
Computer Laboratory

Exploiting tightly-coupled cores

Daniel.Bates@cl.cam.ac.uk
Alex.Bradbury@cl.cam.ac.uk
Andreas.Koltes@cl.cam.ac.uk
Robert.Mullins@cl.cam.ac.uk

Daniel Bates, Alex Bradbury,
Andreas Koltes, Robert Mullins

http://www.cl.cam.ac.uk/research/comparch

Computer Architecture Group

FETCH DECODE EXECUTE
WRITE
BACK

Input 
buffers

Output 
buffers

Register 
write

ALU

Register 
read

Immediate 
sign-extend

Decode

L0 inst 
cache

In
st

ru
ct

io
n

 
b
u

ff
e
r

CMT 
read

CMT 
write

Scratch-
pad

Memory controller

Tile interconnects Router

8 x Loki core

8 x 8kB L1 cache bank

Memory controller

I/O

1mm

Chip

Tile

SIMD

$ $ $ $
Instructions

Data

Typical example:
Dijkstra - multiple paths

8 cores
4.4x speedup
0.8x energy

Only one core at a time fetches 
each instruction
Multicast to all other cores
Share cache capacity
Optimisation: reserve one core to 
provide data common to all others

•

•
•
•

Dataflow

$

$

$

$
Instructions

Data

Typical example:
CRC

5 cores
4.7x speedup
0.6x energy

Very few instructions per core
Send/receive data over network
With one instruction per core, 
don't need to re-issue each cycle
Much of the pipeline is inactive, 
and can be clock-gated

•
•
•

•

Task-level pipeline

$ $ $
Instructions

Data

Typical example:
ADPCM compression

2 cores
2.5x speedup
0.3x energy

Perform a small block of work on 
input data before passing result on
Specialise each core enough that 
its task can be cached well
More core resources (e.g. registers) 
available for optimisations

•

•

•

Tiled, homogeneous architecture
100s-1000s of cores on a chip (at 40nm)
All cores and memory banks have a channel 
map table (CMT) to hold network addresses

•
•
•

Short, single-issue pipeline to reduce power
Network connected directly to datapath
Single-cycle latency between cores in same tile
<10pJ per instruction possible (ARM1176: 140pJ)

•
•
•
•

Solution: Loki, a flexible architecture capable 
of combining resources to create a virtual 
processor optimised for the task at hand. 
Efficient communication is key.

Challenges: processor energy consumption 
limited by battery capacity; fault tolerance 
becoming necessary; design and validation 
costs rising rapidly; parallelism is difficult.

These execution patterns (and more) can be combined arbitrarily to form an optimised virtual processor:


