
Using Stoppable Clocks to Safely Interface
Asynchronous and Synchronous Subsystems

S.W. Moore, G.S. Taylor, P.A. Cunningham, R.D. Mullins and P.Robinson
University of Cambridge, Computer Laboratory,

New Museums Site, Pembroke Street,
Cambridge CB2 3QG, U.K.
Simon.Moore@cl.cam.ac.uk

1. Introduction

This paper presents a low latency, high bandwidth
and reliable interface between asynchronous and
synchronous subsystems. The approach relies on
stretching the clock to prevent metastability in the
data flip-flops rather than simply waiting for the data
flip-flops to resolve metastability. However, unlike
existing clock stretching approaches, ours almost
never needs to stretch the clock so the optimum clock
frequency can be maintained.

We assume a bundled data constraint for
communication between subsystems, i.e. for each
data bus there is an associated request signal which
indicates when the data is valid. Bundled data
communication structures can provide a reliable
asynchronous interconnect between independently
clocked synchronous domains. This communications
structure is in contrast to Q-modules [5] which
sample input signals at regular intervals regardless of
whether they are changing.

We also assume that the synchronous subsystems,
for which we are providing a clock, are typically quite
large with several stages of pipeline and often require
a clock which is rarely stopped. This is in contrast
to circuits which clock a single synchronous pipeline
stage each time there is new input stimuli [2] which
are simple extensions to micropipelines [9].

2. The simple two flip-flop synchroniser

Synchronising an asynchronous data stream is a
well known problem which can be crudely resolved
by latching the data at least twice to allow time for
metastability in the flip-flops to resolve (Figure 1).
This does not prevent metastability from propagating
though the chance is small [4]. A more pressing
concern is the latency that is introduced by this
scheme. In the best case the asynchronous interface
presents a request just before a clock edge and it then
takes a further clock cycle for the data to appear, i.e.

clk

data

req

ack
(2-phase)

SynchronousAsynchronous
bundled data

Figure 1. Two flip-flop synchroniser

just over one clock cycle in total. In the worst case it
takes 2 clock cycles. The latency could be reduced
by clocking the two sets of flip-flops from different
edges of the clock. However, this would reduce the
time between clock edges which in turn reduces the
time for metastability resolution, thereby reducing
reliability.

The bandwidth of the simple two flip-flop
synchroniser is also poor. If the asynchronous
subsystem produces data more quickly than the
synchronous interface can consume it then the
request-in to request-out delay will be two clock
cycles. This can be improved upon by using an
asynchronous FIFO to buffer the data together with a
signal which indicates that there are at least k items
to be retrieved [7]. This allows the synchronous side
to keep fetching data every clock cycle until there are
less than k items left, but this adds complexity to the
system.

However, it should be noted that one advantage of
this simple scheme is that many asynchronous data
streams can be simultaneously synchronised without
reducing performance.

3. Stretching the clock

An alternative strategy is to stretch the clock
when there is a risk of metastability [1, 8, 10]. Since
the clock has to be pausable, we use a calibrated
delay-line to generate a clock reference [3]. A crystal



Rout

clk

(2-phase)

Rin
(4-phase)

data

Ain
(4-phase)

Asynchronous
bundled data

Synchronous

arb

Calibrated delay line

Figure 2. Simple Clock Stretching Circuit

oscillator is used as a timing reference to calibrate the
delay-line. The crystal oscillator could not be used
directly because it cannot be stopped an restarted
quickly.

The basic stoppable clock scheme is depicted in
Figure 2. A rising request signal (Rin+) from the
asynchronous circuit takes a lock out on the clock
via a Seitz arbiter [6]. Only when the clock is low
will the request signal propagate through the arbiter
to clock the first set of data flip-flops. Once this
new data is held in the first set of flip-flops and the
request falls (Rin−) then a positive clock edge may
pass through the arbiter which in turn latches data
into the second set of data flip-flops. Thus, new data
from the asynchronous side will always be held by the
first set of data flip-flops before the second set of data
flip-flops are clocked.

In the best case, new data arrives shortly before
the next clock edge and is held in the first set of
flip-flops. At the clock edge, data is transfered
to the synchronous environment. This data setup
time is typically less than half a clock cycle and
is the minimum latency. The maximum latency
occurs when new data arrives just after the clock
goes high and must wait for the clock to go low
before being allowed to latch new data. Thus
the maximum latency is one clock cycle which is
much better than the two flip-flop synchroniser.
Furthermore, data can be transfered every clock cycle
without additional buffering. However, unlike the
two flip-flop synchroniser, the clock is likely to be
delayed by the arbitration process which reduces the
performance of the synchronous system.

