —
obtain p where winding number_prop v z e p (winding _number ~y z)
using <0 < e» assms winding_number by blast
then have winding _number_prop (reversepath v) z e (reversepath p) (— wind-
ing_number vy z)
using assms unfolding winding number prop_ def
apply (simp add: contour_integral _reversepath contour _integrable inversediff
valid _path__imp_ reverse)
apply (auto simp: reversepath__def)
done
then show ?thesis
by blast
qed
qed (use assms in auto)

lemma winding number__shiftpath:
assumes 7: path v z ¢ path_image v
and pathfinish v = pathstart v a € {0..1}
shows winding__number(shiftpath a) z = winding_number v z
proof (rule winding_number_unique_loop)
show I p. valid_path p A z ¢ path_image p N pathfinish p = pathstart p A
(Vte{0..1}. cmod (shiftpath a vt — pt) < e) A

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 94

contour_integral p (Aw. 1 / (w — 2)) =
2 % pi * 1 % winding _number v z
if e > 0 for e
proof —
obtain p where winding number_prop v z e p (winding _number ~y z)
using <0 < e» assms winding _number by blast
then show %thesis
apply (rule_tac x=shiftpath a p in exl)
using assms that
apply (auto simp: winding number _prop_ def path_image__shiftpath pathfin-
ish__shiftpath pathstart _shiftpath contour _integral__shiftpath)
apply (simp add: shiftpath__def)
done
qed
qed (use assms in <auto simp: path__shiftpath path__image__shiftpath pathfinish__shiftpath
pathstart__shiftpathy)

lemma winding number _split_linepath:
assumes c € closed_segment a b z ¢ closed _segment a b
shows winding _number(linepath a b) z = winding_number(linepath a ¢) z +
winding__number(linepath ¢ b) z
proof —
have 2z ¢ closed_segment a ¢ z ¢ closed__segment ¢ b
using assms by (meson convezr__contains__segment convex__segment ends__in__segment
subsetCE)+
then show ?thesis
using assms
by (simp add: winding number_valid_path contour _integral split_linepath
[symmetric] continuous _on__inversediff field _simps)
qed

lemma winding number__cong:

(AL [0 <t t < 1] = pt = qt) = winding_number p z = winding_number
qz

by (simp add: winding number _def winding_number_prop_ def pathstart def
pathfinish__def)

lemma winding number__constl:
assumes c#z and g: \t. [0<t; i<I] = gt = ¢
shows winding_number g z = 0
proof —
have winding_number g z = winding_number (linepath c ¢) z
using g winding _number__cong by fastforce
moreover have winding_number (linepath ¢ ¢) z = 0
using (c#2) by auto
ultimately show #¢thesis by auto
qed

lemma winding _number_offset: winding _number p z = winding _number (Aw. p

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 95

w—2z)0
unfolding winding number_def
proof (intro ext arg_cong [where f = Eps| arg_cong [where f = All] imp__cong
refl, safe)
fixneg
assume 0 < e and g: winding_number_prop p ze gn
then show 3 7. winding _number_prop (Aw. pw — 2) 0ern
by (rule_tac x=At. gt — z in ezl)
(force simp: winding_number_prop__def contour_integral _integral valid__path__def
path__defs
vector__derivative__def has_wvector _derivative diff const piece-
wise_ C1_differentiable_diff C1_differentiable_imp_ piecewise)
next
fixneg
assume 0 < e and g¢: winding_number_prop (Aw. pw — z) O egn
then have winding _number_prop p z e (At. gt + 2) n
apply (simp add: winding _number_prop__def contour_integral _integral valid_ path__def
path__defs
piecewise_ C1__differentiable__add vector _derivative def has_vector _derivative _add__const
C1__differentiable_imp__piecewise)
apply (force simp: algebra__simps)
done
then show 3 r. winding number_prop p z e rn
by metis
qed

lemma winding _number_offset_ NO_MATCH:
NO_MATCH 0 z = winding_number p z = winding_number (Aw. p w — z) 0
using winding _number_offset by metis

lemma winding _number__negatepath:
assumes 7: valid_path v and 0: 0 ¢ path_image v
shows winding__number(uminus o v) 0 = winding_number v 0
proof —
have (/) 1 contour_integrable_on =y
using 0 v contour_integrable_inversediff by fastforce
then have ((Az. 1/z) has_contour_integral contour_integral v ((/) 1))
by (rule has__contour__integral integral)
then have ((Az. 1 / — z) has_contour_integral — contour_integral v ((/) 1))
~
using has__contour__integral neg by auto
then have contour_integral (uminus o v) ((/) 1) =
contour_integral v ((/) 1)
using v by (simp add: contour _integral _unique has__contour _integral negatepath)
then show ?thesis
using assms by (simp add: winding number_valid_path valid _path_negatepath
image__def path__defs)
qed

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 96

lemma winding number__cnj:
assumes path v z ¢ path_image ~
shows winding_number (c¢nj o v) (enj 2) = —cnj (winding_number v z)
proof (rule winding_number_unique)
show 3 p. winding_number_prop (c¢nj o) (enj z) e p (—enj (winding_number
v z))
if e > 0 for e
proof —
from winding_number|OF assms(1,2) <e > 0))
obtain p where winding number_prop v z e p (winding number ~y z)
by blast
then have p: valid_path p z ¢ path_image p
pathstart p = pathstart
pathfinish p = pathfinish
Nt.t€{0..1} = cmod (vt — pt) < eand
p__cont:contour_integral p (Aw. 1 / (w — z)) =
complez__of real (2 x pi) * 1 *x winding_number v z
unfolding winding number _prop_def by auto

have valid_path (cnj o p)
using p(1) by (subst valid_path__cnj) auto
moreover have cnj z ¢ path_image (¢nj o p)
using p(2) by (auto simp: path_image_def)
moreover have pathstart (¢cnj o p) = pathstart (cnj o)
using p(8) by (simp add: pathstart_compose)
moreover have pathfinish (cnj o p) = pathfinish (cnj o)
using p(4) by (simp add: pathfinish__compose)
moreover have cmod ((¢cnjo) t — (enjop) t) < e
if t: ¢t € {0..1} for t

proof —
have (ecnjo~y)t —(enjop)t=cnj(yt—pt)
by simp
also have norm ... = norm (y t — p t)
by (subst complex _mod__cnj) auto
also have ... < e

using p(5)[OF t] by simp
finally show ?thesis .
qed
moreover have contour _integral (c¢cnj o p) (Aw. 1 / (w — ¢nj 2)) =
cnj (complex_of real (2 x pi) * i x winding _number ~ z) (is YL=%R)
proof —
have ?L = contour_integral (c¢nj o p) (enj o (Aw. 1 / (enj w — 2)))
by (simp add: o__def)

also have ... = c¢nj (contour_integral p (Az. 1 / (z — 2)))
using p(1) by (subst contour _integral_cnj) (auto simp: o__def)
also have ... = 7R

using p_cont by simp
finally show ?thesis .
qed

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 97

ultimately show ¢thesis
by (intro exl[of _ cnj o p]) (auto simp: winding_number_prop_ def)

qed
show path (cnj o 7)

by (intro path__continuous__image continuous_intros) (use assms in auto)
show cnj z ¢ path_image (cnj o)

using <z ¢ path_image v» unfolding path_image def by auto

qed

A combined theorem deducing several things piecewise.

lemma winding number_join__pos_combined:
[valid__path v1; z ¢ path_image v1; 0 < Re(winding_number vy1 z);
valid_path v2; z ¢ path__image v2; 0 < Re(winding_number v2 2); pathfinish
~v1 = pathstart v2]
= walid_path(yl +++ v2) A z ¢ path_image(y1 +++ v2) A 0 <
Re(winding_number(y1 +++ v2) z2)
by (simp add: valid_path_join path__image_join winding _number_join valid_path__imp_ path)

3.1.1 Useful sufficient conditions for the winding number to be
positive

lemma Re winding_number:
[valid_path ~v; z ¢ path__image 7]
= Re(winding_number v z) = Im(contour_integral v (Aw. 1/(w — 2))) /
(2xpi)
by (simp add: winding_number_valid__path field__simps Re__divide power2_eq _square)

lemma winding number_pos_le:
assumes v: valid_path v z ¢ path__image
and ge: Az. [0 < x; 2 < 1] = 0 < Im (vector_derivative v (at) * cnj(y
T — z))
shows 0 < Re(winding number ~ z)
proof —
have ge0: 0 < Im (vector_derivative v (at x) / (v x — 2)) if z: 0 < zz < 1
for z
using ge by (simp add: Complex.Im__divide algebra__simps x)
let 2vd = Az. 1 | (v — z) * vector_derivative v (at x)
let %int = Az. contour_integral v (Aw. 1 / (w — 2))
have 0 < Im (%int z)
proof (rule has_integral_component_nonneg [of i, simplified])
show Az. z € cboz 01 = 0 < Im (if 0 < z Az < 1 then %vd else 0)
by (force simp: ge0)
have ((Aa. 1 / (a — 2)) has__contour_integral contour _integral v (Aw. 1 / (w
—)
using v by (simp flip: add: contour _integrable_inversediff has__contour_integral_integral)
then have hi: (?vd has_integral ?int z) (cbox 0 1)
using has__contour__integral by auto
show ((Az. if 0 < z Az < I then ?vd x else 0) has_integral ?int z) (cbox 0 1)
by (rule has_integral _spike_interior [OF hi]) simp

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 98

qed
then show ?thesis
by (simp add: Re_winding_number [OF ~| field__simps)
qed

lemma winding number_pos_ It lemma:
assumes v: valid_path v z ¢ path__image
and e: 0 < e
and ge: Az. [0 < z; 2 < 1] = e < Im (vector_derivative v (at z) / (y =
- 2))
shows 0 < Re(winding_number ~y z)
proof —
let 2vd = Az. 1 / (v — 2) * vector_derivative vy (al x)
let %int = Az. contour_integral v (Aw. 1 / (w — 2))
have e < Im (contour_integral v (Aw. 1 / (w — 2)))
proof (rule has_integral _component_le [of i Az. ixe ixe {0..1}, simplified])
have ((Aa. I / (a — 2)) has_contour_integral contour_integral v (Aw. 1 / (w
—)
thm has_integral_component_le [of 1 Ax. ixe ixe {0..1}, simplified]
using v by (simp add: contour_integrable__inversediff has__contour_integral _integral)
then have hi: (?vd has_integral ?int z) (cbox 0 1)
using has_contour_integral by auto
show ((A\z. if 0 < z A z < 1 then %vd z else i x e) has_integral ?int z) {0..1}
by (rule has_integral _spike_interior [OF hi, simplified boxz_real]) (use e in
sitmp)
show A\z. 0 <z Az< 1= e<Im(if0<zAzx<1then ?vd z else i x e)
by (simp add: ge)
qed (use has_integral_const_real [of _ 0 1] in auto)
with e show ?Zthesis
by (simp add: Re_winding_number [OF ~| field__simps)
qed

lemma winding number_pos_It:
assumes v: valid_path v z ¢ path_image
and e: 0 < e
and ge: Az. [0 < z; z < 1] = e < Im (vector_derivative v (at z) * cnj(y
T — z))
shows 0 < Re (winding_number v z)
proof —
have bm: bounded ((Aw. w — z) ‘ (path__image 7))
using bounded__translation [of _ —z] v by (simp add: bounded_valid__path__image)
then obtain B where B: B > 0 and Bno: A\z. z € (Aw. w — 2) ‘ (path_image
v) = norm z < B
using bounded pos [THEN iffD1, OF bm] by blast
{ fix z::real assume z: 0 < zz < 1
then have B2: ¢mod (y x — 2) 72 < B2 using Bno [of v z — 7]
by (simp add: path_image_ def power2_eq square mult_mono’)
with z have vy = # z using ~
using path__image__def by fastforce

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 99

then have ¢ / B2 < e / (cmod (v z — 2))?
using B B2 e by (auto simp: divide_left _mono)
also have ... < Im (vector_derivative v (at z) * cnj (y z — 2)) / (cmod (y z
— 2))?
using ge [OF z] by (auto simp: divide__right_mono)
finally have e / B? < Im (vector_derivative vy (at z) * cnj (y z — 2)) / (cmod
(vz—2))° .
then have e / B% < Im (vector_derivative v (at z) | (y © — 2))
by (simp add: complex_div_cnj [of _ v x — z for z] del: complex_cnj _diff
times__complezx.sel)
} note x = this
show ?thesis
using e B by (simp add: * winding_number_pos_It_lemma [OF v, of e/ B"2])
qed

3.2 The winding number is an integer

Proof from the book Complex Analysis by Lars V. Ahlfors, Chapter 4, sec-
tion 2.1, Also on page 134 of Serge Lang’s book with the name title, etc.

lemma exp fg:
fixes z::complex
assumes ¢: (g has_vector__derivative g') (at x within s)
and f: (f has_vector_derivative (¢’ / (g x — z))) (at z within s)
and z: gz # 2
shows ((Az. ezp(—f) * (g x — 2)) has_vector_derivative 0) (at x within s)
proof —
have x: (exp o (Az. (— fz)) has_vector_derivative — (g’ / (g z — z)) * exp (—
fz)) (at z within s)
using assms unfolding has wvector _derivative def scaleR__conv_of real
by (auto introl: derivative _eq intros)
show ?thesis
using z by (auto introl: derivative _eq intros x [unfolded o_def] g)
qed

lemma winding number__exp_integral:
fixes z::complex
assumes v: v piecewise_ C1_ differentiable _on {a..b}
and ab: a < b
and z: z ¢ v ‘{a..b}
shows (Az. vector_derivative v (at z) / (v x — z)) integrable_on {a..b}
(is ?thesisl)
exp (— (integral {a..b} (Az. vector _derivative vy (at x) |/ (v z — 2)))) * (v
b—2)=va-—2z2
(is ?thesis?2)
proof —
let 2Dy = Axz. vector_derivative v (at x)
have [simp]: A\z. e <z =z < b= vz # 2
using z by force
have con__g: continuous_on {a..b} =y

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 100

using v by (simp add: piecewise_C1__differentiable__on__def)
obtain k£ where fink: finite k and g C1_diff: v C1_differentiable_on ({a..b}
— k)
using v by (force simp: piecewise_ C1__differentiable_on__def)
have o: open ({a<..<b} — k)
using «finite k» by (simp add: finite _imp__closed open__ Diff)
moreover have {a<..<b} — k C {a..b} — k
by force
ultimately have ¢_diff at: N\z. [z ¢ k; z € {a<..<b}] = v differentiable at
x
by (metis Diff _iff differentiable_on__subset C1_diff imp_ diff [OF g_C1_ diff]
differentiable _on__def at_within__open)
{ fix w
assume w # z
have continuous_on (ball w (cmod (w — 2))) (Aw. I / (w — 2))
by (auto simp: dist_norm introl: continuous_intros)
moreover have Az. cmod (w — z) < emod (w — z) = If". (Aw. 1 / (w —
z)) has_field derivative f') (at z)
by (auto simp: introl: derivative__eq intros)
ultimately have 3 5. Vy. norm(y — w) < norm(w — z) — (h has_ field_ derivative
1/(y — 2)) (at y)
using holomorphic__convexr_primitive [of ball w (norm(w — 2)) {} Aw. 1/(w
~)
by (force simp: field _differentiable_def Ball def dist_norm at_within_open_ NO_MATCH
norm__minus__commaute)
}
then obtain h where h: Aw y. w # z = norm(y — w) < norm(w — z) =
(h w has__field__derivative 1/(y — 2)) (at y)
by meson
have ezy: 3y. ((Az. inverse (y z — z) x ?Dvy z) has_integral y) {a..b}
unfolding integrable _on__def [symmetric]
proof (rule contour_integral _local _primitive__any [OF piecewise__C1_imp__differentiable
OF)
show 3d h. 0 < d A
(Vy. emod (y — w) < d — (h has_field _derivative inverse (y —
z))(at y within — {z}))
if we — {2} for w
using that inverse__eq divide has_field_derivative__at_within h
by (metis Compl_insert Diff D2 insertCI right_minus__eq zero__less _norm__iff)
qed simp
have vg_int: (Az. Dy z / (y z — z)) integrable_on {a..b}
unfolding boz_real [symmetric] divide__inverse__commute
by (auto intro!: exy integrable subinterval simp add: integrable _on__def ab)
with ab show ?thesis1
by (simp add: divide inverse__commute integral def integrable on__def)
{ fix t
assume t: t € {a..b}
have cball: continuous__on (ball (v t) (dist (v t) z)) (Az. inverse (z — 2))
using z by (auto intro!: continuous_intros simp: dist_norm)

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 101

have icd: Az. cmod (v t — x) < emod (v t — 2) = (Aw. inverse (w — z))
field__differentiable at x
unfolding field_differentiable_def by (force simp: introl: derivative__eq intros)
obtain 7 where h: Az. cmod (y t — z) < emod (v t — 2) =
(h has__field__derivative inverse (x — z)) (at x within {y. cmod
(vt —y) <cmod (yt— 2)})
using holomorphic__convex_primitive [where f = Aw. inverse(w — z), OF
convez,__ball finite.emptyl cball icd]
by simp (auto simp: ball_def dist_norm that)
have exp (— (integral {a..t} Az. Dy x / (yz —2)))x (vt —2)=ya— z
proof (rule has_derivative__zero__unique__strong__interval [of {a,b} U k a b])
show continuous_on {a..b} (Ab. exp (— integral {a..b} (\x. Dy x / (y z —
2 % (7 b — 2))
by (auto introl: continuous_intros con__g indefinite__integral continuous 1
[OF vg__int])
show ((Ab. exp (— integral {a..b} (Az. 2Dy z / (y & — 2))) * (v b — 2))
has__derivative (Ah. 0))
(at = within {a..b})
if z € {a..0} — ({a, b} U k) for z
proof —
have ::z ¢ ka<zz <b
using that by auto
then have z € interior ({a..b} — k)
using open__subset__interior [OF o] by fastforce
then have con: isCont ?D~v z
using g_ C1_diff z by (auto simp: C1__differentiable_on__eq intro: contin-
uous__on__interior)
then have con_wvd: continuous (at z within {a..b}) (Az. Dy z)
by (rule continuous__at_imp__continuous_within)
have gdx: v differentiable at
using z by (simp add: g_diff _at)
then obtain d where d: (v has_derivative (A\z. z *g d)) (at z)
by (auto simp add: differentiable_iff _scaleR)
show ((Ac. exp (— integral {a..c} (A\x. Dy z [/ (v z — 2))) * (y ¢ — 2))
has_derivative (Ah. 0))
(at x within {a..b})
proof (rule exp_fg [unfolded has_vector_derivative_def, simplified))
show (v has_derivative (Ac. ¢ xg d)) (at z within {a..b})
using d by (blast intro: has_derivative _at_withinl)
have ((A\z. integral {a..x} (Az. ?Dy z / (v ¢ — 2))) has_vector_derivative
d/(yz—2)
(at z within {a..b})
proof (rule has_wvector_derivative__eq _rhs [OF integral _has_vector__derivative__continuous__at
[where S = {}, simplified]))
show continuous (at © within {a..b}) (Az. vector _derivative v (at z) /
(v 7 2)
using continuous _at_imp_ continuous__at_within differentiable _imp__ continuous within
gdr
by (intro con_vd continuous_intros) (force+)

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 102

show wvector _derivative v (atz) /| (vz — 2)=d [/ (y x — 2)
using d vector__derivative at
by (simp add: vector__derivative_at has_vector_derivative__def)
qed (use z vg_int in auto)
then show ((Az. integral {a..z} (A\x. ?Dy z / (y © — 2))) has_derivative
(Ac. cxp (d/ (v 2 = 2))))
(at z within {a..b})
by (auto simp: has_vector_derivative__def)
qged (use z in auto)
qed
qed (use fink t in auto)

with ab show ?thesis2
by (simp add: divide _inverse__commute integral__def)
qed

lemma winding number _exp_ 2pi:

[path p; z ¢ path_image p]

= pathfinish p — z = exp (2 * pi * i * winding_number p z) * (pathstart p
—2)
using winding_number [of p z 1] unfolding valid_path__def path__image__def path-
start__def pathfinish__def winding _number__prop_ def

by (force dest: winding _number__exp_integral(2) [of __ 0 1 2] simp: field simps

contour_integral_integral exp minus)

lemma integer _winding number _eq:
assumes 7: path v and z: z ¢ path__image ~
shows winding number v z € Z <— pathfinish v = pathstart ~
proof —
obtain p where p: valid_path p z ¢ path_image p
pathstart p = pathstart v pathfinish p = pathfinish ~y
and eq: contour_integral p (Aw. 1 / (w — z)) = complex_of _real (2 *
pi) x 1 x winding _number v z
using winding_number [OF assms, of 1] unfolding winding number_prop _def
by auto
then have wneq: winding number v z = winding_number p z
using eq winding _number_valid_path by force
have iff: (winding _number v z € Z) +— (exp (contour_integral p (Aw. 1 / (w
—) = 1)
using eq by (simp add: exp_eq 1 complex_is Int iff)
have v 0 # 2
by (metis pathstart_def pathstart_in__path_image 2)
then have ezp (contour_integral p (Aw. 1 / (w —2)))=(y 1 —2)/ (v 0 — 2)
using p winding _number _exp_integral(2) [of p 0 1 2]
by (simp add: valid_path__def path__defs contour _integral_integral exp_minus
field__split_simps)
then have winding number p z € Z +— pathfinish p = pathstart p
using p wneq iff by (auto simp: path__defs)
then show ?thesis using p eq

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 103

by (auto simp: winding_number__valid__path)
qed

theorem integer winding number:

[path v; pathfinish v = pathstart v; z ¢ path__image v] = winding_number
z €L
by (metis integer_winding number _eq)

If the winding number’s magnitude is at least one, then the path must
contain points in every direction.*) We can thus bound the winding number
of a path that doesn’t intersect a given ray.

lemma winding number_pos meets:
fixes z::complex
assumes v: valid__path v and z: z ¢ path_image v and 1: Re (winding_number
v 2) > 1
and w: w # 2
shows Ja:real. 0 < a A z + of real a x (w — z) € path_image ~y
proof —
have [simp]: A\z. 0 <2 =<1 = yax #z
using z by (auto simp: path_image_def)
have [simp]: z ¢ v < {0..1}
using path__image_ def z by auto
have gpd: v piecewise_ C1__differentiable_on {0..1}
using v valid__path_def by blast
define r where r = (w — 2) / (v 0 — 2)
have [simp]: r # 0
using w z by (auto simp: r_def)
have cont: continuous_on {0..1}
(Az. Im (integral {0..x} (Az. vector_derivative v (at) / (v x — 2))))
by (intro continuous__intros indefinite_integral _continuous__1 winding_number_exp__integral
[OF gpd]; simp)
have Arg2pi r < 2xpi
by (simp add: Arg2pi less _eq real def)
also have ... < Im (integral {0..1} (Az. vector_derivative v (at z) / (y © —
2)))
using 1
by (simp add: winding _number_valid_path [OF ~ z] contour_integral integral
Complex.Re__divide field__simps power2__eq square)
finally have Arg2pi r < Im (integral {0..1} (Az. vector_ derivative v (at z) /
(3 2)) -
then have 3¢. t € {0..1} A Im(integral {0..t} (Azx. vector_derivative v (at x)/(~y
x — 2))) = Arg2pir
by (simp add: Arg2pi_ge 0 cont IVT’)
then obtain ¢ where &: ¢t € {0..1}
and eqArg: Im (integral {0..t} (Az. vector_derivative v (at z)/(y x
— 2))) = Arg2pir
by blast
define ¢ where i = integral {0..t} (Az. vector_derivative v (at) / (v © — 2))
have gpdt: v piecewise C1_differentiable _on {0..t}

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 104

by (metis atLeastAtMost_iff atLeastatMost__subset__iff order _refl piecewise_C1__differentiable__on__subset
gpd t)
have ezp (—) * (yt —2) =70 — 2
unfolding i def
proof (rule winding_number_exp__integral [OF gpdt))
show z ¢ v “{0..t}
using ¢ z unfolding path_image def by force
qed (use t in auto)
then have x: vt — z=capix (y 0 — 2)
by (simp add: exp_minus field_simps)
then have (w — 2) =7 x (y 0 — 2)
by (simp add: r_def)
moreover have z + exp (Re i) * (exp (i Im i)« (y 0 — 2)) =7 ¢
using * by (simp add: exp__eq polar field__simps)
moreover have Arg2pir = Im i
using eqArg by (simp add: i_def)
ultimately have z + complez_of real (exp (Re i)) * (w — z) / complex_of real
(ecmod r) =~ t
using Complex_ Transcendental. Arg2pi_eq [of 7] < # O»
by (metis mult.left_commute nonzero_mult _div_cancel_left norm__eq zero
of _real_0 of real_eq iff times_divide _eq_left)
with ¢ show ?thesis
by (rule_tac x=exp(Re i) / norm r in exl) (auto simp: path_image_ def)
qed

lemma winding number_big meets:
fixes z::complex
assumes 7: valid_path v and z: z ¢ path_image v and |Re (winding _number
v2)| =1
and w: w # z
shows Ja:real. 0 < a A z + of _real a * (w — 2) € path__image ~y
proof —
{ assume Re (winding_number v z) < — 1
then have Re (winding_number (reversepath vy) z) > 1
by (simp add: vy valid_path_imp_path winding _number_reversepath z)
moreover have valid_path (reversepath)
using v valid_path_imp_ reverse by auto
moreover have z ¢ path_image (reversepath)
by (simp add: z)
ultimately have Ja:real. 0 < a A z + of real a * (w — z) € path_image
(reversepath)
using winding_number_pos _meets w by blast
then have ?thesis
by simp
}
then show ?thesis
using assms
by (simp add: abs__if winding number _pos_meets split: if _split_asm)
qed

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 105

lemma winding number less 1:
fixes z::complex
shows
[valid__path ~v; z ¢ path_image v; w # z;
Nazreal. 0 < a = z + of _real a x (w — z) ¢ path_image 7]
= Re(winding_number v z) < 1
by (auto simp: not_less dest: winding number_ _big _meets)

One way of proving that WN=1 for a loop.

lemma winding number_eq 1:
fixes z::complex
assumes v: valid_path v and z: z ¢ path_image v and loop: pathfinish v =
pathstart -
and 0: 0 < Re(winding_number «y z) and 2: Re(winding _number v z) < 2
shows winding_number v z = 1
proof —
have winding_number v z € Ints
by (simp add: ~ integer _winding _number loop valid__path__imp_path z)
then show ?thesis
using 0 2 by (auto simp: Ints_def)
qed

3.3 Continuity of winding number and invariance on con-
nected sets

theorem continuous at_winding number:
fixes z::complex
assumes 7: path v and z: z ¢ path__image ~
shows continuous (at z) (winding _number)
proof —
obtain e where e>0 and cbg: cball z e C — path__image v
using open__contains__cball [of — path_image v] z
by (force simp: closed_def [symmetric] closed_path_image [OF ~])
then have ppag: path_image v C — cball z (e/2)
by (force simp: cball_def dist_norm)
have oc: open (— cball z (e/2))
by (simp add: closed_def [symmetric])
obtain d where d>0 and pi_eq:
Ah1 h2. [valid_path h1; valid_path h2;
(Vte{0..1}. ecmod (h1t — v t) < d A cmod (h2t — v t) < d);
pathstart h2 = pathstart h1; pathfinish h2 = pathfinish h1]
—
path_image h1 C — cball z (e/2) A
path__image h2 C — cball z (e/2) A
(Vf. f holomorphic_on — cball z (e/2) — contour_integral h2 f =
contour_integral h1 f)
using contour__integral_nearby__ends [OF oc v ppag] by metis
obtain p where valid_path p z ¢ path_image p

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 106

and p: pathstart p = pathstart v pathfinish p = pathfinish v
and pg: A\t. te{0..1} = cmod (yt —pt) < minde/2
and pi: contour_integral p (Az. 1 / (z — 2)) = complex_of real (2 *
pi) * 1 % winding_number v z
using winding_number [OF ~ z, of min d e/2] «d>0> <e>0> by (auto simp:
winding_number_prop__def)
{ fix w
assume d2: cmod (w — z) < d/2 and e2: cmod (w — z) < e/2
have wnotp: w ¢ path_image p
proof (clarsimp simp add: path_image def)
show False if w: w=pzxand 0 < zxz < 1 for z
proof —
have cmod (y z — p z) < min d e/2
using pg that by auto
then have cmod (z — v z) < e
by (metis e2 less__divide__eq _numerall (1) min_less iff conj norm_minus__commute
norm__triangle _half 1 w)
then show ?thesis
using cbg that by (auto simp add: path_image def cball_def dist_norm
less_eq _real_def)
qed
qed
have wnotg: w ¢ path__image 7
using cbg €2 <e>0) by (force simp: dist_norm norm__minus__commute)
{ fix k::real
assume k: k>0
then obtain ¢ where ¢: valid _path q w ¢ path__image q
pathstart ¢ = pathstart v N\ pathfinish ¢ = pathfinish ~
and qg: A\t. t € {0..1} = cmod (v t — ¢ t) < min k (min d e)

/ 2
and qi: contour_integral ¢ (Au. 1 / (u — w)) = complex__of _real
(2 * pi) x 1 * winding_number v w
using winding_number [OF v wnotg, of min k (min d e) / 2] <d>0> <e>0»
k
by (force simp: min__divide_ distrib__right winding _number_prop__def)
moreover have At. t € {0..1} = cmod (gt — v t) < d A cmod (p t — 7
t) < d
using pg qg <0 < d» by (fastforce simp add: norm__minus _commute)
moreover have (Au. I / (u—w)) holomorphic_on — cball z (e/2)
using e2 by (auto simp: dist_norm norm__minus__commute introl: holo-
morphic_intros)
ultimately have contour_integral p (Au. 1 / (v — w)) = contour_integral q
Au. 1/ (u — w))
by (metis p <valid_path p» pi_eq)
then have contour_integral p (Az. 1 / (x — w)) = complex_of real (2 * pi)
* 1 % winding__number v w
by (simp add: pi gi)
} note pip = this
have path p

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 107

by (simp add: <valid__path p> valid _path_imp_ path)
moreover have Ae. e > 0 = winding_number_prop p w e p (winding_number
v w)
by (simp add: <valid_path ps pip winding_number_prop_ def wnotp)
ultimately have winding number p w = winding_number v w
using winding__number_unique wnotp by blast
} note wnwn = this
obtain pe where pe>0 and cbp: cball z (3 / 4 * pe) C — path_image p
using <walid__path py <z ¢ path__image p> open__contains__cball [of — path_image
pl
by (force simp: closed__def [symmetric] closed_path__image [OF valid_path__imp__path))
obtain L
where L>0
and L: \f B. [f holomorphic_on — cball z (3 | 4 * pe);
Vze — cball z (8 /) 4 * pe). emod (f 2) < B] =
cmod (contour _integral p f) < L x B
using contour_integral _bound _exists [of — cball z (3 /4xpe) p] cbp <valid_path
p» by blast
{ fix e:real and w::complex
assume e: 0 < e and w: cmod (w — 2) < pe/4 cmod (w — z) < e * pe? /| (8
* L)
then have [simp|: w ¢ path_image p
using cbp p(2) <0 < pe
by (force simp: dist_norm norm_minus__commute path__image_def cball_def)
have [simp]: contour_integral p (Ax. 1/(x — w)) — contour_integral p (Ax.

1)(z = 2) =
contour_integral p (Az. 1/(x — w) — 1/(z — 2))
by (simp add: <valid__path py <z ¢ path__image p> contour _integrable _inversediff
contour_integral__diff)
{ fix z
assume pe: 3/4 * pe < cmod (z — =)
have cmod (w — z) < pe/4 + cmod (z —)
by (meson add_less cancel right norm__diff triangle le order _refl or-
der_trans_rules(21) w(1))
then have wz: ¢mod (w — z) < 4/3 % cmod (z — x) using pe by simp
have cmod (z — z) < emod (z — w) + ecmod (w — x)
using norm_ diff _triangle_le by blast
also have ... < pe/4 + cmod (w — z)
using w by (simp add: norm_minus__commute)
finally have pe/2 < cmod (w —)
using pe by auto
then have pe_less: (pe/2)72 < e¢cmod (w — z) 2
by (simp add: <0 < pe> less_eq_real_def power _strict_mono)
then have pe2: pe ™2 < 4 * cmod (w — z) ~ 2
by (simp add: power_divide)
have 8 * L * cmod (w — z) < e * pe?
using w <L>0) by (simp add: field_simps)
also have ... < e * 4 * ecmod (w —) * cmod (w —)
using pe2 <e>0» by (simp add: power2_eq square)

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 108

also have ... < e* 4 * ecmod (w —) x (4/3 * cmod (z — x))
using <0 < pe> pe_less e less_eq real def wx by fastforce
finally have L % cmod (w — z) < 2/8 x e x cmod (w — z) * ¢mod (z — x)
by simp
also have ... < e *x cmod (w —) * ecmod (z —)
using e by simp
finally have Lwz: L * cmod (w — z) < e ¥ cmod (w —) * cmod (z — z) .
have L x cmod (1 / (z —w) — 1/ (z—2)) < e
proof (cases =z V x=w)
case True
with pe <pe>0> w <L>0>
show ?thesis
by (force simp: norm__minus__commute)
next
case Fulse
with wz w(2) <L>0 pe pe2 Lwz
show ?thesis
by (auto simp: divide simps mult_less 0 _iff norm__minus__commute
norm__diwide norm_mult power2__eq _square)
qed
} note L__cmod_le = this
let of = (Ax. 1/ (z —w)— 1/ (x— 2))
have cmod (contour integral p ?f) < L (e * pe? / L | 4 x (inverse (pe /
2))%)
proof (rule L)
show ?f holomorphic_on — cball z (3 / 4 * pe)
using <pe>0» w
by (force simp: dist_norm norm_ minus__commute introl: holomorphic__intros)
show Vu €— cball z (3 / 4 * pe). emod (?fu) < ex* pe? | L | 4 * (inverse
(pe / 2))?
using <pe>0> w «L>0>
by (auto simp: cball _def dist_norm field _simps L_cmod_le simp del:
less__divide _eq numerall le_divide__eq numerall)
qed
also have ... < 2xe
using <L>0» e by (force simp: field__simps)
finally have cmod (winding number p w — winding_number p z) < e
using pi _ge two e
by (force simp: winding _number _valid_path <valid_path p> <z ¢ path_image
p» field _simps norm__divide norm__mult intro: less_le_ trans)
} note cmod_wn__diff = this
have isCont (winding_number p) z
proof (clarsimp simp add: continuous__at__eps delta)
fix e::real assume e>0
show 3d>0.Vz' distz' 2 < d — dist (winding_number p ") (winding_number
pz)<e
using <pe>0> <L>0> <e>0»
by (rule_tac x=min (pe/4) (e/2xpe”2/L/4) in exI) (simp add: dist_norm
cmod_wn__diff)

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 109

qed
then show ?thesis
apply (rule continuous_transform_ within [where § = min d e/2])
apply (auto simp: <«d>0> <e>0» dist_norm wnwn)
done
qed

corollary continuous on_ winding number:
path v = continuous_on (— path_image) (Aw. winding_number v w)
by (simp add: continuous__at_imp__continuous__on continuous__at_winding_number)

3.4 The winding number is constant on a connected region

lemma winding number__constant:
assumes : path v and loop: pathfinish v = pathstart v and cs: connected S
and sg: S N path_image v = {}
shows winding number v constant_on S
proof —
have x: 1 < ¢mod (winding_number v y — winding_number v z)
if ne: winding _number v y # winding_number v z and y € Sz € S for y 2
proof —
have winding_number v y € Z winding_number v z € Z
using that integer__winding _number [OF ~ loop] sg <y € S» by auto
with ne show ?thesis
by (auto simp: Ints_def simp flip: of _int_diff)
qed
have cont: continuous_on S (Aw. winding_number v w)
using continuous_on_winding _number [OF v] sg
by (meson continuous _on__subset disjoint_eq subset_ Compl)
show ?thesis
using * zero_less _one
by (blast intro: continuous_discrete_range__constant [OF cs cont))
qed

lemma winding number__eq:
[path ~; pathfinish v = pathstart v; w € S; z € S; connected S; S N path__image
v ={}]
= winding__number v w = winding_number vy z
using winding_number__constant by (metis constant_on__def)

lemma open_winding__number_levelsets:
assumes : path v and loop: pathfinish v = pathstart ~
shows open {z. z ¢ path_image v A\ winding_number v z = k}
proof (clarsimp simp: open__dist)
fix z assume z: z ¢ path_image v and k: k = winding_number v z
have open (— path__image)
by (simp add: closed_path__image v open__ Compl)
then obtain e where e>0 ball z e C — path__image v
using open__contains_ball [of — path_image] z by blast

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 110

then show Je>0. Vy. dist y z < e — y ¢ path_image v A winding _number
v y = winding _number v z
using (e>0» by (force simp: norm_minus_commute dist_norm intro: wind-
ing_number_eq [OF assms, where S = ball z ¢])
qed

3.5 Winding number is zero "outside" a curve

proposition winding number_zero_in_ outside:
assumes 7: path v and loop: pathfinish v = pathstart v and z: z € outside
(path__image)
shows winding number v z = 0
proof —
obtain B::real where 0 < B and B: path_image v C ball 0 B
using bounded__subset_ballD [OF bounded__path_image [OF ~]] by auto
obtain w::complex where w: w ¢ ball 0 (B + 1)
by (metis abs_of nonneg le_less less_irrefl mem__ball _0 norm__of real)
have — ball 0 (B + 1) C outside (path__image)
using B subset_ball by (intro outside__subset__convex) auto
then have wout: w € outside (path__image)
using w by blast
moreover have winding number v constant_on outside (path_image)
using winding_number_constant [OF ~ loop, of outside(path__image)] con-
nected__outside
by (metis DIM__complex bounded__path__image dual__order.refl v outside _no__overlap)
ultimately have winding number v z = winding number v w
by (metis (no_types, opaque_lifting) constant_on__def z)
also have ... =0
proof —
have wnot: w ¢ path_image v using wout by (simp add: outside def)
{ fix e::real assume 0<e
obtain p where p: polynomial_function p pathstart p = pathstart vy pathfinish
p = pathfinish ~
and pgl: (At. [0 < t;t < 1] = cmod (pt — v t) < 1)
and pge: (Nt. [0 < t;t < 1] = cmod (pt — v t) <e)
using path__approz__polynomial_function [OF ~, of min 1 €] <e>0>
by (metis atLeastAtMost_iff min_less iff conj zero_less one)
have 3 p. valid_path p A w ¢ path_image p A
pathstart p = pathstart v A\ pathfinish p = pathfinish v A
(Vte{0..1}. cmod (y t — p t) < e) A contour integral p (Awa. 1
/ (wa — w)) =0
proof (intro exI conjI)
have Az. [0 < z; 2 < 1] = cmod (pz) < B+ 1
using B unfolding image subset_iff path__image def
by (meson add__strict_mono atLeastAtMost_iff le_less trans mem__ball_0
norm__triangle _sub pgl)
then have pip: path _image p C ball 0 (B + 1)
by (auto simp add: path_image_def dist_norm ball_def)
then show w ¢ path_image p using w by blast

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 111

show wvap: valid__path p
by (simp add: p(1) valid_path__polynomial_function)
show Vite{0..1}. cmod (y t — pt) < e
by (metis atLeastAtMost_iff norm__minus__commute pge)
show contour_integral p (Awa. 1 / (wa — w)) = 0
proof (rule contour _integral_unique [OF Cauchy__theorem__convex_simple
[OF _ convex_ball [of 0 B+1]]])
have A\z. cmod 2 < B+ 1 = z # w
using mem__ball_0 w by blast
then show (A\z. 1 / (z — w)) holomorphic_on ball 0 (B + 1)
by (intro holomorphic_intros; simp add: dist_norm)
qed (use p vap pip loop in auto)
ged (use p in auto)

then show ?thesis
by (auto intro: winding_number_unique [OF ~| simp add: winding_number_prop__def
wnot)
qed
finally show ?thesis .
qed

corollary winding number_zero__const: a # z => winding_number (\t. a) z =
0
by (rule winding_number _zero_in_ outside)
(auto simp: pathfinish__def pathstart_def path__polynomial_function)

corollary winding number__zero__outside:
[path ~; convezx s; pathfinish v = pathstart v; z ¢ s; path_image v C s] =
winding_number v z = 0
by (meson convex_in_ outside outside__mono subsetCE winding_number__zero__in__outside)

lemma winding number_zero__at_infinity:
assumes v: path v and loop: pathfinish v = pathstart ~
shows 3 B. Vz. B < norm z — winding_number v z = 0
proof —
obtain B::real where 0 < B and B: path_image v C ball 0 B
using bounded__subset_ballD [OF bounded__path_image [OF ~]] by auto
have winding _number v z = 0 if B + 1 < cmod z for z
proof (rule winding_number _zero__outside [OF ~ convex__cball loop))
show z ¢ cball 0 B
using that by auto
show path_image v C cball 0 B
using B order.trans by blast
qed
then show ?thesis
by metis
qed

lemma bounded winding _number_nz:

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 112

assumes path g pathfinish g = pathstart g
shows bounded {z. winding_number g z # 0}
proof —
obtain B where Az. norm z > B = winding_number g © = 0
using winding_number_zero__at_infinity|OF assms] by auto
thus ?thesis
unfolding bounded iff by (intro exI[of _ B + 1]) force
qed

lemma winding number_zero__point:
[path ~v; convex S; pathfinish v = pathstart 7; open S; path_image v C 5]
= Jdz. z € § A winding_number v z = 0
using outside__compact_in_open [of path_image v S| path_image_nonempty
winding__number__zero__in__ outside
by (fastforce simp add: compact_path__image)

If a path winds round a set, it winds rounds its inside.

lemma winding number__around__inside:
assumes v: path v and loop: pathfinish v = pathstart ~
and cls: closed S and cos: connected S and S_disj: S N path_image v = {}
and z: z € S and wn_ nz: winding _number v z # 0 and w: w € S U inside

S
shows winding number v w = winding _number v z
proof —
have ssb: S C inside(path_image)
proof

fix z :: complex
assume z € S
hence = ¢ path__image
by (meson disjoint_iff not_equal S _disj)
thus z € inside (path_image)
by (metis Compl_iff S_disj UnE ~ <x € S) cos inside_outside loop wind-
ing_number_eq winding _number_zero_in__outside wn_nz z)
qged
show ?thesis
proof (rule winding_number_eq [OF ~y loop w))
show z € S U inside S
using z by blast
show connected (S U inside S)
by (simp add: cls connected_with__inside cos)
show (S U inside S) N path_image v = {}
unfolding disjoint_iff Un__iff
by (metis ComplD Unll ~ cls compact_path_image connected_path_image
inside__Un__outside inside_inside__compact__connected ssb subsetD)
qed
qed

Bounding a WN by 1/2 for a path and point in opposite halfspaces.

lemma winding number__subpath__continuous:

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 113

assumes v: valid_path v and 2: z ¢ path_image ~
shows continuous_on {0..1} (Az. winding _number(subpath 0 x 7) z)
proof (rule continuous_on__eq)
let ?f = Az. integral {0..x} (At. vector_derivative v (at t) / (v t — 2))
show continuous_on {0..1} (Az. 1 / (2 % pi x i) x ?f x)
proof (intro indefinite_integral continuous 1 winding_number _exp integral
continuous__intros)
show ~ piecewise_ C1__differentiable_on {0..1}
using v valid__path_def by blast
qed (use path_image_def z in auto)
show 1 / (2 x pi * 1) *x ?f x = winding_number (subpath 0 z) z
if 2: 2z € {0..1} for z
proof —
have 1 / (2xpixi) * 2f x = 1 /| (2xpixi) * contour_integral (subpath 0 z)
Aw. 1/(w — 2))
using assms x

by (simp add: contour_integral__subcontour _integral [OF contour _integrable_inversediff])

also have ... = winding_number (subpath 0 x) z
proof (subst winding _number_valid__path)
show z ¢ path_image (subpath 0 x)
using assms = atLeastAtMost_iff path__image_subpath__subset by force
qed (use assms z valid__path__subpath in <force+»)
finally show ?thesis .
qed
qed

lemma winding number__ivt_pos:
assumes 7: valid_path v and z: z ¢ path_image v and 0 < ww < Re(winding_number
v z)
shows 3t € {0..1}. Re(winding_number(subpath 0t) z) = w
proof —
have continuous_on {0..1} (Az. winding_number (subpath 0 x 7y) z)
using v winding__number__subpath__continuous z by blast
moreover have Re (winding_number (subpath 00 v) z) < ww < Re (winding_number
(subpath 0 1) z)
using assms by (auto simp: path_image_def image__def)
ultimately show ?thesis
using ivt_increasing_component_on__1[of 0 1, where 2k = 1] by force
qed

lemma winding number_ivt_neg:
assumes v: valid_path v and z: z ¢ path_image v and Re(winding _number
vyz2)<ww< 0
shows 3t € {0..1}. Re(winding_number(subpath 0t v) z) = w
proof —
have continuous_on {0..1} (Az. winding _number (subpath 0 x v) z)
using v winding__number__subpath__continuous z by blast
moreover have Re (winding _number (subpath 0 0) z) > ww > Re (winding _number
(subpath 0 1) z)

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 114

using assms by (auto simp: path_image_ def image_def)
ultimately show ?thesis
using ivt_decreasing_component_on_1[of 0 1, where ?k = 1] by force
qed

lemma winding number_ivt_abs:
assumes 7: valid_path v and z: z ¢ path_image v and 0 < w w < |Re(winding _number
v 2)]
shows 3t € {0..1}. |Re (winding_number (subpath 0t) z)| = w
using assms winding_number_ivt_pos [of v z w] winding_number_ivt_neg [of
vz —u]
by force

lemma winding number It _half lemma:
assumes 7: valid_path v and z: z ¢ path_image v and az: a - z < b and pag:
path_image v C {w. a - w > b}
shows Re(winding_number v z) < 1/2
proof —
{ assume Re(winding number v z) > 1/2
then obtain ¢:real where t: 0 < tt < 1 and subl2: Re (winding_number
(subpath 0t) z) = 1/2
using winding _number_ivt_pos [OF ~ z, of 1/2] by auto
have gt: vt — z = — (of _real (exp (— (2 * pi * Im (winding_number (subpath
0t7) 2) * (v 0 — 2))
using winding_number_exp_ 2pi [of subpath 0t v 2]
apply (simp add: t v valid_path_imp__path)
using closed__segment__eq _real ivl path_image def t z by (fastforce simp:
path__image__subpath Euler subl2)
have b < a -~ 0
proof —
have vy 0 € {c. b< a - ¢}
by (metis (no__types) pag atLeastAtMost_iff image subset iff order refl
path__image__def zero_le_one)
thus ?thesis
by blast
qed
moreover have b < a - v t
by (metis atLeastAtMost_iff image__eql mem__Collect _eq pag path__image__def
subset_iff t)
ultimately have 0 < a-(y 0 — 2) 0 < a - (y ¢t — 2) using az
by (simp add: inner__diff _right)+
then have Fulse
by (simp add: gt inner_mult_right mult_less 0 _iff)
}

then show ?thesis by force
qed

lemma winding number It _half:
assumes valid_path v a - z < b path_image v C {w. a + w > b}

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 115

shows |Re (winding_number v z)| < 1/2
proof —
have z ¢ path_image v using assms by auto
with assms have Re (winding_number v z) < 0 = — Re (winding_number ~
z) < 1/2
by (metis complex_inner _1_right winding_number It _half lemma [OF valid__path__imp_ reverse,
of v z a b
winding_number_reversepath valid _path _imp _path inner_minus_left path__image_ reversepath)
with assms show ?thesis
using <z ¢ path__image > winding_number_lt_half lemma by fastforce
qged

lemma winding number_le_half:
assumes v: valid_path v and z: z ¢ path_image v
and anz: a # 0 and azb: a - z < b and pag: path_image v C {w. a - w > b}
shows |Re (winding_number v z)| < 1/2
proof —
{ assume wnz_12: |Re (winding_number v z)| > 1/2
have isCont (winding_number v) z
by (metis continuous__at_winding_number valid_path__imp_path v z)
then obtain d where d>0 and d: Az'. dist 2’ z < d = dist (winding_number
v z') (winding_number v z) < |Re(winding number v z)| — 1/2
using continuous_at_eps delta wnz 12 diff gt 0 _iff gt by blast
define z’ where 2’ = z — (d / (2 * cmod a)) *g a
havea-z2*x 6 <d*cmoda+ bx6
by (metis <0 < d> add_increasing azb less__eq _real_def mult_nonneg_nonneg
mult_right _mono norm__ge_zero norm_ numeral)
with anz have x: a - 2/’ < b —d / 3 * ecmod a
unfolding 2’ _def inner_mult_right’ divide_inverse
by (simp add: field_ split_simps algebra__simps dot__square__norm power2__eq _square)
have cmod (winding_number v z' — winding_number v z) < |Re (winding_number
vz)|—1/2
using d [of 2] anz <«d>0> by (simp add: dist_norm z'_def)
then have 1/2 < |Re (winding_number v z)| — cmod (winding_number ~ z’
— winding_number vy z)
by simp
then have 1/2 < |Re (winding_number v z)| — |Re (winding_number ~ z’)
— Re (winding_number v z)|
using abs_Re le cmod [of winding _number v z' — winding _number v 2]
by simp
then have wnz_ 12" |Re (winding_number v z')| > 1/2
by linarith
moreover have |Re (winding number v 2')| < 1/2
proof (rule winding_number_lt_half [OF v %)
show path_image v C{w. b —d / 3 x cmod a < a - w}
using azb «d>0» pag by (auto simp: add__strict_increasing anz field _split _simps
dest!: subsetD)
qed
ultimately have Fulse

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 116

by simp
}
then show ?thesis by force
qed

lemma winding number It _half linepath:
assumes z ¢ closed_segment a b shows |Re (winding_number (linepath a b) z)|
<1/2
proof —
obtain « v where u - z < v and wv: Az. z € closed_segment a b = inner u
x>
using separating hyperplane__closed__point assms closed__segment convex__closed__segment
less_eq real def by metis
moreover have path_image (linepath a b) C {w. v < u - w}
using in_segment(1) uv by auto
ultimately show ?thesis
using winding_number_lt _half by auto
qed

Positivity of WN for a linepath.

lemma winding number_linepath__pos_lt:
assumes 0 < Im ((b — a) * cnj (b — 2))
shows 0 < Re(winding_number(linepath a b) z)
proof —
have z: z ¢ path_image (linepath a b)
using assms
by (simp add: closed_segment__def) (force simp: algebra__simps)
show ?thesis
by (intro winding_number_pos_It [OF wvalid_path_linepath z assms]) (simp
add: linepath__def algebra__simps)
qed

lemma winding _number_linepath__neq_lt:
assumes 0 < Im ((a — b) x cnj (a — 2))
shows Re(winding number(linepath a b) z) < 0
proof —
have z: z ¢ path_image (linepath a b)
using assms
by (simp add: closed_segment__def) (force simp: algebra__simps)
have Re(winding number(linepath a b) z) =
— Re(winding_number(reversepath (linepath a b)) z)
by (subst winding_number_reversepath) (use z in auto)
also have ... = — Re(winding _number(linepath b a) z)
by simp
finally have Re (winding number (linepath a b) z)
= — Re (winding_number (linepath b a) z) .
moreover have 0 < Re (winding_number (linepath b a) z)
using winding _number_linepath__pos_It[OF assms| .
ultimately show #¢thesis by auto

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 117

qed

3.6 More winding number properties

including the fact that it’s 4+-1 inside a simple closed curve.

lemma winding number__homotopic_paths:
assumes homotopic_paths (—{z}) g h
shows winding number g z = winding_number h z
proof —
have path g path h using homotopic__paths_imp__path [OF assms] by auto
moreover have pag: z ¢ path_image g and pah: z ¢ path_image h
using homotopic_paths_imp__subset [OF assms] by auto
ultimately obtain d e where d > 0 e > 0
and d: Ap. [path p; pathstart p = pathstart g; pathfinish p = pathfinish g;
Vie{0..1}. norm (pt — g t) < d]
= homotopic_paths (—{z}) g p
and e: Ag. [path ¢; pathstart ¢ = pathstart h; pathfinish q = pathfinish h;
Vte{0..1}. norm (gt — h t) < €]
= homotopic_paths (—{z}) h ¢
using homotopic_nearby_paths [of g —{z}] homotopic_nearby_paths [of h
—{z}] by force
obtain p where p:
valid_path p z ¢ path_image p
pathstart p = pathstart g pathfinish p = pathfinish g
and gp_less:Vte{0..1}. cmod (gt — pt) < d
and pap: contour_integral p (Aw. 1 / (w — 2)) = complex__of real (2 * pi)
* 1 % winding_number g z
using winding _number [OF <path ¢» pag <0 < d»] unfolding winding number_ _prop__def
by blast
obtain ¢ where ¢:
valid_path q z ¢ path__image q
pathstart ¢ = pathstart h pathfinish ¢ = pathfinish h
and hq_less: Vte{0..1}. cmod (ht — qt) < e
and paq: contour_integral ¢ (Aw. 1 / (w — z)) = complex_of real (2 * pi)
* 1 % winding_number h z
using winding_number [OF <path h> pah <0 < e)] unfolding winding _number_prop__ def
by blast
have homotopic_paths (— {z}) g p
by (simp add: d p valid_path_imp_ path norm__minus _commute gp_ less)
moreover have homotopic_paths (— {z}) h ¢
by (simp add: e q valid__path__imp__path norm_minus__commute hq_less)
ultimately have homotopic_paths (— {z}) p ¢
by (blast intro: homotopic__paths__trans homotopic__paths _sym assms)
then have contour_integral p (Aw. 1/(w — 2)) = contour_integral ¢ (Aw. 1/(w
%)
by (rule Cauchy_ theorem__homotopic_paths) (auto intro!: holomorphic_intros
simp: p q)
then show ?thesis

by (simp add: pap paq)

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 118

qed

lemma winding _number__homotopic_loops:
assumes homotopic_loops (—{z}) g h
shows winding_number g z = winding _number h z
proof —
have path g path h using homotopic_loops_imp_ path [OF assms| by auto
moreover have pag: z ¢ path_image g and pah: z ¢ path_image h
using homotopic_loops_imp_subset [OF assms] by auto
moreover have gloop: pathfinish g = pathstart g and hloop: pathfinish h =
pathstart h
using homotopic_loops _imp_loop [OF assms] by auto
ultimately obtain d e where d > 0 e > 0
and d: A\p. [path p; pathfinish p = pathstart p; Vt€{0..1}. norm (p t — g t)
< d]
= homotopic_loops (—{z}) g p
and e: Ag. [path q; pathfinish q¢ = pathstart ¢; Vt€{0..1}. norm (¢t — h t)
< €]
= homotopic_loops (—{z}) h ¢
using homotopic_nearby_loops [of g —{z}] homotopic_nearby_loops [of h
—{z}] by force
obtain p where p:
valid_path p z ¢ path_image p
pathstart p = pathstart g pathfinish p = pathfinish g
and gp_less:Vte{0..1}. cmod (gt — pt) < d
and pap: contour_integral p (Aw. 1 / (w — 2)) = complex__of real (2 * pi)
* 1 % winding_number g z
using winding _number [OF <path ¢» pag <0 < d»] unfolding winding number_ _prop _def
by blast
obtain ¢ where ¢:
valid_path q z ¢ path__image q
pathstart ¢ = pathstart h pathfinish ¢ = pathfinish h
and hq_less: Vite{0..1}. cmod (ht — qt) < e
and paq: contour_integral ¢ (Aw. 1 / (w — z)) = complex_of real (2 * pi)
* 1 % winding_number h z
using winding_number [OF <path h) pah <0 < e)] unfolding winding _number_prop__def
by blast
have gp: homotopic_loops (— {z}) g p
by (simp add: gloop d gp_less norm__minus _commute p valid_path_imp_ path)
have hgq: homotopic_loops (— {z}) h ¢
by (simp add: e hloop hq_less norm_minus_commute q valid_path_imp_path)
have contour_integral p (Aw. 1/(w — z)) = contour_integral ¢ (Aw. 1/(w — 2))
proof (rule Cauchy_theorem__homotopic_loops)
show homotopic_loops (— {z}) p q
by (blast intro: homotopic_loops _trans homotopic_loops _sym gp hq assms)
qged (auto introl: holomorphic_intros simp: p q)
then show ?thesis
by (simp add: pap paq)
qed

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 119

lemma winding number__paths linear eq:
[path g; path h; pathstart h = pathstart g; pathfinish h = pathfinish g;
Nt. t € {0..1} = z ¢ closed_segment (g t) (h t)]
= winding_number h z = winding_number g z
by (blast intro: sym homotopic_paths_linear winding _number__homotopic__paths)

lemma winding number_loops_linear_eq:
[path g; path h; pathfinish g = pathstart g; pathfinish h = pathstart h;
Nt. t € {0..1} = z ¢ closed_segment (g t) (h t)]
= winding_number h z = winding_number g z
by (blast intro: sym homotopic_loops_linear winding _number__homotopic_loops)

lemma winding number__nearby_paths__eq:
[path g; path h; pathstart h = pathstart g; pathfinish h = pathfinish g;
At.t € {0..1} = norm(h t — gt) < norm(gt — 2)]
= winding_number h z = winding_number g z
by (metis segment__bound(2) norm__minus__commute not_le winding_number__paths_linear_ _eq)

lemma winding _number__nearby__loops eq:
[path g; path h; pathfinish g = pathstart g; pathfinish h = pathstart h;
At.t € {0..1} = norm(h t — gt) < norm(gt — 2)]
= winding_number h z = winding_number g z
by (metis segment__bound(2) norm_minus__commute not__le winding_number_loops_linear _eq)

lemma winding number__subpath__combine:
assumes path g and notin: z ¢ path_image g and v € {0..1} v € {0..1} w €
{0..1}

shows winding _number (subpath u v g) z + winding_number (subpath v w g) z

winding_number (subpath v w g) z (is ?lhs = ?rhs)

proof —

have ?lhs = winding_number (subpath uw v g +++ subpath v w g) z

using assms

by (metis (no__types, lifting) path__image__subpath_ subset path__subpath pathfin-
ish__subpath pathstart_subpath subsetD winding number_join)

also have ... = ?rhs

by (meson assms homotopic_join_subpaths subset Compl_singleton wind-

ing_number_homotopic__paths)

finally show ?thesis .
qged

Winding numbers of circular contours

proposition winding number__part_ circlepath__pos_less:
assumes s < ¢t and no: norm(w — 2) < r
shows 0 < Re (winding_number(part_circlepath z r s t) w)
proof —
have 0 < r by (meson no norm_not_less_zero not_le order.strict_trans2)

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 120

note valid__path__part_circlepath
moreover have w ¢ path_image (part_circlepath z r s t)
using assms by (auto simp: path_image_def image_def part_circlepath__def
norm__mult linepath__def)
moreover have 0 < r % (t — s) * (r — cmod (w — 2))
using assms by (metis <0 < r> diff _gt_0_iff gt mult_pos_pos)
ultimately show ?thesis
apply (rule winding_number_pos_It [where e = rx(t — s)x(r — norm(w —
2))))
apply (simp add: vector_derivative_part_circlepath right_diff _distrib [symmetric]
mult_ac mult_le_cancel left _pos assms <0<r»)
using Re_Im_le cmod [of w—z linepath s t z for z]
by (simp add: exp_ Euler cos_of real sin_of real part circlepath_def alge-
bra__simps cos__squared__eq [unfolded power2 _eq square])
qed

lemma winding _number_circlepath__centre: 0 < r = winding_number (circlepath

zr) z=1
apply (rule winding_number__unique__loop)
apply (simp__all add: sphere__def valid_path__imp_ path)
apply (rule_tac z=circlepath z r in exl)
apply (simp add: sphere__def contour _integral _circlepath)

done

proposition winding number__circlepath:
assumes norm(w — z) < r shows winding_number(circlepath z r) w = 1
proof (cases w = 2)
case True then show #%thesis
using assms winding _number__circlepath__centre by auto
next
case Fulse
have [simp]: > 0
using assms le_less trans norm__ge_zero by blast
define r’ where r’ = norm(w — 2)
have r' < r
by (simp add: assms r'_def)
have disjo: cball z r' N sphere z r = {}
using «r’ < r» by (force simp: cball_def sphere__def)
have winding number(circlepath z r) w = winding number(circlepath z) z
proof (rule winding _number__around_inside [where S = cball z r'])
show winding_number (circlepath z r) z # 0
by (simp add: winding _number_circlepath__centre)
show cball z r' N path__image (circlepath z r) = {}
by (simp add: disjo less_eq real def)
qed (auto simp: r'_def dist_norm norm__minus__commute)
also have ... = I
by (simp add: winding _number_circlepath__centre)
finally show ?thesis .
qed

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 121

lemma no_bounded__connected__component__imp__winding number__zero:
assumes ¢: path g path_image g C S pathfinish g = pathstart g z ¢ S
and nb: Az. bounded (connected component_set (— S) z) = z € S
shows winding_number g z = 0
proof —
have z € outside (path_image g)
by (metis nb [of z] <path_image g C S» <z ¢ S» subsetD mem_ Collect_eq
outside outside__mono)
then show ?thesis
by (simp add: g winding_number_zero__in__ outside)
qed

lemma no_bounded__path__component_imp_winding number__zero:
assumes ¢: path g path_image g C S pathfinish g = pathstart g z ¢ S
and nb: A\z. bounded (path__component_set (— S) z) = z € S
shows winding _number g z = 0
by (simp add: bounded _subset nb path__component _subset connected__component

no__bounded__connected__component__imp_ winding_number_zero [OF

ql)

3.7 Winding number for a triangle

lemma wn_ trianglel:
assumes 0 € interior(convex hull {a,b,c})
shows = (Im(a/b) < 0 AN 0 < Im(b/c))
proof —
{ assume 0: Im(a/b) < 00 < Im(b/c)
have 0 ¢ interior (convex hull {a,b,c})
proof (cases a=0 V b=0 V ¢=0)
case True then show ?thesis
by (auto simp: not_in__interior _convex__hull _3)
next
case Fulse
then have b # 0 by blast
{ fix z y::complex and wu::real
assume e¢q f"Imz*x Reb<Imb* RexImy* Reb<Imbx Rey 0 <
uu < 1
then have ((1 — u) * Imz) * Re b < Im b % ((1 — u) * Re 1)
by (simp add: mult_left _mono mult.assoc mult.left_commute [of Im b))
then have ((I —u)*x Imz + u*Imy)* Reb<Imbx ((I —u)* Rex
+ u * Re y)
using eq f' ordered__comm__semiring_ class.comm__mult_left _mono
by (fastforce simp add: algebra__simps)
}
then have convex {z. Im z * Re b < Im b x Re z}
by (auto simp: algebra__simps convex__alt)
with False 0 have convezx hull {a,b,c} < {z. Im z * Re b < Im b = Re z}

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 122

by (simp add: subset_hull mult.commute Complex.Im__divide divide__simps
complex_neq_ 0 [symmetric])
moreover have 0 ¢ interior({z. Im z x Re b < Im b * Re z})
proof
assume 0 € interior {z. Im z x Re b < Im b * Re z}
then obtain e¢ where e>0 and e: ball 0 e C {z. Im z x Re b < Im b x Re
2
by (meson mem__interior)
define z where z = — sgn (Im b) * (e/3) + sgn (Re b) * (e/3) * i
have cmod z = c¢cmod (e/3) * cmod (— sgn (Im b) + sgn (Re b) * i)
unfolding z _def norm_mult [symmetric] by (simp add: algebra__simps)
also have ... < e
using <e>0)> by (auto simp: norm_mult intro: le_less trans [OF
norm__triangle__ineq4))
finally have z € ball 0 e
using <e>0> by simp
then have Im z * Re b < Im b * Re z
using e by blast
then have b: 0 < Reb 0 < Im b and disj: e x Reb < — (Im b * ¢e) V e x
Reb=— (Imb=xe)
using <e>0> <b # 0»
by (auto simp add: z_def dist_norm sgn__if less_eq_real _def mult_less 0_iff
complex.expand split: if _split_asm)
show Fulse — or just one smt line
using disj
proof
assume e x Re b < — (Im b x e)
with b <0 < e less_trans [of _ 0] show Fulse
by (metis (no__types) mult_pos_pos neg_less_0_iff less not_less iff gr _or_eq)
next
assume e x Re b = — (Im b x e)
with b <0 < e» show Fulse
by (metis mult_pos _pos neg_less 0 _iff less not_less iff gr _or_eq)
qed
qed
ultimately show ?Zthesis
using interior_mono by blast
qed
} with assms show ?thesis by blast
qed

lemma wn__triangle2_0:
assumes 0 € interior(convex hull {a,b,c})

shows
0 < Im((b — a) * cnj (b)) A
0 < Im((c — b) * cnj (¢)) A
0 < Im((a — ¢) * cnj (a))
V

Im((b — a) *x cnj (b)) < 0 A

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 123

0 < Im((b— c)* cnj (b)) A
0 < Im((a — b) * cnj (a)) A
0 < Im((c — a) * cnj (¢))
proof —
have [simp]: {b,c,a} = {a,b,c} {c,a,b} = {a,b,c} by auto
show ?thesis
using wn__trianglel [OF assms] wn__trianglel [of b ¢ a] wn__trianglel [of ¢ a
b] assms
by (auto simp: algebra__simps Im__complex__div_gt_0 Im__complex_div_1lt_0
not_le not_less)
qged

lemma wn__triangle2:
assumes z € interior(convex hull {a,b,c})
shows 0 < Im((b — a) x cnj (b — 2)) A
0 < Im((c—0b)xcnj(c—2)A
0 < Im((a—c)x*cnj (a— 2))
V
Im((b—a)xcnj (b—2) < 0A
0 < Im((b— c)*cnj (b— 2)) A
0 < Im((a—b) xcnj (a — 2)) A
0 < Im((c —a)*cnj (¢c — 2))
proof —
have 0: 0 € interior(convex hull {a—z, b—z, c—z})
using assms convex__hull_translation [of —z {a,b,c}]
interior__translation [of —z]
by (simp cong: image__cong__simp)
show ?thesis using wn__triangle2_0 [OF 0]
by simp
qed

lemma wn__triangle3:
assumes z: z € interior(conver hull {a,b,c})
and 0 < Im((b—a) * cnj (b—=2))
0 < Im((c—b) % cnj (c—2))
0 < Im((a—c) * cnj (a—2))
shows winding_number (linepath a b +++ linepath b ¢ +++ linepath ¢ a) z
=1
proof —
have znot[simp|: z ¢ closed _segment a b z ¢ closed__segment b ¢ z & closed__segment
ca
using z interior_of _triangle [of a b]
by (auto simp: closed__segment__def)
have ¢t0: 0 < Re (winding_number (linepath a b +-++ linepath b ¢ +++ linepath
ca) z)
using assms
by (simp add: winding _number_linepath__pos_lt path__image__join winding _number_join_pos_combined)
have [t2: Re (winding_number (linepath a b +++ linepath b ¢ +++ linepath ¢
a) z) < 2

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 124

using winding_number_ It _half linepath [of _ a b)
using winding_number_ It _half linepath [of _ b]
using winding _number_It__half linepath [of _ ¢ a] znot
by (fastforce simp add: winding_number_join path__image_join)
show ?thesis
by (rule winding_number _eq 1) (simp__all add: path_image_join gt0 lt2)
qed

proposition winding number_triangle:
assumes z: z € interior(conver hull {a,b,c})
shows winding _number(linepath a b +++ linepath b ¢ +++ linepath ¢ a) z =
(if 0 < Im((b — a) * cnj (b — 2)) then 1 else —1)
proof —
have [simp]: {a,c,b} = {a,b,c} by auto
have znot[simp]: z ¢ closed_segment a b z ¢ closed__segment b ¢ z ¢ closed__segment
ca
using z interior__of _triangle [of a b (]
by (auto simp: closed _segment__def)
then have [simp]: z ¢ closed__segment b a z ¢ closed__segment ¢ b z ¢ closed__segment
ac
using closed__segment__commute by blast+
have *: winding _number (linepath a b +++ linepath b ¢ +-++ linepath ¢ a) z =
winding_number (reversepath (linepath a ¢ +++ linepath ¢ b +++
linepath b a)) z
by (simp add: reversepath__joinpaths winding_number_join not_in_ path__image_join)
show ?thesis
apply (rule disjE [OF wn__triangle2 [OF Z]])
subgoal
by (simp add: wn__triangle3 z)
subgoal
by (simp add: path__image_join winding _number_reversepath x wn__triangle3
2)

done
qed

3.8 Winding numbers for simple closed paths

lemma winding number_from__innerpath:

assumes simple__path c1 and cl: pathstart c1 = a pathfinish c1 = b
and simple__path ¢2 and c2: pathstart c2 = a pathfinish c¢2 = b
and simple__path ¢ and c: pathstart ¢ = a pathfinish ¢ = b
and clc2: path_image c1 N path_image c2 = {a,b}
and cle: path_image c1 N path_image ¢ = {a,b}
and c2c¢: path_image ¢2 N path_image ¢ = {a,b}
and ne_12: path_image ¢ N inside(path__image c1 U path_image c2) # {}
and z: z € inside(path_image c1 U path_image c)
and wn_ d: winding _number (c1 +++ reversepath ¢) z = d
and a #bd# 0

obtains z € inside(path_image c1 U path_image c2) winding _number (c1 +++

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 125

reversepath ¢2) z = d
proof —
obtain 0: inside(path_image c1 U path_image ¢) N inside(path_image c2 U
path_image ¢) = {}
and 1: inside(path_image ¢l U path_image ¢) U inside(path_image c2 U
path__image ¢) U
(path__image ¢ — {a,b}) = inside(path_image c1 U path_image c2)
by (rule split_inside_simple_closed__curve
[OF <simple_path c1» cl <simple_path c2> ¢2 <simple_path ¢» ¢ <a #
by clc2 cle c2c ne_12))
have znot: z ¢ path_image ¢ z ¢ path_image c1 z ¢ path_image c2
using union_ with_outside z 1 by auto
then have zout: z € outside (path_image ¢ U path__image c2)
by (metis 0 Compll UnE disjoint_iff _not_equal sup.commute union_ with__inside
z)
have wn__cc2: winding _number (¢ +++ reversepath ¢2) z = 0
by (rule winding _number_zero__in__outside; simp add: zout <simple_path c2»
¢ ¢2 <simple__path ¢ simple_path__imp__path path__image_join)
show ?thesis
proof
show z € inside (path_image c1 U path_image c2)
using 1 z by blast
have winding number c1 z — winding _number ¢ z = d
using assms znot
by (metis wn__d winding _number_join simple__path__imp_ path winding _number _reversepath
add.commute path__image_reversepath path__reversepath pathstart_reversepath umi-
nus__add__conv__diff)
then show winding_number (¢! +++ reversepath c2) z = d
using wn__cc2 by (simp add: winding _number_join simple_path_imp_ path
assms znot winding_number_reversepath,)
qed
qged

lemma simple_closed__path_wnl:
fixes a::complex and e::real
assumes 0 < e
and sp_pl: simple_path(p +++ linepath (a — e) (a + €)) (is simple_path
Zpae)
and psp: pathstart p = a + e
and pfp: pathfinish p = a — e
and disj: ball a e N path_image p = {}
obtains z where 2z € inside (path_image ?pae) cmod (winding number ?pae z)
=1
proof —
have arc p and arc_lp: arc (linepath (a — e) (a + €))
and pap: path__image p N path_image (linepath (a — €) (a + e)) C {pathstart
p, a—e}
using simple__path__join_loop__eq [of linepath (a — e) (a + €) p] assms by auto
have mid_eq a: midpoint (a — e) (a + ¢) = a

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 126

by (simp add: midpoint__def)
with assms have a € path_image ?pae

by (simp add: assms path__image_join) (metis midpoint_in_ closed_segment)
then have a € frontier(inside (path_image ?pae))

using assms by (simp add: Jordan__inside__outside)
with <0 < e» obtain ¢ where c: ¢ € inside (path_image ?pae)

and dac: dist a ¢ < e

by (auto simp: frontier _straddle)
then have ¢ ¢ path_image ?pae

using inside_mno__overlap by blast
then have c ¢ path_image p c ¢ closed _segment (a — €) (a + e)

by (simp__all add: assms path__image_join)
with <0 < e dac have ¢ ¢ affine hull {a — e, a + e}

by (simp add: segment__as_ball not_le)
with «0 < e» have x: = collinear {a — e, c,a + €}

using collinear__3_affine__hull [of a—e a+e] by (auto simp: insert__commute)
have 13: 1/3 + 1/3 + 1/8 = (1::real) by simp
have (1/3) *g (a — of real e) + (1/3) *g ¢ + (1/3) *r (a + of real €) €

interior(convezr hull {a — e, ¢, a + e})

using interior__convex__hull 3 _minimal [OF x DIM__complez]

by clarsimp (metis 13 zero_less_divide 1_iff zero_less numeral)
then obtain z where 2: z € interior(convex hull {a — e, ¢, a + e}) by force
have [simp]: z ¢ closed_segment (a — e) ¢

by (metis DIM__complex Diff iff IntD2 inf sup absorb interior_of triangle

z)

have [simp]: z ¢ closed__segment (a + ¢€) (a — e)
by (metis DIM__complex DiffD2 Un__iff interior_of triangle z)
have [simp]: z ¢ closed_segment ¢ (a + €)
by (metis (no__types, lifting) DIM__complex DiffD2 Un__insert_right inf sup_aci(5)
insertCI interior_of triangle mk__disjoint_insert z)
show thesis
proof
have norm (winding_number (linepath (a — €) ¢ +++ linepath ¢ (a + €) +++
linepath (a + ¢e) (a — ¢€)) 2) = 1
using winding_number_triangle [OF 2] by simp
have zin: z € inside (path_image (linepath (a + ¢) (a — €)) U path_image p)
and zeq: winding_number (linepath (a + €) (a — e) +++ reversepath p) z =
winding_number (linepath (a — €) ¢ +++ linepath ¢ (a + €) +++
linepath (a + ¢e) (a — ¢€)) 2
proof (rule winding _number_from__innerpath
[of linepath (a + €) (a — €) atea—ep
linepath (a + €) ¢ +++ linepath ¢ (a — €) z
winding_number (linepath (a — e) ¢ +++ linepath ¢ (a + €) +++
linepath (a + €) (a — e)) 2])
show sp__aec: simple_path (linepath (a + e) ¢ +++ linepath ¢ (a — ¢))
proof (rule arc_imp_simple_path [OF arc_join])
show arc (linepath (a + €) ¢)
by (metis <c ¢ path_image p> arc_linepath pathstart _in__path__image psp)
show arc (linepath ¢ (a — ¢€))

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 127

by (metis <¢ ¢ path_image p> arc_linepath pathfinish_in__path__image pfp)
show path_image (linepath (a + €) ¢) N path_image (linepath ¢ (a — e))
C {pathstart (linepath ¢ (a — €))}
by clarsimp (metis x Intl Int_closed__segment closed__segment__commute
singleton__iff)
qed auto
show simple_ path p
using <arc py arc_simple__path by blast
show sp__ae2: simple_path (linepath (a + e) (a — €))
using <arc p» arc_distinct__ends pfp psp by fastforce
show pa: pathfinish (linepath (a + ¢€) (a —€)) =a — e
pathstart (linepath (a + €) ¢ +++ linepath ¢ (a — €)) = a + ¢
pathfinish (linepath (a + e) ¢ +++ linepath ¢ (a — €)) = a — e
pathstart p = a + e pathfinish p = a — e
pathstart (linepath (a + €) (a — e)) = a + ¢
by (simp__all add: assms)
show 1: path_image (linepath (a + e) (a — €)) N path_image p = {a + e,
a— e}
proof
show path__image (linepath (a + €) (a — e)) N path_image p C {a + e, a
— ¢}
using pap closed__segment__commute psp segment__convezr__hull by fastforce
show {a + ¢, a — e} C path_image (linepath (a + €) (a — €)) N path__image
p
using pap pathfinish__in__path_image pathstart_in_path_image pfp psp
by fastforce
qed
show 2: path__image (linepath (a + €) (a — €)) N path_image (linepath (a +
e) ¢ +++ linepath ¢ (a — €)) =
{a + e, a— e} (is ?lhs = ?rhs)
proof
have — collinear {c, a + e, a — e}
using * by (simp add: insert_commute)
then have convez hull {a + e, a — e} N convex hull {a + e, ¢} = {a + €}
convex hull {a + e, a — e} N convez hull {c, a — e} = {a — ¢}
by (metis (full_types) Int_ closed__segment insert__commute segment__convex,__hull)+
then show ?2lhs C %rhs
by (metis Int_Un__distrib equalityD1 insert is_Un path__image_join
path__image_linepath path_join__eq path_ linepath segment_convex__hull simple__path__def
sp_aec)
show ?rhs C ?lhs
using segment__convexr__hull by (simp add: path_image_join)
qed
have path__image p N path_image (linepath (a + €) ¢) C {a + e}
proof (clarsimp simp: path_image_join)
fix z
assume z € path_image p and x_ac: © € closed_segment (a + €) ¢
then have dist z a > ¢
by (metis Intl all_not_in__conv disj dist_commute mem__ball not_less)

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 128

with z_ac dac <e > 0> show x = a + ¢
by (auto simp: norm__minus__commute dist_norm closed__segment__eq open
dest: open__segment_furthest_le [where y=a])
qed
moreover
have path_image p N path_image (linepath ¢ (a — €)) C {a — e}
proof (clarsimp simp: path_image_join)
fix z
assume z € path_image p and x_ac: © € closed_segment ¢ (a — e)
then have dist x a > e
by (metis Intl all_not_in__conv disj dist_commute mem__ball not_less)
with z_ac dac <e > 0> show x = a — ¢
by (auto simp: norm__minus__commute dist_norm closed__segment__eq open
dest: open__segment_furthest_le [where y=a])
qed
ultimately
have path_image p N path_image (linepath (a + €) ¢ +++ linepath ¢ (a —
&) C{a+e a— el
by (force simp: path_image_join)
then show 3: path__image p N path_image (linepath (a + €) ¢ +++ linepath
cla—e)={a+e a—ce}
using 1 2 by blast
show 4: path_image (linepath (a + €) ¢ +++ linepath ¢ (a — €)) N
inside (path_image (linepath (a + €) (a — e)) U path_image p) # {}
apply (clarsimp simp: path__image_join segment__convex__hull disjoint_iff _not_ equal)
by (metis (no__types, opaque_lifting) Unll Un__commute ¢ closed__segment__commute
ends__in__segment(1) path__image_join
path__image_linepath pathstart_linepath pfp segment__convex _hull)
show zin_inside: z € inside (path_image (linepath (a + €) (a — €)) U
path_image (linepath (a + €) ¢ +++ linepath ¢ (a —
e)))
proof (simp add: path_image_join)
show z € inside (closed_segment (a + €) (a — e) U (closed__segment (a +
e) ¢ U closed_segment ¢ (a — e)))
by (metis z inside__of triangle DIM__complex Un__commute closed__segment__commute)
qed
show 5: winding number
(linepath (a + €) (a — e) +++ reversepath (linepath (a + €) ¢ +++
linepath ¢ (a — e))) z =
winding_number (linepath (a — e) ¢ +++ linepath ¢ (a + e) +++
linepath (a + €) (a — e)) z
by (simp add: reversepath__joinpaths path__image_join winding _number_join)
show 6: winding_number (linepath (a — €) ¢ +++ linepath ¢ (a + €) +++
linepath (a + €) (a — €)) z # 0
by (simp add: winding _number_triangle z)
show winding_number (linepath (a + e) (a — e) +++ reversepath p) z =
winding_number (linepath (a — e) ¢ +++ linepath ¢ (a + e) +++
linepath (a + ¢e) (a — ¢€)) z
by (metis 1 28 4 5 6 pa sp__aec sp_ae2 <arc p> <simple__path py arc_distinct_ends

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 129

winding_number_from__innerpath zin__inside)
qed (use assms <e > 0> in auto)
show z_inside: z € inside (path__image ?pae)
using zin by (simp add: assms path__image__join Un__commute closed__segment__commute)
have cmod (winding_number ?pae z) = cmod ((winding_number(reversepath
?pae) z))
proof (subst winding number_reversepath)
show path ?pae
using simple_path__imp_ path sp_pl by blast
show z ¢ path_image ?pae
by (metis Intl emptyFE inside_no__overlap z_inside)
qed (simp add: inside_def)
also have ... = cmod (winding _number(linepath (a + €) (a — €) +++ re-
versepath p) z)
by (simp add: pfp reversepath_joinpaths)
also have ... = cmod (winding_number (linepath (a — e) ¢ +++ linepath ¢ (a
+ €) +++ linepath (a + ¢e) (a — €)) 2)
by (simp add: zeq)
also have ... = 1
using z by (simp add: interior_of _triangle winding_number_triangle)
finally show cmod (winding_number ?pae z) = 1 .
qed
qed

lemma simple_closed__path__wn2:
fixes a::complex and d e::real
assumes 0 < d 0 < e
and sp_ pl: simple_path(p +++ linepath (a — d) (a + e))
and psp: pathstart p = a + e
and pfp: pathfinish p = a — d
obtains z where z € inside (path_image (p +++ linepath (a — d) (a + €)))
emod (winding_number (p +++ linepath (a — d) (a + €)) 2) = 1
proof —
have [simp]: a + of real z € closed_segment (a — «) (a — B) +— z €
closed _segment (—a) (=) for x «a B::real
using closed__segment__translation__eq [of a]
by (metis (no_types, opaque_lifting) add_uminus__conv_diff of real _minus
of _real__closed__segment)
have [simp]: a — of real x € closed_segment (a + «) (a + B) +— —z €
closed__segment o B for z « (::real
by (metis closed__segment__translation__eq diff _conv_add_uminus of _real closed__segment
of _real _minus)
have arc p and arc_lIp: arc (linepath (¢ — d) (a + e)) and path p
and pap: path__image p N closed__segment (a — d) (a + €) C {a+e, a—d}
using simple_path_join_loop eq [of linepath (a — d) (a + €) p] assms
arc_imp__path by auto
have 0 € closed segment (—d) e
using <0 < d» <0 < e closed__segment__eq real ivl by auto
then have a € path_image (linepath (a — d) (a + e))

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 130

using of real closed_segment [THEN iffD2]
by (force dest: closed__segment translation_eq [of a, THEN 4ffD2] simp del:
of _real_closed _segment)
then have a ¢ path_image p
using 0 < d» <0 < e pap by auto
then obtain k¥ where 0 < k and k: ball a k N (path_image p) = {}
using <0 < e» <path p> not_on__path_ball by blast
define kde where kde = (min k (min d e)) / 2
have 0 < kde kde < k kde < d kde < e
using <0 < kb <0 < d> <0 < e>» by (auto simp: kde__def)
let ?q = linepath (a + kde) (a + €) +++ p +++ linepath (a — d) (a — kde)
have — kde € closed_segment (—d) e
using <0 < kde) <kde < d> <kde < e» closed__segment_eq_real_ ivl by auto
then have a_diff kde: a — kde € closed_segment (a — d) (a + e)
using of real_closed__segment [THEN iffD2]
by (force dest: closed__segment__translation__eq [of a, THEN iffD2] simp del:
of _real_closed__segment)
then have clsub2: closed_segment (a — d) (a — kde) C closed segment (a —
d) (a+ ¢)
by (simp add: subset_ closed__segment)
then have path_image p N closed__segment (a — d) (a — kde) C {a + €, a —
d}
using pap by force
moreover
have a + e ¢ path_image p N closed_segment (a — d) (a — kde)
using <0 < kde> <kde < d» <0 < e by (auto simp: closed__segment__eq real ivl)
ultimately have sub_a_ diff d: path_image p N closed_segment (a — d) (a —
kde) C {a — d}
by blast
have kde € closed _segment (—d) e
using <0 < kde> <kde < d» <kde < e» closed__segment_eq real ivl by auto
then have a_diff kde: a + kde € closed_segment (a — d) (a + e)
using of real closed_segment [THEN iffD2]
by (force dest: closed__segment translation__eq [of a, THEN 4ffD2] simp del:
of _real_closed _segment)
then have clsubl: closed_segment (a + kde) (a + e) C closed_segment (a —
d) (a + e)
by (simp add: subset_closed _segment)
then have closed_segment (a + kde) (a + €) N path_image p C {a + €, a —
a}
using pap by force
moreover
have closed__segment (a + kde) (a + e) N closed__segment (a — d) (a — kde) =
{}
proof (clarsimp intro!: equalsOI)
fix y
assume y1: y € closed_segment (a + kde) (a + e)
and y2: y € closed_segment (a — d) (a — kde)
obtain u::real where u: y = a + vand 0 < u

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 131

proof —
obtain £ where & y = (1 — &) g (a + kde) + £ xg (a + €) and 0 < £ &
<1
using y1 by (auto simp: in__segment)
show thesis
proof
show y = a + ((1 — &)xkde + &Exe)
using & by (auto simp: scaleR__conv_of real algebra__simps)
have (1 — &)xkde + &xe > 0
using <0 < kde> <0 < & ¢ < 1y <0 < e» by auto
moreover have (1 — &)xkde + &xe #£ 0
using <0 < kde) <0 < & £ < 1) 0 < e» by (auto simp: add_nonneg_eq 0 _iff)
ultimately show (1 — &)xkde + &xe > 0 by simp
qed
qed
moreover
obtain v::real where v: y = a4+ vand v < 0
proof —
obtain £ where &: y = (1 — &) *xg (a — d) + € *xg (a — kde) and 0 < £ &
<1

using y2 by (auto simp: in__segment)
show thesis
proof
show y = a + (— ((1 — §)*d + Exkde))
using & by (force simp: scaleR__conv_of _real algebra__simps)
show — ((1 — &)xd + &xkde) < 0
using 0 < kde» <0 < &< 1D 0 < d
by (metis add.left _neutral add_nonneg _nonneg le_diff eqless_eq real def
neg_le_ 0 _iff le split_mult_pos_le)

qed
qed
ultimately show Fulse
by auto
qed
moreover have a — d ¢ closed_segment (a + kde) (a + e)
using <0 < kde» <kde < d» <0 < e by (auto simp: closed__segment__eq real ivl)
ultimately have sub_a plus e:
closed__segment (a + kde) (a + €) N (path_image p U closed__segment (a — d)
(a — kde)) C {a + ¢}
by auto
have kde € closed_segment (—kde) e
using <0 < kde> <kde < d> <kde < ey closed__segment_eq real ivl by auto
then have a_add_kde: a 4+ kde € closed__segment (a — kde) (a + €)
using of real closed _segment [THEN iffD2]
by (force dest: closed__segment_translation_eq [of a, THEN iffD2] simp del:
of _real_closed__segment)
have closed__segment (a — kde) (a + kde) N closed__segment (a + kde) (a + e)
= {a + kde}

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 132

by (metis a__add_kde Int_closed__segment)
moreover
have path_image p N closed_segment (a — kde) (a + kde) = {}
proof (rule equalsOI, clarify)
fix y assume y € path_image p y € closed_segment (a — kde) (a + kde)
with equalsOD [OF k, of y] <0 < kde» <kde < k> show False
by (auto simp: dist_norm dest: dist_decreases__closed__segment [where c=a))
qed
moreover
have — kde € closed_segment (—d) kde
using <0 < kde> <kde < d> <kde < ey closed__segment_eq real ivl by auto
then have a_ diff _kde”: a — kde € closed__segment (a — d) (a + kde)
using of real closed _segment [THEN iffD2]
by (force dest: closed__segment_translation_eq [of a, THEN iffD2] simp del:
of _real_closed__segment)
then have closed_segment (a — d) (a — kde) N closed__segment (a — kde) (a +
kde) = {a — kde}
by (metis Int_closed__segment)
ultimately
have pa__subset_pm_ kde: path__image ?q N closed__segment (a — kde) (a + kde)
C {a — kde, a + kde}
by (auto simp: path_image_join assms)
have ge_kdel: 3y. x = a + of real y A y > kde if x: x € closed_segment (a +
kde) (a + e) for z
proof —
obtain v where 0 < wu < I and u: z = (I — u) *g (a + kde) + u *r (a
+ e)
using z by (auto simp: in__segment)
then have kde < (I — u) * kde + u * ¢
using <kde < e» segment__bound__lemma by auto
moreover have z = a + ((1 — u) * kde + u * ¢)
by (fastforce simp: u algebra__simps scaleR__conv_of real)
ultimately
show ?thesis by blast
qed
have ge_kde2: 3y. z = a + of real y N y < —kde if z: z € closed _segment (a
— d) (a — kde) for x
proof —
obtain v where 0 < wu < 7 and w: ¢ = (I — u) *g (a — d) + u *g (a —
kde)
using = by (auto simp: in_segment)
then have kde < ((1—u)xd + uxkde)
using <kde < d» segment_bound_lemma by auto
moreover have z = a — ((1—u)*d + uxkde)
by (fastforce simp: u algebra__simps scaleR__conv_of real)
ultimately show #thesis
by (metis add_uminus_conv_diff neg_le_iff le of real _minus)
qged
have notin_paq: x ¢ path_image ?q if dist a © < kde for z

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 133

proof —
have = ¢ path_image p
using k <kde < k> that by force
then show ?thesis
using that assms by (auto simp: path_image_join dist_norm dest!: ge_kdel
ge_kde2)
qed
obtain z where zin: z € inside (path_image (¢q +++ linepath (a — kde) (a +
kde)))
and zI: cmod (winding_number (2q +++ linepath (a — kde) (a + kde))
z) =1
proof (rule simple closed_path_wnl [of kde ?q a])
show simple_path (?q +++ linepath (a — kde) (a + kde))
proof (intro simple path_join_loop congl)
show arc ¢q
proof (rule arc_join)
show arc (linepath (a + kde) (a + e))
using <kde < e» <arc p»> by (force simp: pfp)
show arc (p +++ linepath (a — d) (a — kde))
using <kde < d» <kde < e <arc p» sub_a_ diff _d by (force simp: pfp intro:
arc__join)
qed (auto simp: psp pfp path_image_join sub__a_ plus_e)
show arc (linepath (a — kde) (a + kde))
using <0 < kde)> by auto
qged (use pa__subset_pm_kde in auto)
ged (use <0 < kde) notin_paq in auto)
have eq: path_image (?q +++ linepath (a — kde) (a + kde)) = path__image (p
+++ linepath (a — d) (a + €))
(is ?lhs = ?rhs)
proof
show ?2lhs C ?rhs
using clsubl clsub2 apply (auto simp: path__image_join assms)
by (meson subsetCE subset__closed__segment)
show ?rhs C ?lhs
apply (simp add: path_image_join assms Un__ac)
by (metis Un__closed_segment Un__assoc a__diff kde o__diff kde' le__supI2
subset__refl)
qed
show thesis
proof
show zzin: z € inside (path_image (p +++ linepath (a — d) (a + e)))
by (metis eq zin)
then have znotin: z ¢ path__image p
by (metis ComplD Un__iff inside_ Un_outside path_image_join pathfin-
ish__linepath pathstart_reversepath pfp reversepath_ linepath)
have znotin_d_kde: z ¢ closed_segment (a — d) (a + kde)
by (metis ComplD Un__iff Un__closed__segment a__diff kde inside_Un__outside
path_image__join path__image_ linepath pathstart_linepath pfp zzin)
have znotin_d_e: z ¢ closed_segment (a — d) (a + e)

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 134

by (metis Intl UnCI emptyFE inside__no__overlap path__image_join path__image_linepath
pathstart_linepath pfp zzin)
have znotin_kde_e: z ¢ closed__segment (a + kde) (a + e) and znotin_d_kde":
z & closed_segment (a — d) (a — kde)
using clsubl clsub2 zzin
by (metis (no__types, opaque_lifting) IntI Un__iff emptyE inside_no__overlap
path__image_join path__image linepath pathstart_linepath pfp subsetD)+
have winding_number (linepath (a — d) (a + €)) z =
winding _number (linepath (a — d) (a + kde)) z + winding number
(linepath (a + kde) (a + €)) 2z
proof (rule winding _number__split_linepath)
show a + complex_of real kde € closed_segment (a — d) (a + e)
by (simp add: a_diff kde)
show z ¢ closed_segment (a — d) (a + e)
by (metis ComplD Un__iff inside__Un__outside path__image_join path__image_linepath
pathstart_linepath pfp zzin)
qed
also have ... = winding_number (linepath (a + kde) (a + €)) z +
(winding_number (linepath (a — d) (a — kde)) z + winding_number
(linepath (a — kde) (a + kde)) z)
by (simp add: winding_number_split_linepath [of a—kde, symmetric] znotin__d_kde
a__diff _kde)
finally have winding_number (p +++ linepath (a — d) (a + €)) z =
winding_number p z + winding _number (linepath (a + kde) (a +
€)) z +
(winding_number (linepath (a — d) (a — kde)) z +
winding_number (linepath (a — kde) (a + kde)) z)
by (metis (no__types, lifting) ComplD Un__iff <arc ps add.assoc arc_imp__path
eq path__image_join path_ join__path__ends path_linepath simple path__imp_ path
sp__pl union__with__outside winding_number_join zin)
also have ... = winding_number (linepath (a + kde) (a + €)) z
+ winding_number (p +++ linepath (a — d) (a — kde)) z
+ winding_number (linepath (a — kde) (a + kde)) z
using <path p» znotin assms
by simp (metis Un__iff Un__closed__segment a__diff kde’ path_image_ linepath
path__linepath pathstart_linepath winding_number_join znotin__d_kde)
also have ... = winding_number ?q z + winding_number (linepath (a — kde)
(a + kde)) z
using <path p) znotin assms by (simp add: path__image join winding number_join
znotin_kde__e znotin_d_kde')
also have ... = winding_number (?q +++ linepath (a — kde) (a + kde)) z
by (metis (mono__tags, lifting) ComplD UnCI <path p) eq inside_outside
path__image__join path_join__eq path_linepath pathfinish__join pathfinish_ linepath
pathstart_join pathstart_linepath pfp psp winding _number_join zzin)
finally have winding_number (p +++ linepath (a — d) (a + €)) z =
winding_number (?q +++ linepath (a — kde) (a + kde)) z .
then show cmod (winding_number (p +++ linepath (a — d) (a + €)) z) = 1
by (simp add: z1)
qed

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 135

qed

lemma simple_ closed__path__wn3:
fixes p :: real = complex
assumes simple__path p and loop: pathfinish p = pathstart p
obtains z where z € inside (path_image p) cmod (winding_number p z) = 1
proof —
have ins: inside(path__image p) # {} open(inside(path__image p))
connected(inside(path__image p))
and out: outside(path__image p) # {} open(outside(path_image p))
connected(outside(path__image p))
and bo: bounded(inside(path_image p)) — bounded(outside(path_image p))
and ins_out: inside(path_image p) N outside(path_image p) = {}
inside(path__image p) U outside(path_image p) = — path_image p
and fro: frontier(inside(path__image p)) = path_image p
frontier(outside(path__image p)) = path__image p
using Jordan__inside_outside [OF assms] by auto
obtain a where a: a € inside(path_image p)
using <inside (path_image p) # {}» by blast
obtain d::real where 0 < d and d_fro: a — d € frontier (inside (path_image
p))
and d_int: Ne. [0 < ;e < d] = (a — ¢) € inside (path_image p)
using ray to_frontier [of inside (path_image p) a —1] bo ins a interior__eq
by (metis ab__group__add__class.ab__diff _conv_add_uminus of real def scale_minus__right
zero_neq_neg__one)
obtain e::real where 0 < e and e_fro: a + e € frontier (inside (path_image
p))
and e_int: \e. [0 < e;¢e < €] = (a + €) € inside (path_image p)
using ray_to_frontier [of inside (path_image p) a 1] bo ins a interior_eq
by (metis of _real_def zero_neq one)
obtain t0 where 0 < t0t0 < 1 and pt: pt0 = a — d
using a d_fro fro by (auto simp: path_image_def)
obtain ¢ where simple path q and q ends: pathstart ¢ = a — d pathfinish q =
a—d
and ¢ eq p: path_image q = path__image p
and wn_q_eq_wn_p: \z. z € inside(path_image p) = winding_number q z
= winding_number p z
proof
show simple_ path (shiftpath t0 p)
by (simp add: pathstart_shiftpath pathfinish__shiftpath
sitmple__path__shiftpath path__image_shiftpath <0 < t0> <t0 < 1) assms)
show pathstart (shiftpath t0 p) = a — d
using pt by (simp add: <t0 < 1) pathstart_shiftpath)
show pathfinish (shiftpath t0 p) = a — d
by (simp add: <0 < t0) loop pathfinish__shiftpath pt)
show path__image (shiftpath t0 p) = path__image p
by (simp add: <0 < t0> «t0 < 1) loop path__image__shiftpath)
show winding _number (shiftpath t0 p) z = winding _number p z
if z € inside (path_image p) for z

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 136

by (metis ComplD Un__iff <0 < t0» <t0 < 1) <simple_path p» atLeastAt-
Most__iff inside_Un__outside
loop simple__path__imp__path that winding_number _shiftpath)
qed
have ad_not_ae: a — d # a + €
by (metis <0 < d» <0 < e> add.left_inverse add_left _cancel add_uminus__conv_ diff
le_add_same__cancel? less_eq real def not_less of real _add of real def
of _real _eq 0 _iff pt)
have ad_ae_q: {a — d, a + e} C path_image q
using <path_image q = path__image p> d_fro e_fro fro(1) by auto
have ada: open_segment (a — d) a C inside (path_image p)
proof (clarsimp simp: in__segment)
fix u::real assume 0 < u u < 1
with d_int have a — (1 — u) % d € inside (path_image p)
by (metis <0 < d> add.commute diff _add__cancel left_diff _distrib’ less_add__same__cancel2
less__eq _real_def mult.left_neutral zero_less_mult_iff)
then show (I — u) xg (a — d) + u *r a € inside (path_image p)
by (simp add: diff _add__eq of real def real wvector.scale_right_diff distrib)
qed
have aae: open_segment a (a + e) C inside (path_image p)
proof (clarsimp simp: in__segment)
fix u::real assume 0 < u u < 1
with e_int have a + u * e € inside (path_image p)
by (meson <0 < e less_eq real def mult less cancel right2 not_less
zero__less_mult_iff)
then show (1 — u) *gr a + u *r (a + €) € inside (path_image p)
by (metis (mono__tags, lifting) add.assoc of _real_mult pth_ 6 scaleR__collapse
scaleR__conv_of real)
qed
have complex_of real (d* d+ (ex e+ d*x (e + ¢))) £ 0
using ad_not_ae
by (metis <0 < d> <0 < e add_strict_left_mono less _add_same__cancell
not__sum__squares_lt_zero
of _real_eq 0 _iff zero_less _double_add_iff zero less single add zero_less mult_iff)
moreover have Ju>0. u < I ANd=u*xd+ u * e
using <0 < d» <0 < e
by (rule_tac xz=d / (d+e) in exI) (simp add: divide__simps scaleR__conv__of _real
flip: distrib_left)
ultimately have a in_de: a € open_segment (a — d) (a + e)
using ad_not_ae by (simp add: in__segment algebra__simps scaleR__conv_of _real
flip: of real _add of real mult)
then have open_segment (a — d) (a + e) C inside (path_image p)
using ada a aae Un__open__segment [of a a—d a+e] by blast
then have path_image q¢ N open__segment (a — d) (a + ¢) = {}
using inside_no_ overlap by (fastforce simp: q_eq p)
with ad_ae_q have paq Int_cs: path_image q¢ N closed_segment (a — d) (a +
e)={a—d, a+ e}
by (simp add: closed__segment__eq _open)
obtain ¢t where 0 < ¢t < 1 and ¢t: gt =a + e

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 137

using a e_fro fro ad_ae_q by (auto simp: path__defs)
then have t # 0
by (metis ad_not_ae pathstart _def g _ends(1))
then have t # 1
by (metis ad_not__ae pathfinish__def q_ends(2) qt)
have ¢q01: g0 =a—-dqgl =0a—4d
using ¢ ends by (auto simp: pathstart _def pathfinish__def)
obtain z where zin: z € inside (path_image (subpath t 0 ¢ +++ linepath (a —
d) (a + ©))
and zI: cmod (winding_number (subpath t 0 ¢ +++ linepath (a — d)
(a+e))z)=1
proof (rule simple_closed__path_wn2 [of d e subpath t 0 q a], simp__all add: q01)
show simple path (subpath t 0 ¢ +++ linepath (a — d) (a + e))
proof (rule simple_path_join_loop, simp__all add: qt q01)
have inj_on q (closed__segment t 0)
using <0 < & <simple_path ¢ <t < 1) <t # 0> <t # 1»
by (fastforce simp: simple__path__def loop_ free_definj on_ def closed__segment__eq real ivl)
then show arc (subpath t 0 q)
using <0 < t» <simple_path ¢ <t < 15 <t #£ 0>
by (simp add: arc_subpath__eq simple_path__imp_ path)
show arc (linepath (a — d) (a + e))
by (simp add: ad_not_ae)
show path_image (subpath t 0 q) N closed__segment (a — d) (a + ¢€) C {a +
e, a — d}
using qt paq _Int_cs <simple_path ¢ <0 < ty <t < I»
by (force simp: dest: rev__subsetD [OF __ path__image__subpath__subset] intro:
simple__path__imp__path)
qed
qed (auto simp: <0 < d> <0 < e qt)
have pa01_Un: path_image (subpath 0 t q) U path_image (subpath 1 t q) =
path__image q
unfolding path image_subpath
using <0 < & <t < 1y by (force simp: path_image__def image__iff)
with paq Int cs have pa_01q:
(path__image (subpath 0t q) U path__image (subpath 1t q)) N closed__segment
(a—d)(a+e)={a—d,a+ e}
by metis
have z_notin_ed: z ¢ closed_segment (a + ¢€) (a — d)
using zin q01 by (simp add: path_image_join closed_segment commute in-
side__def)
have z_notin_0t: z ¢ path_image (subpath 0t q)
by (metis (no_types, opaque_lifting) Intl Un__upperl subsetD empty_iff in-
side__no__overlap path__image_ join
path__image__subpath__commute pathfinish__subpath pathstart_def pathstart linepath
q_ends(1) gt subpath_trivial zin)
have [simp]: — winding_number (subpath t 0 q) z = winding_number (subpath
0tq) z
by (metis <0 < t» «simple_path ¢ <t < 1y atLeastAtMost_iff zero_le_one
path__image__subpath__commute path__subpath real _eq 0 iff le _ge 0

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 138

reversepath__subpath simple__path__imp_ path winding number__reversepath
z_notin__0t)
obtain z in_q: z € inside(path_image q)
and wn_¢: winding_number (subpath 0 t q¢ +++ subpath t 1 q) z = —
winding _number (subpath t 0 ¢ +++ linepath (a — d) (a + €)) z
proof (rule winding number_from__innerpath
[of subpath 0t ¢ a—d a+e subpath 1 t q linepath (a — d) (a + e)
z — winding_number (subpath t 0 ¢ +++ linepath (a — d) (a + e)) 2],
stmp__all add: 01 qt pa01__Un reversepath__subpath)
show simple__path (subpath 0t q) simple_path (subpath 1t q)
by (simp_all add: <0 < t» <simple_path ¢ <t < 1y <t #£ 0> <t # 1> sim-
ple__path__subpath)
show simple__path (linepath (a — d) (a + €))
using ad_not_ae by blast
show path__image (subpath 0t q) N path__image (subpath 1t q) = {a — d, a +
e} (is Zlhs = ?rhs)
proof
show ?lhs C ?rhs
using <0 < t» <simple_path ¢ <t < 1y <t # 1> q_ends gt q01
by (force simp: pathfinish__def qt simple__path__def loop__free_def path__image__subpath)
show 2rhs C ?lhs
using <0 < & <t < 1y q01 gt by (force simp: path__image__subpath)
qed
show path_image (subpath 0t q) N closed_segment (a — d) (a +) = {a —
d, a + e} (is ?lhs = ?rhs)
proof
show ?lhs C ?rhs using paq Int_cs pa01_Un by fastforce
show ?rhs C ?lhs using <0 < t» <t < 1) q01 gt by (force simp: path__image__subpath)
qed
show path__image (subpath 1t q) N closed_segment (a — d) (a + e) = {a —
d, a + e} (is ?lhs = ?rhs)
proof
show ?lhs C ?rhs by (auto simp: pa_01q [symmetric])
show ?rhs C ?lhs using <0 < t» <t < 1) q01 gt by (force simp: path__image__subpath)
qed
show closed segment (a — d) (a + e) N inside (path_image q) # {}
using a a_in_de open_ closed segment pa01__Un q eq p by fastforce
show z € inside (path_image (subpath 0t q) U closed_segment (a — d) (a +
)
by (metis path__image_join path__image_linepath path_image subpath__commute
pathfinish__subpath pathstart_linepath 01 (1) zin)
show winding_number (subpath 0t ¢ +++ linepath (a + €) (a — d)) z =
— winding _number (subpath t 0 ¢ +++ linepath (a — d) (a + €)) z
using z notin_ed z_notin_ 0t <0 < t» <simple_path ¢ <t < 1>
by (simp add: simple_path_imp_path qt q01 path_image _subpath__commute
closed__segment__commute winding_number_join winding_number_reversepath [symmetric])
show — d # e
using ad_not_ae by auto
show winding number (subpath t 0 ¢ +++ linepath (a — d) (a + ¢€)) z # 0

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 139

using zI by auto
qed
show ?thesis
proof
show 2 € inside (path_image p)
using ¢ eq p z in_q by auto
then have [simp]: z ¢ path_image q
by (metis disjoint_iff not_equal inside_no_overlap q_eq p)
have [simp]: z ¢ path__image (subpath 1t q)
using inside_def pa01_Un z_in_q by fastforce
have winding_number(subpath 0t ¢ +++ subpath t 1 q) z = winding_number(subpath
01q)z
using z_notin_ 0t <0 < t» «simple__path ¢» <t < 1)
by (simp add: simple_path_imp_ path qt path_image_subpath__commute wind-
ing_number_join winding _number__subpath__combine)
with wn_ g have winding _number (subpath t 0 ¢ +++ linepath (a — d) (a +

e)) z = — winding_number q z
by auto
with zI have cmod (winding number q z) = 1
by simp

with 21 wn_q_eq _wn_p show cmod (winding_number p z) = 1
using z1 wn_q _eq _wn_p by (simp add: <z € inside (path_image p)»)
qed
qed

proposition simple_closed_path__winding number inside:
assumes simple_ path ~
obtains A\z. z € inside(path_image v) = winding_number v z = 1

| Az. z € inside(path_image v) = winding_number v z = —1
proof (cases pathfinish v = pathstart)
case True
have path v

by (simp add: assms simple__path__imp__path)
then have const: winding _number ~ constant_on inside(path__image)
proof (rule winding _number__constant)

show connected (inside(path_image 7))

by (simp add: Jordan__inside_outside True assms)
qed (use inside_no__overlap True in auto)
obtain z where zin: z € inside (path_image) and z1: cmod (winding _number
vz)=1

using simple_closed__path_wn3 [of +] True assms by blast
have winding_number v z € Z

using zin integer_winding_number [OF <path > True] inside_def by blast

moreover have real_of intx=—1++— = —1 for z
by linarith
ultimately consider winding number v z = 1 | winding_number v z = —1

using zI by (auto simp: Ints_def abs_if split: if _split_asm)
with that const zin show ?thesis
unfolding constant _on_ def by metis

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 140

next
case Fulse
then show ?thesis
using inside__simple__curve_imp__closed assms that(2) by blast
qed

lemma simple_closed__path__abs winding number_inside:
assumes simple_path v z € inside(path__image)
shows |Re (winding_number v z)| = 1
by (metis assms norm_ minus__cancel norm__one one__complex.simps(1) real _norm__def
simple__closed__path__winding _number _inside uminus__complex.simps(1))

lemma simple_closed__path__norm_winding number _inside:
assumes simple_path v z € inside(path_image)
shows norm (winding_number v z) = 1
proof —
have pathfinish v = pathstart
using assms inside__simple__curve _imp_ closed by blast
with assms integer__winding _number have winding _number v z € Z
by (simp add: inside_def simple__path__def)
then show ?thesis
by (metis assms norm__minus__cancel norm__one simple__closed__path__winding_number _inside)
qed

lemma simple_ closed__path__winding number _cases:
assumes simple__path ~ pathfinish v = pathstart v z ¢ path_image v
shows winding_number v z € {—1,0,1}
proof —
consider z € inside (path_image) | z € outside (path_image)
by (metis Compll UnE assms(8) inside_Un_ outside)
then show ?thesis
proof cases
case I
then show ?thesis
using assms simple__closed__path__winding number_inside by auto
next
case 2
then show ?thesis
using assms simple__path__def winding number_zero__in_ outside by blast
qed
qed

lemma simple_ closed_path__winding _number_pos:
[simple__path ~y; pathfinish v = pathstart v; z ¢ path_image v; 0 < Re(winding_number
v 2)]
= winding_number v z = 1
using simple_closed__path__winding _number__cases
by fastforce

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 141

lemma simple_ closed path__winding number_neg:
[simple__path ~; pathfinish v = pathstart v; z ¢ path__image ~v; Re (winding_number
v z) < 0]
= winding_number v z = —1
using simple_closed__path__winding number__cases by fastforce

3.9 Winding number for rectangular paths

proposition winding number__rectpath:
assumes 2z € bozr al a3
shows winding number (rectpath al a3) z = 1
proof —
from assms have less: Re al < Re a8 Im al < Im a8
by (auto simp: in__box__complex__iff)
define a2 a4 where a2 = Complex (Re a3) (Im al) and af = Complex (Re
al) (Im a3)
let ?l1 = linepath a1 a2 and ?12 = linepath a2 a3
and ?13 = linepath a8 a4 and ?1, = linepath a4 al
from assms and less have z ¢ path_image (rectpath al a3)
by (auto simp: path_image_rectpath__cbox _minus_box)
also have path_image (rectpath al a8) =
path__image ?11 U path__image 212 U path_image ?13 U path__image
714
by (simp add: rectpath__def Let__def path__image__join Un__assoc a2_def aj__def)
finally have z ¢
moreover have VIe{?l1,%12,213,214}. Re (winding number [z) > 0
unfolding ball _simps HOL.simp_ thms a2 _def a4__def
by (intro conjl; (rule winding number _linepath_pos_lt;
(insert assms, auto simp: a2_def a4__def in__box__complex__iff mult_neg_neg))+)
ultimately have Re (winding number (rectpath al a3) z) > 0
by (simp add: winding _number_join path_image_join rectpath_def Let_def
a?2_def aj__def)
thus winding _number (rectpath al a8) z = 1 using assms less
by (intro simple__closed__path__winding_number_pos simple__path_ rectpath)
(auto simp: path__image_rectpath__cbox_minus_box)
qed

proposition winding number__rectpath__outside:
assumes Re al < Re a8 Im al < Im a8
assumes z ¢ cboz al a3
shows winding number (rectpath al a8) z = 0
using assms by (intro winding _number_zero__outside[OF _ _ _ assms(8)]
path__image_rectpath__subset_cbox) simp__all

A per-function version for continuous logs, a kind of monodromy

proposition winding number__compose__exp:
assumes path p
shows winding number (exp o p) 0 = (pathfinish p — pathstart p) / (2 = of _real

pi * 1)

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 142

proof —
obtain e where 0 < e and e: At. t € {0..1} = e < norm(exp(p 1))
proof
have closed (path_image (exp o p))
by (simp add: assms closed_path__image holomorphic_on__exp holomor-
phic_on__imp__continuous__on path__continuous_image)
then show 0 < setdist {0} (path_image (exp o p))
by (metis exp_not_eq zero imageE image__comp infdist_eq setdist infdist _pos_not_in_closed
path__defs(4) path__image_nonempty)
next
fix t::real
assume t € {0..1}
have setdist {0} (path_image (exp o p)) < dist 0 (exp (p t))
proof (rule setdist le dist)
show exp (p t) € path_image (exp o p)
using <t € {0..1}> path_image__def by fastforce+
qed auto
then show setdist {0} (path_image (exp o p)) < cmod (exp (p t))
by simp
qed
have bounded (path_image p)
by (simp add: assms bounded_ path__image)
then obtain B where 0 < B and B: path_image p C cball 0 B
by (meson bounded_pos mem__cball_0 subsetl)
let B = cball (0::complex) (B+1)
have uniformly_continuous on ¢B exp
using holomorphic__on__exp holomorphic__on_imp_continuous_on
by (force intro: compact_uniformly _continuous)
then obtain d where d > 0
and d: Az z'. [z€?B; 2'€?B; dist ¢’ x < d] = norm (exp ' — exp x) < e
using <e > 0 by (auto simp: uniformly__continuous_on__def dist_norm)
then have min 1 d > 0
by force
then obtain g where pfg: polynomial_function g and g 0 = p 0g1 = p 1
and gless: At. t € {0..1} = norm(gt — pt) < min 1d
using path__approx_polynomial_function [OF <path ps] <d > 0> <0 < e»
unfolding pathfinish__def pathstart_def by blast
have winding number (exp o p) 0 = winding _number (exp o g) 0
proof (rule winding_number _nearby paths eq [symmetric])
show path (exp o p) path (exp o g)
by (simp__all add: pfg assms holomorphic_on__exp holomorphic_on__imp__continuous__on
path__continuous__image path__polynomial_function)
next
fix t :: real
assume #: t € {0..1}
with gless have norm(gt — p t) < 1
using min_less iff conj by blast
moreover have ptB: norm (p t) < B
using B t by (force simp: path__image_ def)

Winding{_}{\kern 0pt}Numbers.html

Winding Numbers.thy 143

ultimately have c¢cmod (g t) < B + 1
by (meson add_mono_thms_linordered_field(4) le_less trans less_imp_le
norm__triangle__sub)
with ptB gless t have cmod ((exp o g) t — (exp o p) t) < e
by (auto simp: dist_norm d)
with e ¢t show cmod ((exp o g) t — (exp o p) t) < cmod ((exp o p) t — 0)
by fastforce
qed (use <g 0 =p 0> <g 1 = p 1) in <auto simp: pathfinish__def pathstart_def»)
also have ... = 1 / (of _real (2 * pi) * i) * contour_integral (exp o g) (Aw. 1 /
(w —0))
proof (rule winding_number__valid__path)
have continuous_on (path__image g) (deriv exp)
by (metis DERIV _exp DERIV__imp_ deriv continuous_on__cong holomor-
phic_on__exp holomorphic_on__imp__continuous _on)
then show wvalid_path (exp o g)
by (simp add: field _differentiable_within__exp pfg valid__path__compose valid__path__polynomial _function)
show 0 ¢ path__image (exp o g)
by (auto simp: path_image_ def)
qed
also have ... = 1 / (of _real (2 * pi) * 1) * integral {0..1} (Az. vector_derivative
g (at)
proof (simp add: contour _integral integral, rule integral cong)
fix t :: real
assume #: t € {0..1}
show vector_derivative (exp o g) (at t) / exp (g t) = vector_derivative g (at t)
proof —
have (exp o g has_vector__derivative vector _derivative (exp o g) (at t)) (at t)
by (meson DERIV _exp differentiable_def field wvector diff chain_at
has__vector__derivative def
has_vector__derivative__polynomial_function pfg vector__derivative__works)
moreover have (exp o g has_vector_derivative vector _derivative g (at t) *
exp (g 1)) (at t)
by (metis DERIV__exp field_vector__diff _chain__at has_vector__derivative__polynomial _function
pfg vector _derivative__at)
ultimately show ?Zthesis
by (simp add: divide__simps, rule vector__derivative__unique__at)
qged
qed
also have ... = (pathfinish p — pathstart p) / (2 * of real pi * i)
proof —
have ((Az. vector_derivative g (at x)) has_integral g 1 — g 0) {0..1}
by (meson differentiable__at_polynomial _function fundamental _theorem__of _calculus

has__vector__derivative _at _within pfg vector _derivative works
zero_le_one)
then show ?thesis
unfolding pathfinish__def pathstart_def
using ¢ 0 = p 0> <g 1 = p 1) by auto
qed

Winding{_}{\kern 0pt}Numbers.html

Cauchy__Integral Formula.thy 144

finally show ?thesis .
qed

end

4 Cauchy’s Integral Formula

theory Cauchy_ Integral Formula
imports Winding Numbers
begin

4.1 Proof

lemma Cauchy_integral formula_ weak:
assumes S: conver S and finite k and conf: continuous_on S f
and fed: (N\z. z € interior S — k = f field _differentiable at x)
and z: z € interior S — k and wvpg: valid__path v
and pasz: path_image v C S — {z} and loop: pathfinish v = pathstart ~
shows ((Aw. fw / (w—2)) has_contour_integral (2xpi * i * winding_number
vz *fz)y
proof —
let 2fz = dAw. (fw — f2)/(w—2)
obtain f’ where f": (f has_field_derivative f’) (at z)
using fed [OF z] by (auto simp: field_differentiable__def)
have pas: path _image v C S and znotin: z ¢ path_image v using pasz by
blast+
have c¢: continuous (at z within S) (Aw. if w = z then ' else (fw — f2) / (w—2))
ifz e S for z
proof (cases x = z)
case True then show ?Zthesis
using LIM__equal [of z 2fz Aw. if w = z then f' else ?fz w| has__field__derivativeD
OF '
by (force simp add: continuous_within Lim__at_imp_ Lim__at_within)
next
case Fulse
then have dzz: dist z z > 0 by auto
have cf: continuous (at x within S) f
using conf continuous_on__eq continuous_within that by blast
have continuous (at z within S) (Aw. (fw — fz) / (w—2))
by (rule cf continuous_intros | simp add: False)+
then show ?thesis
using continuous_transform__within [OF __ dzz that] by (force simp: dist_commute)
qed
have fink’”: finite (insert z k) using «<finite k» by blast
have *: ((Aw. if w = z then [’ else ?fz w) has__contour_integral 0) =
proof (rule Cauchy__theorem__convex [OF __ S fink' __ vpg pas loop])
show (Aw. if w = z then [’ else ?fz w) field_ differentiable at w
if w € interior S — insert z k for w
proof (rule field_differentiable_transform__ within)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 145

show (Aw. ?fz w) field_differentiable at w
using that by (intro derivative intros fed; simp)
ged (use that in <auto simp add: dist_pos_lt dist_commute)
qged (use ¢ in <force simp: continuous_on__eq _continuous_withiny)
note *x = has__contour_integral_add [OF has__contour_integral_Imul [OF has__contour_integral _winding__
[OF vpg znotin], of f 2] %]
show ?thesis
apply (rule has__contour _integral eq)
using znotin xx apply (auto simp: ac_simps divide__simps)
done
qged

theorem Cauchy_integral formula__convex_simple:
assumes convex S and holf: f holomorphic_on S and z € interior S valid_path
v path_image v C S — {z}
pathfinish v = pathstart -y
shows ((Aw. fw / (w—2)) has_contour_integral (2xpi * i x winding_number
vz f2)
proof —
have Az. z € interior S = f field _differentiable at x
using holf at_within__interior holomorphic__onD interior__subset by fastforce
then show ?thesis
using assms
by (intro Cauchy_integral_formula_weak [where k = {}]) (auto simp: holo-
morphicfonfimpicontz'nuousion)
qged

Hence the Cauchy formula for points inside a circle.

theorem Cauchy_integral circlepath:
assumes contf: continuous_on (cball z r) f and holf: f holomorphic_on (ball z
r) and wz: norm(w—=z) < r
shows ((Au. f u/(u—w)) has_contour integral (2 * of real pi x i * f w))
(circlepath z T)
proof —
have r > 0
using assms le_less trans norm__ge_zero by blast
have ((Au. fu / (u—w)) has_contour_integral (2 * pi) * i % winding _number
(circlepath z r) w * f w)
(circlepath z r)
proof (rule Cauchy__integral _formula_weak [where S = cball z r and k = {}])
show Az. z € interior (cball z 1) — {} =
f field__differentiable at x
using holf holomorphic__on__imp__differentiable _at by auto
have w ¢ sphere z r
by simp (metis dist_commute dist_norm not_le order_refl wz)
then show path_image (circlepath z) C cball z r — {w}
using «r > 0> by (auto simp add: cball_def sphere__def)
qed (use wz in <simp__all add: dist_norm norm__minus__commute contf))
then show ?thesis

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 146

by (simp add: winding _number__circlepath assms)
qed

corollary Cauchy_integral circlepath__simple:
assumes f holomorphic_on cball z r norm(w—2z) < r
shows ((Au. fu/(u—w)) has_contour_integral (2 = of _real pi x i * f w))
(circlepath z 1)
using assms by (force simp: holomorphic_on__imp__continuous__on holomorphic__on__subset
Cauchy__integral__circlepath)

4.2 General stepping result for derivative formulas

lemma Cauchy next derivative:
fixes [’ :: complex = complex
defines h = Mk wu. f'u / (u—w) "k
assumes continuous_on (path__image) f'
and leB: \t. t € {0..1} = norm (vector_derivative v (at t)) < B
and int: Aw. w € S — path_image v = (h k w has__contour_integral f w)
and k: k # 0
and open S
and v: valid_path v
and w: w € S — path_image
shows h (Suc k) w contour_integrable_on ~y
and (f has_field_ derivative (k * contour_integral v (h (Suc k) w))) (at w)
(is ?thes2)
proof —
have open (S — path_image 7) using <open Sy closed_valid_path_image v by
blast
then obtain d where d>0 and d: ball w d C S — path_image vy using w
using open__contains_ball by blast
have [simp]: An. ecmod (1 + of nat n) = 1 + of natn
by (metis norm__of nat of nat_Suc)
have cint: (\z. (hkzz — hkwz)/ (z*k— wx*k)) contour_integrable_on ~
if x # w emod (z—w) < d for z::complex
proof —
have z € S — path_image ~
by (metis d dist_commute dist_norm mem,__ball subsetD that(2))
then show ?thesis
using contour_integrable diff contour _integrable_div contour_integrable_on__def
mt w
by meson
qed
then have 1: Vp zinat w. (Az. (hkzz— hkwz)/ (z—w) / of _nat k)
contour__integrable _on vy
unfolding eventually at
by (force intro: ezl [where x=d] simp add: <d > 0) dist_norm field__simps)
have bim__g: bounded (image [’ (path_image 7))
by (simp add: compact_imp__bounded compact__continuous_image compact_valid__path_image
assms)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 147

then obtain C where C' > 0 and C: Az. [0 < z; ¢ < 1] = cmod (f' (v z))
<C
by (force simp: bounded_pos path_image_def)
have twom: Vg n in at w.
Y xE€path__image 7.
cmod ((inverse (x—mn) ~ k — inverse (z—w) " k) / (n—w) / k —
inverse (z—w) ~ Suc k) < e
if 0 < efore
proof —
have x: cmod ((inverse (z—u) ~ k — inverse (z—w) ~ k) / ((u—w) * k) —
inverse (zx—w) ~ Suc k) < e
if z: x € path_image v and u # w and wwd: cmod (u—w) < d/2
and uw_less: cmod (u—w) < e x (d/2) ~ (k+2) / (1 + real k)
for v z
proof —
define ff where [abs_def]:
fnw=
(if n = 0 then inverse(z—w) k
else if n = 1 then k / (z—w) (Suc k)
else (k x of real(Suc k)) / (x—w) (k + 2)) for n :: nat and w
have km1: Az:complex. z 4 0 = 2z~ (k — Suc 0) =2 "k / z
by (simp add: field_simps) (metis Suc__pred <k # 05 neq0_conv power_Suc)
have ff1: (ff ¢ has_field_derivative ff (Suc i) z) (at z within ball w (d/2))
if z € ball w (d/2) i < 1 for i z
proof —
have z ¢ path_image v
using <x € path_image > d that ball _divide subset _numeral by blast
then have zz[simp|: © # 2 using «x € path_image 7> by blast
then have neg: z * . + 2z x 2 # z *x (2 x 2)
by (blast intro: dest!: sum_sqs_eq)
with 2z have Av. v # 0 = (z x z + 2 % 2) x v # (z x (2 * 2) * v) by
auto
then have neqg: A\v. v £ 0 =z x (x xv) + zx (2 *v) £z % (2 % (2 x

by (simp add: algebra__simps)
show ?thesis using i < 1»
apply (simp add: ff def dist_norm Nat.le_Suc_eq, safe)
apply (rule derivative eq intros | simp add: km1 | simp add: field simps
neq neqq)+
done
qed
{ fix a::real and b::real assume ab: a > 0b > 0
then have k x (1 + real k) *x (1 / a) < kx* (1 + real k) x (4 / b) +— b
</+a
by (subst mult_le_cancel left pos)
(use <k # 0) in <auto simp: divide__simps»)
with ab have real k * (I + real k) / a < (real k * 4 + real k * real k * 4)
Jb+—b< 4 x*xa
by (simp add: field simps)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 148

