
Low-Latency Virtual-Channel Routers for On-Chip Networks

Robert Mullins, Andrew West and Simon Moore
Computer Laboratory, University of Cambridge

William Gates Building, JJ Thomson Avenue, Cambridge CB3 0FD, UK
Robert.Mullins@cl.cam.ac.uk

Abstract

The on-chip communication requirements of many
systems are best served through the deployment of a regular
chip-wide network. This paper presents the design of a
low-latency on-chip network router for such applications.
We remove control overheads (routing and arbitration
logic) from the critical path in order to minimise cycle-time
and latency. Simulations illustrate that dramatic cycle time
improvements are possible without compromising router
efficiency. Furthermore, these reductions permit flits to be
routed in a single cycle, maximising the effectiveness of the
router’s limited buffering resources.

1. Introduction

The ability to fully exploit modern fabrication
technologies is tempered by both physical and logical
design complexity. The cost of this complexity suggests
the reuse of design and verification effort wherever
possible. This is often achieved by composing systems
from commodity IP or by reusing custom blocks repeatedly
in the same design. The relatively poor scaling of global
interconnects and the need to achieve architectural
performance gains in an energy-efficient manner,
provide pressure to decentralise computation. Together
these trends suggest a move towards an increasingly
communication-centric view of processor and system
architecture [16, 21, 15, 14].

One proposed solution to the problem of chip-wide
communication is a network of top-level point-to-point
communication channels [1, 8, 12] (See Figure 1). This
highly regular wiring strategy aims to reuse a small number
of highly optimised wiring layout and driver designs. As
channel layouts are reused to create the network, effort in
characterising delay, power and verifying signal integrity
is minimised. The simple behaviour of the network also
aids in predicting performance and ensuring correctness. In
contrast, large bus based communication networks present

a complex verification task at every level. In addition,
the limited ability to scale interconnect delays makes
the presence of long global wires and buses increasingly
undesirable.

Physical Channel

Router

Tile

Figure 1. On-Chip Network. Each tile may contain
identical logic, as in the case of a multiprocessor or
tiled system, or simply represent a partitioningof a SoC
design.

Similar observations have already been made in the case
of inter-chip and wider-area communication. While much
of this work is applicable, some important differences
exist [8]. In particular, on-chip designs exploit a far greater
number of pins and wires, while inter-chip designs are
often pin limited. In addition, while inter-chip router
designs may exploit a large number of buffers, on-chip
designs must aim to minimise buffer count in order to
maximise the silicon real-estate available for computation.
Area pressures, together with the need to minimise on-chip
communication latencies, suggest the implementation of
relatively simple on-chip routers.

This paper describes how router latency may be
significantly reduced by hiding control overheads. The

creation of a single-cycle architecture also reduces
latency and maximises the impact of limited buffering
resources. Simulation results illustrate that while these
techniques offer dramatic cycle time reductions, they
do not compromise router efficiency. Initial circuit-level
simulations suggest a router cycle time of 12-FO4 delays1

plus clock overhead is possible. Previously published
delay models have suggested similar router designs require
three pipeline stages and a clock cycle-time of 20-FO4
delays [19].

We provide an overview of a generic virtual-channel
router implementation in Section 2. Section 3 introduces
the techniques we use to optimise the router’s control. The
critical path of the optimised router is analysed in Section
4. Simulation results comparing a number of router control
implementations are presented in Section 5. Section 6 and 7
discuss related work and conclude the paper.

2. Background

A network may be characterised by its topology, routing
strategy and method of flow-control [5]. For simplicity we
assume a mesh network (with bidirectional links) together
with dimension-ordered (XY) routing2.

The choice of flow control technique is guided by
the need to minimise buffer requirements and latency
in our on-chip network. Schemes that reserve buffer
space or apply flow-control at the packet level, such as
store-and-forward [20] or virtual-cut through [13], are
unsuitable for these reasons. A wormhole-router provides
the necessary fine-grained flow control, while the addition
of virtual-channels [4, 6] aids in boosting performance and
circumventing message-dependent deadlock. Furthermore,
Quality-of-Service (QoS) enhancements are possible by
prioritising the allocation of virtual-channels and switch
bandwidth.

The remainder of this section provides an overview of
the architecture of a generic virtual-channel router.

2.1. Overview of a Virtual-Channel Router

Figure 2 illustrates the major components of a generic
virtual-channel router. The router has P input ports and P
output ports, supporting V virtual-channels (VCs) per port.

