
Disk|Crypt|Net: rethinking the stack for high-performance video
streaming

Ilias Marinos
University of Cambridge

Robert N.M. Watson
University of Cambridge

Mark Handley
University College London

Randall R. Stewart
Netflix Inc.

ABSTRACT
Conventional operating systems used for video streaming employ
an in-memory disk buffer cache to mask the high latency and low
throughput of disks. However, data from Netflix servers show that
this cache has a low hit rate, so does little to improve throughput.
Latency is not the problem it once was either, due to PCIe-attached
flash storage. With memory bandwidth increasingly becoming a bot-
tleneck for video servers, especially when end-to-end encryption is
considered, we revisit the interaction between storage and network-
ing for video streaming servers in pursuit of higher performance.

We show how to build high-performance userspace network ser-
vices that saturate existing hardware while serving data directly from
disks, with no need for a traditional disk buffer cache. Employing
netmap, and developing a new diskmap service, which provides safe
high-performance userspace direct I/O access to NVMe devices, we
amortize system overheads by utilizing efficient batching of outstand-
ing I/O requests, process-to-completion, and zerocopy operation. We
demonstrate how a buffer-cache-free design is not only practical,
but required in order to achieve efficient use of memory bandwidth
on contemporary microarchitectures. Minimizing latency between
DMA and CPU access by integrating storage and TCP control loops
allows many operations to access only the last-level cache rather
than bottle-necking on memory bandwidth. We illustrate the power
of this design by building Atlas, a video streaming web server that
outperforms state-of-the-art configurations, and achieves ~72Gbps
of plaintext or encrypted network traffic using a fraction of the
available CPU cores on commodity hardware.

CCS CONCEPTS
• Networks → Network services; • Software and its engineering
→ Operating systems;

KEYWORDS
Network stacks; Storage stacks; Network Performance

ACM Reference format:
Ilias Marinos, Robert N.M. Watson, Mark Handley, and Randall R. Stew-
art. 2017. Disk|Crypt|Net: rethinking the stack for high-performance video
streaming. In Proceedings of SIGCOMM ’17, Los Angeles, CA, USA, August
21-25, 2017, 14 pages. https://doi.org/10.1145/3098822.3098844

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association
for Computing Machinery.
ACM ISBN 978-1-4503-4653-5/17/08. . . $15.00
https://doi.org/10.1145/3098822.3098844

1 INTRODUCTION
More than 50% of Internet traffic is now video streamed from ser-
vices such as Netflix. How well suited are conventional operating
systems to serving such content? In principle, this is an application
that might be well served by off-the shelf solutions. Video streaming
involves long-lived TCP connections, with popular content served
directly from the kernel disk buffer cache using the OS sendfile
primitive, so few context switches are required. The TCP stack it-
self has been well tuned over the years, so this must be close to a
best-case scenario for commodity operating systems.

Despite this, Netflix has recently committed a number of signifi-
cant changes to FreeBSD aimed at improving streaming from their
video servers. Perhaps current operating systems are not achieving
close to the capabilities of the underlying hardware after all?

Previous work[18] has shown that a specialized stack can greatly
outperform commodity operating systems for short web downloads
of static content served entirely from memory. The main problem
faced by the conventional stack for this workload was context switch-
ing between the kernel and OS to accept new connections; this solu-
tion achieves high performance by using a zero-copy architecture
closely coupling the HTTP server and the TCP/IP stack in userspace,
using netmap’s[29] batching API to reduce the number of context
switches to fewer than one per connection.

Such a workload is very different from video streaming; Netflix
uses large servers with 12 or more cores and large amounts of RAM,
but even so the buffer cache hit ratio is rather low - generally less than
10% of content can be served from memory without going to disk. At
the same time, hardware trends point in the opposite direction: SSDs
have moved storage much closer to the CPU, particularly in the form
of NVMe PCIe-attached drives, and future non-volatile memory may
move it closer still. In addition, on recent Intel CPUs, DMA to and
from both storage and network devices is performed using DDIO[10]
directly to the L3 cache rather than RAM. Storage latencies are now
lower than typical network latencies. If we no longer need a disk
buffer cache to mask storage latencies, can we rethink how we build
these servers that stream the majority of Internet content?

We set out to answer this question. First we examine Netflix’s
changes to the FreeBSD operating system to understand the prob-
lems they faced building high-performance video servers. The story
has become more complicated recently as the need for privacy has
caused video providers to move towards using HTTPS for streaming.
We examine the implications on the performance of the Netflix stack.

We then designed a special purpose stack for video streaming
that takes advantage of low-latency storage. Our stack places the
SSD directly in the TCP control loop, closely coupling storage,
encryption, and the TCP protocol implementation. Ideally, a chunk
of video content would be DMAed to the CPU’s Last Level Cache
(LLC), we could encrypt it in place to avoid thrashing the LLC and
packetize it, then DMA it to the NIC, all without needing the data

https://doi.org/10.1145/3098822.3098844
https://doi.org/10.1145/3098822.3098844

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA Ilias Marinos, Robert N.M. Watson, Mark Handley, and Randall R. Stewart

to touch RAM. In practice, for the sort of high workloads Netflix
targets, this ideal cannot quite be achieved. However we will show
that it is possible to achieve approximately 70Gb/s of encrypted
video streaming to anywhere between 6000 and 16000 simultaneous
clients using just four CPU cores without using a disk buffer cache.
This is 5% better than the Netflix stack can achieve using eight cores
when all the content is already in the disk buffer cache, 50% better
than the Netflix stack achieves when it has to fetch content from
the SSD, and 130% more than stock FreeBSD/Nginx. Through a
detailed analysis of PMC data from the CPU, we investigate the root
causes of these performance improvements.

2 THE VIDEO STREAMING PROBLEM
Modern video streaming is rate-adaptive: clients on different net-
works can download different quality versions of the content. A num-
ber of standards exist for doing this, including Apple’s HTTP Live
Streaming[14], Adobe HTTP Dynamic Streaming[2] and MPEG-
DASH[20]. Although they differ in details, all these solutions place
the rate-adaptive intelligence at the client. Video servers are a dumb
Content Distribution Network (CDN) delivering video files over
HTTP or HTTPS, though they are often accessed through a DNS-
based front-end that manages load across servers and attempts to
choose servers close to the customer. Once the client connects, a
steady stream of HTTP requests is sent to the server, requesting
chunks of video content. HTTP persistent connections are used, so
relatively few long-lived TCP connections are needed.

Video servers are, therefore, powerful and well-equipped general-
purpose machines, at least in principle. All they do is repeatedly find
the file or section of file corresponding to the chunk requested, and
return the contents of that file over TCP. This should be a task for
which conventional operating systems such as Linux and FreeBSD
are well optimized. The main problem is simply the volume of data
that needs to be served. How fast can a video server go?

In December 2015 the BBC iPlayer streaming service was achiev-
ing 20Gb/s[4] from a server using nginx on Linux, and featuring
24 cores on two Intel Xeon E5-2680v3 processors, 512 GB DDR4
RAM, and a 8.6TB RAID array of SSDs. This is expensive hardware,
and 20Gb/s, while fast, is well below the memory bandwidth, disk
bandwidth and network capacity. Is it possible to do better?

2.1 Case Study: The Netflix Video Streamer
Netflix is one of the largest video streaming providers in the world.
During peak hours, Netflix along with YouTube video streaming
traffic accounts for well over 50% of the US traffic [30]. To serve
this traffic, Netflix maintains its own CDN infrastructure, located
in PoPs and datacenters worldwide. Their server appliances use
FreeBSD and the nginx web server, serving the video and audio
components to their customers over HTTP [21] or, more recently,
HTTPS. The servers run mostly a read-only workload while serving
content; during scheduled content updates they serve fewer clients
than normal.

Historically, to respond to an HTTP request for static content,
a web server application would have to invoke read and write
system calls consecutively to transfer data from a file stored on disk
to a network socket. In the best case scenario, the file would already
be present in the disk buffer cache, and then the read would complete

quickly; otherwise it would have to wait for the file to be fetched
from disk and DMAed to RAM. This approach introduces significant
overheads; the application spends a great deal of time blocking for
I/O completion, and the contents of the file are redundantly copied
to and from userspace, requiring high context switch rates, without
the web server ever looking at the contents.

Modern commodity webservers offload most of this work to the
kernel. Nginx uses the sendfile system call to allow a zero-copy
transfer of data from the kernel disk-buffer cache to the relevant
socket buffers without the need to involve the user process. Since
the Virtual File System (VFS) subsystem and the disk buffer cache
are already responsible for managing the in-memory representation
of files, this is also the right place to act as an interface between the
network and storage stacks. Upon sendfile invocation, the kernel
maps a file page to a sendfile buffer (sf_buf), attaches an mbuf
header and enqueues it to the socket buffer. With this approach, un-
necessary domain transitions and data copies are completely avoided.

The BBC iPlayer servers used commodity software—nginx on
Linux—using sendfile in precisely this way. Netflix, however, has
devoted a great deal of resources to optimize further the performance
of their CDN caches.

Among the numerous changes Netflix has made, the most impor-
tant key bottlenecks that have been addressed include:

• The synchronous nature of sendfile.
• Problems with VM scaling when thrashing the disk buffer cache.
• Performance problems experienced at the presence of high

ingress packet rates.
• Performance problems when streaming over HTTPS.

