
A Generic Synthesisable Test Bench

Matthew Naylor and Simon Moore
Computer Laboratory, University of Cambridge, UK

{matthew.naylor, simon.moore}@cl.cam.ac.uk

Abstract—Writing test benches is one of the most frequently-
performed tasks in the hardware development process. The ability
to reuse common test bench features is therefore key to productiv-
ity. In this paper, we present a generic test bench, parameterised
by a specification of correctness, which can be used to test
any design. Our test bench provides several important features,
including automatic test-sequence generation and shrinking of
counter-examples, and is fully synthesisable, allowing rigorous
testing on FPGA as well as in simulation. The approach is easy to
use, cheap to implement, and encourages the formal specification
of hardware components through the reward of automatic testing
and simple failure cases.

I. INTRODUCTION

Test benches are perhaps the most commonly used method
of verifying hardware correctness, yet they are often written
‘ad-hoc’ with little or no code shared between the test bench
of one component and that of another. There are however a
number of desirable functionalities common to almost any test
bench – e.g. generating test-sequences, monitoring coverage,
finding simple failures, and reporting outcomes – many of
which can be tricky or time-consuming to get right. If such
features are abstracted out in an easily-reusable form – e.g. in
a highly-generic test bench, as we propose in this paper – then
testing becomes not only easier to do, but also more effective.

A key step in developing any test bench is deciding which
behaviours of the implementation should be allowed and which
should not. To use our test bench, we require the developer to
provide an executable specification that defines the validity
of any conceivable input-output combination. This allows the
testing process to be automated. We adopt the idea of writing
specifications in the same language as the implementation [1].
Compared to full formal specification, this has pros and cons:
on the one hand, no new specification language needs to be
learned; on the other, only properties expressible within the
HDL can be tested.

Verification of stateful hardware components typically in-
volves the use of test-sequences, i.e. sequences of inputs that
vary over time. In our experience, long test-sequences that
lead to failures are extremely difficult to diagnose – a failure
can be a consequence not only of the latest input, but of all
past inputs too. This motivates two features in our test bench
for automatically finding simple failures: iterative deepening
and shrinking. Iterative deepening involves the generation of
test-sequences whose sizes gradually increase over time, with
the aim of finding simple failures first. (Between each test-
sequence, the design under test is reset.) In contrast, shrinking
involves taking a long failing sequence and attempting to
shorten it by repeatedly omitting possibly-unneeded elements.
We have found both techniques to work well in practice, and
especially when used in combination.

Reporting failing test-sequences to the user in a hand-
written test bench usually involves the use of simulation-only
$display statements. When running on FPGA, these state-
ments are simply ignored and the developer must explicitly
write code to transfer outcomes to a host PC, e.g. over a UART.
Additional code must be written if they wish to accurately
replay the failing sequence in simulation. A similar situation
arises when generating sample input data using $random
statements, which are not synthesisable either. All this means
that hand-written test benches tend not to run on FPGA, which
is unfortunate since testing can be far more thorough there. Our
generic test bench solves each of these issues once and for all,
encouraging the practice of on-FPGA testing.

To generate sample test data we use random testing.
Although effective, care must be taken to avoid certain pitfalls
[1]. In particular, random testing is sometimes insufficient to
generate a good percentage of interesting inputs, especially
when these inputs must satisfy strict invariants. To address
this concern, we provide support for classifying the generated
test data to determine where test coverage is poor, and allow
the default generator for any data type to be customised so as
to bias the distribution of test data in the desired direction.

Our generic test bench is implemented simply as a library
module in the Bluespec HDL and is called BlueCheck, after
QuickCheck [1], an influential software testing tool on which
BlueCheck is based. BlueCheck is available open-source from:

http://github.com/CTSRD-CHERI/bluecheck

Although we will show that Bluespec turns out to be an
excellent language to implement a generic test bench, we
believe that the core ideas can be usefully applied to other
HDLs too. We begin this paper by presenting the design
and implementation of BlueCheck, highlighting the ideas in
an example-driven manner (§II). After that, we give our
experiences of using BlueCheck in a real hardware project,
specifically the shared memory subsystem of the BERI multi-
processor [2] (§III). We then discuss HDL features that assist
the development of a generic test bench (§IV), and present
related work, noting in particular how BlueCheck compares
with other recent testing tools and initiatives (§V and §VI).

While the hardware verification community continues to
make great strides in the effective use of formal methods to
produce high-quality designs, the value of formally specifying
hardware components is still not as widely appreciated as
it could be. Not only does writing a specification help the
developer to better understand the problem at hand, but it gives
them an oracle to rigorously test against, as well as the ability
to search for simple failure cases during debugging. The aim
of this paper is to illustrate these benefits in the context of
hardware design, and to demonstrate how they can be achieved
within a modern HDL.

II. BLUECHECK

A. An introductory example

Let us begin with a simple example. Suppose we require an
HDL function firstHot, which given a bit-string x returns a
similar bit-string in which only the least significant non-zero
bit of x is set. In Bluespec, we can define it as:

function Bit#(n) firstHot(Bit#(n) x) =
x & (~x + 1);

This function returns the bitwise conjunction of the input and
the 2’s complement of the input. It is not immediately obvious
that this works! So we will test it by first writing a specification
and then using BlueCheck to verify that firstHot does
indeed meet that specification.

To specify the correct behaviour of firstHot, we identify
two important properties which it must satisfy. First, the output
must be a bit-string in which exactly one bit is set, unless the
input is all zeros, in which case no bits should be set. We
might formulate this as:

countOnes(firstHot(x)) =

{
0 if x = 0
1 otherwise

Here, countOnes counts the number of non-zero bits in a
string, and happens to be provided by Bluespec’s standard
libraries. Another important property of firstHot is that the
hot bit in the output must also be hot in the input:

x & firstHot(x) = firstHot(x)

Often when using firstHot, the programmer will rely on
these two properties alone – e.g. when they care only that
some hot bit in the input is isolated, not necessarily the first
one. However, for completeness, a third property might be
stated, namely that there are no hot bits in the input that are
less significant than the hot bit in the output. We encourage
readers to define this third property themselves. (Hint: it can be
expressed concisely using only standard arithmetic and bitwise
operators. A possible answer is in a footnote1.)