} note canc = this
have ff2: cmod (ff (Suc 1) v) < real (k* (k+ 1))/ (d/2) ~(k + 2)
if v € ball w (d/2) for v
proof —
have lessd: N\z. cmod (v z — v) < d/2 = cmod (w — v z) < d
by (metis that norm_minus _commute norm__triangle _half r dist_norm
mem,__ball)
have d/2 < cmod (z—v) using d z that
using lessd d x unfolding path_image_ def
by (smt (verit, best) dist_norm imageE insert_Diff mem_ball sub-
set_ Diff insert)
then have d < c¢cmod (z—v) * 2
by (simp add: field split_simps)
then have dpow_le: d ~ (k+2) < (e¢mod (z—v) x 2) ~ (k+2)
using <0 < d» order_less _imp__le power_ _mono by blast
have z # v using that
using <x € path_image v ball_divide subset_numeral d by fastforce
then show ?thesis
using «d > 0» apply (simp add: ff_def norm_mult norm__divide norm__power
dist_norm canc)
using dpow_le apply (simp add: field__split__simps)
done
qed
have ub: u € ball w (d/2)
using wwd by (simp add: dist_commute dist_norm)
have cmod (inverse (z—u) ~k — (inverse (x—w) ~k + of nat k x (u—w) /
((z—w) * (z—w) " k)))

< (real k * 4 + real k * real k * 4) * (cmod (u—w) * cmod (u—w))

J(dx (5 (d/2) ~B))
using complex_ Taylor [OF __ ff1 ff2 __ ub, of w, simplified]
by (simp add: ff_def <0 < d»)
then have cmod (inverse (z—u) ~ k — (inverse (z—w) ~ k + of nat k =
(u=w) / ((5—w) * (s—w) ~K)))
< (cmod (u—w) * real k) * (I + real k) * cmod (u—w) / (d/2) ~
(k+2)
by (simp add: field_simps)
then have cmod (inverse (x—u) ~ k — (inverse (z—w) ~ k + of _nat k *
(u—w) / ((z—w) * (z—w) " k)))
/ (cmod (u—w) * real k)
< (1 + real k) * emod (u—w) / (d/2) ~ (k+2)
using <k # 0> <u # w by (simp add: mult_ac zero_less mult iff
pos__divide_le__eq)
also have ... < e
using uw_less <0 < d» by (simp add: mult_ac divide__simps)
finally have e: cmod (inverse (z—u) k — (inverse (z—w) k + of nat k =
(u=w) / ((z—w) % (s—w)F))
/ emod ((u—w) * real k) < e
by (simp add: norm_mult)
have z # u

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 149

using uwd <0 < d» z d by (force simp: dist_norm ball_def norm__minus__commute)
show ?thesis
using <k # 0) <z # w u # w le_less_trans [OF __ ¢
by (simp add: field_simps flip: norm__divide)
qed
show ?thesis
unfolding cventually at
apply (rule_tac © = min (d/2) ((ex(d/2) (k + 2))/(Suc k)) in exl)
apply (force simp: «d > 0> dist_norm that simp del: power_ _Suc intro: %)
done
qed
have 2: uniform_limit (path_image v) Az z. (hkzz — hkwz) [/ (z—w) / k)
(h (Suc k) w) (at w)
unfolding uniform_ limit_iff dist_norm
proof clarify
fix e::real
assume 0 < e
have *: ecmod (hkz (y u) — hkw (y u) / ((z—w) x k) — h (Suc k) w (v
u)) < e
if ec: emod ((inverse (y u —) "k — inverse (y u — w) " k) / ((z—w) *
k) —
inverse (y u — w) * tnverse (y u — w) " k) <e/ C
and z: 0 <wuwu<1
for z u
proof (cases (f' (y v)) = 0)
case True then show ?thesis by (simp add: <0 < e» h__def)
next
case Fulse
have cmod (hkz (yu) — hkw (yuw)/ (z—w) x k) — h (Suc k) w (v u))

emod (f' (v u) * ((inverse (v u —) ~ k — inverse (y u — w) ~ k) /
((z—w) * k) —
inverse (v u — w) * inverse (y u — w) ~k))
by (simp add: h__def field__simps)
also have ... = cmod (f' (v u)) *
cmod ((inverse (y u — z) "k — dnverse (v u — w) " k) / (z—w)
* k) —
inverse (y u — w) * inverse (v u — w) k)
by (simp add: norm__mult)
also have ... < cmod (f' (v u)) * (e/C)
using False mult_strict_left_mono [OF ec] by force
also have ... < e using C
by (metis False <0 < e> frac_leless_eq real def mult.commute pos_le_ divide eq
x zero__less _norm__iff)
finally show ?thesis .
qed
show V r u in at w.
Y xE€path__image .
emod (hkwzx —hkwz) /) (u—w) [/ of_natk — h (Suck) wz) < e

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 150

using twom [OF divide_pos_pos [OF <0 < e <C > O)]] *
unfolding path_image def h_def
by (force elim: eventually_mono)
qed
show h (Suc k) w contour__integrable_on ~
using contour_integral__uniform_limit [OF 1 2 leB ~] by (simp add: h__def)
have x: (Au. contour_integral v (Az. (hkuz — hkwz) / (u—w) / k))
—w— contour_integral v (h (Suc k) w)
by (rule contour_integral_uniform_limit [OF 1 2 leB v]) auto
have xx: contour_integral v (Az. (hkuz — hkwaz) /| (u—w) x k) =
(fu—fw)/ (u—w) /k
if dist w w < d for u
proof —
have u € S — path_image ~y
by (metis subsetD d dist_commute mem__ball that)
then have (h k u has_contour_integral f w) v (h k w has__contour__integral f
w) ¥
using w by (simp__all add: field simps int)
then show ?thesis
using contour_integral _unique has__contour _integral diff
has__contour__integral div by force
qed
show ?thes?2
unfolding has_field derivative iff
by (simp add: <k # 0> *x Lim__transform_ within [OF tendsto__mult_left [OF
¥ <0 < dv])
qged

lemma Cauchy next derivative_circlepath:
assumes contf: continuous_on (path_image (circlepath z r)) f
and int: Aw. w € ball zr = ((Au. fu / (u—w) k) has__contour_integral g
w) (circlepath z 1)
and k: kK # 0
and w: w € ball z 1
shows (Au. fu / (u—w) (Suc k)) contour_integrable_on (circlepath z 1)
(is ?thesl)
and (g has_field_derivative (k * contour_integral (circlepath z r) (Au. f
u/(u—w) (Suc k)))) (at w)
(is %thes2)
proof —
have r > 0 using w
using ball_eq empty by fastforce
have wim: w € ball z v — path__image (circlepath z r)
using w by (auto simp: dist_norm)
show ?thesi ?thes2
by (rule Cauchy_next derivative [OF contf _ int k open__ball valid__path__circlepath
wim, where B = 2 % pi x |r[];
auto simp: vector _derivative__circlepath norm__mult)+
qed

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 151

In particular, the first derivative formula.

lemma Cauchy_derivative_ integral_circlepath:
assumes contf: continuous_on (cball z 1) f
and holf: f holomorphic__on ball z r
and w: w € ball z 1
shows (Au. fu/(u—w)"2) contour_integrable__on (circlepath z r)
(is ?thesl)
and (f has_field derivative (1 / (2 % of _real pi * i) * contour_integral(circlepath
zr) (Au. fu/ (u—w)72))) (at w)
(is ?thes?2)
proof —
have [simp]: r > 0 using w
using ball_eq empty by fastforce
have f: continuous_on (path_image (circlepath z r)) f
by (rule continuous__on__subset [OF contf]) (force simp: cball_def sphere__def)
have int: Aw. dist z w < r =
((Au. fu / (u—w)) has_contour_integral (Az. 2 * of real pi x 1 x f
x) w) (circlepath z 1)
by (rule Cauchy_integral circlepath [OF contf holf]) (simp add: dist_norm
norm__minus__commute)
show ?thesl
unfolding power2_eq square
using int Cauchy_next_derivative circlepath [OF f _ _ w, where k=1]
by fastforce
have ((Az. 2 % of real pi *x i * f) has_field_derivative contour_integral
(circlepath z r) (Au. fu / (u—w)"2)) (at w)
unfolding power2_eq square
using int Cauchy_next derivative_ circlepath [OF f__ _ w, where k=1 and
g = Az. 2 % of real pi x 1 x fa]
by fastforce
then have fder: (f has_field derivative contour_integral (circlepath z r) (Au. f
u /[(u—w)"2) / (2 = of real pi x 1)) (at w)
by (rule DERIV__cdivide [where f = Az. 2 x of real pi xi* fz and ¢ = 2 x
of _real pi * i, simplified])
show ?thes?2
by simp (rule fder)
qged

4.3 Existence of all higher derivatives

proposition derivative_is _holomorphic:
assumes open S
and fder: Nz. z € S = (f has_field_derivative f’ z) (at 2)
shows [’ holomorphic_on S
proof —
have x: 3 h. (f' has_field derivative h) (at z) if z € S for 2z
proof —
obtain » where r > 0 and 7: cball z7 C S
using open__contains_cball <z € S» <open S» by blast

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 152

then have holf cball: f holomorphic_on cball z r
unfolding holomorphic_on_ def
using field differentiable_at_within field_differentiable__def fder by fastforce
then have continuous_on (path_image (circlepath z r)) f
using «r > 0> by (force elim: holomorphic_on__subset [THEN holomor-
phic_on__imp__continuous__on))
then have contfpi: continuous_on (path_image (circlepath z 1)) (Az. 1/(2 *
of _real pixi) * f x)
by (auto intro: continuous_intros)+
have contf cball: continuous_on (cball z r) f using holf _cball
by (simp add: holomorphic__on__imp__continuous__on holomorphic__on__subset)
have holf ball: f holomorphic__on ball z r using holf cball
using ball_subset__cball holomorphic__on__subset by blast
{ fix w assume w: w € ball z r
have intf: (Au. fu / (u—w)?) contour_integrable_on circlepath z r
by (blast intro: w Cauchy__derivative_integral _circlepath [OF contf _cball
holf _ball))
have fder’: (f has_field_derivative 1 | (2 % of _real pi * i) * contour_integral
(circlepath z v) (Au. fu / (u—w)?))
(at w)
by (blast intro: w Cauchy__derivative_integral _circlepath [OF contf _cball
holf _ball))
have f'_eq: f' w = contour_integral (circlepath z) (Au. fu / (u—w)?) / (2
x of _real pi * 1)
using fder’ ball_subset__cball r w by (force intro: DERIV_unique [OF fder])
have ((Au. fu / (u—w)? / (2 * of _real pi x i)) has_contour_integral
contour _integral (circlepath z r) (Au. fu / (u—w)?) / (2 * of real pi
* 1))
(circlepath z 1)
by (rule has__contour_integral _div [OF has__contour_integral_integral [OF
intf]])
then have ((Au. fu / (2 * of real pi * i x (u—w)?)) has_contour _integral
contour_integral (circlepath z) (Au. fu / (u—w)?) / (2 x of _real pi
1))
(circlepath z 1)
by (simp add: algebra__simps)
then have ((Au. fu / (2 x of _real pi x i x (u—w)?)) has_contour_integral
1 w) (circlepath z)
by (simp add: f'_eq)
} note x = this
show ?thesis
using Cauchy_next_derivative_circlepath [OF contfpi, of 2 f'] <0 < r»
using centre__in__ball mem__ball by force
qed
show ?thesis
by (simp add: holomorphic_on__open [OF <open S)] x)
qed

lemma holomorphic__deriv [holomorphic__intros|:

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 153

[f holomorphic_on S; open S| = (deriv f) holomorphic_on S
by (metis DERIV _deriv_iff field_differentiable at_within__open derivative_is_holomorphic
holomorphic__on__def)

lemma holomorphic__deriv__compose:
assumes g: g holomorphic_on B and f: f holomorphic_on A and f ‘A C B
open B
shows (Az. deriv g (f z)) holomorphic_on A
using holomorphic__on__compose__gen [OF f holomorphic__deriv|OF g¢]] assms
by (auto simp: o_def)

lemma analytic _deriv [analytic_intros]: f analytic_on S = (deriv f) analytic_on
S

using analytic_on__holomorphic holomorphic__deriv by auto

lemma holomorphic__higher_deriv [holomorphic__intros|: [f holomorphic_on S; open
S] = (deriv " n) f holomorphic_on S
by (induction n) (auto simp: holomorphic__deriv)

lemma analytic__higher _deriv [analytic_intros: f analytic_on S = (deriv " n)
f analytic_on S
unfolding analytic_on_ def using holomorphic_higher deriv by blast

lemma has_field_derivative__higher _deriv:
[f holomorphic_on S; open S; x € 5]
= ((deriv " n) f has_field_derivative (deriv = (Suc n)) fz) (at x)
using holomorphic__derivl holomorphic__higher _deriv by fastforce

lemma higher deriv__cmult:
assumes f holomorphic_on A x € A open A
shows (deriv "7 j) (Az. ¢ * fz) z = ¢ x (deriv " j) [z
using assms
proof (induction j arbitrary: f x)
case (Suc j fx)
have deriv ((deriv =" j) (Az. ¢ x fz)) x = deriv (Az. ¢ * (deriv " j) fz) z
using eventually _nhds_in_open[of A x] assms(2,3) Suc.prems
by (intro deriv_cong_ev refl) (auto elim!: eventually_mono simp: Suc.IH)
also have ... = ¢ * deriv ((deriv ™" j) f) = using Suc.prems assms(2,3)
by (intro deriv__cmult holomorphic_on__imp__differentiable__at holomorphic_higher _deriv)
auto
finally show ?Zcase by simp
qed simp_all

lemma higher__deriv_cmult”:
assumes | analytic _on {z}
shows (deriv 7" j) (Az. ¢ * fz) x = ¢ * (deriv ™" j) fx
using assms higher_deriv_cmultlof f__ x j c] assms
using analytic _at_two by blast

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 154

lemma deriv_cmult’:
assumes | analytic _on {z}
shows deriv (A\z. ¢ * fz) 2 = ¢ * deriv f z
using higher__deriv__cmult’|OF assms, of 1 c] by simp

lemma analytic_derivl:
assumes | analytic _on {z}
shows (f has_field_ derivative (deriv f z)) (at z within A)
using assms holomorphic__deril[of f _ z] analytic_at by blast

lemma deriv__compose__analytic:
fixes f g :: complex = complex
assumes | analytic_on {g z} g analytic_on {z}
shows deriv (\z. f (g x)) z = deriv f (g 2) * deriv g z
proof —
have ((f o g) has_field_derivative (deriv f (g z) * deriv g 2)) (at 2)
by (intro DERIV__chain analytic_derivl assms)
thus ?thesis
by (auto introl: DERIV _imp_ deriv simp add: o__def)
qed

lemma valid_path__compose__holomorphic:
assumes valid__path g f holomorphic_on S and open S path _image g C S
shows wvalid_path (f o g)
by (meson assms holomorphic__deriv holomorphic__on__imp__continuous__on holo-
morphic__on__imp__ differentiable__at
holomorphic__on__subset subsetD valid__path__compose)

lemma valid__path__compose__analytic:
assumes valid_path g and holo:f analytic_on S and path_image g C S
shows walid_path (f o g)
proof (rule valid__path__compose|OF <wvalid__path ¢»])
fix © assume z € path__image g
then show f field_differentiable at x
using analytic_on__imp_ differentiable_at analytic_on__open assms holo by
blast
next
show continuous _on (path__image g) (deriv f)
by (intro holomorphic_on__imp__continuous__on analytic _imp _holomorphic an-
alytic__intros
analytic_on__subset|OF holo] assms)
qged

lemma analytic_on__deriv [analytic_intros]:
assumes f analytic_on g ‘ A
assumes ¢ analytic_on A
shows (Az. deriv f (g x)) analytic_on A
proof —
have (deriv f o g) analytic_on A

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 155

by (rule analytic_on__compose__gen[OF assms(2) analytic_deriv]OF assms(1)]])
auto
thus ?thesis
by (simp add: o__def)
qed

lemma contour _integral _comp _analyticW:
assumes f analytic_on s valid__path v path_image v C s
shows contour_integral (f o v) g = contour_integral v (Aw. deriv fw * g (f w))
proof —
obtain spikes where finite spikes and ~_ diff: v C1__differentiable_on {0..1}
— spikes
using <wvalid_path > unfolding valid_ path__def piecewise_ C1__differentiable_on__def
by auto
show contour_integral (f o) g
= contour_integral v (Aw. deriv fw x g (f w))
unfolding contour integral integral
proof (rule integral_spike[rule_format,OF negligible_finite] OF «finite spikes)|])
fix t::real assume t:t € {0..1} — spikes
then have ~ differentiable at t
using v_ diff unfolding C'1_ differentiable_on__eq by auto
moreover have f field differentiable at (v t)
proof —
have 7 t € s using t assms unfolding path_image_def by auto
thus ?thesis
using «f analytic_on s> analytic_on__imp _differentiable at by blast
qed
ultimately show deriv f (v ¢) x g (f (7 t)) * vector_derivative v (at t) =
g ((f o) t) x vector_derivative (f o 7) (at t)
by (subst vector__derivative__chain__at_general) (simp__all add:field _simps)
qed
qed

4.4 Morera’s theorem

lemma Morera_local_triangle_ball:
assumes \z. z € §
= Jea. 0 <eAzé€balaeA continuous_on (ball a e) f A
(Vb c. closed_segment b ¢ C ball a e
— contour_integral (linepath a b) f +
contour_integral (linepath b ¢) f +
contour_integral (linepath ¢ a) f =
shows f analytic_on S
proof —
{ fix z assume z € S
with assms obtain e a where
0 < eand z: z € ball a e and contf: continuous_on (ball a €) f
and 0: A\b c. closed_segment b ¢ C ball a e
= contour__integral (linepath a b) f +

0)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 156

contour_integral (linepath b ¢) [+
contour_integral (linepath ¢ a) f = 0

by blast
have az: dist a z < e using mem__ball z by blast

have de>0. f holomorphic_on ball z e
proof (intro exl conjI)
show f holomorphic_on ball z (e — dist a 2)
proof (rule holomorphic_on__subset)
show ball z (e — dist a z) C ball a e
by (simp add: dist_commute ball_subset__ball_iff)
have sub_ball: \y. dist a y < e = closed_segment a y C ball a e
by (meson <0 < ey centre_in_ball convex__ball convex__contains__segment

mem,__ball)

show f holomorphic_on ball a e
using triangle__contour_integrals_starlike__primitive [OF contf _ open__ball,

of a
derivative_is_holomorphic[OF open__ball]
by (force simp add: 0 <0 < e sub_ball)

qed
qged (simp add: az)
}
then show ?thesis
by (simp add: analytic_on__def)

qed

lemma Morera_local_triangle:

assumes A\z. 2z € §
= dt. open t A z € t N\ continuous_on t f A

(Va b c. convex hull {a,b,c} Ct
— contour_integral (linepath a b) f +
contour_integral (linepath b c) f +
f =

contour_integral (linepath ¢ a) 0)

shows f analytic_on S
proof —

{ fix z assume z € §
with assms obtain ¢t where
open t and z: z € t and contf: continuous_on t f

and 0: Aa b c. convex hull {a,b,c} C ¢

= contour__integral (linepath a b) f +
contour_integral (linepath b ¢) f +
f=

contour_integral (linepath ¢ a) 0

by force
then obtain e¢ where ¢>0 and e: ball ze C ¢

using open__contains_ball by blast
have [simp]: continuous_on (ball z e) [using contf
using continuous__on__subset e by blast

have eq0: \b c. closed_segment b ¢ C ball z e =
contour_integral (linepath z b) f +

contour_integral (linepath b ¢) f +

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 157

contour_integral (linepath ¢ z) f = 0

by (meson 0 z <0 < e centre_in_ball closed__segment_subset convex_ball

dual__order.trans e starlike__convez__subset)
have 3ea. 0 < e A z € ball a e A continuous_on (ball a €) f A
(Vb c. closed _segment b ¢ C ball a e —>
contour_integral (linepath a b) f + contour_integral (linepath b

¢) f + contour_integral (linepath c a) f = 0)

using <e > 0 eq0 by force

}

then show ?thesis
by (simp add: Morera_local_triangle ball)
qed

proposition Morera__triangle:
[continuous_on S f; open S;
Aa b c. conver hull {a,b,c} C S
— contour_integral (linepath a b) [+
contour_integral (linepath b ¢) f +
contour_integral (linepath ¢ a) f =
= f analytic_on S
using Morera__local_triangle by blast

0l

4.5 Combining theorems for higher derivatives including Leib-
niz rule

lemma higher_deriv_linear [simp]:
(deriv 7" n) (Aw. cxw) = (Az. if n = 0 then cxz else if n = 1 then c else 0)
by (induction n) auto

lemma higher__deriv__const [simpl: (deriv =" n) (Aw. ¢) = (Aw. if n=0 then c else
0)
by (induction n) auto

lemma higher _deriv_ident [simp]:
(deriv 7" n) (Aw. w) z = (if n = 0 then z else if n = 1 then 1 else 0)
proof (induction n)
case (Suc n)
then show ?case by (metis higher _deriv_linear lambda__one)
qed auto

lemma higher _deriv_id [simp]:
(deriv =" n) id z = (if n = 0 then z else if n = 1 then 1 else 0)
by (simp add: id_def)

lemma has complex derivative funpow 1:
[(f has_field derivative 1) (at 2); fz = 2] = (f~ n has_field_derivative 1)
(at 2)
proof (induction n)
case (

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 158

then show ?case
by (simp add: id_def)
next
case (Suc n)
then show ?case
by (metis DERIV__chain funpow_Suc_right mult.right_neutral)
qed

lemma higher deriv_uminus:
assumes f holomorphic_on S open S and z: z € S
shows (deriv ™" n) (Aw. —(fw)) 2 = — ((deriv " n) f2)
using z
proof (induction n arbitrary: z)
case (then show ?Zcase by simp
next
case (Suc n z)
have «: ((deriv =" n) f has_field_ derivative deriv ((deriv =" n) f) 2) (at z)
using Suc.prems assms has_field _derivative_higher _deriv by auto
have A\z. v € S = — (deriv " n) fz = (deriv " n) (Aw. — fw)
by (auto simp add: Suc)
then have ((deriv =" n) (Aw. — fw) has_field__derivative — deriv ((deriv = n)
f) 2) (at 2)
using has_field derivative_transform__within__open [of Aw. —((deriv """ n) f
w)]
using * DERIV__minus Suc.prems <open S» by blast
then show ?case
by (simp add: DERIV _imp_ deriv)
qed

lemma higher deriv_add:
fixes z::complex
assumes f holomorphic_on S g holomorphic_on S open S and z: z € §
shows (deriv 7" n) (Aw. fw + gw) z = (deriv """ n) fz + (deriv """ n) g z
using z
proof (induction n arbitrary: z)
case () then show ?case by simp
next
case (Suc n z)
have «: ((deriv =" n) f has_field_derivative deriv ((deriv =" n) f) 2) (at z)
((deriv " n) g has_field _derivative deriv ((deriv ~ " n) g) z) (at z)
using Suc.prems assms has__field_derivative higher deriv by auto
have Az. £ € S = (deriv "~ n) fx + (deriv "~ n) gz = (deriv " n) (Aw. f
w4+ gw)z
by (auto simp add: Suc)
then have ((deriv =" n) (Aw. fw + g w) has_field derivative
deriv ((deriv =" n) f) z + deriv ((deriv ~ " n) g) 2) (at z)
using has_field_derivative__transform_within__open [of Aw. (deriv ™" n) fw
+ (deriv """ n) g w]
using *x Deriv.field_ differentiable _add Suc.prems <open S» by blast

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 159

then show ?case
by (simp add: DERIV _imp_ deriv)
qed

lemma higher deriv_ diff:
fixes z::complex
assumes f holomorphic_on S g holomorphic_on S open S z € S
shows (deriv "~ n) (Aw. fw — g w) z = (deriv " " n) fz — (deriv " " n) g 2z
unfolding diff conv_add__uminus higher _deriv_add
using assms higher__deriv_add higher _deriv_uminus holomorphic__on__minus
by presburger

lemma Suc_choose: Suc n choose k = (n choose k) + (if k = 0 then 0 else (n
choose (k—1)))
by (cases k) simp__all

lemma higher deriv_mult:
fixes z::complex
assumes f holomorphic_on S g holomorphic_on S open S and z: z € S
shows (deriv "~ n) (Aw. fw * g w) z =
(3> i = 0..n. of_nat (n choose i) x (deriv = i) fz * (deriv = (n—1)) g z)
using z
proof (induction n arbitrary: z)
case (then show ?case by simp
next
case (Suc n z)
have x: An. ((deriv =" n) f has_field_derivative deriv ((deriv =" n) f) 2) (at 2)
An. ((deriv "~ n) g has_field_derivative deriv ((deriv =" n) g) z) (at 2)
using Suc.prems assms has_field _derivative_higher _deriv by auto
have sumeq: (3.1 = 0..n.
of nat (n choose ©) * (deriv ((deriv "~ 1) f) z % (deriv " (n—1)) g #
+ deriv ((deriv =" (n—1)) g) z * (deriv ~"4) f2)) =
g z *x deriv ((deriv "~ n) f) 2+ O_i = 0..n. (deriv " 0) fz * (of _nat
(Suc n choose i) x (deriv =~ (Suc n — 1)) g 2))
apply (simp add: Suc__choose algebra__simps sum.distrib)
apply (subst (4) sum_Suc_reindex)
apply (auto simp: algebra__simps Suc__diff _le intro: sum.cong)
done
have ((deriv 7" n) (Aw. fw * g w) has_field_derivative
(3> i = 0..Suc n. (Suc n choose i) * (deriv " i) fz * (deriv =~ (Suc n —
i) g 2))
(at 2)
apply (rule has_field_derivative _transform__within__open
[of Aw. O_i = 0..n. of _nat (n choose i) * (deriv = i) fw x (deriv
(n—1) gw) __ S)
apply (simp add: algebra__simps)
apply (rule derivative__eq intros | simp)+
apply (auto intro: DERIV_mult * <open S» Suc.prems Suc.IH [symmetric])
by (metis (no__types, lifting) mult.commute sum.cong sumeq)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 160

then show ?case
unfolding funpow.simps o__apply
by (simp add: DERIV _imp_ deriv)
qed

lemma higher_deriv_transform__ within__open:

fixes z::complex

assumes f holomorphic_on S g holomorphic_on S open S and z: z € S

and fg: A\w.we S = fu=gw
shows (deriv "~ 4) fz = (deriv " "14) gz

using z
by (induction i arbitrary: z)

(auto simp: fg intro: complex_derivative _transform__within__open holomorphic__higher _deriv
assms)

lemma higher_deriv__compose_ linear’:
fixes z::complex
assumes f: f holomorphic_on T and S: open S and T: open T and z: z € §
and fg: A\w.we S = uwxw+ce T
shows (deriv "~ n) (Aw. f (uxw + ¢)) z = u"n * (deriv " n) f (uxz + ¢)
using z
proof (induction n arbitrary: z)
case 0 then show ?case by simp
next
case (Suc n z)
have holo0: f holomorphic_on (Aw. u * w+c) © S
by (meson fg f holomorphic_on__subset image__subset__iff)
have holo2: (deriv =" n) f holomorphic_on (Aw. u * w+c) * S
by (meson f fg holomorphic__higher__deriv holomorphic__on__subset image__subset__iff
T)
have holo3: (A\z. w " n * (deriv ™" n) f (u * z+c)) holomorphic_on S
by (intro holo2 holomorphic_on__compose [where g=(deriv = n) f, unfolded
o__def] holomorphic_intros)
have (Aw. u * w+c) holomorphic_on S f holomorphic_on (Aw. u * w+c) * S
by (rule holo0 holomorphic_intros)+
then have holol: (Aw. f (u x w+c)) holomorphic_on S
by (rule holomorphic_on__compose [where g=f, unfolded o__def])
have deriv ((deriv "~ n) (Aw. f (u % w+c))) z = deriv (Az. u™n % (deriv = n)
f (uxz+c)) 2
proof (rule complex__derivative_transform__within__open [OF __ holo8 S Suc.prems))
show (deriv ™" n) (Aw. f (u * w+c)) holomorphic_on S
by (rule holomorphic_higher__deriv [OF holol S))
qed (simp add: Suc.IH)
also have ... = u™n * deriv (A\z. (deriv =" n) f (u * 2+¢)) 2z
proof —
have (deriv =" n) f analytic_on T
by (simp add: analytic_on__open f holomorphic__higher_deriv T)
then have (A\w. (deriv "~ n) f (u * w+c)) analytic_on S
using holomorphic_on__compose[OF __ holo2] «(Aw. u * w+c) holomor-

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 161

phic_on S»
by (simp add: S analytic_on__open o__def)
then show ?thesis
by (intro deriv_cmult analytic_on__imp__differentiable _at [OF _ Suc.prems))
qged
also have ... = u x u " n * deriv ((deriv "~ n) f) (u * z+c¢)
proof —
have (deriv =" n) f field_differentiable at (u x z+c)
using Suc.prems T f fg holomorphic__higher__deriv holomorphic_on__imp__ differentiable__at
by blast
then show ?thesis
by (simp add: deriv_compose_linear”)
qed
finally show ?case
by simp
qed

lemma higher deriv__compose_linear:
fixes z::complex
assumes f: f holomorphic_on T and S: open S and T: open T and z: z € §
and fg: A\w.weS = uxweT
shows (deriv =" n) (Aw. f (u*x w)) 2 =u"n * (deriv "~ n) [(u * 2)
using higher_deriv_compose_linear’ [where ¢=0] assms by simp

lemma higher_deriv_add__at:
assumes f analytic_on {z} g analytic_on {z}
shows (deriv "~ n) (Aw. fw + gw) z = (deriv " " n) fz + (deriv """ n) g z
using analytic_at_two assms higher deriv_add by blast

lemma higher deriv_diff _at:
assumes f analytic_on {z} g analytic_on {z}
shows (deriv =" n) (Aw. fw — g w) z = (deriv """ n) fz — (deriv """ n) g z
using analytic _at_two assms higher_deriv_diff by blast

lemma higher deriv_uminus_at:
f analytic_on {z} = (deriv "~ n) (Aw. —=(f w)) z = — ((deriv """ n) f 2)
using higher__deriv_uminus by (auto simp: analytic__at)

lemma higher deriv_mult_at:
assumes | analytic_on {z} g analytic_on {z}
shows (deriv "~ n) (Aw. fw* g w) z =
(3> i = 0..n. of_nat (n choose i) x (deriv = i) fz * (deriv = (n—1)) g z)
using analytic _at_two assms higher__deriv_mult by blast

Nonexistence of isolated singularities and a stronger integral formula.

proposition no_isolated singularity:

fixes z::complex

assumes [: continuous_on S f and holf: f holomorphic_on (S—K) and S: open
S and K: finite K

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 162

shows f holomorphic_on S
proof —
{ fix 2z
assume z € S and cdf: Az. © € S — K = f field_ differentiable at
have f field_ differentiable at z
proof (cases z € K)
case Fulse then show ?thesis by (blast intro: cdf <z € S»)
next
case True
with finite_set _avoid [OF K, of 2]
obtain d where d>0 and d: Az. [z€K; 2 # 2] = d < dist z x
by blast
obtain e where e¢>0 and e: ball ze C S
using S <z € S» by (force simp: open__contains_ball)
have fde: continuous_on (ball z (min d e)) f
by (metis Int_iff ball _min__Int continuous_on__subset e f subsetl)
have cont: {a,b,c} C ball z (min d e) = continuous_on (convezx hull {a, b,
c}) fforabc
by (simp add: hull_minimal continuous_on__subset [OF fde])
have fd: [{a,b,c} C ball z (min d e); © € interior (convex hull {a, b, c}) —
K]
= f field__differentiable at z for a b c z
by (metis cdf Diff iff Int_iff ball _min_Int subsetD convex_ball e inte-
rior_mono interior__subset subset _hull)
obtain g where Aw. w € ball z (min d €) = (g has_field _derivative f w)
(at w within ball z (min d e))
apply (rule contour_integral _convex_primitive
[OF convex_ball fde Cauchy_theorem__triangle cofinite [OF __
K1)
using cont fd by auto
then have f holomorphic_on ball z (min d e)
by (metis open__ball at_within__open derivative_is_holomorphic)
then show ?thesis
unfolding holomorphic_on_ def
by (metis open_ball <0 < d» <0 < e» al_within_open centre_in_ball
min__less_iff _conj)
qged

with holf S K show ?thesis

by (simp add: holomorphic__on__open open_ Diff finite_imp__closed field_ differentiable _def
[symmetric])
qged

lemma no__isolated_singularity’:
fixes z::complex
assumes f: \z. 2 € K = (f —— [2) (at z within S)
and holf: f holomorphic_on (S—K) and S: open S and K: finite K
shows f holomorphic_on S
proof (rule no_isolated_singularity|[OF __ assms(2—)])

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 163

have continuous_on (S—K) f
using holf holomorphic_on__imp__continuous_on by auto
then show continuous _on S f
by (metis Diff iff K S at_within__open continuous_on__eq continuous__at
continuous_within f finite__imp__closed open__ Diff)
qed

proposition Cauchy _integral formula_ convex:
assumes S: convex S and K: finite K and contf: continuous _on S f
and fed: (Nz. © € interior S — K = f field_differentiable at x)
and z: z € interior S and vpg: valid__path ~
and pasz: path_image v C S — {z} and loop: pathfinish v = pathstart
shows ((Aw. fw / (w—2)) has_contour_integral (2%pi * i * winding _number =y
2% fz))
proof —
have x: Az. z € interior S = f field__differentiable at
unfolding holomorphic_on__open [symmetric| field_ differentiable def
using no_isolated__singularity [where S = interior S|
by (meson K contf continuous__on__subset fed field _differentiable__def open__interior
has__field__derivative _at_within holomorphic_derivl holomorphic__onl inte-
rior__subset)
show ?thesis
by (rule Cauchy_integral_formula_weak [OF S finite.emptyl contf]) (use =
assms in auto)
qed

Formula for higher derivatives.

lemma Cauchy_has_contour_integral higher _derivative circlepath:
assumes contf: continuous_on (cball z r) f
and holf: f holomorphic__on ball z r
and w: w € ball z 1
shows ((Au. fu / (u—w) ~ (Suc k)) has_contour_integral ((2 * pi 1) / (fact
k) * (deriv " k) fw))
(circlepath z r)
using w
proof (induction k arbitrary: w)
case (then show ?case
using assms by (auto simp: Cauchy__integral _circlepath dist_commute dist_norm)
next
case (Suc k)
have [simp]: r > 0 using w
using ball_eq empty by fastforce
have f: continuous_on (path_image (circlepath z r)) f
by (rule continuous_on__subset [OF contf]) (force simp: cball_def sphere__def
less_imp__le)
obtain X where X: ((\u. fu / (u—w) ~ Suc (Suc k)) has__contour_integral X)
(circlepath z r)
using Cauchy_next derivative_circlepath(1) [OF f Suc.IH __ Suc.prems]
by (auto simp: contour_integrable_on__def)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 164

then have con: contour_integral (circlepath z r) (Au. fu / (u—w) ~ Suc (Suc
B) = X
by (rule contour__integral unique)
have An. ((deriv "~ n) f has_field derivative deriv ((deriv =" n) f) w) (at w)
using Suc.prems assms has__ field__derivative__higher _deriv by auto
then have dnf diff: A\n. (deriv =" n) f field _differentiable (at w)
by (force simp: field _differentiable__def)
have deriv (Aw. complex_of real (2 * pi) i/ (fact k) * (deriv "~ k) fw) w =
of _nat (Suc k) * contour_integral (circlepath z r) (Au. fu / (u—w) ~ Suc
(Suc k))
by (force introl: DERIV__imp__deriv Cauchy_next_derivative__circlepath [OF f
Suc.IH __ Suc.prems])
also have ... = of nat (Suc k) * X
by (simp only: con)
finally have deriv (Aw. ((2 * pi) x i/ (fact k)) * (deriv "~ k) fw) w = of _nat
(Suc k) = X .
then have ((2 * pi) x 1/ (fact k)) x deriv (Aw. (deriv =" k) f w) w = of nat
(Suc k) * X
by (metis deriv_cmult dnf _diff)
then have deriv (Aw. (deriv " k) fw) w = of nat (Suc k) « X / ((2 * pi) = i
/ (fact 1))
by (simp add: field _simps)
then show ?case
using of nat_eq 0 _iff X by fastforce
qed

lemma Cauchy_higher _derivative integral circlepath:
assumes contf: continuous_on (cball z r) f
and holf: f holomorphic__on ball z r
and w: w € ball z r
shows (Au. fu / (u—w) (Suc k)) contour_integrable_on (circlepath z 1)
(is %thesl)
and (deriv " k) fw = (fact k) / (2 = pi = 1) * contour__integral(circlepath z
r) (Au. fu/(u—w) (Suc k))
(is 7thes?2)
proof —
have *: ((Au. fu / (u—w) ~ Suc k) has__contour_integral (2 * pi) * 1 / (fact k)
x (deriv " k) fw)
(circlepath z 1)
using Cauchy_has__contour_integral _higher _derivative_ circlepath [OF assms]
by simp
show ?thes! using x
using contour_integrable _on__def by blast
show ?thes?2
unfolding contour integral _unique [OF x| by (simp add: field split _simps)
qed

corollary Cauchy_ contour_integral_circlepath:
assumes continuous_on (cball z v) f f holomorphic_on ball z 7w € ball z 1

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 165

shows contour_integral(circlepath z r) (Au. f u/(u—w) (Suc k)) = (2 * pi * i)
x (deriv "7 k) fw / (fact k)
by (simp add: Cauchy__higher__derivative__integral_circlepath [OF assms])

lemma Cauchy_contour_integral_circlepath_ 2:
assumes continuous_on (cball z v) f f holomorphic_on ball z r w € ball z r
shows contour_integral(circlepath z) (Au. fu/(u—w)"2) = (2 * pi * 1) *
deriv f w
using Cauchy__contour_integral _circlepath [OF assms, of 1]
by (simp add: power2 eq square)

4.6 A holomorphic function is analytic, i.e. has local power
series

theorem holomorphic__power _series:
assumes holf: f holomorphic__on ball z r
and w: w € ball z T
shows ((An. (deriv "~ n) fz / (fact n) * (w—2z)"n) sums f w)
proof —
— Replacing r and the original (weak) premises with stronger ones
obtain r where r > 0 and holfc: f holomorphic_on cball z r and w: w € ball
zr
proof
have cball z ((r + dist wz) / 2) C ball z r
using w by (simp add: dist_commute field _sum__of halves subset_eq)
then show f holomorphic_on cball z ((r + dist w z) / 2)
by (rule holomorphic_on__subset [OF holf])
have r > 0
by (metis w dist_norm mem__ball norm__ge_zero not_less iff gr or_eq
order_less_le_trans)
then show 0 < (r + dist wz) / 2
by simp (use zero_le_dist [of w z] in linarith)
qed (use w in <auto simp: dist_commute))
then have holf: f holomorphic_on ball z r
using ball__subset__cball holomorphic__on__subset by blast
have contf: continuous_on (cball z r) f
by (simp add: holfc holomorphic__on__imp__continuous__on)
have cint: Ak. (Au. fu / (u—z) ~ Suc k) contour_integrable_on circlepath z r
by (rule Cauchy_higher _derivative_integral_circlepath [OF contf holf]) (simp
add: <0 < 1)
obtain B where 0 < B and B: Au. u € cball z r = norm(f u) < B
by (metis (no__types) bounded__pos compact__cball compact__continuous_image
compact__imp__bounded contf image__eql)
obtain k where k: 0 < k k < r and wz_eq: norm(w—z) = r — k
and kle: Au. norm(u—z) = r = k < norm(u—w)
proof
show Au. cmod (u—z2) = r = r — dist zw < cmod (u—w)
by (metis add_ diff eq diff _add__cancel dist_norm norm__diff _ineq)
qed (use w in <auto simp: dist _norm norm__minus__commutey)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 166

have ul: uniform_limit (sphere z r) (An z. (3 k<n. (w—z) "k* (fz / (z—2) ~
Suc k) (Az. fz /| (z—w)) sequentially
unfolding uniform_ limit_iff dist_norm
proof clarify
fix e::real
assume 0 < e
have rr: 0 < (r—k) / r (r—k) / r < 1 using k by auto
obtain n where n: ((r—%k) /r) "n<e/ Bxk
using real _arch_pow_inv [of e/Bxk (r—k)/r] <0 < e» <0 < B> k by force
have norm ((3_k<N. (w—z) "k * fu / (u—2) " Suck) — fu / (v—w)) < e
ifn < Nand r: r = dist zu for N u
proof —
have N: ((r—k) /r) T N<e/ Bxk
using le_less trans [OF power_decreasing n]
using «n < N» k by auto
have u [simp]: (u # 2) A (u # w)
using <0 < m r w by auto
have wzu_notl: (w—2z) / (u—z) # 1
by (metis (no_types) dist_norm divide_eq 1_iff less_irrefl mem__ball
norm__minus_commaute T w)
have norm ((3Jk<N. (w—z) "k * fu / (u—2) ~ Suc k) * (u—w) — fu)
= norm (3 k<N. (((w—z) / (u=2)) "k)) * fux* (u—w) / (u—z) — fu)
unfolding sum__ distrib_right sum__divide_distrib power _divide by (simp
add: algebra__simps)
also have ... = norm (((w—2) / (u—2)) "N — 1) * (uv—w) / (((w—2) /
(u—2) — 1) * (u—2)) — 1) * norm (f u)
using <0 < B»
apply (simp add: geometric_sum [OF wzu_notl] flip: norm_mult)
apply (simp add: field _simps)
done
also have ... = norm ((u—z) " N % (w—u) — (w—z) N — (u—z) "~ N) %
(u—w)) / (r =N * norm (u—w)) * norm (f u)
using <0 < r r by (simp add: divide_simps norm__mult norm__divide
norm__power dist_norm norm_ minus_commute)

also have ... = norm ((w—z2) = N * (w—u)) / (r = N % norm (u—w)) *
norm (f u)
by (simp add: algebra__simps)
also have ... = norm (w—z2) " N x norm (fu) / r * N

by (simp add: norm__mult norm__power norm__minus__commaute)
also have ... < (((r—k)/r)"N) x B

using <0 < m wk

by (simp add: B divide__simps mult_mono r wz__eq)

also have ... < ex k
using <0 < B) N by (simp add: divide simps)
also have ... < e * norm (u—w)

using r kle <0 < e by (simp add: dist_commute dist_norm)
finally show ?thesis
by (simp add: field_split_simps norm__divide del: power__Suc)
qed

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 167

with <0 < r show V g n in sequentially. ¥ x€sphere z .
norm (3. k<n. (w—2z) "k x (fz / (z—2) " Suck)) — fz / (z—w))
<e
by (auto simp: mult_ac less_imp_le eventually_sequentially Ball_def)
qged
have §: Az k. ke {.<z} =
Au. (w—2) "k = (fu/ (u—2) = Suck)) contour_integrable_on circlepath
zr
using contour_integrable_lmul [OF cint, of (w—z) ~ a for a] by (simp add:
field__simps)

have eg: An.
(>~ k<n. contour_integral (circlepath z r) (Au. fu / (u—z) ~ Suc k) *
(w=2) " k) =
contour_integral (circlepath z r) (Au. > k<n. (w—z) "k * (fu / (u—2)
~ Suc k))

apply (subst contour _integral _sum)
apply (simp_all only: § finite lessThan contour integral Imul cint alge-
bra__simps)
done
have Au k. k € {.<u} = (Az. fz / (z—2) ~ Suc k) contour_integrable_on
circlepath z r
using <0 < r by (force intro!: Cauchy_higher _derivative_integral _circlepath
[OF contf holf])
then have Au. (A\y. Y k<u. (w—2) "k x* (fy/ (y—z) " Suck)) contour_integrable__on
circlepath z r
by (intro contour_integrable_sum contour_integrable_Imul, simp)
then have (\k. contour_integral (circlepath z r) (Au. f u/(u—z) (Suc k)) *
(w—2))
sums contour_integral (circlepath z r) (Au. fu/(u—w))
unfolding sums_def eq
using <0 < r» contour_integral_uniform_limit_ circlepath [OF eventuallyl ul]

by fastforce
then have (Ak. contour integral (circlepath z) (Au. f u/(u—z) (Suc k)) =
(w—2))
sums (2 % of _real pi x i x fw)
using w by (auto simp: dist_commute dist_norm contour_integral_unique [OF
Cauchy__integral_circlepath__simple [OF holfc]])
then have (\k. contour integral (circlepath z) (Au. fu / (u—z) = Suc k) *
(w—2)"k / (i * (of _real pi x 2)))
sums ((2 = of real pi xix fw) / (i* (complex_ of real pi x 2)))
by (rule sums__divide)
then have (An. (w—z) ~ n * contour_integral (circlepath z 1) (Au. fu / (u—z)
“Sucn) / (i* (of _real pi x 2)))
sums fw
by (simp add: field simps)
then show ?thesis
by (simp add: field_simps <0 < > Cauchy__higher__derivative _integral_circlepath
[OF contf holf])

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 168

qed

4.7 The Liouville theorem and the Fundamental Theorem of
Algebra

These weak Liouville versions don’t even need the derivative formula.

lemma Liouville _weak 0:
assumes holf: f holomorphic_on UNIV and inf: (f —— 0) at_infinity
shows fz = 0
proof (rule ccontr)
assume fz: fz # 0
with inf [unfolded Lim__at_infinity, rule_format, of norm(f z)/2]
obtain B where B: Az. B < e¢mod © = norm (fz) * 2 < cmod (f 2)
by (auto simp: dist_norm)
define R where R = 1 + |B| + norm z
have R > 0
unfolding R_ def by (smt (verit) norm__ge_ zero)
have *: ((Au. fu / (u—2)) has_contour_integral 2 % complex_of real pi i x f
z) (circlepath z R)
using continuous_on__subset holf holomorphic__on__subset <0 < R»
by (force intro: holomorphic__on__imp__continuous__on Cauchy__integral _circlepath)
have cmod (z—z) = R = cmod (fz) * 2 < cmod (f z) for z
unfolding R_ def by (rule B) (use norm__triangle_ineq [of x z] in auto)
with <R > 0) fz show Fulse
using has__contour_integral _bound__circlepath [OF x, of norm(f z)/2/R)
by (auto simp: less_imp__le norm_mult norm__divide field__split_simps)
qed

proposition Liouville_weak:
assumes | holomorphic_on UNIV and (f ——) at_infinity
shows fz = [
using Liouville_weak 0 [of Az. fz —]
by (simp add: assms holomorphic__on__diff LIM_zero)

proposition Liouville _weak__inverse:
assumes | holomorphic_on UNIV and unbounded: \B. eventually (Az. norm
(fz) > B) at_infinity
obtains z where fz = 0
proof —
{ assume f: A\z. fz# 0
have 1: (Az. 1 / fx) holomorphic_on UNIV
by (simp add: holomorphic_on__divide assms f)
have 2: ((Az. 1 / fz) —— 0) at_infinity
proof (rule tendstol [OF eventually mono))
fix e::real
assume ¢ > 0
show eventually (Az. 2/e < cmod (f x)) at_infinity
by (rule_tac B=2/e in unbounded)
qed (simp add: dist_norm norm__divide field split _simps)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 169

have Fulse
using Liouville_weak 0 [OF 1 2] f by simp
}

then show ?thesis
using that by blast
qed

In particular we get the Fundamental Theorem of Algebra.

theorem fundamental theorem__of algebra:
fixes a :: nat = complex
assumes a 0 = 0 V (3i € {l..n}. ai # 0)
obtains z where (3. i<n. ai* z7%) =0
using assms
proof (elim disjE bexE)
assume a 0 = 0 then show ?thesis
by (auto simp: that [of 0])
next
fix ¢
assume i: i € {I..n} and nz: a i # 0
have 1: (Az. > i<n. a i x z27%) holomorphic_on UNIV
by (rule holomorphic_intros)+
show thesis
proof (rule Liouville_weak_inverse [OF 1])
show V p z in at_infinity. B < cmod (3. i<n. a i x z ~ i) for B
using i nz by (intro polyfun__extremal exI[of _ i]) auto
qed (use that in auto)
qed

4.8 Weierstrass convergence theorem

lemma holomorphic__uniform__limit:
assumes cont: eventually (An. continuous _on (cball z) (f n) A (f n) holomor-
phic_on ball z 1) F
and ulim: uniform__limit (cball z 1) fg F
and F: — trivial _limit F
obtains continuous_on (cball z) g g holomorphic_on ball z r
proof (cases r 0::real rule: linorder_cases)
case less then show ?thesis by (force simp: ball _empty less _imp_le continu-
ous__on__def holomorphic__on__def intro: that)
next
case equal then show ?thesis
by (force simp: holomorphic__on__def intro: that)
next
case greater
have contg: continuous _on (cball z) g
using cont uniform__limit_theorem [OF eventually _mono ulim F| by blast
have path__image (circlepath z r) C cball z r
using <0 < r by auto
then have I: continuous_on (path_image (circlepath z r)) (Az. 1 / (2 * com-

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 170

plex_of real pi x 1) x g x)
by (intro continuous_intros continuous__on__subset [OF contg])
have 2: (Au. 1 / (2 = of _real pi x 1) *x g u / (u—w) ~ 1) has_contour_integral
g w) (circlepath z r)
if w: w € ball z r for w
proof —
define d where d = (r — norm(w—2z))
have 0 < d d < r using w by (auto simp: norm_minus_commute d_ def
dist_norm)
have dle: Au. ecmod (z—u) = r = d < cmod (u—w)
unfolding d_def by (metis add_diff eq diff _add__cancel norm__diff ineq
norm__minus__commute)
have ev_int: Vp nin F. (Au. fnu / (u—w)) contour_integrable_on circlepath
zr
using w
by (auto intro: eventually_mono [OF cont] Cauchy__higher_derivative__integral_circlepath
[where k=0, simplified])
have Ae. [0 < 7; 0 < d; 0 < €]
= VpninkF.
YV z€sphere z r.
T # w—
cmod (fnz — gx) < ex cmod (x—w)
apply (rule_tac el=e x d in eventually _mono [OF uniform_limitD [OF
ulim]])
apply (force simp: dist_norm intro: dle mult_left _mono less_le trans)+
done
then have ul_less: uniform_limit (sphere z 1) (Anz. fnz / (z—w)) (A\z. gz
/ (5—w)) F
using greater <0 < d»
by (auto simp add: uniform__limit_iff dist_norm norm__divide diff _divide__distrib
[symmetric] divide__simps)
have g cint: (Au. g u/(u—w)) contour_integrable on circlepath z r
by (rule contour__integral__uniform__limit_circlepath [OF ev_int ul_less F <0
< m])
have cif tends cig: ((An. contour__integral(circlepath z) (Au. fnu / (u—w)))
—— contour_integral(circlepath z r) (Au. g u/(u—w))) F
by (rule contour_integral _uniform_limit_circlepath [OF ev_int ul_less F <0
< m])
have f tends cig: (An. 2 * of real pi * 1 x f n w) —— contour_integral
(circlepath z r) (Au. g u / (u—w))) F
proof (rule Lim__transform__eventually)
show V g z in F. contour_integral (circlepath z v) (Au. fz u / (u—w))
=2xof real pi xi*x foxw
using w«0 < d» d__def
by (auto intro: eventually _mono [OF cont contour _integral unique [OF
Cauchy_integral_circlepath]])
qged (auto simp: cif _tends_cig)
have N\e. 0 < e=VpninF. dist (fnw) (gw) <e
by (rule eventually mono [OF uniform_limitD [OF ulim]]) (use w in auto)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 171

then have ((An. 2 * of real pi x 1% fnw) —— 2 x of _real pi i * g w) F
by (rule tendsto__mult_left [OF tendstol))
then have ((Au. g u / (u—w)) has_contour_integral 2 * of real pi * i % g w)
(circlepath z 1)
using has__contour_integral_integral [OF g_cint] tendsto_unique [OF F
f_tends cig] w
by fastforce
then have ((Au. g u / (2 % of real pi * i x (u—w))) has_contour_integral g
w) (circlepath z r)
using has__contour_integral _div [where ¢ = 2 x of _real pi * i]
by (force simp: field _simps)
then show ?thesis
by (simp add: dist_norm)
qed
show ?thesis
using Cauchy__next_derivative__circlepath(2) [OF 1 2, simplified]
by (fastforce simp add: holomorphic__on__open contg intro: that)
qed

lemma higher_deriv__complex__uniform__limit:
assumes ulim: uniform_limit A f g F
and f_holo: eventually (An. fn holomorphic_on A) F
and F: F # bot
and A: open A z € A
shows ((An. (deriv =" m) (f n) z) —— (deriv """ m) g z) F
proof —
obtain » where r: r > O cball z7 C A
using A by (meson open__contains_cball)
have s ball z7 C A
using r by auto
define h where h = (An z. fnz — g 2)
define ¢ where ¢ = of _real (2xpi) x 1 / fact m
have [simp]: ¢ # 0
by (simp add: c_ def)
have g holomorphic_on ball z r A continuous_on (cball z 1) g
proof (rule holomorphic__uniform__limit)
show uniform__limit (cball z) fg F
by (rule uniform__limit_on__subset[OF ulim r(2)])
show V i n in F. continuous_on (cball z 1) (f n) A fn holomorphic_on ball z
r using f_holo
by eventually_elim
(use holomorphic__on__subset[OF __ r(2)] holomorphic_on__subset|OF __ r’]

in <auto intro!: holomorphic_on_imp _continuous_ony)
qed (use F in auto)
hence ¢ _holo: g holomorphic_on ball z r and g_ cont: continuous_on (cball z

) g
by blast+

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 172

have ulim” uniform_limit (sphere z r) (Anx. hnx / (x — z) ~ (Suc m)) (A_.
0) F
proof —
have uniform_limit (sphere zr) Anz. fnz / (x — z) ~Sucm) (Az. gz / (z
— z) " Sucm) F
proof (intro uniform_lim__divide uniform__limit_intros uniform__limit_on__subset[OF
ulim])
have compact (g ¢ sphere z 1)
by (intro compact__continuous__image continuousfonﬁsubset[OF gicont])
auto
thus bounded (g * sphere z 1)
by (rule compact_imp_bounded)
show r = Suc m < norm ((z — z) ~ Suc m) if © € sphere z r for z unfolding
norm.__power
by (intro power_mono) (use that r(1) in <auto simp: dist_norm norm__minus__commaute))
qged (use r in auto)
hence uniform_limit (sphere z 1) (Anz. fnx [/ (x —2) " Sucm — gz / (z
— 2z) " Suc m)
Mgz /(xr—2) "Suem —gx/(x—2) " Sucm)F
by (intro uniform_limit_intros)
thus ?thesis
by (simp add: h_def diff divide__distrib)
qed

have has__integral: eventually (An. (Au. hnu / (u — z) ~ Suc m) has__contour_integral

¢ x (deriv " m) (h n) 2) (circlepath z 1)) F
using f holo
proof eventually elim
case (elim n)
show “case
unfolding ¢ _def
proof (rule Cauchy_has_contour_integral higher _derivative _circlepath)
show continuous_on (cball z r) (h n) unfolding h_def
by (intro continuous__intros g_cont holomorphic__on__imp__continuous__on
holomorphic__on__subset[OF elim] r)
show h n holomorphic_on ball z r
unfolding h__def by (intro holomorphic_intros g_holo holomorphic__on__subset[OF
elim] r')
qged (use r(1) in auto)
qed

have ((An. contour_integral (circlepath z) (Au. h nu / (u — 2z) ~ Suc m))
—
contour_integral (circlepath z 1) (Au. 0 / (v — z) ~ Suc m)) F
proof (rule contour_integral uniform_ limit_ circlepath)
show Vg nin F. (Au. hnu / (u — z) ~ Suc m) contour_integrable_on
circlepath z r
using has__integral by eventually _elim (blast intro: has__contour _integral_integrable)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 173

qed (use r(1) «F # boty ulim’ in simp__all)
hence ((An. contour_integral (circlepath z r) (Au. hnw / (u — z) = Suc m))
— 0) F
by simp
also have ?this <— ((An. ¢ * (deriv "~ m) (hn) 2) —— 0) F
proof (rule tendsto__cong)
show V i z in F. contour_integral (circlepath z r) (Au. hx v / (v — z) ~ Suc
m) =
¢ x (deriv " m) (h) z
using has_integral by eventually__elim (simp add: contour_integral _unique)
qed
finally have ((An. (deriv =" m) gz + ¢ * (deriv =" m) (hn) z /] ¢) —
(deriv 7" m) gz+0/c¢) F
by (intro tendsto__intros) auto
also have ?this «— ((An. (deriv "~ m) (fn) 2) —— (deriv """ m) g z) F
proof (intro filterlim__cong)
show Vp nin F. (deriv =" m) gz + ¢ x (deriv =" m) (hn) z / ¢ = (deriv ™"
m) (fn) 2
using [holo
proof eventually elim
case (elim n)
have (deriv =~ m) (h n) z = (deriv =~ m) (f n) 2z — (deriv =" m) ¢ z
unfolding h_def
by (rule higher__deriv_ diff holomorphic__on__subset|OF elim r'] g_holo A)+
(use r(1) in auto)
thus Zcase
by simp
qed
qged auto
finally show ?thesis .
qed

lemma deriv_complex _uniform__ limit:
assumes ulim: uniform_limit A f g F
and f_holo: eventually (An. f n holomorphic_on A) F
and F: F # bot
and A: open A z € A
shows ((An. deriv (f n) z) —— deriv g z) F
using higher _deriv_complex _uniform_ limit[OF assms, of 1] by simp

lemma logderiv_prodinf complex__uniform__limit:
fixes f :: nat = complex = complex
assumes lim: uniform_limit A (An z. [[k<n. f k) P sequentially
assumes holo: \k. f k holomorphic_on A
assumes nz: Pz # 0
assumes A: open A z € A
shows (Ak. deriv (fk) 2z / fkz) sums (deriv P z /| P z)
proof —
define f’ where f' = (Ak. deriv (f k))

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 174

note [derivative_intros| = has_field derivative_prod’
have [derivative intros]:
(f k has_field_derivative f' k z) (at z within B) if z € A for B z k
using that holomorphic_derivI[OF holo|of k], of z B] A unfolding f’_def by
auto
have lim” (An. [[k<n. fk2) —— Pz
using lim by (rule tendsto__uniform__limitl) fact+

have nz": fk z # 0 for k
proof
assume fkz =0
have eventually (An. ([Tk<n. fk z) = 0) sequentially
using eventually gt _at_top[of k] by eventually elim (use <f k z = 0) in
auto)
hence (An. ([[k<n. fkz)) —— 0
by (rule tendsto__eventually)
with lim’ have P z = 0
using tendsto_unique sequentially bot by blast
with nz show Fulse
by simp
qged

from lim have (An. deriv (Az. [[k<n. fk z) z2) — deriv P z
by (rule deriv__complex__uniform__limit)
(use A in <auto introl: always_eventually holomorphic_intros holo)
also have (An. deriv (A\x. [[k<n. fkz) 2) = (An. (J[k<n. fk2) * O k<n. f’
kz/[fkz)
using <z € Ay by (auto introl: ext DERIV _imp_ deriv derivative__eq intros
simp: nz’)
finally have (An. ([[k<n. fkz2) * O k<n.f'kz/ fkz)) —— derivP z .
hence (An. ([Jk<n. fkz) « O k<n. f'kz/ fkz) / ([[k<n. fk2) ——
deriv Pz | Pz
by (intro tendsto_intros) (use nz lim’ in auto)
also have (An. ([Tk<n. fkz)« O k<n. f'kz/ fkz)/ (lk<n. fk2z)) =
An. O k<n. f'kz/ fk2)
by (simp add: nz’)
finally show (\k. f' kz / fkz) sums (deriv P z |/ P z)
unfolding sums_def .
qed

Version showing that the limit is the limit of the derivatives.

proposition has_complex _derivative__uniform__limit:
fixes z::complex
assumes cont: eventually (An. continuous_on (cball z) (f n) A
(Vw € ball zr. ((f n) has_field_derivative (f' n w)) (at
w) F
and ulim: uniform__limit (cball z 1) fg F
and F: - trivial limit F and 0 < r
obtains g’ where

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 175

continuous_on (cball 2 1) g
Aw. w € ball z 7 = (g has_field__derivative (g’ w)) (at w) A ((An. f' n w)
—— g’ w) F
proof —
let Zconint = contour_integral (circlepath z 1)
have ¢: continuous_on (cball z 1) g g holomorphic_on ball z v
by (rule holomorphic_uniform_ limit [OF eventually_mono [OF cont] ulim F;
auto simp: holomorphic_on__open field _differentiable_def)+
then obtain ¢’ where g Az. z € ball z r = (g has_field__derivative ¢’ x) (at
z)
using DERIV__deriv_iff has_field derivative
by (fastforce simp add: holomorphic__on__open)
then have derg: \z. z € ball z 7 = deriv gz = g’ z
by (simp add: DERIV _imp_ deriv)
have tends_f'n_g" ((An. f'nw) —— ¢’ w) F if w: w € ball z r for w
proof —
have eq_f": ?conint (\z. fnx | (z—w)?) — Zconint (A\z. gz /| (z—w)?) = (f’
nw— g w)x (2 % of_real pi * 1)
if cont_fn: continuous_on (cball z r) (f n)
and fnd: Aw. w € ball z 7 = (f n has_field_derivative f' n w) (at w)
for n
proof —
have hol_fn: f n holomorphic_on ball z r
using fnd by (force simp: holomorphic__on__open)
have (f n has_field_derivative 1 | (2 * of _real pi % i) * Zconint (Au. fn u
/ (u=w)?)) (at w)
by (rule Cauchy__derivative__integral_circlepath [OF cont_fn hol_fn w])
then have " f'nw =1/ (2 * of real pi i) * ?conint Au. fnu / (u—w)?)
using DERIV_unique [OF fnd] w by blast
show ?thesis
by (simp add: f' Cauchy__contour_integral _circlepath__2 [OF g w| derg [OF
w] field__split__simps)
qed
define d where d = (r — norm(w—z)) 2
have d > 0
using w by (simp add: dist_commute dist_norm d_def)
have dle: d < cmod ((y—w)?) if r = cmod (z—y) for y
by (smt (verit, best) d__def diff _add__cancel diff _diff eq2 dist_norm mem__ball
norm_ minus__commute norm__power norm__triangle ineq?2 power _mono
that w)
have 1: Vg nin F. (A\v. fnx / (z—w)?) contour_integrable_on circlepath z r

by (force simp: holomorphic__on__open intro: w Cauchy__derivative_integral_circlepath

eventually_mono [OF cont))
have 2: uniform__limit (sphere zr) (Anz. fnz / (z—w)?) A\z. gz / (z—w)?)
F
unfolding uniform_ limit_iff
proof clarify
fix e::real
assume e > (

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 176

with <r > 0»
haveVp nin F.Vz. 2 # w — cmod (z—z) =1 — cmod (fnz — gz) <
e x cmod ((1—w)?)
by (force simp: <0 < d» dist_norm dle intro: less_le_trans eventually _mono
[OF uniform__limitD [OF ulim], of exd])
with «r > 0> <e > 0>
show V p nin F. YV z€sphere z r. dist (fnz / (z—w)?) (gz / (z—w)?) < e
by (simp add: norm__divide field split _simps sphere__def dist_norm,)
qed
have ((An. contour_integral (circlepath z v) (A\z. fnx / (z—w)?))
— contour__integral (circlepath z r) (A\z. g ¢ / (z—w)?))) F
by (rule contour_integral_uniform__limit_circlepath [OF 1 2 F <0 < 1))
then have tendsto_0: (An. 1 / (2 * of _real pi * i) x (?conint (Az. fnz /
(z—w)?) — Zconint (A\z. gz / (z—w)?))) —— 0) F
using Lim_ null by (force introl: tendsto__mult_right_zero)
have ((An. f'nw — g’ w) —— 0) F
by (force simp: divide__simps
intro: eq_f' eventually mono [OF cont] Lim__transform__eventually [OF
tendsto__0))
then show ?thesis using Lim_null by blast
qged
obtain ¢’ where Aw. w € ball z r = (g has_ field_derivative (¢’ w)) (at w) A
(An. f'nw) — g’ w) F
by (blast intro: tends_f'n_g’ ¢")
then show “thesis using ¢
using that by blast
qged

4.9 Some more simple/convenient versions for applications

lemma holomorphic__uniform__sequence:
assumes S: open S
and hol_fn: An. (f n) holomorphic_on S
and wlim_g: Nz. z € S = 3d. 0 < d A cball x d C S A uniform_limit
(cball x d) f g sequentially
shows ¢ holomorphic_on S
proof —
have 3f'. (g has_ field_derivative f’) (at 2) if z € S for z
proof —
obtain r where 0 < rand 7r: cball z7 C S
and ul: uniform_limit (cball z r) f g sequentially
using ulim_ g [OF <z € S)] by blast
have *: V p n in sequentially. continuous_on (cball z r) (f n) A f n holomor-
phic_on ball z r
by (smt (verit, best) ball_subset__cball hol_fn holomorphic__on__imp__continuous_on

holomorphic__on__subset not__eventuallyD r)
show ?thesis
using <0 < 7 centre_in_ ball ul

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 177

by (auto simp: holomorphic__on__open intro: holomorphic__uniform__limit [OF
+])
qed
with S show ?thesis
by (simp add: holomorphic_on__open)
qed

lemma has_complex derivative _uniform__sequence:
fixes S :: complex set
assumes S: open S
and hfd: Anz. z € S = ((f n) has_field_derivative f' n) (at x)
and ulim_g: N\z. z € S
= 3d. 0 < dA cballzd C S A uniform_limit (cball x d) f g sequentially
shows Jg’. Vz € S. (g has_field derivative g’ z) (at) A (An. f' nz) —
g’) sequentially
proof —
have y: 3y. (g has_field_derivative y) (at z) A (An. f'nz) —— yifz € S
for z
proof —
obtain r where 0 < rand r: cball z7 C S
and ul: uniform__limit (cball z r) f g sequentially
using ulim_g [OF <z € S)] by blast
have *: Y g n in sequentially. continuous_on (cball z r) (f n) A
(Vw € ball z r. ((f n) has_field_derivative (f' n w))
(at w))
proof (intro eventuallyl conjl balll)
show continuous_on (cball z) (f z) for z
by (meson S continuous__on__subset hfd holomorphic_on__imp__continuous__on
holomorphic__on__open r)
show w € ball z r = (f z has_field_ derivative f' z w) (at w) for w
using ball _subset__cball hfd r by blast
qed
show ?thesis
by (rule has__complex_derivative _uniform__limit [OF x, of g]) (use <0 < r»
ul in <force+)
qed
show ?thesis
by (rule bchoice) (blast intro: y)
qed

4.10 On analytic functions defined by a series

lemma series and__derivative__comparison:
fixes S :: complex set
assumes S: open S
and h: summable h
and hfd: Anz. z € S = (f n has_field_derivative f' n z) (at)
and to_g: YV n in sequentially. ¥ z€S. norm (fnz) < hn
obtains g ¢’ where Vz € S. ((An. fn z) sums g z) A (An. f' nz) sums g’ z)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 178

A (g has_field_derivative g’) (at x)
proof —
obtain g where g: uniform_limit S (An z. > i<n. fi) g sequentially
using Weierstrass_m__test_ev [OF to_g h] by force
have *: 3d>0. cball x d C S A uniform_limit (cball x d) (An z. > i<n. fi x)
g sequentially
ifx € S for x
using open__contains_cball [of S| «<x € S» S g uniform_limit_on_ subset by
blast
have A\z. 2 € S = (An. Y i<n. fiz) —— gz
by (metis tendsto__uniform_limitI [OF g])
moreover have 3¢’ Vz€S. (g has_field_derivative g’ z) (at z) A (An. > i<n.
fliz) —— g’z
by (rule has_complex_derivative__uniform__sequence [OF S]) (auto intro: * hfd
DERIV_sum)+
ultimately show ?thesis
by (metis sums__def that)
qed

A version where we only have local uniform/comparative convergence.

lemma series and__derivative__comparison__local:
fixes S :: complex set
assumes S: open S
and hfd: Anz. z € S = (f n has_field_derivative f' n z) (at)
and to_g: Az. 2 € S = 3d h. 0 < d A summable h N (V r n in sequentially.
Vyeballz d N S. norm (fny) < hn)
shows 3g ¢’ Vz € S. (An. fnx) sums g) A (An. f'' n x) sums ¢’) A (g
has_field_derivative g’ x) (at z)
proof —
have Jy. (An. fn z) sums O n. fnz) A(An. f'nz) sumsy A ((Az. Yon. fn
x) has_field derivative y) (at 2)
if z € S for 2
proof —
obtain d h where 0 < d summable h and le_h: ¥V p n in sequentially. ¥ y€ball
zdNS. norm (fny) <hn
using to_g <z € 5> by meson
then obtain r where r>0 and r: ball z 7 C ball z d N S using <z € §» §
by (metis Int_iff open__ball centre__in__ball open__Int open__contains_ball_eq)
have 1: open (ball zd N S)
by (simp add: open_Int S)
have 2: Anz. z € ball zd N S = (f n has_field_derivative f' n) (at x)
by (auto simp: hfd)
obtain g ¢’ where g¢": Vz € ball zd N S. (An. fn x) sums g z) A
((An. f"n) sums g’ x) A (g has_field_derivative g’
z) (at x)
by (auto intro: le_h series_and__derivative_comparison [OF 1 <summable h»
W)
then have (An. f' n 2) sums g’ 2
by (meson <0 < r» centre_in__ball contra_subsetD r)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 179

moreover have (An. fn z) sums (3 n. fn 2)
using summable_sums centre_in__ball <0 < d» <summable hy le_h
by (metis (full_types) Int_iff g9’ summable_def that)
moreover have ((Az. Y n. fn z) has_field derivative g’ z) (at 2)
by (metis (no__types, lifting) 11 <0 < r gg’ has_field_derivative__transform__within__open

open__contains_ball_eq sums_unique)
ultimately show ?thesis by auto
qed
then show ?thesis
by meson
qed

Sometimes convenient to compare with a complex series of positive reals.
(?)
lemma series and__derivative__comparison__complex:
fixes S :: complex set
assumes S: open S
and hfd: Anz. z € S = (f n has_field__derivative f' n z) (at x)
and to_g: Az. 2 € S = 3d h. 0 < d N summable h A range h C R>o A (VF
n in sequentially. Y y€ball x d N S. emod(f n y) < cmod (h n))
shows Jg ¢’ Vo € S. (An. fn) sums g) A (An. f' n x) sums g’) A (g
has_field_derivative g’ x) (at z)
apply (rule series_and_derivative__comparison__local [OF S hfd], assumption)
apply (rule ex_forward [OF to__g], assumption)
apply (erule exFE)
apply (rule_tac z=Re o h in exl)
apply (force simp: summable__Re o__def nonneg_Reals _cmod__eq Re image__subset__iff)
done

Sometimes convenient to compare with a complex series of positive reals.
()
lemma series differentiable _comparison__complex:
fixes S :: complex set
assumes S: open S
and hfd: Anz. x € S = fn field_differentiable (at x)
and to_g: Az. 2 € S = 3d h. 0 < d N summable h A range h C R>o A (V
n in sequentially. ¥V y€ball x d N S. emod(f n y) < cmod (h n))
obtains ¢ where Vo € S. ((An. fn x) sums g x) A g field _differentiable (at x)
proof —
have hfd An z. z € S = (f n has_field_derivative deriv (f n) z) (at x)
using hfd field_differentiable_derivl by blast
show ?thesis
by (metis field _differentiable_def that series__and__derivative__comparison__complex
[OF S hfd' to_g])
qed

In particular, a power series is analytic inside circle of convergence.

lemma power__series _and__derivative_ 0:

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 180

fixes a :: nat = compler and r::real
assumes summable (An. a n * r7n)
shows ¢ ¢g'. V2. ¢cmod 2 < r —
((An. an* z"n) sums g z) A (An. of_nat n *x an * z(n—1)) sums g’
z) A (g has_field_derivative g’ z) (at z)
proof (cases 0 < 1)
case True
have der: An z. (Az. a n x £ ~ n) has_field derivative of natn * an x z
(n—1)) (at 2)
by (rule derivative__eq_intros | simp)+
have y_le: cmod y < cmod (of _real r + of real (¢cmod 2)) | 2
if emod (z—y) * 2 < r — cmod z for z y
by (smt (verit, best) field _sum__of halves norm__minus__commute norm__of real
norm__triangle__ineq2 of real add that)
have summable (An. a n x complex_of real r ~ n)
using assms <r > 0> by simp
moreover have \z. cmod z < r = cmod ((of _real r + of _real (cmod z)) /
2) < cmod (of _real 1)
using <r > 0>
by (simp flip: of _real _add)
ultimately have sum: A\z. cmod z < r = summable (An. of _real (cmod (a
n)) * ((of _real v + complex_of real (cmod 2)) / 2) " n)
by (rule power _series_conv_imp__absconv_weak)
have g g’ Vz € ball 0 r. (An. (an)* 2z " n) sums gz A
(An. of_natn* (an)*z " (n—1)) sums g’ z A (g has_field_derivative
9" z) (at z)
apply (rule series_and__derivative__comparison__complex [OF open__ball der])
apply (rule_tac z=(r — norm z)/2 in exl)
apply (rule_tac x=An. of real(norm(a n)x((r + norm z)/2) n) in exl)
using «r > 0»
apply (auto simp: sum eventually_sequentially morm__mult norm_ power
dist_norm introl: mult_left_mono power_mono y_le)
done
then show ?thesis
by (simp add: ball_def)
next
case Fulse then show ?thesis
unfolding not _less using less le trans norm_not_less zero by blast
qed

proposition power_series and__derivative:
fixes a :: nat = complexr and r::real
assumes summable (An. a n * r7n)
obtains g ¢’ where V2 € ball w r.
(An. an * (z—w) ~n) sums g z) A (An. of_nat n x an * (z—w)
(n—1)) sums g’ z) A
(g has_field_derivative g’ z) (at z)
using power_series_and__derivative__0 [OF assms]
apply clarify

o~

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 181

apply (rule_tac g=(\z. g(z—w)) in that)

using DERIV_shift [where z=—uw]

apply (auto simp: norm_minus__commute Ball def dist_norm)
done

proposition power _series holomorphic:
assumes Aw. w € ball z 7 = ((An. a nx(w—2z) "n) sums f w)
shows f holomorphic_on ball z r
proof —
have 3f'. (f has_field_derivative ') (at w) if w: dist z w < r for w
proof —
have wz: emod (w—z) < r using w
by (auto simp: field split _simps dist _norm norm__minus__commute)
then have 0 < r
by (meson less_eq_real_def norm__ge_zero order_trans)
have inb: z + complex_of real ((dist zw + r) / 2) € ball z r
using w by (simp add: dist_norm <0<rs flip: of real_add)
have sum: summable (An. a n * of real (((cmod (z—w) + r) / 2) " n))
using assms [OF inb] by (force simp: summable_def dist_norm)
obtain g ¢’ where gg": Au. u € ball z ((cmod (z—w) + 1) / 2) =
(An. an x (u—z) ~n) sums g u A
(An. of natn * an* (u—z) " (n—1)) sums g’ u A (g
has_field_derivative g’ u) (at u)
by (rule power_series_and_derivative [OF sum, of z]) fastforce
have [simp]: g u = fu if cmod (u—w) < (r — cmod (z—w)) / 2 for u
proof —
have less: ¢cmod (z—u) x 2 < e¢mod (z—w) + 7
using that dist_triangle2 [of z u w)
by (simp add: dist_norm [symmetric] algebra__simps)
have (An. a n % (u—z) “n) sums g u (An. an * (u—z) ~n) sums fu
using gg’ [of u] less w by (auto simp: assms dist_norm)
then show ?thesis
by (metis sums_unique2)
qed
have (f has_field _derivative g’ w) (at w)
proof (rule has_field_derivative_transform_within [where d=(r — norm(z—w))/2])
qged (use w gg’ [of w] in «(force simp: dist_norm)+»)
then show ?thesis ..
qed
then show %thesis by (simp add: holomorphic__on__open)
qed

corollary holomorphic_iff power _series:
f holomorphic_on ball z v <—
(Vw € ball z r. (An. (deriv """ n) fz / (fact n) * (w—2z) "n) sums f w)
using power_series__holomorphic [where a = An. (deriv ~ " n) f z / (fact n)]
holomorphic__power _series
by blast

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 182

lemma power _series _analytic:
(Aw. w € ball zr = (An. a nx(w—2) "n) sums f w) = f analytic_on ball z r
by (force simp: analytic_on__open introl: power _series _holomorphic)

lemma analytic_iff power _series:
fanalytic_on ball z 7 +—
(Vw € ball zr. (An. (deriv """ n) fz / (fact n) *x (w—z)"n) sums f w)
by (simp add: analytic_on__open holomorphic_iff power _series)

4.11 Equality between holomorphic functions, on open ball
then connected set

lemma holomorphic_fun_eq on_ ball:
[f holomorphic__on ball z r; g holomorphic_on ball z r;
w € ball z r;
An. (deriv "~ n) fz = (deriv """ n) g 7]
= fw=gw
by (auto simp: holomorphic_iff power _series sums_unique2 [of An. (deriv =

n) fz/ (fact n) x (w=z)"n])

lemma holomorphic_fun_eq 0 on_ball:
[f holomorphic_on ball z r; w € ball z r;
An. (deriv """ n) fz = 0]
= fw=20
using holomorphic_fun_eq _on_ball [where g = A\z. 0] by simp

lemma holomorphic_fun_eq 0 on_ connected:
assumes holf: f holomorphic_on S and open S
and cons: connected S
and der: An. (deriv " " n) fz=10
and z € Swe S
shows fw = 0
proof —
have «: ball x e C (N n. {w € S. (deriv """ n) fw = 0})
if Vu. (deriv ™" u) fz =0ballze C Sfor ze
proof —
have (deriv =~ m) ((deriv =" n) f) z = 0 for m n
by (metis funpow _add o__apply that(1))
then have Az’ n. dist z ' < e = (deriv " " n) fz' =0
using <open S»
by (meson holf holomorphic_fun_eq 0_on_ball holomorphic_ higher__deriv
holomorphic__on__subset mem__ball that(2))
with that show ?thesis by auto
qed
obtain e where e>0 and e: ball w e C S using openE [OF <open S» «w €]

then have holfb: f holomorphic_on ball w e
using holf holomorphic__on__subset by blast
have open (N n. {w € S. (deriv """ n) fw = 0})

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 183

using <open S»
apply (simp add: open__contains_ball Ball def image_iff)
by (metis (mono__tags) * mem__Collect_eq)
then have openin (top_of set S) (Nn. {w € S. (deriv """ n) fw = 0})
by (force intro: open__subset)
moreover have closedin (top_of set S) (N n. {w € S. (deriv """ n) fw = 0})
using assms
by (auto intro: continuous__closedin__preimage__constant holomorphic__on__imp__continuous__on
holomorphic__higher_deriv)
moreover have ((n. {w € S. (deriv """ n) fu=0}) =5 = fw=20
using <e>0) e by (force intro: holomorphic__fun_eq_0_on__ball [OF holfb])
ultimately show ?thesis
using cons der <z € S»
by (auto simp add: connected__clopen)
qed

lemma holomorphic__fun_eq on_connected:
assumes f holomorphic_on S g holomorphic_on S and open S connected S
and An. (deriv " n) fz = (deriv " " n) g 2
and z € Swe S
shows fw =g w
proof (rule holomorphic_fun_eq 0 _on_connected [of Ax. fz — gz S 2, simpli-
fied))
show (Az. fz — g z) holomorphic_on S
by (intro assms holomorphic_intros)
show An. (deriv " n) (Az. fo —gx) z2=0
using assms higher _deriv_diff by auto
qed (use assms in auto)

lemma holomorphic_fun_eq const_on__connected:
assumes holf: f holomorphic_on S and open S
and cons: connected S
and der: An. 0 < n = (deriv " " n) fz=0
and z € Swe S
shows fw = fz
proof (rule holomorphic_fun_eq 0_on__connected [of Aw. fw — f 2z S z, simpli-
fied))
show (Aw. fw — fz) holomorphic_on S
by (intro assms holomorphic_intros)
show An. (deriv " n) (Aw. fw —fz) z=10
by (subst higher _deriv_diff) (use assms in <auto intro: holomorphic__intros»)
qed (use assms in auto)

4.12 Some basic lemmas about poles/singularities

lemma pole_lemma:
assumes holf: f holomorphic_on S and a: a € interior S
shows (\z. if z = a then deriv f a
else (f z — fa) / (2—a)) holomorphic_on S (is ?F holomorphic_on S)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 184

proof —
have «: ?7F field differentiable (at v within S) if w € S u # a for u
proof —
have fcd: f field_differentiable at u within S
using holf holomorphic_on__def by (simp add: <u € S)
have cd: (\z. (fz — fa) / (z—a)) field _differentiable at u within S
by (rule fed derivative_intros | simp add: that)+
have 0 < dist a u using that dist_nz by blast
then show ?thesis

by (rule field _differentiable_transform__within [OF _ _ __ cd]) (auto simp:
u € S»)
qed
moreover
have ?F field differentiable at a if 0 < e ball a e C S for e
proof —

have holfb: f holomorphic_on ball a e
by (rule holomorphic__on__subset [OF holf <ball a e C S»])
have 2: ?F holomorphic_on ball a e — {a}
using mem__ball that
by (auto simp add: holomorphic_on__def simp flip: field_ differentiable_def
intro: x field_differentiable__within__subset)
have isCont (Az. if z = a then deriv f a else (fz — fa) / (z—a)) z
if dist a z < e for x
proof (cases z=a)
case True
then have f field differentiable at a
using holfb <0 < e» holomorphic__on__imp_ differentiable_at by auto
with True show ?thesis
by (smt (verit) DERIV _deriv_iff field differentiable LIM equal continu-
ous__at has_field _derivativeD)
next
case False with 2 that show ?Zthesis
by (simp add: field _differentiable_imp__continuous__at holomorphic__on__imp__ differentiable _at
open__Diff)
qed
then have 1: continuous_on (ball a e) ?F
by (clarsimp simp: continuous _on__eq _continuous__at)
have ?F holomorphic_on ball a e
by (auto intro: no_isolated__singularity [OF 1 2])
with that show ?Zthesis
by (simp add: holomorphic__on_imp__ differentiable_at)
qed
ultimately show %thesis
by (metis (lifting) a at_within_interior holomorphic__onl mem__interior)

qed

lemma pole_theorem:
assumes holg: g holomorphic_on S and a: a € interior S
and e¢: N\z. z€ S — {a} = g 2= (2—a) * f 2

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 185

shows (\z. if z = a then deriv g a
else fz — g a/(z—a)) holomorphic_on S
using pole_lemma [OF holg a
by (rule holomorphic_transform) (simp add: eq field__split_simps)

lemma pole lemma__open:
assumes f holomorphic_on S open S
shows (Az. if z = a then deriv f a else (f z — f a)/(z—a)) holomorphic_on S
proof (cases a € S)
case True with assms interior__eq pole_lemma
show ?thesis by fastforce
next
case Fulse
then have (A\z. (fz — fa) / (z—a)) field_differentiable at x within S
ifz e S for z
using assms that unfolding holomorphic_on__def
by (intro derivative_intros) auto
with False show ?Zthesis
using holomorphic__on__def holomorphic__transform by presburger
qed

lemma pole_theorem__open:
assumes holg: g holomorphic_on S and S: open S
and eg: \z. z€ S — {a} = g2z = (2—a) * f 2
shows (Az. if z = a then deriv g a
else f z — g a/(z—a)) holomorphic_on S
using pole_lemma__open [OF holg S]
by (rule holomorphic__transform) (auto simp: eq divide_ _simps)

lemma pole theorem_ 0:
assumes holg: g holomorphic_on S and a: a € interior S
and eg: A\z. 2€ S — {a} = g2 = (2—a) * f 2
and [simp: fa = derivgaga=0
shows f holomorphic_on S
using pole__theorem [OF holg a eq]
by (rule holomorphic__transform) (auto simp: eq field__split_simps)

lemma pole theorem__open_ 0:
assumes holg: g holomorphic_on S and S: open S
and e¢: A\z. z€ S — {a} = g2z = (2—a) * f 2
and [simp]: fa = derivga ga= 0
shows f holomorphic_on S
using pole__theorem__open [OF holg S eq]
by (rule holomorphic__transform) (auto simp: eq field__split_simps)

lemma pole_theorem__analytic:
assumes g: g analytic_on S
and e¢: A\z. z € S
= 3d. 0 <dANNMwebllzd-{a}. gw=(w—a)* fw)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 186

shows (\z. if z = a then deriv g a else f z — g a/(z—a)) analytic_on S (is ?F
analytic_on S)
unfolding analytic_on_ def
proof
fix z
assume z € S
with g obtain e where 0 < e and e: g holomorphic_on ball = e
by (auto simp add: analytic_on_def)
obtain d where 0 < d and d: Aw. w € ballz d — {a} = g w = (w—a) * fw
using «x € S» eq by blast
have ?F holomorphic_on ball z (min d e)
using d e <z € S» by (fastforce simp: holomorphic__on__subset subset__ball intro!:
pole__theorem__open)
then show de>0. ?F holomorphic_on ball x e
using 0 < d» <0 < e> not_le by fastforce
qed

lemma pole_theorem__analytic_0:
assumes ¢: g analytic_on S
and eg: N\z. z€ S=3d. 0 <dANMwe€balzd— {a}. gw= (w—a) * f
w)
and [simp: fa = derivgaga=10
shows f analytic_on S
proof —
have [simp]: (Az. if z = a then derivgaelsefz — ga / (z—a)) = f
by auto
show ?thesis
using pole theorem__analytic [OF g eq] by simp
qed

lemma pole_theorem__analytic _open__superset:
assumes ¢: g analytic_on S and S C T open T
and eg: A\z. 2€ T — {a} = gz=(z—a) x 2
shows (Az. if z = a then deriv g a else f z — g a/(z—a)) analytic_on S
proof (rule pole_theorem__analytic [OF g])
fix 2z
assume z € S
then obtain e where 0 < eand e: ball ze C T
using assms openFE by blast
then show 3d>0. Vweball zd — {a}. g w = (w—a) * fw
using eq by auto
qged

lemma pole_theorem__analytic _open__superset_0:
assumes g¢: g analytic_on S S C Topen T Nz. z€ T — {a} = gz = (2—a)
x fz
and [simp: fa = derivga ga= 0
shows f analytic_on S
proof —

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 187

have [simp]: (A\z. if z = a then derivgaelse fz — ga [/ (z—a)) = f
by auto
have (A\z. if z = a then deriv g a else f z — g a/(2—a)) analytic_on S
by (rule pole_theorem__analytic__open__superset [OF g])
then show ?thesis by simp
qed

4.13 General, homology form of Cauchy’s theorem

Proof is based on Dixon’s, as presented in Lang’s "Complex Analysis" book
(page 147).

lemma contour_integral_continuous_on_ linepath_ 2D:
assumes open U and cont_dw: Aw. w € U = F w contour_integrable__on
(linepath a b)
and cond_uu: continuous_on (U x U) (A(z,y). F z y)
and abu: closed_segment a b C U
shows continuous_on U (Aw. contour_integral (linepath a b) (F w))
proof —
have 3d>0.Va'eU. distz’ w < d —
dist (contour_integral (linepath a b) (F z’))
(contour_integral (linepath a b) (F w)) < ¢
ifweUO<ea#bforwe
proof —
obtain § where §>0 and §: cball w 6 C U using open__contains_cball <open
U> «w e U» by force
let ?TZ = cball w § X closed__segment a b
have uniformly_continuous _on ¢?TZ (A(z,y). F z y)
by (metis Sigma_mono 6 abu compact_ Times compact__cball compact__segment
compact__uniformly__continuous
cond_uu continuous__on__subset)
then obtain n where >0
and n: Az 2. [2€2TZ; 2'€?TZ; dist ' © < n] =
dist (Mz,y). Fzy) z") (Mz,y). F zy) z) < e/norm(b—a)
using 0 < & <a # b
by (auto elim: uniformly_continuous_onE [where € = ¢/norm(b—a)])
have n: [norm (w — z1) < §; 2 € closed_segment a b;
norm (w — z1") < §; 2’ € closed_segment a b; norm ((z1’, z27) —
(a1, 22)) < 1]
= norm (F 1’ 22’ — Fxzl 22) < e / cmod (b—a)
for z1 22 x1’ 2’
using 7 [of (x1,22) (x1',22")] by (force simp: dist_norm)
have le_ee: cmod (contour_integral (linepath a b) (A\x. Fa'z — Fwz)) <e¢
if 2’ € Uemod () — w) < & cmod (z' — w) <n for z’
proof —
have (Az. F 2z’ © — F w x) contour_integrable_on linepath a b
by (simp add: <w € U» cont__dw contour__integrable_ diff that)
then have cmod (contour _integral (linepath a b) (Az. Fz' 2 — F w x)) <
g/norm(b—a) * norm(b—a)
using has__contour_integral _bound__linepath [OF has__contour_integral _integral

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 188

)
using <0 < &) <0 < &) that by (force simp: norm__minus__commute)
also have ... = ¢ using <a # b by simp
finally show ?thesis .
qed

show ?thesis
using 0 < & 0 < mp «w € U»
apply (intro exI[where x=min 4 7))
by (auto simp: dist_norm contour_integral _diff [OF cont_dw cont_dw,
symmetric] intro: le_ee)
qed
then show ?thesis
by (metis (no__types, lifting) continuous__onl continuous__on__iff
contour_integral__trivial dist_self)
qed

This version has polynomial _function -~ as an additional assumption.

lemma Cauchy_integral formula__global _weak:
assumes open U and holf: f holomorphic_on U
and z: z € U and ~: polynomial _function
and pasz: path_image v C U — {z} and loop: pathfinish v = pathstart ~
and zero: Nw. w ¢ U = winding _number v w = 0
shows ((A\w. fw / (w—2)) has_contour_integral (2%pi = i x winding number
v z*[fz)y
proof —
obtain v’ where pfvy'": polynomial_function v and v": \z. (v has_vector_derivative
(v 2)) (at 2)
using has_vector_derivative_polynomial_function [OF ~] by blast
then have bounded(path_image ')
by (simp add: path__image__def compact_imp__bounded compact__continuous_image
continuous__on__polymonial _function)
then obtain B where B>0 and B: A\z. z € path_image v/ = norm z < B
using bounded__pos by force
define d where [abs_def]: d z w = (if w = z then deriv f z else (fw — f2)/(w—2))
for z w
define v where v = {w. w ¢ path_image v N\ winding_number v w = 0}
have path v valid__path ~ using v
by (auto simp: path__polynomial__function valid_path__polynomial_function)
then have ov: open v
by (simp add: v_def open__winding number_levelsets loop)
have uwv_Un: U U v = UNIV
using pasz zero by (auto simp: v_def)
have conf: continuous_on U f
by (metis holf holomorphic__on_imp__continuous_on)
have hol_d: (d y) holomorphic_on U if y € U for y
proof —
have *: (Ac. if ¢ = y then deriv fy else (f ¢ — fy) / (¢c—y)) holomorphic_on U
by (simp add: holf pole_lemma__open <open U»)
then have isCont (Az. if x = y then deriv fy else (fz — fy) / (z—y)) y

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 189

using at_within_open field differentiable imp_ continuous at holomor-
phic_on__def that <open U> by fastforce
then have continuous_on U (d y)
using * d_ def holomorphic__on__imp__continuous _on by auto
moreover have d y holomorphic_on U — {y}
proof —
have (Aw. if w = y then deriv fy else (fw — fy) / (w—y)) field _differentiable
at w
ifwe U — {y} for w
proof (rule field_ differentiable__transform__ within)
show (Aw. (fw — fy) / (w—y)) field_differentiable at w
using that <open U) holf
by (auto introl: holomorphic__on__imp_differentiable_at derivative intros)
show dist wy > 0
using that by auto
qed (auto simp: dist__commute)
then show ?thesis
unfolding field differentiable_def by (simp add: d__def holomorphic_on__open
<open U» open__delete)
qed
ultimately show ?Zthesis
by (rule no_isolated__singularity) (auto simp: <open U»)
qed
have cint_fry: (Az. (f x — fy) / (z—y)) contour_integrable _on ~ if y ¢
path__image ~y for y
proof (rule contour_integrable__holomorphic__simple [where S = U—{y}])
show (Az. (fz — fy) / (z—y)) holomorphic_on U — {y}
by (force intro: holomorphic__intros holomorphic_on__subset [OF holf])
show path_image v C U — {y}
using pasz that by blast
qged (auto simp: <open U» open__delete <valid_path)
define h where
h z = (if z € U then contour_integral v (d z) else contour_integral v (Aw. f
w/(w—2z))) for z
have U: ((d z) has_contour_integral h z) v if z € U for z
proof —
have d z holomorphic_on U
by (simp add: hol_d that)
with that show ?Zthesis
by (metis Diff subset <valid_path v> <open U> contour _integrable _holomorphic__simple
h_def
has__contour_integral _integral pasz subset_trans)
qed
have V: ((Aw. fw / (w—z)) has_contour_integral h z) 7 if z: z € v for z
proof —
have 0: 0 = (f 2z) * 2 % of _real (2 * pi) * 1 * winding _number =y z
using v_def z by auto
then have ((A\z. 1 / (z—=z)) has_contour_integral 0) =
using z v_def has_contour_integral _winding_number [OF <valid_path]

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 190

by fastforce
then have ((\z. f 2z x (1 / (z—2))) has_contour_integral 0)
using has_contour _integral _Imul by fastforce
then have ((A\z. fz / (z—2)) has_contour_integral 0)
by (simp add: field__split__simps)
moreover have ((\z. (fz — f2) / (z—2)) has__contour_integral contour_integral
v (d2)) 5
by (metis (no__types, lifting) z cint_fry contour _integral__eq d__def has__contour__integral integral
mem,__Collect_eq v__def)
ultimately have *: (Az. fz / (z—2) + (fz — f2) / (x—2)) has_contour _integral
(0 + contour_integral v (d z)))
by (rule has_contour _integral add)
have ((Aw. fw / (w—2)) has_contour_integral contour _integral vy (d z)) =y
ifzeU
using * by (auto simp: divide__simps has__contour_integral__eq)
moreover have ((Aw. fw / (w—2z)) has_contour_integral contour _integral ~
Cw. fw [(0-2) 7
ifz¢ U
proof (rule has__contour_integral_integral [OF contour_integrable__holomorphic__simple
[where S=U]))
show (Aw. fw / (w—2)) holomorphic_on U
by (rule holomorphic_intros assms | use that in force)+
qed (use <open U> pasz <valid__path > in auto)
ultimately show #thesis
using z by (simp add: h__def)
qged
have znot: z ¢ path_image ~
using pasz by blast
obtain d0 where d0>0 and d0: Az y. = € path_imagey — y € — U = d0
< dist x y
using separate__compact__closed [of path_image v — U] pasz <open U» <path 7>
compact__path__image
by blast
obtain dd where 0 < dd and dd: {y + k| y k. y € path_image v A\ k € ball 0
dd} C U
proof
show 0 < d0 / 2 using <0 < d0> by auto
qed (use <0 < d0» d0 in <force simp: dist_normy)
define T where T = {y + k |y k. y € path_image v A k € cball 0 (dd / 2)}
have Az z'. [z € path_image ~; dist z 2’ % 2 < dd]
= 3y k. ' =y + k Ay € path_image v N dist 0k x 2 < dd
by (metis add.commute diff _add__cancel dist_0_norm dist__commute dist_norm
less__eq _real_def)
then have subt: path_image v C interior T
using <0 < dd»
apply (clarsimp simp add: mem__interior T _def)
apply (rule_tac z=dd/2 in exl, auto)
done
have compact T

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 191

unfolding T def
using <wvalid_path > compact__cball compact _sums compact_valid_path__image
by blast
have T: T C U
unfolding T def using <0 < dd> dd by fastforce
obtain L where L>0
and L: Af B. [f holomorphic_on interior T; N\z. z€interior T —> cmod
(fz) < Bl =
cmod (contour_integral v f) < L % B
using contour_integral _bound__exists [OF open__interior <valid_path > subt]
by blast
have bounded(f ‘ T)
by (meson <compact T> compact continuous image compact_ imp_bounded
conf continuous__on__subset T')
then obtain D where D>0 and D: Az. z € T = norm (fz) < D
by (auto simp: bounded__pos)
obtain C' where C>0 and C: Az. z € T = normz < C
using <compact T» bounded__pos compact_imp__bounded by force
have dist (hy) 0 < eif 0 < eandle: Dx L / e+ C < cmod y for ey
proof —
have D x L / ¢ > 0 wusing <D>0> <L>0> <e>0) by simp
with le have ybig: norm y > C by force
with C have y ¢ T by force
then have ynot: y ¢ path_image v
using subt interior__subset by blast
have [simp]: winding_number v y = 0
proof (rule winding _number__zero__outside)
show path_image v C cball 0 C
by (meson C interior_subset mem__cball 0 subset_eq subt)
qged (use ybig loop <path > in auto)
have [simpl]: h y = contour_integral v (Aw. f w/(w—y))
by (rule contour_integral_unique [symmetric]) (simp add: v_def ynot V)
have holint: (Aw. fw / (w—y)) holomorphic_on interior T
proof (intro holomorphic_intros)
show f holomorphic_on interior T
using holf holomorphic__on__subset interior_subset T by blast
qed (use <y ¢ T» interior_subset in auto)
have leD: cmod (fz / (2—y)) < D« (e / L / D) if z: z € interior T for z
proof —
have D x L / e + c¢mod z < cmod y
using le C [of z] z using interior_subset by force
then have DL2: D x L / e < cmod (z—y)
using norm__triangle__ineq2 [of y 2] by (simp add: norm__minus__commute)
have cmod (f z / (2—y)) = cmod (f 2z) * inverse (cmod (z—y))
by (simp add: norm__mult norm__inverse Fields.field class.field _divide__inverse)
also have ... < D=x(e/ L/ D)
proof (rule mult_mono)
show cmod (f2) < D
using D interior__subset z by blast

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 192

show inverse (¢cmod (z—y)) < e/ L /DD >0
using «L>0> <e>0» «D>0» DL2 by (auto simp: norm__divide field _split _simps)
qed auto
finally show ?thesis .
qed
have dist (h y) 0 = cmod (contour__integral v (Aw. fw / (w—y)))
by (simp add: dist_norm)
also have ... < L x (Dx*(e/ L/ D))
by (rule L [OF holint leD])
also have ... = ¢
using <L>0»> <0 < D) by auto
finally show ?thesis .
qed
then have (h —— 0) at_infinity
by (meson Lim__at_infinityl)
moreover have h holomorphic_on UNIV
proof —
have con_ ff: continuous (at (z,2)) (Mz,y). (fy — fz) / (y—x))
ifreUze Ux # zforzz
using that conf
apply (simp add: split_def continuous on__eq continuous__at <open U»)
apply (simp | rule continuous_intros continuous_within__compose2 [where
9=+
done
have con_ fstsnd: continuous_on UNIV (Az. (fst — snd x) ::complex)
by (rule continuous__intros)+
have open_uu_Id: open (U x U — Id)
proof (rule open__ Diff)
show open (U x U)
by (simp add: open__Times <open U»)
show closed (Id :: complex rel)
using continuous__closed__preimage__constant [OF con__fstsnd closed__UNIV,
of 0]
by (auto simp: Id_fstsnd__eq algebra__simps)
qed
have con_ derf: continuous (at z) (deriv f) if z € U for z
by (meson analytic_at analytic_at_imp_isCont assms(1) holf holomor-
phic__deriv that)
have tendsto _f" ((AM(z,y). if y = x then deriv f (x)
else (f (4) — f (=) / (y—2)) —> deriv f 2)
(at (z, z) within U x U) if z € U for z
proof (rule Lim_ withinI)
fix e::real assume 0 < e
obtain kI where k1>0 and kI1: Az’ norm (z' — z) < kI = norm (deriv
fa' — deriv fx) <e
using «0 < e continuous_within_E [OF con_derf [OF «xz € Uj]]
by (metis UNIV_I dist_norm)
obtain k2 where k2>0 and k2: ball x k2 C U
by (blast intro: openE [OF <open Us] <z € U»)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 193

have neq: norm ((fz' — fz') / (z/ — z’) — deriv fz) < e
if 2’ # 2" and less_kI: norm (z'—z, 2'—z) < kI and less_k2:
norm (x'—z, z'—z) < k2
for z’ 2’
proof —
have cs_less: w € closed _segment ' 2/ = cmod (w—1z) < norm (z'—=x,
z'—z) for w
using segment_furthest_le [of w z' 2’ x]
by (metis (no__types) dist_commute dist_norm norm__fst_le norm__snd_le
order_trans)
have derf _le: w € closed_segment z' 2’ = 2’ # ' = cmod (deriv fw —
deriv f z) < e for w
by (blast intro: cs_less less_k1 k1 [unfolded divide_const_simps dist_norm)]
less_imp_le le_less trans)
have f _has_der: Nz. x € U = (f has_field_derivative deriv f z) (at x
within U)
by (metis DERIV _deriv_iff field differentiable at_within__open holf
holomorphic__on__def <open U»)
have closed_segment x’ z' C U
by (rule order_trans [OF __ k2]) (simp add: cs_less le_less_trans [OF _
less__k2] dist_complex__def norm_minus_commute subset_iff)
then have cint_derf: (deriv f has_contour_integral f 2’ — f ') (linepath z’
2"
using contour_integral_primitive [OF f_has_der valid_path_linepath]
pasz by simp
then have x: ((Az. deriv fz / (2/ — 2')) has_contour_integral (f z' — fz’)
/ (2" — ') (linepath z’ 2")
by (rule has__contour _integral _div)
have norm ((f 2z’ — fz') / (z/ — z) — deriv f z) < e/norm(z' — x') *
norm(z' — z')
apply (rule has__contour_integral _bound__linepath [OF has__contour_integral _diff
[OF «])
using has__contour_integral_div [where ¢ = z' — z', OF has__contour_integral_const_linepath
[of deriv f z 2" z']]
e >0y <z' £z
apply (auto simp: norm__divide divide__simps derf_le)

done
also have ... < e using <0 < e by simp
finally show ?thesis .
qed

show 3d>0. VaxacU x U.
0 < dist za (z,) A dist za (z, r) < d —
dist (case za of (z, y) = if y = x then deriv fz else (fy — fx) /
(y—2)) (deriv fz) < e
apply (rule_tac x=min kI k2 in exl)
using <k1>0» <k2>0> <e>0)»
by (force simp: dist_norm neq intro: dual_order.strict_trans2 k1 less_imp__le
norm,__fst_le)
qed

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 194

have con_pa_f: continuous _on (path_image) f
by (meson holf holomorphic__on__imp__continuous__on holomorphic__on__subset
interior_subset subt T)
have le. B: ANT. T € {0..1} = cmod (vector_derivative v (at T)) < B
using v’ B by (simp add: path__image__def vector _derivative_at rev_image__eql)
have f _has_cint: Aw. w € v — path_image v = ((Au. fu / (v—w) ~ 1)
has__contour__integral h w)
by (simp add: V)
have Az y. [z € Us y € Us y # 5] = (s, y). doy) —(s, 9)= (fy — / 2)
/ (- 7)
unfolding d_def
apply (rule Lim__transform_within_open [OF __ open_uu_Id, where f =
o). (Fy — f2) / ()
using con_ff by (auto simp: continuous__within)
then have cond_uu: continuous_on (U x U) (A(z,y). d z y)
unfolding continuous_on__eq continuous_within continuous_within d_ def
by (fastforce simp add: tendsto_f’ intro: Lim__at_imp_ Lim__at_within)
have hol_dw: (Az. d z w) holomorphic_on U if w € U for w
proof —
have continuous_on U (Mx,y). d z y) o (Az. (w,2)))
by (rule continuous__on__compose continuous _intros continuous _on__subset
[OF cond_uu) | force intro: that)+
then have *: continuous_on U (Az. if w = z then deriv f z else (f w — f 2)
/ (w—2))
by (rule rev_iffD1 [OF _ continuous_on__cong [OF refl]]) (simp add: d__def
field__simps)
have xx: (\z. if w = z then deriv f z else (fw — f2) / (w—2)) field_differentiable
at x
ifre Uz # wfor x
proof (rule_tac f = Az. (fw — fz)/(w—2) and d = dist z w in field differentiable_transform__within)
show (A\z. (fw — fz) / (w—2x)) field_differentiable at x
using that <open U»
by (intro derivative_intros holomorphic__on__imp _differentiable _at [OF
holf]; force)
qged (use that <open U> in <auto simp: dist_commutey)
show ?thesis
unfolding d_def
proof (rule no_isolated__singularity [OF % _ <open U>])
show (A\z. if w = z then deriv f z else (fw — f2) / (w—2)) holomorphic_on
U — {w}
by (auto simp: field_ differentiable_def [symmetric] holomorphic__on__open
open__Diff <open U» xx)
qed auto
qed
{fixabd
assume abu: closed _segment a b C U
have cont_cint_d: continuous_on U (Aw. contour_integral (linepath a b)
(Az. d z w))

proof (rule contour_integral_continuous__on_linepath 2D [OF <open Uy __

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 195

__abu])
show Aw. w € U = (Az. d z w) contour_integrable_on (linepath a b)
by (metis abu hol _dw continuous__on__subset contour _integrable__continuous_linepath
holomorphic__on__imp__continuous__on)
show continuous_on (U x U) (A(z, y). d y)
by (auto intro: continuous on__swap__args condiuu)
qed
have cont_cint_dvy: continuous_on {0..1} ((Aw. contour_integral (linepath
ab) (Az. dzw))on)
by (metis Diff subset <path) cont_cint_d continuous on__compose con-
tinuous__on__subset pasz path__def path__image__def)
have continuous_on {0..1} (Az. vector_derivative v (at x))
using pfv' by (simp add: continuous__on__polymonial__function vector__derivative_at
[OF v1)
then have cint_cint: (Aw. contour_integral (linepath a b) (Az. d z w))
contour__integrable__on ~y
apply (simp add: contour _integrable_on)
apply (rule integrable _continuous_real)
by (rule continuous _on_mult [OF cont_cint_d~y [unfolded o__def]])
have contour_integral (linepath a b) h = contour_integral (linepath a b) (Az.
contour_integral 7y (d z))
using abu by (force simp: h__def intro: contour _integral_eq)
also have ... = contour_integral v (Aw. contour_integral (linepath a b) (\z.
d z w))
proof (rule contour_integral _swap)
show continuous_on (path__image (linepath a b) X path__image v) (A(y1,
y2). d y1 y2)
using abu pasz by (auto intro: continuous_on__subset [OF cond__uu))
show continuous_on {0..1} (At. vector_derivative (linepath a b) (at t))
by (auto introl: continuous_intros)
show continuous_on {0..1} (At. vector_derivative v (at t))
by (metis v’ continuous__on__eq path__def path__polynomial_function pf~’
vector_derivative__at)
qged (use <valid__path > in auto)
finally have cint_h_eq:
contour_integral (linepath a b) h =
contour_integral v (Aw. contour_integral (linepath a b) (A\z. d z
note cint_cint cint_h_eq
} note cint_h = this
have conthu: continuous on U h
proof (simp add: continuous__on__sequentially, clarify)
fix az
assume z: x € U and au: Vn. an € U and ax: a —— ¢
then have A1: Vr n in sequentially. d (a n) contour_integrable on ~y
by (meson U contour_integrable_on__def eventuallyl)
obtain dd where dd>0 and dd: cball © dd C U using open__contains_ cball
<open Uy z by force
have A2: uniform_limit (path_image v) (An. d (a n)) (d z) sequentially

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 196

unfolding uniform_ limit_iff dist_norm
proof clarify
fix ee::real
assume 0 < ee
show V g n in sequentially. ¥ {Epath__image v. ecmod (d (an) € — dz &) <
ee
proof —
let ?ddpa = {(w,2) |w z. w € cball x dd A z € path_image ~}
have uniformly_continuous_on ?ddpa (A(z,y). d = y)
proof (rule compact__uniformly__continuous [OF continuous__on__subset|OF
cond_uul])
show compact {(w, z) |w z. w € cball x dd N z € path_image v}
using <walid__path >
by (auto simp: compact_Times compact_valid__path_image simp del:
mem,__cball)
qged (use dd pasz in auto)
then obtain kk where kk>0
and kk: Az z'. [z € ?ddpa; z' € ?ddpa; dist ' © < kk] =
dist (Mz,y). dzy) z') (Mz,y). dzy) z) < ee
by (rule uniformly__continuous_onE [where ¢ = ee]) (use <0 < ee) in
auto)
have kk: [norm (w—z) < dd; z € path__image v; norm ((w, z) — (z, 2))
< kk] = norm (dwz — dz z) < ee
for w2z
using <dd>0» kk [of (z,z) (w,z)] by (force simp: norm_minus__commute
dist_norm)
obtain no where Vn>no. dist (a n) x < min dd kk
using ax unfolding lim_ sequentially
by (meson <0 < ddy <0 < kky min_less iff conj)
then show ?thesis
using <dd > 0> <kk > 0> by (fastforce simp: eventually sequentially kk
dist_norm)
qed
qed
have (An. contour_integral v (d (a n))) —— contour_integral v (d x)
by (rule contour_integral _uniform_limit [OF A1 A2 le_B]) (auto simp:
<valid__path ~»)
then have tendsto__hx: (An. contour_integral v (d (a n))) —— hz
by (simp add: h_def x)
then show (h o a) —— hx
by (simp add: h_def © au o_def)
qed
show ?thesis
proof (simp add: holomorphic_on__open field_differentiable def [symmetric],
clarify)
fix z0
consider 20 € v | 20 € U using uv_Un by blast
then show h field_ differentiable at z0
proof cases

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 197

assume z0 € v then show ?thesis
using Cauchy_next derivative [OF con_pa_fle B f has _cint _ ov] V
f_has__cint <valid__path >
by (auto simp: field_ differentiable_def v_def)
next
assume z0 € U then
obtain e where e>0 and e: ball 20 e C U by (blast intro: openE [OF
copen U>))
have «: contour_integral (linepath a b) h + contour_integral (linepath b ¢)
h + contour_integral (linepath ¢ a) h = 0
if abc__subset: conver hull {a, b, ¢} C ball z0 e for a b c
proof —
have x: Azl 22 2. z € U = closed_segment 1 22 C U = (Aw. d w 2)
contour_integrable__on linepath x1 z2
using hol _dw holomorphic__on__imp_ continuous_on <open U>
by (auto introl: contour_integrable _holomorphic__simple)
have abc: closed__segment a b C U closed _segment b ¢ C U closed__segment
caCU
using that e segments_subset convex__hull by fastforce+
have eq0: Aw. w € U = contour_integral (linepath a b +++ linepath b
¢ +++ linepath ¢ a) (Az. d zw) = 0
proof (rule contour_integral_unique [OF Cauchy_theorem__triangle])
show Aw. w € U = (Az. d z w) holomorphic_on convez hull {a, b, c}
using e abc_subset by (auto intro: holomorphic__on__subset [OF
hol_dw))
ged
have A\z. z € path_image v =
contour_integral (linepath a b) (M\z. d z 2) +
(contour_integral (linepath b ¢) (A\z. d z z) +
contour _integral (linepath ¢ a) (Az. d z z)) = 0
using abc pasz U x eq0 by auto
then show ?thesis
by (simp add: contour__integral_eq 0 cint_h abc contour _integrable _add
contour_integral_add [symmetric] add_ac)
qed
show ?thesis
using e <e > 0
by (auto introl: holomorphic_on__imp__differentiable__at [OF _ open__ball]
analytic_imp__holomorphic
Morera__triangle continuous_on__subset [OF conthu] *)
qed
qed
qed
ultimately have [simp]: h z = 0 for z
by (meson Liouville _weak)
have ((Aw. I / (w—2)) has_contour integral complex_of real (2 * pi) = i x
winding_number 7y z)
by (rule has__contour_integral_winding_number [OF <valid_path v znot])
then have ((Aw. fz % (1 / (w—2))) has_contour_integral complex_of _real (2

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 198

* pi) * 1 % winding_number v z * f z) v
by (metis mult.commute has__contour _integral Imul)
then have 1: (Aw. fz / (w—2)) has_contour_integral complez_of real (2 *
pi) * 1 % winding_number v z x f z) 7y
by (simp add: field split_simps)
moreover have 2: (Aw. (fw — f2) / (w—2)) has_contour_integral 0) ~
using U [OF z] pasz d__def by (force elim: has_contour_integral eq [where
9= w. (fw— f2)/(w—2))
show ?thesis
using has__contour_integral _add [OF 1 2] by (simp add: diff _divide__distrib)
qged

theorem Cauchy_integral _formula__global:
assumes S: open S and holf: f holomorphic_on S
and z: z € S and vpg: valid__path ~y
and pasz: path_image v C S — {z} and loop: pathfinish v = pathstart ~
and zero: Aw. w ¢ S = winding_number v w = 0
shows ((Aw. fw / (w—2)) has_contour_integral (2xpi * i * winding_number
vz * fz)y
proof —
have path ~ using vpg by (blast intro: valid__path__imp_ path)
have hols: (Aw. fw / (w—2)) holomorphic_on S — {z} (Aw. 1 / (w—=z)) holo-
morphic_on S — {z}
by (rule holomorphic_intros holomorphic_on__subset [OF holf] | force)+
then have cint_fw: (Aw. fw / (w—2z)) contour_integrable__on =
by (meson contour_integrable__holomorphic__simple holomorphic__on__imp__continuous__on
open__delete S vpg pasz)
obtain d where d>0
and d: Ag h. [valid_path g; valid_path h; Vt€{0..1}. cmod (gt — v t) < d
A cmod (ht —~t)<d;
pathstart h = pathstart g A\ pathfinish h = pathfinish g]
= path_image h € S — {z} A (Vf. f holomorphic_on S — {z}
— contour_integral h f = contour__integral g f)
using contour _integral _nearby_ends [OF __ <path > pasz] S by (simp add:
open__Diff) metis
obtain p where polyp: polynomial function p
and ps: pathstart p = pathstart v and pf: pathfinish p = pathfinish ~y
and led: Vt€{0..1}. cmod (pt — v t) < d
using path__approx__polynomial_function [OF <path v <d > 0>] by metis
then have ploop: pathfinish p = pathstart p using loop by auto
have vpp: valid_path p using polyp valid_path__polynomial function by blast
have [simp]: z ¢ path__image v using pasz by blast
have paps: path_image p C S — {z} and cint_eq: (Af. f holomorphic_on S —
{z} = contour_integral p f = contour_integral =y f)
using pf ps led d [OF vpg vpp|] <d > 0> by auto
have wn__eq: winding_number p z = winding _number v z
using vpp paps
by (simp add: subset_Diff insert vpg valid__path__polynomial__function wind-
ing__number_valid__path cint__eq hols)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 199

have winding _number p w = winding_number v w if w ¢ S for w
proof —
have hol: (Av. 1 / (v—w)) holomorphic_on S — {z}
using that by (force intro: holomorphic_intros holomorphic__on__subset [OF
holf))
have w ¢ path_image p w ¢ path_image v using paps pasz that by auto
then show ?thesis
using vpp vpg by (simp add: subset_Diff insert valid_path__polynomial_function
winding_number_valid__path cint_eq [OF hol])
qged
then have wn0: Aw. w ¢ S = winding _number p w = 0
by (simp add: zero)
show ?thesis
using Cauchy__integral_formula__global _weak [OF S holf z polyp paps ploop
wn0] hols
by (metis wn__eq cint_eq has__contour _integral _eqpath cint_fw cint__eq)
qed

theorem Cauchy_theorem__global:
assumes S: open S and holf: f holomorphic_on S
and wvpg: valid_path v and loop: pathfinish v = pathstart
and pas: path_image v C S
and zero: Aw. w ¢ S = winding_number v w = 0
shows (f has__contour_integral 0) -
proof —
have path_image v # S
by (metis compact_valid__path__image vpg compact__open path__image__nonempty
S)
then obtain z where z € S and znot: z ¢ path_image v and pasz: path_image
vC S —{z}
using pas by blast
have hol: (\w. (w—2z) * f w) holomorphic_on S
by (rule holomorphic__intros holf)+
show ?thesis
using Cauchy__integral_formula__global [OF S hol <z € S» vpg pasz loop zero)
by (auto simp: znot elim!: has__contour_integral _eq)
qed

corollary Cauchy_theorem__global outside:
assumes open S f holomorphic_on S valid__path ~ pathfinish v = pathstart
path__image v C S
Aw. w ¢ S = w € outside(path_image)
shows (f has__contour_integral 0) ~
by (metis Cauchy_theorem__global assms winding_number__zero__in__outside valid__path_imp_ path)

lemma simply connected__imp__winding _number_zero:
assumes simply_connected S path g
path_image g C S pathfinish g = pathstart g z ¢ S
shows winding _number g z = 0

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 200

proof —
have hom: homotopic_loops S g (linepath (pathstart g) (pathstart g))
by (meson assms homotopic_paths_imp__homotopic_loops pathfinish_linepath
simply__connected__eq _contractible_path)
then have homotopic_paths (— {z}) g (linepath (pathstart g) (pathstart g))
by (meson <z ¢ S» homotopic_loops_imp__homotopic_paths null homotopic__paths _subset
subset__Compl__singleton)
then have winding _number g z = winding _number(linepath (pathstart g) (pathstart

9)) =
by (rule winding _number_homotopic_paths)
also have ... = 0

using assms by (force intro: winding number _trivial)
finally show ?thesis .
qed

lemma Cauchy_theorem__simply_connected:
assumes open S simply _connected S f holomorphic_on S valid__path g
path_image g C S pathfinish g = pathstart g
shows (f has__contour_integral 0) g
by (meson assms Cauchy__theorem__global simply__connected__imp_winding_number_zero
valid__path__imp__path)

proposition holomorphic__logarithm__exists:
assumes A: convex A open A
and f: f holomorphic_on A N\x. z € A = fz # 0
and 20: 20 € A
obtains g where g holomorphic_on A and Az. 1 € A = exp (gz) = fz
proof —
note f’ = holomorphic_derivl [OF f(1) A(2)]
obtain g where ¢g: Az. © € A = (g has_field derivative deriv fz / fz) (at z)
proof (rule holomorphic__convex__primitive’ [OF A])
show (A\z. deriv f x / f x) holomorphic_on A
by (intro holomorphic_intros f A)
qed (auto simp: A at_within__open[of _ A])
define h where h = (Az. —g 20 + In (f 20) + g z)
from g and A have g holo: g holomorphic_on A
by (auto simp: holomorphic__on__def at_within__open[of _ A] field__differentiable_def)
hence h_holo: h holomorphic_on A
by (auto simp: h_def intro!: holomorphic_intros)
note [simp] = at_within_open[OF __ <open A)]
have Jc. Vz€A. fz [exp (hz) — 1 = ¢
using <convex A> 20 f
by (force simp: h__def exp__ diff field__simps intro!: has_field_derivative _zero__constant
derivative__eq_intros g f”)
then obtain ¢ where ¢: A\z. s € A = fz [/ ezp (hz) — 1 =c¢
by blast
from c[OF z0] and z0 and f have ¢ = 0
by (simp add: h__def)
with ¢ have Az. z € A = exp (h z) = fx by simp

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 201

from that[OF h__holo this] show ?thesis .
qed

4.14 Cauchy’s inequality and more versions of Liouville

lemma Cauchy higher _deriv__bound:
assumes holf: f holomorphic_on (ball z r)
and contf: continuous_on (cball z 1) f
and fin : Aw. w € ball 27 = fw € ball y BO
and 0 < rand 0 < n
shows cmod ((deriv "~ n) fz) < (fact n) *x BO / r’™n
proof —
have 0 < B0
using <0 < r fin [of 2] by (metis ball_eq_empty ex_in__conv fin not_less)
have le_B0: ¢cmod (f w — y) < B0 if emod (w—z) < r for w
proof (rule continuous_on__closure_norm_le [of ball z v Aw. fw — y], use <0
< ry in simp__all)
show continuous_on (cball z 1) (Aw. fw — y)
by (intro continuous_intros contf)
show dist z w < r
by (simp add: dist_commute dist_norm that)
qged (use fin in <auto simp: dist_norm less_eq real def norm__minus__commutey)
have (deriv " n) fz = (deriv "~ n) (Aw. fw) z — (deriv ™" n) (Aw. y) z
using <0 < n» by simp
also have ... = (deriv "~ n) (Aw. fw — y) 2z
using <0 < r higher_deriv_diff holf by auto
finally have (deriv "~ n) fz = (deriv ™" n) (Aw. fw — y) z .
have contf”: continuous_on (cball z r) (Au. fu — y)
by (rule contf continuous__intros)+
have holf”: (Au. (f u — y)) holomorphic_on (ball z 1)
by (simp add: holf holomorphic__on__diff)
define a where a = (2 * pi)/(fact n)
have 0 < a by (simp add: a_def)
have B0 /r (Suc n)*2 * pi x r = ax((fact n)xB0/r"n)
using <0 < r by (simp add: a__def field__split_simps)
have der_dif: (deriv ™" n) (Aw. fw — y) z = (deriv ™ " n) fz
using 0 < ™ 0 < n»
by (auto simp: higher_deriv_diff [OF holf holomorphic_on__const))
have norm ((2 * of _real pi x i)/(fact n) x (deriv """ n) Aw. fw — y) 2)
< (BO/r(Suc n)) * (2 = pi x)
apply (rule has__contour_integral _bound__circlepath [of (Au. (fu — y)/(u—z) (Suc

n)) _ z])

using Cauchy__has__contour__integral _higher__derivative__circlepath [OF contf’
holf]
using <0 < B0» <0 <
apply (auto simp: norm__divide norm_ mult norm__power divide _simps le_B0)
done
then show ?thesis
using <0 <

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 202

by (auto simp: norm__divide norm_mult norm__power field_simps der__dif
le_B0)
qed

lemma Cauchy_inequality:
assumes holf: f holomorphic_on (ball £)
and contf: continuous_on (cball § 1) f
and 0 < r
and nof: Az. norm(§—z) = r = norm(fz) < B
shows norm ((deriv "~ n) f §) < (fact n) * B/ r’n
proof —
obtain z where norm (§—z) = r
by (metis <0 < 1 dist_norm order_less_imp__le vector _choose__dist)
then have 0 < B
by (metis nof norm_not_less_zero not_le order_trans)
have € € ball £ 1
using 0 < r by simp
then have ((Au. fu / (u—&) ~ Suc n) has_contour_integral (2 * pi) =i/ fact
n x (deriv " n) f &)
(circlepath & 1)
by (rule Cauchy__has_contour_integral _higher__derivative_circlepath [OF contf
holf])
have norm ((2 x pi x 1)/(fact n) * (deriv =" n) f £) < (B / r(Suc n)) * (2 *
piox 1)
proof (rule has__contour_integral_bound_ circlepath)
have £ € ball £ r
using 0 < r by simp
then show ((Au. fu / (u=¢&) ~ Suc n) has_contour_integral (2 * pi) * i /
fact n x (deriv " n) f &)
(circlepath & T)
by (rule Cauchy_has_contour_integral _higher _derivative_circlepath [OF
contf holf])
show Az. cmod (z—€) = r = cmod (fz / (=€) "~ Sucn) < B/ r = Sucn
using <0 < By <0 < m
by (simp add: norm__divide norm__power nof frac_le norm__minus_commute
del: power_Suc)
ged (use <0 < B> <0 < r in auto)
then show ?thesis using (0 < 1>
by (simp add: norm__divide norm__mult field _simps)
qed

lemma Liouville _polynomial:
assumes holf: f holomorphic_on UNIV
and nof: Az. A < norm z = norm(f z) < B x norm z " n
shows f & = (3" k<n. (deriv™"k) f 0 / fact k « £ " k)
proof (cases rule: le_less_linear [THEN disjE))
assume B < 0
then have Az. A < norm z = norm(fz) = 0
by (metis nof less_le_trans zero_less _mult_iff neqFE norm_not_less zero