We will explore these changes in more detail, as they cast important
light on how modern server systems scale.

2.1.1 Asynchronous sendfile
The sendfile system call optimizes data transfers, but requires
blocking for I/O when a file page is not present in memory. This
can greatly hinder performance with event-driven applications such
as nginx. Netflix servers have large amounts of RAM—192GB is
common—but the video catalog on each server is much larger. Buffer
cache hit rates of less than 10% are common on most servers. This
means that sendfile will often block, tying up nginx resources.

Netflix implemented a more sophisticated approach known as
asynchronous sendfile. The system call never blocks for I/O, but
instead returns immediately before the I/O operation has completed.
The sendfile buffers with the attached mbufs are enqueued to the
socket, but the socket is only marked ready for transmission when
all of the inflight I/O operations have completed successfully. Upon
encountering a failed I/O operation the error is irrecoverable: the
socket is marked accordingly so that the application receives an error
at a subsequent system call and closes it.

Netflix upstreamed their asynchronous sendfile implementa-
tion to the mainline FreeBSD tree in early 2016.

2.1.2 VM scaling
With a catalogue that greatly exceeds the DRAM size, and with
asynchronous sendfile being more aggressive, the VM subsystem
became a bottleneck in performance. In particular, upon VM page

Disk|Crypt|Net: rethinking the stack for high-performance video streaming SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

exhaustion, all VM allocations were being blocked, waiting for pages
to be reclaimed by the paging daemon, and stalling actual work.

Netflix uses several techniques to mitigate this problem. First,
DRAM is divided into smaller partitions, each assigned to different
fake NUMA domains, with a smaller number of CPU cores given
affinity to each domain. This gives more efficient scaling with multi-
ple cores by reducing lock contention. Second, in situations where
free memory hits a low watermark, proactive scans reclaim pages
in the VM page allocation context, avoiding the need to wake the
paging daemon. Finally, reclaimed pages are re-enqueued to the
inactive memory queues in batches to amortize the lock overhead.

2.1.3 RSS-assisted TCP LRO
Large Receive Offload (LRO) is a common technique used to amor-
tize CPU usage when experiencing high rate inbound TCP traffic.
The LRO engine aggregates consecutive packets that belong to the
same TCP session before handing them to the network stack. This
way, per-packet processing costs can be significantly reduced. To
be CPU-efficient, the coalescing window for LRO aggregation is
usually bounded by a predefined timeout or a certain number of
packets. With thousands of TCP connections, packets belonging to
the same session are likely to arrive interleaved with many other
packets, making LRO less effective.

To tackle this problem, Netflix uses RSS-assisted LRO: it sorts
incoming TCP packets into buckets based on their RSS (Receive
Side Scaling) hash and the time at the end of the interrupt. This
ordering brings packets from a flow that arrived widely separated
in time together, so they appear to have arrived consecutively. As a
result they can be successfully merged when they are fed to the LRO
engine. This optimization helped reduce CPU utilization by ~5-30%,
depending on the congestion control algorithm, and the interrupt
coalescing tuning parameters.

2.1.4 In-kernel TLS
End-to-end encryption introduces a new challenge in building high-
performance network services. Suddenly, optimized zerocopy in-
terfaces such as sendfile are rendered useless, since they con-
flict with the fundamental nature of encrypted traffic. The kernel
is unaware of the TLS protocol and it is no longer possible to use
zerocopy operations from storage to the network subsystem. To
serve data over a TLS connection, the conventional stack needs to
fall back to userspace using traditional POSIX reads and writes
when performing encryption. This reintroduces overheads that have
been completely eliminated in the case of plaintext transfers. Netflix
initially reported that enabling TLS decreased throughput on their
servers from 40Gb/s to 8.5Gb/s[33].

To regain the advantages of sendfile for encrypted traffic,
Netflix devised a hybrid approach to split work between kernel and
userspace: the TLS session management, and negotiation remains in
the userspace TLS library (openssl), but the kernel is now modified
to include bulk data encryption in the sendfile pipeline. The
TLS handshake is still handled by the userspace TLS library. Once
the session keys are derived, nginx uses two new socket options to
communicate the session key to the kernel, and to instruct the ker-
nel to enable encryption on that socket. Once a ChangeCipherSuite

message is sent from the application, the in-kernel TLS state ma-
chine arms encryption on that particular socket. When sendfile
is issued on a TLS socket, the kernel hands over the data to one of
the dedicated TLS kernel threads for encryption, and only enqueues
them to the socket buffer after encryption has been completed.

This approach brings most of the original sendfile’s benefits,
but the semantics are no longer the same as in the plaintext case:
the kernel cannot perform in-place encryption of data, as this would
invalidate the buffer cache entries. Instead of being zero-copy, once
the file is in the buffer cache, sendfile then needs to clone the
data to another buffer; this can then be used to hold the ephemeral
encrypted data, and mapped to the socket buffer.

2.2 Netflix Performance
We have used the Netflix software stack in order to demonstrate the
effectiveness of the aforementioned performance improvements. Our
video server is equipped with an Intel Xeon E5-2667-v3 8-core CPU,
128GB RAM, two dual-port Chelsio T580 40GbE NIC adaptors,
and four Intel P3700 NVMe disks with 800GB capacity each. Our
full test setup is described in more detail in §4. We stress-tested the
system using HTTP persistent connections retrieving 300KB video
chunks as we increase the number of simultaneous active clients.

Figure 1 shows throughput (left) and CPU utilization (right) as
the number of concurrent HTTP persistent connections is varied. We
show curves for the Netflix stack and for the stock nginx/FreeBSD
stack for both the case where all content is served from the disk
buffer cache (100% BC) and where all content needs to be fetched
from the SSDs (0% BC). Normal Netflix workloads are nearer the
latter than the former.

When all content is served from the buffer cache, there is no
significant difference in performance, either in throughput or CPU
utilization. This is expected, as the Netflix improvements do not
tackle this easy case. When content has to be served from SSDs,
the Netflix improvements show their effectiveness, almost doubling
throughput from 39Gb/s to 72Gb/s. However, all eight cores are
almost saturated at this workload.

Figure 2 shows the equivalent throughput and CPU utilization
curves for encrypted transfers. The Netflix stack gives substantial
performance improvements over stock nginx/FreeBSD, but now the
cores are all saturated, leading to a drop in performance. When all
data must be fetched from SSD, performance drops to 47Gb/s, a
reduction of 35% compared to unencrypted streaming, despite the
kernel TLS implementation.

Why does this performance reduction occur? Modern Intel CPUs
use AESNI instructions and can reduce the encryption overhead to
as low as 1 CPU cycle/byte, provided that the data are warm in the
LLC. We used the CPU performance counters to understand further
what is going on.

When serving plaintext content from the buffer cache, we see that
Netflix write memory throughput is low, 20Gb/s, but read memory
throughput is around 100Gb/s. This is not unreasonable, as the data
does not need to be DMAed from the disk. When fetching data from
the SSD, write memory throughput rises by about 70Gb/s, as data is
DMAed to RAM from disk, and read memory throughput increases
to 120Gb/s. We also see a fairly high rate, 90 million/sec, of reads
due to LLC misses. In principle it should be possible to serve this

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA Ilias Marinos, Robert N.M. Watson, Mark Handley, and Randall R. Stewart

2000 4000 6000 8000 10000 12000 14000 16000
0

20

40

60

80

Concurrent HTTP persistent connections

N
et

w
or

k
T

hr
ou

gh
pu

t(
G

b/
s)

Netflix 100%BC Stock 100% BC

Netflix 0%BC Stock 0%BC

(a) Network throughput (Error bars indicate the 95% CI)

2000 4000 6000 8000 10000 12000 14000 16000
0

200

400

600

800

Concurrent HTTP persistent connections

C
PU

ut
ili

za
tio

n
(%

)

Netflix 100%BC Stock 100%BC

Netflix 0%BC Stock 0%BC

(b) CPU utilization

Figure 1: Plaintext performance, Netflix vs Stock FreeBSD, zero and 100% Buffer Cache (BC) ratios.

2000 4000 6000 8000 10000 12000 14000 16000
0

20

40

60

80

Concurrent HTTP persistent connections

N
et

w
or

k
T

hr
ou

gh
pu

t(
G

b/
s)

Netflix 100%BC Stock 100% BC

Netflix 0%BC Stock 0%BC

(a) Network throughput (Error bars indicate the 95% CI)

2000 4000 6000 8000 10000 12000 14000 16000
0

200

400

600

800

Concurrent HTTP persistent connections

C
PU

ut
ili

za
tio

n
(%

)

Netflix 100%BC Stock 100%BC

Netflix 0%BC Stock 0%BC

(b) CPU utilization

Figure 2: Encrypted performance, Netflix vs Stock FreeBSD, zero and 100% Buffer Cache (BC) ratios.

2000 4000 6000 8000 10000 12000 14000 16000
0

50

100

150

Concurrent HTTP persistent connections

M
em

or
y

th
ro

ug
hp

ut
(G

b/
s)

Netflix 0%BC read Netflix 100%BC read

Netflix 0%BC write Netflix 100%BC write

Figure 3: Encrypted Netflix memory performance

workload with ~72Gb/s of read and write memory throughput, so
the Netflix stack is working memory a little harder than is strictly
necessary, even with plaintext workloads.