Virtual-channel flow control exploits an array of buffers
at each input port. By allocating different packets to each

1 A FO4 (fan-out-of-4) delay is the delay of one inverter driving four
copies of itself [7].

2 In the case of our 2D-mesh network, dimension-ordered routing
simply means packets are first routed in the X and then the Y direction.
The implementation of the routing function in such a scheme is trivial.
The fact that some turns are never made within a router may also
reduces the complexity of the router’s crossbar.

of these buffers, flits3 from multiple packets may be sent in
an interleaved manner over a single physical channel. This
improves both throughput and latency by allowing blocked
packets to be bypassed.

Input Channel

Output Channel

V

VC Buffer

Input Channel Output Channel

VC identifier

credits in

Switch Allocator

VC Allocator

Routing Logic

Crossbar

Input Port

(P x P)

credit out

credit out

Figure 2. Virtual-Channel Router

The basic steps undertaken by a virtual-channel router
are enumerated below:

1. Routing. The first flit of a new packet arrives at the
router. The routing field is examined and a set of
valid output virtual-channels upon which the packet
can be routed is produced. The number of output
VCs produced by the routing logic will depend on
the routing function. Possibilities range from a single
output VC to a number of different VCs potentially at
different physical channels (i.e. adaptive routing).

The selection of an output VC can also be
influenced by the class of the packet to be routed.
Packets from particular classes will often be restricted
to travelling on a subset of virtual-channels to avoid
message-dependent deadlock. A common practise is
to provide separate request and reply virtual-networks.

2. Virtual-Channel Allocation. An attempt is made to
allocate an unused VC to the new packet. A request
is made for one of the virtual-channels returned by
the routing function. Allocation involves arbitrating
between all those packets requesting the same output
VC.

3. Switch Allocation. Each packet maintains state
indicating the availability of buffer space at their
assigned output VC. When flits are waiting to be sent,
and buffer space is available, an input VC will request

3 Each packet is composed of a number of flits (flow control digits). A
flit is the smallest unit of flow control.

2

access to the necessary output channel via the router’s
crossbar. On each cycle the switch allocation logic
matches these requests to output ports, generating the
required crossbar control signals.

4. Crossbar Traversal. Flits that have been granted
passage on the crossbar are passed to the appropriate
output channel.

The following sections describe in more detail each of
the router’s components.

2.2. Input Buffer and Bypass

Each new incoming flit is stored in the VC buffer
designated by its VC identifier. This identifier is appended
to every flit in the previous router stage. If the VC
buffer is empty and the flit is able to access the crossbar
immediately, a bypass path is required to expedite its
journey.

2.3. Routing Logic

In order for virtual-channel and switch allocation to
take place the routing function must first be evaluated to
determine which virtual-channel(s) at which output port(s)
the packet may request. To ensure that this computation
does not lie on the router’s critical path, the computation
may be performed in the previous router in preparation for
use in the next. The idea that the route may be calculated
one step ahead of where it is required was first employed
by the SGI routing chip [10] and is known as look-ahead
routing.

2.4. Virtual-Channel Allocation

Peh and Dally detail the complexity of both
virtual-channel (VC) allocation and switch-allocation
logic in [19]. The following two sections provide a brief
overview of these schemes.

The complexity of VC allocation is dependent on the
range of the routing function. In the simplest case, where the
routing function returns a single VC, the allocation process
simply consists of a single arbiter for each output VC. As
any of the input VCs may request any output VC, each
arbiter must support P � V inputs.

If the router function returns multiple output VCs
restricted to a single physical channel, an additional
arbitration stage is required to reduce the number of
requests from each input VC to one. The winning request
at each virtual channel buffer then proceeds to the second
stage as described above. The complexity of such a scheme
is illustrated in Figure 3. The routing function determines
the output port and VCs that may be requested prior to

VC allocation. A VC which is free to be allocated is then
selected by the first stage of arbitration. The result of
this first stage of arbitration is a request for a single VC
at a particular output port. This request is subsequently
sent to the appropriate second stage arbiter. While this
scheme does not guarantee to allocate all free output VCs
to potential waiting input VCs in a single cycle, there is no
performance penalty as only one flit may be sent per cycle
on an output channel.

In the most general case where the routing channel may
return any of P � V VCs, the number of inputs to the first
stage of arbiters must now be increased from V to P � V. In
this case some performance degradation may be expected as
the scheme makes little effort to perform a good matching
of requests to free output VCs.

