Mechanical Proofs about a
Non-Repudiation Protocol

Giampaolo Bella’? Lawrence C Paulson'

! Computer Laboratory, University of Cambridge
Pembroke Street, Cambridge CB2 3QG (UK)
{gb221,1cp}@cl.cam.ac.uk

2 Dipartimento di Matematica e Informatica, Universita di Catania
Viale A. Doria 6, 1-95125 Catania (ITALY)
giamp@dmi.unict.it

Abstract. A non-repudiation protocol of Zhou and Gollmann [18] has
been mechanically verified. A non-repudiation protocol gives each party
evidence that the other party indeed participated, evidence sufficient to
present to a judge in the event of a dispute. We use the theorem-prover
Isabelle [10] and model the security protocol by an inductive definition,
as described elsewhere [1,12]. We prove the protocol goals of validity of
evidence and of fairness using simple strategies. A typical theorem states
that a given piece of evidence can only exist if a specific event took place
involving the other party.

1 Introduction

A wide variety of techniques are available for verifying cryptographic protocols [3,
8,12,14]. Past work has focused largely on two security goals: confidentiality
(who can read the message?) and authenticity (who originated the message?).
One direction for further research is to attempt proofs of more esoteric security
goals. Traditional protocols help a pair of honest agents to communicate in the
presence of an attacker, but in some situations agents may act unfairly and
abandon protocol sessions before these terminate. The present work concerns
non-repudiation, which seeks to prevent a party from abandoning an agreement.
Non-repudiation would provide us with a reliable means of making contracts
over a network.

The primary goal of a non-repudiation protocol is wvalidity of evidence. It
must provide each peer with convincing evidence of the other’s participation in
a protocol session. If one peer falsely denies participating in a session, then the
other peer can present his evidence to a judge, who can safely conclude that the
other peer did participate. Crucially, the judge does not have to monitor the
network traffic, but can make his judgement on the basis of the evidence alone.
Some of the evidence is usually referred to as non-repudiation of origin, other as
non-repudiation of receipt. The initiator of a session typically seeks evidence of
the first form, and the responder typically looks for evidence of the second form.

An additional goal of some non-repudiation protocols is fairness: at no time
should one peer hold more evidence than the other does. Although fairness is not
indispensable in all situations, it may be needed for certain e-commerce transac-
tions. For example, if a client C' holds evidence that a merchant M received C’s
request for goods, fairness means that C' cannot deny sending the request: M
holds the corresponding evidence. Similarly, if M holds evidence that C received
the goods, fairness means that C' holds evidence that it was M who sent them.
In the latter case for example, M could claim the payment for the goods but,
should the goods be unsatisfactory, C' could demand a refund. Resolving such
disputes becomes a matter of cyberlaw; the judge referred to above could be a
real judge sitting in a traditional courtroom.

A number of protocols have been designed to achieve non-repudiation, but
they are not yet deployed [7,9,18]. Verifying them formally [16,17] might in-
crease their credibility. Proving non-repudiation was one of the the first author’s
reasons for extending the Inductive Approach to verifying cryptographic proto-
cols [12] with message reception [1] and agents’ knowledge [2]. This paper shows
that we have now achieved that purpose through the development of simple
strategies to prove validity of evidence and fairness. We were pleased to observe
that these strategies differ little from those for proving authentication goals [5,
6], and that the approach required no extensions. Our proofs were conducted on
a popular non-repudiation protocol due to Zhou and Gollmann [18] using the
second author’s original modelling of agents. An unlimited population of agents
can only send messages of the form that the protocol prescribes but can quit a
protocol session at any time; the spy can send messages of arbitrary form.

This paper is organised as follows. A brief overview of the Inductive Approach
(§2) precedes the description of our strategies to proving the non-repudiation
goals (§3). The Zhou-Gollmann protocol is described (§4), modelled (§5) and
verified without the spy (§6). Then, the verification is repeated in the presence
of the spy (§7). Finally, the related work is discussed (§8), and some conclusions
are given (§9).

2 The Inductive Approach

The Inductive Approach has been used successfully to analyse Local Area Net-
work protocols [5], Internet protocols [13], e-commerce protocols [4] and smart
card protocols [3]. Here, we recall only its main concepts, but a full treatment
may be found elsewhere [1,12].