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 203

norm__power not__le)
then have f0: (f —— 0) at_infinity
using Lim__at_infinity by force
then have [simp]: f = (Aw. 0)
using Liouville_weak [OF holf, of 0]
by (simp add: eventually__at_infinity f0) meson
show ?thesis by simp
next
assume 0 < B
have ((A\k. (deriv "7 k) f0 / (fact k) « (6 — 0)7k) sums f &)
proof (rule holomorphic_power_series [where r = norm & + 1])
show f holomorphic_on ball 0 (cmod & + 1) € € ball 0 (¢cmod £ + 1)
using holf holomorphic__on__subset by auto
qed
then have sumsf: ((Ak. (deriv "~ k) f 0 / (fact k) = £7k) sums f &) by simp
have (deriv " k) f0 / fact k « & "k = 0 if k>n for k
proof (cases (deriv " " k) f0 = 0)
case True then show ?thesis by simp
next
case Fulse
define w where w = complex__of real (fact k «x B / cmod ((deriv "~ k) f 0)
(1Al + 1)
have 1 < abs (fact k x B / emod ((deriv " k) f0) + (|A] + 1))
using <0 < B» by simp
then have wgel: 1 < norm w
by (metis norm__of _real w_def)
then have w # 0 by auto
have kB: 0 < factk x B
using <0 < B» by simp
then have 0 < fact k * B / cmod ((deriv " k) f0)
by simp
then have wgeA: A < e¢mod w
by (simp only: w_def norm__of real)
have fact k « B / cmod ((deriv " k) f 0) < abs (fact k x B / cmod ((deriv ™
K)£0) + (14] + 1))
using (0 < B> by simp
then have wge: fact k «+ B / cmod ((deriv " k) f0) < norm w
by (metis norm__of real w__def)
then have fact k « B / norm w < cmod ((deriv " k) £ 0)
using False by (simp add: field split__simps mult.commute split: if _split_asm)
also have ... < fact k *x (B * norm w ~n) / norm w " k
proof (rule Cauchy_inequality)
show f holomorphic_on ball 0 (ecmod w)
using holf holomorphic__on__subset by force
show continuous_on (cball 0 (¢cmod w)) f
using holf holomorphic_on__imp__continuous__on holomorphic__on__subset
by blast
show Az. cmod (0—x) = cmod w = cmod (fx) < B % cmod w " n
by (metis nof wgeA dist_0_norm dist_norm)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 204

qed (use <w # 0> in auto)
also have ... = fact k «x B / cmod w ~ (k—n)
using <k>n) by (simp add: divide__simps flip: power _add)
finally have fact k « B / ecmod w < fact k x B / emod w ~ (k—n) .
then have 1 / cmod w < 1 / emod w ~ (k—n)
by (metis kB divide_inverse inverse__eq divide mult_less _cancel left pos)
then have cmod w ~ (k—n) < c¢mod w
by (smt (verit, best) «<w # 0> frac_le zero_less _norm__iff)
with self le_power [OF wgel] show ?thesis
by (meson diff _is_0_eq not_gr0 not_le that)
qed
then have (deriv = (k + Suc n)) f0 / fact (k 4+ Suc n) x & ~ (k + Suc n) =
0 for k
using not_less eq by blast
then have (\i. (deriv = (i + Suc n)) f 0 / fact (i + Sucn) * £ ~ (i + Suc n))
sums 0
by (rule sums_0)
with sums_split _initial _segment [OF sumsf, where n = Suc n]
show ?thesis
using atLeastOAtMost lessThan__Suc__atMost sums__unique2 by fastforce
qed

Every bounded entire function is a constant function.

theorem Liouville theorem:
assumes holf: f holomorphic_on UNIV
and bf: bounded (range f)
shows f constant_on UNIV
using Liouville__polynomial [OF holf, of 0 __ 0, simplified]
by (metis bf bounded__iff constant__on__def rangel)

A holomorphic function f has only isolated zeros unless f is 0.

lemma powser (0 _nonzero:
fixes a :: nat = ’a::{real_normed_field,banach}
assumes 7: 0 < 71
and sm: Az. norm (z—&) < r = (An. an * (z=§) "~ n) sums (f)
and [simp]: f € =0
and m0: a m # 0 and m>0
obtains s where 0 < sand Az. z € cball { s — {{} = fz # 0
proof —
have r < conv_radius a
using sm sums_summable by (auto simp: le_conv_radius_iff [where £=¢])
obtain m where am: a m # 0 and az [simp]: (An. n<m = an = 0)
proof
show a (LEAST n. an # 0) # 0
by (metis (mono__tags, lifting) m0 LeastI)
qed (fastforce dest!: not_less Least)
define b where b ¢ = a (i+m) / a m for ¢
define g where g z = suminf (\i. b i x (z—¢§) ~ i) for z
have [simp]: b 0 = 1

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 205

by (simp add: am b__def)
{ fix z::'a
assume norm (z—§) < r
then have (An. (a m * (z—&)"m) % (b n * (z—&)™n)) sums (f z)
using am az sm sums__zero__iff _shift [of m (An. a n x (z—=&) " n) fz]
by (simp add: b__def monoid_mult__class.power _add algebra__simps)
then have z # £ = (An. b n x (z—§) ™n) sums (fz / (a m x (z—&) "m))
using am by (simp add: sums_mult D)
} note bsums = this
then have norm (z—¢) < r = summable (An. b n * (z—&) ™n) for z
using sums__summable by (cases =) auto
then have r < conv_radius b
by (simp add: le_conv_radius_iff [where £=¢£])
then have r/2 < conv_radius b
using not_le order_trans r by fastforce
then have continuous_on (cball £ (r/2)) ¢
using powser_continuous__suminf [of /2 b &] by (simp add: g_def)
then obtain s where s>0 Az. [norm (z—¢) < s; norm (z—§) < r/2] = dist
(gz) (9§ <1/2
proof (rule continuous_onkE)
show & € cball € (r [/ 2) 1/2 > (0::real)
using 7 by auto
qed (auto simp: dist_commute dist_norm)
moreover have g £ = 1
by (simp add: g_ def)
ultimately have gnz: Az. [norm (z—¢§) < s; norm (z—§) < r/2] = (gz) # 0
by fastforce
show ?thesis
proof
have x: fz # 0 if ¢ # £ norm (z—§) < s norm (z—§) < r/2 for z
using bsums [of z] that gnz [of z] r sums_iff unfolding ¢ _def by fastforce
show Az. z € cball & (mins (r/ 2)) —{&} = fz#0
by (simp add: * dist_norm norm_minus__commute)
qged (use <0 < 1 <0 < s in auto)
qed

4.15 Complex functions and power series

The following defines the power series expansion of a complex function at a
given point (assuming that it is analytic at that point).

definition fps expansion :: (compler = complexr) = complex = complex fps

where
fps_expansion f z0 = Abs_fps (An. (deriv ~ " n) f 20 / fact n)

lemma fps_expansion_ cong:
assumes Vp w in nhds . fw =g w
shows fps_expansion fx = fps_expansion g x
unfolding fps expansion__def using assms higher _deriv_cong ev by fastforce

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 206

lemma
fixes r :: ereal
assumes f holomorphic_on eball z0 r
shows conv_radius_fps__expansion: fps_conv_radius (fps_expansion f z0) > r
and eval_fps_expansion: Nz. z € eball 20 1 = eval_fps (fps_expansion f z0)
(z—20)=f=z
and eval_fps_expansion”: N\z. norm z < r = eval_fps (fps_expansion f 20)
z=f (20 + 2)
proof —
have (An. fps_nth (fps_expansion f 20) n x (z — 20) " n) sums f z
if z € ball 20 v’ ereal ' < r for z r'
proof —
have f holomorphic_on ball 20 r'
using holomorphic__on__subset[OF __ ball_eball _mono] assms that by force
then show ?thesis
using fps expansion__def holomorphic__power _series that by auto
qed
hence *: (An. fps_nth (fps_expansion f 20) n x (z — 20) ~n) sums f z
if z € eball 20 r for z
using that by (subst (asm) eball_conv_UNION__balls) blast
show fps__conv_radius (fps_expansion f z0) > r unfolding fps_conv_radius__def
proof (rule conv_radius _gel ex)
fix r' :: real assume r": v’ > 0 ereal v’ < r
thus 3z. norm z = v’ A summable (An. fps_nth (fps_expansion f 20) n x z ~
n)
using *[of 20 + of _real 1]
by (intro exI[of _ of _real r']) (auto simp: summable_def dist_norm)
qed
show eval_fps (fps_expansion f 20) (z — 20) = f z if z € eball 20 r for z
using *[OF that] by (simp add: eval_fps_def sums__iff)
show eval fps (fps_expansion f 20) z = f (20 + 2z) if ereal (norm z) < r for z
using *[of 20 + z] and that by (simp add: eval_fps_def sums__iff dist_norm)
qed

We can now show several more facts about power series expansions (at least
in the complex case) with relative ease that would have been trickier without
complex analysis.

lemma
fixes [:: complex fps and r :: ereal
assumes Az. ereal (norm z) < r = eval_fps fz # 0
shows fps_conv_radius_inverse: fps_conv_radius (inverse f) > min r (fps__conv_radius

)
and eval fps inverse: \z. ereal (norm z) < fps_conv_radius f = ereal
(norm z) < r =
eval_fps (inverse f) z = inverse (eval _fps [z)
proof —
define R where R = min (fps_conv_radius f) r
have x: fps_conv_radius (inverse f) > min r (fps_conv_radius f) N
(V z€eball 0 (min (fps_conv_radius f) r). eval_fps (inverse f) z = inverse

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 207

(cval_fps 1 2))
proof (cases min r (fps_conv_radius f) > 0)
case True
define f’ where f’ = fps_expansion (Az. inverse (eval_fps f z)) 0
have holo: (\z. inverse (eval_fps f z)) holomorphic_on eball 0 (min r (fps_conv_radius
)
using assms by (intro holomorphic__intros) auto
from holo have radius: fps_conv_radius f' > min r (fps_conv_radius f)
unfolding f’_def by (rule conv_radius_fps_expansion)
have eval_f": eval_fps f' z = inverse (eval _fps f z)
if norm z < fps_conv_radius f norm z < r for z
using that unfolding f’ def by (subst eval fps expansion’|OF holo]) auto

have f x f' = 1
proof (rule eval_fps_eqD)
from radius and True have 0 < min (fps_conv_radius f) (fps_conv_radius
£
by (auto simp: min__def split: if _splits)
also have ... < fps_conv_radius (f = f') by (rule fps_conv_radius_mult)
finally show ... > 0 .
next
from True have R > 0 by (auto simp: R_ def)
hence eventually (Az. z € eball 0 R) (nhds 0)
by (intro eventually nhds in__open) (auto simp: zero__ereal_def)
thus eventually (Az. eval_fps (f = f') 2 = eval_fps 1 z) (nhds 0)
proof eventually _elim
case (elim z)
hence eval_fps (f = f') 2 = eval_fps f z x eval_fps f' z
using radius by (intro eval fps mult)
(auto simp: R__def min__def split: if _splits intro: less_trans)
also have eval_fps f’ z = inverse (eval_fps f z)
using elim by (intro eval f') (auto simp: R__def)
also from elim have eval_fps fz # 0
by (intro assms) (auto simp: R_ def)
hence eval_fps f z * inverse (eval_fps f z) = eval _fps 1 z
by simp
finally show eval fps (f = ') z = eval_fps 1 z .
qed
qed simp_all
hence [’ = inverse f
by (intro fps_inverse_unique [symmetric]) (simp_all add: mult_ac)
with eval f’ and radius show ?thesis by simp
next
case Fulse
hence *: eball 0 R = {}
by (intro eball_empty) (auto simp: R__def min_def split: if splits)
show ?thesis
proof
from Fualse have min r (fps_conv_radius f) < 0

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 208

by (simp add: min__def)
also have 0 < fps_conv_radius (inverse f)
by (simp add: fps_conv_radius def conv_radius_nonneg)
finally show min r (fps_conv_radius f) <
qged (unfold * [unfolded R__def], auto)
qed

show fps_conv_radius (inverse f) > min r (fps_conv_radius f)
using * by blast
show eval_fps (inverse f) z = inverse (eval_fps f z)
if ereal (norm z) < fps_cony_radius f ereal (norm z) < r for z
using that x by auto
qed

lemma
fixes f g :: complex fps and r :: ereal
defines R = Min {r, fps_conv_radius f, fps_conv_radius g}
assumes fps_conv_radius f > 0 fps_conv_radius g > 0 r > 0
assumes nz: N\z. z € eball 0 r = eval_fps g z # 0
shows fps_conv_radius_divide": fps_conv_radius (f / g) > R
and eval fps divide”:
ereal (norm z) < R => eval_fps (f / g) z = eval_fps fz / eval_fps g z
proof —
from nz[of 0] and ¢<r > 0> have nz": fps_nth g 0 # 0
by (auto simp: eval _fps_at_0 zero__ereal_def)
have R < min r (fps_conv_radius g)
by (auto simp: R_ def intro: min.coboundedI?2)
also have min r (fps_conv_radius g) < fps_conv_radius (inverse g)
by (intro fps_conv_radius_inverse assms) (auto simp: zero__ereal def)
finally have radius: fps_conv_radius (inverse g) > R .
have R < min (fps_conv_radius f) (fps_conv_radius (inverse g))
by (intro radius min.boundedl) (auto simp: R__def intro: min.coboundedl1
min.coboundedI2)
also have ... < fps_conv_radius (f * inverse g)
by (rule fps_conv_radius_mult)
also have f x inverse g =f / g
by (intro fps_divide__unit [symmetric] nz’)
finally show fps conv_radius (f / g) > R .

assume z: ereal (norm z) < R
have eval_fps (f * inverse g) z = eval_fps f z * eval_fps (inverse g) z
using radius by (intro eval_fps_mult less_le_trans[OF z])
(auto simp: R__def intro: min.coboundedll min.coboundedI2)
also have eval_fps (inverse g) z = inverse (eval_fps g z) using <r > 0»
by (intro eval_fps_inverse[where r = r| less_le_trans[OF z] nz)
(auto simp: R__def intro: min.coboundedIl min.coboundedI2)
also have f x inverse g = f / g by fact

finally show eval_fps (f / g) z = eval_fps fz /| eval fps g z
by (simp add: field split _simps)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 209

qed

lemma
fixes f g :: complex fps and r :: ereal
defines R = Min {r, fps_conv_radius f, fps_conv_radius g}
assumes subdegree g < subdegree f
assumes fps_conv_radius f > 0 fps_conv_radius g > 0 r > 0
assumes Az. z € eball 0 r = 2z # 0 = eval_fps gz # 0
shows fps_conv_radius_divide: fps_conv_radius (f / g) > R
and eval fps divide:
ereal (norm 2) < R = ¢ = fps_nth [(subdegree g) / fps_nth g (subdegree
9) =
eval_fps (f / g) z = (if z = 0 then c else eval _fps f z / eval_fps g 2)
proof —
define f’ ¢’ where f’' = fps_shift (subdegree g) f and ¢’ = fps__shift (subdegree
9) 9
have [eq: f = f' * fps_ X ~ subdegree g and ¢g_eq: g = g’ x fps_X ~ subdegree
g
unfolding [’ def g'_def by (rule subdegree__decompose’ le_refl | fact)+
have subdegree: subdegree f’' = subdegree f — subdegree g subdegree ¢’ = 0
using assms(2) by (simp__all add: f'_def g’ _def)
have [simp]: fps_conv_radius f' = fps_conv_radius f fps_conv_radius g’ =
fps_conv_radius g
by (simp__all add: f'_def g'_def)
have [simp]: fps_nth ' 0 = fps_nth f (subdegree g)
fos_nth g’ 0 = fps_nth g (subdegree g) by (simp_all add: f'_def
9" _def)
have g nz: g # 0
proof —
define z :: complex where z = (if r = oo then 1 else of real (real of ereal v
/ 2))
have z € eball 0 r
using «r > 0» ereal_less_real iff z_def by fastforce
moreover have z # 0 using <r > 0»
by (cases r) (auto simp: z_def)
ultimately have eval_fps g z # 0 by (rule assms(6))
thus g # 0 by auto
qed
have fg: f / g = [’ % inverse g’
by (subst f_eq, subst (2) g_eq) (insert g_nz, simp add: fps_divide unit)

have g’ _nz: eval_fps g’ z # 0 if z: norm z < min r (fps_conv_radius g) for z
proof (cases z = 0)

case Fulse

with assms and z have eval fps g z # 0 by auto

also from z have eval_fps g z = eval_fps g’ z x z ~ subdegree g

by (subst g_eq) (auto simp: eval _fps_mult)

finally show ?thesis by auto

qed (use «g # 0» in <auto simp: g’ _def eval_fps_at_0»)

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Cauchy__Integral Formula.thy 210

have R < min (min r (fps_conv_radius g)) (fps_conv_radius g’)

by (auto simp: R__def min.coboundedll min.coboundedI2)
also have ... < fps_conv_radius (inverse g’)

using ¢’ _nz by (rule fps_conv_radius_inverse)
finally have conv_radius_inv: R < fps_conv_radius (inverse g') .
hence R < fps_conv_radius (f' * inverse g’)

by (intro order.trans|OF __ fps_conv_radius_mult])

(auto simp: R__def intro: min.coboundedIl min.coboundedI2)

thus fps_conv_radius (f / g) > R by (simp add: fg)

fix z ¢ :: complex assume z: ereal (norm z) < R
assume c: ¢ = fps_nth f (subdegree g) / fps_nth g (subdegree g)
show eval_fps (f / g) z = (if z = 0 then c else eval_fps f z / eval_fps g 2)
proof (cases z = 0)
case Fulse
from z and conv_radius__inv have ereal (norm z) < fps__conv_radius (inverse

9')
by simp
with z have eval_fps (f / g) z = eval_fps ' z x eval_fps (inverse g’) z
unfolding fg by (subst eval _fps_mult) (auto simp: R__def)
also have ceval fps (inverse ¢') z = inverse (eval_fps g’ z)
using z by (intro eval fps_inverse[of min r (fps_conv_radius ¢')] g’ _nz)
(auto simp: R_ def)
also have eval_fps f' z % ... = eval_fps fz] eval_fps g z
using z False assms(2) by (simp add: f'_def g’ _def eval_fps_shift R__def)
finally show ?%thesis using False by simp
qed (simp__all add: eval_fps_at_0 fg field simps c)
qed

lemma has_fps_expansion_fps__expansion [intro:
assumes open A 0 € A f holomorphic_on A
shows f has_fps_expansion fps__expansion f 0
proof —
from assms obtain » where » > 0 and r: ball 0 r C A
by (auto simp: open__contains_ball)
with assms have holo: f holomorphic_on eball 0 (ereal r)
by auto
have r < fps_conv_radius (fps_expansion f 0)
using holo by (intro conv_radius_fps expansion) auto
then have ... > 0
by (simp add: ereal_le_less <r > 0> zero__ereal_def)
moreover have eventually (Az. z € ball 0 r) (nhds 0)
using «<r > 0> by (intro eventually nhds_in_open) auto
hence eventually (Az. eval fps (fps_expansion f 0) z = f z) (nhds 0)
by eventually _elim (subst eval_fps_expansion’|OF holo], auto)
ultimately show ?thesis
using «r > 0» by (auto simp: has_fps_expansion__def)
qed

Cauchy{_}{\kern 0pt}Integral{_}{\kern 0pt}Formula.html

Conformal Mappings.thy 211

lemma fps conv_radius tan:
fixes c :: complex
assumes ¢ # 0
shows fps_conv_radius (fps_tan ¢) > pi / (2 * norm c)
proof —
have fps conv_radius (fps_tan ¢) >
Min {pi / (2 % norm c), fps_conv_radius (fps_sin c), fps_conv_radius
(fps_cos c)}
unfolding fps tan_ def
proof (rule fps_conv_radius_divide)
fix z :: complex assume z € eball 0 (pi / (2 * norm c))
with cos_eq zero_imp_norm__ge|of cxz] assms
show eval_fps (fps_cos ¢) z # 0 by (auto simp: norm__mult field_simps)
qged (insert assms, auto)
thus ?thesis by (simp add: min__def)
qed

lemma eval fps tan:
fixes c :: complex
assumes norm z < pi / (2 % norm c)
shows eval_fps (fps_tan ¢) z = tan (¢ * 2)
proof (cases ¢ = 0)
case Fulse
show ?thesis unfolding fps tan_ def
proof (subst eval_fps_divide'[where r = pi / (2 * norm c)])
fix z :: complex assume z € eball 0 (pi / (2 * norm c))
with cos_eq zero_imp_norm__gelof cxz] assms
show eval_fps (fps_cos ¢) z # 0 using Fualse by (auto simp: norm__mult
field__simps)
qged (use False assms in <auto simp: field_simps tan__def»)
qed simp__all

end

5 Conformal Mappings and Consequences of Cauchy’s
Integral Theorem
By John Harrison et al. Ported from HOL Light by L C Paulson (2016)

Also Cauchy’s residue theorem by Wenda Li (2016)

theory Conformal Mappings
imports Cauchy_ Integral Formula

begin

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 212

5.1 Analytic continuation

proposition isolated_ zeros:
assumes holf: f holomorphic_on S
and open S connected S £ € SfE=0B€ SfPRF#0
obtains r where 0 < r and ball £ r C S and
Nz.z€ballér —{{} = fz2#0
proof —
obtain r where 0 < r and r: ball £ 7 C S
using <open S» <€ € S» open__contains_ball_eq by blast
have powf: ((An. (deriv "~ n) f € / (fact n) = (z — &) "n) sums [z) if z € ball
& rfor 2
by (intro holomorphic__power _series [OF __ that] holomorphic_on__subset [OF
holf r])
obtain m where m: (deriv =" m) f £ / (fact m) # 0
using holomorphic_fun_eq _0_on__connected [OF holf <open S» <connected S»
_EeSHBeSSfBED
by auto
then have m # 0 using assms(5) funpow 0 by fastforce
obtain s where 0 < sand s: Az. z € c¢ball £ s — {{} = f2# 0
using powser_0_nonzero [OF <0 < 1 powf <f £ = 0> m]
by (metis <m # 0> dist_norm mem__ball norm__minus__commute not_gr_zero)
have 0 < min r s by (simp add: <0 < r» <0 < &)
then show thesis
proof qed (use r s in auto)
qged

proposition analytic_continuation:
assumes holf: f holomorphic_on S
and open S and connected S
and UC Sand £ € §
and ¢ islimpt U
and fUO [simp]: Nz. z€ U= fz=10
and w € S
shows fw = 0
proof —
obtain e where 0 < e and e: cball £ e C S
using <open S» € € S open__contains__cball _eq by blast
define T where T = cball £ enN U
have contf: continuous_on (closure T) f
by (metis T__def closed__cball closure_minimal e holf holomorphic__on__imp__continuous__on
holomorphic__on__subset inf.coboundedl)
have fT0 [simp]: N\o. 2 € T = fz =0
by (simp add: T _def)
have Ar. [Vex>0. 3z'eU. 2/ £ E N dist ' £ < ¢; 0 < 1] = Fa'ecball £ e N
U.x'#£ENdistx' €<
by (metis <0 < e Intl dist_commute less__eq_real__def mem__cball min_less_iff _conj)
then have ¢ islimpt T using <« islimpt U>
by (auto simp: T _def islimpt__approachable)
then have ¢ € closure T

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 213

by (simp add: closure__def)
then have f £ = 0
by (auto simp: continuous_constant_on__closure [OF contf])
moreover have \r. [0 < r; Az. 2 € ball § r — {{} = f 2 # 0] = False
by (metis open_ball <& islimpt T»> centre_in_ball fT0 insertE insert Diff
islimptE)
ultimately show ?thesis
by (metis <open Sy <connected Sy <€ € Sy «<w € Sy holf isolated_zeros)
qed

corollary analytic_continuation__open:
assumes open s and open s’ and s # {} and connected s’
and s C s’
assumes f holomorphic_on s’ and g holomorphic_on s’
and \z. z€s=fz=gz
assumes z € s’
shows fz=g¢gz
proof —
from «s # {}» obtain ¢ where ¢ € s by auto
with <open s» have &: € islimpt s
by (intro interior_limit_point) (auto simp: interior_open)
have fz —gz2=10
by (rule analytic _continuation[of \z. fz — g z s’ s £])
(insert assms <& € $) &, auto intro: holomorphic_intros)
thus ?thesis by simp
qged

corollary analytic _continuation”:
assumes f holomorphic_on S open S connected S
and U C S &€ S ¢ islimpt U
and [constant_on U
shows f constant_on S
proof —
obtain ¢ where c: Az. 1 € U = fz — c= 10
by (metis <f constant_on U constant_on__def diff _self)
have (\z. fz — ¢) holomorphic_on S
using assms by (intro holomorphic_intros)
with ¢ analytic__continuation assms have A\z. 2 € S = fx — ¢ =0
by blast
then show ?thesis
unfolding constant_on__def by force
qged

lemma holomorphic__compact_finite zeros:
assumes S: f holomorphic_on S open S connected S
and compact K K C S
and - f constant_on S
shows finite {z€K. fz = 0}
proof (rule ccontr)

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 214

assume infinite {2€K. fz = 0}
then obtain z where z € K and z: z islimpt {2€K. fz = 0}
using <compact K> by (auto simp: compact_eq Bolzano_Weierstrass)
moreover have {z€K. fz=0} C S
using <K C S) by blast
ultimately show Fulse
using assms analytic__continuation [OF S] unfolding constant on_ def
by blast
qed

lemma holomorphic__countable zeros:
assumes S: f holomorphic_on S open S connected S and fsigma S
and — f constant_on S
shows countable {2€S. fz = 0}
proof —
obtain F::nat = complex set
where F: range F' C Collect compact and Seq: S = (|Ji. F 1)
using <fsigma S» by (meson fsigma_ Union__compact)
have fin: finite {z € Fi. fz = 0} for ¢
using holomorphic__compact_ finite_zeros assms F Seq Union__iff by blast
have {z € S. fz=0} = (Ui. {z € Fi fz=0})
using Seq by auto
with fin show ?thesis
by (simp add: countable _finite)
qed

lemma holomorphic__countable__equal:
assumes f holomorphic__on S g holomorphic__on S open S connected S and fsigma

S
and eq: uncountable {2€S. f z = g 2}
shows S C {z€8. fz =gz}
proof —
obtain z where z: z€S fz =gz
using eq not_ finite__existsD uncountable infinite by blast
have (Az. fz — g z) holomorphic_on S
by (simp add: assms holomorphic__on__diff)
then have (A\z. fz — g x) constant_on S
using holomorphic__countable_zeros assms by force
with 2 have A\z. 2€S = fz — gz =0
unfolding constant_on__def by force
then show ?thesis
by auto
qed

lemma holomorphic__countable equal UNIV:
assumes fg: f holomorphic_on UNIV g holomorphic_on UNIV
and eq: uncountable {z. fz = g z}
shows f=g
using holomorphic__countable _equal [OF fq] eq by fastforce

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 215

5.2 Open mapping theorem

lemma holomorphic__contract_to_ zero:
assumes contf: continuous_on (cball &) f
and holf: f holomorphic__on ball £ r
and 0 < r
and norm_less: Nz. norm(§ — z) = r = norm(f &) < norm(f z)
obtains z where z € ball { rf2 =0
proof —
{ assume fnz: A\w. w € ball E r = fw # 0
then have 0 < norm (f &)
by (simp add: <0 < 1)
have fnz": Aw. w € cball E r = fw # 0
using dist__complex_def fnz norm__less order le_less by fastforce
have frontier(cball £ 1) # {}
using <0 < m by simp
define g where [abs_def]: g z = inverse (f z) for z
have contg: continuous_on (cball £ r) g
unfolding g def using contf continuous__on_ inverse fnz’ by blast
have holg: g holomorphic_on ball £ r
unfolding g def using fnz holf holomorphic_on__inverse by blast
have frontier (cball £ v) C cball £ r
by (simp add: subset_iff)
then have contf’: continuous_on (frontier (cball € r)) f
and contg”: continuous_on (frontier (cball £ 1)) g
by (blast intro: contf contg continuous on__subset)+
have froc: frontier(cball € 1) # {}
using <0 < r by simp
moreover have continuous_on (frontier (cball € r)) (norm o f)
using contf’ continuous__on__compose continuous__on_norm__id by blast
ultimately obtain w where w: w € frontier(cball £ 1)
and now: A\z. x € frontier(cball £ 1) = norm (f w) < norm
(f2)
using continuous__attains inf [OF compact_frontier [OF compact_cball]]
by (metis comp__apply)
then have fw: 0 < norm (f w)
by (simp add: fnz')
have continuous__on (frontier (cball & r)) (norm o g)
using contg’ continuous on__compose continuous_on_norm__id by blast
then obtain v where v: v € frontier(cball £ r)
and nov: Az. z € frontier(cball § r) = norm (g v) > norm (g)
using continuous__attains_sup [OF compact_frontier [OF compact_cball]
froc] by force
then have fv: 0 < norm (f v)
by (simp add: fnz’)
have norm ((deriv =~ 0) g &) < fact 0 « norm (gv) / r ~0
by (rule Cauchy_inequality [OF holg contg <0 < 1)) (simp add: dist_norm
nov)
then have cmod (g) < cmod (g v)
by simp

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 216

moreover have cmod (£ — w) = r
by (metis (no__types) dist_norm frontier _cball mem__sphere w)

ultimately obtain wr: norm (§ — w) = r and nfw: norm (f w) < norm (f §)
unfolding g def

by (smt (verit, del_insts) <0 < cmod (f &) inverse_le_imp__le norm__inverse

now v)

with fw have Fulse

using norm,__less by force
}

with that show ?thesis by blast
qged

theorem open_mapping thm:
assumes holf: f holomorphic_on S
and S: open S and connected S
and open U and U C S
and fne: = f constant_on S
shows open (f ‘ U)
proof —
have «: open (f * U)
if U # {} and U: open U connected U and f holomorphic_on U and
fneU: Nx. 3y e U. fy #£x
for U
proof (clarsimp simp: open__contains_ball)
fix £ assume &: £ € U
show Je>0. ball (f §) eC fU
proof —
have hol: (Az. fz — f &) holomorphic_on U
by (rule holomorphic_intros that)+
obtain s where 0 < s and sbU: ball £ s C U
and sne: Az. z€ball § s —{&} = (Az. fz—f&) 2# 0
using isolated__zeros [OF hol U &] by (metis fneU right_minus__eq)
obtain r where 0 < r and r: cball £ r C ball € s
using <0 < s» by (rule_tac r=s/2 in that) auto
have cball € r C U
using sbU r by blast
then have frsbU: frontier (cball & r) C U
using Diff subset frontier def order_trans by fastforce
then have cof: compact (frontier(cball £ T))
by blast
have frne: frontier (cball €) # {}
using <0 < ™ by auto
have contfr: continuous _on (frontier (cball £ r)) (Az. norm (f z — f £))
by (metis continuous_on_norm continuous__on__subset frsbU hol holomor-
phic_on__imp__continuous__on)
obtain w where norm (§ — w) = r
and w: (Az. norm (§ — z) = r = norm (fw — f &) < norm(f z —

f9)

using continuous__attains_inf [OF cof frne contfr] by (auto simp: dist_norm)

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 217

moreover define ¢ where ¢ = norm (fw — f &) / 3
ultimately have 0 < ¢
using <0 < 7 dist_complex__def r sne by auto
have ball (f) e Cf*U
proof
fix v
assume y: v € ball (f &) €
have x: cmod (7 — f &) < cmod (v — f z) if ecmod (§ — z) = r for 2
proof —
have It: emod (fw — f &)/ 3 < emod (v — [2)
using w [OF that] v
using dist_triangle2 [of f € v [2] dist_triangle2 [of f & f z 7]
by (simp add: __def dist_norm norm_minus__commute)
show ?thesis
by (metis e__def dist_commute dist_norm less_trans It mem__ball)
qged
have continuous_on (cball &) (A\z. v — [2)
using <cball € r C U» <f holomorphic_on U»
by (force intro: continuous_intros continuous__on__subset holomorphic__on__imp__continuous__on)
moreover have (Az. v — f z) holomorphic_on ball £ r
using <cball & r C U» ball_subset__cball holomorphic__on__subset that(4)
by (intro holomorphic__intros) blast
ultimately obtain z where z € ball E rv — f2 =10
using * <0 < 7> holomorphic__contract_to_ zero by blast
then show v € f ‘U
using <cball € r C U» by fastforce
qed
then show ?thesis using <0 < e) by blast
qed
qed
have open (f * X) if X € components U for X
proof —
have holfU: f holomorphic_on U
using <U C S» holf holomorphic_on__subset by blast
have X # {}
using that by (simp add: in__components _nonempty)
moreover have open X
using that <open U) open__components by auto
moreover have connected X
using that in__components__mazimal by blast
moreover have f holomorphic_on X
by (meson that holfU holomorphic__on__subset in__components_mazimal)
moreover have JyeX. fy # x for z
proof (rule ccontr)
assume not: - (FyeX. fy # z)
have X C §
using <U C Sy in__components_subset that by blast
obtain w where w: w € X using <X # {}» by blast
have wis: w islimpt X

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 218

using w <open X interior__eq by auto
have hol: (A\z. f z — x) holomorphic_on S
by (simp add: holf holomorphic__on__diff)
with fne [unfolded constant _on__def]
analytic__continuation|OF hol S <connected S» «X C S) _ wis] not <X C
Sy w
show Fulse by auto
qed
ultimately show ?thesis
by (rule x)
qed
then have open (f ‘| (components U))
by (metis (no__types, lifting) imageE image_ Union open__ Union)
then show ?thesis
by force
qed

No need for S to be connected. But the nonconstant condition is stronger.

corollary open__mapping thm2:
assumes holf: f holomorphic_on S
and S: open S
and open UU C S
and fnc: AX. Jopen X; X C S; X # {}] = — f constant_on X
shows open (f ‘ U)
proof —
have S = |J (components S) by simp
with <U C S) have U = (|J C € components S. C N U) by auto
then have f ‘ U = (|J C € components S. f < (C N U))
using image_ UN by fastforce
moreover
{ fix C assume C € components S
with S <C € components S» open__components in__components__connected
have C: open C connected C by auto
have C C §
by (metis <C € components S» in__components_mazimal)
have nf: = f constant_on C
using <open C) «C € components S» «C C Sy fnc in__components__nonempty
by blast
have f holomorphic_on C
by (metis holf holomorphic_on_subset «C C S»)
then have open (f ‘ (C N U))
by (meson C <open U» inf _lel nf open_Int open__mapping_thm)
} ultimately show ?thesis
by force
qed

corollary open_mapping thm3:
assumes f holomorphic_on S
and open S and inj _on f S

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 219

shows open (f ¢ S)
by (meson assms inj _on__subset injective__not__constant open_mapping_thm?2
order.refl)

5.3 Maximum modulus principle

If f is holomorphic, then its norm (modulus) cannot exhibit a true local
maximum that is properly within the domain of f.

proposition mazimum__modulus_principle:
assumes holf: f holomorphic_on S
and S: open S and connected S
and open U and U C Sand £ € U
and no: N\z. z € U = norm(f z) < norm(f &)
shows f constant_on S
proof (rule ccontr)
assume — f constant_on S
then have open (f ¢ U)
using open_mapping thm assms by blast
moreover have — open (f ‘ U)

proof —
have 3¢. cmod (f § —t) <eNt ¢ f UiIf 0 < efore
using that

apply (rule_tac x=if 0 < Re(f &) then f & + (e/2) else f & — (e/2) in exl)
apply (simp add: dist_norm)
apply (fastforce simp: cmod__Re_le_ iff dest!: no dest: sym)
done
then show #thesis
unfolding open__contains_ball by (metis < € U» contra__subsetD dist_norm
imagel mem__ball)
qed
ultimately show Fulse
by blast
qed

proposition mazimum_modulus_frontier:
assumes holf: f holomorphic_on (interior S)
and contf: continuous_on (closure S) f
and bos: bounded S
and leB: Nz. z € frontier S = norm(f z) < B

and £ € S
shows norm(f £) < B
proof —

have compact (closure S) using bos
by (simp add: bounded__closure compact__eq bounded__closed)
moreover have continuous_on (closure S) (e¢mod o f)
using contf continuous__on__compose continuous__on_norm__id by blast
ultimately obtain z where 2z € closure S and z: Ay. y € closure S = (¢cmod
o f) y < (cmod o f) 2
using continuous__attains_sup [of closure S norm o f] <« € S by auto

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 220

then consider z € frontier S | z € interior S using frontier _def by auto
then have norm(f z) < B
proof cases
case 1 then show ?thesis using leB by blast
next
case 2
have f constant_on (connected _component_set (interior S) z)
proof (rule mazimum_modulus__principle)
show f holomorphic_on connected__component_set (interior S) z
by (metis connected__component__subset holf holomorphic__on__subset)
show zin: z € connected__component__set (interior S) z
by (simp add: 2)
show AW. W € connected_component_set (interior S) z = cmod (f W)
< emod (f 2)
using closure__def connected _component_subset z by fastforce
qed (auto simp: open__connected__component)
then obtain ¢ where ¢: Aw. w € connected_component__set (interior S) z
= fw=c
by (auto simp: constant_on__def)
have f ¢ closure(connected__component_set (interior S) z) C {c}
proof (rule image__closure__subset)
show continuous_on (closure (connected__component__set (interior S) z)) f
by (meson closure_mono connected component__subset contf continu-
ous__on__subset interior_ _subset)
ged (use ¢ in auto)
then have cc: Aw. w € closure(connected__component__set (interior S) z) =
fw = c by blast
have connected__component (interior S) z z
by (simp add: 2)
moreover have connected_component_set (interior S) z # UNIV

by (metis bos bounded__interior connected__component_eq UNIV not_bounded_UNIV)

ultimately have frontier(connected__component_set (interior S) z) # {}
by (meson 2 connected__component__eq _empty frontier _not__empty)
then obtain w where w: w € frontier(connected__component _set (interior S)

by auto
then have norm (f z) = norm (f w) by (simp add: 2 ¢ cc frontier__def)
also have ... < B
using w frontier _interior _subset frontier of connected component subset
by (blast intro: leB)
finally show ?thesis .
qed
then show ?thesis
using z € € Sy closure__subset by fastforce
qed

corollary mazimum__real_frontier:
assumes holf: f holomorphic_on (interior S)
and contf: continuous_on (closure S) f

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 221

and bos: bounded S
and leB: Nz. z € frontier S = Re(fz) < B
and £ € S
shows Re(f £) < B
using mazimum_modulus_frontier [of exp o f S exp B]
Transcendental.continuous__on__exp holomorphic__on__compose holomorphic_on__exp
assms
by auto

5.4 Factoring out a zero according to its order

lemma holomorphic_factor _order__of zero:
assumes holf: f holomorphic_on S
and os: open S
and { € S0 <n
and dnz: (deriv " " n) f £ # 0
and dfz: N\i. [0 < 454 < n] = (deriv " i) f€=0
obtains g » where 0 < r
g holomorphic_on ball £ T
Nw webddlér—= fwu—-—f&=(w—-& n*xguw
Nw. we ball § r = gw # 0
proof —
obtain r where r>0 and r: ball £ 7 C S using assms by (blast elim!: openFE)
then have holfb: f holomorphic_on ball £ r
using holf holomorphic__on__subset by blast
define g where g w = suminf (\i. (deriv =~ (i + n)) f € / (fact(i + n)) * (w
— &)%) for w
have sumsg: (Ai. (deriv =~ (i + n)) f &/ (fact(i + n)) * (w — &)%) sums g w
and feq¢: fw —fé&=(w—& n*xgw
if w: w € ball & r for w
proof —
define powf where powf = (\i. (deriv =" i) f £/(fact i) x (w — &)%)
have [simp]: powf 0 = f &
by (simp add: powf _def)
have sing: {.<n} — {i. powfi = 0} = (if f £ = 0 then {} else {0})
unfolding powf def using <0 < ny dfz by (auto simp: dfz; metis funpow_ 0
not_gr0)
have powf sums f w
unfolding powf def by (rule holomorphic_power _series [OF holfb w])
moreover have (> i<n. powfi) = f &
by (subst sum.setdiff _irrelevant [symmetric]; simp add: dfz sing)
ultimately have fsums: (Ai. powf (i+n)) sums (fw — f &)
using w sums__iff shift’ by metis
then have *x: summable (A\i. (w — &) “n * ((deriv "~ (i + n)) f & * (w — &)
~4 / fact (i + n)))
unfolding powf def using sums_summable
by (auto simp: power _add mult_ac)
have summable (Ai. (deriv ™" (i + n)) f & x (w — &) " i/ fact (i + n))
proof (cases w=¢)

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 222

case False then show ?thesis
using summable_mult [OF *, of 1 / (w — &) ~ n] by simp
next
case True then show ?thesis
by (auto simp: Power.semiring_1__class.power__0_left intro: summable__finite
[of {0}]
split: if _split_asm)
qed
then show sumsg: (Ai. (deriv =~ (i + n)) f & / (fact(i + n)) * (w — &)%)
sums g w
by (simp add: summable_sums__iff g def)
show fw—f&=(w—& n*xguw
using sums_mult [OF sumsg, of (w — &) ~ n]
by (intro sums_unique2 [OF fsums]) (auto simp: power_add mult__ac powf _def)
qed
then have holg: g holomorphic__on ball § r
by (meson sumsg power_series__holomorphic)
then have contg: continuous_on (ball £) g
by (blast intro: holomorphic__on__imp__continuous_on)
have g £ # 0
using dnz unfolding g def
by (subst suminf _finite [of {0}]) auto
obtain d where 0 < d and d: Aw. w € ball £ d = gw # 0
using <0 < r» continuous_on__avoid [OF contg _ <g & # 0)]
by (metis centre_in_ball le_ cases mem__ball mem__ball lel)
show ?thesis
proof
show ¢ holomorphic_on ball £ (min r d)
using holg by (auto simp: feq holomorphic_on__subset subset_ball d)
qed (use <0 < r <0 < d» in <auto simp: feq d»)
qed

lemma holomorphic_ factor order of zero strong:
assumes holf: f holomorphic_on S open S € € S0 < n
and (deriv " n) f £ #£ 0
and Ai. [0 < ;i< n] = (deriv " 4) f&€=10
obtains g r where 0 < r
g holomorphic__on ball & T
Nw.webddlér—= fw—-f&=((w—-& *xgw) " n
ANw. weballéEr = gw# 0
proof —
obtain g r where 0 < r
and holg: g holomorphic__on ball & r
and fe¢: Aw. webdlér—= fw—fé&=(w—§& n*xgw
and gne: Aw. w € ball { r = gw # 0
by (auto intro: holomorphic_factor_order_of zero [OF assms])
have con: continuous_on (ball & r) (Az. deriv gz / g 2)
by (rule continuous_intros) (auto simp: gne holg holomorphic_deriv holomor-

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 223

phic_on__imp__continuous__on)
have cd: (\z. deriv g z | g z) field_differentiable at z if dist £ x < r for z
proof (intro derivative intros)
show deriv g field_differentiable at x
using that holg mem_ball by (blast intro: holomorphic_deriv holomor-
phic_on__imp__ differentiable__at)
show g field differentiable at x
by (metis that open__ball at_within__open holg holomorphic__on__def mem__ball)
qged (simp add: gne that)
obtain h where h: Az. z € ball £ r = (h has_field _derivative deriv gz / ¢
z) (at x)
using holomorphic__convex__primitive [of ball & r {} Az. deriv g z / g 2]
by (metis (no__types, lifting) Diff empty at_within_interior cd con con-
vex__ball infinite__imp_nonempty interior_ball mem__ball)
then have continuous_on (ball & r) h
by (metis open__ball holomorphic__on__imp__continuous__on holomorphic__on__open)
then have con: continuous_on (ball & r) (Az. exp (hz) / g)
by (auto introl: continuous__intros simp add: holg holomorphic__on__imp__continuous__on
gne)
have gfd: dist £ x < r = ¢ field__differentiable at z if dist £ © < r for z
using holg holomorphic__on__imp__ differentiable_at by auto
have 0: dist £ + < r = ((Az. exp (h z) / g x) has_field__derivative 0) (at z)
for z
by (rule gfd h derivative__eq intros DERIV _deriv_iff field differentiable [THEN
iffD2] | simp add: gne)+
obtain ¢ where ¢: Az. z € ball E r = exp (hz) [gz =c
by (rule DERIV__zero__connected__constant [of ball & v {} Ax. exp(h x) / g z])
(auto simp: con 0)
have hol: (Az. exp ((Ln (inverse ¢) + h z) / of _nat n)) holomorphic_on ball £ r
proof (intro holomorphic_intros holomorphic__on__compose [unfolded o__def,
where g = exp)])
show h holomorphic__on ball £ r
using h holomorphic__on__open by blast
qged (use <0 < n» in auto)
show ?thesis
proof
show Aw. w € ball { r = fw — f & = ((w— &) % exp ((Ln (inverse ¢) + h
w) / of _natn)) " n
using <0 < n»
by (auto simp: feq power mult _distrib exp_ divide power eq exp_add gne
stmp flip: c)
qged (use hol <0 < r in auto)
qged

lemma
fixes k :: 'a::wellorder
assumes a_ def: a == LEAST z. P x and P: P k
shows def Leastl: P a and def Least le: a < k

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy

unfolding a_def
by (rule Leastl Least le; rule P)+

lemma holomorphic_factor _zero_monconstant:
assumes holf: f holomorphic_on S and S: open S connected S
and e SfE=0
and nonconst: = f constant_on S
obtains g r n
where 0 <n 0 <7r ball 7 C S
g holomorphic_on ball & 7
Nw.webalér = fw=(w—-& nxguw
Nw. w € ball § r = gw # 0
proof (cases Vn>0. (deriv = n) f & = 0)
case True then show ?thesis

224

using holomorphic_fun__eq _const_on__connected [OF holf S _ < € S»] non-

const by (simp add: constant_on__def)
next
case Fulse

then obtain n0 where n0 > 0 and n0: (deriv =~ n0) f £ # 0 by blast
obtain r0 where 70 > 0 ball £ 70 C S using S openFE (£ € S» by auto

define n where n = LEAST n. (deriv ™" n) f £ # 0
have n_ne: (deriv " " n) f £ # 0
by (rule def Least] [OF n_def]) (rule n0)
then have 0 < n using f £ = 0»
using funpow 0 by fastforce
have n_min: Ak. k < n = (deriv " k) f£ =10
using def Least_le [OF n__def] not_le by blast
then obtain g r1
where ¢: 0 < r1 g holomorphic__on ball £ r1
and geq: Aw. w € ball § rl = fw=(w—¢&) "n*xgw
and ¢g0: Aw. w € ball § rl = gw # 0

by (auto intro: holomorphic_factor_order_of _zero [OF holf <open S» <£ € S»

«n > 0> n_ne| simp: <f &€= 0»)
show ?thesis
proof
show ¢ holomorphic_on ball £ (min r0 r1)
using g by auto

show Aw. w € ball £ (minr0rl) = fwu=(w—¢&) " nxguw

by (simp add: geq)

qed (use <0 < ny <0 < 10> <0 < 711y <ball £ 70 C S g0 in auto)

qed

lemma holomorphic__lower _bound__difference:
assumes holf: f holomorphic_on S and S: open S connected S
and £ € Sand p € §
and fne: f ¢ # f €
obtains kn r
where 0 <k 0 <r

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 225

ball E 7 C S
NAw. w € ball £ r = k x norm(w — &) n < norm(fw — [§)
proof —
define n where n = (LEAST n. 0 < n A (deriv "~ n) f £ # 0)
obtain n0 where 0 < n0 and n0: (deriv =" n0) f £ # 0
using fne holomorphic_fun__eq const_on__connected [OF holf S] <€ € S» «p €
S» by blast
then have 0 < n and n_ne: (deriv = n) f £ # 0
unfolding n_ def by (metis (mono__tags, lifting) Leastl)+
have n_min: Ak. [0 < k; k < n] = (deriv "7 k) f£ =0
unfolding n_ def by (blast dest: not_less Least)
then obtain ¢ r
where 0 < r and holg: g holomorphic_on ball £ r
and fne: A\w. w € ballér = fw—fé=(w—-¢§) "nxguw
and gnz: A\w. w € ball{ r = gw # 0
by (auto intro: holomorphic_factor_order_of _zero [OF holf <open S» «£ €
Sy «n > 0> n_nel)
obtain e where e>0 and e: ball £ e C S using assms by (blast elim!: openE)
then have holfb: f holomorphic_on ball £ e
using holf holomorphic_on__subset by blast
define d where d = (miner) / 2
have 0 < d using <0 < m 0 < e by (simp add: d_def)
have d < r
using <0 < ™ by (auto simp: d_def)
then have cbb: cball € d C ball € r
by (auto simp: cball _subset_ball iff)
then have g holomorphic_on cball & d
by (rule holomorphic__on__subset [OF holg])
then have closed (g ¢ cball £ d)
by (simp add: compact_imp__closed compact__continuous__image holomorphic__on__imp__continuous__on)
moreover have ¢ ‘ cball £ d # {}
using <0 < d» by auto
ultimately obtain z where z: z € ¢ ‘cball £ d and N\y. y € g ‘ cball £ d =
dist 0 x < dist 0y
by (rule distance__attains_inf) blast
then have leg: Aw. w € cball £ d = norm z < norm (g w)
by auto
have ball £ d C cball £ d by auto
also have ... C ball £ e using <0 < d» d_ def by auto
also have ... C S by (rule ¢)
finally have dS: ball £ d C S .
have z # 0 using gnz z <d < r» by auto
show thesis
proof
show Aw. w € ball £ d = cmod x * cmod (w — &) ~n < emod (fw — f &)
using «d < 7 leg by (auto simp: fne norm__mult norm__power algebra__simps
mult__right_mono)
qed (use dS <z # 0> «d > 0> in auto)
qed

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 226

lemma
assumes holf: f holomorphic_on (S — {¢}) and &: € € interior S
shows holomorphic__on__extend_lim:
(3 g. g holomorphic_on S AN Nz € S — {&}. gz = [2)) «—
((Az. (2 = &) = fz) — 0) (at §)
(is 7P = ?2Q)
and holomorphic__on__extend__bounded:
(3 g. g holomorphic_on SN (NVze S —{&}. gz=fz)) «—
(3 B. eventually (Az. norm(f z) < B) (at §))
(is 2P = ?R)
proof —
obtain § where 0 < 6 and 0: ball £ 6 C S
using & mem,__interior by blast
have ?R if holg: g holomorphic_on S and gf: N\z. z€ S — {{} = gz=f=z2
for g
proof —
have §: cmod (fz) < emod (g &) + 1 ifx # distx § < 6 dist (g x) (g &) <
1 for z
proof —
have z € §
by (metis § dist_commute mem__ball subsetD that(2))
with that gf [of z] show ?thesis
using norm__triangle_ineq2 [of f x g £] dist_complex_def by auto
qed
then have «: Vp zin at & dist (g 2) (g &) < 1 — emod (f z) < emod (g &)
+ 1
using <0 < & eventually_at by blast
have continuous_on (interior S) g
by (meson continuous__on__subset holg holomorphic__on__imp__continuous_on
interior_subset)
then have Az. z € interior S = (¢ —— g z) (at z)
using continuous__on__interior continuous_within holg holomorphic__on__imp_ continuous_on
by blast
then have (9 —— ¢ &) (at &)
by (simp add: §)
then have YV z in at & cmod (f z) < emod (g &) + 1
by (rule eventually _mp [OF * tendstoD [where e=1]], auto)
then show ?thesis
by blast
qed
moreover have ?Q if Vg zin at & cmod (f z) < B for B
by (rule lim__null_mult_right_bounded [OF __ that]) (simp add: LIM_ zero)
moreover have 7P if (Az. (z — &) x fz) —{— 0
proof —
define h where [abs_def]: hz = (z —)72 * f z for 2
have (\y. (y = &)** fy / (y = &) == 0
by (simp add: LIM__cong power2_eq _square that)
then have h0: (h has_field _derivative 0) (at §)

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 227

by (simp add: h_def has_field_derivative _iff)
have holh: h holomorphic_on S
proof (simp add: holomorphic_on__def, clarify)
fix z assume z € S
show h field differentiable at z within S
proof (cases z = &)
case True then show ?thesis
using field_ differentiable_at_within field_ differentiable def h0 by blast
next
case Fulse
then have f field_differentiable at z within S
using holomorphic_onD [OF holf, of z] <z € S»
unfolding field differentiable_def has_field _derivative iff
by (force intro: exl [where x=dist & z| elim: Lim__transform_ within__set
[unfolded eventually at])
then show ?thesis
by (simp add: h__def power2_eq square derivative_intros)
qed
qed
define g where [abs_def]: g z = (if z = € then deriv h € else (hz — h &) / (2
—¢)) for z
have §:VzeS — {¢} (92— 9 &) /(2 - & =[x
using h0 by (auto simp: g_def power2__eq square divide__simps DERIV_imp__deriv
h__def)
have g holomorphic_on S
unfolding ¢_def by (rule pole_lemma [OF holh &])
then have (A\z. if 2z =& then derivg € else (92 — g &) / (2 — &)) holomorphic_on

S
using & pole_lemma by blast
then show ?thesis
using § by (smt (verit, best) DiffD2 singletonl)
qed
ultimately show ¢P = ?@Q) and ?P = ?R
by meson+
qed

lemma pole_at_infinity:

assumes holf: f holomorphic_on UNIV and lim: ((inverse o f) —— 1) at__infinity
obtains a n where Az. fz = (. i<n. a i % 27%)
proof (cases [= 0)

case Fulse

show thesis

proof

show fz = (3 i<0. inverse |l x z ~ %) for z
using Fulse tendsto_inverse [OF lim] by (simp add: Liouwville _weak [OF

holf])

qed
next

case True

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 228

then have [simp]: | = 0 .
show ?thesis
proof (cases Ar. 0 < r A (Vz € ball 0 r — {0}. f(inverse z) # 0))
case True
then obtain r where 0 < r and r: Az. z € ball 0 r — {0} = f(inverse
z) £ 0
by auto
have 1: inverse o f o inverse holomorphic_on ball 0 v — {0}
by (rule holomorphic__on__compose holomorphic__intros holomorphic__on__subset
[OF holf] | force simp: r)+
have 2: 0 € interior (ball 0 1)
using <0 < r by simp
obtain g where holg: g holomorphic_on ball 0 r
and geq: N\z. z € ball 0 r — {0} = g z = (inverse o f o inverse) z
using tendstoD [OF lim [unfolded lim__at_infinity_ 0] zero_less_one] holo-
morphic_on__extend_bounded [OF 1 2]
by (smt (verit, del_insts) <l = 0> eventually _mono norm__conv_dist)
have ifi0: (inverse o f o inverse) —0— 0
using <[= 0> lim lim__at_infinity 0 by blast
have ¢2¢90: g —0— ¢ 0
using <0 < r» centre__in__ball continuous__at continuous__on__eq continuous__at
holg
by (blast intro: holomorphic__on__imp__continuous_on)
have g2g1: ¢ —0— 0
proof (rule Lim__transform_ within__open [OF ifi0 open_ball))
show Az. [z € ball 0 r; x # 0] = (inverse o f o inverse) . = g«
by (auto simp: geq)
qed (auto simp: <0 < 1)
have [simp]: g 0 = 0
by (rule tendsto__unique [OF __ g2¢0 g2g1]) simp
have ball 0 r — {0::complex} # {}
using <0 < r by (metis 2 Diff _iff insert_Diff interior__ball interior_singleton)
then obtain w::complex where w # 0 and w: norm w < r by force
then have g w # 0 by (simp add: geq r)
obtain Bn ewhere 0 < B0 <ee<r
and leg: A\w. norm w < e = B x ¢cmod w ~ n < c¢cmod (g w)
proof (rule holomorphic_lower _bound__difference [OF holg open__ball con-
nected__ball])
show g w # ¢g 0
by (simp add: <g w # 0)
show w € ball 0 r
using mem__ball _0 w by blast
qged (use <0 < 7 in <auto simp: ball _subset_ball_iff»)
have §: cmod (fz) < emod z "n / Bif 2/e < c¢mod z for z
proof —
have ize: inverse z € ball 0 e — {0} using that <0 < e
by (auto simp: norm__divide field split_simps algebra__simps)
then have [simp|: z # 0 and dzr: inverse z € ball 0 7 — {0} using <e <
7

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 229

by auto
then have [simp]: fz # 0
using r [of inverse z] by simp
have [simp]: f z = inverse (g (inverse z))
using izr geq [of inverse z] by simp
show ?thesis using ize leg [of inverse z] <0 < By <0 < e»
by (simp add: field split _simps norm__divide algebra__simps)
qed
show thesis
proof
show fz = (3 i<n. (deriv "~ 4) f0 / fact i x z ~ i) for z
using § by (rule_tac A = 2/e and B = 1/B in Liowville_polynomial
[OF holf], simp)
qed
next
case Fulse
then have fi0: Ar. r > 0 = Jz€ball 0 — {0}. f (inverse z) = 0
by simp
have f20: f 2= 0if 0 < r and lt1: Az. # 0 = cmod x < r = inverse
(emod (f (inverse x))) < 1
for z r
proof —
have f0: (f —— 0) at_infinity
proof —
have DIM__complex|intro]: 2 < DIM (complex) — should not be necessary!
by simp
have f (inversez) # 0 = ¢ # 0 = cmod z < r = 1 < cmod (f (inverse
z)) for x
using [t1[of z] by (auto simp: field simps)
then have *x: cmod (f (inverse z)) < 1 = 2z # 0 = cmod z < r = f
(inverse z) = 0 for z
by force
then have x: (f o inverse) ‘ (ball 0 r — {0}) C {0} U — ball 0 1
by force
have continuous_on (inverse (ball 0 — {0})) f
using continuous_on__subset holf holomorphic__on__imp__continuous_on
by blast
then have connected ((f o inverse) ¢ (ball 0 r — {0}))
using connected__punctured__ball
by (intro connected _continuous__image continuous_intros; force)
then have {0} N (f o inverse) ‘(ball 0r — {0}) ={} vV —0ball01 N (fo
inverse) ‘ (ball 0 r — {0}) = {}
by (rule connected__closedD) (use * in auto)
then have f (inverse w) = 0 if w # 0 cmod w < r for w
using sx[of w] fi0 <0 < r> that by force
then show ?thesis
unfolding lim__at_infinity_0
using eventually _at <r > 0> by (force simp: intro: tendsto__eventually)
qed

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 230

obtain w where w € ball 0 r — {0} and f (inverse w) = 0
using Fulse <0 < r by blast
then show ?thesis
by (auto simp: f0 Liouville_weak [OF holf, of 0])
qed
show thesis
proof
show Az. fz=(>i<0. 0 % z ")
using lim
apply (simp add: lim__at_infinity 0 Lim__at dist_norm norm__inverse)
using fz0 zero_less_one by blast
qed
qed
qed

5.5 Entire proper functions are precisely the non-trivial poly-
nomials

lemma proper _map__polyfun:
fixes ¢ :: nat = 'a::{real_normed_div_algebra,heine__borel}
assumes closed S and compact K and c: ci# 01 <ii1<n
shows compact (S N {z. (> i<n. ci* 27%) € K})
proof —
obtain B where B > 0 and B: A\z. 2 € K = norm z < B
by (metis compact_imp__bounded <compact K> bounded_pos)
have x: norm z < b
if Av. b<normz = B+ 1 <norm (> i<n. cixz i)
i<n.cixxz i) e K for bx
proof —
have norm (> i<n. cixz i) < B
using B that by blast
moreover have - B + 1 < B
by simp
ultimately show norm z < b
using that by (metis (no__types) less_eq real def not_less order__trans)
qged
have bounded {z. (3 i<n.cixz i) € K}
using Limits.polyfun__extremal [where ¢c=c and B=B+1, OF ¢
by (auto simp: bounded pos eventually at infinity_pos *)
moreover have closed (Az. (3 i<n. ci* 2z ")) —“K)
using <compact K> compact_eq bounded__closed
by (intro alll continuous_closed_vimage continuous_intros; force)
ultimately show ?thesis
using closed Int_compact [OF <closed S»] compact_eq bounded_ closed
by (auto simp add: vimage__def)
qed

lemma proper_map_polyfun__univ:
fixes ¢ :: nat = ‘a::{real_normed_div_algebra,heine_borel}

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 231

assumes compact K ci # 01 <ii<n
shows compact ({z. (> i<n. ci* z27%) € K})
using proper_map__polyfun [of UNIV K c i n] assms by simp

lemma proper_map__polyfun__eq:
assumes f holomorphic_on UNIV
shows (Y k. compact k — compact {z. f z € k}) +—
Fen.0<nA(en#0)Nf=0Az > i<n cix*zq))
(is ?lhs = %rhs)
proof
assume compf [rule_format]: ?lhs
have 2: 3k. 0 <kANak#O0ONf=0z > i<k aixz i
if Az. fz=0_i<n.aixz i)foran
proof (cases Vi<n. 0<i — a i = 0)
case True
then have [simp]: Nz. fz=a 0
by (simp add: that sum.atMost_shift)
have Fualse using compf [of {a 0}] by simp
then show ?thesis ..
next
case Fulse
then obtain £ where k: 0 < k k<n a k # 0 by force
define m where m = (GREATEST k. k<n A a k # 0)
have m: m<n A am # 0
unfolding m_ def
using Greatest] _nat [where b = n] k by (metis (mono__tags, lifting))
have [simp]: a i = 0 if m < (i < n for ¢
using Greatest_le_nat [where b = n and P = Ak. k<n A a k # 0]
using m__def not_le that by auto
have £t < m
unfolding m_ def
using Greatest_le_nat [where b = n] k by (metis (mono__tags, lifting))
with & m show ?thesis
by (rule_tac z=m in exl) (auto simp: that comm__monoid__add_class.sum.mono__neutral_right)
qed
have «: ((inverse o f) —— 0) at_infinity
proof (rule Lim__at_infinityl)
fix e::real assume 0 < e
with compf [of cball 0 (inverse e)]
show 3B.Vz. B < ¢mod © — dist ((inverse o f) z) 0 < e
apply (clarsimp simp: compact__eq _bounded__closed norm__divide divide__simps
mult.commute elim!: bounded_normE__less)
by (meson linorder_not_le nle_le)
qed
then obtain a n where Az. fz = (> i<n. ai x 27%)
using assms pole__at_infinity by blast
with x 2 show ?rhs by blast
next
assume ?rhs

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 232

then obtain ¢ n where 0 < ncn# 0f = (Az. > i<n. cix*z i) by blast
then have compact {z. f z € k} if compact k for k
by (auto intro: proper_map_ polyfun_univ [OF that])
then show ?lhs by blast
qed

5.6 Relating invertibility and nonvanishing of derivative

lemma has_complex_derivative locally_injective:
assumes holf: f holomorphic_on S
and S: £ € S open S
and dnz: deriv f £ # 0
obtains r where r > 0 ball € r C S inj_on f (ball £ 1)
proof —
have x: 3d>0. Vz. dist £ x < d — onorm (Av. deriv fx x v — deriv f £ * v)
<eife> 0 fore
proof —
have contdf: continuous_on S (deriv f)
by (simp add: holf holomorphic__deriv holomorphic__on__imp__continuous__on
<open S»)
obtain 6 where 6>0 and ¢: Az. [z € S; dist z £ < §] = cmod (deriv f z —
deriv f &) < e/2
using continuous_onE [OF contdf < € Sy, of /2] <0 < e»
by (metis dist_complex__def half _gt_zero less_imp__le)
have § AC z. [¢ € S; dist £ (< 8] = cmod (deriv f ¢ — deriv f £) * cmod
z<e/2* cmod z
by (intro mult_right_mono [OF §]) (auto simp: dist_commute)
obtain ¢ where e>0ball £ e C S
by (metis openE [OF <open S» £ € Sb])
with «0>0> have 30>0. Vx. dist £ © < & —> onorm (Mv. deriv fx * v — deriv
JExv) < /2
using §
apply (rule_tac x=min 0 € in exl)
apply (intro conjl alll impl Operator_Norm.onorm__le)
apply (force simp: mult_right_mono norm_mult [symmetric] left__diff _distrib
5+
done
with <e>0> show ?thesis by force
qed
have inj ((x) (deriv f £))
using dnz by simp
then obtain ¢’ where ¢”: linear g’ g’ o (x) (deriv f) = id
using linear_injective_left_inverse [of (x) (deriv f €)] by auto

have fder: N\z. x € S = (f has_ derivative (x) (deriv f z)) (at x)
using <open S» has_field_derivative__imp__has__derivative holf holomorphic__derivl
by blast
show ?thesis
apply (rule has_derivative_locally_injective [OF S, where f=f and f' = Az

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 233

h. deriv f z x h and ¢’ = g'])
using ¢’ * by (simp__all add: fder linear__conv_bounded_linear that)
qed

lemma has_complex_derivative_locally invertible:
assumes holf: f holomorphic_on S
and S: £ € S open S
and dnz: deriv f &€ # 0
obtains r where r > 0 ball € r C S open (f © (ball £ 7)) inj_on f (ball £ 1)
proof —
obtain r where r > 0 ball £ r C Sinj_on f (ball £ 1)
by (blast intro: that has_complex_derivative_locally injective [OF assms])
then have &: & € ball £ r by simp
then have nc: — f constant_on ball £ r
using <inj_on f (ball £ r)> injective__not__constant by fastforce
have holf”: f holomorphic_on ball & r
using <ball &€ r C S» holf holomorphic_on__subset by blast
have open (f ‘ ball £ 1)
by (simp add: <inj_on f (ball & r)» holf’ open_mapping thms3)
then show ?thesis
using <0 < r <ball € 7 C S <inj_on f (ball £ r)» that by blast
qged

lemma holomorphic__injective__imp_ reqular:
assumes holf: f holomorphic_on S
and open S and injf: inj_on f S

and £ € S
shows deriv f & # 0
proof —

obtain r where r>0 and r: ball £ v C S using assms by (blast elim!: openFE)
have holf”: f holomorphic_on ball & r
using <ball & r C S» holf holomorphic__on__subset by blast
show ?thesis
proof (cases Vn>0. (deriv = n) f £ = 0)
case True
have fecon: fw = f £ if w € ball £ r for w
by (meson open__ball True <0 < r> centre_in__ball connected_ball holf’
holomorphic_ fun__eq const_on__connected that)
have Fulse
using feon [of € + /2] <0 < > r injf unfolding inj on_ def
by (metis <£ € Sy contra__subsetD dist_commute fcon mem__ball perfect _choose _dist)
then show ?thesis ..
next
case Fulse
then obtain n0 where n0: n0 > 0 A (deriv =" n0) f £ # 0 by blast
define n where [abs_def]: n = (LEAST n. n > 0 A (deriv ™" n) f £ # 0)
have n_ne:n > 0 (deriv " " n) f £ # 0
using def _Least] [OF n_def n0] by auto
have n_min: AN\k. 0 <k =k <n = (deriv k) f£=0

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 234

using def Least _le [OF n__def] not_le by auto
obtain ¢ § where 0 < ¢
and holg: g holomorphic__on ball £ §
and fd: A\w.we bl éd = fw—f&=(w—& xgw) " n
and gnz: Aw. w € ball £ 6 = gw # 0
by (blast intro: n_min holomorphic_factor _order_of zero_strong [OF holf
copen S» <€ € Sy n_ne))
show ?thesis
proof (cases n=1)
case True
with n_ne show ?thesis by auto
next
case Fulse
have g holomorphic_on ball £ (min r 0)
using holg by (simp add: holomorphic__on__subset subset_ball)
then have holgw: (Aw. (w — &) * g w) holomorphic_on ball £ (min r 0)
by (intro holomorphic__intros)
have gd: Aw. dist £ w < § = (g has_field _derivative deriv g w) (at w)
using holg
by (simp add: DERIV__deriv_iff field differentiable holomorphic_on__def
at_within__open_ NO_MATCH)
have *: Aw. w € ball £ (min r 0)
= (Aw. (w — &) * g w) has_field_derivative ((w — &) * deriv g w + ¢
w))
(at w)
by (rule gd derivative_eq_intros | simp)+
have [simp]: deriv (Aw. (w — &) x gw) & # 0
using * [of £] <0 < & <0 < r by (simp add: DERIV__imp__deriv gnz)
obtain T where £ € T open T and Tsb: T C ball £ (min r §) and oimT:
open (Aw. (w — &) x gw) *T)
using <0 < m <0 < &> has_complex_derivative_locally_invertible [OF
holgw, of €]
by force
define U where U = (Aw. (w —§) xgw) ‘T
have open U by (metis oimT U__def)
moreover have 0 € U
using ¢ € T» by (auto simp: U_def intro: image__eql [where z = £])
ultimately obtain ¢ where ¢>0 and ¢: cball 0 ¢ C U
using <open U» open_ contains_cball by blast
then have ¢ x exp(2 * of real pi xi* (0/n)) € cball 0 ¢
e * exp(2 x of real pi x ix (1/n)) € cball 0 e
by (auto simp: norm_mult)
with € have € x exp(2 * of real pi xi* (0/n)) € U
e * exp(2 * of real pi x 1% (1/n)) € U by blast+
then obtain y0 yI where y0 € T and y0: (y0 — &) * g y0 = € * exp(2 *
of _real pi x1i* (0/n))
and yI € Tand yl: (yI — &) *x gyl = x exp(2 x of _real
pi * 1% (1/n))
by (auto simp: U_def)

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 235

then have y0 € ball £ § y1 € ball £ § using Tsb by auto
then have fy0 — f &= ((y0 — &) x gy0) "nfyl —f&=((yl =& *g
yl) " n
using fd by blast+
moreover have y0 # yl
using y0 y1 < > 0) complex_root_unity _eq 1 [of n 1] <n > 0» False by
auto
moreover have T C §
by (meson Tsb min.coboundedl order_trans r subset_ball)
ultimately have False
using inj_onD [OF injf, of y0 y1] <y0 € T» <yl € T»
using complex_root_unity [of n 1]
by (auto simp: y0 y1 power _mult_distrib diff _eq eq n_ne)
then show ?thesis ..
qed
qged
qed

5.6.1 Hence a nice clean inverse function theorem

lemma has_field_derivative_inverse__strong:
fixes [:: 'a::{euclidean__space,real _normed_ field} = 'a
shows [DERIV fz :> f; f' # 0; open S; x € S; continuous_on S f;
Ne.z€ 8§ =g (fz) =7]
= DERIV g (f x) :> inverse (f)
unfolding has_field_derivative__def
by (rule has__derivative_inverse__strong [of S z f g]) auto

lemma has_field derivative inverse_strong x:
fixes f :: 'a::{euclidean_space,real _normed_field} = 'a
shows [DERIV f (gy) :> f’ f' # 0; open S; continuous_on S f; gy € S; f(g
y) = u;
Nz.z€ S = g (fz2)=/]
= DERIV gy :> inverse ()
unfolding has_field_derivative__def
by (rule has__derivative_inverse_strong_x [of S g y f]) auto

proposition holomorphic__has_inverse:
assumes holf: f holomorphic_on S
and open S and injf: inj_on f S
obtains g where g holomorphic_on (f ¢ S)
Nz. 2 € S = derivfzxderivg (fz) =1
Ne.z€ S = g(fz) =2
proof —
have ofs: open (f < S)
by (rule open__mapping_thm3 [OF assms])
have contf: continuous_on S f
by (simp add: holf holomorphic__on__imp__continuous__on)
have «: (the_inv_into S f has_field derivative inverse (deriv f z)) (at (f z)) if

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 236

z € S for z
proof —
have 1: (f has_ field_ derivative deriv f z) (at 2)
using DERIV__deriv_iff field_ differentiable <z € S» <open S»> holf holomor-
phic_on__imp__ differentiable__at
by blast
have 2: deriv fz # 0
using <z € S) <open S» holf holomorphic__injective__imp__regular injf by blast
show ?thesis
proof (rule has_field_derivative_inverse__strong [OF 1 2 <open S» <z € S])
show continuous_on S f
by (simp add: holf holomorphic__on_imp__continuous__on)
show A\z. z € S = the_inv_into S f (fz) =
by (simp add: injf the_inv_into_f f)
qed
qged
show ?thesis
proof
show the_inv_into S f holomorphic_on f S
by (simp add: holomorphic_on__open ofs) (blast intro: x)
next
fix z assume z € §
have deriv f z # 0
using <z € S <open S» holf holomorphic__injective _imp_regqular injf by
blast
then show deriv f z x deriv (the_inv_into S f) (fz) = 1
using * [OF <z € Sy] by (simp add: DERIV__imp__deriv)
next
fix z assume z € §
show the_inv_into S f (fz) = z
by (simp add: <z € S» injf the_inv_into_f f)
qed
qed

5.6.2 Holomorphism of covering maps and lifts.

lemma covering space_lift_is holomorphic:
assumes cov: covering_space C' p S
and C: open C p holomorphic_on C
and holf: f holomorphic_on U and fim: f € U — S and gim: g € U — C
and contg: continuous_on U gand pg_f: Nz. 2 € U = p(gz) =fz
shows g holomorphic_on U
unfolding holomorphic_on_ def
proof (intro strip)
fix z
assume z € U
with fim have f z € S by blast
then obtain T V where f 2 € T and opeT: openin (top_of set S) T
and UV: YV =Cnp—‘T

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 237

and A\W. W € V = openin (top_of _set C) W
and disV: pairwise disjnt V and homeV: A\W. W € ¥V = 3 q. homeomor-
phism W T p q
using cov fim unfolding covering space__def by meson
then have A\W. W €V = open WA W C C
by (metis <open C» inf lel open_Int openin__open)
then obtain V where VeV gze Vopen VV C C
by (metis Intl UnionE image_subset_iff vimagel UV «fz € T» <z € Uy gim
pg_f image__subset_iff _funcset)
have holp: p holomorphic_on V
using <V C C» <p holomorphic_on C) holomorphic_on__subset by blast
moreover have injp: inj _onp V
by (metis <V € V) homeV homeomorphism__def inj _on__inversel)
ultimately
obtain p’ where holp”: p’ holomorphic_on (p ‘* V) and pp": Az. z€ V = p/(p
z) =2
using <open V> holomorphic__has_inverse by metis
have z ¢ UNg—‘V
using <g z € V» <z € U» by blast
moreover have openin (top_of set U) (U N g —*V)
using continuous__openin__preimage [OF contg gim)
by (meson <open V> contg continuous__openin__preimage__eq)
ultimately obtain ¢ where e>0 and e: ball ze "N U C g -V
by (force simp: openin__contains__ball)
show g¢ field_ differentiable at z within U
proof (rule field_differentiable_transform__ within)
show (0::real) < ¢
by (simp add: <0 < &)
show 2z € U
by (simp add: <z € U»)
show (p' o f) ' =ga'ifa’ € Udista’ z < € for z’
using that
by (metis Int_iff comp__apply dist _commute e mem__ball pg_f pp’ subsetD
vimage__eq)
have open (p ‘ V)
using <open V' holp injp open__mapping thm3 by force
moreover have fz € p ‘ V
by (metis <z € Uy image_iff pg_f <g z € V»)
ultimately have p’ field_ differentiable at (f z)
using holomorphic__on__imp_ differentiable__at holp’ by blast
moreover have f field differentiable at z within U
by (metis (no_types) <z € U» holf holomorphic_on_ def)
ultimately show (p’ o f) field_differentiable at z within U
by (metis (no__types) field_differentiable _at_within field _differentiable_compose__within)
qed
qed

lemma covering_space_lift _holomorphic:
assumes cov: covering_space C' p S

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 238

and C: open C p holomorphic_on C
and f: f holomorphic_on Uf € U — S
and U: simply connected U locally path _connected U
obtains g where g holomorphic_on Uge U - C A\y.ye U= plgy) =fy
proof —
obtain g where continuous on Ugge U —- C Ny.y e U= plgy)=fy
using covering_space_lift [OF cov U] f holomorphic__on__imp _continuous_on
by blast
then show ?thesis
by (metis C cov covering__space_lift_is_holomorphic f image__subset_iff _funcset
that)
qed

5.7 The Schwarz Lemma

lemma Schwarz1:
assumes holf: f holomorphic_on S
and contf: continuous_on (closure S) f
and S: open S connected S
and boS: bounded S
and S # {}
obtains w where w € frontier S
Nz. z € closure S = norm (f z) < norm (f w)
proof —
have connf: continuous on (closure S) (norm o f)
using contf continuous on__compose continuous__on_norm__id by blast
have coc: compact (closure S)
by (simp add: <bounded S» bounded closure compact_eq bounded_ closed)
then obtain z where z: x € closure S and amaz: \z. z € closure S = norm(f
z) < norm(f)
using continuous__attains_sup [OF __ __ connf] «S # {}» by auto
then show ?thesis
proof (cases © € frontier S)
case True
then show ?thesis using that xmazx by blast
next
case Fulse
then have z € S
using <open Sy frontier _def interior _eq x by auto
then have f constant_on S
proof (rule mazimum_modulus_principle [OF holf S <open S» order_refl])
show A\z. z € S = cmod (f z) < cmod (f x)
using closure__subset by (blast intro: zmax)
qed
then have f constant_on (closure S)
by (rule constant_on__closurel [OF __ conif])
then obtain ¢ where ¢: Az. z € closure S = fz = ¢
by (meson constant_on__def)
obtain w where w € frontier S

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 239

by (metis coc all_not_in_conv assms(6) closure_ UNIV frontier _eq empty
not__compact_UNIV)
then show ?thesis
by (simp add: ¢ frontier_def that)
qed
qed

lemma Schwarz2:
[f holomorphic__on ball 0 r;
0 < s; ball ws C ball 01
Nz. norm (w—z) < s = norm(f z) < norm(f w)]
= f constant_on ball 0 r
by (rule mazimum_modulus_principle [where U = ball w s and & = w)) (simp__all
add: dist_norm)

lemma Schwarz3:
assumes holf: f holomorphic_on (ball 0 r) and [simp]: f0 = 0
obtains h where h holomorphic_on (ball 0 r) and Az. norm z < r = fz =
z+* (h z) and deriv f0 = h 0
proof —
define h where h z = (if z = 0 then deriv f 0 else f z / z) for z
have d0: deriv f 0 = h 0
by (simp add: h__def)
moreover have h holomorphic_on (ball 0)
by (rule pole_theorem__open_0 [OF holf, of 0]) (auto simp: h_def)
moreover have norm z < r = fz =z x h z for 2
by (simp add: h__def)
ultimately show ?thesis
using that by blast
qed

proposition Schwarz Lemma:
assumes holf: f holomorphic_on (ball 0 1) and [simp]: f0 = 0
and no: Az. norm z < 1 = norm (f z) < 1
and &: norm € < 1
shows norm (f €) < norm ¢ and norm(deriv f 0) < 1
and ((Fz. norm z < 1 A z # 0 A norm(f z) = norm z)
V norm(deriv f 0) = 1)
= Ja. Vz.normz< 1 — fz=ax* z) A norm a = 1
(is 2P = 2Q)
proof —
obtain h where holh: h holomorphic_on (ball 0 1)
and fz_eq: Nz. norm z < 1 = fz =z (h z) and df0: deriv f 0 = h

by (rule Schwarz3 [OF holf]) auto
have noh_le: norm (h z) < 1 if z: norm z < 1 for 2
proof —

have norm (h z) < aif a: 1 < a for a

proof —

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 240

have maz (inverse a) (norm z) < 1
using z a by (simp__all add: inverse_less 1 _iff)
then obtain r where r: maz (inverse a) (norm z) < r and r < 1
using Rats dense_in_ real by blast
then have nzr: norm z < r and ira: inverse r < a
using z a less _imp_inverse_less by force+
then have 0 < r
by (meson norm__not_less zero not_le order.strict_trans2)
have holh': h holomorphic__on ball 0 r
by (meson holh <r < 1) holomorphic_on__subset less_eq real_def sub-
set__ball)
have conth” continuous_on (cball 0 1) h
by (meson «r < 1> dual_order.trans holh holomorphic__on__imp__continuous_on
holomorphic__on__subset mem__ball 0 mem__cball _0 not_less subsetl)
obtain w where w: norm w = r and lenw: A\z. norm z < r = norm(h z)
< norm(h w)
using conth’ <0 < r» by (auto simp add: intro: Schwarzl [OF holh'))
have h w = fw / w using fz_eq «<r < 1) nzr w by auto
then have cmod (h z) < inverse r
by (metis <0 < r «r < 1) divide_strict_right_mono inverse_eq divide
le_less_trans lenw no norm__divide nzr w)
then show ?thesis using ira by linarith
qed
then show norm (h z) < 1
using not_le by blast
qged
show cmod (f £) < c¢cmod &
proof (cases & = 0)
case True then show ?thesis by auto
next
case Fulse
then show ?thesis
by (simp add: noh_le fz_eq & mult_left le norm__mult)
qed
show no_ df0: norm(deriv f 0) < 1
by (simp add: <\z. cmod z < 1 = emod (h z) < 1> df0)
show ?2Q) if 2P
using that
proof
assume 3z. cmod z < 1 Az # 0 A cmod (f z) = cmod z
then obtain v where : cmod v < 1 v # 0 cmod (f v) = e¢mod ~ by blast
then have [simp]: norm (h) = 1
by (simp add: fz_eq norm_mult)
have §: ball v (1 — c¢mod ~) C ball 0 1
by (simp add: ball subset ball iff)
moreover have Az. cmod (v — z) < 1 — emod v => cmod (h z) < cmod (h
7)
by (metis <cmod (h v) = 1y § dist_0_norm dist_complex_def in_mono
mem,__ball noh__le)

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 241

ultimately obtain ¢ where ¢: Az. norm 2 < 1 = hz=¢
using Schwarz2 [OF holh, of 1 — norm v v, unfolded constant_on__def] v
by auto
then have norm ¢ = 1
using v by force
with ¢ show ?thesis
using fz eq by auto
next
assume [simp]: cmod (deriv f 0) = 1
then obtain ¢ where ¢: Az. normz < 1 = hz=¢
using Schwarz2 [OF holh zero_less_one, of 0, unfolded constant_on__def]
df0 noh__le
by auto
moreover have norm ¢ = 1 using df0 ¢ by auto
ultimately show ¢thesis
using fz_eq by auto
qed
qed

corollary Schwarz Lemma’:
assumes holf: f holomorphic_on (ball 0 1) and [simp]: f 0 = 0
and no: A\z. norm z < 1 = norm (f 2) < 1
shows (V€. norm £ < 1 — norm (f &) < norm &)
A norm(deriv f 0) < 1)
A (((Bz normz < 1 N z# 0 A norm(fz) = norm z)
V norm(deriv f 0) = 1)
— Fa. Vz.normz< 1 — fz=a* 2) A norm a = 1))
using Schwarz_Lemma [OF assms)
by (metis (no_types) norm__eq zero zero_less__one)

5.8 The Schwarz reflection principle

lemma hol_pal lem0:
assumes d - a < kk<d-b
obtains ¢ where
¢ € closed_segment a b d - ¢ = k
Nz z € closed_segment a ¢ = d + z < k
Nz. z € closed_segment ¢ b =k < d - z
proof —
obtain ¢ where cin: ¢ € closed_segment a b and keq: k = d - ¢
using connected__ivt_hyperplane [of closed__segment a b a b d k]
by (auto simp: assms)
have closed _segment a ¢ C {z. d - z < k} closed_segment ¢ b C {z. k < d - z}
unfolding segment_convexr hull using assms keq
by (auto simp: convex__halfspace_le convex__halfspace__ge hull_minimal)
then show ?thesis using cin that by fastforce
qed

lemma hol_pal lem1I:

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 242

assumes convex S open S
and abc: a € Sbe Sce S
d#0andlek:d-a<kd-b<kd-c<k
and holf1: f holomorphic_on {z. z € SN d - z < k}
and contf: continuous_on S f

shows contour_integral (linepath a b) f +
contour_integral (linepath b ¢) f +
contour_integral (linepath ¢ a) f = 0

proof —
have interior (conver hull {a, b, c}) C interior(S N {z. d - © < k})
proof (intro interior _mono hull_minimal)
show {a, b, c} C SN{z. d-z <k}
by (simp add: abc lek)
show convex (S N {z. d - z < k})
by (rule conver_Int [OF <convex S convex_halfspace_le])
qged
also have ... C {z € S.d-z <k}
by (force simp: interior_open [OF <open S»] <d # 0»)
finally have x: interior (convex hull {a, b, ¢}) C{z€ 5. d -2z < k}.
have continuous_on (convex hull {a,b,c}) f
using <convex S» contf abc continuous__on__subset subset__hull
by fastforce
moreover have f holomorphic_on interior (convex hull {a,b,c})
by (rule holomorphic_on__subset [OF holfl x])
ultimately show ?thesis
using Cauchy_theorem,_triangle interior has_chain__integral chain_integral3
by blast
qed

lemma hol_pal lem?2:
assumes S: convex S open S
and abc: a € Sbe Sce S
and d # 0 and lek: d - a < kd-b<k
and holf1: f holomorphic_on {z. z € S AN d - z < k}
and holf2: f holomorphic_on {z. z € S ANk < d - z}
and contf: continuous_on S f

shows contour_integral (linepath a b) f +
contour_integral (linepath b ¢) f +
contour_integral (linepath ¢ a) f = 0

proof (cases d - ¢ < k)
case True show ?¢thesis
by (rule hol_pal_lem1 [OF S abc «d # 0> lek True holf1 contf])
next
case Fualse
then have d - ¢ > k by force
obtain o’ where a”: a’ € closed_segment b cand d - o’ = k
and ba”: N\z. z € closed_segment b o’ = d - z < k
and a’c: \z. z € closed_segment o’ ¢ = k < d - z
using False hol_pal _lem0 [of d b k ¢, OF «d - b < k] by auto

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 243

obtain b’ where b”: b’ € closed_segment a ¢ and d - b’ = k
and ab”: \z. z € closed_segment a b’ = d - z < k
and b'c: \z. z € closed_segment b’ ¢c = k < d - 2
using Fualse hol_pal_lem0 [of d a k ¢, OF <d - a < k] by auto
have o’ a’' € SAD € S
using a’ abc b’ convex__contains_segment <convex S» by auto
have continuous_on (closed__segment c a) f
by (meson abc contf continuous on__subset convex__contains _segment <convex
S»)
then have 1: contour_integral (linepath ¢ a) f =
contour_integral (linepath ¢ b") f + contour _integral (linepath b’ a) f
using b’ closed__segment__commute contour integral split_linepath by blast
have continuous_on (closed__segment b c) f
by (meson abc contf continuous on__subset convex__contains _segment <convex
S»)
then have 2: contour_integral (linepath b ¢) f =
contour_integral (linepath b a') f + contour__integral (linepath a’ ¢) f
by (rule contour_integral_split_linepath [OF _ a'))
have 3: contour_integral (reversepath (linepath b’ a")) f =
— contour_integral (linepath b’ a’) f
by (rule contour__integral_reversepath [OF wvalid__path__linepath])
have fed_le: f field differentiable at x
if x € interior S A z € interior {z. d -+ x < k} for z
proof —
have f holomorphic_on S N {c. d - ¢ < k}
by (metis (no__types) Collect_conj_eq Collect_mem__eq holf1)
then have 3 C D. x € interior C N interior D A f holomorphic__on interior C
N interior D
using that
by (metis Collect _mem__eq Int_Collect <d # 0> interior_halfspace_le inte-
rior_open <open S»)
then show f field_ differentiable at x
by (metis at__within__interior holomorphic__on__def interior__Int interior__interior)
qed
have ab_le: N\z. z € closed_segment a b = d - z < k
proof —
fix x :: complex
assume z € closed segment a b
then have AC. 2 € CVb¢ CVa¢g CV ~ convex C
by (meson contra__subsetD convex__contains_segment)
then show d - z < k
by (metis lek convex_halfspace_le mem__Collect_eq)
qed
have cs: closed_segment a’ b’ C {z. d - z < k} A closed_segment b’ a C {x. d
-z <k}
by (simp add: <d - ' = k» <«d - b’ = k> closed__segment__subset convex__halfspace_le
lek(1))
have continuous_on (S N {z. d - x < k}) f using contf
by (simp add: continuous__on__subset)

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 244

then have (f has_contour_integral 0)
(linepath a b +++ linepath b o’ +++ linepath a’ b’ +++ linepath b’ a)
apply (rule Cauchy_theorem__convex [where K = {}])
by (simp__all add: path_image_join convex_Int convexr_halfspace_le <convex
Sy fed _le ab_le
closed__segment__subset abc a'b’ ba' cs)
then have 4: contour_integral (linepath a b) f +
contour_integral (linepath b a’) f +
contour_integral (linepath o’ b’) f +
contour_integral (linepath b’ a) f = 0
by (rule has__chain__integral__chain__integrall)
have fed_ge: f field_differentiable at x
if x € interior S A x € interior {z. k < d - z} for z
proof —
have f2: f holomorphic_on S N {c. k < d - ¢}
by (metis (full _types) Collect_conj eq Collect _mem,__eq holf2)
have f3: interior S = S
by (simp add: interior_open <open S»)
then have z € S N interior {c. k < d - ¢}
using that by simp
then show f field_ differentiable at
using f3 f2 unfolding holomorphic__on__def
by (metis (no__types) «d # 0> at_within__interior interior__Int interior__halfspace__ge
interior_interior)
qed
have cs: closed_segment ¢ b’ C {z. k < d - z} A closed_segment b’ o’ C {z. k
<d-zx}
by (simp add: <d - a’ = k> b'c closed__segment__subset convex__halfspace _ge)
have continuous_on (S N {z. k < d - z}) f using contf
by (simp add: continuous__on__subset)
then have (f has_contour_integral 0) (linepath o’ ¢ +++ linepath ¢ b’ +++
linepath b’ o)
apply (rule Cauchy_theorem__conver [where K = {}])
by (simp__all add: path_image_join convex_Int convex__halfspace_ge <convex
Sy
fed_ge closed__segment__subset abe a'b’ a’c cs)
then have 5: contour_integral (linepath o’ ¢) f + contour_integral (linepath ¢
b") f + contour_integral (linepath b' a’) f = 0
by (rule has__chain_integral_chain__integral3)
show ?thesis
using 1 2 8 4 5 by (metis add.assoc eq_neq_iff add_eq 0 reversepath_linepath)
qged

lemma hol_pal lem3:
assumes S: convex S open S
and abc: a € Sbe Sce S
and d # 0 and lek: d - a < k
and holf1: f holomorphic_on {z. z € S AN d - z < k}
and holf2: f holomorphic_on {z. z € S ANk < d - 2}

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 245

and contf: continuous_on S f
shows contour_integral (linepath a b) f
contour_integral (linepath b ¢) f +
contour_integral (linepath ¢ a) f =
proof (cases d - b < k)
case True show ?thesis
by (rule hol_pal_lem2 [OF S abc <d # 0> lek True holfl holf2 contf])
next
case Fulse
show ?thesis
proof (cases d - ¢ < k)
case True
have contour_integral (linepath ¢ a) f +
contour_integral (linepath a b) f +
contour_integral (linepath b ¢) f = 0
by (rule hol_pal_lem2 [OF S <c € S» <a € S» <be€ Sy «d# 0y <«d-c<k
lek holf1 holf2 contf])
then show ?thesis
by (simp add: algebra__simps)
next
case Fulse
have contour_integral (linepath b ¢) f +
contour_integral (linepath ¢ a) f +
contour_integral (linepath a b) f = 0
using hol_pal_lem2 [OF S <b € S <c € Sy <a € S, of —d —k]
using «d # 0) <= d - b < k» False by (simp__all add: holf! holf2 contf)
then show ?thesis
by (simp add: algebra__simps)
qed
qed

+

0

lemma hol_pal lem/:
assumes S: convex S open S
and abc: a € Sbe Sce Sand d # 0
and holf1: f holomorphic_on {z. z € S AN d - z < k}
and holf2: f holomorphic_on {z. z € SNk < d - 2z}
and contf: continuous_on S f

shows contour_integral (linepath a b) f +
contour_integral (linepath b ¢) f +
contour_integral (linepath ¢ a) f = 0

proof (cases d - a < k)
case True show ?thesis
by (rule hol_pal_lem3 [OF S abc «d # 0s True holf1 holf2 conitf])
next
case Fulse
show ?thesis
using «d # 0 hol_pal_lem3 [OF S abe, of —d —Fk| False
by (simp__all add: holf1 holf2 contf)
qed

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 246

lemma holomorphic__on__paste__across_line:
assumes S: open S and d # 0
and holf1: f holomorphic_on (S N {z. d - z < k})
and holf2: f holomorphic_on (S N{z k < d - z})
and contf: continuous_on S f
shows f holomorphic_on S
proof —
have x: 3t. open t A p € t A continuous_on t f N
(Va b c conver hull {a, b, ¢} Ct —
contour_integral (linepath a b) f +
contour_integral (linepath b ¢) f +
contour_integral (linepath ¢ a) f =
if p e S for p
proof —
obtain e where e>0 and e: ballp e C S
using <p € S openE S by blast
then have continuous_on (ball p €) f
using contf continuous on_ subset by blast
moreover
have {z. distpz < eANd-z<k}CSNn{z d-z<k}
{z.distpz<eNnk<d-z} CSN{zk<d-z}
using e by auto
then have f holomorphic_on {z. distp z < e AN d - z < k}
f holomorphic_on {z. dist p z < e Nk < d - z}
using holomorphic__on__subset holf1 holf2 by presburger+
ultimately show Zthesis
apply (rule_tac x=ball p e in exl)

0)

using <e > 0) e <d # 0> hol_pal_lem4 [of ballpe __ _ d__ K]
by (force simp: subset__hull)
qed

show ?thesis
by (blast intro: x Morera_local_triangle analytic _imp _holomorphic)
qed

proposition Schwarz _reflection:
assumes open S and cnjs: ¢cnj S C S
and holf: f holomorphic_on (S N {z. 0 < Im z})
and contf: continuous_on (S N {z. 0 < Im z}) f
and f: A\z. [z € S; z€e Rl = (f2) € R
shows (Az. if 0 < Im z then f z else cnj(f(cnj 2))) holomorphic_on S
proof —
have 1: (Az. if 0 < Im z then f z else cnj (f (¢ng 2z))) holomorphic_on (S N {z.
0 < Im z})
by (force intro: iff D1 [OF holomorphic__cong [OF refl] holf])
have cont_cfe: continuous_on (S N {z. Im z < 0}) (enj o f o cng)
using cnjs
by (intro continuous_intros continuous_on__compose continuous _on__subset
[OF contf]) auto

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 247

have cnj o f o ¢nj field differentiable at z within S N {z. Im z < 0}
if v € SImax < 0f field differentiable at (cnj) within S N {z. 0 < Im z}
for z
using that
apply (clarsimp simp add: field differentiable_def has_field_derivative iff
Lim__within dist_norm)
apply (rule_tac x=cnj ' in exl)
apply (elim all_forward ex_forward conj_forward imp_forward asm__rl, clar-
ify)
apply (drule_tac z=cnj za in bspec)
using cnjs apply force
apply (metis complex _cnj cnj complex _cnj diff complex _cnj divide com-
plex_mod__cnyj)
done
then have hol_cfe: (enj o f o enj) holomorphic_on (S N {z. Im z < 0})
using holf cnjs
by (force simp: holomorphic_on__def)
have 2: (Az. if 0 < Im z then f z else cnj (f (¢ng 2))) holomorphic_on (S N {z.
Im z < 0})
by (smt (verit) Int_ Collect comp__def hol_cfc holomorphic__cong)
have [simp]: (SN {z. 0 <Imz}) U (SN{z.Imz<0}) =S
by force
have eg: Az. [z € S;Im 2 < 0; 0 < Imz] = fz= cnj (f (enj 2))
using f Reals cnj_iff complex_is_Real iff by auto
have continuous_on (SN {z. 0 < Imz}) U (SN {z. Imz < 0}))
(Az. if 0 < Im z then f z else enj (f (enj 2)))
apply (rule continuous__on__cases_local)
using cont__cfc contf
by (simp__all add: closedin__closed_Int closed _halfspace_ Im_le closed__halfspace _Im__ge
eq)
then have 3: continuous_on S (Az. if 0 < Im z then f z else cnj (f (enj 2)))
by force
show ?thesis
using holomorphic_on__paste__across_line [OF <open Sy, of — i _ 0]
using 1 2 3 by auto
qed

5.9 Bloch’s theorem

lemma Bloch lemma_0:
assumes holf: f holomorphic_on cball 0 r and 0 < r
and [simp]: f0 = 0
and le: \z. norm z < r = norm(deriv f z) < 2 % norm(deriv f 0)
shows ball 0 ((8 — 2 * sqrt 2) * r * norm(deriv f 0)) C f “ ball 0 r
proof —
have sqrt 2 < 3/2
by (rule real less lsqrt) (auto simp: power2_eq square)
then have s¢3: 0 < 8 — 2 % sqrt 2 by simp
show ?thesis

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 248

proof (cases deriv f 0 = 0)
case True then show ?thesis by simp
next
case Fualse
define C where C = 2 x norm(deriv f 0)
have 0 < C using False by (simp add: C_def)
have holf’: f holomorphic_on ball 0 r using holf
using ball_subset__cball holomorphic__on_ subset by blast
then have holdf’: deriv f holomorphic__on ball 0 r
by (rule holomorphic_deriv [OF _ open__ball))
have Lel: norm(deriv f z — deriv f 0) < norm z / (r — norm z) x C
if norm z < r for z
proof —
have T1: norm(deriv f z — deriv f 0) < norm z / (R — norm z) x C
if R: norm 2z < R R < r for R
proof —
have 0 < R using R
by (metis less_trans norm__zero zero_less_norm__iff)
have df le: Az. norm x < r = norm (deriv fz) < C
using le by (simp add: C_def)
have hol_df: deriv f holomorphic__on cball 0 R
using R holdf’ holomorphic__on__subset by auto
have *: ((Aw. deriv fw / (w — z)) has__contour_integral 2 pi * i * deriv
f 2) (circlepath 0 R)
if norm z < R for z
using «0 < R» that Cauchy_integral_formula__convex__simple [OF con-
vex__cball hol _df, of __ circlepath 0 R]
by (force simp: winding number__circlepath)
have xx: ((Az. deriv fz / (x — 2) — deriv fx /) has_contour_integral
of real (2 % pi) %1 x (deriv f z — deriv f 0))
(circlepath 0 R)
using has__contour_integral _diff [OF x [of z] % [of 0]] <0 < R» that
by (simp add: algebra__simps)
have [simp]: Az. norm © = R = z # z using that(1) by blast
have norm (deriv fz / (z — 2) — deriv fz / z)
< C xnorm z / (R x (R — norm z))
if norm ¢ = R for z
proof —
have [simp]: norm (deriv fz x x — deriv fz x (z — 2)) =
norm (deriv f z) * norm z
by (simp add: norm_mult right _diff _distrib’)
show ?thesis
using 0 < R» <0 < C» R that
by (auto simp add: norm_mult norm__divide divide simps df le
mult_mono norm__triangle_ineq2)
qed
then show ?thesis
using has__contour_integral bound__circlepath
[OF xx, of C x norm z/(R+x(R — norm z))]

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 249

0 < Ry« <C)»R
apply (simp add: norm_mult norm__divide)
apply (simp add: divide__simps mult.commute)
done
qed
obtain r’ where r": norm z < r’'r’' <r
using Rats dense_in_real [of norm z r] <norm z < r) by blast
then have [simp]: closure {r'<..<r} = {r'.r} by simp
show ?thesis
apply (rule continuous_ge__on__closure
[where f = Ar. norm z / (r — norm z) x C'and S = {r'<..<r},
OF __ T1))
using that 7’
by (auto simp: not_le introl: continuous_intros)
qed
have *: (norm z — norm 2°2/(r — norm 2)) * norm(deriv f 0) < norm(f z)
if : norm z < r for z
proof —
have 1: Az. z € ball 0 r =
((Az. fz — deriv f 0 % z) has_field_ derivative deriv f z — deriv f 0)
(at z within ball 0 1)
by (rule derivative__eq intros holomorphic__derivl holf’ | simp)+
have 2: closed__segment 0 z C ball 0 r
by (metis <0 < r»y convezx_ball convezr__contains _segment dist__self mem__ball
mem,__ball_0 that)
have 4: norm (deriv f (z *g 2z) — deriv f 0) * norm z < norm z * norm z *
x* C / (r — norm z)
ifz: 0 <zax<1forzx
proof —
have [simp]: z * norm z < r
using r z by (meson le_less_trans mult_le__cancel _right2 norm_not_less_zero)
then have cmod (z xg 2) < r
by (simp add: z)
then have norm (deriv f (x xg z) — deriv f 0) < norm (z xg 2z) / (r —
norm (z *g 2)) x C
by (metis Lel)
also have ... < norm (xz xg 2) / (r — norm z) x C
using r z <0 < m <0 < C» by (simp add: frac_le mult_left le one_le)
finally have norm (deriv f (z xr z) — deriv f 0) * norm z < norm (z *g
z) / (r — norm z) x C % norm z
by (rule mult_right_mono) simp
with z show %thesis by (simp add: algebra__simps)
qed
have le_norm: abc < norm d — e = norm(f — d) < e = abc < norm f
for abc d e and f::complex
by (metis add__diff _cancel left’ add_diff _eq diff _left_mono norm__diff ineq
order_trans)
have norm (integral {0..1} (Az. (deriv f (z xg 2) — deriv f 0) * z))
< integral {0..1} (At. (norm 2)2 x t / (r — norm 2) * C)

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 250

proof (rule integral_norm__bound__integral)
show (Az. (deriv f (z xr z) — deriv f 0) x z) integrable_on {0..1}
using contour_integral_primitive [OF 1, of linepath 0 z] 2
by (simp add: has__contour_integral_linepath has_integral _integrable__integral)
have (x) ((cmod 2)?) integrable_on {0..1}
by (metis ident_integrable_on integrable 0 integrable _eq integrable _on__cmult_iff
lambda__zero)
then show (At. (norm 2)? x t / (r — norm z) x C) integrable_on {0..1}
using integrable__on__cmult_right|where 'b=real, simplified] integrable__on__divide
[where 'b=real, simplified]
by blast
qged (simp add: norm__mult power2__eq square 4)
then have int_le: norm (f z — deriv f 0 x 2) < (norm z)? x norm(deriv f 0)
/ ((r — norm z))
using contour_integral__primitive [OF 1, of linepath 0 z] 2
by (simp add: has__contour__integral_linepath has__integral _integrable_integral
C_def)
have norm z * (norm (deriv f 0) x (r — norm z — norm z)) < norm z x*
(norm (deriv f 0) * (r — norm z) — norm (deriv f 0) * norm z)
by (simp add: algebra__simps)
then have §: (norm z x (r — norm z) — norm z * norm z) * norm (deriv f
0) < norm (deriv f 0) * norm z * (r — norm z) — norm z * norm z * norm (deriv
£ 0)
by (simp add: algebra__simps)
show ?thesis
using <norm z < r»
by (force simp add: power2 _eq square divide__simps C_def norm__mult §
introl: le_norm [OF _ int_le])
qed
have s¢201 [simp]: 0 < (I —sqrt 2/ 2) (1 —sqrt 2/ 2) < 1
by (auto simp: sqrt2_less 2)
have 1: continuous_on (closure (ball 0 (1 — sqrt 2/ 2) x 1)) f
proof (rule continuous__on__subset [OF holomorphic_on_imp__continuous_on
(OF holf]))
show closure (ball 0 ((1 — sqrt 2 / 2) = r)) C cball 0 r
proof —
have (1 —sqrt 2 / 2) xr <r
by (simp add: <0 < 1)
then show ?thesis
by (meson ball _subset_cball closed__cball closure _minimal dual__order.trans
subset__ball)
qed
qed
have 2: open (f < interior (ball 0 (1 — sqrt 2 / 2) % r)))
proof (rule open__mapping_thm [OF holf’ open__ball connected__ball])
show interior (ball 0 ((1 — sqrt 2 / 2) = 1)) C ball (0::complex) r
using <0 < r mult_pos_pos sq201 by (simp add: ball _subset_ball_iff)
show — f constant_on ball 0 r
using False <0 < 1) centre_in__ball holf’ holomorphic_nonconstant by blast

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 251

qed auto
have ball 0 ((3 — 2 = sqrt 2) = v % norm (deriv f 0)) =
ball (f0) (3 — 2 x sqrt 2) = r * norm (deriv f 0)
by simp
also have ... C f“ball 0 (1 — sqrt 2/ 2) = r)
proof —
have 3: (3 — 2 % sqrt 2) x r x norm (deriv f 0) < norm (f 2)
if norm z = (1 — sqrt 2 / 2) = r for z
proof (rule order_trans [OF __ «])
show (8 — 2 % sqrt 2) x r x cmod (deriv f 0)
< (ecmod z — (cmod 2)? / (r — cmod 2)) * cmod (deriv f 0)
by (simp add: le_less algebra__simps divide__simps power2__eq square that)
qed (use <0 < r that in auto)
show ?thesis
using <0 < ry sq201 3 C_def <0 < C» sq8
by (intro ball_subset_open_map__image [OF 1 2 _ bounded__ball]) auto
qed
also have ... C f‘ball 01
proof —
have A\z. (1 —sqrt 2 / 2) xr <r
using <0 < r by (auto simp: field _simps)
then show ?thesis
by auto
qed
finally show ?thesis .
qged
qged

lemma Bloch lemma:
assumes holf: f holomorphic_on cball a r and 0 < r
and le: A\z. z € ball a r = norm(deriv f z) < 2 x norm(deriv f a)
shows ball (fa) (83 — 2 % sqrt 2) = r x norm(deriv f a)) C f “ ball a r (is ?lhs
C 2rhs)
proof —
have fz: (A\z. f (a + 2)) = fo (Az. (a + 2))
by (simp add: o__def)
have hol0: (Az. f (a + 2)) holomorphic_on cball 0 r
unfolding fz by (intro holomorphic_intros holf holomorphic__on__compose |
stmp)—+
then have [simp]: Az. norm x < r = (Az. f (a + 2)) field_differentiable at x
by (metis open__ball at_within__open ball_subset_cball diff 0 dist_norm holo-
morphic__on__def holomorphic__on__subset mem,__ball norm_minus__cancel)
have [simp]: \z. norm z < r = f field_differentiable at (a + 2)
by (metis holf open_ball add_diff cancel left’ dist _complex_def holomor-
phic_on__imp_ differentiable__at holomorphic__on__subset interior _cball interior _subset
mem,__ball norm_ minus_commute)
then have [simp]: f field_differentiable at a
by (metis add.comm__neutral <0 < 1> norm__eq_zero)
have holl: (Az. f (a + z) — f a) holomorphic_on cball 0 r

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 252

by (intro holomorphic_intros hol0)
moreover have \z. cmod z < 1 =
cmod (deriv (Az. f (a + 2)) z) < 2 x cmod (deriv (Az. f (a + 2)) 0)
by (simp add: fz deriv_chain dist_norm le)
ultimately have §: ball 0 ((3 — 2 * sqrt 2) = r * norm (deriv (Az. f (a + 2)
—fa)0))
CAz.fla+2)—fa) “ballOr
using <0 < m by (intro Bloch_lemma_0) auto
show ?thesis
proof clarify
fix z
assume z € ?lhs
with subsetD [OF §, of x — f a] show z € ?rhs
by (force simp: fz <0 < r dist_norm deriv__chain field_ differentiable _compose)
qed
qed

proposition Bloch _unit:
assumes holf: f holomorphic_on ball a 1 and [simp]: deriv fa = 1
obtains b r where 1/12 < rand ball b r C f ‘(ball a 1)
proof —
define r :: real where r = 2/9/256
have 0 < rr < 1 by (auto simp: r_def)
define g where g z = deriv f z * of _real(r — norm(z — a)) for z
have deriv f holomorphic__on ball a 1
by (rule holomorphic__deriv [OF holf open__ball])
then have continuous_on (ball a 1) (deriv f)
using holomorphic_on__imp__continuous on by blast
then have continuous_on (cball a r) (deriv f)
by (rule continuous on__subset) (simp add: cball_subset_ball_iff <r < 1)
then have continuous_on (cball a r) g
by (simp add: g_def continuous _intros)
then have 1: compact (g ¢ cball a 1)
by (rule compact_continuous_image [OF __ compact__cball])
have 2: g “ cball a r # {}
using «r > 0» by auto
obtain p where pr: p € cball a r
and pge: A\y. y € cball a r = norm (g y) < norm (g p)
using distance_attains _sup [OF 1 2, of 0] by force
define ¢ where ¢t = (r — norm(p — a)) / 2
have norm (p — a) # r
using pge [of a] <r > 0> by (auto simp: g_def norm_mult)
then have norm (p — a) < r using pr
by (simp add: norm__minus_commute dist_norm)
then have 0 < ¢
by (simp add: t_def)
have cpt: cball p t C ball a r
using <0 < t» by (simp add: cball_subset_ball_iff dist_norm t_def field__simps)
have gen_le dfp: norm (deriv fy) = (r — norm (y — a)) / (r — norm (p — a))

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 253

< norm (deriv f p)
if y € cball a r for y
proof —
have [simp]: norm (y — a) < r
using that by (simp add: dist_norm norm_ minus__commute)
have norm (g y) < norm (g p)
using pge [OF that] by simp
then have norm (deriv f y) * abs (r — norm (y — a)) < norm (deriv f p) *
abs (r — norm (p — a))
by (simp only: dist_norm g_def norm_mult norm__of real)
with that <norm (p — a) < r> show %thesis
by (simp add: dist_norm field__split_simps)
qed
have le_norm_dfp: v / (r — norm (p — a)) < norm (deriv f p)
using gen_le_dfp [of a] <r > 0» by auto
have 1: f holomorphic_on cball p t
using cpt <r < 1> order__substl subset_ball
by (force simp: introl: holomorphic_on_subset [OF holf])
have 2: norm (deriv f z) < 2 % norm (deriv f p) if z € ball p ¢ for z
proof —
have z: z € cball a r
by (meson ball_subset__cball subsetD cpt that)
then have norm(z — a) < r
by (metis ball _subset_cball contra__subsetD cpt dist_norm mem__ball norm__minus__commute
that)
have norm (deriv f z) x (r — norm (z — a)) / (r — norm (p — a)) < norm
(deriv f p)
using gen_le dfp [OF z] by simp
with norm (z — a) < r <norm (p — a) < ™
have norm (deriv f z) < (r — norm (p — a)) / (r — norm (z — a)) * norm

(deriv f p)
by (simp add: field _simps)
also have ... < 2 % norm (deriv f p)

proof (rule mult_right _mono)
show (r — emod (p — a)) / (r — emod (2 — a)) < 2
using that <norm (p — a) < r» «<norm(z — a) < r dist_triangle3 [of z a p]
by (simp add: field_simps t_def dist_norm [symmetric))
qed auto
finally show ?thesis .
qed
have sqrt2: sqrt 2 < 2113/1494
by (rule real less_lsqrt) (auto simp: power2__eq square)
then have sq3: 0 < 8 — 2 * sqrt 2 by simp
have 1 /12 / ((83 — 2xsqrt 2) /] 2) < r
using sq3 sqrt2 by (auto simp: field _simps r_def)
also have ... < c¢mod (deriv f p) * (r — cmod (p — a))
using (norm (p — a) < le_norm_dfp by (simp add: pos_divide le_eq)
finally have 1 / 12 < cmod (deriv fp) * (r — ecmod (p — a)) * (8 — 2 * sqrt

2)/ 2)

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 254

using pos_divide_less _eq half gt _zero_iff sq3 by blast
then have xx: 1 / 12 < (3 — 2 = sqrt 2) = t * norm (deriv f p)
using sq3 by (simp add: mult.commute t_def)
have ball (f p) ((83 — 2 * sqrt 2) = t x norm (deriv f p)) C f “ball p t
by (rule Bloch_lemma [OF 1 <0 < t» 2])
also have ... C f “ball a 1
by (meson «r < 15 ball_subset__cball cpt dual _order.trans image__mono less_le__not_le
subset__ball)
finally have ball (fp) (3 — 2 * sqrt 2) = ¢t x norm (deriv f p)) C f “ball a 1 .
with xx show ?thesis
by (rule that)
qed

theorem Bloch:
assumes holf: f holomorphic_on ball a r and 0 < r
and 7" r’ < r * norm (deriv fa) / 12
obtains b where ball b ' C f “ (ball a 1)
proof (cases deriv fa = 0)
case True with r’ show ?thesis
using ball_eq empty that by fastforce
next
case Fulse
define C where C = deriv f a
have 0 < norm C using False by (simp add: C_def)
have dfa: f field_ differentiable at a
using <0 < r holomorphic_on_imp__ differentiable_at [OF holf] by auto
have fo: (A\z. f (a + of _real r x 2)) = fo (Az. (a + of _real v * 2))
by (simp add: o_def)
have holf”: f holomorphic_on (Az. a + complex_of real r x z) ‘ ball 0 1
using «0 < r» holomorphic_on__subset [OF holf] by (force simp: dist_norm
norm__mult)
have 1: (A\z. f (a + 7 * 2) / (C * 1)) holomorphic_on ball 0 1
using <0 < r <0 < norm C)
by (intro holomorphic_intros holomorphic__on__compose holf’; simp add: fo)+
have ((Az. f (a + of real r * z) / (C * of real r)) has_field_derivative
(deriv f (a + of _real v % z) / C)) (at 2)
if norm z < 1 for z
proof —
have fd: f field differentiable at (a + complex_of real r x 2)
using <0 < r by (simp__all add: dist_norm norm__mult holomorphic__on__imp_ differentiable_at
[OF holf] that)
have *: ((Az. f (a + of _real r x x)) has_field _derivative
(deriv f (a + of _real v * z) x of _real r)) (at z)
by (rule fd DERIV _chain [OF field__differentiable _derivI|derivative__eq intros
| simp add: fo)+
show ?thesis
apply (rule derivative__eq intros | simp)+
using <0 < r by (auto simp: C_def False)
qed

Conformal{_}{\kern 0pt}Mappings.html

Conformal Mappings.thy 255

obtain f’ where (f has_field derivative f') (at a)
using dfa field differentiable_def by blast
then have Jc. ((Ac. f (a + complex_of real r * ¢)) has_field derivative c) (at
0)
by (metis (no__types) DERIV__chain2 add__cancel_left_right field_differentiable__add__const

field__differentiable _def field_ differentiable linear mult _eq 0 _iff)
then have (Aw. f (a + complex_of real r x w)) field_differentiable at 0
by (simp add: field_ differentiable_def)
then have deriv (Az. f (a + of real r z) / (C * of real r)) 0
= deriv (Az. f (a + of _real T * 2)) 0 / (C * of _real 1)
by (rule deriv__cdivide _right)
also have ... = I
using <0 < m by (simp add: C_def False fo derivative_intros dfa deriv_chain)
finally have 2: deriv (Az. f (a + of _real r x z) /| (C % of _real r)) 0 = 1 .
have sb1: (x) (C x 1) ‘(Mz. f (a + of _real v % z) / (C * 1)) “ball 0 1
Cfiballar
using <0 < m by (auto simp: dist_norm norm__mult C_def False)
have $b2: ball (C x v+ b) r' C (x) (C x 1) “ball bt
if1/12 <tforbt
proof —
have x: r x cmod (deriv fa) / 12 < r % (t * cmod (deriv f a))
using that <0 < 1 less_eq _real__def mult.commute mult.right__neutral mult_left _mono
norm__ge_ zero times__divide _eq right
by auto
show ?thesis
apply clarify
apply (rule_tac z=x / (C * r) in image__eql)
using <0 < ™ apply (simp_all add: dist_norm norm__mult norm__divide
C_def False field_simps)
using * r’ by linarith
qed
show ?thesis
apply (rule Bloch_unit [OF 1 2])
using image__mono sbl sb2 that by fastforce
qed

corollary Bloch__general:
assumes holf: f holomorphic_on S and a € S
and tle: \z. z € frontier S = t < dist a 2z
and rle: r < t x norm(deriv fa) / 12
obtains b where ballbr C f ‘S
proof —
consider r < 0 | 0 < t *x norm(deriv f a) / 12 using rle by force
then show ?thesis
proof cases
case 1 then show ?thesis
by (simp add: ball_empty that)
next

Conformal{_}{\kern 0pt}Mappings.html

Great__ Picard.thy 256

case 2
show ?thesis
proof (cases deriv fa = 0)
case True then show ?thesis
using rle by (simp add: ball _empty that)
next
case Fulse
then have t > 0
using 2 by (force simp: zero__less__mult_iff)
have = ball a t C S = ball a t N frontier S # {}
by (metis Diff _eq _empty iff <0 < t» <a € Sy closure_Int_ball_not_empty
closure__subset connected__Int_frontier connected__ball inf.commute)
with tle have *: ball a t C S by fastforce
then have 1: f holomorphic_on ball a t
using holf using holomorphic_on__subset by blast
show ?thesis
using Bloch [OF 1 <t > 0y rle] x by (metis image_mono order_trans that)
qed
qed
qed

end

6 The Great Picard Theorem and its Applications

Ported from HOL Light (cauchy.ml) by L C Paulson, 2017

theory Great Picard
imports Conformal_Mappings
begin

6.1 Schottky’s theorem

lemma Schottky lemma0:
assumes holf: f holomorphic_on S and cons: contractible S and a € §
and f: N\z.z€ S = fz# 1 Nfz#—1
obtains g where g holomorphic_on S
norm(g a) < 1 + norm(fa) / 3
Nz. 2z € S = fz = cos(of _real pi x g 2)
proof —
obtain g where holg: g holomorphic_on S and g¢: norm(g a) < pi + norm(f a)
and f _eq cos: N\z. z € S = [z = cos(g 2)
using contractible__imp__holomorphic__arccos_bounded [OF assms)
by blast
show ?thesis
proof
show (\z. g z / pi) holomorphic_on S
by (auto intro: holomorphic_intros holg)
have & < pi

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 257

using pi_approx by force
have 3 * norm(g a) < 3 * (pi + norm(f a))
using g by auto
also have ... < pi* & + pi x cmod (f a)
using <3 < pi» by (simp add: mult_right_mono algebra__simps)
finally show cmod (g a / complex_of real pi) < 1 + cmod (fa) / 3
by (simp add: field simps norm__divide)
show A\z. z € S = f 2z = cos (complex_of real pi * (g z / complex_of real

pi))
by (simp add: f_eq_cos)
qed
qed

lemma Schottky lemmal:

fixes n::nat

assumes (0 < n

shows 0 < n + sqrt(realn ~ 2 — 1)
proof —

have 0 < nxn

by (simp add: assms)

then show ?thesis

by (metis add.commute add.right _neutral add_pos _nonneg assms diff _ge_ 0_iff ge
nat_less real le of nat 0 of nat_0 less iff of nat_power power2 eq square
real_sqrt_ge_0_iff)
qged

lemma Schottky lemma2:
fixes x::real
assumes (0 < zx
obtains n where 0 < n |z — In (real n + sqrt ((real n)?> — 1)) / pi| < 1/2
proof —
obtain n0::nat where 0 < n0 In(n0 + sqrt(real n0 ~ 2 — 1)) / pi < x
proof
show In(real 1 + sqrt(real 1 ~2 — 1))/pi < z
by (auto simp: assms)
qed auto
moreover
obtain M::nat where An. [0 < n; In(n + sqrt(realn ~2 — 1)) / pi < z] =
n<M
proof
fix n:nat
assume 0 < nln (n + sqrt ((real n)?> — 1)) / pi <z
then have In (n + sqrt ((real n)?> — 1)) < x * pi
by (simp add: field split _simps)
then have *: exp (In (n + sqrt ((real n)? — 1))) < exp (z * pi)
by blast
have 0: 0 < sqrt ((real n)> — 1)

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 258

using <0 < n» by auto

have n + sqrt ((real n)?> — 1) = exp (In (n + sqrt ((real n)? — 1)))
by (simp add: Suc_lel <0 < n) add_pos _nonneg real_of nat_ge one_iff)
also have ... < exp (z * pi)

using * by blast
finally have real n < exp (z * pi)
using 0 by linarith
then show n < nat (ceiling (ezp(z * pi)))
by linarith
qged
ultimately obtain n where
0 < nandle_z:In(n + sqrt(realn 2 — 1)) /pi <z
and le_n: Ak. [0 < k; In(k + sqri(real k =2 — 1)) [pi < z] =k

IN

n
using bounded__Maz_nat [of An. 0<n A In (n + sqrt ((real n)> — 1)) / pi <
z] by metis
define a where a = In(n + sqrt(realn =2 — 1)) / pi
define b where b = In (1 + real n + sqrt ((1 + real n)?> — 1)) / pi
have le_za: a < x
and le_na: Ak. [0 < k; In(k + sqrt(real k ~2 — 1)) /pi<z] = k<n
using le_z le_n by (auto simp: a__def)
moreover have z < b
using le_n [of Suc n] by (force simp: b__def)
moreover have b — a < I
proof —

have In (1 + real n + sqrt ((1 + real n)? — 1)) — In (real n + sqrt ((real n)?
1) =

In (1 + real n + sqrt (1 + real n)?> — 1)) / (real n + sqrt ((real n)* —
1)))

by (simp add: <0 < n» Schottky_lemmal add_pos_nonneg In_ divide_pos
[symmetric])

also have ... < 3
proof (casesn = 1)
case True
have sqrt 3 < 2
by (simp add: real_le_lsqrt)
then have (2 + sqrt 3) < 4
by simp
also have ... < exp 3
using exp_ge add_one_self [of 3::real] by simp
finally have in (2 + sqrt 3) < 8
by (metis add_nonneg_nonneg add_pos_nonneg dbl_def dbl_inc_def
dbl_inc__simps(3)
dbl_simps(3) exp_gt_zero In__exp In_le_cancel iff real sqrt_ge 0_iff
zero_le one zero_less_one)
then show ?thesis
by (simp add: True)
next
case Fualse with <0 < n» have 1 <n 2 <n

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 259

by linarith+
then have 1: 1 < real n * real n
by (metis less_imp_le_nat one_le__power power2 _eq square real _of nat_ge one_iff)
have x: 4 + (m+2) * 2 < (m+2) * ((m+2) * &) for m::nat
by simp
have / + n* 2 < nx*(nx 3)
using * [of n—2] 2 < m»
by (metis le__add_diff inverse2)
then have sx: 4 + real n x 2 < real n * (real n * 3)
by (metis (mono__tags, opaque_lifting) of _nat_le_iff of nat_add of _nat_mult
of _nat_numeral)
have sqrt ((1 + real n)? — 1) < 2 x sqrt ((real n)> — 1)
by (auto simp: real le_lsqrt power2 _eq square algebra__simps 1 %x)
then
have ((1 + real n + sqrt (1 + real n)?> — 1)) / (real n + sqrt ((real n)? —
1) < 2
using Schottky lemmal <0 < ny by (simp add: field_split_simps)
then have in ((1 + real n + sqrt ((1 + real n)> — 1)) / (real n + sqrt ((real
n)? — 1)) <in2
using Schottky_lemmal [of n] <0 < n»
by (simp add: field split_simps add__pos_nonneg)
also have ... < 3
using In_add_one_self le_self [of 1] by auto
finally show ?thesis .
qed
also have ... < pi
using pi_approz by simp
finally show ?thesis
by (simp add: a_def b_def field_split_simps)
qed
ultimately have |z — a| < 1/2 V |z — b < 1/2
by (auto simp: abs__if)
then show thesis
proof
assume |z — a| < 1/2
then show ?thesis
by (rule_tac n=n in that) (auto simp: a_def <0 < n»)
next
assume |z — b| < 1/2
then show ?thesis
by (rule_tac n=Suc n in that) (auto simp: b_def <0 < n»)
qed
qged

lemma Schottky lemma3:
fixes z::complex
assumes z € ((Jm € Ints. Un € {0<..}. {Complex m (In(n + sqrt(real n ~ 2

= 1))/ pi)})

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 260

UUm € Ints. Un € {0<..}. {Complex m (—In(n + sqrt(real n ~ 2 —
1) / p)})
shows cos(pi * cos(pi * z)) = 1 V cos(pi * cos(pi * z)) = —1
proof —
have sqrt2 [simp]: complex__of real (sqrt x) x complex_of real (sqrt x) = z if =
> 0 for xz::real
by (metis abs_of nonneg of real mult real__sqrt_mult__self that)
define plusi where plusi (e::complex) = e + inverse e for e
have 1: 3k. plusi (exp (i * (of _int m x complex_of real pi) — In (real n + sqrt
((real n)? — 1)))) = of _int k * 2
(is k. 2D k)
if n > 0 for m n
proof —
have eeq: e # 0 = plusi e = n +— (inversee) ~2 =n/e — 1 for n e::complex
by (auto simp: plusi_def field _simps power2_eq square)
have [simp]: 1 < real n * real n
using nat_ 0 less _mult_iff nat_less real le that by force
consider odd m | even m
by blast
then have k. 70 k
proof cases
case [
then have ?® (— n)
using Schottky_lemmal [OF that]
by (simp add: eeq) (simp add: power2_ eq square exp_diff exp_FEuler
exp_of real algebra__simps sin_int_times_real cos_int_times_real)
then show ?thesis ..
next
case 2
then have 70 n
using Schottky_lemmal [OF that]
by (simp add: eeq) (simp add: power2_eq square exp diff exp Euler
exp_of _real algebra__simps)
then show ?thesis ..
qed
then show ?thesis by blast
qged
have 2: 3k. plusi (exp (i x (of _int m x complex_of real pi) +
(In (real n + sqrt ((real n)? — 1))))) = of int k x 2
(is 3k. 2D k)
if n > 0 for m n
proof —
have eeq: e # 0 = plusie = n +— e 2 — nxe + 1 = 0 for n e::complex
by (auto simp: plusi_def field _simps power2__eq square)
have [simp]: 1 < real n x real n
by (metis One_nat_def add.commute nat_less _real_le of nat_1 of nat_Suc
one__le__power power2__eq square that)
consider odd m | even m
by blast

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 261

then have k. 70 k
proof cases
case [
then have ?® (— n)
using Schottky_lemmal [OF that]
by (simp add: eeq) (simp add: power2 eq square exp_add exp_ Euler
exp_of _real algebra__simps sin_int_times_real cos_int_times_real)
then show ?thesis ..
next
case 2
then have 70 n
using Schottky_lemmal [OF that]
by (simp add: eeq) (simp add: power2 eq square exp_add exp_ Euler
exp_of _real algebra__simps)
then show ?thesis ..
qed
then show ?thesis by blast
qed
have Jz. cos (complex_of real pi x z) = of int x
using assms
apply (auto simp: Ints_def cos_exp_eq exp_minus Complex_eq simp flip:
plusi__def)
apply (auto simp: algebra__simps dest: 1 2)
done
then have sin(pi * cos(pi x z)) 2 =10
by (simp add: Complex_Transcendental.sin_eq 0)
then have 1 — cos(pi * cos(pi x 2)) ~ 2 =0
by (simp add: sin__squared__eq)
then show ?thesis
using power2 _eq 1 _iff by auto
qed

theorem Schottky:
assumes holf: f holomorphic__on cball 0 1
and nof0: norm(f 0) < r
and not01: Nz. z € cball 01 = ~(fz=0V fz=1)
and 0 < tt< Inormz <t
shows norm(f z) < exp(pi * exp(pi x (2 + 2 xr 4+ 12 xt /(1 — t))))
proof —
obtain h where holf: h holomorphic__on cball 0 1
and nh0: norm (h 0) < 1 + norm(2 xf0 — 1)/ 3
and h: Az .z € cball 01 = 2 x fz — 1 = cos(of_real pi * h z)
proof (rule Schottky lemma0 [of Az. 2 x fz — 1 cball 0 1 0]
show (Az. 2 = fz — 1) holomorphic_on cball 0 1
by (intro holomorphic_intros holf)
show contractible (cball (0::complex) 1)
by (auto simp: convex__imp__contractible)
show A\z.z€ ¢ball 01 = 2xfz—1#1AN2xfz—1#—1

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 262

using not01 by force
qged auto
obtain g where holg: g holomorphic__on cball 0 1
and ng0: norm(g 0) < 1 + norm(h 0) / 3
and ¢: Az z € cball 0 1 = h z = cos(of _real pi * g z)
proof (rule Schottky lemma0 [OF holf convex_imp contractible, of 0])
show Az. z€ cball 01 = hz# 1 Nhz+# — 1
using h not01 by fastforce+
qed auto
have g0_2_f0: norm(g 0) < 2 4+ norm(f 0)
proof —
have cmod (2 x f0 — 1) < c¢cmod (2 % f0) + 1
by (metis norm__one norm__triangle_ineq})
also have ... < 6 + 9 * cmod (f 0)
by auto
finally have 1 + norm(2 x f0 — 1) / 8 < (2 4+ norm(f0) — 1) x 3
by (simp add: divide _simps)
with nh0 have norm(h 0) < (2 + norm(f0) — 1) = 3
by linarith
then have 1 + norm(h 0) / 3 < 2 + norm(f 0)
by simp
with ng0 show ?thesis
by auto
qed
have z € ball 0 1
using assms by auto
have norm_g _12: norm(gz — g 0) < (12 % t) / (1 — t)
proof —
obtain g’ where ¢: Az. z € cball 0 1 = (g has_field_ derivative g’ z) (at x
within cball 0 1)
using holg [unfolded holomorphic_on__def field_differentiable_def] by metis
have int_g" (g’ has_contour_integral g z — g 0) (linepath 0 2)
using contour_integral__primitive [OF ¢’ valid_path_linepath, of 0 2]
using <z € ball 0 1> segment__boundl by fastforce
have cmod (¢’ w) < 12 / (1 — t) if w € closed_segment 0 z for w
proof —
have w: w € ball 0 1
using segment__bound [OF that] <z € ball 0 15 by simp
have *«: [Ab. Gwe TUU. weballb1); N\e. c€ D= gz ¢ T U UJ
:>§9b. ballb1 C g ‘D for TUD
by force
have ttt: 1 — ¢t < dist w v if emod v = 1 for u
using «norm z < t» segment_boundl [OF <«w € closed_segment 0 2]
norm__triangle__ineq?2 [of u w] that
by (simp add: dist _norm norm__minus__commute)
have 3. ball b 1 C g ‘chball 01
proof (rule x)
show (Jw € (Um € Ints. Un € {0<..}. {Complex m (In(n + sqrt(real n

T2-1)/pi)h) v

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 263

(Um € Ints. Un € {0<..}. {Complex m (—In(n + sqrt(real n ~ 2
— 1))/ pi)}). weballb 1) for b
proof —
obtain m where m: m € Z |Re b — m| < 1/2
by (metis Ints_of _int abs_minus_commute of _int_round_abs__le)
show ?thesis
proof (cases 0::real Im b rule: le_cases)
case le
then obtain n where 0 < n and n: [Im b — In (n + sqrt ((real n)? —
1) / pil < 1/2
using Schottky_lemma2 [of Im b] by blast
have dist b (Complex m (Im b)) < 1/2
by (metis cancel _comm__monoid_add_class.diff cancel cmod_eq Re
complex.sel(1) complex.sel(2) dist_norm m(2) minus__complex.code)
moreover
have dist (Complex m (Im b)) (Complex m (In (n + sqrt ((real n)? —
1)/ i) < 1/2
using n by (simp add: complex_norm cmod_eq Re complex_ diff
dist_norm del: Complex__eq)
ultimately have dist b (Complex m (In (real n + sqrt ((real n)? — 1))
/ pi)) < 1
by (simp add: dist_triangle It [of b Complex m (Im b)] dist_commute)
with le m <0 < n> show ?thesis
apply (rule_tac x = Complex m (In (real n + sqrt ((real n)?> — 1)) /
pi) in bexl)
by (force simp del: Complex__eq greaterThan_0)+
next
case ge
then obtain n where 0 < n and n: |- Im b — In (real n + sqrt ((real
w2 = 1) / pil < 1/2
using Schottky_lemma2 [of — Im b] by auto
have dist b (Complex m (Im b)) < 1/2
by (metis cancel _comm__monoid__add_class.diff _cancel cmod_eq Re
complex.sel(1) complex.sel(2) dist_norm m(2) minus_complez.code)
moreover
have dist (Complez m (— In (n + sqrt ((real n)*> — 1)) / pi)) (Complex
m (Im b))
=|—1Imb— In (real n + sqrt ((real n)?> — 1)) / pi
by (simp add: complez_norm dist_norm cmod__eq Re complez_diff)
ultimately have dist b (Complez m (— In (real n + sqrt ((real n)* —
1)) / pi)) < 1
using n by (simp add: dist_triangle_lIt [of b Complex m (Im b)]
dist_commute)
with ge m <0 < n) show ?thesis
by (rule_tac x = Complex m (— In (real n + sqrt ((real n)? — 1)) /
pi) in bexl) auto
qed
qged
show gv ¢ (Um € Ints. |n € {0<..}. {Complex m (In(n + sqrt(real n ~

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 264

2 - 1))/ pi)}) U
(Um € Ints. Un € {0<..}. {Complex m (—In(n + sqrt(real n ~ 2
— 1))/ pi)})

if v € cball 0 1 for v
using not01 [OF that]
by (force simp: g [OF that, symmetric] h [OF that, symmetric] dest!:
Schottky_lemma3 [of g v])
qed
then have 12: (1 — t) x cmod (deriv g w) / 12 < 1
using Bloch__general [OF holg __ ttt, of 1] w by force
have g field_differentiable at w within cball 0 1
using holg w by (simp add: holomorphic__on__def)
then have g field differentiable at w within ball 0 1
using ball _subset__cball field differentiable _within__subset by blast
with w have der_gw: (g has_field_derivative deriv g w) (at w)
by (simp add: field_differentiable_within__open [of __ ball 0 1] field__differentiable__derivI)
with DERIV__unique [OF der_gw| ¢’ w have deriv g w = ¢’ w
by (metis open__ball at_within__open ball _subset cball has_ field_ derivative subset
subsetCE)
then show cmod (¢’ w) < 12 / (1 — ¥)
using g’ 12 «t < 1» by (simp add: field__simps)
qed
then have cmod (g z — g 0) < 12 / (1 — t) * cmod 2z
using has__contour_integral _bound_linepath [OF int_g', of 12/(1 — t)] assms
by simp
with «cmod z <) <t < 1> show ?thesis
by (simp add: field split_simps)
qed
have fz: f 2 = (1 + cos(of _real pi x h 2)) / 2
using h <z € ball 0 1> by (auto simp: field_simps)
have cmod (f z) < exp (cmod (complex_of real pi * h z))
by (simp add: fz mult.commute norm__cos_plusl_le)
also have ... < exp (pi x exp (pi *x (2 + 2+ r+ 12 %t/ (1 — t))))
proof (simp add: norm__mult)
have cmod (92 — g 0) < 12t/ (1 — t)
using norm_g_12 <t < 1» by (simp add: norm_mult)
then have cmod (g z) — cmod (g 0) < 12 %t/ (1 — t)
using norm__triangle ineq2 order_trans by blast
then have : ¢cmod (g2) < 2+ 2x*r+ 12t/ (1 —t)
using g0_2_f0 norm__ge_zero [of f 0] nof0
by linarith
have cmod (h z) < exp (¢cmod (complex_of real pi * g z))
using <z € ball 0 1) by (simp add: g norm__cos_le)
also have ... < exp (pi*x (2 + 2% r+ 12 xt/ (1 — t)))
using <t < 1) nof0 x by (simp add: norm_mult)
finally show cmod (hz2) < exp (pi* (2 + 27+ 12t/ (1 —t))).
qed
finally show ?thesis .
qed

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 265

6.2 The Little Picard Theorem

theorem Landau Picard:
obtains R
where Az. 0 < R 2
NS- [f holomorphic_on cball 0 (R(f 0));
Nz. norm 2z < R(f0) = fz# 0 N fz# 1] = norm(deriv f 0)
< 1
proof —
define R where R = Az. 8 x exp(pi * exp(pix(2 + 2 % cmod z + 12)))
show ?thesis
proof
show Rpos: Az. 0 < R z
by (auto simp: R__def)
show norm(deriv f 0) < 1
if holf: f holomorphic_on cball 0 (R(f 0))
and Rf: Az.norm 2z < R(f0) = fz# 0N fz+# 1 for f
proof —
let r = R(f 0)
define g where g = f o (Az. of _real ?r * 2)
have 0 < ?r
using Rpos by blast
have holg: g holomorphic_on cball 0 1
unfolding ¢ def
proof (intro holomorphic_intros holomorphic__on__compose holomorphic__on__subset
[OF holf])
show (x) (complex_of real (R (f 0))) ‘ cball 0 1 C cball 0 (R (f 0))
using Rpos by (auto simp: less_imp__le norm__mult)
qed
have *: norm(g z) < exp(pi x exp(pi x (2 + 2 x norm (f 0) + 12 = ¢ / (1
— 1))
if0<tt< 1normz<tfortz
proof (rule Schottky [OF holg])
show cmod (g 0) < cmod (f 0)
by (simp add: g_ def)
show NAz.z€chall 01 = - (9gz2=0V gz=1)
using Rpos by (simp add: g_def less_imp__le norm_mult Rf)
qed (auto simp: that)
have C1: g holomorphic_on ball 0 (1/2)
by (rule holomorphic_on__subset [OF holg]) auto
have C2: continuous_on (cball 0 (1/2)) g
by (meson cball _divide _subset__numeral holg holomorphic__on__imp__continuous__on
holomorphic__on__subset)
have C3: cmod (g z) < R (f0) / 3 if cmod (0 — z) = 1/2 for z
proof —
have norm(g z) < exp(pi * exp(pi *x (2 + 2 * norm (f 0) + 12)))
using * [of 1/2] that by simp
also have ... = 2r / 3
by (simp add: R__def)
finally show ?thesis .

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 266

qed
then have cmod_g’ _le: emod (deriv g 0) * 3 < R (f0) % 2
using Cauchy__inequality [OF C1 C2 __ C3, of 1] by simp
have holf": f holomorphic_on ball 0 (R(f 0))
by (rule holomorphic__on__subset [OF holf]) auto
then have fd0: f field__differentiable at 0
by (rule holomorphic_on__imp_ differentiable _at [OF __ open_ ball])
(auto simp: Rpos [of f 0])
have g eq: deriv g 0 = of real ?r x deriv f 0
unfolding g def
by (metis DERIV__imp__deriv DERIV _chain DERIV _cmult_Id fd0 field_ differentiable _derivl
mult.commute mult__zero__right)
show ?thesis
using cmod_g’_le Rpos [of f 0] by (simp add: g_eq norm_mult)
qed
qged
qed

lemma little Picard 01:
assumes holf: f holomorphic_on UNIV and f01: Nz. fz# 0 N fz # 1
obtains ¢ where f = (\z. ¢)
proof —
obtain R
where Rpos: N\z. 0 < R z
and R: Ah. [h holomorphic_on cball 0 (R(h 0));
Nz. norm z < R(h0) = h z# 0 N h z # 1] = norm(deriv
h0)<1
using Landau__Picard by metis
have contf: continuous_on UNIV f
by (simp add: holf holomorphic_on_imp__continuous_on)
show ?thesis
proof (cases V. deriv fz = 0)
case True
have (f has_field_derivative 0) (at z) for z
by (metis True UNIV_I holf holomorphic__derivl open_UNIV)
then obtain ¢ where Az. f(z) = ¢
by (meson UNIV_I DERIV_zero__connected__constant [OF connected_ UNIV
open__UNIV finite.emptyl contf])
then show ?thesis
using that by auto
next
case Fulse
then obtain w where w: deriv f w # 0 by auto
define fw where fw = (f o (A\z. w + z / deriv f w))
have norm_letl: norm(deriv fw 0) < 1
proof (rule R)
show fw holomorphic_on cball 0 (R (fw 0))
unfolding fu_def

by (intro holomorphic__intros holomorphic__on__compose w holomorphic__on__subset

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 267

[OF holf] subset_UNIV)
show fw z # 0 N fw z # 1 if emod 2 < R (fw 0) for z
using f01 by (simp add: fw_def)
qed
have (fw has_field_derivative deriv f w * inverse (deriv f w)) (at 0)
unfolding fw_ def
apply (intro DERIV__chain derivative _eq intros w)+
using holf holomorphic__derivl by (force simp: field__simps)+
then show ?thesis
using norm__let! w by (simp add: DERIV__imp__deriv)
qed
qed

theorem little Picard:
assumes holf: f holomorphic_on UNIV
and a # b range f N {a,b} = {}
obtains ¢ where f = (A\z. ¢)
proof —
let 2g = Az. 1/(b — a)x(fz — b) + 1
obtain ¢ where ?g = (A\z. ¢)
proof (rule little Picard_01)
show ?g holomorphic_on UNIV
by (intro holomorphic_intros holf)
show Nz. gz £ 0N %92 +# 1
using assms by (auto simp: field__simps)
qed auto
then have ?g z = ¢ for =
by meson
then have fz = ¢ % (b—a) + a for z
using assms by (auto simp: field__simps)
then show ?thesis
using that by blast
qed

A couple of little applications of Little Picard

lemma holomorphic_periodic__fizpoint:
assumes holf: f holomorphic_on UNIV
and p # 0 and per: \z. f(z + p) = [z
obtains z where fz =z
proof —
have Fualse if non: N\z. fz # z
proof —
obtain ¢ where (A\z. fz — 2z) = (\z. ¢)
proof (rule little_Picard)
show (Az. f z — z) holomorphic_on UNIV
by (simp add: holf holomorphic__on__diff)
show range (A\z. fz — z) N {p,0} = {}
using assms non by auto (metis add.commute diff _eq eq)

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 268

qged (auto simp: assms)
with per show Fulse
by (metis add.commute add__cancel _left _left <p # 0 diff _add__cancel)
qed
then show ?%thesis
using that by blast
qed

lemma holomorphic__involution__point:
assumes holfU: f holomorphic_on UNIV and non: Na. f # (Az. a + z)
obtains = where f(fz) =z
proof —
{ assume non_ff [simp]: \z. f(fz) # z
then have non_ fp [simp]: f z # z for 2z
by metis
have holf: f holomorphic_on X for X
using assms holomorphic__on__subset by blast
obtain ¢ where ¢: (\z. (f(fz) — 2)/(fz — z)) = (A\z. ¢)
proof (rule little_Picard_01)
show (Az. (f(fz) — z)/(fz — x)) holomorphic_on UNIV
using non_ fp
by (intro holomorphic__intros holf holomorphic__on__compose [unfolded o__def,
OF holf)) auto
qed auto
then obtain ¢ # 0 ¢ # 1
by (metis (no__types, opaque__lifting) non__ff diff _zero divide _eq 0_iff right__inverse__eq)
have eq: f(fz) — ¢ x fz = ax(1 — ¢) for
using fun_cong [OF ¢, of z] by (simp add: field__simps)
have df times dff: deriv f z x (deriv f (fz) — ¢) =1 % (I — ¢) for z
proof (rule DERIV__unique)
show ((Az. f (fz) — ¢ x fz) has_field derivative
deriv f z * (deriv f (f 2) — ¢)) (at 2)
by (rule derivative__eq intros holomorphic_derivl [OF holfU)|
DERIV__chain [unfolded o_def, where f=f and g=f] | simp add:
algebra__simps)+
show ((Az. f (fz) — ¢ x fx) has_field _derivative 1 * (1 — ¢)) (at 2)
by (simp add: eq mult _commute _abs)
qed
{ fix z::complex
obtain k£ where k: deriv f o f = (Az. k)
proof (rule little_Picard)
show (deriv f o f) holomorphic_on UNIV
by (meson holfU holomorphic__deriv holomorphic__on__compose holomor-
phic_on__subset open_ UNIV subset_ UNIV)
obtain deriv f (fz) # 0 deriv f (fz) # ¢ for z
using df times dff <c # 1y eq iff diff eq 0
by (metis lambda__one mult_zero_ left mult_zero__right)
then show range (deriv f o f) N {0,c} = {}

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 269

by force
qed (use <¢ # 0> in auto)
have — f constant_on UNIV
by (meson UNIV_I non__ff constant_on__def)
with holf open_mapping_thm have open(range f)
by blast
obtain [where I: Az. fo — kxxz =1
proof (rule DERIV_ zero__connected_constant [of UNIV {} Az. fx — k x],
simp__all)
have deriv fw — k = 0 for w
proof (rule analytic_continuation [OF __ open_UNIV connected_UNIV
subset_UNIV, of Az. deriv f z — k f z range f w])
show (Az. deriv f z — k) holomorphic_on UNIV
by (intro holomorphic__intros holf open_UNIV)
show f z islimpt range f
by (metis (no__types, lifting) Intl UNIV_I <open (range f)» im-
age__eql inf.absorb_iff2 inf aci(1) islimpt_UNIV islimpt_eq acc__point open_ Int
top__greatest)
show Az. z € range f = derivfz — k=0
by (metis comp__def diff _self image__iff k)
ged auto
moreover
have ((Az. fz — k x z) has_field derivative deriv f x — k) (at z) for z
by (metis DERIV__cmult_Id Deriv.field_ differentiable diff UNIV_I
field__differentiable_derivl holf holomorphic__on__def)
ultimately
show Vz. (Ax. fx — k * z) has_field_derivative 0) (at x)
by auto
show continuous_on UNIV (Az. fz — k * z)
by (simp add: continuous _on__diff holf holomorphic__on__imp__continuous__on)
qged (auto simp: connected_UNIV)
have Fulse
proof (cases k=1)
case True
then have dz. k x 2 + [# a 4+ z for a
using [non [of a] ext [of f (+) d]
by (metis add.commute diff _eq eq)
with True show ?thesis by auto
next
case Fulse
have Az. (1 — k) xz £ f0
using [[of 0]
by (simp add: algebra__simps) (metis diff _add__cancel | mult.commute
non_fp)
then show Fulse
by (metis False eq iff _diff eq 0 mult.commute nonzero__mult_div__cancel _right
times__divide__eq_right)
qed
}

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 270

}

then show thesis
using that by blast
qed

6.3 The Arzela—Ascoli theorem

lemma subsequence__diagonalization_ lemma:
fixes P :: nat = (nat = ’a) = bool
assumes sub: A\i r. k. strict_mono (k :: nat = nat) A P i (r o k)
and P_P: Air:nat = 'a. Nk1 k2 N.
[Pi(roki); NjuN<j=3j.j<i' Ak2j=kij]=>Pil(r
o k2)
obtains k where strict_mono (k :: nat = nat) N\i. Pi (r o k)
proof —
obtain kk where Ai r. strict_mono (kk i r :: nat = nat) A P i (r o (kkir))
using sub by metis
then have sub_kk: Ai r. strict_mono (kk i r) and P_kk: Nir. Pi (r o (kk i
r))
by auto
define r where rr = rec_nat (kk 0 1) (An z. z o kk (Suc n) (r o z))
then have [simp]: r 0 = kk 0 r An. rr(Suc n) = rrn o kk (Suc n) (r o rrn)
by auto
show thesis
proof
have sub_rr: strict_mono (rr i) for i
using sub_kk by (induction i) (auto simp: strict_mono__def o_def)
have P_rr: Pi (r o rri) for i
using P_kk by (induction i) (auto simp: o_def)
have { < i+d = rmin < rr (i+d) nfor din
proof (induction d)
case () then show ?case
by simp
next
case (Suc d) then show Zcase
using seq suble [OF sub_kk| strict_mono_less_eq [OF sub_rr]
by (simp add: order _substl)
qed
then have A\ijn. i <j= rrin<rrjn
by (metis le_iff _add)
show strict_mono (An. rr n n)
unfolding strict_mono_ Suc_iff
by (simp add: Suc_le_lessD strict_monoD strict _mono_imp _increasing
sub__kk sub_rr)
have 3j. i <jArr (n+d) i=rrnjfordni
proof (induction d arbitrary: i)
case (Suc d)
then show ?case
using seq suble [OF sub_kk] by simp (meson order_trans)

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 271

qed auto
then have Amnin<m=—3ji<jAmrmi=rrnj
by (metis le_iff add)
then show P i (r o (An. rr n n)) for ¢
by (meson P_rr P_P)
qed
qed

lemma function__convergent_ subsequence:
fixes f :: [nat,’a] = 'b::{real _normed_vector,heine__borel}
assumes countable S and M: An:nat. Nz. z € S = norm(fnz) < M
obtains k where strict_mono (k:nat=nat) Az. z € S = 3. (An. f (kn) z)
—
proof (cases S = {})
case True
then show ?thesis
using strict_mono__id that by fastforce
next
case Fulse
with (countable Sy obtain o :: nat = 'a where o: S = range o
using uncountable_def by blast
obtain k& where strict_mono k and k: Ai. 3. (An. (fo k) n (0 i) —— 1
proof (rule subsequence _diagonalization_lemma
[of Mir. 3L ((An. (f or) n (o i) —— 1) sequentially id))
show 3 k::nat=-nat. strict_mono k A (3. (An. (fo (rok)) n (o i) —— 1)
for i r
proof —
have f (rn) (o i) € cball 0 M for n
by (simp add: o M)
then show ?thesis
using compact__def [of cball (0::'b) M] by (force simp: o__def)
qed
show 3. (An. (fo(rok2) n(oci) ——1
if 3l (An. (fo(rokl)n(oi) —— INj. N<j=— 3Fj>j k2j=Fk1j
for ¢« N and r kI k2 :: nat=nat
using that
by (simp add: lim__sequentially) (metis (no_types, opaque_lifting) le_ cases
order_trans)
qged auto
with o that show ?Zthesis
by force
qged

theorem Arzela Ascoli:
fixes F :: [nat,’a::euclidean__space] = 'b::{real _normed_vector,heine_borel}
assumes compact S
and M: Anz. z € S = norm(F nz) < M
and equicont:

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 272

Nre Jres;0<e]
= 3d. 0 <dAN{¥ny. yeSAnorm(z —y) <d— norm(F n
z—Fny) <e)
obtains g k where continuous_on S g strict_mono (k :: nat = nat)
Ne. 0 <e= 3IN.Vnaz.n>NAzeS— norm(Flkn)z —
gz)<e
proof —
have UEQ: \e. 0 < e = 3d. 0 < d AN (Vn. Vz e S.Va' € S. distz' z <d
— dist (Fnz') (Fnz) <e)
apply (rule compact_uniformly_equicontinuous [OF <compact S», of range F))
using equicont by (force simp: dist_commute dist_norm)+
have continuous_on S g
if Ae. 0 <e=3IN.Vnz.n>NAzeS—norm(F(rn)z—gz)<e
for ¢g:: '/a = 'band r :: nat = nat
proof (rule uniform_ limit_theorem [of _ F o r])
have continuous_on S (F (r n)) for n
using UEQ by (force simp: continuous__on__iff)
then show Y g n in sequentially. continuous_on S ((F o r) n)
by (simp add: eventually_sequentially)
show uniform_limit S (F o r) g sequentially
using that by (metis (mono_tags, opaque_lifting) comp__apply dist_norm
uniform__limit__sequentially_iff)
qged auto
moreover
obtain R where countable R R C S and SR: S C closure R
by (metis separable that)
obtain &k where strict_mono k and k: Az. € R = 3. (An. F (k n) z)
—
using <R C S) by (force intro: function__convergent__subsequence [OF <countable
Ry M])
then have Cauchy: Cauchy ((An. F (kn) z)) if z € R for z
using convergent__eq Cauchy that by blast
have IN.Vmnaz. N<mAN<nAzeS — dist((Fok)mz)((Fok)
nz)<e
if 0 < efor e
proof —
obtain d where 0 < d
and d: An.Vz € S.Va' € S. distz’ v < d — dist (Fna') (Fnz)<e/3
by (metis UEQ <0 < e» divide_pos_pos zero_less _numeral)
obtain T where T C R and finite T and T: S C (|JceT. ball ¢ d)
proof (rule compactE__image [OF <compact S», of R (Az. ball z d)])
have closure R C (|J c€R. ball ¢ d)
using <0 < d> by (auto simp: closure__approachable)
with SR show S C (|J c€R. ball ¢ d)
by auto
qed auto
have IM.Vm>M.Vn>M. dist (F (km) z) (F (kn) z) < e/3if z € R for «
using Cauchy <0 < e> that unfolding Cauchy_ def
by (metis less_divide _eq numerall (1) mult_zero_ left)

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 273

then obtain MF where MF: Az m n. [t € R; m > MF z; n > MF z] =
norm (F (km) z — F (kn) z) < e/3
using dist_norm by metis
have dist (Fok) mz) (Fok)nz)<e
if m: Max (MF *T) < mand n: Max (MF ‘T) <nz € Sfor mnz
proof —
obtain ¢t where ¢t € T and ¢: z € ball t d
using <z € S» T by auto
have norm(F (km) t — F (km) z) <e/ 3
by (metis <R C S» «T C Ry <t € T» d dist_norm mem__ball subset_iff t «x
e)
moreover
have norm(F (kn)t — F (kn)z) <e/ 3
by (metis <R C S» «T C Ry <t € T» subsetD d dist_norm mem_ball t <z
e Sh)
moreover
have norm(F (km)t — F (kn)t) <e/ 3
proof (rule MF)
show t € R
using <7 C R) <t € T» by blast
show MFt < m MFt<n
by (meson Max_ge <finite T> <t € T» finite_imagel imagel le_trans m
n)+
qed
ultimately
show ?thesis
unfolding dist_norm [symmetric] o_def
by (metis dist_triangle third dist_commute)
qed
then show ?thesis
by force
qed
then obtain g where Ve>0. IN.Vnz. N <nAze€S — norm (Fok)n
z—gz)<e
using uniformly_convergent_eq cauchy [of Az. z € S F o k] by (auto simp
add: dist_norm)
ultimately show thesis
by (metis <strict_mono k» comp__apply that)
qed

6.3.1 Montel’s theorem

a sequence of holomorphic functions uniformly bounded on compact subsets
of an open set S has a subsequence that converges to a holomorphic function,
and converges uniformly on compact subsets of S.
theorem Montel:

fixes F :: [nat,complex] = complex

assumes open S
and H: Ah. h € H = h holomorphic_on S

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 274

and bounded: \K. [compact K; K C S] = 3B.Vhe H.V z € K. norm(h
z) < B
and rng_f: range F C H
obtains g r
where g holomorphic_on S strict_mono (r :: nat = nat)
Nz. 2 € S = ((An. F (rn) z) —— g z) sequentially
AK. [compact K; K C S| = uniform_limit K (F o r) g sequentially

proof —
obtain K where comK: An. compact(K n) and KS: An:nat. Kn C S
and subK: AX. [compact X; X C S] = IN.Vn>N. X C Kn
using open_ Union__compact__subsets [OF <open S»] by metis
then have A\i. 3B.Vhe H.V z€ K i norm(h z) < B
by (simp add: bounded)
then obtain B where B: Aih z. [h € H; z € Ki] = norm(h z) < B
by metis
have x: 3r g. strict_mono (r:nat=nat) A (Ve > 0. IN. Vn>N.Vz € K i.
norm((For)nz — gz) < e)
if An. F ne H for F i
proof —
obtain g £ where continuous_on (K i) g strict_mono (k:nat=-nat)
Ne. 0 <e= AN.Vn>N.Vz € Ki. norm(Flkn)z —gz) <e
proof (rule Arzela_Ascoli [of K i F B 1))
show 3d>0.Vny. ye€ Ki A cmod (z —y) <d— cmod (Fnz—Fn
y) <e
ifzzze Kiand 0 < efor ze
proof —
obtain r» where 0 < r and r: cball z7 C S
using z KS [of i| <open S» by (force simp: open__contains__cball)
have cball z (2/3 * r) C cball z
using <0 < r by (simp add: cball_subset__cball_iff)
then have 223S: cball z (2/3 xr) C S
using r by blast
obtain M where 0 < M and M: An w. dist zw < 2/8 * r = norm(F
nw) < M
proof —
obtain N where N: Vn>N. cball z (2/3 xr) C K n
using subK compact__cball [of z (2/3 * r)] 2235 by force
have cmod (F nw) <|BN| + 1 if dist zw < 2/3 x r for n w
proof —
have w € K N
using N mem__cball that by blast
then have cmod (F n w) < BN
using B <An. F n € H> by blast
also have ... < |B N| + 1
by simp
finally show ?thesis .
qed
then show ?thesis

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 275

by (rule_tac M=|B N| + 1 in that) auto
qged
have cmod (Fnz—Fny) <e
if ye Kiand y near_z: cmod (z — y) < r/3cmod (z — y) < ex T
/(6 M)
for n y
proof —
have ((Aw. F nw / (w — §)) has_contour_integral
(2 * pi) * i x winding_number (circlepath z (2/3 * 1)) & * F n &)
(circlepath z (2/3 * r))
if dist £ z < (2/8 * r) for
proof (rule Cauchy_integral formula__convex_simple)
have F n holomorphic_on S
by (simp add: H «An. F n € H»)
with 2235 show F n holomorphic_on cball z (2/3 * r)
using holomorphic__on_subset by blast
qed (use that <0 < r> in <auto simp: dist_commute))
then have x: (Aw. F nw / (w — &)) has__contour_integral (2 x pi) * i
« Fng)
(circlepath z (2/3 * 1))
if dist £ z < (2/8 * r) for ¢
using that by (simp add: winding number _circlepath dist_norm)
have y: (Aw. F nw / (w — y)) has_contour_integral (2 * pi) * i *x F
ny)
(circlepath z (2/3 * 1))
proof (rule x)
show dist y z < 2/8 = r
using that <0 < r»y by (simp only: dist_norm norm_minus__commute)
qed
have z: (Aw. F nw / (w — 2)) has_contour_integral (2 pi) xix F n

(circlepath z (2/3 *)
using <0 < r by (force intro!: x)
have le_er: cmod (Fnz [/ (z —y) —Fnax/(zr—2)<e/r
if emod (x — 2) = r/3 + r/3 for x
proof —
have - (cmod (z — y) < 1/3)
using y_near_z(1) that <M > 0y <r > O»
by (metis (full _types) norm__diff _triangle_less norm__minus_commute
order_less_irrefl)
then have r4_le xzy: r// < cmod (x — y)
using «r > 0» by simp
then have neq: © # yx # 2
using that <r > 0» by (auto simp: field _split_simps norm_minus__commute)
have leM: ¢cmod (F nz) < M
by (simp add: M dist_commute dist_norm that)
have cmod (Fnz / (z —y) —Fnz/ (z — 2) = cmod (F n x) *
emod (1 / (5 — y) — 1/ (& — 2))

by (metis (no__types, lifting) divide__inverse mult.left _neutral norm_mult

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 276

right__diff _distrib”)

also have ... = ¢cmod (F nz) * emod ((y — 2) / ((z — y) x (z — 2)))
using neq by (simp add: field _split_simps)
also have ... = cmod (F n z) * (cmod (y — z) / (cmod(z — y) x (2/3

* 7))

by (simp add: norm_mult norm__divide that)
also have ... < M * (e¢cmod (y — z) / (cmod(z — y) x (2/3 *x 1)))
using «r > 0) <M > 0) by (intro mult_mono [OF leM]) auto
also have ... < M x ((ex r / (6 * M)) / (cmod(z — y) * (2/3 * 1)))
unfolding mult_less cancel left
using y_near_z(2) <M > 0> <r > 0» neq
by (simp add: field simps mult_less 0 _iff norm__minus__commute)
also have ... < e/r
using <e > 0) <r > 0> v4_le_xy by (simp add: field split_simps)
finally show ?thesis by simp
qed
have (2 * pi) x cmod (F ny — F nz) = cmod (2 xpi) xixFny —
(2% pi)xix Fnz
by (simp add: right_diff _distrib [symmetric] norm_ mult)
also have cmod ((2 * pi) xi* Fny— (2xpi)xixFnz)<e/rx
(2 % pi*x(2/3 %))

proof (rule has__contour_integral_bound__circlepath [OF has__contour _integral _diff
[OF y 2]))
show Az. cmod (z — 2) = 2/3 « r= cmod (Fnz /(z—y)—Fn
z/(x—2z)<e/r
using le_er by auto
qed (use <e > 0> <r > 0» in auto)
also have ... = (2 x pi) x e x ((2/3))
using «<r > 0> by (simp add: field split_simps)
finally have cmod (F ny — Fnz) <ex(2/3)
by simp
also have ... < e
using <e > 0> by simp
finally show ?thesis by (simp add: norm__minus__commute)
qed
then show ?%thesis
apply (rule_tac z=min (r/3) ((e x r)/(6 = M)) in exI)
using <0 < e» <0 < r <0 < M)» by simp
qed
show Anz. 2 € Ki= cmod (Fnz)<Bi
using B <An. F n € H» by blast
next
fix g :: complex = complex and k :: nat = nat
assume *: A\ (g::complex=>complex) (k::nat=nat). continuous_on (K i) g =
strict_mono k —
(Ne. 0 < e= IN.Vn>N.VzeK i. cmod (F (kn) z — gz) <
e) = thesis
continuous_on (K i) g

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 277

strict_mono k
Ne. 0 <e=3IN.Vnz. N<nAze€Ki— cmod (F (kn)z—g
z) < e
show ?thesis
by (rule %(1)[OF %(2,3)], drule x(4)) auto
qed (use comK in simp__all)
then show ?thesis
by auto
qed
define ® where ® = A\g i r. A\k::nat=nat. Ve>0. AN. Vn>N. VzeK i. cmod
(Fo(rok)nz—gz)<e
obtain £ :: nat = nat where strict_mono k and k: N\i. 3g. ® giid k
proof (rule subsequence _diagonalization_lemma [where r=id])
show Jg. & giid (r o k2)
ifer: 3g. @ giid (rokl)and A\j. N < j= 3j">j. k2j = k1 j’
for i k1 k2 N and r::nat=nat
proof —
obtain g where ® g i id (r o k1)
using ex by blast
then have ® g i id (r o k2)
using that
by (simp add: ®__def) (metis (no__types, opaque_lifting) le_trans linear)
then show ?thesis
by metis
qed
have 3k g. strict_mono (k:nat=nat) A ® giid (r o k) for i r
unfolding ®_ def o__assoc using rng_f by (force introl: x)
then show Ai r. k. strict_mono (k:nat=nat) A (3g. ® giid (r o k))
by force
qed fastforce
have 31. Ve>0. 3N.Vn>N. norm(F (kn) z — 1) < eif z € S for 2
proof —
obtain G where G: Nie. e > 0 = IM.Vn>M.VzeK i. cmod ((F o k) n
z—Giz)<e
using k unfolding ®_def by (metis id_comp)
obtain N where An.n > N = z€ Kn
using subK [of {z}] that <z € S by auto
moreover have Ae. e > 0 = IM.Vn>M.VzeK N. cmod (Fo k) nz —
GNz)<e
using G by auto
ultimately show #thesis
by (metis comp__apply order_refl)
qed
then obtain g where g: Aze [z € S; e > 0] = IN.Vn>N. norm(F (k n)
z—gz)<e
by metis
show ?thesis
proof
show g lim: N\e. 2 € S = (An. F (kn)z) —— gz

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 278

by (simp add: lim__sequentially g dist_norm)
have dg_le _e: IN.Vn>N.VzeT. cmod (F (kn)z —gzx) <e
if T: compact T T C Sand 0 < efor T e
proof —
obtain N where N: An.n > N = T C Kn
using subK [OF T] by blast
obtain h where h: Ae. e>0 = IM.Vn>M.VzeK N. cmod ((F o k) nz
—hz)<e
using k unfolding ®_ def by (metis id__comp)
have geq: gw =hwif w € T for w
proof (rule LIMSEQ unique)
show (An. F (kn) w) —— gw
using <T C S» g _lim that by blast
show (An. F (kn) w) —— hw
using h N that by (force simp: lim__sequentially dist_norm)
qed
show ?thesis
using T h N <0 < e» by (fastforce simp add: geq)
qed
then show AK. [compact K; K C S]
= uniform_limit K (F o k) g sequentially
by (simp add: uniform__limit_iff dist_norm eventually sequentially)
show ¢ holomorphic_on S
proof (rule holomorphic_uniform__sequence [OF <open S» H])
show An. (Fok)neH
by (simp add: range__subsetD rng_f)
show 3d>0. cball z d C S A uniform_limit (cball z d) (An. (F o k) n) g
sequentially
if z € § for 2
proof —
obtain d where d: d>0 cball zd C S
using <open S» <z € S» open__contains__cball by blast
then have uniform_limit (cball z d) (F o k) g sequentially
using dg_le e compact_cball by (auto simp: uniform_limit_iff eventu-
ally _sequentially dist_norm,)
with d show ?thesis by blast
qed
qed
qed (auto simp: <strict_mono k»)
qed

6.4 Some simple but useful cases of Hurwitz’s theorem

proposition Hurwitz _no_ zeros:
assumes S: open S connected S
and holf: An:nat. F n holomorphic_on S
and holg: g holomorphic_on S
and ul_g: AK. [compact K; K C S| = uniform_limit K F g sequentially
and nonconst: — g constant_on S

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 279

and nz: Anz. z€ S= Fnz#0
and 20 € S
shows ¢ 20 # 0
proof
assume g0: g z0 = 0

obtain h r m
where 0 < m 0 < r and subS: ball z0 r C S

and holh: h holomorphic__on ball 20 r
and geq: Aw. we ball 20 r = gw = (w — 20) " m* hw
and hnz: Aw. w € ball 20 r = hw # 0
by (blast intro: holomorphic__factor_zero_nonconstant [OF holg S <z0 € S» g0
nonconst|)
then have holf0: F n holomorphic__on ball 20 r for n

by (meson holf holomorphic__on__subset)
have x: ((Az. deriv (F n) z /| F n z) has_contour_integral 0) (circlepath 20

(r/2)) for n
proof (rule Cauchy_theorem__disc__simple)
show (Az. deriv (F n) z / F n z) holomorphic_on ball z0 r
by (metis (no__types) <open S» holf holomorphic__deriv holomorphic__on__divide
holomorphic__on__subset nz subS)
qged (use <0 < r» in auto)
have hol _dg: deriv g holomorphic_on S
by (simp add: <open S» holg holomorphic__deriv)
have continuous_on (sphere z0 (r/2)) (deriv g)
using <0 < r»y subS
by (intro holomorphic__on__imp__continuous_on holomorphic_on__subset [OF

hol_dg]) auto
then have compact (deriv g ¢ (sphere 20 (r/2)))
by (rule compact_continuous__image [OF __ compact__sphere])
then have bo_dg: bounded (deriv g ‘ (sphere z0 (r/2)))
using compact_imp__bounded by blast
have continuous_on (sphere z0 (r/2)) (cmod o g)
using <0 < r» subS
by (intro continuous_intros holomorphic__on_imp__continuous__on holomor-
phic_on_subset [OF holg]) auto
then have compact ((¢cmod o g) ‘ sphere z0 (r/2))
by (rule compact__continuous__image [OF _ compact__sphere])
moreover have (cmod o g) sphere 20 (r/2) # {}
using <0 < r» by auto
ultimately obtain b where b: b € (¢cmod o g) sphere 20 (r/2)
At. t € (emod o g) ‘ sphere 20 (r/2) = b
using compact__attains_inf [of (norm o g) (sphere z0 (r/2))] b
have (An. contour_integral (circlepath 20 (r/2)) (Az. deriv (F n)

e

<t
y blast
2/ Fnz)

contour_integral (circlepath z0 (r/2)) (Az. deriv g z | g z)
proof (rule contour_integral uniform_ limit_ circlepath)
show V g n in sequentially. (Az. deriv (F n) z /| F n z) contour_integrable_on

circlepath 20 (r/2)
using * contour_integrable_on__ def eventually sequentiallyl by meson

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 280

show uniform__limit (sphere 20 (r/2)) (An z. deriv (F n) z /| F n z) (Az. deriv
gz / gz) sequentially
proof (rule uniform_lim_ divide [OF _ __ bo__dg])
show uniform__limit (sphere z0 (r/2)) (Aa. deriv (F a)) (deriv g) sequentially
proof (rule uniform__limitI)
fix e::real
assume 0 < e

show Vg n in sequentially. V& € sphere 20 (r/2). dist (deriv (F n) x)
(deriv g z) < e
proof —
have dist (deriv (F n) w) (deriv g w) < e
ife8: Na. dist 20 < 8 xr [/ j = dist (Fnz)(gz)*8<rxe
and w: w € sphere z0 (r/2) for n w
proof —
have ball w (r/4) C ball 20 r cball w (r/4) C ball 20 r
using <0 < ry w by (simp__all add: ball_subset__ball_iff cball subset ball iff
dist_commute)
with subS have wr{_sub: ball w (r/4) C S cball w (r/4) C S by force+
moreover
have (Az. F n z — g z) holomorphic_on S
by (intro holomorphic__intros holf holg)
ultimately have hol: (Az. F n z — g z) holomorphic_on ball w (r/4)
and cont: continuous_on (cball w (r / 4)) (A\z. Fnz— g=z)
using holomorphic__on__subset by (blast intro: holomorphic__on__imp__continuous__on)+
have w € §
using <0 < r wr4_ sub by auto
have dist 20 y < 8 x r / 4 if dist wy < r/4 for y
proof (rule dist_triangle le [where z=w))
show dist 20 w + dist y w < 3 x 1 / 4
using w that by (simp add: dist_commute)
qed
with e8 have in_ball: Ny. y € ball w (r/4) = Fny — gy € ball 0
(r/4 * ¢/2)
by (simp add: dist_norm [symmetric])
have F n field_differentiable at w
by (metis holomorphic_on__imp__ differentiable_at <w € S» holf <open

S»)
moreover
have g field_differentiable at w
using (w € S» <open S» holg holomorphic_on__imp_ differentiable__at
by auto

moreover
have cmod (deriv (Aw. Fnw — gw) w) *x 2 < e
using Cauchy_higher _deriv_bound [OF hol cont in_ball, of 1] <r >
0> by auto
ultimately have dist (deriv (F n) w) (deriv g w) < e/2
by (simp add: dist_norm)
then show ?thesis

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 281

using <e > () by auto
qed
moreover
have cball 20 (8 * v/ 4) C ball 20 r
by (simp add: cball_subset_ball_iff <0 < 1)
with subS have uniform_limit (cball 20 (3 * v/4)) F g sequentially
by (force intro: ul_g)
then have V p n in sequentially. ¥ x€cball 20 (3 = r / 4). dist (F nz) (g
B<r/irel?
using 0 < e <0 < 1> by (force simp: introl: uniform_limitD)
ultimately show #thesis
by (force simp add: eventually sequentially)
qged
qed
show uniform_limit (sphere z0 (r/2)) F g sequentially
proof (rule uniform_ limitl)
fix e::real
assume 0 < e
have sphere z0 (r/2) C ball 20 r
using (0 < 7 by auto
with subS have uniform__limit (sphere 20 (r/2)) F g sequentially
by (force intro: ul_g)
then show Y p n in sequentially. Vx € sphere 20 (r/2). dist (F n z) (g z)

using <0 < e» uniform__limit_iff by blast
qed
show b > 0 A\z. z € sphere 20 (r/2) = b < c¢mod (g x)
using b <0 < r by (fastforce simp: geq hnz)+
qed
qged (use <0 < r in auto)
then have (An. 0) —— contour_integral (circlepath z0 (r/2)) (Az. deriv g z
/ 9%2)
by (simp add: contour_integral_unique [OF %])
then have contour_integral (circlepath z0 (r/2)) (Az. deriv gz / g z) = 0
by (simp add: LIMSEQ _const__iff)
moreover
have contour_integral (circlepath 20 (r/2)) (Az. deriv g z | g z) =
contour_integral (circlepath 20 (r/2)) (Az. m / (z — 20) + derivh z / h 2)
proof (rule contour_integral eq, use <0 < 7> in simp)
fix w
assume w: dist 20 w * 2 =7
then have w_inb: w € ball 20 r
using <0 < m by auto
have h_der: (h has_field derivative deriv h w) (at w)
using holh holomorphic__derivl w_inb by blast
have deriv g w = ((of_nat m x h w + deriv h w * (w — 20)) x (w — 20) ~m)
/ (w = 20)
if r = dist 20 w* 2 w # 20
proof —

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 282

have ((Aw. (w — 20) ~m * h w) has_field_ derivative
(m*hw+ derivhwx* (w— 20)) * (w—20) " m/ (w— 20)) (at w)
apply (rule derivative _eq intros h__der refl)+
using that <m > 0> <0 < r» apply (simp add: divide__simps distrib__right)
by (metis Suc_pred mult.commute power_Suc)
then show ?thesis
proof (rule DERIV__imp_ deriv [OF has_ field_ derivative _transform__ within__open))
show Az. z € ball 20 r = (x — 20) "m*xhz=gux
by (simp add: hnz geq)
qed (use that «m > 0> <0 < r in auto)
qed
with <0 < m <0 < m» w w_inb show deriv g w / g w = of _natm / (w — 20)
+ derivhw / hw
by (auto simp: geq field _split__simps hnz)
qed
moreover
have contour_integral (circlepath 20 (r/2)) (Az. m [(z — 20) + deriv h z / h

z) =
2% of real pi xi* m + 0
proof (rule contour_integral _unique [OF has__contour_integral _add])
show ((Az. m / (z — 20)) has_contour_integral 2 * of real pi * i * m)
(circlepath 20 (r/2))
by (force simp: <0 < ry intro: Cauchy__integral _circlepath__simple)
show ((Az. deriv h x / h) has_contour_integral 0) (circlepath 20 (r/2))
using hnz holh holomorphic__deriv holomorphic__on__divide <0 < 1)
by (fastforce intro!: Cauchy__theorem__disc__simple [of __ 20 r])
qed
ultimately show Fulse using <0 < m» by auto
qed

corollary Hurwitz_injective:
assumes S: open S connected S
and holf: An:nat. F n holomorphic_on S
and holg: g holomorphic_on S
and ul_g: AK. [compact K; K C S| = uniform_limit K F g sequentially
and nonconst: — g constant_on S
and inj: An. inj_on (F n) S
shows inj _on g S
proof —
have Fualse if 212: 21 € S22 € Sz1 # 22 g 22 = g 21 for 21 22
proof —
obtain 20 where 20 € S and 20: g 20 # g 22
using constant_on__def nonconst by blast
have (\z. g z — g z1) holomorphic_on S
by (intro holomorphic__intros holg)
then obtain r where 0 < rball 22 r C S Nz. dist 22 2 < r ANz +# 22 =g
z # gzl
using isolated_zeros [of Az. gz — g 21 S 22 20] S <20 € S» 20 z12 by auto
have g 22 — gz1 # 0

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 283

proof (rule Hurwitz_no_zeros [of S — {z1} Anz. Fnz — F nzl A\z. gz —
g 21])
show open (S — {z1})
by (simp add: S open__delete)
show connected (S — {z1})
by (simp add: connected_open__delete [OF S])
show An. (Az. F nz — F n z1) holomorphic_on S — {z1}
by (intro holomorphic_intros holomorphic_on__subset [OF holf]) blast
show (\z. g z — g z1) holomorphic_on S — {z1}
by (intro holomorphic_intros holomorphic__on__subset [OF holg]) blast
show uniform_limit K (An 2. F nz—F nzl) (Az. gz — g z1) sequentially
if compact K K C S — {z1} for K
proof (rule uniform_limitl)
fix e::real
assume ¢ > 0
have uniform_limit K F g sequentially

using that ul g by fastforce
then have K: Vg n in sequentially. Vo € K. dist (F nz) (gz) < e/2

using <0 < ey by (force simp: introl: uniform__limitD)
have uniform_limit {z1} F g sequentially
by (intro ul_g) (auto simp: 212)
then have V r n in sequentially. Vo € {z1}. dist (F nz) (gz) < e/2
using <0 < ey by (force simp: introl: uniform_ limitD)
then have z1: V p n in sequentially. dist (F n z1) (g z1) < e/2
by simp
show V r n in sequentially. Vz€K. dist (Fnax — Fnzl)(gx —gzl) <e
apply (intro eventually_mono [OF eventually_conj [OF K z1]])
by (metis (no__types, opaque_lifting) diff _add__eq diff _diff eq2 dist_commute
dist_norm dist_triangle_add__half)
qed
show — (Az. g z — g z1) constant_on S — {z1}
unfolding constant_on__def
by (metis Diff _iff <z0 € S» empty_iff insert_iff right _minus eq 20 z12)
show Anz. z€ S —{z1} = Fnz—Fnzl #0
by (metis DiffD1 DiffD2 eq iff diff eq 0 inj inj onD insertll <z1 € S»)
show 22 € § — {z1}
using <z2 € Sy <zl # z2) by auto
qed
with 212 show Fulse by auto
qed
then show %thesis by (auto simp: inj_on__def)
qged

6.5 The Great Picard theorem

lemma GPicardl:
assumes S: open S connected S and w e S0 <rY C X
and holX: Ah. h € X = h holomorphic_on S
and X01: Ahz [heX;z€S]=hz#0ANhz# 1

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 284

and ' Ah.h €Y = norm(hw) <r

obtains B Z where 0 < Bopen Zw € ZZ C S Ahz. [he Y; ze 7] =
norm(h z) < B

proof —
obtain e where ¢ > 0 and e: cball we C S

using assms open__contains cball _eq by blast
show ?thesis

proof
show 0 < exp(pi * exp(pi x (2 + 2 x r + 12)))
by simp
show ball w (e / 2) C S
using e ball_divide subset _numeral ball _subset_cball by blast
show cmod (h 2) < exp (pi x exp (pi * (2 + 2 x r + 12)))

ifhe Yzeballw (e / 2) for h z
proof —

have h € X
using <Y C X» <h € Y)» by blast
have hol_h_o: (h o (Az. (w 4+ of real e x 2))) holomorphic_on cball 0 1

proof (intro holomorphic_intros holomorphic__on__compose)
have h holomorphic_on S

using holX <h € X» by auto

then have h holomorphic_on cball w e
by (metis e holomorphic__on__subset)

moreover have (Az. w + complez_of real e x z) ‘ cball 0 1 C cball w e
using that <e > 0> by (auto simp: dist_norm norm_mult)

ultimately show h holomorphic_on (A\z. w + complexr_of real e x z)
cball 0 1

by (rule holomorphic__on__subset)
qed
have norm_le_r: ecmod ((h o (Az. w + complex_of real e x z)) 0) < r
by (auto simp: r <h € Y»)
have le12: norm (of _real(inverse e) x (z — w)) < 1/2
using that <e > 0> by (simp add: inverse__eq divide dist_norm norm_minus__commute
norm__divide)
have non01: h (w+ exz) # 0 ANh (w+ ex z) # 1if z € cball 0 1 for
z::complex
proof (rule X01 [OF <h € X))
have w + complexr _of real e x z € cball w e
using <0 < ey that by (auto simp: dist_norm norm_ mult)
then show w + complex_of real e x z € S
by (rule subsetD [OF e])
qed
have cmod (h z) < emod (h (w 4+ of _real e x (inverse e x (z — w))))
using <0 < e by (simp add: field_split_simps)
also have ... < exp (pi * exp (pi x (14 + 2 * 1)))

using r [OF <h € Y| Schottky [OF hol_h_o norm_le_r__ __ _ lel12] non01
by auto

finally
show ?thesis by simp

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 285

qed
qed (use (e > 0» in auto)
qed

lemma GPicard2:
assumes S C T connected T S # {} open S N\z. [z islimpt S; 2 € T] = z € S
shows S =T
by (metis assms open__subset connected_clopen closedin__limpt)

lemma GPicard3:
assumes S: open S connected Sw € Sand Y C X
and holX: Ah. h € X = h holomorphic_on S
and X01: Ahz [heX;z€S]=hz#0Nhz# 1
and no_hw_lel: Nh. h € Y = norm(h w) < 1
and compact K K C S
obtains B where Ah z. [h € Y; z € K] = norm(h z) < B
proof —
define U where U ={z€ S.3BZ. 0 < BAopen ZNz€ ZNZ S A
(Vhz' . he YAz e€Z — norm(hz) < B)}
then have U C S by blast
have U = §
proof (rule GPicard2 [OF <U C S» <connected S»])
show U # {}
proof —
obtain B Z where 0 < Bopen Zw e Z 7 C S
and Ahz [he Y;ze Z] = norm(hz) < B
using GPicardl [OF S zero_less_one <Y C X» holX]| X01 no_hw_lel by
blast
then show ?thesis
unfolding U_def using «<w € S» by blast
qed
show open U
unfolding open_subopen [of U] by (auto simp: U_def)
fix v
assume v: v islimpt Uv € S
have = (Vr>0. 3heY. r < cmod (h v))
proof
assume Vr>0. 3heY. r < cmod (h v)
then have Vn. 3heY. Suc n < ecmod (h v)
by simp
then obtain F where FY: An. F n € Y and ItF: An. Suc n < cmod (F
nv)
by metis
define G where G = An z. inverse(F n z)
have holG: G n holomorphic_on S for n
proof (simp add: G__def)
show (Az. inverse (F n z)) holomorphic_on S
using FY X01 <Y C X» holX by (blast intro: holomorphic__on__inverse)

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 286

qed

have Gnot0: G n z # 0 and Gnotl: Gnz # 1 if z € § for n 2
using FY X01 <Y C X that by (force simp: G__def)+
have G_lel: cmod (G nv) < 1 for n
using less_le_trans linear ItF
by (fastforce simp add: G__def norm__inverse inverse_le_ 1 _iff)
define W where W = {h. h holomorphic_on S AN (Vz€ S. hz# 0 A hz
£ 1}
obtain B Z where 0 < Bopen Zve ZZ C S
and B: A\h z. [h € range G; z € Z] = norm(h z) < B
apply (rule GPicardl [OF <open S» <connected S» v € S» zero_less_one,
of range G W)
using holG Gnot0 Gnotl G_lel by (force simp: W_def)+
then obtain ¢ where e > 0 and e: ballve C Z
by (meson open__contains__ball)
obtain h j where holh: h holomorphic_on ball v e and strict _mono j
and lim: Az.z € ballve = (An. G (jn)) —— hx
and ulim: AK. [compact K; K C ball v €]
= uniform__limit K (G o j) h sequentially
proof (rule Montel)
show Ah. h € range G = h holomorphic_on ball v e
by (metis <Z C 5> e holG holomorphic_on__subset imageF)
show AK. [compact K; K C ball v] = 3 B. Vh€range G. V 2€K. cmod
(hz) <B
using B e by blast
qed auto
have h v = 0
proof (rule LIMSEQ unique)
show (An. G (jn) v) —— hwv
using <e > 0> lim by simp
have It Fj: real © < c¢mod (F (j z) v) for z
by (metis of nat_Suc ltF <strict_mono j> add.commute less_eq real def
less_le_trans nat_le real_less seq suble)
show (An. G (jn) v) —— 0
proof (rule Lim_null_comparison |OF eventually__sequentiallyl lim__inverse_n))
show cmod (G (j z) v) < inverse (real z) if 1 < x for z

using that by (simp add: G__def norm__inverse_le_norm [OF It_Fj])
qed

qed
have h v # 0
proof (rule Hurwitz_no__zeros [of ball v e G o j h])
show An. (G o j) n holomorphic_on ball v e
using <Z C S» e holG by force
show Anz. z€ ballve= (Goj)nz+#0
using Gnot0 <Z C S» e by fastforce
show — h constant _on ball v e
proof (clarsimp simp: constant_on__def)
fix c

have Fulse if \z. distvz<e= hz=c

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 287

proof —
have h v = ¢
by (simp add: <0 < e> that)
obtain y where y € Uy #vand y: dist yv < e
using v <e > 0) by (auto simp: islimpt_approachable)
then obtain C' T where y € SC > 0open Tye TT C S
and Ah 2. [he Y; 2 € T] = cmod (h2') < C
using <y € U» by (auto simp: U_def)
then have le_C: An. cmod (F ny) < C
using F'Y by blast

have V ¢ n in sequentially. dist (G (j n) y) (h y) < inverse C
using uniform_ limitD [OF ulim [of {y}], of inverse C] <C > 0) y
by (simp add: dist_commute)
then obtain n where dist (G (j n) y) (hy) < inverse C
by (meson eventually at_top_linorder order _refl)
moreover
have h y = h v
by (metis <h v = ¢ dist_commute that y)
ultimately have cmod (inverse (F (j n) y)) < inverse C
by (simp add: <h v = 0» G__def)
then have C < norm (F (j n) y)
by (metis G__def Gnot0 <y € S» inverse_less_imp_less inverse_zero
norm__inverse zero__less_norm__iff)
show False
using «C < cmod (F (j n) y)» le_C not_less by blast
qed
then show Jz€ball v e. h x # ¢ by force
qed
show h holomorphic_on ball v e
by (simp add: holh)
show AK. [compact K; K C ball v e] = uniform_limit K (G o j) h
sequentially
by (simp add: ulim)
qed (use <e > 0> in auto)
with <h v = 0> show Fualse by blast
qged
then obtain r where 0 < rand r: Ah. h € Y = c¢mod (hv) < r
by (metis not_le)
moreover
obtain B Z where 0 < Bopen Zve ZZ C S Nhz [heY;ze 7] =
norm(h z) < B
using X071
by (auto simp: r intro: GPicardl[OF <open S <connected S» (v € Sy <r>0»
<Y C X» holX] X01)
ultimately show v € U
using v by (simp add: U_def) meson
qged
have Az. e K — 2z € U

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 288

using «U = S) (K C S by blast
then have Az. 1 € K — (3B Z. 0 < BANopen Z Nz € Z N
(Vhz.he YAz €Z— norm(hz') < B))
unfolding U_def by blast
then obtain F Z where F: Az. t € K = open (Zz) Nz € Zx A
(Vhz.he YNz € Zx — norm(hz2') < Fx)
by metis
then obtain L where L C K finite Land L: K C (|Jc € L. Z ¢)
by (auto intro: compactE_image [OF <compact K>, of K Z])
then have x: A hz'. [t € L;h e Y Nz € Za] = cmod (hz') < Fu
using F by blast
have 3B.Vhz. he€ Y Aze€ K — norm(h z) < B
proof (cases L = {})
case True with L show %thesis by simp
next
case Fulse
then have Vh z. h € Y Az € K — (z€L. emod (h z) < F)
by (metis x L UN_E subset_iff)
with Fulse <finite Ly show ?thesis
by (rule_tac © = Maz (F ‘L) in exI) (simp add: linorder_class.Max__ge_iff)
qged
with that show ?thesis by metis
qed

lemma GPicardj:
assumes 0 < k and holf: f holomorphic_on (ball 0 k — {0})
and AE: N\e. [0 < e e< k] = 3d. 0 <dANd<eA (Vz€ sphere 0 d.
norm(f z) < B)
obtains ¢ where 0 <ee <k Az. z€ ball 0 ¢ — {0} = norm(fz) < B
proof —
obtain ¢ where 0 < ¢ ¢ < k/2 and e: Az. norm z = ¢ = norm(f z) < B
using AE [of k/2] <0 < k» by auto
show ?thesis
proof
show ¢ < k
using <0 < k» «¢ < k/2> by auto
show cmod (f) < Bif & £ € ball 0 ¢ — {0} for &
proof —
obtain d where 0 < d d < norm £ and d: A\z. norm z = d = norm(f z2)
<B
using AF [of norm] « < k> € by auto
have [simp]: closure (cball 0 € — ball 0 d) = cball 0 € — ball 0 d
by (blast intro!: closure_closed)
have [simp]: interior (cball 0 € — ball 0 d) = ball 0 € — cball (0::complex) d
using <0 < & <0 < d> by (simp add: interior_diff)
have x: norm(f w) < B if w € c¢ball 0 ¢ — ball 0 d for w
proof (rule mazimum__modulus_frontier [of f cball 0 ¢ — ball 0 d))
show f holomorphic__on interior (cball 0 ¢ — ball 0 d)

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 289

using <« < b <0 < d> that by (auto intro: holomorphic_on_ subset [OF
holf])
show continuous_on (closure (cball 0 € — ball 0 d)) f
proof (intro holomorphic__on__imp__continuous__on holomorphic__on__subset
[OF holf])
show closure (cball 0 ¢ — ball 0 d) C ball 0 k — {0}
using <0 < d» <e < k» by auto
qed
show Az. z € frontier (cball 0 ¢ — ball 0 d) = cmod (f z) < B
unfolding frontier def
using € d less_eq_real_def by force
ged (use that in auto)
show ?thesis
using * «d < cmod &> that by auto
qed
qged (use <0 < ¢» in auto)
qed

lemma GPicard5:
assumes holf: f holomorphic_on (ball 0 1 — {0})
and f01: Nz.2€ball01 — {0} = f2#£0Nfz#1
obtains e B where 0 < ee< 10< B
(Vz e ball 0 e — {0}. norm(fz) < B) V
(Vz € ball 0 e — {0}. norm(f z) > B)
proof —
have [simp]: 1 + of _nat n # (0::complex) for n
using of nat_eq 0 _iff by fastforce
have [simp|: cmod (1 + of _nat n) = 1 + of nat n for n
by (metis norm__of nat of nat_Suc)
have *: (A\z::complex. z / of _nat (Suc n)) “(ball 01 — {0}) C ball 01 — {0}
for n
by (auto simp: norm__divide field_split _simps split: if _split _asm)
define h where h = An z::complex. f (2 / (Suc n))
have holh: (h n) holomorphic_on ball 0 1 — {0} for n
unfolding h_ def
proof (rule holomorphic_on__compose__gen [unfolded o__def, OF __ holf x])
show (Az. = / of nat (Suc n)) holomorphic_on ball 0 1 — {0}
by (intro holomorphic_intros) auto
qed
have h01: Anz. z€ ball01 — {0} = hnz#0ANhnz#1
unfolding h_ def
using * by (force intro!: f01)
obtain w where w: w € ball 0 1 — {0::complex}
by (rule_tac w = 1/2 in that) auto
consider infinite {n. norm(h n w) < 1} | infinite {n. 1 < norm(h n w)}
by (metis (mono__tags, lifting) infinite_nat_iff _unbounded_le le__cases mem__Collect_eq)
then show ?thesis
proof cases

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 290

case I
with infinite _enumerate obtain r :: nat = nat
where strict_mono r and r: An. rn € {n. norm(h n w) < 1}
by blast
obtain B where B: Aj z. [norm z = 1/2; j € range (h o r)] = norm(j z)
<B
proof (rule GPicard3 [OF _ _ w, where K = sphere 0 (1/2)])
show range (h o r) C
{g. g holomorphic_on ball 01 — {0} AN (Vz € ball 01 — {0}. g2z # 0
Agz# 1)}
using h01 by (auto intro: holomorphic_intros holomorphic__on__compose
holh)
show connected (ball 0 1 — {0::complex})
by (simp add: connected_open__delete)
qged (use r in auto)
have normf _le_B: ecmod(f z) < Bif norm 2z =1/ (2 x (1 + of nat (r n)))
for zn
proof —
have x: Aw. norm w = 1/2 = emod((f (w / (1 + of nat (rn))))) < B
using B by (auto simp: h__def o_def)
have half: norm (z * (1 + of_nat (rn))) =1/2
by (simp add: norm__mult divide__simps that)
show ?thesis
using * [OF half] by simp
qed
obtain ¢ where 0 <ce < I Az.z€ ball 0 e — {0} = cmod(fz) < B
proof (rule GPicardj [OF zero_less_one holf, of B])
fix e::real
assume 0 < ee < 1
obtain n where (I1/e — 2) / 2 < real n
using reals Archimedean?2 by blast
also have ... < rn
using «<strict_mono r by (simp add: seq_suble)
finally have (1/e — 2) / 2 < real (1 n) .
with (0 < e» have e: e > 1 / (2 4+ 2 * real (r n))
by (simp add: field_simps)
show 3d>0. d < e A (Vz€sphere 0 d. ecmod (f z) < B)
apply (rule_tac x=1 / (2 * (1 + of nat (rn))) in exl)
using normf le_ B by (simp add: e)
qed blast
then have e: ¢cmod (fz) < |B| + 1 if ¢cmod z < € z # 0 for z
using that by fastforce
have 0 < |B| + 1
by simp
then show ?thesis
using ¢ by (force introl: that [OF <0 < &) & < 13])
next
case 2
with infinite_enumerate obtain r :: nat = nat

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 291

where strict_mono r and r: An. rn € {n. norm(h n w) > 1}
by blast
obtain B where B: A\j z. [norm z = 1/2; j € range (An. inverse o h (r n))]|
= norm(j z) < B
proof (rule GPicard3 [OF _ _ w, where K = sphere 0 (1/2)])
show range (An. inverse o h (r n)) C
{g. g holomorphic_on ball 0 1 — {0} AN (Vz€ball 01 — {0}. g z# 0 A
gz#1)}
using h01 by (auto intro!: holomorphic__intros holomorphic__on__compose__gen
[unfolded o_def, OF _ holh] holomorphic_on__compose)
show connected (ball 0 1 — {0::complex})
by (simp add: connected_open__delete)
show Aj. j € range (An. inverse o h (rn)) = cmod (j w) < 1
using r norm__inverse_le_norm by fastforce
qged (use r in auto)
have norm_if le_B: cmod(inverse (f z)) < Bif norm z =1 / (2 = (1 +
of _nat (rn))) for zn
proof —
have x: inverse (cmod((f (z / (1 + of _nat (rn)))))) < Bif norm z = 1/2
for z
using B [OF that] by (force simp: norm__inverse h__def)
have half: norm (z * (1 + of _nat (rn))) =1/2
by (simp add: norm__mult divide__simps that)
show ?thesis
using * [OF half] by (simp add: norm__inverse)
qged
have hol_if: (inverse o f) holomorphic_on (ball 0 1 — {0})
by (metis (no__types, lifting) holf comp__apply f01 holomorphic_on_inverse
holomorphic__transform)
obtain ¢ where 0 < e < I and leB: \z. z € ball 0 ¢ — {0} = cmod((inverse
°of)z) <B
proof (rule GPicardj [OF zero_less_one hol_if, of B])
fix e::real
assume 0 < ee < 1
obtain n where (/e — 2) / 2 < real n
using reals Archimedean?2 by blast
also have ... < rn
using «<strict_mono r by (simp add: seq_suble)
finally have (1/e — 2) / 2 < real (1 n) .
with (0 < e» have e: e > 1 / (2 4+ 2 * real (r n))
by (simp add: field_simps)
show 3d>0. d < e A (Vz€sphere 0 d. cmod ((inverse o f) z) < B)
apply (rule_tac x=1 / (2 * (1 + of nat (rn))) in exl)
using norm__if le B by (simp add: e)
qed blast
have ¢: cmod (f z) > inverse B and B > 0 if cmod z < € z # 0 for z
proof —
have inverse (cmod (f 2)) < B
using leB that by (simp add: norm__inverse)

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 292

moreover
have f 2z # 0
using ¢ < 1y f01 that by auto
ultimately show cmod (f z) > inverse B
by (simp add: norm__inverse inverse_le imp_le)

show B > 0
using «f z # (b <inverse (cmod (f z)) < By not_le order.trans by fastforce
qed

then have B > 0
by (metis <0 < e dense lel order.asym vector__choose__size)

then have inverse B > 0
by (simp add: field split _simps)

then show ?thesis
using ¢ that [OF <0 < &y ¢ < 1)]
by (metis Diff _iff dist_0_norm insert_iff mem__ball)

qged
qed

lemma GPicard6:
assumes open M z € M a # 0 and holf: f holomorphic_on (M — {z})
and f0a: N\w. we M — {2z} = fu#0ANfw+#a
obtains » where 0 < rball zr7 C M
bounded(f ¢ (ball z v — {z})) V
bounded((inverse o f) “ (ball z T — {z}))
proof —
obtain r where 0 < rand r: ball zr C M
using assms openF by blast
let 29 = \w. f (z + of real r x w) / a
obtain e B where 0 < ee< 10 < B
and B: (Vz € ball 0 e — {0}. norm(%?g 2) < B) V (Vz € ball 0 e — {0}.
norm(%g z) > B)
proof (rule GPicard5)
show ?g holomorphic_on ball 0 1 — {0}
proof (intro holomorphic__intros holomorphic__on__compose__gen [unfolded o__def,
OF __ holf])
show (Az. z + complex_of real r x x) ‘(ball 01 — {0}) C M — {2}
using <0 < r r
by (auto simp: dist _norm norm__mult subset_eq)
qed (use <a # 0> in auto)
show Aw. we ball 01 — {0} = f(z+ of real r xw) / a# 0ANf(z+
of _real T x w) | a # 1
using f0a <0 < 1 <a # 0> T
by (auto simp: field split _simps dist_norm norm__mult subset_eq)
qed
show ?thesis
proof
show 0 < exr
by (simp add: <0 < e <0 < 1)

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 293

have ball z (e x r) C ball z r
by (simp add: <0 < ry <e < 1y order.strict_implies _order subset ball)
then show ball z (e x 1) C M
using r by blast
consider Az. z € ball 0 e — {0} = norm(%g z) < B| A\z. z € ball 0 e — {0}
= norm(?%g z) > B
using B by blast
then show bounded (f ‘ (ball z (e x) — {2})) V
bounded ((inverse o f) “ (ball z (e x r) — {z}))
proof cases
case [
have [dist zw < e * r; w # z] = cmod (f w) < B % norm a for w
using <a # 0> <0 < 1 [of (w— 2) /7]
by (simp add: norm__divide dist_norm field_split_simps)
then show ?thesis
by (force simp: introl: boundedI)
next
case 2
have [dist z w < e x r; w # z] = cmod (f w) > B * norm a for w
using «a # 0» <0 < 1 2 [of (w — 2) / 7]
by (simp add: norm__divide dist_norm field_ split_simps)
then have [dist z w < e % r; w # z] = inverse (cmod (f w)) < inverse (B
x norm a) for w
by (metis <0 < B> <a # 0) mult_pos_pos norm__inverse norm__inverse__le_norm
zero__less_norm__iff)
then show ?thesis
by (force simp: norm__inverse introl: boundedI)
qed
qed
qed

theorem great Picard:
assumes open M z € M a # b and holf: f holomorphic_on (M — {z})
and fab: A\w.we M — {z} = fw#aNfw#b
obtains [where (f —— I) (at z) V ((inverse o f) —— 1) (at 2)
proof —
obtain r where 0 < r and zrM: ball zr C M
and r: bounded((\z. fz — a) ‘ (ball z 7 — {z})) V
bounded((inverse o (Az. fz — a)) “(ball z 1 — {z}))
proof (rule GPicard6 [OF <open M) <z € M>])
show b — a # 0
using assms by auto
show (Az. fz — a) holomorphic_on M — {z}
by (intro holomorphic_intros holf)
qed (use fab in auto)
have holfb: f holomorphic_on ball z r — {z}
using zrM by (auto intro: holomorphic_on__subset [OF holf])
have holfb_i: (Az. inverse(f z — a)) holomorphic_on ball z r — {z}

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 294

using fab zrM by (fastforce introl: holomorphic_intros holfb)
show ?thesis
using r
proof
assume bounded ((Az. fz — a) “(ball z 1 — {z}))
then obtain B where B: Aw. w € (Az. fz — a) ‘(ball z 7 — {2}) = norm
w<B
by (force simp: bounded__iff)
then have V. v # 2 Adistzz <1 — c¢cmod (fz —a) < B
by (simp add: dist_commute)
with <0 < r have Vg win at z. emod (fw — a) < B
by (force simp add: eventually at)
moreover have \z. cmod (fz — a) < B = cmod (fz) < B+ c¢mod a
by (metis add.commute add_le_ cancel _right norm__triangle_sub order.trans)
ultimately have 3B. V r w in at z. cmod (f w) < B
by (metis (mono__tags, lifting) eventually _at)
then obtain g where holg: g holomorphic_on ball z r and gf: Aw. w € ball
zr —{z} = gw=fw
using <0 < r holomorphic_on__extend_bounded [OF holfb] by auto
then have g —2— ¢ 2
unfolding continuous__at [symmetric]
using <0 < r centre_in_ ball field differentiable imp__continuous _at
holomorphic__on__imp__ differentiable _at by blast
then have (f —— g 2) (at 2)
using Lim__transform_ within__open [of g g z 2]
using <0 < r» centre_in_ball gf by blast
then show ?thesis
using that by blast
next
assume bounded((inverse o (Az. fz — a)) ‘ (ball z 7 — {z}))
then obtain B where B: Aw. w € (inverse o (Az. fz — a)) ‘ (ball z 7 — {z})
— normw < B
by (force simp: bounded__iff)
then have Vz. z # z A dist z < r —> c¢mod (inverse (fz — a)) < B
by (simp add: dist_commute)
with <0 < m have Vg w in at z. ecmod (inverse (fw — a)) < B
by (auto simp add: eventually at)
then have 3B. Vg z in at 2. cmod (inverse (f z — a)) < B
by blast
then obtain g where holg: g holomorphic_on ball z r and gf: Aw. w € ball
zr — {z} = g w = inverse (fw — a)
using <0 < r holomorphic_on__extend_bounded [OF holfb_i] by auto
then have gz: ¢ —2— ¢ 2
unfolding continuous__at [symmetric]
using <0 < r centre_in_ ball field differentiable imp__continuous at
holomorphic__on__imp__ differentiable__at by blast
have gnz: Aw. w € ball zr — {2} = gw # 0
using ¢f fab zrM by fastforce
show ?thesis

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 295

proof (cases g z = 0)
case True
have *: [g # 0; inverse g = f — o] = g / (I + a * g) = inverse f for f
g::complex
by (auto simp: field__simps)
have (inverse o f) —z— 0
proof (rule Lim__transform__within_open [of Aw. g w / (I + a *x g w) _
UNIV ball z 1))
show (Aw. gw / (I + ax gw)) —z— 0
using True by (auto simp: intro!: tendsto__eq_intros gz)
show Az. [x € ball zr; 2 # 2] = gz / (1 + a* gx) = (inverse o f) x
using * gf gnz by simp
qed (use <0 < r in auto)
with that show ?thesis by blast
next
case Fulse
show ?thesis
proof (cases 1 + a * gz = 0)
case True
have (f —— 0) (at 2)
proof (rule Lim__transform__within_open [of Aw. (I + a* gw) / gw _ _
_ball z 7))
show (Aw. (I + a*x gw) / gw) —z— 0
by (rule tendsto__eq intros refl gz <g z # 0> | simp add: True)+
show Az. [z €ballzryz#2] = (Il +axgzx)/ga=fz
using fab fab zrM by (fastforce simp add: gf field_split_simps)
qged (use <0 < r» in auto)
then show ?thesis
using that by blast
next
case Fulse
have *: [g # 0; inverse g = f — a] = g / (1 + a x g) = inverse f for f
g::complex
by (auto simp: field__simps)
have (inverseo f) —z2— gz / (1 + a * g 2)
proof (rule Lim__transform_ within_open [of Aw. gw / (I + ax gw) _ __
UNIV ball z 1))
show Aw. gw / (I +axgw)) —z—gz/ (1 +axg2z)
using False by (auto simp: False introl: tendsto__eq intros gz)
show Az. [z € ball zr; 2 # 2] = gx / (1 + a* gz) = (inverse o f) x
using * gf gnz by simp
qged (use <0 < r» in auto)
with that show ?thesis by blast
qed
qed
qed
qed

Great{_}{\kern 0pt}Picard.html

Great__ Picard.thy 296

corollary great Picard_ alt:
assumes M: open M z € M and holf: f holomorphic_on (M — {z})
and non: Al. = (f —— 1) (at 2) Al. = ((inverse o f) —— 1) (at 2)
obtains ¢ where — {a} C f ‘(M — {z})
unfolding subset_iff image_iff
by (metis great_Picard [OF M __ holf] non Compl_iff insertl1)

corollary great Picard_infinite:
assumes M: open M z € M and holf: f holomorphic_on (M — {z})
and non: Al. = (f —— 1) (at 2) Al. = ((inverse o f) —— 1) (at 2)
obtains ¢ where A\w. w # a = infinite {z. x € M — {2} A fz = w}
proof —
have Fulse if a # b and ab: finite {z. 2 € M — {2} A fz = a} finite {z. z € M
—{z} Afz=0b}for abd
proof —
have finab: finite {z. v € M — {2z} A fz € {a,b}}
using finite_ Unl [OF ab] unfolding mem_Collect_eq insert_iff empty iff
by (simp add: conj disj distribL)
obtain r where 0 < rand zrM: ball zr C M and r: Az. [t € M — {z2}; fz
€{a,b}] = = ¢ ball zr
proof —
obtain e where ¢ > 0 and e: ball ze C M
using assms openF by blast
show ?thesis
proof (cases {r € M — {z}. fz € {a, b}} ={})
case True
then show ?thesis
using e <e > 0) that by fastforce
next
case Fulse
let ?r = min e (Min (dist z “ {x € M — {z}. fz € {a,b}}))
show ?thesis
proof
show 0 < 7r
using min_less iff conj Min__gr iff finab False <0 < e> by auto
have ball z ?r C ball z e
by (simp add: subset_ball)
with e show ball z ?r C M by blast
show Az. [x € M — {z}; fz € {a, b}] = z ¢ ball z ?r
using min_less iff conj Min__gr iff finab False <0 < e> by auto
qged
qed
qed
have holfb: f holomorphic_on (ball z v — {z})
apply (rule holomorphic__on__subset [OF holf])
using zrM by auto
show ?thesis
apply (rule great_ Picard [OF open_ball _ <a # b> holfb])

Great{_}{\kern 0pt}Picard.html

Riemann_Mapping.thy 297

using non <0 < r r zrM by auto
qed
with that show thesis
by meson
qed

theorem Casorati Weierstrass:
assumes open M z € M f holomorphic_on (M — {z})
and Al. - (f —— 1) (at 2) Al. = ((inverse o f) —— 1) (at 2)
shows closure(f (M — {z})) = UNIV
proof —
obtain a where a: — {a} C f (M — {z})
using great Picard_alt [OF assms] .
have UNIV = closure(— {a})
by (simp add: closure_interior)
also have ... C closure(f ‘* (M — {z}))
by (simp add: a closure_mono)
finally show ?thesis
by blast
qed

end

7 Moebius functions, Equivalents of Simply Con-
nected Sets, Riemann Mapping Theorem

theory Riemann_Mapping
imports Great Picard
begin

7.1 Moebius functions are biholomorphisms of the unit disc

definition Moebius_function :: [real,complex,complex] = complex where
Moebius_function = At w z. exp(i * of _real t) x (z — w) / (I — cnj w * 2)

lemma Moebius _function__simple:
Moebius_function 0 w z = (z — w) / (I — cnj w * 2)
by (simp add: Moebius_function__def)

lemma Moebius_function__eq zero:
Moebius_function t w w = 0
by (simp add: Moebius_function__def)

lemma Moebius_function__of zero:
Moebius_function t w 0 = — exp(i * of real t) * w
by (simp add: Moebius_function__def)

lemma Moebius_function_norm_1It 1:

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 298

assumes wl: norm w < 1 and zI: norm z < 1
shows norm (Moebius_function t w z) < 1
proof —
have I — cnjw x 2z # 0
by (metis complex__cnj _cnj complex_mod__sqrt_Re_mult_cnj mult.commute
mult_less cancel _rightl norm__ge_zero norm__ mult norm__one order.asym right__minus__eq
wl z1)
then have VV: 1 — w* cnjz # 0
by (metis complex__cnj _cnj complex__cnj_mult complex__cnj _one right_minus__eq)
then have I — norm (Moebius_function t w z) ~ 2 =
((1 —normw ~2) / (norm (1 — cnjw * 2z) ~2)) x (I — norm z ~ 2)
apply (cases w)
apply (cases z)
apply (simp add: Moebius_function__def divide__simps norm__divide norm_ mult)
apply (simp add: complex__norm complex_ diff complex__mult one__complex.code
complex__cnj)
apply (auto simp: algebra__simps power2__eq square)
done
then have 1 — (cmod (Moebius_function t w 2))? = (1 — cmod (w * w)) /
(ecmod (1 — cnj w x 2))? * (I — emod (z * 2))
by (simp add: norm__mult power2__eq square)
moreover have 0 < 1 — c¢mod (z * 2)
by (metis (no__types) z1 diff gt _0_iff gt mult.left _neutral norm__mult_less)
ultimately have 0 < I — norm (Moebius_function t w z) ~ 2
using <1 — cnj w % z # 0> wl norm_mult_less by fastforce
then show ?thesis
using linorder_mnot_less by fastforce
qed

lemma Moebius__function__holomorphic:
assumes norm w < 1
shows Moebius__function t w holomorphic__on ball 0 1
proof —
have x: 1 — z % w # 0 if norm z < 1 for z
proof —
have norm (1::complex) # norm (z * w)
using assms that norm__mult_less by fastforce
then show ?thesis by auto
qed
show ?thesis
unfolding Moebius_function__def
proof (intro holomorphic__intros)
show Nz.z€ball01 = 1 —cnjw* 2z # 0
by (metis x complex__cnj _cnj complex__cnj _mult complex_mod__cnj mem__ball 0
mult.commute mult__1 right_minus__eq)
qed
qed

lemma Moebius function__compose:

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 299

assumes meq: —wl = w2 and norm wl < 1 norm z < 1
shows Moebius_function 0 w1l (Moebius_function 0 w2 z) = z
proof —
have norm w2 < 1
using assms by auto
then have —wi! = zif enj w2 x z = 1
by (metis assms(3) complex _mod__cnjless _irrefl mult.right _neutral norm__mult_less
norm__one that)
moreover have z=0 if 1 — cnj w2 x z = enj wl * (z — w2)
proof —
have w2 * cnj w2 = 1
using that meq by (auto simp: algebra__simps)
then show z = 0
using «(cmod w2 < 1) complexr_mod__sqrt_Re_ mult_cnj by force
qed
moreover have z — w2 — wl * (I — cnj w2 x 2) = 2z (1 — cnj w2 * 2 — cnj
wl * (z — w2))
using meq by (fastforce simp: algebra__simps)
ultimately
show ?thesis
by (simp add: Moebius_function_def divide simps norm__divide norm__mult)
qged

lemma ball _biholomorphism,__exists:
assumes a € ball 0 1
obtains f g where fa = 0
f holomorphic_on ball 0 1 f “ball 0 1 C ball 0 1
g holomorphic_on ball 0 1 g “ball 0 1 C ball 0 1
Neezeball01 = f(gz) =2
Ne.zeball0] = g (fz) =2
proof
show Moebius_function 0 a holomorphic_on ball 0 1 Moebius_function 0 (—a)
holomorphic_on ball 0 1
using Moebius_function__holomorphic assms mem__ball _0 by auto
show Moebius_function 0 a a = 0
by (simp add: Moebius_function__eq _zero)
show Moebius _function 0 a ‘ ball 0 1 C ball 0 1
Moebius_function 0 (— a) “ball 0 1 C ball 0 1
using Moebius_function_norm_It 1 assms by auto
show Moebius_function 0 a (Moebius_function 0 (— a) z) = z
Moebius_function 0 (— a) (Moebius_function 0 a z) = z if z € ball 0 1 for
z
using Moebius_function__compose assms that by auto
qed

7.2 A big chain of equivalents of simple connectedness for
an open set

lemma biholomorphic_to disc__aux:

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 300

assumes open S connected S 0 € S and S01: S C ball 0 1
and prev: A\f. [f holomorphic_on S; Nz. z € S = fz # 0; inj_on f 5]
= 3g. g holomorphic_on S A (Vz € S. fz = (g 2)?)
shows 3 f g. f holomorphic_on S A g holomorphic_on ball 0 1 N
(Vze S. fzeball01 Ng(fz)=2) A
Vzebdl01.g2z€ SN f(gz) =2)
proof —
define F' where F = {h. h holomorphic_on S A h S Cball01 ANh 0 =0 A
inj_on h S}
have idF: id € F
using S01 by (auto simp: F_def)
then have F # {}
by blast
have imF _ne: ((Ah. norm(deriv h 0)) * F) # {}
using idF' by auto
have holF: A\h. h € F = h holomorphic_on S
by (auto simp: F_def)
obtain f where f € F' and normf: Ah. h € F = norm(deriv h 0) < norm(deriv
f0)
proof —
obtain » where r > 0 and r: ball 0 r C S
using <open S» <0 € S» openE by auto
have bdd: bdd__above ((Ah. norm(deriv h 0)) ‘ F)
proof (intro bdd__abovel exI balll, clarify)
show norm (deriv f0) < 1 / rif f € F for f
proof —
have r01: (x) (complex_of realr) ‘ball 01 C S
using that <r > 0> by (auto simp: norm_mult r [THEN subsetD])
then have f holomorphic_on (x) (complex_of real r) ‘ ball 0 1
using holomorphic__on__subset [OF holF| by (simp add: that)
then have holf: f o (Az. (r *x 2)) holomorphic_on (ball 0 1)
by (intro holomorphic_intros holomorphic__on__compose)
have f0: (f o (x) (complex_of real r)) 0 = 0
using F_def that by auto
have f ‘S C ball 0 1
using F_def that by blast
with r01 have fri: Az. norm z < 1 = norm ((f o (x)(of _real 1))z) < 1
by force
have x: ((Aw. f (r * w)) has_field derivative deriv f (r x z) * r) (at 2)
if z € ball 0 1 for z:complex
using DERIV__chain’ [where g=f] <open S»
by (meson DERIV _cmult_Id <f € F»> holF holomorphic_derivl im-
age__subset_iff
r01 that)
have dfo0: (Aw. f (r x w)) has_field_derivative deriv f 0 * 1) (at 0)
using x [of 0] by simp
have deq: deriv (Az. f (complex_of real r * x)) 0 = deriv f 0 % com-
plex_of real
using DERIV__imp_ deriv df0 by blast

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 301

have norm (deriv (f o (x) (complex_of real r)) 0) < 1
by (auto intro: Schwarz_Lemma [OF holf f0 fr1, of 0])
with (r > 0> show ?thesis
by (simp add: deq norm_mult divide__simps o__def)
qed
qed
define | where | = SUP heF'. norm (deriv h 0)
have eql: norm (deriv f 0) = 1 if le: | < norm (deriv f 0) and f € F for f
proof (rule order__antisym [OF __ le])
show cmod (deriv f 0) <1
using «f € F» bdd ¢cSUP_upper by (fastforce simp: |_def)
qed
obtain F where Fin: An. F n € F' and Flim: (An. norm (deriv (F n) 0))
—
proof —
have 3f. f € F A |[norm (deriv f 0) — I| < 1 / (Suc n) for n
proof —
obtain f where f € F and f: | < norm (deriv f 0) + 1/(Suc n)
using cSup_least [OF imF _ne, of | — 1/(Suc n)] by (fastforce simp:
L def)
then have |[norm (deriv f 0) — I| < 1 / (Suc n)
by (fastforce simp: abs_if not_less eql)
with «f € F) show ?thesis
by blast
qed
then obtain F where fF: An. (F n) € F
and fless: An. |norm (deriv (F n) 0) — 1] < 1 / (Suc n)
by metis
have (An. norm (deriv (F n) 0)) —— [
proof (rule metric_ LIMSEQ I)
fix e:real
assume ¢ > ()
then obtain N::nat where N: e > 1/(Suc N)
using nat__approx__poskE by blast
show IN. Vn>N. dist (norm (deriv (F n) 0)) 1 < e
proof (intro exl alll impl)
fix n assume N < n
have dist (norm (deriv (F n) 0)) Il < 1 / (Suc n)
using fless by (simp add: dist_norm)
also have ... < e
using N «N < ny inverse_of nat_le le_less trans by blast
finally show dist (norm (deriv (F n) 0)) I < e.
qged
qed
with fF' show #?thesis
using that by blast
qed
have AK. [compact K; K C S| = 3B.VheF.VzeK. norm (hz) < B
by (rule_tac x=1 in exI) (force simp: F_def)

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 302

moreover have range F C F
using <An. F n € F» by blast
ultimately obtain f and r :: nat = nat
where holf: f holomorphic_on S and r: strict_mono r

and limf: Ae.z € S = (An. F (rn) z) —— fz
and ulimf: AK. [compact K; K C S| = uniform_limit K (F o r) f

sequentially
using Montel [of S F F, OF <open S» holF] by auto+

have der: An z. x € S = ((F o r) n has_field_derivative ((An. deriv (F n))

or)nuz) (at x)
using <An. F n € F» <open S» holF holomorphic__derivl by fastforce
have ulim: Az. x € S = 3d>0. cball x d C S N uniform_limit (cball z d)

(F o r) f sequentially
by (meson ulimf <open S» compact__cball open__contains__cball)

obtain f':: complex=complex where f': (f has_field_derivative f' 0) (at 0)

and tof'0: (An. ((An. deriv (F n)) or)n0) —— f' 0
using has__complex_derivative__uniform__sequence [OF <open S» der ulim] <0

€ S» by metis
then have derf0: deriv f 0 = f' 0
by (simp add: DERIV__imp__deriv)
have f field_differentiable (at 0)
using field differentiable_def f' by blast
have (Az. (norm (deriv (F (r z)) 0))) —— norm (deriv f 0)
using isCont__tendsto__compose [OF continuous_norm [OF continuous__ident]

tof'0] derf0 by auto
with LIMSEQ _subseq LIMSEQ [OF Flim r] have no_df0: norm(deriv f 0)

=1

by (force simp: o__def intro: tendsto__unique)

have nonconstf: = f constant_on S
using <open S» <0 € S» no__df0 holomorphic_nonconstant [OF holf] eql [OF

_idF]
by force
show ?thesis
proof
show f € F
unfolding F_def
proof (intro Collect] conjl holf)

have norm(fz) < 1 if z € S for 2
proof (intro Lim_norm_ubound [OF __ limf] always__eventually alll that)

fix n
have F (rn) € F
by (simp add: Fin)
then show norm (F (rn) z) < 1
using that by (auto simp: F__def)
qed simp

then have fless1: norm(fz) < 1 if z € § for z
using mazimum_ modulus__principle [OF holf <open S» <connected S» <open

S+] monconstf that
by fastforce

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 303

then show f ‘S C ball 0 1
by auto
have (An. F (rn) 0) —— 0
using Fin by (auto simp: F_def)
then show f0 = 0
using tendsto__unique [OF __ limf] <0 € S) trivial_limit_sequentially by

blast
show inj on f S
proof (rule Hurwitz _injective [OF <open S» <connected S» __ holf])
show An. (F o r) n holomorphic_on S
by (simp add: Fin holF)
show AK. [compact K; K C S| = uniform_limit K(F o r) f sequentially
by (metis ulimf)
show — f constant_on S
using nonconstf by auto
show An. inj_on (For)n)S
using Fin by (auto simp: F_def)
qed
qed

show Ah. h € F = norm (deriv h 0) < norm (deriv f 0)
by (metis eql le__cases no__df0)
qed
qed
have holf: f holomorphic_on S and injf: inj _on fS and f01: f*S C ball 0 1
using «f € F) by (auto simp: F_def)
obtain g where holg: g holomorphic_on (f © 5)
and derg: Nz. z € S = deriv fz x deriv g (fz) = 1
and gf: N\z. 2€ S = ¢g(f2) = 2
using holomorphic__has_inverse [OF holf <open S» injf] by metis
have ball 01 C f°S
proof
fix a::complex
assume a: a € ball 0 1
have Fulse if A\z. 2 € S = fz # a
proof —
obtain h k where h a = 0
and holh: h holomorphic_on ball 0 1 and h01: h ‘ ball 0 1 C ball 0 1
and holk: k holomorphic_on ball 0 1 and k01: k ‘ ball 0 1 C ball 0 1
and hk: N\z. z€ ball 01 = h (k2) =z
and kh: N\z. 2 € ball 01 = k (h 2) = 2
using ball_biholomorphism__exists [OF a] by blast
have nfl: N\z. z € S = norm(f z) < 1
using «f € F) by (auto simp: F__def)
have 1: h o f holomorphic_on S
using F'_def «f € F» holh holomorphic_on__compose holomorphic__on__subset
by blast
have 2: Az. z€ S = (hof) z# 0
by (metis <h a = 0> a comp__eq_dest_lhs nfl kh mem__ball_0 that)
have 3: inj_on (ho f) S

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 304

by (metis (no__types, lifting) F_def «f € F» comp_inj_on inj _on__inversel
injf kh mem__Collect _eq inj _on__subset)
obtain ¢ where holy: ¥ holomorphic_on ((h o f) *S)
and ¥2: N\z. z€ S = ¢(h (f2)) =2 = h(f2)
proof (rule exE [OF prev [OF 1 2 3]], safe)
fix ¥
assume holY: ¥ holomorphic_on S and 92: (V2€S. (ho f) z = (¥ 2)?)
show thesis
proof
show (¥ o g o k) holomorphic_on (ho f) ©S
proof (intro holomorphic__on__compose)
show k holomorphic_on (h o f) S
using holomorphic_on__subset [OF holk] f01 h01 by force
show ¢ holomorphic_on k “ (h o f) 8
using holomorphic_on__subset [OF holg] by (force simp: kh nf1)
show ¢ holomorphic_on g ‘k “(ho f) S
using holomorphic_on__subset [OF hold] by (force simp: gf kh nfl)
qed
show (9o gok) (h(fz2))>=h(fz)ifz€ S for z
using 92 gf kh nf1 that by fastforce
qged
qed
have normy1: norm(v (h (f 2))) < 1 if z € S for 2
by (metis ¥ 2 h01 image__subset_iff mem__ball_0 nf1 norm__power power_lessl D
that)
then have 01: ¢ (h (f0)) € ball 0 1
by (simp add: <0 € S)
obtain p ¢ where p0: p (¢ (h (f0))) =0
and holp: p holomorphic_on ball 0 1 and p01: p “ball 0 1 C ball 0 1
and holq: q holomorphic_on ball 0 1 and q01: q “ball 0 1 C ball 0 1
and pg: Nz. z € ball01 = p(qz) =2
and ¢p: Nz. z€ ball01 = q(p2z) =z
using ball_biholomorphism__exists [OF 1 01] by metis
have poyY oho f e F
unfolding F_def
proof (intro Collect] conjI holf)
show p o ¥ o h o f holomorphic_on S
proof (intro holomorphic__on__compose holf)
show h holomorphic_on f S
using holomorphic__on__subset [OF holh] f01 by fastforce
show ¥ holomorphic_on h ‘f S
using holomorphic_on__subset [OF holy] by fastforce
show p holomorphic_on ¥ ‘h ‘f°S
using holomorphic__on__subset [OF holp| by (simp add: image__subset__iff
norm 1)
qed
show (potYohof) S Cball 01
using norm 1 p01 by fastforce
show (potYohof)0=20

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 305

by (simp add: p (6 (h (f 0))) = 0)
show inj on (poyYohof)S
unfolding inj on_ def o_def
by (metis ¥2 dist_0_norm gf kh mem__ball nfl normy1 gp)
qed
then have le_norm_ df0: norm (deriv (p o) o h o f) 0) < norm (deriv f 0)
by (rule normf)
have 1: k o power2 o q holomorphic__on ball 0 1
proof (intro holomorphic_on__compose holq)
show power2 holomorphic_on q ‘ ball 0 1
using holomorphic__on__subset holomorphic__on__power
by (blast intro: holomorphic__on__ident)
show k holomorphic__on power2 ¢ q ‘ ball 0 1
using ¢01 holomorphic_on__subset [OF holk]
by (force simp: norm__power abs square less 1)
qed
have 2: (k o power2 o q) 0 = 0
using p0 F_def <f € F» 401 ¢2 <0 € S) kh qp by force
have 3: norm ((k o power2 o q) z) < 1 if norm z < 1 for z
proof —
have norm ((power2 o q) z) < 1
using that q01 by (force simp: norm__power abs_square_less 1)
with k01 show ?thesis
by fastforce
qed
have Fualse if ¢: V2. norm z < 1 — (k o power2 o q) z = ¢ * z and norm
c¢=1 for ¢
proof —
have ¢ # 0 using that by auto
have norm (p(1/2)) < 1 norm (p(—=1/2)) < 1
using p01 by force+
then have (k o power2 o q) (p(1/2)) = ¢ x p(1/2) (k o power2 o q)
(r(~1/2)) = ¢ * p(—1/2)
using c by force+
then have p (1/2) =p (— (1/2))
by (auto simp: <¢c # 0y qp o__def)
then have ¢ (p (1/2)) = q (» (~ (1/2)))
by simp
then have 1/2 = — (1/2::complex)
by (auto simp: gp)
then show Fulse
by simp
qed
moreover
have Fulse if norm (deriv (k o power2 o q) 0) # 1 norm (deriv (k o power2
©q)0) <1
and le: A& norm £ < 1 = norm ((k o power2 o q) &) < norm &
proof —
have norm (deriv (k o power2 o q) 0) < 1

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 306

using that by simp
moreover have eq: deriv f 0 = deriv (ko (Az. z = 2) o q) 0 * deriv (p o
Yoholf) o
proof (intro DERIV__imp__deriv has_ field _derivative_transform__within__open
[OF DERIV__chain])
show (k o power2 o q has_field derivative deriv (k o power2 o q) 0) (at
((powohof) 0)
using 1 holomorphic__derivl p0 by auto
show (p ot o h o f has_field derivative deriv (p o 1 o h o f) 0) (at 0)
using <po o ho f € F» <open Sy <0 € S> holF holomorphic_derivl
by blast
show Az. 2 € S = (ko power2 o go (potohof))z=fzx
using ¥ 2 f01 kh normi1 qp by auto
qed (use assms in simp__all)
ultimately have cmod (deriv (p otp o ho f) 0) < 0
using le__norm__df0
by (metis linorder_not__le mult.commute mult_less _cancel left2 norm__mult)
moreover have 1 < norm (deriv f 0)
using normf [of id] by (simp add: idF)
ultimately show False
by (simp add: eq)
qed
ultimately show ?thesis
using Schwarz _Lemma [OF 1 2 3] norm__one by blast
qed
then show a € f © S
by blast
qed
then have fS: f S = ball 0 1
using F_def <f € F» by blast
then have Vzeball 01. gz € SAf(g2) =2
by (metis gf imageFE)
with fS show ?thesis
by (metis gf holf holg image__eql)
qed

locale SC _Chain =
fixes S :: complex set
assumes openS: open S
begin

lemma winding number_zero:
assumes simply__connected S
shows connected S N
(Vv z. path v A path_image v C S A
pathfinish v = pathstart v A z ¢ S — winding_number v z = 0)
using assms
by (auto simp: simply__connected__imp__connected simply _connected _imp__winding number_zero)

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 307

lemma contour_integral_zero:
assumes valid__path g path_image g C S pathfinish g = pathstart g f holomor-
phic_on S
N7 z. [path 7; path_image v C S; pathfinish v = pathstart v; z ¢ S| =
winding_number v z = 0
shows (f has__contour_integral 0) g
using assms by (meson Cauchy_theorem__global openS valid__path__imp__path)

lemma global__primitive:
assumes connected S and holf: f holomorphic_on S
and prev: N\ f. [valid_path ~v; path_image v C S; pathfinish v = pathstart ~; f
holomorphic_on S| = (f has__contour_integral 0) ~y
shows 3h. Vz € S. (h has_field_derivative f z) (at z)
proof (cases S = {})
case True then show ?thesis
by simp
next
case Fulse
then obtain ¢ where a € S
by blast
show ?thesis
proof (intro exl balll)
fix z assume z € §
then obtain d where d > 0 and d: cball z d C S
using openS open__contains_cball_eq by blast
let g = Az. (SOME g. polynomial_function g A path_image g C S A pathstart
g = a A pathfinish g = z)
show ((Az. contour_integral (?g z) f) has_field_ derivative f x)
(at z)
proof (simp add: has_field_ derivative__def has__derivative__at2 bounded_linear_mult_right,
rule Lim__transform)
show (\y. inverse(norm(y — x)) xr (contour_integral(linepath z y) f — fz
“ (y — 2))) —a> 0
proof (clarsimp simp add: Lim__at)
fix e::real assume e > 0
moreover have continuous (at) f
using openS «x € S» holf continuous_on__eq continuous__at holomor-
phic_on__imp__continuous _on by auto
ultimately obtain di where dI > 0
and di: Az’ dist 2’ ¢ < dI = dist (fz') (fz) < e/2
unfolding continuous at_eps delta
by (metis less_divide _eq numerall (1) mult_zero_left)
obtain d2 where d2 > 0 and d2: ball x d2 C S
using openS <x € S» open__contains_ball _eq by blast
have inverse (norm (y — z)) * norm (contour_integral (linepath x y) f — f
zx(y—1x)) <e
if0<dl0<d2y#axdistyz < dl distyz < d2 for y
proof —

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 308

have f contour_integrable on linepath = y
proof (rule contour_integrable _continuous_linepath [OF continuous__on__subset)])
show continuous_on S f
by (simp add: holf holomorphic__on__imp__continuous_on)
have closed__segment z y C ball x d2
by (meson dist_commute_lessI dist_in__closed__segment le_less trans
mem,_ball subsetl that(5))
with d2 show closed_segment x y C S
by blast
qged
then obtain 2 where z: (f has__contour _integral z) (linepath x y)
by (force simp: contour _integrable_on__def)
have con: (Aw. f) has_contour_integral f x * (y — z)) (linepath x y)
using has__contour_integral _const_linepath [of f z y x] by metis
have norm (z — fz x (y — z)) < (e/2) x norm (y — x)
proof (rule has__contour_integral_bound_linepath)
show ((Aw. fw — fx) has_contour_integral z — fx x (y — z)) (linepath
T Y)
by (rule has_contour _integral_diff [OF z con])
show Aw. w € closed _segment x y = norm (fw — fz) < e/2
by (metis d1 dist_norm less_le_trans not_less not_less iff gr or_eq
segment__boundl! that(4))
qed (use <e > 0> in auto)
with <e > 0> have inverse (norm (y — z)) * norm (z — fz x (y — x))
<e/2
by (simp add: field__split__simps)
also have ... < e
using <e > 0» by simp
finally show ?thesis
by (simp add: contour_integral_unique [OF z])
qed
with «d1 > 0> «d2 > O»
show 3d>0.Vz. z# z Ndist zx < d —
inverse (norm (z — z)) * norm (contour_integral (linepath x z) f —
fex(z—12) <e
by (rule_tac z=min d1 d2 in ezl) auto
qed
next
have *: (I / norm (y — z)) *gr (contour_integral (?g y) f —
(contour_integral (?g9z) f + fz x (y — 2))) =
(contour_integral (linepath x y) f — fz * (y — x)) /r norm (y — z)
if 0 <dy+# zand yz: dist yz < d for y
proof —
have y € §
by (metis subsetD d dist_commute less_eq real_def mem__cball yz)
have gzy: polynomial _function (?g x) A path_image (?g) C S A pathstart
(%9) = a A pathfinish (%9) = x
polynomial__function (?g y) A path_image (?g y) C S A pathstart
(9 y) = a A pathfinish (79 y) =y

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 309

using somel ex [OF connected__open__polynomial__connected [OF openS
<connected Sy <a € S]] «x € S «y e S
by meson+
then have vp: valid_path (%9 x) valid_path (?g y)
by (simp__all add: valid__path__polynomial_ function)
have f0: (f has_contour_integral 0) ((?g9 z) +++ linepath z y +++
reversepath (%g y))
proof (rule prev)
show wvalid_path ((?g x) +++ linepath x y +++ reversepath (?g y))
using gzy vp by (auto simp: valid_path_join)
have closed_segment x y C cball x d
using yz by (auto simp: dist _commute dest!: dist_in_closed__segment)
then have closed_segment x y C S
using d by blast
then show path_image ((?g) +++ linepath x y +++ reversepath (%g
y) C S
using gzy by (auto simp: path_image_join)
qed (use gzy holf in auto)
then have fintxzy: f contour_integrable _on linepath z y
using gzry(2) has_contour_integral_integrable vp by fastforce
have fintgx: f contour_integrable_on (?g x) f contour_integrable_on (?g y)
using opensS contour__integrable__holomorphic__simple gzy holf vp by blast+
show ?thesis
apply (clarsimp simp add: divide _simps)
using contour__integral_unique [OF f0]
apply (simp add: fintzy gry contour_integrable_reversepath contour_integral _reversepath
fintgz vp)
apply (simp add: algebra__simps)
done
qed
show (Az. (I / norm (z — x)) *g
(contour_integral (?g z) f — (contour__integral (?g z) f + fz * (2
— o) -
(contour_integral (linepath x z) f — fz * (2 — x)) /r norm (z — x))
—z— 0
apply (rule tendsto__eventually)
apply (simp add: eventually_at)
apply (rule_tac z=d in exl)
using «d > 0> * by simp
qed
qed
qged

lemma holomorphic_log:

assumes connected S and holf: f holomorphic_on S and nz: N\z. z€ § = [z
#0

and prev: \f. f holomorphic_on S = 3 h.Vz € S. (h has_field_derivative f z)
(at 2)

shows 3g. g holomorphic_on S AN (Vz € S. fz = exp(g 2))

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 310

proof —
have (\z. deriv f z | f z) holomorphic_on S
by (simp add: openS holf holomorphic__deriv holomorphic__on__divide nz)
then obtain g where g: Az. z € S = (g has_field_derivative deriv f z | f z)
(at 2)
using prev [of Az. deriv f z / f 2] by metis
have Df: Az. v € S = DERIV fz :> deriv fz
using holf holomorphic__derivl openS by force
have hfd: Az. x € S = ((Az. exp (g9 2) / [2) has_field_derivative 0) (at x)
by (rule derivative__eq intros Df g nz| simp)+
obtain ¢ where ¢: Az. 2 € S = exp (gz) / fz=c¢
proof (rule DERIV__zero__connected__constant[OF <connected S» openS finite.emptyl))
show continuous_on S (\z. exp (g z) / [2)
by (metis (full _types) openS g continuous__on__divide continuous__on__exp holf
holomorphic__on__imp__continuous__on holomorphic_on__open nz)
then show VzeS — {}. ((Az. exp (g9 2) / f 2z) has_field_derivative 0) (at z)
using hfd by (blast intro: DERIV__zero__connected__constant [OF <connected
Sy openS finite.emptyl, of Az. exp(g z) / [2])
qed auto
show ?thesis
proof (intro exl balll conjI)
have ¢ holomorphic_on S
using openS g holomorphic_on__open by blast
then show (\z. Ln(inverse ¢) + g z) holomorphic_on S
by (intro holomorphic_intros)
fix z :: complex
assume z € S
then have exp (9 2) / c=f2
by (metis ¢ divide _divide__eq_right exp_not_eq zero nonzero__mult_div_cancel left)
moreover have 1 / ¢ # 0
using <z € S) ¢ nz by fastforce
ultimately show f 2z = exp (Ln (inverse ¢) + g 2)
by (simp add: exp_add inverse__eq divide)
qed
qed

lemma holomorphic_sqrt:
assumes holf: f holomorphic_on S and nz: N\z. z€ S = fz# 0
and prev: \f. [f holomorphic_on S;Vz € S. fz # 0] = 3 g. g holomorphic_on
SANNMzeS. fz=exp(gz)
shows 3 g. g holomorphic_on S A (Vz € S. fz = (g 2)?)
proof —
obtain g where holg: g holomorphic_on S and g: N\z. z € S = fz = exp (g
z
)
using prev [of f] holf nz by metis
show ?thesis
proof (intro exI balll congl)
show (Az. exp(g z/2)) holomorphic_on S
by (intro holomorphic_intros) (auto simp: holg)

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 311

show A\z. 2 € S = fz = (exp (g 2/2))?
by (metis (no__types) g exp__double nonzero_mult _div_cancel_left times _divide__eq _right
zero__neq__numeral)
qed
qed

lemma biholomorphic_to_disc:
assumes connected S and S: S # {} S # UNIV
and prev: Af. [f holomorphic_on S;Vz € S. fz # 0] = I g. g holomorphic_on
SANzeS. fz=1(g2)?
shows 3 f g. f holomorphic_on S A g holomorphic_on ball 0 1 N
(Vze S . fzeball01 N g(fz)=2) A
(Vzeball01.gz€ SAf(gz)=2)
proof —
obtain a b where a € Sb ¢ S
using S by blast
then obtain § where 6 > 0 and 6: balla § C S
using openS openE by blast
obtain g where holg: g holomorphic_on S and eqq: N\z. z € S = 2z — b= (g
z)?
proof (rule exE [OF prev [of Az. z — b]])
show (Az. z — b) holomorphic_on S
by (intro holomorphic_intros)
qed (use <b ¢ S» in auto)
have — g constant_on S
proof —
have (a + 6/2) € balla 6 a + (§/2) # a
using <6 > 0» by (simp__all add: dist_norm)
then show ?thesis
unfolding constant_on__def
using eqq [of a] eqq [of a + §/2] <a € S» ¢
by (metis diff _add__cancel subset_eq)
qed
then have open (g ‘ ball a 0)
using open__mapping_thm [of g S ball a §, OF holg openS <connected S»] § by
blast
then obtain r where r > 0 and 7: ball (g a) r C (g ‘ ball a 6)
by (metis <0 < &> centre_in_ ball imagel openE)
have g not _r: gz ¢ ball (—(g a)) r if z € S for 2
proof
assume g z € ball (—(g a)) 7
then have — g z € ball (g a) r
by (metis add.inverse_inverse dist_minus mem__ball)
with r have — g z € (g ‘ ball a 9)
by blast
then obtain w where w: — gz =gwdista w < ¢
by auto
with 0 have w € §
by force

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 312

then have w = 2
by (metis diff _add__cancel eqg power _minus_Bit0 that w(1))
then have g z = 0

using <— g z = g w» by auto
with eqg that <b ¢ S» show False
by force
qed

then have nz: A\z. 2 € S = gz+ga# 0
by (metis <0 < r» add.commute add_ diff _cancel_left’ centre_in_ball diff _0)
let 7f = Az. (r/3) /(92 +ga)—(r/3)/(ga+ ga)
obtain i where holh: h holomorphic_on S and h a = 0 and h01: h *S C ball
01 and inj_on h S
proof
show ?f holomorphic_on S
by (intro holomorphic_intros holg nz)
have 3: [normz < 1/8; normy < 1/3] = norm(x — y) < 1 for z y::complex
using norm__triangle_ineq] [of z y] by simp
have norm ((r/3) / (9z+ ga) — (r/3) / (ga+ ga)) < 1if z € S for z
apply (rule 3)
unfolding norm__divide
using r > 0» g_not_r [OF <z € S3] g_not_r [OF <a € S)]
by (simp__all add: field split_simps dist_commute dist_norm)
then show ?f ¢S C ball 0 1
by auto
show inj _on ?2f S
using «r > 0» eqg apply (clarsimp simp: inj_on__def)
by (metis diff _add__cancel)
qged auto
obtain k where holk: k holomorphic_on (h ©S)
and derk: Nz. z € S = deriv h z x deriv k (h z) = 1
and kh: N\z. 2€ S = k(hz) = 2
using holomorphic__has__inverse [OF holh openS <inj_on h S)] by metis

have 1: open (h ©S)
by (simp add: <inj_on h S holh openS open_mapping_thm3)
have 2: connected (h < S)
by (simp add: connected__continuous_image <connected S» holh holomorphic__on__imp__continuous__on)
have 3: 0 € h ‘S
using <a € S) <h a = 0> by auto
have 4: 3g. g holomorphic_on h S A (VYz€h “S. fz = (g 2)?)
if holf: f holomorphic_on h * S and nz: Nz. z€ h *S = fz# 0inj_on f (h
“S) for f
proof —
obtain g where holg: g holomorphic_on S and eqq: N\z. 2 € S = (f o h) 2
= (g92)?
by (smt (verit) comp__def holf holh holomorphic_on_compose image _eql
nz(1) prev)
show ?thesis
proof (intro exl congl)

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 313

show ¢ o k holomorphic_on h ¢ S
by (smt (verit) holg holk holomorphic__on__compose holomorphic__on__subset
imageE image__subset__iff kh)
showVzeh ‘S . fz=((gok)2)?
using eqg kh by auto
qed
qed
obtain f g where f: f holomorphic_on h S and g¢: g holomorphic_on ball 0 1
and gf: Vzeh ‘S. fz€ball01 N g (fz) =2z and fg:V2€ball 0 1. gz € h
SAfgz) =2
using biholomorphic_to_disc_aux [OF 1 2 3 h01 4] by blast
show ?thesis
proof (intro exl conjI)
show f o h holomorphic_on S
by (simp add: f holh holomorphic_on__compose)
show k o g holomorphic__on ball 0 1
by (metis holomorphic_on__subset image_subset iff fg holk g holomor-
phic_on__compose)
qed (use fg gf kh in auto)
qed

lemma homeomorphic_to_ disc:
assumes S = UNIV V
(3f g. f holomorphic_on S N g holomorphic_on ball 0 1 A
Vze S fzebal01 Ng(fz)=2) A
(Vzeball01.gz€ SN flgz) =2)) (is__V ?P)
shows S homeomorphic ball (0::complex) 1
by (smt (verit, ccfo_SIG) holomorphic_on__imp__continuous__on homeomorphic_ball01__UNIV
homeomorphic_minimal assms)

lemma homeomorphic_to_ disc_imp__simply connected:

assumes S = {} V S homeomorphic ball (0::complex) 1

shows simply__connected S

using assms homeomorphic__simply__connected__eq convex__imp__simply _connected
by auto

end

proposition
assumes open S
shows simply connected__eq winding number__zero:
simply__connected S +—
connected S N\
(Vg z. path g A\ path_image g C S A
pathfinish g = pathstart g A\ (z ¢ S)
— winding_number g z = 0) (is ?wn0)
and simply_connected__eq contour _integral_zero:
simply__connected S +—
connected S N

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 314

(Vg f. valid_path g A path_image g C S A
pathfinish g = pathstart g A f holomorphic_on S
— (f has__contour_integral 0) g) (is ?ci0)
and simply_connected__eq global _primitive:
simply__connected S +—
connected S A
(Vf. f holomorphic_on S —
(3h.Vz. z €S — (h has_field derivative f z) (at 2))) (is ?gp)
and simply__connected__eq holomorphic__log:
simply__connected S +—
connected S A
(Vf. f holomorphic_on S AN Nz € S. fz# 0)
— (3g. g holomorphic_on S AN (Vz € S. fz = exp(g 2)))) (is ?log)
and simply_connected__eq holomorphic__sqrt:
simply__connected S +—
connected S N
(Vf. f holomorphic_on S AN (Vz € S. fz # 0)
— (3 g. g holomorphic_on S A (Vz € S. fz= (g2)?))) (is ?sqrt)
and simply_connected__eq biholomorphic_to_ disc:
simply__connected S +—
S={}vS=UNIVYV
(3f g. f holomorphic_on S A g holomorphic_on ball 0 1 A
(VzeS. fzeball01 N g(fz)=2) A
(Vzeball01.gz€ S A flgz)=2)) (is ?bih)
and simply__connected__eq homeomorphic_to_ disc:
simply__connected S +— S = {} V S homeomorphic ball (0::complex) 1

(is ?disc)
proof —
interpret SC'_Chain

using assms by (simp add: SC_Chain__def)

have ?un0 A %ci0 A 2gp N\ ?log N\ Zsqrt A 2bih A\ ?disc
proof —
have x: [a = ;8= 117 =00 = G (= mn= 00 = { { =

a]

= (a+— P A(a—) A (a0 A (a— () A
(a+— N A(a+—HAN(a— & forafydlndE
by blast

show ?thesis

apply (rule x)

using winding number_zero apply metis

using contour_integral zero apply metis

using global primitive apply metis

using holomorphic_log apply metis

using holomorphic_sqrt apply simp

using biholomorphic_to_ disc apply blast

using homeomorphic_to_disc apply blast

using homeomorphic_to_disc_imp_simply connected apply blast
done

qed

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 315

then show ?wn0 ?ci0 ?gp ?log ?sqrt ?bih ?disc
by safe
qed

corollary contractible _eq simply_connected 2d:
fixes S :: complex set
assumes open S
shows contractible S <— simply__connected S
proof
show contractible S = simply__connected S
by (simp add: contractible_imp__simply__connected)
show simply_connected S = contractible S
using assms convex__imp__contractible homeomorphic__contractible eq
simply__connected__eq homeomorphic__to_disc by auto
qed

7.3 A further chain of equivalences about components of the
complement of a simply connected set

(following 1.35 in Burckel’S book)

context SC_Chain
begin

lemma frontier _properties:
assumes simply__connected S
shows if bounded S then connected(frontier S)
else V. C € components(frontier S). = bounded C
proof —
have S = {} vV S homeomorphic ball (0::complex) 1
using simply connected__eq homeomorphic_to disc assms openS by blast
then show ?thesis
proof
assume S = {}
then show ?thesis
by simp
next
assume S01: S homeomorphic ball (0::complex) 1
then obtain ¢ f
where gim: g S = ball 0 1 and fg: N\z. 2 € S = f(gz) =«
and fim: f ‘ball 01 = S and gf: Ay. cmody < 1 = g(fy) =y
and contg: continuous_on S g and contf: continuous_on (ball 0 1) f
by (fastforce simp: homeomorphism__def homeomorphic__def)
define D where D = An. ball (0::complex) (1 — 1/(of _nat n + 2))
define A where A = An. {z::complex. 1 — 1/(of _nat n + 2) < norm z A
norm z < 1}
define X where X = An::nat. closure(f * A n)
have D01: D n C ball 0 1 for n
by (simp add: D_def ball _subset_ball iff)
have A01: A n C ball 0 1 for n

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 316

by (auto simp: A__def)
have cloX: closed(X n) for n
by (simp add: X__def)
have Xsubclo: X n C closure S for n
unfolding X__def by (metis A0I closure_mono fim image_mono)
have connected (A n) for n
using connected__annulus [of _ 0::complex] by (simp add: A__def)
then have connX: connected(X n) for n
unfolding X_ def
by (metis A01 connected__continuous__image connected__imp__connected__closure
contf continuous__on__subset)
have nestX: Xn C X mif m < n for mn
proof —
have 1 — 1 / (realm + 2) < 1 — 1 / (realn + 2)
using that by (auto simp: field _simps)
then show ?thesis
by (auto simp: X_def A_ def intro!: closure _mono)
qed
have closure S — S C ((n. X n)
proof
fix z
assume z € closure S — §
then have z € closure S © ¢ S by auto
show z € ((n. X n)
proof
fix n
have ball 0 1 = closure (D n) U A n
by (auto simp: D_def A_ def le_less trans)
with fim have Seq: S = f ‘ (closure (D n)) U f ¢ (A n)
by (simp add: image_ Un)
have continuous_on (closure (D n)) f
by (simp add: D_def cball_subset_ball_iff continuous__on__subset [OF
contf])
moreover have compact (closure (D n))
by (simp add: D__def)
ultimately have clo_ fim: closed (f ¢ closure (D n))
using compact_continuous_image compact_imp_ closed by blast
have *: (f “cball 0 (1 — 1 / (realn 4+ 2))) C S
by (force simp: D__def Seq)
show z € X n
using Seq X_def <z € closure S» «x ¢ S» clo_fim by fastforce
qed
qed
moreover have ((n. X n) C closure S — S
proof —
have (N n. X n) C closure S
using Xsubclo by blast
moreover have (((n. Xn) N S C {}
proof (clarify, clarsimp simp: X__def fim [symmetric])

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 317

fix x assume z [rule_format]: Vn. fz € closure (f * A n) and cmod z < 1
then obtain n where n: 1 / (I — norm z) < of _nat n
using reals Archimedean? by blast
with <cmod z < 1y grO0l have XX: 1 / of natn < 1 — normx and n > 0
by (fastforce simp: field__split_simps algebra__simps)-+
have fz € f ‘(D n)
using n <cmod z < 1» by (auto simp: field_split_simps algebra__simps
D _def)
moreover have f ‘D n N closure (f “ A n) ={}
proof —
haveinj_on f (D n)
unfolding inj on_ def using D01 by (metis gf mem__ball_0 subsetCE)
then have op_ fDn: open(f ‘(D n))
by (metis invariance_of _domain D__def Elementary_ Metric_ Spaces.open__ball

continuous__on__subset [OF contf DO1])
have injf: inj_on f (ball 0 1)
by (metis mem__ball 0 inj _on__def gf)
have Dn U A n C ball 0 1
using D01 A01 by simp
moreover have Dn N A n = {}
by (auto simp: D_def A__def)
ultimately have f ‘Dnnf‘An={}
by (metis A01 D01 image_is_empty inj _on__image_ Int injf)
then show ?thesis
by (simp add: open__Int_closure_eq empty [OF op_ fDn])
ged
ultimately show Fulse
using z [of n] by blast
qed
ultimately
show ((n. X n) C closure S — S
using closure__subset disjoint_iff not equal by blast
qed
ultimately have closure S — S = ((\n. X n) by blast
then have frontierS: frontier S = ((\n. X n)
by (simp add: frontier_def openS interior_open)
show ?thesis
proof (cases bounded S)
case True
have bouX: bounded (X n) for n
by (meson True Xsubclo bounded__closure bounded__subset)
have compaX: compact (X n) for n
by (simp add: bouX cloX compact_eq bounded_ closed)
have connected ((\n. X n)
by (metis nestX compaX connX connected nest)
then show ?thesis
by (simp add: True <frontier S = ((n. X n))
next

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 318

case Fulse
have unboundedX: — bounded(X n) for n
proof
assume bXn: bounded(X n)
have continuous_on (cball 0 (1 — 1 / (2 + real n))) f
by (simp add: cball _subset ball_iff continuous on__subset [OF conif])
then have bounded (f “ cball 0 (1 — 1 / (2 + real n)))
by (simp add: compact_imp__bounded [OF compact__continuous__image))
moreover have bounded (f * A n)
by (auto simp: X_ def closure subset image subset iff bounded_ subset
[OF bXn])
ultimately have bounded (f ‘ (cball 0 (1 — 1/(2 + real n)) U A n))
by (simp add: image_Un)
then have bounded (f ‘ ball 0 1)
apply (rule bounded__subset)
apply (auto simp: A__def algebra__simps)
done
then show Fulse
using Fualse by (simp add: fim [symmetric))
qed
have clo_INTX: closed((range X))
by (metis cloX closed_INT)
then have lcX: locally compact ([(range X))
by (metis closed _imp _locally _compact)
have Fulse if C: C € components (frontier S) and boC: bounded C for C
proof —
have closed C
by (metis C closed _components frontier _closed)
then have compact C
by (metis boC compact_eq bounded_closed)
have Cco: C € components ([(range X))
by (metis frontierS C)
obtain K where C C K compact K
and Ksub: K C () (range X) and clo: closed([) (range X) — K)
proof (cases {k. C C k A compact k N openin (top_of set ([(range X)))
k} ={})
case True
then show ?thesis
using Sura_Bura [OF lcX Cco <compact C»] boC
by (simp add: True)
next
case False
then obtain L where compact L C C L and K: openin (top_of set
(Nz. X)) L
by blast
show ?thesis
proof
show L C [(range X)
by (metis K openin__imp__subset)

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 319

show closed ([(range X) — L)
by (metis closedin__diff closedin__self closedin_closed_trans [OF _

clo INTX] K)
qged (use <compact Ly «C C Ly in auto)
qged

obtain U V where open U open V and compact (closure U)
and V:(N(range X) — K C Vand U: K CUUNV ={}
by (metis Diff _disjoint separation_normal_compact [OF <compact K>
clo])
then have U N () (range X) — K) = {}
by blast
have (closure U — U) N ((n. X n N closure U) # {}
proof (rule compact_imp_ fip)
show compact (closure U — U)
by (metis <compact (closure U)> <open Us compact_diff)
show AT. T € range (An. X n N closure U) = closed T
by clarify (metis cloX closed_Int closed__closure)
show (closure U — U) N O F # {}
if finite F and F: F C range (An. X n N closure U) for F
proof
assume empty: (closure U — U) N F = {}
obtain J where finite J and J: F = (An. X n N closure U) ‘J
using finite__subset_image [OF «finite F» F| by auto
show Fulse
proof (cases J = {})
case True
with J empty have closed U
by (simp add: closure__subset__eq)
have C # {}
using C in__components _nonempty by blast
then have U # {}
using <K C U» <C C K> by blast
moreover have U # UNIV
using <compact (closure U)» by auto
ultimately show Fulse
using <open U» <closed U» clopen by blast
next
case Fulse
define j where j = Maz J
have j € J
by (simp add: False «finite J» j_def)
have jmaz: Am. m € J = m < j
by (simp add: j_def <finite J»)
have (| (An. X n N closure U) ‘J) = X j N closure U
using False jmax nestX <j € J» by auto
then have XU: X j N closure U =XjN U
using J closure_subset empty by fastforce
then have openin (top_of set (X j)) (X j N closure U)
by (simp add: openin__open__Int <open U»)

