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Abstract

Recent benchmark suite releases such as Parsec specif-

ically utilise the tightly coupled cores available in chip-

multiprocessors to allow the use of newer, high perfor-

mance, models of parallelisation. However, these tech-

niques introduce additional irregularity and complexity to

data sharing and are entirely dependent on efficient com-

munication performance between processors. This paper

thoroughly examines the crucial communication and shar-

ing behaviour of these future applications.

The infrastructure used allows both accurate and com-

prehensive program analysis, employing a full Linux OS

running on a simulated 32-core x86 machine. Experiments

use full program runs, with communication classified at both

core and thread granularities. Migratory, read-only and

producer-consumer sharing patterns are observed and their

behaviour characterised. The temporal and spatial charac-

teristics of communication are presented for the full collec-

tion of Splash-2 and Parsec benchmarks. Our results aim

to support the design of future communication systems for

CMPs, encompassing coherence protocols, network-on-chip

and thread mapping.

1 INTRODUCTION

To produce the most efficient hardware designs, it is vital

to have a detailed understanding of application behaviour, as

without this knowledge it is extremely difficult to correctly

partition resources between communication and computa-

tion. This paper focuses on the communication behaviour

of multi-threaded benchmarks – an increasingly important

factor in overall program performance.

The communication patterns exhibited by a multi-

threaded benchmark are determined by a number of factors.

The programming, machine and parallelisation models as

well as the application algorithm all play a significant role in

defining the nature of thread to thread communication. By

using an idealised architecture for many experiments, this

work aims to abstract away many of these factors, exposing

the true sharing present in the algorithms used.

We analyse a large number of applications running on

a shared-memory, chip-multiprocessor (CMP) architecture.

The applications are selected from the Splash-2 [12] and

Parsec [3] benchmark suites. Of particular note is that the

target machine model has evolved from a multi-node system

(Splash-2) to a chip-multiprocessor (Parsec). As described

by Bienia et al. [2], core-to-core communication is consid-

erably faster on a CMP than in a multi-node system and this

shift in machine model allows programs to be written using

new parallelisation models previously untenable on a multi-

node machine. New parallelisation models imply different

communication patterns and this paper aims to thoroughly

characterise this shift.

The characterisation falls into three sections. In sec-

tion 4.2, the spatial and temporal characteristics of thread

to thread communication are examined. Data is presented

showing how much sharing occurs between threads and at

what times the transactions occur. This information could be

used for thread mapping and interconnect topology design.

Section 2.2 analyses the sharing patterns that are present in

each benchmark. Three patterns are described: read-only,

producer-consumer, and migratory. The importance of these

patterns influences both caching policy and coherency pro-

tocol design.

2 BACKGROUND

2.1 Benchmarks

For this study, we select two benchmark suites: Splash-

2 [12], released in 1995 and Parsec [3], first released in 2008

and updated in early 2009.

Splash-2 is a mature benchmark suite containing a va-

riety of high performance computing (HPC) and graphics

applications. The dominant parallel platforms at the time of

the suite’s creation were multi-node systems, with CPUs of-

ten being housed in separate machines relying on board-to-

board communication between nodes. The extremely high

latency of these links requires the algorithms to minimise

thread to thread communication wherever possible. The

suite has remained extremely popular. However, for evalu-

ating newer designs, recent publications [3] have suggested



SPLASH-2

barnes n-body Simulation

cholesky Matrix Factorisation

fft Complex 1-D FFT

fmm Fast Multipole n-body

lu Matrix Triangulation

ocean Ocean Current Simulation

radiosity Graphics

radix Integer Sort

raytrace 3D Rendering

volrend 3D Rendering

water-nsquared Molecular Dynamics

water-spatial Molecular Dynamics

PARSEC

blackscholes Financial Analysis

bodytrack Computer Vision

canneal Engineering

dedup Enterprise Storage

facesim Animation

ferret Similarity Search

fluidanimate Animation

freqmine Data Mining

streamcluster Data Mining

swaptions Financial Analysis

vips Media Processing

x264 Media Processing

Table 1: The Splash-2 and Parsec workloads

that many of the algorithms are now out-dated, largely due

to the increasing dominance of the CMP as a parallel com-

puting platform and the new communication opportunities

present in such systems.