When serving encrypted content, the story becomes more com-
plicated. The Netflix memory throughput is shown in Figure 3. Ir-
respective of whether data comes from the disks or from the buffer
cache, memory read throughput is approximately 2.6 times the net-
work throughput. Indeed, the 175Gb/s read rate when serving from
the disk buffer cache is getting closer to the memory speed of this
hardware, indicating that memory accesses are likely to be a bottle-
neck. The system also shows a high rate of LLC miss events—200

million/sec—indicating that the cores are now waiting on memory
much of the time, and explaining why CPU utilization is 100%.

2.3 Discussion
Netflix optimizations have clearly delivered significant improve-
ments in the video streaming performance of FreeBSD, both for
serving plaintext and encrypted content. However, it is also clear that
memory is being worked very hard when serving these workloads.
With a conventional stack it is extremely hard to pin down precisely
why this is the case. We have profiled the stack, and with Netflix’s
VM improvements there are no obvious bottlenecks remaining.

Current Intel CPUs DMA to and from the LLC using DDIO,
rather than direct to memory. In principle it ought to be possible to
DMA data from the SSD and then DMA it to the NIC without it ever
touching main memory. Would it also be possible to encrypt that
data as it passes through the LLC? With a conventional stack though,
it is clear that this is not happening. We speculate that this is because
the stack is too asynchronous. Data is DMAed from the SSD to
disk buffer cache, initially landing in the LLC. However, it is not
immediately consumed, so gets flushed to memory. Subsequently
the kernel copies the buffer, loading it into the LLC as a side effect.
If it is not immediately encrypted it gets flushed again. The kernel
goes to encrypt the data, causing it to be re-loaded into the LLC. The
encrypted data is not immediately sent by TCP, so it gets flushed a
third time. Finally it is DMAed to the NIC, requiring it to be loaded

Disk|Crypt|Net: rethinking the stack for high-performance video streaming SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

NVMe	

DRAM	LLC	

DMA	 NIC	

Buffer	Cache	

Copied	data	

Encrypted	data	

Copy	

TCP	

CPU	

1	

2	

3	

AES	

Figure 4: Possible Memory Accesses with
the Netflix Stack

DRAM	LLC	

NIC	

AES	

TCP	

CPU	

re-use	
buffer	

NVMe	

Figure 5: Desired Memory Accesses with
Specialized Stack.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500 600
 0

 5

 10

 15

 20

 25

M
e
a
n
 L

a
te

n
cy

 (
m

s)

T
h
ro

u
g

h
p

u
t

(G
b

/s
)

I/O Window (16KB reads)

Latency
Disk Throughput

Figure 6: NVMe Controller Latency and
Throughput

again. This process is shown in Figure 4, and requires three reads
from memory, compared to the 2.6 times we observe, so presumably
sometimes the data is not flushed, saving some memory reads.

Netflix’s newest production streamers are equipped with latest
16-core (32 hyperthreads) Intel CPUs and 100GbE NICs, but their
maximum target service throughput is limited to ~90Gb/s. At this
rate, they use 460Gbit/sec of read/write memory bandwidth—this is
96% of the measured hardware limits, and approximately five times
the network throughput. This ratio is in general agreement with the
results in Figure 3. At this utilization, CPU stalls waiting for memory
become a major problem, and CPU utilization varies considerably,
ranging from 75% to 90% with only small changes in demand.

3 TOWARDS A SPECIALIZED VIDEO
STREAMING STACK

In a conventional stack, it is very hard to avoid all the memory traffic
that we saw with the Netflix stack. Could a specialized, much more
synchronous stack do better? How might we architect such a stack
so that data remains in the LLC to the maximum extent possible?

As buffer cache hit ratios are so low with Netflix’s workload,
clearly we need to design a system that works well when data has
to be fetched from the SSD. The storage system needs to be very
tightly coupled to the rest of the stack, so that as soon as data arrives
from storage in the LLC, it is processed to completion by the rest of
the application and network stacks without the need for any context
switching or queuing. To accomplish this, data need to be fetched
from storage just-in-time: in the typical case, the storage system
must be clocked off the TCP protocol’s ACK clock, because arriving
TCP ACKs cause TCP’s congestion window to inflate, allowing the
transmission of more data. Only when this happens can data from the
storage system be immediately consumed by the network without
adding a queue to cope with rate mismatches.

The outline of a solution then looks like:

(1) A TCP ACK arrives, freeing up congestion window.
(2) This triggers the stack to request more data from the SSD to

fill that congestion window.
(3) The SSDs return data, ideally placing it in the LLC.
(4) The read completion event causes the application to encrypt

the data in-place, add TCP headers, and trigger the transmis-
sion of the packets.

(5) The network completion event frees the buffer, allowing it to
be reused for a subsequent disk read.

This design closely couples all the pipeline stages, so maximises use
of the LLC, and never copies any data, though it does encrypt in
place. The hope is that memory accesses resemble Figure 5.

For this to work, the SSD must be capable of very low latency,
as it is placed directly in the TCP ACK-clock loop, and it must si-
multaneously be capable of high throughput. Today’s PCIe-attached
NVMe SSDs have low latency, but before building a system, we
profiled some drives to see how well they balance throughput and
latency. Figure 6 shows the request latency and disk throughput as a
function of the I/O window when making 16KB reads from an Intel
P3700 800GByte NVMe drive. NVMe drives maintain a request
queue, and the I/O window is the number of requests queued but
not yet completed. It is clear that with an I/O window of around 128
requests, these drives can achieve maximum throughput while si-
multaneously maintaining latency of under 1ms. This is significantly
smaller than the network RTT over typical home network links, even
to a server in the same city, indicating that we should be able to
place such an SSD directly into the TCP control loop.

3.1 Storage Stack
Traditional OS storage stacks pay a price in terms of efficiency to
achieve generality and safety. These inefficiencies include copy-
ing memory between kernel and userspace, extra abstraction layers
such as the Virtual File System, as well as POSIX API overheads
needed for backwards compatibility and portability. However, all
these overheads used to be negligible when compared to the latency
and throughput of spinning disks.

Today PCIe-attached flash and the adoption of new host controller
interfaces such as NVMe radically change the situation. Off-the-
shelf hardware can achieve read throughput up to 28Gbps and access
latencies as low as 20µs for short transfers [23]. However, if we
wish to integrate storage into the network fast path, we cannot afford
to pay the price of going through the conventional storage stack.

Our approach is to build a new high performance storage stack
that is better suited to integration into our network pipeline. Before
we explain its design and implementation though, we provide a brief
overview of how NVMe drives interface with the operating system.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA Ilias Marinos, Robert N.M. Watson, Mark Handley, and Randall R. Stewart

Function Parameters Description

nvme_open() I/O qpair control block, character
device, buffer memory size, flags

Configure, initialize, and attach to NVMe disk’s queue pair.

nvme_read() I/O description block (struct
iodesc), metadata, error

Craft and enqueue a READ I/O request for a particular disk,
namespace, starting offset, length, destination address etc.

nvme_write() I/O description block (struct
iodesc), metadata, error

Craft and enqueue a WRITE I/O request for a particular disk,
namespace, starting offset, length, source buffer etc.

nvme_sqsync() I/O qpair control block Update the NVMe device’s queue pair doorbell (via a dedicated
ioctl) to initiate processing of pending I/O requests.

nvme_consume_completions() I/O qpair control block, number of
completions to consume

Consumes completed I/O requests (takes care of out-of-order
completions). Invokes a per I/O request specific callback, set by the
application layer (via struct iodesc).

Table 1: libnvme API functions (not exhaustive).

3.1.1 NVMe disk operation and data structures
PCIe NVMe disk controllers use circular queues of command de-
scriptors residing in host memory to serve I/O requests for disk
logical blocks (LBAs). The host places NVMe I/O commands in a
submission queue; each command includes the operation type (e.g.,
READ, WRITE), the initial LBA address, the length of the request,
the source or destination buffer address in host main memory, and
various flags. Once commmands have been enqueued, the device
driver notifies the controller that there are requests waiting by updat-
ing the submission queue’s tail doorbell—this is a device register,
similar to NIC TX and RX doorbells for packet descriptors. Multiple
I/O commands can be in progress at a time, and the disk firmware
is allowed to perform out-of-order completions. For this to work,
each submission queue is associated with a completion queue. This
is used by the disk to communicate I/O completion events to the
host. The OS is responsible for consuming command completions,
and then notifies the controller via a completion queue doorbell so
that completion slot entries can be reused.

Unlike older SATA/AHCI Solid State Disks, which usually feature
a single submission/completion queue pair with a limited number of
slot entries, NVMe devices support a highly configurable number of
queue pairs and depths, which greatly helps with scaling to multiple
CPU cores and permits a share-free, lockless design.

3.1.2 Diskmap
Inspired by netmap [29], a high-performance packet processing
framework which maps the NIC buffer rings to userspace, we de-
signed and built diskmap, a conceptually similar system that uses
kernel-bypass to allow userspace applications to directly map the
memory used to DMA disk logical blocks to and from NVMe stor-
age. From a high-level viewpoint, diskmap and netmap have many
similarities, but the two DMA models and the nature of operations
are fundamentally different, so a different approach is required.