V:1
Arbiter

1

V:1
Arbiter

1

virtual channel
One arbiter per output

output
port

virtual channel
One arbiter per input

PV:1
Arbiter

PV

PV:1
Arbiter

1

V:1
Arbiter

V:1
Arbiter

V

V

Input Port P

V
Route VC request

to required output port

VC Status

Which VCs are free
at requested port?

V
V

VC requests

Figure 3. Arbitration complexity of a virtual channel
allocator. In this example, the routing function returns
a single output port and one or more VC requests.

2.5. Switch Allocation

Individual flits arbitrate for access to physical channels
via the crossbar on each cycle. Arbitration may be
performed in two stages [19]. The first reflects the sharing
of a single crossbar port by V input virtual-channels, this
requires a V-input arbiter for each input port. The second

3

stage must arbitrate between winning requests from each
input port (P inputs) for each output channel. The scheme
is illustrated in Figure 4. The request for a particular output
port is routed from the VC which wins the first stage of
arbitration.

In order to improve fairness, the state of the V-input
arbiter is only updated if the request is also successful in
the second stage of arbitration. We assume this organisation
wherever multiple stages of arbitration are present.

This switch allocator organisation may reduce the
number of requests for different output ports in the first
stage of arbitration, resulting in some wasted switch
bandwidth.

V:1
Arbiter

Flit Buffer
(VC V) P

P

P

1−of−V

Arbiter

Arbiter

P:1

P:1

1

Input Port P

P Output Port
Arbiters

Input Port 1

Success

in
pu

t_
vc

_m
ux

_s
el

Control

Decode
+

Control
+

Decode

Flit Buffer
(VC 1)

Need an output port?

Need an output port?

Which output port?

C
rossbar control signals

Figure 4. Switch Allocation Logic

2.6. Speculative Switch Arbitration

Virtual-channel flow control as discussed performs
VC allocation and switch allocation sequentially. This
guarantees that only packets that have successfully
obtained an output VC from the VC allocator can make
requests for their desired output channel.

Peh and Dally [19] describe how this dependency
may be relaxed if we speculate that a waiting packet
will successfully be allocated an output VC. In this way
both VC and switch allocation can be performed in
parallel. To avoid a negative impact on performance the
switch allocator in the speculative design must prioritise
non-speculative requests over speculative ones. This is
achieved by implementing two switch allocators, one
handling speculative requests (from packets that are

also requesting a VC be to allocated) and another for
non-speculative requests (from packets which have already
been allocated a VC). Only when no non-speculative
requests are granted for a particular output port are
successful speculative requests granted.

In the case that a speculative request is granted we must
ensure that the VC has been allocated and it is capable of
receiving a new flit (has free buffer space) before the flit is
actually sent. Fortunately, such checks may be performed in
parallel with crossbar traversal.

2.7. Crossbar

In the architecture illustrated in Figure 2 each input
port is forced to share a single crossbar port even when
multiple flits could be sent from different virtual-channel
buffers. This restriction allows the crossbar size to be kept
small and independent of the number of virtual-channels.
Dally [6] and Chien [2] suggest that providing a single
crossbar input for each physical input port will have little
impact on performance as the data rate out of each input
port is limited by its input bandwidth. While simulation
results indicate some advantage in providing larger
crossbars (see Figure 8) this is often unrealistic as crossbar
implementations scale very poorly. A more effective use of
area may simply be to increase the size or number of VC
buffers.

3. Low-Latency Router Control

The following section details how we may further
optimise the design of both the switch and the
virtual-channel allocation logic. While these ideas apply
equally to pipelined implementations, our aim is to create a
low-latency single cycle implementation.

3.1. The Free Virtual Channel Queue

The first stage of arbitration in the virtual-channel
allocator ensures each VC makes a single request for a
output VC. The requests are generated as a product of
the routing function and a VC status mask, indicating
the availability of free VCs at a particular output port.
An alternative is to simply queue free VC identifiers and
provide a mask with a single bit set (indicating the free
VC at the head of the queue), thus avoiding the need to
arbitrate between multiple free VCs. A separate queue is
provided for each output port and for each virtual-network
(traffic-class), e.g. two queues per output port to provide
request and reply networks. The scheme effectively
removes the need for arbitration by predetermining the
order of grants.

4

3.2. Tree Arbiters

A well understood method for creating arbiters with
a large number of inputs is to organise them as a tree of
smaller arbiters. In this scheme each arbiter propagates
requests eagerly up the tree prior to determining which
input they will actually grant. The root arbiter’s grant is
subsequently propagated back down the tree, granting a
single input request.

The large P � V-input arbiters used in the second stage of
VC allocation may be simplified by adopting this approach.
Here the single P � V-input arbiter is replaced by a single
P-input arbiter and P groups of V-input arbiters. The
V-input arbiters arbitrate between requests from the same
input port (different VCs) and the P-input arbiter selects the
winning port. A VC allocator exploiting free VC queues
implemented using this approach is illustrated in Figure 5.

Request for a particular
output port VC of a
given traffic class

Request for a single
output VC

Requests from
input port 1

Heads of free VC queues

1−of−VxP1−of−PxC

VxP−bit mask

other output
VCs

Requests for

Arbitration Logic for a Single Output VC

Arbiter
P:1

V:1
Arbiter

V:1
Arbiter

Input Port P arbiter

Input port P

Input Port 1 arbiter

VC request logic
from a single input

VC buffer

Figure 5. Virtual Channel Allocator logic. A free VC
queue and tree arbiter organisation is used to simplify
the implementation.

3.3. Precomputing Arbitration Decisions

An arbiter may provide a least recently served priority
scheme by maintaining a queue recording the order in
which requests have been granted. When arbitration takes
place the request with the highest priority, indicated by
its position in this queue, is granted. Immediately after
an input is granted it is reduced to the lowest priority by
placing it at the end of the queue. The matrix-arbiter [19] is
an efficient circuit-level implementation of such a scheme.

Figure 6(a) illustrates how a single grant output is
generated in such a design. Here the state indicating that
one request has priority over another is stored in the upper

triangle of a matrix of flip-flops. The arbiter ensures a grant
is generated only if an input request with a higher priority is
not asserted. Such a design requires each of the arbitration
requests to be used in the generation of each output (fanout
of R). Furthermore, each grant signal is generated by a NOR
gate with a fan-in of R. The flip-flop matrix is updated after
each clock cycle to reflect the new request priorities.

3

2

1

0

0 1 2 3

1

1

1

1

1

1

R:1
Arbiter

grantR

grant1

grant2

reset row

Priority State

Input

set column

arbreq2

arbreq0

arbreq1

arbreq3

arbreqR

arbreq1 grant1

grantR

arbreqR

arbreq0

grant1

grantR

grant_enable1..R

Grant Enable
Generation

(b)

(a)

beats input..

Figure 6. R-input Arbiters. (a) A matrix arbiter. The
schematic shows how a single grant output is produced
for a 4-input arbiter. Eacharbreq signal has a fan-out
of R. (b) An arbiter which precomputes its grant enable
signals.

An alternative design is illustrated in Figure 6(b). Here
arbitration outcomes are determined one cycle before
they are required (the logic to do this is very similar to
that used in the matrix arbiter). On the cycle prior to a
grant being asserted grant enable signals are generated
and latched. The grant signals are subsequently generated
as the product of the precomputed grant enable signals
and incoming arbitration requests. The scheme works if at
least one request is present on the preceding clock cycle,

5

if no requests are present we must be more creative in the
generation of grant-enable signals. A number of options
are available to us depending on the environment in which
the arbiter is deployed:
� Safe Environment The environment guarantees that

only one new request may be added per clock cycle. In
this case it is safe to assert all the grant enable signals
when no arbitration requests were present (or one
request was present that was granted) in the previous
cycle (or on reset). The next request is then granted
instantly regardless of its origin.

� Unsafe Environment In this case the environment
may assert multiple new requests in a single clock
cycle. Our options are:

(a) To set a single grant-enable signal speculatively,
perhaps by examining the pattern of previous
requests. While this is safe, it does not guarantee
that a new request will be granted in a single
cycle.

(b) Again set a single grant-enable signal but with
the aid of a hint (again perhaps speculatively).

(c) Set all grant-enable signals. In this case we are
forced to detect the case where multiple requests
are granted and abort all the operations they
enabled.

The following sections describe for each instance of an
arbiter in the router design how it may be replaced with
a design that precomputes the arbitration outcome. We
assume a speculative switch allocation scheme as described
in Section 2.6.

3.3.1. Switch Allocation Logic (V:1) Arbiters In the
case of switch allocation we must consider the speculative
and non-speculative requests separately.

Speculative Switch Arbitration Requests. Speculative
requests are made by header flits which are awaiting VC
allocation. The arbitration outcome is precomputed by
considering the requests that remain after VC allocation.
If no requests remain it is safe to assert all grant-enable
signals as at most one new header flit may be received in
the following cycle. This corresponds to the description of
a safe environment in Section 3.3.

Non-speculative Switch Arbitration Requests are
produced by each input VC meeting the following criteria:

1. Currently holding a flit

2. Current packet has already been allocated a VC

3. Output VC in question has free buffer space

Grant enable signals can be generated after VC
allocation has taken place (criteria 2) and credits indicating
free buffer space have been received and processed (criteria

3). If no request is asserted at the end of the cycle it is
guaranteed that no request will be made on the following
cycle (remember new flits make speculative requests). In
this case we simply assert no grant-enable signals.

3.3.2. Switch Allocation Logic (P:1) Arbiters The
second stage of switch allocation arbitrates between
winning requests from participating input ports. The result
of precomputing the first stage of requests (detailed above)
may be used to determine which input ports will make
requests on the next cycle. This allows the arbitration
outcome for the second stage to be precomputed. Again
we must consider the special case where no requests
are present when generating grant enables in both the
speculative and non-speculative cases.

Non-speculative Switch Arbitration Requests
If at the end of a clock cycle no flit is present that has

been allocated an output VC, no non-speculative switch
arbitration requests will be made on the following cycle.
Any new flits arriving at the router will make speculative
requests to the switch allocator.

Speculative Switch Arbitration Requests
In some cases it is difficult to precompute grant-enable

signals. Consider the case where no flits are buffered in the
router and two flits arrive (at different input ports) destined
for the same output port. Here arbitration needs to take place
on the cycle the flits are received, the outcome cannot easily
be predetermined. This situation may arise in the case of the
second stage speculative switch arbiters.

In Section 3.3 we outlined possible solutions to this
problem. The first was to predict where the next request
would originate from. While possible, this is likely to incur
a significant latency penalty for packets whose arrival
could not be predicted. A more accurate prediction could
be assisted by the neighbouring routers indicating the
possibility that they may make a request in the following
clock cycle. While this is a possibility, we choose to simply
assert all grant-enable signals in the case where no requests
are present in the current cycle (option C in Section 3.3).
If multiple requests are received on the following cycle by
the same arbiter all operations enabled by the grant signals
must be aborted.

In many scenarios this will have little impact on
performance. In the case of a lightly loaded network, the
probability that multiple requests will be made to the same
output in this way is small. Even if this is the case, and a
one cycle penalty is necessary, the latency will be increased
regardless as both packets must be sent on the same output
channel. In the case of a more heavily loaded network, flit
buffer occupancy is likely to be higher making the case that
no requests remain at the end of a cycle less likely.

3.3.3. VC Allocation Logic (V:1) Arbiters Requests
made for the same output VC from the same input port are

6

arbitrated by P groups of V-input arbiters at each output
port. Grant-enable signals are precomputed regardless of
the state of the VC (whether it is free or not). This is safe
as each arbiter is dedicated to a particular output VC and
requests will only be made if the VC is free. In the case
where no requests are made, all the grant-enable signals for
the arbiter may be asserted. This environment is safe since
at most one new flit may be received per cycle at one input
port.

3.3.4. VC Allocation Logic (P:1) Arbiters These
arbiters face the same problem as the second stage P-input
arbiters in the speculative switch allocator. If no request
is present on the preceding clock cycle it cannot easily
be determined from which input port the next flit will
be received. Again we may proceed by asserting all
grant-enable signals and aborting granted operations in the
case that two or more requests are subsequently received.

Note that the reorganisation of the monolithic P � V-input
arbiters as a tree arbiter simplifies the precomputation of
grant signals.

4. Analysis of Dependencies/ Critical Path

Fast A
lloc.

ChannelInput Mux & Crossbar

Abort attempt to send flitGrants

Permitted Grants

to be present on next
cycle

Next Requests

Precompute Grant Enables

Calculate Requests guaranteed

This cycles VC & switch requests

Input Buffer
w/bypass

VC buffer state update
credits or on/off flow control signals

from adjacent routers
(availability of buffer space)

Precompute Grant Enables for

Switch allocator

Abort Detect

VC allocator &

Figure 7. Data dependencies within our single-cycle
optimised router architecture

Figure 7 illustrates the dependencies within our
optimised router design. Virtual-channel flit FIFOs are
assumed to be able to receive a flit in one clock cycle ready
for use in the next. The case where the flit is needed on the
same cycle is handled by a bypass.

