
This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL), under contract
FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of the author/presenter and should not be interpreted
as representing the official views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense.

 0

 1

 2

 3

 4

 5

 6

C Objective−C

Smalltalk

Smalltalk, Overflow−Safe

T
im

e
in

 S
ec

o
n

d
s

Fibonacci Benchmark Time

 0

 2

 4

 6

 8

 10

 12

Automatic Refcounts

Manual Refcounts

GNUstep Manual Refcounts

Apple Automatic Refcounts

Apple Manual Refcounts

N
o

rm
al

is
ed

 t
im

e

Memory Management Benchmark Results

Cross-Language Interoperability for
Fast, Easy, and Maintainable Code

Efficient Interoperability
Low

 C
ognitive O

verhead B
ridging

Our approach to cross-language
interoperability involves compiling
multiple languages down to a shared
binary representation. We currently
compile dialects of Smalltalk and
JavaScript and an object-oriented parser
generator down to the same object model
as Objective-C. We can call C directly and
use Objective-C as a hybrid language for
more complex bridging. Objective-C
effectively becomes a domain-specific
language for calling C and C++ from
high-level languages.

A single object may have methods
implemented in different languages,.

I have a great idea
for a new app!

You should use libfoo
and libbar! That will
make it really easy!

But libfoo is C, libbar
is C++, and I want to

use Java!

You should use Python,
it has bindings to C

and C++!

But I wanted to use the
Frobnicator framework, and it's
only for Java. And Python is

sloooow!

Fine, then you'll need to write a
load of bridging code. It might be

simpler to just reimplement the
bits of libfoo and libbar that you

want to use in Java...

The World Today:

I have a great idea
for a new app!

You should use libfoo
and libbar! That will
make it really easy!

Okay. And I think I'll
use the Frobnicator

framework too.

Good have fun!

Why are you still
here? Go and write

your app.

The World We're Building:

Oh, I finished
already.

"Interoperability isn't just a technical problem, it's also a user interface
problem. We have to make it easy to call between languages, so that users can
always pick the most appropriate tool for the job at hand."
example [

"This shows how to call a C function from Smalltalk"
C objc_setAssociatedObject: {

self.
42.
’fishes’.
C enumValue: OBJC_ASSOCIATION_ASSIGN }.

"Note how C enumerations can be accessed. When encountering this construct,
the Pragmatic Smalltalk compiler will generate exactly the same code as an
Objective-C compiler would for this line:
objc_setAssociatedObject(self, 42, @"fishes", OBJC_ASSOCIATION_ASSIGN);
It will get the types for the function by parsing the header and
automatically map Smalltalk types to C and Objective-C types. The
programmer doesn't need to write any bridging or foreign function interface
code."
(C objc_getAssociatedObject: {self . 42 }) log.

]

Fa
st

 Im
pl

em
en

ta
tio

n
R

eal-W
orld U

se
The Objective-C implementation
developed as part of this work is
used in a number of open source

and commercial games and
applications, with millions of installs,
including Android ports of iOS apps.

Ea
sy

 D
ev

el
op

m
en

t

The 3! graphics editor uses C++ for high-
performance 3D modelling code the

Smalltalk, Objective-C for model
descriptions, and Smalltalk for procedural

geometry generation and scripting.

Apple Manual Refcounts

Part of this work has focussed on optimising
dynamic languages. The biggest single
performance cost for dynamic languages is
the cost of message sending (dynamic
method invocation). We have significantly
improved the performance of this, both in
the best and common cases. We added
inline caching and speculative inlining to
the compiler and improved the lookup code
in the runtime, making our average case
twice as fast as GCC and our best case faster
than a direct C call.
We have shown that it's possible to use late-
bound dynamic languages without
sacrificing performance and that mixing
languages doesn't need to be slow or
difficult.
Even though the implementation in
Smalltalk is noticeably slower than the C
version for the Fibonacci benchmark, it
does have one advantage: it gives the
correct answer for any input, whereas the C
version silently overflows...

 0

 1

 2

 3

 4

 5

 6

Average Case

Inline Cached

Speculative Inlining

GCC Runtime Message Send

C++ (nonvirtual)

C++ (virtual)

C (direct call)

N
o

rm
al

is
ed

 t
im

e

Message Sending Speed

N
o

rm
al

is
ed

 t
im

eOne unfortunate side effect of mixing languages is that your
code is as safe as the least-safe language you use. This applies
even when you use a JVM written in C++. We are currently
exploring sinking enforcement of high-level language isolation
properties (such as object encapsulation) into the hardware, with
the CHERI CPU designed as part of the DARPA-funded CTSRD
project. We are already able to enforce object isolation in a
dialect of C running on this CPU.

The demo shown at FOSDEM
this year showed fully dynamic
development spanning
Objective-C and Smalltalk. The
developer can inspect the
existing class hierarchy and
the code for any methods
implemented in Smalltalk. It
is also possible to add, modify,
or replace methods, add
instance variables and classes
at run time. Invoking a
nonexistent class or method
pops up a dialog asking the
user to implement it, all from
within a running app. The
final version is statically
compiled, with no explicit user
intervention required.

H
ardw

are Assistance

David Chisnall

