
For HOL Light 2.20 October 16, 2011

The HOL Light System

REFERENCE

John Harrison University of Cambridge DSTO SRI International

Preface

This volume is the reference manual for the HOL Light system. In contrast to the Tutorial,

it is mainly intended for reference purposes, though some readers will find it productive

to browse through it as part of the learning process. The main entries for the reference

manual are generated from the same database that is used by the online HOL Light help

system.

The entries that follow provide documentation on essentially all the pre-defined ML
variable bindings in the HOL Light system. These include: general-purpose functions,

such as ML functions for list processing, arithmetic, input/output, and interface config-

uration; functions for processing the types and terms of the HOL logic and for using the

subgoal package; primitive and derived forward inference rules; tactics and tacticals; and

pre-proved built-in theorems.

The manual entries for these ML identifiers are divided into two chapters. The first

chapter is an alphabetical sequence of manual entries for all ML identifiers in the system

except those identifiers that are bound to theorems (or pairs of theorems, etc.) The

theorems are listed in the second chapter, roughly grouped into sections based on subject

matter.

Our documentation does not cover basic functions in the OCaml toplevel, such as

addition, string concatenation etc. In fact, relatively few native OCaml functions are

used, and those are all documented in the Objective CAML Reference Manual:

http://caml.inria.fr/pub/docs/manual-ocaml/index.html

iii

iv Preface

Acknowledgements

This HOL Light Reference manual is derived from the original REFERENCE document for

the HOL88 system, and generates the main body from online help entries in the same way

and using essentially the same scripts. Many of these entries are minor edits of HOL88

originals, though plenty are also completely new. All in the latter group (and some of

the former) were written by John Harrison. The re-use of the existing infrastructure was

suggested by Steve Brackin.

The original HOL88 documentation project was managed by Mike Gordon at the Cam-

bridge (UK) Research Center of SRI International, with the support of DSTO Australia.

The main reference entries were written in a joint effort by members of the Cambridge

HOL group. The original document design used LATEX macros supplied by Elsa Gunter,

Tom Melham and Larry Paulson. The typesetting of all three volumes was managed by

Tom Melham. The conversion of the troff sources of The ML Handbook to LATEX was

done by Inder Dhingra and John Van Tassel. The cover design is by Arnold Smith, who

used a photograph of a ‘snow watching lantern’ taken by Avra Cohn (in whose garden

the original object resides). John Van Tassel composed the LATEX picture of the lantern.

Many people other than those listed above have contributed to the HOL documentation

effort, either by providing material, or by sending lists of errors in the first edition. Thanks

to everyone who helped, and thanks to DSTO and SRI for their generous support.

v

vi Acknowledgements

Contents

1 Pre-defined ML Identifiers 1

2 Pre-proved Theorems 695

2.1 Theorems about basic logical notions . 696

2.2 Theorems about elementary constructs . 703

2.3 Theorems about pairs . 704

2.4 Theorems about wellfoundedness . 706

2.5 Theorems about natural number arithmetic 708

2.6 Theorems about lists . 722

2.7 Theorems about real numbers . 727

2.8 Theorems about integers . 745

2.9 Theorems about sets and functions . 759

2.10 Theorems about iterated operations . 781

2.11 Theorems about cartesian powers . 798

vii

viii Contents

Chapter 1

Pre-defined ML Identifiers

This chapter provides manual entries for all the pre-defined ML identifiers in the HOL
system, except the identifiers that are bound to pre-proved theorems (for these, see chapter

two). These include: general-purpose functions, such as functions for list processing,

arithmetic, input/output, and interface configuration; functions for processing the types

and terms of the HOL logic, for using the subgoal package; primitive and derived forward

inference rules; and tactics and tacticals. The arrangement is alphabetical.

1

2 Chapter 1. Pre-defined ML Identifiers

ABBREV_TAC

ABBREV_TAC : term -> (string * thm) list * term -> goalstate

Synopsis
Tactic to introduce an abbreviation.

Description
The tactic ABBREV_TAC ‘x = t‘ abbreviates any instances of the term t in the goal (as-

sumptions or conclusion) with x, and adds a new assumption t = x. (Reversed so that

rules like ASM_REWRITE_TAC will not immediately expand it again.) The LHS may be of

the form f x in which case abstraction will happen first.

Failure
Fails unless the left-hand side is a variable or a variable applied to a list of variable

arguments.

Example

g ‘(12345 + 12345) + f(12345 + 12345) = f(12345 + 12345)‘;;
Warning: Free variables in goal: f
val it : goalstack = 1 subgoal (1 total)

‘(12345 + 12345) + f (12345 + 12345) = f (12345 + 12345)‘

e(ABBREV_TAC ‘n = 12345 + 12345‘);;
val it : goalstack = 1 subgoal (1 total)

0 [‘12345 + 12345 = n‘]

‘n + f n = f n‘

Uses
Convenient for abbreviating large and unwieldy expressions as a sort of ‘local definition’.

See also
EXPAND_TAC.

ABS_CONV

ABS_CONV : conv -> conv

ABS 3

Synopsis
Applies a conversion to the body of an abstraction.

Description
If c is a conversion that maps a term ‘t‘ to the theorem |- t = t’, then the conversion

ABS_CONV c maps abstractions of the form ‘\x. t‘ to theorems of the form:

|- (\x. t) = (\x. t’)

That is, ABS_CONV c ‘\x. t‘ applies c to the body of the abstraction ‘\x. t‘.

Failure
ABS_CONV c tm fails if tm is not an abstraction or if tm has the form ‘\x. t‘ but the

conversion c fails when applied to the term t, or if the theorem returned has assumptions

in which the abstracted variable x is free. The function returned by ABS_CONV c may also

fail if the ML function c:term->thm is not, in fact, a conversion (i.e. a function that maps

a term t to a theorem |- t = t’).

Example

ABS_CONV SYM_CONV ‘\x. 1 = x‘;;
val it : thm = |- (\x. 1 = x) = (\x. x = 1)

See also
GABS_CONV, RAND_CONV, RATOR_CONV, SUB_CONV.

ABS

ABS : term -> thm -> thm

Synopsis
Abstracts both sides of an equation.

Description

A |- t1 = t2
------------------------ ABS ‘x‘ [Where x is not free in A]
A |- (\x.t1) = (\x.t2)

Failure
If the theorem is not an equation, or if the variable x is free in the assumptions A.

4 Chapter 1. Pre-defined ML Identifiers

Example

ABS ‘m:num‘ (REFL ‘m:num‘);;
val it : thm = |- (\m. m) = (\m. m)

Comments
This is one of HOL Light’s 10 primitive inference rules.

See also
ETA_CONV, EXT, MK_ABS.

ABS_TAC

ABS_TAC : tactic

Synopsis
Strips an abstraction from each side of an equational goal.

Description
ABS_TAC reduces a goal of the form A ?- (\x. s[x]) = (\y. t[y]) by stripping away the

abstractions to give a new goal A ?- s[x’] = t[x’] where x’ is a variant of x, the bound

variable on the left-hand side, chosen not to be free in the current goal’s assumptions or

conclusion. the function applications, giving the new goal A ?- x = y.

A ?- (\x. s[x]) = (\y. t[y])
================================ ABS_TAC

A ?- s[x’] = t[x’]

Failure
Fails unless the goal is equational, with both sides being abstractions.

See also
AP_TERM_TAC, AP_THM_TAC, BINOP_TAC, MK_COMB_TAC.

ACCEPT_TAC

ACCEPT_TAC : thm_tactic

AC 5

Synopsis
Solves a goal if supplied with the desired theorem (up to alpha-conversion).

Description
ACCEPT_TAC maps a given theorem th to a tactic that solves any goal whose conclusion is

alpha-convertible to the conclusion of th.

Failure
ACCEPT_TAC th (A ?- g) fails if the term g is not alpha-convertible to the conclusion of

the supplied theorem th.

Example
The theorem BOOL_CASES_AX = |- !t. (t <=> T) \/ (t <=> F) can be used to solve the

goal:

g ‘!x. (x <=> T) \/ (x <=> F)‘;;

by

e(ACCEPT_TAC BOOL_CASES_AX);;
val it : goalstack = No subgoals

Uses
Used for completing proofs by supplying an existing theorem, such as an axiom, or a

lemma already proved. Often this can simply be done by rewriting, but there are times

when greater delicacy is wanted.

See also
MATCH_ACCEPT_TAC.

AC

AC : thm -> term -> thm

Synopsis
Proves equality of terms using associative, commutative, and optionally idempotence laws.

6 Chapter 1. Pre-defined ML Identifiers

Description
Suppose _ is a function, which is assumed to be infix in the following syntax, and acth is

a theorem expressing associativity and commutativity in the particular canonical form:

acth = |- m _ n = n _ m /\
(m _ n) _ p = m _ n _ p /\
m _ n _ p = n _ m _ p

Then AC acth will prove equations whose left and right sides can be made identical using

these associative and commutative laws. If the input theorem also has idempotence

property in this canonical form:

|- (p _ q = q _ p) /\
((p _ q) _ r = p _ q _ r) /\
(p _ q _ r = q _ p _ r) /\
(p _ p = p) /\
(p _ p _ q = p _ q)

then idempotence will also be applied.

Failure
Fails if the terms are not proved equivalent under the appropriate laws. This may happen

because the input theorem does not have the correct canonical form. The latter problem

will not in itself cause failure until it is applied to the term.

Example

AC ADD_AC ‘1 + 2 + 3 = 2 + 1 + 3‘;;
val it : thm = |- 1 + 2 + 3 = 2 + 1 + 3
AC CONJ_ACI ‘p /\ (q /\ p) <=> (p /\ q) /\ (p /\ q)‘;;
val it : thm = |- p /\ q /\ p <=> (p /\ q) /\ p /\ q

Comments
Note that pre-proved theorems in the correct canonical form for AC are already present for

many standard operators, e.g. ADD_AC, MULT_AC, INT_ADD_AC, INT_MUL_AC, REAL_ADD_AC,

REAL_MUL_AC, CONJ_ACI, DISJ_ACI and INSERT_AC. The underlying algorithm is not partic-

ularly delicate, and normalization under the associative/commutative/idempotent laws

can be achieved by direct rewriting with the same canonical theorems. For some cases,

specially optimized rules are available such as CONJ_ACI_RULE and DISJ_ACI_RULE.

See also
ASSOC_CONV, CONJ_ACI_RULE, DISJ_ACI_RULE, SYM_CONV.

aconv 7

aconv

aconv : term -> term -> bool

Synopsis
Tests for alpha-convertibility of terms.

Description
When applied to two terms, aconv returns true if they are alpha-convertible, and false

otherwise.

Failure
Never fails.

Example
A simple case of alpha-convertibility is the renaming of a single quantified variable:

aconv ‘?x. x <=> T‘ ‘?y. y <=> T‘;;
val it : bool = true

but other cases can be more involved:

aconv ‘\x y z. x + y + z‘ ‘\y x z. y + x + z‘;;
val it : bool = true

Comments
The code for alpha-conversion first checks for simple equality with pointer equality short-

cutting, and can therefore often returns true without a full traversal.

In principle, most of the HOL Light deductive apparatus should work modulo alpha-

conversion. At least, all the primitive inference rules do.

See also
ALPHA, ALPHA_CONV.

ADD_ASSUM

ADD_ASSUM : term -> thm -> thm

8 Chapter 1. Pre-defined ML Identifiers

Synopsis
Adds an assumption to a theorem.

Description
When applied to a boolean term s and a theorem A |- t, the inference rule ADD_ASSUM

returns the theorem A u {s} |- t.

A |- t
-------------- ADD_ASSUM ‘s‘
A u {s} |- t

ADD_ASSUM performs straightforward set union with the new assumption; it checks for

identical assumptions, but not for alpha-equivalent ones. The position at which the new

assumption is inserted into the assumption list should not be relied on.

Failure
Fails unless the given term has type bool.

Example

ADD_ASSUM ‘q:bool‘ (ASSUME ‘p:bool‘);;
val it : thm = p, q |- p

See also
ASSUME, UNDISCH.

a

a : ’a -> ’a list -> ’a * ’a list

Synopsis
Parser that requires a specific item.

Description
The call a x gives a parser that parses a single item that is exactly x, raising Noparse if

the first item is something different.

Failure
The call a x never fails, though the resulting parser may raise Noparse.

ALL CONV 9

Comments
This is one of a suite of combinators for manipulating “parsers”. A parser is simply

a function whose OCaml type is some instance of :(’a)list -> ’b * (’a)list. The

function should take a list of objects of type :’a (e.g. characters or tokens), parse as

much of it as possible from left to right, and return a pair consisting of the object derived

from parsing (e.g. a term or a special syntax tree) and the list of elements that were not

processed.

See also
++, ||, >>, atleast, elistof, finished, fix, leftbin, listof, many, nothing,
possibly, rightbin, some.

ALL_CONV

ALL_CONV : conv

Synopsis
Conversion that always succeeds and leaves a term unchanged.

Description
When applied to a term ‘t‘, the conversion ALL_CONV returns the theorem |- t = t. It

is just REFL explicitly regarded as a conversion.

Failure
Never fails.

Uses
Identity element for THENC.

See also
NO_CONV, REFL.

allpairs

allpairs : (’a -> ’b -> ’c) -> ’a list -> ’b list -> ’c list

10 Chapter 1. Pre-defined ML Identifiers

Synopsis
Compute list of all results from applying function to pairs from two lists.

Description
The call allpairs f [x1;...;xm] [y1;...;yn] returns the list of results [f x1 y1; f x1 y2; ... ; f x1 yn; f x2 y1; ...; f xm yn].

Failure
Never fails.

Example

allpairs (fun x y -> (x,y)) [1;2;3] [4;5];;
val it : (int * int) list = [(1, 4); (1, 5); (2, 4); (2, 5); (3, 4); (3, 5)]

See also
map2, zip.

ALL_TAC

ALL_TAC : tactic

Synopsis
Passes on a goal unchanged.

Description
ALL_TAC applied to a goal g simply produces the subgoal list [g]. It is the identity for the

THEN tactical.

Failure
Never fails.

Example
Suppose we want to solve the goal:

g ‘~(n MOD 2 = 0) <=> n MOD 2 = 1‘;;
...

We could just solve it with e ARITH_TAC, but suppose we want to introduce a little

ALL THEN 11

lemma that n MOD 2 < 2, proving that by ARITH_TAC. We could do

e(SUBGOAL_THEN ‘n MOD 2 < 2‘ ASSUME_TAC THENL
[ARITH_TAC;
...rest of proof...]);;

However if we split off many lemmas, we get a deeply nested proof structure that’s a

bit confusing. In cases where the proofs of the lemmas are trivial one-liners like this we

might just want to keep the proof basically linear with

e(SUBGOL_THEN ‘n MOD 2 < 2‘ ASSUME_TAC THENL [ARITH_TAC; ALL_TAC] THEN
...rest of proof...);;

Uses
Keeping proof structures linear, as in the above example, or convenient algebraic combi-

nations in complicated tactic structures.

See also
NO_TAC, REPEAT, THENL.

ALL_THEN

ALL_THEN : thm_tactical

Synopsis
Passes a theorem unchanged to a theorem-tactic.

Description
For any theorem-tactic ttac and theorem th, the application ALL_THEN ttac th results

simply in ttac th, that is, the theorem is passed unchanged to the theorem-tactic.

ALL_THEN is the identity theorem-tactical.

Failure
The application of ALL_THEN to a theorem-tactic never fails. The resulting theorem-tactic

fails under exactly the same conditions as the original one

Uses
Writing compound tactics or tacticals, e.g. terminating list iterations of theorem-tacticals.

See also
ALL_TAC, FAIL_TAC, NO_TAC, NO_THEN, THEN_TCL, ORELSE_TCL.

12 Chapter 1. Pre-defined ML Identifiers

ALPHA_CONV

ALPHA_CONV : term -> term -> thm

Synopsis
Renames the bound variable of a lambda-abstraction.

Description
If ‘y‘ is a variable of type ty and ‘\x. t‘ is an abstraction in which the bound variable

x also has type ty and y does not occur free in t, then ALPHA_CONV ‘y‘ ‘\x. t‘ returns

the theorem:

|- (\x. t) = (\y. t[y/x])

Failure
Fails if the first argument is not a variable, the second is not an abstraction, if the types

of the new variable and the bound variable in the abstraction differ, or if the new variable

is already free in the body of the abstraction.

Example

ALPHA_CONV ‘y:num‘ ‘\x. x + 1‘;;
val it : thm = |- (\x. x + 1) = (\y. y + 1)

ALPHA_CONV ‘y:num‘ ‘\x. x + y‘;;
Exception: Failure "alpha: Invalid new variable".

See also
ALPHA, GEN_ALPHA_CONV.

alpha

alpha : term -> term -> term

Synopsis
Changes the name of a bound variable.

ALPHA 13

Description
The call alpha ‘v’‘ ‘\v. t[v]‘ returns the second argument with the top bound variable

changed to v’, and other variables renamed if necessary.

Failure
Fails if the first term is not a variable, or if the second is not an abstraction, if the

corresponding types are not the same, or if the desired new variable is already free in the

abstraction.

Example

alpha ‘y:num‘ ‘\x y. x + y + 2‘;;
val it : term = ‘\y y’. y + y’ + 2‘

alpha ‘y:num‘ ‘\x. x + y + 1‘;;
Exception: Failure "alpha: Invalid new variable".

See also
ALPHA, aconv.

ALPHA

ALPHA : term -> term -> thm

Synopsis
Proves equality of alpha-equivalent terms.

Description
When applied to a pair of terms t1 and t1’ which are alpha-equivalent, ALPHA returns the

theorem |- t1 = t1’.

------------- ALPHA ‘t1‘ ‘t1’‘
|- t1 = t1’

Failure
Fails unless the terms provided are alpha-equivalent.

14 Chapter 1. Pre-defined ML Identifiers

Example

ALPHA ‘!x:num. x = x‘ ‘!y:num. y = y‘;;
val it : thm = |- (!x. x = x) <=> (!y. y = y)

ALPHA ‘\w. w + z‘ ‘\z’. z’ + z‘;;
val it : thm = |- (\w. w + z) = (\z’. z’ + z)

See also
aconv, ALPHA_CONV, GEN_ALPHA_CONV.

ANTE_RES_THEN

ANTE_RES_THEN : thm_tactical

Synopsis
Resolves implicative assumptions with an antecedent.

Description
Given a theorem-tactic ttac and a theorem A |- t, the function ANTE_RES_THEN produces

a tactic that attempts to match t to the antecedent of each implication

Ai |- !x1...xn. ui ==> vi

(where Ai is just !x1...xn. ui ==> vi) that occurs among the assumptions of a goal.

If the antecedent ui of any implication matches t, then an instance of Ai u A |- vi is

obtained by specialization of the variables x1, ..., xn and type instantiation, followed by

an application of modus ponens. Because all implicative assumptions are tried, this may

result in several modus-ponens consequences of the supplied theorem and the assumptions.

Tactics are produced using ttac from all these theorems, and these tactics are applied in

sequence to the goal. That is,

ANTE_RES_THEN ttac (A |- t) g

has the effect of:

MAP_EVERY ttac [A1 u A |- v1; ...; Am u A |- vm] g

where the theorems Ai u A |- vi are all the consequences that can be drawn by a (single)

matching modus-ponens inference from the implications that occur among the assump-

tions of the goal g and the supplied theorem A |- t.

ANTS TAC 15

Failure
ANTE_RES_THEN ttac (A |- t) fails when applied to a goal g if any of the tactics pro-

duced by ttac (Ai u A |- vi), where Ai u A |- vi is the ith resolvent obtained from

the theorem A |- t and the assumptions of g, fails when applied in sequence to g.

See also
IMP_RES_THEN, MATCH_MP, MATCH_MP_TAC.

ANTS_TAC

ANTS_TAC : tactic

Synopsis
Split off antecedent of antecedent of goal as a new subgoal.

Description

A ?- (p ==> q) ==> r
======================= ANTS_TAC
A ?- p A ?- q ==> r

Failure
Fails unless the goal is of the specified form.

Uses
Convenient for focusing on assumptions of an implicational theorem that one wants to

use.

See also
MP_TAC.

applyd

applyd : (’a, ’b) func -> (’a -> ’b) -> ’a -> ’b

Synopsis
Applies a finite partial function, with a backup function for undefined points.

16 Chapter 1. Pre-defined ML Identifiers

Description
This is one of a suite of operations on finite partial functions, type (’a,’b)func. These

may sometimes be preferable to ordinary functions since they permit more operations

such as equality comparison, extraction of domain etc. If f is a finite partial function, g

a conventional function and x an argument, tryapply f g x tries to apply f to x as with

apply f x, but instead returns g x is f is undefined on x.

Failure
Can only fail if the backup function fails.

Example

applyd undefined (fun x -> x) 1;;
val it : int = 1
applyd (1 |=> 2) (fun x -> x) 1;;
val it : int = 2

See also
|->, |=>, apply, choose, combine, defined, dom, foldl, foldr, graph,
is_undefined, mapf, ran, tryapplyd, undefine, undefined.

apply

apply : (’a, ’b) func -> ’a -> ’b

Synopsis
Applies a finite partial function, failing on undefined points.

Description
This is one of a suite of operations on finite partial functions, type (’a,’b)func. These

may sometimes be preferable to ordinary functions since they permit more operations

such as equality comparison, extraction of domain etc. If f is a finite partial function and

x an argument, apply f x tries to apply f to x and fails if it is undefined.

apply prover 17

Example

apply undefined 1;;
Exception: Failure "apply".
apply (1 |=> 2) 1;;
val it : int = 2

See also
|->, |=>, applyd, choose, combine, defined, dom, foldl, foldr, graph,
is_undefined, mapf, ran, tryapplyd, undefine, undefined.

apply_prover

apply_prover : prover -> term -> thm

Synopsis
Apply a prover to a term.

Description
The HOL Light simplifier (e.g. as invoked by SIMP_TAC) allows provers of type prover to be

installed into simpsets, to automatically dispose of side-conditions. These may maintain

a state dynamically and augment it as more theorems become available (e.g. a theorem

p |- p becomes available when simplifying the consequenct of an implication ‘p ==> q‘).

In order to allow maximal flexibility in the data structure used to maintain state, provers

are set up in an ‘object-oriented’ style, where the context is part of the prover function

itself. A call apply_prover p ‘tm‘ applies the prover with its current context to attempt

to prove the term tm.

Failure
The call apply_prover p never fails, but it may fail to prove the term.

Uses
Mainly intended for users customizing the simplifier.

Comments
I learned of this ingenious trick for maintaining context from Don Syme, who discovered

it by reading some code written by Richard Boulton. I was told by Simon Finn that there

are similar ideas in the functional language literature for simulating existential types.

18 Chapter 1. Pre-defined ML Identifiers

See also
augment, mk_prover, SIMP_CONV, SIMP_RULE, SIMP_TAC.

AP_TERM

AP_TERM : term -> thm -> thm

Synopsis
Applies a function to both sides of an equational theorem.

Description
When applied to a term f and a theorem A |- x = y, the inference rule AP_TERM returns

the theorem A |- f x = f y.

A |- x = y
---------------- AP_TERM ‘f‘
A |- f x = f y

Failure
Fails unless the theorem is equational and the supplied term is a function whose domain

type is the same as the type of both sides of the equation.

Example

NUM_ADD_CONV ‘2 + 2‘;;
val it : thm = |- 2 + 2 = 4

AP_TERM ‘(+) 1‘ it;;
val it : thm = |- 1 + 2 + 2 = 1 + 4

See also
AP_THM, MK_COMB.

AP_TERM_TAC

AP_TERM_TAC : tactic

AP THM 19

Synopsis
Strips a function application from both sides of an equational goal.

Description
AP_TERM_TAC reduces a goal of the form A ?- f x = f y by stripping away the function

applications, giving the new goal A ?- x = y.

A ?- f x = f y
================ AP_TERM_TAC
A ?- x = y

Failure
Fails unless the goal is equational, with both sides being applications of the same function.

See also
ABS_TAC, AP_TERM, AP_THM_TAC, BINOP_TAC, MK_COMB_TAC.

AP_THM

AP_THM : thm -> term -> thm

Synopsis
Proves equality of equal functions applied to a term.

Description
When applied to a theorem A |- f = g and a term x, the inference rule AP_THM returns

the theorem A |- f x = g x.

A |- f = g
---------------- AP_THM (A |- f = g) ‘x‘
A |- f x = g x

Failure
Fails unless the conclusion of the theorem is an equation, both sides of which are functions

whose domain type is the same as that of the supplied term.

20 Chapter 1. Pre-defined ML Identifiers

Example

REWRITE_RULE[GSYM FUN_EQ_THM] ADD1;;
val it : thm = |- SUC = (\m. m + 1)

AP_THM it ‘11‘;;
val it : thm = |- SUC 11 = (\m. m + 1) 11

See also
AP_TERM, ETA_CONV, EXT, MK_COMB.

AP_THM_TAC

AP_THM_TAC : tactic

Synopsis
Strips identical operands from functions on both sides of an equation.

Description
When applied to a goal of the form A ?- f x = g x, the tactic AP_THM_TAC strips away

the operands of the function application:

A ?- f x = g x
================ AP_THM_TAC

A ?- f = g

Failure
Fails unless the goal has the above form, namely an equation both sides of which consist

of function applications to the same argument.

See also
ABS_TAC, AP_TERM_TAC, AP_THM, BINOP_TAC, MK_COMB_TAC.

ARITH_RULE

ARITH_RULE : term -> thm

ARITH TAC 21

Synopsis
Automatically proves natural number arithmetic theorems needing basic rearrangement

and linear inequality reasoning only.

Description
The function ARITH_RULE can automatically prove natural number theorems using basic

algebraic normalization and inequality reasoning. For nonlinear equational reasoning use

NUM_RING.

Failure
Fails if the term is not boolean or if it cannot be proved using the basic methods employed,

e.g. requiring nonlinear inequality reasoning.

Example

ARITH_RULE ‘x = 1 ==> y <= 1 \/ x < y‘;;
val it : thm = |- x = 1 ==> y <= 1 \/ x < y

ARITH_RULE ‘x <= 127 ==> ((86 * x) DIV 256 = x DIV 3)‘;;
val it : thm = |- x <= 127 ==> (86 * x) DIV 256 = x DIV 3

ARITH_RULE
‘2 * a * b EXP 2 <= b * a * b ==> (SUC c - SUC(a * b * b) <= c)‘;;

val it : thm =
|- 2 * a * b EXP 2 <= b * a * b ==> SUC c - SUC (a * b * b) <= c

Uses
Disposing of elementary arithmetic goals.

See also
ARITH_CONV, ARITH_TAC, INT_ARITH, NUM_RING, REAL_ARITH, REAL_FIELD, REAL_RING.

ARITH_TAC

ARITH_TAC : tactic

Synopsis
Tactic for proving arithmetic goals needing basic rearrangement and linear inequality

reasoning only.

22 Chapter 1. Pre-defined ML Identifiers

Description
ARITH_TAC will automatically prove goals that require basic algebraic normalization and

inequality reasoning over the natural numbers. For nonlinear equational reasoning use

NUM_RING and derivatives.

Failure
Fails if the automated methods do not suffice.

Example

g ‘1 <= x /\ x <= 3 ==> x = 1 \/ x = 2 \/ x = 3‘;;
Warning: Free variables in goal: x
val it : goalstack = 1 subgoal (1 total)

‘1 <= x /\ x <= 3 ==> x = 1 \/ x = 2 \/ x = 3‘

e ARITH_TAC;;
val it : goalstack = No subgoals

Uses
Solving basic arithmetic goals.

See also
ARITH_RULE, INT_ARITH_TAC, NUM_RING, REAL_ARITH_TAC.

ASM_CASES_TAC

ASM_CASES_TAC : term -> tactic

Synopsis
Given a term, produces a case split based on whether or not that term is true.

Description
Given a term u, ASM_CASES_TAC applied to a goal produces two subgoals, one with u as an

assumption and one with ~u:

A ?- t
================================ ASM_CASES_TAC ‘u‘
A u {u} ?- t A u {~u} ?- t

Failure
Fails if u does not have boolean type.

ASM 23

Example
The tactic ASM_CASES_TAC ‘&0 <= u‘ can be used to produce a case analysis on ‘&0 <= u‘:

g ‘&0 <= (u:real) pow 2‘;;
Warning: Free variables in goal: u
val it : goalstack = 1 subgoal (1 total)

‘&0 <= u pow 2‘

e(ASM_CASES_TAC ‘&0 <= u‘);;
val it : goalstack = 2 subgoals (2 total)

0 [‘~(&0 <= u)‘]

‘&0 <= u pow 2‘

0 [‘&0 <= u‘]

‘&0 <= u pow 2‘

Uses
Performing a case analysis according to whether a given term is true or false.

See also
BOOL_CASES_TAC, COND_CASES_TAC, ITAUT, DISJ_CASES_TAC, STRUCT_CASES_TAC, TAUT.

ASM

ASM : (thm list -> tactic) -> thm list -> tactic

Synopsis
Augments a tactic’s theorem list with the assumptions.

Description
If tac is a tactic that expects a list of theorems as its arguments, e.g. REWRITE_TAC or

MESON_TAC, then ASM tac converts it to a tactic where that list is augmented by the goal’s

assumptions.

Failure
Never fails (though the resulting tactic may do).

24 Chapter 1. Pre-defined ML Identifiers

Example

The inbuilt {\small\verb%ASM_REWRITE_TAC%} is in fact defined as just {\small\verb%ASM REWRITE_TAC%}.

See also
ASSUM_LIST, FREEZE_THEN.

ASM_FOL_TAC

ASM_FOL_TAC : (string * thm) list * term -> goalstate

Synopsis
Fix up function arities for first-order proof search.

Description
This function attempts to make the assumptions of a goal more ‘first-order’. Functions

that are not consistently used with the same arity, e.g. a function f that is sometimes

applied f(a) and sometimes used as an argument to other functions, g(f), will be identi-

fied. Applications of the function will then be modified by the introduction of the identity

function I (which can be thought of later as binary ‘function application’) so that f(a) be-

comes I f a. This gives a more natural formulation as a prelude to traditional first-order

proof search.

Failure
Never fails.

Comments
This function is not intended for general use, but is part of the initial normalization in

MESON and MESON_TAC.

See also
MESON, MESON_TAC.

ASM_MESON_TAC

ASM_MESON_TAC : thm list -> tactic

ASM REWRITE RULE 25

Synopsis
Automated first-order proof search tactic using assumptions of goal.

Description
A call to ASM_MESON_TAC[theorems] will attempt to establish the goal using pure first-

order reasining, taking theorems and the assumptions of the goal as the starting-point. It

will usually either solve the goal completely or run for an infeasible length of time before

terminating, but it may sometimes fail quickly. For more details, see MESON or MESON_TAC.

Failure
Fails if the goal is unprovable within the search bounds, though not necessarily in a

feasible amount of time.

See also
GEN_MESON_TAC, MESON, MESON_TAC.

ASM_REWRITE_RULE

ASM_REWRITE_RULE : thm list -> thm -> thm

Synopsis
Rewrites a theorem including built-in rewrites and the theorem’s assumptions.

Description
ASM_REWRITE_RULE rewrites with the tautologies in basic_rewrites, the given list of the-

orems, and the set of hypotheses of the theorem. All hypotheses are used. No ordering

is specified among applicable rewrites. Matching subterms are searched for recursively,

starting with the entire term of the conclusion and stopping when no rewritable expres-

sions remain. For more details about the rewriting process, see GEN_REWRITE_RULE. To

avoid using the set of basic tautologies, see PURE_ASM_REWRITE_RULE.

Failure
ASM_REWRITE_RULE does not fail, but may result in divergence. To prevent divergence

where it would occur, ONCE_ASM_REWRITE_RULE can be used.

See also
GEN_REWRITE_RULE, ONCE_ASM_REWRITE_RULE, PURE_ASM_REWRITE_RULE,
PURE_ONCE_ASM_REWRITE_RULE, REWRITE_RULE.

26 Chapter 1. Pre-defined ML Identifiers

ASM_REWRITE_TAC

ASM_REWRITE_TAC : thm list -> tactic

Synopsis

Rewrites a goal including built-in rewrites and the goal’s assumptions.

Description

ASM_REWRITE_TAC generates rewrites with the tautologies in basic_rewrites, the set of

assumptions, and a list of theorems supplied by the user. These are applied top-down

and recursively on the goal, until no more matches are found. The order in which the set of

rewrite equations is applied is an implementation matter and the user should not depend

on any ordering. Rewriting strategies are described in more detail under GEN_REWRITE_TAC.

For omitting the common tautologies, see the tactic PURE_ASM_REWRITE_TAC.

Failure

ASM_REWRITE_TAC does not fail, but it can diverge in certain situations. For rewriting to

a limited depth, see ONCE_ASM_REWRITE_TAC. The resulting tactic may not be valid if the

applicable replacement introduces new assumptions into the theorem eventually proved.

Example

The use of assumptions in rewriting, specially when they are not in an obvious equational

ASM SIMP TAC 27

form, is illustrated below:

g ‘P ==> (P /\ Q /\ R <=> R /\ Q /\ P)‘;;
Warning: Free variables in goal: P, Q, R
val it : goalstack = 1 subgoal (1 total)

‘P ==> (P /\ Q /\ R <=> R /\ Q /\ P)‘

e DISCH_TAC;;
val it : goalstack = 1 subgoal (1 total)

0 [‘P‘]

‘P /\ Q /\ R <=> R /\ Q /\ P‘

e(ASM_REWRITE_TAC[]);;
val it : goalstack = 1 subgoal (1 total)

0 [‘P‘]

‘Q /\ R <=> R /\ Q‘

See also
basic_rewrites, GEN_REWRITE_TAC, ONCE_ASM_REWRITE_TAC, ONCE_REWRITE_TAC,
PURE_ASM_REWRITE_TAC, PURE_ONCE_ASM_REWRITE_TAC, PURE_REWRITE_TAC, REWRITE_TAC,
SUBST_TAC.

ASM_SIMP_TAC

ASM_SIMP_TAC : thm list -> tactic

Synopsis
Perform simplification of goal by conditional contextual rewriting using assumptions and

built-in simplifications.

Description
A call to ASM_SIMP_TAC[theorems] will apply conditional contextual rewriting with theorems

and the current assumptions of the goal to the goal’s conclusion, as well as the default

simplifications (see basic_rewrites and basic_convs). For more details on this kind of

rewriting, see SIMP_CONV. If the extra generality of contextual conditional rewriting is not

needed, REWRITE_TAC is usually more efficient.

28 Chapter 1. Pre-defined ML Identifiers

Failure
Never fails, but may loop indefinitely.

See also
ASM_REWRITE_TAC, SIMP_CONV, SIMP_TAC, REWRITE_TAC.

ASSOC_CONV

ASSOC_CONV : thm -> term -> thm

Synopsis
Right-associates a term with respect to an associative binary operator.

Description
The conversion ASSOC_CONV expects a theorem asserting that a certain binary operator is

associative, in the standard form (with optional universal quantifiers):

x op (y op z) = (x op y) op z

It is then applied to a term, and will right-associate any toplevel combinations built up

from the operator op. Note that if op is polymorphic, the type instance of the theorem

needs to be the same as in the term to which it is applied.

Failure
May fail if the theorem is malformed. On application to the term, it never fails, but

returns a reflexive theorem when itis inapplicable.

Example

ASSOC_CONV ADD_ASSOC ‘((1 + 2) + 3) + (4 + 5) + (6 + 7)‘;;
val it : thm = |- ((1 + 2) + 3) + (4 + 5) + 6 + 7 = 1 + 2 + 3 + 4 + 5 + 6 + 7

ASSOC_CONV CONJ_ASSOC ‘((p /\ q) /\ (r /\ s)) /\ t‘;;
val it : thm = |- ((p /\ q) /\ r /\ s) /\ t <=> p /\ q /\ r /\ s /\ t

See also
AC, CNF_CONV, CONJ_ACI_RULE, DISJ_ACI_RULE, DNF_CONV.

assocd 29

assocd

assocd : ’a -> (’a * ’b) list -> ’b -> ’b

Synopsis
Looks up item in association list taking default in case of failure.

Description
The call assocd x [x1,y1; ...; xn,yn] y returns the first yi in the list where the cor-

responding xi is the same as x. If there is no such item, it returns the value y. This is

similar to assoc except that the latter will fail rather than take a default.

Failure
Never fails.

Example

assocd 2 [1,2; 2,4; 3,6] (-1);;
val it : int = 4
assocd 4 [1,2; 2,4; 3,6] (-1);;
val it : int = -1

Uses
Simple lookup without exception handling.

See also
assoc, rev_assocd.

assoc

assoc : ’a -> (’a * ’b) list -> ’b

Synopsis
Searches a list of pairs for a pair whose first component equals a specified value.

Description
assoc x [(x1,y1);...;(xn,yn)] returns the first yi in the list such that xi equals x.

30 Chapter 1. Pre-defined ML Identifiers

Failure
Fails if no matching pair is found. This will always be the case if the list is empty.

Example

assoc 2 [1,4; 3,2; 2,5; 2,6];;
val it : int = 5

See also
rev_assoc, find, mem, tryfind, exists, forall.

ASSUME

ASSUME : term -> thm

Synopsis
Introduces an assumption.

Description
When applied to a term t, which must have type bool, the inference rule ASSUME returns

the theorem t |- t.

-------- ASSUME ‘t‘
t |- t

Failure
Fails unless the term t has type bool.

Example

ASSUME ‘p /\ q‘;;
val it : thm = p /\ q |- p /\ q

Comments
This is one of HOL Light’s 10 primitive inference rules.

See also
ADD_ASSUM, REFL.

ASSUME TAC 31

ASSUME_TAC

ASSUME_TAC : thm_tactic

Synopsis

Adds an assumption to a goal.

Description

Given a theorem th of the form A’ |- u, and a goal, ASSUME_TAC th adds u to the as-

sumptions of the goal.

A ?- t
============== ASSUME_TAC (A’ |- u)
A u {u} ?- t

Note that unless A’ is a subset of A, this tactic is invalid. The new assumption is unlabelled;

for a named assumption use LABEL_TAC.

Failure

Never fails.

Example

One can add an external theorem as an assumption if desired, for example so that

ASM_REWRITE_TAC[] will automatically apply it. But usually the theorem is derived from

some theorem-tactical, e.g. by discharging the antecedent of an implication or doing

forward inference on another assumption. For example iff faced with the goal:

g ‘0 = x ==> f(2 * x) = f(x * f(x))‘;;

one might not want to just do DISCH_TAC or STRIP_TAC because the assumption will be

32 Chapter 1. Pre-defined ML Identifiers

‘0 = x‘. One can swap it first then put it on the assumptions by:

e(DISCH_THEN(ASSUME_TAC o SYM));;
val it : goalstack = 1 subgoal (1 total)

0 [‘x = 0‘]

‘f (2 * x) = f (x * f x)‘

after which the goal can very easily be solved:

e(ASM_REWRITE_TAC[MULT_CLAUSES]);;
val it : goalstack = No subgoals

Uses
Useful as a parameter to various theorem-tacticals such as X_CHOOSE_THEN, DISCH_THEN etc.

when it is simply desired to add the theorem that has been deduced to the assumptions

rather than used further at once.

See also
ACCEPT_TAC, LABEL_TAC, STRIP_ASSUME_TAC.

ASSUM_LIST

ASSUM_LIST : (thm list -> tactic) -> tactic

Synopsis
Applies a tactic generated from the goal’s assumption list.

Description
When applied to a function of type thm list -> tactic and a goal, ASSUM_LIST constructs

a tactic by applying f to a list of ASSUMEd assumptions of the goal, then applies that tactic

to the goal.

ASSUM_LIST f ({A1;...;An} ?- t)
= f [A1 |- A1; ... ; An |- An] ({A1;...;An} ?- t)

Failure
Fails if the function fails when applied to the list of ASSUMEd assumptions, or if the resulting

tactic fails when applied to the goal.

atleast 33

Comments
There is nothing magical about ASSUM_LIST: the same effect can usually be achieved just

as conveniently by using ASSUME a wherever the assumption a is needed. If ASSUM_LIST is

used, it is extremely unwise to use a function which selects elements from its argument

list by number, since the ordering of assumptions should not be relied on.

Example
The tactic:

ASSUM_LIST(MP_TAC o end_itlist CONJ)

adds a conjunction of all assumptions as an antecedent of a goal.

Uses
Making more careful use of the assumption list than simply rewriting.

See also
ASM_REWRITE_TAC, EVERY_ASSUM, POP_ASSUM, POP_ASSUM_LIST, REWRITE_TAC.

atleast

atleast : int -> (’a -> ’b * ’a) -> ’a -> ’b list * ’a

Synopsis
Parses at least a given number of successive items using given parser.

Description
If p is a parser and n an integer, atleast n p is a new parser that attempts to parse at

least n successive items using parser p and fails otherwise. Unless n is positive, this is

equivalent to many p.

Failure
The call to atleast n p itself never fails.

Comments
This is one of a suite of combinators for manipulating “parsers”. A parser is simply

a function whose OCaml type is some instance of :(’a)list -> ’b * (’a)list. The

function should take a list of objects of type :’a (e.g. characters or tokens), parse as

much of it as possible from left to right, and return a pair consisting of the object derived

34 Chapter 1. Pre-defined ML Identifiers

from parsing (e.g. a term or a special syntax tree) and the list of elements that were not

processed.

See also
++, ||, >>, a, atleast, elistof, finished, fix, leftbin, listof, many, nothing,
possibly, rightbin, some.

aty

aty : hol_type

Synopsis
The type variable ‘:A‘.

Description
This name is bound to the HOL type :A.

Failure
Not applicable.

Uses
Exploiting the very common type variable :A inside derived rules (e.g. an instantiation

list for inst or type_subst) without the inefficiency or inconvenience of calling a quotation

parser or explicit constructor.

See also
bty, bool_ty.

augment

augment : prover -> thm list -> prover

Synopsis
Augments a prover’s context with new theorems.

Description
The HOL Light simplifier (e.g. as invoked by SIMP_TAC) allows provers of type prover to be

installed into simpsets, to automatically dispose of side-conditions. These may maintain

AUGMENT SIMPSET 35

a state dynamically and augment it as more theorems become available (e.g. a theorem

p |- p becomes available when simplifying the consequenct of an implication ‘p ==> q‘).

In order to allow maximal flexibility in the data structure used to maintain state, provers

are set up in an ‘object-oriented’ style, where the context is part of the prover function

itself. A call augment p thl maps a prover p to a new prover with theorems thl added to

the initial state.

Failure
Never fails unless the prover is abnormal.

Uses
This is mostly for experts wishing to customize the simplifier.

Comments
I learned of this ingenious trick for maintaining context from Don Syme, who discovered

it by reading some code written by Richard Boulton. I was told by Simon Finn that there

are similar ideas in the functional language literature for simulating existential types.

See also
apply_prover, mk_prover, SIMP_CONV, SIMP_RULE, SIMP_TAC.

AUGMENT_SIMPSET

AUGMENT_SIMPSET : thm -> simpset -> simpset

Synopsis
Augment context of a simpset with a list of theorems.

Description
In their maximal generality, simplification operations in HOL Light (as invoked by SIMP_TAC)

are controlled by a ‘simpset’. Given a list of theorems thl and a simpset ss, the call

AUGMENT_SIMPSET thl ss augments the state of the simpset, adding the theorems as new

rewrite rules and also making any provers in the simpset process the new context appro-

priately.

Failure
Never fails unless some of the simpset functions are ill-formed.

Uses
Mostly for experts wishing to customize the simplifier.

36 Chapter 1. Pre-defined ML Identifiers

See also
augment, SIMP_CONV.

axioms

axioms : unit -> thm list

Synopsis
Returns the current set of axioms.

Description
A call axioms() returns the current list of axioms.

Failure
Never fails.

Example
Under normal circumstances, the list of axioms will be as follows, containing the axioms

of infinity, choice and extensionality.

axioms();;
val it : thm list =
[|- ?f. ONE_ONE f /\ ~ONTO f; |- !P x. P x ==> P ((@) P);
|- !t. (\x. t x) = t]

If other axioms are used, the consistency of the resulting theory cannot be guaranteed.

However, new definitions and type definitions are always safe and are not considered as

true ‘axioms’.

See also
new_definition, define, the_definitions, new_axiom.

basic_congs

basic_congs : unit -> thm list

Synopsis
Lists the congruence rules used by the simplifier.

basic convs 37

Description
The HOL Light simplifier (as invoked by SIMP_TAC etc.) uses congruence rules to determine

how it uses context when descending through a term. These are essentially theorems

showing how to decompose one equality to a series of other inequalities in context. A call

to basic_congs() returns those congruences that are built into the system.

Failure
Never fails.

Example
Here is the effect in HOL Light’s initial state:

basic_congs();;
val it : thm list =
[|- (!x. x IN s ==> f x = g x) ==> sum s (\i. f i) = sum s g;
|- (!i. a <= i /\ i <= b ==> f i = g i)

==> sum (a..b) (\i. f i) = sum (a..b) g;
|- (!x. p x ==> f x = g x) ==> sum {y | p y} (\i. f i) = sum {y | p y} g;
|- (!x. x IN s ==> f x = g x) ==> nsum s (\i. f i) = nsum s g;
|- (!i. a <= i /\ i <= b ==> f i = g i)

==> nsum (a..b) (\i. f i) = nsum (a..b) g;
|- (!x. p x ==> f x = g x) ==> nsum {y | p y} (\i. f i) = nsum {y | p y} g;
|- (g <=> g’)

==> (g’ ==> t = t’)
==> (~g’ ==> e = e’)
==> (if g then t else e) = (if g’ then t’ else e’);

|- (p <=> p’) ==> (p’ ==> (q <=> q’)) ==> (p ==> q <=> p’ ==> q’)]

See also
extend_basic_congs, set_basic_congs, SIMP_CONV, SIMP_RULE, SIMP_TAC.

basic_convs

basic_convs : unit -> (string * (term * conv)) list

Synopsis
List the current default conversions used in rewriting and simplification.

Description
The HOL Light rewriter (REWRITE_TAC etc.) and simplifier (SIMP_TAC etc.) have default

sets of (conditional) equations and other conversions that are applied by default, except

in the PURE_ variants. A call to basic_convs() returns the current set of conversions.

38 Chapter 1. Pre-defined ML Identifiers

Failure
Never fails.

Example
In the default HOL Light state the only conversion is for generalized beta reduction. All

the other default simplifications are done by rewrite rules.

basic_convs();;
val it : (string * (term * conv)) list =
[("GEN_BETA_CONV", (‘GABS (\a. b) c‘, <fun>))]

See also
basic_rewrites, extend_basic_convs, set_basic_convs.

basic_net

basic_net : unit -> gconv net

Synopsis
Returns the term net used to optimize access to default rewrites and conversions.

Description
The HOL Light rewriter (REWRITE_TAC etc.) and simplifier (SIMP_TAC etc.) have default

sets of (conditional) equations and other conversions that are applied by default, except in

the PURE_ variants. Internally, these are maintained in a term net (see enter and lookup

for more information), and a call to basic_net() returns that net.

Failure
Never fails.

Uses
Only useful for those who are delving deep into the implementation of rewriting.

See also
basic_convs, basic_rewrites, enter, lookup.

basic_prover

basic_prover : (simpset -> ’a -> term -> thm) -> simpset -> ’a -> term -> thm

basic rectype net 39

Synopsis
The basic prover use function used in the simplifier.

Description
The HOL Light simplifier (e.g. as invoked by SIMP_TAC) allows provers of type prover to

be installed into simpsets, to automatically dispose of side-conditions. There is another

component of the simpset that controls how these are applied to unproven subgoals arising

in simplification. The basic_prover function, which is used in all the standard simpsets,

simply tries to simplify the goals with the rewrites as far as possible, then tries the provers

one at a time on the resulting subgoals till one succeeds.

Failure
Never fails, though the later application to a term may fail to prove it.

See also
mk_prover, SIMP_CONV, SIMP_RULE, SIMP_TAC.

basic_rectype_net

basic_rectype_net : (int * (term -> thm)) net ref

Synopsis
Net of injectivity and distinctness properties for recursive type constructors.

Description
HOL Light maintains a net of theorems used to simplify equations between elements of

recursive datatypes; essentially these include injectivity and distinctness, e.g. CONS_11

and NOT_CONS_NIL for lists. This net is used in some situations where such things need to

be proved automatically, notably in define. A call to basic_rectype_net() returns that

net. It is automatically updated whenever a type is defined by define_type.

Failure
Never fails.

See also
cases, define, distinctness, GEN_BETA_CONV, injectivity.

40 Chapter 1. Pre-defined ML Identifiers

basic_rewrites

basic_rewrites : unit -> thm list

Synopsis
Returns the set of built-in theorems used, by default, in rewriting.

Description
The list of theorems returned by basic_rewrites() is applied by default in rewriting

conversions, rules and tactics such as ONCE_REWRITE_CONV, REWRITE_RULE and SIMP_TAC,

though not in the ‘pure’ variants like PURE_REWRITE_TAC. This default set can be mod-

ified using extend_basic_rewrites, set_basic_rewrites. Other conversions, not neces-

sarily expressible as rewriting with a theorem, can be added using set_basic_convs and

extend_basic_convs and examined by basic_convs.

Example
The following shows the list of default rewrites in the standard HOL Light state. Most of

them are basic logical tautologies.

basic_rewrites();;
val it : thm list =
[|- FST (x,y) = x; |- SND (x,y) = y; |- FST x,SND x = x;
|- (if x = x then y else z) = y; |- (if T then t1 else t2) = t1;
|- (if F then t1 else t2) = t2; |- ~ ~t <=> t; |- ~T <=> F; |- ~F <=> T;
|- (@y. y = x) = x; |- x = x <=> T; |- (T <=> t) <=> t;
|- (t <=> T) <=> t; |- (F <=> t) <=> ~t; |- (t <=> F) <=> ~t; |- ~T <=> F;
|- ~F <=> T; |- T /\ t <=> t; |- t /\ T <=> t; |- F /\ t <=> F;
|- t /\ F <=> F; |- t /\ t <=> t; |- T \/ t <=> T; |- t \/ T <=> T;
|- F \/ t <=> t; |- t \/ F <=> t; |- t \/ t <=> t; |- T ==> t <=> t;
|- t ==> T <=> T; |- F ==> t <=> T; |- t ==> t <=> T; |- t ==> F <=> ~t;
|- (!x. t) <=> t; |- (?x. t) <=> t; |- (\x. f x) y = f y;
|- x = x ==> p <=> p]

Uses
The basic_rewrites are included in the set of equations used by some of the rewriting

tools.

See also
extend_basic_rewrites, set_basic_rewrites, set_basic_convs, extend_basic_convs,
basic_convs, REWRITE_CONV, REWRITE_RULE, REWRITE_TAC, SIMP_CONV, SIMP_RULE,
SIMP_TAC.

basic ss 41

basic_ss

basic_ss : thm list -> simpset

Synopsis
Construct a straightforward simpset from a list of theorems.

Description
In their maximal generality, simplification operations in HOL Light (as invoked by SIMP_TAC)

are controlled by a ‘simpset’. A call basic_ss thl gives a straightforward simpset used

by the default simplifier instances like SIMP_TAC, which has the given theorems as well as

the basic rewrites and conversions, and no other provers.

Failure
Never fails.

See also
basic_convs, basic_rewrites, empty_ss, SIMP_CONV, SIMP_RULE, SIMP_TAC.

b

b : unit -> goalstack

Synopsis
Restores the proof state, undoing the effects of a previous expansion.

Description
The function b is part of the subgoal package. It allows backing up from the last state

change (caused by calls to e, g, r, set_goal etc.) The package maintains a backup list of

previous proof states. A call to b restores the state to the previous state (which was on

top of the backup list).

Failure
The function b will fail if the backup list is empty.

42 Chapter 1. Pre-defined ML Identifiers

Example

g ‘(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])‘;;
val it : goalstack = 1 subgoal (1 total)

‘HD [1; 2; 3] = 1 /\ TL [1; 2; 3] = [2; 3]‘

e CONJ_TAC;;
val it : goalstack = 2 subgoals (2 total)

‘TL [1; 2; 3] = [2; 3]‘

‘HD [1; 2; 3] = 1‘

b();;
val it : goalstack = 1 subgoal (1 total)

‘HD [1; 2; 3] = 1 /\ TL [1; 2; 3] = [2; 3]‘

Uses
Back tracking in a goal-directed proof to undo errors or try different tactics.

See also
e, g, p, r, set_goal, top_goal, top_thm.

BETA_CONV

BETA_CONV : term -> thm

Synopsis
Performs a simple beta-conversion.

Description
The conversion BETA_CONV maps a beta-redex ‘(\x.u)v‘ to the theorem

|- (\x.u)v = u[v/x]

where u[v/x] denotes the result of substituting v for all free occurrences of x in u, after

renaming sufficient bound variables to avoid variable capture. This conversion is one of

the primitive inference rules of the HOL system.

BETA 43

Failure
BETA_CONV tm fails if tm is not a beta-redex.

Example

BETA_CONV ‘(\x. x + 1) y‘;;
val it : thm = |- (\x. x + 1) y = y + 1

BETA_CONV ‘(\x y. x + y) y‘;;
val it : thm = |- (\x y. x + y) y = (\y’. y + y’)

Comments
The HOL Light primitive rule BETA is the special case where the argument is the same

as the bound variable. If you know that you are in this case, BETA is significantly more

efficient. Though traditionally a primitive, BETA_CONV is actually a derived rule in HOL

Light.

See also
GEN_BETA_CONV, BETA, BETA_RULE, BETA_TAC.

BETA

BETA : term -> thm

Synopsis
Special primitive case of beta-reduction.

Description
Given a term of the form (\x. t[x]) x, i.e. a lambda-term applied to exactly the same

variable that occurs in the abstraction, BETA returns the theorem |- (\x. t[x]) x = t[x].

Failure
Fails if the term is not of the required form.

44 Chapter 1. Pre-defined ML Identifiers

Example

BETA ‘(\n. n + 1) n‘;;
val it : thm = |- (\n. n + 1) n = n + 1

Note that more general beta-reduction is not handled by BETA, but will be by BETA_CONV:

BETA ‘(\n. n + 1) m‘;;
Exception: Failure "BETA: not a trivial beta-redex".
BETA_CONV ‘(\n. n + 1) m‘;;
val it : thm = |- (\n. n + 1) m = m + 1

Uses
This is more efficient than BETA_CONV in the special case in which it works, because no

traversal and replacement of the body of the abstraction is needed.

Comments
This is one of HOL Light’s 10 primitive inference rules. The more general case of beta-

reduction, where a lambda-term is applied to any term, is implemented by BETA_CONV,

derived in terms of this primitive.

See also
BETA_CONV.

BETA_RULE

BETA_RULE : thm -> thm

Synopsis
Beta-reduces all the beta-redexes in the conclusion of a theorem.

Description
When applied to a theorem A |- t, the inference rule BETA_RULE beta-reduces all beta-

redexes, at any depth, in the conclusion t. Variables are renamed where necessary to

avoid free variable capture.

A |-((\x. s1) s2)....
---------------------------- BETA_RULE

A |-(s1[s2/x])....

Failure
Never fails, but will have no effect if there are no beta-redexes.

BETAS CONV 45

Example
The following example is a simple reduction which illustrates variable renaming:

let x = ASSUME ‘f = ((\x y. x + y) y)‘;;
val x : thm = f = (\x y. x + y) y |- f = (\x y. x + y) y

BETA_RULE x;;
val it : thm = f = (\x y. x + y) y |- f = (\y’. y + y’)

See also
BETA_CONV, BETA_TAC, GEN_BETA_CONV.

BETAS_CONV

BETAS_CONV : conv

Synopsis
Beta conversion over multiple arguments.

Description
Given a term t of the form ‘(\x1 ... xn. t[x1,...,xn]) s1 ... sn‘, the call BETAS_CONV t

returns

|- (\x1 ... xn. t[x1,...,xn]) s1 ... sn = t[s1,...,sn]

Failure
Fails if the term is not of the form shown, for some n.

Example

BETAS_CONV ‘(\x y. x + y) 1 2‘;;
val it : thm = |- (\x y. x + y) 1 2 = 1 + 2

See also
BETA_CONV, RIGHT_BETAS.

BETA_TAC

BETA_TAC : tactic

46 Chapter 1. Pre-defined ML Identifiers

Synopsis
Beta-reduces all the beta-redexes in the conclusion of a goal.

Description
When applied to a goal A ?- t, the tactic BETA_TAC produces a new goal which results

from beta-reducing all beta-redexes, at any depth, in t. Variables are renamed where

necessary to avoid free variable capture.

A ?- ...((\x. s1) s2)...
========================== BETA_TAC
A ?- ...(s1[s2/x])...

Failure
Never fails, but will have no effect if there are no beta-redexes.

Comments
Beta-reduction, and indeed, generalized beta reduction (GEN_BETA_CONV) are already among

the basic rewrites, so happen anyway simply on REWRITE_TAC[]. But occasionally it is con-

venient to be able to invoke them separately.

See also
BETA_CONV, BETA_RULE, GEN_BETA_CONV.

BINDER_CONV

BINDER_CONV : conv -> term -> thm

Synopsis
Applies conversion to the body of a binder.

Description
If c is a conversion such that c ‘t‘ returns |- t = t’, then BINDER_CONV c ‘b (\x. t)‘

returns |- b (\x. t) = b (\x. t’), i.e. applies the core conversion to the body of a

‘binder’. In fact, b here can be any term, but it is typically a binder constant such as a

quantifier.

Failure
Fails if the core conversion does, or if the theorem returned by it is not of the right form.

binders 47

Example

BINDER_CONV SYM_CONV ‘@n. n = m + 1‘;;
val it : thm = |- (@n. n = m + 1) = (@n. m + 1 = n)

BINDER_CONV (REWR_CONV SWAP_FORALL_THM) ‘!x y z. x + y + z = y + x + z‘;;
val it : thm =
|- (!x y z. x + y + z = y + x + z) <=> (!x z y. x + y + z = y + x + z)

See also
ABS_CONV, RAND_CONV, RATOR_CONV.

binders

binders : unit -> string list

Synopsis
Lists the binders.

Description
The function binders returns a list of all the binders declared so far. A binder b is then

parsed in constructs like b x. t[x] as an abbreviation for (b) (\x. t[x]). The set of

binders can be changed with parse_as_binder and unparse_as_binder.

Failure
Never fails

Example

binders();;
val it : string list = ["\\"; "!"; "?"; "?!"; "@"; "minimal"; "lambda"]

See also
parse_as_binder, parses_as_binder, parse_as_infix, parse_as_prefix,
unparse_as_binder.

BINOP_CONV

BINOP_CONV : (term -> thm) -> term -> thm

48 Chapter 1. Pre-defined ML Identifiers

Synopsis
Applies a conversion to both arguments of a binary operator.

Description
If c is a conversion where c ‘l‘ returns |- l = l’ and c ‘r‘ returns |- r = r’, then

BINOP_CONV ‘op l r‘ returns |- op l r = op l’ r’. The term op is arbitrary, but is

often a constant such as addition or conjunction.

Failure
Never fails when applied to the conversion. But may fail when applied to the term if one

of the core conversions fails or returns an inappropriate theorem on the subterms.

Example

BINOP_CONV NUM_ADD_CONV ‘(1 + 1) * (2 + 2)‘;;
val it : thm = |- (1 + 1) * (2 + 2) = 2 * 4

See also
ABS_CONV, COMB_CONV, COMB2_CONV, RAND_CONV, RATOR_CONV.

binops

binops : term -> term -> term list

Synopsis
Repeatedly breaks apart an iterated binary operator into components.

Description
The call binops op t repeatedly breaks down applications of the binary operator op within

t. If t is of the form (op l) r (thinking of op as infix, l op r), then it recursively breaks

down l and r in the same way and appends the results. Otherwise, a singleton list of the

original term is returned.

Failure
Never fails.

BINOP TAC 49

Example

binops ‘(+):num->num->num‘ ‘((1 + 2) + 3) + 4 + 5 + 6‘;;
val it : term list = [‘1‘; ‘2‘; ‘3‘; ‘4‘; ‘5‘; ‘6‘]

binops ‘(+):num->num->num‘ ‘F‘;;
val it : term list = [‘F‘]

See also
dest_binop, mk_binop, striplist.

BINOP_TAC

BINOP_TAC : tactic

Synopsis
Breaks apart equation between binary operator applications into equality between their

arguments.

Description
Given a goal whose conclusion is an equation between applications of the same curried

binary function f, the tactic BINOP_TAC breaks it down to two subgoals expressing equality

of the corresponding arguments:

A ?- f x1 y1 = f x2 y2
================================ BINOP_TAC

A ?- x1 = x2 A ?- y1 = y2

Failure
Fails if the conclusion of the goal is not an equation between applications of the same

curried binary operator.

Example
We can set up the following goal which is an equation between applications of the binary

50 Chapter 1. Pre-defined ML Identifiers

operator +:

g ‘f(2 * x + 1) + w * z = f(SUC(x + 1) * 2 - 1) + z * w‘;;

and it is simplest to prove if we split it up into two subgoals:

e BINOP_TAC;;
val it : goalstack = 2 subgoals (2 total)

‘w * z = z * w‘

‘f (2 * x + 1) = f (SUC (x + 1) * 2 - 1)‘

the first of which can be solved by ARITH_TAC, and the second by AP_TERM_TAC THEN ARITH_TAC.

See also
ABS_TAC, AP_TERM_TAC, AP_THM_TAC, MK_BINOP, MK_COMB_TAC.

bndvar

bndvar : term -> term

Synopsis
Returns the bound variable of an abstraction.

Description
bndvar ‘\var. t‘ returns ‘var‘.

Failure
Fails unless the term is an abstraction.

Example

bndvar ‘\x. x + 1‘;;
val it : term = ‘x‘

See also
body, dest_abs.

body 51

body

body : term -> term

Synopsis
Returns the body of an abstraction.

Description
body ‘\var. t‘ returns ‘t‘.

Failure
Fails unless the term is an abstraction.

Example

body ‘\x. x + 1‘;;
val it : term = ‘x + 1‘

See also
bndvar, dest_abs.

BOOL_CASES_TAC

BOOL_CASES_TAC : term -> tactic

Synopsis
Performs boolean case analysis on a (free) term in the goal.

Description
When applied to a term x (which must be of type bool but need not be simply a variable),

and a goal A ?- t, the tactic BOOL_CASES_TAC generates the two subgoals corresponding

to A ?- t but with any free instances of x replaced by F and T respectively.

A ?- t
============================ BOOL_CASES_TAC ‘x‘
A ?- t[F/x] A ?- t[T/x]

The term given does not have to be free in the goal, but if it isn’t, BOOL_CASES_TAC will

merely duplicate the original goal twice. Note that in the new goals, we don’t have x and

~x as assumptions; for that use ASM_CASES_TAC.

52 Chapter 1. Pre-defined ML Identifiers

Failure
Fails unless the term x has type bool.

Example
The goal:

g ‘(b ==> ~b) ==> (b ==> a)‘;;

can be completely solved by using BOOL_CASES_TAC on the variable b, then simply rewriting

the two subgoals using only the inbuilt tautologies, i.e. by applying the following tactic:

e(BOOL_CASES_TAC ‘b:bool‘ THEN REWRITE_TAC[]);;
val it : goalstack = No subgoals

Uses
Avoiding fiddly logical proofs by brute-force case analysis, possibly only over a key term

as in the above example, possibly over all free boolean variables.

See also
ASM_CASES_TAC, COND_CASES_TAC, DISJ_CASES_TAC, ITAUT, STRUCT_CASES_TAC, TAUT.

bool_ty

bool_ty : hol_type

Synopsis
The type ‘:bool‘.

Description
This name is bound to the HOL type :bool.

Failure
Not applicable.

Uses
Exploiting the very common type :bool inside derived rules without the inefficiency or

inconvenience of calling a quotation parser or explicit constructor.

See also
aty, bty.

bty 53

bty

bty : hol_type

Synopsis
The type variable ‘:B‘.

Description
This name is bound to the HOL type :B.

Failure
Not applicable.

Uses
Exploiting the very common type variable :B inside derived rules (e.g. an instantiation

list for inst or type_subst) without the inefficiency or inconvenience of calling a quotation

parser or explicit constructor.

See also
aty, bool_ty.

butlast

butlast : ’a list -> ’a list

Synopsis
Computes the sub-list of a list consisting of all but the last element.

Description
butlast [x1;...;xn] returns [x1;...;x(n-1)].

Failure
Fails if the list is empty.

See also
last, hd, tl, el.

54 Chapter 1. Pre-defined ML Identifiers

by

by : tactic -> refinement

Synopsis
Converts a tactic to a refinement.

Description
The call by tac for a tactic tac gives a refinement of the current list of subgoals that

applies tac to the first subgoal.

Comments
Only of interest to users who want to handle ‘refinements’ explicitly.

CACHE_CONV

CACHE_CONV : (term -> thm) -> term -> thm

Synopsis
Accelerates a conversion by cacheing previous results.

Description
If cnv is any conversion, then CACHE_CONV cnv gives a new conversion that is functionally

identical but keeps a cache of previous arguments and results, and simply returns the

cached result if the same input is encountered again.

Failure
Never fails, though the subsequent application to a term may.

Example
The following call takes a while, making several applications to the same expression:

time (DEPTH_CONV NUM_RED_CONV) ‘31 EXP 31 + 31 EXP 31 + 31 EXP 31‘;;
CPU time (user): 1.542
val it : thm =
|- 31 EXP 31 + 31 EXP 31 + 31 EXP 31 =

51207522392169707875831929087177944268134203293

whereas the cached variant is faster since the result for 31 EXP 31 is stored away and

can 55

re-used after the first call:

time (DEPTH_CONV(CACHE_CONV NUM_RED_CONV))
‘31 EXP 31 + 31 EXP 31 + 31 EXP 31‘;;

CPU time (user): 0.461
val it : thm =
|- 31 EXP 31 + 31 EXP 31 + 31 EXP 31 =

51207522392169707875831929087177944268134203293

See also

can

can : (’a -> ’b) -> ’a -> bool

Synopsis
Tests for failure.

Description
can f x evaluates to true if the application of f to x succeeds. It evaluates to false if

the application with a Failure _ exception.

Failure
Never fails.

Example

can hd [1;2];;
val it : bool = true
can hd [];;
val it : bool = false

See also
check.

cases

cases : string -> thm

56 Chapter 1. Pre-defined ML Identifiers

Synopsis
Produce cases theorem for an inductive type.

Description
A call cases "ty" where "ty" is the name of a recursive type defined with define_type,

returns a “cases” theorem asserting that each element of the type is an instance of one

of the type constructors. The effect is exactly the same is if prove_cases_thm were ap-

plied to the induction theorem produced by define_type, and the documentation for

prove_cases_thm gives a lengthier discussion.

Failure
Fails if ty is not the name of a recursive type.

Example

cases "num";;
val it : thm = |- !m. m = 0 \/ (?n. m = SUC n)

cases "list";;
val it : thm = |- !x. x = [] \/ (?a0 a1. x = CONS a0 a1)

See also
define_type, distinctness, injectivity, prove_cases_thm.

CCONTR

CCONTR : term -> thm -> thm

Synopsis
Implements the classical contradiction rule.

Description
When applied to a term t and a theorem A |- F, the inference rule CCONTR returns the

theorem A - {~t} |- t.

A |- F
--------------- CCONTR ‘t‘
A - {~t} |- t

Failure
Fails unless the term has type bool and the theorem has F as its conclusion.

C 57

Comments
The usual use will be when ~t exists in the assumption list; in this case, CCONTR corresponds

to the classical contradiction rule: if ~t leads to a contradiction, then t must be true.

See also
CONTR, CONTR_TAC, NOT_ELIM.

C

C : (’a -> ’b -> ’c) -> ’b -> ’a -> ’c

Synopsis
Permutes first two arguments to curried function: C f x y = f y x.

Failure
Never fails.

See also
F_F, I, K, W.

CHANGED_CONV

CHANGED_CONV : conv -> conv

Synopsis
Makes a conversion fail if applying it leaves a term unchanged.

Description
For a conversion cnv, the construct CHANGED_CONV c gives a new conversion that has the

same action as cnv, except that it will fail on terms t such that cnv t returns a reflexive

theorem |- t = t, or more precisely |- t = t’ where t and t’ are alpha-equivalent.

Failure
Never fails when applied to the conversion, but fails on further application to a term if

the original conversion does or it returns a reflexive theorem.

58 Chapter 1. Pre-defined ML Identifiers

Example

ONCE_DEPTH_CONV num_CONV ‘x + 0‘;;
val it : thm = |- x + 0 = x + 0

CHANGED_CONV(ONCE_DEPTH_CONV num_CONV) ‘x + 0‘;;
Exception: Failure "CHANGED_CONV".

CHANGED_CONV(ONCE_DEPTH_CONV num_CONV) ‘6‘;;
val it : thm = |- 6 = SUC 5

REPEATC(CHANGED_CONV(ONCE_DEPTH_CONV num_CONV)) ‘6‘;;
val it : thm = |- 6 = SUC (SUC (SUC (SUC (SUC (SUC 0)))))

Uses
CHANGED_CONV is used to transform a conversion that may leave terms unchanged, and

therefore may cause a nonterminating computation if repeated, into one that can safely

be repeated until application of it fails to substantially modify its input term, as in the

last example above.

CHANGED_TAC

CHANGED_TAC : tactic -> tactic

Synopsis
Makes a tactic fail if it has no effect.

Description
When applied to a tactic t, the tactical CHANGED_TAC gives a new tactic which is the same

as t if that has any effect, and otherwise fails.

Failure
The application of CHANGED_TAC to a tactic never fails. The resulting tactic fails if the

basic tactic either fails or has no effect.

Uses
Occasionally useful in controlling complicated tctic compositions. Also sometimes conve-

nient just to check that a step did indeed modify a goal.

See also
TRY, VALID.

CHEAT TAC 59

CHEAT_TAC

CHEAT_TAC : tactic

Synopsis
Proves goal by asserting it as an axiom.

Description
Given any goal A ?- p, the tactic CHEAT_TAC solves it by using mk_thm, which in turn

involves essentially asserting the goal as a new axiom.

Failure
Never fails.

Uses
Temporarily plugging boring parts of a proof to deal with the interesting parts.

Comments
Needless to say, this should be used with caution since once new axioms are asserted there

is no guarantee that logical consistency is preserved.

See also
new_axiom, mk_thm.

check

check : (’a -> bool) -> ’a -> ’a

Synopsis
Checks that a value satisfies a predicate.

Description
check p x returns x if the application p x yields true. Otherwise, check p x fails.

Failure
check p x fails with Failure "check" if the predicate p yields false when applied to the

value x.

60 Chapter 1. Pre-defined ML Identifiers

Example

check is_var ‘x:bool‘;;
val it : term = ‘x‘
check is_var ‘x + 2‘;;
Exception: Failure "check".

Uses
Can be used to filter out candidates from a set of terms, e.g. to apply theorem-tactics to

assumptions with a certain pattern.

See also
can.

choose

choose : (’a, ’b) func -> ’a * ’b

Synopsis
Picks an arbitrary element from the graph of a finite partial function.

Description
This is one of a suite of operations on finite partial functions, type (’a,’b)func. These

may sometimes be preferable to ordinary functions since they permit more operations

such as equality comparison, extraction of domain etc. If f is a finite partial function,

choose f picks an arbitrary pair of values from its graph, i.e. a pair x,y where f maps x

to y. The particular choice is implementation-defined, and it is not likely to be the most

obvious ‘first’ value.

Failure
Fails if and only if the finite partial function is completely undefined.

Example

let f = itlist I [1 |-> 2; 2 |-> 3; 3 |-> 4] undefined;;
val f : (int, int) func = <func>
choose f;;
val it : int * int = (2, 3)

See also
|->, |=>, apply, applyd, combine, defined, dom, foldl, foldr, graph,
is_undefined, mapf, ran, tryapplyd, undefine, undefined.

CHOOSE TAC 61

CHOOSE_TAC

CHOOSE_TAC : thm_tactic

Synopsis
Adds the body of an existentially quantified theorem to the assumptions of a goal.

Description
When applied to a theorem A’ |- ?x. t and a goal, CHOOSE_TAC adds t[x’/x] to the

assumptions of the goal, where x’ is a variant of x which is not free in the assumption

list; normally x’ is just x.

A ?- u
==================== CHOOSE_TAC (A’ |- ?x. t)
A u {t[x’/x]} ?- u

Unless A’ is a subset of A, this is not a valid tactic.

Failure
Fails unless the given theorem is existentially quantified.

Example
Suppose we have a goal asserting that the output of an electrical circuit (represented as

a boolean-valued function) will become high at some time:

?- ?t. output(t)

and we have the following theorems available:

t1 = |- ?t. input(t)
t2 = !t. input(t) ==> output(t+1)

Then the goal can be solved by the application of:

CHOOSE_TAC t1 THEN EXISTS_TAC ‘t+1‘ THEN
UNDISCH_TAC ‘input (t:num) :bool‘ THEN MATCH_ACCEPT_TAC t2

See also
CHOOSE_THEN, X_CHOOSE_TAC.

62 Chapter 1. Pre-defined ML Identifiers

CHOOSE_THEN

CHOOSE_THEN : thm_tactical

Synopsis

Applies a tactic generated from the body of existentially quantified theorem.

Description

When applied to a theorem-tactic ttac, an existentially quantified theorem A’ |- ?x. t,

and a goal, CHOOSE_THEN applies the tactic ttac (t[x’/x] |- t[x’/x]) to the goal, where

x’ is a variant of x chosen not to be free in the assumption list of the goal. Thus if:

A ?- s1
========= ttac (t[x’/x] |- t[x’/x])
B ?- s2

then

A ?- s1
========== CHOOSE_THEN ttac (A’ |- ?x. t)
B ?- s2

This is invalid unless A’ is a subset of A.

Failure

Fails unless the given theorem is existentially quantified, or if the resulting tactic fails

when applied to the goal.

Example

This theorem-tactical and its relatives are very useful for using existentially quantified

CHOOSE 63

theorems. For example one might use the inbuilt theorem

LT_EXISTS = |- !m n. m < n <=> (?d. n = m + SUC d)

to help solve the goal

g ‘x < y ==> 0 < y * y‘;;

by starting with the following tactic

e(DISCH_THEN(CHOOSE_THEN SUBST1_TAC o REWRITE_RULE[LT_EXISTS]));;

reducing the goal to

val it : goalstack = 1 subgoal (1 total)

‘0 < (x + SUC d) * (x + SUC d)‘

which can then be finished off quite easily, by, for example just ARITH_TAC, or

e(REWRITE_TAC[ADD_CLAUSES; MULT_CLAUSES; LT_0]);;

See also
CHOOSE_TAC, X_CHOOSE_THEN.

CHOOSE

CHOOSE : term * thm -> thm -> thm

Synopsis
Eliminates existential quantification using deduction from a particular witness.

Description
When applied to a term-theorem pair (v,A1 |- ?x. s) and a second theorem of the form

A2 u {s[v/x]} |- t, the inference rule CHOOSE produces the theorem A1 u A2 |- t.

A1 |- ?x. s[x] A2 u {s[v/x]} |- t
--------------------------------------- CHOOSE (‘v‘,(A1 |- ?x. s))

A1 u A2 |- t

Where v is not free in A2 or t.

64 Chapter 1. Pre-defined ML Identifiers

Failure
Fails unless the terms and theorems correspond as indicated above; in particular, 1) v must

be a variable and have the same type as the variable existentially quantified over, and it

must not be free in A2 or t; 2) the second theorem must have s[v/x] in its assumptions.

Comments
For the special case of simply existentially quantifying an assumption over a variable,

SIMPLE_CHOOSE is easier.

See also
CHOOSE_TAC, EXISTS, EXISTS_TAC, SIMPLE_CHOOSE.

chop_list

chop_list : int -> ’a list -> ’a list * ’a list

Synopsis
Chops a list into two parts at a specified point.

Description
chop_list i [x1;...;xn] returns ([x1;...;xi],[x(i+1);...;xn]).

Failure
Fails with chop_list if i is negative or greater than the length of the list.

Example

chop_list 3 [1;2;3;4;5];;
val it : int list * int list = ([1; 2; 3], [4; 5])

See also
partition.

CNF_CONV

CNF_CONV : conv

COMB2 CONV 65

Synopsis
Converts a term already in negation normal form into conjunctive normal form.

Description
When applied to a term already in negation normal form (see NNF_CONV), meaning that all

other propositional connectives have been eliminated in favour of conjunction, disjunction

and negation, and negation is only applied to atomic formulas, CNF_CONV puts the term

into an equivalent conjunctive normal form, which is a right-associated conjunction of

disjunctions without repetitions. No reduction by subsumption is performed, however,

e.g. from a /\ (a \/ b) to just a).

Failure
Never fails; non-Boolean terms will just yield a reflexive theorem.

Example

CNF_CONV ‘(a /\ b) \/ (a /\ b /\ c) \/ d‘;;
val it : thm =
|- a /\ b \/ a /\ b /\ c \/ d <=>

(a \/ d) /\ (a \/ b \/ d) /\ (a \/ c \/ d) /\ (b \/ d) /\ (b \/ c \/ d)

See also
DNF_CONV, NNF_CONV, WEAK_CNF_CONV, WEAK_DNF_CONV.

COMB2_CONV

COMB2_CONV : (term -> thm) -> (term -> thm) -> term -> thm

Synopsis
Applies two conversions to the two sides of an application.

Description
If c1 and c2 are conversions such that c1 ‘f‘ returns |- f = f’ and c2 ‘x‘ returns

|- x = x’, then COMB_CONV c1 c2 ‘f x‘ returns |- f x = f’ x’. That is, the conversions

c1 and c2 are applied respectively to the two immediate subterms.

Failure
Never fails when applied to the initial conversions. On application to the term, it fails if

either c1 or c2 does, or if either returns a theorem that is of the wrong form.

66 Chapter 1. Pre-defined ML Identifiers

See also
BINOP_CONV, COMB_CONV, LAND_CONV, RAND_CONV, RATOR_CONV

COMB_CONV

COMB_CONV : conv -> conv

Synopsis
Applies a conversion to the two sides of an application.

Description
If c is a conversion such that c ‘f‘ returns |- f = f’ and c ‘x‘ returns |- x = x’, then

COMB_CONV c ‘f x‘ returns |- f x = f’ x’. That is, the conversion c is applied to the

two immediate subterms.

Failure
Never fails when applied to the initial conversion. On application to the term, it fails if

conversion given as the argument does, or if the theorem returned by it is inappropriate.

See also
BINOP_CONV, COMB2_CONV, LAND_CONV, RAND_CONV, RATOR_CONV

combine

combine : (’a -> ’a -> ’a) -> (’a -> bool) -> (’b, ’a) func -> (’b, ’a) func -> (’b, ’a) func

Synopsis
Combine together two finite partial functions using symmetric pointwise operation.

Description
This is one of a suite of operations on finite partial functions, type (’a,’b)func. These

may sometimes be preferable to ordinary functions since they permit more operations such

as equality comparison, extraction of domain etc. If f and g are finite partial functions,

then combine op z f g will combine them together in the following somewhat complicated

way. If just one of the functions f and g is defined at point x, that will give the value of

the combined function. If both f and g are defined at x with values y1 and y2, the value of

comment token 67

the combined function will be op y1 y2, or possibly y = op y2 y1 (hence, the operation

op should be symmetric). However, if the resulting value y satisfies the predicate z, the

new function will be undefined at that point; the intuition is that the two values y1 and

y2 cancel each other out.

Failure
Can only fail if the given operation fails.

Example

let f = itlist I [1 |-> 2; 2 |-> 3; 3 |-> 6] undefined
and g = itlist I [1 |-> 5; 2 |-> -3] undefined;;

val f : (int, int) func = <func>
val g : (int, int) func = <func>

graph(combine (+) (fun x -> x = 0) f g);;
val it : (int * int) list = [(1, 7); (3, 6)]

Uses
When finite partial functions are used to represent values with a numeric domain (e.g.

matrices or polynomials), this can be used to perform addition pointwise by using addition

for the op argument. Using a zero test as the predicate z will ensure that no zero values

are included in the result, giving a canonical representation.

See also
|->, |=>, apply, applyd, choose, defined, dom, foldl, foldr, graph,
is_undefined, mapf, ran, tryapplyd, undefine, undefined.

comment_token

comment_token : lexcode ref

Synopsis
HOL Light comment token.

Description
Users may insert comments in HOL Light terms that are ignored in parsing. Comments

are introduced by a special comment token and terminated by the next end of line. (There

are no multi-line comments supported in HOL Light terms.) The reference comment_token

stores the token that introduces a comment, which by default is Resword "//" as in BCPL,

68 Chapter 1. Pre-defined ML Identifiers

C++, Java etc. The user may change it to another token, though this should be done

with care in case other proofs break.

Failure
Not applicable.

Example
Here we change the comment token to be ‘--’ (as used in Ada, Eiffel, Haskell, Occam and

several other programming languages):

comment_token := Ident "--";;
val it : unit = ()

and we can test that it works:

‘let wordsize = 32 -- may change to 64 later
and radix = 2 -- only care about binary
in radix EXP wordsize‘;;

val it : term = ‘let wordsize = 32 and radix = 2 in radix EXP wordsize‘

Comments
Comments are handled at the level of the lexical analyzer, so can also be used in types

and the strings used for the specification of inductive types.

See also
define_type, lex, parse_inductive_type_specification, parse_term, parse_type.

compose_insts

compose_insts : instantiation -> instantiation -> instantiation

Synopsis
Compose two instantiations.

Description
Given two instantiations i1 and i2 (with type instantiation, as returned by term_match

for example), the call compose_insts i1 i2 will give a new instantiation that results from

composing them, with i1 applied first and then i2. For example, instantiate (compose_insts i1 i2) t

should be the same as instantiate i2 (instantiate i1 t).

concl 69

Failure
Never fails.

Comments
Mostly of specialized interest; used in sequencing tactics like THEN to compose metavariable

instantiations.

See also
instantiate, INSTANTIATE, INSTANTIATE_ALL, inst_goal, PART_MATCH, term_match.

concl

concl : thm -> term

Synopsis
Returns the conclusion of a theorem.

Description
When applied to a theorem A |- t, the function concl returns t.

Failure
Never fails.

Example

ADD_SYM;;
val it : thm = |- !m n. m + n = n + m
concl ADD_SYM;;
val it : term = ‘!m n. m + n = n + m‘

concl (ASSUME ‘1 = 0‘);;
val it : term = ‘1 = 0‘

See also
dest_thm, hyp.

COND_CASES_TAC

COND_CASES_TAC : tactic

70 Chapter 1. Pre-defined ML Identifiers

Synopsis
Induces a case split on a conditional expression in the goal.

Description
COND_CASES_TAC searches for a free conditional subterm in the term of a goal, i.e. a subterm

of the form if p then u else v, choosing some topmost one if there are several. It then

induces a case split over p as follows:

A ?- t
== COND_CASES_TAC
A u {p} ?- t[T/p; u/(if p then u else v)]
A u {~p} ?- t[F/p; v/(if p then u else v)]

where p is not a constant, and the term p then u else v is free in t. Note that it both

enriches the assumptions and inserts the assumed value into the conditional.

Failure
COND_CASES_TAC fails if there is no conditional sub-term as described above.

Example
We can prove the following just by REAL_ARITH ‘!x y:real. x <= max x y‘, but it is

instructive to consider a manual proof.

g ‘!x y:real. x <= max x y‘;;
val it : goalstack = 1 subgoal (1 total)

‘!x y. x <= max x y‘

e(REPEAT GEN_TAC THEN REWRITE_TAC[real_max]);;’
val it : goalstack = 1 subgoal (1 total)

‘x <= (if x <= y then y else x)‘

e COND_CASES_TAC;;
val it : goalstack = 1 subgoal (1 total)

0 [‘~(x <= y)‘]

‘x <= x‘

Uses
Useful for case analysis and replacement in one step, when there is a conditional sub-term

in the term part of the goal. When there is more than one such sub-term and one in

particular is to be analyzed, COND_CASES_TAC cannot always be depended on to choose the

COND ELIM CONV 71

‘desired’ one. It can, however, be used repeatedly to analyze all conditional sub-terms of

a goal.

Comments
Note that logically it should only be necessary for p to be free in the whole term, not the

two branches x and y. However, as an artifact of the current implementation, we need

them to be free too. The more sophisticated conversion CONDS_ELIM_CONV handles this

better.

See also
ASM_CASES_TAC, COND_ELIM_CONV, CONDS_ELIM_CONV, DISJ_CASES_TAC,
STRUCT_CASES_TAC.

COND_ELIM_CONV

COND_ELIM_CONV : term -> thm

Synopsis
Conversion to eliminate one free conditional subterm.

Description
When applied to a term ‘....(if p then x else y)...‘ containing a free conditional

subterm, COND_ELIM_CONV returns a theorem asserting its equivalence to a term with the

conditional eliminated:

|-(if p then x else y).... <=>
(p ==>x....) /\ (~p ==>y....)

If the term contains many free conditional subterms, a topmost one will be used.

Failure
Fails if there are no free conditional subterms.

Example
We can prove the little equivalence noted by Dijkstra in EWD1176 automatically:

REAL_ARITH ‘!a b:real. a + b >= max a b <=> a >= &0 /\ b >= &0‘;;
val it : thm = |- !a b. a + b >= max a b <=> a >= &0 /\ b >= &0

However, if our automated tools were unfamiliar with max, we might expand its defini-

72 Chapter 1. Pre-defined ML Identifiers

tion (theorem real_max) and then eliminate the resulting conditional by COND_ELIM_CONV:

COND_ELIM_CONV ‘a + b >= (if a <= b then b else a) <=> a >= &0 /\ b >= &0‘;;
val it : thm =
|- (a + b >= (if a <= b then b else a) <=> a >= &0 /\ b >= &0) <=>

(a <= b ==> (a + b >= b <=> a >= &0 /\ b >= &0)) /\
(~(a <= b) ==> (a + b >= a <=> a >= &0 /\ b >= &0))

Uses
Eliminating conditionals as a prelude to other automated proof steps that are not equipped

to handle them.

Comments
Note that logically it should only be necessary for p to be free in the whole term, not the

two branches x and y. However, as an artifact of the current implementation, we need

them to be free too. The more sophisticated CONDS_ELIM_CONV handles this better.

See also
COND_CASES_TAC, CONDS_ELIM_CONV.

CONDS_CELIM_CONV

CONDS_CELIM_CONV : conv

Synopsis
Remove all conditional expressions from a Boolean formula.

Description
When applied to a Boolean term, CONDS_CELIM_CONV identifies subterms that are condi-

tional expressions of the form ‘if p then x else y’, and eliminates them. First they are

“pulled out” as far as possible, e.g. from ‘f (if p then x else y)’ to ‘if p then f(x) else f(y)’

and so on. When a quantifier that binds one of the variables in the expression is reached,

the subterm is of Boolean type, say ‘if p then q else r’, and it is replaced by a propo-

sitional equivalent of the form ‘(~p \/ q) /\ (p \/ r)’.

Failure
Never fails, but will just return a reflexive theorem if the term is not Boolean.

CONDS ELIM CONV 73

Example

CONDS_CELIM_CONV ‘y <= z ==> !x. (if x <= y then y else x) <= z‘;;
val it : thm =
|- y <= z ==> (!x. (if x <= y then y else x) <= z) <=>

y <= z ==> (!x. (~(x <= y) \/ y <= z) /\ (x <= y \/ x <= z))

Uses
Mostly for initial normalization in automated rules, but may be helpful for other uses.

Comments
The function CONDS_ELIM_CONV is functionally similar, but will do the final propositional

splitting in a “disjunctive” rather than “conjunctive” way. The disjunctive way is usually

better when the term will subsequently be passed to a refutation procedure, whereas

the conjunctive form is better for non-refutation procedures. In each case, the policy is

changed in an appropriate way after passing through quantifiers.

See also
COND_CASES_TAC, COND_ELIM_CONV, CONDS_ELIM_CONV.

CONDS_ELIM_CONV

CONDS_ELIM_CONV : conv

Synopsis
Remove all conditional expressions from a Boolean formula.

Description
When applied to a Boolean term, CONDS_ELIM_CONV identifies subterms that are conditional

expressions of the form ‘if p then x else y’, and eliminates them. First they are “pulled

out” as far as possible, e.g. from ‘f (if p then x else y)’ to ‘if p then f(x) else f(y)’

and so on. When a quantifier that binds one of the variables in the expression is reached,

the subterm is of Boolean type, say ‘if p then q else r’, and it is replaced by a propo-

sitional equivalent of the form ‘p /\ q \/ ~p /\ r’.

Failure
Never fails, but will just return a reflexive theorem if the term is not Boolean.

74 Chapter 1. Pre-defined ML Identifiers

Example
Note that in contrast to COND_ELIM_CONV, there are no freeness restrictions, and the

Boolean split will be done inside quantifiers if necessary:

CONDS_ELIM_CONV ‘!x y. (if x <= y then y else x) <= z ==> x <= z‘;;
val it : thm =
|- (!x y. (if x <= y then y else x) <= z ==> x <= z) <=>

(!x y. ~(x <= y) \/ (y <= z ==> x <= z))

Uses
Mostly for initial normalization in automated rules, but may be helpful for other uses.

Comments
The function CONDS_CELIM_CONV is functionally similar, but will do the final propositional

splitting in a “conjunctive” rather than “disjunctive” way. The disjunctive way is usually

better when the term will subsequently be passed to a refutation procedure, whereas

the conjunctive form is better for non-refutation procedures. In each case, the policy is

changed in an appropriate way after passing through quantifiers.

See also
COND_CASES_TAC, COND_ELIM_CONV, CONDS_CELIM_CCONV.

CONJ_ACI_RULE

CONJ_ACI_RULE : term -> thm

Synopsis
Proves equivalence of two conjunctions containing same set of conjuncts.

Description
The call CONJ_ACI_RULE ‘t1 /\ ... /\ tn <=> u1 /\ ... /\ um‘, where both sides of

the equation are conjunctions of exactly the same set of conjuncts, (with arbitrary order-

ing, association, and repetitions), will return the corresponding theorem |- t1 /\ ... /\ tn <=> u1 /\ ... /\ um.

Failure
Fails if applied to a term that is not a Boolean equation or the two sets of conjuncts are

different.

CONJ CANON CONV 75

Example

CONJ_ACI_RULE ‘(a /\ b) /\ (a /\ c) <=> (a /\ (c /\ a)) /\ b‘;;
val it : thm = |- (a /\ b) /\ a /\ c <=> (a /\ c /\ a) /\ b

Comments
The same effect can be had with the more general AC construct. However, for the special

case of conjunction, CONJ_ACI_RULE is substantially more efficient when there are many

conjuncts involved.

See also
AC, CONJ_CANON_CONV, DISJ_ACI_RULE.

CONJ_CANON_CONV

CONJ_CANON_CONV : term -> thm

Synopsis
Puts an iterated conjunction in canonical form.

Description
When applied to a term, CONJ_CANON_CONV splits it into the set of conjuncts and produces

a theorem asserting the equivalence of the term and the new term with the disjuncts

right-associated without repetitions and in a canonical order.

Failure
Fails if applied to a non-Boolean term. If applied to a term that is not a conjunction, it

will trivially work in the sense of regarding it as a single conjunct and returning a reflexive

theorem.

Example

CONJ_CANON_CONV ‘(a /\ b) /\ ((b /\ d) /\ a) /\ c‘;;
val it : thm = |- (a /\ b) /\ ((b /\ d) /\ a) /\ c <=> a /\ b /\ c /\ d

See also
AC, CONJ_ACI_CONV, DISJ_CANON_CONV.

76 Chapter 1. Pre-defined ML Identifiers

CONJ

CONJ : thm -> thm -> thm

Synopsis
Introduces a conjunction.

Description

A1 |- t1 A2 |- t2
------------------------ CONJ
A1 u A2 |- t1 /\ t2

Failure
Never fails.

Example

CONJ (NUM_REDUCE_CONV ‘2 + 2‘) (ASSUME ‘p:bool‘);;
val it : thm = p |- 2 + 2 = 4 /\ p

See also
CONJUNCT1, CONJUNCT2, CONJUNCTS, CONJ_PAIR.

CONJ_PAIR

CONJ_PAIR : thm -> thm * thm

Synopsis
Extracts both conjuncts of a conjunction.

Description

A |- t1 /\ t2
---------------------- CONJ_PAIR
A |- t1 A |- t2

The two resultant theorems are returned as a pair.

CONJ TAC 77

Failure
Fails if the input theorem is not a conjunction.

Example

CONJ_PAIR(ASSUME ‘p /\ q‘);;
val it : thm * thm = (p /\ q |- p, p /\ q |- q)

See also
CONJUNCT1, CONJUNCT2, CONJ, CONJUNCTS.

CONJ_TAC

CONJ_TAC : tactic

Synopsis
Reduces a conjunctive goal to two separate subgoals.

Description
When applied to a goal A ?- t1 /\ t2, the tactic CONJ_TAC reduces it to the two subgoals

corresponding to each conjunct separately.

A ?- t1 /\ t2
====================== CONJ_TAC
A ?- t1 A ?- t2

Failure
Fails unless the conclusion of the goal is a conjunction.

See also
STRIP_TAC.

CONJUNCT1

CONJUNCT1 : thm -> thm

78 Chapter 1. Pre-defined ML Identifiers

Synopsis
Extracts left conjunct of theorem.

Description

A |- t1 /\ t2
--------------- CONJUNCT1

A |- t1

Failure
Fails unless the input theorem is a conjunction.

Example

CONJUNCT1(ASSUME ‘p /\ q‘);;
val it : thm = p /\ q |- p

See also
CONJ_PAIR, CONJUNCT2, CONJ, CONJUNCTS.

CONJUNCT2

CONJUNCT2 : thm -> thm

Synopsis
Extracts right conjunct of theorem.

Description

A |- t1 /\ t2
--------------- CONJUNCT2

A |- t2

Failure
Fails unless the input theorem is a conjunction.

Example

CONJUNCT2(ASSUME ‘p /\ q‘);;
val it : thm = p /\ q |- q

See also
CONJ_PAIR, CONJUNCT1, CONJ, CONJUNCTS.

conjuncts 79

conjuncts

conjuncts : term -> term list

Synopsis
Iteratively breaks apart a conjunction.

Description
If a term t is a conjunction p /\ q, then conjuncts t will recursively break down p and

q into conjuncts and append the resulting lists. Otherwise it will return the singleton list

[t]. So if t is of the form t1 /\ ... /\ tn with any reassociation, no ti itself being a

conjunction, the list returned will be [t1; ...; tn]. But

conjuncts(list_mk_conj([t1;...;tn]))

will not return [t1;...;tn] if any of t1,...,tn is a conjunction.

Failure
Never fails, even if the term is not boolean.

Example

conjuncts ‘((p /\ q) /\ r) /\ ((p /\ s /\ t) /\ u)‘;;
val it : term list = [‘p‘; ‘q‘; ‘r‘; ‘p‘; ‘s‘; ‘t‘; ‘u‘]

conjuncts(list_mk_conj [‘a /\ b‘; ‘c:bool‘; ‘d /\ e /\ f‘]);;
val it : term list = [‘a‘; ‘b‘; ‘c‘; ‘d‘; ‘e‘; ‘f‘]

Comments
Because conjuncts splits both the left and right sides of a conjunction, this operation

is not the inverse of list_mk_conj. You can also use splitlist dest_conj to split in a

right-associated way only.

See also
dest_conj, disjuncts, is_conj.

CONJUNCTS_THEN2

CONJUNCTS_THEN2 : thm_tactic -> thm_tactic -> thm_tactic

80 Chapter 1. Pre-defined ML Identifiers

Synopsis
Applies two theorem-tactics to the corresponding conjuncts of a theorem.

Description
CONJUNCTS_THEN2 takes two theorem-tactics, f1 and f2, and a theorem t whose conclu-

sion must be a conjunction. CONJUNCTS_THEN2 breaks t into two new theorems, t1 and

t2 which are CONJUNCT1 and CONJUNCT2 of t respectively, and then returns the tactic

f1 t1 THEN f2 t2. Thus

CONJUNCTS_THEN2 f1 f2 (A |- l /\ r) = f1 (A |- l) THEN f2 (A |- r)

so if

A1 ?- t1 A2 ?- t2
========== f1 (A |- l) ========== f2 (A |- r)
A2 ?- t2 A3 ?- t3

then

A1 ?- t1
========== CONJUNCTS_THEN2 f1 f2 (A |- l /\ r)
A3 ?- t3

Failure
CONJUNCTS_THEN f will fail if applied to a theorem whose conclusion is not a conjunction.

Uses
The construction of complex tacticals like CONJUNCTS_THEN.

See also
CONJUNCT1, CONJUNCT2, CONJUNCTS, CONJUNCTS_TAC, CONJUNCTS_THEN2,
STRIP_THM_THEN.

CONJUNCTS_THEN

CONJUNCTS_THEN : thm_tactical

Synopsis
Applies a theorem-tactic to each conjunct of a theorem.

CONJUNCTS 81

Description
CONJUNCTS_THEN takes a theorem-tactic ttac, and a theorem t whose conclusion must

be a conjunction. CONJUNCTS_THEN breaks t into two new theorems, t1 and t2 which are

CONJUNCT1 and CONJUNCT2 of t respectively, and then returns a new tactic: ttac t1 THEN ttac t2.

That is,

CONJUNCTS_THEN ttac (A |- l /\ r) = ttac (A |- l) THEN ttac (A |- r)

so if

A1 ?- t1 A2 ?- t2
========== ttac (A |- l) ========== ttac (A |- r)
A2 ?- t2 A3 ?- t3

then

A1 ?- t1
========== CONJUNCTS_THEN ttac (A |- l /\ r)
A3 ?- t3

Failure
CONJUNCTS_THEN ttac will fail if applied to a theorem whose conclusion is not a conjunc-

tion.

Comments
CONJUNCTS_THEN ttac (A |- u1 /\ ... /\ un) results in the tactic:

ttac (A |- u1) THEN ttac (A |- u2 /\ ... /\ un)

The iterated effect:

ttac (A |- u1) THEN ... THEN ttac(A |- un)

can be achieved by

REPEAT_TCL CONJUNCTS_THEN ttac (A |- u1 /\ ... /\ un)

See also
CONJUNCT1, CONJUNCT2, CONJUNCTS, CONJUNCTS_TAC, CONJUNCTS_THEN2,
STRIP_THM_THEN.

CONJUNCTS

CONJUNCTS : thm -> thm list

82 Chapter 1. Pre-defined ML Identifiers

Synopsis
Recursively splits conjunctions into a list of conjuncts.

Description
Flattens out all conjuncts, regardless of grouping. Returns a singleton list if the input

theorem is not a conjunction.

A |- t1 /\ t2 /\ ... /\ tn
----------------------------------- CONJUNCTS
A |- t1 A |- t2 ... A |- tn

Failure
Never fails.

Example

CONJUNCTS(ASSUME ‘(x /\ y) /\ z /\ w‘);;
val it : thm list =
[(x /\ y) /\ z /\ w |- x; (x /\ y) /\ z /\ w |- y; (x /\ y) /\ z /\ w
|- z; (x /\ y) /\ z /\ w |- w]

See also
CONJ, CONJUNCT1, CONJUNCT2, CONJ_PAIR.

constants

constants : unit -> (string * hol_type) list

Synopsis
Returns a list of the constants currently defined.

Description
The call

constants();;

returns a list of all the constants that have been defined so far.

Failure
Never fails.

CONTRAPOS CONV 83

See also
axioms, binders, infixes.

CONTRAPOS_CONV

CONTRAPOS_CONV : term -> thm

Synopsis
Proves the equivalence of an implication and its contrapositive.

Description
When applied to an implication ‘p ==> q‘, the conversion CONTRAPOS_CONV returns the

theorem:

|- (p ==> q) <=> (~q ==> ~p)

Failure
Fails if applied to a term that is not an implication.

Comments
The same effect can be had by GEN_REWRITE_CONV I [GSYM CONTRAPOS_THM]

See also
CONTRAPOS.

CONTR

CONTR : term -> thm -> thm

Synopsis
Implements the intuitionistic contradiction rule.

84 Chapter 1. Pre-defined ML Identifiers

Description
When applied to a term t and a theorem A |- F, the inference rule CONTR returns the

theorem A |- t.

A |- F
-------- CONTR ‘t‘
A |- t

Failure
Fails unless the term has type bool and the theorem has F as its conclusion.

Example

let th = REWRITE_RULE[ARITH] (ASSUME ‘1 = 0‘);;
val th : thm = 1 = 0 |- F

CONTR ‘Russell:Person = Pope‘ th;;
val it : thm = 1 = 0 |- Russell = Pope

See also
CCONTR, CONTR_TAC, NOT_ELIM.

CONTR_TAC

CONTR_TAC : thm_tactic

Synopsis
Solves any goal from contradictory theorem.

Description
When applied to a contradictory theorem A’ |- F, and a goal A ?- t, the tactic CONTR_TAC

completely solves the goal. This is an invalid tactic unless A’ is a subset of A.

A ?- t
======== CONTR_TAC (A’ |- F)

Uses
One quite common pattern is to use a contradictory hypothesis via FIRST_ASSUM CONTR_TAC.

CONV RULE 85

Failure
Fails unless the theorem is contradictory, i.e. has F as its conclusion.

See also
CHECK_ASSUME_TAC, CONTR, CCONTR, CONTRAPOS, NOT_ELIM.

CONV_RULE

CONV_RULE : conv -> thm -> thm

Synopsis
Makes an inference rule from a conversion.

Description
If c is a conversion, then CONV_RULE c is an inference rule that applies c to the conclu-

sion of a theorem. That is, if c maps a term ‘t‘ to the theorem |- t = t’, then the

rule CONV_RULE c infers |- t’ from the theorem |- t. More precisely, if c ‘t‘ returns

A’ |- t = t’, then:

A |- t
-------------- CONV_RULE c
A u A’ |- t’

Note that if the conversion c returns a theorem with assumptions, then the resulting

inference rule adds these to the assumptions of the theorem it returns.

Failure
CONV_RULE c th fails if c fails when applied to the conclusion of th. The function returned

by CONV_RULE c will also fail if the ML function c is not, in fact, a conversion (i.e. a

function that maps a term t to a theorem |- t = t’).

Example

CONV_RULE BETA_CONV (ASSUME ‘(\x. x < 2) 1‘);;
val it : thm = (\x. x < 2) 1 |- 1 < 2

See also
CONV_TAC.

86 Chapter 1. Pre-defined ML Identifiers

CONV_TAC

CONV_TAC : conv -> tactic

Synopsis

Makes a tactic from a conversion.

Description

If c is a conversion, then CONV_TAC c is a tactic that applies c to the goal. That is, if c

maps a term ‘g‘ to the theorem |- g = g’, then the tactic CONV_TAC c reduces a goal g

to the subgoal g’. More precisely, if c ‘g‘ returns A’ |- g = g’, then:

A ?- g
=============== CONV_TAC c

A ?- g’

In the special case where ‘g‘ is ‘T‘, the call immediately solves the goal rather than

generating a subgoal A ?- T. And in a slightly liberal interpretation of “conversion”, the

conversion may also just prove the goal and return A’ |- g, in which case again the goal

will be completely solved.

Note that in all cases the conversion c should return a theorem whose assumptions are

also among the assumptions of the goal (normally, the conversion will returns a theorem

with no assumptions). CONV_TAC does not fail if this is not the case, but the resulting

tactic will be invalid, so the theorem ultimately proved using this tactic will have more

assumptions than those of the original goal.

Failure

CONV_TAC c applied to a goal A ?- g fails if c fails when applied to the term g. The

function returned by CONV_TAC c will also fail if the function c is not, in fact, a conversion

(i.e. a function that maps a term t to a theorem |- t = t’).

Uses

CONV_TAC can be used to apply simplifications that can’t be expressed as equations (rewrite

current goalstack 87

rules). For example, a goal:

g ‘abs(pi - &22 / &7) <= abs(&355 / &113 - &22 / &7)‘;;

can be simplified by rational number arithmetic:

e(CONV_TAC REAL_RAT_REDUCE_CONV);;
val it : goalstack = 1 subgoal (1 total)

‘abs (pi - &22 / &7) <= &1 / &791‘

It is also handy for invoking decision procedures that only have a “rule” form, and no

special “tactic” form. (Indeed, the tactic form can be defined in terms of the rule form

by using CONV_TAC.) For example, the goal:

g ‘!x:real. &0 < x ==> &1 / x - &1 / (x + &1) = &1 / (x * (x + &1))‘;;

can be solved by:

e(CONV_TAC REAL_FIELD);;
...
val it : goalstack = No subgoals

See also
CONV_RULE.

current_goalstack

current_goalstack : goalstack ref

Synopsis
Reference variable holding current goalstack.

Description
The reference variable current_goalstack contains the current goalstack. A goalstack is

a type containing a list of goalstates.

Failure
Not applicable.

88 Chapter 1. Pre-defined ML Identifiers

Comments
Users will probably not often want to examine this variable explicitly, since various proof

commands modify it in various ways.

See also
b, g, e, r.

curry

curry : (’a * ’b -> ’c) -> ’a -> ’b -> ’c

Synopsis
Converts a function on a pair to a corresponding curried function.

Description
The application curry f returns \x y. f(x,y), so that

curry f x y = f(x,y)

Failure
Never fails.

Example

curry mk_var;;
val it : string -> hol_type -> term = <fun>
it "x";;
val it : hol_type -> term = <fun>
it ‘:bool‘;;
val it : term = ‘x‘

See also
uncurry.

decreasing

decreasing : (’a -> ’b) -> ’a -> ’a -> bool

DEDUCT ANTISYM RULE 89

Synopsis
When applied to a “measure” function f, the call increasing f returns a binary function

ordering elements in a call increasing f x y by f(y) <? f(x), where the ordering <? is

the OCaml polymorphic ordering.

Failure
Never fails unless the measure function does.

Example

let nums = -5 -- 5;;
val nums : int list = [-5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5]
sort (decreasing abs) nums;;
val it : int list = [5; -5; 4; -4; 3; -3; 2; -2; 1; -1; 0]

See also
<?, increasing, sort.

DEDUCT_ANTISYM_RULE

DEDUCT_ANTISYM_RULE : thm -> thm -> thm

Synopsis
Deduces logical equivalence from deduction in both directions.

Description
When applied to two theorems, this rule deduces logical equivalence between their con-

clusions with a modified assumption list:

A |- q B |- p

(A - {p}) u (B - {q}) |- p <=> q

The special case when A = {p} and B = {q} is perhaps the easiest to understand:

{p} |- q {q} |- p

|- p <=> q

Failure
Never fails.

90 Chapter 1. Pre-defined ML Identifiers

Example

let th1 = SYM(ASSUME ‘x:num = y‘)
and th2 = SYM(ASSUME ‘y:num = x‘);;

val th1 : thm = x = y |- y = x
val th2 : thm = y = x |- x = y
DEDUCT_ANTISYM_RULE th1 th2;;
val it : thm = |- y = x <=> x = y

Comments
This is one of HOL Light’s 10 primitive inference rules.

See also
IMP_ANTISYM_RULE, PROVE_HYP.

deep_alpha

deep_alpha : (string * string) list -> term -> term

Synopsis
Modify bound variable according to renaming scheme.

Description
When applied to a list of string-string pairs

deep_alpha ["x1’","x1"; ...; "xn’","xn"]

a conversion results that will attempt to traverse a term and systematically replace any

bound variable called xi with one called xi’. It will quietly do nothing in cases where

that is impossible because of variable capture.

Example

deep_alpha ["x’","x"; "y’","y"] ‘?x. x <=> !y. y = y‘;;
Warning: inventing type variables
val it : term = ‘?x’. x’ <=> (!y’. y’ = y’)‘

Comments
This is used inside PART_MATCH to try to achieve a resonable correspondence in bound

defined 91

variable names, e.g. so that the bound variable is still called ‘n’ rather than ‘x’ here:

REWR_CONV NOT_FORALL_THM ‘~(!n. n < m)‘;;
val it : thm = |- ~(!n. n < m) <=> (?n. ~(n < m))

See also
alpha, PART_MATCH.

defined

defined : (’a, ’b) func -> ’a -> bool

Synopsis
Tests if a finite partial function is defined on a certain domain value.

Description
This is one of a suite of operations on finite partial functions, type (’a,’b)func. These

may sometimes be preferable to ordinary functions since they permit more operations

such as equality comparison, extraction of domain etc. The call defined f x returns true

if the finite partial function f is defined on domain value x, and false otherwise.

Failure
Never fails.

Example

defined (1 |=> 2) 1;;
val it : bool = true

defined (1 |=> 2) 2;;
val it : bool = false

defined undefined 1;;
val it : bool = false

See also
|->, |=>, apply, applyd, choose, combine, defined, dom, foldl, foldr, graph,
is_undefined, mapf, ran, tryapplyd, undefined.

92 Chapter 1. Pre-defined ML Identifiers

define

define : term -> thm

Synopsis
Defines a general recursive function.

Description
The function define should be applied to a conjunction of ‘definitional’ clauses ‘def_1[f] /\ ... /\ def_n[f]‘

for some variable f, where each clause def_i is a universally quantified equation with an

application of f to arguments on the left-hand side. The idea is that these clauses define

the action of f on arguments of various kinds, for example on an empty list and nonempty

list:

(f [] = a) /\ (!h t. CONS h t = k[f,h,t])

or on even numbers and odd numbers:

(!n. f(2 * n) = a[f,n]) /\ (!n. f(2 * n + 1) = b[f,n])

The define function attempts to prove that there is indeed a function satisfying all

these properties, and if it succceeds it defines a new function f and returns the input term

with the variable f replaced by the newly defined constant.

Failure
Fails if the definition is malformed or if some of the necessary conditions for the definition

to be admissible cannot be proved automatically, or if there is already a constant of the

given name.

Example
This is a ‘multifactorial’ function:

define
‘multifactorial m n =

if m = 0 then 1
else if n <= m then n else n * multifactorial m (n - m)‘;;

val it : thm =
|- multifactorial m n =

(if m = 0 then 1 else if n <= m then n else n * multifactorial m (n - m))

Note that it fails without the m = 0 guard because then there’s no reason to suppose

that n - m decreases and hence the recursion is apparently illfounded. Perhaps a more

define finite type 93

surprising example is the Collatz function:

define
‘!n. collatz(n) = if n <= 1 then n

else if EVEN(n) then collatz(n DIV 2)
else collatz(3 * n + 1)‘;;

Note that the definition was made successfully because there provably is a function

satisfying these recursion equations, notwithstanding the fact that it is unknown whether

the recursion is wellfounded. (Tail-recursive functions are always logically consistent,

though they may not have any useful provable properties.)

Comments
Assuming the definition is well-formed and the constant name is unused, failure indicates

that define was unable to prove one or both of the following two properties: (i) the clauses

are not mutually inconsistent (more than one clause could apply to some arguments, and

the results are not obviously the same), or (ii) the definition is recursive and no ordering

justifying the recursion could be arrived at by the automated heuristic. In order to

make progress in such cases, try applying prove_recursive_function_exists to the same

definition with existential quantification over f, to see the unproven side-conditions. An

example is in the documentation for prove_recursive_function_exists.

See also
new_definition, new_recursive_definition, new_specification,
prove_recursive_function_exists.

define_finite_type

define_finite_type : int -> thm

Synopsis
Defines a new type of a specified finite size.

Description
The call define_finite_type n where n is a positive integer defines a new type also called

simply ‘n’, and returns a theorem asserting that its universe has size n, in the form:

|- (:n) HAS_SIZE n

where (:n) is the customary HOL Light printing of the universe set UNIV:n->bool.

94 Chapter 1. Pre-defined ML Identifiers

Failure
Fails if n is zero or negative, or if there is a type of the same name (unless it was also

defined by the same call for define_finite_type, which is perfectly permissible), or if the

names of the type constructor and destructor functions are already in use:

mk_auto_define_finite_type_n:num->n
dest_auto_define_finite_type_n:32->num

Example
Here we define a 32-element type, perhaps useful for indexing the bits of a word:

define_finite_type 32;;
val it : thm = |- (:32) HAS_SIZE 32

Uses
In conjunction with Cartesian powers such as real^3, where only the size of the indexing

type is relevant and the simple name n is intuitive.

See also
define_type, new_type_definition.

define_quotient_type

define_quotient_type : string -> string * string -> term -> thm * thm

Synopsis
Defines a quotient type based on given equivalence relation.

Description
The call define_quotient_type "qty" ("abs","rep") ‘R‘, where R:A->A->bool is a bi-

nary relation, defines a new “quotient type” :qty and two new functions abs:(A->bool)->qty

and rep:qty->(A->bool), and returns the pair of theorems |- abs(rep a) = a and |- (?x. r = R x) <=> rep(abs r) = r.

Normally, R will be an equivalence relation (reflexive, symmetric and transitive), in which

case the quotient type will be in bijection with the set of R-equivalence classes.

Failure
Fails if there is already a type qty or if either abs or rep is already in use as a constant.

define quotient type 95

Example
For some purposes we may want to use “multisets” or “bags”. These are like sets in that

order is irrelevant, but like lists in that multiplicity is counted. We can define a type of

finite multisets as a quotient of lists by the relation:

let multisame = new_definition
‘multisame l1 l2 <=> !a:A. FILTER (\x. x = a) l1 = FILTER (\x. x = a) l2‘;;

as follows:

let multiset_abs,multiset_rep =
define_quotient_type "multiset" ("multiset_of_list","list_of_multiset")
‘multisame:A list -> A list -> bool‘;;

val multiset_abs : thm = |- multiset_of_list (list_of_multiset a) = a
val multiset_rep : thm =
|- (?x. r = multisame x) <=> list_of_multiset (multiset_of_list r) = r

For development of this example, see the documentation entries for lift_function and

lift_theorem (in that order). Similarly we could define a type of finite sets by:

define_quotient_type "finiteset" ("finiteset_of_list","list_of_finiteset")
‘\l1 l2. !a:A. MEM a l1 <=> MEM a l2‘;;
val it : thm * thm =
(|- finiteset_of_list (list_of_finiteset a) = a,
|- (?x. r = (\l1 l2. !a. MEM a l1 <=> MEM a l2) x) <=>

list_of_finiteset (finiteset_of_list r) = r)

Uses
Convenient creation of quotient structures. Using related functions lift_function and

lift_theorem, functions, relations and theorems can be lifted from the representing type

to the type of equivalence classes. As well as those shown above, characteristic appli-

cations are the definition of rationals as equivalence classes of pairs of integers under

cross-multiplication, or of ‘directions’ as equivalence classes of vectors under parallelism.

Comments
If R is not an equivalence relation, the basic operation of define_quotient_type will

work equally well, but the usefulness of the new type will be limited. In particular,

lift_function and lift_theorem may not be usable.

See also
lift_function, lift_theorem.

96 Chapter 1. Pre-defined ML Identifiers

define_type

define_type : string -> thm * thm

Synopsis
Automatically define user-specified inductive data types.

Description
The function define_type automatically defines an inductive data type or a mutually

inductive family of them. These may optionally contain nested instances of other inductive

data types. The function returns two theorems that together identify the type up to

isomorphism. The input is just a string indicating the desired pattern of recursion. The

simplest case where we define a single type is:

"op = C1 ty ... ty | C2 ty ... ty | ... | Cn ty ... ty"

where op is the name of the type constant or type operator to be defined, C1, ..., Cn are

identifiers, and each ty is either a (logical) type expression valid in the current theory (in

which case ty must not contain op) or just the identifier ”op’ itself.

A string of this form describes an n-ary type operator op, where n is the number of

distinct type variables in the types ty on the right hand side of the equation. If n is zero

then op is a type constant; otherwise op is an n-ary type operator. The type described by

the specification has n distinct constructors C1, ..., Cn. Each constructor Ci is a function

that takes arguments whose types are given by the associated type expressions ty in the

specification. If one or more of the type expressions ty is the type op itself, then the

equation specifies a recursive data type. In any specification, at least one constructor

must be non-recursive, i.e. all its arguments must have types which already exist in the

current theory.

Each of the types ty above may be built from the type being defined using other

inductive type operators already defined, e.g. list. Moreover, one can actually have a

mutually recursive family of types, where the format is a sequence of specifications in the

above form separated by semicolons:

"op1 = C1_1 ty ... ty | C1_2 ty ... ty | ... | C1_n1 ty ... ty;
op2 = C2_1 ty ... ty | ... | C2_n2 ty ... ty;
...
opk = Ck_1 ty ... ty | ... | ... | Ck_nk ty ... ty"

Given a type specification of the form described above, define_type makes an appro-

priate type definition for the type operator or type operators. It then makes appropriate

define type 97

definitions for the constants Ci_j and automatically proves and returns two theorems that

characterize the type up to isomorphism. Roughly, the first theorem allows one to prove

properties over the new (family of) types by (mutual) induction, while the latter allows

one to defined functions by recursion. Rather than presenting these in full generality, it

is probably easier to consider some simple examples.

Failure

The evaluation fails if one of the types or constructor constants is already defined, or if

there are certain improper kinds of recursion, e.g. involving function spaces of one of the

types being defined.

Example

The following call to define_type defines tri to be a simple enumerated type with exactly

three distinct values:

define_type "tri = ONE | TWO | THREE";;
val it : thm * thm =
(|- !P. P ONE /\ P TWO /\ P THREE ==> (!x. P x),
|- !f0 f1 f2. ?fn. fn ONE = f0 /\ fn TWO = f1 /\ fn THREE = f2)

The theorem returned is a degenerate ‘primitive recursion’ theorem for the concrete type

tri. An example of a recursive type that can be defined using define_type is a type of

binary trees:

define_type "btree = LEAF A | NODE btree btree";;
val it : thm * thm =
(|- !P. (!a. P (LEAF a)) /\ (!a0 a1. P a0 /\ P a1 ==> P (NODE a0 a1))

==> (!x. P x),
|- !f0 f1.

?fn. (!a. fn (LEAF a) = f0 a) /\
(!a0 a1. fn (NODE a0 a1) = f1 a0 a1 (fn a0) (fn a1)))

The theorem returned by define_type in this case asserts the unique existence of func-

tions defined by primitive recursion over labelled binary trees. For an example of nested

recursion, here we use the type of lists in a nested fashion to define a type of first-order

98 Chapter 1. Pre-defined ML Identifiers

terms:

define_type "term = Var num | Fn num (term list)";;
val it : thm * thm =
(|- !P0 P1.

(!a. P0 (Var a)) /\
(!a0 a1. P1 a1 ==> P0 (Fn a0 a1)) /\
P1 [] /\
(!a0 a1. P0 a0 /\ P1 a1 ==> P1 (CONS a0 a1))
==> (!x0. P0 x0) /\ (!x1. P1 x1),

|- !f0 f1 f2 f3.
?fn0 fn1.

(!a. fn1 (Var a) = f0 a) /\
(!a0 a1. fn1 (Fn a0 a1) = f1 a0 a1 (fn0 a1)) /\
fn0 [] = f2 /\
(!a0 a1. fn0 (CONS a0 a1) = f3 a0 a1 (fn1 a0) (fn0 a1)))

and here we have an example of mutual recursion, defining syntax trees for commands

define type raw 99

and expressions for a hypothetical programming language:

define_type "command = Assign num expression
| Ite expression command command;

expression = Variable num
| Constant num
| Plus expression expression
| Valof command";;

val it : thm * thm =
(|- !P0 P1.

(!a0 a1. P1 a1 ==> P0 (Assign a0 a1)) /\
(!a0 a1 a2. P1 a0 /\ P0 a1 /\ P0 a2 ==> P0 (Ite a0 a1 a2)) /\
(!a. P1 (Variable a)) /\
(!a. P1 (Constant a)) /\
(!a0 a1. P1 a0 /\ P1 a1 ==> P1 (Plus a0 a1)) /\
(!a. P0 a ==> P1 (Valof a))
==> (!x0. P0 x0) /\ (!x1. P1 x1),

|- !f0 f1 f2 f3 f4 f5.
?fn0 fn1.

(!a0 a1. fn0 (Assign a0 a1) = f0 a0 a1 (fn1 a1)) /\
(!a0 a1 a2.

fn0 (Ite a0 a1 a2) =
f1 a0 a1 a2 (fn1 a0) (fn0 a1) (fn0 a2)) /\

(!a. fn1 (Variable a) = f2 a) /\
(!a. fn1 (Constant a) = f3 a) /\
(!a0 a1. fn1 (Plus a0 a1) = f4 a0 a1 (fn1 a0) (fn1 a1)) /\
(!a. fn1 (Valof a) = f5 a (fn0 a)))

See also
INDUCT_THEN, new_recursive_definition, new_type_abbrev, prove_cases_thm,
prove_constructors_distinct, prove_constructors_one_one, prove_induction_thm,
prove_rec_fn_exists.

define_type_raw

define_type_raw : (hol_type * (string * hol_type list) list) list -> thm * thm

Synopsis
Like define_type but from a more structured representation than a string.

100 Chapter 1. Pre-defined ML Identifiers

Description
The core functionality of define_type_raw is the same as define_type, but the input

is a more structured format for the type specification. In fact, define_type is just the

composition of define_type_raw and parse_inductive_type_specification.

Failure
May fail for the usual reasons define_type may.

Uses
Not intended for general use, but sometimes useful in proof tools that want to generate

inductive types.

See also
define, parse_inductive_type_specification.

delete_parser

delete_parser : string -> unit

Synopsis
Uninstall a user parser.

Description
HOL Light allows user parsing functions to be installed, and will try them on all terms

during parsing before the usual parsers. The call delete_parser "s" removes any parsers

associated with string "s".

Failure
Never fails, regardless of whether there are any parsers associated with the string.

See also
install_parser, installed_parsers, try_user_parser.

delete_user_printer

delete_user_printer : string -> unit

denominator 101

Synopsis
Remove user-defined printer from the HOL Light term printing.

Description
HOL Light allows arbitrary user printers to be inserted into the toplevel printer so

that they are invoked on all applicable subterms (see install_user_printer). The call

delete_user_printer s removes any such printer associated with the tag s.

Failure
Never fails, even if there is no printer with the given tag.

Example
If a user printer has been installed as in the example given for install_user_printer, it

can be removed again by:

delete_user_printer "print_typed_var";;
val it : unit = ()

See also
install_user_printer, try_user_printer.

denominator

denominator : num -> num

Synopsis
Returns denominator of rational number in canonical form.

Description
Given a rational number as supported by the Num library, denominator returns the denom-

inator q from the rational number cancelled to its reduced form, p/q where q > 0 and p

and q have no common factor.

Failure
Never fails.

102 Chapter 1. Pre-defined ML Identifiers

Example

denominator(Int 22 // Int 7);;
val it : num = 7
denominator(Int 0);;
val it : num = 1
denominator(Int 100);;
val it : num = 1
denominator(Int 4 // Int(-2));;
val it : num = 1

See also
numdom, numerator.

DENUMERAL

DENUMERAL : thm -> thm

Synopsis
Remove instances of the NUMERAL constant from a theorem.

Description
The call DENUMERAL th removes from the conclusion of th any instances of the constant

NUMERAL, used in the internal representation of numerals.

Failure
Never fails.

Uses
Only intended for users manipulating the internal structure of numerals.

See also
NUM_REDUCE_CONV.

DEPTH_BINOP_CONV

DEPTH_BINOP_CONV : term -> (term -> thm) -> term -> thm

DEPTH CONV 103

Synopsis
Applied a conversion to the leaves of a tree of binary operator expressions.

Description
If a term t is built up from terms t1,...,tn using a binary operator op (for example

op (op t1 t2) (op (op t3 t4) t5)), the call DEPTH_BINOP_CONV ‘op‘ cnv t will apply

the conversion cnv to each ti to give a theorem |- ti = ti’, and return the equational

theorem |- t = t’ where t’ results from replacing each ti in t with the corresponding

ti’.

Failure
Fails only if the core conversion cnv fails on one of the chosen subterms.

Example
One can always completely evaluate arithmetic expressions with NUM_REDUCE_CONV, e.g.

NUM_REDUCE_CONV ‘(1 + 2) + (3 * (4 + 5) + 6) + (7 DIV 8)‘;;
val it : thm = |- (1 + 2) + (3 * (4 + 5) + 6) + 7 DIV 8 = 36

However, if one wants for some reason not to reduce the top-level combination of addi-

tions, one can do instead:

DEPTH_BINOP_CONV ‘(+):num->num->num‘ NUM_REDUCE_CONV
‘(1 + 2) + (3 * (4 + 5) + 6) + (7 DIV 8)‘;;
val it : thm =
|- (1 + 2) + (3 * (4 + 5) + 6) + 7 DIV 8 = (1 + 2) + (27 + 6) + 0
NUM_REDUCE_CONV ‘(1 + 2) + (3 * (4 + 5) + 6) + (7 DIV 8)‘;;

Note that the subterm ‘3 * (4 + 5)‘ did get completely evaluated, because the addi-

tion was not part of the toplevel tree, but was nested inside a multiplication.

See also
BINOP_CONV, ONCE_DEPTH_CONV, PROP_ATOM_CONV, TOP_DEPTH_CONV.

DEPTH_CONV

DEPTH_CONV : conv -> conv

Synopsis
Applies a conversion repeatedly to all the sub-terms of a term, in bottom-up order.

104 Chapter 1. Pre-defined ML Identifiers

Description
DEPTH_CONV c tm repeatedly applies the conversion c to all the subterms of the term tm,

including the term tm itself. The supplied conversion is applied repeatedly (zero or more

times, as is done by REPEATC) to each subterm until it fails. The conversion is applied to

subterms in bottom-up order.

Failure
DEPTH_CONV c tm never fails but can diverge if the conversion c can be applied repeatedly

to some subterm of tm without failing.

Example
The following example shows how DEPTH_CONV applies a conversion to all subterms to

which it applies:

DEPTH_CONV BETA_CONV ‘(\x. (\y. y + x) 1) 2‘;;
val it : thm = |- (\x. (\y. y + x) 1) 2 = 1 + 2

Here, there are two beta-redexes in the input term, one of which occurs within the other.

DEPTH_CONV BETA_CONV applies beta-conversion to innermost beta-redex (\y. y + x) 1

first. The outermost beta-redex is then (\x. 1 + x) 2, and beta-conversion of this redex

gives 1 + 2.

Because DEPTH_CONV applies a conversion bottom-up, the final result may still contain

subterms to which the supplied conversion applies. For example, in:

DEPTH_CONV BETA_CONV ‘(\f x. (f x) + 1) (\y.y) 2‘;;
val it : thm = |- (\f x. f x + 1) (\y. y) 2 = (\y. y) 2 + 1

the right-hand side of the result still contains a beta-redex, because the redex ‘(\y.y)2‘

is introduced by virtue an application of BETA_CONV higher-up in the structure of the input

term. By contrast, in the example:

DEPTH_CONV BETA_CONV ‘(\f x. (f x)) (\y.y) 2‘;;
val it : thm = |- (\f x. f x) (\y. y) 2 = 2

all beta-redexes are eliminated, because DEPTH_CONV repeats the supplied conversion (in

this case, BETA_CONV) at each subterm (in this case, at the top-level term).

Uses
If the conversion c implements the evaluation of a function in logic, then DEPTH_CONV c

will do bottom-up evaluation of nested applications of it. For example, the conversion

ADD_CONV implements addition of natural number constants within the logic. Thus, the

DEPTH SQCONV 105

effect of:

DEPTH_CONV NUM_ADD_CONV ‘(1 + 2) + (3 + 4 + 5)‘;;
val it : thm = |- (1 + 2) + 3 + 4 + 5 = 15

is to compute the sum represented by the input term.

See also
ONCE_DEPTH_CONV, REDEPTH_CONV, TOP_DEPTH_CONV, TOP_SWEEP_CONV.

DEPTH_SQCONV

DEPTH_SQCONV : strategy

Synopsis
Applies simplification repeatedly to all the sub-terms of a term, in bottom-up order.

Description
HOL Light’s simplification functions (e.g. SIMP_TAC) have their traversal algorithm con-

trolled by a “strategy”. DEPTH_SQCONV is a strategy corresponding to DEPTH_CONV for

ordinary conversions: simplification is applied repeatedly to all the sub-terms of a term,

in bottom-up order.

Failure
Not applicable.

See also
DEPTH_CONV, ONCE_DEPTH_SQCONV, REDEPTH_SQCONV, TOP_DEPTH_SQCONV,
TOP_SWEEP_SQCONV.

derive_nonschematic_inductive_relations

derive_nonschematic_inductive_relations : term -> thm

Synopsis
Deduce inductive definitions properties from an explicit assignment.

106 Chapter 1. Pre-defined ML Identifiers

Description
Given a set of clauses as given to new_inductive_definitions, the call derive_nonschematic_inductive_relations

will introduce explicit equational constraints (“definitions”, though only assumptions of

the theorem, not actually constant definitions) that allow it to deduce those clauses. It

will in general have additional ‘monotonicity’ hypotheses, but these may be removable by

prove_monotonicity_hyps. None of the arguments are treated as schematic.

Failure
Fails if the format of the clauses is wrong.

Example
Here we try one of the classic examples of a mutually inductive definition, defining odd-

ness and even-ness of natural numbers:

(prove_monotonicity_hyps o derive_nonschematic_inductive_relations)
‘even(0) /\ odd(1) /\
(!n. even(n) ==> odd(n + 1)) /\ (!n. odd(n) ==> even(n + 1))‘;;

val it : thm =
odd =
(\a0. !odd’ even’.

(!a0. a0 = 1 \/ (?n. a0 = n + 1 /\ even’ n) ==> odd’ a0) /\
(!a1. a1 = 0 \/ (?n. a1 = n + 1 /\ odd’ n) ==> even’ a1)
==> odd’ a0),

even =
(\a1. !odd’ even’.

(!a0. a0 = 1 \/ (?n. a0 = n + 1 /\ even’ n) ==> odd’ a0) /\
(!a1. a1 = 0 \/ (?n. a1 = n + 1 /\ odd’ n) ==> even’ a1)
==> even’ a1)

|- (even 0 /\
odd 1 /\
(!n. even n ==> odd (n + 1)) /\
(!n. odd n ==> even (n + 1))) /\
(!odd’ even’.

even’ 0 /\
odd’ 1 /\
(!n. even’ n ==> odd’ (n + 1)) /\
(!n. odd’ n ==> even’ (n + 1))
==> (!a0. odd a0 ==> odd’ a0) /\ (!a1. even a1 ==> even’ a1)) /\

(!a0. odd a0 <=> a0 = 1 \/ (?n. a0 = n + 1 /\ even n)) /\
(!a1. even a1 <=> a1 = 0 \/ (?n. a1 = n + 1 /\ odd n))

Note that the final theorem has two assumptions that one can think of as the appropriate

explicit definitions of these relations, and the conclusion gives the rule, induction and

cases theorems.

dest abs 107

Comments
Normally, use prove_inductive_relations_exist or new_inductive_definition. This

function is only needed for a very fine level of control.

See also
new_inductive_definition, prove_inductive_relations_exist,
prove_monotonicity_hyps.

dest_abs

dest_abs : term -> term * term

Synopsis
Breaks apart an abstraction into abstracted variable and body.

Description
dest_abs is a term destructor for abstractions: dest_abs ‘\var. t‘ returns (‘var‘,‘t‘).

Failure
Fails with dest_abs if term is not an abstraction.

Example

dest_abs ‘\x. x + 1‘;;
val it : term * term = (‘x‘, ‘x + 1‘)

See also
dest_comb, dest_const, dest_var, is_abs, mk_abs, strip_abs.

dest_binary

dest_binary : string -> term -> term * term

Synopsis
Breaks apart an instance of a binary operator with given name.

108 Chapter 1. Pre-defined ML Identifiers

Description
The call dest_binary s tm will, if tm is a binary operator application (op l) r where op

is a constant with name s, return the two arguments to which it is applied as a pair l,r.

Otherwise, it fails. Note that op is required to be a constant.

Failure
Never fails.

Example
This one succeeds:

dest_binary "+" ‘1 + 2‘;;
val it : term * term = (‘1‘, ‘2‘)

See also
dest_binop, is_binary, is_comb, mk_binary.

dest_binder

dest_binder : string -> term -> term * term

Synopsis
Breaks apart a “binder”.