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 320

moreover have closedin (top_of set (X j)) (X j N closure U)
by (simp add: closedin__closed_Int)
moreover have X j N closure U # X j
by (metis unboundedX <compact (closure U)» bounded_subset
compact__eq _bounded__closed inf.order _iff)
moreover have X j N closure U # {}
by (metis Cco Ksub UNIV_I «C C Ky <K C Uy XU bot.extremum__ uniquel
in__components_mazimal le_ INF _iff le_inf iff)
ultimately show Fulse
using connX [of j] by (force simp: connected_clopen)
qed
qed
qged
moreover have (((n. X n N closure U) = ((\n. X n) N closure U
by blast
moreover have z € U if An. z € X nz € closure U for z
by (metis Diff iff INT I UV <open V> closure_iff nhds not_empty
order.refl subsetD that)
ultimately show Fulse
by (auto simp: open__Int_closure_eq _empty [OF <open V>, of U))
qed
then show ?thesis
by (auto simp: False)
qed
qed
qged

lemma unbounded__complement__components:
assumes C: C' € components (— S) and S: connected S
and prev: if bounded S then connected(frontier S)
else V C' € components(frontier S). - bounded C
shows — bounded C
proof (cases bounded S)
case True
with prev have S # UNIV and confr: connected(frontier S)
by auto
obtain w where C_ccsw: C = connected__component_set (— S) w and w ¢ S
using C by (auto simp: components_def)
show ?thesis
proof (cases S = {})
case True with C show ?thesis by auto
next
case Fulse
show ?thesis
proof
assume bounded C
then have outside C # {}
using outside bounded__nonempty by metis

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 321

then obtain z where z: = bounded (connected_component_set (— C) z)
and z ¢ C
by (auto simp: outside__def)
have clo_ccs: closed (connected__component_set (— S) z) for x
by (simp add: closed__Compl closed__connected__component opensS)
have connected__component_set (— S) w = connected__component_set (— S)

proof (rule joinable__connected__component_eq [OF confr])
show frontier S C — S
using openS by (auto simp: frontier_def interior_open)
have False if connected__component_set (— S) w N frontier (— S) = {}
proof —
have C N frontier S = {}
using that by (simp add: C_ccsw)
moreover have closed C
using C_ccsw clo__ccs by blast
ultimately show Fulse
by (metis C «S # {} «S # UNIV) C_ccsw bot_eq sup_iff con-
nected__component__eq UNIV frontier Int_closed
frontier_ _closed frontier _complement frontier _eq empty fron-
tier_of _components subset in__components_maximal inf.orderE)
qged
then show connected_component_set (— S) w N frontier S # {}
by auto
have «: [frontier C C C; frontier C C F; frontier C # {}] = C N F #
{} for C F::complex set
by blast
have connected _component_set (— S) z N frontier (— S) # {}
proof (rule x)
show frontier (connected_component_set (— S) z) C connected _component__set
(- 9) 2
by (auto simp: closed_ Compl closed__connected__component frontier _def
openS)
show frontier (connected_component_set (— S) z) C frontier (— §)
using frontier _of connected__component__subset by fastforce
have connected (closure S — 5)
by (metis confr frontier__def interior_open openS)
moreover have — bounded (—59)
by (simp add: True cobounded_imp _unbounded)
moreover have bounded (connected_component_set (— S) w)
using C_ccsw <bounded C» by auto
ultimately have z ¢ S
using «w ¢ S» openS
by (metis Compll Compl_eq Diff UNIV connected UNIV closed_ closure
closure__subset
connected__component__eq self connected__diff open_ from__closed
subset_UNIV)
then have connected__component_set (— S) z # {}
by (metis Compll connected__component _eq _empty)

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 322

then show frontier (connected_component_set (— S) z) # {}
by (metis False «S # UNIV> connected _component_eq UNIV fron-
tier__complement frontier _eq empty)
qed
then show connected__component_set (— S) z N frontier S # {}
by auto
qed
then show Fulse
by (metis C_ccsw Compl_iff «w ¢ S» <z ¢ C» connected__component__eq _empty
connectedfcomponentiz'demp)
qed
qed
next
case Fulse
obtain w where C_ccsw: C' = connected__component_set (— S) w and w ¢ S
using C by (auto simp: components_ def)
have frontier (connected__component_set (— S) w) C connected__component__set

(=S5 w
by (simp add: closed _Compl closed__connected _component frontier _subset__eq
opensS)

moreover have frontier (connected__component_set (— S) w) C frontier S
using frontier__complement frontier_ _of connected__component_subset by blast
moreover have frontier (connected_component_set (— S) w) # {}
by (metis C C_ccsw False bounded__empty compl_top__eq connected__component_eq UNIV
double__compl frontier _not_empty in__components_nonempty)
ultimately obtain z where zin: z € frontier S and z: z € connected__component__set
(=9 w
by blast
have connected_component_set (frontier S) z € components(frontier S)
by (simp add: <z € frontier S componentsl)
with prev False have — bounded (connected__component_set (frontier S) z)
by simp
moreover have connected__component (— S) w = connected__component (— S)
z
using connected__component__eq [OF z] by force
ultimately show “thesis
by (metis C_ccsw SC_Chain.openS SC_Chain__azxioms bounded__subset closed__Compl
connected__component_mono frontier _complement frontier _subset_eq)
qed

lemma empty inside:
assumes connected S \C. C € components (— S) = — bounded C
shows inside S = {}

using assms by (auto simp: components_def inside _def)

lemma empty inside_imp__simply connected:

[connected S; inside S = {}] = simply__connected S

by (metis Compll inside_ Un__outside openS outside _mono simply__connected__eq winding number_zero
subsetCFE sup__bot.left _neutral winding _number _zero__in__outside)

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 323

end

proposition
fixes S :: complex set
assumes open S
shows simply connected__eq frontier properties:
simply__connected S +—
connected S N
(if bounded S then connected(frontier S)
else (VY C € components(frontier S). =bounded C)) (is ?fp)
and simply_connected__eq unbounded__complement__components:
simply__connected S +—
connected S N (W C € components(— S). ~bounded C) (is Zucc)
and simply_connected__eq empty_ inside:
simply__connected S +—
connected S N inside S = {} (is %ei)
proof —
interpret SC_Chain
using assms by (simp add: SC_Chain__def)
have 7fp A Zucc N Zei
using empty inside empty_inside__imp_ simply_connected frontier _properties

unbounded__complement__components winding _number__zero by blast
then show ?fp Zucc %ei
by blast+
qged

lemma simply_connected_iff simple:

fixes S :: complex set

assumes open S bounded S

shows simply__connected S +— connected S A connected(— S) (is ?lhs = ?rhs)
proof

show ?lhs = ?rhs

by (metis DIM__complex assms cobounded__has__bounded__component double__complement
dual__order.order__iff _strict

simply__connected__eq _unbounded__complement__components)

show ?rhs = ?lhs

by (simp add: assms connected_frontier _simple simply connected _eq frontier _properties)
qed

lemma subset_simply connected imp__inside__subset:
fixes A :: complex set
assumes simply_connected A open A B C A
shows inside B C A
by (metis assms Diff _eq _empty_iff inside__mono subset__empty simply__connected__eq empty_inside)

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 324

7.4 Further equivalences based on continuous logs and sqrts

context SC_Chain
begin

lemma continuous__log:
fixes f :: complex=complex
assumes S: simply__connected S
and contf: continuous_on S f and nz: Nz. z€ S = fz# 0
shows Jg. continuous_on S g A (Vz € S. fz = exp(g 2))
proof —
consider S = {} | S homeomorphic ball (0::complez) 1
using simply_connected__eq _homeomorphic_to_disc [OF openS| S by metis
then show ?thesis
proof cases
case 1 then show ?thesis
by simp
next
case 2
then obtain h £k :: complex=complex
where kh: N\z. 2 € S = k(hz) = z and him: h ‘S = ball 0 1
and conth: continuous _on S h
and hk: Ay. y € ball 0 1 = h(ky) = y and kim: k ‘ball 01 = S
and contk: continuous_on (ball 0 1) k
unfolding homeomorphism__def homeomorphic_def by metis
obtain g where contg: continuous_on (ball 0 1) g
and expg: N\z. 2 € ball 01 = (f o k) 2 = exp (g 2)
proof (rule continuous_logarithm__on__ball)
show continuous_on (ball 0 1) (f o k)
using contf continuous _on__compose contk kim by blast
show N\z. z € ball01 = (fok)z#£ 0
using kim nz by auto
qed auto
then show ?thesis
by (metis comp__apply conth continuous__on__compose him imagel kh)
qed
qed

lemma continuous sqrt:
fixes f :: complex=complex
assumes contf: continuous_on S f and nz: N\z. z€ S = fz# 0
and prev: \f::complex=complex.
[continuous_on S f; Nz. 2z € S = fz # 0]
= Jg. continuous_on S g A Vz € S. fz= exp(g 2))
shows Jg. continuous_on S g A (Vz € S. fz=(g2)%
proof —
obtain g where contg: continuous_on S g and geq: \z. 2z € S = fz = exp(y
2)
using contf nz prev by metis
show ?thesis

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 325

proof (intro exl balll conjI)
show continuous_on S (Az. exp(g z/2))
by (intro continuous__intros) (auto simp: contg)
show \z. 2 € § = fz = (exp (g 2/2))?
by (metis (no__types, lifting) divide__inverse exp__double geq mult.left _commute
mult.right_neutral right__inverse zero__neq numeral)
qed
qed

lemma continuous_sqrt_imp__simply__connected:
assumes connected S
and prev: \f::complex=-complez. [continuous_on S f; ¥z € S. fz # 0]
= Jg. continuous_on SgA (Vz € S. fz=(g2)?)
shows simply_connected S
proof (clarsimp simp add: simply_connected__eq holomorphic_sqrt [OF opensS]
<connected S)
fix f
assume f holomorphic_on S and nz: Vz€S. fz # 0
then obtain g where contg: continuous_on S g and geq: \z. 2z € S = fz =
(g 2)
by (metis holomorphic__on__imp__continuous__on prev)
show 3g. g holomorphic_on S A (V2€8. fz = (g 2)?)
proof (intro exl balll conjI)
show ¢ holomorphic_on S
proof (clarsimp simp add: holomorphic__on__open [OF openS])
fix z
assume z € S
with nz geq have g z # 0
by auto
obtain 6 where 0 < § Aw. [w € §; dist w z < 0] = dist (g w) (g 2) <
cmod (g z)
using contg [unfolded continuous_on__iff] by (metis <g z # 0 <z € S»
zero__less_norm__iff)
then have 0: Aw. [we S;we ballzd] = gw+ gz # 0
by (metis add.commute add__cancel _right left dist _commute dist_complez__def
mem,__ball
norm__increases__online norm_ not_less_zero norm__zero order_less _asym)
have «: (Az. (fx — fz2)/ (x —2)/ (9gx+ g2) —z— derivfz [/ (g2z+ g 2)
proof (intro tendsto__intros)
show (Az. (fz — f2) / (x — 2)) —z— deriv f 2
using <f holomorphic_on S» <z € S has_field__derivative__iff holomor-
phic__derivl openS by blast
show g —z— g 2
using <z € S» contg continuous_on__eq continuous__at isCont__def openS
by blast
qed (simp add: <g z # 0»)
then have (g has_field_derivative deriv f z /| (g z + g 2)) (at 2)
unfolding has_field derivative iff
proof (rule Lim_ transform__within__open)

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 326

show open (ball z 6 N S)
by (simp add: openS open__Int)
show z € ball 26 N S
using z € S) <0 < & by simp
show Az. [z € ball 26 N S; © # 7]
= (fe—f2)/(@—2)/(gr+g2)=(gz—g2)/(z—2)
using § <z € S»
apply (simp add: geq field split _simps power2_ _eq square)
by (metis distrib_left mult__cancel_right)

qed
then show 3f’. (g has_field derivative f') (at z) ..
qed
qed (use geq in auto)
qed
end
proposition

fixes S :: complex set
assumes open S
shows simply__connected__eq continuous__log:
simply__connected S +—
connected S N\
(V f::complex=-complex. continuous_on Sf AN Nze S. fz# 0)
— (3 g. continuous_on SgA Nz € S. fz=exp (g2)))) (is ?log)
and simply_connected__eq continuous _sqrt:
simply__connected S +—
connected S N
(V f::complex=complex. continuous_on S f AN Nze S. fz+# 0)
— (3g. continuous_on S g A (Vz € S. fz=(g2)?)) (is ?sqrt)
proof —
interpret SC'_Chain
using assms by (simp add: SC_Chain__def)
show ?log ?sqrt
using local.continuous_log winding number__zero continuous_sqrt continu-
ous__sqrt_imp__simply__connected
by auto
qged

7.5 More Borsukian results

lemma Borsukian__componentwise__eq:

fixes S :: ‘a::euclidean_ space set

assumes S: locally connected S V compact S

shows Borsukian S «— (¥ C € components S. Borsukian C)
proof —

have x: ANR(—{0::complex})

by (simp add: ANR__delete open_ Compl open__imp_ANR)
show ?thesis

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 327

using cohomotopically trivial _on__components [OF assms x| by (auto simp:
Borsukian__alt)
qed

lemma Borsukian__componentwise:

fixes S :: ‘a::euclidean__space set

assumes locally connected S V compact S \C. C € components S = Borsukian
C

shows Borsukian S

by (metis Borsukian__componentwise__eq assms)

lemma simply connected__eq Borsukian:
fixes S :: complex set
shows open S = (simply__connected S «— connected S A Borsukian S)
by (auto simp: simply__connected__eq _continuous__log Borsukian__continuous__logarithm)

lemma Borsukian__eq simply connected:

fixes S :: complex set

shows open S = Borsukian S «— (¥ C' € components S. simply connected C)

by (meson Borsukian__componentwise__eq in__components__connected open__components
open__imp__locally__connected simply__connected__eq Borsukian)

lemma Borsukian__separation__open_ closed:
fixes S :: complex set
assumes S: open S V closed S and bounded S
shows Borsukian S <— connected(— S)
using S
proof
assume open S
show ?thesis
unfolding Borsukian__eq _simply_connected [OF <open S»)
by (metis <open S» <bounded S» bounded__subset in__components__mazimal non-
separation__by__component__eq open__components simply__connected_iff _simple)
next
assume closed S
with <bounded S) show ?thesis
by (simp add: Borsukian__separation__compact compact__eq bounded__closed)
qged

7.6 Finally, the Riemann Mapping Theorem

theorem Riemann_mapping theorem:
open S A simply_connected S <—
S={}v S=UNIVV
(3f g. f holomorphic_on S A g holomorphic_on ball 0 1 A
(Vze S. fzebdl01 N g(fz)=2) A
(Vzebal01.gz€ SAf(gz)=2)
(is _ = %rhs)
proof —

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 328

have simply_connected S <— %rhs if open S
by (simp add: simply connected _eq biholomorphic_to_disc that)
moreover have open S if ?rhs
proof —
{fixfg
assume g: g holomorphic_on ball 0 1 V2€ball 0 1. gz € S A f (g2) ==z
and VzeS. cmod (fz) <1 ANg(fz)==z2
then have S = ¢ ‘ (ball 0 1)
by force
then have open S
by (metis open_ball g inj _on__def open__mapping thm3)
}

with that show open S by auto
qed
ultimately show ¢thesis by metis
qed

7.7 Applications to Winding Numbers

lemma simply_connected_inside__simple__path:

fixes p :: real = complex

shows simple _path p = simply__connected(inside(path__image p))

using Jordan__inside__outside connected__simple_path__image inside__simple_curve_imp_ closed
simply__connected__eq _frontier _properties

by fastforce

lemma simply connected__ Int:

fixes S :: complex set

assumes open S open T simply__connected S simply__connected T connected (S
NnT

shows simply_connected (S N T)

using assms by (force simp: simply__connected _eq winding _number__zero open__Int)

7.8 The winding number defines a continuous logarithm for
the path itself

lemma winding number__as__continuous__log:
assumes path p and (: ¢ ¢ path_image p
obtains ¢ where path g
pathfinish ¢ — pathstart ¢ = 2 * of _real pi x 1 * winding_number p
Nt.t€{0..1} = pt=C_+ exp(qt)

proof —
let 2g = At. 2 x of real pi x i x winding _number(subpath 0t p) ¢ + Ln(pathstart
p—9)
show ?thesis
proof
have x: continuous (at t within {0..1}) (Az. winding _number (subpath 0 x p)
¢)

ift: t € {0..1} for ¢

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 329

proof —
let B = ball (p t) (norm(p t — ())
have p t # ¢

using path__image def that ¢ by blast
then have simply_connected ?B
by (simp add: convex_imp_simply connected)
then have Af::complex=complex. continuous_on ?B f N (V¢ € ?B. f (#

0)
— (3 g. continuous_on ?B g A (V¢ € ?B. f ¢ = exp (g ()))
by (simp add: simply__connected__eq _continuous__log)
moreover have continuous _on ?B (Aw. w — ()
by (intro continuous__intros)
moreover have (Vz € B. z — (# 0)
by (auto simp: dist_norm)
ultimately obtain g where contg: continuous _on ?B g
and geq: Nz. z € B = z — (= exp (g 2) by blast
obtain d where 0 < d and d:
Nz. [z € {0..1}; distz t < d] = dist (pz) (pt) < cmod (pt — ()
using <path p» t unfolding path_def continuous_on__iff
by (metis <p t # (> right_minus_eq zero_less_norm__iff)
have ((Az. winding_number (Aw. subpath 0 zp w — () 0 —
winding_number (Aw. subpath 0t p w — {) 0) —— 0)
(at t within {0..1})
proof (rule Lim_ transform_within [OF _ «d > 0)])
have continuous (at t within {0..1}) (g o p)
proof (rule continuous__within__compose)
show continuous (at t within {0..1}) p
using <path p> continuous on__eq continuous within path__def that by
blast

show continuous (at (p t) within p ‘{0..1}) g
by (metis (no__types, lifting) open__ball UNIV_T <p t # (> centre__in__ball
contg continuous__on__eq _continuous__at continuous_within__topological right _minus__eq
zero__less_norm__iff)
qed
with LIM zero have ((Au. (g (subpath t wp 1) — g (subpath t u p 0)))
—— 0) (at t within {0..1})
by (auto simp: subpath__def continuous_within o__def)
then show ((Au. (g (subpath t up 1) — g (subpath t up 0)) / (2 x of _real
pi * 1)) —— 0)
(at t within {0..1})
by (simp add: tendsto_divide_ zero)
show (g (subpath t up 1) — g (subpath t wp 0)) / (2 * of _real pi * i) =
winding_number (Aw. subpath 0 v p w — ¢) 0 — winding_number (Aw.
subpath 0t p w — () 0
ifue{0.1} 0 < distutdistut < dfor u
proof —
have closed_segment t w C {0..1}
using closed__segment__eq real ivl t that by auto
then have Ar. [r € closed_segment t u] = dist (p t) (p r) < cmod (p

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 330

P Q)
by (smt (verit, best) d dist_commute dist_in_ closed_segment subsetD
«dist ut < dv)
then have piB: path_image(subpath ¢t u p) C ?B
by (auto simp: path__image__subpath__gen)
have *: path (g o subpath t u p)
proof (rule path__continuous__image)
show path (subpath t u p)
using <path p» t that by auto
show continuous_on (path_image (subpath t u p)) g
using piB contg continuous _on__subset by blast
qed
have (g (subpath t wp 1) — g (subpath t w p 0)) / (2 % of _real pi * i)
= winding_number (exp o g o subpath t u p) 0
using winding_number_compose__exp [OF %]
by (simp add: pathfinish__def pathstart _def o__assoc)
also have ... = winding_number (Aw. subpath t up w —) 0
proof (rule winding _number__cong)
have exp(gy) =y — (if y € (subpath t v p) ‘{0..1} for y
by (metis that geq path_image_def piB subset_eq)
then show Az. [0 < z; 2 < 1] = (exp o g o subpath t u p) © = subpath
tupz —
by auto
qed
also have ... = winding_number (Aw. subpath 0 up w — ¢) 0 —
winding_number (Aw. subpath 0t p w — ¢) 0
apply (simp add: winding_number_offset [symmetric])
using winding _number__subpath__combine [OF <path p» (, of 0t u] <t €
{0..1} «u € {0..1}
by (simp add: add.commute eq diff _eq)
finally show ?thesis .
ged
qed
then show ?thesis
by (subst winding_number_offset) (simp add: continuous_within LIM_zero__iff)
qed
show path ?q
unfolding path_def
by (intro continuous__intros) (simp add: continuous _on__eq continuous_within

9

have (£ p 0
by (metis ¢ pathstart_def pathstart _in_path_image)
then show pathfinish ?q — pathstart 2q = 2 % of _real pi x i x winding_number
p<
by (simp add: pathfinish__def pathstart _def)
show pt=(+ exp (9gt)if t € {0..1} for ¢
proof —
have path (subpath 0t p)

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 331

using <path p> that by auto
moreover
have ¢ ¢ path_image (subpath 0 t p)
using ¢ [unfolded path__image__def)] that by (auto simp: path__image__subpath)
ultimately show ?thesis
using winding _number__exp_ 2pi [of subpath 0t p] <« # p 0>
by (auto simp: exp_add algebra__simps pathfinish__def pathstart def sub-
path__def)
qed
qged
qged

7.9 Winding number equality is the same as path/loop ho-
motopy in C - 0

lemma winding number__homotopic_loops null_eq:
assumes path p and (: ¢ ¢ path_image p
shows winding_number p (= 0 <— (3 a. homotopic_loops (—{C}) p (At. a))
(is ?lhs = ?rhs)
proof
assume [simp]: ?lhs
obtain ¢ where path q
and geq: pathfinish ¢ — pathstart ¢ = 2 * of _real pi * i * winding_number
p<
and peq: N\t. t € {0..1} = pt =C(+ exp(q)
using winding_number_as__continuous_log [OF assms] by blast
have x: homotopic_with__canon (Ar. pathfinish r = pathstart r)
{0..1} (—{¢}) (Aw. ¢ + exp w) o q) ((Aw. ¢ + exp w) o (At. 0))
proof (rule homotopic_with__compose__continuous_left)
show homotopic_with__canon (Af. pathfinish (Aw. ¢ + exp w) o f) = pathstart
(. C + eap w) o 1)
{0..1} UNIV q (At. 0)
proof (rule homotopic_with_mono, simp__all add: pathfinish__def pathstart__def)
have homotopic_loops UNIV q (At. 0)
by (rule homotopic_loops_linear) (use qeq <path ¢ in <auto simp: path__defs»)
then have homotopic_with (Ar. r 1 = r 0) (top_of_set {0..1}) euclidean g
(At. 0)
by (simp add: homotopic_loops _def pathfinish__def pathstart_def)
then show homotopic_with (Ah. exp (h 1) = exp (h 0)) (top_of set {0..1})
euclidean q (A\t. 0)
by (rule homotopic__with_mono) simp
qed
show continuous_on UNIV (Aw. ¢ + exp w)
by (rule continuous__intros)+
qged auto
then have homotopic_with__canon (Ar. pathfinish r = pathstart r) {0..1} (—{¢})
p(Ae. (+ 1)
by (rule homotopic_with__eq) (auto simp: o__def peq pathfinish__def pathstart _def)
then have homotopic_loops (—{C}) p (A\t. (+ 1)

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 332

by (simp add: homotopic_loops_def)
then show ?rhs ..
next
assume ?rhs
then obtain a where homotopic_loops (—{C}) p (At. a) ..
then have winding_number p (= winding _number (At. a) ¢ a # ¢
using winding number__homotopic_loops homotopic_loops imp_subset by
(force simp:)+
then show ?lhs
using winding_number_zero_const by auto
qged

lemma winding _number__homotopic__paths null _explicit_eq:
assumes path p and (: ¢ ¢ path_image p
shows winding_number p (= 0 <— homotopic_paths (—{C}) p (linepath
(pathstart p) (pathstart p))
(is ?lhs = %rhs)
proof
assume ?lhs
then show ?rhs
using homotopic__loops_imp__homotopic_paths null
by (force simp: linepath__refl winding _number _homotopic_loops_null_eq [OF
assms|)
next
assume ?rhs
then show ?¢lhs
by (metis ¢ pathstart_in__path_image winding number__homotopic__paths wind-
ing_number_trivial)
qed

lemma winding number__homotopic__paths null eq:

assumes path p and (: ¢ ¢ path_image p

shows winding_number p { = 0 <— (3 a. homotopic_paths (—{C}) p (At. a))

(is ?lhs = ?rhs)

proof

assume ?lhs

then show ?rhs

by (auto simp: winding_number_homotopic__paths_null__explicit_eq [OF assms]
linepath__refl)
next

assume ?rhs

then show ?lhs

by (metis ¢ homotopic_paths_imp__pathfinish pathfinish__def pathfinish__in_ path_image
winding_number_homotopic__paths winding number_zero__const)
qed

proposition winding number_homotopic__paths eq:
assumes path p and (p: ¢ ¢ path_image p
and path ¢ and (q: ¢ ¢ path_image q

Riemann{_}{\kern 0pt}Mapping.html

Riemann Mapping.thy 333

and gp: pathstart ¢ = pathstart p pathfinish ¢ = pathfinish p
shows winding _number p (= winding_number q (<— homotopic_ paths
(—{<H pa
(is 2lhs = ?rhs)
proof
assume ?lhs
then have winding_number (p +++ reversepath q) (= 0
using assms by (simp add: winding _number_join winding number__reversepath)
moreover
have path (p +-++ reversepath q) ¢ ¢ path_image (p +++ reversepath q)
using assms by (auto simp: not_in__path_image_join)
ultimately obtain ¢ where homotopic_paths (— {C}) (p +++ reversepath q)
(linepath a a)
using winding number__homotopic__paths null_explicit _eq by blast
then show ?rhs
using homotopic__paths__imp_pathstart assms
by (fastforce simp: dest: homotopic_paths__imp__homotopic_loops homotopic__paths_loop_ parts)
qed (simp add: winding _number__homotopic__paths)

lemma winding number_homotopic_loops eq:
assumes path p and (p: ¢ ¢ path_image p
and path ¢ and (q: ¢ ¢ path_image q
and loops: pathfinish p = pathstart p pathfinish ¢ = pathstart q
shows winding _number p {(= winding _number q («— homotopic_loops
(—{<H pa
(is ?lhs = %rhs)
proof
assume L: ?lhs
have pathstart p # ¢ pathstart q # ¢
using (p (q by blast+
moreover have path_connected (—{(})
by (simp add: path__connected__punctured__universe)
ultimately obtain r where path r and rim: path_image r C —{(}
and pas: pathstart r = pathstart p and paf: pathfinish r =
pathstart q
by (auto simp: path__connected_def)
then have pathstart v # ¢ by blast
have homotopic_loops (— {¢}) p (r +++ g +++ reversepath r)
proof (rule homotopic_paths _imp__homotopic_loops)
have path (r +++ ¢ +++ reversepath r)
by (simp add: <path > <path ¢ loops paf)
moreover have ¢ ¢ path_image (r +++ q +++ reversepath r)
by (metis (q not_in_path_image_join path_image_reversepath rim sub-
set__ Compl__singleton)
moreover have homotopic_loops (— {C}) (r +++ q +-++ reversepath r) q
using <«path ¢» <path r (q homotopic_loops__conjugate loops(2) paf rim by
blast
ultimately show homotopic_paths (— {¢}) p (r +++ ¢ +++ reversepath r)
using loops pathfinish_join pathfinish__reversepath pathstart join

Riemann{_}{\kern 0pt}Mapping.html

Complex_Singularities.thy 334

by (metis L {p <path p» pas winding_number__homotopic_loops winding number__homotopic__paths eq)
qed (use loops pas in auto)
moreover have homotopic_loops (— {C}) (r +++ q +++ reversepath r) q
using rim (q by (auto simp: homotopic_loops__conjugate paf <path ¢> <path r>
loops)
ultimately show ¢rhs
using homotopic_loops trans by metis
qed (simp add: winding _number__homotopic_loops)

end

theory Complex_ Singularities
imports Conformal Mappings

begin

7.10 Non-essential singular points

lemma at_to 0" NO_MATCH 0 z = at z = filtermap (Az. = + z) (at 0)
for z :: 'a::real _normed_vector
by (rule at_to_0)

lemma nhds_to_0: nhds (z :: 'a :: real_normed_vector) = filtermap ((+) z) (nhds
0)
proof —
have (A\za. za — — z) = (+) z
by auto
thus ?thesis
using filtermap_nhds_shift[of —z 0] by simp
qed

lemma nhds _to_ 0" NO_MATCH 0 x = nhds (x :: 'a :: real_normed_vector)
= filtermap ((+) z) (nhds 0)
by (rule nhds_to_0)

definition
is_pole :: ('a::topological _space = 'b::real_normed__vector) = 'a = bool
where is_pole fa = (LIM z (at a). f x :> at_infinity)

lemma is pole cong:
assumes eventually (Az. fx = g z) (at a) a=b
shows is_pole f a «— is_pole g b
unfolding is pole def using assms by (intro filterlim__cong,auto)

lemma is_pole_transform:
assumes is_pole f a eventually (Az. fx = g z) (at a) a=b
shows is_pole g b
using is_pole cong assms by auto

lemma is_pole_ shift_iff:

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 335

fixes [:: ('a::real_normed_vector = 'b::real_normed__vector)
shows is_pole (f o (+) d) a = is_pole f (a + d)
by (metis add__diff _cancel_right’ filterlim__shift iff is_pole_ def)

lemma is pole tendsto:
fixes f:: (‘a::topological _space = 'b::real _normed_div__algebra)
shows is_pole f v = ((inverse o f) —— 0) (at z)
unfolding is pole def
by (auto simp add: filterlim__inverse__at_iff[symmetric] comp__def filterlim__at)

lemma is pole_ shift_0:
fixes [:: ('a::real_normed_vector = 'b::real_normed__vector)
shows is_pole f z «— is_pole (A\z. f (z + z)) 0
unfolding is _pole def by (subst at_to_0) (auto simp: filterlim__filtermap add__ac)

lemma is_pole_shift_ 0"
fixes [:: ('a::real _normed_vector = 'b::real_normed__vector)
shows NO_MATCH 0 z = is_pole f z «<— is_pole (Az. f (z + z)) 0
by (metis is_pole_shift_0)

lemma is_pole__compose__iff:
assumes filtermap g (at x) = (at y)
shows is_pole (f o g) x +— is_pole fy
unfolding is pole_def filterlim__def filtermap__compose assms ..

lemma is pole inverse__holomorphic:
assumes open s
and f_holo: f holomorphic_on (s—{z})
and pole: is_pole f z
and non_ z: Va€s—{z}. fa#£0
shows (Az. if z=z then 0 else inverse (f x)) holomorphic_on s
proof —
define g where g = \z. if z=z then 0 else inverse (f x)
have isCont g z unfolding isCont_def using is_pole_ tendsto[OF pole]
by (simp add: g_def cong: LIM__cong)
moreover have continuous_on (s—{z}) f using f_holo holomorphic__on__imp__continuous__on
by auto
hence continuous_on (s—{z}) (inverse o f) unfolding comp def
by (auto elim!:continuous on__inverse simp add: non_ z)
hence continuous_on (s—{z}) ¢ unfolding ¢ def
using continuous_on__eq by fastforce
ultimately have continuous_on s g using open__delete[OF <open $)] <open s
by (auto simp add: continuous on__eq continuous _at)
moreover have (inverse o f) holomorphic_on (s—{z})
unfolding comp def using f holo
by (auto elim!:holomorphic__on__inverse simp add: non_ z)
hence g holomorphic_on (s—{z})
using g def holomorphic__transform by force
ultimately show ?thesis unfolding g def using <open s>

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 336

by (auto elim!: no__isolated__singularity)
qed

lemma not_is_pole_holomorphic:
assumes open A © € A f holomorphic_on A
shows —is pole fx
proof —
have continuous_on A f
by (intro holomorphic__on__imp__continuous_on) fact
with assms have isCont f z
by (simp add: continuous__on__eq continuous__at)
hence f —z— fzx
by (simp add: isCont__def)
thus —is_pole f x
unfolding is pole_ def
using not__tendsto__and_filterlim__at_infinity[of at x f f z] by auto
qed

lemma is_pole_ inverse_power: n > 0 = is_pole (Az::complex. 1 | (z — a) ~
n) a
unfolding is_pole_def inverse__eq divide [symmetric]
by (intro filterlim__compose|OF filterlim__inverse _at_infinity] tendsto intros)
(auto simp: filterlim__at eventually_at introl: exI[of _ 1] tendsto__eq intros)

lemma is_pole_cmult_iff [simp]:
assumes ¢ # 0
shows is_pole (\z. ¢ * fz :: 'a :: real_normed_field) z «— is_pole f z
proof
assume is_pole (A\z. ¢ * [2) z
with «¢£0> have is_pole (Az. inverse ¢ * (¢ * [z)) 2
unfolding is pole_ def
by (force intro: tendsto__mult_filterlim__at_infinity)
thus is_pole f 2z
using <c#£0»> by (simp add: field__simps)
next
assume is_pole f z
with «c#0> show is_pole (Az. ¢ * fz) 2z
by (auto introl: tendsto__mult_filterlim__at_infinity simp: is_pole_def)
qed

lemma is_pole _uminus_iff [simp]: is_pole (Az. —f z = 'a :: real _normed_field)
z < is_pole f z
using is_pole__cmult_iff[of —1 f] by (simp del: is_pole__cmult_iff)

lemma is_pole inverse: is_pole (Az::complex. 1 / (z — a)) a
using is_pole_inverse_power[of 1 a] by simp

lemma is pole divide:
fixes f :: 'a :: t2_space = 'b :: real_normed_field

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 337

assumes isCont f z filterlim g (at 0) (at 2) fz # 0
shows is_pole (A\z. fz [/ g2) 2
proof —
have filterlim (Az. f z * inverse (g z)) at_infinity (at z)
using assms filterlim__compose filterlim__inverse__at_infinity isCont_def
tendsto__mult_filterlim__at_infinity by blast
thus ?thesis by (simp add: field split_simps is_pole_def)
qed

lemma is pole basic:
assumes f holomorphic_on A open A z € A fz# 0n > 0
shows is_pole (A\w. fw / (w—2) " n) 2z
proof (rule is_pole divide)
have continuous_on A f by (rule holomorphic_on_imp_continuous_on) fact
with assms show isCont f z by (auto simp: continuous__on__eq _continuous__at)
have filterlim (Aw. (w—z2) ~ n) (nhds 0) (at z)
using assms by (auto introl: tendsto__eq intros)
thus filterlim (Aw. (w—z) ~n) (at 0) (at 2)
by (intro filterlim__atl tendsto__eq intros)
(use assms in <auto simp: eventually at_filtery)
qed fact+

lemma is pole basic”:
assumes f holomorphic_on A open A 0 € A f0 # 0n > 0
shows is_pole (Aw. fw / w " n) 0
using is_pole_basic[of f A 0] assms by simp

lemma is _pole compose:
assumes is_pole fw g —z— w eventually (A\z. g z # w) (at z)
shows is_pole (Az. f (g x)) 2
using assms(1) unfolding is_pole_def
by (rule filterlim__compose) (use assms in <auto simp: filterlim__at»)

lemma is pole plus const_iff:
is_pole f z +— is_pole (Az. fz + ¢) 2
proof
assume is_pole f z
then have filterlim f at_infinity (at z) unfolding is pole_def .
moreover have ((A_. ¢) —— ¢) (at 2) by auto
ultimately have LIM z (at 2). fx + ¢ :> at_infinity
using tendsto__add_filterlim__at_infinity'[of f at 2] by auto
then show is_pole (\z. f z + ¢) z unfolding is_pole_ def .
next
assume is_pole (Az. fz + ¢) z
then have filterlim (\z. fx 4+ ¢) al_infinity (at z)
unfolding is pole def .
moreover have ((A_. —¢) —— —c¢) (at z) by auto
ultimately have LIM z (at z). fz :> at_infinity
using tendsto__add_filterlim__at_infinity'[of (Az. fz + ¢)

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 338

at z (A_. — ¢) —¢]
by auto
then show is_pole f z unfolding is pole def .

qed

lemma is pole _minus_const_iff:
is_pole (A\z. fz — ¢) z <— is_pole f 2
using is_pole_plus_const_iff [of f z —c| by simp

lemma is pole alt:
is_pole fr = (VB>0.3U. open U A ze€U AN YyeU. y#x — norm (f y)>B))
unfolding is pole_def
unfolding filterlim__at_infinity[of 0,simplified] eventually at_topological
by auto

lemma is pole__mult_analytic_nonzerol:

assumes is_pole g z f analytic_on {z} fz # 0

shows is _pole (A\z. fz x gz) x

unfolding is pole_def
proof (rule tendsto_mult_filterlim__at_infinity)

show f —z— fz

using assms by (simp add: analytic_at_imp_isCont isContD)

qed (use assms in <auto simp: is_pole_ def>)

lemma is pole mult_analytic_nonzero2:
assumes is_pole f x g analytic_on {x} gz # 0
shows is_pole (\z. fz x gzx) x
proof —
have ¢: g analytic_on {z}
using assms by auto
show ?thesis
using is_pole_mult__analytic_nonzerol [OF <is_pole f x> g] <g x # 0>
by (simp add: mult.commute)
qed

lemma is pole__mult_analytic_nonzerol _iff:
assumes f analytic_on {z} fz # 0
shows is_pole (A\z. fz * g z) © +— is_pole g x
proof
assume is_pole g x
thus is_pole (A\z. fz *x gz) z
by (intro is_pole_mult_analytic_nonzerol assms)
next
assume is_pole (A\x. fz x gx) x
hence is_pole (Az. inverse (fz) * (fz x gx))
by (rule is_pole__mult_analytic_nonzerol)
(use assms in <auto introl: analytic_introsy)
also have ?this «— is_pole g x
proof (rule is_pole cong)

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 339

have eventually (Az. fz # 0) (at z)
using assms by (simp add: analytic_at _neq imp__eventually_neq)
thus eventually (Az. inverse (fz) x (fz * gz) = g z) (al z)
by eventually elim auto
ged auto
finally show is_pole g x .
qed

lemma is_pole__mult_analytic_nonzero2 iff:
assumes g analytic_on {z} gz # 0
shows is_pole (A\z. fz *x gx) x +— is_pole f z
by (subst mult.commute, rule is_pole _mult_analytic_nonzerol _iff) (fact assms)+

lemma frequently const_imp_not_is_pole:
fixes z :: 'a::first_countable_topology
assumes frequently (Aw. fw = ¢) (at 2)
shows — is_pole f z
proof
assume is_pole f z
from assms have z islimpt {w. f w = ¢}
by (simp add: islimpt__conv_ frequently _at)
then obtain g where g: An. gn € {w. fow=c} — {2} g —— 2
unfolding islimpt sequential by blast
then have (f o g) —— ¢
by (simp add: tendsto__eventually)
moreover have filterlim g (at z) sequentially
using g by (auto simp: filterlim__at)
then have filterlim (f o g) at_infinity sequentially
unfolding o _def
using <is_pole f z» filterlim__compose is_pole_def by blast
ultimately show False
using not_tendsto__and_filterlim__at_infinity trivial _limit_sequentially by
blast
qed

7.11 Isolated singularities

The proposition dz. f —z— x V is_pole f z can be interpreted as the com-
plex function f has a non-essential singularity at z (i.e. the singularity is
either removable or a pole).

definition not_essential:: [complex = complex, complex] = bool where
not__essential f z = (x. f—z—x V is_pole f 2)

definition isolated_ singularity_at:: [complex = complex, complex] = bool where
isolated__singularity_at f z = (3r>0. f analytic_on ball z r—{z})

lemma not_essential_cong:
assumes eventually (M\z. fx = gz) (at 2) z = 2/
shows not_essential f z +— not__essential g 2’

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 340

unfolding not_essential _def using assms filterlim__cong is_pole_cong by fast-
force

lemma not__essential__compose_iff:

assumes filtermap g (at z) = at 2’

shows not_essential (f o g) z = not__essential f 2’

unfolding not_essential_def filterlim__def filtermap__compose assms is_pole__compose__iff[OF
assms|

by blast

lemma isolated_singularity at_ cong:
assumes eventually (A\z. fz = g z) (at 2) z = 2’
shows isolated_singularity at f z < isolated_singularity _at g 2’
proof —
have isolated_singularity at g z
if isolated _singularity_at f z eventually (Az. fz = g z) (at z) for f g
proof —
from that(1) obtain r where r: r > 0 f analytic_on ball z v — {z}
by (auto simp: isolated singularity at_def)
from that(2) obtain r’ where r”: v’ > 0 Vaeball z r'—{z2}. fx =g =
unfolding eventually at_filter eventually nhds metric by (auto simp:
dist_commute)

have f holomorphic_on ball z v — {z}
using r(2) by (subst (asm) analytic_on__open) auto
hence f holomorphic_on ball z (min r r’) — {z}
by (rule holomorphic__on__subset) auto
also have ?this «— g holomorphic_on ball z (min r r') — {z}
using r’ by (intro holomorphic__cong) auto
also have ... +— g analytic_on ball z (min r r’) — {z}
by (subst analytic_on__open) auto
finally show ?thesis
unfolding isolated_ singularity at_ def
by (intro exI[of _ min r ') (use <r > 0 <r’ > 0 in auto)
qed
from this[of f g] this[of ¢ f] assms show ?thesis
by (auto simp: eq commute)
qged

lemma remowvable__singularity:
assumes [holomorphic_on A — {z} open A
assumes f —z— ¢
shows (\y. if y = z then c else f y) holomorphic_on A (is ?g holomorphic_on
-)
proof —
have continuous_on A %g
unfolding continuous on_ def
proof
fix y assume y: y € A

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 341

show (%9 —— %9 y) (at y within A)
proof (cases y =)
case Fulse
have continuous_on (A — {x}) f
using assms(1) by (meson holomorphic__on__imp__continuous__on)
hence (f —— %9 y) (at y within A — {z})
using False y by (auto simp: continuous__on__def)
also have ?this +— (29 —— ?g y) (at y within A — {z})
by (intro filterlim__cong refl) (auto simp: eventually at_filter)
also have at y within A — {z} = at y within A
using y assms False
by (intro at_within_nhd[of _ A — {z}]) auto
finally show ?thesis .
next
case [simp]: True
have f —2— ¢
by fact
also have ?this «+— (29 —— ?g y) (at y)
by (simp add: LIM__equal)
finally show ?thesis
by (meson Lim__at_imp_ Lim__at_within)
qed
qed
moreover {
have ?g holomorphic_on A — {z}
using assms(1) holomorphic__transform by fastforce

ultimately show ?thesis
using assms by (simp add: no_isolated__singularity)
qed

lemma removable_singularity”:
assumes isolated__singularity_at f z
assumes f —z— ¢
shows (Ay. if y = z then c else f y) analytic_on {z}
proof —
from assms obtain r where r: r > 0 f analytic_on ball z r — {z}
by (auto simp: isolated _singularity at_def)
have (\y. if y = z then ¢ else f y) holomorphic_on ball z r
proof (rule removable__singularity)
show f holomorphic_on ball z r — {z}
using r(2) by (subst (asm) analytic_on__open) auto
qged (use assms in auto)
thus ?thesis
using r(1) unfolding analytic_at by (intro exI[of _ ball z r]) auto
qed

named__theorems singularity_intros introduction rules for singularities

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 342

lemma holomorphic_ factor unique:
fixes f:: complex = complex and z::complex and r::real and m n::int
assumes >0 g z#0 h 2#£0
and asm: Yweball z r—{z}. fw = gw * (w—2) powin A gw#0 AN fw= hw
* (w—2z) powi m N h w#0
and g_holo: g holomorphic_on ball z r and h__holo: h holomorphic__on ball z r
shows n=m
proof —
have [simp]: at z within ball z r # bot using <r>0>
by (auto simp add: at_within__ball_bot_iff)
have Fulse when n>m

proof —
have (h —— 0) (at z within ball z r)
proof (rule Lim_ transform__within[OF __ <r>0), where f=Aw. (w—z) powi

(n —m) * g w)
have Vweball z r—{z}. h w = (w—2)powi(n—m) * g w
using «n>my asm <r>0> by (simp add: field _simps power_int_diff) force
then show [z’ € ball z r; 0 < dist ¢’ z;dist ' z < 7]
= (2’ — 2) powi (n — m) x gz’ = h 2’ for z’ by auto
next
define F where F = at z within ball z r
define f’ where f' = Az. (z — z) powi (n—m)
have [’ =0 using (n>m) unfolding [’ def by auto
moreover have continuous F f' unfolding f’ def F_def continuous_def
using «n>m)
by (auto simp add: Lim__ident at introl:tendsto__powr__complex_ 0 tend-
sto__eq_intros)
ultimately have (f’ —— 0) F unfolding F_def
by (simp add: continuous_within)
moreover have (§ —— g z) F
unfolding F_def
using «r>0> centre_in__ball continuous__on__def g__holo holomorphic__on__imp__ continuous__on
by blast
ultimately show ((Aw. f’ w *x g w) —— 0) F using tendsto_mult by
fastforce
qed
moreover have (h —— h z) (at z within ball z)
using holomorphic__on__imp__continuous__on[OF h__holo]
by (auto simp add: continuous on_def «r>0)
ultimately have h z=0 by (auto intro!: tendsto__unique)
thus Fulse using <h z#0> by auto
qed
moreover have Fualse when m>n
proof —
have (¢ —— 0) (at z within ball z 1)
proof (rule Lim_ transform_within[OF _ «r>0>, where f=Aw. (w—z) powi
(m — n) * h w)
have Yweball z r —{z}. g w = (w—2) powi (m—n) * h w using <m>n> asm
by (simp add: field _simps power _int_ diff) force

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 343

then show [z’ € ball z r; 0 < dist ©’ z;dist ' z < 1]
= (2’ — 2) powi (m — n) x hx' = gz’ for z’ by auto
next
define F' where F = at z within ball z r
define f’ where [’ =\z. (z — 2) powi (m—n)
have [’ z=0 using ¢m>n) unfolding [’ def by auto
moreover have continuous F f' unfolding [’ def F_def continuous _def
using <m>n»
by (auto simp: Lim__ident_at introl:tendsto__powr_complex_ 0 tendsto__eq intros)
ultimately have (f' —— 0) F unfolding F_ def
by (simp add: continuous__within)
moreover have (h —— h z) F
using holomorphic_on__imp_continuous_on[OF h__holo,unfolded continu-
ous__on__def] «r>0»
unfolding F_def by auto
ultimately show ((Aw. f’ w *x h w) —— 0) F using tendsto_mult by
fastforce
qed
moreover have (9§ —— ¢ z) (at z within ball z 1)
using holomorphic_on__imp__continuous _on[OF g_holo]
by (auto simp add: continuous__on__def «r>0»)
ultimately have g 2=0 by (auto intro!: tendsto_unique)
thus Fualse using <g z#£0» by auto
qed
ultimately show n=m by fastforce
qged

lemma holomorphic_factor puncture:
assumes [iso: isolated_singularity at f z
and not__essential f z — f has either a removable singularity or a pole at z
and non_zero: Ipw in (at z). f w#0 — f will not be constantly zero in a
neighbour of z
shows Jln:int. g r. 0 < r A g holomorphic_on cball z r N g 2z#£0
A (Ywecball z r—{z}. fw = g w* (w—2) powi n A\ g w#0)
proof —
define P where P = (Afngr. 0 < r A g holomorphic_on cball zr A g z#0
AN Ywecball zr — {z}. fw=gwx* (w—2) powin A gw#0))
have imp_unique: A!n::int. 3gr. P fngr when I3ngr. Pfngr
proof (rule ex_ex1I[OF that))
fix n1 n2 :: int
assume g1 _asm: gl r1. P fnl g1 r1 and g2 asm: 3g2 2. P fn2 g2 r2
define fac where fac = An g r. Ywecball z r—{z}. fw = g w * (w—2z) powi n
ANgw#0
obtain g1 r1 where 0 < r1 and g1__holo: g1 holomorphic__on cball z r1 and
g1 2#0
and fac nl g1 r1 using g1__asm unfolding P_ def fac_def by auto
obtain ¢2 r2 where 0 < r2 and ¢2_ holo: g2 holomorphic_on cball z r2 and
g2 2#0
and fac n2 g2 r2 using ¢g2_asm unfolding P_ def fac__def by auto

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 344

define r where r = min r1 r2
have r>0 using «r1>0) <r2>0> unfolding r_def by auto
moreover have Vweball z r—{z}. fw = g1 w * (w—2) powi nI A gl w#0
Afw=g2wsx* (w—2z) powi n2 A g2 w#0
using <fac n1 g1 r1» <fac n2 g2 r2> unfolding fac def r_def
by fastforce
ultimately show ni=n2
using g1__holo g2_holo <g1 z#£0> <g2 2#0)
apply (elim holomorphic_factor _unique)
by (auto simp add: r_def)
qed

have P_exist: 3 ngr. Phn gr when
32 (h —— 2’) (at 2) isolated_singularity _at h z I pw in (at 2). h w#0
for h
proof —
from that(2) obtain r where r>0 and r: h analytic_on ball z v — {z}
unfolding isolated_singularity at def by auto
obtain 2z’ where (h —— 2’) (at 2) using 32’. (h —— 2') (at 2)» by auto
define b’/ where h'=(A\z. if z=z then 2’ else h x)
have h' holomorphic_on ball z r
proof (rule no__isolated_singularity’[of {z}])
show Aw. w € {z} = (h' —— h' w) (at w within ball z r)
by (simp add: LIM__cong Lim__at_imp_ Lim__at_within <h —z— z"» h'_def)
show h’ holomorphic_on ball z r — {z}
using r analytic_imp_holomorphic h'_def holomorphic_transform by
fastforce
qed auto
have ?thesis when 2'=0
proof —
have h' =0 using that unfolding h’_def by auto
moreover have — h' constant_on ball z r
using (I pw in (at z). h w#0> unfolding constant _on__def frequently_def
eventually at h'_def
by (metis <0 < 1> centre_in_ball dist _commute mem__ball that)
moreover note <h’ holomorphic_on ball z r>
ultimately obtain ¢ v/ n where 0 < n 0 < r1 ball zr1 C ball z r and
g: g holomorphic__on ball z r1
Nw. w e ball zrl = h'w= (w—2) “n*xguw
Nw. w € ball zrl = gw # 0
using holomorphic_factor_zero_nonconstant[of __ ball z r z thesis,simplified,
OF <h' holomorphic_on ball z > <r>0> <h’ z=05 <— h' constant_on
ball z 1]
by (auto simp add: dist_commute)
define rr where rr=r1/2
have Ph'n g rr
unfolding P_def rr_ def
using «n>0> <r1>0> g by (auto simp add: powr_nat)
then have Ph n g rr

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 345

unfolding h’ def P_def by auto
then show ?thesis unfolding P _def by blast
qed
moreover have ?thesis when z'#0
proof —
have h' z#0 using that unfolding h’_def by auto
obtain r1 where r1>0 cball z r1 C ball z r Ya€cball z r1. h' z#0
proof —
have isCont h' z b/ 240
by (auto simp add: Lim__cong_within <h —z— 2’y z'#0) continuous__at
h'_def)
then obtain r2 where r2: r2>0 Vz€ball z r2. h' z#£0
using continuous__at_avoid[of z b’ 0 | unfolding ball_def by auto
define r1 where ri=min r2r / 2
have 0 < r1 cball z r1 C ball z r
using «r2>0> <r>0> unfolding r1_def by auto
moreover have Vaccball zrl. h' z # 0
using r2 unfolding r1_def by simp
ultimately show ?thesis using that by auto
qed
then have P h’/ 0 b/ r1 using <h’ holomorphic_on ball z r» unfolding P_ def
by auto
then have P h 0 h' r1 unfolding P_def h'_def by auto
then show ?thesis unfolding P_def by blast
qed
ultimately show ?thesis by auto
qed

have ?thesis when Jz. (f —— z) (at 2)
apply (rule_tac imp_unique[unfolded P_def])
using P__exist|OF that(1) f_iso non_zero] unfolding P_ def .
moreover have ?thesis when is_pole f z
proof (rule imp_unique[unfolded P_def])
obtain e where [simp]: e>0 and e_holo: f holomorphic_on ball z e — {z}
and e nz: Vze€ball z e—{z}. f x#0
proof —
haveVp zinatz. fz# 0
using <is_pole f z» filterlim__at_infinity_imp_eventually ne unfolding
is_pole def
by auto
then obtain el where el: el >0 Vz€ball z el —{z}. f 2#£0
using that eventually_at[of Az. f x#0 z UNIV simplified] by (auto simp
add: dist_commute)
obtain e2 where e2: e2>0 f holomorphic_on ball z e2 — {z}
using [iso analytic _imp__holomorphic unfolding isolated__singularity at_def
by auto
show ?thesis
using el e2 by (force intro: that[of min el e2])
qed

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 346

define h where h = Az. inverse (f x)
have dngr. Phngr
proof —
have (Az. inverse (f z)) analytic_on ball z e — {2z}
by (metis e_holo e_nz open__ball analytic_on__open holomorphic__on__inverse
open__delete)
moreover have h —z— 0
using Lim__transform__within__open assms(2) h_def is_pole_tendsto that
by fastforce
moreover have Jpw in (at z). h w#0
using non_ zero by (simp add: h__def)
ultimately show ?thesis
using P__exist[of h] <e > 0>
unfolding isolated_singularity at_def h__def
by blast
qed
then obtain n g r
where 0 < r and
g__holo: g holomorphic_on cball z 7 and g 2#0 and
g_fac: (Vwecball zr—{z}. hw = g w x (w—=z) powin A gw # 0)
unfolding P_def by auto
have P f (—n) (inverse o g) r
proof —
have fw = inverse (g w) * (w—z) powi (— n) when wecball z r — {z} for w
by (metis g_fac h__def inverse__inverse__eq inverse__mult__distrib power_int_minus
that)
then show ?thesis
unfolding P_def comp_def
using <r>0> g_holo g_fac <g 20> by (auto intro: holomorphic__intros)
qed
then show dz g r. 0 < r A g holomorphic_on cball zr N g z # 0
AN Vwecball zr — {z}. fw=gwx* (w—2) powiz N gw# 0)
unfolding P _def by blast
qed
ultimately show “thesis
using <not__essential f z> unfolding not _essential def by presburger
qged

lemma not__essential__transform:
assumes not__essential g z
assumes Vp win (at 2). gw = fw
shows not__essential f 2
using assms unfolding not_essential__def
by (simp add: filterlim__cong is_pole__cong)

lemma isolated_singularity__at_transform:
assumes isolated__singularity at g z
assumes Vi win (at 2). gw = fw

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 347

shows isolated__singularity at f z
using assms isolated__singularity at_cong by blast

lemma not__essential_powr[singularity_intros]:
assumes LIM w (at 2). fw :> (at z)
shows not__essential (Aw. (f w) powi n) z
proof —
define fp where fp=(\w. (f w) powi n)
have ?thesis when n>0
proof —
have (Aw. (fw) ~(nat n)) —z— = ~nat n
using that assms unfolding filterlim__at by (auto introl:tendsto__eq intros)
then have fp —z— z ~ nat n unfolding fp_def
by (smt (verit) LIM__cong power_int_def that)
then show ?thesis unfolding not_essential def fp__def by auto
qged
moreover have ?thesis when n=0
proof —
have Vp zinat z. fpx = 1
using that filterlim__at_within_not_equal[OF assms] by (auto simp: fp__def)
then have fp —z— 1
by (simp add: tendsto__eventually)
then show ?thesis unfolding fp def not_essential _def by auto
qed
moreover have ?thesis when n<0
proof (cases ©=0)
case True
have (Az. fz " nat (— n)) —z— 0
using assms True that unfolding filterlim__at by (auto introl:tendsto__eq intros)
moreover have Vr z in at z. fz ~nat (— n) # 0
by (smt (verit) True assms eventually__at_topological filterlim__at power_eq 0__iff)
ultimately have LIM w (at 2). inverse ((f w) ~ (nat (—n))) :> at_infinity
by (metis filterlim__atl filterlim__compose filterlim__inverse__at__infinity)
then have LIM w (at 2). fp w :> at_infinity
proof (elim filterlim__mono__eventually)
show V g z in at z. inverse (fx ~“nat (— n)) = fpz
using filterlim__at_within_not_equal[OF assms,of 0] unfolding fp_ def
by (smt (verit) eventuallyl power int_def power inverse that)
qed auto
then show ?thesis unfolding fp_ def not_essential _def is_pole_def by auto
next
case Fulse
let ?xz= inverse (x ~ (nat (—n)))
have (Aw. inverse ((f w) ~ (nat (—n)))) —z— %zz
using assms Fualse unfolding filterlim__at by (auto introl:tendsto__eq intros)
then have fp —z— %2z
by (smt (verit, best) LIM_cong fp_def power__int_def power_inverse that)
then show ?thesis unfolding fp_def not_essential__def by auto
qed

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 348

ultimately show ?thesis by linarith
qed

lemma isolated_singularity__at_powr[singularity_intros]:
assumes isolated_singularity_at f 2V g win (at 2). f w#0
shows isolated _singularity__at (Aw. (f w) powi n) z
proof —
obtain r1 where r1>0 f analytic_on ball z r1 — {z}
using assms(1) unfolding isolated singularity at _def by auto
then have r1: f holomorphic_on ball z r1 — {z}
using analytic_on__open[of ball z r1—{z} f] by blast
obtain r2 where r2>0 and r2: Vw. w# z AN dist wz < r2 — fw # 0
using assms(2) unfolding eventually_at by auto
define 73 where r8=min r1 r2
have (Aw. (f w) powi n) holomorphic_on ball z r8 — {z}
by (intro holomorphic__on__power__int) (use r1 r2 in <auto simp: dist__commute
r3_def>)
moreover have r3>0 unfolding r3 def using <0 < r1> <0 < r2> by linarith
ultimately show ?thesis
by (meson open__ball analytic_on__open isolated__singularity__at_def open__delete)
qed

lemma non_ zero_neighbour:
assumes [_iso: isolated_singularity at f z
and [mness: not__essential f z
and [nconst: Apw in (at 2). f w#0
shows V p w in (at 2). f w#0
proof —
obtain fn fp fr
where [simp]: fp 2 # 0 and fr > 0
and fr: fp holomorphic_on cball z fr
Aw. w € chall z fr — {2} = fw=fpw=x (w—2) powi fn A fp w # 0
using holomorphic_factor _puncture[OF f_iso f _ness f_nconst] by auto
have fw # 0 when w # z dist w z < fr for w
proof —
have fw = fp w * (w—2) powi fn fp w # 0
using fr that by (auto simp add: dist_commute)
moreover have (w—z) powi fn #0
unfolding powr eq 0 _iff using (w#2> by auto
ultimately show ?thesis by auto
qed
then show ?thesis using <fr>0> unfolding eventually at by auto
qed

lemma non__zero_neighbour__pole:
assumes is_pole f z
shows V r w in (at 2). f w#0
using assms filterlim__at__infinity__imp__eventually_nelof f at z 0]
unfolding is pole_def by auto

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 349

lemma non_ zero neighbour _alt:
assumes holo: f holomorphic_on S
and open S connected Sz € S e SfB#0
shows V r w in (at z). f w#0 N weS
proof (cases fz = 0)
case True
from isolated_zeros|OF holo <open S» <connected S» <z € S» True <B € S) «f B
0]
obtain r where 0 < rball zr C SVw € ball zr — {z}.f w # 0 by metis
then show ?thesis
by (smt (verit) open_ball centre_in_ball eventually at_topological insertE
insert_ Diff subsetD)
next
case Fulse
obtain r1 where r1: r1>0Vy. dist zy <rl — fy £ 0
using continuous__at_avoid[of z f, OF __ False] assms continuous__on__eq _continuous__at
holo holomorphic__on__imp_ continuous__on by blast
obtain r2 where r2: 72>0 ball z 172 C §
using assms openF by blast
show ?thesis unfolding eventually at
by (metis (no__types) dist_commute order.strict_trans linorder less linear
mem,__ball r1 2 subsetD)
qed

lemma not_essential__times[singularity_intros]:
assumes [ness: not_essential f z and g _ness: not_essential g z
assumes f _iso: isolated__singularity at f z and g _iso: isolated__singularity at g
z
shows not__essential (Aw. fw x g w) 2z
proof —
define fg where fg = (Aw. fw * g w)
have ?thesis when — ((3pw in (at 2). f w#0) A (3 pw in (at 2). g w#0))
proof —
have V pw in (at z). fg w=0
using fq def frequently elim1 not_eventually that by fastforce
from tendsto__cong|OF this] have fg —z—0 by auto
then show ?thesis unfolding not_ essential_def fg_def by auto
qed
moreover have ?thesis when f nconst: I pw in (at z). f w#0 and g_nconst:
Jrpw in (at z). g w#0
proof —
obtain fn fp fr where [simp]: fp z # 0 and fr > 0
and fr: fp holomorphic__on cball z fr
Ywechall z fr — {z}. fw = fp wx (w—2) powi fn A fp w # 0
using holomorphic_factor_puncture[OF f_iso f_ness f_nconst] by auto
obtain gn gp gr where [simp]: gp z # 0 and gr > 0
and gr: gp holomorphic_on cball z gr
Ywecball z gr — {z}. g w = gp w * (w—2) powi gn N gp w # 0

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 350

using holomorphic_factor _puncture[OF ¢_iso g_ness g_nconst] by auto

define r! where r1=(min fr gr)
have r1>0 unfolding r1_def using <«fr>0) <gr>0> by auto
have fg_times: fg w = (fp w * gp w) * (w—2) powi (fn+gn) and fgp_nz: fp
wkgp w0
when weball z r1 — {z} for w
proof —
have fw = fp w * (w—2) powi fn fp w#0
using fr that unfolding ri_ def by auto
moreover have g w = gp w * (w—2z) powi gn gp w # 0
using g¢r that unfolding r1 def by auto
ultimately show fg w = (fp w * gp w) * (w—2) powi (fn+gn) fp wkgp w#0
using that by (auto simp add: fg_def power _int_add)
qed

obtain [intro|: fp —z—fp 2 gp —2—gp 2
using fr(1) «fr>0y gr(1) <gr>0»
by (metis centre_in__ball continuous__at continuous _on__interior
holomorphic__on__imp__continuous__on interior_cball)
have ?thesis when fn+gn>0
proof —
have (Aw. (fp w * gp w) * (w—2) ~ (nat (fnt+gn))) —z—0
using that by (auto introl:tendsto__eq intros)
then have fg —z— 0
using Lim__transform_within|OF __ <r1>0))
by (smt (verit, best) Diff _iff dist _commute fg_times mem__ball power _int_ def
singletonD that zero_less dist_iff)
then show ?thesis unfolding not_essential def fg_def by auto
qed
moreover have ?thesis when fn+gn=0
proof —
have (Aw. fp w * gp w) —z—fp z*xgp 2
using that by (auto introl:tendsto__eq intros)
then have fg —z— fp zxgp 2
apply (elim Lim__transform_within[OF __ <rl1>0>])
apply (subst fg_times)
by (auto simp add: dist_commute that)
then show ?thesis unfolding not_essential def fg def by auto
qed
moreover have ?thesis when fn+gn<0
proof —
have LIM z at z. (x — 2z) ~nat (— (fn + gn)) :> at 0
using eventually at_topological that
by (force intro!: tendsto__eq intros filterlim__atl)
moreover have Jc. (Ac. fpcxgpc) —z— c N0 # ¢
using <fp —z— fp 2> <gp —z— gp 2z tendsto__mult by fastforce
ultimately have LIM w (at z). fp w * gp w / (w—2) nat (—(fn+gn)) >
at__infinity

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 351

using filterlim__divide__at_infinity by blast
then have is pole fg z unfolding is pole def
apply (elim filterlim__transform_within|OF _ __ «r1>0>])
using that
by (simp__all add: dist_commute fg_times of int_of nat divide simps
power_int__def del: minus__add__distrib)
then show ?thesis unfolding not_essential def fg _def by auto
qed
ultimately show ?thesis unfolding not_essential def fg_def by fastforce
qged
ultimately show %thesis by auto
qed

lemma not_essential_inverse[singularity_ intros]:
assumes [mness: not_essential f z
assumes [_iso: isolated_singularity at f z
shows not__essential (A\w. inverse (f w)) z
proof —
define vf where vf = (Aw. inverse (f w))
have ?thesis when —(3 pw in (at 2). f w#0)
proof —
have V pw in (at 2). f w=0
using not__eventually that by fastforce
then have vf —z—0
unfolding vf def by (simp add: tendsto__eventually)
then show ?thesis
unfolding not_essential def vf def by auto
qed
moreover have ?thesis when is_pole f z
by (metis (mono__tags, lifting) filterlim__at filterlim__inverse__at_iff is_pole_def
not__essential__def that)
moreover have ?thesis when 3z. f—z—x and f nconst: 3 pw in (at 2). f w#0
proof —
from that obtain fz where fz: f—2z—fz by auto
have ?thesis when fz=0

proof —
have (Aw. inverse (vf w)) —z—0
using fz that unfolding vf def by auto
moreover have V p w in at z. inverse (vf w) # 0
using non_ zero_neighbour[OF f_iso f _ness f_nconst]
unfolding vf def by auto
ultimately show ¢thesis unfolding not__essential def vf _def
using filterlim__atl filterlim__inverse__at_iff is _pole def by blast
qed
moreover have ?thesis when fz#0
using fz not__essential _def tendsto__inverse that by blast
ultimately show ?thesis by auto
qed

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 352

ultimately show ?thesis using f ness unfolding not_essential_def by auto
qed

lemma isolated_singularity__at_inverse[singularity_intros]:
assumes [_iso: isolated_singularity at f z
and f ness: not__essential f z
shows isolated _singularity__at (Aw. inverse (f w)) z
proof —
define vf where vf = (Aw. inverse (f w))
have ?thesis when —(3 pw in (at 2). f w#0)
proof —
have V pw in (at 2). f w=0
using that[unfolded frequently def, simplified] by (auto elim: eventually rev_mp)
then have V pw in (at z). vf w=0
unfolding vf def by auto
then obtain di where d1>0 and di:Vx. z # 2 Ndistz z < dl — vfx =

0
unfolding cventually at by auto
then have uf holomorphic_on ball z d1—{z}
using holomorphic__transform[of A_. 0]
by (metis Diff _iff dist_commute holomorphic__on__const insert_iff mem__ball)
then have vf analytic_on ball z d1 — {2}
by (simp add: analytic_on__open open__delete)
then show ?thesis
using «d1>0» unfolding isolated__singularity_at _def vf _def by auto
qged
moreover have ?thesis when [nconst: 3 pw in (at 2). f w#0
proof —
have Vp w in at z. f w # 0 using non_ zero_neighbour[OF [_iso [_ness
f_nconst] .
then obtain dI where d1: dI>0Vx. x # 2z ANdistxz < dl — fx # 0
unfolding eventually at by auto
obtain d2 where d2>0 and d2: f analytic_on ball z d2 — {z}
using [iso unfolding isolated singularity at_def by auto
define d3 where d3=min d1 d2
have d3>0 unfolding d3 def using «d1>0> <d2>0> by auto
moreover
have f analytic_on ball z d3 — {z}
by (smt (verit, best) Diff iff analytic_on__analytic _at d2 d3_def mem__ball)
then have vf analytic_on ball z d3 — {z}
unfolding vf def
by (intro analytic_on__inverse; simp add: d1(2) d3_def dist_commute)
ultimately show Zthesis
unfolding isolated_ singularity at_def vf def by auto
qed
ultimately show #¢thesis by auto
qed

lemma not__essential__divide[singularity intros]:

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 353

assumes [ness: not_essential f z and g _ness: not_essential g z

assumes [iso: isolated__singularity at f z and g _iso: isolated singularity at g
z

shows not__essential (Aw. fw / g w) z
proof —

have not_essential (Aw. fw * inverse (g w)) z

by (simp add: f _iso f _ness g_iso g_ness isolated_singularity__at_inverse
not__essential _inverse not__essential _times)

then show ?thesis by (simp add: field _simps)

qged

lemma
assumes [_iso: isolated_ singularity at f z
and g iso: isolated__singularity _at g z
shows isolated__singularity__at_times[singularity_intros]:
isolated__singularity_at (Aw. fw * g w) z
and isolated _singularity _at__add[singularity_intros|:
isolated__singularity_at (Aw. fw + g w) z
proof —
obtain dI d2 where di1>0 d2>0
and dI: f analytic_on ball z d1 — {z} and d2: g analytic_on ball z d2 — {z}
using f iso g _iso unfolding isolated singularity at def by auto
define d3 where d3=min dI d2
have d3>0 unfolding d3 def using <d1>0> <d2>0) by auto

have fan: f analytic_on ball z d3 — {z}
by (smt (verit, best) Diff iff analytic _on__analytic _at d1 d3_def mem__ball)
have gan: g analytic_on ball z d3 — {z}
by (smt (verit, best) Diff iff analytic _on__analytic _at d2 d3_def mem__ball)
have (Aw. fw x g w) analytic_on ball z d3 — {z}
using analytic_on_mult fan gan by blast
then show isolated singularity _at (Aw. fw * g w) 2
using «d3>0> unfolding isolated__singularity at_def by auto
have (Aw. fw + g w) analytic_on ball z d3 — {z}
using analytic _on__add fan gan by blast
then show isolated_singularity_at (Aw. fw + g w) z
using <d3>0) unfolding isolated_singularity at def by auto
qged

lemma isolated_singularity__at_uminus[singularity__intros|:

assumes [iso: isolated_singularity at f z

shows isolated_singularity_at (Aw. — fw) 2z

using assms unfolding isolated singularity at def using analytic_on_ neg by
blast

lemma isolated_singularity__at_id[singularity_intros|:
isolated__singularity__at (Aw. w) z
unfolding isolated singularity_at_def by (simp add: gt_ex)

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 354

lemma isolated singularity _at _minus[singularity_intros]:

assumes isolated__singularity at f z and isolated__singularity at g z

shows isolated _singularity _at (Aw. fw — g w) z

unfolding diff conv_add_uminus

using assms isolated__singularity__at _add isolated singularity at _uminus by
blast

lemma isolated_singularity_at_ divide[singularity__intros|:
assumes isolated__singularity _at f z
and isolated__singularity_at g z
and not__essential g z
shows isolated _singularity _at (Aw. fw / g w) z
unfolding divide inverse
by (simp add: assms isolated__singularity__at_inverse isolated_singularity__at_times)

lemma isolated_singularity__at__const[singularity__intros|:
isolated__singularity_at (Aw. ¢) z
unfolding isolated _singularity _at_def by (simp add: gt_ex)

lemma isolated__singularity__at_holomorphic:

assumes f holomorphic_on s—{z} open s z€s

shows isolated__singularity at f z

using assms unfolding isolated_singularity at_def

by (metis analytic_on__holomorphic centre_in_ ball insert_Diff openE open__delete
subset__insert_iff)

lemma isolated_singularity at_ altdef:
isolated__singularity__at f z «— eventually (Az. f analytic_on {z}) (at 2)
proof
assume isolated__singularity_at f z
then obtain r where r: r > 0 f analytic_on ball z r — {z}
unfolding isolated_ singularity at_def by blast
have eventually (Aw. w € ball z v — {z}) (at 2)
using r(1) by (intro eventually at _in_open) auto
thus eventually (Az. f analytic_on {z}) (at 2)
by eventually _elim (use r analytic_on__subset in auto)
next
assume eventually (Az. f analytic_on {z}) (at z)
then obtain A where A: open A z € A Aw. w € A — {z} = f analytic_on
{uw}
unfolding eventually at_topological by blast
then show isolated_singularity at f z
by (meson analytic _imp__holomorphic analytic__on__analytic__at isolated _singularity _at_holomorphic)
qed

lemma isolated_singularity _at_ shift:
assumes isolated_singularity _at (A\z. f (x + w)) 2z
shows isolated_ singularity_at f (z + w)

proof —

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 355

from assms obtain r where r: v > 0 and ana: (Az. f (z + w)) analytic_on
ball z 1 — {z}
unfolding isolated__singularity at_def by blast
have ((Az. f (z + w)) o (Az. z — w)) analytic_on (ball (z + w) r — {z + w})
by (rule analytic_on__compose__gen[OF __ anal)
(auto simp: dist_norm algebra__simps intro!: analytic_intros)
hence f analytic_on (ball (z + w) r — {z + w})
by (simp add: o_def)
thus ?thesis using r
unfolding isolated_ singularity at_def by blast
qged

lemma isolated__singularity at_ shift_iff:
isolated__singularity_at f (z + w) +— isolated__singularity_at (A\z. f (z + w)) z
using isolated__singularity _at_shift[of f w 2]
isolated__singularity__at_shiftjof Az. f (z + w) —w w + 2]
by (auto simp: algebra__simps)

lemma isolated_singularity at_shift _0:

NO_MATCH 0 z = isolated__singularity_at f z <— isolated__singularity_at
M. f(z+1x)) 0

using isolated _singularity _at_shift_iff[of f 0 z] by (simp add: add_ac)

lemma not__essential _shift:
assumes not__essential (A\z. f (z + w)) z
shows not_essential f (z + w)
proof —
from assms consider ¢ where (\z. f (z + w)) —z— ¢ | is_pole (Mz. f (z +
unfolding not_essential _def by blast
thus %thesis
proof cases
case (1 ¢)
hence f —z + w— ¢
by (smt (verit, ccfu_SIG) LIM__cong add.assoc filterlim__at_to_0)
thus ?thesis
by (auto simp: not__essential _def)
next
case 2
hence is_pole f (z + w)
by (subst is_pole_shift_iff [symmetric]) (auto simp: o_def add_ac)
thus ?thesis
by (auto simp: not__essential__def)
qed
qed

lemma not_essential _shift_iff: not_essential f (z + w) +— not_essential (Az.

f &+ w))z

using not__essential__shift[of f w 2]

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 356

not__essential_shift[of Mz. f (z + w) —w w + 2]
by (auto simp: algebra__simps)

lemma not__essential _shift 0:
NO_MATCH 0 z => not_essential f z <— not_essential (Az. f (z + z)) 0
using not__essential__shift_iff[of f 0 2] by (simp add: add__ac)

lemma not__essential _holomorphic:

assumes f holomorphic_on A x € A open A

shows not_essential f x

by (metis assms at_within__open continuous__on holomorphic__on__imp__continuous__on
not__essential _def)

lemma not_essential _analytic:
assumes | analytic_on {z}
shows not_essential f z
using analytic__at assms not__essential _holomorphic by blast

lemma not_essential_id [singularity intros]: not_essential (Aw. w) z
by (simp add: not__essential _analytic)

lemma is_pole imp not_essential [intro]: is_pole f 2 = not__essential f z
by (auto simp: not__essential_def)

lemma tendsto_imp_not_essential [intro]: f —z— ¢ = not__essential f z
by (auto simp: not__essential _def)

lemma eventually not_pole:
assumes isolated_singularity _at f z
shows eventually (Aw. —is_pole f w) (at z)
proof —
from assms obtain r where r > 0 and r: f analytic_on ball z v — {z}
by (auto simp: isolated _singularity at_def)
then have eventually (Aw. w € ball z r — {z}) (at 2)
by (intro eventually at in_open) auto
thus eventually (Aw. —is_pole f w) (at 2)
by (metis (no_types, lifting) analytic_at analytic_on__analytic__at eventu-
ally _mono not_is_pole_holomorphic)
qed

lemma not_islimpt_poles:
assumes isolated__singularity at f z
shows -z islimpt {w. is_pole f w}
using eventually _not_pole [OF assms]
by (auto simp: islimpt__conv_ frequently at frequently_def)

lemma analytic_at_imp_no_pole: f analytic_on {z} = —is_pole f z
using analytic__at not_is_pole_holomorphic by blast

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 357

lemma not_essential_const [singularity_intros]: not__essential (A_. ¢) z
by blast

lemma not_essential_uminus [singularity_intros]:
assumes [ness: not_essential f z
assumes [_iso: isolated_singularity at f z
shows not__essential (Aw. —f w) z
proof —
have not_essential (Aw. —1 % fw) z
by (intro assms singularity__intros)
thus ?thesis by simp
qed

lemma isolated_singularity at_analytic:
assumes | analytic_on {z}
shows isolated singularity_at f 2z
by (meson Diff _subset analytic__at assms holomorphic__on__subset isolated__singularity__at_holomorphic)

lemma isolated_singularity__sum [singularity_intros|:

assumes A\z. x € A = isolated_singularity _at (f x) z

shows isolated_singularity_at (Aw. Y z€A. fx w) 2z

using assms by (induction A rule: infinite_finite _induct) (auto intro!l: singular-
ity__intros)

lemma isolated_singularity_prod [singularity_intros|:

assumes A\z. x € A = isolated_singularity _at (f x) z

shows isolated_singularity _at (Aw. [[z€A. fz w) 2z

using assms by (induction A rule: infinite_finite _induct) (auto intro!l: singular-
ity _intros)

lemma isolated_singularity__sum__list [singularity_intros]:
assumes Af. f € set fs = isolated__singularity_at f z
shows isolated_singularity_at (Aw. > f«fs. fw) z
using assms by (induction fs) (auto introl: singularity intros)

lemma isolated_singularity_prod_list [singularity_intros]:
assumes Af. f € set fs = isolated__singularity_at f z
shows isolated__singularity_at (Aw. [[f<fs. fw) z
using assms by (induction fs) (auto introl: singularity intros)

lemma isolated_singularity__sum_mset [singularity intros):
assumes Af. f €# F = isolated_singularity_at f z
shows isolated_singularity_at (Aw. > fEH#F. fw) z
using assms by (induction F) (auto introl: singularity intros)

lemma isolated_singularity_prod_mset [singularity_intros]:
assumes Af. f €# F = isolated_singularity_at f z
shows isolated_singularity_at (Aw. [[fE#F. fw) z
using assms by (induction F') (auto introl: singularity_intros)

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 358

lemma analytic _nhd__imp_isolated__singularity:

assumes f analytic_on A — {z} = € A open A

shows isolated singularity at f x

unfolding isolated_singularity_at_def using assms

using analytic_imp__holomorphic isolated_singularity at def isolated_singularity _at_holomorphic
by blast

lemma isolated_singularity _at_iff analytic_nhd:
isolated__singularity_at fz «— (FA. z € A A open A A f analytic_on A — {z})
by (meson open__ball analytic _nhd_imp__isolated__singularity
centre__in__ball isolated__singularity__at_ def)

7.12 The order of non-essential singularities (i.e. removable
singularities or poles)

definition zorder :: (complex = complex) = complex = int where
zorder f z = (THE n. (3h r. r>0 A h holomorphic_on cball z 7 N h 2#0
AN (Vwecball zr — {z}. fw= hwx* (w—2) powi n

A hw £0)))

definition zor_poly
it [complex = complex, complex] = complex = complex where
zor_poly f z = (SOME h. 3r. 7 > 0 A h holomorphic_on cball zr7 AN h z # 0
AN (Vwecball zr — {z}. fw= hwx* (w—2) powi (zorder f z)
A hw #£0))

lemma zorder exist:
fixes f:: complex = complex and z::complex
defines n = zorder f z and g = zor_poly f z
assumes [_iso: isolated_singularity at f z
and f ness: not__essential f z
and f nconst: Ipw in (at z). f w#0
shows g z#0 A (3r. r>0 N g holomorphic_on cball z r
AN Vwecball zr — {z}. fw = gwx* (w—2) powin A gw #0))
proof —
define P where P = (An g r. 0 < 1 A g holomorphic_on cball z v N\ g 270
A Ywecball zr — {z}. fw =g wx* (w—2) powi n A\ g w#0))
have 3!'k. dgr. Pkgr
using holomorphic_factor_puncture[OF assms(3—)] unfolding P_def by auto
then have dgr. Pngr
unfolding n_def P_def zorder_def by (rule thel’)
then have dr. Pngr
unfolding P_def zor_poly def g_def n_def by (rule somel _ex)
then obtain r7 where P n g rl
by auto
then show ?thesis
unfolding P _def by auto
qed

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 359

lemma zorder shift:
shows zorder f z = zorder (Au. f (u + 2)) 0
unfolding zorder def
apply (rule arg_cong [of concl: The])
apply (auto simp: fun_eq iff Ball_def dist_norm)
subgoal for z h r
apply (rule_tac z=h o (+)z in exl)
apply (rule_tac z=r in exl)
apply (intro conjl holomorphic__on__compose holomorphic__intros)
apply (simp__all flip: cball_translation)
apply (simp add: add.commute)
done
subgoal for z h r
apply (rule_tac z=h o (Au. u—z2) in exl)
apply (rule_tac z=r in exl)
apply (intro conjl holomorphic__on__compose holomorphic__intros)
apply (simp__all flip: cball_translation__subtract)
by (metis diff _add__cancel eq iff diff _eq 0 norm__minus_commute)
done

lemma zorder _shift: NO_MATCH 0 z = zorder f z = zorder (Au. f (u + 2)) 0
by (rule zorder__shift)

lemma
fixes f:: compler = complex and z::complex
assumes [iso: isolated_singularity at f z
and f ness: not_essential f z
and f nconst: Ipw in (at z). f w#0
shows zorder__inverse: zorder (Aw. inverse (f w)) z = — zorder f z
and zor_poly_inverse: ¥ pw in (at z). zor_poly (Aw. inverse (f w)) z w
= inverse (zor_poly f z w)
proof —
define vf where vf = (Aw. inverse (f w))
define fn vfn where
fn = zorder f z and vfn = zorder vf z
define fp vfp where

fp = zor_poly f z and vfp = zor_poly vf z

obtain fr where [simp]: fp z # 0 and fr > 0
and fr: fp holomorphic_on cball z fr
Vweceball z fr — {z}. fw = fp w x (w—2) powi fn A fp w # 0

using zorder_exist|OF f_iso f_ness f_nconst,folded fn__def fp_ def]

by auto
have fr_inverse: vf w = (inverse (fp w)) *x (w—z2) powi (—fn)

and fr_nz: inverse (fp w) # 0

when weball z fr — {z} for w
proof —

have fw = fp w x (w—2) powi fn fp w # 0

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 360

using fr(2) that by auto
then show vf w = (inverse (fp w)) * (w—=z) powi (—fn) inverse (fp w)#0
by (simp__all add: power _int_minus vf _def)
qed
obtain ufr where [simp]: vfp z # 0 and vfr>0 and vfr: vfp holomorphic_on
cball z vfr
(Vweceball z vfr — {2}, of w = yfp w * (w—2) powi vfn A ufp w # 0)
proof —
have isolated singularity at vf z
using isolated_singularity__at_inverse[OF f_iso f_ness] unfolding vf def .
moreover have not_essential vf z
using not__essential_inverse[OF [_ness f_iso] unfolding vf def .
moreover have I p win at z. vf w # 0
using f nconst unfolding vf def by (auto elim: frequently elim1)
ultimately show ?thesis using zorder_exist[of vf z, folded vfn__def vfp_def]
that by auto
qed

define r1 where r1 = min fr ufr
have r1>0 using «fr>0> <vfr>0> unfolding r1_def by simp
show vfn = — fn
proof (rule holomorphic_factor _unique)
have § Aw. [fp w = 0; dist z w < fr] = False
using fr_nz by force
then show YV weball z r1 — {z}.
of w = vfp w x (w—2z) powi vfn A
ufp w # 0 A uf w = inverse (fp w) * (w—=z) powi (— fn) A
inverse (fp w) # 0
using fr_inverse r1__def vfr(2)
by (smt (verit) Diff iff inverse _nonzero_iff nonzero mem__ball mem__cball)
show vfp holomorphic_on ball z r1
using r1_ def vfr(1) by auto
show (Aw. inverse (fp w)) holomorphic_on ball z r1
by (metis § ball _subset cball fr(1) holomorphic__on__inverse holomorphic__on__subset
mem,__ball min.cobounded?2 min.commute r1_def subset_ball)
qed (use <r1>0> in auto)
have ufp w = inverse (fp w) when weball z r1—{z} for w
proof —
have w € ball z fr — {z} w € cball z vfr — {2z} w#z
using that unfolding r1_def by auto
then show ?thesis
by (metis <ufn = — fn» power_int_not_zero right_minus_eq fr_inverse
ufr(2)
vector_space__over_itself .scale_right_imp__eq)
qed
then show V pw in (at z). vfp w = inverse (fp w)
unfolding eventually at by (metis DiffT dist_commute mem__ball singletonD
(r1>0y)
qed

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 361

lemma zor poly shift:
assumes isol: isolated_singularity_at f z
and nessl: not_essential f z
and nzerol: Ip win at z. fw # 0
shows V r w in nhds z. zor_poly f z w = zor_poly (Au. f (z + u)) 0 (w—=2)
proof —
obtain r1 where 71>0 zor_poly f z z # 0 and
holol: zor_poly f z holomorphic_on cball z r1 and
rballl: ¥ wecball z r1 — {z}.
fw=zor_poly f 2w x (w—2) powi (zorder f z) A
zor_poly fzw # 0
using zorder_exist|OF isol nessl nzerol| by blast

define ff where ff=(\u. f (z + u))
have isolated__singularity at ff 0
unfolding ff def
using isol isolated_singularity__at_shift _iff[of f 0 2]
by (simp add: algebra__simps)
moreover have not_essential ff 0
unfolding ff def
using ness! not__essential _shift_iff [of f 0 2]
by (simp add: algebra__simps)
moreover have 3r win at 0. ffw # 0
unfolding ff def using nzerol
by (smt (verit, ccfu_SIG) add.commute eventually_at_to_0
eventually _mono not_ frequently)
ultimately
obtain r2 where r2>0 zor_poly ff 0 0 # 0
and holo2: zor_poly ff 0 holomorphic__on cball 0 r2
and rball2: Y wecball 0 r2 — {0}.
ffw = zor_poly ff 0 w = w powi (zorder ff 0) A zor_poly ff 0 w # 0
using zorder__exist[of [f 0] by auto

define r where r=min r1 r2
have r>0 using «r1 >0 <r2>0> unfolding r_def by auto

have zor_poly f z w = zor_poly [f 0 (w—2z)
if weball zr — {z} for w

proof —
define n where n = zorder f z

have fw = zor_poly f z w * (w—z) powi n
using n_ def r_def rballl that by auto
moreover have fw = zor_poly [f 0 (w—z) * (w—2z) powi n
proof —
have w—zecball 0 r2 — {0}
using r_def that by (auto simp: dist_complex_ def)
then have ff (w—z) = zor_poly ff 0 (w—2z) * (w—2z) powi (zorder ff 0)

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 362

using rball2 by blast
moreover have of int (zorder ff 0) = n
unfolding n_ def ff_def by (simp add:zorder_shift’ add.commute)
ultimately show ?thesis unfolding ff def by auto
qed
ultimately have zor poly f z w * (w—z) powi n = zor_poly ff 0 (w—=z) *
(w—2) powi n
by auto
moreover have (w—z) powi n #0
using that by auto
ultimately show Zthesis
using mult__cancel__right by blast
qed
then have V p w in at z. zor_poly f z w = zor_poly ff 0 (w—2)
unfolding eventually at
by (metis Diffl <0 < r» dist_commute mem,__ball singletonD)
moreover have isCont (zor_poly f z) z
using holol1[THEN holomorphic_on__imp__continuous__on]
by (simp add: <0 < rl) continuous_on__interior)
moreover
have isCont (zor_poly ff 0) 0
using <0 < r2) continuous__on__interior holo2 holomorphic__on__imp__continuous_on
by fastforce
then have isCont (Aw. zor_poly ff 0 (w—2)) z
unfolding isCont_iff by simp
ultimately show V r w in nhds z. zor_poly f z w = zor_poly ff 0 (w—2)
by (elim at_within_isCont__imp_nhds;auto)
qed

lemma
fixes f g:: complex = compler and z::complex
assumes f_iso: isolated__singularity_at f z and g _iso: isolated _singularity at g
z
and f ness: not_essential f z and ¢g_ness: not_essential g z
and fg_nconst: Ipw in (at 2). fw * g w# 0
shows zorder_times: zorder (Aw. fw * g w) z = zorder f z + zorder g z and
zor_poly_times: ¥ pw in (at z). zor_poly (Aw. fw x g w) zw
= zor_poly f z w xzor_poly g z w
proof —
define fg where fg = (Aw. fw % g w)
define fn gn fgn where
fn = zorder f z and gn = zorder g z and fgn = zorder fg z
define fp gp fgp where
fo = zor_poly f z and gp = zor_poly g z and fgp = zor_poly fg z
have f _nconst: Ipw in (at 2). fw # 0 and g _nconst: Ipw in (at 2).g w# 0
using fg_nconst by (auto elim!:frequently elim1)
obtain fr where [simp]: fp z # 0 and fr > 0
and fr: fp holomorphic_on cball z fr
Ywecball z fr — {z}. fw = fp wx (w—2) powi fn A fp w # 0

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 363

using zorder _exist[OF f_iso f _ness f_nconst,folded fp_def fn_def] by auto
obtain gr where [simp|: gp z # 0 and gr > 0
and gr: gp holomorphic_on cball z gr
Yweceball z gr — {2}. g w = gp w * (w—2) powi gn A gp w # 0
using zorder__exist|OF g_iso g_ness g_nconst,folded gn__def gp__def] by auto
define r! where r1=min fr gr
have r1>0 unfolding r1 def using <fr>0> <gr>0» by auto
have fg_times: fg w = (fp w * gp w) * (w—2z) powi (fnt+gn) and fgp_ nz: fp wxgp
w#0
when weball z r1 — {z} for w
proof —
have fw = fp w x (w—2) powi fn fp w # 0
using fr(2) r1_def that by auto
moreover have g w = gp w * (w—2z) powi gn gp w # 0
using g¢r(2) that unfolding r1_def by auto
ultimately show fg w = (fp w * gp w) *x (w—2) powi (fn+gn) fp wkgp w#0
using that unfolding fg def by (auto simp add: power _int_add)
qed

obtain fgr where [simp]: fgp z # 0 and fgr > 0
and fgr: fgp holomorphic_on cball z fgr
Y wecball z fgr — {z}. fg w = fgp w x (w—2) powi fgn A fgp w # 0
proof —
have isolated_singularity at fg z
unfolding fg_def using isolated _singularity at_times|OF f _iso g_iso] .
moreover have not_essential fg z
by (simp add: f_iso f_ness fg_def g_iso g_ness not__essential _times)
moreover have I p win at z. fg w # 0
using fqg _def fg_nconst by blast
ultimately show #thesis
using that zorder_exist[of fg 2] fon__def fgp__def by fastforce
qed
define r2 where r2 = min fgr r1
have r2>0 using «r1>0) <fgr>0> unfolding r2 _def by simp
show fgn = fn + gn
proof (rule holomorphic_factor_unique)
show Yw € ball z 12 — {z}. fg w = fgp w x (w — z) powi fgn A fgp w # 0 A
fow=fpw=xgpwx*(w—2) powi (fn+ gn) A fpwx*gpw#0
using fg_times fgp_nz fgr(2) r2_def by fastforce
next
show fgp holomorphic_on ball z 72
using fgr(1) r2_def by auto
next
show (Aw. fp w * gp w) holomorphic_on ball z r2
by (metis ball_subset_cball fr(1) gr(1) holomorphic_on_mult holomor-
phic__on__subset
min.cobounded min.cobounded?2 r1__def r2_def subset_ball)
qged (auto simp add: <0 < r2))

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 364

have fgp w = fp w xgp w when w: w € ball z r2—{2} for w
proof —
have w € ball z r1 — {z} w € cball z fgr — {z} w#z
using w unfolding r2 def by auto
then show ?thesis
by (metis <fgn = fn + gn> eq iff _diff _eq 0 fg_times fgr(2) power_int_eq 0_iff
mult_right _cancel)
qed
then show V pw in (at 2). fgp w = fp w * gp w
using «r2>0» unfolding eventually_at by (auto simp add: dist_commute)
qged

lemma
fixes f g:: complex = complex and z::complex
assumes [iso: isolated__singularity ot f z and g _iso: isolated singularity at g
z
and f ness: not_essential f z and g_ness: not_essential g z
and fg_nconst: Ipw in (at 2). fw * g w# 0
shows zorder_divide: zorder (Aw. fw / g w) z = zorder f z — zorder g z and
zor_poly__divide: ¥V pw in (at z). zor_poly (Aw. fw / g w) z w
= zor_poly f zw [zor_poly g z w
proof —
have f _nconst: Ipw in (at 2). fw # 0 and g _nconst: I pw in (at 2).g w# 0
using fg_nconst by (auto elim!:frequently elim1)
define vg where vg=(A\w. inverse (g w))
have 1: isolated_singularity at vg z
by (simp add: g_iso g _ness isolated__singularity at_inverse vg_def)
moreover have 2: not_essential vg z
by (simp add: g_iso g_ness not_essential _inverse vg_def)
moreover have 3: 3p win at z. fw *x vg w # 0
using fg nconst vg_def by auto
ultimately have zorder (Aw. fw x vg w) z = zorder f z + zorder vg z
using zorder_times[OF [_iso _ f ness| by blast
then show zorder (Aw. fw / g w) z = zorder f z — zorder g z
using zorder_inverse[OF g_iso g_ness g_nconst,folded vg_def] unfolding
vg_def
by (auto simp add: field_simps)
have V p w in at z. zor_poly (Aw. fw * vg w) z w = zor_poly f z w x zor_poly
vg Z W
using zor_poly times[OF [_iso __ [_ness,of vg] 1 2 3 by blast
then show YV rpw in (at z). zor_poly (Aw. fw / g w) zw = zor_poly fzw /
zor_poly g z w
using zor_poly_inverse[OF g_iso g_ness g_nconst,folded vg_def] unfolding
vg_def
by eventually elim (auto simp add: field _simps)
qed

lemma zorder_exist_zero:
fixes f:: compler = complex and z::complex

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 365

defines n = zorder f z and g = zor_poly f z
assumes holo: f holomorphic_on S and open S connected S z€S
and non__const: JweS. fw # 0
shows (if f z=0 then n > 0 else n=0) A (3r. r>0 A cball z17 C S A g holomor-
phic_on cball z r
AN NVwecball zr. fw = gwx* (w—2) “natn A gw #0))
proof —
obtain r where g z # 0 and r: >0 cball z r C S g holomorphic_on cball z r
(Vweeball zr — {z}. fw=gwx* (w—2) powin A gw # 0)
proof —
have g z # 0 A (37r>0. g holomorphic_on cball z v
A (Ywecball zr — {z}. fw=gwx* (w—2) powin A gw # 0))
proof (rule zorder__exist[of f z,folded g _def n__def])
show isolated_singularity at f z
using <open S» «z€S» holo holomorphic_on__imp__analytic_at isolated__singularity__at_analytic

by force
show not__essential f z unfolding not_essential _def
using <open S» <z€S8» at_within__open continuous _on holo holomor-
phic_on__imp__continuous _on
by fastforce
have Vg win at z. fw # 0 N weS
using assms(4,5,6) holo non__const non__zero_neighbour__alt by blast
then show 3p win at z. fw # 0
by (auto elim: eventually frequentlyE)
qged
then obtain r! where g z # 0 r1>0 and r1: g holomorphic_on cball z r1
(Vweeball zr1 — {z}. fw=gwx* (w—2) powin A gw # 0)
by auto
obtain 72 where r2: r2>0 cball 272 C S
using assms(4,6) open__contains__cball _eq by blast
define 8 where r3 = min r1 r2
have r3>0 cball z r3 C § using <r1>0) r2 unfolding r3 def by auto
moreover have g holomorphic_on cball z r3
using r1(1) unfolding 3 def by auto
moreover have (Ywecball z 13 — {z}. fw =g w * (w—2) powin A g w # 0)
using r1(2) unfolding r3_def by auto
ultimately show ?thesis using that[of r3] <g z#0> by auto
qed

have fz lim: f— 2z — [z
by (metis assms(4,6) at_within__open continuous__on holo holomorphic__on__imp__continuous__on)
have gz lim: g —2—g 2
using r
by (meson Elementary_Metric_Spaces.open__ball analytic__at analytic _at_imp_isCont

ball_subset__cball centre_in__ball holomorphic__on__subset isContD)
have if _0: if f z=0 then n > 0 else n=0
proof —

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 366

have (Aw. g w * (w—2) powi n) —z— [z

using fz lim Lim__transform__within__open|where s=ball z r] r by fastforce
then have (A\w. (g w * (w—z2) powin) / gw) —z— fz/g 2

using gz lim <g z # 0> tendsto__divide by blast
then have powi_tendsto: (Aw. (w—z) powi n) —z— fz/g z

using Lim__transform__within__open[where s=ball z r] r by fastforce

have ?thesis when n>0 f z=0
proof —
have (Aw. (w—z) “natn) —z— fz/g z
using Lim__transform_ within| OF powi_tendsto, where d=r]
by (meson power _int_def r(1) that(1))
then have *: (Aw. (w—z) ~nat n) —z— 0 using <f z=0> by simp
moreover have Fualse when n=0
proof —
have (Aw. (w—z) ~nat n) —z— 1
using (n=0> by auto
then show Fulse using * using LIM unique zero_neq one by blast
qed
ultimately show ?thesis using that by fastforce
qed
moreover have ?thesis when n>0 f 2#£0
proof —
have Fualse when n>0
proof —
have (Aw. (w—z) “natn) —z— fz/g z
using Lim__transform__within] OF powi_tendsto, where d=r]
by (meson <0 < n» power_int_def (1))
moreover have (Aw. (w—z) ~nat n) —z— 0
using «n>0»> by (auto introl:tendsto__eq intros)
ultimately show False
using «f z£0> «g z#0> LIM__unique divide_eq 0_iff by blast
qed
then show ?thesis using that by force
qed
moreover have False when n<0
proof —
have (Aw. inverse ((w—z) ~nat (— n))) —z2— fz/g 2
by (smt (verit) LIM _cong power _int__def power _inverse powi__tendsto that)
moreover
have (Aw.((w—z) ~nat (— n))) —z— 0
using that by (auto introl:tendsto__eq_intros)
ultimately
have (Az. inverse ((z — 2z) “nat (— n)) * (x — 2) “nat (— n)) —2z— 0
using tendsto__mult by fastforce
then have (A\z. I::complex) —z— 0
using Lim__transform__ within__open by fastforce
then show Fulse
using LIM const_eq by fastforce

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 367

qed
ultimately show ?thesis by fastforce
qed
moreover have fw = gw * (w—z) “natn A g w #0 when wecball z r for w
proof (cases w=z)
case True
then have f —z—f w
using fz lim by blast
then have (\w. g w *x (w—2) ~nat n) —z—fw
proof (elim Lim__transform_within[OF _ «r>0)])
fix v assume 0 < dist x z dist x z < r
then have z € cball z 7 — {2z} =2
unfolding cball def by (auto simp add: dist_commute)
then have fz = gz * (z — 2) powi n
using r(4)[rule_format,of x] by simp
also have ... = gz x (z — 2) “natn
by (smt (verit, best) if 0 int_nat_eq power _int_of nat)
finally show fz =gz x (x — 2) “natn .
qed
moreover have (Aw. g w * (w—z) “nat n) —z— g w * (w—z) " nat n
using True by (auto introl:tendsto__eq intros gz lim)
ultimately have fw = g w * (w—2) ~ nat n using LIM_unique by blast
then show ?thesis using <g z#£0> True by auto
next
case Fulse
then have fw = g w * (w—=2) powin g w # 0
using r(4) that by auto
then show ?thesis
by (smt (verit, best) False if 0 inlt_nat_eq power _int_of nat)
qed
ultimately show “thesis using r by auto
qed

lemma zorder exist_pole:
fixes f:: complex = complex and z::complex
defines n=zorder f z and g=zor_poly f z
assumes holo: f holomorphic_on S—{z} and open S z€S and is_pole f z
shows n < 0 A gz#£0 A (3r. r>0 A cball z 7 C S A g holomorphic_on cball z r
AN Ywecball zr — {z}. fw =gw / (w—2) " nat (— n) A gw #0))
proof —
obtain r where g z # 0 and r: >0 cball z r C S g holomorphic_on cball z r
(Vweeball zr — {z}. fw=gwx* (w—2) powin A gw # 0)
proof —
have g 2 # 0 A (3r>0. g holomorphic_on cball z v
AN (Vwecball zr — {z}. fw=gwx* (w—2) ppwin A gw # 0))
proof (rule zorder_exist[of f z,folded g def n__def])
show isolated_singularity at f z unfolding isolated_singularity at_def
using holo assms(4,5)
by (metis analytic_on__holomorphic centre_in_ball insert_Diff openE

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 368

open__delete subset_insert iff)
show not__essential f z unfolding not__essential _def
using assms(4,6) at_within__open continuous__on holo holomorphic__on__imp__continuous_on
by fastforce
from non__zero__neighbour_pole[OF <is_pole f 2] show I p w in at z. fw #

by (auto elim: eventually frequentlyF)
qed
then obtain r! where g z # 0 r1>0 and r1: g holomorphic_on cball z r1
(Vweeball zrl — {z}. fw=gwx* (w—2) powin A gw # 0)
by auto
obtain 72 where r2: r2>0 cball z r2 C S
using assms(4,5) open__contains_cball _eq by metis
define 8 where r3=min r1 r2
have r83>0 cball z r8 C S using <«r1>0) r2 unfolding r3 def by auto
moreover have g holomorphic_on cball z r3
using 71(1) unfolding r8 def by auto
moreover have (Ywecball z 13 — {z}. fw = g w *x (w—2) powin A g w # 0)
using 71(2) unfolding 3 def by auto
ultimately show ¢thesis
using that[of r3] <g 270> by auto
qed

have n<0
proof (rule ccontr)
assume - n < (
define ¢ where c¢=(if n=0 then g z else 0)
have [simp]: ¢ —2— g 2
using r
by (metis centre_in__ball continuous__on__interior holomorphic__on__imp__continuous_on
interior__cball isContD)
haveVz € ball zr. 2 # 2 — fr =gz *x (x — 2) " natn
by (simp add: <= n < 0> linorder_not_le power_int_def r)
then have Vp zinat z. fo =gz *x (x — 2) “nat n
using centre_in_ball eventually at_topological (1) by blast
moreover have (\z. gz * (z — 2) " nat n) —2— ¢
proof (cases n=0)
case True
then show ?thesis unfolding ¢ def by simp
next
case Fulse
then have (A\z. (z — 2) “nat n) —z— 0 using - n < O
by (auto introl:tendsto__eq intros)
from tendsto__mult[OF __ this,of g g z,simplified)
show ?thesis unfolding ¢ def using False by simp
qed
ultimately have f —z—c using tendsto__cong by fast
then show Fulse using <is_pole f z> at_neq bot not__tendsto__and_ filterlim__at_infinity
unfolding is pole_ def by blast

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 369

qed
moreover have Vwecball zr — {z}. fw = gw / (w—2) “nat (— n) A gw #0
using 7(4) n<0»
by (smt (verit) inverse__eq divide mult.right_neutral power_int_def power_inverse
times__divide__eq_right)
ultimately show %thesis
using r «g z#£0» by auto
qed

lemma zorder eql:
assumes open S z € S g holomorphic_on S g z # 0
assumes fg_eq: Aw. [w € S;w#z] = fw = g w x (w—2) powi n
shows zorder fz=n
proof —
have continuous _on S g by (rule holomorphic_on__imp__continuous_on) fact
moreover have open (—{0::complex}) by auto
ultimately have open ((¢ —° (—{0})) N S)
unfolding continuous_on_open_vimage[OF <open S| by blast
moreover from assms have z € (¢ —* (—={0})) N S by auto
ultimately obtain r where 7: r > 0 cball z7 C SN (g —“(—{0}))
unfolding open_ contains_cball by blast

let g9= (A\w. g w * (w—2z) powi n)
define P where P = (An g r. 0 < r A g holomorphic_on cball z v N\ g 270
A (Ywecball zr — {z}. fw =g wx* (w—2) powi n A\ g w#0))
have Pngr
unfolding P _def using r assms(3,4,5) by auto
then have d¢g r. P n g r by auto
moreover have unique: 3!'n. g r. P n g r unfolding P _def
proof (rule holomorphic_factor _puncture)
have ball z r—{z} C S using r using ball_subset_cball by blast
then have ?gg holomorphic_on ball z r—{z}
using <g holomorphic_on S» r by (auto intro!: holomorphic__intros)
then have f holomorphic_on ball z v — {2}
by (smt (verit, best) DiffD2 <ball z r—{z} C S fg_eq holomorphic_cong
singleton__iff subset_iff)
then show isolated_singularity at f z unfolding isolated singularity at def
using analytic_on__open open__delete r(1) by blast
next
have not__essential ?gg z
proof (intro singularity_intros)
show not__essential g z
by (meson <continuous_on S g» assms continuous__on__eq continuous__at
isCont__def not__essential _def)
show Vp win at z. w — z # 0 by (simp add: eventually at_filter)
then show LIM wat z. w — z :> at 0
unfolding filterlim__at by (auto intro: tendsto__eq intros)
show isolated__singularity at g z
by (meson Diff _subset open__ball analytic _on__holomorphic

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 370

assms holomorphic__on__subset isolated__singularity__at_def openFE)
qed
moreover
have Vp win at z. g w * (w—2) powi n = fw
unfolding eventually at_topological using assms fg_eq by force
ultimately show not_essential f z
using not__essential__transform by blast
show Jp win at z. fw # 0 unfolding frequently at
proof (intro strip)
fix d::real assume 0 < d
define 2’ where 2’ = z+min dr / 2
have 2z’ # 2 dist z' z < d
unfolding 2’ _def using «d>0)> <r>0> by (auto simp add: dist_norm)
moreover have [z’ # 0
proof (subst fg_eq[OF __ <z'#2)])
have 2z’ € cball z r
unfolding 2’ def using «r>0) «d>0> by (auto simp add: dist_norm)
then show 2’ € S using r(2) by blast
show g 2’ % (2' — z) powi n # 0
using P_def <P n gr <z’ € cball z > <z’ # 2> by auto
qed
ultimately show 32cUNIV. x # 2z AN dist x z < d N\ fz # 0 by auto
qed
qed
ultimately have (THE n. 3gr. Pngr)=n
by (rule_tac thel _equality)
then show ?thesis unfolding zorder def P_def by blast
qed

lemma simple_zerol:
assumes open S z € S g holomorphic_on S g z # 0
assumes Aw. w € S = fw =g w * (w—2)
shows zorder fz = 1
using assms zorder__eql by force

lemma higher deriv__power:
shows (deriv 77 j) (Aw. (w—z2) ~n) w =
pochhammer (of _nat (Suc n — j)) j * (w—z) ~(n — j)
proof (induction j arbitrary: w)
case (
thus ?case by auto
next
case (Suc j w)
have (deriv = Suc j) (Aw. (w—z) " n) w = deriv ((deriv =" j) (Aw. (w—z) ~
n)) w
by simp
also have (deriv 7" j) (Aw. (w—z) " n) =
(Aw. pochhammer (of _nat (Suc n — 7)) j * (w—2) ~ (n — j))
using Suc by (intro Suc.IH ext)

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 371

also {
have (... has_field derivative of _nat (n — j) *
pochhammer (of _nat (Suc n — 7)) j * (w—z) ~ (n — Suc j)) (at w)
using Suc.prems by (auto intro!: derivative_eq intros)
also have of _nat (n — j) x pochhammer (of _nat (Suc n — j)) j =
pochhammer (of _nat (Suc n — Suc j)) (Suc j)
by (cases Suc j < n, subst pochhammer_rec)
(use Suc.prems in <simp__all add: algebra__simps Suc__diff le pochham-
mer_0_lefty)
finally have deriv (Aw. pochhammer (of nat (Suc n — j)) j * (w—z) ~(n —
) w =
% (w—2) " (n — Sucj)
by (rule DERIV__imp_ deriv)
}
finally show ?case .
qed

lemma zorder zero__eql:
assumes f_holo: f holomorphic_on S and open S z € S
assumes zero: N\i. i < nat n = (deriv " i) fz =0
assumes nz: (deriv = nat n) fz # 0 and n>0
shows zorder fz=n
proof —
obtain r where [simp]: r>0 and ball z 7 C S
using <open S) z€S» openE by blast
have nz”: Jweball zr. fw # 0
proof (rule ccontr)
assume — (Jweball zr. fw # 0)
then have eventually (Au. fu = 0) (nhds z)
using open__ball <0 < r» centre_in__ball eventually nhds by blast
then have (deriv ™" nat n) fz = (deriv ™ nat n) (A_. 0) z
by (intro higher__deriv_cong_ev) auto
also have (deriv " " natn) (A_. 0) 2z =0
by (induction n) simp__all
finally show Fulse using nz by contradiction
qed

define zn g where zn = zorder f z and g = zor_poly f z
obtain e where e _if: if f z = 0 then 0 < zn else zn = 0 and
[simp]: e>0 and cball z e C ball z r and
g__holo: g holomorphic_on cball z e and
e_fac: (Vwechall ze. fw=gw=x* (w—2z) “natzn A g w # 0)
proof —
have f holomorphic__on ball z r
using f holo <ball z r C S» by auto
from that zorder _exist_zero|of f ball z v z,simplified, OF this nz’,folded zn__def
g def]
show thesis by blast
qed

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 372

then obtain zn > 0 gz # 0
by (metis centre_in__cball less_le__not_le order _refl)

define A where A = (A\i. of nat (i choose (nat zn)) * fact (nat zn) * (deriv ="
(i — nat zn)) g 2)
have deriv_A: (deriv " i) fz = (if 2n < int i then A i else 0) for ¢
proof —
have eventually (Aw. w € ball z €) (nhds z)
using <cball z e C ball z m <e>0> by (intro eventually nhds_in_open) auto
hence eventually (Aw. fw = (w—2) ~ (nat zn) * g w) (nhds z)
using e_fac eventually mono by fastforce
hence (deriv "7 4) fz = (deriv " 1) (Aw. (w—2) " nat zn * g w) z
by (intro higher__deriv_cong_ev) auto
also have ... = (3 j=0..i. of nat (i choose j) *
(deriv 77 j) (Aw. (w—z) " nat zn) z * (deriv =" (i — j)) g 2)
using g holo <e>0>
by (intro higher__deriv_mult[of _ ball z €]) (auto intro!: holomorphic_intros)
also have ... = (3> j=0..i. if j = nat zn then
of _nat (i choose nat zn) * fact (nat zn) * (deriv = (i — nat zn))
g z else 0)
proof (intro sum.cong refl, goal _cases)
case (1 j)
have (deriv =" j) (Aw. (w—z2) ~nat zn) z =
pochhammer (of _nat (Suc (nat zn) — 7)) j * 0 ~ (nat zn — j)
by (subst higher _deriv_power) auto

also have ... = (if j = nat zn then fact j else 0)
by (auto simp: not_less pochhammer__0_left pochhammer_fact)
also have of nat (i choose j) x ... x (deriv = (i — j)) gz =

(if 7 = nat zn then of nat (i choose (nat zn)) * fact (nat zn)
* (deriv 7" (i — nat zn)) g z else 0)

by simp
finally show ?Zcase .
qed
also have ... = (if i > zn then A i else 0)

by (auto simp: A_ def)
finally show (deriv " 4) fz=... .
qged

have Fulse when n<zn
using deriv_Alof nat n| that «n>0> by (simp add: nz)
moreover have n<zn
proof —
have g z # 0
by (simp add: <g z # 0»)
then have (deriv ™ nat zn) fz # 0
using deriv_A[of nat zn] by(auto simp add: A__def)
then have nat zn > nat n using zero[of nat zn| by linarith
moreover have zn>0 using e_if by (auto split: if _splits)
ultimately show ?thesis using nat_le _eq zle by blast

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 373

qed
ultimately show ?thesis unfolding zn_def by fastforce
qed

lemma
assumes eventually (M\z. fz =g 2) (at 2) z = 2’
shows zorder cong: zorder f z = zorder g z’ and zor_poly cong: zor_poly f z
= zor_poly g 2z’
proof —
define P where P = (\ffn hr. 0 < r A h holomorphic_on cball z v A h 2£0
A Ywecball z r — {z}. ffw=hw=* (w—2) powi n A h w#0))
have (3r. Pfnhr)= 3r. Pgnhr)for nh
proof —
have «: 3r. P gn h rif 3r. P fn h r and eventually (A\z. fz = g z) (at 2)
for fg
proof —
from that(1) obtain r! where r1_P: P fn h r1 by auto
from that(2) obtain r2 where r2>0 and r2_dist: Vz. x # z A dist v z <
r2 — fx=gz
unfolding eventually at le by auto
define r where r=min r1 r2
have r>0 h 2#0 using r1_ P «r2>0) unfolding r_def P_def by auto
moreover have h holomorphic_on cball z r
using 1P unfolding P _def r_def by auto
moreover have g w = h w * (w—z) powi n A h w # 0 when wecball z r —
{z} for w
proof —
have fw = h w *x (w—2) powi n A h w # 0
using r1_ P that unfolding P_def r_def by auto
moreover have f w=g w
using r2_dist that by (simp add: dist_commute r_def)
ultimately show ?thesis by simp
qed
ultimately show ?thesis unfolding P _def by auto
qed
from assms have eq”: eventually (M\z. g z = f 2) (at 2)
by (simp add: eq _commute)
show ?thesis
using * assms(1) eq’ by blast
qed
then show zorder f z = zorder g 2’ zor_poly f z = zor_poly g 2’
using «z=z"» unfolding P _def zorder_def zor_poly_def by auto
qed

lemma zorder times__analytic’:
assumes isolated__singularity _at f z not__essential f z
assumes g analytic_on {z} frequently (\z. fz x g z # 0) (at 2)
shows zorder (A\z. fz * g z) z = zorder f z + zorder g 2
using assms isolated__singularity at__analytic not__essential _analytic zorder _times

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 374

by blast

lemma zorder cmult:
assumes ¢ # 0
shows zorder (Az. ¢ x [z) z = zorder f z
proof —
define P where
P=\fnhr. 0<r A hholomorphic_on cball z r A
hz#0NNweehallzr — {z}. fw=hwx* (w—2) powin A hw
0))
have x: P (Az. ¢« fz) n (M\z. ¢ x hx) r
ifPfnhrec+#0for fnhrec
using that unfolding P_def by (auto intro!: holomorphic_intros)
have (3hr. P (Az. cx fz) nhr)+— (3hr. Pfnhr)for n
using *[of fn _ _] #[of Ax. ¢ x fxn_ _ inverse c] <¢c # O»
by (fastforce simp: field _simps)
hence (THE n. 3hr. P (Az. ¢x fx) nhr)=(THEn. 3hr. Pfnhr)
by simp
thus ?thesis
by (simp add: zorder_def P_def)
qed

lemma zorder _uminus [simp]: zorder (Az. —f z) z = zorder f z
using zorder__cmult[of —1 f] by simp

lemma zorder nonzero__div_power:
assumes sz: open S z € S f holomorphic_on S fz # 0 and n > 0
shows zorder (Aw. fw / (w—2) "n) z=—n
by (intro zorder _eql [OF sz]) (simp add: inverse_eq divide power _int_minus)

lemma zor_poly eq:
assumes isolated__singularity_at f z not_essential fz Ip win at z. fw # 0
shows eventually (Aw. zor_poly f z w = fw x (w—2) powi — zorder [z) (at 2)
proof —
obtain r where r: r>0
(Vweeball zr — {z}. fw = zor_poly f z w x (w—2) powi (zorder f z))
using zorder__exist|OF assms] by blast
then have x: Vweball z v — {z}. zor_poly f z w = fw x (w—2) powi — zorder f
z
by (auto simp: field simps power _int_minus)
have eventually (Aw. w € ball z r — {z}) (at 2)
using r eventually _at_ball’[of r z UNIV] by auto
thus ?thesis by eventually elim (insert *, auto)
qed

lemma zor_poly zero eq:
assumes f holomorphic_on S open S connected S z € S JweS. fw # 0
shows eventually (Aw. zor_poly f z w = fw / (w—z) ~ nat (zorder f 2)) (at 2)
proof —

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 375

obtain r» where r: r>0
(Vwecball zr — {z}. fw = zor_poly f z w x (w—z) ~ nat (zorder f z))
using zorder__exist_zero[OF assms] by auto
then have *: Vwe&ball z r — {z}. zor_poly f zw = fw / (w—z) ~ nat (zorder f

2)
by (auto simp: field _simps powr__minus)
have eventually (Aw. w € ball z v — {z}) (at 2)
using r eventually at_ball’[of r = UNIV] by auto
thus ?thesis by eventually elim (insert *, auto)
qged

lemma zor_poly pole eq:
assumes [iso: isolated__singularity at f z is_pole f z
shows eventually (Aw. zor_poly f z w = fw * (w—z) ~ nat (— zorder f 2)) (at 2)
proof —
obtain e where [simp]: e>0 and f_holo: f holomorphic_on ball z e — {z}
using f_iso analytic_imp__holomorphic unfolding isolated singularity at def
by blast
obtain r where r: r>0
(Vweeball zr — {z}. fw = zor_poly f zw |/ (w—2) ~nat (— zorder f z))
using zorder__exist_pole[OF f_holo,simplified, OF <is_pole f 2)] by auto
then have x: Vweball zr — {z}. zor_poly f zw = fw x (w—2) "~ nat (— zorder
f2)
by (auto simp: field__simps)
have eventually (Aw. w € ball z r — {z}) (at 2)
using r eventually _at_ball’[of r z UNIV] by auto
thus ?thesis by eventually elim (insert *, auto)
qed

lemma zor_poly eql:
fixes f :: complexr = complex and 20 :: complex
defines n = zorder f 20
assumes isolated _singularity__at f z0 not__essential f 20 I w in at 20. fw # 0
assumes lim: (Az. f (g z) * (g x — 20) powi — n) —— ¢) F
assumes g¢: filterlim g (at 20) F and F # bot
shows zor_poly f 20 20 = ¢
proof —
from zorder ezist|OF assms(2—4)] obtain r where
r:r > 0 zor_poly f 20 holomorphic__on cball 20 r
Aw. w € cball 20 r — {20} = fw = zor_poly f 20 w *x (w — 20) powi n
unfolding n_ def by blast
from r(1) have eventually (Aw. w € ball 20 r AN w # 20) (at 20)
using eventually__at_ball’[of r z0 UNIV] by auto
hence eventually (Aw. zor_poly f 20 w = fw * (w — 20) powi — n) (at 20)
by eventually elim (insert r, auto simp: field _simps power _int_minus)
moreover have continuous_on (ball z0 r) (zor_poly f z0)
using r by (intro holomorphic_on__imp__continuous_on) auto
with r have isCont (zor_poly f 20) 20
by (auto simp: continuous_on__eq continuous__at)

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 376

hence (zor_poly f 20 —— zor_poly f 20 20) (at 20)
unfolding isCont_ def .
ultimately have ((Aw. fw * (w — 20) powi — n) —— zor_poly f 20 20) (at
20)
by (blast intro: Lim__transform__eventually)
hence (Az. f (g z) * (g z — 20) powi — n) —— zor_poly f 20 20) F
by (rule filterlim__compose[OF __ g])
from tendsto__unique[OF <F # bot» this lim] show Zthesis .
qed

lemma zor _poly zero_eql:
fixes f :: compler = complex and 20 :: complex
defines n = zorder f z0
assumes f holomorphic_on A open A connected A 20 € A Jz€A. fz# 0
assumes lim: (\z. f (gz) / (9 x — 20) “natn) — ¢) F
assumes g¢: filterlim g (at 20) F and F # bot
shows zor_poly f 20 20 = ¢
proof —
from zorder exist_zero|OF assms(2—6)] obtain r where
ror > 0 cball 20 1 C A zor_poly f z0 holomorphic_on cball z0 T
Aw. w € cball 20 r = fw = zor_poly f 20 w x (w — 20) ~ nat n
unfolding n_ def by blast
from r(1) have eventually (Aw. w € ball 20 r N w # 20) (at 20)
using eventually _at_ball’[of r z0 UNIV] by auto
hence eventually (Aw. zor_poly f 20 w = fw / (w — 20) " nat n) (at 20)
by eventually_elim (insert r, auto simp: field _simps)
moreover have continuous_on (ball 20 r) (zor_poly f 20)
using r by (intro holomorphic_on__imp__continuous_on) auto
with r(1,2) have isCont (zor_poly f 20) z0
by (auto simp: continuousfonfeqicontinuousiat)
hence (zor_poly f 20 —— zor_poly f 20 20) (at 20)
unfolding isCont_def .
ultimately have ((Aw. fw / (w — 20) ™ nat n) —— zor_poly f 20 20) (at 20)
by (blast intro: Lim__transform__eventually)
hence ((A\z. f (gz) / (g x — 20) ~nat n) —— zor_poly f 20 20) F
by (rule filterlim__compose[OF __ g])
from tendsto_unique[OF «F # bot» this lim] show ?thesis .
qged

lemma zor_poly pole eql:
fixes f :: complexr = complex and 20 :: complex
defines n = zorder f 20
assumes [iso: isolated__singularity at f z0 and is_pole f z0
assumes lim: (Az. f (g z) * (g — 20) ~nat (—n)) —— ¢) F
assumes g¢: filterlim g (at 20) F and F # bot
shows zor_poly f 20 20 = ¢

proof —
obtain r where r: r > 0 zor_poly f z0 holomorphic_on cball z0 r
proof —

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 377

have 3p win at 20. fw # 0
using non_ zero__neighbour _pole[OF <is_pole f z05]
by (auto elim: eventually frequentlyFE)
moreover have not_essential f 20
unfolding not_essential _def using <is_pole f 20> by simp
ultimately show %thesis
using that zorder _exist[OF f_iso,folded n__def] by auto
qed
from r(1) have eventually (Aw. w € ball 20 r AN w # 20) (at 20)
using eventually _at_ball’[of r z0 UNIV] by auto
have eventually (Aw. zor_poly f 20 w = fw * (w — 20) ~ nat (—n)) (at 20)
using zor_poly_pole_eq[OF f iso <is_pole f 20>] unfolding n_ def .
moreover have continuous_on (ball z0 r) (zor_poly f z0)
using 7 by (intro holomorphic__on__imp__continuous_on) auto
with r(1,2) have isCont (zor_poly f 20) z0
by (auto simp: continuous_on__eq continuous__at)
hence (zor_poly f 20 —— zor_poly f 20 20) (at 20)
unfolding isCont_ def .
ultimately have (Aw. fw * (w — 20) ~nat (—n)) —— zor_poly f 20 20) (at
20)
by (blast intro: Lim__transform__eventually)
hence (Az. f (g z) * (g z — 20) ~nat (—n)) —— zor_poly f 20 20) F
by (rule filterlim__compose[OF __ g])
from tendsto__unique[OF <F # bot» this lim] show Zthesis .
qed

lemma
assumes is_pole f (x :: complex) open A z € A
assumes A\y. y € A — {2} = (f has_field _derivative ' y) (at y)
shows is_pole deriv’: is_pole f' x
and zorder deriv’: zorder f' x = zorder fx — 1
proof —
have holo: f holomorphic_on A — {z}
using assms by (subst holomorphic_on__open) auto
obtain » where r: r > Q ballzr C A
using assms(2,8) openE by blast
moreover have open (ball z r — {z})
by auto
ultimately have isolated_singularity at f x
by (auto simp: isolated singularity at_def analytic_on__open
introl: exI[of __ r] holomorphic_on_subset|OF holo])
hence ev: Vy win at . zor_poly fz w = fw * (w—x) ~ nat (— zorder f x)
using <is_pole f x> zor_poly_pole eq by blast

define P where P = zor_poly f x
define n where n = nat (—zorder f z)

obtain r where r: r > 0 cball x v C A P holomorphic_on cball x r zorder f x
<O0Px#0

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 378

VYweceballzr — {z}. fwu=Pw/(w—z) "nAPw#0

using P_def assms holo n__def zorder _exist_pole by blast
have n: n > 0

using r(4) by (auto simp: n_def)

have [derivative_intros]: (P has_field_derivative deriv P w) (at w)
if w € ball z r for w
using that by (intro holomorphic__derivI[OF holomorphic__on__subset|OF r(8),
of ball z r]]) auto

define D where D = (Aw. (deriv P w * (w—z) — of natn x Pw) / (w—z) ~
(n+ 1))
define n’ where n’ = n — 1
have n": n = Suc n’
using n by (simp add: n’_def)

have eventually (Aw. w € ball x) (nhds z)

using «<r > 0» by (intro eventually nhds_in_open) auto
hence ev’: eventually (Aw. w € ball x r — {z}) (at)

by (auto simp: eventually_at_filter elim: eventually__mono)

{

fix w assume w: w € ball x v — {z}
have ev”: eventually (Aw. w € ball z r — {z}) (nhds w)
using w by (intro eventually nhds_in_open) auto

have §: (deriv Pw * (w—2z) “n — Pwx* (nx (w—z) ~(n—1))) / (w—z) " n
* (w—z) “n)=Dw
using w n’ by (simp add: divide__simps D__def) (simp add: algebra__simps)
have ((Aw. P w / (w—z) ~ n) has_field_derivative D w) (at w)
by (rule derivative__eq intros refl | use w § in force)+
also have ?this «— (f has_field derivative D w) (at w)
using r by (intro has_field derivative_cong ev refl eventually _mono|OF
ev’]) auto
finally have (f has_ field_ derivative D w) (at w) .
moreover have (f has_field_derivative f' w) (at w)
using w r by (intro assms) auto
ultimately have D w = ' w
using DERIV__unique by blast
} note D__eq = this

have is_pole D z
unfolding D _def using n «r > 0y <Pz # O»
by (intro is_pole basiclwhere A = ball x r| holomorphic__intros holomor-
phic_on__subset[OF r(3)]) auto
also have ?this < is_pole f' z
by (intro is_pole_cong eventually mono[OF ev'| D_eq) auto
finally show is_pole f' x .