With diskmap, userspace applications are directly responsible for
crafting, enqueuing, and consuming I/O requests and completions,
while the OS uses hardware capabilities to enforce protection and
synchronization. The system is comprised of two parts:

• A kernel module used to initialize and configure devices that are
to be used in diskmap-mode, as well as providing a thin syscall
layer to abstract DMA operation initiation,

ke
rn

el

us
er

PCIe NVME disk

SQ CQ

diskmap
buffers

I/O MMU

SQ CQ

memory
mapped

(/dev/diskmap)

SQ CQ

libnvme

C C

disk
admin
qpair

app1
libnvme

app2

DM
A

DM
A

I/O MMU

DM
A

DM
A

DM
A

Figure 7: High-level architecture of a diskmap application.

• An accompanying userspace library which implements the
NVMe driver and provides the API (see table 1) to abstract
typical operations to the device such as read and write.

The architecture is shown in Figure 7. When the diskmap ker-
nel module loads, the NVMe device is partially detached from the
in-kernel storage stack: the actual datapath queue pairs are now
disconnected and readily available for attaching to user-level ap-
plications. The device administration queue pairs, however, remain
connected to the conventional in-kernel stack without being exposed
to userspace. This allows all low-level configuration and privileged
operations (e.g., device reset, nvmeformat) to continue working nor-
mally. It should be straightforward to allow some of the datapath
queue pairs to remain connected to the in-kernel stack, possibly
operating on different NVMe namespaces, but our implementation
currently does not support this mode of operation.

During initialization, the kernel pre-allocates non-pageable mem-
ory for all the objects that are required for NVMe device operations,
including submission and completion queues, PRP lists [22], and
the diskmap buffers themselves. These will be shared by the NVMe
hardware and the userspace applications and used for data transfers.
Relative addressing is used to calculate pointers for any object in
the shared memory region in a position-independent manner. Each
diskmap buffer descriptor holds a set of metadata information: a
unique index, the current buffer length, and the buffer address that
the libnvme library uses when constructing NVMe I/O commands
The buffer size and queue depths are configurable via sysctl knobs.
Similarly to netmap, the shared memory area is exposed by the
kernel via a dedicated character device.

To connect to the diskmap data path, a userspace application maps
the shared memory into its own virtual address space and issues a

Disk|Crypt|Net: rethinking the stack for high-performance video streaming SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

0.5 1 2 4 8 16 32 64 128
0

20

40

60

80

100

I/O Size (KBytes)

R
ea

d
T

hr
ou

gh
pu

t(
G

b/
s)

diskmap

FreeBSD aio(4)

FreeBSD pread(2)

Figure 8: Read throughput, diskmap vs. aio(4) vs. pread(2)

dedicated diskmap ioctl to indicate the disks and queue pairs
that should be attached, as well as the number of diskmap buffers
required. This functionality is abstracted within a single libnvme
library call (see table 1). When an application calls nvme_read
or nvme_write, the library is responsible for translating the I/O
request for certain disk blocks into the corresponding NVMe com-
mands and enqueuing them in the disk submission queue. The appli-
cation layer then invokes a system call to update the relevant disk
doorbell and initiate processing of the pending I/O commands.

Unlike their POSIX equivalents which block until the I/O is com-
pleted, libnvme facilitates a non-blocking, event-driven model. With
each I/O request, the application specifies a callback function which
will be invoked upon I/O completion. A high-level I/O request might
need to be split into several low-level NVMe commands, and this
complicates the handling of out-of-order completion. Libnvme hides
this complexity, and only invokes the application-specified callback
function when all the in-flight NVMe commands that comprise that
particular transfer have completed.

Diskmap enforces memory safety by taking advantage of the
IOMMU on newer systems. When an application requests the at-
tachment of a datapath queue pair and a number of diskmap buffers,
the kernel maps the relevant shared memory to the PCIe device-
specific IOMMU page table. Since all the buffers are statically
pre-allocated by the kernel upon initialization, there is no need to
dynamically update the IOMMU page table with transient mappings
and unmappings, which would otherwise significantly affect per-
formance [3, 19]. Diskmap could also operate in an unsafe manner
using direct physical memory addresses if the IOMMU is disabled.
In both cases, userspace remains unaware of the change, and there
is no special handling required either in the libnvme library or the
application itself.

3.1.3 Diskmap Performance
Before we integrate diskmap into our video server, we wish to un-
derstand how well it performs. Figure 8 shows the read throughput
obtained using diskmap for a range of I/O request sizes. A sin-
gle diskmap thread binds to four NVMe disks, fills their submis-
sion queues, and we measure throughput. We compare diskmap
against FreeBSD pread , and aio (also single threads). Aio is a na-
tive FreeBSD interface which uses kqueue [17] and kevent to allow
asynchronous I/O requests to be initiated by userspace. It is highly
optimized, and allows I/O request batching with a single system
call to increase performance. When an NVMe interrupt indicates
competion, userspace is notified via kqueue.

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

IO Latency (µs)

C
D

F

diskmap

aio(4)

Figure 9: diskmap vs. aio(4) - I/O latency, read size: 512 bytes,
I/O window: 128 requests

Although aio performs well for large reads, it is less stellar with
smaller requests. Diskmap exhibits much higher throughput than aio
unless request sizes are at least 64KB in size. With diskmap there is
a sweet spot around 16KB—here, performance is close to the limits
of the hardware, but the transfers are still small enough that they are
comparable to today’s default TCP initial window size. This makes
diskmap an excellent fit for our video server.

Figure 9 shows latency when using 512 byte read requests, and
an I/O window of 128 requests. Such small requests stress the stack;
despite this diskmap exhibits very low latency. Finally, Figure 6 was
gathered using diskmap, and shows that both low latency and high
throughput can be obtained simultaneously.

3.1.4 To batch or not to batch
One technique often used to improve throughput is batching. Modern
NICs are able to achieve very high packet rates even with small
transfer units; for example more than 40Mpps is possible with 64
byte packets [9]. For the CPU to keep up, batching is required
to amortize the system call overhead (e.g., in the case of netmap)
and the cost of accessing/updating the device doorbell registers.
With today’s NVMe disks the situation is different: the minimum
transfer unit of these devices typically ranges from 512 to 4096
bytes, and the IOPS rates that can be achieved are much lower than
the NIC equivalent packet rates. We find that the CPU can fill the
disk firmware pipeline and saturate the device for the whole range
of supported I/O lengths per operation without needing to batch
requests. In situations where the CPU is nearly saturated though,
batching is still efficient in saving CPU cycles by amortizing the
system call overhead.

3.2 Network Stack Integration
In a conventional configuration the work to send persistent files from
disks to the network is distributed across many different subsystems
that operate asynchronously and are loosely co-scheduled. In con-
trast, we seek tighter control of the execution pipeline. Scheduling
work from a single thread, we can come closer to a process-to-
completion ideal, minimizing the lifespan of data transfers across
all the layers of the stack; from disk to application, from application
to the network stack, and finally to the NICs. This should reduce
pressure on the LLC and take advantage of contemporary microar-
chitectural properties such as Intel’s Data Direct IO (DDIO) [10].

To take advantage of diskmap in the network fast path, we need
to embed the networking code in the same process thread. Several

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA Ilias Marinos, Robert N.M. Watson, Mark Handley, and Randall R. Stewart

ke
rn

el

us
er

 NVME disk

SQ CQ

NIC

RX TX

1

2 libnmio
libtcpip

libnvme

app

3

4 5

6
7

8

Figure 10: Atlas high-level control flow.

userspace network stacks have been presented recently, demonstrat-
ing dramatic improvements both in terms of latency and through-
put [15, 16, 18]. We started from the Sandstorm [18] implementation,
and modified it accordingly to build our network stack. Sandstorm
was originally designed to serve small static objects, typical of web
traffic, from the main memory. Although we leverage several of
Sandstorm’s original design ideas, modifications were necessary
because the requirements are fundamentally different:

• Unlike typical web traffic workloads, which mostly consist of
short-lived connections, we want to optimize for long-lived
HTTP-persistent connections used by video streaming.

• Content served by a video streamer does not fit in main memory,
rendering some of Sandstorm’s optimizations such as multiple
packet replicas and content pre-segmentation inapplicable.

Given the workload characteristics, doing network packet segmen-
tation or calculating the checksums of large data in software would
be a performance bottleneck. Instead we leverage NIC hardware
support for TCP Segmentation Offload (TSO). This required modifi-
cations in netmap’s NIC driver, in particular for Chelsio T5 40GbE
adapters, and in Sandstorm’s core TCP protocol implementation.

As the movie catalog size is significantly larger than RAM, a
video streamer needs to serve ~90% of requests from disk in the
typical case (see §2.1). This means that most of the time the OS
buffer cache does not really act as a cache anymore; it merely serves
as a temporary buffer pool to store the data that are enqueued to
socket buffers. At the same time this comes with considerable over-
head associated with nominally being a cache, including pressure
in the VM subsystem, lock contention and so forth. In Atlas, we
completely remove the buffer cache as an interface between the
storage and network stacks.

To integrate the storage and network stacks, we implemented a
mechanism similar to the conventional stack’s sendfile. Upon
the reception of an HTTP GET request, the application layer web
server issues a tcpip_sendfile library call. This call instructs
the network stack to attach the in-memory object representation
of a persistent file to the particular connection’s TCB. After this
point, the network stack is responsible for fetching the data from the
disk and transmitting them to the network (see Fig. 10). It invokes
a callback to the application layer only when everything has been
sent, or some other critical event has been encountered such as the
connection being closed by the remote host.