Parsec is a more recent benchmark suite, offering a wider

variety of applications rather than focusing on HPC. The

large advances in silicon technology now allow the integra-

tion of many processing cores on a single die, each with

access to sizeable shared caches, drastically reducing the

latency cost of inter-core communication. This important

change has been taken into account during the design of the

algorithms used in Parsec. Furthermore, the suite includes

a number of benchmarks that spawn more threads than the

number of cores available, leaving the operating system to

schedule work in an effective manner. No such benchmarks

are present in the Splash-2 suite. The full selection of bench-

marks from both suites is shown in table 1.

2.2 Sharing Patterns

Sharing in multithreaded benchmarks can be classified in

a number of ways. Here we describe the terms used through-

out this paper. First, a word is described as shared if it is

written to or read from by more than one processor1 during

1Since we use for most benchmarks as many threads as there are pro-

cessors in the system, the terms thread and processor can be interchanged

in all sections, except for one paragraph in section 4.2.

the execution of a benchmark. This separates the memory

into shared and private regions, defining where communica-

tion could have taken place.

However, not all reads and writes to such a shared re-

gion are actually used to communicate data. The applica-

tion might use a refinement strategy, rewriting results until

they meet a certain quality before they are communicated to

other processors. As such, we say that only the writes that

produce the final value are communicating writes. A simi-

lar classification is possible for read operations. A read is a

communicating read, if it reads a value that has been writ-

ten by a different processor for the first time. Subsequent

reads by the same processor do not communicate any new

information and are an artefact of register pressure or in-

struction encoding (the latter is most certainly the case for

x86 binaries). Figure 1a shows communicating and non-

communicating memory access for one memory location.

Communicating accesses are shown in black, while non-

communicating accesses are shown in gray. In the following

discussion, we will only consider communicating accesses.

The way in which shared words are accessed can be used

to further categorise the memory locations. The number and

ordering of reads and writes can indicate a certain sharing

pattern. In this paper, we examine three such patterns: read-

only, migratory, producer-consumer [1, 11].

Read-only A word is declared read-only if during the en-

tire execution of a program it is written to either zero or one

times, and is subsequently read by at least one processor that

is not the writer. In addition, no read access is allowed be-

fore the single write access. An example of a read-only re-

lationship is shown in figure 1b. Read-only sharing is most

commonly observed when an input file is read into a pro-

gram and the content is then consumed by several of the

threads in the parallel phase of execution. In this pattern,

each data word may be read several times by a variety of

different processors but is never over-written once first read.

Therefore any intermediate values used in further compu-

tation must be stored elsewhere. A consequence of such a

pattern is that these words do not strictly require any coher-

ence support.

Migratory Migratory sharing occurs when a shared data

structure is accessed and modified inside an atomic region

repeatedly by different processors during program execu-

tion. This pattern is identified by a read to a newly produced

data value followed by a write, without an interrupting read

or write from another processor.

Migratory sharing is common in shared memory bench-

marks and predictability is also high, with regions exhibit-

ing migratory behaviour often doing so for the rest of a

benchmark’s execution. Migratory sharing is of interest as

it also behaves sub-optimally on MESI protocols [10]. Ex-

amining figure 1c, we see the first read from P1 will return

with shared permissions, only to immediately require an up-



W

0 P2P1

R/W communication

no commu.R/W

W

R
W

R R

ti
m

e

W

R
R

W

R
R

R

R

R

W

R

R

R

RR

R

P

(a) Communicating Accesses

ti
m

e

0 P2P1

W

R

R

program end

P

(b) Read-Only

ti
m

e

0 P2P1

R

W

R

W

R

W

P

(c) Migratory

ti
m

e

0 P2P1

W

W

R

R

R

P

(d) Prod/Cons

Figure 1: Communicating accesses and memory access or-

dering for sharing patterns on a single memory location.

grade for the write to modified state, requiring additional co-

herency traffic for each migration.

Producer-Consumer Producer-consumer sharing in a

shared memory program can be defined in a number of

ways. All require a persistent relationship between write

and read sets for a given memory location. In the strictest

definition, a location is only flagged as exhibiting producer-

consumer behaviour if each write comes from a single pro-

cessor, and is always followed, before the next write, by

a load from the consuming processor. Our experiments

showed that for our benchmark selection, this pattern of ac-

cesses was extremely unlikely to occur multiple times with-

out interruption. Additionally, we found that the producer

does not remain constant and is quite likely to change. For

this reason the definition was relaxed to allow any number

of writers. In this scheme, the strength of the relationship

is reported as the probability that for each communicating

write to a memory address, a communicating read will fol-

low from a given processor. In this paper, words are re-

ported as exhibiting producer/consumer sharing if there is a

greater than 50% probability that a specific reader will con-

sume each write to a given location.

In addition to analysing the producer/consumer pattern

directly, we also focus on the stability of the read set of

shared memory locations. The read set for a memory loca-

tion is considered stable when for each processor it is known

whether that processor will consume or not consume a pro-

duced value. The read set is considered unstable, if it is not

known if a processor consumes or does not consume a pro-

duced value.

Figure 1d shows a memory location exhibiting producer-

consumer characteristics. Processor P0 acts as the producer,

while P1 and P2 act as consumers. In this example, P2 is a

stable consumer (since it consumes every produced value)

and P1 is an unstable consumer (since it consumes 50% of

the produced values). Thus, the stability of read set for this

memory location is 50%, i.e. 1 in 2 processors.

This sharing pattern is important as it behaves sub-

optimally under a widely used MESI cache coherency proto-

col [8]. The producing processor’s permissions will oscillate

between modified and shared, with the consumer switch-

ing from shared to invalid. This generates a large volume

of messages both to and from the directory, which may be

physically remote to the processing node.

3 EVALUATION SETUP

Simulated Architecture We use Virtutech’s Simics simu-

lator [7] to generate cycle accurate memory accesses traces

for a 32 processor x86 system running Linux 2.6.15. Us-

ing a full Linux operating system allows us to run a wide

variety of unmodified benchmarks with full library support.

Each processor has a single in-order pipeline, similar to the

cores found in Intel’s Larrabee CMP [9]. However, to main-

tain high simulation speed, no further pipeline details are

modelled, leaving each core with a fixed throughput of 1

instruction per cycle. To provide timing information in the

traces we attached a cache hierarchy of private L1s and a

large shared L2. The private caches are kept coherent us-

ing a MESI protocol across a zero cycle, infinite bandwidth

crossbar. The details are summarised in table 2.

Trace Generation We generate memory access traces us-

ing a modified version of the tracer module provided by Vir-

tutech. We have extended the module to determine which

thread is currently executed by each core, providing addi-

tional information for benchmarks that spawn a large num-

ber of threads. To retrieve this data we read the tr register

and follow the pointer it contains to the appropriate entry in

the thread table of the Linux kernel, tagging each memory

access with both the thread number and processor on which

the operating system executed it. We optimise the output to
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Figure 2: Fraction of read and write accesses to shared memory locations that communicate data. A read is considered

communicating when it reads a value that has been produced by another processor and has not been read before. A write is

considered communicating when it produces a value that is read by a different processor.

Core count 32

ISA x86

Pipeline In-order, fixed CPI = 1

L1 Cache 32kB, 64B lines, 4-way assoc.,

Hit latency 1 cycles

L2 Cache 8MB, 64B lines, 32-way assoc.,

Hit latency 10 cycles

Main memory Latency 400 cycles

Interconnect 0 cycle, infinite bandwidth crossbar

OS Linux 2.6.15

Table 2: Simulated system parameters

reduce the size of the traces generated, although the larger

files even when compressed are still over 100GB.

In order to prevent thread migration we tied generated

threads to a specific processor. This was done for all Splash-

2 programs and the Parsec programs of blackscholes, can-

neal, fluidanimate streamcluster and swaptions. We were

not able to do this for other programs in the Parsec bench-

mark suite, since the program either creates more threads

than CPUs are available or threads are created in a non-

trivial way.

For Splash-2, we use the recommended input size for

all benchmarks. For Parsec, we use the simmedium input

size, to keep simulation time and resulting traces manage-

able while still accurately reflecting benchmark behaviour.

Communication Characterisation When identifying

thread to thread communication we track the consumers of

a value written to memory at word-level granularity. This

analysis is done purely on an address level, and does not

take into consideration any write-back or coherency effects.

On the consuming side, an infinite cache is assumed. Thus,

a value that has been consumed once will always be directly

accessible by the consuming CPU. Additionally, we do not

record consumptions by the producing CPU. Furthermore,

we ignore all communication that resulted from values

produced during the initialisation phase showing the

communication during the parallel phase of the execution

only. Carrying out the analysis in such a way provides a

lower bound on the amount of communication that must

take place, regardless of interconnect or coherency protocol

design. Results from such experiments provide a useful

specification for the development of on-chip communication

systems.

4 EXPERIMENTAL RESULTS

In this section we present the results of our communi-

cation analysis. In section 4.1, we establish some general

properties about memory accesses to shared memory lo-

cations. Section 4.2 investigates communication patterns,

analysing which processor communicates with which other

processor. Section 4.3 classifies the observed communica-

tion into three sharing patterns: read-only, migratory and

producer-consumer. Finally, section 4.4 looks into how sta-

ble (and as such predictable) the read set of communicating

write instructions is.

4.1 Communicating Accesses

Not all accesses to shared memory locations are actually

used to communicate: values might be reread from memory

due to capacity in the register file or values are being re-

fined for several iterations before being communicated. As

we focus on communication, we first identify the number of

accesses to shared address space that actually communicate

data as discussed in section 2.2. Figure 2 shows the per-

centage of reads and writes to shared memory locations that

communicate data. One thing to notice is that on average

only 1.5% of reads actually communicate data. However,

this might be partially an artefact of using an x86 machine

for these experiments. Due to the instruction encoding and

lack of programmer visible registers on x86, it is quite com-

mon that almost every instruction reads from memory. As

for communicating writes, one notices that Parsec bench-

marks have significantly less communicating writes (4.2%



on average) than Splash-2 applications (20.8% on average),

suggesting a refinement of values before they are communi-

cated. We will use the number of communicating accesses

as the basis for many normalisations in the following sec-

tions.

Figure 3 shows the communication to computation ratio.

We find that expressing this ratio using communicating read

(figure 3a) or writes (figure 3b), does change the absolute

figures but not the general trend. An exception to this is

water-spatial, which looks like an average communication

bound benchmark based on the number of instructions per

communicating read, but computation bound based on the

number of instructions per communicating write.

4.2 Communication Patterns

Figures 4 and 5 show the observed spatial communica-

tion patterns for the evaluated applications. Figure 6 shows

this behaviour over time, for four representative bench-

marks. All plots are normalised to the maximum CPU to

CPU communication relationship observed in that program.

No columns or rows in the graphs have been swapped. The

CPUs or threads appear in the order as numbered in the op-

erating system.

Spatial Behaviour The first thing to notice is the relative

diversity of communication patterns for the Splash-2 pro-

grams. Cholesky, lu, radix, ocean and water-spatial have

very distinct communication patterns that are not observed

elsewhere in the benchmark selection. Secondly, we no-

tice that many programs exhibit very strong communica-

tion between neighbouring CPUs. For example, Barnes

and fmm show increased neighbour communication with

blackscholes and streamcluster also showing similar pat-

terns. Fluidanimate exhibits a comparable trend, though

each CPU does not communicate its nearest neighbours but

rather with its 4th neighbour to either side. Both benchmark

suites include a program that shows strong all to all commu-

nication, fft for Splash-2 and canneal for Parsec. Parsec con-

tains many applications that show less uniform, but still ran-

dom traffic (dedup, swaptions, vips and x264). We only find

two programs in Splash-2 that shows this kind of behaviour

(radiosity and raytrace). A further category of programs

show no recognizable pattern, but show strong communi-

cation between a few CPUs with almost no communication

between the rest (water-nsquared, bodytrack, facesim, ferret

and freqmine).

From a communication pattern perspective, Splash-2

shows more variation than Parsec. In addition, the struc-

tured patterns in Splash-2 often involve a high radix com-

munication with one CPU communicating with 10 to 16

other CPUs. Parsec on the other hand is dominated by either

low radix or unstructured communications. All of these pat-

terns present interesting challenges for communication sys-

tem design.

Thread-Level Analysis Unlike Splash-2, some Parsec

benchmarks generate threads dynamically during the paral-

lel execution phase. As such, certain communication pat-

terns between threads can be hidden due to thread creation,

mapping and migration. To eliminate this interference and

expose true sharing patterns, we tracked the communication

based on the thread ID for programs that showed unstruc-

tured communication patterns. Figure 7 shows the results

for dedup, ferret and x264. In all cases distinct communica-

tion patterns become visible that were previously hidden.

