The Isabelle/HOL Algebra Library

Clemens Ballarin (Editor)

With contributions by Jests Aransay, Clemens Ballarin, Martin
Baillon, Paulo Emilio de Vilhena, Stephan Hohe, Florian Kammiiller

and Lawrence C Paulson
January 18, 2026

Contents

1 Objects

1.1 Structure with Carrier Set.
1.2 Structure with Carrier and Equivalence Relation eq

Orders

2.1 Partial Orders.
2.1.1 The order relation
2.1.2 Upper and lower bounds of aset
2.1.3 Least and greatest, as predicate
214 Intervals
2.1.5 Isotone functions
2.1.6 Idempotent functions
2.1.7 Order embeddings
2.1.8 Commuting functions,

2.2 Partial orders where eq is the Equality

2.3 Bounded Orders

2.4 Total Orders

2.5 Total orders where eq is the Equality

Lattices
3.1 Supremum and infimum
3.2 Dualoperators L o o
3.3 Lattices
3.3.1 Supremum
332 Imfimum
3.4 Weak Bounded Lattices
3.5 Lattices where eq is the Equality
3.6 Bounded Lattices

13
13
13

20
20
21
22
25
27
28
29
29
29
29
30
31
31

4 Complete Lattices 41
4.1 Imfimum Laws 43
4.2 Supremum Laws L oo 43
4.3 Fixed points of a lattice 44

4.3.1 Least fixed points. L L. 45
4.3.2 Greatest fixed points 46
4.4 Complete lattices where eq is the Equality 47
45 Fixedpoints.o o 47
4.6 Interval complete lattices 48
4.7 Knaster-Tarski theorem and variants 48
4.8 Examples 49
4.8.1 The Powerset of a Set is a Complete Lattice 49
4.9 Limit preserving functions oL 50

5 Galois connections 51
5.1 Definition and basic properties 51
5.2 Well-typed connections 51
5.3 Galois connections Lo Lo 51
5.4 Composition of Galois connections 54
5.0 Retracts 54
5.6 Coretracts e 55
5.7 Galois Bijections oL 55

6 Monoids and Groups 56
6.1 Definitions. 56
6.2 Groups. o i e 58
6.3 Cancellation Laws and Basic Properties 59
6.4 Power 60
6.5 Submonoidso 64
6.6 Subgroups 65
6.7 Direct Productso 67
6.8 Homomorphisms (mono and epi) and Isomorphisms 68

6.8.1 HOL Light’s concept of an isomorphism pair 71
6.8.2 Involving direct products 72
6.9 The locale for a homomorphism between two groups 73
6.10 Commutative Structures 75
6.11 The Lattice of Subgroups of a Group 77
6.12 The units in any monoid give rise to a group 78
6.13 Product Operator for Commutative Monoids 79
6.13.1 Inductive Definition of a Relation for Products over Sets 79
6.13.2 Left-Commutative Operations 80

6.13.3 Products over Finite Sets 83

7 Cosets and Quotient Groups 87
7.1 Stable Operations for Subgroups 88
7.2 Basic Properties of set multiplication 88
7.3 Basic Propertiesof Cosets 89
7.4 Normal subgroups 91
7.5 More Properties of Left Cosets 93

7.5.1 Set of Inverses of an r_coset. 93
7.5.2 Theorems for <#> with #>or <#.. 94
7.5.3 An Equivalence Relation 94
7.5.4 Two Distinct Right Cosets are Disjoint 95
7.6 Further lemmas for r_congruent 95
7.7 Order of a Group and Lagrange’s Theorem 95
7.8 Quotient Groups: Factorization of a Group 97
7.9 The First Isomorphism Theorem 99
7.9.1 Trivial homomorphisms 101
7.10 Image kernel theorems 101
7.11 Factor Groups and Direct product 102
7.11.1 More Lemmas about set multiplication 103
7.11.2 Lemmas about intersection and normal subgroups . . 103

8 Flattening the type of group carriers 105

9 Sylow’s Theorem 106
9.1 Main Part of the Proof 107
9.2 Discharging the Assumptions of sylow_central 108

9.2.1 Introduction and Destruct Rules forH 109
9.3 Equal Cardinalities of M and the Set of Cosets 110
9.3.1 The Opposite Injection 110
9.4 Sylow’s Theorem 111

10 Bijections of a Set, Permutation and Automorphism Groups111
10.1 Bijections Form a Group 112
10.2 Automorphisms Form a Group, 112

11 The Algebraic Hierarchy of Rings 113
11.1 Abelian Groups 113
11.2 Basic Propertieso oL 114
11.3 Rings: Basic Definitions 118
114 Rings o o o o 118

11.4.1 Normaliser for Rings 120
11.4.2 Sums over Finite Sets 122
11.5 Integral Domains o Lo 123
11.6 Fields o 123
11.7 Morphisms 124

11.8 Jeremy Avigad’s More_Finite_Product material
11.9 Jeremy Avigad’s More_Ring material

12 Modules over an Abelian Group
12.1 Definitions L oo
12.2 Basic Properties of Modules
12.3 Submodules L oo
12.4 More Lifting from Groups to Abelian Groups

12.4.1
12.4.2
12.4.3
12.4.4
12.4.5
12.4.6
12.4.7
12.4.8
12.4.9

Definitions L Lo
Cosets
Subgroups
Additive subgroups are normal
Congruence Relation
Factorization,
The First Isomorphism Theorem
Homomorphisms
Cosets

12.4.10 Addition of Subgroups

13 Ideals

13.1 Definitions e

13.1.1
13.1.2
13.1.3
13.14
13.1.5

General definition
Ideals Generated by a Subset of carrier R.
Principal Ideals
Maximal Ideals
Prime Ideals

13.2 Special Ideals oo o
13.3 General Ideal Properties
13.4 Intersection of Ideals
13.5 Addition of Ideals
13.6 Ideals generated by a subset of carrier R
13.7 Union of Ideals
13.8 Properties of Principal Ideals
139 Prime Ideals
13.10Maximal Ideals
13.11Derived Theorems

14 Homomorphisms of Non-Commutative Rings
14.1 The Kernel of a Ring Homomorphism

14.2 Cosets

127
127
129
129
130
130
132
134
134
137
138
139
139
141
142

143
143
143
143
143
144
144
145
145
146
146
146
148
148
149
149
149

15 Univariate Polynomials
15.1 The Constructor for Univariate Polynomials
15.2 Effect of Operations on Coefficients
15.3 Polynomials Form a Ring.
15.4 Polynomials Form a Commutative Ring.
15.5 Polynomials over a commutative ring for a commutative ring
15.6 Polynomials Form an Algebra
15.7 Further Lemmas Involving Monomials
15.8 The Degree Function
15.9 Polynomials over Integral Domains
15.10The Evaluation Homomorphism and Universal Property . . .
15.11The long division algorithm: some previous facts.
15.12The long division proof for commutative rings
15.13Sample Application of Evaluation Homomorphism

16 Generated Groups
16.1 Generated Groups
16.1.1 Basic Properties
16.2 Derived Subgroup
16.2.1 Definitions o o
16.2.2 Basic Properties 0.
16.2.3 Generated subgroup of a group
16.3 And homomorphisms

17 Elementary Group Constructions

17.1 Direct sum/product lemmas L.

17.2 The one-element group on a given object

17.3 Similarly, trivial groups Lo oL

17.4 The additive group of integers

17.5 Additive group of integers modulo n (n = 0 gives just the
INEEZETS) . v v v v e

17.6 Cyclic groups o

18 Simplification Rules for Polynomials
19 Properties of the Euler po-function
20 Order of an Element of a Group

21 Number of Roots of a Polynomial

22 The Multiplicative Group of a Field

157
157
158

185

186

188

192

193

23 Group Actions 194
23.1 Prelimineries 195
23.2 Orbits e e 195

23.2.1 Transitive Actions 196

23.3 Stabilizers 197

23.4 The Orbit-Stabilizer Theorem 197

23.4.1 Rcosets - Supporting Lemmas 197
23.4.2 Bijection Between Rcosets and an Orbit - Definition

and Supporting Lemmas 198

23.4.3 The Theorem 198

23.5 The Burnside’s Lemma 199

23.5.1 Sums and Cardinals 199

23.5.2 The Lemma 199

23.6 Action by Conjugation 199

23.6.1 Action Over Itself 199

23.6.2 Action Over The Set of Subgroups 200

23.6.3 Action Over The Power Set 201

23.7 Subgroup of an Acting Group 201

24 The Zassenhaus Lemma 202
24.1 Lemmas about normalizer 202
24.2 Second Isomorphism Theorem 202
24.3 The Zassenhaus Lemma 203

25 Divisibility in monoids and rings 204

26 Factorial Monoids 204
26.1 Monoids with Cancellation Law 204
26.2 Products of Units in Monoids 205
26.3 Divisibility and Association 205

26.3.1 Function definitions 205
26.3.2 Divisibility o 206
26.3.3 Association 208
26.3.4 Division and associativity 209
26.3.5 Multiplication and associativity 210
26.3.6 Units 210
26.3.7 Proper factors L. 211
26.4 Irreducible Elements and Primes 213
26.4.1 Irreducible elements 213
26.4.2 Prime elements 214
26.5 Factorization and Factorial Monoids 215
26.5.1 Function definitions 215
26.5.2 Comparing lists of elements 216

26.5.3 Properties of lists of elements 218

26.5.4 Factorization in irreducible elements
26.5.5 Essentially equal factorizations
26.5.6 Factorial monoids and wfactors
26.6 Factorizations as Multisets
26.6.1 Comparing multisets
26.6.2 Interpreting multisets as factorizations
26.6.3 Multiplication on multisets
26.6.4 Divisibility on multisets
26.7 Irreducible Elements are Prime
26.8 Greatest Common Divisors and Lowest Common Multiples
26.8.1 Definitions
26.8.2 Connections to Lattice.thy
26.8.3 Existence of gcd and lem
26.9 Conditions for Factoriality
26.9.1 Ged condition
26.9.2 Divisor chain condition
26.9.3 Primeness condition
26.9.4 Application to factorial monoids
26.10Factoriality Theorems

27 Quotient Rings
27.1 Multiplication on Cosets
27.2 Quotient Ring Definition,
27.3 Factorization over General Ideals
27.4 Factorization over Prime Ideals
27.5 Factorization over Maximal Ideals
27.6 Isomorphism Lo oo

28 The Ring of Integers
28.1 Some propertiesof int
28.2 Z: The Set of Integers as Algebraic Structure
28.3 Interpretations L o oL,
28.4 Generated Idealsof Z oL
28.5 Ideals and Divisibility,
28.6 Ideals and the Modulus
28.7 Factorization o

29 Weak Morphisms
29.1 Definitions
29.2 Weak Group Morphisms
29.3 Weak Ring Morphisms
29.4 Injective Functions L.

218
220
223
223
224
225
225
225
227

. 227

227
228
228
229
229
231
231
231
233

233
233
233
234
234
234
237

241
241
242
242
243
244
244
244

30 Examples 249
30.1 Direct Product 250
30.1.1 Basic Properties 250

31 The Arithmetic of Rings 251
31.1 Definitions 251
31.2 The cancellative monoid of a domain. 252
31.3 Passing from R to Ring_Divisibility.mult_of R and vice-versa.252
314 Irreducibleo 254
31.5 Primes 255
31.6 Basic Properties 255
31.7 Noetherian Rings 256
31.8 Principal Domains L. 256
31.9 Euclidean Domains 0oL 257
32 Subrings 258
32.1 Definitions 258
32.2 Basic Properties o oo, 258
32.2.1 Subrings Lo 258

32.2.2 Subcerings Lo 259

32.2.3 Subdomainso 260

32.2.4 Subfields 261

32.3 Subring Homomorphisms 262
33 Polynomials 263
33.1 Definitions 263
33.2 Basic Properties o 0. 264
33.3 Polynomial Addition 267
33.4 Dense Representation 270
33.5 Polynomial Multiplication 270
33.6 Properties Within a Domain. 271
33.7 Algebraic Structure of Polynomials 274
33.8 Long Division Theorem 275
33.9 Consistency Rules 276
33.9.1 Corollaries 277
33.10The Evaluation Homomorphism 277
33.11Homomorphisms 279
33.12The X Variable oo 279
33.13The Constant Term 281

33.14The Canonical Embedding of K in K[X] 282

34 Definitions 283
34.0.1 Syntactic Definitions 283

34.1 Basic Properties - First Part 284
34.2 Some Basic Properties of Linear Independence 286
34.3 Basic Properties - Second Part 286
34.4 Span as Linear Combinations 287
34.4.1 Corollaries 287

34.5 Span as the minimal subgroup that contains X <#> set Us . . 288
34.5.1 Corollaries 288

34.6 Characterisation of Linearly Independent "Sets" 289
34.7 Replacement Theorem 290
34.8 Dimension e 291
34.9 Finite Dimension, 294
34.9.1 Basic Properties 294

34.9.2 Reformulation of some lemmas in this new language. . 296

35 Divisibility of Polynomials 297
35.1 Definitionso Lo 297
35.2 Basic Properties oo oL 297
35.3 Division Lo Lo 300
35.4 Polynomial Power 303
355 Ideals Lo 304
35.6 Roots and Multiplicity 305
35.7 Link between pmod and rupture_surj 309
35.8 Dimension e 310
36 Indexed Polynomials 311
36.1 Definitions 311
36.2 Basic Properties L o, 312
36.3 Indexed Eval, 313
36.4 Link with Weak Morphisms 315

37 Finite Extensions 317
37.1 Definitions 317
37.2 Basic Properties 317
37.3 Minimal Polynomial 319
37.4 Simple Extensions 319
37.5 Link between dimension of K-algebras and algebraic extensions321
37.6 Finite Extensions 322
37.7 Arithmetic of algebraic numbers 324

10

38 Algebraic Closure 324
38.1 Definitions 324
38.2 Basic Properties o, 325
38.3 Partial Order 325
38.4 Extensions Non Empty 326
38.5 Chains e 326
38.6 ZOIML 328
38.7 Existence of roots 328
38.8 Existence of Algebraic Closure 328
38.9 Definition 330
38.10The algebraic closure is algebraically closed 331
38.11Converting between the base field and the closure 332
38.12The algebraic closure is an algebraic extension 334

39 Product of Ideals 335
39.1 Basic Properties 336
39.2 Structure of the Set of Ideals 337
39.3 Another Characterization of Prime Ideals 338

40 Direct Product of Rings 339
40.1 Definitions 339
40.2 Basic Properties o 339
40.3 Direct Product of a List of Rings 340

41 Chinese Remainder Theorem 342
41.1 Definitions 342
41.2 Chinese Remainder Simple 342
41.3 Chinese Remainder Generalized 343

42 Generated Rings 344
42.1 Basic Properties of Generated Rings - First Part 344
42.2 Basic Properties of Generated Rings - First Part 346

43 Product and Sum Groups 348
43.1 Product of a Family of Groups 348
43.2 Sum of a Family of Groups 349

44 Free Abelian Groups 350
44.1 Generalised finite product 351
44.2 Free Abelian groups on a set, using the "frag" type constructor.352

45 Solvable Groups 355
45.1 Definitionso 355
45.2 Solvable Groups and Derived Subgroups 355

45.3 Short Exact Sequences 356

46 Symmetric Groups
46.1 Definitions
46.2 Basic Properties o 0oL
46.3 Transposition Sequences
46.4 Unsolvability of Symmetric Groups

47 Exact Sequences
47.1 Definitions
47.2 Basic Properties o oo o
47.3 Link Between Exact Sequences and Solvable Conditions
47.4 Splitting lemmas and Short exact sequences

48 Simple Groups

49 The Second Isomorphism Theorem for Groups

11

357
357
357
359
361

361
362
362

. 363

364

367

368

12

README | [[HOL-Cardinals] | [(HoL-Library]

Congruence [HOL-Combinatorics] [HOL-Computational_Algebra]
Complete_Lattice
Galois_Connection | | Group |
Bij | Coset l | FiniteProduct |
Group_Action Generated_Groups | | Left_Coset | | SndlsomorphismGrp | | Divisibility | | Ring | | Sylow |

Zassenhaus | | Elementary_Groups | | Solvable_Groups | | AbelCoset Module

13

theory Congruence
imports
Main
"HOL-Library.FuncSet"
begin

1 Objects

1.1 Structure with Carrier Set.

record ’a partial_object =
carrier :: "’a set"

lemma funcset_carrier:
"[£ € carrier X — carrier Y; x € carrier X | = f x € carrier Y"

(proof)

lemma funcset_carrier’:
"[£ € carrier A — carrier A; x € carrier A | = f x € carrier A"

(proof)

1.2 Structure with Carrier and Equivalence Relation eq

record ’a eq_object = "’a partial_object" +
eq :: "’a = ’a = bool" (infixl <.=2> 50)
definition
elem :: "_ = ’a = ’a set = bool" (infixl <.€2> 50)

where "x .€g A +— (dy € A. x .=g y)"

definition
set_eq :: "_ = ’a set = ’a set = bool" (infixl <{.=}+> 50)
where "A {.=}g B +— ((Vx € A. x .€g B) A (Vx € B. x .€g A"

definition
eq_class_of :: "_ = ’a = ’a set" (<class’_ofe>)
where '"class_ofg x = {y € carrier S. x .=g y}"

definition
eq_classes :: "_ = (’a set) set" (<classesz>)
where "classesg = {class_ofg x | x. x € carrier S}"

definition
eq_closure_of :: "_ = ’a set = ’a set" (<closure’_ofz>)

where "closure_ofg A = {y € carrier S. y .€g A}"

definition

14

eq_is_closed :: "_ = ’a set = bool" (<is’_closed?>)
where "is_closedg A <— A C carrier S A closure_ofg A = A"

abbreviation
not_eq :: "_ = ’a = ’a = bool" (infixl <.#2> 50)
where "x .#g y = - (x .=g y)"

abbreviation
not_elem :: "_ = ’a = ’a set = bool" (infixl <.¢2> 50)
where "x .¢g A = —(x .€g M)"

abbreviation
set_not_eq :: "_ = ’a set = ’a set = bool" (infixl <{.#}2> 50)
where "A {.#}g B = —(A {.=}g B)"

locale equivalence =
fixes S (structure)
assumes refl [simp, intro]: "x € carrier S = x .= x"
and sym [sym]l: "[x .= y; x € carrier S; y € carrier S| = y .=

X"
and trans [trans]:
" x .=y; y .= 2; x € carrier S; y € carrier S; z € carrier S |
- x .= z"

lemma equivalencel:
fixes P :: "’a = ’a = bool" and E :: "’a set"
assumes refl: "Ax. [x e E] = P x x"
and sym: "Axy. [x€E y€E]=Pxy= Pyx"
and trans: "Ax yz. [x €E; y€EE; z€E] =Pxy=Pyz
— P x z"
shows "equivalence (carrier = E, eq = P "

(proof)

locale partition =
fixes A :: "’a set" and B :: "(’a set) set"
assumes unique_class: "Aa. a € A = J!b € B. a € b"
and incl: "Ab. b € B = b C A"

lemma equivalence_subset:
assumes "equivalence L" "A C carrier L"
shows "equivalence (L(carrier := A |))"

(proof)

lemma elemI:
fixes R (structure)
assumes "a’ € A" "a .= a’"

shows "a . A"
(proof)

lemma (in equivalence) elem_exact:
assumes "a € carrier S" "a € A"
shows "a . A"

(proof)

lemma elemE:
fixes S (structure)
assumes "a .€ A"
and "Aa’. [a’ € A; a .= a’] = P"
shows "P"

(proof)
lemma (in equivalence) elem_cong_l [trans]:
assumes "a € carrier S" "a’ € carrier S" "A C carrier S"
and "a’ .= a" "a .€ A"
shows "a’ .€ A"
(proof)

lemma (in equivalence) elem_subsetD:
assumes "A C B" "a .€ A"
shows "a .c B"

{proof)

lemma (in equivalence) mem_imp_elem [simp, intro]:

assumes "x € carrier S"
shows "x € A — x .€ A"

{proof)

lemma set_eql:
fixes R (structure)
assumes "a. a € A = a .€ B"
and "Ab. b € B= b .€ A"
shows "A {.=} B"
(proof)

lemma set_eqI2:
fixes R (structure)
assumes "Aa. a € A = Ib € B. a .= b"
and "Ab. b €B = Ja € A. b .=a"
shows "A {.=} B"
(proof)

lemma set_eqD1:
fixes R (structure)
assumes "A {.=} A’" and "a € A"
shows "Jda’cA’. a .= a’"

15

(proof)

lemma set_eqD2:
fixes R (structure)
assumes "A {.=} A’" and "a’ € A’"
shows "JacA. a’ .= a"

(proof)

lemma set_eqE:
fixes R (structure)
assumes "A {.=} B"

and "[Va € A. a .€ B; Yb €B. b .€¢ A] = P"

shows "P"

{proof)

lemma set_eqE2:
fixes R (structure)
assumes "A {.=} B"

16

and "[Va € A. 3b € B. a .=b; Vb €B. Ja€ A. b .=a] = P"

shows "P"

(proof)

lemma set_eqE’:
fixes R (structure)
assumes "A {.=} B" "a € A" "b € B"
and "Aa’ b’. [a’ € A; b> €B] = b
shows "P"

(proof)

.=a’ = a .=b’

lemma (in equivalence) eq_elem_cong_r [trans]:
assumes "A C carrier S" "A’ C carrier S" "A {.=} A’"
shows "[a € carrier S| = a .€ A = a .€ A"

(proof)

lemma (in equivalence) set_eq_sym [sym]:
assumes "A C carrier S" "B C carrier S"
shows "A {.=} B = B {.=} A"
(proof)

lemma (in equivalence) equal_set_eq_trans
"[A=B; B{.=}C] = A {.=} C"
{proof)

lemma (in equivalence) set_eq_equal_trans
n[[A {:} B, B = C]] = A {:} cn
{proof)

lemma (in equivalence) set_eq_trans_aux:
assumes "A C carrier 8" "B C carrier S"

[trans]:

[trans]:

"C C carrier S"

= P"

17

and "A {.=} B" "B {.=} C"
shows "Aa. a € A = a .€ C"

(proof)

corollary (in equivalence) set_eq_trans [trans]:
assumes "A C carrier 8" "B C carrier S" "C C carrier S"
and "A {.=} B" " B {.=} C"
shows "A {.=} C"
(proof)

lemma (in equivalence) is_closedI:
assumes closed: "Ax y. [x .= y; x € A; y € carrier S| = y € A"
and S: "A C carrier S"
shows "is_closed A"

(proof)

lemma (in equivalence) closure_of_eq:
assumes "A C carrier S" "x € closure_of A"
shows "[x’ € carrier S; x .= x’ | = x’ € closure_of A"

{proof)

lemma (in equivalence) is_closed_eq [dest]:
assumes "is_closed A" "x € A"
shows "[x .= x’; x’ € carrier S| = x’ € A"

{proof)

corollary (in equivalence) is_closed_eq_rev [dest]:
assumes "is_closed A" "x’ € A"
shows "[x .= x’; x € carrier S | = x € A"

{proof)

lemma closure_of_closed [simp, intro]:
fixes S (structure)
shows "closure_of A C carrier S"

(proof)

lemma closure_of _memI:
fixes S (structure)
assumes "a .€ A" "a € carrier S"
shows "a € closure_of A"

{proof)

lemma closure_ofI2:
fixes S (structure)

assumes "a .= a’" and "a’ € A" and "a € carrier S"
shows "a € closure_of A"
(proof)

lemma closure_of_memE:

18

fixes S (structure)
assumes "a € closure_of A"

and "[a € carrier 8; a .€ A] = P"
shows "P"

(proof)

lemma closure_ofE2:
fixes S (structure)
assumes "a € closure_of A"
and "Aa’. [a € carrier S; a’ € A; a .= a’] = P"
shows "P"

(proof)

lemma (in partition) equivalence_from_partition:
"equivalence (| carrier = A, eq = (Ax y. y € (THEb. b € B A x € b)))"

(proof)

lemma (in partition) partition_coverture: "[JB = A"

{proof)

lemma (in partition) disjoint_union:
assumes "bl € B" "b2 € B"
and "bl N b2 # {}"
shows "bl = b2"

(proof)

lemma partitionI:
fixes A :: "’a set" and B :: "(’a set) set"
assumes "|JB = A"
and "Abl b2. [b1 € B; b2 € B] = bl N b2 # {} = bl = b2"
shows "partition A B"

(proof)

lemma (in partition) remove_elem:
assumes "b € B"
shows "partition (A - b) (B - {b})"
(proof)

lemma disjoint_sum:
"[finite B; finite A; partition A B] = (3 beB.) acb. f a) = (5 acA.
£ a)n

(proof)

lemma (in partition) disjoint_sum:
assumes "finite A"
shows "(> beB. Y acb. f a) = (D acA. f a)"

(proof)

lemma (in equivalence) set_eq_insert_aux:
assumes "A C carrier S"
and "x € carrier S" "x’ € carrier S" "x .= x’"
and "y € insert x A"
shows "y .€ insert x’ A"

(proof)

corollary (in equivalence) set_eq_insert:
assumes "A C carrier S"

and "x € carrier S" "x’ € carrier S" "x .= x’"
shows "insert x A {.=} insert x’ A"
(proof)

lemma (in equivalence) set_eq_pairI:
assumes xx’: "x .= x’"
and carr: "x € carrier S" "x’ € carrier $" "y € carrier S"
shows "{x, y} {.=} {x’, y}"
(proof)

lemma (in equivalence) closure_inclusion:
assumes "A C B"
shows "closure_of A C closure_of B"

(proof)

lemma (in equivalence) classes_small:
assumes "is_closed B"

and "A C B"
shows "closure_of A C B"
(proof)

lemma (in equivalence) classes_eq:
assumes "A C carrier S"
shows "A {.=} closure_of A"

(proof)

lemma (in equivalence) complete_classes:
assumes "is_closed A"
shows "A = closure_of A"

(proof)

lemma (in equivalence) closure_idem_weak:
"closure_of (closure_of A) {.=} closure_of A"

(proof)

lemma (in equivalence) closure_idem_strong:
assumes "A C carrier S"
shows "closure_of (closure_of A) = closure_of A"

(proof)

lemma (in equivalence) classes_consistent:
assumes "A C carrier S"
shows "is_closed (closure_of A)"

{proof)

lemma (in equivalence) classes_coverture:
"(Jclasses = carrier S"

(proof)

lemma (in equivalence) disjoint_union:
assumes "classl € classes" "class2 € classes"
and "classl N class2 # {}"
shows "classl = class2"

(proof)

lemma (in equivalence) partition_from_equivalence:
"partition (carrier S) classes"

(proof)

lemma (in equivalence) disjoint_sum:
assumes "finite (carrier S)"
shows "(> ceclasses. > x€c. f x) = (O x€(carrier S). f x)"

(proof)

end

theory Order
imports
Congruence
begin

2 Orders

2.1 Partial Orders

record ’a gorder = "’a eq_object" +
le :: "[’a, ’a] => bool" (infixl <C2> 50)
abbreviation inv_gorder :: "_ = ’a gorder" where

"inv_gorder L =
(carrier = carrier L,
eq = (.=1),
le = (A xy. yCpx))"

lemma inv_gorder_inv:
"inv_gorder (inv_gorder L) = L"

{proof)

20

21

locale weak_partial_order = equivalence L for L (structure) +
assumes le_refl [intro, simp]:
"x € carrier L — x C x"
and weak_le_antisym [intro]:
"[x £ y; vy C x; x € carrier L; y € carrier L] = x .= y"
and le_trans [trans]:
"[[x Cy; vyC z; x € carrier L; y € carrier L; z € carrier L]] -
x & z"
and le_cong:
"[[x .= y; 2 .= W; X € carrier L; y € carrier L; z € carrier L; w
€ carrier L] =
xCz<+—yLCuw"

definition
lless :: "[_, ’a, ’al] => bool" (infixl <C2> 50)
where "x Cp vy «— x Cp y A x .#L y"

2.1.1 The order relation

context weak_partial_order
begin

lemma le_cong_1 [intro, trans]:
"[x .= y; vy E z; x € carrier L; y € carrier L; z € carrier L] = x
E Z"

(proof)

lemma le_cong_r [intro, trans]:
"[x E y; vy .= z; x € carrier L; y € carrier L; z € carrier L] = x

lemma weak_refl [intro, simp]: "[x .= y; x € carrier L; y € carrier
L] = x C y"

{proof)

end

lemma weak_llessI:
fixes R (structure)

assumes "x C y" and "—-(x .= y)"
shows "x C y"
{proof)

lemma lless_imp_le:
fixes R (structure)
assumes "x C y"
shows "x C y"

(proof)

22

lemma weak_lless_imp_not_eq:
fixes R (structure)
assumes "x C y"
shows "—- (x .= y)"

(proof)

lemma weak_llessE:
fixes R (structure)
assumes p: "x C y" and e: "[x C y; - (x .= y)] = P"
shows "P"

(proof)

lemma (in weak_partial_order) lless_cong_l [trans]:
assumes xx’: "x .= x’"
and xy: "x’ C y"
and carr: "x € carrier L"
shows "x C y"

(proof)

"x’ € carrier L" "y € carrier L"

lemma (in weak_partial_order) lless_cong_r [trans]:
assumes xy: "x C y"
and yy): ||y .= y;u
and carr: "x € carrier L" "y € carrier L" "y’ € carrier L"
shows "x C y’"

(proof)

lemma (in weak_partial_order) lless_antisym:
assumes "a € carrier L" "b € carrier L"
and "a C b" "b C a"
shows "P"

(proof)

lemma (in weak_partial_order) lless_trans [trans]:
assumes "a C b" "b C c"
and carr[simp]: "a € carrier L" "b € carrier L" "¢ € carrier L"
shows "a C c"

(proof)

lemma weak_partial_order_subset:
assumes "weak_partial_order L" "A C carrier L"
shows "weak_partial_order (L(carrier := A)"

(proof)

2.1.2 TUpper and lower bounds of a set

definition
Upper :: "[_, ’a set] => ’a set"

23

where "Upper L A = {u. (Vx. x € A N carrier L — x Cp, uw)} N carrier

Lll
definition

Lower :: "[_, ’a set] => ’a set"

where "Lower L A = {1. (Vx. x € A N carrier L — 1 Cy x)} N carrier
Lll

lemma Lower_dual [simp]:

"Lower (inv_gorder L) A = Upper L A"
(proof)

lemma Upper_dual [simp]:
"Upper (inv_gorder L) A = Lower L A"

(proof)

lemma (in weak_partial_order) equivalence_dual: "equivalence (inv_gorder
L) n
(proof)

lemma (in weak_partial_order) dual_weak_order: "weak_partial_order (inv_gorder
L) "
(proof)

lemma (in weak_partial_order) dual_eq iff [simpl: "A {.=}inv_gorder L
A +—— A {.=} A
(proof)

lemma dual_weak_order_iff:
"weak_partial_order (inv_gorder A) ¢— weak_partial_order A"

{(proof)

lemma Upper_closed [iff]:
"Upper L A C carrier L"

(proof)

lemma Upper_memD [dest]:

fixes L (structure)

shows "[u € Upper L A; x € A; A C carrier L] = x C u A u € carrier
Lll

(proof)

lemma (in weak_partial_order) Upper_elemD [dest]:
"[u .€ Upper L A; u € carrier L; x € A; A C carrier L] = x C u"
(proof)

lemma Upper_memI:
fixes L (structure)
shows "[!! y. y € A = y C x; x € carrier L] = x € Upper L A"

24

(proof)

lemma (in weak_partial_order) Upper_elemI:
"['''y. y € A= y LC x; x € carrier L] = x .€ Upper L A"

(proof)

lemma Upper_antimono:
"A C B = Upper L B C Upper L A"

{proof)

lemma (in weak_partial_order) Upper_is_closed [simp]:
"A C carrier L = is_closed (Upper L A)"
(proof)

lemma (in weak_partial_order) Upper_mem_cong:

assumes "a’ € carrier L" "A C carrier L" "a .= a’" "a € Upper L A"
shows "a’ € Upper L A"
(proof)

lemma (in weak_partial_order) Upper_semi_cong:
assumes "A C carrier L" "A {.=} A’"
shows "Upper L A C Upper L A"

(proof)

lemma (in weak_partial_order) Upper_cong:
assumes "A C carrier L" "A’ C carrier L" "A {.=} A"
shows "Upper L A = Upper L A’"

(proof)

lemma Lower_closed [intro!, simp]:
"Lower L A C carrier L"

(proof)

lemma Lower_memD [dest]:

fixes L (structure)

shows "[1 € Lower L A; x € A; A C carrier L] = 1 C x A 1 € carrier
Lll

(proof)

lemma Lower_memI:
fixes L (structure)
shows "[!! y. y € A = x C y; x € carrier L] = x € Lower L A"

(proof)

lemma Lower_antimono:
"A C B = Lower L B C Lower L A"

(proof)

lemma (in weak_partial_order) Lower_is_closed [simp]:

25

"A C carrier L = is_closed (Lower L A)"

(proof)

lemma (in weak_partial_order) Lower_mem_cong:
assumes "a’ € carrier L"
shows "a’ € Lower L A"

(proof)

"A C carrier L" "a .= a’" "a € Lower L A"

lemma (in weak_partial_order) Lower_cong:

assumes "A C carrier L" "A’ C carrier L" "A {.=} A"
shows "Lower L A = Lower L A’"

(proof)

Jacobson: Theorem 8.1

lemma Lower_empty [simp]:
"Lower L {} = carrier L"

{proof)

lemma Upper_empty [simp]:
"Upper L {} = carrier L"

(proof)
2.1.3 Least and greatest, as predicate
definition

least :: "[_,

’a, ’a set] => bool"
where "least L 1 A <— A C

carrier L A1 € A A (Vx€A. 1 Cp, x)"
definition

greatest :: "[_, ’a, ’a set] => bool"

where "greatest L g A «<— A C carrier L A g € A A (Vx€A. x Cp g"

Could weaken these tol € carrier L A 1 .€ Aandg € carrier L A g .€
A.

lemma least_dual [simp]:

"least (inv_gorder L) x A = greatest L x A"

(proof)

lemma greatest_dual [simp]:

"greatest (inv_gorder L) x A = least L x A"

(proof)

lemma least_closed [intro, simp]:
"least L 1 A — 1 € carrier L"

(proof)

lemma least_mem:

"least L1 A = 1 € A"
(proof)

26

lemma (in weak_partial_order) weak_least_unique:
"[least L x A; least Ly A] = x .= y"

{proof)

lemma least_le:
fixes L (structure)
shows "[least L x A; a € A] = x C a"

(proof)
lemma (in weak_partial_order) least_cong:

"[[x .= x’; x € carrier L; x’ € carrier L; is_closed Aﬂ —> least L x
A = least L x’ A"

(proof)
abbreviation is_lub :: "[_, ’a, ’a set] => bool"

where "is_lub L x A = least L x (Upper L A)"

least is not congruent in the second parameter for A {.=} A’

lemma (in weak_partial_order) least_Upper_cong_l:
assumes "x .= x’"
and "x € carrier L" "x’ € carrier L"
and "A C carrier L"
shows "least L x (Upper L A) = least L x’ (Upper L A)"

(proof)

lemma (in weak_partial_order) least_Upper_cong_r:
assumes "A C carrier L" "A’ C carrier L" "A {.=} A"
shows "least L x (Upper L A) = least L x (Upper L A’)"

(proof)

lemma least_UpperI:
fixes L (structure)

assumes above: "!! x. x € A — x L g"
and below: "!! y. y € Upper L A = s C y"
and L: "A C carrier L" "s € carrier L"
shows "least L s (Upper L A)"
(proof)

lemma least_Upper_above:
fixes L (structure)
shows "[least L s (Upper L A); x € A; A C carrier L] = x C s"

{proof)

lemma greatest_closed [intro, simp]:
"greatest L 1 A — 1 € carrier L"

(proof)

lemma greatest_mem:

27

"greatest L 1 A — 1 € A"
{proof)

lemma (in weak_partial_order) weak_greatest_unique:
"[greatest L x A; greatest L y A] — x .= y"

(proof)

lemma greatest_le:
fixes L (structure)
shows "[greatest L x A; a € A] = a C x"

{proof)
lemma (in weak_partial_order) greatest_cong:
"[x .= x’; x € carrier L; x’ € carrier L; is_closed A] =
greatest L x A = greatest L x’ A"
(proof)
abbreviation is_glb :: "[_, ’a, ’a set] => bool"

where "is_glb L x A = greatest L x (Lower L A)"

greatest is not congruent in the second parameter for A {.=} A’

lemma (in weak_partial_order) greatest_Lower_cong_l:
assumes "x .= x’"
and "x € carrier L" "x’ € carrier L"
shows "greatest L x (Lower L A) = greatest L x’ (Lower L A)"

(proof)

lemma (in weak_partial_order) greatest_Lower_cong_r:
assumes "A C carrier L" "A’ C carrier L" "A {.=} A"
shows "greatest L x (Lower L A) = greatest L x (Lower L A’)"

(proof)

lemma greatest_LowerI:
fixes L (structure)
assumes below: "!! x. x € A — i L x"
and above: "!! y. y € Lower L A = y C i"
and L: "A C carrier L" "i € carrier L"
shows "greatest L i (Lower L A)"

(proof)

lemma greatest_Lower_below:
fixes L (structure)
shows "[greatest L i (Lower L A); x € A; A C carrier L] = i C x"

(proof)
2.1.4 Intervals

definition
at_least_at_most :: "(’a, ’c) gorder_scheme = ’a => ’a => ’a set"

28

(< (<indent=1 notation=<mixfix interval>>{_.._[}2)>)
where "{1..u}j = {x € carrier A. 1 Cj x A x T u}"

context weak_partial_order
begin

lemma at_least_at_most_upper [dest]:
"x € {a..b} = x C b"

(proof)

lemma at_least_at_most_lower [dest]:
"x € {a..b}] = a C x"

(proof)

lemma at_least_at_most_closed: "{a..b} C carrier L"

(proof)
lemma at_least_at_most_member [intro]:

"[x € carrier L; a C x; x C b] = x € {a..b}"

(proof)

end

2.1.5 Isotone functions

definition isotone :: "(’a, ’c) gorder_scheme = (’b, ’d) gorder_scheme
= (a = ’b) = bool"
where

"isotone A B f =

weak_partial_order A A weak_partial_order B A
(Vx€carrier A. Vy€carrier A. x Cp y — £ x Cpg £ y)"

lemma isotoneI [intro?]:
fixes £ :: "’a = ’b"
assumes "weak_partial_order L1"
"weak_partial_order L2"
"(Ax y. [x € carrier L1; y € carrier L1; x Cr1 ¥]
= f x Cip £ 9"
shows "isotone L1 L2 f"

(proof)

abbreviation Monotone :: "(’a, ’b) gorder_scheme = (’a = ’a) = bool"
(< (<open_block notation=<prefix Mono> >Monoz)>)
where "Mono; f = isotone L L f"

lemma use_isol:

"[isotone A A f; x € carrier A; y € carrier A; x [y y] =
fx Ly £fy"

(proof)

29

lemma use_iso2:
"[isotone A B f; x € carrier A; y € carrier A; x [y y] =
fxCg fy"

(proof)

lemma iso_compose:

"[[f € carrier A — carrier B; isotone A B f; g € carrier B — carrier
C; isotone B C g] =

isotone A C (g o £)"

(proof)

lemma (in weak_partial_order) inv_isotone [simp]:
"isotone (inv_gorder A) (inv_gorder B) f = isotone A B f"

(proof)

2.1.6 Idempotent functions

definition idempotent ::
"(’a, ’b) gorder_scheme = (’a = ’a) = bool"
(< (<open_block notation=<prefix Idem> >Idemz)>)
where "Idem; f = Vx€carrier L. £ (f x) .= £ x"

lemma (in weak_partial_order) idempotent:
"[Idem f; x € carrier L] = £ (f x) .= f x"
(proof)

2.1.7 Order embeddings

definition order_emb :: "(’a, ’c) gorder_scheme = (’b, ’d) gorder_scheme
= (a = ’b) = bool"
where

"order_emb A B f = weak_partial_order A
N weak_partial_order B
A (Vx€&carrier A. Vy€ccarrier A. f x Cg f y «— x Cp

y)ll

lemma order_emb_isotone: "order_emb A B f = isotone A B f"
(proof)

2.1.8 Commuting functions

definition commuting :: "(’a, ’c) gorder_scheme = (’a = ’a) = (’a =
’a) = bool" where
"commuting A f g = (Vx€carrier A. (f o g) x .=p (g o f) x)"

2.2 Partial orders where eq is the Equality

locale partial_order = weak_partial_order +
assumes eq_is_equal: "(.=) = (=)"

30

begin
declare weak_le_antisym [rule dell

lemma le_antisym [intro]:
"[x Cy; vy C x; x € carrier L; y € carrier L] = x = y"
(proof)

lemma 1lless_eq:
"xCy+—xLCyAx#y"

(proof)

lemma set_eq_is_eq: "A {.=} B «— A = B"

{proof)

end

lemma (in partial_order) dual_order:
"partial_order (inv_gorder L)"
(proof)

lemma dual_order_iff:
"partial_order (inv_gorder A) <— partial_order A"
(proof)

Least and greatest, as predicate

lemma (in partial_order) least_unique:
"[least L x A; least L y A] = x = y"

(proof)

lemma (in partial_order) greatest_unique:
"[greatest L x A; greatest L y A] = x = y"

(proof)
2.3 Bounded Orders
definition

top :: "_ => ’a" (<Ta2>) where

"Tr, = (SOME x. greatest L x (carrier L))"

definition
bottom :: "_ => ’a" (<L2>) where
"1lr, = (SOME x. least L x (carrier L))"

locale weak_partial_order_bottom = weak_partial_order L for L (structure)
+

assumes bottom_exists: "d x. least L x (carrier L)"
begin

31

lemma bottom_least: "least L L (carrier L)"
(proof)

lemma bottom_closed [simp, intro]:
"l € carrier L"

(proof)

lemma bottom_lower [simp, intro]:
"x € carrier L — 1 LC x"

(proof)

end

locale weak_partial_order_top = weak_partial_order L for L (structure)
+

assumes top_exists: "3 x. greatest L x (carrier L)"
begin

lemma top_greatest: "greatest L T (carrier L)"
(proof)

lemma top_closed [simp, intro]:
"T € carrier L"

(proof)

lemma top_higher [simp, intro]:
"x € carrier L = x C T"

(proof)

end

2.4 Total Orders

locale weak_total_order = weak_partial_order +
assumes total: "[x € carrier L; y € carrier L] = x C y V y C x"

Introduction rule: the usual definition of total order

lemma (in weak_partial_order) weak_total_orderI:

assumes total: "!!x y. [x € carrier L; y € carrier L] = x C y V y
L x"

shows "weak_total_order L"

(proof)

2.5 Total orders where eq is the Equality

locale total_order = partial_order +
assumes total_order_total: "[x € carrier L; y € carrier L] = x C
-y \/ y E XII

32

sublocale total_order < weak?: weak_total_order
(proof)

Introduction rule: the usual definition of total order

lemma (in partial_order) total_orderI:

assumes total: "!!x y. [x € carrier L; y € carrier L] = x C y V y
I: X"

shows "total_order L"

(proof)
end

theory Lattice
imports Order
begin

3 Lattices

3.1 Supremum and infimum

definition

sup :: "[_, ’a set] => ’a" (< (<open_block notation=<prefix | |>>]||2_)>
[90] 90

where "| | A = (SOME x. least L x (Upper L A))"

definition

inf :: "[_, ’a set] => ’a" (< (<open_block notation=<prefix [|>>[]2_)>
[90] 90)

where "[|pA = (SOME x. greatest L x (Lower L A))"

definition supr ::
"(’a, ’b) gorder_scheme = ’c set = (’c = ’a) = ’a "
where "supr L A £ = | | (f ¢ A"

definition infi ::
"(’a, ’b) gorder_scheme = ’c set = (’c = ’a) = ’a "
where "infi L A £ = [|p(f < A"

syntax

" infi" :: "(Pa, ’b) gorder_scheme = pttrns = ’a = ’a"
(< (<indent=3 notation=<binder IINF»> >IINF. _./ _)> [0, 10] 10)

" _inf" :: "(Pa, ’b) gorder_scheme = pttrn = ’c set = ’a = ’a"
(< (<indent=3 notation=<binder IINF»> >IINF2 _:_./ _)> [0, 0, 10] 10)

" _supl" :: "(’a, ’b) gorder_scheme = pttrns = ’a = ’a"
(< (<indent=3 notation=<binder SSUP> >SSUP: _./ _)> [0, 10] 10)

" _sup" :: "(Pa, ’b) gorder_scheme = pttrn = ’c set = ’a = ’a"
(< (<indent=3 notation=<binder SSUP»> >SSUP. _:_./ _)> [0, 0, 10] 10)

syntax__consts

33

" infi" " inf" == infi and
"_supl" "_sup" == supr
translations
"IINFp, x. B" == "CONST infi L CONST UNIV (%x. B)"
"IINF;, x:A. B" == "CONST infi L A (%x. B)"
"SSUP;, x. B" == "CONST supr L CONST UNIV (%x. B)"
"SSUP;, x:A. B" == "CONST supr L A (%x. B)"
definition
join :: "[_, ’a, ’al => ’a" (infixl <U2> 65)

where "x Up y = [Jo{x, y}"

definition
meet :: "[_, ’a, ’al => ’a" (infixl <M<> 70)

where "x My y = [|o{x, y}"

definition
LEAST_FP :: "(’a, ’b) gorder_scheme = (’a = ’a) = ’a" (<LFP2>) where
"LEAST FP L f =[] {u € carrier L. f u Cp u}" — least fixed point
definition

GREATEST_FP:: "(’a, ’b) gorder_scheme = (’a = ’a) = ’a" (<GFPz>)
where

"GREATEST FP L f = | |1 {u € carrier L. u Cp f u}" — greatest fixed
point

3.2 Dual operators

lemma sup_dual [simp]:
"L inv_gorder LA = [1LA"
(proof)

lemma inf_dual [simp]:
"l inv_gorder LA = LILA"

(proof)

lemma join_dual [simp]:
"p Uinv_gorder L 4 = P L q

{proof)

lemma meet_dual [simp]:
"P Minv_gorder L 4 = P UL q
{proof)

lemma top_dual [simp]:
"Tinv_gorder L= 1"
{proof)

lemma bottom_dual [simp]:

34

'nLinv_gorder L= T."
{proof)

lemma LFP_dual [simp]:
"LEAST_FP (inv_gorder L) f = GREATEST_FP L f"

(proof)

lemma GFP_dual [simp]:
"GREATEST_FP (inv_gorder L) f = LEAST_FP L f"
(proof)

3.3 Lattices

locale weak_upper_semilattice = weak_partial_order +
assumes sup_of_two_exists:
"[| x € carrier L; y € carrier L |] ==> Js. least L s (Upper L {x,

y})u

locale weak_lower_semilattice = weak_partial_order +
assumes inf_of two_exists:
"[| x € carrier L; y € carrier L |] ==> Js. greatest L s (Lower L

{x, yH
locale weak_lattice = weak_upper_semilattice + weak_lower_semilattice

lemma (in weak_lattice) dual_weak_lattice:
"weak_lattice (inv_gorder L)"

(proof)

3.3.1 Supremum

lemma (in weak_upper_semilattice) joinI:

"[] ''1. least L 1 (Upper L {x, y}) ==> P 1; x € carrier L; y € carrier
L I]

=>P (x U y)"
(proof)

lemma (in weak_upper_semilattice) join_closed [simp]:
"[| x € carrier L; y € carrier L |] ==> x U y € carrier L"

(proof)

lemma (in weak_upper_semilattice) join_cong_l:
assumes carr: "x € carrier L" "x’ € carrier L" "y € carrier L"

and xx’: "x .= x’"
shows "x Uy .= x> U y"
(proof)

lemma (in weak_upper_semilattice) join_cong_r:
assumes carr: "x € carrier L" "y € carrier L" "y’ € carrier L"

and yy:: ny .= y:n

35

shows "x Uy .=x U y’"
(proof)

lemma (in weak_partial_order) sup_of_singletonI:
"x € carrier L ==> least L x (Upper L {x})"

(proof)

lemma (in weak_partial_order) weak_sup_of_singleton [simp]:
"x € carrier L ==> | |{x} .= x"
(proof)

lemma (in weak_partial_order) sup_of_singleton_closed [simp]:
"x € carrier L = | |{x} € carrier L"

{proof)

Condition on A: supremum exists.

lemma (in weak_upper_semilattice) sup_insertI:
"[] !'!'s. least L s (Upper L (insert x A)) ==> P s;
least L a (Upper L A); x € carrier L; A C carrier L |]
==> P (| | (insert x A))"

(proof)

lemma (in weak_upper_semilattice) finite_sup_least:
"[| finite A; A C carrier L; A # {} |] ==> least L (| |A) (Upper L A)"
(proof)

lemma (in weak_upper_semilattice) finite_sup_insertI:

assumes P: "!11. least L 1 (Upper L (insert x A)) ==> P 1"
and xA: "finite A" "x € carrier L" "A C carrier L"
shows "P (|| (insert x A))"
(proof)

lemma (in weak_upper_semilattice) finite_sup_closed [simp]:
"[| finite A; A C carrier L; A # {} |] ==> | |A € carrier L"

(proof)

lemma (in weak_upper_semilattice) join_left:
"[| x € carrier L; y € carrier L |] ==> x C x U y"

(proof)

lemma (in weak_upper_semilattice) join_right:
"[| x € carrier L; y € carrier L |] ==>y C x U y"

{proof)

lemma (in weak_upper_semilattice) sup_of_two_least:

"[| x € carrier L; y € carrier L |] ==> least L (| |{x, y}) (Upper L
{x, yH
(proof)

36

lemma (in weak_upper_semilattice) join_le:
assumes sub: "x C z" "y C z"
and x: "x € carrier L" and y: "y € carrier L" and z: "z € carrier
Lll
shows "x U y C z"

(proof)

lemma (in weak_lattice) weak_le_iff meet:
assumes "x € carrier L" "y € carrier L"
shows "x C y +— (x U y) .= y"

(proof)

lemma (in weak_upper_semilattice) weak_join_assoc_lemma:
assumes L: "x € carrier L" "y € carrier L" "z € carrier L"
shows "x U (y U z) .= ||{x, y, z}"

(proof)

Commutativity holds for =.

lemma join_comm:
fixes L (structure)
shows "x LUy =y U x"

(proof)

lemma (in weak_upper_semilattice) weak_join_assoc:
assumes L: "x € carrier L" "y € carrier L" "z € carrier L"
shows "(x U y) Uz .=x U (y U z)"

(proof)

3.3.2 Infimum

lemma (in weak_lower_semilattice) meetI:
"[l t!i. greatest L i (Lower L {x, y}) ==> P i;
X € carrier L; y € carrier L |]
==>P (x M y)"

(proof)

lemma (in weak_lower_semilattice) meet_closed [simp]:
"[| x € carrier L; y € carrier L |] ==> x 1 y € carrier L"

(proof)

lemma (in weak_lower_semilattice) meet_cong_l:
assumes carr: "x € carrier L" "x’ € carrier L" "y € carrier L"

and xx’: "x .= x’"
shows "x My .= x> M y"
(proof)

lemma (in weak_lower_semilattice) meet_cong_r:
assumes carr: "x € carrier L" "y € carrier L" "y’ € carrier L"

and yy:: uy = y:n

37

shows "x My .=x N y’"
(proof)

lemma (in weak_partial_order) inf_of_singletonI:
"x € carrier L ==> greatest L x (Lower L {x})"

(proof)

lemma (in weak_partial_order) weak_inf_of_singleton [simp]:
"x € carrier L ==> [|{x} .= x"
(proof)

lemma (in weak_partial_order) inf_of_singleton_closed:
"x € carrier L ==> [|{x} € carrier L"

{proof)

Condition on A: infimum exists.

lemma (in weak_lower_semilattice) inf_insertI:
"[l '1i. greatest L i (Lower L (insert x A)) ==> P i;
greatest L a (Lower L A); x € carrier L; A C carrier L |]
==> P ([|(insert x A))"

(proof)

lemma (in weak_lower_semilattice) finite_inf_greatest:
"[| finite A; A C carrier L; A # {} |] ==> greatest L ([]A) (Lower
L A) n

(proof)
lemma (in weak_lower_semilattice) finite_inf_insertI:
assumes P: "!1i. greatest L i (Lower L (insert x A)) ==> P i"
and xA: "finite A" "x € carrier L" "A C carrier L"
shows "P ([] (insert x A))"
(proof)

lemma (in weak_lower_semilattice) finite_inf_closed [simp]:
"[| finite A; A C carrier L; A # {} |] ==> []A € carrier L"
(proof)

lemma (in weak_lower_semilattice) meet_left:
"[| x € carrier L; y € carrier L |] ==> x Ny C x"

(proof)

lemma (in weak_lower_semilattice) meet_right:
"[l x € carrier L; y € carrier L |] ==>x My Cy

(proof)

lemma (in weak_lower_semilattice) inf_of_two_greatest:
"[| x € carrier L; y € carrier L |] ==>
greatest L ([]{x, y}) (Lower L {x, y})"

(proof)

38

lemma (in weak_lower_semilattice) meet_le:
assumes sub: "z C x" "z C y"
and x: "x € carrier L" and y: "y € carrier L" and z: "z € carrier
Lll
shows "z C x M y"
(proof)

lemma (in weak_lattice) weak_le_iff_join:
assumes "x € carrier L" "y € carrier L"

shows "x C y «— x .= (x M y)"
(proof)

lemma (in weak_lower_semilattice) weak_meet_assoc_lemma:
assumes L: "x € carrier L" "y € carrier L" "z € carrier L"
shows "x M (y N z) .= []{x, y, z}"

(proof)

lemma meet_comm:
fixes L (structure)
shows "x My =y M x"

{proof)

lemma (in weak_lower_semilattice) weak_meet_assoc:
assumes L: "x € carrier L" "y € carrier L" "z € carrier L"
shows "(xMy) Nz .=xM (ynz)"

(proof)

Total orders are lattices.

sublocale weak_total_order C weak?: weak_lattice
(proof)

3.4 Weak Bounded Lattices

locale weak_bounded_lattice =
weak_lattice +
weak_partial_order_bottom +
weak_partial_order_top
begin

lemma bottom_meet: "x € carrier L — 1 M x .= 1"

(proof)

]
»

lemma bottom_join: "x € carrier L = 1 U x
{proof)

lemma bottom_weak_eq:
" b € carrier L; A x. x € carrier L= b L x] = b .= L"

(proof)

39

lemma top_join: "x € carrier L = T Ux .= T"
(proof)
lemma top_meet: "x € carrier L = T N x .= x"
(proof)
lemma top_weak_eq: "[[t € carrier L; /\ X. X € carrier L — x L t
] =+t .=T"
(proof)
end

sublocale weak_bounded_lattice C weak_partial_order (proof)

3.5 Lattices where eq is the Equality

locale upper_semilattice = partial_order +
assumes sup_of_two_exists:
"[| x € carrier L; y € carrier L |] ==> Js. least L s (Upper L {x,
y})u

sublocale upper_semilattice C weak?: weak_upper_semilattice

(proof)

locale lower_semilattice = partial_order +
assumes inf_of_two_exists:
"[l x € carrier L; y € carrier L |] ==> ds. greatest L s (Lower L

{x, yH"

sublocale lower_semilattice C weak?: weak_lower_semilattice
(proof)

locale lattice = upper_semilattice + lower_semilattice
sublocale lattice C weak_lattice (proof)

lemma (in lattice) dual_lattice:
"lattice (inv_gorder L)"

(proof)

lemma (in lattice) le_iff_join:
assumes "x € carrier L" "y € carrier L"
shows "x C y ¢— x = (x N y"

(proof)

lemma (in lattice) le_iff_meet:
assumes "x € carrier L" "y € carrier L"
shows "x C y +— (x Uy) =y"

40

(proof)

Total orders are lattices.

sublocale total_order C weak?: lattice
(proof)

Functions that preserve joins and meets

definition join_pres :: "(’a, ’c) gorder_scheme = (’b, ’d) gorder_scheme

= (’a = ’b) = bool" where

"join_pres X Y f = lattice X A lattice Y A (V x € carrier X. V y € carrier
X.f xUxy)==fxUy fy"

definition meet_pres :: "(’a, ’c) gorder_scheme = (’b, ’d) gorder_scheme

= (’a = ’b) = bool" where

"meet_pres X Y f = lattice X A lattice Y A (V x € carrier X. V y € carrier
X.f Gxxy) =£fxTly £fy"

lemma join_pres_isotone:
assumes "f € carrier X — carrier Y" "join_pres X Y f"
shows "isotone X Y f"

(proof)

lemma meet_pres_isotone:
assumes "f € carrier X — carrier Y" "meet_pres X Y f"
shows "isotone X Y f"

(proof)

3.6 Bounded Lattices

locale bounded_lattice =
lattice +
weak_partial_order_bottom +
weak_partial_order_top

sublocale bounded_lattice C weak_bounded_lattice (proof)

context bounded_lattice
begin

lemma bottom_eq:
"[b € carrier L; A x. x € carrier L = b L x] = b = L"

(proof)

lemma top_eq: "[t € carrier L; A x. x € carrier L = x C t | =
t=T"
(proof)

end

41

hide_ const (open) Lattice.inf
hide_ const (open) Lattice.sup

end

theory Complete_Lattice
imports Lattice
begin

4 Complete Lattices

locale weak_complete_lattice = weak_partial_order +
assumes sup_exists:
"[l A C carrier L |] ==> Jds. least L s (Upper L A)"
and inf_exists:
"[| A C carrier L |] ==> Ji. greatest L i (Lower L A)"

sublocale weak_complete_lattice C weak_lattice
(proof)

Introduction rule: the usual definition of complete lattice

lemma (in weak_partial_order) weak_complete_latticel:
assumes sup_exists:
"11A. [| A C carrier L |] ==> ds. least L s (Upper L A)"
and inf_exists:
"1tA. [I A C carrier L |] ==> Ji. greatest L i (Lower L A)"
shows "weak_complete_lattice L"

(proof)

lemma (in weak_complete_lattice) dual_weak_complete_lattice:
"weak_complete_lattice (inv_gorder L)"

(proof)

lemma (in weak_complete_lattice) supIl:
"[] t11. least L 1 (Upper L A) ==> P 1; A C carrier L |]
==> P (I_lA) "

(proof)

lemma (in weak_complete_lattice) sup_closed [simp]:
"A C carrier L ==> | |A € carrier L"
(proof)

lemma (in weak_complete_lattice) sup_cong:
assumes "A C carrier L" "B C carrier L" "A {.=} B"
shows "| | A .= || B"

(proof)

sublocale weak_complete_lattice C weak_bounded_lattice

42

(proof)

lemma (in weak_complete_lattice) infI:
"[l !'!i. greatest L i (Lower L A) ==> P i; A C carrier L |]
==>P ([]A)"

(proof)

lemma (in weak_complete_lattice) inf_closed [simp]:
"A C carrier L ==> []A € carrier L"

(proof)

lemma (in weak_complete_lattice) inf_cong:
assumes "A C carrier L" "B C carrier L" "A {.=} B"
shows "[] A .= [] B"

{proof)

theorem (in weak_partial_order) weak_complete_lattice_criterionl:
assumes top_exists: "dg. greatest L g (carrier L)"
and inf_exists:
"AA. [l A C carrier L; A # {} |] ==> Ji. greatest L i (Lower L

A) n

shows "weak_complete_lattice L"
(proof)
Supremum

declare (in partial_order) weak_sup_of_singleton [simp del]

lemma (in partial_order) sup_of_singleton [simp]:
"x € carrier L ==> | |{x} = x"

(proof)
lemma (in upper_semilattice) join_assoc_lemma:
assumes L: "x € carrier L" "y € carrier L" "z € carrier L"
shows "x U (y U z) = | |{x, y, z}"
(proof)
lemma (in upper_semilattice) join_assoc:
assumes L: "x € carrier L" "y € carrier L" "z € carrier L"
shows "(x Uy) Uz=xU (y U=z)"
(proof)
Infimum

declare (in partial_order) weak_inf_of_singleton [simp dell

lemma (in partial_order) inf_of_singleton [simp]:
"x € carrier L ==> []{x} = x"

(proof)

Condition on A: infimum exists.

lemma (in lower_semilattice) meet_assoc_lemma:

assumes L: "x € carrier L" "y € carrier L" "z € carrier L"
shows "x M (y N z) = []{x, y, z}"
{proof)

lemma (in lower_semilattice) meet_assoc:
assumes L: "x € carrier L" "y € carrier L" "z € carrier L"
shows "(x My) Mz=xM (y N z)"
{proof)

4.1 Infimum Laws

context weak_complete_lattice
begin

lemma inf_glb:
assumes "A C carrier L"
shows "greatest L ([|A) (Lower L A)"

(proof)

lemma inf_lower:
assumes "A C carrier L" "x € A"
shows "[]A C x"

(proof)

lemma inf_greatest:
assumes "A C carrier L" "z € carrier L"
"(Ax. x € A = z C x)"
shows "z C []A"

(proof)

lemma weak_inf_empty [simpl: "[]{} .= T"
(proof)

lemma weak_inf_carrier [simp]: "[]carrier L .= 1"
(proof)

lemma weak_inf_insert [simp]:
assumes "a € carrier L" "A C carrier L"
shows "[]insert a A .= a I [|A"

(proof)

4.2 Supremum Laws

lemma sup_lub:
assumes "A C carrier L"
shows "least L (| |A) (Upper L A)"

(proof)

lemma sup_upper:

43

assumes "A C carrier L" "x € A"
shows "x C [|A"

(proof)

lemma sup_least:
assumes "A C carrier L" "z € carrier L"
"(Ax. x € A = x C z)"
shows "| |A C z"

{proof)

lemma weak_sup_empty [simpl: "||{} .= L"
{proof)

lemma weak_sup_carrier [simp]: "| |carrier L .= T"
{proof)

lemma weak_sup_insert [simp]:
assumes "a € carrier L" "A C carrier L"
shows "| |insert a A .= a U [|A"

(proof)

end

4.3 Fixed points of a lattice

definition "fps L f = {x € carrier L. f x .= x}"
abbreviation "fpl L f = L(carrier := fps L f)"

lemma (in weak_partial_order)
use_fps: "x € fps L f — f x .= x"
(proof)

lemma fps_carrier [simp]:
"fps L £ C carrier L"

(proof)

lemma (in weak_complete_lattice) fps_sup_image:
assumes "f € carrier L — carrier L" "A C fps L f"
shows "| | (£ < A) .= [] A"

(proof)

lemma (in weak_complete_lattice) fps_idem:
assumes "f € carrier L — carrier L" "Idem f"
shows "fps L f {.=} £ ¢ carrier L"

(proof)

context weak_complete_lattice
begin

44

45

lemma weak_sup_pre_fixed_point:
assumes "f € carrier L — carrier L" "isotone L L f" "A C fps L f"
shows "(||p A) Cp £ (L M

{proof)

lemma weak_sup_post_fixed_point:
assumes "f € carrier L — carrier L" "isotone L L f" "A C fps L f"
shows "f ([A) Cp (["

{(proof)

4.3.1 Least fixed points

lemma LFP_closed [intro, simp]:
"LFP £ € carrier L"

(proof)

lemma LFP_lowerbound:
assumes "x € carrier L" "f x C x"
shows "LFP f T x"

(proof)

lemma LFP_greatest:
assumes "x € carrier L"
"(Au. [u € carrier L; fuCu] = x C w)"
shows "x C LFP f"

(proof)

lemma LFP_lemma?2:
assumes "Mono f" "f € carrier L — carrier L"
shows "f (LFP f) C LFP f"

(proof)

lemma LFP_lemma3:
assumes "Mono f" "f € carrier L. — carrier L"
shows "LFP f C f (LFP f)"

(proof)

lemma LFP_weak_unfold:
"[Mono f; f € carrier L — carrier L | = LFP £ .= £ (LFP f)"
{proof)

lemma LFP_fixed_point [intro]:
assumes "Mono f" "f € carrier L. — carrier L"
shows "LFP f € fps L f"

(proof)

lemma LFP_least_fixed_point:
assumes "Mono f" "f € carrier L — carrier L" "x € fps L f"

shows "LFP f T x"
(proof)

lemma LFP_idem:
assumes "f € carrier L. — carrier L" "Mono f" "Idem f"
shows "LFP f .= (£ L)"

(proof)

4.3.2 Greatest fixed points

lemma GFP_closed [intro, simp]:
"GFP f € carrier L"

(proof)

lemma GFP_upperbound:
assumes "x € carrier L" "x C f x"
shows "x C GFP f"

(proof)

lemma GFP_least:
assumes "x € carrier L"
"(Au. [u € carrier Ly uC f u] = u C x)"
shows "GFP f C x"

(proof)

lemma GFP_lemma2:
assumes "Mono f" "f € carrier L — carrier L"
shows "GFP f T f (GFP f)"

(proof)

lemma GFP_lemma3:
assumes "Mono f" "f € carrier L — carrier L"
shows "f (GFP f) C GFP f"

{proof)

lemma GFP_weak_unfold:
"[Mono f; f € carrier L — carrier L | = GFP f .= f (GFP f)"

(proof)

lemma (in weak_complete_lattice) GFP_fixed_point [intro]:
assumes "Mono f" "f € carrier L — carrier L"
shows "GFP f € fps L f"

(proof)

lemma GFP_greatest_fixed_point:
assumes "Mono f" "f € carrier L — carrier L" "x € fps L f"
shows "x C GFP f"

(proof)

46

47

lemma GFP_idem:
assumes "f € carrier L — carrier L" "Mono f" "Idem f"
shows "GFP f .= (£ T)"

(proof)

end

4.4 Complete lattices where eq is the Equality

locale complete_lattice = partial_order +
assumes sup_exists:
"[l A C carrier L |] ==> Jds. least L s (Upper L A)"
and inf_exists:
"[| A C carrier L |] ==> Ji. greatest L i (Lower L A)"

sublocale complete_lattice C lattice
(proof)

sublocale complete_lattice C weak?: weak_complete_lattice

(proof)

lemma complete_lattice_lattice [simp]:
assumes '"complete_lattice X"
shows "lattice X"

(proof)

Introduction rule: the usual definition of complete lattice

lemma (in partial_order) complete_latticel:
assumes sup_exists:
"11A. [I A C carrier L |] ==> ds. least L s (Upper L A)"
and inf_exists:
"11A. [| A C carrier L |] ==> Ji. greatest L i (Lower L A)"
shows "complete_lattice L"

(proof)

theorem (in partial_order) complete_lattice_criterionl:
assumes top_exists: "Jg. greatest L g (carrier L)"
and inf_exists:
"11A. [| A C carrier L; A # {} |] ==> Ji. greatest L i (Lower L
Ay
shows "complete_lattice L"

(proof)

4.5 Fixed points

context complete_lattice
begin

lemma LFP_unfold:

48

"[Mono f; f € carrier L — carrier L | = LFP f = f (LFP f)"
(proof)

lemma LFP_const:
"t € carrier L = LFP (\ x. t) = t"

(proof)
lemma LFP_id:

"LFP id = 1"

(proof)

lemma GFP_unfold:
"[Mono f; f € carrier L — carrier L | = GFP £ = £ (GFP £)"

{proof)

lemma GFP_const:
"t € carrier L = GFP (A x. t) = t"

(proof)
lemma GFP_id:
"GFP id = T"
(proof)
end

4.6 Interval complete lattices

context weak_complete_lattice
begin

lemma at_least_at_most_Sup: "[[a € carrier L; b € carrier L; a C b
] = U {a..p} .= b"
(proof)

lemma at_least_at_most_Inf: "[[a € carrier L; b € carrier L; a L b
] = 1] {a..p} .= a"
(proof)

end

lemma weak_complete_lattice_interval:

assumes '"weak_complete_lattice L" "a € carrier L" "b € carrier L"
EL bll

shows "weak_complete_lattice (L (| carrier := {a..b}r)"

(proof)

4.7 Knaster-Tarski theorem and variants

The set of fixed points of a complete lattice is itself a complete lattice

49

theorem Knaster_Tarski:
assumes "weak_complete_lattice L" and f: "f € carrier L — carrier
L" and "isotone L L f"
shows "weak_complete_lattice (fpl L f)" (is "weak_complete_lattice 7L’")

(proof)

theorem Knaster_Tarski_top:

assumes '"weak_complete_lattice L" "isotone L L f" "f € carrier L —
carrier L"

shows "Tfpl L £ .=L GFPp f"

(proof)

theorem Knaster_Tarski_bottom:

assumes '"weak_complete_lattice L" "isotone L L f" "f € carrier L —
carrier L"

shows "J_fp]_ L £ -=1 LFP;, £"

(proof)

If a function is both idempotent and isotone then the image of the function
forms a complete lattice

theorem Knaster_ Tarski_idem:
assumes "complete_lattice L" "f € carrier L — carrier L" "isotone
L L f" "idempotent L f"
shows "complete_lattice (L(carrier := f

(proof)

¢ carrier L))"

theorem Knaster_Tarski_idem_extremes:

assumes "weak_complete_lattice L" "isotone L L f" "idempotent L f"
"f € carrier L — carrier L"

shows "Tfpl Lf .=. £ (Tp)" "J_fpl Lf -=. T (Lp)"
(proof)

theorem Knaster_Tarski_idem_inf_eq:
assumes "weak_complete_lattice L" "isotone L L f" "idempotent L f"
"f € carrier L — carrier L"
"A C fps L f"
shows "[—lfpl LA .= £ (] D"
(proof)

4.8 Examples

4.8.1 The Powerset of a Set is a Complete Lattice

theorem powerset_is_complete_lattice:
"complete_lattice (carrier = Pow A, eq = (=), le = (O))"
(is "complete_lattice 7L")

(proof)

Another example, that of the lattice of subgroups of a group, can be found
in Group theory (Section 6.11).

50

4.9 Limit preserving functions

definition weak_sup_pres :: "(’a, ’c) gorder_scheme = (’b, ’d) gorder_scheme
= (’a = ’b) = bool" where

"weak_sup_pres X Y f = complete_lattice X A complete_lattice Y A (V A

C carrier X. A A {} — £ (Jx » =]y & <)"

definition sup_pres :: "(’a, ’c) gorder_scheme = (’b, ’d) gorder_scheme

= (’a = ’b) = bool" where

"sup_pres X Y f = complete_lattice X A complete_lattice Y A (V A C carrier
X.f (Ux & = Uy & <N

definition weak_inf_pres :: "(’a, ’c) gorder_scheme = (°b, ’d) gorder_scheme
= (’a = ’b) = bool" where

"weak_inf_pres X Y f = complete_lattice X A complete_lattice Y A (V A
Cocarrier X. A # {Fy — £ ([|x & =]y (£ < D"

definition inf_pres :: "(’a, ’c) gorder_scheme = (’b, ’d) gorder_scheme

= (’a = ’b) = bool" where

"inf_pres X Y f = complete_lattice X A complete_lattice Y A (V A C carrier
X. £ (]x &) =]y (£ < DON"

lemma weak_sup_pres:
"sup_pres X Y f — weak_sup_pres X Y f"

{proof)

lemma weak_inf_pres:
"inf_pres X Y f —> weak_inf_pres X Y f"

(proof)

lemma sup_pres_is_join_pres:
assumes "weak_sup_pres X Y f"
shows "join_pres X Y £"

(proof)

lemma inf_pres_is_meet_pres:
assumes "weak_inf _pres X Y f"
shows "meet_pres X Y f"

(proof)

end

theory Galois_Connection
imports Complete_Lattice
begin

o1

5 (Galois connections

5.1 Definition and basic properties

record (’a, ’b, ’c, ’d) galcon =

orderA :: "(’a, ’c) gorder_scheme" (<X >)

orderB :: "(’b, ’d) gorder_scheme" (<Y >)

lower :: "’a = ’b" (<7w*2>)

upper :: "’b = ’a" (<m.2>)
type_synonym (’a, ’b) galois = "(’a, ’b, unit, unit) galcon"
abbreviation "inv_galcon G = (orderA = inv_gorder)Yg, orderB = inv_gorder

Xg, lower = upper G, upper = lower G |)"

definition comp_galcon :: "(’b, ’c) galois = (’a, ’b) galois = (’a, ’c)
galois" (infixr <o, > 85)

where "G og F = Q orderA = orderA F, orderB = orderB G, lower = lower
G o lower F, upper = upper F o upper G |)"

definition id_galcon :: "’a gorder = (’a, ’a) galois" (<I;>) where
"I,(A) = (orderA = A, orderB = A, lower = id, upper = id)"

5.2 Well-typed connections

locale connection =
fixes G (structure)
assumes is_order_A: "partial_order A"
and is_order_B: "partial_order)"
and lower_closure: "n* € carrier X — carrier)"
and upper_closure: "7w, € carrier) — carrier X"
begin

lemma lower_closed: "x € carrier X — 7* x € carrier Y"
(proof)

lemma upper_closed: "y € carrier Y =— m, y € carrier X"

(proof)

end

5.3 Galois connections

locale galois_connection = connection +

assumes galois_property: "[x € carrier X; y € carrier)] = 7* x
Cyy ¢ x Cy m y"
begin

lemma is_weak_order_A: "weak_partial_order A"

{proof)

52

lemma is_weak_order_B: "weak_partial_order)"

(proof)

lemma right: "[x € carrier X; y € carrier)Y; 7* x Cy y] = x Cy
7.{-* y"

(proof)

lemma left: "[x € carrier X; y € carrier V; x Cy 7, y] = 7 x
Ey y"
(proof)

lemma deflation: "y € carrier Y — 7 (m, y) Ly y"

(proof)

lemma inflation: "x € carrier X = x Cy m, (7*)"

(proof)

lemma lower_iso: "isotone X) w*"

{proof)

lemma upper_iso: "isotone Y X w."