The approach draws from the observation that the goals of security protocols
are invariants of the protocol execution, so proving the goals means showing that
they are preserved by all protocol steps. The inductive model of a protocol is the
set of all possible histories (traces) of the network that the protocol execution
may produce. There is no limit to the number of agents who may participate.
They may also interleave sessions at will.

A trace is a list of network events of the following form:

— Says A B X, indicating that agent A sends a message X to agent B;

— Gets A X, indicating that A receives X;
— Notes A X, indicating that A notes down X for future use.

The last event can model an agent’s storing a message component or the result
of a computation [13].

There are traces in which some events have not taken place although the
necessary preconditions are met. Therefore, the protocol model does not force
events to happen; messages may be sent but may not be received, and agents
may abandon a protocol execution. This captures the unreliability of the com-
munications, and a degree of unfairness of agents. However, the only agent who
can build messages other than those prescribed by the protocol is the spy. Also,
messages cannot alter during transmission.

Given a trace evs, we model the knowledge that agent A acquires during the
network history denoted by evs as knows A evs [2]. This is the set of messages
that A sent or received or noted on evs. In particular, knows Spy evs contains
the private signature keys of a set bad of agents and all messages that were sent
or received by anyone or noted by bad agents on evs.

Three operators can be applied to a message set H:

— parts, yielding all components of messages in H, except encryption keys;

— analz, yielding those components of messages in H whose encryption key is
recursively available;

— synth, yielding all messages constructed by concatenation or encryption from
messages recursively obtained from H.

The special set synth(analz(knows Spy evs)) contains all messages that the
spy can synthesize using the components obtained from the analysis of the traffic
with the help of bad agents’ private keys. The spy can send in the traffic any
message derived from that set (§7).

3 Strategies to Proving Non-Repudiation

How can a judge who is off-line evaluate the non-repudiation evidence presented
by a peer? The judge could perhaps make a decision given a full log of the
network traffic, but that would not be practical. Our proofs can help the judge
by establishing that a given piece of evidence guarantees that certain critical
events occurred. Our proofs are subject to human error (for instance, our model
could be too abstract), but they add credibility to the protocol. The judge weighs
up these points in making his decision; a Guilty verdict requires the absence of
a reasonable doubt.

Each trace of the protocol model is in fact a full log of a network history. So,
scanning the trace tells what events have occurred. These observations inspire
our strategy to proving validity of evidence, which must be applied for each piece
of evidence that an agent presents to the judge. If A presents evidence X, then
certainly A holds X; formally: X € knows A evs for some trace evs. Our strategy
rests on an assumption of that form, and develops through two main types of
result:

1. If A holds some evidence X, then A got the evidence from the network,
perhaps from the spy.

2. If A got evidence X, then B sent some other evidence Y. Alternatively —

2'. If A got evidence X, then B was entitled to receive some other evidence Y.

Proving a theorem of the form (1) and a theorem of the form (2) typically
serves to establish validity of the evidence for non-repudiation of origin. Proving
a theorem of the form (1) and a theorem of the form (2') typically serves to
establish validity of the evidence for non-repudiation of receipt.

Proving theorems of the form (1) is novel as it involves reasoning on the
knowledge of friendly agents. Since a friendly agent only knows what she sends
or receives or notes [2], these proofs generate longer case splits than previous
proofs [6,12] based on the spy’s knowledge, which includes everything that is
sent or received by anyone or noted by bad agents. By contrast, theorems of the
form (2) or (2) can be proved conventionally, as they resemble authentication
theorems [5].

The strategy for proving fairness is simple once the theorems assessing va-
lidity of evidence are available. We need to establish is that, if some evidence is
available to a peer, then other evidence is available to the other peer. This is in
fact a possible way to read the theorems on validity of evidence. Simple lemmas
stating that an agent performs an event only if he has performed another one
may be sometimes required.