Description
Applied to a term tm of the form ‘c (\x. t)‘ where c is a constant whose name is "s",

the call dest_binder "c" tm returns (‘x‘,‘t‘). Note that this is actually independent of

whether the name parses as a binder, but the usual application is where it does.

Failure
Fails if the term is not of the appropriate form with a constant of the same name.

Example
The call dest_binder "!" is the same as dest_forall, and is in fact how that function is

implemented.

See also
dest_abs, dest_comb, dest_const, dest_var.

dest binop 109

dest_binop

dest_binop : term -> term -> term * term

Synopsis
Breaks apart an application of a given binary operator to two arguments.

Description
The call dest_binop op t, where t is of the form (op l) r, will return the pair l,r. If t

is not of that form, it fails. Note that op can be any term; it need not be a constant nor

parsed infix.

Failure
Fails if the term is not a binary application of operator op.

Example

dest_binop ‘(+):num->num->num‘ ‘1 + 2 + 3‘;;
val it : term * term = (‘1‘, ‘2 + 3‘)

See also
dest_binary, is_binary, is_binop, mk_binary, mk_binop.

dest_comb

dest_comb : term -> term * term

Synopsis
Breaks apart a combination (function application) into rator and rand.

Description
dest_comb is a term destructor for combinations:

dest_comb ‘t1 t2‘

returns (‘t1‘,‘t2‘).

110 Chapter 1. Pre-defined ML Identifiers

Failure
Fails with dest_comb if term is not a combination.

Example

dest_comb ‘SUC 0‘;;
val it : term * term = (‘SUC‘, ‘0‘)

We can use dest_comb to reveal more about the internal representation of numerals:

dest_comb ‘12‘;;
val it : term * term = (‘NUMERAL‘, ‘BIT0 (BIT0 (BIT1 (BIT1 _0)))‘)

See also
dest_abs, dest_const, dest_var, is_comb, list_mk_comb, mk_comb, strip_comb.

dest_cond

dest_cond : term -> term * (term * term)

Synopsis
Breaks apart a conditional into the three terms involved.

Description
dest_cond is a term destructor for conditionals:

dest_cond ‘if t then t1 else t2‘

returns (‘t‘,‘t1‘,‘t2‘).

Failure
Fails with dest_cond if term is not a conditional.

See also
mk_cond, is_cond.

dest_conj

dest_conj : term -> term * term

dest cons 111

Synopsis
Term destructor for conjunctions.

Description
dest_conj(‘t1 /\ t2‘) returns (‘t1‘,‘t2‘).

Failure
Fails with dest_conj if term is not a conjunction.

See also
is_conj, mk_conj.

dest_cons

dest_cons : term -> term * term

Synopsis
Breaks apart a ‘CONS pair’ into head and tail.

Description
dest_cons is a term destructor for ‘CONS pairs’. When applied to a term representing a

nonempty list ‘[t;t1;...;tn]‘ (which is equivalent to ‘CONS t [t1;...;tn]‘), it returns

the pair of terms (‘t‘,‘[t1;...;tn]‘).

Failure
Fails with dest_cons if the term is not a non-empty list.

See also
dest_list, is_cons, is_list, mk_cons, mk_list.

dest_const

dest_const : term -> string * hol_type

Synopsis
Breaks apart a constant into name and type.

112 Chapter 1. Pre-defined ML Identifiers

Description
dest_const is a term destructor for constants:

dest_const ‘const:ty‘

returns ("const",‘:ty‘).

Failure
Fails with dest_const if term is not a constant.

Example

dest_const ‘T‘;;
val it : string * hol_type = ("T", ‘:bool‘)

See also
dest_abs, dest_comb, dest_var, is_const, mk_const, mk_mconst, name_of.

dest_disj

dest_disj : term -> term * term

Synopsis
Breaks apart a disjunction into the two disjuncts.

Description
dest_disj is a term destructor for disjunctions:

dest_disj ‘t1 \/ t2‘

returns (‘t1‘,‘t2‘).

Failure
Fails with dest_disj if term is not a disjunction.

See also
is_disj, mk_disj.

dest eq 113

dest_eq

dest_eq : term -> term * term

Synopsis
Term destructor for equality.

Description
dest_eq(‘t1 = t2‘) returns (‘t1‘,‘t2‘).

Failure
Fails with dest_eq if term is not an equality.

Example

dest_eq ‘2 + 2 = 4‘;;
val it : term * term = (‘2 + 2‘, ‘4‘)

See also
is_eq, mk_eq.

dest_exists

dest_exists : term -> term * term

Synopsis
Breaks apart an existentially quantified term into quantified variable and body.

Description
dest_exists is a term destructor for existential quantification: dest_exists ‘?var. t‘

returns (‘var‘,‘t‘).

Failure
Fails with dest_exists if term is not an existential quantification.

See also
is_exists, mk_exists, strip_exists.

114 Chapter 1. Pre-defined ML Identifiers

dest_forall

dest_forall : term -> term * term

Synopsis
Breaks apart a universally quantified term into quantified variable and body.

Description
dest_forall is a term destructor for universal quantification: dest_forall ‘!var. t‘

returns (‘var‘,‘t‘).

Failure
Fails with dest_forall if term is not a universal quantification.

See also
is_forall, mk_forall, strip_forall.

dest_fun_ty

dest_fun_ty : hol_type -> hol_type * hol_type

Synopsis
Break apart a function type into domain and range.

Description
The call dest_fun_ty ‘:s->t‘ breaks apart the function type s->t and returns the pair

‘:s‘,‘:t‘.

Failure
Fails if the type given as argument is not a function type (constructor "fun").

dest gabs 115

Example

dest_fun_ty ‘:A->B‘;;
val it : hol_type * hol_type = (‘:A‘, ‘:B‘)

dest_fun_ty ‘:num->num->bool‘;;
val it : hol_type * hol_type = (‘:num‘, ‘:num->bool‘)

dest_fun_ty ‘:A#B‘;;
Exception: Failure "dest_fun_ty".

See also
dest_type, mk_fun_ty.

dest_gabs

dest_gabs : term -> term * term

Synopsis

Breaks apart a generalized abstraction into abstracted varstruct and body.

Description

dest_pabs is a term destructor for generalized abstractions: for example with a paired

varstruct the effect on dest_pabs ‘\(v1..(..)..vn). t‘ is to return the pair (‘(v1..(..)..vn)‘,‘t‘).

It will also act as for dest_abs on basic abstractions.

Failure

Fails unless the term is a basic or generalized abstraction.

116 Chapter 1. Pre-defined ML Identifiers

Example
These are fairly typical applications:

dest_gabs ‘\(x,y). x + y‘;;
val it : term * term = (‘x,y‘, ‘x + y‘)

dest_gabs ‘\(CONS h t). h + 1‘;;
val it : term * term = (‘CONS h t‘, ‘h + 1‘)

while the following shows that it also works on basic abstractions:

dest_gabs ‘\x. x‘;;
Warning: inventing type variables
val it : term * term = (‘x‘, ‘x‘)

See also
GEN_BETA_CONV, is_gabs, mk_gabs, strip_gabs.

dest_iff

dest_iff : term -> term * term

Synopsis
Term destructor for logical equivalence.

Description
dest_iff(‘t1 <=> t2‘) returns (‘t1‘,‘t2‘).

Failure
Fails with if term is not a logical equivalence, i.e. an equation between terms of Boolean

type.

Example

dest_iff ‘x = y <=> y = 1‘;;
val it : term * term = (‘x = y‘, ‘y = 1‘)

Comments
The function dest_eq has the same effect, but the present function checks that the types

of the two sides are indeed Boolean, whereas dest_eq will break apart any equation.

dest imp 117

See also
dest_eq, is_iff, mk_iff.

dest_imp

dest_imp : term -> term * term

Synopsis
Breaks apart an implication into antecedent and consequent.

Description
dest_imp is a term destructor for implications. Thus

dest_imp ‘t1 ==> t2‘

returns

(‘t1‘,‘t2‘)

Failure
Fails with dest_imp if term is not an implication.

Comments
Previous version of dest_imp treats negations as an implication with F as the conclusion.

This is renamed to dest_neg_imp.

See also
mk_imp, is_imp, strip_imp, dest_neg_imp.

dest_intconst

dest_intconst : term -> num

Synopsis
Converts an integer literal of type :int to an OCaml number.

118 Chapter 1. Pre-defined ML Identifiers

Description
The call dest_intconst t where t is a canonical integer literal of type :int, returns the

corresponding OCaml number (type num). The permissible forms of integer literals are

‘&n’ for a numeral n or ‘-- &n’ for a nonzero numeral n.

Failure
Fails if applied to a term that is not a canonical integer literal of type :int.

Example

dest_intconst ‘-- &11 :int‘;;
val it : num = -11

See also
dest_realintconst, is_intconst, mk_intconst.

dest_let

dest_let : term -> (term * term) list * term

Synopsis
Breaks apart a let-expression.

Description
dest_let is a term destructor for general let-expressions: dest_let ‘let x1 = e1 and ... and xn = en in E‘

returns a pair of the list [‘x1‘,‘e1‘; ... ; ‘xn‘,‘en‘] and ‘E‘.

Failure
Fails with dest_let if term is not a let-expression.

Example

dest_let ‘let m = 256 and n = 65536 in (x MOD m + y MOD m) MOD n‘;;
val it : (term * term) list * term =
([(‘m‘, ‘256‘); (‘n‘, ‘65536‘)], ‘(x MOD m + y MOD m) MOD n‘)

See also
mk_let, is_let.

dest list 119

dest_list

dest_list : term -> term list

Synopsis
Iteratively breaks apart a list term.

Description
dest_list is a term destructor for lists: dest_list(‘[t1;...;tn]:(ty)list‘) returns

[‘t1‘;...;‘tn‘].

Failure
Fails with dest_list if the term is not a list.

See also
dest_cons, dest_setenum, is_cons, is_list, mk_cons, mk_list.

dest_neg

dest_neg : term -> term

Synopsis
Breaks apart a negation, returning its body.

Description
dest_neg is a term destructor for negations: dest_neg ‘~t‘ returns ‘t‘.

Failure
Fails with dest_neg if term is not a negation.

See also
is_neg, mk_neg.

dest_numeral

dest_numeral : term -> num

120 Chapter 1. Pre-defined ML Identifiers

Synopsis
Converts a HOL numeral term to unlimited-precision integer.

Description
The call dest_numeral t where t is the HOL numeral representation of n, returns n as an

unlimited-precision intger (type num). It fails if the term is not a numeral.

Failure
Fails if the term is not a numeral.

Example

dest_numeral ‘0‘;;
val it : num = 0

dest_numeral ‘18446744073709551616‘;;
val it : num = 18446744073709551616

Comments
The similar function dest_small_numeral maps to a machine integer, which means it may

overflow. So the use of dest_numeral is better unless you are very sure of the range.

dest_small_numeral ‘18446744073709551616‘;;
Exception: Failure "int_of_big_int".

See also
dest_small_numeral, is_numeral, mk_numeral, mk_small_numeral, rat_of_term.

dest_pair

dest_pair : term -> term * term

Synopsis
Breaks apart a pair into two separate terms.

Description
dest_pair is a term destructor for pairs: dest_pair ‘(t1,t2)‘ returns (‘t1‘,‘t2‘).

Failure
Fails with dest_pair if term is not a pair.

dest realintconst 121

Example

dest_pair ‘(1,2),(3,4),(5,6)‘;;
val it : term * term = (‘1,2‘, ‘(3,4),5,6‘)

See also
dest_cons, is_pair, mk_pair.

dest_realintconst

dest_realintconst : term -> num

Synopsis
Converts an integer literal of type :real to an OCaml number.

Description
The call dest_realintconst t where t is a canonical integer literal of type :real, returns

the corresponding OCaml number (type num). The permissible forms of integer literals

are ‘&n’ for a numeral n or ‘-- &n’ for a nonzero numeral n.

Failure
Fails if applied to a term that is not a canonical integer literal of type :real.

Example

dest_realintconst ‘-- &27 :real‘;;
val it : num = -27

See also
dest_intconst, is_realintconst, mk_realintconst, rat_of_term.

dest_select

dest_select : term -> term * term

Synopsis
Breaks apart a choice term into selected variable and body.

122 Chapter 1. Pre-defined ML Identifiers

Description
dest_select is a term destructor for choice terms:

dest_select ‘@var. t‘

returns (‘var‘,‘t‘).

Failure
Fails with dest_select if term is not an epsilon-term.

See also
mk_select, is_select.

dest_setenum

dest_setenum : term -> term list

Synopsis
Breaks apart a set enumeration.

Description
dest_setenum is a term destructor for set enumerations: dest_setenum ‘{t1,...,tn}‘

returns [‘t1‘;...;‘tn‘]. Note that the list follows the syntactic pattern of the set enu-

meration, even if it contains duplicates. (The underlying set is still a set logically, of

course, but can be represented redundantly.)

Failure
Fails if the term is not a set enumeration.

Example

dest_setenum ‘{1,2,3,4}‘;;
val it : term list = [‘1‘; ‘2‘; ‘3‘; ‘4‘]

dest_setenum ‘{1,2,1,2}‘;;
val it : term list = [‘1‘; ‘2‘; ‘1‘; ‘2‘]

See also
dest_list, is_setenum, mk_fset, mk_setenum.

dest small numeral 123

dest_small_numeral

dest_small_numeral : term -> int

Synopsis
Converts a HOL numeral term to machine integer.

Description
The call dest_small_numeral t where t is the HOL numeral representation of n, returns

n as an OCaml machine integer. It fails if the term is not a numeral or the result doesn’t

fit in a machine integer.

Failure
Fails if the term is not a numeral or if the result doesn’t fit in a machine integer.

Example

dest_small_numeral ‘12‘;;
val it : int = 12

dest_small_numeral ‘18446744073709551616‘;;
Exception: Failure "int_of_big_int".

Comments
If overflow is a danger, you may be better off using OCaml type num and the analogous

function dest_numeral. However, none of HOL’s inference rules depend on the behaviour

of machine integers, so logical soundness is not an issue.

See also
dest_numeral, is_numeral, mk_numeral, mk_small_numeral, rat_of_term.

dest_thm

dest_thm : thm -> term list * term

Synopsis
Breaks a theorem into assumption list and conclusion.

124 Chapter 1. Pre-defined ML Identifiers

Description
dest_thm (t1,...,tn |- t) returns ([‘t1‘;...;‘tn‘],‘t‘).

Failure
Never fails.

Example

dest_thm (ASSUME ‘1 = 0‘);;
val it : term list * term = ([‘1 = 0‘], ‘1 = 0‘)

See also
concl, hyp.

dest_type

dest_type : hol_type -> string * hol_type list

Synopsis
Breaks apart a type (other than a variable type).

Description
dest_type(‘:(ty1,...,tyn)op‘) returns ("op",[‘:ty1‘;...;‘:tyn‘]).

Failure
Fails with dest_type if the type is a type variable.

Example

dest_type ‘:bool‘;;
val it : string * hol_type list = ("bool", [])

dest_type ‘:(bool)list‘;;
val it : string * hol_type list = ("list", [‘:bool‘])

dest_type ‘:num -> bool‘;;
val it : string * hol_type list = ("fun", [‘:num‘; ‘:bool‘])

See also
mk_type, dest_vartype.

dest uexists 125

dest_uexists

dest_uexists : term -> term * term

Synopsis
Breaks apart a unique existence term.

Description
If t has the form ?!x. p[x] (there exists a unique [xthen dest_uexists t returns the pair

x,p[x]; otherwise it fails.

Failure
Fails if the term is not a ‘unique existence’ term.

See also
dest_exists, dest_forall, is_uexists.

dest_var

dest_var : term -> string * hol_type

Synopsis
Breaks apart a variable into name and type.

Description
dest_var ‘var:ty‘ returns ("var",‘:ty‘).

Failure
Fails with dest_var if term is not a variable.

Example

dest_var ‘x:num‘;;
val it : string * hol_type = ("x", ‘:num‘)

See also
mk_var, is_var, dest_const, dest_comb, dest_abs, name_of.

126 Chapter 1. Pre-defined ML Identifiers

dest_vartype

dest_vartype : hol_type -> string

Synopsis
Breaks a type variable down to its name.

Description
dest_vartype ":A" returns "A" when A is a type variable.

Failure
Fails with dest_vartype if the type is not a type variable.

Example

dest_vartype ‘:A‘;;
val it : string = "A"

dest_vartype ‘:A->B‘;;
Exception: Failure "dest_vartype: type constructor not a variable".

See also
mk_vartype, is_vartype, dest_type.

DISCH_ALL

DISCH_ALL : thm -> thm

Synopsis
Discharges all hypotheses of a theorem.

Description

A1, ..., An |- t
---------------------------- DISCH_ALL
|- A1 ==> ... ==> An ==> t

Failure
DISCH_ALL will not fail if there are no hypotheses to discharge, it will simply return the

theorem unchanged.

DISCH 127

Example

end_itlist CONJ (map ASSUME [‘p:bool‘; ‘q:bool‘; ‘r:bool‘]);;
val it : thm = p, q, r |- p /\ q /\ r

DISCH_ALL it;;
val it : thm = |- r ==> q ==> p ==> p /\ q /\ r

Comments
Users should not rely on the hypotheses being discharged in any particular order. Two or

more alpha-convertible hypotheses will be discharged by a single implication; users should

not rely on which hypothesis appears in the implication.

See also
DISCH, DISCH_TAC, DISCH_THEN, STRIP_TAC, UNDISCH, UNDISCH_ALL, UNDISCH_TAC.

DISCH

DISCH : term -> thm -> thm

Synopsis
Discharges an assumption.

Description

A |- t
-------------------- DISCH ‘u‘
A - {u} |- u ==> t

Failure
DISCH will fail if ‘u‘ is not boolean.

Comments
The term ‘u‘ need not be a hypothesis. Discharging ‘u‘ will remove all identical and

alpha-equivalent hypotheses.

Example

DISCH ‘p /\ q‘ (CONJUNCT1(ASSUME ‘p /\ q‘));;
val it : thm = |- p /\ q ==> p

See also
DISCH_ALL, DISCH_TAC, DISCH_THEN, STRIP_TAC, UNDISCH, UNDISCH_ALL, UNDISCH_TAC.

128 Chapter 1. Pre-defined ML Identifiers

DISCH_TAC

DISCH_TAC : tactic

Synopsis
Moves the antecedent of an implicative goal into the assumptions.

Description

A ?- u ==> v
============== DISCH_TAC
A u {u} ?- v

Note that DISCH_TAC treats ‘~u‘ as ‘u ==> F‘, so will also work when applied to a goal

with a negated conclusion.

Failure
DISCH_TAC will fail for goals which are not implications or negations.

Uses
Solving goals of the form ‘u ==> v‘ by rewriting ‘v‘ with ‘u‘, although the use of

DISCH_THEN is usually more elegant in such cases.

Comments
If the antecedent already appears in the assumptions, it will be duplicated.

See also
DISCH, DISCH_ALL, DISCH_THEN, STRIP_TAC, UNDISCH, UNDISCH_ALL, UNDISCH_TAC.

DISCH_THEN

DISCH_THEN : thm_tactic -> tactic

Synopsis
Undischarges an antecedent of an implication and passes it to a theorem-tactic.

DISCH THEN 129

Description
DISCH_THEN removes the antecedent and then creates a theorem by ASSUMEing it. This new

theorem is passed to the theorem-tactic given as DISCH_THEN’s argument. The consequent

tactic is then applied. Thus:

DISCH_THEN ttac (asl ?- t1 ==> t2) = ttac (ASSUME ‘t1‘) (asl ?- t2)

For example, if

A ?- t
======== ttac (ASSUME ‘u‘)
B ?- v

then

A ?- u ==> t
============== DISCH_THEN ttac

B ?- v

Note that DISCH_THEN treats ‘~u‘ as ‘u ==> F‘.

Failure
DISCH_THEN will fail for goals that are not implications or negations.

Example
Given the goal:

g ‘!x. x = 0 ==> f(x) * x = x + 2 * x‘;;

we can discharge the antecedent and substitute with it immediately by:

e(GEN_TAC THEN DISCH_THEN SUBST1_TAC);;
val it : goalstack = 1 subgoal (1 total)

‘f 0 * 0 = 0 + 2 * 0‘

and now REWRITE_TAC[ADD_CLAUSES; MULT_CLAUSES] will finish the job.

Comments
The tactical REFUTE_THEN provides a more general classical ‘assume otherwise’ function.

See also
DISCH, DISCH_ALL, DISCH_TAC, REFUTE_THEN, STRIP_TAC, UNDISCH, UNDISCH_ALL,
UNDISCH_TAC.

130 Chapter 1. Pre-defined ML Identifiers

DISJ1

DISJ1 : thm -> term -> thm

Synopsis
Introduces a right disjunct into the conclusion of a theorem.

Description

A |- t1
--------------- DISJ1 (A |- t1) ‘t2‘
A |- t1 \/ t2

Failure
Fails unless the term argument is boolean.

Example

DISJ1 TRUTH ‘F‘;;
val it : thm = |- T \/ F

See also
DISJ1_TAC, DISJ2, DISJ2_TAC, DISJ_CASES.

DISJ1_TAC

DISJ1_TAC : tactic

Synopsis
Selects the left disjunct of a disjunctive goal.

Description

A ?- t1 \/ t2
=============== DISJ1_TAC

A ?- t1

Failure
Fails if the goal is not a disjunction.

DISJ2 131

See also
DISJ1, DISJ2, DISJ2_TAC.

DISJ2

DISJ2 : term -> thm -> thm

Synopsis
Introduces a left disjunct into the conclusion of a theorem.

Description

A |- t2
--------------- DISJ2 ‘t1‘
A |- t1 \/ t2

Failure
Fails if the term argument is not boolean.

Example

DISJ2 ‘F‘ TRUTH;;
val it : thm = |- F \/ T

See also
DISJ1, DISJ1_TAC, DISJ2_TAC, DISJ_CASES.

DISJ2_TAC

DISJ2_TAC : tactic

Synopsis
Selects the right disjunct of a disjunctive goal.

132 Chapter 1. Pre-defined ML Identifiers

Description

A ?- t1 \/ t2
=============== DISJ2_TAC

A ?- t2

Failure
Fails if the goal is not a disjunction.

See also
DISJ1, DISJ1_TAC, DISJ2.

DISJ_ACI_RULE

DISJ_ACI_RULE : term -> thm

Synopsis
Proves equivalence of two disjunctions containing same set of disjuncts.

Description
The call DISJ_ACI_RULE ‘t1 \/ ... \/ tn <=> u1 \/ ... \/ um‘, where both sides of

the equation are disjunctions of exactly the same set of disjuncts, (with arbitrary ordering,

association, and repetitions), will return the corresponding theorem |- t1 \/ ... \/ tn <=> u1 \/ ... \/ um.

Failure
Fails if applied to a term that is not a Boolean equation or the two sets of disjuncts are

different.

Example

DISJ_ACI_RULE ‘(p \/ q) \/ (q \/ r) <=> r \/ q \/ p‘;;
val it : thm = |- (p \/ q) \/ q \/ r <=> r \/ q \/ p

Comments
The same effect can be had with the more general AC construct. However, for the special

case of disjunction, DISJ_ACI_RULE is substantially more efficient when there are many

disjuncts involved.

See also
AC, CONJ_ACI_RULE, DISJ_CANON_CONV.

DISJ CANON CONV 133

DISJ_CANON_CONV

DISJ_CANON_CONV : term -> thm

Synopsis
Puts an iterated disjunction in canonical form.

Description
When applied to a term, DISJ_CANON_CONV splits it into the set of disjuncts and produces

a theorem asserting the equivalence of the term and the new term with the disjuncts

right-associated without repetitions and in a canonical order.

Failure
Fails if applied to a non-Boolean term. If applied to a term that is not a disjunction, it

will trivially work in the sense of regarding it as a single disjunct and returning a reflexive

theorem.

Example

DISJ_CANON_CONV ‘(c \/ a \/ b) \/ (b \/ a \/ d)‘;;
val it : thm = |- (c \/ a \/ b) \/ b \/ a \/ d <=> a \/ b \/ c \/ d

See also
AC, CONJ_CANON_CONV, DISJ_ACI_CONV.

DISJ_CASES

DISJ_CASES : thm -> thm -> thm -> thm

Synopsis
Eliminates disjunction by cases.

Description
The rule DISJ_CASES takes a disjunctive theorem, and two ‘case’ theorems, each with

one of the disjuncts as a hypothesis while sharing alpha-equivalent conclusions. A new

134 Chapter 1. Pre-defined ML Identifiers

theorem is returned with the same conclusion as the ‘case’ theorems, and the union of all

assumptions excepting the disjuncts.

A |- t1 \/ t2 A1 u {t1} |- t A2 u {t2} |- t
-- DISJ_CASES

A u A1 u A2 |- t

Failure
Fails if the first argument is not a disjunctive theorem, or if the conclusions of the other

two theorems are not alpha-convertible.

Example
Let us create several theorems. Note that th1 and th2 draw the same conclusion from

different hypotheses, while th proves the disjunction of the two hypotheses:

let [th; th1; th2] = map (UNDISCH_ALL o REAL_FIELD)
[‘~(x = &0) \/ x = &0‘;
‘~(x = &0) ==> x * (inv(x) * x - &1) = &0‘;
‘x = &0 ==> x * (inv(x) * x - &1) = &0‘];;

...
val th : thm = |- ~(x = &0) \/ x = &0
val th1 : thm = ~(x = &0) |- x * (inv x * x - &1) = &0
val th2 : thm = x = &0 |- x * (inv x * x - &1) = &0

so we can apply DISJ_CASES:

DISJ_CASES th th1 th2;;
val it : thm = |- x * (inv x * x - &1) = &0

Comments
Neither of the ‘case’ theorems is required to have either disjunct as a hypothesis, but

otherwise DISJ_CASES is pointless.

See also
DISJ_CASES_TAC, DISJ_CASES_THEN, DISJ_CASES_THEN2, DISJ1, DISJ2,
SIMPLE_DISJ_CASES.

DISJ_CASES_TAC

DISJ_CASES_TAC : thm_tactic

DISJ CASES TAC 135

Synopsis
Produces a case split based on a disjunctive theorem.

Description
Given a theorem th of the form A |- u \/ v, DISJ_CASES_TAC th applied to a goal pro-

duces two subgoals, one with u as an assumption and one with v:

A ?- t
================================= DISJ_CASES_TAC (A |- u \/ v)
A u {u} ?- t A u {v}?- t

Failure
Fails if the given theorem does not have a disjunctive conclusion.

Example
Given the simple fact about arithmetic th, |- m = 0 \/ (?n. m = SUC n), the tactic

DISJ_CASES_TAC th can be used to produce a case split:

let th = SPEC ‘m:num‘ num_CASES;;
val th : thm = |- m = 0 \/ (?n. m = SUC n)

g ‘(P:num -> bool) m‘;;
Warning: Free variables in goal: P, m
val it : goalstack = 1 subgoal (1 total)

‘P m‘

e(DISJ_CASES_TAC th);;
val it : goalstack = 2 subgoals (2 total)

0 [‘?n. m = SUC n‘]

‘P m‘

0 [‘m = 0‘]

‘P m‘

Uses
Performing a case analysis according to a disjunctive theorem.

See also
ASSUME_TAC, ASM_CASES_TAC, COND_CASES_TAC, DISJ_CASES_THEN, STRUCT_CASES_TAC.

136 Chapter 1. Pre-defined ML Identifiers

DISJ_CASES_THEN2

DISJ_CASES_THEN2 : thm_tactic -> thm_tactic -> thm_tactic

Synopsis

Applies separate theorem-tactics to the two disjuncts of a theorem.

Description

If the theorem-tactics ttac1 and ttac2, applied to the ASSUMEd left and right disjunct

of a theorem |- u \/ v respectively, produce results as follows when applied to a goal

(A ?- t):

A ?- t A ?- t
========= ttac1 (u |- u) and ========= ttac2 (v |- v)
A ?- t1 A ?- t2

then applying DISJ_CASES_THEN2 ttac1 ttac2 (|- u \/ v) to the goal (A ?- t) produces

two subgoals.

A ?- t
====================== DISJ_CASES_THEN2 ttac1 ttac2 (|- u \/ v)
A ?- t1 A ?- t2

Failure

Fails if the theorem is not a disjunction. An invalid tactic is produced if the theorem has

any hypothesis which is not alpha-convertible to an assumption of the goal.

DISJ CASES THEN 137

Example
Given the theorem

let th = SPEC ‘m:num‘ num_CASES;;
val th : thm = |- m = 0 \/ (?n. m = SUC n)

and a goal:

g ‘PRE m = m <=> m = 0‘;;

the following produces two subgoals:

e(DISJ_CASES_THEN2 SUBST1_TAC MP_TAC th);;
val it : goalstack = 2 subgoals (2 total)

‘(?n. m = SUC n) ==> (PRE m = m <=> m = 0)‘

‘PRE 0 = 0 <=> 0 = 0‘

The first subgoal has had the disjunct m = 0 used for a substitution, and the second has

added the disjunct as an antecedent. Alternatively, we can make the second theorem-

tactic also choose a witness for the existential quantifier and follow by also substituting:

e(DISJ_CASES_THEN2 SUBST1_TAC (CHOOSE_THEN SUBST1_TAC) th);;
val it : goalstack = 2 subgoals (2 total)

‘PRE (SUC n) = SUC n <=> SUC n = 0‘

‘PRE 0 = 0 <=> 0 = 0‘

Either subgoal can be finished with ARITH_TAC, but the way, but so could the initial goal.

Uses
Building cases tacticals. For example, DISJ_CASES_THEN could be defined by:

let DISJ_CASES_THEN f = DISJ_CASES_THEN2 f f

See also
STRIP_THM_THEN, CHOOSE_THEN, CONJUNCTS_THEN, CONJUNCTS_THEN2, DISJ_CASES_THEN.

DISJ_CASES_THEN

DISJ_CASES_THEN : thm_tactical

138 Chapter 1. Pre-defined ML Identifiers

Synopsis

Applies a theorem-tactic to each disjunct of a disjunctive theorem.

Description

If the theorem-tactic f:thm->tactic applied to either ASSUMEd disjunct produces results

as follows when applied to a goal (A ?- t):

A ?- t A ?- t
========= f (u |- u) and ========= f (v |- v)
A ?- t1 A ?- t2

then applying DISJ_CASES_THEN f (|- u \/ v) to the goal (A ?- t) produces two sub-

goals.

A ?- t
====================== DISJ_CASES_THEN f (|- u \/ v)
A ?- t1 A ?- t2

Failure

Fails if the theorem is not a disjunction. An invalid tactic is produced if the theorem has

any hypothesis which is not alpha-convertible to an assumption of the goal.

disjuncts 139

Example
Given the theorem

th = |- (m = 0) \/ (?n. m = SUC n)

and a goal of the form ?- (PRE m = m) = (m = 0), applying the tactic

DISJ_CASES_THEN MP_TAC th

produces two subgoals, each with one disjunct as an added antecedant

let th = SPEC ‘m:num‘ num_CASES;;
val th : thm = |- m = 0 \/ (?n. m = SUC n)
g ‘PRE m = m <=> m = 0‘;;
Warning: Free variables in goal: m
val it : goalstack = 1 subgoal (1 total)

‘PRE m = m <=> m = 0‘

e(DISJ_CASES_THEN MP_TAC th);;
val it : goalstack = 2 subgoals (2 total)

‘(?n. m = SUC n) ==> (PRE m = m <=> m = 0)‘

‘m = 0 ==> (PRE m = m <=> m = 0)‘

Uses
Building cases tactics. For example, DISJ_CASES_TAC could be defined by:

let DISJ_CASES_TAC = DISJ_CASES_THEN ASSUME_TAC

Comments
Use DISJ_CASES_THEN2 to apply different tactic generating functions to each case.

See also
STRIP_THM_THEN, CHOOSE_THEN, CONJUNCTS_THEN, CONJUNCTS_THEN2, DISJ_CASES_TAC,
DISJ_CASES_THEN2, DISJ_CASES_THENL.

disjuncts

disjuncts : term -> term list

140 Chapter 1. Pre-defined ML Identifiers

Synopsis
Iteratively breaks apart a disjunction.

Description
If a term t is a disjunction p \/ q, then disjuncts t will recursively break down p and

q into disjuncts and append the resulting lists. Otherwise it will return the singleton list

[t]. So if t is of the form t1 \/ ... \/ tn with any reassociation, no ti itself being a

disjunction, the list returned will be [t1; ...; tn]. But

disjuncts(list_mk_disj([t1;...;tn]))

will not return [t1;...;tn] if any of t1,...,tn is a disjunction.

Failure
Never fails, even if the term is not boolean.

Example

list_mk_disj [‘a \/ b‘;‘c \/ d‘;‘e \/ f‘];;
val it : term = ‘(a \/ b) \/ (c \/ d) \/ e \/ f‘

disjuncts it;;
val it : term list = [‘a‘; ‘b‘; ‘c‘; ‘d‘; ‘e‘; ‘f‘]

disjuncts ‘1‘;;
val it : term list = [‘1‘]

Comments
Because disjuncts splits both the left and right sides of a disjunction, this operation

is not the inverse of list_mk_disj. You can also use splitlist dest_disj to split in a

right-associated way only.

See also
conjuncts, dest_disj, list_mk_disj.

distinctness

distinctness : string -> thm

Synopsis
Produce distinctness theorem for an inductive type.

distinctness store 141

Description
A call distinctness "ty" where "ty" is the name of a recursive type defined with define_type,

returns a “distinctness” theorem asserting that elements constructed by different type con-

structors are always different. The effect is exactly the same is if prove_constructors_distinct

were applied to the recursion theorem produced by define_type, and the documentation

for prove_constructors_distinct gives a lengthier discussion.

Failure
Fails if ty is not the name of a recursive type, or if the type has only one constructor.

Example

distinctness "num";;
val it : thm = |- !n’. ~(0 = SUC n’)

distinctness "list";;
val it : thm = |- !a0’ a1’. ~([] = CONS a0’ a1’)

See also
cases, define_type, injectivity, prove_constructors_distinct.

distinctness_store

distinctness_store : (string * thm) list ref

Synopsis
Internal theorem list of distinctness theorems.

Description
This list contains all the distinctness theorems (see distinct) for the recursive types

defined so far. It is automatically extended by define_type and used as a cache by

distinct.

Failure
Not applicable.

See also
define_type, distinctness, extend_rectype_net, injectivity_store.

142 Chapter 1. Pre-defined ML Identifiers

DNF_CONV

DNF_CONV : conv

Synopsis
Converts a term already in negation normal form into disjunctive normal form.

Description
When applied to a term already in negation normal form (see NNF_CONV), meaning that all

other propositional connectives have been eliminated in favour of disjunction, disjunction

and negation, and negation is only applied to atomic formulas, DNF_CONV puts the term

into an equivalent disjunctive normal form, which is a right-associated disjunction of

conjunctions without repetitions. No reduction by subsumption is performed, however,

e.g. from a \/ a /\ b to just a /\ b).

Failure
Never fails; non-Boolean terms will just yield a reflexive theorem.

Example

DNF_CONV ‘(a \/ b) /\ (a \/ c /\ e)‘;;
val it : thm =
|- (a \/ b) /\ (a \/ c /\ e) <=> a \/ a /\ b \/ a /\ c /\ e \/ b /\ c /\ e

See also
CNF_CONV, NNF_CONV, WEAK_CNF_CONV, WEAK_DNF_CONV.

do_list

do_list : (’a -> ’b) -> ’a list -> unit

Synopsis
Apply imperative function to each element of a list.

Description
The call do_list f [x1; ... ; xn] evaluates in sequence the expressions f x1, ..., f xn in

that order, discarding the results. Presumably the applications will have some side-effect,

such as printing something to the terminal.

dom 143

Example

do_list (fun x -> print_string x; print_newline()) (explode "john");;
j
o
h
n
val it : unit = ()

do_list (fun x -> print_string x) (rev(explode "nikolas"));;
salokinval it : unit = ()

Uses
Running imperative code parametrized by list members.

See also
map.

dom

dom : (’a, ’b) func -> ’a list

Synopsis
Returns domain of a finite partial function.

Description
This is one of a suite of operations on finite partial functions, type (’a,’b)func. These

may sometimes be preferable to ordinary functions since they permit more operations

such as equality comparison, extraction of domain etc. The dom operation returns the

domain of such a function, i.e. the set of points on which it is defined.

Failure
Attempts to sort the resulting list, so may fail if the domain type does not admit com-

parisons.

144 Chapter 1. Pre-defined ML Identifiers

Example

dom (1 |=> "1");;
val it : int list = [1]
dom(itlist I [2|->4; 3|->6] undefined);;
val it : int list = [2; 3]

See also
|->, |=>, apply, applyd, choose, combine, defined, foldl, foldr, graph,
is_undefined, mapf, ran, tryapplyd, undefine, undefined.

dpty

dpty : pretype

Synopsis
Dummy pretype.

Description
This is a dummy pretype, intended as a placeholder until the correct one is discovered.

Failure
Not applicable.

See also
pretype_of_type, type_of_pretype.

e

e : tactic -> goalstack

Synopsis
Applies a tactic to the current goal, stacking the resulting subgoals.

Description
The function e is part of the subgoal package. It applies a tactic to the current goal to

give a new proof state. The previous state is stored on the backup list. If the tactic

e 145

produces subgoals, the new proof state is formed from the old one by adding a new level

consisting of its subgoals.

The tactic applied is a validating version of the tactic given. It ensures that the justi-

fication of the tactic does provide a proof of the goal from the subgoals generated by the

tactic. It will cause failure if this is not so. The tactical VALID performs this validation.

For a description of the subgoal package, see set_goal.

Failure

e tac fails if the tactic tac fails for the top goal. It will diverge if the tactic diverges for

the goal. It will fail if there are no unproven goals. This could be because no goal has

been set using set_goal or because the last goal set has been completely proved. It will

also fail in cases when the tactic is invalid.

Example

g ‘(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])‘;;
val it : goalstack = 1 subgoal (1 total)

‘HD [1; 2; 3] = 1 /\ TL [1; 2; 3] = [2; 3]‘

e CONJ_TAC;;
val it : goalstack = 2 subgoals (2 total)

‘TL [1; 2; 3] = [2; 3]‘

‘HD [1; 2; 3] = 1‘

e (REWRITE_TAC[HD]);;
val it : goalstack = 1 subgoal (1 total)

‘TL [1; 2; 3] = [2; 3]‘

e (REWRITE_TAC[TL]);;
val it : goalstack = No subgoals

Uses

Doing a step in an interactive goal-directed proof.

See also
b, g, p, r, top_goal, top_thm.

146 Chapter 1. Pre-defined ML Identifiers

el

el : int -> ’a list -> ’a

Synopsis
Extracts a specified element from a list.

Description
el i [x0;x1;...;xn] returns xi. Note that the elements are numbered starting from 0,

not 1.

Failure
Fails with el if the integer argument is negative or greater than the length of the list.

Example

el 3 [1;2;7;1];;
val it : int = 1

See also
hd, tl.

elistof

elistof : (’a -> ’b * ’a) -> (’a -> ’c * ’a) -> string -> ’a -> ’b list * ’a

Synopsis
Parses a possibly empty separated list of items.

Description
If p is a parser for “items” of some kind, s is a parser for a “separator”, and e is an error

message, then elistof p s e parses a possibly empty list of successive items using p,

where adjacent items are separated by something parseable by s. If a separator is parsed

successfully but there is no following item that can be parsed by s, an exception Failure

e is raised. (So note that the separator must not terminate the final element.)

Failure
The call elistof p s e itself never fails, though the resulting parser may.

empty net 147

Comments
This is one of a suite of combinators for manipulating “parsers”. A parser is simply

a function whose OCaml type is some instance of :(’a)list -> ’b * (’a)list. The

function should take a list of objects of type :’a (e.g. characters or tokens), parse as

much of it as possible from left to right, and return a pair consisting of the object derived

from parsing (e.g. a term or a special syntax tree) and the list of elements that were not

processed.

See also
++, ||, >>, a, atleast, finished, fix, leftbin, listof, many, nothing,
possibly, rightbin, some.

empty_net

empty_net : ’a net

Synopsis
Empty term net.

Description
Term nets (type ’a net) are a lookup structure associating objects of type ’a, e.g. con-

versions, with a corresponding ‘pattern’ term. For a given term, one can then relatively

quickly look up all objects whose pattern terms might possibly match to it. This is used,

for example, in rewriting to quickly filter out obviously inapplicable rewrites rather than

attempting each one in turn. The (polymorphic) object empty_net is the term net with

no objects defined; it can then be augmented by enter or merge_nets and used in lookup.

Failure
Not applicable.

See also
enter, lookup, merge_nets.

empty_ss

empty_ss : simpset

148 Chapter 1. Pre-defined ML Identifiers

Synopsis
Simpset consisting of only the default rewrites and conversions.

Description
In their maximal generality, simplification operations in HOL Light (as invoked by SIMP_TAC)

are controlled by a ‘simpset’. The simpset empty_ss has just the basic rewrites and con-

versions (see basic_rewrites and basic_convs), and no other provers.

Failure
Not applicable.

See also
basic_convs, basic_rewrites, basic_ss, SIMP_CONV, SIMP_RULE, SIMP_TAC.

end_itlist

end_itlist : (’a -> ’a -> ’a) -> ’a list -> ’a

Synopsis
List iteration function. Applies a binary function between adjacent elements of a list.

Description
end_itlist f [x1;...;xn] returns f x1 (... (f x(n-1) xn)...). Returns x for a one-

element list [x].

Failure
Fails with end_itlist if list is empty.

Example

end_itlist (+) [1;2;3;4];;
val it : int = 10

See also
itlist, rev_itlist.

enter

enter : term list -> term * ’a -> ’a net -> ’a net

enter 149

Synopsis
Enter an object and its pattern term into a term net.

Description
Term nets (type ’a net) are a lookup structure associating objects of type ’a, e.g. con-

versions, with a corresponding ‘pattern’ term. For a given term, one can then relatively

quickly look up all objects whose pattern terms might possibly match to it. This is used,

for example, in rewriting to quickly filter out obviously inapplicable rewrites rather than

attempting each one in turn. The call enter lconsts (pat,obj) net enters the item obj

into a net obj with indexing pattern term pat. The list lconsts lists variables that should

be considered ‘local constants’ when matching, so will only match terms with exactly the

same variable in corresponding places.

Failure
Never fails.

Example
Here we construct a net with the conversions for various arithmetic operations on numer-

als, each with a pattern term to identify the class of terms to which it might apply:

let arithnet = itlist (enter [])
[‘SUC n‘,NUM_SUC_CONV;
‘m + n:num‘,NUM_ADD_CONV;
‘m - n:num‘,NUM_SUB_CONV;
‘m * n:num‘,NUM_MULT_CONV;
‘m EXP n‘,NUM_EXP_CONV;
‘m DIV n‘,NUM_DIV_CONV;
‘m MOD n‘,NUM_MOD_CONV]
empty_net;;

Now we can define a conversion that uses lookup in this net as a first-stage filter and

tries to apply the results.

let NUM_ARITH_CONV tm = FIRST_CONV (lookup tm arithnet) tm;;

Note that this is functionally not really different from just

let NUM_ARITH_CONV’ =
FIRST_CONV [NUM_SUC_CONV; NUM_ADD_CONV; NUM_SUB_CONV; NUM_MULT_CONV;

NUM_EXP_CONV; NUM_DIV_CONV; NUM_MOD_CONV];;

but it may be significantly more efficient because instead of successive attempts to apply

150 Chapter 1. Pre-defined ML Identifiers

the conversions, each one is only invoked when the term has the right pattern.

let tm = funpow 5 (fun x -> mk_binop ‘(*):num->num->num‘ x x) ‘12‘;;
...
time (DEPTH_CONV NUM_ARITH_CONV) term;;
CPU time (user): 0.12
...
time (DEPTH_CONV NUM_ARITH_CONV’) term;;
CPU time (user): 0.22
...

In situations with very many conversions, each one quite fast, the difference can be

much more striking.

See also
empty_net, lookup, merge_nets.

EQF_ELIM

EQF_ELIM : thm -> thm

Synopsis
Replaces equality with F by negation.

Description

A |- tm <=> F
--------------- EQF_ELIM
A |- ~tm

Failure
Fails if the argument theorem is not of the form A |- tm <=> F.

Example

EQF_ELIM(REFL ‘F‘);;
val it : thm = |- ~F

See also
EQF_INTRO, EQT_ELIM, EQT_INTRO, NOT_ELIM, NOT_INTRO.

EQF INTRO 151

EQF_INTRO

EQF_INTRO : thm -> thm

Synopsis
Converts negation to equality with F.

Description

A |- ~tm
--------------- EQF_INTRO
A |- tm <=> F

Failure
Fails if the argument theorem is not a negation.

Example

let th = ASSUME ‘~p‘;;
val th : thm = ~p |- ~p

EQF_INTRO th;;
val it : thm = ~p |- p <=> F

See also
EQF_ELIM, EQT_ELIM, EQT_INTRO, NOT_ELIM, NOT_INTRO.

EQ_IMP_RULE

EQ_IMP_RULE : thm -> thm * thm

Synopsis
Derives forward and backward implication from equality of boolean terms.

152 Chapter 1. Pre-defined ML Identifiers

Description
When applied to a theorem A |- t1 <=> t2, where t1 and t2 both have type bool, the

inference rule EQ_IMP_RULE returns the theorems A |- t1 ==> t2 and A |- t2 ==> t1.

A |- t1 <=> t2
----------------------------------- EQ_IMP_RULE
A |- t1 ==> t2 A |- t2 ==> t1

Failure
Fails unless the conclusion of the given theorem is an equation between boolean terms.

Example

SPEC_ALL CONJ_SYM;;
val it : thm = |- t1 /\ t2 <=> t2 /\ t1

EQ_IMP_RULE it;;
val it : thm * thm = (|- t1 /\ t2 ==> t2 /\ t1, |- t2 /\ t1 ==> t1 /\ t2)

See also
EQ_MP, EQ_TAC, IMP_ANTISYM_RULE.

EQ_MP

EQ_MP : thm -> thm -> thm

Synopsis
Equality version of the Modus Ponens rule.

Description
When applied to theorems A1 |- t1 <=> t2 and A2 |- t1, the inference rule EQ_MP returns

the theorem A1 u A2 |- t2.

A1 |- t1 <=> t2 A2 |- t1
---------------------------- EQ_MP

A1 u A2 |- t2

Failure
Fails unless the first theorem is equational and its left side is the same as the conclusion

of the second theorem (and is therefore of type bool), up to alpha-conversion.

=? 153

Example

let th1 = SPECL [‘p:bool‘; ‘q:bool‘] CONJ_SYM
and th2 = ASSUME ‘p /\ q‘;;

val th1 : thm = |- p /\ q <=> q /\ p
val th2 : thm = p /\ q |- p /\ q
EQ_MP th1 th2;;
val it : thm = p /\ q |- q /\ p

Comments
This is one of HOL Light’s 10 primitive inference rules.

See also
EQ_IMP_RULE, IMP_ANTISYM_RULE, MP, PROVE_HYP.

=?

(=?) : ’a -> ’a -> bool

Synopsis
Reflexive short-cutting equality test.

Description
This is functionally identical to the OCaml equality test = except that it is reflexive even

on floating-point NaN. More importantly, it will more efficiently short-cut comparisons of

large data structures where subcomponents are identical (pointer equivalent).

Failure
May fail when applied to functions.

Example

let x = 0.0 /. 0.0;;
val x : float = nan
x = x;;
val it : bool = false
x =? x;;
val it : bool = true

See also
<?, <=?, >?, >=?.

154 Chapter 1. Pre-defined ML Identifiers

EQ_TAC

EQ_TAC : tactic

Synopsis
Reduces goal of equality of boolean terms to forward and backward implication.

Description
When applied to a goal A ?- t1 <=> t2, where t1 and t2 have type bool, the tactic EQ_TAC

returns the subgoals A ?- t1 ==> t2 and A ?- t2 ==> t1.

A ?- t1 <=> t2
================================= EQ_TAC
A ?- t1 ==> t2 A ?- t2 ==> t1

Failure
Fails unless the conclusion of the goal is an equation between boolean terms.

See also
EQ_IMP_RULE, IMP_ANTISYM_RULE.

EQT_ELIM

EQT_ELIM : thm -> thm

Synopsis
Eliminates equality with T.

Description

A |- tm <=> T
--------------- EQT_ELIM

A |- tm

Failure
Fails if the argument theorem is not of the form A |- tm <=> T.

EQT INTRO 155

Example

REFL ‘T‘;;
val it : thm = |- T <=> T

EQT_ELIM it;;
val it : thm = |- T

See also
EQF_ELIM, EQF_INTRO, EQT_INTRO.

EQT_INTRO

EQT_INTRO : thm -> thm

Synopsis
Introduces equality with T.

Description

A |- tm
--------------- EQF_INTRO
A |- tm <=> T

Failure
Never fails.

Example

EQT_INTRO (REFL ‘2‘);;
val it : thm = |- 2 = 2 <=> T

See also
EQF_ELIM, EQF_INTRO, EQT_ELIM.

equals_goal

equals_goal : goal -> goal -> bool

156 Chapter 1. Pre-defined ML Identifiers

Synopsis
Equality test on goals.

Description
The relation equals_goal tests if two goals have exactly the same structure, with the

same assumptions, conclusions and even labels, with the assumptions in the same order.

The only respect in which this differs from a pure equality tests is that the various term

components are tested modulo alpha-conversion.

Failure
Never fails.

Comments
Probably not generally useful. Used inside CHANGED_TAC.

See also
CHANGED_TAC, equals_thm.

equals_thm

equals_thm : thm -> thm -> bool

Synopsis
Equality test on theorems.

Description
The call equals_thm th1 th2 returns true if and only if both the conclusions and assump-

tions of the two theorems th1 and th2 are exactly the same. The same can be achieved

by a simple equality test, but it is better practice to use this function because it will also

work in the proof recording version of HOL Light (see the Proofrecording subdirectory).

Failure
Never fails.

See also
=?.

ETA_CONV

ETA_CONV : term -> thm

EVERY ASSUM 157

Synopsis
Performs a toplevel eta-conversion.

Description
ETA_CONV maps an eta-redex ‘\x. t x‘, where x does not occur free in t, to the theorem

|- (\x. t x) = t.

Failure
Fails if the input term is not an eta-redex.

Example

ETA_CONV ‘\n. SUC n‘;;
val it : thm = |- (\n. SUC n) = SUC

ETA_CONV ‘\n. 1 + n‘;;
val it : thm = |- (\n. 1 + n) = (+) 1

ETA_CONV ‘\n. n + 1‘;;
Exception: Failure "ETA_CONV".

Comments
The same basic effect can be achieved by rewriting with ETA_AX. The theorem ETA_AX is

one of HOL Light’s three mathematical axioms.

EVERY_ASSUM

EVERY_ASSUM : thm_tactic -> tactic

Synopsis
Sequentially applies all tactics given by mapping a function over the assumptions of a

goal.

Description
When applied to a theorem-tactic f and a goal ({A1;...;An} ?- C), the EVERY_ASSUM

tactical maps f over the list of assumptions then applies the resulting tactics, in sequence,

to the goal:

EVERY_ASSUM f ({A1;...;An} ?- C)
= (f(.. |- A1) THEN ... THEN f(.. |- An)) ({A1;...;An} ?- C)

If the goal has no assumptions, then EVERY_ASSUM has no effect.

158 Chapter 1. Pre-defined ML Identifiers

Failure
The application of EVERY_ASSUM to a theorem-tactic and a goal fails if the theorem-tactic

fails when applied to any of the assumptions of the goal, or if any of the resulting tactics

fail when applied sequentially.

See also
ASSUM_LIST, MAP_EVERY, MAP_FIRST, THEN.

EVERY_CONV

EVERY_CONV : conv list -> conv

Synopsis
Applies in sequence all the conversions in a given list of conversions.

Description
EVERY_CONV [c1;...;cn] ‘t‘ returns the result of applying the conversions c1, ..., cn in

sequence to the term ‘t‘. The conversions are applied in the order in which they are

given in the list. In particular, if ci ‘ti‘ returns |- ti=ti+1 for i from 1 to n, then

EVERY_CONV [c1;...;cn] ‘t1‘ returns |- t1=t(n+1). If the supplied list of conversions

is empty, then EVERY_CONV returns the identity conversion. That is, EVERY_CONV [] ‘t‘

returns |- t=t.

Failure
EVERY_CONV [c1;...;cn] ‘t‘ fails if any one of the conversions c1, ..., cn fails when applied

in sequence as specified above.

Example

EVERY_CONV [BETA_CONV; NUM_ADD_CONV] ‘(\x. x + 2) 5‘;;
val it : thm = |- (\x. x + 2) 5 = 7

See also
THENC.

EVERY

EVERY : tactic list -> tactic

EVERY TCL 159

Synopsis
Sequentially applies all the tactics in a given list of tactics.

Description
When applied to a list of tactics [t1; ... ;tn], and a goal g, the tactical EVERY applies

each tactic in sequence to every subgoal generated by the previous one. This can be

represented as:

EVERY [t1;...;tn] = t1 THEN ... THEN tn

If the tactic list is empty, the resulting tactic has no effect.

Failure
The application of EVERY to a tactic list never fails. The resulting tactic fails iff any of

the component tactics do.

Comments
It is possible to use EVERY instead of THEN, but probably stylistically inferior. EVERY is

more useful when applied to a list of tactics generated by a function.

See also
FIRST, MAP_EVERY, THEN.

EVERY_TCL

EVERY_TCL : thm_tactical list -> thm_tactical

Synopsis
Composes a list of theorem-tacticals.

Description
When given a list of theorem-tacticals and a theorem, EVERY_TCL simply composes their

effects on the theorem. The effect is:

EVERY_TCL [ttl1;...;ttln] = ttl1 THEN_TCL ... THEN_TCL ttln

In other words, if:

ttl1 ttac th1 = ttac th2 ... ttln ttac thn = ttac thn’

then:

EVERY_TCL [ttl1;...;ttln] ttac th1 = ttac thn’

If the theorem-tactical list is empty, the resulting theorem-tactical behaves in the same

160 Chapter 1. Pre-defined ML Identifiers

way as ALL_THEN, the identity theorem-tactical.

Failure
The application to a list of theorem-tacticals never fails.

See also
FIRST_TCL, ORELSE_TCL, REPEAT_TCL, THEN_TCL.

EXISTENCE

EXISTENCE : thm -> thm

Synopsis
Deduces existence from unique existence.

Description
When applied to a theorem with a unique-existentially quantified conclusion, EXISTENCE

returns the same theorem with normal existential quantification over the same variable.

A |- ?!x. p
------------- EXISTENCE
A |- ?x. p

Failure
Fails unless the conclusion of the theorem is unique-existentially quantified.

Example

let th = MESON[] ‘?!n. n = m‘;;
...
val th : thm = |- ?!n. n = m

EXISTENCE th;;
val it : thm = |- ?n. n = m

See also
EXISTS, SIMPLE_EXISTS.

exists 161

exists

exists : (’a -> bool) -> ’a list -> bool

Synopsis
Tests a list to see if some element satisfy a predicate.

Description
exists p [x1;...;xn] returns true if (p xi) is true for some xi in the list. Otherwise,

for example if the list is empty, it returns false.

Failure
Never fails.

Example

exists (fun n -> n mod 2 = 0) [2;3;5;7;11;13;17];;
val it : bool = true
exists (fun n -> n mod 2 = 0) [3;5;7;9;11;13;15];;
val it : bool = false

See also
find, forall, tryfind, mem, assoc, rev_assoc.

EXISTS_EQUATION

EXISTS_EQUATION : term -> thm -> thm

Synopsis
Derives existence from explicit equational constraint.

Description
Given a term ‘x = t‘ where x does not occur free in t, and a theorem A |- p[x], the rule

EXISTS_EQUATION returns A - {x = t} |- ?x. p[x]. Normally, the equation x = t is one

of the hypotheses of the theorem, so this rule allows one to derive an existence assertion

ignoring the actual “definition”.

162 Chapter 1. Pre-defined ML Identifiers

Failure
Fails if the term is not an equation, if the LHS is not a variable, or if the variable occurs

free in the RHS.

Example

let th = (UNDISCH o EQT_ELIM o SIMP_CONV[ARITH])
‘x = 3 ==> ODD(x) /\ x > 2‘;;

val th : thm = x = 3 |- ODD x /\ x > 2

EXISTS_EQUATION ‘x = 3‘ th;;
val it : thm = |- ?x. ODD x /\ x > 2

Note that it is not obligatory for the term to be an assumption:

EXISTS_EQUATION ‘x = 1‘ (REFL ‘x:num‘);;
val it : thm = |- ?x. x = x

See also
EXISTS, SIMPLE_EXISTS.

EXISTS_TAC

EXISTS_TAC : term -> tactic

Synopsis
Reduces existentially quantified goal to one involving a specific witness.

Description
When applied to a term u and a goal A ?- ?x. t, the tactic EXISTS_TAC reduces the goal

to A ?- t[u/x] (substituting u for all free instances of x in t, with variable renaming if

necessary to avoid free variable capture).

A ?- ?x. t
============= EXISTS_TAC ‘u‘
A ?- t[u/x]

Failure
Fails unless the goal’s conclusion is existentially quantified and the term supplied has the

same type as the quantified variable in the goal.

EXISTS 163

Example
The goal:

g ‘?x. 1 < x /\ x < 3‘;;

can be solved by:

e(EXISTS_TAC ‘2‘ THEN ARITH_TAC);;
val it : goalstack = No subgoals

See also
EXISTS.

EXISTS

EXISTS : term * term -> thm -> thm

Synopsis
Introduces existential quantification given a particular witness.

Description
When applied to a pair of terms and a theorem, the first term an existentially quantified

pattern indicating the desired form of the result, and the second a witness whose substi-

tution for the quantified variable gives a term which is the same as the conclusion of the

theorem, EXISTS gives the desired theorem.

A |- p[u/x]
------------- EXISTS (‘?x. p‘,‘u‘)
A |- ?x. p

Failure
Fails unless the substituted pattern is the same as the conclusion of the theorem.

Example
The following examples illustrate how it is possible to deduce different things from the

164 Chapter 1. Pre-defined ML Identifiers

same theorem:

EXISTS (‘?x. x <=> T‘,‘T‘) (REFL ‘T‘);;
val it : thm = |- ?x. x <=> T

EXISTS (‘?x:bool. x = x‘,‘T‘) (REFL ‘T‘);;
val it : thm = |- ?x. x <=> x

See also
CHOOSE, EXISTS_TAC, SIMPLE_EXISTS.

EXPAND_CASES_CONV

EXPAND_CASES_CONV : conv

Synopsis
Expand a numerical range ‘!i. i < n ==> P[i]‘.

Description
When applied to a term of the form ‘!i. i < n ==> P[i]‘ for some P[i] and a numeral

n, the conversion EXPAND_CASES_CONV returns

|- (!i. i < n ==> P[i]) <=> P[0] /\ ... /\ P[n-1]

Failure
Fails if applied to a term that is not of the right form.

Example

EXPAND_CASES_CONV ‘(!n. n < 5 ==> ~(n = 0) ==> 12 MOD n = 0)‘;;
val it : thm =
|- (!n. n < 5 ==> ~(n = 0) ==> 12 MOD n = 0) <=>

(~(1 = 0) ==> 12 MOD 1 = 0) /\
(~(2 = 0) ==> 12 MOD 2 = 0) /\
(~(3 = 0) ==> 12 MOD 3 = 0) /\
(~(4 = 0) ==> 12 MOD 4 = 0)

(EXPAND_CASES_CONV THENC NUM_REDUCE_CONV)
‘(!n. n < 5 ==> ~(n = 0) ==> 12 MOD n = 0)‘;;

val it : thm = |- (!n. n < 5 ==> ~(n = 0) ==> 12 MOD n = 0) <=> T

See also
NUM_REDUCE_CONV.

EXPAND TAC 165

EXPAND_TAC

EXPAND_TAC : string -> tactic

Synopsis
Expand an abbreviation in the hypotheses.

Description
The tactic EXPAND_TAC "x", applied to a goal, looks for a hypothesis of the form ‘t = x‘

where x is a variable with the given name. It then replaces x by t throughout the

conclusion of the goal.

Failure
Fails if there is no suitable assumption in the goal.

Example
Consider the final goal in the example given for ABBREV_TAC:

val it : goalstack = 1 subgoal (1 total)

0 [‘12345 + 12345 = n‘]

‘n + f n = f n‘

If we expand it, we get:

e(EXPAND_TAC "n");;
val it : goalstack = 1 subgoal (1 total)

0 [‘12345 + 12345 = n‘]

‘(12345 + 12345) + f (12345 + 12345) = f (12345 + 12345)‘

See also
ABBREV_TAC.

explode

explode : string -> string list

166 Chapter 1. Pre-defined ML Identifiers

Synopsis
Converts a string into a list of single-character strings.

Description
explode s returns the list of single-character strings that make up s, in the order in which

they appear in s. If s is the empty string, then an empty list is returned.

Failure
Never fails.

Example

explode "example";;
val it : string list = ["e"; "x"; "a"; "m"; "p"; "l"; "e"]

See also
implode.

extend_basic_congs

extend_basic_congs : thm list -> unit

Synopsis
Extends the set of congruence rules used by the simplifier.

Description
The HOL Light simplifier (as invoked by SIMP_TAC etc.) uses congruence rules to determine

how it uses context when descending through a term. These are essentially theorems

showing how to decompose one equality to a series of other inequalities in context. A call

to extend_basic_congs thl adds the congruence rules in thl to the defaults.

Failure
Never fails.

Example
By default, the simplifier uses context p when simplifying q within an implication p ==> q.

Some users would like the simplifier to do likewise for a conjunction p /\ q, which is not

extend basic convs 167

done by default:

SIMP_CONV[] ‘x = 1 /\ x < 2‘;;
val it : thm = |- x = 1 /\ x < 2 <=> x = 1 /\ x < 2

You can make it do so with

extend_basic_congs
[TAUT ‘(p <=> p’) ==> (p’ ==> (q <=> q’)) ==> (p /\ q <=> p’ /\ q’)‘];;

val it : unit = ()

as you can see:

SIMP_CONV[] ‘x = 1 /\ x < 2‘;;
val it : thm = |- x = 1 /\ x < 2 <=> x = 1 /\ 1 < 2

SIMP_CONV[ARITH] ‘x = 1 /\ x < 2‘;;
val it : thm = |- x = 1 /\ x < 2 <=> x = 1

See also
basic_congs, set_basic_congs, SIMP_CONV, SIMP_RULE, SIMP_TAC.

extend_basic_convs

extend_basic_convs : string * (term * conv) -> unit

Synopsis
Extend the set of default conversions used by rewriting and simplification.

Description
The HOL Light rewriter (REWRITE_TAC etc.) and simplifier (SIMP_TAC etc.) have default

sets of (conditional) equations and other conversions that are applied by default, except in

the PURE_ variants. The latter are normally term transformations that cannot be expressed

as single (conditional or unconditional) rewrite rules. A call to

extend_basic_convs("name",(‘pat‘,conv))

will add the conversion conv into the default set, using the name name to refer to it and

restricting it to subterms encountered that match pat.

Failure
Never fails.

168 Chapter 1. Pre-defined ML Identifiers

Example
By default, no arithmetic is done in rewriting, though rewriting with the theorem ARITH

gives that effect.

REWRITE_CONV[] ‘x = 1 + 2 + 3 + 4‘;;
val it : thm = |- x = 1 + 2 + 3 + 4 <=> x = 1 + 2 + 3 + 4

You can add NUM_ADD_CONV to the set of default conversions by

extend_basic_convs("addition on nat",(‘m + n:num‘,NUM_ADD_CONV));;
val it : unit = ()

and now it happens by default:

REWRITE_CONV[] ‘x = 1 + 2 + 3 + 4‘;;
val it : thm = |- x = 1 + 2 + 3 + 4 <=> x = 10

See also
basic_convs, extend_basic_rewrites, set_basic_convs.

extend_basic_rewrites

extend_basic_rewrites : thm list -> unit

Synopsis
Extend the set of default rewrites used by rewriting and simplification.

Description
The HOL Light rewriter (REWRITE_TAC etc.) and simplifier (SIMP_TAC etc.) have default

sets of (conditional) equations and other conversions that are applied by default, except

in the PURE_ variants. A call to extend_basic_rewrites thl extends the former with the

list of theorems thl, so they will thereafter happen by default.

Failure
Never fails.

See also
basic_rewrites, extend_basic_convs, set_basic_rewrites.

extend rectype net 169

extend_rectype_net

extend_rectype_net : string * (’a * ’b * thm) -> unit

Synopsis
Extends internal store of distinctness and injectivity theorems for a new inductive type.

Description
HOL Light maintains several data structures based on the current set of distinctness and

injectivity theorems for the inductive data type so far defined. A call extend_rectype_net ("tyname",(_,_,rth))

where rth is the recursion theorem for the type as returned as the second item from

define_type, extend these structures for a new type. Two arguments are ignored just for

regularity with some other internal data structures.

Failure
Never fails, even if the theorem is malformed.

Comments
This functoin is called automatically by define_type, and normally users will not need

to invoke it explicitly.

See also
basic_rectype_net, define_type, distinctness_store, injectivity_store.

fail

fail : unit -> ’a

Synopsis
Fail with empty string.

Description
In HOL Light, the class of exceptions Failure "string" is used consistently. This makes

it easy to catch all HOL-related exceptions by a Failure _ pattern without accidentally

catching others. In general, the failure can be generated by failwith "string", but the

special case of an empty string is bound to the function fail.

170 Chapter 1. Pre-defined ML Identifiers

Failure
Always fails.

Uses
Useful when there is no intention to propagate helpful information about the cause of

the exception, for example because you know it will be caught and handled without

discrimination.

See also

FAIL_TAC

FAIL_TAC : string -> tactic

Synopsis
Tactic that always fails, with the supplied string.

Description
Whatever goal it is applied to, FAIL_TAC "s" always fails with Failure "s".

Failure
The application of FAIL_TAC to a string never fails; the resulting tactic always fails.

Example
The following example uses the fact that if a tactic t1 solves a goal, then the tactic

t1 THEN t2 never results in the application of t2 to anything, because t1 produces no

subgoals. In attempting to solve the following goal:

g ‘if x then T else T‘;;

the tactic

e(REWRITE_TAC[] THEN FAIL_TAC "Simple rewriting failed to solve goal");;
Exception: Failure "Simple rewriting failed to solve goal".

fails with the message provided, whereas the following quietly solves the goal:

e(REWRITE_TAC[COND_ID] THEN FAIL_TAC "Using that failed to solve goal");;
val it : goalstack = No subgoals

See also
ALL_TAC, NO_TAC.

f f 171

f_f_

f_f_ : (’a -> ’b) -> (’c -> ’d) -> ’a * ’c -> ’b * ’d

Synopsis
Non-infix version of F_F.

See also
F_F.

F_F

(F_F) : (’a -> ’b) -> (’c -> ’d) -> ’a * ’c -> ’b * ’d

Synopsis
Infix operator. Applies two functions to a pair: (f F_F g) (x,y) = (f x, g y).

Description

Failure
Never fails.

Example

Uses

Comments

See also
f_f_

file_on_path

file_on_path : string list -> string -> string

172 Chapter 1. Pre-defined ML Identifiers

Synopsis
Expands relative filename to first available one in path.

Description
When given an absolute filename, (e.g. on Linux/Unix one starting with a slash or

tilde), this function returns it unchanged. Otherwise it tries to find the file in one of the

directories in the path argument.

Failure
Fails if no file is found on the path.

Example

file_on_path (!load_path) "Examples/analysis.ml";;
val it : string = "/home/johnh/holl/Examples/analysis.ml"
file_on_path (!load_path) "Examples/wibble.ml";;
Exception: Not_found.

See also
load_path, loads, loadt, needs.

filter

filter : (’a -> bool) -> ’a list -> ’a list

Synopsis
Filters a list to the sublist of elements satisfying a predicate.

Description
filter p l applies p to every element of l, returning a list of those that satisfy p, in the

order they appeared in the original list.

Failure
Fails if the predicate fails on any element.

See also
mapfilter, partition, remove.

FIND ASSUM 173

FIND_ASSUM

FIND_ASSUM : thm_tactic -> term -> tactic

Synopsis

Apply a theorem-tactic to the the first assumption equal to given term.

Description

The tactic FIND_ASSUM ttac ‘t‘ finds the first assumption whose conclusion is t, and

applies ttac to it. If there is no such assumption, the call fails.

Failure

Fails if there is no assumption the same as the given term, or if the theorem-tactic itself

fails on the assumption.

Example

Suppose we set up this goal:

g ‘0 = x /\ y = 0 ==> f(x + f(y)) = f(f(f(x) * x * y))‘;;

and move the hypotheses into the assumption list:

e STRIP_TAC;;
val it : goalstack = 1 subgoal (1 total)

0 [‘0 = x‘]
1 [‘y = 0‘]

‘f (x + f y) = f (f (f x * x * y))‘

We can’t just use ASM_REWRITE_TAC[] to solve the goal, but we can more directly use

174 Chapter 1. Pre-defined ML Identifiers

the assumptions:

e(FIND_ASSUM SUBST1_TAC ‘y = 0‘ THEN
FIND_ASSUM (SUBST1_TAC o SYM) ‘0 = x‘);;

val it : goalstack = 1 subgoal (1 total)

0 [‘0 = x‘]
1 [‘y = 0‘]

‘f (0 + f 0) = f (f (f 0 * 0 * 0))‘

after which simple rewriting solves the goal:

e(REWRITE_TAC[ADD_CLAUSES; MULT_CLAUSES]);;
val it : goalstack = No subgoals

Uses
Identifying an assumption to use by explicitly quoting it.

Comments
A similar effect can be achieved by ttac(ASSUME ‘t‘). The use of FIND_ASSUM may be

considered preferable because it immediately fails if there is no assumption t, whereas the

ASSUME construct only generates a validity failure. Still, the the above example, it would

have been a little briefer to write:

e(REWRITE_TAC[ASSUME ‘y = 0‘; SYM(ASSUME ‘0 = x‘);
ADD_CLAUSES; MULT_CLAUSES]);;

See also
ASSUME, VALID.

find

find : (’a -> bool) -> ’a list -> ’a

Synopsis
Returns the first element of a list which satisfies a predicate.

Description
find p [x1;...;xn] returns the first xi in the list such that (p xi) is true.

find path 175

Failure
Fails with find if no element satisfies the predicate. This will always be the case if the

list is empty.

See also
tryfind, mem, exists, forall, assoc, rev_assoc.

find_path

find_path : (term -> bool) -> term -> string

Synopsis
Returns a path to some subterm satisfying a predicate.

Description
The call find_path p t traverses the term t top-down until it finds a subterm satisfying

the predicate p. It then returns a path indicating how to reach it; this is just a string

with each character interpreted as:

• "b": take the body of an abstraction

• "l": take the left (rator) path in an application

• "r": take the right (rand) path in an application

Failure
Fails if there is no subterm satisfying p.

Example

find_path is_list ‘!x. ~(x = []) ==> CONS (HD x) (TL x) = x‘;;
Warning: inventing type variables
val it : string = "rblrrr"

See also
follow_path, PATH_CONV.

176 Chapter 1. Pre-defined ML Identifiers

find_term

find_term : (term -> bool) -> term -> term

Synopsis
Searches a term for a subterm that satisfies a given predicate.

Description
The largest subterm, in a depth-first, left-to-right search of the given term, that satisfies

the predicate is returned.

Failure
Fails if no subterm of the given term satisfies the predicate.

Example

find_term is_var ‘x + y + z‘;;
val it : term = ‘x‘

See also
find_terms.

find_terms

find_terms : (term -> bool) -> term -> term list

Synopsis
Searches a term for all subterms that satisfy a predicate.

Description
A list of subterms of a given term that satisfy the predicate is returned.

Failure
Never fails.

finished 177

Example
This is a simple example:

find_terms is_var ‘x + y + z‘;;
val it : term list = [‘z‘; ‘y‘; ‘x‘]

while the following shows that the terms returned may overlap or contain each other:

find_terms is_comb ‘x + y + z‘;;
val it : term list = [‘(+) y‘; ‘y + z‘; ‘(+) x‘; ‘x + y + z‘]

See also
find_term.

finished

finished : ’a list -> int * ’a list

Synopsis
Parser that checks emptiness of the input.

Description
The function finished tests if its input is the empty list, and if so returns a pair of zero

and that input. Otherwise it fails.

Failure
Fails on nonempty input.

Uses
This function is intended to check that some parsing operation has absorbed all the input.

Comments
This is one of a suite of combinators for manipulating “parsers”. A parser is simply

a function whose OCaml type is some instance of :(’a)list -> ’b * (’a)list. The

function should take a list of objects of type :’a (e.g. characters or tokens), parse as

much of it as possible from left to right, and return a pair consisting of the object derived

from parsing (e.g. a term or a special syntax tree) and the list of elements that were not

processed.

178 Chapter 1. Pre-defined ML Identifiers

See also
++, ||, >>, a, atleast, elistof, fix, leftbin, listof, many, nothing, possibly,
rightbin, some.

FIRST_ASSUM

FIRST_ASSUM : thm_tactic -> tactic

Synopsis
Applied theorem-tactic to first assumption possible.

Description
The tactic

FIRST_ASSUM ttac ([A1; ...; An], g)

has the effect of applying the first tactic which can be produced by ttac from the assump-

tions (.. |- A1), ..., (.. |- An) and which succeeds when applied to the goal. Failures

of ttac to produce a tactic are ignored. The similar function FIRST_X_ASSUM is the same

except that the assumption used is then removed from the goal.

Failure
Fails if ttac (.. |- Ai) fails for every assumption Ai, or if the assumption list is empty,

or if all the tactics produced by ttac fail when applied to the goal.

Example
The tactic

FIRST_ASSUM (fun asm -> CONTR_TAC asm ORELSE ACCEPT_TAC asm)

searches the assumptions for either a contradiction or the desired conclusion. The tactic

FIRST_ASSUM MATCH_MP_TAC

searches the assumption list for an implication whose conclusion matches the goal, reduc-

ing the goal to the antecedent of the corresponding instance of this implication.

See also
ASSUM_LIST, EVERY, EVERY_ASSUM, FIRST, FIRST_X_ASSUM, MAP_EVERY, MAP_FIRST.

FIRST CONV 179

FIRST_CONV

FIRST_CONV : conv list -> conv

Synopsis
Apply the first of the conversions in a given list that succeeds.

Description
FIRST_CONV [c1;...;cn] ‘t‘ returns the result of applying to the term ‘t‘ the first con-

version ci that succeeds when applied to ‘t‘. The conversions are tried in the order in

which they are given in the list.

Failure
FIRST_CONV [c1;...;cn] ‘t‘ fails if all the conversions c1, ..., cn fail when applied to the

term ‘t‘. FIRST_CONV cs ‘t‘ also fails if cs is the empty list.

Example

FIRST_CONV [NUM_ADD_CONV; NUM_MULT_CONV; NUM_EXP_CONV] ‘12 * 12‘;;
val it : thm = |- 12 * 12 = 144

See also
ORELSEC.

FIRST

FIRST : tactic list -> tactic

Synopsis
Applies the first tactic in a tactic list that succeeds.

Description
When applied to a list of tactics [t1;...;tn], and a goal g, the tactical FIRST tries

applying the tactics to the goal until one succeeds. If the first tactic which succeeds is tm,

180 Chapter 1. Pre-defined ML Identifiers

then the effect is the same as just tm. Thus FIRST effectively behaves as follows:

FIRST [t1;...;tn] = t1 ORELSE ... ORELSE tn

Failure
The application of FIRST to a tactic list never fails. The resulting tactic fails iff all the

component tactics do when applied to the goal, or if the tactic list is empty.

See also
EVERY, ORELSE.

FIRST_TCL

FIRST_TCL : thm_tactical list -> thm_tactical

Synopsis
Applies the first theorem-tactical in a list that succeeds.

Description
When applied to a list of theorem-tacticals, a theorem-tactic and a theorem, FIRST_TCL re-

turns the tactic resulting from the application of the first theorem-tactical to the theorem-

tactic and theorem that succeeds. The effect is the same as:

FIRST_TCL [ttl1;...;ttln] = ttl1 ORELSE_TCL ... ORELSE_TCL ttln

Failure
FIRST_TCL fails iff each tactic in the list fails when applied to the theorem-tactic and

theorem. This is trivially the case if the list is empty.

See also
EVERY_TCL, ORELSE_TCL, REPEAT_TCL, THEN_TCL.

FIRST_X_ASSUM

FIRST_X_ASSUM : thm_tactic -> tactic

fix 181

Synopsis
Applied theorem-tactic to first assumption possible, extracting assumption.

Description
The tactic

FIRST_X_ASSUM ttac ([A1; ...; An], g)

has the effect of applying the first tactic which can be produced by ttac from the as-

sumptions (.. |- A1), ..., (.. |- An) and which succeeds when applied to the goal with

that assumption removed. Failures of ttac to produce a tactic are ignored. The similar

function FIRST_ASSUM is the same except that the assumption used is not removed from

the goal.

Failure
Fails if ttac (.. |- Ai) fails for every assumption Ai, or if the assumption list is empty,

or if all the tactics produced by ttac fail when applied to the goal.

Example
The tactic

FIRST_X_ASSUM MATCH_MP_TAC

searches the assumption list for an implication whose conclusion matches the goal, re-

moving that assumption and reducing the goal to the antecedent of the corresponding

instance of this implication.

See also
ASSUM_LIST, EVERY, EVERY_ASSUM, FIRST, FIRST_ASSUM, MAP_EVERY, MAP_FIRST.

fix

fix : string -> (’a -> ’b) -> ’a -> ’b

Synopsis
Applies parser and fails if it raises Noparse.

Description
Parsers raise Noparse to indicate that they were not able to make any progress at all. If p

is such a parser, fix s p gives a new parser where a Noparse exception from p will result

in a Failure s exception, but is otherwise the same as p.

182 Chapter 1. Pre-defined ML Identifiers

Failure
The immediate call fix s p never fails, but the resulting parser may.

Comments
This is one of a suite of combinators for manipulating “parsers”. A parser is simply

a function whose OCaml type is some instance of :(’a)list -> ’b * (’a)list. The

function should take a list of objects of type :’a (e.g. characters or tokens), parse as

much of it as possible from left to right, and return a pair consisting of the object derived

from parsing (e.g. a term or a special syntax tree) and the list of elements that were not

processed.

See also
++, ||, >>, a, atleast, elistof, finished, leftbin, listof, many, nothing,
possibly, rightbin, some.

flat

flat : ’a list list -> ’a list

Synopsis
Flattens a list of lists into one long list.

Description
flat [l1;...;ln] returns (l1 @ ... @ ln) where each li is a list and @ is list concatena-

tion.

Failure
Never fails.

Example

flat [[1;2];[3;4;5];[6]];;
val it : int list = [1; 2; 3; 4; 5; 6]

flush_goalstack

flush_goalstack : unit -> unit

foldl 183

Synopsis
Eliminate all but the current goalstate from the current goalstack.

Description
Normally, the current goalstack has the current goalstate at the head and all previous

intermediate states further back in the list. This function flush_goalstack() keeps just

the current goalstate and eliminates all previous states.

Failure
Fails if there is no current goalstate, i.e. if the goalstack is empty.

See also
b, g, r.

foldl

foldl : (’a -> ’b -> ’c -> ’a) -> ’a -> (’b, ’c) func -> ’a

Synopsis
Folds an operation iteratively over the graph of a finite partial function.

Description
This is one of a suite of operations on finite partial functions, type (’a,’b)func. These

may sometimes be preferable to ordinary functions since they permit more operations

such as equality comparison, extraction of domain etc. If a finite partial function p has

graph [x1,y1; ...; xn,yn] then the application foldl f a p returns

f (f ... (f (f a x1 y1) x2 y2) ...) xn yn

Note that the order in which the pairs are operated on depends on the internal structure

of the finite partial function, and is often not the most obvious.

Failure
Fails if one of the embedded function applications does.

Example
The graph function is implemented based on the following invocation of foldl, with an

184 Chapter 1. Pre-defined ML Identifiers

additional sorting phase afterwards:

let f = (1 |-> 2) (2 |=> 3);;
val f : (int, int) func = <func>

graph f;;
val it : (int * int) list = [(1, 2); (2, 3)]

foldl (fun a x y -> (x,y)::a) [] f;;
val it : (int * int) list = [(1, 2); (2, 3)]

Note that in this case the order happened to be the same, but this is an accident.

See also
|->, |=>, apply, applyd, choose, combine, defined, dom, foldr, graph,
is_undefined, mapf, ran, tryapplyd, undefine, undefined.

foldr

foldr : (’a -> ’b -> ’c -> ’c) -> (’a, ’b) func -> ’c -> ’c

Synopsis
Folds an operation iteratively over the graph of a finite partial function.

Description
This is one of a suite of operations on finite partial functions, type (’a,’b)func. These

may sometimes be preferable to ordinary functions since they permit more operations

such as equality comparison, extraction of domain etc. If a finite partial function p has

graph [x1,y1; ...; xn,yn] then the application foldl f p a returns

f x1 y1 (f x2 y2 (f x3 y3 (f ... (f xn yn a) ...)))

Note that the order in which the pairs are operated on depends on the internal structure

of the finite partial function, and is often not the most obvious.

Failure
Fails if one of the embedded function applications does.

follow path 185

Example

let f = (1 |-> 2) (2 |=> 3);;
val f : (int, int) func = <func>

graph f;;
val it : (int * int) list = [(1, 2); (2, 3)]

foldr (fun x y a -> (x,y)::a) f [];;
val it : (int * int) list = [(2, 3); (1, 2)]

Note how the pairs are actually processed in the opposite order to the order in which

they are presented by graph. The order will in general not be obvious, and generally this

is applied to operations with appropriate commutativity properties.

See also
|->, |=>, apply, applyd, choose, combine, defined, dom, foldl, graph,
is_undefined, mapf, ran, tryapplyd, undefine, undefined.

follow_path

follow_path : string -> term -> term

Synopsis
Find the subterm of a given term indicated by a path.

Description
A call follow_path p t follows path p inside t and returns the subterm encountered. The

path is a string with the successive characters interpreted as follows:

• "b": take the body of an abstraction

• "l": take the left (rator) path in an application

• "r": take the right (rand) path in an application

Failure
Fails if the path is not meaningful for the term, e.g. if a "b" is encountered for a subterm

that is not an abstraction.

186 Chapter 1. Pre-defined ML Identifiers

Example

follow_path "rrlr" ‘1 + 2 + 3 + 4 + 5‘;;
val it : term = ‘3‘

See also
find_path, PATH_CONV.

forall2

forall2 : (’a -> ’b -> bool) -> ’a list -> ’b list -> bool

Synopsis
Tests if corresponding elements of two lists all satisfy a relation.

Description
forall p [x1;...;xn] [y1;...;yn] returns true if (p xi yi) is true for all corresponding

xi and yi in the list. Otherwise, or if the lengths of the lists are different, it returns false.

Failure
Never fails.

Example
Here we check whether all elements of the first list are less than the corresponding element

of the second:

forall2 (<) [1;2;3] [2;3;4];;
val it : bool = true

forall2 (<) [1;2;3;4] [5;4;3;2];;
val it : bool = false

forall2 (<) [1] [2;3];;
val it : bool = false

See also
exists, forall.

forall 187

forall

forall : (’a -> bool) -> ’a list -> bool

Synopsis
Tests a list to see if all its elements satisfy a predicate.

Description
forall p [x1;...;xn] returns true if (p xi) is true for all xi in the list. Otherwise it

returns false. If the list is empty, this function always returns true.

Failure
Never fails.

Example

forall (fun x -> x <= 2) [0;1;2];;
val it : bool = true
forall (fun x -> x <= 2) [1;2;3];;
val it : bool = false

See also
exists, find, tryfind, mem, assoc, rev_assoc.

free_in

free_in : term -> term -> bool

Synopsis
Tests if one term is free in another.

Description
When applied to two terms t1 and t2, the function free_in returns true if t1 is free in

t2, and false otherwise. It is not necessary that t1 be simply a variable.

Failure
Never fails.

188 Chapter 1. Pre-defined ML Identifiers

Example
In the following example free_in returns false because the x in SUC x in the second term

is bound:

free_in ‘SUC x‘ ‘!x. SUC x = x + 1‘;;
val it : bool = false

whereas the following call returns true because the first instance of x in the second term

is free, even though there is also a bound instance:

free_in ‘x:bool‘ ‘x /\ (?x. x=T)‘;;
val it : bool = true

Comments
If the term t1 is a variable, the rule vfree_in is more basic and probably more efficient.

See also
frees, freesin, freesl, thm_frees, vfree_in.

frees

frees : term -> term list

Synopsis
Returns a list of the variables free in a term.

Description
When applied to a term, frees returns a list of the free variables in that term. There

are no repetitions in the list produced even if there are multiple free instances of some

variables.

Failure
Never fails.

Example
Clearly in the following term, x and y are free, whereas z is bound:

frees ‘x = 1 /\ y = 2 /\ !z. z >= 0‘;;
val it : term list = [‘x‘; ‘y‘]

See also
freesl, free_in, thm_frees, variables.

freesin 189

freesin

freesin : term list -> term -> bool

Synopsis
Tests if all free variables of a term appear in a list.

Description
The call freesin l t tests whether all free variables of t occur in the list l. The special

case where l = [] will therefore test whether t is closed (i.e. contains no free variables).

Failure
Never fails.

Example

freesin [] ‘!x y. x + y >= 0‘;;
val it : bool = true
freesin [] ‘x + y >= 0‘;;
val it : bool = false
freesin [‘x:num‘; ‘y:num‘; ‘z:num‘] ‘x + y >= 0‘;;
val it : bool = true

Uses
Can be attractive to fold together some free-variable tests without explicitly constructing

the set of free variables in a term.

See also
frees, freesl, vfree_in.

freesl

freesl : term list -> term list

Synopsis
Returns a list of the free variables in a list of terms.

190 Chapter 1. Pre-defined ML Identifiers

Description
When applied to a list of terms, freesl returns a list of the variables which are free in

any of those terms. There are no repetitions in the list produced even if several terms

contain the same free variable.

Failure
Never fails.

Example
In the following example there are free instances of each of w, x and y, whereas the only

instances of z are bound:

freesl [‘x + y = 2‘; ‘!z. z >= x - w‘];;
val it : term list = [‘y‘; ‘x‘; ‘w‘]

See also
frees, free_in, thm_frees.

FREEZE_THEN

FREEZE_THEN : thm_tactical

Synopsis
‘Freezes’ a theorem to prevent instantiation of its free variables.

Description
FREEZE_THEN expects a tactic-generating function f:thm->tactic and a theorem (A1 |- w)

as arguments. The tactic-generating function f is applied to the theorem (w |- w). If

this tactic generates the subgoal:

A ?- t
========= f (w |- w)
A ?- t1

then applying FREEZE_THEN f (A1 |- w) to the goal (A ?- t) produces the subgoal:

A ?- t
========= FREEZE_THEN f (A1 |- w)
A ?- t1

Since the term w is a hypothesis of the argument to the function f, none of the free

variables present in w may be instantiated or generalized. The hypothesis is discharged

by PROVE_HYP upon the completion of the proof of the subgoal.

funpow 191

Failure

Failures may arise from the tactic-generating function. An invalid tactic arises if the

hypotheses of the theorem are not alpha-convertible to assumptions of the goal.

Uses

Used in serious proof hacking to limit the matches achievable by rewriting etc.

See also

ASSUME, IMP_RES_TAC, PROVE_HYP, RES_TAC, REWR_CONV.

funpow

funpow : int -> (’a -> ’a) -> ’a -> ’a

Synopsis

Iterates a function a fixed number of times.

Description

funpow n f x applies f to x, n times, giving the result f (f ... (f x)...) where the

number of f’s is n. funpow 0 f x returns x. If n is negative, it is treated as zero.

Failure

funpow n f x fails if any of the n applications of f fail.

192 Chapter 1. Pre-defined ML Identifiers

Example
Apply tl three times to a list:

funpow 3 tl [1;2;3;4;5];;
val it : int list = [4; 5]

Apply tl zero times:

funpow 0 tl [1;2;3;4;5];;
val it : int list = [1; 2; 3; 4; 5]

Apply tl six times to a list of only five elements:

funpow 6 tl [1;2;3;4;5];;
Exception: Failure "tl".

GABS_CONV

GABS_CONV : conv -> term -> thm

Synopsis
Applies a conversion to the body of a generalized abstraction.

Description
If c is a conversion that maps a term ‘t‘ to the theorem |- t = t’, then the conversion

ABS_CONV c maps generalized abstractions of the form ‘\vs. t‘ to theorems of the form:

|- (\vs. t) = (\vs. t’)

That is, ABS_CONV c ‘\vs. t‘ applies c to the body of the generalized abstraction ‘\vs. t‘.

It is permissible to use it on a basic abstraction, in which case the effect is the same as

ABS_CONV.

Failure
Fails if applied to a term that is not a generalized abstraction (or a basic one), or if the

conversion c fails when applied to the term t, or if the theorem returned has assumptions

in which one of the variables in the abstraction varstruct is free.

gcd 193

Example

GABS_CONV SYM_CONV ‘\(x,y,z). x + y + z = 7‘;;
val it : thm = |- (\(x,y,z). x + y + z = 7) = (\(x,y,z). 7 = x + y + z)

See also
ABS_CONV, RAND_CONV, RATOR_CONV, SUB_CONV.

gcd

gcd : int -> int -> int

Synopsis
Computes greatest common divisor of two integers.

Description
The call gcd m n for two integers m and n returns the (nonnegative) greatest common

divisor of m and n. If m and n are both zero, it returns zero.

Failure
Never fails.

Example

gcd 10 12;;
val it : int = 2

gcd 11 27;;
val it : int = 1

gcd (-33) 76;;
val it : int = 1

gcd 0 99;;
val it : int = 99

gcd 0 0;;
val it : int = 0

See also
gcd_num, lcm_num.

194 Chapter 1. Pre-defined ML Identifiers

gcd_num

gcd_num : num -> num -> num

Synopsis
Computes greatest common divisor of two unlimited-precision integers.

Description
The call gcd_num m n for two unlimited-precision (type num) integers m and n returns the

(positive) greatest common divisor of m and n. If both m and n are zero, it returns zero.

Failure
Fails if either number is not an integer (the type num supports arbitrary rationals).

Example

gcd_num (Int 35) (Int(-77));;
val it : num = 7

gcd_num (Int 11) (Int 0);;
val it : num = 11

gcd_num (Int 22 // Int 7) (Int 2);;
Exception: Failure "big_int_of_ratio".

See also
gcd, lcm_num.

g

g : term -> goalstack

Synopsis
Initializes the subgoal package with a new goal which has no assumptions.

GEN ALL 195

Description
The call

g ‘tm‘

is equivalent to

set_goal([],‘tm‘)

and clearly more convenient if a goal has no assumptions. For a description of the subgoal

package, see set_goal.

Failure
Fails unless the argument term has type bool.

Example

g ‘HD[1;2;3] = 1 /\ TL[1;2;3] = [2;3]‘;;
val it : goalstack = 1 subgoal (1 total)

‘HD [1; 2; 3] = 1 /\ TL [1; 2; 3] = [2; 3]‘

See also
b, e, p, r, set_goal, top_goal, top_thm.

GEN_ALL

GEN_ALL : thm -> thm

Synopsis
Generalizes the conclusion of a theorem over its own free variables.

Description
When applied to a theorem A |- t, the inference rule GEN_ALL returns the theorem

A |- !x1...xn. t, where the xi are all the variables, if any, which are free in t but

not in the assumptions.

A |- t
------------------ GEN_ALL
A |- !x1...xn. t

Failure
Never fails.

196 Chapter 1. Pre-defined ML Identifiers

Example

let th = ARITH_RULE ‘x < y ==> 2 * x + y + 1 < 3 * y‘;;
val th : thm = |- x < y ==> 2 * x + y + 1 < 3 * y

GEN_ALL th;;
val it : thm = |- !x y. x < y ==> 2 * x + y + 1 < 3 * y

See also
GEN, GENL, GEN_ALL, SPEC, SPECL, SPEC_ALL, SPEC_TAC.

GEN_ALPHA_CONV

GEN_ALPHA_CONV : term -> term -> thm

Synopsis
Renames the bound variable of an abstraction or binder.

Description
The conversion GEN_ALPHA_CONV provides alpha conversion for lambda abstractions of the

form ‘\x. t‘, as well as other terms of the form ‘b (\x. t)‘ such as quantifiers and other

binders. (Note that whether b is a constant or parses as a binder is irrelevant, though

this is usually the case in applications.) The call GEN_ALPHA_CONV ‘y‘ ‘\x. t‘ returns

|- (\x. t) = (\y. t[y/x])

while GEN_ALPHA_CONV ‘y‘ ‘b (\x. t)‘ returns

|- b (\x. t) = b (\y. t[y/x])

Failure
GEN_ALPHA_CONV ‘y‘ tm fails if y is not a variable, or if tm does not have one of the forms

‘\x. t‘ or ‘b (\x. t)‘, or if the types of x and y differ, or if y is already free in the body

t.

See also
alpha, ALPHA, ALPHA_CONV.

GEN BETA CONV 197

GEN_BETA_CONV

GEN_BETA_CONV : term -> thm

Synopsis
Beta-reduces general beta-redexes (e.g. paired ones).

Description
The conversion GEN_BETA_CONV will perform beta-reduction of simple beta-redexes in the

manner of BETA_CONV, or of generalized beta-redexes such as paired redexes.

Failure
GEN_BETA_CONV tm fails if tm is neither a simple nor a tupled beta-redex.

Example
The following examples show the action of GEN_BETA_CONV on tupled redexes and others:

GEN_BETA_CONV ‘(\x. x + 1) 2‘;;
val it : thm = |- (\x. x + 1) 2 = 2 + 1

GEN_BETA_CONV ‘(\(x,y,z). x + y + z) (1,2,3)‘;;
val it : thm = |- (\(x,y,z). x + y + z) (1,2,3) = 1 + 2 + 3

GEN_BETA_CONV ‘(\[a;b;c]. b) [1;2;3]‘;;
val it : thm = |- (\[a; b; c]. b) [1; 2; 3] = 2

However, it will fail if there is a mismatch between the varstruct and the argument, or

if it is unable to make sense of the generalized abstraction:

GEN_BETA_CONV ‘(\(SUC n). n) 3‘;;
Exception: Failure "term_pmatch".

GEN_BETA_CONV ‘(\(x,y,z). x + y + z) (1,x)‘;;
Exception: Failure "dest_comb: not a combination".

See also
BETA_CONV, PAIRED_BETA_CONV.

GEN

GEN : term -> thm -> thm

198 Chapter 1. Pre-defined ML Identifiers

Synopsis
Generalizes the conclusion of a theorem.

Description
When applied to a term x and a theorem A |- t, the inference rule GEN returns the

theorem A |- !x. t, provided x is a variable not free in any of the assumptions. There

is no compulsion that x should be free in t.

A |- t
------------ GEN ‘x‘ [where x is not free in A]
A |- !x. t

Failure
Fails if x is not a variable, or if it is free in any of the assumptions.

Example
This is a basic example:

GEN ‘x:num‘ (REFL ‘x:num‘);;
val it : thm = |- !x. x = x

while the following example shows how the above side-condition prevents the derivation

of the theorem x <=> T |- !x. x <=> T, which is invalid.

let t = ASSUME ‘x <=> T‘;;
val t : thm = x <=> T |- x <=> T

GEN ‘x:bool‘ t;;
Exception: Failure "GEN".

See also
GENL, GEN_ALL, GEN_TAC, SPEC, SPECL, SPEC_ALL, SPEC_TAC.

GENERAL_REWRITE_CONV

GENERAL_REWRITE_CONV : bool -> (conv -> conv) -> gconv net -> thm list -> conv

Synopsis
Rewrite with theorems as well as an existing net.

GENL 199

Description
The call GENERAL_REWRITE_CONV b cnvl net thl will regard thl as rewrite rules, and if

b = true, also potentially as conditional rewrite rules. These extra rules will be incor-

porated into the existing net, and rewriting applied with a search strategy cnvl (e.g.

DEPTH_CONV).

Comments
This is mostly for internal use, but it can sometimes be more efficient when rewriting with

large sets of theorems repeatedly if they are first composed into a net and then augmented

like this.

See also
GEN_REWRITE_CONV, REWRITES_CONV.

GENL

GENL : term list -> thm -> thm

Synopsis
Generalizes zero or more variables in the conclusion of a theorem.

Description
When applied to a term list [x1;...;xn] and a theorem A |- t, the inference rule GENL

returns the theorem A |- !x1...xn. t, provided none of the variables xi are free in any

of the assumptions. It is not necessary that any or all of the xi should be free in t.

A |- t
------------------ GENL ‘[x1;...;xn]‘ [where no xi is free in A]
A |- !x1...xn. t

Failure
Fails unless all the terms in the list are variables, none of which are free in the assumption

list.

200 Chapter 1. Pre-defined ML Identifiers

Example

SPEC ‘m + p:num‘ ADD_SYM;;
val it : thm = |- !n. (m + p) + n = n + m + p

GENL [‘m:num‘; ‘p:num‘] it;;
val it : thm = |- !m p n. (m + p) + n = n + m + p

See also
GEN, GEN_ALL, GEN_TAC, SPEC, SPECL, SPEC_ALL, SPEC_TAC.

GEN_MESON_TAC

GEN_MESON_TAC : int -> int -> int -> thm list -> tactic

Synopsis
First-order proof search with specified search limits and increment.

Description
This is a slight generalization of the usual tactics for first-order proof search. Normally

MESON, MESON_TAC and ASM_MESON_TAC explore the search space by successively increasing a

size limit from 0, increasing it by 1 per step and giving up when a depth of 50 is reached.

The more general tactic GEN_MESON_TAC allows the user to specify the starting, finishing

and stepping value, but is otherwise identical to ASM_MESON_TAC. In fact, that is defined

as:

let ASM_MESON_TAC = GEN_MESON_TAC 0 50 1;;

Failure
If the goal is unprovable, GEN_MESON_TAC will fail, though not necessarily in a feasible

amount of time.

Uses
Normally, the defaults built into MESON_TAC and ASM_MESON_TAC are reasonably effective.

However, very occasionally a goal exhibits a small search space yet still requires a deep

proof, so you may find GEN_MESON_TAC with a larger “maximum” value than 50 useful.

Another potential use is to start the search at a depth that you know will succeed, to

reduce the search time when a proof is re-run. However, the inconvenience of doing this is

GEN NNF CONV 201

seldom repaid by a dramatic improvement in performance, since exploration is normally

at least exponential with the size bound.

See also
ASM_MESON_TAC, MESON, MESON_TAC.

GEN_NNF_CONV

GEN_NNF_CONV : bool -> conv * (term -> thm * thm) -> conv

Synopsis
General NNF (negation normal form) conversion.

Description
The function GEN_NNF_CONV is a highly general conversion for putting a term in ‘negation

normal form’ (NNF). This means that other propositional connectives are eliminated

in favour of conjunction (‘/\’), disjunction (‘\/’) and negation (‘~’), and the negations

are pushed down to the level of atomic formulas, also through universal and existential

quantifiers, with double negations eliminated.

This function is very general. The first, boolean, argument determines how logical

equivalences ‘p <=> q’ are split. If the flag is true, toplevel equivalences are split “con-

junctively” into ‘(p \/ ~q) /\ (~p \/ q)’, while if it is false they are split “disjunctively”

into ‘(p /\ q) \/ (~p /\ ~q)’. At subformulas, the effect is modified appropriately in

order to make the resulting formula simpler in conjunctive normal form (if the flag is true)

or disjunctive normal form (if the flag is false).

The second argument has two components. The first is a conversion to apply to literals,

that is atomic formulas or their negations. The second is a slightly more elaborate variant

of the same thing, taking an atomic formula p and returning desired equivalences for both

p and ~p in a pair. This interface avoids multiple recomputations in terms involving many

nested logical equivalences, where otherwise the core conversion would be called several

times.

Failure
Never fails but may have no effect.

Comments
The simple functions like NNF_CONV should be adequate most of the time, with this some-

what intricate interface being reserved for special situations.

202 Chapter 1. Pre-defined ML Identifiers

See also
NNF_CONV, NNFC_CONV.

GEN_REAL_ARITH

GEN_REAL_ARITH : ((thm list * thm list * thm list -> positivstellensatz -> thm) -> thm list * thm list * thm list -> thm) -> term -> thm

Synopsis
Initial normalization and proof reconstruction wrapper for real decision procedure.

Description
The function GEN_REAL_ARITH takes two arguments, the first of which is an underlying

‘prover’, and the second a term to prove. This function is mainly intended for internal

use: the function REAL_ARITH is essentially implemented as

GEN_REAL_ARITH REAL_LINEAR_PROVER

The wrapper GEN_REAL_ARITH performs various initial normalizations, such as elimi-

nating max, min and abs, and passes to the prover a proof reconstruction function, say

reconstr, and a triple of theorem lists to refute. The theorem lists are respectively a

list of equations of the form A_i |- p_i = &0, a list of non-strict inequalities of the form

B_j |- q_i >= &0, and a list of strict inequalities of the form C_k |- r_k > &0, with both

sides being real in each case. The underlying prover merely needs to find a “Positivstellen-

satz” refutation, and pass the triple of theorems actually used and the Positivstellensatz

refutation back to the reconstruction function reconstr. A Positivstellensatz refutation

is essentially a representation of how to add and multiply equalities or inequalities chosen

from the list to reach a trivially false equation or inequality such as &0 > &0. Note that

the underlying prover may choose to augment the list of inequalities before proceeding

with the proof, e.g. REAL_LINEAR_PROVER adds theorems |- &0 <= &n for relevant numeral

terms &n. This is why the interface passes in a reconstruction function rather than simply

expecting a Positivstellensatz refutation back.

Failure
Never fails at this stage, though it may fail when subsequently applied to a term.

Example
As noted, the built-in decision procedure REAL_ARITH is a simple application. See also

the file Examples/sos.ml, where a more sophisticated nonlinear prover is plugged into

GEN_REAL_ARITH in place of REAL_LINEAR_PROVER.

GEN REWRITE CONV 203

Comments
Mainly intended for experts.

See also
REAL_ARITH, REAL_LINEAR_PROVER, REAL_POLY_CONV.

GEN_REWRITE_CONV

GEN_REWRITE_CONV : (conv -> conv) -> thm list -> conv

Synopsis
Rewrites a term, selecting terms according to a user-specified strategy.

Description
Rewriting in HOL is based on the use of equational theorems as left-to-right replacements

on the subterms of an object theorem. This replacement is mediated by the use of

REWR_CONV, which finds matches between left-hand sides of given equations in a term and

applies the substitution.

Equations used in rewriting are obtained from the theorem lists given as arguments to

the function. These are at first transformed into a form suitable for rewriting. Conjunc-

tions are separated into individual rewrites. Theorems with conclusions of the form ‘~t‘

are transformed into the corresponding equations ‘t = F‘. Theorems ‘t‘ which are not

equations are cast as equations of form ‘t = T‘.

If a theorem is used to rewrite a term, its assumptions are added to the assumptions of

the returned theorem. The matching involved uses variable instantiation. Thus, all free

variables are generalized, and terms are instantiated before substitution. Theorems may

have universally quantified variables.

The theorems with which rewriting is done are divided into two groups, to facilitate

implementing other rewriting tools. However, they are considered in an order-independent

fashion. (That is, the ordering is an implementation detail which is not specified.)

The search strategy for finding matching subterms is the first argument to the rule.

Matching and substitution may occur at any level of the term, according to the specified

search strategy: the whole term, or starting from any subterm. The search strategy also

specifies the depth of the search: recursively up to an arbitrary depth until no matches

occur, once over the selected subterm, or any more complex scheme.

Failure
GEN_REWRITE_CONV fails if the search strategy fails. It may also cause a non-terminating

sequence of rewrites, depending on the search strategy used.

204 Chapter 1. Pre-defined ML Identifiers

Uses
This conversion is used in the system to implement all other rewritings conversions, and

may provide a user with a method to fine-tune rewriting of terms.

Example
Suppose we have a term of the form:

‘(1 + 2) + 3 = (3 + 1) + 2‘

and we would like to rewrite the left-hand side with the theorem ADD_SYM without changing

the right hand side. This can be done by using:

GEN_REWRITE_CONV (RATOR_CONV o ONCE_DEPTH_CONV) [ADD_SYM] mythm

Other rules, such as ONCE_REWRITE_CONV, would match and substitute on both sides, which

would not be the desirable result.

See also
ONCE_REWRITE_CONV, PURE_REWRITE_CONV, REWR_CONV, REWRITE_CONV.

GEN_REWRITE_RULE

GEN_REWRITE_RULE : (conv -> conv) -> thm list -> thm -> thm

Synopsis
Rewrites a theorem, selecting terms according to a user-specified strategy.

Description
Rewriting in HOL is based on the use of equational theorems as left-to-right replacements

on the subterms of an object theorem. This replacement is mediated by the use of

REWR_CONV, which finds matches between left-hand sides of given equations in a term and

applies the substitution.

Equations used in rewriting are obtained from the theorem lists given as arguments to

the function. These are at first transformed into a form suitable for rewriting. Conjunc-

tions are separated into individual rewrites. Theorems with conclusions of the form ‘~t‘

are transformed into the corresponding equations ‘t = F‘. Theorems ‘t‘ which are not

equations are cast as equations of form ‘t = T‘.

If a theorem is used to rewrite the object theorem, its assumptions are added to the

assumptions of the returned theorem, unless they are alpha-convertible to existing as-

sumptions. The matching involved uses variable instantiation. Thus, all free variables are

GEN REWRITE TAC 205

generalized, and terms are instantiated before substitution. Theorems may have univer-

sally quantified variables.

The theorems with which rewriting is done are divided into two groups, to facilitate

implementing other rewriting tools. However, they are considered in an order-independent

fashion. (That is, the ordering is an implementation detail which is not specified.)

The search strategy for finding matching subterms is the first argument to the rule.

Matching and substitution may occur at any level of the term, according to the specified

search strategy: the whole term, or starting from any subterm. The search strategy also

specifies the depth of the search: recursively up to an arbitrary depth until no matches

occur, once over the selected subterm, or any more complex scheme.

Failure
GEN_REWRITE_RULE fails if the search strategy fails. It may also cause a non-terminating

sequence of rewrites, depending on the search strategy used.

Uses
This rule is used in the system to implement all other rewriting rules, and may provide a

user with a method to fine-tune rewriting of theorems.

Example
Suppose we have a theorem of the form:

thm = |- (1 + 2) + 3 = (3 + 1) + 2

and we would like to rewrite the left-hand side with the theorem ADD_SYM without changing

the right hand side. This can be done by using:

GEN_REWRITE_RULE (RATOR_CONV o ONCE_DEPTH_CONV) [] [ADD_SYM] mythm

Other rules, such as ONCE_REWRITE_RULE, would match and substitute on both sides, which

would not be the desirable result.

See also
ASM_REWRITE_RULE, ONCE_REWRITE_RULE, PURE_REWRITE_RULE, REWR_CONV,
REWRITE_RULE.

GEN_REWRITE_TAC

GEN_REWRITE_TAC : (conv -> conv) -> thm list -> tactic

206 Chapter 1. Pre-defined ML Identifiers

Synopsis
Rewrites a goal, selecting terms according to a user-specified strategy.

Description
Distinct rewriting tactics differ in the search strategies used in finding subterms on

which to apply substitutions, and the built-in theorems used in rewriting. In the case

of REWRITE_TAC, this is a recursive traversal starting from the body of the goal’s conclu-

sion part, while in the case of ONCE_REWRITE_TAC, for example, the search stops as soon

as a term on which a substitution is possible is found. GEN_REWRITE_TAC allows a user to

specify a more complex strategy for rewriting.

The basis of pattern-matching for rewriting is the notion of conversions, through the

application of REWR_CONV. Conversions are rules for mapping terms with theorems equating

the given terms to other semantically equivalent ones.

When attempting to rewrite subterms recursively, the use of conversions (and there-

fore rewrites) can be automated further by using functions which take a conversion

and search for instances at which they are applicable. Examples of these functions are

ONCE_DEPTH_CONV and RAND_CONV. The first argument to GEN_REWRITE_TAC is such a func-

tion, which specifies a search strategy; i.e. it specifies how subterms (on which substitu-

tions are allowed) should be searched for.

The second and third arguments are lists of theorems used for rewriting. The order

in which these are used is not specified. The theorems need not be in equational form:

negated terms, say "~ t", are transformed into the equivalent equational form "t = F",

while other non-equational theorems with conclusion of form "t" are cast as the corre-

sponding equations "t = T". Conjunctions are separated into the individual components,

which are used as distinct rewrites.

Failure
GEN_REWRITE_TAC fails if the search strategy fails. It may also cause a non-terminating

sequence of rewrites, depending on the search strategy used. The resulting tactic is invalid

when a theorem which matches the goal (and which is thus used for rewriting it with) has a

hypothesis which is not alpha-convertible to any of the assumptions of the goal. Applying

such an invalid tactic may result in a proof of a theorem which does not correspond to

the original goal.

Uses
Detailed control of rewriting strategy, allowing a user to specify a search strategy.

Example
Given a goal such as:

?- a - (b + c) = a - (c + b)

we may want to rewrite only one side of it with a theorem, say ADD_SYM. Rewriting tactics

GEN SIMPLIFY CONV 207

which operate recursively result in divergence; the tactic ONCE_REWRITE_TAC [ADD_SYM]

rewrites on both sides to produce the following goal:

?- a - (c + b) = a - (b + c)

as ADD_SYM matches at two positions. To rewrite on only one side of the equation, the

following tactic can be used:

GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [ADD_SYM]

which produces the desired goal:

?- a - (c + b) = a - (c + b)

See also
ASM_REWRITE_TAC, GEN_REWRITE_RULE, ONCE_REWRITE_TAC, PURE_REWRITE_TAC,
REWR_CONV, REWRITE_TAC,

GEN_SIMPLIFY_CONV

GEN_SIMPLIFY_CONV : strategy -> simpset -> int -> thm list -> conv

Synopsis
General simplification with given strategy and simpset and theorems.

Description
The call GEN_SIMPLIFY_CONV strat ss n thl incorporates the rewrites and conditional

rewrites derived from thl into the simpset ss, then simplifies using that simpset, control-

ling the traversal of the term by strat, and starting at level n.

Failure
Never fails unless some component is malformed.

See also
GEN_REWRITE_CONV, ONCE_SIMPLIFY_CONV, SIMPLIFY_CONV, SIMP_CONV, SIMP_RULE,
SIMP_TAC.

GEN_TAC

GEN_TAC : tactic

208 Chapter 1. Pre-defined ML Identifiers

Synopsis
Strips the outermost universal quantifier from the conclusion of a goal.

Description
When applied to a goal A ?- !x. t, the tactic GEN_TAC reduces it to A ?- t[x’/x] where

x’ is a variant of x chosen to avoid clashing with any variables free in the goal’s assumption

list. Normally x’ is just x.

A ?- !x. t
============== GEN_TAC
A ?- t[x’/x]

Failure
Fails unless the goal’s conclusion is universally quantified.

Uses
The tactic REPEAT GEN_TAC strips away any universal quantifiers, and is commonly used

before tactics relying on the underlying term structure.

See also
GEN, GENL, GEN_ALL, SPEC, SPECL, SPEC_ALL, SPEC_TAC, STRIP_TAC, X_GEN_TAC.

genvar

genvar : hol_type -> term

Synopsis
Returns a ‘fresh’ variable with specified type.

Description
When given a type, genvar returns a variable of that type whose name has not previously

been produced by genvar.

Failure
Never fails.

¿=? 209

Example
The following indicates the typical stylized form of the names (this should not be relied

on, of course):

genvar ‘:bool‘;;
val it : term = ‘_56799‘

There is no guard against users’ own variables clashing, but if the user avoids names in

the same lexical style, that can be guaranteed.

Uses
The unique variables are useful in writing derived rules, for specializing terms without

having to worry about such things as free variable capture. If the names are to be visible

to a typical user, the function variant can provide rather more meaningful names.

See also
variant.

>=?

(>=?) : ’a -> ’a -> bool

Synopsis
Reflexive short-cutting inequality test.

Description
This is functionally identical to the OCaml polymorphic inequality test >= except that it

is total (hence reflexive) even on floating-point NaNs. More importantly, it will more effi-

ciently short-cut comparisons of large data structures where subcomponents are identical

(pointer equivalent).

Failure
May fail when applied to functions.

210 Chapter 1. Pre-defined ML Identifiers

Example

let x = 0.0 /. 0.0;;
val x : float = nan
x >= x;;
val it : bool = false
x >=? x;;
val it : bool = true

See also
=?, <=, <?, >?.

get_const_type

get_const_type : string -> hol_type

Synopsis
Gets the generic type of a constant from the name of the constant.

Description
get_const_type "c" returns the generic type of ‘c‘, if ‘c‘ is a constant.

Failure
get_const_type st fails if st is not the name of a constant.

Example

get_const_type "COND";;
val it : hol_type = ‘:bool->A->A->A‘

See also
dest_const, is_const.

get_infix_status

get_infix_status : string -> int * string

get type arity 211

Synopsis
Get the precedence and associativity of an infix operator.

Description
Certain identifiers are treated as infix operators with a given precedence and associativity

(left or right). The call get_infix_status "op" looks up op in this list and returns a pair

consisting of its precedence and its associativity; the latteris one of the strings "left" or

"right".

Failure
Fails if the given string does not have infix status.

Example

get_infix_status "/";;
val it : int * string = (22, "left")
get_infix_status "UNION";;
val it : int * string = (16, "right")

See also
infixes, parse_as_infix, unparse_as_infix.

get_type_arity

get_type_arity : string -> int

Synopsis
Returns the arity of a type constructor.

Description
When applied to the name of a type constructor, arity returns its arity, i.e. how many

types it is supposed to be applied to. Base types like :bool are regarded as constructors

with zero arity.

Failure
Fails if there is no type constructor of that name.

212 Chapter 1. Pre-defined ML Identifiers

Example

get_type_arity "bool";;
val it : int = 0

get_type_arity "fun";;
val it : int = 2

get_type_arity "nocon";;
Exception: Failure "find".

See also
new_type, new_type_definition, types.

graph

graph : (’a, ’b) func -> (’a * ’b) list

Synopsis
Returns the graph of a finite partial function.

Description
This is one of a suite of operations on finite partial functions, type (’a,’b)func. These

may sometimes be preferable to ordinary functions since they permit more operations

such as equality comparison, extraction of domain etc. The graph function takes a finite

partial function that maps x1 to y1, ..., xn to yn and returns its graph as a set/list:

[x1,y1; ...; xn,yn].

Failure
Attempts to sort the resulting list, so may fail if the type of the pairs does not permit

comparison.

Example

graph undefined;;
val it : (’a * ’b) list = []
graph (1 |=> 2);;
val it : (int * int) list = [(1, 2)]

See also
|->, |=>, apply, applyd, choose, combine, defined, dom, foldl, foldr,
is_undefined, mapf, ran, tryapplyd, undefine, undefined.

GSYM 213

GSYM

GSYM : thm -> thm

Synopsis
Reverses the first equation(s) encountered in a top-down search.

Description
The inference rule GSYM reverses the first equation(s) encountered in a top-down search

of the conclusion of the argument theorem. An equation will be reversed iff it is not

a proper subterm of another equation. If a theorem contains no equations, it will be

returned unchanged.

A |- ..(s1 = s2)...(t1 = t2)..
-------------------------------- GSYM
A |- ..(s2 = s1)...(t2 = t1)..

Failure
Never fails, and never loops infinitely.

Example

ADD;;
val it : thm = |- (!n. 0 + n = n) /\ (!m n. SUC m + n = SUC (m + n))

GSYM ADD;;
val it : thm = |- (!n. n = 0 + n) /\ (!m n. SUC (m + n) = SUC m + n)

See also
NOT_EQ_SYM, REFL, SYM.

>?

(>?) : ’a -> ’a -> bool

Synopsis
Reflexive short-cutting inequality test.

214 Chapter 1. Pre-defined ML Identifiers

Description
This is functionally identical to the OCaml polymorphic inequality test > except that it

is total even on floating-point NaNs. More importantly, it will more efficiently short-cut

comparisons of large data structures where subcomponents are identical (pointer equiva-

lent).

Failure
May fail when applied to functions.

Example

1.0 > nan or nan > 1.0;;
val it : bool = false
1.0 >? nan;;
val it : bool = true
nan >? 1.0;;
val it : bool = false

See also
=?, <?, <=?, >=?.

HAS_SIZE_CONV

HAS_SIZE_CONV : term -> thm

Synopsis
Converts statement about set’s size into existential enumeration.

Description
Given a term of the form ‘s HAS_SIZE n‘ for a numeral n, the conversion HAS_SIZE_CONV

returns an equivalent form postulating the existence of n pairwise distinct elements that

make up the set.

Failure
Fails if applied to a term of the wrong form.

hd 215

Example

HAS_SIZE_CONV ‘s HAS_SIZE 1‘;;
...
val it : thm = |- s HAS_SIZE 1 <=> (?a. s = {a})

HAS_SIZE_CONV ‘t HAS_SIZE 3‘;;
...
val it : thm =
|- t HAS_SIZE 3 <=>

(?a a’ a’’. ~(a’ = a’’) /\ ~(a = a’) /\ ~(a = a’’) /\ t = {a, a’, a’’})

hd

hd : ’a list -> ’a

Synopsis
Computes the first element (the head) of a list.

Description
hd [x1;...;xn] returns x1.

Failure
Fails with hd if the list is empty.

See also
tl, el.

help

help : string -> unit

Synopsis
Displays help on a given identifier in the system.

Description
A call help "s" will attempt to display the help file associated with a particular identifier

s in the system. If there is no entry for identifier s, the call responds instead with some

216 Chapter 1. Pre-defined ML Identifiers

possibly helpful suggestions as to what you might have meant, based on a simple ‘edit

distance’ criterion.

Help files are stored in the Help subdirectory of HOL Light. Normally the help file

for an identifier name would be called name.doc, but there are a few exceptions, because

some identifiers have characters that cannot be put in filenames and some platforms like

Cygwin have inadequate case sensitivity.

Failure

Never fails.

help 217

Example
Here is a successful call:

help "lhs";;

lhs : term -> term

SYNOPSIS

Returns the left-hand side of an equation.

DESCRIPTION

lhs ‘t1 = t2‘ returns ‘t1‘.

FAILURE CONDITIONS

Fails with lhs if the term is not an equation.

EXAMPLES

lhs ‘2 + 2 = 4‘;;
val it : term = ‘2 + 2‘

SEE ALSO
dest_eq, lhand, rand, rhs.

val it : unit = ()

and here is one for a non-existent identifier:

help "IMP_TAC";;

No help found for "IMP_TAC"; did you mean:

help "SIMP_TAC";;
help "MP_TAC";;
help "IMP_TRANS";;

?
--

See also
hol_version.

218 Chapter 1. Pre-defined ML Identifiers

hide_constant

hide_constant : string -> unit

Synopsis
Stops the quotation parser from recognizing a constant.

Description
A call hide_constant "c" where c is the name of a constant, will prevent the quotation

parser from parsing it as such; it will just be parsed as a variable. The effect can be

reversed by unhide_constant "c".

Failure
Fails if the given name is not a constant of the current theory, or if the named constant

is already hidden.

Comments
The hiding of a constant only affects the quotation parser; the constant is still there in a

theory, and may not be redefined.

See also
unhide_constant.

HIGHER_REWRITE_CONV

HIGHER_REWRITE_CONV : thm list -> bool -> term -> thm

Synopsis
Rewrite once using more general higher order matching.

Description
The call HIGHER_REWRITE_CONV [th1;...;thn] flag t will find a higher-order match for

the whole term t against one of the left-hand sides of the equational theorems in the list

[th1;...;thn]. Each such theorem should be of the form |- P pat <=> t where f is a

variable. A free subterm pat’ of t will be found that matches (in the usual restricted

higher-order sense) the pattern pat. If the flag argument is true, this will be some topmost

matchable term, while if it is false, some innermost matchable term will be selected. The

hol dir 219

rewrite is then applied by instantiating P to a lambda-term reflecting how t is built up

from pat’, and beta-reducing as in normal higher-order matching. However, this process

is more general than HOL Light’s normal higher-order matching (as in REWRITE_CONV

etc., with core behaviour inherited from PART_MATCH), because pat’ need not be uniquely

determined by bound variable correspondences.

Failure
Fails if no match is found.

Example
The theorem COND_ELIM_THM can be applied to eliminate conditionals:

COND_ELIM_THM;;
val it : thm = |- P (if c then x else y) <=> (c ==> P x) /\ (~c ==> P y)

in a term like this:

let t = ‘z = if x = 0 then if y = 0 then 0 else x + y else x + y‘;;
val t : term = ‘z = (if x = 0 then if y = 0 then 0 else x + y else x + y)‘

either outermost first:

HIGHER_REWRITE_CONV[COND_ELIM_THM] true t;;
val it : thm =
|- z = (if x = 0 then if y = 0 then 0 else x + y else x + y) <=>

(x = 0 ==> z = (if y = 0 then 0 else x + y)) /\ (~(x = 0) ==> z = x + y)

or innermost first:

HIGHER_REWRITE_CONV[COND_ELIM_THM] false t;;
val it : thm =
|- z = (if x = 0 then if y = 0 then 0 else x + y else x + y) <=>

(y = 0 ==> z = (if x = 0 then 0 else x + y)) /\
(~(y = 0) ==> z = (if x = 0 then x + y else x + y))

Uses
Applying general simplification patterns without manual instantiation.

See also
PART_MATCH, REWRITE_CONV.

hol_dir

hol_dir : string ref

220 Chapter 1. Pre-defined ML Identifiers

Synopsis
Base directory in which HOL Light is installed.

Description
This reference variable holds the directory (folder) for the base of the HOL Light distri-

bution. This information is used, for example, when loading files with loads. Normally

set to the current directory when HOL Light is loaded or built, but picked up from the

system variable HOLDIR if it is defined.

Failure
Not applicable.

Example
On my laptop, the value is:

!hol_dir;;
val it : string = "/home/johnh/holl"

Uses
Ensuring that HOL Light can find any libraries or other system files needed to support

proofs.

See also
load_path, loads.

hol_version

hol_version : string

Synopsis
A string indicating the version of HOL Light.

Description
This string is a numeric version number for HOL Light.

Failure
Not applicable.

hyp 221

Example
On my laptop, the value is:

hol_version;;
val it : string = "2.10"

See also
startup_banner.

hyp

hyp : thm -> term list

Synopsis
Returns the hypotheses of a theorem.

Description
When applied to a theorem A |- t, the function hyp returns A, the list of hypotheses of

the theorem.

Failure
Never fails.

Example

let th = ADD_ASSUM ‘x = 1‘ (ASSUME ‘y = 2‘);;
val th : thm = y = 2, x = 1 |- y = 2

hyp th;;
val it : term list = [‘y = 2‘; ‘x = 1‘]

See also
dest_thm, concl.

ideal_cofactors

ideal_cofactors : (term -> num) * (num -> term) * conv * term * term * term * term * term * term * term * thm * (term -> thm) -> term list -> term -> term list

222 Chapter 1. Pre-defined ML Identifiers

Synopsis
Generic procedure to compute cofactors for ideal membership.

Description
The ideal_cofactors function takes first the same set of arguments as RING, defining a

suitable ring for it to operate over. (See the entry for RING for details.) It then yields a

function that given a list of terms [p1; ...; pn] and another term p, all of which have the

right type to be considered as polynomials over the ring, attempts to find a corresponding

set of ‘cofactors’ [q1; ...; qn] such that the following is an algebraic ring identity:

p = p1 * q1 + ... + pn * qn

That is, it provides a concrete certificate for the fact that p is in the ideal generated by

the p1,...,pn. If p is not in this ideal, the function will fail.

Failure
Fails if the ‘polynomials’ are of the wrong type, or if ideal membership does not hold.

Example
For an example of the real-number instantiation in action, see real_ideal_cofactors.

See also
real_ideal_cofactors, RING, RING_AND_IDEAL_CONV.

I

I : ’a -> ’a

Synopsis
Performs identity operation: I x = x.

Failure
Never fails.

See also
C, K, F_F, o, W.

ignore_constant_varstruct

ignore_constant_varstruct : bool ref

IMP ANTISYM RULE 223

Synopsis
Interpret a simple varstruct as a variable, even if there is a constant of that name.

Description
As well as conventional abstractions ‘\x. t‘ where x is a variable, HOL Light permits gen-

eralized abstractions where the varstruct is a more complex term, e.g. ‘\(x,y). x + y‘.

This includes the degenerate case of just a constant. However, one may want a regular

abstraction whose bound variable happens to be in use as a constant. When parsing a

quotation "\c. t" where c is the name of a constant, HOL Light interprets it as a simple

abstraction with a variable c when the flag ignore_constant_varstruct is true, as it is

by default. It will interpret it as a degenerate generalized abstraction, only useful when

applied to the constant c, if the flag is false.

Failure
Not applicable.

See also
GEN_BETA_CONV, is_abs, is_gabs.

IMP_ANTISYM_RULE

IMP_ANTISYM_RULE : thm -> thm -> thm

Synopsis
Deduces equality of boolean terms from forward and backward implications.

Description
When applied to the theorems A1 |- t1 ==> t2 and A2 |- t2 ==> t1, the inference rule

IMP_ANTISYM_RULE returns the theorem A1 u A2 |- t1 <=> t2.

A1 |- t1 ==> t2 A2 |- t2 ==> t1
------------------------------------- IMP_ANTISYM_RULE

A1 u A2 |- t1 <=> t2

Failure
Fails unless the theorems supplied are a complementary implicative pair as indicated

above.

224 Chapter 1. Pre-defined ML Identifiers

Example

let th1 = TAUT ‘p /\ q ==> q /\ p‘
and th2 = TAUT ‘q /\ p ==> p /\ q‘;;

val th1 : thm = |- p /\ q ==> q /\ p
val th2 : thm = |- q /\ p ==> p /\ q

IMP_ANTISYM_RULE th1 th2;;
val it : thm = |- p /\ q <=> q /\ p

See also
EQ_IMP_RULE, EQ_MP, EQ_TAC.

implode

implode : string list -> string

Synopsis
Concatenates a list of strings into one string.

Description
implode [s1;...;sn] returns the string formed by concatenating the strings s1 ... sn.

If n is zero (the list is empty), then the empty string is returned.

Failure
Never fails; accepts empty or multi-character component strings.

Example

implode ["e";"x";"a";"m";"p";"l";"e"];;
val it : string = "example"
implode ["ex";"a";"mpl";"";"e"];;
val it : string = "example"

See also
explode.

IMP_RES_THEN

IMP_RES_THEN : thm_tactical

IMP RES THEN 225

Synopsis
Resolves an implication with the assumptions of a goal.

Description
The function IMP_RES_THEN is the basic building block for resolution in HOL. This is not

full higher-order, or even first-order, resolution with unification, but simply one way simul-

taneous pattern-matching (resulting in term and type instantiation) of the antecedent of

an implicative theorem to the conclusion of another theorem (the candidate antecedent).

Given a theorem-tactic ttac and a theorem th, the theorem-tactical IMP_RES_THEN pro-

duces a tactic that, when applied to a goal A ?- g attempts to match each antecedent

ui to each assumption aj |- aj in the assumptions A. If the antecedent ui of any im-

plication matches the conclusion aj of any assumption, then an instance of the theorem

Ai u {aj} |- vi, called a ‘resolvent’, is obtained by specialization of the variables x1, ...,

xn and type instantiation, followed by an application of modus ponens. There may be

more than one canonical implication and each implication is tried against every assump-

tion of the goal, so there may be several resolvents (or, indeed, none).

Tactics are produced using the theorem-tactic ttac from all these resolvents (failures

of ttac at this stage are filtered out) and these tactics are then applied in an unspecified

sequence to the goal. That is,

IMP_RES_THEN ttac th (A ?- g)

has the effect of:

MAP_EVERY (mapfilter ttac [... ; (Ai u {aj} |- vi) ; ...]) (A ?- g)

where the theorems Ai u {aj} |- vi are all the consequences that can be drawn by a

(single) matching modus-ponens inference from the assumptions of the goal A ?- g and the

implications derived from the supplied theorem th. The sequence in which the theorems

Ai u {aj} |- vi are generated and the corresponding tactics applied is unspecified.

Failure
Evaluating IMP_RES_THEN ttac th fails if the supplied theorem th is not an implication, or

if no implications can be derived from th by the transformation process described under

the entry for RES_CANON. Evaluating IMP_RES_THEN ttac th (A ?- g) fails if no assump-

tion of the goal A ?- g can be resolved with the implication or implications derived from

th. Evaluation also fails if there are resolvents, but for every resolvent Ai u {aj} |- vi

evaluating the application ttac (Ai u {aj} |- vi) fails—that is, if for every resolvent

ttac fails to produce a tactic. Finally, failure is propagated if any of the tactics that are

produced from the resolvents by ttac fails when applied in sequence to the goal.

Example
The following example shows a straightforward use of IMP_RES_THEN to infer an equational

226 Chapter 1. Pre-defined ML Identifiers

consequence of the assumptions of a goal, use it once as a substitution in the conclusion

of goal, and then ‘throw it away’. Suppose the goal is:

g ‘!a n. a + n = a ==> !k. k - n = k‘;;

and we start out with:

e(REPEAT GEN_TAC THEN DISCH_TAC);;
val it : goalstack = 1 subgoal (1 total)

0 [‘a + n = a‘]

‘!k. k - n = k‘

By using the theorem:

let ADD_INV_0 = ARITH_RULE ‘!m n. m + n = m ==> n = 0‘;;

the assumption of this goal implies that n equals 0. A single-step resolution with this

theorem followed by substitution:

e(IMP_RES_THEN SUBST1_TAC ADD_INV_0);;
val it : goalstack = 1 subgoal (1 total)

0 [‘a + n = a‘]

‘!k. k - 0 = k‘

Here, a single resolvent a + n = a |- n = 0 is obtained by matching the antecedent of

ADD_INV_0 to the assumption of the goal. This is then used to substitute 0 for n in the

conclusion of the goal. The goal is now solvable by ARITH_TAC (as indeed was the original

goal).

See also
IMP_RES_THEN, MATCH_MP, MATCH_MP_TAC.

IMP_REWR_CONV

IMP_REWR_CONV : thm -> term -> thm

Synopsis
Basic conditional rewriting conversion.

IMP TRANS 227

Description
Given an equational theorem A |- !x1...xn. p ==> s = t that expresses a conditional

rewrite rule, the conversion IMP_REWR_CONV gives a conversion that applied to any term

s’ will attempt to match the left-hand side of the equation s = t to s’, and return the

corresponding theorem A |- p’ ==> s’ = t’.

Failure
Fails if the theorem is not of the right form or the two terms cannot be matched, for

example because the variables that need to be instantiated are free in the hypotheses A.

Example
We use the following theorem:

DIV_MULT;;
val it : thm = |- !m n. ~(m = 0) ==> (m * n) DIV m = n

to make a conditional rewrite:

IMP_REWR_CONV DIV_MULT ‘(2 * x) DIV 2‘;;
val it : thm = |- ~(2 = 0) ==> (2 * x) DIV 2 = x

Uses
One of the building-blocks for conditional rewriting as implemented by SIMP_CONV, SIMP_RULE,

SIMP_TAC etc.

See also
ORDERED_IMP_REWR_CONV, REWR_CONV, SIMP_CONV.

IMP_TRANS

IMP_TRANS : thm -> thm -> thm

Synopsis
Implements the transitivity of implication.

228 Chapter 1. Pre-defined ML Identifiers

Description
When applied to theorems A1 |- t1 ==> t2 and A2 |- t2 ==> t3, the inference rule

IMP_TRANS returns the theorem A1 u A2 |- t1 ==> t3.