Given the low latency of NVMe disks compared to WAN RTTs,
rather than the read-ahead approach used by a conventional stack, we

use an on-demand mechanism to fetch data from disks and transmit
them to the network. We have found that to get the peak throughput
from NVMe disks, I/O requests larger than 8KB need to be issued.
Seeking to optimize for the typical case and achieve the highest
throughput from the NVMe disks, we have chosen to delay the I/O
requests for a particular flow until the received ACKs inflate the
space in the TCP congestion window to a reasonably high value—
10*MSS in our implementation. Of course, there are cases where
this mechanism cannot be applied: for example, if a TCP connection
experiences a retransmit timeout, or the effective window is smaller
than this high-watermark value and all sent data is acknowledged,
then we fall back issuing smaller I/O requests.

As our stack does not buffer in-flight data sent by TCP, retrans-
mitted data must be re-fetched from disk. We use the TCP sequence
number offset of the lost segment to decide which data to re-fetch
and retransmit. When encrypted traffic is considered, it is worth not-
ing that this socket-buffer-free approach fits well with ciphersuites
like AES GCM [28] which do not require interpacket dependencies
to work; instead the GCM counter can be easily derived from the
TCP sequence numbers, including for retransmissions.

Our system prototype, Atlas, does not implement a sophisticated
filesystem: disks are treated as flat namespaces, and files are laid out
in consecutive disk blocks.

4 EVALUATION
We saw in Section 2.2 how the Netflix stack outperforms stock
FreeBSD, both on encrypted workloads and with plaintext when the
buffer cache hit ratio is low. However, profiling of the Netflix stack
indicated potential inefficiencies that appeared to be inherent, and
motivated our design of Atlas. We now wish to see to what extent
our hypothesis was correct regarding the merits of a special purpose
stack, and the need to integrate storage into the TCP control loop. We
will compare the performance of Atlas against a Netflix-optimized
setup, using contemporary hardware.

Our testbed consists of four machines; one server, two clients,
and one middlebox to allow us to emulate realistic network round
trip times. The test systems are connected via a 40GbE cut-through
switch. Our video server is equipped with an Intel Xeon E5-2667-
v3 8-core CPU, 128GB RAM, two dual-port Chelsio T580 40GbE
NIC adapters, and four Intel P3700 NVMe disks with 800GB ca-
pacity each. Our two systems emulating large numbers of clients
are equipped with Intel Xeon E5-2643-v2 6-core CPUs, and 64GB
RAM. One uses a dual-port Chelsio T580 40GbE, while the other
has an Intel XL710 40GbE controller. Finally, the middlebox has a
6-core Intel E5-2430L-v2 and 64GB RAM.

Atlas runs on FreeBSD 12-CURRENT; for Netflix we use the
Netflix production release which is also based on FreeBSD 12, but
also includes all the Netflix optimization patches, including those
mentioned in §2.1, and tuning. The two client systems run Linux
4.4.8, and finally the middlebox runs FreeBSD 12.

We wish to model how a video streaming server would perform
in the wild, but with all our machines connected to the same LAN
using 40GbE links, the round-trip times are on the order of a few
microseconds. This is not representative of the RTTs seen by produc-
tion video servers, and would distort TCP behavior. To emulate more
realistic latencies, we employ a middlebox which adds latency to

Disk|Crypt|Net: rethinking the stack for high-performance video streaming SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

2000 4000 6000 8000 10000 12000 14000 16000
0

20

40

60

80

Concurrent HTTP persistent connections

N
et

T
hr

ou
gh

pu
t(

G
b/

s)

Netflix 0% BC

Netflix 100% BC

Atlas

(a) Network throughput (Error bars indicate the 95% CI)

2000 4000 6000 8000 10000 12000 14000 16000
0

200

400

600

800

Concurrent HTTP persistent connections

C
PU

ut
ili

za
tio

n
(%

)

Netflix 0% BC

Netflix 100% BC

Atlas

(b) CPU utilization (Average)

2000 4000 6000 8000 10000 12000 14000 16000
0

50

100

150

Concurrent HTTP persistent connections

M
em

or
y

th
ro

ug
hp

ut
(G

b/
s)

Netflix 0%BC Netflix 100%BC Atlas

(c) Memory READ

2000 4000 6000 8000 10000 12000 14000 16000
0

50

100

150

Concurrent HTTP persistent connections

M
em

or
y

th
ro

ug
hp

ut
(G

b/
s)

Netflix 0%BC Netflix 100%BC Atlas

(d) Memory WRITE

2000 4000 6000 8000 10000 12000 14000 16000
0

1

2

3

Concurrent HTTP persistent connections

M
em

re
ad

/N
et

th
ro

ug
hp

ut

Netflix 0%BC Netflix 100%BC Atlas

(e) Memory READ-Network Throughput Ratio

2000 4000 6000 8000 10000 12000 14000 16000

2

4

6

8

·107

Concurrent HTTP persistent connections

R
ea

ds
L

L
C

_m
is

s
(e

ve
nt

s/
s)

Netflix 0%BC

Netflix 100%BC

Atlas

(f) CPU reads served from DRAM due to LLC misses

Figure 11: Plaintext performance, Netflix vs. Atlas, zero and 100% Buffer Cache (BC) ratios.

traffic going from the client to the server. The middlebox supports a
configurable set of delay bands - we use this feature to add different
delays to different flows, with latencies chosen from the range 10
to 40ms. In the middlebox, each newly received packet is hashed
and buffered, and a per-flow constant delay1 is introduced before
the packet is forwarded on. To reduce stress on the middlebox and
avoid it becoming a bottleneck, we only route client-to-server traffic
through it, as the data rate in this direction is much lower.

We wish to test the systems under a range of loads and with vary-
ing numbers of clients. As we don’t have Netflix’s intelligent client,
we rely on a load generator that models the sort of requests seen by a
video server. We populate the disks with small files (~300KB), each
corresponding to the equivalent of a video chunk. We use weighttp

1This avoids packet reordering within a flow.

to generate HTTP-persistent traffic with multiple concurrent clients2.
Each client establishes a long-lived TCP connection to the server,
and generates a series of HTTP requests with a new request sent
immediately after the previous one is served.

The Netflix configuration uses all eight available CPU cores in the
video server. For Atlas we only use four CPU cores with one stack
instance pinned to each core for the whole range of experiments.
We expect each stack instance to bottleneck on different resources
depending on the workload: plaintext HTTP traffic should not be
a CPU-intensive task and thus we expect the performance of each
stack instance to only be limited by the disk; in contrast encrypted
network traffic puts heavy pressure both on the Last Level Cache

2This tool has been modified to support requesting multiple URLs.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA Ilias Marinos, Robert N.M. Watson, Mark Handley, and Randall R. Stewart

DRAM	LLC	

NIC	

TCP	

CPU	

stale	buffers	

re-use	buffer	

NVMe	

(a) Delayed notifications incur extra memory writes.

NVMe	

DRAM	LLC	

NIC	

TCP	

CPU	

TCP	Packets	
re-use	buffer	

(b) Heavy load and netmap latency result in LLC evictions.

Figure 12: Principal sub-optimal Atlas memory access patterns for unencrypted traffic.

and the CPU cores which need to access and encrypt all the data
before they can be transmitted.

4.1 Plaintext HTTP-persistent Traffic
We wish to evaluate the performance of Atlas and Netflix stacks with
a plaintext HTTP workload as we vary the number of concurrent
active HTTP connections. In the Netflix case we also need to include
an extra dimension that impacts performance: the disk buffer cache
hit ratio. In these benchmarks we are able to accurately control
the disk buffer cache efficiency by adjusting the amount of distinct
content that is requested by the clients. In the worst case, each video
chunk is only requested once during the duration of the test, requiring
the server to fetch all content from the disks; in the best case, the
requested content is already cached in main memory and the server
does not need to access the disks at all. Atlas does not utilize a buffer
cache: all data requests, even repetitive ones, are served from the
disk, so Atlas is not sensitive to the choice of workload.

Figures 11a and 11b show the network throughput and CPU
utilization achieved by both systems. Atlas and the Netflix setup
with a maximally effective buffer cache (100% BC) manage to
saturate both the 40GbE NICs, achieving roughly ~73Gbps of HTTP
throughput with higher numbers of concurrent connections. For
less than 4,000 simultaneous connections Atlas achieves slightly
less throughput (~13%) compared to the Netflix setup. We believe
that this happens because Atlas often delays making an I/O request
until the available TCP window of a flow grows to a larger value
(10*MSS) so that it can improve disk throughput with slightly larger
reads. Better tuning when the system has so much headroom would
avoid this.

With the uncachable workload (0% BC), we observe that Netflix
experiences a small performance drop as the number of connections
increases. Although VM subsytem pressure is handled by the Netflix
configuration much more gracefully than stock FreeBSD, with more
connections requesting new data from the disks, the rate of proactive
calls to reclaim memory increases, negatively affecting performance.
This 0% BC workload comes much closer to the real-world situation:
Netflix video streamers typically get low to no benefit from the in-
memory buffer cache (<10% hit ratios), except perhaps on occasions
when new and very popular content is added to the catalog and a
spike in the disk buffer cache efficiency is observed. Atlas does
not suffer such a performance drop-off, so is well suited to such
uncachable workloads.