The fast allocator is used to generate VC and switch
grant signals from the precomputed grant enables. The
presence of precomputed grant-enables at the start of the
clock cycle means that the logic required to generate the
crossbar and crossbar input multiplexer control signals
becomes trivial. Cases where the fast allocator produces

invalid control signals are quickly detected and the
associated operations aborted (in these cases valid control
signals are guaranteed to be generated on the next clock
cycle). The permitted grants and existing requests are
then used to calculate the request signals guaranteed to
be present on the next cycle (of course new requests may
also be made as new flits arrive). The permitted grants are
also used to update the state of the matrix arbiters. Once
the requests present on the next cycle have been computed
and updated VC buffer state information is available, grant
enables for the next cycle may be computed.

One concern is the need to update VC buffer state
information prior to precomputing the grant-enable signals
for the P:1 non-speculative switch arbiters. One possibility
is to precompute grant-enable signals using the older
state before it is updated. Unfortunately, the buffer state
of multiple output VCs assigned to VCs at a single input
port may be updated in a single cycle. This prevents us
from setting all grant-enable signals safely. Although this
could be done if we are able to abort grants in the case
that two or more requests are subsequently received. In the
simulations that follow we assume that this dependency is
not on the router’s critical path and may be tolerated. In our
implementation we have adopted a simple on/off channel
flow control mechanism which simplifies the logic needed
to maintain the buffer state. Such a scheme would be less
desirable if the router did not operate in a single cycle.

Initial results from preliminary extracted layout (180nm
technology) suggest that the design will operate at our
target cycle time of 12 FO4 delays plus clock overhead.
This is approximately twice the tile frequency in our
planned system. In our test network each flit carries 64-bits
of data and routers are placed 1mm apart. All signal
transitions (in each output channel and the crossbar) are in
the same direction during evaluation avoiding worse-case
crosstalk. Typical case communication delays between
routers are within 2 FO4 delays. Inter-wire capacitance
values for communication channels were calculated using
QuickCap [11]. The precomputation of grant-enable
signals is essential in meeting our cycle time. Our best
5-input matrix-arbiter designs have a typical latency of
approximately 3 FO4 delays. The complete control logic
takes the majority of the clock cycle in the optimised
design, although almost none of this is now on the critical
path.

5. Simulation Results

A parameterised network model was constructed
using HASE (Hierarchical Architectural Simulation
Environment) [3]. The underlying simulation system
is multi-threaded and event-driven. Each tile or node
generates packets with random destinations. Packets are

7

generated at a constant rate and queued until they are able
to enter the network. The interval between the creation
of individual packets is random (geometric distribution)
to prevent packets being injected into the network
synchronously. Network latency is measured from the time
the first flit is created to the time the last flit in the packet
is received at its destination, including any time spent
buffered at the source node. Each node injects 1000 packets
into the network and performance statistics are gathered
after an initial warm-up period of 100 packets/node. The
network is an 8x8 mesh, each router has 5 input and 5
output ports. Packets are 5 flits in length. In all simulations
we assume a single cycle router implementation.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 L
at

en
cy

 (c
lo

ck
 c

yc
le

s)

Measured Throughput (% of Network Capacity)

Virtual Channels/Port=2, Buffers/Virtual Channel=4

’Restricted’
’Unrestricted’

Figure 8. Latency versus throughput forP andPV-input
(restricted/unrestricted) crossbar implementations. 2
virtual channels per input port and 4 flit buffers per
virtual channel.

We explore the impact on network performance of a
number of different switch and virtual-channel allocator
implementations:

� Sequential Virtual-channel allocation is performed
prior to switch allocation. This removes the need for
the switch allocation logic to speculate on the ability
of new packets to acquire VCs.

� Parallel-NoSpec Virtual-channel allocation is
performed in parallel with switch allocation but no
speculative requests are made to the switch allocator.
Only when a packet is allocated a VC may it proceed
to switch allocation (a new packet will require at least
one cycle to obtain a VC before it can arbitrate for
access to the crossbar).

� Parallel-Spec Virtual-channel and switch allocation
are performed in parallel. Packets that are awaiting VC
allocation are permitted to make speculative requests

for switch allocation. This enables flits to be received
and routed on an output in a single cycle.

� Parallel-Spec-PreComp Extends the Parallel-Spec
implementation to model the precomputation of grant
enable signals. In cases where the arbiters operates in
an unsafe environment, an arbiter which sets all grant
enable signals is modelled. In the case where two or
more requests are received on the subsequent clock
cycle, no input is granted (option c. in Section 3.3).