A1 |- t1 ==> t2 A2 |- t2 ==> t3
----------------------------------- IMP_TRANS

A1 u A2 |- t1 ==> t3

Failure
Fails unless the theorems are both implicative, with the consequent of the first being the

same as the antecedent of the second (up to alpha-conversion).

Example

let th1 = TAUT ‘p /\ q /\ r ==> p /\ q‘
and th2 = TAUT ‘p /\ q ==> p‘;;

val th1 : thm = |- p /\ q /\ r ==> p /\ q
val th2 : thm = |- p /\ q ==> p

IMP_TRANS th1 th2;;
val it : thm = |- p /\ q /\ r ==> p

See also
IMP_ANTISYM_RULE, SYM, TRANS.

increasing

increasing : (’a -> ’b) -> ’a -> ’a -> bool

Synopsis
Returns a total ordering based on a measure function

Description
When applied to a “measure” function f, the call increasing f returns a binary function

ordering elements in a call increasing f x y by f(x) <? f(y), where the ordering <? is

the OCaml polymorphic ordering.

Failure
Never fails unless the measure function does.

index 229

Example

let nums = -5 -- 5;;
val nums : int list = [-5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5]
sort (increasing abs) nums;;
val it : int list = [0; 1; -1; 2; -2; 3; -3; 4; -4; 5; -5]

See also
<?, decreasing, sort.

index

index : ’a -> ’a list -> int

Synopsis
Returns position of given element in list.

Description
The call index x l where l is a list returns the position number of the first instance of x

in the list, failing if there is none. The indices start at zero, corresponding to el.

Example

index "j" (explode "abcdefghijklmnopqrstuvwxyz");;
val it : int = 9

This is a sort of inverse to the indexing into a string by el:

el 9 (explode "abcdefghijklmnopqrstuvwxyz");;
val it : string = "j"

See also
el, find.

inductive_type_store

inductive_type_store : (string * (int * thm * thm)) list ref

230 Chapter 1. Pre-defined ML Identifiers

Synopsis
List of inductive types defined with corresponding theorems.

Description
The reference variable inductive_type_store holds an association list that associates with

the name of each inductive type defined so far (e.g. "list" or "1") a triple: the number of

constructors, the induction theorem and the recursion theorem for it. The two theorems

are exactly of the form returned by define_type.

Failure
Not applicable.

Example
This example is characteristic:

assoc "list" (!inductive_type_store);;
val it : int * thm * thm =
(2, |- !P. P [] /\ (!a0 a1. P a1 ==> P (CONS a0 a1)) ==> (!x. P x),
|- !NIL’ CONS’.

?fn. fn [] = NIL’ /\
(!a0 a1. fn (CONS a0 a1) = CONS’ a0 a1 (fn a1)))

while the following shows that there is an entry for the Boolean type, for the sake of

regularity, even though it is not normally considered an inductive type:

assoc "bool" (!inductive_type_store);;
val it : int * thm * thm =
(2, |- !P. P F /\ P T ==> (!x. P x), |- !a b. ?f. f F = a /\ f T = b)

Uses
This list is mainly for internal use. For example it is employed by define to automati-

cally prove the existence of recursive functions over inductive types. Users may find the

information helpful to implement their own proof tools. However, while the list may be

inspected, it should not be modified explicitly or there may be unwanted side-effects on

define.

See also
define, define_type, new_recursive_definition, prove_recursive_functions_exist.

INDUCT_TAC

INDUCT_TAC : tactic

INDUCT TAC 231

Synopsis
Performs tactical proof by mathematical induction on the natural numbers.

Description
INDUCT_TAC reduces a goal A ?- !n. P[n], where n has type num, to two subgoals corre-

sponding to the base and step cases in a proof by mathematical induction on n. The

induction hypothesis appears among the assumptions of the subgoal for the step case.

The specification of INDUCT_TAC is:

A ?- !n. P
== INDUCT_TAC
A ?- P[0/n] A u {P} ?- P[SUC n’/n]

where n’ is a primed variant of n that does not appear free in the assumptions A (usually,

n’ is just n).

Failure
INDUCT_TAC g fails unless the conclusion of the goal g has the form ‘!n. t‘, where the

variable n has type num.

Example
Suppose we want to prove the classic ‘sum of the first n integers’ theorem:

g ‘!n. nsum(1..n) (\i. i) = (n * (n + 1)) DIV 2‘;;

This is a classic example of an inductive proof. If we apply induction, we get two subgoals:

e INDUCT_TAC;;
val it : goalstack = 2 subgoals (2 total)

0 [‘nsum (1 .. n) (\i. i) = (n * (n + 1)) DIV 2‘]

‘nsum (1 .. SUC n) (\i. i) = (SUC n * (SUC n + 1)) DIV 2‘

‘nsum (1 .. 0) (\i. i) = (0 * (0 + 1)) DIV 2‘

each of which can be solved by just:

e(ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN ARITH_TAC);;

Comments
Essentially the same effect can be had by MATCH_MP_TAC num_INDUCTION. This does not

subsequently break down the goal in such a convenient way, but gives more control over

choice of variable. You can also equally well use it for other kinds of induction, e.g. use

MATCH_MP_TAC num_WF for wellfounded (complete, noetherian) induction.

232 Chapter 1. Pre-defined ML Identifiers

See also
LIST_INDUCT_TAC, MATCH_MP_TAC, WF_INDUCT_TAC.

infixes

infixes : unit -> (string * (int * string)) list

Synopsis
Lists the infixes currently recognized by the parser.

Description
The function infixes should be applied to the unit () and will then return a list of all the

infixes currently recognized by the parser together with their precedence and associativity

(left or right).

Failure
Never fails.

See also
get_infix_status, parse_as_infix, unparse_as_infix.

injectivity

injectivity : string -> thm

Synopsis
Produce injectivity theorem for an inductive type.

Description
A call injectivity "ty" where "ty" is the name of a recursive type defined with define_type,

returns a “injectivity” theorem asserting that elements constructed by different type con-

structors are always different. The effect is exactly the same is if prove_constructors_injective

were applied to the recursion theorem produced by define_type, and the documentation

for prove_constructors_injective gives a lengthier discussion.

Failure
Fails if ty is not the name of a recursive type, or if all its constructors are nullary.

injectivity store 233

Example

injectivity "num";;
val it : thm = |- !n n’. SUC n = SUC n’ <=> n = n’

injectivity "list";;
val it : thm =
|- !a0 a1 a0’ a1’. CONS a0 a1 = CONS a0’ a1’ <=> a0 = a0’ /\ a1 = a1’

See also
cases, define_type, distinctness, prove_constructors_injective.

injectivity_store

injectivity_store : (string * thm) list ref

Synopsis
Internal theorem list of injectivity theorems.

Description
This list contains all the injectivity theorems (see injectivity) for the recursive types

defined so far. It is automatically extended by define_type and used as a cache by

injectivity.

Failure
Not applicable.

See also
define_type, distinctness_store, extend_rectype_net, injectivity.

insert

insert : ’a -> ’a list -> ’a list

Synopsis
Adds element to the head of a list if not already present.

234 Chapter 1. Pre-defined ML Identifiers

Description
The call insert x l returns just l if x is already in the list, and otherwise returns x::l.

Example

insert 5 (1--10);;
val it : int list = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]
insert 15 (1--10);;
val it : int list = [15; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10]

Uses
An analog to the basic list constructor :: but treating the list more like a set.

See also
union, intersect, subtract.

insert’

insert’ : (’a -> ’a -> bool) -> ’a -> ’a list -> ’a list

Synopsis
Insert element into list unless it contains an equivalent one already.

Description
If r is a binary relation, x an element and l a list, the call insert’ r x l will add x to the

head of the list, unless the list already contains an element x’ with r x x’; if it does, the

list is returned unchanged. The function insert is the special case where r is equality.

Failure
Fails only if the relation fails.

Example

insert’ (fun x y -> abs(x) = abs(y)) (-1) [1;2;3];;
val it : int list = [1; 2; 3]

insert’ (fun x y -> abs(x) = abs(y)) (-1) [2;3;4];;
val it : int list = [-1; 2; 3; 4]

See also
insert, mem’, subtract’, union’, unions’.

installed parsers 235

installed_parsers

installed_parsers : unit -> (string * (lexcode list -> preterm * lexcode list)) list

Synopsis
List the user parsers currently installed.

Description
HOL Light allows user parsing functions to be installed, and will try them on all terms

during parsing before the usual parsers. The call installed_parsers() lists the parsing

functions that have been so installed.

Failure
Never fails.

See also
delete_parser, install_parser, try_user_parser.

install_parser

install_parser : string * (lexcode list -> preterm * lexcode list) -> unit

Synopsis
Install a user parser.

Description
HOL Light allows user parsing functions to be installed, and will try them on all terms

during parsing before the usual parsers. The call install_parser(s,p) installs the parser

p among the user parsers to try in this way. The string s is there so that the parser can

conveniently be deleted again.

Failure
Never fails.

See also
delete_parser, installed_parsers, try_user_parser.

236 Chapter 1. Pre-defined ML Identifiers

install_user_printer

install_user_printer : string * (term -> unit) -> unit

Synopsis
Install a user-defined printing function into the HOL Light term printer.

Description
The call install_user_printer(s,pr) sets up pr inside the HOL Light toplevel printer.

On each subterm encountered, pr will be tried first, and only if it fails with Failure ...

will the normal HOL Light printing be invoked. The additional string argument s is

just to provide a convenient handle for later removal through delete_user_printer.

However, any previous user printer with the same string tag will be removed when

install_user_printer is called.

Failure
Never fails.

Example
The user might wish to print every variable with its type:

let print_typed_var tm =
let s,ty = dest_var tm in
print_string("("^s^":"^string_of_type ty^")") in

install_user_printer("print_typed_var",print_typed_var);;

val it : unit = ()
ADD_ASSOC;;
val it : thm =
|- !(m:num) (n:num) (p:num).

(m:num) + (n:num) + (p:num) = ((m:num) + (n:num)) + (p:num)

Uses
Modification of printing in this way is particularly useful when the HOL logic is used

to embed some other formalism such as a programming language, hardware description

language or other logic. This can then be printed in a “native” fashion without any

artifacts of its HOL formalization.

Comments
Since user printing functions are tried on every subterm encountered in the regular printing

function, it is important that they fail quickly when inapplicable, or the printing process

INSTANTIATE ALL 237

can be slowed. They should also not generate exceptions other than Failure ... or the

toplevel printer will start to fail.

See also
delete_user_printer, try_user_printer.

INSTANTIATE_ALL

INSTANTIATE_ALL : instantiation -> thm -> thm

Synopsis
Apply a higher-order instantiation to assumptions and conclusion of a theorem.

Description
The call INSTANTIATE_ALL i t, where i is an instantiation as returned by term_match, will

perform the instantiation indicated by i in the conclusion of the theorem th: types and

terms will be instantiated and the beta-reductions that are part of higher-order matching

will be applied.

Failure
Never fails on a valid instantiation.

Comments
This is not intended for general use. PART_MATCH is generally a more convenient packaging.

The function INSTANTIATE is almost the same but does not instantiate hypotheses and

may fail if type variables or term variables free in the hypotheses make the instantiation

impossible.

See also
INSTANTIATE, INSTANTIATE_ALL, PART_MATCH, term_match.

instantiate_casewise_recursion

instantiate_casewise_recursion : term -> thm

Synopsis
Instantiate the general scheme for a recursive function existence assertion.

238 Chapter 1. Pre-defined ML Identifiers

Description
The function instantiate_casewise_recursion should be applied to an existentially quan-

tified term ‘?f. def_1[f] /\ ... /\ def_n[f]‘, where each clause def_i is a universally

quantified equation with an application of f to arguments on the left-hand side. The idea

is that these clauses define the action of f on arguments of various kinds, for example on

an empty list and nonempty list:

?f. (f [] = a) /\ (!h t. CONS h t = k[f,h,t])

or on even numbers and odd numbers:

?f. (!n. f(2 * n) = a[f,n]) /\ (!n. f(2 * n + 1) = b[f,n])

The returned value is a theorem whose conclusion matches the input term, with an

assumption sufficient for the existence assertion. This is not normally in a very convenient

form for the user.

Failure
Fails only if the definition is malformed. However it is possible that for an inadmissible

definition the assumption of the theorem may not hold.

Uses
This is seldom a convenient function for users. Normally, use prove_general_recursive_function_exists

to prove something like this while attempting to discharge the side-conditions automati-

cally, or define to actually make a definition. In situations where the automatic discharge

of the side-conditions fails, one may prefer instead pure_prove_recursive_function_exists.

The even more minimal instantiate_casewise_recursion is for the rare cases where one

wants to force no processing at all of the side-conditions to be undertaken.

See also
define, prove_general_recursive_function_exists,
pure_prove_recursive_function_exists.

instantiate

instantiate : instantiation -> term -> term

Synopsis
Apply a higher-order instantiation to a term.

INSTANTIATE 239

Description
The call instantiate i t, where i is an instantiation as returned by term_match, will

perform the instantiation indicated by i in the term t: types and terms will be instantiated

and the beta-reductions that are part of higher-order matching will be applied.

Failure
Should never fail on a valid instantiation.

Example
We first compute an instantiation:

let t = ‘(!x. P x) <=> ~(?x. P x)‘;;
Warning: inventing type variables
val t : term = ‘(!x. P x) <=> ~(?x. P x)‘

let i = term_match [] (lhs t) ‘!p. prime(p) ==> p = 2 \/ ODD(p)‘;;
val i : instantiation =
([(1, ‘P‘)], [(‘\p. prime p ==> p = 2 \/ ODD p‘, ‘P‘)],
[(‘:num‘, ‘:?61195‘)])

and now apply it. Notice that the type variable name is not corrected, as is done inside

PART_MATCH

instantiate i t;;
val it : term =
‘(!x. prime x ==> x = 2 \/ ODD x) <=> ~(?x. prime x ==> x = 2 \/ ODD x)‘

Comments
This is probably not useful for most users.

See also
compose_insts, INSTANTIATE, INSTANTIATE_ALL, inst_goal, PART_MATCH, term_match.

INSTANTIATE

INSTANTIATE : instantiation -> thm -> thm

Synopsis
Apply a higher-order instantiation to conclusion of a theorem.

240 Chapter 1. Pre-defined ML Identifiers

Description
The call INSTANTIATE i t, where i is an instantiation as returned by term_match, will

perform the instantiation indicated by i in the conclusion of the theorem th: types and

terms will be instantiated and the beta-reductions that are part of higher-order matching

will be applied.

Failure
Fails if the instantiation is impossible because of free term or type variables in the hy-

potheses.

Example

let t = lhs(concl(SPEC_ALL NOT_FORALL_THM));;
val t : term = ‘~(!x. P x)‘
let i = term_match [] t ‘~(!n. prime(n) ==> ODD(n))‘;;
val i : instantiation =
([(1, ‘P‘)], [(‘\n. prime n ==> ODD n‘, ‘P‘)], [(‘:num‘, ‘:A‘)])

INSTANTIATE i (SPEC_ALL NOT_FORALL_THM);;
val it : thm = |- ~(!x. prime x ==> ODD x) <=> (?x. ~(prime x ==> ODD x))

Comments
This is not intended for general use. PART_MATCH is generally a more convenient packaging.

See also
instantiate, INSTANTIATE_ALL, PART_MATCH, term_match.

inst

inst : (hol_type * hol_type) list -> term -> term

Synopsis
Instantiate type variables in a term.

Description
The call inst [ty1,tv1; ...; tyn,tvn] t will systematically replace each type variable

tvi by the corresponding type tyi inside the term t. Bound variables will be renamed if

necessary to avoid capture.

inst goal 241

Failure
Never fails. Repeated type variables in the instantiation list are not detected, and the

first such element will be used.

Example
Here is a simple example:

inst [‘:num‘,‘:A‘] ‘x:A = x‘;;
val it : term = ‘x = x‘

type_of(rand it);;
val it : hol_type = ‘:num‘

To construct an example where variable renaming is necessary we need to construct

terms with identically-named variables of different types, which cannot be done directly

in the term parser:

let tm = mk_abs(‘x:A‘,‘x + 1‘);;
val tm : term = ‘\x. x + 1‘

Note that the two variables x are different; this is a constant boolean function returning

x + 1. Now if we instantiate type variable :A to :num, we still get a constant function,

thanks to variable renaming:

inst [‘:num‘,‘:A‘] tm;;
val it : term = ‘\x’. x + 1‘

It would have been incorrect to just keep the same name, for that would have been the

successor function, something different.

See also
subst, type_subst, vsubst.

inst_goal

inst_goal : instantiation -> goal -> goal

Synopsis
Apply higher-order instantiation to a goal.

242 Chapter 1. Pre-defined ML Identifiers

Description
The call inst_goal i g where i is an instantiation (as returned by term_match for exam-

ple), will perform the instantiation indicated by i in both assumptions and conclusion of

the goal g.

Failure
Should never fail on a valid instantiation.

Comments
Probably only of specialist interest to those writing tactics from scratch.

See also
compose_insts, instantiate, INSTANTIATE, INSTANTIATE_ALL, PART_MATCH,
term_match.

INST_TYPE

INST_TYPE : (hol_type * hol_type) list -> thm -> thm

Synopsis
Instantiates types in a theorem.

Description
INST_TYPE [ty1,tv1;...;tyn,tvn] will systematically replaces all instances of each type

variable tvi by the corresponding type tyi in both assumptions and conclusions of a

theorem:

A |- t
----------------------------------- INST_TYPE [ty1,tv1;...;tyn,tvn]
A[ty1,...,tyn/tv1,...,tvn]

|- t[ty1,...,tyn/tv1,...,tvn]

Variables will be renamed if necessary to prevent variable capture.

Failure
Never fails.

Uses
INST_TYPE is employed to make use of polymorphic theorems.

INST 243

Example
Suppose one wanted to specialize the theorem EQ_SYM_EQ for particular values, the first

attempt could be to use SPECL as follows:

SPECL [‘a:num‘; ‘b:num‘] EQ_SYM_EQ ;;
Exception: Failure "SPECL".

The failure occurred because EQ_SYM_EQ contains polymorphic types. The desired special-

ization can be obtained by using INST_TYPE:

SPECL [‘a:num‘; ‘b:num‘] (INST_TYPE [‘:num‘,‘:A‘] EQ_SYM_EQ) ;;
val it : thm = |- a = b <=> b = a

Comments
This is one of HOL Light’s 10 primitive inference rules.

See also
INST, ISPEC, ISPECL.

INST

INST : (term * term) list -> thm -> thm

Synopsis
Instantiates free variables in a theorem.

Description
When INST [t1,x1; ...; tn,xn] is applied to a theorem, it gives a new theorem that

systematically replaces free instances of each variable xi with the corresponding term ti

in both assumptions and conclusion.

A |- t
----------------------------------- INST_TYPE [t1,x1;...;tn,xn]
A[t1,...,tn/x1,...,xn]

|- t[t1,...,tn/x1,...,xn]

Bound variables will be renamed if necessary to avoid capture. All variables are substi-

tuted in parallel, so there is no problem if there is an overlap between the terms ti and

xi.

244 Chapter 1. Pre-defined ML Identifiers

Failure
Fails if any of the pairs ti,xi in the instantiation list has xi and ti with different types,

or xi a non-variable. Multiple instances of the same xi in the list are not trapped, but

only the first one will be used consistently.

Example
Here is a simple example

let th = SPEC_ALL ADD_SYM;;
val th : thm = |- m + n = n + m
INST [‘1‘,‘m:num‘; ‘x:num‘,‘n:num‘] th;;
val it : thm = |- 1 + x = x + 1

and here is one where bound variable renaming is needed.

let th = SPEC_ALL LE_EXISTS;;
val th : thm = |- m <= n <=> (?d. n = m + d)
INST [‘d:num‘,‘m:num‘] th;;
val it : thm = |- d <= n <=> (?d’. n = d + d’)

Uses
This is the most efficient way to obtain instances of a theorem; though sometimes more

convenient, SPEC and SPECL are significantly slower.

Comments
This is one of HOL Light’s 10 primitive inference rules.

See also
INST_TYPE, ISPEC, ISPECL, SPEC, SPECL.

INT_ABS_CONV

INT_ABS_CONV : conv

Synopsis
Conversion to produce absolute value of an integer literal of type :int.

Description
The call INT_ABS_CONV ‘abs c‘, where c is an integer literal of type :int, returns the

theorem |- abs c = d where d is the canonical integer literal that is equal to c’s absolute

INT ADD CONV 245

value. The literal c may be of the form &n or -- &n (with nonzero n in the latter case)

and the result will be of the same form.

Failure
Fails if applied to a term that is not the negation of one of the permitted forms of integer

literal of type :int.

Example

INT_ABS_CONV ‘abs(-- &42)‘;;
val it : thm = |- abs (-- &42) = &42

See also
INT_REDUCE_CONV, REAL_RAT_ABS_CONV.

INT_ADD_CONV

INT_ADD_CONV : conv

Synopsis
Conversion to perform addition on two integer literals of type :int.

Description
The call INT_ADD_CONV ‘c1 + c2‘ where c1 and c2 are integer literals of type :int, returns

|- c1 + c2 = d where d is the canonical integer literal that is equal to c1 + c2. The

literals c1 and c2 may be of the form &n or -- &n (with nonzero n in the latter case) and

the result will be of the same form.

Failure
Fails if applied to a term that is not the sum of two permitted integer literals of type

:int.

Example

INT_ADD_CONV ‘-- &17 + &25‘;;
val it : thm = |- -- &17 + &25 = &8

See also
INT_REDUCE_CONV, REAL_RAT_ADD_CONV.

246 Chapter 1. Pre-defined ML Identifiers

INT_ARITH

INT_ARITH : term -> thm

Synopsis
Proves integer theorems needing basic rearrangement and linear inequality reasoning only.

Description
INT_ARITH is a rule for automatically proving natural number theorems using basic alge-

braic normalization and inequality reasoning.

Failure
Fails if the term is not boolean or if it cannot be proved using the basic methods employed,

e.g. requiring nonlinear inequality reasoning.

Example

INT_ARITH ‘!x y:int. x <= y + &1 ==> x + &2 < y + &4‘;;
val it : thm = |- !x y. x <= y + &1 ==> x + &2 < y + &4

INT_ARITH ‘(x + y:int) pow 2 = x pow 2 + &2 * x * y + y pow 2‘;;
val it : thm = |- (x + y) pow 2 = x pow 2 + &2 * x * y + y pow 2

Uses
Disposing of elementary arithmetic goals.

See also
ARITH_RULE, INT_ARITH_TAC, NUM_RING, REAL_ARITH, REAL_FIELD, REAL_RING.

INT_ARITH_TAC

INT_ARITH_TAC : tactic

Synopsis
Attempt to prove goal using basic algebra and linear arithmetic over the integers.

Description
The tactic INT_ARITH_TAC is the tactic form of INT_ARITH. Roughly speaking, it will au-

tomatically prove any formulas over the reals that are efectively universally quantified

INTEGER RULE 247

and can be proved valid by algebraic normalization and linear equational and inequality

reasoning. See REAL_ARITH for more information about the algorithm used and its scope.

Failure
Fails if the goal is not in the subset solvable by these means, or is not valid.

Example
Here is a goal that holds by virtue of pure algebraic normalization:

prioritize_int();;
val it : unit = ()

g ‘(x1 pow 2 + x2 pow 2 + x3 pow 2 + x4 pow 2) *
(y1 pow 2 + y2 pow 2 + y3 pow 2 + y4 pow 2) =
(x1 * y1 - x2 * y2 - x3 * y3 - x4 * y4) pow 2 +
(x1 * y2 + x2 * y1 + x3 * y4 - x4 * y3) pow 2 +
(x1 * y3 - x2 * y4 + x3 * y1 + x4 * y2) pow 2 +
(x1 * y4 + x2 * y3 - x3 * y2 + x4 * y1) pow 2‘;;

and here is one that holds by linear inequality reasoning:

g ‘!x y:int. abs(x + y) < abs(x) + abs(y) + &1‘;;

so either goal is solved simply by:

e INT_ARITH_TAC;;
val it : goalstack = No subgoals

See also
ARITH_TAC, INT_ARITH, REAL_ARITH_TAC.

INTEGER_RULE

INTEGER_RULE : term -> thm

Synopsis
Automatically prove elementary divisibility property over the integers.

Description
INTEGER_RULE is a partly heuristic rule that can often automatically prove elementary

“divisibility” properties of the integers. The precise subset that is dealt with is difficult

248 Chapter 1. Pre-defined ML Identifiers

to describe rigorously, but many universally quantified combinations of divides, coprime,

gcd and congruences (x == y) (mod n) can be proved automatically, as well as some

existentially quantified goals. The examples below may give a feel for what can be done.

Failure
Fails if the goal is not accessible to the methods used.

Example
All sorts of elementary Boolean combinations of divisibility and congruence properties

can be solved, e.g.

INTEGER_RULE
‘!x y n:int. (x == y) (mod n) ==> (n divides x <=> n divides y)‘;;

...
val it : thm = |- !x y n. (x == y) (mod n) ==> (n divides x <=> n divides y)

INTEGER_RULE
‘!a b d:int. d divides gcd(a,b) <=> d divides a /\ d divides b‘;;

...
val it : thm =
|- !a b d. d divides gcd (a,b) <=> d divides a /\ d divides b

including some less obvious ones:

INTEGER_RULE
‘!x y. coprime(x * y,x pow 2 + y pow 2) <=> coprime(x,y)‘;;

...
val it : thm = |- !x y. coprime (x * y,x pow 2 + y pow 2) <=> coprime (x,y)

A limited class of existential goals is solvable too, e.g. a classic sufficient condition for a

linear congruence to have a solution:

INTEGER_RULE ‘!a b n:int. coprime(a,n) ==> ?x. (a * x == b) (mod n)‘;;
...
val it : thm = |- !a b n. coprime (a,n) ==> (?x. (a * x == b) (mod n))

or the two-number Chinese Remainder Theorem:

INTEGER_RULE
‘!a b u v:int. coprime(a,b) ==> ?x. (x == u) (mod a) /\ (x == v) (mod b)‘;;

...
val it : thm =
|- !a b u v. coprime (a,b) ==> (?x. (x == u) (mod a) /\ (x == v) (mod b))

See also
ARITH_RULE, INTEGER_TAC, INT_ARITH, INT_RING, NUMBER_RULE.

INTEGER TAC 249

INTEGER_TAC

INTEGER_TAC : tactic

Synopsis
Automated tactic for elementary divisibility properties over the integers.

Description
The tactic INTEGER_TAC is a partly heuristic tactic that can often automatically prove

elementary “divisibility” properties of the integers. The precise subset that is dealt with

is difficult to describe rigorously, but many universally quantified combinations of divides,

coprime, gcd and congruences (x == y) (mod n) can be proved automatically, as well as

some existentially quantified goals. See the documentation for INTEGER_RULE for a larger

set of representative examples.

Failure
Fails if the goal is not accessible to the methods used.

Example
A typical elementary divisibility property is that if a * x and a * y are congruent modulo

n and the two numbers a and n are coprime (share no common factor besides 1), then in

fact x and y are congruent:

g ‘!a n x y:int. (a * x == a * y) (mod n) /\ coprime(a,n)
==> (x == y) (mod n)‘;;

...

It can be solved automatically using NUMBER_TAC:

e NUMBER_TAC;;
...
val it : goalstack = No subgoals

See also
INTEGER_RULE, INT_ARITH_TAC, INT_RING, NUMBER_RULE.

INT_EQ_CONV

INT_EQ_CONV : conv

250 Chapter 1. Pre-defined ML Identifiers

Synopsis
Conversion to prove whether one integer literal of type :int is equal to another.

Description
The call INT_EQ_CONV ‘c1 < c2‘ where c1 and c2 are integer litersls of type :int, returns

whichever of |- c1 = c2 <=> T or |- c1 = c2 <=> F is true. By an integer literal we

mean either &n or -- &n where n is a numeral.

Failure
Fails if applied to a term that is not an equality comparison on two permitted integer

literals of type :int.

Example

INT_EQ_CONV ‘&1 = &2‘;;
val it : thm = |- &1 = &2 <=> F

INT_EQ_CONV ‘-- &1 = -- &1‘;;
val it : thm = |- -- &1 = -- &1 <=> T

Comments
The related function REAL_RAT_EQ_CONV subsumes this functionality, also applying to ra-

tional literals. Unless the restriction to integers is desired or a tiny efficiency difference

matters, it should be used in preference.

See also
INT_REDUCE_CONV, REAL_RAT_EQ_CONV.

intersect

intersect : ’a list -> ’a list -> ’a list

Synopsis
Computes the intersection of two ‘sets’.

Description
intersect l1 l2 returns a list consisting of those elements of l1 that also appear in l2.

If both sets are free of repetitions, this can be considered a set-theoretic intersection

operation.

INT GE CONV 251

Failure
Never fails.

Comments
Duplicate elements in the first list will still be present in the result.

Example

intersect [1;2;3] [3;5;4;1];;
val it : int list = [1; 3]
intersect [1;2;4;1] [1;2;3;2];;
val it : int list = [1; 2; 1]

See also
setify, set_equal, union, subtract.

INT_GE_CONV

INT_GE_CONV : conv

Synopsis
Conversion to prove whether one integer literal of type :int is >= another.

Description
The call INT_GE_CONV ‘c1 >= c2‘ where c1 and c2 are integer litersls of type :int, returns

whichever of |- c1 >= c2 <=> T or |- c1 >= c2 <=> F is true. By an integer literal we

mean either &n or -- &n where n is a numeral.

Failure
Fails if applied to a term that is not the appropriate inequality comparison on two per-

mitted integer literals of type :int.

Example

INT_GE_CONV ‘&7 >= &6‘;;
val it : thm = |- &7 >= &6 <=> T

See also
INT_REDUCE_CONV, REAL_RAT_GE_CONV.

252 Chapter 1. Pre-defined ML Identifiers

INT_GT_CONV

INT_GT_CONV : conv

Synopsis
Conversion to prove whether one integer literal of type :int is < another.

Description
The call INT_GT_CONV ‘c1 > c2‘ where c1 and c2 are integer litersls of type :int, returns

whichever of |- c1 > c2 <=> T or |- c1 > c2 <=> F is true. By an integer literal we

mean either &n or -- &n where n is a numeral.

Failure
Fails if applied to a term that is not the appropriate inequality comparison on two per-

mitted integer literals of type :int.

Example

INT_GT_CONV ‘&1 > &2‘;;
val it : thm = |- &1 > &2 <=> F

See also
INT_REDUCE_CONV, REAL_RAT_GT_CONV.

int_ideal_cofactors

int_ideal_cofactors : term list -> term -> term list

Synopsis
Produces cofactors proving that one integer polynomial is in the ideal generated by others.

Description
The call int_ideal_cofactors [‘p1‘; ...; ‘pn‘] ‘p‘, where all the terms have type

:int and can be considered as polynomials, will test whether p is in the ideal generated

by the p1,...,pn. If so, it will return a corresponding list [‘q1‘; ...; ‘qn‘] of ‘cofactors’

INT LE CONV 253

such that the following is an algebraic identity provable by INT_RING or a slight elaboration

of INT_POLY_CONV, for example)

p = p1 * q1 + ... + pn * qn

hence providing an explicit certificate for the ideal membership. If ideal membership

does not hold, int_ideal_cofactors fails. The test is performed using a Gröbner basis

procedure.

Failure
Fails if the terms are ill-typed, or if ideal membership fails. At present this is a generic

version for fields, and in rare cases it may fail because cofactors are found involving non-

trivial rational numbers even where there are integer cofactors. This imperfection should

be fixed eventually, and is not usually a problem in practice.

Example
In the case of a singleton list, ideal membership just amounts to polynomial divisibility,

e.g.

int_ideal_cofactors
[‘r * x * (&1 - x) - x‘]
‘r * (r * x * (&1 - x)) * (&1 - r * x * (&1 - x)) - x‘;;

[‘&1 * r pow 2 * x pow 2 +
-- &1 * r pow 2 * x +
-- &1 * r * x +
&1 * r +
&1‘]

Comments
When we say that terms can be ‘considered as polynomials’, we mean that initial nor-

malization, essentially in the style of INT_POLY_CONV, will be applied, but some complex

constructs such as conditional expressions will be treated as atomic.

See also
ideal_cofactors, INT_IDEAL_CONV, INT_RING, real_ideal_cofactors, RING,
RING_AND_IDEAL_CONV.

INT_LE_CONV

INT_LE_CONV : conv

254 Chapter 1. Pre-defined ML Identifiers

Synopsis
Conversion to prove whether one integer literal of type :int is <= another.

Description
The call INT_LE_CONV ‘c1 <= c2‘ where c1 and c2 are integer litersls of type :int, returns

whichever of |- c1 <= c2 <=> T or |- c1 <= c2 <=> F is true. By an integer literal we

mean either &n or -- &n where n is a numeral.

Failure
Fails if applied to a term that is not the appropriate inequality comparison on two per-

mitted integer literals of type :int.

Example

INT_LE_CONV ‘&11 <= &77‘;;
val it : thm = |- &11 <= &77 <=> T

See also
INT_REDUCE_CONV, REAL_RAT_LE_CONV.

INT_LT_CONV

INT_LT_CONV : conv

Synopsis
Conversion to prove whether one integer literal of type :int is < another.

Description
The call INT_LT_CONV ‘c1 < c2‘ where c1 and c2 are integer litersls of type :int, returns

whichever of |- c1 < c2 <=> T or |- c1 < c2 <=> F is true. By an integer literal we

mean either &n or -- &n where n is a numeral.

Failure
Fails if applied to a term that is not the appropriate inequality comparison on two per-

mitted integer literals of type :int.

INT MUL CONV 255

Example

INT_LT_CONV ‘-- &18 < &64‘;;
val it : thm = |- -- &18 < &64 <=> T

Comments
The related function REAL_RAT_LT_CONV subsumes this functionality, also applying to ra-

tional literals. Unless the restriction to integers is desired or a tiny efficiency difference

matters, it should be used in preference.

See also
INT_REDUCE_CONV, REAL_RAT_LT_CONV.

INT_MUL_CONV

INT_MUL_CONV : conv

Synopsis
Conversion to perform multiplication on two integer literals of type :int.

Description
The call INT_MUL_CONV ‘c1 * c2‘ where c1 and c2 are integer literals of type :int, returns

|- c1 * c2 = d where d is the canonical integer literal that is equal to c1 * c2. The

literals c1 and c2 may be of the form &n or -- &n (with nonzero n in the latter case) and

the result will be of the same form.

Failure
Fails if applied to a term that is not the product of two permitted integer literals of type

:int.

Example

INT_MUL_CONV ‘&6 * -- &9‘;;
val it : thm = |- &6 * -- &9 = -- &54

See also
INT_REDUCE_CONV, REAL_RAT_MUL_CONV.

256 Chapter 1. Pre-defined ML Identifiers

INT_NEG_CONV

INT_NEG_CONV : conv

Synopsis
Conversion to negate an integer literal of type :int.

Description
The call INT_NEG_CONV ‘--c‘, where c is an integer literal of type :int, returns the theo-

rem |- --c = d where d is the canonical integer literal that is equal to c’s negation. The

literal c may be of the form &n or -- &n (with nonzero n in the latter case) and the result

will be of the same form.

Failure
Fails if applied to a term that is not the negation of one of the permitted forms of integer

literal of type :int.

Example

INT_NEG_CONV ‘-- (-- &3 / &2)‘;;
val it : thm = |- --(-- &3 / &2) = &3 / &2

Comments
The related function REAL_RAT_NEG_CONV subsumes this functionality, also applying to

rational literals. Unless the restriction to integers is desired or a tiny efficiency difference

matters, it should be used in preference.

See also
INT_REDUCE_CONV, REAL_RAT_NEG_CONV.

INT_OF_REAL_THM

INT_OF_REAL_THM : thm -> thm

Synopsis
Map a universally quantified theorem from reals to integers.

INT POLY CONV 257

Description
We often regard integers as a subset of the reals, so any universally quantified theorem

over the reals also holds for the integers, and indeed any other subset. In HOL, integers

and reals are completely separate types (int and real respectively). However, there is

a natural injection (actually called dest_int) from integers to reals that maps integer

operations to their real counterparts, and using this we can similarly show that any

universally quantified formula over the reals also holds over the integers with operations

mapped to the right type. The rule INT_OF_REAL_THM embodies this procedure; given a

universally quantified theorem over the reals, it maps it to a corresponding theorem over

the integers.

Failure
Never fails.

Example

REAL_ABS_TRIANGLE;;
val it : thm = |- !x y. abs (x + y) <= abs x + abs y
map dest_var (variables(concl it));;
val it : (string * hol_type) list = [("y", ‘:real‘); ("x", ‘:real‘)]

INT_OF_REAL_THM REAL_ABS_TRIANGLE;;
val it : thm = |- !x y. abs (x + y) <= abs x + abs y
map dest_var (variables(concl it));;
val it : (string * hol_type) list = [("y", ‘:int‘); ("x", ‘:int‘)]

See also
ARITH_RULE, INT_ARITH, INT_ARITH_CONV, INT_ARITH_TAC, NUM_TO_INT_CONV,
REAL_ARITH.

INT_POLY_CONV

INT_POLY_CONV : term -> thm

Synopsis
Converts a integer polynomial into canonical form.

Description
Given a term of type :int that is built up using addition, subtraction, negation and

multiplication, INT_POLY_CONV converts it into a canonical polynomial form and returns a

258 Chapter 1. Pre-defined ML Identifiers

theorem asserting the equivalence of the original and canonical terms. The basic elements

need not simply be variables or constants; anything not built up using the operators

given above will be considered ‘atomic’ for the purposes of this conversion. The canonical

polynomial form is a ‘multiplied out’ sum of products, with the monomials (product

terms) ordered according to the canonical OCaml order on terms. In particular, it is just

&0 if the polynomial is identically zero.

Failure
Never fails, even if the term has the wrong type; in this case it merely returns a reflexive

theorem.

Example
This illustrates how terms are ‘multiplied out’:

INT_POLY_CONV ‘(x + y) pow 3‘;;
val it : thm =
|- (x + y) pow 3 = x pow 3 + &3 * x pow 2 * y + &3 * x * y pow 2 + y pow 3

while the following verifies a remarkable ‘sum of cubes’ identity due to Yasutoshi Kohmoto:

INT_POLY_CONV
‘(&1679616 * a pow 16 - &66096 * a pow 10 * b pow 6 +
&153 * a pow 4 * b pow 12) pow 3 +

(-- &1679616 * a pow 16 - &559872 * a pow 13 * b pow 3 -
&27216 * a pow 10 * b pow 6 + &3888 * a pow 7 * b pow 9 +
&63 * a pow 4 * b pow 12 - &3 * a * b pow 15) pow 3 +
(&1679616 * a pow 15 * b + &279936 * a pow 12 * b pow 4 -
&11664 * a pow 9 * b pow 7 -
&648 * a pow 6 * b pow 10 + &9 * a pow 3 * b pow 13 + b pow 16) pow 3‘;;

val it : thm =
|- ... =

b pow 48

Uses
Keeping terms in normal form. For simply proving equalities, INT_RING is more powerful

and usually more convenient.

See also
INT_ARITH, INT_RING, REAL_POLY_CONV, SEMIRING_NORMALIZERS_CONV.

INT_POW_CONV

INT_POW_CONV : conv

INT RED CONV 259

Synopsis
Conversion to perform exponentiation on a integer literal of type :int.

Description
The call INT_POW_CONV ‘c pow n‘ where c is an integer literal of type :int and n is a

numeral of type :num, returns |- c pow n = d where d is the canonical integer literal that

is equal to c raised to the nth power. The literal c may be of the form &n or -- &n (with

nonzero n in the latter case) and the result will be of the same form.

Failure
Fails if applied to a term that is not a permitted integer literal of type :int raised to a

numeral power.

Example

INT_POW_CONV ‘(-- &2) pow 77‘;;
val it : thm = |- -- &2 pow 77 = -- &151115727451828646838272

See also
INT_POW_CONV, INT_REDUCE_CONV.

INT_RED_CONV

INT_RED_CONV : term -> thm

Synopsis
Performs one arithmetic or relational operation on integer literals of type :int.

Description
When applied to any of the terms ‘--c‘, ‘abs c‘, ‘c1 + c2‘, ‘c1 - c2‘, ‘c1 * c2‘,

‘c pow n‘, ‘c1 <= c2‘, ‘c1 < c2‘, ‘c1 >= c2‘, ‘c1 > c2‘, ‘c1 = c2‘, where c, c1 and

c2 are integer literals of type :int and n is a numeral of type :num, INT_RED_CONV returns

a theorem asserting the equivalence of the term to a canonical integer (for the arithmetic

operators) or a truth-value (for the relational operators). The integer literals are terms

of the form &n or -- &n (with nonzero n in the latter case).

Failure
Fails if applied to an inappropriate term.

260 Chapter 1. Pre-defined ML Identifiers

Uses
More convenient for most purposes is INT_REDUCE_CONV, which applies these evaluation

conversions recursively at depth, or still more generally REAL_RAT_REDUCE_CONV which ap-

plies to any rational numbers, not just integers. Still, access to this ‘one-step’ reduction

can be handy if you want to add a conversion conv for some other operator on int number

literals, which you can conveniently incorporate it into INT_REDUCE_CONV with

let INT_REDUCE_CONV’ =
DEPTH_CONV(INT_RED_CONV ORELSEC conv);;

See also
INT_REDUCE_CONV, REAL_RAT_RED_CONV.

INT_REDUCE_CONV

INT_REDUCE_CONV : conv

Synopsis
Evaluate subexpressions built up from integer literals of type :int, by proof.

Description
When applied to a term, INT_REDUCE_CONV performs a recursive bottom-up evaluation

by proof of subterms built from integer literals of type :int using the unary operators

‘--’, ‘inv’ and ‘abs’, and the binary arithmetic (‘+’, ‘-’, ‘*’, ‘/’, ‘pow’) and relational (‘<’,

‘<=’, ‘>’, ‘>=’, ‘=’) operators, as well as propagating literals through logical operations,

e.g. T /\ x <=> x, returning a theorem that the original and reduced terms are equal.

The permissible integer literals are of the form &n or -- &n for numeral n, nonzero in the

negative case.

Failure
Never fails, but may have no effect.

Example

INT_REDUCE_CONV
‘if &5 pow 4 < &4 pow 5 then (&2 pow 3 - &1) pow 2 + &1 else &99‘;;

val it : thm =
|- (if &5 pow 4 < &4 pow 5 then (&2 pow 3 - &1) pow 2 + &1 else &99) = &50

Comments
The corresponding INT_REDUCE_CONV works for the type of integers. The more general

INT RING 261

function REAL_RAT_REDUCE_CONV works similarly over :int but for arbitrary rational liter-

als.

See also

INT_RED_CONV, REAL_RAT_REDUCE_CONV.

INT_RING

INT_RING : term -> thm

Synopsis

Ring decision procedure instantiated to integers.

Description

The rule INT_RING should be applied to a formula that, after suitable normalization, can

be considered a universally quantified Boolean combination of equations and inequations

between terms of type :int. If that formula holds in all integral domains, INT_RING will

prove it. Any “alien” atomic formulas that are not integer equations will not contribute

to the proof but will not in themselves cause an error. The function is a particular

instantiation of RING, which is a more generic procedure for ring and semiring structures.

Failure

Fails if the formula is unprovable by the methods employed. This does not necessarily

mean that it is not valid for :int, but rather that it is not valid on all integral domains

(see below).

262 Chapter 1. Pre-defined ML Identifiers

Example
Here is a nice identity taken from one of Ramanujan’s notebooks:

INT_RING
‘!a b c:int.
a + b + c = &0
==> &2 * (a * b + a * c + b * c) pow 2 =

a pow 4 + b pow 4 + c pow 4 /\
&2 * (a * b + a * c + b * c) pow 4 =
(a * (b - c)) pow 4 + (b * (a - c)) pow 4 + (c * (a - b)) pow 4‘;;

...
val it : thm =
|- !a b c.

a + b + c = &0
==> &2 * (a * b + a * c + b * c) pow 2 = a pow 4 + b pow 4 + c pow 4 /\

&2 * (a * b + a * c + b * c) pow 4 =
(a * (b - c)) pow 4 + (b * (a - c)) pow 4 + (c * (a - b)) pow 4

The reasoning INT_RING is capable of includes, of course, the degenerate case of simple

algebraic identity, e.g. Brahmagupta’s identity:

INT_RING ‘(a pow 2 + b pow 2) * (c pow 2 + d pow 2) =
(a * c - b * d) pow 2 + (a * d + b * c) pow 2‘;;

or the more complicated 4-squares variant:

INT_RING
‘(x1 pow 2 + x2 pow 2 + x3 pow 2 + x4 pow 2) *
(y1 pow 2 + y2 pow 2 + y3 pow 2 + y4 pow 2) =
(x1 * y1 - x2 * y2 - x3 * y3 - x4 * y4) pow 2 +
(x1 * y2 + x2 * y1 + x3 * y4 - x4 * y3) pow 2 +
(x1 * y3 - x2 * y4 + x3 * y1 + x4 * y2) pow 2 +
(x1 * y4 + x2 * y3 - x3 * y2 + x4 * y1) pow 2‘;;

...

Note that formulas depending on specific features of the integers are not always provable

by this generic ring procedure. For example we cannot prove:

INT_RING ‘x pow 2 = &2 ==> F‘;;
1 basis elements and 0 critical pairs
Exception: Failure "find".

Although it is possible to deal with special cases like this, there can be no general algo-

rithm for testing such properties over the integers: the set of true universally quantified

equations over the integers with addition and multiplication is not recursively enumerable.

(This follows from Matiyasevich’s results on diophantine sets leading to the undecidability

of Hilbert’s 10th problem.)

INT SUB CONV 263

See also
INT_ARITH, INT_ARITH_TAC, int_ideal_cofactors, NUM_RING, REAL_RING, REAL_FIELD.

INT_SUB_CONV

INT_SUB_CONV : conv

Synopsis
Conversion to perform subtraction on two integer literals of type :int.

Description
The call INT_SUB_CONV ‘c1 - c2‘ where c1 and c2 are integer literals of type :int, returns

|- c1 - c2 = d where d is the canonical integer literal that is equal to c1 - c2. The

literals c1 and c2 may be of the form &n or -- &n (with nonzero n in the latter case) and

the result will be of the same form.

Failure
Fails if applied to a term that is not the difference of two permitted integer literals of type

:int.

Example

INT_SUB_CONV ‘&33 - &77‘;;
val it : thm = |- &33 - &77 = -- &44

See also
INT_REDUCE_CONV, REAL_RAT_SUB_CONV.

is_abs

is_abs : term -> bool

Synopsis
Tests a term to see if it is an abstraction.

Description
is_abs ‘\var. t‘ returns true. If the term is not an abstraction the result is false.

264 Chapter 1. Pre-defined ML Identifiers

Failure
Never fails.

Example

is_abs ‘\x. x + 1‘;;
val it : bool = true

is_abs ‘!x. x >= 0‘;;
val it : bool = false

See also
mk_abs, dest_abs, is_var, is_const, is_comb.

isalnum

isalnum : string -> bool

Synopsis
Tests if a one-character string is alphanumeric.

Description
The call isalnum s tests whether the first character of string s (normally it is the only

character) is alphanumeric, i.e. an uppercase or lowercase letter, a digit, an underscore

or a prime character.

Failure
Fails if the string is empty.

See also
isalpha, isbra, isnum, issep, isspace, issymb.

isalpha

isalpha : string -> bool

is binary 265

Synopsis
Tests if a one-character string is alphabetic.

Description
The call isalpha s tests whether the first character of string s (normally it is the only

character) is alphabetic, i.e. an uppercase or lowercase letter, an underscore or a prime

character.

Failure
Fails if the string is empty.

See also
isalnum, isbra, isnum, issep, isspace, issymb.

is_binary

is_binary : string -> term -> bool

Synopsis
Tests if a term is an application of a named binary operator.

Description
The call is_binary s tm tests if term tm is an instance of a binary operator (op l) r

where op is a constant with name s. If so, it returns true; otherwise it returns false. Note

that op is required to be a constant.

Failure
Never fails.

Example
This one succeeds:

is_binary "+" ‘1 + 2‘;;
val it : bool = true

but this one fails unless f has been declared a constant:

is_binary "f" ‘f x y‘;;
Warning: inventing type variables
val it : bool = false

See also
dest_binary, is_binop, is_comb, mk_binary.

266 Chapter 1. Pre-defined ML Identifiers

is_binder

is_binder : string -> term -> bool

Synopsis
Tests if a term is a binder construct with named constant.

Description
The call is_binder "c" t tests whether the term t has the form of an application of a

constant c to an abstraction. Note that this has nothing to do with the parsing status of

the name c as a binder, but only the form of the term.

Failure
Never fails.

Example

is_binder "!" ‘!x. x >= 0‘;;
val it : bool = true

Note how only the basic logical form is tested, even taking in things that we wouldn’t

really think of as binders:

is_binder "=" ‘(=) (\x. x + 1)‘;;
val it : bool = true

See also
dest_binder, mk_binder.

is_binop

is_binop : term -> term -> bool

Synopsis
Tests if a term is an application of the given binary operator.

isbra 267

Description
The call is_binop op t returns true if the term t is of the form (op l) r for any two

terms l and r, and false otherwise.

Failure
Never fails.

Example
This is a fairly typical example:

is_binop ‘(/\)‘ ‘p /\ q‘;;
val it : bool = true

but note that the operator needn’t be a constant:

is_binop ‘f:num->num->num‘ ‘(f:num->num->num) x y‘;;
val it : bool = true

See also
dest_binary, dest_binop, is_binary, mk_binary, mk_binop.

isbra

isbra : string -> bool

Synopsis
Tests if a one-character string is some kind of bracket.

Description
The call isbra s tests whether the first character of string s (normally it is the only

character) is a bracket, meaning an opening or closing parenthesis, square bracket or

curly brace.

Failure
Fails if the string is empty.

See also
isalnum, isalpha, isnum, issep, isspace, issymb.

268 Chapter 1. Pre-defined ML Identifiers

is_comb

is_comb : term -> bool

Synopsis
Tests a term to see if it is a combination (function application).

Description
is_comb "t1 t2" returns true. If the term is not a combination the result is false.

Failure
Never fails

Example

is_comb ‘x + 1‘;;
val it : bool = true
is_comb ‘T‘;;
val it : bool = false

See also
dest_comb, is_var, is_const, is_abs, mk_comb.

is_cond

is_cond : term -> bool

Synopsis
Tests a term to see if it is a conditional.

Description
is_cond ‘if t then t1 else t2‘ returns true. If the term is not a conditional the result

is false.

Failure
Never fails.

is conj 269

See also
mk_cond, dest_cond.

is_conj

is_conj : term -> bool

Synopsis
Tests a term to see if it is a conjunction.

Description
is_conj ‘t1 /\ t2‘ returns true. If the term is not a conjunction the result is false.

Failure
Never fails.

See also
dest_conj, mk_conj.

is_cons

is_cons : term -> bool

Synopsis
Tests a term to see if it is an application of CONS.

Description
is_cons returns true of a term representing a non-empty list. Otherwise it returns false.

Failure
Never fails.

See also
dest_cons, dest_list, is_list, mk_cons, mk_list.

270 Chapter 1. Pre-defined ML Identifiers

is_const

is_const : term -> bool

Synopsis
Tests a term to see if it is a constant.

Description
is_const ‘const:ty‘ returns true. If the term is not a constant the result is false.

Failure
Never fails.

Example

is_const ‘T‘;;
val it : bool = true
is_const ‘x:bool‘;;
val it : bool = false

Note that numerals are not constants; they are composite constructs hidden by pret-

typrinting:

is_const ‘0‘;;
val it : bool = false
is_numeral ‘12345‘;;
val it : bool = true

See also
dest_const, is_abs, is_comb, is_numeral, is_var, mk_const.

is_disj

is_disj : term -> bool

Synopsis
Tests a term to see if it is a disjunction.

is eq 271

Description
is_disj ‘t1 \/ t2‘ returns true. If the term is not a disjunction the result is false.

Failure
Never fails.

See also
dest_disj, mk_disj.

is_eq

is_eq : term -> bool

Synopsis
Tests a term to see if it is an equation.

Description
is_eq ‘t1 = t2‘ returns true. If the term is not an equation the result is false. Note

that logical equivalenceis just equality on type :bool, even though it is printed as <=>.

Failure
Never fails.

Example

is_eq ‘2 + 2 = 4‘;;
val it : bool = true

is_eq ‘p /\ q <=> q /\ p‘;;
val it : bool = true

is_eq ‘p ==> p‘;;
val it : bool = false

See also
dest_eq, is_beq, mk_eq.

is_exists

is_exists : term -> bool

272 Chapter 1. Pre-defined ML Identifiers

Synopsis
Tests a term to see if it as an existential quantification.

Description
is_exists ‘?var. t‘ returns true. If the term is not an existential quantification the

result is false.

Failure
Never fails.

See also
dest_exists, mk_exists.

is_forall

is_forall : term -> bool

Synopsis
Tests a term to see if it is a universal quantification.

Description
is_forall ‘!var. t‘ returns true. If the term is not a universal quantification the result

is false.

Failure
Never fails.

See also
dest_forall, mk_forall.

is_gabs

is_gabs : term -> bool

Synopsis
Tests if a term is a basic or generalized abstraction.

is hidden 273

Description
The call is_gabs t tests if t is either a basic logical abstraction (as identified by is_abs)

or a generalized one (a standard composite logical structure to support a non-variable

vastruct). If so, it returns true, and otherwise it returns false.

Failure
Never fails.

Example
This shows that ordinary abstractions are allowed:

is_gabs ‘\x. x + 1‘;;
val it : bool = true

while the following shows a more typical case:

is_gabs ‘\(x,y,z). x + y + z + 1‘;;
val it : bool = true

See also
GEN_BETA_CONV, dest_gabs, mk_gabs.

is_hidden

is_hidden : string -> bool

Synopsis
Determines whether a constant is hidden.

Description
This predicate returns true if the named ML constant has been hidden by the function

hide_constant; it returns false if the constant is not hidden. Hiding a constant forces

the quotation parser to treat the constant as a variable (lexical rules permitting).

274 Chapter 1. Pre-defined ML Identifiers

Example

is_hidden "SUC";;
val it : bool = false

hide_constant "SUC";;
val it : unit = ()

is_hidden "SUC";;
val it : bool = true

See also
hide_constant, unhide_constant

is_iff

is_iff : term -> bool

Synopsis
Tests if a term is an equation between Boolean terms (iff / logical equivalence).

Description
Recall that in HOL, the Boolean operation variously called logical equivalence, bi-implication

or ‘if and only if’ (iff) is simply the equality relation on Boolean type. The call is_iff t

returns true if t is an equality between terms of Boolean type, and false otherwise.

Failure
Never fails.

Example

is_iff ‘p = T‘;;
val it : bool = true

is_iff ‘p <=> q‘;;
val it : bool = true

is_iff ‘0 = 1‘;;
val it : bool = false

See also
dest_iff, is_eq, mk_iff.

is imp 275

is_imp

is_imp : term -> bool

Synopsis
Tests if a term is an application of implication.

Description
The call is_imp t returns true if t is of the form p ==> q for some p and q, and returns

false otherwise.

Failure
Never fails.

See also
dest_imp.

is_intconst

is_intconst : term -> bool

Synopsis
Tests if a term is an integer literal of type :int.

Description
The call is_intconst t tests whether the term t is a canonical integer literal of type :int,

i.e. either ‘&n’ for a numeral n or ‘-- &n’ for a nonzero numeral n. If so it returns true,

otherwise false.

Failure
Never fails.

Example

is_intconst ‘-- &3 :int‘;;
val it : bool = true
is_intconst ‘-- &0 :int‘;;
val it : bool = false

See also
dest_intconst, is_realintconst, mk_intconst.

276 Chapter 1. Pre-defined ML Identifiers

is_let

is_let : term -> bool

Synopsis
Tests a term to see if it is a let-expression.

Description
is_let ‘let x1 = e1 and ... and xn = en in E‘ returns true. If the term is not a let-

expression of any kind, the result is false.

Failure
Never fails.

Example

is_let ‘let x = 1 in x + x‘;;
val it : bool = true

is_let ‘let x = 2 and y = 3 in y + x‘;;
val it : bool = true

See also
mk_let, dest_let.

is_list

is_list : term -> bool

Synopsis
Tests a term to see if it is a list.

Description
is_list returns true of a term representing a list. Otherwise it returns false.

Failure
Never fails.

is neg 277

See also
dest_cons, dest_list, is_cons, mk_cons, mk_list.

is_neg

is_neg : term -> bool

Synopsis
Tests a term to see if it is a logical negation.

Description
is_neg ‘~t‘ returns true. If the term is not a logical negation the result is false.

Failure
Never fails.

See also
dest_neg, mk_neg.

isnum

isnum : string -> bool

Synopsis
Tests if a one-character string is a decimal digit.

Description
The call isnum s tests whether the first character of string s (normally it is the only

character) is a decimal digit.

Failure
Fails if the string is empty.

See also
isalnum, isalpha, isbra, issep, isspace, issymb.

278 Chapter 1. Pre-defined ML Identifiers

is_numeral

is_numeral : term -> bool

Synopsis
Tests if a term is a natural number numeral.

Description
When applied to a term, is_numeral returns true if and only if the term is a canonical

natural number numeral (0, 1, 2 etc.)

Failure
Never fails.

See also
dest_numeral, is_numeral.

is_pair

is_pair : term -> bool

Synopsis
Tests a term to see if it is a pair.

Description
is_pair ‘(t1,t2)‘ returns true. If the term is not a pair the result is false.

Failure
Never fails.

Example

is_pair ‘1,2,3‘;;
val it : bool = true

is_pair ‘[1;2;3]‘;;
val it : bool = false

See also
dest_pair, is_cons, mk_pair.

ISPEC 279

ISPEC

ISPEC : term -> thm -> thm

Synopsis
Specializes a theorem, with type instantiation if necessary.

Description
This rule specializes a quantified variable as does SPEC; it differs from it in also instanti-

ating the type if needed:

A |- !x:ty.tm
----------------------- ISPEC ‘t:ty’‘

A |- tm[t/x]

(where t is free for x in tm, and ty’ is an instance of ty).

Failure
ISPEC fails if the input theorem is not universally quantified, if the type of the given term

is not an instance of the type of the quantified variable, or if the type variable is free in

the assumptions.

Example

ISPEC ‘0‘ EQ_REFL;;
val it : thm = |- 0 = 0

Note that the corresponding call to SPEC would fail because of the type mismatch:

SPEC ‘0‘ EQ_REFL;;
Exception: Failure "SPEC".

See also
INST, INST_TYPE, ISPECL, SPEC, type_match.

ISPECL

ISPECL : term list -> thm -> thm

280 Chapter 1. Pre-defined ML Identifiers

Synopsis
Specializes a theorem zero or more times, with type instantiation if necessary.

Description
ISPECL is an iterative version of ISPEC

A |- !x1...xn.t
---------------------------- ISPECL [‘t1‘,...,‘tn‘]
A |- t[t1,...tn/x1,...,xn]

(where ti is free for xi in tm).

Failure
ISPECL fails if the list of terms is longer than the number of quantified variables in the

term, if the type instantiation fails, or if the type variable being instantiated is free in the

assumptions.

Example

ISPECL [‘x:num‘; ‘2‘] EQ_SYM_EQ;;
val it : thm = |- x = 2 <=> 2 = x

Note that the corresponding call to SPECL would fail because of the type mismatch:

SPECL [‘x:num‘; ‘2‘] EQ_SYM_EQ;;
Exception: Failure "SPECL".

See also
INST_TYPE, INST, ISPEC, SPEC, SPECL, type_match.

is_prefix

is_prefix : string -> bool

Synopsis
Tests if an identifier has prefix status.

Description
Certain identifiers c have prefix status, meaning that combinations of the form c f x will

be parsed as c (f x) rather than the usual (c f) x. The call is_prefix "c" tests if c is

one of those identifiers.

is ratconst 281

Failure
Never fails.

See also
parse_as_prefix, prefixes, unparse_as_prefix.

is_ratconst

is_ratconst : term -> bool

Synopsis
Tests if a term is a canonical rational literal of type :real.

Description
The call is_ratconst t tests whether the term t is a canonical rational literal of type

:real. This means an integer literal &n for numeral n, -- &n for a nonzero numeral n, or

a ratio &p / &q or -- &p / &q where p is nonzero, q > 1 and p and q share no common

factor. If so, is_ratconst returns true, and otherwise false.

Failure
Never fails.

Example

is_ratconst ‘&22 / &7‘;;
val it : bool = true
is_ratconst ‘&4 / &2‘;;
val it : bool = false

See also
is_realintconst, rat_of_term, REAL_RAT_REDUCE_CONV, term_of_rat.

is_realintconst

is_realintconst : term -> bool

282 Chapter 1. Pre-defined ML Identifiers

Synopsis
Tests if a term is an integer literal of type :real.

Description
The call is_realintconst t tests whether the term t is a canonical integer literal of type

:real, i.e. either ‘&n’ for a numeral n or ‘-- &n’ for a nonzero numeral n. If so it returns

true, otherwise false.

Failure
Never fails.

Example

is_realintconst ‘-- &3 :real‘;;
val it : bool = true
is_realintconst ‘&1 :int‘;;
val it : bool = false

See also
dest_realintconst, is_intconst, is_ratconst, mk_realintconst.

is_reserved_word

is_reserved_word : string -> bool

Synopsis
Tests if a string is one of the reserved words.

Description
Certain identifiers in HOL are reserved, e.g. ‘if’, ‘let’ and ‘|’, meaning that they are spe-

cial to the parser and cannot be used as ordinary identifiers. The call is_reserved_word s

tests if the string s is one of them.

Failure
Never fails.

See also
reserved_words, reserve_words, unreserve_words.

is select 283

is_select

is_select : term -> bool

Synopsis
Tests a term to see if it is a choice binding.

Description
is_select ‘@var. t‘ returns true. If the term is not an epsilon-term the result is false.

Failure
Never fails.

See also
mk_select, dest_select.

issep

issep : string -> bool

Synopsis
Tests if a one-character string is a separator.

Description
The call issep s tests whether the first character of string s (normally it is the only

character) is one of the separators ‘,’ or ‘;’.

Failure
Fails if the string is empty.

See also
isalnum, isalpha, isbra, isnum, isspace, issymb.

is_setenum

is_setenum : term -> bool

284 Chapter 1. Pre-defined ML Identifiers

Synopsis
Tests if a term is a set enumeration.

Description
When applied to a term that is an explicit set enumeration ‘{t1,...,tn}‘, the function

is_setenum returns true; otherwise it returns false.

Failure
Never fails.

Example

is_setenum ‘1 INSERT 2 INSERT {\small\verb%%}‘;;
val it : bool = true

is_setenum ‘{1,2,3,4,1,2,3,4}‘;;
val it : bool = true

is_setenum ‘1 INSERT 2 INSERT s‘;;
val it : bool = false

See also
dest_setenum, mk_fset, mk_setenum.

isspace

isspace : string -> bool

Synopsis
Tests if a one-character string is some kind of space.

Description
The call isspace s tests whether the first character of string s (normally it is the only

character) is a ‘space’ of some kind, including tab and newline.

Failure
Fails if the string is empty.

See also
isalnum, isalpha, isbra, isnum, issep, issymb.

issymb 285

issymb

issymb : string -> bool

Synopsis
Tests if a one-character string is a symbol other than bracket or separator.

Description
The call issymb s tests whether the first character of string s (normally it is the only

character) is “symbolic”. This means that it is one of the usual ASCII characters but is

not alphanumeric, not an underscore or prime character, and is also not one of the two

separators ‘,’ or ‘;’ nor any bracket, parenthesis or curly brace. More explicitly, the set

of symbolic characters is:

\ ! @ # $ % ^ & * - + | \ \ < = > / ? ~ . :

Failure
Fails if the string is empty.

See also
isalnum, isalpha, isbra, isnum, issep, isspace.

is_type

is_type : hol_type -> bool

Synopsis
Tests whether a type is an instance of a type constructor.

Description
is_type ty returns true if ty is a base type or constructed by an outer type constructor,

and false if it is a type variable.

Failure
Never fails.

286 Chapter 1. Pre-defined ML Identifiers

Example

is_type ‘:bool‘;;
val it : bool = true

is_type ‘:bool->int‘;;
val it : bool = true

is_type ‘:Tyvar‘;;
val it : bool = false

See also
get_type_arity, is_vartype.

is_uexists

is_uexists : term -> bool

Synopsis
Tests if a term is of the form ‘there exists a unique ...’

Description
If t has the form ?!x. p[x] (there exists a unique x such that p[x] then is_uexists t

returns true, otherwise false.

Failure
Never fails.

See also
dest_uexists, is_exists, is_forall.

is_undefined

is_undefined : (’a, ’b) func -> bool

Synopsis
Tests if a finite partial function is defined nowhere.

is var 287

Description
This is one of a suite of operations on finite partial functions, type (’a,’b)func. These

may sometimes be preferable to ordinary functions since they permit more operations

such as equality comparison, extraction of domain etc. The predicate is_undefined tests

if the argument is the completely undefined function.

Failure
Never fails.

Example

let x = undefined and y = (1 |=> 2);;
val x : (’a, ’b) func = <func>
val y : (int, int) func = <func>

is_undefined x;;
val it : bool = true

is_undefined y;;
val it : bool = false

See also
|->, |=>, apply, applyd, choose, combine, defined, dom, foldl, foldr, graph,
mapf, ran, tryapplyd, undefine, undefined.

is_var

is_var : term -> bool

Synopsis
Tests a term to see if it is a variable.

Description
is_var ‘var:ty‘ returns true. If the term is not a variable the result is false.

Failure
Never fails.

288 Chapter 1. Pre-defined ML Identifiers

Example

is_var ‘x:bool‘;;
val it : bool = true
is_var ‘T‘;;
val it : bool = false

See also
mk_var, dest_var, is_const, is_comb, is_abs.

is_vartype

is_vartype : hol_type -> bool

Synopsis
Tests a type to see if it is a type variable.

Description
Returns true if applied to a type variable. For types that are not type variables it returns

false.

Failure
Never fails.

Example

is_vartype ‘:A‘;;
val it : bool = true

is_vartype ‘:bool‘;;
val it : bool = false

is_vartype (mk_vartype "bool");;
val it : bool = true

See also
mk_vartype, dest_vartype.

ITAUT 289

ITAUT

ITAUT : term -> thm

Synopsis
Attempt to prove term using intuitionistic first-order logic.

Description
The call ITAUT ‘p‘ attempts to prove p using a basic tableau-type proof search for intu-

itionistic first-order logic. The restriction to intuitionistic logic means that no principles

such as the “law of the excluded middle” or “law of double negation” are used.

Failure
Fails if the goal is non-Boolean. May also fail if it’s unprovable, though more usually this

results in indefinite looping.

Example
This is intuitionistically valid, so it works:

ITAUT ‘~(~(~p)) ==> ~p‘;;
...
val it : thm = |- ~ ~ ~p ==> ~p

whereas this, one of the main non-intuitionistic principles, is not:

ITAUT ‘~(~p) ==> p‘;;
Searching with limit 0
Searching with limit 1
Searching with limit 2
Searching with limit 3
...

so the procedure loops; you can as usual terminate such loops with control-C.

Comments
Normally, first-order reasoning should be performed by MESON[], which is much more

powerful, complete for all classical logic, and handles equality. The function ITAUT is

mainly for “bootstrapping” purposes. Nevertheless it may sometimes be intellectually

interesting to see that certain logical formulas are provable intuitionistically.

See also
BOOL_CASES_TAC, ITAUT_TAC, MESON, MESON_TAC.

290 Chapter 1. Pre-defined ML Identifiers

ITAUT_TAC

ITAUT_TAC : tactic

Synopsis

Simple intuitionistic logic prover.

Description

The tactic ITAUT attempts to prove the goal using a basic tableau-type proof search

for intuitionistic first-order logic. The restriction to intuitionistic logic means that no

principles such as the “law of the excluded middle” or “law of double negation” are used.

Failure

May fail if the goal is unprovable, e.g. for purely propositional problems. For unsolvable

problems with quantifiers it usually just loops.

Example

Suppose we try to prove the logical equivalence of “contraposition”, already embedded in

the pre-proved theorem CONTRAPOS_THM:

g ‘!p q. (p ==> q) <=> (~q ==> ~p)‘;;

by splitting it into two subgoals:

e(REPEAT GEN_TAC THEN EQ_TAC);;
val it : goalstack = 2 subgoals (2 total)

‘(~q ==> ~p) ==> p ==> q‘

‘(p ==> q) ==> ~q ==> ~p‘

The first subgoal (printed at the bottom) can be solved by ITAUT_TAC, indicating that it’s

it 291

intuitionistically valid:

e ITAUT_TAC;;
...
val it : goalstack = 1 subgoal (1 total)

‘(~q ==> ~p) ==> p ==> q‘

but the other one isn’t, though it is solvable by full classical logic:

e(MESON_TAC[]);;
val it : goalstack = No subgoals

Comments

Normally, first-order reasoning should be performed by MESON_TAC[], which is much more

powerful, complete for all classical logic, and handles equality. The function ITAUT_TAC

is mainly for “bootstrapping” purposes. Nevertheless it may sometimes be intellectually

interesting to see that certain logial formulas are provable intuitionistically.

See also
ITAUT, MESON_TAC.

it

it : ’a

Synopsis

Binds the value of the last expression evaluated at top level.

Description

The identifier it is bound to the value of the last expression evaluated at top level.

Declarations do not effect the value of it.

292 Chapter 1. Pre-defined ML Identifiers

Example

2 + 3;;
val it : int = 5
let x = 2*3;;
val x : int = 6
it;;
val it : int = 5
it + 12;;
val it : int = 17

Uses
Used in evaluating expressions that require the value of the last evaluated expression.

itlist2

itlist2 : (’a -> ’b -> ’c -> ’c) -> ’a list -> ’b list -> ’c -> ’c

Synopsis
Applies a paired function between adjacent elements of 2 lists.

Description
itlist2 f ([x1;...;xn],[y1;...;yn]) z returns

f x1 y1 (f x2 y2 ... (f xn yn z)...)

It returns z if both lists are empty.

Failure
Fails if the two lists are of different lengths.

Example
This takes a ‘dot product’ of two vectors of integers:

let dot v w = itlist2 (fun x y z -> x * y + z) v w 0;;
val dot : int list -> int list -> int = <fun>
dot [1;2;3] [4;5;6];;
val it : int = 32

See also
itlist, rev_itlist, end_itlist, uncurry.

itlist 293

itlist

itlist : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b

Synopsis
List iteration function. Applies a binary function between adjacent elements of a list.

Description
itlist f [x1;...;xn] y returns

f x1 (f x2 ... (f xn y)...)

It returns y if list is empty.

Failure
Never fails.

Example

itlist (+) [1;2;3;4;5] 0;;
val it : int = 15
itlist (+) [1;2;3;4;5] 6;;
val it : int = 21

See also
rev_itlist, end_itlist.

++

(++) : (’a -> ’b * ’c) -> (’c -> ’d * ’e) -> ’a -> (’b * ’d) * ’e

Synopsis
Sequentially compose two parsers.

Description
If p1 and p2 are two parsers, p1 ++ p2 is a new parser that parses as much of the input as

possible using p1 and then as much of what remains using p2, returning the pair of parse

results and the unparsed input.

294 Chapter 1. Pre-defined ML Identifiers

Failure
Never fails.

Comments
This is one of a suite of combinators for manipulating “parsers”. A parser is simply

a function whose OCaml type is some instance of :(’a)list -> ’b * (’a)list. The

function should take a list of objects of type :’a (e.g. characters or tokens), parse as

much of it as possible from left to right, and return a pair consisting of the object derived

from parsing (e.g. a term or a special syntax tree) and the list of elements that were not

processed.

See also
++, >>, ||, a, atleast, elistof, finished, fix, leftbin, listof, many, nothing,
possibly, rightbin, some.

K

K : ’a -> ’b -> ’a

Synopsis
Forms a constant function: (K x) y = x.

Failure
Never fails.

See also
C, F_F, I, o, W.

LABEL_TAC

LABEL_TAC : string -> thm_tactic

Synopsis
Add an assumption with a named label to a goal.

Description
Given a theorem th, the tactic LABEL_TAC "name" th will add th as a new hypothesis, just

as ASSUME_TAC does, but will also give it name as a label. The name will show up when

LABEL TAC 295

the goal is printed, and can be used to refer to the theorem in tactics like USE_THEN and

REMOVE_THEN.

Failure
Never fails, though may be invalid if the theorem has assumptions that are not a subset

of those in the goal, up to alpha-equivalence.

Example
Suppose we want to prove that a binary relation <<= that is antisymmetric and has a strong

wellfoundedness property is also antisymmetric and transitive, and hence a wellorder:

g ‘(!x y. x <<= y /\ y <<= x ==> x = y) /\
(!s. ~(s = {}) ==> ?a:A. a IN s /\ !x. x IN s ==> a <<= x)
==> (!x y. x <<= y \/ y <<= x) /\

(!x y z. x <<= y /\ y <<= z ==> x <<= z)‘;;

We might start by putting the two hypotheses on the assumption list with intuitive names:

e(DISCH_THEN(CONJUNCTS_THEN2 (LABEL_TAC "antisym") (LABEL_TAC "wo")));;
val it : goalstack = 1 subgoal (1 total)

0 [‘!x y. x <<= y /\ y <<= x ==> x = y‘] (antisym)
1 [‘!s. ~(s = {}) ==> (?a. a IN s /\ (!x. x IN s ==> a <<= x))‘] (wo)

‘(!x y. x <<= y \/ y <<= x) /\ (!x y z. x <<= y /\ y <<= z ==> x <<= z)‘

Now we break down the goal a bit

e(REPEAT STRIP_TAC);;
val it : goalstack = 2 subgoals (2 total)

0 [‘!x y. x <<= y /\ y <<= x ==> x = y‘] (antisym)
1 [‘!s. ~(s = {}) ==> (?a. a IN s /\ (!x. x IN s ==> a <<= x))‘] (wo)
2 [‘x <<= y‘]
3 [‘y <<= z‘]

‘x <<= z‘

0 [‘!x y. x <<= y /\ y <<= x ==> x = y‘] (antisym)
1 [‘!s. ~(s = {}) ==> (?a. a IN s /\ (!x. x IN s ==> a <<= x))‘] (wo)

‘x <<= y \/ y <<= x‘

We want to specialize the wellordering assumption to an appropriate set for each case, and

296 Chapter 1. Pre-defined ML Identifiers

we can identify it using the label wo; the problem is then simple set-theoretic reasoning:

e(USE_THEN "wo" (MP_TAC o SPEC ‘{\small\verb%x:A,y:A%}‘) THEN SET_TAC[]);;
...
val it : goalstack = 1 subgoal (1 total)

0 [‘!x y. x <<= y /\ y <<= x ==> x = y‘] (antisym)
1 [‘!s. ~(s = {}) ==> (?a. a IN s /\ (!x. x IN s ==> a <<= x))‘] (wo)
2 [‘x <<= y‘]
3 [‘y <<= z‘]

‘x <<= z‘

Similarly for the other one:

e(USE_THEN "wo" (MP_TAC o SPEC ‘{\small\verb%x:A,y:A,z:A%}‘) THEN SET_TAC[]);;
...
val it : goalstack = No subgoals

Uses
Convenient for referring to an assumption explicitly, just as in mathematics books one

sometimes marks a theorem with an asterisk or dagger, then refers to it using that symbol.

Comments
There are other ways of identifying assumptions than by label, but they are not always

convenient. For example, explicitly doing ASSUME ‘asm‘ is cumbersome if asm is large, and

using its number in the assumption list can make proofs very brittle under later changes.

See also
ASSUME_TAC, REMOVE_THEN, USE_THEN.

LAMBDA_ELIM_CONV

LAMBDA_ELIM_CONV : conv

Synopsis
Eliminate lambda-terms that are not part of quantifiers from Boolean term.

Description
When applied to a Boolean term, LAMBDA_ELIM_CONV returns an equivalent version with
‘bare’ lambda-terms (those not part of quantifiers) removed. They are replaced with

LAND CONV 297

new ‘function’ variables and suitable hypotheses about them; for example a lambda-term
\x. t[x] is replaced by a function f with an additional hypothesis \all{\small\verbx

Failure
Never fails.

Example

LAMBDA_ELIM_CONV ‘MAP (\x. x + 1) l = l’‘;;
val it : thm =
|- MAP (\x. x + 1) l = l’ <=>

(!_73141. (!x. _73141 x = x + 1) ==> MAP _73141 l = l’)

Uses
This is mostly intended for normalization prior to automated proof procedures, and is used by
MESON, for example. However, it may sometimes be useful in itself.

See also
SELECT_ELIM_TAC, CONDS_ELIM_CONV.

LAND_CONV

LAND_CONV : conv -> conv

Synopsis
Apply a conversion to left-hand argument of binary operator.

Description
If c is a conversion where c ‘l‘ gives |- l = l’, then LAND_CONV c ‘op l r‘ gives |- op l r = op l’ r.

Failure
Fails if the underlying conversion does or returns an inappropriate theorem (i.e. is not really a
conversion).

Example

LAND_CONV NUM_ADD_CONV ‘(2 + 2) + (2 + 2)‘;;
val it : thm = |- (2 + 2) + 2 + 2 = 4 + 2 + 2

See also
ABS_CONV, COMB_CONV, COMB_CONV2, RAND_CONV, RATOR_CONV, SUB_CONV.

298 Chapter 1. Pre-defined ML Identifiers

last

last : ’a list -> ’a

Synopsis
Computes the last element of a list.

Description
last [x1;...;xn] returns xn.

Failure
Fails with last if the list is empty.

See also
butlast, hd, tl, el.

lcm_num

lcm_num : num -> num -> num

Synopsis
Computes lowest common multiple of two unlimited-precision integers.

Description
The call lcm_num m n for two unlimited-precision (type num) integers m and n returns the (pos-
itive) lowest common multiple of m and n. If either m or n (or both) are both zero, it returns
zero.

Failure
Fails if either number is not an integer (the type num supports arbitrary rationals).

Example

lcm_num (Int 35) (Int(-77));;
val it : num = 385

See also
gcd, gcd_num.

leftbin 299

leftbin

leftbin : (’a -> ’b * ’c) -> (’c -> ’d * ’a) -> (’d -> ’b -> ’b -> ’b) -> string -> ’a -> ’b * ’c

Synopsis
Parses iterated left-associated binary operator.

Description
If p is a parser for “items” of some kind, s is a parser for some “separator”, c is a ‘constructor’
function taking an element as parsed by s and two other elements as parsed by p and giving
a new such element, and e is an error message, then leftbin p s c e will parse an iterated
sequence of items by p and separated by something parsed with s. It will repeatedly apply the
constructor function c to compose these elements into one, associating to the left. For example,
the input:

<p1> <s1> <p2> <s2> <p3> <s3> <p4>

meaning successive segments pi that are parsed by p and sj that are parsed by s, will result
in

c (c s2 (c s1 p1 p2) p3) p4

Failure
The call leftbin p s c e never fails, though the resulting parser may.

Comments
This is one of a suite of combinators for manipulating “parsers”. A parser is simply a function
whose OCaml type is some instance of :(’a)list -> ’b * (’a)list. The function should
take a list of objects of type :’a (e.g. characters or tokens), parse as much of it as possible from
left to right, and return a pair consisting of the object derived from parsing (e.g. a term or a
special syntax tree) and the list of elements that were not processed.

See also
++, ||, >>, a, atleast, elistof, finished, fix, listof, many, nothing,
possibly, rightbin, some.

LE_IMP

LE_IMP : thm -> thm

300 Chapter 1. Pre-defined ML Identifiers

Synopsis
Perform transitivity chaining for non-strict natural number inequality.

Description
When applied to a theorem A |- s <= t where s and t have type num, the rule LE_IMP returns
A |- !x1...xn z. t <= z ==> s <= z, where z is some variable and the x1,...,xn are free
variables in s and t.

Failure
Fails if applied to a theorem whose conclusion is not of the form ‘s <= t‘ for some natural
number terms s and t.

Example

LE_IMP (ARITH_RULE ‘n <= SUC(m + n)‘);;
val it : thm = |- !m n p. SUC (m + n) <= p ==> n <= p

Uses
Can make transitivity chaining in goals easier, e.g. by FIRST_ASSUM(MATCH_MP_TAC o LE_IMP).

See also
ARITH_RULE, REAL_LE_IMP, REAL_LET_IMP.

length

length : ’a list -> int

Synopsis
Computes the length of a list: length [x1;...;xn] returns n.

Failure
Never fails.

<=?

(<=?) : ’a -> ’a -> bool

Synopsis
Reflexive short-cutting inequality test.

let CONV 301

Description
This is functionally identical to the OCaml polymorphic inequality test <= except that it is total
(hence reflexive) even on floating-point NaNs. More importantly, it will more efficiently short-cut
comparisons of large data structures where subcomponents are identical (pointer equivalent).

Failure
May fail when applied to functions.

Example

let x = 0.0 /. 0.0;;
val x : float = nan
x <= x;;
val it : bool = false
x <=? x;;
val it : bool = true

See also
=?, <?, >?, >=?.

let_CONV

let_CONV : term -> thm

Synopsis
Evaluates let-terms in the HOL logic.

Description
The conversion let_CONV implements evaluation of object-language let-terms. When applied
to a let-term of the form:

let v1 = t1 and ... and vn = tn in t

where v1, ..., vn are variables, let_CONV proves and returns the theorem:

|- (let v1 = t1 and ... and vn = tn in t) = t[t1,...,tn/v1,...,vn]

where t[t1,...,tn/v1,...,vn] denotes the result of substituting ti for v1 in parallel in t,
with automatic renaming of bound variables to prevent free variable capture.
let_CONV also works on let-terms that bind tuples of variables to tuples of values. That is,

if <tup> is an arbitrarily-nested tuple of distinct variables v1, ..., vn and <val> is a structurally

302 Chapter 1. Pre-defined ML Identifiers

similar tuple of values, that is <val> equals <tup>[t1,...,tn/v1,...,vn] for some terms t1,
..., tn, then:

let_CONV ‘let <tup> = <val> in t‘

returns

|- (let <tup> = <val> in t) = t[t1,...,tn/v1,...,vn]

That is, the term ti is substituted for the corresponding variable vi in t. This form of let-
reduction also works with simultaneous binding of tuples using and.

Failure
let_CONV tm fails if tm is not a reducible let-term of one of the forms specified above.

Example
A simple example of the use of let_CONV to eliminate a single local variable is the following:

let_CONV ‘let x = 1 in x+y‘;;
val it : thm = |- (let x = 1 in x + y) = 1 + y

and an example showing a tupled binding is:

let_CONV ‘let (x,y) = (1,2) in x+y‘;;
val it : thm = |- (let x,y = 1,2 in x + y) = 1 + 2

Simultaneous introduction of two bindings is illustrated by:

let_CONV ‘let x = 1 and y = 2 in x + y + z‘;;
val it : thm = |- (let x = 1 and y = 2 in x + y + z) = 1 + 2 + z

See also
BETA_CONV, PAIRED_BETA_CONV.

LET_TAC

LET_TAC : tactic

Synopsis
Eliminates a let binding in a goal by introducing equational assumptions.

Description
Given a goal A ?- t where t contains a free let-expression let x1 = E1 and ... let xn = En in E,
the tactic LET_TAC replaces that subterm by simply E but adds new assumptions E1 = x1, ...,

lex 303

En = xn. That is, the local let bindings are replaced with new assumptions, put in reverse order
so that ASM_REWRITE_TAC will not immediately expand them. In cases where the term contains
several let-expression candidates, a topmost one will be selected. In particular, if let-expressions
are nested, the outermost one will be handled.

Failure
Fails if the goal contains no eligible let-term.

Example

g ‘let x = 2 and y = 3 in x + 1 <= y‘;;
val it : goalstack = 1 subgoal (1 total)

‘let x = 2 and y = 3 in x + 1 <= y‘

e LET_TAC;;
val it : goalstack = 1 subgoal (1 total)

0 [‘2 = x‘]
1 [‘3 = y‘]

‘x + 1 <= y‘

See also
ABBREV_TAC, EXPAND_TAC, let_CONV.

lex

lex : string list -> lexcode list

Synopsis
Lexically analyze an input string.

Description
The function lex expects a list of single-character strings representing input (as produced by
explode, for example) and analyzes it into a sequence of tokens according to HOL Light lexical
conventions. A token is either Ident "s" or Resword "s"; in each case this encodes a string
but in the latter case indicates that the string is a reserved word.

Lexical analysis essentially regards any number of alphanumeric characters (see isalnum) or
any number of symbolic characters (see issymb) as a single token, except that certain brackets
(see isbra) are only allowed to be single-character tokens and other separators (see issep)
can only be combined with multiple instances of themselves not other characters. Whitespace
including spaces, tabs and newlines (see isspace) is eliminated and serves only to separate tokens

304 Chapter 1. Pre-defined ML Identifiers

that would otherwise be one. Comments introduced by the comment token (see comment_token)
are removed.

Failure
Fails if the input is highly malformed, e.g. contains illegal characters.

Example

lex(explode "if p+1=2 then x + 1 else y - 1");;
val it : lexcode list =
[Resword "if"; Ident "p"; Ident "+"; Ident "1"; Ident "="; Ident "2";
Resword "then"; Ident "x"; Ident "+"; Ident "1"; Resword "else";
Ident "y"; Ident "-"; Ident "1"]

See also
comment_token, explode, isalnum, isbra, issep, isspace, issymb,
is_reserved_word, parse_term, parse_type.

lhand

lhand : term -> term

Synopsis
Take left-hand argument of a binary operator.

Description
When applied to a term t that is an application of a binary operator to two arguments, i.e. is
of the form (op l) r, the call lhand t will return the left-hand argument l. The terms op and
r are arbitrary, though in many applications op is a constant such as addition or equality.

Failure
Fails if the term is not of the indicated form.

lhs 305

Example

lhand ‘1 + 2‘;;
val it : term = ‘1‘

lhand ‘2 + 2 = 4‘;;
val it : term = ‘2 + 2‘

lhand ‘f x y z‘;;
Warning: inventing type variables
val it : term = ‘y‘

lhand ‘if p then q else r‘;;
Warning: inventing type variables
val it : term = ‘q‘

Comments
On equations, lhand has the same effect as lhs, but may be slightly quicker because it does not
check whether the operator op is indeed the equality constant.

See also
lhs, rand, rhs.

lhs

lhs : term -> term

Synopsis
Returns the left-hand side of an equation.

Description
lhs ‘t1 = t2‘ returns ‘t1‘.

Failure
Fails with lhs if the term is not an equation.

Example

lhs ‘2 + 2 = 4‘;;
val it : term = ‘2 + 2‘

See also
dest_eq, lhand, rand, rhs.

306 Chapter 1. Pre-defined ML Identifiers

lift_function

lift_function : thm -> thm * thm -> string -> thm -> thm * thm

Synopsis
Lift a function on representing type to quotient type of equivalence classes.

Description
Suppose type qty is a quotient type of rty under an equivalence relation R:rty->rty->bool,
as defined by define_quotient_type, and f is a function f:ty1->...->tyn->ty, some tyi
being the representing type rty. The term lift_function should be applied to (i) a theorem
of the form |- (?x. r = R x) <=> rep(abs r) = r as returned by define_quotient_type,
(ii) a pair of theorems asserting that R is reflexive and transitive, (iii) a desired name for the
counterpart of f lifted to the type of equivalence classes, and (iv) a theorem asserting that f
is “welldefined”, i.e. respects the equivalence class. This last theorem essentially asserts that
the value of f is independent of the choice of representative: any R-equivalent inputs give an
equal output, or an R-equivalent one. Syntactically, the welldefinedness theorem should be of
the form:

|- !x1 x1’ .. xn xn’. (x1 == x1’) /\ ... /\ (xn == xn’)
==> (f x1 .. xn == f x1’ .. f nx’)

where each == may be either equality or the relation R, the latter of course only if the type of
that argument is rty. The reflexivity and transitivity theorems should be

|- !x. R x x

and

|- !x y z. R x y /\ R y z ==> R x z

It returns two theorems, a definition and a consequential theorem that can be used by
lift_theorem later.

Failure
Fails if the theorems are malformed or if there is already a constant of the given name.

Example
Suppose that we have defined a type of finite multisets as in the documentation for define_quotient_type,
based on the equivalence relation multisame on lists. First we prove that the equivalence relation

lift function 307

multisame is indeed reflexive and transitive:

let MULTISAME_REFL,MULTISAME_TRANS = (CONJ_PAIR o prove)
(‘(!l:(A)list. multisame l l) /\
(!l1 l2 l3:(A)list.

multisame l1 l2 /\ multisame l2 l3 ==> multisame l1 l3)‘,
REWRITE_TAC[multisame] THEN MESON_TAC[]);;

We would like to define the multiplicity of an element in a multiset. First we define this notion
on the representing type of lists:

let listmult = new_definition
‘listmult a l = LENGTH (FILTER (\x:A. x = a) l)‘;;

and prove that it is welldefined. Note that the second argument is the only one we want to lift
to the quotient type, so that’s the only one for which we use the relation multisame. For the
first argument and the result we only use equality:

let LISTMULT_WELLDEF = prove
(‘!a a’:A l l’.

a = a’ /\ multisame l l’ ==> listmult a l = listmult a’ l’‘,
SIMP_TAC[listmult; multisame]);;

Now we can lift it to a multiplicity function on the quotient type:

let multiplicity,multiplicity_th =
lift_function multiset_rep (MULTISAME_REFL,MULTISAME_TRANS)
"multiplicity" LISTMULT_WELLDEF;;

val multiplicity : thm =
|- multiplicity a l = (@u. ?l. listmult a l = u /\ list_of_multiset l l)

val multiplicity_th : thm =
|- listmult a l = multiplicity a (multiset_of_list (multisame l))

Another example is the ‘union’ of multisets, which we can consider as the lifting of the APPEND

308 Chapter 1. Pre-defined ML Identifiers

operation on lists, which we show is welldefined:

let APPEND_WELLDEF = prove
(‘!l l’ m m’ :A list.

multisame l l’ /\ multisame m m’
==> multisame (APPEND l m) (APPEND l’ m’)‘,

SIMP_TAC[multisame; FILTER_APPEND]);;

and lift as follows:

let munion,munion_th =
lift_function multiset_rep (MULTISAME_REFL,MULTISAME_TRANS)
"munion" APPEND_WELLDEF;;

val munion : thm =
|- munion l m =

multiset_of_list
(\u. ?l m.

multisame (APPEND l m) u /\
list_of_multiset l l /\
list_of_multiset m m)

val munion_th : thm =
|- multiset_of_list (multisame (APPEND l m)) =

munion (multiset_of_list (multisame l)) (multiset_of_list (multisame m))

For continuation of this example, showing how to lift theorems from the representing functions
to the functions on the quotient type, see the documentation entry for lift_theorem.

Comments
If, as in these examples, the representing type is parametrized by type variables, make sure that
the same type variables are used consistently in the various theorems.

See also
define_quotient_type, lift_theorem.

lift_theorem

lift_theorem : thm * thm -> thm * thm * thm -> thm list -> thm -> thm

Synopsis
Lifts a theorem to quotient type from representing type.

lift theorem 309

Description

The function lift_theorem should be applied (i) a pair of type bijection theorems as returned by
define_quotient_type for equivalence classes over a binary relation R, (ii) a triple of theorems
asserting that the relation R is reflexive, symmetric and transitive in exactly the following form:

|- !x. R x x
|- !x y. R x y <=> R y x
|- !x y z. R x y /\ R y z ==> R x z

and (iii) the list of theorems returned as the second component of the pairs from lift_function
for all functions that should be mapped. Finally, it is then applied to a theorem about the
representing type. It automatically maps it over to the quotient type, appropriately modifying
quantification over the representing type into quantification over the new quotient type, and
replacing functions over the representing type with their corresponding lifted counterparts. Note
that all variables should be bound by quantifiers; these may be existential or universal but if any
types involve the representing type rty it must be just rty and not a composite or higher-order
type such as rty->rty or rty#num.

Failure

Fails if any of the input theorems are malformed (e.g. symmetry stated with implication instead
of equivalence) or fail to correspond (e.g. different polymorphic type variables in the type
bijections and the equivalence theorem). Otherwise it will not fail, but if used improperly may
not map the theorem across cleanly.

Example

This is a continuation of the example in the documentation entries for define_quotient_type
and lift_function, where a type of finite multisets is defined as the quotient of the type of
lists by a suitable equivalence relation multisame. We can take the theorems asserting that this
is indeed reflexive, symmetric and transitive:

let [MULTISAME_REFL;MULTISAME_SYM;MULTISAME_TRANS] = (CONJUNCTS o prove)
(‘(!l:(A)list. multisame l l) /\
(!l l’:(A)list. multisame l l’ <=> multisame l’ l) /\
(!l1 l2 l3:(A)list.

multisame l1 l2 /\ multisame l2 l3 ==> multisame l1 l3)‘,
REWRITE_TAC[multisame] THEN MESON_TAC[]);;

and can now lift theorems. For example, we know that APPEND is itself associative, and so in

310 Chapter 1. Pre-defined ML Identifiers

particular:

let MULTISAME_APPEND_ASSOC = prove
(‘!l m n. multisame (APPEND l (APPEND m n)) (APPEND (APPEND l m) n)‘,
REWRITE_TAC[APPEND_ASSOC; MULTISAME_REFL]);;

and we can easily show how list multiplicity interacts with APPEND:

let LISTMULT_APPEND = prove
(‘!a l m. listmult a (APPEND l m) = listmult a l + listmult a m‘,
REWRITE_TAC[listmult; LENGTH_APPEND; FILTER_APPEND]);;

These theorems and any others like them can now be lifted to equivalence classes:

let [MULTIPLICITY_MUNION;MUNION_ASSOC] =
map (lift_theorem (multiset_abs,multiset_rep)

(MULTISAME_REFL,MULTISAME_SYM,MULTISAME_TRANS)
[multiplicity_th; munion_th])

[LISTMULT_APPEND; MULTISAME_APPEND_ASSOC];;
val (MULTIPLICITY_MUNION) : thm =
|- !a l m.

multiplicity a (munion l m) = multiplicity a l + multiplicity a m
val (MUNION_ASSOC) : thm =
|- !l m n. munion l (munion m n) = munion (munion l m) n

See also
define_quotient_type, lift_function.

LIST_CONV

LIST_CONV : conv -> conv

Synopsis
Apply a conversion to each element of a list.

Description
If cnv ‘ti‘ returns |- ti = ti’ for i ranging from 1 to n, then LIST_CONV cnv ‘[t1; ...; tn]‘
returns |- [t1; ...; tn] = [t1’; ...; tn’].

Failure
Fails if the conversion fails on any list element.

LIST INDUCT TAC 311

Example

LIST_CONV num_CONV ‘[1;2;3;4;5]‘;;
val it : thm = |- [1; 2; 3; 4; 5] = [SUC 0; SUC 1; SUC 2; SUC 3; SUC 4]

Uses
Applying a conversion more delicately than simply by DEPTH_CONV etc.

See also
DEPTH_BINOP_CONV, DEPTH_CONV, ONCE_DEPTH_CONV, REDEPTH_CONV, TOP_DEPTH_CONV,
TOP_SWEEP_CONV.

LIST_INDUCT_TAC

LIST_INDUCT_TAC : tactic

Synopsis
Performs tactical proof by structural induction on lists.

Description
LIST_INDUCT_TAC reduces a goal A ?- !l. P[l], where l ranges over lists, to two subgoals
corresponding to the base and step cases in a proof by structural induction on l. The induction
hypothesis appears among the assumptions of the subgoal for the step case. The specification
of LIST_INDUCT_TAC is:

A ?- !l. P
=== LIST_INDUCT_TAC
A |- P[[]/l] A u {P[t/l]} ?- P[CONS h t/l]

Failure
LIST_INDUCT_TAC g fails unless the conclusion of the goal g has the form ‘!l. t‘, where the
variable l has type (ty)list for some type ty.

Example
Many simple list theorems can be proved simply by list induction then just first-order reasoning
(or even rewriting) with definitions of the operations involved. For example if we want to prove

312 Chapter 1. Pre-defined ML Identifiers

that mapping a composition of functions over a list is the same as successive mapping of the
two functions:

g ‘!l f:A->B g:B->C. MAP (g o f) l = MAP g (MAP f l)‘;;

we can start by list induction:

e LIST_INDUCT_TAC;;
val it : goalstack = 2 subgoals (2 total)

0 [‘!f g. MAP (g o f) t = MAP g (MAP f t)‘]

‘!f g. MAP (g o f) (CONS h t) = MAP g (MAP f (CONS h t))‘

‘!f g. MAP (g o f) [] = MAP g (MAP f [])‘

and each resulting subgoal is just solved at once by:

e(ASM_REWRITE_TAC[MAP; o_THM]);;

Comments

Essentially the same effect can be had by MATCH_MP_TAC list_INDUCT. This does not subse-
quently break down the goal in such a convenient way, but gives more control over choice of

LIST INDUCT TAC 313

variable. For example, starting with the same goal:

g ‘!l f:A->B g:B->C. MAP (g o f) l = MAP g (MAP f l)‘;;

we get:

e(MATCH_MP_TAC list_INDUCT);;
val it : goalstack = 1 subgoal (1 total)

‘(!f g. MAP (g o f) [] = MAP g (MAP f [])) /\
(!a0 a1.

(!f g. MAP (g o f) a1 = MAP g (MAP f a1))
==> (!f g. MAP (g o f) (CONS a0 a1) = MAP g (MAP f (CONS a0 a1))))‘

and after getting rid of some trivia:

e(REWRITE_TAC[MAP]);;
val it : goalstack = 1 subgoal (1 total)

‘!a0 a1.
(!f g. MAP (g o f) a1 = MAP g (MAP f a1))
==> (!f g.

CONS ((g o f) a0) (MAP (g o f) a1) =
CONS (g (f a0)) (MAP g (MAP f a1)))‘

we can carefully choose the variable names:

e(MAP_EVERY X_GEN_TAC [‘k:A‘; ‘l:A list‘]);;
val it : goalstack = 1 subgoal (1 total)

‘(!f g. MAP (g o f) l = MAP g (MAP f l))
==> (!f g.

CONS ((g o f) k) (MAP (g o f) l) =
CONS (g (f k)) (MAP g (MAP f l)))‘

This kind of control can be useful when the sub-proof is more challenging. Here of course the
same simple pattern as before works:

e(SIMP_TAC[o_THM]);;
val it : goalstack = No subgoals

See also
INDUCT_TAC, MATCH_MP_TAC, WF_INDUCT_TAC.

314 Chapter 1. Pre-defined ML Identifiers

list_mk_abs

list_mk_abs : term list * term -> term

Synopsis
Iteratively constructs abstractions.

Description
list_mk_abs([‘x1‘;...;‘xn‘],‘t‘) returns ‘\x1 ... xn. t‘.

Failure
Fails with list_mk_abs if the terms in the list are not variables.

Example

list_mk_abs([‘m:num‘; ‘n:num‘],‘m + n + 1‘);;
val it : term = ‘\m n. m + n + 1‘

See also
dest_abs, mk_abs, strip_abs.

list_mk_binop

list_mk_binop : term -> term list -> term

Synopsis
Makes an iterative application of a binary operator.

Description
The call list_mk_binop op [t1; ...; tn] constructs the term op t1 (op t2 (op ... (op tn-1 tn) ...))).
If we think of op as an infix operator we can write it t1 op t2 op t3 ... op tn, but the call
will work for any term op compatible with all the types.

Failure
Fails if the list of terms is empty or if the types would not work for the composite term. In
particular, if the list contains at least three items, all the types must be the same.

list mk comb 315

Example
This example is typical:

list_mk_binop ‘(+):num->num->num‘ (map mk_small_numeral (1--10));;
val it : term = ‘1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10‘

while these show that for smaller lists, one can just regard it as mk_comb or mk_binop:

list_mk_binop ‘SUC‘ [‘0‘];;
val it : term = ‘0‘

list_mk_binop ‘f:A->B->C‘ [‘x:A‘; ‘y:B‘];;
val it : term = ‘f x y‘

See also
binops, mk_binop.

list_mk_comb

list_mk_comb : term * term list -> term

Synopsis
Iteratively constructs combinations (function applications).

Description
list_mk_comb(‘t‘,[‘t1‘;...;‘tn‘]) returns ‘t t1 ... tn‘.

Failure
Fails with list_mk_comb if the types of t1,...,tn are not equal to the argument types of t. It
is not necessary for all the arguments of t to be given. In particular the list of terms t1,...,tn
may be empty.

Example

list_mk_comb(‘1‘,[]);;
val it : term = ‘1‘

list_mk_comb(‘(/\)‘,[‘T‘]);;
val it : term = ‘(/\) T‘

list_mk_comb(‘(/\)‘,[‘1‘]);;
Exception: Failure "mk_comb: types do not agree".

See also
list_mk_icomb, mk_comb, strip_comb.

316 Chapter 1. Pre-defined ML Identifiers

list_mk_conj

list_mk_conj : term list -> term

Synopsis
Constructs the conjunction of a list of terms.

Description
list_mk_conj([‘t1‘;...;‘tn‘]) returns ‘t1 /\ ... /\ tn‘.

Failure
Fails with list_mk_conj if the list is empty or if the list has more than one element, one or
more of which are not of type ‘:bool‘.

Example

list_mk_conj [‘T‘;‘F‘;‘T‘];;
val it : term = ‘T /\ F /\ T‘

list_mk_conj [‘T‘;‘1‘;‘F‘];;
Exception: Failure "mk_binary".

list_mk_conj [‘1‘];;
val it : term = ‘1‘

See also
conjuncts, mk_conj.

list_mk_disj

list_mk_disj : term list -> term

Synopsis
Constructs the disjunction of a list of terms.

Description
list_mk_disj([‘t1‘;...;‘tn‘]) returns ‘t1 \/ ... \/ tn‘.

Failure
Fails with list_mk_disj if the list is empty or if the list has more than one element, one or
more of which are not of type ‘:bool‘.

list mk exists 317

Example

list_mk_disj [‘T‘;‘F‘;‘T‘];;
val it : term = ‘T \/ F \/ T‘

list_mk_disj [‘T‘;‘1‘;‘F‘];;
Exception: Failure "mk_binary".

list_mk_disj [‘1‘];;
val it : term = ‘1‘

See also
disjuncts, is_disj, mk_disj.

list_mk_exists

list_mk_exists : term list * term -> term

Synopsis
Multiply existentially quantifies both sides of an equation using the given variables.

Description
When applied to a list of terms [x1;...;xn], where the ti are all variables, and a theorem
A |- t1 = t2, the inference rule LIST_MK_EXISTS existentially quantifies both sides of the
equation using the variables given, none of which should be free in the assumption list.

A |- t1 <=> t2
-- LIST_MK_EXISTS [‘x1‘;...;‘xn‘]
A |- (?x1...xn. t1) <=> (?x1...xn. t2)

Failure
Fails if any term in the list is not a variable or is free in the assumption list, or if the theorem
is not equational.

See also
EXISTS_EQ, MK_EXISTS.

list_mk_forall

list_mk_forall : term list * term -> term

318 Chapter 1. Pre-defined ML Identifiers

Synopsis
Iteratively constructs a universal quantification.

Description
list_mk_forall([‘x1‘;...;‘xn‘],‘t‘) returns ‘!x1 ... xn. t‘.

Failure
Fails if any term in the list is not a variable or if t is not of type ‘:bool‘ and the list of terms
is non-empty. If the list of terms is empty the type of t can be anything.

Example

list_mk_forall([‘x:num‘; ‘y:num‘],‘x + y + 1 = SUC z‘);;
val it : term = ‘!x y. x + y + 1 = SUC z‘

See also
mk_forall, strip_forall.

list_mk_gabs

list_mk_gabs : term list * term -> term

Synopsis
Iteratively makes a generalized abstraction.

Description
The call list_mk_gabs([vs1; ...; vsn],t) constructs an interated generalized abstraction
\vs1. \vs2. ... \vsn. t. See mk_gabs for more details on constructing generalized abstrac-
tions.

Failure
Never fails.

Example

list_mk_gabs([‘(x:num,y:num)‘; ‘(w:num,z:num)‘],‘x + w + 1‘);;
val it : term = ‘\(x,y). \(w,z). x + w + 1‘

See also
dest_gabs, is_gabs, mk_gabs.

list mk icomb 319

list_mk_icomb

list_mk_icomb : string -> term list -> term

Synopsis
Applies constant to list of arguments, instantiating constant type as needed.

Description
The call list_mk_icomb "c" [a1; ...; an] will make the term c a1 ... an where c is a
constant, after first instantiating c’s generic type so that the types are compatible.

Failure
Fails if c is not a constant or if the types cannot be instantiated to match up with the argument
list.

Example
This would fail with the basic list_mk_comb function

list_mk_icomb "=" [‘1‘; ‘2‘];;
val it : term = ‘1 = 2‘

See also
list_mk_comb, mk_mconst, mk_icomb.

listof

listof : (’a -> ’b * ’c) -> (’c -> ’d * ’a) -> string -> ’a -> ’b list * ’c

Synopsis
Parses a separated list of items.

Description
If p is a parser for “items” of some kind, s is a parser for a “separator”, and e is an error
message, then listof p s e parses a nonempty list of successive items using p, where adjacent
items are separated by something parseable by s. If a separator is parsed successfully but there
is no following item that can be parsed by s, an exception Failure e is raised. (So note that
the separator must not terminate the final element.)

Failure
The call listof p s e itself never fails, though the resulting parser may.

320 Chapter 1. Pre-defined ML Identifiers

Comments
This is one of a suite of combinators for manipulating “parsers”. A parser is simply a function
whose OCaml type is some instance of :(’a)list -> ’b * (’a)list. The function should
take a list of objects of type :’a (e.g. characters or tokens), parse as much of it as possible from
left to right, and return a pair consisting of the object derived from parsing (e.g. a term or a
special syntax tree) and the list of elements that were not processed.

See also
++, ||, >>, a, atleast, elistof, finished, fix, leftbin, many, nothing,
possibly, rightbin, some.

loaded_files

loaded_files : (string * Digest.t) list ref

Synopsis
List of files loaded so far.

Description
This reference variable stores a list of previously loaded files together with MD5 digests. It is
updated by all the main loading functions load_on_path, loads, loadt and needs, and is used
by needs to avoid reloading the same file multiple times.

Failure
Not applicable.

Uses
Not really intended for average users to examine or modify.

See also
load_on_path, loads, loadt, needs.

load_on_path

load_on_path : string list -> string -> unit

Synopsis
Finds a file on a path and loads it into HOL Light.

load path 321

Description
When given a filename and a path, the file is found either directly by its filename or on the given
path, as explained in file_on_path. It is then loaded into HOL, updating the list of loaded
files.

Failure
Fails if the file is not found or generates an exception when loaded (e.g. a syntax problem or
runtime exception).

See also
loads, loadt, needs.

load_path

load_path : string list ref

Synopsis
Path where HOL Light tries to find files to load.

Description
The reference variable load_path gives a list of directories. When HOL loads files with loadt,
it will try these places in order on all non-absolute filenames.

Failure
Not applicable.

See also
load_on_path, loads, loadt.

loads

loads : string -> unit

Synopsis
Load a file from the HOL Light system tree.

Description
Finds the named file, either by its absolute pathname or by starting in the base of the HOL
installation stored by hol_dir, and loads it.

322 Chapter 1. Pre-defined ML Identifiers

Failure
Fails if the file is not found or generates an exception.

Example
To load a library with more number theory:

loads "Examples/prime.ml";;
- : unit = ()
val (MULT_MONO_EQ) : thm = |- !m i n. SUC n * m = SUC n * i <=> m = i
...
...
val (GCD_CONV) : term -> thm = <fun>
val it : unit = ()

Uses
Loading HOL Light standard libraries without accidentally picking up other files of the same
name in the current directory or on load_path

See also
loadt, needs.

loadt

loadt : string -> unit

Synopsis
Finds a file on the load path and loads it.

Description
The function loadt takes a string indicating an OCaml file name as argument and loads it. If
the filename is relative, it is found on the load path load_path, and it is then loaded, updating
the list of loaded files.

Failure
loadt will fail if the file named by the argument does not exist in the search path. It will of
course fail if the file is not a valid OCaml file. Failure in the OCaml file will also terminate
loading.

Example
If we have an ML file called foo.ml on the load path, e.g. in the current directory, which

lookup 323

contains the line

let x=2+2;;

this can be loaded as follows:

loadt "foo.ml";;

and the system would respond with:

loadt "foo.ml";;
val x : int = 4
val it : unit = ()

See also
loads, needs.

lookup

lookup : term -> ’a net -> ’a list

Synopsis
Look up term in a term net.

Description
Term nets (type ’a net) are a lookup structure associating objects of type ’a, e.g. conversions,
with a corresponding ‘pattern’ term. For a given term, one can then relatively quickly look
up all objects whose pattern terms might possibly match to it. This is used, for example, in
rewriting to quickly filter out obviously inapplicable rewrites rather than attempting each one
in turn. The call lookup t net for a term t returns the list of objects whose patterns might
possibly be matchable to t. Note that this is conservative: if the pattern could be matched
(even higher-order matched) in the sense of term_match, it will be in the list, but it is possible
that some non-matchable objects will be returned. (For example, a pattern term x + x will
match any term of the form a + b, even if a and b are the same.) It is intended that nets are
a first-level filter for efficiency; finer discrimination may be embodied in the subsequent action
with the list of returned objects.

Failure
Never fails.

324 Chapter 1. Pre-defined ML Identifiers

Example
If we want to create ourselves the kind of automated rewriting with the basic rewrites that is
done by REWRITE_CONV, we could simply try in succession all the rewrites:

let BASIC_REWRITE_CONV’ = FIRST_CONV (map REWR_CONV (basic_rewrites()));;
val (BASIC_REWRITE_CONV’) : conv = <fun>

However, it would be more efficient to use the left-hand sides as patterns in a term net to
organize the different rewriting conversions:

let rewr_net =
let enter_thm th = enter (freesl(hyp th)) (lhs(concl th),REWR_CONV th) in
itlist enter_thm (basic_rewrites()) empty_net;;

Now given a term, we get only the items with matchable patterns, usually much less than the
full list:

lookup ‘(\x. x + 1) 2‘ rewr_net;;
val it : (term -> thm) list = [<fun>]

lookup ‘T /\ T‘ rewr_net;;
val it : (term -> thm) list = [<fun>; <fun>; <fun>]

The three items returned in the last call are rewrites based on the theorems |- T /\ t <=> t,
|- t /\ T <=> t and |- t /\ t <=> t, which are the only ones matchable. We can use this
net for a more efficient version of the same conversion:

let BASIC_REWRITE_CONV tm = FIRST_CONV (lookup tm rewr_net) tm;;
val (BASIC_REWRITE_CONV) : term -> conv = <fun>

To see that it is indeed more efficient, consider:

let tm = funpow 8 (fun x -> mk_conj(x,x)) ‘T‘;;
...
time (DEPTH_CONV BASIC_REWRITE_CONV) tm;;
CPU time (user): 0.08
...
time (DEPTH_CONV BASIC_REWRITE_CONV’) tm;;
CPU time (user): 1.121
...

See also
empty_net, enter, merge_nets.

¡? 325

<?

(<?) : ’a -> ’a -> bool

Synopsis
Reflexive short-cutting inequality test.

Description
This is functionally identical to the OCaml polymorphic inequality test < except that it is total
even on floating-point NaNs. More importantly, it will more efficiently short-cut comparisons of
large data structures where subcomponents are identical (pointer equivalent).

Failure
May fail when applied to functions.

Example

1.0 < nan or nan < 1.0;;
val it : bool = false
1.0 <? nan;;
val it : bool = false
nan <? 1.0;;
val it : bool = true

See also
=?, <=?, >?, >=?.

make_args

make_args : string -> term list -> hol_type list -> term list

Synopsis
Make a list of terms with stylized variable names

Description
The call make_args "s" avoids [ty0; ...; tyn] constructs a list of variables of types ty0,
..., tyn, normally called s0, ..., sn but primed if necessary to avoid clashing with any in avoids

Failure
Never fails.

326 Chapter 1. Pre-defined ML Identifiers

Example

make_args "arg" [‘arg2:num‘] [‘:num‘; ‘:num‘; ‘:num‘];;
val it : term list = [‘arg0‘; ‘arg1‘; ‘arg2’‘]

Uses
Constructing arbitrary but relatively natural names for argument lists.

See also
genvar, variant.

make_overloadable

make_overloadable : string -> hol_type -> unit

Synopsis
Makes a symbol overloadable within the specified type skeleton.

Description
HOL Light allows the same identifier to denote several different underlying constants, with the
choice being determined by types and/or an order of priority (see prioritize_overload). How-
ever, any identifier ident to be overloaded must first be declared overloadable using make_overloadable "ident" ‘:ty‘.
The “type skeleton” argument ‘:ty‘ is the most general type that the various instances may
have.

The type skeleton can simply be a type variable, in which case any type is acceptable, but it
is good practice to constrain it where possible to allow more information to be inferred during
typechecking. For example, the symbol ‘+’ has the type skeleton ‘:A->A->A‘ (as you can find
out by examining the list the_overload_skeletons) indicating that it is always overloaded to
a binary operator that returns and element of the same type as its two arguments.

Failure
Fails if the symbol has previously been made overloadable but with a different type skeleton.

Example

make_overloadable "<=" ‘:A->A->bool‘;;
val it : unit = ()

See also
overload_interface, override_interface, prioritize_overload, reduce_interface,
remove_interface, the_interface, the_overload_skeletons.

many 327

many

many : (’a -> ’b * ’a) -> ’a -> ’b list * ’a

Synopsis
Parses zero or more successive items using given parser.

Description
If p is a parser then many p gives a new parser that parses a series of successive items using p
and returns the result as a list, with the expected left-to-right order.

Failure
The immediate call many never fails. The resulting parser may fail when applied, though any
Noparse exception in the core parser will be trapped.

Comments
This is one of a suite of combinators for manipulating “parsers”. A parser is simply a function
whose OCaml type is some instance of :(’a)list -> ’b * (’a)list. The function should
take a list of objects of type :’a (e.g. characters or tokens), parse as much of it as possible from
left to right, and return a pair consisting of the object derived from parsing (e.g. a term or a
special syntax tree) and the list of elements that were not processed.

See also
++, ||, >>, a, atleast, elistof, finished, fix, leftbin, listof, nothing,
possibly, rightbin, some.

map2

map2 : (’a -> ’b -> ’c) -> ’a list -> ’b list -> ’c list

Synopsis
Maps a binary function over two lists to create one new list.

Description
map2 f ([x1;...;xn],[y1;...;yn]) returns [f(x1,y1);...;f(xn,yn)].

Failure
Fails with map2 if the two lists are of different lengths.

328 Chapter 1. Pre-defined ML Identifiers

Example

map2 (+) [1;2;3] [30;20;10];;
val it : int list = [31; 22; 13]

See also
map, uncurry.

map

map : (’a -> ’b) -> ’a list -> ’b list

Synopsis
Applies a function to every element of a list.

Description
map f [x1;...;xn] returns [(f x1);...;(f xn)].

Failure
Never fails.

Example

map (fun x -> x * 2) [];;
val it : int list = []
map (fun x -> x * 2) [1;2;3];;
val it : int list = [2; 4; 6]

MAP_EVERY

MAP_EVERY : (’a -> tactic) -> ’a list -> tactic

Synopsis
Sequentially applies all tactics given by mapping a function over a list.

Description
When applied to a tactic-producing function f and an operand list [x1;...;xn], the elements
of which have the same type as f’s domain type, MAP_EVERY maps the function f over the list,

mapf 329

producing a list of tactics, then applies these tactics in sequence as in the case of EVERY. The
effect is:

MAP_EVERY f [x1;...;xn] = (f x1) THEN ... THEN (f xn)

If the operand list is empty, then MAP_EVERY has no effect.

Failure
The application of MAP_EVERY to a function and operand list fails iff the function fails when
applied to any element in the list. The resulting tactic fails iff any of the resulting tactics fails.

Example
A convenient way of doing case analysis over several boolean variables is:

MAP_EVERY BOOL_CASES_TAC [‘v1:bool‘;...;‘vn:bool‘]

See also
EVERY, FIRST, MAP_FIRST, THEN.

mapf

mapf : (’a -> ’b) -> (’c, ’a) func -> (’c, ’b) func

Synopsis
Maps a function over the range of a finite partial function

Description
This is one of a suite of operations on finite partial functions, type (’a,’b)func. These may
sometimes be preferable to ordinary functions since they permit more operations such as equality
comparison, extraction of domain etc. The function mapf f p applies the (ordinary OCaml)
function f to all the range elements of a finite partial function, so if it originally mapped xi to
yi for it now maps xi to f(yi).

Failure
Fails if the function fails on one of the yi.

Example

let f = (1 |=> 2);;
val f : (int, int) func = <func>
mapf string_of_int f;;
val it : (int, string) func = <func>
apply it 1;;

See also
|->, |=>, apply, applyd, choose, combine, defined, dom, foldl, foldr, graph,
is_undefined, ran, tryapplyd, undefine, undefined.

330 Chapter 1. Pre-defined ML Identifiers

mapfilter

mapfilter : (’a -> ’b) -> ’a list -> ’b list

Synopsis
Applies a function to every element of a list, returning a list of results for those elements for
which application succeeds.

Failure
Fails if an exception not of the form Failure _ is generated by any application to the elements.

Example

mapfilter hd [[1;2;3];[4;5];[];[6;7;8];[]];;
val it : int list = [1; 4; 6]

mapfilter (fun (h::t) -> h) [[1;2;3];[4;5];[];[6;7;8];[]];;
Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
[]
Exception: Match_failure ("", 24547, -35120).

See also
filter, map.

MAP_FIRST

MAP_FIRST : (’a -> tactic) -> ’a list -> tactic

Synopsis
Applies first tactic that succeeds in a list given by mapping a function over a list.

Description
When applied to a tactic-producing function f and an operand list [x1;...;xn], the elements
of which have the same type as f’s domain type, MAP_FIRST maps the function f over the list,

MAP FIRST 331

producing a list of tactics, then tries applying these tactics to the goal till one succeeds. If f(xm)
is the first to succeed, then the overall effect is the same as applying f(xm). Thus:

MAP_FIRST f [x1;...;xn] = (f x1) ORELSE ... ORELSE (f xn)

Failure
The application of MAP_FIRST to a function and tactic list fails iff the function does when applied
to any of the elements of the list. The resulting tactic fails iff all the resulting tactics fail when
applied to the goal.

Example
Using the definition of integer-valued real numbers:

needs "Examples/floor.ml";;

we have a set of ‘composition’ theorems asserting that the predicate is closed under various
arithmetic operations:

INTEGER_CLOSED;;
val it : thm =
|- (!n. integer (&n)) /\

(!x y. integer x /\ integer y ==> integer (x + y)) /\
(!x y. integer x /\ integer y ==> integer (x - y)) /\
(!x y. integer x /\ integer y ==> integer (x * y)) /\
(!x r. integer x ==> integer (x pow r)) /\
(!x. integer x ==> integer (--x)) /\
(!x. integer x ==> integer (abs x))

if we want to prove that some composite term has integer type:

g ‘integer(x) /\ integer(y)
==> integer(&2 * (x - &1) pow 7 + &11 * (y + &1))‘;;

...
e(REPEAT STRIP_TAC);;
val it : goalstack = 1 subgoal (1 total)

0 [‘integer x‘]
1 [‘integer y‘]

‘integer (&2 * (x - &1) pow 7 + &11 * (y + &1))‘

A direct proof using ASM_MESON_TAC[INTEGER_CLOSED] works fine. However if we want to

332 Chapter 1. Pre-defined ML Identifiers

control the application of composition theorems more precisely we might do:

let INT_CLOSURE_TAC =
MAP_FIRST MATCH_MP_TAC (CONJUNCTS(CONJUNCT2 INTEGER_CLOSED)) THEN
TRY CONJ_TAC;;

and then could solve the goal by:

e(REPEAT INT_CLOSURE_TAC THEN ASM_REWRITE_TAC[CONJUNCT1 INTEGER_CLOSED]);;

See also
EVERY, FIRST, MAP_EVERY, ORELSE.

MATCH_ACCEPT_TAC

MATCH_ACCEPT_TAC : thm_tactic

Synopsis
Solves a goal which is an instance of the supplied theorem.

Description
When given a theorem A’ |- t and a goal A ?- t’ where t can be matched to t’ by in-
stantiating variables which are either free or universally quantified at the outer level, including
appropriate type instantiation, MATCH_ACCEPT_TAC completely solves the goal.

A ?- t’
========= MATCH_ACCEPT_TAC (A’ |- t)

Unless A’ is a subset of A, this is an invalid tactic.

Failure
Fails unless the theorem has a conclusion which is instantiable to match that of the goal.

Example
The following example shows variable and type instantiation at work. Suppose we have the
following simple goal:

g ‘HD [1;2] = 1‘;;

we can do it via the polymorphic theorem HD = |- !h t. HD(CONS h t) = h:

e(MATCH_ACCEPT_TAC HD);;

See also
ACCEPT_TAC.

MATCH MP 333

MATCH_MP

MATCH_MP : thm -> thm -> thm

Synopsis
Modus Ponens inference rule with automatic matching.

Description
When applied to theorems A1 |- !x1...xn. t1 ==> t2 and A2 |- t1’, the inference rule
MATCH_MP matches t1 to t1’ by instantiating free or universally quantified variables in the first
theorem (only), and returns a theorem A1 u A2 |- !xa..xk. t2’, where t2’ is a correspond-
ingly instantiated version of t2. Polymorphic types are also instantiated if necessary.

Variables free in the consequent but not the antecedent of the first argument theorem will
be replaced by variants if this is necessary to maintain the full generality of the theorem, and
any which were universally quantified over in the first argument theorem will be universally
quantified over in the result, and in the same order.

A1 |- !x1..xn. t1 ==> t2 A2 |- t1’
-------------------------------------- MATCH_MP

A1 u A2 |- !xa..xk. t2’

Failure
Fails unless the first theorem is a (possibly repeatedly universally quantified) implication whose
antecedent can be instantiated to match the conclusion of the second theorem, without instan-
tiating any variables which are free in A1, the first theorem’s assumption list.

Example
In this example, automatic renaming occurs to maintain the most general form of the theo-
rem, and the variant corresponding to z is universally quantified over, since it was universally
quantified over in the first argument theorem.

let ith = ARITH_RULE ‘!x z:num. x = y ==> (w + z) + x = (w + z) + y‘;;
val ith : thm = |- !x z. x = y ==> (w + z) + x = (w + z) + y

let th = ASSUME ‘w:num = z‘;;
val th : thm = w = z |- w = z

MATCH_MP ith th;;
val it : thm = w = z |- !z’. (w + z’) + w = (w + z’) + z

See also
EQ_MP, MATCH_MP_TAC, MP, MP_TAC.

334 Chapter 1. Pre-defined ML Identifiers

MATCH_MP_TAC

MATCH_MP_TAC : thm_tactic

Synopsis
Reduces the goal using a supplied implication, with matching.

Description
When applied to a theorem of the form

A’ |- !x1...xn. s ==> t

MATCH_MP_TAC produces a tactic that reduces a goal whose conclusion t’ is a substitution and/or
type instance of t to the corresponding instance of s. Any variables free in s but not in t will
be existentially quantified in the resulting subgoal:

A ?- t’
====================== MATCH_MP_TAC (A’ |- !x1...xn. s ==> t)

A ?- ?z1...zp. s’

where z1, ..., zp are (type instances of) those variables among x1, ..., xn that do not occur free
in t. Note that this is not a valid tactic unless A’ is a subset of A.

Example
The following goal might be solved by case analysis:

g ‘!n:num. n <= n * n‘;;

We can “manually” perform induction by using the following theorem:

num_INDUCTION;;
val it : thm = |- !P. P 0 /\ (!n. P n ==> P (SUC n)) ==> (!n. P n)

which is useful with MATCH_MP_TAC because of higher-order matching:

e(MATCH_MP_TAC num_INDUCTION);;
val it : goalstack = 1 subgoal (1 total)

‘0 <= 0 * 0 /\ (!n. n <= n * n ==> SUC n <= SUC n * SUC n)‘

The goal can be finished with ARITH_TAC.

Failure
Fails unless the theorem is an (optionally universally quantified) implication whose consequent
can be instantiated to match the goal.

mem 335

See also
EQ_MP, MATCH_MP, MP, MP_TAC, PART_MATCH.

mem

mem : ’a -> ’a list -> bool

Synopsis
Tests whether a list contains a certain member.

Description
mem x [x1;...;xn] returns true if some xi in the list is equal to x. Otherwise it returns false.

Failure
Never fails.

See also
find, tryfind, exists, forall, assoc, rev_assoc.

mem’

mem’ : (’a -> ’b -> bool) -> ’a -> ’b list -> bool

Synopsis
Tests if an element is equivalent to a member of a list w.r.t. some relation.

Description
If r is a binary relation, x an element and l a list, the call mem’ r x l tests if there is an element
in the list l that is equivalent to x according to r, that is, if r x x’ holds for some x’ in l. The
function mem is the special case where the relation is equality.

Failure
Fails only if the relation r fails.

Example

mem’ (fun x y -> abs(x) = abs(y)) (-1) [1;2;3];;
val it : bool = true
mem’ (fun x y -> abs(x) = abs(y)) (-1) [2;3;4];;
val it : bool = false

Uses
Set operations modulo some equivalence such as alpha-equivalence.

336 Chapter 1. Pre-defined ML Identifiers

See also
insert’, mem, subtract’, union’, unions’.

merge

merge : (’a -> ’a -> bool) -> ’a list -> ’a list -> ’a list

Synopsis
Merges together two sorted lists with respect to a given ordering.

Description
If two lists l1 and l2 are sorted with respect to the given ordering ord, then merge ord l1 l2
will merge them into a sorted list of all the elements. The merge keeps any duplicates; it is not
a set operation.

Failure
Never fails, but if the lists are not appropriately sorted the results will not in general be correct.

Example

merge (<) [1;2;3;4;5;6] [2;4;6;8];;
val it : int list = [1; 2; 2; 3; 4; 4; 5; 6; 6; 8]

See also
mergesort, sort, uniq.

merge_nets

merge_nets : ’a net * ’a net -> ’a net

Synopsis
Merge together two term nets.

Description
Term nets (type ’a net) are a lookup structure associating objects of type ’a, e.g. conversions,
with a corresponding ‘pattern’ term. For a given term, one can then relatively quickly look up all
objects whose pattern terms might possibly match to it. This is used, for example, in rewriting
to quickly filter out obviously inapplicable rewrites rather than attempting each one in turn.
The call merge_nets(net1,net2) merges two nets together; the list of objects is the union of
those objects in the two nets net1 and net2, with the term patterns adjusted appropriately.

mergesort 337

Failure
Never fails.

Example
If we have one term net containing the addition conversion:

let net1 = enter [] (‘x + y‘,NUM_ADD_CONV) empty_net;;
...

and another with beta-conversion:

let net2 = enter [] (‘(\x. t) y‘,BETA_CONV) empty_net;;
...

we can combine them into a single net:

let net = merge_nets(net1,net2);;
...

See also
empty_net, enter, lookup.

mergesort

mergesort : (’a -> ’a -> bool) -> ’a list -> ’a list

Synopsis
Sorts the list with respect to given ordering using mergesort algorithm.

Description
If ord is a total order, a call mergesort ord l will sort the list l according to the order ord.
It works internally by a mergesort algorithm. From a user’s point of view, this just means: (i)
its worst-case performance is much better than sort, which uses quicksort, but (ii) it will not
reliably topologically sort for a non-total order, whereas sort will.

Failure
Never fails unless the ordering function fails.

Example

mergesort (<) [6;2;5;9;2;5;3];;
val it : int list = [2; 2; 3; 5; 5; 6; 9]

See also
merge, sort.

338 Chapter 1. Pre-defined ML Identifiers

meson_brand

meson_brand : bool ref

Synopsis
Makes MESON handle equations using Brand’s transformation.

Description
This is one of several parameters determining the behavior of MESON, MESON_TAC and related
rules and tactics. When meson_brand is true, equations are handled inside MESON by applying
Brand’s transformation. When it is false, as it is by default, equations are handled in a more
“naive” way, which nevertheless appears generally better.

Failure
Not applicable.

Uses
For users requiring fine control over the algorithms used in MESON’s first-order proof search.

Comments
For more details of Brand’s modification, see his paper “Proving theorems with the modification
method”, SIAM Journal on Computing volume 4, 1975. See also Moser and Steinbach’s Munich
technical report “STE-modification revisited” (AR-97-03, 1997) for another look at the subject.

See also
meson_chatty, meson_dcutin, meson_depth, meson_prefine, meson_skew,
meson_split_limit,

meson_chatty

meson_chatty : bool ref

Synopsis
Make MESON’s output more verbose and detailed.

Description
This is one of several parameters determining the behavior of MESON, MESON_TAC and related rules
and tactics. When meson_chatty is set to true, MESON provides more verbose output, reporting
at each level of iterative deepening search the current size limit and number of inferences on
a fresh line. When meson_chatty is false, as it is by default, the core inference numbers are
condensed into 1-line output.

meson dcutin 339

Failure
Not applicable.

See also
meson_brand, meson_dcutin, meson_depth, meson_prefine, meson_skew,
meson_split_limit,

meson_dcutin

meson_dcutin : int ref

Synopsis
Determines cut-in point for divide-and-conquer refinement in MESON.

Description
This is one of several parameters determining the behavior of MESON, MESON_TAC and related
rules and tactics. This number (by default 1) determines the number of current subgoals at
which point a special divide-and-conquer refinement will be invoked.

Failure
Not applicable.

Uses
For users requiring fine control over the algorithms used in MESON’s first-order proof search.

Comments
For more details of this optimization, see Harrison’s paper “Optimizing Proof Search in Model
Elimination”, CADE-13, 1996.

See also
meson_brand, meson_chatty, meson_depth, meson_prefine, meson_skew,
meson_split_limit,

meson_depth

meson_depth : bool ref

Synopsis
Make MESON’s search algorithm work by proof depth rather than size.

340 Chapter 1. Pre-defined ML Identifiers

Description
This is one of several parameters determining the behavior of MESON, MESON_TAC and related
rules and tactics. The basic search strategy is iterated deepening, searching for proofs with
higher and higher limits on the search space. The flag meson_depth, when set to true, limits
the search space based on proof depth, i.e. the longest branch. When set to false, as it is by
default, the proof is limited based on total size.

Failure
Not applicable.

Uses
For users requiring fine control over the algorithms used in MESON’s first-order proof search.

See also
meson_brand, meson_chatty, meson_dcutin, meson_prefine, meson_skew,
meson_split_limit,

MESON

MESON : thm list -> term -> thm

Synopsis
Attempt to prove a term by first-order proof search.

Description
A call MESON[theorems] ‘tm‘ will attempt to prove tm using pure first-order reasining, taking
theorems as the starting-point. It will usually either solve the goal completely or run for an
infeasible length of time before terminating, but it may sometimes fail quickly.

Although MESON is capable of some fairly non-obvious pieces of first-order reasoning, and will
handle equality adequately, it does purely logical reasoning. It will exploit no special properties
of the constants in the goal, other than equality and logical primitives. Any properties that are
needed must be supplied explicitly in the theorem list, e.g. LE_REFL to tell it that <= on natural
numbers is reflexive, or REAL_ADD_SYM to tell it that addition on real numbers is symmetric.

Failure
Will fail if the term is not provable, but not necessarily in a feasible amount of time.

meson prefine 341

Example
A typical application is to prove some elementary logical lemma for use inside a tactic proof:

MESON[] ‘!P. P F /\ P T ==> !x. P x‘;;
...
val it : thm = |- !P. P F /\ P T ==> (!x. P x)

To prove the following lemma, we need to provide the key property of real negation:

MESON[REAL_NEG_NEG] ‘(!x. P(--x)) ==> !x:real. P x‘;;
...
val it : thm = |- (!x. P (--x)) ==> (!x. P x)

If the lemma is not supplied, MESON will fail:

MESON[] ‘(!x. P(--x)) ==> !x:real. P x‘;;
...
Exception: Failure "solve_goal: Too deep".