Now that we have decided on the properties of firstHot,
it is straightforward to express them using standard Bluespec
functions in which any universally quantified variables, such
as x in the above properties, are taken as function arguments:

0 module [Specification] firstHotSpec ();
1 // One bit in the output is hot
2 function Bool oneHot(Bit#(4) x) =
3 countOnes(firstHot(x)) == (x == 0 ? 0 : 1);
4

5 // The hot bit is common to input and output
6 function Bool hotCommon(Bit#(4) x) =
7 (x & firstHot(x)) == firstHot(x);
8

9 // Register properties with BlueCheck
10 prop("oneHot" , oneHot);
11 prop("hotCommon", hotCommon);
12 endmodule

In the above specification, identifiers that are exported by
the BlueCheck library are underlined. On lines 2 and 6, even
though the two properties are in principle agnostic to the size

1Possible answer: x & (firstHot(x) - 1) = 0

of bit-strings, we have had to specify a fixed size bit-string
– we choose Bit#(4) – on which the properties are to be
tested. On line 0, we use a feature of Bluespec which allows a
module to collect information of some type specified in square
brackets after the module keyword. Here, we are collecting the
specification to be tested: on lines 10 and 11 we register two
properties via calls to prop. In this example, each call to prop
is passed a property with a single argument of type Bit#(4);
in general however, prop is an overloaded function and may
be passed a property which takes any number of arguments,
each of any type.

Once a specification has been written, it can be passed to
BlueCheck:

module firstHotChecker ();
blueCheck(firstHotSpec);

endmodule

Now, when firstHotChecker is simulated as the top-level
module, we obtain the following output.

OK: passed 1000 iterations

The blueCheck function has instantiated a test bench in which
each property is applied to random inputs on each clock-cycle,
for a thousand iterations, and the properties never returned
false. Had we mistakenly defined our firstHot function as

function Bit#(n) firstHot(Bit#(n) x) =
x & ~(x + 1);

then we would obtain the output:

oneHot(15)
Property does not hold

As expected, a counter-example is reported: the oneHot prop-
erty no longer holds when x is 15. This test bench can also
be synthesised and run on FPGA for more rapid testing. We
will give more details about this later, but for now we turn our
attention to the testing of stateful circuits which pose a greater
challenge than purely combinatorial ones such as firstHot.

B. Testing stateful circuits

As an example of a simple but interesting stateful circuit,
let us consider a stack implementation providing all the usual
operations captured by the following interface.

// A stack of 2ˆn elements of type t
interface Stack#(type n, type t);
method Action push(t x);
method Action pop;
method Bool isEmpty;
method t top;
method Action clear;

endinterface

In Bluespec, an Action method is simply one that may have
an implicit side-effect, e.g. by mutating some internal state that
is not visible to the caller. In contrast, a non-Action method
can only read such internal state, not modify it.

Now we will test an implementation of the above interface
called mkBRAMStack. Rather than listing the implementation
here, we simply note its two main features: (1) it uses a block
RAM to store the elements of the stack, allowing large stack
sizes to be supported; and (2) it caches the top stack element

in a register to reduce propagation delay on the output of the
top method. To begin, we present a basic unit test for the
implementation – this will serve as an illustration of Bluespec
method calls as well as a commonly-used testing method:

0 module stackUnitTest ();
1 // Create 256-element stack of 4-bit values
2 Stack#(8, Bit#(4)) stk <- mkBRAMStack;
3

4 // Unit test, written as a sequence of calls
5 Stmt test =
6 seq
7 stk.push(1);
8 stk.push(2);
9 if (stk.top != 2) $display("Failed");

10 stk.pop;
11 if (stk.top != 1) $display("Failed");
12 endseq;
13

14 // Generate a state machine from the sequence
15 // (with one state per line of the seq block)
16 mkAutoFSM(test);
17 endmodule

If we simulate the above module, we find that no fail-
ure messages are displayed and thus conclude that the test
passes. Although reassuring, the result is not compelling:
if we consider all 5-element sequences of operations on a
stack containing 4-bits values, this test has only checked one
out of over 3 million possibilities. Furthermore, it does not
consider parallel behaviour, i.e. the possibility that several
stack methods are called in the same clock-cycle.

For greater confidence, we now write a specification for
mkBRAMStack and then use BlueCheck to verify it. Various
approaches may be taken to specify a stack: for now, we define
a golden model and assert equivalence between the golden
model and the implementation; later we will use an algebraic
specification. Our golden model is called mkRegStack and
implements the entire stack using registers: it ignores low-level
issues such as logic usage and block RAM access protocols,
and is more obviously correct than mkBRAMStack. Using
BlueCheck, the specification looks as follows.

0 module [Specification] stackSpec ();
1 // Implementation instance
2 Stack#(8, Bit#(4)) imp <- mkBRAMStack;
3

4 // Golden model instance
5 Stack#(8, Bit#(4)) model <- mkRegStack;
6

7 equiv("push" , model.push , imp.push);
8 equiv("pop" , model.pop , imp.pop);
9 equiv("isEmpty", model.isEmpty, imp.isEmpty);

10 equiv("top" , model.top , imp.top);
11 endmodule

We have specified that each method in the golden model is
equivalent to the corresponding method in the implementation.
Once again, we pass the specification to BlueCheck:

module stackChecker ();
blueCheck(stackSpec);

endmodule

Simulating stackChecker as the top-level module, we get:

push(13)
pop

push(6)
... 13 method calls elided ...
pop
pop
top failed: 6 v 1

As it turns out, there is a bug: we see a counter-example
in the form of a sequence of method calls ending in a call
to top which returns 6 in the golden model but 1 in the
implementation. The failing sequence is 19 elements long in
total, but most of it is elided for space reasons. To diagnose
the bug, we would ideally like a smaller failing sequence.
However, before looking at that, it is helpful to know a little
more about how the test bench actually works.