Results are shown in Figure 9 for a range of buffer sizes
and virtual-channel configurations. An initial inspection of
the results shows that all but the Parallel-NoSpec model
have very similar performance characteristics. At closer
inspection and perhaps surprisingly the Sequential scheme
does not necessary outperform the parallel schemes.
This behaviour is the result of two effects. Firstly, the
speculative switch allocator prioritises packets during
switch allocation that have held a VC for at least one
cycle. This can be modelled in the sequential case, slightly
improving performance. Secondly, in the case of the
speculative allocator two requests from each input port
may be considered after the first stage of arbitration.
This potentially increases the chance of finding a more
complete matching of waiting flits and ready output ports.
Performance could be potentially improved further in the
parallel schemes by ensuring speculative requests are only
made if at least one free VC is available at the required
output port.

Figure 8 illustrates the performance impact of restricting
the number of inputs to the crossbar, as discussed in
Section 2.7. The unrestricted case models the provision
of a crossbar input for every input virtual-channel. The
restricted case models the case where virtual-channels at
each input port share a single crossbar port.

6. Related Work

The techniques that have been described allow router
and arbitration latency to be hidden. This is achieved by
predetermining the outcome of routing and arbitration
decisions one cycle before they are required. Routing and
arbitration latency may also be eliminated by statically
scheduling buffer and channel resources [21]. For many
applications this is prohibitively expensive due to the
size of the routing memory required. Statically scheduled
schemes also suffer from the inability to handle dynamic
traffic. Flit-reservation flow-control [18] exploits the ability
to preschedule resources but achieves greater flexibility by
deferring scheduling decisions until run-time. Channel and
buffer usage is scheduled by sending control flits ahead
of data flits on an independent, less congested, network.
Scheduling decisions are recorded in reservation tables

8

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 L
at

en
cy

 (c
lo

ck
 c

yc
le

s)

Measured Throughput (% of Network Capacity)

Virtual Channels/Port=1, Buffers/Virtual Channel=4

’Parallel-NoSpec’
’Parallel-Spec’

’Sequential’
’Parallel-Spec-PreComp’

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 L
at

en
cy

 (c
lo

ck
 c

yc
le

s)

Measured Throughput (% of Network Capacity)

Virtual Channels/Port=2, Buffers/Virtual Channel=2

’Parallel-NoSpec’
’Parallel-Spec’

’Sequential’
’Parallel-Spec-PreComp’

(a) V=1, B=4 (b) V=2, B=2

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 L
at

en
cy

 (c
lo

ck
 c

yc
le

s)

Measured Throughput (% of Network Capacity)

Virtual Channels/Port=2, Buffers/Virtual Channel=4

’Parallel-NoSpec’
’Parallel-Spec’

’Sequential’
’Parallel-Spec-PreComp’

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 L
at

en
cy

 (c
lo

ck
 c

yc
le

s)

Measured Throughput (% of Network Capacity)

Virtual Channels/Port=2, Buffers/Virtual Channel=8

’Parallel-NoSpec’
’Parallel-Spec’

’Sequential’
’Parallel-Spec-PreComp’

(c) V=2, B=4 (d) V=2, B=8

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 L
at

en
cy

 (c
lo

ck
 c

yc
le

s)

Measured Throughput (% of Network Capacity)

Virtual Channels/Port=4, Buffers/Virtual Channel=4

’Parallel-NoSpec’
’Parallel-Spec’

’Sequential’
’Parallel-Spec-PreComp’

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 L
at

en
cy

 (c
lo

ck
 c

yc
le

s)

Measured Throughput (% of Network Capacity)

Virtual Channels/Port=4, Buffers/Virtual Channel=8

’Parallel-NoSpec’
’Parallel-Spec’

’Sequential’
’Parallel-Spec-PreComp’

(e) V=4, B=4 (f) V=4, B=8

Figure 9. Latency versus throughput for a number of different VC and switch allocation implementations (5-flit packets).
For each graph, V is the number of virtual-channels per input port and B is the number of buffers per virtual-channel.

9

associated with each input and output port. Arbitrated
access to output reservation tables together with the
relatively complex scheduling operations add significantly
to the complexity of the router. A preliminary investigation
also suggests that our cycle time would be extended by
such an approach. While the ability to schedule resources
more than a cycle before their use is a powerful technique,
this will always incur a bookkeeping overhead in recording
and generating a schedule. A detailed analysis of an
implementation of flit-reservation flow-control is presented
in [17].

