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Abstract

Algorithms developed by the author for recogniz-
ing persons by their iris patterns have now been tested
in six field and laboratory trials, producing no false
matches in several million comparison tests. The
recognition principle is the failure of a test of statis-
tical independence on iris phase structure encoded by
multi-scale quadrature wavelets. The combinatorial
complexity of this phase information across different
persons spans about 249 degrees of freedom and gen-
erates a discrimination entropy of about 3.2 bits/mm?
over the iris, enabling real-time decisions about per-
sonal identity with extremely high confidence. The
high confidence levels are important because they al-
low very large databases to be searched exhaustively
(one-to-many “identification mode”’) without making
false matches, despite so many chances. Biometrics
that lack this property can only survive one-to-one
(“verification”) or few comparisons. This paper ex-
plains the iris recognition algorithms, and presents re-
sults of 9.1 million comparisons among eye images
from trials in Britain, the USA, Japan, and Korea.

1 Introduction

Reliable automatic recognition of persons has long
been an attractive goal. As in all pattern recognition
problems, the key issue is the relation between inter-
class and intra-class variability: objects can be reli-
ably classified only if the variability among different
instances of a given class is less than the variability
between different classes. For example in face recog-
nition, difficulties arise from the fact that the face is
a changeable social organ displaying a variety of ex-
pressions, as well as being an active 3D object whose
image varies with viewing angle, pose, illumination,
accoutrements, and age. It has been shown that for fa-
cial images taken at least one year apart, even the best
current algorithms have error rates of 43% (Phillips et
al. 2000) to 50% (Pentland et al. 2000). Against this
intra-class (same face) variability, inter-class variabil-
ity is limited because different faces possess the same
basic set of features, in the same canonical geometry.

Figure 1: Example of an iris pattern, imaged
monochromatically at a distance of about 35 cm. The
outline overlay shows results of the iris and pupil lo-
calization and eyelid detection steps. The bit stream
in the top left is the result of demodulation with
complex-valued 2D Gabor wavelets to encode the
phase sequence of the iris pattern.

For all of these reasons, iris patterns become in-
teresting as an alternative approach to reliable visual
recognition of persons when imaging can be done at
distances of less than a meter, and especially when
there is a need to search very large databases without
incurring any false matches despite a huge number of
possibilities. Although small (11 mm) and sometimes
problematic to image, the iris has the great mathemat-
ical advantage that its pattern variability among dif-
ferent persons is enormous. In addition, as an inter-
nal (yet externally visible) organ of the eye, the iris is
well protected from the environment, and stable over
time. As a planar object its image is relatively insen-
sitive to angle of illumination, and changes in viewing
angle cause only affine transformations; even the non-
affine pattern distortion caused by pupillary dilation is
readily reversible. Finally, the ease of localizing eyes
in faces, and the distinctive annular shape of the iris,
facilitate reliable and precise isolation of this feature
and the creation of a size-invariant representation.



The iris begins to form in the third month of ges-
tation (Kronfeld 1962) and the structures creating its
pattern are largely complete by the eighth month, al-
though pigment accretion can continue into the first
postnatal years. Its complex pattern can contain many
distinctive features such as arching ligaments, fur-
rows, ridges, crypts, rings, corona, freckles, and a
zigzag collarette, some of which may be seen in Fig-
ure 1. Iris colour is determined mainly by the density
of melanin pigment (Chedekel 1994) in its anterior
layer and stroma, with blue irises resulting from an
absence of pigment: long wavelength light penetrates
and is absorbed by the pigment epithelium, while
shorter wavelengths are reflected and scattered by the
stroma. The striated trabecular meshwork of elas-
tic pectinate ligament creates the predominant tex-
ture under visible light, whereas in the near infrared
(NIR) wavelengths used for unobtrusive imaging at
distances of up to 1 meter, deeper and somewhat more
slowly modulated stromal features dominate the iris
pattern. In NIR wavelengths, even darkly pigmented
irises reveal rich and complex features.

Algorithms described in (Daugman 1993, 1994)
for encoding and recognizing iris patterns have been
the executable software used in all iris recognition
systems so far deployed commercially or in tests, in-
cluding those by British Telecom, US Sandia Labs,
UK National Physical Lab, NBTC, Panasonic, LG,
Oki, EyeTicket, IBM SchipholGroup, Joh.Enschede,
IriScan, Iridian, and Sensar. All testing organizations
have reported a false match rate of O in their tests,
some of which involved millions of iris pairings. This
paper explains how the algorithms work, and presents
new data on the statistical properties and singularity
of iris patterns based on 9.1 million comparisons.