4 A Fair Non-Repudiation Protocol

We choose a recent non-repudiation protocol, shown in Fig. 1, that also aims
at fairness [18] as a case study to demonstrate our approach. The protocol was
designed by Zhou and Gollmann, who also published a version aiming at efficient
implementation [19]. One of the motivations for our choice was the existence of
significant related work [16, 17], which is discussed in the next section. It is useful
to outline the syntax we use:

— A is the initiator of a protocol session with B;

— B is the responder of the session initiated by A;

— TTP is the trusted third party;

— M is the message that A wants to transmit to B;

K is the key that A chooses to transmit M;

C'is M encrypted with K (the C refers to A’s Commitment to B);
— L is a unique label identifying the session between A and B;

— f« are the non-repudiation flags;

sKx is the private signature key of agent X (no syntax is needed for the
public verification key of X);

— {m} g, is the signature of message m by key sKx.

The protocol intends to transmit a message M from A to B, giving A ev-
idence for non-repudiation of receipt, giving B evidence for non-repudiation of

1.A—-B fNRo,B,L,C,{]fNRo,B,L,Cﬂ»SKA

NRO

2.B— A : fyrr,A, L, ‘ﬂfNRRaA7LI}sK,3

—_— —
NRR

3. A—=TTP: fsus,B,L,K,{fsus, B, L, K},

sub_K

4. B~ TTP: feon,A,B,L,K,{fcon,A,B,L, K|

sKttp

con_K

5 A< TTP: feon,A,B,L K,{fcon,A,B,L,K}

sKtTp

con_K

Fig. 1. The Fair Zhou-Gollmann Protocol

origin, and ensuring fairness. The first protocol step prescribes that A pick a
cryptographic key K and a random label L. Then, A uses symmetric cryptogra-
phy to build C out of M and K, signs {fyro, B, L, C|} and sends the result to B
along with the unsigned message, which is in general needed for signature verifi-
cation. Note that A sends M encrypted, so B will not be able to obtain M until
he gets K. Upon reception of the first message, B verifies A’s signature, signs
{f~vrR; A, L} and sends the result to A. Upon reception of the second message,
A lodges K with TTP by sending her signature on {fsups, B, L, K}

Once TTP has successfully verified A’s signature on the received message,
TTP signs {fcon, A, B,L, K|} and makes it available in its public directory.
This message confirms that the key K concerns the session between A and B
that is identified by label L. The last two steps, which are interchangeable, see
the peers ftp get the message available from TTP. The protocol assumes that
nobody can interfere with an fip get operation, but we will relax this assumption
below (§7).

Zhou and Gollmann [18] observe that, even if the peers do not want to play
fair, they must complete a session in order to get sufficient evidence to win
any disputes with each other. Let us informally analyse how to resolve disputes.
From B’s standpoint, it appears that obtaining con_K signifies that A submitted
K, bound to label L, to TTP; obtaining NRO should signify that A sent C
as a commitment bound to label L. In consequence, message M, obtained by
decrypting C' with K, should have originated with A. From A’s standpoint, a
similar reasoning seems feasible. If A holds con_K, this should guarantee that
A lodged K and L with TTP, and so B should be able to get it via ftp. If
A also holds NRR, it should be the case that B accepted commitment C. In
consequence, B would be able to obtain M.

This reasoning might resemble that of a judge who is provided with evidence
NRO, con_K, M, C, K, L by agent B, or with a similar evidence (but NRR rather

than NRO) by agent A. It is not trivial to verify such reasoning for all possible
network histories. The communication means is unreliable, and the protocol is
executed by an unlimited number of agents, each entitled to interleave or quit
sessions at will.

5 Modelling a Fair Non-Repudiation Protocol

We build our protocol model on the Isabelle theory Public [11] for cryptographic
protocols based on asymmetric encryption. The theory models three kinds of
network agents: a spy, whom we discuss later (§7), a trusted server, which is
renamed as TTP here, and an unlimited population of legitimate agents. Each
agent X is endowed with a key pair. His private signature key, priK X, he keeps
secret; his public verification key, pubK X, is known to all. The theory also
provides a primitive for encryption, Crypt, which we use where the protocol
requires a digital signature.