C. A basic testing strategy

It is useful to distinguish properties that mutate state
(impure properties) from those that don’t (pure properties). For
example, in the stack specification above, the "push" property
on line 7 is impure whereas the "isEmpty" property on line
9 is pure.

The BlueCheck test bench is a state machine containing
one state for each impure property that has been specified, as
well as a single no-op state. The current state of the machine is
taken from the output of a pseudo-random generator, leading
to a random sequence of property-invocations, and the value of
each argument to each property is also generated at random.
Since pure properties do not conflict with other properties,
they are always invoked, regardless of the current state of the
checker, even when in the no-op state. While calls to pure
properties are only displayed by BlueCheck when they fail,
calls to impure properties are always displayed because they
may contribute to a failure.

It is important to note that just because a property is
invoked does not mean it actually fires. In Bluespec, a method
may have an implicit condition that must be satisfied for it to
fire, e.g. the stack pop method may be conditioned on the stack
being non-empty. So the randomly-changing state machine
may well generate strange sequences, such as popping from
an empty stack, but such sequences will be naturally handled
by a property’s implicit conditions: if a property cannot fire,
BlueCheck will simply move on to a new random state on the
next clock-cycle.

Another convenient feature of Bluespec that we exploit
is atomicity: when processing a specification containing an
impure equiv property, BlueCheck will place both sides of the
equivalence in the same atomic rule. This means, for example,
that the "push" property on line 7 of stackSpec will only
fire if the push method can fire in both the model and in
the implementation, otherwise the two stacks would become
out of sync. This is clearly important for correct equivalence
checking.

D. A better testing strategy

A big limitation of the above testing strategy is that it only
has the ability to check a single, albeit extremely long, test
sequence. To check many different test-sequences, we require
the ability to reset the circuit under test. To illustrate, let us
return to our stack example. With two small tweaks we can
make a resettable version of stackSpec called stackSpecR.

First, we modify line 0 to take an external reset signal as a
module argument:

module [Specification] stackSpecR#(Reset r) ();

And second, we modify lines 2 and 5 to to pass the reset
signal down to the stack implementation and golden model
respectively. For example, line 2 now reads:

Stack#(8, Bit#(4)) imp <-
mkBRAMStack(reset_by r);

Given a resettable specification, BlueCheck uses a more
elaborate testing strategy which we refer to as iterative deep-
ening (ID). The idea is to start by generating test-sequences
of some initial depth (i.e. length), and gradually increase the
depth over time. Between each test sequence, the circuit under
test is reset back to its initial state. Finally, if a failure is found,
the test bench will attempt to shrink the failing sequence. This
shrinking strategy operates as follows:

(1) Omit an element of the failing test sequence.
(2) Replay the test-sequence, and if it no longer fails, reinsert

the omitted element.
(3) If all elements of the failing test sequence have been

considered for omission, then halt.
(4) Otherwise, go back to step 1.

Notice that shrinking requires the ability to replay a test-
sequence. This is achieved by resetting the circuit under test,
restoring the seeds of the random generators to the values they
had at the beginning of the test, and invoking each non-omitted
element of the sequence on the same clock cycle that it was
invoked in the original failure. If the omission of an element
from the test-sequence causes later elements not to fire, then
naturally these will be removed too. New elements that did
not appear in the original sequence are never introduced.

We can now pass our new resettable specification to
BlueCheck and it will use the new testing strategy.

module stackCheckerID ();
blueCheckID(stackSpecR);

endmodule

Simulating it gives the following output.

=== Depth 20, Test 1/10000 ===
Saving state to ’State.txt’
39: push(1)
40: push(7)
43: push(10)
44: pop
46: pop
47: top failed: 1 v 7
Continue searching?

Now we obtain a fairly short failing sequence, consisting of
just 6 elements. In fact, this is a minimal counter-example: it
is not possible to expose the bug using fewer calls. In general
however, minimal counter-examples are not guaranteed, so
BlueCheck allows the user to continue testing with the pos-
sibility of finding a simpler one. Note that each property call
is now preceded by a timestamp – the clock-cycle on which
the call was made. The fact that the times are not perfectly
contiguous is due to one of three possible reasons: (1) the no-
op state was visited; (2) the chosen property did not fire; or
(3) shrinking has removed some of the original calls.

E. Resettable specifications

BlueCheck’s iterative deepening and shrinking procedures
both rely on the ability to reset the design under test back to a
well-defined initial state. Most primitive Bluespec components,
such as registers and FIFOs, are resettable out-of-the-box and
hence writing such resettable specifications usually requires
no special attention from the developer. However, one notable
exception is Bluespec’s block RAM component: its contents
are not reinitialised on reset. If a design makes any assumption
about the initial contents of a block RAM then that block RAM
should be initialised explicitly. We note that proper resetting
of modules in this way is considered good practice not just
for BlueCheck testing, but also for any component that may
be placed on an SoC bus.

F. Saving and replaying counter-examples

Before running each test-sequence, BlueCheck saves the
state of all its random generators and if the test-sequence
leads to a failure then this state is dumped either to a file
(in simulation) or over a UART (on FPGA). For example, we
can see in the above counter-example that the state has been
dumped to the file State.txt. Any counter-example can be
replayed at a later time by passing +replay as an argument
to the simulator, which will cause State.txt to be loaded
by the test bench. This allows counter-examples to be saved
as regression tests, and replayed in isolation with additional
debug/tracing options enabled, but the big attraction is that
counter-examples found on FPGA can be easily replayed in
simulation.

While in many cases the replay feature works well, it is
not always true that a failure found on FPGA will correspond
to a failure in simulation: the design under test may use a
hardware component whose behaviour is not perfectly mod-
elled in simulation. In such cases, BlueCheck at least allows
the failing test-sequence to be viewed by passing +view to
the simulator. To achieve this, BlueCheck not only dumps the
state of the random generators when a failure is found, but also
the clock-cycle on which each property fired. This is sufficient
information to deduce the failing sequence that occurred.