Dedup generates 3 classes of threads that exhibit differ-

ent kinds of behaviour: the first group (threads 33 to 64) pro-

duces data, which is consumed by the second group (threads

1 to 32). However, only 8 threads in this group produce any

significant amount of data that is consumed. The threads in

the second group collaborate in groups of 4 threads to pro-

duce data for the third group (65 to 96). The threads in the

last group show random communication among themselves.

Ferret spawns the largest number of threads of all Par-

sec programs (133 threads). The first 32 threads show

very strong neighbour communication, while the remaining

threads show very limited communication. This suggests

that the mapping of the first threads is of much greater im-

portance than the higher indexed threads.

X264’s thread based communication pattern shows that

half of the spawned threads exhibit little communication.

For the other half, a strong communication with 5 other

threads can be identified, likely due to the sharing of frames

in the compression algorithm.

The strength and regularity of the sharing exposed by per-

forming thread based analysis has implications for thread

mapping in Parsec benchmarks. A more intelligent spawn-

ing and mapping may well lead to clearer locality in the pro-

cessor level results.

Temporal Behaviour The results presented so far focus

on the spatial behaviour of the benchmarks. However, the

temporal behaviour of the communication is also of upmost

importance when considering interconnect design.

In figure 6, we show the temporal communication be-

haviour of one CPU for four programs. With the exception

of canneal, it possible to identify patterns in the communi-

cation behaviour over time. As such, even if a CPU com-

municates with every other CPU during the program execu-

tion, it is not necessarily the case that every CPU receives all

communications. For example, CPU 2 in barnes only com-

municates with all other CPUs during very short phases in

the program’s execution. For the first quarter, there is some

light traffic towards CPU 16 to 31. After a short period in

a synchronisation phase (which results in communication to

all other CPUs), the focus of communication shifts to CPU 0

to 15. During this period, we also observe a period of heavy

communication with CPU 1, for approximately 10% of the

total execution time. A similar behaviour can be seen in

bodytrack: for the majority of the parallel phase there is little
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(b) Instructions per communicating write access.

Figure 3: Instructions per communicating read and write accesses.

communication between CPUs. During 2 phases (which add

up to approximately 30% of the execution time), we notice

an all to all communication. This communication is mostly

light, but at times shows some heavy bursty communication

targeted at CPU 4, 6, 8, 13, 22 and 23 during the first phase

and targeted at CPU 0, 3, 6, 7, 10 – 14, 22 and 24 during the

second phase. Another interesting communication pattern

can be observed in streamcluster. While there is some ran-

dom, light communication to all other CPUs, it shows that

for about 15% of the execution time there is heavy commu-

nication present towards CPU 18 and 20. For the remaining

time, light traffic is observed. While it can also be seen in

figure 5 that most traffic from CPU 19 is directed towards

CPU 18 and 20, it is surprising that it is only present for a

relatively short period of time.

4.3 Sharing Patterns

Figures 8a, 9a and 10a show the proportion of the shared

memory space exhibiting each of the three described shar-

ing patterns (see section 2.2). Please note that while a loca-

tion can only be read-only shared, it can under certain con-

ditions participate in both a producer/consumer and migra-

tory behaviour. We show how many different CPUs access

that memory location. For producer/consumer and read-

only sharing, this indicates the number of different CPUs

that consume the value. For migratory sharing, it shows the

number of different CPUs that participate in the migratory

pattern over the entire parallel phase.

First, we find that for 9 out of 24 programs our sharing

characterisation scheme covers almost all shared memory

locations. For another 7 programs, we can characterise 50%

or more of shared memory locations. The remaining pro-

grams do not exhibit any recognised sharing pattern. This is

best described as a “multiple producer/multiple consumer”.

Finally, we observe that, with the exception of water-spatial,

water-nsquared and canneal, few memory locations are in-

volved in a communication involving more than 8 CPUs.

Read-Only Sharing Figure 8a shows the percentage of

the shared memory space that is used for read-only sharing.

It is further divided by the number of different CPUs that

read a word from this space. We see that raytrace, volrend,

canneal, streamcluster and x264 use almost all of the shared

address space in a read-only manner and to a lesser extent

radix and ferret. We also notice that while there is some

data that is being read by 16 or more CPUs, most sharing is

performed between up to 7 CPUs.