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 379

have zorder f' © = —int (Suc n)
proof (rule zorder _eql)
show open (ball z r) © € ball x r
using «r > 0)» by auto
show f’' w = (deriv P w x (w—z) — of _nat n x P w) * (w—x) powi (— int (Suc

")
if we ball x 7w # z for w
using that D__eq[of w] n by (auto simp: D__def power__int_diff power_int_minus
powr_nat’ divide__simps)
qged (use r n in <auto introl: holomorphic_intros)
thus zorder f' © = zorder fx — 1
using n by (simp add: n__def)
qed

lemma
assumes is_pole f (x :: complex) isolated_singularity_at f z
shows is_pole_deriv: is_pole (deriv f) x
and zorder deriv: zorder (deriv f) x = zorder fx — 1
proof —
from assms(2) obtain r where r: r > 0 f analytic_on ball z r — {z}
by (auto simp: isolated__singularity _at_def)
hence holo: f holomorphic_on ball z r — {z}
by (subst (asm) analytic_on__open) auto
have *: z € ball x r open (ball z r) open (ball z r — {z})
using «r > 0» by auto
show is_pole (deriv f) x zorder (deriv f) x = zorder fz — 1
by (meson x assms(1) holo holomorphic__derivl is_pole deriv’ zorder _deriv’)+
qed

lemma removable_singularity _deriv”:
assumes f —x— cx € A open (A :: complex set)
assumes A\y. y € A — {z} = (f has_field_derivative f' y) (at y)
shows dec. f/'—z— ¢
proof —
have holo: f holomorphic_on A — {z}
using assms by (subst holomorphic__on__open) auto

define g where g = (\y. if y = x then c else f y)
have deriv_g _eq: derivgy = f'yifye A — {z} for y
proof —
have ev: eventually (A\y. y € A — {z}) (nhds y)
using that assms by (intro eventually nhds_in__open) auto
have (f has_ field_derivative f’ y) (at y)
using assms that by auto
also have ?this +— (g has_field_derivative f' y) (at y)
by (intro has_field_derivative_cong_ev refl eventually _mono[OF ev]) (auto
simp: g_def)
finally show ?thesis
by (intro DERIV__imp__deriv assms)

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 380

qed

have g holomorphic_on A
unfolding ¢ def using assms assms(1) holo
by (intro removable_singularity) auto
hence deriv g holomorphic_on A
by (intro holomorphic__deriv assms)
hence continuous_on A (deriv g)
by (meson holomorphic_on__imp__continuous__on)
hence (deriv g —— deriv g x) (at © within A)
using assms by (auto simp: continuous__on__def)
also have ?this +— (f' —— deriv g z) (at x within A)
by (intro filterlim__cong refl) (auto simp: eventually at_filter deriv_g _eq)
finally have f' —x— deriv g z
using <open Ay «x € A by (meson tendsto__within__open)
thus ?thesis
by blast
qed

lemma remowvable_singularity deriv:
assumes [—z— c isolated__singularity at f x
shows dc. derivf —z— ¢
proof —
from assms(2) obtain r where r: r > 0 f analytic_on ball x v — {z}
by (auto simp: isolated__singularity at_def)
hence holo: f holomorphic_on ball © r — {z}
using analytic _imp__holomorphic by blast
show ?thesis
using assms(1)
proof (rule removable__singularity _deriv’)
show z € ball z r open (ball z 1)
using <r > 0» by auto
qed (auto introl: holomorphic_derivI[OF holo))
qed

lemma not_essential deriv’:
assumes not_essential fr z € A open A
assumes A\y. y € A — {z} = (f has_field_derivative ' y) (at y)
shows not_essential f' z
proof —
have holo: f holomorphic_on A — {z}
using assms by (subst holomorphic__on__open) auto
from assms consider is_pole f z | ¢ where [—z— ¢
by (auto simp: not__essential_def)
thus ?thesis
proof cases
case 1
thus ?thesis
using assms is_pole__deriv’ by blast

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 381

next
case (2 ¢)
thus ?thesis
by (meson assms removable__singularity_deriv’ tendsto__imp_not__essential)
qed
qed

lemma not_essential__deriv|singularity_ intros]:
assumes not__essential f = isolated singularity at f
shows not_essential (deriv f) z
proof —
from assms(2) obtain r where r: r > 0 f analytic_on ball x v — {z}
by (auto simp: isolated _singularity at_def)
hence holo: f holomorphic_on ball z r — {z}
by (subst (asm) analytic_on__open) auto
show ?thesis
using assms(1)
proof (rule not_essential_deriv’)
show z € ball z r open (ball x 1)
using «r > 0)» by auto
qged (auto introl: holomorphic_derivI[OF holo))
qged

lemma not__essential frequently 0 imp_ tendsto 0:
fixes f :: compler = complex
assumes sing: isolated__singularity_at f z not__essential f z
assumes freq: frequently (A\z. fz = 0) (at 2)
shows f —z— 0

proof —
from freq obtain g :: nat = complex where g: filterlim g (at z) at_top An. f
(gn) =10

using frequently__atE by blast

have eventually (Az. f (g z) = 0) sequentially
using g by auto

hence fg: (\z. f (g z)) —— 0
by (simp add: tendsto__eventually)

from assms(2) consider ¢ where f —z— ¢ | is_pole f z
unfolding not essential def by blast
thus ?thesis
proof cases
case (1 ¢)
have (\z. f (g z)) —— ¢
by (rule filterlim__compose[OF 1 ¢(1)])
with fg have ¢ = 0
using LIMSEQ unique by blast
with 1 show ?thesis by simp
next
case 2

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 382

have filterlim (Az. f (g)) at_infinity sequentially
using 2 filterlim__compose g(1) is_pole_def by blast
with fg have Fulse
by (meson not_tendsto__and_filterlim__at_infinity sequentially_ bot)
thus Zthesis ..
qed
qed

lemma not__essential _frequently 0 imp__eventually 0:
fixes f :: compler = complex
assumes sing: isolated__singularity__at f z not__essential f z
assumes freq: frequently (Az. fz = 0) (at 2)
shows eventually (Az. fz = 0) (at 2)
proof —
from sing obtain r where r: r > 0 and [analytic_on ball z r — {z}
by (auto simp: isolated _singularity at_def)
hence holo: f holomorphic_on ball z v — {2}
by (subst (asm) analytic_on__open) auto
have eventually (Aw. w € ball z r — {z}) (at 2)
using r by (intro eventually at_in__open) auto
from freq and this have frequently (Aw. fw =0 A w € ball z 7 — {z}) (at 2)
using frequently eventually frequently by blast
hence frequently (Aw. w € {weball zr — {z}. fw = 0}) (at 2)
by (simp add: conj _commute)
hence limpt: z islimpt {weball z v — {z}. fw = 0}
using islimpt__conv_ frequently at by blast

define g where g = (\w. if w = z then 0 else f w)
have f —z— 0

by (intro not__essential _frequently 0 _imp_tendsto 0 assms)
hence g holo: g holomorphic_on ball z r

unfolding g def by (intro removable_singularity holo) auto

have g eq 0: g w= 0 if w € ball z r for w
proof (rule analytic__continuation|where f = g])
show open (ball z) connected (ball z r)
using 7 by auto
show z islimpt {weball z r — {z}. fw = 0}
by fact
show g w = 0 if w € {w € ball zr — {z}. fw = 0} for w
using that by (auto simp: g_ def)
qged (use r that g_holo in auto)

have eventually (Aw. w € ball z v — {z}) (at 2)
using r by (intro eventually at_in_open) auto
thus eventually (Aw. fw = 0) (at 2)
by (metis freq non__zero_neighbour not__eventually not_ frequently sing)
qed

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 383

lemma pole imp_not_constant:
fixes f :: 'a :: {perfect_space} = _
assumes is_pole fx open Az € A A C insert z B
shows —f constant_on B
proof
assume x: f constant_on B
then obtain ¢ where c: VzeB. fz = ¢
by (auto simp: constant_on__def)
have eventually (Ay. y € A — {z}) (at)
using assms by (intro eventuallyfatfz’nﬁopen) auto
hence eventually (\y. fy = ¢) (at x)
by eventually_elim (use ¢ assms in auto)
hence xx: f —z— ¢
by (simp add: tendsto__eventually)
show Fulse
using *x <is_pole f x> at_neq bot is_pole_ def
not__tendsto__and__filterlim__at_infinity by blast
qed

lemma neg_zorder _imp_is_pole:
assumes iso: isolated_singularity _at f z and f_ness: not_essential f z
and zorder fz < 0 and fre_nz: g win at z. fw # 0
shows is_pole f z
proof —
define P where P = zor_poly f 2
define n where n = zorder f z
have n<0 unfolding n_def by (simp add: assms(3))
define nn where nn = nat (—n)

obtain r where r: P z # 0 r>0 and r_holo: P holomorphic_on cball z r and
w_Pn: Ywecball zr — {z}. fw=Pwx* (w—2) powin N Pw # 0)
using zorder _exist|OF iso [_ness fre_nz,folded P_def n_def] by auto

have is_pole (Aw. P w x (w—2z) powi n) z
unfolding is pole_ def
proof (rule tendsto_mult_filterlim__at_infinity)
show P —z— P 2z
by (metis <r>0» r_holo centre_in_ball continuous_on__interior
holomorphic__on__imp__continuous__on interior_cball isContD)
show P z#£0 by (simp add: <P z # 0»)

have LIM x at z. inverse ((z — z) ~ nat (—n)) :> at_infinity
apply (subst filterlim__inverse__at__iff[symmetric])
using «n<0»
by (auto introl:tendsto__eq intros filterlim__atl
simp add: eventually_at_filter)
then show LIM z at z. (z — z) powi n :> at_infinity
proof (elim filterlim__mono__eventually)

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 384

have inverse ((z — z) “nat (—n)) = (z — 2) powi n
if x#2 for z
by (metis <n < 0) linorder_not_le power_int _def power _inverse)
then show YV p z in at z. inverse ((z — z) ~ nat (—n))
= (z — 2) powi n
by (simp add: eventually at_filter)
qed auto
qed
moreover have Vi win at z. fw = P w * (w—2z) powi n
unfolding eventually at le
using w__Pn <r>0»> by (force simp add: dist_commute)
ultimately show ?thesis using is pole_cong by fast
qed

lemma is pole divide_zorder:
fixes f g:: complex = complexr and z::complex
assumes f_iso: isolated_singularity_at f z and g _iso: isolated singularity at g
z
and [ness: not_essential f z and g_ness: not__essential g z
and fg_nconst: pw in (at 2). fw * g w# 0
and z_less: zorder f z < zorder g z
shows is_pole (\z. fz [g 2) 2
proof —
define fn gn fg where fn=zorder f z and gn=zorder g z

and fg=(A\w. fw / g w)

have isolated__singularity at fg z
unfolding fg def using f iso g iso g _mness
by (auto intro: singularity intros)
moreover have not_essential fg z
unfolding fg def using f iso g iso g ness f ness
by (auto intro: singularity intros)
moreover have zorder fg z < 0
proof —
have zorder fg z = fn — gn
using zorder__divide[OF f_iso g_iso f_ness g_ness fg_nconst]
by (simp add: fg_def fn_def gn__def)
then show ?thesis
using z less by (simp add: fn_def gn_def)
qed
moreover have 3p w in at z. fg w # 0
using fg nconst unfolding fg def by force
ultimately show is_pole fg z
using neg_zorder imp_is_pole by auto
qed

lemma isolated_pole imp mnzero times:
assumes [_iso: isolated_singularity at f z
and is_pole f z

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 385

shows 3 pw in (at 2). deriv fw x fw # 0
proof (rule ccontr)
assume - (Ip win at z. deriv fw x fw # 0)
then have Vp x in at z. deriv fz x fx = 0
unfolding not_ frequently by simp
moreover have Vi win at z. fw # 0
using non_ zero__neighbour _pole| OF <is_pole f z>] .
moreover have Vr w in at z. deriv f w # 0
using is_pole_deriv|OF <is_pole f 2> f_iso, THEN non__zero_neighbour_pole]

ultimately have V r w in at z. False
by eventually elim auto
then show Fulse by auto
qed

lemma isolated_pole imp_mneq_zorder:

assumes isolated_singularity_at f z and is_pole f z

shows zorder fz < 0

using analytic_imp__holomorphic assms centre__in__ball isolated__singularity at_ def
zorder__exist_pole by blast

lemma isolated _singularity _at_ deriv[singularity intros|:
assumes isolated__singularity at f x
shows isolated_singularity_at (deriv f) x
by (meson analytic__deriv assms isolated__singularity__at_ def)

lemma zorder deriv_minus 1:
fixes f g:: complex = complexr and z::complex
assumes [iso: isolated_singularity at f z
and f ness: not__essential f z
and f nconst: Ap win at z. fw # 0
and f_ord: zorder f z #0
shows zorder (deriv f) z = zorder f z — 1
proof —
define P where P = zor_poly f z
define n where n = zorder f z
have n#0 unfolding n_ def using f ord by auto

obtain r where P z # 0 r>0 and P_holo: P holomorphic_on cball z r
and (Vwecball zr — {z}. fw
= Pw=x (w—z) powin AN Pw# 0)
using zorder_exist|OF f_iso f_ness f_nconst,folded P_def n__def] by auto
from this(4)
have f_eq: (Vwecball zr — {z}. fw
= Pw=x (w—z) powin A Pw# 0)
using complex__powr_of int f _ord n__def by presburger

define D where D = (Aw. (deriv P w * (w—z) + of _int n * P w)

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 386

* (w—z) powi (n — 1))

have deriv_f _eq: deriv f w = D w if w € ball z v — {2} for w
proof —
have ev”: eventually (Aw. w € ball z 7 — {z}) (nhds w)
using that by (intro eventually nhds_in_open) auto

define wz where wz = w — 2

have wz #0 unfolding wz def using that by auto
moreover have (P has_field derivative deriv P w) (at w)
by (meson Diff D1 Elementary_Metric_Spaces.open__ball P__holo
ball_subset__cball holomorphic__derivI holomorphic__on__subset that)
ultimately have ((Aw. P w * (w—z) powi n) has_ field derivative D w) (at w)
unfolding D_ def using that
apply (auto introl: derivative _eq intros)
by (auto simp: algebra__simps simp flip:power _int_add_ 1" wz_def)
also have ?this «— (f has_field derivative D w) (at w)
using [eq
by (intro has_field derivative__cong_ev refl eventually _mono[OF ev']) auto
ultimately have (f has_field_derivative D w) (at w) by simp
moreover have (f has_field derivative deriv f w) (at w)
by (metis DERIV__imp__deriv calculation)
ultimately show %thesis using DERIV__imp_deriv by blast
qed

show zorder (deriv f) z=n — 1
proof (rule zorder__eql)
show open (ball z 1) z € ball z 1
using «r > 0)» by auto
define g where g=(\w. (deriv P w * (w—z) + of _int n * P w))
show ¢ holomorphic_on ball z v
unfolding ¢ def using P_ holo
by (auto introl:holomorphic__intros)
show g z # 0
unfolding ¢ def using <P z # 0> «n#0» by auto
show deriv f w = (deriv P w x (w—z) + of _int n x P w) x (w—2z) powi (n —
1)
if we ball zr w # z for w
using D _def deriv_f eq that by blast
qed
qged

lemma deriv_divide_is_pole: — Generalises [is_pole ?f ?z; isolated__singularity _at
?f 22] = zorder (deriv ?f) %z = zorder ?f %z — 1
fixes f g:: complex = compler and z::complex
assumes [_iso: isolated_singularity at f z
and f_ness: not__essential f z

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 387

and fg_nconst: Apw in (at 2). deriv fw x fw # 0
and f ord: zorder fz # 0
shows is_pole (Az. derivfz [f2) z
proof (rule neq_zorder_imp_is_pole)
define ff where ff=(\w. deriv fw / fw)
show isolated__singularity at ff =
using f iso f _ness unfolding ff def
by (auto intro: singularity intros)
show not__essential ff z
unfolding ff def using f ness f_iso by (auto intro: singularity__intros)

have zorder ff z = zorder (deriv f) z — zorder f z
unfolding ff def using f iso f _ness fg_nconst
using isolated__singularity__at_deriv not__essential _deriv zorder__divide by blast
moreover have zorder (deriv f) z = zorder fz — 1
using f iso f mness f_ord fg_nconst frequently elim1 zorder _deriv_minus_ 1
by fastforce
ultimately show zorder ff z < 0 by auto

show 3p win at z. ffw # 0
unfolding ff def using fg_ nconst by auto
qged

lemma is pole deriv_divide is_pole:
fixes f g:: complex = complex and z::complex
assumes [_iso: isolated_singularity at f z
and is_pole f z
shows is_pole (\z. deriv fz | [2) z
proof (rule deriv_divide_is_pole[OF f_iso])
show not__essential f z
using <is_pole f z» unfolding not_essential def by auto
show I p win at z. deriv fw x fw # 0
using assms f_iso isolated_pole_imp_nzero_ times by blast
show zorder f z # 0
using isolated pole_imp neg zorder assms by fastforce
qed

7.13 Isolated points

definition isolated points of :: complex set = complex set where
isolated__points _of A = {z€A. eventually (Aw. w ¢ A) (at 2)}

lemma isolated points_of altdef: isolated_points_of A = {z€A. —z islimpt A}
unfolding isolated_points of def islimpt_def eventually at_filter eventually_nhds
by blast

lemma isolated points _of empty [simp]: isolated points_of {} = {}
and isolated _points_of UNIV [simp]: isolated points _of UNIV = {}
by (auto simp: isolated points_of def)

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 388

lemma isolated points _of open_is _empty [simp]: open A = isolated _points_of
A={}

unfolding isolated_points_of altdef

by (simp add: interior_limit_point interior__open)

lemma isolated_points_of subset: isolated_points _of A C A
by (auto simp: isolated points_of def)

lemma isolated_points of discrete:
assumes discrete A
shows isolated points of A = A
using assms by (auto simp: isolated_points _of def discrete_altdef)

lemmas uniform_ discretell = uniformlil1
lemmas uniform_ discretel2 = uniformI2

lemma zorder zero__eql’:
assumes | analytic_on {z}
assumes Ai. i < nat n = (deriv " i) fz =10
assumes (deriv " natn) fz # 0 and n > 0
shows zorder fz=n
proof —
from assms(1) obtain A where open A z € A f holomorphic_on A
using analytic_at by blast
thus ?thesis
using zorder_zero_eql[of f A z n] assms by blast
qed

7.14 Isolated zeros

definition isolated_zero :: (‘a::topological _space = 'b::real _normed_div_algebra)
= 'a = bool where
isolated_zero f a «+— f —a— 0 A eventually (Az. fz # 0) (at a)

lemma isolated_zero__shift:
fixes z :: 'a :: real _normed_vector
shows isolated_zero f z <— isolated_zero (Aw. f (z + w)) 0
unfolding isolated_zero__def

by (simp add: at_to_0' eventually_filtermap filterlim__ filtermap add__ac)

lemma isolated zero shift”:
fixes z :: 'a :: real _normed_vector
assumes NO MATCH 0 z
shows isolated_zero f z +— isolated_zero (Aw. f (z + w)) 0

by (rule isolated_ zero__shift)

lemma isolated zero__imp_not__essential [intro]:
isolated_zero f z = mot__essential f z

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 389

unfolding isolated_zero def not__essential__def
using tendsto_nhds_iff by blast

lemma pole_is not_zero:
fixes f:: 'a::perfect_space = 'b::real _normed_ field
assumes is_pole f z
shows —isolated_zero f z
proof
assume isolated_zero f z
then have filterlim f (nhds 0) (at 2)
unfolding isolated_zero_ def using tendsto _nhds_iff by blast
moreover have filterlim f at_infinity (at 2)
using <is_pole f z» unfolding is pole_def .
ultimately show Fulse
using not_tendsto__and_filterlim__at_infinity|OF at_neq_bot]
by auto
qed

lemma isolated_zero__imp_pole inverse:
fixes f :: _ = 'b::{real_normed_div_algebra, division_ring}
assumes isolated_zero f z
shows is_pole (A\z. inverse (f 2)) z
proof —
from assms have ev: eventually (Az. fz # 0) (at z)
by (auto simp: isolated zero__def)
have filterlim f (nhds 0) (at 2)
using assms by (simp add: isolated_zero__def)
with ev have filterlim f (at 0) (at z)
using filterlim__atl by blast
also have %this «— filterlim (\z. inverse (inverse (f z))) (at 0) (at 2)
by (rule filterlim__cong) (use ev in <auto elim!: eventually _mono»)
finally have filterlim (A\z. inverse (f z)) at_infinity (at z)
by (subst filterlim__inverse__at_iff [symmetric])
thus ?thesis
by (simp add: is_pole def)
qed

lemma is pole imp_isolated_zero _inverse:
fixes f :: _ = 'bi:{real _normed_div_algebra, division_ring}
assumes is_pole f z
shows isolated_zero (Az. inverse (f z)) z
proof —
from assms have ev: eventually (A\z. fz # 0) (at 2)
by (simp add: non__zero__neighbour _pole)
have filterlim f at_infinity (at 2)
using assms by (simp add: is_pole_ def)
also have ?this «— filterlim (Az. inverse (inverse (f z))) at_infinity (at z)
by (rule filterlim__cong) (use ev in <auto elim!: eventually _monoy)
finally have filterlim (A\z. inverse (f z)) (at 0) (at 2)

Complex{_}{\kern 0pt}Singularities.html

Complex_Singularities.thy 390

by (subst (asm) filterlim__inverse _at_iff [symmetric]) auto
hence filterlim (Az. inverse (f z)) (nhds 0) (at z)
using filterlim__at by blast
moreover have eventually (Az. inverse (f z) # 0) (at 2)
using ev by eventually elim auto
ultimately show %thesis
by (simp add: isolated zero _def)
qed

lemma is_pole_inverse_iff: is_pole (Az. inverse (f z)) z +— isolated_zero f z
using is_pole_imp_isolated_zero inverse isolated__zero imp_ pole_inverse by
fastforce

lemma isolated_zero__inverse_iff: isolated_zero (Az. inverse (f z)) z +— is_pole
fz

using is_pole_imp_isolated zero_inverse isolated_zero__imp_ pole inverse by
fastforce

lemma zero isolated_ zero:
fixes f :: 'a i {t2_space, perfect_space} = _
assumes isolated_zero f z isCont f z
shows fz =0
proof (rule tendsto__unique)
show f —z— fz
using assms(2) by (rule isContD)
show f —z— 0
using assms(1) by (simp add: isolated_zero _def)
qed auto

lemma zero_isolated_zero__analytic:
assumes isolated_zero f z f analytic_on {z}
shows fz=10
using assms(1) analytic_at_imp_isCont[OF assms(2)] by (rule zero__isolated_ zero)

lemma isolated_zero__analytic_iff:

assumes | analytic_on {z}

shows isolated_zero fz +— fz = 0 A eventually (Az. fz # 0) (at 2)
proof safe

assume [z = 0 eventually (Az. fz # 0) (at 2)

with assms show isolated_zero f z

unfolding isolated zero_def by (metis analytic_at_imp_isCont isCont__def)

qed (use zero__isolated__zero__analytic[OF __ assms] in <auto simp: isolated_zero__def>)

lemma non__isolated__zero imp__eventually zero:
assumes | analytic_on {z} fz = 0 —isolated_zero f z
shows eventually (A\z. fz = 0) (at 2)
proof (rule not_essential_frequently_0_imp__eventually 0)
from assms(1) show isolated_singularity at f z not__essential f z
by (simp__all add: isolated__singularity _at_analytic not__essential__analytic)

Complex{_}{\kern 0pt}Singularities.html

Complex_Residues.thy 391

from assms(1,2) have f —z— 0
by (metis analytic_at_imp_isCont continuous__within)
thus frequently (Az. fz = 0) (at 2)
using assms(2,3) by (auto simp: isolated_zero_def frequently_def)
qed

lemma non_isolated zero__imp_eventually zero’:
assumes | analytic_on {z} f 2 = 0 —isolated_zero f z
shows eventually (Az. fz = 0) (nhds 2)
using non__isolated__zero__imp__eventually_zero[OF assms] assms(2)
using eventually nhds__conv__at by blast

end

theory Complex Residues
imports Complex Singularities

begin

7.15 Definition of residues

Wenda Li and LC Paulson (2016). A Formal Proof of Cauchy’s Residue
Theorem. Interactive Theorem Proving

definition residue :: (complex = complex) = compler = complex where
residue f z = (SOME int. 3e>0.Ve>0. e<e
— (f has__contour_integral 2xpix i xint) (circlepath z €))

lemma residue__cong:
assumes eq: eventually (A\z. f z = g 2) (at z) and z = 2’
shows residue f z = residue g z’
proof —
from assms have eq”: eventually (Az. g z = [2) (at 2)
by (simp add: eq _commute)
let 2P = Afce (Ve>0.e < e —
(f has__contour_integral of real (2 % pi) x 1 x ¢) (circlepath z €))
have residue f z = residue g z unfolding residue_def
proof (rule Eps_cong)
fix ¢ :: complex
have Je>0. ?Pgce
if 3e>0. ?P f ¢ e and eventually (A\z. fz = g z) (at z) for f g
proof —
from that(1) obtain e where e: ¢ > 0 7P fce
by blast
from that(2) obtain ¢’ where ¢ ¢/ > 0 N\z". 2/ # z = dist 2’ z < ¢/ =
fzl=g2
unfolding eventually at by blast
have 7P g ¢ (min e ¢’)
proof (intro alll exI impl, goal_cases)
case (1 ¢)
hence (f has_contour_integral of real (2 * pi) % i % ¢) (circlepath z €)
using e(2) by auto

Complex{_}{\kern 0pt}Residues.html

Complex_Residues.thy 392

thus ?case
proof (rule has_contour _integral eq)
fix 2’ assume z’ € path_image (circlepath z €)
hence dist 2’ z < ¢’ and 2’ # 2
using 1 by (auto simp: dist_commute)
with e(2)[of 2] show fz' = g 2/ by simp
qged
qed
moreover from e and ¢’ have min e ¢/ > 0 by auto
ultimately show ?thesis by blast
qed
from this|OF __ eq] and this[OF __ eq/]
show (Fe>0. ?Pfce) <— (Fe>0. ?Pgce)
by blast
qed
with assms show ?thesis by simp
qed

lemma residue_shift_0: residue f z = residue (Az. f (z + z)) 0
proof —
define @) where
Q = (A\r f z e. (f has_contour_integral complex_of real (2 * pi) x 1 *)
(circlepath z €))
define P where
P=(Arfz Je>0.Ve>0.e <e— Qrfze)
have path__eq: circlepath (z — w) € = (4+) (—w) o circlepath z € for z w €
by (simp add: circlepath__def o _def part_circlepath__def algebra__simps)
have x: Prfzif Pr (Az. f (z + w)) (2 — w) for rw f z
using that by (auto simp: P_def Q__def path__eq has__contour_integral_translate)
have (SOME r. Prfz) = (SOME r. Pr (Az. f (z + 2)) 0)
using *[of __ fz 2] *x[of _ Ax. f (z + z) —2]
by (intro arg_conglwhere f = Eps| ext iffl) (simp_all add: add_ac)
thus ?thesis
by (simp add: residue_def P_def Q _def)
qed

lemma residue_shift_0": NO_MATCH 0 z = residue f z = residue (Az. f (z +
x)) 0
by (rule residue__shift 0)

lemma contour_integral_circlepath__eq:
assumes open s and f_holo:f holomorphic_on (s—{z}) and 0<el e1<e2
and e2 cball:cball z €2 C s
shows
f contour__integrable on circlepath z el
f contour_integrable__on circlepath z e2
contour_integral (circlepath z e2) f = contour_integral (circlepath z el) f
proof —
define | where | = linepath (2+e2) (z+el)

Complex{_}{\kern 0pt}Residues.html

Complex_Residues.thy 393

have [simp|:valid_path | pathstart l=z+e2 pathfinish l=2+e1 unfolding [_def
by auto
have e2>0 using <e1>0) (e1<e2) by auto
have zl_img:z¢path_image |
proof
assume z € path_image [
then have e2 < cmod (e2 — el)
using segment_furthest_le[of z z+e2 z+el z+e2,simplified] <el >0 «e2>0»
unfolding [def
by (auto simp add:closed__segment__commute)
thus Fulse using «e2>0) el >0y <el<e2»
apply (subst (asm) norm__of real)
by auto
qed
define g where g = circlepath z e2 +++ | +++ reversepath (circlepath z el)
+-++ reversepath [
show [simp]: f contour_integrable__on circlepath z e2 f contour_integrable on
(circlepath z el)
proof —
show f contour_integrable_on circlepath z e2
apply (intro contour_integrable__continuous__circlepath| OF
continuous__on__subset|OF holomorphic__on__imp__continuous__on[OF
1_hoto]])
using <e2>0> e2_cball by auto
show f contour_integrable _on (circlepath z el)
apply (intro contour_integrable__continuous__circlepath| OF
continuous__on__subset[OF holomorphic__on__imp__continuous__on[OF

f_holo]]])
using <el>0)> <e1<e2) e2_cball by auto
qed
have [simp]:f contour_integrable_on |
proof —

have closed__segment (z + e2) (z + el) C cball z e2 using (e2>0» <el1>0>
cel1<e2
by (intro closed__segment _subset,auto simp add:dist_norm)
hence closed_segment (z + e2) (z + el) C s — {z} using zl_img e2_cball
unfolding [def
by auto
then show f contour integrable _on | unfolding | def
apply (intro contour_integrable__continuous_linepath| OF
continuous__on__subset| OF holomorphic__on__imp__continuous _on[OF
f_holo]]])
by auto
qed
let 2ig=MAg. contour integral g f
have (f has__contour_integral 0) g
proof (rule Cauchy_theorem__global[OF __ f_holo])
show open (s — {z}) using <open s» by auto
show wvalid__path g unfolding g _def [_def by auto

Complex{_}{\kern 0pt}Residues.html

Complex_Residues.thy 394

show pathfinish g = pathstart g unfolding g def I _def by auto
next
have path__img:path _image g C cball z e2
proof —
have closed__segment (z + e2) (z + el) C cball z e2 using <e2>0» <e1>0»
el<e?y
by (intro closed_segment _subset,auto simp add:dist_norm)
moreover have sphere z |el| C cball z e2 using «e2>0) (el1<e2» <el>0»
by auto
ultimately show ¢thesis unfolding g def | def using «e2>0»
by (simp add: path__image_join closed__segment__commute)
qed
show path_image g C s — {z}
proof —
have z¢path_image g using zl_img
unfolding g defl_def by (auto simp add: path__image_join closed__segment__commute)
moreover note <cball z e2 C s» and path_img
ultimately show ¢thesis by auto

qed
show winding_number g w = 0 whenw ¢ s — {z} for w
proof —
have winding _number g w = 0 when w¢s using that e2_cball
apply (intro winding number_zero_outside[OF __ _ _ __ path_img])

by (auto simp add:g_def |_def)
moreover have winding number g z=0
proof —
let ?Wz=M\g. winding_number g z
have ?Wz g = ?Wz (circlepath z e2) + ?Wz | + ?Wz (reversepath
(circlepath z el))
+ ?Wz (reversepath l)
using <e2>0> <el>0> zl_img unfolding g def [def
by (subst winding number_join,auto simp add:path_image_join
closed__segment__commute)+
also have ... = ?Wz (circlepath z e2) + ?Wz (reversepath (circlepath
zel))
using zl_img
apply (subst (2) winding_number_reversepath)
by (auto simp add:l_def closed__segment__commute)
also have ... = 0
proof —
have ?Wz (circlepath z e2) = 1 using <e2>0>
by (auto intro: winding_number_circlepath__centre)
moreover have ?Wz (reversepath (circlepath z el)) = —1 using
<el>0»
apply (subst winding _number_reversepath)
by (auto intro: winding number _circlepath__centre)
ultimately show ?thesis by auto
qed
finally show ?thesis .

Complex{_}{\kern 0pt}Residues.html

Complex_Residues.thy 395

qed
ultimately show ¢thesis using that by auto
qed
qed
then have 0 = %ig g using contour_integral _unique by simp
also have ... = %ig (circlepath z e2) + %ig | + %ig (reversepath (circlepath z el))

+ %ig (reversepath [)
unfolding g def
by (auto simp add:contour_integrable_reversepath__eq)
also have ... = ?ig (circlepath z e2) — ?%ig (circlepath z el)
by (auto simp add:contour _integral _reversepath)
finally show contour_integral (circlepath z e2) f = contour_integral (circlepath
zel)f
by simp
qed

lemma base residue:
assumes open s z€s r>0 and f_holo:f holomorphic_on (s — {z})
and r_ cball:cball zr C s
shows (f has_contour_integral 2 * pi * i * (residue f z)) (circlepath z r)
proof —
obtain e where e¢>0 and e_cball:cball z ¢ C s
using open__contains_cball[of s] <open sy z€s» by auto
define ¢ where ¢ = 2 x pi *x i
define ¢ where i = contour_integral (circlepath z €) f | ¢
have (f has__contour_integral cxi) (circlepath z €) when €>0 e<e for
proof —
have contour_integral (circlepath z €) f = contour_integral (circlepath z €) f
f contour_integrable__on circlepath z
f contour__integrable _on circlepath z e
using «€<e)
by (intro contour_integral _circlepath__eq[OF <open sy f_holo <>0> _
e_ cball],auto)+
then show ?thesis unfolding 7 def ¢ def
by (auto intro:has__contour _integral_integral)
qed
then have Je>0. Ve>0. e<e — (f has_contour_integral ¢ * (residue f z))
(circlepath z €)
unfolding residue_def ¢ _def
apply (rule_tac somel[of __ i],intro exl[where z=¢))
by (auto simp add:<e>0> c_def)
then obtain ¢’ where e¢'>0
and e’ _defVe>0. e<e’ — (f has_contour_integral ¢ * (residue f z))
(circlepath z €)
by auto
let Zint=M\e. contour_integral (circlepath z e) f
define ¢ where ¢ = Min {r,e’} / 2
have >0 ¢<r e<e’ using «r>0) <e¢’>0) unfolding ¢_ def by auto
have (f has__contour_integral ¢ x (residue f z)) (circlepath z €)

Complex{_}{\kern 0pt}Residues.html

Complex_Residues.thy 396

using e’ _def[rule_format,OF >0 e<eh] .

then show ?thesis unfolding ¢ def

using contour_integral_circlepath__eq[OF <open s) f_holo >0y «e<r» r_cball]
by (auto elim: has__contour_integral _eqpath[of _ _ circlepath z € circlepath z

r)
qed

lemma residue_holo:
assumes open s z € s and f_holo: f holomorphic_on s
shows residue f z = 0
proof —
define ¢ where ¢ = 2 x pi * i
obtain e where e>0 and e _cball:cball z e C s using <open s> <z€s»
using open__contains_cball _eq by blast
have (f has__contour_integral cxresidue f z) (circlepath z e)
using f_holo
by (auto intro: base__residue|OF <open $) <z€s> <e>0> __ e_cball,folded ¢ __def])
moreover have (f has_contour_integral 0) (circlepath z e)
using f_holo e_cball <e>0>
by (auto intro: Cauchy_theorem__convex_simple[of __ cball z €])
ultimately have cxresidue f z =0
using has__contour_integral _unique by blast
thus ?thesis unfolding ¢ _def by auto
qed

lemma residue__const:residue (A_. ¢) z = 0
by (intro residue__holo[of UNIV ::complex set],auto intro:holomorphic_intros)

lemma residue_add:
assumes open s z € s and f_holo: f holomorphic_on s — {z}
and g_holo:g holomorphic_on s — {z}
shows residue (\z. fz + g 2) 2= residue f z + residue g z
proof —
define ¢ where ¢ = 2 x pi * i
define fg where fg = (A\z. f z+g 2)
obtain e where e>0 and e_cball:cball z e C s using <open sy <z€s»
using open__contains_cball _eq by blast
have (fg has__contour_integral ¢ x residue fg z) (circlepath z e)
unfolding fq def using f holo g holo
apply (intro base_residue[OF <open s) <z€s» <e>0» __ e_cball,folded c_def])
by (auto intro:holomorphic__intros)
moreover have (fg has _contour_integral cxresidue f z + cx residue g z) (circlepath
ze)
unfolding fg def using f holo g holo
by (auto intro: has contour integral_add base_residue[OF <open s> (z€s»
<e>0> __ e_cball,folded c__def])
ultimately have cx(residue f z + residue g z) = ¢ * residue fg z
using has__contour_integral _unique by (auto simp add:distrib_left)
thus ?thesis unfolding fg_ def

Complex{_}{\kern 0pt}Residues.html

Complex_Residues.thy

by (auto simp add:c__def)
qed

lemma residue_ Imul:
assumes open s z € s and f_holo: f holomorphic_on s — {z}
shows residue (A\z. ¢ * (f z)) 2= ¢ * residue f z
proof (cases ¢=0)
case True
thus ?thesis using residue_const by auto
next
case Fulse
define ¢’ where ¢/ = 2 * pi x i
define f’ where f' = (Az. ¢ * (f 2))
obtain e where e>0 and e _cball:cball z e C s using <open sy <z€s»
using open__contains_cball _eq by blast
have (f’ has__contour_integral ¢’ x residue f' z) (circlepath z €)
unfolding [’ def using f holo

397

apply (intro base_residue|OF <open s» <2€8) <e>0s __ e_cball,folded ¢’ _def])

by (auto intro:holomorphic__intros)

moreover have (f’ has_contour_integral ¢ x (¢’ * residue f 2)) (circlepath z e)

unfolding [’ def using f holo
by (auto intro: has__contour _integral Imul
base__residue| OF <open s) <z€sy <e>0> __ e_cball,folded ¢’ _def])
ultimately have ¢’ * residue f' z = ¢ * (¢’ x residue f 2)
using has__contour__integral unique by auto
thus ?thesis unfolding f’ def ¢’ _def using False
by (auto simp add:field_simps)
qed

lemma residue__rmul:
assumes open s z € s and f_holo: f holomorphic_on s — {z}
shows residue (A\z. (f z) * ¢) z= residue f z x c

using residue__Imul[OF assms,of c] by (auto simp add:algebra__simps)

lemma residue_div:
assumes open s z € s and f_holo: f holomorphic_on s — {z}
shows residue (Az. (f z) / ¢) z= residue fz | ¢
using residue_Imul[OF assms,of 1/c] by (auto simp add:algebra__simps)

lemma residue_neg:
assumes open s z € s and f_holo: f holomorphic_on s — {z}
shows residue (Az. — (f z)) 2= — residue f z

using residue_Imul[OF assms,of —1] by auto

lemma residue_ diff:
assumes open s z € s and f_holo: f holomorphic_on s — {z}
and g_holo:g holomorphic_on s — {z}
shows residue (\z. fz — g 2) 2= residue f z — residue g z

using residue__add[OF assms(1,2,3),0f \z. — g 2] residue_neg[OF assms(1,2,4)]

Complex{_}{\kern 0pt}Residues.html

Complex_Residues.thy 398

by (auto intro:holomorphic__intros g_holo)

lemma residue__simple:
assumes open s z€s and f_holo:f holomorphic_on s
shows residue (Aw. fw / (w — 2)) z=fz
proof —
define ¢ where ¢ = 2 * pi * i
define [’ where f' = Aw. fw / (w — 2)
obtain e where e>0 and e_cball:cball z e C s using <open sy <z€s»
using open__contains_cball _eq by blast
have (f’ has_contour_integral ¢ x f z) (circlepath z €)
unfolding f’ def ¢_def using <e>0> f_holo e_cball
by (auto introl: Cauchy _integral circlepath__simple holomorphic__intros)
moreover have (f’ has_contour_integral ¢ x residue f' z) (circlepath z e)
unfolding [’ def using f holo
apply (intro base__residue][OF <open s) <z€s» <e>0» __ e_cball,folded c__def])
by (auto intro!:holomorphic__intros)
ultimately have ¢ * f 2z = ¢ * residue f' z
using has__contour__integral unique by blast
thus ?thesis unfolding c_def f' def by auto
qed

lemma residue simple”:
assumes s: open s z € s and holo: f holomorphic_on (s — {z})
and lim: (Aw. fw* (w — 2)) —— ¢) (at 2)
shows residue fz = ¢
proof —
define g where g = (\w. if w = z then ¢ else fw * (w — 2))
from holo have (Aw. fw x (w — z)) holomorphic_on (s — {z}) (is ¢P)
by (force intro: holomorphic_intros)
also have 7P «— g holomorphic_on (s — {z})
by (intro holomorphic__cong refl) (simp_all add: g def)
finally have x: g holomorphic_on (s — {z}) .

note lim

also have (Aw. fw* (w — 2)) —z2—= c+— g —2— g 2

by (intro filterlim__cong refl) (simp__all add: g_def [abs__def] eventually at_filter)
finally have xx: ¢ —2— g z .

have g holo: g holomorphic_on s

by (rule no_isolated _singularity’[where K = {z}])

(insert assms x *x, simp__all add: at_within_open_NO_MATCH)

from s and this have residue (Aw. gw / (w — 2)) z=g 2

by (rule residue_simple)
also have VY za in at z. g za |/ (za — 2z) = f za

unfolding eventually_at by (auto introl: exI[of _ 1] simp: field _simps g_ def)
hence residue (Aw. g w / (w — 2)) z = residue f z

by (intro residue__cong refl)
finally show ?thesis

Complex{_}{\kern 0pt}Residues.html

Complex_Residues.thy 399

by (simp add: g_ def)
qed

lemma residue _holomorphic__over__power:
assumes open A 20 € A f holomorphic_on A
shows residue (A\z. fz / (z — 20) ~ Suc n) 20 = (deriv " n) f 20 / fact n
proof —
let 2f = Xz. fz/ (z — 20) ~ Sucn
from assms(1,2) obtain r where r: r > 0 cball 20 r C A
by (auto simp: open__contains__cball)
have (?f has__contour_integral 2 x pi * i x residue ?f 20) (circlepath 20 r)
using r assms by (intro base__residue[of A]) (auto intro!: holomorphic__intros)
moreover have (?f has_contour_integral 2 = pi * 1 / fact n x (deriv = n) f
20) (circlepath z0)
using assms r
by (intro Cauchy__has_contour _integral_higher _derivative__circlepath)
(auto introl: holomorphic__on__subset[OF assms(3)] holomorphic__on__imp__continuous__on)
ultimately have 2 x pi x i * residue 9f 20 = 2 x pi x 1 / fact n x (deriv =" n)
fz0
by (rule has__contour_integral_unique)
thus ?thesis by (simp add: field__simps)
qged

lemma residue_holomorphic__over _power”:
assumes open A 0 € A f holomorphic_on A
shows residue (Az. fz / z " Sucn) 0 = (deriv """ n) f0 / fact n
using residue__holomorphic_over_power[OF assms] by simp

theorem residue_fps expansion_over power _at_0:
assumes f has_fps _expansion F
shows residue (Az. fz / z "~ Sucn) 0 = fps_nth Fn
proof —
from has_fps_expansion_imp__holomorphic|OF assms] obtain s
where open s 0 € s f holomorphic_on s Nz. z € s => fz = eval_fps F z
by auto
with assms have residue (Az. fz / (z — 0) "~ Sucn) 0 = (deriv """ n) f0 / fact
n
unfolding has_fps expansion__ def
by (intro residue__holomorphic__over _power|of s|) (auto simp: zero__ereal def)
also from assms have ... = fps nth F n
by (subst fps_nth_fps_expansion) auto
finally show ?thesis by simp
qged

lemma residue pole order:
fixes f::complex = compler and z::complex
defines n = nat (— zorder f z) and h = zor_poly f z
assumes [_iso:isolated__singularity at f z
and pole:is_pole f z

Complex{_}{\kern 0pt}Residues.html

Complex_Residues.thy 400

shows residue f 2z = ((deriv ™" (n — 1)) h 2z / fact (n—1))
proof —
define g where g = \z. if z=z then 0 else inverse (f z)
obtain e where [simp]:e>0 and f_holo:f holomorphic_on ball z e — {z}
using f_iso analytic_imp__holomorphic unfolding isolated singularity at def
by blast
obtain r where 0 < n 0 < r and r_cball:cball z v C ball z e and h_holo: h
holomorphic__on cball z r
and h_ divide:(V wecball z r. (w#z — fw=hw/(w—2) "n)ANhw#0)
proof —
obtain r where r:zorder fz < 0 h z # 0 r>0 cball z r C ball z e h holomor-
phic_on cball z v
(Vweceball zr — {z}. fu=hw/(w—2) "nAhw#0)
using zorder_exist_pole[OF f_holo,simplified, OF <is_pole f z»,folded n__def
h__def] by auto
have n>0 using «zorder f z < 0»> unfolding n__def by simp
moreover have (Ywechall zr. (w#z — fw=hw/(w—2) "n)Ahw#
0)
using <h z#£0> r(6) by blast
ultimately show ?thesis using r(3,4,5) that by blast
qged
have r_nonzero:\w. w € ball zr — {2z} = fw # 0
using h_ divide by simp
define ¢ where ¢ = 2 x pi *x i
define der_f where der_f = ((deriv =" (n — 1)) h z / fact (n—1))
define ' where b/ = Au. hu / (u — 2) " n
have (h’ has_contour_integral ¢ / fact (n — 1) x (deriv =~ (n — 1)) h 2)
(circlepath z 1)
unfolding h’_def
proof (rule Cauchy__has__contour_integral__higher__derivative_circlepath[of z v
hzn—1,
folded c__def Suc_pred’[OF «<n>0>]])
show continuous__on (cball z) h using holomorphic_on__imp__continuous_on
h__holo by simp
show h holomorphic_on ball z r using h__holo by auto
show 2z € ball z r using «r>0> by auto
qged
then have (h’ has_contour integral ¢ * der_f) (circlepath z r) unfolding
der_f def by auto
then have (f has_contour_integral ¢ * der_f) (circlepath z 1)
proof (elim has_contour _integral eq)
fix x assume z € path_image (circlepath z r)
hence ze€cball z 1 — {2z} using «r>0> by auto
then show A’ z = f z using h_ divide unfolding h’ def by auto
qed
moreover have (f has_contour_integral ¢ x residue f z) (circlepath z 1)
using base_residue[of <ball z ey z,simplified, OF <r>0> f_holo r_cball,folded
c__def]
unfolding c¢_def by simp

Complex{_}{\kern 0pt}Residues.html

Complex_Residues.thy 401

ultimately have c x der_f = c¢ * residue f z using has__contour__integral _unique
by blast

hence der f = residue f z unfolding c¢_def by auto

thus ?thesis unfolding der f def by auto
qed

lemma residue__simple_pole:
assumes isolated__singularity_at f 20
assumes is_pole f z0 zorder f 20 = — 1
shows residue f 20 = zor_poly f 20 z0
using assms by (subst residue_pole _order) simp__all

lemma residue__simple_pole__limit:
assumes isolated_singularity at f z0
assumes is_pole f z0 zorder f 20 = — 1
assumes ((Az. f (g) * (9z — 20)) —— ¢) F
assumes filterlim g (at 20) F F # bot
shows residue f 20 = ¢
proof —
have residue f 20 = zor_poly f 20 20
by (rule residue__simple_pole assms)+
also have ... = ¢
apply (rule zor_poly pole_eql)
using assms by auto
finally show ?thesis .
qged

lemma
assumes [_holo:f holomorphic_on s and ¢ _holo:g holomorphic_on s
and open s connected s z € s
assumes g _deriv:(g has_field derivative g’) (at z)
assumes fz# 0gz=0g"# 0

shows porder_simple_pole_deriv: zorder (Aw. fw / gw) 2= — 1
and residue_simple_pole_deriv: residue (Aw. fw / gw) z=fz/ g’
proof —

have [simp]:isolated__singularity_at f z isolated__singularity_at g z
using isolated__singularity _at_holomorphic|OF __ <open s» <z€$)] f_holo g_holo
by (meson Diff _subset holomorphic__on__subset)+
have [simp|:not_essential f z not__essential g z
unfolding not_essential _def using f holo g _holo assms(3,5)
by (meson continuous_on__eq _continuous__at continuous__within holomorphic__on__imp__continuous__on)+
have g nconst:3p win at z. g w #0
proof (rule ccontr)
assume — (Ip win at z. g w # 0)
then have Vp win nhds z. g w = 0
unfolding eventually at eventually nhds frequently at using <g z = 0>
by (metis open__ball UNIV_I centre_in_ ball dist_commute mem,__ball)
then have deriv g z = deriv (A_. 0) 2
by (intro deriv_cong_ev) auto

Complex{_}{\kern 0pt}Residues.html

Complex_Residues.thy 402

then have deriv g z = 0 by auto
then have ¢’ = 0 using g _deriv DERIV__imp_ deriv by blast
then show Fulse using <g'#0> by auto

qed

have zorder (Aw. fw / g w) z = zorder f z — zorder g z
proof —
have Vp win at z. fw #0 N weEs
apply (rule non_zero_neighbour _alt)
using assms by auto
with g nconst have 3p win at z. fw * g w # 0
by (elim frequently rev_mp eventually rev__mp,auto)
then show ?thesis using zorder _divide[of f z g] by auto
qed
moreover have zorder f z=0
apply (rule zorder_zero_eqI[OF f_holo <open s) z€$])
using «f z#£0> by auto
moreover have zorder g z=1
apply (rule zorder_zero__eqI[OF g_holo <open s) <zE€s)])
subgoal using assms(8) by auto
subgoal using DERIV__imp__deriv assms(9) g_deriv by auto
subgoal by simp
done
ultimately show zorder (Aw. fw / g w) 2z = — 1 by auto

show residue (Aw. fw / gw)z=fz /g’
proof (rule residue__simple__pole_limit[where g=id and F=at z,simplified])
show zorder (Aw. fw / g w) 2 = — 1 by fact
show isolated__singularity_at (Aw. fw / g w) 2z
by (auto intro: singularity_intros)
show is_pole (Aw. fw / g w) z
proof (rule is_pole divide)
haveVp zinatz gz # 0
apply (rule non_zero_neighbour)
using g nconst by auto
moreover have g —z— 0
using DERIV__isCont assms(8) continuous_at g_ deriv by force
ultimately show filterlim g (at 0) (at z) unfolding filterlim__at by simp
show isCont f z
using assms(3,5) continuous _on__eq continuous__at f_holo holomor-
phic_on__imp__continuous on
by auto
show f z # 0 by fact
qed
show filterlim id (at z) (at z) by (simp add: filterlim__iff)
have (Aw. (fw* (w — 2)) [gw) —— fz / ¢') (at 2)
proof (rule lhopital _complex__simple)
show (Aw. fw x (w — 2)) has_field derivative f z) (at 2)
using assms by (auto intro!: derivative _eq intros holomorphic_derivl[OF

Complex{_}{\kern 0pt}Residues.html

Residue__Theorem.thy 403

f_holo])
show (g has_field_derivative g') (at z) by fact
ged (insert assms, auto)
then show ((Aw. (fw / gw) * (w — 2)) —— fz/ g') (at 2)
by (simp add: field__split__simps)
qed
qed

7.16 Poles and residues of some well-known functions

lemma is_pole Gamma: is_pole Gamma (—of _nat n)
unfolding is pole_def using Gamma_ poles .

lemma Gamma__residue:
residue Gamma (—of _nat n) = (—=1) “n / fact n
proof (rule residue__simple’)
show open (— (Z<o — {—of nat n}) :: complex set)
by (intro open__Compl closed__subset_Ints) auto
show Gamma holomorphic_on (— (Z<o — {—of _nat n}) — {— of nat n})
by (rule holomorphic_ Gamma) auto
show (Aw. Gamma w *x (w — (—of _nat n))) —(—of _nat n)— (= 1) " n / fact n
using Gamma__residues|of n] by simp
qed auto

end

8 The Residue Theorem, the Argument Principle
and Rouché’s Theorem

theory Residue_Theorem
imports Complex_Residues HOL— Library.Landau__Symbols
begin

Several theorems that could be moved up, IF there were a previous theory
importing both Landau Symbols and Elementary Metric Spaces

lemma continuous bounded__at _infinity imp_bounded:
fixes [:: real = 'a :: real _normed_field
assumes f € Olat_bot](A_. 1)
assumes f € Olat_top](A_. 1)
assumes cf: continuous_on UNIV f
shows bounded (range f)
proof —
obtain c1 c2
where eventually (Az. norm (f z) < c¢l) at_bot eventually (Az. norm (f z) <
c2) at_top
using assms by (auto elim!: landau_0.bigF)
then obtain 27 22 where z1: Az. v < 21 = norm (fz) < ¢l and z2: Az. z
> 22 = norm (fz) < c2

Residue{_}{\kern 0pt}Theorem.html

Residue__Theorem.thy 404

by (auto simp: eventually _at_bot_linorder eventually at_top linorder)
have compact (f < {z1..22})
by (intro compact_continuous _image continuousﬁonfsubset[OF cf]) auto
hence bounded (f ‘ {z1..22})
by (rule compact__imp__bounded)
then obtain ¢3 where ¢3: Az. z € {z1..22} = norm (fz) < ¢3
unfolding bounded_iff by fast
have norm (f) < Maxz {cI, c2, c¢3} for z
by (cases x < x1; cases x > x2) (use x1 22 ¢3 in <auto simp: le_maz_iff _disj»)
thus ?thesis
unfolding bounded_iff by blast
qed

lemma holomorphic__on__extend:
assumes f holomorphic_on S — {£{} & € interior S f € Olat §J(A_. 1)
shows (3 g. g holomorphic_on S N (V28 — {£{}. g 2 = f2))

by (subst holomorphic__on__extend_bounded) (insert assms, auto elim!: landau__0.bigF)

lemma remowvable__singularities:
assumes finite X X C interior S f holomorphic_on (S — X)
assumes A\z. 2z € X = f € Olat z](_. 1)
shows 3Jg. g holomorphic_on S N (Vz2€5—X. gz = [2)
using assms
proof (induction arbitrary: f rule: finite_induct)
case empty
thus ?case by auto
next
case (insert z0 X f)
from insert.prems and insert.hyps have 20: z0 € interior (S — X)
by (auto simp: interior_diff finite_imp_ closed)
hence 3 g. g holomorphic_on (S — X) A (Vz€S — X — {20}. g z = f 2)
using insert.prems insert.hyps by (intro holomorphic_on__extend) auto
then obtain g where ¢: g holomorphic_on (S — X)V2e8 — X — {20}. g z =
f z by blast
have 3 h. h holomorphic_on S N (Vze€S — X. hz = g z)
proof (rule insert.IH)
fix 20’ assume 20" 20’ € X
hence eventually (\z. z € interior S — (X — {20'}) — {20}) (nhds 20"
using insert.prems insert.hyps
by (intro eventually nhds_in_open open_ Diff finite_imp_ closed) auto
hence ev: eventually (Az. z € S — X — {20}) (at 20)
unfolding eventually at_filter
by eventually__elim (insert z0' insert.hyps interior_subset[of S], auto)
have ¢ € O[at 20'|(f)
by (intro bigthetal cong eventually mono[OF ev]) (insert g, auto)
also have f € Olat z0'|(A_. 1)
using z0' by (intro insert.prems) auto
finally show g €
qed (use insert.prems g in auto)

Residue{_}{\kern 0pt}Theorem.html

Residue__Theorem.thy 405

then obtain h where i holomorphic_on S Vz€S — X. h z = g z by blast
with ¢ have h holomorphic_on S ¥ 2€S — insert z0 X. h z = f z by auto
thus ?case by blast

qed

lemma continuous imp_ bigo_ 1:
assumes continuous (at z within A) f
shows [€ Olat z within AJ(A_. 1)
proof (rule bigol _tendsto)
from assms show ((A\z. fz / 1) —— fz) (at © within A)
by (auto simp: continuous__within)
qed auto

lemma taylor_bigo_ linear:
assumes f field differentiable at x0 within A
shows (Az. fz — f20) € Olat 20 within Al(Az. z — 20)
proof —
from assms obtain f’ where (f has_field_derivative f') (at z0 within A)
by (auto simp: field _differentiable_def)
hence ((A\z. (fz — fz0) / (z — 20)) —— ') (at 20 within A)
by (auto simp: has_field__derivative_iff)
thus ?thesis by (intro bigol _tendsto[where ¢ = f']) (auto simp: eventually at_filter)
qed

8.1 Cauchy’s residue theorem

lemma get integrable path:
assumes open S connected (S—pts) finite pts f holomorphic_on (S—pts) a€S—pts
beS—pts
obtains g where valid_path g pathstart ¢ = a pathfinish g = b
path__image g C S—pts f contour__integrable_on g using assms
proof (induct arbitrary:S thesis a rule:finite _induct|OF «finite pts)))
case I
obtain g where valid_path g path__image g C S pathstart ¢ = a pathfinish g =
b
using connected__open__polynomial _connected[OF <open S»,of a b] «connected
(5 — {1
valid__path__polynomial _function 1.prems(6) 1.prems(7) by auto
moreover have f contour_integrable on g
using contour_integrable__holomorphic__simple[OF __ <open S» <valid_path g
<path__image g C S»,of f]
«f holomorphic_on S — {}
by auto
ultimately show ?case using 1(1)[of g] by auto
next
case idt:(2 p pts)
obtain e where ¢>0 and eV w€ball a e. w € S A (w # a — w ¢ insert p pts)
using finite_ball_avoid[OF <open S» <finite (insert p pts), of a]
<a € S — insert p pts

Residue{_}{\kern 0pt}Theorem.html

Residue__Theorem.thy 406

by auto
define o’ where o’ = a+e/2
have a’eS—{p} —pts using e[rule_format,of a+e/2] <e>0>
by (auto simp add:dist_complex_def a’_def)
then obtain ¢’ where ¢'[simp|:valid_path g’ pathstart ¢’ = a’ pathfinish ¢’ = b
path_image g' C S — {p} — pts f contour__integrable_on g’
using idt.hyps(3)[of a’ S—{p}] idt.prems idt.hyps(1)
by (metis Diff insert2 open__ delete)
define ¢ where g = linepath a a’ +++ g’
have valid_path g unfolding g def by (auto intro: valid__path_join)
moreover have pathstart g = a and pathfinish ¢ = b unfolding g def by auto
moreover have path image g C S — insert p pts
unfolding g def
proof (rule subset_path_image_join)
have closed_segment a a’ C ball a e using <e>0>
by (auto dest!:segment_boundl simp:a’_def dist__complex__def norm__minus__commute)
then show path_image (linepath a a’) C S — insert p pts using e idt(9)
by auto
next
show path_image g’ C S — insert p pts using ¢'(4) by blast
qged
moreover have f contour_integrable on g
proof —
have closed__segment a a’ C ball a e using <e>0)»
by (auto dest!:segment__boundl simp:a’_def dist__complex__def norm_minus__commute)
then have closed_segment a a’ C S — insert p pts
using e idt.prems(6) by auto
then have continuous_on (closed_segment a a’) f
using holomorphic__on__imp__continuous__on holomorphic__on__subset idt.prems(5)
by presburger
then show ?thesis
using contour_integrable continuous_linepath by (simp add: g _def)
qed
ultimately show ?case using idt.prems(1)[of g] by auto
qed

lemma Cauchy theorem__auz:
assumes open S connected (S—pts) finite pts pts C S f holomorphic_on S—pts
valid__path g pathfinish g = pathstart g path__image g C S—pts
Vz. (2 ¢ §) — winding_number g z = 0
VpeS. hp>0 N (YVwecball p (h p). weS A (w#p — w & pts))
shows contour_integral g f = (Y pEpts. winding_number g p * contour_integral
(circlepath p (h p)) f)
using assms
proof (induct arbitrary:S g rule:finite_induct] OF «finite pts)])
case I
then show Zcase by (simp add: Cauchy__theorem__global contour_integral _unique)
next
case (2 p pts)

Residue{_}{\kern 0pt}Theorem.html

Residue__Theorem.thy 407

note fin[simp] = «finite (insert p pts)»
and connected = <connected (S — insert p pts)
and valid[simp] = <valid__path g
and g¢_loop[simp] = <pathfinish g = pathstart g»
and holo[simp]= «f holomorphic_on S — insert p pts
and path__img = <path_image g C S — insert p pts»
and winding = Vz. z ¢ S — winding_number g z = 0»
and h = Vpa€S. 0 < h pa A (Vwecball pa (h pa). w € S N (w # pa — w
¢ insert p pts))
have h p>0 and peS
and h_p: Vwecballp (hp). we S A (w#p— w ¢ insert p pts)
using h <insert p pts C S» by auto
obtain pg where pg[simp|: valid_path pg pathstart pg = pathstart g pathfinish
pg=p+h p
path__image pg C S—insert p pts f contour_integrable_on pg
proof —
have p + h pecball p (h p) using h[rule_format,of p]
by (simp add: <p € Sy dist_norm)
then have p + h p € S — insert p pts using h[rule_ format,of p] <insert p pts
c S
by fastforce
moreover have pathstart g € S — insert p pts using path img by auto
ultimately show #thesis
using get_integrable__path[OF <open S» connected fin holo,of pathstart g p+h
p| that
by blast
qed
obtain n::int where n=winding number g p
using integer _winding number|OF __ g_loop,of p] valid path_img
by (metis Diff D2 Ints_cases insertll subset__eq valid_path_imp_ path)
define p_ circ where p_ circ = circlepath p (h p)
define p_circ_pt where p_ circ_pt = linepath (p+h p) (p+h p)
define n_ circ where n__circ = An. ((+++) p_circ " n) p__circ_pt
define cp where cp = if n>0 then reversepath (n__circ (nat n)) else n__circ (nat

(= n))

have n__circ:valid_path (n__circ k)
winding_number (n_circ k) p =k
pathstart (n__circ k) = p + h p pathfinish (n_circ k) = p + h p
path_image (n_circ k) = (if k=0 then {p + h p} else sphere p (h p))
p & path_image (n__circ k)
Ap’. p'¢S — pts = winding_number (n_circ k) p'=0 A p'¢path_image
(n__circ k)
f contour_integrable _on (n__circ k)
contour_integral (n__circ k) f = k * contour_integral p_ circ f
for k
proof (induct k)
case (
show valid__path (n__circ 0)

Residue{_}{\kern 0pt}Theorem.html

Residue__Theorem.thy 408

and path_image (n_circ 0) = (if 0=0 then {p + h p} else sphere p (h p))
and winding_number (n__circ 0) p = of _nat 0
and pathstart (n_circ 0) =p+ hp
and pathfinish (n_circ 0) = p + h p
and p ¢ path_image (n__circ 0)
unfolding n_ circ_def p_circ_pt_def using <h p > 0>
by (auto simp add: dist_norm)
show winding _number (n__circ 0) p'=0 A p'¢path_image (n__circ 0) when
p'¢S— pts for p’
unfolding n_ circ_def p_circ_pt_def
apply (auto introl:winding number__trivial)
by (metis Diff _iff pathfinish_in_path_image pg(3) pg(4) subsetCE sub-
set_insertl that)+
show f contour_integrable _on (n__circ 0)
unfolding n_ circ_def p_circ_pt_def
by (auto intro!l:contour__integrable__continuous_linepath simp add:continuous__on__sing)
show contour_integral (n_circ 0) f = of _nat 0 * contour_integral p_ circ f
unfolding n_ circ_def p_ circ_pt_def by auto
next
case (Suc k)
have n_Suc:n__circ (Suc k) = p__circ +++ n__circ k unfolding n__circ__def
by auto
have pcirc:p ¢ path_image p_circ valid_path p_circ pathfinish p_circ =
pathstart (n__circ k)
using Suc(3) unfolding p_ circ_def using <h p > 0> by (auto simp add:
p__circ__def)
have pcirc_image:path_image p_circ C S — insert p pts
proof —
have path_image p_circ C cball p (h p) using <0 < h p> p_ circ_def by
auto
then show ?thesis using h_p pcire(1) by auto
ged
have pcirc_integrable:f contour__integrable on p_ circ
by (auto simp add:p__circ_def intro!: pcirc__image[unfolded p_circ_def]
contour_integrable _continuous _circlepath holomorphic__on__imp__continuous _on
holomorphic__on__subset[OF holo])
show valid__path (n__circ (Suc k))
using valid__path__join[OF pcirc(2) Suc(1) pcirc(3)] unfolding n__circ_def
by auto
show path_image (n__circ (Suc k))
= (if Suc k = 0 then {p + complex_of real (h p)} else sphere p (h p))
proof —
have path_image p__circ = sphere p (h p)
unfolding p circ_def using <0 < h p» by auto
then show ?thesis unfolding n_Suc using Suc.hyps(5) <h p>0»
by (auto simp add: path_image_join[OF pcirc(3)] dist_norm)
qed
then show p ¢ path_image (n__circ (Suc k)) using <h p>0» by auto
show winding_number (n_circ (Suc k)) p = of _nat (Suc k)

Residue{_}{\kern 0pt}Theorem.html

Residue__Theorem.thy 409

proof —
have winding number p_ circ p = 1
by (simp add: <h p > 0> p_circ_def winding _number__circlepath__centre)
moreover have p ¢ path_image (n__circ k) using Suc(5) <h p>0> by
auto
then have winding_number (p__circ +++ n__circ k)
= winding_number p__circ p + winding_number (
using wvalid_path_imp_ path Suc.hyps(1) Suc.hyps(
apply (intro winding_number_join)
by auto
ultimately show ?thesis using Suc(2) unfolding n_ circ_ def
by auto
qged
show pathstart (n_circ (Suc k)) =p+ hp
by (simp add: n__circ_def p__circ_def)
show pathfinish (n__circ (Suc k)) =p + hp
using Suc(4) unfolding n_circ_def by auto
show winding _number (n_circ (Suc k)) p'=0 A p'¢path_image (n_ circ
(Suc k)) when p'¢S—pts for p’
proof —
have p’ ¢ path_image p__circ using <p € S» h p__circ_def that using
pcirc__image by blast
moreover have p’ ¢ path_image (n__circ k)
using Suc.hyps(7) that by blast
moreover have winding number p_circ p’ = 0
proof —
have path_image p_circ C cball p (h p)
using h unfolding p_circ_def using <p € S» by fastforce
moreover have p’¢cball p (h p) using <p € S» h that 2.hyps(2) by

circ k) p

p
n_
2) pcire

fastforce
ultimately show ?thesis
unfolding p circ_ def
by (intro winding number_zero__outside) auto
qed
ultimately show #thesis
unfolding n_ Suc using Suc.hyps pcirc
by (metis add.right_neutral not_in__path_image_ join that valid_path__imp__path
winding_number__join)
qed
show f contour_integrable_on (n__circ (Suc k))
unfolding n_ Suc
by (rule contour_integrable_joinI[OF pcirc_integrable Suc(8) pcire(2)
Sue(1))
show contour_integral (n__circ (Suc k)) f = (Suc k) = contour_integral
p_circ f
by (simp add: Rings.ring_distribs(2) Suc.hyps n__Suc pcirc pcirc__integrable)
qed
have cp[simp]:pathstart cp = p + h p pathfinish cp = p + hp
valid__path cp path__image cp C S — insert p pts

Residue{_}{\kern 0pt}Theorem.html

Residue__Theorem.thy 410

winding__number cp p = — n
Ap’. p'éS — pts = winding_number cp p’=0 A p’ & path_image cp
f contour_integrable_on cp
contour__integral cp f = — n * contour__integral p_ circ f
proof —
show pathstart cp = p + h p and pathfinish ¢cp = p + h p and valid_path cp
using n_ circ unfolding cp_def by auto
next
have sphere p (h p) C S — insert p pts
using h[rule_format,of p] <insert p pts C S» by force
moreover have p + complex_of real (h p) € S — insert p pts
using pg(3) pg(4) by (metis pathfinish_in_path_image subsetCE)
ultimately show path image cp C S — insert p pts unfolding cp_ def
using n__circ(5) by auto
next
show winding _number cp p = — n
unfolding cp_def using winding number reversepath n_ circ <h p>0>
by (auto simp: valid_path__imp__path)
next
show winding _number cp p'=0 N p’ & path_image cp when p'¢S — pts for

p
proof —
have winding_number (reversepath (n_circ (nat n))) p’ = 0
using n_ circ that
by (metis add.inverse_neutral valid_path__imp__path winding_number_reversepath)
then show ?thesis
using c¢p_def n__cire(7) that by force
qed
next
show f contour_integrable_on cp unfolding cp def
using contour_integrable_reversepath__eq n__circ(1,8) by auto
next
show contour_integral cp f = — n * contour_integral p_ circ f
unfolding cp_ def using contour_integral reversepath[OF n_ circ(1)]
n_circ(9)
by auto
qged

define ¢’ where ¢’ = g +++ pg +++ cp +++ (reversepath pg)
have contour_integral g’ f = (> pEpts. winding_number g’ p x contour _integral
(circlepath p (h p)) f)
proof (rule 2.hyps(3)[of S—{p} ¢',OF _ __ «finite pts |)
show connected (S — {p} — pts) using connected by (metis Diff _insert2)
show open (S — {p}) using <open S> by auto
show pts C S — {p} using <insert p pts C S» < p ¢ pts» by blast
show f holomorphic_on S — {p} — pts using holo <p ¢ pts» by (metis
Diff insert2)
show wvalid_path g’
unfolding ¢’ def cp_def using n_ circ valid pg g _loop
by (auto introl:valid__path__join)

Residue{_}{\kern 0pt}Theorem.html

Residue__Theorem.thy 411

show pathfinish g’ = pathstart g’
unfolding ¢’ def cp def using pg(2) by simp
show path_image g’ C S — {p} — pts
proof —
define s’ where s’ = S — {p} — pts
have s”:s’ = S—insert p pts unfolding s’ def by auto
then show %thesis using path_img pg(4) cp(4)
by (simp add: g'_def s'_def subset__path_image_ join)
qed
note path__join__imp[simp]
show Vz. z ¢ S — {p} — winding_number g’ z = 0
proof clarify
fix z assume z:2¢S — {p}
have z_notin_cp: z ¢ path_image cp
using ¢p(6) cp_def n_cire(6) z by auto
have z_notin_pg: z ¢ path_image pg
by (metis Diff iff Diff insert2 pg(4) subsetD z)
have winding number (¢ +++ pg +++ cp +++ reversepath pg) z =
winding_number g z
+ winding_number (pg +++ cp +++ (reversepath pg)) z
proof (rule winding _number_join)
show path g using <valid_path ¢» by (simp add: valid_path_imp_path)
show z ¢ path_image g using z path_img by auto
show path (pg +++ cp +++ reversepath pg) using pg(3) cp
by (simp add: valid_path_imp_path)
next
have path_image (pg +++ cp +++ reversepath pg) C S — insert p pts
using pg(4) cp(4) by (auto simp:subset_path_image join)
then show z ¢ path_image (pg +++ cp +++ reversepath pg) using
z by auto
next
show pathfinish g = pathstart (pg +++ cp +++ reversepath pg) using
g__loop by auto
qed
also have ... = winding_number g z + (winding_number pg z
+ winding_number (cp +++ (reversepath pg)) z)
proof (subst add_left_cancel,rule winding_number_join)
show path pg and path (cp +++ reversepath pg)
and pathfinish pg = pathstart (cp +++ reversepath pg)
by (auto simp add: valid__path__imp__path)
show z ¢ path_image pg using pg(4) z by blast
show z ¢ path_image (cp +++ reversepath pg) using z
by (metis Diff iff <z ¢ path_image pg> contra__subsetD cp(4) insertl!
not_in__path__image_join path_image_reversepath singletonD)
qed
also have ... = winding_number g z + (winding_number pg z
+ (winding_number cp z + winding_number (reversepath pg) z))
by (simp add: valid__path__imp__path winding number_join z_notin_cp
z_motin_pg)

Residue{_}{\kern 0pt}Theorem.html

Residue__Theorem.thy 412

also have ... = winding number g z + winding_number cp z
by (simp add: valid_path_imp _path winding_number _reversepath
z_mnotin_pg)
finally have winding number ¢’ z = winding number g z + wind-
ing__number cp z
unfolding ¢’ def .
moreover have winding number g z + winding_number cp z = 0
using winding z <n=winding_number g p> by auto
ultimately show winding number ¢’ z = 0 unfolding ¢’ def by auto
qged
show Vpa € S — {p}. 0 < h pa A (Ywecball pa (h pa). w € S — {p} N (w
pa — w ¢ pts))
using h by fastforce
qed
moreover have contour_integral g’ f = contour_integral g f
— winding_number g p *x contour_integral p_ circ f
proof —
have *: f contour_integrable_on g f contour__integrable__on pg f contour _integrable__on
cp
by (auto simp add: open_ Diff[OF <open S»,OF finite__imp__closed[OF fin]]
introl: contour_integrable__holomorphic__simple[OF holo _ __ path__img))
have contour_integral g’ f = contour_integral g f + contour_integral pg f
+ contour_integral c¢p f + contour_integral (reversepath pg) f
using * by (simp add: ¢'_def contour_integrable_reversepath__eq)
also have ... = contour_integral g f + contour_integral cp f
using contour_integral reversepath
by (auto simp add:contour_integrable _reversepath)
also have ... = contour_integral g f — winding number g p * contour_integral
p_circ f
using «n=winding_number g p» by auto
finally show ?thesis .
qed

moreover have winding_number g’ p’ = winding_number g p’ when p’cpts for
I

P
proof —

obtain [simp|: p’ ¢ path_image g p’ ¢ path__image pg p’¢path_image cp
using 2.prems(8) that by (metis Diff _iff Diff insert2 <p’ € pts» cp(4)
pg(4) subsetD)
have winding number ¢’ p’ = winding number g p’ + winding number pg p’
+ winding_number (cp +++ reversepath pg) p’
by (simp add: g’_def not_in_path_image_join valid_path_imp_ path wind-
ing_number_join)
also have ... = winding _number g p’ using that
by (simp add: valid__path__imp__path winding _number_join winding_number_reversepath)
finally show ?thesis .
qed
ultimately show ?case unfolding p circ_def
apply (subst (asm) sum.cong[OF refl,
of pts _ Ap. winding_number g p * contour_integral (circlepath p (h p)) f])

Residue{_}{\kern 0pt}Theorem.html

Residue__Theorem.thy 413

by (auto simp: sum.insert[OF «finite pts) <pépts)] algebra__simps)
qed

lemma Cauchy_theorem__singularities:
assumes open S connected S finite pts and
holo: f holomorphic_on S—pts and
valid__path g and
loop:pathfinish g = pathstart g and
path__image g C S—pts and
homoV z. (z ¢ S) — winding_number g z = 0 and
avoid:N peS. h p>0 N (Ywecball p (h p). weS A (w#p — w ¢ pts))
shows contour__integral g f = (> pEpts. winding _number g p x contour_integral
(circlepath p (h p)) f)
(is /L=7R)
proof —
define circ where circ = Ap. winding_number g p * contour__integral (circlepath
p(hp)f
define pts! where ptsl = pts N S
define pts2 where pts2 = pts — ptsl
have pts=pts! U pts2 ptsl N pts2 = {} pts2 N S={} pts1CS
unfolding ptsi_ def pts2_def by auto
have contour_integral g f = (> pEptsl. circ p) unfolding circ_ def
proof (rule Cauchy_theorem__aux[OF <open Sy _ _ «pts1CS) _ «walid_path
> loop __ homol)
have finite pts! unfolding ptsl def using «finite pts> by auto
then show connected (S — ptsl)
using <open S» <connected S» connected__open__delete_finite[of S] by auto
next
show finite ptsl using <pts = ptsl U pts2» assms(3) by auto
show [holomorphic_on S — ptsl by (metis Diff Int2 Int absorb holo
pts1_def)
show path_image g C S — ptsl using assms(7) ptsl__def by auto
show VpeS. 0 < hp A (Vwecballp (hp). we S A (w#p— wé ptsl))
by (simp add: avoid pts1_def)
qed
moreover have sum circ pts2 = 0
by (metis <pts2 N S = {}» circ_def disjoint_iff _not_equal homo mult_zero_left
sum.neutral)
moreover have ?R=sum circ ptsl + sum circ pts2
unfolding circ_def
using sum.union__disjoint[OF __ __ «ptsl N pts2 = {}] «finite pts» <pts=ptsl
U pts2»
by blast
ultimately show ?thesis
by simp
qed

theorem Residue theorem:
fixes S pts::complex set and f::complex = complex

Residue{_}{\kern 0pt}Theorem.html

Residue__Theorem.thy 414

and g::real = complex
assumes open S connected S finite pts and
holo:f holomorphic_on S—pts and
valid__path g and
loop:pathfinish g = pathstart g and
path__image g C S—pts and
homoVN z. (z ¢ S) — winding_number g z = 0
shows contour_integral g f = 2 x pi * i (D pEpts. winding_number g p *
residue f p)
proof —
define ¢ where c = 2 * pi x i
obtain h where avoid:VY peS. h p>0 N (Ywecball p (h p). weS A (w#p — w
¢ pts))
using finite_ cball_avoid[OF <open S» «finite ptsy] by metis
have contour_integral g f
= (3 pepts. winding_number g p x contour_integral (circlepath p (h p)) f)
using Cauchy__theorem__singularities| OF assms avoid] .
also have ... = (3 pepts. ¢ x winding_number g p * residue f p)
proof (intro sum.cong)
show pts = pts by simp
next
fix £ assume z € pts
show winding_number g x * contour _integral (circlepath z (h z)) f
= ¢ x winding_number g T x residue f x
proof (cases z€S)
case Fulse
then have winding number g x=0 using homo by auto
thus ?thesis by auto
next
case True
have contour_integral (circlepath x (h x)) f = cx residue f x
using «z€ptsy «finite pts» avoid|rule_format, OF True]
apply (intro base_residue[of S—(pts—{z}), THEN contour_integral _unique,folded
¢_def])
by (auto intro:holomorphic_on__subset| OF holo] open_ Diff [OF <open S»
finite__imp__closed))
then show “thesis by auto
qed
qed
also have ... = ¢ * (> pepts. winding_number g p * residue f p)
by (simp add: sum__distrib_left algebra__simps)
finally show ?thesis unfolding c_ def .
qed

8.2 The argument principle

theorem argument_ principle:
fixes f::complex = complex and poles S:: complez set
defines pz = {weS. fw = 0 V w € poles} — pz is the set of poles and zeros

Residue{_}{\kern 0pt}Theorem.html

Residue__Theorem.thy 415

assumes open S connected S and
f_holo:f holomorphic_on S—poles and
h__holo:h holomorphic_on S and
valid__path g and
loop:pathfinish g = pathstart g and
path__img:path__image g C S — pz and
homoVN z. (z ¢ S) — winding_number g z = 0 and
finite: finite pz and
poles:¥ peSNipoles. is_pole f p
shows contour_integral g (Az. deriv fx x hax [/ fz) = 2 % pi x 1 %
(> pepz. winding_number g p * h p * zorder f p)
(is /L=7R)
proof —
define ¢ where ¢ = 2 x complex_of real pi * i
define ff where ff = (A\z. deriv fz x ha / fx)
define cont where cont = \ff p e. (ff has__contour _integral ¢ * zorder fp * h p
) (circlepath p e)
define avoid where avoid = A\p e. Vwecballpe. w e S A (w# p — w ¢ pz)

have Je>0. avoid p e A (p€pz — cont [f p e) when peS for p
proof —
obtain el where el >0 and el avoid:avoid p el
using finite_cball _avoid[OF <open S» finite] «p€S» unfolding avoid def by
auto
have Je2>0. cball p e2 C ball p el A cont [f p e2 when pEpz
proof —
define po where po = zorder f p
define pp where pp = zor_poly f p
define f' where f’' = Aw. pp w x (w — p) powi po
define ff’ where ff' = (Az. deriv f' z x hx / ')
obtain r where pp p#£0 r>0 and
r<el and
pp__holo:pp holomorphic_on cball p r and
pp_po:(V wecball p r—{p}. fw = pp w * (w — p) powi po A pp w # 0)
proof —
have isolated singularity at f p
proof —
have ball p el — {p} C S — poles
using avoid_def el avoid pz_def by fastforce
then have f holomorphic_on ball p el — {p}
by (intro holomorphic__on__subset[OF f_holo])
then show %thesis unfolding isolated singularity at_def
using <el>0»> analytic_on__open open__delete by blast
qed
moreover have not_essential f p
proof (cases is_pole f p)
case True
then show ?thesis unfolding not__essential__def by auto
next

Residue{_}{\kern 0pt}Theorem.html

Residue__Theorem.thy 416

case Fulse
then have peS—poles using «peS» poles unfolding pz def by auto
moreover have open (S—poles)
proof —
have closed (S N poles)
using finite by (simp add: pz_def finite_imp_closed rev_ finite__subset

subset__eq)

then show ?thesis
by (metis Diff _Compl Diff _Diff Int Diff eq <open S» open_ Diff)
qged
ultimately have isCont f p
using holomorphic_on__imp__continuous_on[OF f_holo] continu-

ous__on__eq _continuous__at

by auto
then show ?thesis unfolding isCont_def not_essential_def by auto
qged
moreover have 3p win at p. fw # 0
proof (rule ccontr)
assume - (Ip win at p. fw # 0)
then have V p w in at p. f w= 0 unfolding frequently def by auto
then obtain r! where />0 and r1:Vweball p r1 — {p}. fw =0
unfolding eventually at by (auto simp add:dist__commute)
obtain 72 where r2>0 and r2: ballp 2 C S
using (p€S) <open S» openE by blast
define rr where rr=min r1 r2

from r1 r2
have ball p rr — {p} C {we S N ball p rr—{p}. fw=0}
unfolding rr_def by auto
moreover have infinite (ball p rr — {p})
using <r1>0> «r2>0> finite_imp_ not_open
unfolding rr_def by fastforce
ultimately have infinite {weS N ball p rr—{p}. f w=0} using infi-

nite__super by blast

then have infinite pz
unfolding pz def by (smt (verit) infinite_super Collect _mono_iff DiffE

Int_iff)

pr

then show Fulse using (finite pz> by auto
qed

ultimately obtain r where pp p # 0 and 7:rv>0 pp holomorphic__on cball

(Vweeballp r — {p}. fw=pp w= (w— p) powi po A pp w # 0)
using zorder_exist[of f p,folded po__def pp__def] by auto
define r1 where ri=min rel / 2
have ri<el unfolding r1 _def using <el>0> <r>0> by auto
moreover have r1>0 pp holomorphic_on cball p r1
(Vweeballp r1 — {p}. fw=pp w* (w — p) powi po A\ pp w # 0)
unfolding r1_ def using <el1>0> r by auto
ultimately show ?thesis using that <pp p#£0» by auto

Residue{_}{\kern 0pt}Theorem.html

Residue__Theorem.thy 417

qed

define e2 where e2 = r/2

have e2>0 using «r>0> unfolding e2 def by auto

define anal where anal = Aw. deriv pp w * h w / pp w

define prin where prin = A\w. po x h w / (w — p)

have ((Aw. prin w 4+ anal w) has_contour _integral ¢ x po x h p) (circlepath
p e2)

proof (rule has_contour__integral_add[of _ __ __ __ 0,simplified])

have ballpr C S

using «r<els avoid_def ball _subset_cball el__avoid by (simp add:
subset__eq)

then have cball p e2 C S
using «r>0> unfolding e2 def by auto
then have (Aw. po x h w) holomorphic_on cball p e2
using h_holo by (auto intro!: holomorphic_intros)
then show (prin has_contour integral ¢ * po x h p) (circlepath p e2)
using Cauchy_integral circlepath__simple[folded ¢ _def, of Aw. po * h w]
e2>0»
unfolding prin_def by (auto simp add: mult.assoc)
have anal holomorphic__on ball p r unfolding anal_def
using pp_holo h__holo pp__po <ball p r C S» <pp p#£0>
by (auto intro!: holomorphic_intros)
then show (anal has_contour_integral 0) (circlepath p e2)
using e2_def «r>0>
by (auto elim!: Cauchy__theorem__disc__simple)
qed
then have cont ff’ p e2 unfolding cont_def po_ def
proof (elim has_contour _integral eq)
fix w assume w € path_image (circlepath p e2)

then have weball p r and w#p unfolding e2 def using «r>0) by auto
define wp where wp = w—p

have wp#0 and pp w #0
unfolding wp_ def using «w#p> <we€ball p > pp_po by auto
moreover have der_f’:deriv f’ w = po * pp w x (w—p) powi (po — 1) +
deriv pp w x (w—p) powi po
proof (rule DERIV__imp__deriv)
have (pp has_field_derivative (deriv pp w)) (at w)
using DERIV__deriv_iff has_field_ derivative pp__holo <w#p>
by (meson open__ball <w € ball p r> ball _subset cball holomorphic__derivl
holomorphic__on__subset)

then show (f’ has_field_derivative of _int po * pp w * (w — p) powi (po

+ deriv pp w x (w — p) powi po) (at w)
unfolding [’ def using <w#p»

by (auto intro!: derivative_eq intros DERIV_cong[OF has_ field__derivative__powr_of _int])
qed

ultimately show prin w + anal w = ff’ w
unfolding [’ def [f'_def prin_def anal_def

Residue{_}{\kern 0pt}Theorem.html

Residue__Theorem.thy 418

apply (simp add: field _simps flip: wp__def)
by (metis (no__types, lifting) mult.commute power _int_minus_mult)
qed
then have cont ff p e2 unfolding cont def
proof (elim has__contour_integral _eq)
fix w assume w € path_image (circlepath p e2)
then have weball p r and w+#p unfolding e2 def using «r>0> by auto
have deriv f' w = deriv fw
proof (rule complex_derivative_transform__within__open|where s=ball p r
— {p}])
show f’ holomorphic_on ball p r — {p} unfolding f’_def using pp_holo
by (auto introl: holomorphic_intros)
next
have ball p el — {p} C S — poles
using ball_subset_cball el __avoid[unfolded avoid__def] unfolding pz def
by auto
then have ball p r — {p} C S — poles
using «r<el» by force
then show f holomorphic_on ball p r — {p} using f holo
by auto
next
show open (ball p r — {p}) by auto
show w € ball p r — {p} using «weball p r» <w#p> by auto
next
fix z assume z € ball p r — {p}
then show f'z = fz
using pp_po unfolding f’ def by auto
qed
moreover have f'w = fw
using «w € ball p r> ball_subset_cball subset_iff pp_po <w#p>
unfolding f’ def by auto
ultimately show ff' w = ffw
unfolding ff’_def ff_def by simp
qed
moreover have cball p e2 C ball p el
using <0 < r «r<el» e2 def by auto
ultimately show ?thesis using <e2>0s by auto
qed
then obtain e2 where e2:pepz — e2>0 A cball p e2 C ball p el N cont ff
p e2
by auto
define ¢/ where e/ = if pEpz then e2 else el
have ¢4 >0 using e2 (el1>0> unfolding ej_def by auto
moreover have avoid p e/ using e2 <el1>0) el avoid unfolding e/ def
avoid__def by auto
moreover have pepz — cont ff p e4
by (auto simp add: e2 e4__def)
ultimately show ?thesis by auto
qed

Residue{_}{\kern 0pt}Theorem.html

Residue__Theorem.thy 419

then obtain get e where get_e:VpeS. get_e p>0 A avoid p (get_e p)
A (p€pz — cont [f p (get_e p))
by metis
define ci where ci = Ap. contour_integral (circlepath p (get_e p)) ff
define w where w = A\p. winding_number g p
have contour_integral g [f = (> p€pz. w p * ci p) unfolding ci def w_def
proof (rule Cauchy_theorem__singularities]OF <open S» (connected S» finite _
<valid__path g> loop
path__img homol)
have open (S — pz) using open_ Diff [OF __ finite__imp__closed[OF finite]] <open
S» by auto
then show ff holomorphic_on S — pz unfolding ff def using f holo h__holo
by (auto introl: holomorphic_intros simp add:pz_def)

next
show VpeS. 0 < get_ep A (Vwecball p (get_ep). we S A (w#p— w¢
pz))
using get e using avoid_def by blast
qed
also have ... = (> p€pz. ¢ x wp * h p * zorder f p)

proof (rule sum.cong|of pz pz,simplified))
fix p assume p € pz
show wp * cip=cx* wpx*hpx* (zorder f p)
proof (cases peS)
assume p € S
have cip = ¢ * h p % (zorder f p)
unfolding ci_def
using «p € S <p € pz> cont__def contour__integral _unique get_e by fastforce
thus ?thesis by auto
next
assume p¢.S
then have w p=0 using homo unfolding w_def by auto
then show ?thesis by auto
qed
qed
also have ... = cx(>_ p€pz. wp * h p * zorder f p)
unfolding sum__distrib_left by (simp add:algebra__simps)
finally have contour_integral g ff = ¢ * (D pEpz. wp * h p x of _int (zorder f
p)) -
then show ?thesis unfolding ff def ¢ def w_def by simp
qed

8.3 Coeflicient asymptotics for generating functions

For a formal power series that has a meromorphic continuation on some disc
in the context plane, we can use the Residue Theorem to extract precise
asymptotic information from the residues at the poles. This can be used
to derive the asymptotic behaviour of the coefficients (a, ~ ...). If the
function is meromorphic on the entire complex plane, one can even derive a

Residue{_}{\kern 0pt}Theorem.html

Residue__Theorem.thy 420

full asymptotic expansion.

We will first show the relationship between the coefficients and the sum over
the residues with an explicit remainder term (the contour integral along the
circle used in the Residue theorem).

theorem
fixes f :: complex = complex and n :: nat and 7 :: real
defines g = (Aw. fw / w ~ Suc n) and v = circlepath 0 r
assumes open A connected A cball 0 r C Ar > 0
assumes | holomorphic_on A — S S C ball 0 r finite S 0 ¢ S
shows fps coeff conv_residues:
(deriv ") f0 / fact n =
contour_integral v g / (2 * pi x 1) — (D 2€S. residue g z) (is ?thesis!)
and fps_coeff residues bound:
(Nz. normz=r = z¢ k= norm (fz) < C) = C > 0 = finite
k=
norm ((deriv =" n) f0 / fact n + (3 2€S. residue g z)) < C / r " n
proof —
have holo: g holomorphic_on A — insert 0 S
unfolding g def using assms by (auto intro!: holomorphic__intros)
have contour_integral v g = 2 * pi = i x (D z€insert 0 S. winding _number ~
z * residue g 2)
proof (rule Residue_theorem)
show ¢ holomorphic_on A — insert 0 S by fact
from assms show Vz. z ¢ A — winding_number v z = 0
unfolding ~__def by (intro alll impI winding_number_zero_outside[of __
cball 0 1)) auto
qed (insert assms, auto simp: y__def)
also have winding_number v z = 1 if z € insert 0 S for z
unfolding v __def using assms that by (intro winding_number_circlepath) auto
hence (3 z€insert 0 S. winding_number v z x residue g z) = (> z€insert 0 S.
residue g z)
by (intro sum.cong) simp__all
also have ... = residue g 0 + (3 2€S. residue g 2)
using <0 ¢ S» and «finite S» by (subst sum.insert) auto
also from «r > 0» have 0 € cball 0 r by simp
with assms have 0 € A — S by blast
with assms have residue g 0 = (deriv =" n) f0 / fact n
unfolding g _def by (subst residue__holomorphic_over_ _power'[of A — S])
(auto simp: finite__imp_ closed)
finally show ?thesis!
by (simp add: field _simps)

assume C: A\z. normz=r =z ¢ k = norm (fz) < C C > 0 and k: finite
k
have (deriv " n) f0 / fact n + (3 2€S. residue g z) = contour integral v g /
(2 % pi % 1)
using «?thesisl) by (simp add: algebra__simps)
also have norm ... = norm (contour_integral v g) / (2 * pi)

Residue{_}{\kern 0pt}Theorem.html

Residue__Theorem.thy 421

by (simp add: norm__divide norm__mult)
also have norm (contour_integral v g) < C / r " Suc n * (2 * pi x 1)
proof (rule has_contour_integral bound__circlepath__strong)
from <open A) and «(finite S» have open (A — insert 0 5)
by (blast intro: finite__imp__closed)
with assms show (g has__contour__integral contour _integral v g) (circlepath 0
)
unfolding ~v_ def
by (intro has__contour__integral integral contour _integrable_holomorphic__simple
[OF holol) auto
next
fix z assume z: norm (z — 0) =rz ¢ k
hence norm (g z) = norm (fz) / r ~ Suc n
by (simp add: norm__divide g_def norm__mult norm__power)
also have ... < C /r "~ Sucn
using k£ and «r > 0 and z by (intro divide_right _mono C zero_le_power)
auto
finally show norm (g z) < C / r ~ Sucn .
qed (insert C(2) k <r > 0>, auto)
also from ¢<r > 0h have C / r “Sucn* (2xpixr)/ (2xpi)=C/r " n
by simp
finally show norm ((deriv "~ n) f0 / fact n + (3 z€S. residue g 2)) < ...
by — (simp__all add: divide _right_mono)
qed

Since the circle is fixed, we can get an upper bound on the values of the
generating function on the circle and therefore show that the integral is

o@r™—).

corollary fps_coeff residues bigo:
fixes f :: compler = complex and r :: real
assumes open A connected A cball 0 r C A r > 0
assumes f holomorphic_on A — S S C ball 0 r finite S 0 ¢ S
assumes g: eventually (An. g n = — (> 2€S. residue (A\z. fz / 2z~ Suc n) z))
sequentially
(is eventually (An. _ = —%'n) _)
shows (An. (deriv " n) f0 / fact n — gn) € O(An. 1 / r " n) (is (An. %cn
- _)e o))
proof —
from assms have compact (f ¢ sphere 0 r)
by (intro compact__continuous__image holomorphic__on__imp__continuous__on
holomorphic__on__subset[OF «f holomorphic_on A — S»]) auto
hence bounded (f ¢ sphere 0 r) by (rule compact_imp__bounded)
then obtain C where C: Az. z € sphere 0 r = norm (f z) < C
by (auto simp: bounded__iff sphere_def)
have 0 < norm (f (of _real 1)) by simp
also from C|[of of _real r] and <r > 0> have ... < C by simp
finally have C' _nonneg: C' > 0 .

have (An. ?cn + 29’ n) € O(An. of _real (1 / r " n))

Residue{_}{\kern 0pt}Theorem.html

Residue__Theorem.thy 422

proof (intro bigoI[of _ C] always_eventually alll)
fix n :: nat
from assms and C and C_nonneg have norm (?cn + %g'n) < C /r "n
by (intro fps_coeff _residues_bound[where A = A and k = {}]) auto
also have ... = C x norm (complex_of real (1 / r " n))
using <r > 0» by (simp add: norm__divide norm__power)
finally show norm (%cn + %9’ n) <
qed
also have ?this «+— (An. 2cn — gn) € O(An. of _real (1 / r " n))
by (intro landau__o.big.in__cong eventually _mono[OF g]) simp__all
finally show ?thesis .
qed

corollary fps coeff residues bigo”:
fixes f :: compler = complex and r :: real
assumes exp: f has_fps expansion F
assumes open A connected A cball 0 r C A r > 0
assumes f holomorphic_on A — S S C ball 0 r finite S 0 ¢ S

assumes eventually (An. g n = — (> 2€8. residue (A\z. fz / z = Suc n) 2))
sequentially
(is eventually (An. _ = —%g' n) _)

shows (An. fps nth Fn —gn) € OAn. 1 /r " n)(is(An. %cn — _) €
0())
proof —
have fps _nth F = (An. (deriv """ n) f 0 / fact n)
using fps_nth_fps_expansion|OF exp| by (intro ext) simp__all
with fps_coeff _residues_bigo[OF assms(2—)] show ?thesis by simp
qed

8.4 Rouche’s theorem

theorem Rouche_theorem:
fixes f g::complex = complex and s:: complex set
defines fg=(\p. fp + g p)

defines zeros_fg={p<s. fg p = 0} and zeros_f={p€s. fp = 0}
assumes

open s and connected s and
finite zeros_fg and
finite zeros_f and
f_holo:f holomorphic_on s and
g__holo:g holomorphic_on s and
valid__path v and
loop:pathfinish v = pathstart v and
path__img:path__image v C s and
path_less:V z€path__image . cmod(f z) > cmod(g z) and
homoN z. (z ¢ s) — winding_number v z = 0
shows (> pezeros_fg. winding_number v p x zorder fg p)

= (D). pezeros_f. winding number vy p x zorder f p)
proof —

Residue{_}{\kern 0pt}Theorem.html

Residue__Theorem.thy 423

have path_ fg:path__image v C s — zeros_fg

proof —
have Fualse when z€path_image v and f z + g 2=0 for z
proof —
have cmod (f z) > cmod (g z) using <zE€path_image) path_less by auto
moreover have [z = — ¢g z using «f z + ¢g z =0» by (simp add:

eq_neqg_iff add_eq 0)
then have cmod (f z) = cmod (g z) by auto
ultimately show Fulse by auto
qed
then show ?thesis unfolding zeros_fg_def fg_def using path__img by auto
qed
have path_ f:path_image v C s — zeros_f
proof —
have Fulse when z€path_image v and f z =0 for z
proof —
have cmod (g z) < cmod (f z) using <z€path_image > path_less by auto
then have cmod (g z) < 0 using <f z=0) by auto
then show Fulse by auto
qed
then show ?thesis unfolding zeros f def using path_img by auto
qed
define w where w = A\p. winding_number v p
define ¢ where ¢ = 2 *x complex_of real pi * i
define h where h = Ap. gp / fp + 1
obtain spikes
where finite spikes and spikes: Y x€{0..1} — spikes. v differentiable at
using <wvalid__path ~»
by (auto simp: valid__path__def piecewise_ C1__differentiable__on__def C1_ differentiable _on__eq)
have h_ contour:((Az. deriv h x | h x) has_contour _integral 0) =

proof —
have outside_img:0 € outside (path_image (h o 7))
proof —
have h p € ball 1 1 when pepath image v for p
proof —

have cmod (g p/f p) <1
by (smt (verit) divide less _eq 1 _pos morm_ divide norm_ge zero
path__less that)
then show ?thesis
unfolding h_def by (auto simp add:dist_complez__def)
qed
then have path_image (h o) C ball 1 1
by (simp add: image__subset_iff path_image_compose)
moreover have (0::complex) ¢ ball 1 1 by (simp add: dist_norm)
ultimately show ?thesis
using convex_in_outside[of ball 1 1 0] outside_mono by blast
qed
have valid_h:valid_path (h o)
proof (rule valid_path__compose__holomorphic[OF <valid_path ~> _ __ path_f])

Residue{_}{\kern 0pt}Theorem.html

Residue__Theorem.thy 424

show h holomorphic_on s — zeros_f
unfolding h_def using f holo g holo
by (auto introl: holomorphic_intros simp add:zeros_f _def)
next
show open (s — zeros_f) using «finite zeros_f) <open s> finite_imp__closed
by auto
qed
have ((Az. 1/z) has_contour_integral 0) (h o 7)
proof —
have 0 ¢ path_image (h o 7) using outside__img by (simp add: outside__def)
then have ((\z. 1/2) has_contour_integral ¢ x winding_number (h o v) 0)
(h o)
using has__contour _integral _winding number|of h o v 0,simplified] valid_h
unfolding ¢ _def by auto
moreover have winding number (h o) 0 = 0
proof —
have 0 € outside (path_image (h o v)) using outside_img .
moreover have path (h o)
using valid_h by (simp add: valid_path_imp_path)
moreover have pathfinish (h o) = pathstart (h o 7)
by (simp add: loop pathfinish__compose pathstart _compose)
ultimately show ?thesis using winding_number__zero_in__outside by auto
qed
ultimately show ?thesis by auto
qed
moreover have vector__derivative (h o) (at x) = vector_derivative v (at)
x deriv h (v x)
when z€{0..1} — spikes for z
proof (rule vector _derivative chain__at__general)
show ~ differentiable at x using that <valid_path > spikes by auto
next
define der where der = Ap. (deriv g p * fp — g p * deriv f p)/(fp * f p)
define ¢t where t = v z
have f t#0 unfolding zeros f def t def
by (metis DiffD1 image__eql norm_not_less_zero norm_ zero path__defs(4)
path__less that)
moreover have tes
using contra__subsetD path_image_def path_fg t _def that by fastforce
ultimately have (h has_field_derivative der t) (at t)
unfolding h_ def der_def using g holo f _holo <open s>
by (auto introl: holomorphic_derivl derivative__eq intros)
then show h field_ differentiable at (v x)
unfolding t def field differentiable_def by blast
qed
then have ((/) I has_contour_integral 0) (h o 7)
= ((Az. deriv h / h z) has_contour_integral 0) =
unfolding has_contour_integral
by (force introl: has_integral _spike__eq[OF negligible_finite, OF «finite spikes)])
ultimately show #thesis by auto

Residue{_}{\kern 0pt}Theorem.html

Residue__Theorem.thy 425

qed
then have contour_integral v (Az. derivh x [hz) = 0
using contour_integral _unique by simp
moreover have contour_integral v (Az. deriv fg x / fg x) = contour_integral ~y
(Az. deriv fz / fx)
+ contour_integral v (Ap. deriv h p / h p)

proof —
have (Ap. deriv fp / fp) contour_integrable on ~y
proof (rule contour_integrable_holomorphic__simple]OF __ __ <walid_path >
path_f])

show open (s — zeros_f)
using finite_imp_ closed|OF «finite zeros_f>] <open s> by auto
then show (Ap. deriv f p / fp) holomorphic_on s — zeros_f
using [holo
by (auto intro!: holomorphic_intros simp add:zeros_f _def)
qed
moreover have (Ap. deriv h p / h p) contour_integrable_on ~y
using h__contour
by (simp add: has_contour_integral_integrable)
ultimately have contour_integral v (Ax. deriv fz / fz + derivhz / hx) =
contour_integral v (Ap. deriv fp / fp) + contour_integral -y
(Ap. deriv h p / h p)
using contour_integral_add[of (Ap. deriv fp / fp) v (Ap. derivhp / h p) |
by auto
moreover have deriv fgp / fgp = derivfp / fp+ derivhp /[hp
when pe path_image v for p
proof —
have fgp # 0 and fp # 0
using path_ f path_ fg that unfolding zeros [def zeros fqg def by auto
have h p # 0
proof (rule ccontr)
assume = hp # 0
then have cmod (g p/fp) = 1
by (simp add: add_eq 0_iff2 h_ def)
then show Fulse
by (smt (verit) divide__eq 1_iff norm__divide path_less that)
qed
have der_fg:deriv fg p = deriv f p + deriv ¢ p unfolding fg_ def
using [holo g _holo holomorphic_on_imp_ differentiable _at|OF __ <open
$] path__img that
by auto
have der_h:derivhp = (derivgp x fp — gp * deriv fp)/(fp * f p)
proof —
define der where der = Ap. (deriv gp x fp — g p * deriv fp)/(fp x f p)
have pes using path_img that by auto
then have (h has_field derivative der p) (at p)
unfolding h_def der_def using g_holo f_holo <open s» «f p£0>
by (auto intro!: derivative _eq intros holomorphic__derivl)
then show ?thesis unfolding der_def using DERIV__imp_ deriv by auto

Residue{_}{\kern 0pt}Theorem.html

Laurent_ Convergence.thy 426

qed
show ?thesis
using <h p£0» <f p#£0> <fg p#£0>
unfolding der_fg der_h
apply (simp add: divide__simps h__def fg__def)
by (simp add: mult.commute mult.left_commute ring _class.ring_distribs(1))
qed
then have contour_integral v (Ap. deriv fg p / fg p)
= contour_integral v (Ap. deriv fp / fp + deriv h p / h p)
by (elim contour_integral _eq)
ultimately show #thesis by auto
qed
moreover have contour_integral v (Az. deriv fg z /| fg x) = ¢ x (D> p€zeros_fg.
w p * zorder fg p)
proof —
have fg holomorphic_on s
unfolding fg def using f holo g holo holomorphic_on__add by auto
moreover
have path_image v C s — {p€s. fgp = 0}
using path_ fg unfolding zeros fqg def .
moreover
have finite {pes. fgp = 0}
using «<finite zeros_fg» unfolding zeros fq def .
ultimately show #thesis
unfolding ¢ _def zeros fqg def w_def

using argument_principle|OF <open $) <connected $» __ __ <walid__path v+ loop
__homo, of _ {} A_. 1]
by simp
qed

moreover have contour_integral v (Az. deriv fz /| fz) = ¢ x (> pEzeros_f. w
p * zorder f p)
unfolding c_def zeros_f def w_def
proof (rule argument_principle{OF <open s> <connected sy _ __ <walid__path)
loop __ homo
, of _ {} A_. 1,simplified))
show f holomorphic_on s
using f holo g_holo holomorphic_on_add by auto
show path_image v C s — {p€s. fp = 0}
using path_f unfolding zeros f def .
show finite {p€s. fp = 0}
using <finite zeros_f» unfolding zeros f def .
qed
ultimately have cx (> pe€zeros_fg. w p x (zorder fg p)) = cx (> p€zeros_f.
w p * (zorder f p))
by auto
then show ?thesis unfolding ¢ _def using w_def by auto
qed

end

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 427

theory Laurent__Convergence
imports HOL— Computational _Algebra.Formal Laurent_Series HOL— Library. Landau,__ Symbols
Residue_ Theorem

begin

definition flis conv_radius :: complex fls = ereal where
fls_conv_radius f = fps_conv_radius (fls_regpart f)

definition eval fis :: complex fls = complex = compler where
eval_fls F z = eval_fps (fls_base_factor_to_fps F) z * z powi fls _subdegree F'

definition
has_laurent__expansion :: (complex = complex) = complex fls = bool
(infix] <has’_laurent’ _expansiony 60)
where (f has_laurent__expansion F) +—
fls_conv_radius F > 0 A eventually (Az. eval_fls F z = f z) (at 0)

lemma has_laurent _expansion__schematicl:
f has_laurent_expansion F = F = G = f has__laurent__expansion G
by simp

lemma has_laurent _expansion__cong:
assumes eventually (Az. fz =g z) (at 0) F = G
shows (f has_laurent_expansion F) <— (g has_laurent__expansion G)
proof —
have eventually (Az. eval_fls F z = g z) (at 0)
if eventually (Az. eval_fls F z = f z) (at 0) eventually (A\z. fz = g z) (at 0)
for f g
using that by eventually elim auto
from this[of f g] this[of g f] show ?Zthesis
using assms by (auto simp: eq _commute has_laurent__expansion__def)
qed

lemma has_laurent__expansion__cong':
assumes eventually (Az. fz =g z) (at 2) F =Gz =2’
shows ((Az. f (z + z)) has_laurent_expansion F) «— ((Az. g (z' + x))
has__laurent _expansion G)
by (intro has_laurent__expansion__cong)
(use assms in <auto simp: at_to_ 0’ eventually_ filtermap add_ac»)

lemma fls conv_radius_altdef:
fls_conv_radius F = fps_conv_radius (fls_base_factor_to_fps F)
proof —
have conv_radius (An. fls_nth F (int n)) = conv_radius (An. fls_nth F (int n
+ fls_subdegree F))
proof (cases fls_subdegree F > 0)
case True

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 428

hence conv_radius (An. fls_nth F (int n + fls_subdegree F')) =
conv_radius (An. fls_nth F (int (n + nat (fls_subdegree F))))

by auto
thus %thesis

by (subst (asm) conv_radius__shift) auto

next
case Fulse
hence conv_radius (An. fls_nth F (int n)) =
conv_radius (An. fls_nth F (fls_subdegree F + int (n + nat (—fls_subdegree
)

by auto
thus ?thesis
by (subst (asm) conv_radius__shift) (auto simp: add_ac)
qed
thus ?thesis
by (simp add: fls_conv_radius_def fps_conv_radius def)
qed

lemma eval fps_of nat [simp]: eval_fps (of _nat n) z = of _nat n
and eval_fps_of int [simp]: eval_fps (of _int m) z = of _int m
by (simp__all flip: fps_of nat fps_of int)

lemma fps conv_radius_of nat [simpl: fps_conv_radius (of _nat n) = oo
and fps_conv_radius_of int [simp]: fps_conv_radius (of _int m) = co
by (simp__all flip: fps_of nat fps_of int)

lemma fps conv_radius_fls_regpart: fps_conv_radius (fls_regpart F) = fls_conv_radius
F
by (simp add: fls_conv_radius_def)

lemma fls conv_radius_0 [simp]: fls_conv_radius 0 = oo

and fls_conv_radius_1 [simp]: fls_conv_radius 1 = oo

and fls_conv_radius__const [simpl: fls_conv_radius (fls_const ¢) = oo

and fls_conv_radius_numeral [simp]: fls_conv_radius (numeral num) = oo

and fls_conv_radius_of nat [simp]: fls_conv_radius (of _nat n) = oo

and fls_conv_radius_of int [simp]: fls_conv_radius (of _int m) = oo

and fls_conv_radius_X [simp]: fls_conv_radius fls_X = oo

and fls_conv_radius_X__inv [simp]: fls_conv_radius fls_X_inv = oo

and fls conv_radius_X_intpow [simpl: fls_conv_radius (fls_X intpow m) =
00

by (simp__all add: fls_conv_radius_def fls X intpow regpart)

lemma fls _conv_radius__shift [simp]: fls_conv_radius (fls_shift n F) = fls_conv__radius
F
unfolding fls conv_radius_altdef by (subst fls_base_factor to_ fps_shift) (rule

refl)

lemma fls _conv_radius_fps_to_fls [simp]: fls_conv_radius (fps_to_fls F) = fps_conv_radius
F

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 429

by (simp add: fls_conv_radius_def)

lemma fls conv_radius_deriv [simp]: fls_conv_radius (fls_deriv F) > fls_conv_radius
F
proof —
have fls _conv_radius (fls_deriv F) = fps_conv_radius (fls_regpart (fls_deriv
F))
by (simp add: fls_conv_radius_def)
also have fls_regpart (fls_deriv F) = fps_deriv (fls_regpart F)
by (intro fps_ext) (auto simp: add_ac)
also have fps conv_radius ... > fls _conv_radius F
by (simp add: fls_conv_radius_def fps_conv_radius deriv)
finally show ?thesis .
qed

lemma fls _conv_radius_uminus [simp]: fls_conv_radius (—F) = fls_conv_radius
F
by (simp add: fls_conv_radius_def)

lemma fls conv_radius_add: fls _conv_radius (F + G) > min (fls_conv_radius
F) (fls_conv_radius G)
by (simp add: fls _conv_radius_def fps_conv_radius _add)

lemma fls conv_radius_diff: fls_conv_radius (F — G) > min (fls_conv_radius
F) (fls_conv_radius G)
by (simp add: fls_conv_radius_def fps_conv_radius_diff)

lemma fls _conv_radius_mult: fls_conv_radius (F x G) > min (fls_conv_radius
F) (fls_conv_radius G)
proof (cases F = 0V G = 0)
case Fulse
hence [simp]: F # 0 G # 0
by auto
have fls _conv_radius (F x G) = fps_conv_radius (fls_regpart (fls_shift (fls_subdegree
F + fls_subdegree G) (F * G)))
by (simp add: fls_conv_radius_altdef)
also have fls_regpart (fls_shift (fls_subdegree F + fls_subdegree G) (F x G))

fls_base_ factor to_fps F x fls _base factor to_ fps G
by (simp add: fls_times_def)
also have fps_conv_radius ... > min (fls_conv_radius F) (fls_conv_radius G)
unfolding fls _conv_radius_altdef by (rule fps_conv_radius_mult)
finally show ?thesis .
qed auto

lemma fps conv_radius add_ge:

fps_conv_radius F > r = fps_conv_radius G > r = fps_conv_radius (F +
G)>r

using fps_conv_radius_add]of F G| by (simp add: min__def split: if _splits)

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 430

lemma fps conv_radius diff ge:

fps_conv_radius F > r = fps_conv_radius G > r = fps_conv_radius (F —
G)>r

using fps_conv_radius__diff[of F G] by (simp add: min__def split: if _splits)

lemma fps conv_radius _mult_ge:

fps_conv_radius F > r = fps_conv_radius G > r = fps_conv_radius (F *
G)>r

using fps_conv_radius_mult[of F G] by (simp add: min__def split: if _splits)

lemma fls conv_radius _add_ ge:

fls_conv_radius F > r = fls_conv_radius G > r = fls_conv_radius (F +
G)>r

using fls_conv_radius_add[of F G] by (simp add: min__def split: if _splits)

lemma fls conv_radius diff ge:

fls_conv_radius F > r = fls_conv_radius G > r = fls_conv_radius (F —
G)>r

using fls_conv_radius_diff[of F G] by (simp add: min__def split: if _splits)

lemma fls conv_radius_mult_ge:

fls_conv_radius F > r => fls_conv_radius G > r = fls_conv_radius (F *
G)>r

using fls_conv_radius_mult[of F G] by (simp add: min__def split: if _splits)

lemma fls conv_radius_power: fls_conv_radius (F ~n) > fls_conv_radius F
by (induction n) (auto intro!: fls_conv_radius mult_ge)

lemma eval fls 0 [simp]: eval _fls 0z = 0
and eval_fls_1 [simp]: eval_fls 1z =1
and eval_fls_const [simp]: eval_fls (fls_const ¢) z = ¢
and eval_fls _numeral [simp]: eval _fls (numeral num) z = numeral num
and eval_fls_of nat [simp]: eval_fls (of _nat n) z = of nat n
and eval_fls_of int [simp]: eval_fls (of int m) z = of int m
and eval_fls X [simp]: eval_flsfls X 2=z
and eval_fls_X_intpow [simp]: eval_fls (fls_X_intpow m) z = z powi m
by (simp__all add: eval fls _def)

lemma eval _fls _at_0: eval _fls F 0 = (if fls_subdegree F > 0 then fls_nth F 0
else 0)
by (cases fls_subdegree F = 0)
(simp__all add: eval_fls_def fls_regpart def eval_fps_at_0)

lemma eval fps to fls:
assumes norm z < fps_conv_radius F

shows eval_fls (fps_to_fls F) z = eval_fps F z
proof (cases F = 0)

case [simp|: False

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 431

have eval_fps F z = eval_fps (unit_factor F * normalize F') z
by (metis unit_factor _mult_normalize)

also have ... = eval_fps (unit_factor F x fps_X ~ subdegree F') z
by simp

also have ... = eval_fps (unit_factor F) z x z ~ subdegree F
using assms by (subst eval _fps_mult) auto

also have ... = eval_fls (fps_to_fls F) z

unfolding eval fls def fls_base_factor to_fps to_fls fls _subdegree fls to_fps
power_int_of nat ..
finally show ?thesis ..
qged auto

lemma eval fls shift:

assumes [simp]: z # 0

shows eval_fls (fls_shift n F) z = eval_fls F z * z powi —n
proof (cases F = 0)

case [simp|: False

show ?thesis

unfolding eval fls def

by (subst fls_base_factor_to_fps_shift, subst fls_shift _subdegree[OF «F # 0»],
subst power_int__diff)

(auto simp: power _int_minus divide _simps)

qged auto

lemma eval fls add:
assumes ereal (norm z) < fls_conv_radius F ereal (norm z) < fls_conv_radius
Gz#0
shows eval _fls (F + G) z = eval_fls F z + eval_fls G z
using assms
proof (induction fls_subdegree F fls _subdegree G arbitrary: F G rule: linorder _wlog)
case (sym F Q)
show ?Zcase
using sym(1)[of G F] sym(2—) by (simp add: add_ac)
next
case (le F G)
show ?case
proof (cases F =0V G = 0)

case False

hence [simp]: F # 0 G # 0
by auto

note [simp] = <z # 0>

define F’' G’ where F'= fls _base_factor_to_fps F G' = fls_base_factor_to_fps
G
define m n where m = fls_subdegree F'n = fls_subdegree G
have m < n
using le by (auto simp: m_n__def)
have conv1: ereal (cmod z) < fps_conv_radius F' ereal (cmod z) < fps__conv_radius
G/
using assms le by (simp__all add: F'_G'_def fls_conv_radius__altdef)

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 432

have conv2: ereal (¢cmod z) < fps_conv_radius (G’ * fps_X ~ nat (n — m))
using convl by (intro less _le_trans|OF __ fps_conv_radius_mult]) auto
have conv3: ereal (¢cmod z) < fps_conv_radius (F' + G’ * fps_ X " nat (n —
m))
using convl conv2 by (intro less_le_trans|OF __ fps_conv_radius__add))
auto

have eval_fls F z + eval_fls G z = eval_fps F' 2z x z powi m + eval_fps G’ z
* 2 powi m
unfolding eval fls def m_n_ def[symmetric] F'_G'_def[symmetric|
by (simp add: power_int_add algebra__simps)
also have ... = (eval_fps F' z + eval_fps G' z x z powi (n — m)) * z powi m
by (simp add: algebra__simps power_int__diff)
also have eval _fps G’ z x z powi (n — m) = eval_fps (G’ * fps_X ~nat (n
—m)) z
using assms <m < ny convl by (subst eval _fps_mult) (auto simp: power _int__def)

also have eval_fps F' z + ... = eval_fps (F'+ G’ fps_X “nat (n — m)) z
using convl conv2 by (subst eval fps add) auto
also have ... = eval _fls (fps_to_fls (F'+ G’ = fps_ X " nat (n — m))) 2z

using convs by (subst eval _fps_to_fls) auto
also have ... * z powi m = eval_fls (fls_shift (—m) (fps_to_fls (F' + G’
fps_ X Tnat (n — m)))) z
by (subst eval fls_shift) auto
also have fls_shift (—m) (fps_to_fls (F' + G’ * fps_ X " nat (n — m))) = F
+ G
using <m < n»
by (simp add: fls_times_fps_to_fls fps_to_fls _power fls_X_power _conv_shift 1
fls_shifted_times_simps F'_G’_def m_n__def)
finally show ?thesis ..
qed auto
qed

lemma eval fls minus:
assumes ereal (norm z) < fls_conv_radius F
shows eval _fls (—F) z = —eval_fls F z
using assms by (simp add: eval_fls_def eval_fps_minus fls_conv_radius__altdef)

lemma eval fls diff:
assumes ereal (norm z) < fls_conv_radius F ereal (norm z) < fls_conv_radius
G
and [simp]: z # 0
shows eval_fls (F — G) z = eval_fls F z — eval_fls G z
proof —
have eval _fis (F + (=G)) z = eval_fls F z — eval_fls G z
using assms by (subst eval _fls add) (auto simp: eval fls _minus)
thus ?thesis
by simp
qed

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 433

lemma eval fls mult:

assumes ereal (norm z) < fls_conv_radius F ereal (norm z) < fls_conv_radius
Gz+#0

shows eval_fls (F x G) z = eval_fls F z % eval_fls G z
proof (cases F =0V G = 0)

case Fulse

hence [simp]: F # 0 G # 0
by auto

note [simp] = <z # 0>

define F’' G’ where F'= fls_base_factor_to_fps F G’ = fls_base_factor_to_ fps
G
define m n where m = fils subdegree F'n = fls _subdegree G
have eval_fls F z x eval_fls G z = (eval_fps F' z x eval_fps G’ z) x z powi (m
+ n)
unfolding eval fls def m_n_ def[symmetric] F'_G’_def[symmetric]
by (simp add: power_int_add algebra__simps)

also have ... = eval_fps (F'* G') z x z powi (m + n)
using assms by (subst eval _fps_mult) (auto simp: F'_G'_def fls_conv_radius__altdef)
also have ... = eval_fls (F x G) z

by (simp add: eval_fls_def F'_G'_def m_n_def) (simp add: fls_times_def)
finally show ?thesis ..
qed auto

lemma eval fls_power:
assumes ereal (norm z) < fls_conv_radius F z # 0
shows eval_fls (F "n) z=ceval_flsFz " n
proof (induction n)
case (Suc n)
have eval fls (F ~ Sucn) z = eval_fls (F « F " n) z
by simp
also have ... = eval_fls F z x eval_fls (F " n) z
using assms by (subst eval_fls_mult) (auto intro!: less_le_trans|OF __ fls_conv_radius_power))
finally show ?case
using Suc by simp
qed auto

lemma eval fls eq:
assumes N < fls subdegree F fls_subdegree F > 0 V z # 0
assumes (An. fls nth F (int n + N) % z powi (int n + N)) sums S
shows eval fls Fz= S5
proof (cases z = 0)
case [simp]: True
have (An. fls_nth F (int n + N) % z powi (int n + N)) =
(An.if n € (if N < 0 then {nat (—N)} else {}) then fls_nth F (int n + N)
else 0)
by (auto simp: fun__eq iff split: if _splits)
also have ... sums (> ne(if N < 0 then {nat (—=N)} else {}). fls_nth F (int n
V)
by (rule sums_If finite_set) auto

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 434

also have ... = fls_nth F 0
using assms by auto
also have ... = eval_fls F z

using assms by (auto simp: eval_fls_def eval_fps_at_0 power_int_0_left_if)
finally show ?thesis
using assms by (simp add: sums_iff)
next
case [simp|: False
define N’ where N’ = fls subdegree F
define d where d = nat (N’ — N)

have (An. fls_nth F (int n + N) % z powi (int n + N)) sums S

by fact
also have ?this «— (An. fls_nth F (int (n+d) + N) * z powi (int (n+d) +
N)) sums S
by (rule sums_zero_iff _shift [symmetric]) (use assms in <auto simp: d_def
N'_def)

also have (An. int (n+d) + N) = (An. int n + N’)
using assms by (auto simp: N'_def d__def)
finally have (An. fls_nth F (int n + N') x z powi (int n + N')) sums S .
hence (An. z powi (—=N') x (fls_nth F (int n + N') * z powi (int n + N')))
sums (z powi (—N') x §)
by (intro sums_mult)
hence (An. fls_nth F (int n + N') x z = n) sums (z powi (—N’) % 5)
by (simp add: power__int_add power _int_minus field_simps)
thus ?thesis
by (simp add: eval fls_def eval fps _def sums_iff power_int_minus N'_def)
qed

lemma norm_ summable_fls:
norm z < fls_conv_radius f = summable (An. norm (fls_nth fn x z " n))
using norm__summable__fps[of z fls_regpart f] by (simp add: fls_conv_radius__def)

lemma norm__summable_fls’:
norm z < fls_conv_radius f = summable (An. norm (fls_nth f (n + fls_subdegree
f) =z " n))
using norm__summable__fps|of z fls_base__factor_to_fps f] by (simp add: fls_conv_radius__altdef)

lemma summable_ fis:
norm z < fls_conv_radius f = summable (An. fls_nth fn % z " n)
by (rule summable_norm__cancel|OF norm__summable_fls])

theorem sums_eval_fls:

fixes f

defines n = fls subdegree f

assumes norm z < fls_conv_radius f and z % 0 V n > 0

shows (Ak. fls_nth f (int k + n) * z powi (int k + n)) sums eval_fls f z
proof (cases z = 0)

case [simp|: False

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 435

have (k. fps_nth (fls_base_factor_to_fps f) k x z "k * z powi n) sums
(eval _fps (fls_base_factor to_fps f) z * z powi n)
using assms(2) by (intro sums__eval _fps sums_mult2) (auto simp: fls_conv_radius__altdef)
thus ?thesis
by (simp add: power_int_add n__def eval_fls_def mult_ac)
next
case [simp]: True
with assms have n > 0
by auto
have (Ak. fls_nth f (int k + n) x z powi (int k + n)) sums
(> ke(if n < 0 then {nat (—n)} else {}). fls_nth f (int k + n) * z powi
(int k + n))
by (intro sums_ finite) (auto split: if _splits)
also have ... = eval_fls f 2
using «n > 0> by (auto simp: eval _fls_at_0 n__def not_le)
finally show ?thesis .
qed

lemma holomorphic_on__eval fls:
fixes f
defines n = fls_subdegree f
assumes A C eball 0 (fls_conv_radius f) — (if n > 0 then {} else {0})
shows eval fls f holomorphic_on A
proof (cases n > 0)
case True
have eval_fls f = (A\z. eval_fps (fls_base_factor_to_fps f) z * z ~ nat n)
using True by (simp add: fun__eq iff eval_fls def power _int_def n_ def)
moreover have ... holomorphic_on A
using True assms(2) by (intro holomorphic_intros) (auto simp: fls_conv_radius_altdef)
ultimately show ?thesis
by simp
next
case Fulse
show ?thesis using assms
unfolding eval fls def by (intro holomorphic__intros) (auto simp: fls_conv_radius__altdef)
qed

lemma holomorphic_on__eval_fls’ [holomorphic_intros|:

assumes ¢ holomorphic_on A

assumes g ‘ A C eball 0 (fls_conv_radius f) — (if fls_subdegree f > 0 then {}
else {0})

shows (Az. eval _fls f (g z)) holomorphic_on A

by (meson assms holomorphic__on__compose holomorphic__on__eval_fls holomor-
phic__transform o__def)

lemma continuous_on__eval fls:
fixes f
defines n = fls_subdegree f
assumes A C eball 0 (fls_conv_radius f) — (if n > 0 then {} else {0})