It is straightforward to run BlueCheck on FPGA. When
targeting Altera FPGAs, BlueCheck provides a single memory-
mapped master interface that can be connected directly to
Altera’s standard JTAG UART component. If the output of the
UART is redirected to a file State.txt on the host PC then
the results of testing can be viewed in the simulator. Using
BlueCheck to test stackSpecR on a DE4 FPGA development
board, we are able to test 1.8M 20-element test-sequences per
second, running at 100MHz. This compares to 8K sequences
per second in simulation.

G. The value of shrinking

It is useful to ask whether the shrinking procedure is
really necessary, or whether the simpler iterative deepening
strategy alone is enough to find small counter-examples. The
problem with using iterative deepening alone is that it raises a
tricky question: how rapidly should the depth be increased? If
increased too quickly, we lower the chance of finding a small
failure. And if increased too slowly, it may take too long to find
any failure. Let us illustrate using the stackSpecR example.

Avg. time to first Avg. size of
Tests-per-depth failure (cycles) first failure

10 1704 10
50 4468 7

100 7409 6
500 27388 5

Fig. 1. Using iterative deepening (without shrinking) to test the stack example,
with an initial depth of one. The depth is incremented by one after every
tests-per-depth test-sequences. The results are averaged over 100 runs, each
run using a different random seed.

Figure 1 shows the effect of varying the number of tests-per-
depth on the average size of the first-counter example found,
and the time taken to find it. The ideal trade-off depends on
the answer to a question which is unknown in advance: how
readily is a failure observed at each depth?

Using shrinking, we avoid these difficulties. Even if we
increase the depth rapidly, or choose a large initial depth, small
failures may still be found. For example, in the stack example,
if we begin testing at depth 10, we require just 931 cycles on
average to find a minimal counter-example. This is better than
any of the iterative deepening results shown in Figure 1. In
other words, shrinking can allow simple failures to be found
quickly.

H. Concurrent properties

So far, when talking about testing strategies, we have
assumed that impure properties conflict with each other and
cannot run in the same clock-cycle. While this is a safe default
assumption, it is not always true. For example, in Bluespec it
is possible to define a stack whose push and pop methods can
fire simultaneously, effectively replacing the top stack element,
and it is important to be able to test such behaviour. To specify
that our "push" and "pop" properties on lines 7 and 8 of
stackSpec can run in parallel, we may add the following
statement just before line 11.

parallel(list("push", "pop"));

As a result, an extra state is added to the BlueCheck state
machine in which all the properties specified in the list are
invoked. In this new state, any subset of the specified properties
may fire together: there is no requirement that they all must do
so. One slight limitation of this approach is that the shrinking
procedure currently only considers the omission of all elements
that fire on the same cycle, even though only a subset of these
may be necessary to reach a failure.

I. Classifiers and frequencies

The reader may have noticed that stackSpec does not
mention the clear method, which removes all elements from
a stack. The problem with having calls to clear is that the
likelihood of constructing stacks with more than a couple of
elements becomes rather low. Indeed, if we add the following
property to stackSpec,

equiv("clear", model.clear, imp.clear);

then we observe a rise in the number of passing test-sequences
before the bug is found. This highlights the importance of

monitoring test data when doing random testing, to ensure
good coverage of the state space. In response, BlueCheck
(like QuickCheck) provides a mechanism for classifying test
cases. To illustrate, suppose we wish to monitor the number
of “small” stacks being constructed. Adding to stackSpec,
we can first create a classifier:

let small <- mkClassifier("small");

A classifier is a function from Bool to Action and, when
called, BlueCheck will internally update true and false counts
for that classifier. Now, at the end of each test, we classify a
stack as small if it contains two elements or less:

post("", small(model.size <= 2));

Here we assume that the stack interface has been extended
with a size method, and we use a BlueCheck routine called
post which specifies a property to be called at the end of each
test-sequence. Now, when testing a corrected implementation
of the stack, the test bench reports:

OK: passed 20000 test sequences
93% small

It is straightforward to bias the test-sequence generator so
as to construct larger stacks by replacing lines 7 and 8 of
stackSpec with:

equivf(4, "push", model.push, imp.push);
equivf(2, "pop" , model.pop , imp.pop);

We have assigned frequencies to the properties so that, on
average, push is called twice as often as pop, and four times
more often than clear. The result of testing is now:

OK: passed 20000 test sequences
59% small

J. Algebraic specification

Another way to test a stack, without the need for a
golden model, is to define algebraic properties that define how
methods interact with each other [3]. For example, one such
property for a stack is that performing a push followed by a
pop is equivalent to a no-op. We might express this as:

stk.push(x) ; stk.pop = no-op

We can write a BlueCheck specification to test this law:

0 module [Specification] stackSpecAlg ();
1 // Create two instances of implementation
2 Stack#(8, Bit#(4)) s1 <- mkBRAMStack();
3 Stack#(8, Bit#(4)) s2 <- mkBRAMStack();
4

5 // On s1, push x, then pop it
6 function pushPop(x) =
7 seq s1.push(x); s1.pop; endseq;
8

9 // On s2, do nothing
10 function nop(x) = seq endseq;
11

12 equiv("pushPop", pushPop, nop);
13 equiv("push" , s1.push, s2.push);
14 equiv("pop" , s1.pop , s2.pop);
15 equiv("top" , s1.top , s2.top);
16 endmodule

Here we create two instances of the stack implementation, and
define a property "pushPop" in which one instance performs
a push followed by pop and the other performs a no-op. We
then assert equivalence between the two instances. Notice that
the new property requires a multi-cycle seq block to express
that the push and pop calls are performed sequentially in time.
Even this one algebraic property is enough to catch the bug in
our implementation, without the need for a golden model:
=== Depth 20, Test 15/10000 ===
11: push(12)
22: push(2)
23: pushPop(14)
27: pop
28: top failed: 2 v 12
Continue searching?

Another important algebraic property concerns the post-
condition of the push method: after push(x) is called, the
stack should be non-empty and the top element should contain
the value x. To express this, we write:
function pushPost(stk, x) =
seq
stk.push(x);
ensure(!stk.isEmpty && stk.top == x);

endseq;

This new property can be added to the algebraic specification at
line 12. First though, we must bring the ensure function into
scope so that BlueCheck can observe the correctness condition
(seq blocks do not have return values). At line 4, we write:
let ensure <- mkEnsure;

Now we can insert the new property at line 16:
equiv("pushPost", pushPost(s0), pushPost(s1));

Here we make use of partial function application: on each
side of the equivalence, we partially apply the property to a
different stack.