(proof)

lemma lower_comp: "x € carrier X = 7* (m, (7" x)) = 7% x"

(proof)

lemma lower_comp’: "x € carrier X — (" o 7, o 7*) x = 7* x"

(proof)

lemma upper_comp: "y € carrier Y = 7, (7" (m, y)) = 7. y"

(proof)

lemma upper_comp’: "y € carrier Y = (m, o ™ o m,) y = m, y"

(proof)

lemma adjoint_ideml: "idempotent Y (7* o m)"

(proof)

lemma adjoint_idem2: "idempotent X (m, o w*)"

(proof)

lemma fg_iso: "isotone Y Y (n* o m,)"

(proof)

lemma gf_iso: "isotone X X (m, o 7*)"

(proof)

lemma semi_inversel: "x € carrier X — 7* x = 7 (m, (x* x))"

53

(proof)

lemma semi_inverse2: "x € carrier)Y = 7, x = 7w, (" (m, x))"

(proof)

theorem lower_by_complete_lattice:
assumes "complete_lattice Y" "x € carrier X"
shows "7*(x) = |_|y { y € carrier Y. x Cy m. (y) }"
(proof)

theorem upper_by_complete_lattice:
assumes "complete_lattice X" "y € carrier)"
shows "m.(y) = ||y { x € carrier . 7"(x) Cy y }"
(proof)

end

lemma dual_galois [simpl: " galois_connection (orderA = inv_gorder B,
orderB = inv_gorder A, lower = f, upper = g |

= galois_connection G orderA = A, orderB = B,
lower = g, upper = f |)"

(proof)
definition lower_adjoint :: "(’a, ’c) gorder_scheme = (’b, ’d) gorder_scheme
= (’a = ’b) = bool" where

"lower_adjoint A B f = Jg. galois_connection (orderA = A, orderB =

B, lower = f, upper = g |)"

definition upper_adjoint :: "(’a, ’c) gorder_scheme = (’b, ’d) gorder_scheme
= (b = ’a) = bool" where

"upper_adjoint A B g = Jf. galois_connection (orderA = A, orderB =
B, lower = f, upper = g |)"

lemma lower_adjoint_dual [simp]: "lower_adjoint (inv_gorder A) (inv_gorder
B) f = upper_adjoint B A f"
{proof)

lemma upper_adjoint_dual [simp]: "upper_adjoint (inv_gorder A) (inv_gorder
B) f = lower_adjoint B A f"

{proof)

lemma lower_type: "lower_adjoint A B f = f € carrier A — carrier
BII

(proof)

lemma upper_type: "upper_adjoint A B g = g € carrier B — carrier
All

(proof)

o4

5.4 Composition of Galois connections

lemma id_galois: "partial_order A = galois_connection (I,(A))"

(proof)

lemma comp_galcon_closed:
assumes "galois_connection G" "galois_connection F" ")Yp = Xg"
shows "galois_connection (G o4, F)"

(proof)

lemma comp_galcon_right_unit [simpl: "F oy I,(Xf) = F"

(proof)

lemma comp_galcon_left_unit [simp]l: "I, (YVg) o4y F = F"

(proof)

lemma galois_connectionI:
assumes
"partial_order A" "partial_order B"
"L € carrier A — carrier B" "R € carrier B — carrier A"
"isotone A B L" "isotone B A R"
"A xy. [x € carrier A; y € carrier B] = L x LCg y +— x Cp R

y
shows "galois_connection (| orderA = A, orderB = B, lower = L, upper

=R D"
(proof)

lemma galois_connectionI’:
assumes
"partial_order A" "partial_order B"
"L € carrier A — carrier B" "R € carrier B — carrier A"
"isotone A B L" "isotone B A R"
"A X. X € carrier(B) =— L(R(X)) Cpg X"
"A X. X € carrier(A) = X Cp R(L(X))"
shows "galois_connection (| orderA = A, orderB
=R)"
(proof)

B, lower = L, upper

5.5 Retracts

locale retract = galois_connection +

assumes retract_property: "x € carrier X — m, (7" x) Cyp x"
begin

lemma retract_inverse: "x € carrier X = 7, (#* x) = x"

(proof)

lemma retract_injective: "inj_on 7* (carrier A)"

(proof)

end

theorem comp_retract_closed:
assumes "retract G" "retract F" "Vgp = A¢"
shows "retract (G o, F)"

(proof)

5.6 Coretracts

locale coretract = galois_connection +

assumes coretract_property: "y € carrier Y — y Ly, 7 (7.

begin
lemma coretract_inverse: "y € carrier YV — 7* (m, y) = y"

(proof)

lemma retract_injective: "inj_on w, (carrier))"

(proof)

end

theorem comp_coretract_closed:
assumes "coretract G" "coretract F" ")V = Xg"
shows "coretract (G o4 F)"

(proof)

5.7 Galois Bijections

locale galois_bijection = connection +
assumes lower_iso: "isotone X)Y 7w*"
and upper_iso: "isotone Y X m,"
and lower_inv_eq: "x € carrier X — 7, (7% x)
and upper_inv_eq: "y € carrier Y = 7" (m, y) =
begin

]
»

I
<

lemma lower_bij: "bij_betw n* (carrier X) (carrier)"

(proof)

lemma upper_bij: "bij_betw mw. (carrier))) (carrier X)"

(proof)

sublocale gal_bij_conn: galois_connection

(proof)

sublocale gal_bij_ret: retract

(proof)

sublocale gal_bij_coret: coretract

{proof)

end

theorem comp_galois_bijection_closed:

assumes "galois_bijection G" "galois_bijection F" "YVp = Xg"

y) n

95

56

shows "galois_bijection (G o, F)"
(proof)

end

theory Group

imports Complete_Lattice "HOL-Library.FuncSet"
begin

6 Monoids and Groups

6.1 Definitions

Definitions follow [3].

record ’a monoid = "’a partial_object" +
mult :: "[’a, ’a]l] = ’a" (infix] <®2> 70)
one i ’a (<12>)
definition m_inv :: "(’a, ’b) monoid_scheme => ’a => ’a"

where "m_inv G x = (THE y. y € carrier G A x Qg y = 1lg ANy ®g x =
].G)"

open__bundle m_inv_syntax

begin

notation m_inv (< (<open_block notation=<prefix inv>>inve _)> [81] 80)
end

definition

Units :: "_ => ’a set"

— The set of invertible elements

where "Units G = {y. y € carrier G A (Ix € carrier G. x ®g y = 1lg
ANy Qg x = 1g)}"

locale monoid =
fixes G (structure)
assumes m_closed [intro, simp]:
"[x € carrier G; y € carrier G] = x ® y € carrier G"
and m_assoc:
"[[x € carrier G; y € carrier G; z € carrier G]
= xR Rz=x & 2"
and one_closed [intro, simp]: "1 € carrier G"
and 1_one [simp]: "x € carrier G = 1 ® x = x"
and r_one [simp]: "x € carrier G — x ® 1 = x"
lemma monoidI:
fixes G (structure)
assumes m_closed:

o7

"tx y. [| x € carrier G; y € carrier G |] ==> x ® y € carrier

Gll
and one_closed: "1 € carrier G"
and m_assoc:
"tx y z. [| x € carrier G; y € carrier G; z € carrier G |] ==
ERyYY ®z=x (& 2"
and 1_one: "!!x. X € carrier G ==> 1 ® x = x"
and r_one: "!!x. x € carrier G ==> x ® 1 = x"
shows "monoid G"
(proof)
lemma (in monoid) Units_closed [dest]:
"x € Units G ==> x € carrier G"
(proof)
lemma (in monoid) one_unique:
assumes "u € carrier G"
and "Ax. x € carrier G = u ® x = x"
shows "u = 1"
(proof)
lemma (in monoid) inv_unique:
assumes eq: "y ® x = 1" "x ® y’ = 1"
and G: "x € carrier G" "y € carrier G" "y’ € carrier G"
shows "y = y’"
{proof)

lemma (in monoid) Units_m_closed [simp, intro]:
assumes x: "x € Units G" and y: "y € Units G"
shows "x ® y € Units G"

(proof)

lemma (in monoid) Units_one_closed [intro, simp]:
"l € Units G"
(proof)

lemma (in monoid) Units_inv_closed [intro, simp]:
"x € Units G ==> inv x € carrier G"
(proof)

lemma (in monoid) Units_1_inv_ex:
"x € Units G ==> Jy € carrier G. y ® x = 1"
(proof)

lemma (in monoid) Units_r_inv_ex:
"x € Units G ==> Jy € carrier G. x ® y = 1"

(proof)

lemma (in monoid) Units_1_inv [simp]:

o8

"x € Units G ==> inv x ® x = 1"
(proof)

lemma (in monoid) Units_r_inv [simp]:
"x € Units G ==> x ® inv x = 1"

{proof)

lemma (in monoid) inv_one [simp]:
"inv 1 = 1"
{proof)

lemma (in monoid) Units_inv_Units [intro, simp]:
"x € Units G ==> inv x € Units G"

(proof)

lemma (in monoid) Units_1_cancel [simp]:
"[| x € Units G; y € carrier G; z € carrier G |] ==
E®y=x®2) =(G=2)"

(proof)

lemma (in monoid) Units_inv_inv [simp]:
"x € Units G ==> inv (inv x) = x"
(proof)

lemma (in monoid) inv_inj_on_Units:
"inj_on (m_inv G) (Units G)"

(proof)

lemma (in monoid) Units_inv_comm:
assumes inv: "x ® y = 1"
and G: "x € Units G" "y € Units G"
shows "y ® x = 1"
(proof)

lemma (in monoid) carrier_not_empty: "carrier G # {}"
(proof)

6.2 Groups

A group is a monoid all of whose elements are invertible.

locale group = monoid +
assumes Units: "carrier G <= Units G"

lemma (in group) is_group [iff]: "group G" (proof)

lemma (in group) is_monoid [iff]: "monoid G"

(proof)

theorem groupI:

99

fixes G (structure)
assumes m_closed [simp]:
"tx y. [| x € carrier G; y € carrier G |] ==> x ® y € carrier

Gll
and one_closed [simpl: "1 € carrier G"
and m_assoc:
"'x y z. [| x € carrier G; y € carrier G; z € carrier G [|] ==
Ry ®z=x (x 2"
and 1_one [simp]l: "!!x. x € carrier G ==> 1 ® x = x"
and 1_inv_ex: "!lx. x € carrier G ==> Jdy € carrier G. y ® x = 1"
shows "group G"
(proof)

lemma (in monoid) group_1l_invI:
assumes 1_inv_ex:
"I1x. x € carrier G ==> Jy € carrier G. y ® x = 1"
shows "group G"
{proof)

lemma (in group) Units_eq [simp]:
"Units G = carrier G"

(proof)

lemma (in group) inv_closed [intro, simp]:
"x € carrier G ==> inv x € carrier G"

(proof)

lemma (in group) 1_inv_ex [simp]:

"x € carrier G ==> Jy € carrier G. y ® x = 1"
(proof)

lemma (in group) r_inv_ex [simp]:
"x € carrier G ==> Jy € carrier G. x ® y = 1"

(proof)

lemma (in group) 1_inv [simp]:
"x € carrier G ==> inv x ® x = 1"

(proof)

6.3 Cancellation Laws and Basic Properties
lemma (in group) inv_eq_1_iff [simp]:

assumes "x € carrier G" shows "invg x = 1g +— x = 1g"
(proof)

lemma (in group) r_inv [simp]:
"X € carrier G ==> x ® inv x = 1"
{proof)

60

lemma (in group) right_cancel [simp]:

"[| x € carrier G; y € carrier G; z € carrier G |] ==>
y®x=z2x)=(~GH=2z)"
(proof)

lemma (in group) inv_inv [simp]:
"x € carrier G ==> inv (inv x) = x
(proof)

lemma (in group) inv_inj:
"inj_on (m_inv G) (carrier G)"

(proof)

lemma (in group) inv_mult_group:
"[| x € carrier G; y € carrier G |] ==> inv (x ® y) = inv y ® inv x"

(proof)

lemma (in group) inv_comm:
"[l x ® y =1; x € carrier G; y € carrier G |[] ==>y ® x = 1"

{proof)

lemma (in group) inv_equality:
"[ly ® x = 1; x € carrier G; y € carrier G|] ==> inv x = y"
(proof)

lemma (in group) inv_solve_left:

"[a € carrier G; b € carrier G; ¢ € carrier G| = a = inv b ® ¢
<—— c=b ® a"

(proof)

lemma (in group) inv_solve_left’:

"[a € carrier G; b € carrier G; ¢ € carrier G| = invb ® c = a
—— c =b ® a"

(proof)

lemma (in group) inv_solve_right:
"[a € carrier G; b € carrier G; ¢ € carrier G| = a = b ® inv ¢
<—— b=a® c"

(proof)

lemma (in group) inv_solve_right’:

"[a € carrier G; b € carrier G; ¢ € carrier G] = b ® inv ¢ = a +—
b=a® c"

(proof)

6.4 Power

consts
pow :: "[(’a, ’m) monoid_scheme, ’a, ’b::semiring 1] => ’a" (infixr

61

<["12> 75)

overloading nat_pow == "pow :: [_, ’a, nat] => ’a"
begin

definition "nat_pow G a n = rec_nat 1¢g (u b. b ®; a) n"
end

lemma (in monoid) nat_pow_closed [intro, simp]:
"x € carrier G ==> x [7] (n::nat) € carrier G"

(proof)

lemma (in monoid) nat_pow_O [simp]:
"x [7] (O::nat) = 1"
{proof)

lemma (in monoid) nat_pow_Suc [simp]:
"x [7] (Sucn) =x ["] n ® x"
(proof)

lemma (in monoid) nat_pow_one [simp]:
"1 [*] (n::nat) = 1"
{proof)

lemma (in monoid) nat_pow_mult:
"x € carrier G ==> x [7] (n::nat) ® x I m=x ["] (n + m)"

(proof)

lemma (in monoid) nat_pow_comm:

"x € carrier G = (x [7] (n::nat)) ® (x [] (@ :: nat)) = (x [] m)
® (x [C1)"

(proof)

lemma (in monoid) nat_pow_Suc2:
"x € carrier G = x [7] (Suc n) =x ® (x [7] n)"

(proof)

lemma (in monoid) nat_pow_pow:
"x € carrier G ==> (x ["]1 n) [l m=x ["] (n * m::nat)"

(proof)

lemma (in monoid) nat_pow_consistent:
"x [7] (@ :: nat) =x [7] (G (| carrier := H) n"
(proof)

lemma nat_pow_0 [simpl: "x ["]g (0::mat) = 1g"

(proof)

lemma nat_pow_Suc [simp]l: "x ["]g¢ (Suc n) = (x [T]¢g n)®g x"

{proof)

62

lemma (in group) nat_pow_inv:
assumes "x € carrier G" shows "(inv x) [T] (i :: nat) = inv (x [7]
i)ll

(proof)

overloading int_pow ==
begin
definition "int_pow G a z =
(let p = rec_nat 1g (%u b. b ®¢ a)
in if z < 0 then invg (p (nat (-z))) else p (nat z))"
end

lemma int_pow_int: "x ["]g (int n) = x [T]g n"

(proof)

lemma pow_nat:

assumes "i>0"

shows "x ["]g nat i = x ["]g i"
(proof)

lemma int_pow_0 [simp]: "x ["]g (0::int) = 1g
{proof)

lemma int_pow_def2: "a [T]g z =
(if z < 0 then invg (a ["1g (nat (-z))) else a ["1g (mat z))"

(proof)

lemma (in group) int_pow_one [simp]:
"1 [7] (z::int) = 1"
(proof)

lemma (in group) int_pow_closed [intro, simp]:
"x € carrier G ==> x [7] (i::int) € carrier G"

(proof)

lemma (in group) int_pow_1 [simp]:
"x € carrier G = x [7] (1::int) = x"

(proof)

lemma (in group) int_pow_neg:
"x € carrier G = x [7] (-i::int) = inv (x [7] 1)"

(proof)

lemma (in group) int_pow_neg_int: "x € carrier G = x [7] -(int n) =
inv (x [7] n)"

(proof)

lemma (in group) int_pow_mult:

63

assumes "x € carrier G" shows "x [7] (i + j::int) = x [7] i ® x [7]

J

(proof)

lemma (in group) int_pow_inv:
"x € carrier G = (inv x) [7] (i :: int) = inv (x [7] i)"
(proof)

lemma (in group) int_pow_pow:
assumes "x € carrier G"
shows "(x [7] (@ :: int)) [7] (m :: int) = x [7] (m *m :: int)"

(proof)

lemma (in group) int_pow_diff:
"x € carrier G — x [] (m - m :: int) = x [(] n ® inv (x [7] m)"

(proof)

lemma (in group) inj_on_multc: "c € carrier G = inj_on (Ax. x ® c)
(carrier G)"

{proof)

lemma (in group) inj_on_cmult: "c € carrier G = inj_on (Ax. ¢ ® x)
(carrier G)"
{proof)

lemma (in monoid) group_commutes_pow:

fixes n::nat

shows "[x ® y =y ® x; x € carrier G; y € carrier G] = x ["] n ®
y=y ®x [7] n"

(proof)

lemma (in monoid) pow_mult_distrib:

assumes eq: "x ® y =y ® x" and xy: "x € carrier G" "y € carrier
Gll

shows "(x ® y) [7] (n::nat) =x [(] n®y [*] a"
(proof)

lemma (in group) int_pow_mult_distrib:

assumes eq: "x ® y =y ® x" and xy: "x € carrier G" "y € carrier
Gll

shows "(x ® y) [7] (i::int) =x [(] 1 ® y [7] i"
(proof)

lemma (in group) pow_eq_div2:
fixes m n :: nat
assumes x_car: "x € carrier G"
assumes pow_eq: "x [l m = x [7] n"
shows "x [7] (m - n) = 1"

(proof)

6.5 Submonoids

locale submonoid =
fixes H and G (structure)
assumes subset: "H C carrier G"
and m_closed [intro, simp]l: "[x € H; y € H = x ® y € H"
and one_closed [simp]: "1 € H"

lemma (in submonoid) is_submonoid:
"submonoid H G" (proof)

lemma (in submonoid) mem_carrier [simp]:
"x € H = x € carrier G"

(proof)

lemma (in submonoid) submonoid_is_monoid [intro]:
assumes "monoid G"
shows "monoid (G(carrier := H|))"

(proof)

lemma submonoid_nonempty:
"~ submonoid {} G"

(proof)

lemma (in submonoid) finite_monoid_imp_card_positive:
"finite (carrier G) ==> 0 < card H"

(proof)

lemma (in monoid) monoid_incl_imp_submonoid :
assumes "H C carrier G"

and "monoid (G(carrier := H))"
shows "submonoid H G"
(proof)

lemma (in monoid) inv_unique’:
assumes "x € carrier G" "y € carrier G"
shows "[x ® y=1; y® x=1] = y = inv x"

(proof)

lemma (in monoid) m_inv_monoid_consistent:
assumes "x € Units (G (carrier := H)" and "submonoid H G"
shows "inv g (carrier :=H |) ¥ = inv x"

(proof)

64

6.6 Subgroups

locale subgroup =
fixes H and G (structure)
assumes subset: "H C carrier G"

65

and m_closed [intro, simp]: "[x € H; y € Hl = x ® y € H"

and one_closed [simp]: "1 € H"
and m_inv_closed [intro,simp]: "x € H = inv x € H"

lemma (in subgroup) is_subgroup:
"subgroup H G" (proof)

declare (in subgroup) group.intro [intro]

lemma (in subgroup) mem_carrier [simp]:
"x € H = x € carrier G"

(proof)

lemma (in subgroup) subgroup_is_group [intro]:
assumes "group G"
shows "group (G(carrier := H|)"

(proof)

lemma (in group) triv_subgroup: "subgroup {1} G"

{proof)

lemma subgroup_is_submonoid:
assumes "subgroup H G" shows "submonoid H G"

(proof)

lemma (in group) subgroup_Units:
assumes "subgroup H G" shows "H C Units (G (| carrier

(proof)

lemma (in group) m_inv_consistent [simp]:
assumes "subgroup H G" "x € H"
shows "inv g (carrier :=H) ¥ = inv x"

(proof)

lemma (in group) int_pow_consistent:
assumes "subgroup H G" "x € H"
shows "x [7] (n :: int) = x [7] (G (carrier := H |)) n"

(proof)

= H)"

Since H is nonempty, it contains some element x. Since it is closed under
inverse, it contains inv x. Since it is closed under product, it contains x ®

inv x = 1.

lemma (in group) one_in_subset:

"[H C carrier G; H # {}; Va € H. inv a € H; Va€H. VbeH. a ® b €

66

H]
= 1 ¢ H"
(proof)

A characterization of subgroups: closed, non-empty subset.

lemma (in group) subgroupl:
assumes subset: "H C carrier G" and non_empty: "H # {}"

and inv: "!la. a € H = inv a € H"
and mult: "!!'a b. [a € H; b € Hl = a ® b € H"
shows "subgroup H G"
(proof)

lemma (in group) subgroupE:
assumes "subgroup H G"
shows "H C carrier G"
and "H # {}"
and "Aa. a € H = inv a € H"
and "Aab. [2a€H; beEH] = a®Db e H"

(proof)

declare monoid.one_closed [iff] group.inv_closed [simp]
monoid.l_one [simp] monoid.r_one [simp] group.inv_inv [simp]

lemma subgroup_nonempty:
"= subgroup {} G"
(proof)

lemma (in subgroup) finite_imp_card_positive: "finite (carrier G) =
0 < card H"
{proof)

lemma (in subgroup) subgroup_is_submonoid :
"submonoid H G"

(proof)

lemma (in group) submonoid_subgroupl
assumes "submonoid H G"
and "Aa. a € H = inv a € H"
shows "subgroup H G"

(proof)

lemma (in group) group_incl_imp_subgroup:
assumes "H C carrier G"
and "group (G(carrier := H))"
shows "subgroup H G"

(proof)

67

6.7 Direct Products

definition
DirProd :: "_ = _ = (’a X ’b) monoid" (infixr <xx> 80) where
"G xx H =
(carrier = carrier G x carrier H,
mult = (A(g, h) (g’, b’). (g ®g g’, h ®y h’)),
one = (1g, 1w)"

lemma DirProd_monoid:
assumes "monoid G" and "monoid H"
shows "monoid (G xx H)"

(proof)

Does not use the previous result because it’s easier just to use auto.

lemma DirProd_group:
assumes "group G" and "group H"
shows "group (G xx H)"

{(proof)

lemma carrier_DirProd [simp]: "carrier (G xx H) = carrier G X carrier
Hll
(proof)

lemma one_DirProd [simpl: "lg xx g = (1g, 1p"

(proof)

lemma mult_DirProd [simpl: "(g, h) ® xx g) (g, h’) = (g ®¢ g’, h
®H h))n
(proof)

lemma mult_DirProd’: "x ® xx g) ¥ = (fst x ®g fst y, snd x ®y snd
y) n
{proof)

lemma DirProd_assoc: "(G xx H xx I) = (G xx (H xx I))"

(proof)

lemma inv_DirProd [simp]:
assumes "group G" and "group H"
assumes g: "g € carrier G"
and h: "h € carrier H"
shows "m_inv (G xx H) (g, h) = (invg g, invyg h)"
(proof)

lemma DirProd_subgroups :
assumes "group G"
and "subgroup H G"
and "group K"
and "subgroup I K"

68

shows "subgroup (H x I) (G xx K)"
(proof)

6.8 Homomorphisms (mono and epi) and Isomorphisms

definition
hom :: "_=> _ => (’a => ’b) set" where
"hom G H =
{h. h € carrier G — carrier H A

(Vx € carrier G. Vy € carrier G. h (x ®; y) =h x ® h y)}"

lemma homI:
"[Ax. x € carrier G = h x € carrier H;
Ax y. [x € carrier G; y € carrier G) = h (x ®g y) = h x ® h y]
—> h € hom G H"
(proof)

lemma hom_carrier: "h € hom G H =— h ¢ carrier G C carrier H"

(proof)

lemma hom_in_carrier: "[h € hom G H; x € carrier G] = h x € carrier
Hll
(proof)

lemma hom_compose:
"[f €« homGH; g€ homHI] = gof € hom G I"

{proof)

lemma (in group) hom_restrict:
assumes "h € hom G H" and "Ag. g € carrier G = h g = t g" shows
"t € hom G H"

(proof)

lemma (in group) hom_compose:
"[lh € hom G H; i € hom H I|] ==> compose (carrier G) i h € hom G I"

(proof)

lemma (in group) restrict_hom_iff [simp]:
"(Ax. if x € carrier G then f x else g x) € hom G H <— f € hom G H"

(proof)
definition iso :: "_ => _ => (’a => ’b) set"

where "iso G H = {h. h € hom G H A bij_betw h (carrier G) (carrier
H)}ll

definition is_iso :: "_ = _ = bool" (infixr <=> 60)
where "G 2 H = (iso G H # {}"

definition mon where "mon G H = {f € hom G H. inj_on f (carrier G)}"

69

definition epi where "epi G H = {f € hom G H. £ ¢ (carrier G) = carrier
H}ll

lemma isoI:
"[b € hom G H; bij_betw h (carrier G) (carrier H)] = h € iso G H"
(proof)

lemma is_isoIl: "h € iso GH — G ¥ H"

(proof)

lemma epi_iff_subset:
"f € epi G G’ ¢— f € hom G G’ A carrier G> C f ‘ carrier G"

{proof)

lemma iso_iff _mon_epi: "f € iso GH <— f € mon G H A f € epi G H"

(proof)

lemma iso_set_refl: "(Ax. x) € iso G G"

{proof)

lemma id_iso: "id € iso G G"
(proof)

corollary iso_refl [simp]l: "G = G"

(proof)

lemma iso_iff:
"h € iso GH +— h € hom G H A h ¢ (carrier G) = carrier H A inj_on
h (carrier G)"

(proof)

lemma iso_imp_homomorphism:
"h € iso GH = h € hom G H"

(proof)

lemma trivial_hom:
"group H = (Ax. one H) € hom G H"
{proof)

lemma (in group) hom_eq:

assumes "f € hom G H" "Ax. x € carrier G = f’ x = f x"
shows "f’ € hom G H"
(proof)
lemma (in group) iso_eq:
assumes "f € iso G H" "Ax. x € carrier G = f’ x = f x"

shows "f’ € iso G H"

(proof)

70

lemma (in group) iso_set_sym:
assumes "h € iso G H"
shows "inv_into (carrier G) h € iso H G"

(proof)

corollary (in group) iso_sym: "G &2 H — H = G"
{proof)

lemma iso_set_trans:
"[b € Group.iso G H; i € Group.iso H I] = i o h € Group.iso G I"

(proof)

1
H

corollary iso_trans [trans]: "[G @ H ; H X I] = G

(proof)

lemma iso_same_card: "G &2 H — card (carrier G) = card (carrier H)"
(proof)

lemma iso_finite: "G &2 H — finite(carrier G) <— finite(carrier H)"

(proof)

lemma mon_compose:
"[f € mon G H; g € mon HX] = (g o £) € mon G K"

{proof)

lemma mon_compose_rev:
"[f € hom G H; g € hom HK; (g o £f) € mon G K] = f € mon G H"
(proof)

lemma epi_compose:
"[f € epi GH; g € epi HK] = (g o £f) € epi G K"

(proof)

lemma epi_compose_rev:
"[f € hom G H; g € hom HK; (g o f) € epi G K] = g € epi H K"
{proof)

lemma iso_compose_rev:

"[f € hom G H; g € homHK; (gof) € iso GK] = f € mon GH A g
€ epi H K"

(proof)

lemma epi_iso_compose_rev:
assumes "f € epi G H" "g € hom H K" "(g o f) € iso G K"
shows "f € iso G H A g € iso H K"

{(proof)

lemma mon_left_invertible:

71

"[f € hom G H; Ax. x € carrier G = g(f x) = x] = f € mon G H"
(proof)

lemma epi_right_invertible:

"l[g € hom H G; f € carrier G — carrier H; Ax. x € carrier G — g(f
x) =x] = g € epi H G"

(proof)

lemma (in monoid) hom_imp_img_monoid:
assumes "h € hom G H"
shows "monoid (H (carrier :=h
?h_img")
(proof)

¢ (carrier G), ome := h 1g)" (is "monoid

lemma (in group) hom_imp_img_group:
assumes "h € hom G H"
shows "group (H (carrier := h
?h_img")
(proof)

¢ (carrier G), one := h 1g)" (is "group

lemma (in group) iso_imp_group:
assumes "G = H" and "monoid H"
shows "group H"

(proof)

corollary (in group) iso_imp_img_group:
assumes "h € iso G H"
shows "group (H (one :=h 1)"
(proof)

6.8.1 HOL Light’s concept of an isomorphism pair

definition group_isomorphisms
where
"group_isomorphisms G H f g =
f €hom GHA g€ hom HG A
(Vx € carrier G. g(f x) = x) A
(Vy € carrier H. f(g y) = y)"

lemma group_isomorphisms_sym: "group_isomorphisms G H f g = group_isomorphisms
HG g £"
{proof)

lemma group_isomorphisms_imp_iso: "group_isomorphisms G H f g =— f €
iso G H"

(proof)

lemma (in group) iso_iff_group_isomorphisms:
"f € iso G H +— (dg. group_isomorphisms G H £ g)"

72

(proof)

6.8.2 Involving direct products

lemma DirProd_commute_iso_set:
shows "(A(x,y). (y,x)) € iso (G xx H) (H xx G)"
(proof)

corollary DirProd_commute_iso :
"(G xx H) =2 (H xx G)"
(proof)

lemma DirProd_assoc_iso_set:
shows "(A(x,y,2). (x,(y,2))) € iso (G xx H xx I) (G xx (H xx I))"
(proof)

lemma (in group) DirProd_iso_set_trans:
assumes "g € iso G G2"
and "h € iso H I"
shows "(A(x,y). (g x, h y)) € iso (G xx H) (G2 xx I)"
{proof)

corollary (in group) DirProd_iso_trans :
assumes "G = G2" and "H = I"
shows "G xx H = G2 xx I"

(proof)

lemma hom_pairwise: "f € hom G (DirProd H K) +— (fst o f) € hom G H
A (snd o f) € hom G K"

{proof)

lemma hom_paired:
"(Ax. (f x,g x)) € hom G (DirProd HK) <— f € hom G H A g € hom
G Kll

{proof)

lemma hom_paired2:

assumes '"group G" "group H"

shows "(A(x,y). (f x,g y)) € hom (DirProd G H) (DirProd G’ H’) +—
f € hom GG A g € hom H H’"

(proof)

lemma iso_paired2:

assumes '"group G" "group H"

shows "(A(x,y). (f x,g y)) € iso (DirProd G H) (DirProd G’ H’) +—
f € iso GG AN g € iso H H’"

(proof)

lemma hom_of_fst:

73

assumes "group H"
shows "(f o fst) € hom (DirProd G H) K <— f € hom G K"

(proof)

lemma hom_of_snd:
assumes "group G"
shows "(f o snd) € hom (DirProd G H) K +— f € hom H K"

(proof)

6.9 The locale for a homomorphism between two groups

Basis for homomorphism proofs: we assume two groups G and H, with a
homomorphism h between them

locale group_hom = G?7: group G + H?: group H for G (structure) and H (structure)
+

fixes h
assumes homh [simp]: "h € hom G H"

declare group_hom.homh [simp]

lemma (in group_hom) hom_mult [simp]:
"[l x € carrier G; y € carrier G |[] ==>h (x ® y) =h x ®g h y"

(proof)

lemma (in group_hom) hom_closed [simp]:
"x € carrier G ==> h x € carrier H"
(proof)

lemma (in group_hom) one_closed: "h 1 € carrier H"

(proof)

lemma (in group_hom) hom_one [simp]: "h 1 = 1y"
(proof)

lemma hom_one:
assumes "h € hom G H" "group G" "group H"
shows "h (one G) = one H"

(proof)

lemma hom_mult:
"[b € hom G H; x € carrier G; y € carrier G) = h (x ®¢ y) = h x ®y

lemma (in group_hom) inv_closed [simp]:
"x € carrier G ==> h (inv x) € carrier H"

(proof)

lemma (in group_hom) hom_inv [simp]:

74

assumes "x € carrier G" shows "h (inv x) = invyg (h x)"
(proof)

lemma (in group) int_pow_is_hom:

"x € carrier G = ((["]) x) € hom (carrier = UNIV, mult = (+), one
= 0::int) G "

(proof)

lemma (in group_hom) img_is_subgroup: "subgroup (h ¢ (carrier G)) H"

(proof)

lemma (in group_hom) subgroup_img_is_subgroup:
assumes "subgroup I G"
shows "subgroup (h ¢ I) H"

(proof)

lemma (in subgroup) iso_subgroup:
assumes '"group G" "group F"
assumes "¢ € iso G F"
shows "subgroup (¢ ¢ H) F"
(proof)

lemma (in group_hom) induced_group_hom:
assumes "subgroup I G"
shows "group_hom (G (carrier := I |)) (H (| carrier :=h ¢ I |)) h"

(proof)

An isomorphism restricts to an isomorphism of subgroups.

lemma iso_restrict:
assumes "¢ € iso G F"
assumes groups: "group G" "group F"
assumes HG: "subgroup H G"
shows "(restrict ¢ H) € iso (G(carrier := H|)) (F(carrier := ¢ ° H))"

(proof)

lemma (in group) canonical_inj_is_hom:
assumes "subgroup H G"

shows "group_hom (G (carrier :=H |)) G id"
(proof)
lemma (in group_hom) hom_nat_pow:
"x € carrier G = h (x [7] (n :: nat)) = (b x) [T]lg n"
(proof)
lemma (in group_hom) hom_int_pow:
"x € carrier G = h (x [7] (n :: int)) = (b x) ["]g n"

(proof)

75

lemma hom_nat_pow:

"[b € hom G H; x € carrier G; group G; group Hl = h (x ["]l¢ (n ::
nat)) = (h x) [Tlg n"

(proof)

lemma hom_int_pow:

"[h € hom G H; x € carrier G; group G; group Hl = h (x ["1g (n ::
int)) = (h x) ["]g n"

(proof)

6.10 Commutative Structures

Naming convention: multiplicative structures that are commutative are called
commutative, additive structures are called Abelian.

locale comm_monoid = monoid +
assumes m_comm: "[x € carrier G; y € carrier G = x @ y =y ® x"

lemma (in comm_monoid) m_lcomm:
"[[x € carrier G; y € carrier G; z € carrier G]] —
x Q@ (y®z2 =y (xQ 2z)"

(proof)

lemmas (in comm_monoid) m_ac = m_assoc m_comm m_Jlcomm

lemma comm_monoidI:
fixes G (structure)
assumes m_closed:
"tx y. [| x € carrier G; y € carrier G |] ==> x ® y € carrier
Gll
and one_closed: "1 € carrier G"
and m_assoc:

""'x y z. [| x € carrier G; y € carrier G; z € carrier G |] ==>
xRy ®z=x (x 2"
and 1_one: "!!x. x € carrier G ==> 1 ® x = x"

and m_comm:
"tx y. [| x € carrier G; y € carrier G |] ==>x ® y
shows "comm_monoid G"

(proof)

y ® x

lemma (in monoid) monoid_comm_monoidI:
assumes m_comm:
"tx y. [| x € carrier G; y € carrier G |] ==> x ® y =y ® x
shows "comm_monoid G"

{proof)

lemma (in comm_monoid) submonoid_is_comm_monoid :
assumes "submonoid H G"
shows "comm_monoid (G(carrier := H|))"

(proof)

76

locale comm_group = comm_monoid + group

lemma (in group) group_comm_groupl:

assumes m_comm: "!!x y. [| x € carrier G; y € carrier G |] ==> x ®
y=y®x"

shows "comm_group G"

(proof)

lemma comm_groupI:

fixes G (structure)

assumes m_closed:
"tx y. [| x € carrier G; y € carrier G |] ==> x ® y € carrier

Gll
and one_closed: "1 € carrier G"
and m_assoc:
"x y z. [| x € carrier G; y € carrier G; z € carrier G [|] ==
Ry ®z=x (x 2"
and m_comm:
"x y. [| x € carrier G; y € carrier G |[] ==> x ® y =y ® x"
and 1_one: "!!x. x € carrier G ==> 1 ® x = x"
and 1_inv_ex: "!!x. x € carrier G ==> Jy € carrier G. y ® x = 1"
shows "comm_group G"
(proof)

lemma comm_groupE:
fixes G (structure)
assumes "comm_group G"
shows "Ax y. [x € carrier G; y € carrier G | = x ® y € carrier
G"
and "1 € carrier G"
and "Ax y z. [x € carrier G; y € carrier G; z € carrier G | =
Gy ®z=x3 (yx 2"
and "Ax y. [x € carrier G; y € carrier G | = x ® y =y ® x
and "Ax. x € carrier G = 1 ® x = x"
and "Ax. x € carrier G = Jy € carrier G. y ® x = 1"

(proof)

lemma (in comm_group) inv_mult:
"[| x € carrier G; y € carrier G |] ==> inv (x ® y) = inv x ® inv y"

{proof)

lemma (in comm_monoid) nat_pow_distrib:
fixes n::nat
assumes "x € carrier G" "y € carrier G"
shows "x ® y) [(Jn=x[]1n®y [C]n"
(proof)

lemma (in comm_group) int_pow_distrib:

7

assumes "x € carrier G" "y € carrier G"
shows "(x ® y) [7] (i::int) = x [7] i ® y [7] i"
(proof)

lemma (in comm_monoid) hom_imp_img_comm_monoid:
assumes "h € hom G H"

shows "comm_monoid (H (carrier := h ¢ (carrier G), ome := h 1g)"
(is "comm_monoid 7h_img")
(proof)

lemma (in comm_group) hom_group_mult:
assumes "f € hom H G" "g € hom H G"
shows "(A\x. f x ®g g x) € hom H G"

(proof)

lemma (in comm_group) hom_imp_img_comm_group:
assumes "h € hom G H"
shows "comm_group (H (| carrier :=h

(proof)

[4

(carrier G), one :=h 1g)"

lemma (in comm_group) iso_imp_img_comm_group:
assumes "h € iso G H"
shows "comm_group (H (| one := h 1¢)"
(proof)

lemma (in comm_group) iso_imp_comm_group:
assumes "G = H" "monoid H"
shows "comm_group H"

(proof)

lemma (in group) incl_subgroup:
assumes "subgroup J G"
and "subgroup I (G(carrier:=J))"
shows "subgroup I G" (proof)

lemma (in group) subgroup_incl:
assumes "subgroup I G" and "subgroup J G" and "I C J"
shows "subgroup I (G (| carrier := J |))"

{proof)

6.11 The Lattice of Subgroups of a Group

theorem (in group) subgroups_partial_order:
"partial_order (carrier = {H. subgroup H G}, eq = (=), le = (D))"
{proof)

lemma (in group) subgroup_self:

78

"subgroup (carrier G) G"
{proof)

lemma (in group) subgroup_imp_group:
"subgroup H G ==> group (G(carrier := H))"

(proof)

lemma (in group) subgroup_mult_equality:

"[subgroup H G; hi € H; h2 € H] = hl &g (carrier := #) h2 = hl
® h2"

{proof)

theorem (in group) subgroups_Inter:
assumes subgr: "(AH. H € A = subgroup H G)"
and not_empty: "A # {}"
shows "subgroup ([)A) G"
(proof)

lemma (in group) subgroups_Inter_pair :
assumes "subgroup I G" "subgroup J G" shows "subgroup (INJ) G"

(proof)

theorem (in group) subgroups_complete_lattice:
"complete_lattice (carrier = {H. subgroup H G}, eq = (=), le = (D))"
(is "complete_lattice ?7L")

(proof)

6.12 The units in any monoid give rise to a group

Thanks to Jeremy Avigad. The file Residues.thy provides some infrastruc-
ture to use facts about the unit group within the ring locale.
definition units_of :: "(’a, ’b) monoid_scheme = ’a monoid"

where "units_of G =

Qcarrier = Units G, Group.monoid.mult = Group.monoid.mult G, one =
one G)"

lemma (in monoid) units_group: "group (units_of G)"
(proof)

lemma (in comm_monoid) units_comm_group: "comm_group (units_of G)"

(proof)

lemma units_of_carrier: "carrier (units_of G) = Units G"

{proof)

lemma units_of_mult: "mult (units_of G) = mult G"

(proof)

lemma units_of_one: "one (units_of G) = one G"

79

(proof)

lemma (in monoid) units_of_inv:
assumes "x € Units G"
shows "m_inv (units_of G) x = m_inv G x"

(proof)

lemma units_of_units [simp] : "Units (units_of G) = Units G"

{proof)

¢ carrier

lemma (in group) surj_const_mult: "a € carrier G = (Ax. a ® x)
G = carrier G"

(proof)

lemma (in group) 1_cancel_one [simp]: "x € carrier G = a € carrier
G=— x®a=x<— a=one G"

(proof)

lemma (in group) r_cancel_one [simp]: "x € carrier G = a € carrier
G=— a®x=x<— a=oneG"

(proof)

lemma (in group) 1_cancel_one’ [simp]l: "x € carrier G = a € carrier
G— x=x® a<+— a=one G"

{proof)

lemma (in group) r_cancel_one’ [simp]l: "x € carrier G = a € carrier
G=— x=a®x < a=one G"
{proof)

declare pow_nat [simp]

end

theory FiniteProduct
imports Group
begin

6.13 Product Operator for Commutative Monoids

6.13.1 Inductive Definition of a Relation for Products over Sets

Instantiation of locale LC of theory Finite_Set is not possible, because here
we have explicit typing rules like x € carrier G. We introduce an explicit
argument for the domain D.

inductive__set

foldSetD :: "[’a set, ’b = ’a = ’a, ’al] = (’b set * ’a) set"
for D :: "a set" and f :: "’b = ’a = ’a" and e :: ’a

80

where
emptyI [intro]l: "e € D = ({}, e) € foldSetD D f e"
| insertI [introl: "[x ¢ A; £ x y € D; (4, y) € foldSetD D f ¢] —
(insert x A, £ x y) € foldSetD D f e"

inductive__cases empty_foldSetDE [elim!]: "({}, x) € foldSetD D f e"

definition
foldD :: "[’a set, b = ’a = ’a, ’a, ’b set] = ’a"
where "foldD D f e A = (THE x. (A, x) € foldSetD D f e)"

lemma foldSetD_closed: "(A, z) € foldSetD D f e =— z € D"
(proof)

lemma Diff1_foldSetD:
"[C(A - {x}, y) € foldSetD D f e; x € A; f x y € D] =
(A, £ x y) € foldSetD D £ e"
(proof)

lemma foldSetD_imp_finite [simp]: "(A, x) € foldSetD D f e — finite
All

(proof)

lemma finite_imp_foldSetD:
"[finite A; e € D; Ax y. [x € A; y € D] = f x y € D]
= Jx. (A, x) € foldSetD D f e"

(proof)

lemma foldSetD_backwards:
assumes "A #* {}" "(A, z) € foldSetD D f e"
shows "dJx y. x € AN (A-{x}, y) € foldSetDD f e A z =f x y"
(proof)

6.13.2 Left-Commutative Operations

locale LCD =
fixes B :: "’b set"
and D :: "’a set"
and £ :: "’b = ’a = ’a" (infix]l <-> 70)

assumes left_commute:
"x €EB; yEB; z€D = x-(y-2)=y- (x-2)"
and f_closed [simp, intro!]: "!!x y. [x € B; y € D] = f x y € D"

lemma (in LCD) foldSetD_closed [dest]: "(A, z) € foldSetD D f e = z
6 Dll

{proof)

lemma (in LCD) Diff1l_foldSetD:
"[(A - {x}, y) € foldSetD D f e; x € A; A

N
=,
I

81

(A, £ xy) € foldSetD D £ e"
{proof)

lemma (in LCD) finite_imp_foldSetD:
"[finite A; A C B; e € D] = 3Jx. (A, x) € foldSetD D f e"

(proof)

lemma (in LCD) foldSetD_determ_aux:

assumes "e € D" and A: "card A < n" "A C B" "(A, x) € foldSetD D £
e" "(A, y) € foldSetD D f e"

shows "y = x"

(proof)

lemma (in LCD) foldSetD_determ:
"[(A, x) € foldSetD D f e; (A, y) € foldSetD D f e; e € D; A C B]
= y = x"
(proof)

lemma (in LCD) foldD_equality:
"[(A, y) € foldSetD D f e; e € D; A C B] = foldDD f e A = y"

(proof)

lemma foldD_empty [simp]:
"e € D = foldDD f e {} = e"
(proof)

lemma (in LCD) foldD_insert_aux:
"[x ¢ A; x € B; e € D; A C B]
— ((insert x A, v) € foldSetD D f e) +— (dy. (A, y) € foldSetD
DfeAv=1~Ffxy"

(proof)

lemma (in LCD) foldD_insert:
assumes "finite A" "x ¢ A" "x € B" "e € D" "A C B"
shows "foldD D f e (insert x A) = f x (foldD D f e A)"

(proof)

lemma (in LCD) foldD_closed [simp]:
"[finite A; e € D; A C B] = foldDD f e A € D"

(proof)

lemma (in LCD) foldD_commute:
"[finite A; x € B; e € D; A C B] =
f x (foldD D f e A) = foldD D f (f x e) A"
(proof)

lemma Int_mono?2:
"[A € Cc; BCCl = A Int B C C"

82

(proof)

lemma (in LCD) foldD_nest_Un_Int:

"[finite A; finite C; e € D; A C B; C C B] =

foldD D f (foldD D f e C) A = foldD D f (foldD D f e (A Int C)) (A
Un C)"

(proof)

lemma (in LCD) foldD_nest_Un_disjoint:
"[finite A; finite B; A Int B = {}; e € D; A C B; C C BJ
— foldD D f e (A Un B) = foldD D f (foldD D f e B) A"
(proof)

declare foldSetD_imp_finite [simp dell
empty_foldSetDE [rule dell
foldSetD.intros [rule del]

declare (in LCD)
foldSetD_closed [rule del]

Commutative Monoids

We enter a more restrictive context, with £ :: ’a = ’a = ’a instead of ’b
= ’a = ’a.

locale ACeD =

fixes D :: "’a set"
and f :: "a = ’a = ’a" (infix] <> 70)
and e :: ’a

assumes ident [simp]: "x € D = x - e = x'
and commute: "[x € D; y €D] = x -y =y - x"
and assoc: "[x € D; y€D; z €D = x-y) rz=x-(y 2"
and e_closed [simp]: "e € D"
and f_closed [simpl: "[x € D; y € D] = x - y € D"

lemma (in ACeD) left_commute:
"x €D; yED; z€D) = x-(y-2)=y- (x-2)"

(proof)
lemmas (in ACeD) AC = assoc commute left_commute

lemma (in ACeD) left_ident [simpl: "x € D = e - x = x"

(proof)

lemma (in ACeD) foldD_Un_Int:
"[[finite A; finite B; A C D; B C D]] -
foldD D f e A - foldD D f e B =
foldD D f e (A Un B) - foldDD f e (A Int B)"

(proof)

lemma (in ACeD) foldD_Un_disjoint:

83

"[finite A; finite B; A Int B = {}; A C D; B C D] =
foldD D f e (A Un B) = foldD D f e A - foldD D f e B"
(proof)

6.13.3 Products over Finite Sets

definition
finprod :: "[(’b, ’m) monoid_scheme, ’a = ’b, ’a set] = ’b"
where "finprod G f A =
(if finite A
then foldD (carrier G) (mult G o f) 1g A
else 1¢g)"

syntax

"_finprod" :: "index = idt = ’a set = ’b = ’Db"

(< (<indent=3 notation=<binder @ >>Q@ __c_. _)> [1000, 0, 51, 10]

10)
syntax__consts

"_finprod" = finprod
translations

"@gi€A. b" = "CONST finprod G (%i. b) A"

— Beware of argument permutation!

lemma (in comm_monoid) finprod_empty [simp]:
"finprod G £ {} = 1"
{proof)

lemma (in comm_monoid) finprod_infinite[simp]:
"= finite A = finprod G £ A = 1"

{proof)

declare funcsetI [intro]
funcset_mem [dest]

context comm_monoid begin

lemma finprod_insert [simp]:
assumes "finite F" "a ¢ F" "f € F — carrier G" "f a € carrier G"
shows "finprod G f (insert a F) = f a ® finprod G £ F"

(proof)

lemma finprod_one_eqIl: "(Ax. x € A = f x = 1) — finprod G f A =
1||
(proof)

lemma finprod_one [simp]: "(®Qi€A. 1) = 1"
(proof)

lemma finprod_closed [simp]:

84

fixes A
assumes f: "f € A — carrier G"
shows "finprod G £ A € carrier G"

(proof)

lemma funcset_Int_left [simp, intro]:
"[[fEA*)C;fEB%C]]:>f€AIntB%C"

(proof)

lemma funcset_Un_left [iff]:
" €eAUnB—>C =€l —->CAfeB—>O"

(proof)

lemma finprod_Un_Int:
"[finite A; finite B; g € A — carrier G; g € B — carrier G] =
finprod G g (A Un B) ® finprod G g (A Int B) =
finprod G g A ® finprod G g B"
— The reversed orientation looks more natural, but LOOPS as a simprule!
(proof)

lemma finprod_Un_disjoint:
"[finite A; finite B; A Int B = {};
g € A — carrier G; g € B — carrier G
— finprod G g (A Un B) = finprod G g A ® finprod G g B"
(proof)

lemma finprod_multf [simp]:

"[f € A — carrier G; g € A — carrier G =

finprod G (Ax. f x ® g x) A = (finprod G £ A ® finprod G g A)"
(proof)

lemma finprod_cong’:
"[A = B; g € B — carrier G;
''i. i € B= f i = g i] = finprod G £ A = finprod G g B"
(proof)

lemma finprod_cong:
"[A = B; £ € B — carrier G = True;
Ai. 1 € B =simp=> f 1 = g i] = finprod G f A = finprod G g B"

{proof)

Usually, if this rule causes a failed congruence proof error, the reason is that
the premise g € B — carrier G cannot be shown. Adding Pi_def to the
simpset is often useful. For this reason, finprod_cong is not added to the
simpset by default.

end

declare funcsetI [rule dell]

85

funcset_mem [rule del]
context comm_monoid begin

lemma finprod_O [simp]:
"f € {0::nat} — carrier G = finprod G £ {..0} = £ O"
(proof)

lemma finprod_07:

"f € {..n} — carrier G = (f 0) ® finprod G f {Suc 0..n} = finprod
G f {..n}"
(proof)

lemma finprod_Suc [simp]:
"f € {..Suc n} — carrier G =
finprod G £ {..Suc n} = (f (Suc n) ® finprod G £ {..n})"

(proof)

lemma finprod_Suc2:

"f € {..Suc n} — carrier G =

finprod G £ {..Suc n} = (finprod G (%i. £ (Suc 1)) {..n} ® £ 0)"
(proof)

lemma finprod_Suc3:

assumes "f € {..n :: nat} — carrier G"

shows "finprod G £ {.. n} = (f n) ® finprod G f {..< n}"
(proof)

lemma finprod_reindex:
"f € (b © A) — carrier G =
inj_on h A = finprod G £ (h ¢ A) = finprod G (Ax. £ (h x)) A"
(proof)

lemma finprod_const:
assumes a [simp]: "a € carrier G"
shows "finprod G (Ax. a) A = a [7] card A"
(proof)

lemma finprod_singleton:

assumes i_in A: "i € A" and fin_A: "finite A" and f_Pi: "f € A —
carrier G"

shows "(Q j€A. if i = j then f j else 1) = f i"

(proof)

lemma finprod_singleton_swap:

assumes i_in A: "i € A" and fin_A: "finite A" and f_Pi: "f € A —
carrier G"

shows "(® j€A. if j = i then f j else 1) = f i"

(proof)

86

lemma finprod_mono_neutral_cong_left:
assumes "finite B"
and "A C B"
and 1: "Ai. i € B-A = hi-=1"
and gh: "Ax. x € A = g x =h x"
and h: "h € B — carrier G"
shows "finprod G g A = finprod G h B"
(proof)

lemma finprod_mono_neutral_cong_right:
assumes "finite B"
and "A CB" "Ai. i €B-A = gi=1""Ax. x € A= gx=h
x" "g € B — carrier G"
shows "finprod G g B = finprod G h A"
(proof)

lemma finprod_mono_neutral_cong:
assumes [simp]: "finite B" "finite A"

and *: "A\i. i € B-A=—hi=1""Ai. i €cA-B = gi-=1"
and gh: "Ax. x € ANB = gx=nhx"
and g: "g € A — carrier G"
and h: "h € B — carrier G"

shows "finprod G g A = finprod G h B"

(proof)

end

lemma (in comm_group) power_order_eq_one:
assumes fin [simp]: "finite (carrier G)"

and a [simp]: "a € carrier G"
shows "a [7] card(carrier G) = one G"
(proof)

lemma (in comm_monoid) finprod UN_disjoint:
assumes
"finite I" "Ai. i € I = finite (A i)" "pairwise (Ai j. disjnt (A
i) (A) 1"
"Ai x. 1 €I = x € Ai= gx € carrier G"
shows "finprod G g (|J(A ¢ I)) = finprod G (Ai. finprod G g (A i)) I"
(proof)

lemma (in comm_monoid) finprod_Union_disjoint:
"[finite C; AA. A € C = finite A A (Vx€A. f x € carrier G); pairwise
disjnt C] =
finprod G £ (|JC) = finprod G (finprod G f) C"
(proof)

87

end

theory Coset
imports Group
begin

7 Cosets and Quotient Groups

definition
r_coset i "[_, ’a set, ’al] = ’a set" (infixl <#>2 > 60)
where "H #>g a = ((JheH. {h ®¢ a})"

definition
1_coset :: "[_, ’a, ’a set] = ’a set" (infixl <<#2> 60)
where "a <#; H = ((JheH. {a ®¢ h}H)"

definition
RCOSETS :: "[_, ’a set] = (’a set)set"
(< (<open_block notation=<prefix rcosets> >rcosetss _)> [81] 80)
where "rcosetsg H = (|Ja€carrier G. {H #>g a})"

definition
set_mult :: "[_, ’a set ,’a set] = ’a set" (infixl <<#>2> 60)
where "H <#>¢ K = (|JheH. [JkeK. {h ®g k}"

definition
SET_INV :: "[_,’a set] = ’a set"
(< (<open_block notation=<prefix set_inv> >set’_invs _)> [81] 80)
where "set_invg H = (| JheH. {invg h})"

locale normal = subgroup + group +
assumes coset_eq: "(Vx € carrier G. H #> x = x <#t)"

abbreviation

normal _rel :: "[’a set, (’a, ’b) monoid_scheme] = bool" (infixl <<>
60) where

"H < G = normal H G"

lemma (in comm_group) subgroup_imp_normal: "subgroup A G — A < G"

(proof)

lemma 1_coset_eq_set_mult:
fixes G (structure)
shows "x <# H = {x} <#> H"

(proof)

88

lemma r_coset_eq_set_mult:
fixes G (structure)
shows "H #> x = H <#> {x}"

{proof)

lemma (in subgroup) rcosets_non_empty:
assumes "R € rcosets H"
shows "R # {}"

(proof)

lemma (in group) diff_neutralizes:
assumes "subgroup H G" "R € rcosets H"
shows "Ar1 r2. [r1 € R; 12 € R] = rl1 ® (inv r2) € H"

(proof)

lemma mono_set_mult: "[H C H’; K C K’ | = H <#>g K C H’> <#>g K"
(proof)

7.1 Stable Operations for Subgroups

lemma set_mult_consistent [simp]:
"N <#>(G (carrier := 1)) K = N <#>g K

(proof)

lemma r_coset_consistent [simp]:
"I #>¢ (carrier :=H | h =T #>q h"

{proof)

lemma 1_coset_consistent [simp]:
"h <#g (carrier :=H | I=h<#; I"

(proof)

7.2 Basic Properties of set multiplication

lemma (in group) setmult_subset_G:
assumes "H C carrier G" "K C carrier G"
shows "H <#> K C carrier G" (proof)

lemma (in monoid) set_mult_closed:
assumes "H C carrier G" "K C carrier G"
shows "H <#> K C carrier G"

(proof)

lemma (in group) set_mult_assoc:
assumes "M C carrier G" "H C carrier G" "K C carrier G"
shows "(M <#> H) <#> K = M <#> (H <#> K)"

(proof)

89

7.3 Basic Properties of Cosets

lemma (in group) coset_mult_assoc:
assumes "M C carrier G" "g € carrier G" "h € carrier G"
shows "(M #> g) #> h = M #> (g ® h)"
(proof)

lemma (in group) coset_assoc:
assumes "x € carrier G" "y € carrier G" "H C carrier G"
shows "x <# (H #> y) = (x <# H) #> y"

(proof)

lemma (in group) coset_mult_one [simp]: "M C carrier G ==> M #> 1 =
Mll
(proof)

lemma (in group) coset_mult_invi:
assumes "M #> (x ® (inv y)) = M"
and "x € carrier G" "y € carrier G" "M C carrier G"
shows "M #> x = M #> y" (proof)

lemma (in group) coset_mult_inv2:
assumes "M #> x = M #> y"
and "x € carrier G" "y € carrier G" "M C carrier G"
shows "M #> (x ® (inv y)) = M " (proof)

lemma (in group) coset_joinl:
assumes "H #> x = H"
and "x € carrier G" "subgroup H G"
shows "x € H"

(proof)

lemma (in group) solve_equation:
assumes "subgroup H G" "x € H" "y € H"
shows "Jh € H. y = h ® x"

(proof)

lemma (in group_hom) inj_on_one_iff:
"inj_on h (carrier G) +— (Vx. x € carrier G — h x = one H — x
= one G)"

(proof)

lemma inj_on_one_iff’:
"[b € hom G H; group G; group H] = inj_on h (carrier G) +— (Vx.
X € carrier G — h x = one H — x = one G)"

{proof)

lemma mon_iff_hom_one:
"[group G; group Hl = f € mon G H «— f € hom G H A (Vx. x € carrier
GAfx=1g — x = 1g)"

90

(proof)

lemma (in group_hom) iso_iff: "h € iso G H +— carrier H C h ‘ carrier
G A (Vx€carrier G. hx = 1y — x = 1)"

(proof)

lemma (in group) repr_independence:
assumes "y € H #> x" "x € carrier G" "subgroup H G"
shows "H #> x = H #> y" (proof)

lemma (in group) coset_join2:
assumes "x € carrier G" "subgroup H G" "x € H"
shows "H #> x = H" (proof)

lemma (in group) coset_join3:
assumes "x € carrier G" "subgroup H G" "x € H"
shows "x <# H = H"

(proof)

lemma (in monoid) r_coset_subset_G:
"[H C carrier G; x € carrier G | = H #> x C carrier G"

(proof)

lemma (in group) rcosI:
" h € H; H C carrier G; x € carrier G] = h ® x € H #> x"

(proof)

lemma (in group) rcosetsI:
"[H C carrier G; x € carrier G] = H #> x € rcosets H"

(proof)

lemma (in group) rcos_self:
"[x € carrier G; subgroup HG | = x € H #> x"
(proof)

Opposite of "repr_independence"

lemma (in group) repr_independenceD:
assumes "subgroup H G" "y € carrier G"
and "H #> x = H #> y"
shows "y € H #> x"

(proof)

FElements of a right coset are in the carrier

lemma (in subgroup) elemrcos_carrier:
assumes '"group G" "a € carrier G"
and "a’ € H #> a"
shows "a’ € carrier G"

(proof)

lemma (in subgroup) rcos_const:
assumes "group G" "h € H"
shows "H #> h = H"

{proof)

lemma (in subgroup) rcos_module_imp:
assumes '"group G" "x € carrier G"
and "x’ € H #> x"
shows "(x’ ® inv x) € H"

{(proof)

lemma (in subgroup) rcos_module_rev:
assumes '"group G" "x € carrier G" "x’ € carrier G"
and "(x’ ® inv x) € H"
shows "x’ € H #> x"

(proof)
Module property of right cosets

lemma (in subgroup) rcos_module:
assumes '"group G" "x € carrier G" "x’ € carrier G"
shows "(x> € H #> x) = (x’ ® inv x € H)"

{proof)

Right cosets are subsets of the carrier.

lemma (in subgroup) rcosets_carrier:
assumes "group G" "X € rcosets H"
shows "X C carrier G"

(proof)

Multiplication of general subsets

lemma (in comm_group) mult_subgroups:
assumes HG: "subgroup H G" and KG: "subgroup K G"
shows "subgroup (H <#> K) G"

(proof)

lemma (in subgroup) lcos_module_rev:
assumes '"group G" "x € carrier G" "x’ € carrier G"
and "(inv x ® x’) € H"
shows "x’ € x <# H"

(proof)

7.4 Normal subgroups

lemma normal_imp_subgroup: "H << G = subgroup H G"

(proof)

lemma (in group) normall:

"subgroup H G = (Vx € carrier G. H#> x =x <#t H) = H < G"

(proof)

91

92

lemma (in normal) inv_op_closedl:
assumes "x € carrier G" and "h € H"
shows "(inv x) ® h ® x € H"

(proof)

lemma (in normal) inv_op_closed?2:
assumes "x € carrier G" and "h € H"
shows "x ® h ® (inv x) € H"

(proof)

lemma (in comm_group) normal_iff_subgroup:
"N 9 G <— subgroup N G"

(proof)

Alternative characterization of normal subgroups

lemma (in group) normal_inv_iff:
n (N <] G) =
(subgroup N G A (Vx € carrier G. Vh € N. x ® h ® (inv x) € N))"
(is "_ = ?rhs")

(proof)

corollary (in group) normal_invI:

assumes "subgroup N G" and "Ax h. [x € carrier G; h e N | = x ®
h ® inv x € N"

shows "N < G"

{proof)

corollary (in group) normal_invE:

assumes "N < G"

shows "subgroup N G" and "Ax h. [x € carrier G; h € N] = x ® h
® inv x € N"

{proof)

lemma (in group) one_is_normal: "{1} < G"
(proof)

The intersection of two normal subgroups is, again, a normal subgroup.

lemma (in group) normal_subgroup_intersect:
assumes "M < G" and "N < G" shows "M N N < G"

(proof)

Being a normal subgroup is preserved by surjective homomorphisms.

lemma (in normal) surj_hom_normal_subgroup:
assumes @: "group_hom G F "
assumes gsurj: "¢ ¢ (carrier G) = carrier F"
shows "(¢ ¢ H) < F"

(proof)

93

Being a normal subgroup is preserved by group isomorphisms.

lemma iso_normal_subgroup:
assumes @: "p € iso G F" "group G" "group F" "H < G"
shows "(p ¢ H) < F"

(proof)

The set product of two normal subgroups is a normal subgroup.

lemma (in group) setmult_lcos_assoc:
"[H C carrier G; K C carrier G; x € carrier G
= (x <# H) <#> K =x < (H <#> K"
(proof)

7.5 More Properties of Left Cosets

lemma (in group) 1_repr_independence:
assumes "y € x <# H" "x € carrier G" and HG: "subgroup H G"
shows "x <# H = y <# H"

(proof)

lemma (in group) lcos_m_assoc:

"[M C carrier G; g € carrier G; h € carrier G| = g <# (h <# M) =
(g ® h) <# M"
(proof)

lemma (in group) lcos_mult_one: "M C carrier G = 1 <# M = M"

(proof)

lemma (in group) 1_coset_subset_G:
"[H C carrier G; x € carrier G | = x <# H C carrier G"

(proof)

lemma (in group) 1_coset_carrier:
" y € x <# H; x € carrier G; subgroup H G | = y € carrier G"
{proof)

lemma (in group) 1_coset_swap:
assumes "y € x <# H" "x € carrier G" "subgroup H G"
shows "x € y <# H"

(proof)

lemma (in group) subgroup_mult_id:
assumes "subgroup H G"
shows "H <#> H = H"

(proof)

7.5.1 Set of Inverses of an r_coset.

lemma (in normal) rcos_inv:
assumes Xx: "x € carrier G"

94

shows "set_inv (H #> x) = H #> (inv x)"
(proof)

7.5.2 Theorems for <#> with #> or <#.

lemma (in group) setmult_rcos_assoc:
"[H C carrier G; K C carrier G; x € carrier G] =
H <#> (K #> x) = (H <#> K) #> x"

(proof)

lemma (in group) rcos_assoc_lcos:
"[H C carrier G; K C carrier G; x € carrier G] —
(H #> x) <#> K = H <#> (x <# K)"

{proof)

lemma (in normal) rcos_mult_stepl:
"[x € carrier G; y € carrier G] =
(H#> x) <#> (H# y) = (H<#> (x <#t H)) #> y"

(proof)

lemma (in normal) rcos_mult_step2:
"[x € carrier G; y € carrier G]
= (H<#> (x<#tH) #>y=H<#> (H#H x)) #> y"

(proof)

lemma (in normal) rcos_mult_step3:
"[x € carrier G; y € carrier G]
= H<#> H#PHx)) #Hy=H#H x y)"

(proof)

lemma (in normal) rcos_sum:

"[x € carrier G; y € carrier G]

= HEH#H <> HHy) =HEHH G 7P"
(proof)

lemma (in normal) rcosets_mult_eq: "M € rcosets H = H <#> M = M"
— generalizes subgroup_mult_id

(proof)

7.5.3 An Equivalence Relation

definition
r_congruent :: "[(’a,’b)monoid_scheme, ’a set] = (’ax’a)set"
(< (<open_block notation=<prefix rcong>>rconge _)>)
where "rcongg H = {(x,y). x € carrier G A y € carrier G A invg x ®g
y € H}"

lemma (in subgroup) equiv_rcong:
assumes '"group G"

95

shows "equiv (carrier G) (rcong H)"
(proof)

Equivalence classes of rcong correspond to left cosets. Was there a mistake
in the definitions? I’d have expected them to correspond to right cosets.

lemma (in subgroup) 1_coset_eq_rcong:
assumes '"group G"
assumes a: "a € carrier G"
shows "a <# H = (rcong H) ¢ {a}"

(proof)

7.5.4 Two Distinct Right Cosets are Disjoint

lemma (in group) rcos_equation:

assumes "subgroup H G"

assumes p: "ha ® a = h ® b" "a € carrier G" "b € carrier G" "h € H"
"ha € H" "hb € H"

shows "hb ® a € ((JheH. {h ® D}"
(proof)

lemma (in group) rcos_disjoint:
assumes "subgroup H G"
shows "pairwise disjnt (rcosets H)"

(proof)

7.6 Further lemmas for r_congruent

The relation is a congruence

lemma (in normal) congruent_rcong:
shows "congruent2 (rcong H) (rcong H) (Aa b. a ® b <# H)"

(proof)

7.7 Order of a Group and Lagrange’s Theorem

definition
order :: "(’a, ’b) monoid_scheme = nat"
where "order S = card (carrier S)"

lemma iso_same_order:
assumes "¢ € iso G H"
shows "order G = order H"

(proof)

lemma (in monoid) order_gt_O_iff_finite: "O < order G +— finite (carrier
G) n
(proof)

lemma (in group) order_one_triv_iff:
shows "(order G = 1) = (carrier G = {1})"

96

(proof)

lemma (in group) rcosets_part_G:
assumes "subgroup H G"
shows "|J (rcosets H) = carrier G"

(proof)

lemma (in group) cosets_finite:
"[c € rcosets H; H C carrier G; finite (carrier G)] = finite
Cll

(proof)

The next two lemmas support the proof of card_cosets_equal.

lemma (in group) inj_on_f:
assumes "H C carrier G" and a: "a € carrier G"
shows "inj_on (\y. y ® inv a) (H #> a)"

(proof)

lemma (in group) inj_on_g:
"[H C carrier G; a € carrier G] = inj_on (A\y. y ® a) H"
(proof)

lemma (in group) card_cosets_equal:
assumes "R € rcosets H" "H C carrier G"
shows "Jf. bij_betw f H R"

(proof)

corollary (in group) card_rcosets_equal:
assumes "R € rcosets H" "H C carrier G"
shows "card H = card R"

{proof)

corollary (in group) rcosets_finite:
assumes "R € rcosets H" "H C carrier G" "finite H"
shows "finite R"

(proof)

lemma (in group) rcosets_subset_PowG:
"subgroup H G = rcosets H C Pow(carrier G)"

(proof)

proposition (in group) lagrange_finite:
assumes "finite(carrier G)" and HG: "subgroup H G"
shows "card(rcosets H) * card(H) = order(G)"

(proof)

97

theorem (in group) lagrange:
assumes "subgroup H G"
shows "card (rcosets H) * card H = order G"

(proof)

The cardinality of the right cosets of the trivial subgroup is the cardinality
of the group itself:

corollary (in group) card_rcosets_triv:
assumes "finite (carrier G)"
shows "card (rcosets {1}) = order G"

(proof)

7.8 Quotient Groups: Factorization of a Group

definition
FactGroup :: "[(’a,’b) monoid_scheme, ’a set] = (’a set) monoid" (infixl
<Mod> 65)
— Actually defined for groups rather than monoids
where "FactGroup G H = (carrier = rcosetsg H, mult = set_mult G, one
= HDH

lemma (in normal) setmult_closed:
"[K1 € rcosets H; K2 € rcosets H| = K1 <#> K2 € rcosets H"

(proof)

lemma (in normal) setinv_closed:
"K € rcosets H = set_inv K € rcosets H"

(proof)

lemma (in normal) rcosets_assoc:
"[M1 € rcosets H; M2 € rcosets H; M3 € rcosets H]
= M1 <#> M2 <#> M3 = M1 <#> (M2 <#> M3)"

{proof)

lemma (in subgroup) subgroup_in_rcosets:
assumes '"group G"
shows "H € rcosets H"

(proof)

lemma (in normal) rcosets_inv_mult_group_eq:
"M € rcosets H = set_inv M <#> M = H"

(proof)

theorem (in normal) factorgroup_is_group: "group (G Mod H)"

(proof)

(4

lemma carrier_FactGroup: "carrier(G Mod N) = (Ax. r_coset G N x) carrier

Gll

98

(proof)

lemma one_FactGroup [simp]: "one(G Mod N) = N"

{proof)

lemma mult_FactGroup [simp]: "monoid.mult (G Mod N) = set_mult G"
{proof)

lemma (in normal) inv_FactGroup:
assumes "X € carrier (G Mod H)"
shows "invg Mog g X = set_inv X"

(proof)

The coset map is a homomorphism from G to the quotient group G Mod H

lemma (in normal) r_coset_hom_Mod:
"(Aa. H #> a) € hom G (G Mod H)"

{proof)

lemma (in comm_group) set_mult_commute:
assumes "N C carrier G" "x € rcosets N" "y € rcosets N"
shows "x <#> y =y <#> x"

(proof)

lemma (in comm_group) abelian_FactGroup:
assumes "subgroup N G" shows "comm_group(G Mod N)"

(proof)

lemma FactGroup_universal:

assumes "h € hom G H" "N < G"

and h: "/\x y. |x € carrier G; y € carrier G; r_coset G N x = r_coset

GNy] = hx=hy"

obtains g

where "g € hom (G Mod N) H" "Ax. x € carrier G = g(r_coset G N x)
= h x"
(proof)

lemma (in normal) FactGroup_pow:

fixes k::nat

assumes "a € carrier G"

shows "pow (FactGroup G H) (r_coset G H a) k = r_coset G H (pow G a
k)"
(proof)

lemma (in normal) FactGroup_int_pow:
fixes k::int
assumes "a € carrier G"

99

shows "pow (FactGroup G H) (r_coset G H a) k = r_coset G H (pow G a
k) n
{proof)

7.9 The First Isomorphism Theorem

The quotient by the kernel of a homomorphism is isomorphic to the range
of that homomorphism.

definition
kernel :: "(’a, ’m) monoid_scheme = (’b, ’n) monoid_scheme = (’a
= ’b) = ’a set"
— the kernel of a homomorphism
where "kernel G H h = {x. x € carrier G A h x = 1g}"

lemma (in group_hom) subgroup_kernel: "subgroup (kernel G H h) G"
{proof)

The kernel of a homomorphism is a normal subgroup

lemma (in group_hom) normal_kernel: "(kernel G H h) < G"

(proof)

lemma iso_kernel_image:
assumes '"group G" "group H"
shows "f € iso GH ¢— f € hom G H A kernel G H f = {1g} A f ¢ carrier
G = carrier H"
(is "?71hs = ?rhs")

(proof)

lemma (in group_hom) FactGroup_nonempty:
assumes "X € carrier (G Mod kernel G H h)"
shows "X # {}"

(proof)

lemma (in group_hom) FactGroup_universal_kernel:

assumes "N < G" and h: "N C kernel G H h"

obtains g where "g € hom (G Mod N) H" "Ax. x € carrier G = g(r_coset
GNzx)=hx"
(proof)

lemma (in group_hom) FactGroup_the_elem_mem:
assumes X: "X € carrier (G Mod (kernel G H h))"
shows "the_elem (h‘X) € carrier H"

(proof)

lemma (in group_hom) FactGroup_hom:
"(AX. the_elem (h‘X)) € hom (G Mod (kernel G H h)) H"

100

(proof)

Lemma for the following injectivity result

lemma (in group_hom) FactGroup_subset:
assumes '"g € carrier G" "g’ € carrier G" "h g = h g’"
shows "kernel G H h #> g C kernel G H h #> g’"

(proof)

lemma (in group_hom) FactGroup_inj_on:
"inj_on (AX. the_elem (h ¢ X)) (carrier (G Mod kernel G H h))"

(proof)

If the homomorphism h is onto H, then so is the homomorphism from the
quotient group

lemma (in group_hom) FactGroup_onto:

assumes h: "h ¢ carrier G = carrier H"

shows "(AX. the_elem (h ¢ X)) ¢ carrier (G Mod kernel G H h) = carrier
Hll

(proof)

If h is a homomorphism from G onto H, then the quotient group G Mod
Coset.kernel G H h is isomorphic to H.

theorem (in group_hom) FactGroup_iso_set:
"h ¢ carrier G = carrier H
—> (AX. the_elem (h‘X)) € iso (G Mod (kernel G H h)) H"

(proof)

corollary (in group_hom) FactGroup_iso :
"h ¢ carrier G = carrier H
—> (G Mod (kernel G H h))X H"

(proof)

lemma (in group_hom) trivial_hom_iff:
"h ¢ (carrier G) = { 1y } +— kernel G H h = carrier G"

(proof)

lemma (in group_hom) trivial_ker_imp_inj:
assumes "kernel G Hh = { 1 }"
shows "inj_on h (carrier G)"

(proof)

lemma (in group_hom) inj_iff_trivial_ker:
shows "inj_on h (carrier G) <— kernel GH h = {1 }"

(proof)

lemma (in group_hom) induced_group_hom’:
assumes "subgroup I G" shows "group_hom (G (| carrier := I)) H h"

101

(proof)

lemma (in group_hom) inj_on_subgroup_iff_trivial_ker:
assumes "subgroup I G"
shows "inj_on h I <— kernel (G (carrier := I)) Hh={1 }"

(proof)

lemma set_mult_hom:
assumes "h € hom G H" "I C carrier G" and "J C carrier G"
shows "h ¢ (I <#>q J)=(“I)<#>g (b ¢ D"

(proof)

corollary coset_hom:

assumes "h € hom G H" "I C carrier G" "a € carrier G"

shows "h ¢ (a <#g I) =h a<#g (h * I)" and "h ¢ (I #>¢ a) = (h ¢ I)
#>y h a"

(proof)

corollary (in group_hom) set_mult_ker_hom:

assumes "I C carrier G"

shows "h ¢ (I <#> (kernel GHh)) =h ¢ I" and "h ¢ ((kernel G H h)
<#> I) =h ¢ I"
(proof)

7.9.1 Trivial homomorphisms

definition trivial_homomorphism where
"trivial_homomorphism G H £ = f € hom G H A (Vx € carrier G. f x =
one H)"

lemma trivial_homomorphism_kernel:
"trivial_homomorphism G H £ <— f € hom G H A kernel G H f = carrier
Gll
{proof)

lemma (in group) trivial_homomorphism_image:

"trivial_homomorphism G H f <— f € hom G H A £ ¢ carrier G = {one
H}ll

{proof)

7.10 Image kernel theorems

lemma group_Int_image_ker:
assumes f: "f € hom G H" and g: "g € hom H K"
and "inj_on (g o f) (carrier G)" "group G" "group H" "group K"
shows "(f ¢ carrier G) N (kernel H K g) = {1z}"
(proof)

lemma group_sum_image_ker:

102

assumes f: "f € hom G H" and g: "g € hom H K" and eq: "(g o f) ¢ (carrier
G) = carrier K"
and "group G" "group H" "group K"
shows "set_mult H (f ‘ carrier G) (kernel H K g) = carrier H" (is "7lhs
= ?rhs")

(proof)

lemma group_sum_ker_image:
assumes f: "f € hom G H" and g: "g € hom H K" and eq: "(g o f) ¢ (carrier
G) = carrier K"
and "group G" "group H" "group K"
shows "set_mult H (kernel H K g) (f ¢ carrier G) = carrier H" (is "7lhs
= 7rhs")

(proof)

lemma group_semidirect_sum_ker_image:
assumes "(g o f) € iso G K" "f € hom G H" "g € hom H K" "group G" "group

H" "group K"
shows "(kernel H K g) N (f ¢ carrier G)
"kernel H K g <#>y (f ¢ carrier G)

(proof)

{IH}"

carrier H"

lemma group_semidirect_sum_image_ker:
assumes f: "f € hom G H" and g: "g € hom H K" and iso: "(g o f) €
iso G K"
and "group G" "group H" "group K"
shows "(f ¢ carrier G) N (kernel H K g) = {1z}"
"f ¢ carrier G <#>y (kernel H K g) = carrier H"

{proof)

7.11 Factor Groups and Direct product

lemma (in group) DirProd_normal :
assumes "group K"

and "H < G"
and "N < K"
shows "H x N < G xx K"
(proof)

lemma (in group) FactGroup_DirProd_multiplication_iso_set :
assumes "group K"
and "H < G"
and "N < K"
shows "(\ (X, Y). X X Y) € iso ((G Mod H) xx (K Mod N)) (G xx K
Mod H x N)"

(proof)

corollary (in group) FactGroup_DirProd_multiplication_iso_1 :

103

assumes "group K"
and "H < G"
and "N < K"
shows " ((G Mod H) xx (K Mod N)) = (G XX K Mod H x N)"

(proof)

corollary (in group) FactGroup_DirProd_multiplication_iso_2 :
assumes "group K"
and "H < G"
and "N < K"
shows "(G xx K Mod H x N) = ((G Mod H) XX (K Mod N))"

(proof)

7.11.1 More Lemmas about set multiplication

A group multiplied by a subgroup stays the same

lemma (in group) set_mult_carrier_idem:
assumes "subgroup H G"
shows "(carrier G) <#> H = carrier G"

(proof)

Same lemma as above, but everything is included in a subgroup

lemma (in group) set_mult_subgroup_idem:
assumes HG: "subgroup H G" and NG: "subgroup N (G (carrier := H |)"
shows "H <#> N = H"

(proof)

A normal subgroup is commutative with set multiplication

lemma (in group) commut_normal:
assumes "subgroup H G" and "N<G"
shows "H<#>N = N<#>H"

(proof)

Same lemma as above, but everything is included in a subgroup

lemma (in group) commut_normal_subgroup:
assumes "subgroup H G" and "N < (G(carrier :=H |))"
and "subgroup K (G (carrier :=H)"
shows "K <#> N = N <#> K"
(proof)

7.11.2 Lemmas about intersection and normal subgroups

Mostly by Jakob von Raumer

lemma (in group) normal_inter:
assumes "subgroup H G"
and "subgroup K G"
and "H1<G(carrier := H)"

104

shows "(H1NK)<1(G(carrier:= (HNK)|))"
(proof)

lemma (in group) normal_Int_subgroup:
assumes "subgroup H G"

and "N < G"
shows "(NNH) < (G(carrier := H))"
(proof)

lemma (in group) normal_restrict_supergroup:
assumes "subgroup S G" "N < G" "N C 8"
shows "N < (G(carrier := S))"

(proof)
A subgroup relation survives factoring by a normal subgroup.

lemma (in group) normal_subgroup_factorize:
assumes "N < G" and "N C H" and "subgroup H G"
shows "subgroup (rcosetquCarrier := H) N) (G Mod M)

(proof))

A normality relation survives factoring by a normal subgroup.

lemma (in group) normality_factorization:
assumes NG: "N < G" and NH: "N C H" and HG: "H < G"
shows "(rcosetscﬂcarrier = H) N) < (G Mod N)"

(proof)

Factorizing by the trivial subgroup is an isomorphism.
lemma (in group) trivial_factor_iso:

shows "the_elem € iso (G Mod {1}) G"
(proof)

And the dual theorem to the previous one: Factorizing by the group itself
gives the trivial group
lemma (in group) self_factor_iso:
shows "(AX. the_elem ((Ax. 1) ¢ X)) € iso (G Mod (carrier G)) (G(carrier
= {1} O
(proof)

Factoring by a normal subgroups yields the trivial group iff the subgroup is
the whole group.
lemma (in normal) fact_group_trivial_iff:

assumes "finite (carrier G)"
shows "(carrier (G Mod H) = {1g Mod H}) ¢— (H = carrier G)"

(proof)

The union of all the cosets contained in a subgroup of a quotient group acts
as a represenation for that subgroup.