2 Finding an Iris in an Image

To capture the rich details of iris patterns, an imag-
ing system should resolve a minimum of 70 pixels
in iris radius. In the field trials to date, a resolved
iris radius of 100 to 140 pixels has been more typ-
ical. Monochrome CCD cameras (480 x 640) have
been used because NIR illumination in the 700nm -
900nm band was required for imaging to be invisible
to humans. Some imaging platforms deployed a wide-
angle camera for coarse localization of eyes in faces,
to steer the optics of a narrow-angle pan/tilt camera
that acquired higher resolution images of eyes. There
exist many alternative methods for finding and track-
ing facial features such as the eyes, and this well-
researched topic will not be discussed further here.
In these trials, most imaging was done without ac-
tive pan/tilt camera optics, but instead exploited vi-
sual feedback via a mirror or video image to enable
cooperating Subjects to position their own eyes within
the field of view of a single narrow-angle camera.

Focus assessment was performed in real-time
(faster than video frame rate) by measuring the total
high-frequency power in the 2D Fourier spectrum of
each frame, and seeking to maximize this quantity ei-
ther by moving an active lens or by providing audio
feedback to Subjects to adjust their range appropri-
ately. Images passing a minimum focus criterion were
then analyzed to find the iris, with precise localization
of its boundaries using a coarse-to-fine strategy termi-
nating in single-pixel precision estimates of the center
coordinates and radius of both the iris and the pupil.
Although the results of the iris search greatly con-
strain the pupil search, concentricity of these bound-
aries cannot be assumed. Very often the pupil center
is nasal, and inferior, to the iris center. Its radius can
range from 0.1 to 0.8 of the iris radius. Thus, all three
parameters defining the pupillary circle must be esti-
mated separately from those of the iris. A very effec-
tive integrodifferential operator for determining these
parameters is:
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where I(x,y) is an image such as Fig 1 containing
an eye. The operator searches over the image domain
(x,y) for the maximum in the blurred partial deriva-
tive with respect to increasing radius r, of the normal-
ized contour integral of I(z, y) along a circular arc ds
of radius r and center coordinates (zg, yo). The sym-
bol * denotes convolution and G, (r) is a smoothing
function such as a Gaussian of scale o. The complete
operator behaves in effect as a circular edge detector,
blurred at a scale set by o, which searches iteratively
for a maximum contour integral derivative with in-
creasing radius at successively finer scales of analysis
through the three parameter space of center coordi-
nates and radius (zq, Yo, ) defining a path of contour
integration.

The operator in (1) serves to find both the pupillary
boundary and the outer (limbus) boundary of the iris,
although the initial search for the limbus also incor-
porates evidence of an interior pupil to improve its ro-
bustness since the limbic boundary itself usually has
extremely soft contrast when long wavelength NIR il-
lumination is used. Once the coarse-to-fine iterative
searches for both these boundaries have reached sin-
gle pixel precision, then a similar approach to detect-
ing curvilinear edges is used to localize both the up-
per and lower eyelid boundaries. The path of contour
integration in (1) is changed from circular to arcuate,
with spline parameters fitted by standard statistical es-
timation methods to describe optimally the available
evidence for each eyelid boundary. The result of all
these localization operations is the isolation of iris tis-
sue from other image regions, as illustrated in Fig 1
by the graphical overlay on the eye.



Phase-Quadrant Demodulation Code
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Figure 2: The phase demodulation process used to
encode iris patterns. Local regions of an iris are pro-
jected (Eqt 2) onto quadrature 2D Gabor wavelets,
generating complex-valued coefficients whose real
and imaginary parts specify the coordinates of a pha-
sor in the complex plane. The angle of each phasor
is quantized to one of the four quadrants, setting two
bits of phase information. This process is repeated all
across the iris with many wavelet sizes, frequencies,
and orientations, to extract 2,048 bits.