The protocol model is the set of traces zg, whose inductive definition is in
Fig.2. A rule for the base of the induction, stating that the empty trace belongs
to zg, is omitted from the figure. Rules ZG1, ZG2 and ZG3 respectively model
the first three steps of the protocol. Note that agent A chooses a fresh nonce
in rule ZG1 to initiate the protocol with B. Recall that A runs the protocol
because she wants to transmit some message M to B. All these messages and
the ciphertexts obtained from them by any key constitute the set targetmsgs.
We reasonably assume that this set contains none of the other messages (either
atomic or compound) exchanged by the protocol. Also, A is free to choose any
key to encrypt M, even an old one — we merely assume that she cannot pick
private signature keys.

We highlight the important certificates by defining them in the premises, us-
ing equations; we use the names so defined in the conclusions. When a certificate
is defined in the premises of a rule, then the rule only applies for a certificate of
the specified form: informally, the agent verifies it. For example, B must check
that NRO in rule ZG2 is signed by A in order to learn the sender of the message
just received and address NRR to her.

By contrast, A does not need to check that NRR in rule ZG3 is signed by B
because NRR is associated to label L, which A knows to be associated with B.
Clearly, the check becomes mandatory in the presence of the spy, who can ac-
tively intercept and fake the messages that are in the traffic (§7).

Rule TTP_prepare_ftp models TTP’s preparation of the key confirmation
con_K. Note that TTP verifies the signature on sub_K to learn the identities
of the peers of K. All the components needed to verify that signature are avail-
able. The installation of con_K in TTP’s public directory can be modelled by a
Notes event.

Rules A_ftp and B_ftp model the peers’ retrieval of con_K. The two rules are
not forced to fire simultaneously, since each peer decides independently whether
to terminate the protocol. Rather than introducing a new event to express the
ftp get operation, we again adopt Notes. Using a Gets event instead would violate

ZG1
[l evsl € zg; Nonce L ¢ used evsl; C = Crypt K M;

M € targetmsgs; K ¢ range prik;

NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C|} |]
—> Says A B {|Number f_nro, Agent B, Nonce L, C, NRO|} # evsl € zg

ZG2
[l evs2 € zg; C € targetmsgs;
Gets B {|Number f_nro, Agent B, Nonce L, C, NRO|} € set evs2;
NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, Cl|};
NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, C|} |]
— Says B A {|Number f_nrr, Agent A, Nonce L, NRR|} # evs2 € zg

ZG3
[| evs3 € zg; C = Crypt K M;
Says A B {|Number f_nro, Agent B, Nonce L, C, NRO|} € set evs3;
Gets A {|Number f_nrr, Agent A, Nonce L, NRR|} € set evs3;
sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|} |]
— Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|}
evs3 € zg

TTP_prepare_ftp

[l evsT € zg;
Gets TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} € set evsT;
sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|};
con_K = Crypt (priK TTP) {|Number f_con, Agent A, Agent B,

Nonce L, Key K|} |]
—> Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K|}
evsT € zg

A_ftp
[l evsA € zg;
Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K|}
€ set evsA |]
—> Notes A {|Number f_con, Agent A, Agent B, Nonce L, Key K, con K|}
evsA € zg

B_ftp
[l evsB € zg;
Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K|}
€ set evsB |]
—> Notes B {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_ K|}
evsB € zg

Reception
[l evsr € zg; Says A B X € set evsr |] = Gets B X # evsr € zg

Fig. 2. Modelling the Fair Zhou-Gollmann Protocol

the conventions of the message reception model: each Gets event must follow a
matching Says event, as established by rule Reception.

6 Verifying a Fair Non-Repudiation Protocol

For the sake of clarity, this section discusses the guarantees proved of the Zhou-
Gollmann protocol in a model that allows no spy. The influence of the spy on
these guarantees will be the topic of the next section.

6.1 Proving Validity of Evidence

Guarantees for B. Let us verify that, at the end of a session, B holds sufficient
evidence to refute a denial by A. We prove that, if B holds con_K, NRO and all
other atomic messages, then A cannot deny having sent M.

According to the general strategy (§3), we establish that the only way for
B to get hold of con_K is via ftp, namely completing the protocol, as stated by
Theorem 1.