If there is more than one asynchronous data stream
then these streams could take turns to supply data to
the synchronous system by using a set of arbitrating
call elements [10]. However, this serialises the data
transmission which adds further latency.

4. Clock Prediction

Our first improvement to the stretchable clock
approach is to predict when the next positive clock
edge will occur and to perform arbitration early. In
this way the synchronous subsystem has priority over
the asynchronous subsystem so the clock should
rarely be delayed.

Figure 3 presents an outline of this scheme.
The asynchronous/synchronous interface produces
data enable signals in response to new data from
the asynchronous interfaces. These enable signals
are guaranteed to meet setup and hold constraints
for the data flip-flops and always occur after the
asynchronous data has stabilised so metastability can
never arise.

We use a simple clock predictor: when the clock
is currently low it will want to go high in the near
future. Thus we use the inverted clock to lock out
the asynchronous subsystem which usually happens in
less than half a clock cycle (see Section 7).

The inverted clock is fed to the timing delay
line and a clock pause circuit. These race each
other, usually with the clock pause circuit producing
clockallowed before the clock edge appears from
the delay line. A C-element ensures that both have
arrived before a positive clock edge is generated. The
clock pause circuit relies on Seitz arbiters [6] which
may take an unbounded time to resolve if an internal
metastable state arises. However, a more detailed
analysis in Section 7 indicates that the clock will
only be delayed if metastability resolution takes an
unusually long time.

The details of the clock pause circuit are
discussed in the next section and the rest of the
asynchronous/synchronous interface, which performs
handshake decoupling, is presented in Section 6.

Clock
pause
Clock
pause

C

R A

E E E

0 0

0 1 n

R A

E E E

0 0

0 1 n

R A1 1R A1 1 R An nR An n

clkallowed

clk

Synchronous
Interface

Asynchronous/

Calibrated delay line

Figure 3. Predictive clock stretching
circuit



5. Parallel clock pause circuit

The clock pause block in Figure 4 consists of a
number of arbiters, one per asynchronous interface.
Each asynchronous interface may make a request to
present new data to the clocked system by raising RCn.
The arbiter will only acknowledge this request (raises
ACn) when clk is high. If clk falls and RCn rises
simultaneously then the arbiter may go metastable
internally, but will safely choose one of the requests
over the other.

The inverted clk predicts that the clock needs to
go high soon so it locks out all of the asynchronous
interfaces by forcing the arbiters to grant in its favour.
This locking process results in clkallowed going
high.

When clk is high, it releases its hold on the
arbiters giving all asynchronous interfaces a window
of opportunity to simultaneously supply new data to
the synchronous system. The timing of this window
can be adjusted by delaying inverted input clock
so that the window of opportunity is near (but not
too close to) the rising clock edge (clk). However,
time must be allowed for the arbitration process to
complete early if the clock is not to be delayed.

RC nn ACRC AC0 0

arb arb arb

clkallowed

clk

RC1 1AC

Figure 4. Clock Pause Block

6. Decoupler Circuit

For each asynchronous interface there is a
decoupler circuit 5. The decoupler guarantees
the performance of the asynchronous/synchronous
interface by ensuring that the asynchronous side only
holds a lock on its arbiter for the minimum time
necessary to ensure correct operation.

The detailed operation is as follows. When new
data arrives (New data+) a request is made (RCn+)
to the clock pause block which acknowledges with
ACn+ when it is safe to supply the synchronous circuit
with new data. When ACn+ is received it sets the RS
flip-flop and enables the data flip-flops so that the new
data can be latched on the next clock edge. Shortly
after the RS flip-flop is set, the RCn- transition will
release the arbiter in the clock pause circuit. This
ensures that RC is high for as short a period as possible

S

R

Q

circuit
Synchronous

New_data

C
Consumed

+

clk
en

clk

Data
Asynchronous

RC ACn n

En

Figure 5. Decoupler circuit

in order to minimise the risk of delaying the system
clock.

When the synchronous circuit consumes the data
on the rising edge of the clk, the Consumed signal
is raised which lowers the enable to the data flip-flops.
Consumed going high also allows the asynchronous
interface to respond by lowering New data which
results in Consumed going low, all ready to receive
some more data.

7. Analysis of the interface

To ensure that it is unlikely that the New data
signal will delay the clock we need to test the critical
path from New data followed by clk going low
to the clockallowed signal going high, i.e.
how long the clock pause circuit can delay the
clockallowed signal. SPICE simulation of a
0.35µm CMOS implementation indicates that this
critical path is 0.98ns provided clk- is sufficiently
after New data+ that the arbiter does not go
metastable. If metastability does occur then the
resolution time depends on the exact timing of the
input signals, their rise time and the gain inside the
arbiter.