3 Iris Feature Encoding by 2D Wavelet
Demodulation

Each isolated iris pattern is then demodulated to
extract its phase information using quadrature 2D Ga-
bor wavelets (Daugman 1985, 1988, 1994). This en-
coding process is illustrated in Fig 2. It amounts to
a patch-wise phase quantization of the iris pattern, by
identifying in which quadrant of the complex plane
each resultant phasor lies when a given area of the iris
is projected onto complex-valued 2D Gabor wavelets:
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where I g pe 1m) can be regarded as a complex-valued
bit whose real and imaginary parts are either 1 or 0
(sgn) depending on the sign of the 2D integral; I(p, ¢)
is the raw iris image in a dimensionless polar coor-
dinate system that is size- and translation-invariant,
and which also corrects for pupil dilation as explained
in a later section; o and 3 are the multi-scale 2D
wavelet size parameters, spanning an 8-fold range
from 0.15mm to 1.2mm on the iris; w is wavelet fre-
quency, spanning 3 octaves in inverse proportion to [3;
and (ro, 6p) represent the polar coordinates of each re-
gion of iris for which the phasor coordinates /¢ ge, rm}

are computed. Such a phase quadrant coding se-
quence is illustrated for one iris by the bit stream
shown graphically in Fig 1. A desirable feature of
the phase code portrayed in Fig 2 is that it is a cyclic,
or grey code: in rotating between any adjacent phase
quadrants, only a single bit changes, unlike a binary
code in which two bits may change, making some er-
rors arbitrarily more costly than others. Altogether
2,048 such phase bits (256 bytes) are computed for
each iris, but in a major improvement over the earlier
(Daugman 1993) algorithms, now an equal number
of masking bits are also computed to signify whether
any iris region is obscured by eyelids, contains any
eyelash occlusions, specular reflections, boundary ar-
tifacts of hard contact lenses, or poor signal-to-noise
ratio and thus should be ignored in the demodulation
code as artifact.

Figure 3: Illustration that even for poorly focused eye
images, the bits of a demodulation phase sequence
are still set, primarily by random CCD noise. This
prevents poorly focused eye images from resembling
each other in the pattern matching stage, in the way
that (e.g.) poorly resolved face images look alike and
can be confused with each other.

Only phase information is used for recognizing
irises because amplitude information is not very dis-
criminating, and it depends upon extraneous factors
such as imaging contrast, illumination, and camera
gain. The phase bit settings which code the sequence
of projection quadrants as shown in Fig 2 capture
the information of wavelet zero-crossings, as is clear
from the sign operator in (2). The extraction of phase
has the further advantage that phase angles are as-
signed regardless of how low the image contrast may
be, as illustrated by the extremely out-of-focus image
in Fig 3. Its phase bit stream has statistical proper-
ties such as run lengths similar to those of the code
for the properly focused eye image in Fig 1. (Fig 3
also illustrates the robustness of the iris- and pupil-
finding operators, and the eyelid detection operators,
despite poor focus.) The benefit which arises from



the fact that phase bits are set also for a poorly fo-
cused image as shown here, even if based only on
random CCD noise, is that different poorly focused
irises never become confused with each other when
their phase codes are compared. By contrast, images
of different faces look increasingly alike when poorly
resolved, and may be confused with each other by
appearance-based face recognition algorithms.

4 The Test of Statistical Independence:
Combinatorics of Phase Sequences

The key to iris recognition is the failure of a test
of statistical independence, which involves so many
degrees-of-freedom that this test is virtually guaran-
teed to be passed whenever the phase codes for two
different eyes are compared, but to be uniquely failed
when any eye’s phase code is compared with another
version of itself.

The test of statistical independence is implemented
by the simple Boolean Exclusive-OR operator (XOR)
applied to the 2,048 bit phase vectors that encode any
two iris patterns, masked (AND’ed) by both of their
corresponding mask bit vectors to prevent non-iris ar-
tifacts from influencing iris comparisons. The XOR
operator (X) detects disagreement between any corre-
sponding pair of bits, while the AND operator [ en-
sures that the compared bits are both deemed to have
been uncorrupted by eyelashes, eyelids, specular re-
flections, or other noise. The norms (|| ||) of the re-
sultant bit vector and of the AND’ed mask vectors are
then measured in order to compute a fractional Ham-
ming Distance (HD) as the measure of the dissimilar-
ity between any two irises, whose two phase code bit
vectors are denoted {codeA, codeB} and whose mask
bit vectors are denoted {maskA, maskB}:

[l(code A Q) codeB) (\maskA(maskB]||

HD =
|lmaskA (M maskB||

3
The denominator tallies the total number of phase bits
that mattered in iris comparisons after artifacts such as
eyelashes and specular reflections were discounted, so
the resulting HD is a fractional measure of dissimilar-
ity; 0 would represent a perfect match. The Boolean
operators (X) and () are applied in vector form to bi-
nary strings of length up to the word length of the
CPU, as a single machine instruction. Thus for exam-
ple on an ordinary 32-bit machine, any two integers
between 0 and 4 billion can be XOR’ed in a single
machine instruction to generate a third such integer,
each of whose bits in a binary expansion is the XOR
of the corresponding pair of bits of the original two
integers. This implementation of (3) in parallel 32-
bit chunks enables extremely rapid comparisons of
iris codes when searching through a large database
to find a match. On a 300 MHz CPU, such exhaus-
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Figure 4: Distribution of Hamming Distances from
all 9.1 million possible comparisons between differ-
ent pairs of irises in the database. The histogram
forms a perfect binomial distribution with p = 0.5
and N = 249 degrees-of-freedom, as shown by the
solid curve (Eqt 4). The data implies that it is ex-
tremely improbable for two different irises to disagree
in less than about a third of their phase information.

tive searches are performed at a rate of about 100,000
irises per second.

Because any given bit in the phase code for an iris
is equally likely to be 1 or 0, and different irises are
uncorrelated, the expected proportion of agreeing bits
between the codes for two different irises is HD =
0.500. The histogram in Fig 4 shows the distribu-
tion of HDs obtained from 9.1 million comparisons
between different pairings of iris images acquired by
licensees of these algorithms in the UK, the USA,
Japan, and Korea. There were 4,258 different iris
images, including 10 each of one subset of 70 eyes.
Excluding those duplicates of (700 x 9) same-eye
comparisons, and not double-counting pairs, and not
comparing any image with itself, the total number of
unique pairings between different eye images whose
HDs could be computed was ((4,258 x 4,257 - 700
x 9) /2) =9,060,003. Their observed mean HD was
p = 0.499 with standard deviation ¢ = 0.0317; their
full distribution in Fig 4 corresponds to a binomial
having N = p(1 — p)/o? = 249 degrees-of-freedom,
as shown by the solid curve. The extremely close fit
of the theoretical binomial to the observed distribu-
tion is a consequence of the fact that each comparison
between two phase code bits from two different irises
is essentially a Bernoulli trial, albeit with correlations
between successive “coin tosses.”

In the phase code for any given iris, only small
subsets of bits are mutually independent due to the
internal correlations, especially radial, within an iris.
(If all N = 2,048 phase bits were independent,
then the distribution in Fig 4 would be very much
sharper, with an expected standard deviation of only
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Figure 5: Quantile-quantile plot of the observed cu-

mulatives under the left tail of the histogram in Fig 4,
versus the predicted binomial cumulatives. The close
agreement over several orders of magnitude strongly
confirms the binomial model for phase bit compar-
isons between different irises.

vp(1 —p)/N = 0.011 and so the HD interval be-

tween 0.49 and 0.51 would contain most of the dis-
tribution.) Bernoulli trials that are correlated (Viveros
et al. 1984) remain binomially distributed but with a
reduction in N, the effective number of tosses, and
hence an increase in the o of the normalized HD dis-
tribution. The form and width of the HD distribu-
tion in Fig 4 tell us that the amount of difference
between the phase codes for different irises is dis-
tributed equivalently to runs of 249 tosses of a fair
coin (Bernoulli trials with p = 0.5, N = 249). Ex-
pressing this variation as a discrimination entropy
(Cover and Thomas 1991) and using typical iris and
pupil diameters of 11mm and 5mm respectively, the
observed amount of statistical variability among dif-
ferent iris patterns corresponds to an information den-
sity of about 3.2 bits/mm? on the iris.

The theoretical binomial distribution plotted as the
solid curve in Fig 4 has the fractional functional form

N! m N—m

f(x):mp (1-p™=™ @
where N = 249, p = 0.5, and x = m/N is the out-
come fraction of /N Bernoulli trials (e.g. coin tosses
that are “heads” in each run). In our case, x is the HD,
the fraction of phase bits that happen to agree when
two different irises are compared. To validate such
a statistical model we must also study the behaviour
of the tails, by examining quantile-quantile plots of
the observed cumulatives versus the theoretically pre-
dicted cumulatives from O up to sequential points in
the tail. Such a “Q-Q” plot is given in Fig 5. The
straight line relationship reveals very precise agree-
ment between model and data, over a range of more
than three orders of magnitude. It is clear from both
Figures 4 and 5 that it is extremely improbable that
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Figure 6: Distribution of Hamming Distances be-
tween genetically identical irises, in 648 paired eyes
from 324 persons. The data are statistically indistin-
guishable from that shown in Fig 4 comparing unre-
lated irises. Unlike eye colour, the phase structure of
iris patterns therefore appears to be epigenetic, arising
from random events and circumstances in the mor-
phogenesis of this tissue.

two different irises might disagree by chance in fewer
than at least a third of their bits. (Of the 9.1 million
iris comparisons plotted in the histogram of Figure 4,
the smallest Hamming Distance observed was 0.334.)
Computing the cumulative of f(z) from 0 to 0.333
indicates that the probability of such an event is about
1 in 16 million. The cumulative from 0O to just 0.300
is 1 in 10 billion. Thus, even the observation of a rel-
atively poor degree of match between the phase codes
for two different iris images (say, 70% agreement or
HD = 0.300) would still provide extraordinarily com-
pelling evidence of identity, because the test of statis-
tical independence is still failed so convincingly.