It is interesting to observe the CPU utilization of the Netflix setup
for the two different workloads. The CPU utilization almost doubles
when the buffer cache is thrashed and disk activity is required. It
should be noted that the CPU utilization results reported for Atlas
are hardly representative of the actual work performed. Atlas relies
on polling for disk I/O completions and new packets on the NIC
rings, so the CPU cores are constantly spinning even though the
actual load might be light, and hence the CPU utilization measured
remains constant at ~400% when using four cores.

From a microarchitectural viewpoint, where do Atlas’s perfor-
mance benefits actually come from? Atlas requires ~77Gb/s of mem-
ory read and write throughput respectively to saturate the NICs. This
comes very close to a one-to-one ratio between network and memory
read throughput (see Fig. 11e), indicating that Atlas does not suffer
from multiple detours to RAM due to LLC evictions. In contrast,
Netflix requires more memory read throughput—almost 1.5× the
network throughput—to achieve similar network performance.

Although it is quite efficient, our expectation was that Atlas, due
to DDIO, would demonstrate even better memory traffic efficiency.
Why is this not the case? If we consider the ratio of memory reads to
network throughput when Atlas serves 2,000 clients, we observe that
the memory traffic required is about 65% of the network throughput
achieved – clearly in this case DDIO is helping save memory traffic.
Data is being loaded from storage into the LLC by DMA, and about
35% of it is still in the LLC when it is DMAed to the NIC. For
this data, the data flow is like that shown in Figure 12a. Note that
the memory write throughput is actually higher than memory read
because netmap does not provide timely enough TX completion
notifications to allow buffers to be immediately reused. We believe
that detours to main memory could be reduced even further if netmap
supported a fine-grained, low-latency mechanism to communicate
TX DMA completion notifications to userspace applications: such a
mechanism would allow us to utilize a strict LIFO approach while
recycling DMA I/O buffers that could significantly reduce the stack’s
working set, increasing DDIO efficacy.

Why is the situation different for higher number of concurrent
connections? We believe that the answer is related to the load that
the stack experiences; for more than 4K concurrent connections the
disks are close to saturation. Atlas then builds deeper queues on the
I/O and NIC rings. This increases the working set of the stack since
more diskmap buffers need to be associated with I/O commands
and connections at each instant. At this point the storage and NIC

Disk|Crypt|Net: rethinking the stack for high-performance video streaming SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

2000 4000 6000 8000 10000 12000 14000 16000
0

20

40

60

80

Concurrent HTTP persistent connections

N
et

T
hr

ou
gh

pu
t(

G
b/

s)

Netflix 0% BC

Netflix 100% BC

Atlas

(a) Network throughput (Error bars indicate the 95% CI)

2000 4000 6000 8000 10000 12000 14000 16000
0

200

400

600

800

Concurrent HTTP persistent connections

C
PU

ut
ili

za
tio

n
(%

)

Netflix 0% BC

Netflix 100% BC

Atlas

(b) CPU utilization (Average)

2000 4000 6000 8000 10000 12000 14000 16000
0

50

100

150

Concurrent HTTP persistent connections

M
em

or
y

th
ro

ug
hp

ut
(G

b/
s)

Netflix 0%BC

Netflix 100%BC

Atlas

(c) Memory READ

2000 4000 6000 8000 10000 12000 14000 16000
0

50

100

150

Concurrent HTTP persistent connections

M
em

or
y

th
ro

ug
hp

ut
(G

b/
s)

Netflix 0%BC Netflix 100%BC Atlas

(d) Memory WRITE

2000 4000 6000 8000 10000 12000 14000 16000
0

1

2

3

4

Concurrent HTTP persistent connections

M
em

re
ad

/N
et

T
hr

ou
gh

pu
t

Netflix 0%BC Netflix 100%BC Atlas

(e) Memory READ-Network Throughput Ratio

2000 4000 6000 8000 10000 12000 14000 16000

0.5

1

1.5

2
·108

Concurrent HTTP persistent connections

R
ea

ds
L

L
C

_m
is

s
(e

ve
nt

s/
s)

Netflix 0%BC

Netflix 100%BC

Atlas

(f) CPU reads served from DRAM due to LLC misses

Figure 13: Encrypted performance, Netflix vs. Atlas, zero and 100% Buffer Cache (BC) ratios.

DMA are no longer closely coupled enough in Atlas’s event loop so
that all data remains in the LLC until transmission. Memory usage
looks more like Figure 12b. In any case, when we look at LLC
misses (Figure 11f), we see Atlas does not experience any CPU
stalls whatsoever while waiting for reads to be served from memory,
indicating that the memory read throughput observed is entirely due
to DMA to the NIC.

4.2 Encrypted HTTP-persistent Traffic
The need to encrypt traffic significantly complicates the process
of serving content. We expect high performance from Netflix’
setup, since unlike stock FreeBSD, it can still take advantage of
sendfile with the in-kernel TLS implementation (§ 2.1). The
semantics, however, are different from the plaintext case. In-place

encryption is not an option as it would invalidate the buffer cache en-
tries, so the stack needs to encrypt the data out-of-place, increasing
the memory and LLC footprint.

To avoid our tests being impacted by CPU saturation on our client
systems, rather than implementing a full TLS layer we have decided
to emulate the TLS overhead by doing encryption and authentication
of the data with dummy keys before it is actually transmitted. The
HTTP headers are still transmitted in plaintext, so that the client
software can parse the HTTP response and count the received data
without needing to spend additional CPU cycles decrypting data,
but the server encrypts everything else as normal. We believe that
this setup closely approximates the actual TLS protocol’s overheads,
especially given that the initial TLS handshake’s overhead will be
negligible for flow durations encountered with video streaming.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA Ilias Marinos, Robert N.M. Watson, Mark Handley, and Randall R. Stewart

DRAM	LLC	

NIC	

AES	

TCP	

CPU	

stale	buffers	

re-use	buffer	

NVMe	

(a) Delayed notifications incur extra memory
writes. No memory reads, but extra writes.

DRAM	LLC	

NIC	

AES	

TCP	

CPU	

TCP	Packets	

re-use	buffer	

NVMe	

(b) Heavy load and netmap batching result in
LLC eviction. One extra memory read and write.

DRAM	LLC	

NIC	

AES	

TCP	

CPU	

TCP	Packets	

re-use	buffer	

NVMe	

(c) Contention for DDIO portion of LLC evicts
DMA’ed data. Two extra reads and writes.

Figure 14: Principal sub-optimal Atlas memory access patterns for encrypted traffic.

For Atlas we used the internal OpenSSL GCM API that takes
advantage of ISA extensions. This uses AESNI instructions for en-
cryption and the PCLMUL instruction for ghash, so as to accelerate
AES 128bit in Galois Counter Mode [28] (AES128-GCM). For a fair
comparison, we modified the Netflix stack to implement a similar
design: in particular, we have modified the Netflix implementation to
allow plaintext transmission of HTTP headers, which are passed to
the kernel as a parameter to the sendfile syscall, while the data
are still encrypted. The Netflix implementation allows the use of
different backends for encryption including support for offloading en-
cryption to special PCIe hardware. Our experiments include results
with, according to Netflix, the most optimized software-only imple-
mentation: Intel’s ISA-L library, which not only uses ISA extensions
to accelerate crypto, but also utilizes non-temporal instructions to
reduce pressure on the CPU’s Last Level Cache.

Figures 13a and 13b show network throughput and CPU utiliza-
tion while serving encrypted traffic with a zero and 100% buffer
cache hit ratios. When serving more than 4,000 connections, Atlas
achieves higher throughput than Netflix when the buffer hit ratio is
100%, ~72Gb/s as opposed to ~68Gb/s peak throughput for Netflix.

When the workload is not cacheable Atlas, achieves 50% more
network throughput than Netflix, while only using four cores. Netflix
saturates all the CPU cores even when no disk activity is required, so
uncacheable traffic caused storage stack overhead to be introduced,
fewer CPU cycles are available for encryption and network protocol
processing, greatly reducing throughput.

With under 2,000 active connections, we again see slightly sub-
optimal Atlas throughput for the same reasons as with plaintext. As
active connections increase, all three curves demonstrate a small per-
formance degradation . This is to be expected when a resource—the
CPU in this case—is saturated. Increasing the number of requests
can only hinder performance by building deeper queues in stacks
and by putting more pressure on memory. However, the reduction is
small and both systems handle overload gracefully.

Measuring memory throughput while serving such workloads
reveals a big difference between the two systems (Figures 13c and
13d). Clearly encryption affects memory throughput: Atlas memory
read throughput reaches ~110Gb/s, roughly a ~43% increase com-
pared to the plaintext case. Netflix, however, requires ~175Gb/s of
read throughput when serving the cached workload. When serving
the uncachable workload it requires about ~127Gb/s for more than
4,000 concurrent connections. This might seem counter-intuitive

since the uncacheable workload should trigger more memory traffic
due to LLC/memory pressure, but if we look at Fig. 13e, the ratio
of memory read throughput to network throughput is actually un-
changed at 2.6. For the whole range of connections benchmarked,
Atlas remains more effective than Netflix in terms of memory traffic
efficiency, requiring 1.5× the network throughput as opposed to
2.6× for Netflix.