Theorem 1.
[l evs € zg; con_K € parts (knows B evs);
con_K = Crypt (priK TTP) {|Number f_con, Agent A, Agent B,
Nonce L, Key K|} |]
—> Notes B {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K|}
€ set evs

The proof is non-trivial in the Reception case, where Isabelle’s simplifier leaves
us with the possibility that B knows con_K because he has received it from the
network (rather than noted it). In this sub-case, someone must have sent it by
a Says event, but we appeal to a lemma stating that nobody ever sends con_K.

Again following the general strategy, we can routinely prove Theorem 2 by
induction, which states that if B has con_K then A indeed lodged K with TTP,
bound to label L. The proof initially deduces that TTP made con_K available,
and then concludes that A sent sub_K.

Theorem 2.
[l evs € zg;

Notes B {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K|}

€ set evs;
con_K = Crypt (priK TTP) {|Number f_con, Agent A, Agent B,
Nonce L, Key K|};

sub_K = Crypt (priK A) {|Number f_sub, Agent B, Nonce L, Key K|} |]

— Says A TTP {|Number f_sub, Agent B, Nonce L, Key K, sub_K|} € set evs

Theorems 1 and 2 together state that, if B has con_K, then A certainly sent
sub_K, binding the key K to the label L. However, some extra evidence is needed
to B to refute a denial from A. The evidence is NRO, which (by Theorem 3) B
holds only if A sent it to him.

Theorem 3.
[l evs € zg; NRO € parts (knows B evs);

NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C|} |]
—> Says A B {|Number f_nro, Agent B, Nonce L, C, NRO|} € set evs

Proving this theorem requires a lemma concluding that B could only receive
NRO inside the first message of the protocol, namely that the event

Gets B {Number f_nro, Agent B, Nonce L, C, NRO|} (1)

occurred. In the Reception case, the simplifier tries to establish whether B might
learn NRO by receiving a message of any form, but another lemma states that
this is impossible. Event (1) implies that NRO is in the network traffic, and
then an authenticity theorem derives that it certainly originated with A, thus
concluding the proof. Theorem 3 states that a judge may safely conclude from
B’s presenting NRO that A sent it, binding the ciphertext C' to the label L.

These theorems show that C is bound to the key K via the label L. Hence,
if B presents NRO, con_K, C, L and K to a judge, then the judge can conclude
that A sent B the message M that is obtained decrypting C' by K.

Guarantees for A. Analogous theorems justify A’s evidence that B received
the plaintext, M. In particular, Theorem 1 can be proved analogously for A,
stating that, when con_K is known to A, then A certainly noted it. On this
assumption, we easily prove that TTP made con_K publicly available. Combining
these two results, we get Theorem 4.

Theorem 4.
[l evs € zg; con_K € parts (knows A evs);
con_K = Crypt (priK TTP) {|Number f_con, Agent A, Agent B,
Nonce L, Key K|};
—> Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K|}
€ set evs

Following this theorem, when A presents con_K to a judge, she also proves
that she has bound the key K to L via TTP. Theorem 5 also states that, if
A has NRR, then B certainly received NRO confirming that A associated the
ciphertext C' to the label L.

Theorem 5.
[l evs € zg; NRR € parts (knows A evs);
NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, Cl|};
NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C|} |]
—> Gets B {|Number f_nro, Agent B, Nonce L, C, NRO|} € set evs

The proof resembles that of Theorem 3 to derive that B sent NRR inside an
instance of message 2. This, in turn, requires an appeal to an authenticity theo-
rem: once NRR is in the traffic, then it certainly originated with B. A subsidiary
lemma stating that B only sends NRR upon reception of NRO concludes.
Theorems 4 and 5 guarantee to a judge that, if A presents NRR, con_K, C, L
and K, then B can decrypt C using the key K, which was available with con_K

via ftp. It is up to B to get con_K, so this may appear a weaker guarantee than
the corresponding one for B. However, the protocol authors observe that B is
interested in getting con_K in order to win a dispute over A, as confirmed by
Theorems 1 and 2.

6.2 Proving Fairness

Guarantees for B. Theorem 4 may be read as a guarantee of fairness for B
because it says that, should con_K be known to A, then B too would be able to
obtain it via ftp from TTP’s public directory. Similarly, Theorem 5 guarantees
to B that, in case A knows NRR, then B has received the corresponding NRO.