I also compared genetically identical eyes in the
same manner, in order to discover the degree to which
their textural patterns were correlated and hence ge-
netically determined. A convenient source of genet-
ically identical irises are the right and left pair from
any given person; such pairs have the same genetic
relationship as the four irises of monozygotic twins,
or indeed the prospective 2NN irises of IV clones. Al-
though eye colour is of course strongly determined
genetically, as is overall iris appearance, the detailed
patterns of genetically identical irises appear to be as
uncorrelated as they are among unrelated eyes. Using
the same methods as described above, 648 right/left
iris pairs from 324 persons were compared pairwise.
Their mean HD was 0.497 with standard deviation
0.031, and their distribution (Fig 6) was statistically
indistinguishable from the distribution for unrelated
eyes (Fig 4). A set of 6 pairwise comparisons among
the eyes of actual monozygotic twins also yielded a
result (mean HD = 0.507) expected for unrelated eyes.



It appears that the phenotypic random patterns visible
in the human iris are almost entirely epigenetic.

5 Recognizing Irises Regardless of Size,
Position, and Orientation

Robust representations for pattern recognition
must be invariant to changes in the size, position,
and orientation of the patterns. In the case of iris
recognition, this means we must create a representa-
tion that is invariant to the optical size of the iris in
the image (which depends upon the distance to the
eye, and the camera optical magnification factor); the
size of the pupil within the iris (which introduces a
non-affine pattern deformation); the location of the
iris within the image; and the iris orientation, which
depends upon head tilt, torsional eye rotation within
its socket (cyclovergence), and camera angles, com-
pounded with imaging through pan/tilt eye-finding
mirrors that introduce additional image rotation fac-
tors as a function of eye position, camera position,
and mirror angles. Fortunately, invariance to all of
these factors can readily be achieved.

For on-axis but possibly rotated iris images, it is
natural to use a projected pseudo polar coordinate sys-
tem. The polar coordinate grid is not necessarily con-
centric, since in most eyes the pupil is not central in
the iris; it is not unusual for its nasal displacement
to be as much as 15%. This coordinate system can
be described as doubly-dimensionless: the polar vari-
able, angle, is inherently dimensionless, but in this
case the radial variable is also dimensionless, because
it ranges from the pupillary boundary to the limbus
always as a unit interval [0, 1]. The dilation and con-
striction of the elastic meshwork of the iris when the
pupil changes size is intrinsically modelled by this co-
ordinate system as the stretching of a homogeneous
rubber sheet, having the topology of an annulus an-
chored along its outer perimeter, with tension con-
trolled by an (off-centered) interior ring of variable
radius.

The homogeneous rubber sheet model assigns to
each point on the iris, regardless of its size and pupil-
lary dilation, a pair of real coordinates (r, §) where r
is on the unit interval [0, 1] and 6 is angle [0, 27].
The remapping of the iris image I(z,y) from raw
cartesian coordinates (z, y) to the dimensionless non-
concentric polar coordinate system (r, §) can be rep-
resented as

I(2(r,0),y(r,0)) — I(r,0) 5

where x(r,0) and y(r,0) are defined as linear com-
binations of both the set of pupillary boundary points
(p(0),yp(#)) and the set of limbus boundary points
along the outer perimeter of the iris (z4(0),ys(0))
bordering the sclera, both of which are detected by

finding the maximum of the operator (1).
z(r, ) = (1 —r)zp(0) + rzs(0) (6)

y(r,0) = (1= 7)yp(0) + rys(0) )

Since the radial coordinate ranges from the iris inner
boundary to its outer boundary as a unit interval, it
inherently corrects for the elastic pattern deformation
in the iris when the pupil changes in size.