While figure 8a shows a spatial analysis of sharing pat-

tern, figure 8b presents a quantative analysis of read accesses

to shared data. We find that most applications that use their

shared address space in a predominantly read-only manner,

also direct most shared reads to these regions. The excep-

tions are ferret and x264, which use 61% and 71% of its

shared memory space in a read-only way, but only 7% and

19% of its read accesses read this data. Several benchmarks

(fmm, ocean and fluidanimate), which do not use a signifi-

cant portion of their address space for read-only data, direct

40% to 50% of their shared reads to these regions.

Migratory Sharing Figure 9a shows the percentage of

shared memory locations that participate in a migratory pat-

tern. It is further divided by the number of different CPUs

that participate in this pattern. We find that only 5 Splash-2

benchmarks (barnes, fmm, lu and water-nsquared) use a no-

ticeable fraction of their shared memory space for migratory

data. For Parsec, we find that all benchmarks, apart from

canneal, streamcluster and x264, use a significant amount

of the shared memory space for migratory communication.

Analysing how many CPUs use a particular memory loca-

tion for a migratory sharing pattern, we see that most mi-

gratory locations are only being used by 2 CPUs. A few

locations are used by up to 7 CPUs. The only exception

to this is water-nsquared and swaptions. In water-nsquared,

almost all migratory locations are shared between all proces-

sors. In swaptions, about two third of the migratory address

space is used by more than 7 CPUs.

Figure 9b shows the percentage of communicating writes

that participate in a migratory sharing pattern. It can be seen

that all applications exhibit migratory behaviour to some ex-

tent. We can identify three kinds of clusters: applications

that have less than 10% of migratory patterns, applications
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Figure 4: Normalised communication between different CPUs during the entire parallel phase of the program for the Splash-2

benchmark suite.

with around 30% migratory patterns and applications that

show 50% or more migratory patterns. We observe a full

range of results, suggesting optimisation of migratory pat-

terns is important, but will never yield universal improve-

ments.

The Parsec benchmark suite exhibits more migratory

sharing pattern than Splash-2. Migratory patterns are much

easier to support in a CMP environment than in a multi-node

system and as such, it is no surprise to find them more heav-

ily used in Parsec, which has been developed with a CMP

platform in mind.

Producer-Consumer Sharing Figure 10a shows the per-

centage of shared memory locations that participate in a

stable producer-consumer relationship (as defined in sec-

tion 2.2). It is further divided by the number of differ-

ent CPUs that consume the word that has been produced.

The first striking observation is the almost complete ab-

sence of stable producer/consumer memory locations in

Parsec (with the exception of fluidanimate). Second, in

Splash-2 we find only 5 applications that use a signifi-

cant amount of their shared memory space for producer-

consumer pattern: barnes, fmm, ocean, water-nsquared and

water-spatial. Third, there is a large variance in the num-

ber of CPUs that are involved in producer consumer pat-

terns. For water-nsquared and water-spatial, we find that

all CPUs are involved in the pattern. For the other four ap-

plications, we find that most produced data is consumed by

a single CPU. As such, using broadcast techniques in an on-

chip interconnect or coherence protocol is likely to benefit

water-nsquared and water-spatial, but it will be of limited

use for almost all other applications.

Finally, notice that water-nsquared and water-spatial are

the only programs that exhibit a significant amount of shar-

ing of data between more than 15 CPUs. The only program

in the Parsec benchmark suite, which shows such a high de-

gree of sharing is canneal and only for read-only data.

Figure 10b shows the percentage of communicating

writes that access a location with a stable producer-

consumer relationship. The main observation is that ap-
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Figure 5: Normalised communication between different CPUs during the entire parallel phase of the program for the Parsec

benchmark suite.

plications that use a significant fraction of the shared ad-

dress space for producer-consumer communication, also

use a signification fraction of communicating writes in this

way. The two exceptions to this observation are volrend

and water-nsquared. Volrend only uses around 10% of the

shared address space for producer-consumer communica-

tion, but more than 55% of its communicating writes. Water-

nsquared uses around 35% of its shared address space for

producer consumer communication, but only 7% of its com-

municating writes.

4.4 ReadSet Stability

The read set is considered stable when it is known that a

produced value will be consumed or not be consumed by a

given processor. As such, a processor that always consumes

a produced value contributes to a stable read set. Similarly,

a processor that never consumes a produced value also con-

tributed to a stable read set. A processor that consumes only

half of the produced values contributes to an unstable read

set. As such, a migratory sharing pattern will be classified

as a mostly stable read set. A produced value is consumed

by only one processor (and not consumed by all other pro-

cessors). As such, a migratory location is considered highly

predictable. In order to classify a location as stable, it is

necessary that at least two communicating write accesses

are performed on that location.

