
Existing Approaches

Digital Fountains
Data is encoded using sparse erasure codes such as
Tornado, Luby Transform or Raptor codes. Receiver needs
to obtain slightly more encoded data than the original raw
source. Can receive code chunks from multiple sources.

Data is divided into segments. Code chunks are created by
XORing sets of data segments. To decode, repeatedly XOR
the coded blocks until original data is recovered.

The Fountain of Knowledge
Using Digital Fountains to provide reliable storage in the Data Centre

Toby Moncaster, Andrew W. Moore, Jon Crowcroft

Data Centre Storage Requirements
Speed: Needs to keep up with application speed. Often
read speed is more important than write. This leads to
“move the application to the data” approaches.

Reliability: Data should not be corrupted, also need to
ensure synchronisation between copies of the same data.

Resilience: Storage should be resilient against local and
regional failures. Multiple copies of data may be required.
Failures may come singly or in sequence.

Storage Area Networks (e.g. NetApp)

Provides dedicated specialist network to
provide fast read/write access to centralised
disk arrays. Storage appears as local disk.

Central metadata (e.g. GFS)

Storage divided into chunks. A
single central metadata server
controls how data are
distributed and replicated
between these. Ideal for
oversubscribed networks.

Distributed (e.g. Flat Datacenter Storage)

Storage split into blobs. Data split into tracts. Each blob has
a tract server which allocates space to each of the tracts.
Central metadata server lists where the tract servers are.
Uses hash function to split data among tracts. Only works in
full bisection bandwidth networks.

Data Centre Knowledge Fountains
Data is split into chunks and encoded into a digital
fountain. Encoded chunks are stored at locations across
data centre. Resilience is achieved by creating multiple
encodings of each tract. These are stored at separate
physical locations.

To access the data simply download sufficient encoded
chunks to decode the original data. Overhead is 5-10%
depending on the encoding used.

Computer Laboratory, 15 JJ Thomson Avenue,
Cambridge, CB3 0FD, UK

Choosing Where to Store the Data
Use a hash-based indexing approach similar to Flat
Datacenter Storage. Each storage location (or blob) has a
tractserver. These work just as in FDS. Central metadata
server stores simple index.

Index key is generated using simple hash of file descriptor
and blob ID. Index returns list of tract servers where code
blocks for that file exist.

Detailed Operation
Writing Data: Split the data into blocks. Decide on the
degree of redundancy. Encode multiple versions of the data
using a suitable encoding scheme. Ask the metadata server
to choose which tract servers to store the code chunks.

Accessing data: Use the metadata server to identify all the
tract servers with code chunks for the file. Select tract
servers based on suitable heuristics (location, speed, etc).
Download sufficient chunks to recover data.

Recovering from failures: If a storage blob fails the
metadata server will choose alternative tract servers for the
data on that blob. Because of redundant encoding many
blobs need to fail before data is unrecoverable.

 C1 = D1

D1 C2 = D1 + D4

D2 C3 = D1 + D3

D3 C4 = D2 + D4

D4 C5 = D3 + D5

D5 C6 = D1 + D2 + D5 + D6

D6 C7 = D3 + D5 + D6

 C8 = D5

Receive C1, C2, C7, C3, C4, C5

Use C1 to recover D1

Use C2 and D1 to recover D2

Then wait till you receive C3

Use C3 and D1 to recover D3

Use C4 and D2 to recover D4

Use C5 and D3 to recover D5

Use C7 and D3 to recover (D5 + D6)

Use (D5 + D6) and D5 to recover D6

Is it Suitable for Data Centres?
Speed: System is fast since code chunks are downloaded
in parallel. Digital Fountain encoding is efficient and fast.

Reliability: Data is encoded across many blocks. If a
block is corrupted or lost there is plenty of redundancy to
recover from this.

Resilience: The system has a high degree of resilience
because the encoding only requires sufficient code blocks
to be downloaded which can come from any storage blob.