105

lemma (in normal) factgroup_subgroup_union_char:
assumes "subgroup A (G Mod H)"
shows "(|JA) = {x € carrier G. H #> x € A}"

(proof)

lemma (in normal) factgroup_subgroup_union_subgroup:
assumes "subgroup A (G Mod H)"
shows "subgroup (|JA) G"

(proof)

lemma (in normal) factgroup_subgroup_union_normal:
assumes "A < (G Mod H)"
shows " JA < G"

(proof)

lemma (in normal) factgroup_subgroup_union_factor:
assumes "subgroup A (G Mod H)"
shows "A = rcosetscqcarrier = Ja) H"

(proof)

8 Flattening the type of group carriers

Flattening here means to convert the type of group elements from ’a set to
’a. This is possible whenever the empty set is not an element of the group.
By Jakob von Raumer

definition flatten where

"flatten (G::(’a set, ’b) monoid_scheme) rep = (carrier=(rep

G)),

¢ (carrier

monoid.mult=(\ x y. rep ((the_inv_into (carrier G) rep x) ®¢ (the_inv_into
(carrier G) rep y))),
one=rep 1lg)"

lemma flatten_set_group_hom:
assumes group: "group G"
assumes inj: "inj_on rep (carrier G)"
shows "rep € hom G (flatten G rep)"

(proof)

lemma flatten_set_group:
assumes "group G" "inj_on rep (carrier G)"
shows "group (flatten G rep)"

(proof)

lemma (in normal) flatten_set_group_mod_inj:
shows "inj_on (AU. SOME g. g € U) (carrier (G Mod H))"

(proof)

lemma (in normal) flatten_set_group_mod:

106

shows "group (flatten (G Mod H) (AU. SOME g. g € U))"
{proof)

lemma (in normal) flatten_set_group_mod_iso:

shows "(AU. SOME g. g € U) € iso (G Mod H) (flatten (G Mod H) (AU.
SOME g. g € U))"
(proof)

end

theory Exponent
imports Main "HOL-Computational_Algebra.Primes"
begin

9 Sylow’s Theorem

The Combinatorial Argument Underlying the First Sylow Theorem

needed in this form to prove Sylow’s theorem

corollary (in algebraic_semidom) div_combine:

"[prime_elem p; - p "~ Suc rdvdn; p - (a+r) dvdn *xk] = p "~ a
dvd k"

(proof)

fixes p :: nat
assumes IIO < mll llo < kll llp # OII llk < p"all
shows "multiplicity p (p”a * m - k) = multiplicity p (p7a - k)"

(proof)

lemma p_not_div_choose_lemma:
fixes p :: nat
assumes eeq: "Ai. Suc i < K = multiplicity p (Suc i) = multiplicity
p (Suc (j + i)D"
and "k < K" and p: "prime p"
shows "multiplicity p (j + k choose k) = 0"
(proof)

The lemma above, with two changes of variables

lemma p_not_div_choose:
assumes "k < K" and "k < n"
and eeq: "Aj. [0<j; j<K] = multiplicity p (n - k + (X - j)) =
multiplicity p (K - j)" "prime p"
shows "multiplicity p (n choose k) = 0"
(proof)

proposition const_p_fac:

107

assumes "m>0" and prime: "prime p"
shows "multiplicity p (p~a * m choose p~a) = multiplicity p m"
(proof)

end

theory Sylow
imports Coset Exponent
begin

See also [4].

The combinatorial argument is in theory Exponent.

lemma le_extend_mult: "[[O <c; ac< b]] = a < b * c¢" for ¢ :: nat

(proof)

locale sylow = group +
fixes p and a and m and calM and RelM
assumes prime_p: "prime p"
and order_G: "order G = (p~a) * m"
and finite G[iff]: "finite (carrier G)"
defines "calM = {s. s C carrier G A card s = p~a}"
and "RelM = {(N1, N2). N1 € calM A N2 € calM A (dg € carrier G.
N1 = N2 #> g)}"
begin

lemma RelM_subset: "RelM C calM X calM"
(proof)

lemma RelM_refl_on: "refl_on calM RelM"

(proof)

lemma RelM_sym: "sym RelM"

(proof)

lemma RelM_trans: "trans RelM"

(proof)

lemma RelM_equiv: "equiv calM RelM"

{proof)

lemma M_subset_calM_prep: "M’ € calM // RelM — M’ C calM"
(proof)

end

9.1 Main Part of the Proof

locale sylow_central = sylow +

fixes H and M1 and M
assumes M_in_quot: "M € calM // RelM"
and not_dvd_M: "— (p ~ Suc (multiplicity p m) dvd card M)"
and M1 _in M: "M1 € M"
defines "H = {g. g € carrier G A M1 #> g = M1}"
begin

lemma M_subset_calM: "M C calM"

{proof)

lemma card_M1: "card M1

(proof)

]
o)
)

lemma exists_x_in_M1: "dx. x € M1"

(proof)

lemma M1_subset_G [simp]: "M1 C carrier G"
(proof)

lemma M1_inj_H: "df € H—M1. inj_on f H"

(proof)

end

9.2 Discharging the Assumptions of sylow_central

context sylow
begin

lemma EmptyNotInEquivSet: "{} ¢ calM // RelM"
{proof)

lemma existsM1inM: "M € calM // RelM — dM1. M1 € M"
(proof)

lemma zero_less_o_G: "O < order G"
(proof)

lemma zero_less_m: "m > O"

(proof)

lemma card_calM: "card calM = (p~a) * m choose p~a"
{proof)

lemma zero_less_card_calM: "card calM > 0"

(proof)

lemma max_p_div_calM: "= (p ~ Suc (multiplicity p m) dvd card

(proof)

108

calM)"

109

lemma finite_calM: "finite calM"

(proof)

lemma lemma_Al: "3IM € calM // RelM. = (p ~ Suc (multiplicity p m) dvd
card M"

(proof)

end

9.2.1 Introduction and Destruct Rules for H

context sylow_central
begin

lemma H_I: "[g € carrier G; Ml #> g = M1] =— g € H"
(proof)

lemma H_into_carrier_G: "x € H = x € carrier G"

(proof)

lemma in_H_imp_eq: "g € H = M1 #> g = M1"
(proof)

lemma H_m_closed: "[x € H; y € Hl = x ® y € H"

(proof)

lemma H_not_empty: "H # {}"
(proof)

lemma H_is_subgroup: "subgroup H G"

(proof)

lemma rcosetGMlg_subset_G: "[g € carrier G; x € M1 #> g] = x € carrier
Gll
{proof)

lemma finite M1: "finite M1"
(proof)

lemma finite_rcosetGMlg: "g € carrier G = finite (M1 #> g)"

(proof)

lemma M1_cardeq_rcosetGMlg: "g € carrier G = card (M1 #> g) = card
Mlll

{proof)

lemma M1_RelM_rcosetGMlg:
assumes "g € carrier G"

110

shows "(M1, M1 #> g) € RelM"
(proof)

end

9.3 Equal Cardinalities of M and the Set of Cosets

Injections between M and rcosetsg H show that their cardinalities are equal.

lemma ElemClassEquiv: "[equiv A r; C € A // r] = Vx € C. Vy € C. (x,
y) € r"

(proof)

context sylow_central
begin

lemma M_elem_map: "M2 € M = dg. g € carrier G A M1 #> g = M2"
{proof)

lemmas M_elem_map_carrier = M_elem_map [THEN someI_ex, THEN conjuncti]
lemmas M_elem_map_eq = M_elem_map [THEN someI_ex, THEN conjunct2]

lemma M_funcset_rcosets_H:
"(AxeM. H #> (SOME g. g € carrier G A M1 #> g = x)) € M — rcosets
Hll

(proof)

lemma inj_M_GmodH: "df € M — rcosets H. inj_on f M"
(proof)

end

9.3.1 The Opposite Injection

context sylow_central
begin

lemma H_elem_map: "H1 € rcosets H = Jg. g € carrier G A H #> g =
Hlll

(proof)
lemmas H_elem_map_carrier = H_elem_map [THEN someI_ex, THEN conjunctil]
lemmas H_elem_map_eq = H_elem_map [THEN somelI_ex, THEN conjunct2]
lemma rcosets_H_funcset_M:

"(AC € rcosets H. M1 #> (SOME g. g € carrier G A H #> g = C)) € rcosets
H— M"

(proof)

111

lemma inj_GmodH_M: "Jg € rcosets H—M. inj_on g (rcosets H)"
(proof)

lemma calM_subset_PowG: "calM C Pow (carrier G)"

(proof)

lemma finite M: "finite M"

(proof)

lemma cardMeqIndexH: "card M = card (rcosets H)"
(proof)

lemma index_lem: "card M * card H = order G"

(proof)

lemma card_H_eq: "card H = p~a"
(proof)

end

lemma (in sylow) sylow_thm: "JH. subgroup H G A card H = p~a
(proof)

Needed because the locale’s automatic definition refers to semigroup G and
Group.group_axioms G rather than simply to Group.group G.

lemma sylow_eq: "sylow G p a m <— group G A sylow_axioms G p a m"
{proof)

9.4 Sylow’s Theorem

theorem sylow_thm:
"[prime p; group G; order G = (p~a) * m; finite (carrier @)]
—> JH. subgroup H G A card H = p~a"

(proof)

end

theory Bij
imports Group
begin

10 Bijections of a Set, Permutation and Automor-
phism Groups

definition

112

Bij :: "’a set = (’a = ’a) set"
— Only extensional functions, since otherwise we get too many.
where "Bij S = extensional S N {f. bij_betw f S S}"

definition
BijGroup :: "’a set = (’a = ’a) monoid"
where "BijGroup S =
(carrier = Bij S,
mult = A\g € Bij S. AMf € Bij S. compose S g £,
one = Ax € S. x|)"

declare Id_compose [simp] compose_Id [simp]

lemma Bij_imp_extensional: "f € Bij S = f € extensional S"

(proof)

lemma Bij_imp_funcset: "f € Bij S = f € S — 3"

(proof)

10.1 Bijections Form a Group

lemma restrict_inv_into_Bij: "f € Bij S = (Ax € S. (inv_into S f)
x) € Bij 8"
(proof)

lemma id_Bij: "(Ax€S. x) € Bij S "

(proof)

lemma compose_Bij: "[x € Bij S; y € Bij 8] = compose S x y € Bij S"
{proof)

lemma Bij_compose_restrict_eq:
"f € Bij S = compose S (restrict (inv_into S f) S) f = (Axe€S.
X) n
{proof)

theorem group_BijGroup: "group (BijGroup S)"
(proof)

10.2 Automorphisms Form a Group

lemma Bij_inv_into_mem: "[£ € Bij S; x € 8] = inv_into S f x € S"
(proof)

lemma Bij_inv_into_lemma:
assumes eq: "Ax y. [x € S; ye€ 8] = h(gxy) =g (hx) (hy"
and hg: "h € Bij 8" "g € S - S — S" and "x € S" "y € S"
shows "inv_into S h (g x y) = g (inv_into S h x) (inv_into S h y)"
(proof)

113

definition
auto :: "(’a, ’b) monoid_scheme = (’a = ’a) set"
where "auto G = hom G G N Bij (carrier G)"

definition
AutoGroup :: "(’a, ’c) monoid_scheme = (’a = ’a) monoid"
where "AutoGroup G = BijGroup (carrier G) (carrier := auto G)"

lemma (in group) id_in_auto: "(Ax € carrier G. x) € auto G"

(proof)

lemma (in group) mult_funcset: "mult G € carrier G — carrier G — carrier
Gll
{proof)

lemma (in group) restrict_inv_into_hom:
"[b € hom G G; h € Bij (carrier G)]
= restrict (inv_into (carrier G) h) (carrier G) € hom G G"

(proof)

lemma inv_BijGroup:
"f € Bij S = m_inv (BijGroup S) f = (Ax € S. (inv_into S f) x)"
(proof)

lemma (in group) subgroup_auto:
"subgroup (auto G) (BijGroup (carrier G))"
(proof)

theorem (in group) AutoGroup: "group (AutoGroup G)"

(proof)

end

theory Ring
imports FiniteProduct
begin

11 The Algebraic Hierarchy of Rings

11.1 Abelian Groups

record ’a ring = "’a monoid" +
zero :: ’a (<02>)
add :: "[’a, ’al] = ’a" (infixl <®2> 65)

abbreviation

114

add_monoid :: "(’a, ’m) ring_scheme = (’a, ’m) monoid_scheme"
where "add_monoid R = (] carrier = carrier R, mult = add R, one = zero
R, ... = (undefined :: ’m))"

Derived operations.

definition

a_inv :: "[(’a, ’m) ring_scheme, ’a] = ’a" (<(<open_block notation=<prefix
e>>01 _)> [81] 80)

where "a_inv R = m_inv (add_monoid R)"

definition

a_minus :: "[(’a, ’m) ring_scheme, ’a, ’a]l => ’a" (<(<notation=<infix
©>>_ o1 _)> [65,66] 65)

where "x Gg y = x &g (&g y)"

definition
add_pow :: "[_, (°b :: semiring 1), ’a] = ’a"
(< (<open_block notation=<mixfix ->>[_] -2 _)»> [81, 81] 80)
where "[k] g a = pow (add_monoid R) a k"

locale abelian_monoid =
fixes G (structure)
assumes a_comm_monoid:
"comm_monoid (add_monoid G)"

definition
finsum :: "[(°b, ’m) ring_scheme, ’a = ’b, ’a set] = ’b" where
"finsum G = finprod (add_monoid G)"

syntax

" finsum" :: "index = idt = ’a set = ’b = ’b"

(< (<indent=3 notation=<binder P >>P __c_. _)> [1000, 0, 51, 10]

10)
syntax__consts

" finsum" = finsum
translations

"@GiGA. b" = "CONST finsum G (Ai. b) A"

— Beware of argument permutation!

locale abelian_group = abelian_monoid +
assumes a_comm_group:
"comm_group (add_monoid G)"

11.2 Basic Properties

lemma abelian_monoidI:
fixes R (structure)
assumes "Ax y. [x € carrier R; y € carrier R = x @ y € carrier

115

Rll
and "0 € carrier R"
and "Ax y z. | x € carrier R; y € carrier R; z € carrier R | =
xRy dz=xd (yd 2)"
and "Ax. x € carrier R = 0 @ x = x"
and "Ax y. [x € carrier R; y € carrier R] = x ® y =y @ x"
shows "abelian_monoid R"

(proof)

lemma abelian_monoidE:
fixes R (structure)
assumes "abelian_monoid R"
shows "Ax y. [x € carrier R; y € carrier R | = x @ y € carrier
Rll
and "0 € carrier R"
and "Ax y z. [x € carrier R; y € carrier R; z € carrier R | =
By dz=xd (y& 20"
and "Ax. x € carrier R = 0 @ x = x"
and "Ax y. [x € carrier R; y € carrier R = x® y =y § x"

{proof)

lemma abelian_groupl:
fixes R (structure)
assumes "Ax y. [x € carrier R; y € carrier R| = x @ y € carrier
Rll
and "0 € carrier R"
and "Ax y z. [x € carrier R; y € carrier R; z € carrier R | =
xey)dz=x¢ (& 2"
and "Ax y. [x € carrier R; y € carrier R = x ® y =y & x"
and "Ax. x € carrier R = 0 @ x = x"
and "Ax. x € carrier R = Jy € carrier R. y @& x = 0"
shows "abelian_group R"

(proof)

lemma abelian_groupE:
fixes R (structure)
assumes "abelian_group R"
shows "Ax y. [x € carrier R; y € carrier R | = x & y € carrier
Rll
and "0 € carrier R"
and "Ax y z. [x € carrier R; y € carrier R; z € carrier R | =
By dz=x& (y® 2"
and "Ax y. [x € carrier R; y € carrier R] = x @y =y @ x"
and "Ax. x € carrier R = 0 @ x = x"
and "Ax. x € carrier R = 3Jy € carrier R. y ® x = 0"

{proof)

lemma (in abelian_monoid) a_monoid:
"monoid (add_monoid G)"

116

(proof)

lemma (in abelian_group) a_group:
"group (add_monoid G)"

(proof)

lemmas monoid_record_simps = partial_object.simps monoid.simps

Transfer facts from multiplicative structures via interpretation.

sublocale abelian_monoid <
add: monoid "(add_monoid G)"
rewrites "carrier (add_monoid G) = carrier G"
and "mult (add_monoid G) = add G"
and "one (add_monoid G) = zero G"
and "(\a k. pow (add_monoid G) a k) = (Aa k. add_pow G k a)"

(proof)

context abelian_monoid
begin

lemmas a_closed = add.m_closed
lemmas zero_closed = add.one_closed
lemmas a_assoc = add.m_assoc
lemmas 1_zero = add.l_one

lemmas r_zero = add.r_one

lemmas minus_unique = add.inv_unique
end

sublocale abelian_monoid <
add: comm_monoid " (add_monoid G)"
rewrites "carrier (add_monoid G) = carrier G"
and "mult (add_monoid G) = add G"

and "one (add_monoid G) = zero G"

and "finprod (add_monoid G) = finsum G"

and "pow (add_monoid G) = (Aa k. add_pow G k a)"
(proof)

context abelian_monoid begin

lemmas a_comm = add.m_comm
lemmas a_lcomm = add.m_lcomm
lemmas a_ac = a_assoc a_comm a_lcomm

lemmas finsum_empty = add.finprod_empty
lemmas finsum_insert = add.finprod_insert
lemmas finsum_zero = add.finprod_one
lemmas finsum_closed = add.finprod_closed
lemmas finsum_Un_Int add.finprod_Un_Int

lemmas finsum_Un_disjoint = add.finprod_Un_disjoint
lemmas finsum_addf = add.finprod_multf
lemmas finsum_cong’ = add.finprod_cong’

lemmas finsum_O = add.finprod_0
lemmas finsum_Suc = add.finprod_Suc

lemmas finsum_Suc2 = add.finprod_Suc2
lemmas finsum_infinite = add.finprod_infinite

lemmas finsum_cong = add.finprod_cong

117

Usually, if this rule causes a failed congruence proof error, the reason is that
the premise g € B — carrier G cannot be shown. Adding Pi_def to the

simpset is often useful.

lemmas finsum_reindex = add.finprod_reindex

lemmas finsum_singleton = add.finprod_singleton

end

sublocale abelian_group <
add: group "(add_monoid G)"

rewrites "carrier (add_monoid G) = carrier G"

and "mult (add_monoid G) =

and "one (add_monoid G) =

and "m_inv (add_monoid G) =

and "pow (add_monoid G) =
(proof)

context abelian_group
begin

lemmas a_inv_closed = add.inv_closed

lemma minus_closed [intro, simp]:

"[| x € carrier G; y € carrier G |] ==> x © y € carrier G"

(proof)

lemmas 1_neg = add.l_inv [simp dell
lemmas r_neg = add.r_inv [simp dell
lemmas minus_minus = add.inv_inv
lemmas a_inv_inj = add.inv_inj

add G"

zero G"

a_inv G"

(Ma k. add_pow G k a)"

lemmas minus_equality = add.inv_equality

end

sublocale abelian_group <
add: comm_group "(add_monoid G)"

118

rewrites "carrier (add_monoid G) = carrier G"

and "mult (add_monoid G) = add G"

and "one (add_monoid G) = zero G"

and "m_inv (add_monoid G) = a_inv G"

and "finprod (add_monoid G) = finsum G"

and "pow (add_monoid G) = (la k. add_pow G k a)"
(proof)

lemmas (in abelian_group) minus_add = add.inv_mult

Derive an abelian_group from a comm_group

lemma comm_group_abelian_groupIl:
fixes G (structure)
assumes cg: "comm_group (add_monoid G)"
shows "abelian_group G"

(proof)

11.3 Rings: Basic Definitions

locale semiring = abelian_monoid R + monoid R for R (structure) +
assumes 1 _distr: "[[X € carrier R; y € carrier R; z € carrier R] —
Py ®z=xRzdy 2"
and r_distr: "[x € carrier R; y € carrier R; z € carrier R | =
z® xPy)=z20xdzy"
and 1_null([simp]: "x € carrier R = 0 ® x = 0"
and r_null[simp]: "x € carrier R = x ® 0 = O"

locale ring = abelian_group R + monoid R for R (structure) +
assumes "[x € carrier R; y € carrier R; z € carrier R | = (x ¢ y)
Rz=xRzBy R 2"
and "[[X € carrier R; y € carrier R; z € carrier R]] — z ®
By =z20xdzxy"

locale cring = ring + comm_monoid R

locale "domain" = cring +
assumes one_not_zero [simp]: "1 # 0"
and integral: "[[a ® b =0; a € carrier R; b € carrier R]] -
a=0Vb=0"

locale field = "domain" +
assumes field Units: "Units R = carrier R - {0}"

11.4 Rings

lemma ringl:
fixes R (structure)
assumes "abelian_group R"
and "monoid R"

119

and "Ax y z. [x € carrier R; y € carrier R; z € carrier R | =
0Oy ®z=x3z0y Q 2"
and "Ax y z. | x € carrier R; y € carrier R; z € carrier R | =
z®@ X ®y)=z2Q0xdzy"
shows "ring R"

(proof)

lemma ringE:
fixes R (structure)
assumes "ring R"
shows "abelian_group R"
and "monoid R"
and "Ax y z. [x € carrier R; y € carrier R; z € carrier R | =
Oy ®z=x3zQyQ 2"
and "Ax y z. [x € carrier R; y € carrier R; z € carrier R | =
z® x®y)=z0xdzxy"
(proof)

context ring begin
lemma is_abelian_group: "abelian_group R" (proof)

lemma is_monoid: "monoid R"

(proof)
end

thm monoid_record_simps
lemmas ring_record_simps = monoid_record_simps ring.simps

lemma cringl:
fixes R (structure)
assumes abelian_group: "abelian_group R"
and comm_monoid: "comm_monoid R"
and 1_distr: "Ax y z. [x € carrier R; y € carrier R; z € carrier
R] =
Py ®z=xR3zDy R 2"
shows "cring R"

(proof)

lemma cringE:
fixes R (structure)
assumes "cring R"
shows "comm_monoid R"
and "Ax y z. [x € carrier R; y € carrier R; z € carrier R | =
Oy ®z=x3zQyQ 2"
(proof)

lemma (in cring) is_cring:

120

"cring R" (proof)

lemma (in ring) minus_zero [simp]l: "& 0 = 0"
{proof)

11.4.1 Normaliser for Rings

lemma (in abelian_group) r_negl:

"[x € carrier G; y € carrier G | = (& x) & (x ® y) = y"
(proof)
lemma (in abelian_group) r_neg2:

"[x € carrier G; y € carrier G | = x & (& x) & y) = y"

(proof)
context ring begin

The following proofs are from Jacobson, Basic Algebra I, pp. 88-89.

sublocale semiring
(proof)

lemma 1 _minus:
"[x € carrier R; y € carrier R] = (& x) ® ¥y

(proof)

e "

lemma r_minus:
"[x € carrier R; y € carrier R | = x ® (& y)

(proof)

e G p"

end

lemma (in abelian_group) minus_eq: "x Oy =x & (& y)"

(proof)
Setup algebra method: compute distributive normal form in locale contexts
(ML)

lemmas (in semiring) semiring_simprules
[algebra ring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult R"]

a_closed zero_closed m_closed one_closed
a_assoc 1_zero a_comm m_assoc 1 _one 1_distr r_zero
a_lcomm r_distr 1_null r_null

lemmas (in ring) ring_simprules
[algebra ring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult R"]

a_closed zero_closed a_inv_closed minus_closed m_closed one_closed
a_assoc 1_zero 1_neg a_comm m_assoc 1_one 1_distr minus_eq

121

r_zero r_neg r_neg2 r_negl minus_add minus_minus minus_zero
a_lcomm r_distr 1 _null r null 1 minus r_minus

lemmas (in cring)
[algebra del: ring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult
R"] -

lemmas (in cring) cring_simprules
[algebra add: cring "zero R" "add R" "a_inv R" "a_minus R" "one R" "mult
R"] =
a_closed zero_closed a_inv_closed minus_closed m_closed one_closed
a_assoc 1_zero 1_neg a_comm m_assoc 1_one 1_distr m_comm minus_eq
r_zero r_neg r_neg2 r_negl minus_add minus_minus minus_zero
a_lcomm m_lcomm r_distr 1_null r_null 1_minus r_minus

lemma (in semiring) nat_pow_zero:
"(n::nat) # 0 = 0 ["] n = O"
(proof)

context semiring begin

lemma one_zeroD:
assumes onezero: "1 = 0"
shows "carrier R = {0}"

(proof)

lemma one_zerol:
assumes carrzero: "carrier R = {0}"

shows "1 = 0"

{proof)

lemma carrier_one_zero: "(carrier R = {0}) = (1 = 0O)"
(proof)

lemma carrier_one_not_zero: "(carrier R # {0}) = (1 # 0O)"

(proof)

end

Two examples for use of method algebra

lemma

fixes R (structure) and S (structure)

assumes "ring R" "cring S"

assumes RS: "a € carrier R" "b € carrier R" "c € carrier S" "d € carrier
Sl|

shows "a & (& (a ® (& b)) =b Ac®g d=d Xg c"
(proof)

lemma
fixes R (structure)
assumes '"ring R"
assumes R: "a € carrier R" "b € carrier R"
shows "a © (a © b) = b"
(proof)

11.4.2 Sums over Finite Sets

lemma (in semiring) finsum_ldistr:
"[finite A; a € carrier R; f: A — carrier R | =
P ichr i) ®a=E iea (fi) ®a)"
(proof)

lemma (in semiring) finsum_rdistr:
"[finite A; a € carrier R; f: A — carrier R | =
a® (P ied £1)=(p ich (a® (i)N"
(proof)

A quick detour

lemma add_pow_int_ge: "(k :: int) > 0 = [k] g a = [nat k]

(proof)

lemma add_pow_int_1t: "(k :: int) < 0 = [k] g a = ©g ([nat
] R a)"

{proof)

corollary (in semiring) add_pow_ldistr:
assumes "a € carrier R" "b € carrier R"
shows "([(k :: nat)] - a) ® b= [k] - (a ® b)"
(proof)

corollary (in semiring) add_pow_rdistr:
assumes "a € carrier R" "b € carrier R"
shows "a ® ([(k :: nat)] - b) = [k] - (a ® b)"
(proof)

lemma (in ring) add_pow_ldistr_int:
assumes "a € carrier R" "b € carrier R"
shows "([(k :: int)] - a) ® b = [k] - (a ® b)"
(proof)

lemma (in ring) add_pow_rdistr_int:
assumes "a € carrier R" "b € carrier R"
shows "a ® ([(k :: int)] - b) = [k] - (a ® b)"
(proof)

122

‘R a"

(- ¥

123

11.5 Integral Domains

context "domain" begin

lemma zero_not_one [simp]: "0 # 1"
{proof)

lemma integral_ iff:
" a € carrier R; b € carrier R] = (a2 ® b=0) =(a=0V b=0)"

(proof)

lemma m_lcancel:
assumes prem: "a # 0"
and R: "a € carrier R" "b € carrier R" "c € carrier R"
shows "(a ® b=a ® c) = (b = c)"
(proof)

lemma m_rcancel:
assumes prem: "a # 0"
and R: "a € carrier R" "b € carrier R" "c € carrier R"
shows conc: "(b ® a=c ® a) = (b =c)"

(proof)

end

11.6 Fields

Field would not need to be derived from domain, the properties for domain
follow from the assumptions of field

lemma (in field) is_ring: "ring R"

(proof)

lemma fieldE :
fixes R (structure)
assumes "field R"
shows "cring R"
and one_not_zero : "1 # 0"
and integral: "Aa b. [a ® b = 0; a € carrier R; b € carrier R |
— a=0VDb-=0"
and field _Units: "Units R = carrier R - {0}"

(proof)

lemma (in cring) cring fieldI:
assumes field_Units: "Units R = carrier R - {0}"
shows "field R"

(proof)

Another variant to show that something is a field

lemma (in cring) cring fieldI2:

124

assumes notzero: "0 #* 1"
and invex: "Aa. [a € carrier R; a # 0] = Jbccarrier R. a ® b
= 1"
shows "field R"

(proof)

11.7 Morphisms

definition
ring hom :: "[(’a, ’m) ring_scheme, (’b, ’n) ring_scheme] => (’a =>
’b) set"
where "ring_hom R S =
{h. h € carrier R — carrier S A
(Vx y. x € carrier R A y € carrier R —
h (x® y)D) =hx® hyAh &y =hx& hy A
h 1y = 1g}"

lemma ring_hom_memI:
fixes R (structure) and S (structure)
assumes "Ax. x € carrier R = h x € carrier 8"
and "Ax y. [x € carrier R; y € carrier R] = h (x ® y) = h
X ®s h y"

and "Ax y. [x € carrier R; y € carrier R] = h (x @ y) = h
x @S h yu
and "h 1 = 1g"
shows "h € ring_hom R S"
{proof)
lemma ring_hom_memE:
fixes R (structure) and S (structure)
assumes "h € ring _hom R S"
shows "Ax. x € carrier R = h x € carrier 8"
and "Ax y. [x € carrier R; y € carrier R] = h (x ® y) = h x
®@s h y"
and "Ax y. [x € carrier R; y € carrier R] = h (x ® y) = h x
©s h y"
and "h 1 = 1g"
(proof)

lemma ring_hom_closed:
" h € ring_hom R S; x € carrier R | = h x € carrier S"

(proof)

lemma ring_hom_mult:
fixes R (structure) and S (structure)
shows "[h € ring hom R S; x € carrier R; y € carrier R|] = h (x
®y) =hx ®g hy"
(proof)

125

lemma ring_hom_add:
fixes R (structure) and S (structure)
shows "[h € ring hom R S; x € carrier R; y € carrier R = h (x
@ y) =hzx dg h y"
(proof)

lemma ring_hom_one:
fixes R (structure) and S (structure)
shows "h € ring hom R S = h 1 = 1g"

(proof)

lemma ring_hom_zero:
fixes R (structure) and S (structure)
assumes "h € ring_hom R S" "ring R" "ring S"
shows "h 0 = Og"

(proof)

locale ring hom_cring =
R?: cring R + S7: cring S for R (structure) and S (structure) + fixes
h
assumes homh [simp, intro]: "h € ring_hom R S"
notes hom_closed [simp, intro] = ring_hom_closed [OF homh]
and hom_mult [simp] = ring hom_mult [OF homh]
and hom_add [simp] = ring_hom_add [OF homh]
and hom_one [simp] = ring_hom_one [OF homh]

lemma (in ring_hom_cring) hom_zero [simp]: "h O = Og"

(proof)

lemma (in ring_hom_cring) hom_a_inv [simp]:
"x € carrier R = h (& x) = ©g h x"

(proof)

lemma (in ring _hom_cring) hom_finsum [simp]:
assumes "f: A — carrier R"
shows "h (P i €A £i)=(Psgiecd (hof) "
(proof)

lemma (in ring hom_cring) hom_finprod:
assumes "f: A — carrier R"
shows "h (Q i€ A. £i)=(QRQsie€A (hof) "
(proof)

declare ring hom_cring.hom_finprod [simp]

lemma id_ring hom [simp]: "id € ring_hom R R"

(proof)

lemma ring_hom_trans:

126

"[£ € ring. hom R S; g € ring hom ST] = g o f € ring_ hom R T"
(proof)

11.8 Jeremy Avigad’s More_Finite_Product material

lemma (in cring) sum_zero_eq_neg: "x € carrier R = y € carrier R =
xBy=0=x=067y"
(proof)

lemma (in domain) square_eq_one:
fixes x
assumes [simp]: "x € carrier R"
and "x ® x = 1"
shows "x =1 V x = o1"

(proof)

lemma (in domain) inv_eq_self: "x € Units R =— x = inv x = x =1
vV x = el1"

(proof)
The following translates theorems about groups to the facts about the units
of a ring. (The list should be expanded as more things are needed.)

lemma (in ring) finite_ring finite_units [intro]: "finite (carrier R)
— finite (Units R)"

(proof)
lemma (in monoid) units_of_pow:
fixes n :: nat
shows "x € Units G = x [Tlynits of ¢ 0 = x [Tlg n"
(proof)

lemma (in cring) units_power_order_eq_one:
"finite (Units R) = a € Units R = a [7] card(Units R) = 1"

{proof)

11.9 Jeremy Avigad’s More_Ring material

lemma (in cring) field_intro2:

assumes "Og # 1g" and un: "Ax. x € carrier R - {0g} = x € Units
Rll

shows "field R"

(proof)

lemma (in monoid) inv_char:
assumes "x € carrier G" "y € carrier G" "x ® y = 1" "y ® x = 1"
shows "inv x = y"

(proof)

lemma (in comm_monoid) comm_inv_char: "x € carrier G = y € carrier
G=x®y=1= inv x = y"

127

(proof)

lemma (in ring) inv_neg_one [simp]: "inv (© 1) = © 1"
(proof)

lemma (in monoid) inv_eq_imp_eq [dest!]: "inv x = inv y = x € Units
G =— y € Units G =— x = y"
{proof)

lemma (in ring) Units_minus_one_closed [intro]: "© 1 € Units R"

(proof)

lemma (in ring) inv_eq_neg_one_eq: "x € Units R = inv x = © 1 +—
x=6 1"
(proof)

lemma (in monoid) inv_eq_one_eq: "x € Units G = inv x = 1 +— x =
1||

(proof)

end

theory Module
imports Ring
begin

12 Modules over an Abelian Group
12.1 Definitions

record (’a, ’b) module = "’b ring" +
smult :: "[’a, ’b] => ’b" (infix]l <®2> 70)

locale module = R?: cring + M?7: abelian_group M for M (structure) +
assumes smult_closed [simp, intro]:
"[| a € carrier R; x € carrier M |] ==> a Oy x € carrier M"
and smult_1_distr:
"[| a € carrier R; b € carrier R; x € carrier M |] ==
(a®b) Oy x =a Oy x Gy b Oy x"
and smult_r_distr:
"[l a € carrier R; x € carrier M; y € carrier M [|] ==>
aOy (x®yy =albyxdyabyy"
and smult_assocl:
"[| a € carrier R; b € carrier R; x € carrier M |] ==
(a®b) Oy x = a Oy (b Oy X"
and smult_one [simp]:
"x € carrier M ==>1 Oy x = x"

128

locale algebra = module + cring M +
assumes smult_assoc2:
"[l a € carrier R; x € carrier M; y € carrier M |] ==>
(a Oy x) uy=aoboy (xey "

lemma modulel:
fixes R (structure) and M (structure)
assumes cring: "cring R"
and abelian_group: "abelian_group M"
and smult_closed:
"Ila x. [| a € carrier R; x € carrier M |] ==> a Oy x € carrier
Mll
and smult_1_distr:
"1la b x. [| a € carrier R; b € carrier R; x € carrier M |] ==
(a ®b) Oy x = (a Oy x) &y (b GOy "
and smult_r_distr:
"lla x y. [| a € carrier R; x € carrier M; y € carrier M [|] ==
aoOy x Py y) = (a Oy x) &y (@ Oy P
and smult_assocl:
"Ila b x. [| a € carrier R; b € carrier R; x € carrier M |] ==
(a ®b) Oy x =a Oy (b Oy X"
and smult_one:
"Ilx. x € carrier M ==> 1 Oy x = x"
shows "module R M"

{proof)

lemma algebral:
fixes R (structure) and M (structure)
assumes R_cring: "cring R"
and M_cring: "cring M"
and smult_closed:
"Ila x. [| a € carrier R; x € carrier M |] ==> a Oy x € carrier
M"
and smult_1_distr:
"1la b x. [| a € carrier R; b € carrier R; x € carrier M |] ==>
(a@®b) Oy x = (a Oy x) By (b O X"
and smult_r_distr:
"Ila x y. [| a € carrier R; x € carrier M; y € carrier M [|] ==
aoy X Py y) =(a Oy x) Py (@ oy P"
and smult_assocl:
"1la b x. [| a € carrier R; b € carrier R; x € carrier M |] ==
(a®b) Oy x =a Oy (b Oy X"
and smult_one:
"Ilx., x € carrier M ==> (one R) Oy x = x"
and smult_assoc2:
"!la x y. [| a € carrier R; x € carrier M; y € carrier M |] ==>
(a Oy x) uy=aoboy (xey "
shows "algebra R M"

(proof)

129

lemma (in algebra) R_cring: "cring R" (proof)
lemma (in algebra) M_cring: "cring M" (proof)

lemma (in algebra) module: "module R M"
{proof)

12.2 Basic Properties of Modules

lemma (in module) smult_1_null [simp]:
"X € carrier M ==> 0 Oy x = Oy"

(proof)

lemma (in module) smult_r_null [simp]:
"a € carrier R ==> a Oy Oy = Oy"

(proof)

lemma (in module) smult_1_minus:
"[a € carrier R; x € carrier M | = (6a) Oy x = Sy (a Oy x)"
(proof)

lemma (in module) smult_r_minus:
"[| a € carrier R; x € carrier M |] ==> a Oy (&yx) = &y (a Oy)"
(proof)

lemma (in module) finsum_smult_ldistr:
"[finite A; a € carrier R; f: A — carrier M | =
aoy (Puich (1) =(~@uiech (aoy E D)N"
{proof)

12.3 Submodules

locale submodule = subgroup H "add_monoid M" for H and R :: "(’a, ’b)
ring_scheme" and M (structure)
+ assumes smult_closed [simp, intro]:

"[a € carrier R; x € Hl = a Oy x € H"

lemma (in module) submoduleI :
assumes subset: "H C carrier M"
and zero: "Oy € H"
and a_inv: "!la. a € H = oy a € H"
and add : "A ab. [a€H; beH = adybeH"
and smult_closed : "A a x. [a € carrier R; x € Hl = a GOy x € H"
shows "submodule H R M"

(proof)

lemma (in module) submoduleE :

130

assumes '"submodule H R M"
shows "H C carrier M"
and "H # {}"
and "Aa. a € H = ©y a € H"
and "Aa b. [a € carrier R; b € Hl = a GOy b € H"
and "A ab. [a€H; be€H = aéybecH"
and "A x. x € H = (a_inv M x) € H"
(proof)

lemma (in module) carrier_is_submodule :
"submodule (carrier M) R M"

(proof)

lemma (in submodule) submodule_is_module :
assumes "module R M"
shows "module R (M(carrier := H))"

(proof)

lemma (in module) module_incl_imp_submodule :
assumes "H C carrier M"
and "module R (M(carrier := H))"
shows "submodule H R M"

{proof)

end

theory AbelCoset
imports Coset Ring
begin

12.4 More Lifting from Groups to Abelian Groups
12.4.1 Definitions

Hiding <+> from HOL.Sum_Type until I come up with better syntax here

no_ notation Sum_Type.Plus (infixr <<+>> 65)

definition
a_r_coset :: "[_, ’a set, ’a]l] = ’a set" (infixl <+>2> 60)
where "a_r_coset G = r_coset (add_monoid G)"

definition
a_l_coset i "[_, ’a, ’a set] = ’a set" (infix] <<+2> 60)
where "a_1 _coset G = 1_coset (add_monoid G)"

131

definition
A _RCOSETS :: "[_, ’a set] = (’a set)set"
(< (<open_block notation=<prefix a_rcosets>>a’_rcosets: _)> [81]
80)
where "A_RCOSETS G H = RCOSETS (add_monoid G) H"

definition
set_add :: "[_, ’a set ,’a set] = ’a set" (infixl <<+>2> 60)
where "set_add G = set_mult (add_monoid G)"

definition
A SET_INV :: "[_,’a set] = ’a set"
(< (<open_block notation=<prefix a_set_inv>>a’_set’_inve _)> [81]
80)
where "A_SET_INV G H = SET_INV (add_monoid G) H"

definition
a_r_congruent :: "[(’a,’b)ring_scheme, ’a set] = (’a*’a)set" (<raconge>)
where "a_r_congruent G = r_congruent (add_monoid G)"

definition
A_FactGroup :: "[(’a,’b) ring_scheme, ’a set] = (’a set) monoid" (infixl
<A’ Mod> 65)
— Actually defined for groups rather than monoids
where "A_FactGroup G H = FactGroup (add_monoid G) H"

definition
a_kernel :: "(’a, ’m) ring_scheme = (’°b, ’n) ring scheme = (’a =
’b) = ’a set"
— the kernel of a homomorphism (additive)
where "a_kernel G H h = kernel (add_monoid G) (add_monoid H) h"

locale abelian_group_hom = G?7: abelian_group G + H?: abelian_group H
for G (structure) and H (structure) +
fixes h
assumes a_group_hom: "group_hom (add_monoid G) (add_monoid H) h"

lemmas a_r_coset_defs =
a_r_coset_def r_coset_def

lemma a_r_coset_def’:
fixes G (structure)
shows "H +> a = (JheH. {h @ a}"
(proof)

lemmas a_1_coset_defs =
a_1l _coset_def 1 _coset_def

lemma a_1_coset_def’:

fixes G (structure)
shows "a <+ H = (JheH. {a ¢ h}"
(proof)

lemmas A_RCOSETS_defs =
A_RCOSETS_def RCOSETS_def

lemma A_RCOSETS_def’:
fixes G (structure)

shows "a_rcosets H = |Jac€carrier G. {H +> a}"

(proof)

lemmas set_add_defs =
set_add_def set_mult_def

lemma set_add_def’:
fixes G (structure)
shows "H <+> K = [JheH. |JkeK. {h
(proof)

lemmas A_SET_INV_defs =
A_SET_INV_def SET_INV_def

lemma A_SET_INV_def’:
fixes G (structure)
shows "a_set_inv H = (JheH. {© h}'

(proof)

12.4.2 Cosets

sublocale abelian_group <
add: group "(add_monoid G)"
rewrites "carrier (add_monoid G) =

and " mult (add_monoid G) =
and " one (add_monoid G) =
and " m_inv (add_monoid G) =

and "finprod (add_monoid G) =
and "r_coset (add_monoid G) =
and "1_coset (add_monoid G) =

@ k}ll

carrier G"

add

zero
a_inv
finsum
a_r_coset
a_l_coset

GII
Gll
Gll
Gll
GII
GII

132

and "(\a k. pow (add_monoid G) a k) = (Aa k. add_pow G k a)"

{proof)

context abelian_group
begin

thm add.coset_mult_assoc

lemmas a_repr_independence’ = add.repr_independence

133

end

lemma (in abelian_group) a_coset_add_assoc:
"[| M C carrier G; g € carrier G; h € carrier G |[]
=> M+>g) +>h=M+> (g ® h)"

(proof)

thm abelian_group.a_coset_add_assoc

lemma (in abelian_group) a_coset_add_zero [simp]:
"M C carrier G ==> M +> 0 = M"
(proof)

lemma (in abelian_group) a_coset_add_invi:
"[IM+> (x @& (©y)) =M; x € carrier G ; y € carrier G;
M C carrier G |[] ==> M +> x = M +> y"
(proof)

lemma (in abelian_group) a_coset_add_inv2:

"[I M +>x =M+>y; x € carrier G; y € carrier G; M C carrier
G 1]

=>M+> (x & (By) =M
(proof)

lemma (in abelian_group) a_coset_joini:

"[I H+> x = H; x € carrier G; subgroup H (add_monoid G) |] ==
x € H"
(proof)

lemma (in abelian_group) a_solve_equation:
"[subgroup H (add_monoid G); x € H; y € Hl = Jh€H. y = h & x"

(proof)

lemma (in abelian_group) a_repr_independence:
" y € H+> x; x € carrier G; subgroup H (add_monoid G) | =
H+>x=H+ y"

(proof)

lemma (in abelian_group) a_coset_join2:
"[x € carrier G; subgroup H (add_monoid G); x€H] =— H +> x = H"

(proof)

lemma (in abelian_monoid) a_r_coset_subset_G:
"[|l H C carrier G; x € carrier G |] ==> H +> x C carrier G"
(proof)

lemma (in abelian_group) a_rcosI:
"[l h € H; H C carrier G; x € carrier G|] ==> h & x € H +> x"

134

(proof)

lemma (in abelian_group) a_rcosetsI:
"[[H C carrier G; x € carrier G]] = H +> x € a_rcosets H"

(proof)
Really needed?

lemma (in abelian_group) a_transpose_inv:
"[| x @ y=2; x € carrier G; y € carrier G; z € carrier G |]
=> (6 x) &z=yg"
{proof)

12.4.3 Subgroups

locale additive_subgroup =
fixes H and G (structure)
assumes a_subgroup: "subgroup H (add_monoid G)"

lemma (in additive_subgroup) is_additive_subgroup:
shows "additive_subgroup H G"

(proof)

lemma additive_subgroupl:
fixes G (structure)
assumes a_subgroup: "subgroup H (add_monoid G)"
shows "additive_subgroup H G"

(proof)

lemma (in additive_subgroup) a_subset:
"H C carrier G"

(proof)

lemma (in additive_subgroup) a_closed [intro, simp]:
"[x €eH; y€H = x @ yeH"

(proof)

lemma (in additive_subgroup) zero_closed [simp]:
IIO e Hll

(proof)

lemma (in additive_subgroup) a_inv_closed [intro,simp]:
"'x e H—= © x € H"

{(proof)

12.4.4 Additive subgroups are normal

Every subgroup of an abelian_group is normal

locale abelian_subgroup = additive_subgroup + abelian_group G +
assumes a_normal: "normal H (add_monoid G)"

135

lemma (in abelian_subgroup) is_abelian_subgroup:
shows "abelian_subgroup H G"
(proof)

lemma abelian_subgroupl:
assumes a_normal: "normal H (add_monoid G)"

and a_comm: "!!x y. [| x € carrier G; y € carrier G |] ==> x Pg
y =y & x"
shows "abelian_subgroup H G"

(proof)

lemma abelian_subgroupI2:
fixes G (structure)
assumes a_comm_group: "comm_group (add_monoid G)"
and a_subgroup: "subgroup H (add_monoid G)"
shows "abelian_subgroup H G"

(proof)

lemma abelian_subgroupI3:
fixes G (structure)
assumes "additive_subgroup H G"
and "abelian_group G"
shows "abelian_subgroup H G"

{proof)

lemma (in abelian_subgroup) a_coset_eq:
"(Vx € carrier G. H +> x = x <+ H)"
(proof)

lemma (in abelian_subgroup) a_inv_op_closedl:
shows "[x € carrier G; h € Hl = (© x) @ h & x € H"

(proof)

lemma (in abelian_subgroup) a_inv_op_closed2:
shows "[x € carrier G; h € Hl = x ® h & (© x) € H"

(proof)

lemma (in abelian_group) a_lcos_m_assoc:

"[M C carrier G; g € carrier G; h € carrier G | = g <+ (h <+ M) =
(g ® h) <+ M"
(proof)

lemma (in abelian_group) a_lcos_mult_one:
"M C carrier G ==> 0 <+ M = M"
(proof)

lemma (in abelian_group) a_l_coset_subset_G:
"[H C carrier G; x € carrier G | = x <+ H C carrier G"

136

(proof)

lemma (in abelian_group) a_l_coset_swap:
"ly € x <+ H; x € carrier G; subgroup H (add_monoid ®)] = x €
y <+ H"

(proof)

lemma (in abelian_group) a_l_coset_carrier:
"[l y € x <+ H; x € carrier G; subgroup H (add_monoid G) [|] ==
y € carrier G"

(proof)

lemma (in abelian_group) a_l_repr_imp_subset:
assumes "y € x <+ H" "x € carrier G" "subgroup H (add_monoid G)"
shows "y <+ H C x <+ H"

(proof)

lemma (in abelian_group) a_l_repr_independence:

assumes y: "y € x <+ H" and x: "x € carrier G" and sb: "subgroup H
(add_monoid G)"

shows "x <+ H = y <+ H"

(proof)

lemma (in abelian_group) setadd_subset_G:
"[H C carrier G; K C carrier G] = H <+> K C carrier G"

(proof)

lemma (in abelian_group) subgroup_add_id: "subgroup H (add_monoid G)
= H <+> H = H"
(proof)

lemma (in abelian_subgroup) a_rcos_inv:
assumes Xx: "x € carrier G"
shows "a_set_inv (H +> x) = H +> (& x)"
(proof)

lemma (in abelian_group) a_setmult_rcos_assoc:
"[H C carrier G; K C carrier G; x € carrier G
= H<+> (K +> x) = (H <+> K) +> x"

(proof)

lemma (in abelian_group) a_rcos_assoc_lcos:
"[H C carrier G; K C carrier G; x € carrier G
= (H +> x) <+> K = H <+> (x <+ K)"

(proof)

lemma (in abelian_subgroup) a_rcos_sum:
"[x € carrier G; y € carrier G]
= H+»>x) <> H+>y)=H+ x& "

137

(proof)

lemma (in abelian_subgroup) rcosets_add_eq:
"M € a_rcosets H =— H <+> M = M"
— generalizes subgroup_mult_id

(proof)

12.4.5 Congruence Relation

lemma (in abelian_subgroup) a_equiv_rcong:
shows "equiv (carrier G) (racong H)"
(proof)

lemma (in abelian_subgroup) a_l_coset_eq_rcong:
assumes a: "a € carrier G"
shows "a <+ H = racong H ‘¢ {al}"

(proof)

lemma (in abelian_subgroup) a_rcos_equation:
shows
"[[ha @D a=h® b; a € carrier G; b € carrier G;
h € H; ha € H; hb € H|
= hb ® a € (UheH. {h & bH"
(proof)

lemma (in abelian_subgroup) a_rcos_disjoint: "pairwise disjnt (a_rcosets
H) "
(proof)

lemma (in abelian_subgroup) a_rcos_self:
shows "x € carrier G =— x € H +> x"

(proof)

lemma (in abelian_subgroup) a_rcosets_part_G:
shows "|J (a_rcosets H) = carrier G"

{(proof)

lemma (in abelian_subgroup) a_cosets_finite:

"[c € a_rcosets H; H C carrier G; finite (carrier G)] = finite
cll
(proof)

lemma (in abelian_group) a_card_cosets_equal:
"[c € a_rcosets H; H C carrier G; finite(carrier G)]
= card c¢ = card H"

{proof)

lemma (in abelian_group) rcosets_subset_PowG:
"additive_subgroup H G = a_rcosets H C Pow(carrier G)"

138

(proof)

theorem (in abelian_group) a_lagrange:
"[finite(carrier G); additive_subgroup H G]
— card(a_rcosets H) * card(H) = order(G)"

(proof)

12.4.6 Factorization

lemmas A_FactGroup_defs = A_FactGroup_def FactGroup_def

lemma A_FactGroup_def’:

fixes G (structure)

shows "G A_Mod H = Gcarrier = a_rcosetsg H, mult = set_add G, one =
H|)"
(proof)

lemma (in abelian_subgroup) a_setmult_closed:
"[[Kl € a_rcosets H; K2 € a_rcosets H]] = K1 <+> K2 € a_rcosets H"

(proof)

lemma (in abelian_subgroup) a_setinv_closed:
"K € a_rcosets H = a_set_inv K € a_rcosets H"

(proof)

lemma (in abelian_subgroup) a_rcosets_assoc:
"[M1 € a_rcosets H; M2 € a_rcosets H; M3 € a_rcosets H]
= Ml <+> M2 <+> M3 = M1 <+> (M2 <+> M3)"

(proof)

lemma (in abelian_subgroup) a_subgroup_in_rcosets:
"H € a_rcosets H"
(proof)

lemma (in abelian_subgroup) a_rcosets_inv_mult_group_eq:
"M € a_rcosets H =— a_set_inv M <+> M = H"

(proof)

theorem (in abelian_subgroup) a_factorgroup_is_group:
"group (G A_Mod H)"
(proof)

Since the Factorization is based on an abelian subgroup, is results in a com-
mutative group

theorem (in abelian_subgroup) a_factorgroup_is_comm_group: "comm_group
(G A_Mod H)"

(proof)

139

lemma add_A_FactGroup [simp]: "X ®(g p Mod H) X’ = X <+>¢ X"
(proof)

lemma (in abelian_subgroup) a_inv_FactGroup:
"X € carrier (G A_Mod H) = invg g Mod H X = a_set_inv X"

(proof)

The coset map is a homomorphism from G to the quotient group G Mod H

lemma (in abelian_subgroup) a_r_coset_hom_A_Mod:
"(Aa. H +> a) € hom (add_monoid G) (G A_Mod H)"
(proof)

The isomorphism theorems have been omitted from lifting, at least for now

12.4.7 The First Isomorphism Theorem

The quotient by the kernel of a homomorphism is isomorphic to the range
of that homomorphism.

lemmas a_kernel_defs =
a_kernel_def kernel_def

lemma a_kernel_def’:
"a_kernel R S h = {x € carrier R. h x = Og}"

(proof)

12.4.8 Homomorphisms

lemma abelian_group_homI:
assumes "abelian_group G"
assumes "abelian_group H"
assumes a_group_hom: "group_hom (add_monoid G)
(add_monoid H) h"
shows "abelian_group_hom G H h"

(proof)

lemma (in abelian_group_hom) is_abelian_group_hom:
"abelian_group_hom G H h"
(proof)

lemma (in abelian_group_hom) hom_add [simp]:
"[| x € carrier G; y € carrier G |]
==>h (x g y) =hx Bz hy"
(proof)

lemma (in abelian_group_hom) hom_closed [simp]:
"x € carrier G = h x € carrier H"

(proof)

140

lemma (in abelian_group_hom) zero_closed [simp]:
"h 0 € carrier H"

(proof)

lemma (in abelian_group_hom) hom_zero [simp]:
"h 0 = OH"
(proof)

lemma (in abelian_group_hom) a_inv_closed [simp]:
"x € carrier G ==> h (6&x) € carrier H"

(proof)

lemma (in abelian_group_hom) hom_a_inv [simp]:
"x € carrier G ==> h (©x) = 6 (h x)"

(proof)

lemma (in abelian_group_hom) additive_subgroup_a_kernel:
"additive_subgroup (a_kernel G H h) G"

(proof)

The kernel of a homomorphism is an abelian subgroup

lemma (in abelian_group_hom) abelian_subgroup_a_kernel:
"abelian_subgroup (a_kernel G H h) G"

(proof)

lemma (in abelian_group_hom) A_FactGroup_nonempty:
assumes X: "X € carrier (G A_Mod a_kernel G H h)"
shows "X # {}"

(proof)

lemma (in abelian_group_hom) FactGroup_the_elem_mem:
assumes X: "X € carrier (G A_Mod (a_kernel G H h))"
shows "the_elem (h‘X) € carrier H"

(proof)

lemma (in abelian_group_hom) A_FactGroup_hom:
"(AX. the_elem (h‘X)) € hom (G A_Mod (a_kernel G H h))
(add_monoid H)"

(proof)

lemma (in abelian_group_hom) A_FactGroup_inj_on:
"inj_on (AX. the_elem (h ¢ X)) (carrier (G A_Mod a_kernel G H h))"

(proof)

If the homomorphism h is onto H, then so is the homomorphism from the
quotient group

lemma (in abelian_group_hom) A_FactGroup_onto:
assumes h: "h ¢ carrier G = carrier H"

141

shows "(A\X. the_elem (h ¢ X)) ¢ carrier (G A_Mod a_kernel G H h) =
carrier H"

(proof)

If h is a homomorphism from G onto H, then the quotient group G Mod
Coset.kernel G H h is isomorphic to H.

theorem (in abelian_group_hom) A_FactGroup_iso_set:

"h ¢ carrier G = carrier H

= (AX. the_elem (h‘X)) € iso (G A_Mod (a_kernel G H h)) (add_monoid
H) n
(proof)

corollary (in abelian_group_hom) A_FactGroup_iso
"h ¢ carrier G = carrier H
—> (G A_Mod (a_kernel G H h)) & (add_monoid H)"

(proof)

12.4.9 Cosets

Not eveything from CosetExt.thy is lifted here.

lemma (in additive_subgroup) a_Hcarr [simp]:
assumes hH: "h € H"
shows "h € carrier G"

(proof)

lemma (in abelian_subgroup) a_elemrcos_carrier:
assumes acarr: "a € carrier G"
and a’: "a’ € H +> a"
shows "a’ € carrier G"
(proof)

lemma (in abelian_subgroup) a_rcos_const:
assumes hH: "h € H"
shows "H +> h = H"

(proof)

lemma (in abelian_subgroup) a_rcos_module_imp:
assumes xcarr: "x € carrier G"
and x’cos: "x’ € H +> x"
shows "(x’> & ©x) € H"
(proof)

lemma (in abelian_subgroup) a_rcos_module_rev:
assumes "x € carrier G" "x’ € carrier G"
and "(x> & ©x) € H"
shows "x’ € H +> x"

(proof)

lemma (in abelian_subgroup) a_rcos_module:
assumes "x € carrier G" "x’ € carrier G"
shows "(x> € H+> x) = (x> & 6x € H)"

(proof)

lemma (in abelian_subgroup) a_rcos_module_minus:
assumes '"ring G"
assumes carr: "x € carrier G" "x’ € carrier G"
shows "(x’ € H +> x) = (x> © x € ©)"

{(proof)

lemma (in abelian_subgroup) a_repr_independence’:
assumes "y € H +> x" "x € carrier G"
shows "H +> x = H +> y"

(proof)

lemma (in abelian_subgroup) a_repr_independenceD:
assumes "y € carrier G" "H +> x = H +> y"
shows "y € H +> x"

{proof)

lemma (in abelian_subgroup) a_rcosets_carrier:
"X € a_rcosets H =— X C carrier G"

{proof)

12.4.10 Addition of Subgroups

lemma (in abelian_monoid) set_add_closed:
assumes "A C carrier G" "B C carrier G"
shows "A <+> B C carrier G"

(proof)

lemma (in abelian_group) add_additive_subgroups:
assumes subH: "additive_subgroup H G"
and subK: "additive_subgroup K G"
shows "additive_subgroup (H <+> K) G"

(proof)

end

theory Ideal
imports Ring AbelCoset
begin

142

143

13 Ideals

13.1 Definitions
13.1.1 General definition

locale ideal = additive_subgroup I R + ring R for I and R (structure) +
assumes I_1_closed: "[a € I; x € carrier R] =— x ® a € I"
and I_r_closed: "[a € I; x € carrier R} = a ® x € I"

sublocale ideal C abelian_subgroup I R

(proof)

lemma (in ideal) is_ideal: "ideal I R"

(proof)

lemma ideall:
fixes R (structure)
assumes '"ring R"
assumes a_subgroup: "subgroup I (add_monoid R)"
and I_1_closed: "Aa x. [a € I; x € carrier R] = x ® a € I"
and I_r_closed: "Aa x. [a € I; x € carrier] — a ® x € I"
shows "ideal I R"

(proof)

13.1.2 Ideals Generated by a Subset of carrier R

definition genideal :: "_ = ’a set = ’a set"
(< (<open_block notation=<prefix Idl>>Idlz _)> [80] 79)
where "Idlg S = (|{I. ideal TR A S C I}"

13.1.3 Principal Ideals

locale principalideal = ideal +
assumes generate: "3i € carrier R. I = Idl {i}"

lemma (in principalideal) is_principalideal: "principalideal I R"
(proof)

lemma principalideall:
fixes R (structure)
assumes "ideal I R"
and generate: "Ji € carrier R. I = Idl {i}"
shows "principalideal I R"

(proof)

lemma (in ideal) rcos_const_imp_mem:
assumes "i € carrier R" and "I +> i = I" shows "i € I"

(proof)

144

lemma (in ring) a_rcos_zero:
assumes "ideal I R" "i € I" shows "I +> i = I"

(proof)

lemma (in ring) ideal_is_normal:
assumes "ideal I R" shows "I < (add_monoid R)"

(proof)

lemma (in ideal) a_rcos_sum:

assumes "a € carrier R" and "b € carrier R" shows "(I +> a) <+> (I
+>Db) =I1+> (a @ D"

(proof)

lemma (in ring) set_add_comm:
assumes "I C carrier R" "J C carrier R" shows "I <+> J = J <+> I"
(proof)

13.1.4 Maximal Ideals

locale maximalideal = ideal +
assumes I_notcarr: "carrier R # I"
and I_maximal: "[ideal JR; I C J; J C carrier Rl = (J=1) Vv J
= carrier R)"

lemma (in maximalideal) is_maximalideal: "maximalideal I R"

{proof)

lemma maximalideall:
fixes R
assumes "ideal I R"
and I_notcarr: "carrier R # I"
and I_maximal: "AJ. [ideal J R; I C J; J C carrier R] = (J = I)
V (J = carrier R)"
shows "maximalideal I R"
(proof)

13.1.5 Prime Ideals

locale primeideal = ideal + cring +
assumes I_notcarr: "carrier R # I"

145

and I_prime: "[a € carrier R; b € carrier R; a ® b € I|] = a €
IVDbel

lemma (in primeideal) primeideal: "primeideal I R"

(proof)

lemma primeideall:
fixes R (structure)
assumes "ideal I R"
and "cring R"
and I_notcarr: "carrier R # I"
and I_prime: "Aa b. [a € carrier R; b € carrier R; a ® b € I] =
aelIVbel"
shows "primeideal I R"

(proof)

lemma primeideall2:
fixes R (structure)
assumes "additive_subgroup I R"
and "cring R"
and I_1_closed: "Aa x. [a € I; x € carrier] — x ® a € I"
and I_r_closed: "Aa x. [a € I; x € carrier R] = a ® x € I"
and I_notcarr: "carrier R # I"
and I_prime: "Aa b. [a € carrier R; b € carrier R; a ® b € I] =
aelVbel"
shows "primeideal I R"

(proof)

13.2 Special Ideals

lemma (in ring) zeroideal: "ideal {0} R"

{proof)

lemma (in ring) oneideal: "ideal (carrier R) R"

(proof)

lemma (in "domain") zeroprimeideal: "primeideal {0} R"
(proof)

13.3 General Ideal Properties

lemma (in ideal) one_imp_carrier:
assumes I_one_closed: "1 € I"
shows "I = carrier R"

(proof)

lemma (in ideal) Icarr:
assumes il: "i € I"
shows "i € carrier R"

(proof)

146

lemma (in ring) quotient_eq_iff_same_a_r_cos:
assumes "ideal I R" and "a € carrier R" and "b € carrier R"
shows "a © b€ I +—> I +>a=1+>Db"

(proof)

13.4 Intersection of Ideals

Intersection of two ideals The intersection of any two ideals is again
an ideal in R

lemma (in ring) i_intersect:
assumes "ideal I R"
assumes "ideal J R"
shows "ideal (I N J) R"

(proof)

The intersection of any Number of Ideals is again an Ideal in R

lemma (in ring) i_Intersect:
assumes Sideals: "AI. I € S = ideal I R" and notempty: "S # {}"
shows "ideal ([)S) R"

(proof)

13.5 Addition of Ideals

lemma (in ring) add_ideals:
assumes ideall: "ideal I R" and idealJ: "ideal J R"
shows "ideal (I <+> J) R"

(proof)

13.6 Ideals generated by a subset of carrier R

genideal generates an ideal

lemma (in ring) genideal_ideal:
assumes Scarr: "S C carrier R"
shows "ideal (Idl S) R"

(proof)

lemma (in ring) genideal_self:
assumes "S C carrier R"
shows "S C Idl S"

(proof)

lemma (in ring) genideal_self’:
assumes carr: "i € carrier R"
shows "i € Idl {i}"

(proof)

genideal generates the minimal ideal

lemma (in ring) genideal_minimal:
assumes "ideal I R" "S C I"
shows "Idl1 S C I"

{proof)

Generated ideals and subsets

lemma (in ring) Idl_subset_ideal:
assumes Iideal: "ideal I R"
and Hcarr: "H C carrier R"
shows "(Id1 HC I) = (H C I)"
(proof)

lemma (in ring) subset_Idl_subset:
assumes Icarr: "I C carrier R"
and HI: "H C I"
shows "Idl H C Idl I"

(proof)

lemma (in ring) Idl_subset_ideal’:

assumes acarr: "a € carrier R" and bcarr:
shows "Idl {a} C Idl {b} +— a € Idl {b}"

(proof)

lemma (in ring) genideal_zero: "Idl {0} = {0}"

(proof)

lemma (in ring) genideal_one: "Idl {1} = carrier R"

(proof)

Generation of Principal Ideals in Commutative Rings

definition cgenideal :: "_ = ’a = ’a set"
(< (<open_block notation=<prefix PIdl»> >PIdles _
where "PIdlgp a = {x ®g a | x. x € carrier R}"

genhideal (?) really generates an ideal

lemma (in cring) cgenideal_ideal:
assumes acarr: "a € carrier R"
shows "ideal (PIdl a) R"

(proof)

lemma (in ring) cgenideal_self:
assumes icarr: "i € carrier R"
shows "i € PIdl i"

(proof)

cgenideal is minimal

lemma (in ring) cgenideal_minimal:
assumes "ideal J R"

"b € carrier R"

147

148

assumes aJ: "a € J"
shows "PIdl a C J"

(proof)

lemma (in cring) cgenideal_eq_genideal:
assumes icarr: "i € carrier R"
shows "PIdl i = Idl {i}"

(proof)

lemma (in cring) cgenideal_eq_rcos: "PIdl i = carrier R #> i"

(proof)

lemma (in cring) cgenideal_is_principalideal:
assumes "i € carrier R"
shows "principalideal (PIdl i) R"

(proof)

13.7 TUnion of Ideals

lemma (in ring) union_genideal:
assumes ideall: "ideal I R" and idealJ: "ideal J R"
shows "Idl (I U J) = I <+> J"

(proof)

13.8 Properties of Principal Ideals

The zero ideal is a principal ideal

corollary (in ring) zeropideal: "principalideal {0} R"
(proof)

The unit ideal is a principal ideal

corollary (in ring) onepideal: "principalideal (carrier R) R"

(proof)

Every principal ideal is a right coset of the carrier

lemma (in principalideal) rcos_generate:
assumes '"cring R"
shows "Jdxe€I. I = carrier R #> x"

(proof)

This next lemma would be trivial if placed in a theory that imports QuotRing,
but it makes more sense to have it here (easier to find and coherent with
the previous developments).
lemma (in cring) cgenideal_prod:

assumes "a € carrier R" "b € carrier R"

shows "(PIdl a) <#> (PIdl b) = PIdl (a ® b)"
(proof)

149

13.9 Prime ldeals

lemma (in ideal) primeidealCD:

assumes '"cring R"

assumes notprime: "— primeideal I R"

shows "carrier R =1 V (dJa b. a € carrier R A b € carrier R A a ®
beIANad¢dIANDb¢gI"
(proof)

lemma (in ideal) primeidealCE:
assumes "cring R"
assumes notprime: "— primeideal I R"
obtains "carrier R = I"
| "Ja b. a € carrier RA b € carrier RAa®b eI ANagIAb
¢ 1"
(proof)

If {0} is a prime ideal of a commutative ring, the ring is a domain

lemma (in cring) zeroprimeideal_domainI:
assumes pi: "primeideal {0} R"
shows "domain R"

(proof)

corollary (in cring) domain_eq_zeroprimeideal: "domain R = primeideal {0}
Rll
{proof)

13.10 Maximal Ideals

lemma (in ideal) helper_I_closed:
assumes carr: "a € carrier R" "x € carrier R" "y € carrier R"
and axI: "a ® x € I"
shows "a ® (x ® y) € I"
(proof)

lemma (in ideal) helper_max_prime:
assumes '"cring R"
assumes acarr: "a € carrier R"
shows "ideal {x€carrier R. a ® x € I} R"

(proof)
In a cring every maximal ideal is prime

lemma (in cring) maximalideal_prime:
assumes "maximalideal I R"
shows "primeideal I R"

(proof)

13.11 Derived Theorems

A non-zero cring that has only the two trivial ideals is a field

150

lemma (in cring) trivialideals_fieldI:
assumes carrnzero: "carrier R # {0}"
and haveideals: "{I. ideal I R} = {{0}, carrier R}"
shows "field R"

(proof)

lemma (in field) all_ideals: "{I. ideal I R} = {{0}, carrier R}"

(proof)
lemma (in cring) trivialideals_eq_field:
assumes carrnzero: "carrier R # {0}"
shows "({I. ideal I R} = {{0}, carrier R}) = field R"

(proof)

Like zeroprimeideal for domains

lemma (in field) zeromaximalideal: "maximalideal {0} R"

(proof)

lemma (in cring) zeromaximalideal_fieldI:
assumes zeromax: "maximalideal {0} R"
shows "field R"

(proof)

lemma (in cring) zeromaximalideal_eq_field: "maximalideal {0} R = field
Rll
(proof)

end

theory RingHom
imports Ideal
begin

14 Homomorphisms of Non-Commutative Rings

Lifting existing lemmas in a ring_hom_ring locale

locale ring_hom_ring = R?: ring R + S?: ring S
for R (structure) and S (structure) +
fixes h
assumes homh: "h € ring_hom R S"
notes hom_mult [simp] = ring hom_mult [OF homh]
and hom_one [simp] = ring_hom_one [OF homh]

sublocale ring_hom_cring C ring: ring_hom_ring

(proof)

sublocale ring hom_ring C abelian_group?: abelian_group_hom R S
(proof)

151

lemma (in ring hom_ring) is_ring_hom_ring:
"ring_hom_ring R S h"
(proof)

lemma ring_hom_ringI:
fixes R (structure) and S (structure)
assumes '"ring R" "ring S"
assumes hom_closed: "!!x. x € carrier R ==> h x € carrier S"
and compatible_mult: "Ax y. [| x € carrier R; y € carrier R []
==>h (x ® y) =h x ® h y"
and compatible_add: "Ax y. [| x € carrier R; y € carrier R |]
==>h (x @ y) =hx ®g hy"
and compatible_one: "h 1 = 1g"
shows "ring _hom_ring R S h"

(proof)

lemma ring_hom_ringI2:
assumes '"ring R" "ring S"
assumes h: "h € ring_hom R S"
shows "ring_hom_ring R S h"

(proof)

lemma ring_hom_ringI3:
fixes R (structure) and S (structure)
assumes "abelian_group_hom R S h" "ring R" "ring S"
assumes compatible_mult: "Ax y. [| x € carrier R; y € carrier R |]
==>h (x ® y) =h x ® h y"
and compatible_one: "h 1 = 1g"
shows "ring_hom_ring R S h"

{(proof)

lemma ring_hom_cringl:
assumes '"ring_hom_ring R S h" "cring R" "cring S"
shows "ring_hom_cring R S h"

(proof)

14.1 The Kernel of a Ring Homomorphism

lemma (in ring_hom_ring) kernel_is_ideal: "ideal (a_kernel R S h) R"

(proof)

Elements of the kernel are mapped to zero

lemma (in abelian_group_hom) kernel_zero [simp]:
"i € a_kernel R S h = h i = 0g"

(proof)

14.2 Cosets

152

Cosets of the kernel correspond to the elements of the image of the homo-

morphism

lemma (in ring_hom_ring) rcos_imp_homeq:
assumes acarr: "a € carrier R"
and xrcos: "x € a_kernel R S h +> a"
shows "h x = h a"

(proof)

lemma (in ring_hom_ring) homeq_imp_rcos:
assumes acarr: "a € carrier R"
and xcarr: "x € carrier R"
and hx: "h x = h a"
shows "x € a_kernel R S h +> a"

(proof)

corollary (in ring hom_ring) rcos_eq_homeq:
assumes acarr: "a € carrier R"
shows "(a_kernel R S h) +> a = {x € carrier R. h x = h a}"

(proof)

lemma (in ring hom_ring) hom_nat_pow:
"x € carrier R = h (x [7] (n :: nat)) = (b x) [T]g n"

{proof)

lemma (in ring _hom_ring) inj_on_domain:
assumes "inj_on h (carrier R)"
shows "domain S — domain R"

(proof)

end

theory UnivPoly
imports Module RingHom
begin

15 Univariate Polynomials

Polynomials are formalised as modules with additional operations for ex-
tracting coefficients from polynomials and for obtaining monomials from co-
efficients and exponents (record up_ring). The carrier set is a set of bounded
functions from Nat to the coefficient domain. Bounded means that these
functions return zero above a certain bound (the degree). There is a chap-
ter on the formalisation of polynomials in the PhD thesis [1], which was

153

implemented with axiomatic type classes. This was later ported to Locales.

15.1 The Constructor for Univariate Polynomials

Functions with finite support.

locale bound =

fixes z :: ’a
and n :: nat
and f :: "nat => ’a"
assumes bound: "!'m. n <m — f m = z"

declare bound.intro [intro!]
and bound.bound [dest]

lemma bound_below:
assumes bound: "bound z m f" and nonzero: "f n # z" shows "n < m"

(proof)

record (’a, ’p) up_ring = "(’a, ’p) module" +
monom :: "[’a, nat] => ’p"
coeff :: "[’p, nat] => ’a"

definition
up :: "(’a, ’m) ring_scheme => (nat => ’a) set"

where "up R = {f. f € UNIV — carrier R A (In. bound Og n £f)}"

definition UP :: "(’a, ’m) ring_scheme => (’a, nat => ’a) up_ring"

where "UP R = (

carrier = up R,

mult = (A\p€up R. Ag€up R. An. @Pgri € {..n}. p i ® q (@-1)),
one = (Ai. if i=0 then 1 else Op),

zero = (Ai. Og),

add = (\p€up R. A\g€up R. Ai. p i @y q 1),

smult = (la€carrier R. Apc€up R. A\i. a ®g p 1),

monom = (Aa€carrier R. An i. if i=n then a else Og),

coeff = (Ap€up R. An. p n))"

Properties of the set of polynomials up.

lemma mem_upI [intro]:
"[l An. £ n € carrier R; Jn. bound (zero R) n f |] ==> f € up R"
(proof)

lemma mem_upD [dest]:
"f € up R ==>1f n € carrier R"

(proof)

context ring
begin

154

lemma bound_upD [dest]: "f € up R = Jn. bound 0 n £" (proof)
lemma up_one_closed: "(An. if n = 0 then 1 else 0) € up R" (proof)

lemma up_smult_closed: "[| a € carrier R; p € up R |] ==> (A\i. a ® p
i) € up R" (proof)

lemma up_add_closed:
"[l peupR; gq€upRI]I =>Ni. pi® qi) € up R"
(proof)

lemma up_a_inv_closed:
"p €cup R ==> (A\i. © (p 1)) € up R"
{proof)

lemma up_minus_closed:
"[l pecupR; g€ upRI] ==>(\i. pi&qi) € up R"
(proof)

lemma up_mult_closed:

"[pcu R; g €up R |] ==>

(An. @i e {..n}. pi®q (@-1i)) € up R"
(proof)

end

15.2 Effect of Operations on Coefficients

locale UP =
fixes R (structure) and P (structure)
defines P_def: "P == UP R"

locale UP_ring = UP + R?: ring R
locale UP_cring = UP + R?7: cring R

sublocale UP_cring < UP_ring

{proof)

locale UP_domain = UP + R?7: "domain" R

sublocale UP_domain < UP_cring

(proof)

context UP
begin

Temporarily declare P = UP R as simp rule.

155

declare P_def [simp]

lemma up_eql:

assumes prem: "!!n. coeff P p n = coeff P g n" and R: "p € carrier
P" "q € carrier P"

shows "p = q"

(proof)

lemma coeff_closed [simp]:
"p € carrier P ==> coeff P p n € carrier R" (proof)

end

context UP_ring
begin

lemma coeff_monom [simp]:
"a € carrier R ==> coeff P (monom P a m) n = (if m=n then a else 0)"

(proof)

lemma coeff_zero [simp]l: "coeff P Op n = 0" (proof)

lemma coeff_one [simp]: "coeff P 1p n = (if n=0 then 1 else O0)"

(proof)

lemma coeff_smult [simp]:

"[| a € carrier R; p € carrier P |] ==> coeff P (a ©®p p) n = a ® coeff
P p n||

(proof)
lemma coeff_add [simp]:

"[| p € carrier P; q € carrier P |] ==> coeff P (p ®p q) n = coeff

Ppn ® coeff P g n"
(proof)

lemma coeff_mult [simp]:

"[| p € carrier P; q € carrier P |] ==> coeff P (p ®p q) n
{..n}. coeff Pp i ® coeff P q (n-1))"

{proof)

@i e

end

15.3 Polynomials Form a Ring.

context UP_ring
begin

Operations are closed over P.

156

lemma UP_mult_closed [simp]:
"[| p € carrier P; q € carrier P |] ==> p ®p q € carrier P" (proof)

lemma UP_one_closed [simp]:
"lp € carrier P" (proof)

lemma UP_zero_closed [intro, simp]:
"Op € carrier P" (proof)

lemma UP_a_closed [intro, simp]:
"[| p € carrier P; q € carrier P |] ==> p ®p q € carrier P" (proof)

lemma monom_closed [simp]:
"a € carrier R ==> monom P a n € carrier P" (proof)

lemma UP_smult_closed [simp]:
"[| a € carrier R; p € carrier P |] ==> a G@p p € carrier P" (proof)

end

declare (in UP) P_def [simp dell

Algebraic ring properties

context UP_ring
begin

lemma UP_a_assoc:
assumes R: "p € carrier P" "q € carrier P" "r € carrier P"
shows "(p ®p q) @p r = p ®p (q ®p r)" (proof)

lemma UP_1_zero [simp]:
assumes R: "p € carrier P"
shows "Op @®p p = p" (proof)

lemma UP_1_neg_ex:
assumes R: "p € carrier P"
shows "Jq € carrier P. q @p p = Op"

(proof)

lemma UP_a_comm:
assumes R: "p € carrier P" "q € carrier P"
shows "p ©@p q = q @®p p" (proof)

lemma UP_m_assoc:
assumes R: "p € carrier P" "q € carrier P" "r € carrier P"
shows "(p ® q) ®p r = p ®p (q ®p 1)"

(proof)

lemma UP_r_one [simp]:

157

assumes R: "p € carrier P" shows "p ®p 1lp = p
(proof)

lemma UP_1_one [simp]:
assumes R: "p € carrier P"
shows "1p ®p p = p"

(proof)

lemma UP_1 _distr:
assumes R: "p € carrier P" "q € carrier P" "r € carrier P"
shows "(p ®p @) ®p r = (p ®p r) ®p (q ®p 1)"
(proof)

lemma UP_r_distr:
assumes R: "p € carrier P" "q € carrier P" "r € carrier P"
shows "r ®p (p ®p @) = (r ®p p) Pp (r Rp P"
{proof)

theorem UP_ring: "ring P"

{proof)

end

15.4 Polynomials Form a Commutative Ring.
context UP_cring

begin

lemma UP_m_comm:
assumes Rl: "p € carrier P" and R2: "q € carrier P" shows "p ®p q

15.5 Polynomials over a commutative ring for a commutative
ring
theorem UP_cring:
"cring P" (proof)

end

context UP_ring
begin

lemma UP_a_inv_closed [intro, simp]:
"p € carrier P ==> Op p € carrier P"
(proof)

lemma coeff_a_inv [simp]:

158

assumes R: "p € carrier P"
shows "coeff P (&p p) n = & (coeff P p n)"

(proof)
end

sublocale UP_ring < P?: ring P (proof)
sublocale UP_cring < P7: cring P (proof)

15.6 Polynomials Form an Algebra

context UP_ring
begin

lemma UP_smult_1_distr:
"[| a € carrier R; b € carrier R; p € carrier P |] ==>
(a@®b) Gpp=a@pp Dp b Op p"
(proof)

lemma UP_smult_r_distr:
"[| a € carrier R; p € carrier P; q € carrier P |] ==>
a Op (p®p q =a Opp @palpq"

(proof)
lemma UP_smult_assocl:
"[l a € carrier R; b € carrier R; p € carrier P [|] ==>
(a2 ®Db) Gpp=a ©p (b ©p P"
(proof)

lemma UP_smult_zero [simp]:
"p € carrier P ==> 0 ©p p = 0p"
(proof)

lemma UP_smult_one [simp]:
"p € carrier P ==> 1 GOp p

(proof)

1
'-U_

lemma UP_smult_assoc2:
"[| a € carrier R; p € carrier P; q € carrier P |] ==>
(a Gpp) p q=2a Op (p p Q"
(proof)

end

Interpretation of lemmas from algebra.

lemma (in UP_cring) UP_algebra:
"algebra R P" (proof)

sublocale UP_cring < algebra R P (proof)

159

15.7 Further Lemmas Involving Monomials

context UP_ring
begin

lemma monom_zero [simp]:
"monom P 0 n = Op" (proof)

lemma monom mult_is_smult:
assumes R: "a € carrier R" "p € carrier P"
shows "monom P a 0 ®p p = a GOp p"

(proof)

lemma monom_one [simp]:
"monom P 1 0 = 1p"

(proof)

lemma monom_add [simp]:
"[| a € carrier R; b € carrier R |] ==>
monom P (a & b) n = monom P a n ®p monom P b n"

(proof)

lemma monom_one_Suc:
"monom P 1 (Suc n) = monom P 1 n ®p monom P 1 1"

(proof)

lemma monom_one_Suc2:
"monom P 1 (Suc n) = monom P 1 1 ®p monom P 1 n"

(proof)

The following corollary follows from lemmas monom P 1 (Suc ?n) = monom P
1 ?7n ®p monom P 1 1 and monom P 1 (Suc ?n) = monom P 1 1 ®p monom P
1 7n, and is trivial in UP_cring

corollary monom_one_comm: shows "monom P 1 k¥ ®p monom P 1 1 = monom P
1 1 ®p monom P 1 k"

(proof)

lemma monom_mult_smult:
"[| a € carrier R; b € carrier R |] ==> monom P (a ® b) n = a ©Op monom
P bn"

(proof)

lemma monom_one_mult:
"monom P 1 (n + m) = monom P 1 n ®p monom P 1 m"

(proof)

lemma monom_one_mult_comm: "monom P 1 n ®p monom P 1 m = monom P 1 m
®p monom P 1 n"

(proof)

160

lemma monom_mult [simp]:
assumes a_in_R: "a € carrier R" and b_in_R: "b € carrier R"
shows "monom P (a ® b) (n + m) = monom P a n ®p monom P b m"

(proof)

lemma monom_a_inv [simp]:
"a € carrier R ==> monom P (© a) n = ©p monom P a n"

{proof)

lemma monom_inj:
"inj_on (Aa. monom P a n) (carrier R)"

(proof)

end

15.8 The Degree Function

definition
deg :: "[(’a, ’m) ring_scheme, nat => ’a] => nat"
where "deg R p = (LEAST n. bound Og n (coeff (UP R) p))"

context UP_ring
begin

lemma deg_abovel:
"[I (!'m. n <m ==>coeff Ppm=0); p€ carrier P |] ==> deg R p <=
nll

(proof)

lemma deg_aboveD:
assumes "deg R p < m" and "p € carrier P"
shows "coeff P pm = 0"

(proof)

lemma deg_belowI:
assumes non_zero: "n #* 0 = coeff P p n # 0"
and R: "p € carrier P"
shows "n < deg R p"
— Logically, this is a slightly stronger version of deg_aboveD
(proof)

lemma lcoeff_nonzero_deg:
assumes deg: "deg R p # 0" and R: "p € carrier P"
shows "coeff P p (deg R p) # O"

(proof)

161

lemma lcoeff_nonzero_nonzero:

assumes deg: "deg R p = 0" and nonzero: "p # Op" and R: "p € carrier
Pll

shows "coeff P p 0 # 0"
(proof)

lemma lcoeff_nonzero:
assumes neq: "p # Op" and R: "p € carrier P"
shows "coeff P p (deg R p) # 0"

{(proof)

lemma deg_eqI:
"[l Am. n <m = coeff P pm = 0;
An. n # 0 = coeff Ppn # 0; p € carrier P |] ==> deg R p =
nll

(proof)

Degree and polynomial operations

lemma deg_add [simp]:

"p € carrier P = q € carrier P =

deg R (p @p q) < max (deg R p) (deg R @)"
(proof)

lemma deg_monom_le:
"a € carrier R = deg R (monom P a n) < n"

(proof)

lemma deg_monom [simp]:
"[| a # 0; a € carrier R |] ==> deg R (monom P a n) = n"

(proof)

lemma deg_const [simp]:
assumes R: "a € carrier R" shows "deg R (monom P a 0) = 0"

(proof)

lemma deg_zero [simp]:
"deg R Op = 0"
(proof)

lemma deg_one [simp]:
"deg R 1p = 0"
(proof)

lemma deg_uminus [simp]:
assumes R: "p € carrier P" shows "deg R (©p p) = deg R p"

(proof)

The following lemma is later overwritten by the most specific one for do-
mains, deg_smult.

162

lemma deg_smult_ring [simp]:
"[| a € carrier R; p € carrier P |] ==>
deg R (a ©®p p) < (if a = 0 then O else deg R p)"
{proof)

end

context UP_domain
begin

lemma deg_smult [simp]:
assumes R: "a € carrier R" "p € carrier P"
shows "deg R (a ®p p) = (if a = 0 then O else deg R p)"

(proof)

end

context UP_ring
begin

lemma deg_mult_ring:
assumes R: "p € carrier P" "q € carrier P"
shows "deg R (p ®p q) < deg R p + deg R q"
(proof)

end

context UP_domain
begin

lemma deg_mult [simp]:
"[p # 0Op; q # Op; p € carrier P; q € carrier P |] ==
deg R (p ®p q) = deg R p + deg R q"

(proof)

end

The following lemmas also can be lifted to UP_ring.

context UP_ring
begin

lemma coeff_finsum:
assumes fin: "finite A"
shows "p € A — carrier P ==
coeff P (finsum P p A) k = (i € A. coeff P (p i) k)"
(proof)

lemma up_repr:
assumes R: "p € carrier P"

163

shows "(@Pp i € {..deg R p}. monom P (coeff P p i) i) = p"
(proof)

lemma up_repr_le:

"[| deg R p <= n; p € carrier P |] ==

(@Pp i € {..n}. monom P (coeff P p i) i) = p"
(proof)

end

15.9 Polynomials over Integral Domains

lemma domainI:
assumes cring: "cring R"
and one_not_zero: "one R # zero R"
and integral: "Aa b. [| mult R a b = zero R; a € carrier R;
b € carrier R |] ==> a = zero R V b = zero R"
shows "domain R"

(proof)

context UP_domain
begin

lemma UP_one_not_zero:
||1P 7é OP"
(proof)

lemma UP_integral:
"[|l p® q = 0p; p € carrier P; q € carrier P |] ==> p = 0p V q = Op"

(proof)

theorem UP_domain:
"domain P"

(proof)

end

Interpretation of theorems from domain.

sublocale UP_domain < "domain" P

(proof)

15.10 The Evaluation Homomorphism and Universal Prop-
erty

lemma (in abelian_monoid) boundD_carrier:
"[| bound O n f; n <m |] ==> f m € carrier G"

(proof)

context ring

164

begin

theorem diagonal_sum:
"[I £ € {..n + m::nat} — carrier R; g € {..n + m} — carrier R |] ==>
@Pre{.n+m}. Piec{ k. £figk-1i)) =
@PBre{.n+m}. Pie{..n+m-k} £k gi)"

(proof)

theorem cauchy_product:
assumes bf: "bound 0 n f" and bg: "bound O m g"
and Rf: "f € {..n} — carrier R" and Rg: "g € {..m} — carrier R"
shows "(@Pk € {.n+m}. Pie{..k}. £fi®g k-1i)) =
(Piec{..nr. £i) ® (Piec{ m}. gi"
(proof)

end

lemma (in UP_ring) const_ring_hom:
"(Aa. monom P a 0) € ring_hom R P"

{proof)

definition
eval :: "[(’a, ’m) ring_scheme, (’b, ’n) ring_scheme,
’a => ’b, ’b, nat => ’a] => ’b"
where "eval R S phi s = (A\p € carrier (UP R).
@Psi € {..deg R p}. phi (coeff (UP R) p i) ®g s [Ig i)"

context UP
begin

lemma eval_on_carrier:

fixes S (structure)

shows "p € carrier P ==>

eval R S phi s p = (Bg i € {..deg R p}. phi (coeff P p i) ®g s ["Ig
i)ll

{proof)

lemma eval_extensional:
"eval R S phi p € extensional (carrier P)"

{proof)
end
The universal property of the polynomial ring
locale UP_pre_univ_prop = ring_hom_cring + UP_cring
locale UP_univ_prop = UP_pre_univ_prop +

fixes s and Eval
assumes indet_img_carrier [simp, intro]: "s € carrier S"

165

defines Eval_def: "Eval == eval R S h s"

JE: I have moved the following lemma from Ring.thy and lifted then to the
locale ring_hom_ring from ring_hom_cring.

JE: I was considering using it in eval_ring_hom, but that property does not
hold for non commutative rings, so maybe it is not that necessary.

lemma (in ring hom_ring) hom_finsum [simp]:
"f € A = carrier R —
h (finsum R f A) = finsum S (h o £) A"
{proof)

context UP_pre_univ_prop
begin

theorem eval_ring_hom:
assumes S: "s € carrier S"
shows "eval R S h s € ring_hom P S"

(proof)

The following lemma could be proved in UP_cring with the additional as-
sumption that h is closed.
lemma (in UP_pre_univ_prop) eval_const:

"[| s € carrier S; r € carrier R |] ==> eval R S h s (monom P r 0) =
h rll

(proof)
Further properties of the evaluation homomorphism.
The following proof is complicated by the fact that in arbitrary rings one
might have 1 = 0.

lemma (in UP_pre_univ_prop) eval_monoml:
assumes S: "s € carrier 3"
shows "eval R S h s (monom P 1 1) = s"

(proof)

end

Interpretation of ring homomorphism lemmas.

sublocale UP_univ_prop < ring_hom_cring P S Eval
(proof)

lemma (in UP_cring) monom_pow:
assumes R: "a € carrier R"
shows "(monom P a n) ["]p m = monom P (a [7] m) (n * m)"

(proof)

lemma (in ring_hom_cring) hom_pow [simp]:

166

"x € carrier R ==> h (x [7] n) = h x [T]g (n::nat)"
{proof)

lemma (in UP_univ_prop) Eval_monom:
"r € carrier R ==> Eval (monom P r n) =h r ®g s ["]g n"

(proof)

lemma (in UP_pre_univ_prop) eval_monom:
assumes R: "r € carrier R" and S: "s € carrier S"
shows "eval R Sh s (monom P r n) =h r ®y s [T]g n"

(proof)

lemma (in UP_univ_prop) Eval_smult:
"[| r € carrier R; p € carrier P |] ==> Eval (r ©Op p) = h r ®g Eval

(proof)

lemma ring_hom_cringI:
assumes '"cring R"
and "cring S"
and "h € ring_hom R S"
shows "ring hom_cring R S h"
(proof)

context UP_pre_univ_prop
begin

lemma UP_hom_unique:
assumes '"ring_hom_cring P S Phi"
assumes Phi: "Phi (monom P 1 (Suc 0)) = s"
"Ilr. r € carrier R ==> Phi (monom P r 0)
assumes "ring_hom_cring P S Psi"
assumes Psi: "Psi (monom P 1 (Suc 0)) = s"
"Ilr. r € carrier R ==> Psi (monom P r O0) = h r"
and P: "p € carrier P" and S: "s € carrier S"
shows "Phi p = Psi p"
{proof)

h rll

lemma ring_homD:
assumes Phi: "Phi € ring_hom P S"
shows "ring_hom_cring P S Phi"

(proof)

theorem UP_universal_property:
assumes S: "s € carrier S"
shows "J!Phi. Phi € ring_hom P S N extensional (carrier P) A
Phi (monom P 1 1) = s A
(Vr € carrier R. Phi (monom P r O0) = h r)"

(proof)

167

end

JE: The following lemma was added by me; it might be even lifted to a
simpler locale

context monoid
begin

lemma nat_pow_eone[simp] : assumes x_in_G: "x € carrier G" shows "x
[] (1::nat) = x"

(proof)

end

context UP_ring
begin

abbreviation lcoeff :: "(nat =>’a) => ’a" where "lcoeff p == coeff P
p (deg R p)"

lemma lcoeff_nonzero2: assumes p_in_R: "p € carrier P" and p_not_zero:
"p # Op" shows "lcoeff p # 0"

(proof)

15.11 The long division algorithm: some previous facts.

lemma coeff_minus [simp]:
assumes p: "p € carrier P" and q: "q € carrier P"
shows "coeff P (p ©p @) n = coeff P p n © coeff P q n"

(proof)

lemma lcoeff_closed [simp]: assumes p: "p € carrier P" shows "lcoeff
p € carrier R"

{proof)

lemma deg_smult_decr: assumes a_in_R: "a € carrier R" and f_in_P: "f
€ carrier P" shows "deg R (a ®p f) < deg R £"
(proof)

lemma coeff_monom_mult: assumes R: "c € carrier R" and P: "p € carrier
Pl|

shows "coeff P (monom P c n ®p p) (m + n) = ¢ ® (coeff P p m)"
(proof)

lemma deg_lcoeff_cancel:

assumes p_in_P: "p € carrier P" and q_in_P: "q € carrier P" and r_in_P:
"r € carrier P"

and deg_r_nonzero: "deg R r # 0"

and deg R_p: "deg R p < deg R r" and deg R_q: "deg R q < deg R r"

168

and coeff_R_p_eq_q: "coeff P p (deg R r) = o (coeff P q (deg R r))"
shows "deg R (p ®p q) < deg R r"
(proof)

lemma monom_deg_mult:

assumes f_in P: "f € carrier P" and g_in_P: "g € carrier P" and deg_le:
"deg R g < deg R "

and a_in_R: "a € carrier R"

shows "deg R (g ®p monom P a (deg R f - deg R g)) < deg R £"

(proof)

lemma deg_zero_impl_monom:
assumes f_in P: "f € carrier P" and deg f: "deg R £ = 0"
shows "f = monom P (coeff P £ 0) 0"

(proof)

end

15.12 The long division proof for commutative rings

context UP_cring
begin

lemma exI3: assumes exist: "Pred x y z"
shows "3 x y z. Pred x y 2"

(proof)

Jacobson’s Theorem 2.14

lemma long_div_theorem:

assumes g_in P [simp]: "g € carrier P" and f_in P [simp]: "f € carrier
Pll

and g_not_zero: "g # Op"

shows "Jq r (k::nat). (q € carrier P) A (r € carrier P) A (lcoeff
ge)[CIRk Gp £ =g R qPp r A (r =0p V deg Rr < degR g)"

{proof)

end

The remainder theorem as corollary of the long division theorem.

context UP_cring
begin

lemma deg_minus_monom:
assumes a: "a € carrier R"
and R_not_trivial: "(carrier R # {0}H)"
shows "deg R (monom P 1y 1 ©p monom P a 0) = 1"
(is "deg R ?7g = 1")
(proof)

169

lemma lcoeff_monom:
assumes a: "a € carrier R" and R_not_trivial: "(carrier R # {0})"
shows "lcoeff (monom P 1y 1 ©p monom P a 0) = 1"

{proof)

lemma deg_nzero_nzero:
assumes deg_p_nzero: "deg R p # 0"
shows "p # Op"

{proof)

lemma deg_monom_minus:
assumes a: "a € carrier R"
and R_not_trivial: "carrier R # {0}"
shows "deg R (monom P 1y 1 ©p monom P a 0) = 1"
(is "deg R 7g = 1")
(proof)

lemma eval_monom_expr:
assumes a: "a € carrier R"
shows "eval R R id a (monom P 1y 1 ©p monom P a 0) = 0"
(is "eval R R id a 7g = _")

(proof)

lemma remainder_theorem_exist:

assumes f: "f € carrier P" and a: "a € carrier R"

and R_not_trivial: "carrier R # {0}"

shows "3 q r. (q € carrier P) A (r € carrier P) A f = (monom P 1y
1 ©&p monom P a 0) ® q &p r A (deg Rr = 0"

(is "3 qr. (g € carrier P) A (r € carrier P) A f =72 ® q &p r A
(deg Rr = 0)")
{proof)

lemma remainder_theorem_expression:
assumes f [simp]: "f € carrier P" and a [simp]: "a € carrier R"
and q [simp]: "q € carrier P" and r [simp]: "r € carrier P"
and R_not_trivial: "carrier R # {0}"
and f_expr: "f = (monom P 1y 1 ©p monom P a 0) ®p q p r"
(is "f = 7g ®@p q Gp r" is "f = 7gq Gp ")
and deg r 0: "deg R r = 0"
shows "r = monom P (eval R R id a f) 0"
(proof)

corollary remainder_theorem:
assumes f [simp]: "f € carrier P" and a [simp]: "a € carrier R"
and R_not_trivial: "carrier R # {0}"
shows "3 q r. (q € carrier P) A (r € carrier P) A
f = (monom P 1y 1 ©p monom P a 0) ®p q ¢p monom P (eval R R id a
f) o"
(is "3 q r. (g € carrier P) A (r € carrier P) A f = 7g ®p q ©p monom

170

P (eval R R id a f) 0")
(proof)

end

15.13 Sample Application of Evaluation Homomorphism

lemma UP_pre_univ_propI:
assumes "cring R"
and "cring S"
and "h € ring_hom R S"
shows "UP_pre_univ_prop R S h"
(proof)

definition

INTEG :: "int ring"

where "INTEG = (carrier = UNIV, mult = (%), one = 1, zero = 0, add
= (H))"

lemma INTEG_cring: "cring INTEG"
{proof)

lemma INTEG_id_eval:
"UP_pre_univ_prop INTEG INTEG id"

(proof)

Interpretation now enables to import all theorems and lemmas valid in the
context of homomorphisms between INTEG and UP INTEG globally.

interpretation INTEG: UP_pre_univ_prop INTEG INTEG id "UP INTEG"
(proof)

lemma INTEG_closed [intro, simp]:
"z € carrier INTEG"

{proof)

lemma INTEG_mult [simp]:
"mult INTEG z w = z * w"

(proof)

lemma INTEG_pow [simp]:

"pow INTEG z n =z ~ n"
{proof)

lemma "eval INTEG INTEG id 10 (monom (UP INTEG) 5 2) = 500"
(proof)

end

171

16 Generated Groups

theory Generated_Groups
imports Group Coset

begin

16.1 Generated Groups

inductive__set generate ::

"(’a, ’b) monoid_scheme = ’a set = ’a set"

for G and H where

"lg € generate G H"

"h € H — h € generate G H"

"h € H = invg h € generate G H"

"hl € generate G H = h2 € generate G H = hl ®¢ h2 € generate

16.1.1 Basic Properties

lemma (in
assumes

group) generate_consistent:
"K C H" "subgroup H G" shows "generate (G (carrier

:=H)

K = generate G K"

(proof)

lemma (in
assumes
G n
(proof)

lemma (in
assumes

(proof)

lemma (in
assumes
G Hll

(proof)

lemma (in
assumes

(proof)

lemma (in
assumes

(proof)

lemma (in
assumes

(proof)

group) generate_in_carrier:
"H C carrier G" and "h € generate G H" shows "h € carrier

group) generate_incl:
"H C carrier G" shows "generate G H C carrier G"

group) generate_m_inv_closed:
"H C carrier G" and "h € generate G H" shows "(inv h) € generate

group) generate_is_subgroup:
"H C carrier G" shows "subgroup (generate G H) G"

group) mono_generate:
"K C H" shows "generate G K C generate G H"

group) generate_subgroup_incl:
"K C H" "subgroup H G" shows "generate G K C H"

172

lemma (in group) generate_minimal:

assumes "H C carrier G" shows "generate G H = (| { H’. subgroup H’
GAHCH }

{proof)

lemma (in group) generatel:

assumes "subgroup E G" "H C E" and "AK. [subgroup K G; H C K | =
E C K"

shows "E = generate G H"

{(proof)

lemma (in group) normal_generatel:

assumes "H C carrier G" and "Ah g. [h € H; g € carrier G| = g
® h ® (inv g) € H"

shows "generate G H < G"

(proof)

lemma (in group) subgroup_int_pow_closed:
assumes "subgroup H G" "h € H" shows "h [7] (k :: int) € H"

{proof)

lemma (in group) generate_pow:

assumes "a € carrier G" shows "generate G { a } ={ a [7] (k :: int)
| k. k € UNIV }"
(proof)

corollary (in group) generate_one: "generate G { 1 } = { 1 }"

(proof)

corollary (in group) generate_empty: "generate G {} = { 1 }"

(proof)

lemma (in group_hom)
"subgroup K G = subgroup (h ¢ K) H"
(proof)

lemma (in group_hom) generate_img:
assumes "K C carrier G" shows "generate H (h ¢ K) = h ¢ (generate
G K)n

(proof)

16.2 Derived Subgroup
16.2.1 Definitions

abbreviation derived_set :: "(’a, ’b) monoid_scheme = ’a set = ’a set"
where "derived_set G H =
Uhl € H. (Uh2 € H. { h1 ®g h2 ®g (invg h1) ®q (invg h2)
})ll

definition derived ::

"derived

173

n(;a,
G H = generate G (derived_set G H)"

16.2.2 Basic Properties

lemma (in
assumes

(proof)

lemma (in
assumes

(proof)

lemma (in
assumes

(proof)

lemma (in
assumes

(proof)

lemma (in
assumes

(proof)

lemma (in
assumes

(proof)

lemma (in
assumes

(proof)

lemma (in
assumes
Gll
(proof)

lemma (in
assumes

{proof)

lemma (in
assumes

(proof)

lemma (in
assumes

(proof)

group) derived_set_incl:
"K C H" "subgroup H G" shows "derived_set G K C H"

group) derived_incl:
"K C H" "subgroup H G" shows "derived G K C H"

group) derived_set_in_carrier:
"H C carrier G" shows "derived_set G H C carrier G"

group) derived_in_carrier:
"H C carrier G" shows "derived G H C carrier G"

group) exp_of_derived_in_carrier:
"H C carrier G" shows "(derived G °~ n) H C carrier G"

group) derived_is_subgroup:
"H C carrier G" shows "subgroup (derived G H) G"

group) exp_of_derived_is_subgroup:
"subgroup H G" shows "subgroup ((derived G ~~ n) H) G"

group) exp_of_derived_is_subgroup’:
"H C carrier G" shows "subgroup ((derived G =~ (Suc n))

group) mono_derived_set:
"K C H" shows "derived_set G K C derived_set G H"

group) mono_derived:
"K C H" shows "derived G K C derived G H"

group) mono_exp_of_derived:

"K C H" shows "(derived G °~ n) K C (derived G ~~ n) H"

’b) monoid_scheme = ’a set = ’a set" where

H)

174

lemma (in group) derived_set_consistent:
assumes "K C H" "subgroup H G" shows "derived_set (G (| carrier :=
H)) X = derived_set G K"

(proof)
lemma (in group) derived_consistent:

assumes "K C H" "subgroup H G" shows "derived (G (carrier := H |)
K = derived G K"

(proof)

lemma (in comm_group) derived_eq_singleton:
assumes "H C carrier G" shows "derived G H= {1 }"
(proof)

lemma (in group) derived_is_normal:
assumes "H < G" shows "derived G H < G"
(proof)

lemma (in group) normal_self: "carrier G < G"

(proof)

corollary (in group) derived_self_is_normal: "derived G (carrier G) <
Gll

(proof)

corollary (in group) derived_subgroup_is_normal:
assumes "subgroup H G" shows "derived G H < G (carrier := H)"
(proof)

corollary (in group) derived_quot_is_group: "group (G Mod (derived G (carrier
G)))"
{proof)

lemma (in group) derived_quot_is_comm_group: "comm_group (G Mod (derived
G (carrier G)))"

(proof)
corollary (in group) derived_quot_of_subgroup_is_comm_group:

assumes "subgroup H G" shows "comm_group ((G (| carrier := H |)) Mod
(derived G H))"

(proof)

proposition (in group) derived_minimal:

assumes "H < G" and "comm_group (G Mod H)" shows "derived G (carrier
G) C H"
(proof)

proposition (in group) derived_of_subgroup_minimal:

175

assumes "K < G (carrier := H)" "subgroup H G" and "comm_group ((G
(carrier :=H |)) Mod K)"
shows "derived G H C K"

{proof)

lemma (in group_hom) derived_img:

assumes "K C carrier G" shows "derived H (h ¢ K) = h ¢ (derived G
K)"
(proof)

lemma (in group_hom) exp_of_derived_img:
assumes "K C carrier G" shows "(derived H " n) (h ¢ K) = h ¢ ((derived
G "~ n) K"

{proof)
16.2.3 Generated subgroup of a group
definition subgroup_generated :: "(’a, ’b) monoid_scheme = ’a set = (’a,
’b) monoid_scheme"
where "subgroup_generated G S = G(carrier := generate G (carrier G
N s))"

lemma carrier_subgroup_generated: "carrier (subgroup_generated G S) =
generate G (carrier G N S)"

(proof)

lemma (in group) subgroup_generated_subset_carrier_subset:
"S C carrier G = S C carrier(subgroup_generated G S)"

(proof)

lemma (in group) subgroup_generated_minimal:
"[subgroup H G; S C H] = carrier(subgroup_generated G S) C H"

(proof)

lemma (in group) carrier_subgroup_generated_subset:
"carrier (subgroup_generated G A) C carrier G"

(proof)

lemma (in group) group_subgroup_generated [simp]: "group (subgroup_generated
G S)"

(proof)

lemma (in group) abelian_subgroup_generated:
assumes "comm_group G"
shows "comm_group (subgroup_generated G S)" (is "comm_group 7GS")

(proof)

lemma (in group) subgroup_of_subgroup_generated:
assumes "H C B" "subgroup H G"

176

shows "subgroup H (subgroup_generated G B)"
(proof)

lemma carrier_subgroup_generated_alt:

assumes "Group.group G" "S C carrier G"

shows "carrier (subgroup_generated G S) = [|{H. subgroup H G A carrier
GNs CH

(proof)

lemma one_subgroup_generated [simp]l: "lgybgroup_generated G § = 1g"

(proof)

lemma mult_subgroup_generated [simp]: "mult (subgroup_generated G S)
= mult G"

(proof)

lemma (in group) inv_subgroup_generated [simp]:
assumes "f € carrier (subgroup_generated G S)"
shows "inVsubgroup_generated ¢ § £ = inv f"
(proof)

lemma subgroup_generated_restrict [simp]:
"subgroup_generated G (carrier G N S) = subgroup_generated G S"

(proof)

lemma (in subgroup) carrier_subgroup_generated_subgroup [simp]:
"carrier (subgroup_generated G H) = H"

(proof)

lemma (in group) subgroup_subgroup_generated_iff:
"subgroup H (subgroup_generated G B) <— subgroup H G A H C carrier(subgroup_generated
G B)"
(is "?1lhs = ?rhs")
(proof)

lemma (in group) subgroup_subgroup_generated:
"subgroup (carrier(subgroup_generated G S)) G"

(proof)

lemma pow_subgroup_generated:
"pow (subgroup_generated G S) = (pow G :: ’a = nat = ’a)"

(proof)

lemma (in group) subgroup_generated2 [simp]: "subgroup_generated (subgroup_generated
G S) S = subgroup_generated G S"

(proof)

lemma (in group) int_pow_subgroup_generated:
fixes n::int

177

assumes "x € carrier (subgroup_generated G S)"

shows "x [7] subgroup_generated G S 11 = X [*lg n"
(proof)

lemma kernel_from_subgroup_generated [simp]:
"subgroup S G = kernel (subgroup_generated G S) H f = kernel G H f
m SII

(proof)

lemma kernel_to_subgroup_generated [simp]:
"kernel G (subgroup_generated H S) f = kernel G H f"
(proof)

16.3 And homomorphisms

lemma (in group) hom_from_subgroup_generated:
"h € hom G H = h € hom(subgroup_generated G A) H"

(proof)

lemma hom_into_subgroup:
"[b € hom G G’; h (carrier G) C Hl = h € hom G (subgroup_generated
G’ H)"
(proof)

lemma hom_into_subgroup_eq_gen:
"group G —>
h € hom K (subgroup_generated G H)
<+ h € hom K G A h ¢ (carrier K) C carrier(subgroup_generated G H)"

(proof)

lemma hom_into_subgroup_eq:

"[subgroup H G; group G]

= (h € hom K (subgroup_generated G H) <— h € hom K G A h ‘ (carrier
K) € H)"

(proof)

lemma (in group_hom) hom_between_subgroups:
assumes "h ¢ A C B"
shows "h € hom (subgroup_generated G A) (subgroup_generated H B)"

(proof)

lemma (in group_hom) subgroup_generated_by_image:
assumes "S C carrier G"
shows "carrier (subgroup_generated H (h ¢ S))
e S))"

(proof)

h ¢ (carrier(subgroup_generated

lemma (in group_hom) iso_between_subgroups:
assumes "h € iso G H" "S C carrier G" "h ¢ S =T"

178

shows "h € iso (subgroup_generated G S) (subgroup_generated H T)"
{proof)

lemma (in group) subgroup_generated_group_carrier:
"subgroup_generated G (carrier G) = G"

(proof)

lemma iso_onto_image:

assumes "group G" "group H"

shows

"f € iso G (subgroup_generated H (f ¢ carrier G)) <— f € hom G H
A inj_on f (carrier G)"

(proof)

lemma (in group) iso_onto_image:
"group H = f € iso G (subgroup_generated H (f ¢ carrier G)) +—
f € mon G H"

(proof)

end

17 Elementary Group Constructions

theory Elementary_Groups
imports Generated_Groups "HOL-Library.Infinite_Set"
begin

17.1 Direct sum/product lemmas

locale group_disjoint_sum = group G + AG: subgroup A G + BG: subgroup B
G for G (structure) and A B
begin

lemma subset_one: "A N B C {1} «— AN B = {1}"

(proof)

lemma sub_id_iff: "A N B C {1} +— (VxeA. VyeB. x ® y =1 — x =
1 Ay=1"
(is "?1hs = 7rhs")

(proof)

lemma cancel: "A N B C {1} +— (VxeA. VyeB. Vx’cA. Vy’eB. x ® y
=X’®y’—>x=x’/\y=y’)"
(is "?1lhs = ?rhs")

(proof)

lemma commuting_ imp_normall:
assumes sub: "carrier G C A <#> B"
and mult: "Ax y. [x €A; yEB = xQ@y=7 & x"

179

shows "A < G"
(proof)

lemma commuting_imp_normal2:

assumes'carrier G C A <#> B" "Ax y. [x €A yEB = xQ®y=y
® x"

shows "B < G"
(proof)

lemma (in group) normal_imp_commuting:
assumes "A < G" "B < G" "A N B C {1}" "x € A" "y € B"
shows "x ® y = y ® x"

(proof)

lemma normal_eq_commuting:
assumes "carrier G C A <#> B" "A N B C {1}"
shows "A < G A B < G +— (Vx€A. VyeB. x ® y =y ® x)"

(proof)

lemma (in group) hom_group_mul_rev:
assumes "(A(x,y). x ® y) € hom (subgroup_generated G A XX subgroup_generated
G B) G"
(is "?h € hom 7P G")
and "x € carrier G" "y € carrier G" "x € A" "y € B"
shows "x ® y =y ® x"
(proof)

lemma hom_group_mul_eq:
"(A(x,y). x ® y) € hom (subgroup_generated G A XX subgroup_generated
G B) G
+—— (VXEA. VyEB. x ® y =y @)"
(is "?1lhs = ?rhs")
(proof)

lemma epi_group_mul_eq:
"(A(x,y). x ® y) € epi (subgroup_generated G A XX subgroup_generated
G B) G
< A <#> B = carrier G A (Vx€A. VyeB. x @ y =y ® x)"

(proof)

lemma mon_group_mul_eq:

"(A(x,y). x ® y) € mon (subgroup_generated G A XX subgroup_generated
GB)G

+— ANB={1} A (VxEA. VyEB. x ® y =7 ® x)"
(proof)

lemma iso_group_mul_alt:

180

"(A(x,y). x ® y) € iso (subgroup_generated G A XX subgroup_generated
GB) G
+— ANB={1} AN A<#>B = carrier G A (Vx€A. Vy€B. x @ y =y
®@ "
(proof)

lemma iso_group_mul_eq:

"(A(x,y). x ® y) € iso (subgroup_generated G A XX subgroup_generated
G B) G

+— ANB={1} AN A<#> B =carrier GAAJIGABJG"

(proof)

lemma (in group) iso_group_mul_gen:
assumes "A < G" "B < G"
shows "(A(x,y). x ® y) € iso (subgroup_generated G A XX subgroup_generated
G B) G
<~—— ANBC {1} A A <#> B = carrier G"

(proof)

lemma iso_group_mul:
assumes "comm_group G"
shows "((A(x,y). x ® y) € iso (DirProd (subgroup_generated G A) (subgroup_generated
GB)) G
«—— ANBC {1} A A <#> B = carrier G)"

(proof)

end

17.2 The one-element group on a given object

definition singleton_group :: "’a = ’a monoid"
where "singleton_group a = (carrier = {a}, monoid.mult = (Ax y. a),
one = a|"

lemma singleton_group [simp]: "group (singleton_group a)"

(proof)

lemma singleton_abelian_group [simp]: "comm_group (singleton_group a)"

(proof)

lemma carrier_singleton_group [simp]: "carrier (singleton_group a) =
{a}ll
{proof)

lemma (in group) hom_into_singleton_iff [simp]:
"h € hom G (singleton_group a) <— h € carrier G — {al}"

{proof)

181

declare group.hom_into_singleton_iff [simp]

lemma (in group) id_hom_singleton: "id € hom (singleton_group 1) G"

(proof)

17.3 Similarly, trivial groups

definition trivial_group :: "(’a, ’b) monoid_scheme = bool"
where "trivial_group G = group G A carrier G = {one G}"

lemma trivial_imp_finite_group:
"trivial_group G = finite(carrier G)"

(proof)

lemma trivial_singleton_group [simp]: "trivial_group(singleton_group
a) n

(proof)

lemma (in group) trivial_group_subset:
"trivial_group G <— carrier G C {one G}"

(proof)

lemma (in group) trivial_group: "trivial_group G <— (Ja. carrier G
= {ap)"
{proof)

lemma (in group) trivial_group_alt:
"trivial_group G <— (Jda. carrier G C {a})"

(proof)

lemma (in group) trivial_group_subgroup_generated:
assumes "S C {one G}"
shows "trivial_group(subgroup_generated G S)"

(proof)

lemma (in group) trivial_group_subgroup_generated_eq:
"trivial_group(subgroup_generated G s) ¢— carrier G N s C {one G}"

{proof)

lemma isomorphic_group_trivialityl:
assumes "G = H" "group H" "trivial_group G"
shows "trivial_group H"

(proof)

lemma isomorphic_group_triviality:
assumes "G = H" "group G" "group H"
shows "trivial_group G ¢— trivial_group H"

(proof)

182

lemma (in group_hom) kernel from_trivial_group:
"trivial_group G — kernel G H h = carrier G"

{proof)

lemma (in group_hom) image_from_trivial_group:
"trivial_group G = h ¢ carrier G = {one H}"
(proof)

lemma (in group_hom) kernel_to_trivial_group:
"trivial_group H = kernel G H h = carrier G"

(proof)

17.4 The additive group of integers

definition integer_group
where "integer_group = (carrier = UNIV, monoid.mult = (+), one = (0

lemma group_integer_group [simp]l: "group integer_group"

(proof)

lemma carrier_integer_group [simp]: "carrier integer_group = UNIV"

{proof)

lemma one_integer_group [simp]: "lipteger_group = 0"

(proof)

lemma mult_integer_group [simpl: "X ®integer group ¥ = X + ¥

(proof)

lemma inv_integer_group [simp]: "invipteger_group X = ~Xx"

(proof)

lemma abelian_integer_group: "comm_group integer_group"

(proof)

lemma group_nat_pow_integer_group [simp]:
fixes n::nat and x::int
shows "pow integer_group x n = int n * x"

(proof)

lemma group_int_pow_integer_group [simp]:
fixes n::int and x::int
shows "pow integer_group x n = n * x"

(proof)

lemma (in group) hom_integer_group_pow:
"X € carrier G = pow G x € hom integer_group G"

{proof)

print))"

183

17.5 Additive group of integers modulo n (n = 0 gives just
the integers)

definition integer_mod_group :: "nat = int monoid"
where
"integer_mod_group n =
if n = 0 then integer_group
else (carrier = {0..<int n}, monoid.mult = (Ax y. (x+y) mod int n),
one = O)"

lemma carrier_integer_mod_group:
"carrier(integer_mod_group n) = (if n=0 then UNIV else {0..<int n})"

(proof)

lemma one_integer_mod_group[simp] : "one(integer_mod_group n) = 0"

{proof)

lemma mult_integer_mod_group[simp]: "monoid.mult(integer_mod_group n)
= (A&x y. (x + y) mod int n)"
(proof)

lemma group_integer_mod_group [simp]: "group (integer_mod_group n)"

(proof)

lemma inv_integer_mod_group[simp] :
"x € carrier (integer_mod_group n) = m_inv(integer_mod_group n) x
= (-x) mod int n"

(proof)

lemma pow_integer_mod_group [simp]:
fixes m: :nat
shows "pow (integer_mod_group n) x m = (int m * x) mod int n"

(proof)

lemma int_pow_integer_mod_group:
"pow (integer_mod_group n) x m = (m * x) mod int n"

(proof)

lemma abelian_integer_mod_group [simp]: "comm_group(integer_mod_group
n) n

(proof)

lemma integer_mod_group_0 [simp]: "O € carrier(integer_mod_group n)"

(proof)

lemma integer_mod_group_1 [simp]: "1 € carrier(integer_mod_group n)
+— (@ # D"
(proof)

184

lemma trivial_integer_mod_group: "trivial_group(integer_mod_group n)
—— n = 1"

(is "?1hs = ?rhs")
(proof)

17.6 Cyclic groups

lemma (in group) subgroup_of_powers:
"x € carrier G = subgroup (range (An::int. x [7] n)) G"
(proof)

lemma (in group) carrier_subgroup_generated_by_singleton:
assumes "x € carrier G"
shows "carrier(subgroup_generated G {x}) = (range (An::int. x [7] n))"

(proof)

definition cyclic_group
where "cyclic_group G = Jx € carrier G. subgroup_generated G {x} =
G”

lemma (in group) cyclic_group:

"cyclic_group G ¢— (dx € carrier G. carrier G = range (An::int. x
("] n))"
(proof)

lemma cyclic_integer_group [simp]l: "cyclic_group integer_group"
(proof)

lemma nontrivial_integer_group [simpl: "— trivial_group integer_group"

(proof)

lemma (in group) cyclic_imp_abelian_group:
"cyclic_group G = comm_group G"

(proof)

lemma trivial_imp_cyclic_group:
"trivial_group G = cyclic_group G"

(proof)

lemma (in group) cyclic_group_alt:
"cyclic_group G ¢— (Ix. subgroup_generated G {x} = G)"
(proof)

lemma (in group) cyclic_group_generated:
"cyclic_group (subgroup_generated G {x})"
(proof)

185

lemma (in group) cyclic_group_epimorphic_image:
assumes "h € epi G H" "cyclic_group G" "group H"
shows "cyclic_group H"

(proof)

lemma isomorphic_group_cyclicity:
"[G = H; group G; group H|] = cyclic_group G +— cyclic_group H"
{proof)

end

theory Multiplicative_Group
imports
Complex_Main
Group
Coset
UnivPoly
Generated_Groups
Elementary_Groups
begin

18 Simplification Rules for Polynomials

lemma (in ring_hom_cring) hom_sub[simp]:
assumes "x € carrier R" "y € carrier R"
shows "h (x & y) =h x &g h y"
{proof)

context UP_ring begin

lemma deg_nzero_nzero:
assumes deg_p_nzero: "deg R p # 0"
shows "p # 0Op"

(proof)

lemma deg_add_eq:
assumes c: "p € carrier P" "q € carrier P"
assumes "deg R q # deg R p"
shows "deg R (p ®p q) = max (deg R p) (deg R q)"
(proof)

lemma deg_minus_eq:
assumes "p € carrier P" "q € carrier P" "deg R q # deg R p"
shows "deg R (p ©p q) = max (deg R p) (deg R q)"
(proof)

end

186

context UP_cring begin

lemma evalRR_add:
assumes "p € carrier P" "q € carrier P"
assumes x: "x € carrier R"
shows "eval RR id x (p ®p @) = eval RR id x p ¢ eval R R id x q"

(proof)

lemma evalRR_sub:
assumes "p € carrier P" "q € carrier P"
assumes x: "x € carrier R"
shows "eval RR id x (p ©p @) = eval RR id x p © eval R R id x q"

(proof)

lemma evalRR_mult:
assumes "p € carrier P" "q € carrier P"
assumes x: "x € carrier R"
shows "eval RR id x (p ® q) = eval RR id x p ® eval RR id x q"

(proof)

lemma evalRR_monom:
assumes a: "a € carrier R" and x: "x € carrier R"
shows "eval R R id x (monom P a d) =a ® x [7] 4"

(proof)

lemma evalRR_one:
assumes x: "x € carrier R"
shows "eval R R id x 1p = 1"

(proof)

lemma carrier_evalRR:
assumes x: "x € carrier R" and "p € carrier P"
shows "eval R R id x p € carrier R"

(proof)

lemmas evalRR_simps = evalRR_add evalRR_sub evalRR_mult evalRR_monom
evalRR_one carrier_evalRR

end

19 Properties of the Euler o-function

In this section we prove that for every positive natural number the equation
>djn #(d) = n holds.

lemma dvd_div_ge_1:
fixes a b :: nat
assumes "a > 1" "b dvd a"

187

shows "a div b > 1"
(proof)

lemma dvd_nat_bounds:
fixes n p :: nat

assumes "p > 0" "n dvd p"
shows "n > 0 A n < p"

{proof)

definition phi’ :: "nat => nat"
where "phi’ m = card {x. 1 < x A x < m A coprime x m}"

notation (latex output)
phi’ (<p _>)

lemma phi’_nonzero:
assumes "m > 0"
shows "phi’ m > 0"
(proof)

lemma dvd_div_eq_1:
fixes a b ¢ :: nat
assumes "c dvd a" "c dvd b" "a div ¢ = b div c"
shows "a = b" (proof)

lemma dvd_div_eq_2:
fixes a b ¢ :: nat
assumes "c>0" "a dvd c¢" "b dvd c¢" "c div a = ¢ div b"
shows "a = b"

(proof)

lemma div_mult_mono:
fixes a b ¢ :: nat
assumes "a > 0" "a<d"
shows "a * b div 4 < b"

(proof)

We arrive at the main result of this section: For every positive natural num-
ber the equation 3 3, ¢(d) = n holds.

The outline of the proof for this lemma is as follows: We count the n fractions
1/n, ..., (n—1)/n, n/n. We analyze the reduced form a/d = m/n for any
of those fractions. We want to know how many fractions m/n have the
reduced form denominator d. The condition 1 < m < n is equivalent to
the condition 1 < a < d. Therefore we want to know how many a with
1 <a < dexist, s.t. gcd a d = 1. This number is exactly ¢ d.

Finally, by counting the fractions m/n according to their reduced form de-
nominator, we get:

188

G dl ddvdn. pd) =n

. To formalize this proof in Isabelle, we analyze for an arbitrary divisor d of
n

e the set of reduced form numerators {a. 1 < a A a < d A coprime a
d}

o the set of numerators m, for which m/n has the reduced form denom-
inator d, i.e. the set {m € {1..n}. n div ged m n = d}

We show that \a. a * n div d with the inverse A\a. a div gcd a n is a bi-
jection between theses sets, thus yielding the equality

¢ d=card {m € {1..n}. n div gcd m n = d}
This gives us

(32d | ddvd n. ¢ d) = card (Uge{d. d qvd o} @ € {1..n}. n div gcd m
n =d}

and by showing {1..n} € (Uge{q. d dvq o} {m € {1..n}. n div gcd m n
= d}) (this is our counting argument) the thesis follows.

lemma sum_phi’_factors:

fixes n :: nat

assumes "n > 0"

shows "(Zd | d dvd n. phi’ d) = n"
(proof)

20 Order of an Element of a Group

context group begin

definition (in group) ord :: "’a = nat" where
"ord x = (@d. Vn::nat. x [(] n=1¢— d dvd n)"

lemma (in group) pow_eq_id:
assumes "x € carrier G"
shows "x [] n =1 +— (ord x) dvd n"

(proof)

lemma (in group) pow_ord_eq_1 [simp]:
"x € carrier G = x [7] ord x = 1"

(proof)

lemma (in group) int_pow_eq_id:
assumes "x € carrier G"
shows "(pow G x i = one G «— int (ord x) dvd i)"

189

(proof)

lemma (in group) int_pow_eq:
"x € carrier G = (x [Tl m = x [7] n) «— int (ord x) dvd (n - m)"

(proof)

lemma (in group) ord_eq_O:
"x € carrier G = (ord x = 0 <— (Vn::nat. n # 0 — x [7] n # 1))"

{proof)

lemma (in group) ord_unique:
"x € carrier G = ord x = d <— (Vn. pow G x n = one G <— d dvd
n) n

{proof)

lemma (in group) ord_eq_1:
"X € carrier G =— (ord x =1 +— x = 1)"
(proof)

lemma (in group) ord_id [simp]:
"ord (one G) = 1"
(proof)

lemma (in group) ord_inv [simp]:
"x € carrier G
— ord (m_inv G x) = ord x"

(proof)

lemma (in group) ord_pow:
assumes "x € carrier G" "k dvd ord x" "k # O"
shows "ord (pow G x k) = ord x div k"

(proof)

lemma (in group) ord_mul_divides:

assumes eq: "x ® y =y ® x" and xy: "x € carrier G" "y € carrier
Gll

shows "ord (x ® y) dvd (ord x * ord y)"
(proof)

lemma (in comm_group) abelian_ord_mul_divides:
"[x € carrier G; y € carrier G
= ord (x ® y) dvd (ord x * ord y)"
{proof)

lemma ord_inj:
assumes a: "a € carrier G"
shows "inj_on (A x . a [] x) {0 .. ord a - 1}"

(proof)

190

lemma ord_inj’:

assumes a: "a € carrier G"

shows "inj_on (A x . a [7] x) {1 .. ord a}"
(proof)

lemma (in group) ord_ge_1:
assumes finite: "finite (carrier G)" and a: "a € carrier G"
shows "ord a > 1"

(proof)

lemma ord_elems:

assumes "finite (carrier G)" "a € carrier G"

shows "{a["]x | x. x € (UNIV :: nat set)} = {a["]x | x. x € {0 .. ord
a - 1}}" (is "?L = 7R")
(proof)

lemma (in group)
assumes "x € carrier G"
shows finite_cyclic_subgroup:
"finite(carrier(subgroup_generated G {x})) <— (dn::nat. n #
OAx [l n=1)" (is "?fin <— ?7nati")
and infinite_cyclic_subgroup:
"infinite(carrier(subgroup_generated G {x})) +— (Vm n::nat.
x [(Tm=x[]n—m=n)" (is "- ?fin +— 7nateq")
and finite_cyclic_subgroup_int:
"finite(carrier(subgroup_generated G {x})) <— (Ji::int. i #
0Ax [T]i=1)" (is "?fin +— 7intl")
and infinite_cyclic_subgroup_int:
"infinite(carrier (subgroup_generated G {x})) +— (Vi j::int.
x [(Ji=x[]j— i=3j)" (s "= ?fin <— 7inteq")

{(proof)

lemma (in group) finite_cyclic_subgroup_order:

"x € carrier G = finite(carrier(subgroup_generated G {x})) <— ord
x # 0O"

{proof)

lemma (in group) infinite_cyclic_subgroup_order:
"x € carrier G = infinite (carrier(subgroup_generated G {x})) ¢<—
ord x = Q0"

{proof)

lemma generate_pow_on_finite_carrier:
assumes "finite (carrier G)" and a: "a € carrier G"
shows "generate G { a} ={a [7] k | k. k € (UNIV :: nat set) }"

(proof)

lemma ord_elems_inf carrier:
assumes "a € carrier G" "ord a # 0"

shows "{a["]x | x. x € (UNIV :: nat set)} = {a["]lx | x. x € {0 ..

a - 1" (s "?L = 7R")
(proof)

lemma generate_pow_nat:
assumes a: "a € carrier G" and "ord a # 0"

shows "generate G { a} ={a [7] k¥ | k. k € (UNIV ::

(proof)

lemma generate_pow_card:
assumes a: "a € carrier G"
shows "ord a = card (generate G { a })"

(proof)

lemma (in group) cyclic_order_is_ord:
assumes "g € carrier G"
shows "ord g = order (subgroup_generated G {gh)"

{proof)

lemma ord_dvd_group_order:

191

nat set) }"

assumes "a € carrier G" shows "(ord a) dvd (order G)"

(proof)

lemma (in group) pow_order_eq_1:
assumes "a € carrier G" shows "a [7] order G = 1"

(proof)

lemma dvd_gcd:

fixes a b :: nat

obtains q where "a * (b div gcd a b) = bx*q"
(proof)

lemma (in group) ord_le_group_order:

assumes finite: "finite (carrier G)" and a: "a € carrier G"

shows "ord a < order G"

{proof)

lemma (in group) ord_pow_gen:
assumes "x € carrier G"

ord

shows "ord (pow G x k) = (if k = O then 1 else ord x div gcd (ord x)

k)"
(proof)

lemma (in group)

assumes finite’: "finite (carrier G)" "a € carrier G"
ord a <— coprime

shows pow_ord_eq_ord_iff: "group.ord G (a [7] k) =
k (ord a)" (is "7?L +— 7R")

(proof)

192

lemma element_generates_subgroup:
assumes finite[simp]: "finite (carrier G)"
assumes al[simp]: "a € carrier G"
shows "subgroup {a [7] 1 | i. i € {0 .. ord a - 1}} G"
(proof)

end

21 Number of Roots of a Polynomial

definition mult_of :: "(’a, ’b) ring_scheme = ’a monoid" where
"mult_of R = (| carrier = carrier R - {Og}, mult = mult R, one = 1g))"

lemma carrier_mult_of [simp]: "carrier (mult_of R) = carrier R - {Og}"

(proof)

lemma mult_mult_of [simp]: "mult (mult_of R) = mult R"

{proof)

lemma nat_pow_mult_of: "(["Igyit of) = (([TIJR) :: _ = mnat =)"

(proof)

lemma one_mult_of [simpl: "lpuit of R = 1r"

(proof)
lemmas mult_of_simps = carrier_mult_of mult_mult_of nat_pow_mult_of one_mult_of

context field
begin

lemma mult_of_is Units: "mult_of R = units_of R"

(proof)

lemma m_inv_mult_of:
"Ax. x € carrier (mult_of R) = m_inv (mult_of R) x = m_inv R x"

(proof)

lemma (in field) field_mult_group: "group (mult_of R)"
(proof)

lemma finite_mult_of: "finite (carrier R) = finite (carrier (mult_of
R.))"
(proof)

lemma order_mult_of: "finite (carrier R) = order (mult_of R) = order
R - 1"
(proof)

end

193

lemma (in monoid) Units_pow_closed :
fixes d :: nat
assumes "x € Units G"
shows "x [7] d € Units G"

(proof)

lemma (in ring) r_right_minus_eq[simp]:
assumes "a € carrier R" "b € carrier R"
shows "a © b =0 <— a = b"
(proof)

context UP_cring begin

lemma is_UP_cring: "UP_cring R" (proof)
lemma is_UP_ring:
shows "UP_ring R" (proof)

end

context UP_domain begin

lemma roots_bound:
assumes f [simp]: "f € carrier P"
assumes f_not_zero: "f #* 0p"
assumes finite: "finite (carrier R)"
shows "finite {a € carrier R . eval RR id a f = 0} A
card {a € carrier R . eval R R id a £ = 0} < deg R £" (proof)

end

lemma (in domain) num_roots_le_deg :
fixes p d :: nat
assumes finite: "finite (carrier R)"
assumes d_neq_zero: "d # 0"
shows "card {x € carrier R. x [7] 4 = 1} < 4"

(proof)

22 The Multiplicative Group of a Field

In this section we show that the multiplicative group of a finite field is
generated by a single element, i.e. it is cyclic. The proof is inspired by the
first proof given in the survey [2].

context field begin

194

lemma num_elems_of_ord_eq_phi’:

assumes finite: "finite (carrier R)" and dvd: "d dvd order (mult_of
R)"

and exists: "Jaccarrier (mult_of R). group.ord (mult_of R) a =

d’l

shows "card {a € carrier (mult_of R). group.ord (mult_of R) a = d}
= phi’ 4"
(proof)

end

theorem (in field) finite_field_mult_group_has_gen :
assumes finite: "finite (carrier R)"

shows "d a € carrier (mult_of R) . carrier (mult_of R) = {a["]i | i:

i € UNIV}"
(proof)

end

theory Group_Action
imports Bij Coset Congruence
begin

23 Group Actions

locale group_action =
fixes G (structure) and E and ¢
assumes group_hom: "group_hom G (BijGroup E) "

definition
orbit :: "[_, ’a = ’b = ’b, ’b] = ’b set"
where "orbit G ¢ x = {(p g) x | g. g € carrier G}"

definition
orbits :: "[_, ’b set, ’a = ’b = ’b] = (’b set) set"
where "orbits G E ¢ = {orbit G ¢ x | x. x € E}"

definition
stabilizer :: "[_, ’a = ’b = ’b, ’b] = ’a set"
where "stabilizer G ¢ x = {g € carrier G. (p g) x = x}"

definition
invariants :: "[’b set, ’a = ’b = ’b, ’al] = ’b set"
where "invariants E ¢ g = {x € E. (¢ g) x = x}"

definition
normalizer :: "[_, ’a set] = ’a set"

:nat

195

where "normalizer G H =
stabilizer G (Ag. AH € {H. H C carrier G}. g <#g H #>¢ (invg
g)) H"

locale faithful_action = group_action +
assumes faithful: "inj_on ¢ (carrier G)"

locale transitive_action = group_action +
assumes unique_orbit: "[x € E; y € E]| = Jg € carrier G. (p g)
x = yu

23.1 Prelimineries

Some simple lemmas to make group action’s properties more explicit

lemma (in group_action) id_eq_one: "(Ax € E. x) = ¢ 1"

(proof)

lemma (in group_action) bij_propO:
"A g. g € carrier G = (¢ g) € Bij E"
{proof)

lemma (in group_action) surj_prop:
"A g. g € carrier G = (p g) ‘ E = E"
{proof)

lemma (in group_action) inj_prop:
"A g. g € carrier G = inj_on (p g) E"
(proof)

lemma (in group_action) bij_propl:
"ANgy. [g€ carrier G; y e E] = 3J!'x € E. (p g x = y"
(proof)

lemma (in group_action) composition_rule:
assumes "x € E" "gl € carrier G" "g2 € carrier G"
shows "¢ (g1 ® g2) x = (p g1) (v g2 x)"

(proof)

lemma (in group_action) element_image:
assumes "g € carrier G" and "x € E" and "(p g) x = y"
shows "y € E"

(proof)

23.2 Orbits

We prove here that orbits form an equivalence relation

lemma (in group_action) orbit_sym_aux:
assumes "g € carrier G"

196

and "x € E"
and Il((p g) x = yu
shows "(¢ (inv g)) y = x"
(proof)

lemma (in group_action) orbit_refl:
"x € E=— x € orbit G ¢ x"

(proof)

lemma (in group_action) orbit_sym:
assumes "x € E" and "y € E" and "y € orbit G ¢ x"
shows "x € orbit G ¢ y"

(proof)

lemma (in group_action) orbit_trans:
assumes "x € E" "y € E" "z € E"
and "y € orbit G ¢ x" "z € orbit G ¢ y"
shows "z € orbit G ¢ x"

(proof)

lemma (in group_action) orbits_as_classes:

"ClassesG carrier = E, eq = Ax. A\y. y € orbit G ¢ x) _ orbits G E o"

(proof)

theorem (in group_action) orbit_partition:
"partition E (orbits G E @)"

(proof)

corollary (in group_action) orbits_coverture:
" (orbits G E ¢) = E"
{proof)

corollary (in group_action) disjoint_union:
assumes "orbl € (orbits G E)" "orb2 € (orbits G E)"
shows "(orbl = orb2) V (orbl N orb2) = {}"

(proof)

corollary (in group_action) disjoint_sum:
assumes "finite E"
shows "(> orbc(orbits G E). Y x€orb. f x) = (3 x€E. f x)"

(proof)

23.2.1 Transitive Actions

Transitive actions have only one orbit

lemma (in transitive_action) all_equivalent:
"lx €E; yeE] = x

(proof)

*“(carrier = E, eq = Ax y. y € orbit G ¢ x| y"

197

proposition (in transitive_action) one_orbit:
assumes "E # {}"
shows "card (orbits G E ¢) = 1"

(proof)

23.3 Stabilizers

We show that stabilizers are subgroups from the acting group

lemma (in group_action) stabilizer_subset:
"stabilizer G ¢ x C carrier G"

(proof)

lemma (in group_action) stabilizer_m_closed:
assumes "x € E" "gl € (stabilizer G ¢ x)" "g2 € (stabilizer G ¢ x)"
shows "(gl ® g2) € (stabilizer G ¢ x)"

(proof)

lemma (in group_action) stabilizer_one_closed:
assumes "x € E"
shows "1 € (stabilizer G ¢ x)"

(proof)

lemma (in group_action) stabilizer_m_inv_closed:
assumes "x € E" "g € (stabilizer G ¢ x)"
shows "(inv g) € (stabilizer G ¢ x)"

(proof)

theorem (in group_action) stabilizer_subgroup:
assumes "x € E"
shows "subgroup (stabilizer G ¢ x) G"

(proof)

23.4 The Orbit-Stabilizer Theorem

In this subsection, we prove the Orbit-Stabilizer theorem. Our approach is
to show the existence of a bijection between "rcosets (stabilizer G phi x)"
and "orbit G phi x". Then we use Lagrange’s theorem to find the cardinal
of the first set.