Figures 11a and 11b show the results for the stability of

the read set. We find that both in the spatial and quantative

analysis a significant number of locations and write accesses

have a very stable read set (80% to 100%). In many cases

these results roughly overlap with the migratory sharing re-

sults from figure 9. Minor differences in these results (for

example more locations are classified migratory than there

are locations with a read set stability) are due to slight dif-

ferences in measuring these locations. For example, the last

write in a migratory pattern does not have to be a communi-

cating write. As such, if a migratory pattern consists of only

2 writes then it is possible that it will not be considered for

the read set stability analysis.
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Figure 6: Normalised communication changes over time for a selection of CPUs and applications.

Exceptions to this overlap are ocean, radix, volrend,

water-spatial, bodytrack, dedup and ferret. These bench-

marks show a highly stable read set, which is not the re-

sult of a migratory sharing pattern. In general, we find that

the stability in the read set is due to knowing that proces-

sors are not going to read a produced value. This behaviour

is already exploited by current cache coherency protocols,

which assume a value is not being consumed and hence do

not do anything. In order to establish the stability of the

read set due to knowing that the value will be consumed,

we increased the threshold for detecting a stable producer-

consumer relation to 70% and 90%. Figure 12 shows the

results of the quantative analysis. We find that barnes, can-

neal, fluidanimate, fmm, ocean, radix, volrend and water-

spatial have a significant fraction of read set stability due to

knowing which CPU will consume a value.

Since a location can exhibit a stable read set with just two

communicating writes, we further investigated the number

of communicating writes for locations that were included

in this characteristic. Table 11c shows these results. We

see only in barnes, fmm and volrend memory locations with

less than 5 communicating write accesses on average. All

benchmarks show a significant number of communicating

writes per memory location, suggesting that it is worthwhile

to exploit read set stability in communication optimisation.

5 RELATED WORK

The works by Woo et al. [12] and by Bienia et al. [3],

which present the Splash-2 and Parsec suites, contain a large

amount of information on the benchmarks used here. These

characterisations focus on synchronisation overhead, size of

working sets, false and true sharing, and scalability. Unlike

our study, they do not evaluate temporal and spatial com-

munication patterns, nor try to classify shared data access

patterns.

Bienia et al. [2] also compare the Splash-2 and Parsec

benchmark suites. However, while they examine the sharing

behaviour for both suites, this data is evaluated with a partic-

ular system in mind (i.e. data sharing is only observed if the

data is shared through caches). Our study focuses on shar-

ing patterns at a logical level. As such, we present insight on

what kind of communication is present in the applications,

regardless of execution platform.

Chodnekar et al. [5] provide a communication character-

isation methodology for parallel applications. Their work

focuses on temporal and spatial traffic characterisation for a

multi-node CC-NUMA system. However, their evaluation is

tied to a particular physical implementation of a CC-NUMA

machine. For example, the communication analysis assumes

a communication network with a mesh topology. Our study
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Figure 7: Normalised communication between different threads during the entire parallel phase of the benchmark.
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Figure 8: Analysis of the read-only sharing pattern. The spatial analysis shows the percentage of the shared address space that

is used according to the read-only sharing pattern. The quantative analysis shows the percentage of reads to shared address

space that access a location that had been classified as read-only. For both analyses, we determine by how many processors

the line is read and classify read accesses accordingly (Read-only locations with only one reading processor, are written by a

different processor).

looks at communication with no particular topology in mind,

providing generic results for use in future work.

Hossain et al. [6] present an augmented cache coherency

protocol for CMPs that tries to take advantage of pro-

ducer/consumer and migratory sharing. It uses heuristics

and additional status bits in each cache line to identify

these patterns dynamically with local information available

at each L1. All traffic observed in the system is then char-

acterised using these heuristics. In our work, we use global

knowledge about the application and do not miss patterns

masked due to conflict misses. Additionally, their evalua-

tion only includes a selection of programs from the Splash-

1/2 benchmark suites.

