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Typical example:
Dijkstra - multiple paths

8 cores
4.4x speedup
0.8x energy

Only one core at a time fetches 
each instruction
Multicast to all other cores
Share cache capacity
Optimisation: reserve one core to 
provide data common to all others
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Typical example:
CRC

5 cores
4.7x speedup
0.6x energy

Very few instructions per core
Send/receive data over network
With one instruction per core, 
don't need to re-issue each cycle
Much of the pipeline is inactive, 
and can be clock-gated

•
•
•

•

Task-level pipeline
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Typical example:
ADPCM compression

2 cores
2.5x speedup
0.3x energy

Perform a small block of work on 
input data before passing result on
Specialise each core enough that 
its task can be cached well
More core resources (e.g. registers) 
available for optimisations
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•
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Tiled, homogeneous architecture
100s-1000s of cores on a chip (at 40nm)
All cores and memory banks have a channel 
map table (CMT) to hold network addresses

•
•
•

Short, single-issue pipeline to reduce power
Network connected directly to datapath
Single-cycle latency between cores in same tile
<10pJ per instruction possible (ARM1176: 140pJ)

•
•
•
•

Solution: Loki, a flexible architecture capable 
of combining resources to create a virtual 
processor optimised for the task at hand. 
Efficient communication is key.

Challenges: processor energy consumption 
limited by battery capacity; fault tolerance 
becoming necessary; design and validation 
costs rising rapidly; parallelism is difficult.

These execution patterns (and more) can be combined arbitrarily to form an optimised virtual processor:


