
 When testing software, we often see outliers in the experimental results.
Investigating these anomalies is difficult given the number of interacting
subsystems and layers of indirection that make up modern computer systems.
Figure 1 shows a simplified view of a typical, deep-layered system. These layers
exist primarily to abstract away the complexity of controlling the hardware
directly, therefore providing a simpler programming interface to the user.
But all of these interacting layers make it difficult to identify exactly why two
executions of the same application may perform differently.
 We hypothesise that the shared state inherent within the many layers of
the system stack, directly affects the behaviour of the running application. We
believe that this is important to investigate since many current smartphone
software stacks make use of shared services to provide anything from location
updates to network state monitoring and that their internal state directly
influences the behaviour of the application making use of them.
 Existing profiling and debugging tools often only provide execution traces
at a single layer and at a fixed granularity and therefore aren’t able to identify
these cross-layer bugs.

Cross-layer Instrumentation for Smartphones
James Snee, Dr Andrew Rice

www.cl.cam.ac.uk/~jas250 March 2013

 We propose a method that relies on the analysis of execution traces recorded at different layers of the system in
order to identify a typical execution, or the execution’s fast-path. These traces are then collated and anomalies can
be identified and investigated by characterising the execution of the application and looking for those traces that
don’t fit the character. The investigation of these anomalies can also lead to new, more targeted instrumentation
being placed into the system, therefore making the investigation into anomalous behaviour more granular. Figure
2 shows the required steps in our method.

The Problem

Our Solution

Figure 1. The typical layers of a modern
computer system.

Figure 3. The various layers at which we gather execution traces and the
methods we use to capture them.

Figure 2. The various layers at which we
gather execution traces and the methods
we use to capture them.

 We are currently testing our method using the
Android mobile software stack. Figure 3 gives a
simplified view of the various layers inside Android
and the methods we are using or intend to use,
to capture execution behaviour.
 The novelty in our method is in the cross-
layered approach to system tracing and the
way we use algorithms prevelant in Intrusion
Detection to identify anomalous behaviour in the
entire system trace.
 With this system, we hope to analyse anomalies
ranging from simply understanding exactly what
the idle state of one of these devices is, to the
improper use of system resources.

Computer Laboratory
Digital Technology Group