K. Wedge detection

A wedge is a common form of failure in which the
design under test locks up and ceases to be productive. Using
BlueCheck, any test-sequence that leads to a wedge can
be viewed simply by enabling verbose mode. This causes
BlueCheck to display tests-sequences as they are generated
(by default it will only display tests-sequences after they have
failed). When a wedge occurs, the simulation will lock up but
the sequence causing it will be seen on the output terminal.

This simple approach has two drawbacks: (1) it does
not work when the test bench is running on FPGA where
$display statements are ignored; and (2) no attempt is made
to shrink the failing sequence. To counter these problems, we
use a simple wedge detection mechanism which keeps track
of the number of consecutive clock-cycles in which no impure
property has fired. When this count exceeds a user-defined
threshold, the test bench terminates with a wedge failure.

L. Custom generators

By default, BlueCheck generates input data using a pseudo-
random generator that is generic across any synthesisable data
type. However, sometimes this default generator is not ideal.
To illustrate, consider the following type.

typedef struct {
Bit#(n) value;

} OneHot#(type n);

The idea is that a value of type OneHot#(n) is a n-element
bit-string in which exactly one bit is set, however the default
generator will yield values in which any number of bits are
set. This motivates the following module which yields a custom
generator for one-hot values.

0 module [Specification] mkOneHotGen (
1 Gen#(OneHot#(n))
2);
3 // Create generator to yield random indexes
4 Gen#(Bit#(TLog#(n))) index <- mkGen;
5

6 // Method to generate one-hot values
7 method ActionValue#(OneHot#(n)) gen;
8 // Generate random index
9 let i <- index.gen;

10 // Set the bit at the random index
11 let v = 1 << bound(i, valueOf(n)-1);
12 return OneHot { value: v };
13 endmethod
14 endmodule

To generate a random one-hot bit-string of length n, we
might first generate a random index i of length log2(n), and
then compute 1 << i. However this method leads to overflow
when n is not a power of two and i ≥ n, hence we actually
compute 1 << bound(i, n−1). The bound function is used to
obtain a value with a given upper bound, and has a cheaper
implementation in hardware than modulus divide.

On line 7 we create a generator for random indexes
using mkGen, a polymorphic function capable of constructing
generators for any synthesisable type. To tell BlueCheck to use
our new custom generator for values of type OneHot#(n),
instead of the default one, we use the type-class feature of
Bluespec and write:

instance MkGen#(OneHot#(n));
mkGen = mkOneHotGen;

endinstance

M. Synthesisable random generators

The mkGen function constructs a synthesisable pseudo-
random generator using a linear congruential generator (LCG)
[4], the same algorithm that is used in the GNU C library’s
implementation of the rand() function. One big attraction of
an LCG is that it requires a small number of resources: in our
case, 32 bits of state, an adder, and a constant multiplier. In
the past, the multiplier may have been considered costly but it
is not a problem on modern FPGAs with built-in DSP blocks.
We use only the upper 16-bits of an LCG’s state to obtain
random numbers; this is because low-order bits are known to
have a shorter period [4].

Typically BlueCheck will use several LCGs to test a given
specification, each with a different seed. This is because we
need to generate different random numbers in parallel. For
example, in the stackSpec example, we need one generator to
control the state machine (i.e. which property is being checked
on any given clock-cycle), and another one to generate inputs
to the push method. More generally, a single property may
take several arguments, requiring a different generator for each

one. Currently, we make no attempt to share the output of a
single LCG across several different generators, even though
each generator may use only a small portion of an LCG’s bits.
Consequently, we waste some of the random bits available
to us. This would be straightforward to resolve in future, if
resource utilisation turns out to be problematic.

III. CASE STUDY

We have used BlueCheck in the development of BERI [2],
a soft 64-bit multi-processor capable of running FreeBSD.
One of the most challenging aspects of this implementation
has been the cache-coherent shared memory subsystem, which
comprises local direct-mapped L1 caches at each core and a
single shared set-associative L2 cache. Below, we highlight the
main lessons learned from using BlueCheck to test, and debug,
the shared memory subsystem.

A. Interface

The hardware interface to the memory subsystem consists
of just two methods: put request and get response. The
complexity in the interface arises from the data types used
to represent requests and responses: they are large structures
containing many different fields. Some of these fields are only
valid, or have different meanings, depending on the values of
other fields. Consequently, these structures are quite difficult
both to construct and to interpret. To abstract away from this
complexity, we developed the following wrapper interface to
the memory subsystem, known as a memory client.

interface MemoryClient;
method Action load(Addr addr);
method Action store(Data data, Addr addr);
method ActionValue#(Data) getResponse;
method Action setAddrMap(AddrMap map);

endinterface

Here, we have load and store methods to access 64-bit
words in memory, and a getResponse method to obtain
the result of a load. For presentation purposes, we have
omitted several methods such as loads and stores of vari-
ous widths, load-linked and store-conditionals, explicit cache
flushes, memory barriers, and tagged memory operations.
However, in practice we have indeed tested these additional
methods using BlueCheck too.

As well as providing a human-readable interface, the mem-
ory client also solves an important problem: since the memory
subsystem works on 64-bit addresses, it is extremely unlikely
that random testing will ever generate the same address twice.
To solve this, the memory client uses the Addr type for
addresses, which consists of just four bits, and internally inserts
these bits at arbitrary indexes in a blank 64-bit address. The
actual indexes used can be set by calling the setAddrMap
method, which takes a vector of four indexes, one for each
Addr bit, as an argument. Note that this mapping is injective,
i.e. each index must be different.

B. Specification

It is straightforward to define a golden memory client
that performs no caching for equivalence testing against the
memory subsystem. This leads to the following BlueCheck
specification.