The Atlas memory read results indicate that it was not possible to
retain all the data in the LLC for the full duration of the TX pipeline,
from disk to encryption to NIC for most workloads, though it is
often possible for 2,000 concurent connections when the memory
access pattern in Fig. 14a dominates. We believe that the increased
memory write throughput observed for Atlas in Figure 13d is related
to dirty cache line evictions of encrypted data, which occur after
the NIC has finished DMAing the encrypted data out; this does not
affect performance. Under heavy load a fraction of the data was
evicted to main memory and has to be re-read, either by the CPU
while encrypting, or by the NIC during DMA for transmission, or
both. The pattern in Fig. 14b is primarily due to a small amount
of extra latency introduced by netmap batching, combined with
heavy pressure on the LLC. The extra eviction in Fig. 14c prior to
encryption is responsible for the LLC misses in Fig. 13f, and occurs
because to avoid DMA thrashing the LLC, only a fraction of the
LLC is available for DDIO. Once this is exhausted, new DMAs will
evict older DMA buffers if the stack is even slightly slow getting
round to encrypting them.

5 NEW DESIGN PRINCIPLES
We developed diskmap and the clean-slate Atlas stack to explore the
boundaries of achievable performance through a blend of software
specialization and microarchitectural awareness. The resulting pro-
totype exhibits significant performance improvements over conven-
tional designs. However, and perhaps counterintuitively, we believe
that many of the resulting design principles are reusable, and could
be applied within current network- and storage-stack designs.

Reduced latency and increased bandwidth for storage, aris-
ing out of new non-volatile storage technologies, fundamentally
change the dynamic in storage-stack design. Previously, substan-
tial investment in CPU to improve disk layout decisions and mask
spindle latency was justified, and the use of DRAM to prefetch and
cache on-disk contents offered significant improvements in both

Disk|Crypt|Net: rethinking the stack for high-performance video streaming SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

latency and bandwidth [25]. Now, the argument for an in-DRAM
buffer cache is dramatically reduced, as on-demand retrieval of data
(e.g., on receiving a TCP ACK opening the congestion window),
regardless of existing presence in DRAM, is not only feasible, but
may also be more efficient than buffered designs.

Optimizing Last-Level Cache (LLC) use by DMA must be
a key design goal to avoid being bottlenecked on memory band-
width. A key insight here is that if the aggregate bandwidth-delay
product across the I/O subsystem (e.g., from storage DMA receive
through to NIC DMA send) can fit within the LLC, DRAM accesses
can be largely eliminated. This requires careful bounding of latency
across the I/O and compute path, proportionally decreasing the prod-
uct, which discourages designs that defer processing – e.g., those
that might place inbound DMA from disk, encryption, and outbound
DMA to the NIC in different threads – an increasing design choice
made to better utilize multiple hardware threads. In the Netflix stack,
substantial effort is gone to mitigate cache misses, including use
of prefetch instructions and non-temporal loads and stores around
AES operations. Ironically, these mitigations may have the effect
of further increasing the degree to which higher latency causes the
bandwidth-delay product to exceed LLC size. This optimization goal
also places pressure on copying designs: copies from a buffer cache
to encrypted per-packet memory doubles the cache footprint, halving
the bandwidth-delay product that can be processed on a package.

Integrating control loops to minimize latency therefore also
becomes a key concern, as latency reduction requires a “process-to-
completion” across control loops in I/O and encryption. Allowing
unbounded latency due to handoffs between threads, or even in using
larger queues between protocol-stack layers, is unacceptable, as it
will increase effective latency, in turn increasing the bandwidth-delay
product, limiting the work that can fit into the LLC.

Userspace I/O frameworks also suffer from latency problems,
as they have typically been designed to maximize batching and
asynchrony in order to mitigate system-call expense. Unlike netmap,
diskmap facilitates latency minimization by allowing user code to
have fine-grained notification of memory being returned for reuse,
and by minimizing in-kernel work loops that otherwise increase LLC
utilization. This is critical to ensuring that “free” memory in the LLC
is reused, rather than unnecessarily spilling its unused contents from
the LLC to DRAM by allocating further memory.

Zero-copy is not just about reducing software memory copies.
While zero-copy operation has long been a goal in network-stack de-
signs, attention has primarily been paid to data movement performed
directly through the architecture – e.g., by avoiding unnecessary
memory copies as data is passed between user and kernel space,
or between kernel subsystems. It is clear from our research that, to
achieve peak performance, system programmers must also eliminate
or mitigate implied data movement in the hardware – with a special
focus on memory-subsystem and I/O behavior where data copying
in the microarchitecture or by DMA engines comes at extremely
high cost that must be carefully managed. This is made especially
challenging by the relative opacity of critical performance behav-
iors: as data copying and cache interactions move further from the
processor pipeline, tools such as hardware performance counters
become decreasingly able to attribute costs to the originating parties.
For example, no hardware that we had access to was able to at-
tribute cache-line allocation to specific DMA sources, which would

have allowed a more thorough analysis of NIC vs. NVMe cache
interactions.

Larger than DRAM-size workloads are important for two rea-
sons: a long tail of content used by large audiences (e.g., with respect
to video and software updates), and also because DRAM is an un-
economical form of storage due to high cost and energy use as com-
pared to flash memory. The Atlas design successfully deemphasizes
DRAM use in favor of on-package cache and fast flash, avoiding
loading content into volatile memory for longer than necessary.

Netflix has already begun to explore applying some of these de-
sign principles to their FreeBSD-based network stack. A key concern
to reduce memory bandwidth utilization has been to improve the ef-
ficiency of cache use, which has to date been accomplished through
careful use of prefetching and non-temporal operations. These in
fact prove harmful compared to a more optimal design such as Atlas
due to increasing the effective bandwidth-delay product. Reducing
cache inefficiency by eliminating the buffer cache is challenging in
the current software environment, especially when some key content
sees high levels of reuse. However, reducing latency between storage
DMA and encryption is plausible, by shifting data encryption close
to storage I/O completions, avoiding redundant detours to DRAM.

6 RELATED WORK
We briefly discuss previous work related to Atlas.

Conventional Stack Optimizations: System call overheads and
redundant data copies have been previously identified as a bottle-
neck of conventional OSes. Multiple past studies have focussed on
optimizing OS primitives to achieve better system performance. IO-
Lite [24] unifies data management between userspace applications
and kernel subsystems, utilizing page-based mechanisms to safely
share data. FlexSC [31] provides system call batching by allowing
userspace and kernel to share the system call pages, avoiding that
way CPU cache pollution. Megapipe [13] demonstrates significant
performance improvements by employing system call batching, and
introducing a bidirectional per-core pipe for data and event exchange
between kernel and userspace. Past research has shown that main-
taining flow affinity, and minimizing sharing is key to achieving
network IO scalability on multicore systems [7, 8, 26].

Userspace I/O frameworks: Netmap [29] implements high-
throughput network I/O, by exposing DMA memory to userspace
and relying on batching to substantially reduce context switch over-
head. Similarly, Intel’s DPDK [11] utilizes kernel-bypass to provide
user-level access to the network interface using hardware virtualiza-
tion. Intel’s Storage Performance Development Kit (SPDK) [32] is
a contemporary effort to diskmap, that implements a high through-
put and low latency NVMe storage I/O framework, by running the
NVMe device drivers fully in userspace. Unlike SPDK, diskmap
does not fully expose NVMe devices to userspace (e.g., device door-
bells, administrative queue pairs): the OS kernel is still mediating for
device administrative operations, and DMA operations are abstracted
with system calls for protection.

Microkernels and User-level Stacks: Microkernel designs such
as Mach [1], shift core services to userspace. The Exokernel [12] and
SPIN [6] reduce shared subsystems to enable userspace-accessible
low-level interfaces for hardware access. Recently, inspired by mi-
crokernel services, multiple user-level network stacks leveraged

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA Ilias Marinos, Robert N.M. Watson, Mark Handley, and Randall R. Stewart

OS-bypass to demonstrate dramatic throughput and latency improve-
ments over the conventional kernel stacks [15, 16, 18].

Dataplane and Research OSes: Arrakis [27] is a research op-
erating system that leverages hardware virtualization to efficiently
decouple the control and data planes. Diskmap was partially inspired
by Arrakis, which first applied the idea of fast and safe user-level
storage data plane. Similarly, IX [5] uses hardware virtualization to
enforce safety, while utilizing zerocopy APIs and adaptive batching
to achieve high performance network IO.

7 CONCLUSIONS
In this paper we presented Atlas, a high-performance video stream-
ing stack which leverages OS-bypass and outperforms conventional
and state-of-the-art implementations. Through measurement of the
Netflix stack, we show how traditional server designs that feature a
buffer cache to hide I/O latency suffer when serving typical video
streaming workloads. Based on these insights, we show how to build
a stack that directly includes storage in the network fast path.

Finally, we discuss the highly asynchronous nature of the con-
ventional stack’s components, and how it contributes to lengthening
I/O datapaths, while wasting opportunities for exploiting microar-
chitectural properties. We show how, using a specialized design, it
is possible to achieve tighter control over the complete I/O pipeline
from the disk up to network hardware, achieving high throughput
and making more efficient use of memory and CPU cycles on con-
temporary microarchitectures.