23.4.1 Rcosets - Supporting Lemmas

corollary (in group_action) stab_rcosets_not_empty:
assumes "x € E" "R € rcosets (stabilizer G ¢ x)"
shows "R # {}"

(proof)

corollary (in group_action) diff_stabilizes:

198

assumes "x € E" "R € rcosets (stabilizer G ¢ x)"

shows "Agl g2. [gl € R; g2 € R] = gl ® (inv g2) € stabilizer G
(p Xll

{proof)

23.4.2 Bijection Between Rcosets and an Orbit - Definition and
Supporting Lemmas

definition
orb_stab_fun :: "[_, (’a = ’b = ’b), ’a set, ’b] = ’b"
where "orb_stab_fun G ¢ R x = (¢ (invg (SOME h. h € R))) x"

lemma (in group_action) orbit_stab_fun_is_well_definedO:
assumes "x € E" "R € rcosets (stabilizer G ¢ x)"
shows "Agl g2. [gl € R; g2 € R] = (¢ (dnv gl)) x = (¢ (inv g2))

Xll

(proof)

lemma (in group_action) orbit_stab_fun_is_well_definedl:
assumes "x € E" "R € rcosets (stabilizer G ¢ x)"
shows "Ag. g € R = (¢ (inv (SOME h. h € R))) x = (p (inv g)) x"
(proof)

lemma (in group_action) orbit_stab_fun_is_inj:
assumes "x € E"
and "R1 € rcosets (stabilizer G ¢ x)"
and "R2 € rcosets (stabilizer G ¢ x)"
and "¢ (inv (SOME h. h € R1)) x = ¢ (inv (SOME h. h € R2)) x"
shows "R1 = R2"

(proof)

lemma (in group_action) orbit_stab_fun_is_surj:

assumes "x € E" "y € orbit G ¢ x"

shows "dR € rcosets (stabilizer G ¢ x). ¢ (inv (SOME h. h € R)) x
= yn
(proof)

proposition (in group_action) orbit_stab_fun_is_bij:

assumes "x ¢ E"

shows "bij_betw (AR. (¢ (inv (SOME h. h € R))) x) (rcosets (stabilizer
G ¢ %)) (orbit G ¢ x)"

(proof)

23.4.3 The Theorem

theorem (in group_action) orbit_stabilizer_theorem:
assumes "x € E"
shows "card (orbit G ¢ x) * card (stabilizer G ¢ x) = order G"

(proof)

199

23.5 The Burnside’s Lemma
23.5.1 Sums and Cardinals

lemma card_as_sums:
assumes "A = {x € B. P x}" "finite B"
shows "card A = (3 x€B. (if P x then 1 else 0))"

{(proof)

lemma sum_invertion:

"[finite A; finite B | = () _x€A. Y yeB. £ x y) = (O y€B. Y x€A.
fxy"
{proof)

lemma (in group_action) card_stablizer_sum:
assumes "finite (carrier G)" "orb € (orbits G E ¢)"
shows "(3> x € orb. card (stabilizer G ¢ x)) = order G"

(proof)

23.5.2 The Lemma

theorem (in group_action) burnside:

assumes "finite (carrier G)" "finite E"

shows "card (orbits G E ¢) * order G = () g € carrier G. card(invariants
Epg)"
(proof)

23.6 Action by Conjugation
23.6.1 Action Over Itself

A Group Acts by Conjugation Over Itself

lemma (in group) conjugation_is_inj:
assumes "g € carrier G" "hl € carrier G" "h2 € carrier G"
and "g ® h1 ® (inv g) = g ® h2 ® (inv g)"
shows "h1l = h2"
(proof)

lemma (in group) conjugation_is_surj:
assumes "g € carrier G" "h € carrier G"
shows "g ® ((inv g) ® h ® g) ® (inv g) = h"
{proof)

lemma (in group) conjugation_is_bij:
assumes "g € carrier G"
shows "bij_betw (Ah € carrier G. g ® h ® (inv g)) (carrier G) (carrier
@"
(is "bij_betw ?¢ (carrier G) (carrier G)")

(proof)

200

lemma (in group) conjugation_is_hom:
"(Ag. A\h € carrier G. g ® h ® inv g) € hom G (BijGroup (carrier G))"
(proof)

theorem (in group) action_by_conjugation:
"group_action G (carrier G) (Ag. (Mh € carrier G. g ® h ® (inv g)))"
{proof)

23.6.2 Action Over The Set of Subgroups

A Group Acts by Conjugation Over The Set of Subgroups

lemma (in group) subgroup_conjugation_is_inj_aux:
assumes "g € carrier G" "H1 C carrier G" "H2 C carrier G"
and "g <# H1 #> (inv g) = g <# H2 #> (inv g)"
shows "H1 C H2"
(proof)

lemma (in group) subgroup_conjugation_is_inj:
assumes "g € carrier G" "H1 C carrier G" "H2 C carrier G"
and "g <# H1 #> (inv g) = g <# H2 #> (inv g)"
shows "H1 = H2"
(proof)

lemma (in group) subgroup_conjugation_is_surjO:
assumes "g € carrier G" "H C carrier G"
shows "g <# ((inv g) <# H #> g) #> (inv g) = H"
(proof)

lemma (in group) subgroup_conjugation_is_surjl:
assumes "g € carrier G" "subgroup H G"
shows "subgroup ((inv g) <# H #> g) G"

(proof)

lemma (in group) subgroup_conjugation_is_surj2:
assumes "g € carrier G" "subgroup H G"
shows "subgroup (g <# H #> (inv g)) G"
{proof)

lemma (in group) subgroup_conjugation_is_bij:
assumes "g € carrier G"
shows "bij_betw (AH € {H. subgroup H G}. g <# H #> (inv g)) {H. subgroup
H G} {H. subgroup H G}"
(is "bij_betw 7¢ {H. subgroup H G} {H. subgroup H G}")
(proof)

lemma (in group) subgroup_conjugation_is_hom:

"(Ag. MH € {H. subgroup H G}. g <# H #> (inv g)) € hom G (BijGroup
{H. subgroup H G})"

{proof)

201

theorem (in group) action_by_conjugation_on_subgroups_set:
"group_action G {H. subgroup H G} (A\g. MH € {H. subgroup H G}. g <#
H #> (inv g))"
{proof)

23.6.3 Action Over The Power Set

A Group Acts by Conjugation Over The Power Set

lemma (in group) subset_conjugation_is_bij:
assumes "g € carrier G"
shows "bij_betw (MH € {H. H C carrier G}. g <# H #> (inv g)) {H. H
C carrier G} {H. H C carrier G}"
(is "bij_betw 7 {H. H C carrier G} {H. H C carrier G}")

(proof)

lemma (in group) subset_conjugation_is_hom:

"(Ag. AH € {H. H C carrier G}. g <# H #> (inv g)) € hom G (BijGroup
{H. H C carrier G}H)"

(proof)

theorem (in group) action_by_conjugation_on_power_set:

"group_action G {H. H C carrier G} (Ag. M € {H. H C carrier G}. g
<# H #> (inv g))"

{proof)

corollary (in group) normalizer_imp_subgroup:
assumes "H C carrier G"
shows "subgroup (normalizer G H) G"

(proof)

23.7 Subgroup of an Acting Group

A Subgroup of an Acting Group Induces an Action

lemma (in group_action) induced_homomorphism:
assumes "subgroup H G"
shows "¢ € hom (G (carrier := H|)) (BijGroup E)"

(proof)

theorem (in group_action) induced_action:
assumes "subgroup H G"
shows "group_action (G (carrier := H)) E "

(proof)

end

202

24 The Zassenhaus Lemma

theory Zassenhaus
imports Coset Group_Action
begin

Proves the second isomorphism theorem and the Zassenhaus lemma.

24.1 Lemmas about normalizer

lemma (in group) subgroup_in_normalizer:
assumes "subgroup H G"
shows "normal H (G(carrier:= (normalizer G H)|))"

(proof)

lemma (in group) normal_imp_subgroup_normalizer:
assumes "subgroup H G"
and "N < (G(carrier := H))"
shows "subgroup H (G(carrier := normalizer G N|)"
(proof)

24.2 Second Isomorphism Theorem

lemma (in group) mult_norm_subgroup:
assumes "normal N G"
and "subgroup H G"
shows "subgroup (N<#>H) G" (proof)

lemma (in group) mult_norm_sub_in_sub:
assumes "normal N (G(carrier:=K|))"
assumes "subgroup H (G(carrier:=K))"
assumes "subgroup K G"
shows "subgroup (N<#>H) (G(carrier:=K))"

(proof)

lemma (in group) subgroup_of_normal_set_mult:
assumes '"normal N G"

and "subgroup H G"

shows "subgroup H (G(carrier := N <#> H|))"

(proof)

lemma (in group) normal_in_normal_set_mult:
assumes "normal N G"

and "subgroup H G"

shows "normal N (G(carrier := N <#> H|))"

(proof)

203

proposition (in group) weak_snd_iso_thme:
assumes "subgroup H G"
and "N<G"
shows "(G(carrier := N<#>H|) Mod N 2 G(carrier:=H) Mod (NNH))"
(proof)

theorem (in group) snd_iso_thme:
assumes "subgroup H G"
and "subgroup N G"
and "subgroup H (G(carrier:= (normalizer G N)|))"
shows "(G(carrier:= N<#>H|) Mod N) 2= (G(carrier:= H|) Mod (HNN))"
(proof)

corollary (in group) snd_iso_thme_recip :
assumes "subgroup H G"
and "subgroup N G"
and "subgroup H (G(carrier:= (normalizer G N)|))"
shows "(G(carrier:= H<#>N|) Mod N) 2= (G(carrier:= H|) Mod (HNN))"
(proof)

24.3 The Zassenhaus Lemma

lemma (in group) distinc:
assumes "subgroup H G"
and "H1<G(carrier := H)"
and "subgroup K G"
and "K1<G(carrier:=K)"
shows "subgroup (HNK) (G(carrier:=(normalizer G (Hi<#>(HNK1))))"
(proof)

lemma (in group) preliminaryi:
assumes "subgroup H G"
and "H1<G(carrier := H)"
and "subgroup K G"
and "K1<G(carrier:=K)"
shows " (HNK) N (Hi<#>(HNK1)) = (HINK)<#>(HNK1)"

(proof)

lemma (in group) preliminary?2:
assumes "subgroup H G"
and "H1<G(carrier := H)"
and "subgroup K G"
and "K1<G(carrier:=K)"
shows " (H1<#>(HNK1)) < G(carrier:=(H1<#>(HNK)))"
(proof)

204

proposition (in group) Zassenhaus_1:
assumes "subgroup H G"
and "H1<G(carrier := H|)"
and "subgroup K G"
and "K1<G(carrier:=K)"
shows "(G(carrier:= H1 <#> (HNK)|) Mod (H1<#>HNK1)) = (G(carrier:= (HNK)|
Mod ((H1MK)<#>(HNK1)))"
(proof)

theorem (in group) Zassenhaus:
assumes "subgroup H G"
and "H1<G(carrier := H)"
and "subgroup K G"
and "K1<G(carrier:=K)"
shows "(G(carrier:= H1 <#> (HNK)|) Mod (Hi<#>(HNK1)))
(G(carrier:= K1 <#> (HNK)|) Mod (K1<#>(KNH1)))"

I

(proof)

end

25 Divisibility in monoids and rings

theory Divisibility
imports "HOL-Combinatorics.List_Permutation" Coset Group
begin

26 Factorial Monoids

26.1 Monoids with Cancellation Law

locale monoid_cancel = monoid +
assumes 1_cancel: "[[c ® a=c ® b; a € carrier G; b € carrier G; c
€ carrier G] = a = b"
and r_cancel: "[[a ® c =Db ® c; a € carrier G; b € carrier G; c €
carrier G) = a = b"

lemma (in monoid) monoid_cancell:
assumes 1_cancel: "/\a b c. [[c ® a=c ® b; a € carrier G; b € carrier
G; ¢ € carrier G = a = b"
and r_cancel: "Aabc. [a® c =b ® c; a € carrier G; b € carrier
G; ¢ € carrier G] = a = b"
shows "monoid_cancel G"

(proof)

lemma (in monoid_cancel) is_monoid_cancel: "monoid_cancel G" (proof)

205

sublocale group C monoid_cancel

(proof)

locale comm_monoid_cancel = monoid_cancel + comm_monoid

lemma comm_monoid_cancell:

fixes G (structure)

assumes "comm_monoid G"

assumes cancel: "Aa b c. [a ® ¢ =b ® c; a € carrier G; b € carrier
G; c € carrier G] = a = b"

shows "comm_monoid_cancel G"
(proof)

lemma (in comm_monoid_cancel) is_comm_monoid_cancel: "comm_monoid_cancel
Gl!
(proof)

sublocale comm_group C comm_monoid_cancel (proof)

26.2 Products of Units in Monoids

lemma (in monoid) prod_unit_1:
assumes abunit[simp]: "a ® b € Units G"
and aunit[simp]: "a € Units G"

and carr[simp]: "a € carrier G" "b € carrier G"
shows "b € Units G"
(proof)

lemma (in monoid) prod_unit_r:
assumes abunit[simp]: "a ® b € Units G"
and bunit[simp]: "b € Units G"

and carr[simp]: "a € carrier G" "b € carrier G"
shows "a € Units G"
(proof)

lemma (in comm_monoid) unit_factor:
assumes abunit: "a ® b € Units G"

and [simp]: "a € carrier G" "b € carrier G"
shows "a € Units G"
{proof)

26.3 Divisibility and Association
26.3.1 Function definitions

definition factor :: "[_, ’a, ’al = bool" (infix <dividesz > 65)
where "a dividesg b +— (dcE€carrier G. b = a ®g c)"

206

definition associated :: "[_, ’a, ’al = bool" (infix <~2> 55)
where "a ~¢ b <— a dividesg b A b dividesg a"

abbreviation "division_rel G = (carrier = carrier G, eq = (~g), le =
(dividesg))"
definition properfactor :: "[_, ’a, ’al = bool"

where "properfactor G a b ¢— a dividesg b A —(b dividesg a)"

definition irreducible :: "[_, ’al] = bool"
where "irreducible G a +— a ¢ Units G A (VbEcarrier G. properfactor
Gba— b € Units G)"

definition prime :: "[_, ’al] = bool"
where "prime G p +—
p ¢ Units G A
(Va€ecarrier G. Vbé&carrier G. p dividesg (a ®g b) — p dividesg
a V p dividesg b)"

26.3.2 Divisibility

lemma dividesI:
fixes G (structure)
assumes carr: "c € carrier G"
and p: "b = a ® c"
shows "a divides b"

(proof)

lemma dividesI’ [intro]:
fixes G (structure)
assumes p: "b = a ® c"
and carr: "c € carrier G"
shows "a divides b"

{proof)

lemma dividesD:
fixes G (structure)
assumes "a divides b"
shows "dc€carrier G. b = a ® c"

(proof)

lemma dividesE [elim]:
fixes G (structure)
assumes d: "a divides b"
and elim: "Ac. [b = a ® ¢; ¢ € carrier G] = P"
shows "P"

(proof)

lemma (in monoid) divides_refl[simp, intro!]:

207

assumes carr: "a € carrier G"
shows "a divides a"

(proof)

lemma (in monoid) divides_trans [trans]:
assumes dvds: "a divides b" "b divides c"
and acarr: "a € carrier G"

shows "a divides c"

{proof)

lemma (in monoid) divides_mult_1I [intro]:
assumes "a divides b" "a € carrier G" "c € carrier G"
shows "(c ® a) divides (c ® b)"

{proof)

lemma (in monoid_cancel) divides_mult_1 [simp]:
assumes carr: "a € carrier G" "b € carrier G" "c € carrier G"

shows "(c ® a) divides (¢ ® b) a divides b"
(proof)

lemma (in comm_monoid) divides_mult_rI [intro]:

assumes ab: "a divides b"
and carr: "a € carrier G" "b € carrier G" "c € carrier G"

shows "(a ® c¢) divides (b ® c)"

(proof)

lemma (in comm_monoid_cancel) divides_mult_r [simp]:
assumes carr: "a € carrier G" "b € carrier G"
shows "(a ® c) divides (b ® c)

"c € carrier G"
= a divides Db"
(proof)

lemma (in monoid) divides_prod_r:
assumes ab: "a divides b"
and carr: "a € carrier G"

"c € carrier G"
shows "a divides (b ® c)"
(proof)
lemma (in comm_monoid) divides_prod_1:
assumes "a € carrier G"
bll

"b € carrier G" "c € carrier G" "a divides
shows "a divides (¢ ® b)"

(proof)

lemma (in monoid) unit_divides:

assumes uunit: "u € Units G"
"a € carrier G"
shows "u divides a"

(proof)

and acarr:

lemma (in comm_monoid) divides_unit:
assumes udvd: "a divides u"

and carr: "a € carrier G" "u € Units
shows "a € Units G"
(proof)

lemma (in comm_monoid) Unit_eq_dividesone:
assumes ucarr: "u € carrier G"
shows "u € Units G = u divides 1"

(proof)

26.3.3 Association

lemma associatedI:
fixes G (structure)
assumes "a divides b" "b divides a"
shows "a ~ Db"

(proof)

lemma (in monoid) associatedI2:
assumes uunit[simp]: "u € Units G"
and a: "a =b ® u"
and bcarr: "b € carrier G"
shows "a ~ Db"

(proof)

lemma (in monoid) associatedI2’:
assumes "a = b ® u"
and "u € Units G"
and "b € carrier G"
shows "a ~ b"

(proof)

lemma associatedD:
fixes G (structure)
assumes "a ~ b"
shows "a divides b"

(proof)

lemma (in monoid_cancel) associatedD2:
assumes assoc: "a ~ b"

and carr: "a € carrier G" "b € carrier G"

shows "JucUnits G. a = b ® u"
(proof)

lemma associatedE:
fixes G (structure)
assumes assoc: "a ~ b"

and e: "[a divides b; b divides a] = P"

208

209

shows "P"
(proof)

lemma (in monoid_cancel) associatedE2:
assumes assoc: "a ~ b"
and e: "Au. [a = b ® u; u € Units G] = P"

and carr: "a € carrier G" "b € carrier G"
shows "P"
(proof)

lemma (in monoid) associated_refl [simp, intro!]:
assumes "a € carrier G"
shows "a ~ a"

{proof)

lemma (in monoid) associated_sym [sym]:
assumes "a ~ b"
shows "b ~ a"

(proof)

lemma (in monoid) associated_trans [trans]:
assumes "a ~ b" "b ~ c"
and "a € carrier G" "c € carrier G"
shows "a ~ c"

{proof)

lemma (in monoid) division_equiv [intro, simp]: "equivalence (division_rel
G) n
{proof)

26.3.4 Division and associativity

lemmas divides_antisym = associatedI

lemma (in monoid) divides_cong_l [trans]:
assumes "x ~ x’" "x’ divides y" "x € carrier G"
shows "x divides y"

(proof)

lemma (in monoid) divides_cong_r [trans]:
assumes "x divides y" "y ~ y’" "x € carrier G"
shows "x divides y’"

(proof)

lemma (in monoid) division_weak_partial_order [simp, intro!]:
"weak_partial_order (division_rel G)"

(proof)

210

26.3.5 Multiplication and associativity

lemma (in monoid) mult_cong_r:

assumes "b ~ b’" "a € carrier G" "b € carrier G" "b’ € carrier G"
shows "a ® b ~ a ® b’"
(proof)

lemma (in comm_monoid) mult_cong_1:
assumes "a ~ a’" "a € carrier G" "a’ € carrier G" "b € carrier G"
shows "a ® b ~ a’ ® b"
(proof)

lemma (in monoid_cancel) assoc_1l_cancel:

assumes "a € carrier G" "b € carrier G" "b’ € carrier G" "a ® b
~ a ® b)ll

shows "b ~ b’"

(proof)

lemma (in comm_monoid_cancel) assoc_r_cancel:

assumes "a ® b ~ a’ ® b" "a € carrier G" "a’ € carrier G" "b €
carrier G"

shows "a ~ a’"

(proof)

26.3.6 Units

lemma (in monoid_cancel) assoc_unit_1 [trans]:
assumes "a ~ b"
and "b € Units G"
and "a € carrier G"
shows "a € Units G"

(proof)

lemma (in monoid_cancel) assoc_unit_r [trans]:
assumes aunit: "a € Units G"
and asc: "a ~ b"
and bcarr: "b € carrier G"
shows "b € Units G"

(proof)

lemma (in comm_monoid) Units_cong:
assumes aunit: "a € Units G" and asc: "a ~ b"
and bcarr: "b € carrier G"
shows "b € Units G"

(proof)

lemma (in monoid) Units_assoc:
assumes units: "a € Units G" "b € Units G"
shows "a ~ b"

(proof)

211

lemma (in monoid) Units_are_ones: "Units G {.=}(givision re1l) t1}"

(proof)

lemma (in comm_monoid) Units_Lower: "Units G = Lower (division_rel G)

(carrier G)"
(proof)

lemma (in monoid_cancel) associated_iff:
assumes "a € carrier G" "b € carrier G"
shows "a ~ b +— (dc € Units G. a =b ® c)"

(proof)

26.3.7 Proper factors

lemma properfactorI:
fixes G (structure)
assumes "a divides b"
and "—(b divides a)"
shows "properfactor G a b"

(proof)

lemma properfactorI2:
fixes G (structure)
assumes advdb: "a divides b"
and neq: "—(a ~ b)"
shows "properfactor G a b"
(proof)

lemma (in comm_monoid_cancel) properfactorI3:
assumes p: "p = a ® b"
and nunit: "b ¢ Units G"

and carr: "a € carrier G" "b € carrier G"
shows "properfactor G a p"
(proof)

lemma properfactorE:
fixes G (structure)
assumes pf: "properfactor G a b"
and r: "[a divides b; —(b divides a)] = P"
shows "P"

(proof)

lemma properfactorE2:
fixes G (structure)
assumes pf: "properfactor G a b"
and elim: "[a divides b; —(a ~ b)] = P"
shows "P"

(proof)

212

lemma (in monoid) properfactor_unitE:
assumes uunit: "u € Units G"
and pf: "properfactor G a u"
and acarr: "a € carrier G"
shows "P"

(proof)

lemma (in monoid) properfactor_divides:
assumes pf: "properfactor G a b"
shows "a divides b"

(proof)
lemma (in monoid) properfactor_transl [trans]:

assumes "a divides b" ‘'"properfactor G b c" "a € carrier G" '"c € carrier
Gll

shows "properfactor G a c"

(proof)
lemma (in monoid) properfactor_trans2 [trans]:

assumes "properfactor G a b" "b divides c" "a € carrier G" "b € carrier
GII

shows "properfactor G a c"

(proof)

lemma properfactor_lless:
fixes G (structure)
shows "properfactor G = lless (division_rel G)"

(proof)

lemma (in monoid) properfactor_cong_l [trans]:
assumes x’x: "x’ ~ x"
and pf: "properfactor G x y"
and carr: "x € carrier G" "x’ € carrier G" "y € carrier G"
shows "properfactor G x’ y"

{proof)

lemma (in monoid) properfactor_cong_r [trans]:
assumes pf: "properfactor G x y"
and -y-y): Il-y ~ y7||

and carr: "x € carrier G" "y € carrier G" "y’ € carrier G"
shows "properfactor G x y’"
{proof)

lemma (in monoid_cancel) properfactor_mult_1I [intro]:
assumes ab: "properfactor G a b"
and carr: "a € carrier G" "c € carrier G"
shows "properfactor G (¢ ® a) (c ® b)"

(proof)

213

lemma (in monoid_cancel) properfactor_mult_1 [simp]:
assumes carr: "a € carrier G" "b € carrier G" '"c € carrier G"
shows "properfactor G (¢ ® a) (¢ ® b) = properfactor G a b"

(proof)

lemma (in comm_monoid_cancel) properfactor_mult_rI [intro]:
assumes ab: "properfactor G a b"
and carr: "a € carrier G" "c € carrier G"
shows "properfactor G (a ® ¢c) (b ® c)"

(proof)

lemma (in comm_monoid_cancel) properfactor_mult_r [simp]:
assumes carr: "a € carrier G" "b € carrier G" "c € carrier G"
shows "properfactor G (a ® c) (b ® c) = properfactor G a b"

(proof)

lemma (in monoid) properfactor_prod_r:
assumes ab: "properfactor G a b"

and carr[simp]: "a € carrier G" "b € carrier G" '"c € carrier G"
shows "properfactor G a (b ® c)"
{proof)

lemma (in comm_monoid) properfactor_prod_l:
assumes ab: "properfactor G a b"

and carr[simp]: "a € carrier G" "b € carrier G" "c € carrier G"
shows "properfactor G a (¢ ® b)"
{proof)

26.4 Irreducible Elements and Primes

26.4.1 Irreducible elements

lemma irreduciblel:
fixes G (structure)
assumes "a ¢ Units G"
and "Ab. [b € carrier G; properfactor G b a] = b € Units G"
shows "irreducible G a"

(proof)

lemma irreducibleE:
fixes G (structure)
assumes irr: "irreducible G a"
and elim: "[a ¢ Units G; Vb. b € carrier G A properfactor G b a —
b € Units G] = P"
shows "P"

(proof)

lemma irreducibleD:
fixes G (structure)

214

assumes irr: "irreducible G a"
and pf: "properfactor G b a"
and bcarr: "b € carrier G"

shows "b € Units G"

(proof)
lemma (in monoid_cancel) irreducible_cong [trans]:

assumes "irreducible G a" "a ~ a’" "a € carrier G" "a’ € carrier
Gll

shows "irreducible G a’"
(proof)
lemma (in monoid) irreducible_prod_rI:

assumes "irreducible G a" "b € Units G" "a € carrier G" "b € carrier
Gll

shows "irreducible G (a ® b)"

(proof)

lemma (in comm_monoid) irreducible_prod_1I:
assumes birr: "irreducible G b"
and aunit: "a € Units G"

and carr [simpl: "a € carrier G" "b € carrier G"
shows "irreducible G (a ® b)"
{proof)

lemma (in comm_monoid_cancel) irreducible_prodE [elim]:
assumes irr: "irreducible G (a ® b)"
and carr[simp]: "a € carrier G" "b € carrier G"
and el: "[irreducible G a; b € Units G] = P"
and e2: "[a € Units G; irreducible G b] = P"
shows P

(proof)

lemma divides_irreducible_condition:
assumes "irreducible G r" and "a € carrier G"
shows "a dividesg r = a € Units G V a ~¢g "

(proof)

26.4.2 Prime elements

lemma primel:
fixes G (structure)
assumes "p ¢ Units G"
and "Aa b. [a € carrier G; b € carrier G; p divides (a ® b)] =
p divides a V p divides b"
shows "prime G p"

(proof)

lemma primeE:

215

fixes G (structure)
assumes pprime: "prime G p"
and e: "[p ¢ Units G; Vaccarrier G. Vbe&carrier G.
p divides a ® b — p divides a V p divides b] = P"
shows "P"

(proof)

lemma (in comm_monoid_cancel) prime_divides:
assumes carr: "a € carrier G" "b € carrier G"
and pprime: "prime G p"
and pdvd: "p divides a ® b"
shows "p divides a V p divides b"

(proof)

lemma (in monoid_cancel) prime_cong [trans]:
assumes "prime G p"

and pp’: "p ~ p’" "p € carrier G" '"p’ € carrier G"
shows "prime G p’"
{proof)

lemma (in comm_monoid_cancel) prime_irreducible:
assumes "prime G p"
shows "irreducible G p"

(proof)

lemma (in comm_monoid_cancel) prime_pow_divides_iff:

assumes "p € carrier G" "a € carrier G" "b € carrier G" and "prime
G p" and "— (p divides a)"

shows "(p [7] (n :: nat)) divides (a ® b) +— (p [7] n) divides Db"
(proof)

26.5 Factorization and Factorial Monoids
26.5.1 Function definitions

definition factors :: "(’a, _) monoid_scheme = ’a list = ’a = bool"
where "factors G fs a «+— (Vx € (set fs). irreducible G x) A foldr
(®g) fs 1g = a"

definition wfactors ::"(’a, _) monoid_scheme = ’a list = ’a = bool"
where "wfactors G fs a <— (Vx € (set fs). irreducible G x) A foldr
(®g) fs 1g ~g a"

abbreviation list_assoc :: "(’a, _) monoid_scheme = ’a list = ’a list
= bool" (infix <[~]2> 44)
where "list_assoc G = list_all2 (~g)"

definition essentially_equal :: "(’a, _) monoid_scheme = ’a list = ’a
list = bool"
where "essentially_equal G fsl fs2 +— (dfs1’. fsl <~~> fsl1’ A fsl’

216

[~]g fs2)"

locale factorial monoid = comm_monoid_cancel +
assumes factors_exist: "[a € carrier G; a ¢ Units G] = Jfs. set fs
C carrier G A factors G fs a"
and factors_unique:
"[[factors G fs a; factors G fs’ a; a € carrier G; a ¢ Units G;
set fs C carrier G; set fs’ C carrier G]] — essentially_equal
G fs fs’"

26.5.2 Comparing lists of elements

Association on lists

lemma (in monoid) listassoc_refl [simp, intro]:
assumes "set as C carrier G"
shows "as [~] as"

{proof)

lemma (in monoid) listassoc_sym [sym]:
assumes "as [~] bs"
and "set as C carrier G"
and "set bs C carrier G"
shows "bs [~] as"

(proof)

lemma (in monoid) listassoc_trans [trans]:
assumes "as [~] bs" and "bs [~] cs"
and "set as C carrier G" and "set bs C carrier G" and "set cs C
carrier G"
shows "as [~] cs"

(proof)

lemma (in monoid_cancel) irrlist_listassoc_cong:
assumes "Va€set as. irreducible G a"
and "as [~] bs"
and "set as C carrier G" and "set bs C carrier G"
shows "Va€set bs. irreducible G a"

(proof)

Permutations

lemma perm_map [intro]:
assumes p: "a <~~> b"
shows "map f a <~~> map f b"

(proof)

lemma perm_map_switch:
assumes m: "map f a = map £ b" and p: "b <~~> c"
shows "dd. a <~~> d A map £ d = map f c"

217

(proof)

lemma (in monoid) perm_assoc_switch:
assumes a:"as [~] bs" and p: "bs <~~> cs"
shows "dbs’. as <~~> bs’ A bs’ [~] cs"

(proof)

lemma (in monoid) perm_assoc_switch_r:
assumes p: "as <~~> bs" and a:"bs [~] cs"
shows "dbs’. as [~] bs’ A bs’ <~~> cs"

{proof)
declare perm_sym [sym]

lemma perm_setP:
assumes perm: "as <~~> bs"
and as: "P (set as)"
shows "P (set bs)"

(proof)
lemmas (in monoid) perm_closed = perm_setP[of _ _ "Aas. as C carrier
GlI]
lemmas (in monoid) irrlist_perm_cong = perm_setP[of _ _ ")las. Vacas.

irreducible G a"]

Essentially equal factorizations

lemma (in monoid) essentially_equall:

assumes ex: "fsl <~~> fs1’" "fs1’ [~] fs2"
shows "essentially_equal G fs1 fs2"
(proof)

lemma (in monoid) essentially_equalE:
assumes ee: "essentially_equal G fsl1 fs2"
and e: "Afs1’. [fsl <~~> fs1’; fsl1’ [~] fs2] = P"
shows "P"

(proof)

lemma (in monoid) ee_refl [simp,intro]:
assumes carr: "set as C carrier G"
shows "essentially_equal G as as"

(proof)

lemma (in monoid) ee_sym [sym]:
assumes ee: "essentially_equal G as bs"
and carr: "set as C carrier G" ‘"set bs C carrier G"
shows "essentially_equal G bs as"

(proof)

218

lemma (in monoid) ee_trans [trans]:
assumes ab: "essentially_equal G as bs" and bc: "essentially_equal
G bs cs"
and ascarr: "set as carrier G"
and bscarr: "set bs carrier G"
and cscarr: "set cs C carrier G"
shows "essentially_equal G as cs"

(proof)

c
-

26.5.3 Properties of lists of elements

Multiplication of factors in a list

lemma (in monoid) multlist_closed [simp, intro]:
assumes ascarr: "set fs C carrier G"
shows "foldr (®) fs 1 € carrier G"

{proof)

lemma (in comm_monoid) multlist_dividesI:
assumes "f € set fs" and "set fs C carrier G"
shows "f divides (foldr (®) fs 1)"

{proof)

lemma (in comm_monoid_cancel) multlist_listassoc_cong:
assumes "fs [~] fs’"
and "set fs C carrier G" and "set fs’ C carrier G"
shows "foldr (®) fs 1 ~ foldr (®) fs’ 1"

(proof)

lemma (in comm_monoid) multlist_perm_cong:
assumes prm: "as <~~> bs"
and ascarr: "set as C carrier G"
shows "foldr (®) as 1 = foldr (®) bs 1"

(proof)

lemma (in comm_monoid_cancel) multlist_ee_cong:
assumes "essentially_equal G fs fs’"
and "set fs C carrier G" and "set fs’ C carrier G"
shows "foldr (®) fs 1 ~ foldr (®) fs’ 1"

(proof)

26.5.4 Factorization in irreducible elements

lemma wfactorsI:
fixes G (structure)
assumes "Vfcset fs. irreducible G f"
and "foldr (®) fs 1 ~ a"
shows "wfactors G fs a"

(proof)

219

lemma wfactorsE:
fixes G (structure)
assumes wf: "wfactors G fs a"
and e: "[Vf€set fs. irreducible G f; foldr (®) fs 1 ~ a] = P"
shows "P"

(proof)

lemma (in monoid) factorsI:
assumes "Vfe€set fs. irreducible G f"
and "foldr (®) fs 1 = a"
shows "factors G fs a"

(proof)

lemma factorsE:
fixes G (structure)
assumes f: "factors G fs a"
and e: "[Vfeset fs. irreducible G f; foldr (®) fs 1 = a] = P"
shows "P"

(proof)

lemma (in monoid) factors_wfactors:
assumes "factors G as a" and "set as C carrier G"
shows "wfactors G as a"

(proof)

lemma (in monoid) wfactors_factors:
assumes "wfactors G as a" and "set as C carrier G"
shows "da’. factors G as a’ A a’ ~ a"

(proof)

lemma (in monoid) factors_closed [dest]:
assumes "factors G fs a" and "set fs C carrier G"
shows "a € carrier G"

(proof)

lemma (in monoid) nunit_factors:
assumes anunit: "a ¢ Units G"
and fs: "factors G as a"
shows "length as > 0"

(proof)

lemma (in monoid) unit_wfactors [simp]:
assumes aunit: "a € Units G"
shows "wfactors G [] a"

(proof)

lemma (in comm_monoid_cancel) unit_wfactors_empty:
assumes aunit: "a € Units G"
and wf: "wfactors G fs a"

and carr[simp]: "set fs C carrier G"
shows "fs = []"
(proof)

Comparing wfactors

220

lemma (in comm_monoid_cancel) wfactors_listassoc_cong_l:

assumes fact: "wfactors G fs a"
and asc: "fs [~] fs’"

and carr: "a € carrier G" ‘'"set fs C carrier G" ‘"set fs’ C carrier
Gll
shows "wfactors G fs’ a"
(proof)

lemma (in comm_monoid) wfactors_perm_cong_1:
assumes "wfactors G fs a"
and "fs <~~> fs’"
and "set fs C carrier G"
shows "wfactors G fs’ a"

(proof)

lemma (in comm_monoid_cancel) wfactors_ee_cong_l [trans]:

assumes ee: "essentially_equal G as bs"
and bfs: "wfactors G bs b"

and carr: "b € carrier G" ‘'"set as C carrier G" "set bs C carrier
Gll
shows "wfactors G as b"
(proof)
lemma (in monoid) wfactors_cong_r [trans]:
assumes fac: "wfactors G fs a" and aa’: "a ~ a’"
and carr[simp]: "a € carrier G" "a’ € carrier G"

Gll
shows "wfactors G fs a’"

(proof)

26.5.5 Essentially equal factorizations

lemma (in comm_monoid_cancel) unitfactor_ee:
assumes uunit: "u € Units G"
and carr: "set as C carrier G"
shows "essentially_equal G (as[0 := (as!0 ® u)]) as"
(is "essentially_equal G 7as’ as")

(proof)

lemma (in comm_monoid_cancel) factors_cong_unit:
assumes u: "u € Units G"
and a: "a ¢ Units G"
and afs: "factors G as a"
and ascarr: "set as C carrier G"

"set fs C carrier

221

shows "factors G (as[0 := (as!0 ® w)]) (a ® w)"
(is "factors G 7as’ 7a’")

(proof)

lemma (in comm_monoid) perm_wfactorsD:
assumes prm: "as <~~> bs"
and afs: "wfactors G as a"
and bfs: "wfactors G bs b"
and [simp]: "a € carrier G" "b € carrier G"
and ascarr [simp]: "set as C carrier G"
shows "a ~ Db"

(proof)

lemma (in comm_monoid_cancel) listassoc_wfactorsD:
assumes assoc: "as [~] bs"
and afs: "wfactors G as a"
and bfs: "wfactors G bs b"

and [simp]: "a € carrier G" "b € carrier G"

and [simp]: "set as C carrier G" "set bs C carrier G"
shows "a ~ Db"
(proof)

lemma (in comm_monoid_cancel) ee_wfactorsD:
assumes ee: "essentially_equal G as bs"
and afs: "wfactors G as a" and bfs: "wfactors G bs b"
and [simp]: "a € carrier G" "b € carrier G"
and ascarr[simp]: "set as C carrier G" and bscarr([simp]: "set bs
C carrier G"
shows "a ~ b"

{proof)

lemma (in comm_monoid_cancel) ee_factorsD:
assumes ee: "essentially_equal G as bs"
and afs: "factors G as a" and bfs:"factors G bs b"

and "set as C carrier G" ‘'"set bs C carrier G"
shows "a ~ b"
(proof)

lemma (in factorial monoid) ee_factorsI:
assumes ab: "a ~ b"
and afs: "factors G as a" and anunit: "a ¢ Units G"
and bfs: "factors G bs b" and bnunit: "b ¢ Units G"
and ascarr: "set as C carrier G" and bscarr: "set bs C carrier G"
shows "essentially_equal G as bs"

(proof)

lemma (in factorial_monoid) ee_wfactorsI:
assumes asc: "a ~ b"
and asf: "wfactors G as a" and bsf: "wfactors G bs b"

222

and acarr[simp]l: "a € carrier G" and bcarr([simpl: "b € carrier G"
and ascarr([simp]: "set as C carrier G" and bscarr[simp]: "set bs
C carrier G"
shows "essentially_equal G as bs"

(proof)

lemma (in factorial monoid) ee_wfactors:
assumes asf: "wfactors G as a"
and bsf: "wfactors G bs b"
and acarr: "a € carrier G" and bcarr: "b € carrier G"
and ascarr: "set as C carrier G" and bscarr: "set bs C carrier G"
shows asc: "a ~ b = essentially_equal G as bs"

(proof)

lemma (in factorial_monoid) wfactors_exist [intro, simp]:
assumes acarr[simp]: "a € carrier G"
shows "dfs. set fs C carrier G A wfactors G fs a"

(proof)

lemma (in monoid) wfactors_prod_exists [intro, simp]:
assumes "Va € set as. irreducible G a" and "set as C carrier G"
shows "da. a € carrier G A wfactors G as a"

(proof)

lemma (in factorial_monoid) wfactors_unique:
assumes "wfactors G fs a"
and "wfactors G fs’ a"
and "a € carrier G"
and "set fs C carrier G"
and "set fs’ C carrier G"
shows "essentially_equal G fs fs’"

(proof)

lemma (in monoid) factors_mult_single:
assumes "irreducible G a" and "factors G fb b" and "a € carrier G"
shows "factors G (a # fb) (a ® b)"

(proof)
lemma (in monoid_cancel) wfactors_mult_single:
assumes f: "irreducible G a" "wfactors G fb b"
"a € carrier G" "b € carrier G" '"set fb C carrier G"
shows "wfactors G (a # fb) (a ® b)"
(proof)

lemma (in monoid) factors_mult:
assumes factors: "factors G fa a" "factors G fb b"
and ascarr: "set fa C carrier G"
and bscarr: "set fb C carrier G"
shows "factors G (fa @ fb) (a ® b)"

223

(proof)

lemma (in comm_monoid_cancel) wfactors_mult [intro]:
assumes asf: "wfactors G as a" and bsf:"wfactors G bs b"
and acarr: "a € carrier G" and bcarr: "b € carrier G"
and ascarr: "set as C carrier G" and bscarr:"set bs C carrier G"
shows "wfactors G (as @ bs) (a ® b)"

(proof)

lemma (in comm_monoid) factors_dividesI:
assumes "factors G fs a"
and "f € set fs"
and "set fs C carrier G"
shows "f divides a"

(proof)

lemma (in comm_monoid) wfactors_dividesI:
assumes p: "wfactors G fs a"
and fscarr: "set fs C carrier G" and acarr: "a € carrier G"
and f: "f € set fs"
shows "f divides a"

(proof)

26.5.6 Factorial monoids and wfactors

lemma (in comm_monoid_cancel) factorial_monoidI:
assumes wfactors_exists: "Aa. [a € carrier G; a ¢ Units G | = 3Jfs.
set fs C carrier G A wfactors G fs a"
and wfactors_unique:
"/\a fs fs’. [[a € carrier G; set fs C carrier G; set fs’ C carrier

G;
wfactors G fs a; wfactors G fs’ a] — essentially_equal G fs
fs7ll
shows "factorial_monoid G"
(proof)

26.6 Factorizations as Multisets

Gives useful operations like intersection

abbreviation "assocs G x = eq_closure_of (division_rel G) {x}"

definition "fmset G as = mset (map (assocs G) as)"

Helper lemmas

lemma (in monoid) assocs_repr_independence:
assumes "y € assocs G x" "x € carrier G"
shows "assocs G x = assocs G y"

(proof)

224

lemma (in monoid) assocs_self:
assumes "x € carrier G"
shows "x € assocs G x"

{proof)

lemma (in monoid) assocs_repr_independenceD:
assumes repr: "assocs G x = assocs G y" and ycarr: "y € carrier G"
shows "y € assocs G x"

{proof)

lemma (in comm_monoid) assocs_assoc:
assumes "a € assocs G b" "b € carrier G"
shows "a ~ b"

{proof)

lemmas (in comm_monoid) assocs_eqD = assocs_repr_independenceD [THEN assocs_assoc]

26.6.1 Comparing multisets

lemma (in monoid) fmset_perm_cong:
assumes prm: "as <~~> bs"
shows "fmset G as = fmset G bs"

(proof)

lemma (in comm_monoid_cancel) eqc_listassoc_cong:

assumes "as [~] bs" and "set as C carrier G" and "set bs C carrier
G"

shows "map (assocs G) as = map (assocs G) bs"

(proof)

lemma (in comm_monoid_cancel) fmset_listassoc_cong:
assumes "as [~] bs"
and "set as C carrier G" and "set bs C carrier G"
shows "fmset G as = fmset G bs"

{proof)

lemma (in comm_monoid_cancel) ee_fmset:
assumes ee: "essentially_equal G as bs"
and ascarr: "set as C carrier G" and bscarr: "set bs C carrier G"
shows "fmset G as = fmset G bs"

{proof)

lemma (in comm_monoid_cancel) fmset_ee:
assumes mset: "fmset G as = fmset G bs"
and ascarr: "set as C carrier G" and bscarr: "set bs C carrier G"
shows "essentially_equal G as bs"

(proof)

lemma (in comm_monoid_cancel) ee_is_fmset:

225

assumes "set as C carrier G" and "set bs C carrier G"
shows "essentially_equal G as bs = (fmset G as = fmset G bs)"

(proof)

26.6.2 Interpreting multisets as factorizations

lemma (in monoid) mset_fmsetEx:
assumes elems: "AX. X € set_mset Cs = Jx. P x A X = assocs G x"
shows "dcs. (Vc € set cs. P ¢c) A fmset G cs = Cs"

(proof)

lemma (in monoid) mset_wfactorsEx:

assumes elems: "AX. X € set_mset Cs = Jx. (x € carrier G A irreducible
G x) A X = assocs G x"

shows "dc cs. ¢ € carrier G A set cs C carrier G A wfactors G cs c
A fmset G cs = Cs"

(proof)

26.6.3 Multiplication on multisets

lemma (in factorial monoid) mult_wfactors_fmset:
assumes afs: "wfactors G as a"
and bfs: "wfactors G bs b"
and cfs: "wfactors G cs (a ® b)"

and carr: "a € carrier G" "b € carrier G"
"set as C carrier G" '"set bs C carrier G" '"set cs C carrier
Gll
shows "fmset G cs = fmset G as + fmset G bs"
(proof)

lemma (in factorial_monoid) mult_factors_fmset:
assumes afs: "factors G as a"
and bfs: "factors G bs b"
and cfs: "factors G cs (a ® b)"
and "set as C carrier G" ‘'"set bs C carrier G" ‘'"set cs C carrier
Gll
shows "fmset G cs = fmset G as + fmset G bs"

(proof)

lemma (in comm_monoid_cancel) fmset_wfactors_mult:
assumes mset: "fmset G cs = fmset G as + fmset G bs"

and carr: "a € carrier G" "b € carrier G" "c € carrier G"
"set as C carrier G" "set bs C carrier G" '"set cs C carrier G"
and fs: "wfactors G as a" "wfactors G bs b" "wfactors G cs c"
shows "¢ ~ a ® b"
(proof)

26.6.4 Divisibility on multisets

lemma (in factorial _monoid) divides_fmsubset:

226

assumes ab: "a divides b"
and afs: "wfactors G as a"
and bfs: "wfactors G bs b"
and carr: "a € carrier G" "b € carrier G" ‘"set as C carrier G"
"set bs C carrier G"
shows "fmset G as C# fmset G bs"

(proof)

lemma (in comm_monoid_cancel) fmsubset_divides:
assumes msubset: "fmset G as C# fmset G bs"
and afs: "wfactors G as a"
and bfs: "wfactors G bs b"
and acarr: "a € carrier G"
and bcarr: "b € carrier G"
and ascarr: "set as C carrier G"
and bscarr: "set bs C carrier G"
shows "a divides b"

(proof)

lemma (in factorial monoid) divides_as_fmsubset:
assumes "wfactors G as a"
and "wfactors G bs b"
and "a € carrier G"
and "b € carrier G"
and "set as C carrier G"
and "set bs C carrier G"
shows "a divides b = (fmset G as C# fmset G bs)"

(proof)

Proper factors on multisets

lemma (in factorial_monoid) fmset_properfactor:
assumes asubb: "fmset G as C# fmset G bs"
and anb: "fmset G as # fmset G bs"
and "wfactors G as a"
and "wfactors G bs b"
and "a € carrier G"
and "b € carrier G"
and "set as C carrier G"
and "set bs C carrier G"
shows "properfactor G a b"

(proof)

lemma (in factorial_monoid) properfactor_fmset:
assumes '"properfactor G a b"
and "wfactors G as a"
and "wfactors G bs b"
and "a € carrier G"
and "b € carrier G"
and "set as C carrier G"

227

and "set bs C carrier G"
shows "fmset G as C# fmset G bs"

(proof)

lemma (in factorial_monoid) properfactor_fmset_ne:
assumes pf: "properfactor G a b"
and "wfactors G as a"
and "wfactors G bs b"
and "a € carrier G"
and "b € carrier G"
and "set as C carrier G"
and "set bs C carrier G"
shows "fmset G as # fmset G bs"

{proof)

26.7 Irreducible Elements are Prime

lemma (in factorial_monoid) irreducible_prime:
assumes pirr: "irreducible G p" and pcarr: "p € carrier G"
shows "prime G p"
(proof)

lemma (in factorial_monoid) factors_irreducible_prime:
assumes pirr: "irreducible G p" and pcarr: "p € carrier G"
shows "prime G p"

(proof)

26.8 Greatest Common Divisors and Lowest Common Mul-
tiples

26.8.1 Definitions

definition isgcd :: "[(’a,_) monoid_scheme, ’a, ’a, ’al] = bool"
(<(<notation=<mixfix gcdof>>_ gcdofs _ _)> [81,81,81] 80)
where "x gcdofg a b ¢«— x dividesg a A x dividesg b A
(Vyecarrier G. (y dividesg a A y dividesg b — y dividesg x))"

definition islcm :: "[_, ’a, ’a, ’al = bool"
(< (<notation=<mixfix lcmof>>_ lcmofs _ _)> [81,81,81] 80)
where "x lcmofg a b ¢«— a dividesg x A b dividesg x A
(Vy€carrier G. (a dividesg y A b dividesg y — x dividesg y))"

definition somegcd ::

"(’a,_) monoid_scheme = ’a = ’a = ’a"
where "somegcd G a b =

(SOME x. x € carrier G A x gcdofg a b)"

definition somelcm :: "(’a,_) monoid_scheme = ’a = ’a = ’a"

where "somelcm G a b = (SOME x. x € carrier G A x lcmofg a b)"

definition "SomeGecd G A = Lattice.inf (division_rel G) A"

228

locale gcd_condition_monoid = comm_monoid_cancel +
assumes gcdof_exists: "[a € carrier G; b € carrier G] = Jc. ¢ € carrier
G A c gcdof a b"

locale primeness_condition_monoid = comm_monoid_cancel +
assumes irreducible_prime: "[a € carrier G; irreducible G a] = prime
G aIl

locale divisor_chain_condition_monoid = comm_monoid_cancel +
assumes division_wellfounded: "wf {(x, y). x € carrier G A y € carrier
G A properfactor G x y}"

26.8.2 Connections to Lattice.thy

lemma gcdof_greatestLower:

fixes G (structure)

assumes carr[simp]: "a € carrier G" "b € carrier G"

shows "(x € carrier G A x gcdof a b) = greatest (division_rel G) x
(Lower (division_rel G) {a, b})"

(proof)

lemma lcmof_leastUpper:

fixes G (structure)

assumes carr[simp]: "a € carrier G" "b € carrier G"

shows "(x € carrier G A x lcmof a b) = least (division_rel G) x (Upper
(division_rel G) {a, b})"

(proof)

lemma somegcd_meet:
fixes G (structure)

assumes carr: "a € carrier G" "b € carrier G"
shows "somegcd G a b = meet (division_rel G) a b"
(proof)

lemma (in monoid) isgcd_divides_1:
assumes "a divides b"

and "a € carrier G" "b € carrier G"
shows "a gcdof a b"
(proof)

lemma (in monoid) isgcd_divides_r:
assumes "b divides a"

and "a € carrier G" "b € carrier G"
shows "b gcdof a b"
(proof)

26.8.3 Existence of gcd and lem

lemma (in factorial_monoid) gcdof_exists:
assumes acarr: "a € carrier G"

229

and bcarr: "b € carrier G"
shows "Jc. ¢ € carrier G A c gcdof a b"

(proof)

lemma (in factorial_monoid) lcmof_exists:
assumes acarr: "a € carrier G"
and bcarr: "b € carrier G"
shows "dc. ¢ € carrier G A ¢ lcmof a b"

(proof)

26.9 Conditions for Factoriality
26.9.1 Gecd condition

lemma (in gcd_condition_monoid) division_weak_lower_semilattice [simp]:
"weak_lower_semilattice (division_rel G)"

(proof)
lemma (in gcd_condition_monoid) gcdof_cong_1:
assumes "a’ ~ a" "a gcdof b c" "a’ € carrier G" and carr’: "a € carrier
G" "b € carrier G" "c € carrier G"
shows "a’ gcdof b c"
(proof)

lemma (in gcd_condition_monoid) gcd_closed [simp]:
assumes "a € carrier G" "b € carrier G"
shows "somegcd G a b € carrier G"

(proof)

lemma (in gcd_condition_monoid) gcd_isgcd:
assumes "a € carrier G" "b € carrier G"
shows "(somegcd G a b) gcdof a b"

{proof)

lemma (in gcd_condition_monoid) gcd_exists:
assumes "a € carrier G" "b € carrier G"
shows "dxeccarrier G. x = somegcd G a b"

{proof)

lemma (in gcd_condition_monoid) gcd_divides_1:
assumes "a € carrier G" "b € carrier G"
shows "(somegcd G a b) divides a"

(proof)

lemma (in gcd_condition_monoid) gcd_divides_r:
assumes "a € carrier G" "b € carrier G"
shows "(somegcd G a b) divides b"

(proof)

lemma (in gcd_condition_monoid) gcd_divides:

230

assumes "z divides x" "z divides y"

and L: "x € carrier G" "y € carrier G" "z € carrier G"
shows "z divides (somegcd G x y)"
(proof)
lemma (in gcd_condition_monoid) gcd_cong_l:
assumes "x ~ x’" "x € carrier G" "x’ € carrier G" "y € carrier G"
shows "somegcd G x y ~ somegcd G x’ y"
(proof)
lemma (in gcd_condition_monoid) gcd_cong_r:
assumes "y ~ y’" "x € carrier G" "y € carrier G" "y’ € carrier G"
shows "somegcd G x y ~ somegecd G x y’"
(proof)

lemma (in gcd_condition_monoid) gcdI:
assumes dvd: "a divides b" "a divides c"
and others: "Ay. [yE€carrier G; y divides b; y divides c] = y divides
all
and acarr: "a € carrier G" and bcarr: "b € carrier G" and ccarr:
"c € carrier G"
shows "a ~ somegcd G b c"

(proof)

lemma (in gcd_condition_monoid) gcdI2:

assumes "a gcdof b ¢" and "a € carrier G" and "b € carrier G" and
"c € carrier G"

shows "a ~ somegcd G b c"

(proof)
lemma (in gcd_condition_monoid) SomeGcd_ex:

assumes "finite A" "A C carrier G" "A # {}"

shows "dx € carrier G. x = SomeGcd G A"
(proof)

lemma (in gcd_condition_monoid) gcd_assoc:
assumes "a € carrier G" "b € carrier G" '"c € carrier G"
shows "somegcd G (somegcd G a b) ¢ ~ somegcd G a (somegcd G b c)"

(proof)

lemma (in gcd_condition_monoid) gcd_mult:

assumes acarr: "a € carrier G" and bcarr: "b € carrier G" and ccarr:
"c € carrier G"

shows "c ® somegcd G a b ~ somegecd G (c ® a) (c ® b)"
(proof)

lemma (in monoid) assoc_subst:
assumes ab: "a ~ b"
and cP: "Va b. a € carrier G A b € carrier G A a ~ b

231

— f a € carrier G A £f b € carrier G A £f a ~ f b"

and carr: "a € carrier G" "b € carrier G"
shows "f a ~ f b"
(proof)

lemma (in gcd_condition_monoid) relprime_mult:
assumes abrelprime: "somegcd G a b ~ 1"
and acrelprime: "somegcd G a ¢ ~ 1"

and carr[simp]: "a € carrier G" "b € carrier G" "c € carrier G"
shows "somegcd G a (b ® ¢c) ~ 1"
(proof)

lemma (in gcd_condition_monoid) primeness_condition: "primeness_condition_monoid
Gll
{proof)

sublocale gcd_condition_monoid C primeness_condition_monoid

(proof)

26.9.2 Divisor chain condition

lemma (in divisor_chain_condition_monoid) wfactors_exist:
assumes acarr: "a € carrier G"
shows "das. set as C carrier G A wfactors G as a"

(proof)

26.9.3 Primeness condition

lemma (in comm_monoid_cancel) multlist_prime_pos:
assumes aprime: "prime G a" and carr: "a € carrier G"
and as: "set as C carrier G" "a divides (foldr (®) as 1)"
shows "Ji<length as. a divides (as!i)"

(proof)
proposition (in primeness_condition_monoid) wfactors_unique:
assumes "wfactors G as a" '"wfactors G as’ a"
and "a € carrier G" "set as C carrier G" '"set as’ C carrier G"
shows "essentially_equal G as as’"
(proof)

26.9.4 Application to factorial monoids

Number of factors for wellfoundedness

definition factorcount :: "_ = ’a = nat"
where "factorcount G a =
(THE c. Vas. set as C carrier G A wfactors G as a — c = length
as)"

232

lemma (in monoid) ee_length:
assumes ee: "essentially_equal G as bs"
shows "length as = length bs"

{proof)

lemma (in factorial _monoid) factorcount_exists:

assumes carr[simp]: "a € carrier G"

shows "Jc. Vas. set as C carrier G A wfactors G as a —> ¢ = length
asll

{(proof)

lemma (in factorial_monoid) factorcount_unique:
assumes afs: "wfactors G as a"
and acarr[simp]: "a € carrier G" and ascarr: "set as C carrier G"
shows "factorcount G a = length as"

(proof)

lemma (in factorial monoid) divides_fcount:
assumes dvd: "a divides b"
and acarr: "a € carrier G"
and bcarr:"b € carrier G"
shows "factorcount G a < factorcount G b"

(proof)

lemma (in factorial _monoid) associated_fcount:
assumes acarr: "a € carrier G"
and bcarr: "b € carrier G"
and asc: "a ~ b"
shows "factorcount G a = factorcount G b"

{proof)

lemma (in factorial_monoid) properfactor_fcount:
assumes acarr: "a € carrier G" and bcarr:"b € carrier G"
and pf: "properfactor G a b"
shows "factorcount G a < factorcount G b"

(proof)

sublocale factorial_monoid C divisor_chain_condition_monoid

(proof)

sublocale factorial_monoid C primeness_condition_monoid

(proof)

lemma (in factorial_monoid) primeness_condition: "primeness_condition_monoid
6" (proof)

lemma (in factorial_monoid) gcd_condition [simp]: "gcd_condition_monoid
G"

233

(proof)

sublocale factorial_monoid C gcd_condition_monoid

{proof)

lemma (in factorial_monoid) division_weak_lattice [simp]: "weak_lattice
(division_rel G)"
(proof)

26.10 Factoriality Theorems

theorem factorial condition_one:
"divisor_chain_condition_monoid G A primeness_condition_monoid G <—
factorial_monoid G"

(proof)

theorem factorial_condition_two:

"divisor_chain_condition_monoid G A gcd_condition_monoid G <— factorial_monoid
Gll
(proof)

end

theory QuotRing
imports RingHom
begin

27 Quotient Rings

27.1 Multiplication on Cosets

definition rcoset_mult :: "[(’a, _) ring_scheme, ’a set, ’a set, ’a set]
= ’a set"
(< (<open_block notation=<mixfix rcoset_mult>>[mod _:1 _ @2 _)>
[81,81,81] 80)
where "rcoset_mult R I A B = ([JacA. (JbeB. I +>g (a ®g b))"

rcoset_mult fulfils the properties required by congruences

lemma (in ideal) rcoset_mult_add:

assumes "x € carrier R" "y € carrier R"

shows "[mod I:] (I > x) Q (I +> y) =1+ x ® y"
(proof)

27.2 Quotient Ring Definition

definition FactRing :: "[(’a,’b) ring_scheme, ’a set] = (’a set) ring"
(infixl <Quot> 65)
where "FactRing R I =

234

Qcarrier = a_rcosetsg I, mult = rcoset_mult R I,
one = (I +>g 1g), zero = I, add = set_add R)"

lemmas FactRing_simps = FactRing_def A_RCOSETS_defs a_r_coset_def [symmetric]

27.3 Factorization over General Ideals

The quotient is a ring

lemma (in ideal) quotient_is_ring: "ring (R Quot I)"
(proof)

This is a ring homomorphism

lemma (in ideal) rcos_ring_hom: "((+>) I) € ring_hom R (R Quot I)"
(proof)

lemma (in ideal) rcos_ring_hom_ring: "ring_hom_ring R (R Quot I) ((+>)
I)n
(proof)

The quotient of a cring is also commutative

lemma (in ideal) quotient_is_cring:
assumes '"cring R"
shows "cring (R Quot I)"

{proof)
Cosets as a ring homomorphism on crings

lemma (in ideal) rcos_ring_hom_cring:
assumes "cring R"
shows "ring hom_cring R (R Quot I) ((+>) I)"

(proof)

27.4 Factorization over Prime Ideals

The quotient ring generated by a prime ideal is a domain

lemma (in primeideal) quotient_is_domain: "domain (R Quot I)"
(proof)

Generating right cosets of a prime ideal is a homomorphism on commutative
rings

lemma (in primeideal) rcos_ring_hom_cring: "ring_hom_cring R (R Quot
D ((+>) D"
{proof)

27.5 Factorization over Maximal Ideals

In a commutative ring, the quotient ring over a maximal ideal is a field.
The proof follows “W. Adkins, S. Weintraub: Algebra — An Approach via
Module Theory”

235

proposition (in maximalideal) quotient_is_field:
assumes '"cring R"
shows "field (R Quot I)"

(proof)

lemma (in ring hom_ring) trivial_hom_iff:
"(h ¢ (carrier R) = { Og }) = (a_kernel R S h = carrier R)"
(proof)

lemma (in ring_hom_ring) trivial_ker_imp_inj:
assumes "a _kernel R S h={0 }"
shows "inj_on h (carrier R)"

{proof)

lemma (in ring_hom_ring) inj_iff_trivial_ker:
shows "inj_on h (carrier R) <— a_kernel R Sh ={ 0 }"

(proof)

corollary ring_hom_in_hom:
assumes "h € ring hom R S" shows "h € hom R S" and "h € hom (add_monoid
R) (add_monoid S)"

{proof)

corollary set_add_hom:
assumes "h € ring _hom R S" "I C carrier R" and "J C carrier R"
shows "h ¢ (I <+>g J) =h ¢ I <+>g h ¢ J"

(proof)

corollary a_coset_hom:

assumes "h € ring hom R S" "I C carrier R" "a € carrier R"

shows "h ¢ (a <+g I) =h ac<+g (h “ I)" and "h ¢ (I +>g a) = (h ¢ I)
+>3 h a"

(proof)

corollary (in ring_hom_ring) set_add_ker_hom:

assumes "I C carrier R"

shows "h ¢ (I <+> (a_kernel R S h)) =h ¢ I" and "h ¢ ((a_kernel R
S h) <+>I) =h ¢ I"

(proof)

lemma (in ring_hom_ring) non_trivial_field_hom_imp_inj:
assumes R: "field R"
and h: "h ¢ (carrier R) # { Og }"

shows "inj_on h (carrier R)"
(proof)

lemma "field R = cring R"

(proof)

lemma non_trivial_field_hom_is_inj:
assumes "h € ring _hom R S" and "field R" and "field
shows "inj_on h (carrier R)"

{(proof)

lemma (in ring hom_ring) img_is_add_subgroup:
assumes "subgroup H (add_monoid R)"
shows "subgroup (h ¢ H) (add_monoid S)"

(proof)

lemma (in ring) ring_ideal_imp_quot_ideal:
assumes "ideal I R"
and A: "ideal J R"
shows "ideal ((+>) I ¢ J) (R Quot I)"
(proof)

lemma (in ring hom_ring) ideal_vimage:
assumes "ideal I S"
shows "ideal { r € carrier R. hr € I } R"

(proof)

lemma (in ring) canonical_proj_vimage_in_carrier:
assumes "ideal I R"
and A: "J C carrier (R Quot I)"
shows "|J J C carrier R"

(proof) -

lemma (in ring) canonical_proj_vimage mem_iff:
assumes "ideal I R" "J C carrier (R Quot I)"
and a: "a € carrier R"
shows "(a e |J J) = (T +> ae D"

(proof)

corollary (in ring) quot_ideal_imp_ring_ideal:
assumes "ideal I R"
shows "ideal J (R Quot I) = ideal (|J J) R"
(proof)

lemma (in ring) ideal_incl_iff:

assumes "ideal I R" "ideal J R"

shows "(I C D =Q=(jeIT. I+ jnN"
(proof)

236

237

theorem (in ring) quot_ideal_correspondence:

assumes "ideal I R"

shows "bij_betw (AJ. (+>) I “ J) { J. ideal JRA I C J} {J . ideal
J (R Quot I) }"
(proof)

lemma (in cring) quot_domain_imp_primeideal:
assumes "ideal P R"
and A: "domain (R Quot P)"
shows "primeideal P R"

(proof)

lemma (in cring) quot_domain_iff_primeideal:
assumes "ideal P R"
shows "domain (R Quot P) = primeideal P R"

(proof)

27.6 Isomorphism

definition
ring_iso :: "_ = _ = = ’b) set"

Ca
{h. h € ring_hom R S A bij_betw h (carrier R)

where "ring_iso R S
(carrier S) }"

definition
is_ring iso :: "_ = _ = bool" (infixr <~> 60)
where "R ~ S = (ring_iso R S # {})"

definition
morphic_prop :: "_ = (’a = bool) = bool"
where "morphic_prop R P =

((P 1g) A

(Vr € carrier R. P r) A

(Vrl € carrier R. Vr2 € carrier R. P (r1 ®g r2)) A
(Vrl € carrier R. Vr2 € carrier R. P (rl @y r2)))"

lemma ring iso_memI:
fixes R (structure) and S (structure)
assumes "Ax. x € carrier R = h x € carrier 8"

and "Ax y. [x € carrier R; y € carrier R] = h (x ® y) = h
X ®g h y"

and "Ax y. [x € carrier R; y € carrier R] = h (x @ y) =h
x &g h y"

and "h 1 = 1g"
and "bij_betw h (carrier R) (carrier S)"
shows "h € ring_iso R S"

(proof)

lemma ring_iso_menE:

238

fixes R (structure) and S (structure)

assumes "h € ring_iso R S"

shows "Ax. x € carrier R = h x € carrier S"

and "Ax y. [x € carrier R; y € carrier R] = h (x ® y)
h yll

and "Ax y. [x € carrier R; y € carrier R] = h (x & y)
h y"

and "h 1 = 1g"

and "bij_betw h (carrier R) (carrier S)"

(proof)

h x ®g

h x ®g

lemma morphic_propI:
fixes R (structure)
assumes "P 1"
and "Ar. r € carrier R = P "
and "Arl r2. [rl € carrier R; r2 € carrier R] = P (r1 ® r2)"
and "Arl r2. [rl € carrier R; r2 € carrier R] = P (r1 & r2)"
shows "morphic_prop R P"

(proof)

lemma morphic_propE:
fixes R (structure)
assumes "morphic_prop R P"
shows "P 1"
and "Ar. r € carrier R = P "
and "Arl r2. [r1 € carrier R; r2 € carrier R] = P (r1 ® r2)"
and "Arl r2. [rl € carrier R; r2 € carrier R] = P (r1 @ r2)"

(proof)

lemma (in ring) ring_hom_restrict:

assumes "f € ring hom R 8" and "Ar. r € carrier R = f r
"g € ring_hom R S"

{proof)

g r" shows

lemma (in ring) ring_iso_restrict:

assumes "f € ring_iso R S" and "Ar. r € carrier R = f r
"g € ring_iso R S"
(proof)

g r" shows

lemma ring_iso_morphic_prop:
assumes "f € ring_iso R S"
and "morphic_prop R P"
and "A\r. Pr = fr =gr"
shows "g € ring_iso R S"

{(proof)

lemma (in ring) ring_hom_imp_img_ring:

239

assumes "h € ring_hom R S"
shows "ring (S (| carrier := h
?h_img")
(proof)

(4

(carrier R), zero := h 0)" (is "ring

lemma (in ring) ring_iso_imp_img_ring:
assumes "h € ring_iso R S"
shows "ring (S (| zero :=h 0)"
(proof)

lemma (in cring) ring_iso_imp_img_cring:

assumes "h € ring_iso R S"

shows "cring (S (zero := h 0)" (is "cring 7h_img")
(proof)

lemma (in domain) ring_iso_imp_img_domain:

assumes "h € ring_iso R S"

shows "domain (S (zero := h 0)" (is "domain ?h_img")
(proof)

lemma (in field) ring_iso_imp_img_field:

assumes "h € ring_iso R S"

shows "field (S (zero := h 0)" (is "field 7h_img")
(proof)

lemma ring_iso_same_card: "R ~ S = card (carrier R) = card (carrier
S) n
(proof)

lemma ring_iso_set_refl: "id € ring_iso R R"
(proof)

corollary ring iso_refl: "R ~ R"
(proof)

lemma ring_iso_set_trans:
"[£ € ring_iso R S; g € ring_iso S Q] = (g o f) € ring_iso R Q"
(proof)

corollary ring_iso_trans: " R~ S; S~Q] = R ~ Q"

(proof)

lemma ring_iso_set_sym:
assumes "ring R" and h: "h € ring_iso R S"
shows "(inv_into (carrier R) h) € ring_iso S R"

{(proof)

corollary ring_iso_sym:

240

assumes '"ring R"
shows "R ~ § =— S ~ R"

(proof)

lemma (in ring_hom_ring) the_elem_simp [simp]:
assumes x: "x € carrier R"
shows "the_elem (h ¢ ((a_kernel R S h) +> x)) = h x"

(proof)

lemma (in ring_hom_ring) the_elem_inj:
assumes "X € carrier (R Quot (a_kernel R S h))"
and "Y € carrier (R Quot (a_kernel R S h))"
and Eq: "the_elem (h ¢ X) = the_elem (h ¢ Y)"
shows "X = Y"

(proof)

lemma (in ring_hom_ring) quot_mem:
"X € carrier (R Quot (a_kernel R S h)) = dx € carrier R. X = (a_kernel
R S h) +> x"

{proof)

lemma (in ring_hom_ring) the_elem_wf:
assumes "X € carrier (R Quot (a_kernel R S h))"
shows "Jy € carrier S. (h ¢ X) ={ y }"

(proof)

corollary (in ring_hom_ring) the_elem_wf’:

"X € carrier (R Quot (a_kernel R S h)) = dr € carrier R. (h ¢ X)
={hr}"

(proof)

lemma (in ring_hom_ring) the_elem_hom:
"(AX. the_elem (h ¢ X)) € ring_hom (R Quot (a_kernel R S h)) S"
(proof)

lemma (in ring_hom_ring) the_elem_surj:
"(XX. (the_elem (h ¢ X))) ¢ carrier (R Quot (a_kernel R S h)) = (h ¢
(carrier R))"

(proof)

proposition (in ring _hom_ring) FactRing_iso_set_aux:
"(AX. the_elem (h ¢ X)) € ring_iso (R Quot (a_kernel R S h)) (S (carrier
:= h ¢ (carrier R) |))"

(proof)

theorem (in ring _hom_ring) FactRing_iso_set:

assumes "h ¢ carrier R = carrier S"

shows "(AX. the_elem (h ¢ X)) € ring_iso (R Quot (a_kernel R S h))
Sl|

(proof)

corollary (in ring_hom_ring) FactRing_iso:
assumes "h ¢ carrier R = carrier S"
shows "R Quot (a_kernel R S h) ~ S"

(proof)

corollary (in ring) FactRing_zeroideal:
shows "R Quot { 0 } ~ R" and "R ~ R Quot { O }"
{(proof)

lemma (in ring_hom_ring) img_is_ring: "ring (S (| carrier :=
R) D)n
(proof)

lemma (in ring_hom_ring) img_is_cring:
assumes "cring S"
shows "cring (S (carrier :=h

(proof)

[4

(carrier R) |))"

lemma (in ring_hom_ring) img_is_domain:
assumes "domain S"
shows "domain (S (carrier :=h

(proof)

¢ (carrier R))"

proposition (in ring_hom_ring) primeideal_vimage:
assumes R: "cring R"
and A: "primeideal P S"
shows "primeideal { r € carrier R. hr € P } R"

(proof)

end

theory IntRing
imports "HOL-Computational_Algebra.Primes" QuotRing Lattice
begin

28 The Ring of Integers

28.1 Some properties of int

lemma dvds_eq_abseq:
fixes k :: int
shows "1 dvd k A k dvd 1 +— |1]| = |k|"
{proof)

h

[4

241

(carrier

242

28.2 2Z: The Set of Integers as Algebraic Structure

abbreviation int_ring :: "int ring" (<Z>)
where "int_ring = (carrier = UNIV, mult = (%), one = 1, zero = 0, add
= (H))"

lemma int_Zcarr [intro!, simpl: "k € carrier Z"
{proof)

lemma int_is_cring: "cring Z"

(proof)

28.3 Interpretations

Since definitions of derived operations are global, their interpretation needs
to be done as early as possible — that is, with as few assumptions as possible.

interpretation int: monoid Z
rewrites "carrier Z = UNIV"
and "mult Z x y = x * y"
and "one Z = 1"
and "pow Z x n = x"n"

(proof)

interpretation int: comm_monoid Z
rewrites "finprod Z f A = prod f A"

(proof)

interpretation int: abelian_monoid Z
rewrites int_carrier_eq: "carrier Z = UNIV"
and int_zero_eq: "zero Z = 0"
and int_add_eq: "add Z x y = x + y"

and int_finsum_eq: "finsum Z f A = sum f A"
(proof)
interpretation int: abelian_group Z

rewrites "carrier Z = UNIV"

and "zero Z = 0"

and "add Z x y = x + y"

and "finsum Z f A = sum f A"

and int_a_inv_eq: "a_inv Z x = - x"

and int_a_minus_eq: "a_minus Z xy = x - y"
(proof)

interpretation int: "domain" Z
rewrites "carrier Z = UNIV"
and "zero Z = 0"
and "add Z xy =x + y"

243

and "finsum Z £ A = sum f A"

and "a_inv Z x = - x"
and "a_minus Z xy =x - y"
(proof)

Removal of occurrences of UNIV in interpretation result — experimental.

lemma UNIV:
"x € UNIV <— True"
"A C UNIV <— True"
"(Vx € UNIV. P x) «— (Vx. P x)"
"(dx € UNIV. P x) «<— (dx. P x)"
"(True — Q) +— Q"
"(True — PROP R) = PROP R"
(proof)

interpretation int
partial_order "(carrier = UNIV::int set, eq = (=), le = (L))"
rewrites "carrier (carrier = UNIV::int set, eq = (=), le = (Z)|) = UNIV"
and "le (carrier = UNIV::int set, eq = (=), le = (D)) xy = (x <
"
and "lless (carrier = UNIV::int set, eq = (=), le = () xy = x
<y
(proof)

interpretation int
lattice "(carrier = UNIV::int set, eq = (=), le =
rewrites "join (carrier = UNIV::int set, eq = (=), le = (<)) x y = max
x y"
and "meet (carrier = UNIV::int set, eq = (=), le = (<)) x y = min
x y"
(proof)

interpretation int
total_order "(carrier = UNIV::int set, eq = (=), le = (L))"

(proof)

28.4 Generated Ideals of =z

lemma int_Idl: "Idlz {a} = {x * a | x. Truel}"
(proof)

lemma multiples_principalideal: "principalideal {x * a | x. True } Z"

(proof)

lemma prime_primeideal:
assumes prime: "Factorial_Ring.prime p"
shows "primeideal (Idlz {p}) Z"

(proof)

244

28.5 Ideals and Divisibility

lemma int_Idl_subset_ideal: "Idlz {k} C Idlz {1} = (k € Idlz {1}H)"
(proof)

lemma Idl_subset_eq_dvd: "Idlz {k} C Idlz {1} <— 1 dvd k"
(proof)

lemma dvds_eq_Idl: "1 dvd k A k dvd 1 <— Idlz {k} = Idlz {1}"
(proof)

lemma Idl_eq_abs: "Idlz {k} = Idlz {1} «— [1] = [k|"
{proof)

28.6 Ideals and the Modulus

definition ZMod :: "int = int = int set"
where "ZMod k r = (IdlZ {k}) +>z r"

lemmas ZMod_defs =
ZMod_def genideal_def

lemma rcos_zfact:
assumes kIl: "k € ZMod 1 r"
shows "dx. k = x *x 1 + "

(proof)

lemma ZMod_imp_zmod:
assumes zmods: "ZMod m a = ZMod m b"
shows "a mod m = b mod m"

(proof)

lemma ZMod_mod: "ZMod m a = ZMod m (a mod m)"

{(proof)

lemma zmod_imp_ZMod:
assumes modeq: "a mod m = b mod m"
shows "ZMod m a = ZMod m b"

(proof)

corollary ZMod_eq mod: "ZMod m a = ZMod m b <— a mod m = b mod m"
(proof)

28.7 Factorization

definition ZFact :: "int = int set ring"
where "ZFact k = Z Quot (Idlz {k})"

lemmas ZFact_defs = ZFact_def FactRing_def

245

lemma ZFact_is_cring: "cring (ZFact k)"
{proof)

lemma ZFact_zero: "carrier (ZFact 0) = (Ja. {{a}})"
(proof)

lemma ZFact_one: "carrier (ZFact 1) = {UNIV}"
(proof)

lemma ZFact_prime_is_domain:
assumes pprime: "Factorial_Ring.prime p"
shows "domain (ZFact p)"

(proof)

end

theory Weak_Morphisms
imports QuotRing

begin

29 Weak Morphisms

The definition of ring isomorphism, as well as the definition of group iso-
morphism, doesn’t enforce any algebraic constraint to the structure of the
schemes involved. This seems unnatural, but it turns out to be very use-
ful: in order to prove that a scheme B satisfy certain algebraic constraints,
it’s sufficient to prove those for a scheme A and show the existence of an
isomorphism between A and B. In this section, we explore this idea in a
different way: given a scheme A and a function f, we build a scheme B with
an algebraic structure of same strength as A where f is an homomorphism
from A to B.

29.1 Definitions

locale weak_group_morphism = normal H G for f and H and G (structure)
+

assumes inj_mod_subgroup: "[a € carrier G; b € carrier G| = f a
=fb+— a® (inv b) € H"

locale weak_ring morphism = ideal I R for f and I and R (structure) +

assumes inj_mod_ideal: "[a € carrier R; b € carrier R = f a =
fb«+—aobel"

definition image_group :: "(’a = ’b) = (’a, ’c) monoid_scheme = ’b monoid"

246

where "image_group f G =
(carrier = f ¢ (carrier G),
mult = (Aa b. £ ((inv_into (carrier G) f a) ®g (inv_into
(carrier G) f b))),

one = f 1g |)"

definition image_ring :: "(’a = ’b) = (’a, ’c) ring_scheme = ’b ring"
where "image_ring f R = monoid.extend (image_group f R)
(zero = f Og,
add = (Aa b. f ((inv_into (carrier R) f a) @y (inv_into
(carrier R) f b))) "

29.2 Weak Group Morphisms

¢ (carrier

lemma image_group_carrier: "carrier (image_group f G) = f
G) n

{proof)

lemma image_group_one: "one (image_group f G) = f 1g"

(proof)

lemma weak_group_morphismsI:

assumes "H < G" and "Aa b. [a € carrier G; b € carrier G | = £
a=fb+— a®g (invg b) € H"

shows "weak_group_morphism f H G"

(proof)

lemma image_group_truncate:

fixes R :: "(’a, ’b) monoid_scheme"

shows "monoid.truncate (image_group f R) = image_group f (monoid.truncate
R.) n

{proof)

lemma image_ring_truncate: "monoid.truncate (image_ring f R) = image_group
f Rll

(proof)

lemma (in ring) weak_add_group_morphism:

assumes "weak_ring morphism f I R" shows "weak_group_morphism f I (add_monoid
R.) n
(proof)

lemma (in group) weak_group_morphism_range:

assumes "weak_group_morphism f H G" and "a € carrier G" shows "f ¢
(H#> a) ={fa?l"
(proof)

lemma (in group) vimage_eq_rcoset:
assumes "weak_group_morphism f H G" and "a € carrier G"

247

shows "{ b € carrier G. f b=f a} =H #> a" and "{ b € carrier G.
fb=fal}=ac<#H"
(proof)

lemma (in group) weak_group_morphism_ker:

assumes "weak_group_morphism f H G" shows "kernel G (image_group f
G) £ =H"

{proof)

lemma (in group) weak_group_morphism_inv_into:
assumes "weak_group_morphism f H G" and "a € carrier G"
obtains h h’ where "h € H" "inv_into (carrier G) f (f a) = h ® a"
and "h’ € H" "inv_into (carrier G) f (f a) = a ® h’"

(proof)

proposition (in group) weak_group_morphism_is_iso:

assumes "weak_group_morphism f H G" shows "(Ax. the_elem (f ¢ x)) €
iso (G Mod H) (image_group f G)"
(proof)

corollary (in group) image_group_is_group:
assumes "weak_group_morphism f H G" shows "group (image_group f G)"

(proof)

corollary (in group) weak_group_morphism_is_hom:

assumes "weak_group_morphism f H G" shows "f € hom G (image_group f
O
(proof)

corollary (in group) weak_group_morphism_group_hom:

assumes "weak_group_morphism f H G" shows "group_hom G (image_group
f G f"

(proof)

29.3 Weak Ring Morphisms

4

lemma image_ring_carrier: "carrier (image_ring f R) = f ¢ (carrier R)"

(proof)

lemma image_ring one: "one (image_ring f R) = f 1y"
{proof)

lemma image_ring_zero: "zero (image_ring f R) = f Og"

(proof)

lemma weak_ring_morphismI:

assumes "ideal I R" and "Aa b. [a € carrier R; b € carrier R | =
fa=fb<«+—>aocgbecl"

shows "weak_ring morphism f I R"

248

(proof)

lemma (in ring) weak_ring morphism_range:

assumes "weak_ring_morphism f I R" and "a € carrier R" shows "f
(I+>a)={fa?l"

{proof)

[4

lemma (in ring) vimage_eq_a_rcoset:
assumes "weak_ring morphism f I R" and "a € carrier R" shows "{ b
€ carrier R. fb=fa} =1+ a"

(proof)

lemma (in ring) weak_ring morphism_ker:

assumes "weak_ring morphism f I R" shows "a_kernel R (image_ring f
R) £ =1I"

(proof)

lemma (in ring) weak_ring morphism_inv_into:
assumes "weak_ring morphism f I R" and "a € carrier R"
obtains i where "i € I" "inv_into (carrier R) f (f a) =i & a"

(proof)

proposition (in ring) weak_ring morphism_is_iso:
assumes "weak_ring morphism f I R" shows "(Ax. the_elem (f ¢ x)) €
ring_iso (R Quot I) (image_ring f R)"

(proof)

corollary (in ring) image_ring zero’:
assumes "weak_ring _morphism f I R" shows "the_elem (f ¢ OR quot I)
= 0image_ring fR"

{(proof)

corollary (in ring) image_ring_is_ring:
assumes "weak_ring morphism f I R" shows "ring (image_ring f R)"
(proof)

corollary (in ring) image_ring is_field:

assumes "weak_ring morphism f I R" and "field (R Quot I)" shows "field
(image_ring f R)"

(proof)

corollary (in ring) weak_ring morphism_is_hom:

assumes "weak_ring morphism f I R" shows "f € ring hom R (image_ring
f R)"
(proof)

corollary (in ring) weak_ring_morphism_ring_hom:
assumes "weak_ring morphism f I R" shows "ring_hom_ring R (image_ring
f R) £"

249

(proof)

29.4 Injective Functions

If the fuction is injective, we don’t need to impose any algebraic restriction
to the input scheme in order to state an isomorphism.
lemma inj_imp_image_group_iso:

assumes "inj_on f (carrier G)" shows "f € iso G (image_group f G)"

(proof)

lemma inj_imp_image_group_inv_iso:

assumes "inj f" shows "Hilbert_Choice.inv f € iso (image_group f G)
Gll

(proof)

lemma inj_imp_image_ring_iso:

assumes "inj_on f (carrier R)" shows "f € ring_iso R (image_ring £
R)"

(proof)

lemma inj_imp_image_ring inv_iso:
assumes "inj f" shows "Hilbert_Choice.inv f € ring_iso (image_ring
f R) R"

(proof)

lemma (in group) inj_imp_image_group_is_group:
assumes "inj_on f (carrier G)" shows "group (image_group f G)"

{proof)

lemma (in ring) inj_imp_image_ring_is_ring:
assumes "inj_on f (carrier R)" shows "ring (image_ring f R)"
(proof)

lemma (in domain) inj_imp_image_ring_is_domain:
assumes "inj_on f (carrier R)" shows "domain (image_ring f R)"

(proof)

lemma (in field) inj_imp_image_ring_is_field:
assumes "inj_on f (carrier R)" shows "field (image_ring f R)"

(proof)

30 Examples

In a lot of different contexts, the lack of dependent types make some defi-
nitions quite complicated. The tools developed in this theory give us a way
to change the type of a scheme and preserve all of its algebraic properties.
We show, in this section, how to make use of this feature in order to solve

250

the problem mentioned above.

30.1 Direct Product

abbreviation nil_monoid :: "(’a list) monoid"
where "nil_monoid = (carrier = { [1 }, mult = (Aa b. [1), one = []

Du

definition DirProd_list :: "((’a, ’b) monoid_scheme) list = (’a list)
monoid"

where "DirProd_list Gs = foldr (AG H. image_group (A(x, xs). x # xs)
(G xx H)) Gs nil_monoid"

30.1.1 Basic Properties

lemma DirProd_list_carrier:
shows "carrier (DirProd_list (G # Gs)) = (A(x, xs). x # x8) ¢ (carrier
G X carrier (DirProd_list Gs))"

(proof)

lemma DirProd_list_one:
shows "one (DirProd_list Gs) = foldr (MG tl. (one G) # tl) Gs []"

(proof)

lemma DirProd_list_carrier_mem:

assumes "gs € carrier (DirProd_list Gs)"

shows "length gs = length Gs" and "Ai. i < length Gs = (gs ! i)
€ carrier (Gs ! i)"

(proof)

lemma DirProd_list_carrier_memI:

assumes "length gs = length Gs" and "Ai. i < length Gs = (gs ! i)
€ carrier (Gs ! i)"

shows "gs € carrier (DirProd_list Gs)"

(proof)

lemma inj_on_DirProd_carrier:
shows "inj_on (A(g, gs). g # gs) (carrier (G xx (DirProd_list Gs)))"
(proof)

lemma DirProd_list_is_group:
assumes "Ai. i < length Gs = group (Gs ! i)" shows "group (DirProd_list
Gs)ll

(proof)

lemma DirProd_list_iso:

"(A(g, gs). g # gs) € iso (G xx (DirProd_list Gs)) (DirProd_list (G
Gs))"

(proof)

251

end

theory Ring_Divisibility

imports Ideal Divisibility QuotRing Multiplicative_Group

begin

definition mult_of :: "(’a, ’b) ring_scheme = ’a monoid" where
"mult_of R = (| carrier = carrier R - {Og}, mult = mult R, one = 1g))"

lemma carrier_mult_of [simp]: "carrier (mult_of R) = carrier R - {Og}"

(proof)

lemma mult_mult_of [simp]: "mult (mult_of R) = mult R"

{proof)

lemma nat_pow_mult_of: "(["lguit of) = (([TIR) :: _ = nat =)"

(proof)

lemma one_mult_of [simpl: "lpuit of R = 1r"
(proof)

31 The Arithmetic of Rings

In this section we study the links between the divisibility theory and that
of rings

31.1 Definitions

locale factorial_domain = domain + factorial monoid "mult_of R"

locale noetherian_ring = ring +
assumes finetely_gen: "ideal I R = JA C carrier R. finite A A I
= Idl A"

locale noetherian_domain = noetherian_ring + domain

locale principal_domain = domain +
assumes exists_gen: "ideal I R = Ja € carrier R. I = PIdl a"

locale euclidean_domain =
domain R for R (structure) + fixes ¢ :: "’a = nat"
assumes euclidean_function:
"[a€ carrier R-{0}; b € carrier R-{ 01}] =

252

Jdqr. q € carrier RAr € carrier RAa=(b®q &r A ((r=20)
V (pr<ehb)"

definition ring_irreducible :: "(’a, ’b) ring_scheme = ’a = bool" (<ring’_irreduciblez >)
where "ring_irreducibleg a <— (a # Og) A (irreducible R a)"

definition ring prime :: "(’a, ’b) ring_scheme = ’a = bool" (<ring’_primez >)
where "ring primeg a <— (a # Og) A (prime R a)"

31.2 The cancellative monoid of a domain.

sublocale domain < mult_of: comm_monoid_cancel "mult_of R"
rewrites "mult (mult_of R) = mult R"
and "one (mult_of R) = one R"

(proof)

sublocale factorial_domain < mult_of: factorial_monoid "mult_of R"
rewrites "mult (mult_of R) = mult R"
and "one (mult_of R) = one R"

(proof)

lemma (in ring) noetherian_ringl:
assumes "AI. ideal I R = JA C carrier R. finite A A I = Idl A"
shows "noetherian_ring R"

(proof)

lemma (in domain) euclidean_domainI:
assumes "Aa b. [a € carrier R- {0 }; b€ carrier R-{ 0}] =
Jdq r. q € carrier RA r € carrier RAa= (b ® q@ @& r A
((r=0)V (pr<epdb)"
shows "euclidean_domain R ¢
(proof)

31.3 Passing from R to Ring Divisibility.mult_of R and vice-
versa.

lemma divides_mult_imp_divides [simp]: "a divides(pu1t of p) P = @ dividesp
bll
(proof)

lemma (in domain) divides_imp_divides_mult [simp]:

"[a € carrier R; b € carrier R - { 0 } | = a dividesg b = a divides(yyit of R)
bll

(proof)

lemma (in cring) divides_one:
assumes "a € carrier R"
shows "a divides 1 <— a € Units R"

{proof)

253

lemma (in ring) one_divides:
assumes "a € carrier R" shows "1 divides a"

{proof)

lemma (in ring) divides_zero:
assumes "a € carrier R" shows "a divides 0"
(proof)

lemma (in ring) zero_divides:
shows "0 divides a <— a = 0"

(proof)

lemma (in domain) divides_mult_zero:
assumes "a € carrier R" shows "a divides(yu1t of gy 0 = a = 0"

(proof)

lemma (in ring) divides_mult:
assumes "a € carrier R" "c &€ carrier R"
shows "a divides b — (¢ ® a) divides (c ® b)"

(proof)

lemma (in domain) mult_divides:
assumes "a € carrier R" "b € carrier R" "c € carrier R - { 0 }"
shows "(c ® a) divides (¢ ® b) — a divides b"

(proof)

lemma (in domain) assoc_iff_assoc_mult:
assumes "a € carrier R" and "b € carrier R"
shows "a ~ b <— a ~(u1t _of B) D"

{(proof)

lemma (in domain) Units_mult_eq_Units [simp]: "Units (mult_of R) = Units
Rll
(proof)

lemma (in domain) ring_associated_iff:
assumes "a € carrier R" "b € carrier R"
shows "a ~ b +— (du € Units R. a = u ® b)"
(proof)

lemma (in domain) properfactor_mult_imp_properfactor:
"[a € carrier R; b € carrier R | = properfactor (mult_of R) b a —
properfactor R b a"

(proof)

lemma (in domain) properfactor_imp_properfactor_mult:
"[2 € carrier R - { 0 }; b € carrier R | = properfactor R b a =
properfactor (mult_of R) b a"

254

(proof)

lemma (in domain) properfactor_of_zero:

assumes "b € carrier R"

shows "— properfactor (mult_of R) b 0" and "properfactor R b 0 +—
b # 0"

(proof)

31.4 Irreducible

The following lemmas justify the need for a definition of irreducible specific
to rings: for irreducible R, we need to suppose we are not in a field (which is
plausible, but = field R is an assumption we want to avoid; for irreducible
(Ring_Divisibility.mult_of R), zero is allowed.

lemma (in domain) zero_is_irreducible_mult:
shows "irreducible (mult_of R) 0"

(proof)

lemma (in domain) zero_is_irreducible_iff field:
shows "irreducible R 0 <— field R"

(proof)

lemma (in domain) irreducible_imp_irreducible_mult:
"[a € carrier R; irreducible R a | = irreducible (mult_of R) a"

(proof)

lemma (in domain) irreducible_mult_imp_irreducible:
"[a € carrier R - { 0 }; irreducible (mult_of R) a | = irreducible
R all

(proof)

lemma (in domain) ring_irreducibleE:

assumes "r € carrier R" and "ring_irreducible r"

shows "r # 0" "irreducible R r" "irreducible (mult_of R) r" "r ¢ Units
Rll

and "Aa b. [a € carrier R; b € carrier R = r
€ Units R V b € Units R"

(proof)

a®b=—a

lemma (in domain) ring_irreduciblel:
assumes "r € carrier R - { 0 }" "r ¢ Units R"
and "Aa b. [a € carrier R; b € carrier R = r
€ Units R V b € Units R"
shows "ring_irreducible r"

(proof)

a® b= a

lemma (in domain) ring_irreducibleI’:
assumes "r € carrier R - { 0 }" "irreducible (mult_of R) r"

shows "ring_irreducible r"
{proof)

31.5 Primes

lemma (in domain) zero_is_prime: "prime R 0" "prime (mult_of

{proof)

lemma (in domain) prime_eq_prime_mult:
assumes "p € carrier R"
shows "prime R p <— prime (mult_of R) p"
(proof)

lemma (in domain) ring_primeE:
assumes "p € carrier R" "ring prime p"
shows "p # 0" "prime (mult_of R) p" "prime R p"
{proof)

lemma (in ring) ring primel:
assumes "p # 0" "prime R p" shows "ring_prime p"

(proof)

lemma (in domain) ring primel’:
assumes "p € carrier R - { 0 }" "prime (mult_of R) p"
shows "ring prime p"

(proof)

31.6 Basic Properties

lemma (in cring) to_contain_is_to_divide:
assumes "a € carrier R" "b &€ carrier R"
shows "PIdl b C PIdl a <+— a divides b"

(proof)

lemma (in cring) associated_iff_same_ideal:
assumes "a € carrier R" "b &€ carrier R"
shows "a ~ b +— PIdl a = PIdl b"

(proof)

lemma (in cring) ideal_eq_carrier_iff:
assumes "a € carrier R"
shows "carrier R = PIdl a «<— a € Units R"

(proof)

lemma (in domain) primeideal_iff_prime:
assumes "p € carrier R - { 0 }"
shows "primeideal (PIdl p) R <— ring_prime p"

{(proof)

255

R) o"

256

31.7 Noetherian Rings

lemma (in ring) chain_Union_is_ideal:

assumes "subset.chain { I. ideal I R } C"

shows "ideal (if C = {} then { 0 } else (|JC)) R"
(proof)

lemma (in noetherian_ring) ideal_chain_is_trivial:
assumes "C # {}" "subset.chain { I. ideal I R } C"
shows "[JC € ¢"

(proof)

lemma (in ring) trivial_ideal_chain_imp_noetherian:

assumes "AC. [C # {}; subset.chain { I. ideal IR} C] = |C €
cll

shows "noetherian_ring R"

(proof)

lemma (in noetherian_domain) factorization_property:

assumes "a € carrier R - { 0 }" "a ¢ Units R"

shows "dfs. set fs C carrier (mult_of R) A wfactors (mult_of R) fs
a" (is "7?factorizable a")

(proof)

lemma (in noetherian_domain) exists_irreducible_divisor:
assumes "a € carrier R - { 0 }" and "a ¢ Units R"
obtains b where "b € carrier R" and "ring_irreducible b" and "b divides

a.ll

(proof)

31.8 Principal Domains

sublocale principal_domain C noetherian_domain

{(proof)

lemma (in principal_domain) irreducible_imp_maximalideal:
assumes "p € carrier R"
and "ring_irreducible p"
shows "maximalideal (PIdl p) R"

(proof)

corollary (in principal_domain) primeness_condition:
assumes "p € carrier R"
shows "ring_irreducible p ¢<— ring_prime p"

(proof)

lemma (in principal_domain) domain_iff_prime:
assumes "a € carrier R - { 0 }"
shows "domain (R Quot (PIdl a)) <— ring_prime a"

(proof)

257

lemma (in principal_domain) field_iff_prime:
assumes "a € carrier R - { 0 }"
shows "field (R Quot (PIdl a)) <— ring_prime a"

(proof)

sublocale principal_domain < mult_of: primeness_condition_monoid "mult_of
Rll
rewrites "mult (mult_of R) = mult R"
and "one (mult_of R) = one R"

(proof)

sublocale principal_domain < mult_of: factorial_monoid "mult_of R"
rewrites "mult (mult_of R) = mult R"
and "one (mult_of R) = one R"

(proof)

sublocale principal_domain C factorial_domain

{proof)

lemma (in principal_domain) ideal_sum_iff_gcd:
assumes "a € carrier R" "b € carrier R" "d € carrier R"
shows "PIdl d = PIdl a <+>g PIdl b <— d gcdof a b"

(proof)

lemma (in principal_domain) bezout_identity:
assumes "a € carrier R" "b € carrier R"
shows "PIdl a <+>j PIdl b = PIdl (somegcd R a b)"

(proof)

31.9 Euclidean Domains

sublocale euclidean_domain C principal_domain

(proof)

sublocale field C euclidean_domain R "A_. 0"
(proof)

end

theory Subrings
imports Ring RingHom QuotRing Multiplicative_Group
begin

258

32 Subrings

32.1 Definitions

locale subring =
subgroup H "add_monoid R" + submonoid H R for H and R (structure)

locale subcring = subring +
assumes sub_m_comm: "[hl1 € H; h2 € H] = hl ® h2 = h2 ® h1"

locale subdomain = subcring +

assumes sub_one_not_zero [simp]: "1 # 0"

assumes subintegral: "[h1 € H; h2 € H] = hl ® h2 = 0 = h1 = 0
V h2 = 0"

locale subfield = subdomain K R for K and R (structure) +
assumes subfield_Units: "Units (R (carrier := K)) =K - { 0 }"

32.2 Basic Properties
32.2.1 Subrings

lemma (in ring) subringI:
assumes "H C carrier R"
and "1 € H"
and "Ah. h € H = © h € H"
and "Ah1 h2. [hl1 € H; h2 €
and "Aht h2. [h1 € H; h2 €
shows "subring H R"

(proof)

] = hi1 ® h2 € H"
] = hl ¢ h2 € H"

lemma subringE:
assumes "subring H R"
shows "H C carrier R"
and "Ogp € H"
and "1y € H"
and "H # {}"
and "Ah. h € H = S h € H"
and "Ahl h2. [hl1 € H; h2 € H] = hl ®g h2 € H"
and "Ahl h2. [hl1 € H; h2 € H] = hl ¢ h2 € H"
(proof)

lemma (in ring) carrier_is_subring: "subring (carrier R) R"
{proof)

lemma (in ring) subring_inter:
assumes "subring I R" and "subring J R"
shows "subring (I N J) R"

(proof)

259

lemma (in ring) subring_Inter:
assumes "AI. I € S = subring I R" and "S # {}"
shows "subring ((1S) R"

(proof)
lemma (in ring) subring_is_ring:

assumes "subring H R" shows "ring (R (| carrier := H |))"
(proof)

lemma (in ring) ring_incl_imp_subring:
assumes "H C carrier R"

and "ring (R (carrier := H |))"
shows "subring H R"
{proof)

lemma (in ring) subring_iff:
assumes "H C carrier R"
shows "subring H R <— ring (R (| carrier := H |))"

(proof)

32.2.2 Subcrings

lemma (in ring) subcringI:
assumes "subring H R"
and "Ah1 h2. [h1 € H; h2 € H] = hl ® h2 = h2 ® h1"
shows "subcring H R"

(proof)

lemma (in cring) subcringl’:
assumes "subring H R"
shows "subcring H R"

(proof)

lemma subcringE:
assumes "subcring H R"
shows "H C carrier R"
and "Og € H"
and "lg € H"
and "H # {}"
and "Ah. h € H = ©g h € H"
and "Ahi h2. [hi € H; h2 € H] = hl ®g h2 € H"
and "Ahl h2. [hi € H; h2 € H] = ht @R h2 € H"
and "Ahl h2. [hl € H; h2 € H] = ht ®g h2 = h2 ®y hi1"
(proof)

lemma (in cring) carrier_is_subcring: "subcring (carrier R) R"

(proof)

lemma (in ring) subcring_inter:

260

assumes "subcring I R" and "subcring J R"
shows "subcring (I N J) R"

(proof)

lemma (in ring) subcring Inter:
assumes "AI. I € S = subcring I R" and "S # {}"
shows "subcring ([)S) R"

(proof)

lemma (in ring) subcring iff:
assumes "H C carrier R"
shows "subcring H R +— cring (R (carrier := H |))"

(proof)

32.2.3 Subdomains

lemma (in ring) subdomainI:
assumes "subcring H R"
and "1 # 0"
and "Ah1 h2. [h1 € H; 2 € H] = h1 ® h2 =0 = h1 = 0 V h2
= Oll
shows "subdomain H R"
(proof)

lemma (in domain) subdomainI’:
assumes "subring H R"
shows "subdomain H R"

(proof)

lemma subdomainE:
assumes "subdomain H R"
shows "H C carrier R"

and "Og € H"

and "1y € H"

and "H # {}"

and "A\h. h € H = ©g h € H"

and "Ah1 h2. [h1 € H; h2 € H] = hl ®g h2 € H"

and "Ahi h2. [h1 € H; h2 € H] = h1 @ h2 € H"

and "Ahl h2. [[hi1 € H; h2 € H ﬂ =—> hl ®g h2 = h2 ®g hi1"

and "Ah1 h2. [h1 € H; h2 € H] = h1 ®g h2 = O = h1 = Og V
h2 = Og"

and "1z # OgR"

(proof)

lemma (in ring) subdomain_iff:
assumes "H C carrier R"
shows "subdomain H R +— domain (R (carrier := H |))"

(proof)

261

lemma (in domain) subring_is_domain:
assumes "subring H R" shows "domain (R (| carrier := H |))"

(proof)

lemma (in ring) subdomain_is_domain:
assumes "subdomain H R" shows "domain (R (carrier := H)"

(proof)

32.2.4 Subfields

lemma (in ring) subfieldI:

assumes "subcring K R" and "Units (R (| carrier :=K)) =K - { 0 }"
shows "subfield K R"
(proof)

lemma (in field) subfieldI’:
assumes "subring K R" and "Ak. k € K - { 0 } = inv k € K"
shows "subfield K R"

{(proof)

lemma (in field) carrier_is_subfield: "subfield (carrier R) R"
(proof)

lemma subfieldE:
assumes "subfield K R"
shows "subring K R" and "subcring K R"
and "K C carrier R"
and "Ak1 k2. [k1 € K; k2 € K | = k1 ®p k2
and "Ak1 k2. [k1 € K; k2 € K | = k1 ®p k2
k2 = 0R"
and "1y # Og"
(proof)

k2 ®g k1"
O =— k1 =0 V

lemma (in ring) subfield_m_inv:

assumes "subfield K R" and "k € K - { 0 }"

shows "inv k € K- { 0 }" and "k ® inv k = 1" and "inv k ® k = 1"
(proof)

lemma (in ring) subfield_m_inv_simprule:
assumes "subfield K R"
shows "[k € K- {03}; a€carrierR] = k® a € K = a € K"

(proof)

lemma (in ring) subfield_iff:
shows "[field (R (carrier := K |)); K C carrier R | = subfield K
R"
and "subfield K R = field (R (| carrier := K)"
(proof)

262

lemma (in field) subgroup_mult_of :
assumes "subfield K R"
shows "subgroup (K - {0}) (mult_of R)"

(proof)

32.3 Subring Homomorphisms

lemma (in ring) hom_imp_img_subring:

assumes "h € ring_hom R S" and "subring K R"

shows "ring (S (| carrier :=h ¢ K, one :=h 1, zero :=h 0)"
(proof)

lemma (in ring_hom_ring) img_is_subring:
assumes "subring K R" shows "subring (h ¢ K) S"
(proof)

lemma (in ring_hom_ring) img_is_subfield:
assumes "subfield K R" and "lg # 0g"
shows "inj_on h K" and "subfield (h ¢ K) S"

(proof)

lemma (in ring_hom_ring) induced_ring_hom:
assumes "subring K R" shows "ring hom_ring (R (| carrier := K |)) S h"

(proof)

lemma (in ring_hom_ring) inj_on_subgroup_iff_ trivial_ker:
assumes "subring K R"
shows "inj_on h K «— a_kernel (R (| carrier := K |)) Sh={03}"
(proof)
lemma (in ring_hom_ring) inv_ring_hom:
assumes "inj_on h K" and "subring K R"
shows "ring hom_ring (S (| carrier :=h ¢ K |)) R (inv_into X h)"
(proof)

end

theory Polynomials
imports Ring Ring Divisibility Subrings

begin

263

33 Polynomials

33.1 Definitions

abbreviation lead_coeff :: "’a list = ’a"
where "lead_coeff = hd"

abbreviation degree :: "’a list = nat"
where "degree p = length p - 1"

definition polynomial :: "_ = ’a set = ’a list = bool" (<polynomialse >)
where "polynomialg K p «— p = [1 V (set p C K A lead_coeff p # Ogp)"

definition (in ring) monom :: "’a = nat = ’a list"
where "monom a n = a # (replicate n Og)"

fun (in ring) eval :: "’a list = ’a = ’a"
where
"eval [1 = (A_. 0)"
| "eval p = (Ax. ((lead_coeff p) ® (x [7] (degree p))) & (eval (tl
p) x))"

fun (in ring) coeff :: "’a list = nat = ’a"
where
"coeff [] = (A_. O)"
| "coeff p = (Ai. if i = degree p then lead_coeff p else (coeff (tl
p)))"

fun (in ring) normalize :: "’a list = ’a list"
where
"normalize [] = []1"

| "normalize p = (if lead_coeff p # O then p else normalize (tl p))"

fun (in ring) poly_add :: "’a list = ’a list = ’a list"
where "poly_add pl p2 =
(if length pl > length p2
then normalize (map2 (P) pl ((replicate (length pl - length
p2) 0) @ p2))
else poly_add p2 p1)"

fun (in ring) poly_mult :: "’a list = ’a list = ’a list"
where
"poly_mult [] p2
| "poly_mult pl p2
poly_add ((map (Ma. lead_coeff pl ® a) p2) @ (replicate (degree
pl) 0)) (poly_mult (tl pl) p2)"

[] n

fun (in ring) dense_repr :: "’a list = (’a X nat) list"
where
"dense_repr [1 = [I"

264

| "dense_repr p = (if lead_coeff p # 0
then (lead_coeff p, degree p) # (dense_repr (tl p))
else (dense_repr (t1 p)))"

fun (in ring) poly_of_demnse :: "(’a X nat) list = ’a list"
where "poly_of_dense dl = foldr (A(a, n) 1. poly_add (monom a n) 1)
d1l [] n

definition (in ring) poly_of_const :: "’a = ’a list"
where "poly_of_const = (\k. normalize [k])"

33.2 Basic Properties

context ring
begin

lemma polynomiall [intro]l: "[set p C K; lead_coeff p # 0 | = polynomial
K pll
{proof)

lemma polynomial_incl: "polynomial K p = set p C K"

(proof)

lemma monom_in_carrier [intro]l: "a € carrier R —> set (monom a n) C
carrier R"

(proof)

lemma lead_coeff_not_zero: "polynomial K (a # p) = a € K -{ 0 }"

(proof)

lemma zero_is_polynomial [intro]: "polynomial K []"
{proof)

lemma const_is_polynomial [intro]: "a € K - { 0 } = polynomial K [
a]Il

(proof)

lemma normalize_gives_polynomial: "set p € K = polynomial K (normalize
p) n
{proof)

lemma normalize_in_carrier: "set p C carrier R = set (normalize p)
C carrier R"

(proof)

lemma normalize_polynomial: "polynomial K p = normalize p = p"

(proof)

lemma normalize_idem: "normalize ((normalize p) @ q) = normalize (p @

265

q) n
(proof)

lemma normalize_length_le: "length (normalize p) < length p"

(proof)

lemma eval_in_carrier: "[set p C carrier R; x € carrier R | = (eval
p) x € carrier R"

{proof)

lemma coeff_in_carrier [simp]: "set p C carrier R = (coeff p) i €
carrier R"

(proof)

lemma lead_coeff_simp [simpl: "p # [1 = (coeff p) (degree p) = lead_coeff
pll
{proof)

lemma coeff_list: "map (coeff p) (rev [0..< length pl) = p"
(proof)

lemma coeff_nth: "i < length p = (coeff p) i = p ! (lengthp - 1 -
i)ll

(proof)

lemma coeff_iff_length_cond:

assumes "length pl = length p2"

shows "pl = p2 <— coeff pl = coeff p2"
(proof)

lemma coeff_img_restrict: "(coeff p) ¢ {..< length p} = set p"

(proof)

lemma coeff_length: "Ai. i > length p = (coeff p) i = Q"

(proof)

lemma coeff_degree: "Ai. i > degree p = (coeff p) i = 0"

(proof)

lemma replicate_zero_coeff [simp]: "coeff (replicate n 0) = (A_. 0)"

{proof)

lemma scalar_coeff: "a € carrier R = coeff (map (Ab. a ® b) p) = (Ai.
a ® (coeff p) i)"
{proof)

lemma monom_coeff: "coeff (monom a n) = (Ai. if i = n then a else 0)"

(proof)

266

lemma coeff_img:
"(coeff p) ¢ {..< length p} = set p"
"(coeff p) ¢ { length p ..}
"(coeff p) ¢ UNIV = (set p) U { O }"
(proof)

[
'.A.\
=)
-

lemma degree_def’:

assumes '"polynomial K p"

shows "degree p = (LEAST n. Vi. i > n — (coeff p) i = 0)"
{(proof)

lemma coeff_iff_polynomial_cond:
assumes "polynomial K pl" and "polynomial K p2"
shows "pl = p2 <— coeff pl = coeff p2"

(proof)

lemma normalize_lead_coeff:
assumes "length (normalize p) < length p"
shows "lead_coeff p = 0"

(proof)

lemma normalize_length_l1t:
assumes "lead_coeff p = 0" and "length p > 0"
shows "length (normalize p) < length p"

(proof)

lemma normalize_length_eq:
assumes "lead_coeff p # 0"
shows "length (normalize p) = length p"

{proof)

lemma normalize_replicate_zero: "normalize ((replicate n 0) @ p) = normalize
p"
{proof)

lemma normalize_def’:
shows "p = (replicate (length p - length (normalize p)) 0) @
(drop (length p - length (normalize p)) p)" (is 7statementl)
and "normalize p = drop (length p - length (normalize p)) p" (is 7statement2)
(proof)

corollary normalize_trick:

shows "p = (replicate (length p - length (normalize p)) 0) @ (normalize
p"

{proof)

lemma normalize_coeff: "coeff p = coeff (normalize p)"

(proof)

267

lemma append_coeff:

"coeff (p @ q) = (Ai. if i < length q then (coeff q) i else (coeff p)
(i - length g))"
(proof)

lemma prefix_replicate_zero_coeff: "coeff p = coeff ((replicate n 0)
@ p) n
{proof)

context
fixes K :: "’a set" assumes K: "subring K R"
begin

lemma polynomial_in_carrier [intro]: "polynomial K p = set p C carrier
Rll
(proof)

lemma carrier_polynomial [intro]: "polynomial K p = polynomial (carrier
R) pll
{proof)

lemma append_is_polynomial: "[polynomial K p; p # [] | = polynomial
K (p @ (replicate n 0))"
{proof)

lemma lead_coeff_in_carrier: "polynomial K (a # p) =—> a € carrier R
- { 0 }ll
(proof)

lemma monom_is_polynomial [intro]: "a € K - { 0 } = polynomial K (monom
a Il) n

(proof)

lemma eval_poly_in_carrier: "[polynomial K p; x € carrier R | = (eval
p) x € carrier R"

(proof)

lemma poly_coeff_in_carrier [simp]: "polynomial K p = coeff p i €
carrier R"

{proof)

end

33.3 Polynomial Addition

context
fixes K :: "’a set" assumes K: "subring K R"
begin

268

lemma poly_add_is_polynomial:
assumes "set pl C K" and "set p2 C K"
shows "polynomial K (poly_add pl p2)"
(proof)

lemma poly_add_closed: "[polynomial K pl; polynomial K p2 | = polynomial
K (poly_add pl p2)"
(proof)

lemma poly_add_length_eq:

assumes "polynomial K pl" "polynomial K p2" and "length pl # length
p2ll

shows "length (poly_add pl p2) = max (length pl) (length p2)"
(proof)

lemma poly_add_degree_eq:

assumes "polynomial K pl" "polynomial K p2" and "degree pl # degree
p2l|

shows "degree (poly_add pl p2) = max (degree pl) (degree p2)"

{proof)

end

lemma poly_add_in_carrier:

"[set pl C carrier R; set p2 C carrier R | = set (poly_add pl p2)
C carrier R"

{proof)

lemma poly_add_length_le: "length (poly_add pl p2) < max (length pl)
(length p2)"
(proof)

lemma poly_add_degree: "degree (poly_add pl p2) < max (degree pl) (degree
p2)|l
{proof)

lemma poly_add_coeff_aux:

assumes "length pl > length p2"

shows "coeff (poly_add pl p2) = (Ai. ((coeff pl) i) @ ((coeff p2) i))"
(proof)

lemma poly_add_coeff:

assumes "set pl C carrier R" "set p2 C carrier R"

shows "coeff (poly_add pl p2) = (Ai. ((coeff pl) i) @ ((coeff p2) i))"
(proof)

lemma poly_add_comm:

269

assumes "set pl C carrier R" "set p2 C carrier R"
shows "poly_add pl p2 = poly_add p2 pl"
(proof)

lemma poly_add_monom:
assumes "set p C carrier R" and "a € carrier R - { 0 }"
shows "poly_add (monom a (length p)) p = a # p"

(proof)

lemma poly_add_append_replicate:
assumes "set p C carrier R" "set q C carrier R"
shows "poly_add (p @ (replicate (length q) 0)) q = normalize (p @)"

(proof)

lemma poly_add_append_zero:

assumes "set p C carrier R" "set q C carrier R"

shows "poly_add (p @ [0 1) (g @ [01]) = normalize ((poly_add p q)
e [0
(proof)

lemma poly_add_normalize_aux:
assumes "set pl C carrier R" "set p2 C carrier R"
shows "poly_add pl p2 = poly_add (normalize pl) p2"
(proof)

lemma poly_add_normalize:
assumes "set pl C carrier R" "set p2 C carrier R"
shows "poly_add pl p2 = poly_add (normalize pl) p2"
and "poly_add pl p2 = poly_add pl (normalize p2)"
and "poly_add pl p2 = poly_add (normalize pl) (normalize p2)"
(proof)

lemma poly_add_zero’:

assumes "set p C carrier R"

shows "poly_add p [] = normalize p" and "poly_add [] p = normalize
pll
(proof)

lemma poly_add_zero:
assumes "subring K R" "polynomial K p"
shows "poly_add p [] = p" and "poly_add [] p = p"
{proof)

lemma poly_add_replicate_zero’:

assumes "set p C carrier R"

shows "poly_add p (replicate n 0) = normalize p" and "poly_add (replicate
n 0) p = normalize p"

(proof)

270

lemma poly_add_replicate_zero:

assumes "subring K R" "polynomial K p"

shows "poly_add p (replicate n 0) = p" and "poly_add (replicate n 0)
p=p"

{proof)

33.4 Dense Representation

lemma dense_repr_replicate_zero: "dense_repr ((replicate n 0) @ p) =
dense_repr p"

{proof)

lemma dense_repr_normalize: "dense_repr (normalize p) = dense_repr p"

(proof)

lemma polynomial_dense_repr:

assumes "polynomial K p" and "p # [I"

shows "dense_repr p = (lead_coeff p, degree p) # dense_repr (normalize
(t1 p))"
(proof)

lemma monom_decomp:
assumes "subring K R" "polynomial K p"
shows "p = poly_of_dense (dense_repr p)"
{proof)

33.5 Polynomial Multiplication

lemma poly_mult_is_polynomial:
assumes "subring K R" "set pl C K" and "set p2 C K"
shows "polynomial K (poly_mult pl p2)"
(proof)

lemma poly_mult_closed:

assumes "subring K R"

shows "[polynomial K pl; polynomial K p2 | = polynomial K (poly_mult
pl p2)"

(proof)

lemma poly_mult_in_carrier:

"[set pl C carrier R; set p2 C carrier R | = set (poly_mult pl p2)
C carrier R"

(proof)

lemma poly_mult_coeff:

assumes "set pl C carrier R" "set p2 C carrier R"

shows "coeff (poly_mult pl p2) = (Ai. @ k € {..i}. (coeff pl) k ®
(coeff p2) (1 - k)"

{proof)

271

lemma poly_mult_zero:

assumes "set p C carrier R"

shows "poly_mult [] p = [1" and "poly mult p [] = [I"
(proof)

lemma poly_mult_1_distr’:
assumes "set pl C carrier R" "set p2 C carrier R" "set p3 C carrier
Rll
shows "poly_mult (poly_add pl p2) p3 = poly_add (poly_mult pl p3) (poly_mult
p2 p3)u
(proof)

lemma poly _mult_1_distr:

assumes "subring K R" "polynomial K pl" "polynomial K p2" "polynomial
K p3"

shows "poly_mult (poly_add pl p2) p3 = poly_add (poly_mult pl p3) (poly_mult
p2 p3)"

(proof)

lemma poly_mult_prepend_replicate_zero:

assumes "set pl C carrier R" "set p2 C carrier R"

shows "poly_mult pl p2 = poly_mult ((replicate n 0) @ pl) p2"
(proof)

lemma poly_mult_normalize:
assumes "set pl C carrier R" "set p2 C carrier R"
shows "poly_mult pl p2 = poly_mult (normalize pl) p2"
(proof)

lemma poly_mult_append_zero:
assumes "set p C carrier R" "set q C carrier R"
shows "poly _mult (p @ [0 1) q = normalize ((poly_mult pg) @ [0 1)"
(proof)

end

33.6 Properties Within a Domain

context domain
begin

lemma one_is_polynomial [intro]: "subring K R = polynomial K [1]"
{proof)

lemma poly_mult_comm:
assumes "set pl C carrier R" "set p2 C carrier R"
shows "poly_mult pl p2 = poly_mult p2 pi"

(proof)

272

lemma poly_mult_r_distr’:

assumes "set pl C carrier R" "set p2 C carrier R" "set p3 C carrier
Rll

shows "poly_mult pl (poly_add p2 p3) = poly_add (poly_mult pl p2) (poly_mult
pl p3)u

{proof)

lemma poly _mult_r_distr:

assumes "subring K R" "polynomial K pl" "polynomial K p2" "polynomial
K p3|l

shows "poly_mult pl (poly_add p2 p3) = poly_add (poly_mult pl p2) (poly_mult
pl p3)"

(proof)

lemma poly_mult_replicate_zero:
assumes "set p C carrier R"
shows "poly_mult (replicate n 0) p = [1"
and "poly_mult p (replicate n 0) = []"
(proof)

lemma poly_mult_const’:
assumes "set p C carrier R" "a € carrier R"
shows "poly mult [a] p = normalize (map (Ab. a ® b) p)"
and "poly_mult p [a] = normalize (map (Ab. a ® b) p)"
(proof)

lemma poly_mult_const:

assumes "subring K R" "polynomial K p" "a € K - { 0 }"
shows "poly mult [a] p = map (Ab. a ® b) p"
and "poly_mult p [a] = map (Ab. a ® b) p"

{(proof)

lemma poly_mult_semiassoc:
assumes "set p C carrier R" "set q C carrier R" and "a € carrier R"
shows "poly_mult (poly_mult [a] p) q = poly_mult [a] (poly_mult

P Q"
(proof)

Note that "polynomial (carrier R) p" and "subring K p; polynomial K p"
are "equivalent" assumptions for any lemma in ring which the result doesn’t
depend on K, because carrier is a subring and a polynomial for a subset of
the carrier is a carrier polynomial. The decision between one of them should
be based on how the lemma is going to be used and proved. These are some
tips: (a) Lemmas about the algebraic structure of polynomials should use
the latter option. (b) Also, if the lemma deals with lots of polynomials, then
the latter option is preferred. (c) If the proof is going to be much easier with
the first option, do not hesitate.

lemma poly_mult_monom’ :

273

assumes "set p C carrier R" "a € carrier R"
shows "poly_mult (monom a n) p = normalize ((map ((®) a) p) @ (replicate
n O))II

(proof)

lemma poly_mult_monom:
assumes "polynomial (carrier R) p" "a € carrier R - { 0 }"
shows "poly_mult (monom a n) p =
(if p = [1 then [] else (poly_mult [a] p) @ (replicate n
0))"
(proof)

lemma poly_mult_one’:

assumes "set p C carrier R"

shows "poly mult [1] p = normalize p" and "poly_mult p [1] = normalize
pll
(proof)

lemma poly_mult_one:
assumes "subring K R" "polynomial K p"
shows "poly mult [1] p = p" and "poly mult p [1] = p"
{proof)

lemma poly_mult_lead_coeff_aux:

assumes "subring K R" "polynomial K pl" "polynomial K p2" and "pl #
[1" and "p2 # [I"

shows "(coeff (poly_mult pl p2)) (degree pl + degree p2) = (lead_coeff
pl) ® (lead_coeff p2)"
(proof)

lemma poly_mult_degree_eq:

assumes "subring K R" "polynomial K pl" "polynomial K p2"

shows "degree (poly_mult pl p2) = (if pl = [] V p2 = [] then O else
(degree pl) + (degree p2))"
(proof)

lemma poly_mult_integral:
assumes "subring K R" "polynomial K pl" "polynomial K p2"
shows "poly_mult pl p2 = [] = p1 = [1 V p2 = [I"
(proof)

lemma poly_mult_lead_coeff:

assumes "subring K R" "polynomial K pl" "polynomial K p2" and "pl #
(0" and "p2 # [1"

shows "lead_coeff (poly_mult pl p2) = (lead_coeff pl) ® (lead_coeff
p2)"
(proof)

lemma poly_mult_append_zero_lcancel:

274

assumes "subring K R" and "polynomial K p" "polynomial K q"

shows "poly mult (p @ [0 1) g=r @ [0] = poly mult pqg=r
(proof)
lemma poly_mult_append_zero_rcancel:
assumes "subring K R" and "polynomial K p" "polynomial K q"
shows "poly mult p (q @ [0]) =r @ [0] = poly mult pq = r"
(proof)
end
33.7 Algebraic Structure of Polynomials
definition univ_poly :: "(’a, ’b) ring_scheme =’a set = (’a list) ring"

(< (<open_block notation=<postfix X>>_ [X]2)> 80)
where "univ_poly R K =
(carrier = { p. polynomialg K p 1,
mult = ring.poly_mult R,

one = [1y 1,
zero = [],
add = ring.poly_add R |)"

These lemmas allow you to unfold one field of the record at a time.

lemma univ_poly_carrier: "polynomialg K p <— p € carrier (K[XIg)"

{proof)

lemma univ_poly_mult: "mult (K[X]g) = ring.poly_mult R"

(proof)

lemma univ_poly_one: "one (K[Xlg) = [1 1"

(proof)
o

lemma univ_poly_zero: "zero (K[X]R)
{proof)

lemma univ_poly_add: "add (K[X]g) = ring.poly_add R"
(proof)

lemma univ_poly_zero_closed [intro]: "[] € carrier (K[XIg)"

(proof)

context domain
begin

lemma poly_mult_monom_assoc:
assumes "set p C carrier R" "set q C carrier R" and "a € carrier R"

275

shows "poly_mult (poly_mult (monom a n) p) q =
poly_mult (monom a n) (poly_mult p q)"

(proof)

context
fixes K :: "’a set" assumes K: "subring K R"
begin

lemma univ_poly_is_monoid: "monoid (K[X])"

(proof)

declare poly_add.simps[simp del]

lemma univ_poly_is_abelian_monoid: "abelian_monoid (K[X])"

(proof)

lemma univ_poly_is_abelian_group: "abelian_group (K[X])"
(proof)

lemma univ_poly_is_ring: "ring (K[X])"

(proof)

lemma univ_poly_is_cring: "cring (K[X])"
(proof)

lemma univ_poly_is_domain: "domain (K[X])"

(proof)
declare poly_add.simps[simp]

lemma univ_poly_a_inv_def’:
assumes "p € carrier (K[X])" shows "Ggx; p = map (la. © a) p"
(proof)

corollary univ_poly_a_inv_length:
assumes "p € carrier (K[X])" shows "length (Sg[x] p) = length p"

(proof)

corollary univ_poly_a_inv_degree:
assumes "p € carrier (K[X])" shows "degree (Sg[y] p) = degree p"

(proof)

33.8 Long Division Theorem

lemma long_division_theorem:
assumes "polynomial K p" and "polynomial K b" "b # []"

276

and "lead_coeff b € Units (R (carrier := K)"
shows "Jq r. polynomial K g A polynomial K r A
p=(b ®xy @ Skrx3 * A (r = [0 V degree r < degree
b) n
(is "dq r. ?long_division p q r")

(proof)

end

end

lemma (in domain) field_long_division_theorem:
assumes "subfield K R" "polynomial K p" and "polynomial K b" "b #
ar
shows "Jq r. polynomial K q A polynomial K r A
p=(b ®rx; @ Sgrxy ¥ A (r = [I V degree r < degree
b)"
{proof)

The same theorem as above, but now, everything is in a shell.

lemma (in domain) field_long_division_theorem_shell:
assumes "subfield K R" "p € carrier (K[X])" and "b € carrier (K[X])"
|Ib # OK[X] n
shows "Jq r. q € carrier (K[X]) A r € carrier (K[X]) A
p=(b &y @ Pkrx] ¥ N (r = Ogrxy V degree r < degree
b) n

(proof)
33.9 Consistency Rules

lemma polynomial_consistent [simp]:
shows "polynomial g (carrier := K |)) K p = polynomialg K p"

(proof)

lemma (in ring) eval_consistent [simp]:

assumes "subring K R" shows "ring.eval (R (| carrier := K |)) = eval"
(proof)
lemma (in ring) coeff_consistent [simp]:

assumes "subring K R" shows "ring.coeff (R (carrier := K |)) = coeff"
(proof)
lemma (in ring) normalize_consistent [simp]:

assumes "subring K R" shows "ring.normalize (R (carrier := K |) =
normalize"
(proof)

lemma (in ring) poly_add_consistent [simp]:

277

assumes "subring K R" shows "ring.poly_add (R (carrier := K |)) = poly_add"

(proof)
lemma (in ring) poly_mult_consistent [simp]:

assumes "subring K R" shows "ring.poly_mult (R (carrier := K |)) =
poly_mult"
(proof)

lemma (in domain) univ_poly_a_inv_consistent:
assumes "subring K R" "p € carrier (K[X])"

shows "Ox[x] P = ©S(carrier R)[x] P"
{(proof)

lemma (in domain) univ_poly_a_minus_consistent:
assumes "subring K R" "q € carrier (K[X])"
shows "p Sk[x] 4 = P S(carrier R)[X] 1"
(proof)

lemma (in ring) univ_poly_consistent:
assumes "subring K R"
shows "univ_poly (R (carrier := K |)) = univ_poly R"
(proof)

33.9.1 Corollaries

corollary (in ring) subfield_long_division_theorem_shell:
assumes "subfield K R" "p € carrier (K[X])" and "b € carrier (K[X])"
"y ;é OK[X] n
shows "dq r. q € carrier (K[X]) A r € carrier (K[X]) A
p=(b @y @ Pkx] * N (r = Ogpxy V degree r < degree
b) n
(proof)

corollary (in domain) univ_poly_is_euclidean:
assumes "subfield K R" shows "euclidean_domain (K[X]) degree"

(proof)

corollary (in domain) univ_poly_is_principal:
assumes "subfield K R" shows "principal_domain (K[X])"

(proof)

33.10 The Evaluation Homomorphism

lemma (in ring) eval_replicate:
assumes "set p C carrier R" "a € carrier R"
shows "eval ((replicate n 0) @ p) a = eval p a"

(proof)

lemma (in ring) eval_normalize:

278

assumes "set p C carrier R" "a € carrier R"
shows "eval (normalize p) a = eval p a"

(proof)

lemma (in ring) eval_poly_add_aux:

assumes "set p C carrier R" "set q C carrier R" and "length p = length
q" and "a € carrier R"

shows "eval (poly_add p q) a = (eval p a) @ (eval q a)"
(proof)

lemma (in ring) eval_poly_add:
assumes "set p C carrier R" "set q C carrier R" and "a € carrier R"
shows "eval (poly_add p q) a = (eval p a) ¢ (eval q a)"

(proof)

lemma (in ring) eval_append_aux:

assumes "set p C carrier R" and "b € carrier R" and "a € carrier
Rll

shows "eval (p @ [b]) a = ((eval p a) ® a) & b"

(proof)

lemma (in ring) eval_append:
assumes "set p C carrier R" "set q C carrier R" and "a € carrier R"
shows "eval (p @ @) a = ((eval p a) ® (a [T] (length @))) @ (eval g
a) n

(proof)

lemma (in ring) eval_monom:
assumes "b € carrier R" and "a € carrier R"
shows "eval (monom bn) a=b ® (a ["] n)"

{(proof)

lemma (in cring) eval_poly_mult:
assumes "set p C carrier R" "set q C carrier R" and "a € carrier R"
shows "eval (poly_mult p q) a = (eval p a) ® (eval q a)"
{proof)

proposition (in cring) eval_is_hom:
assumes "subring K R" and "a € carrier R"
shows "(Ap. (eval p) a) € ring_hom (K[X]) R"
(proof)

theorem (in domain) eval_cring_hom:
assumes "subring K R" and "a € carrier R"
shows "ring_hom_cring (K[X]) R (Ap. (eval p) a)"
(proof)

corollary (in domain) eval_ring_hom:
assumes "subring K R" and "a € carrier R"

279

shows "ring_hom_ring (K[X]) R (Ap. (eval p) a)"
(proof)

33.11 Homomorphisms

lemma (in ring_hom_ring) eval_hom’:
assumes "a € carrier R" and "set p C carrier R"
shows "h (R.eval p a) = eval (map h p) (h a)"
(proof)

lemma (in ring_hom_ring) eval_hom:
assumes "subring K R" and "a € carrier R" and "p € carrier (K[X])"
shows "h (R.eval p a) = eval (map h p) (h a)"

(proof)

lemma (in ring_hom_ring) coeff_hom’:

assumes "set p C carrier R" shows "h (R.coeff p i) = coeff (map h
p) i"

(proof)

lemma (in ring_hom_ring) poly_add_hom’:

assumes "set p C carrier R" and "set q C carrier R"

shows "normalize (map h (R.poly_add p q)) = poly_add (map h p) (map
h q) n
(proof)

lemma (in ring_hom_ring) poly_mult_hom’:

assumes "set p C carrier R" and "set q C carrier R"

shows "normalize (map h (R.poly_mult p q)) = poly_mult (map h p) (map
h q) n

(proof)

33.12 The X Variable

definition var :: "_ = ’a list" (<X2>)
where "Xg = [1z, Og 1"

lemma (in ring) eval_var:
assumes "x € carrier R" shows "eval X x = x

(proof)

lemma (in domain) var_closed:

assumes "subring K R" shows "X € carrier (K[X])" and "polynomial K
Xll

(proof)

lemma (in domain) poly_mult_var’:
assumes "set p C carrier R"
shows "poly_mult X p = normalize (p
and "poly_mult p X = normalize (p

© ©
—/

280

(proof)

lemma (in domain) poly_mult_var:
assumes "subring K R" "p € carrier (K[X])"
shows "p ®grx; X = (if p = [] then [] elsep @ [0 1)"

(proof)

lemma (in domain) var_pow_closed:
assumes "subring K R" shows "X [Tlgrx; (»n :: nat) € carrier (K[X])"
(proof)

lemma (in domain) unitary_monom_eq_var_pow:
assumes "subring K R" shows "monom 1 n = X [Tlgxy n"

{proof)

lemma (in domain) monom_eq_var_pow:
assumes "subring K R" "a € carrier R - { 0 }"
shows "monom a n = [a] ®grx; X [Mlgxy "
(proof)

lemma (in domain) eval_rewrite:
assumes "subring K R" and "p € carrier (K[X])"
shows "p = (ring.eval (K[X])) (map poly_of_const p) X"

(proof)

lemma (in ring) dense_repr_set_fst:
assumes "set p C K" shows "fst ¢ (set (demnse_repr p)) C K - {0 }"

(proof)

lemma (in ring) dense_repr_set_snd:
shows "snd ¢ (set (dense_repr p)) C {..< length p}"

(proof)

lemma (in domain) dense_repr_monom_closed:
assumes "subring K R" "set p C K"
shows "t € set (dense_repr p) = monom (fst t) (snd t) € carrier (K[X])"

(proof)

lemma (in domain) monom_finsum_decomp:
assumes "subring K R" "p € carrier (K[X])"
shows "p = (Pgx] t € set (dense_repr p). monom (fst t) (snd t))"

(proof)

lemma (in domain) var_pow_finsum_decomp:

assumes "subring K R" "p € carrier (K[X])"

shows "p = (Pgx] t € set (demse_repr p). [fst t 1 ®yrxy X [Mlgrxg
(snd t)))"
(proof)

281

corollary (in domain) hom_var_pow_finsum:

assumes "subring K R" and "p € carrier (K[X])" "ring_hom_ring (K[X])
A hll

shows "h p = (P t € set (dense_repr p). h [fst t 1 ®, (b X ["]a
(snd £)))"
(proof)

corollary (in domain) determination_of_hom:
assumes "subring K R"
and "ring hom_ring (K[X]) A h" "ring hom_ring (K[X]) A g"
and "Ak. k e K= h [k] =g [k]"and "h X = g X"
shows "Ap. p € carrier (X[X]) = h p =g p"
(proof)

corollary (in domain) eval_as_unique_hom:
assumes "subring K R" "x € carrier R"
and "ring_hom_ring (K[X]) R h"
and "Ak. k € K= h [k] =k" and "h X = x"
shows "Ap. p € carrier (XK[X]) = h p = eval p x"

{proof)

33.13 The Constant Term

definition (in ring) const_term :: "’a list = ’a"
where "const_term p = eval p 0"

lemma (in ring) const_term_eq_last:
assumes "set p C carrier R" and "a € carrier R"
shows "const_term (p @ [a]) = a"

(proof)

lemma (in ring) const_term_not_zero:
assumes "const_term p # 0" shows "p # []"

(proof)

lemma (in ring) const_term_explicit:
assumes "set p C carrier R" "p # [1" and "const_term p = a
obtains p’ where "set p’ C carrier R" and "p =p’> @ [a 1"
(proof)

lemma (in ring) const_term_zero:

assumes "subring K R" "polynomial K p" "p # []" and "const_term p
= Q"

obtains p’ where "polynomial X p’" "p’ # []" and "p=p> @ [0 1"
(proof)

lemma (in cring) const_term_simprules:
shows "Ap. set p C carrier R = const_term p € carrier R"
and "Ap q. [set p C carrier R; set q C carrier R | =

282

const_term (poly_mult p q) = const_term p ® const_term

and "Ap q. [set p C carrier R; set q C carrier R | =
const_term (poly_add p q) = const_term p ¢ const_term
qll
{proof)

lemma (in domain) const_term_simprules_shell:
assumes "subring K R"
shows "Ap. p € carrier (K[X]) — const_term p € K"
and "Ap q. [p € carrier (K[X]); q € carrier (K[X]) | =
const_term (p ®g[x] @) = const_term p ® const_term q"
and "Ap q. [p € carrier (X[X]); q € carrier (X[X]) | =
const_term (p @®gry] Q) = const_term p ¢ const_term q"
and "Ap. p € carrier (K[X]) = const_term (Sg[xy p) = © (const_term

33.14 The Canonical Embedding of K in K[X]

lemma (in ring) poly_of_const_consistent:

assumes "subring K R" shows "ring.poly_of_const (R (| carrier := K |)
= poly_of_const"
(proof)

lemma (in domain) canonical_embedding_is_hom:

assumes "subring K R" shows "poly_of_const € ring_hom (R (carrier
=K) KIEXDH"

(proof)

lemma (in domain) canonical_embedding ring hom:
assumes "subring K R" shows "ring_hom_ring (R (carrier := K |)) (X[X])
poly_of_const"

(proof)

lemma (in field) poly_of_const_over_carrier:

shows "poly_of_const ¢ (carrier R) = { p € carrier ((carrier R)[X]).
degree p = 0 }"
(proof)

lemma (in ring) poly_of_const_over_subfield:

assumes "subfield K R" shows "poly_of_const ¢ K = { p € carrier (K[X]).
degree p = 0 }"

(proof)

lemma (in field) univ_poly_carrier_subfield_of_consts:
"subfield (poly_of_const ‘¢ (carrier R)) ((carrier R)[X])"

(proof)

283

proposition (in ring) univ_poly_subfield_of_consts:
assumes "subfield K R" shows "subfield (poly_of_const ¢ K) (K[X])"
(proof)

end

theory Embedded_Algebras
imports Subrings Generated_Groups
begin

34 Definitions

locale embedded_algebra =

K?: subfield K R + R?: ring R for K :: "’a set" and R :: "(’a, ’b) ring_scheme"
(structure)
definition (in ring) line_extension :: "’a set = ’a = ’a set = ’a set"

where "line_extension K a E = (K #> a) <+>g E"

fun (in ring) Span :: "’a set = ’a list = ’a set"
where "Span K Us = foldr (line_extension K) Us { 0 }"

fun (in ring) combine :: "’a list = ’a list = ’a"
where
"combine (k # Ks) (u # Us) = (k ® u) ® (combine Ks Us)"
| "combine Ks Us = 0"

inductive (in ring) independent :: "’a set = ’a list = bool"
where
1i_Nil [simp, intro]: "independent K []"
| 1i_Cons: "[u € carrier R; u ¢ Span K Us; independent K Us | = independent
K (u # Us)"

inductive (in ring) dimension :: "nat = ’a set = ’a set = bool"
where
zero_dim [simp, intro]: "dimension 0 K { 0 }"
| Suc_dim: "[v € carrier R; v ¢ E; dimension n K E | = dimension
(Suc n) K (line_extension K v E)"

34.0.1 Syntactic Definitions

abbreviation (in ring) dependent :: "’a set = ’a list = bool"
where "dependent K U = — independent K U"

definition over :: "(’a = ’b) = ’a = ’b" (infixl <over> 65)
where "f over a = f a"

284

context ring
begin

34.1 Basic Properties - First Part

lemma line_extension_consistent:

assumes "subring K R" shows "ring.line_extension (R (| carrier := K
)) = line_extension"
(proof)
lemma Span_consistent:
assumes "subring K R" shows "ring.Span (R (carrier := K |)) = Span"
{proof)

lemma combine_in_carrier [simp, intro]:

"[[set Ks C carrier R; set Us C carrier R]] —> combine Ks Us & carrier
Rll

(proof)

lemma combine_r_distr:
"[set Ks C carrier R; set Us C carrier R | =
k € carrier R = k ® (combine Ks Us) = combine (map ((®) k) Ks)
US"

(proof)

lemma combine_1_distr:
"[set Ks C carrier R; set Us C carrier R | =
u € carrier R = (combine Ks Us) ® u = combine Ks (map (Au’. u’
® u) Us)"
(proof)

lemma combine_eq_foldr:
"combine Ks Us = foldr (A(k, w). Al. (k ® u) @ 1) (zip Ks Us) 0"
(proof)

lemma combine_replicate:
"set Us C carrier R = combine (replicate (length Us) 0) Us = 0"

{proof)

lemma combine_take:
"combine (take (length Us) Ks) Us = combine Ks Us"

(proof)

lemma combine_append_zero:
"set Us C carrier R — combine (Ks @ [0]) Us = combine Ks Us"

(proof)

lemma combine_prepend_replicate:

285

"[set Ks C carrier R; set Us C carrier R | =
combine ((replicate n 0) @ Ks) Us = combine Ks (drop n Us)"

(proof)

lemma combine_append_replicate:
"set Us C carrier R = combine (Ks @ (replicate n 0)) Us = combine
Ks Us"

(proof)

lemma combine_append:
assumes "length Ks = length Us"
and "set Ks C carrier R" "set Us C carrier R"
and "set Ks’ C carrier R" "set Vs C carrier R"
shows "(combine Ks Us) @ (combine Ks’ Vs) = combine (Ks @ Ks’) (Us
Q@ Vs)"

(proof)

lemma combine_add:
assumes "length Ks = length Us" and "length Ks’ = length Us"
and "set Ks C carrier R" "set Ks’ C carrier R" "set Us C carrier
Rll
shows "(combine Ks Us) & (combine Ks’ Us) = combine (map2 (&) Ks Ks’)
Usll

(proof)

lemma combine_normalize:
assumes "set Ks C carrier R" "set Us C carrier R" "combine Ks Us =
a.ll
obtains Ks’
where "set (take (length Us) Ks) C set Ks’" "set Ks’ C set (take (length
Us) Ks) U { O }"
and "length Ks’ = length Us" "combine Ks’ Us = a"

(proof)

lemma line_extension_mem_iff: "u € line_extension K a E +— (dk € K.
dJv €EE.u=k®a®dv)"
(proof)

lemma line_extension_in_carrier:
assumes "K C carrier R" "a € carrier R" "E C carrier R"
shows "line_extension K a E C carrier R"

(proof)

lemma Span_in_carrier:
assumes "K C carrier R" "set Us C carrier R"
shows "Span K Us C carrier R"

(proof)

286

34.2 Some Basic Properties of Linear Independence

lemma independent_in_carrier: "independent K Us = set Us C carrier
Rll
{proof)

lemma independent_backwards:
"independent K (u # Us) =— u ¢ Span K Us"
"independent K (u # Us) — independent K Us"
"independent K (u # Us) = u € carrier R"

(proof)

lemma dimension_independent [intro]: "independent K Us = dimension
(length Us) K (Span K Us)"

(proof)

Now, we fix K, a subfield of the ring. Many lemmas would also be true for
weaker structures, but our interest is to work with subfields, so generalization
could be the subject of a future work.

context
fixes K :: "’a set" assumes K: "subfield K R"
begin

34.3 Basic Properties - Second Part

lemmas subring_props [simp] =
subringE[OF subfieldE(1) [OF K]]

lemma line_extension_is_subgroup:
assumes "subgroup E (add_monoid R)" "a € carrier R"
shows "subgroup (line_extension K a E) (add_monoid R)"

(proof)

corollary Span_is_add_subgroup:
"set Us C carrier R = subgroup (Span K Us) (add_monoid R)"

(proof)

lemma line_extension_smult_closed:

assumes "Ak v. [k € K; vE E] = k ® v € E" and "E C carrier R"
"a € carrier R"

shows "Ak u. [k € K; u € line_extension K a E] = k ® u € line_extension
K a E"

(proof)

lemma Span_subgroup_props [simp]:
assumes "set Us C carrier R"
shows "Span K Us C carrier R"
and "0 € Span K Us"
and "Avl v2. [vl € Span K Us; v2 € Span K Us | = (v1 @ v2) €
Span K Us"

287

and "Av. v € Span K Us = (& v) € Span K Us"
(proof)

lemma Span_smult_closed [simp]:
assumes "set Us C carrier R"
shows "Ak v. [k € K; v € Span K Us | = k ® v € Span K Us"

(proof)

lemma Span_m_inv_simprule [simp]:

assumes "set Us C carrier R"

shows "[k € K- {03}; a € carrier R] = k ® a € Span K Us = a
€ Span K Us"

(proof)

34.4 Span as Linear Combinations

We show that Span is the set of linear combinations

lemma line_extension_of_combine_set:
assumes "u € carrier R"
shows "line_extension K u { combine Ks Us | Ks. set Ks C K } =
{ combine Ks (u # Us) | Ks. set Ks C K }"
(is "?1line_extension = 7combinations")

(proof)

lemma Span_eq_combine_set:
assumes "set Us C carrier R" shows "Span K Us = { combine Ks Us |
Ks. set Ks C K }"

(proof)

lemma line_extension_of_combine_set_length_version:
assumes "u € carrier R"
shows "line_extension K u { combine Ks Us | Ks. length Ks = length Us
N set Ks C K } =
{ combine Ks (u # Us) | Ks. length Ks = length (u
Us) A set Ks C K }"
(is "?line_extension = 7combinations")

(proof)

lemma Span_eq_combine_set_length_version:

assumes "set Us C carrier R"

shows "Span K Us = { combine Ks Us | Ks. length Ks = length Us A set
Ks C K }"

(proof)

34.4.1 Corollaries

corollary Span_mem_iff_length_version:
assumes "set Us C carrier R"

288

shows "a € Span K Us <— (JKs. set Ks C K A length Ks = length Us
A a = combine Ks Us)"

(proof)

corollary Span_mem_imp_non_trivial_combine:

assumes "set Us C carrier R" and "a € Span K Us"

obtains k Ks

where "k € K - { 0 }" "set Ks C K" "length Ks = length Us" "combine
(k # Ks) (a # Us) = 0"
{(proof)

corollary Span_mem_iff:
assumes "set Us C carrier R" and "a € carrier R"
shows "a € Span K Us «+— (dk € K - { 0 }. JKs. set Ks C K A combine
(k # Ks) (a # Us) = 0)"
(is "7in_Span <— 7exists_combine")

(proof)

34.5 Span as the minimal subgroup that contains K <#> set
Us

Now we show the link between Span and Group.generate

lemma mono_Span:
assumes "set Us C carrier R" and "u € carrier R"
shows "Span K Us C Span K (u # Us)"

(proof)

lemma Span_min:
assumes "set Us C carrier R" and "subgroup E (add_monoid R)"
shows "K <#> (set Us) C E = Span K Us C E"

(proof)

lemma Span_eq_generate:

assumes "set Us C carrier R" shows "Span K Us = generate (add_monoid
R) (K <#> (set Us))"
(proof)

34.5.1 Corollaries

corollary Span_same_set:
assumes "set Us C carrier R"
shows "set Us = set Vs = Span K Us = Span K Vs"

(proof)

corollary Span_incl: "set Us C carrier R = K <#> (set Us) C Span K Us"
{proof)

corollary Span_base_incl: "set Us C carrier R = set Us C Span K Us"

(proof)

289

corollary mono_Span_sublist:
assumes "set Us C set Vs" "set Vs C carrier R"
shows "Span K Us C Span K Vs"