0 module [Specification] memSpec (Reset r);
1 // Implementation
2 MemoryClient mem <- mkMem(reset_by r);
3

4 // Golden model
5 MemoryClient gold <- mkMemGold(reset_by r);
6

7 // Before each test-sequence pick a random
8 // mapping from 4-bit addrs to 64-bit addrs
9 pre("setAddrMap", mem.setAddrMap);

10

11 equiv("load" , mem.load , gold.load);
12 equiv("store", mem.store, gold.store);
13 equiv("getResponse", mem.getResponse
14 , gold.getResponse);
15 endmodule

On line 9, we use BlueCheck’s pre function to pick a random
address mapping at the beginning of each test-sequence. The
idea here is that, while any one test-sequence will only use
up to 16 different addresses, the actual 16 addresses used
will vary between test-sequences. In order to generate an
injective address mapping, we define a custom generator for
the AddrMap type which ensures that the four random indexes
are indeed different.

The main challenge that we encountered when implement-
ing the above specification is that the DRAM component
we connect to our memory subsystem does not initialise its
contents on reset, and its capacity is too large to do an
explicit intialisation. Consequently, it is not well-defined what
the golden model should return when reading an uninitialised
location. Fortunately, there are a number of solutions to this
problem. The two simplest ones are:

(1) Modify the golden model’s getResponse method so
that it returns a special undefined Data value when an
uninitialised location has been read. Then define equality
on Data values to return true when one of the arguments
is undefined.

(2) Considering that only 16 different addresses will ever be
used in any single test-sequence, we can simply replace
the DRAM component with a small on-chip memory and
do an explicit intialisation. And with a little extra logic, we
can also emulate a range of different DRAM latency and
buffering parameters (something that our existing DRAM
component did not do very well in simulation).

We chose option (2), mainly because (1) would result in many
undefined loads, unless we refine the specification further.

C. Testing single-core access to memory

This test framework has proved extremely useful during a
recent extensive refactoring of the memory subsystem by our
implementation team, finding bugs almost on a daily basis.
Most (but not all) of these bugs were are also exposable
either by running our large suite of software unit tests, or
by trying to boot FreeBSD. However, the main reason why
our implementors prefer using BlueCheck is that it gives far
simpler counter-examples. Perhaps the most extreme example
of this occurred in a version of the memory subsystem capable
of booting FreeBSD, but which led to the following counter-
example using BlueCheck.

=== Depth 20, Test 82/10000 ===
setAddrMap(<13, 9, 3, 2>)
513: store(5,9)
516: load(8)
556: getResponse
557: load(9)
571: getResponse
571: Not equal: 0 v 5

It is quite surprising that an implementation containing a bug
found by just five memory operations is capable of booting
an OS involving millions of such operations! This particular
bug arose from a cache prefetching feature. It is only exposable
under certain conditions in which L2 cache lines are marked as
invalid, and is hard to trigger once the L2 becomes populated.
Typically, to diagnose such a bug, our implementation team
will replay the test with cache debug messages enabled. This
particular test leads to around ten debug messages. In contrast,
one of our software unit tests that exposes the same bug leads
to tens of thousands of debug messages. This highlights the
value of searching for simple failures.

We test the memory subsystem both in simulation for rapid
feedback and on FPGA for more thorough checking. Running
at 90MHz on FPGA we check around 150K 30-element test-
sequences per second. This compares to 350 sequences per
second in simulation. An expected observation here is that
benefit of on-FPGA testing increases with the amount of
parallelism in the design under test: the benefit is two times
greater for our parallel memory sub-system than for our earlier,
largely-sequential stack example.

D. Testing multi-core access to memory

The above specification can be easily adapted to test multi-
core memory accesses under the restriction that each core
accesses different addresses. Although this does not test access
to shared variables, it does invoke the coherency mechanism
since that operates at the cache-line granularity and different
addresses can map to the same cache line. Indeed, we have
found bugs using this approach.

However, to properly test multi-core access, we must check
that the memory subsystem satisfies a memory consistency
model [5]. As such models are known to be challenging both
to specify and to check against, we decided not to attempt an
HDL-level specification. Instead, we used a more expressive
software language to implement a tool Axe [6] capable of
checking arbitrary memory traces against a range of consis-
tency models, and connected it to a BlueCheck test bench via
Bluespec’s foreign function interface. Of course, this approach
is not synthesisable, but it works well in simulation: we get the
advantages of BlueCheck such as automatic generation of test-
sequences and shrinking of counter-examples, along with the
advantages of using a concise yet efficient software checker.
More specifically, Axe uses the Yices constraint solver [7]
to efficiently check the results of test-sequences consisting of
load, store, load-linked, store-conditional, and memory barrier
operations issued by multiple cores. At the time of writing, it
supports checking against four consistency models: sequential
consistency, total store order, partial store order, and relaxed
memory order.

To illustrate, if we test our memory subsystem against
Lamport’s sequential consistency [8], then we obtain:

=== Depth 10, Test 5/10000 ===
setAddrMap(<15, 11, 8, 5>)
Core 0: MEM[3] == 0
Core 0: MEM[7] := 8
Core 1: MEM[3] := 9
Core 1: MEM[7] == 0
Core 0: MEM[3] == 0
Not sequentially consistent

BlueCheck finds what we believe is a minimal counter-
example: there is no sequential interleaving of each core’s
operations that satisfies all the equalities shown. Compared
to software litmus testing [9], which can also tell us that
our memory subsystem is not sequentially consistent, the
BlueCheck approach can do so while emitting far fewer cache
debug messages, making it much easier to understand why. Us-
ing this approach, we have found that our memory subsystem
satisfies a more relaxed model, total store order, on millions of
random test sequences, giving us a high degree of confidence in
its correctness. We have also found the approach very useful in
exploring different cache coherency mechanisms, and rapidly
determining the consistency models that they provide.

IV. HDL FEATURES

We have already seen (§II-C) two features of the Blue-
spec HDL that assist the implementation BlueCheck: (1)
implicit conditions that automatically filter out ill-defined test-
sequences such as popping from an empty stack; and (2)
atomic actions that naturally enforce the requirement that both
sides of an equivalence property must fire together or not at all.
Without these features, users would have to carefully state the
precise preconditions under which each property can fire. In
this section, we discuss other features of Bluespec that assist
the development of a generic test bench.

