
Stayin’ Alive:

Aliveness as an alternative to authentication

Jonathan Anderson and Robert N M Watson

University of Cambridge Computer Laboratory
{jonathan.anderson,robert.watson}@cl.cam.ac.uk

Abstract. Authentication protocols attempt to discern whether or not a user is who she says
she is based on what she has, is or knows. In many situtations, however, such as protecting
Wikis from robots and Distributed Hash Tables from sybils, identity is less important than
liveness: it’s not who you are that matters, it’s whether or not you are alive. We propose
extensions to the Kerberos authentication which allow systems to test whether or not they
are interacting with a real person, optionally disregarding their identity. We demonstrate
how such extensions could be used to support realistic user interactions with requiring shared
definitions of global identity.

1 Introduction

Last year, one of the authors of this paper attempted to contact a professor at a
notable US university in order to arrange a lunch appointment. This professor had
— perhaps out of an attempt to avoid spam — created a system by which one
could not e-mail him unless one had demonstrated their ability to receive e-mail
by submitting their own (publicly accessible) e-mail address into a Web form and
replying to a generated single-use address. This system may be effective at blocking
spam, but it is also effective at dissuading legitimate would-be corresponders and
collaborators from initiating conversation.

Disregarding this particular implementation, there is an insight to be gained from
this situation. Sometimes, e.g. when attempting to fend off unsolicited mass e-mail,
it is not important to know whether or not a potential correspondant’s identity
corresponds to a unique name within a global namespace; the important thing is
whether or not that correspondant is really there at all. When controlling access
to a Wiki, we do not need to know the name or government-issued ID number of

a contributor, we would simply like to know that edits come from a real person.
We may also like to know that a long string of thoughtful, well-researched edits have
come from the same person, but that knowledge does not require a globally-agreed-on
notion of the user’s identity.

Today, many websites attempt to use CAPTCHAs to distinguish anonymous users
from anonymous bots. This approach is not applicable to other networked services
such as mail servers, anonymous FTP servers or distributed hash tables since the
CAPTCHA protocol executes within the context of a Web session. Outside of the
Web context, existing authentication and authorization tools are a poor fit for the
general case of networked services.

In this paper, we propose extensions to the well-known Kerberos suite of tools
that allow users to establish communications channels by demonstrating liveness
without requiring a priori agreement on globally-unique identities. Our extensions
use a new security protocol primitive called unboxing, and we demonstrate how tra-
ditional attacks against authentication protocols only exist in a denatured form.

2 Kerberos

The Kerberos protocol [4,5,6], a simplified form of which is depicted in Figure 1,
provides authentication and authorization for networked services such as file servers
and SMTP servers. Kerberos allows security-sensitive authentication logic to be sep-
arated from the “business logic” of servers.

For instance, let us consider a scenario in which a user Bob wishes to avail of
services (e.g. a mail delivery queue) provided by an SMTP server. Rather than im-
plement its own authentication service, the SMTP server relies on a centralized Au-
thentication Service (AS) to authenticate Bob. Bob first communicates with the
AS, proving knowledge of a secret key derived from a password, and is granted a
cryptographic Ticket-Granting Ticket (TGT). Bob can then reveal the TGT to a
Ticket-Granting Server (TGS) in exchange for a Service Ticket (ST). This ticket is
a packet encrypted under a key shared by the TGS and the Service Server (SS),
i.e. the SMTP server in our case. The ticket certifies the SS that Bob’s identity has

User

AS

SMTP
Server

TGS

auth request
TGT

ST

TGT, service(SMTP)

ST

service

Authentication

Authorization

Service

Fig. 1. Kerberos v5 protocol.

been verified by the AS and provides a session key which Bob and the SS can use in
support of their confidentiality and integrity requirements.

A simplified model of the exchange between Bob and the AS is:

KRB_AS_REQ : B
B,A−−→ A (1)

KRB_AS_REP : B
TGT={B,kBT ... }kAT

,{kBT }kB←−−−−−−−−−−−−−−−−−− A (2)

KRB_TGS_REQ : B
B,S,TGT,S,{B,t}kBT−−−−−−−−−−−−→ TGS (3)

KRB_TGS_REP : B
{ST={B,kBS ,... }kTS

,kBS}
kBT←−−−−−−−−−−−−−−−−−− TGS (4)

B
{T,... }kBS−−−−−−→ S (5)

in which B and S are the names of Bob and the SMTP server, t is the current time (to
demonstrate freshness), kB is Bob’s “reply key” (generated from Bob’s password) and
kXY is a symmetric key used for communication between principals X and Y . Using
this protocol, Bob can demonstrate knowledge of his password to the AS without
having to reveal it to the SMTP server, both Bob and the SMTP server can know

to whom they are speaking and each server can focus on the one clear function for
which it has been designed: authentication, authorization or delivering mail.