Certainly TTP makes con_K available only in case it receives a valid instance
of message 3. So, on the conclusion of Theorem 4, we can prove that the event

Gets TTP {Number f_sub, Agent B, Nonce L, Key K, sub_K |}

occurred. This implies that sub_K is in the traffic and therefore, via a suitable
authenticity theorem for sub_K, that the event

Says A TTP {Number f_sub, Agent B, Nonce L, Key K, sub_K |}

also occurred. We can now conclude that A received a valid instance of message 2,
thus learning NRR; this verifies the main condition of Theorem 5. The reasoning
above is the proof of Theorem 6, which states that A’s knowledge of con_K
enables B to retrieve the same certificate from TTP and guarantees B to have
received NRO. The ciphertext C being existentially quantified does not weaken
the theorem because C' is also bound to label L by the message structure.

Theorem 6.
[| evs € zg; con_K € parts (knows A evs);
con_K = Crypt (priK TTP) {|Number f_con, Agent A, Agent B,
Nonce L, Key K|} |]
— Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K|}
€ set evs A
(EX NRO C.
Gets B {|Number f_nro, Agent B, Nonce L, C, NRO|} € set evs A
NRO = Crypt (priK A) {|Number f_nro, Agent B, Nonce L, C|})

Guarantees for A. If B holds con_K, and it names A as the originator, then
con_K is available to A too, who has also received NRR. Theorem 7 guarantees
this.

Theorem 7.
[| evs € zg; con_K € parts (knows B evs);

con_K = Crypt (priK TTP) {|Number f_con, Agent A, Agent B,

Nonce L, Key K|};

NRR = Crypt (priK B) {|Number f_nrr, Agent A, Nonce L, Cl|} |]

—> Notes TTP {|Number f_con, Agent A, Agent B, Nonce L, Key K, con_K|}
€ set evs A
Gets A {|Number f_nrr, Agent A, Nonce L, NRR|} € set evs

10

The first part of the conclusion derives from proving Theorem 4 on the assump-
tion that con_K is known to B. The second part derives from an appeal to
Theorem 2 and a lemma saying that A only sends message 3 upon reception of
message 2.

Note that there is no analogue of Theorem 5 for A: B’s possession of NRO
does not imply A’s possession of NRR. Although this suggests that, upon recep-
tion of NRO, B has an advantage over A, who holds no evidence, our theorems
on validity of the evidence held by B indicate that B cannot win any disputes
until he also gets con_K. Theorem 7 concludes that, at that stage, A will hold
equivalent evidence.

7 Modelling and Verifying with a Spy

This section discusses how the presence of the spy influences the protocol goals.
The protocol definition must be extended by the rule Fake given in Fig. 3. That
rule allows the spy to send any of the messages that can be built from the analysis
of the traffic using the private signature keys of bad agents [12]. Note that the
spy also sees the messages that bad agents retrieve via ftp, for those events were
modelled in terms of Notes (§2, §5). By contrast, the spy cannot exploit TTP’s
creation of con_K because TTP is assumed not to be bad.

Fake
[l evsF € zg; X € synth (analz (knows Spy evsF)) |]
— Says Spy B X # evsF € zg

Fig. 3. Modelling a Spy

The rest of the protocol definition requires minor changes. Rule ZG3 must
check that NRR truly is B’s signature on the expected components, because
the spy might have replaced it with a fake signature. Rule TTP_prepare_ftp must
check that K is a symmetric key, as the spy might have inserted some bad agent’s
private key. This attack could not take place in the real world, since private keys
are asymmetric, with a typical length of 1024 bits, while a symmetric key is
typically no longer that 128 bits. So it is realistic to assume that TTP can reject
such substitutions.

Our strategies to proving the non-repudiation goals work as before. However,
when proving validity of evidence, the exact form of the message whereby an
agent learnt a certificate cannot be stated. The spy could have prevented the
delivery of the legal message containing the certificate, extracted the certificate
and then forwarded it inside a fake message of unpredictable form.

So, the theorems presented above receive minor variations. For example, The-
orem 1 now has the form of Theorem 1’, which shows that an agent other than
the spy who knows con_K has either got it via ftp or received it from the network
inside some larger message.