(proof)

corollary mono_Span_append:
assumes "set Us C carrier R" "set Vs C carrier R"
shows "Span K Us C Span K (Us @ Vs)"
and "Span K Us C Span K (Vs @ Us)"

(proof)

corollary mono_Span_subset:
assumes "set Us C Span K Vs" "set Vs C carrier R"
shows "Span K Us C Span K Vs"

(proof)

lemma Span_strict_incl:
assumes "set Us C carrier R" "set Vs C carrier R"
shows "Span X Us C Span K Vs = (3v € set Vs. v ¢ Span K Us)"

(proof)

lemma Span_append_eq_set_add:
assumes "set Us C carrier R" and "set Vs C carrier R"
shows "Span K (Us @ Vs) = (Span K Us <+>g Span K Vs)"

(proof)

34.6 Characterisation of Linearly Independent "Sets"

declare independent_backwards [intro]
declare independent_in_carrier [intro]

lemma independent_distinct: "independent K Us = distinct Us"

{(proof)

lemma independent_strict_incl:
assumes "independent K (u # Us)" shows "Span K Us C Span K (u # Us)"

(proof)

corollary independent_replacement:

assumes "independent K (u # Us)" and "independent K Vs"

shows "Span K (u # Us) C Span K Vs = (Jv € set Vs. independent K
(v # Us))"

(proof)

lemma independent_split:
assumes "independent K (Us @ Vs)"
shows "independent K Vs"
and "independent K Us"

290

and "Span K Us N Span K Vs = { 0 }"
(proof)

lemma independent_append:

assumes "independent K Us" and "independent K Vs" and "Span K Us N
Span K Vs = { 0 }"

shows "independent K (Us @ Vs)"

(proof)

lemma independent_imp_trivial_combine:

assumes "independent K Us"

shows "AKs. [set Ks C K; combine Ks Us = 0 | = set (take (length
Us) Ks) C { 0 }"

(proof)

lemma non_trivial_combine_imp_dependent:

assumes "set Ks C K" and "combine Ks Us = 0" and "— set (take (length
Us) Ks) C {0 }"

shows "dependent K Us"

{proof)

lemma trivial_combine_imp_independent:
assumes "set Us C carrier R"
and "AKs. [set Ks C K; combine Ks Us = 0 | = set (take (length
Us) Ks) C { 0 }"
shows "independent K Us"

(proof)

corollary dependent_imp_non_trivial_combine:

assumes "set Us C carrier R" and "dependent K Us"

obtains Ks where "length Ks = length Us" "combine Ks Us = 0" "set Ks
C K" "set Ks # { 0 }"
(proof)

corollary unique_decomposition:

assumes "independent K Us"

shows "a € Span K Us = J!Ks. set Ks C K A length Ks = length Us
A a = combine Ks Us"

(proof)

34.7 Replacement Theorem

lemma independent_rotatel_aux:
"independent K (u # Us @ Vs) — independent K ((Us @ [u]) @ Vs)"
(proof)

corollary independent_rotatel:
"independent K (Us @ Vs) = independent K ((rotatel Us) @ Vs)"

(proof)

291

corollary independent_same_set:
assumes "set Us = set Vs" and "length Us = length Vs"
shows "independent K Us = independent K Vs"

(proof)

lemma replacement_theorem:
assumes "independent K (Us’ @ Us)" and "independent K Vs"
and "Span K (Us’ @ Us) C Span K Vs"
shows "JVs’. set Vs’ C set Vs A length Vs’ = length Us’ A independent
K (Vs’ @ Us)"
{proof)

corollary independent_length_le:
assumes "independent K Us" and "independent K Vs"
shows "set Us C Span K Vs = length Us < length Vs"

(proof)

34.8 Dimension

lemma exists_base:
assumes "dimension n K E"
shows "JVs. set Vs C carrier R A independent K Vs A length Vs = n
A Span K Vs = E"
(is "JVs. 7base K Vs E n")
(proof)

lemma dimension_zero: "dimension O KE — E = { 0 }"
(proof)

lemma dimension_one [iff]: "dimension 1 K K"

{(proof)

lemma dimensionI:
assumes "independent K Us" "Span K Us = E"
shows "dimension (length Us) K E"

{proof)

lemma space_subgroup_props:

assumes "dimension n K E"

shows "E C carrier R"
and "0 € E"
and "Avl v2. [vl € E; v2 € E] = (v1 & v2) € E"
and "Av. v € E = (& v) € E"
and "Akv. [k € K; vEE] = k ® v € E"
and "[k € K-{ 0} accarrierR] = k® a € E=— a € E"

{proof)

292

lemma independent_length_le_dimension:
assumes "dimension n K E" and "independent K Us" "set Us C E"
shows "length Us < n"

(proof)

lemma dimension_is_inj:
assumes "dimension n K E" and "dimension m K E"
shows "n = m"

{(proof)

corollary independent_length_eq_dimension:
assumes "dimension n K E" and "independent K Us" "set Us C E"
shows "length Us = n «— Span K Us = E"

(proof)

lemma complete_base:
assumes "dimension n K E" and "independent K Us" "set Us C E"
shows "JVs. length (Vs @ Us) = n A independent K (Vs @ Us) A Span K
(Vs @ Us) = E"
(proof)

lemma filter_base:

assumes "set Us C carrier R"

obtains Vs where "set Vs C carrier R" and "independent K Vs" and "Span
K Vs = Span K Us"
(proof)

lemma dimension_backwards:
"dimension (Suc n) K E — dJv € carrier R. dE’. dimension n K E’> A
v ¢ E> A E = line_extension K v E’"

(proof)

lemma dimension_direct_sum_space:
assumes "dimension n K E" and "dimension m K F" and "ENF ={ 0 }"
shows "dimension (n + m) K (E <+>g F)"

(proof)

lemma dimension_sum_space:

assumes "dimension n K E" and "dimension m K F" and "dimension k K
(ENF"

shows "dimension (n + m - k) K (E <+>g F)"

(proof)

end

end

293

lemma (in ring) telescopic_base_aux:
assumes "subfield K R" "subfield F R"
and "dimension n K F" and "dimension 1 F E"
shows "dimension n K E"

(proof)

lemma (in ring) telescopic_base:
assumes "subfield K R" "subfield F R"
and "dimension n K F" and "dimension m F E"
shows "dimension (n * m) K E"

(proof)

context ring hom_ring
begin

lemma combine_hom:
"[set Ks C carrier R; set Us C carrier R | = combine (map h Ks) (map
h Us) = h (R.combine Ks Us)"

{proof)

lemma line_extension_hom:

assumes "K C carrier R" "a € carrier R" "E C carrier R"

shows "line_extension (h ¢ K) (h a) (h * E) = h ¢ R.line_extension K
a Ell

(proof)

lemma Span_hom:
assumes "K C carrier R" "set Us C carrier R"
shows "Span (h ¢ K) (map h Us) = h ¢ R.Span K Us"

(proof)

lemma inj_on_subgroup_iff_trivial_ker:
assumes "subgroup H (add_monoid R)"
shows "inj_on h H <— a_kernel (R (| carrier :=H|)) Sh=4{0 2"
{proof)

corollary inj_on_Span_iff_trivial_ker:

assumes "subfield K R" "set Us C carrier R"

shows "inj_on h (R.Span K Us) <— a_kernel (R (| carrier := R.Span K
Us) Sh=4{02"

(proof)

context
fixes K :: "’a set" assumes K: "subfield X R" and one_zero: "lg # 0g"
begin

lemma inj_hom_preserves_independent:

294

assumes "inj_on h (R.Span K Us)"
and "R.independent K Us" shows "independent (h ¢ K) (map h Us)"

(proof)

corollary inj_hom_dimension:
assumes "inj_on h E"
and "R.dimension n K E" shows "dimension n (h ¢ K) (h ¢ E)"

(proof)

corollary rank_nullity_theorem:
assumes "R.dimension n K E" and "R.dimension m K (a_kernel (R (carrier

:=E) Sh"
shows "dimension (n - m) (h “ K) (h ¢ E)"
(proof)
end
end

lemma (in ring_hom_ring)
assumes "subfield K R" and "set Us C carrier R" and "1lg # 0g"
and "independent (h ¢ K) (map h Us)" shows "R.independent K Us"

(proof)

34.9 Finite Dimension

definition (in ring) finite_dimension :: "’a set = ’a set = bool"
where "finite_dimension K E <— (dn. dimension n K E)"

abbreviation (in ring) infinite_dimension :: "’a set = ’a set = bool"
where "infinite_dimension K E = — finite_dimension K E"
definition (in ring) dim :: "’a set = ’a set = nat"

where "dim K E = (THE n. dimension n K E)"

locale subalgebra = subgroup V "add_monoid R" for K and V and R (structure)
+

assumes smult_closed: "[k € K; veEe V] =k ® v € V"

34.9.1 Basic Properties

lemma (in ring) unique_dimension:
assumes "subfield K R" and "finite_dimension K E" shows "d!n. dimension
n K E"

(proof)

lemma (in ring) finite_dimensionI:
assumes "dimension n K E" shows "finite_dimension K E"

{proof)

295

lemma (in ring) finite_dimensionE:
assumes "subfield K R" and "finite_dimension K E" shows "dimension
((dim over K) E) K E"

{proof)

lemma (in ring) dimI:
assumes "subfield K R" and "dimension n K E" shows "(dim over K) E
= n"

{proof)

lemma (in ring) finite_dimensionE’ [elim]:
assumes "finite_dimension K E" and "An. dimension n K E = P" shows
P

{proof)

lemma (in ring) Span_finite_dimension:
assumes "subfield K R" and "set Us C carrier R"
shows "finite_dimension K (Span K Us)"

(proof)

lemma (in ring) carrier_is_subalgebra:
assumes "K C carrier R" shows "subalgebra K (carrier R) R"
(proof)

lemma (in ring) subalgebra_in_carrier:
assumes "subalgebra K V R" shows "V C carrier R"

(proof)

lemma (in ring) subalgebra_inter:

assumes "subalgebra K V R" and "subalgebra K V’ R" shows "subalgebra
K (VvNnvVv)R"

(proof)

lemma (in ring hom_ring) img_is_subalgebra:

assumes "K C carrier R" and "subalgebra K V R" shows "subalgebra (h
“K) (V) 8"
(proof)

lemma (in ring) ideal_is_subalgebra:
assumes "K C carrier R" "ideal I R" shows "subalgebra K I R"

{proof)

lemma (in ring) Span_is_subalgebra:
assumes "subfield K R" "set Us C carrier R" shows "subalgebra K (Span
K Us) R"

{proof)

lemma (in ring) finite_dimension_imp_subalgebra:
assumes "subfield K R" "finite_dimension K E" shows "subalgebra K E

296

Rl!
(proof)

lemma (in ring) subalgebra_Span_incl:
assumes "subfield K R" and "subalgebra K V R" "set Us C V" shows "Span
K Us C V"

(proof)

lemma (in ring) Span_subalgebra_minimal:
assumes "subfield K R" "set Us C carrier R"
shows "Span K Us = (| { V. subalgebra K VR A set Us C V }"

(proof)

lemma (in ring) Span_subalgebral:
assumes "subfield K R"
and "subalgebra K E R" "set Us C E"
and "AV. [subalgebra K VR; set Us C V] = E C V"
shows "E = Span K Us"

(proof)

lemma (in ring) subalbegra_incl_imp_finite_dimension:
assumes "subfield K R" and "finite_dimension K E"
and "subalgebra K V R" "V C E" shows "finite_dimension K V"

(proof)

lemma (in ring_hom_ring) infinite_dimension_hom:
assumes "subfield K R" and "lg # Og" and "inj_on h E" and "subalgebra
K E R"
shows "R.infinite_dimension K E = infinite_dimension (h ¢ K) (h ¢
E)"
(proof)

34.9.2 Reformulation of some lemmas in this new language.

lemma (in ring) sum_space_dim:
assumes "subfield K R" "finite_dimension K E" "finite_dimension K F"
shows "finite_dimension K (E <+>g F)"
and "((dim over K) (E <+>g F)) = ((dim over K) E) + ((dim over K)
F) - ((dim over K) (E N)"

(proof)

lemma (in ring) telescopic_base_dim:

assumes "subfield K R" "subfield F R" and "finite_dimension K F" and
"finite_dimension F E"

shows "finite_dimension K E" and "(dim over K) E = ((dim over K) F)
* ((dim over F) E)"

(proof)

end

297

theory Polynomial_Divisibility
imports Polynomials Embedded_Algebras "HOL-Library.Multiset"

begin

35 Divisibility of Polynomials

35.1 Definitions

abbreviation poly_ring :: "_ = (’a 1list) ring"
where "poly_ring R = univ_poly R (carrier R)"

abbreviation pirreducible :: "_ = ’a set = ’a list = bool" (<pirreduciblez >)
where "pirreducibleg K p = ring_irreducible iy poly R K) p"

abbreviation pprime :: "_ = ’a set = ’a list = bool" (<pprimez >)

where "pprimeg K p = ring_prime(univ_poly R X) P"

definition pdivides :: "_ = ’a list = ’a list = bool" (infix <pdivides: >
65)

where "p pdividesg q = p divides (ypiv_poly R (carrier R)) 4"

definition rupture :: "_ = ’a set = ’a list = ((’a list) set) ring"
(<Ruptz >)
where "Ruptg K p = (K[XIg) Quot (PIdlK[XJR "

abbreviation (in ring) rupture_surj :: "’a set = ’a list = ’a list =
(’a list) set"
where "rupture_surj K p = (Aq. (PIdlgrxy p) +>xx] 9"

35.2 Basic Properties

lemma (in ring) carrier_polynomial_shell [intro]:

assumes "subring K R" and "p € carrier (K[X])" shows "p € carrier
(poly_ring R)"

(proof)

lemma (in domain) pdivides_zero:
assumes "subring K R" and "p € carrier (K[X])" shows "p pdivides []"

(proof)

lemma (in domain) zero_pdivides_zero: "[] pdivides []"

{proof)

lemma (in domain) zero_pdivides:
shows "[] pdivides p +— p = [1"
{proof)

298

lemma (in domain) pprime_iff_pirreducible:
assumes "subfield K R" and "p € carrier (K[X])"
shows "pprime K p <— pirreducible K p"

(proof)

lemma (in domain) pirreducibleE:
assumes "subring K R" "p € carrier (K[X])" "pirreducible K p"
shows "p # [1" "p ¢ Units (K[X])"
and "Aq r. [q € carrier (X[X]); r € carrier (K[X])] =
P=q ®krxy] ¥ = q € Units (K[X]) V r € Units (K[X])"
(proof)

lemma (in domain) pirreduciblel:
assumes "subring K R" "p € carrier (K[X1)" "p # [1" "p ¢ Units (X[XI)"
and "Aq r. [q € carrier (K[X]); r € carrier (K[X])] =
P=9q ®x] T = q € Units (K[XI) V r € Units (K[X1"
shows "pirreducible K p"

(proof)

lemma (in domain) univ_poly_carrier_units_incl:

shows "Units ((carrier R) [X]) C { [k] | k. k € carrier R - { 0 }
}ll
(proof)

lemma (in field) univ_poly_carrier_units:
"Units ((carrier R) [X]) ={ [k] | k. k¥ € carrier R- { 0 } }"
(proof)

lemma (in domain) univ_poly_units_incl:

assumes "subring K R" shows "Units (K[X]) C { [k] | k. k € K- {
0 } }ll

(proof)

lemma (in ring) univ_poly_units:

assumes "subfield K R" shows "Units (K[X]) ={ [k] | k. k € K - {
02

(proof)

lemma (in domain) univ_poly_units’:

assumes "subfield K R" shows "p € Units (K[X]) <— p € carrier (K[X])
A p # [1 A degree p = 0"

{proof)

corollary (in domain) rupture_one_not_zero:
assumes "subfield K R" and "p € carrier (K[X])" and "degree p > 0"
shows "1Rupt K p # 0Rup‘c K p"

(proof)

299

corollary (in ring) pirreducible_degree:
assumes "subfield K R" "p € carrier (K[X])" "pirreducible K p"
shows "degree p > 1"

(proof)

corollary (in domain) univ_poly_not_field:
assumes "subring K R" shows "— field (K[X])"

(proof)

lemma (in domain) rupture_is_field_iff_pirreducible:
assumes "subfield K R" and "p € carrier (K[X])"
shows "field (Rupt K p) ¢— pirreducible K p"

(proof)

lemma (in domain) rupture_surj_hom:
assumes "subring K R" and "p € carrier (K[X])"
shows "(rupture_surj K p) € ring_hom (K[X]) (Rupt K p)"
and "ring_hom_ring (K[X]) (Rupt K p) (rupture_surj K p)"
(proof)

corollary (in domain) rupture_surj_norm_is_hom:

assumes "subring K R" and "p € carrier (K[X])"

shows "((rupture_surj K p) o poly_of_const) € ring hom (R (carrier
:= K)) (Rupt K p)"

(proof)

lemma (in domain) norm_map_in_poly_ring_carrier:

assumes "p € carrier (poly_ring R)" and "Aa. a € carrier R = f a
€ carrier (poly_ring R)"

shows "ring.normalize (poly_ring R) (map f p) € carrier (poly_ring
(poly_ring R))"
(proof)

lemma (in domain) map_in_poly_ring_ carrier:
assumes "p € carrier (poly_ring R)" and "Aa. a € carrier R = £ a
€ carrier (poly_ring R)"
and "Aa. a #0 = f a # [I"
shows "map f p € carrier (poly_ring (poly_ring R))"

(proof)

lemma (in domain) map_norm_in_poly_ring_carrier:
assumes "subring K R" and "p € carrier (K[X])"
shows "map poly_of_const p € carrier (poly_ring (K[X]))"
{proof)

lemma (in domain) polynomial_rupture:

assumes "subring K R" and "p € carrier (K[X])"

shows "(ring.eval (Rupt K p)) (map ((rupture_surj K p) o poly_of_const)
p) (rupture_surj K p X) = Opypt K p"

300

(proof)

35.3 Division

definition (in ring) long_divides :: "’a list = ’a list = (’a list X
’a list) = bool"
where "long_divides p q t +—
—1i (t € carrier (poly_ring R) x carrier (poly_ring R))

A
—ii (p = (q ®poly_ring R (fst t)) @poly_ring R (Snd t)) AN
—iii (snd t = [] V degree (snd t) < degree)"
definition (in ring) long_division :: "’a list = ’a list = (’a list X
’a list)"
where "long_division p q = (THE t. long_divides p q t)"
definition (in ring) pdiv :: "’a list = ’a list = ’a list" (infix] <pdiv>
65)
where "p pdiv q = (if q = [] then [] else fst (long_division p q))"
definition (in ring) pmod :: "’a list = ’a list = ’a list" (infix]l <pmod>
65)

where "p pmod q = (if q = [] then p else snd (long_division p q))"

lemma (in ring) long_dividesI:
assumes "b € carrier (poly_ring R)" and "r € carrier (poly_ring R)"
and "p = (q ®poly_ring R b) ®poly_ring B T" and "r = [] V degree
r < degree q"
shows "long_divides p q (b, r)"
(proof)

lemma (in domain) exists_long_division:

assumes "subfield K R" and "p € carrier (K[X])" and "q € carrier (K[X])"
llq # [] n

obtains b r where "b € carrier (K[X])" and "r € carrier (K[X])" and
"long_divides p q (b,)"

(proof)

lemma (in domain) exists_unique_long_division:
assumes "subfield K R" and "p € carrier (K[X])" and "q € carrier (K[X])"

||q 7& [] n
shows "J!t. long_divides p q t"

(proof)

lemma (in domain) long_divisionE:
assumes "subfield K R" and "p € carrier (K[X])" and "q € carrier (K[X])"

||q # [] n
shows "long_divides p q (p pdiv q, p pmod q)"

301

(proof)

lemma (in domain) long_divisionI:

assumes "subfield K R" and "p € carrier (K[X])" and "q € carrier (K[X])"
llq # [] n

shows "long_divides p q (b, r) = (b, r) = (p pdiv q, p pmod "

(proof)

lemma (in domain) long_division_closed:
assumes "subfield K R" and "p € carrier (K[X])" "q € carrier (K[XI)"
shows "p pdiv q € carrier (K[X])" and "p pmod q € carrier (K[X])"
(proof)

lemma (in domain) pdiv_pmod:
assumes "subfield K R" and "p € carrier (K[X])" "q € carrier (K[X])"
shows "p = (q ®g[x] (p pdiv @) @k[x] (p pmod Q"

(proof)

lemma (in domain) pmod_degree:

assumes "subfield K R" and "p € carrier (K[X])" and "q € carrier (K[X])"
llq # [] n

shows "p pmod q = [] V degree (p pmod q) < degree q"

(proof)

lemma (in domain) pmod_const:

assumes "subfield K R" and "p € carrier (K[X])" "q € carrier (K[XI)"
and "degree q > degree p"

shows "p pdiv q = []" and "p pmod q = p"
(proof)

lemma (in domain) long_division_zero:

assumes "subfield K R" and "q € carrier (K[X])" shows "[] pdiv q =
(" and "[] pmod q = [1"
(proof)

lemma (in domain) long_division_a_inv:
assumes "subfield K R" and "p € carrier (K[X])" "q € carrier (K[XI)"
shows "((Sgrxy P) pdiv q) = Sgrxy (p pdiv @)" (is "?pdiv")
and "((&grx] p) pmod @) = Sgrx] (p pmod)" (is "?pmod")
(proof)

lemma (in domain) long_division_add:
assumes "subfield K R" and "a € carrier (XK[X])" "b € carrier (K[X])"
"q € carrier (K[X])"
shows "(a @grx; b) pdiv q = (a pdiv @) @grxy (b pdiv @)" (is "?pdiv")
and "(a @®grxy b) pmod q = (a pmod q) @grx] (b pmod @)" (is "?pmod")
(proof)

lemma (in domain) long_division_add_iff:

302

assumes "subfield K R"
and "a € carrier (K[X])" "b € carrier (K[X])" "c € carrier (K[X])"
"q € carrier (K[X])"
shows "a pmod q = b pmod q <— (a @®g[x] ¢) pmod q = (b Pg[x] ¢) pmod

(proof)

lemma (in domain) pdivides_iff:
assumes "subfield K R" and "polynomial K p" "polynomial K q"
shows "p pdivides q <— p dividesg[x q"

(proof)

lemma (in domain) pdivides_iff_shell:
assumes "subfield K R" and "p € carrier (K[X])" "q € carrier (K[X])"
shows "p pdivides q <— p dividesg[x] q"

(proof)

lemma (in domain) pmod_zero_iff_pdivides:
assumes "subfield K R" and "p € carrier (K[X])" "q € carrier (K[X])"
shows "p pmod q = [] +— q pdivides p"

(proof)

lemma (in domain) same_pmod_iff_pdivides:

assumes "subfield K R" and "a € carrier (XK[X])" "b € carrier (K[XI)"
"q € carrier (K[X])"

shows "a pmod q = b pmod q <— q pdivides (a ©g[x3 b)"
{proof)

lemma (in domain) pdivides_imp_degree_le:
assumes "subring K R" and "p € carrier (K[X])" "q € carrier (K[X])"

llq ;é [] "
shows "p pdivides q = degree p < degree q"

(proof)

lemma (in domain) pprimeE:
assumes "subfield K R" "p € carrier (K[X])" "pprime K p"
shows "p # [1" "p ¢ Units (K[X])"
and "Aq r. [q € carrier (K[X]); r € carrier (K[X])] =
p pdivides (q ®g[x; r) = p pdivides q V p pdivides

rll

{proof)

lemma (in domain) pprimel:
assumes "subfield K R" "p € carrier (K[X])" "p # [I" "p ¢ Units (K[XI)"
and "Aq r. [q € carrier (K[X]); r € carrier (K[X])] =
p pdivides (q ®g[x; r) = p pdivides q V p pdivides
rll
shows "pprime K p"

(proof)

303

lemma (in domain) associated_polynomials_iff:
assumes "subfield K R" and "p € carrier (K[X])" "q € carrier (K[X])"
shows "p ~xx]1 9 ¢ Gk € K-{ 0} p=1[k] R D"
(proof)

corollary (in domain) associated_polynomials_imp_same_length:
assumes "subring K R" and "p € carrier (K[X])" and "q € carrier (K[X])"
shows "p ~grx] 9 = length p = length q"

{(proof)

lemma (in ring) divides_pirreducible_condition:
assumes "pirreducible K q" and "p € carrier (K[X])"
shows "p dividesg[y] 9 = p € Units (K[XI) V p ~yx] Q"
{proof)

35.4 Polynomial Power

lemma (in domain) polynomial_pow_not_zero:
assumes "p € carrier (poly_ring R)" and "p # [1"
shows "p ["lpoly_ring R (n::nat) # [I"

(proof)

lemma (in domain) subring_polynomial_pow_not_zero:
assumes "subring K R" and "p € carrier (K[X])" and "p # [1"
shows "p [“lgrx; (m::nat) # [1"
{proof)

lemma (in domain) polynomial_pow_degree:

assumes "p € carrier (poly_ring R)"

shows "degree (p ["]poly_ring R m) = n * degree p"
(proof)

lemma (in domain) subring_polynomial_pow_degree:
assumes "subring K R" and "p € carrier (K[X])"
shows "degree (p ["Jg[x] n) = n * degree p"
(proof)

lemma (in domain) polynomial_pow_division:
assumes "p € carrier (poly_ring R)" and "(n::nat) < m"
shows "(p [A]poly_ring R 1) pdivides (p [A]poly_ring R m"
(proof)

lemma (in domain) subring_polynomial_pow_division:
assumes "subring K R" and "p € carrier (K[X])" and "(n::nat) < m"
shows "(p [Tlgrxy n) dividesgxy (p [Tlgxy m"
(proof)

lemma (in domain) pirreducible_pow_pdivides_iff:

304

assumes "subfield K R" "p € carrier (K[X])" "q € carrier (K[X])" "r
€ carrier (X[X])"
and "pirreducible K p" and "— (p pdivides q)"
shows "(p [Tlgrxy (@ :: nat)) pdivides (q ®grxy r) +— (p [k o)
pdivides r"

(proof)
lemma (in domain) subring_degree_one_imp_pirreducible:
assumes "subring X R" and "a € Units (R (carrier := K)" and "b
E Kll
shows "pirreducible K [a, b]"
(proof)

lemma (in domain) degree_one_imp_pirreducible:
assumes "subfield K R" and "p € carrier (K[X])" and "degree p = 1"
shows "pirreducible K p"

(proof)

lemma (in ring) degree_oneE[elim]:
assumes "p € carrier (K[X])" and "degree p = 1"
and "Aab. [a€K;a#0;becK; p=[a,bl] = p"
shows P

(proof)

lemma (in domain) subring_degree_one_associatedI:

assumes "subring K R" and "a € K" "a’ € K" and "b € K" and "a ® a’
= 1"

shows "[a , b] ~x [1, 2> ® b 1"
(proof)

lemma (in domain) degree_one_associatedI:
assumes "subfield K R" and "p € carrier (K[X])" and "degree p = 1"
shows "p ~grx; [1, inv (lead_coeff p) ® (const_term p)]"

(proof)

35.5 Ideals

lemma (in domain) exists_unique_gen:
assumes "subfield K R" "ideal I (K[X1)" "I =# { [1 "
shows "J!p € carrier (K[X]). lead_coeff p =1 A I = PIdlg[x) p"
(is "3 !p. 7generator p")

(proof)

proposition (in domain) exists_unique_pirreducible_gen:
assumes "subfield K R" "ring_hom_ring (K[X]) R h"
and "a_kernel (K[X]) Rh # { [1 }" "a_kernel (K[X]) R h # carrier
(K[X1)"
shows "J!p € carrier (K[X]). pirreducible K p A lead_coeff p =1 A
a_kernel (K[X]) R h = PIdlgrxy p"

305

(is "3 !p. 7generator p")
(proof)

lemma (in domain) cgenideal_pirreducible:
assumes "subfield K R" and "p € carrier (K[X])" "pirreducible K p"

shows "[pirreducible K q; q € PIdlgx P] = p ~xx3 4"
(proof)

35.6 Roots and Multiplicity

definition (in ring) is_root :: "’a list = ’a = bool"
where "is_root p x +— (x € carrier R A eval px =0 A p # [1)"

definition (in ring) alg_mult :: "’a list = ’a = nat"
where "alg mult p x =
(if p = [] then O else
(if x € carrier R then Greatest (A n. ([1, © x 1 ["lpo1y_ring R
n) pdivides p) else 0))"

definition (in ring) roots :: "’a list = ’a multiset"
where "roots p = Abs_multiset (alg_mult p)"

definition (in ring) roots_on :: "’a set = ’a list = ’a multiset"
where "roots_on K p = roots p N# mset_set K"

definition (in ring) splitted :: "’a list = bool"
where "splitted p <— size (roots p) = degree p"

definition (in ring) splitted_on :: "’a set = ’a list = bool"
where "splitted_on K p <— size (roots_on K p) = degree p"

lemma (in domain) pdivides_imp_root_sharing:

assumes "p € carrier (poly_ring R)" "p pdivides q" and "a € carrier
Rll

shows "eval pa = 0 = eval q a = 0"
(proof)

lemma (in domain) degree_one_root:
assumes "subfield K R" and "p € carrier (K[X])" and "degree p = 1"
shows "eval p (& (inv (lead_coeff p) ® (const_term p))) = 0"
and "inv (lead_coeff p) ® (const_term p) € K"
(proof)
lemma (in domain) is_root_imp_pdivides:
assumes "p € carrier (poly_ring R)"
shows "is_root p x = [1, © x] pdivides p"

(proof)

lemma (in domain) pdivides_imp_is_root:

306

assumes "p # [1" and "x € carrier R"
shows "[1, © x] pdivides p = is_root p x"
(proof)

lemma (in domain) associated_polynomials_imp_same_is_root:

assumes "p € carrier (poly_ring R)" and "q € carrier (poly_ring R)"
and "p ~poly_ring R 4"

shows "is_root p x <— is_root q x"
(proof)

lemma (in ring) monic_degree_one_root_condition:
assumes "a € carrier R" shows "is_root [1, © a] b +— a = b"
(proof)

lemma (in field) degree_one_root_condition:

assumes "p € carrier (poly_ring R)" and "degree p = 1"

shows "is_root p x +— x = & (inv (lead_coeff p) ® (const_term p))"
(proof)

lemma (in domain) is_root_poly_mult_imp_is_root:
assumes "p € carrier (poly_ring R)" and "q € carrier (poly_ring R)"
shows "is_root (p ®poly_ring R @) x* = (is_root p x) V (is_root q x)"

(proof)

lemma (in domain) degree_zero_imp_not_is_root:

assumes "p € carrier (poly_ring R)" and "degree p = 0" shows "— is_root
p X"
(proof)

lemma (in domain) finite_number_of_roots:

assumes "p € carrier (poly_ring R)" shows "finite { x. is_root p x
}ll

(proof)

lemma (in domain) alg _multE:
assumes "x € carrier R" and "p € carrier (poly_ring R)" and "p #
[] "
shows "([1, © x] [Tlpo1y_ring r (2lg_mult p x)) pdivides p"
and "An. ([1, © x 1 ["lpoly_ring R B) pdivides p = n < alg_mult
p x"
(proof)

lemma (in domain) le_alg_mult_imp_pdivides:

assumes "x € carrier R" and "p € carrier (poly_ring R)"

shows "n < alg mult p x = ([1, © x] ["Jpo1ly_ring R D) pdivides
pll
(proof)

lemma (in domain) alg_mult_gt_zero_iff_is_root:

307

assumes "p € carrier (poly_ring R)" shows "alg_mult p x > 0 <— is_root
p X"
(proof)

lemma (in domain) alg_mult_eq_count_roots:

assumes "p € carrier (poly_ring R)" shows "alg _mult p = count (roots
p) n

{proof)

lemma (in domain) roots_mem_iff_is_root:

assumes "p € carrier (poly_ring R)" shows "x €# roots p +— is_root
p X"

(proof)

lemma (in domain) degree_zero_imp_empty_roots:

assumes "p € carrier (poly_ring R)" and "degree p = 0" shows "roots
p = {#}"

(proof)

lemma (in domain) degree_zero_imp_splitted:
assumes "p € carrier (poly_ring R)" and "degree p = 0" shows "splitted

(proof)

p

lemma (in domain) roots_inclI’:

assumes "p € carrier (poly_ring R)" and "Aa. [a € carrier R; p #
(1] = alg_mult p a < count m a"

shows "roots p C# m"

(proof)

lemma (in domain) roots_inclI:
assumes "p € carrier (poly_ring R)" and "q € carrier (poly_ring R)"
"q # 0
and "Aa. [a € carrier R; p # [1 | = ([1, © a1 ["lpoly _ring R
(alg_mult p a)) pdivides q"
shows "roots p C# roots q"

(proof)

lemma (in domain) pdivides_imp_roots_incl:

assumes "p € carrier (poly_ring R)" and "q € carrier (poly_ring R)"
llq ;é [] n

shows "p pdivides q = roots p C# roots q"

(proof)

lemma (in domain) associated_polynomials_imp_same_roots:

assumes "p € carrier (poly_ring R)" and "q € carrier (poly_ring R)"
and "p ~poly_ring R 9"

shows "roots p = roots q"

(proof)

308

lemma (in domain) monic_degree_one_roots:
assumes "a € carrier R" shows "roots [1 , © a] = {# a #}"

(proof)

lemma (in domain) degree_one_roots:

assumes "a € carrier R" "a’ € carrier R" and "b € carrier R" and "a
® a’> = 1"

shows "roots [a , b] = {# & (&’ ® b) #}"
{(proof)

lemma (in field) degree_one_imp_singleton_roots:
assumes "p € carrier (poly_ring R)" and "degree p = 1"
shows "roots p = {# © (inv (lead_coeff p) ® (const_term p)) #}"

(proof)

lemma (in field) degree_one_imp_splitted:

assumes "p € carrier (poly_ring R)" and "degree p = 1" shows "splitted
pll

(proof)

lemma (in field) no_roots_imp_same_roots:

assumes "p € carrier (poly_ring R)" "p # [1" and "q € carrier (poly_ring
R)"

shows "roots p = {#} — roots (p ®poly_ring R 9) = roots q"

(proof)

lemma (in field) poly_mult_degree_one_monic_imp_same_roots:
assumes "a € carrier R" and "p € carrier (poly_ring R)" "p # [1"
shows "roots ([1, © a] ®poly_ring R P) = add_mset a (roots p)"

{(proof)

lemma (in domain) not_empty_rootsE[elim]:
assumes "p € carrier (poly_ring R)" and "roots p # {#}"
and "/\a. [[a € carrier R; a €# roots p;
[1, © a] € carrier (poly_ring R); [1, © a] pdivides

p]] - p"
shows P
(proof)

lemma (in field) associated_polynomials_imp_same_roots:

assumes "p € carrier (poly_ring R)" "p # []1" and "q € carrier (poly_ring
R) n Hq # [] n

shows "roots (p ®poly_ring R @) = roots p + roots q"
(proof)

lemma (in field) size_roots_le_degree:
assumes "p € carrier (poly_ring R)" shows "size (roots p) < degree

p

309

(proof)

lemma (in domain) pirreducible_roots:

assumes "p € carrier (poly_ring R)" and "pirreducible (carrier R) p"
and "degree p # 1"

shows "roots p = {#}"

(proof)

lemma (in field) pirreducible_imp_not_splitted:

assumes "p € carrier (poly_ring R)" and "pirreducible (carrier R) p"
and "degree p # 1"

shows "— splitted p"

(proof)

lemma (in field)
assumes "p € carrier (poly_ring R)" and "q € carrier (poly_ring R)"
and "pirreducible (carrier R) p" and "degree p # 1"
shows "roots (p ®poly_ring R @) = roots q"

(proof)

lemma (in field) trivial_factors_imp_splitted:
assumes "p € carrier (poly_ring R)"
and "Aq. [q € carrier (poly_ring R); pirreducible (carrier R) q;
q pdivides p | = degree q < 1"
shows "splitted p"

(proof)

lemma (in field) pdivides_imp_splitted:

assumes "p € carrier (poly_ring R)" and "q € carrier (poly_ring R)"
"qg # [1" and "splitted q"

shows "p pdivides q = splitted p"

(proof)

lemma (in field) splitted_imp_trivial_factors:
assumes "p € carrier (poly_ring R)" "p # []1" and "splitted p"
shows "Aq. [q € carrier (poly_ring R); pirreducible (carrier R) g;
q pdivides p | = degree q = 1"
{proof)

35.7 Link between pmod and rupture_surj

lemma (in domain) rupture_surj_composed_with_pmod:
assumes "subfield K R" and "p € carrier (K[X])" and "q € carrier (K[X])"
shows "rupture_surj K p q = rupture_surj K p (q pmod p)"

(proof)

corollary (in domain) rupture_carrier_as_pmod_image:
assumes "subfield K R" and "p € carrier (K[X])"
shows "(rupture_surj K p) ¢ ((Aq. q pmod p) ¢ (carrier (K[X]))) = carrier

310

(Rupt X p)"
(is "7?1lhs = ?rhs")
(proof)

lemma (in domain) rupture_surj_inj_on:

assumes "subfield K R" and "p € carrier (K[X])"

shows "inj_on (rupture_surj K p) ((Ag. q pmod p) ¢ (carrier (K[X])))"
(proof)

35.8 Dimension

definition (in ring) exp_base :: "’a = nat = ’a list"
where "exp_base x n = map (A\i. x [7] i) (rev [0..< n])"

lemma (in ring) exp_base_closed:
assumes "x € carrier R" shows "set (exp_base x n) C carrier R"

{proof)

lemma (in ring) exp_base_append:
shows "exp_base x (n + m) = (map (Ai. x [7] i) (rev [n..< n + m]))
@ exp_base x n"

(proof)

lemma (in ring) drop_exp_base:
shows "drop n (exp_base x m) = exp_base x (m - n)"

(proof)

lemma (in ring) combine_eq_eval:
shows "combine Ks (exp_base x (length Ks)) = eval Ks x"

(proof)

lemma (in domain) pmod_image_characterization:

assumes "subfield K R" and "p € carrier (K[X])" and "p # [1"

shows "(Aq. q pmod p) ¢ carrier (K[X]) = { q € carrier (K[X]). length
q < degree p }"
(proof)

lemma (in domain) Span_var_pow_base:
assumes "subfield K R"
shows "ring.Span (K[X]) (poly_of_const ¢ K) (ring.exp_base (K[X]) X
n) =
{ q € carrier (K[X]). length q < n }" (is "?1lhs = ?7rhs")
(proof)

lemma (in domain) var_pow_base_independent:

assumes "subfield K R"

shows "ring.independent (K[X]) (poly_of_const ‘¢ K) (ring.exp_base (K[X])
X n)"
(proof)

311

lemma (in domain) bounded_degree_dimension:

assumes "subfield K R"

shows "ring.dimension (K[X]) n (poly_of_const ¢ K) { q € carrier (K[X]).
length g < n }"

(proof)

corollary (in domain) univ_poly_infinite_dimension:
assumes "subfield K R" shows "ring.infinite_dimension (K[X]) (poly_of_const
¢ K) (carrier (K[X]))"

(proof)

corollary (in domain) rupture_dimension:

assumes "subfield K R" and "p € carrier (K[X])" and "degree p > 0"

shows "ring.dimension (Rupt K p) (degree p) ((rupture_surj K p) ‘ poly_of_const
¢ K) (carrier (Rupt K p))"
(proof)

end

theory Indexed_Polynomials
imports Weak_Morphisms "HOL-Library.Multiset" Polynomial Divisibility

begin

36 Indexed Polynomials

In this theory, we build a basic framework to the study of polynomials on
letters indexed by a set. The main interest is to then apply these concepts
to the construction of the algebraic closure of a field.

36.1 Definitions

We formalize indexed monomials as multisets with its support a subset of
the index set. On top of those, we build indexed polynomials which are
simply functions mapping a monomial to its coefficient.

definition (in ring) indexed_const :: "’a = (’c multiset = ’a)"
where "indexed_const k = (Am. if m = {#} then k else 0)"

definition (in ring) indexed_pmult :: "(’c multiset = ’a) = ’c = (’c
multiset = ’a)" (infixl <) > 65)

where "indexed_pmult P i = (Am. if i €# m then P (m - {# i #}) else
0) n

definition (in ring) indexed_padd :: "_ = _ = (’c multiset = ’a)" (infixl

<> 65)

312

where "indexed_padd P Q = (Am. (P m) & (Q m))"

definition (in ring) indexed_var :: "’c¢c = (’c multiset = ’a)" (<X2>)
where "indexed_var i = (indexed_const 1) @ i"

definition (in ring) index_free :: "(’c multiset = ’a) = ’c = bool"
where "index_free P i «— (Vm. i €é#m — Pm = 0)"

definition (in ring) carrier_coeff :: "(’c multiset = ’a) = bool"
where "carrier_coeff P «— (Vm. P m € carrier R)"

inductive__set (in ring) indexed_pset :: "’c set = ’a set = (’c multiset
= ’a) set"
(< (<open_block notation=<postfix X>>_ [X2]1)> 80)
for T and X where
indexed_const: "k € K — indexed_const k € (K[X1])"
| indexed_padd: "[P € (K[X11); Q € (K[X1]) | = P @ Q € K[AXD"
| indexed_pmult: "[P € (K[X11); i € I] = P Q i € K[AXD"

fun (in ring) indexed_eval_aux :: "(’c multiset = ’a) list = ’c = (’c
multiset = ’a)"

where "indexed_eval_aux Ps i = foldr (AP Q. (Q @ i) € P) Ps (indexed_const
0) n

fun (in ring) indexed_eval :: "(’c multiset = ’a) list = ’c = (’c multiset
:)a) n
where "indexed_eval Ps i = indexed_eval_aux (rev Ps) i"

36.2 Basic Properties

lemma (in ring) carrier_coeffE:
assumes "carrier_coeff P" shows "P m € carrier R"

{proof)

lemma (in ring) indexed_zero_def: "indexed_const 0 = (A_. 0)"

(proof)

lemma (in ring) indexed_const_index_free: "index_free (indexed_const
k) in
(proof)

lemma (in domain) indexed_var_not_index_free: "— index_free Xj i"

(proof)

lemma (in ring) indexed_pmult_zero [simp]:
shows "indexed_pmult (indexed_const 0) i = indexed_const 0"

(proof)

lemma (in ring) indexed_padd_zero:

313

assumes "carrier_coeff P" shows "P @ (indexed_const 0) = P" and "(indexed_const
0 @ P =P
(proof)

lemma (in ring) indexed_padd_const:

shows "(indexed_const k1) @ (indexed_const k2) = indexed_const (ki
@ k2)"

(proof)

lemma (in ring) indexed_const_in_carrier:
assumes "K C carrier R" and "k € K" shows "Am. (indexed_const k)
m € carrier R"

(proof)

lemma (in ring) indexed_padd_in_carrier:
assumes "carrier_coeff P" and "carrier_coeff Q" shows "carrier_coeff
(indexed_padd P Q)"

(proof)

lemma (in ring) indexed_pmult_in_carrier:
assumes "carrier_coeff P" shows "carrier_coeff (P Q) i)"

(proof)

lemma (in ring) indexed_eval_aux_in_carrier:
assumes "list_all carrier_coeff Ps" shows "carrier_coeff (indexed_eval_aux
Ps i)"

(proof)

lemma (in ring) indexed_eval_in_carrier:
assumes "list_all carrier_coeff Ps" shows "carrier_coeff (indexed_eval
Ps i)"

(proof)

lemma (in ring) indexed_pset_in_carrier:
assumes "K C carrier R" and "P € (K[X1])" shows "carrier_coeff P"

{proof)

36.3 Indexed Eval

lemma (in ring) exists_indexed_eval_aux_monomial:
assumes "carrier_coeff P" and "list_all carrier_coeff Qs"
and "count n i = k" and "P n # 0" and "list_all (AQ. index_free
Q i) Qs"
obtains m where "count m i = length Qs + k" and "(indexed_eval_aux
@ e [P1]1)i) m # O"
(proof)

lemma (in ring) indexed_eval_aux_monomial_degree_le:
assumes "list_all carrier_coeff Ps" and "list_all (AP. index_free P

314

i) Ps"
and "(indexed_eval_aux Ps i) m # 0" shows "count m i < length Ps
P 1|l
{proof)

lemma (in ring) indexed_eval_aux_is_inj:
assumes "list_all carrier_coeff Ps" and "list_all (AP. index_free P
i) Ps"
and "list_all carrier_coeff Qs" and "list_all (AQ. index_free Q
i) qu
and "indexed_eval_aux Ps i = indexed_eval_aux Qs i" and "length Ps
= length Qs"
shows "Ps = Qs"

{proof)

lemma (in ring) indexed_eval_aux_is_inj’:
assumes "list_all carrier_coeff Ps" and "list_all (AP. index_free P
i) Ps"
and "list_all carrier_coeff Qs" and "list_all (AQ. index_free Q
i) Qs"
and "carrier_coeff P" and "index_free P i" "P # indexed_const 0"
and "carrier_coeff Q" and "index_free Q i" "Q # indexed_const 0"
and "indexed_eval_aux (Ps @ [P]) i = indexed_eval_aux (Qs @ [Q
IDEER
shows "Ps = Qs" and "P = Q"

(proof)

lemma (in ring) exists_indexed_eval_monomial:
assumes "carrier_coeff P" and "list_all carrier_coeff Qs"
and "P n # 0" and "list_all (AQ. index_free Q i) Qs"
obtains m where "count m i = length Qs + (count n i)" and "(indexed_eval
(P # Qs) i) m # O"
(proof)

corollary (in ring) exists_indexed_eval_monomial’:
assumes "carrier_coeff P" and "list_all carrier_coeff Qs"
and "P # indexed_const 0" and "list_all (AQ. index_free Q i) Qs"
obtains m where "count m i > length Qs" and "(indexed_eval (P # Qs)
i) m # 0"
(proof)

lemma (in ring) indexed_eval_monomial_degree_le:
assumes "list_all carrier_coeff Ps" and "list_all (AP. index_free P
i) Ps"
and "(indexed_eval Ps i) m # 0" shows "count m i < length Ps - 1"

{proof)

lemma (in ring) indexed_eval_is_inj:
assumes "list_all carrier_coeff Ps" and "list_all (AP. index_free P

315

i) Ps"
and "list_all carrier_coeff Qs" and "list_all (AQ. index_free Q
i) Qs"
and "carrier_coeff P" and "index_free P i" "P # indexed_const 0"
and "carrier_coeff Q" and "index_free Q i" "Q # indexed_const 0"
and "indexed_eval (P # Ps) i = indexed_eval (Q # Qs) i"
shows "Ps = Qs" and "P = Q"

(proof)

lemma (in ring) indexed_eval_inj_on_carrier:

assumes "/P. P € carrier L = carrier_coeff P" and "AP. P € carrier
L = index_free P i" and "Op = indexed_const 0"

shows "inj_on (APs. indexed_eval Ps i) (carrier (poly_ring L))"

(proof)

36.4 Link with Weak Morphisms

We study some elements of the contradiction needed in the algebraic closure
existence proof.

context ring
begin

lemma (in ring) indexed_padd_index_free:

assumes "index_free P i" and "index_free Q i" shows "index_free (P
@ Q) in

(proof)

lemma (in ring) indexed_pmult_index_free:
assumes "index_free P j" and "i # j" shows "index_free (P @ i) j"

(proof)

lemma (in ring) indexed_eval_index_free:
assumes "list_all (AP. index_free P j) Ps" and "i # j" shows "index_free
(indexed_eval Ps i) j"

(proof)
context
fixes L :: "((°c multiset) = ’a) ring" and i :: ’c
assumes hyps:
—1 "field L"

—ii "AP. P € carrier L = carrier_coeff P"
—iii "AP. P € carrier L = index_free P i"
—iv "Op, = indexed_const 0"

begin

interpretation L: field L

(proof)

interpretation UP: principal_domain "poly_ring L"

316

(proof)

abbreviation eval_pmod
where "eval_pmod q = (Ap. indexed_eval (L.pmod p q) i)"

abbreviation image_poly
where "image_poly q = image_ring (eval_pmod q) (poly_ring L)"

lemma indexed_eval_is_weak_ring_morphism:

assumes "q € carrier (poly_ring L)" shows "weak_ring morphism (eval_pmod
q) (PIdlpoly ring L Q) (poly_ring L)"
(proof)

lemma eval_norm_eq_id:

assumes "q € carrier (poly_ring L)" and "degree q > 0" and "a € carrier
Lll

shows "((eval_pmod q) o (ring.poly_of_const L)) a = a"
(proof)

lemma image_poly_iso_incl:

assumes "q € carrier (poly_ring L)" and "degree q > 0" shows "id €
ring_hom L (image_poly q)"
(proof)

lemma image_poly_is_field:

assumes "q € carrier (poly_ring L)" and "pirreducible (carrier L)
q" shows "field (image_poly q)"

{proof)

lemma image_poly_index_free:

assumes "q € carrier (poly_ring L)" and "P € carrier (image_poly)"
and "—- index_free P j" "i # j"

obtains Q where "Q € carrier L" and "— index_free Q j"

(proof)

lemma eval_pmod_var:

assumes "indexed_const € ring_hom R L" and "q € carrier (poly_ring
L)" and "degree q > 1"

shows "(eval_pmod q) X = Xi" and "X3; € carrier (image_poly q)"

(proof)

lemma image_poly_eval_indexed_var:
assumes "indexed_const € ring_hom R L"
and "q € carrier (poly_ring L)" and "degree q > 1" and "pirreducibler,
(carrier L) q"
shows "(ring.eval (image_poly q)) q Xi = Oimage poly q"

(proof)

317

end
end
end
theory Finite_Extensions
imports Embedded_Algebras Polynomials Polynomial_Divisibility

begin

37 Finite Extensions

37.1 Definitions

definition (in ring) transcendental :: "’a set = ’a = bool"
where "transcendental K x <— inj_on (Ap. eval p x) (carrier (K[X]))"

abbreviation (in ring) algebraic :: "’a set = ’a = bool"
where "algebraic K x = — transcendental K x"

definition (in ring) Irr :: "’a set = ’a = ’a list"
where "Irr K x = (THE p. p € carrier (K[X]) A pirreducible K p A eval
p x =0 A lead_coeff p = 1)"

inductive_set (in ring) simple_extension :: "’a set = ’a = ’a set"
for K and x where
zero [simp, intro]: "O € simple_extension K x" |

lin: "[k1 € simple_extension K x; k2 € K| = (k1 ® x) @ k2 €
simple_extension K x"

fun (in ring) finite_extension :: "’a set = ’a list = ’a set"
where "finite_extension K xs = foldr (Ax K’. simple_extension K’ x)
xs K"

37.2 Basic Properties

lemma (in ring) transcendental_consistent:
assumes "subring K R" shows "transcendental = ring.transcendental (R
(carrier := K)"

(proof)

lemma (in ring) algebraic_consistent:

assumes "subring K R" shows "algebraic = ring.algebraic (R (| carrier
=K)"

{proof)

318

lemma (in ring) eval_transcendental:

assumes "(transcendental over K) x" "p € carrier (K[X])" "eval p x
= 0" shows "p = [1"
(proof)

lemma (in ring) transcendental_imp_trivial_ker:

shows "(transcendental over K) x = a_kernel (K[X]) R (A\p. eval p
x)={ 02

(proof)

lemma (in ring) non_trivial_ker_imp_algebraic:

shows "a_kernel (X[X]) R (\p. eval p x) # { [] } = (algebraic over
K) x"

(proof)

lemma (in domain) trivial_ker_imp_transcendental:

assumes "subring K R" and "x € carrier R"

shows "a_kernel (X[X]) R (Ap. eval p x) = { [] } = (transcendental
over K) x"

{proof)

lemma (in domain) algebraic_imp_non_trivial_ker:

assumes "subring K R" and "x € carrier R"

shows "(algebraic over K) x = a_kernel (K[X]) R (Ap. eval p x) #
{0

(proof)

lemma (in domain) algebraicE:
assumes "subring K R" and "x € carrier R" "(algebraic over K) x"
obtains p where "p € carrier (K[X])" "p # [1" "eval p x = 0"

{(proof)

lemma (in ring) algebraicI:
assumes "p € carrier (K[X])" "p # [1" and "eval p x = 0" shows "(algebraic
over K) x"

{proof)
lemma (in ring) transcendental_mono:

assumes "K C K’" "(transcendental over K’) x" shows "(transcendental
over K) x"
(proof)
corollary (in ring) algebraic_mono:

assumes "K C K’" "(algebraic over K) x" shows "(algebraic over K’)
Xll

{proof)

lemma (in domain) zero_is_algebraic:
assumes "subring K R" shows "(algebraic over K) 0"

319

(proof)

lemma (in domain) algebraic_self:
assumes "subring K R" and "k € K" shows "(algebraic over K) k"

(proof)

lemma (in domain) ker_diff_carrier:

assumes "subring K R"

shows "a_kernel (K[X]) R (Ap. eval p x) # carrier (K[X])"
{(proof)

37.3 Minimal Polynomial

lemma (in domain) minimal_polynomial_is_unique:
assumes "subfield K R" and "x € carrier R" "(algebraic over K) x"
shows "J!p € carrier (K[X]). pirreducible K p A eval p x = 0 A lead_coeff
p=1"
(is "I !p. ?minimal_poly p")
(proof)

lemma (in domain) IrrE:
assumes "subfield K R" and "x € carrier R" "(algebraic over K) x"
shows "Irr K x € carrier (K[X])" and "pirreducible K (Irr K x)"
and "lead_coeff (Irr K x) = 1" and "eval (Irr K x) x = 0"

(proof)

lemma (in domain) Irr_generates_ker:
assumes "subfield K R" and "x € carrier R" "(algebraic over K) x"
shows "a_kernel (K[X]) R (Ap. eval p x) = PIdlg[xy (Irr K x)"
(proof)

lemma (in domain) Irr_minimal:

assumes "subfield K R" and "x € carrier R" "(algebraic over K) x"
and "p € carrier (K[X])" "eval p x = 0" shows "(Irr K x) pdivides

n

P
(proof)

lemma (in domain) rupture_of_Irr:
assumes "subfield K R" and "x € carrier R" "(algebraic over K) x" shows
"field (Rupt K (Irr K x))"

(proof)

37.4 Simple Extensions

lemma (in ring) simple_extension_consistent:
assumes "subring K R" shows "ring.simple_extension (R (| carrier :=
K))) = simple_extension"

(proof)

lemma (in ring) mono_simple_extension:

320

assumes "K C K’" shows "simple_extension K x C simple_extension K’

Xll

(proof)

lemma (in ring) simple_extension_incl:
assumes "K C carrier R" and "x € carrier R" shows "K C simple_extension
K X"

(proof)

lemma (in ring) simple_extension_mem:
assumes "subring K R" and "x € carrier R" shows "x € simple_extension
K x"

(proof)

lemma (in ring) simple_extension_carrier:

assumes "x € carrier R" shows "simple_extension (carrier R) x = carrier
R"
(proof)

lemma (in ring) simple_extension_in_carrier:
assumes "K C carrier R" and "x € carrier R" shows "simple_extension
K x C carrier R"

(proof)
lemma (in ring) simple_extension_subring_incl:

assumes "subring K’ R" and "K C K’" "x € K’" shows "simple_extension
Kx C K"

(proof)

lemma (in ring) simple_extension_as_eval_img:
assumes "K C carrier R" "x € carrier R"
shows "simple_extension K x = (Ap. eval p x) ¢ carrier (K[X])"

(proof)

corollary (in domain) simple_extension_is_subring:

assumes "subring K R" "x € carrier R" shows "subring (simple_extension
K x) R"

(proof)

corollary (in domain) simple_extension_minimal:

assumes "subring K R" "x € carrier R"

shows "simple_extension K x = (] { K’. subring K>’ R A K C K’ A x €
K) }Il

{proof)

corollary (in domain) simple_extension_isomorphism:

assumes "subring K R" "x € carrier R"

shows "(K[X]) Quot (a_kernel (K[X]) R (Ap. eval p x)) ~ R (carrier
:= simple_extension K x |)"

321

(proof)

corollary (in domain) simple_extension_of_algebraic:
assumes "subfield K R" and "x € carrier R" "(algebraic over K) x"
shows "Rupt X (Irr K x) ~ R (| carrier := simple_extension K x)"

(proof)

corollary (in domain) simple_extension_of_transcendental:

assumes "subring K R" and "x € carrier R" "(transcendental over K)
Xll

shows "K[X] ~ R (| carrier := simple_extension K x |)"

(proof)

proposition (in domain) simple_extension_subfield_imp_algebraic:
assumes "subring K R" "x € carrier R"
shows "subfield (simple_extension K x) R = (algebraic over K) x"

(proof)

proposition (in domain) simple_extension_is_subfield:
assumes "subfield K R" "x € carrier R"
shows "subfield (simple_extension K x) R <— (algebraic over K) x"

(proof)

37.5 Link between dimension of K-algebras and algebraic
extensions

lemma (in domain) exp_base_independent:
assumes "subfield K R" "x € carrier R" "(algebraic over K) x"
shows "independent K (exp_base x (degree (Irr K x)))"

(proof)

lemma (in ring) Span_eq_eval_img:
assumes "subfield K R" "x € carrier R"
shows "Span K (exp_base x n) = (Ap. eval p x) ¢ { p € carrier (K[X]).
length p < n }"
(is "?Span = 7eval_img")
(proof)

lemma (in domain) Span_exp_base:
assumes "subfield K R" "x € carrier R" "(algebraic over K) x"
shows "Span K (exp_base x (degree (Irr K x))) = simple_extension K x"

(proof)

corollary (in domain) dimension_simple_extension:
assumes "subfield K R" "x € carrier R" "(algebraic over K) x"
shows "dimension (degree (Irr K x)) K (simple_extension K x)"

(proof)

lemma (in ring) finite_dimension_imp_algebraic:

322

assumes "subfield K R" "subring F R" and "finite_dimension K F"
shows "x € F = (algebraic over K) x"

(proof)

corollary (in domain) simple_extension_dim:
assumes "subfield K R" "x € carrier R" "(algebraic over K) x"
shows "(dim over K) (simple_extension K x) = degree (Irr K x)"

(proof)

corollary (in domain) finite_dimension_simple_extension:

assumes "subfield K R" "x € carrier R"

shows "finite_dimension K (simple_extension K x) <— (algebraic over
K) x"

(proof)

37.6 Finite Extensions

lemma (in ring) finite_extension_consistent:

assumes "subring K R" shows "ring.finite_extension (R (| carrier :=
K))) = finite_extension"
(proof)

lemma (in ring) mono_finite_extension:
assumes "K C K’" shows "finite_extension K xs C finite_extension K’

(proof)

Xs

lemma (in ring) finite_extension_carrier:
assumes "set xs C carrier R" shows "finite_extension (carrier R) xs
= carrier R"

(proof)

lemma (in ring) finite_extension_in_carrier:
assumes "K C carrier R" and "set xs C carrier R" shows "finite_extension
K xs C carrier R"

(proof)

lemma (in ring) finite_extension_subring_incl:
assumes "subring K’ R" and "K C K’" "set xs C K’" shows "finite_extension
K xs C K"

(proof)

lemma (in ring) finite_extension_incl_aux:
assumes "K C carrier R" and "x € carrier R" "set xs C carrier R"
shows "finite_extension K xs C finite_extension K (x # xs)"

(proof)

lemma (in ring) finite_extension_incl:
assumes "K C carrier R" and "set xs C carrier R" shows "K C finite_extension

323

K xs"

(proof)

lemma (in ring) finite_extension_as_eval_img:
assumes "K C carrier R" and "x € carrier R" "set xs C carrier R"

shows "finite_extension K (x # xs) = (Ap. eval p x) ¢ carrier ((finite_extension
K xs) [X])"
{proof)

lemma (in domain) finite_extension_is_subring:
assumes "subring K R" "set xs C carrier R" shows "subring (finite_extension
K xs) R"

(proof)

corollary (in domain) finite_extension_mem:
assumes subring: "subring K R"
shows "set xs C carrier R — set xs C finite_extension K xs"

(proof)

corollary (in domain) finite_extension_minimal:

assumes "subring K R" "set xs C carrier R"

shows "finite_extension K xs = (| { K’. subring K’ R A K C K’ A set
xs C K’ }"

(proof)

corollary (in domain) finite_extension_same_set:
assumes "subring K R" "set xs C carrier R" "set xs = set ys"
shows "finite_extension K xs = finite_extension K ys"

(proof)

The reciprocal is also true, but it is more subtle.

proposition (in domain) finite_extension_is_subfield:

assumes "subfield K R" "set xs C carrier R"

shows "(Ax. x € set xs = (algebraic over K) x) —> subfield (finite_extension
K xs) R"

(proof)

proposition (in domain) finite_extension_finite_dimension:
assumes "subfield K R" "set xs C carrier R"
shows "(Ax. x € set xs = (algebraic over K) x) = finite_dimension
K (finite_extension K xs)"
and "finite_dimension K (finite_extension K xs) — (Ax. x € set
xs = (algebraic over K) x)"

(proof)

corollary (in domain) finite_extesion_mem_imp_algebraic:

assumes "subfield K R" "set xs C carrier R" and "Ax. x € set xs —
(algebraic over K) x"

shows "y € finite_extension K xs = (algebraic over K) y"

324

(proof)

corollary (in domain) simple_extesion_mem_imp_algebraic:
assumes "subfield K R" "x € carrier R" "(algebraic over K) x"
shows "y € simple_extension K x = (algebraic over K) y"

(proof)

37.7 Arithmetic of algebraic numbers

We show that the set of algebraic numbers of a field over a subfield K is a
subfield itself.

lemma (in field) subfield_of_algebraics:
assumes "subfield K R" shows "subfield { x € carrier R. (algebraic
over K) x } R"

(proof)

end

theory Algebraic_Closure
imports Indexed_Polynomials Polynomial Divisibility Finite_Extensions

begin

38 Algebraic Closure

38.1 Definitions

inductive iso_incl :: "’a ring = ’a ring = bool" (infixl <<> 65) for
AB
where iso_inclI [intro]: "id € ring_hom A B = iso_incl A B"

definition law_restrict :: "(’a, ’b) ring_scheme = ’a ring"
where "law_restrict R = (ring.truncate R)
(mult := (Aa € carrier R. Ab € carrier R. a @ b),
add := (\a € carrier R. Ab € carrier R. a &g b))"

definition (in ring) o :: "’a list = (((’a list x nat) multiset) = ’a)
list"
where "o P = map indexed_const P"

definition (in ring) extemnsions :: "(((’a list x nat) multiset) = ’a)
ring set"
where "extensions = { L — such that.

—1i (field L) A

—ii (indexed_const € ring_hom R L) A

—iii (VP € carrier L. carrier_coeff P) A

—1iv (VP € carrier L. VP € carrier (poly_ring R). Vi.