MESON is also capable of proving less straightforward results; see the documentation for
MESON_TAC to find more examples.

Uses
Generating simple logical lemmas as part of a large proof.

See also
ASM_MESON_TAC, GEN_MESON_TAC, MESON_TAC.

meson_prefine

meson_prefine : bool ref

Synopsis
Makes MESON apply Plaisted’s positive refinement.

Description
This is one of several parameters determining the behavior of MESON, MESON_TAC and related
rules and tactics. When the flag meson_prefine is true, as it is by default, Plaisted’s “positive
refinement” is used in proof search; this limits the search space at the cost of sometimes requiring
longer proofs. When meson_prefine is false, this refinement is not applied.

Failure
Not applicable.

342 Chapter 1. Pre-defined ML Identifiers

Uses
For users requiring fine control over the algorithms used in MESON’s first-order proof search.

Comments
For more details, see Plaisted’s article “A Sequent-Style Model Elimination Strategy and a
Positive Refinement”, Journal of Automated Reasoning volume 6, 1990.

See also
meson_brand, meson_chatty, meson_dcutin, meson_depth, meson_skew,
meson_split_limit,

meson_skew

meson_skew : int ref

Synopsis
Determines skew in MESON proof tree search limits.

Description
This is one of several parameters determining the behavior of MESON, MESON_TAC and related
rules and tactics. During search, MESON successively searches for proofs of larger and larger
‘size’. The “skew” value determines what proportion of the entire proof size is permitted in the
left-hand half of the list of subgoals. The symmetrical value is 2 (meaning one half), the default
setting of 3 (one third) seems generally better because it can cut down on redundancy in proofs.

Failure
Not applicable.

Uses
For users requiring fine control over the algorithms used in MESON’s first-order proof search.

Comments
For more details of MESON’s search strategy, see Harrison’s paper “Optimizing Proof Search in
Model Elimination”, CADE-13, 1996.

See also
meson_brand, meson_chatty, meson_dcutin, meson_depth, meson_prefine,
meson_split_limit,

meson_split_limit

meson_split_limit : int ref

MESON TAC 343

Synopsis
Limit initial case splits before MESON proper is applied.

Description
This is one of several parameters determining the behavior of MESON, MESON_TAC and related rules
and tactics. Before these rules or tactics are applied, the formula to be proved is often decom-
posed by splitting, for example an equivalence p <=> q to two separate implications p ==> q
and q ==> p. This often makes the eventual proof much easier for MESON. On the other hand,
if splitting is applied too many times, it can become inefficient. The value meson_split_limit
(default 8) is the maximum number of times that splitting can be applied before MESON proper.

Failure
Not applicable.

Uses
For users requiring fine control over the algorithms used in MESON’s first-order proof search.

See also
meson_brand, meson_chatty, meson_dcutin, meson_depth, meson_prefine,
meson_skew.

MESON_TAC

MESON_TAC : thm list -> tactic

Synopsis
Automated first-order proof search tactic.

Description
A call to MESON_TAC[theorems] will attempt to establish the current goal using pure first-order
reasining, taking theorems as the starting-point. (It does not take the assumptions of the goal
into account, but the similar function ASM_MESON_TAC does.) It will usually either solve the goal
completely or run for an infeasible length of time before terminating, but it may sometimes fail
quickly.

Although MESON_TAC is capable of some fairly non-obvious pieces of first-orderreasoning, and
will handle equality adequately, it does purely logical reasoning. It will exploit no special
properties of the constants in the goal, other than equality and logical primitives. Any properties
that are needed must be supplied explicitly in the theorem list, e.g. LE_REFL to tell it that <=
on natural numbers is reflexive, or REAL_ADD_SYM to tell it that addition on real numbers is
symmetric.

Failure
Fails if the goal is unprovable within the search bounds, though not necessarily in a feasible
amount of time.

344 Chapter 1. Pre-defined ML Identifiers

Example
Here is a simple logical property taken from Dijstra’s EWD 1062-1, which we set as our goal:

g ‘(!x. x <= x) /\
(!x y z. x <= y /\ y <= z ==> x <= z) /\
(!x y. f(x) <= y <=> x <= g(y))
==> (!x y. x <= y ==> f(x) <= f(y))‘;;

It is solved quickly by:

e(MESON_TAC[]);;
0..0..1..3..8..17..solved at 25
CPU time (user): 0.
val it : goalstack = No subgoals

Note however that the proof did not rely on any special features of ‘<=’; any binary relation
symbol would have worked. Even simple proofs that rely on special properties of the constants
need to have those properties supplied in the list. Note also that MESON is limited to essentially
first-order reasoning, meaning that it cannot invent higher-order quantifier instantiations. Thus,
it cannot prove the following, which involves a quantification over a function g:

g ‘!f:A->B s.
(!x y. x IN s /\ y IN s /\ (f x = f y) ==> (x = y)) <=>
(?g. !x. x IN s ==> (g(f(x)) = x))‘;;

However, we can manually reduce it to two subgoals:

e(REPEAT GEN_TAC THEN MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC ‘?g:B->A. !y x. x IN s /\ y = f x ==> g y = x‘ THEN
CONJ_TAC THENL
[REWRITE_TAC[GSYM SKOLEM_THM]; AP_TERM_TAC THEN ABS_TAC]);;

val it : goalstack = 2 subgoals (2 total)

‘(!y x. x IN s /\ y = f x ==> g y = x) <=> (!x. x IN s ==> g (f x) = x)‘

‘(!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) <=>
(!y. ?g. !x. x IN s /\ y = f x ==> g = x)‘

and both of those are solvable directly by MESON_TAC[].

See also
ASM_MESON_TAC, GEN_MESON_TAC, MESON.

META_EXISTS_TAC

META_EXISTS_TAC : (string * thm) list * term -> goalstate

META SPEC TAC 345

Synopsis
Changes existentially quantified variable to metavariable.

Description
Given a goal of the form A ?- ?x. t[x], the tactic X_META_EXISTS_TAC gives the new goal
A ?- t[x] where x is a new metavariable. In the resulting proof, it is as if the variable has been
assigned here to the later choice for this metavariable, which can be made through for example
UNIFY_ACCEPT_TAC.

Failure
Never fails.

Example
See UNIFY_ACCEPT_TAC for an example of using metavariables.

Uses
Delaying instantiations until the correct term becomes clearer.

Comments
Users should probably steer clear of using metavariables if possible. Note that the metavariable
instantiations apply across the whole fringe of goals, not just the current goal, and can lead to
confusion.

See also
EXISTS_TAC, META_SPEC_TAC, UNIFY_ACCEPT_TAC, X_META_EXISTS_TAC.

META_SPEC_TAC

META_SPEC_TAC : term -> thm -> tactic

Synopsis
Replaces universally quantified variable in theorem with metavariable.

Description
Given a variable v and a theorem th of the form A |- !x. p[x], the tactic META_SPEC_TAC ‘v‘ th
is a tactic that adds the theorem A |- p[v] to the assumptions of the goal, with v a new
metavariable. This can later be instantiated, e.g. by UNIFY_ACCEPT_TAC, and it is as if the
instantiation were done at this point.

Failure
Fails if v is not a variable.

Example
See UNIFY_ACCEPT_TAC for an example of using metavariables.

346 Chapter 1. Pre-defined ML Identifiers

Uses
Delaying instantiations until the right choice becomes clearer.

Comments
Users should probably steer clear of using metavariables if possible. Note that the metavariable
instantiations apply across the whole fringe of goals, not just the current goal, and can lead to
confusion.

See also
EXISTS_TAC, EXISTS_TAC, UNIFY_ACCEPT_TAC, X_META_EXISTS_TAC.

mk_abs

mk_abs : term * term -> term

Synopsis
Constructs an abstraction.

Description
If v is a variable and t any term, then mk_abs(v,t) produces the abstraction term \v. t. It is
not necessary that v should occur free in t.

Failure
Fails if v is not a variable. See mk_gabs for constructing generalized abstraction terms.

Example

mk_abs(‘x:num‘,‘x + 1‘);;
val it : term = ‘\x. x + 1‘

See also
dest_abs, is_abs, mk_gabs.

mk_binary

mk_binary : string -> term * term -> term

Synopsis
Constructs an instance of a named monomorphic binary operator.

mk binder 347

Description
The call mk_binary s (l,r) constructs a binary application (op l) r where op is the monomor-
phic constant with name s. Note that it will in general \em not work if the constant is poly-
morphic.

Failure
If there is no constant at all with name s, or if the constant is polymorphic and the terms do
not match its most general type.

Example
This case works fine:

mk_binary "+" (‘1‘,‘2‘);;
val it : term = ‘1 + 2‘

but here we hit the monomorphism restriction:

mk_binary "=" (‘a:A‘,‘b:A‘);;
val it : term = ‘a = b‘
mk_binary "=" (‘1‘,‘2‘);;
Exception: Failure "mk_binary".

See also
dest_binary, is_binary, mk_binop.

mk_binder

mk_binder : string -> term * term -> term

Synopsis
Constructs a term with a named constant applied to an abstraction.

Description
The call mk_binder "c" (x,t) returns the term c (\x. t) where c is a constant with the given
name appropriately type-instantiated. Note that the binder parsing status of c is irrelevant,
though only if it is parsed as a binder will the resulting term be printed and parseable as
c x. t.

Failure
Failus if x is not a variable, if there is no constant c or if the type of that constant cannot be
instantiated to match the abstraction.

348 Chapter 1. Pre-defined ML Identifiers

Example

mk_binder "!" (‘x:num‘,‘x + 1 > 0‘);;
val it : term = ‘!x. x + 1 > 0‘

See also
dest_binder, is_binder.

mk_binop

mk_binop : term -> term -> term -> term

Synopsis
The call mk_binop op l r returns the term (op l) r.

Description
The call mk_binop op l r returns the term (op l) r provided that is well-typed. Otherwise
it fails. The term op need not be a constant nor parsed as infix, but that is the usual case.
Note that type variables in op are not instantiated, so it needs to be the correct instance for the
terms l and r.

Failure
Fails if the types are incompatible.

Example

mk_binop ‘(+):num->num->num‘ ‘1‘ ‘2‘;;
val it : term = ‘1 + 2‘

See also
dest_binop, is_binop, mk_binary.

MK_BINOP

MK_BINOP : term -> thm * thm -> thm

Synopsis
Compose equational theorems with binary operator.

mk comb 349

Description
Given a term op and the pair of theorems (|- l = l’),(|- r = r’), the function MK_BINOP
returns the theorem |- op l r = op l’ r’, provided the types are compatible.

Failure
Fails if the types are incompatible for the term op l r.

Example

let th1 = NUM_REDUCE_CONV ‘2 * 2‘
and th2 = NUM_REDUCE_CONV ‘2 EXP 2‘;;

val th1 : thm = |- 2 * 2 = 4
val th2 : thm = |- 2 EXP 2 = 4
MK_BINOP ‘(+):num->num->num‘ (th1,th2);;
val it : thm = |- 2 * 2 + 2 EXP 2 = 4 + 4

See also
BINOP_CONV, DEPTH_BINOP_CONV, MK_COMB.

mk_comb

mk_comb : term * term -> term

Synopsis
Constructs a combination.

Description
Given two terms f and x, the call mk_comb(f,x) returns the combination or application f x. It
is necessary that f has a function type with domain type the same as x’s type.

Failure
Fails if the types of the terms are not compatible as specified above.

Example

mk_comb(‘SUC‘,‘0‘);;
val it : term = ‘SUC 0‘

mk_comb(‘SUC‘,‘T‘);;
Exception: Failure "mk_comb: types do not agree".

See also
dest_comb, is_comb, list_mk_comb, list_mk_icomb, mk_icomb.

350 Chapter 1. Pre-defined ML Identifiers

MK_COMB_TAC

MK_COMB_TAC : tactic

Synopsis
Breaks down a goal between function applications into equality of functions and arguments.

Description
Given a goal whose conclusion is an equation between function applications A ?- f x = g y,
the tactic MK_COMB_TAC breaks it down to two subgoals expressing equality of the corresponding
rators and rands:

A ?- f x = g y
================================ MK_COMB_TAC

A ?- f = g A ?- x = y

Failure
Fails if the conclusion of the goal is not an equation between applications.

See also
ABS_TAC, AP_TERM_TAC, AP_THM_TAC, BINOP_TAC, MK_COMB.

MK_COMB

MK_COMB : thm * thm -> thm

Synopsis
Proves equality of combinations constructed from equal functions and operands.

Description
When applied to theorems A1 |- f = g and A2 |- x = y, the inference rule MK_COMB returns
the theorem A1 u A2 |- f x = g y.

A1 |- f = g A2 |- x = y
--------------------------- MK_COMB

A1 u A2 |- f x = g y

Failure
Fails unless both theorems are equational and f and g are functions whose domain types are the
same as the types of x and y respectively.

mk cond 351

Example

TRANS (ASSUME ‘0 = 1‘) (ASSUME ‘1 = 2‘);;
val it : thm = 0 = 1, 1 = 2 |- 0 = 2

Comments
This is one of HOL Light’s 10 primitive inference rules. It underlies, among other things, the
replacement of subterms in rewriting.

See also
AP_TERM, AP_THM.

mk_cond

mk_cond : term * term * term -> term

Synopsis
Constructs a conditional term.

Description
mk_cond(‘t‘,‘t1‘,‘t2‘) returns ‘if t then t1 else t2‘.

Failure
Fails with mk_cond if t is not of type ‘:bool‘ or if t1 and t2 are of different types.

See also
dest_cond, is_cond.

mk_conj

mk_conj : term * term -> term

Synopsis
Constructs a conjunction.

Description
mk_conj(‘t1‘,‘t2‘) returns ‘t1 /\ t2‘.

Failure
Fails with mk_conj if either t1 or t2 are not of type ‘:bool‘.

352 Chapter 1. Pre-defined ML Identifiers

Example

mk_conj(‘1 + 1 = 2‘,‘2 + 2 = 4‘);;
val it : term = ‘1 + 1 = 2 /\ 2 + 2 = 4‘

See also
dest_conj, is_conj, list_mk_conj.

MK_CONJ

MK_CONJ : thm -> thm -> thm

Synopsis
Conjoin both sides of two equational theorems.

Description
Given two theorems, each with a Boolean equation as conclusion, MK_CONJ returns the equation
resulting from conjoining their respective sides:

A |- p <=> p’ B |- q <=> q’
----------------------------------- MK_CONJ

A u B |- p /\ q <=> p’ /\ q’

Failure
Fails unless both input theorems are Boolean equations (iff).

Example

let th1 = ARITH_RULE ‘0 < n <=> ~(n = 0)‘
and th2 = ARITH_RULE ‘1 <= n <=> ~(n = 0)‘;;

val th1 : thm = |- 0 < n <=> ~(n = 0)
val th2 : thm = |- 1 <= n <=> ~(n = 0)

MK_CONJ th1 th2;;
val it : thm = |- 0 < n /\ 1 <= n <=> ~(n = 0) /\ ~(n = 0)

See also
AP_TERM, AP_THM, MK_BINOP, MK_COMB, MK_DISJ, MK_EXISTS, MK_FORALL.

mk cons 353

mk_cons

mk_cons : term -> term -> term

Synopsis
Constructs a CONS pair.

Description
mk_cons ‘h‘ ‘t‘ returns ‘CONS h t‘.

Failure
Fails if second term is not of list type or if the first term is not of the same type as the elements
of the list.

Example

mk_cons ‘1‘ ‘l:num list‘;;
val it : term = ‘CONS 1 l‘

mk_cons ‘1‘ ‘[2;3;4]‘;;
val it : term = ‘[1; 2; 3; 4]‘

See also
dest_cons, dest_list, is_cons, is_list, mk_flist, mk_list.

mk_const

mk_const : string * (hol_type * hol_type) list -> term

Synopsis
Produce constant term by applying an instantiation to its generic type.

Description
This is the basic way of constructing a constant term in HOL Light, applying a specific in-
stantiation (by type_subst) to its generic type. It may sometimes be more convenient to use
mk_mconst, which just takes the desired type for the constant and finds the instantiation itself;
that is also a natural inverse for dest_const. However, mk_const is likely to be significantly
faster.

Failure
Fails if there is no constant of the given type.

354 Chapter 1. Pre-defined ML Identifiers

Example

get_const_type "=";;
val it : hol_type = ‘:A->A->bool‘

mk_const("=",[‘:num‘,‘:A‘]);;
val it : term = ‘(=)‘
type_of it;;
val it : hol_type = ‘:num->num->bool‘

mk_const("=",[‘:num‘,‘:A‘]) = mk_mconst("=",‘:num->num->bool‘);;
val it : bool = true

See also
dest_const, is_const, mk_mconst, type_subst.

mk_disj

mk_disj : term * term -> term

Synopsis
Constructs a disjunction.

Description
mk_disj(‘t1‘,‘t2‘) returns ‘t1 \/ t2‘.

Failure
Fails with mk_disj if either t1 or t2 are not of type ‘:bool‘.

Example

mk_disj(‘x = 1‘,‘y <= 2‘);;
val it : term = ‘x = 1 \/ y <= 2‘

See also
dest_disj, is_disj, list_mk_disj.

MK_DISJ

MK_DISJ : thm -> thm -> thm

mk eq 355

Synopsis
Disjoin both sides of two equational theorems.

Description
Given two theorems, each with a Boolean equation as conclusion, MK_DISJ returns the equation
resulting from disjoining their respective sides:

A |- p <=> p’ B |- q <=> q’
----------------------------------- MK_DISJ

A u B |- p \/ q <=> p’ \/ q’

Failure
Fails unless both input theorems are Boolean equations (iff).

Example

let th1 = ARITH_RULE ‘1 < x <=> 1 <= x - 1‘
and th2 = ARITH_RULE ‘~(1 < x) <=> x = 0 \/ x = 1‘;;

val th1 : thm = |- 1 < x <=> 1 <= x - 1
val th2 : thm = |- ~(1 < x) <=> x = 0 \/ x = 1

MK_DISJ th1 th2;;
val it : thm = |- 1 < x \/ ~(1 < x) <=> 1 <= x - 1 \/ x = 0 \/ x = 1

See also
AP_TERM, AP_THM, MK_BINOP, MK_COMB, MK_CONJ, MK_EXISTS, MK_FORALL.

mk_eq

mk_eq : term * term -> term

Synopsis
Constructs an equation.

Description
mk_eq(‘t1‘,‘t2‘) returns ‘t1 = t2‘.

Failure
Fails with mk_eq if t1 and t2 have different types.

356 Chapter 1. Pre-defined ML Identifiers

Example

mk_eq(‘1‘,‘2‘);;
val it : term = ‘1 = 2‘

See also
dest_eq, is_eq.

mk_exists

mk_exists : term * term -> term

Synopsis
Term constructor for existential quantification.

Description
mk_exists(‘v‘,‘t‘) returns ‘?v. t‘.

Failure
Fails with if first term is not a variable or if t is not of type ‘:bool‘.

Example

mk_exists(‘x:num‘,‘x + 1 = 1 + x‘);;
val it : term = ‘?x. x + 1 = 1 + x‘

See also
dest_exists, is_exists, list_mk_exists.

MK_EXISTS

MK_EXISTS : term -> thm -> thm

Synopsis
Existentially quantifies both sides of equational theorem.

mk flist 357

Description
Given a theorem th whose conclusion is a Boolean equation (iff), the rule MK_EXISTS ‘v‘ th
existentially quantifies both sides of th over the variable v, provided it is not free in the hy-
potheses

A |- p <=> q
---------------------------- MK_EXISTS ‘v‘ [where v not free in A]
A |- (?v. p) <=> (?v. q)

Failure
Fails if the term is not a variable or is free in the hypotheses of the theorem, or if the theorem
does not have a Boolean equation for its conclusion.

Example

let th = ARITH_RULE ‘f(x:A) >= 1 <=> ~(f(x) = 0)‘;;
val th : thm = |- f x >= 1 <=> ~(f x = 0)

MK_EXISTS ‘x:A‘ th;;
val it : thm = |- (?x. f x >= 1) <=> (?x. ~(f x = 0))

See also
AP_TERM, AP_THM, MK_BINOP, MK_COMB, MK_CONJ, MK_DISJ, MK_FORALL.

mk_flist

mk_flist : term list -> term

Synopsis
Constructs object-level list from nonempty list of terms.

Description
mk_flist [‘t1‘;...;‘tn‘] returns ‘[t1;...;tn]‘. The list must be nonempty, since the
type could not be inferred for that case. For cases where you may need to construct an empty
list, use mk_list.

Failure
Fails if the list is empty or if the types of any elements differ from each other.

Example

mk_flist(map mk_small_numeral (1--10));;
val it : term = ‘[1; 2; 3; 4; 5; 6; 7; 8; 9; 10]‘

See also
dest_cons, dest_list, is_cons, is_list, mk_cons, mk_list.

358 Chapter 1. Pre-defined ML Identifiers

mk_forall

mk_forall : term * term -> term

Synopsis
Term constructor for universal quantification.

Description
mk_forall(‘v‘,‘t‘) returns ‘!v. t‘.

Failure
Fails with if first term is not a variable or if t is not of type ‘:bool‘.

Example

mk_forall(‘x:num‘,‘x + 1 = 1 + x‘);;
val it : term = ‘!x. x + 1 = 1 + x‘

See also
dest_forall, is_forall, list_mk_forall.

MK_FORALL

MK_FORALL : term -> thm -> thm

Synopsis
Universally quantifies both sides of equational theorem.

Description
Given a theorem th whose conclusion is a Boolean equation (iff), the rule MK_FORALL ‘v‘ th
universally quantifies both sides of th over the variable v, provided it is not free in the hypotheses

A |- p <=> q
---------------------------- MK_FORALL ‘v‘ [where v not free in A]
A |- (!v. p) <=> (!v. q)

Failure
Fails if the term is not a variable or is free in the hypotheses of the theorem, or if the theorem
does not have a Boolean equation for its conclusion.

mk fset 359

Example

let th = ARITH_RULE ‘f(x:A) >= 1 <=> ~(f(x) = 0)‘;;
val th : thm = |- f x >= 1 <=> ~(f x = 0)

MK_FORALL ‘x:A‘ th;;
val it : thm = |- (!x. f x >= 1) <=> (!x. ~(f x = 0))

See also
AP_TERM, AP_THM, MK_BINOP, MK_COMB, MK_CONJ, MK_DISJ, MK_EXISTS.

mk_fset

mk_fset : term list -> term

Synopsis
Constructs an explicit set enumeration from a nonempty list of elements.

Description
When applied to a list of terms [‘t1‘; ...; ‘tn‘] of the same type, the function mk_fset
constructs an explicit set enumeration term ‘{t1, ..., tn}‘. Note that duplicated elements
are maintained in the resulting term, though this is logically the same as the set without them.
If you need to generate enumerations for empty sets, use mk_setenum; in this case the type also
needs to be specified.

Failure
Fails if there are terms of more than one type in the list, or if the list is empty.

Example

mk_fset (map mk_small_numeral (0--7));;
val it : term = ‘{\small\verb%0, 1, 2, 3, 4, 5, 6, 7%}‘

See also
dest_setenum, is_setenum, mk_flist, mk_setenum.

mk_fthm

mk_fthm : term list * term -> thm

360 Chapter 1. Pre-defined ML Identifiers

Synopsis
Create arbitrary theorem by adding additional ‘false’ assumption.

Description
The call mk_fthm(asl,c) returns a theorem with conclusion c and assumption list asl to-
gether with the special assumption _FALSITY_, which is defined to be logically equivalent to F
(false). This is the closest approach to mk_thm that does not involve adding a new axiom and
so potentially compromising soundness.

Failure
Fails if any of the given terms does not have Boolean type.

Example

mk_fthm([],‘1 = 2‘);;
val it : thm = _FALSITY_ |- 1 = 2

Uses
Used for validity-checking of justification functions as a sanity check in tactic applications: see
VALID.

See also
CHEAT_TAC, mk_thm, new_axiom, VALID.

mk_fun_ty

mk_fun_ty : hol_type -> hol_type -> hol_type

Synopsis
Construct a function type.

Description
The call mk_fun_ty ty1 ty2 gives the function type ty1->ty2. This is an exact synonym of
mk_type("fun",[ty1; ty2]), but a little more convenient.

Failure
Never fails.

mk gabs 361

Example

mk_fun_ty ‘:num‘ ‘:num‘;;
val it : hol_type = ‘:num->num‘

itlist mk_fun_ty [‘:A‘; ‘:B‘; ‘:C‘] ‘:bool‘;;
val it : hol_type = ‘:A->B->C->bool‘

See also
dest_type, mk_type.

mk_gabs

mk_gabs : term * term -> term

Synopsis
Constructs a generalized abstraction.

Description
Given a pair of terms s and t, the call mk_gabs(s,t) constructs a canonical ‘generalized ab-
straction’ that is thought of as ‘some function that always maps s to t’. In the case where s is
a variable, the result is an ordinary abstraction as constructed by mk_abs. In other cases, the
canonical composite structure is created. Note that the logical construct is welldefined even if
there is no function mapping s to t, and this function will always succeed, even if the resulting
structure is not really useful.

Failure
Never fails.

Example
Here is a simple abstraction:

mk_gabs(‘x:bool‘,‘~x‘);;
val it : term = ‘\x. ~x‘

and here are a couple of potentially useful generalized ones:

mk_gabs(‘(x:num,y:num)‘,‘x + y + 1‘);;
val it : term = ‘\(x,y). x + y + 1‘

mk_gabs(‘CONS (h:num) t‘,‘if h = 0 then t else CONS h t‘);;
val it : term = ‘\CONS h t. if h = 0 then t else CONS h t‘

while here is a vacuous one about which nothing interesting will be proved, because there is no

362 Chapter 1. Pre-defined ML Identifiers

welldefined function that always maps x + y to x:

mk_gabs(‘x + y:num‘,‘x:num‘);;
val it : term = ‘\(x + y). x‘

See also
dest_gabs, GEN_BETA_CONV, is_gabs, list_mk_gabs.

mk_goalstate

mk_goalstate : goal -> goalstate

Synopsis
Converts a goal into a 1-element goalstate.

Description
Given a goal g, the call mk_goalstate g converts it into a goalstate with that goal as its only
member. (A goalstate consists of a list of subgoals as well as justification and metavariable
information.)

Failure
Never fails.

See also
g, set_goal, TAC_PROOF.

mk_icomb

mk_icomb : term * term -> term

Synopsis
Makes a combination, instantiating types in rator if necessary.

Description
The call mk_icomb(f,x) makes the combination f x, just as with mk_comb, but if necessary to
ensure the types are compatible it will instantiate type variables in f first.

Failure
Fails if the rator type is impossible to instantiate comparibly.

mk iff 363

Example
The analogous call to the following using plain mk_const would fail:

mk_icomb(‘(!)‘,‘\x. x = 1‘);;
Warning: inventing type variables
val it : term = ‘!x. x = 1‘

Uses
A handy way of making combinations involving polymorphic constants, without needing a man-
ual instantiation of the generic type.

See also
list_mk_icomb, mk_comb, type_match.

mk_iff

mk_iff : term * term -> term

Synopsis
Constructs a logical equivalence (Boolean equation).

Description
mk_iff(‘t1‘,‘t2‘) returns ‘t1 <=> t2‘.

Failure
Fails with unless t1 and t2 both have Boolean type.

Example

mk_iff(‘x = 1‘,‘1 = x‘);;
val it : term = ‘x = 1 <=> 1 = x‘

Comments
Simply mk_eq has the same effect on successful calls. However mk_iff is slightly more efficient,
and will fail if the terms do not have Boolean type.

See also
dest_iff, is_iff,mk_eq.

mk_imp

mk_imp : term * term -> term

364 Chapter 1. Pre-defined ML Identifiers

Synopsis
Constructs an implication.

Description
mk_imp(‘t1‘,‘t2‘) returns ‘t1 ==> t2‘.

Failure
Fails with mk_imp if either t1 or t2 are not of type ‘:bool‘.

Example

mk_imp(‘p /\ q‘,‘r:bool‘);;
val it : term = ‘p /\ q ==> r‘

See also
dest_imp, is_imp, list_mk_imp.

mk_intconst

mk_intconst : num -> term

Synopsis
Converts an OCaml number to a canonical integer literal of type :int.

Description
The call mk_intconst n where n is an OCaml number (type num) produces the canonical integer
literal of type :int representing the integer n. This will be of the form ‘&m’ for a numeral m
(when n is nonnegative) or ‘-- &m’ for a nonzero numeral m (when n is negative).

Failure
Fails if applied to a number that is not an integer (type num also includes rational numbers).

Example

mk_intconst (Int (-101));;
val it : term = ‘-- &101‘

type_of it;;
val it : hol_type = ‘:int‘

See also
dest_intconst, is_intconst, mk_realintconst.

mk list 365

mk_list

mk_list : term list * hol_type -> term

Synopsis
Constructs object-level list from list of terms.

Description
mk_list([‘t1‘;...;‘tn‘],‘:ty‘) returns ‘[t1;...;tn]:(ty)list‘. The type argument is
required so that empty lists can be constructed. If you know the list is nonempty, you can just
use mk_flist where this is not required.

Failure
Fails with if any term in the list is not of the type specified as the second argument.

Example

mk_list([‘1‘; ‘2‘],‘:num‘);;
val it : term = ‘[1; 2]‘

mk_list([],‘:num‘);;
val it : term = ‘[]‘

type_of it;;
val it : hol_type = ‘:(num)list‘

See also
dest_cons, dest_list, is_cons, is_list, mk_cons, mk_flist.

mk_mconst

mk_mconst : string * hol_type -> term

Synopsis
Constructs a constant with type matching.

Description
mk_mconst("const",‘:ty‘) returns the constant ‘const:ty‘.

366 Chapter 1. Pre-defined ML Identifiers

Failure
Fails with mk_mconst: ... if the string supplied is not the name of a known constant, or if it
is known but the type supplied is not the correct type for the constant.

Example

mk_mconst ("T",‘:bool‘);;
val it : term = ‘T‘

mk_mconst ("T",‘:num‘);;
Exception: Failure "mk_const: generic type cannot be instantiated".

Comments
The primitive HOL Light facility for making constants is mk_const, which takes a type instan-
tiation to apply to the constant’s generic type. The function mk_mconst requires type matching
and so is in general somewhat less efficient. However it is sometimes more convenient, and a
natural inverse for dest_const.

See also
mk_const, dest_const, is_const, mk_var, mk_comb, mk_abs.

mk_neg

mk_neg : term -> term

Synopsis
Constructs a logical negation.

Description
mk_neg ‘t‘ returns ‘~t‘.

Failure
Fails with mk_neg unless t is of type bool.

Example

mk_neg ‘p /\ q‘;;
val it : term = ‘~(p /\ q)‘

mk_neg ‘~p‘;;
val it : term = ‘~ ~p‘

See also
dest_neg, is_neg.

mk numeral 367

mk_numeral

mk_numeral : num -> term

Synopsis
Maps a nonnegative integer to corresponding numeral term.

Description
The call mk_numeral n where n is a nonnegative integer of type num (this is OCaml’s type of
unlimited-precision numbers) returns the HOL numeral representation of n.

Failure
Fails if the argument is negative or not integral (type num can include rationals).

Example

mk_numeral (Int 10);;
val it : term = ‘10‘

mk_numeral(pow2 64);;
val it : term = ‘18446744073709551616‘

Comments
The similar function mk_small_numeral works from a regular machine integer, Ocaml type int.
If that suffices, it may be simpler.

See also
dest_numeral, dest_small_numeral, is_numeral, mk_small_numeral, term_of_rat.

mk_pair

mk_pair : term * term -> term

Synopsis
Constructs object-level pair from a pair of terms.

Description
mk_pair(‘t1‘,‘t2‘) returns ‘(t1,t2)‘.

Failure
Never fails.

368 Chapter 1. Pre-defined ML Identifiers

Example

mk_pair(‘x:real‘,‘T‘);;
val it : term = ‘x,T‘

See also
dest_pair, is_pair, mk_cons.

mk_primed_var

mk_primed_var : term list -> term -> term

Synopsis
Rename variable to avoid specified names and constant names.

Description
The call mk_primed_var avoid v will return a renamed variant of v, by adding primes, so that
its name is not the same as any of the variables in the list avoid, nor the same as any constant
name. It is a more conservative version of the renaming function variant.

Failure
Fails if one of the items in the list avoids is not a variable, or if v itself is not.

Example
This shows how the effect is more conservative than variant because it even avoids variables of
the same name and different type:

variant [‘x:bool‘] ‘x:num‘;;
val it : term = ‘x‘
mk_primed_var [‘x:bool‘] ‘x:num‘;;
val it : term = ‘x’‘

and this shows how it also avoids constant names:

mk_primed_var [] (mk_var("T",‘:num‘));;
val it : term = ‘T’‘

See also
variant, variants.

mk prover 369

mk_prover

mk_prover : (’a -> conv) -> (’a -> thm list -> ’a) -> ’a -> prover

Synopsis
Construct a prover from applicator and state augmentation function.

Description
The HOL Light simplifier (e.g. as invoked by SIMP_TAC) allows provers of type prover to
be installed into simpsets, to automatically dispose of side-conditions. These may maintain a
state dynamically and augment it as more theorems become available (e.g. a theorem p |- p
becomes available when simplifying the consequenct of an implication ‘p ==> q‘). In order
to allow maximal flexibility in the data structure used to maintain state, provers are set up
in an ‘object-oriented’ style, where the context is part of the prover function itself. A call
mk_prover app aug where app: ’a -> conv is an application operation to prove a term using
the context of type ’a and aug : ’a -> thm list -> ’a is an augmentation operation to add
whatever representation of the theorem list in the state of the prover is chosen, gives a canonical
prover of this form. The crucial point is that the type ’a is invisible in the resulting prover, so
different provers can maintain their state in different ways. (In the trivial case, one might just
use thm list for the state, and appending for the augmentation.)

Failure
Does not normally fail unless the functions provided are abnormal.

Uses
This is mostly for experts wishing to customize the simplifier.

Comments
I learned of this ingenious trick for maintaining context from Don Syme, who discovered it by
reading some code written by Richard Boulton. I was told by Simon Finn that there are similar
ideas in the functional language literature for simulating existential types.

See also
apply_prover, augment, SIMP_CONV, SIMP_RULE, SIMP_TAC.

mk_realintconst

mk_realintconst : num -> term

Synopsis
Converts an OCaml number to a canonical integer literal of type :real.

370 Chapter 1. Pre-defined ML Identifiers

Description
The call mk_realintconst n where n is an OCaml number (type num) produces the canonical
literal of type :real representing the integer n. This will be of the form ‘&m’ for a numeral m
(when n is nonnegative) or ‘-- &m’ for a nonzero numeral m (when n is negative).

Failure
Fails if applied to a number that is not an integer (type num also includes rational numbers).

Example

mk_realintconst (Int (-101));;
val it : term = ‘-- &101‘

type_of it;;
val it : hol_type = ‘:real‘

See also
dest_realintconst, is_realintconst, mk_intconst, rat_of_term.

mk_rewrites

mk_rewrites : bool -> thm -> thm list -> thm list

Synopsis
Turn theorem into list of (conditional) rewrites.

Description
Given a Boolean flag b, a theorem th and a list of theorems thl, the call mk_rewrites b th thl
breaks th down into a collection of rewrites (for example, splitting conjunctions up into sev-
eral sub-theorems) and appends them to the front of thl (which are normally theorems al-
ready processed in this way). Non-equational theorems |- p are converted to |- p <=> T.
If the flag b is true, then implicational theorems |- p ==> s = t are used as conditional
rewrites; otherwise they are converted to |- (p ==> s = t) <=> T. This function is applied
inside extend_basic_rewrites and set_basic_rewrites.

Failure
Never fails.

mk select 371

Example

ADD_CLAUSES;;
val it : thm =
|- (!n. 0 + n = n) /\

(!m. m + 0 = m) /\
(!m n. SUC m + n = SUC (m + n)) /\
(!m n. m + SUC n = SUC (m + n))

mk_rewrites false ADD_CLAUSES [];;
val it : thm list =
[|- 0 + n = n; |- m + 0 = m; |- SUC m + n = SUC (m + n);
|- m + SUC n = SUC (m + n)]

See also
extend_basic_rewrites, GEN_REWRITE_CONV, REWRITE_CONV, set_basic_rewrites,
SIMP_CONV.

mk_select

mk_select : term * term -> term

Synopsis
Constructs a choice binding.

Description
The call mk_select(‘v‘,‘t‘) returns the choice term ‘@v. t‘.

Failure
Fails if v is not a variable.

See also
is_slect, mk_select.

mk_setenum

mk_setenum : term list * hol_type -> term

Synopsis
Constructs an explicit set enumeration from a list of elements.

372 Chapter 1. Pre-defined ML Identifiers

Description
When applied to a list of terms [‘t1‘; ...; ‘tn‘] and a type ty, where each term in
the list has type ty, the function mk_setenum constructs an explicit set enumeration term
‘{t1, ..., tn}‘. Note that duplicated elements are maintained in the resulting term, though
this is logically the same as the set without them. The type is needed so that the empty set can
be constructed; if you know that the list is nonempty, you can use mk_fset instead.

Failure
Fails if some term in the list has the wrong type, i.e. not ty.

Example

mk_setenum([‘1‘; ‘2‘; ‘3‘],‘:num‘);;
val it : term = ‘{1, 2, 3}‘

See also
dest_setenum, is_setenum, mk_fset, mk_list.

mk_small_numeral

mk_small_numeral : int -> term

Synopsis
Maps a nonnegative integer to corresponding numeral term.

Description
The call mk_small_numeral n where n is a nonnegative OCaml machine integer returns the
HOL numeral representation of n.

Failure
Fails if the argument is negative.

Example

mk_small_numeral 12;;
val it : term = ‘12‘

Comments
The similar function mk_numeral works from an unlimited precision integer, OCaml type num.
However, none of HOL’s inference rules depend on the behaviour of machine integers, so logical
soundness is not an issue.

See also
dest_numeral, dest_small_numeral, is_numeral, mk_numeral, term_of_rat.

mk thm 373

mk_thm

mk_thm : term list * term -> thm

Synopsis
Creates an arbitrary theorem as an axiom (dangerous!)

Description
The function mk_thm can be used to construct an arbitrary theorem. It is applied to a pair
consisting of the desired assumption list (possibly empty) and conclusion. All the terms therein
should be of type bool.

mk_thm([‘a1‘;...;‘an‘],‘c‘) = ({a1,...,an} |- c)

Failure
Fails unless all the terms provided for assumptions and conclusion are of type bool.

Example
The following shows how to create a simple contradiction:

#mk_thm([],‘F‘);;
|- F

Comments
Although mk_thm can be useful for experimentation or temporarily plugging gaps, its use should
be avoided if at all possible in important proofs, because it can be used to create theorems
leading to contradictions. You can check whether any axioms have been asserted by mk_thm or
new_axiom by the call axioms().

See also
CHEAT_TAC, mk_fthm, new_axiom.

mk_type

mk_type : string * hol_type list -> hol_type

Synopsis
Constructs a type (other than a variable type).

374 Chapter 1. Pre-defined ML Identifiers

Description
mk_type("op",[‘:ty1‘;...;‘:tyn‘]) returns ‘:(ty1,...,tyn)op‘ where op is the name of
a known n-ary type constructor.

Failure
Fails with mk_type if the string is not the name of a known type, or if the type is known but
the length of the list of argument types is not equal to the arity of the type constructor.

Example

mk_type ("bool",[]);;
val it : hol_type = ‘:bool‘

mk_type ("list",[‘:bool‘]);;
val it : hol_type = ‘:(bool)list‘

mk_type ("fun",[‘:num‘;‘:bool‘]);;
val it : hol_type = ‘:num->bool‘

See also
dest_type, mk_vartype.

mk_uexists

mk_uexists : term * term -> term

Synopsis
Term constructor for unique existence.

Description
mk_uexists(‘v‘,‘t‘) returns ‘?!v. t‘.

Failure
Fails with if first term is not a variable or if t is not of type ‘:bool‘.

Example

mk_uexists(‘n:num‘,‘prime(n) /\ EVEN(n)‘);;
val it : term = ‘?!n. prime n /\ EVEN n‘

See also
dest_uexists, is_uexists, mk_exists.

mk var 375

mk_var

mk_var : string * hol_type -> term

Synopsis
Constructs a variable of given name and type.

Description
mk_var("var",‘:ty‘) returns the variable ‘var:ty‘.

Failure
Never fails.

Comments
mk_var can be used to construct variables with names which are not acceptable to the term
parser. In particular, a variable with the name of a known constant can be constructed using
mk_var.

See also
dest_var, is_var, mk_const, mk_comb, mk_abs.

mk_vartype

mk_vartype : string -> hol_type

Synopsis
Constructs a type variable of the given name.

Description
mk_vartype "A") returns a type variable ‘:A‘.

Failure
Never fails.

Example

mk_vartype "Test";;
val it : hol_type = ‘:Test‘

mk_vartype "bool";;
val it : hol_type = ‘:bool‘

Note that the second type is \em not the inbuilt type of Booleans, even though it prints like
it.

376 Chapter 1. Pre-defined ML Identifiers

Comments
mk_vartype can be used to create type variables with names which will not parse, i.e. they
cannot be entered by quotation. Using such type variables is probably bad practice. HOL Light
convention is to start type variables with an uppercase letter.

See also
dest_vartype, is_vartype, mk_type.

MONO_TAC

MONO_TAC : tactic

Synopsis
Attempt to prove monotonicity theorem automatically.

Description

Failure
Never fails but may have no effect.

Example
We set up the following goal:

g ‘(!x. P x ==> Q x) ==> (?y. P y /\ ~Q y) ==> (?y. Q y /\ ~P y)‘;;
...

and after breaking it down, we reach the standard form expected for monotonicity goals:

e STRIP_TAC;;
val it : goalstack = 1 subgoal (1 total)

0 [‘!x. P x ==> Q x‘]

‘(?y. P y /\ ~Q y) ==> (?y. Q y /\ ~P y)‘

Indeed, it is solved automatically:

e MONO_TAC;;
val it : goalstack = No subgoals

Comments
Normally, this kind of reasoning is automated by the inductive definitions package, so explicit
use of this tactic is rare.

monotonicity theorems 377

See also
monotonicity_theorems, new_inductive_definition,
prove_inductive_relations_exist, prove_monotonicity_hyps.

monotonicity_theorems

monotonicity_theorems : thm list ref

Synopsis
List of monotonicity theorems for inductive definitions package.

Description
The various tools for making inductive definitions, such as new_inductive_definition, need
to prove certain ‘monotonicity’ side-conditions. They attempt to do so automatically by using
various pre-proved theorems asserting the monotonicity of certain opertators. Normally, all
this happens smoothly without user intervention, but if the inductive definition involves new
operators, you may need to augment this list with corresponding monotonicity theorems.

Failure
Not applicable.

Example
Suppose we define a ‘lexical order’ construct:

let LEX = define
‘(LEX(<<) [] l <=> F) /\
(LEX(<<) l [] <=> F) /\
(LEX(<<) (CONS h1 t1) (CONS h2 t2) <=>

if h1 << h2 then LENGTH t1 = LENGTH t2
else (h1 = h2) /\ LEX(<<) t1 t2)‘;;

If we want to make an inductive definition that uses this — for example a lexicographic path
order on a representation of first-order terms — we need to add a theorem asserting that this

378 Chapter 1. Pre-defined ML Identifiers

operation is monotonic. To prove it, we first establish a lemma:

let LEX_LENGTH = prove
(‘!l1 l2 R. LEX(R) l1 l2 ==> (LENGTH l1 = LENGTH l2)‘,
REPEAT(LIST_INDUCT_TAC THEN SIMP_TAC[LEX]) THEN ASM_MESON_TAC[LENGTH]);;

and hence derive monotonicity:

let MONO_LEX = prove
(‘(!x:A y:A. R x y ==> S x y) ==> LEX R x y ==> LEX S x y‘,
DISCH_TAC THEN
MAP_EVERY (fun t -> SPEC_TAC(t,t)) [‘x:A list‘; ‘y:A list‘] THEN
REPEAT(LIST_INDUCT_TAC THEN REWRITE_TAC[LEX]) THEN
ASM_MESON_TAC[LEX_LENGTH]);;

We can now make the inductive definitions package aware of it by:

monotonicity_theorems := MONO_LEX::(!monotonicity_theorems);;

See also
new_inductive_definition.

MP_CONV

MP_CONV : conv -> thm -> thm

Synopsis
Removes antecedent of implication theorem by solving it with a conversion.

Description
The call MP_CONV conv th, where the theorem th has the form A |- p ==> q, attempts to
solve the antecedent p by applying the conversion conv to it. If this conversion returns either
|- p or |- p <=> T, then MP_CONV returns A |- q. Otherwise it fails.

Failure
Fails if the conclusion of the theorem is not implicational or if the conversion fails to prove its
antecedent.

MP 379

Example
Suppose we generate this ‘epsilon-delta’ theorem:

let th = MESON[LE_REFL]
‘(!e. &0 < e / &2 <=> &0 < e) /\
(!a x y e. abs(x - a) < e / &2 /\ abs(y - a) < e / &2 ==> abs(x - y) < e)
==> (!e. &0 < e ==> ?n. !m. n <= m ==> abs(x m - a) < e)

==> (!e. &0 < e ==> ?n. !m. n <= m ==> abs(x m - x n) < e)‘;;

We can eliminate the antecedent:

MP_CONV REAL_ARITH th;;
val it : thm =
|- (!e. &0 < e ==> (?n. !m. n <= m ==> abs (x m - a) < e))

==> (!e. &0 < e ==> (?n. !m. n <= m ==> abs (x m - x n) < e))

See also
MP, MATCH_MP.

MP

MP : thm -> thm -> thm

Synopsis
Implements the Modus Ponens inference rule.

Description
When applied to theorems A1 |- t1 ==> t2 and A2 |- t1, the inference rule MP returns the
theorem A1 u A2 |- t2.

A1 |- t1 ==> t2 A2 |- t1
---------------------------- MP

A1 u A2 |- t2

Failure
Fails unless the first theorem is an implication whose antecedent is the same as the conclusion
of the second theorem (up to alpha-conversion).

380 Chapter 1. Pre-defined ML Identifiers

Example

let th1 = TAUT ‘p ==> p \/ q‘
and th2 = ASSUME ‘p:bool‘;;

val th1 : thm = |- p ==> p \/ q
val th2 : thm = p |- p

MP th1 th2;;
val it : thm = p |- p \/ q

See also
EQ_MP, MATCH_MP, MATCH_MP_TAC, MP_TAC.

MP_TAC

MP_TAC : thm_tactic

Synopsis
Adds a theorem as an entecedent to the conclusion of the goal.

Description
When applied to the theorem A’ |- s and the goal A ?- t, the tactic MP_TAC reduces the goal
to A ?- s ==> t. Unless A’ is a subset of A, this is an invalid tactic.

A ?- t
============== MP_TAC (A’ |- s)
A ?- s ==> t

Failure
Never fails.

Uses
For moving assumptions into the conclusion of the goal, which often makes it easier to manipulate
via REWRITE_TAC or decompose by ANTS_TAC.

See also
MATCH_MP_TAC, MP, UNDISCH_TAC.

name_of

name_of : term -> string

needs 381

Synopsis
Gets the name of a constant or variable.

Description
When applied to a term that is either a constant or a variable, name_of returns its name (its
true name, even if there is an interface mapping for it in effect). When applied to any other
term, it returns the empty string.

Failure
Never fails.

Example

name_of ‘x:int‘;;
val it : string = "x"

name_of ‘SUC‘;;
val it : string = "SUC"

name_of ‘x + 1‘;;
val it : string = ""

See also
dest_const, dest_var.

needs

needs : string -> unit

Synopsis
Load a file if not already loaded.

Description
The given file is loaded from the path as for loadt, unless it has already been loaded into the
current session (by loads, loadt or needs) and has apparently (based on an MD5 checksum)
not changed since then.

Failure
Fails if the file is not found or generates a failure on loading.

382 Chapter 1. Pre-defined ML Identifiers

Example
If a proof relies on more number theory, you might start it with

needs "Examples/prime.ml";;
needs "Examples/pocklington.ml";;

If necessary, these files will be loaded as for loadt. However, if they have already been loaded
(e.g. if the current proof is a component of a larger proof that has already used them), they will
not be reloaded.

Uses
The needs function gives a simple form of dependency management. It is good practice to start
every file with a needs declaration for any library that it depends on.

See also
loads, loadt

net_of_cong

net_of_cong : thm -> (int * (term -> thm)) net -> (int * (term -> thm)) net

Synopsis
Add a congruence rule to a net.

Description
The underlying machinery in rewriting and simplification assembles (conditional) rewrite rules
and other conversions into a net, including a priority number so that, for example, pure rewrites
get applied before conditional rewrites. The congruence rules used by the simplifier to establish
context (see extend_basic_congs) are also stored in this structure, with the lowest priority 4.
A call net_of_cong th net adds th as a new congruence rule to net to yield an updated net.

Failure
Fails unless the congruence is of the appropriate implicational form.

See also
extend_basic_congs, net_of_conv, net_of_thm.

net_of_conv

net_of_conv : term -> ’a -> (int * ’a) net -> (int * ’a) net

net of thm 383

Synopsis
The underlying machinery in rewriting and simplification assembles (conditional) rewrite rules
and other conversions into a net, including a priority number so that, for example, pure rewrites
get applied before conditional rewrites. A call net_of_conv ‘pat‘ cnv net will add cnv to
net with priority 2 (lower than pure rewrites but higher than conditional ones) to give a new
net; this net can be used by REWRITES_CONV, for example. The term pat is a pattern used inside
the net to place conv appropriately (see enter for more details). This means that cnv will never
even be tried on terms that clearly cannot be instances of pat.

Failure
Never fails.

See also
enter, net_of_cong, lookup, net_of_thm, REWRITES_CONV.

net_of_thm

net_of_thm : bool -> thm -> (int * (term -> thm)) net -> (int * (term -> thm)) net

Synopsis
Insert a theorem into a net as a (conditional) rewrite.

Description
The underlying machinery in rewriting and simplification assembles (conditional) rewrite rules
and other conversions into a net, including a priority number so that, for example, pure rewrites
get applied before conditional rewrites. Such a net can then be used by REWRITES_CONV. A
call net_of_thm rf th net where th is a pure or conditional equation (as constructed by
mk_rewrites, for example) will insert that rewrite rule into the net with priority 1 (the highest)
for a pure rewrite or 3 for a conditional rewrite, to yield an updated net.

If rf is true, it indicates that this net will be used for repeated rewriting (e.g. as in
REWRITE_CONV rather than ONCE_REWRITE_CONV), and therefore equations are simply discarded
without changing the net if the LHS occurs free in the RHS. This does not exclude more com-
plicated looping situations, but is still useful.

Failure
Fails on a theorem that is neither a pure nor conditional equation.

See also
mk_rewrites, net_of_cong, net_of_conv, REWRITES_CONV.

new_axiom

new_axiom : term -> thm

384 Chapter 1. Pre-defined ML Identifiers

Synopsis
Sets up a new axiom.

Description
If tm is a term of type bool, a call new_axiom tm) creates a theorem

|- tm

Failure
Fails if the given term does not have type bool.

Example

let ax = new_axiom ‘x = 1‘;;
val ax : thm = |- x = 1

Note that as with all theorems, variables are implicitly universally quantified, so this axiom
asserts that all numbers are equal to 1. Of course, we can then derive a contradiction:

CONV_RULE NUM_REDUCE_CONV (INST [‘0‘,‘x:num‘] ax);;
val it : thm = |- F

Normal use of HOL Light should avoid asserting axioms. They can lead to inconsistency,
albeit not in such an obvious way. Provided theories are extended by definitions, consistency is
preserved.

Comments
For most purposes, it is unnecessary to declare new axioms: all of classical mathematics can be
derived by definitional extension alone. Proceeding by definition is not only more elegant, but
also guarantees the consistency of the deductions made. However, there are certain entities which
cannot be modelled in simple type theory without further axioms, such as higher transfinite
ordinals.

See also
mk_thm, new_definition.

new_basic_definition

new_basic_definition : term -> thm

Synopsis
Makes a simple new definition of the form c = t.

new basic type definition 385

Description
If t is a closed term and c a variable whose name has not been used as a constant, then
new_basic_definition ‘c = t‘ will define a new constant c and return the theorem |- c = t
for that new constant (not the variable in the given term). There is an additional restriction
that all type variables involved in t must occur in the constant’s type.

Failure
Fails if c is already a constant.

Example
Here is a simple example

let googolplex = new_basic_definition
‘googolplex = 10 EXP (10 EXP 100)‘;;

val googolplex : thm = |- googolplex = 10 EXP (10 EXP 100)

and of course we can equally well use logical equivalence:

let true_def = new_basic_definition ‘true <=> T‘;;
val true_def : thm = |- true <=> T

The following example helps to explain why the restriction on type variables is present:

new_basic_definition ‘trivial <=> !x:A. x = x‘;;
Exception:
Failure "new_definition: Type variables not reflected in constant".

If we had been allowed to get back a definitional theorem, we could separately type-instantiate
it to the 1-element type 1 and the 2-element type bool. In one case the RHS is true, and in the
other it is false, yet both are asserted equal to the constant trivial.

Comments
There are simpler or more convenient ways of making definitions, such as define and new_definition,
but this is the primitive principle underlying them all.

See also
define, new_definition, new_inductive_definition, new_recursive_definition,
new_specification.

new_basic_type_definition

new_basic_type_definition : string -> string * string -> thm -> thm * thm

Synopsis
Introduces a new type in bijection with a nonempty subset of an existing type.

386 Chapter 1. Pre-defined ML Identifiers

Description
The call new_basic_type_definition "ty" ("mk","dest") th where th is a theorem of the
form |- P x (say x has type rep) will introduce a new type called ty plus two new constants
mk:rep->ty and dest:ty->rep, and return two theorems that together assert that mk and dest
establish a bijection between the universe of the new type ty and the subset of the type rep
identified by the predicate P: |- mk(dest a) = a and |- P r <=> dest(mk r) = r. If the
theorem involves type variables A1,...,An then the new type will be an n-ary type constructor
rather than a basic type. The theorem is needed to ensure that that set is nonempty; all types
in HOL are nonempty.

Failure
Fails if any of the type or constant names is already in use, if the conclusion of the theorem is
not a combination, or if its rator P contains free variables.

Example
Here we define a basic type with 32 elements:

let th = ARITH_RULE ‘(\x. x < 32) 0‘;;
val th : thm = |- (\x. x < 32) 0
let absth,repth = new_basic_type_definition "32" ("mk_32","dest_32") th;;
val absth : thm = |- mk_32 (dest_32 a) = a
val repth : thm = |- (\x. x < 32) r <=> dest_32 (mk_32 r) = r

and here is a declaration of a type of finite sets over a base type, a unary type constructor:

let th = CONJUNCT1 FINITE_RULES;;
val th : thm = |- FINITE {\small\verb%%}

let tybij = new_basic_type_definition "fin" ("mk_fin","dest_fin") th;;
val tybij : thm * thm =
(|- mk_fin (dest_fin a) = a, |- FINITE r <=> dest_fin (mk_fin r) = r)

so now types like :(num)fin make sense.

Comments
This is the primitive principle of type definition in HOL Light, but other functions like define_type
or new_type_definition are usually more convenient.

See also
define_type, new_type_definition.

new_constant

new_constant : string * hol_type -> unit

new definition 387

Synopsis
Declares a new constant.

Description
A call new_constant("c",‘:ty‘) makes c a constant with most general type ty.

Failure
Fails if there is already a constant of that name in the current theory.

Example

#new_constant("graham’s_number",‘:num‘);;
val it : unit = ()

Uses
Can be useful for declaring some arbitrary parameter, but more usually a prelude to some new
axioms about the constant introduced. Take care when using new_axiom!

See also
constants, new_axiom, new_definition.

new_definition

new_definition : term -> thm

Synopsis
Declare a new constant and a definitional axiom.

Description
The function new_definition provides a facility for definitional extensions. It takes a term
giving the desired definition. The value returned by new_definition is a theorem stating the
definition requested by the user.

Let v_1,...,v_n be tuples of distinct variables, containing the variables x_1,...,x_m. Evalu-
ating new_definition ‘c v_1 ... v_n = t‘, where c is a variable whose name is not already
used as a constant, declares c to be a new constant and returns the theorem:

|- !x_1 ... x_m. c v_1 ... v_n = t

Optionally, the definitional term argument may have any of its variables universally quantified.

Failure
new_definition fails if c is already a constant or if the definition does not have the right form.

388 Chapter 1. Pre-defined ML Identifiers

Example
A NAND relation on signals indexed by ‘time’ can be defined as follows.

new_definition
‘NAND2 (in_1,in_2) out <=> !t:num. out t <=> ~(in_1 t /\ in_2 t)‘;;

val it : thm =
|- !out in_1 in_2.

NAND2 (in_1,in_2) out <=> (!t. out t <=> ~(in_1 t /\ in_2 t))

Comments
Note that the conclusion of the theorem returned is essentially the same as the term input by
the user, except that c was a variable in the original term but is a constant in the returned
theorem. The function define is significantly more flexible in the kinds of definition it allows,
but for some purposes this more basic principle is fine.

See also
define, new_basic_definition, new_inductive_definition,
new_recursive_definition, new_specification.

new_inductive_definition

new_inductive_definition : term -> thm * thm * thm

Synopsis
Define a relation or family of relations inductively.

Description
The function new_inductive_definition is applied to a conjunction of “rules” of the form
!x1...xn. Pi ==> Ri t1 ... tk. This conjunction is interpreted as an inductive definition of
a set of relations Ri (however many appear in the consequents of the rules). That is, the relations
are defined to be the smallest ones closed under the rules. The function new_inductive_definition
will convert this into explicit definitions, define a new constant for each Ri, and return a triple of
theorems. The first one will be the “rule” theorem, which essentially matches the input clauses
except that the Ri are now the new constants; this simply says that the new relations are indeed
closed under the rules. The second theorem is an induction theorem, asserting that the relations
are the least ones closed under the rules. Finally, the cases theorem gives a case analysis theorem
showing how each set of values satisfying the relation may be composed.

Failure
Fails if the clauses are malformed, if the constants are already in use, or if there are unproven
monotonicity hypotheses. In the last case, you can try prove_inductive_relations_exist to
examine these hypotheses, and either try to prove them manually or extend monotonicity_theorems
to let HOL do it.

new inductive definition 389

Example

A classic example where we have mutual induction is the set of even and odd numbers:

let eo_RULES,eo_INDUCT, eo_CASES = new_inductive_definition
‘even(0) /\ odd(1) /\
(!n. even(n) ==> odd(n + 1)) /\
(!n. odd(n) ==> even(n + 1))‘;;

val eo_RULES : thm =
|- even 0 /\

odd 1 /\
(!n. even n ==> odd (n + 1)) /\
(!n. odd n ==> even (n + 1))

val eo_INDUCT : thm =
|- !odd’ even’.

even’ 0 /\
odd’ 1 /\
(!n. even’ n ==> odd’ (n + 1)) /\
(!n. odd’ n ==> even’ (n + 1))
==> (!a0. odd a0 ==> odd’ a0) /\ (!a1. even a1 ==> even’ a1)

val eo_CASES : thm =
|- (!a0. odd a0 <=> a0 = 1 \/ (?n. a0 = n + 1 /\ even n)) /\

(!a1. even a1 <=> a1 = 0 \/ (?n. a1 = n + 1 /\ odd n))

Note that the ‘rules’ theorem corresponds exactly to the input, and says that indeed the
relations do satisfy the rules. The ‘induction’ theorem says that the relations are the minimal
ones satisfying the rules. You can use this to prove properties by induction, e.g. the relationship

390 Chapter 1. Pre-defined ML Identifiers

with the pre-defined concepts of odd and even:

g ‘(!n. odd(n) ==> ODD(n)) /\ (!n. even(n) ==> EVEN(n))‘;;

applying the induction theorem:

e(MATCH_MP_TAC eo_INDUCT);;
val it : goalstack = 1 subgoal (1 total)

‘EVEN 0 /\
ODD 1 /\
(!n. EVEN n ==> ODD (n + 1)) /\
(!n. ODD n ==> EVEN (n + 1))‘

This is easily finished off by, for example:

e(REWRITE_TAC[GSYM NOT_EVEN; EVEN_ADD; ARITH]);;
val it : goalstack = No subgoals

For another example, consider defining a simple propositional logic:

parse_as_infix("-->",(13,"right"));;
val it : unit = ()
let form_tybij = define_type "form = False | --> form form";;
val form_tybij : thm * thm =
(|- !P. P False /\ (!a0 a1. P a0 /\ P a1 ==> P (a0 --> a1)) ==> (!x. P x),
|- !f0 f1.

?fn. fn False = f0 /\
(!a0 a1. fn (a0 --> a1) = f1 a0 a1 (fn a0) (fn a1)))

and making an inductive definition of the provability relation:

parse_as_infix("|--",(11,"right"));;
val it : unit = ()

let provable_RULES,provable_INDUCT,provable_CASES = new_inductive_definition
‘(!p. p IN A ==> A |-- p) /\
(!p q. A |-- p --> (q --> p)) /\
(!p q r. A |-- (p --> q --> r) --> (p --> q) --> (p --> r)) /\
(!p. A |-- ((p --> False) --> False) --> p) /\
(!p q. A |-- p --> q /\ A |-- p ==> A |-- q)‘;;

val provable_RULES : thm =
|- !A. (!p. p IN A ==> A |-- p) /\

(!p q. A |-- p --> q --> p) /\
(!p q r. A |-- (p --> q --> r) --> (p --> q) --> p --> r) /\
(!p. A |-- ((p --> False) --> False) --> p) /\
(!p q. A |-- p --> q /\ A |-- p ==> A |-- q)

val provable_INDUCT : thm =
|- !A |--’.

(!p. p IN A ==> |--’ p) /\
(!p q. |--’ (p --> q --> p)) /\
(!p q r. |--’ ((p --> q --> r) --> (p --> q) --> p --> r)) /\
(!p. |--’ (((p --> False) --> False) --> p)) /\
(!p q. |--’ (p --> q) /\ |--’ p ==> |--’ q)
==> (!a. A |-- a ==> |--’ a)

val provable_CASES : thm =
|- !A a.

A |-- a <=>
a IN A \/
(?p q. a = p --> q --> p) \/
(?p q r. a = (p --> q --> r) --> (p --> q) --> p --> r) \/
(?p. a = ((p --> False) --> False) --> p) \/
(?p. A |-- p --> a /\ A |-- p)

Note that A is not universally quantified in the clauses, and is therefore treated as a parameter.

new recursive definition 391

See also
prove_inductive_relations_exist.

new_recursive_definition

new_recursive_definition : thm -> term -> thm

Synopsis
Define recursive function over inductive type.

Description
new_recursive_definition provides the facility for defining primitive recursive functions on
arbitrary inductive types. The first argument is the primitive recursion theorem for the concrete
type in question; this is normally the second theorem obtained from define_type. The second
argument is a term giving the desired primitive recursive function definition. The value returned
by new_recursive_definition is a theorem stating the primitive recursive definition requested
by the user. This theorem is derived by formal proof from an instance of the general primitive
recursion theorem given as the second argument.

Let C1, ..., Cn be the constructors of the type, and let ‘(Ci vs)’ represent a (curried) applica-
tion of the ith constructor to a sequence of variables. Then a curried primitive recursive function
fn over ty can be specified by a conjunction of (optionally universally-quantified) clauses of the
form:

fn v1 ... (C1 vs1) ... vm = body1 /\
fn v1 ... (C2 vs2) ... vm = body2 /\

.

.
fn v1 ... (Cn vsn) ... vm = bodyn

where the variables v1, ..., vm, vs are distinct in each clause, and where in the ith clause fn
appears (free) in bodyi only as part of an application of the form:

‘fn t1 ... v ... tm‘

in which the variable v of type ty also occurs among the variables vsi.
If <definition> is a conjunction of clauses, as described above, then evaluating:

new_recursive_definition th ‘<definition>‘;;

automatically proves the existence of a function fn that satisfies the defining equations, and
then declares a new constant with this definition as its specification.

392 Chapter 1. Pre-defined ML Identifiers

new_recursive_definition also allows the supplied definition to omit clauses for any number
of constructors. If a defining equation for the ith constructor is omitted, then the value of fn
at that constructor:

fn v1 ... (Ci vsi) ... vn

is left unspecified (fn, however, is still a total function).

Failure
Fails if the definition cannot be matched up with the recursion theorem provided (you may find
that define still works in such cases), or if there is already a constant of the given name.

Example
The following defines a function to produce the union of a list of sets:

let LIST_UNION = new_recursive_definition list_RECURSION
‘(LIST_UNION [] = {}) /\
(LIST_UNION (CONS h t) = h UNION (LIST_UNION t))‘;;
Warning: inventing type variables

val (LIST_UNION) : thm =
|- LIST_UNION [] = {} /\ LIST_UNION (CONS h t) = h UNION LIST_UNION t

Comments
For many purposes, define is a simpler way of defining recursive types; it has a simpler interface
(no need to specify the recursion theorem to use) and it is more general. However, for suitably
constrained definitions new_recursive_definition works well and is much more efficient.

See also
define, prove_inductive_relations_exist, prove_recursive_functions_exist.

new_specification

new_specification : string list -> thm -> thm

Synopsis
Introduces a constant or constants satisfying a given property.

Description
The ML function new_specification implements the primitive rule of constant specification

new specification 393

for the HOL logic. Evaluating:

new_specification ["c1";...;"cn"] |- ?x1...xn. t

simultaneously introduces new constants named c1, ..., cn satisfying the property:

|- t[c1,...,cn/x1,...,xn]

This theorem is returned by the call to new_specification.

Failure
new_specification fails if any one of ‘c1‘, ..., ‘cn‘ is already a constant.

Uses
new_specification can be used to introduce constants that satisfy a given property without
having to make explicit equational constant definitions for them. For example, the built-in
constants MOD and DIV are defined in the system by first proving the theorem:

DIVMOD_EXIST_0;;
val it : thm =
|- !m n. ?q r. if n = 0 then q = 0 /\ r = 0 else m = q * n + r /\ r < n

Skolemizing it to made the parametrization explicit:

let th = REWRITE_RULE[SKOLEM_THM] DIVMOD_EXIST_0;;
val th : thm =
|- ?q r.

!m n.
if n = 0
then q m n = 0 /\ r m n = 0
else m = q m n * n + r m n /\ r m n < n

and then making the constant specification:

new_specification ["DIV"; "MOD"] th;;

giving the theorem:

DIVISION_0;;
val it : thm =
|- !m n.

if n = 0
then m DIV n = 0 /\ m MOD n = 0
else m = m DIV n * n + m MOD n /\ m MOD n < n

See also
define, new_definition.

394 Chapter 1. Pre-defined ML Identifiers

new_type_abbrev

new_type_abbrev : string * hol_type -> unit

Synopsis
Sets up a new type abbreviation.

Description
A call new_type_abbrev("ab",‘:ty‘ creates a new type abbreviation ab for the type ty. In
future, ‘:ab‘ may be used rather than the perhaps complicated expresion ‘:ty‘. Note that the
association is purely an abbreviation for parsing. Type abbreviations have no logical significance;
types are internally represented after the abbreviations have been fully expanded. At present,
type abbreviations are not reversed when printing types, mainly because this may contract
abbreviations where it is unwanted.

Failure
Never fails.

Example

new_type_abbrev("bitvector",‘:bool list‘);;
val it : unit = ()

‘LENGTH(x:bitvector)‘;;
val it : term = ‘LENGTH x‘

type_of (rand it);;
val it : hol_type = ‘:(bool)list‘

See also
define_type, new_type_definition, remove_type_abbrev, type_abbrevs.

new_type_definition

new_type_definition : string -> string * string -> thm -> thm

Synopsis
Introduces a new type in bijection with a nonempty subset of an existing type.

new type 395

Description
The call new_basic_type_definition "ty" ("mk","dest") th where th is a theorem of the
form |- ?x. P x (say x has type rep) will introduce a new type called ty plus two new constants
mk:rep->ty and dest:ty->rep, and return a theorem asserting that mk and dest establish a
bijection between the universe of the new type ty and the subset of the type rep identified by
the predicate P:

|- (!a. mk(dest a) = a) /\ (!r. P r <=> dest(mk r) = r)

If the theorem involves type variables A1,...,An then the new type will be an n-ary type
constructor rather than a basic type. The theorem is needed to ensure that that set is nonempty;
all types in HOL are nonempty.

Example
Here we define a basic type with 7 elements:

let th = prove(‘?x. x < 7‘,EXISTS_TAC ‘0‘ THEN ARITH_TAC);;
val th : thm = |- ?x. x < 7

let tybij = new_type_definition "7" ("mk_7","dest_7") th;;
val tybij : thm =
|- (!a. mk_7 (dest_7 a) = a) /\ (!r. r < 7 <=> dest_7 (mk_7 r) = r)

and here is a declaration of a type of finite sets over a base type, a unary type constructor:

let th = MESON[FINITE_RULES] ‘?s:A->bool. FINITE s‘;;
0..0..solved at 2
CPU time (user): 0.
val th : thm = |- ?s. FINITE s

let tybij = new_type_definition "finiteset" ("mk_fin","dest_fin") th;;
val tybij : thm =
|- (!a. mk_fin (dest_fin a) = a) /\

(!r. FINITE r <=> dest_fin (mk_fin r) = r)

so now types like :(num)finiteset make sense.

Failure
Fails if any of the type or constant names is already in use, if the conclusion of the theorem is
not an existentially quantified term, or if the rator P of its body contains free variables.

See also
define_type, new_basic_type_definition, new_type_abbrev.

new_type

new_type : string * int -> unit

396 Chapter 1. Pre-defined ML Identifiers

Synopsis
Declares a new type or type constructor.

Description
A call new_type("t",n) declares a new n-ary type constructor called t; if n is zero, this is just
a new base type.

Failure
Fails if HOL is there is already a type operator of that name in the current theory.

Example
A version of ZF set theory might declare a new type set and start using it as follows:

new_type("set",0);;
val it : unit = ()
new_constant("mem",‘:set->set->bool‘);;
val it : unit = ()
parse_as_infix("mem",(11,"right"));;
val it : unit = ()
let ZF_EXT = new_axiom ‘(!z. z mem x <=> z mem y) ==> (x = y)‘;;
val (ZF_EXT) : thm = |- (!z. z mem x <=> z mem y) ==> x = y

Comments
As usual, asserting new concepts is discouraged; if possible it is better to use type definitions;
see new_type_definition and define_type.

See also
define_type, new_axiom, new_constant, new_definition, new_type_definition.

NNFC_CONV

NNFC_CONV : conv

Synopsis
Convert a term to negation normal form.

Description
The conversion NNFC_CONV proves a term equal to an equivalent in ‘negation normal form’ (NNF).
This means that other propositional connectives are eliminated in favour of conjunction (‘/\’),
disjunction (‘\/’) and negation (‘~’), and the negations are pushed down to the level of atomic
formulas, also through universal and existential quantifiers, with double negations eliminated.

Failure
Never fails; on non-Boolean terms it just returns a reflexive theorem.

NNF CONV 397

Example

NNFC_CONV ‘(!x. p(x) <=> q(x)) ==> ~ ?y. p(y) /\ ~q(y)‘;;
Warning: inventing type variables
val it : thm =
|- (!x. p x <=> q x) ==> ~(?y. p y /\ ~q y) <=>

(?x. (p x \/ q x) /\ (~p x \/ ~q x)) \/ (!y. ~p y \/ q y)

Uses
Mostly useful as a prelude to automated proof procedures, but users may sometimes find it
useful.

Comments
A toplevel equivalence p <=> q is converted to (p \/ ~q) /\ (~p \/ q). In general this “split-
ting” of equivalences is done with the expectation that the final formula may be put into con-
junctive normal form (CNF), as a prelude to a proof (rather than refutation) procedure. An
otherwise similar conversion NNC_CONV prefers a ‘disjjunctive’ splitting and is better suited for
a term that will later be translated to DNF for refutation.

See also
GEN_NNF_CONV, NNF_CONV.

NNF_CONV

NNF_CONV : conv

Synopsis
Convert a term to negation normal form.

Description
The conversion NNF_CONV proves a term equal to an equivalent in ‘negation normal form’ (NNF).
This means that other propositional connectives are eliminated in favour of conjunction (‘/\’),
disjunction (‘\/’) and negation (‘~’), and the negations are pushed down to the level of atomic
formulas, also through universal and existential quantifiers, with double negations eliminated.

Failure
Never fails; on non-Boolean terms it just returns a reflexive theorem.

398 Chapter 1. Pre-defined ML Identifiers

Example

NNF_CONV ‘(!x. p(x) <=> q(x)) ==> ~ ?y. p(y) /\ ~q(y)‘;;
Warning: inventing type variables
val it : thm =
|- (!x. p x <=> q x) ==> ~(?y. p y /\ ~q y) <=>

(?x. p x /\ ~q x \/ ~p x /\ q x) \/ (!y. ~p y \/ q y)

Uses
Mostly useful as a prelude to automated proof procedures, but users may sometimes find it
useful.

Comments
A toplevel equivalence p <=> q is converted to (p /\ q) \/ (~p /\ ~q). In general this “split-
ting” of equivalences is done with the expectation that the final formula may be put into dis-
junctive normal form (DNF), as a prelude to a refutation procedure. An otherwise similar
conversion NNFC_CONV prefers a ‘conjunctive’ splitting and is better suited for a term that will
later be translated to CNF.

See also
GEN_NNF_CONV, NNFC_CONV.

NO_CONV

NO_CONV : conv

Synopsis
Conversion that always fails.

Failure
NO_CONV always fails.

See also
ALL_CONV.

NO_TAC

NO_TAC : tactic

NOT ELIM 399

Synopsis
Tactic that always fails.

Description
Whatever goal it is applied to, NO_TAC always fails with Failure "NO_TAC".

Failure
Always fails.

Example
However trivial the goal, NO_TAC always fails:

g ‘T‘;;
val it : goalstack = 1 subgoal (1 total)

‘T‘

e NO_TAC;;
Exception: Failure "NO_TAC".

however, tac THEN NO_TAC will never reach NO_TAC if tac leaves no subgoals:

e(REWRITE_TAC[] THEN NO_TAC);;
val it : goalstack = No subgoals

Uses
Can be useful in forcing certain “speculative” tactics to fail unless they solve the goal completely.
For example, you might wish to break down a huge conjunction of goals and attempt to solve
as many conjuncts as possible by just rewriting with a list of theorems [thl]. You could do:

REPEAT CONJ_TAC THEN REWRITE_TAC[thl]

However, if you don’t want to apply the rewrites unless they result in an immediate solution,
you can do instead:

REPEAT CONJ_TAC THEN TRY(REWRITE_TAC[thl] THEN NO_TAC)

See also
ALL_TAC, ALL_THEN, FAIL_TAC, NO_THEN.

NOT_ELIM

NOT_ELIM : thm -> thm

400 Chapter 1. Pre-defined ML Identifiers

Synopsis
Transforms |- ~t into |- t ==> F.

Description
When applied to a theorem A |- ~t, the inference rule NOT_ELIM returns the theorem A |- t ==> F.

A |- ~t
-------------- NOT_ELIM
A |- t ==> F

Failure
Fails unless the theorem has a negated conclusion.

Example

let th = UNDISCH(TAUT ‘p ==> ~ ~p‘);;
val th : thm = p |- ~ ~p

NOT_ELIM th;;
val it : thm = p |- ~p ==> F

See also
EQF_ELIM, EQF_INTRO, NOT_INTRO.

NO_THEN

NO_THEN : thm_tactical

Synopsis
Theorem-tactical which always fails.

Description
When applied to a theorem-tactic and a theorem, the theorem-tactical NO_THEN always fails with
Failwith "NO_THEN".

Failure
Always fails when applied to a theorem-tactic and a theorem (note that it never gets as far as
being applied to a goal!)

Uses
Writing compound tactics or tacticals.

See also
ALL_TAC, ALL_THEN, FAIL_TAC, NO_TAC.

nothing 401

nothing

nothing : ’a -> ’b list * ’a

Synopsis
Trivial parser that parses nothing.

Description
The parser nothing parses nothing: it returns the empty list as its parsed item and all the input
as its unparsed input.

Failure
Never fails.

Uses
This can be useful in alternations (‘||’) with other parsers producing a list of items.

Comments
This is one of a suite of combinators for manipulating “parsers”. A parser is simply a function
whose OCaml type is some instance of :(’a)list -> ’b * (’a)list. The function should
take a list of objects of type :’a (e.g. characters or tokens), parse as much of it as possible from
left to right, and return a pair consisting of the object derived from parsing (e.g. a term or a
special syntax tree) and the list of elements that were not processed.

See also
++, ||, >>, a, atleast, elistof, finished, fix, leftbin, listof, many,
possibly, rightbin, some.

NOT_INTRO

NOT_INTRO : thm -> thm

Synopsis
Transforms |- t ==> F into |- ~t.

402 Chapter 1. Pre-defined ML Identifiers

Description
When applied to a theorem A |- t ==> F, the inference rule NOT_INTRO returns the theorem
A |- ~t.

A |- t ==> F
-------------- NOT_INTRO

A |- ~t

Failure
Fails unless the theorem has an implicative conclusion with F as the consequent.

Example

let th = TAUT ‘F ==> F‘;;
val th : thm = |- F ==> F

NOT_INTRO th;;
val it : thm = |- ~F

See also
EQF_ELIM, EQF_INTRO, NOT_ELIM.

nsplit

nsplit : (’a -> ’b * ’a) -> ’c list -> ’a -> ’b list * ’a

Synopsis
Applies a destructor in right-associative mode a specified number of times.

Description
If d is an inverse to a binary constructor f, then

nsplit d l (f(x1,f(x2,...f(xn,y))))

where the list l has length k, returns

([x1;...;xk],f(x(k+1),...f(xn,y))

Failure
Never fails.

null inst 403

Example

nsplit dest_conj [1;2;3] ‘a /\ b /\ c /\ d /\ e /\ f‘;;
val it : term list * term = ([‘a‘; ‘b‘; ‘c‘], ‘d /\ e /\ f‘)

See also
splitlist, rev_splitlist, striplist.

null_inst

null_inst : instantiation

Synopsis
Empty instantiation.

Description
Several functions use objects of type instantiation, consisting of type and term instantiations
and higher-order matching information. This instantiation null_inst is the trivial instantiation
that does nothing.

Failure
Not applicable.

Example
Instantiating a term with it has no effect:

instantiate null_inst ‘x + 1 = 2‘;;
val it : term = ‘x + 1 = 2‘

See also
instantiate, INSTANTIATE, INSTANTIATE_ALL, term_match.

null_meta

null_meta : term list * instantiation

Synopsis
Empty metavariable information.

404 Chapter 1. Pre-defined ML Identifiers

Description
This is a pair consisting of an empty list of terms and a null instantiation (see null_inst). It
is used inside most tactics to indicate that they do nothing interesting with metavariables.

Failure
Not applicable.

Comments
This is not intended for general use, but readers writing custom tactics from scratch may find
it convenient.

See also
null_inst.

num_0

num_0 : num

Synopsis
Constant zero in unlimited-size integers.

Description
The constant num_0 is bound to the integer constant 0 in the unlimited-precision numbers
provided by the OCaml Num library.

Failure
Not applicable.

Uses
Exactly the same as Int 0, but may save recreation of a cons cell each time.

See also
num_1, num_2, num_10.

num_10

num_10 : num

Synopsis
Constant zero in unlimited-size integers.

num 1 405

Description
The constant num_10 is bound to the integer constant 10 in the unlimited-precision numbers
provided by the OCaml Num library.

Failure
Not applicable.

Uses
Exactly the same as Int 10, but may save recreation of a cons cell each time.

See also
num_0, num_1, num_2.

num_1

num_1 : num

Synopsis
Constant zero in unlimited-size integers.

Description
The constant num_1 is bound to the integer constant 1 in the unlimited-precision numbers
provided by the OCaml Num library.

Failure
Not applicable.

Uses
Exactly the same as Int 1, but may save recreation of a cons cell each time.

See also
num_0, num_2, num_10.

num_2

num_2 : num

Synopsis
Constant zero in unlimited-size integers.

406 Chapter 1. Pre-defined ML Identifiers

Description
The constant num_2 is bound to the integer constant 2 in the unlimited-precision numbers
provided by the OCaml Num library.

Failure
Not applicable.

Uses
Exactly the same as Int 2, but may save recreation of a cons cell each time.

See also
num_0, num_1, num_10.

NUM_ADD_CONV

NUM_ADD_CONV : term -> thm

Synopsis
Proves what the sum of two natural number numerals is.

Description
If n and m are numerals (e.g. 0, 1, 2, 3,...), then NUM_ADD_CONV ‘n + m‘ returns the theorem:

|- n + m = s

where s is the numeral that denotes the sum of the natural numbers denoted by n and m.

Failure
NUM_ADD_CONV tm fails if tm is not of the form ‘n + m‘, where n and m are numerals.

Example

NUM_ADD_CONV ‘75 + 25‘;;
val it : thm = |- 75 + 25 = 100

See also
NUM_DIV_CONV, NUM_EQ_CONV, NUM_EVEN_CONV, NUM_EXP_CONV, NUM_FACT_CONV,
NUM_GE_CONV, NUM_GT_CONV, NUM_LE_CONV, NUM_LT_CONV, NUM_MOD_CONV,
NUM_MULT_CONV, NUM_ODD_CONV, NUM_PRE_CONV, NUM_REDUCE_CONV, NUM_RED_CONV,
NUM_REL_CONV, NUM_SUB_CONV, NUM_SUC_CONV.

NUMBER RULE 407

NUMBER_RULE

NUMBER_RULE : term -> thm

Synopsis
Automatically prove elementary divisibility property over the natural numbers.

Description
NUMBER_RULE is a partly heuristic rule that can often automatically prove elementary “divisi-
bility” properties of the natural numbers. The precise subset that is dealt with is difficult to
describe rigorously, but many universally quantified combinations of divides, coprime, gcd
and congruences (x == y) (mod n) can be proved automatically, as well as some existentially
quantified goals. See a similar rule INTEGER_RULE for the integers for a representative set of
examples.

Failure
Fails if the goal is not accessible to the methods used.

Example
Here is a typical example, which would be rather tedious to prove manually:

NUMBER_RULE
‘!a b a’ b’. ~(gcd(a,b) = 0) /\ a = a’ * gcd(a,b) /\ b = b’ * gcd(a,b)

==> coprime(a’,b’)‘;;
...
val it : thm =
|- !a b a’ b’.

~(gcd (a,b) = 0) /\ a = a’ * gcd (a,b) /\ b = b’ * gcd (a,b)
==> coprime (a’,b’)

See also
ARITH_RULE, INTEGER_RULE, NUMBER_TAC, NUM_RING.

NUMBER_TAC

NUMBER_TAC : tactic

Synopsis
Automated tactic for elementary divisibility properties over the natural numbers.

408 Chapter 1. Pre-defined ML Identifiers

Description
The tactic NUMBER_TAC is a partly heuristic tactic that can often automatically prove elementary
“divisibility” properties of the natural numbers. The precise subset that is dealt with is difficult
to describe rigorously, but many universally quantified combinations of divides, coprime, gcd
and congruences (x == y) (mod n) can be proved automatically, as well as some existentially
quantified goals. See the documentation for INTEGER_RULE for a larger set of representative
examples.

Failure
Fails if the goal is not accessible to the methods used.

Example
A typical elementary divisibility property is that if two numbers are congruent with respect to
two coprime (without non-trivial common factors) moduli, then they are congruent with respect
to their product:

g ‘!m n x y:num. (x == y) (mod m) /\ (x == y) (mod n) /\ coprime(m,n)
==> (x == y) (mod (m * n))‘;;

...

It can be solved automatically using NUMBER_TAC:

e NUMBER_TAC;;
...
val it : goalstack = No subgoals

The analogous goal without the coprimality assumption will fail, and indeed the goal would
be false without it.

See also
ARITH_TAC, INTEGER_TAC, NUMBER_RULE, NUM_RING.

NUM_CANCEL_CONV

NUM_CANCEL_CONV : term -> thm

Synopsis
Cancels identical terms from both sides of natural number equation.

Description
Given an equational term ‘t1 + ... + tn = s1 + ... + sm‘ (with arbitrary association of
the additions) where both sides have natural number type, the conversion identifies common
elements among the ti and si, and cancels them from both sides, returning a theorem:

|- t1 + ... + tn = s1 + ... + sm <=> u1 + ... + uk = v1 + ... + vl

where the ui and vi are the remaining elements of the ti and si respectively, in some order.

num CONV 409

Failure
Fails if applied to a term that is not an equation between natural number terms.

Example

NUM_CANCEL_CONV ‘(a + b + x * y + SUC c) + d = SUC c + d + y * z‘;;
val it : thm =
|- (a + b + x * y + SUC c) + d = SUC c + d + y * z <=>

x * y + b + a = y * z

Uses
Simplifying equations where explicitly directing the cancellation would be tedious. However,
this is mostly intended for “bootstrapping”, before more powerful rules like ARITH_RULE and
NUM_RING are available.

See also
ARITH_CONV, ARITH_RULE, ARITH_TAC, NUM_RING.

num_CONV

num_CONV : term -> thm

Synopsis
Provides definitional axiom for a nonzero numeral.

Description
num_CONV is an axiom-scheme from which one may obtain a defining equation for any numeral
not equal to 0 (i.e. 1, 2, 3,...). If ‘n‘ is such a constant, then num_CONV ‘n‘ returns the theorem:

|- n = SUC m

where m is the numeral that denotes the predecessor of the number denoted by n.

Failure
num_CONV tm fails if tm is ‘0‘ or if not tm is not a numeral.

Example

num_CONV ‘3‘;;
val it : thm = |- 3 = SUC 2

NUM_DIV_CONV

NUM_DIV_CONV : term -> thm

410 Chapter 1. Pre-defined ML Identifiers

Synopsis
Proves what the truncated quotient of two natural number numerals is.

Description
If n and m are numerals (e.g. 0, 1, 2, 3,...), then NUM_DIV_CONV ‘n DIV m‘ returns the theorem:

|- n DIV m = s

where s is the numeral that denotes the truncated quotient of the numbers denoted by n and m.

Failure
NUM_DIV_CONV tm fails if tm is not of the form ‘n DIV m‘, where n and m are numerals, or if the
second numeral m is zero.

Example

NUM_DIV_CONV ‘99 DIV 9‘;;
val it : thm = |- 99 DIV 9 = 11

NUM_DIV_CONV ‘334 DIV 3‘;;
val it : thm = |- 334 DIV 3 = 111

NUM_DIV_CONV ‘11 DIV 0‘;;
Exception: Failure "NUM_DIV_CONV".

Comments
For definiteness, quotients with zero denominator are in fact designed to be zero. However, it is
perhaps bad style to rely on this fact, so the conversion just fails in this case.

See also
NUM_ADD_CONV, NUM_DIVMOD_CONV, NUM_EQ_CONV, NUM_EVEN_CONV, NUM_EXP_CONV,
NUM_FACT_CONV, NUM_GE_CONV, NUM_GT_CONV, NUM_LE_CONV, NUM_LT_CONV,
NUM_MOD_CONV, NUM_MULT_CONV, NUM_ODD_CONV, NUM_PRE_CONV, NUM_REDUCE_CONV,
NUM_RED_CONV, NUM_REL_CONV, NUM_SUB_CONV, NUM_SUC_CONV.

numdom

numdom : num -> num * num

Synopsis
Returns numerator and denominator of normalized fraction.

NUM EQ CONV 411

Description
Given a rational number as supported by the Num library, numdom returns a numerator-denominator
pair corresponding to that rational number cancelled down to its reduced form, p/q where q > 0
and p and q have no common factor.

Failure
Never fails.

Example

numdom(Int 22 // Int 7);;
val it : num * num = (22, 7)
numdom(Int 0);;
val it : num * num = (0, 1)
numdom(Int 100);;
val it : num * num = (100, 1)
numdom(Int 4 // Int(-2));;
val it : num * num = (-2, 1)

See also
denominator, numerator.

NUM_EQ_CONV

NUM_EQ_CONV : conv

Synopsis
Proves equality or inequality of two numerals.

Description
If n and m are two numerals (e.g. 0, 1, 2, 3,...), then NUM_EQ_CONV ‘n = m‘ returns:

|- (n = m) <=> T or |- (n = m) <=> F

depending on whether the natural numbers represented by n and m are equal or not equal,
respectively.

Failure
NUM_EQ_CONV tm fails if tm is not of the form ‘n = m‘, where n and m are numerals.

412 Chapter 1. Pre-defined ML Identifiers

Example

NUM_EQ_CONV ‘1 = 2‘;;
val it : thm = |- 1 = 2 <=> F

NUM_EQ_CONV ‘12 = 12‘;;
val it : thm = |- 12 = 12 <=> T

Uses
Performing basic arithmetic reasoning while producing a proof.

See also
NUM_ADD_CONV, NUM_DIV_CONV, NUM_EVEN_CONV, NUM_EXP_CONV, NUM_FACT_CONV,
NUM_GE_CONV, NUM_GT_CONV, NUM_LE_CONV, NUM_LT_CONV, NUM_MOD_CONV,
NUM_MULT_CONV, NUM_ODD_CONV, NUM_PRE_CONV, NUM_REDUCE_CONV, NUM_RED_CONV,
NUM_REL_CONV, NUM_SUB_CONV, NUM_SUC_CONV.

numerator

numerator : num -> num

Synopsis
Returns numerator of rational number in canonical form.

Description
Given a rational number as supported by the Num library, numerator returns the numerator p
from the rational number cancelled to its reduced form, p/q where q > 0 and p and q have no
common factor.

Failure
Never fails.

Example

numerator(Int 22 // Int 7);;
val it : num = 22
numerator(Int 0);;
val it : num = 0
numerator(Int 100);;
val it : num = 100
numerator(Int 4 // Int(-2));;
val it : num = -2

See also
denominator, numdom.

NUM EVEN CONV 413

NUM_EVEN_CONV

NUM_EVEN_CONV : conv

Synopsis
Proves whether a natural number numeral is even.

Description
If n is a numeral (e.g. 0, 1, 2, 3,...), then NUM_EVEN_CONV ‘n‘ returns one of the theorems:

|- EVEN(n) <=> T

or

|- EVEN(n) <=> F

according to whether the number denoted by n is even.

Failure
Fails if applied to a term that is not of the form ‘EVEN n‘ with n a numeral.

Example

NUM_EVEN_CONV ‘EVEN 99‘;;
val it : thm = |- EVEN 99 <=> F
NUM_EVEN_CONV ‘EVEN 123456‘;;
val it : thm = |- EVEN 123456 <=> T

See also
NUM_ADD_CONV, NUM_DIV_CONV, NUM_EQ_CONV, NUM_EXP_CONV, NUM_FACT_CONV,
NUM_GE_CONV, NUM_GT_CONV, NUM_LE_CONV, NUM_LT_CONV, NUM_MOD_CONV,
NUM_MULT_CONV, NUM_ODD_CONV, NUM_PRE_CONV, NUM_REDUCE_CONV, NUM_RED_CONV,
NUM_REL_CONV, NUM_SUB_CONV, NUM_SUC_CONV.

NUM_EXP_CONV

NUM_EXP_CONV : term -> thm

Synopsis
Proves what the exponential of two natural number numerals is.

414 Chapter 1. Pre-defined ML Identifiers

Description
If n and m are numerals (e.g. 0, 1, 2, 3,...), then NUM_EXP_CONV ‘n EXP m‘ returns the theorem:

|- n EXP m = s

where s is the numeral that denotes the natural number denoted by n raised to the power of
the one denoted by m.

Failure
NUM_EXP_CONV tm fails if tm is not of the form ‘n EXP m‘, where n and m are numerals.

Example

NUM_EXP_CONV ‘2 EXP 64‘;;
val it : thm = |- 2 EXP 64 = 18446744073709551616

NUM_EXP_CONV ‘1 EXP 99‘;;
val it : thm = |- 1 EXP 99 = 1

NUM_EXP_CONV ‘0 EXP 0‘;;
val it : thm = |- 0 EXP 0 = 1

NUM_EXP_CONV ‘0 EXP 10000‘;;
val it : thm = |- 0 EXP 10000 = 0

See also
NUM_ADD_CONV, NUM_DIV_CONV, NUM_EQ_CONV, NUM_EVEN_CONV, NUM_FACT_CONV,
NUM_GE_CONV, NUM_GT_CONV, NUM_LE_CONV, NUM_LT_CONV, NUM_MOD_CONV,
NUM_MULT_CONV, NUM_ODD_CONV, NUM_PRE_CONV, NUM_REDUCE_CONV, NUM_RED_CONV,
NUM_REL_CONV, NUM_SUB_CONV, NUM_SUC_CONV.

NUM_FACT_CONV

NUM_FACT_CONV : term -> thm

Synopsis
Proves what the factorial of a natural number numeral is.

Description
If n is a numeral (e.g. 0, 1, 2, 3,...), then NUM_FACT_CONV ‘FACT n‘ returns the theorem:

|- FACT n = s

where s is the numeral that denotes the factorial of the natural number denoted by n.

NUM GE CONV 415

Failure
NUM_FACT_CONV tm fails if tm is not of the form ‘FACT n‘, where n is a numeral.

Example

NUM_FACT_CONV ‘FACT 0‘;;
val it : thm = |- FACT 0 = 1

NUM_FACT_CONV ‘FACT 6‘;;
val it : thm = |- FACT 6 = 720

NUM_FACT_CONV ‘FACT 30‘;;
val it : thm = |- FACT 30 = 265252859812191058636308480000000

See also
NUM_ADD_CONV, NUM_DIV_CONV, NUM_EQ_CONV, NUM_EVEN_CONV, NUM_EXP_CONV,
NUM_GE_CONV, NUM_GT_CONV, NUM_LE_CONV, NUM_LT_CONV, NUM_MOD_CONV,
NUM_MULT_CONV, NUM_ODD_CONV, NUM_PRE_CONV, NUM_REDUCE_CONV, NUM_RED_CONV,
NUM_REL_CONV, NUM_SUB_CONV, NUM_SUC_CONV.

NUM_GE_CONV

NUM_GE_CONV : conv

Synopsis
Proves whether one numeral is greater than or equal to another.

Description
If n and m are two numerals (e.g. 0, 1, 2, 3,...), then NUM_GE_CONV ‘n >= m‘ returns:

|- n >= m <=> T or |- n >= m <=> F

depending on whether the natural number represented by n is greater than or equal to the one
represented by m.

Failure
NUM_GE_CONV tm fails if tm is not of the form ‘n >= m‘, where n and m are numerals.

416 Chapter 1. Pre-defined ML Identifiers

Example

NUM_GE_CONV ‘1 >= 0‘;;
val it : thm = |- 1 >= 0 <=> T

NUM_GE_CONV ‘181 >= 211‘;;
val it : thm = |- 181 >= 211 <=> F

Uses
Performing basic arithmetic reasoning while producing a proof.

See also
NUM_ADD_CONV, NUM_DIV_CONV, NUM_EQ_CONV, NUM_EVEN_CONV, NUM_EXP_CONV,
NUM_FACT_CONV, NUM_GT_CONV, NUM_LE_CONV, NUM_LT_CONV, NUM_MOD_CONV,
NUM_MULT_CONV, NUM_ODD_CONV, NUM_PRE_CONV, NUM_REDUCE_CONV, NUM_RED_CONV,
NUM_REL_CONV, NUM_SUB_CONV, NUM_SUC_CONV.

NUM_GT_CONV

NUM_GT_CONV : conv

Synopsis
Proves whether one numeral is greater than another.

Description
If n and m are two numerals (e.g. 0, 1, 2, 3,...), then NUM_GT_CONV ‘n > m‘ returns:

|- n > m <=> T or |- n > m <=> F

depending on whether the natural number represented by n is greater than the one represented
by m.

Failure
NUM_GT_CONV tm fails if tm is not of the form ‘n > m‘, where n and m are numerals.

Example

NUM_GT_CONV ‘3 > 2‘;;
val it : thm = |- 3 > 2 <=> T

NUM_GT_CONV ‘77 > 77‘;;
val it : thm = |- 77 > 77 <=> F

Uses
Performing basic arithmetic reasoning while producing a proof.

NUM LE CONV 417

See also
NUM_ADD_CONV, NUM_DIV_CONV, NUM_EQ_CONV, NUM_EVEN_CONV, NUM_EXP_CONV,
NUM_FACT_CONV, NUM_GE_CONV, NUM_LE_CONV, NUM_LT_CONV, NUM_MOD_CONV,
NUM_MULT_CONV, NUM_ODD_CONV, NUM_PRE_CONV, NUM_REDUCE_CONV, NUM_RED_CONV,
NUM_REL_CONV, NUM_SUB_CONV, NUM_SUC_CONV.

NUM_LE_CONV

NUM_LE_CONV : conv

Synopsis
Proves whether one numeral is less than or equal to another.

Description
If n and m are two numerals (e.g. 0, 1, 2, 3,...), then NUM_LE_CONV ‘n <= m‘ returns:

|- n <= m <=> T or |- n <= m <=> F

depending on whether the natural number represented by n is less than or equal to the one
represented by m.

Failure
NUM_LE_CONV tm fails if tm is not of the form ‘n <= m‘, where n and m are numerals.

Example

NUM_LE_CONV ‘12 <= 19‘;;
val it : thm = |- 12 <= 19 <=> T

NUM_LE_CONV ‘12345 <= 12344‘;;
val it : thm = |- 12345 <= 12344 <=> F

Uses
Performing basic arithmetic reasoning while producing a proof.

See also
NUM_ADD_CONV, NUM_DIV_CONV, NUM_EQ_CONV, NUM_EVEN_CONV, NUM_EXP_CONV,
NUM_FACT_CONV, NUM_GE_CONV, NUM_GT_CONV, NUM_LT_CONV, NUM_MOD_CONV,
NUM_MULT_CONV, NUM_ODD_CONV, NUM_PRE_CONV, NUM_REDUCE_CONV, NUM_RED_CONV,
NUM_REL_CONV, NUM_SUB_CONV, NUM_SUC_CONV.

418 Chapter 1. Pre-defined ML Identifiers

NUM_LT_CONV

NUM_LT_CONV : conv

Synopsis
Proves whether one numeral is less than another.

Description
If n and m are two numerals (e.g. 0, 1, 2, 3,...), then NUM_LT_CONV ‘n < m‘ returns:

|- n < m <=> T or |- n < m <=> F

depending on whether the natural number represented by n is less than the one represented by
m.

Failure
NUM_LT_CONV tm fails if tm is not of the form ‘n < m‘, where n and m are numerals.

Example

NUM_LT_CONV ‘42 < 42‘;;
val it : thm = |- 42 < 42 <=> F

NUM_LT_CONV ‘11 < 19‘;;
val it : thm = |- 11 < 19 <=> T

Uses
Performing basic arithmetic reasoning while producing a proof.

See also
NUM_ADD_CONV, NUM_DIV_CONV, NUM_EQ_CONV, NUM_EVEN_CONV, NUM_EXP_CONV,
NUM_FACT_CONV, NUM_GE_CONV, NUM_GT_CONV, NUM_LE_CONV, NUM_MOD_CONV,
NUM_MULT_CONV, NUM_ODD_CONV, NUM_PRE_CONV, NUM_REDUCE_CONV, NUM_RED_CONV,
NUM_REL_CONV, NUM_SUB_CONV, NUM_SUC_CONV.

NUM_MOD_CONV

NUM_MOD_CONV : term -> thm

Synopsis
Proves what the remainder on dividing one natural number numeral by another is.

NUM MULT CONV 419

Description
If n and m are numerals (e.g. 0, 1, 2, 3,...), then NUM_MOD_CONV ‘n MOD m‘ returns the theorem:

|- n MOD m = s

where s is the numeral that denotes the remainder on dividing the number denoted by n by the
one denoted by m.

Failure
NUM_MOD_CONV tm fails if tm is not of the form ‘n MOD m‘, where n and m are numerals, or if the
second numeral m is zero.

Example

NUM_MOD_CONV ‘1089 MOD 9‘;;
val it : thm = |- 1089 MOD 9 = 0

NUM_MOD_CONV ‘1234 MOD 3‘;;
val it : thm = |- 1234 MOD 3 = 1

NUM_MOD_CONV ‘11 MOD 0‘;;
Exception: Failure "NUM_MOD_CONV".

Comments
For definiteness, remainders with zero denominator are in fact designed to be zero. However, it
is perhaps bad style to rely on this fact, so the conversion just fails in this case.

See also
NUM_ADD_CONV, NUM_DIVMOD_CONV, NUM_MOD_CONV, NUM_EQ_CONV, NUM_EVEN_CONV,
NUM_EXP_CONV, NUM_FACT_CONV, NUM_GE_CONV, NUM_GT_CONV, NUM_LE_CONV,
NUM_LT_CONV, NUM_MULT_CONV, NUM_ODD_CONV, NUM_PRE_CONV, NUM_REDUCE_CONV,
NUM_RED_CONV, NUM_REL_CONV, NUM_SUB_CONV, NUM_SUC_CONV.

NUM_MULT_CONV

NUM_MULT_CONV : term -> thm

Synopsis
Proves what the product of two natural number numerals is.

Description
If n and m are numerals (e.g. 0, 1, 2, 3,...), then NUM_MULT_CONV ‘n * m‘ returns the theorem:

|- n * m = s

where s is the numeral that denotes the product of the natural numbers denoted by n and m.

420 Chapter 1. Pre-defined ML Identifiers

Failure
NUM_MULT_CONV tm fails if tm is not of the form ‘n * m‘, where n and m are numerals.

Example

NUM_MULT_CONV ‘12345 * 12345‘;;
val it : thm = |- 12345 * 12345 = 152399025

See also
NUM_ADD_CONV, NUM_DIV_CONV, NUM_EQ_CONV, NUM_EVEN_CONV,
NUM_EXP_CONV,NUM_FACT_CONV, NUM_GE_CONV, NUM_GT_CONV, NUM_LE_CONV, NUM_LT_CONV,
NUM_MOD_CONV, NUM_ODD_CONV, NUM_PRE_CONV, NUM_REDUCE_CONV, NUM_RED_CONV,
NUM_REL_CONV, NUM_SUB_CONV, NUM_SUC_CONV.

NUM_NORMALIZE_CONV

NUM_NORMALIZE_CONV : term -> thm

Synopsis
Puts natural number expressions built using addition, multiplication and powers in canonical
polynomial form.

Description
Given a term t of natural number type built up from other “atomic” components (not neces-
sarily simple variables) and numeral constants by addition, multiplication and exponentiation
by constant exponents, NUM_NORMALIZE_CONV t will return |- t = t’ where t’ is the result of
putting the term into a normalized form, essentially a multiplied-out polynomial with a specific
ordering of and within monomials.

Failure
Should never fail.

Example

NUM_NORMALIZE_CONV ‘1 + (1 + x + x EXP 2) * (x + (x * x) EXP 2)‘;;
val it : thm =
|- 1 + (1 + x + x EXP 2) * (x + (x * x) EXP 2) =

x EXP 6 + x EXP 5 + x EXP 4 + x EXP 3 + x EXP 2 + x + 1

Comments
This can be used to prove simple algebraic equations, but NUM_RING or ARITH_RULE are generally
more powerful and convenient for that. In particular, this function does not handle cutoff
subtraction or other such operations.

NUM ODD CONV 421

See also
ARITH_RULE, NUM_REDUCE_CONV, NUM_RING, REAL_POLY_CONV,
SEMIRING_NORMALIZERS_CONV.

NUM_ODD_CONV

NUM_ODD_CONV : conv

Synopsis
Proves whether a natural number numeral is odd.

Description
If n is a numeral (e.g. 0, 1, 2, 3,...), then NUM_ODD_CONV ‘n‘ returns one of the theorems:

|- ODD(n) <=> T

or

|- ODD(n) <=> F

according to whether the number denoted by n is odd.

Failure
Fails if applied to a term that is not of the form ‘ODD n‘ with n a numeral.

Example

NUM_ODD_CONV ‘ODD 123‘;;
val it : thm = |- ODD 123 <=> T

NUM_ODD_CONV ‘ODD 1234‘;;
val it : thm = |- ODD 1234 <=> F

See also
NUM_ADD_CONV, NUM_DIV_CONV, NUM_EQ_CONV, NUM_EVEN_CONV, NUM_EXP_CONV,
NUM_FACT_CONV, NUM_GE_CONV, NUM_GT_CONV, NUM_LE_CONV, NUM_LT_CONV,
NUM_MOD_CONV, NUM_MULT_CONV, NUM_PRE_CONV, NUM_REDUCE_CONV, NUM_RED_CONV,
NUM_REL_CONV, NUM_SUB_CONV, NUM_SUC_CONV.

num_of_string

num_of_string : string -> num

422 Chapter 1. Pre-defined ML Identifiers

Synopsis
Converts decimal, hex or binary string representation into number.

Description
The call num_of_string "n" converts the string "n" into an OCaml unlimited-precision number
(type num). The string may be simply a sequence of decimal digits (e.g. "123"), or a hexadecimal
representation starting with 0x as in C (e.g. "0xFF"), or a binary number starting with 0b (e.g.
"0b101").

Failure
Fails unless the string is a valid representation of one of these forms.

Example

num_of_string "0b11000000";;
val it : num = 192

See also
dest_numeral, mk_numeral.

NUM_PRE_CONV

NUM_PRE_CONV : term -> thm

Synopsis
Proves what the cutoff predecessor of a natural number numeral is.

Description
If n is a numeral (e.g. 0, 1, 2, 3,...), then NUM_PRE_CONV ‘PRE n‘ returns the theorem:

|- PRE n = s

where s is the numeral that denotes the cutoff predecessor of the natural number denoted by n
(that is, the result of subtracting 1 from it, or zero if it is already zero).

Failure
NUM_PRE_CONV tm fails if tm is not of the form ‘PRE n‘, where n is a numeral.

NUM RED CONV 423

Example

NUM_PRE_CONV ‘PRE 0‘;;
val it : thm = |- PRE 0 = 0

NUM_PRE_CONV ‘PRE 12345‘;;
val it : thm = |- PRE 12345 = 12344

See also
NUM_ADD_CONV, NUM_DIV_CONV, NUM_EQ_CONV, NUM_EVEN_CONV, NUM_EXP_CONV,
NUM_FACT_CONV, NUM_GE_CONV, NUM_GT_CONV, NUM_LE_CONV, NUM_LT_CONV,
NUM_MOD_CONV, NUM_MULT_CONV, NUM_ODD_CONV, NUM_REDUCE_CONV, NUM_RED_CONV,
NUM_REL_CONV, NUM_SUB_CONV, NUM_SUC_CONV.

NUM_RED_CONV

NUM_RED_CONV : term -> thm

Synopsis
Performs one arithmetic or relational operation on natural number numerals by proof.

Description
When applied to a term that is either a unary operator application ‘SUC n‘, ‘PRE n‘ or
‘FACT n‘ for a numeral n, or a relational operator application ‘m < n‘, ‘m <= n‘, ‘m > n‘,
‘m >= n‘ or ‘m = n‘, or a binary arithmetic operation ‘m + n‘, ‘m - n‘, ‘m * n‘, ‘m EXP n‘,
‘m DIV n‘ or ‘m MOD n‘ applied to numerals m and n, the conversion NUM_RED_CONV will ‘reduce’
it and return a theorem asserting its equality to the reduced form.

Failure
NUM_RED_CONV tm fails if tm is not of one of the forms specified.

Example

NUM_RED_CONV ‘2 + 2‘;;
val it : thm = |- 2 + 2 = 4

NUM_RED_CONV ‘1089 < 2231‘;;
val it : thm = |- 1089 < 2231 <=> T

NUM_RED_CONV ‘FACT 11‘;;
val it : thm = |- FACT 11 = 39916800

Note that the immediate operands must be numerals. For deeper reduction of combinations

424 Chapter 1. Pre-defined ML Identifiers

of numerals, use NUM_REDUCE_CONV:

NUM_RED_CONV ‘(432 - 234) + 198‘;;
Exception: Failure "REWRITES_CONV".

NUM_REDUCE_CONV ‘(432 - 234) + 198‘;;
val it : thm = |- 432 - 234 + 198 = 396

Uses
Access to this ‘one-step’ reduction is not usually especially useful, but if you want to add a
conversion conv for some other operator on numbers, you can conveniently incorporate it into
NUM_REDUCE_CONV with

let NUM_REDUCE_CONV’ = DEPTH_CONV(REAL_RAT_RED_CONV ORELSEC conv);;

See also
NUM_ADD_CONV, NUM_DIV_CONV, NUM_EQ_CONV, NUM_EVEN_CONV, NUM_EXP_CONV,
NUM_FACT_CONV, NUM_GE_CONV, NUM_GT_CONV, NUM_LE_CONV, NUM_LT_CONV,
NUM_MOD_CONV, NUM_MULT_CONV, NUM_ODD_CONV, NUM_PRE_CONV, NUM_REDUCE_CONV,
NUM_REL_CONV, NUM_SUB_CONV, NUM_SUC_CONV, REAL_RAT_RED_CONV.

NUM_REDUCE_CONV

NUM_REDUCE_CONV : term -> thm

Synopsis
Evaluate subexpressions built up from natural number numerals, by proof.

Description
When applied to a term, NUM_REDUCE_CONV performs a recursive bottom-up evaluation by proof
of subterms built from numerals using the unary operators ‘SUC’, ‘PRE’ and ‘FACT’ and the binary
arithmetic (‘+’, ‘-’, ‘*’, ‘EXP’, ‘DIV’, ‘MOD’) and relational (‘<’, ‘<=’, ‘>’, ‘>=’, ‘=’) operators, as well
as propagating constants through logical operations, e.g. T /\ x <=> x, returning a theorem
that the original and reduced terms are equal.

Failure
Never fails, but may have no effect.

NUM REDUCE TAC 425

Example

NUM_REDUCE_CONV ‘(432 - 234) + 198‘;;
val it : thm = |- 432 - 234 + 198 = 396

NUM_REDUCE_CONV
‘if 100 < 200 then 2 EXP (8 DIV 2) else 3 EXP ((26 EXP 0) * 3)‘;;

val it : thm =
|- (if 100 < 200 then 2 EXP (8 DIV 2) else 3 EXP (26 EXP 0 * 3)) = 16

NUM_REDUCE_CONV ‘(!x. f(x + 2 + 2) < f(x + 0)) ==> f(12 * x) = f(12 * 12)‘;;
val it : thm =
|- (!x. f (x + 2 + 2) < f (x + 0)) ==> f (12 * x) = f (12 * 12) <=>

(!x. f (x + 4) < f (x + 0)) ==> f (12 * x) = f 144

See also
NUM_ADD_CONV, NUM_DIV_CONV, NUM_EQ_CONV, NUM_EVEN_CONV, NUM_EXP_CONV,
NUM_FACT_CONV, NUM_GE_CONV, NUM_GT_CONV, NUM_LE_CONV, NUM_LT_CONV,
NUM_MOD_CONV, NUM_MULT_CONV, NUM_ODD_CONV, NUM_PRE_CONV, NUM_REDUCE_TAC,
NUM_RED_CONV, NUM_REL_CONV, NUM_SUB_CONV, NUM_SUC_CONV, REAL_RAT_REDUCE_CONV.

NUM_REDUCE_TAC

NUM_REDUCE_TAC : tactic

Synopsis
Evaluate subexpressions of goal built up from natural number numerals.

Description
When applied to a goal, NUM_REDUCE_TAC performs a recursive bottom-up evaluation by proof
of subterms of the conclusion built from numerals using the unary operators ‘SUC’, ‘PRE’ and
‘FACT’ and the binary arithmetic (‘+’, ‘-’, ‘*’, ‘EXP’, ‘DIV’, ‘MOD’) and relational (‘<’, ‘<=’, ‘>’, ‘>=’,
‘=’) operators, as well as propagating constants through logical operations, e.g. T /\ x <=> x,
returning a new subgoal where all these subexpressions are reduced.

Failure
Never fails, but may have no effect.

426 Chapter 1. Pre-defined ML Identifiers

Example

g ‘1 EXP 3 + 12 EXP 3 = 1729 /\ 9 EXP 3 + 10 EXP 3 = 1729‘;;
val it : goalstack = 1 subgoal (1 total)

‘1 EXP 3 + 12 EXP 3 = 1729 /\ 9 EXP 3 + 10 EXP 3 = 1729‘

e NUM_REDUCE_TAC;;
val it : goalstack = No subgoals

See also
NUM_ADD_CONV, NUM_DIV_CONV, NUM_EQ_CONV, NUM_EVEN_CONV, NUM_EXP_CONV,
NUM_FACT_CONV, NUM_GE_CONV, NUM_GT_CONV, NUM_LE_CONV, NUM_LT_CONV,
NUM_MOD_CONV, NUM_MULT_CONV, NUM_ODD_CONV, NUM_PRE_CONV, NUM_REDUCE_CONV,
NUM_RED_CONV, NUM_REL_CONV, NUM_SUB_CONV, NUM_SUC_CONV, REAL_RAT_REDUCE_CONV.

NUM_REL_CONV

NUM_REL_CONV : term -> thm

Synopsis
Performs relational operation on natural number numerals by proof.

Description
When applied to a term that is a relational operator application ‘m < n‘, ‘m <= n‘, ‘m > n‘,
‘m >= n‘ or ‘m = n‘ applied to numerals m and n, the conversion NUM_REL_CONV will ‘reduce’
it and return a theorem asserting its equality to ‘T‘ or ‘F‘ as appropriate.

Failure
NUM_REL_CONV tm fails if tm is not of one of the forms specified.

Example

NUM_REL_CONV ‘1089 < 2231‘;;
val it : thm = |- 1089 < 2231 <=> T

NUM_REL_CONV ‘1089 >= 2231‘;;
val it : thm = |- 1089 >= 2231 <=> F

Note that the immediate operands must be numerals. For deeper reduction of combinations

NUM RING 427

of numerals, use NUM_REDUCE_CONV.

NUM_REL_CONV ‘2 + 2 = 4‘;;
Exception: Failure "REWRITES_CONV".

NUM_REDUCE_CONV ‘2 + 2 = 4‘;;
val it : thm = |- 2 + 2 = 4 <=> T

See also
NUM_ADD_CONV, NUM_DIV_CONV, NUM_EQ_CONV, NUM_EVEN_CONV, NUM_EXP_CONV,
NUM_FACT_CONV, NUM_GE_CONV, NUM_GT_CONV, NUM_LE_CONV, NUM_LT_CONV,
NUM_MOD_CONV, NUM_MULT_CONV, NUM_ODD_CONV, NUM_PRE_CONV, NUM_REDUCE_CONV,
NUM_RED_CONV, NUM_SUB_CONV, NUM_SUC_CONV, REAL_RAT_RED_CONV.

NUM_RING

NUM_RING : term -> thm

Synopsis
Ring decision procedure instantiated to natural numbers.

Description
The rule NUM_RING should be applied to a formula that, after suitable normalization, can be
considered a universally quantified Boolean combination of equations and inequations between
terms of type :num. If that formula holds in all integral domains, NUM_RING will prove it. Any
“alien” atomic formulas that are not natural number equations will not contribute to the proof
but will not in themselves cause an error. The function is a particular instantiation of RING,
which is a more generic procedure for ring and semiring structures.

Failure
Fails if the formula is unprovable by the methods employed. This does not necessarily mean
that it is not valid for :num, but rather that it is not valid on all integral domains (see below).

428 Chapter 1. Pre-defined ML Identifiers

Example
The following formula is proved because it holds in all integral domains:

NUM_RING ‘(x + y) EXP 2 = x EXP 2 ==> y = 0 \/ y + 2 * x = 0‘;;
1 basis elements and 0 critical pairs
Translating certificate to HOL inferences
val it : thm = |- (x + y) EXP 2 = x EXP 2 ==> y = 0 \/ y + 2 * x = 0

but the following isn’t, even though over :num it is equivalent:

NUM_RING ‘(x + y) EXP 2 = x EXP 2 ==> y = 0 \/ x = 0‘;;
2 basis elements and 1 critical pairs
3 basis elements and 2 critical pairs
3 basis elements and 1 critical pairs
4 basis elements and 1 critical pairs
4 basis elements and 0 critical pairs
Exception: Failure "find".

Comments
Note that since we are working over :num, which is not really a ring, cutoff subtraction is not
true ring subtraction and the ability of NUM_RING to handle it is limited. Instantiations of RING
to actual rings, such as REAL_RING, have no such problems.

See also
ARITH_RULE, ARITH_TAC, ideal_cofactors, NUM_NORMALIZE_CONV, REAL_RING, RING.

NUM_SIMPLIFY_CONV

NUM_SIMPLIFY_CONV : conv

Synopsis
Eliminates predecessor, cutoff subtraction, even and odd, division and modulus.

Description
When applied to a term, NUM_SIMPLIFY_CONV tries to get rid of instances of the natural number
operators PRE, DIV, MOD and - (which is cutoff subtraction), as well as the EVEN and ODD pred-
icates, by rephrasing properties in terms of multiplication and addition, adding new variables
if necessary. Some attempt is made to introduce quantifiers so that they are effectively univer-
sally quantified. However, the input formula should be in NNF for this aspect to be completely
reliable.

Failure
Should never fail, but in obscure situations may leave some instance of the troublesome operators
(for example, if they are mapped over a list instead of simply applied).

NUM SUB CONV 429

Example

NUM_SIMPLIFY_CONV ‘~(n = 0) ==> PRE(n) + 1 = n‘;;
val it : thm =
|- ~(n = 0) ==> PRE n + 1 = n <=>

(!m. ~(n = SUC m) /\ (~(m = 0) \/ ~(n = 0)) \/ n = 0 \/ m + 1 = n)

Uses
Not really intended for most users, but a prelude inside several automated routines such as
ARITH_RULE. It is because of this preprocessing step that such rules can handle these troublesome
operators to some extent, e.g.

ARITH_RULE ‘~(n = 0) ==> n DIV 3 < n‘;;
val it : thm = |- ~(n = 0) ==> n DIV 3 < n

See also
ARITH_CONV, ARITH_RULE, ARITH_TAC, NUM_RING.

NUM_SUB_CONV

NUM_SUB_CONV : term -> thm

Synopsis
Proves what the cutoff difference of two natural number numerals is.

Description
If n and m are numerals (e.g. 0, 1, 2, 3,...), then NUM_SUB_CONV ‘n - m‘ returns the theorem:

|- n - m = s

where s is the numeral that denotes the result of subtracting the natural number denoted by
m from the one denoted by n, returning zero for all cases where m is greater than n (cutoff
subtraction over the natural numbers).

Failure
NUM_SUB_CONV tm fails if tm is not of the form ‘n - m‘, where n and m are numerals.

430 Chapter 1. Pre-defined ML Identifiers

Example

NUM_SUB_CONV ‘4321 - 1234‘;;
val it : thm = |- 4321 - 1234 = 3087

NUM_SUB_CONV ‘77 - 88‘;;
val it : thm = |- 77 - 88 = 0

Comments
Note that subtraction over type :num is defined as this cutoff subtraction. If you want a number
system with negative numbers, use :int or :real.

See also
NUM_ADD_CONV, NUM_DIV_CONV, NUM_EQ_CONV, NUM_EVEN_CONV, NUM_EXP_CONV,
NUM_FACT_CONV, NUM_GE_CONV, NUM_GT_CONV, NUM_LE_CONV, NUM_LT_CONV,
NUM_MOD_CONV, NUM_MULT_CONV, NUM_ODD_CONV, NUM_PRE_CONV, NUM_REDUCE_CONV,
NUM_RED_CONV, NUM_REL_CONV, NUM_SUC_CONV.

NUM_SUC_CONV

NUM_SUC_CONV : term -> thm

Synopsis
Proves what the successor of a natural number numeral is.

Description
If n is a numeral (e.g. 0, 1, 2, 3,...), then NUM_SUC_CONV ‘SUC n‘ returns the theorem:

|- SUC n = s

where s is the numeral that denotes the successor of the natural number denoted by n (that is,
the result of adding 1 to it).

Failure
NUM_SUC_CONV tm fails if tm is not of the form ‘SUC n‘, where n is a numeral.

Example

NUM_SUC_CONV ‘SUC 0‘;;
val it : thm = |- SUC 0 = 1

NUM_SUC_CONV ‘SUC 12345‘;;
val it : thm = |- SUC 12345 = 12346

See also
NUM_ADD_CONV, num_CONV, NUM_DIV_CONV, NUM_EQ_CONV, NUM_EVEN_CONV, NUM_EXP_CONV,
NUM_FACT_CONV, NUM_GE_CONV, NUM_GT_CONV, NUM_LE_CONV, NUM_LT_CONV,

NUM TO INT CONV 431

NUM_MOD_CONV, NUM_MULT_CONV, NUM_ODD_CONV, NUM_PRE_CONV, NUM_REDUCE_CONV,
NUM_RED_CONV, NUM_REL_CONV, NUM_SUB_CONV.

NUM_TO_INT_CONV

NUM_TO_INT_CONV : conv

Synopsis
Maps an assertion over natural numbers to equivalent over reals.

Description
Given a term, with arbitrary quantifier alternations over the natural numbers, NUM_TO_INT_CONV
proves its equivalence to a term involving integer operations and quantifiers. Some preprocessing
removes certain natural-specific operations such as PRE and cutoff subtraction, quantifiers are
systematically relativized to the set of positive integers.

Failure
Never fails.

Example

NUM_TO_INT_CONV ‘n - m <= n‘;;
val it : thm =
|- n - m <= n <=>

(!i. ~(&0 <= i) \/
(~(&m = &n + i) \/ &0 <= &n) /\ (~(&n = &m + i) \/ i <= &n))

Uses
Mostly intended as a preprocessing step to allow rules for the integers to deduce facts about
natural numbers too.

See also
ARITH_RULE, INT_ARITH, INT_OF_REAL_THM, NUM_SIMPLIFY_CONV.

occurs_in

occurs_in : hol_type -> hol_type -> bool

Synopsis
Tests if one type occurs in another.

432 Chapter 1. Pre-defined ML Identifiers

Description
The call occurs_in ty1 ty2 returns true if ty1 occurs as a subtype of ty2, including the case
where ty1 and ty2 are the same. If returns false otherwise. The type ty1 does not have to be
a type variable.

Failure
Never fails.

Example

occurs_in ‘:A‘ ‘:(A)list->bool‘;;
val it : bool = true
occurs_in ‘:num->num‘ ‘:num->num->bool‘;;
val it : bool = false
occurs_in ‘:num->bool‘ ‘:num->num->bool‘;;
val it : bool = true

See also
free_in, tyvars, vfree_in.

o

o : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b

Synopsis
Composes two functions: (f o g) x = f (g x).

Failure
Never fails.

See also
C, F_F, I, K, W.

ONCE_ASM_REWRITE_RULE

ONCE_ASM_REWRITE_RULE : thm list -> thm -> thm

Synopsis
Rewrites a theorem once including built-in rewrites and the theorem’s assumptions.

ONCE ASM REWRITE TAC 433

Description
ONCE_ASM_REWRITE_RULE applies all possible rewrites in one step over the subterms in the con-
clusion of the theorem, but stops after rewriting at most once at each subterm. This strategy is
specified as for ONCE_DEPTH_CONV. For more details see ASM_REWRITE_RULE, which does search
recursively (to any depth) for matching subterms. The general strategy for rewriting theorems
is described under GEN_REWRITE_RULE.

Failure
Never fails.

Uses
This tactic is used when rewriting with the hypotheses of a theorem (as well as a given list of
theorems and basic_rewrites), when more than one pass is not required or would result in
divergence.

See also
ASM_REWRITE_RULE, GEN_REWRITE_RULE, ONCE_DEPTH_CONV, ONCE_REWRITE_RULE,
PURE_ASM_REWRITE_RULE, PURE_ONCE_ASM_REWRITE_RULE, PURE_REWRITE_RULE,
REWRITE_RULE.

ONCE_ASM_REWRITE_TAC

ONCE_ASM_REWRITE_TAC : thm list -> tactic

Synopsis
Rewrites a goal once including built-in rewrites and the goal’s assumptions.

Description
ONCE_ASM_REWRITE_TAC behaves in the same way as ASM_REWRITE_TAC, but makes one pass
only through the term of the goal. The order in which the given theorems are applied is an
implementation matter and the user should not depend on any ordering. See GEN_REWRITE_TAC
for more information on rewriting a goal in HOL.

Failure
ONCE_ASM_REWRITE_TAC does not fail and, unlike ASM_REWRITE_TAC, does not diverge. The
resulting tactic may not be valid, if the rewrites performed add new assumptions to the theorem
eventually proved.

Example
The use of ONCE_ASM_REWRITE_TAC to control the amount of rewriting performed is illustrated

434 Chapter 1. Pre-defined ML Identifiers

on this goal:

g ‘a = b /\ b = c ==> (P a b <=> P c a)‘;;
Warning: inventing type variables
Warning: Free variables in goal: P, a, b, c
val it : goalstack = 1 subgoal (1 total)

‘a = b /\ b = c ==> (P a b <=> P c a)‘

e STRIP_TAC;;
val it : goalstack = 1 subgoal (1 total)

0 [‘a = b‘]
1 [‘b = c‘]

‘P a b <=> P c a‘

The application of ONCE_ASM_REWRITE_TAC rewrites each applicable subterm just once:

e(ONCE_ASM_REWRITE_TAC[]);;
val it : goalstack = 1 subgoal (1 total)

0 [‘a = b‘]
1 [‘b = c‘]

‘P b c <=> P c b‘

Uses
ONCE_ASM_REWRITE_TAC can be applied once or iterated as required to give the effect of ASM_REWRITE_TAC,
either to avoid divergence or to save inference steps.

See also
basic_rewrites, ASM_REWRITE_TAC, GEN_REWRITE_TAC, ONCE_ASM_REWRITE_TAC,
ONCE_REWRITE_TAC, PURE_ASM_REWRITE_TAC, PURE_ONCE_ASM_REWRITE_TAC,
PURE_ONCE_REWRITE_TAC, PURE_REWRITE_TAC, REWRITE_TAC, SUBST_TAC.

ONCE_ASM_SIMP_TAC

ONCE_ASM_SIMP_TAC : thm list -> tactic

Synopsis
Simplify toplevel applicable terms in goal using assumptions and context.

ONCE DEPTH CONV 435

Description
A call to ONCE_ASM_SIMP_TAC[theorems] will apply conditional contextual rewriting with theorems
and the current assumptions of the goal to the goal’s conclusion. The ONCE prefix means that
the toplevel simplification is only applied once to the toplevel terms, though any conditional
subgoals generated are then simplfied repeatedly. For more details on this kind of rewrit-
ing, see SIMP_CONV. If the extra generality of contextual conditional rewriting is not needed,
ONCE_ASM_REWRITE_TAC is usually more efficient.

Failure
Never fails, but may loop indefinitely.

See also
ASM_SIMP_TAC, ONCE_ASM_REWRITE_TAC, SIMP_CONV, SIMP_TAC, REWRITE_TAC.

ONCE_DEPTH_CONV

ONCE_DEPTH_CONV : conv -> conv

Synopsis
Applies a conversion once to the first suitable sub-term(s) encountered in top-down order.

Description
ONCE_DEPTH_CONV c tm applies the conversion c once to the first subterm or subterms encoun-
tered in a top-down ‘parallel’ search of the term tm for which c succeeds. If the conversion c
fails on all subterms of tm, the theorem returned is |- tm = tm.

Failure
Never fails.

Example
The following example shows how ONCE_DEPTH_CONV applies a conversion to only the first suitable
subterm(s) found in a top-down search:

ONCE_DEPTH_CONV BETA_CONV ‘(\x. (\y. y + x) 1) 2‘;;
val it : thm = |- (\x. (\y. y + x) 1) 2 = (\y. y + 2) 1

Here, there are two beta-redexes in the input term. One of these occurs within the other, so
BETA_CONV is applied only to the outermost one.

Note that the supplied conversion is applied by ONCE_DEPTH_CONV to all independent subterms
at which it succeeds. That is, the conversion is applied to every suitable subterm not contained
in some other subterm for which the conversions also succeeds, as illustrated by the following
example:

ONCE_DEPTH_CONV num_CONV ‘(\x. (\y. y + x) 1) 2‘;;
val it : thm = |- (\x. (\y. y + x) 1) 2 = (\x. (\y. y + x) (SUC 0)) (SUC 1)

Here num_CONV is applied to both 1 and 2, since neither term occurs within a larger subterm for
which the conversion num_CONV succeeds.

436 Chapter 1. Pre-defined ML Identifiers

Uses
ONCE_DEPTH_CONV is frequently used when there is only one subterm to which the desired con-
version applies. This can be much faster than using other functions that attempt to apply a
conversion to all subterms of a term (e.g. DEPTH_CONV). If, for example, the current goal in a
goal-directed proof contains only one beta-redex, and one wishes to apply BETA_CONV to it, then
the tactic

CONV_TAC (ONCE_DEPTH_CONV BETA_CONV)

may, depending on where the beta-redex occurs, be much faster than

CONV_TAC (TOP_DEPTH_CONV BETA_CONV)

ONCE_DEPTH_CONV c may also be used when the supplied conversion c never fails, in which case
using a conversion such as DEPTH_CONV c, which applies c repeatedly would never terminate.

See also
DEPTH_BINOP_CONV, DEPTH_CONV, PROP_ATOM_CONV, REDEPTH_CONV, TOP_DEPTH_CONV,
TOP_SWEEP_CONV.

ONCE_DEPTH_SQCONV

ONCE_DEPTH_SQCONV : strategy

Synopsis
Applies simplification to the first suitable sub-term(s) encountered in top-down order.

Description
HOL Light’s simplification functions (e.g. SIMP_TAC) have their traversal algorithm controlled by
a “strategy”. ONCE_DEPTH_SQCONV is a strategy corresponding to ONCE_DEPTH_CONV for ordinary
conversions: simplification is applied to the first suitable subterm(s) encountered in top-down
order.

Failure
Not applicable.

See also
DEPTH_SQCONV, ONCE_DEPTH_CONV, REDEPTH_SQCONV, TOP_DEPTH_SQCONV,
TOP_SWEEP_SQCONV.

ONCE_REWRITE_CONV

ONCE_REWRITE_CONV : thm list -> conv

ONCE REWRITE RULE 437

Synopsis
Rewrites a term, including built-in tautologies in the list of rewrites.

Description
ONCE_REWRITE_CONV searches for matching subterms and applies rewrites once at each sub-
term, in the manner specified for ONCE_DEPTH_CONV. The rewrites which are used are obtained
from the given list of theorems and the set of tautologies stored in basic_rewrites. See
GEN_REWRITE_CONV for the general method of using theorems to rewrite a term.

Failure
ONCE_REWRITE_CONV does not fail; it does not diverge.

Uses
ONCE_REWRITE_CONV can be used to rewrite a term when recursive rewriting is not desired.

See also
GEN_REWRITE_CONV, PURE_ONCE_REWRITE_CONV, PURE_REWRITE_CONV, REWRITE_CONV.

ONCE_REWRITE_RULE

ONCE_REWRITE_RULE : thm list -> thm -> thm

Synopsis
Rewrites a theorem, including built-in tautologies in the list of rewrites.

Description
ONCE_REWRITE_RULE searches for matching subterms and applies rewrites once at each sub-
term, in the manner specified for ONCE_DEPTH_CONV. The rewrites which are used are obtained
from the given list of theorems and the set of tautologies stored in basic_rewrites. See
GEN_REWRITE_RULE for the general method of using theorems to rewrite an object theorem.

Failure
ONCE_REWRITE_RULE does not fail; it does not diverge.

Uses
ONCE_REWRITE_RULE can be used to rewrite a theorem when recursive rewriting is not desired.

See also
ASM_REWRITE_RULE, GEN_REWRITE_RULE, ONCE_ASM_REWRITE_RULE,
PURE_ONCE_REWRITE_RULE, PURE_REWRITE_RULE, REWRITE_RULE.

ONCE_REWRITE_TAC

ONCE_REWRITE_TAC : thm list -> tactic

438 Chapter 1. Pre-defined ML Identifiers

Synopsis
Rewrites a goal only once with basic_rewrites and the supplied list of theorems.