11

Theorem 1'.
[l evs € zg; con_K € parts (knows B evs); B # Spy;
con_K = Crypt (priK TTP) {|Number f_con, Agent A, Agent B,
Nonce L, Key K|} |]
—> Notes B {|Number f_con, Agent A, Agent B, Nonce L, Key K, con K|}
€ set evs V
Gets B X € set evs A con_K € parts {X}

What was Theorem 2 can now be proved on the conclusion of Theorem 1’ via
the observation that con_K was certainly in the traffic, and therefore originated
with TTP. In consequence, combining the two new theorems produces the same
guarantee as before, but only for an agent who is not the spy.

Other minor changes concern the authenticity theorems that have been men-
tioned along the treatment. For example, NRO is encrypted by A’s private key,
so proving that it originated with A requires assuming that A does not belong
to the set bad, otherwise the spy would know A’s private signature key prikK A
and could forge the certificate. The same extra condition is needed on A when
proving that sub_K originated with A, or on B when proving that NRR origi-
nated with B. In consequence, for Theorem 3 to continue to hold, B must not be
bad. Likewise, Theorem 5 now needs A not to be bad, and can only state that
B gets NRO inside a message of some form. Theorem 4 remains unchanged.

The fairness theorems do not need extra assumptions because they rest on
the message signed by TTP, which cannot be forged. However, their conclu-
sions cannot state the exact form of the messages that deliver NRO and NRR
respectively. Those messages are now existentially quantified.

Following these considerations, it seems fair to conclude that the Zhou-
Gollmann protocol achieves its goals even in the presence of a spy who is allowed
to monitor the traffic and to exploit bad agent’s private signature keys.

8 Related Work

Schneider was the first to analyse the Zhou-Gollmann protocol formally [16].
He uses the theory of Communicating Sequential Processes (CSP) to extend an
existing model previously used for authentication protocols with extra channels
whereby the peers present their evidence to a judge. His excellent account on
validity of evidence and fairness is carried out by pen and paper. The proof
strategies are significantly different from ours. Events are enforced by proving
that they do not belong to a CSP refusal set. He writes,

the verifications of the correctness of evidence properties are carried out
without reference to the protocol at all, but only with respect to the
capabilities and assumptions concerning the participating agents [15, §5]

Schneider allows any agent to send messages of any form using components

from the agent’s knowledge, but obviously prevents this when proving fairness.
By contrast, in our model, all agents must send messages of the form that the

12

protocol prescribes and can arbitrarily decide to quit the protocol; but we have
also considered the influence of a powerful spy. This difference between the two
models is superficial: it would be trivial to define a set of unfair agents and allow
each agent A of the set to send messages from synth(analz(knows A evs)) on any
trace evs.

Zhou and Gollmann analyse their protocol using a belief logic [17]. The ap-
proach allows for simple proofs on validity of evidence that only require four
axioms and two inference rules. They formalise a judge J and reach the con-
clusions that, at the end of a session between agents A and B, the following
predicates hold:

— J believes (A said M)
— J believes (B received M)

These predicates do not highlight what evidence the peers have to present to
convince the judge, but the protocol verifier could understand this from following
the proofs more closely. Fairness properties are not considered, and the difficulty
in tackling them appears to be a limitation of the approach. The philosophical
differences between reasoning on beliefs and reasoning on traces of events are
well known. However, it may be interesting to note that also these proofs on
validity of evidence closely follow the events of the session. The protocol in fact
requires each agent to send certain evidence only upon reception of some other,
specific evidence.

Both works discussed here model a judge explicitly. We have chosen not to
model a judge because his functioning as well as the peers’ interaction with him
are external to the non-repudiation protocol. A peer’s presenting some evidence
to the judge in fact implies that the peer holds the evidence, which our function
knows concisely expresses. A desirable consequence is that the current Inductive
Approach can be used with no extensions to verify non-repudiation goals.

9 Conclusions

A non-repudiation protocol differs from the protocols traditionally studied in
that the protocol participants do not trust each other. Every agent is a potential
enemy. This change affects our models and our theorems slightly, but not drasti-
cally. We plan to enrich the model further, to model more precisely an agent who
is trying to subvert the protocol. (The spy behaves too arbitrarily; for instance,
he might give away his private keys, as no real villain would). To the best of our
knowledge, no one else has proved non-repudiation properties using verification
tools.