In the vanilla Kerberos protocol, message 1 can be replayed by an attacker, induc-
ing the AS to send the attacker a KRB_AS_REP message. This message does not reveal
any key material, since keys are encrypted under kB and kS, but such a replay could
aid a known-plaintext attack on kB, which is usually based on a user-chosen pass-
word. In order to prevent such an attack, the AS can require “pre-authentication”
data to be sent as part of the KRB_AS_REQ message. This data can be as simple
as the current timestamp encrypted under kB (to demonstrate knowledge of Bob’s
password-derived key), but it can also be an arbitrary multi-round challenge-response
protocol between a client-side plugin and a server-side plugin.

Kerberos solves an important problem: it allows a trusted third party to be lever-
aged by clients and servers to set up secure communications with mutual authenti-
cation. This neatly fulfills the requirements of mail relays that only forward mail for
known users, but it fails to address the mail submission problem: an SMTP server
delivering mail directly to local recipients does not need to be able to authenticate
mail senders, but it will use authentication as a proxy certification that the sender
is a real user and not a spam bot.

We propose a Kerberos extension to support the direct validation of “aliveness”
claims as well as — or instead of — traditional authentication. This extension uses
existing spaces in the Kerberos protocol intended for preauthentication data to carry
the results of an interactive Turing test approximation, allowing services to be ac-
cessed by users not on the basis of who they are, but whether they are.

3 Liveness Extensions

Using the existing Kerberos preauthentication framework [2] and plugin APIs, we
propose to extend the user’s interaction with the AS according to the communica-
tion graph depicted in Figure 2. We introduce additional messages into the initial
Kerberos authentication exchange, adding a demonstration of aliveness via some
instantiation of Turing’s imitation game [8].

UserAS

auth request

need preauth;

nonce

CAPCHA

Server

CAPCHA request

CAPCHA

solution

token
KDC PluginClient Plugin

token

TGT

Fig. 2. Proposed Kerberos extensions.

3.1 Notation for Human Readability

Security protocols typically use a curly-brace-and-subscript notation to indicate that
a message is encrypted, e.g. {B, kBT , t}kA . In the protocol that follows, we introduce
a new notation for messages that are not encrypted, but are rather encoded in a form
that can be easily decoded by humans but is less easily decoded algorithmically.

The most common form of such a message is the CAPTCHA [1], but other forms
of “human computation” are possible. The creator of the CAPTCHA, Luis von Ahn,
denoted a human algorithm game which is easy for humans but hard for computers by
a one-way function, G (x) = y [9]. We define human decoding as a human algorithm
game in which x is an encoding of information — such as a CAPTCHA — that can
easily be decoded by humans but not computers. We will denote such a message with
the notation [x] and expect that a human can trivially decode [x] to x.

3.2 Protocol

Our complete protocol with “liveness” extensions to Kerberos is depicted in Figure 3.

In the initial communication between Bob and the authentication service Alice,
Bob requests a Kerberos Ticket-Granting Ticket (TGT) from Alice for the server S
using the identity “anonymous”. Alice replies with a standard Kerberos error code
KDC_ERR_PREAUTH_REQUIRED which specifies that Kerberos authentication must be
preceeded by a “pre-authentication” step, which in this case is an interactive proof
of aliveness to a CAPTCHA service.

proof of life:

 [A, n]
human����! A, n

BobAuth

CAPTCHA

KRB_AS_REQ(anonymous, S)

KDC_ERR_PREAUTH_REQUIRED: C

B, S, nB , {t0, A, kBC}kAC

gx, A

session binding:
h(A, n, kBC) �

h (A, n, kBC) , {A, t, n, kBC}kC

kBC

�
{t0, A, kBC}kAC

kBC

gy,
�
[A, n] , {A, t, n, kBC = gxy}kC

kBC

Human Under DH ()Machine Opaque TokenkBC

TGT = {B0, . . .}kAT
, {B0, kAB}kBC

Human Under DH ()Machine Opaque Token

Fig. 3. Kerberos “pre-authentication” via aliveness.

Bob’s interaction with the CAPTCHA server consists of two round trips which
convey a challenge and response within a Diffie-Hellman–negotiated channel that
binds the response to the session key.

Bob begins his interaction with the CAPTCHA server by initiating a Diffie-
Hellman exchange (gx) and providing the name of the realm A to which he would
like to authenticate. This name will be included in the token which the CAPTCHA
server eventually provides to A in order to prevent one aliveness token from being
spent at multiple sites.

The CAPTCHA server replies with the second half of the Diffie-Hellman exchange
(gy) in the clear and a user-decodable challenge [A, n], as well as a state cookie. This
cookie contains the name A, the time t that the challenge was sent, the nonce n that
the challenge was generated from and the negotiated session key kBC being used to
protect communications between Bob and the CAPTCHA service. The use of cookies
allows the CAPTCHA server to be stateless apart from a replay cache.

The challenge [A, n] sent to the user contains both the name of the Kerberos
authentication realm and a dictionary word generated from the random nonce n. An
example of such a challenge is depicted in Figure 4,

Fig. 4. A user-decodable CAPTCHA: [A,n].

Bob’s response to this challenge consists of C’s state cookie and a cryptographic
hash of three elements: the name A from the challenge, the word n from the challenge
and the session key kBC being used to communicate with the CAPTCHA server. The
session key is included in order to bind the response to the channel over which it is
given, mitigating the middleperson attack described in Section 4.

Finally, the CAPTCHA server gives Bob a token {t′, A, kBC}kAC
that Bob can

present to A as evidence that he solved a CAPTCHA for service A at time t′. This
token also contains the session key that Bob negotiated with the CAPTCHA service;
A can use this key to bootstrap a new shared secret kAB. The rest of the protocol
run is standard pre-authenticated Kerberos with one exception: as well as granting
Bob a Ticket-Granting Ticket (TGT) and performing a password update to kAB, A
must also assign a new pseudonym B′ which can be used to identify this particular
“anonymous” user in the future.

At the conclusion of this protocol run, B possesses a Ticket-Granting-Ticket
(TGT) in the name of an anonymous user who was believed to represent a real, live
person at time t′. Such a user might now be granted limited access to a public FTP
server, temporary access to an SMTP server for the purposes of mail delivery (but
not mail relay) or rate-limited access to an IRC server or a Wiki. Without explicitly
naming a user, our Kerberos realm has established a secure communications channel
with “that user”. If the user fulfils the traditional Kerberos security assumptions (e.g.
not revealing secret keys to anyone), there can be continuity in future communications
between the unnamed user and existing Kerberized infrastructure.

4 Denaturing a Middleperson Attack

denature, v. /dI"neItjU@(r)/ /di:-/ (Oxford English Dictionary)

1. trans. To render unnatural. Obs.
2.
(a) To alter (anything) so as to change its nature; e.g. to render alcohol or tea

unfit for consumption.
(b) Biochem. To modify (a protein) by heat, acid, etc., so that it no longer has its

original properties.

Since Bob shares no long-term secrets with the Authentication Server (AS), the AS
cannot set up a confidential channel between Bob and the CAPTCHA server. Thus,
an active adversary Mallory can launch a middleperson attack between Bob and the
CAPTCHA server.

After inserting himself, however, Mallory is unable to exploit his position in the
conventional way. We refer to this as a denatured attack: the new assumptions implicit
in anonymous “authentication” render the original properties of the attack unfit for
use. The attack exists, but it no longer has its original properties.

Mallory is able to “steal” Bob’s CAPTCHA by not forwarding it, but rather
solving it himself. If he does, however, he has effectively carried out a Denial of
Service attack against Bob but has not breached Alice’s security policy: to Alice,
one unknown anonymous user is as good as another. If, on the other hand, Mallory
forwards the CAPTCHA to Bob, Bob’s solution does not help Mallory to authenticate
himself, since it is bound to the session key kBM and Mallory needs a solution bound
to kMC in order to acquire a “CAPTCHA solved” token. Thus, Mallory has exactly
the same power to authenticate to Alice whether or not he is attacking Bob: this is
a denatured middleperson attack.

5 Related Work

The Kerberos network authentication protocol [5,6] is based on an earlier authenti-
cation protocol by Needham and Schroeder [4]. These protocols allow users to receive
authorisation tokens from a trusted authentication and authorisation server. These
tokens can be presented to networked services such as file servers and mail servers,
proving to those servers that the user has the right to use them without revealing the
user’s password to them. Kerberos relies on a strong notion of user identity, although
primitives have been introduced to deal with some degree of anonymity.

Zhu, Hartman and Leach’s RFC 6112 proposes anonymous credentials for Ker-
beros [10]. This would allow users to be granted tickets that identify them only by
realm, not personal identity. These tickets provide a natural expression of the “iden-
tity” expressed by the above aliveness extensions: they identify an identity that it
believed by a particular AS to have some property, which in our case is to be alive.