The localization of the iris and the coordinate sys-
tem described above achieve invariance to the 2D po-
sition and size of the iris, and to the dilation of the
pupil within the iris. However, it would not be in-
variant to the orientation of the iris within the image
plane. The most efficient way to achieve iris recog-
nition with orientation invariance is not to rotate the
image itself using the Euler matrix, but rather to com-
pute the iris phase code in a single canonical orienta-
tion and then to compare this very compact represen-
tation at many discrete orientations by cyclic scrolling
of its angular variable. The statistical consequences of
seeking the best match after numerous relative rota-
tions of two iris codes are straightforward. Let fo(x)
be the raw density distribution obtained for the HDs
between different irises after comparing them only in
a single relative orientation; for example, fo(z) might
be the binomial defined in (4). Then Fy(z), the cumu-
lative of fo(z) from O to x, becomes the probability
of getting a false match in such a test when using HD
acceptance criterion x:

Fy(z) = /0 fo(z)dx 8)
or, equivalently,
d
folz) = %Fo(x) €)

Clearly, then, the probability of not making a false
match when using criterion x is 1 — Fy(x) after a sin-
gle test, and it is [I — Fy(x)]"™ after carrying out n
such tests independently at n different relative orien-
tations. It follows that the probability of a false match
after a “best of n” test of agreement, when using HD
criterion z, regardless of the actual form of the raw
unrotated distribution fq(x), is:

Fu(x)=1-[1— Fy(x)]" (10)

and the expected density f,(z) associated with this
cumulative is

d

folz) = EFn(x)

= nfolx)[1 - F@@)]"" 1D

Each of the 9.1 million pairings of different iris
images whose HD distribution was shown in Fig 4,



IrisCode Comparisons after Rotations: Best Matches
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Figure 7: Distribution of Hamming Distances from
the same set of 9.1 million comparisons as seen in Fig
4, but allowing for 7 relative rotations and preserving
only the best match found for each pair. This “best of
n” test skews the distribution to the left and reduces
its mean from about 0.5 to 0.458. The solid curve
is the theoretical prediction for such “extreme-value”
sampling, as described by Eqts (4) and (8) - (11).

was submitted to further comparisons in each of 7
relative orientations. This generated 63 million HD
outcomes, but in each group of 7 associated with any
one pair of irises, only the best match (smallest HD)
was retained. The histogram of these new 9.1 million
best HDs is shown in Fig 7. Since only the small-
est value in each group of 7 samples was retained, the
new distribution is skewed and biased to a lower mean
value (HD = 0.458), as expected from the theory of
extreme value sampling. The solid curve in Fig 7 is
a plot of (11), incorporating (4) and (8) as its terms,
and it shows an excellent fit between theory (bino-
mial extreme value sampling) and data. The fact that
the minimum HD observed in all of these millions of
rotated comparisons was about 0.33 illustrates the ex-
treme improbability that the phase sequences for two
different irises might disagree in fewer than a third
of their bits. This suggests that in order to identify
people by their iris patterns with high confidence, we
need to demand only a very forgiving degree of match
(say, HD < 0.32).

6 Uniqueness of Failing the Test of
Statistical Independence

The statistical data and theory presented above
show that we can perform iris recognition success-
fully just by a test of statistical independence. Any
two different irises are statistically “guaranteed” to
pass this test of independence, and any two images
that fail this test (i.e. produce a HD < 0.32) must be
images of the same iris. Thus, it is the unique failure
of the test of independence, that is the basis for iris
recognition.

False Match Probabilities: Cumulatives under PDF
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Figure 8: Calculated cumulatives under the left tail of
the distribution seen in Fig 7, up to sequential points,
using the functional analysis described by Eqts (4)
and (8) - (11). The extremely rapid attenuation of
these cumulatives reflects the binomial combinatorics
that dominate Eqt (4). This accounts for the astro-
nomical confidence levels against a false match, when
executing this test of statistical independence.

It is informative to calculate the significance of any
observed HD matching score, in terms of the like-
lihood that it could have arisen by chance from two
different irises. These probabilities give a confidence
level associated with any recognition decision. Fig 8
shows the false match probabilities marked off in cu-
mulatives along the tail of the distribution presented
in Fig 7 (same theoretical curve (11) as plotted in Fig
7 and with the justification presented in Fig 4 and Fig
5.) Table 1 enumerates the cumulatives of (11) (false
match probabilities) as a more fine-grained function
of HD decision criterion in the range between 0.26
and 0.35. Calculation of the large factorial terms in
(4) was done with Stirling’s approximation which errs
by less than 1% for n > 9:

n! ~ exp(nln(n) —n + %111(27?11)) (12)

| HD Criterion | Odds of False Match ’

0.26 1in10%3
0.27 11in 1012
0.28 1in 10!
0.29 1 in 13 billion
0.30 1 in 1.5 billion
0.31 1 in 185 million
0.32 1 in 26 million
0.33 1 in 4 million
0.34 1 in 690,000
0.35 1 in 133,000

Table 1: Cumulatives under (11) giving single false
match probabilities for various HD criteria.



The practical importance of the astronomical odds
against a false match when the match quality is better
than about HD < 0.32, as shown in Fig 8 and in Ta-
ble 1, is that such high confidence levels allow very
large databases to be searched exhaustively without
succumbing to any of the many opportunities for suf-
fering a false match. The requirements of operating
in one-to-many “identification” mode are vastly more
demanding than operating merely in one-to-one “ver-
ification” mode (in which an identity must first be ex-
plicitly asserted, which is then verified in a yes/no
decision by comparison against just the single nom-
inated template).

If P is the false match probability for single one-
to-one verification trials, then clearly Py, the proba-
bility of making at least one false match when search-
ing a database of NV unrelated patterns, is:

Py=1-(1-P)N (13)

because (1 — P) is the probability of not making a
false match in single comparisons; this must happen
N independent times; and so (1 — P;)¥ is the proba-
bility that such a false match never occurs.

It is interesting to consider how a seemingly im-
pressive biometric one-to-one “verifier” would per-
form in exhaustive search mode once databases be-
come larger than about 100, in view of (13). For
example, a face recognition algorithm that truly
achieved 99.9% correct rejection when tested on
non-identical faces, hence making only 0.1% false
matches, would seem to be performing at a very im-
pressive level because it must confuse no more than
10% of all identical twin pairs (since about 1% of
all persons in the general population have an identi-
cal twin). But even with its P, = 0.001, how good
would it be for searching large databases?

Using (13) we see that when the search database
size has reached merely N = 200 unrelated faces, the
probability of at least one false match among them
is already 18%. When the search database is just
N = 2000 unrelated faces, the probability of at least
one false match has reached 86%. Clearly, identifica-
tion is vastly more demanding than one-to-one verifi-
cation, and even for moderate database sizes, merely
“good” verifiers are of no use as identifiers. Observ-
ing the approximation that Py ~ NP; for small
Py << % << 1, when searching a database of
size N an identifier needs to be roughly N times bet-
ter than a verifier to achieve comparable odds against
making false matches.

The algorithms for iris recognition exploit the ex-
tremely rapid attenuation of the HD distribution tail
created by binomial combinatorics, to accommodate
very large database searches without suffering false
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Figure 9: The Decision Environment for iris recog-
nition under relatively unfavourable conditions, using
images acquired at different distances, and by differ-
ent optical platforms.

matches. The HD threshold is adaptive, to main-
tain Py < 1079 regardless of how large the search
database size N is. As Table 1 illustrates, this means
that if the search database contains 1 million different
iris patterns, it is only necessary for the HD match cri-
terion to adjust downwards from 0.33 to 0.27 in order
to maintain still a net false match probability of 10~6
for the entire database.

7 Decision Environment for Iris
Recognition

The overall “decidability” of the task of recogniz-
ing persons by their iris patterns is revealed by com-
paring the Hamming Distance distributions for same
versus for different irises. The left distribution in Fig
9 shows the HDs computed between 7,070 different
pairs of same-eye images at different times, under dif-
ferent conditions, and usually with different cameras;
and the right distribution gives the same 9.1 million
comparisons among different eyes shown earlier. To
the degree that one can confidently decide whether an
observed sample belongs to the left or the right dis-
tribution in Fig 9, iris recognition can be successfully
performed. Such a dual distribution representation of
the decision problem may be called the “decision en-
vironment,” because it reveals the extent to which the
two cases (same versus different) are separable and
thus how reliably decisions can be made, since the
overlap between the two distributions determines the
error rates.

Whereas Fig 9 shows the decision environment un-
der less favourable conditions (images acquired by
different camera platforms), Fig 10 shows the deci-
sion environment under ideal (almost artificial) con-
ditions. Subjects’ eyes were imaged in a laboratory
setting using always the same camera with fixed zoom
factor and at fixed distance, and with fixed illumina-
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Figure 10: The Decision Environment for iris recog-
nition under very favourable conditions, using always
the same camera, distance, and lighting.

tion. Not surprisingly, more than half of such image
comparisons achieved an HD of 0.00, and the average
HD was a mere 0.019. It is clear from comparing Fig
9 and Fig 10 that the “authentics” distribution for iris
recognition (the similarity between different images
of the same eye, as shown in the left-side distribu-
tions), depends very strongly upon the image acqui-
sition conditions. However, the measured similarity
for “imposters” (the right-side distribution) is appar-
ently almost completely independent of imaging fac-
tors. Instead, it mainly reflects just the combinatorics
of Bernoulli trials, as bits from independent binary
sources (the phase codes for different irises) are com-
pared.

For two-choice decision tasks (e.g. same ver-
sus different), such as biometric decision making,
the “decidability” index d’ measures how well sep-
arated the two distributions are, since recognition er-
rors would be caused by their overlap. If their two
means are 1 and po, and their two standard devia-
tions are o and o9, then d’ is defined as

d = ] (14)

(0f +03)/2

This measure of decidability is independent of how
liberal or conservative is the acceptance threshold
used. Rather, by measuring separation, it reflects the
degree to which any improvement in (say) the false
match error rate must be paid for by a worsening of
the failure-to-match error rate. The performance of
every biometric technology can be calibrated by its d’
score. The measured decidability for iris recognition
is d’ = 7.3 for the non-ideal (crossed platform) con-
ditions presented in Fig 9, and it is d’ = 14.1 for the
ideal imaging conditions presented in Fig 10.

Based on the left-side distributions in Figs 9 and
10, one could calculate a table of probabilities of fail-
ure to match, as a function of HD match criterion, just

as we did earlier in Table 1 for false match probabil-
ities based on the right-side distribution. However,
such estimates may not be stable because the “au-
thentics” distributions depend strongly on the qual-
ity of imaging (e.g. motion blur, focus, noise, etc.)
and would be different for different optical platforms.
As illustrated earlier by the badly defocused image of
Fig 3, phase bits are still set randomly with binomial
statistics in poor imaging, and so the right distribution
is the stable asymptotic form both in the case of well
imaged irises (Fig 10) and poorly imaged irises (Fig
9). Imaging quality determines how much the same-
iris distribution evolves and migrates leftward, away
from the asymptotic different-iris distribution on the
right. In any case, we note that for the 7,070 same-iris
comparisons shown in Fig 9, their highest HD was
0.327 which is below the smallest HD of 0.329 for
the 9.1 million comparisons between different irises.
Thus a decision criterion slightly below 0.33 for the
empirical data sets shown can perfectly separate the
dual distributions. At this criterion, using the cumu-
latives of (11) as tabulated in Table 1, the theoretical
false match probability is 1 in 4 million.

Notwithstanding this diversity among iris patterns
and their apparent singularity because of so many di-
mensions of random variation, their utility as a basis
for automatic personal identification would depend
upon their relative stability over time. There is a pop-
ular belief that the iris changes systematically with
one’s health or personality, and even that its detailed
features reveal the states of individual organs (“iri-
dology™); but such claims have been discredited (e.g.
Berggren 1985; Simon et al. 1979) as medical fraud.
In any case, the recognition principle described here
is intrinsically tolerant of a large proportion of the iris
information being corrupted, say up to about a third,
without significantly impairing the inference of per-
sonal identity by the simple test of statistical indepen-
dence.

8 Speed Performance Summary

On a 300 MHz Sun workstation, the execution
times for the critical steps in iris recognition are as
follows, using optimized integer code:

| Operation | Time |

Assess image focus 15 msec

Scrub specular reflections 56 msec

Localize eye and iris 90 msec

Fit pupillary boundary 12 msec

Detect and fit both eyelids 93 msec

Remove lashes and contact lens edges | 78 msec

Demodulation and IrisCode creation | 102 msec
XOR comparison of two IrisCodes 10 pus

Table 2: Speeds of various stages in the iris recogni-
tion process.



The search engine can perform about 100,000
full comparisons between different irises per second,
because of the efficient implementation of the match-
ing process in terms of elementary Boolean operators
) and [ acting in parallel on the computed phase bit
sequences. If database size was measured in millions
of enrolled persons, then the inherent parallelism of
the search process should be exploited for the sake
of speed by dividing up the entire search database
into units of about 100,000 persons each. The
confidence levels shown in Table 1 indicate how
the decision threshold should be adapted for each
of these parallel search engines, in order to ensure
that no false matches were made despite several
large-scale searches being conducted independently.
The mathematics of the iris recognition algorithms
make it clear that databases the size of entire nations
could be searched in parallel to make a confident
identification decision, in about 1 second using
parallel banks of inexpensive CPUs, if such large
national iris databases ever came to exist.
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