7. Conclusion

This paper has demonstrated a low-cost approach to
significantly reducing the cycle-time of on-chip routers.
Simulation results have shown that the critical path
is reduced significantly without compromising router
efficiency. Preliminary layout of the major components
of the router has been completed and a 0.18 � m VLSI
implementation clocked at 1.2GHz is planned. The
design is supported by a novel grid-based distributed
clocking scheme to ensure minimal skew between adjacent
routers [9].

Acknowledgements

The authors would like to thank the SCALE group
(MIT) and the anonymous reviewers for their suggestions
and comments. We would also like to thank Roland Ibbet
and Frederic Mallet for their support in using HASE
(University of Edinburgh). This work is supported by
EPSRC (grant GR/L86326) and the Cambridge-MIT
Institute (CMI).

References

[1] L. Benini and G. D. Micheli. Networks on Chips: A New
SOC Paradigm. IEEE Computer, 2002.

[2] A. A. Chien. A cost and speed model for k-ary n-cube
wormhole routers. In Proceedings of Hot Interconnects,
1993.

[3] P. Coe, F. Howell, R. Ibbett, and L. Williams. A Hierarchical
Computer Architecture Design and Simulation Environment.
ACM Transactions on Modeling and Computer Simulation,
8(4), October 1998.

[4] W. J. Dally. Wire-Efficient VLSI Multiprocessor
Communication Networks. In P. Losleben, editor,
Proceedings of the Stanford Conference on Advanced
Research in VLSI. MIT Press, March 1987.

[5] W. J. Dally. VLSI and Parallel Processing, chapter
Network and Processor Architectures for Message-Driven
Computing. Morgan Kaufmann, 1989.

[6] W. J. Dally. Virtual-Channel Flow Control. In Proceedings
of the 17th Annual International Symposium on Computer
Architecture (ISCA), 1990.

[7] W. J. Dally and J. W. Poulton. Digital Systems Engineering.
Cambridge University Press, 1998.

[8] W. J. Dally and B. Towles. Route Packets, Not Wires:
On-Chip Interconnection Networks. In Proceedings of the
38th Design Automation Conference (DAC), June 2001.

[9] S. Fairbanks and S. Moore. The Distributed Clock Generator.
In Proceedings of the second ACiD-WG Workshop, Munich,
Germany, January 2002.

[10] M. Galles. Scalable Pipelined Interconnect for Distributed
Endpoint Routing: The SGI SPIDER Chip. In Proceedings
of Hot Interconnects Symposium IV, 1996.

[11] R. B. Iverson and Y. L. L. Coz. Users Guide for
QuickCAP ��� . Random Logic Corporation, 2003.

[12] A. Jantsch and H. Tenhunen, editors. Networks on Chip.
Kluwer Academic Publishers, 2003.

[13] P. Kermani and L. Kleinrock. Virtual Cut-Through: A New
Computer Communication Switching Technique. Computer
Networks, 3:267–286, January 1979.

[14] C. Kim, D. Burger, and S. W. Keckler. An adaptive,
non-uniform cache structure for wire-delay dominated
on-chip caches. In Proceedings of the 10th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2002.

[15] R. Krashinsky, C. Batten, and K. Asanovic. SCALE-0
Architecture Manual. MIT Laboratory for Computer
Science, 2003.

[16] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, and
M. Horowitz. Smart Memories: A Modular Reconfigurable
Architecture. In The 27th Annual International Symposium
on Computer Architecture (ISCA), June 2000.

[17] L.-S. Peh. Flow control and micro-architectural mechanisms
for extending performance of interconnection networks. PhD
thesis, Stanford University, 2001.

[18] L.-S. Peh and W. J. Dally. Flit-Reservation Flow Control.
In International Symposium on High-Performance Computer
Architecture, pages 73–84, Jan 2000.

[19] L.-S. Peh and W. J. Dally. A Delay Model and Speculative
Architecture for Pipelined Routers. In International
Symposium on High-Performance Computer Architecture,
pages 255–266, Jan 2001.

[20] A. S. Tanenbaum. Computer Networks. Prentice-Hall,
Englewood Cliffs, NJ, 1981.

[21] M. B. Taylor et al. The Raw Microprocessor: A
Computational Fabric for Software Circuits and General
Purpose Programs. IEEE Micro, March/April 2002.

10