If the tuned delay line were set at 2.5ns (to generate
a 200MHz clock) then the asynchronous interfaces
would be allowed to supply data when the clk is
high (for 2.5ns). When clk goes low, arbitration
begins, which we know will take 0.98ns. Even if
metastability resolution takes up to 1.5ns, the clock
(clk) will not be delayed. Thus, in the best case
it will take around 0.5 clock cycles to transfer data
from the asynchronous interface to the synchronous
system, and in the worst case 1.5 clock cycles. If the
asynchronous interface is eager (e.g. it is supplying
data buffered in a FIFO) then it is able to supply new



data every clock cycle.
The decoupler circuit is an asynchronous finite

state machine. Various internal delay assumptions are
made but the external signals are delay insensitive.
Analysis of the internal delays (using our in house
tool) reveals that all assumptions satisfy the rule “any
two gate delays takes longer than any one gate delay”.
The most critical delay is the data flip-flop enable
signal which must be set before the clock can go high.
If necessary an additional delay margin may be added
to the feedback from the RS flip-flop to delay RC-.

8. Synchronous producer to an
asynchronous consumer

So far this paper has talked about an asynchronous
producer and a synchronous consumer. However,
the converse is quite straight forward since the
synchronous subsystem can output data at any time
provided the asynchronous side is ready. This
ready state is simply an asynchronous input to the
synchronous system and this just requires an instance
of our asynchronous/synchronous interface.

9. Conclusion

This paper has presented a low latency,
high bandwidth and reliable interface between
asynchronous and synchronous subsystems. Clock
stretching is used to prevent metastability when
the synchronous system samples data from the
asynchronous environment. However, unlike other
designs in the literature, our interface is capable of
granting many asynchronous data requests in parallel.
Furthermore, arbitration between the asynchronous
and the synchronous sides is undertaken in advance
of the next positive clock edge. This ensures that the
clock is almost never delayed so the synchronous
system runs at its full rate.

Communication latency is between 0.5 and 1.5
clock cycles which compares favourably with the two
flip-flop synchroniser where latency is between 1 to 2
clock cycles. If the asynchronous subsystem is eager
then our design will ensure that data can be transfered
on every clock cycle. This is only possible with the
two flip-flop synchroniser if additional buffering is
used.

From a reliability point of view, our design will
never fail due to a metastable condition, whereas the
two flip-flop synchroniser can fail if insufficient time
is allowed for the metastable condition to be resolved.

References

[1] David S. Bormann and Peter Y. K. Cheung.
Asynchronous wrapper for heterogeneous systems. In

Proc. International Conf. Computer Design (ICCD),
October 1997.

[2] William J. Dally and John W. Poultom. Digital
Systems Engineering. Cambridge University Press,
1998.

[3] George Taylor, Simon Moore, Steev Wilcox and Peter
Robinson. An on-chip dynamically recalibrated delay
line for embedded self-timed systems. In Proc.
International Symposium on Advanced Research in
Asynchronous Circuits and Systems, April 2000.

[4] Howard W. Johnson and Martin Graham. High-Speed
Digital Design — A Handbook of Black Magic.
Prentice Hall, 1993.

[5] Fred U. Rosenberger, Charles E. Molnar, Thomas J.
Chaney, and Ting-Pien Fang. Q-modules: Internally
clocked delay-insensitive modules. IEEE Transactions
on Computers, C-37(9):1005–1018, September 1988.

[6] Charles L. Seitz. System timing. In Carver A. Mead
and Lynn A. Conway, editors, Introduction to VLSI
Systems, chapter 7. Addison-Wesley, 1980.

[7] Jakov N. Seizovic. Pipeline synchronization. In
Proc. International Symposium on Advanced Research
in Asynchronous Circuits and Systems, pages 87–96,
November 1994.

[8] Allen E. Sjogren and Chris J. Myers. Interfacing
synchronous and asynchronous modules within a
high-speed pipeline. In Advanced Research in VLSI,
pages 47–61, September 1997.

[9] Ivan E. Sutherland. Micropipelines. Communications
of the ACM, 32(6):720–738, June 1989.

[10] K.Y. Yun and A. E. Dooply. Pausible clocking based
heterogeneous systems. IEEE Transactions on VLSI
Systems, 7(4):482–487, December 1999.

Acknowledgements
The authors would like to acknowledge the support of

EPSRC grant GR/L86326, Cambridge Consultants Ltd and
AT&T Labs Cambridge.