Description
A set of equational rewrites is generated from the theorems supplied by the user and the set
of basic tautologies, and these are used to rewrite the goal at all subterms at which a match
is found in one pass over the term part of the goal. The result is returned without recursively
applying the rewrite theorems to it. The order in which the given theorems are applied is an
implementation matter and the user should not depend on any ordering. More details about
rewriting can be found under GEN_REWRITE_TAC.

Failure
ONCE_REWRITE_TAC does not fail and does not diverge. It results in an invalid tactic if any of
the applied rewrites introduces new assumptions to the theorem eventually proved.

Example
Given a theorem list:

let thl = map (num_CONV o mk_small_numeral) (1--3);;
val thl : thm list = [|- 1 = SUC 0; |- 2 = SUC 1; |- 3 = SUC 2]

and the following goal:

g ‘0 < 3‘;;
val it : goalstack = 1 subgoal (1 total)

‘0 < 3‘

the tactic ONCE_REWRITE_TAC thl performs a single rewrite

e(ONCE_REWRITE_TAC thl);;
val it : goalstack = 1 subgoal (1 total)

‘0 < SUC 2‘

in contrast to REWRITE_TAC thl which would rewrite the goal repeatedly into this form:

e(REWRITE_TAC thl);;
val it : goalstack = 1 subgoal (1 total)

‘0 < SUC (SUC (SUC 0))‘

Uses
ONCE_REWRITE_TAC can be used iteratively to rewrite when recursive rewriting would diverge.
It can also be used to save inference steps.

See also
ASM_REWRITE_TAC, ONCE_ASM_REWRITE_TAC, PURE_ASM_REWRITE_TAC,
PURE_ONCE_REWRITE_TAC, PURE_REWRITE_TAC, REWRITE_TAC, SUBST_TAC.

ONCE SIMP CONV 439

ONCE_SIMP_CONV

ONCE_SIMP_CONV : thm list -> conv

Synopsis
Simplify a term once by conditional contextual rewriting.

Description
A call ONCE_SIMP_CONV thl tm will return |- tm = tm’ where tm’ results from applying the
theorems in thl as (conditional) rewrite rules, as well as built-in simplifications (see basic_rewrites
and basic_convs). For more details on this kind of conditional rewriting, see SIMP_TAC. The
ONCE prefix indicates that the first applicable terms in a toplevel term will be simplified once
only, though conditional subgoals generated will be simplified repeatedly.

Failure
Never fails, but may return a reflexive theorem |- tm = tm if no simplifications can be made.

See also
ASM_SIMP_TAC, SIMP_RULE, SIMP_TAC.

ONCE_SIMPLIFY_CONV

ONCE_SIMPLIFY_CONV : simpset -> thm list -> conv

Synopsis
General top-level simplification with arbitrary simpset.

Description
In their maximal generality, simplification operations in HOL Light (as invoked by SIMP_TAC) are
controlled by a ‘simpset’. Given a simpset ss and an additional list of theorems thl to be used
as (conditional or unconditional) rewrite rules, SIMPLIFY_CONV ss thl gives a simplification
conversion with a top-down single simplification traversal strategy (ONCE_DEPTH_SQCONV) and a
nesting limit of 1 for the recursive solution of subconditions by further simplification.

Failure
Never fails.

Uses
Usually some other interface to the simplifier is more convenient, but you may want to use this
to employ a customized simpset.

440 Chapter 1. Pre-defined ML Identifiers

See also
GEN_SIMPLIFY_CONV, ONCE_DEPTH_SQCONV, SIMPLIFY_CONV, SIMP_CONV, SIMP_RULE,
SIMP_TAC.

ONCE_SIMP_RULE

ONCE_SIMP_RULE : thm list -> thm -> thm

Synopsis
Simplify conclusion of a theorem once by conditional contextual rewriting.

Description
A call ONCE_SIMP_RULE thl (|- tm) will return |- tm’ where tm’ results from applying the
theorems in thl as (conditional) rewrite rules, as well as built-in simplifications (see basic_rewrites
and basic_convs). For more details on this kind of conditional rewriting, see SIMP_CONV. The
ONCE prefix indicates that the first applicable terms in a toplevel term will be simplified once
only, though conditional subgoals generated will be simplified repeatedly.

Failure
Never fails, but may return the initial theorem unchanged.

See also
ASM_SIMP_TAC, SIMP_CONV, SIMP_RULE, SIMP_TAC.

ONCE_SIMP_TAC

ONCE_SIMP_TAC : thm list -> tactic

Synopsis
Simplify conclusion of goal once by conditional contextual rewriting.

Description
When applied to a goal A ?- g, the tactic ONCE_SIMP_TAC thl returns a new goal A ?- g’
where g’ results from applying the theorems in thl as (conditional) rewrite rules, as well as
built-in simplifications (see basic_rewrites and basic_convs). For more details on this kind
of conditional rewriting, see SIMP_CONV. The ONCE prefix indicates that thefirst applicable terms
in a toplevel term will be simplified once only, though conditional subgoals generated will be
simplified repeatedly.

Failure
Never fails, though may not change the goal if no simplifications are applicable.

ORDERED IMP REWR CONV 441

See also
ONCE_SIMP_CONV, ONCE_SIMP_RULE, SIMP_CONV, SIMP_TAC.

ORDERED_IMP_REWR_CONV

ORDERED_IMP_REWR_CONV : (term -> term -> bool) -> thm -> term -> thm

Synopsis
Basic conditional rewriting conversion restricted by term order.

Description
Given an ordering relation ord, an equational theorem A |- !x1...xn. p ==> s = t that
expresses a conditional rewrite rule, the conversion ORDERED_IMP_REWR_CONV gives a conversion
that applied to any term s’ will attempt to match the left-hand side of the equation s = t to
s’, and return the corresponding theorem A |- p’ ==> s’ = t’, but only if ord ‘s’‘ ‘t’‘,
i.e. if the left-hand side is “greater” in the ordering than the right-hand side, after instantiation.
If the ordering condition is violated, it will fail, even if the match is fine.

Failure
Fails if the theorem is not of the right form or the two terms cannot be matched, for example
because the variables that need to be instantiated are free in the hypotheses A, or if the ordering
requirement fails.

Example

Uses
Applying conditional rewrite rules that are permutative and would loop without some ordering
restriction. Applied automatically to some permutative rewrite rules in the simplifier, e.g. in
SIMP_CONV.

See also
IMP_REWR_CONV, ORDERED_REWR_CONV, REWR_CONV, SIMP_CONV, term_order.

ORDERED_REWR_CONV

ORDERED_REWR_CONV : (term -> term -> bool) -> thm -> term -> thm

Synopsis
Basic rewriting conversion restricted by term order.

442 Chapter 1. Pre-defined ML Identifiers

Description
Given an ordering relation ord, an equational theorem A |- !x1...xn. s = t that expresses a
rewrite rule, the conversion ORDERED_REWR_CONV gives a conversion that applied to any term s’
will attempt to match the left-hand side of the equation s = t to s’, and return the correspond-
ing theorem A |- s’ = t’, but only if ord ‘s’‘ ‘t’‘, i.e. if the left-hand side is “greater” in
the ordering than the right-hand side, after instantiation. If the ordering condition is violated,
it will fail, even if the match is fine.

Failure
Fails if the theorem is not of the right form or the two terms cannot be matched, for example
because the variables that need to be instantiated are free in the hypotheses A, or if the ordering
requirement fails.

Example
We apply the permutative rewrite:

ADD_SYM;;
val it : thm = |- !m n. m + n = n + m

with the default term ordering term_order designed for this kind of application. Note that it
applies in one direction:

ORDERED_REWR_CONV term_order ADD_SYM ‘1 + 2‘;;
val it : thm = |- 1 + 2 = 2 + 1

but not the other:

ORDERED_REWR_CONV term_order ADD_SYM ‘2 + 1‘;;
Exception: Failure "ORDERED_REWR_CONV: wrong orientation".

Uses
Applying conditional rewrite rules that are permutative and would loop without some restriction.
Thanks to the fact that higher-level rewriting operations like REWRITE_CONV and REWRITE_TAC
have ordering built in for permutative rewrite rules, rewriting with theorem like ADD_AC will
effectively normalize terms.

See also
IMP_REWR_CONV, ORDERED_IMP_REWR_CONV, REWR_CONV, SIMP_CONV, term_order.

orelsec_

orelsec_ : conv -> conv -> conv

ORELSEC 443

Synopsis
Non-infix version of ORELSEC.

See also
ORELSEC.

ORELSEC

(ORELSEC) : conv -> conv -> conv

Synopsis
Applies the first of two conversions that succeeds.

Description
(c1 ORELSEC c2) ‘t‘ returns the result of applying the conversion c1 to the term ‘t‘ if this
succeeds. Otherwise (c1 ORELSEC c2) ‘t‘ returns the result of applying the conversion c2 to
the term ‘t‘.

Failure
(c1 ORELSEC c2) ‘t‘ fails both c1 and c2 fail when applied to ‘t‘.

Example

(NUM_ADD_CONV ORELSEC NUM_MULT_CONV) ‘2 + 2‘;;
val it : thm = |- 2 + 2 = 4

(NUM_ADD_CONV ORELSEC NUM_MULT_CONV) ‘1 * 1‘;;
val it : thm = |- 1 * 1 = 1

See also
FIRST_CONV, THENC.

orelse_

orelse_ : tactic -> tactic -> tactic

Synopsis
Non-infix version of ORELSE.

444 Chapter 1. Pre-defined ML Identifiers

See also
ORELSE.

ORELSE

(ORELSE) : tactic -> tactic -> tactic

Synopsis
Applies first tactic, and iff it fails, applies the second instead.

Description
If t1 and t2 are tactics, t1 ORELSE t2 is a tactic which applies t1 to a goal, and iff it fails,
applies t2 to the goal instead.

Failure
The application of ORELSE to a pair of tactics never fails. The resulting tactic fails if both t1
and t2 fail when applied to the relevant goal.

Example
The tactic STRIP_TAC breaks down the logical structure of a goal in various ways, e.g. strip-
ping off universal quantifiers and putting the antecedent of implicational conclusions into the
assumptions. However it does not break down equivalences into two implications, as EQ_TAC
does. So you might start breaking down a goal corresponding to the inbuilt theorem MOD_EQ_0

g ‘!m n. ~(n = 0) ==> ((m MOD n = 0) <=> (?q. m = q * n))‘;;
...

as follows

e(REPEAT(STRIP_TAC ORELSE EQ_TAC));;
val it : goalstack = 2 subgoals (2 total)

0 [‘~(n = 0)‘]
1 [‘m = q * n‘]

‘m MOD n = 0‘

0 [‘~(n = 0)‘]
1 [‘m MOD n = 0‘]

‘?q. m = q * n‘

See also
EVERY, FIRST, THEN.

orelse tcl 445

orelse_tcl_

orelse_tcl_ : thm_tactical -> thm_tactical -> thm_tactical

Synopsis
Non-infix version of ORELSE_TCL.

See also
ORELSE_TCL.

ORELSE_TCL

(ORELSE_TCL) : thm_tactical -> thm_tactical -> thm_tactical

Synopsis
Applies a theorem-tactical, and if it fails, tries a second.

Description
When applied to two theorem-tacticals, ttl1 and ttl2, a theorem-tactic ttac, and a theorem
th, if ttl1 ttac th succeeds, that gives the result. If it fails, the result is ttl2 ttac th, which
may itself fail.

Failure
ORELSE_TCL fails if both the theorem-tacticals fail when applied to the given theorem-tactic and
theorem.

See also
EVERY_TCL, FIRST_TCL, THEN_TCL.

||

(||) : (’a -> ’b) -> (’a -> ’b) -> ’a -> ’b

Synopsis
Produce alternative composition of two parsers.

446 Chapter 1. Pre-defined ML Identifiers

Description
If p1 and p2 are two parsers, p1 || p2 is a new parser that first tries to parse the input using
p1, and if that fails with exception Noparse, tries p2 instead. The output is whatever parse
result was achieved together with the unparsed input.

Failure
Never fails.

Comments
This is one of a suite of combinators for manipulating “parsers”. A parser is simply a function
whose OCaml type is some instance of :(’a)list -> ’b * (’a)list. The function should
take a list of objects of type :’a (e.g. characters or tokens), parse as much of it as possible from
left to right, and return a pair consisting of the object derived from parsing (e.g. a term or a
special syntax tree) and the list of elements that were not processed.

See also
++, >>, a, atleast, elistof, finished, fix, leftbin, listof, many, nothing,
possibly, rightbin, some.

overload_interface

overload_interface : string * term -> unit

Synopsis
Overload a symbol so it may denote a particular underlying constant.

Description
HOL Light allows the same identifier to denote several different underlying constants. A call
to overload_interface("ident",‘cname‘), where cname is either a constant to be denoted
or a variable with the same name and type (if the constant is not yet defined) will include
cname as one of the possible overload resolutions of the symbol ident. Moreover, when the
resolution is not possible from type information, cname will now be the default. However, before
any calls to overload_interface, the constant must have been declared overloadable with
make_overloadable, and the term ‘cname‘ must have a type that is an instance of the most
general “type skeleton” specified there.

Failure
Fails if the identifier has not been declared overloadble, if the term is not a constant or variable,
or it its type is not an instance of the declared type skeleton.

Example
The symbol ‘+’ has an overload skeleton of type ‘:A->A->A‘. Here we overload it on type :bool
to denote logical ‘or’. (This is just for illustration; it’s strongly recommended that you don’t do

override interface 447

this, since you will typically need to add more type annotations in terms to compensate for the
ambiguity.)

overload_interface("+",‘(\/)‘);;
val it : unit = ()

Now we can use the symbol ‘+’ with multiple meanings in the same terms; the underlying
constants are still the original ones, though:

‘(x = 1) + (1 + 1 = 2)‘;;
val it : term = ‘(x = 1) + (1 + 1 = 2)‘

You can also overload polymorphic symbols, e.g. overload ‘+’ so that it maps to list append:

overload_interface("+",‘APPEND‘);;
Warning: inventing type variables
val it : unit = ()

APPEND;;
val it : thm = |- (!l. [] + l = l) /\ (!h t l. CONS h t + l = CONS h (t + l))

See also
make_overloadable, override_interface, prioritize_overload, reduce_interface,
remove_interface, the_interface, the_overload_skeletons.

override_interface

override_interface : string * term -> unit

Synopsis
Map identifier to specific underlying constant.

Description
A call to override_interface("name",‘cname‘) makes the parser map instances of identifier
name to whatever constant is called cname. Note that the term ‘cname‘ in the call may either be
that constant or a variable of the appropriate type. This contrasts with overload_interface,
which can make the same identifier map to several underlying constants, depending on type. A
call to override_interface removes all other overloadings of the identifier, if any.

Failure
Fails unless the term is a constant or variable.

448 Chapter 1. Pre-defined ML Identifiers

Example
You might want to make the exponentiation operation EXP on natural numbers parse and print
as ‘^’. You can do this with

override_interface("^",‘(EXP)‘);;
val it : unit = ()

Note that the special parse status (infix in this case) is based on the interface identifier, not
the underlying constant, so that does not make ‘^’ parse as infix:

EXP;;
val it : thm = |- (!m. ^ m 0 = 1) /\ (!m n. ^ m (SUC n) = m * ^ m n)

but you can do that with a separate parse_as_infix call. It is also possible to override poly-
morphic constants, and all instances will be handled. For example, HOL Light’s built-in list
operations don’t look much like OCaml:

APPEND;;
val it : thm =
|- (!l. APPEND [] l = l) /\

(!h t l. APPEND (CONS h t) l = CONS h (APPEND t l))

but after a few interface modifications:

parse_as_infix("::",(25,"right"));;
parse_as_infix("@",(16,"right"));;
override_interface("::",‘CONS‘);;
override_interface("@",‘APPEND‘);;

it looks closer (you can remove the spaces round :: using unspaced_binops):

APPEND;;
val it : thm = |- (!l. [] @ l = l) /\ (!h t l. h :: t @ l = h :: (t @ l))

See also
overload_interface, parse_as_infix, reduce_interface, remove_interface,
the_interface, the_overload_skeletons.

PAIRED_BETA_CONV

PAIRED_BETA_CONV : term -> thm

Synopsis
Performs generalized beta conversion for tupled beta-redexes.

PAIRED BETA CONV 449

Description
The conversion PAIRED_BETA_CONV implements beta-reduction for certain applications of tupled
lambda abstractions called ‘tupled beta-redexes’. Tupled lambda abstractions have the form
‘\<vs>.tm‘, where <vs> is an arbitrarily-nested tuple of variables called a ‘varstruct’. For the
purposes of PAIRED_BETA_CONV, the syntax of varstructs is given by:

<vs> ::= (v1,v2) | (<vs>,v) | (v,<vs>) | (<vs>,<vs>)

where v, v1, and v2 range over variables. A tupled beta-redex is an application of the form
‘(\<vs>.tm) t‘, where the term ‘t‘ is a nested tuple of values having the same structure as
the varstruct <vs>. For example, the term:

‘(\((a,b),(c,d)). a + b + c + d) ((1,2),(3,4))‘

is a tupled beta-redex, but the term:

‘(\((a,b),(c,d)). a + b + c + d) ((1,2),p)‘

is not, since p is not a pair of terms.
Given a tupled beta-redex ‘(\<vs>.tm) t‘, the conversion PAIRED_BETA_CONV performs gen-

eralized beta-reduction and returns the theorem

|- (\<vs>.tm) t = t[t1,...,tn/v1,...,vn]

where ti is the subterm of the tuple t that corresponds to the variable vi in the varstruct <vs>.
In the simplest case, the varstruct <vs> is flat, as in the term:

‘(\(v1,...,vn).t) (t1,...,tn)‘

When applied to a term of this form, PAIRED_BETA_CONV returns:

|- (\(v1, ... ,vn).t) (t1, ... ,tn) = t[t1,...,tn/v1,...,vn]

As with ordinary beta-conversion, bound variables may be renamed to prevent free variable
capture. That is, the term t[t1,...,tn/v1,...,vn] in this theorem is the result of substituting
ti for vi in parallel in t, with suitable renaming of variables to prevent free variables in t1, ...,
tn becoming bound in the result.

Failure
PAIRED_BETA_CONV tm fails if tm is not a tupled beta-redex, as described above. Note that ordi-
nary beta-redexes are specifically excluded: PAIRED_BETA_CONV fails when applied to ‘(\v.t)u‘.
For these beta-redexes, use BETA_CONV.

Example
The following is a typical use of the conversion:

PAIRED_BETA_CONV ‘(\((a,b),(c,d)). a + b + c + d) ((1,2),(3,4))‘;;
val it : thm = |- (\((a,b),c,d). a + b + c + d) ((1,2),3,4) = 1 + 2 + 3 + 4

Note that the term to which the tupled lambda abstraction is applied must have the same

450 Chapter 1. Pre-defined ML Identifiers

structure as the varstruct. For example, the following fail:

PAIRED_BETA_CONV ‘(\((a,b),p). a + b) ((1,2),(3+5,4))‘;;

PAIRED_BETA_CONV ‘(\((a,b),(c,d)). a + b + c + d) ((1,2),p)‘;;

because p is not a pair.

See also
BETA_CONV, BETA_RULE, BETA_TAC, GEN_BETA_CONV.

parse_as_binder

parse_as_binder : string -> unit

Synopsis
Makes the quotation parser treat a name as a binder.

Description
The call parse_as_binder "c" will make the quotation parser treat c as a binder, that is, allow
the syntactic sugaring ‘c x. y‘ as a shorthand for ‘c (\x. y)‘. As with normal binders,
e.g. the universal quantifier, the special syntactic status may be suppressed by enclosing c in
parentheses: (c).

Failure
Never fails.

Example

parse_as_binder "infinitely_many";;
val it : unit = ()
‘infinitely_many p:num. prime(p)‘;;
‘infinitely_many p. prime(p)‘;;

See also
binders, parses_as_binder, unparse_as_binder.

parse_as_infix

parse_as_infix : string * (int * string) -> unit

parse as prefix 451

Synopsis
Adds identifier to list of infixes, with given precedence and associativity.

Description
Certain identifiers are treated as infix operators with a given precedence and associativity (left or
right). The call parse_as_infix("op",(p,a)) adds op to the infix operators with precedence
p and associativity a (it should be one of the two strings "left" or "right"). Note that the
infix status is based purely on the name, which can be alphanumeric or symbolic, and does not
depend on whether the name denotes a constant.

Failure
Never fails; if the given string was already an infix, its precedence and associativity are changed
to the new values.

Example

strip_comb ‘n choose k‘;;
Warning: inventing type variables
val it : term * term list = (‘n‘, [‘choose‘; ‘k‘])

parse_as_infix("choose",(22,"right"));;
val it : unit = ()
strip_comb ‘n choose k‘;;
Warning: inventing type variables
val it : term * term list = (‘(choose)‘, [‘n‘; ‘k‘])

Uses
Adding user-defined binary operators.

See also
get_infix_status, infixes, unparse_as_infix.

parse_as_prefix

parse_as_prefix : string -> unit

Synopsis
Gives an identifier prefix status.

Description
Certain identifiers c have prefix status, meaning that combinations of the form c f x will be
parsed as c (f x) rather than the usual (c f) x. The call parse_as_prefix "c" adds c to
the list of such identifiers.

452 Chapter 1. Pre-defined ML Identifiers

Failure
Never fails, even if the string already has prefix status.

See also
is_prefix, prefixes, unparse_as_prefix.

parse_inductive_type_specification

parse_inductive_type_specification : string -> (hol_type * (string * hol_type list) list) list

Synopsis
Parses the specification for an inductive type into a structured format.

Description
The underlying function define_type_raw used inside define_type expects the inductive type
specification in a more structured format. The function parse_inductive_type_specification
parses the usual string form as handed to define_type and yields this structured form. In fact,
define_type is just the composition of define_type_raw and parse_inductive_type_specification.

Failure
Fails if there is a parsing error in the inductive type specification.

See also
define_type, define_type_raw.

parse_preterm

parse_preterm : lexcode list -> preterm * lexcode list

Synopsis
Parses a preterm.

Description
The call parse_preterm t, where t is a list of lexical tokens (as produced by lex), parses the
tokens and returns a preterm as well as the unparsed tokens.

Failure
Fails if there is a syntax error in the token list.

parse pretype 453

Uses
This is mostly an internal function; pretypes and preterms are used as an intermediate repre-
sentation for typechecking and overload resolution and are not normally of concern to users.

See also
lex, parse_pretype, parse_term, parse_type.

parse_pretype

parse_pretype : lexcode list -> pretype * lexcode list

Synopsis
Parses a pretype.

Description
The call parse_pretype t, where t is a list of lexical tokens (as produced by lex), parses the
tokens and returns a pretype as well as the unparsed tokens.

Failure
Fails if there is a syntax error in the token list.

Uses
This is mostly an internal function; pretypes and preterms are used as an intermediate repre-
sentation for typechecking and overload resolution and are not normally of concern to users.

See also
lex, parse_preterm, parse_term, parse_type.

parses_as_binder

parses_as_binder : string -> bool

Synopsis
Tests if a string has binder status in the parser.

Description
Certain identifiers c have binder status, meaning that ‘c x. y‘ is parsed as a shirthand for
‘(c) (\x. y)’. The call parses_as_binder "c" tests if c is one of the identifiers with binder
status.

454 Chapter 1. Pre-defined ML Identifiers

Failure
Never fails.

Example

parses_as_binder "!";;
val it : bool = true
parses_as_binder "==>";;
val it : bool = false

See also
binders, parses_as_binder, unparse_as_binder.

parse_term

parse_term : string -> term

Synopsis
Parses a string into a HOL term.

Description
The call parse_term "s" parses the string s into a HOL term. This is the function that is
invoked automatically when a term is written in quotations ‘s‘.

Failure
Fails in the event of a syntax error or unparsed input.

Example

parse_term "p /\\ q ==> r";;
val it : term = ‘p /\ q ==> r‘

Comments
Note that backslash characters should be doubled up when entering OCaml strings, as in the
example above, since they are the string escape character. This is handled automatically by the
quotation parser, so one doesn’t need to do it (indeed shouldn’t do it) when entering quotations
between backquotes.

See also
lex, parse_type.

parse type 455

parse_type

parse_type : string -> hol_type

Synopsis
Parses a string into a HOL type.

Description
The call parse_type "s" parses the string s into a HOL type. This is the function that is
invoked automatically when a type is written in quotations with an initial colon ‘:s‘.

Failure
Fails in the event of a syntax error or unparsed input.

Example

parse_type "num->bool";;
val it : hol_type = ‘:num->bool‘

See also
lex, parse_term.

partition

partition : (’a -> bool) -> ’a list -> ’a list * ’a list

Synopsis
Separates a list into two lists using a predicate.

Description
partition p l returns a pair of lists. The first list contains the elements which satisfy p. The
second list contains all the other elements.

Failure
Never fails.

Example

partition (fun x -> x mod 2 = 0) (1--10);;
val it : int list * int list = ([2; 4; 6; 8; 10], [1; 3; 5; 7; 9])

See also
chop_list, remove, filter.

456 Chapter 1. Pre-defined ML Identifiers

PART_MATCH

PART_MATCH : (term -> term) -> thm -> term -> thm

Synopsis
Instantiates a theorem by matching part of it to a term.

Description
When applied to a ‘selector’ function of type term -> term, a theorem and a term:

PART_MATCH fn (A |- !x1...xn. t) tm

the function PART_MATCH applies fn to t’ (the result of specializing universally quantified vari-
ables in the conclusion of the theorem), and attempts to match the resulting term to the argu-
ment term tm. If it succeeds, the appropriately instantiated version of the theorem is returned.
Limited higher-order matching is supported, and some attempt is made to maintain bound
variable names in higher-order matching.

Failure
Fails if the selector function fn fails when applied to the instantiated theorem, or if the match
fails with the term it has provided.

Example
Suppose that we have the following theorem:

th = |- !x. x ==> x

then the following:

PART_MATCH (fst o dest_imp) th ‘T‘

results in the theorem:

|- T ==> T

because the selector function picks the antecedent of the implication (the inbuilt specialization
gets rid of the universal quantifier), and matches it to T. For a higher-order case rather similiar
to what goes on inside HOL’s INDUCT_TAC:

num_INDUCTION;;
val it : thm = |- !P. P 0 /\ (!n. P n ==> P (SUC n)) ==> (!n. P n)

PART_MATCH rand it ‘!n. n <= n * n‘;;
val it : thm =
|- 0 <= 0 * 0 /\ (!n. n <= n * n ==> SUC n <= SUC n * SUC n)

==> (!n. n <= n * n)

To show a more interesting case with higher-order matching, where the pattern is not quite a

PAT CONV 457

higher-order pattern in the usual sense, consider the theorem:

let th = MESON[num_CASES; NOT_SUC]
‘(!n. P(SUC n)) <=> !n. ~(n = 0) ==> P n‘

...
val th : thm = |- (!n. P (SUC n)) <=> (!n. ~(n = 0) ==> P n)

and instantiate it as follows:

PART_MATCH lhs th ‘!n. 1 <= SUC n‘;;
val it : thm = |- (!n. 1 <= SUC n) <=> (!n. ~(n = 0) ==> 1 <= n)

See also
INST_TYPE, INST_TY_TERM, match.

PAT_CONV

PAT_CONV : term -> conv -> conv

Synopsis
Apply a conversion at subterms identified by a “pattern” lambda-abstraction.

Description
The call PAT_CONV ‘\x1 ... xn. t[x1,...,xn]‘ cnv gives a new conversion that applies cnv
to subterms of the target term corresponding to the free instances of any xi in the pattern
t[x1,...,xn]. The fact that the pattern is a function has no logical significance; it is just used
as a convenient format for the pattern.

Failure
Never fails until applied to a term, but then it may fail if the core conversion does on the chosen
subterms.

458 Chapter 1. Pre-defined ML Identifiers

Example
Here we choose to evaluate just two subterms:

PAT_CONV ‘\x. x + a + x‘ NUM_ADD_CONV ‘(1 + 2) + (3 + 4) + (5 + 6)‘;;
val it : thm = |- (1 + 2) + (3 + 4) + 5 + 6 = 3 + (3 + 4) + 11

while here we swap two particular quantifiers in a long chain:

PAT_CONV ‘\x. !x1 x2 x3 x4 x5. x‘ (REWR_CONV SWAP_FORALL_THM)
‘!a b c d e f g h. something‘;;

Warning: inventing type variables
Warning: inventing type variables
val it : thm =
|- (!a b c d e f g h. something) <=> (!a b c d e g f h. something)

See also
ABS_CONV, BINDER_CONV, BINOP_CONV, PATH_CONV, RAND_CONV, RATOR_CONV.

PATH_CONV

PATH_CONV : string -> conv -> conv

Synopsis
Applies a conversion to the subterm indicated by a path string.

Description
The call PATH_CONV p cnv gives a new conversion that applies cnv to the subterm of a term
identified by the path string p. This path string is interpreted as a sequence of direction indica-
tions:

• "b": take the body of an abstraction

• "l": take the left (rator) path in an application

• "r": take the right (rand) path in an application

Failure
The basic call to the path string and conversion never fails, but when applied to the term it
may, if the path is not meaningful or if the conversion itself fails on the indicated subterm.

Uses
More concise indication of sub-conversion application than by composing RATOR_CONV, RAND_CONV
and ABS_CONV.

p 459

Example

PATH_CONV "rlr" NUM_ADD_CONV ‘(1 + 2) + (3 + 4) + (5 + 6)‘;;
val it : thm = |- (1 + 2) + (3 + 4) + 5 + 6 = (1 + 2) + 7 + 5 + 6

See also
find_path, follow_path.

p

p : unit -> goalstack

Synopsis
Prints the top level of the subgoal package goal stack.

Description
The function p is part of the subgoal package, and prints the current goalstate.

Failure
Never fails.

Uses
Examining the proof state during an interactive proof session.

Comments
Strictly speaking this function is side-effect-free. It simply \em returns the current goalstate.
However, automatic printing will normally then print it, so that is the net effect.

See also
b, e, g, r.

PINST

PINST : (hol_type * hol_type) list -> (term * term) list -> thm -> thm

Synopsis
Instantiate types and terms in a theorem.

Description
The call PINST [ty1,tv1; ...; tyn,tvn] [tm1,v1; ...; tmk,vk] th instantiates both types
and terms in the theorem th using the two instantiation lists. The tyi should be types, the

460 Chapter 1. Pre-defined ML Identifiers

tvi type variables, the tmi terms and the vi term variables. Note carefully that the vi re-
fer to variables in the theorem before type instantiation, but the tmi should be replacements
for the type-instantiated ones. More explicitly, the behaviour is as follows. First, the type
variables in th are instantiated according to the list [ty1,tv1; ...; tyn,tvn], exactly as for
INST_TYPE. Moreover the same type instantiation is applied to the variables in the second list, to
give [tm1,v1’; ...; tmk,vk’]. This is then used to instantiate the already type-instantiated
theorem.

Failure
Fails if the instantiation lists are ill-formed, as with INST and INST_TYPE, for example if some
tvi is not a type variable.

Example

let th = MESON[] ‘(x:A = y) <=> (y = x)‘;;
...
val th : thm = |- x = y <=> y = x

PINST [‘:num‘,‘:A‘] [‘2 + 2‘,‘x:A‘; ‘4‘,‘y:A‘] th;;
val it : thm = |- 2 + 2 = 4 <=> 4 = 2 + 2

See also
INST, INST_TYPE.

>>

(>>) : (’a -> ’b * ’c) -> (’b -> ’d) -> ’a -> ’d * ’c

Synopsis
Apply function to parser result.

Description
If p is a parser and f a function from the parse result type, p >> f gives a new parser that
‘pipes the original parser output through f’, i.e. applies f to the result of the parse.

Failure
Never fails.

Comments
This is one of a suite of combinators for manipulating “parsers”. A parser is simply a function
whose OCaml type is some instance of :(’a)list -> ’b * (’a)list. The function should
take a list of objects of type :’a (e.g. characters or tokens), parse as much of it as possible from
left to right, and return a pair consisting of the object derived from parsing (e.g. a term or a
special syntax tree) and the list of elements that were not processed.

POP ASSUM 461

See also
++, ||, a, atleast, elistof, finished, fix, leftbin, listof, many, nothing,
possibly, rightbin, some.

POP_ASSUM

POP_ASSUM : thm_tactic -> tactic

Synopsis
Applies tactic generated from the first element of a goal’s assumption list.

Description
When applied to a theorem-tactic and a goal, POP_ASSUM applies the theorem-tactic to the first
element of the assumption list, and applies the resulting tactic to the goal without the first
assumption in its assumption list:

POP_ASSUM f ({A1;...;An} ?- t) = f (... |- A1) ({A2;...;An} ?- t)

Failure
Fails if the assumption list of the goal is empty, or the theorem-tactic fails when applied to
the popped assumption, or if the resulting tactic fails when applied to the goal (with depleted
assumption list).

Comments
It is possible simply to use the theorem ASSUME ‘A1‘ as required rather than use POP_ASSUM;
this will also maintain A1 in the assumption list, which is generally useful. In addition, this
approach can equally well be applied to assumptions other than the first.

There are admittedly times when POP_ASSUM is convenient, but it is unwise to use it if there
is more than one assumption in the assumption list, since this introduces a dependency on the
ordering and makes proofs somewhat brittle with respect to changes.

Another point to consider is that if the relevant assumption has been obtained by DISCH_TAC,

462 Chapter 1. Pre-defined ML Identifiers

it is often cleaner to use DISCH_THEN with a theorem-tactic. For example, instead of:

DISCH_TAC THEN POP_ASSUM (fun th -> SUBST1_TAC (SYM th))

one might use

DISCH_THEN (SUBST1_TAC o SYM)

Example
Starting with the goal:

g ‘!f x. 0 = x ==> f(x * f(x)) = f(x)‘;;

and breaking it down:

e(REPEAT STRIP_TAC);;
val it : goalstack = 1 subgoal (1 total)

0 [‘0 = x‘]

‘f (x * f x) = f x‘

we might use the equation to substitute backwards:

e(POP_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[MULT_CLAUSES]);;

but another alternative would have been:

e(REWRITE_TAC[MULT_CLAUSES; SYM(ASSUME ‘0 = x‘)]);;

and we could even have avoided putting the equation in the assumptions at all by from the
beginning doing:

e(REPEAT GEN_TAC THEN DISCH_THEN(SUBST1_TAC o SYM) THEN
REWRITE_TAC[MULT_CLAUSES]);;

Uses
Making more delicate use of an assumption than rewriting or resolution using it.

See also
ASSUME, ASSUM_LIST, EVERY_ASSUM, POP_ASSUM_LIST, REWRITE_TAC.

POP_ASSUM_LIST

POP_ASSUM_LIST : (thm list -> tactic) -> tactic

possibly 463

Synopsis
Generates a tactic from the assumptions, discards the assumptions and applies the tactic.

Description
When applied to a function and a goal, POP_ASSUM_LIST applies the function to a list of theorems
corresponding to the assumptions of the goal, then applies the resulting tactic to the goal with
an empty assumption list.

POP_ASSUM_LIST f ({A1;...;An} ?- t) = f [.. |- A1; ... ; .. |- An] (?- t)

Failure
Fails if the function fails when applied to the list of assumptions, or if the resulting tactic fails
when applied to the goal with no assumptions.

Comments
There is nothing magical about POP_ASSUM_LIST: the same effect can be achieved by using
ASSUME a explicitly wherever the assumption a is used. If POP_ASSUM_LIST is used, it is unwise to
select elements by number from the ASSUMEd-assumption list, since this introduces a dependency
on ordering.

Example
We can collect all the assumptions of a goal into a conjunction and make them a new antecedent
by:

POP_ASSUM_LIST(MP_TAC o end_itlist CONJ)

Uses
Making more delicate use of the assumption list than simply rewriting etc.

See also
ASSUM_LIST, EVERY_ASSUM, POP_ASSUM, REWRITE_TAC.

possibly

possibly : (’a -> ’b * ’a) -> ’a -> ’b list * ’a

Synopsis
Attempts to parse, returning empty list of items in case of failure.

Description
If p is a parser, then possibly p is another parser that attempts to parse with p and if successful
returns the result as a singleton list, but will return the empty list instead if the core parser p
raises Noparse.

464 Chapter 1. Pre-defined ML Identifiers

Failure
Never fails.

Comments
This is one of a suite of combinators for manipulating “parsers”. A parser is simply a function
whose OCaml type is some instance of :(’a)list -> ’b * (’a)list. The function should
take a list of objects of type :’a (e.g. characters or tokens), parse as much of it as possible from
left to right, and return a pair consisting of the object derived from parsing (e.g. a term or a
special syntax tree) and the list of elements that were not processed.

See also
++, ||, >>, a, atleast, elistof, finished, fix, leftbin, listof, many, nothing,
rightbin, some.

pow10

pow10 : int -> num

Synopsis
Returns power of 10 as umlimited-size integer.

Description
When applied to an integer n (type int), pow10 returns 10n as an unlimited-precision integer
(type num). The argument may be negative.

Failure
Never fails.

Example

pow10(-1);;
val it : num = 1/10
pow10(16);;
val it : num = 10000000000000000

See also
pow2.

pow2

pow2 : int -> num

pp print qterm 465

Synopsis
Returns power of 2 as umlimited-size integer.

Description
When applied to an integer n (type int), pow2 returns 2n as an unlimited-precision integer (type
num). The argument may be negative.

Failure
Never fails.

Example

pow2(-2);;
val it : num = 1/4
pow2(64);;
val it : num = 18446744073709551616

See also
pow10.

pp_print_qterm

pp_print_qterm : formatter -> term -> unit

Synopsis
Prints a term with surrounding quotes to formatter.

Description
The call pp_print_term fmt tm prints the usual textual representation of the term tm to the
formatter fmt, in the form ‘tm‘.

Failure
Should never fail unless the formatter does.

Comments
The usual case where the formatter is the standard output is print_qterm.

See also
pp_print_term, print_qterm, print_term.

pp_print_qtype

pp_print_qtype : formatter -> hol_type -> unit

466 Chapter 1. Pre-defined ML Identifiers

Synopsis
Prints a type with initial colon and surrounding quotes to formatter.

Description
The call pp_print_type fmt ty prints the usual textual representation of the type ty to the
formatter fmt, in the form ‘:ty‘.

Failure
Should never fail unless the formatter does.

Comments
The usual case where the formatter is the standard output is print_qtype.

See also
pp_print_type, print_qtype, print_type.

pp_print_term

pp_print_term : formatter -> term -> unit

Synopsis
Prints a term (without quotes) to formatter.

Description
The call pp_print_term fmt tm prints the usual textual representation of the term tm to the
formatter fmt. The string is just tm not ‘tm‘.

Failure
Should never fail unless the formatter does.

Comments
The usual case where the formatter is the standard output is print_term.

See also
pp_print_qterm, print_qterm, print_term.

pp_print_thm

pp_print_thm : formatter -> thm -> unit

pp print type 467

Synopsis
Prints a theorem to formatter.

Description
The call pp_print_thm fmt th prints the usual textual representation of the theorem th to the
formatter fmt.

Failure
Should never fail unless the formatter does.

Comments
The usual case where the formatter is the standard output is print_thm.

See also
print_thm.

pp_print_type

pp_print_type : formatter -> hol_type -> unit

Synopsis
Prints a type (without colon or quotes) to formatter.

Description
The call pp_print_type fmt ty prints the usual textual representation of the type ty to the
formatter fmt. The string is just ty not ‘:ty‘.

Failure
Should never fail unless the formatter does.

Comments
The usual case where the formatter is the standard output is print_type.

See also
pp_print_qtype, print_qtype, print_type.

prebroken_binops

prebroken_binops : string list ref

468 Chapter 1. Pre-defined ML Identifiers

Synopsis
Determines which binary operators are line-broken to the left

Description
The reference variable prebroken_binops is one of several settable parameters controlling print-
ing of terms by pp_print_term, and hence the automatic printing of terms and theorems at the
toplevel. It holds a list of the names of binary operators that, when a line break is needed, will
be printed after the line break rather than before it. By default it contains just implication.

Failure
Not applicable.

Comments
Putting more operators such as conjunction in this list gives an output format closer to the one
advocated in Lamport’s “How to write a large formula” paper.

See also
pp_print_term, print_all_thm, print_unambiguous_comprehensions,
reverse_interface_mapping, typify_universal_set, unspaced_binops.

prefixes

prefixes : unit -> string list

Synopsis
Certain identifiers c have prefix status, meaning that combinations of the form c f x will be
parsed as c (f x) rather than the usual (c f) x. The call prefixes() returns the list of all
such identifiers.

Failure
Never fails.

Example
In the default HOL state:

prefixes();;
val it : string list = ["~"; "--"; "mod"]

This explains, for example, why ‘~ ~ p’ parses as ‘~(~p)’ rather than parsing as ‘(~ ~) p’
and generating a typechecking error.

See also
is_prefix, parse_as_prefix, unparse_as_prefix.

PRENEX CONV 469

PRENEX_CONV

PRENEX_CONV : conv

Synopsis
Puts a term already in NNF into prenex form.

Description
When applied to a term already in negation normal form (see NNF_CONV, for example), the
conversion PRENEX_CONV proves it equal to an equivalent in prenex form, with all quantifiers at
the top level and a propositional body.

Failure
Never fails; even on non-Boolean terms it will just produce a reflexive theorem.

Example

PRENEX_CONV ‘(!x. ?y. P x y) \/ (?u. !v. ?w. Q u v w)‘;;
Warning: inventing type variables
val it : thm =
|- (!x. ?y. P x y) \/ (?u. !v. ?w. Q u v w) <=>

(!x. ?y u. !v. ?w. P x y \/ Q u v w)

See also
CNF_CONV, DNF_CONV, NNFC_CONV, NNF_CONV, SKOLEM_CONV, WEAK_CNF_CONV,
WEAK_DNF_CONV.

PRESIMP_CONV

PRESIMP_CONV : conv

Synopsis
Applies basic propositional simplifications and some miniscoping.

Description
The conversion PRESIMP_CONV applies various routine simplifications to Boolean terms involving
constants, e.g. p /\ T <=> p. It also tries to push universal quantifiers through conjunctions
and existential quantifiers through disjunctions, e.g. (?x. p[x] \/ q[x]) <=> (?x. p[x]) \/ (?x. q[x])
(“miniscoping”) but does not transform away other connectives like implication that would allow
it do do this more completely.

470 Chapter 1. Pre-defined ML Identifiers

Failure
Never fails.

Example

PRESIMP_CONV ‘?x. x = 1 /\ y = 1 \/ F \/ T /\ y = 2‘;;
val it : thm =
|- (?x. x = 1 /\ y = 1 \/ F \/ T /\ y = 2) <=>

(?x. x = 1) /\ y = 1 \/ y = 2

Uses
Useful as an initial simplification before more substantial normal form conversions.

See also
CNF_CONV, DNF_CONV, MINISCOPE_CONV, NNF_CONV, PRENEX_CONV, SKOLEM_CONV.

preterm_of_term

preterm_of_term : term -> preterm

Synopsis
Converts a term into a preterm.

Description
HOL Light uses “pretypes” and “preterms” as intermediate structures for parsing and type-
checking, which are later converted to types and terms. A call preterm_of_term ‘tm‘ converts
in the other direction, from a normal HOL term back to a preterm.

Failure
Never fails.

Uses
User manipulation of preterms is not usually necessary, unless you seek to radically change
aspects of parsing and typechecking.

See also
pretype_of_type, term_of_preterm.

pretype_of_type

pretype_of_type : hol_type -> pretype

print all thm 471

Synopsis
Converts a type into a pretype.

Description
HOL Light uses “pretypes” and “preterms” as intermediate structures for parsing and type-
checking, which are later converted to types and terms. A call preterm_of_term ‘tm‘ converts
in the other direction, from a normal HOL term back to a preterm.

Failure
Never fails.

Uses
User manipulation of pretypes is not usually necessary, unless you seek to radically change
aspects of parsing and typechecking.

See also
preterm_of_term, type_of_pretype.

print_all_thm

print_all_thm : bool ref

Synopsis
Flag determining whether the assumptions of theorems are printed explicitly.

Description
The reference variable print_all_thm is one of several settable parameters controlling printing
of terms by pp_print_term, and hence the automatic printing of terms and theorems at the
toplevel. When it is true, as it is by default, all assumptions of theorems are printed. When it
is false, they are abbreviated by dots.

Failure
Not applicable.

Example

let th = ADD_ASSUM ‘1 + 1 = 2‘ (ASSUME ‘2 + 2 = 4‘);;
val th : thm = 2 + 2 = 4, 1 + 1 = 2 |- 2 + 2 = 4
print_all_thm := false;;
val it : unit = ()
th;;
val it : thm = ... |- 2 + 2 = 4

See also
pp_print_term, prebroken_binops, print_unambiguous_comprehensions,
reverse_interface_mapping, typify_universal_set, unspaced_binops.

472 Chapter 1. Pre-defined ML Identifiers

print_fpf

print_fpf : (’a, ’b) func -> unit

Synopsis
Print a finite partial function.

Description
This prints a finite partial function but only as a trivial string ‘<func>’. Installed automatically
at the top level and probably not useful for most users.

Failure
Never fails.

See also
|->, |=>, apply, applyd, choose, combine, defined, dom, foldl, foldr, graph,
is_undefined, mapf, ran, tryapplyd, undefine, undefined.

print_goal

print_goal : goal -> unit

Synopsis
Print a goal.

Description
print_goalstack g prints the goal g to standard output, with no following newline.

Failure
Never fails.

Comments
This is invoked automatically when something of type goal is produced at the top level, so
manual invocation is not normally needed.

See also
print_goalstack, print_term.

print goalstack 473

print_goalstack

print_goalstack : goalstack -> unit

Synopsis
Print a goalstack.

Description
print_goalstack gs prints the goalstack gs to standard output, with no following newline.

Failure
Never fails.

Comments
This is invoked automatically when something of type goalstack is produced at the top level,
so manual invocation is not normally needed.

See also
print_goal, print_term.

print_num

print_num : num -> unit

Synopsis
Print an arbitrary-precision number to the terminal.

Description
This function prints an arbitrary-precision (type num) number to the terminal. It is automatically
invoked on anything of type num at the toplevel anyway, but it may sometimes be useful to issue
it under user control.

Failure
Never fails.

print_qterm

print_qterm : term -> unit

474 Chapter 1. Pre-defined ML Identifiers

Synopsis
Prints a HOL term with surrounding quotes to standard output.

Description
The call print_term tm prints the usual textual representation of the term tm to the standard
output, that is ‘:tm‘.

Failure
Never fails.

Comments
This is the function that is invoked automatically in the toplevel when printing terms.

See also
pp_print_qterm, pp_print_term, print_term.

print_qtype

print_qtype : hol_type -> unit

Synopsis
Prints a type with colon and surrounding quotes to standard output.

Description
The call print_type ty prints the usual textual representation of the type ty to the standard
output, that is ‘:ty‘.

Failure
Never fails.

Comments
This is the function that is invoked automatically in the toplevel when printing types.

See also
pp_print_qtype, pp_print_type, print_type.

print_term

print_term : term -> unit

print thm 475

Synopsis
Prints a HOL term (without quotes) to the standard output.

Description
The call print_term tm prints the usual textual representation of the term tm to the standard
output. The string is just tm not ‘tm‘.

Failure
Never fails.

Uses
Producing debugging output in complex rules. Note that terms are already printed at the
toplevel anyway, so it is not needed to examine results interactively.

See also
pp_print_qterm, pp_print_term, print_qterm.

print_thm

print_thm : thm -> unit

Synopsis
Prints a HOL theorem to the standard output.

Description
The call print_thm th prints the usual textual representation of the theorem th to the standard
output.

Comments
This is invoked automatically at the toplevel when theorems are printed.

See also
print_type, print_term.

print_to_string

print_to_string : (formatter -> ’a -> ’b) -> ’a -> string

Synopsis
Modifies a formatting printing function to return its output as a string.

476 Chapter 1. Pre-defined ML Identifiers

Description
If p is a printing function whose first argument is a formatter (a standard OCaml datatype
indicating an output for printing functions), print_to_string P gives a function that invokes
it and collects and returns its output as a string.

Failure
Fails only if the core printing function fails.

Example
The standard function string_of_term is defined as:

let string_of_term = print_to_string pp_print_term;;

Uses
Converting a general printing function to a ‘convert to string’ function, as in the example above.

See also
pp_print_term, pp_print_thm, pp_print_type.

print_type

print_type : hol_type -> unit

Synopsis
Prints a type (without colon or quotes) to standard output.

Description
The call print_type ty prints the usual textual representation of the type ty to the standard
output. The string is just ty not ‘:ty‘.

Failure
Never fails.

Uses
Producing debugging output in complex rules. Note that terms are already printed at the
toplevel anyway, so it is not needed to examine results interactively.

See also
pp_print_qtype, pp_print_type, print_qtype.

print_unambiguous_comprehensions

print_unambiguous_comprehensions : bool ref

prioritize int 477

Synopsis
Determines whether bound variables in set abstractions are made explicit.

Description
The reference variable print_unambiguous_comprehensions is one of several settable parame-
ters controlling printing of terms by pp_print_term, and hence the automatic printing of terms
and theorems at the toplevel. When it is true, all set comprehensions are printed with an
explicit indication of the bound variables in the middle: ‘{t | vs | p}‘. When it is false,
as it is by default, this printing of the set of bound variables is only done when the term would
otherwise fail to match the default parsing behaviour on input, and otherwise just printed as
‘{t | p}‘. The parsing behaviour for such a term is to take the bound variables to be those
free in both t and p, unless there is just one variable free in t (in which case that variable is the
only bound one) or there are none free in p (in which case all free variables of t are taken).

Failure
Not applicable.

Example

print_unambiguous_comprehensions := false;;
val it : unit = ()
‘{x + y | x | EVEN(x)}‘;;
val it : term = ‘{x + y | EVEN x}‘

print_unambiguous_comprehensions := true;;
val it : unit = ()
‘{x + y | x | EVEN(x)}‘;;
val it : term = ‘{x + y | x | EVEN x}‘

See also
pp_print_term, prebroken_binops, print_all_thm, reverse_interface_mapping,
typify_universal_set, unspaced_binops.

prioritize_int

prioritize_int : unit -> unit

Synopsis
Give integer type int priority in operator overloading.

Description
Symbols for several arithmetical (‘+’, ‘-’, ...) and relational (‘<’, ‘>=’, ...) operators are over-
loaded so that they may denote the operators for several different number systems, particularly

478 Chapter 1. Pre-defined ML Identifiers

num (natural numbers), int (integers) and real (real numbers). The choice is normally made
based on some known types, or the presence of operators that are not overloaded for the number
systems. (For example, numerals like 42 are always assumed to be of type num, while the division
operator ‘/’ is only defined for real.) In the absence of any such indication, a default choice
will be made. The effect of prioritize_int() is to make int, the integer type, the default.

Failure
Never fails.

Example
With integer priority, most things are interpreted as type int

prioritize_int();;
val it : unit = ()

type_of ‘x + y‘;;
val it : hol_type = ‘:int‘

except that numerals are always of type num, and so:

type_of ‘x + 1‘;;
val it : hol_type = ‘:num‘

and any explicit type information is used before using the defaults:

type_of ‘(x:real) + y‘;;
val it : hol_type = ‘:real‘

Comments
It is perhaps better practice to insert types explicitly to avoid dependence on such defaults,
otherwise proofs can become context-dependent. However it is often very convenient.

See also
make_overloadable, overload_interface, prioritize_num, prioritize_overload,
prioritize_real, the_overload_skeletons.

prioritize_num

prioritize_num : unit -> unit

Synopsis
Give natural number type num priority in operator overloading.

prioritize num 479

Description
Symbols for several arithmetical (‘+’, ‘-’, ...) and relational (‘<’, ‘>=’, ...) operators are over-
loaded so that they may denote the operators for several different number systems, particularly
num (natural numbers), int (integers) and real (real numbers). The choice is normally made
based on some known types, or the presence of operators that are not overloaded for the number
systems. (For example, numerals like 42 are always assumed to be of type num, while the division
operator ‘/’ is only defined for real.) In the absence of any such indication, a default choice
will be made. The effect of prioritize_num() is to make num, the natural number type, the
default.

Failure
Never fails.

Example
With real priority, most things are interpreted as type real:

prioritize_real();;
val it : unit = ()

type_of ‘x + y‘;;
val it : hol_type = ‘:real‘

except that numerals are always of type num, and so:

type_of ‘x + 1‘;;
val it : hol_type = ‘:num‘

By making num the priority, everything is interpreted as num:

prioritize_num();;
val it : unit = ()

type_of ‘x + y‘;;
val it : hol_type = ‘:num‘

unless there is some explicit type information to the contrary:

type_of ‘(x:real) + y‘;;
val it : hol_type = ‘:real‘

Comments
It is perhaps better practice to insert types explicitly to avoid dependence on such defaults,
otherwise proofs can become context-dependent. However it is often very convenient.

See also
make_overloadable, overload_interface, prioritize_int, prioritize_overload,
prioritize_real, the_overload_skeletons.

480 Chapter 1. Pre-defined ML Identifiers

prioritize_overload

prioritize_overload : hol_type -> unit

Synopsis
Give overloaded constants involving a given type priority in operator overloading.

Description
In general, overloaded operators in the concrete syntax, such as ‘+’, are ambigous, referring to
one of several underlying constants. The choice is normally made based on some known types,
or the presence of operators that are not overloaded for the number systems. (For example,
numerals like 42 are always assumed to be of type num, while the division operator ‘/’ is only
defined for real.) In the absence of any such indication, a default choice will be made. The
effect of prioritize_overload ‘:ty‘ is to run through the overloaded symbols making the
first instance of each where the generic type variables in the type skeleton are replaced by type
‘:ty‘ the first priority when no other indication is made.

Failure
Never fails.

Example
With real priority, most things are interpreted as type real:

prioritize_overload ‘:real‘;;
val it : unit = ()

type_of ‘x + y‘;;
val it : hol_type = ‘:real‘

By making int the priority, everything is interpreted as int:

prioritize_overload ‘:int‘;;
val it : unit = ()

type_of ‘x + y‘;;
val it : hol_type = ‘:int‘

unless there is some explicit type information to the contrary:

type_of ‘(x:real) + y‘;;
val it : hol_type = ‘:real‘

Comments
It is perhaps better practice to insert types explicitly to avoid dependence on such defaults,
otherwise proofs can become context-dependent. However it is often very convenient.

prioritize real 481

See also
make_overloadable, overload_interface, prioritize_int, prioritize_num,
prioritize_real, the_overload_skeletons.

prioritize_real

prioritize_real : unit -> unit

Synopsis
Give real number type real priority in operator overloading.

Description
Symbols for several arithmetical (‘+’, ‘-’, ...) and relational (‘<’, ‘>=’, ...) operators are over-
loaded so that they may denote the operators for several different number systems, particularly
num (natural numbers), int (integers) and real (real numbers). The choice is normally made
based on some known types, or the presence of operators that are not overloaded for the number
systems. (For example, numerals like 42 are always assumed to be of type num, while the division
operator ‘/’ is only defined for real.) In the absence of any such indication, a default choice will
be made. The effect of prioritize_real() is to make real, the real number type, the default.

Failure
Never fails.

Example
With real priority, most things are interpreted as type real:

prioritize_real();;
val it : unit = ()

type_of ‘x + y‘;;
val it : hol_type = ‘:real‘

except that numerals are always of type num, and so:

type_of ‘x + 1‘;;
val it : hol_type = ‘:num‘

and any explicit type information is used before using the defaults:

type_of ‘(x:int) + y‘;;
val it : hol_type = ‘:int‘

Comments
It is perhaps better practice to insert types explicitly to avoid dependence on such defaults,
otherwise proofs can become context-dependent. However it is often very convenient.

482 Chapter 1. Pre-defined ML Identifiers

See also
make_overloadable, overload_interface, prioritize_int, prioritize_num,
prioritize_overload, the_overload_skeletons.

PROP_ATOM_CONV

PROP_ATOM_CONV : conv -> conv

Synopsis
Applies a conversion to the ‘atomic subformulas’ of a formula.

Description
When applied to a Boolean term, PROP_ATOM_CONV conv descends recursively through any num-
ber of the core propositional connectives ‘~’, ‘/\’, ‘\/’, ‘==>’ and ‘<=>’, as well as the quantifiers
‘!x. p[x]’, ‘?x. p[x]’ and ‘?!x. p[x]’. When it reaches a subterm that can no longer be
decomposed into any of those items (e.g. the starting term if it is not of Boolean type), the con-
version conv is tried, with a reflexive theorem returned in case of failure. That is, the conversion
is applied to the “atomic subformulas” in the usual sense of first-order logic.

Failure
Never fails.

Example
Here we swap all equations in a formula, but not any logical equivalences that are part of its
logical structure:

PROP_ATOM_CONV(ONCE_DEPTH_CONV SYM_CONV)
‘(!x. x = y ==> x = z) <=> (y = z <=> 1 + z = z + 1)‘;;

val it : thm =
|- ((!x. x = y ==> x = z) <=> y = z <=> 1 + z = z + 1) <=>

(!x. y = x ==> z = x) <=>
z = y <=>
z + 1 = 1 + z

By contrast, just ONCE_DEPTH_CONV SYM_CONV would just swap the top-level logical equivalence.

Uses
Carefully constraining the application of conversions.

See also
DEPTH_BINOP_CONV, ONCE_DEPTH_CONV.

prove cases thm 483

prove_cases_thm

prove_cases_thm : thm -> thm

Synopsis
Proves a structural cases theorem for an automatically-defined concrete type.

Description
prove_cases_thm takes as its argument a structural induction theorem, in the form returned
by prove_induction_thm for an automatically-defined concrete type. When applied to such a
theorem, prove_cases_thm automatically proves and returns a theorem which states that every
value the concrete type in question is denoted by the value returned by some constructor of the
type.

Failure
Fails if the argument is not a theorem of the form returned by prove_induction_thm

Example
The following type definition for labelled binary trees:

let ith,rth = define_type "tree = LEAF num | NODE tree tree";;
val ith : thm =
|- !P. (!a. P (LEAF a)) /\ (!a0 a1. P a0 /\ P a1 ==> P (NODE a0 a1))

==> (!x. P x)
val rth : thm =
|- !f0 f1.

?fn. (!a. fn (LEAF a) = f0 a) /\
(!a0 a1. fn (NODE a0 a1) = f1 a0 a1 (fn a0) (fn a1))

returns an induction theorem ith that can then be fed to prove_cases_thm:

prove_cases_thm ith;;
val it : thm = |- !x. (?a. x = LEAF a) \/ (?a0 a1. x = NODE a0 a1)

Comments
An easier interface is cases "tree". This function is mainly intended to generate the cases
theorems for that function.

See also
cases, define_type, INDUCT_THEN, new_recursive_definition,
prove_constructors_distinct, prove_constructors_one_one, prove_induction_thm.

484 Chapter 1. Pre-defined ML Identifiers

prove_constructors_distinct

prove_constructors_distinct : thm -> thm

Synopsis
Proves that the constructors of an automatically-defined concrete type yield distinct values.

Description
prove_constructors_distinct takes as its argument a primitive recursion theorem, in the
form returned by define_type for an automatically-defined concrete type. When applied to
such a theorem, prove_constructors_distinct automatically proves and returns a theorem
which states that distinct constructors of the concrete type in question yield distinct values of
this type.

Failure
Fails if the argument is not a theorem of the form returned by define_type, or if the concrete
type in question has only one constructor.

Example
The following type definition for labelled binary trees:

let ith,rth = define_type "tree = LEAF num | NODE tree tree";;
val ith : thm =
|- !P. (!a. P (LEAF a)) /\ (!a0 a1. P a0 /\ P a1 ==> P (NODE a0 a1))

==> (!x. P x)
val rth : thm =
|- !f0 f1.

?fn. (!a. fn (LEAF a) = f0 a) /\
(!a0 a1. fn (NODE a0 a1) = f1 a0 a1 (fn a0) (fn a1))

returns a recursion theorem rth that can then be fed to prove_constructors_distinct:

prove_constructors_distinct rth;;
val it : thm = |- !a a0’ a1’. ~(LEAF a = NODE a0’ a1’)

This states that leaf nodes are different from internal nodes. When the concrete type in
question has more than two constructors, the resulting theorem is just conjunction of inequalities
of this kind.

Comments
An easier interface is distinctness "tree"; this function is mainly intended to generate that
theorem internally.

See also
define_type, distinctness, INDUCT_THEN, new_recursive_definition,
prove_cases_thm, prove_constructors_one_one, prove_induction_thm,
prove_rec_fn_exists.

prove constructors injective 485

prove_constructors_injective

prove_constructors_injective : thm -> thm

Synopsis
Proves that the constructors of an automatically-defined concrete type are injective.

Description
prove_constructors_one_one takes as its argument a primitive recursion theorem, in the form
returned by define_type for an automatically-defined concrete type. When applied to such
a theorem, prove_constructors_one_one automatically proves and returns a theorem which
states that the constructors of the concrete type in question are injective (one-to-one). The
resulting theorem covers only those constructors that take arguments (i.e. that are not just
constant values).

Failure
Fails if the argument is not a theorem of the form returned by define_type, or if all the
constructors of the concrete type in question are simply constants of that type.

Example
The following type definition for labelled binary trees:

let ith,rth = define_type "tree = LEAF num | NODE tree tree";;
val ith : thm =
|- !P. (!a. P (LEAF a)) /\ (!a0 a1. P a0 /\ P a1 ==> P (NODE a0 a1))

==> (!x. P x)
val rth : thm =
|- !f0 f1.

?fn. (!a. fn (LEAF a) = f0 a) /\
(!a0 a1. fn (NODE a0 a1) = f1 a0 a1 (fn a0) (fn a1))

returns a recursion theorem rth that can then be fed to prove_constructors_injective:

prove_constructors_injective rth;;
val it : thm =
|- (!a a’. LEAF a = LEAF a’ <=> a = a’) /\

(!a0 a1 a0’ a1’. NODE a0 a1 = NODE a0’ a1’ <=> a0 = a0’ /\ a1 = a1’)

This states that the constructors LEAF and NODE are both injective.

Comments
An easier interface is injectivity "tree"; the present function is mainly intended to generate
that theorem internally.

486 Chapter 1. Pre-defined ML Identifiers

See also
define_type, INDUCT_THEN, injectivity, new_recursive_definition,
prove_cases_thm, prove_constructors_distinct, prove_induction_thm,
prove_rec_fn_exists.

prove

prove : term * tactic -> thm

Synopsis
Attempts to prove a boolean term using the supplied tactic.

Description
When applied to a term-tactic pair (tm,tac), the function prove attempts to prove the goal
?- tm, that is, the term tm with no assumptions, using the tactic tac. If prove succeeds, it
returns the corresponding theorem A |- tm, where the assumption list A may not be empty if
the tactic is invalid; prove has no inbuilt validity-checking.

Failure
Fails if the term is not of type bool (and so cannot possibly be the conclusion of a theorem), or
if the tactic cannot solve the goal. In the latter case prove will list the unsolved goals to help
the user.

See also
TAC_PROOF, VALID.

prove_general_recursive_function_exists

prove_general_recursive_function_exists : term -> thm

Synopsis
Proves existence of general recursive function.

Description
The function prove_general_recursive_function_exists should be applied to an existen-
tially quantified term ‘?f. def_1[f] /\ ... /\ def_n[f]‘, where each clause def_i is a
universally quantified equation with an application of f to arguments on the left-hand side. The

prove general recursive function exists 487

idea is that these clauses define the action of f on arguments of various kinds, for example on
an empty list and nonempty list:

?f. (f [] = a) /\ (!h t. CONS h t = k[f,h,t])

or on even numbers and odd numbers:

?f. (!n. f(2 * n) = a[f,n]) /\ (!n. f(2 * n + 1) = b[f,n])

The returned value is a theorem whose conclusion matches the input term, with zero, one or
two assumptions, depending on what conditions had been proven automatically. Roughly, one
assumption states that the clauses are not mutually contradictory, as in

?f. (!n. f(n + 1) = 1) /\ (!n. f(n + 2) = 2)

and the other states that there is some wellfounded order making any recursion admissible.

Failure

Fails only if the definition is malformed. However it is possible that for an inadmissible definition
the assumptions of the theorem may not hold.

Example

In the definition of the Fibonacci numbers, the function successfully eliminates all the hypotheses
and just proves the claimed existence assertion:

prove_general_recursive_function_exists
‘?fib. fib 0 = 1 /\ fib 1 = 1 /\

!n. fib(n + 2) = fib(n) + fib(n + 1)‘;;
val it : thm =
|- ?fib. fib 0 = 1 /\ fib 1 = 1 /\ (!n. fib (n + 2) = fib n + fib (n + 1))

whereas in the following case, the function cannot automatically discover the appropriate order-

488 Chapter 1. Pre-defined ML Identifiers

ing to make the recursion admissible, so an assumption is included:

let eth = prove_general_recursive_function_exists
‘?upto. !m n. upto m n =

if n < m then []
else if m = n then [n]
else CONS m (upto (m + 1) n)‘;;

val eth : thm =
?(<<). WF (<<) /\ (!m n. (T /\ ~(n < m)) /\ ~(m = n) ==> m + 1,n << m,n)
|- ?upto. !m n.

upto m n =
(if n < m
then []
else if m = n then [n] else CONS m (upto (m + 1) n))

You can prove the condition by supplying an appropriate ordering, e.g.

let wfth = prove(hd(hyp eth),
EXISTS_TAC ‘measure (\(m:num,n:num). n - m)‘ THEN
REWRITE_TAC[WF_MEASURE; measure] THEN ARITH_TAC);;

val wfth : thm =
|- ?(<<). WF (<<) /\ (!m n. (T /\ ~(n < m)) /\ ~(m = n) ==> m + 1,n << m,n)

and so get the pure existence theorem with PROVE_HYP wfth eth.

Uses
To prove existence of a recursive function defined by clauses without actually defining it. In order
to define it, use define. To further forestall attempts to prove conditions automatically, consider
pure_prove_recursive_function_exists or even instantiate_casewise_recursion.

See also
define, instantiate_casewise_recursion, pure_prove_recursive_function_exists.

PROVE_HYP

PROVE_HYP : thm -> thm -> thm

Synopsis
Eliminates a provable assumption from a theorem.

prove inductive relations exist 489

Description
When applied to two theorems, PROVE_HYP gives a new theorem with the conclusion of the
second and the union of the assumption list minus the conclusion of the first theorem.

A1 |- t1 A2 |- t2
------------------------ PROVE_HYP
(A1 u A2) - {t1} |- t2

Failure
Never fails.

Example

let th1 = CONJUNCT2(ASSUME ‘p /\ q /\ r‘)
and th2 = CONJUNCT2(ASSUME ‘q /\ r‘);;

val th1 : thm = p /\ q /\ r |- q /\ r
val th2 : thm = q /\ r |- r

PROVE_HYP th1 th2;;
val it : thm = p /\ q /\ r |- r

Comments
This is sometimes known as the Cut rule. It is not necessary for the conclusion of the first
theorem to be the same as an assumption of the second, but PROVE_HYP is otherwise of doubtful
value.

See also
DEDUCT_ANTISYM_RULE, DISCH, MP, UNDISCH.

prove_inductive_relations_exist

prove_inductive_relations_exist : term -> thm

Synopsis
Prove existence of inductively defined relations without defining them.

Description
The function prove_inductive_relations_exist should be given a specification for an in-
ductively defined relation R, or more generally a family R1,...,Rn of mutually inductive re-
lations; the required format is explained further in the entry for new_inductive_definition.
It returns an existential theorem A |- ?R1 ... Rn. rules /\ induction /\ cases, where
rules, induction and cases are the rule, induction and cases theorems, explained further in

490 Chapter 1. Pre-defined ML Identifiers

the entry for new_inductive_definition. In contrast with new_inductive_definition, no
actual definitions are made. The assumption list A is normally empty, but will include any
monotonicity hypotheses that were not proven automatically.

Failure
Fails if the form of the rules is wrong.

Example
The traditional example of even and odd numbers:

prove_inductive_relations_exist
‘even(0) /\ odd(1) /\
(!n. even(n) ==> odd(n + 1)) /\
(!n. odd(n) ==> even(n + 1))‘;;

val it : thm =
|- ?even odd.

(even 0 /\
odd 1 /\
(!n. even n ==> odd (n + 1)) /\
(!n. odd n ==> even (n + 1))) /\
(!odd’ even’.

even’ 0 /\
odd’ 1 /\
(!n. even’ n ==> odd’ (n + 1)) /\
(!n. odd’ n ==> even’ (n + 1))
==> (!a0. odd a0 ==> odd’ a0) /\ (!a1. even a1 ==> even’ a1)) /\

(!a0. odd a0 <=> a0 = 1 \/ (?n. a0 = n + 1 /\ even n)) /\
(!a1. even a1 <=> a1 = 0 \/ (?n. a1 = n + 1 /\ odd n))

Here is a example where we get a nonempty list of hypotheses because HOL cannot prove
monotonicity (and indeed, it doesn’t hold).

prove_inductive_relations_exist ‘!x. ~P(x) ==> P(x+1)‘;;
val it : thm =
!P P’.

(!a. P a ==> P’ a)
==> (!a. (?x. a = x + 1 /\ ~P x) ==> (?x. a = x + 1 /\ ~P’ x))

|- ?P. (!x. ~P x ==> P (x + 1)) /\
(!P’. (!x. ~P’ x ==> P’ (x + 1)) ==> (!a. P a ==> P’ a)) /\
(!a. P a <=> (?x. a = x + 1 /\ ~P x))

Uses
Using existence of inductive relations as an auxiliary device inside a proof.

See also
new_inductive_definition.

prove monotonicity hyps 491

prove_monotonicity_hyps

prove_monotonicity_hyps : thm -> thm

Synopsis
Attempt to prove monotonicity hypotheses of theorem automatically.

Description
Given a theorem A |- t, the rule prove_monotonicity_hyps attempts to prove and remove
all hypotheses that are not equations, by breaking them down and repeatedly using MONO_TAC.
Any that are equations or are not automatically provable will be left as they are.

Failure
Never fails but may have no effect.

Comments
Normally, this kind of reasoning is automated by the inductive definitions package, so explicit
use of this tactic is rare.

See also
MONO_TAC, monotonicity_theorems, new_inductive_definition,
prove_inductive_relations_exist.

prove_recursive_functions_exist

prove_recursive_functions_exist : thm -> term -> thm

Synopsis
Prove existence of recursive function over inductive type.

Description
This function has essentially the same interface and functionality as new_recursive_definition,
but it merely proves the existence of the function rather than defining it.

The first argument to prove_recursive_functions_exist is the primitive recursion the-
orem for the concrete type in question; this is normally the second theorem obtained from
define_type. The second argument is a term giving the desired primitive recursive function
definition. The value returned by prove_recursive_functions_exist is a theorem stating the
existence of a function satisfying the ‘definition’ clauses. This theorem is derived by formal proof
from an instance of the general primitive recursion theorem given as the second argument.

Let C1, ..., Cn be the constructors of this type, and let ‘(Ci vs)’ represent a (curried) applica-
tion of the ith constructor to a sequence of variables. Then a curried primitive recursive function

492 Chapter 1. Pre-defined ML Identifiers

fn over ty can be specified by a conjunction of (optionally universally-quantified) clauses of the
form:

fn v1 ... (C1 vs1) ... vm = body1 /\
fn v1 ... (C2 vs2) ... vm = body2 /\

.

.
fn v1 ... (Cn vsn) ... vm = bodyn

where the variables v1, ..., vm, vs are distinct in each clause, and where in the ith clause fn
appears (free) in bodyi only as part of an application of the form:

‘fn t1 ... v ... tm‘

in which the variable v of type ty also occurs among the variables vsi.
If <definition> is a conjunction of clauses, as described above, then evaluating:

prove_recursive_functions_exist th ‘<definition>‘;;

automatically proves the existence of a function fn that satisfies the defining equations supplied,
and returns a theorem:

|- ?fn. <definition>

prove_recursive_functions_exist also allows the supplied definition to omit clauses for
any number of constructors. If a defining equation for the ith constructor is omitted, then the
value of fn at that constructor:

fn v1 ... (Ci vsi) ... vn

is left unspecified (fn, however, is still a total function).

Failure
Fails if the clauses cannot be matched up with the recursion theorem. You may find that
prove_general_recursive_function_exists still works in such cases.

Example
Here we show that there exists a product function:

prove_recursive_functions_exist num_RECURSION
‘(prod f 0 = 1) /\ (!n. prod f (SUC n) = f(SUC n) * prod f n)‘;;
val it : thm =
|- ?prod. prod f 0 = 1 /\ (!n. prod f (SUC n) = f (SUC n) * prod f n)

Comments
Often prove_general_recursive_function_exists is an easier route to the same goal. Its
interface is simpler (no need to specify the recursion theorem) and it is more powerful. However,

PURE ASM REWRITE RULE 493

for suitably constrained definitions prove_recursive_functions_exist works well and is much
more efficient.

Uses
It is more usual to want to actually make definitions of recursive functions. However, if a
recursive function is needed in the middle of a proof, and seems to ad-hoc for general use,
you may just use prove_recursive_functions_exist, perhaps adding the “definition” as an
assumption of the goal with CHOOSE_TAC.

See also
new_inductive_definition, new_recursive_definition,
prove_general_recursive_function_exists.

PURE_ASM_REWRITE_RULE

PURE_ASM_REWRITE_RULE : thm list -> thm -> thm

Synopsis
Rewrites a theorem including the theorem’s assumptions as rewrites.

Description
The list of theorems supplied by the user and the assumptions of the object theorem are used
to generate a set of rewrites, without adding implicitly the basic tautologies stored under
basic_rewrites. The rule searches for matching subterms in a top-down recursive fashion,
stopping only when no more rewrites apply. For a general description of rewriting strategies see
GEN_REWRITE_RULE.

Failure
Rewriting with PURE_ASM_REWRITE_RULE does not result in failure. It may diverge, in which
case PURE_ONCE_ASM_REWRITE_RULE may be used.

See also
ASM_REWRITE_RULE, GEN_REWRITE_RULE, ONCE_REWRITE_RULE, PURE_REWRITE_RULE,
PURE_ONCE_ASM_REWRITE_RULE.

PURE_ASM_REWRITE_TAC

PURE_ASM_REWRITE_TAC : thm list -> tactic

Synopsis
Rewrites a goal including the goal’s assumptions as rewrites.

494 Chapter 1. Pre-defined ML Identifiers

Description
PURE_ASM_REWRITE_TAC generates a set of rewrites from the supplied theorems and the assump-
tions of the goal, and applies these in a top-down recursive manner until no match is found. See
GEN_REWRITE_TAC for more information on the group of rewriting tactics.

Failure
PURE_ASM_REWRITE_TAC does not fail, but it can diverge in certain situations. For limited depth
rewriting, see PURE_ONCE_ASM_REWRITE_TAC. It can also result in an invalid tactic.

Uses
To advance or solve a goal when the current assumptions are expected to be useful in reducing
the goal.

See also
ASM_REWRITE_TAC, GEN_REWRITE_TAC, ONCE_ASM_REWRITE_TAC, ONCE_REWRITE_TAC,
PURE_ONCE_ASM_REWRITE_TAC, PURE_ONCE_REWRITE_TAC, PURE_REWRITE_TAC,
REWRITE_TAC, SUBST_TAC.

PURE_ASM_SIMP_TAC

PURE_ASM_SIMP_TAC : thm list -> tactic

Synopsis
Perform simplification of goal by conditional contextual rewriting using assumptions.

Description
A call to PURE_ASM_SIMP_TAC[theorems] will apply conditional contextual rewriting with theorems
and the current assumptions of the goal to the goal’s conclusion, but not the default simplfi-
ications (see basic_rewrites and basic_convs). For more details on this kind of rewrit-
ing, see SIMP_CONV. If the extra generality of contextual conditional rewriting is not needed,
REWRITE_TAC is usually more efficient.

Failure
Never fails, but may loop indefinitely.

See also
ASM_REWRITE_TAC, ASM_SIMP_TAC, SIMP_CONV, SIMP_TAC, REWRITE_TAC.

PURE_ONCE_ASM_REWRITE_RULE

PURE_ONCE_ASM_REWRITE_RULE : thm list -> thm -> thm

PURE ONCE ASM REWRITE TAC 495

Synopsis
Rewrites a theorem once, including the theorem’s assumptions as rewrites.

Description
PURE_ONCE_ASM_REWRITE_RULE excludes the basic tautologies in basic_rewrites from the the-
orems used for rewriting. It searches for matching subterms once only, without recursing over
already rewritten subterms. For a general introduction to rewriting tools see GEN_REWRITE_RULE.

Failure
PURE_ONCE_ASM_REWRITE_RULE does not fail and does not diverge.

See also
ASM_REWRITE_RULE, GEN_REWRITE_RULE, ONCE_ASM_REWRITE_RULE, ONCE_REWRITE_RULE,
PURE_ASM_REWRITE_RULE, PURE_REWRITE_RULE, REWRITE_RULE.

PURE_ONCE_ASM_REWRITE_TAC

PURE_ONCE_ASM_REWRITE_TAC : thm list -> tactic

Synopsis
Rewrites a goal once, including the goal’s assumptions as rewrites.

Description
A set of rewrites generated from the assumptions of the goal and the supplied theorems is used
to rewrite the term part of the goal, making only one pass over the goal. The basic tautologies
are not included as rewrite theorems. The order in which the given theorems are applied is an
implementation matter and the user should not depend on any ordering. See GEN_REWRITE_TAC
for more information on rewriting tactics in general.

Failure
PURE_ONCE_ASM_REWRITE_TAC does not fail and does not diverge.

Uses
Manipulation of the goal by rewriting with its assumptions, in instances where rewriting with
tautologies and recursive rewriting is undesirable.

See also
ASM_REWRITE_TAC, GEN_REWRITE_TAC, ONCE_ASM_REWRITE_TAC, ONCE_REWRITE_TAC,
PURE_ASM_REWRITE_TAC, PURE_ONCE_REWRITE_TAC, PURE_REWRITE_TAC, REWRITE_TAC,
SUBST_TAC.

PURE_ONCE_REWRITE_CONV

PURE_ONCE_REWRITE_CONV : thm list -> conv

496 Chapter 1. Pre-defined ML Identifiers

Synopsis
Rewrites a term once with only the given list of rewrites.

Description
PURE_ONCE_REWRITE_CONV generates rewrites from the list of theorems supplied by the user,
without including the tautologies given in basic_rewrites. The applicable rewrites are em-
ployeded once, without entailing in a recursive search for matches over the term. See GEN_REWRITE_CONV
for more details about rewriting strategies in HOL.

Failure
This rule does not fail, and it does not diverge.

See also
GEN_REWRITE_CONV, ONCE_DEPTH_CONV, ONCE_REWRITE_CONV, PURE_REWRITE_CONV,
REWRITE_CONV.

PURE_ONCE_REWRITE_RULE

PURE_ONCE_REWRITE_RULE : thm list -> thm -> thm

Synopsis
Rewrites a theorem once with only the given list of rewrites.

Description
PURE_ONCE_REWRITE_RULE generates rewrites from the list of theorems supplied by the user,
without including the tautologies given in basic_rewrites. The applicable rewrites are em-
ployeded once, without entailing in a recursive search for matches over the theorem. See
GEN_REWRITE_RULE for more details about rewriting strategies in HOL.

Failure
This rule does not fail, and it does not diverge.

See also
ASM_REWRITE_RULE, GEN_REWRITE_RULE, ONCE_DEPTH_CONV, ONCE_REWRITE_RULE,
PURE_REWRITE_RULE, REWRITE_RULE.

PURE_ONCE_REWRITE_TAC

PURE_ONCE_REWRITE_TAC : thm list -> tactic

pure prove recursive function exists 497

Synopsis
Rewrites a goal using a supplied list of theorems, making one rewriting pass over the goal.

Description
PURE_ONCE_REWRITE_TAC generates a set of rewrites from the given list of theorems, and applies
them at every match found through searching once over the term part of the goal, without recurs-
ing. It does not include the basic tautologies as rewrite theorems. The order in which the rewrites
are applied is unspecified. For more information on rewriting tactics see GEN_REWRITE_TAC.

Failure
PURE_ONCE_REWRITE_TAC does not fail and does not diverge.

Uses
This tactic is useful when the built-in tautologies are not required as rewrite equations and
recursive rewriting is not desired.

See also
ASM_REWRITE_TAC, GEN_REWRITE_TAC, ONCE_ASM_REWRITE_TAC, ONCE_REWRITE_TAC,
PURE_ASM_REWRITE_TAC, PURE_ONCE_ASM_REWRITE_TAC, PURE_REWRITE_TAC, REWRITE_TAC,
SUBST_TAC.

pure_prove_recursive_function_exists

pure_prove_recursive_function_exists : term -> thm

Synopsis
Proves existence of general recursive function but leaves unproven assumptions.

Description
The function pure_prove_recursive_function_exists should be applied to an existentially
quantified term ‘?f. def_1[f] /\ ... /\ def_n[f]‘, where each clause def_i is a univer-
sally quantified equation with an application of f to arguments on the left-hand side. The idea
is that these clauses define the action of f on arguments of various kinds, for example on an
empty list and nonempty list:

?f. (f [] = a) /\ (!h t. CONS h t = k[f,h,t])

or on even numbers and odd numbers:

?f. (!n. f(2 * n) = a[f,n]) /\ (!n. f(2 * n + 1) = b[f,n])

The returned value is a theorem whose conclusion matches the input term, with in general one
or two assumptions stating what properties must hold so that the existence of such a function

498 Chapter 1. Pre-defined ML Identifiers

to be deduced. Roughly, one assumption states that the clauses are not mutually contradictory,
as in

?f. (!n. f(n + 1) = 1) /\ (!n. f(n + 2) = 2)

and the other states that there is some wellfounded order making any recursion admissible. This
rule attempts to eliminate any hypotheses of the first kind, but does not attempt to guess a
wellfounded ordering as prove_general_recursive_function_exists does.

Failure
Fails only if the definition is malformed. However it is possible that for an inadmissible definition
the assumptions of the theorem may not hold.

Example
In the definition of the Fibonacci numbers, the function successfully eliminates the mutual
consistency hypotheses:

pure_prove_recursive_function_exists
‘?fib. fib 0 = 1 /\ fib 1 = 1 /\

!n. fib(n + 2) = fib(n) + fib(n + 1)‘;;
val it : thm =
?(<<). WF (<<) /\ (!n. T ==> n << n + 2) /\ (!n. T ==> n + 1 << n + 2)
|- ?fib. fib 0 = 1 /\ fib 1 = 1 /\ (!n. fib (n + 2) = fib n + fib (n + 1))

but leaves a wellfounded ordering to be given. (By contrast, prove_general_recursive_function_exists
will automatically eliminate it.)

Uses
Normally, use prove_general_recursive_function_exists for this operation. Use the present
function only when the attempt by prove_general_recursive_function_exists to discharge
the proof obligations is not successful and merely wastes time.

See also
define, instantiate_casewise_recursion,
prove_general_recursive_function_exists.

PURE_REWRITE_CONV

PURE_REWRITE_CONV : thm list -> conv

Synopsis
Rewrites a term with only the given list of rewrites.

PURE REWRITE RULE 499

Description
This conversion provides a method for rewriting a term with the theorems given, and excluding
simplification with tautologies in basic_rewrites. Matching subterms are found recursively,
until no more matches are found. For more details on rewriting see GEN_REWRITE_CONV.

Uses
PURE_REWRITE_CONV is useful when the simplifications that arise by rewriting a theorem with
basic_rewrites are not wanted.

Failure
Does not fail. May result in divergence, in which case PURE_ONCE_REWRITE_CONV can be used.

See also
GEN_REWRITE_CONV, ONCE_REWRITE_CONV, PURE_ONCE_REWRITE_CONV, REWRITE_CONV.

PURE_REWRITE_RULE

PURE_REWRITE_RULE : thm list -> thm -> thm

Synopsis
Rewrites a theorem with only the given list of rewrites.

Description
This rule provides a method for rewriting a theorem with the theorems given, and excluding
simplification with tautologies in basic_rewrites. Matching subterms are found recursively
starting from the term in the conclusion part of the theorem, until no more matches are found.
For more details on rewriting see GEN_REWRITE_RULE.

Uses
PURE_REWRITE_RULE is useful when the simplifications that arise by rewriting a theorem with
basic_rewrites are not wanted.

Failure
Does not fail. May result in divergence, in which case PURE_ONCE_REWRITE_RULE can be used.

See also
ASM_REWRITE_RULE, GEN_REWRITE_RULE, ONCE_REWRITE_RULE, PURE_ASM_REWRITE_RULE,
PURE_ONCE_ASM_REWRITE_RULE, PURE_ONCE_REWRITE_RULE, REWRITE_RULE.

PURE_REWRITE_TAC

PURE_REWRITE_TAC : thm list -> tactic

500 Chapter 1. Pre-defined ML Identifiers

Synopsis
Rewrites a goal with only the given list of rewrites.

Description
PURE_REWRITE_TAC behaves in the same way as REWRITE_TAC, but without the effects of the
built-in tautologies. The order in which the given theorems are applied is an implementation
matter and the user should not depend on any ordering. For more information on rewriting
strategies see GEN_REWRITE_TAC.

Failure
PURE_REWRITE_TAC does not fail, but it can diverge in certain situations; in such cases PURE_ONCE_REWRITE_TAC
may be used.

Uses
This tactic is useful when the built-in tautologies are not required as rewrite equations. It is
sometimes useful in making more time-efficient replacements according to equations for which
it is clear that no extra reduction via tautology will be needed. (The difference in efficiency is
only apparent, however, in quite large examples.)
PURE_REWRITE_TAC advances goals but solves them less frequently than REWRITE_TAC; to be

precise, PURE_REWRITE_TAC only solves goals which are rewritten to ‘T‘ (i.e. TRUTH) without
recourse to any other tautologies.

Example
It might be necessary, say for subsequent application of an induction hypothesis, to resist re-
ducing a term ‘b = T‘ to ‘b‘.

g ‘b <=> T‘;;
Warning: Free variables in goal: b
val it : goalstack = 1 subgoal (1 total)

‘b <=> T‘

e(PURE_REWRITE_TAC[]);;
val it : goalstack = 1 subgoal (1 total)

‘b <=> T‘

e(REWRITE_TAC[]);;
val it : goalstack = 1 subgoal (1 total)

‘b‘

See also
ASM_REWRITE_TAC, GEN_REWRITE_TAC, ONCE_ASM_REWRITE_TAC, ONCE_REWRITE_TAC,
PURE_ASM_REWRITE_TAC, PURE_ONCE_ASM_REWRITE_TAC, PURE_ONCE_REWRITE_TAC,
REWRITE_TAC, SUBST_TAC.

PURE SIMP CONV 501

PURE_SIMP_CONV

PURE_SIMP_CONV : thm list -> conv

Synopsis
Simplify a term repeatedly by conditional contextual rewriting, not using default simplifications.

Description
A call SIMP_CONV thl tm will return |- tm = tm’ where tm’ results from applying the theorems
in thl as (conditional) rewrite rules. This is similar to SIMP_CONV, and the documentation for
that contains more details. The PURE prefix means that the usual built-in simplifications (see
basic_rewrites and basic_convs) are not applied.

Failure
Never fails, but may return a reflexive theorem |- tm = tm if no simplifications can be made.

See also
PURE_REWRITE_CONV, SIMP_CONV, SIMP_RULE, SIMP_TAC.

PURE_SIMP_RULE

PURE_SIMP_RULE : thm list -> thm -> thm

Synopsis
Simplify conclusion of a theorem repeatedly by conditional contextual rewriting, not using de-
fault simplifications.

Description
A call SIMP_CONV thl (|- tm) will return |- tm’ where tm’ results from applying the theo-
rems in thl as (conditional) rewrite rules. Howver, the PURE prefix indicates that it will not
automatically include the usual built-in simplifications (see basic_rewrites and basic_convs).
For more details on this kind of conditional rewriting, see SIMP_CONV.

Failure
Never fails, but may return the input theorem unchanged if no simplifications were applicable.

See also
ONCE_SIMP_RULE, SIMP_CONV, SIMP_RULE, SIMP_TAC.

502 Chapter 1. Pre-defined ML Identifiers

PURE_SIMP_TAC

PURE_SIMP_TAC : thm list -> tactic

Synopsis
Simplify a goal repeatedly by conditional contextual rewriting without default simplifications.

Description
When applied to a goal A ?- g, the tactic PURE_SIMP_TAC thl returns a new goal A ?- g’
where g’ results from applying the theorems in thl as (conditional) rewrite rules. The PURE pre-
fix means that it does not apply the built-in simplifications (see basic_rewrites and basic_convs).
For more details, see SIMP_CONV.

Failure
Never fails, though may not change the goal if no simplifications are applicable.

Comments
To add the assumptions of the goal to the rewrites, use PURE_ASM_SIMP_TAC (or just ASM PURE_SIMP_TAC).

See also
ASM, ASM_SIMP_TAC, mk_rewrites, ONCE_SIMP_CONV, REWRITE_TAC, SIMP_CONV,
SIMP_RULE.

qmap

qmap : (’a -> ’a) -> ’a list -> ’a list

Synopsis
Maps a function of type ’a -> ’a over a list, optimizing the unchanged case.

Description
The call qmap f [x1;...;xn] returns the list [f(x1);...;f(xn)]. In this respect it behaves
like map. However with qmap, the function f must have the same domain and codomain type,
and in cases where the function returns the argument unchanged (actually pointer-equal, tested
by ‘==’), the implementation often avoids rebuilding an equal copy of the list, so can be much
more efficient.

Failure
Fails if one of the embedded evaluations of f fails, but not otherwise.

quotexpander 503

Example
Let us map the identity function over a million numbers:

let million = 1--1000000;;
val million : int list =
[1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21;
...]

First we use ordinary map; the computation takes some time because the list is traversed and
reconstructed, giving a fresh copy:

time (map I) million == million;;
CPU time (user): 2.95
val it : bool = false

But qmap is markedly faster, uses no extra heap memory, and the result is pointer-equal to
the input:

time (qmap I) million == million;;
CPU time (user): 0.13
val it : bool = true

Uses
Many logical operations, such as substitution, may in common cases return their arguments
unchanged. In this case it is very useful to optimize the traversal in this way. Several internal
logical manipulations like vsubst use this technique.

Comments

See also
map.

quotexpander

quotexpander : string -> string

Synopsis
Quotation expander.

Description
This function determines how anything in ‘backquotes‘ is expanded on input.

Failure
Never fails.

504 Chapter 1. Pre-defined ML Identifiers

Example

quotexpander "1 + 1";;
val it : string = "parse_term \"1 + 1\""
quotexpander ":num";;
val it : string = "parse_type \"num\""

Comments
Not intended for general use, but automatically invoked when anything is typed in backquotes
‘like this‘. May be of some interest for users wishing to change the behavior of the quotation
parser.

RAND_CONV

RAND_CONV : conv -> conv

Synopsis
Applies a conversion to the operand of an application.

Description
If c is a conversion that maps a term ‘t2‘ to the theorem |- t2 = t2’, then the conversion
RAND_CONV c maps applications of the form ‘t1 t2‘ to theorems of the form:

|- (t1 t2) = (t1 t2’)

That is, RAND_CONV c ‘t1 t2‘ applies c to the operand of the application ‘t1 t2‘.

Failure
RAND_CONV c tm fails if tm is not an application or if tm has the form ‘t1 t2‘ but the conversion
c fails when applied to the term t2. The function returned by RAND_CONV c may also fail if the
ML function c is not, in fact, a conversion (i.e. a function that maps a term t to a theorem
|- t = t’).

Example

RAND_CONV num_CONV ‘SUC 2‘;;
val it : thm = |- SUC 2 = SUC (SUC 1)

See also
ABS_CONV, COMB_CONV, COMB_CONV2, LAND_CONV, RATOR_CONV, SUB_CONV.

rand 505

rand

rand : term -> term

Synopsis
Returns the operand from a combination (function application).

Description
rand ‘t1 t2‘ returns ‘t2‘.

Failure
Fails with rand if term is not a combination.

Example

rand ‘SUC 0‘;;
val it : term = ‘0‘
rand ‘x + y‘;;
val it : term = ‘y‘

See also
rator, lhand, dest_comb.

ran

ran : (’a, ’b) func -> ’b list
This is one of a suite of operations on finite partial functions, type (’a,’b)func. These

may sometimes be preferable to ordinary functions since they permit more operations such as
equality comparison, extraction of domain etc. The ran operation returns the domain of such a
function, i.e. the set of result values for the points on which it is defined.

Failure
Attempts to setify the resulting list, so may fail if the range type does not admit comparisons.

Example

ran (1 |=> "1");;
val it : string list = ["1"]
ran(itlist I [2|->4; 3|->6] undefined);;
val it : int list = [4; 6]

See also
|->, |=>, apply, applyd, choose, combine, defined, dom, foldl, foldr, graph,
is_undefined, mapf, ran, tryapplyd, undefine, undefined.

506 Chapter 1. Pre-defined ML Identifiers

rat_of_term

rat_of_term : term -> num

Synopsis
Converts a canonical rational literal of type :real to an OCaml number.

Description
The call rat_of_term t where term t is a canonical rational literal of type :real returns the
corresponding OCaml rational number (type num). The canonical literals are integer literals
&n for numeral n, -- &n for a nonzero numeral n, or ratios &p / &q or -- &p / &q where p is
nonzero, q > 1 and p and q share no common factor.

Failure
Fails when applied to a term that is not a canonical rational literal.

Example

rat_of_term ‘-- &22 / &7‘;;
val it : num = -22/7

See also
is_ratconst, mk_realintconst, REAL_RAT_REDUCE_CONV, term_of_rat.

RATOR_CONV

RATOR_CONV : conv -> conv

Synopsis
Applies a conversion to the operator of an application.

Description
If c is a conversion that maps a term ‘t1‘ to the theorem |- t1 = t1’, then the conversion
RATOR_CONV c maps applications of the form ‘t1 t2‘ to theorems of the form:

|- (t1 t2) = (t1’ t2)

That is, RATOR_CONV c ‘t1 t2‘ applies c to the operand of the application ‘t1 t2‘.

Failure
RATOR_CONV c tm fails if tm is not an application or if tm has the form ‘t1 t2‘ but the conversion
c fails when applied to the term t1. The function returned by RATOR_CONV c may also fail if

rator 507

the ML function c:term->thm is not, in fact, a conversion (i.e. a function that maps a term t
to a theorem |- t = t’).

Example

RATOR_CONV BETA_CONV ‘(\x y. x + y) 1 2‘;;
val it : thm = |- (\x y. x + y) 1 2 = (\y. 1 + y) 2

See also
ABS_CONV, COMB_CONV, COMB2_CONV, RAND_CONV, SUB_CONV.

rator

rator : term -> term

Synopsis
Returns the operator from a combination (function application).

Description
rator(‘t1 t2‘) returns ‘t1‘.

Failure
Fails with rator if term is not a combination.

Example

rator ‘f(x)‘;;
Warning: inventing type variables
val it : term = ‘f‘

rator ‘~p‘;;
val it : term = ‘(~)‘

rator ‘x + y‘;;
val it : term = ‘(+) x‘

See also
dest_comb, lhand, lhs, rand.

r

r : int -> goalstack

508 Chapter 1. Pre-defined ML Identifiers

Synopsis
Reorders the subgoals on top of the subgoal package goal stack.

Description
The function r is part of the subgoal package. It ‘rotates’ the current list of goals by the
given number, which may be positive or negative. For a description of the subgoal package, see
set_goal.

Failure
If there are no goals.

Example

g ‘(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3]) /\ (HD (TL[1;2;3]) = 2)‘;;
val it : goalstack = 1 subgoal (1 total)

‘HD [1; 2; 3] = 1 /\ TL [1; 2; 3] = [2; 3] /\ HD (TL [1; 2; 3]) = 2‘

e (REPEAT CONJ_TAC);;
val it : goalstack = 3 subgoals (3 total)

‘HD (TL [1; 2; 3]) = 2‘

‘TL [1; 2; 3] = [2; 3]‘

‘HD [1; 2; 3] = 1‘

r 1;;
val it : goalstack = 1 subgoal (3 total)

‘TL [1; 2; 3] = [2; 3]‘

r 1;;
val it : goalstack = 1 subgoal (3 total)

‘HD (TL [1; 2; 3]) = 2‘

Uses
Proving subgoals in a different order from that generated by the subgoal package.

See also
b, e, g,p, set_goal, top_thm.

REAL_ARITH

REAL_ARITH : term -> thm

REAL ARITH TAC 509

Synopsis
Attempt to prove term using basic algebra and linear arithmetic over the reals.

Description
REAL_ARITH is the basic tool for proving elementary lemmas about real equations and inequali-
ties. Given a term, it first applies various normalizations, eliminating constructs such as max, min
and abs by introducing case splits, splitting over the arms of conditionals and putting any equa-
tions and inequalities into a form p(x) <><> 0 where <><> is an equality or inequality function
and p(x) is in a normal form for polynomials as produced by REAL_POLY_CONV. The problem
is split into the refutation of various conjunctions of such subformulas. A refutation of each
is attempted using simple linear inequality reasoning (essentially Fourier-Motzkin elimination).
Note that no non-trivial nonlinear inequality reasoning is performed (see below).

Failure
Fails if the term is not provable using the algorithm sketched above.

Example
Here is some simple inequality reasoning, showing how constructs like abs, max and min can be
handled:

REAL_ARITH
‘abs(x) < min e d / &2 /\ abs(y) < min e d / &2 ==> abs(x + y) < d + e‘;;

val it : thm =
|- abs x < min e d / &2 /\ abs y < min e d / &2 ==> abs (x + y) < d + e

The following example also involves inequality reasoning, but the initial algebraic normaliza-
tion is critical to make the pieces match up:

REAL_ARITH ‘(&1 + x) * (&1 - x) * (&1 + x pow 2) < &1 ==> &0 < x pow 4‘;;
val it : thm = |- (&1 + x) * (&1 - x) * (&1 + x pow 2) < &1 ==> &0 < x pow 4

Uses
Very convenient for providing elementary lemmas that would otherwise be painful to prove
manually.

Comments
For nonlinear equational reasoning, use REAL_RING or REAL_FIELD. For nonlinear inequality
reasoning, there are no powerful rules built into HOL Light, but the additional derived rules
defined in Examples/sos.ml and Rqe/make.ml may be useful.

See also
ARITH_TAC, INT_ARITH_TAC, REAL_ARITH_TAC, REAL_FIELD, REAL_RING.

REAL_ARITH_TAC

REAL_ARITH_TAC : tactic

510 Chapter 1. Pre-defined ML Identifiers

Synopsis
Attempt to prove goal using basic algebra and linear arithmetic over the reals.

Description
The tactic REAL_ARITH_TAC is the tactic form of REAL_ARITH. Roughly speaking, it will auto-
matically prove any formulas over the reals that are efectively universally quantified and can
be proved valid by algebraic normalization and linear equational and inequality reasoning. See
REAL_ARITH for more information about the algorithm used and its scope.

Failure
Fails if the goal is not in the subset solvable by these means, or is not valid.

Example
Here is a goal that holds by virtue of pure algebraic normalization:

g ‘(x1 pow 2 + x2 pow 2 + x3 pow 2 + x4 pow 2) pow 2 =
((x1 + x2) pow 4 + (x1 + x3) pow 4 + (x1 + x4) pow 4 +
(x2 + x3) pow 4 + (x2 + x4) pow 4 + (x3 + x4) pow 4 +
(x1 - x2) pow 4 + (x1 - x3) pow 4 + (x1 - x4) pow 4 +
(x2 - x3) pow 4 + (x2 - x4) pow 4 + (x3 - x4) pow 4) / &6‘;;

and here is one that holds by linear inequality reasoning:

g ‘&26 < x / &2 ==> abs(x / &4 + &1) < abs(x / &3)‘;;

so either goal is solved simply by:

e REAL_ARITH_TAC;;
val it : goalstack = No subgoals

Comments
For nonlinear equational reasoning, use CONV_TAC REAL_RING or CONV_TAC REAL_FIELD. For
nonlinear inequality reasoning, there are no powerful rules built into HOL Light, but the addi-
tional derived rules defined in Examples/sos.ml and Rqe/make.ml may be useful.

See also
ARITH_TAC, INT_ARITH_TAC, REAL_ARITH, REAL_FIELD, REAL_RING.

REAL_FIELD

REAL_FIELD : term -> thm

Synopsis
Prove basic ‘field’ facts over the reals.

real ideal cofactors 511

Description
Most of the built-in HOL arithmetic decision procedures have limited ability to deal with in-
version or division. REAL_FIELD is an enhancement of REAL_RING that has the same underlying
method but first performs various case-splits, reducing a goal involving the inverse inv(t) of
a term t to the cases where t = 0 where t * inv(t) = &1, repeatedly for all such t. After
subsequently splitting the goal into normal form, REAL_RING (for algebraic reasoning) is applied;
if this fails then REAL_ARITH is also tried, since this allows some t = 0 cases to be excluded by
simple linear reasoning.

Failure
Fails if the term is not provable using the methods described.

Example
Here we do some simple algebraic simplification, ruling out the degenerate x = &0 case using
the inequality in the antecedent.

REAL_FIELD ‘!x. &0 < x ==> &1 / x - &1 / (x + &1) = &1 / (x * (x + &1))‘;;
...
val it : thm = |- !x. &0 < x ==> &1 / x - &1 / (x + &1) = &1 / (x * (x + &1))

Comments
Except for the discharge of conditions using linear reasoning, this rule is essentially equational.
For nonlinear inequality reasoning, there are no powerful rules built into HOL Light, but the
additional derived rules defined in Examples/sos.ml and Rqe/make.ml may be useful.

See also
ARITH_TAC, INT_ARITH_TAC, REAL_ARITH, REAL_ARITH_TAC, REAL_RING.

real_ideal_cofactors

real_ideal_cofactors : term list -> term -> term list

Synopsis
Produces cofactors proving that one real polynomial is in the ideal generated by others.

Description
The call real_ideal_cofactors [‘p1‘; ...; ‘pn‘] ‘p‘, where all the terms have type :real
and can be considered as polynomials, will test whether p is in the ideal generated by the
p1,...,pn. If so, it will return a corresponding list [‘q1‘; ...; ‘qn‘] of ‘cofactors’ such
that the following is an algebraic identity (provable by REAL_RING or a slight elaboration of
REAL_POLY_CONV, for example):

p = p1 * q1 + ... + pn * qn

hence providing an explicit certificate for the ideal membership. If ideal membership does not
hold, real_ideal_cofactors fails. The test is performed using a Gröbner basis procedure.

512 Chapter 1. Pre-defined ML Identifiers

Failure
Fails if the terms are ill-typed, or if ideal membership fails.

Example
Here is a fairly simple example:

prioritize_real();;
val it : unit = ()

real_ideal_cofactors
[‘y1 * y3 + x1 * x3‘;
‘y3 * (y2 - y3) + (x2 - x3) * x3‘]
‘x3 * y3 * (y1 * (x2 - x3) - x1 * (y2 - y3))‘;;

...
val it : term list = [‘&1 * y3 pow 2 + -- &1 * y2 * y3‘; ‘&1 * y1 * y3‘]

and we can confirm the identity as follows (note that REAL_IDEAL_CONV already does this di-
rectly):

REAL_RING ‘(&1 * y3 pow 2 + -- &1 * y2 * y3) * (y1 * y3 + x1 * x3) +
(&1 * y1 * y3) * (y3 * (y2 - y3) + (x2 - x3) * x3) =
x3 * y3 * (y1 * (x2 - x3) - x1 * (y2 - y3))‘;;

Comments
When we say that terms can be ‘considered as polynomials’, we mean that initial normalization,
essentially in the style of REAL_POLY_CONV, will be applied, but some complex constructs such
as conditional expressions will be treated as atomic.

See also
ideal_cofactors, int_ideal_cofactors, REAL_IDEAL_CONV, REAL_RING, RING,
RING_AND_IDEAL_CONV.

REAL_IDEAL_CONV

REAL_IDEAL_CONV : term list -> term -> thm

Synopsis
Produces identity proving ideal membership over the reals.

Description
The call REAL_IDEAL_CONV [‘p1‘; ...; ‘pn‘] ‘p‘, where all the terms have type :real and
can be considered as polynomials, will test whether p is in the ideal generated by the p1,...,pn.
If so, it will return a corresponding theorem |- p = q1 * p1 + ... + qn * pn showing how
to express p in terms of the other polynomials via some ‘cofactors’ qi.

REAL INT ABS CONV 513

Failure
Fails if the terms are ill-typed, or if ideal membership fails.

Example
In the case of a singleton list, this just corresponds to dividing one multivariate polynomial by
another, e.g.

REAL_IDEAL_CONV [‘x - &1‘] ‘x pow 4 - &1‘;;
1 basis elements and 0 critical pairs
val it : thm =
|- x pow 4 - &1 = (&1 * x pow 3 + &1 * x pow 2 + &1 * x + &1) * (x - &1)

See also
ideal_cofactors, real_ideal_cofactors, REAL_RING, RING, RING_AND_IDEAL_CONV.

REAL_INT_ABS_CONV

REAL_INT_ABS_CONV : conv

Synopsis
Conversion to produce absolute value of an integer literal of type :real.

Description
The call REAL_INT_ABS_CONV ‘abs c‘, where c is an integer literal of type :real, returns the
theorem |- abs c = d where d is the canonical integer literal that is equal to c’s absolute value.
The literal c may be of the form &n or -- &n (with nonzero n in the latter case) and the result
will be of the same form.

Failure
Fails if applied to a term that is not the negation of one of the permitted forms of integer literal
of type :real.

Example

REAL_INT_ABS_CONV ‘abs(-- &42)‘;;
val it : thm = |- abs (-- &42) = &42

Comments
The related function REAL_RAT_ABS_CONV subsumes this functionality, also applying to rational
literals. Unless the restriction to integers is desired or a tiny efficiency difference matters, it
should be used in preference.

514 Chapter 1. Pre-defined ML Identifiers

See also
INT_ABS_CONV, REAL_RAT_ABS_CONV, REAL_INT_REDUCE_CONV.

REAL_INT_ADD_CONV

REAL_INT_ADD_CONV : conv

Synopsis
Conversion to perform addition on two integer literals of type :real.

Description
The call REAL_INT_ADD_CONV ‘c1 + c2‘ where c1 and c2 are integer literals of type :real,
returns |- c1 + c2 = d where d is the canonical integer literal that is equal to c1 + c2. The
literals c1 and c2 may be of the form &n or -- &n (with nonzero n in the latter case) and the
result will be of the same form.

Failure
Fails if applied to a term that is not the sum of two permitted integer literals of type :real.

Example

REAL_INT_ADD_CONV ‘-- &17 + &25‘;;
val it : thm = |- -- &17 + &25 = &8

Comments
The related function REAL_RAT_ADD_CONV subsumes this functionality, also applying to rational
literals. Unless the restriction to integers is desired or a tiny efficiency difference matters, it
should be used in preference.

See also
INT_ADD_CONV, REAL_RAT_ADD_CONV, REAL_INT_REDUCE_CONV.

REAL_INT_EQ_CONV

REAL_INT_EQ_CONV : conv

Synopsis
Conversion to prove whether one integer literal of type :real is equal to another.

REAL INT GE CONV 515

Description
The call REAL_INT_EQ_CONV ‘c1 < c2‘ where c1 and c2 are integer litersls of type :real,
returns whichever of |- c1 = c2 <=> T or |- c1 = c2 <=> F is true. By an integer literal we
mean either &n or -- &n where n is a numeral.

Failure
Fails if applied to a term that is not an equality comparison on two permitted integer literals of
type :real.

Example

REAL_INT_EQ_CONV ‘&1 = &2‘;;
val it : thm = |- &1 = &2 <=> F

REAL_INT_EQ_CONV ‘-- &1 = -- &1‘;;
val it : thm = |- -- &1 = -- &1 <=> T

Comments
The related function REAL_RAT_EQ_CONV subsumes this functionality, also applying to rational
literals. Unless the restriction to integers is desired or a tiny efficiency difference matters, it
should be used in preference.

See also
INT_EQ_CONV, REAL_RAT_EQ_CONV, REAL_RAT_REDUCE_CONV.

REAL_INT_GE_CONV

REAL_INT_GE_CONV : conv

Synopsis
Conversion to prove whether one integer literal of type :real is >= another.

Description
The call REAL_INT_GE_CONV ‘c1 >= c2‘ where c1 and c2 are integer litersls of type :real,
returns whichever of |- c1 >= c2 <=> T or |- c1 >= c2 <=> F is true. By an integer literal
we mean either &n or -- &n where n is a numeral.

Failure
Fails if applied to a term that is not the appropriate inequality comparison on two permitted
integer literals of type :real.

516 Chapter 1. Pre-defined ML Identifiers

Example

REAL_INT_GE_CONV ‘&7 >= &6‘;;
val it : thm = |- &7 >= &6 <=> T

Comments
The related function REAL_RAT_GE_CONV subsumes this functionality, also applying to rational
literals. Unless the restriction to integers is desired or a tiny efficiency difference matters, it
should be used in preference.

See also
INT_GE_CONV, REAL_RAT_GE_CONV, REAL_RAT_REDUCE_CONV.

REAL_INT_GT_CONV

REAL_INT_GT_CONV : conv

Synopsis
Conversion to prove whether one integer literal of type :real is < another.

Description
The call REAL_INT_GT_CONV ‘c1 > c2‘ where c1 and c2 are integer litersls of type :real,
returns whichever of |- c1 > c2 <=> T or |- c1 > c2 <=> F is true. By an integer literal we
mean either &n or -- &n where n is a numeral.

Failure
Fails if applied to a term that is not the appropriate inequality comparison on two permitted
integer literals of type :real.

Example

REAL_INT_GT_CONV ‘&1 > &2‘;;
val it : thm = |- &1 > &2 <=> F

Comments
The related function REAL_RAT_GT_CONV subsumes this functionality, also applying to rational
literals. Unless the restriction to integers is desired or a tiny efficiency difference matters, it
should be used in preference.

See also
INT_GT_CONV, REAL_RAT_GT_CONV, REAL_RAT_REDUCE_CONV.

REAL INT LE CONV 517

REAL_INT_LE_CONV

REAL_INT_LE_CONV : conv

Synopsis
Conversion to prove whether one integer literal of type :real is <= another.

Description
The call REAL_INT_LE_CONV ‘c1 <= c2‘ where c1 and c2 are integer litersls of type :real,
returns whichever of |- c1 <= c2 <=> T or |- c1 <= c2 <=> F is true. By an integer literal
we mean either &n or -- &n where n is a numeral.

Failure
Fails if applied to a term that is not the appropriate inequality comparison on two permitted
integer literals of type :real.

Example

REAL_INT_LE_CONV ‘&11 <= &77‘;;
val it : thm = |- &11 <= &77 <=> T

Comments
The related function REAL_RAT_LE_CONV subsumes this functionality, also applying to rational
literals. Unless the restriction to integers is desired or a tiny efficiency difference matters, it
should be used in preference.

See also
INT_LE_CONV, REAL_RAT_LE_CONV, REAL_RAT_REDUCE_CONV.

REAL_INT_LT_CONV

REAL_INT_LT_CONV : conv

Synopsis
Conversion to prove whether one integer literal of type :real is < another.

Description
The call REAL_INT_LT_CONV ‘c1 < c2‘ where c1 and c2 are integer litersls of type :real,
returns whichever of |- c1 < c2 <=> T or |- c1 < c2 <=> F is true. By an integer literal we
mean either &n or -- &n where n is a numeral.

518 Chapter 1. Pre-defined ML Identifiers

Failure
Fails if applied to a term that is not the appropriate inequality comparison on two permitted
integer literals of type :real.

Example

REAL_INT_LT_CONV ‘-- &18 < &64‘;;
val it : thm = |- -- &18 < &64 <=> T

Comments
The related function REAL_RAT_LT_CONV subsumes this functionality, also applying to rational
literals. Unless the restriction to integers is desired or a tiny efficiency difference matters, it
should be used in preference.

See also
INT_LT_CONV, REAL_RAT_LT_CONV, REAL_RAT_REDUCE_CONV.

REAL_INT_MUL_CONV

REAL_INT_MUL_CONV : conv

Synopsis
Conversion to perform multiplication on two integer literals of type :real.

Description
The call REAL_INT_MUL_CONV ‘c1 * c2‘ where c1 and c2 are integer literals of type :real,
returns |- c1 * c2 = d where d is the canonical integer literal that is equal to c1 * c2. The
literals c1 and c2 may be of the form &n or -- &n (with nonzero n in the latter case) and the
result will be of the same form.

Failure
Fails if applied to a term that is not the product of two permitted integer literals of type :real.

Example

REAL_INT_MUL_CONV ‘&6 * -- &9‘;;
val it : thm = |- &6 * -- &9 = -- &54

Comments
The related function REAL_RAT_MUL_CONV subsumes this functionality, also applying to rational
literals. Unless the restriction to integers is desired or a tiny efficiency difference matters, it
should be used in preference.

REAL INT NEG CONV 519

See also
INT_MUL_CONV, REAL_RAT_MUL_CONV, REAL_INT_REDUCE_CONV.

REAL_INT_NEG_CONV

REAL_INT_NEG_CONV : conv

Synopsis
Conversion to negate an integer literal of type :real.

Description
The call REAL_INT_NEG_CONV ‘--c‘, where c is an integer literal of type :real, returns the
theorem |- --c = d where d is the canonical integer literal that is equal to c’s negation. The
literal c may be of the form &n or -- &n (with nonzero n in the latter case) and the result will
be of the same form.

Failure
Fails if applied to a term that is not the negation of one of the permitted forms of integer literal
of type :real.

Example

REAL_INT_NEG_CONV ‘-- (-- &3 / &2)‘;;
val it : thm = |- --(-- &3 / &2) = &3 / &2

Comments
The related function REAL_RAT_NEG_CONV subsumes this functionality, also applying to rational
literals. Unless the restriction to integers is desired or a tiny efficiency difference matters, it
should be used in preference.

See also
INT_NEG_CONV, REAL_RAT_NEG_CONV, REAL_INT_REDUCE_CONV.

REAL_INT_POW_CONV

REAL_INT_POW_CONV : conv

Synopsis
Conversion to perform exponentiation on a integer literal of type :real.

520 Chapter 1. Pre-defined ML Identifiers

Description
The call REAL_INT_POW_CONV ‘c pow n‘ where c is an integer literal of type :real and n is a
numeral of type :num, returns |- c pow n = d where d is the canonical integer literal that is
equal to c raised to the nth power. The literal c may be of the form &n or -- &n (with nonzero
n in the latter case) and the result will be of the same form.

Failure
Fails if applied to a term that is not a permitted integer literal of type :real raised to a numeral
power.

Example

REAL_INT_POW_CONV ‘(-- &2) pow 77‘;;
val it : thm = |- -- &2 pow 77 = -- &151115727451828646838272

Comments
The related function REAL_RAT_POW_CONV subsumes this functionality, also applying to rational
literals. Unless the restriction to integers is desired or a tiny efficiency difference matters, it
should be used in preference.

See also
INT_POW_CONV, REAL_INT_POW_CONV, REAL_INT_REDUCE_CONV.

REAL_INT_RAT_CONV

REAL_INT_RAT_CONV : conv

Synopsis
Convert basic rational constant of real type to canonical form.

Description
When applied to a term that is a rational constant of type :real, REAL_INT_RAT_CONV converts
it to an explicit ratio &p / &q or -- &p / &q; q is always there, even if it is 1.

Failure
Never fails; simply has no effect if it is not applied to a suitable constant.

REAL INT RED CONV 521

Example

REAL_INT_RAT_CONV ‘&22 / &7‘;;
val it : thm = |- &22 / &7 = &22 / &7

REAL_INT_RAT_CONV ‘&42‘;;
val it : thm = |- &42 = &42 / &1

REAL_INT_RAT_CONV ‘#3.1415926‘;;
val it : thm = |- #3.1415926 = &31415926 / &10000000

Uses
Mainly for internal use as a preprocessing step in rational-number calculations.

See also
REAL_RAT_REDUCE_CONV.

REAL_INT_RED_CONV

REAL_INT_RED_CONV : term -> thm

Synopsis
Performs one arithmetic or relational operation on integer literals of type :real.

Description
When applied to any of the terms ‘--c‘, ‘abs c‘, ‘c1 + c2‘, ‘c1 - c2‘, ‘c1 * c2‘, ‘c pow n‘,
‘c1 <= c2‘, ‘c1 < c2‘, ‘c1 >= c2‘, ‘c1 > c2‘, ‘c1 = c2‘, where c, c1 and c2 are integer
literals of type :real and n is a numeral of type :num, REAL_INT_RED_CONV returns a theorem
asserting the equivalence of the term to a canonical integer (for the arithmetic operators) or a
truth-value (for the relational operators). The integer literals are terms of the form &n or -- &n
(with nonzero n in the latter case).

Failure
Fails if applied to an inappropriate term.

Uses
More convenient for most purposes is REAL_INT_REDUCE_CONV, which applies these evaluation
conversions recursively at depth, or still more generally REAL_RAT_REDUCE_CONV which applies
to any rational numbers, not just integers. Still, access to this ‘one-step’ reduction can be handy

522 Chapter 1. Pre-defined ML Identifiers

if you want to add a conversion conv for some other operator on real number literals, which you
can conveniently incorporate it into REAL_INT_REDUCE_CONV with

let REAL_INT_REDUCE_CONV’ =
DEPTH_CONV(REAL_INT_RED_CONV ORELSEC conv);;

See also
INT_RED_CONV, REAL_INT_REDUCE_CONV, REAL_RAT_RED_CONV.

REAL_INT_REDUCE_CONV

REAL_INT_REDUCE_CONV : conv

Synopsis
Evaluate subexpressions built up from integer literals of type :real, by proof.

Description
When applied to a term, REAL_INT_REDUCE_CONV performs a recursive bottom-up evaluation by
proof of subterms built from integer literals of type :real using the unary operators ‘--’, ‘inv’
and ‘abs’, and the binary arithmetic (‘+’, ‘-’, ‘*’, ‘/’, ‘pow’) and relational (‘<’, ‘<=’, ‘>’, ‘>=’,
‘=’) operators, as well as propagating literals through logical operations, e.g. T /\ x <=> x,
returning a theorem that the original and reduced terms are equal. The permissible integer
literals are of the form &n or -- &n for numeral n, nonzero in the negative case.

Failure
Never fails, but may have no effect.

Example

REAL_INT_REDUCE_CONV
‘if &5 pow 4 < &4 pow 5 then (&2 pow 3 - &1) pow 2 + &1 else &99‘;;

val it : thm =
|- (if &5 pow 4 < &4 pow 5 then (&2 pow 3 - &1) pow 2 + &1 else &99) = &50

Comments
The corresponding INT_REDUCE_CONV works for the type of integers. The more general function
REAL_RAT_REDUCE_CONV works similarly over :real but for arbitrary rational literals.

See also
NUM_REDUCE_CONV, INT_REDUCE_CONV, REAL_RAT_REDUCE_CONV.

REAL INT SUB CONV 523

REAL_INT_SUB_CONV

REAL_INT_SUB_CONV : conv

Synopsis
Conversion to perform subtraction on two integer literals of type :real.

Description
The call REAL_INT_SUB_CONV ‘c1 - c2‘ where c1 and c2 are integer literals of type :real,
returns |- c1 - c2 = d where d is the canonical integer literal that is equal to c1 - c2. The
literals c1 and c2 may be of the form &n or -- &n (with nonzero n in the latter case) and the
result will be of the same form.

Failure
Fails if applied to a term that is not the difference of two permitted integer literals of type :real.

Example

REAL_INT_SUB_CONV ‘&33 - &77‘;;
val it : thm = |- &33 - &77 = -- &44

Comments
The related function REAL_RAT_SUB_CONV subsumes this functionality, also applying to rational
literals. Unless the restriction to integers is desired or a tiny efficiency difference matters, it
should be used in preference.

See also
INT_SUB_CONV, REAL_RAT_SUB_CONV, REAL_INT_REDUCE_CONV.

REAL_LE_IMP

REAL_LE_IMP : thm -> thm

Synopsis
Perform transitivity chaining for non-strict real number inequality.

Description
When applied to a theorem A |- s <= t where s and t have type real, the rule REAL_LE_IMP
returns A |- !x1...xn z. t <= z ==> s <= z, where z is some variable and the x1,...,xn
are free variables in s and t.

524 Chapter 1. Pre-defined ML Identifiers

Failure
Fails if applied to a theorem whose conclusion is not of the form ‘s <= t‘ for some real number
terms s and t.

Example

REAL_LE_IMP (REAL_ARITH ‘x:real <= abs(x)‘);;
val it : thm = |- !x z. abs x <= z ==> x <= z

Uses
Can make transitivity chaining in goals easier, e.g. by FIRST_ASSUM(MATCH_MP_TAC o REAL_LE_IMP).

See also
LE_IMP, REAL_ARITH, REAL_LET_IMP.

REAL_LET_IMP

REAL_LET_IMP : thm -> thm

Synopsis
Perform transitivity chaining for mixed strict/non-strict real number inequality.

Description
When applied to a theorem A |- s <= t where s and t have type real, the rule REAL_LE_IMP
returns A |- !x1...xn z. t < z ==> s < z, where z is some variable and the x1,...,xn are
free variables in s and t.

Failure
Fails if applied to a theorem whose conclusion is not of the form ‘s <= t‘ for some real number
terms s and t.

Example

REAL_LET_IMP (REAL_ARITH ‘abs(x + y) <= abs(x) + abs(y)‘);;
val it : thm = |- !x y z. abs x + abs y < z ==> abs (x + y) < z

Uses
Can make transitivity chaining in goals easier, e.g. by FIRST_ASSUM(MATCH_MP_TAC o REAL_LE_IMP).

See also
LE_IMP, REAL_ARITH, REAL_LE_IMP.

REAL LINEAR PROVER 525

REAL_LINEAR_PROVER

REAL_LINEAR_PROVER : (thm list * thm list * thm list -> positivstellensatz -> thm) -> thm list * thm list * thm list -> thm

Synopsis
Refute real equations and inequations by linear reasoning (not intended for general use).

Description
The REAL_LINEAR_PROVER function should be given two arguments. The first is a proof transla-
tor that constructs a contradiction from a tuple of three theorem lists using a Positivstellensatz
refutation, which is essentially a representation of how to add and multiply equalities or in-
equalities chosen from the list to reach a trivially false equation or inequality such as &0 > &0.
The second argument is a triple of theorem lists, respectively a list of equations of the form
A_i |- p_i = &0, a list of non-strict inequalities of the form B_j |- q_i >= &0, and a list of
strict inequalities of the form C_k |- r_k > &0, with both sides being real in each case. Any
theorems not of that form will not lead to an error, but will be ignored and cannot contribute to
the proof. The prover attempts to construct a Positivstellensatz refutation by normalization as
in REAL_POLY_CONV then linear inequality reasoning, and if successful will apply the translator
function to this refutation to obtain D |- F where all assumptions D occurs among the A_i, B_j
or C_k. Otherwise, or if the translator itself fails, the call fails.

Failure
Fails if there is no refutation using linear reasoning or if an improper form inhibits proof for
other reasons, or if the translator fails.

Uses
This is not intended for general use. The core real inequality reasoner REAL_ARITH is imple-
mented by:

let REAL_ARITH = GEN_REAL_ARITH REAL_LINEAR_PROVER;;

In this way, all specifically linear functionality is isolated in REAL_LINEAR_PROVER, and the rest
of the infrastructure of Positivstellensatz proof translation and initial normalization (including
elimination of abs, max, min, conditional expressions etc.) is available for use with more advanced
nonlinear provers. Such a prover, based on semidefinite programming and requiring support of
an external SDP solver to find Positivstellensatz refutations, can be found in Examples/sos.ml.

See also
GEN_REAL_ARITH, REAL_ARITH, REAL_POLY_CONV.

REAL_POLY_ADD_CONV

REAL_POLY_ADD_CONV : term -> thm

526 Chapter 1. Pre-defined ML Identifiers

Synopsis
Adds two real polynomials while retaining canonical form.

Description
For many purposes it is useful to retain polynomials in a canonical form. For more information
on the usual normal form in HOL Light, see the function REAL_POLY_CONV, which converts a
polynomial to normal form while proving the equivalence of the original and normalized forms.
The function REAL_POLY_ADD_CONV is a more delicate conversion that, given a term p1 + p2
where p1 and p2 are real polynomials in normal form, returns a theorem |- p1 + p2 = p where
p is in normal form.

Failure
Fails if applied to a term that is not the sum of two real terms. If these subterms are not
polynomials in normal form, the overall normalization is not guaranteed.

Example

REAL_POLY_ADD_CONV ‘(x pow 2 + x) + (x pow 2 + -- &1 * x + &1)‘;;
val it : thm =
|- (x pow 2 + x) + x pow 2 + -- &1 * x + &1 = &2 * x pow 2 + &1

Uses
More delicate polynomial operations that simply the direct normalization with REAL_POLY_CONV.

See also
REAL_ARITH, REAL_POLY_CONV, REAL_POLY_MUL_CONV, REAL_POLY_NEG_CONV,
REAL_POLY_POW_CONV, REAL_POLY_SUB_CONV, REAL_RING.

REAL_POLY_CONV

REAL_POLY_CONV : term -> thm

Synopsis
Converts a real polynomial into canonical form.

Description
Given a term of type :real that is built up using addition, subtraction, negation, multipli-
cation, and inversion and division of constants, REAL_POLY_CONV converts it into a canonical
polynomial form and returns a theorem asserting the equivalence of the original and canonical
terms. The basic elements need not simply be variables or constants; anything not built up using
the operators given above will be considered ‘atomic’ for the purposes of this conversion, for
example inv(x} where {\small\verbxpolynomial form is a ‘multiplied out’ sum of products,
with the monomials (product terms) ordered according to the canonical OCaml order on terms.
In particular, it is just &0 if the polynomial is identically zero.

REAL POLY CONV 527

Failure
Never fails, even if the term has the wrong type; in this case it merely returns a reflexive theorem.

Example
This illustrates how terms are ‘multiplied out’:

REAL_POLY_CONV
‘(x + &1) * (x pow 2 + &1) * (x pow 4 + &1)‘;;

val it : thm =
|- (x + &1) * (x pow 2 + &1) * (x pow 4 + &1) =

x pow 7 + x pow 6 + x pow 5 + x pow 4 + x pow 3 + x pow 2 + x + &1

and the following is an example of how a complicated algebraic identity (due to Liouville?)
simplifies to zero. Note that division is permissible because it is only by constants.

REAL_POLY_CONV
‘((x1 + x2) pow 4 + (x1 + x3) pow 4 + (x1 + x4) pow 4 +
(x2 + x3) pow 4 + (x2 + x4) pow 4 + (x3 + x4) pow 4) / &6 +

((x1 - x2) pow 4 + (x1 - x3) pow 4 + (x1 - x4) pow 4 +
(x2 - x3) pow 4 + (x2 - x4) pow 4 + (x3 - x4) pow 4) / &6 -
(x1 pow 2 + x2 pow 2 + x3 pow 2 + x4 pow 2) pow 2‘;;

val it : thm =
|- ((x1 + x2) pow 4 +

(x1 + x3) pow 4 +
(x1 + x4) pow 4 +
(x2 + x3) pow 4 +
(x2 + x4) pow 4 +
(x3 + x4) pow 4) /
&6 +
((x1 - x2) pow 4 +
(x1 - x3) pow 4 +
(x1 - x4) pow 4 +
(x2 - x3) pow 4 +
(x2 - x4) pow 4 +
(x3 - x4) pow 4) /
&6 -
(x1 pow 2 + x2 pow 2 + x3 pow 2 + x4 pow 2) pow 2 =
&0

Uses
Keeping terms in normal form. For simply proving equalities, REAL_RING is more powerful and
usually more convenient.

See also
INT_POLY_CONV, REAL_ARITH, REAL_RING, SEMIRING_NORMALIZERS_CONV.

528 Chapter 1. Pre-defined ML Identifiers

REAL_POLY_MUL_CONV

REAL_POLY_MUL_CONV : term -> thm

Synopsis
Multiplies two real polynomials while retaining canonical form.

Description
For many purposes it is useful to retain polynomials in a canonical form. For more information
on the usual normal form in HOL Light, see the function REAL_POLY_CONV, which converts a
polynomial to normal form while proving the equivalence of the original and normalized forms.
The function REAL_POLY_MUL_CONV is a more delicate conversion that, given a term p1 * p2
where p1 and p2 are real polynomials in normal form, returns a theorem |- p1 * p2 = p where
p is in normal form.

Failure
Fails if applied to a term that is not the product of two real terms. If these subterms are not
polynomials in normal form, the overall normalization is not guaranteed.

Example

REAL_POLY_MUL_CONV ‘(x pow 2 + x) * (x pow 2 + -- &1 * x + &1)‘;;
val it : thm = |- (x pow 2 + x) * (x pow 2 + -- &1 * x + &1) = x pow 4 + x

Uses
More delicate polynomial operations that simply the direct normalization with REAL_POLY_CONV.

See also
REAL_ARITH, REAL_POLY_ADD_CONV, REAL_POLY_CONV, REAL_POLY_NEG_CONV,
REAL_POLY_POW_CONV, REAL_POLY_SUB_CONV, REAL_RING.

REAL_POLY_NEG_CONV

REAL_POLY_NEG_CONV : term -> thm

Synopsis
Negates real polynomial while retaining canonical form.

Description
For many purposes it is useful to retain polynomials in a canonical form. For more information
on the usual normal form in HOL Light, see the function REAL_POLY_CONV, which converts a

REAL POLY POW CONV 529

polynomial to normal form while proving the equivalence of the original and normalized forms.
The function REAL_POLY_NEG_CONV is a more delicate conversion that, given a term --p where
p is a real polynomial in normal form, returns a theorem |- --p = p’ where p’ is in normal
form.

Failure
Fails if applied to a term that is not the negation of a real term. If negation is applied to a
polynomial in non-normal form, the overall normalization is not guaranteed.

Example

REAL_POLY_NEG_CONV ‘--(x pow 2 + -- &1)‘;;
val it : thm = |- --(x pow 2 + -- &1) = -- &1 * x pow 2 + &1

Uses
More delicate polynomial operations than simply the direct normalization with REAL_POLY_CONV.

See also
REAL_ARITH, REAL_POLY_ADD_CONV, REAL_POLY_CONV, REAL_POLY_MUL_CONV,
REAL_POLY_POW_CONV, REAL_POLY_SUB_CONV, REAL_RING.

REAL_POLY_POW_CONV

REAL_POLY_POW_CONV : term -> thm

Synopsis
Raise real polynomial to numeral power while retaining canonical form.

Description
For many purposes it is useful to retain polynomials in a canonical form. For more information
on the usual normal form in HOL Light, see the function REAL_POLY_CONV, which converts
a polynomial to normal form while proving the equivalence of the original and normalized
forms. The function REAL_POLY_POW_CONV is a more delicate conversion that, given a term
p1 pow n where p is a real polynomial in normal form and n a numeral, returns a theorem
|- p pow n = p’ where p’ is in normal form.

Failure
Fails if applied to a term that is not a real term raised to a numeral power. If the subterm is
not a polynomial in normal form, the overall normalization is not guaranteed.

530 Chapter 1. Pre-defined ML Identifiers

Example

REAL_POLY_POW_CONV ‘(x + &1) pow 4‘;;
val it : thm =
|- (x + &1) pow 4 = x pow 4 + &4 * x pow 3 + &6 * x pow 2 + &4 * x + &1

Uses
More delicate polynomial operations that simply the direct normalization with REAL_POLY_CONV.

See also
REAL_ARITH, REAL_POLY_ADD_CONV, REAL_POLY_CONV, REAL_POLY_MUL_CONV,
REAL_POLY_NEG_CONV, REAL_POLY_SUB_CONV, REAL_RING.

REAL_POLY_SUB_CONV

REAL_POLY_SUB_CONV : term -> thm

Synopsis
Subtracts two real polynomials while retaining canonical form.