A. Output monads

A Bluespec module is an output monad [10] that implicitly
collects rules: guarded atomic actions that are considered
for execution on every cycle. Conveniently, the Bluespec
authors made this monad generic enough to also collect user-
defined data whose type is specified in square brackets after
the module keyword. We use this feature to ‘collect the
specification’ of the design-under-test, which is subsequently
used to construct a test bench. To be more precise, let us
consider the following module statement.
equiv("push", model.push, imp.push);

Executing this statement has the following effects:

1) It instantiates a psuedo-random generator for values of
type t where t is the type of the argument to push.

2) It constructs an atomic action containing the two actions
obtained by applying the function on each side of the
equivalence to the output of the random generator. It then
adds this atomic action to the specification.

3) It also adds the random generator to the specification. This
is necessary because, to construct a test bench, we must
be able access the random generators directly – to seed
them and read their outputs – for saving and replaying
counter-examples.

It is now apparent that when we say that a module ‘collects
the specification’, it is in fact constructing pieces of the test

bench, just enough to let erase the types of the properties,
and then collecting these simply-typed pieces. Had we tried
to collect the properties directly, we would have required het-
rogenous lists [11] (since each property can have an arbitrary
but different type), and this approach leads to verbose types
and error messages which can be confusing to the user.

B. Multi-cycle statements

In Bluespec, multi-cycle imperative-language statements
can be placed in a seq · · · endseq block and automatically
turned into a synthesisable finite state machine (in the style
of [12]). We use this feature in order to concisely express
the complex control flow present in BlueCheck’s iterative-
deepening and shrinking procedures. Constructing FSMs man-
ually for these tasks would have been tricky and error prone.

C. First-class actions

Bluespec actions (sequences of RTL statements) are first-
class values in the sense that, during static elaboration, they can
be passed as arguments to functions, stored in data structures,
and composed with other actions to form larger actions. This
feature is heavily exploited in BlueCheck. For example, equiv
statements yield actions that are collected in a data structure
and later spliced into rules and seq blocks to form a test bench.

D. Sized FIFOs

Bluespec’s arbitrary-sized FIFO module provides a very
convenient way to iterate over a test-sequence. During test-
sequence generation, the time of each property-invocation is
inserted into a FIFO. The sequence can then be replayed
by repeatedly deleting and re-inserting the head of the FIFO
until all elements have been viewed. When shrinking is being
performed, each FIFO element also contains a flag stating
whether or not that property-invocation should be omitted.

E. Higher-order functions and type classes

BlueCheck properties are simply Bluespec functions
whose arguments represent universally quantified variables.
BlueCheck functions which accept properties as arguments,
such as the prop function for registering a property, are
therefore higher-order. To apply these user-specified properties
to random data of the appropriate type, BlueCheck uses type
classes [13]. Type classes may also be used to customise the
psuedo-random generator for a particular type when the default
generator for that type is not sufficient.

V. RELATED WORK

BlueCheck is heavily inspired by the QuickCheck library
[1] for property-based testing in Haskell. Interestingly, one of
the original motivations of QuickCheck was to test circuits
written in Lava [14], an HDL embedded in Haskell. To our
knowledge however, no attempt was made to do automatic test-
sequence generation for stateful circuits in the style presented
in this paper. The published experiences of testing stateful
software using QuickCheck [15], another great source of
inspiration to us, are certainly relevant to this topic.

The QuickCheck authors argue that high-level languages
have a vital role to play in the verification of programs,

regardless of the language used to implement those programs
[16]. The reason is that high-level languages support rapid
development of concise executable specifications against which
implementations can be rigorously tested. A big limitation of
the approach described in this paper is that Bluespec limits
developers to writing synthesisable descriptions, and hence
synthesisable specifications. The only way around this is to to
use the foreign function interface which is somewhat clumsy.
In this respect, a language like Lava has advantages because
the full power of Haskell is conveniently available for writing
high-level specifications.

A well-known issue with random testing is that it can
be difficult to determine when testing has achieved sufficient
coverage of the design under test. This is particularly prob-
lematic in our case as there is no source-code coverage tool
currently available for Bluespec. As a result, an exhaustive
testing strategy that can establish complete coverage of a pre-
defined test space, such as that employed by SmallCheck [17],
may be an attractive alternative to explore in future work.

Traditionally, verification support for mainstream HDLs
has been provided in the form of language extensions and
associated checking tools. A prime example of this is the
Property Specification Language (PSL) [18] which has been
successfully embedded into both VHDL and Verilog. PSL
properties are comprised of boolean expressions, written in
the host HDL, alongside new operators that allow temporal
relationships between signals to be expressed. To illustrate,
here is a PSL property, embedded in Verilog, asserting that a
req signal must eventually be followed by an ack signal.

psl ReqThenAck: assert
always (req -> eventually! ack) @posedge clk;

To check PSL properties, tool support for the PSL embedding
is required, which is typically provided by EDA vendors in
the form of advanced simulators or model-checkers.

More recently, the idea of a unified hardware description
and verification language (HDVL) has emerged in the form of
SystemVerilog [19]. It provides a powerful property language,
similar to PSL [20], along with a number of other verification
features. For example, random variables with arbitrary con-
straints may be declared, allowing concise definitions of test
data generators satisfying complex invariants:

rand bit [3:0] a, b, c, d;
constraint sameSum { a+b == c+d; }

There is also support for expressing test-sequence generators
using a notation inspired by context-free grammars:

randsequence (main)
main : repeat (10) pushOrPop;
pushOrPop : push | pop;
push : { $display("push"); };
pop : { $display("pop"); };

endsequence

This simple generator displays a random 10-element sequence
of push and pop strings. Another feature of SystemVerilog
relevant to this paper is support for monitoring execution
coverage, helping users to judge the completeness of testing.

In all, SystemVerilog offers a range of features that will no
doubt improve productivity for hardware designers, especially

with regard to verification. However, the downside is that
it requires a significant learning curve and substantial tool
support. Indeed, none of the above-mentioned features are
actually supported in FPGA vendor tools, and even the most
advanced EDA tools, which can be expensive to obtain, only
support simulation (not synthesis) of such features.