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 436

shows continuous_on A (eval_fls f)
using assms holomorphic_on__eval_fls holomorphic_on__imp continuous on
by blast

lemma continuous_on__eval _fls' [continuous__intros]:
fixes f
defines n = fis subdegree f
assumes g ‘ A C eball 0 (fls_conv_radius f) — (if n > 0 then {} else {0})
assumes continuous_on A g
shows continuous_on A (Az. eval_fls f (g z))
by (metis assms continuous _on__compose2 continuous__on__eval_fls order.refl)

lemmas has_field _derivative_eval fps’ [derivative_intros| =
DERIV_chain2[OF has__field_ derivative__eval _fps]

lemma has_field_ derivative eval fls:
assumes z € eball 0 (fls_conv_radius f) — {0}
shows (eval fls f has_field derivative eval fls (fls_deriv f) z) (at z within A)
proof —
define g where g = fls base_ factor_to_fps f
define n where n = fls_subdegree f
have [simp]: fps_conv_radius g = fls_conv_radius f
by (simp add: fls_conv_radius_altdef g _def)
have convl: fps_conv_radius (fps_deriv g * fps_X) > fls_conv_radius f
by (intro fps__conv_radius_mult_ge order.trans|OF __ fps__conv_radius_deriv))
auto
have conv2: fps_conv_radius (of _int n * ¢g) > fls_conv_radius f
by (intro fps_conv_radius_mult _ge) auto
have conv3: fps_conv_radius (fps_deriv g x fps_ X + of intn x g) > fls_conv_radius
f

by (intro fps_conv_radius_add__ge convl conv2)

have [simp]: fps_conv_radius g = fls_conv_radius f
by (simp add: g_def fls_conv_radius__altdef)
have ((Az. eval_fps g z * z powi fls_subdegree f) has_field_derivative
(eval_fps (fps_deriv g) z x z powin + of _int n % z powi (n — 1) * eval_fps
g9 z))
(at z within A)
using assms by (auto introl: derivative__eq intros simp: n__def)
also have (A\z. eval_fps g z * z powi fls_subdegree f) = eval_fls f
by (simp add: eval_fls_def g_def fun__eq iff)
also have eval_fps (fps_deriv g) z x z powi n + of _int n * z powi (n — 1) x
eval_fps g z =
(z x eval_fps (fps_deriv g) z + of _int n x eval_fps g z) x z powi (n —
1)
using assms by (auto simp: power_int_diff field__simps)
also have (z * eval_fps (fps_deriv g) z + of _int n x eval_fps g z) =
eval_fps (fps_deriv g x fps_ X + of intn x g) 2

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 437

using convl conv2 assms fps__conv_radius_deriv]of g
by (subst eval fps _add) (auto simp: eval fps_ mult)
also have ... = eval_fls (fps_to_fls (fps_deriv g x fps_ X + of int n * g)) z
using convs assms by (subst eval _fps_to_fls) auto
also have ... * z powi (n — 1) = eval_fls (fls_shift (1 — n) (fps_to_fls
(fps_deriv g x fps_ X + of int n x g))) 2
using assms by (subst eval _fls shift) auto
also have fls_shift (1 — n) (fps_to_fls (fps_deriv g x fps_ X + of int n x g))
= fls_deriv f
by (intro fls_eql) (auto simp: g_def n_def algebra__simps eq commute[of _
fls_subdegree f])
finally show ?thesis .
qed

lemma eval_fls deriv:
assumes z € eball 0 (fls_conv_radius F) — {0}
shows eval_fls (fls_deriv F) z = deriv (eval_fls F) z
by (metis DERIV__imp__deriv assms has__field derivative__eval fls)

lemma analytic_on__eval_fis:
assumes A C eball 0 (fls_conv_radius f) — (if fls_subdegree f > 0 then {} else
{o})
shows eval fls f analytic_on A
proof (rule analytic_on_subset [OF _ assms])
show eval_fls f analytic_on eball 0 (fls_conv_radius f) — (if fls_subdegree f >
0 then {} else {0})
using holomorphic__on__eval_fls|OF order.refl]
by (subst analytic_on__open) auto
qed

lemma analytic_on__eval_fls’ [analytic__intros]:

assumes g analytic_on A

assumes g ‘ A C eball 0 (fls_conv_radius f) — (if fls_subdegree f > 0 then {}
else {0})

shows (Az. eval_fls f (g x)) analytic_on A
proof —

have eval_fls f o g analytic_on A

by (intro analytic_on__compose| OF assms(1) analytic_on__eval_fls]) (use assms
in auto)

thus ?thesis

by (simp add: o_def)

qged

lemma continuous__eval fls [continuous__intros]:

assumes z € eball 0 (fls_conv_radius F) — (if fls_subdegree F > 0 then {} else
{0})

shows continuous (at z within A) (eval_fls F)
proof —

have isCont (eval_fls F) z

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 438

using continuous_on__eval_fls|OF order.refl] assms
by (subst (asm) continuous on__eq continuous _at) auto
thus ?thesis
using continuous__at_imp_ continuous__at_within by blast
qed

named__theorems laurent_expansion__intros

lemma has laurent _expansion__imp__asymp__equiv_0:
assumes F: f has_laurent_expansion F
defines n = fls _subdegree F'
shows f ~[at 0] (\z. fls_nth F n % z powi n)
proof (cases F = 0)
case True
thus ?thesis using assms
by (auto simp: has_laurent__expansion__def)
next
case [simp|: False
define G where G = fils base_factor_to_fps F
have fis conv_radius F > 0
using F by (auto simp: has_laurent__expansion__def)
hence isCont (eval _fps G) 0
by (intro continuous_intros) (auto simp: G__def fps_conv_radius_fls regpart
zero__ereal _def)
hence lim: eval fps G —0— eval _fps G 0
by (meson isContD)
have [simp]: fps_nth G 0 # 0
by (auto simp: G__def)

have f ~[at 0] eval_fls F
using F by (intro asymp__equiv_refl_ev) (auto simp: has_laurent__expansion__def
eq _commute)
also have ... = (A\z. eval_fps G z * z powi n)
by (intro ext) (simp_all add: eval_fls def G_def n_def)
also have ... ~[at 0] (A\z. fps_nth G 0 * z powi n) using lim
by (intro asymp__equiv_intros tendsto_imp asymp__equiv__const) (auto simp:
eval_fps_at_0)
also have fps nth G 0 = fls_nth F n
by (simp add: G__def n__def)
finally show ?thesis
by simp
qed

lemma has _laurent _expansion__imp__asymp__equiv:
assumes F: (Aw. f (z + w)) has_laurent__expansion F
defines n = fls_subdegree F'

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 439

shows f ~[at z] (Aw. fls_nth F'n x (w — z) powi n)

using has_laurent _expansion_imp__asymp__equiv_0[OF assms(1)] unfolding
n__def

by (simp add: at_to_0[of 2] asymp__equiv_filtermap__iff add__ac)

lemmas [tendsto_intros del] = tendsto__power _int

lemma has_laurent _expansion__imp_ tendsto_ 0:

assumes F: f has_laurent _expansion F and fls subdegree F > 0

shows f —0— fls nth F 0
proof (rule asymp__equiv_tendsto_transfer)

show (Az. fls_nth F (fls_subdegree F) % z powi fls_subdegree F) ~[at 0] f

by (rule asymp__equiv_symlI, rule has_laurent__expansion__imp__asymp__equiv_0)
fact

show (Az. fls_nth F (fls_subdegree F) * z powi fls _subdegree F) —0— fls_nth
Fo

by (rule tendsto__eq_intros refl | use assms(2) in simp)+
(use assms(2) in <auto simp: power_int_0_left_if»)

qed

lemma has laurent__expansion__imp_ tendsto:

assumes F: (A\w. [(z + w)) has_laurent__expansion F and fls subdegree F >
0

shows [—z— fls nth F 0

using has_laurent__expansion_imp__tendsto__0[OF assms]

by (simp add: at_to_0[of 2] filterlim__filtermap add__ac)

lemma has_laurent__expansion__imp__ filterlim__infinity_0:
assumes I f has_laurent__expansion F and fls _subdegree F < 0
shows filterlim f at_infinity (at 0)
proof (rule asymp__equiv__at_infinity_transfer)
have [simp]: F # 0
using assms(2) by auto
show (Az. fls_nth F (fls_subdegree F) * z powi fls_subdegree F) ~[at 0] f
by (rule asymp__equiv_symlI, rule has_laurent__expansion_imp__asymp__equiv_0)
fact
show filterlim (\z. fls_nth F (fls_subdegree F) x z powi fls _subdegree F') at__infinity
(at 0)
by (rule tendsto__mult_filterlim__at_infinity tendsto_const
filterlim__power_int_neg__at_infinity | use assms(2) in simp)+
(auto simp: eventually at_filter)
qged

lemma has laurent expansion_imp_neqg fls subdegree:
assumes F: f has_laurent_expansion F
and infy:filterlim f at_infinity (at 0)
shows fls subdegree F < 0
proof (rule ccontr)

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 440

assume asm:— fls _subdegree F' < 0
define ff where ff=(\z. fls_nth F (fls_subdegree F)
* z powi fls_subdegree F)

have (ff —— (if fls_subdegree F =0 then fls_nth F 0 else 0)) (at 0)
using asm unfolding ff def
by (auto introl: tendsto__eq intros)
moreover have filterlim ff at_infinity (at 0)
proof (rule asymp__equiv__at_infinity_transfer)
show f ~[at 0] ff unfolding ff_def
using has_laurent__expansion__imp__asymp__equiv_0[OF F] unfolding ff _def

show filterlim f at_infinity (at 0) by fact
qed
ultimately show False
using not__tendsto__and_filterlim__at_infinity[of at (0::complex)] by auto
qed

lemma has_laurent _expansion__imp_ filterlim__infinity:

assumes F: (Aw. f (z + w)) has_laurent_expansion F and fls subdegree F <
0

shows filterlim f at_infinity (at 2)

using has_laurent _expansion__imp__ filterlim__infinity 0[OF assms]

by (simp add: at_to_0[of 2] filterlim__filtermap add__ac)

lemma has laurent expansion_imp_is pole_0:
assumes F: f has_laurent expansion F and fls subdegree F < 0
shows is_pole f 0
using has_laurent _expansion__imp_ filterlim__infinity 0[OF assms]
by (simp add: is_pole_def)

lemma is pole_ 0 _imp_mneq_ fls subdegree:
assumes F: f has_laurent expansion F and is_pole f 0
shows fls subdegree F' < 0
using F assms(2) has_laurent__expansion_imp_neg fls subdegree is_pole def
by blast

lemma has laurent expansion__imp_is_pole:
assumes F: (Az. f (z + z)) has_laurent_expansion F and fls _subdegree F < 0
shows is_pole f z
using has_laurent__expansion__imp__is_pole_ 0[OF assms]
by (simp add: is_pole shift 0"

lemma is pole_imp_neg fls subdegree:
assumes F: (Az. f (z + z)) has_laurent _expansion F and is_pole f z
shows fls_subdegree F' < 0
proof —
have is_pole (\z. f (2 + z)) 0
using assms(2) is_pole_shift _0 by blast

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 441

then show ?thesis
using F'is_pole_ 0 _imp_neq fls subdegree by blast
qed

lemma is pole_fls subdegree__iff:
assumes (Az. f (z + z)) has_laurent__expansion F
shows is_pole f z <— fls _subdegree F < 0
using assms is_pole__imp_neqg fls subdegree has_laurent expansion__imp_is pole
by auto

lemma
assumes f has_laurent__expansion F
shows has_laurent__expansion__isolated__0: isolated__singularity at f 0
and has_laurent expansion_mnot_essential _0: not__essential f 0
proof —
from assms have eventually (Az. eval_fls F z = f z) (at 0)
by (auto simp: has_laurent__expansion__def)
then obtain r where r: v > 0 Az. z € ball 0 r — {0} = eval fls Fz=f=z
by (auto simp: eventually _at_filter ball _def eventually nhds_metric)

have fils conv_radius F > 0
using assms by (auto simp: has_laurent _expansion__def)
then obtain R :: real where R: R > 0 R < min r (fls_conv_radius F)
using «r > 0» by (metis dual _order.strict_implies _order ereal dense2 ereal less(2)
min__def)

have eval_fls F holomorphic_on ball 0 R — {0}
using r R by (intro holomorphic_intros ball _eball_mono Diff _mono) (auto
simp: ereal_le_less)
also have ?this «— f holomorphic_on ball 0 R — {0}
using r R by (intro holomorphic__cong) auto
also have ... «— fanalytic_on ball 0 R — {0}
by (subst analytic_on__open) auto
finally show isolated singularity_at f 0
unfolding isolated__singularity at_def using <R > 0» by blast

show not__essential f 0
proof (cases fls_subdegree F > 0)
case True
hence f —0— fls nth F 0
by (intro has_laurent _expansion_imp_ tendsto_0[OF assms))
thus ?thesis
by (auto simp: not__essential__def)
next
case Fualse
hence is_pole f 0
by (intro has_laurent__expansion_imp_is_pole_0[OF assms]) auto
thus ?thesis
by (auto simp: not__essential _def)

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 442

qed
qed

lemma
assumes (Aw. f (z + w)) has_laurent__expansion F
shows has_laurent__expansion__isolated: isolated_singularity at f z
and has_laurent__expansion_not__essential: not__essential f z
using has_laurent__expansion__isolated_0[OF assms| has_laurent__expansion_not__essential_0[OF
assms|
by (simp__all add: isolated__singularity__at_shift 0 not__essential__shift_0)

lemma has _laurent _expansion_ fps:
assumes f has_fps _expansion F
shows f has_laurent__expansion fps_to_fls F
proof —
from assms have radius: 0 < fps_conv_radius F and eval: Vg z in nhds 0.
eval_fps F 2z = fz
by (auto simp: has_fps_expansion__def)
from eval have eval”. Vg zin at 0. eval_fps F z = f z
using eventually at_filter eventually mono by fastforce
moreover have eventually (Az. z € eball 0 (fps_conv_radius F) — {0}) (at 0)
using radius by (intro eventually at_in_open) (auto simp: zero__ereal def)
ultimately have eventually (Az. eval fls (fps_to fls F) z = f z) (at 0)
by eventually elim (auto simp: eval _fps_to_ fls)
thus ?thesis using radius
by (auto simp: has_laurent__expansion__def)
qged

lemma has_laurent _expansion__const [simp, intro, laurent _expansion__intros|:
(A_. ¢) has_laurent_expansion fls_const c
by (auto simp: has_laurent__expansion__def)

lemma has_laurent _expansion_ 0 [simp, intro, laurent__expansion__intros|:
(A_. 0) has_laurent _expansion 0
by (auto simp: has_laurent_expansion__def)

lemma has_fps_expansion_0_iff: f has_fps_expansion 0 <— eventually (Az. f
z = 0) (nhds 0)
by (auto simp: has_fps_expansion__def)

lemma has_laurent _expansion__1 [simp, intro, laurent_expansion__intros|:
(_. 1) has_laurent_expansion 1
by (auto simp: has_laurent__expansion__def)

lemma has _laurent__expansion__numeral [simp, intro, laurent _expansion__intros|:
(A_. numeral n) has_laurent__expansion numeral n

by (auto simp: has_laurent__expansion__def)

lemma has_laurent _expansion_ fps_X_ power [laurent _expansion__intros|:

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 443

(Az. z " n) has_laurent__expansion (fls_X_intpow n)
by (auto simp: has_laurent _expansion__def)

lemma has_laurent _expansion_fps_X_power_int [laurent__expansion__intros|:
(Az. x powi n) has_laurent__expansion (fls_X_intpow n)
by (auto simp: has_laurent__expansion__def)

lemma has_laurent _expansion_fps_X [laurent__expansion__intros]:
(Az. z) has_laurent__expansion fls_X
by (auto simp: has_laurent _expansion__def)

lemma has_laurent _expansion__cmult_left [laurent _expansion__intros:
assumes f has_laurent _expansion F
shows (Az. ¢ x fx) has_laurent_expansion fls_const ¢ x F
proof —
from assms have eventually (Az. z € eball 0 (fls_conv_radius F) — {0}) (at 0)
by (intro eventually_at_in_open) (auto simp: has_laurent expansion__def
zero__ereal _def)
moreover from assms have eventually (\z. eval fls F'z = f z) (at 0)
by (auto simp: has_laurent__expansion__def)
ultimately have eventually (Az. eval_fls (fls_const ¢ * F) z = ¢ % f z) (at 0)
by eventually__elim (simp__all add: eval fls _mult)
with assms show ?thesis
by (auto simp: has_laurent__expansion__def intro!: less_le_trans|OF __ fls_conv_radius_mult])
qed

lemma has_laurent__expansion__cmult_right [laurent__expansion__intros]:
assumes f has_laurent__expansion F
shows (Az. fz * ¢) has_laurent_expansion F' * fls_const ¢
proof —
have F x fls const ¢ = fls_const ¢ x F
by (intro fls_eql) (auto simp: mult.commute)
with has_laurent _expansion__cmult_left [OF assms] show ?thesis
by (simp add: mult.commute)
qed

lemma has_fps_expansion_scaleR [fps_expansion__intros|:

fixes F :: ‘a :: {banach, real normed_ div_algebra, comm_ring 1} fps

shows f has_fps_expansion F = (Az. ¢ *g f) has_fps_expansion fps_const
(of real ¢) * F

unfolding scaleR__conv_of real by (intro fps_expansion_intros)

lemma has_laurent__expansion__scaleR [laurent__expansion__intros|:

f has_laurent__expansion F =—> (Az. ¢ xg f) has_laurent__expansion fls_const
(of _real ¢) x F

unfolding scaleR__conv_of real by (intro laurent _expansion__intros)

lemma has_laurent__expansion_minus [laurent__expansion__intros]:
assumes f has_laurent expansion F

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 444

shows (Az. — fx) has_laurent_expansion —F
proof —
from assms have eventually (Az. z € eball 0 (fls_conv_radius F) — {0}) (at
0)
by (intro eventually_at_in_open) (auto simp: has_laurent expansion__def
zero__ereal _def)
moreover from assms have eventually (\z. eval _fls F x = fx) (at 0)
by (auto simp: has_laurent__expansion__def)
ultimately have eventually (Az. eval fls (—F) x = —f z) (at 0)
by eventually _elim (auto simp: eval _fls_minus)
thus ?thesis using assms by (auto simp: has_laurent__expansion__def)
qed

lemma has_laurent__expansion__add [laurent__expansion__intros|:
assumes f has_laurent_expansion F g has_laurent expansion G
shows (Az. fz + g z) has_laurent_expansion F + G
proof —
from assms have 0 < min (fls_conv_radius F) (fls_conv_radius G)
by (auto simp: has_laurent__expansion__def)
also have ... < fls conv_radius (F + Q)
by (rule fls_conv_radius _add)
finally have radius: ... > 0 .

from assms have eventually (A\z. © € eball 0 (fls_conv_radius F) — {0}) (at
0)
eventually (Az. z € eball 0 (fls_conv_radius G) — {0}) (at 0)
by (intro eventually at_in__open; force simp: has_laurent__expansion__def zero__ereal _def)+
moreover have eventually (Az. eval _fls Fz = fz) (at 0)
and eventually (Az. eval _fls Gz = g x) (at 0)
using assms by (auto simp: has_laurent _expansion__def)
ultimately have eventually (Az. eval _fls (F + G) z = fz + g x) (at 0)
by eventually__elim (auto simp: eval_fls _add)
with radius show ?thesis by (auto simp: has_laurent__expansion__def)
qed

lemma has_laurent__expansion_ diff [laurent__expansion__intros|:
assumes f has_laurent_expansion F g has_laurent expansion G
shows (Az. fz — g z) has_laurent _expansion F — G
using has_laurent _expansion_add[of f F Az. — g x — G| assms
by (simp add: has_laurent__expansion__minus)

lemma has_laurent__expansion_mult [laurent__expansion__intros|:
assumes f has_laurent_expansion F g has_laurent expansion G
shows (Az. fz * g x) has_laurent_expansion F x G
proof —
from assms have 0 < min (fls_conv_radius F) (fls_conv_radius Q)
by (auto simp: has_laurent__expansion__def)
also have ... < fls conv_radius (F x Q)
by (rule fls_conv_radius _mult)

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 445

finally have radius: ... > 0 .

from assms have eventually (Az. z € eball 0 (fls_conv_radius F) — {0}) (at
0)
eventually (Az. z € eball 0 (fls_conv_radius G) — {0}) (at 0)
by (intro eventually at_in__open; force simp: has_laurent _expansion__def zero__ereal _def)+
moreover have eventually (Az. eval _fls Fz = fz) (at 0)
and eventually (Az. eval _fls Gz = g x) (at 0)
using assms by (auto simp: has_laurent _expansion__def)
ultimately have eventually (Az. eval _fls (F * G) x = fz * g z) (at 0)
by eventually _elim (auto simp: eval fls_mult)
with radius show ?thesis by (auto simp: has_laurent__expansion__def)
qed

lemma has_fps_expansion__power [fps_expansion__intros]:
fixes F :: ‘a :: {banach, real_normed__div__algebra, comm_ring_1} fps
shows f has_fps_expansion F = (Az. fx ~ m) has_fps_expansion F ~m
by (induction m) (auto intro!: fps_expansion_intros)

lemma has_laurent__expansion__power [laurent__expansion__intros|:
assumes f has_laurent_expansion F
shows (Az. fz ~ n) has_laurent _expansion F " n
by (induction n) (auto intro!: laurent _expansion__intros assms)

lemma has_laurent__expansion__sum [laurent__expansion__intros|:
assumes A\z. x € [= f 1z has_laurent__expansion F x
shows (Ay. Y z€l. fx y) has_laurent_expansion (> z€l. F x)
using assms by (induction I rule: infinite_finite__induct) (auto intro!: laurent__expansion__intros)

lemma has_laurent__expansion__prod [laurent__expansion__intros]:
assumes A\z. x € [= f 1z has_laurent__expansion F x
shows (Ay. [[z€l. fz y) has_laurent_expansion ([[z€l. F x)
using assms by (induction I rule: infinite_finite _induct) (auto intro!: laurent__expansion__intros)

lemma has_laurent__expansion__deriv [laurent_expansion__intros]:
assumes f has_laurent_expansion F
shows deriv f has_laurent_expansion fls deriv F
proof —
have eventually (Az. z € eball 0 (fls_conv_radius F) — {0}) (at 0)
using assms by (intro eventually at_in_open)
(auto simp: has_laurent _expansion__def zero__ereal_def)
moreover from assms have eventually (\z. eval_fls F z = f z) (at 0)
by (auto simp: has_laurent__expansion__def)
then obtain s where open s 0 € sand s: Aw. w € s — {0} = eval_fils F w
=fw
by (auto simp: eventually nhds eventually at_filter)
hence eventually (Aw. w € s — {0}) (at 0)
by (intro eventually at in_open) auto
ultimately have eventually (Az. eval_fls (fls_deriv F) z = deriv f z) (at 0)

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 446

proof eventually elim
case (elim z)
hence eval_fls (fls_deriv F) z = deriv (eval_fls F) z
by (simp add: eval_fls_deriv)
also have eventually (Aw. w € s — {0}) (nhds z)
using elim and <open $)» by (intro eventually_nhds_in__open) auto
hence eventually (Aw. eval _fls F w = fw) (nhds z)
by eventually elim (use s in auto)
hence deriv (eval _fls F) z = deriv f z
by (intro deriv_cong__ev refl)
finally show Zcase .
qed
with assms show ?thesis
by (auto simp: has_laurent__expansion__def intro!: less_le_trans|OF __ fls_conv_radius__deriv])
qed

lemma has_laurent _expansion__shift [laurent _expansion__intros]:
assumes f has_laurent__expansion F
shows (Az. fz % © powi n) has_laurent__expansion (fls_shift (—n) F)
proof —
have eventually (Az. € eball 0 (fls_conv_radius F) — {0}) (at 0)
using assms by (intro eventually__at_in__open) (auto simp: has_laurent _expansion__def
zero__ereal _def)
moreover have eventually (Az. eval fls Fz = fz) (at 0)
using assms by (auto simp: has_laurent _expansion__def)
ultimately have eventually (Az. eval_fls (fls_shift (—n) F) x = fz * x powi
n) (at 0)
by eventually_elim (auto simp: eval_fls _shift assms)
with assms show ?thesis by (auto simp: has_laurent expansion_ def)
qed

lemma has_laurent__expansion__shift’ [laurent__expansion__intros]:
assumes f has_laurent expansion F
shows (Az. fz * z powi (—n)) has_laurent__expansion (fls_shift n F)
using has_laurent__expansion__shift| OF assms, of —n] by simp

lemma has laurent_expansion_ deriv’:
assumes f has_laurent__expansion F
assumes open A 0 € A Ax. z € A — {0} = (f has_field_derivative f' x) (at
z)
shows [’ has_laurent_expansion fls_deriv F
proof —
have deriv f has_laurent__expansion fls_deriv F
by (intro laurent _expansion__intros assms)
also have ?this «— %thesis
proof (intro has_laurent__expansion__cong refl)
have eventually (Az. z € A — {0}) (at 0)
by (intro eventually at in__open assms)

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 447

thus eventually (Az. deriv fz = f' z) (at 0)
by eventually elim (auto introl: DERIV _imp_ deriv assms)
qed
finally show ?thesis .
qed

definition laurent expansion :: (complex = complex) = complex = complez fls
where
laurent__expansion f z =
(if eventually (Az. fz = 0) (at z) then 0
else fls_shift (—zorder f z) (fps_to_fls (fps_expansion (zor_poly f z) z)))

lemma laurent__expansion__cong:
assumes eventually (Aw. fw = g w) (at 2) z = 2’
shows laurent_expansion f z = laurent__expansion g z’
unfolding laurent _expansion__def
using zor_poly_cong[OF assms(1,2)] zorder_cong|OF assms| assms
by (intro if cong refl) (auto elim: eventually elim2)

theorem not_essential _has_laurent__expansion_0:
assumes isolated__singularity_at f 0 not__essential f 0
shows f has_laurent__expansion laurent _expansion f 0
proof (cases Ip win at 0. fw # 0)
case Fulse
have (A_. 0) has_laurent__expansion 0
by simp
also have ?this «— f has_laurent__expansion 0
using False by (intro has_laurent _expansion__cong) (auto simp: frequently def)
finally show ?thesis
using Fualse by (simp add: laurent__expansion__def frequently def)
next
case True
define n where n = zorder f 0
obtain r where r: zor_poly f 0 0 # 0 zor_poly f 0 holomorphic_on cball 0 r r
>0
Vweceball 0 r — {0}. fw = zor_poly f 0 w* w powi n A
zor_poly f 0w # 0
using zorder__ezist|OF assms True] unfolding n__def by auto
have holo: zor_poly f 0 holomorphic_on ball 0 r
by (rule holomorphic__on__subset|OF r(2)]) auto

define F' where F = fps_expansion (zor_poly f 0) 0
have F: zor_poly f 0 has_fps__expansion F
unfolding F_def by (rule has_fps_expansion_fps_expansion[OF _ __ holo])
(use <r > 0> in auto)
have (Az. zor_poly f 0 z * z powi n) has_laurent_expansion fls_shift (—n)
(fps_to_fis F)
by (intro laurent__expansion__intros has_laurent__expansion_fps[OF F))
also have ?this «+— f has_laurent__expansion fls_shift (—n) (fps_to_fls F)

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 448

by (intro has__laurent _expansion__cong refl eventually_mono[OF eventually__at_in__open|of
ball 0 r]))
(use T in <auto simp: complex_powr _of int»)
finally show ?thesis using True
by (simp add: laurent__expansion__def F_def n__def frequently__def)
qed

lemma not_essential _has laurent _expansion:
assumes isolated__singularity at f z not__essential f z
shows (Az. f (z + z)) has_laurent_expansion laurent__expansion f z
proof —
from assms(1) have iso:isolated _singularity_at (A\z. f (z + x)) 0
by (simp add: isolated _singularity at_shift_0)
moreover from assms(2) have ness:not_essential (Az. f (z + z)) 0
by (simp add: not__essential _shift_0)
ultimately have (Az. f (z 4+ z)) has_laurent__expansion laurent__expansion (Az.
[t 2) 0
by (rule not__essential _has_laurent _expansion_0)

also have ... = laurent_expansion f z
proof (cases Ip win at z. fw # 0)
case Fulse

then have Vp win at z. fw = 0 using not_ frequently by force
then have laurent _ezpansion (\z. f (z + z)) 0 = 0
by (smt (verit, best) add.commute eventually_at_to_ 0 eventually mono
laurent__expansion__def)
moreover have laurent expansion fz = 0
using <V p w in at z. f w = 0> unfolding laurent_expansion_ def by auto
ultimately show ?thesis by auto
next
case True
define df where df=zor_poly (\z. f (z + x)) 0
define g where g=(\u. u—=z)

have fps_expansion df 0
= fps_expansion (df o g) z
proof —
have 3p win at 0. f (z + w) # 0 using True
by (smt (verit, best) add.commute eventually at_to_0
eventually_mono not_ frequently)
from zorder__exist|OF iso ness this,folded df _def]
obtain r where >0 and df holo:df holomorphic_on cball 0 v and df 0 #

Vweceball 0 r — {0}.
f (z 4+ w) = df w* w powi (zorder (Aw. f (z + w)) 0) A
df w # 0
by auto
then have df nz:Vweball 0 r. df w#0 by auto

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 449

have (deriv "~ n) df 0 = (deriv """ n) (df o g) z for n
unfolding comp_ def g def
proof (subst higher__deriv__compose__linear'[where u=1 and c=—z,simplified])
show df holomorphic_on ball 0 r
using df holo by auto
show open (ball z) open (ball 0 1) z € ball z 1
using <r>0> by auto
show Aw.we€ballzr = w—2z¢cbalOr
by (simp add: dist_norm)
qed auto
then show ?thesis
unfolding fps expansion__def by auto
qed
also have ... = fps_expansion (zor_poly f z) z
proof (rule fps_expansion__cong)
have V ¢ w in nhds z. zor_poly f z w
= zor_poly (Au. f (z + w)) 0 (w — 2)
apply (rule zor_poly _shift)
using True assms by auto
then show YV w in nhds z. (df o g) w = zor_poly f z w
unfolding df def g def comp__def
by (auto elim:eventually mono)
qed
finally show ?thesis unfolding df def
by (auto simp: laurent__expansion__def at_to_0]of 2]
eventually_filtermap add__ac zorder _shift’)
qed
finally show ?thesis .
qed

lemma has_fps expansion_to_ laurent:
f has_fps _expansion F <— f has_laurent_expansion fps_to_fls F N f 0 =
frs_nth F 0
proof safe
assume x: f has_laurent__expansion fps_to_fls F f 0 = fps_nth F 0
have eventually (A\z. z € eball 0 (fps_conv_radius F)) (nhds 0)
using * by (intro eventually_nhds_in__open) (auto simp: has_laurent__expansion__def
zero__ereal _def)
moreover have eventually (Az. z # 0 — eval_fls (fps_to_fls F) z = fz) (nhds
0)
using * by (auto simp: has_laurent_expansion__def eventually at_filter)
ultimately have eventually (Az. f z = eval_fps F z) (nhds 0)
by eventually elim
(auto simp: has_laurent _expansion__def eventually at_filter eval fps at 0
eval_fps_to_fls x(2))
thus f has_fps expansion F
using * by (auto simp: has_fps_expansion__def has_laurent_expansion__def
eq__commute)
next

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 450

assume f has_fps_expansion F
thus f 0 = fps nth F 0
by (metis eval _fps_at 0 has_fps_expansion__imp__holomorphic)
qed (auto intro: has_laurent__expansion_ fps)

lemma eval fps fls base_factor [simp]:

assumes z # 0

shows eval_fps (fls_base_factor _to_fps F) z = eval _fls F z * z powi —fls_subdegree
F

using assms unfolding eval _fls _def by (simp add: power_int_minus field_simps)

lemma has fps expansion__imp analytic_0:
assumes f has_fps _expansion F
shows [analytic_on {0}
by (meson analytic__at_two assms has_fps__expansion__imp_ holomorphic)

lemma has_fps expansion__imp analytic:
assumes (Az. f (z + z)) has_fps_expansion F
shows f analytic_on {z}
proof —
have (Az. f (z + x)) analytic_on {0}
by (rule has_fps_expansion__imp__analytic_0) fact
hence (A\z. f (2 + z)) o (Az. z — 2) analytic_on {z}
by (intro analytic _on__compose__gen analytic__intros) auto
thus ?thesis
by (simp add: o_def)
qged

lemma is pole cong asymp__equiv:
assumes [~[at 2] g z = 2’
shows is_pole f z = is_pole g 2z’
using asymp__equiv_at_infinity_transfer|OF assms(1)]
asymp__equiv_at_infinity_transfer|OF asymp__equiv_symI[OF assms(1)]]
assms(2)
unfolding is pole_def by auto

lemma not_is_pole_const [simp]: —is_pole (A_::'a::perfect_space. ¢ :: complex)
z

using not_tendsto__and_filterlim__at_infinitylof at z A_::"a. ¢ ¢] by (auto simp:
is_pole__def)

lemma has_laurent_expansion_imp_is_pole iff:
assumes F: (Az. f (z + z)) has_laurent__expansion F
shows is pole f z +— fls_subdegree F' < 0
proof
assume pole: is_pole f z
have [simp]: F # 0
proof
assume F' = (

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 451

hence is_pole f z +— is_pole (A_. 0 :: complex) z using assms
by (intro is_pole_ cong)
(auto simp: has_laurent__expansion__def at_to_ 0[of z] eventually_filtermap
add__ac)
with pole show Fulse
by simp
qed

note pole
also have is pole f z +—
is_pole (Aw. fls_nth F (fls_subdegree F) x (w — z) powi fls _subdegree

F)z

using has_laurent__expansion__imp__asymp__equiv[OF F| by (intro is_pole _cong__asymp__equiv
refl)

also have ... +— is_pole (Aw. (w — 2) powi fls_subdegree F) z

by simp
finally have pole”:

have Fulse if fls subdegree F' > 0
proof —
have (Aw. (w — z) powi fls_subdegree F') holomorphic_on UNIV
using that by (intro holomorphic_intros) auto
hence —is_pole (A\w. (w — z) powi fls_subdegree F) z
by (meson UNIV_I not_is_pole_holomorphic open_ UNIV)
with pole’ show False
by simp
qed
thus fils subdegree F < 0
by force
qed (use has_laurent__expansion__imp__is_pole[OF assms] in auto)

lemma analytic_at_imp__has_fps_expansion_ 0:
assumes f analytic_on {0}
shows f has_fps expansion fps expansion f 0
using assms has_fps_expansion_ fps__expansion analytic__at by fast

lemma analytic_at_imp_has_fps expansion:
assumes | analytic_on {z}
shows (Az. f (2 + z)) has_fps_expansion fps_expansion f z
proof —
have f o (Az. z + z) analytic_on {0}
by (intro analytic__on__compose__gen[OF __ assms| analytic_intros) auto
hence (f o (Az. z + z)) has_fps_expansion fps_expansion (f o (A\z. z + z)) 0
unfolding o_def by (intro analytic_at_imp_has_fps _expansion_0) auto
also have ... = fps_expansion [z
by (simp add: fps_expansion__def higher__deriv_shift_0’)
finally show ?thesis by (simp add: add_ac)
qed

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 452

lemma has laurent _expansion_zorder 0:
assumes f has_laurent__expansion F F # 0
shows zorder f 0 = fls_subdegree I'
proof —
define G where G = fis base_factor_to_fps F
from assms obtain A where A: 0 € A open A N\z. z € A — {0} = eval_fls
Frx=fzx
unfolding has laurent expansion__def eventually at_filter eventually nhds
by blast

show ?thesis
proof (rule zorder__eql)
show open (A N eball 0 (fls_conv_radius F)) 0 € AN eball 0 (fls_conv_radius
F)
using assms A by (auto simp: has_laurent__expansion__def zero__ereal_def)
show eval_fps G holomorphic_on A N eball 0 (fls_conv_radius F)
by (intro holomorphic_intros) (auto simp: fls_conv_radius_altdef G__def)
show eval_fps G 0 # 0 using <F # 0»
by (auto simp: eval _fps_at 0 G__def)
next
fix w :: complex assume w € A N eball 0 (fls_conv_radius F) w # 0
thus fw = eval _fps G w * (w — 0) powi (fls_subdegree F)
using A unfolding G def
by (subst eval fps_fls base_ factor)
(auto simp: complex__powr _of int power _int_minus field_simps)
qged
qged

lemma has _laurent__expansion__zorder:
assumes (Aw. f (z + w)) has_laurent_expansion F F # 0
shows zorder f z = fls_subdegree F

using has_laurent__expansion__zorder__0[OF assms] by (simp add: zorder_shift’
add__ac)

lemma has_fps expansion_zorder 0:
assumes f has_fps _expansion F' F # 0
shows zorder f 0 = int (subdegree F)
using assms has__laurent__expansion_zorder_0|[of f fps_to_fls F)]
by (auto simp: has_fps_expansion_to_laurent fls _subdegree_fls to_ fps)

lemma has_fps expansion_ zorder:
assumes (Aw. f (z + w)) has_fps_expansion F F # 0
shows zorder f z = int (subdegree F')
using has_fps_expansion_zorder 0[OF assms]
by (simp add: zorder_shift’ add_ac)

lemma has_fps expansion_fls base_factor to_fps:
assumes f has_laurent_expansion F
defines n = fls_subdegree F'

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 453

defines ¢ = fps_nth (fls_base_factor_to_fps F) 0
shows (\z. if z = 0 then c else f z * z powi —n) has_fps__expansion fls_base factor _to_ fps
F
proof —
have (Az. fz * z powi —n) has_laurent__expansion fls_shift (—(—n)) F
by (intro laurent _expansion__intros assms)
also have fls_shift (—(—n)) F = fps_to_fls (fls_base_factor_to_fps F)
by (simp add: n__def fls_shift _nonneg_subdegree)
also have (A\z. fz * z powi — n) has_laurent__expansion fps_to_fls (fls_base_ factor_to_fps
F) +—
(Az. if z = 0 then c else f z * z powi —n) has_laurent__expansion
fos_to_fls (fls_base_ factor _to_fps F')
by (intro has_laurent _expansion__cong) (auto simp: eventually_at_filter)
also have ... «+— (A\z. if z = 0 then c else f z * z powi —n) has_fps__expansion
fls_base_factor_to_ fps F
by (subst has_fps__expansion__to_laurent) (auto simp: c¢_ def)
finally show ?thesis .
qed

lemma zero__has_laurent__expansion_imp_eq 0:
assumes (A_. 0) has_laurent__expansion F'
shows F =0
proof —
have at (0 :: complex) # bot
by auto
moreover have (\z. if z = 0 then fls_nth F (fls_subdegree F) else 0) has_fps__expansion
fls_base__factor_to_fps F (is ?f has_fps_expansion _)
using has_fps_expansion_fls _base_factor to_ fps|OF assms] by (simp cong:
if _cong)
hence isCont ?f 0
using has_fps expansion__imp_ continuous by blast
hence ?f —0— fls_nth F (fls_subdegree F)
by (auto simp: isCont_def)
moreover have ?f —0— 0 «— (A_::complex. 0 :: complex) —0— 0
by (intro filterlim__cong) (auto simp: eventually_at_ filter)
hence ?f —0— 0
by simp
ultimately have fls nth F (fls_subdegree F) = 0
by (rule tendsto unique)
thus ?thesis
by (meson nth_fls _subdegree__nonzero)
qged

lemma has laurent _expansion__unique:
assumes f has_laurent__expansion F f has_laurent _expansion G
shows F =G
proof —
from assms have (\z. fx — f) has_laurent _expansion F — G
by (intro laurent__expansion__intros)

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 454

hence (_. 0) has_laurent _expansion F — G
by simp
hence F — G =0
by (rule zero__has_laurent__expansion_imp_eq 0)
thus ?thesis
by simp
qed

lemma laurent__expansion__eql:
assumes (Az. f (z + z)) has_laurent_expansion F
shows laurent expansion fz = F
using assms has__laurent__expansion__isolated has_laurent _expansion__not__essential
has__laurent__expansion__unique not__essential__has_laurent _expansion by
blast

lemma laurent expansion_0_eql:
assumes f has_laurent expansion F
shows laurent expansion f 0 = F
using assms laurent__expansion__eql[of f 0] by simp

lemma has_laurent_expansion__nonzero__imp__eventually mnonzero:
assumes f has_laurent__expansion F' F # 0
shows eventually (A\z. fz # 0) (at 0)
proof (rule ccontr)
assume —eventually (Az. fo # 0) (at 0)
with assms have eventually (Az. fz = 0) (at 0)
by (intro not__essential _frequently 0 _imp__eventually 0 has_laurent__expansion_isolated
has__laurent _expansion__not__essential)
(auto simp: frequently def)
hence (f has_laurent _expansion 0) <— ((A_. 0) has_laurent_expansion 0)
by (intro has_laurent__expansion__cong) auto
hence f has_laurent_expansion 0
by simp
with assms(1) have F = 0
using has_laurent__expansion__unique by blast
with (F' # 0> show Fulse
by contradiction
qged

lemma has_laurent__expansion__eventually nonzero__iff":
assumes f has_laurent_expansion F
shows eventually (Az. fz # 0) (at 0) +— F # 0
proof
assume Vp zinat 0. fz # 0
moreover have - (Vp zinat 0. fz # 0) if F=0
proof —
haveVp zinat 0. fz =0
using assms that unfolding has_laurent__expansion__def by simp
then show ?thesis unfolding not_eventually

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 455

by (auto elim:eventually frequentlyFE)
qed
ultimately show F # 0 by auto
qed (simp add:has_laurent__expansion__nonzero_imp__eventually_nonzero[OF assms))

lemma has_laurent expansion__eventually mnonzero_ iff:
assumes (Aw. f (z4w)) has_laurent__expansion F'
shows eventually (Az. fz # 0) (at z) «— F # 0
apply (subst eventually_at_to_0)
apply (rule has_laurent__expansion__eventually nonzero_iff’)
using assms by (simp add:add.commute)

lemma has_laurent _expansion__inverse [laurent _expansion__intros|:
assumes f has_laurent_expansion F
shows (Az. inverse (f z)) has_laurent__expansion inverse F
proof (cases F = 0)
case True
thus ?thesis using assms
by (auto simp: has_laurent__expansion__def)
next
case Fulse
define G where G = laurent_expansion (Az. inverse (f z)) 0
from Fulse have ev: eventually (Az. fz # 0) (at 0)
by (intro has_laurent__expansion__nonzero__imp__eventually nonzero|OF assms))

have *: (A\z. inverse (f x)) has_laurent_expansion G unfolding G_ def
by (intro not__essential _has__laurent _expansion__0 isolated__singularity__at_inverse
not__essential _inverse
has_laurent _expansion__isolated_0[OF assms| has_laurent _expansion_not__essential 0]OF
assms))
have (Az. fz * inverse (f x)) has_laurent _expansion F x G
by (intro laurent _expansion__intros assms *)
also have ?this <— (Az. 1) has_laurent__expansion F x G
by (intro has_laurent _expansion__cong refl eventually mono|OF ev]) auto
finally have (A_. 1) has_laurent_expansion F x G .
moreover have (A_. 1) has_laurent_expansion 1
by simp
ultimately have F x« G = 1
using has_laurent _expansion__unique by blast
hence G = inverse F
using inverse_unique by blast
with x show ?thesis
by simp
qed

lemma has_laurent__expansion__power_int [laurent__expansion__intros]:

f has_laurent__expansion F = (Axz. f x powi n) has_laurent__expansion (F powi
n)

by (auto simp: power__int_def intro!: laurent _expansion__intros)

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 456

lemma has_fps expansion_ 0 _analytic _continuation:
assumes f has_fps_expansion 0 f holomorphic_on A
assumes open A connected A 0 € Az € A
shows fz =10
proof —
have eventually (Az. z € AN fz = 0) (nhds 0) using assms
by (intro eventually_conj eventually nhds_in_open) (auto simp: has_fps__expansion__def)
then obtain B where B: open B0 € BYz2€B. z€ ANfz=10
unfolding eventually nhds by blast
show ?thesis
proof (rule analytic__continuation_open|where f = f and g = A_. 0])
show B # {}
using <open B> B by auto
show connected A
using assms by auto
qed (use assms B in auto)
qed

lemma has_laurent_expansion_0__analytic_continuation:
assumes | has_laurent__expansion 0 f holomorphic_on A — {0}
assumes open A connected A 0 € Az € A — {0}
shows fz =10
proof —
have eventually (Az. z € A — {0} A fz = 0) (at 0) using assms
by (intro eventually conj eventually at_in__open) (auto simp: has_laurent__expansion__def)
then obtain B where B: open B0 € BVz2eB —{0}. z€ A — {0} ANfz=10
unfolding eventually at_filter eventually nhds by blast
show ?thesis
proof (rule analytic__continuation__open[where f = f and g = A_. 0])
show B — {0} # {}
using <open By <0 € B) by (metis insert_Diff not_open__singleton)
show connected (A — {0})
using assms by (intro connected_open__delete) auto
qged (use assms B in auto)
qed

lemma has fps expansion__cong:

assumes eventually (Az. fz = gz) (nhds 0) F = G

shows f has_fps expansion F <— g has_fps_expansion G

using assms(2) by (auto simp: has_fps__expansion__def elim!: eventually_elim2[OF
assms(1)])

lemma zor poly has fps _expansion:

assumes f has_laurent__expansion F F # 0

shows zor_poly f 0 has_fps_expansion fls _base_factor _to_fps F
proof —

note [simp] = <F # O»

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 457

have eventually (Az. fz # 0) (at 0)

by (rule has_laurent _expansion_nonzero__imp__eventually nonzero[OF assms])
hence freq: frequently (Az. fz # 0) (at 0)

by (rule eventually_frequently[rotated]) auto

have x: isolated__singularity__at f 0 not__essential f 0
using has_laurent__expansion__isolated 0[OF assms(1)] has_laurent__expansion_not_essential 0[OF
assms(1)]
by auto

define G where G = fls base_factor_to_fps F
define n where n = zorder f 0
have n_ altdef: n = fls_subdegree F
using has_laurent__expansion_zorder 0 [OF assms(1)] by (simp add: n_ def)
obtain r where r: zor_poly f 0 0 # 0 zor_poly f 0 holomorphic_on cball 0 7 r
> 0
Ywechall 0 r — {0}. fw = zor_poly f 0w x w powi n A
zor_poly f 0w # 0
using zorder__exist|OF * freq] unfolding n_ def by auto
obtain r’' where r": v’ > 0 Vzeball 0 r'—{0}. eval fls Fz = fx
using assms(1) unfolding has_laurent__expansion__def eventually_at_filter
eventually _nhds_metric ball_def
by (auto simp: dist_commute)
have holo: zor_poly f 0 holomorphic_on ball 0 r
by (rule holomorphic__on__subset[OF r(2)]) auto

have (A\z. if z = 0 then fps_nth G 0 else f z x z powi —n) has_fps_expansion G
unfolding G_defn__altdef by (intro has_fps _expansion_fls _base_ factor to_ fps
assms)
also have ?this <— zor_poly f 0 has_fps_expansion G
proof (intro has_fps__expansion__cong)
have eventually (Az. z € ball 0 (min r ")) (nhds 0)
using «r > 0y <r' > 0) by (intro eventually_nhds_in__open) auto
thus V p x in nhds 0. (if = 0 then G $ 0 else f x * © powi — n) = zor_poly f
0x
proof eventually elim
case (elim w)
have w: w € ball 0 r w € ball 0 r'
using elim by auto
show ?case
proof (cases w = 0)
case Fulse
hence fw = zor_poly f 0 w * w powi n
using r w by auto
thus ?thesis using Fulse
by (simp add: powr_minus complex_powr _of _int power__int_minus)
next
case [simp]: True
obtain R where R: R > 0 R<r R <r'R < fls conv_radius F

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 458

using «r > 0) <r' > 0) assms(1) unfolding has_laurent _expansion_ def
by (smt (verit, ccfo_SIG) ereal dense2 ereal less(2) less_ereal.simps(1)
order.strict_implies__order order_trans)
have eval fps G 0 = zor_poly f 0 0
proof (rule analytic__continuation__open|where f = eval_fps G and g =
zor_poly f 0])
show connected (ball 0 R :: complex set)
by auto
have of real R/ 2 € ball 0 R — {0 :: complex}
using R by auto
thus ball 0 R — {0 :: complex} # {}
by blast
show eval_fps G holomorphic_on ball 0 R
using R less_le trans[OF _ R(4)] unfolding G _def
by (intro holomorphic_intros) (auto simp: fls_conv_radius_altdef)
show zor_poly f 0 holomorphic_on ball 0 R
by (rule holomorphic_on__subset[OF holo]) (use R in auto)
show eval_fps G z = zor_poly f 0 z if z € ball 0 R — {0} for 2
using that r v’ R n_altdef unfolding G def
by (subst eval _fps_fls base_factor)
(auto simp: complex_powr _of int field_simps power _int__minus
n__def)
qed (use R in auto)
hence zor_poly f 0 0 = fps_nth G 0
by (simp add: eval fps_at_0)
thus %thesis by simp
qed
qed
qged (use r' in auto)
finally show ?thesis
by (simp add: G_def)
qed

lemma zorder gel 0:
assumes [analytic_on {0} f holomorphic_on A open A connected A 0 € A z €
Afz#0
assumes A\k. k < n = (deriv " k) f0 =10
shows zorder f0 > n
proof —
define F where F' = fps expansion f 0
from assms have f has_fps expansion F
unfolding F_def using analytic_at_imp__has_fps expansion_0 by blast
hence laurent: f has_laurent__expansion fps_to_fls F and [simp]: f 0 = fps_nth
Fo
by (simp__all add: has_fps _expansion_to_laurent)

have [simp]: F # 0
proof
assume [simp|: F = 0

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 459

hence fz =0
proof (cases z = 0)
case Fulse
have f has_laurent__expansion 0
using laurent by simp
thus ?thesis
proof (rule has_laurent__expansion_ 0__analytic_continuation)
show f holomorphic_on A — {0}
using assms(2) by (rule holomorphic__on__subset) auto
qged (use assms False in auto)

qed auto
with «f z # 0) show False by contradiction
qed

have zorder f 0 = int (subdegree F)
using has_laurent__expansion__zorder__0[OF laurent] by (simp add: fls_subdegree_fls_to_ fps)
also have subdegree F' > n
using assms by (intro subdegree _gel <F # 0v) (auto simp: F_def fps__expansion__def)
hence int (subdegree F') > int n
by simp
finally show ?thesis .
qged

lemma zorder gel:
assumes f analytic_on {z} f holomorphic_on A open A connected A x € A z €
Afz#0
assumes Ak. k < n= (deriv " k) fz =0
shows zorder fz > n
proof —
have zorder f x = zorder (f o (Au. u + x)) 0
by (subst zorder__shift) (auto simp: o_def)
also have ... > n
proof (rule zorder _gel 0)
show (f o (Au. u + z)) analytic_on {0}
by (intro analytic _on_compose_gen|OF _ assms(1)] analytic_intros) auto
show f o (Au. u +) holomorphic_on ((+) (—z)) ‘ A
by (intro holomorphic__on__compose__gen[OF __ assms(2)] holomorphic__intros)
auto
show connected ((+) (— z) “ A)
by (intro connected__continuous_image continuous_intros assms)
show open ((+) (— z) < A)
by (intro open__translation assms)
show z —z € (+) (—z) ‘A
using <z € A» by auto
show 0 € (+) (—z) ‘A
using «x € A> by auto
show (f o (Au. u+ z)) (z —x) # 0
using «f z # 0> by auto
next

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 460

fix &k :: nat assume k < n
hence (deriv " k) fz =0
using assms by simp
also have (deriv " k) fz = (deriv "7 k) (f o (+) z) 0
by (subst higher__deriv_shift_0) auto
finally show (deriv =" k) (f o (Au. v + 2)) 0 =0
by (subst add.commute) auto
qed
finally show ?thesis .
qged

lemma has_laurent _expansion__divide [laurent__expansion__intros]:
assumes f has_laurent__expansion F and g has_laurent _expansion G
shows (Az. fz / g z) has_laurent_expansion (F |/ G)
proof —
have (Az. fz * inverse (g x)) has_laurent__expansion (F x inverse G)
by (intro laurent _expansion__intros assms)
thus ?thesis
by (simp add: field simps)
qed

lemma has laurent expansion__residue_0:
assumes f has_laurent__expansion F
shows residue f 0 = fls_residue F'
proof (cases fls_subdegree F > 0)
case True
have residue f 0 = residue (eval _fls F) 0
using assms by (intro residue__cong) (auto simp: has_laurent__expansion__def
eq _commute)
also have ... =0
by (rule residue_holo[OF _ __ holomorphic_on__eval_fls|OF order.refl]])
(use True assms in <auto simp: has_laurent__expansion__def zero__ereal def>)
also have ... = fls residue F
using True by simp
finally show ?thesis .
next
case Fulse
hence F # 0
by auto
have x: zor_poly f 0 has_fps_expansion fls_base_factor_to_ fps F
by (intro zor_poly_has_fps_expansion False assms <F # 0»)

have residue f 0 = (deriv = (nat (—zorder f 0) — 1)) (zor_poly f 0) 0 / fact
(nat (— zorder f 0) — 1)
by (intro residue_pole order has_laurent__expansion_isolated 0[OF assms]
has_laurent__expansion__imp_is_pole_ 0[OF assms]) (use False in auto)
also have ... = fls residue F
using has_laurent__expansion_zorder__0[OF assms «F # 0)] False
by (subst fps_nth_fps_expansion [OF x, symmetric]) (auto simp: of nat_ diff)

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 461

finally show ?thesis .
qed

lemma has_laurent _expansion__residue:
assumes (Az. f (z + z)) has_laurent__expansion F
shows residue f z = fls_residue F
using has_laurent__expansion_residue_0[OF assms] by (simp add: residue__shift_0")

lemma eval fls_has_laurent_expansion [laurent_expansion__intros|:
assumes fls conv_radius F > 0
shows eval fis F has_laurent _expansion F
using assms by (auto simp: has_laurent _expansion__def)

lemma fps_expansion__unique__complez:

fixes F' G :: complex fps

assumes f has_fps_expansion F f has_fps_expansion G

shows F =G

using assms unfolding fps eq iff by (auto simp: fps_eq iff fos_nth_fps _expansion)

lemma fps_expansion__eql:
assumes f has_fps_expansion F
shows fps expansion f0 = F
using assms unfolding fps eq iff
by (auto simp: fps_eq iff fps_nth_fps expansion fps_expansion__def)

lemma holomorphic_on_imp_ fps conv_radius_ge:
assumes f has_fps_expansion F f holomorphic_on eball 0 r
shows fps conv_radius FF > r
proof —
define n where n = subdegree F
have fps_conv_radius (fps_expansion f 0) > r
by (intro conv_radius_fps_expansion assms)
also have fps_expansion f 0 = F
using assms by (intro fps__expansion__eql)
finally show ?thesis
by simp
qed

lemma has fps expansion__imp__eval fps eq:
assumes f has_fps_expansion F norm z < r
assumes f holomorphic_on ball 0 r
shows eval fps Fz=fz2
proof —
have [simp]: fps_expansion f 0 = F
by (rule fps_expansion__eql) fact
have x: f holomorphic_on eball 0 (ereal 1)
using assms by simp
from conv_radius_fps_expansion[OF x| have fps_conv_radius F > ereal r
by simp

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 462

have eval_fps (fps_expansion f0) z = f (0 + 2)
by (rule eval _fps_expansion’|OF x]) (use assms in auto)
thus ?thesis
by simp
qed

lemma has_fps_expansion__imp__sums_complex:
fixes F :: complex fps
assumes f has_fps_expansion F f holomorphic_on eball 0 r ereal (norm z) < r
shows (An. fps_nth Fnxz " n) sums fz
proof —
have r: fps conv_radius F > r
using assms(1,2) by (rule holomorphic_on_imp_ fps_conv_radius_ge)
from assms obtain R where R: norm z < R ereal R < r
using ereal_dense2 less_ereal.simps(1) by blast
have z: norm z < fps_conv_radius F
using r R assms(3) by order

have summable (An. fps_nth Fn x z " n)
by (rule summable_fps) (use z in auto)
moreover have eval fps F z = fz
proof (rule has_fps_expansion_imp__eval_fps_eq[where r = R])
have x: ereal (norm z) < r if norm z < R for z :: complex
using that R ereal_le_less less_imp_le by blast
show f holomorphic_on ball 0 R
using assms(2) by (rule holomorphic_on_subset) (use * in auto)
qed (use R assms(1) in auto)
ultimately show ?thesis
unfolding eval fps def sums_iff by simp
qed

lemma fls conv_radius_ge:
assumes f has_laurent expansion F
assumes f holomorphic_on eball 0 v — {0}
shows fls conv_radius F > r
proof —
define n where n = fls subdegree F
define G where G = fils base_factor_to_fps F
define g where g = (\z. if z = 0 then fps_nth G 0 else f z * z powi —n)
have G: g has_fps_expansion G
unfolding G_def g def n_ def
by (intro has_fps_expansion_fls_base_factor_to_fps assms)
have (Az. f z % z powi —n) holomorphic_on eball 0 r — {0}
by (intro holomorphic_intros assms) auto
also have ?this «+— g holomorphic_on eball 0 v — {0}
by (intro holomorphic__cong) (auto simp: g_def)
finally have g analytic_on eball 0 r — {0}
by (subst analytic_on__open) auto
moreover have g analytic_on {0}

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 463

using G has_fps expansion_imp__analytic 0 by auto
ultimately have g analytic_on (eball 0 7 — {0} U {0})
by (subst analytic_on_Un) auto
hence g analytic_on eball 0 r
by (rule analytic_on__subset) auto
hence g holomorphic_on eball 0 r
by (subst (asm) analytic_on__open) auto
hence fps_conv_radius (fps_expansion g 0) > r
by (intro conv_radius_fps _expansion)
also have fps expansion g 0 = G
using G by (intro fps_expansion__eql)
finally show ?thesis
by (simp add: fls_conv_radius_altdef G__def)
qed

lemma eval fls _eql:
assumes | has_laurent _expansion F f holomorphic_on eball 0 r — {0}
assumes z € eball 0 r — {0}
shows eval fls Fz=fz
proof —
have conv: fls _conv_radius F > r
by (intro fls_conv_radius_ge[OF assms(1,2)])
have (A\z. eval _fls F z — f z) has_laurent _expansion F — F
using assms by (intro laurent__expansion__intros assms) (auto simp: has_laurent__expansion__def)
hence (A\z. eval_fls F z — f z) has_laurent__expansion 0
by simp
hence eval fls Fz — fz=10
proof (rule has_laurent _expansion_ 0__analytic_continuation)
have ereal 0 < ereal (norm z)
by simp
also have norm z < r
using assms by auto
finally have r > 0
by (simp add: zero__ereal_def)
thus open (eball 0 r :: complex set) connected (eball 0 r :: complex set)
0 € eball 01z € eball 0r — {0}
using assms by (auto simp: zero__ereal_def)
qged (auto intro!: holomorphic_intros assms less_le_trans|OF _ conv] split:
if _splits)
thus ?thesis by simp
qed

lemma fls nth_as_contour_integral:
assumes F: f has laurent_expansion F
assumes holo: f holomorphic_on ball 0 r — {0}
assumes R: 0 < RR<r
shows ((Az. f 2z * z powi (—(n+1))) has_contour_integral
complex__of real (2 x pi) =1 fls_nth F n) (circlepath 0 R)
proof —

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 464

define I where I = (A\z. f z x z powi (—(n+1)))
have (I has_contour_integral complex _of real (2 * pi) * i x residue I 0)
(circlepath 0 R)
proof (rule base_residue)
show open (ball (0::complex) r) 0 € ball (0::complex) r
using R F by (auto simp: has_laurent__expansion__def zero__ereal_def)
qged (use R in <auto introl: holomorphic_intros holomorphic_on__subset]| OF holo]
simp: I_def split: if _splitsy)
also have residue I 0 = fls_residue (fls_shift (n + 1) F)
unfolding I def by (intro has_laurent__expansion_residue 0 laurent _expansion__intros
F)
also have ... = fls nth F'n
by simp
finally show ?thesis
by (simp add: I_def)
qed

lemma tendsto_ 0 _subdegree iff 0:
assumes F:f has_laurent__expansion F and F#0
shows (f —0— 0) <— fls_subdegree F > 0
proof —
have ?thesis if is_pole f 0
proof —
have fis subdegree F <0
using is_pole_0_imp_neg_fls _subdegree[OF F that] .
moreover then have - f —0—0
using <is_pole f 0> F at_neq bot
has__laurent__expansion__imp_ filterlim__infinity_ 0
not__tendsto__and__filterlim__at__infinity that
by blast
ultimately show ?thesis by auto
qed
moreover have ?thesis if —is_pole f 0 Jz. f —0—=x
proof —
have fis subdegree F >0
using has_laurent__expansion__imp_is_pole_0[OF F] that(1)
by linarith
have f —0—0 if fils subdegree F > 0
using fls _eq0_below subdegree| OF that)
by (metis F' <0 < fls_subdegree 'y has_laurent__expansion_imp__tendsto_0)
moreover have fls _subdegree F > 0 if f —0—0
proof —
have Fulse if fls subdegree F = 0
proof —
have f —0— fls_nth F 0
using has_laurent__expansion__imp__tendsto_ 0
[OF F «fls_subdegree F >05] .
then have fls nth F 0 = 0 using <f —0—0>
using LIM unique by blast

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 465

then have F = 0
using nth_fls subdegree_ zero iff <fls _subdegree F = 0

by metis
with «(F#£0) show Fulse by auto
qed

with <fls subdegree F' >0)
show ?thesis by fastforce
qed
ultimately show ?thesis by auto
qged
moreover have is_pole f 0 V (Fz. f —0—1)
proof —
have not__essential f 0
using F has_laurent__expansion_not__essential 0 by auto
then show ?thesis unfolding not_essential def
by auto
qed
ultimately show ?thesis by auto
qed

lemma tendsto 0 _subdegree_iff:
assumes F: (Aw. f (z4w)) has_laurent_expansion F and F # 0
shows (f —z— 0) +— fls_subdegree F > 0
apply (subst Lim__at_zero)
apply (rule tendsto_0__subdegree_iff 0)
using assms by auto

lemma is pole 0 _deriv_divide_ iff:
assumes [f has_laurent__expansion F and F # 0
shows is_pole (Az. deriv fz / fz) 0 «— is_pole f OV (f —0— 0)
proof —
have (A\z. deriv fz / f z) has_laurent__expansion fls_deriv F | F
using F by (auto intro:laurent _expansion__intros)

have is_pole (\z. deriv fz / fz) 0 +—
fls_subdegree (fls_deriv F / F) < 0
apply (rule is_pole_fls subdegree iff)
using F by (auto intro:laurent _expansion__intros)
also have ... «+— is_pole f 0 V (f —0—0)
proof (cases fls_subdegree F = 0)
case True
then have fls subdegree (fls_deriv F / F) > 0
by (metis diff _zero div_0 <F#£0> fls_deriv_subdegree(
fls_divide _subdegree)
moreover then have — is_pole f 0
by (metis F' True is_pole_0_imp_neg_fls subdegree less_le)
moreover have - (f —0—0)
using tendsto__0_subdegree__iff 0[OF F <F#0>] True by auto
ultimately show #thesis by auto

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 466

next
case Fulse
then have fis deriv F # 0
by (metis fls_const_subdegree fls_deriv_eq 0_iff)
then have fls_subdegree (fls_deriv F | F) =
fls_subdegree (fls_deriv F) — fls_subdegree F
by (rule fls_divide subdegree[OF __ <F#0>])
moreover have fls_subdegree (fls_deriv F') = fls_subdegree F — 1
using fls_subdegree_deriv|OF False] .
ultimately have fls_subdegree (fls_deriv F / F) < 0 by auto
moreover have f —0— 0 = (0 < fls_subdegree F)
using tendsto__0_subdegree_iff O0[OF F «F #+ 0>] .
moreover have is_pole f 0 = (fls_subdegree F < 0)
using is_pole fls subdegree iff F' by auto
ultimately show ?thesis using Fualse by auto
qged
finally show ?thesis .
qed

lemma is_pole_deriv_divide_iff:
assumes F:(Aw. f (z+w)) has_laurent__expansion F and F#0
shows is_pole (\z. deriv fx / fz) z <— is_pole f 2V (f —z—0)
proof —
define ff df where ff=(A\w. f (z+w)) and df=(Aw. deriv f (z + w))
have is_pole (\z. deriv fz |/ fz) 2
«—— is_pole (Az. deriv ffx / ffz) 0
unfolding ff def df def
by (simp add:deriv_shift_0' is_pole_shift_0' comp__def algebra__simps)
moreover have is_pole f z «<— is_pole ff 0
unfolding ff def by (auto simp:is_pole__shift_0’)
moreover have (f —z2—0) +— (ff —0—0)
unfolding ff def by (simp add: LIM_offset_zero_iff)
moreover have is_pole (\x. deriv ffz / ffz) 0 = (is_pole ff O V ff —0— 0)
apply (rule is_pole_0_deriv_divide iff)
using F ff _def «F#0»> by blast+
ultimately show ¢thesis by auto
qed

lemma subdegree__imp__eventually deriv_mnzero_ 0:
assumes F':f has_laurent_expansion F and fls subdegree F#£0
shows eventually (\z. deriv f z # 0) (at 0)
proof —
have deriv f has_laurent _expansion fls_deriv F
using has_laurent__expansion__deriv[OF F] .
moreover have fls _deriv F#0
using <fls _subdegree F#0»
by (metis fls_const_subdegree fls _deriv_eq 0_iff)
ultimately show ?thesis
using has_laurent__expansion__eventually_nonzero_iff ' by blast

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 467

qed

lemma subdegree__imp__eventually deriv_nzero:
assumes F:(Aw. f (z4+w)) has_laurent__expansion F
and fls_subdegree F#£0
shows eventually (A\w. deriv fw # 0) (at 2)
proof —
have Vi z in at 0. deriv (Aw. f (z + w)) z # 0
using subdegree__imp__eventually deriv_nzero_ 0 assms by auto
then show ?thesis
apply (subst eventually at_to 0)
by (simp add:deriv_shift_0' comp__def algebra__simps)
qed

lemma has_fps expansion__imp__asymp__equiv_0:
fixes f :: compler = complex
assumes F: f has_fps_expansion F
defines n = subdegree F
shows [~[nhds 0] (Az. fps_nth Fn % z " n)
proof —
have F': f has_laurent_expansion fps_to_fls F
using F has_laurent _expansion_ fps by blast

have f ~[at 0] (Az. fps_nth Fn x z " n)
using has_laurent__expansion__imp__asymp__equiv_0[OF F’|
by (simp add: fls _subdegree fls _to_fps n_ def)
moreover have f 0 = fps nth Fn* 0 " n
using F by (auto simp: n_def has_fps_expansion_to_laurent power 0_left)
ultimately show ?thesis
by (auto simp: asymp__equiv_nhds__iff)
qed

lemma has_fps expansion_imp_tendsto_0:
fixes f :: compler = complex
assumes f has_fps _expansion F
shows (f —— fps_nth F 0) (nhds 0)
proof (rule asymp__equiv_tendsto__transfer)
show (Az. fps_nth F (subdegree F) x z ~ subdegree F) ~[nhds 0] f
by (rule asymp__equiv_symlI, rule has_fps _expansion_imp__asymp__equiv_0)
fact
have ((Az. F' § subdegree F x z ~ subdegree F) —— F $ 0) (at 0)
by (rule tendsto__eq_intros refl | simp)+ (auto simp: power_0_left)
thus ((Az. F $ subdegree F' * z ~ subdegree F) —— F $ 0) (nhds 0)
by (auto simp: tendsto__nhds_iff power_0_left)
qed

lemma has_fps expansion_imp_ 0 eq fps nth_0:
assumes f has_fps _expansion F
shows f0 = fps_nth F 0

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 468

proof —
have eventually (Az. fx = eval _fps F z) (nhds 0)
using assms by (auto simp: has_fps_expansion__def eq _commute)
then obtain A where open A 0 € AVza€A. fz = eval_fps F z
unfolding eventually nhds by blast
hence f 0 = eval_fps F 0
by blast
thus ?thesis
by (simp add: eval fps _at_0)
qged

lemma fls nth compose _auzx:
assumes f has_fps _expansion F
assumes G: g has_fps__expansion G fps_nth G 0 = 0 fps_deriv G # 0
assumes (f o g) has_laurent_expansion H
shows fls _nth H (int n) = fps_nth (fps_compose F G) n
using assms(1,5)
proof (induction n arbitrary: f F H rule: less_induct)
case (lessn fF H)
have [simp]: ¢ 0 = 0
using has__fps__expansion__imp_0_eq fps_nth_0[OF G(1)] G(2) by simp
have ana_f: f analytic_on {0}
using less.prems by (meson has_fps _expansion__imp__analytic_0)
have ana_g: g analytic_on {0}
using G by (meson has_fps_expansion_imp__analytic_0)
have (f o g) has_laurent__expansion fps_to_fis (fps_expansion (f o g) 0)
by (rule analytic _at_imp_has_fps_expansion__ 0 analytic_intros has_laurent__expansion_ fps
analytic_on__compose__gen ana__f ana__g)+ auto
with less.prems have H = fps_to_ fls (fps_expansion (f o g) 0)
using has_laurent__expansion__unique by blast
also have fls subdegree ... > 0
by (simp add: fls_subdegree_fls_to_fps)
finally have subdeg: fls_subdegree H > 0 .

show ?Zcase
proof (cases n = 0)
case [simp|: True
have lim_g: ¢ —0— 0
using has_laurent__expansion_imp__tendsto_0lof g fps_to_fls G| G
by (auto simp: fls_subdegree_fls_to_fps gt0 has_fps_expansion_to_laurent)
have lim_f: (f —— fps_nth F 0) (nhds 0)
by (intro has_fps_expansion__imp_tendsto_0 less.prems)
have (\z. f (g z)) —0— fps_nth F 0
by (rule filterlim__compose[OF lim__f lim__g])
moreover have (f o g) —0— fls_nth H 0
by (intro has_laurent _expansion_imp_tendsto_ 0 less.prems subdeg)
ultimately have fps nth F 0 = fls_nth H 0
using tendsto__unique by (force simp: o__def)
thus ?thesis

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 469

by simp
next
case n: False
define GH where GH = (fls_deriv H | fls_deriv (fps_to_fls G))
define GH' where GH' = fls_regpart GH

have (Az. deriv (f o ¢g) « / deriv g x) has_laurent__expansion
fls_deriv H | fls_deriv (fps_to_fls G)
by (intro laurent__expansion__intros less.prems has_laurent__expansion_ fps|of
G] G)
also have %this <— (deriv f o g) has_laurent_expansion fls deriv H /
fls_deriv (fps_to_fls G)
proof (rule has_laurent_expansion__cong)
from ana_f obtain r1 where r1: 1 > 0 f holomorphic_on ball 0 11
unfolding analytic_on_ def by blast
from ana_ g obtain r2 where 72: r2 > 0 g holomorphic_on ball 0 72
unfolding analytic_on_def by blast
have lim_g: ¢ —0— 0
using has_laurent__expansion__imp_tendsto_0|of g fps_to_fls G] G
by (auto simp: fls_subdegree_fls to_fps_gt0 has_fps_expansion_to_laurent)
moreover have open (ball 0 r1) 0 € ball 0 r1
using 71 by auto
ultimately have eventually (Az. g = € ball 0 r1) (at 0)
unfolding tendsto def by blast
moreover have eventually (Az. deriv g x # 0) (at 0)
using G fps_to_fls eq 0 iff has_fps expansion_deriv has_fps expansion_to_laurent
has__laurent__expansion__nonzero__imp__eventually nonzero by blast
moreover have eventually (Az. z € ball 0 (min r1 r2) — {0}) (at 0)
by (intro eventually_at_in_open) (use r1 r2 in auto)
ultimately show eventually (Az. deriv (f o g) z / deriv g x = (deriv f o g)
z) (at 0)
proof eventually__elim
case (elim x)
thus ?case using r1 r2
by (subst deriv__chain)
(auto simp: field _simps holomorphic__on__def at_within__open[of __ ball

_ D
qed

qed auto
finally have GH: (deriv f o g) has_laurent expansion GH
unfolding GH def .

have (deriv f o g) has_laurent _expansion fps_to_fls (fps_expansion (deriv f
°g)0)
by (rule analytic _at_imp_has_fps_expansion_ 0 analytic_intros has_laurent _expansion_ fps
analytic_on__compose__gen ana_ f ana__g)+ auto
with GH have GH = fps_to_fls (fps_expansion (deriv f o g) 0)
using has_laurent _expansion__unique by blast
also have fls_subdegree ... > 0

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 470

by (simp add: fls_subdegree_fls to_ fps)
finally have subdeg”: fls _subdegree GH > 0 .

have deriv f has_fps _expansion fps_deriv F
by (intro fps_expansion__intros less.prems)
from this and GH have IH: fls nth GH (int k) = fps_nth (fps_compose
(fps_deriv F) G) k
if £k < nfor k
by (intro less.IH that)

have fps_nth (fps_compose (fps_deriv F) G) n = (3. i=0..n. of _nat (Suc 7)
* FF'$ Suci*x G " i$n)
by (simp add: fps_compose_nth)

have fps_nth (fps_compose F G) n =
fps_nth (fps_deriv (fps_compose F G)) (n — 1) / of nat n
using n by (cases n) (auto simp del: of _nat_Suc)
also have fps_deriv (fps_compose F G) = fps_compose (fps_deriv F) G x
frs_deriv G
using G by (subst fps_compose__deriv) auto
also have fps nth ... (n — 1) = > i=0..n—1. (fps_deriv F oo G) $ i *
fos_deriv G $ (n — 1 — 1))
unfolding fps mult_nth ..
also have ... = (3 i=0..n—1. fps_nth GH' i *x of nat (n — i) * G $ (n —
)
using n by (intro sum.cong) (auto simp: IH Suc__diff Suc GH'_def)
also have ... = (3} i=0..n. fps_nth GH' i x of_nat (n — i) x G $ (n — i))
by (intro sum.mono_neutral_left) auto
also have ... = fps_nth (GH' x Abs_fps (\i. of _nat i x fps_nth G i)) n
by (simp add: fps_mult_nth mult_ac)
also have Abs_fps (Ai. of _nat i * fps_nth G i) = fps_X * fps_deriv G
by (simp add: fps_mult_fps X deriv_shift)
also have fps nth (GH' x (fps_X * fps_deriv G)) n =
fls_nth (fps_to_fls (GH' x (fps_X = fps_deriv G))) (int n)
by simp
also have fps_to_fls (GH' * (fps_X * fps_deriv G)) =
GH =« fps_to_fls (fps_deriv G) x fls_ X
using subdeg’ by (simp add: mult_ac fls_times_fps_to_fls GH' _def)
also have GH x fps_to_fls (fps_deriv G) = fls_deriv H
unfolding GH_def using G by (simp add: fls_deriv_fps_to_fls)
also have fls _deriv H x fls_X = fls_shift (—1) (fls_deriv H)
using fls_X_times__conv_shift(2) by blast
finally show ?thesis
using n by simp
qed
qed

lemma has_fps_expansion__compose [fps__expansion__intros|:
fixes f g :: complex = complex

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 471

assumes F: f has_fps_expansion F
assumes G: g has_fps_expansion G fps_nth G 0 = 0
shows (f o g) has_fps_expansion fps_compose F G
proof (cases fps_deriv G = 0)
case Fulse
have [simp]: ¢ 0 = 0
using has_fps_expansion_imp_0_eq fps _nth_0[OF G(1)] G(2) False by
stmp
have ana_f: f analytic_on {0}
using F by (meson has_fps_expansion_imp__analytic_0)
have ana__g: g analytic_on {0}
using G by (meson has_fps_expansion_imp__analytic_0)
have fg: (f o g) has_fps_expansion fps_expansion (f o g) 0
by (rule analytic_at_imp_has_fps_expansion_0 analytic_intros
analytic__on__compose__gen ana_ f ana__g)+ auto

have fls_nth (fps_to_fls (fps_expansion (f o g) 0)) (int n) = fps_nth (fps_compose
F G) n for n
by (rule fls_nth__compose _auzx has_laurent__expansion_fps F G False fg)+
hence fps_expansion (f o g) 0 = fps_compose F G
by (simp add: fps_eq iff)
thus ?thesis using fg
by simp
next
case True
have [simp]: f 0 = fps_nth F 0
using F by (auto dest: has_fps _expansion_imp 0 _eq fps_nth_0)
from True have fps nth G n = 0 for n
using G(2) by (cases n) (auto simp del: of nat_Suc)
hence [simp]: G = 0
by (auto simp: fps_eq iff)
have (A_. f 0) has_fps_expansion fps_const (f 0)
by (intro fps__expansion__intros)
also have eventually (Az. g x = 0) (nhds 0)
using G by (auto simp: has_fps_expansion__def)
hence (A_. f0) has_fps_expansion fps_const (f0) «— (f o g) has_fps__expansion
fps_const (f 0)
by (intro has_fps_expansion__cong) (auto elim!: eventually _mono)
thus ?thesis
by simp
qed

lemma has_fps_expansion_fps to_ fis:
assumes f has_laurent _expansion fps_to_fls F

shows (Az. if z = 0 then fps_nth F 0 else f z) has_fps_expansion F
(is ?f' has_fps_expansion _)
proof —
have [has_laurent_expansion fps_to_fls F <— 2f' has_laurent_expansion

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 472

fos_to_fls F
by (intro has_laurent _expansion__cong) (auto simp: eventually_at_filter)
with assms show ?thesis
by (auto simp: has_fps_expansion__to_laurent)
qed

lemma has_laurent _expansion__compose [laurent _expansion__intros]:
fixes f g :: complex = complex
assumes F: f has_laurent_expansion F
assumes G: g has_laurent__expansion fps_to_fls G fps _nth G 0 = 0 G # 0
shows (f o g) has_laurent_expansion fls_compose_fps F G
proof —
from assms have lim_g: g —0— 0
by (subst tendsto_ 0 _subdegree iff 0[OF G(1)])
(auto simp: fls_subdegree_fls_to_ fps subdegree_pos__iff)
have ev!: eventually (A\z. g z # 0) (at 0)
using <G # 0> G(1) fps_to_fls_eq 0 _iff has_laurent__expansion_ fps
has__laurent__expansion__nonzero__imp__eventually nonzero by blast
moreover have eventually (Az. z # 0) (at (0 :: compler))
by (auto simp: eventually_at_filter)
ultimately have ev: eventually (Az. 2z # 0 A g z # 0) (at 0)
by eventually elim blast
from ev! and lim_g have lim_g" filterlim g (at 0) (at 0)
by (auto simp: filterlim__at)
define ¢’ where g’ = (A\z. if z = 0 then fps_nth G 0 else g z)

show ?thesis
proof (cases F = 0)
assume [simp|: F' = 0
have eventually (Az. fz = 0) (at 0)
using F by (auto simp: has_laurent__expansion__def)
hence eventually (\z. f (g z) = 0) (at 0)
using lim__g' by (rule eventually__compose__ filterlim)
thus ?thesis
by (auto simp: has_laurent_expansion__def)
next
assume [simp|: F # 0
define n where n = fls subdegree F
define f’ where
"= (Az. if z = 0 then fps_nth (fls_base_factor_to_fps F) 0 else f z * z powi
—n)
have ((Az. (f' o g') z % g z powi n)) has_laurent__expansion fls_compose_ fps
FG
unfolding [’ def n_def fls_ compose_ fps_def g'_def
by (intro fps__expansion__intros laurent__expansion__intros has_fps__expansion_ fps_to_ fls
has_fps_expansion_fls _base_factor _to_ fps assms has_laurent__expansion_ fps)
also have ?this <— ?thesis
by (intro has_laurent__expansion__cong eventually _mono[OF ev])
(auto simp: f'_def power _int_minus g’ _def)

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 473

finally show ?thesis .
qed
qed

lemma has_laurent__expansion_fls _X_inv [laurent__expansion__intros|:
inverse has_laurent__expansion fls_ X _ inv
using has_laurent _expansion_inverse|OF has_laurent__expansion_ fps X
by (simp add: fls_inverse X)

lemma zorder times__analytic:
assumes f analytic_on {z} g analytic_on {z}
assumes eventually (Az. fz x g z # 0) (at 2)
shows zorder (Az. fz * g z) z = zorder f z + zorder g z
proof —
have *: (Aw. f (z + w)) has_fps_expansion fps_expansion f z
(Aw. g (z + w)) has__fps_expansion fps_expansion g z
Aw. f (z + w) *x g (z + w)) has_fps_expansion fps_expansion f z *
fps__expansion g z
by (intro fps__expansion__intros analytic _at_imp_has_fps_expansion assms)+
have [simp]: fps_expansion fz # 0
proof
assume fps_expansion fz = 0
hence eventually (Az. fz x gz = 0) (at z) using *(1)
by (auto simp: has_fps_expansion_0_iff nhds _to_0' eventually_ filtermap
eventually _at_ filter
elim: eventually _mono)
with assms(3) have eventually (Az. False) (at z)
by eventually elim auto
thus False by simp
qed
have [simp]: fps_expansion g z # 0
proof
assume fps__expansion g z = 0
hence eventually (Az. fz x gz = 0) (at z) using *(2)
by (auto simp: has_fps_expansion_0_iff nhds _to_0' eventually_ filtermap
eventually _at_ filter
elim: eventually _mono)
with assms(3) have eventually (Az. False) (at z)
by eventually elim auto
thus False by simp
qed
from *[THEN has_fps__expansion__zorder] show ?thesis
by auto
qed

lemma zorder const [simp]: ¢ # 0 = zorder (A_. ¢) z =0
by (intro zorder _eql[where S = UNIV]) auto

lemma zorder prod__analytic:

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 474

assumes A\z. x € A = fz analytic_on {z}

assumes eventually (Az. ([[z€A. fz z) # 0) (at 2)

shows zorder (\z. [[z€A. fz2) 2 = (D x€A. zorder (fz) 2)

using assms
proof (induction A rule: infinite_finite__induct)

case (insert z A)

have zorder (\z. fx z x ([[z€A. fz 2)) z = zorder (fz) z + zorder (\z. [[z€A.
fz2)z

using insert.prems insert.hyps by (intro zorder _times__analytic analytic__intros)
auto

also have zorder (Az. [[z€A. fz 2) z = (D z€A. zorder (fz) 2)

using insert.prems insert.hyps by (intro insert.IH) (auto elim!: eventually mono)

finally show ?case using insert

by simp

qed auto

lemma zorder eq OI:
assumes ¢ analytic_on {z} gz # 0
shows zorder g z = 0
using analytic _at assms zorder _eql by fastforce

lemma zorder pos_iff:
assumes | holomorphic_on A open A z € A frequently (Az. fz # 0) (at 2)
shows zorder fz > 0 +— fz=10
proof —
have f analytic_on {z}
using assms analytic__at by blast
hence x: (Aw. f (z + w)) has_fps_expansion fps_expansion f z
using analytic _at_imp_has_fps expansion by blast
have nz: fps_expansion fz # 0
proof
assume fps_expansion fz = 0
hence eventually (Az. fz = 0) (nhds)
using * by (auto simp: has_fps__expansion__def nhds_to_0' eventually filtermap
add__ac)
hence eventually (Az. fz = 0) (at z)
by (auto simp: eventually_at_filter elim: eventually _mono)
with assms show Fulse
by (auto simp: frequently def)
qed
from has_fps_expansion_zorder|OF x this] have eq: zorder f z = int (subdegree
(fps__expansion f 2))
by auto
moreover have subdegree (fps_expansion f z) = 0 +— fps_nth (fps_expansion
fz)0#0
using nz by (auto simp: subdegree _eq 0 _iff)
moreover have fps_nth (fps_expansion fz) 0 = f z
by (auto simp: fps_expansion__def)
ultimately show %thesis

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 475

by auto
qed

lemma zorder_pos_iff":
assumes f analytic_on {z} frequently (Az. fz # 0) (at 2)
shows zorder fz > 0 +— fz=10
using analytic__at assms zorder__pos_iff by blast

lemma zorder ge_0:
assumes f analytic_on {z} frequently (Az. fz # 0) (at 2)
shows zorder fz > 0
proof —
have x: (A\w. f (z + w)) has_laurent _expansion fps_to_fls (fps_expansion f z)
using assms by (simp add: analytic_at_imp_has_fps_expansion has_laurent__expansion_ fps)
from x assms(2) have fps_to_fls (fps_expansion f z) # 0
by (auto simp: has_laurent__expansion__def frequently def at_to_ 0’ eventu-
ally _filtermap add__ac)
with has_laurent expansion_zorder[OF x| show ?thesis
by (simp add: fls_subdegree_fls to_ fps)
qed

lemma zorder _eq 0 iff:
assumes f analytic_on {z} frequently (Aw. fw # 0) (at z)
shows zorder fz=0++— fz# 0
using assms zorder _eq 0I zorder _pos_iff’ by fastforce

lemma zorder scale:
assumes | analytic_on {a * z} eventually (Aw. fw # 0) (at (a x 2)) a # 0
shows zorder (Aw. f (a *x w)) z = zorder f (a * 2)
proof —
from assms(1) obtain r where r: r > 0 f holomorphic_on ball (a x z) r
by (auto simp: analytic_on__def)
have *: open (ball (a * z) r) connected (ball (a * z) r) a x z € ball (a * 2) r
using 7 <a # 0> by (auto simp: dist_norm)
from assms(2) have eventually (Aw. fw # 0 A w € ball (a * 2) 1 — {a * z})
(at (a * 2))
using «r > 0» by (intro eventually conj eventually__at_in_open) auto
then obtain 20 where f 20 # 0 A 20 € ball (a x z) r — {a * z}
using eventually _happens[of _ at (a x z)] by force
hence *x: Jweball (a x 2) 7. fw # 0
by blast

define n where n = nat (zorder f (a * 2))
obtain r’ where "
(if f (a % 2) = 0 then 0 < zorder f (a x z) else zorder f (a x z) = 0)
' > 0 cball (a * 2) ' C ball (a x z) r zor_poly f (a * z) holomorphic_on
cball (a % 2) 1’
Nw. w € cball (a * 2) ' =
fw=zor_polyf (axz)w+(w—ax2z) nAzor_polyf (ax*xz)w#0

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 476

unfolding n_ def using zorder_exist_zero|OF r(2) * xx] by blast

show ?thesis
proof (rule zorder__eql)
show open (ball z (r' / norm a)) z € ball z (r' /] norm a)
using r «r’' > 0 <a # 0> by auto
have (%) a ‘ball z (r' / emod a) C cball (a * 2) 1’
proof safe
fix w assume w € ball z (r’ / emod a)
thus a * w € cball (a * 2) 1’
using dist_mult_left[of a z w] <a # 0> by (auto simp: divide__simps mult_ac)
qed
thus (Aw. @ ~n * (zor_poly f (a * 2) o (Aw. a * w)) w) holomorphic__on ball
z (r' / norm a)
using <a # 0> by (intro holomorphic__on__compose__gen[OF __ r'(4)] holo-
morphic_intros) auto
show a ~n * (zor_poly f (a * 2z) o (Aw. a *x w)) z # 0
using r’ <a # 0> by auto
show f (a * w) = a ~n* (zor_poly f (a * 2) o (x) a) w* (w — z) powi (zorder
f(ax2))
if w e ball z (r' / norm a) w # z for w
proof —
have f (a * w) = zor_poly f (a * 2) (a * w) * (a x (w — 2)) " n
using that r'(5)[of a * w]| dist_mult_left[of a z w] <a # 0> unfolding
ring__ distribs
by (auto simp: divide__simps mult_ac)
also have ... = a “n* zor_poly f (a *x 2) (a x w) *x (w—2) " n
by (subst power _mult _distrib) (auto simp: mult_ac)
also have (w — z) ~n = (w — 2) powi of nat n
by simp
also have of nat n = zorder f (a * z)
using (1) by (auto simp: n__def split: if _splits)
finally show ?thesis
unfolding o def n_def .
qed
qed
qed

lemma zorder compose__aux:
assumes isolated_singularity at f 0 not__essential f 0
assumes G: g has_fps _expansion G G # 0g 0 = 0
assumes eventually (Aw. fw # 0) (at 0)
shows zorder (f o g) 0 = zorder f 0 % subdegree G
proof —
obtain F' where F: f has_laurent _expansion F
using not__essential _has_laurent__expansion_ 0[OF assms(1,2)] by blast
have [simp]: fps_nth G 0 = 0
using G <g 0 = 0) by (simp add: has_fps_expansion_imp_0_eq_fps_nth_0)
note [simp] = <G # 0y <g 0 = 0>

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 477

have [simp]: F # 0
using has_laurent__expansion__eventually__nonzero_iff[of f 0 F] F assms by
stmp
have FG: (f o g) has_laurent__expansion fls_compose_fps F G
by (intro has_laurent__expansion__compose has_laurent _expansion_fps F G)
auto

have zorder (f o g) 0 = fls_subdegree (fls_compose_fps F' G)
using has_laurent__expansion_zorder 0 [OF FG] by (auto simp: fls_compose__fps_eq 0_iff)
also have ... = fls _subdegree F x int (subdegree G)
by simp
also have fls subdegree F' = zorder f 0
using has_laurent__expansion_zorder 0 [OF F| by auto
finally show ?thesis .
qed

lemma zorder compose:
assumes isolated_singularity_at f (g z) not_essential f (g 2)
assumes G: (Az. g (z + z) — g 2) has_fps_expansion G G # 0
assumes eventually (Aw. fw # 0) (at (g 2))
shows zorder (f o g) z = zorder f (g z) % subdegree G
proof —
define f' where f' = (A\w. f (g z + w))
define ¢’ where g’ = (Aw. g (z + w) — g 2)
have zorder f (g z) = zorder f’ 0
by (simp add: f'_def zorder_shift’ add__ac)
have zorder (A\z. g x — g 2) z = zorder g’ 0
by (simp add: g’ _def zorder_shift’ add_ac)
have zorder (f o g) z = zorder (f' o ¢') 0
by (simp add: zorder_shift’ f'_def ¢’ _def add_ac o_def)
also have ... = zorder f' 0 * int (subdegree G)
proof (rule zorder _compose _aur)
show isolated_singularity__at f’ 0 unfolding f’ def
using assms has__laurent__expansion__isolated 0 not_essential__has laurent _expansion
by blast
show not__essential f' 0 unfolding f’_def
using assms has__laurent__expansion_mnot_essential 0 not__essential _has_laurent _expansion
by blast
qed (use assms in <auto simp: f' _def g’ def at_to 0’ eventually_filtermap
add__acy)
also have zorder f' 0 = zorder f (g 2)
by (simp add: f'_def zorder_shift’ add_ac)
finally show ?thesis .
qed

lemma fps_to_fls eq fls const_iff [simp]: fps_to_fls F = fls_const c +— F =
fps_const ¢
using fps_to_fls _eq iff by fastforce

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 478

lemma zorder compose’:
assumes isolated_singularity_at f (g z) not__essential f (g 2)
assumes g analytic_on {z}
assumes eventually (Aw. fw # 0) (at (g 2))
assumes eventually (Aw. g w # g z) (at 2)
shows zorder (f o g) z = zorder f (g 2z) x zorder (A\z. gx — g 2) 2
proof —
obtain G where G [fps_expansion_intros]: (A\z. g (z + x)) has_fps_expansion
G
using assms analytic_at_imp__has_fps expansion by blast
have G (A\z. g (z + z) — g z) has_fps_expansion G — fps_const (g z)
by (intro fps__expansion__intros)
hence G': (Az. g (z + z) — g 2) has_laurent_expansion fps_to_fls (G —
fps_const (g 2))
using has_laurent__expansion_ fps by blast
have nz: G — fps_const (g z) # 0
using has_laurent__expansion__eventually _nonzero_iff[OF G''] assms by auto
have zorder (f o g) z = zorder f (g z) * subdegree (G — fps__const (g z))
proof (rule zorder__compose)
show (Az. g (z + x) — ¢ 2) has_fps_expansion G — fps_const (g 2)
by (intro fps_expansion__intros)
qed (use assms nz in auto)
also have int (subdegree (G — fps_const (g z))) = fls_subdegree (fps_to_fls G
— fls_const (g 2))
by (simp flip: fls_subdegree_fls _to_fps)
also have ... = zorder (Az. gz — g 2) 2
using has_laurent__expansion_zorder [OF G'| nz by auto
finally show ?thesis .
qed

lemma analytic _at_cong:
assumes eventually (A\z. fz = gz) (nhdsz) z =y
shows [analytic_on {z} +— g analytic_on {y}
proof —
have g analytic_on {z} if f analytic_on {x} eventually (\z. fx = g z) (nhds z)
for fg
proof —
have (\y. f (z 4+ y)) has_fps_expansion fps_expansion f x
by (rule analytic _at_imp_has_fps_expansion) fact
also have ?this «— (\y. g (z + y)) has_fps_expansion fps_expansion f x
using that by (intro has_fps_expansion__cong refl) (auto simp: nhds_to_0'
eventually_filtermap)
finally show ?thesis
by (rule has_fps_expansion_imp__analytic)
qed
from this[of f g] this[of g f] show ?thesis using assms
by (auto simp: eq _commute)
qed

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 479

lemma has_laurent__expansion__sin’ [laurent__expansion__intros):
sin has_laurent__expansion fps_to_fls (fps_sin 1)
using has_fps_expansion__sin’ has_fps _expansion_to_laurent by blast

lemma has_laurent__expansion__cos' [laurent__expansion__intros|:
cos has_laurent _expansion fps_to_fls (fps_cos 1)
using has_fps_expansion_cos’ has_fps_expansion_to laurent by blast

lemma has_laurent__expansion__sin [laurent__expansion__intros]:
(Az. sin (¢ * 2)) has_laurent__expansion fps_to_fls (fps_sin c)
by (intro has_laurent__expansion_ fps has_fps__expansion__sin)

lemma has_laurent _expansion__cos [laurent__expansion__intros|:
(Az. cos (¢ * 2)) has_laurent__expansion fps_to_fls (fps_cos c)
by (intro has_laurent__expansion_ fps has_fps _expansion__cos)

lemma has_laurent _expansion__tan’ [laurent _expansion__intros]:
tan has_laurent _expansion fps_to_fls (fps_tan 1)
using has_fps_expansion_tan' has _fps_expansion_to_laurent by blast

lemma has_laurent__expansion__tan [laurent__expansion__intros):
(Az. tan (¢ * 2)) has_laurent__expansion fps_to_fls (fps_tan c)
by (intro has_laurent__expansion_ fps has_fps__expansion__tan)

8.5 More Laurent expansions

lemma has_laurent expansion_ frequently zero iff:

assumes (Aw. f (z + w)) has_laurent__expansion F

shows frequently (\z. fz=0) (at z) +— F =0

using assms by (simp add: frequently def has_laurent__expansion__eventually _nonzero_iff)

lemma has laurent expansion__eventually zero iff:
assumes (Aw. f (z + w)) has_laurent__expansion F
shows eventually (A\z. fz=0) (atz) +— F =0
using assms
by (metis has_laurent__expansion_ frequently zero__iff has_laurent _expansion__isolated

has__laurent__expansion_not__essential laurent _expansion__def
not__essential_frequently_0_imp__eventually 0 not_essential_has_laurent__expansion)

lemma has_laurent_expansion_ frequently nonzero_ iff:
assumes (Aw. f (z + w)) has_laurent__expansion F
shows frequently (A\z. fz # 0) (at z) «— F # 0
using assms by (metis has_laurent__expansion__eventually zero_iff not _eventually)

lemma has_laurent__expansion__sum__list [laurent__expansion__intros):
assumes Az. z € set zs = f x has_laurent _expansion F x
shows (Ay. Y a<xs. fz y) has_laurent _expansion () x<xs. F x)
using assms by (induction zs) (auto introl: laurent__expansion__intros)

Laurent{_}{\kern 0pt}Convergence.html

Laurent_ Convergence.thy 480

lemma has_laurent _expansion__prod_list [laurent__expansion_ intros]:
assumes A\z. x € set s = [z has_laurent__expansion F x
shows (Ay. [[z+xs. fz y) has_laurent_expansion (] x+xs. F x)
using assms by (induction xs) (auto introl: laurent__expansion__intros)

lemma has_laurent__expansion__sum__mset [laurent _expansion__intros|:
assumes A\z. ¢ €# [= [z has_laurent_expansion F x
shows (Ay. Y ze#I. fx y) has_laurent_expansion (> z€#I. F x)
using assms by (induction I) (auto intro!: laurent__expansion_intros)

lemma has_laurent _expansion_prod_mset [laurent _expansion__intros|:
assumes A\z. z €# I = [z has_laurent_expansion F x
shows (Ay. [[z€#I. fz y) has_laurent_expansion ([[z€#I. F x)
using assms by (induction I) (auto intro!: laurent__expansion_intros)

8.6 Formal convergence versus analytic convergence

The convergence of a sequence of formal power series and the convergence
of the functions in the complex plane do not imply each other:

o If we have the sequence of constant power series (1/n),>0, this clearly
converges to the zero function analytically, but as a series of formal
power series it is divergent (since the 0-th coefficient never stabilises).

o Conversely, the sequence of series (n!z"),>¢ converges formally to 0,
but the corresponding sequence of functions diverges for every x # 0.

However, if the sequence of series converges to some limit series h and
the corresponding series of functions converges uniformly to some limit
function g(x), then h is also a series expansion of g(x), i.e. in that case,
formal and analytic convergence agree.

proposition uniform_ limit_imp_ fps expansion__eq:

fixes [:: 'a = complex fps

assumes liml: (f —— h) F

assumes lim2: uniform_limit A Az 2. f'z2) ¢' F

assumes ezpansions: eventually (Az. f' z has_fps_expansion fz) F g’ has_fps_expansion
g

assumes holo: eventually (Az. f’ x holomorphic_on A) F

assumes A: open A 0 € A

assumes nontriv [simp]: F # bot

shows g = h
proof (rule fps_ext)

fix n :: nat

have eventually (Az. fps_nth (fz) n = fps_nth hn) F

using lim1 unfolding tendsto_ fps iff by blast
hence eventually (Az. (deriv " n) (f') 0 / fact n = fps_nth h n) F

Laurent{_}{\kern 0pt}Convergence.html

Meromorphic.thy 481

using expansions(1)
proof eventually elim
case (elim x)
have fps_nth (fz) n = (deriv "~ n) (f' z) 0 / fact n
by (rule fps_nth_fps_expansion) (use elim in auto)
with elim show ?case
by simp
qed
hence ((Az. (deriv "~ n) (f' z) 0 / fact n) —— fps_nth hn) F
by (simp add: tendsto__eventually)

moreover have ((Az. (deriv =" n) (f' z) 0) —— (deriv " " n) g’ 0) F
using lim2
proof (rule higher _deriv_complex__uniform__limit)
show eventually (Az. f’ x holomorphic_on A) F
using holo by eventually elim auto
qed (use A in auto)
hence ((Az. (deriv "~ n) (f' z) 0 / fact n) —— (deriv """ n) ¢’ 0 / fact n) F
by (intro tendsto_divide) auto

ultimately have fps_nth h n = (deriv " n) ¢’ 0 / fact n
using tendsto__unique[OF nontriv] by blast
also have ... = fps nthgn
by (rule fps_nth_fps_expansion [symmetric]) fact
finally show fps nth g n = fps _nth hn ..
qged

end

theory Meromorphic imports
Laurent__Convergence
Cauchy__Integral _Formula
HOL— Analysis.Sparse__In
begin

8.7 Remove singular points

This function takes a complex function and returns a version of it where all
removable singularities have been removed and all other singularities (to be
more precise, unremovable discontinuities) are set to 0.

This is very useful since it is sometimes difficult to avoid introducing re-
movable singularities. For example, consider the meromorphic functions
f(z) = z and ¢g(z) = 1/z. Then a mathematician would write f(z)g(z) =1,
but in Isabelle of course this is not so.

Using the remove__sings function, we indeed have remove_sings (Az. f z *
gz)=(_.1).

definition remove_sings :: (complex = complex) = complex = complex where

Meromorphic.html

Meromorphic.thy 482

remove_sings f z = (if Ic. f —z— c then Lim (at z) f else 0)

lemma remove__sings_eql [introl:
assumes f —z— ¢
shows remove_sings fz = ¢
using assms unfolding remove_sings def by (auto simp: tendsto_Lim)

lemma remove_sings_at__analytic [simp]:

assumes | analytic_on {z}

shows remove_sings fz = fz

using assms by (intro remove__sings_eql) (simp add: analytic__at_imp_isCont
isContD)

lemma remove_sings_at_pole [simp]:
assumes is_pole f z
shows remove_sings fz = 0
using assms unfolding remove sings def is_pole_def
by (meson at_neq bot not_tendsto__and__ filterlim__at_infinity)

lemma eventually remove__sings eq at:
assumes isolated__singularity_at f z
shows eventually (Aw. remove__sings f w = fw) (at 2)
proof —
from assms obtain r where r: r > 0 f analytic_on ball z r — {z}
by (auto simp: isolated__singularity at_def)
hence *: f analytic _on {w} if w € ball z r — {z} for w
using r that by (auto intro: analytic_on__subset)
have eventually (Aw. w € ball z v — {z}) (at 2)
using r by (intro eventually at_in_open) auto
thus ?thesis
by eventually _elim (auto simp: remove_sings__at__analytic *)
qed

lemma eventually remove__sings eq nhds:
assumes | analytic_on {z}
shows eventually (Aw. remove_sings f w = f w) (nhds z)
proof —
from assms obtain A where A: open A z € A f holomorphic_on A
by (auto simp: analytic_at)
have eventually (Az. z € A) (nhds z)
by (intro eventually_nhds_in_open A)
thus %thesis
proof eventually _elim
case (elim w)
from elim have f analytic_on {w}
using A analytic_at by blast
thus ?case by auto
qged
qed

Meromorphic.html

Meromorphic.thy 483

lemma remove__sings__compose:

assumes filtermap g (at z) = at 2’

shows remove_sings (f o g) z = remove__sings f 2’
proof (cases e. f —z'— ¢)

case True

then obtain ¢ where c: f —2'— ¢
by auto

from c have remove_sings f 2z’ = ¢
by blast

moreover from ¢ have remove_sings (f o g) 2 = ¢
using ¢ by (intro remove__sings__eql) (auto simp: filterlim__def filtermap__compose
assms)
ultimately show ?thesis
by simp
next
case Fulse
hence —~(3c. (f o g) —2— ¢)
by (auto simp: filterlim__def filtermap__compose assms)
with Fualse show ?thesis
by (auto simp: remove__sings__def)
qged

lemma remove_sings_cong:
assumes eventually (M\z. fox = gz) (at 2) z = 2’
shows remove_sings f z = remove_sings g 2’
proof (cases dc. f —z— ¢)
case True
then obtain ¢ where c¢: f —z— ¢ by blast
hence remove_sings fz = ¢
by blast
moreover have f —z— ¢ +— g —2'— ¢
using assms by (intro filterlim__cong refl) auto
with ¢ have remove_sings g z' = ¢
by (intro remove__sings _eql) auto
ultimately show “thesis
by simp
next
case Fulse
have f —z2— ¢ «— g —2'— c for ¢
using assms by (intro filterlim__cong) auto
with Fualse show ?thesis
by (auto simp: remove__sings_def)
qed

lemma deriv_remove_sings_at__analytic [simp:
assumes f analytic_on {z}
shows deriv (remove_sings f) z = deriv f z

Meromorphic.html

Meromorphic.thy 484

apply (rule deriv_cong__ev)
apply (rule eventually remove_sings eq nhds)
using assms by auto

lemma isolated_singularity__at_remove__sings [simp, intro|:

assumes isolated__singularity_at f z

shows isolated_singularity__at (remove_sings f) z

using isolated__singularity__at_cong|[OF eventually remove__sings eq at[OF assms]
refl] assms

by simp

lemma not_essential _remove__sings_iff [simp):
assumes isolated__singularity _at f z
shows not_essential (remove_sings f) z «— not__essential f z
using not__essential_cong[OF eventually remove__sings_eq at[OF assms(1)]

refl]
by simp

lemma not_essential_remove__sings [introl:
assumes isolated__singularity _at f z not__essential f z
shows not_essential (remove_sings f) z
by (subst not__essential_remove__sings__iff) (use assms in auto)

lemma
assumes isolated__singularity _at f z
shows is_pole_remove__sings_iff [simp):
is_pole (remove_sings f) z «— is_pole f z
and zorder_remove__sings [simp]:
zorder (remove__sings f) z = zorder f z
and zor_poly_remove__sings [simp):
zor_poly (remove__sings f) z = zor_poly f z
and has__laurent__expansion__remove__sings__iff [simp]:
(Aw. remove__sings f (z + w)) has_laurent_expansion F <—
(Aw. f (z + w)) has_laurent__expansion F
and tendsto__remove__sings_iff [simp):
remove_sings [—z— c+— f —z— ¢
by (intro is_pole_cong eventually remove sings eq at refl zorder cong
zor_poly _cong has_laurent__expansion__cong’ tendsto__cong assms)+

lemma remove_sings_has_laurent__expansion [laurent__expansion__intros|:
assumes f has_laurent_expansion F
shows remove_sings f has_laurent _expansion F
proof —
have remove__sings f has_laurent expansion F <— f has_laurent expansion F
proof (rule has_laurent expansion__cong)
have isolated__singularity_at f 0
using assms by (metis has_laurent__expansion__isolated_0)
thus eventually (Az. remove_sings fz = fz) (at 0)
by (rule eventually remove_sings eq at)

Meromorphic.html

Meromorphic.thy 485

qged auto
with assms show ?thesis
by simp
qed

lemma get all poles from__remove__sings:
fixes f:: compler = complex
defines ff=remove_sings f
assumes [holo:f holomorphic_on s — pts and finite pts
ptsCs open s and not__ess:V z€pts. not__essential f x
obtains pts’ where
pts’ C pts finite pts’ ff holomorphic_on s — pts’ VY z€pts’. is_pole ff x
proof —
define pts’ where pts’ = {z€pts. is_pole f x}

have pts’ C pts unfolding pts’_def by auto
then have finite pts’ using «finite pts

using rev_ finite _subset by blast
then have open (s — pts’) using <open s

by (simp add: finite_imp__closed open__Diff)

have isolated:isolated _singularity__at f z if zepts for z
proof (rule isolated singularity _at_holomorphic)
show f holomorphic_on (s—(pts—{z})) — {z}
by (metis Diff _insert f_holo insert_Diff that)
show open (s — (pts — {z}))
by (meson assms(3) assms(5) finite_ Diff finite_imp__closed open__ Diff)
show z € s — (pts — {z})
using assms(4) that by auto
qed

have ff holomorphic_on s — pts’
proof (rule no_isolated__singularity’)
show (ff —— ff 2) (at z within s — pts’) if z € pts—pts’ for z
proof —
have at z within s — pts’ = at 2
apply (rule at_within__open)
using <open (s — pts’)s that <ptsCs» by auto
moreover have ff —z— ff z
unfolding ff def
proof (subst tendsto__remove__sings_iff)
show isolated__singularity at f z
apply (rule isolated)
using that by auto
have not_essential f z
using not__ess that by auto
moreover have —is_pole f z
using that unfolding pts’ def by auto
ultimately have Jc. f —2— ¢

Meromorphic.html

Meromorphic.thy

unfolding not_essential def by auto
then show [—z— remove_sings f z
using remove__sings_eql by blast
qed
ultimately show #%thesis by auto
qed
have ff holomorphic_on s — pts
using [holo
proof (elim holomorphic_transform)
fix £ assume z € s — pits
then have f analytic_on {z}
using assms(3) assms(5) f_holo
by (meson finite _imp__closed
holomorphic__on__imp__analytic_at open_ Diff)
from remove__sings__at_analytic|OF this]
show fx = ff z unfolding ff def by auto
qed
then show ff holomorphic_on s — pts’ — (pts — pts’)
apply (elim holomorphic__on__subset)
by blast
show open (s — pts’)
by (simp add: <open (s — pts'))
show finite (pts — pts’)
by (simp add: assms(3))
qed
moreover have Vzepts’. is_pole ff x
unfolding pts’_def
using ff def is_pole_remove_sings iff isolated by blast
moreover note <pts’ C pts> <finite pts’
ultimately show ¢thesis using that by auto
qed

lemma remove_sings _eq 0 _iff:
assumes not__essential f w
shows remove_sings fw = 0 <— is_pole fw V f —w— 0
proof (cases is_pole f w)
case Fulse
then obtain ¢ where c:f —w— ¢
using <not__essential f wy unfolding not essential def by auto
then show ?thesis
using False remove__sings eql by auto
qed simp

lemma remove_sings analytic _at:
assumes isolated_singularity at f z f —z— ¢
shows remove_sings f analytic_on {z}
proof —

from assms(1) obtain A where A: open A z € A f holomorphic_on (A — {z})
using analytic _imp__holomorphic isolated__singularity at_iff analytic_nhd by

Meromorphic.html

Meromorphic.thy 487

auto
have ana: f analytic_on (A — {z})
by (subst analytic_on__open) (use A in auto)

have remove__sings f holomorphic_on A
proof (rule no_isolated__singularity)
have f holomorphic_on (A — {z})
by fact
moreover have remove_sings f holomorphic_on (A — {z}) +— f holomor-
phic_on (A — {z})
by (intro holomorphic__cong remove__sings__at__analytic) (auto introl: ana-
lytic__on__subset[OF ana))
ultimately show remove_sings f holomorphic_on (A — {z})
by blast
hence continuous _on (A—{z}) (remove__sings f)
by (intro holomorphic__on__imp__continuous on)
moreover have isCont (remove_sings f) z
using assms isCont__def remove__sings_eql tendsto_remove__sings iff by
blast
ultimately show continuous _on A (remove__sings f)
by (metis A(1) DiffT closed_singleton continuous _on__eq _continuous__at
open__Diff singletonD)
qed (use A(1) in auto)
thus ?thesis
using A(1,2) analytic_at by blast
qged

lemma remove__sings _analytic_on:
assumes f analytic_on A
shows remove_sings f analytic_on A
proof —
from assms obtain B where B: open B A C B f holomorphic_on B
by (metis analytic_on__holomorphic)
have remove__sings f holomorphic_on B <— f holomorphic_on B
proof (rule holomorphic__cong)
fix z assume 2z € B
have f analytic_on {z}
using <z € By B holomorphic_on__imp__analytic__at by blast
thus remove_sings f z = f z
by (rule remove__sings_at_analytic)
qed auto
thus %thesis
using B analytic__on__holomorphic by blast
qed

lemma residue_remove__sings [simp):

assumes isolated__singularity _at f z

shows residue (remove_sings f) z = residue f z
proof —

Meromorphic.html

Meromorphic.thy 488

from assms have eventually (Aw. remove__sings f w = f w) (at z)
using eventually remove_sings eq at by blast
then obtain A where A: open A z € A Aw. w € A — {2z} = remove__sings f
w=fuw
by (subst (asm) eventually at_topological) blast
from A(1,2) obtain ¢ where e: ¢ > 0 cball z¢ C A
using open__contains_cball _eq by blast
hence eq: remove_sings fw = fw if w € cball z ¢ — {z} for w
using that A € by blast

define P where P = (\f ¢ . (f has__contour_integral of real (2 x pi) * 1 % c)
(circlepath z €))
have P (remove_sings f) ¢ «— P fcdif 0 <6 § < e for ¢ §
unfolding P_def using < > 0» that by (intro has_contour_integral cong)
(auto simp: eq)
hence x: (Ve>0.e¢ < e — P (remove_sings f) ce) +— (Ve>0.e < e — P
fee)ife<eforce
using that by force
have #*: (Fe>0.Ve>0.c < e — P (remove_sings f) c &) «— (Fe>0.Ve>0.
e<e— Pfce)forc
proof
assume (Je>0.Ve>0.e < e — P (remove_sings f) c €)
then obtain e where e > 0 Ve>0. ¢ < e — P (remove_sings f) c €
by blast
thus (Je>0.Ve>0.e <e— Pfce)
by (intro exI[of _ min e €]) (use %[of min e € c] (1) in auto)
next
assume (Fe>0.Ve>0.e <e— Pfce)
then obtain e where e > 0 Ve>0. e <e— Pfce
by blast
thus (Je>0. Ve>0. ¢ < e — P (remove_sings f) c €)
by (intro exI[of _ min e €]) (use *[of min e € c] (1) in auto)
qed
show ?thesis
unfolding residue__def by (intro arg_conglof _ __ Eps] ext xx[unfolded P__def])
qed

lemma remove_sings shift_0:
remove__sings f z = remove__sings (Aw. f (z + w)) 0
proof (cases Jc. f —z— ¢)
case True
then obtain ¢ where c: f —z— ¢
by blast
from ¢ have remove_sings f z = ¢
by (rule remove__sings _eql)
moreover have remove_sings (Aw. f (z + w)) 0 = ¢
by (rule remove__sings_eql) (use c in «simp__all add: at_to_ 0 filterlim__filtermap
add__acy)
ultimately show %thesis

Meromorphic.html

Meromorphic.thy 489

by simp
next
case Fulse
hence -(3¢. (Aw. f (z + w)) —0— ¢)
by (simp add: at_to_0' filterlim__filtermap add__ac)
with False show Zthesis
by (simp add: remove__sings_def)
qed

lemma remove__sings_shift_ 0"
NO_MATCH 0 z = remove__sings f z = remove__sings (Aw. f (z + w)) 0
by (rule remove__sings__shift_0)

8.8 Meromorphicity

We define meromorphicity in terms of Laurent series expansions. This has
the advantage of giving us a particularly simple definition that makes many
of the lemmas below trivial because they reduce to similar statements about
Laurent series that are already in the library.

On open domains, this definition coincides with the usual one from the
literature, namely that the function be holomorphic on its domain except
for a set of non-essential singularities that is sparse, i.e. that has no limit
point inside the domain.

However, unlike the definitions found in the literature, our definition also
makes sense for non-open domains: similarly to (analytic_on), we consider
a function meromorphic on a non-open domain if it is meromorphic on some
open superset of that domain.