Acknowledgements

This work was funded by the EPSRC grant GR/R01156/01 Verifying Electronic
Commerce Protocols.

13

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

G. Bella. Message Reception in the Inductive Approach. Research Report 460,
University of Cambridge — Computer Laboratory, 1999.

G. Bella. Modelling Agents’ Knowledge Inductively. In Proc. of the 7th Interna-
tional Workshop on Security Protocols, LNCS 1796. Springer-Verlag, 1999.

. G. Bella. Mechanising a protocol for smart cards. In Proc. of International Con-

ference on Research in Smart Cards (e-Smart’01), LNCS. Springer-Verlag, 2001.
In Press.

. G. Bella, F. Massacci, L. C. Paulson, and P. Tramontano. Formal Verification

of Cardholder Registration in SET. In F. Cuppens, Y. Deswarte, D. Gollmann,
and M. Waidner, editors, Proc. of the 6th FEuropean Symposium on Research in
Computer Security (ESORICS 2000), LNCS 1895, pages 159-174. Springer-Verlag,
2000.

. G. Bella and L. C. Paulson. Kerberos Version IV: Inductive Analysis of the Se-

crecy Goals. In J.-J. Quisquater, Y. Deswarte, C. Meadows, and D. Gollmann,
editors, Proc. of the 5th European Symposium on Research in Computer Security
(ESORICS’98), LNCS 1485, pages 361-375. Springer-Verlag, 1998.

. G. Bella and L. C. Paulson. Mechanising BAN Kerberos by the Inductive Method.

In A. J. Hu and M. Y. Vardi, editors, Proc. of the International Conference
on Computer-Aided Verification (CAV’98), LNCS 1427, pages 416—427. Springer-
Verlag, 1998.

. M. Ben-Or, O. Goldreich, S. Micali, and R. Rivest. A Fair Protocol for Signing

Contracts. IEEE Transactions on Information Theory, 36(1):40-46, 1990.

. C. A. Meadows. The NRL Protocol Analyzer: An Overview. Journal of Logic

Programming, 26(2):113-131, 1996.

. T. Okamoto and K. Ohta. How to Simultaneously Exchange Secrets by General

Assumptions. In Proc. of the 2nd ACM Conference on Computer and Communi-
cation Security (CCS’94), pages 184-192, 1994.

L. C. Paulson. Isabelle: A Generic Theorem Prover. LNCS 828. Springer-Verlag,
1994.

L. C. Paulson. Theory for public-key protocols, 1996.
http://www4.informatik.tu-muenchen.de/~isabelle/library/
HOL/Auth/Public.html.

L. C. Paulson. The Inductive Approach to Verifying Cryptographic Protocols.
Journal of Computer Security, 6:85—-128, 1998.

L. C. Paulson. Inductive Analysis of the Internet protocol TLS. ACM Transactions
on Computer and System Security, 1999. In press.

P. Y. A. Ryan and S. A. Schneider. The Modelling and Analysis of Security Pro-
tocols: the CSP Approach. Addison-Wesley, 2000.

S. Schneider. Verifying Authentication Protocols with CSP. In Proc. of the 10th
IEEE Computer Security Foundations Workshop, pages 3—17. IEEE Computer So-
ciety Press, 1997.

S. Schneider. Formal Analysis of a Non-Repudiation Protocol. In Proc. of the 11th
IEEE Computer Security Foundations Workshop. IEEE Computer Society Press,
1998.

G. Zhou and D. Gollmann. Towards Verification of Non-Repudiation Protocols. In
Proc. of the 1998 International Refinement Workshop and Formal Methods Pacific,
pages 370-380. Springer-Verlag, 1998.

14

18.

19.

J. Zhou and D. Gollmann. A Fair Non-Repudiation Protocol. In Proc. of the 15th
IEEE Symposium on Security and Privacy, pages 55—61. IEEE Computer Society
Press, 1996.

J. Zhou and D. Gollmann. An Efficient Non-Repudiation Protocol. In Proc. of
the 10th IEEE Computer Security Foundations Workshop, pages 126-132. IEEE
Computer Society Press, 1996.

15