There are many other publications that augment the cache

coherence protocol to take advantage of specific sharing pat-

tern such as [4, 10]. Many such works target multi-node

systems. Similar to Hossain’s work, they use a heuristic and

only present results that show the improvement in perfor-

mance of their scheme. To our knowledge, none of these

studies investigates how much traffic falls into a particular

category. It is beyond the scope of this paper to list them all.

6 CONCLUSIONS

In this paper, we have presented a detailed analysis of the

communication exhibited by the Splash-2 and Parsec bench-

mark suites. We have shown that using cycle accurate simu-

lations at the thread level allows the characterisation of com-

munication relationships otherwise masked by OS mapping

and scheduling policies. The infrastructure provides suffi-

cient speed to analyse the full duration of each benchmark,

giving an insight into the temporal behaviour of the commu-

nication patterns. These results have an impact on a number

of areas of processor design.

Thread Mapping By analyzing communication at a

thread level, we are able to see that existing thread mapping

policies do not optimise for physical locality of shared data.

On current platforms, this is unlikely to cause problems but

in an architecture with less uniform communication costs,

this may be of increasing concern. However, many bench-

marks exhibit good locality purely based on the thread ID
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Figure 9: Analysis of the migratory sharing pattern. The spatial analysis shows the percentage of the shared address space that

is used according to the migratory sharing pattern. The quantative analysis shows the percentage of communicating writes that

access a location that had been classified as migratory. For both analyses, we determine by how many processors participate

in the migratory pattern and classify the write access accordingly.
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Figure 10: Analysis of the producer-consumer sharing pattern. The spatial analysis shows the percentage of the shared

address space that is used according to the producer-consumer sharing pattern. The quantative analysis shows the percentage

of communicating writes that access a location that had been classified as producer consumer. For both analyses, we determine

by how many processors consume the produced values and classify the write access accordingly.

or CPU number. Further experiments could characterise the

performance benefit of using this information in future CMP

platforms.

Coherence Protocols By classifying shared memory lo-

cations and accesses into read-only, migratory and pro-

ducer/consumer, we provide researchers with the bench-

marks that will benefit most from communication aware

optimisations. Protocol modifications targeting migratory

sharing should see good improvements on the emerging

workloads in the Parsec suite. Producer/consumer sharing

however is harder to find, and schemes aiming to optimise

for this behaviour may need to do so at a finer temporal gran-

ularity than used here. Finally, the large amount of read-

only sharing present in many of the benchmarks reminds

researchers to maintain good support for this basic pattern.

On-Chip Interconnect Many of the spatial and temporal

results have an impact on interconnect design for CMPs.

It is evident that there is no common case communication

behaviour and also that the traffic is rarely constant. This

places high demands on any interconnect architecture. The
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Figure 12: Quantative analysis of the stability of producer-

consumer relation ship.

locality of the spatial communication has implications for

the network topology choices a designer makes, however

the temporal properties must also be considered. Clustering

compute nodes to aggregate traffic may lead to congestion

in the higher traffic phases of program execution. Finally, a

number of the characteristics presented here could be com-

bined to provide synthetic traffic patterns for router design

and evaluation.
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Program Min Max Avg Program Min Max Avg Program Min Max Avg

barnes 2 5,519 2 raytrace 2 130,899 28,052 facesim 2 27,834 22

cholesky 2 1,128 289 volrend 2 2,335 2 ferret 2 857 30

fft 2 446 20 water-nsq 2 954 18 fluidani 5 2,558 11

fmm 2 2,141 4 water-spa 2 955 10 freqmine 2 1,633 38

lu 2 4,282 115 blackscholes 32 64 32 streamcl 2 826,793 4,132

ocean 2 53,230 12 bodytrack 2 10,101 251 swaptions 2 12,914 1,684

radiosity 2 229,744 61 canneal 2 4,095 152 vips 2 4,289 83

radix 2 574 12 dedup 2 4,451 451 x264 2 1,085 17

(c) Communicating writes per word

Figure 11: Stability analysis of the read set of produced values. In order to characterise the stability of a location, it is

necessary that at least two communicating writes are performed. The spatial analysis shows the percentage of shared address

space with two or more communicating writes. The quantative analysis shows the percentage of communicating writes that

access a location with two or more communicating writes. For both analyses, we determine the stability of the read set for

a location and classify the write accesses accordingly. The table shows the minimum, maximum and average number of

communicating writes per line, which are included in the graphs.
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