We will prove all of this below.

definition meromorphic_on :: (complex = complex) = complex set = bool
(infix] «(meromorphic’_on)> 50) where
f meromorphic_on A «— (Vz€A. 3F. (Aw. f (z + w)) has_laurent_expansion
F)

lemma meromorphic__at_iff: f meromorphic_on {z} +— isolated__singularity__at
fz A not__essential f z
unfolding meromorphic_on__def
by (metis has_laurent__expansion__isolated has_laurent__expansion_not__essential
insertll singletonD not__essential_has_laurent__expansion)

named__theorems meromorphic_intros

lemma meromorphic_on__empty [simp, intro]: f meromorphic_on {}
by (auto simp: meromorphic_on__def)

lemma meromorphic_on_def"
f meromorphic_on A «+— (Vz€A. (Aw. f (z + w)) has_laurent_expansion lau-
rent__expansion f z)

Meromorphic.html

Meromorphic.thy 490

unfolding meromorphic_on_ def using laurent expansion__eql by blast

lemma meromorphic__on_meromorphic_at: f meromorphic_on A «— (Vz€A. f
meromorphic_on {z})
by (auto simp: meromorphic__on__def)

lemma meromorphic__on__altdef:
f meromorphic_on A <— (¥ z€A. isolated__singularity at f z N not__essential f
z)

by (subst meromorphic_on__meromorphic_at) (auto simp: meromorphic_at_iff)

lemma meromorphic__on__cong:
assumes \z. z € A = eventually (Aw. fw =g w) (at z) A= B
shows f meromorphic_on A +— g meromorphic_on B
unfolding meromorphic_on__def using assms
by (intro ball_cong refl arg_conglof _ __ Ex] has_laurent__expansion__cong ext)
(simp__all add: at_to_0' eventually filtermap add_ac)

lemma meromorphic_on__subset: f meromorphic_on A = B C A = f mero-
morphic_on B
by (auto simp: meromorphic__on__def)

lemma meromorphic_on_ Un:
assumes f meromorphic_on A f meromorphic_on B
shows f meromorphic_on (A U B)
using assms unfolding meromorphic_on_ def by blast

lemma meromorphic__on__ Union:
assumes \A. A € B = [meromorphic_on A
shows f meromorphic_on (|J B)
using assms unfolding meromorphic_on_ def by blast

lemma meromorphic_on_ UN:
assumes A\z. x € X = f meromorphic_on (A z)
shows f meromorphic_on (JzeX. A z)
using assms unfolding meromorphic_on_ def by blast

lemma meromorphic__on__imp__has_laurent__expansion:
assumes [meromorphic_on A z € A
shows (Aw. f (z + w)) has_laurent__expansion laurent__expansion f z
using assms laurent__expansion__eql unfolding meromorphic_on_ def by blast

lemma meromorphic__on__open_nhd:
assumes f meromorphic_on A
obtains B where open B A C B f meromorphic_on B
proof —
obtain F where F: \z. z € A = (A\w. f (z + w)) has_laurent_expansion F z
using assms unfolding meromorphic_on__def by metis
have 3Z. open Z N z € Z N (VweZ—{z}. eval_fls (F z) (w — z) = fw) if z: z

Meromorphic.html

Meromorphic.thy 491

€ A for z
proof —
obtain Z where Z: open Z 0 € Z Nw. w € Z — {0} = eval_fls (F z) w =
f(z 4 w)
using F[OF z] unfolding has_laurent__expansion__def eventually _at_topological
by blast
hence open ((+) z “*Z) and z € (+) z * Z
using open__translation by auto
moreover have eval_fls (F z2) (w— 2) =fwifwe (+) z * Z — {z} for w
using Z(3)[of w — 2] that by auto
ultimately show ?thesis by blast
qed
then obtain Z where Z:
Ne.z€ A= open (Z2) Nz€e ZzN (NYweZ z—{z}. eval_fls (F z) (w — 2)
= fw)
by metis

define B where B = (|Jz€A. Z z N eball z (fls_conv_radius (F z)))
show ?thesis
proof (rule that[of B])
show open B
using Z unfolding B _def by auto
show A C B
unfolding B _def using F Z by (auto simp: has_laurent__expansion__def
zero__ereal _def)
show f meromorphic_on B
unfolding meromorphic_on_ def
proof
fix z assume 2: z € B
show 3 F. (Aw. f (z + w)) has_laurent__expansion F
proof (cases z € A)
case True
thus ?thesis using F' by blast
next
case Fulse
then obtain z0 where 20: 20 € A z € Z 20 — {20} dist 20 z <
fls_conv_radius (F 20)
using z Fualse Z unfolding B _def by auto
hence (Aw. eval fis (F 20) (w — 20)) analytic_on {z}
by (intro analytic_on__eval _fls’ analytic_intros) (auto simp: dist_norm)
also have ?this «— [analytic_on {z}
proof (intro analytic_at_cong refl)
have eventually (Aw. w € Z 20 — {20}) (nhds z)
using Z[of z0] 20 by (intro eventually nhds_in_open) auto
thus V p z in nhds z. eval_fls (F 20) (zv — 20) = f«
by eventually elim (use Z[of z0] 20 in auto)
qed
finally show ?thesis
using analytic_at _imp_has_fps_expansion has_fps__expansion_to_ laurent

Meromorphic.html

Meromorphic.thy 492

by blast
qed
qed
qed
qed

lemma meromorphic__on_ not__essential:

assumes [meromorphic_on {z}

shows not_essential f z

using assms has__laurent__expansion_not__essential unfolding meromorphic_on_ def
by blast

lemma meromorphic__on__isolated__singularity:

assumes f meromorphic_on {z}

shows isolated singularity at f z

using assms has_laurent__expansion__isolated unfolding meromorphic__on__ def
by blast

lemma meromorphic__on__imp_not_islimpt_singularities:
assumes f meromorphic_on A z € A
shows -z islimpt {w. —f analytic_on {w}}
proof —
obtain B where B: open B A C B f meromorphic_on B
using assms meromorphic__on__open_ nhd by blast
obtain F where F: (Aw. f (z + w)) has_laurent__expansion F
using B assms(2) unfolding meromorphic_on_def by blast
from F have isolated singularity_at f z
using has_laurent _expansion__isolated assms(2) by blast
then obtain r where r: r > 0 f analytic_on ball z v — {z}
unfolding isolated__singularity at_def by blast
have f analytic_on {w} if w € ball z r — {2} for w
by (rule analytic_on__subset[OF r(2)]) (use that in auto)
hence eventually (Aw. f analytic_on {w}) (at 2)
using eventually at_in_openfof ball z v z] <r > 0> by (auto elim!: eventu-
ally _mono)
thus —z islimpt {w. —f analytic_on {w}}
by (auto simp: islimpt__conv_frequently_at frequently_def)
qged

lemma meromorphic__on__imp__sparse__singularities:
assumes f meromorphic_on A
shows {w. —=f analytic_on {w}} sparse_in A
by (metis assms meromorphic__on__imp_not_islimpt_singularities
meromorphic__on__open__nhd sparse__in__open sparse__in__subset)

lemma meromorphic_on__imp_ sparse__singularities’:
assumes f meromorphic_on A
shows {weA. —=f analytic_on {w}} sparse_in A
using meromorphic__on__imp__sparse_singularities| OF assms]

Meromorphic.html

Meromorphic.thy 493

by (rule sparse__in__subset2) auto

lemma meromorphic__onk:
assumes f meromorphic_on A
obtains pts where pts C A pts sparse_in A f analytic_on A — pts
Nz. 2 € A = not_essential f 2 N\z. 2 € A = isolated__singularity__at f z
proof (rule that)
show {z € A. = f analytic_on {z}} sparse_in A
using assms by (rule meromorphic_on__imp__sparse__singularities’)
show f analytic on A — {z € A. = f analytic_on {z}}
by (subst analytic_on__analytic_at) auto
qed (use assms in <auto intro: meromorphic_on_isolated _singularity meromor-
phic_on_not__essential meromorphic__on__subset))

lemma meromorphic_onl weak:
assumes f analytic_on A — pts N\z. z € pts => not__essential f z pts sparse_in
A
pts N frontier A = {}
shows f meromorphic_on A
unfolding meromorphic_on_ def
proof
fix z assume z2: z € A
show (3F. (\w. f (z + w)) has_laurent _expansion F)
proof (cases z € pts)
case Fulse
have f analytic_on {z}
using assms(1) by (rule analytic_on__subset) (use False z in auto)
thus ?thesis
using isolated__singularity__at_analytic not_essential _analytic
not__essential _has_laurent__expansion by blast
next
case True
show ?thesis
proof (rule exl, rule not_essential _has_laurent__expansion)
show not__essential f z
using assms(2) True by blast
next
show isolated_singularity at f z
proof (rule isolated singularity at holomorphic)
show open (interior A — (pts — {z}))
proof (rule open_diff _sparse_pts)
show pts — {z} sparse_in interior A
using sparse_in_subset sparse_in__subset2 assms interior__subset
Diff subset by metis
qged auto
next
have f analytic_on interior A — (pts — {z}) — {z}
using assms(1) by (rule analytic_on__subset) (use interior _subset in
blast)

Meromorphic.html

Meromorphic.thy 494

thus f holomorphic_on interior A — (pts — {z}) — {z}
by (rule analytic_imp__holomorphic)
next
from assms(4) and True have z € interior A
unfolding frontier def using closure__subset z by blast
thus z € interior A — (pts — {z})
by blast
qed
qed
qged
qged

lemma meromorphic__onl open:
assumes open A f analytic_on A — pts N\z. z € pts = not__essential f z
assumes A\z. z € A = -z islimpt pts N A
shows f meromorphic_on A
proof (rule meromorphic__onl_weak)
have x: A — pts N A = A — pts
by blast
show f analytic_on A — pts N A
unfolding * by fact
show pts N A sparse_in A
using assms(1,4) by (subst sparse_in__open) auto
show not__essential f z if z € pts N A for z
using assms(3) that by blast
show pts N A N frontier A = {}
using <open A frontier_disjoint_eq by blast
qed

lemma meromorphic_at_isCont__imp__analytic:
assumes f meromorphic_on {z} isCont f z
shows f analytic_on {z}
proof —
have x: (A\w. f (z + w)) has_laurent _expansion laurent__expansion f z
using assms by (auto intro: meromorphic_on_imp__has_laurent__expansion)
from assms have —is_pole f z
using is_pole def not_tendsto__and_ filterlim__at_infinity trivial _limit_at by
(metis isContD)
with x have fls subdegree (laurent expansion f z) > 0
using has_laurent__expansion__imp_is_pole linorder_not_le by blast
hence xx: (Aw. eval_fls (laurent__expansion f z) (w — 2)) analytic_on {z}
by (intro analytic_intros)+ (use * in <auto simp: has_laurent__expansion__def
zero__ereal__def>)
have (Aw. eval_fls (laurent__expansion f z) (w — z)) —z— eval_fls (laurent__expansion
72) (2 - 2)
by (intro isContD analytic__at_imp_isCont *x)
also have ?this «— [—z— eval_fls (laurent__expansion f z) (z — z)
by (intro filterlim__cong refl)
(use x in <auto simp: has_laurent__expansion__def at_to 0’ eventually_filtermap

Meromorphic.html

Meromorphic.thy 495

add__acy)
finally have f —z— eval fls (laurent_expansion f z) 0
by simp
moreover from assms have f —z— fz
by (auto intro: isContD)
ultimately have xxx: eval_fls (laurent_expansion f z) 0 = f z
by (rule LIM _unique)

have eventually (Aw. fw = eval_fls (laurent__expansion f z) (w — z)) (at 2)
using * by (simp add: has_laurent__expansion_def at_to 0’ eventually_ filtermap
add__ac eq__commute)
hence eventually (Aw. fw = eval_fls (laurent__expansion f z) (w — z)) (nhds z)
unfolding eventually at_filter by eventually elim (use *xx in auto)
hence f analytic_on {z} +— (Aw. eval_fls (laurent__expansion f z) (w — z))
analytic_on {z}
by (intro analytic_at_cong refl)
with xx show ?thesis
by simp
qed

lemma analytic_on_imp_meromorphic_on:
assumes | analytic_on A
shows f meromorphic_on A
by (rule meromorphic_onl _weak[of _ __ {}]) (use assms in auto)

lemma meromorphic_on__compose:
assumes g meromorphic_on A f analytic_on Bf ‘B C A
shows (Aw. g (f w)) meromorphic_on B
unfolding meromorphic_on_ def
proof safe
fix z assume z: z € B
have f analytic_on {z}
using assms(2) by (rule analytic_on__subset) (use assms(3) z in auto)
hence (A\w. fw — f2) analytic_on {z}
by (intro analytic_intros)
then obtain F where F: (Aw. f (z + w) — f z) has_fps_expansion F
using analytic_at_imp_has_fps expansion by blast

from assms(3) and z have fz € A
by auto
with assms(1) obtain G where G: (Aw. g (f z + w)) has_laurent__expansion

G

using z by (auto simp: meromorphic__on__def)

have 3H. (Aw. g (fz + w)) o (Aw. f (2 + w) — f2)) has_laurent__expansion H
proof (cases F = 0)

case Fulse

show ?thesis

proof (rule exl, rule has_laurent__expansion__compose)

Meromorphic.html

Meromorphic.thy 496

show (Aw. f (2 + w) — f 2) has_laurent_expansion fps_to_fls F
using F' by (rule has_laurent__expansion_ fps)
show fps_nth F 0 = 0
using has_fps_expansion_imp_0_eq fps_nth_0[OF F] by simp
qed fact+
next
case True
have (Aw. g (f 2)) has_laurent _expansion fls_const (g (f 2))
by auto
also have ?this +— (Aw. (Aw. g (fz + w)) o (Aw. f (z + w) — f2)) w)
has__laurent__expansion fls_const (g (f 2))
proof (rule has_laurent__expansion__cong, goal cases)
case I
from F and True have eventually (Aw. f (z + w) — fz = 0) (nhds 0)
by (simp add: has_fps__expansion__0_iff)
hence eventually (Aw. f (z + w) — fz = 0) (at 0)
by (simp add: eventually _nhds_conv__at)
thus ?case
by eventually_elim auto
qed auto
finally show ?thesis
by blast
qed
thus 3H. (A\w. g (f (z + w))) has_laurent__expansion H
by (simp add: o_ def)
qged

lemma constant_on__imp_meromorphic__on:
assumes f constant_on A open A
shows f meromorphic_on A
using assms analytic_on__imp_meromorphic_on
constant__on__imp__analytic_on
by blast

8.9 Nice meromorphicity

This is probably very non-standard, but we call a function “nicely mero-
morphic” if it is meromorphic and has no removable singularities. That
means that the only singularities are poles. We furthermore require that
the function return 0 at any pole, for convenience.

definition nicely_meromorphic_on :: (complex = complex) = complex set = bool
(infix] «(nicely’ _meromorphic’ _on)» 50)
where f nicely meromorphic_on A <— f meromorphic_on A

A (Vz€A. (is_pole fz N f2=0)V [—z— [2)

lemma nicely _meromorphic__on__subset:
f nicely_meromorphic_on A =— B C A = f nicely_meromorphic_on B
using meromorphic__on__subset unfolding nicely _meromorphic__on_ def by blast

Meromorphic.html

Meromorphic.thy 497

lemma constant_on__imp_nicely _meromorphic__on:

assumes | constant_on A open A

shows f nicely meromorphic_on A

by (meson analytic_at_imp_isCont assms
constant__on__imp__holomorphic__on
constant__on__imp_ meromorphic__on
holomorphic_on__imp__analytic__at isCont__def
nicely__meromorphic__on__def)

lemma nicely meromorphic_on__imp__analytic_at:
assumes [nicely__meromorphic_on A z € A —is_pole f z
shows f analytic_on {z}
proof (rule meromorphic_at_isCont_imp__analytic)
show f meromorphic_on {z}
by (rule meromorphic__on__subset[of _ A]) (use assms in <auto simp: nicely__meromorphic_on__def»)
next
from assms have f —z— fz
by (auto simp: nicely _meromorphic_on__def)
thus isCont f z
by (auto simp: isCont__def)
qged

lemma analytic_on__imp_ nicely _meromorphic__on:
f analytic_on A = f nicely_meromorphic_on A
by (meson analytic_at_imp_isCont analytic_on__analytic _at
analytic__on__imp_ meromorphic__on isContD nicely__meromorphic__on__def)

lemma remove__sings_meromorphic [meromorphic__intros|:

assumes f meromorphic_on A

shows remowve__sings f meromorphic_on A

unfolding meromorphic_on_ def
proof safe

fix z assume z: z € A

show 3 F. (Aw. remove_sings [(z + w)) has_laurent__expansion F'

using assms meromorphic__on__isolated__singularity meromorphic__on_not_essential

not__essential__has_laurent _expansion z meromorphic__on__ subset by blast

qged

lemma remowve__sings mnicely meromorphic:
assumes f meromorphic_on A
shows remove__sings f nicely _meromorphic_on A
proof —
have remove__sings f meromorphic_on A
by (simp add: assms remove__sings _meromorphic)
moreover have is_pole (remove_sings f) z
A remove_sings fz = 0 V
remove__sings f —z— remove__sings f z
if z€ A for 2z

Meromorphic.html

Meromorphic.thy 498

proof (cases Jc. f —z— ¢)
case True
then have remove_sings f —z— remove_sings f z
by (metis remove__sings__eql tendsto__remove__sings__iff
assms meromorphic_onE that)
then show ?thesis by simp
next
case Fualse
then have is_pole (remove_sings f) z
A remove_sings fz = 0
by (meson is_pole_remove__sings_iff remove__sings__def
remove__sings_eq_0__iff assms meromorphic_onE that)
then show ?thesis by simp
qed
ultimately show “thesis
unfolding nicely meromorphic_on_ def by simp
qed

A nicely meromorphic function that frequently takes the same value in the
neighbourhood of some point is constant.

lemma frequently eq meromorphic_imp__ constant:
assumes frequently (\z. fz = ¢) (at 2)
assumes f nicely _meromorphic_on A open A connected A z € A
shows Aw. wed= fwu=c
proof —
from assms(2) have mero: f meromorphic_on A
by (auto simp: nicely _meromorphic__on__def)
have sparse: {z. is_pole f z} sparse_in A
using assms(2) mero
by (meson assms(8) meromorphic__on_isolated_singularity meromorphic__on__meromorphic__at
not_islimpt_poles sparse__in__open)

have eq: fw = ¢ if w: w € A —is_pole f w for w
proof —
have fw — c= 0
proof (rule analytic_continuation|[of Aw. fw — c])
show (Aw. fw — ¢) holomorphic_on {z€A. —is_pole f z} using assms(2)
by (intro holomorphic__intros)
(metis (mono__tags, lifting) analytic_imp__holomorphic analytic_on__analytic__at

mem,__Collect__eq nicely _meromorphic_on_imp__analytic__at)
next
from sparse and assms(3) have open (A — {z. is_pole f z})
by (simp add: open_ diff _sparse_pts)
also have A — {z. is_pole f z} = {2€A. —is_pole f 2}
by blast
finally show open
next
from sparse have connected (A — {z. is_pole f z})

Meromorphic.html

Meromorphic.thy 499

using assms(3,4) by (intro sparse__imp__connected) auto
also have A — {z. is_pole f z} = {2€A. —is_pole f 2}
by blast
finally show connected
next
have eventually (Aw. w € A) (at 2)
using assms by (intro eventually at_in_open’) auto
moreover have eventually (Aw. —is_pole f w) (at z) using mero
by (metis assms(5) eventually_not_pole meromorphic_onkE)
ultimately have ev: eventually (Aw. w € A A —is_pole f w) (at 2)
by eventually elim auto
show z islimpt {z€A. —is_pole fz A fz = ¢}
using frequently eventually_frequently[OF assms(1) ev]
unfolding islimpt_conv_ frequently _at by (rule frequently elim1) auto
next
from assms(1) have —is_pole f z
by (simp add: frequently const_imp_not_is_pole)
with <z € A show z € {z € A. = is_pole f z}
by auto
ged (use w in auto)
thus fw = ¢
by simp
qed

have not_pole: —is_pole f w if w: w € A for w
proof —
have eventually (Aw. —is_pole f w) (at w)
using mero by (metis eventually _not_pole meromorphic_onE that)
moreover have eventually (Aw. w € A) (at w)
using w <open Ay by (intro eventually at_in__open’)
ultimately have eventually (Aw. fw = ¢) (at w)
by eventually _elim (auto simp: eq)
hence is_pole f w +— is_pole (A_. ¢) w
by (intro is_pole__cong refl)
thus ?Zthesis
by simp
qged

show fw = cif w: w € A for w
using eq[OF w not_pole[OF w]] .
qed

lemma nicely _meromorphic_on_unop:
assumes f nicely _meromorphic_on A
assumes f meromorphic_on A = (Az. h (f 2)) meromorphic_on A
assumes A\z. z € A = is_pole f 2 = is_pole (Az. h (f 2)) 2
assumes A\z. z € f ‘A = isCont h z
assumes h 0 = 0
shows (Az. h (f 2)) nicely_meromorphic_on A

Meromorphic.html

Meromorphic.thy 500

unfolding nicely meromorphic_on_ def
proof (intro conjl balll)
show (Az. h (f z)) meromorphic_on A
using assms(1,2) by (auto simp: nicely _meromorphic__on__def)
next
fix z assume 2: z € A
hence is polefzNfz=0V f —2— fz
using assms by (auto simp: nicely_meromorphic_on__def)
thus is_pole (Az. b (f2)) 2 Ah (fz) =0V (Az. h (f2)) —z2— h (f 2)
proof (rule disj_forward)
assume is_pole fz N fz =0
thus is_pole (A\z. b (f2)) 2 A h (fz) =0
using assms z by auto
next
assume x: [—z— [z
from z assms have isCont h (f z)
by auto
with * show (Az. h (f2)) —2— h (f 2)
using continuous_within continuous within__compose3 by blast
qed
qed

8.10 Closure properties and proofs for individual functions

lemma meromorphic_on__const [intro, meromorphic_intros]: (A_. ¢) meromor-
phic_on A
by (rule analytic _on__imp_meromorphic_on) auto

lemma meromorphic_on__id [intro, meromorphic_intros]: (Aw. w) meromorphic_on
A

by (auto simp: meromorphic__on__def intro!: exl laurent _expansion__intros)

lemma meromorphic_on__id’ [intro, meromorphic__intros|: id meromorphic_on A
by (auto simp: meromorphic__on__def introl: exl laurent _expansion__intros)

lemma meromorphic_on__add [meromorphic_intros:
assumes [meromorphic_on A g meromorphic_on A
shows (Aw. fw + g w) meromorphic_on A
unfolding meromorphic_on_ def
by (rule laurent _expansion__intros exl balll
assms| THEN meromorphic_on__imp__has_laurent__expansion] | assump-
tion)+

lemma meromorphic_on_uminus [meromorphic__intros|:
assumes f meromorphic_on A
shows (Aw. —f w) meromorphic_on A
unfolding meromorphic_on__def
by (rule laurent _expansion__intros exl balll
assms|THEN meromorphic_on__imp__has_laurent__expansion] | assump-

Meromorphic.html

Meromorphic.thy 501

tion)+

lemma meromorphic_on__diff [meromorphic_intros|:

assumes [meromorphic_on A g meromorphic_on A

shows (Aw. fw — g w) meromorphic_on A

using meromorphic_on__add]OF assms(1) meromorphic__on_uminus|OF assms(2)]]
by simp

lemma meromorphic_on_mult [meromorphic_intros|:
assumes [meromorphic_on A g meromorphic_on A
shows (Aw. fw x g w) meromorphic_on A
unfolding meromorphic_on__def
by (rule laurent _expansion__intros exl balll

assms| THEN meromorphic_on__imp__has_laurent__expansion] | assump-

tion)+

lemma meromorphic__on__power [meromorphic__intros]:
assumes f meromorphic_on A
shows (Aw. fw ~ n) meromorphic_on A
unfolding meromorphic_on_ def
by (rule laurent__expansion__intros exl balll
assms| THEN meromorphic__on__imp__has_laurent__expansion)

assump-
tion)+

lemma meromorphic_on__powi [meromorphic_intros|:
assumes f meromorphic_on A
shows (Aw. f w powi n) meromorphic_on A
unfolding meromorphic_on__def
by (rule laurent _expansion__intros exl balll
assms|THEN meromorphic__on__imp__has_laurent__expansion]

assump-
tion)+

lemma meromorphic_on__scaleR [meromorphic_intros:
assumes f meromorphic_on A
shows (Aw. scaleR z (f w)) meromorphic_on A
unfolding meromorphic_on_ def
by (rule laurent _expansion__intros exl balll
assms| THEN meromorphic_on__imp__has_laurent__expansion]

assump-
tion)+

lemma meromorphic_on__inverse [meromorphic_intros|:
assumes f meromorphic_on A
shows (Aw. inverse (f w)) meromorphic_on A
unfolding meromorphic_on__def
by (rule laurent _expansion__intros exl balll
assms|THEN meromorphic__on__imp__has_laurent__expansion]

assump-
tion)+

lemma meromorphic__on__divide [meromorphic__intros]:

Meromorphic.html

Meromorphic.thy 502

assumes [meromorphic_on A g meromorphic_on A

shows (Aw. fw / g w) meromorphic_on A

using meromorphic_on_mult|OF assms(1) meromorphic_on__inverse[OF assms(2)]]
by (simp add: field_simps)

lemma meromorphic_on__sum [meromorphic__intros|:
assumes Ai. i € I = fi meromorphic_on A
shows (Aw. Y i€l. fiw) meromorphic_on A
unfolding meromorphic_on_ def
by (rule laurent _expansion__intros exl balll
assms| THEN meromorphic_on__imp__has_laurent__expansion] | assump-
tion)+

lemma meromorphic_on__sum__list [meromorphic__intros:
assumes Ai. i € set fs = f i meromorphic_on A
shows (Aw. Y i« fs. f i w) meromorphic_on A
unfolding meromorphic_on_ def
by (rule laurent _expansion__intros exl balll
assms| THEN meromorphic_on__imp__has_laurent__expansion] | assump-
tion)+

lemma meromorphic_on__sum_mset [meromorphic__intros|:
assumes Ai. i €# I = fi meromorphic_on A
shows (Aw. > i€#I. fi w) meromorphic_on A
unfolding meromorphic_on_ def
by (rule laurent _expansion__intros exl balll
assms| THEN meromorphic_on__imp__has_laurent__expansion] | assump-
tion)+

lemma meromorphic_on__prod [meromorphic_intros|:
assumes Ai. i € I = f i meromorphic_on A
shows (Aw. [[i€l. fiw) meromorphic_on A
unfolding meromorphic_on_ def
by (rule laurent _expansion__intros exl balll
assms| THEN meromorphic_on__imp__has_laurent__expansion] | assump-
tion)+

lemma meromorphic_on__prod_list [meromorphic__intros]:
assumes \i. i € set fs = f i meromorphic_on A
shows (Aw. []ifs. fi w) meromorphic_on A
unfolding meromorphic_on_ def
by (rule laurent _expansion__intros exl balll
assms| THEN meromorphic_on__imp__has_laurent__expansion] | assump-
tion)+

lemma meromorphic_on__prod_mset [meromorphic_intros|:
assumes Ai. i €# [= f i meromorphic_on A
shows (Aw. [[i€#I. fi w) meromorphic_on A
unfolding meromorphic_on_ def

Meromorphic.html

Meromorphic.thy 503

by (rule laurent _expansion__intros exl balll
assms|THEN meromorphic_on__imp__has_laurent__expansion| | assump-
tion)+

lemma nicely _meromorphic_on__const [intro]: (A_. ¢) nicely_meromorphic_on
A

unfolding nicely meromorphic_on__def by auto

lemma nicely _meromorphic_on__cmult_left [intro):

assumes f nicely _meromorphic_on A

shows (Az. ¢ * f 2) nicely_meromorphic_on A
proof (cases ¢ = 0)

case [simp|: False

show ?thesis

using assms by (rule nicely_meromorphic_on_unop) (auto introl: meromor-

phic__intros)
qed (auto intro!: nicely meromorphic__on__const)

lemma nicely _meromorphic__on__cmult_right [introl:
assumes f nicely _meromorphic_on A
shows (Az. f z % ¢) nicely_meromorphic_on A
using nicely _meromorphic_on__cmult_left|OF assms, of ¢] by (simp add: mult.commute)

lemma nicely meromorphic_on__scaleR [intro):
assumes f nicely _meromorphic_on A
shows (Az. ¢ g f 2) nicely_meromorphic_on A
using assms by (auto simp: scaleR__conv_of real)

lemma nicely _meromorphic_on__uminus [introl:
assumes f nicely _meromorphic_on A
shows (Az. —f 2) nicely_meromorphic_on A
using nicely__meromorphic__on__cmult_leftOF assms, of —1] by simp

lemma meromorphic_on__If [meromorphic_intros|:
assumes f meromorphic_on A g meromorphic_on B
assumes \z. 2€ A= z2€ B= fz=gzopen A open BC C AU B
shows (Az. if z € A then f z else g z) meromorphic_on C
proof (rule meromorphic__on__subset)
show (Az. if z € A then f z else g z) meromorphic_on (A U B)
proof (rule meromorphic_on_ Un)
have (\z. if z € A then f z else g z) meromorphic_on A <— f meromorphic_on
A
proof (rule meromorphic_on__cong)
fix z assume z € A
hence eventually (A\z. z € A) (at 2)
using <open Ay by (intro eventually at_in_open’) auto
thus Vy win at z. (if w € A then fw else g w) = fw
by eventually _elim auto
qed auto

Meromorphic.html

Meromorphic.thy 504

with assms(1) show (Az. if z € A then f z else g z) meromorphic_on A
by blast
next
have (\z. if z € A then f z else g z) meromorphic_on B «— g meromorphic_on
B
proof (rule meromorphic_on__cong)
fix z assume z € B
hence eventually (Az. z € B) (at 2)
using <open B> by (intro eventually_at_in_open’) auto
thus Vyp win at z. (if w € A then fw else g w) = g w
by eventually__elim (use assms(3) in auto)
qed auto
with assms(2) show (Az. if z € A then f z else g z) meromorphic_on B
by blast
qed
qed fact

lemma meromorphic_on__deriv [meromorphic__intros|:
f meromorphic_on A = deriv f meromorphic_on A
by (metis meromorphic__on__def isolated__singularity__at_deriv meromorphic__on__isolated_singularity

meromorphic__on__meromorphic__at meromorphic_on_ not__essential
not__essential deriv
not__essential_has_laurent _expansion)

lemma meromorphic_on__higher_deriv [meromorphic_intros|:
f meromorphic_on A = (deriv = n) f meromorphic_on A
by (induction n) (auto introl: meromorphic_intros)

lemma analytic_on__eval_fps [analytic_intros]:

assumes f analytic_on A

assumes Az. z € A = norm (f z) < fps_conv_radius F

shows (Aw. eval_fps F (f w)) analytic_on A

by (rule analytic _on__compose[OF assms(1) analytic_on__eval fps, unfolded
o def)

(use assms(2) in auto)

lemma meromorphic_on__eval_fps [meromorphic_intros]:

assumes f analytic_on A

assumes A\z. z € A = norm (f z) < fps_conv_radius F

shows (Aw. eval_fps F (f w)) meromorphic_on A

by (rule analytic__on__imp_meromorphic_on analytic_intros analytic_on__eval_fps
assms)+

lemma meromorphic_on__eval fls [meromorphic__intros:
assumes f analytic_on A
assumes Az. z € A = norm (f z) < fls_conv_radius F
shows (Aw. eval_fls F (f w)) meromorphic_on A
proof (cases fls_conv_radius F > 0)

Meromorphic.html

Meromorphic.thy 505

case Fualse
with assms(2) have A = {}
by (metis all_not_in_conv ereal_less(2) norm__eq zero order.strict_trans
zero__ereal__def zero__less_norm__iff)
thus ?thesis
by auto
next
case True
have F': eval fls F has_laurent__expansion F
using True by (rule eval _fls_has_laurent__expansion)
show ?thesis
proof (rule meromorphic_on__compose[OF __ assms(1)])
show eval_fls F meromorphic_on eball 0 (fls_conv_radius F)
proof (rule meromorphic_onl open)
show eval_fls F analytic_on eball 0 (fls_conv_radius F) — {0}
by (rule analytic_on__eval_fls) auto
show not__essential (eval _fls F) z if z € {0} for z
using that F' has_laurent__expansion__not__essential 0 by blast
qed (auto simp: islimpt_ finite)
qged (use assms(2) in auto)
qed

lemma meromorphic__on__imp__analytic__cosparse:

assumes f meromorphic_on A

shows eventually (Az. f analytic_on {z}) (cosparse A)

unfolding eventually cosparse using assms meromorphic__on__imp__sparse__singularities
by auto

lemma meromorphic__on__imp_not_pole_ cosparse:
assumes f meromorphic_on A
shows eventually (Az. —is_pole f z) (cosparse A)
proof —
have eventually (Az. f analytic_on {z}) (cosparse A)
by (rule meromorphic__on__imp__analytic_cosparse) fact
thus ?thesis
by eventually elim (blast dest: analytic__at_imp_no_pole)
qed

lemma eventually remowve__sings eq:
assumes f meromorphic_on A
shows eventually (Az. remove_sings f z = f z) (cosparse A)
proof —
have eventually (Az. f analytic_on {z}) (cosparse A)
using assms by (rule meromorphic_on_imp__analytic_cosparse)
thus ?thesis
by eventually elim auto
qed

lemma remove__sings constant__on__open__iff:

Meromorphic.html

Meromorphic.thy 506

assumes f meromorphic_on A open A
shows remove_sings f constant_on A «— (Jc. V€A, fo = ¢)
proof
assume remove__sings | constant_on A
then obtain ¢ where c: remove_sings f z = c if z € A for 2
using that by (auto simp: constant_on__def)
have V.zcA. z € A
using <open Ay by (simp add: eventually in_ cosparse)
hence Vyz€A. fz = ¢
using eventually_remove_sings_eq[OF assms(1)] by eventually elim (use ¢
in auto)
thus dc. VyozeA. fz = ¢
by blast
next
assume Jc. Vz€A. fz = ¢
then obtain ¢ where c¢: Vyoz€A. fz = ¢
by blast
have V x€A. remove_sings fz = ¢
using eventually _remove__sings _eq[OF assms(1)] ¢ by eventually_elim auto
hence remove_sings f z = ¢ if z € A for z using that
by (meson assms(2) c eventually _cosparse__open__eq remove__sings__eql tend-
sto__eventually)
thus remove_sings f constant_on A
unfolding constant_on__def by blast
qed

A meromorphic function on a connected domain takes any given value either
almost everywhere or almost nowhere.

lemma meromorphic__imp__constant__or__avoid:
assumes mero: f meromorphic_on A and A: open A connected A
shows eventually (\z. fz = ¢) (cosparse A) V eventually (Az. fz # ¢) (cosparse
4)
proof —
have eventually (A\z. f z = ¢) (cosparse A) if freq: frequently (Az. f 2z = ¢)
(cosparse A)
proof —
let ?f = remove_sings f
have ev: eventually (Az. ?f z = f 2) (cosparse A)
by (rule eventually remove_sings eq) fact
have frequently (\z. ?f z = ¢) (cosparse A)
using frequently__eventually_ frequently|OF freq ev] by (rule frequently_elim1)
auto
then obtain z0 where 20: 20 € A frequently (Az. ?f z = ¢) (at 20)
using A by (auto simp: eventually cosparse__open__eq frequently_def)
have mero”: 2f nicely meromorphic_on A
using mero remove__sings_nicely _meromorphic by blast
have eq: ?f w = ¢ if w: w € A for w
using frequently _eq _meromorphic_imp__constant[OF z0(2) mero’] A 20(1)
w by blast

Meromorphic.html

Meromorphic.thy 507

have eventually (Az. z € A) (cosparse A)
by (rule eventually in_cosparse) (use A in auto)
thus eventually (Az. f z = ¢) (cosparse A)
using ev by eventually elim (use eq in auto)
qed
thus ?thesis
by (auto simp: frequently_def)
qed

lemma nicely meromorphic_imp__ constant_or__avoid:
assumes f nicely _meromorphic_on A open A connected A
shows (Vz€A. fo =c¢) V (Vaa€A. fz # ¢)
proof —
have (Vrz€A. fo=c¢) V (Vaz€A. fo # ¢
by (intro meromorphic_imp__constant_or_avoid)
(use assms in <auto simp: nicely meromorphic_on__def>)
thus ?thesis
proof
assume ev: Voz€A. fx = ¢
have Vz€A. fz = ¢
proof
fix z assume z: z € A
have not_essential f
using assms x unfolding nicely _meromorphic_on__def by blast
moreover have is_pole f z +— is_pole (A_. ¢) z
by (intro is_pole_cong) (use ev x in <auto simp: eventually _cosparse__open__eq
assms))
hence —is_pole f x
by auto
ultimately have f analytic_on {x}
using assms(1) nicely_meromorphic_on__imp__analytic_at x by blast
hence f —z— fz
by (intro isContD analytic__at_imp__isCont)
also have ?this «+— (_. ¢) —z— fx
by (intro tendsto__cong) (use ev x in <auto simp: eventually cosparse__open__eq
assms»)
finally have (A_. ¢) —z— fz .
moreover have (A_. ¢) —z— ¢
by simp
ultimately show fz = ¢
using LIM unique by blast
qed
thus ?thesis
by blast
qed blast
qed

lemma nicely meromorphic_onk:
assumes f nicely _meromorphic_on A

Meromorphic.html

Meromorphic.thy 508

obtains pts where pts C A pts sparse_in A
f analytic_on A — pts
Nz. z € pts => is_pole fz N [2=0
proof —
define pts where pts = {z € A. = f analytic_on {z}}
have pts C A pts sparse_in A
using assms unfolding pts def nicely meromorphic__on__def
by (auto intro:meromorphic__on__imp__sparse__singularities’)
moreover have f analytic_on A — pts unfolding pts def
by (subst analytic_on__analytic_at) auto
moreover have A\z. z € pts = is_pole f z N f z=0
by (metis (no__types, lifting) remove__sings _eql
remove__sings_eq 0 __iff assms is_pole_imp not__essential
mem,__Collect__eq nicely _meromorphic__on__def
nicely__meromorphic__on__imp__analytic__at pts_def)
ultimately show ?thesis using that by auto
qed

lemma nicely _meromorphic__onl open:
assumes open A and
analytic:f analytic_on A — pts and
pole:\x. x€pts => is_pole fz A fx = 0 and
isolated: Nx. 1€ A = isolated _singularity at f x
shows f nicely meromorphic_on A
proof —
have f meromorphic_on A
proof (rule meromorphic_onl _open)
show Az. z € pts = not__essential f z
using pole unfolding not_essential _def by auto
show A\z. z € A = — z islimpt pts N A
by (metis assms(3) assms(4) inf_commute inf le2
islimpt__subset mem,__Collect__eq not__islimpt_poles subsetl)
qed fact+
moreover have (Vz€A. (is_pole f 2 A f2=0) V [—z— [2)
by (meson DiffI analytic analytic_at_imp_isCont
analytic_on__analytic_at assms(3) isContD)
ultimately show ?thesis unfolding nicely meromorphic__on_ def
by auto
qed

lemma nicely meromorphic__without singularities:
assumes [nicely _meromorphic_on A Y z€A. = is_pole f z
shows f analytic_on A
by (meson analytic_on__analytic__at assms
nicely__meromorphic__on_imp__analytic__at)

lemma meromorphic_on__cong’:
assumes eventually (Az. fz = g z) (cosparse A) A = B
shows f meromorphic_on A <— g meromorphic_on B

Meromorphic.html

Meromorphic.thy 509

unfolding assms(2)[symmetric]
by (rule meromorphic__on__cong eventually _cosparse_imp__eventually _at assms)+
auto

8.11 Meromorphic functions and zorder

lemma zorder_power__int:
assumes f meromorphic_on {z} frequently (\z. fz # 0) (at z)
shows zorder (Az. f z powin) z = n x zorder f z
proof —
from assms(1) obtain L where L: (Aw. f (z + w)) has_laurent__expansion L
by (auto simp: meromorphic_on__def)
from assms(2) and L have [simp]|: L # 0
by (metis assms(1) has_laurent__expansion__eventually__nonzero__iff meromor-
phic__at_iff
not__essential _frequently 0 _imp__eventually 0 not__eventually not_ frequently)
from L have L (Aw. f (z + w) powi n) has_laurent_expansion L powi n
by (intro laurent__expansion__intros)
have zorder f z = fls_subdegree L
using L assms(2) <L # 0) by (simp add: has_laurent__expansion__zorder)
moreover have zorder (Az. f z powi n) z = fls_subdegree (L powi n)
using L' assms(2) <L # 0)> by (simp add: has_laurent__expansion__zorder)
moreover have fls_subdegree (L powi n) = n * fls_subdegree L
by simp
ultimately show %thesis
by simp
qed

lemma zorder power:
assumes f meromorphic_on {z} frequently (\z. fz # 0) (at z)
shows zorder (Az. fz " n) z = n * zorder f z
using zorder _power _int|OF assms, of int n] by simp

lemma zorder addl:
assumes f meromorphic_on {z} frequently (\z. f z # 0) (at z)
assumes g meromorphic_on {z} frequently (Az. g z # 0) (at z)
assumes zorder f z < zorder g z
shows zorder (Az. fz + g z) z = zorder f z
proof —
from assms(1) obtain F where F: (Aw. f (z + w)) has_laurent_expansion F
by (auto simp: meromorphic__on__def)
from assms(3) obtain G where G: (Aw. g (z + w)) has_laurent__expansion G
by (auto simp: meromorphic__on__def)
have [simp]: F # 0 G # 0
by (metis assms has_laurent__expansion__eventually__nonzero_iff meromor-
phic__at_iff
not__essential_frequently 0 _imp__eventually 0 not_eventually not_ frequently
F G)+
have x: zorder f z = fls_subdegree F zorder g z = fls_subdegree G

Meromorphic.html

Meromorphic.thy 510

using F' G assms by (simp__all add: has_laurent__expansion__ zorder)
from assms * have F # —G
by auto
hence [simp]: F + G # 0
by (simp add: add_eq 0 _iff2)
moreover have zorder (\z. fz + g z) z = fls_subdegree (F + G)
using has_laurent__expansion_ zorder[OF has_laurent _expansion__add[OF F
G)] «F # —G> by simp
moreover have fls_subdegree (F + G) = fls_subdegree F
using assms by (simp add: * fls _subdegree add__eql)
ultimately show %thesis
by (simp add: *)
qed

lemma zorder add2:
assumes f meromorphic_on {z} frequently (\z. fz # 0) (at z)
assumes g meromorphic_on {z} frequently (Az. g z # 0) (at z)
assumes zorder f z > zorder g z
shows zorder (Az. fz + g z) z = zorder g z
using zorder_add1[OF assms(3,4) assms(1,2)] assms(5—) by (simp add: add.commute)

lemma zorder add_ge:
fixes f g :: complex = complex
assumes | meromorphic_on {z} frequently (\z. f z # 0) (at z)
assumes g meromorphic_on {z} frequently (Az. g z # 0) (at 2)
assumes frequently (A\z. fz + g 2z # 0) (at 2z) zorder f z > ¢ zorder g z > ¢
shows zorder (A\z. fz+g2) 2> ¢
proof —
from assms(1) obtain F where F: (Aw. f (z + w)) has_laurent_expansion F
by (auto simp: meromorphic_on__def)
from assms(3) obtain G where G: (Aw. g (2 + w)) has_laurent__expansion G
by (auto simp: meromorphic__on__def)
have [simp]: F # 0 G # 0
using assms F G has_laurent _expansion__frequently nonzero__iff by blast+
have FG: (Aw. f (z + w) + g (z + w)) has_laurent_expansion F + G
by (intro laurent _expansion_intros F G)
have [simp]: F + G # 0
using assms(5) has_laurent _expansion_frequently nonzero iff[OF FG] by
blast

have x: zorder f z = fls _subdegree F zorder g z = fls _subdegree G
zorder (Az. fz + g z) z = fls_subdegree (F + Q)
using F' G FG has_laurent__expansion__zorder by simp__all
moreover have zorder (\z. fz + g z) z = fls_subdegree (F + G)
using has_laurent__expansion_zorder|OF has_laurent _expansion__add[OF F
G]] by simp
moreover have fls_subdegree (F + G) > min (fls_subdegree F) (fls_subdegree
G)

Meromorphic.html

Meromorphic.thy 511

by (intro fls_plus_subdegree) simp
ultimately show ?thesis
using assms(06,7) unfolding * by linarith
qed

lemma zorder diff ge:
fixes f g :: complex = complex
assumes | meromorphic_on {z} frequently (\z. f z # 0) (at z)
assumes g meromorphic_on {z} frequently (Az. g z # 0) (at 2)
assumes frequently (Az. fz # ¢ z) (at z) zorder f z > ¢ zorder g z > ¢
shows zorder (A\z. fz —g2z) 2> ¢
proof —
have (\z. — g z) meromorphic_on {z}
by (auto intro: meromorphic_intros assms)
thus ?thesis
using zorder_add_ge[of f 2z Az. —g z c] assms by simp
qed

lemma zorder diff1:
assumes f meromorphic_on {z} frequently (\z. f z # 0) (at z)
assumes g meromorphic_on {z} frequently (Az. g z # 0) (at 2)
assumes zorder f z < zorder g z
shows zorder (Az. fz — g 2z) z = zorder f z
proof —
have zorder (A\z. fz + (—g 2)) z = zorder f z
by (intro zorder_addl meromorphic_intros assms) (use assms in auto)
thus ?thesis
by simp
qed

lemma zorder diff2:
assumes f meromorphic_on {z} frequently (\z. f z # 0) (at z)
assumes g meromorphic_on {z} frequently (Az. g z # 0) (at z)
assumes zorder f z > zorder g z
shows zorder (A\z. fz — g z) z = zorder g z
proof —
have zorder (\z. f 2z + (—g 2)) z = zorder (Az. —g z) 2
by (intro zorder _add2 meromorphic_intros assms) (use assms in auto)
thus ?thesis
by simp
qed

lemma zorder mult:
assumes f meromorphic_on {z} frequently (\z. fz # 0) (at z)
assumes g meromorphic_on {z} frequently (Az. g z # 0) (at z)
shows zorder (A\z. fz * g z) z = zorder f z + zorder g z
proof —
from assms(1) obtain F where F: (Aw. f (z + w)) has_laurent__expansion F
by (auto simp: meromorphic__on__def)

Meromorphic.html

Meromorphic.thy 512

from assms(3) obtain G where G: (Aw. g (z + w)) has_laurent__expansion G
by (auto simp: meromorphic__on__def)
have [simp]: F # 0 G # 0
by (metis assms has_laurent__expansion__eventually_nonzero_iff meromor-
phic__at_iff
not__essential__frequently 0 _imp__eventually 0 not_eventually not_ frequently
F G)+
have x: zorder f z = fls_subdegree F zorder g z = fls _subdegree G
using F G assms by (simp__all add: has_laurent__expansion_ zorder)
moreover have zorder (Az. fz * g z) z = fls_subdegree (F * Q)
using has_laurent__expansion__zorder|OF has_laurent__expansion_mult|OF F
G]] by simp
moreover have fls subdegree (F * G) = fls_subdegree F + fls _subdegree G
using assms by simp
ultimately show “thesis
by (simp add: *)
qed

lemma zorder divide:
assumes f meromorphic_on {z} frequently (\z. f z # 0) (at z)
assumes g meromorphic_on {z} frequently (Az. g z # 0) (at 2)
shows zorder (A\z. fz /| g z) 2 = zorder f z — zorder g z
proof —
from assms(1) obtain F' where F: (Aw. f (z + w)) has_laurent__expansion F
by (auto simp: meromorphic_on__def)
from assms(3) obtain G where G: (Aw. g (z + w)) has_laurent__expansion G
by (auto simp: meromorphic__on__def)
have [simp]: F # 0 G # 0
by (metis assms has_laurent _expansion__eventually nonzero_iff meromor-
phic_at_iff
not__essential_frequently 0 _imp__eventually 0 not_eventually not_ frequently
F G)+
have x: zorder f z = fls_subdegree F zorder g z = fls _subdegree G
using F' G assms by (simp__all add: has_laurent__expansion__ zorder)
moreover have zorder (A\z. fz [g z) z = fls_subdegree (F |/ G)
using has_laurent__expansion__zorder|OF has_laurent__expansion__divide]OF F
G]] by simp
moreover have fls _subdegree (F / G) = fls_subdegree F — fls_subdegree G
using assms by (simp add: fls _divide subdegree)
ultimately show ?thesis
by (simp add: *)
qged

lemma constant_on__extend_nicely meromorphic_on:
assumes [nicely _meromorphic_on B f constant_on A
assumes open A open B connected B A # {} A C B
shows f constant_on B

proof —
from assms obtain ¢ where ¢: A\z. 2z € A = fz=c¢

Meromorphic.html

Meromorphic.thy 513

by (auto simp: constant_on__def)
have eventually (Az. z € A) (cosparse A)
by (intro eventually in_ cosparse assms order.refl)
hence eventually (Az. f z = ¢) (cosparse A)
by eventually__elim (use ¢ in auto)
hence freg: frequently (\z. fz = ¢) (cosparse A)
by (intro eventually frequently) (use assms in auto)
then obtain 20 where 20: 20 € A frequently (Az. fz = ¢) (at 20)
using assms by (auto simp: frequently_def eventually_cosparse_open__eq)

have fz = cif z € B for 2
proof (rule frequently eq meromorphic_imp_ constant[OF __ assms(1)])
show 20 € B frequently (Az. fz = c) (at 20)
using 20 assms by auto
qged (use assms that in auto)
thus f constant_on B
by (auto simp: constant_on__def)
qed

8.12 More on poles and zeros

lemma zorder prod:
assumes A\z. x € A = fz meromorphic_on {z}
assumes eventually (Az. ([[z€A. fz z) # 0) (at 2)
shows zorder (Az. [[z€A. fz z) z = (D x€A. zorder (f z) 2)
using assms
proof (induction A rule: infinite_finite_induct)
case (insert a A)
have zorder (\z. [[z€insert a A. fz z) z = zorder (Az. fa z * ([[z€A. fz 2)) 2
using insert.hyps by simp
also have ... = zorder (f a) z + zorder (\z. [[2z€A. fz 2) 2
proof (subst zorder _mult)
haveVp zinatz faz # 0
using insert.prems(2) by eventually_elim (use insert.hyps in auto)
thus dp zinatz. faz# 0
using eventually_ frequently at_neq bot by blast
next
have Vi zin at z. ([[z€A. fz2) # 0
using insert.prems(2) by eventually elim (use insert.hyps in auto)
thus 35 zin at z. ([[z€A. fzz) # 0
using eventually_frequently at_neq bot by blast
qed (use insert.prems in <auto introl: meromorphic_intros))
also have zorder (Az. [[z€A. fz 2) z = (D z€A. zorder (fz) 2)
by (intro insert.IH) (use insert.prems insert.hyps in <auto elim!: eventu-
ally _monoy)
also have zorder (fa) z + ... = (3 z€insert a A. zorder (f z) z)
using insert.hyps by simp
finally show ?Zcase .
qed auto

Meromorphic.html

Meromorphic.thy 514

lemma zorder scale:
assumes | meromorphic_on {a x z} a # 0
shows zorder (A\w. f (a * w)) z = zorder f (a * 2)
proof (cases eventually (\z. f z = 0) (at (a * 2)))
case True
hence ev: eventually (Az. f (a x z) = 0) (at 2)
proof (rule eventually compose_filterlim)
show filterlim ((x) a) (at (a * 2)) (at 2)
proof (rule filterlim__atI)
show Vp zinatz. a*xz# axz
using eventually neq at_within[of z z] by eventually__elim (use <a # 0»
in auto)
qged (auto intro!: tendsto__intros)
qed

have zorder (Aw. f (a * w)) z = zorder (A_. 0) 2
by (rule zorder__cong) (use ev in auto)

also have ... = zorder (A_. 0) (a * 2)
by (simp add: zorder_shift")
also have ... = zorder f (a * 2)

by (rule zorder _cong) (use True in auto)
finally show ?thesis .
next
case Fulse
define G where G = fps const a * fps X
have zorder (f o (Az. a * 2)) z = zorder f (a * z) * int (subdegree G)
proof (rule zorder__compose)
show isolated_singularity_at f (a * z) not__essential f (a * z)
using assms(1) by (auto simp: meromorphic__on__altdef)
next
have (Az. a x x) has_fps_expansion G
unfolding G_def by (intro fps_expansion__intros)
thus (Az. a x (z + z) — a * 2) has_fps_expansion G
by (simp add: algebra__simps)
next
show Vp win at (a * 2). fw # 0 using False
by (metis assms(1) has_laurent _expansion__isolated has_laurent _expansion_not__essential
meromorphic__on__def non__zero_ _neighbour not__eventually singletonl)
qed (use <a # 0y in <auto simp: G_def>)
also have subdegree G = 1
using <a # 0) by (simp add: G_def)
finally show ?thesis
by (simp add: o_def)
qed

lemma zorder uminus:
assumes f meromorphic_on {—z}
shows zorder (Aw. f (—w)) z = zorder [(—z)

Meromorphic.html

Meromorphic.thy 515

using assms zorder _scale[of f —1 z] by simp

lemma is_pole deriv_iff:
assumes | meromorphic_on {z}
shows is_pole (deriv f) z +— is_pole f z
proof —
from assms obtain F where F: (Aw. f (z + w)) has_laurent_expansion F
by (auto simp: meromorphic_on__def)
have deriv (Aw. f (z + w)) has_laurent__expansion fls_deriv F
using F by (rule has_laurent__expansion__deriv)
also have deriv (A\w. f (z + w)) = (Aw. deriv f (z + w))
by (simp add: deriv_shift 0’ add_ac o_def fun_eq iff)
finally have F': (Aw. deriv f (z + w)) has_laurent__expansion fls_deriv F .
have is_pole (deriv f) z <— fls_subdegree (fls_deriv F') < 0
using is_pole_fls subdegree iff[OF F'] by simp
also have ... «— fls subdegree F' < 0
using fis deriv_subdegree0 fls subdegree deriv linorder less linear by fast-
force
also have ... +— is pole f z
using F by (simp add: has_laurent__expansion__imp_is_pole_iff)
finally show ?thesis .
qged

lemma isolated_zero__remove__sings _iff [simp]:
assumes isolated__singularity _at f z
shows isolated_zero (remove_sings f) z <— isolated_zero f z
proof —
have *: (Vg z in at z. remove_sings fx # 0) «— (Vp zin at z. fz # 0)
proof
assume (Vg zin at z. fx # 0)
thus (Vg z in at z. remove_sings f z # 0)
using eventually _remove__sings_eq _at[OF assms]
by eventually elim auto
next
assume (Y g z in at z. remove_sings f x # 0)
thus (Vr zin at z. fz # 0)
using eventually remove__sings_eq _at[OF assms]
by eventually elim auto
qed
show ?thesis
unfolding isolated_zero__def using assms x by simp
qged

lemma zorder isolated_zero pos:
assumes isolated_zero f z [analytic_on {z}
shows zorder fz > 0
proof (subst zorder_pos_iff' [OF assms(2)])
show fz =0
using assms by (simp add: zero__isolated__zero__analytic)

Meromorphic.html

Meromorphic.thy 516

next
have Vp zinatz fz# 0
using assms by (auto simp: isolated_zero__def)
thus dp zinat z. fz# 0
by (simp add: eventually_frequently)
qed

lemma zorder_isolated zero pos’:
assumes isolated_ zero f z isolated singularity at f z
shows zorder fz > 0
proof —
from assms(1) have f —z— 0
by (simp add: isolated zero__def)
with assms(2) have remove__sings f analytic_on {z}
by (intro remove__sings__analytic__at)
hence zorder (remove_sings f) z > 0
using assms by (intro zorder isolated_zero pos) auto
thus ?thesis
using assms by simp
qed

lemma zero__isolated_zero_ nicely meromorphic:
assumes isolated_zero f z f nicely _meromorphic_on {z}
shows fz =0
proof —
have —is_pole f z
using assms pole_is_not_zero by blast
with assms(2) have f analytic_on {z}
by (simp add: nicely _meromorphic_on_imp__analytic__at)
with zero_isolated zero__analytic assms(1) show ?thesis
by blast
qed

lemma meromorphic__on__imp_ not_ zero__cosparse:
assumes f meromorphic_on A
shows eventually (Az. —isolated_zero f z) (cosparse A)
proof —
have eventually (Az. —is_pole (\z. inverse (f 2)) z) (cosparse A)
by (intro meromorphic__on_imp_not_pole_ cosparse meromorphic__intros assms)
thus ?thesis
by (simp add: is_pole_inverse_iff)
qged

lemma nicely meromorphic_on__inverse [meromorphic__intros|:
assumes f nicely _meromorphic_on A
shows (Az. inverse (f z)) nicely_meromorphic_on A
unfolding nicely meromorphic_on_ def

proof (intro conjl balll)
fix z assume z2: z € A

Meromorphic.html

Meromorphic.thy 517

have is_pole fz AN fz=0V f —2— [z
using assms z by (auto simp: nicely _meromorphic__on__def)
thus is_pole (Az. inverse (f x)) z A inverse (fz) = 0 V
(Az. inverse (f x)) —z— inverse (f 2)
proof
assume is_pole fz N fz =0
hence isolated_zero (Az. inverse (f z)) z A inverse (f z) = 0
by (auto simp: isolated zero_inverse_iff)
hence (A\z. inverse (f z)) —z— inverse (f z)
by (simp add: isolated_zero__def)
thus ?thesis ..
next
assume lIim: f —z— [z
hence ana: f analytic_on {z}
using assms is_pole__def nicely meromorphic__on__imp__analytic_at
not__tendsto__and__filterlim__at__infinity trivial_limit_at z by blast
show ?thesis
proof (cases isolated_ zero f z)
case True
with lim have fz = 0
using continuous_within zero__isolated_ zero by blast
with True have is_pole (Az. inverse (f z)) z A inverse (f z) = 0
by (auto simp: is_pole inverse _iff)
thus ?thesis ..
next
case Fulse
hence fz £ 0V (fz = 0 A eventually (\z. fz = 0) (at 2))
using non__isolated zero_imp__eventually zero[OF ana] by blast
thus ?thesis
proof (elim disjE conjE)
assume f z # 0
hence (\z. inverse (f z)) —z— inverse (f 2)
by (intro tendsto_intros lim)
thus %thesis ..
next
assume x: f z = 0 eventually (A\z. fz = 0) (at 2)
have eventually (Az. inverse (f z) = 0) (at 2)
using *(2) by eventually elim auto
hence (Az. inverse (f z)) —z— 0
by (simp add: tendsto__eventually)
with x(1) show ?thesis
by auto
qed
qed
qed
qed (use assms in <auto simp: nicely _meromorphic__on__def intro!: meromorphic__introsy)

lemma is pole_ zero__at_mnicely_mero:
assumes f nicely _meromorphic_on A is_pole fzz € A

Meromorphic.html

Meromorphic.thy 518

shows fz =0

by (meson assms at_neq_bot
1s_pole__def nicely _meromorphic__on__def
not__tendsto__and_ filterlim__at_infinity)

lemma zero_or_pole:
assumes mero: f nicely meromorphic_on A
and 2 € Afz=0and event: Vp xin at z. fz # 0
shows isolated_zero f z V is_pole f z
proof —
from mero <z€A>
have (is_pole f 2 AN f2=0)V [—2— [z
unfolding nicely meromorphic_on__def by simp
moreover have isolated_zero fz if f —z— [z
unfolding isolated_zero__def
using «f z=0> that event tendsto__nhds_iff by auto
ultimately show ?thesis by auto
qed

lemma isolated_zero_ fls subdegree_iff:
assumes (Az. f (z + z)) has_laurent__expansion F
shows isolated_zero f z <— fls_subdegree F' > 0
using assms unfolding isolated_ zero def
by (metis Lim__at_zero fls_zero_subdegree has_laurent__expansion__eventually_nonzero_iff
not_le
order.refl tendsto__0__subdegree_iff 0)

lemma zorder pos_imp_isolated_zero:
assumes f meromorphic_on {z} eventually (Az. fz # 0) (at z) zorder fz > 0
shows isolated zero f z
using assms isolated_zero_fls subdegree iff
by (metis has_laurent__expansion__eventually nonzero__iff
has__laurent__expansion_ zorder insertl1
meromorphic__on__def)

lemma zorder neg imp_is pole:
assumes f meromorphic_on {z} eventually (Az. fz # 0) (at z) zorder f z < 0
shows is_pole f z
using assms is_pole_fls subdegree_iff at_neq bot eventually frequently mero-
morphic__at_iff
neg_zorder__imp_is_pole by blast

lemma not_pole_not_isolated_zero imp_zorder eq 0:

assumes [meromorphic_on {z} —is_pole f z —isolated_zero f z frequently (Az.
f2#0) (at 2)

shows zorder fz =0
proof —

have remove__sings f analytic_on {z}

using assms meromorphic__at_iff not _essential _def remove__sings__analytic _at

Meromorphic.html

Meromorphic.thy 519

by blast
moreover from this and assms have remove_sings f z # 0
using isolated zero__def meromorphic__at_iff non_zero_neighbour remove__sings_eq 0 _iff
by blast
moreover have frequently (Az. remove_sings f z # 0) (at 2)
using assms analytic__at_neq imp__eventually neq calculation(1,2)
eventually_frequently trivial _limit_at by blast
ultimately have zorder (remove_sings f) z = 0
using zorder _eq 0 _iff by blast
thus %thesis
using assms(1) meromorphic__at_iff by auto
qed

lemma not_essential _compose:
assumes not__essential f (g 2) g analytic_on {z}
shows not_essential (\z. f (g z)) 2
proof (cases isolated_zero (Aw. g w — g 2) 2)
case Fulse
hence eventually (Aw. g w — g z = 0) (nhds z)
by (intro non__isolated__zero__imp__eventually_zero’ analytic_intros assms) auto
hence not__essential (Az. f (g z)) z +— not_essential (A_. f (g 2)) z
by (intro not__essential _cong refl)
(auto elim!: eventually mono simp: eventually at_filter)
thus ?thesis
by (simp add: not__essential _const)
next
case True
hence ev: eventually (Aw. g w # g 2) (at z)
by (auto simp: isolated zero__def)
from assms consider ¢ where f —g z— ¢ | is_pole f (g 2)
by (auto simp: not__essential_def)
have isCont g z
by (rule analytic _at_imp_isCont) fact
hence lim: ¢ —2— g 2
using isContD by blast

from assms(1) consider ¢ where f —g z— ¢ | is_pole f (g 2)
unfolding not_essential _def by blast
thus ?thesis
proof cases
fix ¢ assume f —g z— ¢
hence (\z. f (g z)) —2— ¢
by (rule filterlim__compose) (use lim ev in <auto simp: filterlim__at»)
thus ?thesis
by (auto simp: not_essential__def)
next
assume is_pole f (g z)
hence is_pole (Az. f (g z)) 2
by (rule is_pole__compose) fact+

Meromorphic.html

Meromorphic.thy 520

thus ?thesis
by (auto simp: not__essential_def)
qed
qed

lemma isolated__singularity at_compose:
assumes isolated__singularity_at f (g z) g analytic_on {z}
shows isolated_singularity _at (Ax. f (g z)) 2
proof (cases isolated_zero (Aw. g w — g 2) 2)
case Fulse
hence eventually (Aw. g w — g z = 0) (nhds z)
by (intro non__isolated_zero__imp__eventually zero') (use assms in <auto intro!:
analytic__introsy)
hence isolated_singularity _at (\z. f (g x)) z +— isolated__singularity__at (A_.
f(g2) =
by (intro isolated__singularity__at_cong refl)
(auto elim!: eventually mono simp: eventually at_filter)
thus ?thesis
by (simp add: isolated__singularity _at_const)
next
case True
from assms(1) obtain r where r: r > 0 f analytic_on ball (g z) v — {g 2z}
by (auto simp: isolated _singularity at_def)
hence holo_f: f holomorphic_on ball (g 2) r — {g 2z}
by (subst (asm) analytic_on__open) auto
from assms(2) obtain r’ where r": v’ > 0 g holomorphic_on ball z r’
by (auto simp: analytic_on__def)

have continuous_on (ball z 1') g
using holomorphic_on__imp_ continuous_on r' by blast
hence isCont g z
using 7’ by (subst (asm) continuous on__eq continuous__at) auto
hence g —z2— g 2
using isContD by blast
hence eventually (Aw. g w € ball (g z) r) (at 2)
using ¢<r > () unfolding tendsto__def by force
moreover have eventually (Aw. g w # g z) (at 2) using True
by (auto simp: isolated zero_def elim!: eventually mono)
ultimately have eventually (Aw. g w € ball (g z) 7 — {g 2}) (at 2)
by eventually elim auto
then obtain r'' where r'": r'' > 0 Yweball z r""—{z}. g w € ball (g z) r — {yg
2}
unfolding ecventually at_filter eventually nhds metric ball__def
by (auto simp: dist_commute)
have f o g holomorphic_on ball z (min v’ r'') — {z}
proof (rule holomorphic__on__compose__gen)
show ¢ holomorphic_on ball z (min v’ r'") — {z}
by (rule holomorphic__on__subset[OF r'(2)]) auto

Meromorphic.html

Meromorphic.thy 521

show f holomorphic_on ball (g z) r — {g 2}
by fact
show ¢ ‘ (ball z (min r' r") — {2}) C ball (g 2) r — {g 2}
using r’’ by force
qed
hence f o g analytic_on ball z (min v’ r"") — {z}
by (subst analytic _on__open) auto
thus ?thesis using «r’ > 0) v’ > 0»
by (auto simp: isolated_singularity at_def o_def introl: exI[of _ min r' "))
qed

lemma is pole power int_0:
assumes | analytic_on {z} isolated zero fxn < 0
shows is_pole (Az. f z powi n) x
proof —
have f —z— fz
using assms(1) by (simp add: analytic_at_imp_isCont isContD)
with assms show ?thesis
unfolding is pole_ def
by (intro filterlim__power_int_neg__at_infinity) (auto simp: isolated_zero__def)
qed

lemma isolated_zero _imp_not_constant_on:
fixes [:: 'a :: perfect_space = 'b :: real _normed_div_algebra
assumes isolated_zero fz x € A open A
shows —f constant_on A
proof
assume [constant_on A
then obtain ¢ where ¢: Az. 2 € A = fz =¢
by (auto simp: constant_on__def)
have eventually (Az. z € A — {2}) (at)
by (intro eventually at in__open assms)
hence eventually (Az. fz = ¢) (at z)
by eventually elim (use ¢ in auto)
hence f —z— ¢
using tendsto__eventually by blast
moreover from assms have f —x— 0
by (simp add: isolated zero__def)
ultimately have [simp]: ¢ = 0
using tendsto__unique[of at z f ¢ 0] by (simp add: at_neq_bot)

have eventually (Az. fz # 0) (at z)

using assms by (auto simp: isolated_ zero__def)
moreover have eventually (A\z. z € A) (at z)

using assms by (intro eventually_at_in_open’) auto
ultimately have eventually (Az. False) (at x)

by eventually elim (use ¢ in auto)
thus False

by simp

Meromorphic.html

Weierstrass _Factorization.thy 522

qed

end

9 The Weierstrafl Factorisation Theorem

theory Weierstrass_Factorization
imports Meromorphic
begin

9.1 The elementary factors

The Weierstrafl elementary factors are the family of entire functions

E.(z)=(1—-2z)ex z—l—Z—2—|— —i—ﬁ
n(z) = p g Tt

with the key properties that they have a single zero at z = 1 and satisfy
En(2) =1+ O(z"") around the origin.

definition weierstrass_factor :: nat = complex = complex where
weierstrass_factor n z = (1 — z) x exp (D k=1..n. z "k / of _nat k)

lemma weierstrass_factor _continuous__on [continuous_intros|:
continuous_on A f = continuous_on A (Az. weierstrass_factor n (f z))
by (auto simp: weierstrass_factor__def intro!: continuous__intros)

lemma weierstrass_factor_holomorphic [holomorphic_intros]:
f holomorphic_on A = (Az. weierstrass_factor n (f z)) holomorphic_on A
by (auto simp: weierstrass_factor _def introl: holomorphic__intros)

lemma weierstrass_factor__analytic [analytic_intros]:
f analytic_on A = (A\z. weierstrass_factor n (f 2)) analytic_on A
by (auto simp: weierstrass_factor__def intro!: analytic_intros)

lemma weierstrass_factor 0 [simp]: weierstrass_factor n 0 = 1
by (auto simp: weierstrass_factor_def power_0_left)

lemma weierstrass_factor__1 [simp]: weierstrass_factor n 1 = 0
by (simp add: weierstrass_factor _def)

lemma weierstrass_factor _eq 0 _iff [sz’mp]: weierstrass_factorn z = 0 «— z =
1

by (simp add: weierstrass_factor _def)

lemma zorder weierstrass_factor [simp]: zorder (weierstrass_factor n) 1 = 1
proof (rule zorder _eql)
show (Az. —exp (O k=1..n.z "k / of _nat k)) holomorphic_on UNIV
by (intro holomorphic_intros) auto

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy 523

qed (auto simp: weierstrass_factor _def algebra__simps)

lemma
fixes z :: 'a :: {banach, real_normed_field}
assumes norm z < 1 / 2
shows norm__exp bounds_lemma: norm (exp z — 1 — z) < norm z / 2
and norm_exp_bounds: norm (exp z — 1) > 1 / 2 % norm z
norm (exp z — 1) < 3 / 2 % norm z
proof —
show «: norm (exp z — 1 — z) < norm z / 2
proof (cases z = 0)
case Fulse
have sums: (Ak. z = (k + 2) /r fact (k + 2)) sums (exp z — (O k<2. 2z "k

/R fact k))

by (intro sums__split_initial_segment exp_ converges)

have summable (A\k. norm z = (k + 2) /g fact (k + 2))
using summable__norm__exp|of 2]
by (intro summable_norm summable_ignore_initial__segment)
(auto simp: norm__power norm__divide divide__simps)
also have ?this <— summable (Ak. norm z ~ 2 x (norm z "k / fact (k +2)))
by (simp add: power _add mult_ac divide__simps power2__eq square del:
of _nat_Suc of nat_add)
also have ... «— summable (Ak. norm z ~ k / fact (k + 2))
by (subst summable_cmult_iff) (use <z # 0 in auto)
finally have summable: summable (Ak. norm z ~ k / fact (k + 2)) .

have exp 2 — 1 — 2= D" k. z " (k + 2) / fact (k + 2))
using sums by (simp add: sums_iff scaleR__conv_of real divide_simps
eval _nat_numeral)
also have norm ... < (3> k. norm (z = (k + 2) / fact (k + 2)))
using summable__norm__exp|of 2]
by (intro summable_norm summable ignore_initial_segment)
(auto simp: norm__power norm__divide divide__simps)
also have ... = (3 k. norm z = 2 = (norm z "k / fact (k + 2)))
by (simp add: power__add norm__power norm__divide mult_ac norm__mult
power2 _eq_square del: of nat_Suc)

also have ... = norm z ~ 2 x (3 k. norm z "k / fact (k + 2))
using summable by (rule suminf mult)
also have ... <normz "2 % (1 /(I — norm z) / 2)

proof (intro mult_left _mono, rule sums_le)
show (Ak. norm z "k / fact (k + 2)) sums (3 k. norm z "k / fact (k + 2))
using summable by blast
show (Ak. norm z "k / 2) sums (1 / (1 — norm z) / 2)
using assms by (intro geometric_sums sums__divide) auto
next
fix k :: nat
have norm z "k / fact (k + 2) < norm z "k / fact 2
by (intro divide_left_mono fact_mono) auto

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy 524

thus norm z "k / fact (k + 2) < norm z "k [2

by simp
qed (auto simp: divide__simps)
also have ... = norm z * (norm z / (1 — norm z)) / 2

by (simp add: power2_eq _square)
alsohave ... <normzx((1 /2)/(1 —(1/ 2)))/ 2
using assms by (intro mult_mono frac_le diff _mono) auto

also have ... = norm z / 2
by simp
finally show norm (exp z — 1 — z) < normz / 2 .
qed auto

have norm (exp z — 1) < norm z + norm (exp z — 1 — 2)
by (rule norm__triangle_sub)

with x show norm (exp z — 1) < 3 / 2 x norm z
by simp

have norm z — norm (exp z — 1 — 2) < norm (exp z — 1)
using norm__triangle_ineq3[of exp z — 1 — z —z] by simp
with x show norm (exp z — 1) > 1 / 2 x norm z
by simp
qged

lemma weierstrass_factor__bound:
assumes norm z < 1 / 2
shows norm (weierstrass_factor n z — 1) < 8 % norm z ~ Suc n
proof (casesn =0V z = 0)
case True
thus ?thesis
proof
assume n = 0
thus ?thesis by (auto simp: weierstrass_factor _def)
qged auto
next
case Fulse
with assms have z £ 1 n > 02z # 0
by auto

have summable (A\k. cmod z ~ (k 4+ Suc n) / real (k + Suc n))
using In_ series’[of —norm z] assms
by (intro summable_norm summable_ignore_initial _segment)
(simp__all add: sums__iff summable_minus__iff power minus’ norm_ divide
norm__power)
also have ?this «— summable (A\k. norm z ~ Suc n * (norm z ~ k / real (k +

Suc n)))
by (simp add: power _add mult_ac)
also have ... +— summable (A\k. norm z "~k / real (k + Suc n))

by (subst summable__cmult_iff) (use <z # 0> in auto)
finally have summable: summable (Ak. norm z ~ k / real (k + Suc n)) .

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy 525

have (A\k. z "k / of _nat k) sums — Ln (1 — 2)

using sums_minus|OF Ln_ series[of —z|] assms by (simp add: power_ _minus’)
hence (A\k. z ~ (k + Suc n) / of _nat (k + Suc n)) sums (— Ln (1 — z) —

O k<Sucn. z "k [of_nat k))

by (intro sums__split_initial__segment)
also have (> k<Sucn. z "k / of natk) = O k=1..n.z "k / of _natk)

by (intro sum.mono__neutral_right) auto
finally have norm (In (1 — 2) + O_k=1..n. 2z "k / of _nat k)) =

norm (3" k. z = (k + Suc n) / of _nat (k + Suc n))
by (simp add: sums__iff norm_uminus_minus)

also have ... < (> k. norm (z ~ (k + Suc n) / of _nat (k + Suc n)))
using In_ series’[of —norm z] assms
by (intro summable__norm summable_ignore_initial _segment)
(simp__all add: sums__iff summable_minus__iff power _minus’ norm__divide
norm__power)
also have ... = (D k. norm z ~ Suc n * (norm z " k / real (k + Suc n)))
by (simp add: algebra__simps norm_ mult norm__power norm__divide power__add
del: of _nat_add of _nat_Suc)

also have ... = norm z ~ Suc n * (3 k. norm z "k / real (k + Suc n))
by (intro suminf mult summable)
also have ... < norm z = Sucn x (1 / (1 — norm z))

proof (intro mult_left _mono[OF sums_le])
show (Ak. norm z "k / real (k + Suc n)) sums (O k. norm z "k / real (k +
Suc n))
using summable by blast
show (Ak. norm z " k) sums (1 / (1 — norm z2))
by (rule geometric_sums) (use assms in auto)
qed (auto simp: field simps)
also have norm z ~Sucn % (1 / (I — norm z)) < norm z ~ Sucn x (1 / (1 —
(1/2)
using assms by (intro mult_mono power_mono divide_left_mono diff _mono
mult_pos_pos) auto
also have ... = 2 x norm z ~ Suc n
by simp
finally have norm_le: norm (In (I — z) + O_k=1..n. z "k / of_nat k)) < 2
x norm z ~ Suc n .

alsohave ... < 2 xnormz ~ 2
using «n > 0> assms by (intro mult_left _mono power_decreasing) auto
alsohave ... <2« (1/2) "2
by (intro mult_left_mono assms power _mono) auto
finally have norm_le": norm (In (1 — 2) + O_k=1..n. 2z "k / of_natk)) < 1
/2

by (simp add: power2_eq square)

have weierstrass_factorn z = exp (In (1 — 2) + O_k=1..n. 2 "k / of nat k))
using <z # 1) by (simp add: exp add weierstrass_factor _def)

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy 526

also have norm (... — 1) < (8 / 2)*norm (In (1 — 2z) + O_k=1..n. z "k /
of _nat k))
by (intro norm__exp_bounds norm__le’)
also have ... < (8 / 2) % (2 x norm z ~ Suc n)
by (intro mult_left_mono norm__le) auto
finally show ?thesis
by simp
qed

9.2 Infinite products of elementary factors

We now show that the elementary factors can be used to construct an entire
function with its zeros at a certain set of points (given by a sequence of
non-zero numbers a,, with no accumulation point).

locale weierstrass_product =
fixes a :: nat = complex
fixes p :: nat = nat
assumes a_nonzero: An. an # 0
assumes filterlim__a: filterlim a at_infinity at_top
assumes summable_a_p: \r. r > 0 = summable (An. (r / norm (a n)) ~ Suc

(p n))

begin

definition f :: complex = complex where
fz = (I n. weierstrass_factor (p n) (z / a n))

lemma abs convergent: abs__convergent_prod (An. weierstrass_factor (p n) (z /
an))
unfolding abs convergent _prod__conv__summable
proof (rule summable__comparison_test_ev)
have eventually (An. norm (a n) > 2 % norm z) at_top
using filterlim__a by (metis filterlim__at_infinity imp norm__at_top filter-
lim__at_top_ dense)
thus eventually (An. norm (norm (weierstrass_factor (pn) (z / an) — 1)) <
3 x norm (z / an) ~ Suc (p n)) at_top
proof eventually elim
case (elim n)
hence norm (z f an) <1/ 2
by (auto simp: norm__divide divide__simps)
thus ?case using weierstrass_factor_bound[of z / a n p n]
by simp
qed
next
show summable (An. & * norm (z / an) ~ Suc (p n))
using summable_mult[OF summable__a_p[of norm z], of 3]
by (cases z = 0) (auto simp: norm__divide)
qed

lemma convergent: convergent_prod (An. weierstrass_factor (p n) (z / a n))

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy 527

using abs_convergent|of z] abs__convergent_prod__imp__convergent__prod by blast

lemma has_prod: (An. weierstrass_factor (p n) (z / a n)) has_prod f z
using convergent[of z] unfolding f def by auto

lemma finite _occs_a: finite (a —* {z})
proof —
have eventually (An. norm (a n) > norm z) at_top
using filterlim__a by (metis filterlim__at_infinity _imp_norm__at_top filter-
lim__at_top_ dense)
then obtain N where N: An. n > N = norm (a n) > norm 2
by (auto simp: eventually__at_top linorder)
have n < N if n € a —* {2z} for n
using Nof n] that by (cases n < N) auto
hence a —‘{z} C {.<N} finite {..<N}
by auto
thus ?thesis
using finite subset by blast
qed

context

fixes P

defines P = (AN z. [[n<N. weierstrass_factor (p n) (z / a n))
begin

lemma uniformly_convergent:
assumes R > 0
shows uniformly_convergent_on (cball 0 R) P
unfolding P_def
proof (rule uniformly_convergent _on__prod’)
show uniformly__convergent_on (cball 0 R) (AN z. Y n<N. norm (weierstrass__factor
(pn)(z/an)— 1))
proof (rule Weierstrass_m__test’ _ev)
have eventually (An. norm (a n) > 2 * R) sequentially
using filterlim__a by (metis filterlim__at_infinity _imp_norm__at_top filter-
lim__at__top)
thus V g n in sequentially. ¥ z€cball 0 R. norm (norm (weierstrass_factor (p
n)(z/an)—1)) <
3 % (R / norm (a n)) ~ Suc (p n)
proof eventually elim
case (elim n)
show ?case
proof safe
fix z :: compler assume z: z € cball 0 R
have 2 * norm 2 < 2 x R
using z by auto
also have ... < norm (a n)
using elim by simp
finally have norm (a n) > 2 % norm z .

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy 528

hence norm (weierstrass_factor (pn) (z / an) — 1) < 3 x norm (2 / a
n) ~ Suc (p n)
by (intro weierstrass_factor _bound) (auto simp: norm__divide divide__simps)
also have ... = & x (norm z / norm (a n)) ~ Suc (p n)
by (simp add: norm__divide)
also have ... < 3 x (R / norm (a n)) ~ Suc (p n)
by (intro mult_left _mono power _mono divide_right_mono) (use z in

auto)
finally show norm (norm (weierstrass_factor (p n) (z / an) — 1)) <
3 % (R / norm (a n)) ~ Suc (p n) by simp
qed
qed
next

show summable (An. 3 * (R / norm (a n)) ~ Suc (p n))
by (intro summable_mult summable_a_p assms)
qged
qed (auto intro!: continuous_intros simp: a_nonzero)

lemma uniform__limit:
assumes R > 0
shows uniform__limit (cball 0 R) P f at_top
proof —
obtain g where g¢: uniform_limit (cball 0 R) P g at_top
using uniformly_convergent| OF assms] by (auto simp: uniformly__convergent__on__def)
also have ?this «— uniform_limit (cball 0 R) P f at_top
proof (intro uniform__limit_cong)
fix z :: complexr assume z € cball 0 R
with g have (An. P (Sucn) z) —— g 2
by (metis tendsto__uniform_ limitl filterlim__sequentially Suc)
moreover have (An. P (Suc n) z) —— [z
using convergent_prod_ LIMSEQ[OF convergent[of z]] unfolding P_ def
lessThan__Suc__atMost
by (simp add: f_def)
ultimately show g z = f 2
using tendsto__unique by force
qed auto
finally show ?thesis .
qged

lemma holomorphic [holomorphic__intros]: f holomorphic_on A
proof (rule holomorphic__on__subset)
show f holomorphic_on UNIV
proof (rule holomorphic__uniform__sequence)
fix z :: complex
have x: uniform_ limit (cball 0 (norm z + 1)) P f sequentially
by (rule uniform_limit) (auto intro: add_nonneg_pos)
hence uniform__limit (cball z 1) P f sequentially
by (rule uniform__limit_on__subset) (simp add: cball_subset__cball_iff)
thus 3d>0. cball z d C UNIV A uniform_limit (cball z d) P f sequentially

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy 529

by (intro exl[of _ 1]) auto
qed (auto intro!: holomorphic_intros simp: P__def)
qed auto

lemma analytic [analytic_intros): f analytic_on A
using holomorphic[of UNIV]| analytic_on__holomorphic by blast

end

lemma zero: fz = 0 <— 2 € range a
using has_prod_eq 0 _iff[OF has_prod, of z] by (auto simp: a_nonzero)

lemma not_islimpt_range__a: —z islimpt (range a)
proof
assume 7 islimpt (range a)
then obtain r :: nat = nat where r: strict_mono r (a o 1) —— 2
using islimpt_range__imp__convergent_subsequence by metis
moreover have filterlim (a o r) at_infinity sequentially
unfolding o_def by (rule filterlim__compose|OF filterlim__a filterlim__subseq| OF
H(1)]))
ultimately show Fulse
by (meson not_tendsto__and_ filterlim__at_infinity trivial _limit _sequentially)
qed

lemma isolated zero:
assumes 2z € range a
shows isolated zero f z
proof —
have eventually (A\z. fz # 0) (at 2)
using not_islimpt_range__a[of z] by (auto simp: islimpt_iff _eventually zero)
moreover have f —z— fz
by (intro isContD analytic__at_imp__isCont analytic)
hence f —z— 0
using assms zerolof z] by auto
ultimately show “thesis
by (auto simp: isolated_zero__def)
qged

lemma zorder: zorder f z = card (a —*{z})
proof —

obtain N where N: a —* {z} C {_.N}

using finite_occs__alof z] by (meson finite_nat_iff _bounded_le)

define g where g = (\z n. weierstrass_factor (p n) (z / a n)

define h1 where hl = (Aw. ([[ne{. N} — a—{z}. gwn) * (J[n. g w (n +
Suc N)))

define h2 where h2 = (Aw. ([[ne{.N} N a—{z}. g wn))

have has_prod_h1": (An. g w (n + Suc N)) has_prod ([[n. g w (n + Suc N))

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy 530

for w

unfolding ¢ def

by (intro convergent_prod__has__prod convergent prod__ignore_initial _segment
convergent)

have f eq: fw = hl w* h2 w for w
proof —
have fw = ([[n<Suc N. g wn) * ([[n. g w (n + Suc N))
proof (rule has_prod_unique2)
show (An. g wn) has_prod (([[n<Suc N. gwn) * ([[n. g w (n + Suc N)))
unfolding ¢ def by (intro has_prod_ignore_initial_segment’ convergent)
show g w has_prod f w
unfolding g def by (rule has_prod)

qed
also have {.<Suc N} = ({_.N} — a—{z}) U ({..N} N a—42})
y auto
also have (J[Jke.... gw k) = (J[k€{..N} — a—{z}. gw k) = (J[k€{..N} N
a—{z}. gwk)

by (intro prod.union__disjoint) auto
finally show ?thesis
by (simp add: h1_def h2_def mult_ac)
qed

have ana_h1: b1 analytic_on {z}
proof —
interpret hl: weierstrass_product An. a (n + Suc N) An. p (n + Suc N)
proof
have filterlim (An. n + Suc N) at_top at_top
by (rule filterlim__add_const_nat_at_top)
thus filterlim (An. a (n + Suc N)) at_infinity at_top
by (intro filterlim__compose| OF filterlim__a])
show summable (An. (r / emod (a (n + Suc N))) ~ Suc (p (n + Suc N))) if
r> 0 for r
by (intro summable ignore_initial_segment summable _a_p that)
qged (auto simp: a_nonzero)

show ?thesis using h1.analytic
unfolding h1_def g def hil.f def by (intro analytic intros) (auto simp:
a_mnonzero)
qed

have ana_h2: h2 analytic_on {z}
unfolding k2 _def g def by (intro analytic_intros) (auto simp: a_nonzero)

have zorder f z = zorder (Aw. h1 w * h2 w) 2
by (simp add: f_eq [abs_def])
also have ... = zorder hi z + zorder h2 z

proof (rule zorder_ _times__analytic)
have eventually (Aw. fw # 0) (at z)

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy 531

using not_islimpt_range__alof z] by (auto simp: islimpt__conv_ frequently _at
frequently _def zero)
thus eventually (Aw. h1 w * h2 w # 0) (at 2)
by (simp add: f_eq)
qed fact+
also have zorder h2 z = (D_ne{..N} N a —*“{z}. zorder (Aw. g w n) 2)
unfolding h2_ def
by (intro zorder _prod__analytic)
(auto simp: a_nonzero g_def eventually at_filter introl: analytic_intros)
also have hl z # 0 using N has_prod_eq 0_iff[OF has_prod_h1'[of z]]
by (auto simp: h1_def g def)
hence zorder h1 z = 0
by (intro zorder _eq 0I ana_hl)
also have (3> ne{.N} Nna —‘{z}. zorder Aw. gwn) z) = (> ne{.N} Na—*
{23 1)
proof (intro sum.cong refl)
fix n :: nat
assume n: n € {.N} Na —‘{z}
have zorder (Aw. weierstrass_factor (p n) (1 / an x w)) z =
zorder (weierstrass_factor (p n)) (1 / an * z)
using a_nonzero[of n] eventually_neq _at_within[of 1 z / a n UNIV]
by (intro zorder _scale analytic_intros analytic _on__imp_meromorphic_on)
auto
hence zorder (Aw. g w n) z = zorder (weierstrass_factor (p n)) 1
using n a_nonzero|of n] by (auto simp: g_ def)
thus zorder (Aw. g wn) z = 1
by simp
qed
also have ... = card ({.N} N a —‘{z})
by simp
also have {.N} Nna —‘{z} = a —“{z}
using N by blast
finally show ?thesis
by simp
qed

end

The following locale is the most common case of p(n) = n.

locale weierstrass _product’ =

fixes a :: nat = complex

assumes a_nonzero: A\n. a n # 0

assumes filterlim__a: filterlim a at_infinity at_top

assumes finite_occs_a’ N\z. z € range a = finite (a —* {z})
begin

lemma finite_occs_a: finite (a —* {z})
proof (cases z € range a)
case Fulse

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy 532

hence a —‘ {2z} = {}
by auto
thus ?thesis by simp
qed (use finite_occs_a'[of 2] in auto)

sublocale weierstrass _product a An. n
proof
fix r :: real assume r: r > 0
show summable (An. (r / norm (a n)) ~ Suc n)
proof (rule summable__comparison__test_ev)
have eventually (An. norm (a n) > 2 * r) at_top
using filterlim__a by (metis filterlim__at_infinity _imp_norm__at_top filter-
lim__at_top_ dense)
thus eventually (An. norm ((r / norm (a n)) ~ Suc n) < (1 / 2) ~ Suc n)
at_top
proof eventually elim
case (elim n)
have norm ((r / norm (a n)) = Suc n) = (r / norm (a n)) ~ Suc n
using «r > 0» by (simp add: abs_mult)
also have ... < (1 / 2) " Sucn
using <r > 0» elim by (intro power_mono) (auto simp: divide__simps)
finally show ?case .
qed
next
show summable (An. (1 / 2) ~ Suc n :: real)
unfolding summable__Suc_iff by (intro summable_geometric) auto
qed
qed (use a_nonzero filterlim__a finite_occs _a in auto)

end

9.3 Writing a quotient as an exponential

If two holomorphic functions f and g on a simply connected domain have
the same zeros with the same multiplicities, they can be written as g(x) =
e"®) f(z) for some holomorphic function h(z).

lemma holomorphic_zorder _factorization:

assumes ¢ holomorphic_on A open A connected A

assumes f holomorphic_on A Nz. z€ A= fz=0+—gz=10

Nz. 2 € A = zorder f z = zorder g z

obtains h where h holomorphic_on A Nz. z€ A= hz2# 0 \z2. z € A =
gz=hzxfz
proof (cases 3z€A. gz # 0)

case Fulse

show ?thesis

by (rule that[of _. 1]) (use False assms in auto)

next

case True

define F where F = fps_expansion f

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy 533

define G where G = fps_expansion g

define ¢ where ¢ = (Az. fps_nth (G z) (subdegree (G z)) / fps_nth (F z)
(subdegree (F z)))

define h where h = (Az. if fz=0thenczelse gz | [2)

have ev_nonzero: eventually (Aw. g w # 0 N w € A) (at 2) if z € A for 2
proof —
from True obtain 20 where 20: 20 € A g 20 # 0
by auto
show ?thesis
by (rule non__zero__neighbour_alt[where 28 = z0])
(use assms that z0 in <auto intro: simply connected _imp__connected»)
qed

have ¢g_ana: g analytic_on {z} if z € A for 2
using assms <open Ay analytic__at that by blast

have f ana: f analytic_on {z} if z € A for 2
using assms <open Ay analytic__at that by blast

have F: (Aw. f (z + w)) has_fps_expansion F z if z € A for z

unfolding F_def by (rule analytic_at_imp__has_fps_expansion|OF f_ana[OF
that]])

have G: (Aw. g (z + w)) has_fps_expansion G z if z € A for z

unfolding G_ def by (rule analytic_at_imp__has_fps_expansion|OF g_ana[OF
that]])

have [simp]: G z # 0 if z € A for 2
proof
assume G z = (
hence eventually (Aw. g w = 0) (at z) using G[OF that)]
by (auto simp: has_fps_expansion_0_iff at_to_0' eventually filtermap
add__ac
eventually__at_filter nhds_to_0' elim: eventually mono)
hence eventually (_. False) (at 2)
using ev_nonzero| OF that] unfolding eventually_at_filter by eventually elim
auto
thus Fulse
by simp
qed
have [simp]: F z # 0 if z € A for 2z
proof
assume F z = 0
hence eventually (Aw. fw = 0) (at z) using F|of 2] that
by (auto simp: has_fps_expansion_0_iff at_to 0’ eventually filtermap
add__ac
eventually__at_filter nhds_to_0' elim: eventually_mono)
hence eventually (A_. False) (at z)
using ev_nonzero| OF that] unfolding eventually__at_filter
by eventually__elim (use assms in auto)

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy 534

thus Fulse
by simp
qed
have [simp]: ¢ z # 0 if z € A for 2
using that by (simp add: c_def)

have h: h analytic_on {2z} AN hz# 0 if z € A for z
proof —
show ?thesis
proof (cases f z = 0)
case Fulse
from Fulse that have (\z. g z / f 2z) analytic_on {z}
by (intro analytic_intros g_ana f_ana) auto
also have ?this +— h analytic_on {z}
proof (rule analytic_at_cong)
have eventually (Aw. fw # 0) (nhds z)
using ev_nonzero[OF «z € A»] unfolding eventually at_filter
by eventually elim (use False <z € Ay assms in auto)
thus eventually (A\z. g z / fz = h z) (nhds 2)
by eventually_elim (auto simp: h_def)
qed auto
finally have h analytic_on {z} .
moreover have h z # 0
using that assms by (simp add: h__def)
ultimately show ?thesis by blast
next
case True
with that have z: z € A fz= 0
by auto
have zorder f z = int (subdegree (F z))
using F by (rule has_fps_expansion_zorder) (use z in auto)
also have zorder f z = zorder g z
using z assms by auto
also have zorder g z = subdegree (G z)
using G by (rule has_fps_expansion_zorder) (use z in auto)
finally have subdegree_eq: subdegree (F z) = subdegree (G z)
by simp

have (Aw. if w = 0 then c z else g (z + w) / f (z + w)) has_fps_expansion
Gz /Fz(is ?P)
using subdegree__eq z by (intro has_fps_expansion__divide F G) (auto simp:
c_def)
also have ?this «— (Aw. h (z + w)) has_fps_expansion G z | F z
proof (intro has_fps_expansion__cong)
have eventually (Aw. w # z — fw # 0) (nhds z)
using ev_nonzero|OF <z € A)] unfolding eventually at_ filter
by eventually_elim (use <z € Ay assms in auto)
hence eventually (Aw. w # 0 — f (z + w) # 0) (nhds 0)
by (simp add: nhds_to_0' eventually_filtermap)

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy 535

thus eventually (Aw. (if w = 0thenczelse g (z+ w) / f (z + w)) = h (2
+ w)) (nhds 0)
unfolding h_def by eventually elim (use z in <auto simp: ¢_def h__def>)
qed auto
finally have h analytic_on {z}
using has_fps_expansion__imp__analytic by blast
moreover have h z # 0
using that z by (auto simp: h_def c_ def)
ultimately show ?thesis by blast
qed
qed

from h have h_ana: h analytic_on A and h_nz: Vz€A. h z # 0
using analytic_on__analytic__at by blast+
moreover have g 2z = hz x fzif 2 € A for 2
using assms that by (auto simp: h_def)
ultimately show ?thesis
using <open Ay by (intro that[of h]) (auto simp: analytic_on__open)
qed

9.4 Constructing the sequence of zeros

The form of the Weierstrafl Factorisation Theorem that we derived above
requires an explicit sequence of the zeros that tends to infinity. We will now
show that under mild conditions, such a sequence always exists.

More precisely: if A is an infinite closed set that is sparse in the sense that
its intersection with any compact set is finite, then there exists an injective
sequence f enumerating the values of A in ascending order by absolute value,
and f tends to infinity for n — oo.

lemma sequence_of sparse__set__exists:
fixes A :: complex set
assumes infinite A closed A N\r. r > 0 = finite (A N cball 0 1)
obtains f :: nat = complex
where mono (norm o f) inj f range f = A filterlim f at__infinity at_top
proof —
have 3 f::nat = complez. ¥V n.
fne AN
fnégf{.<n}A
{z€A. norm z < norm (fn)} C f“{..<n} A
(Vk<n. norm (f k) < norm (f n)
proof (rule dependent_wf choice]OF
case (I fgnr)
thus ?case by auto
next
case (2 n f)
have f: fk € A {z € A norm z < norm (f k)} C f ‘ {.<k} Vk'<k. cmod (f
k") < emod (f k)
if £k < nfor k

)
wf], goal_cases)

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy 536

using 2[of k| that by simp__all

have infinite (A — f “{..<n})
using assms(1) by (intro Diff _infinite_ finite) auto
then obtain 20 where 20: 20 € A — f ‘ {..<n}
by (meson finite.intros(1) finite__subset subsetl)
have finite (A N cball 0 (norm 20))
by (intro assms(3)) auto
hence finite (A N cball 0 (norm 20) — f * {..<n})
using finite_subset by blast
moreover from z0 have A N cball 0 (norm 20) — f ‘{..<n} # {}
by auto
ultimately obtain z where is_arg_min norm (Az. z € A N cball 0 (norm
20) — f“{.<n}) z
using ex_is _arg _min_if finite by blast
hence z: z € A norm z < norm 20 z ¢ f ‘{..<n}
Nw. w e A= norm w < norm 20 = w ¢ f ‘{..<n} = norm w >
norm z
by (auto simp: is_arg_min__def)

show ?case
proof (rule exI[of _ z], safe)
fix w assume w: w € A norm w < norm z
with z(4)[of w] z w show w € f ‘{..<n}
by linarith
next
fix k assume k: k < n
show norm (f k) < norm z
using f(2)[of k] 2(1,3) k by auto
qged (use z in auto)
qed
then obtain f :: nat = complex where f:
An.fne A
An. fnéf{.<n}
An. {z€A. norm z < norm (fn)} C f“{.<n}
Nk n. k< n= norm (f k) < norm (f n)
by meson
from f(2) have f neq: fn # fkifk < nfor kn
using that by blast

have inj: inj f
proof (rule injI)
fix m n :: nat
assume fm = fn
thus m = n
using f neg[of m n] f_neg[of n m] by (cases m n rule: linorder_cases) auto
qed

have range: range f = A

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy

proof safe
fix z assume z: z € A
show z € range f
proof (rule ccontr)
assume z ¢ range f
hence norm (f n) < norm z for n
using f(3)[of n| z by auto
hence range f C A N cball 0 (norm z)
using f(1) by auto
moreover have finite (A N cball 0 (norm z))
by (intro assms) auto
ultimately have finite (range f)
using finite_subset by blast
moreover have infinite (range f)
using inj by (subst finite__image_iff) auto
ultimately show Fualse by contradiction
qed
qed (use f(1) in auto)

have mono: mono (norm o f)
proof (rule monol, unfold o__def)
fix m n 2 nat
assume m < n
thus norm (f m) < norm (f n)
using f(4)[of m n] by (cases m < n) auto
qged

have —bounded A
proof
assume bounded A
hence bdd__above (norm ‘ A)
by (meson bdd__above _norm)
hence norm z < Sup (norm ¢ A) if z € A for z
using that by (meson ¢SUP_upper)
hence A C cball 0 (Sup (norm ¢ A))
by auto

also have ... C cball 0 (maz 1 (Sup (norm * A)))

by auto

finally have A C A N cball 0 (max 1 (Sup (norm ¢ A)))

by blast

moreover have finite (A N cball 0 (maz 1 (Sup (norm © A))))

by (intro assms) auto
ultimately have finite A

using finite_subset by blast
hence finite (range f)

by (simp add: range)
thus Fulse

using inj by (subst (asm) finite_image_iff) auto

qed

037

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy 538

have lim: filterlim f at_infinity at_top
unfolding filterlim__at_infinity_conv_norm__at_top filterlim__at_top
proof
fix C :: real
from (—bounded A> obtain z where z € A norm z > C
unfolding bounded iff by (auto simp: not_le)
obtain n where [simp]: z = fn
using range <z € A) by auto
show eventually (An. norm (f n) > C) at_top
using eventually _ge__at_top[of n]
proof eventually elim
case (elim k)
have C < norm (f n)
using (norm z > C» by simp
also have ... < norm (f k)
using monoD[OF <mono (norm o), of n k| elim by auto
finally show ?case .
qed
qed

show ?thesis
by (intro that[of f] inj range mono lim)
qed

lemma strict_mono__sequence__partition:
assumes strict_mono (f :: nat = 'a :: {linorder, no_top})
assumes z > f 0
assumes filterlim f at_top at_top
shows 3Jk. z € {fk.<f (Suck)}
proof —
define k where k = (LEAST k. f (Suc k) > x)
{
obtain n where z < fn
using assms by (auto simp: filterlim__at_top eventually_at_top_ linorder)
also have fn < f (Suc n)
using assms by (auto simp: strict_mono_Suc__iff)
finally have 3n. f (Suc n) > z by auto
}
from Least] ex[OF this] have z < f (Suc k)
by (simp add: k__def)
moreover have fk < z
proof (cases k)
case (Suc k')
have k < k' if f (Suc k') > z
using that unfolding k_def by (rule Least_le)
with Suc show [k < z by (cases f k < z) (auto simp: not_le)
qed (use assms in auto)

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy 539

ultimately show ?thesis by auto
qed

lemma strict_mono_ sequence__partition’:
assumes strict_mono (f :: nat = 'a :: {linorder, no_top})
assumes z > f 0
assumes filterlim f at_top at_top
shows 3k z € {fk..<f (Suc k)}
proof (rule ex_ex1l)
show 3k. z € {fk..<f (Suc k)}
using strict _mono__sequence__partition[OF assms] .
fix k1 k2 assume z € {f k1..<f (Suc k1)} z € {f k2..<f (Suc k2)}
thus k1 = k2
proof (induction k1 k2 rule: linorder_wlog)
case (le k1 k2)
hence f k2 < f (Suc k1)
by auto
hence k2 < Suc k1
using assms(1) strict_mono__less by blast
with le show kI = k2
by linarith
qged auto
qed

lemma sequence_of sparse__set_exists”:
fixes A :: complexr set and ¢ :: complex = nat
assumes infinite A closed A N\r. r > 0 = finite (A N cball 0 1)
assumes ¢_pos: A\o. c € A = cz > 0
obtains f :: nat = complex where
mono (norm o f) range f = A filterlim f at_infinity at_top
Nz. 2z € A = finite (f —“{z}) N card (f —{2}) = cz
proof —
obtain f :: nat = complex where f:
mono (norm o f) inj f range f = A filterlim f at_infinity at_top
using assms sequence__of sparse__set__exists by blast
have f_eq iff [simp]: fm = fn +— m = n for mn
using <inj f> by (auto simp: inj _def)

define h :: nat = nat where h = (An. > k<n. ¢ (fk))

have [simp]: h 0 = 0
by (simp add: h__def)
have h_ge: hn > n for n
proof —
have h n > (3 k<n. I)
unfolding & _def by (intro sum_mono) (use ¢_pos f in <auto simp: Suc_le__eq»)
thus ?thesis by simp
qed

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy 540

have strict_mono h

unfolding strict _mono_Suc_iff using f by (auto simp: h_def ¢_pos)
moreover from this have filterlim h at_top at_top

using filterlim__subseq by blast
ultimately have FEzi: 3'k. n € {h k..<h (Suc k)} for n

by (intro strict_mono__sequence_partition’) auto

define g :: nat = nat where g = (An. THE k. n € {h k..<h (Suc k)})
have g: n € {h (g n)..<h (Suc (g n))} for n
using thel [OF Ex1[of n]] by (simp add: g_def)
have g eql: gn =k if n € {hk.<h (Suck)} for n k
using thel equality]OF Ex1 that] by (simp add: g_def)
have g h: g (h n) = n for n
by (rule g_eql) (auto intro: strict_monoD[OF <strict_mono h])

have mono g
unfolding incseq Suc_iff
proof safe
fix n :: nat
have h (gn) + 1 < Sucn
using g[of n] by auto
also have Suc n < h (Suc (g (Suc n)))
using g[of Suc n] by auto
finally show g n < g (Suc n)
by (metis <strict_mono hy add_lessD1 less_Suc__eq le strict_mono__less)
qed

have filterlim g at_top at_top
unfolding filterlim__at_top
proof
fix n :: nat
show eventually (Am. g m > n) at_top
using eventually _ge_at_top[of h n]
proof eventually elim
case (elim m)
have n < g (h n)
by (simp add: g_h)
also have g (hn) < gm
by (intro monoD[OF <mono ¢3] elim)
finally show ?Zcase .
qed
qed

have vimage: (f o g) —*{f n} = {h n..<h (Suc n)} for n
using g by (auto introl: g eql)

show ?thesis
proof (rule that[of f o g])

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy 541

have incseq (An. (norm o f) (g n))
by (intro monol monoD[OF f(1)] monoD[OF <incseq ¢])
thus incseq (norm o (f o g))
by (simp add: o__def)
next
have range (f o g) C A
using f(3) by auto
moreover have A C range (f o g)
proof
fix z assume z € A
then obtain n where [simp]: z = fn
using f(3) by auto
have f (g (h n)) € range (f o g)
unfolding o_ def by blast
thus z € range (f o g)
by (simp add: g_h)
qed
ultimately show range (f o g) = A by blast
next
fix z assume z € A
then obtain n where [simp]: z = fn
using f(3) by auto
have finite {h n..<h (Suc n)}
by auto
moreover have card {h n.<h (Suc n)} = ¢ z
by (simp add: h__def)
ultimately show finite ((f o g) —‘{z}) A card ((f 0 g) —“{2}) = c =z
using vimage|of n| by simp
next
show filterlim (f o g) at_infinity at_top
unfolding o_def by (rule filterlim__compose[OF f(4) <filterlim g at_top
at__topy])
qed
qed

9.5 The factorisation theorem for holomorphic functions

If ¢ is a holomorphic function on an open connected domain whose zeros do
not have an accumulation point on the frontier of A, then we can write g as
a product of a function A holomorphic on A and an entire function f such
that h is non-zero everywhere in A and the zeros of f are precisely the zeros
of A with the same multiplicity.

In other words, we can get rid of all the zeros of g by dividing it with a
suitable entire function f.

theorem weierstrass factorization:
assumes g holomorphic_on A open A connected A
assumes A\z. z € frontier A = -z islimpt {weA. g w = 0}
obtains & f where

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy 542

h holomorphic_on A f holomorphic_on UNIV
Vz.fz=0<+— Vz€A. gz=0)V(z€ ANgz=10)
Vz€A. zorder f z = zorder g z
VzeA. hz+# 0
VzeA.gz=hzx fz
proof (cases Vz€A. g z = 0)
case True
show ?thesis
proof (rule that[of A_. 1 A_. 0]; (intro balll alll impI)?)
fix z assume z: z € A
have ev: eventually (Aw. w € A) (at 2)
using z assms by (intro eventually at_in_open’) auto
show zorder (A_::complex. 0 :: complex) z = zorder g z
by (intro zorder_cong eventually _mono[OF ev] refl) (use True in auto)
qged (use assms True in auto)
next
case not_identically_zero: False
define Z where Z = {2€A. g z = 0}
have freq _nz: frequently (Az. g z # 0) (at 2) if z € A for z
proof —
haveVp winatz. gw # 0 ANwe A
using non_ zero__neighbour _alt[OF assms(1,2,8) that(1)] not_identically zero
by auto
hence Vp win atz. gw # 0
by eventually elim auto
thus ?thesis
using eventually_ frequently by force
qed

have zorder_pos_iff: zorder g z > 0 «+— gz = 0 if z € A for 2
by (subst zorder_pos_iff[OF assms(1,2) that]) (use freq_nz|of 2] that in auto)

show ?thesis
proof (cases finite Z)
case True
define f where f = (A\z. [[weZ. (z — w) powi (zorder g w))

have eq _zero_iff: fz=0+—2€ ANgz=0 for z
using True local.zorder pos iff
unfolding f def Z_def by fastforce
have zorder_eq: zorder f z = zorder g z if z € A for z
proof (cases g z = 0)
case Fulse
have g analytic_on {z}
using that assms analytic__at by blast
hence [simp|: zorder g z = 0
using Fulse by (intro zorder_eq 0I) auto
moreover have f analytic_on {z}
unfolding [def by (auto introl: analytic_intros)

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy 543

hence zorder fz = 0
using False by (intro zorder _eq 0I) (auto simp: eq zero__iff)
ultimately show ?Zthesis
by simp
next
case zero: True
have g analytic_on {z}
using that assms(1,2) analytic_at by blast
hence zorder g z > 0
using that by (intro zorder ge 0 freq nz) auto
define f’ where f' = (Az". ([JweZ—{z}. (z/ — w) powi (zorder g w)))
have zorder (A\z'. (2! — z) powi (zorder g z) x f' 2') z = zorder g z
proof (rule zorder _eql)
show open (UNIV :: complex set) f' holomorphic_on UNIV z € UNIV
using local.zorder _pos_iff
by (fastforce intro!: holomorphic__intros simp: f'_def Z__def)+
show 'z #£ 0
using True unfolding f’ def by (subst prod_zero_iff) auto
qged (use <zorder g z > 0) in <auto simp: powr_of int)
also have (\z’. (z/ — 2) powi (zorder g z) = f' 2') = f
proof
fix 2’ :: complex
have Z = insert z (Z — {z})
using that zero by (auto simp: Z__def)
also have (JJwe.... (z/ — w) powi (zorder g w)) = (2’ — z) powi (zorder
gz) *fz
using True by (subst prod.insert) (auto simp: f'_def)
finally show (2 — 2) powi (zorder g z) x f' z' = f 2’
by (simp add: f_def)
qed
finally show ?thesis .
qed

obtain & :: compler = complex where h:
h holomorphic_on A Nz. z€ A= hz# 0 Nz. 2€ A= gz=hzx* [z
proof (rule holomorphic_zorder _factorization|OF assms(1—23)))
show f holomorphic_on A
using local.zorder _pos__iff
unfolding [def Z_def by (fastforce intro: holomorphic__intros)
show fz2=0+— gz=0if z € A for 2
using that by (subst eq_zero_iff) auto
show zorder f z = zorder g z if z € A for z
by (rule zorder _eq) fact
qed metis

show ?thesis
proof (rule that[of h f]; (intro balll)?)
show h holomorphic_on A
by fact

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy 544

show f holomorphic_on UNIV
using local.zorder _pos__iff
unfolding [def Z_def by (fastforce intro: holomorphic__intros)
qged (use True not_identically_zero in <auto simp: eq_zero_iff zorder_ _eq h(2)
h(3)[symmetric]»)

next
case Fualse
note infinite_zeroes = not_identically zero Fualse
define ¢ where ¢ = (\z. nat (zorder g z))

have ev_nz: eventually (Aw. g w # 0) (at 2) if z € A for 2
proof —
from infinite_ zeroes(1) obtain z0 where 20: 20 € A g 20 # 0
by auto
have eventually (Aw. g w # 0 A w € A) (at 2)
by (rule non__zero_neighbour_alt[where 28 = 20]) (use assms z0 that in
auto)
thus ?thesis
by eventually_elim auto
qed

have no_ limpt_Z: —z islimpt Z for z
proof
assume z islimpt Z
show Fulse
proof (cases z € A)
case Fulse
have z islimpt A
by (rule islimpt_subset|OF <z islimpt Z>]) (auto simp: Z__def)
hence z € closure A
by (simp add: closure__def)
with <z ¢ A) have z € frontier A
by (simp add: closure__Un__frontier)
with assms and <z islimpt Z» show Fulse
by (auto simp: Z__def)
next
case True
from True have eventually (Aw. g w # 0) (at z)
using ev_nz by blast
hence —z islimpt Z
by (auto simp: islimpt_iff _eventually Z_def elim!: eventually mono)
with <z islimpt Z> show Fulse by blast
qed
qed
have closed Z
using no_ limpt_Z unfolding closed_limpt by blast

obtain a¢ where a:

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy 545

incseq (norm o a) range a = Z — {0}
Nz z€ Z — {0} = finite (a —“{z}) N card (a —*{z}) = c 2
filterlim a at__infinity at_top
proof (rule sequence_of sparse__set_exists’)
show infinite (Z — {0})
using infinite_ zeroes(2) by auto
next
show closed (Z — {0})
unfolding closed_limpt using no_ limpt_Z islimpt__subset by blast
next
show finite ((Z — {0}) N cball O R) if R > 0 for R
proof (rule ccontr)
assume x*: infinite ((Z — {0}) N cball 0 R)
have 3 zecball 0 R. z islimpt ((Z — {0}) N cball 0 R)
by (rule Heine_Borel _imp_ Bolzano_ Weierstrass) (use x in auto)
then obtain z where z islimpt ((Z — {0}) N cball 0 R)
by blast
hence z islimpt Z
using slimpt__subset by blast
thus Fulse
using no_ limpt_Z by blast
qed
next
show ¢ z > 0 if z € Z — {0} for 2
using zorder_pos__iff[of z] that by (auto simp: c_def Z_def)
qged metis

interpret f: weierstrass _product’ a
proof
show a n # 0 for n
using a(2) by auto
show finite (a —*{z}) if z € range a for z
using a(3)[of z] a(2) that by simp
qed fact+

define m where m = (if 0 € A then nat (zorder g 0) else 0)

have zorder _eq: zorder (Az. z “m * f.f z) 2 = zorder g z if z € A for 2
proof (cases g z = 0)
case Fulse
have g analytic_on {z}
using <z € Ay analytic_at assms by blast
hence zorder g z = 0
by (intro zorder_eq 0I False)
have z ¢ range a
using False Z_def a(2) by blast
hence zorder (M\z. z "m x f.fz) 2 =10
using Fulse <zorder g z = 0»
by (intro zorder_eq_0I analytic_intros) (auto simp: f.zero m__def)

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy 546

with <zorder g z = 0> show ?thesis
by simp
next
case True
define F where F = fps expansion f.f z
have frequently (Aw. g w # 0) (at 2)
using ev_nz[OF that] eventually frequently by force
hence zorder g z > 0
by (intro zorder_ge_0) (use assms that in <auto simp: analytic_at»)

have ev: eventually (Az. z € A) (nhds z)
using that assms by (intro eventually nhds_in_open) auto
have expl: (Aw. f.f (2 + w)) has_fps_expansion F
unfolding F_def by (intro analytic_at_imp_has_fps_expansion|OF
f.analytic])
have exp2: (Aw. (z + w) “m * f.f (z + w)) has_fps_expansion (fps_const
z+ fps X) "mx F
by (intro fps_expansion__intros expl)
have [simp]: F # 0
proof
assume F' = 0
hence eventually (\z. f.f 2 = 0) (nhds 2)
using exp! by (auto simp: has_fps_expansion_def nhds_to 0’ eventu-
ally _filtermap)
hence eventually (Az. g z = 0) (at 2)
by (auto simp: f.zero a Z__def eventually__at_ filter elim!: eventually _mono)
hence eventually (A\z::complex. False) (at z)
using ev_nz[OF <z € Ay] by eventually _elim auto
thus Fualse by simp

qed
have zorder (Aw. w ~m * f.f w) z = int (subdegree ((fps_const z + fps_X)
“m x F))
using has_fps_expansion_zorder|OF exp2| by simp
also have ... = int (subdegree F') + (if z = 0 then m else 0)
by auto

also have int (subdegree F) = zorder f.f z

using has_fps__expansion_zorder|OF expl] by simp
also have ... = int (card (a —‘{z}))

by (rule f.zorder)
also have card (a —‘{z}) = (if z = 0 then 0 else ¢ z)
proof (cases z = 0)

case True

hence a —“ {2} = {}

using a(2) by auto

thus ?thesis using True by simp
next

case Fulse

thus ?thesis

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy 547

by (subst a(3)) (use True that in <auto simp: Z__def>)
qed
also have int ... + (if z = 0 then m else 0) = zorder g z
using <zorder g z > 0> that by (auto simp: ¢_def m__def)
finally show ?thesis .
qed

have eq zero iff: 2 "mx*x f.fz2=0++—> gz=0if 2 € A for z
using that by (auto simp add: f.zero a m__def zorder _pos_iff Z_ def)

obtain & :: compler = complex where h:
h holomorphic_on A Nz. z€ A= hz# 0 Nz. 2z€ A= gz=hzx* (2
“mox f.f 2)
proof (rule holomorphic_zorder _factorization|OF assms(1—23)))
show (Az. z ~m x f.f z) holomorphic_on A
by (intro holomorphic__intros)
show z "mx* ffz=0+—>g2z=01if 2 € A for 2
by (rule eq_zero_iff) fact+
show zorder (Az. z “m * f.fz) z = zorder g z if z € A for 2
by (rule zorder_eq) fact+
qged metis

show ?thesis
proof (rule that[of h Az. z = m * f.f z]; (intro balll alll impl)?)
show h holomorphic_on A
by fact
show (Az. z = m * f.f z) holomorphic_on UNIV
by (intro holomorphic__intros)
next
fix z :: complex
show (z "mxffz=0)=(V2€4. gz=0)VzeEANgz=10)
using infinite_zeroes(1) a(2)
by (auto simp: m__def zorder _eq eq_zero_iff zorder _pos_iff Z__def f.zero)
qed (use zorder _eq eq zero_iff h in auto)
qed
qed

The following is a simpler version for entire functions.

theorem weierstrass factorization_ UNIV:

assumes ¢ holomorphic_on UNIV

obtains h f where
h holomorphic_on UNIV f holomorphic_on UNIV
Vz.fz=0+—>gz=10
V z. zorder f z = zorder g z
Vz. hz+#0
Vz.gz=hzxfz

using assms by (rule weierstrass_factorization, goal_cases) auto

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy 548

9.6 The factorisation theorem for meromorphic functions

Let g be a meromorphic function on a connected open domain A. Assume
that the poles and zeros of g have no accumulation point on the border of
A. Then g can be written in the form g(z) = h(2)f1(2)/f2(z) where h is
holomorphic on A with no zeroes and f; and fs are entire.

Moreover, as direct consequences of that, the zeroes of f; are precisely the
zeroes of g and the zeros of fo are precisely the poles of g (with the corre-
sponding multiplicity).

theorem weierstrass_factorization__meromorphic:
assumes mero: g nicely _meromorphic_on A and A: open A connected A
assumes no_limpt: N\z. z € frontier A = —z islimpt {we€A. g w = 0 V is_pole
g w}
obtains & fI f2 where
h holomorphic_on A fI holomorphic_on UNIV f2 holomorphic_on UNIV
V2€A. fl 2 =0 <— —is_polegz N gz=10
VzeA. f2 2= 0 «— is_pole g z
YV z€A. —is_pole g z — zorder f1 z = zorder g z
Vz€A. is_pole g z — zorder f2 z = —zorder g z
VzeA. hz+# 0
V2€A.gz=hzxflz] f22
proof —
have mero’: ¢ meromorphic_on A
using mero unfolding nicely meromorphic_on__def by auto
define pts where pts = {2€A. is_pole g z}
have {z. is_pole g z} sparse_in A
using meromorphic_on__imp_not_pole_cosparse]OF mero’]
by (auto simp: eventually cosparse)
hence pts sparse_in A
unfolding pts_def by (rule sparse_in_subset2) auto
have open__diff _pts: open (A — pts’) if pts’ C pts for pts’
proof (rule open_ diff sparse_pts)
show pts’ sparse_in A
using «pts sparse_in Ay by (rule sparse_in__subset2) fact
qed (use <open Ay in auto)

have ev: eventually (Aw. w € A — pts) (at z) if z € A for z
proof (cases z € pts)
case Fulse
thus ?thesis
using that open__diff _pts[of pts] by (intro eventually at_in__open’) auto
next
case True
have eventually (Aw. w € (A — (pts — {z})) — {z}) (at 2)
using that by (intro eventually at in_open open_ diff pts) auto
also have A — (pts — {z}) — {2} = A — pts
using True by auto
finally show ?%thesis .

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy 549

qed

show ?thesis
proof (cases Vz€A—pts. g z = 0)
case True
have no_poles: —is_pole g z if z € A for 2z
proof —
have is_pole g z <— is_pole (A_::complex. 0 :: complex) z
by (intro is_pole__cong[OF eventually mono[OF ev]]) (use that True in
auto)
thus “thesis
by simp
qed
hence [simp]: pts = {}
by (auto simp: pts_def)
have [simp]: zorder g z = zorder (A_::complex. 0 :: complex) z if z € A for z
by (intro zorder_cong|OF eventually_mono[OF ev]]) (use True that in auto)
show ?thesis
by (rule that[of A_. 1 XA _. 0 X_. 1]) (use True in <auto simp: no_ poles))

next

case Fulse
have is_pole iff: is_pole g z <— 2z € pts if z € A for 2
using that by (auto simp: pts_def)

obtain h fI where h_fI:
h holomorphic_on A — pts f1 holomorphic_on UNIV
V2. flz=0+— (Vz€A—pts. gz=0)V (2€ A —ptsN\gz=20)
YV ze€ A—pts. zorder f1 z = zorder g z
VzeEA—pts. h z # 0
Vz2eEA—pts. gz =h z * fl z
proof (rule weierstrass_factorization)
have g analytic_on A — pts
by (rule nicely_meromorphic_without _singularities)
(use mero in <auto simp: pts_def dest: nicely meromorphic_on__subset))
thus holo: g holomorphic_on A — pts
by (rule analytic_imp__holomorphic)
show open (A — pts)
by (rule open_ diff pts) auto
show connected (A — pts)
by (rule sparse__imp__connected) (use A <pts sparse_in A» in auto)
show — z islimpt {w € A — pts. g w = 0} if z € frontier (A — pts) for z
proof —
from that have z € frontier A — pts U pts
using <open (A — pts)» <open A closure_monolof A — pts A]
by (auto simp: frontier_def interior_open)
thus ?thesis
proof

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy 550

assume z € pts

hence is_pole g z
by (auto simp: pts_def)

hence eventually (Az. g z # 0) (at 2)
using non__zero__neighbour_pole by blast

hence —z islimpt {w. g w = 0}
by (auto simp: islimpt_iff _eventually)

thus ?thesis
using islimpt_subset[of z {weA—pts. g w = 0} {w. g w = 0}] by blast

next

assume z: z € frontier A — pts

show — z islimpt {w € A — pts. gw = 0}

proof
assume z islimpt {w € A — pts. g w = 0}
hence z islimpt {w € A. g w = 0 V is_pole g w}

by (rule islimpt_subset) (auto simp: pts_def)

thus Fulse using no_ limpt z by blast

qed

qed
qed
qed

have fI_eq 0 iff: flz2=0+— (z€ A—pts N gz=0) for z
using h_f1(3) False by auto

define h/ where h' = (Az. if z € pts then 0 else inverse (h z))

have isolated__h: isolated _singularity at h z if z € pts for z
proof —
have open (A — (pts — {z}))
by (rule open__diff _pts) auto
moreover have z € (4 — (pts — {z}))
using that by (auto simp: pts_def)
moreover have h holomorphic_on (A — (pts — {z})) — {z}
by (rule holomorphic_on_subset|OF h_f1(1)]) (use that in auto)
ultimately show isolated_singularity _at h z
using isolated singularity _at_holomorphic by blast
qed

have is_pole _h: is_pole h z if z € A is_pole g z for z
proof —
have f1: fI analytic_on {z}
by (meson analytic_on__holomorphic h_f1(2) open_ UNIV top_ greatest)
have eventually (Aw. g w # 0) (at 2)
using <is_pole g z> non__zero__neighbour__pole by blast
with ev[OF that(1)] have ev”: eventually (Aw. g w * f1 w # 0) (at 2)
by eventually_elim (use h_f1(8) in auto)

have is_pole (Aw. g w / f1 w) z

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy 551

proof (rule is_pole divide_zorder)
show isolated__singularity at f1 z not_essential f1 z
using f1 by (simp__all add: isolated _singularity _at _analytic not__essential _analytic)
show isolated__singularity at g z not__essential g 2z
using mero’ that unfolding meromorphic_on__altdef by blast+
show freq: frequently (Aw. g w * f1 w # 0) (at 2)
using ev’ by (rule eventually frequently[rotated]) auto
from freq have freq”: frequently (Aw. f1 w # 0) (at z)
using frequently elim1 by fastforce
have zorder g z < 0

using <is_pole g 2> <isolated__singularity at g z> isolated__pole_imp_ neg zorder
by auto

also have 0 < zorder f1 z

by (rule zorder_ge_0[OF f1 freq'])
finally show zorder g z < zorder f1 z .
qed

also have ?this «<— is_pole h z

proof (intro is_pole cong refl eventually mono|OF eventually conj[OF
ev|OF that(1)] ev']])

fix w assume w € A — pts A gw * f1 w+# 0
thus g w / fl w = h w using h_f1(6)
by (auto simp: divide _simps)
qed
finally show is pole h z .
qed

have h' analytic_on {z} if z € A for z
proof (cases z € pts)
case Fulse
moreover have open (A — pts)
by (rule open__diff _pts) auto
ultimately have (Az. inverse (h 2)) analytic_on {z}
using that h_f1(1,2,5) <open (A — pts)» analytic_at False
by (intro analytic_intros) (auto simp: f1_eq 0 _iff)
also have eventually (Az. z € A — pts) (nhds z)
using that False <open (A — pts)> by (intro eventually nhds_in__open) auto
hence (Az. inverse (h z)) analytic_on {z} +— h' analytic_on {z}

by (intro analytic__at_cong) (auto elim!: eventually _mono simp: h'_def)
finally show ?thesis .

next
case True

have (\w. if w = z then 0 else inverse (h w)) holomorphic_on (A — (pts —
{z}))
proof (rule is_pole inverse__holomorphic)
from True have A — (pts — {z}) — {2z} = A — pts
by auto
thus h holomorphic_on A — (pts — {z}) — {z}
using h_f1(1) by simp
next

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy 552

show open (A — (pts — {z}))
by (rule open_ diff pts) auto
next
have is_pole g 2
using True that by (simp add: is_pole_iff)
thus is_pole h z
using is_pole_h that by auto
next
show YV we A—(pts—{z})—{z}. hw # 0
using h_f1(5) by auto
qed
also have ?this «+— h' holomorphic_on A — (pts — {z})
proof (intro holomorphic__cong refl)
fix w assume w: w € A — (pts — {z})
show (if w = z then 0 else inverse (h w)) = h' w
using True w by (cases w = z) (auto simp: h'_def)
qed
finally have h’ holomorphic_on A — (pts — {z}) .
moreover have z € A — (pts — {z}) open (A — (pts — {z}))
using True that by (auto introl: open_ diff pts)
ultimately show b’ analytic_on {z}
using analytic _at by blast
qed
hence h': b/ analytic_on A
using analytic_on__analytic__at by blast

have h'_eq 0 _iff: h' w = 0 < is_pole g w if w € A for w
using that h_f1(5) is_pole_iff [of w] by (auto simp: h'_def)

obtain 1’ f2 where h'_f2:
h'" holomorphic_on A f2 holomorphic_on UNIV
V2. f22=0++— (V2€A. b 2=0)V (z€ ANK 2=0)
V2€A. h' 2 = 0 — zorder f2 z = zorder h' z
Vz2€A. b 2 £ 0Vz2€A. W z2=h" 2% f2 2
proof (rule weierstrass_factorization[of h' A])
show open A connected A
by fact+
show h’ holomorphic_on A
using h' <open Ay by (simp add: analytic _on__open)
show —z islimpt {weA. h' w = 0} if z € frontier A for 2z
proof
assume z islimpt {weA. b’ w = 0}
also have {weA. b/ w = 0} = pts
by (auto simp: h'_eq_0_iff pts_def)
finally have z islimpt {w € A. g w = 0 V is_pole g w}
by (rule islimpt_subset) (auto simp: pts_def)
thus False using no_limpt[of z] that
by blast
qed

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy 553

qed blast

show ?thesis
proof (rule that[of Aw. inverse (h'" w) fI f2]; (intro balll alll implI)?)
show (Aw. inverse (h'" w)) holomorphic_on A
using h''_f2(1,2,5) by (intro holomorphic_intros) auto
next
show f1 holomorphic_on UNIV f2 holomorphic_on UNIV
by fact+
next
show f1 2 =0 <+— —is_polegz N gz=01if z € A for
using that by (subst f1_eq 0 _iff) (auto simp: pts_def)
next
show f2 z = 0 <— is_pole g z if z € A for 2
proof —
have =(Vz€A. b/ z = 0)
using False h''_f2(6) h_f1(6) h'_eq 0 _iff is_pole iff by auto
hence f22=0+—h'2=10
using h'"_f2(3) that by auto
also have ... <— s _pole g z
using that by (simp add: is_pole_iff h'_eq 0_iff)
finally show ?thesis .
qed
next
show zorder f1 z = zorder g z if z € A —is_pole g z for z
using h_f1(4) that by (auto simp: pts_def)
next
show zorder f2 z = —zorder g z if z € A is_pole g z for z
proof —
have zorder f2 z = zorder h' z
using h'"_f2(4) that h'_eq_0_iff[of 2] is_pole_iff[of z] by auto

also have ... = zorder (Aw. inverse (h w)) z
using that by (intro zorder_cong eventually_mono[OF ev]) (auto simp:
B def)
also have ... = —zorder h z

proof (intro zorder_inverse)
have is pole h z
using that is_pole__iff[of z] is_pole__h[of z] by auto
thus not essential h z
by force
show frequently (Aw. h w # 0) (at z)
using non__zero__neighbour_pole[OF <is_pole h)] eventually_ frequently
by force
qed (use that in <auto intro!: isolated_h simp: pts_def»)
also have zorder f1 z = 0
proof (rule zorder _eq 0I)
show fI analytic_on {z}
using that h_f1(2) holomorphic_on_imp__analytic_at by blast
show f1 z # 0

Weierstrass{_}{\kern 0pt}Factorization.html

Weierstrass _Factorization.thy 554

using that h_f1(3) False by (auto simp: pts_def)

qged

hence zorder h z = zorder f1 z + zorder h z
by simp

also have ... = zorder (Aw. f1 w x h w) z

proof (rule zorder _times [symmetric])
have fI analytic_on {z}
using that h_f1(2) holomorphic_on_imp _analytic_at by blast
thus isolated singularity at f1 z not__essential f1 z
using isolated__singularity _at__analytic not_essential__analytic by blast+
show isolated__singularity at h z
using that by (intro isolated h) (auto simp: pts_def)
have is_pole h z
using is_pole_iff[of 2] that by (intro is_pole_h) auto
thus not__essential h z
by force
have z € A
using that by auto
have eventually (Aw. g w # 0) (at 2)
using non_ zero_neighbour_pole[of g z] that by auto
hence eventually (Aw. f1 w* h w # 0) (at 2)
using ev[OF <z € A)] by eventually elim (use h__f1(6) in auto)
thus frequently (Aw. f1 w x h w # 0) (at 2)
using eventually_frequently by force
qed
also have ... = zorder g z
proof (rule zorder _cong)
have eventually (Aw. w € A — pts) (at z)
using ev|of z| that by auto
thus eventually (Aw. f1 w* h w = g w) (at 2)
by eventually_elim (use h_f1(6) in auto)
qed auto
finally show ?thesis .
qed
next
show inverse (b’ z) # 0 if z € A for z
using h'"_f2(5) that by auto
next
show ¢ z = inverse (h"' 2) x f1 2 | f2 2z if z: z € A for 2
proof (cases is_pole g z)
case Fulse
have x: gz=hzxflzh'2=h"2xf22h" 24 0h2# 0
using that h''_f2(5,6) h_f1(5,6) False unfolding pts def by blast+
have gz = h z x fI 2
by fact
alsohave ... = fl 2z / h'z
using x that False by (simp add: h'_def field__simps pts_def)
also have h/ z = h'' z x f2 2
by fact

Weierstrass{_}{\kern 0pt}Factorization.html

Complex_Analysis.thy 555

also have f1 z / (b" z % f2 z) = inverse (b z) % fl z | f2 2
by (simp add: divide inverse__commute)
finally show ?thesis .
next
case True
have g —2z— ¢ 2
using True at_neq bot is_pole def not_tendsto__and__ filterlim__at__infinity
by blast
with mero and z and True have g z = 0
by (auto simp: nicely__meromorphic_on__def)
moreover have f2 z = 0
using True z by (simp add: h"_f2(3) h'_eq_0_iff)
ultimately show ?thesis by simp
qed
qed
qged
qed

Again, we derive an easier version for functions meromorphic on the entire
complex plane.

theorem weierstrass _factorization_meromorphic_UNIV:
assumes ¢ nicely meromorphic_on UNIV
obtains & fI f2 where
h holomorphic_on UNIV f1 holomorphic_on UNIV f2 holomorphic_on UNIV
Vz.fl z=0 +— —is_polegzNgz=10
Vz. f22=0+— is_pole gz
V z. mis_pole g z — zorder f1 z = zorder g z
V z. is_pole g z — zorder f2 z = —zorder g z
Vz.hz#0
Vz.gz=hzxflz/f2z
proof (rule weierstrass_factorization__meromorphic)
show ¢ nicely meromorphic_on UNIV
by fact
show connected (UNIV :: complex set)
by (simp add: Convex.connected_UNIV')
show — z islimpt {w € UNIV. gw = 0 V is_pole g w} if z € frontier UNIV for
z
using that by simp
show open (UNIV :: complex set)
by simp
qed auto

end

theory Complex_Analysis
imports
Riemann__ Mapping
Residue_ Theorem
Weierstrass _Factorization

begin

Complex{_}{\kern 0pt}Analysis.html

REFERENCES 556

end

References

1]

	Contour integration
	Definition
	Reversing a path
	Joining two paths together
	Shifting the starting point of a (closed) path
	More about straight-line paths
	Relation to subpath construction
	Cauchy's theorem where there's a primitive
	Arithmetical combining theorems
	Operations on path integrals
	Arithmetic theorems for path integrability
	Reversing a path integral
	Reversing the order in a double path integral
	Partial circle path
	Special case of one complete circle
	Uniform convergence of path integral

	Complex Path Integrals and Cauchy's Integral Theorem
	The key quadrisection step
	Cauchy's theorem for triangles
	Version needing function holomorphic in interior only
	Version allowing finite number of exceptional points
	Cauchy's theorem for an open starlike set
	Cauchy's theorem for a convex set
	Generalize integrability to local primitives
	Homotopy forms of Cauchy's theorem

	Winding numbers
	Definition
	Useful sufficient conditions for the winding number to be positive

	The winding number is an integer
	Continuity of winding number and invariance on connected sets
	The winding number is constant on a connected region
	Winding number is zero "outside" a curve
	More winding number properties
	Winding number for a triangle
	Winding numbers for simple closed paths
	Winding number for rectangular paths

	Cauchy's Integral Formula
	Proof
	General stepping result for derivative formulas
	Existence of all higher derivatives
	Morera's theorem
	Combining theorems for higher derivatives including Leibniz rule
	A holomorphic function is analytic, i.e. has local power series
	The Liouville theorem and the Fundamental Theorem of Algebra
	Weierstrass convergence theorem
	Some more simple/convenient versions for applications
	On analytic functions defined by a series
	Equality between holomorphic functions, on open ball then connected set
	Some basic lemmas about poles/singularities
	General, homology form of Cauchy's theorem
	Cauchy's inequality and more versions of Liouville
	Complex functions and power series

	Conformal Mappings and Consequences of Cauchy's Integral Theorem
	Analytic continuation
	Open mapping theorem
	Maximum modulus principle
	Factoring out a zero according to its order
	Entire proper functions are precisely the non-trivial polynomials
	Relating invertibility and nonvanishing of derivative
	Hence a nice clean inverse function theorem
	Holomorphism of covering maps and lifts.

	The Schwarz Lemma
	The Schwarz reflection principle
	Bloch's theorem

	The Great Picard Theorem and its Applications
	Schottky's theorem
	The Little Picard Theorem
	The Arzelà–Ascoli theorem
	Montel's theorem

	Some simple but useful cases of Hurwitz's theorem
	The Great Picard theorem

	Moebius functions, Equivalents of Simply Connected Sets, Riemann Mapping Theorem
	Moebius functions are biholomorphisms of the unit disc
	A big chain of equivalents of simple connectedness for an open set
	A further chain of equivalences about components of the complement of a simply connected set
	Further equivalences based on continuous logs and sqrts
	More Borsukian results
	Finally, the Riemann Mapping Theorem
	Applications to Winding Numbers
	The winding number defines a continuous logarithm for the path itself
	Winding number equality is the same as path/loop homotopy in C - 0
	Non-essential singular points
	Isolated singularities
	The order of non-essential singularities (i.e. removable singularities or poles)
	Isolated points
	Isolated zeros
	Definition of residues
	Poles and residues of some well-known functions

	The Residue Theorem, the Argument Principle and Rouché's Theorem
	Cauchy's residue theorem
	The argument principle
	Coefficient asymptotics for generating functions
	Rouche's theorem
	More Laurent expansions
	Formal convergence versus analytic convergence
	Remove singular points
	Meromorphicity
	Nice meromorphicity
	Closure properties and proofs for individual functions
	Meromorphic functions and zorder
	More on poles and zeros

	The Weierstraß Factorisation Theorem
	The elementary factors
	Infinite products of elementary factors
	Writing a quotient as an exponential
	Constructing the sequence of zeros
	The factorisation theorem for holomorphic functions
	The factorisation theorem for meromorphic functions