RFC 6112 would also allow users to obtain tickets from a TGS without any au-
thentication whatsoever that prove nothing about the ticket bearer’s identity. Lack-
ing any authentication, this protocol cannot prevent automatic ticket harvesting; a

Sybil-prevention feature such as that afforded by our liveness extensions would be a
natural fit for this part of the RFC.

Holt and Seamons’ Nym is a pseudonymous credential system that allows users
to convert pseudoname tokens into TLS client certificates [3]. For instance, a user
could request a pseudonymous token from a server that enforces a “one token per
IP address” policy. This token can then be exchanged for a client certificate that
is accepted by a service such as a wiki. The aliveness extensions that we propose
applying to Kerberos could fit equally well into the Nym framework: the token service
is agnostic towards the policy that it enforces. Indeed, the authors of Nym observed
that tokens might be earned by solving CAPTCHAs or puzzles; what our extensions
add is the specific cryptographic protocol that should be used to earn the token.

Tsang et al.’s Nymble is a larger system for providing credentials that are unlink-
able by default but linkable when the credentials are misused [7]. Nymble includes a
pseudonymous credential acquisition phase, but the focus of the work is elsewhere:
blacklisting pseudonyms. As with Nym, Nymble could benefit from the inclusion of
our aliveness protocol in its credential acquisition phase.

6 Conclusion

The Kerberos protocol and its existing extensions provide a useful service: given
a trusted third party, clients and servers can authenticate each other and set up
secure communication channels. The protocol is a natural fit for services such as mail
relays that only provide service to users who are known to the system administrator
according to a pre-arranged unique name. It is a less natural fit for services that are
offered to anonymous users: in Kerberos, authorisation requires authentication.

We have extended Kerberos, using an existing “pre-authentication” framework
and plugin architecture, for scenarios which the existing model does not fit well:
services such as chat systems or Wikis that do not necessarily require a globally-
unique username but do need to know whether or not the user is alive. The protocol
uses a technique and notation called unboxing : an analogue to encryption that is
trivial for humans but difficult for machines.

The protocol is secure against eavesdropping by a passive adversary and indif-
ferent to active attacks: there are no pre-existing shared secrets to steal and a mid-
dleperson cannot impersonate the authenticating user. A middleperson can authen-
ticate themselves to the server instead of the client he is attacking, but the attack
is denatured : rendered unfit for use and without its original properties. The server is
indifferent to which anonymous user is currently connected; the only property it is
required to verify is that the connected anonymous user is alive.

Our protocol allows network services to be provided to anonymous-but-alive users.
User authorization is not done on the basis of who one is, but whether one is.

Acknowledgements

We would like to thank Paul Syverson, Matt Blaze and Ross Anderson for helpful
comments and questions during the workshop at which this protocol was presented.

References

1. Ahn, L. V., Blum, M., Hopper, N. J., and Langford, J. CAPTCHA: using hard AI problems
for security. In EUROCRYPT 2003: Proceedings of the 22nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques (May 2003), Springer-Verlag, pp. 294–311.

2. Hartman, S., and Zhu, L. A Generalized Framework for Kerberos Pre-Authentication. RFC 6113,
Apr. 2011.

3. Holt, J. E., and Seamons, K. E. Nym: Practical Pseudonymity for Anonymous Networks. Tech.
Rep. 2006-4, Internet Security Research Lab (ISRL), Brigham Young University, June 2006.

4. Needham, R. M., and Schroeder, M. D. Using encryption for authentication in large networks of
computers. Communications of the ACM 21, 12 (Dec. 1978).

5. Neuman, B., and Ts’o, T. Kerberos: an authentication service for computer networks. IEEE Com-
munications Magazine 32, 9 (1994), 33–38.

6. Neuman, C., Yu, T., Hartman, S., and Raeburn, K. The Kerberos Network Authentication
Service (V5). RFC 4120, July 2005.

7. Tsang, P., Kapadia, A., Cornelius, C., and Smith, S. Nymble: Blocking Misbehaving Users in
Anonymizing Networks. IEEE Transactions on Dependable and Secure Computing 8, 2 (2011), 256–269.

8. Turing, A. M. Computing Machinery and Intelligence. Mind 59 (Oct. 1950), 433–460.
9. von Ahn, L. Human Computation. Tech. Rep. CMU-CS-05-193, Carnegie Mellon University, Pitts-

burgh, PA, 2005.
10. Zhu, L., Hartman, S., and Leach, P. Anonymity Support for Kerberos. RFC 6112, Apr. 2011.

	Stayin' Alive: Aliveness as an alternative to authentication