325

- index_free P (P, i) —
X(p, i) € carrier L A (ring.eval L) (o0 P) X(p i)

= 0p) }"
abbreviation (in ring) restrict_extensions :: "(((’a list X nat) multiset)
= ’a) ring set" (<8&>)

where "S = law_restrict ¢ extensions"

38.2 Basic Properties

lemma law_restrict_carrier: "carrier (law_restrict R) = carrier R"

(proof)

lemma law_restrict_one: "one (law_restrict R) = one R"
(proof)

lemma law_restrict_zero: "zero (law_restrict R) = zero R"

(proof)

lemma law_restrict_mult: "monoid.mult (law_restrict R) = (l\a € carrier
R. Ab € carrier R. a ®g b)"

(proof)

lemma law_restrict_add: "add (law_restrict R) = (la € carrier R. Ab
€ carrier R. a @ b)"

(proof)

lemma (in ring) law_restrict_is_ring: "ring (law_restrict R)"

(proof)

lemma (in field) law_restrict_is_field: "field (law_restrict R)"
(proof)

lemma law_restrict_iso_imp_eq:

assumes "id € ring_iso (law_restrict A) (law_restrict B)" and "ring
A" and "ring B"

shows "law_restrict A = law_restrict B"
(proof)

lemma law_restrict_hom: "h € ring_hom A B <— h € ring_hom (law_restrict
A) (law_restrict B)"

(proof)

lemma iso_incl_hom: "A < B «— (law_restrict A) < (law_restrict B)"

(proof)

38.3 Partial Order

lemma iso_incl_backwards:
assumes "A < B" shows "id € ring_hom A B"

326

(proof)

lemma iso_incl_antisym_aux:
assumes "A < B" and "B < A" shows "id € ring_iso A B"

(proof)

lemma iso_incl_refl: "A < A"
(proof)

lemma iso_incl_trans:
assumes "A < B" and "B < C" shows "A < C"

(proof)

lemma (in ring) iso_incl_antisym:
assumes "A € §" "B € §" and "A < B" "B < A" shows "A = B"

(proof)

lemma (in ring) iso_incl_partial_order: "partial_order_on S (relation_of
(<) S
(proof)

lemma iso_inclE:

assumes "ring A" and "ring B" and "A < B" shows '"ring _hom_ring A
B id"

{proof)

lemma iso_incl_imp_same_eval:

assumes "ring A" and "ring B" and "A < B" and "a € carrier A" and
"set p C carrier A"

shows "(ring.eval A) p a = (ring.eval B) p a"

(proof)

38.4 Extensions Non Empty
lemma (in ring) indexed_const_is_inj: "inj indexed_const"

(proof)

lemma (in ring) indexed_const_inj_on: "inj_on indexed_const (carrier
R) n

{proof)
lemma (in field) extensions_non_empty: "S # {}"
(proof)
38.5 Chains
definition union_ring :: "((’a, ’c) ring_scheme) set = ’a ring"

where "union_ring C =
(carrier = (|J (carrier ¢ C)),

327

monoid.mult = (Aa b. (monoid.mult (SOME R. R € C A a € carrier
R A b € carrier R) a b)),
one one (SOME R. R € C),
zero = zero (SOME R. R € C),
add = (la b. (add (SOME R. R € C A a € carrier R A b
€ carrier R) a b)) |)"

lemma union_ring carrier: "carrier (union_ring C) = (| J(carrier ¢ C))"
g g

(proof)

context

fixes C :: "’a ring set"

assumes field_chain: "AR. R € C = field R" and chain: "AR S. [R
€c;8ec]=R<SVS <R
begin

lemma ring_chain: "R € C = ring R"

(proof)

lemma same_one_same_zero:
assumes "R € C" shows "lypion_ring ¢ = 1p" and "Oypion_ring ¢ = OR"

(proof)

lemma same_laws:
assumes "R € C" and "a € carrier R" and "b € carrier R"
shows "a @union_ring ¢ b = a ®g b" and "a @union_ring ¢ b = a @R b"

(proof)

lemma exists_superset_carrier:
assumes "finite 8" and "S # {}" and "S C carrier (union_ring C)"
shows "dR € C. S C carrier R"

(proof)

lemma union_ring_is_monoid:
assumes "C # {}" shows "comm_monoid (union_ring C)"

(proof)

lemma union_ring_is_abelian_group:
assumes "C # {}" shows "cring (union_ring C)"

(proof)

lemma union_ring_is_field :
assumes "C # {}" shows "field (union_ring C)"

(proof)

lemma union_ring_is_upper_bound:
assumes "R € C" shows "R < union_ring C"

(proof)

328

end

38.6 Zorn

lemma (in ring) exists_core_chain:
assumes "C € Chains (relation_of (<) S)" obtains C’ where "C’ C extensions"
and "C = law_restrict ¢ C’"

(proof)

lemma (in ring) core_chain_is_chain:

assumes "law_restrict ¢ C € Chains (relation_of (<) S)" shows "AR
S.[ReC; SeCcC]=R<SVSSR"
(proof)

lemma (in field) exists_maximal_extension:
shows "JM € §. VL e . M S L — L = M"

(proof)

38.7 Existence of roots

lemma polynomial_hom:

assumes "h € ring hom R S" and "field R" and "field S"

shows "p € carrier (poly_ring R) = (map h p) € carrier (poly_ring
SH
(proof)

lemma (in ring_hom_ring) subfield_polynomial_hom:

assumes "subfield K R" and "1lg # 0g"

shows "p € carrier (K[X]g) = (map h p) € carrier ((h ¢ K)[XIg)"
(proof)

lemma (in field) exists_root:
assumes "M € extensions" and "AL. [L € extensions; M < L | = law_restrict
L = law_restrict M"
and "P € carrier (poly_ring R)"
shows "(ring.splitted M) (o P)"

(proof)

lemma (in field) exists_extension_with_roots:

shows "JL € extensions. VP € carrier (poly_ring R). (ring.splitted
L) (e P)"
(proof)

38.8 Existence of Algebraic Closure

locale algebraic_closure = field L + subfield K L for L (structure) and
K +

329

assumes algebraic_extension: "x € carrier L = (algebraic over K)
Xll

and roots_over_subfield: "P € carrier (K[X]) = splitted P"

locale algebraically_closed = field L for L (structure) +
assumes roots_over_carrier: "P € carrier (poly_ring L) = splitted
Pll

definition (in field) alg_closure :: "((’a list X nat) multiset = ’a)
ring"
where "alg_closure = (SOME L — such that.
— 1 algebraic_closure L (indexed_const ¢ (carrier R)) A
— ii indexed_const € ring_hom R L)"

lemma algebraic_hom:

assumes "h € ring hom R S" and "field R" and "field S" and "subfield
K R" and "x € carrier R"

shows "((ring.algebraic R) over K) x = ((ring.algebraic S) over (h
“K)) ()"
(proof)

lemma (in field) exists_closure:

obtains L :: "(((’a list X nat) multiset) = ’a) ring"

where "algebraic_closure L (indexed_const ¢ (carrier R))" and "indexed_const
€ ring_hom R L"

(proof)

lemma (in field) alg_closureE:
shows "algebraic_closure alg_closure (indexed_const
and "indexed_const € ring_hom R alg_closure"

(proof)

[

(carrier R))"

lemma (in field) algebraically_closedI’:

assumes "Ap. [p € carrier (poly_ring R); degree p > 1 | = splitted
pll

shows "algebraically_closed R"

(proof)

lemma (in field) algebraically_closedI:

assumes "Ap. [p € carrier (poly_ring R); degree p > 1 | = Ix €
carrier R. eval p x = 0"

shows "algebraically_closed R"

(proof)

sublocale algebraic_closure C algebraically_closed
(proof)

end

theory Algebraic_Closure_Type

imports
Algebraic_Closure
"HOL-Computational_Algebra.Computational_Algebra"
"HOL-Computational_Algebra.Field_as_Ring"

begin

definition (in ring_1) ring of_type_algebra :: "’a ring"
where "ring_of_type_algebra = (|
carrier = UNIV, monoid.mult = (Ax y. x * y),
one = 1,
ring.zero = 0,
add = (A xy. x+y) "

lemma (in comm_ring_1) ring_from_type_algebra [intro]:

"ring (ring_of_type_algebra :: ’a ring)"

(proof)

lemma (in comm_ring_1) cring_from_type_algebra [intro]:
"cring (ring_of_type_algebra :: ’a ring)"

(proof)

lemma (in Fields.field) field_from_type_algebra [intro]:
"field (ring_of_type_algebra :: ’a ring)"

(proof)

38.9 Definition

typedef (overloaded) ’a :: field alg_closure =

"carrier (field.alg_closure (ring_of_type_algebra :: ’a ::

(proof)

setup__lifting type_definition_alg_closure

instantiation alg closure :: (field) field

begin

context
fixes L K
defines "K = (ring_of_type_algebra :: ’a :: field ring)"
defines "L = field.alg_closure K"

begin

interpretation K: field K

(proof)

interpretation algebraic_closure L "range K.indexed_const"

330

field ring))"

331

(proof)

lift_ definition zero_alg closure :: "’a alg_closure" is "ring.zero L"
(proof)

lift__definition one_alg_closure :: "’a alg_closure" is "monoid.one L"
(proof)

lift_ definition plus_alg_closure :: "’a alg_closure = ’a alg_closure =

’a alg_closure"
is "ring.add L"

(proof)

lift_ definition minus_alg_closure :: "’a alg_closure = ’a alg_closure =
’a alg_closure"
is "a_minus L"

(proof)

lift_ definition times_alg closure :: "’a alg_closure = ’a alg_closure =
’a alg_closure"
is "monoid.mult L"

(proof)

lift_ definition uminus_alg_closure :: "’a alg_closure = ’a alg_closure"
is "a_inv L"
(proof)

lift_ definition inverse_alg_closure :: "’a alg_closure = ’a alg_closure"

is "Ax. if x = ring.zero L then ring.zero L else m_inv L x"

{proof)

lift__definition divide_alg_closure :: "’a alg_closure = ’a alg_closure
= ’a alg_closure"

is "Ax y. if y = ring.zero L then ring.zero L else monoid.mult L x (m_inv
L y) n

(proof)

end
instance (proof)

end

38.10 The algebraic closure is algebraically closed

instance alg_closure :: (field) alg_closed_field

(proof)

332

38.11 Converting between the base field and the closure

context
fixes L K
defines "K = (ring_of_type_algebra :: ’a :: field ring)"
defines "L = field.alg_closure K"

begin

interpretation K: field K

(proof)

interpretation algebraic_closure L "range K.indexed_const"
(proof)

lemma alg_closure_hom: "K.indexed_const € Ring.ring_hom K L"

(proof)

lift_ definition to_ac :: "’a :: field = ’a alg_closure"
is "ring.indexed_const K"
by (fold K_def, fold L_def) (use mem_carrier in blast)

lemma to_ac_0 [simp]l: "to_ac (0 :: ’a) o"

(proof)

I
—

lemma to_ac_1 [simp]l: "to_ac (1 :: ’a)

{(proof)

lemma to_ac_add [simp]: "to_ac (x + y :: ’a) = to_ac x + to_ac y"
(proof)

lemma to_ac_minus [simp]: "to_ac (-x :: ’a) = -to_ac x"

(proof)

lemma to_ac_diff [simp]l: "to_ac (x -y :: ’a) = to_ac x - to_ac y"

(proof)

lemma to_ac_mult [simp]l: "to_ac (x * y :: ’a)

(proof)

to_ac x * to_ac y"

lemma to_ac_inverse [simp]: "to_ac (inverse x :: ’a) = inverse (to_ac
X) n

(proof)

lemma to_ac_divide [simp]: "to_ac (x / y :: ’a) = to_ac x / to_ac y"
(proof)

lemma to_ac_power [simp]: "to_ac (x ~ n) = to_ac x ~ n"

(proof)

lemma to_ac_of_nat [simp]: "to_ac (of_nat n) = of_nat n"

333

(proof)

lemma to_ac_of_int [simp]: "to_ac (of_int n) = of_int n"

{proof)

lemma to_ac_numeral [simp]: "to_ac (numeral n) = numeral n"
(proof)

lemma to_ac_sum: "to_ac (O x€A. f x) = (Y x€A. to_ac (f x))"

(proof)

lemma to_ac_prod: "to_ac (J]x€A. f x) = (J[x€A. to_ac (f x))"
(proof)

lemma to_ac_sum_list: "to_ac (sum_list xs) = () x¢xs. to_ac x)"

(proof)

lemma to_ac_prod_list: "to_ac (prod_list xs) = (J[x¢=xs. to_ac x)"

(proof)

lemma to_ac_sum_mset: "to_ac (sum_mset xs) = () x€#xs. to_ac x)"

(proof)

lemma to_ac_prod_mset: "to_ac (prod_mset xs) = ([][x€#xs. to_ac x)"

{proof)

end

lemma (in ring) indexed_const_eq_iff [simp]:
"indexed_const x = (indexed_const y :: ’c multiset = ’a) +— x = y"

{(proof)

lemma inj_to_ac: "inj to_ac"
(proof)

lemma to_ac_eq_iff [simp]: "to_ac x = to_ac y «— x = y"

(proof)

lemma to_ac_eq 0_iff [simp]l: "to_ac x = 0 +— x = 0"
and to_ac_eq_O0_iff’ [simp]: "O = to_ac x ¢— x = 0"
and to_ac_eq_1_iff [simp]l: "to_ac x = 1 +— x = 1"
and to_ac_eq_1_iff’ [simp]l: "1 = to_ac x ¢<— x = 1"

(proof)

definition of _ac :: "’a :: field alg_closure = ’a" where
"of _ac x = (if x € range to_ac then inv_into UNIV to_ac x else 0)"

lemma of_ac_eql: "to_ac x =y = of_ac y = x"

334

(proof)

lemma of_ac_0 [simp]l: "of_ac 0 = 0"
and of_ac_1 [simp]: "of_ac 1 = 1"

(proof)

lemma of_ac_to_ac [simp]: "of_ac (to_ac x) = x"

(proof)

lemma to_ac_of_ac: "x € range to_ac =—> to_ac (of_ac x) = x"

(proof)

lemma CHAR_alg_closure [simp]:
"CHAR(’a :: field alg_closure) = CHAR(’a)"

(proof)

instance alg_closure :: (field_char_0) field_char_ O
(proof)

bundle alg_closure_syntax

begin

notation to_ac (< (<open_block notation=<postfix 1> >_1)> [1000] 999)
notation of_ac (< (<open_block notation=<postfix |>>_|)> [1000] 999)
end

bundle alg_closure_syntax’
begin

notation (output) to_ac (<_>)
notation (output) of_ac (<_>)
end

38.12 The algebraic closure is an algebraic extension

The algebraic closure is an algebraic extension, i.e. every element in it is a
root of some non-zero polynomial in the base field.

theorem alg_closure_algebraic:

fixes x :: "’a :: field alg_closure"

obtains p :: "’a poly" where "p # 0" "poly (map_poly to_ac p) x = O"
(proof)
instantiation alg_closure :: (field)

"{unique_euclidean_ring, normalization_euclidean_semiring, normalization_semidom_multipli
begin

definition [simp]l: "normalize_alg_closure = (normalize_field :: ’a alg_closure

335

=)"
definition [simp]: "unit_factor_alg_closure = (unit_factor_field :: ’a
alg_closure = _)"
definition [simp]: "modulo_alg_closure = (mod_field :: ’a alg_closure =
_)ll
definition [simp]: "euclidean_size_alg_closure = (euclidean_size_field
’a alg_closure = _)"
definition [simp]: "division_segment (x :: ’a alg_closure) = 1"
instance
(proof)
end
instantiation alg_closure :: (field) euclidean_ring_gcd
begin
definition gcd_alg_closure :: "’a alg_closure = ’a alg_closure = ’a alg_closure"
where
"gcd_alg_closure = Euclidean_Algorithm.gcd"
definition lcm_alg_closure :: "’a alg_closure = ’a alg_closure = ’a alg_closure"
where
"lcm_alg_closure = Euclidean_Algorithm.lcm"
definition Gcd_alg_closure :: "’a alg_closure set = ’a alg_closure" where
"Ged_alg_closure = Euclidean_Algorithm.Gcd"
definition Lcm_alg_closure :: "’a alg_closure set = ’a alg_closure" where

"Lcm_alg_closure = Euclidean_Algorithm.Lcm"
instance (proof)
end

instance alg_closure :: (field) semiring_gcd_mult_normalize
(proof)

end

theory Ideal_Product
imports Ideal
begin

39 Product of Ideals

In this section, we study the structure of the set of ideals of a given ring.

inductive__set
ideal_prod :: "[(’a, ’b) ring_scheme, ’a set, ’a set] = ’a set" (infixl
<-2> 80)

336

for R and I and J where
prod: "[i € I; j€ J] = i ®g j € ideal prod R I J"
| sum: "[s1 € ideal_prod R I J; s2 € ideal prod R I J]| = sl &y
s2 € ideal_prod R I J"
definition ideals_set :: "(’a, ’b) ring_scheme = (’a set) ring"
where "ideals_set R = (| carrier = { I. ideal I R },
mult = ideal_prod R,

one = carrier R,
zero = { Oy },
add = set_add R |)"

39.1 Basic Properties

lemma (in ring) ideal_prod_in_carrier:
assumes "ideal I R" "ideal J R"
shows "I - J C carrier R"

(proof)

lemma (in ring) ideal_prod_inter:
assumes "ideal I R" "ideal J R"
shows "I - J C I N J"

(proof)

lemma (in ring) ideal_prod_is_ideal:
assumes "ideal I R" "ideal J R"
shows "ideal (I - J) R"

(proof)

lemma (in ring) ideal_prod_eq_genideal:
assumes "ideal I R" "ideal J R"
shows "I - J = Idl (I <#> J)"

(proof)

lemma (in ring) ideal_prod_simp:
assumes "ideal I R" "ideal J R"
shows "I =TI <+> (I -)"
(proof)

lemma (in ring) ideal_prod_one:
assumes "ideal I R"
shows "I - (carrier R) = I"

(proof)

lemma (in ring) ideal_prod_zero:
assumes "ideal I R"
shows "I - {0} ={01}"
(proof)

337

lemma (in ring) ideal_prod_assoc:
assumes "ideal I R" "ideal J R" "ideal K R"
shows "(I - J) -K=1- (- -K"

(proof)

lemma (in ring) ideal_prod_r_distr:
assumes "ideal I R" "ideal J R" "ideal K R"
shows "I - (J <+> K) = (I - J) <+> (I -K)"
{(proof)

lemma (in cring) ideal_prod_commute:
assumes "ideal I R" "ideal J R"
shows "I - J =J - I"

(proof)

The following result would also be true for locale ring

lemma (in cring) ideal_prod_distr:
assumes "ideal I R" "ideal J R" "ideal K R"
shows "I - (J <+>K) = (I -J) <> (I K"
and "(J <+>K) - I =(J-I) <+> (K- D"
(proof)

lemma (in cring) ideal_prod_eq_inter:
assumes "ideal I R" "ideal J R"
and "I <+> J = carrier R"
shows "I - J =1InN J"
(proof)

39.2 Structure of the Set of Ideals

We focus on commutative rings for convenience.

lemma (in cring) ideals_set_is_semiring: "semiring (ideals_set R)"

(proof)

lemma (in cring) ideals_set_is_comm_monoid: "comm_monoid (ideals_set
R) n
{proof)

lemma (in cring) ideal_prod_eq_Inter_aux:
assumes "I: {..(Suc n)} — { J. ideal J R }"
and "Ai j. [i < Sucn; j<Sucn] =
i# j = (I i) <+> (I j) = carrier R"
shows "(Q) (ideals set) ¥ € {..n}. I k) <+#> (I (Suc n)) = carrier R"

(proof)

theorem (in cring) ideal_prod_eq_Inter:
assumes "I: {..n :: nat} — { J. ideal J R }"

338

and "Ai j. [ie€{..n}; je{.n}] = 1i#j= Q1) <> (I 3J
= carrier R"
shows "(Q) (ideals set) ¥ € {..n}. T k) = () k € {..n}. T X" (proof)

corollary (in cring) inter_plus_ideal_eq_carrier:
assumes "Ai. i < Suc n = ideal (I i) R"
and "Ai j. [i < Sucn; j<Sucn;i#j] = Iic<+> 1 j= carrier
Rll
shows "((] i < n. I i) <+> (I (Suc n)) = carrier R"

(proof)

corollary (in cring) inter_plus_ideal_eq_carrier_arbitrary:
assumes "Ai. i < Suc n = ideal (I i) R"
and "Ai j. [1i < Sucn; j<Sucn;i#*j]=11ic<+>1j = carrier

R"
and "j < Suc n"
shows "((1 1 € ({..(Suc)} - { j 3. Ii) <+> (I j) = carrier R"
(proof)

39.3 Another Characterization of Prime Ideals

With product of ideals being defined, we can give another definition of a
prime ideal
lemma (in ring) primeideal_divides_ideal_prod:
assumes "primeideal P R" "ideal I R" "ideal J R"
and "I - J C p"
shows "I C P Vv J C P"
(proof)

lemma (in cring) divides_ideal_prod_imp_primeideal:
assumes "ideal P R"
and "P # carrier R"
and"/\IJ. [[idealIR; ideal J R; I-JQP]]:>I§P\/J§P"
shows "primeideal P R"

(proof)

end

theory Chinese_Remainder
imports Weak_Morphisms Ideal_ Product

begin

339

40 Direct Product of Rings

40.1 Definitions

definition RDirProd :: "(’a, ’n) ring_scheme = (’b, ’m) ring_scheme =
(’a X ’b) ring"
where "RDirProd R S = monoid.extend (R XX S)
(zero = one ((add_monoid R) XX (add_monoid 8)),
add = mult ((add_monoid R) xx (add_monoid 8)) |) "

abbreviation nil_ring :: "(’a list) ring"

where "nil_ring = monoid.extend nil_monoid (| zero = [], add = (\a b.
"
definition RDirProd_list :: "((’a, ’n) ring_scheme) list = (’a list) ring"

where "RDirProd_list Rs = foldr (AR S. image_ring (A(a, as). a # as)
(RDirProd R S)) Rs nil_ring"

40.2 Basic Properties

lemma RDirProd_carrier: "carrier (RDirProd R S) = carrier R X carrier
S’l
(proof)

lemma RDirProd_add_monoid [simp]: "add_monoid (RDirProd R S) = (add_monoid
R) xx (add_monoid S)"
(proof)

lemma RDirProd_ring:
assumes "ring R" and "ring S" shows "ring (RDirProd R S)"

(proof)

lemma RDirProd_isol:
"(A(x, y). (y, x)) € ring_iso (RDirProd R S) (RDirProd S R)"
(proof)

lemma RDirProd_iso2:

"z, (y, 2)). ((x, y), z)) € ring_iso (RDirProd R (RDirProd S T))
(RDirProd (RDirProd R S) T)"

(proof)

lemma RDirProd_iso3:

"((x, ¥), 2). (x, (y, 2))) € ring_iso (RDirProd (RDirProd R S) T)
(RDirProd R (RDirProd S T))"

(proof)

lemma RDirProd_iso4:

assumes "f € ring_iso R S" shows "(A(r, t). (f r, t)) € ring_iso (RDirProd
R T) (RDirProd S T)"

(proof)

340

lemma RDirProd_iso5:
assumes "f € ring_iso S T" shows "(A(r, s). (r, £ s)) € ring_iso (RDirProd
R S) (RDirProd R T)"

(proof)

lemma RDirProd_iso6:

assumes "f € ring _iso R R’" and "g € ring iso S S’"

shows "(A(r, s). (f r, g s)) € ring_iso (RDirProd R S) (RDirProd R’
S:)u

(proof)

lemma RDirProd_iso7:
shows "()a. (a, [1)) € ring_iso R (RDirProd R nil_ring)"
(proof)

lemma RDirProd_homi:
shows "(la. (a, a)) € ring_hom R (RDirProd R R)"

(proof)

lemma RDirProd_hom2:
assumes "f € ring _hom S T"
shows "(A(x, y). (x, £ y)) € ring_hom (RDirProd R S) (RDirProd R T)"
and "(\(x, y). (f x, y)) € ring_hom (RDirProd S R) (RDirProd T R)"
(proof)

lemma RDirProd_hom3:

assumes "f € ring hom R R’" and "g € ring hom S S’"

shows "(A(r, s). (f r, g s)) € ring_hom (RDirProd R S) (RDirProd R’
S))Il

(proof)

40.3 Direct Product of a List of Rings

lemma RDirProd_list_nil [simp]: "RDirProd_list [] = nil_ring"

(proof)

lemma nil_ring_simprules [simp]:
"carrier nil_ring = { [] }" and "one nil_ring = [1" and "zero nil_ring

lemma RDirProd_list_truncate:
shows "monoid.truncate (RDirProd_list Rs) = DirProd_list Rs"

(proof)

lemma RDirProd_list_carrier_def’:
shows "carrier (RDirProd_list Rs) = carrier (DirProd_list Rs)"

(proof)

341

lemma RDirProd_list_carrier:
shows "carrier (RDirProd_list (G # Gs)) = (A(x, xs). x # xs) ¢ (carrier
G X carrier (RDirProd_list Gs))"

(proof)

lemma RDirProd_list_one:
shows "one (RDirProd_list Rs) = foldr (MR tl. (one R) # tl1) Rs []"

{proof)

lemma RDirProd_list_zero:
shows "zero (RDirProd_list Rs) = foldr (AR tl. (zero R) # tl1l) Rs []"

(proof)

lemma RDirProd_list_zero’:

shows "zero (RDirProd_list (R # Rs)) = (zero R) # (zero (RDirProd_list
Rs))"

(proof)

lemma RDirProd_list_carrier_mem:

assumes "as € carrier (RDirProd_list Rs)"

shows "length as = length Rs" and "Ai. i < length Rs = (as ! i)
€ carrier (Rs ! i)"

(proof)

lemma RDirProd_list_carrier_memI:

assumes "length as = length Rs" and "Ai. i < length Rs — (as ! i)
€ carrier (Rs ! i)"

shows "as € carrier (RDirProd_list Rs)"

{proof)

lemma inj_on_RDirProd_carrier:

shows "inj_on (A(a, as). a # as) (carrier (RDirProd R (RDirProd_list
Rs)))"

(proof)

lemma RDirProd_list_is_ring:
assumes "Ai. i < length Rs = ring (Rs ! i)" shows "ring (RDirProd_list
RS)"

{proof)

lemma RDirProd_list_isol:
"(Aa, as). a # as) € ring_iso (RDirProd R (RDirProd_list Rs)) (RDirProd_list
(R # Rs))"

(proof)

lemma RDirProd_list_iso2:
"Hilbert_Choice.inv (A(a, as). a # as) € ring_iso (RDirProd_list (R
Rs)) (RDirProd R (RDirProd_list Rs))"

342

(proof)

lemma RDirProd_list_iso3:
"(Aa. [a]) € ring_iso R (RDirProd_list [R 1)"

(proof)

lemma RDirProd_list_homil:
"(A(a, as). a # as) € ring hom (RDirProd R (RDirProd_list Rs)) (RDirProd_list
(R # Rs))"

(proof)

lemma RDirProd_list_hom2:

assumes "f € ring _hom R S" shows "(la. [£ a]) € ring hom R (RDirProd_list
[s D
{proof)

41 Chinese Remainder Theorem

41.1 Definitions

abbreviation (in ring) canonical_proj :: "’a set = ’a set = ’a = ’a
set X ’a set"

where "canonical proj I J = (Aa. (I +> a, J +> a))"
definition (in ring) canonical_proj_ext :: "(nat = ’a set) = nat = ’a

= (’a set) list"
where "canonical_proj_ext I n = (la. map (Ai. (I i) +> a) [0..< Suc

n])n

41.2 Chinese Remainder Simple

lemma (in ring) canonical_proj_is_surj:

assumes "ideal I R" "ideal J R" and "I <+> J = carrier R"

shows "(canonical_proj I J) ¢ carrier R = carrier (RDirProd (R Quot
I) (R Quot J))"

(proof)

lemma (in ring) canonical_proj_ker:

assumes "ideal I R" and "ideal J R"

shows "a_kernel R (RDirProd (R Quot I) (R Quot J)) (canonical_proj I
D =1InNn7J"
(proof)

lemma (in ring) canonical_proj_is_hom:

assumes "ideal I R" and "ideal J R"

shows "(canonical_proj I J) € ring_hom R (RDirProd (R Quot I) (R Quot
J))"

{proof)

343

lemma (in ring) canonical_proj_ring_hom:

assumes "ideal I R" and "ideal J R"

shows "ring _hom_ring R (RDirProd (R Quot I) (R Quot J)) (canonical_proj
I J)"

(proof)

theorem (in ring) chinese_remainder_simple:
assumes "ideal I R" "ideal J R" and "I <+> J = carrier R"
shows "R Quot (I N J) ~ RDirProd (R Quot I) (R Quot J)"

(proof)

41.3 Chinese Remainder Generalized

lemma (in ring) canonical_proj_ext_zero [simp]: "(canonical_proj_ext
I0 =@Qa. [(T0)+>al)"
(proof)

lemma (in ring) canonical_proj_ext_tl:

"(Aa. canonical_proj_ext I (Suc n) a) = (Aa. ((I 0) +> a) # (canonical_proj_ext
(Ai. I (Suc i)) n a))"

(proof)

lemma (in ring) canonical_proj_ext_is_hom:

assumes "Ai. i < n = ideal (I i) R"

shows "(canonical_proj_ext I n) € ring_hom R (RDirProd_list (map (Ai.
R Quot (I i)) [0..< Suc n]))"

{proof)

lemma (in ring) RDirProd_Quot_list_is_ring:

assumes "Ai. i < n = ideal (I i) R" shows "ring (RDirProd_list (map
(Ai. R Quot (I i)) [0..< Suc n]l))"
(proof)

lemma (in ring) canonical_proj_ext_ring_hom:

assumes "Ai. i < n = ideal (I i) R"

shows "ring_hom_ring R (RDirProd_list (map (Ai. R Quot (I i)) [0..<
Suc n])) (canonical_proj_ext I n)"
(proof)

lemma (in ring) canonical_proj_ext_ker:

assumes "Ai. i < (n :: nat) = ideal (I i) R"

shows "a_kernel R (RDirProd_list (map (Ai. R Quot (I i)) [0..< Suc
n])) (canonical_proj_ext I n) = (i < n. I i)"
(proof)

lemma (in cring) canonical_proj_ext_is_surj:
assumes "Ai. i < n = ideal (I i) R" and "Ai j. [i < n; j <n
] = 1i#j= 11ic<+>1j = carrier R"
shows "(canonical_proj_ext I n) ¢ carrier R = carrier (RDirProd_list

344

(map (Ai. R Quot (I i)) [0..< Suc n]))"
(proof)

theorem (in cring) chinese_remainder:

assumes "Ai. i < n = ideal (I i) R" and "Ai j. [i < n; j <n
] = i#j = 11i<+>1 j= carrier R"

shows "R Quot ()i < n. I i) ~ RDirProd_list (map (Ai. R Quot (I i))
[0..< Suc n])"

(proof)

end

theory Generated_Rings
imports Subrings
begin

42 Generated Rings

inductive__set

generate_ring :: "(’a, ’b) ring_scheme = ’a set = ’a set"
for R and H where
one: "lg € generate_ring R H"

| incl: "h € H = h € generate_ring R H"

| a_inv: "h € generate_ring R H = ©p h € generate_ring R H"

| eng_add : "[hl € generate_ring R H; h2 € generate_ring R H]| —
hl ®&r h2 € generate_ring R H"

| eng_mult: "[hl € generate_ring R H; h2 € generate_ring R H]| —
hl ®gr h2 € generate_ring R H"

42.1 Basic Properties of Generated Rings - First Part

lemma (in ring) generate_ring_in_carrier:
assumes "H C carrier R"
shows "h € generate_ring R H = h € carrier R"

(proof)

lemma (in ring) generate_ring_incl:
assumes "H C carrier R"
shows "generate_ring R H C carrier R"

{proof)

lemma (in ring) zero_in_generate: "Og € generate_ring R H"

(proof)

lemma (in ring) generate_ring_is_subring:

345

assumes "H C carrier R"
shows "subring (generate_ring R H) R"

(proof)

lemma (in ring) generate_ring is_ring:
assumes "H C carrier R"
shows "ring (R (| carrier := generate_ring R H |))"
(proof)

lemma (in ring) generate_ring min_subringl:
assumes "H C carrier R" and "subring E R" "H C E"
shows "generate_ring R H C E"

(proof)

lemma (in ring) generate_ringl:
assumes "H C carrier R"
and "subring E R" "H C E"
and "AK. | subring KR; H C K] = E C K"
shows "E = generate_ring R H"
(proof)

lemma (in ring) generate_ringE:

assumes "H C carrier R" and "E = generate_ring R H"

shows "subring E R" and "H C E" and "AK. [subring KR; H C XK | =
E C K"
(proof)

lemma (in ring) generate_ring min_subring?2:

assumes "H C carrier R"

shows "generate_ring R H = (| {K. subring K R A H C K}"
(proof)

lemma (in ring) mono_generate_ring:
assumes "I C J" and "J C carrier R"
shows "generate_ring R I C generate_ring R J"

(proof)

lemma (in ring) subring_gen_incl
assumes "subring H R"
and "subring K R"

and "I C H"
and "I C K"
shows "generate_ring (R(carrier := K))) I C generate_ring (R(carrier
:= H)) I"
(proof)

lemma (in ring) subring_gen_equality:
assumes "subring H R" "K C H"
shows "generate_ring R K = generate_ring (R (carrier := H |)) K"

346

(proof)

end

theory Generated_Fields

imports Generated_Rings Subrings Multiplicative_Group
begin

inductive__set

generate_field :: "(’a, ’b) ring_scheme = ’a set = ’a set"
for R and H where
one : "lg € generate_field R H"

| incl : "h € H = h € generate_field R H"

| a_inv: "h € generate_field R H = ©p h € generate_field R H"

| m_inv: "[h € generate_field R H; h # Og | = invg h € generate_field
R H"

| eng_add : "[hl € generate_field R H; h2 € generate_field R H | =
hl ®r h2 € generate_field R H"

| eng_mult: "[[hl € generate_field R H; h2 € generate_field R H]] —
hl ®g h2 € generate_field R H"

42.2 Basic Properties of Generated Rings - First Part

lemma (in field) generate_field_in_carrier:
assumes "H C carrier R"
shows "h € generate_field R H = h € carrier R"

(proof)

lemma (in field) generate_field_incl:
assumes "H C carrier R"
shows "generate_field R H C carrier R"

{proof)

lemma (in field) zero_in_generate: "Og € generate_field R H"

(proof)

lemma (in field) generate_field_is_subfield:
assumes "H C carrier R"
shows "subfield (generate_field R H) R"

(proof)

lemma (in field) generate_field_is_add_subgroup:
assumes "H C carrier R"
shows "subgroup (generate_field R H) (add_monoid R)"

(proof)

lemma (in field) generate_field_is_field :
assumes "H C carrier R"

347

shows "field (R (carrier := generate_field R H |))"
(proof)

lemma (in field) generate_field_min_subfieldl:
assumes "H C carrier R"

and "subfield E R" "H C

shows "generate_field R H

(proof)

EII
g EII

lemma (in field) generate_fieldI:
assumes "H C carrier R"
and "subfield E R" "H C E"
and "AK. [subfield KR; HC K] = E C K"
shows "E = generate_field R H"

(proof)

lemma (in field) generate_fieldE:

assumes "H C carrier R" and "E = generate_field R H"

shows "subfield E R" and "H C E" and "AK. [subfield K R; H C K |
— E C K"

(proof)

lemma (in field) generate_field _min_subfield2:
assumes "H C carrier R"
shows "generate_field R H = [|{K. subfield K R A H C K}"

(proof)

lemma (in field) mono_generate_field:
assumes "I C J" and "J C carrier R"
shows "generate_field R I C generate_field R J"

{(proof)

lemma (in field) subfield_gen_incl :
assumes "subfield H R"
and "subfield K R"

and "I C H"
and "I C K"
shows "generate_field (R(carrier := K|)) I C generate_field (R(carrier
:= H)) 1"
(proof)

lemma (in field) subfield_gen_equality:
assumes "subfield H R" "K C H"
shows "generate_field R K = generate_field (R (carrier := H |)) K"

{proof)

end

348

43 Product and Sum Groups

theory Product_Groups
imports Elementary_Groups "HOL-Library.Equipollence"

begin

43.1 Product of a Family of Groups

definition product_group:: "’a set = (’a = (’b, ’c) monoid_scheme) =
(’a = ’b) monoid"
where "product_group I G = (carrier = (Ilg i€I. carrier (G 1)),
monoid.mult = (Ax y. (Ai€l. x 1 Qg i ¥
i),
one = (M€I. 1g 1))"
lemma carrier_product_group [simp]: "carrier(product_group I G) = (IIg
i€I. carrier (G i))"
{proof)

lemma one_product_group [simp]: "one(product_group I G) = (Ai€I. one
(G i)
(proof)

lemma mult_product_group [simp]: "(®product_group I ¢) = (Ax y. Ai€l.
xi® iy "
(proof)

lemma product_group [simp]:

assumes "Ai. i € I = group (G i)" shows "group (product_group I
G) n
(proof)

lemma inv_product_group [simp]:
assumes "f € (IIg i€I. carrier (G i))" "Ai. i € I = group (G i)"
shows "invproduct_group I ¢ £ = (Ai€I. invg j £ i)"

(proof)

lemma trivial_product_group: "trivial_group(product_group I G) +— (Vi
€ I. trivial_group(G i))"
(is "?1lhs = ?rhs")

(proof)

lemma PiE_subgroup_product_group:

assumes "Ai. i € I = group (G i)"

shows "subgroup (PiE I H) (product_group I G) <— (Vi € I. subgroup
(H i) (G)"

(is "?1lhs = ?rhs")

349

(proof)

lemma product_group_subgroup_generated:
assumes "Ai. i € I = subgroup (H i) (G i)" and gp: "Ai. i € I =
group (G i)"
shows "product_group I (Ai. subgroup_generated (G i) (H i))
= subgroup_generated (product_group I G) (PiE I H)"

(proof)

lemma finite_product_group:
assumes "Ai. i € I = group (G i)"
shows
"finite (carrier (product_group I G)) +—
finite {i. 1 € I A ~ trivial_group(G i)} A (Vi € I. finite(carrier(G
i)
(proof)

43.2 Sum of a Family of Groups

definition sum_group :: "’a set = (’a = (’b, ’c) monoid_scheme) = (’a
= ’b) monoid"
where "sum_group I G =
subgroup_generated
(product_group I G)
{x € llg i€I. carrier (G i). finite {i € I. x i # 1g i}}"

lemma subgroup_sum_group:
assumes "Ai. i € I = group (G i)"
shows "subgroup {x € Il i€I. carrier (G i). finite {i € I. x i # 1g i}}
(product_group I G)"

(proof)

lemma carrier_sum_group:

assumes "Ai. i € I = group (G i)"

shows "carrier(sum_group I G) = {x € Ilg i€I. carrier (G i). finite
{ieI.xi#1gik}"
(proof)

lemma one_sum_group [simp]: "lgum group I ¢ = (M€I. 1g)"

(proof)

lemma mult_sum_group [simp]l: "(®sum_group 1 ¢) = (Ax y. (AM€I. x i ®q 3
y i))ll
(proof)

lemma sum_group [simp]:
assumes "Ai. i € I = group (G i)" shows "group (sum_group I G)"

(proof)

350

lemma inv_sum_group [simp]:

assumes "Ai. i € I = group (G i)" and x: "x € carrier (sum_group
I

shows "m_inv (sum_group I G) x = (Ai€l. m_inv (G i) (x i))"

(proof)

thm group.subgroups_Inter
theorem subgroup_Inter:
assumes subgr: "(AH. H € A = subgroup H G)"
and not_empty: "A # {}"
shows "subgroup ([)A) G"
(proof)

thm group.subgroups_Inter_pair

lemma subgroup_Int:
assumes "subgroup I G" "subgroup J G"
shows "subgroup (I N J) G" (proof)

lemma sum_group_subgroup_generated:
assumes "Ai. i € I = group (G i)" and sg: "Ai. i € I = subgroup
H 1) G "
shows "sum_group I (Ai. subgroup_generated (G i) (H i)) = subgroup_generated
(sum_group I G) (PiE I H)"
(proof)

lemma iso_product_groupI:
assumes iso: "Ai. i € I = G i X H i"
and G: "Ai. i € T = group (G i)" and H: "Ai. 1 € I = group
(H i)u
shows "product_group I G = product_group I H" (is "?7IG = ?IH")
(proof)

lemma iso_sum_groupI:
assumes iso: "Ai. i € I = G i = H i"
and G: "Ai. i € I = group (G i)" and H: "Ai. i € I = group
(H i)
shows "sum_group I G & sum_group I H" (is "?7IG = 7IH")
(proof)

end

44 Free Abelian Groups

theory Free_Abelian_Groups
imports
Product_Groups FiniteProduct "HOL-Cardinals.Cardinal_Arithmetic"

351

"HOL-Library.Countable_Set" "HOL-Library.Poly_Mapping" "HOL-Library.Equipollence"

begin

lemma eqpoll_Fpow:
assumes "infinite A" shows "Fpow A ~ A"

(proof)

lemma infinite_iff_card_of_countable: "[countable B; infinite B] —
infinite A <— (|B| <o |A|l)"

(proof)

lemma iso_imp_eqpoll_carrier: "G = H = carrier G ~ carrier H"

(proof)

44.1 Generalised finite product

definition
gfinprod :: "[(’b, ’m) monoid_scheme, ’a = ’b, ’a set] = ’b"
where "gfinprod G £ A =
(if finite {x € A. £ x # 1g¢} then finprod G f {x € A. £ x # 1g} else
1G)|l

context comm_monoid begin

lemma gfinprod_closed [simp]:
"f € A - carrier G — gfinprod G f A € carrier G"

(proof)

lemma gfinprod_cong:
"[A = B; £ € B — carrier G;
Ai. i € B =simp=> f i = g i] = gfinprod G f A = gfinprod G g B"
(proof)

lemma gfinprod_eq_finprod [simp]l: "[finite A; f € A — carrier G] =
gfinprod G £ A = finprod G £ A"
{proof)

lemma gfinprod_insert [simp]:
assumes "finite {x € A. f x # 1g}" "f € A — carrier G" "f i € carrier
Gll
shows "gfinprod G f (insert i A) = (if i € A then gfinprod G f A else
f i ® gfinprod G £ A)"
(proof)

lemma gfinprod_distrib:
assumes fin: "finite {x € A. f x # 1g}" "finite {x € A. g x # 1g}"
and "f € A — carrier G" "g € A — carrier G"

352

shows "gfinprod G (Ai. f i ® g i) A = gfinprod G £ A ® gfinprod G
g All
(proof)

lemma gfinprod_mono_neutral_cong_left:
assumes "A C B"
and 1: "Ai. i € B-A = hi=1"
and gh: "Ax. x € A = gx =h x"
and h: "h € B — carrier G"
shows "gfinprod G g A = gfinprod G h B"
(proof)

lemma gfinprod_mono_neutral_cong_right:

assumes "A C B" "Ai. i € B-A = gi=1""Ax. x € A = gx =
h x" "g € B = carrier G"

shows "gfinprod G g B = gfinprod G h A"

(proof)

lemma gfinprod_mono_neutral_cong:
assumes [simp]: "finite B" "finite A"

and *: "Ai. i € B-A = hi=1""Ai. i €A-B = gi-=1"
and gh: "Ax. x € ANB = gx=nh x"
and g: "g € A — carrier G"
and h: "h € B — carrier G"

shows "gfinprod G g A = gfinprod G h B"

(proof)

end

lemma (in comm_group) hom_group_sum:
assumes hom: "Ai. i € I = f i € hom (A i) G" and grp: "Ai. i €
I = group (A i)"
shows "(Ax. gfinprod G (Ai. (f i) (x 1)) I) € hom (sum_group I A) G"
(proof)

44.2 Free Abelian groups on a set, using the "frag" type con-
structor.

definition free_Abelian_group :: "’a set = (’a = int) monoid"
where "free_Abelian_group S = (carrier = {c. Poly_Mapping.keys c C
S}, monoid.mult = (+), one = O)"

lemma group_free_Abelian_group [simp]: "group (free_Abelian_group S)"
(proof)

lemma carrier_free_Abelian_group_iff [simp]:

shows "x € carrier (free_Abelian_group S) <— Poly_Mapping.keys x C
S"

(proof)

353

lemma one_free_Abelian_group [simp]l: "lfree Abelian_group s = 0"

(proof)

lemma mult_free_Abelian_group [simp]: "X ®free_Abelian_group S ¥ = X *+
y" - -
{proof)

lemma inv_free_Abelian_group [simp]: "Poly_Mapping.keys x C S = invfree_Abelian_group S
x = -x"

(proof)

lemma abelian_free_Abelian_group: "comm_group(free_Abelian_group S)"

{proof)

lemma pow_free_Abelian_group [simp]:
fixes n::nat
shows "Group.pow (free_Abelian_group S) x n = frag _cmul (int n) x"

(proof)

lemma int_pow_free_Abelian_group [simp]:

fixes n::int

assumes "Poly_Mapping.keys x C S"

shows "Group.pow (free_Abelian_group S) x n = frag_cmul n x"
(proof)

lemma frag_of_in_free_Abelian_group [simp]:
"frag_of x € carrier(free_Abelian_group S) +— x € S"
{proof)

lemma free_Abelian_group_induct:
assumes major: "Poly_Mapping.keys x C S"
and minor: "P(O)"
"Ax y. [Poly_Mapping.keys x C S; Poly_Mapping.keys y C S;
P x; P y] = P(x-y)"
"Aa. a € S = P(frag_of a)"
shows "P x"

(proof)

lemma sum_closed_free_Abelian_group:
"(Ai. i € I = x i € carrier (free_Abelian_group S)) — sum x I
€ carrier (free_Abelian_group S)"

(proof)

lemma (in comm_group) free_Abelian_group_universal:
fixes £ :: "¢ = ’a"
assumes "f ¢ S C carrier G"
obtains h where "h € hom (free_Abelian_group S) G" "Ax. x € § =

354

h(frag_of x) = f x"
(proof)

lemma eqpoll_free_Abelian_group_infinite:
assumes "infinite A" shows "carrier(free_Abelian_group A) ~ A"

(proof)

proposition (in comm_group) eqpoll_homomorphisms_from_free_Abelian_group:

"{f. £ € extensional (carrier(free_Abelian_group S)) A f € hom (free_Abelian_group
S) G}

~ (S — g carrier G)" (is "?lhs ~ ?rhs")

(proof)

lemma hom_frag minus:

assumes "h € hom (free_Abelian_group S) (free_Abelian_group T)" "Poly_Mapping.keys
a C g"

shows "h (-a) = - (h a)"
(proof)

lemma hom_frag_add:

assumes "h € hom (free_Abelian_group S) (free_Abelian_group T)" "Poly_Mapping.keys
a C 8" "Poly_Mapping.keys b C S"

shows "h (at+b) =h a + h b"
(proof)

lemma hom_frag_diff:

assumes "h € hom (free_Abelian_group S) (free_Abelian_group T)" "Poly_Mapping.keys
a C S" "Poly_Mapping.keys b C S"

shows "h (a-b) =h a - h b"

(proof)

proposition isomorphic_free_Abelian_groups:

"free_Abelian_group S = free_Abelian group T «+— S =~ T" (is "(7FS
= ?FT) = ?rhs")
(proof)

lemma isomorphic_group_integer_free_Abelian_group_singleton:
"integer_group = free_Abelian_group {x}"
(proof)

lemma group_hom_free_Abelian_groups_id:
"id € hom (free_Abelian_group S) (free_Abelian_group T) <+— S C T"
(proof)

proposition iso_free_Abelian_group_sum:

assumes "pairwise (Ai j. disjnt (S i) (S j)) I"

shows "(Af. sum’ f I) € iso (sum_group I (Ai. free_Abelian_group(S
i))) (free_Abelian_group (|J (S ¢ I)))"

355

(is "?h € iso ?G 7H")
(proof)
lemma isomorphic_free_Abelian_group_Union:

"pairwise disjnt I — free_Abelian_group(|) I) = sum_group I free_Abelian_group"

(proof)

lemma isomorphic_sum_integer_group:
"sum_group I (Ai. integer_group) = free_Abelian_group I"

{(proof)

end

theory Solvable_Groups
imports Generated_Groups

begin

45 Solvable Groups

45.1 Definitions

inductive solvable_seq :: "(’a, ’b) monoid_scheme = ’a set = bool"
for G where
unity: "solvable_seq G { 1g }"
| extension: "[solvable_seq G K; K < (G (carrier := H |)); subgroup

H G;

comm_group ((G (| carrier := H |)) Mod K) | = solvable_seq
G Hll
definition solvable :: "(’a, ’b) monoid_scheme = bool"

where "solvable G <— solvable_seq G (carrier G)"

45.2 Solvable Groups and Derived Subgroups

We show that a group G is solvable iff the subgroup (derived G ‘n) (carrier
G) is trivial for a sufficiently large n.

lemma (in group) solvable_imp_subgroup:
assumes "solvable_seq G H" shows "subgroup H G"

(proof)

lemma (in group) augment_solvable_seq:
assumes "subgroup H G" and "solvable_seq G (derived G H)" shows "solvable_seq
G Hll

(proof)

theorem (in group) trivial_derived_seq_imp_solvable:

356

assumes "subgroup H G" and "((derived G) "~ n) H = { 1 }" shows "solvable_seq
G H"

{proof)
theorem (in group) solvable_imp_trivial_derived_seq:

assumes "solvable_seq G H" shows "dn. (derived G "~ n) H={ 1 }"

{proof)

theorem (in group) solvable_iff_trivial_derived_seq:
"solvable G +— (dn. (derived G ~~ n) (carrier G) ={ 1 })"

(proof)

corollary (in group) solvable_subgroup:
assumes "subgroup H G" and "solvable G" shows "solvable_seq G H"

(proof)

45.3 Short Exact Sequences

Even if we don’t talk about short exact sequences explicitly, we show that
given an injective homomorphism from a group H to a group G, if H isn’t
solvable the group G isn’t neither.

theorem (in group_hom) solvable_img_imp_solvable:
assumes "subgroup K G" and "inj_on h K" and "solvable_seq H (h ¢ K)"
shows "solvable_seq G K"

(proof)

corollary (in group_hom) inj_hom_imp_solvable:
assumes "inj_on h (carrier G)" and "solvable H" shows "solvable G"

(proof)

theorem (in group_hom) solvable_imp_solvable_img:
assumes "solvable_seq G K" shows "solvable_seq H (h ¢ K)"

(proof)

corollary (in group_hom) surj_hom_imp_solvable:

assumes "h ¢ carrier G = carrier H" and "solvable G" shows "solvable
Hll

(proof)

lemma solvable_seq_condition:
assumes "group_hom G H f" "group_hom H K g" and "f ¢ I C J" and "kernel
HKgCf ¢ I
and "subgroup J H" and "solvable_seq G I" "solvable_seq K (g ¢ 1"
shows "solvable_seq H J"

(proof)

lemma solvable_condition:
assumes "group_hom G H f" "group_hom H K g"

357

and "g ¢ (carrier H) = carrier K" and "kernel HK g C f ¢ (carrier
G) n
and "solvable G" "solvable K" shows "solvable H"
(proof)
end

theory Sym_Groups
imports
"HOL-Combinatorics.Cycles"
Solvable_Groups
begin

46 Symmetric Groups

46.1 Definitions
abbreviation inv’ :: "(’a = ’b) = (b = ’a)"

where "inv’ f = Hilbert_Choice.inv f"

definition sym_group :: "nat = (nat = nat) monoid"
where "sym_group n = (| carrier = { p. p permutes {1..n} }, mult = (o)
one = id "

definition alt_group :: "nat = (nat = nat) monoid"

B

where "alt_group n = (sym_group n) (carrier := { p. p permutes {1..n}

A evenperm p } |)"

definition sign_img :: "int monoid"
where "sign_img = (carrier = { -1, 1 }, mult = (%), one = 1)"

46.2 Basic Properties

lemma sym_group_carrier: "p € carrier (sym_group n) <— p permutes {1

(proof)

lemma sym_group_mult: "mult (sym_group n) = (o)"

{proof)
lemma sym_group_one: "one (sym_group n) = id"

(proof)
lemma sym_group_carrier’: "p € carrier (sym_group n) = permutation
pll

{proof)

lemma alt_group_carrier: "p € carrier (alt_group n) <— p permutes {1.

N evenperm p"

..n}"

.n}

358

(proof)

lemma alt_group_mult: "mult (alt_group n) = (o)"

{proof)

lemma alt_group_one: "one (alt_group n) = id"
(proof)

lemma alt_group_carrier’: "p € carrier (alt_group n) = permutation
pll
{proof)

lemma sym_group_is_group: "group (sym_group n)"

{proof)

lemma sign_img_is_group: "group sign_img"

(proof)

lemma sym_group_inv_closed:
assumes "p € carrier (sym_group n)" shows "inv’ p € carrier (sym_group
n) n

(proof)

lemma alt_group_inv_closed:
assumes "p € carrier (alt_group n)" shows "inv’ p € carrier (alt_group
n) n

{proof)
lemma sym_group_inv_equality [simp]:

assumes "p € carrier (sym_group n)" shows "inv(gyy group n) P = inv’
pll
(proof)

lemma sign_is_hom: "sign € hom (sym_group n) sign_img"

(proof)

lemma sign_group_hom: "group_hom (sym_group n) sign_img sign"

(proof)

lemma sign_is_surj:
assumes "n > 2" shows "sign

(proof)

¢ (carrier (sym_group n)) = carrier sign_img"

lemma alt_group_is_sign_kernel:
"carrier (alt_group n) = kernel (sym_group n) sign_img sign"

{proof)

lemma alt_group_is_subgroup: "subgroup (carrier (alt_group n)) (sym_group
n) n

359

(proof)

lemma alt_group_is_group: "group (alt_group n)"

{proof)

lemma sign_iso:
assumes "n > 2" shows "(sym_group n) Mod (carrier (alt_group n)) =
sign_img"

{proof)

lemma alt_group_inv_equality:
assumes "p € carrier (alt_group n)" shows "inv(,p¢ group n) P = inv’
n

P
(proof)

lemma sym_group_card_carrier: "card (carrier (sym_group n)) = fact n"

(proof)

lemma alt_group_card_carrier:
assumes "n > 2" shows "2 * card (carrier (alt_group n)) = fact n"

(proof)

46.3 Transposition Sequences

In order to prove that the Alternating Group can be generated by 3-cycles,
we need a stronger decomposition of permutations as transposition sequences
than the one proposed at Permutations.thy.

inductive swapidseq_ext :: "’a set = nat = (’a = ’a) = bool"

where

empty: "swapidseq_ext {} 0 id"

| single: "[swapidseq_ext S n p; a ¢ S | = swapidseq_ext (imnsert
asS)np"

| comp: "[swapidseq_ext Snp; a#b] =

swapidseq_ext (insert a (insert b S)) (Suc n) ((transpose

ab) op)"

lemma swapidseq_ext_finite:
assumes "swapidseq_ext S n p" shows "finite S"

(proof)

lemma swapidseq_ext_zero:
assumes "finite S" shows "swapidseq_ext S 0 id"

{proof)

lemma swapidseq_ext_imp_swapidseq:
<swapidseq n p> if <swapidseq_ext S n p>
(proof)

360

lemma swapidseq_ext_zero_imp_id:
assumes "swapidseq_ext S 0 p" shows "p = id"
(proof)

lemma swapidseq_ext_finite_expansion:

assumes "finite B" and "swapidseq_ext A n p" shows "swapidseq_ext
(AUB) np"

(proof)

lemma swapidseq_ext_backwards:
assumes "swapidseq_ext A (Suc n) p"
shows "dJa b A’ p’. a # b A A = (insert a (insert b A’)) A
swapidseq_ext A’ n p’ A p = (transpose a b) o p’"
(proof)

lemma swapidseq_ext_backwards’:

assumes "swapidseq_ext A (Suc n) p"

shows "dJa b A’ p>. a € AAb € A AN a#*b A swapidseqg ext A n p’ A
p = (transpose a b) o p’"

{proof)

lemma swapidseq_ext_endswap:

assumes "swapidseq_ext S n p" "a # b"

shows "swapidseq_ext (insert a (insert b S)) (Suc n) (p o (transpose
a b))u

(proof)

lemma swapidseq_ext_extension:

assumes "swapidseq_ext A n p" and "swapidseq_ext B m q" and "A N B
- "

shows "swapidseq ext (A UB) (n+m) (po q"

(proof)

lemma swapidseq_ext_of_cycles:
assumes "cycle cs" shows "swapidseq_ext (set cs) (length cs - 1) (cycle_of_list
Cs)ll

(proof)

lemma cycle_decomp_imp_swapidseq_ext:
assumes "cycle_decomp S p" shows "dn. swapidseq_ext S n p"

{proof)

lemma swapidseq_ext_of_permutation:
assumes "p permutes S" and "finite S" shows "dn. swapidseq_ext S n

{proof)

p

lemma split_swapidseq_ext:
assumes "k < n" and "swapidseq_ext S n p"

361

obtains q r U V where "swapidseq_ext U (n - k) q" and "swapidseq_ext
Vkr"and "p=qor" and "UU V= 8"
(proof)

46.4 Unsolvability of Symmetric Groups

We show that symmetric groups (sym_group n) are unsolvable for (5::’a)
< n.

abbreviation three_cycles :: "nat = (nat = nat) set"
where "three_cycles n =
{ cycle_of_list cs | cs. cycle cs A length cs = 3 A set cs
C {1..n} "

lemma stupid_lemma:

assumes "length cs = 3" shows "cs = [(cs ! 0), (cs ! 1), (cs ! 2)
]ll

(proof)

lemma three_cycles_incl: "three_cycles n C carrier (alt_group n)"
(proof)

lemma alt_group_carrier_as_three_cycles:
"carrier (alt_group n) = generate (alt_group n) (three_cycles n)"

(proof)

theorem derived_alt_group_const:
assumes "n > 5" shows "derived (alt_group n) (carrier (alt_group n))
= carrier (alt_group n)"

(proof)

corollary alt_group_is_unsolvable:
assumes "n > 5" shows "— solvable (alt_group n)"

(proof)

corollary sym_group_is_unsolvable:
assumes "n > 5" shows "— solvable (sym_group n)"

(proof)

end

47 Exact Sequences

theory Exact_Sequence
imports Elementary_Groups Solvable_Groups
begin

362

47.1 Definitions

inductive exact_seq :: "’a monoid list X (’a = ’a) list = bool" where
unity: " group_hom G1 G2 f = exact_seq ([G2, G1], [f])" |
extension: "[exact_seq ((G # K # 1), (g # q)); group H ; h € hom G H

kernel G H h = image g (carrier K) | = exact_seq (H #
G#K#1, h#tg#q"

inductive__simps exact_seq_end_iff [simp]: "exact_seq ([G,H], (g # q))"
inductive__simps exact_seq_cons_iff [simp]: "exact_seq ((G # K # H # 1),
(g #h#)"

abbreviation exact_seq_arrow ::
"(’a = ’a) = ’a monoid list x (’a = ’a) list = ’a monoid = ’a
monoid list X (a = ’a) list"
(< (<indent=3 notation=<mixfix exact_seq>>_ / ——2 _)> [1000, 60])
where "exact_seq_arrow f t G = (G # (fst t), £ # (snd t))"

47.2 Basic Properties

lemma exact_seq_lengthl: "exact_seq t = length (fst t)
(snd t))"

(proof)

Suc (length

lemma exact_seq_length2: "exact_seq t = length (snd t) > Suc 0"
{proof)

lemma dropped_seq_is_exact_seq:

assumes "exact_seq (G, F)" and "(i :: nat) < length F"
shows "exact_seq (drop i G, drop i F)"
(proof)

lemma truncated_seq_is_exact_seq:
assumes "exact_seq (1,)" and "length 1 > 3"
shows "exact_seq (t1 1, tl g)"

(proof)

lemma exact_seq_imp_exact_hom:
assumes "exact_seq (G1 # 1,q) — g1 G2 ——go G3"
shows "gl ¢ (carrier G1) = kernel G2 G3 g2"

(proof)

lemma exact_seq_imp_exact_hom_arbitrary:
assumes "exact_seq (G, F)"
and "Suc i < length F"
shows "(F ! (Suc i)) ¢ (carrier (G ! (Suc (Suc i)))) = kernel (G !
(Suc 1)) (G ' 1) (F ! i)"
(proof)

363

lemma exact_seq_imp_group_hom :
assumes "exact_seq ((G # 1, @)) ——g H"
shows "group_hom G H g"

(proof)

lemma exact_seq_imp_group_hom_arbitrary:
assumes "exact_seq (G, F)" and "(i :: nat) < length F"
shows "group_hom (G ! (Suc i)) (G ! i) (F ! i)"

(proof)

47.3 Link Between Exact Sequences and Solvable Conditions

lemma exact_seq_solvable_imp :
assumes "exact_seq ([G1],[]) ——g1 G2 ——go G3"
and "inj_on gl (carrier G1)"
and "g2 ¢ (carrier G2) = carrier G3"
shows "solvable G2 —> (solvable G1) A (solvable G3)"

(proof)

lemma exact_seq_solvable_recip :
assumes "exact_seq ([G1],[]) ——g1 G2 ——g2 G3"
and "inj_on gl (carrier G1)"
and "g2 ¢ (carrier G2) = carrier G3"
shows "(solvable G1) A (solvable G3) = solvable G2"

(proof)

proposition exact_seq_solvable_iff
assumes "exact_seq ([G1],[]) ——g1 G2 ——go G3"
and "inj_on gl (carrier G1)"
and "g2 ¢ (carrier G2) = carrier G3"
shows "(solvable G1) A (solvable G3) <— solvable G2"

(proof)

lemma exact_seq_eq_triviality:

assumes "exact_seq ([E,D,C,B,Al, [k,h,g,f])"

shows "trivial_group C <— f ¢ carrier A = carrier B A inj_on k (carrier
D)" (is "_ = ?rhs")
(proof)

lemma exact_seq_imp_triviality:
"[exact_seq ([E,D,C,B,A], [k,h,g,f]); £ € iso A B; k € iso D E] =
trivial_group C"

(proof)

lemma exact_seq_epi_eq_triviality:

"exact_seq ([D,C,B,Al, [h,g,f]) = (£ ¢ carrier A = carrier B) <—
trivial_homomorphism B C g"

(proof)

364

lemma exact_seq_mon_eq_triviality:
"exact_seq ([D,C,B,Al, [h,g,f]) = inj_on h (carrier C) <— trivial_homomorphism
BCg"
(proof)

lemma exact_sequence_sum_lemma:
assumes "comm_group G" and h: "h € iso A C" and k: "k € iso B D"
and ex: "exact_seq ([D,G,Al, [g,i])" "exact_seq ([C,G,B], [f,jD)"
and fih: "Ax. x € carrier A =— f(i x) = h x"
and gjk: "Ax. x € carrier B = g(j x) = k x"
shows "(A(x, y). i x ®¢ j y) € Group.iso (A xx B) G A (Az. (f z,
g 2z)) € Group.iso G (C xx D)"
(is "7ij € _ AN 7gf € _")

(proof)

47.4 Splitting lemmas and Short exact sequences

Ported from HOL Light by LCP

definition short_exact_sequence
where "short_exact_sequence A B C f g = JdT1 T2 el e2. exact_seq ([T1,A,B,C,T2],
[el,f,g,e2]) A trivial_group Tl A trivial_group T2"

lemma short_exact_sequenceD:
assumes "short_exact_sequence A B C f g" shows "exact_seq ([A,B,C],
[f,g]) N f € epi BA A g € mon C B"

(proof)

lemma short_exact_sequence_iff:
"short_exact_sequence A B C f g +— exact_seq ([A,B,C], [f,gl) A £
€ epi BA A g &€ mon C B"

(proof)

lemma very_short_exact_sequence:

assumes "exact_seq ([D,C,B,A]l, [h,g,f])" "trivial_group A" "trivial_group
Dll

shows "g € iso B C"

(proof)

lemma splitting_sublemma_gen:

assumes ex: "exact_seq ([C,B,A], [g,f])" and fim: "f ¢ carrier A =
Hll

and "subgroup K B" and 1: "H N K C {one B}" and eq: "set_mult

B H K = carrier B"

shows "g € iso (subgroup_generated B K) (subgroup_generated C(g
B))"
(proof)

¢ carrier

lemma splitting_sublemma:

365

assumes ex: "short_exact_sequence C B A g f" and fim: "f ¢ carrier
A =H"
and "subgroup K B" and 1: "H N K C {one B}" and eq: "set_mult
B H K = carrier B"
shows "f € iso A (subgroup_generated B H)" (is 7f)
"g € iso (subgroup_generated B K) C" (is 7g)

(proof)

lemma splitting_lemma_left_gen:
assumes ex: "exact_seq ([C,B,A]l, [g,f]1)" and f’: "f’ € hom B A" and
iso: "(f’ o f) € iso A A"

and injf: "inj_on f (carrier A)" and surj: "

g ¢ carrier B = carrier
Cll
obtains H K where "H < B" "K <« B" "H N K C {one B}" "set_mult B H K
= carrier B"
"f € iso A (subgroup_generated B H)" "g € iso (subgroup_generated
B K) C"
(proof)

lemma splitting lemma_left:
assumes ex: "exact_seq ([C,B,A]l, [g,f]1)" and f’: "f’ € hom B A"
and inv: "(Ax. x € carrier A = f’(f x) = x)"

and injf: "inj_on f (carrier A)" and surj: "g ¢

carrier B = carrier
Cll
obtains H K where "H < B" "K < B" "H N K C {one B}" "set_mult B H K
= carrier B"
"f € iso A (subgroup_generated B H)" "g € iso (subgroup_generated
B K) C"
(proof)

lemma splitting lemma_right_gen:

assumes ex: "short_exact_sequence C B A g £" and g’: "g’ € hom C B"
and iso: "(g o g’) € iso C C"

obtains H K where "H < B" "subgroup K B" "H N K C {one B}" "set_mult
B H K = carrier B"

"f € iso A (subgroup_generated B H)" "g € iso (subgroup_generated

B K) C"
(proof)

lemma splitting lemma_right:

assumes ex: "short_exact_sequence C B A g f" and g’: "g’ € hom C B"
and gg’: "Az. z € carrier C = g(g’ z) = z"

obtains H K where "H < B" "subgroup K B" "H N K C {one B}" "set_mult
B H K = carrier B"

"f € iso A (subgroup_generated B H)" "g € iso (subgroup_generated

B K) C"
(proof)

366

end
theory Left_Coset
imports Coset

begin

definition
LCOSETS :: "[_, ’a set] = (’a set)set"
(< (<open_block notation=<prefix lcosets> >lcosetssz _)> [81] 80)
where "lcosetsg H = (|Ja€carrier G. {a <#g HH)"

definition
LFactGroup :: "[(’a,’b) monoid_scheme, ’a set] = (’a set) monoid" (infixl
<LMod> 65)
— Actually defined for groups rather than monoids
where "LFactGroup G H = (|carrier = lcosetsg H, mult = set_mult G,
one = H)"

lemma (in group) lcos_self: "[| x € carrier G; subgroup H G |] ==> x
€ x <# H"

(proof)

Elements of a left coset are in the carrier

lemma (in subgroup) elemlcos_carrier:
assumes "group G" "a € carrier G" "a’ € a <# H"
shows "a’ € carrier G"

(proof)

Step one for lemma rcos_module

lemma (in subgroup) lcos_module_imp:
assumes "group G"
assumes xcarr: "x € carrier G"
and x’cos: "x’ € x <# H"
shows "(inv x ® x’) € H"
(proof)

Left cosets are subsets of the carrier.

lemma (in subgroup) lcosets_carrier:
assumes "group G"
assumes XH: "X € lcosets H"
shows "X C carrier G"

(proof)

lemma (in group) lcosets_part_G:
assumes "subgroup H G"
shows "(J (1cosets H) = carrier G"

(proof)

367

lemma (in group) lcosets_subset_PowG:
"subgroup H G = lcosets H C Pow(carrier G)"

{proof)

lemma (in group) lcos_disjoint:
assumes "subgroup H G"
assumes p: "a € lcosets H" "b € lcosets H" "a#b"
shows "a N b = {}"

{(proof)

The next two lemmas support the proof of card_cosets_equal.

lemma (in group) inj_on_f’:
"[H C carrier G; a € carrier G = inj_on (A\y. y ® inv a) (a <#
0"
{proof)

lemma (in group) inj_on_f’’:
"[H C carrier G; a € carrier G = inj_on (\y. inv a ® y) (a <#
0"
{proof)

lemma (in group) inj_on_g’:
"[H C carrier G; a € carrier G) = inj_on (\y. a ® y) H"

(proof)

lemma (in group) 1_card_cosets_equal:

assumes "c € lcosets H" and H: "H C carrier G" and fin: "finite(carrier
G) "

shows "card H = card c"

(proof)

theorem (in group) 1_lagrange:
assumes "finite(carrier G)" "subgroup H G"
shows "card(lcosets H) * card(H) = order(G)"

(proof)

end

theory SimpleGroups
imports Coset "HOL-Computational_Algebra.Primes"
begin

48 Simple Groups

locale simple_group = group +
assumes order_gt_one: "order G > 1"

368

assumes no_real_normal_subgroup: "AH. H < G = (H = carrier G V H

= {1pH"

lemma (in simple_group) is_simple_group: "simple_group G"
{proof)

Simple groups are non-trivial.

lemma (in simple_group) simple_not_triv: "carrier G # {1}"
{proof)

Every group of prime order is simple

lemma (in group) prime_order_simple:
assumes prime: "prime (order G)"
shows "simple_group G"

(proof)

Being simple is a property that is preserved by isomorphisms.

lemma (in simple_group) iso_simple:
assumes H: "group H"
assumes iso: "¢ € iso G H"
shows "simple_group H"

(proof)

As a corollary of this: Factorizing a group by itself does not result in a simple
group!

lemma (in group) self_factor_not_simple: "— simple_group (G Mod (carrier

G
(proof)

end

theory SndIsomorphismGrp
imports Coset
begin

49 The Second Isomorphism Theorem for Groups

This theory provides a proof of the second isomorphism theorems for groups.
The theorems consist of several facts about normal subgroups.

The first lemma states that whenever we have a subgroup S and a normal
subgroup H of a group G, their intersection is normal in G
locale second_isomorphism_grp = normal +

fixes S:: "’a set"
assumes subgrpS: "subgroup S G"

369

context second_isomorphism_grp
begin

interpretation groupS: group "G(carrier := S)"

(proof)

lemma normal_subgrp_intersection_normal:
shows "S N H < (G(carrier := §))"

(proof)

lemma normal_set_mult_subgroup:
shows "subgroup (H <#> S) G"
(proof)

lemma H_contained_in_set_mult:
shows "H C H <#> 8"

(proof)

lemma S_contained_in_set_mult:
shows "S C H <#> 3"

(proof)

lemma normal_intersection_hom:

shows "group_hom (G(carrier := S|)) ((G(carrier := H <#> S|)) Mod H) ()\g.
H #> g)"
(proof)

lemma normal_intersection_hom_kernel:
shows "kernel (G(carrier := S))) ((G(carrier := H <#> S|)) Mod H) ()\g.
H# g) =HNS"

{proof)
lemma normal_intersection_hom_surj:
shows "(\g. H #> g) ¢ carrier (G(carrier := S|)) = carrier ((G(carrier
= H <#> SD) Mod H)"
(proof)

Finally we can prove the actual isomorphism theorem:

theorem normal_intersection_quotient_isom:

shows "(MX. the_elem ((\g. H #> g) ° X)) € iso ((G(carrier := S|)) Mod
(H N S)) (((Gcarrier := H <#> S)))) Mod H)"
(proof)

end

corollary (in group) normal_subgroup_set_mult_closed:
assumes "M < G" and "N < G"
shows "M <#> N < G"

REFERENCES 370

(proof)

end

theory Algebra
imports Sylow Chinese_Remainder Zassenhaus Galois_Connection Generated_Fields
Free_Abelian_Groups
Divisibility Embedded_Algebras IntRing Sym_Groups Exact_Sequence
Polynomials Algebraic_Closure
Left_Coset SimpleGroups SndIsomorphismGrp
begin

end

References

[1] C. Ballarin. Computer Algebra and Theorem Proving. PhD thesis, Uni-
versity of Cambridge, 1999. Also Computer Laboratory Technical Report
number 473.

[2] K. Conrad. Cyclicity of (Z/(p))*. Expository paper from the author’s
website. http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/
cyclicFp.pdf.

[3] N. Jacobson. Basic Algebra I. Freeman, 1985.

[4] F. Kammiiller and L. C. Paulson. A formal proof of sylow’s theorem:
An experiment in abstract algebra with Isabelle HOL. J. Automated
Reasoning, 23:235-264, 1999.

http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/cyclicFp.pdf
http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/cyclicFp.pdf

	Objects
	Structure with Carrier Set.
	Structure with Carrier and Equivalence Relation 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 eq

	Orders
	Partial Orders
	The order relation
	Upper and lower bounds of a set
	Least and greatest, as predicate
	Intervals
	Isotone functions
	Idempotent functions
	Order embeddings
	Commuting functions

	Partial orders where 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 eq is the Equality
	Bounded Orders
	Total Orders
	Total orders where 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 eq is the Equality

	Lattices
	Supremum and infimum
	Dual operators
	Lattices
	Supremum
	Infimum

	Weak Bounded Lattices
	Lattices where 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 eq is the Equality
	Bounded Lattices

	Complete Lattices
	Infimum Laws
	Supremum Laws
	Fixed points of a lattice
	Least fixed points
	Greatest fixed points

	Complete lattices where 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 eq is the Equality
	Fixed points
	Interval complete lattices
	Knaster-Tarski theorem and variants
	Examples
	The Powerset of a Set is a Complete Lattice

	Limit preserving functions

	Galois connections
	Definition and basic properties
	Well-typed connections
	Galois connections
	Composition of Galois connections
	Retracts
	Coretracts
	Galois Bijections

	Monoids and Groups
	Definitions
	Groups
	Cancellation Laws and Basic Properties
	Power
	Submonoids
	Subgroups
	Direct Products
	Homomorphisms (mono and epi) and Isomorphisms
	HOL Light's concept of an isomorphism pair
	Involving direct products

	The locale for a homomorphism between two groups
	Commutative Structures
	The Lattice of Subgroups of a Group
	The units in any monoid give rise to a group
	Product Operator for Commutative Monoids
	Inductive Definition of a Relation for Products over Sets
	Left-Commutative Operations
	Products over Finite Sets

	Cosets and Quotient Groups
	Stable Operations for Subgroups
	Basic Properties of set multiplication
	Basic Properties of Cosets
	Normal subgroups
	More Properties of Left Cosets
	Set of Inverses of an 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 rcoset.
	Theorems for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 with 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 or 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 .
	An Equivalence Relation
	Two Distinct Right Cosets are Disjoint

	Further lemmas for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 rcongruent
	Order of a Group and Lagrange's Theorem
	Quotient Groups: Factorization of a Group
	The First Isomorphism Theorem
	Trivial homomorphisms

	Image kernel theorems
	Factor Groups and Direct product
	More Lemmas about set multiplication
	Lemmas about intersection and normal subgroups

	Flattening the type of group carriers
	Sylow's Theorem
	Main Part of the Proof
	Discharging the Assumptions of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 sylowcentral
	Introduction and Destruct Rules for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 H

	Equal Cardinalities of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 M and the Set of Cosets
	The Opposite Injection

	Sylow's Theorem

	Bijections of a Set, Permutation and Automorphism Groups
	Bijections Form a Group
	Automorphisms Form a Group

	The Algebraic Hierarchy of Rings
	Abelian Groups
	Basic Properties
	Rings: Basic Definitions
	Rings
	Normaliser for Rings
	Sums over Finite Sets

	Integral Domains
	Fields
	Morphisms
	Jeremy Avigad's 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 MoreFiniteProduct material
	Jeremy Avigad's 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 MoreRing material

	Modules over an Abelian Group
	Definitions
	Basic Properties of Modules
	Submodules
	More Lifting from Groups to Abelian Groups
	Definitions
	Cosets
	Subgroups
	Additive subgroups are normal
	Congruence Relation
	Factorization
	The First Isomorphism Theorem
	Homomorphisms
	Cosets
	Addition of Subgroups

	Ideals
	Definitions
	General definition
	Ideals Generated by a Subset of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 carrier R
	Principal Ideals
	Maximal Ideals
	Prime Ideals

	Special Ideals
	General Ideal Properties
	Intersection of Ideals
	Addition of Ideals
	Ideals generated by a subset of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 carrier R
	Union of Ideals
	Properties of Principal Ideals
	Prime Ideals
	Maximal Ideals
	Derived Theorems

	Homomorphisms of Non-Commutative Rings
	The Kernel of a Ring Homomorphism
	Cosets

	Univariate Polynomials
	The Constructor for Univariate Polynomials
	Effect of Operations on Coefficients
	Polynomials Form a Ring.
	Polynomials Form a Commutative Ring.
	Polynomials over a commutative ring for a commutative ring
	Polynomials Form an Algebra
	Further Lemmas Involving Monomials
	The Degree Function
	Polynomials over Integral Domains
	The Evaluation Homomorphism and Universal Property
	The long division algorithm: some previous facts.
	The long division proof for commutative rings
	Sample Application of Evaluation Homomorphism

	Generated Groups
	Generated Groups
	Basic Properties

	Derived Subgroup
	Definitions
	Basic Properties
	Generated subgroup of a group

	And homomorphisms

	Elementary Group Constructions
	Direct sum/product lemmas
	The one-element group on a given object
	Similarly, trivial groups
	The additive group of integers
	Additive group of integers modulo n (n = 0 gives just the integers)
	Cyclic groups

	Simplification Rules for Polynomials
	Properties of the Euler 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -function
	Order of an Element of a Group
	Number of Roots of a Polynomial
	The Multiplicative Group of a Field
	Group Actions
	Prelimineries
	Orbits
	Transitive Actions

	Stabilizers
	The Orbit-Stabilizer Theorem
	Rcosets - Supporting Lemmas
	Bijection Between Rcosets and an Orbit - Definition and Supporting Lemmas
	The Theorem

	The Burnside's Lemma
	Sums and Cardinals
	The Lemma

	Action by Conjugation
	Action Over Itself
	Action Over The Set of Subgroups
	Action Over The Power Set

	Subgroup of an Acting Group

	The Zassenhaus Lemma
	Lemmas about normalizer
	Second Isomorphism Theorem
	The Zassenhaus Lemma

	Divisibility in monoids and rings
	Factorial Monoids
	Monoids with Cancellation Law
	Products of Units in Monoids
	Divisibility and Association
	Function definitions
	Divisibility
	Association
	Division and associativity
	Multiplication and associativity
	Units
	Proper factors

	Irreducible Elements and Primes
	Irreducible elements
	Prime elements

	Factorization and Factorial Monoids
	Function definitions
	Comparing lists of elements
	Properties of lists of elements
	Factorization in irreducible elements
	Essentially equal factorizations
	Factorial monoids and wfactors

	Factorizations as Multisets
	Comparing multisets
	Interpreting multisets as factorizations
	Multiplication on multisets
	Divisibility on multisets

	Irreducible Elements are Prime
	Greatest Common Divisors and Lowest Common Multiples
	Definitions
	Connections to Lattice.thy
	Existence of gcd and lcm

	Conditions for Factoriality
	Gcd condition
	Divisor chain condition
	Primeness condition
	Application to factorial monoids

	Factoriality Theorems

	Quotient Rings
	Multiplication on Cosets
	Quotient Ring Definition
	Factorization over General Ideals
	Factorization over Prime Ideals
	Factorization over Maximal Ideals
	Isomorphism

	The Ring of Integers
	Some properties of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 int
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Z: The Set of Integers as Algebraic Structure
	Interpretations
	Generated Ideals of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 Z
	Ideals and Divisibility
	Ideals and the Modulus
	Factorization

	Weak Morphisms
	Definitions
	Weak Group Morphisms
	Weak Ring Morphisms
	Injective Functions

	Examples
	Direct Product
	Basic Properties

	The Arithmetic of Rings
	Definitions
	The cancellative monoid of a domain.
	Passing from 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 R to 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 RingDivisibilitymultof R and vice-versa.
	Irreducible
	Primes
	Basic Properties
	Noetherian Rings
	Principal Domains
	Euclidean Domains

	Subrings
	Definitions
	Basic Properties
	Subrings
	Subcrings
	Subdomains
	Subfields

	Subring Homomorphisms

	Polynomials
	Definitions
	Basic Properties
	Polynomial Addition
	Dense Representation
	Polynomial Multiplication
	Properties Within a Domain
	Algebraic Structure of Polynomials
	Long Division Theorem
	Consistency Rules
	Corollaries

	The Evaluation Homomorphism
	Homomorphisms
	The X Variable
	The Constant Term
	The Canonical Embedding of K in K[X]

	Definitions
	Syntactic Definitions
	Basic Properties - First Part
	Some Basic Properties of Linear Independence
	Basic Properties - Second Part
	Span as Linear Combinations
	Corollaries

	Span as the minimal subgroup that contains 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 K set Us
	Corollaries

	Characterisation of Linearly Independent "Sets"
	Replacement Theorem
	Dimension
	Finite Dimension
	Basic Properties
	Reformulation of some lemmas in this new language.

	Divisibility of Polynomials
	Definitions
	Basic Properties
	Division
	Polynomial Power
	Ideals
	Roots and Multiplicity
	Link between 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 pmod and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 rupturesurj
	Dimension

	Indexed Polynomials
	Definitions
	Basic Properties
	Indexed Eval
	Link with Weak Morphisms

	Finite Extensions
	Definitions
	Basic Properties
	Minimal Polynomial
	Simple Extensions
	Link between dimension of K-algebras and algebraic extensions
	Finite Extensions
	Arithmetic of algebraic numbers

	Algebraic Closure
	Definitions
	Basic Properties
	Partial Order
	Extensions Non Empty
	Chains
	Zorn
	Existence of roots
	Existence of Algebraic Closure
	Definition
	The algebraic closure is algebraically closed
	Converting between the base field and the closure
	The algebraic closure is an algebraic extension

	Product of Ideals
	Basic Properties
	Structure of the Set of Ideals
	Another Characterization of Prime Ideals

	Direct Product of Rings
	Definitions
	Basic Properties
	Direct Product of a List of Rings

	Chinese Remainder Theorem
	Definitions
	Chinese Remainder Simple
	Chinese Remainder Generalized

	Generated Rings
	Basic Properties of Generated Rings - First Part
	Basic Properties of Generated Rings - First Part

	Product and Sum Groups
	Product of a Family of Groups
	Sum of a Family of Groups

	Free Abelian Groups
	Generalised finite product
	Free Abelian groups on a set, using the "frag" type constructor.

	Solvable Groups
	Definitions
	Solvable Groups and Derived Subgroups
	Short Exact Sequences

	Symmetric Groups
	Definitions
	Basic Properties
	Transposition Sequences
	Unsolvability of Symmetric Groups

	Exact Sequences
	Definitions
	Basic Properties
	Link Between Exact Sequences and Solvable Conditions
	Splitting lemmas and Short exact sequences

	Simple Groups
	The Second Isomorphism Theorem for Groups