Description
For many purposes it is useful to retain polynomials in a canonical form. For more information
on the usual normal form in HOL Light, see the function REAL_POLY_CONV, which converts a
polynomial to normal form while proving the equivalence of the original and normalized forms.
The function REAL_POLY_SUB_CONV is a more delicate conversion that, given a term p1 - p2
where p1 and p2 are real polynomials in normal form, returns a theorem |- p1 - p2 = p where
p is in normal form.

Failure
Fails if applied to a term that is not the difference of two real terms. If these subterms are not
polynomials in normal form, the overall normalization is not guaranteed.

Example

REAL_POLY_SUB_CONV ‘(x pow 2 + x) - (x pow 2 + -- &1 * x + &1)‘;;
val it : thm = |- (x pow 2 + x) - (x pow 2 + -- &1 * x + &1) = &2 * x + -- &1

Uses
More delicate polynomial operations that simply the direct normalization with REAL_POLY_CONV.

See also
REAL_ARITH, REAL_POLY_SUB_CONV, REAL_POLY_CONV, REAL_POLY_MUL_CONV,
REAL_POLY_NEG_CONV, REAL_POLY_POW_CONV, REAL_RING.

REAL RAT ABS CONV 531

REAL_RAT_ABS_CONV

REAL_RAT_ABS_CONV : term -> thm

Synopsis
Conversion to produce absolute value of a rational literal of type :real.

Description
The call REAL_RAT_ABS_CONV ‘abs c‘, where c is a rational literal of type :real, returns the
theorem |- abs c = d where d is the canonical rational literal that is equal to c’s absolute
value. The literal c may be an integer literal (&n or -- &n), a ratio (&p / &q or -- &p / &q),
or a decimal (#DDD.DDDD or #DDD.DDDDeNN). The returned value d is always put in the form
&p / &q or -- &p / &q with q > 1 and p and q sharing no common factor, or simply &p or
-- &p when that is impossible.

Failure
Fails if applied to a term that is not the absolute value function applied to one of the permitted
forms of rational literal of type :real.

Example

REAL_RAT_ABS_CONV ‘abs(-- &3 / &2)‘;;
val it : thm = |- abs (-- &3 / &2) = &3 / &2

See also
REAL_RAT_ADD_CONV, REAL_RAT_DIV_CONV, REAL_RAT_EQ_CONV, REAL_RAT_GE_CONV,
REAL_RAT_GT_CONV, REAL_RAT_INV_CONV, REAL_RAT_LE_CONV, REAL_RAT_LT_CONV,
REAL_RAT_MUL_CONV, REAL_RAT_NEG_CONV, REAL_RAT_POW_CONV, REAL_RAT_REDUCE_CONV,
REAL_RAT_RED_CONV, REAL_RAT_SUB_CONV.

REAL_RAT_ADD_CONV

REAL_RAT_ADD_CONV : conv

Synopsis
Conversion to perform addition on two rational literals of type :real.

Description
The call REAL_RAT_ADD_CONV ‘c1 + c2‘ where c1 and c2 are rational literals of type :real,
returns |- c1 + c2 = d where d is the canonical rational literal that is equal to c1 + c2. The

532 Chapter 1. Pre-defined ML Identifiers

literals c1 and c2 may be integer literals (&n or -- &n), ratios (&p / &q or -- &p / &q), or
decimals (#DDD.DDDD or #DDD.DDDDeNN). The result d is always put in the form &p / &q or
-- &p / &q with q > 1 and p and q sharing no common factor, or simply &p or -- &p when
that is impossible.

Failure
Fails if applied to a term that is not the sum of two permitted rational literals of type :real.

Example

REAL_RAT_ADD_CONV ‘-- &11 / &12 + #0.09‘;;
val it : thm = |- -- &11 / &12 + #0.09 = -- &62 / &75

See also
REAL_RAT_ABS_CONV, REAL_RAT_DIV_CONV, REAL_RAT_EQ_CONV, REAL_RAT_GE_CONV,
REAL_RAT_GT_CONV, REAL_RAT_INV_CONV, REAL_RAT_LE_CONV, REAL_RAT_LT_CONV,
REAL_RAT_MUL_CONV, REAL_RAT_NEG_CONV, REAL_RAT_POW_CONV, REAL_RAT_REDUCE_CONV,
REAL_RAT_RED_CONV, REAL_RAT_SUB_CONV.

REAL_RAT_DIV_CONV

REAL_RAT_DIV_CONV : conv

Synopsis
Conversion to perform division on two rational literals of type :real.

Description
The call REAL_RAT_DIV_CONV ‘c1 / c2‘ where c1 and c2 are rational literals of type :real,
returns |- c1 / c2 = d where d is the canonical rational literal that is equal to c1 / c2. The
literals c1 and c2 may be integer literals (&n or -- &n), ratios (&p / &q or -- &p / &q), or
decimals (#DDD.DDDD or #DDD.DDDDeNN). The result d is always put in the form &p / &q or
-- &p / &q with q > 1 and p and q sharing no common factor, or simply &p or -- &p when
that is impossible.

Failure
Fails if applied to a term that is not the quotient of two permitted rational literals of type :real,
or if the divisor is zero.

Example

REAL_RAT_DIV_CONV ‘&2000 / (-- &40 / &12)‘;;
val it : thm = |- &2000 / (-- &40 / &12) = -- &600

See also
REAL_RAT_ABS_CONV, REAL_RAT_ADD_CONV, REAL_RAT_EQ_CONV, REAL_RAT_GE_CONV,
REAL_RAT_GT_CONV, REAL_RAT_INV_CONV, REAL_RAT_LE_CONV, REAL_RAT_LT_CONV,

REAL RAT EQ CONV 533

REAL_RAT_MUL_CONV, REAL_RAT_NEG_CONV, REAL_RAT_POW_CONV, REAL_RAT_REDUCE_CONV,
REAL_RAT_RED_CONV, REAL_RAT_SUB_CONV.

REAL_RAT_EQ_CONV

REAL_RAT_EQ_CONV : conv

Synopsis
Conversion to prove whether one rational constant of type :real is equal to another.

Description
The call REAL_RAT_EQ_CONV ‘c1 = c2‘ where c1 and c2 are rational constants of type :real,
returns whichever of |- c1 = c2 <=> T or |- c1 = c2 <=> F is true. The constants c1 and c2
may be integer constants (&n or -- &n), ratios (&p / &q or -- &p / &q), or decimals (#DDD.DDDD
or #DDD.DDDDeNN).

Failure
Fails if applied to a term that is not an equality comparison on two permitted rational constants
of type :real.

Example

REAL_RAT_EQ_CONV ‘#0.40 = &2 / &5‘;;
val it : thm = |- #0.40 = &2 / &5 <=> T

REAL_RAT_EQ_CONV ‘#3.14 = &22 / &7‘;;
val it : thm = |- #3.14 = &22 / &7 <=> F

See also
REAL_RAT_ABS_CONV, REAL_RAT_ADD_CONV, REAL_RAT_DIV_CONV, REAL_RAT_GE_CONV,
REAL_RAT_GT_CONV, REAL_RAT_INV_CONV, REAL_RAT_LE_CONV, REAL_RAT_LT_CONV,
REAL_RAT_MUL_CONV, REAL_RAT_NEG_CONV, REAL_RAT_POW_CONV, REAL_RAT_REDUCE_CONV,
REAL_RAT_RED_CONV, REAL_RAT_SUB_CONV.

REAL_RAT_GE_CONV

REAL_RAT_GE_CONV : conv

Synopsis
Conversion to prove whether one rational literal of type :real is >= another.

534 Chapter 1. Pre-defined ML Identifiers

Description
The call REAL_RAT_GE_CONV ‘c1 >= c2‘ where c1 and c2 are rational literals of type :real,
returns whichever of |- c1 >= c2 <=> T or |- c1 >= c2 <=> F is true. The literals c1 and c2
may be integer literals (&n or -- &n), ratios (&p / &q or -- &p / &q), or decimals (#DDD.DDDD
or #DDD.DDDDeNN).

Failure
Fails if applied to a term that is not the appropriate inequality comparison on two permitted
rational literals of type :real.

Example

REAL_RAT_GE_CONV ‘#3.1415926 >= &22 / &7‘;;
val it : thm = |- #3.1415926 >= &22 / &7 <=> F

See also
REAL_RAT_ABS_CONV, REAL_RAT_ADD_CONV, REAL_RAT_DIV_CONV, REAL_RAT_EQ_CONV,
REAL_RAT_GT_CONV, REAL_RAT_INV_CONV, REAL_RAT_LE_CONV, REAL_RAT_LT_CONV,
REAL_RAT_MUL_CONV, REAL_RAT_NEG_CONV, REAL_RAT_POW_CONV, REAL_RAT_REDUCE_CONV,
REAL_RAT_RED_CONV, REAL_RAT_SUB_CONV.

REAL_RAT_GT_CONV

REAL_RAT_GT_CONV : conv

Synopsis
Conversion to prove whether one rational literal of type :real is > another.

Description
The call REAL_RAT_GT_CONV ‘c1 > c2‘ where c1 and c2 are rational literals of type :real,
returns whichever of |- c1 > c2 <=> T or |- c1 > c2 <=> F is true. The literals c1 and c2
may be integer literals (&n or -- &n), ratios (&p / &q or -- &p / &q), or decimals (#DDD.DDDD
or #DDD.DDDDeNN).

Failure
Fails if applied to a term that is not the appropriate inequality comparison on two permitted
rational literals of type :real.

Example

REAL_RAT_GT_CONV ‘&3 / &2 > #1.11‘;;
val it : thm = |- &3 / &2 > #1.11 <=> T

See also
REAL_RAT_ABS_CONV, REAL_RAT_ADD_CONV, REAL_RAT_DIV_CONV, REAL_RAT_EQ_CONV,
REAL_RAT_GE_CONV, REAL_RAT_INV_CONV, REAL_RAT_LE_CONV, REAL_RAT_LT_CONV,

REAL RAT INV CONV 535

REAL_RAT_MUL_CONV, REAL_RAT_NEG_CONV, REAL_RAT_POW_CONV, REAL_RAT_REDUCE_CONV,
REAL_RAT_RED_CONV, REAL_RAT_SUB_CONV.

REAL_RAT_INV_CONV

REAL_RAT_INV_CONV : term -> thm

Synopsis
Conversion to invert a rational constant of type :real.

Description
The call REAL_RAT_INV_CONV ‘inv c‘, where c is a rational constant of type :real, returns
the theorem |- inv c = d where d is the canonical rational constant that is equal to c’s multi-
plicative inverse (reciprocal). The constant c may be an integer constant (&n or -- &n), a ratio
(&p / &q or -- &p / &q), or a decimal (#DDD.DDDD or #DDD.DDDDeNN). The returned value d is
always put in the form &p / &q or -- &p / &q with q > 1 and p and q sharing no common
factor, or simply &p or -- &p when that is impossible.

Failure
Fails if applied to a term that is not the multiplicative inverse function applied to one of the
permitted forms of rational constant of type :real, or if the constant is zero.

Example

REAL_RAT_INV_CONV ‘inv(-- &5 / &9)‘;;
val it : thm = |- inv (-- &5 / &9) = -- &9 / &5

See also
REAL_RAT_ABS_CONV, REAL_RAT_ADD_CONV, REAL_RAT_DIV_CONV, REAL_RAT_EQ_CONV,
REAL_RAT_GE_CONV, REAL_RAT_GT_CONV, REAL_RAT_LE_CONV, REAL_RAT_LT_CONV,
REAL_RAT_MUL_CONV, REAL_RAT_NEG_CONV, REAL_RAT_POW_CONV, REAL_RAT_REDUCE_CONV,
REAL_RAT_RED_CONV, REAL_RAT_SUB_CONV.

REAL_RAT_LE_CONV

REAL_RAT_LE_CONV : conv

Synopsis
Conversion to prove whether one rational literal of type :real is <= another.

536 Chapter 1. Pre-defined ML Identifiers

Description
The call REAL_RAT_LE_CONV ‘c1 <= c2‘ where c1 and c2 are rational literals of type :real,
returns whichever of |- c1 <= c2 <=> T or |- c1 <= c2 <=> F is true. The literals c1 and c2
may be integer literals (&n or -- &n), ratios (&p / &q or -- &p / &q), or decimals (#DDD.DDDD
or #DDD.DDDDeNN).

Failure
Fails if applied to a term that is not the appropriate inequality comparison on two permitted
rational literals of type :real.

Example

REAL_RAT_LE_CONV ‘#3.1415926 <= &22 / &7‘;;
val it : thm = |- #3.1415926 <= &22 / &7 <=> T

See also
REAL_RAT_ABS_CONV, REAL_RAT_ADD_CONV, REAL_RAT_DIV_CONV, REAL_RAT_EQ_CONV,
REAL_RAT_GE_CONV, REAL_RAT_GT_CONV, REAL_RAT_INV_CONV, REAL_RAT_LT_CONV,
REAL_RAT_MUL_CONV, REAL_RAT_NEG_CONV, REAL_RAT_POW_CONV, REAL_RAT_REDUCE_CONV,
REAL_RAT_RED_CONV, REAL_RAT_SUB_CONV.

REAL_RAT_LT_CONV

REAL_RAT_LT_CONV : conv

Synopsis
Conversion to prove whether one rational literal of type :real is < another.

Description
The call REAL_RAT_LT_CONV ‘c1 < c2‘ where c1 and c2 are rational literals of type :real,
returns whichever of |- c1 < c2 <=> T or |- c1 < c2 <=> F is true. The literals c1 and c2
may be integer literals (&n or -- &n), ratios (&p / &q or -- &p / &q), or decimals (#DDD.DDDD
or #DDD.DDDDeNN).

Failure
Fails if applied to a term that is not the appropriate inequality comparison on two permitted
rational literals of type :real.

Example

REAL_RAT_LT_CONV ‘#3.1415926 < &355 / &113‘;;
val it : thm = |- #3.1415926 < &355 / &113 <=> T

See also
REAL_RAT_ABS_CONV, REAL_RAT_ADD_CONV, REAL_RAT_DIV_CONV, REAL_RAT_EQ_CONV,
REAL_RAT_GE_CONV, REAL_RAT_GT_CONV, REAL_RAT_INV_CONV, REAL_RAT_LE_CONV,

REAL RAT MUL CONV 537

REAL_RAT_MUL_CONV, REAL_RAT_NEG_CONV, REAL_RAT_POW_CONV, REAL_RAT_REDUCE_CONV,
REAL_RAT_RED_CONV, REAL_RAT_SUB_CONV.

REAL_RAT_MUL_CONV

REAL_RAT_MUL_CONV : conv

Synopsis
Conversion to perform multiplication on two rational literals of type :real.

Description
The call REAL_RAT_MUL_CONV ‘c1 * c2‘ where c1 and c2 are rational literals of type :real,
returns |- c1 * c2 = d where d is the canonical rational literal that is equal to c1 * c2. The
literals c1 and c2 may be integer literals (&n or -- &n), ratios (&p / &q or -- &p / &q), or
decimals (#DDD.DDDD or #DDD.DDDDeNN). The result d is always put in the form &p / &q or
-- &p / &q with q > 1 and p and q sharing no common factor, or simply &p or -- &p when
that is impossible.

Failure
Fails if applied to a term that is not the product of two permitted rational literals of type :real.

Example

REAL_RAT_MUL_CONV ‘#3.16227766016837952 * #3.16227766016837952‘;;
val it : thm =
|- #3.16227766016837952 * #3.16227766016837952 =

&24414062500000002902889155426649 / &2441406250000000000000000000000

See also
REAL_RAT_ABS_CONV, REAL_RAT_ADD_CONV, REAL_RAT_DIV_CONV, REAL_RAT_EQ_CONV,
REAL_RAT_GE_CONV, REAL_RAT_GT_CONV, REAL_RAT_INV_CONV, REAL_RAT_LE_CONV,
REAL_RAT_LT_CONV, REAL_RAT_NEG_CONV, REAL_RAT_POW_CONV, REAL_RAT_REDUCE_CONV,
REAL_RAT_RED_CONV, REAL_RAT_SUB_CONV.

REAL_RAT_NEG_CONV

REAL_RAT_NEG_CONV : term -> thm

Synopsis
Conversion to negate a rational literal of type :real.

538 Chapter 1. Pre-defined ML Identifiers

Description
The call REAL_RAT_NEG_CONV ‘--c‘, where c is a rational literal of type :real, returns the
theorem |- --c = d where d is the canonical rational literal that is equal to c’s negation. The
literal c may be an integer literal (&n or -- &n), a ratio (&p / &q or -- &p / &q), or a decimal
(#DDD.DDDD or #DDD.DDDDeNN). The returned value d is always put in the form &p / &q or
-- &p / &q with q > 1 and p and q sharing no common factor, or simply &p or -- &p when
that is impossible.

Failure
Fails if applied to a term that is not the negation of one of the permitted forms of rational literal
of type :real.

Example

REAL_RAT_NEG_CONV ‘-- (-- &3 / &2)‘;;
val it : thm = |- --(-- &3 / &2) = &3 / &2

See also
REAL_RAT_ABS_CONV, REAL_RAT_ADD_CONV, REAL_RAT_DIV_CONV, REAL_RAT_EQ_CONV,
REAL_RAT_GE_CONV, REAL_RAT_GT_CONV, REAL_RAT_INV_CONV, REAL_RAT_LE_CONV,
REAL_RAT_LT_CONV, REAL_RAT_MUL_CONV, REAL_RAT_POW_CONV, REAL_RAT_REDUCE_CONV,
REAL_RAT_RED_CONV, REAL_RAT_SUB_CONV.

REAL_RAT_POW_CONV

REAL_RAT_POW_CONV : conv

Synopsis
Conversion to perform exponentiation on a rational literal of type :real.

Description
The call REAL_RAT_POW_CONV ‘c pow n‘ where c is a rational literal of type :real and n is a
numeral of type :num, returns |- c pow n = d where d is the canonical rational literal that is
equal to c raised to the nth power. The literal c may be an integer literal (&n or -- &n), a ratios
(&p / &q or -- &p / &q), or a decimal (#DDD.DDDD or #DDD.DDDDeNN). The result d is always
put in the form &p / &q or -- &p / &q with q > 1 and p and q sharing no common factor, or
simply &p or -- &p when that is impossible.

Failure
Fails if applied to a term that is not a permitted rational literal of type :real raised to a numeral
power.

REAL RAT RED CONV 539

Example

REAL_RAT_POW_CONV ‘#1.414 pow 2‘;;
val it : thm = |- #1.414 pow 2 = &1999396 / &1000000

See also
REAL_RAT_ABS_CONV, REAL_RAT_ADD_CONV, REAL_RAT_DIV_CONV, REAL_RAT_EQ_CONV,
REAL_RAT_GE_CONV, REAL_RAT_GT_CONV, REAL_RAT_INV_CONV, REAL_RAT_LE_CONV,
REAL_RAT_LT_CONV, REAL_RAT_MUL_CONV, REAL_RAT_NEG_CONV, REAL_RAT_REDUCE_CONV,
REAL_RAT_RED_CONV, REAL_RAT_SUB_CONV.

REAL_RAT_RED_CONV

REAL_RAT_RED_CONV : term -> thm

Synopsis
Performs one arithmetic or relational operation on rational literals of type :real.

Description
When applied to any of the terms ‘--c‘, ‘inv c‘, ‘abs c‘, ‘c1 + c2‘, ‘c1 - c2‘, ‘c1 * c2‘,
‘c1 / c2‘, ‘c pow n‘, ‘c1 <= c2‘, ‘c1 < c2‘, ‘c1 >= c2‘, ‘c1 > c2‘, ‘c1 = c2‘, where c,
c1 and c2 are rational literals of type :real and n is a numeral of type :num, REAL_RAT_RED_CONV
returns a theorem asserting the equivalence of the term to a canonical rational (for the arithmetic
operators) or a truth-value (for the relational operators).

The permissible rational literals are integer literals (&n or -- &n), ratios (&p / &q or -- &p / &q),
or decimals (#DDD.DDDD or #DDD.DDDDeNN). Any numeric result is always put in the form &p / &q
or -- &p / &q with q > 1 and p and q sharing no common factor, or simply &p or -- &p when
that is impossible.

Failure
Fails if applied to an inappropriate term, or if c is zero in ‘inv c‘, or if c2 is zero in c1 / c2.

Uses
More convenient for most purposes is REAL_RAT_REDUCE_CONV, which applies these evaluation
conversions recursively at depth. But access to this ‘one-step’ reduction can be handy if you
want to add a conversion conv for some other operator on real number literals, which you can
conveniently incorporate it into REAL_RAT_REDUCE_CONV with

let REAL_RAT_REDUCE_CONV’ =
DEPTH_CONV(REAL_RAT_RED_CONV ORELSEC conv);;

See also
REAL_RAT_ABS_CONV, REAL_RAT_ADD_CONV, REAL_RAT_DIV_CONV, REAL_RAT_EQ_CONV,
REAL_RAT_GE_CONV, REAL_RAT_GT_CONV, REAL_RAT_INV_CONV, REAL_RAT_LE_CONV,

540 Chapter 1. Pre-defined ML Identifiers

REAL_RAT_LT_CONV, REAL_RAT_MUL_CONV, REAL_RAT_NEG_CONV, REAL_RAT_POW_CONV,
REAL_RAT_REDUCE_CONV, REAL_RAT_SUB_CONV.

REAL_RAT_REDUCE_CONV

REAL_RAT_REDUCE_CONV : conv

Synopsis
Evaluate subexpressions built up from rational literals of type :real, by proof.

Description
When applied to a term, REAL_RAT_REDUCE_CONV performs a recursive bottom-up evaluation by
proof of subterms built from rational literals of type :real using the unary operators ‘--’, ‘inv’
and ‘abs’, and the binary arithmetic (‘+’, ‘-’, ‘*’, ‘/’, ‘pow’) and relational (‘<’, ‘<=’, ‘>’, ‘>=’,
‘=’) operators, as well as propagating literals through logical operations, e.g. T /\ x <=> x,
returning a theorem that the original and reduced terms are equal.

The permissible rational literals are integer literals (&n or -- &n), ratios (&p / &q or -- &p / &q),
or decimals (#DDD.DDDD or #DDD.DDDDeNN). Any numeric result is always put in the form &p / &q
or -- &p / &q with q > 1 and p and q sharing no common factor, or simply &p or -- &p when
that is impossible.

Failure
Never fails, but may have no effect.

Example

REAL_RAT_REDUCE_CONV
‘#3.1415926535 < &355 / &113 /\ &355 / &113 < &3 + &1 / &7‘;;

val it : thm =
|- #3.1415926535 < &355 / &113 /\ &355 / &113 < &3 + &1 / &7 <=> T

See also
NUM_REDUCE_CONV, REAL_RAT_ABS_CONV, REAL_RAT_ADD_CONV, REAL_RAT_DIV_CONV,
REAL_RAT_EQ_CONV, REAL_RAT_GE_CONV, REAL_RAT_GT_CONV, REAL_RAT_INV_CONV,
REAL_RAT_LE_CONV, REAL_RAT_LT_CONV, REAL_RAT_MUL_CONV, REAL_RAT_NEG_CONV,
REAL_RAT_POW_CONV, REAL_RAT_RED_CONV, REAL_RAT_SUB_CONV.

REAL_RAT_SUB_CONV

REAL_RAT_SUB_CONV : conv

REAL RING 541

Synopsis
Conversion to perform subtraction on two rational literals of type :real.

Description
The call REAL_RAT_SUB_CONV ‘c1 - c2‘ where c1 and c2 are rational literals of type :real,
returns |- c1 - c2 = d where d is the canonical rational literal that is equal to c1 - c2. The
literals c1 and c2 may be integer literals (&n or -- &n), ratios (&p / &q or -- &p / &q), or
decimals (#DDD.DDDD or #DDD.DDDDeNN). The result d is always put in the form &p / &q or
-- &p / &q with q > 1 and p and q sharing no common factor, or simply &p or -- &p when
that is impossible.

Failure
Fails if applied to a term that is not the subtraction function applied to two permitted rational
literals of type :real.

Example

REAL_RAT_SUB_CONV ‘&355 / &113 - #3.1415926‘;;
val it : thm = |- &355 / &113 - #3.1415926 = &181 / &565000000

See also
REAL_RAT_ABS_CONV, REAL_RAT_ADD_CONV, REAL_RAT_DIV_CONV, REAL_RAT_EQ_CONV,
REAL_RAT_GE_CONV, REAL_RAT_GT_CONV, REAL_RAT_INV_CONV, REAL_RAT_LE_CONV,
REAL_RAT_LT_CONV, REAL_RAT_MUL_CONV, REAL_RAT_NEG_CONV, REAL_RAT_POW_CONV,
REAL_RAT_REDUCE_CONV, REAL_RAT_RED_CONV.

REAL_RING

REAL_RING : term -> thm

Synopsis
Ring decision procedure instantiated to real numbers.

Description
The rule REAL_RING should be applied to a formula that, after suitable normalization, can be
considered a universally quantified Boolean combination of equations and inequations between
terms of type :real. If that formula holds in all integral domains, REAL_RING will prove it. Any
“alien” atomic formulas that are not real number equations will not contribute to the proof but
will not in themselves cause an error. The function is a particular instantiation of RING, which
is a more generic procedure for ring and semiring structures.

Failure
Fails if the formula is unprovable by the methods employed. This does not necessarily mean
that it is not valid for :real, but rather that it is not valid on all integral domains (see below).

542 Chapter 1. Pre-defined ML Identifiers

Example
This simple example is based on the inversion of a homographic function (from Gosper’s notes
on continued fractions):

REAL_RING
‘y * (c * x + d) = a * x + b ==> x * (c * y - a) = b - d * y‘;;

2 basis elements and 0 critical pairs
val it : thm = |- y * (c * x + d) = a * x + b ==> x * (c * y - a) = b - d * y

The following more complicated example verifies a classic Cardano reduction formula for cubic
equations:

REAL_RING
‘p = (&3 * a1 - a2 pow 2) / &3 /\
q = (&9 * a1 * a2 - &27 * a0 - &2 * a2 pow 3) / &27 /\
z = x - a2 / &3 /\
x * w = w pow 2 - p / &3 /\
~(p = &0)
==> (z pow 3 + a2 * z pow 2 + a1 * z + a0 = &0 <=>

(w pow 3) pow 2 - q * (w pow 3) - p pow 3 / &27 = &0)‘;;
...

Note that formulas depending on specific features of the real numbers are not always provable
by this generic ring procedure. For example we can prove:

REAL_RING
‘s pow 2 = &2
==> (x pow 4 + &1 = &0 <=>

x pow 2 + s * x + &1 = &0 \/ x pow 2 - s * x + &1 = &0)‘;;
...

but not the much simpler real-specific fact:

REAL_RING ‘x pow 4 + 1 = &0 ==> F‘;;
Exception: Failure "tryfind".

To support real-specific nonlinear reasoning, you may like to investigate the experimental de-
cision procedure in Examples/sos.ml. For general support for division (fields) see REAL_FIELD.

Uses
Often useful for generating non-trivial algebraic lemmas. Even when it is not capable of solving
the whole problem, it can often deal with the most tedious algebraic parts. For example after

RECALL ACCEPT TAC 543

loading in the definitions of trig functions:

needs "Examples/transc.ml";;

you may wish to prove a tedious trig identity such as:

g ‘(--((&7 * cos x pow 6) * sin x) * &7) / &49 -
(--((&5 * cos x pow 4) * sin x) * &5) / &25 * &3 +
--((&3 * cos x pow 2) * sin x) + sin x =
sin x pow 7‘;;

which can be done by REAL_RING together with one simple lemma:

SIN_CIRCLE;;
val it : thm = |- !x. sin x pow 2 + cos x pow 2 = &1

as follows:

e(MP_TAC(SPEC ‘x:real‘ SIN_CIRCLE) THEN CONV_TAC REAL_RING);;
2 basis elements and 0 critical pairs
val it : goalstack = No subgoals

See also
ARITH_RULE, ARITH_TAC, INT_RING, NUM_RING, real_ideal_cofactors, REAL_ARITH,
REAL_FIELD, RING.

RECALL_ACCEPT_TAC

RECALL_ACCEPT_TAC : (’a -> thm) -> ’a -> goal -> goalstate

Synopsis
Delay evaluation of theorem-producing function till needed.

Description
Given a theorem-producing inference rule f and its argument a, the tactic RECALL_ACCEPT_TAC f a
will evaluate th = f a and do ACCEPT_TAC th, but only when the tactic is applied to a goal.

Failure
Never fails until subsequently applied to a goal, but then may fail if the theorem-producing
function does.

544 Chapter 1. Pre-defined ML Identifiers

Example
You might for example do

RECALL_ACCEPT_TAC (EQT_ELIM o NUM_REDUCE_CONV) ‘16 EXP 53 < 15 EXP 55‘;;

and the call

(EQT_ELIM o NUM_REDUCE_CONV) ‘16 EXP 53 < 15 EXP 55‘

will be delayed until the tactic is applied.

Uses
Delaying a time-consuming compound inference rule in a tactic script until it is actually used.

REDEPTH_CONV

REDEPTH_CONV : conv -> conv

Synopsis
Applies a conversion bottom-up to all subterms, retraversing changed ones.

Description
REDEPTH_CONV c tm applies the conversion c repeatedly to all subterms of the term tm and
recursively applies REDEPTH_CONV c to each subterm at which c succeeds, until there is no
subterm remaining for which application of c succeeds.

More precisely, REDEPTH_CONV c tm repeatedly applies the conversion c to all the subterms of
the term tm, including the term tm itself. The supplied conversion c is applied to the subterms
of tm in bottom-up order and is applied repeatedly (zero or more times, as is done by REPEATC)
to each subterm until it fails. If c is successfully applied at least once to a subterm, t say, then
the term into which t is transformed is retraversed by applying REDEPTH_CONV c to it.

Failure
REDEPTH_CONV c tm never fails but can diverge if the conversion c can be applied repeatedly to
some subterm of tm without failing.

REDEPTH SQCONV 545

Example
The following example shows how REDEPTH_CONV retraverses subterms:

REDEPTH_CONV BETA_CONV ‘(\f x. (f x) + 1) (\y.y) 2‘;;
val it : thm = |- (\f x. f x + 1) (\y. y) 2 = 2 + 1

Here, BETA_CONV is first applied successfully to the (beta-redex) subterm:

‘(\f x. (f x) + 1) (\y.y)‘

This application reduces this subterm to:

‘(\x. ((\y.y) x) + 1)‘

REDEPTH_CONV BETA_CONV is then recursively applied to this transformed subterm, eventually
reducing it to ‘(\x. x + 1)‘. Finally, a beta-reduction of the top-level term, now the simplified
beta-redex ‘(\x. x + 1) 2‘, produces ‘2 + 1‘.

See also
DEPTH_CONV, ONCE_DEPTH_CONV, TOP_DEPTH_CONV, TOP_SWEEP_CONV.

REDEPTH_SQCONV

REDEPTH_SQCONV : strategy

Synopsis
Applies simplification bottom-up to all subterms, retraversing changed ones.

Description
HOL Light’s simplification functions (e.g. SIMP_TAC) have their traversal algorithm controlled
by a “strategy”. REDEPTH_SQCONV is a strategy corresponding to REDEPTH_CONV for ordinary
conversions: simplification is applied bottom-up to all subterms, retraversing changed ones.

Failure
Not applicable.

See also
DEPTH_SQCONV, ONCE_DEPTH_SQCONV, REDEPTH_CONV, TOP_DEPTH_SQCONV,
TOP_SWEEP_SQCONV.

reduce_interface

reduce_interface : string * term -> unit

546 Chapter 1. Pre-defined ML Identifiers

Synopsis
Remove a specific overload/interface mapping for an identifier.

Description
HOL Light allows an identifier to map to a specific constant (see override_interface) or be
overloaded to several depending on type (see overload_interface). A call to remove_interface "ident"
removes all such mappings for the identifier ident.

Failure
Never fails, whether or not there were any interface mappings in effect.

See also
overload_interface, override_interface, remove_interface, the_interface.

refine

refine : refinement -> goalstack

Synopsis
Applies a refinement to the current goalstack.

Description
The call refine r applies the refinement r to the current goalstate, adding the resulting goal-
state at the head of the current goalstack list. (A goalstate consists of a list of subgoals as well
as justification and metavariable information.)

Failure
Fails if the refinement fails.

Comments
Most users will not want to handle refinements explicitly. Usually one just applies a tactic to
the first goal in a goalstate.

REFL

REFL : term -> thm

Synopsis
Returns theorem expressing reflexivity of equality.

REFL TAC 547

Description
REFL maps any term ‘t‘ to the corresponding theorem |- t = t.

Failure
Never fails.

Example

REFL ‘2‘;;
val it : thm = |- 2 = 2

REFL ‘p:bool‘;;
val it : thm = |- p <=> p

Comments
This is one of HOL Light’s 10 primitive inference rules.

See also
ALL_CONV, REFL_TAC.

REFL_TAC

REFL_TAC : tactic

Synopsis
Solves a goal that is an equation between alpha-equivalent terms.

Description
When applied to a goal A ?- t = t’, where t and t’ are alpha-equivalent, REFL_TAC completely
solves it.

A ?- t = t’
============= REFL_TAC

Failure
Fails unless the goal is an equation between alpha-equivalent terms.

See also
ACCEPT_TAC, MATCH_ACCEPT_TAC, REWRITE_TAC.

548 Chapter 1. Pre-defined ML Identifiers

REFUTE_THEN

REFUTE_THEN : thm_tactic -> goal -> goalstate

Synopsis
Assume the negation of the goal and apply theorem-tactic to it.

Description
The tactic REFUTE_THEN ttac applied to a goal g, assumes the negation of the goal and applies
ttac to it and a similar goal with a conclusion of F. More precisely, if the original goal A ?- u
is unnegated and ttac’s action is

A ?- F
======== ttac (ASSUME ‘~u‘)
B ?- v

then we have

A ?- u
============== REFUTE_THEN ttac
B ?- v

For example, if ttac is just ASSUME_TAC, this corresponds to a classic ‘proof by contradiction’:

A ?- u
================= REFUTE_THEN ASSUME_TAC
A u {~u} ?- F

Whatever ttac may be, if the conclusion u of the goal is negated, the effect is the same except
that the assumed theorem will not be double-negated, so the effect is the same as DISCH_THEN.

Failure
Never fails unless the underlying theorem-tactic ttac does.

Uses
Classical ‘proof by contradiction’.

Comments
When applied to an unnegated goal, this tactic embodies implicitly the classical principle of
‘proof by contradiction’, but for negated goals the tactic is also intuitionistically valid.

See also
BOOL_CASES_TAC, DISCH_THEN.

remark 549

remark

remark : string -> unit

Synopsis
Output a string and newline if and only if verbose flag is set.

Description
If the verbose flag is set to true, then the call remark s prints the string s and a following
newline. If the verbose flag is set to false, this call does nothing. This function is used for
informative output in several automated rules such as MESON.

Failure
Never fails.

Example

remark "Proof is going OK so far";;
Proof is going OK so far
val it : unit = ()
verbose := false;;
val it : unit = ()
remark "Proof is going OK so far";;
val it : unit = ()

See also
report, verbose.

remove

remove : (’a -> bool) -> ’a list -> ’a * ’a list

Synopsis
Separates the first element of a list to satisfy a predicate from the rest of the list.

Failure
Fails if no element satisfes the predicate. This will always be the case for an empty list.

550 Chapter 1. Pre-defined ML Identifiers

Example

remove (fun x -> x >= 3) [1;2;3;4;5;6];;
val it : int * int list = (3, [1; 2; 4; 5; 6])

See also
partition, filter.

remove_interface

remove_interface : string -> unit

Synopsis
Remove all overload/interface mappings for an identifier.

Description
HOL Light allows an identifier to map to a specific constant (see override_interface) or be
overloaded to several depending on type (see overload_interface). A call to remove_interface "ident"
removes all such mappings for the identifier ident.

Failure
Never fails, whether or not there were any interface mappings in effect.

See also
overload_interface, override_interface, reduce_interface, the_interface.

REMOVE_THEN

REMOVE_THEN : string -> thm_tactic -> tactic

Synopsis
Apply a theorem tactic to named assumption, removing the assumption.

Description
The tactic USE_THEN "name" ttac applies the theorem-tactic ttac to the assumption labelled
name (or the first in the list if there is more than one), removing the assumption from the goal.

Failure
Fails if there is no assumption of that name or if the theorem-tactic fails when applied to it.

REPEATC 551

Example
See LABEL_TAC for a relevant example.

Uses
Using an assumption identified by name that will not be needed again in the proof.

See also
ASSUME, FIND_ASSUM, LABEL_TAC, REMOVE_THEN, USE_THEN

REPEATC

REPEATC : conv -> conv

Synopsis
Repeatedly apply a conversion (zero or more times) until it fails.

Description
If c is a conversion effects a transformation of a term t to a term t’, that is if c maps t to the
theorem |- t = t‘, then REPEATC c is the conversion that repeats this transformation as often
as possible. More exactly, if c maps the term ‘ti‘ to |- ti=t(i+1) for i from 1 to n, but
fails when applied to the n+1th term ‘t(n+1)‘, then REPEATC c ‘t1‘ returns |- t1 = t(n+1).
And if c ‘t‘ fails, them REPEATC c ‘t‘ returns |- t = t.

Failure
Never fails, but can diverge if the supplied conversion never fails.

Example

BETA_CONV ‘(\x. (\y. x + y) (x + 1)) 1‘;;
val it : thm = |- (\x. (\y. x + y) (x + 1)) 1 = (\y. 1 + y) (1 + 1)

REPEATC BETA_CONV ‘(\x. (\y. x + y) (x + 1)) 1‘;;
val it : thm = |- (\x. (\y. x + y) (x + 1)) 1 = 1 + 1 + 1

repeat

repeat : (’a -> ’a) -> ’a -> ’a

Synopsis
Repeatedly apply a function until it fails.

552 Chapter 1. Pre-defined ML Identifiers

Description
The call repeat f x successively applies f over and over again starting with x, and stops at the
first point when a Failure _ exception occurs.

Failure
Never fails. If f fails at once it returns x.

Example

repeat (snd o dest_forall) ‘!x y z. x + y + z < 1‘;;
val it : term = ‘x + y + z < 1‘

Comments
If you know exactly how many times you want to apply it, you may prefer funpow.

See also
funpow, fail.

REPEAT_GTCL

REPEAT_GTCL : thm_tactical -> thm_tactical

Synopsis
Applies a theorem-tactical until it fails when applied to a goal.

Description
When applied to a theorem-tactical, a theorem-tactic, a theorem and a goal:

REPEAT_GTCL ttl ttac th goal

REPEAT_GTCL repeatedly modifies the theorem according to ttl till the result of handing it to
ttac and applying it to the goal fails (this may be no times at all).

Failure
Fails iff the theorem-tactic fails immediately when applied to the theorem and the goal.

Example
The following tactic matches th’s antecedents against the assumptions of the goal until it can
do so no longer, then puts the resolvents onto the assumption list:

REPEAT_GTCL (IMP_RES_THEN ASSUME_TAC) th

See also
REPEAT_TCL, THEN_TCL.

REPEAT TCL 553

REPEAT_TCL

REPEAT_TCL : thm_tactical -> thm_tactical

Synopsis
Repeatedly applies a theorem-tactical until it fails when applied to the theorem.

Description
When applied to a theorem-tactical, a theorem-tactic and a theorem:

REPEAT_TCL ttl ttac th

REPEAT_TCL repeatedly modifies the theorem according to ttl until it fails when given to the
theorem-tactic ttac.

Failure
Fails iff the theorem-tactic fails immediately when applied to the theorem.

Example
It is often desirable to repeat the action of basic theorem-tactics. For example CHOOSE_THEN
strips off a single existential quantification, so one might use REPEAT_TCL CHOOSE_THEN to get
rid of them all.

Alternatively, one might want to repeatedly break apart a theorem which is a nested conjunc-
tion and apply the same theorem-tactic to each conjunct. For example the following goal:

g ‘(0 = w /\ 0 = x) /\ 0 = y /\ 0 = z ==> w + x + y + z = 0‘;;
Warning: Free variables in goal: w, x, y, z
val it : goalstack = 1 subgoal (1 total)

‘(0 = w /\ 0 = x) /\ 0 = y /\ 0 = z ==> w + x + y + z = 0‘

might be solved by

e(DISCH_THEN (REPEAT_TCL CONJUNCTS_THEN (SUBST1_TAC o SYM)) THEN
REWRITE_TAC[ADD_CLAUSES]);;

See also
REPEAT_GTCL, THEN_TCL.

REPEAT

REPEAT : tactic -> tactic

554 Chapter 1. Pre-defined ML Identifiers

Synopsis
Repeatedly applies a tactic until it fails.

Description
The tactic REPEAT t is a tactic which applies t to a goal, and while it succeeds, continues
applying it to all subgoals generated.

Failure
The application of REPEAT to a tactic never fails, and neither does the composite tactic, even if
the basic tactic fails immediately, unless it raises an exception other that Failure

Example
If we start with a goal having many universal quantifiers:

g ‘!w x y z. w < z /\ x < y ==> w * x + 1 <= y * z‘;;

then GEN_TAC will strip them off one at a time:

e GEN_TAC;;
val it : goalstack = 1 subgoal (1 total)

‘!x y z. w < z /\ x < y ==> w * x + 1 <= y * z‘

and REPEAT GEN_TAC will strip them off as far as possible:

e(REPEAT GEN_TAC);;
val it : goalstack = 1 subgoal (1 total)

‘w < z /\ x < y ==> w * x + 1 <= y * z‘

Similarly, REPEAT COND_CASES_TAC will eliminate all free conditionals in the goal instead of
just one.

See also
EVERY, FIRST, ORELSE, THEN, THENL.

replicate

replicate : ’a -> int -> ’a list

Synopsis
Makes a list consisting of a value replicated a specified number of times.

Description
replicate x n returns [x;...;x], a list of length n.

REPLICATE TAC 555

Failure
Fails if number of replications is less than zero.

REPLICATE_TAC

REPLICATE_TAC : int -> tactic -> tactic

Synopsis
Apply a tactic a specific number of times.

Description
The call REPLICATE n tac gives a new tactic that it equivalent to an n-fold repetition of tac,
i.e. tac THEN tac THEN ... THEN tac.

Failure
The call REPLICATE n tac never fails, but when applied to a goal it will fail if the tactic does.

Example
We might conceivably want to strip off exactly three universal quantifiers from a goal that
contains more than three. We can use REPLICATE_TAC 3 GEN_TAC to do that.

See also
EVERY, MAP_EVERY, THEN.

report

report : string -> unit

Synopsis
Prints a string and a following line break.

Description
The call report s prints the string s to the terminal and then a following newline.

Failure
Never fails.

556 Chapter 1. Pre-defined ML Identifiers

Example

report "Proof completed OK";;
Proof completed OK
val it : unit = ()

See also
remark, warn.

report_timing

report_timing : bool ref

Synopsis
Flag to determine whether time function outputs CPU time measure.

Description
When report_timing is true, a call time f x will evaluate f x as usual but also as a side-effect
print out the CPU time taken. If report_timing is false, nothing will be printed. Times are
already printed in this way automatically as informative output in some rules like MESON, so this
can be used to silence them.

Failure
Not applicable.

Example

time NUM_REDUCE_CONV ‘2 EXP 300 < 2 EXP 200‘;;
CPU time (user): 0.13
val it : thm = |- 2 EXP 300 < 2 EXP 200 <=> F
report_timing := false;;
val it : unit = ()
time NUM_REDUCE_CONV ‘2 EXP 300 < 2 EXP 200‘;;
val it : thm = |- 2 EXP 300 < 2 EXP 200 <=> F

See also
time.

reserved_words

reserved_words : unit -> string list

reserve words 557

Synopsis
Returns the list of reserved words.

Description
Certain identifiers in HOL are reserved, e.g. ‘if’, ‘let’ and ‘|’, meaning that they are special
to the parser and cannot be used as ordinary identifiers. The call reserved_words() returns a
list of such identifiers.

Failure
Never fails.

Example
In the default HOL state:

reserved_words();;
val it : string list =
["("; ")"; "["; "]"; "{\small\verb%"; "%}"; ":"; ";"; "."; "|"; "let"; "in"; "and";
"if"; "then"; "else"; "//"]

See also
is_reserved_word, reserve_words, unreserve_words.

reserve_words

reserve_words : string list -> unit

Synopsis
Add given strings to the set of reserved words.

Description
Certain identifiers in HOL are reserved, e.g. ‘if’, ‘let’ and ‘|’, meaning that they are special to
the parser and cannot be used as ordinary identifiers. A call reserve_words l adds all strings
in l to the list of reserved identifiers.

Failure
Never fails, regardless of whether the given strings were already reserved.

See also
is_reserved_word, reserved_words, unreserve_words.

retypecheck

retypecheck : (string * pretype) list -> preterm -> preterm

558 Chapter 1. Pre-defined ML Identifiers

Synopsis
Typecheck a term, iterating over possible overload resolutions.

Description
This is the main HOL Light typechecking function. Given an environment env of pretype
assignments for variables, it assigns a pretype to all variables and constants, including performing
resolution of overloaded constants based on what type information there is. Normally, this
happens implicitly when a term is entered in the quotation parser.

Failure
Fails if some terms cannot be consistently assigned a type.

Comments
Only users seeking to change HOL’s parser and typechecker quite radically need to use this
function.

See also
term_of_preterm.

rev_assocd

rev_assocd : ’a -> (’b * ’a) list -> ’b -> ’b

Synopsis
Looks up item in association list taking default in case of failure.

Description
The call rev_assocd y [x1,y1; ...; xn,yn] x returns the first xi in the list where the cor-
responding yi is the same as y. If there is no such item, it returns the value x. This is similar
to rev_assoc except that the latter will fail rather than take a default.

Failure
Never fails.

Example

rev_assocd 6 [1,2; 2,4; 3,6] (-1);;
val it : int = 3
rev_assocd 8 [1,2; 2,4; 3,6] (-1);;
val it : int = -1

Uses
Simple lookup without exception handling.

rev assoc 559

See also
assocd, rev_assoc.

rev_assoc

rev_assoc : ’a -> (’b * ’a) list -> ’b

Synopsis
Searches a list of pairs for a pair whose second component equals a specified value.

Description
rev_assoc y [(x1,y1);...;(xn,yn)] returns the first xi in the list such that yi equals y.

Failure
Fails if no matching pair is found. This will always be the case if the list is empty.

Example

rev_assoc 2 [(1,4);(3,2);(2,5);(2,6)];;
val it : int = 3

See also
assoc, find, mem, tryfind, exists, forall.

rev

rev : ’a list -> ’a list

Synopsis
Reverses a list.

Description
rev [x1;...;xn] returns [xn;...;x1].

Failure
Never fails.

560 Chapter 1. Pre-defined ML Identifiers

reverse_interface_mapping

reverse_interface_mapping : bool ref

Synopsis
Determines whether interface map is printed on output (default true).

Description
The reference variable reverse_interface_mapping is one of several settable parameters con-
trolling printing of terms by pp_print_term, and hence the automatic printing of terms and
theorems at the toplevel. When reverse_interface_mapping is true (as it is by default), the
front-end interface map for a constant or variable is printed. When it is false, the core constant
or variable is printed.

Failure
Not applicable.

Example
Here is a simple library theorem about real numbers as it usually appears:

reverse_interface_mapping := true;;
val it : unit = ()
REAL_EQ_SUB_LADD;;
val it : thm = |- !x y z. x = y - z <=> x + z = y

but with another setting of reverse_interface_mapping we see that the usual symbol ‘+’ is an
interface for real_add, while the ‘iff’ sign is just an interface for Boolean equality:

reverse_interface_mapping := false;;
val it : unit = ()
REAL_EQ_SUB_LADD;;
val it : thm = |- !x y z. (x = real_sub y z) = real_add x z = y

See also
pp_print_term, prebroken_binops, print_all_thm,
print_unambiguous_comprehensions, the_interface, typify_universal_set,
unspaced_binops.

rev_itlist2

rev_itlist2 : (’a -> ’b -> ’c -> ’c) -> ’a list -> ’b list -> ’c -> ’c

rev itlist 561

Synopsis
Applies a paired function between adjacent elements of 2 lists.

Description
itlist2 f ([x1;...;xn],[y1;...;yn]) z returns

f xn yn (... (f x2 y2 (f x1 y1 z))...)%}.

It returns z if both lists are empty.

Failure
Fails if the two lists are of different lengths.

Example
This takes a ‘dot product’ of two vectors of integers:

let dot v w = rev_itlist2 (fun x y z -> x * y + z) v w 0;;
val dot : int list -> int list -> int = <fun>
dot [1;2;3] [4;5;6];;
val it : int = 32

See also
itlist, rev_itlist, rev_itlist2, end_itlist, uncurry.

rev_itlist

rev_itlist : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b

Synopsis
Applies a binary function between adjacent elements of the reverse of a list.

Description
rev_itlist f [x1;...;xn] y returns f xn (... (f x2 (f x1 y))...). It returns y if the
list is empty.

Failure
Never fails.

Example

rev_itlist (fun x y -> x * y) [1;2;3;4] 1;;
val it : int = 24

See also
itlist, end_itlist.

562 Chapter 1. Pre-defined ML Identifiers

rev_splitlist

rev_splitlist : (’a -> ’a * ’b) -> ’a -> ’a * ’b list

Synopsis
Applies a binary destructor repeatedly in right-associative mode.

Description
If a destructor function d inverts a binary constructor f, for example dest_comb for mk_comb,
and fails when applied to y, then:

rev_splitlist d f(...(f(f(w,x1),x2),...xn)

returns

(w,[x1; ... ; xn])

Failure
Never fails.

Example
The function strip_comb is actually just defined as rev_splitlist dest_comb, which acts as
follows:

rev_splitlist dest_comb ‘x + 1 + 2‘;;
val it : term * term list = (‘(+)‘, [‘x‘; ‘1 + 2‘])

See also
itlist, splitlist, striplist.

REWR_CONV

REWR_CONV : thm -> term -> thm

Synopsis
Uses an instance of a given equation to rewrite a term.

Description
REWR_CONV is one of the basic building blocks for the implementation of rewriting in the HOL
system. In particular, the term replacement or rewriting done by all the built-in rewriting

REWR CONV 563

rules and tactics is ultimately done by applications of REWR_CONV to appropriate subterms. The
description given here for REWR_CONV may therefore be taken as a specification of the atomic
action of replacing equals by equals that is used in all these higher level rewriting tools.

The first argument to REWR_CONV is expected to be an equational theorem which is to be used
as a left-to-right rewrite rule. The general form of this theorem is:

A |- t[x1,...,xn] = u[x1,...,xn]

where x1, ..., xn are all the variables that occur free in the left-hand side of the conclusion of the
theorem but do not occur free in the assumptions. Any of these variables may also be universally
quantified at the outermost level of the equation, as for example in:

A |- !x1...xn. t[x1,...,xn] = u[x1,...,xn]

Note that REWR_CONV will also work, but will give a generally undesirable result (see below), if
the right-hand side of the equation contains free variables that do not also occur free on the
left-hand side, as for example in:

A |- t[x1,...,xn] = u[x1,...,xn,y1,...,ym]

where the variables y1, ..., ym do not occur free in t[x1,...,xn].
If th is an equational theorem of the kind shown above, then REWR_CONV th returns a con-

version that maps terms of the form t[e1,...,en/x1,...,xn], in which the terms e1, ..., en
are free for x1, ..., xn in t, to theorems of the form:

A |- t[e1,...,en/x1,...,xn] = u[e1,...,en/x1,...,xn]

That is, REWR_CONV th tm attempts to match the left-hand side of the rewrite rule th to the
term tm. If such a match is possible, then REWR_CONV returns the corresponding substitution
instance of th.

If REWR_CONV is given a theorem th:

A |- t[x1,...,xn] = u[x1,...,xn,y1,...,ym]

where the variables y1, ..., ym do not occur free in the left-hand side, then the result of applying
the conversion REWR_CONV th to a term t[e1,...,en/x1,...,xn] will be:

A |- t[e1,...,en/x1,...,xn] = u[e1,...,en,v1,...,vm/x1,...,xn,y1,...,ym]

where v1, ..., vm are variables chosen so as to be free nowhere in th or in the input term. The
user has no control over the choice of the variables v1, ..., vm, and the variables actually chosen
may well be inconvenient for other purposes. This situation is, however, relatively rare; in most
equations the free variables on the right-hand side are a subset of the free variables on the
left-hand side.

In addition to doing substitution for free variables in the supplied equational theorem (or
‘rewrite rule’), REWR_CONV th tm also does type instantiation, if this is necessary in order to

564 Chapter 1. Pre-defined ML Identifiers

match the left-hand side of the given rewrite rule th to the term argument tm. If, for example,
th is the theorem:

A |- t[x1,...,xn] = u[x1,...,xn]

and the input term tm is (a substitution instance of) an instance of t[x1,...,xn] in which the
types ty1, ..., tyi are substituted for the type variables vty1, ..., vtyi, that is if:

tm = t[ty1,...,tyn/vty1,...,vtyn][e1,...,en/x1,...,xn]

then REWR_CONV th tm returns:

A |- (t = u)[ty1,...,tyn/vty1,...,vtyn][e1,...,en/x1,...,xn]

Note that, in this case, the type variables vty1, ..., vtyi must not occur anywhere in the
hypotheses A. Otherwise, the conversion will fail.

Failure
REWR_CONV th fails if th is not an equation or an equation universally quantified at the outermost
level. If th is such an equation:

th = A |- !v1....vi. t[x1,...,xn] = u[x1,...,xn,y1,...,yn]

then REWR_CONV th tm fails unless the term tm is alpha-equivalent to an instance of the left-
hand side t[x1,...,xn] which can be obtained by instantiation of free type variables (i.e. type
variables not occurring in the assumptions A) and substitution for the free variables x1, ..., xn.

Example
The following example illustrates a straightforward use of REWR_CONV. The supplied rewrite rule
is polymorphic, and both substitution for free variables and type instantiation may take place.
EQ_SYM_EQ is the theorem:

|- !x y:A. x = y <=> y = x

and REWR_CONV EQ_SYM behaves as follows:

REWR_CONV EQ_SYM_EQ ‘1 = 2‘;;
val it : thm = |- 1 = 2 <=> 2 = 1
REWR_CONV EQ_SYM_EQ ‘1 < 2‘;;
Exception: Failure "term_pmatch".

The second application fails because the left-hand side ‘x = y‘ of the rewrite rule does not
match the term to be rewritten, namely ‘1 < 2‘.

In the following example, one might expect the result to be the theorem A |- f 2 = 2, where
A is the assumption of the supplied rewrite rule:

REWR_CONV (ASSUME ‘!x:A. f x = x‘) ‘f 2:num‘;;
Exception: Failure "term_pmatch: can’t instantiate local constant".

The application fails, however, because the type variable A appears in the assumption of the
theorem returned by ASSUME ‘!x:A. f x = x‘.

REWRITE CONV 565

Failure will also occur in situations like:

REWR_CONV (ASSUME ‘f (n:num) = n‘) ‘f 2:num‘;;
Exception: Failure "term_pmatch: can’t instantiate local constant".

where the left-hand side of the supplied equation contains a free variable (in this case n) which is
also free in the assumptions, but which must be instantiated in order to match the input term.

See also
IMP_REWR_CONV, ORDERED_REWR_CONV, REWRITE_CONV.

REWRITE_CONV

REWRITE_CONV : thm list -> conv

Synopsis
Rewrites a term including built-in tautologies in the list of rewrites.

Description
Rewriting a term using REWRITE_CONV utilizes as rewrites two sets of theorems: the tautologies
in the ML list basic_rewrites and the ones supplied by the user. The rule searches top-down
and recursively for subterms which match the left-hand side of any of the possible rewrites,
until none of the transformations are applicable. There is no ordering specified among the set
of rewrites.

Variants of this conversion allow changes in the set of equations used: PURE_REWRITE_CONV
and others in its family do not rewrite with the theorems in basic_rewrites.

The top-down recursive search for matches may not be desirable, as this may increase the
number of inferences being made or may result in divergence. In this case other rewriting tools
such as ONCE_REWRITE_CONV and GEN_REWRITE_CONV can be used, or the set of theorems given
may be reduced.

See GEN_REWRITE_CONV for the general strategy for simplifying theorems in HOL using equa-
tional theorems.

Failure
Does not fail, but may diverge if the sequence of rewrites is non-terminating.

Uses
Used to manipulate terms by rewriting them with theorems. While resulting in high degree of
automation, REWRITE_CONV can spawn a large number of inference steps. Thus, variants such
as PURE_REWRITE_CONV, or other rules such as SUBST_CONV, may be used instead to improve
efficiency.

See also
basic_rewrites, GEN_REWRITE_CONV, ONCE_REWRITE_CONV, PURE_REWRITE_CONV,
REWR_CONV, SUBST_CONV.

566 Chapter 1. Pre-defined ML Identifiers

REWRITE_RULE

REWRITE_RULE : thm list -> thm -> thm

Synopsis
Rewrites a theorem including built-in tautologies in the list of rewrites.

Description
Rewriting a theorem using REWRITE_RULE utilizes as rewrites two sets of theorems: the tau-
tologies in the ML list basic_rewrites and the ones supplied by the user. The rule searches
top-down and recursively for subterms which match the left-hand side of any of the possible
rewrites, until none of the transformations are applicable. There is no ordering specified among
the set of rewrites.

Variants of this rule allow changes in the set of equations used: PURE_REWRITE_RULE and
others in its family do not rewrite with the theorems in basic_rewrites. Rules such as
ASM_REWRITE_RULE add the assumptions of the object theorem (or a specified subset of these
assumptions) to the set of possible rewrites.

The top-down recursive search for matches may not be desirable, as this may increase the
number of inferences being made or may result in divergence. In this case other rewriting tools
such as ONCE_REWRITE_RULE and GEN_REWRITE_RULE can be used, or the set of theorems given
may be reduced.

See GEN_REWRITE_RULE for the general strategy for simplifying theorems in HOL using equa-
tional theorems.

Failure
Does not fail, but may diverge if the sequence of rewrites is non-terminating.

Uses
Used to manipulate theorems by rewriting them with other theorems. While resulting in high
degree of automation, REWRITE_RULE can spawn a large number of inference steps. Thus, variants
such as PURE_REWRITE_RULE, or other rules such as SUBST, may be used instead to improve
efficiency.

See also
ASM_REWRITE_RULE, basic_rewrites, GEN_REWRITE_RULE, ONCE_REWRITE_RULE,
PURE_REWRITE_RULE, REWR_CONV, REWRITE_CONV, SUBST.

REWRITES_CONV

REWRITES_CONV : (’a * (term -> ’b)) net -> term -> ’b

REWRITE TAC 567

Synopsis
Apply a prioritized conversion net to the term at the top level.

Description
The underlying machinery in rewriting and simplification assembles (conditional) rewrite rules
and other conversions into a net, including a priority number so that, for example, pure rewrites
get applied before conditional rewrites. If net is such a net (for example, constructed using
mk_rewrites and net_of_thm), then REWRITES_CONV net is a conversion that uses all those
conversions at the toplevel to attempt to rewrite the term. If a conditional rewrite is applied,
the resulting theorem will have an assumption. This is the primitive operation that performs
HOL Light rewrite steps.

Failure
Fails when applied to the term if none of the conversions in the net are applicable.

See also
GENERAL_REWRITE_CONV, GEN_REWRITE_CONV, mk_rewrites, net_of_conv, net_of_thm,
REWRITE_CONV.

REWRITE_TAC

REWRITE_TAC : thm list -> tactic

Synopsis
Rewrites a goal including built-in tautologies in the list of rewrites.

Description
Rewriting tactics in HOL provide a recursive left-to-right matching and rewriting facility that
automatically decomposes subgoals and justifies segments of proof in which equational theorems
are used, singly or collectively. These include the unfolding of definitions, and the substitution
of equals for equals. Rewriting is used either to advance or to complete the decomposition of
subgoals.
REWRITE_TAC transforms (or solves) a goal by using as rewrite rules (i.e. as left-to-right

replacement rules) the conclusions of the given list of (equational) theorems, as well as a set of
built-in theorems (common tautologies) held in the ML variable basic_rewrites. Recognition
of a tautology often terminates the subgoaling process (i.e. solves the goal).

The equational rewrites generated are applied recursively and to arbitrary depth, with match-
ing and instantiation of variables and type variables. A list of rewrites can set off an infinite
rewriting process, and it is not, of course, decidable in general whether a rewrite set has that
property. The order in which the rewrite theorems are applied is unspecified, and the user should
not depend on any ordering.

See GEN_REWRITE_TAC for more details on the rewriting process. Variants of REWRITE_TAC
allow the use of a different set of rewrites. Some of them, such as PURE_REWRITE_TAC, exclude

568 Chapter 1. Pre-defined ML Identifiers

the basic tautologies from the possible transformations. ASM_REWRITE_TAC and others include
the assumptions at the goal in the set of possible rewrites.

Still other tactics allow greater control over the search for rewritable subterms. Several of
them such as ONCE_REWRITE_TAC do not apply rewrites recursively. GEN_REWRITE_TAC allows a
rewrite to be applied at a particular subterm.

Failure
REWRITE_TAC does not fail. Certain sets of rewriting theorems on certain goals may cause a non-
terminating sequence of rewrites. Divergent rewriting behaviour results from a term t being
immediately or eventually rewritten to a term containing t as a sub-term. The exact behaviour
depends on the HOL implementation; it may be possible (unfortunately) to fall into Lisp in this
event.

Example
The arithmetic theorem GT, |- !n m. m > n <=> n < m, is used below to advance a goal:

g ‘4 < 5‘;;
val it : goalstack = 1 subgoal (1 total)

‘4 < 5‘

e(REWRITE_TAC[GT]);;
val it : goalstack = 1 subgoal (1 total)

‘4 < 5‘

It is used below with the theorem LT_0, |- !n. 0 < SUC n, to solve a goal:

g ‘SUC n > 0‘;;
Warning: Free variables in goal: n
val it : goalstack = 1 subgoal (1 total)

‘SUC n > 0‘

e(REWRITE_TAC[GT; LT_0]);;
val it : goalstack = No subgoals

Uses
Rewriting is a powerful and general mechanism in HOL, and an important part of many proofs.
It relieves the user of the burden of directing and justifying a large number of minor proof steps.
REWRITE_TAC fits a forward proof sequence smoothly into the general goal-oriented framework.
That is, (within one subgoaling step) it produces and justifies certain forward inferences, none
of which are necessarily on a direct path to the desired goal.
REWRITE_TAC may be more powerful a tactic than is needed in certain situations; if efficiency

is at stake, alternatives might be considered.

rhs 569

See also
ASM_REWRITE_TAC, GEN_REWRITE_TAC, ONCE_ASM_REWRITE_TAC, ONCE_REWRITE_TAC,
PURE_ASM_REWRITE_TAC, PURE_ONCE_ASM_REWRITE_TAC, PURE_ONCE_REWRITE_TAC,
PURE_REWRITE_TAC, REWR_CONV, REWRITE_CONV, SUBST_TAC.

rhs

rhs : term -> term

Synopsis
Returns the right-hand side of an equation.

Description
rhs ‘t1 = t2‘ returns ‘t2‘.

Failure
Fails with rhs if term is not an equality.

Example

rhs ‘2 + 2 = 4‘;;
val it : term = ‘4‘

See also
dest_eq, lhs, rand.

RIGHT_BETAS

RIGHT_BETAS : term list -> thm -> thm

Synopsis
Apply and beta-reduce equational theorem with abstraction on RHS.

Description
Given a list of arguments [‘a1‘; ...; ‘an‘] and a theorem of the form A |- f = \x1 ... xn. t[x1,...xn],
the rule RIGHT_BETAS returns A |- f a1 ... an = t[a1,...,an]. That is, it applies the the-
orem to the list of arguments and beta-reduces the right-hand side.

Failure
Fails if the argument types are wrong or the RHS has too few abstractions.

570 Chapter 1. Pre-defined ML Identifiers

Example

RIGHT_BETAS [‘x:num‘; ‘y:num‘] (ASSUME ‘f = \a b c. a + b + c + 1‘);;
val it : thm = f = (\a b c. a + b + c + 1) |- f x y = (\c. x + y + c + 1)

See also
BETA_CONV, BETAS_CONV.

rightbin

rightbin : (’a -> ’b * ’c) -> (’c -> ’d * ’a) -> (’d -> ’b -> ’b -> ’b) -> string -> ’a -> ’b * ’c

Synopsis
Parses iterated right-associated binary operator.

Description
If p is a parser for “items” of some kind, s is a parser for some “separator”, c is a ‘constructor’
function taking an element as parsed by s and two other elements as parsed by p and giving
a new such element, and e is an error message, then leftbin p s c e will parse an iterated
sequence of items by p and separated by something parsed with s. It will repeatedly apply
the constructor function c to compose these elements into one, associating to the right. For
example, the input:

<p1> <s1> <p2> <s2> <p3> <s3> <p4>

meaning successive segments pi that are parsed by p and sj that are parsed by s, will result
in

c s1 c1 (c s2 p2 (c s3 p3 p4))

Failure
The call rightbin p s c e never fails, though the resulting parser may.

Comments
This is one of a suite of combinators for manipulating “parsers”. A parser is simply a function
whose OCaml type is some instance of :(’a)list -> ’b * (’a)list. The function should
take a list of objects of type :’a (e.g. characters or tokens), parse as much of it as possible from
left to right, and return a pair consisting of the object derived from parsing (e.g. a term or a
special syntax tree) and the list of elements that were not processed.

See also
++, ||, >>, a, atleast, elistof, finished, fix, leftbin, listof, many, nothing,
possibly, some.

RING AND IDEAL CONV 571

RING_AND_IDEAL_CONV

RING_AND_IDEAL_CONV : (term -> num) * (num -> term) * conv * term * term * term * term * term * term * term * thm * (term -> thm) -> (term -> thm) * (term list -> term -> term list)

Synopsis
Returns a pair giving a ring proof procedure and an ideal membership routine.

Description
This function combines the functionality of RING and ideal_cofactors. Each of these requires
the same rather lengthy input. When you want to apply both to the same set of parameters,
you can do so using RING_AND_IDEAL_CONV. That is:

RING_AND_IDEAL_CONV parms

is functionally equivalent to:

RING parms,ideal_cofactors parms

For more information, see the documentation for those two functions.

Failure
Fails if the parameters are wrong.

See also
ideal_cofactors, RING.

RING

RING : (term -> num) * (num -> term) * conv * term * term * term * term * term * term * term * thm * thm * (term -> thm) -> term -> thm

Synopsis
Generic ring procedure.

Description
The RING function takes a number of arguments specifying a ring structure and giving operations
for computing and proving over it. Specifically the call is:

RING(toterm,tonum,EQ_CONV,
neg,add,sub,inv,mul,div,pow,
INTEGRAL_TH,FIELD_TH,POLY_CONV)

where toterm is a conversion from constant terms in the structure to rational numbers (e.g.
rat_of_term for the reals), tonum is the opposite (e.g. term_of_rat for the reals), EQ_CONV

572 Chapter 1. Pre-defined ML Identifiers

is an equality test conversion (e.g. REAL_RAT_EQ_CONV), neg is negation, add is addition, sub
is subtraction, inv is multiplicative inverse, div is division, pow is power, INTEGRAL_TH is an
integrality theorem and FIELD_TH is a field theorem (see below) and POLY_CONV is a polyno-
mial normalization theorem for the structure as returned by SEMIRING_NORMALIZERS_CONV (e.g.
REAL_POLY_CONV for the reals).

The integrality theorem essentially states that if a product is zero, so is one of the factors (i.e.
the structure is an integral domain), but this is stated in an unnatural way to allow application
to structures without negation. It is permissible in this case to use boolean variables instead
of operators such as negation and subtraction. The precise form of the theorem (notation for
natural numbers, but this is supposed to be over the same structure):

|- (!x. 0 * x = 0) /\
(!x y z. x + y = x + z <=> y = z) /\
(!w x y z. w * y + x * z = w * z + x * y <=> w = x \/ y = z)

The field theorem is of the following form. It is not logically necessary, and if the structure is
not a field you can just pass in TRUTH instead. However, it is usually beneficial for performance
to include it.

|- !x y. ~(x = y) <=> ?z. (x - y) * z = 1

It returns a proof procedure that will attempt to prove a formula that, after suitable nor-
malization, can be considered a universally quantified Boolean combination of equations and
inequations between terms of the right type. If that formula holds in all integral domains, it will
prove it. Any “alien” atomic formulas that are not natural number equations will not contribute
to the proof.

Failure

Fails if the theorems are malformed.

Example

The instantiation for the real numbers (in fact this is already available under the name REAL_RING)

rotate 573

could be coded as:

let REAL_RING =
let REAL_INTEGRAL = prove
(‘(!x. &0 * x = &0) /\
(!x y z. (x + y = x + z) <=> (y = z)) /\
(!w x y z. (w * y + x * z = w * z + x * y) <=> (w = x) \/ (y = z))‘,
REWRITE_TAC[MULT_CLAUSES; EQ_ADD_LCANCEL] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_EQ;

GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_MUL] THEN
ONCE_REWRITE_TAC[GSYM REAL_SUB_0] THEN
REWRITE_TAC[GSYM REAL_ENTIRE] THEN REAL_ARITH_TAC)

and REAL_INVERSE = prove
(‘!x y:real. ~(x = y) <=> ?z. (x - y) * z = &1‘,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM REAL_SUB_0] THEN
MESON_TAC[REAL_MUL_RINV; REAL_MUL_LZERO; REAL_ARITH ‘~(&1 = &0)‘]) in

RING(rat_of_term,term_of_rat,REAL_RAT_EQ_CONV,
‘(--):real->real‘,‘(+):real->real->real‘,‘(-):real->real->real‘,
‘(inv):real->real‘,‘(*):real->real->real‘,‘(/):real->real->real‘,
‘(pow):real->num->real‘,
REAL_INTEGRAL,REAL_INVERSE,REAL_POLY_CONV);;

after which, for example, we can verify a reduction for cubic equations to quadratics entirely
automatically:

REAL_RING
‘p = (&3 * a1 - a2 pow 2) / &3 /\
q = (&9 * a1 * a2 - &27 * a0 - &2 * a2 pow 3) / &27 /\
z = x - a2 / &3 /\
x * w = w pow 2 - p / &3 /\
~(p = &0)
==> (z pow 3 + a2 * z pow 2 + a1 * z + a0 = &0 <=>

(w pow 3) pow 2 - q * (w pow 3) - p pow 3 / &27 = &0)‘;;

See also
ideal_cofactors, NUM_RING, REAL_FIELD, REAL_RING, real_ideal_cofactors,
RING_AND_IDEAL_CONV.

rotate

rotate : int -> refinement

574 Chapter 1. Pre-defined ML Identifiers

Synopsis
Rotate a goalstate.

Description
The function rotate n gl rotates a list gl of subgoals by n places. The function r is the special
case where this modification is applied to the imperative variable of unproven subgoals.

Failure
Fails only if the list of goals is empty.

See also
r.

RULE_ASSUM_TAC

RULE_ASSUM_TAC : (thm -> thm) -> tactic

Synopsis
Maps an inference rule over the assumptions of a goal.

Description
When applied to an inference rule f and a goal ({A1;...;An} ?- t), the RULE_ASSUM_TAC
tactical applies the inference rule to each of the assumptions to give a new goal.

{A1,...,An} ?- t
==================================== RULE_ASSUM_TAC f
{f(.. |- A1),...,f(.. |- An)} ?- t

Failure
The application of RULE_ASSUM_TAC f to a goal fails iff f fails when applied to any of the
assumptions of the goal.

Comments
It does not matter if the goal has no assumptions, but in this case RULE_ASSUM_TAC has no
effect.

See also
ASSUM_LIST, MAP_EVERY, MAP_FIRST, POP_ASSUM_LIST.

SELECT_CONV

SELECT_CONV : term -> thm

SELECT CONV 575

Synopsis
Eliminates an epsilon term by introducing an existential quantifier.

Description
The conversion SELECT_CONV expects a boolean term of the form ‘P[@x.P[x]/x]‘, which asserts
that the epsilon term @x.P[x] denotes a value, x say, for which P[x] holds. This assertion is
equivalent to saying that there exists such a value, and SELECT_CONV applied to a term of this
form returns the theorem |- P[@x.P[x]/x] = ?x. P[x].

Failure
Fails if applied to a term that is not of the form ‘P[@x.P[x]/x]‘.

Example

SELECT_CONV ‘(@n. n < m) < m‘;;
val it : thm = |- (@n. n < m) < m <=> (?n. n < m)

Uses
Particularly useful in conjunction with CONV_TAC for proving properties of values denoted by
epsilon terms. For example, suppose that one wishes to prove the goal

g ‘!m. 0 < m ==> (@n. n < m) < SUC m‘;;

We start off:

e(REPEAT STRIP_TAC THEN
MATCH_MP_TAC(ARITH_RULE ‘!m n. m < n ==> m < SUC n‘));;

val it : goalstack = 1 subgoal (1 total)

0 [‘0 < m‘]

‘(@n. n < m) < m‘

This is now in the correct form for using SELECT_CONV:

e(CONV_TAC SELECT_CONV);;
val it : goalstack = 1 subgoal (1 total)

0 [‘0 < m‘]

‘?n. n < m‘

and the resulting subgoal is straightforward to prove, e.g. by ASM_MESON_TAC[] or EXISTS_TAC ‘0‘ THEN ASM_REWRITE_TAC[].

See also
SELECT_ELIM, SELECT_INTRO, SELECT_RULE.

576 Chapter 1. Pre-defined ML Identifiers

SELECT_ELIM_TAC

SELECT_ELIM_TAC : tactic

Synopsis
Eliminate select terms from a goal.

Description
The tactic SELECT_ELIM_TAC attempts to remove from a goal any select terms, i.e. instances of
the Hilbert choice operator @x. P[x]. First, any instances that occur inside their own predicate,
i.e. P[@x. P[x]], are replaced simply by ?x. P[x], as with SELECT_CONV. Other select-terms
are eliminated by replacing each on with a new variable v and adding a corresponding instance
of the axiom SELECT_AX, of the form !x. P[x] ==> P[v]. Note that the latter does not strictly
preserve logical equivalence, only implication. So it is possible to replace a provable goal by
an unprovable one. But since not much is provable about a select term except via the axiom
SELECT_AX, this is not likely in practice.

Failure
Never fails.

Example
Suppose we set the goal:

g ‘(@n. n < 3) < 3 /\ (@n. n < 3) < 5‘;;

An application of SELECT_ELIM_TAC returns:

e SELECT_ELIM_TAC;;
val it : goalstack = 1 subgoal (1 total)

‘!_73133. (!x. x < 3 ==> _73133 < 3) ==> (?n. n < 3) /\ _73133 < 5‘

Uses
This is already applied as an initial normalization by MESON and other rules. Users may occa-
sionally find it helpful.

See also
SELECT_CONV.

SELECT_RULE

SELECT_RULE : thm -> thm

self destruct 577

Synopsis
Introduces an epsilon term in place of an existential quantifier.

Description
The inference rule SELECT_RULE expects a theorem asserting the existence of a value x such that
P holds. The equivalent assertion that the epsilon term @x.P denotes a value of x for which P
holds is returned as a theorem.

A |- ?x. P
------------------ SELECT_RULE
A |- P[(@x.P)/x]

Failure
Fails if applied to a theorem the conclusion of which is not existentially quantified.

Example
The axiom INFINITY_AX in the theory ind is of the form:

|- ?f. ONE_ONE f /\ ~ONTO f

Applying SELECT_RULE to this theorem returns the following.

SELECT_RULE INFINITY_AX;;
val it : thm =
|- ONE_ONE (@f. ONE_ONE f /\ ~ONTO f) /\ ~ONTO (@f. ONE_ONE f /\ ~ONTO f)

Uses
May be used to introduce an epsilon term to permit rewriting with a constant defined using the
epsilon operator.

See also
CHOOSE, SELECT_AX, SELECT_CONV.

self_destruct

self_destruct : string

Synopsis
Exits HOL Light but saves current state ready to restart.

Description
This operation is only available in HOL images created using checkpointing (as in the default
Linux build arising from make all), not when the HOL Light sources have simply been loaded

578 Chapter 1. Pre-defined ML Identifiers

into the OCaml toplevel without checkpointing. A call self_destruct s will exit the current
OCaml / HOL Light session, but save the current state to an image hol.snapshot. Users can
then start this image; it will display the usual banner and also the string s, and the user will
then be in the same state as before self_destruct.

Failure

Never fails, except in the face of OS-level problems such as running out of disc space.

Uses

Very useful to start HOL Light quickly with many background theories or tools loaded, rather
than needing to rebuild them from sources.

Comments

Unfortunately I do not know of any checkpointing tool that can give this behavior under Win-
dows. However, it works very nicely in Linux.

Example

Suppose that all the proofs you are doing at the moment need more theorems about prime
numbers, and also a list of all prime numbers up to 1000. We reach a suitable state:

needs "Examples/prime.ml";;
...
let primes_1000 = rev(rev_itlist

(fun q ps -> if exists (fun p -> q mod p = 0) ps then ps else q::ps)
(2--1000) []);;

...

and now issue the checkpointing command:

self_destruct "Preloaded with prime number material";;

HOL Light will exit and a new file hol.snapshot will be created. You might want to rename
it as hol.prime in the OS so it has a more intuitive name and doesn’t get overwritten by later

SEMIRING NORMALIZERS CONV 579

checkpoints

$ mv hol.snapshot hol.prime

You can then start the new image just by hol.prime:

$ hol.prime
HOL Light 2.10, built 16 March 2006 on OCaml 3.08.3
Preloaded with prime number material

val it : unit = ()
#

and continue where you left off, with all the prime-number material available instantly:

PRIME_DIVPROD;;
val it : thm =
|- !p a b. prime p /\ p divides a * b ==> p divides a \/ p divides b

el 100 primes_1000;;
val it : int = 547

See also
startup_banner.

SEMIRING_NORMALIZERS_CONV

SEMIRING_NORMALIZERS_CONV : thm -> thm -> (term -> bool) * conv * conv * conv -> (term -> term -> bool) -> (term -> thm) * (term -> thm) * (term -> thm) * (term -> thm) * (term -> thm) * (term -> thm)

Synopsis
Produces normalizer functions over a ring or even a semiring.

Description
The function SEMIRING_NORMALIZERS_CONV should be given two theorems about some binary
operators that we write as infix ‘+’, ‘*’ and ‘^’ and ground terms ‘ZERO’ and ‘ONE’. (The con-
ventional symbols make the import of the theorem easier to grasp, but they are essentially
arbitrary.) The first theorem is of the following form, essentially stating that the operators form

580 Chapter 1. Pre-defined ML Identifiers

a semiring structure with ‘^’ as the “power” operator:

|- (!x y z. x + (y + z) = (x + y) + z) /\
(!x y. x + y = y + x) /\
(!x. ZERO + x = x) /\
(!x y z. x * (y * z) = (x * y) * z) /\
(!x y. x * y = y * x) /\
(!x. ONE * x = x) /\
(!x. ZERO * x = ZERO) /\
(!x y z. x * (y + z) = x * y + x * z) /\
(!x. x^0 = ONE) /\
(!x n. x^(SUC n) = x * x^n)

The second theorem may just be TRUTH = |- T, in which case it will be assumed that the
structure is just a semiring. Otherwise, it may be of the following form for “negation” (neg)
and “subtraction” functions, plus a ground term MINUS1 thought of as -1:

|- (!x. neg x = MINUS1 * x) /\
(!x y. x - y = x + MINUS1 * y)

If the second theorem is provided, the eventual normalizer will also handle the negation and
subtraction operations. Generally this is beneficial, but is impossible on structures like :num
with no negative numbers.

The remaining arguments are a tuple. The first is an ordering on terms, used to determine
the polynomial form. Normally, the default OCaml ordering is fine. The rest are intended to
be functions for operating on ‘constants’ (e.g. numerals), which should handle at least ‘ZERO’,
‘ONE’ and, in the case of a ring, ‘MINUS1’. The functions are: (i) a test for membership in the
set of ‘constants’, (ii) an addition conversion on constants, (iii) a multiplication conversion on
constants, and (iv) a conversion to raise a constant to a numeral power. Note that no subtraction
or negation operations are needed explicitly because this is subsumed in the presence of -1 as a
constant.

The function then returns conversions for putting terms of the structure into a canonical form,
essentially multiplied-out polynomials with a particular ordering. The functions respectively
negate, add, subtract, multiply, exponentiate terms already in the canonical form, putting the
result back in canonical form. The final return value is an overall normalization function.

Failure
Fails if the theorems are malformed.

Example
There are already instantiations of the main normalizer for natural numbers (NUM_NORMALIZE_CONV)
and real numbers (REAL_POLY_CONV). Here is how the latter is first constructed (it is later en-
hanced to handle some additional functions more effectively, so use the inbuilt definition, not

set basic congs 581

this one):

let REAL_POLY_NEG_CONV,REAL_POLY_ADD_CONV,REAL_POLY_SUB_CONV,
REAL_POLY_MUL_CONV,REAL_POLY_POW_CONV,REAL_POLY_CONV =

SEMIRING_NORMALIZERS_CONV REAL_POLY_CLAUSES REAL_POLY_NEG_CLAUSES
(is_ratconst,
REAL_RAT_ADD_CONV,REAL_RAT_MUL_CONV,REAL_RAT_POW_CONV)
(<);;

val (REAL_POLY_NEG_CONV) : term -> thm = <fun>
val (REAL_POLY_ADD_CONV) : term -> thm = <fun>
val (REAL_POLY_SUB_CONV) : term -> thm = <fun>
val (REAL_POLY_MUL_CONV) : term -> thm = <fun>
val (REAL_POLY_POW_CONV) : term -> thm = <fun>
val (REAL_POLY_CONV) : term -> thm = <fun>

For examples of the resulting main function in action, see REAL_POLY_CONV.

Uses
This is a highly generic function, intended only for occasional use by experts. Users reasoning
in any sort of ring structure may find it a useful building-block for a decision procedure.

Comments
This is a subcomponent of more powerful generic decision procedures such as RING. These can
handle more sophisticated reasoning that direct equality through normalization.

See also
ideal_cofactors, NUM_NORMALIZE_CONV, REAL_POLY_CONV, RING_AND_IDEAL_CONV.

set_basic_congs

set_basic_congs : thm list -> unit

Synopsis
Change the set of basic congruences used by the simplifier.

Description
The HOL Light simplifier (as invoked by SIMP_TAC etc.) uses congruence rules to determine
how it uses context when descending through a term. These are essentially theorems show-
ing how to decompose one equality to a series of other inequalities in context. A call to
set_basic_congs thl sets the congruence rules to the list of theorems thl.

Failure
Never fails.

582 Chapter 1. Pre-defined ML Identifiers

Comments
Normally, users only need to extend the congruences; for an example of how to do that see
extend_basic_congs.

See also
basic_congs, extend_basic_congs, SIMP_CONV, SIMP_RULE, SIMP_TAC.

set_basic_convs

set_basic_convs : (string * (term * conv)) list -> unit

Synopsis
Assign the set of default conversions.

Description
The HOL Light rewriter (REWRITE_TAC etc.) and simplifier (SIMP_TAC etc.) have default sets of
(conditional) equations and other conversions that are applied by default, except in the PURE_
variants. The latter are normally term transformations that cannot be expressed as single
(conditional or unconditional) rewrite rules. A call to set_basic_convs l where l is a list of
items (”name”,(‘pat‘,conv)) will make the default conversions just that set, using the name name
to refer to each one and restricting it to subterms encountered that match pat.

Failure
Never fails.

Comments
Normally, users will only want to extend the existing set of conversions using extend_basic_convs.

See also
basic_convs, extend_basic_convs, set_basic_rewrites, REWRITE_TAC, SIMP_TAC.

set_basic_rewrites

set_basic_rewrites : thm list -> unit

Synopsis
Assign the set of default rewrites used by rewriting and simplification.

Description
The HOL Light rewriter (REWRITE_TAC etc.) and simplifier (SIMP_TAC etc.) have default sets of
(conditional) equations and other conversions that are applied by default, except in the PURE_

set eq 583

variants. A call to extend_basic_rewrites thl sets this to be the list of theorems thl (after
processing into rewrite rules by mk_rewrites).

Failure
Never fails.

Comments
Users will most likely want to extend the existing set by extend_basic_rewrites rather than
completely change it like this.

See also
basic_rewrites, extend_basic_convs, set_basic_convs.

set_eq

set_eq : ’a list -> ’a list -> bool

Synopsis
Tests two ‘sets’ for equality.

Description
set_eq l1 l2 returns true if every element of l1 appears in l2 and every element of l2 appears
in l1. Otherwise it returns false. In other words, it tests if the lists are the same considered
as sets, i.e. ignoring duplicates.

Failure
Never fails.

Example

set_eq [1;2] [2;1;2];;
val it : bool = true
set_eq [1;2] [1;3];;
val it : bool = false

See also
setify, union, intersect, subtract.

set_goal

set_goal : term list * term -> goalstack

584 Chapter 1. Pre-defined ML Identifiers

Synopsis
Initializes the subgoal package with a new goal.

Description
The function set_goal initializes the subgoal management package. A proof state of the package
consists of either a goal stack and a justification stack if a proof is in progress, or a theorem
if a proof has just been completed. set_goal sets a new proof state consisting of an empty
justification stack and a goal stack with the given goal as its sole goal. The goal is printed.

Failure
Fails unless all terms in the goal are of type bool.

Example

set_goal([], ‘(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])‘);;
val it : goalstack = 1 subgoal (1 total)

‘HD [1; 2; 3] = 1 /\ TL [1; 2; 3] = [2; 3]‘

Uses
Starting an interactive proof session with the subgoal package.

The subgoal package implements a simple framework for interactive goal-directed proof. When
conducting a proof that involves many subgoals and tactics, the user must keep track of all the
justifications and compose them in the correct order. While this is feasible even in large proofs,
it is tedious. The subgoal package provides a way of building and traversing the tree of subgoals
top-down, stacking the justifications and applying them properly.

The package maintains a proof state consisting of either a goal stack of outstanding goals and
a justification stack, or a theorem. Tactics are used to expand the current goal (the one on the
top of the goal stack) into subgoals and justifications. These are pushed onto the goal stack and
justification stack, respectively, to form a new proof state. All preceding proof states are saved
and can be returned to if a mistake is made in the proof. The goal stack is divided into levels,
a new level being created each time a tactic is successfully applied to give new subgoals. The
subgoals of the current level may be considered in any order.

See also
b, e, g, p, r, top_goal, top_thm.

setify

setify : ’a list -> ’a list

Synopsis
Removes repeated elements from a list. Makes a list into a ‘set’.

SET RULE 585

Description
setify l removes repeated elements from l, leaving the last occurrence of each duplicate in the
list.

Failure
Never fails.

Example

setify [1;2;3;1;4;3];;
val it : int list = [1; 2; 3; 4]

Comments
The current implementation will in fact return a sorted list according to the basic OCaml
polymorphic ordering.

See also
uniq.

SET_RULE

SET_RULE : term -> thm

Synopsis
Attempt to prove elementary set-theoretic lemma.

Description
The function SET_RULE is a crude automated prover for set-theoretic facts. When applied to a
term, it expands various set-theoretic definitions explicitly and then attempts to solve the result
using MESON.

Failure
Fails if the simple translation does not suffice, or the resulting goal is too deep for MESON.

Example

SET_RULE ‘{x | ~(x IN s <=> x IN t)} = (s DIFF t) UNION (t DIFF s)‘;;
...
val it : thm = |- {x | ~(x IN s <=> x IN t)} = s DIFF t UNION t DIFF s

SET_RULE
‘UNIONS {t y | y IN x INSERT s} = t x UNION UNIONS {t y | y IN s}‘;;

val it : thm =
|- UNIONS {t y | y IN x INSERT s} = t x UNION UNIONS {t y | y IN s}

See also
MESON, MESON_TAC[], SET_TAC.

586 Chapter 1. Pre-defined ML Identifiers

SET_TAC

SET_TAC : thm list -> tactic

Synopsis
Attempt to prove goal using basic set-theoretic reasoning.

Description
When applied to a goal and a list of lemmas to use, the tactic SET_TAC puts the lemmas into
the goal as antecedents, expands various set-theoretic definitions explicitly and then attempts
to solve the result using MESON.

Failure
Fails if the simple translation does not suffice, or the resulting goal is too deep for MESON.

Example
Given the following goal:

g ‘!s. (UNIONS s = {}) <=> !t. t IN s ==> t = {}‘;;

the following solves it:

e(SET_TAC[]);;
...
val it : goalstack = No subgoals

See also
MESON, MESON_TAC, SET_RULE.

shareout

shareout : ’a list list -> ’b list -> ’b list list

Synopsis
Shares out the elements of the second list according to pattern in first.

Description
The call shareout pat l shares out the elements of l into the same groups as the pattern list
pat, while keeping them in the same order. If there are more elements in l than needed, they
will be discarded, but if there are fewer, failure will occur.

SIMP CONV 587

Failure
Fails if there are too few elements in the second list.

Example

shareout [[1;2;3]; [4;5]; [6]; [7;8;9]] (explode "abcdefghijklmnopq");;
val it : string list list =
[["a"; "b"; "c"]; ["d"; "e"]; ["f"]; ["g"; "h"; "i"]]

See also
chop_list.

SIMP_CONV

SIMP_CONV : thm list -> conv

Synopsis
Simplify a term repeatedly by conditional contextual rewriting.

Description
A call SIMP_CONV thl tm will return |- tm = tm’ where tm’ results from applying the theorems
in thl as (conditional) rewrite rules, as well as built-in simplifications (see basic_rewrites and
basic_convs).

The theorems are first split up into individual rewrite rules, either conditional (|- c ==> l = r)
or unconditional (|- l = r), as described in the documentation for mk_rewrites. These are
then applied repeatedly to replace subterms in the goal that are instances l’ of the left-hand side
with a corresponding r’. Rewrite rules that are permutative, with each side an instance of the
other, have an ordering imposed on them so that they tend to force terms into canonical form
rather than looping (see ORDERED_REWR_CONV). In the case of applying a conditional rewrite,
the condition c needs to be eliminated before the rewrite can be applied. This is attempted by
recursively applying the same simplifications to c in the hope of reducing it to T. If this can be
done, the conditional rewrite is applied, otherwise not. To add additional provers to dispose of
side-conditions beyond application of the basic rewrites, see mk_prover and ss_of_provers.

Failure
Never fails, but may return a reflexive theorem |- tm = tm if no simplifications can be made.

Example
Here we use the conditional and contextual facilities:

SIMP_CONV[SUB_ADD; ARITH_RULE ‘0 < n ==> 1 <= n‘]
‘0 < n ==> (n - 1) + 1 = n + f(k + 1)‘;;

val it : thm =
|- 0 < n ==> n - 1 + 1 = n + f (k + 1) <=> 0 < n ==> n = n + f (k + 1)

and here we show how a permutative rewrite achieves normalization (the same would work with

588 Chapter 1. Pre-defined ML Identifiers

plain REWRITE_CONV:

REWRITE_CONV[ADD_AC] ‘(a + c + e) + ((b + a + d) + e):num‘;;
val it : thm = |- (a + c + e) + (b + a + d) + e = a + a + b + c + d + e + e

Comments
For simply rewriting with unconditional equations, REWRITE_CONV and relatives are simpler and
more efficient.

See also
ASM_SIMP_TAC, ONCE_SIMP_CONV, SIMP_RULE, SIMP_TAC.

SIMPLE_CHOOSE

SIMPLE_CHOOSE : term -> thm -> thm

Synopsis
Existentially quantifies a hypothesis of a theorem.

Description
A call SIMPLE_CHOOSE ‘v‘ th existentially quantifies a hypothesis of the theorem over the
variable v. It is intended for use when there is only one hypothesis so that the choice of
assumption is unambiguous. In general, it picks the one that happens to be first in the list.

Failure
Fails if v is not a variable or if it is free in the conclusion of the theorem th.

Example

let th = SYM(ASSUME ‘x:num = y‘);;
val th : thm = x = y |- y = x
SIMPLE_EXISTS ‘x:num‘ th;;
val it : thm = x = y |- ?x. y = x

SIMPLE_CHOOSE ‘x:num‘ it;;
val it : thm = ?x. x = y |- ?x. y = x

Comments
The more general function is CHOOSE, but this is simpler in the special case.

See also
CHOOSE, EXISTS, SIMPLE_EXISTS.

SIMPLE DISJ CASES 589

SIMPLE_DISJ_CASES

SIMPLE_DISJ_CASES : thm -> thm -> thm

Synopsis
Disjoins hypotheses of two theorems with same conclusion.

Description
The rule SIMPLE_DISJ_CASES takes two ‘case’ theorems with alpha-equivalent conclusions and
returns a theorem with the first hypotheses disjoined:

A u {p} |- r B u {q} |- r
----------------------------------- SIMPLE_DISJ_CASES

A u B u {p \/ q} |- r

To avoid dependency on the order of the hypotheses, it is only recommended when each
theorem has exactly one hypothesis:

{p} |- r {q} |- r
----------------------------------- SIMPLE_DISJ_CASES

{p \/ q} |- r

For more sophisticated or-elimination, use DISJ_CASES.

Failure
Fails if the conclusions of the theorems are not alpha-equivalent.

Example

let [th1; th2] = map (UNDISCH o TAUT)
[‘~p ==> p ==> q‘; ‘q ==> p ==> q‘];;

...
val th1 : thm = ~p |- p ==> q
val th2 : thm = q |- p ==> q

SIMPLE_DISJ_CASES th1 th2;;
val it : thm = ~p \/ q |- p ==> q

See also
DISJ_CASES, DISJ_CASES_TAC, DISJ_CASES_THEN, DISJ_CASES_THEN2, DISJ1, DISJ2.

590 Chapter 1. Pre-defined ML Identifiers

SIMPLE_EXISTS

SIMPLE_EXISTS : term -> thm -> thm

Synopsis
Introduces an existential quantifier over a variable in a theorem.

Description
When applied to a pair consisting of a variable v and a theorem |- p, SIMPLE_EXISTS returns
the theorem |- ?v. p. It is not compulsory for v to appear free in p, but otherwise the
quantification is vacuous.

Failure
Fails only if v is not a variable.

Example

SIMPLE_EXISTS ‘x:num‘ (REFL ‘x:num‘);;
val it : thm = |- ?x. x = x

Comments
The EXISTS function is more general: it can introduce an existentially quantified variable to
replace chosen instances of any term in the theorem. However, SIMPLE_EXISTS is easier to use
when the simple case is needed.

See also
CHOOSE, EXISTS.

SIMPLIFY_CONV

SIMPLIFY_CONV : simpset -> thm list -> conv

Synopsis
General simplification at depth with arbitrary simpset.

Description
In their maximal generality, simplification operations in HOL Light (as invoked by SIMP_TAC) are
controlled by a ‘simpset’. Given a simpset ss and an additional list of theorems thl to be used
as (conditional or unconditional) rewrite rules, SIMPLIFY_CONV ss thl gives a simplification
conversion with a repeated top-down traversal strategy (TOP_DEPTH_SQCONV) and a nesting limit
of 3 for the recursive solution of subconditions by further simplification.

SIMP RULE 591

Failure
Never fails.

Uses
Usually some other interface to the simplifier is more convenient, but you may want to use this
to employ a customized simpset.

See also
GEN_SIMPLIFY_CONV, ONCE_SIMPLIFY_CONV, SIMP_CONV, SIMP_RULE, SIMP_TAC,
TOP_DEPTH_SQCONV.

SIMP_RULE

SIMP_RULE : thm list -> thm -> thm

Synopsis
Simplify conclusion of a theorem repeatedly by conditional contextual rewriting.

Description
A call SIMP_CONV thl (|- tm) will return |- tm’ where tm’ results from applying the theorems
in thl as (conditional) rewrite rules, as well as built-in simplifications (see basic_rewrites and
basic_convs). For more details on this kind of conditional rewriting, see SIMP_CONV.

Failure
Never fails, but may return the input theorem unchanged if no simplifications were applicable.

See also
ONCE_SIMP_RULE, SIMP_CONV, SIMP_TAC.

SIMP_TAC

SIMP_TAC : thm list -> tactic

Synopsis
Simplify a goal repeatedly by conditional contextual rewriting.

Description
When applied to a goal A ?- g, the tactic SIMP_TAC thl returns a new goal A ?- g’ where
g’ results from applying the theorems in thl as (conditional) rewrite rules, as well as built-in
simplifications (see basic_rewrites and basic_convs). For more details, see SIMP_CONV.

592 Chapter 1. Pre-defined ML Identifiers

Failure
Never fails, though may not change the goal if no simplifications are applicable.

Comments
To add the assumptions of the goal to the rewrites, use ASM_SIMP_TAC (or just ASM SIMP_TAC).

See also
ASM, ASM_SIMP_TAC, mk_rewrites, ONCE_SIMP_CONV, REWRITE_TAC, SIMP_CONV,
SIMP_RULE.

|=>

(|=>) : ’a -> ’b -> (’a, ’b) func

Synopsis
Gives a one-point finite partial function.

Description
This is one of a suite of operations on finite partial functions, type (’a,’b)func. These may
sometimes be preferable to ordinary functions since they permit more operations such as equality
comparison, extraction of domain etc. The call x |=> y gives a finite partial function that maps
x to y and is undefined for all arguments other than x.

Example

let f = (1 |=> 2);;
val f : (int, int) func = <func>

apply f 1;;
val it : int = 2

apply f 2;;
Exception: Failure "apply".

See also
|->, apply, applyd, choose, combine, defined, dom, foldl, foldr, graph,
is_undefined, mapf, ran, tryapplyd, undefine, undefined.

SKOLEM_CONV

SKOLEM_CONV : conv

some 593

Synopsis
Completely Skolemize a term already in negation normal form.

Description
Skolemization amounts to rewriting with the equivalence

SKOLEM_THM;;
val it : thm = |- !P. (!x. ?y. P x y) <=> (?y. !x. P x (y x))

The conversion SKOLEM_CONV will apply this transformation and pull out quantifiers to give
a form with all existential quantifiers pulled to the outside. However, it assumes that the input
is in negation normal form, i.e. built up by conjunction and disjunction from possibly negated
atomic formulas.

Failure
Never fails.

Example
Here is a simple example:

SKOLEM_CONV ‘(!x. ?y. P x y) \/ (?u. !v. ?z. P (f u v) z)‘;;
Warning: inventing type variables
val it : thm =
|- (!x. ?y. P x y) \/ (?u. !v. ?z. P (f u v) z) <=>

(?y u z. (!x. P x (y x)) \/ (!v. P (f u v) (z v)))

However, note that it doesn’t work properly when the input involves implication, and hence
is not in NNF:

SKOLEM_CONV ‘(!x. ?y. P x y) ==> (?u. !v. ?z. P (f u v) z)‘;;
Warning: inventing type variables
val it : thm =
|- (!x. ?y. P x y) ==> (?u. !v. ?z. P (f u v) z) <=>

(?y. !x. P x (y x)) ==> (?u z. !v. P (f u v) (z v))

Uses
A useful component in decision procedures, to simplify the class of formulas that need to be
considered. Used internally in several such procedures like MESON_TAC.

See also
NNF_CONV, NNFC_CONV, PRENEX_CONV.

some

some : (’a -> bool) -> ’a list -> ’a * ’a list

594 Chapter 1. Pre-defined ML Identifiers

Synopsis
Parses any single item satisfying a predicate.

Description
If p is a predicate on input tokens of some kind, some p is a parser that parses and returns any
first token satisying the predicate p, and raises Noparse on a first token not satisfying p.

Failure
The call some p never fails.

Comments
This is one of a suite of combinators for manipulating “parsers”. A parser is simply a function
whose OCaml type is some instance of :(’a)list -> ’b * (’a)list. The function should
take a list of objects of type :’a (e.g. characters or tokens), parse as much of it as possible from
left to right, and return a pair consisting of the object derived from parsing (e.g. a term or a
special syntax tree) and the list of elements that were not processed.

See also
++, ||, >>, a, atleast, elistof, finished, fix, leftbin, listof, many, nothing,
possibly, rightbin.

sort

sort : (’a -> ’a -> bool) -> ’a list -> ’a list

Synopsis
Sorts a list using a given transitive ‘ordering’ relation.

Description
The call

sort op list

where op is a transitive relation on the elements of list, will topologically sort the list, i.e. will
permute it such that if x op y but not y op x then x will occur to the left of y in the sorted
list. In particular if op is a total order, the list will be sorted in the usual sense of the word.

Failure
Never fails.

SPEC ALL 595

Example
A simple example is:

sort (<) [3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9];;
val it : int list = [1; 1; 2; 3; 3; 4; 5; 5; 5; 6; 7; 8; 9; 9; 9]

The following example is a little more complicated, and shows how a topological sorting under
the relation ‘is free in’ can be achieved. This is actually sometimes useful to consider subterms
of a term in an appropriate order:

sort free_in [‘(x + 1) + 2‘; ‘x + 2‘; ‘x:num‘; ‘x + 1‘; ‘1‘];;
val it : term list = [‘1‘; ‘x‘; ‘x + 1‘; ‘x + 2‘; ‘(x + 1) + 2‘]

Comments
This function uses the Quicksort algorithm internally, which has good typical-case performance
and will sort topologically. However, its worst-case performance is quadratic. By contrast
mergesort gives a good worst-case performance but requires a total order. Note that any
comparison-based topological sorting function must have quadratic behaviour in the worst case.
For an n-element list, there are n(n− 1)/2 pairs. For any topological sorting algorithm, we can
make sure the first n(n − 1)/2 − 1 pairs compared are unrelated in either direction, while still
leaving the option of choosing for the last pair (a, b) either a < b or b < a, eventually giving a
partial order. So at least n(n − 1)/2 comparisons are needed to distinguish these two partial
orders correctly.

See also
mergesort.

SPEC_ALL

SPEC_ALL : thm -> thm

Synopsis
Specializes the conclusion of a theorem with its own quantified variables.

Description
When applied to a theorem A |- !x1...xn. t, the inference rule SPEC_ALL returns the theo-
rem A |- t[x1’/x1]...[xn’/xn] where the xi’ are distinct variants of the corresponding xi,
chosen to avoid clashes with any variables free in the assumption list. Normally xi’ is just xi,
in which case SPEC_ALL simply removes all universal quantifiers.

A |- !x1...xn. t
--------------------------- SPEC_ALL
A |- t[x1’/x1]...[xn’/xn]

Failure
Never fails.

596 Chapter 1. Pre-defined ML Identifiers

Example
The following example shows how variables are also renamed to avoid clashing with those in
assumptions.

let th = ADD_ASSUM ‘m = 1‘ ADD_SYM;;
val th : thm = m = 1 |- !m n. m + n = n + m

SPEC_ALL th;;
val it : thm = m = 1 |- m’ + n = n + m’

See also
GEN, GENL, GEN_ALL, GEN_TAC, SPEC, SPECL, SPEC_ALL, SPEC_TAC.

SPEC

SPEC : term -> thm -> thm

Synopsis
Specializes the conclusion of a theorem.

Description
When applied to a term u and a theorem A |- !x. t, then SPEC returns the theorem A |- t[u/x].
If necessary, variables will be renamed prior to the specialization to ensure that u is free for x
in t, that is, no variables free in u become bound after substitution.

A |- !x. t
-------------- SPEC ‘u‘
A |- t[u/x]

Failure
Fails if the theorem’s conclusion is not universally quantified, or if x and u have different types.

Example
The following example shows how SPEC renames bound variables if necessary, prior to substitu-
tion: a straightforward substitution would result in the clearly invalid theorem |- ~y ==> (!y. y ==> ~y).

let xv = ‘x:bool‘ and yv = ‘y:bool‘ in
(GEN xv o DISCH xv o GEN yv o DISCH yv) (ASSUME xv);;

val it : thm = |- !x. x ==> (!y. y ==> x)

SPEC ‘~y‘ it;;
val it : thm = |- ~y ==> (!y’. y’ ==> ~y)

See also
GEN, GENL, GEN_ALL, ISPEC, ISPECL, SPECL, SPEC_ALL, SPEC_VAR.

SPECL 597

SPECL

SPECL : term list -> thm -> thm

Synopsis
Specializes zero or more variables in the conclusion of a theorem.

Description
When applied to a term list [u1;...;un] and a theorem A |- !x1...xn. t, the inference
rule SPECL returns the theorem A |- t[u1/x1]...[un/xn], where the substitutions are made
sequentially left-to-right in the same way as for SPEC, with the same sort of alpha-conversions
applied to t if necessary to ensure that no variables which are free in ui become bound after
substitution.

A |- !x1...xn. t
-------------------------- SPECL [‘u1‘;...;‘un‘]
A |- t[u1/x1]...[un/xn]

It is permissible for the term-list to be empty, in which case the application of SPECL has no
effect.

Failure
Fails unless each of the terms is of the same as that of the appropriate quantified variable in the
original theorem.

Example
The following is a specialization of a theorem from theory arithmetic.

let t = ARITH_RULE ‘!m n p q. m <= p /\ n <= q ==> (m + n) <= (p + q)‘;;
val t : thm = |- !m n p q. m <= p /\ n <= q ==> m + n <= p + q

SPECL [‘1‘; ‘2‘; ‘3‘; ‘4‘] t;;;
val it : thm = |- 1 <= 3 /\ 2 <= 4 ==> 1 + 2 <= 3 + 4

See also
GEN, GENL, GEN_ALL, GEN_TAC, SPEC, SPEC_ALL, SPEC_TAC.

SPEC_TAC

SPEC_TAC : term * term -> tactic

598 Chapter 1. Pre-defined ML Identifiers

Synopsis
Generalizes a goal.

Description
When applied to a pair of terms (‘u‘,‘x‘), where x is just a variable, and a goal A ?- t, the
tactic SPEC_TAC generalizes the goal to A ?- !x. t[x/u], that is, all (free) instances of u are
turned into x.

A ?- t
================= SPEC_TAC (‘u‘,‘x‘)
A ?- !x. t[x/u]

Failure
Fails unless x is a variable with the same type as u.

Uses
Removing unnecessary speciality in a goal, particularly as a prelude to an inductive proof.

See also
GEN, GENL, GEN_ALL, GEN_TAC, SPEC, SPECL, SPEC_ALL, STRIP_TAC.

SPEC_VAR

SPEC_VAR : thm -> term * thm

Synopsis
Specializes the conclusion of a theorem, returning the chosen variant.

Description
When applied to a theorem A |- !x. t, the inference rule SPEC_VAR returns the term x’ and
the theorem A |- t[x’/x], where x’ is a variant of x chosen to avoid clashing with free variables
in assumptions.

A |- !x. t
-------------- SPEC_VAR
A |- t[x’/x]

Failure
Fails unless the theorem’s conclusion is universally quantified.

splitlist 599

Example
Note how the variable is renamed to avoid the free m in the assumptions:

let th = ADD_ASSUM ‘m = 1‘ ADD_SYM;;
val th : thm = m = 1 |- !m n. m + n = n + m

SPEC_VAR th;;
val it : term * thm = (‘m’‘, m = 1 |- !n. m’ + n = n + m’)

See also
GEN, GENL, GEN_ALL, GEN_TAC, SPEC, SPECL, SPEC_ALL.

splitlist

splitlist : (’a -> ’b * ’a) -> ’a -> ’b list * ’a

Synopsis
Applies a binary destructor repeatedly in left-associative mode.

Description
If a destructor function d inverts a binary constructor f, for example dest_comb for mk_comb,
and fails when applied to y, then:

splitlist d (f(x1,f(x2,f(...f(xn,y)))))

returns

([x1; ... ; xn],y)

Failure
Never fails.

Example
The function strip_forall is actually just defined as splitlist dest_forall, which acts as
follows:

splitlist dest_forall ‘!x y z. x + y = z‘;;
val it : term list * term = ([‘x‘; ‘y‘; ‘z‘], ‘x + y = z‘)

See also
itlist, rev_splitlist, striplist.

600 Chapter 1. Pre-defined ML Identifiers

ss_of_congs

ss_of_congs : thm list -> simpset -> simpset

Synopsis
Add congruence rules to a simpset.

Description
In their maximal generality, simplification operations in HOL Light (as invoked by SIMP_TAC)
are controlled by a ‘simpset’, which may contain conditional and unconditional rewrite rules,
conversions and provers for conditions, as well as a determination of how to use the prover on
the conditions and how to process theorems into rewrites. A call ss_of_congs thl ss adds
thl as new congruence rules to the simpset ss to yield a new simpset. For an illustration of
how congruence rules can be used, see extend_basic_congs.

Failure
Never fails unless the congruence rules are malformed.

See also
mk_rewrites, SIMP_CONV, ss_of_conv, ss_of_maker, ss_of_prover, ss_of_provers,
ss_of_thms.

ss_of_conv

ss_of_conv : term -> conv -> simpset -> simpset

Synopsis
Add a new conversion to a simpset.

Description
In their maximal generality, simplification operations in HOL Light (as invoked by SIMP_TAC)
are controlled by a ‘simpset’, which may contain conditional and unconditional rewrite rules,
conversions and provers for conditions, as well as a determination of how to use the prover on
the conditions and how to process theorems into rewrites. A call ss_of_conv pat cnv ss adds
the conversion cnv to the simpset ss to yield a new simpset, restricting the initial filtering of
potential subterms to those matching pat.

Failure
Never fails.

ss of maker 601

Example

ss_of_conv ‘x + y:num‘ NUM_ADD_CONV empty_ss;;
...

See also
mk_rewrites, SIMP_CONV, ss_of_congs, ss_of_maker, ss_of_prover, ss_of_provers,
ss_of_thms.

ss_of_maker

ss_of_maker : (thm -> thm list -> thm list) -> simpset -> simpset

Synopsis
Change the rewrite maker in a simpset.

Description
In their maximal generality, simplification operations in HOL Light (as invoked by SIMP_TAC)
are controlled by a ‘simpset’, which may contain conditional and unconditional rewrite rules,
conversions and provers for conditions, as well as a determination of how to use the prover
on the conditions and how to process theorems into rewrites. A call ss_of_maker maker ss
changes the “rewrite maker” in ss to yield a new simpset; use of this simpset with additional
theorems will process those theorems using the new rewrite maker. The default rewrite maker
is mk_rewrites with an appropriate flag, and it is unusual to want to change it.

Failure
Never fails.

See also
mk_rewrites, SIMP_CONV, ss_of_congs, ss_of_conv, ss_of_prover, ss_of_provers,
ss_of_thms.

ss_of_prover

ss_of_prover : (strategy -> strategy) -> simpset -> simpset

Synopsis
Change the method of prover application in a simpset.

602 Chapter 1. Pre-defined ML Identifiers

Description
In their maximal generality, simplification operations in HOL Light (as invoked by SIMP_TAC)
are controlled by a ‘simpset’, which may contain conditional and unconditional rewrite rules,
conversions and provers for conditions, as well as a determination of how to use the prover on
the conditions and how to process theorems into rewrites. The default ‘prover use’ method is to
first recursively apply all the simplification to conditions and then try the provers, if any, one
by one until one succeeds. It is unusual to want to change this, but if desired you can do it with
ss_of_prover str ss.

Failure
Never fails.

See also
mk_rewrites, SIMP_CONV, ss_of_congs, ss_of_conv, ss_of_maker, ss_of_provers,
ss_of_thms.

ss_of_provers

ss_of_provers : prover list -> simpset -> simpset

Synopsis
Add new provers to a simpset.

Description
In their maximal generality, simplification operations in HOL Light (as invoked by SIMP_TAC)
are controlled by a ‘simpset’, which may contain conditional and unconditional rewrite rules,
conversions and provers for conditions, as well as a determination of how to use the prover on
the conditions and how to process theorems into rewrites. A call ss_of_provers prs ss adds
the provers in prs to the simpset ss to yield a new simpset. See mk_prover for more explanation
of how to create something of type prover.

Failure
Never fails.

See also
mk_prover, mk_rewrites, SIMP_CONV, ss_of_congs, ss_of_conv, ss_of_maker,
ss_of_prover, ss_of_thms.

ss_of_thms

ss_of_thms : thm list -> simpset -> simpset

startup banner 603

Synopsis
Add theorems to a simpset.

Description
In their maximal generality, simplification operations in HOL Light (as invoked by SIMP_TAC)
are controlled by a ‘simpset’, which may contain conditional and unconditional rewrite rules,
conversions and provers for conditions, as well as a determination of how to use the prover on
the conditions and how to process theorems into rewrites. A call ss_of_thms thl ss processes
the theorems thl according to the rewrite maker in the simpset ss (normally mk_rewrites) and
adds them to the theorems in ss to yield a new simpset.

Failure
Never fails.

Example

ss_of_thms [ADD_CLAUSES] empty_ss;;
...

See also
mk_rewrites, SIMP_CONV, ss_of_congs, ss_of_conv, ss_of_maker, ss_of_prover,
ss_of_provers.

startup_banner

startup_banner : string

Synopsis
The one-line startup banner for HOL Light.

Description
This string is the startup banner for HOL Light, and is displayed when standalone images (see
self_destruct) are started up. It is only available in HOL images created using checkpointing
(as in the default Linux build arising from make all), not when the HOL Light sources have
simply been loaded into the OCaml toplevel without checkpointing.

Failure
Not applicable.

604 Chapter 1. Pre-defined ML Identifiers

Example
On my home computer, the value is currently:

startup_banner;;
val it : string =
" HOL Light 2.10, built 16 March 2006 on OCaml 3.08.3"

See also
self_destruct.

string_of_term

string_of_term : term -> string

Synopsis
Converts a HOL term to a string representation.

Description
The call string_of_term tm produces a textual representation of the term tm as a string, similar
to what is printed automatically at the toplevel, though without the surrounding quotes.

Failure
Never fails.

Example

string_of_term ‘x + 1 < 2 <=> x = 0‘;;
val it : string = "x + 1 < 2 <=> x = 0"

Comments
The string may contain newlines for large terms, broken in a similar fashion to automatic
printing.

See also
string_of_thm, string_of_type.

string_of_thm

string_of_thm : thm -> string

string of type 605

Synopsis
Converts a HOL theorem to a string representation.

Description
The call string_of_thm th produces a textual representation of the theorem th as a string,
similar to what is printed automatically at the toplevel.

Failure
Never fails.

Example

string_of_thm ADD_CLAUSES;;
val it : string =
"|- (!n. 0 + n = n) /\\\n (!m. m + 0 = m) /\\\n (!m n. SUC m + n = SUC (m

+ n)) /\\\n (!m n. m + SUC n = SUC (m + n))"

print_string it;;
|- (!n. 0 + n = n) /\

(!m. m + 0 = m) /\
(!m n. SUC m + n = SUC (m + n)) /\
(!m n. m + SUC n = SUC (m + n))

val it : unit = ()

Comments
The string may contain newlines for large terms, broken in a similar fashion to automatic
printing.

See also
string_of_thm, string_of_type.

string_of_type

string_of_type : hol_type -> string

Synopsis
Converts a HOL type to a string representation.

Description
The call string_of_type ty produces a textual representation of the type ty as a string, similar
to what is printed automatically at the toplevel, though without the surrounding quotes and
colon.

606 Chapter 1. Pre-defined ML Identifiers

Failure
Never fails.

Example

string_of_type bool_ty;;
val it : string = "bool"

See also
string_of_term, string_of_thm.

strip_abs

strip_abs : term -> term list * term

Synopsis
Iteratively breaks apart abstractions.

Description
strip_abs ‘\x1 ... xn. t‘ returns ([‘x1‘;...;‘xn‘],‘t‘). Note that

strip_abs(list_mk_abs([‘x1‘;...;‘xn‘],‘t‘))

will not return ([‘x1‘;...;‘xn‘],‘t‘) if t is an abstraction.

Failure
Never fails.

Example

strip_abs ‘\x y z. x /\ y /\ z‘;;
val it : term list * term = ([‘x‘; ‘y‘; ‘z‘], ‘x /\ y /\ z‘)

See also
list_mk_abs, dest_abs.

STRIP_ASSUME_TAC

STRIP_ASSUME_TAC : thm_tactic

STRIP ASSUME TAC 607

Synopsis

Splits a theorem into a list of theorems and then adds them to the assumptions.

Description

Given a theorem th and a goal (A,t), STRIP_ASSUME_TAC th splits th into a list of theorems.
This is done by recursively breaking conjunctions into separate conjuncts, cases-splitting dis-
junctions, and eliminating existential quantifiers by choosing arbitrary variables. Schematically,
the following rules are applied:

A ?- t
====================== STRIP_ASSUME_TAC (A’ |- v1 /\ ... /\ vn)
A u {v1,...,vn} ?- t

A ?- t
================================= STRIP_ASSUME_TAC (A’ |- v1 \/ ... \/ vn)
A u {v1} ?- t ... A u {vn} ?- t

A ?- t
==================== STRIP_ASSUME_TAC (A’ |- ?x.v)
A u {v[x’/x]} ?- t

where x’ is a variant of x.

If the conclusion of th is not a conjunction, a disjunction or an existentially quantified term,
the whole theorem th is added to the assumptions.

As assumptions are generated, they are examined to see if they solve the goal (either by being
alpha-equivalent to the conclusion of the goal or by deriving a contradiction).

The assumptions of the theorem being split are not added to the assumptions of the goal(s),
but they are recorded in the proof. This means that if A’ is not a subset of the assumptions A
of the goal (up to alpha-conversion), STRIP_ASSUME_TAC (A’ |- v) results in an invalid tactic.

Failure

Never fails.

608 Chapter 1. Pre-defined ML Identifiers

Example
When solving the goal

g ‘m = 0 + m‘;;

assuming the clauses for addition with STRIP_ASSUME_TAC ADD_CLAUSES results in the goal

e(STRIP_ASSUME_TAC ADD_CLAUSES);;
val it : goalstack = 1 subgoal (1 total)

0 [‘!n. 0 + n = n‘]
1 [‘!m. m + 0 = m‘]
2 [‘!m n. SUC m + n = SUC (m + n)‘]
3 [‘!m n. m + SUC n = SUC (m + n)‘]

‘m = 0 + m‘

while the same tactic directly solves the goal

?- !m. 0 + m = m

Uses
STRIP_ASSUME_TAC is used when applying a previously proved theorem to solve a goal, or when
enriching its assumptions so that rewriting with assumptions and other operations involving
assumptions have more to work with.

See also
ASSUME_TAC, CHOOSE_TAC, CHOOSE_THEN, CONJUNCTS_THEN, DISJ_CASES_TAC,
DISJ_CASES_THEN.

strip_comb

strip_comb : term -> term * term list

Synopsis
Iteratively breaks apart combinations (function applications).

Description
strip_comb ‘t t1 ... tn‘ returns (‘t‘,[‘t1‘;...;‘tn‘]). Note that

strip_comb(list_mk_comb(‘t‘,[‘t1‘;...;‘tn‘]))

will not return (‘t‘,[‘t1‘;...;‘tn‘]) if t is a combination.

strip exists 609

Failure
Never fails.

Example

strip_comb ‘x /\ y‘;;
val it : term * term list = (‘(/\)‘, [‘x‘; ‘y‘])

strip_comb ‘T‘;;
val it : term * term list = (‘T‘, [])

See also
dest_comb, list_mk_comb, splitlist, striplist.

strip_exists

strip_exists : term -> term list * term

Synopsis
Iteratively breaks apart existential quantifications.

Description
strip_exists ‘?x1 ... xn. t‘ returns ([‘x1‘;...;‘xn‘],‘t‘). Note that

strip_exists(list_mk_exists([‘x1‘;...;‘xn‘],‘t‘))

will not return ([‘x1‘;...;‘xn‘],‘t‘) if t is an existential quantification.

Failure
Never fails.

See also
dest_exists, list_mk_exists.

strip_forall

strip_forall : term -> term list * term

Synopsis
Iteratively breaks apart universal quantifications.

610 Chapter 1. Pre-defined ML Identifiers

Description
strip_forall ‘!x1 ... xn. t‘ returns ([‘x1‘;...;‘xn‘],‘t‘). Note that

strip_forall(list_mk_forall([‘x1‘;...;‘xn‘],‘t‘))

will not return ([‘x1‘;...;‘xn‘],‘t‘) if t is a universal quantification.

Failure
Never fails.

See also
dest_forall, list_mk_forall.

strip_gabs

strip_gabs : term -> term list * term

Synopsis
Breaks apart an iterated generalized or basic abstraction.

Description
If the term t is iteratively constructed by basic or generalized abstractions, i.e. is of the form
\vs1. \vs2. ... \vsn. t, then the call strip_gabs t returns a pair of the list of varstructs
and the term [vs1; vs2; ...; vsn],t.

Failure
Never fails, though the list of varstructs will be empty if the initial term is no sort of abstraction.

Example

strip_gabs ‘\(a,b) c ((d,e),f). (a - b) + c + (d - e) * f‘;;
val it : term list * term =
([‘a,b‘; ‘c‘; ‘(d,e),f‘], ‘a - b + c + (d - e) * f‘)

See also
dest_gabs, is_gabs, mk_gabs.

STRIP_GOAL_THEN

STRIP_GOAL_THEN : thm_tactic -> tactic

STRIP GOAL THEN 611

Synopsis
Splits a goal by eliminating one outermost connective, applying the given theorem-tactic to the
antecedents of implications.

Description
Given a theorem-tactic ttac and a goal (A,t), STRIP_GOAL_THEN removes one outermost oc-
currence of one of the connectives !, ==>, ~ or /\ from the conclusion of the goal t. If t is a
universally quantified term, then STRIP_GOAL_THEN strips off the quantifier:

A ?- !x.u
============== STRIP_GOAL_THEN ttac
A ?- u[x’/x]

where x’ is a primed variant that does not appear free in the assumptions A. If t is a conjunction,
then STRIP_GOAL_THEN simply splits the conjunction into two subgoals:

A ?- v /\ w
================= STRIP_GOAL_THEN ttac
A ?- v A ?- w

If t is an implication "u ==> v" and if:

A ?- v
=============== ttac (u |- u)

A’ ?- v’

then:

A ?- u ==> v
==================== STRIP_GOAL_THEN ttac

A’ ?- v’

Finally, a negation ~t is treated as the implication t ==> F.

Failure
STRIP_GOAL_THEN ttac (A,t) fails if t is not a universally quantified term, an implication, a
negation or a conjunction. Failure also occurs if the application of ttac fails, after stripping the
goal.

612 Chapter 1. Pre-defined ML Identifiers

Example
When solving the goal

g ‘n = 1 ==> n * n = n‘;;
Warning: Free variables in goal: n
val it : goalstack = 1 subgoal (1 total)

‘n = 1 ==> n * n = n‘

a possible initial step is to apply

e(STRIP_GOAL_THEN SUBST1_TAC);;
val it : goalstack = 1 subgoal (1 total)

‘1 * 1 = 1‘

which is immediate by ARITH_TAC, for example.

Uses
STRIP_GOAL_THEN is used when manipulating intermediate results (obtained by stripping outer
connectives from a goal) directly, rather than as assumptions.

See also
CONJ_TAC, DISCH_THEN, GEN_TAC, STRIP_ASSUME_TAC, STRIP_TAC.

striplist

striplist : (’a -> ’a * ’a) -> ’a -> ’a list

Synopsis
Applies a binary destructor repeatedly, flattening the construction tree into a list.

Description
If a destructor function d inverts a binary constructor f, for example dest_comb for mk_comb,
and fails when applied to components xi, then when applied to any object built up repeatedly
by f applied to base values xi returns the list [x1;...;xn].

Failure
Never fails.

Example

striplist dest_conj ‘(a /\ (b /\ ((c /\ d) /\ e)) /\ f) /\ g‘;;
val it : term list = [‘a‘; ‘b‘; ‘c‘; ‘d‘; ‘e‘; ‘f‘; ‘g‘]

See also
splitlist, rev_splitlist, end_itlist.

strip ncomb 613

strip_ncomb

strip_ncomb : int -> term -> term * term list

Synopsis
Strip away a given number of arguments from a combination.

Description
Given a number n and a combination term ‘f a1 ... an‘, the function strip_ncomb returns
the result of stripping away exactly n arguments: the pair ‘f‘,[‘a1‘;...;‘an‘]. Note that
exactly n arguments are stripped even if f is a combination.

Failure
Fails if there are not n arguments to strip off.

Example
Note how the behaviour is more limited compared with simple strip_comb:

strip_ncomb 2 ‘f u v x y z‘;;
Warning: inventing type variables
val it : term * term list = (‘f u v x‘, [‘y‘; ‘z‘])

strip_comb ‘f u v x y z‘;;
Warning: inventing type variables
val it : term * term list = (‘f‘, [‘u‘; ‘v‘; ‘x‘; ‘y‘; ‘z‘])

Uses
Delicate term decompositions.

See also
strip_comb.

STRIP_TAC

STRIP_TAC : tactic

Synopsis
Splits a goal by eliminating one outermost connective.

614 Chapter 1. Pre-defined ML Identifiers

Description
Given a goal (A,t), STRIP_TAC removes one outermost occurrence of one of the connectives
!, ==>, ~ or /\ from the conclusion of the goal t. If t is a universally quantified term, then
STRIP_TAC strips off the quantifier:

A ?- !x.u
============== STRIP_TAC
A ?- u[x’/x]

where x’ is a primed variant that does not appear free in the assumptions A. If t is a conjunction,
then STRIP_TAC simply splits the conjunction into two subgoals:

A ?- v /\ w
================= STRIP_TAC
A ?- v A ?- w

If t is an implication, STRIP_TAC moves the antecedent into the assumptions, stripping conjunc-
tions, disjunctions and existential quantifiers according to the following rules:

A ?- v1 /\ ... /\ vn ==> v A ?- v1 \/ ... \/ vn ==> v
============================ =================================

A u {v1,...,vn} ?- v A u {v1} ?- v ... A u {vn} ?- v

A ?- ?x.w ==> v
====================
A u {w[x’/x]} ?- v

where x’ is a primed variant of x that does not appear free in A. Finally, a negation ~t is treated
as the implication t ==> F.

Failure
STRIP_TAC (A,t) fails if t is not a universally quantified term, an implication, a negation or a
conjunction.

Example
Starting with the goal:

g ‘!m n. m <= n /\ n <= m ==> m = n‘;;

the repeated application of STRIP_TAC strips off the universal quantifiers, breaks apart the

STRIP THM THEN 615

antecedent and adds the conjuncts to the hypotheses:

e(REPEAT STRIP_TAC);;
val it : goalstack = 1 subgoal (1 total)

0 [‘m <= n‘]
1 [‘n <= m‘]

‘m = n‘

Uses
When trying to solve a goal, often the best thing to do first is REPEAT STRIP_TAC to split the
goal up into manageable pieces.

See also
CONJ_TAC, DISCH_TAC, DISCH_THEN, GEN_TAC, STRIP_ASSUME_TAC, STRIP_GOAL_THEN.

STRIP_THM_THEN

STRIP_THM_THEN : thm_tactical

Synopsis
STRIP_THM_THEN applies the given theorem-tactic using the result of stripping off one outer
connective from the given theorem.

Description
Given a theorem-tactic ttac, a theorem th whose conclusion is a conjunction, a disjunction or
an existentially quantified term, and a goal (A,t), STRIP_THM_THEN ttac th first strips apart
the conclusion of th, next applies ttac to the theorem(s) resulting from the stripping and then
applies the resulting tactic to the goal.

In particular, when stripping a conjunctive theorem A’ |- u /\ v, the tactic

ttac(u |- u) THEN ttac(v |- v)

resulting from applying ttac to the conjuncts, is applied to the goal. When stripping a dis-
junctive theorem A’ |- u \/ v, the tactics resulting from applying ttac to the disjuncts, are

616 Chapter 1. Pre-defined ML Identifiers

applied to split the goal into two cases. That is, if

A ?- t A ?- t
========= ttac (u |- u) and ========= ttac (v |- v)
A ?- t1 A ?- t2

then:

A ?- t
================== STRIP_THM_THEN ttac (A’ |- u \/ v)
A ?- t1 A ?- t2

When stripping an existentially quantified theorem A’ |- ?x.u, the tactic ttac(u |- u), re-
sulting from applying ttac to the body of the existential quantification, is applied to the goal.
That is, if:

A ?- t
========= ttac (u |- u)
A ?- t1

then:

A ?- t
============= STRIP_THM_THEN ttac (A’ |- ?x. u)

A ?- t1

The assumptions of the theorem being split are not added to the assumptions of the goal(s)
but are recorded in the proof. If A’ is not a subset of the assumptions A of the goal (up to
alpha-conversion), STRIP_THM_THEN ttac th results in an invalid tactic.

Failure
STRIP_THM_THEN ttac th fails if the conclusion of th is not a conjunction, a disjunction or an
existentially quantified term. Failure also occurs if the application of ttac fails, after stripping
the outer connective from the conclusion of th.

Uses
STRIP_THM_THEN is used enrich the assumptions of a goal with a stripped version of a previously-
proved theorem.

See also
CHOOSE_THEN, CONJUNCTS_THEN, DISJ_CASES_THEN, STRIP_ASSUME_TAC.

STRUCT_CASES_TAC

STRUCT_CASES_TAC : thm_tactic

STRUCT CASES TAC 617

Synopsis
Performs very general structural case analysis.

Description
When it is applied to a theorem of the form:

th = A’ |- ?y11...y1m. x = t1 /\ (B11 /\ ... /\ B1k) \/ ... \/
?yn1...ynp. x = tn /\ (Bn1 /\ ... /\ Bnp)

in which there may be no existential quantifiers where a ‘vector’ of them is shown above,
STRUCT_CASES_TAC th splits a goal A ?- s into n subgoals as follows:

A ?- s
===
A u {B11,...,B1k} ?- s[t1/x] ... A u {Bn1,...,Bnp} ?- s[tn/x]

that is, performs a case split over the possible constructions (the ti) of a term, providing as
assumptions the given constraints, having split conjoined constraints into separate assumptions.
Note that unless A’ is a subset of A, this is an invalid tactic.

Failure
Fails unless the theorem has the above form, namely a conjunction of (possibly multiply exis-
tentially quantified) terms which assert the equality of the same variable x and the given terms.

Example
Suppose we have the goal:

g ‘~(l:(A)list = []) ==> LENGTH l > 0‘;;

then we can get rid of the universal quantifier from the inbuilt list theorem list_CASES:

list_CASES = !l. l = [] \/ (?h t. l = CONS h t)

and then use STRUCT_CASES_TAC. This amounts to applying the following tactic:

e(STRUCT_CASES_TAC (SPEC_ALL list_CASES));;
val it : goalstack = 2 subgoals (2 total)

‘~(CONS h t = []) ==> LENGTH (CONS h t) > 0‘

‘~([] = []) ==> LENGTH [] > 0‘

and both of these are solvable by REWRITE_TAC[GT; LENGTH; LT_0].

Uses
Generating a case split from the axioms specifying a structure.

See also
ASM_CASES_TAC, BOOL_CASES_TAC, COND_CASES_TAC, DISJ_CASES_TAC.

618 Chapter 1. Pre-defined ML Identifiers

SUB_CONV

SUB_CONV : conv -> conv

Synopsis
Applies a conversion to the top-level subterms of a term.

Description
For any conversion c, the function returned by SUB_CONV c is a conversion that applies c to all
the top-level subterms of a term. If the conversion c maps t to |- t = t’, then SUB_CONV c
maps an abstraction ‘\x. t‘ to the theorem:

|- (\x. t) = (\x. t’)

That is, SUB_CONV c ‘\x. t‘ applies c to the body of the abstraction ‘\x. t‘. If c is a
conversion that maps ‘t1‘ to the theorem |- t1 = t1’ and ‘t2‘ to the theorem |- t2 = t2’,
then the conversion SUB_CONV c maps an application ‘t1 t2‘ to the theorem:

|- (t1 t2) = (t1’ t2’)

That is, SUB_CONV c ‘t1 t2‘ applies c to the both the operator t1 and the operand t2 of the
application ‘t1 t2‘. Finally, for any conversion c, the function returned by SUB_CONV c acts
as the identity conversion on variables and constants. That is, if ‘t‘ is a variable or constant,
then SUB_CONV c ‘t‘ returns |- t = t.

Failure
SUB_CONV c tm fails if tm is an abstraction ‘\x. t‘ and the conversion c fails when applied to
t, or if tm is an application ‘t1 t2‘ and the conversion c fails when applied to either t1 or
t2. The function returned by SUB_CONV c may also fail if the ML function c is not, in fact, a
conversion (i.e. a function that maps a term t to a theorem |- t = t’).

See also
ABS_CONV, COMB_CONV, RAND_CONV, RATOR_CONV.

SUBGOAL_TAC

SUBGOAL_TAC : string -> term -> tactic list -> tactic

Synopsis
Encloses the sub-proof of a named lemma.

SUBGOAL THEN 619

Description
The call SUBGOAL_TAC "name" ‘t‘ [tac] introduces a new subgoal t with the current assump-
tions, runs on that subgoal the tactic tac, and attaches the resuly as a new hypothesis called
name in the current subgoal. The [tac] argument is always a one-element list, for stylistic
reasons. If tac does not prove the goal, any resulting subgoals from it will appear first.

Failure
Fails if t is not Boolean or if tac fails on it.

Example
If we want to prove

g ‘(n MOD 2) IN {0,1}‘;;

we might start by establishing a lemma:

e(SUBGOAL_TAC "ml2" ‘n MOD 2 < 2‘ [SIMP_TAC[DIVISION; ARITH]]);;
val it : goalstack = 1 subgoal (1 total)

0 [‘n MOD 2 < 2‘] (ml2)

‘n MOD 2 IN {0, 1}‘

after which, for example, we could finish things with

e(REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
POP_ASSUM MP_TAC THEN ARITH_TAC);;

val it : goalstack = No subgoals

Uses
Structuring proofs via a sequence of simple lemmas.

See also
SUBGOAL_THEN.

SUBGOAL_THEN

SUBGOAL_THEN : term -> thm_tactic -> tactic

Synopsis
Introduces a lemma as a new subgoal.

620 Chapter 1. Pre-defined ML Identifiers

Description
The user proposes a lemma and is then invited to prove it under the current assumptions. The
lemma is then used with the thm_tactic to apply to the goal. That is, if

A1 ?- t1
========== ttac (t |- t)
A2 ?- t2

then

A1 ?- t1
==================== SUBGOAL_THEN ‘t‘ ttac
A1 ?- t A2 ?- t2

In the quite common special case where ttac is ASSUME_TAC, the net behaviour is simply to
present the user with two subgoals, one in which the lemma is to be proved and one in which it
may be assumed:

A1 ?- t1
============================ SUBGOAL_THEN ‘t‘ ASSUME_TAC
A1 ?- t A1 u {t} ?- t2

Failure
SUBGOAL_THEN will fail if an attempt is made to use a non-boolean term as a lemma.

Uses
Introducing lemmas into the same basic proof script without separately binding them to names.
This is often a good structuring technique for large tactic proofs, where separate lemmas might
look artificial because of all the ad-hoc context in which they occur.

Example
Consider the proof of the Knaster-Tarski fixpoint theorem, to be found in Examples/card.ml.
This (in its set-lattice context) states that every monotonic function has a fixpoint. After setting
the initial goal:

g ‘!f. (!s t. s SUBSET t ==> f(s) SUBSET f(t)) ==> ?s:A->bool. f(s) = s‘;;

we start off the proof, already proceeding via a series of lemmas with SUBGOAL_THEN, though we

SUBGOAL THEN 621

will focus our attention on a later one:

e(REPEAT STRIP_TAC THEN MAP_EVERY ABBREV_TAC
[‘Y = {b:A->bool | f(b) SUBSET b}‘; ‘a:A->bool = INTERS Y‘] THEN

SUBGOAL_THEN ‘!b:A->bool. b IN Y <=> f(b) SUBSET b‘ ASSUME_TAC THENL
[EXPAND_TAC "Y" THEN REWRITE_TAC[IN_ELIM_THM]; ALL_TAC] THEN
SUBGOAL_THEN ‘!b:A->bool. b IN Y ==> f(a:A->bool) SUBSET b‘
ASSUME_TAC THENL
[ASM_MESON_TAC[SUBSET_TRANS; IN_INTERS; SUBSET]; ALL_TAC]);;

...
val it : goalstack = 1 subgoal (1 total)

0 [‘!s t. s SUBSET t ==> f s SUBSET f t‘]
1 [‘{b | f b SUBSET b} = Y‘]
2 [‘INTERS Y = a‘]
3 [‘!b. b IN Y <=> f b SUBSET b‘]
4 [‘!b. b IN Y ==> f a SUBSET b‘]

‘?s. f s = s‘

Now we select a particularly interesting lemma:

e(SUBGOAL_THEN ‘f(a:A->bool) SUBSET a‘ ASSUME_TAC);;
val it : goalstack = 2 subgoals (2 total)

0 [‘!s t. s SUBSET t ==> f s SUBSET f t‘]
1 [‘{b | f b SUBSET b} = Y‘]
2 [‘INTERS Y = a‘]
3 [‘!b. b IN Y <=> f b SUBSET b‘]
4 [‘!b. b IN Y ==> f a SUBSET b‘]
5 [‘f a SUBSET a‘]

‘?s. f s = s‘

0 [‘!s t. s SUBSET t ==> f s SUBSET f t‘]
1 [‘{b | f b SUBSET b} = Y‘]
2 [‘INTERS Y = a‘]
3 [‘!b. b IN Y <=> f b SUBSET b‘]
4 [‘!b. b IN Y ==> f a SUBSET b‘]

‘f a SUBSET a‘

The lemma is relatively easy to prove by giving MESON_TAC the right lemmas:

e(ASM_MESON_TAC[IN_INTERS; SUBSET]);;
...
val it : goalstack = 1 subgoal (1 total)

0 [‘!s t. s SUBSET t ==> f s SUBSET f t‘]
1 [‘{b | f b SUBSET b} = Y‘]
2 [‘INTERS Y = a‘]
3 [‘!b. b IN Y <=> f b SUBSET b‘]
4 [‘!b. b IN Y ==> f a SUBSET b‘]
5 [‘f a SUBSET a‘]

‘?s. f s = s‘

and the remaining subgoal is also quite easy for MESON_TAC:

e(ASM_MESON_TAC[SUBSET_ANTISYM; IN_INTERS]);;
...
val it : goalstack = No subgoals

On the other hand, without splitting off the last lemmas, MESON_TAC finds the automated step

622 Chapter 1. Pre-defined ML Identifiers

rather large. If you step back three steps with

b(); b(); b();;

then although the following works, it takes half a minute:

e(ASM_MESON_TAC[IN_INTERS; SUBSET; SUBSET_ANTISYM]);;
....
val it : goalstack = No subgoals

See also
MATCH_MP_TAC, MP_TAC, SUBGOAL_TAC.

SUBS_CONV

SUBS_CONV : thm list -> term -> thm

Synopsis
Substitution conversion.

Description
The call SUBS_CONV [th1; ...; th2] t, where the theorems in the list are all equations, will
return the theorem |- t = t’ where t’ results from substituting any terms that are the same
as the left-hand side of some thi with the corresponding right-hand side. Note that no matching
or instantiation is done, in contrast to rewriting conversions.

Failure
May fail if the theorems are not equational.

Example
Here we substitute with a simplification theorem, but only instances that are the same as the
LHS:

SUBS_CONV[ARITH_RULE ‘x + 0 = x‘] ‘(x + 0) + (y + 0) + (x + 0) + (0 + 0)‘;;
val it : thm =
|- (x + 0) + (y + 0) + (x + 0) + 0 + 0 = x + (y + 0) + x + 0 + 0

By contrast, the analogous rewriting conversion will treat the variable x as universally quantified
and replace more subterms by matching the LHS against them:

REWRITE_CONV[ARITH_RULE ‘x + 0 = x‘]
‘(x + 0) + (y + 0) + (x + 0) + (0 + 0)‘;;

val it : thm = |- (x + 0) + (y + 0) + (x + 0) + 0 + 0 = x + y + x

See also
GEN_REWRITE_CONV, REWR_CONV, REWRITE_CONV, PURE_REWRITE_CONV.

SUBS 623

SUBS

SUBS : thm list -> thm -> thm

Synopsis
Makes simple term substitutions in a theorem using a given list of theorems.

Description
Term substitution in HOL is performed by replacing free subterms according to the transforma-
tions specified by a list of equational theorems. Given a list of theorems A1|-t1=v1,...,An|-tn=vn
and a theorem A|-t, SUBS simultaneously replaces each free occurrence of ti in t with vi:

A1|-t1=v1 ... An|-tn=vn A|-t
--- SUBS[A1|-t1=v1;...;An|-tn=vn]
A1 u ... u An u A |- t[v1,...,vn/t1,...,tn] (A|-t)

No matching is involved; the occurrence of each ti being substituted for must be a free in t
(see SUBST_MATCH). An occurrence which is not free can be substituted by using rewriting rules
such as REWRITE_RULE, PURE_REWRITE_RULE and ONCE_REWRITE_RULE.

Failure
SUBS [th1;...;thn] (A|-t) fails if the conclusion of each theorem in the list is not an equation.
No change is made to the theorem A |- t if no occurrence of any left-hand side of the supplied
equations appears in t.

Example
Substitutions are made with the theorems

let thm1 = SPEC_ALL ADD_SYM
and thm2 = SPEC_ALL(CONJUNCT1 ADD_CLAUSES);;
val thm1 : thm = |- m + n = n + m
val thm2 : thm = |- 0 + n = n

depending on the occurrence of free subterms

SUBS [thm1; thm2] (ASSUME ‘(n + 0) + (0 + m) = m + n‘);;
val it : thm = (n + 0) + 0 + m = m + n |- (n + 0) + 0 + m = n + m

SUBS [thm1; thm2] (ASSUME ‘!n. (n + 0) + (0 + m) = m + n‘);;
val it : thm = !n. (n + 0) + 0 + m = m + n |- !n. (n + 0) + 0 + m = m + n

Uses
SUBS can sometimes be used when rewriting (for example, with REWRITE_RULE) would diverge
and term instantiation is not needed. Moreover, applying the substitution rules is often much
faster than using the rewriting rules.

624 Chapter 1. Pre-defined ML Identifiers

See also
ONCE_REWRITE_RULE, PURE_REWRITE_RULE, REWRITE_RULE, SUBS_CONV.

subset

subset : ’a list -> ’a list -> bool

Synopsis
Tests if one list is a subset of another.

Description
The call subset l1 l2 returns true if every element of l1 also occurs in l2, regardless of
whether an element appears once or more than once in each list. So when l1 and l2 are
regarded as sets, this is a subset test.

Failure
Never fails.

Example

subset [1;1;2;2] [1;2;3];;
val it : bool = true

See also
insert, intersect, set_eq, setify, subtract, union.

SUBST1_TAC

SUBST1_TAC : thm_tactic

Synopsis
Makes a simple term substitution in a goal using a single equational theorem.

Description
Given a theorem A’ |- u = v and a goal (A ?- t), the tactic SUBST1_TAC (A’ |- u = v)
rewrites the term t into t[v/u], by substituting v for each free occurrence of u in t:

A ?- t
============= SUBST1_TAC (A’ |- u = v)
A ?- t[v/u]

The assumptions of the theorem used to substitute with are not added to the assumptions of the
goal but are recorded in the proof. If A’ is not a subset of the assumptions A of the goal (up to

SUBST ALL TAC 625

alpha-conversion), then SUBST1_TAC (A’ |- u = v) results in an invalid tactic. SUBST1_TAC
automatically renames bound variables to prevent free variables in v becoming bound after
substitution.

Failure
SUBST1_TAC th (A ?- t) fails if the conclusion of th is not an equation. No change is made
to the goal if no free occurrence of the left-hand side of th appears in t.

Example
Suppose we start with the goal:

g ‘!p x y. 1 = x /\ p(1) ==> p(x)‘;;

We could, of course, solve it immediately with MESON_TAC[]. However, for a more “manual”
proof, we might do:

e(REPEAT STRIP_TAC);;
val it : goalstack = 1 subgoal (1 total)

0 [‘x = 1‘]
1 [‘p 1‘]

‘p x‘

and then use SUBST1_TAC to substitute:

e(FIRST_X_ASSUM(SUBST1_TAC o SYM));;
val it : goalstack = 1 subgoal (1 total)

0 [‘p 1‘]

‘p 1‘

after which just ASM_REWRITE_TAC[] will finish.

Uses
SUBST1_TAC can be used when rewriting with a single theorem using tactics such as REWRITE_TAC
is too expensive or would diverge.

See also
ONCE_REWRITE_TAC, PURE_REWRITE_TAC, REWRITE_TAC, SUBST_ALL_TAC.

SUBST_ALL_TAC

SUBST_ALL_TAC : thm -> tactic

626 Chapter 1. Pre-defined ML Identifiers

Synopsis

Substitutes using a single equation in both the assumptions and conclusion of a goal.

Description

SUBST_ALL_TAC breaches the style of natural deduction, where the assumptions are kept fixed.
Given a theorem A |- u = v and a goal ([A1;...;An] ?- t), SUBST_ALL_TAC (A |- u = v)
transforms the assumptions A1,...,An and the term t into A1[v/u],...,An[v/u] and t[v/u] re-
spectively, by substituting v for each free occurrence of u in both the assumptions and the
conclusion of the goal.

{A1,...,An} ?- t
================================= SUBST_ALL_TAC (A |- u = v)
{A1[v/u],...,An[v/u]} ?- t[v/u]

The assumptions of the theorem used to substitute with are not added to the assumptions of
the goal, but they are recorded in the proof. If A is not a subset of the assumptions of the goal
(up to alpha-conversion), then SUBST_ALL_TAC (A |- u = v) results in an invalid tactic.

SUBST_ALL_TAC automatically renames bound variables to prevent free variables in v becoming
bound after substitution.

Failure

SUBST_ALL_TAC th (A ?- t) fails if the conclusion of th is not an equation. No change is made
to the goal if no occurrence of the left-hand side of th appears free in (A ?- t).

subst 627

Example
Suppose we start with the goal:

g ‘!p x y. 1 = x /\ p(x - 1) ==> p(x EXP 2 - x)‘;;

and, as often, begin by breaking it down routinely:

e(REPEAT STRIP_TAC);;
val it : goalstack = 1 subgoal (1 total)

0 [‘1 = x‘]
1 [‘p (x - 1)‘]

‘p (x EXP 2 - x)‘

Now we can use SUBST_ALL_TAC to substitute 1 for x in both assumptions and conclusion:

e(FIRST_X_ASSUM(SUBST_ALL_TAC o SYM));;
val it : goalstack = 1 subgoal (1 total)

0 [‘p (1 - 1)‘]

‘p (1 EXP 2 - 1)‘

One can finish things off in various ways, e.g.

e(POP_ASSUM MP_TAC THEN CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[]);;

See also
ONCE_REWRITE_TAC, PURE_REWRITE_TAC, REWRITE_TAC, SUBST1_TAC, SUBST_TAC.

subst

subst : (term * term) list -> term -> term

Synopsis
Substitute terms for other terms inside a term.

Description
The call subst [t1’,t1; ...; tn’,tn] t systmatically replaces free instances of each term
ti inside t with the corresponding ti’ from the instantiation list. (A subterm is considered
free if none of its free variables are bound by its context.) Bound variables will be renamed if
necessary to avoid capture.

628 Chapter 1. Pre-defined ML Identifiers

Failure
Fails if any of the pairs ti’,ti in the instantiation list has ti and ti’ with different types.
Multiple instances of the same ti in the list are not trapped, but only the first one will be used
consistently.

Example
Here is a relatively simple example

subst [‘x + 1‘,‘1 + 2‘] ‘(1 + 2) + 1 + 2 + 3‘;;
val it : term = ‘(x + 1) + 1 + 2 + 3‘

and here is a more complex instance where renaming of bound variables is needed:

subst [‘x:num‘,‘1‘] ‘!x. x > 0 <=> x >= 1‘;;
val it : term = ‘!x’. x’ > 0 <=> x’ >= x‘

Comments
This is the most general term substitution function, but if all the ti are variables, the vsubst
function is more efficient.

See also
inst, vsubst.

SUBST_VAR_TAC

SUBST_VAR_TAC : thm -> tactic

Synopsis
Use an equation to substitute “safely” in goal.

Description
When applied to a theorem with an equational hypothesis A |- s = t, SUBST_ VAR_TAC has
no effect if s and t are alpha-equivalent. Otherwise, if either side of the equation is a variable
not free in the other side, or a constant, and the conclusion contains no free variables not free
in some assumption of the goal, then the theorem is used to replace that constant or variable
throughout the goal, assumptions and conclusions. If none of these cases apply, or the conclusion
is not even an equation, the application fails.

Failure
Fails if applied to a non-equation for which none of the cases above hold.

Uses
By some sequence like REPEAT(FIRST_X_ASSUM SUBST_VAR_TAC) one can use all possible as-
sumptions to substitute “safely”, in the sense that it will not change the provability status of
the goal. This is sometimes a useful prelude to other automatic techniques.

subtract 629

Comments

See also
SUBST1_TAC, SUBST_ALL_TAC.

subtract

subtract : ’a list -> ’a list -> ’a list

Synopsis
Computes the set-theoretic difference of two ‘sets’.

Description
subtract l1 l2 returns a list consisting of those elements of l1 that do not appear in l2. If
both lists are initially free of repetitions, this can be considered a set difference operation.

Failure
Never fails.

Example

subtract [1;2;3] [3;5;4;1];;
val it : int list = [2]
subtract [1;2;4;1] [4;5];;
val it : int list = [1; 2; 1]

See also
setify, set_equal, union, intersect.

subtract’

subtract’ : (’a -> ’a -> bool) -> ’a list -> ’a list -> ’a list

Synopsis
Subtraction of sets modulo an equivalence.

Description
The call subtract’ r l1 l2 removes from the list l1 all elements x such that there is an x’ in
l2 with r x x’. If l1 and l2 were free of equivalents under r, the resulting list will be too, so

630 Chapter 1. Pre-defined ML Identifiers

this is a set operation modulo an equivalence. The function subtract is the special case where
the relation is just equality.

Failure
Fails only if the function r fails.

Example

subtract’ (fun x y -> abs(x) = abs(y)) [-1; 2; 1] [-2; -3; 4; -4];;
val it : int list = [-1; 1]

Uses
Maintaining sets modulo an equivalence such as alpha-equivalence.

See also
insert’, mem’, union, union’, unions’.

SYM_CONV

SYM_CONV : term -> thm

Synopsis
Interchanges the left and right-hand sides of an equation.

Description
When applied to an equational term t1 = t2, the conversion SYM_CONV returns the theorem:

|- t1 = t2 <=> t2 = t1

Failure
Fails if applied to a term that is not an equation.

Example

SYM_CONV ‘2 = x‘;;
val it : thm = |- 2 = x <=> x = 2

See also
SYM.

SYM 631

SYM

SYM : thm -> thm

Synopsis
Swaps left-hand and right-hand sides of an equation.

Description
When applied to a theorem A |- t1 = t2, the inference rule SYM returns A |- t2 = t1.

A |- t1 = t2
-------------- SYM
A |- t2 = t1

Failure
Fails unless the theorem is equational.

Example

NUM_REDUCE_CONV ‘12 * 12‘;;
val it : thm = |- 12 * 12 = 144

SYM it;;
val it : thm = |- 144 = 12 * 12

See also
GSYM, REFL, TRANS.

TAC_PROOF

TAC_PROOF : goal * tactic -> thm

Synopsis
Attempts to prove a goal using a given tactic.

Description
When applied to a goal-tactic pair (A ?- t,tac), the TAC_PROOF function attempts to prove the
goal A ?- t, using the tactic tac. If it succeeds, it returns the theorem A’ |- t corresponding
to the goal, where the assumption list A’ may be a proper superset of A unless the tactic is valid;
there is no inbuilt validity checking.

632 Chapter 1. Pre-defined ML Identifiers

Failure
Fails unless the goal has hypotheses and conclusions all of type bool, and the tactic can solve
the goal.

See also
prove, VALID.

TAUT

TAUT : term -> thm

Synopsis
Proves a propositional tautology.

Description
The call TAUT ‘t‘ where t is a propositional tautology, will prove it automatically and return
|- t. A propositional tautology is a formula built up using the logical connectives ‘~’, ‘/\’,
‘\/’, ‘==>’ and ‘<=>’ from terms that can be considered “atomic” that is logically valid whatever
truth-values are assigned to the atomic formulas.

Failure
Fails if t is not a propositional tautology.

Example
Here is a simple and potentially useful tautology:

TAUT ‘a \/ b ==> c <=> (a ==> c) /\ (b ==> c)‘;;
val it : thm = |- a \/ b ==> c <=> (a ==> c) /\ (b ==> c)

and here is a more surprising one:

TAUT ‘(p ==> q) \/ (q ==> p)‘;;
val it : thm = |- (p ==> q) \/ (q ==> p)

Note that the “atomic” formulas need not just be variables:

TAUT ‘(x > 2 ==> y > 3) \/ (y < 3 ==> x > 2)‘;;
val it : thm = |- (x > 2 ==> y > 3) \/ (y < 3 ==> x > 2)

Uses
Solving a tautologous goal completely by CONV_TAC TAUT, or generating a tautology to massage
the goal into a more convenient equivalent form by REWRITE_TAC[TAUT ‘...‘] or ONCE_REWRITE_TAC[TAUT ‘...‘].

temp path 633

Comments
The algorithm used is quite naive, and not efficient on large formulas. For more general first-
order reasoning, with quantifier instantiation, use MESON-based methods.

See also
BOOL_CASES_TAC, ITAUT, ITAUT_TAC, MESON, MESON_TAC.

temp_path

temp_path : string ref

Synopsis
Directory in which to create temporary files.

Description
Some HOL Light derived rules in the libraries (none in the core system) need to create temporary
files. This is the directory in which they do so.

Failure
Not applicable.

Example
On my laptop:

!temp_path;;
val it : string = "/tmp"

See also
hol_dir.

term_match

term_match : term list -> term -> term -> instantiation

Synopsis
Match one term against another.

Description
The call term_match lcs t t’ attempts to find an instantiation for free variables in t, not
permitting assignment of ‘local constant’ variables in the list lcs, so that it is alpha-equivalent

634 Chapter 1. Pre-defined ML Identifiers

to t’. If it succeeds, the appropriate instantiation is returned. Otherwise it fails. The matching
is higher-order in a limited sense; see PART_MATCH for more illustrations.

Failure
Fails if terms cannot be matched.

Example

term_match [] ‘x + y + 1‘ ‘(y + 1) + z + 1‘;;
val it : instantiation = ([], [(‘z‘, ‘y‘); (‘y + 1‘, ‘x‘)], [])

term_match [] ‘~(?x:A. P x)‘ ‘~(?n. 5 < n /\ n < 6)‘;;
val it : instantiation =
([(1, ‘P‘)], [(‘\n. 5 < n /\ n < 6‘, ‘P‘)], [(‘:num‘, ‘:A‘)])

See also
instantiate, PART_MATCH.

term_of_preterm

term_of_preterm : preterm -> term

Synopsis
Converts a preterm into a term.

Description
HOL Light uses “pretypes” and “preterms” as intermediate structures for parsing and type-
checking, which are later converted to types and terms. A call term_of_preterm ptm attempts
to convert preterm ptm into a HOL term.

Failure
Fails if some constants used in the preterm have not been defined, or if there are other incon-
sistencies in the types so that a consistent typing cannot be arrived at.

Comments
Only users seeking to change HOL’s parser and typechecker quite radically need to use this
function.

See also
preterm_of_term, retypecheck, type_of_pretype.

term of rat 635

term_of_rat

term_of_rat : num -> term

Synopsis
Converts OCaml number to canonical rational literal of type :real.

Description
The call term_of_rat n, where n is an OCaml rational number (type num), returns the canonical
rational literal of type :real that represents it. The canonical literals are integer literals &n for
numeral n, -- &n for a nonzero numeral n, or ratios &p / &q or -- &p / &q where p is nonzero,
q > 1 and p and q share no common factor.

Failure
Never fails.

Example

term_of_rat (Int 3 // Int 2);;
val it : term = ‘&3 / &2‘

See also
is_ratconst, mk_realintconst, rat_of_term, REAL_RAT_REDUCE_CONV.

term_order

term_order : term -> term -> bool

Synopsis
Term order for use in AC-rewriting.

Description
This binary predicate implements a crude but fairly efficient ordering on terms that is appro-
priate for ensuring that ordered rewriting will perform normalization.

Failure
Never fails.

636 Chapter 1. Pre-defined ML Identifiers

Example
This example shows how using ordered rewriting with this term ordering can give normalization
under associative and commutative laws given the appropriate rewrites:

ADD_AC;;
val it : thm =
|- m + n = n + m /\ (m + n) + p = m + n + p /\ m + n + p = n + m + p

TOP_DEPTH_CONV
(FIRST_CONV(map (ORDERED_REWR_CONV term_order) (CONJUNCTS ADD_AC)))
‘d + (f + a) + b + (c + e):num‘;;

val it : thm = |- d + (f + a) + b + c + e = a + b + c + d + e + f

Uses
It is used automatically when applying permutative rewrite rules inside rewriting and simplifica-
tion. Users will not normally want to use it explicitly, though the example above shows roughly
what goes on there.

See also
ORDERED_IMP_REWR_CONV, ORDERED_REWR_CONV.

term_unify

term_unify : term list -> term -> term -> instantiation

Synopsis
Unify two terms.

Description
Given two terms tm1 and tm2, a call term_unify vars tm1 tm2 attempts to find instantiations
of the variables vars in the two terms to make them alpha-equivalent. At present, no type
instantiation is done. The unification is also purely first-order. In these respects it is less
general than term_match, and this may be improved in the future.

Failure
Fails if the two terms are not first-order unifiable by instantiating the given variables without
type instantiation.

See also
instantiate, term_match.

term union 637

term_union

term_union : term list -> term list -> term list

Synopsis
Union of two sets of terms up to alpha-equivalence.

Description
The call term_union l1 l2 for two lists of terms l1 and l2 returns a list including all of l2
and all terms of l1 for which no alpha-equivalent term occurs in l2 or earlier in l1. If both lists
were sets modulo alpha-conversion, i.e. contained no alpha-equivalent pairs, then so will be the
result.

Failure
Never fails.

Example

term_union [‘1‘; ‘2‘] [‘2‘; ‘3‘];;
val it : term list = [‘1‘; ‘2‘; ‘3‘]

term_union [‘!x. x >= 0‘; ‘?u. u > 0‘] [‘?w. w > 0‘; ‘!u. u >= 0‘];;
val it : term list = [‘?w. w > 0‘; ‘!u. u >= 0‘]

Uses
For combining assumption lists of theorems without duplication of alpha-equivalent ones.

See also
aconv, union, union’.

the_definitions

the_definitions : thm list ref

Synopsis
List of all definitions introduced so far.

Description
The reference variable the_definitions holds the list of definitions made so far. Various
definitional rules such as new_definition automatically augment it. Note that in some cases

638 Chapter 1. Pre-defined ML Identifiers

(e.g. new_inductive_definition) the stored form of the definition may look very different
from what the user sees or enters at the top level.

Failure
Not applicable.

Example
If we examine the list in HOL Light’s initial state, we see the most recent definition at the head
(superadmissible is connected with HOL’s automated definitional rule define) and the oldest,
logical truth T, at the tail:

!the_definitions;;
val it : thm list =
[|- !(<<) p s t.

superadmissible (<<) p s t <=>
admissible (<<) (\f a. T) s p ==> tailadmissible (<<) p s t;

...

...
|- (/\) = (\p q. (\f. f p q) = (\f. f T T)); |- T <=> (\p. p) = (\p. p)]

If we make a new definition of any sort, e.g.

new_definition ‘false <=> F‘;;
val it : thm = |- false <=> F

we will see a new entry at the head:

!the_definitions;;
val it : thm list =
[|- false <=> F;
...
...
|- (/\) = (\p q. (\f. f p q) = (\f. f T T)); |- T <=> (\p. p) = (\p. p)]

Uses
This list is not logically necessary and is not part of HOL Light’s logical core, but it is used
outside the core so that multiple instances of the same definition are quietly “ignored” rather
than rejected. (By contrast, the list of new constants introduced by definitions is logically
necessary to avoid inconsistent redefinition.) Users may also sometimes find it convenient.

See also
axioms, constants, define, new_definition, new_inductive_definition,
new_recursive_definition, new_specification, the_specifications.

the inductive types 639

the_inductive_types

the_inductive_types : (string * (thm * thm)) list ref

Synopsis
List of previously declared inductive types.

Description
This reference variable contains a list of the inductive types, together with their induction and
recursion theorems as returned by define_type. The list is automatically extended by a call of
define_type.

Failure
Not applicable.

See also
define_type.

the_interface

the_interface : (string * (string * hol_type)) list ref

Synopsis
List of active interface mappings.

Description
HOL Light allows the same identifier to map to one or more underlying constants using an
overloading mechanism with resolution based on type. The reference variable the_interface
stores the current list of all interface mappings.

See also
make_overloadable, overload_interface, override_interface, prioritize_overload,
reduce_interface, remove_interface, the_interface, the_overload_skeletons.

thenc_

thenc_ : conv -> conv -> conv

640 Chapter 1. Pre-defined ML Identifiers

Synopsis
Non-infix version of THENC.

See also
THENC.

THENC

(THENC) : conv -> conv -> conv

Synopsis
Applies two conversions in sequence.

Description
If the conversion c1 returns |- t = t’ when applied to a term ‘t‘, and c2 returns |- t’ = t’’
when applied to ‘t’‘, then the composite conversion (c1 THENC c2) ‘t‘ returns |- t = t’’.
That is, (c1 THENC c2) ‘t‘ has the effect of transforming the term ‘t‘ first with the conversion
c1 and then with the conversion c2.

Failure
(c1 THENC c2) ‘t‘ fails if either the conversion c1 fails when applied to ‘t‘, or if c1 ‘t‘
succeeds and returns |- t = t’ but c2 fails when applied to ‘t’‘. (c1 THENC c2) ‘t‘ may
also fail if either of c1 or c2 is not, in fact, a conversion (i.e. a function that maps a term t to
a theorem |- t = t’).

Example

BETA_CONV ‘(\x. x + 1) 3‘;;
val it : thm = |- (\x. x + 1) 3 = 3 + 1
(BETA_CONV THENC NUM_ADD_CONV) ‘(\x. x + 1) 3‘;;
val it : thm = |- (\x. x + 1) 3 = 4

See also
EVERY_CONV, ORELSEC, REPEATC.

then_

then_ : tactic -> tactic -> tactic

THEN 641

Synopsis
Non-infix version of THEN.

See also
THEN.

THEN

(THEN) : tactic -> tactic -> tactic

Synopsis
Applies two tactics in sequence.

Description
If t1 and t2 are tactics, t1 THEN t2 is a tactic which applies t1 to a goal, then applies the
tactic t2 to all the subgoals generated. If t1 solves the goal then t2 is never applied.

Failure
The application of THEN to a pair of tactics never fails. The resulting tactic fails if t1 fails when
applied to the goal, or if t2 does when applied to any of the resulting subgoals.

Example
Suppose we want to prove the inbuilt theorem DELETE_INSERT ourselves:

g ‘!x y. (x INSERT s) DELETE y =
if x = y then s DELETE y else x INSERT (s DELETE y)‘;;

We may wish to perform a case-split using COND_CASES_TAC, but since variables in the if-then-
else construct are bound, this is inapplicable. Thus we want to first strip off the universally
quantified variables:

e(REPEAT GEN_TAC);;
val it : goalstack = 1 subgoal (1 total)

‘(x INSERT s) DELETE y =
(if x = y then s DELETE y else x INSERT (s DELETE y))‘

and then apply COND_CASES_TAC:

e COND_CASES_TAC;;
...

A quicker way (starting again from the initial goal) would be to combine the tactics using

642 Chapter 1. Pre-defined ML Identifiers

THEN:

e(REPEAT GEN_TAC THEN COND_CASES_TAC);;
...

Comments
Although normally used to sequence tactics which generate a single subgoal, it is worth remem-
bering that it is sometimes useful to apply the same tactic to multiple subgoals; sequences like
the following:

EQ_TAC THENL [ASM_REWRITE_TAC[]; ASM_REWRITE_TAC[]]

can be replaced by the briefer:

EQ_TAC THEN ASM_REWRITE_TAC[]

If using this several times in succession, remember that THEN is left-associative.

See also
EVERY, ORELSE, THENL.

thenl_

thenl_ : tactic -> tactic list -> tactic

Synopsis
Non-infix version of THENL.

See also
THENL.

THENL

(THENL) : tactic -> tactic list -> tactic

Synopsis
Applies a list of tactics to the corresponding subgoals generated by a tactic.

THENL 643

Description
If t,t1,...,tn are tactics, t THENL [t1;...;tn] is a tactic which applies t to a goal, and if it
does not fail, applies the tactics t1,...,tn to the corresponding subgoals, unless t completely
solves the goal.

Failure
The application of THENL to a tactic and tactic list never fails. The resulting tactic fails if t fails
when applied to the goal, or if the goal list is not empty and its length is not the same as that
of the tactic list, or finally if ti fails when applied to the i’th subgoal generated by t.

Example
If we want to prove the inbuilt theorem LE_LDIV ourslves:

g ‘!a b n. ~(a = 0) /\ b <= a * n ==> b DIV a <= n‘;;
...

we may start by proving a lemma n = (a * n) DIV a from the given hypotheses. The following
step generates two subgoals:

e(REPEAT STRIP_TAC THEN SUBGOAL_THEN ‘n = (a * n) DIV a‘ SUBST1_TAC);;
val it : goalstack = 2 subgoals (2 total)

0 [‘~(a = 0)‘]
1 [‘b <= a * n‘]

‘b DIV a <= (a * n) DIV a‘

0 [‘~(a = 0)‘]
1 [‘b <= a * n‘]

‘n = (a * n) DIV a‘

Each subgoal has a relatively short proof, but these proofs are quite different. We can combine
them with the initial tactic above using THENL, so the following would solve the initial goal:

e(REPEAT STRIP_TAC THEN SUBGOAL_THEN ‘n = (a * n) DIV a‘ SUBST1_TAC THENL
[ASM_SIMP_TAC[DIV_MULT]; MATCH_MP_TAC DIV_MONO THEN ASM_REWRITE_TAC[]]);;

Note that it is quite a common situation for the same tactic to be applied to all generated
subgoals. In that case, you can just use THEN, e.g. in the proof of the pre-proved theorem ADD_0:

g ‘!m. m + 0 = m‘;;
...
e(INDUCT_TAC THEN ASM_REWRITE_TAC[ADD]);;
val it : goalstack = No subgoals

Uses
Applying different tactics to different subgoals.

644 Chapter 1. Pre-defined ML Identifiers

See also
EVERY, ORELSE, THEN.

then_tcl_

then_tcl_ : thm_tactical -> thm_tactical -> thm_tactical

Synopsis
Non-infix version of THEN_TCL.

See also
THEN_TCL.

THEN_TCL

(THEN_TCL) : thm_tactical -> thm_tactical -> thm_tactical

Synopsis
Composes two theorem-tacticals.

Description
If ttl1 and ttl2 are two theorem-tacticals, ttl1 THEN_TCL ttl2 is a theorem-tactical which
composes their effect; that is, if:

ttl1 ttac th1 = ttac th2

and

ttl2 ttac th2 = ttac th3

then

(ttl1 THEN_TCL ttl2) ttac th1 = ttac th3

Failure
The application of THEN_TCL to a pair of theorem-tacticals never fails.

See also
EVERY_TCL, FIRST_TCL, ORELSE_TCL.

the overload skeletons 645

the_overload_skeletons

the_overload_skeletons : (string * hol_type) list ref

Synopsis
List of overload skeletons for all overloadable identifiers.

Description
HOL Light allows the same identifier to denote several different underlying constants, with the
choice being determined by types and/or an order of priority (see prioritize_overload). The
reference variable the_overload_skeletons contains a list of all the overloadable symbols (you
can add more using make_overloadable) and their type skeletons. All constants to which an
identifier is overloaded must have a type that is an instance of this skeleton, although you can
make it a type variable in which case any type would be allowed.

Failure
Not applicable.

Example
In the initial state of HOL Light:

!the_overload_skeletons;;
val it : (string * hol_type) list =
[("gcd", ‘:A#A->A‘); ("coprime", ‘:A#A->bool‘); ("mod", ‘:A->A->A->bool‘);
("divides", ‘:A->A->bool‘); ("&", ‘:num->A‘); ("min", ‘:A->A->A‘);
("max", ‘:A->A->A‘); ("abs", ‘:A->A‘); ("inv", ‘:A->A‘);
("pow", ‘:A->num->A‘); ("--", ‘:A->A‘); (">=", ‘:A->A->bool‘);
(">", ‘:A->A->bool‘); ("<=", ‘:A->A->bool‘); ("<", ‘:A->A->bool‘);
("/", ‘:A->A->A‘); ("*", ‘:A->A->A‘); ("-", ‘:A->A->A‘);
("+", ‘:A->A->A‘)]

See also
make_overloadable, overload_interface, override_interface, prioritize_overload,
reduce_interface, remove_interface, the_interface.

the_specifications

the_specifications : thm list ref

Synopsis
List of all constant specifications introduced so far.

646 Chapter 1. Pre-defined ML Identifiers

Description
The reference variable the_specifications holds the list of constant specifications made so far
by new_specification. It is a list of triples, with the first two components being the list of
variables and the existential theorem used as input, and the last being the returned theorem.

Failure
Not applicable.

Uses
This list is not logically necessary and is not part of HOL Light’s logical core, but it is used
outside the core so that multiple instances of the same specification are quietly “ignored” rather
than rejected. (By contrast, the list of new constants introduced by definitions is logically
necessary to avoid inconsistent redefinition.) Users may also sometimes find it convenient.

See also
axioms, constants, define, new_definition, new_inductive_definition,
new_recursive_definition, new_specification.

the_type_definitions

the_type_definitions : ((string * string * string) * (thm * thm)) list ref

Synopsis
List of type definitions made so far.

Description
The reference variable the_type_definitions holds a list of entries, one for each type definition
made so far with new_type_definition. It is not normally explicitly manipulated by the user,
but is automatically augmented by each call of new_type_definition. Each entry contains
three strings (the type name, type constructor name and destructor name) and two theorems
(the input nonemptiness theorem and the returned type bijections). That is, for a call:

bijth = new_type_definition tyname (absname,repname) nonempth;;

the entry created in this list is:

(tyname,absname,repname),(nonempth,bijth)

Note that the entries made using other interfaces to new_basic_type_definition, such as
define_type, are not included in this list.

Failure
Not applicable.

thm frees 647

Uses
This is mainly intended for internal use in new_type_definition, so that repeated instances
of the same definition are ignored rather than rejected. Some users may find the information
useful too.

See also
axioms, constants, new_type_definition, the_definitions.

thm_frees

thm_frees : thm -> term list

Synopsis
Returns a list of the variables free in a theorem’s assumptions and conclusion.

Description
When applied to a theorem, A |- t, the function thm_frees returns a list, without repetitions,
of those variables which are free either in t or in some member of the assumption list A.

Failure
Never fails.

Example

let th = CONJUNCT1 (ASSUME ‘p /\ q‘);;
val th : thm = p /\ q |- p

thm_frees th;;
val it : term list = [‘q‘; ‘p‘]

See also
frees, freesl, free_in.

time

time : (’a -> ’b) -> ’a -> ’b

Synopsis
Report CPU time taken by a function.

648 Chapter 1. Pre-defined ML Identifiers

Description
A call time f x will evaluate f x as usual, but will also (provided the report_timing flag is
true as it is by default) print the CPU time taken by that function evaluation.

Failure
Never fails in itself, though it propagates any exception generated by the call f x itself.

Example

time NUM_REDUCE_CONV ‘123 EXP 14‘;;
CPU time (user): 0.09
val it : thm = |- 123 EXP 14 = 181414317867238075368413196009

Uses
Monitoring CPU time taken, e.g. to test different algorithms or implementation optimizations.

See also
report_timing.

tl

tl : ’a list -> ’a list

Synopsis
Computes the tail of a list (the original list less the first element).

Description
tl [x1;...;xn] returns [x2;...;xn].

Failure
Fails with tl if the list is empty.

See also
hd, el.

TOP_DEPTH_CONV

TOP_DEPTH_CONV : conv -> conv

TOP DEPTH CONV 649

Synopsis
Applies a conversion top-down to all subterms, retraversing changed ones.

Description
TOP_DEPTH_CONV c tm repeatedly applies the conversion c to all the subterms of the term tm,
including the term tm itself. The supplied conversion c is applied to the subterms of tm in
top-down order and is applied repeatedly (zero or more times, as is done by REPEATC) at each
subterm until it fails. If a subterm t is changed (except for alpha-equivalence) by virtue of the
application of c to its own subterms, then the term into which t is transformed is retraversed
by applying TOP_DEPTH_CONV c to it.

Failure
TOP_DEPTH_CONV c tm never fails but can diverge.

Example
Both TOP_DEPTH_CONV and REDEPTH_CONV repeatedly apply a conversion until no more ap-
plications are possible anywhere in the term. For example, TOP_DEPTH_CONV BETA_CONV or
REDEPTH_CONV BETA_CONV will eliminate all beta redexes:

TOP_DEPTH_CONV BETA_CONV ‘(\x. (\y. (\z. z + y) (y + 1)) (x + 2)) 3‘;;
val it : thm =
|- (\x. (\y. (\z. z + y) (y + 1)) (x + 2)) 3 = ((3 + 2) + 1) + 3 + 2

The main difference is that TOP_DEPTH_CONV proceeds top-down, whereas REDEPTH_CONV pro-
ceeds bottom-up. Reasons for preferring TOP_DEPTH_CONV might be that a transformation near
the top obviates the need for transformations lower down. For example, this is quick because
everything is done by one top-level rewrite:

let conv = GEN_REWRITE_CONV I [MULT_CLAUSES] ORELSEC NUM_RED_CONV;;
val conv : conv = <fun>

time (TOP_DEPTH_CONV conv) ‘0 * 25 EXP 100‘;;
CPU time (user): 0.
val it : thm = |- 0 * 25 EXP 100 = 0

whereas the following takes markedly longer:

time (REDEPTH_CONV conv) ‘0 * 25 EXP 100‘;;
CPU time (user): 2.573
val it : thm = |- 0 * 25 EXP 100 = 0

See also
DEPTH_CONV, ONCE_DEPTH_CONV, REDEPTH_CONV, TOP_SWEEP_CONV.

650 Chapter 1. Pre-defined ML Identifiers

TOP_DEPTH_SQCONV

TOP_DEPTH_SQCONV : strategy

Synopsis
Applies simplification top-down to all subterms, retraversing changed ones.

Description
HOL Light’s simplification functions (e.g. SIMP_TAC) have their traversal algorithm controlled
by a “strategy”. TOP_DEPTH_SQCONV is a strategy corresponding to TOP_DEPTH_CONV for ordinary
conversions: simplification is applied top-down to all subterms, retraversing changed ones.

Failure
Not applicable.

See also
DEPTH_SQCONV, ONCE_DEPTH_SQCONV, REDEPTH_SQCONV, TOP_DEPTH_CONV,
TOP_SWEEP_SQCONV.

top_goal

top_goal : unit -> term list * term

Synopsis
Returns the current goal of the subgoal package.

Description
The function top_goal is part of the subgoal package. It returns the top goal of the goal stack
in the current proof state. For a description of the subgoal package, see set_goal.

Failure
A call to top_goal will fail if there are no unproven goals. This could be because no goal has
been set using set_goal or because the last goal set has been completely proved.

Uses
Examining the proof state after a proof fails.

See also
b, e, g, p, r, set_goal, top_thm.

top realgoal 651

top_realgoal

top_realgoal : unit -> (string * thm) list * term

Synopsis
Returns the actual internal structure of the current goal.

Description
Returns the actual internal representation of the current goal, including the labels and the
theorems that are the assumptions.

Uses
For users interested in the precise internal structure of the goal, e.g. to debug subtle free variable
problems. Normally the simpler structure returned by top_goal is entirely adequate.

See also
top_goal.

TOP_SWEEP_CONV

TOP_SWEEP_CONV : conv -> conv

Synopsis
Repeatedly applies a conversion top-down at all levels, but after descending to subterms, does
not return to higher ones.

Description
The call TOP_SWEEP_CONV conv applies conv repeatedly at the top level of a term, and then
descends into subterms of the result, recursively doing the same thing. However, once the
subterms are dealt with, it does not, unlike TOP_DEPTH_CONV conv, return to re-examine them.

Failure
Never fails.

652 Chapter 1. Pre-defined ML Identifiers

Example
If we create an equation between large tuples:

let tm =
let pairup x i t = mk_pair(mk_var(x^string_of_int i,aty),t) in
let mkpairs x = itlist (pairup x) (1--200) (mk_var(x,aty)) in

mk_eq(mkpairs "x",mkpairs "y");;
...

we can observe that

time (TOP_DEPTH_CONV(REWR_CONV PAIR_EQ)); ();;

is a little bit slower than

time (TOP_SWEEP_CONV(REWR_CONV PAIR_EQ)); ();;

See also
DEPTH_CONV, ONCE_DEPTH_CONV, REDEPTH_CONV, TOP_DEPTH_CONV.

TOP_SWEEP_SQCONV

TOP_SWEEP_SQCONV : strategy

Synopsis
Applies simplification top-down at all levels, but after descending to subterms, does not return
to higher ones.

Description
HOL Light’s simplification functions (e.g. SIMP_TAC) have their traversal algorithm controlled
by a “strategy”. TOP_SWEEP_SQCONV is a strategy corresponding to TOP_SWEEP_CONV for ordinary
conversions: simplification is applied top-down at all levels, but after descending to subterms,
does not return to higher ones.

Failure
Not applicable.

See also
DEPTH_SQCONV, ONCE_DEPTH_SQCONV, REDEPTH_SQCONV, TOP_DEPTH_SQCONV,
TOP_SWEEP_CONV.

top thm 653

top_thm

top_thm : unit -> thm

Synopsis
Returns the theorem just proved using the subgoal package.

Description
The function top_thm is part of the subgoal package. A proof state of the package consists
of either goal and justification stacks if a proof is in progress or a theorem if a proof has just
been completed. If the proof state consists of a theorem, top_thm returns that theorem. For a
description of the subgoal package, see set_goal.

Failure
top_thm will fail if the proof state does not hold a theorem. This will be so either because no
goal has been set or because a proof is in progress with unproven subgoals.

Uses
Accessing the result of an interactive proof session with the subgoal package.

See also
b, e, g, p, r, set_goal, top_goal.

TRANS

TRANS : thm -> thm -> thm

Synopsis
Uses transitivity of equality on two equational theorems.

Description
When applied to a theorem A1 |- t1 = t2 and a theorem A2 |- t2 = t3, the inference rule
TRANS returns the theorem A1 u A2 |- t1 = t3.

A1 |- t1 = t2 A2 |- t2 = t3
------------------------------- TRANS

A1 u A2 |- t1 = t3

Failure
Fails unless the theorems are equational, with the right side of the first being the same as the
left side of the second.

654 Chapter 1. Pre-defined ML Identifiers

Example
The following shows identical uses of TRANS, one on Boolean equations (shown as <=>) and one
on numerical equations.

let t1 = ASSUME ‘a:bool = b‘ and t2 = ASSUME ‘b:bool = c‘;;
val t1 : thm = a <=> b |- a <=> b
val t2 : thm = b <=> c |- b <=> c
TRANS t1 t2;;
val it : thm = a <=> b, b <=> c |- a <=> c

let t1 = ASSUME ‘x:num = 1‘ and t2 = num_CONV ‘1‘;;
val t1 : thm = x = 1 |- x = 1
val t2 : thm = |- 1 = SUC 0
TRANS t1 t2;;
val it : thm = x = 1 |- x = SUC 0

Comments
This is one of HOL Light’s 10 primitive inference rules.

See also
EQ_MP, IMP_TRANS, REFL, SYM.

tryapplyd

tryapplyd : (’a, ’b) func -> ’a -> ’b -> ’b

Synopsis
Applies a finite partial function, with a default for undefined points.

Description
This is one of a suite of operations on finite partial functions, type (’a,’b)func. These may
sometimes be preferable to ordinary functions since they permit more operations such as equality
comparison, extraction of domain etc. If f is a finite partial function, x an element of its domain
type and y of its range type, the call tryapplyd f x y tries to apply f to the value x, as with
apply f x, but if it is undefined, simply returns y

Failure
Never fails.

TRY CONV 655

Example

tryapplyd (1 |=> 2) 1 (-1);;
val it : int = 2

tryapplyd undefined 1 (-1);;
val it : int = -1

See also
|->, |=>, apply, applyd, choose, combine, defined, dom, foldl, foldr, graph,
is_undefined, mapf, ran, undefine, undefined.

TRY_CONV

TRY_CONV : conv -> conv

Synopsis
Attempts to apply a conversion; applies identity conversion in case of failure.

Description
TRY_CONV c ‘t‘ attempts to apply the conversion c to the term ‘t‘; if this fails, then the
identity conversion is applied instead giving the reflexive theorem |- t = t.

Failure
Never fails.

Example

num_CONV ‘0‘;;
Exception: Failure "num_CONV".
TRY_CONV num_CONV ‘0‘;;
val it : thm = |- 0 = 0

See also
ALL_CONV.

TRY

TRY : tactic -> tactic

656 Chapter 1. Pre-defined ML Identifiers

Synopsis
Makes a tactic have no effect rather than fail.

Description
For any tactic t, the application TRY t gives a new tactic which has the same effect as t if that
succeeds, and otherwise has no effect.

Failure
The application of TRY to a tactic never fails. The resulting tactic never fails.

Example
We might want to try a certain tactic “speculatively”, even if we’re not sure that it will work,
for example, to handle the “easy” subgoals from breaking apart a large conjunction. On a small
scale, we might want to prove:

g ‘(x + 1) EXP 2 = x EXP 2 + 2 * x + 1 /\
(x EXP 2 = y EXP 2 ==> x = y) /\
(x < y ==> 2 * x + 1 < 2 * y)‘;;

...

and just see which conjuncts we can get rid of automatically by ARITH_TAC. It turns out that it
only leaves one subgoal with some nonlinear reasoning:

e(REPEAT CONJ_TAC THEN TRY ARITH_TAC);;
val it : goalstack = 1 subgoal (1 total)

‘x EXP 2 = y EXP 2 ==> x = y‘

See also
CHANGED_TAC, VALID.

tryfind

tryfind : (’a -> ’b) -> ’a list -> ’b

Synopsis
Returns the result of the first successful application of a function to the elements of a list.

Description
tryfind f [x1;...;xn] returns (f xi) for the first xi in the list for which application of f
succeeds.

try user parser 657

Failure
Fails with tryfind if the application of the function fails for all elements in the list. This will
always be the case if the list is empty.

See also
find, mem, exists, forall, assoc, rev_assoc.

try_user_parser

try_user_parser : lexcode list -> preterm * lexcode list

Synopsis
Try all user parsing functions.

Description
HOL Light allows user parsing functions to be installed, and will try them on all terms during
parsing before the usual parsers. The call try_user_parser l attempts to parse the list of
tokens l using all the user parsers, taking the results from whichever one succeeds first.

Failure
Fails if all user parsers fail.

See also
delete_parser, install_parser, installed_parsers.

try_user_printer

try_user_printer : term -> unit

Synopsis
Try user-defined printers on a term.

Description
HOL Light allows arbitrary user printers to be inserted into the toplevel printer so that they are
invoked on all applicable subterms (see install_user_printer). The call try_user_printer tm
attempts all installed user printers on the term tm in an implementation-defined order. If one
succeeds, the call returns (), and otherwise it fails.

Failure
Fails if no user printer is applicable to the given term (e.g. if no user printers have been installed).

658 Chapter 1. Pre-defined ML Identifiers

Example
After installing the printer for variables with types in the example for install_user_printer,
you can try:

try_user_printer ‘x:num‘;;
(x:num)val it : unit = ()

try_user_printer ‘1‘;;
Exception: Failure "tryfind".

See also
delete_user_printer, install_user_printer.

type_abbrevs

type_abbrevs : unit -> (string * hol_type) list

Synopsis
Lists all current type abbreviations.

Description
The call type_abbrevs() returns a list of all current type abbreviations, which are applied when
parsing types but have no logical significance.

Failure
Never fails.

See also
new_type_abbrev, remove_type_abbrev.

type_invention_warning

type_invention_warning : bool ref

Synopsis
Determined if user is warned about invented type variables.

Description
If HOL Light is unable to assign specific types to a term entered in quotation, it will invent
its own type variables to use in the most general type. The flag type_invention_warning

type match 659

determines whether the user is warned in such situations. The default is true, since this can
often indicate a user error (e.g. the user forgot to define a constant before using it in a term or
overlooked more general types than expected). But to disable the warnings, set it to false.

Failure
Not applicable.

Example
When the following term is entered, HOL Light invents a type variable to use as the most general
type:

let tm = ‘x IN s‘;;
Warning: inventing type variables
val tm : term = ‘x IN s‘

which are not particularly intuitive, as you can see:

map dest_var (frees tm);;
val it : (string * hol_type) list =
[("x", ‘:?47676‘); ("s", ‘:?47676->bool‘)]

You can avoid this by explicitly giving appropriate types or type variables yourself:

let tm = ‘(x:A) IN s‘;;
val tm : term = ‘x IN s‘

But if you often want to let HOL Light invent types for itself without warning you, set

type_invention_warning := false;;
val it : unit = ()

One reason why you might find the warning more irritating than helpful is if you are rewriting
with ad-hoc set theory lemmas generated like this:

SET_RULE ‘x IN UNIONS (a INSERT t) <=> x IN UNIONS t \/ x IN a‘;;

See also
retypecheck, term_of_preterm.

type_match

type_match : hol_type -> hol_type -> (hol_type * hol_type) list -> (hol_type * hol_type) list

660 Chapter 1. Pre-defined ML Identifiers

Synopsis
Computes a type instantiation to match one type to another.

Description
The call type_match vty cty [] will if possible find an instantiation of the type variables
in vty to make it the same as cty, and will fail if this is not possible. The instantiation is
returned in a list of term-variable pairs as expected by type instantiation operations like inst
and INST_TYPE. More generally, type_match vty cty env will attempt to find such a match
assuming that the instantiations already in the list env are needed (this is helpful, for example,
in matching multiple pairs of types in parallel).

Failure
Fails if there is no match under the chosen constraints.

Example
Here is a basic example with an empty last argument:

type_match ‘:A->B->bool‘ ‘:num->num->bool‘ [];;
val it : (hol_type * hol_type) list = [(‘:num‘, ‘:A‘); (‘:num‘, ‘:B‘)]

and here is an illustration of how the extra argument can be used to perform parallel matches.

itlist2 type_match
[‘:A->A->bool‘; ‘:B->B->bool‘] [‘:num->num->bool‘; ‘:bool->bool->bool‘]
[];;

val it : (hol_type * hol_type) list = [(‘:num‘, ‘:A‘); (‘:bool‘, ‘:B‘)]

See also
inst, INST_TYPE, mk_mconst, term_match.

type_of

type_of : term -> hol_type

Synopsis
Returns the type of a term.

Failure
Never fails.

type of pretype 661

Example

type_of ‘T‘;;
val it : hol_type = ‘:bool‘

type_of_pretype

type_of_pretype : pretype -> hol_type

Synopsis
Converts a pretype to a type.

Description
HOL Light uses “pretypes” and “preterms” as intermediate structures for parsing and type-
checking, which are later converted to types and terms. A call type_of_pretype pty attempts
to convert pretype pty into a HOL type.

Failure
Fails if some type constants used in the pretype have not been defined, or if the arities are wrong.

Comments
Only users seeking to change HOL’s parser and typechecker quite radically need to use this
function.

See also
pretype_of_type, retypecheck, term_of_preterm.

types

types : unit -> (string * int) list

Synopsis
Lists all the types presently declared.

Description
The function types should be applied to () and returns a list of all the type constructors
declared, in the form of arity-name pairs.

Failure
Never fails.

662 Chapter 1. Pre-defined ML Identifiers

Example
In the initial state we have:

types();;
val it : (string * int) list =
[("finite_sum", 2); ("cart", 2); ("finite_image", 1); ("int", 0);
("real", 0); ("hreal", 0); ("nadd", 0); ("3", 0); ("2", 0); ("list", 1);
("option", 1); ("sum", 2); ("recspace", 1); ("num", 0); ("ind", 0);
("prod", 2); ("1", 0); ("bool", 0); ("fun", 2)]

See also
axioms, constants, new_type, new_type_definition.

type_subst

type_subst : (hol_type * hol_type) list -> hol_type -> hol_type

Synopsis
Substitute chosen types for type variables in a type.

Description
The call type_subst [ty1,tv1; ... ; tyn,tvn] ty where each tyi is a type and each tvi is a
type variable, will systematically replace each instance of tvi in the type ty by the corresponding
type tyi.

Failure
Never fails. If some of the tvi are not type variables they will be ignored, and if several tvi are
the same, the first one in the list will be used to determine the substitution.

Example

type_subst [‘:num‘,‘:A‘; ‘:bool‘,‘:B‘] ‘:A->(B)list->A#B#C‘;;
val it : hol_type = ‘:num->(bool)list->num#bool#C‘

See also
inst, tysubst.

type_vars_in_term

type_vars_in_term : term -> hol_type list

typify universal set 663

Synopsis
Returns the set of type variables used in a term.

Description
The call type_vars_in_term t returns the set of all type variables occurring anywhere inside
any subterm of t.

Failure
Never fails.

Example
Note that the list of types occurring somewhere in the term may be larger than the set of type
variables in the term’s toplevel type. For example:

type_vars_in_term ‘!x:A. x = x‘;;
val it : hol_type list = [‘:A‘]

whereas

tyvars(type_of ‘!x:A. x = x‘);;
val it : hol_type list = []

See also
frees, tyvars.

typify_universal_set

typify_universal_set : bool ref

Synopsis
Determines whether the universe set on a type is printed just as the type.

Description
The reference variable typify_universal_set is one of several settable parameters controlling
printing of terms by pp_print_term, and hence the automatic printing of terms and theorems at
the toplevel. When it is true, as it is by default, any universal set UNIV:A->bool (UNIV is a pre-
defined set constant valid over all types) is printed just as (:A). When typify_universal_set
is false, it is printed as UNIV, just as for any other constant.

Failure
Not applicable.

664 Chapter 1. Pre-defined ML Identifiers

Example
Note that having this setting is quite useful here:

CART_EQ;;
val it : thm =
|- !x y. x = y <=> (!i. 1 <= i /\ i <= dimindex (:B) ==> x $ i = y $ i)

Uses
HOL Light’s Cartesian power type (constructor ‘^’) uses a type to index the power. When this
flag is true, formulas often become easier to understand when printed, as in the above example.

See also
pp_print_term, prebroken_binops, print_all_thm,
print_unambiguous_comprehensions, reverse_interface_mapping, unspaced_binops.

tysubst

tysubst : (hol_type * hol_type) list -> hol_type -> hol_type

Description
The call tysubst [ty1’,ty1; ... ; tyn’,tyn] ty will systematically traverse the type ty
and replace the topmost instances of any tyi encountered with the corresponding tyi’. In the
(usual) case where all the tyi are type variables, this is the same as type_subst, but also works
when they are not.

Failure
Never fails. If several tyi are the same, the first one in the list will be used to determine the
substitution.

Example

tysubst [‘:num‘,‘:A‘; ‘:bool‘,‘:B‘] ‘:A->(B)list->A#B#C‘;;
val it : hol_type = ‘:num->(bool)list->num#bool#C‘
tysubst [‘:A‘,‘:(num)list‘] ‘:num->(num)list->(num)list‘;;
val it : hol_type = ‘:num->A->A‘

See also
inst, tysubst.

tyvars

tyvars : hol_type -> hol_type list

uncurry 665

Synopsis
Returns a list of the type variables in a type.

Description
When applied to a type, tyvars returns a list (possibly empty) of the type variables that it
involves.

Failure
Never fails.

Example

tyvars ‘:(A->bool)->A‘;;
val it : hol_type list = [‘:A‘]

See also
type_vars_in_term.

uncurry

uncurry : (’a -> ’b -> ’c) -> ’a * ’b -> ’c

Synopsis
Converts a function taking two arguments into a function taking a single paired argument.

Description
The application uncurry f returns fun (x,y) -> f x y, so that

uncurry f (x,y) = f x y

Failure
Never fails.

See also
curry.

undefined

undefined : (’a, ’b) func

666 Chapter 1. Pre-defined ML Identifiers

Synopsis
Completely undefined finite partial function.

Description
This is one of a suite of operations on finite partial functions, type (’a,’b)func. These may
sometimes be preferable to ordinary functions since they permit more operations such as equality
comparison, extraction of domain etc. The value undefined is the ‘empty’ finite partial function
that is nowhere defined.

Failure
Not applicable.

Example

(undefined:(string,term)func);;
val it : (string, term) func = <func>
apply it "anything";;
Exception: Failure "apply".

Uses
Starting a function to be augmented pointwise.

See also
|->, |=>, apply, applyd, choose, combine, defined, dom, foldl, foldr, graph,
is_undefined, mapf, ran, tryapplyd, undefine.

undefine

undefine : ’a -> (’a, ’b) func -> (’a, ’b) func

Synopsis
Remove definition of a finite partial function on specific domain value.

Description
This is one of a suite of operations on finite partial functions, type (’a,’b)func. These may
sometimes be preferable to ordinary functions since they permit more operations such as equality
comparison, extraction of domain etc. The call undefine x f removes a definition for the
domain value x in the finite partial function f; if there was none to begin with the function is
unchanged.

Failure
Never fails.

UNDISCH ALL 667

Example

let f = itlist I [1 |-> "1"; 2 |-> "2"; 3 |-> "3"] undefined;;
val f : (int, string) func = <func>
dom f;;
val it : int list = [1; 2; 3]
dom(undefine 2 f);;
val it : int list = [1; 3]

See also
|->, |=>, apply, applyd, choose, combine, defined, dom, foldl, foldr, graph,
is_undefined, mapf, ran, tryapplyd, undefined.

UNDISCH_ALL

UNDISCH_ALL : thm -> thm

Synopsis
Iteratively undischarges antecedents in a chain of implications.

Description

A |- t1 ==> ... ==> tn ==> t
------------------------------ UNDISCH_ALL

A, t1, ..., tn |- t

Failure
Unlike UNDISCH, UNDISCH_ALL will, when called on something other than an implication, return
its argument unchanged rather than failing.

Example

UNDISCH_ALL(TAUT ‘p ==> q ==> r ==> p /\ q /\ r‘);;
val it : thm = p, q, r |- p /\ q /\ r

See also
DISCH, DISCH_ALL, DISCH_TAC, DISCH_THEN, STRIP_TAC, UNDISCH, UNDISCH_TAC.

UNDISCH

UNDISCH : thm -> thm

668 Chapter 1. Pre-defined ML Identifiers

Synopsis
Undischarges the antecedent of an implicative theorem.

Description

A |- t1 ==> t2
---------------- UNDISCH
A, t1 |- t2

Failure
UNDISCH will fail on theorems which are not implications.

Example

UNDISCH(TAUT ‘p /\ q ==> p‘);;
val it : thm = p /\ q |- p

See also
DISCH, DISCH_ALL, DISCH_TAC, DISCH_THEN, STRIP_TAC, UNDISCH_ALL, UNDISCH_TAC.

UNDISCH_TAC

UNDISCH_TAC : term -> tactic

Synopsis
Undischarges an assumption.

Description

A ?- t
==================== UNDISCH_TAC ‘v‘
A - {v} ?- v ==> t

Failure
UNDISCH_TAC will fail if ‘v‘ is not an assumption.

Comments
UNDISCHarging ‘v‘ will remove all assumptions that are alpha-equivalent to ‘v‘.

See also
DISCH, DISCH_ALL, DISCH_TAC, DISCH_THEN, STRIP_TAC, UNDISCH, UNDISCH_ALL,
UNDISCH_THEN.

UNDISCH THEN 669

UNDISCH_THEN

UNDISCH_THEN : term -> thm_tactic -> tactic

Synopsis
Undischarges an assumption and applies theorem-tactic to it.

Description
The tactic UNDISCH_THEN ‘a‘ ttac applied to a goal A |- t takes a out of the assumptions to
give a goal A - {a} |- t, and applies the theorem-tactic ttac to the assumption .. |- a and
that new goal.

Failure
Fails if a is not an assumption; when applied to the goal it fails exactly if the theorem-tactic
fails on the modified goal.

Comments
The tactic UNDISCH_TAC ‘t‘ can be considered the special case of UNDISCH_THEN ‘t‘ MP_TAC.

See also
FIND_ASSUM, FIRST_X_ASSUM, UNDISCH_TAC.

unhide_constant

unhide_constant : string -> unit

Synopsis
Restores recognition of a constant by the quotation parser.

Description
A call unhide_constant "c", where c is a hidden constant, will unhide the constant, that is,
will make the quotation parser recognize it as such rather than parsing it as a variable. It
reverses the effect of the call hide_constant name.

Failure
Fails unless the given name is a hidden constant in the current theory.

Comments
The hiding of a constant only affects the quotation parser; the constant is still there in a theory,
and may not be redefined.

670 Chapter 1. Pre-defined ML Identifiers

See also

hide_constant, is_hidden.

UNIFY_ACCEPT_TAC

UNIFY_ACCEPT_TAC : term list -> thm -> ’a * term -> (’b list * instantiation) * ’c list * (instantiation -> ’d list -> thm)

Synopsis

Unify free variables in theorem and metavariables in goal to accept theorem.

Description

Given a list l of assignable metavariables, a theorem th of the form A |- t and a goal A’ ?- t’,
the tactic UNIFY_ACCEPT_TAC attempts to unify t and t’ by instantiating free variables in t and
metavariables in the list l in the goal t’ so that they match, then accepts the theorem as the
solution of the goal.

Failure

Fails if no unification will work. In fact, type instantiation is not at present included in the
unification.

Example

An inherently uninteresting but instructive example is the goal:

g ‘(?x:num. p(x) /\ q(x) /\ r(x)) ==> ?y. p(y) /\ (q(y) <=> r(y))‘;;

which could of course be solved directly by MESON_TAC[] or ITAUT_TAC. In fact, the process we

UNIFY ACCEPT TAC 671

will outline is close to what ITAUT_TAC does automatically. Let’s start with:

e STRIP_TAC;;
val it : goalstack = 1 subgoal (1 total)

0 [‘p x‘]
1 [‘q x‘]
2 [‘r x‘]

‘?y. p y /\ (q y <=> r y)‘

and defer the actual choice of existential witness by introducing a metavariable:

e (X_META_EXISTS_TAC ‘n:num‘ THEN CONJ_TAC);;
val it : goalstack = 2 subgoals (2 total)

0 [‘p x‘]
1 [‘q x‘]
2 [‘r x‘]

‘q n <=> r n‘

0 [‘p x‘]
1 [‘q x‘]
2 [‘r x‘]

‘p n‘

Now we finally fix the metavariable to match our assumption:

e(FIRST_X_ASSUM(UNIFY_ACCEPT_TAC [‘n:num‘]));;
val it : goalstack = 1 subgoal (1 total)

0 [‘p x‘]
1 [‘q x‘]
2 [‘r x‘]

‘q x <=> r x‘

Note that the metavariable has also been correspondingly instantiated in the remaining goal,
which we can solve easily:

e(ASM_REWRITE_TAC[]);;
val it : goalstack = No subgoals

Uses
Terminating proof search when using metavariables. Used in ITAUT_TAC

672 Chapter 1. Pre-defined ML Identifiers

See also
ACCEPT_TAC, ITAUT, ITAUT_TAC, MATCH_ACCEPT_TAC.

union

union : ’a list -> ’a list -> ’a list

Synopsis
Computes the union of two ‘sets’.

Description
union l1 l2 returns a list consisting of the elements of l1 not already in l2 concatenated with
l2. If l1 and l2 are initially free from duplicates, this gives a set-theoretic union operation.

Failure
Never fails.

Example

union [1;2;3] [1;5;4;3];;
val it : int list = [2; 1; 5; 4; 3]
union [1;1;1] [1;2;3;2];;
val it : int list = [1; 2; 3; 2]

See also
setify, set_equal, intersect, subtract.

union’

union’ : (’a -> ’a -> bool) -> ’a list -> ’a list -> ’a list

Synopsis
Union of sets modulo an equivalence.

Description
The call union’ r l1 l2 appends to the list l2 all those elements x of l1 for which there is not
already an equivalent x’ with r x x’ in l2 or earlier in l1. If l1 and l2 were free of equivalents
under r, the resulting list will be too, so this is a set operation modulo an equivalence. The
function union is the special case where the relation is just equality.

unions 673

Failure
Fails only if the function r fails.

Example

union’ (fun x y -> abs(x) = abs(y)) [-1; 2; 1] [-2; -3; 4; -4];;
val it : int list = [1; -2; -3; 4; -4]

Uses
Maintaining sets modulo an equivalence such as alpha-equivalence.

See also
insert’, mem’, subtract’, union, unions’.

unions

unions : ’a list list -> ’a list

Synopsis
Performs the union of a set of sets.

Description
Applied to a list of lists, union returns a list of all the elements of them, in some unspecified
order, with no repetitions. It can be considered as the union of the family of ‘sets’.

Failure
Never fails.

Example

unions [[1;2]; [2;2;2;]; [2;3;4;5]];;
val it : int list = [1; 2; 3; 4; 5]

See also
intersect, subtract.

unions’

unions’ : (’a -> ’a -> bool) -> ’a list list -> ’a list

674 Chapter 1. Pre-defined ML Identifiers

Synopsis
Compute union of a family of sets modulo an equivalence.

Description
If r is an equivalence relation an l a list of lists, the call unions’ r l returns a list with one
representative of each r-equivalence class occurring in any of the members. It thus gives a union
of a family of sets with no duplicates under the equivalence r.

Failure
Fails only if the relation r fails.

Example

unions’ (fun x y -> abs(x) = abs(y))
[[-1; 2; 3]; [-2; -3; -4]; [4; 5; -6]];;

val it : int list = [-1; -2; -3; 4; 5; -6]

See also
insert’, mem’, subtract’, union’, unions.

uniq

uniq : ’a list -> ’a list

Synopsis
Eliminate adjacent identical elements from a list.

Description
When applied to a list, uniq gives a new list that results from coalescing adjacent (only) elements
of the list into one.

Failure
Never fails.

Example

uniq [1;2;3;1;2;3];;
val it : int list = [1; 2; 3; 1; 2; 3]

uniq [1;1;1;2;3;3;3;3;4];;
val it : int list = [1; 2; 3; 4]

See also
setify, sort.

unparse as binder 675

unparse_as_binder

unparse_as_binder : string -> unit

Synopsis
Stops the quotation parser from treating a name as a binder.

Description
Certain identifiers c have binder status, meaning that ‘c x. y‘ is parsed as a shirthand for
‘(c) (\x. y)’. The call unparse_as_binder "c" will remove c from the list of binders if it is
there.

Failure
Never fails, even if the string was not a binder.

Example

‘!x. x < 2‘;;
val it : term = ‘!x. x < 2‘

unparse_as_binder "!";;
val it : unit = ()
‘!x. x < 2‘;;
Exception: Failure "Unexpected junk after term".

Comments
Removing binder status for the pre-existing binders like the quantifiers should only be done with
great care, since it can cause other parser invocations to break.

See also
binders, parses_as_binder, parse_as_binder.

unparse_as_infix

unparse_as_infix : string -> unit

Synopsis
Removes string from the list of infix operators.

676 Chapter 1. Pre-defined ML Identifiers

Description
Certain identifiers are treated as infix operators with a given precedence and associativity (left
or right). The call unparse_as_infix "op" removes op from the list of infix identifiers, if it
was indeed there.

Failure
Never fails, even if the given string did not originally have infix status.

Comments
Take care with applying this to some of the built-in operators, or parsing may fail in existing
libraries.

See also
get_infix_status, infixes, parse_as_infix.

unparse_as_prefix

unparse_as_prefix : string -> unit

Synopsis
Removes prefix status for an identifier.

Description
Certain identifiers c have prefix status, meaning that combinations of the form c f x will be
parsed as c (f x) rather than the usual (c f) x. The call unparse_as_prefix "c" removes
c from the list of such identifiers.

Failure
Never fails, regardless of whether c originally did have prefix status.

See also
is_prefix, parse_as_prefix, prefixes.

unreserve_words

unreserve_words : string list -> unit

Synopsis
Remove given strings from the set of reserved words.

unspaced binops 677

Description
Certain identifiers in HOL are reserved, e.g. ‘if’, ‘let’ and ‘|’, meaning that they are special
to the parser and cannot be used as ordinary identifiers. The call unreserve_words l removes
all strings in l from the list of reserved identifiers.

Failure
Never fails, regardless of whether the given strings were in fact reserved.

Comments
The initial set of reserved words in HOL Light should be unreserved only with great care, since
then various elementary constructs may fail to parse.

See also
is_reserved_word, reserved_words, reserve_words.

unspaced_binops

unspaced_binops : string list ref

Synopsis
Determines which binary operators are printed with surrounding spaces.

Description
The reference variable unspaced_binops is one of several settable parameters controlling print-
ing of terms by pp_print_term, and hence the automatic printing of terms and theorems at
the toplevel. It holds a list of the names of infix binary operators that are printed without
surrounding spaces. By default, it contains just the pairing operation ‘,’, the numeric range ‘..’
and the cartesian power indexing ‘$’.

Failure
Not applicable.

Example

‘x + 1‘;;
val it : term = ‘x + 1‘

unspaced_binops := "+"::(!unspaced_binops);;
val it : unit = ()
‘x + 1‘;;
val it : term = ‘x+1‘

See also
pp_print_term, prebroken_binops, print_all_thm,
print_unambiguous_comprehensions, reverse_interface_mapping,
typify_universal_set.

678 Chapter 1. Pre-defined ML Identifiers

unzip

unzip : (’a * ’b) list -> ’a list * ’b list

Synopsis
Converts a list of pairs into a pair of lists.

Description
unzip [(x1,y1);...;(xn,yn)] returns ([x1;...;xn],[y1;...;yn]).

Failure
Never fails.

See also
zip.

--

(--) : int -> int -> int list

Synopsis
Gives a finite list of integers between the given bounds.

Description
The call m--n returns the list of consecutive numbers from m to n.

Example

1--10;;
val it : int list = [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]
5--5;;
val it : int list = [5]
(-1)--1;;
val it : int list = [-1; 0; 1]
2--1;;
val it : int list = []

use_file

use_file : string -> unit

USE THEN 679

Synopsis
Load a file, much like OCaml’s #use directive.

Description
Essentially the same as OCaml’s #use directive, but a regular OCaml function and therefore
easier to exploit programmatically.

Failure
Only fails if the included file causes failure.

See also
loads, loadt.

USE_THEN

USE_THEN : string -> thm_tactic -> tactic

Synopsis
Apply a theorem tactic to named assumption, removing the assumption.

Description
The tactic USE_THEN "name" ttac applies the theorem-tactic ttac to the assumption labelled
name (or the first in the list if there is more than one).

Failure
Fails if there is no assumption of that name or if the theorem-tactic fails when applied to it.

Example
See LABEL_TAC for an extended example.

Uses
Using an assumption identified by name.

See also
ASSUME, FIND_ASSUM, LABEL_TAC, REMOVE_THEN.

VALID

VALID : tactic -> tactic

680 Chapter 1. Pre-defined ML Identifiers

Synopsis
Tries to ensure that a tactic is valid.

Description
For any tactic t, the application VALID t gives a new tactic that does exactly the same as t
except that it also checks validity of the tactic and will fail if it is violated. Validity means that
the subgoals produced by t can, if proved, be used by the justification function given by t to
construct a theorem corresponding to the original goal.

This check is performed by actually creating, using mk_fthm, theorems corresponding to the
subgoals, and seeing if the result of applying the justification function to them gives a theorem
corresponding to the original goal. If it does, then VALID t simply applies t, and if not it
fails. In principle, the extra dummy hypothesis used by mk_fthm (necessary to ensure logical
soundness) could interfere with the mechanism of the tactic, but this never seems to happen.

Comments
You can always force validity checking whenever it is applied by using VALID on a tactic. But if
the goal is initially proved by using the subgoal stack this is probably not necessary since VALID
is already implicitly applied in the e (expand) function.

See also
CHANGED_TAC, e, mk_fthm, TRY.

|->

(|->) : ’a -> ’b -> (’a, ’b) func -> (’a, ’b) func

Synopsis
Modify a finite partial function at one point.

Description
This is one of a suite of operations on finite partial functions, type (’a,’b)func. These may
sometimes be preferable to ordinary functions since they permit more operations such as equality
comparison, extraction of domain etc. If f is a finite partial function then (x |-> y) f gives a
modified version that maps x to y (whether or not f was defined on x before and regardless of
the old value) but is otherwise the same.

Failure
Never fails.

variables 681

Example

let f = (1 |-> 2) undefined;;
val f : (int, int) func = <func>
let g = (1 |-> 3) f;;
val g : (int, int) func = <func>
apply f 1;;
val it : int = 2
apply g 1;;
val it : int = 3

See also
|=>, apply, applyd, choose, combine, defined, dom, foldl, foldr, graph,
is_undefined, mapf, ran, tryapplyd, undefine, undefined.

variables

variables : term -> term list

Synopsis
Determines the variables used, free or bound, in a given term.

Description
Given a term argument, variables returns a list of variables that occur free or bound in that
term.

Example

variables ‘\a:bool. a‘;;
val it : term list = [‘a‘]
variables ‘(a:num) + (b:num)‘;;
val it : term list = [‘b‘; ‘a‘]

See also
frees, free_in.

variant

variant : term list -> term -> term

682 Chapter 1. Pre-defined ML Identifiers

Synopsis
Modifies a variable name to avoid clashes.

Description
When applied to a list of variables to avoid clashing with, and a variable to modify, variant
returns a variant of the variable to modify, that is, it changes the name as intuitively as possible
to make it distinct from any variables in the list. This is normally done by adding primes to the
name.

The exact form of the variable name should not be relied on, except that the original variable
will be returned unmodified unless it is itself in the list to avoid clashing with.

Failure
variant l t fails if any term in the list l is not a variable or if t is neither a variable nor a
constant.

Example
The following shows a few typical cases:

variant [‘y:bool‘; ‘z:bool‘] ‘x:bool‘;;
val it : term = ‘x‘

variant [‘x:bool‘; ‘x’:num‘; ‘x’’:num‘] ‘x:bool‘;;
val it : term = ‘x’‘

variant [‘x:bool‘; ‘x’:bool‘; ‘x’’:bool‘] ‘x:bool‘;;
val it : term = ‘x’’’‘

Uses
The function variant is extremely useful for complicated derived rules which need to rename
variables to avoid free variable capture while still making the role of the variable obvious to the
user.

See also
genvar, hide_constant.

variants

variants : term list -> term list -> term list

Synopsis
Pick a list of variants of variables, avoiding a list of variables and each other.

verbose 683

Description
The call variants av vs,s where av and vs are both lists of variables, will return a list vs’ of
variants of the variables in the list vs, renamed as necessary by adding primes to avoid clashing
with any in the list av or with each other.

Failure
Fails if any of the terms in the list is not a variable.

Example

variants [‘x’:num‘; ‘x’’:num‘; ‘y:bool‘] [‘x:num‘; ‘x’:num‘];;
val it : term list = [‘x‘; ‘x’’’‘]

See also
genvar, mk_primed_var, variant.

verbose

verbose : bool ref

Synopsis
Flag to control verbosity of informative output.

Description
When the value of verbose is set to true, the function remark will output its string argument
whenever called. This is used for most informative output in automated rules.

Failure
Not applicable.

684 Chapter 1. Pre-defined ML Identifiers

Example
Consider this call MESON to prove a first-order formula:

MESON[] ‘!f g:num->num. (?!x. x = g(f(x))) <=> (?!y. y = f(g(y)))‘;;
0..0..1..solved at 4
CPU time (user): 0.01
0..0..1..2..6..11..19..28..37..46..94..151..247..366..584..849..solved at 969
CPU time (user): 0.12
0..0..1..solved at 4
CPU time (user): 0.
0..0..1..2..6..11..19..28..37..46..94..151..247..366..584..849..solved at 969
CPU time (user): 0.06
val it : thm = |- !f g. (?!x. x = g (f x)) <=> (?!y. y = f (g y))

By changing the verbosity level, most of the output disappears:

verbose := false;;
val it : unit = ()
MESON[] ‘!f g:num->num. (?!x. x = g(f(x))) <=> (?!y. y = f(g(y)))‘;;
CPU time (user): 0.01
CPU time (user): 0.13
CPU time (user): 0.
CPU time (user): 0.081
val it : thm = |- !f g. (?!x. x = g (f x)) <=> (?!y. y = f (g y))

and if we also disable timing reporting the action is silent:

report_timing := false;;
val it : unit = ()
MESON[] ‘!f g:num->num. (?!x. x = g(f(x))) <=> (?!y. y = f(g(y)))‘;;
val it : thm = |- !f g. (?!x. x = g (f x)) <=> (?!y. y = f (g y))

See also
remark, report_timing.

vfree_in

vfree_in : term -> term -> bool

Synopsis
Teste whether a variable (or constant) occurs free in a term.

Description
The call vfree_in v t, where v is a variable (or constant, though this is not usually exploited)
and t any term, tests whether v occurs free in t, and returns true if so, false if not. This

vsubst 685

is functionally equivalent to mem v (frees t) but may be more efficient because it never con-
structs the list of free variables explicitly.

Failure
Never fails.

Example
Here’s a simple example:

vfree_in ‘x:num‘ ‘x + y + 1‘;;
val it : bool = true

vfree_in ‘x:num‘ ‘x /\ y /\ z‘;;
val it : bool = false

To see how using vfree_in can be more efficient than examining the free variable list explicitly,
consider a huge term with one free and one bound variable:

let tm = mk_abs(‘p:bool‘,funpow 17 (fun s -> mk_conj(s,s)) ‘p /\ q‘);;
....

It takes an appreciable time to get the list of free variables:

time frees tm;;
CPU time (user): 0.31
val it : term list = [‘q‘]

yet we can test if p or q is free almost instantaneously. Only a little of the term needs to be
traversed to find the answer (just one level in the case of p, since it is bound at the outer term
constructor).

time (vfree_in ‘q:bool‘) tm;;
CPU time (user): 0.
val it : bool = true

See also
free_in, frees, freesin.

vsubst

vsubst : (term * term) list -> term -> term

686 Chapter 1. Pre-defined ML Identifiers

Synopsis
Substitute terms for variables inside a term.

Description
The call vsubst [t1,x1; ...; tn,xn] t systmatically replaces free instances of each variable
xi inside t with the corresponding ti from the instantiation list. Bound variables will be
renamed if necessary to avoid capture.

Failure
Fails if any of the pairs ti,xi in the instantiation list has xi and ti with different types, or xi
a non-variable. Multiple instances of the same xi in the list are not trapped, but only the first
one will be used consistently.

Example
Here is a relatively simple example

vsubst [‘1‘,‘x:num‘; ‘2‘,‘y:num‘] ‘x + y + 3‘;;
val it : term = ‘1 + 2 + 3‘

and here is a more complex instance where renaming of bound variables is needed:

vsubst [‘y:num‘,‘x:num‘] ‘!y. x + y < x + y + 1‘;;
val it : term = ‘!y’. y + y’ < y + y’ + 1‘

Comments
An analogous function subst is more general, and will substitute for free occurrences of any
term, not just variables. However, vsubst is generally much more efficient if you do just need
substitution for variables.

See also
inst, subst.

warn

warn : bool -> string -> unit

Synopsis
Prints out a warning string

Description
When applied to a boolean value b and a string s, the call warn b s prints out “Warning: s”
and a following newline to the terminal if b is true and otherwise does nothing.

Failure
Never fails.

W 687

Example

let n = 7;;
val n : int = 7
warn (n <> 0) "Nonzero value";;
Warning: Nonzero value
val it : unit = ()

See also
remark, report.

W

W : (’a -> ’a -> ’b) -> ’a -> ’b

Synopsis
Duplicates function argument : W f x = f x x.

Failure
Never fails.

See also
C, F_F, I, K, o.

WEAK_CNF_CONV

WEAK_CNF_CONV : conv

Synopsis
Converts a term already in negation normal form into conjunctive normal form.

Description
When applied to a term already in negation normal form (see NNF_CONV), meaning that all
other propositional connectives have been eliminated in favour of conjunction, disjunction and
negation, and negation is only applied to atomic formulas, WEAK_CNF_CONV puts the term into
an equivalent conjunctive normal form, which is a conjunction of disjunctions.

Failure
Never fails; non-Boolean terms will just yield a reflexive theorem.

688 Chapter 1. Pre-defined ML Identifiers

Example

WEAK_CNF_CONV ‘(a /\ b) \/ (a /\ b /\ c) \/ d‘;;
val it : thm =
|- a /\ b \/ a /\ b /\ c \/ d <=>

((a \/ a \/ d) /\ (b \/ a \/ d)) /\
((a \/ b \/ d) /\ (b \/ b \/ d)) /\
(a \/ c \/ d) /\
(b \/ c \/ d)

Comments
The ordering and associativity of the resulting form are not guaranteed, and it may contain
duplicates. See CNF_CONV for a stronger (but somewhat slower) variant where this is important.

See also
CNF_CONV, DNF_CONV, NNF_CONV, WEAK_DNF_CONV.

WEAK_DNF_CONV

WEAK_DNF_CONV : conv

Synopsis
Converts a term already in negation normal form into disjunctive normal form.

Description
When applied to a term already in negation normal form (see NNF_CONV), meaning that all
other propositional connectives have been eliminated in favour of disjunction, disjunction and
negation, and negation is only applied to atomic formulas, WEAK_DNF_CONV puts the term into
an equivalent disjunctive normal form, which is a disjunction of conjunctions.

Failure
Never fails; non-Boolean terms will just yield a reflexive theorem.

Example

WEAK_DNF_CONV ‘(a \/ b) /\ (a \/ c /\ e)‘;;
val it : thm =
|- (a \/ b) /\ (a \/ c /\ e) <=>

(a /\ a \/ b /\ a) \/ a /\ c /\ e \/ b /\ c /\ e

Comments
The ordering and associativity of the resulting form are not guaranteed, and it may contain
duplicates. See DNF_CONV for a stronger (but somewhat slower) variant where this is important.

WF INDUCT TAC 689

See also
CNF_CONV, DNF_CONV, NNF_CONV, WEAK_CNF_CONV.

WF_INDUCT_TAC

WF_INDUCT_TAC : term -> (string * thm) list * term -> goalstate

Synopsis
Performs wellfounded induction with respect to a given ‘measure’.

Description
The tactic WF_INDUCT_TAC is applied to two arguments. The second is a goal to prove, and the
first is an expression to use as a “measure”. The result is a new subgoal where the same goal
is to be proved but as an assumption it holds for all smaller values of the measure, universally
quantified over the free variables in the measure term (which should also be free in the goal).

Failure
Never fails.

Example
Suppose we define a Euclidean GCD algorithm:

let egcd = define
‘egcd(m,n) = if m = 0 then n

else if n = 0 then m
else if m <= n then egcd(m,n - m)
else egcd(m - n,n)‘;;

and after picking up from the library an infix ‘divides’ relation for divisibility:

needs "Examples/prime.ml";;

we want to prove something about the result, e.g.

g ‘!m n d. d divides egcd(m,n) <=> d divides m /\ d divides n‘;;

A natural way to proceed is by induction on the sum of the arguments:

e(GEN_TAC THEN GEN_TAC THEN WF_INDUCT_TAC ‘m + n‘);;
val it : goalstack = 1 subgoal (1 total)

0 [‘!m’’ n’.
m’’ + n’ < m + n
==> (!d. d divides egcd (m’’,n’) <=> d divides m’’ /\ d divides n’)‘]

‘!d. d divides egcd (m,n) <=> d divides m /\ d divides n‘

Note that we have the same goal, but an assumption that it holds for smaller values of the

690 Chapter 1. Pre-defined ML Identifiers

measure term.

Comments
Wellfounded induction can always be performed on any relation by using WF_IND together with
an assumption of wellfoundedness such as num_WF or WF_MEASURE. This tactic is just a slightly
more convenient packaging.

See also
INDUCT_TAC, LIST_INDUCT_TAC.

X_CHOOSE_TAC

X_CHOOSE_TAC : term -> thm_tactic

Synopsis
Assumes a theorem, with existentially quantified variable replaced by a given witness.

Description
X_CHOOSE_TAC expects a variable y and theorem with an existentially quantified conclusion.
When applied to a goal, it adds a new assumption obtained by introducing the variable y as a
witness for the object x whose existence is asserted in the theorem.

A ?- t
=================== X_CHOOSE_TAC ‘y‘ (A1 |- ?x. w)
A u {w[y/x]} ?- t (‘y‘ not free anywhere)

Failure
Fails if the theorem’s conclusion is not existentially quantified, or if the first argument is not
a variable. Failures may arise in the tactic-generating function. An invalid tactic is produced
if the introduced variable is free in w or t, or if the theorem has any hypothesis which is not
alpha-convertible to an assumption of the goal.

X CHOOSE THEN 691

Example
Given a goal:

g ‘(?y. x = y + 2) ==> x < x * x‘;;

the following may be applied:

e(DISCH_THEN(X_CHOOSE_TAC ‘d:num‘));;
val it : goalstack = 1 subgoal (1 total)

0 [‘x = d + 2‘]

‘x < x * x‘

after which the following will finish things:

e(ASM_REWRITE_TAC[] THEN ARITH_TAC);;
val it : goalstack = No subgoals

See also
CHOOSE, CHOOSE_THEN, X_CHOOSE_THEN.

X_CHOOSE_THEN

X_CHOOSE_THEN : term -> thm_tactical

Synopsis
Replaces existentially quantified variable with given witness, and passes it to a theorem-tactic.

Description
X_CHOOSE_THEN expects a variable y, a tactic-generating function ttac, and a theorem of
the form (A1 |- ?x. w) as arguments. A new theorem is created by introducing the given
variable y as a witness for the object x whose existence is asserted in the original theorem,
(w[y/x] |- w[y/x]). If the tactic-generating function ttac applied to this theorem produces
results as follows when applied to a goal (A ?- t):

A ?- t
========= ttac ({w[y/x]} |- w[y/x])
A ?- t1

then applying (X_CHOOSE_THEN ‘y‘ ttac (A1 |- ?x. w)) to the goal (A ?- t) produces the

692 Chapter 1. Pre-defined ML Identifiers

subgoal:

A ?- t
========= X_CHOOSE_THEN ‘y‘ ttac (A1 |- ?x. w)
A ?- t1 (‘y‘ not free anywhere)

Failure
Fails if the theorem’s conclusion is not existentially quantified, or if the first argument is not
a variable. Failures may arise in the tactic-generating function. An invalid tactic is produced
if the introduced variable is free in w or t, or if the theorem has any hypothesis which is not
alpha-convertible to an assumption of the goal.

Example
Suppose we have the following goal:

g ‘!m n. m < n ==> m EXP 2 + 2 * m <= n EXP 2‘;;

and rewrite with a theorem to get an existential antecedent:

e(REPEAT GEN_TAC THEN REWRITE_TAC[LT_EXISTS]);;
val it : goalstack = 1 subgoal (1 total)

‘(?d. n = m + SUC d) ==> m EXP 2 + 2 * m <= n EXP 2‘

we may then use X_CHOOSE_THEN to introduce the name e for the existential variable and im-
mediately substitute it in the goal:

e(DISCH_THEN(X_CHOOSE_THEN ‘e:num‘ SUBST1_TAC));;
val it : goalstack = 1 subgoal (1 total)

‘m EXP 2 + 2 * m <= (m + SUC e) EXP 2‘

at which point ARITH_TAC will finish it.

See also
CHOOSE, CHOOSE_THEN, CONJUNCTS_THEN, CONJUNCTS_THEN2, DISJ_CASES_THEN,
DISJ_CASES_THEN2, STRIP_THM_THEN, X_CHOOSE_TAC.

X_GEN_TAC

X_GEN_TAC : term -> tactic

Synopsis
Specializes a goal with the given variable.

X META EXISTS TAC 693

Description
When applied to a term x’, which should be a variable, and a goal A ?- !x. t, the tactic
X_GEN_TAC returns the goal A ?- t[x’/x].

A ?- !x. t
============== X_GEN_TAC ‘x’‘
A ?- t[x’/x]

Failure
Fails unless the goal’s conclusion is universally quantified and the term a variable of the ap-
propriate type. It also fails if the variable given is free in either the assumptions or (initial)
conclusion of the goal.

Uses
It is perhaps good practice to use this rather than GEN_TAC, to ensure that there is no dependency
on the bound variable name in the goal, which can sometimes arise somewhat arbitrarily, e.g.
in higher-order matching.

See also
GEN, GENL, GEN_ALL, SPEC, SPECL, SPEC_ALL, SPEC_TAC, STRIP_TAC.

X_META_EXISTS_TAC

X_META_EXISTS_TAC : term -> tactic

Synopsis
Replaces existentially quantified variable with given metavariables.

Description
Given a variable v and a goal of the form A ?- ?x. t[x], the tactic X_META_EXISTS_TAC gives
the new goal A ?- t[v] where v is a new metavariable. In the resulting proof, it is as if the
variable has been assigned here to the later choice for this metavariable, which can be made
through UNIFY_ACCEPT_TAC.

Failure
Fails if the metavariable is not a variable.

Example
See UNIFY_ACCEPT_TAC for an example of using metavariables.

Uses
Delaying instantiations until the correct term becomes clearer.

694 Chapter 1. Pre-defined ML Identifiers

Comments
Users should probably steer clear of using metavariables if possible. Note that the metavariable
instantiations apply across the whole fringe of goals, not just the current goal, and can lead to
confusion.

See also
EXISTS_TAC, META_EXISTS_TAC, META_SPEC_TAC, UNIFY_ACCEPT_TAC.

zip

zip : ’a list -> ’b list -> (’a * ’b) list

Synopsis
Converts a pair of lists into a list of pairs.

Description
zip [x1;...;xn] [y1;...;yn] returns [(x1,y1);...;(xn,yn)].

Failure
Fails if the two lists are of different lengths.

See also
unzip.

Chapter 2

Pre-proved Theorems

The sections that follow list the most useful theorems built into the HOL Light system, which
are proved and bound to ML identifiers when the system is built. Some theorems that were felt
(subjectively) unlikely to be useful for most HOL Light users are omitted. Within the broad
groupings, theorems are listed in alphabetical order, by the name of the OCaml identifier to
which they are bound.

695

696 Chapter 2. Pre-proved Theorems

2.1 Theorems about basic logical notions

ABS_SIMP
|- !t1 t2. (\x. t1) t2 = t1

AND_CLAUSES
|- !t. (T /\ t <=> t) /\

(t /\ T <=> t) /\
(F /\ t <=> F) /\
(t /\ F <=> F) /\
(t /\ t <=> t)

AND_DEF
|- (/\) = (\p q. (\f. f p q) = (\f. f T T))

AND_FORALL_THM
|- !P Q. (!x. P x) /\ (!x. Q x) <=> (!x. P x /\ Q x)

BETA_THM
|- !f y. (\x. f x) y = f y

BOOL_CASES_AX
|- !t. (t <=> T) \/ (t <=> F)

COND_ABS
|- !b f g. (\x. if b then f x else g x) = (if b then f else g)

COND_CLAUSES
|- !t1 t2. (if T then t1 else t2) = t1 /\ (if F then t1 else t2) = t2

COND_DEF
|- COND = (\t t1 t2. @x. ((t <=> T) ==> x = t1) /\ ((t <=> F) ==> x = t2))

COND_ELIM_THM
|- P (if c then x else y) <=> (c ==> P x) /\ (~c ==> P y)

COND_EXPAND
|- !b t1 t2. (if b then t1 else t2) <=> (~b \/ t1) /\ (b \/ t2)

COND_ID
|- !b t. (if b then t else t) = t

COND_RAND
|- !b f x y. f (if b then x else y) = (if b then f x else f y)

COND_RATOR
|- !b f g x. (if b then f else g) x = (if b then f x else g x)

2.1. Theorems about basic logical notions 697

CONJ_ACI
|- (p /\ q <=> q /\ p) /\

((p /\ q) /\ r <=> p /\ q /\ r) /\
(p /\ q /\ r <=> q /\ p /\ r) /\
(p /\ p <=> p) /\
(p /\ p /\ q <=> p /\ q)

CONJ_ASSOC
|- !t1 t2 t3. t1 /\ t2 /\ t3 <=> (t1 /\ t2) /\ t3

CONJ_SYM
|- !t1 t2. t1 /\ t2 <=> t2 /\ t1

CONTRAPOS_THM
|- !t1 t2. ~t1 ==> ~t2 <=> t2 ==> t1

DE_MORGAN_THM
|- !t1 t2. (~(t1 /\ t2) <=> ~t1 \/ ~t2) /\ (~(t1 \/ t2) <=> ~t1 /\ ~t2)

DISJ_ACI
|- (p \/ q <=> q \/ p) /\

((p \/ q) \/ r <=> p \/ q \/ r) /\
(p \/ q \/ r <=> q \/ p \/ r) /\
(p \/ p <=> p) /\
(p \/ p \/ q <=> p \/ q)

DISJ_ASSOC
|- !t1 t2 t3. t1 \/ t2 \/ t3 <=> (t1 \/ t2) \/ t3

DISJ_SYM
|- !t1 t2. t1 \/ t2 <=> t2 \/ t1

EQ_CLAUSES
|- !t. ((T <=> t) <=> t) /\

((t <=> T) <=> t) /\
((F <=> t) <=> ~t) /\
((t <=> F) <=> ~t)

EQ_EXT
|- !f g. (!x. f x = g x) ==> f = g

EQ_IMP
|- (a <=> b) ==> a ==> b

EQ_REFL
|- !x. x = x

EQ_REFL_T
|- !x. x = x <=> T

698 Chapter 2. Pre-proved Theorems

EQ_SYM
|- !x y. x = y ==> y = x

EQ_SYM_EQ
|- !x y. x = y <=> y = x

EQ_TRANS
|- !x y z. x = y /\ y = z ==> x = z

ETA_AX
|- !t. (\x. t x) = t

EXCLUDED_MIDDLE
|- !t. t \/ ~t

EXISTS_BOOL_THM
|- (?b. P b) <=> P T \/ P F

EXISTS_DEF
|- (?) = (\P. !q. (!x. P x ==> q) ==> q)

EXISTS_NOT_THM
|- !P. (?x. ~P x) <=> ~(!x. P x)

EXISTS_OR_THM
|- !P Q. (?x. P x \/ Q x) <=> (?x. P x) \/ (?x. Q x)

EXISTS_REFL
|- !a. ?x. x = a

EXISTS_SIMP
|- !t. (?x. t) <=> t

EXISTS_THM
|- (?) = (\P. P ((@) P))

EXISTS_UNIQUE
|- !P. (?!x. P x) <=> (?x. P x /\ (!y. P y ==> y = x))

EXISTS_UNIQUE_ALT
|- !P. (?!x. P x) <=> (?x. !y. P y <=> x = y)

EXISTS_UNIQUE_DEF
|- (?!) = (\P. (?) P /\ (!x y. P x /\ P y ==> x = y))

EXISTS_UNIQUE_REFL
|- !a. ?!x. x = a

EXISTS_UNIQUE_THM
|- !P. (?!x. P x) <=> (?x. P x) /\ (!x x’. P x /\ P x’ ==> x = x’)

2.1. Theorems about basic logical notions 699

FORALL_AND_THM
|- !P Q. (!x. P x /\ Q x) <=> (!x. P x) /\ (!x. Q x)

FORALL_BOOL_THM
|- (!b. P b) <=> P T /\ P F

FORALL_DEF
|- (!) = (\P. P = (\x. T))

FORALL_NOT_THM
|- !P. (!x. ~P x) <=> ~(?x. P x)

FORALL_SIMP
|- !t. (!x. t) <=> t

FUN_EQ_THM
|- !f g. f = g <=> (!x. f x = g x)

F_DEF
|- F <=> (!p. p)

IMP_CLAUSES
|- !t. (T ==> t <=> t) /\

(t ==> T <=> T) /\
(F ==> t <=> T) /\
(t ==> t <=> T) /\
(t ==> F <=> ~t)

IMP_CONJ
|- p /\ q ==> r <=> p ==> q ==> r

IMP_DEF
|- (==>) = (\p q. p /\ q <=> p)

IMP_IMP
|- p ==> q ==> r <=> p /\ q ==> r

LEFT_AND_EXISTS_THM
|- !P Q. (?x. P x) /\ Q <=> (?x. P x /\ Q)

LEFT_AND_FORALL_THM
|- !P Q. (!x. P x) /\ Q <=> (!x. P x /\ Q)

LEFT_EXISTS_AND_THM
|- !P Q. (?x. P x /\ Q) <=> (?x. P x) /\ Q

LEFT_EXISTS_IMP_THM
|- !P Q. (?x. P x ==> Q) <=> (!x. P x) ==> Q

700 Chapter 2. Pre-proved Theorems

LEFT_FORALL_IMP_THM
|- !P Q. (!x. P x ==> Q) <=> (?x. P x) ==> Q

LEFT_FORALL_OR_THM
|- !P Q. (!x. P x \/ Q) <=> (!x. P x) \/ Q

LEFT_IMP_EXISTS_THM
|- !P Q. (?x. P x) ==> Q <=> (!x. P x ==> Q)

LEFT_IMP_FORALL_THM
|- !P Q. (!x. P x) ==> Q <=> (?x. P x ==> Q)

LEFT_OR_DISTRIB
|- !p q r. p /\ (q \/ r) <=> p /\ q \/ p /\ r

LEFT_OR_EXISTS_THM
|- !P Q. (?x. P x) \/ Q <=> (?x. P x \/ Q)

LEFT_OR_FORALL_THM
|- !P Q. (!x. P x) \/ Q <=> (!x. P x \/ Q)

MONO_AND
|- (A ==> B) /\ (C ==> D) ==> A /\ C ==> B /\ D

MONO_COND
|- (A ==> B) /\ (C ==> D) ==> (if b then A else C) ==> (if b then B else D)

MONO_EXISTS
|- (!x. P x ==> Q x) ==> (?x. P x) ==> (?x. Q x)

MONO_FORALL
|- (!x. P x ==> Q x) ==> (!x. P x) ==> (!x. Q x)

MONO_IMP
|- (B ==> A) /\ (C ==> D) ==> (A ==> C) ==> B ==> D

MONO_NOT
|- (B ==> A) ==> ~A ==> ~B

MONO_OR
|- (A ==> B) /\ (C ==> D) ==> A \/ C ==> B \/ D

NOT_CLAUSES
|- (!t. ~ ~t <=> t) /\ (~T <=> F) /\ (~F <=> T)

NOT_CLAUSES_WEAK
|- (~T <=> F) /\ (~F <=> T)

NOT_DEF
|- (~) = (\p. p ==> F)

2.1. Theorems about basic logical notions 701

NOT_EXISTS_THM
|- !P. ~(?x. P x) <=> (!x. ~P x)

NOT_FORALL_THM
|- !P. ~(!x. P x) <=> (?x. ~P x)

NOT_IMP
|- !t1 t2. ~(t1 ==> t2) <=> t1 /\ ~t2

OR_CLAUSES
|- !t. (T \/ t <=> T) /\

(t \/ T <=> T) /\
(F \/ t <=> t) /\
(t \/ F <=> t) /\
(t \/ t <=> t)

OR_DEF
|- (\/) = (\p q. !r. (p ==> r) ==> (q ==> r) ==> r)

OR_EXISTS_THM
|- !P Q. (?x. P x) \/ (?x. Q x) <=> (?x. P x \/ Q x)

REFL_CLAUSE
|- !x. x = x <=> T

RIGHT_AND_EXISTS_THM
|- !P Q. P /\ (?x. Q x) <=> (?x. P /\ Q x)

RIGHT_AND_FORALL_THM
|- !P Q. P /\ (!x. Q x) <=> (!x. P /\ Q x)

RIGHT_EXISTS_AND_THM
|- !P Q. (?x. P /\ Q x) <=> P /\ (?x. Q x)

RIGHT_EXISTS_IMP_THM
|- !P Q. (?x. P ==> Q x) <=> P ==> (?x. Q x)

RIGHT_FORALL_IMP_THM
|- !P Q. (!x. P ==> Q x) <=> P ==> (!x. Q x)

RIGHT_FORALL_OR_THM
|- !P Q. (!x. P \/ Q x) <=> P \/ (!x. Q x)

RIGHT_IMP_EXISTS_THM
|- !P Q. P ==> (?x. Q x) <=> (?x. P ==> Q x)

RIGHT_IMP_FORALL_THM
|- !P Q. P ==> (!x. Q x) <=> (!x. P ==> Q x)

702 Chapter 2. Pre-proved Theorems

RIGHT_OR_DISTRIB
|- !p q r. (p \/ q) /\ r <=> p /\ r \/ q /\ r

RIGHT_OR_EXISTS_THM
|- !P Q. P \/ (?x. Q x) <=> (?x. P \/ Q x)

RIGHT_OR_FORALL_THM
|- !P Q. P \/ (!x. Q x) <=> (!x. P \/ Q x)

SELECT_AX
|- !P x. P x ==> P ((@) P)

SELECT_REFL
|- !x. (@y. y = x) = x

SELECT_UNIQUE
|- !P x. (!y. P y <=> y = x) ==> (@) P = x

SKOLEM_THM
|- !P. (!x. ?y. P x y) <=> (?y. !x. P x (y x))

SWAP_EXISTS_THM
|- !P. (?x y. P x y) <=> (?y x. P x y)

SWAP_FORALL_THM
|- !P. (!x y. P x y) <=> (!y x. P x y)

TRIV_AND_EXISTS_THM
|- !P Q. (?x. P) /\ (?x. Q) <=> (?x. P /\ Q)

TRIV_EXISTS_AND_THM
|- !P Q. (?x. P /\ Q) <=> (?x. P) /\ (?x. Q)

TRIV_EXISTS_IMP_THM
|- !P Q. (?x. P ==> Q) <=> (!x. P) ==> (?x. Q)

TRIV_FORALL_IMP_THM
|- !P Q. (!x. P ==> Q) <=> (?x. P) ==> (!x. Q)

TRIV_FORALL_OR_THM
|- !P Q. (!x. P \/ Q) <=> (!x. P) \/ (!x. Q)

TRIV_OR_FORALL_THM
|- !P Q. (!x. P) \/ (!x. Q) <=> (!x. P \/ Q)

TRUTH
|- T

T_DEF
|- T <=> (\p. p) = (\p. p)

2.2. Theorems about elementary constructs 703

UNIQUE_SKOLEM_ALT
|- !P. (!x. ?!y. P x y) <=> (?f. !x y. P x y <=> f x = y)

UNIQUE_SKOLEM_THM
|- !P. (!x. ?!y. P x y) <=> (?!f. !x. P x (f x))

UNWIND_THM1
|- !P a. (?x. a = x /\ P x) <=> P a

UNWIND_THM2
|- !P a. (?x. x = a /\ P x) <=> P a

bool_INDUCT
|- !P. P F /\ P T ==> (!x. P x)

bool_RECURSION
|- !a b. ?f. f F = a /\ f T = b

2.2 Theorems about elementary constructs

EXISTS_ONE_REP
|- ?b. b

I_DEF
|- I = (\x. x)

I_O_ID
|- !f. I o f = f /\ f o I = f

I_THM
|- !x. I x = x

OUTL
|- OUTL (INL x) = x

OUTR
|- OUTR (INR y) = y

o_ASSOC
|- !f g h. f o g o h = (f o g) o h

o_DEF
|- !f g. f o g = (\x. f (g x))

o_THM
|- !f g x. (f o g) x = f (g x)

704 Chapter 2. Pre-proved Theorems

one
|- !v. v = one

one_Axiom
|- !e. ?!fn. fn one = e

one_DEF
|- one = (@x. T)

one_INDUCT
|- !P. P one ==> (!x. P x)

one_RECURSION
|- !e. ?fn. fn one = e

one_axiom
|- !f g. f = g

one_tydef
|- (!a. one_ABS (one_REP a) = a) /\ (!r. r <=> one_REP (one_ABS r) <=> r)

option_INDUCT
|- !P. P NONE /\ (!a. P (SOME a)) ==> (!x. P x)

option_RECURSION
|- !NONE’ SOME’. ?fn. fn NONE = NONE’ /\ (!a. fn (SOME a) = SOME’ a)

sum_INDUCT
|- !P. (!a. P (INL a)) /\ (!a. P (INR a)) ==> (!x. P x)

sum_RECURSION
|- !INL’ INR’. ?fn. (!a. fn (INL a) = INL’ a) /\ (!a. fn (INR a) = INR’ a)

2.3 Theorems about pairs

COMMA_DEF
|- !x y. x,y = ABS_prod (mk_pair x y)

CURRY_DEF
|- !f x y. CURRY f x y = f (x,y)

EXISTS_PAIR_THM
|- (?p. P p) <=> (?p1 p2. P (p1,p2))

FORALL_PAIR_THM
|- (!p. P p) <=> (!p1 p2. P (p1,p2))

2.3. Theorems about pairs 705

FST
|- !x y. FST (x,y) = x

FST_DEF
|- !p. FST p = (@x. ?y. p = x,y)

PAIR
|- !x. FST x,SND x = x

PAIR_EQ
|- !x y a b. x,y = a,b <=> x = a /\ y = b

PAIR_EXISTS_THM
|- ?x a b. x = mk_pair a b

PAIR_SURJECTIVE
|- !p. ?x y. p = x,y

PASSOC_DEF
|- !f x y z. PASSOC f (x,y,z) = f ((x,y),z)

REP_ABS_PAIR
|- !x y. REP_prod (ABS_prod (mk_pair x y)) = mk_pair x y

SND
|- !x y. SND (x,y) = y

SND_DEF
|- !p. SND p = (@y. ?x. p = x,y)

UNCURRY_DEF
|- !f x y. UNCURRY f (x,y) = f x y

mk_pair_def
|- !x y. mk_pair x y = (\a b. a = x /\ b = y)

pair_INDUCT
|- (!x y. P (x,y)) ==> (!p. P p)

pair_RECURSION
|- !PAIR’. ?fn. !a0 a1. fn (a0,a1) = PAIR’ a0 a1

prod_tybij
|- (!a. ABS_prod (REP_prod a) = a) /\

(!r. (?a b. r = mk_pair a b) <=> REP_prod (ABS_prod r) = r)

706 Chapter 2. Pre-proved Theorems

2.4 Theorems about wellfoundedness

MEASURE_LE
|- (!y. measure m y a ==> measure m y b) <=> m a <= m b

WF
|- !(<<). WF (<<) <=>

(!P. (?x. P x) ==> (?x. P x /\ (!y. y << x ==> ~P y)))

WF_DCHAIN
|- WF (<<) <=> ~(?s. !n. s (SUC n) << s n)

WF_EQ
|- WF (<<) <=> (!P. (?x. P x) <=> (?x. P x /\ (!y. y << x ==> ~P y)))

WF_EREC
|- WF (<<)

==> (!H. (!f g x. (!z. z << x ==> f z = g z) ==> H f x = H g x)
==> (?!f. !x. f x = H f x))

WF_FALSE
|- WF (\x y. F)

WF_IND
|- WF (<<) <=> (!P. (!x. (!y. y << x ==> P y) ==> P x) ==> (!x. P x))

WF_LEX
|- !R S.

WF R /\ WF S
==> WF (\(r1,s1). \(r2,s2). R r1 r2 \/ r1 = r2 /\ S s1 s2)

WF_LEX_DEPENDENT
|- !R S.

WF R /\ (!a. WF (S a))
==> WF (\(r1,s1). \(r2,s2). R r1 r2 \/ r1 = r2 /\ S r1 s1 s2)

WF_MEASURE
|- !m. WF (measure m)

WF_MEASURE_GEN
|- !m. WF (<<) ==> WF (\x x’. m x << m x’)

WF_POINTWISE
|- WF (<<) /\ WF (<<<) ==> WF (\(x1,y1). \(x2,y2). x1 << x2 /\ y1 <<< y2)

2.4. Theorems about wellfoundedness 707

WF_REC
|- WF (<<)

==> (!H. (!f g x. (!z. z << x ==> f z = g z) ==> H f x = H g x)
==> (?f. !x. f x = H f x))

WF_REC_INVARIANT
|- WF (<<)

==> (!H S.
(!f g x.

(!z. z << x ==> f z = g z /\ S z (f z))
==> H f x = H g x /\ S x (H f x))

==> (?f. !x. f x = H f x))

WF_REC_TAIL
|- !P g h. ?f. !x. f x = (if P x then f (g x) else h x)

WF_REC_TAIL_GENERAL
|- !P G H.

WF (<<) /\
(!f g x.

(!z. z << x ==> f z = g z)
==> (P f x <=> P g x) /\ G f x = G g x /\ H f x = H g x) /\

(!f g x. (!z. z << x ==> f z = g z) ==> H f x = H g x) /\
(!f x y. P f x /\ y << G f x ==> y << x)
==> (?f. !x. f x = (if P f x then f (G f x) else H f x))

WF_REC_WF
|- (!H. (!f g x. (!z. z << x ==> f z = g z) ==> H f x = H g x)

==> (?f. !x. f x = H f x))
==> WF (<<)

WF_REC_num
|- !H. (!f g n. (!m. m < n ==> f m = g m) ==> H f n = H g n)

==> (?f. !n. f n = H f n)

WF_REFL
|- !x. WF (<<) ==> ~(x << x)

WF_SUBSET
|- (!x y. x << y ==> x <<< y) /\ WF (<<<) ==> WF (<<)

WF_UREC
|- WF (<<)

==> (!H. (!f g x. (!z. z << x ==> f z = g z) ==> H f x = H g x)
==> (!f g. (!x. f x = H f x) /\ (!x. g x = H g x) ==> f = g))

708 Chapter 2. Pre-proved Theorems

WF_UREC_WF
|- (!H. (!f g x. (!z. z << x ==> (f z <=> g z)) ==> (H f x <=> H g x))

==> (!f g. (!x. f x <=> H f x) /\ (!x. g x <=> H g x) ==> f = g))
==> WF (<<)

WF_num
|- WF (<)

measure
|- !m. measure m = (\x y. m x < m y)

2.5 Theorems about natural number arithmetic

ADD
|- (!n. 0 + n = n) /\ (!m n. SUC m + n = SUC (m + n))

ADD1
|- !m. SUC m = m + 1

ADD_0
|- !m. m + 0 = m

ADD_AC
|- m + n = n + m /\ (m + n) + p = m + n + p /\ m + n + p = n + m + p

ADD_ASSOC
|- !m n p. m + n + p = (m + n) + p

ADD_CLAUSES
|- (!n. 0 + n = n) /\

(!m. m + 0 = m) /\
(!m n. SUC m + n = SUC (m + n)) /\
(!m n. m + SUC n = SUC (m + n))

ADD_EQ_0
|- !m n. m + n = 0 <=> m = 0 /\ n = 0

ADD_SUB
|- !m n. (m + n) - n = m

ADD_SUB2
|- !m n. (m + n) - m = n

ADD_SUBR
|- !m n. n - (m + n) = 0

ADD_SUBR2
|- !m n. m - (m + n) = 0

2.5. Theorems about natural number arithmetic 709

ADD_SUC
|- !m n. m + SUC n = SUC (m + n)

ADD_SYM
|- !m n. m + n = n + m

BIT0
|- !n. BIT0 n = n + n

BIT0_THM
|- !n. NUMERAL (BIT0 n) = NUMERAL n + NUMERAL n

BIT1
|- !n. BIT1 n = SUC (n + n)

BIT1_THM
|- !n. NUMERAL (BIT1 n) = SUC (NUMERAL n + NUMERAL n)

DIST_ADD2
|- !m n p q. dist (m + n,p + q) <= dist (m,p) + dist (n,q)

DIST_ADD2_REV
|- !m n p q. dist (m,p) <= dist (m + n,p + q) + dist (n,q)

DIST_ADDBOUND
|- !m n. dist (m,n) <= m + n

DIST_ELIM_THM
|- P (dist (x,y)) <=> (!d. (x = y + d ==> P d) /\ (y = x + d ==> P d))

DIST_EQ_0
|- !m n. dist (m,n) = 0 <=> m = n

DIST_LADD
|- !m p n. dist (m + n,m + p) = dist (n,p)

DIST_LADD_0
|- !m n. dist (m + n,m) = n

DIST_LE_CASES
|- !m n p. dist (m,n) <= p <=> m <= n + p /\ n <= m + p

DIST_LMUL
|- !m n p. m * dist (n,p) = dist (m * n,m * p)

DIST_LZERO
|- !n. dist (0,n) = n

DIST_RADD
|- !m p n. dist (m + p,n + p) = dist (m,n)

710 Chapter 2. Pre-proved Theorems

DIST_RADD_0
|- !m n. dist (m,m + n) = n

DIST_REFL
|- !n. dist (n,n) = 0

DIST_RMUL
|- !m n p. dist (m,n) * p = dist (m * p,n * p)

DIST_RZERO
|- !n. dist (n,0) = n

DIST_SYM
|- !m n. dist (m,n) = dist (n,m)

DIST_TRIANGLE
|- !m n p. dist (m,p) <= dist (m,n) + dist (n,p)

DIST_TRIANGLES_LE
|- !m n p q r s.

dist (m,n) <= r /\ dist (p,q) <= s
==> dist (m,p) <= dist (n,q) + r + s

DIST_TRIANGLE_LE
|- !m n p q. dist (m,n) + dist (n,p) <= q ==> dist (m,p) <= q

DIVISION
|- !m n. ~(n = 0) ==> m = m DIV n * n + m MOD n /\ m MOD n < n

DIVISION_0
|- !m n.

if n = 0
then m DIV n = 0 /\ m MOD n = 0
else m = m DIV n * n + m MOD n /\ m MOD n < n

DIVMOD_ELIM_THM
|- P (m DIV n) (m MOD n) <=>

(!q r. n = 0 /\ q = 0 /\ r = 0 \/ m = q * n + r /\ r < n ==> P q r)

DIVMOD_ELIM_THM’
|- P (m DIV n) (m MOD n) <=>

(?q r. (n = 0 /\ q = 0 /\ r = 0 \/ m = q * n + r /\ r < n) /\ P q r)

DIVMOD_EXIST
|- !m n. ~(n = 0) ==> (?q r. m = q * n + r /\ r < n)

DIVMOD_EXIST_0
|- !m n. ?q r. if n = 0 then q = 0 /\ r = 0 else m = q * n + r /\ r < n

2.5. Theorems about natural number arithmetic 711

DIVMOD_UNIQ
|- !m n q r. m = q * n + r /\ r < n ==> m DIV n = q /\ m MOD n = r

DIVMOD_UNIQ_LEMMA
|- !m n q1 r1 q2 r2.

(m = q1 * n + r1 /\ r1 < n) /\ m = q2 * n + r2 /\ r2 < n
==> q1 = q2 /\ r1 = r2

DIV_0
|- !n. ~(n = 0) ==> 0 DIV n = 0

DIV_1
|- !n. n DIV 1 = n

DIV_ADD_MOD
|- !a b n.