8 ACKNOWLEDGEMENTS
We thank Drew Gallatin from Netflix for his comments and invalu-
able assistance with the Netflix stack and workloads. Additionally,
we gratefully acknowledge Navdeep Parhaar from Chelsio for arrang-
ing 40GbE NICs for us, and assisting us with TSO support for the
netmap driver. Finally, we would also like to thank Jim Harris from
Intel’s Storage Division, Serafeim Mellos, our anonymous reviewers,
and our shepherd Keith Winstein for their insightful comments.

This work was supported by a Google PhD Fellowship, and a
NetApp Faculty Fellowship.

REFERENCES
[1] M. Accetta, R. Baron, D. Golub, R. Rashid, A. Tevanian, and M. Young. Mach:

A New Kernel Foundation for UNIX Development. Technical report, Computer
Science Department, Carnegie Mellon University, August 1986.

[2] Adobe HTTP Dynamic Streaming. http://wwwimages.adobe.com/content/dam/
Adobe/en/devnet/hds/pdfs/adobe-hds-specification.pdf.

[3] N. Amit, M. Ben-Yehuda, D. Tsafrir, and A. Schuster. vIOMMU: Efficient
IOMMU Emulation. In Proceedings of the 2011 USENIX Conference on USENIX
Annual Technical Conference, USENIXATC’11, pages 6–6, Berkeley, CA, USA,
2011. USENIX Association.

[4] BBC Digital Media Distribution: How we improved throughput by 4x. http:
//www.bbc.co.uk/blogs/internet/entries/.

[5] A. Belay, G. Prekas, M. Primorac, A. Klimovic, S. Grossman, C. Kozyrakis,
and E. Bugnion. The IX Operating System: Combining Low Latency, High
Throughput, and Efficiency in a Protected Dataplane. ACM Trans. Comput. Syst.,
34(4):11:1–11:39, Dec. 2016.

[6] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski, D. Becker,
C. Chambers, and S. Eggers. Extensibility Safety and Performance in the SPIN
Operating System. In Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles, SOSP ’95, pages 267–283, New York, NY, USA, 1995. ACM.

[7] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris, A. Pesterev,
L. Stein, M. Wu, Y. Dai, Y. Zhang, and Z. Zhang. Corey: An Operating System
for Many Cores. In Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, OSDI’08, pages 43–57, Berkeley, CA, USA,
2008. USENIX Association.

[8] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek, R. Morris,
and N. Zeldovich. An Analysis of Linux Scalability to Many Cores. In Proceedings
of the 9th USENIX Conference on Operating Systems Design and Implementation,
OSDI’10, pages 1–16, Berkeley, CA, USA, 2010. USENIX Association.

[9] Chelsio 40GbE Netmap Performance. http://www.chelsio.com/wp-content/
uploads/resources/T5-40Gb-FreeBSD-Netmap.pdf.

[10] Intel Data Direct IO. http://www.intel.com/content/www/us/en/io/data-direct-i-o-
technology.html.

[11] Intel Data Plane Development Kit. http://dpdk.org.
[12] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel: An Operating System

Architecture for Application-level Resource Management. In Proceedings of the
Fifteenth ACM Symposium on Operating Systems Principles, SOSP ’95, pages
251–266, New York, NY, USA, 1995. ACM.

[13] S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy. MegaPipe: a new program-
ming interface for scalable network I/O. In Proceedings of the 10th USENIX
conference on Operating Systems Design and Implementation, pages 135–148.
USENIX Association, 2012.

[14] HTTP Live Streaming. https: / / tools.ietf.org/html/draft- pantos- http- live-
streaming-23.

[15] M. Honda, F. Huici, C. Raiciu, J. Araujo, and L. Rizzo. Rekindling Network
Protocol Innovation with User-level Stacks. SIGCOMM Comput. Commun. Rev.,
44(2):52–58, Apr. 2014.

[16] E. Y. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm, D. Han, and K. Park. mTCP:
A Highly Scalable User-level TCP Stack for Multicore Systems. In Proceedings of
the 11th USENIX Conference on Networked Systems Design and Implementation,
NSDI’14, pages 489–502, Berkeley, CA, USA, 2014. USENIX Association.

[17] J. Lemon. Kqueue - A Generic and Scalable Event Notification Facility. In
Proceedings of the FREENIX Track: 2001 USENIX Annual Technical Conference,
pages 141–153, Berkeley, CA, USA, 2001. USENIX Association.

[18] I. Marinos, R. N. Watson, and M. Handley. Network Stack Specialization for
Performance. In Proceedings of the 2014 ACM Conference on SIGCOMM, SIG-
COMM ’14, pages 175–186, New York, NY, USA, 2014. ACM.

[19] A. Markuze, A. Morrison, and D. Tsafrir. True IOMMU Protection from DMA
Attacks: When Copy is Faster Than Zero Copy. In Proceedings of the Twenty-First
International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’16, pages 249–262, New York, NY, USA, 2016.
ACM.

[20] Dynamic adaptive streaming over HTTP (DASH) — Part 1: Media presenta-
tion description and segment formats, April 2012. ISO/IEC 23009-1 (http:
//standards.iso.org/ittf/PubliclyAvailableStandards).

[21] Netflix Appliance Software. https://openconnect.netflix.com/en/software/.
[22] NVM Express Specification 1.2.1. http://www.nvmexpress.org/specifications/.
[23] Intel P3608 NVME drive. http://www.intel.com/content/www/us/en/solid-state-

drives/solid-state-drives-dc-p3608-series.html.
[24] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-Lite: A unified I/O buffering and

caching system. Operating systems review, 33:15–28, 1998.
[25] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka. Informed

Prefetching and Caching. In Proceedings of the Fifteenth ACM Symposium on
Operating Systems Principles, SOSP ’95, pages 79–95, New York, NY, USA,
1995. ACM.

[26] A. Pesterev, J. Strauss, N. Zeldovich, and R. T. Morris. Improving Network
Connection Locality on Multicore Systems. In Proceedings of the 7th ACM
European Conference on Computer Systems, EuroSys ’12, pages 337–350, New
York, NY, USA, 2012. ACM.

[27] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy, T. Anderson,
and T. Roscoe. Arrakis: The Operating System is the Control Plane. In Proceedings
of the 11th USENIX Conference on Operating Systems Design and Implementation,
OSDI’14, pages 1–16, Berkeley, CA, USA, 2014. USENIX Association.

[28] RFC5288: AES Galois Counter Mode (GCM) Cipher Suites for TLS.
[29] L. Rizzo. Netmap: A Novel Framework for Fast Packet I/O. In Proceedings of the

2012 USENIX Conference on Annual Technical Conference, USENIX ATC’12,
pages 9–9, Berkeley, CA, USA, 2012. USENIX Association.

[30] Sandvine 2015 Global Internet Phenomena Report. https://www.sandvine.com/
downloads / general / global - internet - phenomena / 2015 / global - internet -
phenomena-report-latin-america-and-north-america.pdf.

[31] L. Soares and M. Stumm. FlexSC: Flexible System Call Scheduling with
Exception-less System Calls. In Proceedings of the 9th USENIX Conference
on Operating Systems Design and Implementation, OSDI’10, pages 33–46, Berke-
ley, CA, USA, 2010. USENIX Association.

[32] Intel Storage Performance Development Kit. http://www.spdk.io.
[33] R. Stewart, J.-M. Gurney, and S. Long. Optimizing TLS for high–bandwidth

applications in FreeBSD. In Proc. Asia BSD conference, 2015.

http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/hds/pdfs/adobe-hds-specification.pdf
http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/hds/pdfs/adobe-hds-specification.pdf
http://www.bbc.co.uk/blogs/internet/entries/
http://www.bbc.co.uk/blogs/internet/entries/
http://www.chelsio.com/wp-content/uploads/resources/T5-40Gb-FreeBSD-Netmap.pdf
http://www.chelsio.com/wp-content/uploads/resources/T5-40Gb-FreeBSD-Netmap.pdf
http://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
http://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
http://dpdk.org
https://tools.ietf.org/html/draft-pantos-http-live-streaming-23
https://tools.ietf.org/html/draft-pantos-http-live-streaming-23
http://standards.iso.org/ittf/PubliclyAvailableStandards
http://standards.iso.org/ittf/PubliclyAvailableStandards
https://openconnect.netflix.com/en/software/
http://www.nvmexpress.org/specifications/
http://www.intel.com/content/www/us/en/solid-state-drives/solid-state-drives-dc-p3608-series.html
http://www.intel.com/content/www/us/en/solid-state-drives/solid-state-drives-dc-p3608-series.html
https://www.sandvine.com/downloads/general/global-internet-phenomena/2015/global-internet-phenomena-report-latin-america-and-north-america.pdf
https://www.sandvine.com/downloads/general/global-internet-phenomena/2015/global-internet-phenomena-report-latin-america-and-north-america.pdf
https://www.sandvine.com/downloads/general/global-internet-phenomena/2015/global-internet-phenomena-report-latin-america-and-north-america.pdf
http://www.spdk.io

	Abstract
	1 Introduction
	2 The Video Streaming Problem
	2.1 Case Study: The Netflix Video Streamer
	2.2 Netflix Performance
	2.3 Discussion

	3 Towards a Specialized Video Streaming Stack
	3.1 Storage Stack
	3.2 Network Stack Integration

	4 Evaluation
	4.1 Plaintext HTTP-persistent Traffic
	4.2 Encrypted HTTP-persistent Traffic

	5 New Design Principles
	6 Related work
	7 Conclusions
	8 Acknowledgements
	References