VI. CONCLUSIONS

Abstraction and reuse are two key tools for managing
the complexity of modern hardware designs. For any devel-
oper intending to test components at the HDL level, this
raises an important question: can common test bench fea-
tures be usefully abstracted out and easily reused? In this
paper, we have seen that the answer is a compelling ‘yes’:
test-sequence generation, iterative-deepening, counter-example
shrinking, equivalence checking, wedge detection, coverage
monitoring, and error reporting can all be abstracted out in a
fully synthesisable manner within a modern HDL. To use these
abstractions, the developer simply provides a specification
of correctness: a set of properties or equivalences that are
expected to hold, which may be expressed within the HDL
or using an external language. Since these abstractions can be
used to test any design, we refer to them collectively as a
generic test bench.

We have seen that our generic test bench can be easily
applied in a range of different examples, and is capable of
finding interesting bugs. The aim of a good test bench, though,
is not just about finding bugs, but also helping to diagnose
them. This is where our approach excels due to its ability to
find simple failures – the main reason it has proven popular
with our implementation team. Crucial to this success is our
iterative-deepening strategy and shrinking procedure which
together allow simple failures to be found quickly.

Our approach encourages the use of synthesisable spec-
ifications that can be rigorously tested on FPGA, allowing
hundreds of times more tests to be explored per unit time
compared to simulation. Crucial to this is the ability of the
test bench to automatically transfer test-sequences to a host
PC where they can be viewed or replayed in simulation.
We have seen that such synthesisable specifications can be
straightforward to write, even when the implementation under
test is highly complex. We have also seen that in some cases
it can be desirable to write specifications externally of the
HDL using more expressive software languages. Although
such cases are no longer synthesisable, BlueCheck’s features
can still be exploited in simulation.

Several features of the Bluespec HDL have aided the imple-
mentation of our generic test bench, including: atomic actions,
implicit conditions, output monads, multi-cycle statements,
first-class actions, higher-order functions, and type classes.
Such features have made Bluespec ideal for exploring the ideas
presented in this paper. An interesting avenue for future work
is to see how similar ideas can be applied to other HDLs.

Much effort in the hardware verification community re-
volves around the development of language extensions and
associated checkers. While these developments are all very

important, they can sometimes require elaborate or hard-to-
obtain tools. We hope this paper shows that there are also ways
to support verification in a more lightweight manner, through
a generic synthesisable test bench implemented simply as a
library module in a modern HDL.

ACKNOWLEDGEMENTS

For many helpful suggestions, thanks to Alex Horsman,
Alexandre Joannou, Theo Markettos, Peter Sewell, Robert
Watson, Jon Woodruff, and the anonymous reviewers. This
work was supported by DARPA/AFRL contracts FA8750-
10-C-0237 (CTSRD) and FA8750-11-C-0249 (MRC2), and
EPSRC grant EP/K008528/1 (REMS). The views, opinions,
and/or findings contained in this paper are those of the authors
and should not be interpreted as representing the official views
or policies, either expressed or implied, of the Department of
Defense or the U.S. Government.

REFERENCES

[1] K. Claessen, J. Hughes. QuickCheck: A Lightweight Tool for Random
Testing of Haskell Programs, in ICFP 2000, pp. 268–279.

[2] BERI: Bluespec Extensible RISC Implementation, http://beri-cpu.org/.
[3] J. Gannon, P. McMullin, R. Hamlet. Data Abstraction, Implementation,

Specification, and Testing, ACM Transactions on Programming Lan-
guages and Systems, volume 3, number 3, pp. 211–223, 1981.

[4] D. E. Knuth, The Art of Computer Programming, Volume 2: Seminu-
merical Algorithms, Third Edition, Addison-Wesley, 1997.

[5] S. Adve and K. Gharachorloo. Shared Memory Consistency Models: A
Tutorial, Computer Journal, volume 29, number 12, pp. 66–76, 1996.

[6] M. Naylor and S. Moore. A checker for shared memory consistency,
http://github.com/CTSRD-CHERI/axe.

[7] B. Dutertre, Yices 2.2, in CAV 2014, LNCS 8559, pp. 737–744.
[8] L. Lamport. How to Make a Multiprocessor Computer That Correctly

Executes Multiprocess Programs, IEEE Transactions on Computers,
volume 28, number 9, pp. 690–691, 1979.

[9] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell, Litmus: Running Tests
Against Hardware, in TACAS 2011, pp. 41–44.

[10] P. Wadler. Monads for functional programming, in Advanced Functional
Programming, pp. 24–52, 1995.

[11] O. Kiselyov, R. Lämmel, and K. Schupke, Strongly Typed Heteroge-
neous Collections, Haskell Workshop 2004, pp. 96–107.

[12] I. Page and W. Luk. Compiling Occam into Field-Programmable Gate
Arrays, in FPGAs, pp. 271–283, 1991.

[13] P. Wadler and S. Blott, How to Make Ad-hoc Polymorphism Less Ad
Hoc, in POPL 1989, pp. 60–76.

[14] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: hardware
design in Haskell, in ICFP 1998, pp. 174–184.

[15] K. Claessen and J. Hughes. Testing monadic code with QuickCheck,
SIGPLAN Notices, volume 37, number 12, pp. 47–59, 2002.

[16] J. Hughes. QuickCheck Testing for Fun and Profit, in PADL 2007,
LNCS 4354, pp. 1–32.

[17] C. Runciman, M. Naylor, and F. Lindblad. Smallcheck and Lazy
Smallcheck: Automatic Exhaustive Testing for Small Values, Haskell
Symposium 2008, pp. 37–48.

[18] IEEE Standard for Property Specification Language (PSL), IEEE Stan-
dard 1850-2005.

[19] IEEE Standard for SystemVerilog: Unified Hardware Design, Specifi-
cation, and Verification Language, IEEE Standard 1800-2012.

[20] E. Cerny, S. Dudani, J. Havlicek, D. Korchemny. The Power of
Assertions in SystemVerilog, Springer, 2010.