~(n = 0)
==> ((a + b) MOD n = a MOD n + b MOD n <=>

(a + b) DIV n = a DIV n + b DIV n)

DIV_DIV
|- !m n p. ~(n * p = 0) ==> m DIV n DIV p = m DIV (n * p)

DIV_EQ_0
|- !m n. ~(n = 0) ==> (m DIV n = 0 <=> m < n)

DIV_EQ_EXCLUSION
|- b * c < (a + 1) * d /\ a * d < (c + 1) * b ==> a DIV b = c DIV d

DIV_LE
|- !m n. ~(n = 0) ==> m DIV n <= m

DIV_LE_EXCLUSION
|- !a b c d. ~(b = 0) /\ b * c < (a + 1) * d ==> c DIV d <= a DIV b

DIV_LT
|- !m n. m < n ==> m DIV n = 0

DIV_MOD
|- !m n p. ~(n * p = 0) ==> (m DIV n) MOD p = (m MOD (n * p)) DIV n

DIV_MONO
|- !m n p. ~(p = 0) /\ m <= n ==> m DIV p <= n DIV p

DIV_MONO2
|- !m n p. ~(p = 0) /\ p <= m ==> n DIV m <= n DIV p

DIV_MONO_LT
|- !m n p. ~(p = 0) /\ m + p <= n ==> m DIV p < n DIV p

712 Chapter 2. Pre-proved Theorems

DIV_MULT
|- !m n. ~(m = 0) ==> (m * n) DIV m = n

DIV_MULT2
|- !m n p. ~(m * p = 0) ==> (m * n) DIV (m * p) = n DIV p

DIV_MUL_LE
|- !m n. n * m DIV n <= m

DIV_REFL
|- !n. ~(n = 0) ==> n DIV n = 1

DIV_UNIQ
|- !m n q r. m = q * n + r /\ r < n ==> m DIV n = q

EQ_ADD_LCANCEL
|- !m n p. m + n = m + p <=> n = p

EQ_ADD_LCANCEL_0
|- !m n. m + n = m <=> n = 0

EQ_ADD_RCANCEL
|- !m n p. m + p = n + p <=> m = n

EQ_ADD_RCANCEL_0
|- !m n. m + n = n <=> m = 0

EQ_IMP_LE
|- !m n. m = n ==> m <= n

EQ_MULT_LCANCEL
|- !m n p. m * n = m * p <=> m = 0 \/ n = p

EQ_MULT_RCANCEL
|- !m n p. m * p = n * p <=> m = n \/ p = 0

EQ_SUC
|- !m n. SUC m = SUC n <=> m = n

EVEN
|- (EVEN 0 <=> T) /\ (!n. EVEN (SUC n) <=> ~EVEN n)

EVEN_ADD
|- !m n. EVEN (m + n) <=> EVEN m <=> EVEN n

EVEN_AND_ODD
|- !n. ~(EVEN n /\ ODD n)

EVEN_DOUBLE
|- !n. EVEN (2 * n)

2.5. Theorems about natural number arithmetic 713

EVEN_EXISTS
|- !n. EVEN n <=> (?m. n = 2 * m)

EVEN_EXISTS_LEMMA
|- !n. (EVEN n ==> (?m. n = 2 * m)) /\ (~EVEN n ==> (?m. n = SUC (2 * m)))

EVEN_EXP
|- !m n. EVEN (m EXP n) <=> EVEN m /\ ~(n = 0)

EVEN_MOD
|- !n. EVEN n <=> n MOD 2 = 0

EVEN_MULT
|- !m n. EVEN (m * n) <=> EVEN m \/ EVEN n

EVEN_ODD_DECOMPOSITION
|- !n. (?k m. ODD m /\ n = 2 EXP k * m) <=> ~(n = 0)

EVEN_OR_ODD
|- !n. EVEN n \/ ODD n

EVEN_SUB
|- !m n. EVEN (m - n) <=> m <= n \/ (EVEN m <=> EVEN n)

EXP
|- (!m. m EXP 0 = 1) /\ (!m n. m EXP SUC n = m * m EXP n)

EXP_1
|- !n. n EXP 1 = n

EXP_2
|- !n. n EXP 2 = n * n

EXP_ADD
|- !m n p. m EXP (n + p) = m EXP n * m EXP p

EXP_EQ_0
|- !m n. m EXP n = 0 <=> m = 0 /\ ~(n = 0)

EXP_LT_0
|- !n x. 0 < x EXP n <=> ~(x = 0) \/ n = 0

EXP_MULT
|- !m n p. m EXP (n * p) = m EXP n EXP p

EXP_ONE
|- !n. 1 EXP n = 1

FACT
|- FACT 0 = 1 /\ (!n. FACT (SUC n) = SUC n * FACT n)

714 Chapter 2. Pre-proved Theorems

FACT_LE
|- !n. 1 <= FACT n

FACT_LT
|- !n. 0 < FACT n

FACT_MONO
|- !m n. m <= n ==> FACT m <= FACT n

GE
|- !n m. m >= n <=> n <= m

GT
|- !n m. m > n <=> n < m

LE
|- (!m. m <= 0 <=> m = 0) /\ (!m n. m <= SUC n <=> m = SUC n \/ m <= n)

LEFT_ADD_DISTRIB
|- !m n p. m * (n + p) = m * n + m * p

LEFT_SUB_DISTRIB
|- !m n p. m * (n - p) = m * n - m * p

LET_ADD2
|- !m n p q. m <= p /\ n < q ==> m + n < p + q

LET_ANTISYM
|- !m n. ~(m <= n /\ n < m)

LET_CASES
|- !m n. m <= n \/ n < m

LET_TRANS
|- !m n p. m <= n /\ n < p ==> m < p

LE_0
|- !n. 0 <= n

LE_ADD
|- !m n. m <= m + n

LE_ADD2
|- !m n p q. m <= p /\ n <= q ==> m + n <= p + q

LE_ADDR
|- !m n. n <= m + n

LE_ADD_LCANCEL
|- !m n p. m + n <= m + p <=> n <= p

2.5. Theorems about natural number arithmetic 715

LE_ADD_RCANCEL
|- !m n p. m + p <= n + p <=> m <= n

LE_ANTISYM
|- !m n. m <= n /\ n <= m <=> m = n

LE_CASES
|- !m n. m <= n \/ n <= m

LE_EXISTS
|- !m n. m <= n <=> (?d. n = m + d)

LE_EXP
|- !x m n.

x EXP m <= x EXP n <=>
(if x = 0 then m = 0 ==> n = 0 else x = 1 \/ m <= n)

LE_LDIV
|- !a b n. ~(a = 0) /\ b <= a * n ==> b DIV a <= n

LE_LDIV_EQ
|- !a b n. ~(a = 0) ==> (b DIV a <= n <=> b < a * (n + 1))

LE_LT
|- !m n. m <= n <=> m < n \/ m = n

LE_MULT2
|- !m n p q. m <= n /\ p <= q ==> m * p <= n * q

LE_MULT_LCANCEL
|- !m n p. m * n <= m * p <=> m = 0 \/ n <= p

LE_MULT_RCANCEL
|- !m n p. m * p <= n * p <=> m <= n \/ p = 0

LE_RDIV_EQ
|- !a b n. ~(a = 0) ==> (n <= b DIV a <=> a * n <= b)

LE_REFL
|- !n. n <= n

LE_SQUARE_REFL
|- !n. n <= n * n

LE_SUC
|- !m n. SUC m <= SUC n <=> m <= n

LE_SUC_LT
|- !m n. SUC m <= n <=> m < n

716 Chapter 2. Pre-proved Theorems

LE_TRANS
|- !m n p. m <= n /\ n <= p ==> m <= p

LT
|- (!m. m < 0 <=> F) /\ (!m n. m < SUC n <=> m = n \/ m < n)

LTE_ADD2
|- !m n p q. m < p /\ n <= q ==> m + n < p + q

LTE_ANTISYM
|- !m n. ~(m < n /\ n <= m)

LTE_CASES
|- !m n. m < n \/ n <= m

LTE_TRANS
|- !m n p. m < n /\ n <= p ==> m < p

LT_0
|- !n. 0 < SUC n

LT_ADD
|- !m n. m < m + n <=> 0 < n

LT_ADD2
|- !m n p q. m < p /\ n < q ==> m + n < p + q

LT_ADDR
|- !m n. n < m + n <=> 0 < m

LT_ADD_LCANCEL
|- !m n p. m + n < m + p <=> n < p

LT_ADD_RCANCEL
|- !m n p. m + p < n + p <=> m < n

LT_ANTISYM
|- !m n. ~(m < n /\ n < m)

LT_CASES
|- !m n. m < n \/ n < m \/ m = n

LT_EXISTS
|- !m n. m < n <=> (?d. n = m + SUC d)

LT_EXP
|- !x m n.

x EXP m < x EXP n <=> 2 <= x /\ m < n \/ x = 0 /\ ~(m = 0) /\ n = 0

2.5. Theorems about natural number arithmetic 717

LT_IMP_LE
|- !m n. m < n ==> m <= n

LT_LE
|- !m n. m < n <=> m <= n /\ ~(m = n)

LT_LMULT
|- !m n p. ~(m = 0) /\ n < p ==> m * n < m * p

LT_MULT
|- !m n. 0 < m * n <=> 0 < m /\ 0 < n

LT_MULT2
|- !m n p q. m < n /\ p < q ==> m * p < n * q

LT_MULT_LCANCEL
|- !m n p. m * n < m * p <=> ~(m = 0) /\ n < p

LT_MULT_RCANCEL
|- !m n p. m * p < n * p <=> m < n /\ ~(p = 0)

LT_NZ
|- !n. 0 < n <=> ~(n = 0)

LT_REFL
|- !n. ~(n < n)

LT_SUC
|- !m n. SUC m < SUC n <=> m < n

LT_SUC_LE
|- !m n. m < SUC n <=> m <= n

LT_TRANS
|- !m n p. m < n /\ n < p ==> m < p

MINIMAL
|- !P. (?n. P n) <=> P ((minimal) P) /\ (!m. m < (minimal) P ==> ~P m)

MOD_0
|- !n. ~(n = 0) ==> 0 MOD n = 0

MOD_1
|- !n. n MOD 1 = 0

MOD_ADD_MOD
|- !a b n. ~(n = 0) ==> (a MOD n + b MOD n) MOD n = (a + b) MOD n

MOD_EQ
|- !m n p q. m = n + q * p ==> m MOD p = n MOD p

718 Chapter 2. Pre-proved Theorems

MOD_EQ_0
|- !m n. ~(n = 0) ==> (m MOD n = 0 <=> (?q. m = q * n))

MOD_EXISTS
|- !m n. (?q. m = n * q) <=> (if n = 0 then m = 0 else m MOD n = 0)

MOD_EXP_MOD
|- !m n p. ~(n = 0) ==> (m MOD n) EXP p MOD n = m EXP p MOD n

MOD_LE
|- !m n. ~(n = 0) ==> m MOD n <= m

MOD_LT
|- !m n. m < n ==> m MOD n = m

MOD_MOD
|- !m n p. ~(n * p = 0) ==> m MOD (n * p) MOD n = m MOD n

MOD_MOD_REFL
|- !m n. ~(n = 0) ==> m MOD n MOD n = m MOD n

MOD_MULT
|- !m n. ~(m = 0) ==> (m * n) MOD m = 0

MOD_MULT2
|- !m n p. ~(m * p = 0) ==> (m * n) MOD (m * p) = m * n MOD p

MOD_MULT_ADD
|- !m n p. (m * n + p) MOD n = p MOD n

MOD_MULT_LMOD
|- !m n p. ~(n = 0) ==> (m MOD n * p) MOD n = (m * p) MOD n

MOD_MULT_MOD2
|- !m n p. ~(n = 0) ==> (m MOD n * p MOD n) MOD n = (m * p) MOD n

MOD_MULT_RMOD
|- !m n p. ~(n = 0) ==> (m * p MOD n) MOD n = (m * p) MOD n

MOD_UNIQ
|- !m n q r. m = q * n + r /\ r < n ==> m MOD n = r

MULT
|- (!n. 0 * n = 0) /\ (!m n. SUC m * n = m * n + n)

MULT_0
|- !m. m * 0 = 0

MULT_2
|- !n. 2 * n = n + n

2.5. Theorems about natural number arithmetic 719

MULT_AC
|- m * n = n * m /\ (m * n) * p = m * n * p /\ m * n * p = n * m * p

MULT_ASSOC
|- !m n p. m * n * p = (m * n) * p

MULT_CLAUSES
|- (!n. 0 * n = 0) /\

(!m. m * 0 = 0) /\
(!n. 1 * n = n) /\
(!m. m * 1 = m) /\
(!m n. SUC m * n = m * n + n) /\
(!m n. m * SUC n = m + m * n)

MULT_EQ_0
|- !m n. m * n = 0 <=> m = 0 \/ n = 0

MULT_EQ_1
|- !m n. m * n = 1 <=> m = 1 /\ n = 1

MULT_EXP
|- !p m n. (m * n) EXP p = m EXP p * n EXP p

MULT_SUC
|- !m n. m * SUC n = m + m * n

MULT_SYM
|- !m n. m * n = n * m

NOT_EVEN
|- !n. ~EVEN n <=> ODD n

NOT_LE
|- !m n. ~(m <= n) <=> n < m

NOT_LT
|- !m n. ~(m < n) <=> n <= m

NOT_ODD
|- !n. ~ODD n <=> EVEN n

NOT_SUC
|- !n. ~(SUC n = 0)

NUMERAL
|- !n. NUMERAL n = n

ODD
|- (ODD 0 <=> F) /\ (!n. ODD (SUC n) <=> ~ODD n)

720 Chapter 2. Pre-proved Theorems

ODD_ADD
|- !m n. ODD (m + n) <=> ~(ODD m <=> ODD n)

ODD_DOUBLE
|- !n. ODD (SUC (2 * n))

ODD_EXISTS
|- !n. ODD n <=> (?m. n = SUC (2 * m))

ODD_EXP
|- !m n. ODD (m EXP n) <=> ODD m \/ n = 0

ODD_MOD
|- !n. ODD n <=> n MOD 2 = 1

ODD_MULT
|- !m n. ODD (m * n) <=> ODD m /\ ODD n

ODD_SUB
|- !m n. ODD (m - n) <=> n < m /\ ~(ODD m <=> ODD n)

ONE
|- 1 = SUC 0

PRE
|- PRE 0 = 0 /\ (!n. PRE (SUC n) = n)

PRE_ELIM_THM
|- P (PRE n) <=> (!m. n = SUC m \/ m = 0 /\ n = 0 ==> P m)

PRE_ELIM_THM’
|- P (PRE n) <=> (?m. (n = SUC m \/ m = 0 /\ n = 0) /\ P m)

RIGHT_ADD_DISTRIB
|- !m n p. (m + n) * p = m * p + n * p

RIGHT_SUB_DISTRIB
|- !m n p. (m - n) * p = m * p - n * p

SUB
|- (!m. m - 0 = m) /\ (!m n. m - SUC n = PRE (m - n))

SUB_0
|- !m. 0 - m = 0 /\ m - 0 = m

SUB_ADD
|- !m n. n <= m ==> m - n + n = m

SUB_ADD_LCANCEL
|- !m n p. (m + n) - (m + p) = n - p

2.5. Theorems about natural number arithmetic 721

SUB_ADD_RCANCEL
|- !m n p. (m + p) - (n + p) = m - n

SUB_ELIM_THM
|- P (a - b) <=> (!d. a = b + d \/ a < b /\ d = 0 ==> P d)

SUB_ELIM_THM’
|- P (a - b) <=> (?d. (a = b + d \/ a < b /\ d = 0) /\ P d)

SUB_EQ_0
|- !m n. m - n = 0 <=> m <= n

SUB_PRESUC
|- !m n. PRE (SUC m - n) = m - n

SUB_REFL
|- !n. n - n = 0

SUB_SUC
|- !m n. SUC m - SUC n = m - n

SUC_INJ
|- !m n. SUC m = SUC n <=> m = n

SUC_SUB1
|- !n. SUC n - 1 = n

TWO
|- 2 = SUC 1

WLOG_LE
|- (!m n. P m n <=> P n m) /\ (!m n. m <= n ==> P m n) ==> (!m n. P m n)

WLOG_LT
|- (!m. P m m) /\ (!m n. P m n <=> P n m) /\ (!m n. m < n ==> P m n)

==> (!m y. P m y)

dist
|- !n m. dist (m,n) = m - n + n - m

minimal
|- !P. (minimal) P = (@n. P n /\ (!m. m < n ==> ~P m))

num_Axiom
|- !e f. ?!fn. fn 0 = e /\ (!n. fn (SUC n) = f (fn n) n)

num_Axiom
|- !e f. ?!fn. fn _0 = e /\ (!n. fn (SUC n) = f (fn n) n)

722 Chapter 2. Pre-proved Theorems

num_CASES
|- !m. m = 0 \/ (?n. m = SUC n)

num_INDUCTION
|- !P. P 0 /\ (!n. P n ==> P (SUC n)) ==> (!n. P n)

num_INDUCTION
|- !P. P _0 /\ (!n. P n ==> P (SUC n)) ==> (!n. P n)

num_MAX
|- !P. (?x. P x) /\ (?M. !x. P x ==> x <= M) <=>

(?m. P m /\ (!x. P x ==> x <= m))

num_RECURSION
|- !e f. ?fn. fn 0 = e /\ (!n. fn (SUC n) = f (fn n) n)

num_WF
|- !P. (!n. (!m. m < n ==> P m) ==> P n) ==> (!n. P n)

num_WOP
|- !P. (?n. P n) <=> (?n. P n /\ (!m. m < n ==> ~P m))

2.6 Theorems about lists

ALL
|- (ALL P [] <=> T) /\ (ALL P (CONS h t) <=> P h /\ ALL P t)

ALL2
|- (ALL2 P [] [] <=> T) /\

(ALL2 P (CONS h1 t1) [] <=> F) /\
(ALL2 P [] (CONS h2 t2) <=> F) /\
(ALL2 P (CONS h1 t1) (CONS h2 t2) <=> P h1 h2 /\ ALL2 P t1 t2)

ALL2_ALL
|- !P l. ALL2 P l l <=> ALL (\x. P x x) l

ALL2_AND_RIGHT
|- !l m P Q. ALL2 (\x y. P x /\ Q x y) l m <=> ALL P l /\ ALL2 Q l m

ALL2_DEF
|- (ALL2 P [] l2 <=> l2 = []) /\

(ALL2 P (CONS h1 t1) l2 <=>
(if l2 = [] then F else P h1 (HD l2) /\ ALL2 P t1 (TL l2)))

ALL2_MAP
|- !P f l. ALL2 P (MAP f l) l <=> ALL (\a. P (f a) a) l

2.6. Theorems about lists 723

ALL2_MAP2
|- !l m. ALL2 P (MAP f l) (MAP g m) <=> ALL2 (\x y. P (f x) (g y)) l m

ALL_APPEND
|- !P l1 l2. ALL P (APPEND l1 l2) <=> ALL P l1 /\ ALL P l2

ALL_IMP
|- !P Q l. (!x. MEM x l /\ P x ==> Q x) /\ ALL P l ==> ALL Q l

ALL_MAP
|- !P f l. ALL P (MAP f l) <=> ALL (P o f) l

ALL_MEM
|- !P l. (!x. MEM x l ==> P x) <=> ALL P l

ALL_MP
|- !P Q l. ALL (\x. P x ==> Q x) l /\ ALL P l ==> ALL Q l

ALL_T
|- !l. ALL (\x. T) l

AND_ALL
|- !l. ALL P l /\ ALL Q l <=> ALL (\x. P x /\ Q x) l

AND_ALL2
|- !P Q l m. ALL2 P l m /\ ALL2 Q l m <=> ALL2 (\x y. P x y /\ Q x y) l m

APPEND
|- (!l. APPEND [] l = l) /\

(!h t l. APPEND (CONS h t) l = CONS h (APPEND t l))

APPEND_ASSOC
|- !l m n. APPEND l (APPEND m n) = APPEND (APPEND l m) n

APPEND_EQ_NIL
|- !l m. APPEND l m = [] <=> l = [] /\ m = []

APPEND_NIL
|- !l. APPEND l [] = l

ASSOC
|- ASSOC a (CONS h t) = (if FST h = a then SND h else ASSOC a t)

CONS_11
|- !h1 h2 t1 t2. CONS h1 t1 = CONS h2 t2 <=> h1 = h2 /\ t1 = t2

EL
|- EL 0 l = HD l /\ EL (SUC n) l = EL n (TL l)

724 Chapter 2. Pre-proved Theorems

EX
|- (EX P [] <=> F) /\ (EX P (CONS h t) <=> P h \/ EX P t)

EXISTS_EX
|- !P l. (?x. EX (P x) l) <=> EX (\s. ?x. P x s) l

EX_IMP
|- !P Q l. (!x. MEM x l /\ P x ==> Q x) /\ EX P l ==> EX Q l

EX_MAP
|- !P f l. EX P (MAP f l) <=> EX (P o f) l

EX_MEM
|- !P l. (?x. P x /\ MEM x l) <=> EX P l

FILTER
|- FILTER P [] = [] /\

FILTER P (CONS h t) = (if P h then CONS h (FILTER P t) else FILTER P t)

FILTER_APPEND
|- !P l1 l2. FILTER P (APPEND l1 l2) = APPEND (FILTER P l1) (FILTER P l2)

FILTER_MAP
|- !P f l. FILTER P (MAP f l) = MAP f (FILTER (P o f) l)

FORALL_ALL
|- !P l. (!x. ALL (P x) l) <=> ALL (\s. !x. P x s) l

HD
|- HD (CONS h t) = h

ITLIST
|- ITLIST f [] b = b /\ ITLIST f (CONS h t) b = f h (ITLIST f t b)

ITLIST2
|- ITLIST2 f [] [] b = b /\

ITLIST2 f (CONS h1 t1) (CONS h2 t2) b = f h1 h2 (ITLIST2 f t1 t2 b)

ITLIST2_DEF
|- ITLIST2 f [] l2 b = b /\

ITLIST2 f (CONS h1 t1) l2 b = f h1 (HD l2) (ITLIST2 f t1 (TL l2) b)

ITLIST_APPEND
|- !f a l1 l2. ITLIST f (APPEND l1 l2) a = ITLIST f l1 (ITLIST f l2 a)

ITLIST_EXTRA
|- !l. ITLIST f (APPEND l [a]) b = ITLIST f l (f a b)

LAST
|- LAST (CONS h t) = (if t = [] then h else LAST t)

2.6. Theorems about lists 725

LAST_CLAUSES
|- LAST [h] = h /\ LAST (CONS h (CONS k t)) = LAST (CONS k t)

LENGTH
|- LENGTH [] = 0 /\ (!h t. LENGTH (CONS h t) = SUC (LENGTH t))

LENGTH_APPEND
|- !l m. LENGTH (APPEND l m) = LENGTH l + LENGTH m

LENGTH_EQ_CONS
|- !l n. LENGTH l = SUC n <=> (?h t. l = CONS h t /\ LENGTH t = n)

LENGTH_EQ_NIL
|- !l. LENGTH l = 0 <=> l = []

LENGTH_MAP
|- !l f. LENGTH (MAP f l) = LENGTH l

LENGTH_MAP2
|- !f l m. LENGTH l = LENGTH m ==> LENGTH (MAP2 f l m) = LENGTH m

LENGTH_REPLICATE
|- !n x. LENGTH (REPLICATE n x) = n

MAP
|- (!f. MAP f [] = []) /\ (!f h t. MAP f (CONS h t) = CONS (f h) (MAP f t))

MAP2
|- MAP2 f [] [] = [] /\

MAP2 f (CONS h1 t1) (CONS h2 t2) = CONS (f h1 h2) (MAP2 f t1 t2)

MAP2_DEF
|- MAP2 f [] l = [] /\

MAP2 f (CONS h1 t1) l = CONS (f h1 (HD l)) (MAP2 f t1 (TL l))

MAP_APPEND
|- !f l1 l2. MAP f (APPEND l1 l2) = APPEND (MAP f l1) (MAP f l2)

MAP_EQ
|- !f g l. ALL (\x. f x = g x) l ==> MAP f l = MAP g l

MAP_EQ_ALL2
|- !l m. ALL2 (\x y. f x = f y) l m ==> MAP f l = MAP f m

MAP_EQ_DEGEN
|- !l f. ALL (\x. f x = x) l ==> MAP f l = l

MAP_FST_ZIP
|- !l1 l2. LENGTH l1 = LENGTH l2 ==> MAP FST (ZIP l1 l2) = l1

726 Chapter 2. Pre-proved Theorems

MAP_SND_ZIP
|- !l1 l2. LENGTH l1 = LENGTH l2 ==> MAP SND (ZIP l1 l2) = l2

MAP_o
|- !f g l. MAP (g o f) l = MAP g (MAP f l)

MEM
|- (MEM x [] <=> F) /\ (MEM x (CONS h t) <=> x = h \/ MEM x t)

MEM_APPEND
|- !x l1 l2. MEM x (APPEND l1 l2) <=> MEM x l1 \/ MEM x l2

MEM_ASSOC
|- !l x. MEM (x,ASSOC x l) l <=> MEM x (MAP FST l)

MEM_EL
|- !l n. n < LENGTH l ==> MEM (EL n l) l

MEM_FILTER
|- !P l x. MEM x (FILTER P l) <=> P x /\ MEM x l

MEM_MAP
|- !f y l. MEM y (MAP f l) <=> (?x. MEM x l /\ y = f x)

MONO_ALL
|- (!x. P x ==> Q x) ==> ALL P l ==> ALL Q l

MONO_ALL2
|- (!x y. P x y ==> Q x y) ==> ALL2 P l l’ ==> ALL2 Q l l’

NOT_ALL
|- !P l. ~ALL P l <=> EX (\x. ~P x) l

NOT_CONS_NIL
|- !h t. ~(CONS h t = [])

NOT_EX
|- !P l. ~EX P l <=> ALL (\x. ~P x) l

NULL
|- (NULL [] <=> T) /\ (NULL (CONS h t) <=> F)

REPLICATE
|- REPLICATE 0 x = [] /\ REPLICATE (SUC n) x = CONS x (REPLICATE n x)

REVERSE
|- REVERSE [] = [] /\ REVERSE (CONS x l) = APPEND (REVERSE l) [x]

REVERSE_APPEND
|- !l m. REVERSE (APPEND l m) = APPEND (REVERSE m) (REVERSE l)

2.7. Theorems about real numbers 727

REVERSE_REVERSE
|- !l. REVERSE (REVERSE l) = l

TL
|- TL (CONS h t) = t

ZIP
|- ZIP [] [] = [] /\

ZIP (CONS h1 t1) (CONS h2 t2) = CONS (h1,h2) (ZIP t1 t2)

ZIP_DEF
|- ZIP [] l2 = [] /\ ZIP (CONS h1 t1) l2 = CONS (h1,HD l2) (ZIP t1 (TL l2))

list_CASES
|- !l. l = [] \/ (?h t. l = CONS h t)

list_INDUCT
|- !P. P [] /\ (!a0 a1. P a1 ==> P (CONS a0 a1)) ==> (!x. P x)

list_RECURSION
|- !NIL’ CONS’.

?fn. fn [] = NIL’ /\ (!a0 a1. fn (CONS a0 a1) = CONS’ a0 a1 (fn a1))

2.7 Theorems about real numbers

REAL_ADD_ASSOC
|- !x y z. x + y + z = (x + y) + z

REAL_ADD_LDISTRIB
|- !x y z. x * (y + z) = x * y + x * z

REAL_ADD_LID
|- !x. &0 + x = x

REAL_ADD_LINV
|- !x. --x + x = &0

REAL_ADD_SYM
|- !x y. x + y = y + x

REAL_INV_0
|- inv (&0) = &0

REAL_LE_ANTISYM
|- !x y. x <= y /\ y <= x <=> x = y

REAL_LE_LADD_IMP
|- !x y z. y <= z ==> x + y <= x + z

728 Chapter 2. Pre-proved Theorems

REAL_LE_MUL
|- !x y. &0 <= x /\ &0 <= y ==> &0 <= x * y

REAL_LE_REFL
|- !x. x <= x

REAL_LE_TOTAL
|- !x y. x <= y \/ y <= x

REAL_LE_TRANS
|- !x y z. x <= y /\ y <= z ==> x <= z

REAL_MUL_ASSOC
|- !x y z. x * y * z = (x * y) * z

REAL_MUL_LID
|- !x. &1 * x = x

REAL_MUL_LINV
|- !x. ~(x = &0) ==> inv x * x = &1

REAL_MUL_SYM
|- !x y. x * y = y * x

REAL_OF_NUM_ADD
|- !m n. &m + &n = &(m + n)

REAL_OF_NUM_EQ
|- !m n. &m = &n <=> m = n

REAL_OF_NUM_LE
|- !m n. &m <= &n <=> m <= n

REAL_OF_NUM_MUL
|- !m n. &m * &n = &(m * n)

REAL_ABS_0
|- abs (&0) = &0

REAL_ABS_1
|- abs (&1) = &1

REAL_ABS_ABS
|- !x. abs (abs x) = abs x

REAL_ABS_BETWEEN
|- !x y d. &0 < d /\ x - d < y /\ y < x + d <=> abs (y - x) < d

REAL_ABS_BETWEEN1
|- !x y z. x < z /\ abs (y - x) < z - x ==> y < z

2.7. Theorems about real numbers 729

REAL_ABS_BETWEEN2
|- !x0 x y0 y.

x0 < y0 /\
&2 * abs (x - x0) < y0 - x0 /\
&2 * abs (y - y0) < y0 - x0
==> x < y

REAL_ABS_BOUND
|- !x y d. abs (x - y) < d ==> y < x + d

REAL_ABS_BOUNDS
|- !x k. abs x <= k <=> --k <= x /\ x <= k

REAL_ABS_CASES
|- !x. x = &0 \/ &0 < abs x

REAL_ABS_CIRCLE
|- !x y h. abs h < abs y - abs x ==> abs (x + h) < abs y

REAL_ABS_DIV
|- !x y. abs (x / y) = abs x / abs y

REAL_ABS_INV
|- !x. abs (inv x) = inv (abs x)

REAL_ABS_LE
|- !x. x <= abs x

REAL_ABS_MUL
|- !x y. abs (x * y) = abs x * abs y

REAL_ABS_NEG
|- !x. abs (--x) = abs x

REAL_ABS_NUM
|- !n. abs (&n) = &n

REAL_ABS_NZ
|- !x. ~(x = &0) <=> &0 < abs x

REAL_ABS_POS
|- !x. &0 <= abs x

REAL_ABS_POW
|- !x n. abs (x pow n) = abs x pow n

REAL_ABS_REFL
|- !x. abs x = x <=> &0 <= x

730 Chapter 2. Pre-proved Theorems

REAL_ABS_SIGN
|- !x y. abs (x - y) < y ==> &0 < x

REAL_ABS_SIGN2
|- !x y. abs (x - y) < --y ==> x < &0

REAL_ABS_STILLNZ
|- !x y. abs (x - y) < abs y ==> ~(x = &0)

REAL_ABS_SUB
|- !x y. abs (x - y) = abs (y - x)

REAL_ABS_SUB_ABS
|- !x y. abs (abs x - abs y) <= abs (x - y)

REAL_ABS_TRIANGLE
|- !x y. abs (x + y) <= abs x + abs y

REAL_ABS_TRIANGLE_LE
|- !x y z. abs x + abs (y - x) <= z ==> abs y <= z

REAL_ABS_TRIANGLE_LT
|- !x y z. abs x + abs (y - x) < z ==> abs y < z

REAL_ABS_ZERO
|- !x. abs x = &0 <=> x = &0

REAL_ADD2_SUB2
|- !a b c d. (a + b) - (c + d) = a - c + b - d

REAL_ADD_AC
|- m + n = n + m /\ (m + n) + p = m + n + p /\ m + n + p = n + m + p

REAL_ADD_RDISTRIB
|- !x y z. (x + y) * z = x * z + y * z

REAL_ADD_RID
|- !x. x + &0 = x

REAL_ADD_RINV
|- !x. x + --x = &0

REAL_ADD_SUB
|- !x y. (x + y) - x = y

REAL_ADD_SUB2
|- !x y. x - (x + y) = --y

2.7. Theorems about real numbers 731

REAL_COMPLETE
|- !P. (?x. P x) /\ (?M. !x. P x ==> x <= M)

==> (?M. (!x. P x ==> x <= M) /\
(!M’. (!x. P x ==> x <= M’) ==> M <= M’))

REAL_DIFFSQ
|- !x y. (x + y) * (x - y) = x * x - y * y

REAL_DIV_1
|- !x. x / &1 = x

REAL_DIV_LMUL
|- !x y. ~(y = &0) ==> y * x / y = x

REAL_DIV_POW2
|- !x m n.

~(x = &0)
==> x pow m / x pow n =

(if n <= m then x pow (m - n) else inv (x pow (n - m)))

REAL_DIV_POW2_ALT
|- !x m n.

~(x = &0)
==> x pow m / x pow n =

(if n < m then x pow (m - n) else inv (x pow (n - m)))

REAL_DIV_REFL
|- !x. ~(x = &0) ==> x / x = &1

REAL_DIV_RMUL
|- !x y. ~(y = &0) ==> x / y * y = x

REAL_DOWN
|- !d. &0 < d ==> (?e. &0 < e /\ e < d)

REAL_DOWN2
|- !d1 d2. &0 < d1 /\ &0 < d2 ==> (?e. &0 < e /\ e < d1 /\ e < d2)

REAL_ENTIRE
|- !x y. x * y = &0 <=> x = &0 \/ y = &0

REAL_EQ_ADD_LCANCEL
|- !x y z. x + y = x + z <=> y = z

REAL_EQ_ADD_LCANCEL_0
|- !x y. x + y = x <=> y = &0

REAL_EQ_ADD_RCANCEL
|- !x y z. x + z = y + z <=> x = y

732 Chapter 2. Pre-proved Theorems

REAL_EQ_ADD_RCANCEL_0
|- !x y. x + y = y <=> x = &0

REAL_EQ_IMP_LE
|- !x y. x = y ==> x <= y

REAL_EQ_LCANCEL_IMP
|- !x y z. ~(z = &0) /\ z * x = z * y ==> x = y

REAL_EQ_LDIV_EQ
|- !x y z. &0 < z ==> (x / z = y <=> x = y * z)

REAL_EQ_MUL_LCANCEL
|- !x y z. x * y = x * z <=> x = &0 \/ y = z

REAL_EQ_MUL_RCANCEL
|- !x y z. x * z = y * z <=> x = y \/ z = &0

REAL_EQ_NEG2
|- !x y. --x = --y <=> x = y

REAL_EQ_RCANCEL_IMP
|- !x y z. ~(z = &0) /\ x * z = y * z ==> x = y

REAL_EQ_RDIV_EQ
|- !x y z. &0 < z ==> (x = y / z <=> x * z = y)

REAL_EQ_SUB_LADD
|- !x y z. x = y - z <=> x + z = y

REAL_EQ_SUB_RADD
|- !x y z. x - y = z <=> x = z + y

REAL_INV_1
|- inv (&1) = &1

REAL_INV_1_LE
|- !x. &0 < x /\ x <= &1 ==> &1 <= inv x

REAL_INV_DIV
|- !x y. inv (x / y) = y / x

REAL_INV_EQ_0
|- !x. inv x = &0 <=> x = &0

REAL_INV_INV
|- !x. inv (inv x) = x

REAL_INV_LE_1
|- !x. &1 <= x ==> inv x <= &1

2.7. Theorems about real numbers 733

REAL_INV_MUL
|- !x y. inv (x * y) = inv x * inv y

REAL_INV_NEG
|- !x. inv (--x) = --inv x

REAL_LET_ADD
|- !x y. &0 <= x /\ &0 < y ==> &0 < x + y

REAL_LET_ADD2
|- !w x y z. w <= x /\ y < z ==> w + y < x + z

REAL_LET_ANTISYM
|- !x y. ~(x <= y /\ y < x)

REAL_LET_TOTAL
|- !x y. x <= y \/ y < x

REAL_LET_TRANS
|- !x y z. x <= y /\ y < z ==> x < z

REAL_LE_01
|- &0 <= &1

REAL_LE_ADD
|- !x y. &0 <= x /\ &0 <= y ==> &0 <= x + y

REAL_LE_ADD2
|- !w x y z. w <= x /\ y <= z ==> w + y <= x + z

REAL_LE_ADDL
|- !x y. y <= x + y <=> &0 <= x

REAL_LE_ADDR
|- !x y. x <= x + y <=> &0 <= y

REAL_LE_DIV
|- !x y. &0 <= x /\ &0 <= y ==> &0 <= x / y

REAL_LE_DIV2_EQ
|- !x y z. &0 < z ==> (x / z <= y / z <=> x <= y)

REAL_LE_DOUBLE
|- !x. &0 <= x + x <=> &0 <= x

REAL_LE_INV
|- !x. &0 <= x ==> &0 <= inv x

REAL_LE_INV2
|- !x y. &0 < x /\ x <= y ==> inv y <= inv x

734 Chapter 2. Pre-proved Theorems

REAL_LE_INV_EQ
|- !x. &0 <= inv x <=> &0 <= x

REAL_LE_LADD
|- !x y z. x + y <= x + z <=> y <= z

REAL_LE_LCANCEL_IMP
|- !x y z. &0 < x /\ x * y <= x * z ==> y <= z

REAL_LE_LDIV_EQ
|- !x y z. &0 < z ==> (x / z <= y <=> x <= y * z)

REAL_LE_LMUL
|- !x y z. &0 <= x /\ y <= z ==> x * y <= x * z

REAL_LE_LMUL_EQ
|- !x y z. &0 < z ==> (z * x <= z * y <=> x <= y)

REAL_LE_LNEG
|- !x y. --x <= y <=> &0 <= x + y

REAL_LE_LT
|- !x y. x <= y <=> x < y \/ x = y

REAL_LE_MAX
|- !x y z. z <= max x y <=> z <= x \/ z <= y

REAL_LE_MIN
|- !x y z. z <= min x y <=> z <= x /\ z <= y

REAL_LE_MUL2
|- !w x y z. &0 <= w /\ w <= x /\ &0 <= y /\ y <= z ==> w * y <= x * z

REAL_LE_NEG
|- !x y. --x <= --y <=> y <= x

REAL_LE_NEG2
|- !x y. --x <= --y <=> y <= x

REAL_LE_NEGL
|- !x. --x <= x <=> &0 <= x

REAL_LE_NEGR
|- !x. x <= --x <=> x <= &0

REAL_LE_NEGTOTAL
|- !x. &0 <= x \/ &0 <= --x

REAL_LE_POW2
|- !n. &1 <= &2 pow n

2.7. Theorems about real numbers 735

REAL_LE_RADD
|- !x y z. x + z <= y + z <=> x <= y

REAL_LE_RCANCEL_IMP
|- !x y z. &0 < z /\ x * z <= y * z ==> x <= y

REAL_LE_RDIV_EQ
|- !x y z. &0 < z ==> (x <= y / z <=> x * z <= y)

REAL_LE_RMUL
|- !x y z. x <= y /\ &0 <= z ==> x * z <= y * z

REAL_LE_RMUL_EQ
|- !x y z. &0 < z ==> (x * z <= y * z <=> x <= y)

REAL_LE_RNEG
|- !x y. x <= --y <=> x + y <= &0

REAL_LE_SQUARE
|- !x. &0 <= x * x

REAL_LE_SQUARE_ABS
|- !x y. abs x <= abs y <=> x pow 2 <= y pow 2

REAL_LE_SUB_LADD
|- !x y z. x <= y - z <=> x + z <= y

REAL_LE_SUB_RADD
|- !x y z. x - y <= z <=> x <= z + y

REAL_LNEG_UNIQ
|- !x y. x + y = &0 <=> x = --y

REAL_LTE_ADD
|- !x y. &0 < x /\ &0 <= y ==> &0 < x + y

REAL_LTE_ADD2
|- !w x y z. w < x /\ y <= z ==> w + y < x + z

REAL_LTE_ANTISYM
|- !x y. ~(x < y /\ y <= x)

REAL_LTE_TOTAL
|- !x y. x < y \/ y <= x

REAL_LTE_TRANS
|- !x y z. x < y /\ y <= z ==> x < z

REAL_LT_01
|- &0 < &1

736 Chapter 2. Pre-proved Theorems

REAL_LT_ADD
|- !x y. &0 < x /\ &0 < y ==> &0 < x + y

REAL_LT_ADD1
|- !x y. x <= y ==> x < y + &1

REAL_LT_ADD2
|- !w x y z. w < x /\ y < z ==> w + y < x + z

REAL_LT_ADDL
|- !x y. y < x + y <=> &0 < x

REAL_LT_ADDNEG
|- !x y z. y < x + --z <=> y + z < x

REAL_LT_ADDNEG2
|- !x y z. x + --y < z <=> x < z + y

REAL_LT_ADDR
|- !x y. x < x + y <=> &0 < y

REAL_LT_ADD_SUB
|- !x y z. x + y < z <=> x < z - y

REAL_LT_ANTISYM
|- !x y. ~(x < y /\ y < x)

REAL_LT_DIV
|- !x y. &0 < x /\ &0 < y ==> &0 < x / y

REAL_LT_DIV2_EQ
|- !x y z. &0 < z ==> (x / z < y / z <=> x < y)

REAL_LT_GT
|- !x y. x < y ==> ~(y < x)

REAL_LT_IMP_LE
|- !x y. x < y ==> x <= y

REAL_LT_IMP_NE
|- !x y. x < y ==> ~(x = y)

REAL_LT_IMP_NZ
|- !x. &0 < x ==> ~(x = &0)

REAL_LT_INV
|- !x. &0 < x ==> &0 < inv x

REAL_LT_INV2
|- !x y. &0 < x /\ x < y ==> inv y < inv x

2.7. Theorems about real numbers 737

REAL_LT_INV_EQ
|- !x. &0 < inv x <=> &0 < x

REAL_LT_LADD
|- !x y z. x + y < x + z <=> y < z

REAL_LT_LADD_IMP
|- !x y z. y < z ==> x + y < x + z

REAL_LT_LCANCEL_IMP
|- !x y z. &0 < x /\ x * y < x * z ==> y < z

REAL_LT_LDIV_EQ
|- !x y z. &0 < z ==> (x / z < y <=> x < y * z)

REAL_LT_LE
|- !x y. x < y <=> x <= y /\ ~(x = y)

REAL_LT_LMUL
|- !x y z. &0 < x /\ y < z ==> x * y < x * z

REAL_LT_LMUL_EQ
|- !x y z. &0 < z ==> (z * x < z * y <=> x < y)

REAL_LT_LNEG
|- !x y. --x < y <=> &0 < x + y

REAL_LT_MAX
|- !x y z. z < max x y <=> z < x \/ z < y

REAL_LT_MIN
|- !x y z. z < min x y <=> z < x /\ z < y

REAL_LT_MUL
|- !x y. &0 < x /\ &0 < y ==> &0 < x * y

REAL_LT_MUL2
|- !w x y z. &0 <= w /\ w < x /\ &0 <= y /\ y < z ==> w * y < x * z

REAL_LT_NEG
|- !x y. --x < --y <=> y < x

REAL_LT_NEG2
|- !x y. --x < --y <=> y < x

REAL_LT_NEGTOTAL
|- !x. x = &0 \/ &0 < x \/ &0 < --x

REAL_LT_POW2
|- !n. &0 < &2 pow n

738 Chapter 2. Pre-proved Theorems

REAL_LT_RADD
|- !x y z. x + z < y + z <=> x < y

REAL_LT_RCANCEL_IMP
|- !x y z. &0 < z /\ x * z < y * z ==> x < y

REAL_LT_RDIV_EQ
|- !x y z. &0 < z ==> (x < y / z <=> x * z < y)

REAL_LT_REFL
|- !x. ~(x < x)

REAL_LT_RMUL
|- !x y z. x < y /\ &0 < z ==> x * z < y * z

REAL_LT_RMUL_EQ
|- !x y z. &0 < z ==> (x * z < y * z <=> x < y)

REAL_LT_RNEG
|- !x y. x < --y <=> x + y < &0

REAL_LT_SQUARE
|- !x. &0 < x * x <=> ~(x = &0)

REAL_LT_SUB_LADD
|- !x y z. x < y - z <=> x + z < y

REAL_LT_SUB_RADD
|- !x y z. x - y < z <=> x < z + y

REAL_LT_TOTAL
|- !x y. x = y \/ x < y \/ y < x

REAL_LT_TRANS
|- !x y z. x < y /\ y < z ==> x < z

REAL_MAX_ACI
|- max x y = max y x /\

max (max x y) z = max x (max y z) /\
max x (max y z) = max y (max x z) /\
max x x = x /\
max x (max x y) = max x y

REAL_MAX_ASSOC
|- !x y z. max x (max y z) = max (max x y) z

REAL_MAX_LE
|- !x y z. max x y <= z <=> x <= z /\ y <= z

2.7. Theorems about real numbers 739

REAL_MAX_LT
|- !x y z. max x y < z <=> x < z /\ y < z

REAL_MAX_MAX
|- !x y. x <= max x y /\ y <= max x y

REAL_MAX_MIN
|- !x y. max x y = --min (--x) (--y)

REAL_MAX_SYM
|- !x y. max x y = max y x

REAL_MIN_ACI
|- min x y = min y x /\

min (min x y) z = min x (min y z) /\
min x (min y z) = min y (min x z) /\
min x x = x /\
min x (min x y) = min x y

REAL_MIN_ASSOC
|- !x y z. min x (min y z) = min (min x y) z

REAL_MIN_LE
|- !x y z. min x y <= z <=> x <= z \/ y <= z

REAL_MIN_LT
|- !x y z. min x y < z <=> x < z \/ y < z

REAL_MIN_MAX
|- !x y. min x y = --max (--x) (--y)

REAL_MIN_MIN
|- !x y. min x y <= x /\ min x y <= y

REAL_MIN_SYM
|- !x y. min x y = min y x

REAL_MUL_2
|- !x. &2 * x = x + x

REAL_MUL_AC
|- m * n = n * m /\ (m * n) * p = m * n * p /\ m * n * p = n * m * p

REAL_MUL_LINV_UNIQ
|- !x y. x * y = &1 ==> inv y = x

REAL_MUL_LNEG
|- !x y. --x * y = --(x * y)

740 Chapter 2. Pre-proved Theorems

REAL_MUL_LZERO
|- !x. &0 * x = &0

REAL_MUL_RID
|- !x. x * &1 = x

REAL_MUL_RINV
|- !x. ~(x = &0) ==> x * inv x = &1

REAL_MUL_RINV_UNIQ
|- !x y. x * y = &1 ==> inv x = y

REAL_MUL_RNEG
|- !x y. x * --y = --(x * y)

REAL_MUL_RZERO
|- !x. x * &0 = &0

REAL_NEGNEG
|- !x. -- --x = x

REAL_NEG_0
|- -- &0 = &0

REAL_NEG_ADD
|- !x y. --(x + y) = --x + --y

REAL_NEG_EQ
|- !x y. --x = y <=> x = --y

REAL_NEG_EQ_0
|- !x. --x = &0 <=> x = &0

REAL_NEG_GE0
|- !x. &0 <= --x <=> x <= &0

REAL_NEG_GT0
|- !x. &0 < --x <=> x < &0

REAL_NEG_LE0
|- !x. --x <= &0 <=> &0 <= x

REAL_NEG_LMUL
|- !x y. --(x * y) = --x * y

REAL_NEG_LT0
|- !x. --x < &0 <=> &0 < x

REAL_NEG_MINUS1
|- !x. --x = -- &1 * x

2.7. Theorems about real numbers 741

REAL_NEG_MUL2
|- !x y. --x * --y = x * y

REAL_NEG_NEG
|- !x. -- --x = x

REAL_NEG_RMUL
|- !x y. --(x * y) = x * --y

REAL_NEG_SUB
|- !x y. --(x - y) = y - x

REAL_NOT_EQ
|- !x y. ~(x = y) <=> x < y \/ y < x

REAL_NOT_LE
|- !x y. ~(x <= y) <=> y < x

REAL_NOT_LT
|- !x y. ~(x < y) <=> y <= x

REAL_OF_NUM_GE
|- !m n. &m >= &n <=> m >= n

REAL_OF_NUM_GT
|- !m n. &m > &n <=> m > n

REAL_OF_NUM_LT
|- !m n. &m < &n <=> m < n

REAL_OF_NUM_POW
|- !x n. &x pow n = &(x EXP n)

REAL_OF_NUM_SUB
|- !m n. m <= n ==> &n - &m = &(n - m)

REAL_OF_NUM_SUC
|- !n. &n + &1 = &(SUC n)

REAL_POS
|- !n. &0 <= &n

REAL_POS_NZ
|- !x. &0 < x ==> ~(x = &0)

REAL_POW2_ABS
|- !x. abs x pow 2 = x pow 2

REAL_POW_1
|- !x. x pow 1 = x

742 Chapter 2. Pre-proved Theorems

REAL_POW_1_LE
|- !n x. &0 <= x /\ x <= &1 ==> x pow n <= &1

REAL_POW_2
|- !x. x pow 2 = x * x

REAL_POW_ADD
|- !x m n. x pow (m + n) = x pow m * x pow n

REAL_POW_DIV
|- !x y n. (x / y) pow n = x pow n / y pow n

REAL_POW_EQ_0
|- !x n. x pow n = &0 <=> x = &0 /\ ~(n = 0)

REAL_POW_INV
|- !x n. inv x pow n = inv (x pow n)

REAL_POW_LE
|- !x n. &0 <= x ==> &0 <= x pow n

REAL_POW_LE2
|- !n x y. &0 <= x /\ x <= y ==> x pow n <= y pow n

REAL_POW_LE_1
|- !n x. &1 <= x ==> &1 <= x pow n

REAL_POW_LT
|- !x n. &0 < x ==> &0 < x pow n

REAL_POW_LT2
|- !n x y. ~(n = 0) /\ &0 <= x /\ x < y ==> x pow n < y pow n

REAL_POW_MONO
|- !m n x. &1 <= x /\ m <= n ==> x pow m <= x pow n

REAL_POW_MONO_LT
|- !m n x. &1 < x /\ m < n ==> x pow m < x pow n

REAL_POW_MUL
|- !x y n. (x * y) pow n = x pow n * y pow n

REAL_POW_NEG
|- !x n. --x pow n = (if EVEN n then x pow n else --(x pow n))

REAL_POW_NZ
|- !x n. ~(x = &0) ==> ~(x pow n = &0)

REAL_POW_ONE
|- !n. &1 pow n = &1

2.7. Theorems about real numbers 743

REAL_POW_POW
|- !x m n. x pow m pow n = x pow (m * n)

REAL_POW_SUB
|- !x m n. ~(x = &0) /\ m <= n ==> x pow (n - m) = x pow n / x pow m

REAL_RNEG_UNIQ
|- !x y. x + y = &0 <=> y = --x

REAL_SOS_EQ_0
|- !x y. x pow 2 + y pow 2 = &0 <=> x = &0 /\ y = &0

REAL_SUB_0
|- !x y. x - y = &0 <=> x = y

REAL_SUB_ABS
|- !x y. abs x - abs y <= abs (x - y)

REAL_SUB_ADD
|- !x y. x - y + y = x

REAL_SUB_ADD2
|- !x y. y + x - y = x

REAL_SUB_INV
|- !x y. ~(x = &0) /\ ~(y = &0) ==> inv x - inv y = (y - x) / (x * y)

REAL_SUB_LDISTRIB
|- !x y z. x * (y - z) = x * y - x * z

REAL_SUB_LE
|- !x y. &0 <= x - y <=> y <= x

REAL_SUB_LNEG
|- !x y. --x - y = --(x + y)

REAL_SUB_LT
|- !x y. &0 < x - y <=> y < x

REAL_SUB_LZERO
|- !x. &0 - x = --x

REAL_SUB_NEG2
|- !x y. --x - --y = y - x

REAL_SUB_RDISTRIB
|- !x y z. (x - y) * z = x * z - y * z

REAL_SUB_REFL
|- !x. x - x = &0

744 Chapter 2. Pre-proved Theorems

REAL_SUB_RNEG
|- !x y. x - --y = x + y

REAL_SUB_RZERO
|- !x. x - &0 = x

REAL_SUB_SUB
|- !x y. x - y - x = --y

REAL_SUB_SUB2
|- !x y. x - (x - y) = y

REAL_SUB_TRIANGLE
|- !a b c. a - b + b - c = a - c

REAL_WLOG_LE
|- (!x y. P x y <=> P y x) /\ (!x y. x <= y ==> P x y) ==> (!x y. P x y)

REAL_WLOG_LT
|- (!x. P x x) /\ (!x y. P x y <=> P y x) /\ (!x y. x < y ==> P x y)

==> (!x y. P x y)

real_abs
|- !x. abs x = (if &0 <= x then x else --x)

real_div
|- !x y. x / y = x * inv y

real_ge
|- !y x. x >= y <=> y <= x

real_gt
|- !y x. x > y <=> y < x

real_lt
|- !y x. x < y <=> ~(y <= x)

real_max
|- !n m. max m n = (if m <= n then n else m)

real_min
|- !m n. min m n = (if m <= n then m else n)

real_pow
|- x pow 0 = &1 /\ (!n. x pow SUC n = x * x pow n)

real_sub
|- !x y. x - y = x + --y

2.8. Theorems about integers 745

2.8 Theorems about integers

INT_ABS
|- !x. abs x = (if &0 <= x then x else --x)

INT_ABS_0
|- abs (&0) = &0

INT_ABS_1
|- abs (&1) = &1

INT_ABS_ABS
|- !x. abs (abs x) = abs x

INT_ABS_BETWEEN
|- !x y d. &0 < d /\ x - d < y /\ y < x + d <=> abs (y - x) < d

INT_ABS_BETWEEN1
|- !x y z. x < z /\ abs (y - x) < z - x ==> y < z

INT_ABS_BETWEEN2
|- !x0 x y0 y.

x0 < y0 /\
&2 * abs (x - x0) < y0 - x0 /\
&2 * abs (y - y0) < y0 - x0
==> x < y

INT_ABS_BOUND
|- !x y d. abs (x - y) < d ==> y < x + d

INT_ABS_CASES
|- !x. x = &0 \/ &0 < abs x

INT_ABS_CIRCLE
|- !x y h. abs h < abs y - abs x ==> abs (x + h) < abs y

INT_ABS_LE
|- !x. x <= abs x

INT_ABS_MUL
|- !x y. abs (x * y) = abs x * abs y

INT_ABS_MUL_1
|- !x y. abs (x * y) = &1 <=> abs x = &1 /\ abs y = &1

INT_ABS_NEG
|- !x. abs (--x) = abs x

746 Chapter 2. Pre-proved Theorems

INT_ABS_NUM
|- !n. abs (&n) = &n

INT_ABS_NZ
|- !x. ~(x = &0) <=> &0 < abs x

INT_ABS_POS
|- !x. &0 <= abs x

INT_ABS_POW
|- !x n. abs (x pow n) = abs x pow n

INT_ABS_REFL
|- !x. abs x = x <=> &0 <= x

INT_ABS_SIGN
|- !x y. abs (x - y) < y ==> &0 < x

INT_ABS_SIGN2
|- !x y. abs (x - y) < --y ==> x < &0

INT_ABS_STILLNZ
|- !x y. abs (x - y) < abs y ==> ~(x = &0)

INT_ABS_SUB
|- !x y. abs (x - y) = abs (y - x)

INT_ABS_SUB_ABS
|- !x y. abs (abs x - abs y) <= abs (x - y)

INT_ABS_TRIANGLE
|- !x y. abs (x + y) <= abs x + abs y

INT_ABS_ZERO
|- !x. abs x = &0 <=> x = &0

INT_ADD2_SUB2
|- !a b c d. (a + b) - (c + d) = a - c + b - d

INT_ADD_AC
|- m + n = n + m /\ (m + n) + p = m + n + p /\ m + n + p = n + m + p

INT_ADD_ASSOC
|- !x y z. x + y + z = (x + y) + z

INT_ADD_LDISTRIB
|- !x y z. x * (y + z) = x * y + x * z

INT_ADD_LID
|- !x. &0 + x = x

2.8. Theorems about integers 747

INT_ADD_LINV
|- !x. --x + x = &0

INT_ADD_RDISTRIB
|- !x y z. (x + y) * z = x * z + y * z

INT_ADD_RID
|- !x. x + &0 = x

INT_ADD_RINV
|- !x. x + --x = &0

INT_ADD_SUB
|- !x y. (x + y) - x = y

INT_ADD_SUB2
|- !x y. x - (x + y) = --y

INT_ADD_SYM
|- !x y. x + y = y + x

INT_ARCH
|- !x d. ~(d = &0) ==> (?c. x < c * d)

INT_DIFFSQ
|- !x y. (x + y) * (x - y) = x * x - y * y

INT_ENTIRE
|- !x y. x * y = &0 <=> x = &0 \/ y = &0

INT_EQ_ADD_LCANCEL
|- !x y z. x + y = x + z <=> y = z

INT_EQ_ADD_LCANCEL_0
|- !x y. x + y = x <=> y = &0

INT_EQ_ADD_RCANCEL
|- !x y z. x + z = y + z <=> x = y

INT_EQ_ADD_RCANCEL_0
|- !x y. x + y = y <=> x = &0

INT_EQ_IMP_LE
|- !x y. x = y ==> x <= y

INT_EQ_MUL_LCANCEL
|- !x y z. x * y = x * z <=> x = &0 \/ y = z

INT_EQ_MUL_RCANCEL
|- !x y z. x * z = y * z <=> x = y \/ z = &0

748 Chapter 2. Pre-proved Theorems

INT_EQ_NEG2
|- !x y. --x = --y <=> x = y

INT_EQ_SUB_LADD
|- !x y z. x = y - z <=> x + z = y

INT_EQ_SUB_RADD
|- !x y z. x - y = z <=> x = z + y

INT_FORALL_POS
|- (!n. P (&n)) <=> (!i. &0 <= i ==> P i)

INT_GE
|- !x y. x >= y <=> y <= x

INT_GT
|- !x y. x > y <=> y < x

INT_GT_DISCRETE
|- !x y. x > y <=> x >= y + &1

INT_IMAGE
|- !x. (?n. x = &n) \/ (?n. x = -- &n)

INT_LET_ADD
|- !x y. &0 <= x /\ &0 < y ==> &0 < x + y

INT_LET_ADD2
|- !w x y z. w <= x /\ y < z ==> w + y < x + z

INT_LET_ANTISYM
|- !x y. ~(x <= y /\ y < x)

INT_LET_TOTAL
|- !x y. x <= y \/ y < x

INT_LET_TRANS
|- !x y z. x <= y /\ y < z ==> x < z

INT_LE_01
|- &0 <= &1

INT_LE_ADD
|- !x y. &0 <= x /\ &0 <= y ==> &0 <= x + y

INT_LE_ADD2
|- !w x y z. w <= x /\ y <= z ==> w + y <= x + z

INT_LE_ADDL
|- !x y. y <= x + y <=> &0 <= x

2.8. Theorems about integers 749

INT_LE_ADDR
|- !x y. x <= x + y <=> &0 <= y

INT_LE_ANTISYM
|- !x y. x <= y /\ y <= x <=> x = y

INT_LE_DOUBLE
|- !x. &0 <= x + x <=> &0 <= x

INT_LE_LADD
|- !x y z. x + y <= x + z <=> y <= z

INT_LE_LADD_IMP
|- !x y z. y <= z ==> x + y <= x + z

INT_LE_LMUL
|- !x y z. &0 <= x /\ y <= z ==> x * y <= x * z

INT_LE_LNEG
|- !x y. --x <= y <=> &0 <= x + y

INT_LE_LT
|- !x y. x <= y <=> x < y \/ x = y

INT_LE_MAX
|- !x y z. z <= max x y <=> z <= x \/ z <= y

INT_LE_MIN
|- !x y z. z <= min x y <=> z <= x /\ z <= y

INT_LE_MUL
|- !x y. &0 <= x /\ &0 <= y ==> &0 <= x * y

INT_LE_NEG
|- !x y. --x <= --y <=> y <= x

INT_LE_NEG2
|- !x y. --x <= --y <=> y <= x

INT_LE_NEGL
|- !x. --x <= x <=> &0 <= x

INT_LE_NEGR
|- !x. x <= --x <=> x <= &0

INT_LE_NEGTOTAL
|- !x. &0 <= x \/ &0 <= --x

INT_LE_POW2
|- !n. &1 <= &2 pow n

750 Chapter 2. Pre-proved Theorems

INT_LE_RADD
|- !x y z. x + z <= y + z <=> x <= y

INT_LE_REFL
|- !x. x <= x

INT_LE_RNEG
|- !x y. x <= --y <=> x + y <= &0

INT_LE_SQUARE
|- !x. &0 <= x * x

INT_LE_SUB_LADD
|- !x y z. x <= y - z <=> x + z <= y

INT_LE_SUB_RADD
|- !x y z. x - y <= z <=> x <= z + y

INT_LE_TOTAL
|- !x y. x <= y \/ y <= x

INT_LE_TRANS
|- !x y z. x <= y /\ y <= z ==> x <= z

INT_LNEG_UNIQ
|- !x y. x + y = &0 <=> x = --y

INT_LT
|- !x y. x < y <=> ~(y <= x)

INT_LTE_ADD
|- !x y. &0 < x /\ &0 <= y ==> &0 < x + y

INT_LTE_ADD2
|- !w x y z. w < x /\ y <= z ==> w + y < x + z

INT_LTE_ANTISYM
|- !x y. ~(x < y /\ y <= x)

INT_LTE_TOTAL
|- !x y. x < y \/ y <= x

INT_LTE_TRANS
|- !x y z. x < y /\ y <= z ==> x < z

INT_LT_01
|- &0 < &1

INT_LT_ADD
|- !x y. &0 < x /\ &0 < y ==> &0 < x + y

2.8. Theorems about integers 751

INT_LT_ADD1
|- !x y. x <= y ==> x < y + &1

INT_LT_ADD2
|- !w x y z. w < x /\ y < z ==> w + y < x + z

INT_LT_ADDL
|- !x y. y < x + y <=> &0 < x

INT_LT_ADDNEG
|- !x y z. y < x + --z <=> y + z < x

INT_LT_ADDNEG2
|- !x y z. x + --y < z <=> x < z + y

INT_LT_ADDR
|- !x y. x < x + y <=> &0 < y

INT_LT_ADD_SUB
|- !x y z. x + y < z <=> x < z - y

INT_LT_ANTISYM
|- !x y. ~(x < y /\ y < x)

INT_LT_DISCRETE
|- !x y. x < y <=> x + &1 <= y

INT_LT_GT
|- !x y. x < y ==> ~(y < x)

INT_LT_IMP_LE
|- !x y. x < y ==> x <= y

INT_LT_IMP_NE
|- !x y. x < y ==> ~(x = y)

INT_LT_LADD
|- !x y z. x + y < x + z <=> y < z

INT_LT_LE
|- !x y. x < y <=> x <= y /\ ~(x = y)

INT_LT_LMUL_EQ
|- !x y z. &0 < z ==> (z * x < z * y <=> x < y)

INT_LT_MAX
|- !x y z. z < max x y <=> z < x \/ z < y

INT_LT_MIN
|- !x y z. z < min x y <=> z < x /\ z < y

752 Chapter 2. Pre-proved Theorems

INT_LT_MUL
|- !x y. &0 < x /\ &0 < y ==> &0 < x * y

INT_LT_NEG
|- !x y. --x < --y <=> y < x

INT_LT_NEG2
|- !x y. --x < --y <=> y < x

INT_LT_NEGTOTAL
|- !x. x = &0 \/ &0 < x \/ &0 < --x

INT_LT_POW2
|- !n. &0 < &2 pow n

INT_LT_RADD
|- !x y z. x + z < y + z <=> x < y

INT_LT_REFL
|- !x. ~(x < x)

INT_LT_RMUL_EQ
|- !x y z. &0 < z ==> (x * z < y * z <=> x < y)

INT_LT_SUB_LADD
|- !x y z. x < y - z <=> x + z < y

INT_LT_SUB_RADD
|- !x y z. x - y < z <=> x < z + y

INT_LT_TOTAL
|- !x y. x = y \/ x < y \/ y < x

INT_LT_TRANS
|- !x y z. x < y /\ y < z ==> x < z

INT_MAX_ACI
|- max x y = max y x /\

max (max x y) z = max x (max y z) /\
max x (max y z) = max y (max x z) /\
max x x = x /\
max x (max x y) = max x y

INT_MAX_ASSOC
|- !x y z. max x (max y z) = max (max x y) z

INT_MAX_LE
|- !x y z. max x y <= z <=> x <= z /\ y <= z

2.8. Theorems about integers 753

INT_MAX_LT
|- !x y z. max x y < z <=> x < z /\ y < z

INT_MAX_MAX
|- !x y. x <= max x y /\ y <= max x y

INT_MAX_MIN
|- !x y. max x y = --min (--x) (--y)

INT_MAX_SYM
|- !x y. max x y = max y x

INT_MIN_ACI
|- min x y = min y x /\

min (min x y) z = min x (min y z) /\
min x (min y z) = min y (min x z) /\
min x x = x /\
min x (min x y) = min x y

INT_MIN_ASSOC
|- !x y z. min x (min y z) = min (min x y) z

INT_MIN_LE
|- !x y z. min x y <= z <=> x <= z \/ y <= z

INT_MIN_LT
|- !x y z. min x y < z <=> x < z \/ y < z

INT_MIN_MAX
|- !x y. min x y = --max (--x) (--y)

INT_MIN_MIN
|- !x y. min x y <= x /\ min x y <= y

INT_MIN_SYM
|- !x y. min x y = min y x

INT_MUL_AC
|- m * n = n * m /\ (m * n) * p = m * n * p /\ m * n * p = n * m * p

INT_MUL_ASSOC
|- !x y z. x * y * z = (x * y) * z

INT_MUL_LID
|- !x. &1 * x = x

INT_MUL_LNEG
|- !x y. --x * y = --(x * y)

754 Chapter 2. Pre-proved Theorems

INT_MUL_LZERO
|- !x. &0 * x = &0

INT_MUL_RID
|- !x. x * &1 = x

INT_MUL_RNEG
|- !x y. x * --y = --(x * y)

INT_MUL_RZERO
|- !x. x * &0 = &0

INT_MUL_SYM
|- !x y. x * y = y * x

INT_NEGNEG
|- !x. -- --x = x

INT_NEG_0
|- -- &0 = &0

INT_NEG_ADD
|- !x y. --(x + y) = --x + --y

INT_NEG_EQ
|- !x y. --x = y <=> x = --y

INT_NEG_EQ_0
|- !x. --x = &0 <=> x = &0

INT_NEG_GE0
|- !x. &0 <= --x <=> x <= &0

INT_NEG_GT0
|- !x. &0 < --x <=> x < &0

INT_NEG_LE0
|- !x. --x <= &0 <=> &0 <= x

INT_NEG_LMUL
|- !x y. --(x * y) = --x * y

INT_NEG_LT0
|- !x. --x < &0 <=> &0 < x

INT_NEG_MINUS1
|- !x. --x = -- &1 * x

INT_NEG_MUL2
|- !x y. --x * --y = x * y

2.8. Theorems about integers 755

INT_NEG_NEG
|- !x. -- --x = x

INT_NEG_RMUL
|- !x y. --(x * y) = x * --y

INT_NEG_SUB
|- !x y. --(x - y) = y - x

INT_NOT_EQ
|- !x y. ~(x = y) <=> x < y \/ y < x

INT_NOT_LE
|- !x y. ~(x <= y) <=> y < x

INT_NOT_LT
|- !x y. ~(x < y) <=> y <= x

INT_OF_NUM_ADD
|- !m n. &m + &n = &(m + n)

INT_OF_NUM_EQ
|- !m n. &m = &n <=> m = n

INT_OF_NUM_GE
|- !m n. &m >= &n <=> m >= n

INT_OF_NUM_GT
|- !m n. &m > &n <=> m > n

INT_OF_NUM_LE
|- !m n. &m <= &n <=> m <= n

INT_OF_NUM_LT
|- !m n. &m < &n <=> m < n

INT_OF_NUM_MUL
|- !m n. &m * &n = &(m * n)

INT_OF_NUM_OF_INT
|- !x. &0 <= x ==> &(num_of_int x) = x

INT_OF_NUM_POW
|- !x n. &x pow n = &(x EXP n)

INT_OF_NUM_SUB
|- !m n. m <= n ==> &n - &m = &(n - m)

INT_OF_NUM_SUC
|- !n. &n + &1 = &(SUC n)

756 Chapter 2. Pre-proved Theorems

INT_POS
|- !n. &0 <= &n

INT_POS_NZ
|- !x. &0 < x ==> ~(x = &0)

INT_POW
|- x pow 0 = &1 /\ (!n. x pow SUC n = x * x pow n)

INT_POW2_ABS
|- !x. abs x pow 2 = x pow 2

INT_POW_1
|- !x. x pow 1 = x

INT_POW_1_LE
|- !n x. &0 <= x /\ x <= &1 ==> x pow n <= &1

INT_POW_2
|- !x. x pow 2 = x * x

INT_POW_ADD
|- !x m n. x pow (m + n) = x pow m * x pow n

INT_POW_EQ_0
|- !x n. x pow n = &0 <=> x = &0 /\ ~(n = 0)

INT_POW_LE
|- !x n. &0 <= x ==> &0 <= x pow n

INT_POW_LE2
|- !n x y. &0 <= x /\ x <= y ==> x pow n <= y pow n

INT_POW_LE_1
|- !n x. &1 <= x ==> &1 <= x pow n

INT_POW_LT
|- !x n. &0 < x ==> &0 < x pow n

INT_POW_LT2
|- !n x y. ~(n = 0) /\ &0 <= x /\ x < y ==> x pow n < y pow n

INT_POW_MONO
|- !m n x. &1 <= x /\ m <= n ==> x pow m <= x pow n

INT_POW_MONO_LT
|- !m n x. &1 < x /\ m < n ==> x pow m < x pow n

INT_POW_MUL
|- !x y n. (x * y) pow n = x pow n * y pow n

2.8. Theorems about integers 757

INT_POW_NEG
|- !x n. --x pow n = (if EVEN n then x pow n else --(x pow n))

INT_POW_NZ
|- !x n. ~(x = &0) ==> ~(x pow n = &0)

INT_POW_ONE
|- !n. &1 pow n = &1

INT_POW_POW
|- !x m n. x pow m pow n = x pow (m * n)

INT_RNEG_UNIQ
|- !x y. x + y = &0 <=> y = --x

INT_SUB
|- !x y. x - y = x + --y

INT_SUB_0
|- !x y. x - y = &0 <=> x = y

INT_SUB_ABS
|- !x y. abs x - abs y <= abs (x - y)

INT_SUB_ADD
|- !x y. x - y + y = x

INT_SUB_ADD2
|- !x y. y + x - y = x

INT_SUB_LDISTRIB
|- !x y z. x * (y - z) = x * y - x * z

INT_SUB_LE
|- !x y. &0 <= x - y <=> y <= x

INT_SUB_LNEG
|- !x y. --x - y = --(x + y)

INT_SUB_LT
|- !x y. &0 < x - y <=> y < x

INT_SUB_LZERO
|- !x. &0 - x = --x

INT_SUB_NEG2
|- !x y. --x - --y = y - x

INT_SUB_REFL
|- !x. x - x = &0

758 Chapter 2. Pre-proved Theorems

INT_SUB_RNEG
|- !x y. x - --y = x + y

INT_SUB_RZERO
|- !x. x - &0 = x

INT_SUB_SUB
|- !x y. x - y - x = --y

INT_SUB_SUB2
|- !x y. x - (x - y) = y

INT_SUB_TRIANGLE
|- !a b c. a - b + b - c = a - c

NUM_GCD
|- !a b. &(gcd (a,b)) = gcd (&a,&b)

NUM_OF_INT
|- !x. &0 <= x <=> &(num_of_int x) = x

NUM_OF_INT_OF_NUM
|- !n. num_of_int (&n) = n

int_congruent
|- !x y n. (x == y) (mod n) <=> (?d. x - y = n * d)

int_coprime
|- !a b. coprime (a,b) <=> (?x y. a * x + b * y = &1)

int_divides
|- !b a. a divides b <=> (?x. b = a * x)

int_gcd
|- !a b.

&0 <= gcd (a,b) /\
gcd (a,b) divides a /\
gcd (a,b) divides b /\
(?x y. gcd (a,b) = a * x + b * y)

int_mod
|- !n x y. mod n x y <=> n divides x - y

num_congruent
|- !x y n. (x == y) (mod n) <=> (&x == &y) (mod &n)

num_coprime
|- !a b. coprime (a,b) <=> coprime (&a,&b)

2.9. Theorems about sets and functions 759

num_divides
|- !a b. a divides b <=> &a divides &b

num_gcd
|- !a b. gcd (a,b) = num_of_int (gcd (&a,&b))

num_mod
|- !n x y. mod n x y <=> mod &n (&x) (&y)

2.9 Theorems about sets and functions

ABSORPTION
|- !x s. x IN s <=> x INSERT s = s

BIJ
|- !f s t. BIJ f s t <=> INJ f s t /\ SURJ f s t

BIJECTIONS_CARD_EQ
|- !s t f g.

(FINITE s \/ FINITE t) /\
(!x. x IN s ==> f x IN t /\ g (f x) = x) /\
(!y. y IN t ==> g y IN s /\ f (g y) = y)
==> CARD s = CARD t

BIJECTIONS_HAS_SIZE
|- !s t f g.

(!x. x IN s ==> f x IN t /\ g (f x) = x) /\
(!y. y IN t ==> g y IN s /\ f (g y) = y) /\
s HAS_SIZE n
==> t HAS_SIZE n

BIJECTIONS_HAS_SIZE_EQ
|- !s t f g.

(!x. x IN s ==> f x IN t /\ g (f x) = x) /\
(!y. y IN t ==> g y IN s /\ f (g y) = y)
==> (!n. s HAS_SIZE n <=> t HAS_SIZE n)

CARD
|- !s. CARD s = ITSET (\x n. SUC n) s 0

CARD_CLAUSES
|- CARD {} = 0 /\

(!x s.
FINITE s
==> CARD (x INSERT s) = (if x IN s then CARD s else SUC (CARD s)))

760 Chapter 2. Pre-proved Theorems

CARD_CROSS
|- !s t. FINITE s /\ FINITE t ==> CARD (s CROSS t) = CARD s * CARD t

CARD_DELETE
|- !x s.

FINITE s
==> CARD (s DELETE x) = (if x IN s then CARD s - 1 else CARD s)

CARD_EQ
|- !t s. s CARD_EQ t <=> s CARD_LE t /\ t CARD_LE s

CARD_EQ_0
|- !s. FINITE s ==> (CARD s = 0 <=> s = {})

CARD_EQ_BIJECTION
|- !s t.

FINITE s /\ FINITE t /\ CARD s = CARD t
==> (?f. (!x. x IN s ==> f x IN t) /\

(!y. y IN t ==> (?x. x IN s /\ f x = y)) /\
(!x y. x IN s /\ y IN s /\ f x = f y ==> x = y))

CARD_EQ_BIJECTIONS
|- !s t.

FINITE s /\ FINITE t /\ CARD s = CARD t
==> (?f g.

(!x. x IN s ==> f x IN t /\ g (f x) = x) /\
(!y. y IN t ==> g y IN s /\ f (g y) = y))

CARD_FUNSPACE
|- !s t.

FINITE s /\ FINITE t
==> CARD

{f | (!x. x IN s ==> f x IN t) /\ (!x. ~(x IN s) ==> f x = d)} =
CARD t EXP CARD s

CARD_GE
|- !t s. s CARD_GE t <=> (?f. !y. y IN t ==> (?x. x IN s /\ y = f x))

CARD_GE_REFL
|- !s. s CARD_GE s

CARD_GE_TRANS
|- !s t u. s CARD_GE t /\ t CARD_GE u ==> s CARD_GE u

CARD_GT
|- !t s. s CARD_GT t <=> s CARD_GE t /\ ~(t CARD_GE s)

2.9. Theorems about sets and functions 761

CARD_IMAGE_INJ
|- !f s.

(!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) /\ FINITE s
==> CARD (IMAGE f s) = CARD s

CARD_IMAGE_INJ_EQ
|- !f s t.

FINITE s /\
(!x. x IN s ==> f x IN t) /\
(!y. y IN t ==> (?!x. x IN s /\ f x = y))
==> CARD t = CARD s

CARD_IMAGE_LE
|- !f s. FINITE s ==> CARD (IMAGE f s) <= CARD s

CARD_LE
|- !t s. s CARD_LE t <=> t CARD_GE s

CARD_LE_INJ
|- !s t.

FINITE s /\ FINITE t /\ CARD s <= CARD t
==> (?f. IMAGE f s SUBSET t /\

(!x y. x IN s /\ y IN s /\ f x = f y ==> x = y))

CARD_LT
|- !t s. s CARD_LT t <=> s CARD_LE t /\ ~(t CARD_LE s)

CARD_NUMSEG
|- !m n. CARD (m..n) = (n + 1) - m

CARD_NUMSEG_1
|- !n. CARD (1..n) = n

CARD_NUMSEG_LE
|- !n. CARD {m | m <= n} = n + 1

CARD_NUMSEG_LEMMA
|- !m d. CARD (m..m + d) = d + 1

CARD_NUMSEG_LT
|- !n. CARD {m | m < n} = n

CARD_POWERSET
|- !s. FINITE s ==> CARD {t | t SUBSET s} = 2 EXP CARD s

CARD_PRODUCT
|- !s t.

FINITE s /\ FINITE t
==> CARD {x,y | x IN s /\ y IN t} = CARD s * CARD t

762 Chapter 2. Pre-proved Theorems

CARD_PSUBSET
|- !a b. a PSUBSET b /\ FINITE b ==> CARD a < CARD b

CARD_SUBSET
|- !a b. a SUBSET b /\ FINITE b ==> CARD a <= CARD b

CARD_SUBSET_EQ
|- !a b. FINITE b /\ a SUBSET b /\ CARD a = CARD b ==> a = b

CARD_SUBSET_LE
|- !a b. FINITE b /\ a SUBSET b /\ CARD b <= CARD a ==> a = b

CARD_UNION
|- !s t.

FINITE s /\ FINITE t /\ s INTER t = {}
==> CARD (s UNION t) = CARD s + CARD t

CARD_UNIONS_LE
|- !s t m n.

s HAS_SIZE m /\ (!x. x IN s ==> FINITE (t x) /\ CARD (t x) <= n)
==> CARD (UNIONS {t x | x IN s}) <= m * n

CARD_UNION_EQ
|- !s t u.

FINITE u /\ s INTER t = {} /\ s UNION t = u
==> CARD s + CARD t = CARD u

CARD_UNION_LE
|- !s t. FINITE s /\ FINITE t ==> CARD (s UNION t) <= CARD s + CARD t

CHOICE
|- !s. CHOICE s = (@x. x IN s)

CHOICE_DEF
|- !s. ~(s = {}) ==> CHOICE s IN s

CHOOSE_SUBSET
|- !s. FINITE s ==> (!n. n <= CARD s ==> (?t. t SUBSET s /\ t HAS_SIZE n))

COMPONENT
|- !x s. x IN x INSERT s

COUNTABLE
|- !t. COUNTABLE t <=> (:num) CARD_GE t

CROSS
|- !s t. s CROSS t = {x,y | x IN s /\ y IN t}

2.9. Theorems about sets and functions 763

DECOMPOSITION
|- !s x. x IN s <=> (?t. s = x INSERT t /\ ~(x IN t))

DELETE
|- !s x. s DELETE x = {y | y IN s /\ ~(y = x)}

DELETE_COMM
|- !x y s. s DELETE x DELETE y = s DELETE y DELETE x

DELETE_DELETE
|- !x s. s DELETE x DELETE x = s DELETE x

DELETE_INSERT
|- !x y s.

(x INSERT s) DELETE y =
(if x = y then s DELETE y else x INSERT (s DELETE y))

DELETE_INTER
|- !s t x. s DELETE x INTER t = (s INTER t) DELETE x

DELETE_NON_ELEMENT
|- !x s. ~(x IN s) <=> s DELETE x = s

DELETE_SUBSET
|- !x s. s DELETE x SUBSET s

DIFF
|- !s t. s DIFF t = {x | x IN s /\ ~(x IN t)}

DIFF_DIFF
|- !s t. s DIFF t DIFF t = s DIFF t

DIFF_EMPTY
|- !s. s DIFF {} = s

DIFF_EQ_EMPTY
|- !s. s DIFF s = {}

DIFF_INSERT
|- !s t x. s DIFF x INSERT t = s DELETE x DIFF t

DIFF_UNIV
|- !s. s DIFF UNIV = {}

DISJOINT
|- !s t. DISJOINT s t <=> s INTER t = {}

DISJOINT_DELETE_SYM
|- !s t x. DISJOINT (s DELETE x) t <=> DISJOINT (t DELETE x) s

764 Chapter 2. Pre-proved Theorems

DISJOINT_EMPTY
|- !s. DISJOINT {} s /\ DISJOINT s {}

DISJOINT_EMPTY_REFL
|- !s. s = {} <=> DISJOINT s s

DISJOINT_INSERT
|- !x s t. DISJOINT (x INSERT s) t <=> DISJOINT s t /\ ~(x IN t)

DISJOINT_NUMSEG
|- !m n p q. DISJOINT (m..n) (p..q) <=> n < p \/ q < m \/ n < m \/ q < p

DISJOINT_SYM
|- !s t. DISJOINT s t <=> DISJOINT t s

DISJOINT_UNION
|- !s t u. DISJOINT (s UNION t) u <=> DISJOINT s u /\ DISJOINT t u

EMPTY
|- {} = (\x. F)

EMPTY_DELETE
|- !x. {} DELETE x = {}

EMPTY_DIFF
|- !s. {} DIFF s = {}

EMPTY_GSPEC
|- {x | F} = {}

EMPTY_NOT_UNIV
|- ~({} = UNIV)

EMPTY_SUBSET
|- !s. {} SUBSET s

EMPTY_UNION
|- !s t. s UNION t = {} <=> s = {} /\ t = {}

EMPTY_UNIONS
|- !s. UNIONS s = {} <=> (!t. t IN s ==> t = {})

EQ_UNIV
|- (!x. x IN s) <=> s = UNIV

EXISTS_IN_CLAUSES
|- (!P. (?x. x IN {} /\ P x) <=> F) /\

(!P a s. (?x. x IN a INSERT s /\ P x) <=> P a \/ (?x. x IN s /\ P x))

2.9. Theorems about sets and functions 765

EXISTS_IN_IMAGE
|- !f s. (?y. y IN IMAGE f s /\ P y) <=> (?x. x IN s /\ P (f x))

EXTENSION
|- !s t. s = t <=> (!x. x IN s <=> x IN t)

FINITE_CASES
|- !a. FINITE a <=> a = {} \/ (?x s. a = x INSERT s /\ FINITE s)

FINITE_CROSS
|- !s t. FINITE s /\ FINITE t ==> FINITE (s CROSS t)

FINITE_DELETE
|- !s x. FINITE (s DELETE x) <=> FINITE s

FINITE_DELETE_IMP
|- !s x. FINITE s ==> FINITE (s DELETE x)

FINITE_DIFF
|- !s t. FINITE s ==> FINITE (s DIFF t)

FINITE_FUNSPACE
|- !s t.

FINITE s /\ FINITE t
==> FINITE

{f | (!x. x IN s ==> f x IN t) /\ (!x. ~(x IN s) ==> f x = d)}

FINITE_HAS_SIZE_LEMMA
|- !s. FINITE s ==> (?n. {x | x < n} CARD_GE s)

FINITE_IMAGE
|- !f s. FINITE s ==> FINITE (IMAGE f s)

FINITE_IMAGE_EXPAND
|- !f s. FINITE s ==> FINITE {y | ?x. x IN s /\ y = f x}

FINITE_IMAGE_INJ
|- !f A. (!x y. f x = f y ==> x = y) /\ FINITE A ==> FINITE {x | f x IN A}

FINITE_IMAGE_INJ_EQ
|- !f s.

(!x y. x IN s /\ y IN s /\ f x = f y ==> x = y)
==> (FINITE (IMAGE f s) <=> FINITE s)

FINITE_IMAGE_INJ_GENERAL
|- !f A s.

(!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) /\ FINITE A
==> FINITE {x | x IN s /\ f x IN A}

766 Chapter 2. Pre-proved Theorems

FINITE_INDEX_NUMBERS
|- !s. FINITE s <=>

(?k f.
(!i j. i IN k /\ j IN k /\ f i = f j ==> i = j) /\
FINITE k /\
s = IMAGE f k)

FINITE_INDEX_NUMSEG
|- !s. FINITE s <=>

(?f. (!i j. i IN 1..CARD s /\ j IN 1..CARD s /\ f i = f j ==> i = j) /\
s = IMAGE f (1..CARD s))

FINITE_INDUCT
|- !FINITE’. FINITE’ {} /\ (!x s. FINITE’ s ==> FINITE’ (x INSERT s))

==> (!a. FINITE a ==> FINITE’ a)

FINITE_INDUCT_DELETE
|- !P. P {} /\

(!s. FINITE s /\ ~(s = {})
==> (?x. x IN s /\ (P (s DELETE x) ==> P s)))

==> (!s. FINITE s ==> P s)

FINITE_INDUCT_STRONG
|- !P. P {} /\ (!x s. P s /\ ~(x IN s) /\ FINITE s ==> P (x INSERT s))

==> (!s. FINITE s ==> P s)

FINITE_INSERT
|- !s x. FINITE (x INSERT s) <=> FINITE s

FINITE_INTER
|- !s t. FINITE s \/ FINITE t ==> FINITE (s INTER t)

FINITE_NUMSEG
|- !m n. FINITE (m..n)

FINITE_NUMSEG_LE
|- !n. FINITE {m | m <= n}

FINITE_NUMSEG_LT
|- !n. FINITE {m | m < n}

FINITE_POWERSET
|- !s. FINITE s ==> FINITE {t | t SUBSET s}

FINITE_PRODUCT
|- !s t. FINITE s /\ FINITE t ==> FINITE {x,y | x IN s /\ y IN t}

2.9. Theorems about sets and functions 767

FINITE_PRODUCT_DEPENDENT
|- !s t.

FINITE s /\ (!x. x IN s ==> FINITE (t x))
==> FINITE {x,y | x IN s /\ y IN t x}

FINITE_RECURSION
|- !f b.

(!x y s. ~(x = y) ==> f x (f y s) = f y (f x s))
==> ITSET f {} b = b /\

(!x s.
FINITE s
==> ITSET f (x INSERT s) b =

(if x IN s then ITSET f s b else f x (ITSET f s b)))

FINITE_RECURSION_DELETE
|- !f b.

(!x y s. ~(x = y) ==> f x (f y s) = f y (f x s))
==> ITSET f {} b = b /\

(!x s.
FINITE s
==> ITSET f s b =

(if x IN s
then f x (ITSET f (s DELETE x) b)
else ITSET f (s DELETE x) b))

FINITE_RESTRICT
|- !s p. FINITE s ==> FINITE {x | x IN s /\ P x}

FINITE_RULES
|- FINITE {} /\ (!x s. FINITE s ==> FINITE (x INSERT s))

FINITE_SET_OF_LIST
|- !l. FINITE (set_of_list l)

FINITE_SUBSET
|- !s t. FINITE t /\ s SUBSET t ==> FINITE s

FINITE_SUBSETS
|- !s. FINITE s ==> FINITE {t | t SUBSET s}

FINITE_SUBSET_IMAGE
|- !f s t.

FINITE t /\ t SUBSET IMAGE f s <=>
(?s’. FINITE s’ /\ s’ SUBSET s /\ t = IMAGE f s’)

768 Chapter 2. Pre-proved Theorems

FINITE_SUBSET_IMAGE_IMP
|- !f s t.

FINITE t /\ t SUBSET IMAGE f s
==> (?s’. FINITE s’ /\ s’ SUBSET s /\ t SUBSET IMAGE f s’)

FINITE_UNION
|- !s t. FINITE (s UNION t) <=> FINITE s /\ FINITE t

FINITE_UNIONS
|- !s. FINITE s ==> (FINITE (UNIONS s) <=> (!t. t IN s ==> FINITE t))

FINITE_UNION_IMP
|- !s t. FINITE s /\ FINITE t ==> FINITE (s UNION t)

FINREC
|- (FINREC f b s a 0 <=> s = {} /\ a = b) /\

(FINREC f b s a (SUC n) <=>
(?x c. x IN s /\ FINREC f b (s DELETE x) c n /\ a = f x c))

FINREC_1_LEMMA
|- !f b s a. FINREC f b s a (SUC 0) <=> (?x. s = {x} /\ a = f x b)

FINREC_EXISTS_LEMMA
|- !f b s. FINITE s ==> (?a n. FINREC f b s a n)

FINREC_FUN
|- !f b.

(!x y s. ~(x = y) ==> f x (f y s) = f y (f x s))
==> (?g. g {} = b /\

(!s x. FINITE s /\ x IN s ==> g s = f x (g (s DELETE x))))

FINREC_FUN_LEMMA
|- !P R.

(!s. P s ==> (?a n. R s a n)) /\
(!n1 n2 s a1 a2. R s a1 n1 /\ R s a2 n2 ==> a1 = a2 /\ n1 = n2)
==> (?f. !s a. P s ==> ((?n. R s a n) <=> f s = a))

FINREC_SUC_LEMMA
|- !f b.

(!x y s. ~(x = y) ==> f x (f y s) = f y (f x s))
==> (!n s z.

FINREC f b s z (SUC n)
==> (!x. x IN s

==> (?w. FINREC f b (s DELETE x) w n /\ z = f x w)))

2.9. Theorems about sets and functions 769

FINREC_UNIQUE_LEMMA
|- !f b.

(!x y s. ~(x = y) ==> f x (f y s) = f y (f x s))
==> (!n1 n2 s a1 a2.

FINREC f b s a1 n1 /\ FINREC f b s a2 n2
==> a1 = a2 /\ n1 = n2)

FORALL_IN_CLAUSES
|- (!P. (!x. x IN {} ==> P x) <=> T) /\

(!P a s. (!x. x IN a INSERT s ==> P x) <=> P a /\ (!x. x IN s ==> P x))

FORALL_IN_IMAGE
|- !f s. (!y. y IN IMAGE f s ==> P y) <=> (!x. x IN s ==> P (f x))

FORALL_IN_UNIONS
|- !P s. (!x. x IN UNIONS s ==> P x) <=> (!t x. t IN s /\ x IN t ==> P x)

FUNCTION_FACTORS_LEFT
|- !f g. (!x y. g x = g y ==> f x = f y) <=> (?h. f = h o g)

FUNCTION_FACTORS_RIGHT
|- !f g. (!x. ?y. g y = f x) <=> (?h. f = g o h)

GSPEC
|- !p. GSPEC p = p

HAS_SIZE
|- !s n. s HAS_SIZE n <=> FINITE s /\ CARD s = n

HAS_SIZE_0
|- !s n. s HAS_SIZE 0 <=> s = {}

HAS_SIZE_CARD
|- !s n. s HAS_SIZE n ==> CARD s = n

HAS_SIZE_CLAUSES
|- (s HAS_SIZE 0 <=> s = {}) /\

(s HAS_SIZE SUC n <=>
(?a t. t HAS_SIZE n /\ ~(a IN t) /\ s = a INSERT t))

HAS_SIZE_CROSS
|- !s t m n. s HAS_SIZE m /\ t HAS_SIZE n ==> s CROSS t HAS_SIZE m * n

HAS_SIZE_FUNSPACE
|- !d n t m s.

s HAS_SIZE m /\ t HAS_SIZE n
==> {f | (!x. x IN s ==> f x IN t) /\ (!x. ~(x IN s) ==> f x = d)} HAS_SIZE

n EXP m

770 Chapter 2. Pre-proved Theorems

HAS_SIZE_IMAGE_INJ
|- !f s n.

(!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) /\ s HAS_SIZE n
==> IMAGE f s HAS_SIZE n

HAS_SIZE_INDEX
|- !s n.

s HAS_SIZE n
==> (?f. (!m. m < n ==> f m IN s) /\

(!x. x IN s ==> (?!m. m < n /\ f m = x)))

HAS_SIZE_NUMSEG
|- !m n. m..n HAS_SIZE (n + 1) - m

HAS_SIZE_NUMSEG_1
|- !n. 1..n HAS_SIZE n

HAS_SIZE_NUMSEG_LE
|- !n. {m | m <= n} HAS_SIZE n + 1

HAS_SIZE_NUMSEG_LT
|- !n. {m | m < n} HAS_SIZE n

HAS_SIZE_POWERSET
|- !s n. s HAS_SIZE n ==> {t | t SUBSET s} HAS_SIZE 2 EXP n

HAS_SIZE_PRODUCT
|- !s m t n.

s HAS_SIZE m /\ t HAS_SIZE n
==> {x,y | x IN s /\ y IN t} HAS_SIZE m * n

HAS_SIZE_PRODUCT_DEPENDENT
|- !s m t n.

s HAS_SIZE m /\ (!x. x IN s ==> t x HAS_SIZE n)
==> {x,y | x IN s /\ y IN t x} HAS_SIZE m * n

HAS_SIZE_SUC
|- !s n.

s HAS_SIZE SUC n <=>
~(s = {}) /\ (!a. a IN s ==> s DELETE a HAS_SIZE n)

HAS_SIZE_UNION
|- !s t m n.

s HAS_SIZE m /\ t HAS_SIZE n /\ DISJOINT s t
==> s UNION t HAS_SIZE m + n

2.9. Theorems about sets and functions 771

HAS_SIZE_UNIONS
|- !s t m n.

s HAS_SIZE m /\
(!x. x IN s ==> t x HAS_SIZE n) /\
(!x y. x IN s /\ y IN s /\ ~(x = y) ==> DISJOINT (t x) (t y))
==> UNIONS {t x | x IN s} HAS_SIZE m * n

IMAGE
|- !s f. IMAGE f s = {y | ?x. x IN s /\ y = f x}

IMAGE_CLAUSES
|- IMAGE f {} = {} /\ IMAGE f (x INSERT s) = f x INSERT IMAGE f s

IMAGE_CONST
|- !s c. IMAGE (\x. c) s = (if s = {} then {} else {c})

IMAGE_DELETE_INJ
|- (!x. f x = f a ==> x = a)

==> IMAGE f (s DELETE a) = IMAGE f s DELETE f a

IMAGE_DIFF_INJ
|- (!x y. f x = f y ==> x = y)

==> IMAGE f (s DIFF t) = IMAGE f s DIFF IMAGE f t

IMAGE_EQ_EMPTY
|- !f s. IMAGE f s = {} <=> s = {}

IMAGE_IMP_INJECTIVE
|- !s f.

FINITE s /\ IMAGE f s = s
==> (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y)

IMAGE_IMP_INJECTIVE_GEN
|- !s t f.

FINITE s /\ CARD s = CARD t /\ IMAGE f s = t
==> (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y)

IMAGE_SUBSET
|- !f s t. s SUBSET t ==> IMAGE f s SUBSET IMAGE f t

IMAGE_UNION
|- !f s t. IMAGE f (s UNION t) = IMAGE f s UNION IMAGE f t

IMAGE_o
|- !f g s. IMAGE (f o g) s = IMAGE f (IMAGE g s)

IN
|- !P x. x IN P <=> P x

772 Chapter 2. Pre-proved Theorems

INFINITE
|- !s. INFINITE s <=> ~FINITE s

INFINITE_DIFF_FINITE
|- !s t. INFINITE s /\ FINITE t ==> INFINITE (s DIFF t)

INFINITE_IMAGE_INJ
|- !f. (!x y. f x = f y ==> x = y)

==> (!s. INFINITE s ==> INFINITE (IMAGE f s))

INFINITE_NONEMPTY
|- !s. INFINITE s ==> ~(s = {})

INJ
|- !t s f.

INJ f s t <=>
(!x. x IN s ==> f x IN t) /\
(!x y. x IN s /\ y IN s /\ f x = f y ==> x = y)

INJECTIVE_LEFT_INVERSE
|- (!x y. f x = f y ==> x = y) <=> (?g. !x. g (f x) = x)

INJECTIVE_ON_LEFT_INVERSE
|- !f s.

(!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) <=>
(?g. !x. x IN s ==> g (f x) = x)

INSERT
|- x INSERT s = {y | y IN s \/ y = x}

INSERT_AC
|- x INSERT y INSERT s = y INSERT x INSERT s /\

x INSERT x INSERT s = x INSERT s

INSERT_COMM
|- !x y s. x INSERT y INSERT s = y INSERT x INSERT s

INSERT_DEF
|- !s x. x INSERT s = (\y. y IN s \/ y = x)

INSERT_DELETE
|- !x s. x IN s ==> x INSERT (s DELETE x) = s

INSERT_DIFF
|- !s t x.

x INSERT s DIFF t =
(if x IN t then s DIFF t else x INSERT (s DIFF t))

2.9. Theorems about sets and functions 773

INSERT_INSERT
|- !x s. x INSERT x INSERT s = x INSERT s

INSERT_INTER
|- !x s t.

x INSERT s INTER t =
(if x IN t then x INSERT (s INTER t) else s INTER t)

INSERT_SUBSET
|- !x s t. x INSERT s SUBSET t <=> x IN t /\ s SUBSET t

INSERT_UNION
|- !x s t.

x INSERT s UNION t =
(if x IN t then s UNION t else x INSERT (s UNION t))

INSERT_UNION_EQ
|- !x s t. x INSERT s UNION t = x INSERT (s UNION t)

INSERT_UNIV
|- !x. x INSERT UNIV = UNIV

INTER
|- !s t. s INTER t = {x | x IN s /\ x IN t}

INTERS
|- !s. INTERS s = {x | !u. u IN s ==> x IN u}

INTERS_0
|- INTERS {} = UNIV

INTERS_1
|- INTERS {s} = s

INTERS_2
|- INTERS {s, t} = s INTER t

INTERS_INSERT
|- INTERS (s INSERT u) = s INTER INTERS u

INTER_ACI
|- p INTER q = q INTER p /\

(p INTER q) INTER r = p INTER q INTER r /\
p INTER q INTER r = q INTER p INTER r /\
p INTER p = p /\
p INTER p INTER q = p INTER q

INTER_ASSOC
|- !s t u. (s INTER t) INTER u = s INTER t INTER u

774 Chapter 2. Pre-proved Theorems

INTER_COMM
|- !s t. s INTER t = t INTER s

INTER_EMPTY
|- (!s. {} INTER s = {}) /\ (!s. s INTER {} = {})

INTER_IDEMPOT
|- !s. s INTER s = s

INTER_OVER_UNION
|- !s t u. s UNION t INTER u = (s UNION t) INTER (s UNION u)

INTER_SUBSET
|- (!s t. s INTER t SUBSET s) /\ (!s t. t INTER s SUBSET s)

INTER_UNIV
|- (!s. UNIV INTER s = s) /\ (!s. s INTER UNIV = s)

IN_CROSS
|- !x y s t. x,y IN s CROSS t <=> x IN s /\ y IN t

IN_DELETE
|- !s x y. x IN s DELETE y <=> x IN s /\ ~(x = y)

IN_DELETE_EQ
|- !s x x’. (x IN s <=> x’ IN s) <=> x IN s DELETE x’ <=> x’ IN s DELETE x

IN_DIFF
|- !s t x. x IN s DIFF t <=> x IN s /\ ~(x IN t)

IN_DISJOINT
|- !s t. DISJOINT s t <=> ~(?x. x IN s /\ x IN t)

IN_ELIM_PAIR_THM
|- !P a b. a,b IN {x,y | P x y} <=> P a b

IN_ELIM_THM
|- (!P x. x IN GSPEC (\v. P (SETSPEC v)) <=> P (\p t. p /\ x = t)) /\

(!p x. x IN {y | p y} <=> p x) /\
(!P x. GSPEC (\v. P (SETSPEC v)) x <=> P (\p t. p /\ x = t)) /\
(!p x. {y | p y} x <=> p x) /\
(!p x. x IN (\y. p y) <=> p x)

IN_IMAGE
|- !y s f. y IN IMAGE f s <=> (?x. y = f x /\ x IN s)

IN_INSERT
|- !x y s. x IN y INSERT s <=> x = y \/ x IN s

2.9. Theorems about sets and functions 775

IN_INTER
|- !s t x. x IN s INTER t <=> x IN s /\ x IN t

IN_INTERS
|- !s x. x IN INTERS s <=> (!t. t IN s ==> x IN t)

IN_NUMSEG
|- !m n p. p IN m..n <=> m <= p /\ p <= n

IN_REST
|- !x s. x IN REST s <=> x IN s /\ ~(x = CHOICE s)

IN_SET_OF_LIST
|- !x l. x IN set_of_list l <=> MEM x l

IN_SING
|- !x y. x IN {y} <=> x = y

IN_UNION
|- !s t x. x IN s UNION t <=> x IN s \/ x IN t

IN_UNIONS
|- !s x. x IN UNIONS s <=> (?t. t IN s /\ x IN t)

IN_UNIV
|- !x. x IN UNIV

ITSET
|- !b f s.

ITSET f s b =
(@g. g {} = b /\

(!x s.
FINITE s
==> g (x INSERT s) = (if x IN s then g s else f x (g s))))

s

ITSET_EQ
|- !s f g b.

FINITE s /\
(!x. x IN s ==> f x = g x) /\
(!x y s. ~(x = y) ==> f x (f y s) = f y (f x s)) /\
(!x y s. ~(x = y) ==> g x (g y s) = g y (g x s))
==> ITSET f s b = ITSET g s b

LENGTH_LIST_OF_SET
|- !s. FINITE s ==> LENGTH (list_of_set s) = CARD s

776 Chapter 2. Pre-proved Theorems

LIST_OF_SET_PROPERTIES
|- !s. FINITE s

==> set_of_list (list_of_set s) = s /\
LENGTH (list_of_set s) = CARD s

MEMBER_NOT_EMPTY
|- !s. (?x. x IN s) <=> ~(s = {})

MEM_LIST_OF_SET
|- !s. FINITE s ==> (!x. MEM x (list_of_set s) <=> x IN s)

NOT_EMPTY_INSERT
|- !x s. ~({} = x INSERT s)

NOT_EQUAL_SETS
|- !s t. ~(s = t) <=> (?x. x IN t <=> ~(x IN s))

NOT_INSERT_EMPTY
|- !x s. ~(x INSERT s = {})

NOT_IN_EMPTY
|- !x. ~(x IN {})

NOT_PSUBSET_EMPTY
|- !s. ~(s PSUBSET {})

NOT_UNIV_PSUBSET
|- !s. ~(UNIV PSUBSET s)

NUMSEG_ADD_SPLIT
|- !m n p. m <= n + 1 ==> m..n + p = (m..n) UNION (n + 1..n + p)

NUMSEG_CLAUSES
|- (!m. m..0 = (if m = 0 then {0} else {})) /\

(!m n. m..SUC n = (if m <= SUC n then SUC n INSERT (m..n) else m..n))

NUMSEG_COMBINE_L
|- !m p m. m <= p /\ p <= n ==> (m..p - 1) UNION (p..n) = m..n

NUMSEG_COMBINE_R
|- !m p m. m <= p /\ p <= n ==> (m..p) UNION (p + 1..n) = m..n

NUMSEG_EMPTY
|- !m n. m..n = {} <=> n < m

NUMSEG_LREC
|- !m n. m <= n ==> m INSERT (m + 1..n) = m..n

2.9. Theorems about sets and functions 777

NUMSEG_OFFSET_IMAGE
|- !m n p. m + p..n + p = IMAGE (\i. i + p) (m..n)

NUMSEG_REC
|- !m n. m <= SUC n ==> m..SUC n = SUC n INSERT (m..n)

NUMSEG_RREC
|- !m n. m <= n ==> n INSERT (m..n - 1) = m..n

NUMSEG_SING
|- !n. n..n = {n}

PAIRWISE
|- (PAIRWISE r [] <=> T) /\

(PAIRWISE r (CONS h t) <=> ALL (r h) t /\ PAIRWISE r t)

PSUBSET
|- !s t. s PSUBSET t <=> s SUBSET t /\ ~(s = t)

PSUBSET_INSERT_SUBSET
|- !s t. s PSUBSET t <=> (?x. ~(x IN s) /\ x INSERT s SUBSET t)

PSUBSET_IRREFL
|- !s. ~(s PSUBSET s)

PSUBSET_MEMBER
|- !s t. s PSUBSET t <=> s SUBSET t /\ (?y. y IN t /\ ~(y IN s))

PSUBSET_SUBSET_TRANS
|- !s t u. s PSUBSET t /\ t SUBSET u ==> s PSUBSET u

PSUBSET_TRANS
|- !s t u. s PSUBSET t /\ t PSUBSET u ==> s PSUBSET u

PSUBSET_UNIV
|- !s. s PSUBSET UNIV <=> (?x. ~(x IN s))

REST
|- !s. REST s = s DELETE CHOICE s

SETSPEC
|- !P v t. SETSPEC v P t <=> P /\ v = t

SET_CASES
|- !s. s = {} \/ (?x t. s = x INSERT t /\ ~(x IN t))

SET_OF_LIST_APPEND
|- !l1 l2. set_of_list (APPEND l1 l2) = set_of_list l1 UNION set_of_list l2

778 Chapter 2. Pre-proved Theorems

SET_OF_LIST_OF_SET
|- !s. FINITE s ==> set_of_list (list_of_set s) = s

SET_RECURSION_LEMMA
|- !f b.

(!x y s. ~(x = y) ==> f x (f y s) = f y (f x s))
==> (?g. g {} = b /\

(!x s.
FINITE s
==> g (x INSERT s) =

(if x IN s then g s else f x (g s))))

SIMPLE_IMAGE
|- !f s. {f x | x IN s} = IMAGE f s

SING
|- !s. SING s <=> (?x. s = {x})

SUBSET
|- !s t. s SUBSET t <=> (!x. x IN s ==> x IN t)

SUBSET_ANTISYM
|- !s t. s SUBSET t /\ t SUBSET s ==> s = t

SUBSET_DELETE
|- !x s t. s SUBSET t DELETE x <=> ~(x IN s) /\ s SUBSET t

SUBSET_DIFF
|- !s t. s DIFF t SUBSET s

SUBSET_EMPTY
|- !s. s SUBSET {} <=> s = {}

SUBSET_IMAGE
|- !f s t. s SUBSET IMAGE f t <=> (?u. u SUBSET t /\ s = IMAGE f u)

SUBSET_INSERT
|- !x s. ~(x IN s) ==> (!t. s SUBSET x INSERT t <=> s SUBSET t)

SUBSET_INSERT_DELETE
|- !x s t. s SUBSET x INSERT t <=> s DELETE x SUBSET t

SUBSET_INTER_ABSORPTION
|- !s t. s SUBSET t <=> s INTER t = s

SUBSET_NUMSEG
|- !m n p q. m..n SUBSET p..q <=> n < m \/ p <= m /\ n <= q

2.9. Theorems about sets and functions 779

SUBSET_PSUBSET_TRANS
|- !s t u. s SUBSET t /\ t PSUBSET u ==> s PSUBSET u

SUBSET_REFL
|- !s. s SUBSET s

SUBSET_RESTRICT
|- !s P. {x | x IN s /\ P x} SUBSET s

SUBSET_TRANS
|- !s t u. s SUBSET t /\ t SUBSET u ==> s SUBSET u

SUBSET_UNION
|- (!s t. s SUBSET s UNION t) /\ (!s t. s SUBSET t UNION s)

SUBSET_UNION_ABSORPTION
|- !s t. s SUBSET t <=> s UNION t = t

SUBSET_UNIV
|- !s. s SUBSET UNIV

SURJ
|- !t s f.

SURJ f s t <=>
(!x. x IN s ==> f x IN t) /\
(!x. x IN t ==> (?y. y IN s /\ f y = x))

SURJECTIVE_IFF_INJECTIVE
|- !s f.

FINITE s /\ IMAGE f s SUBSET s
==> ((!y. y IN s ==> (?x. x IN s /\ f x = y)) <=>

(!x y. x IN s /\ y IN s /\ f x = f y ==> x = y))

SURJECTIVE_IFF_INJECTIVE_GEN
|- !s t f.

FINITE s /\ FINITE t /\ CARD s = CARD t /\ IMAGE f s SUBSET t
==> ((!y. y IN t ==> (?x. x IN s /\ f x = y)) <=>

(!x y. x IN s /\ y IN s /\ f x = f y ==> x = y))

SURJECTIVE_ON_RIGHT_INVERSE
|- !f t.

(!y. y IN t ==> (?x. x IN s /\ f x = y)) <=>
(?g. !y. y IN t ==> g y IN s /\ f (g y) = y)

SURJECTIVE_RIGHT_INVERSE
|- (!y. ?x. f x = y) <=> (?g. !y. f (g y) = y)

UNION
|- !s t. s UNION t = {x | x IN s \/ x IN t}

780 Chapter 2. Pre-proved Theorems

UNIONS
|- !s. UNIONS s = {x | ?u. u IN s /\ x IN u}

UNIONS_0
|- UNIONS {} = {}

UNIONS_1
|- UNIONS {s} = s

UNIONS_2
|- UNIONS {s, t} = s UNION t

UNIONS_INSERT
|- UNIONS (s INSERT u) = s UNION UNIONS u

UNION_ACI
|- p UNION q = q UNION p /\

(p UNION q) UNION r = p UNION q UNION r /\
p UNION q UNION r = q UNION p UNION r /\
p UNION p = p /\
p UNION p UNION q = p UNION q

UNION_ASSOC
|- !s t u. (s UNION t) UNION u = s UNION t UNION u

UNION_COMM
|- !s t. s UNION t = t UNION s

UNION_EMPTY
|- (!s. {} UNION s = s) /\ (!s. s UNION {} = s)

UNION_IDEMPOT
|- !s. s UNION s = s

UNION_OVER_INTER
|- !s t u. s INTER (t UNION u) = s INTER t UNION s INTER u

UNION_SUBSET
|- !s t u. s UNION t SUBSET u <=> s SUBSET u /\ t SUBSET u

UNION_UNIV
|- (!s. UNIV UNION s = UNIV) /\ (!s. s UNION UNIV = UNIV)

UNIV
|- UNIV = (\x. T)

UNIV_NOT_EMPTY
|- ~(UNIV = {})

2.10. Theorems about iterated operations 781

UNIV_SUBSET
|- !s. UNIV SUBSET s <=> s = UNIV

list_of_set
|- !s. list_of_set s = (@l. set_of_list l = s /\ LENGTH l = CARD s)

num_FINITE
|- !s. FINITE s <=> (?a. !x. x IN s ==> x <= a)

num_FINITE_AVOID
|- !s. FINITE s ==> (?a. ~(a IN s))

num_INFINITE
|- INFINITE (:num)

numseg
|- !m n. m..n = {x | m <= x /\ x <= n}

pairwise
|- !s r. pairwise r s <=> (!x y. x IN s /\ y IN s /\ ~(x = y) ==> r x y)

set_of_list
|- set_of_list [] = {} /\ set_of_list (CONS h t) = h INSERT set_of_list t

2.10 Theorems about iterated operations

CARD_EQ_NSUM
|- !s. FINITE s ==> CARD s = nsum s (\x. 1)

CARD_EQ_SUM
|- !s. FINITE s ==> &(CARD s) = sum s (\x. &1)

FINITE_SUPPORT
|- !op f s. FINITE s ==> FINITE (support op f s)

FINITE_SUPPORT_DELTA
|- !op f a. FINITE (support op (\x. if x = a then f x else neutral op) s)

IN_SUPPORT
|- !op f x s. x IN support op f s <=> x IN s /\ ~(f x = neutral op)

ITERATE_BIJECTION
|- !op. monoidal op

==> (!f p s.
(!x. x IN s ==> p x IN s) /\
(!y. y IN s ==> (?!x. x IN s /\ p x = y))
==> iterate op s f = iterate op s (f o p))

782 Chapter 2. Pre-proved Theorems

ITERATE_CASES
|- !op f s.

iterate op s f =
(if FINITE (support op f s)
then iterate op (support op f s) f
else neutral op)

ITERATE_CLAUSES
|- !op. monoidal op

==> (!f. iterate op {} f = neutral op) /\
(!f x s.

FINITE s
==> iterate op (x INSERT s) f =

(if x IN s
then iterate op s f
else op (f x) (iterate op s f)))

ITERATE_CLAUSES_GEN
|- !op. monoidal op

==> (!f. iterate op {} f = neutral op) /\
(!f x s.

monoidal op /\ FINITE (support op f s)
==> iterate op (x INSERT s) f =

(if x IN s
then iterate op s f
else op (f x) (iterate op s f)))

ITERATE_CLOSED
|- !op. monoidal op

==> (!P. P (neutral op) /\ (!x y. P x /\ P y ==> P (op x y))
==> (!f s.

FINITE s /\ (!x. x IN s ==> P (f x))
==> P (iterate op s f)))

ITERATE_CLOSED_GEN
|- !op. monoidal op

==> (!P. P (neutral op) /\ (!x y. P x /\ P y ==> P (op x y))
==> (!f s.

FINITE (support op f s) /\
(!x. x IN s /\ ~(f x = neutral op) ==> P (f x))
==> P (iterate op s f)))

ITERATE_DELETE
|- !op. monoidal op

==> (!f s a.
FINITE s /\ a IN s
==> op (f a) (iterate op (s DELETE a) f) = iterate op s f)

2.10. Theorems about iterated operations 783

ITERATE_DELTA
|- !op. monoidal op

==> (!f a s.
iterate op s (\x. if x = a then f x else neutral op) =
(if a IN s then f a else neutral op))

ITERATE_DIFF
|- !op. monoidal op

==> (!f s t.
FINITE s /\ t SUBSET s
==> op (iterate op (s DIFF t) f) (iterate op t f) =

iterate op s f)

ITERATE_DIFF_GEN
|- !op. monoidal op

==> (!f s t.
FINITE (support op f s) /\
support op f t SUBSET support op f s
==> op (iterate op (s DIFF t) f) (iterate op t f) =

iterate op s f)

ITERATE_EQ
|- !op. monoidal op

==> (!f g s.
(!x. x IN s ==> f x = g x)
==> iterate op s f = iterate op s g)

ITERATE_EQ_GENERAL
|- !op. monoidal op

==> (!s t f g h.
(!y. y IN t ==> (?!x. x IN s /\ h x = y)) /\
(!x. x IN s ==> h x IN t /\ g (h x) = f x)
==> iterate op s f = iterate op t g)

ITERATE_EQ_GENERAL_INVERSES
|- !op. monoidal op

==> (!s t f g h k.
(!y. y IN t ==> k y IN s /\ h (k y) = y) /\
(!x. x IN s ==> h x IN t /\ k (h x) = x /\ g (h x) = f x)
==> iterate op s f = iterate op t g)

ITERATE_EQ_NEUTRAL
|- !op. monoidal op

==> (!f s.
(!x. x IN s ==> f x = neutral op)
==> iterate op s f = neutral op)

784 Chapter 2. Pre-proved Theorems

ITERATE_IMAGE
|- !op. monoidal op

==> (!f g s.
(!x y. x IN s /\ y IN s /\ f x = f y ==> x = y)
==> iterate op (IMAGE f s) g = iterate op s (g o f))

ITERATE_INJECTION
|- !op. monoidal op

==> (!f p s.
FINITE s /\
(!x. x IN s ==> p x IN s) /\
(!x y. x IN s /\ y IN s /\ p x = p y ==> x = y)
==> iterate op s (f o p) = iterate op s f)

ITERATE_ITERATE_PRODUCT
|- !op. monoidal op

==> (!s t x.
FINITE s /\ (!i. i IN s ==> FINITE (t i))
==> iterate op s (\i. iterate op (t i) (x i)) =

iterate op {i,j | i IN s /\ j IN t i} (\(i,j). x i j))

ITERATE_RELATED
|- !op. monoidal op

==> (!R. R (neutral op) (neutral op) /\
(!x1 y1 x2 y2.

R x1 x2 /\ R y1 y2 ==> R (op x1 y1) (op x2 y2))
==> (!f g s.

FINITE s /\ (!x. x IN s ==> R (f x) (g x))
==> R (iterate op s f) (iterate op s g)))

ITERATE_SING
|- !op. monoidal op ==> (!f x. iterate op {x} f = f x)

ITERATE_SUPPORT
|- !op f s. iterate op (support op f s) f = iterate op s f

ITERATE_UNION
|- !op. monoidal op

==> (!f s t.
FINITE s /\ FINITE t /\ DISJOINT s t
==> iterate op (s UNION t) f =

op (iterate op s f) (iterate op t f))

2.10. Theorems about iterated operations 785

ITERATE_UNION_GEN
|- !op. monoidal op

==> (!f s t.
FINITE (support op f s) /\
FINITE (support op f t) /\
DISJOINT (support op f s) (support op f t)
==> iterate op (s UNION t) f =

op (iterate op s f) (iterate op t f))

MONOIDAL_ADD
|- monoidal (+)

MONOIDAL_MUL
|- monoidal (*)

MONOIDAL_REAL_ADD
|- monoidal (+)

MONOIDAL_REAL_MUL
|- monoidal (*)

NEUTRAL_ADD
|- neutral (+) = 0

NEUTRAL_MUL
|- neutral (*) = 1

NEUTRAL_REAL_ADD
|- neutral (+) = &0

NEUTRAL_REAL_MUL
|- neutral (*) = &1

NSUM_0
|- !s. nsum s (\n. 0) = 0

NSUM_ADD
|- !f g s. FINITE s ==> nsum s (\x. f x + g x) = nsum s f + nsum s g

NSUM_ADD_NUMSEG
|- !f g m n. nsum (m..n) (\i. f i + g i) = nsum (m..n) f + nsum (m..n) g

NSUM_ADD_SPLIT
|- !f m n p.

m <= n + 1
==> nsum (m..n + p) f = nsum (m..n) f + nsum (n + 1..n + p) f

786 Chapter 2. Pre-proved Theorems

NSUM_BIJECTION
|- !f p s.

(!x. x IN s ==> p x IN s) /\
(!y. y IN s ==> (?!x. x IN s /\ p x = y))
==> nsum s f = nsum s (f o p)

NSUM_BOUND
|- !s f b. FINITE s /\ (!x. x IN s ==> f x <= b) ==> nsum s f <= CARD s * b

NSUM_BOUND_GEN
|- !s t b.

FINITE s /\ ~(s = {}) /\ (!x. x IN s ==> f x <= b DIV CARD s)
==> nsum s f <= b

NSUM_BOUND_LT
|- !s f b.

FINITE s /\ (!x. x IN s ==> f x <= b) /\ (?x. x IN s /\ f x < b)
==> nsum s f < CARD s * b

NSUM_BOUND_LT_ALL
|- !s f b.

FINITE s /\ ~(s = {}) /\ (!x. x IN s ==> f x < b)
==> nsum s f < CARD s * b

NSUM_BOUND_LT_GEN
|- !s t b.

FINITE s /\ ~(s = {}) /\ (!x. x IN s ==> f x < b DIV CARD s)
==> nsum s f < b

NSUM_CLAUSES
|- (!f. nsum {} f = 0) /\

(!x f s.
FINITE s
==> nsum (x INSERT s) f =

(if x IN s then nsum s f else f x + nsum s f))

NSUM_CLAUSES_LEFT
|- !f m n. m <= n ==> nsum (m..n) f = f m + nsum (m + 1..n) f

NSUM_CLAUSES_NUMSEG
|- (!m. nsum (m..0) f = (if m = 0 then f 0 else 0)) /\

(!m n.
nsum (m..SUC n) f =
(if m <= SUC n then nsum (m..n) f + f (SUC n) else nsum (m..n) f))

NSUM_CLAUSES_RIGHT
|- !f m n. 0 < n /\ m <= n ==> nsum (m..n) f = nsum (m..n - 1) f + f n

2.10. Theorems about iterated operations 787

NSUM_CONST
|- !c s. FINITE s ==> nsum s (\n. c) = CARD s * c

NSUM_CONST_NUMSEG
|- !c m n. nsum (m..n) (\n. c) = ((n + 1) - m) * c

NSUM_DELETE
|- !f s a. FINITE s /\ a IN s ==> f a + nsum (s DELETE a) f = nsum s f

NSUM_DELTA
|- !s a. nsum s (\x. if x = a then b else 0) = (if a IN s then b else 0)

NSUM_DIFF
|- !f s t.

FINITE s /\ t SUBSET s ==> nsum (s DIFF t) f = nsum s f - nsum t f

NSUM_EQ
|- !f g s. (!x. x IN s ==> f x = g x) ==> nsum s f = nsum s g

NSUM_EQ_0
|- !f s. (!x. x IN s ==> f x = 0) ==> nsum s f = 0

NSUM_EQ_0_IFF
|- !s. FINITE s ==> (nsum s f = 0 <=> (!x. x IN s ==> f x = 0))

NSUM_EQ_0_IFF_NUMSEG
|- !f m n. nsum (m..n) f = 0 <=> (!i. m <= i /\ i <= n ==> f i = 0)

NSUM_EQ_0_NUMSEG
|- !f s. (!i. m <= i /\ i <= n ==> f i = 0) ==> nsum (m..n) f = 0

NSUM_EQ_GENERAL
|- !s t f g h.

(!y. y IN t ==> (?!x. x IN s /\ h x = y)) /\
(!x. x IN s ==> h x IN t /\ g (h x) = f x)
==> nsum s f = nsum t g

NSUM_EQ_GENERAL_INVERSES
|- !s t f g h k.

(!y. y IN t ==> k y IN s /\ h (k y) = y) /\
(!x. x IN s ==> h x IN t /\ k (h x) = x /\ g (h x) = f x)
==> nsum s f = nsum t g

NSUM_EQ_NUMSEG
|- !f g m n.

(!i. m <= i /\ i <= n ==> f i = g i)
==> nsum (m..n) f = nsum (m..n) g

788 Chapter 2. Pre-proved Theorems

NSUM_EQ_SUPERSET
|- !f s t.

FINITE t /\
t SUBSET s /\
(!x. x IN t ==> f x = g x) /\
(!x. x IN s /\ ~(x IN t) ==> f x = 0)
==> nsum s f = nsum t g

NSUM_IMAGE
|- !f g s.

(!x y. x IN s /\ y IN s /\ f x = f y ==> x = y)
==> nsum (IMAGE f s) g = nsum s (g o f)

NSUM_IMAGE_GEN
|- !f g s.

FINITE s
==> nsum s g = nsum (IMAGE f s) (\y. nsum {x | x IN s /\ f x = y} g)

NSUM_INJECTION
|- !f p s.

FINITE s /\
(!x. x IN s ==> p x IN s) /\
(!x y. x IN s /\ y IN s /\ p x = p y ==> x = y)
==> nsum s (f o p) = nsum s f

NSUM_LE
|- !f g s. FINITE s /\ (!x. x IN s ==> f x <= g x) ==> nsum s f <= nsum s g

NSUM_LE_NUMSEG
|- !f g m n.

(!i. m <= i /\ i <= n ==> f i <= g i)
==> nsum (m..n) f <= nsum (m..n) g

NSUM_LMUL
|- !f c s. nsum s (\x. c * f x) = c * nsum s f

NSUM_LT
|- !f g s.

FINITE s /\ (!x. x IN s ==> f x <= g x) /\ (?x. x IN s /\ f x < g x)
==> nsum s f < nsum s g

NSUM_LT_ALL
|- !f g s.

FINITE s /\ ~(s = {}) /\ (!x. x IN s ==> f x < g x)
==> nsum s f < nsum s g

2.10. Theorems about iterated operations 789

NSUM_MULTICOUNT
|- !R s t k.

FINITE s /\
FINITE t /\
(!j. j IN t ==> CARD {i | i IN s /\ R i j} = k)
==> nsum s (\i. CARD {j | j IN t /\ R i j}) = k * CARD t

NSUM_MULTICOUNT_GEN
|- !R s t k.

FINITE s /\
FINITE t /\
(!j. j IN t ==> CARD {i | i IN s /\ R i j} = k j)
==> nsum s (\i. CARD {j | j IN t /\ R i j}) = nsum t (\i. k i)

NSUM_NSUM_PRODUCT
|- !s t x.

FINITE s /\ (!i. i IN s ==> FINITE (t i))
==> nsum s (\i. nsum (t i) (x i)) =

nsum {i,j | i IN s /\ j IN t i} (\(i,j). x i j)

NSUM_NSUM_RESTRICT
|- !R f s t.

FINITE s /\ FINITE t
==> nsum s (\x. nsum {y | y IN t /\ R x y} (\y. f x y)) =

nsum t (\y. nsum {x | x IN s /\ R x y} (\x. f x y))

NSUM_OFFSET
|- !f m p. nsum (m + p..n + p) f = nsum (m..n) (\i. f (i + p))

NSUM_OFFSET_0
|- !f m n. m <= n ==> nsum (m..n) f = nsum (0..n - m) (\i. f (i + m))

NSUM_POS_BOUND
|- !f b s. FINITE s /\ nsum s f <= b ==> (!x. x IN s ==> f x <= b)

NSUM_RESTRICT
|- !f s. FINITE s ==> nsum s (\x. if x IN s then f x else 0) = nsum s f

NSUM_RESTRICT_SET
|- !s f r.

FINITE s
==> nsum {x | x IN s /\ P x} f = nsum s (\x. if P x then f x else 0)

NSUM_RMUL
|- !f c s. nsum s (\x. f x * c) = nsum s f * c

NSUM_SING
|- !f x. nsum {x} f = f x

790 Chapter 2. Pre-proved Theorems

NSUM_SING_NUMSEG
|- !f n. nsum (n..n) f = f n

NSUM_SUBSET
|- !u v f.

FINITE u /\ FINITE v /\ (!x. x IN u DIFF v ==> f x = 0)
==> nsum u f <= nsum v f

NSUM_SUBSET_SIMPLE
|- !u v f. FINITE v /\ u SUBSET v ==> nsum u f <= nsum v f

NSUM_SUPERSET
|- !f u v.

FINITE u /\ u SUBSET v /\ (!x. x IN v /\ ~(x IN u) ==> f x = 0)
==> nsum v f = nsum u f

NSUM_SUPPORT
|- !f s. nsum (support (+) f s) f = nsum s f

NSUM_SWAP
|- !f s t.

FINITE s /\ FINITE t
==> nsum s (\i. nsum t (f i)) = nsum t (\j. nsum s (\i. f i j))

NSUM_SWAP_NUMSEG
|- !a b c d f.

nsum (a..b) (\i. nsum (c..d) (f i)) =
nsum (c..d) (\j. nsum (a..b) (\i. f i j))

NSUM_TRIV_NUMSEG
|- !f m n. n < m ==> nsum (m..n) f = 0

NSUM_UNION
|- !f s t.

FINITE s /\ FINITE t /\ DISJOINT s t
==> nsum (s UNION t) f = nsum s f + nsum t f

NSUM_UNION_EQ
|- !s t u.

FINITE u /\ s INTER t = {} /\ s UNION t = u
==> nsum s f + nsum t f = nsum u f

NSUM_UNION_LZERO
|- !f u v.

FINITE v /\ (!x. x IN u /\ ~(x IN v) ==> f x = 0)
==> nsum (u UNION v) f = nsum v f

2.10. Theorems about iterated operations 791

NSUM_UNION_RZERO
|- !f u v.

FINITE u /\ (!x. x IN v /\ ~(x IN u) ==> f x = 0)
==> nsum (u UNION v) f = nsum u f

REAL_OF_NUM_SUM
|- !f s. FINITE s ==> &(nsum s f) = sum s (\x. &(f x))

REAL_OF_NUM_SUM_NUMSEG
|- !f m n. &(nsum (m..n) f) = sum (m..n) (\i. &(f i))

SUM_0
|- !s. sum s (\n. &0) = &0

SUM_ABS
|- !f s. FINITE s ==> abs (sum s f) <= sum s (\x. abs (f x))

SUM_ABS_BOUND
|- !s f b.

FINITE s /\ (!x. x IN s ==> abs (f x) <= b)
==> abs (sum s f) <= &(CARD s) * b

SUM_ABS_NUMSEG
|- !f m n. abs (sum (m..n) f) <= sum (m..n) (\i. abs (f i))

SUM_ADD
|- !f g s. FINITE s ==> sum s (\x. f x + g x) = sum s f + sum s g

SUM_ADD_NUMSEG
|- !f g m n. sum (m..n) (\i. f i + g i) = sum (m..n) f + sum (m..n) g

SUM_ADD_SPLIT
|- !f m n p.

m <= n + 1
==> sum (m..n + p) f = sum (m..n) f + sum (n + 1..n + p) f

SUM_BIJECTION
|- !f p s.

(!x. x IN s ==> p x IN s) /\
(!y. y IN s ==> (?!x. x IN s /\ p x = y))
==> sum s f = sum s (f o p)

SUM_BOUND
|- !s f b.

FINITE s /\ (!x. x IN s ==> f x <= b) ==> sum s f <= &(CARD s) * b

792 Chapter 2. Pre-proved Theorems

SUM_BOUND_GEN
|- !s t b.

FINITE s /\ ~(s = {}) /\ (!x. x IN s ==> f x <= b / &(CARD s))
==> sum s f <= b

SUM_BOUND_LT
|- !s f b.

FINITE s /\ (!x. x IN s ==> f x <= b) /\ (?x. x IN s /\ f x < b)
==> sum s f < &(CARD s) * b

SUM_BOUND_LT_ALL
|- !s f b.

FINITE s /\ ~(s = {}) /\ (!x. x IN s ==> f x < b)
==> sum s f < &(CARD s) * b

SUM_BOUND_LT_GEN
|- !s t b.

FINITE s /\ ~(s = {}) /\ (!x. x IN s ==> f x < b / &(CARD s))
==> sum s f < b

SUM_CLAUSES
|- (!f. sum {} f = &0) /\

(!x f s.
FINITE s
==> sum (x INSERT s) f =

(if x IN s then sum s f else f x + sum s f))

SUM_CLAUSES_LEFT
|- !f m n. m <= n ==> sum (m..n) f = f m + sum (m + 1..n) f

SUM_CLAUSES_NUMSEG
|- (!m. sum (m..0) f = (if m = 0 then f 0 else &0)) /\

(!m n.
sum (m..SUC n) f =
(if m <= SUC n then sum (m..n) f + f (SUC n) else sum (m..n) f))

SUM_CLAUSES_RIGHT
|- !f m n. 0 < n /\ m <= n ==> sum (m..n) f = sum (m..n - 1) f + f n

SUM_CONST
|- !c s. FINITE s ==> sum s (\n. c) = &(CARD s) * c

SUM_CONST_NUMSEG
|- !c m n. sum (m..n) (\n. c) = &((n + 1) - m) * c

SUM_DELETE
|- !f s a. FINITE s /\ a IN s ==> sum (s DELETE a) f = sum s f - f a

2.10. Theorems about iterated operations 793

SUM_DELTA
|- !s a. sum s (\x. if x = a then b else &0) = (if a IN s then b else &0)

SUM_DIFF
|- !f s t. FINITE s /\ t SUBSET s ==> sum (s DIFF t) f = sum s f - sum t f

SUM_EQ
|- !f g s. (!x. x IN s ==> f x = g x) ==> sum s f = sum s g

SUM_EQ_0
|- !f s. (!x. x IN s ==> f x = &0) ==> sum s f = &0

SUM_EQ_0_NUMSEG
|- !f s. (!i. m <= i /\ i <= n ==> f i = &0) ==> sum (m..n) f = &0

SUM_EQ_GENERAL
|- !s t f g h.

(!y. y IN t ==> (?!x. x IN s /\ h x = y)) /\
(!x. x IN s ==> h x IN t /\ g (h x) = f x)
==> sum s f = sum t g

SUM_EQ_GENERAL_INVERSES
|- !s t f g h k.

(!y. y IN t ==> k y IN s /\ h (k y) = y) /\
(!x. x IN s ==> h x IN t /\ k (h x) = x /\ g (h x) = f x)
==> sum s f = sum t g

SUM_EQ_NUMSEG
|- !f g m n.

(!i. m <= i /\ i <= n ==> f i = g i) ==> sum (m..n) f = sum (m..n) g

SUM_EQ_SUPERSET
|- !f s t.

FINITE t /\
t SUBSET s /\
(!x. x IN t ==> f x = g x) /\
(!x. x IN s /\ ~(x IN t) ==> f x = &0)
==> sum s f = sum t g

SUM_IMAGE
|- !f g s.

(!x y. x IN s /\ y IN s /\ f x = f y ==> x = y)
==> sum (IMAGE f s) g = sum s (g o f)

SUM_IMAGE_GEN
|- !f g s.

FINITE s
==> sum s g = sum (IMAGE f s) (\y. sum {x | x IN s /\ f x = y} g)

794 Chapter 2. Pre-proved Theorems

SUM_INJECTION
|- !f p s.

FINITE s /\
(!x. x IN s ==> p x IN s) /\
(!x y. x IN s /\ y IN s /\ p x = p y ==> x = y)
==> sum s (f o p) = sum s f

SUM_LE
|- !f g s. FINITE s /\ (!x. x IN s ==> f x <= g x) ==> sum s f <= sum s g

SUM_LE_NUMSEG
|- !f g m n.

(!i. m <= i /\ i <= n ==> f i <= g i)
==> sum (m..n) f <= sum (m..n) g

SUM_LMUL
|- !f c s. sum s (\x. c * f x) = c * sum s f

SUM_LT
|- !f g s.

FINITE s /\ (!x. x IN s ==> f x <= g x) /\ (?x. x IN s /\ f x < g x)
==> sum s f < sum s g

SUM_LT_ALL
|- !f g s.

FINITE s /\ ~(s = {}) /\ (!x. x IN s ==> f x < g x)
==> sum s f < sum s g

SUM_MULTICOUNT
|- !R s t k.

FINITE s /\
FINITE t /\
(!j. j IN t ==> CARD {i | i IN s /\ R i j} = k)
==> sum s (\i. &(CARD {j | j IN t /\ R i j})) = &(k * CARD t)

SUM_MULTICOUNT_GEN
|- !R s t k.

FINITE s /\
FINITE t /\
(!j. j IN t ==> CARD {i | i IN s /\ R i j} = k j)
==> sum s (\i. &(CARD {j | j IN t /\ R i j})) = sum t (\i. &(k i))

SUM_NEG
|- !f s. sum s (\x. --f x) = --sum s f

SUM_OFFSET
|- !f m p. sum (m + p..n + p) f = sum (m..n) (\i. f (i + p))

2.10. Theorems about iterated operations 795

SUM_OFFSET_0
|- !f m n. m <= n ==> sum (m..n) f = sum (0..n - m) (\i. f (i + m))

SUM_POS_BOUND
|- !f b s.

FINITE s /\ (!x. x IN s ==> &0 <= f x) /\ sum s f <= b
==> (!x. x IN s ==> f x <= b)

SUM_POS_EQ_0
|- !f s.

FINITE s /\ (!x. x IN s ==> &0 <= f x) /\ sum s f = &0
==> (!x. x IN s ==> f x = &0)

SUM_POS_EQ_0_NUMSEG
|- !f m n.

(!p. m <= p /\ p <= n ==> &0 <= f p) /\ sum (m..n) f = &0
==> (!p. m <= p /\ p <= n ==> f p = &0)

SUM_POS_LE
|- !f s. FINITE s /\ (!x. x IN s ==> &0 <= f x) ==> &0 <= sum s f

SUM_POS_LE_NUMSEG
|- !m n f. (!p. m <= p /\ p <= n ==> &0 <= f p) ==> &0 <= sum (m..n) f

SUM_RESTRICT
|- !f s. FINITE s ==> sum s (\x. if x IN s then f x else &0) = sum s f

SUM_RESTRICT_SET
|- !s f r.

FINITE s
==> sum {x | x IN s /\ P x} f = sum s (\x. if P x then f x else &0)

SUM_RMUL
|- !f c s. sum s (\x. f x * c) = sum s f * c

SUM_SING
|- !f x. sum {x} f = f x

SUM_SING_NUMSEG
|- !f n. sum (n..n) f = f n

SUM_SUB
|- !f g s. FINITE s ==> sum s (\x. f x - g x) = sum s f - sum s g

796 Chapter 2. Pre-proved Theorems

SUM_SUBSET
|- !u v f.

FINITE u /\
FINITE v /\
(!x. x IN u DIFF v ==> f x <= &0) /\
(!x. x IN v DIFF u ==> &0 <= f x)
==> sum u f <= sum v f

SUM_SUBSET_SIMPLE
|- !u v f.

FINITE v /\ u SUBSET v /\ (!x. x IN v DIFF u ==> &0 <= f x)
==> sum u f <= sum v f

SUM_SUB_NUMSEG
|- !f g m n. sum (m..n) (\i. f i - g i) = sum (m..n) f - sum (m..n) g

SUM_SUM_PRODUCT
|- !s t x.

FINITE s /\ (!i. i IN s ==> FINITE (t i))
==> sum s (\i. sum (t i) (x i)) =

sum {i,j | i IN s /\ j IN t i} (\(i,j). x i j)

SUM_SUM_RESTRICT
|- !R f s t.

FINITE s /\ FINITE t
==> sum s (\x. sum {y | y IN t /\ R x y} (\y. f x y)) =

sum t (\y. sum {x | x IN s /\ R x y} (\x. f x y))

SUM_SUPERSET
|- !f u v.

FINITE u /\ u SUBSET v /\ (!x. x IN v /\ ~(x IN u) ==> f x = &0)
==> sum v f = sum u f

SUM_SUPPORT
|- !f s. sum (support (+) f s) f = sum s f

SUM_SWAP
|- !f s t.

FINITE s /\ FINITE t
==> sum s (\i. sum t (f i)) = sum t (\j. sum s (\i. f i j))

SUM_SWAP_NUMSEG
|- !a b c d f.

sum (a..b) (\i. sum (c..d) (f i)) =
sum (c..d) (\j. sum (a..b) (\i. f i j))

SUM_TRIV_NUMSEG
|- !f m n. n < m ==> sum (m..n) f = &0

2.10. Theorems about iterated operations 797

SUM_UNION
|- !f s t.

FINITE s /\ FINITE t /\ DISJOINT s t
==> sum (s UNION t) f = sum s f + sum t f

SUM_UNION_EQ
|- !s t u.

FINITE u /\ s INTER t = {} /\ s UNION t = u
==> sum s f + sum t f = sum u f

SUM_UNION_LZERO
|- !f u v.

FINITE v /\ (!x. x IN u /\ ~(x IN v) ==> f x = &0)
==> sum (u UNION v) f = sum v f

SUM_UNION_RZERO
|- !f u v.

FINITE u /\ (!x. x IN v /\ ~(x IN u) ==> f x = &0)
==> sum (u UNION v) f = sum u f

SUPPORT_CLAUSES
|- (!f. support op f {} = {}) /\

(!f x s.
support op f (x INSERT s) =
(if f x = neutral op
then support op f s
else x INSERT support op f s)) /\

(!f x s. support op f (s DELETE x) = support op f s DELETE x) /\
(!f s t. support op f (s UNION t) = support op f s UNION support op f t) /\
(!f s t. support op f (s INTER t) = support op f s INTER support op f t) /\
(!f s t. support op f (s DIFF t) = support op f s DIFF support op f t) /\
(!f g s. support op g (IMAGE f s) = IMAGE f (support op (g o f) s))

SUPPORT_DELTA
|- !op s f a.

support op (\x. if x = a then f x else neutral op) s =
(if a IN s then support op f {a} else {})

SUPPORT_EMPTY
|- !op f s. (!x. x IN s ==> f x = neutral op) <=> support op f s = {}

SUPPORT_SUBSET
|- !op f s. support op f s SUBSET s

SUPPORT_SUPPORT
|- !op f s. support op f (support op f s) = support op f s

798 Chapter 2. Pre-proved Theorems

iterate
|- !f s op.

iterate op s f =
(if FINITE (support op f s)
then ITSET (\x a. op (f x) a) (support op f s) (neutral op)
else neutral op)

monoidal
|- !op. monoidal op <=>

(!x y. op x y = op y x) /\
(!x y z. op x (op y z) = op (op x y) z) /\
(!x. op (neutral op) x = x)

neutral
|- !op. neutral op = (@x. !y. op x y = y /\ op y x = y)

nsum
|- nsum = iterate (+)

sum
|- sum = iterate (+)

support
|- !s f op. support op f s = {x | x IN s /\ ~(f x = neutral op)}

2.11 Theorems about cartesian powers

CARD_FINITE_IMAGE
|- !s. CARD (:(A)finite_image) = dimindex s

CART_EQ
|- !x y. x = y <=> (!i. 1 <= i /\ i <= dimindex (:N) ==> x$i = y$i)

DIMINDEX_1
|- dimindex (:1) = 1

DIMINDEX_2
|- dimindex (:2) = 2

DIMINDEX_3
|- dimindex (:3) = 3

DIMINDEX_FINITE_IMAGE
|- !s t. dimindex s = dimindex t

DIMINDEX_FINITE_SUM
|- dimindex (:(M,N)finite_sum) = dimindex (:M) + dimindex (:N)

2.11. Theorems about cartesian powers 799

DIMINDEX_GE_1
|- !s. 1 <= dimindex s

DIMINDEX_HAS_SIZE_FINITE_SUM
|- (:(M,N)finite_sum) HAS_SIZE dimindex (:M) + dimindex (:N)

DIMINDEX_NONZERO
|- !s. ~(dimindex s = 0)

DIMINDEX_UNIQUE
|- (:N) HAS_SIZE n ==> dimindex (:N) = n

DIMINDEX_UNIV
|- !s. dimindex s = dimindex (:N)

EXISTS_PASTECART
|- (?p. P p) <=> (?x y. P (pastecart x y))

FINITE_FINITE_IMAGE
|- FINITE (:(A)finite_image)

FINITE_IMAGE_IMAGE
|- (:(A)finite_image) = IMAGE finite_index (1..dimindex (:N))

FINITE_INDEX_INJ
|- !i j.

1 <= i /\ i <= dimindex (:N) /\ 1 <= j /\ j <= dimindex (:N)
==> (finite_index i = finite_index j <=> i = j)

FINITE_INDEX_WORKS
|- !i. ?!n. 1 <= n /\ n <= dimindex (:N) /\ finite_index n = i

FINITE_SUM_IMAGE
|- (:(M,N)finite_sum) =

IMAGE mk_finite_sum (1..dimindex (:M) + dimindex (:N))

FORALL_FINITE_INDEX
|- (!k. P k) <=> (!i. 1 <= i /\ i <= dimindex (:N) ==> P (finite_index i))

FORALL_PASTECART
|- (!p. P p) <=> (!x y. P (pastecart x y))

FSTCART_PASTECART
|- !x y. fstcart (pastecart x y) = x

HAS_SIZE_1
|- (:1) HAS_SIZE 1

HAS_SIZE_2
|- (:2) HAS_SIZE 2

800 Chapter 2. Pre-proved Theorems

HAS_SIZE_3
|- (:3) HAS_SIZE 3

HAS_SIZE_FINITE_IMAGE
|- !s. (:(A)finite_image) HAS_SIZE dimindex s

LAMBDA_BETA
|- !i. 1 <= i /\ i <= dimindex (:N) ==> (lambda) g$i = g i

LAMBDA_ETA
|- !g. (lambda i. g$i) = g

LAMBDA_UNIQUE
|- !f g.

(!i. 1 <= i /\ i <= dimindex (:N) ==> f$i = g i) <=> (lambda) g = f

PASTECART_EQ
|- !x y. x = y <=> fstcart x = fstcart y /\ sndcart x = sndcart y

PASTECART_FST_SND
|- !z. pastecart (fstcart z) (sndcart z) = z

SNDCART_PASTECART
|- !x y. sndcart (pastecart x y) = y

cart_tybij
|- (!a. mk_cart (dest_cart a) = a) /\ (!r. T <=> dest_cart (mk_cart r) = r)

dimindex
|- !s. dimindex s = (if FINITE (:N) then CARD (:N) else 1)

finite_image_tybij
|- (!a. finite_index (dest_finite_image a) = a) /\

(!r. r IN 1..dimindex (:N) <=> dest_finite_image (finite_index r) = r)

finite_index
|- !x i. x$i = dest_cart x (finite_index i)

finite_sum_tybij
|- (!a. mk_finite_sum (dest_finite_sum a) = a) /\

(!r. r IN 1..dimindex (:M) + dimindex (:N) <=>
dest_finite_sum (mk_finite_sum r) = r)

fstcart
|- !f. fstcart f = (lambda i. f$i)

lambda
|- !g. (lambda) g = (@f. !i. 1 <= i /\ i <= dimindex (:N) ==> f$i = g i)

2.11. Theorems about cartesian powers 801

pastecart
|- !f g.

pastecart f g =
(lambda i. if i <= dimindex (:M) then f$i else g$(i - dimindex (:M)))

sndcart
|- !f. sndcart f = (lambda i. f$(i + dimindex (:M)))

802 Chapter 2. Pre-proved Theorems

