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In stereoscopic displays, such as those used in VR/AR headsets, our eyes

are presented with two diferent views. The disparity between the views is

typically used to convey depth cues, but it could be also used to enhance

image appearance. We devise a novel technique that takes advantage of

binocular fusion to boost perceived local contrast and visual quality of im-

ages. Since the technique is based on ixed tone curves, it has negligible

computational cost and it is well suited for real-time applications, such as

VR rendering. To control the trade-of between contrast gain and binocular

rivalry, we conduct a series of experiments to explain the factors that dom-

inate rivalry perception in a dichoptic presentation where two images of

diferent contrasts are displayed. With this new inding, we can efectively

enhance contrast and control rivalry in mono- and stereoscopic images, and

in VR rendering, as conirmed in validation experiments.
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1 INTRODUCTION

Image contrast is a critical factor of perceived image quality. Im-

ages with higher contrast are usually perceived as more realistic

and 3-dimensional [Vangorp et al. 2014]. Bright, high-dynamic-

range displays achieve high contrast, but may introduce licker in

low-persistence VR/AR displays and consume more power. Local

tone-mapping operators can be efective at enhancing local contrast,
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Fig. 1. Comparison of standard stereo images and the images with enhanced
perceived contrast using our DiCE method. They can be cross-fused with
the assistance of the dots above the images. Notice the enhanced contrast
in the shadows and highlights of the scene. The stereo images are from Big

Buck Bunny by Blender Foundation.

but may lead to unnatural looking images and artifacts in video [Eil-

ertsen et al. 2013]. They are also computationally expensive, making

their use prohibitive especially in time-critical VR/AR applications,

in which every GPU cycle matters and dropping frames is not an

option. In this paper, we capitalize on the human visual system’s

binocular fusion mechanisms to enhance contrast and visual quality

of images shown on binocular displays, such as those used in VR/AR

headsets.

We exploit an inherent property of the binocular fusion mecha-

nism to enhance perceived contrast. We introduce a method that

ACM Transactions on Graphics, Vol. 38, No. 6, Article 211. Publication date: November 2019.



211:2 • Fangcheng Zhong, George Alex Koulieris, George Dretakis, Martin S. Banks, Mathieu Chambe, Frédo Durand, and Rafał K.
Mantiuk

takes advantage of this property by selectively using lower or higher

tone curve slopes to improve image contrast. However, this can

cause binocular rivalry: an unstable percept that switches between

the image of one or the other eye. We conduct an experiment to

establish the main factors causing this rivalry and to reliably tune

the parameters of our method. From the results we ind that the ratio

of contrasts presented to both eyes is the main factor causing rivalry.

This allows us to tune our method to greatly enhance contrast while

reducing rivalry. Since the dominant cause of rivalry is mostly inde-

pendent from image content, our method can be implemented as a

ixed set of tone curves, which have negligible computational cost

and can be directly used in real-time VR rendering. We evaluated

our method by comparing to previous work, and our results clearly

show that our solution is more successful at enhancing contrast

and at the same time much more eicient. We also performed an

evaluation in a VR setup where users indicate that our approach

clearly improves contrast and depth compared to the baseline.

We make three primary contributions:

• We propose a binocular contrast enhancement method that

generates a diferent tone curve for each eye with the intent

to maximize perceived contrast while controlling the level of

rivalry (Section 4).

• We experimentally establish the main factor that causes ri-

valry in enhanced images (Section 5). This lets us ind the best

parameters for our tone curve generation method (Section 6).

• We demonstrate the strengths and shortcomings of our and

existing dichoptic presentation techniques in an evaluation

experiment (Section 7).

Our methodology and results suggest that rendering for the binoc-

ular domain is both a computationally cheap and efective means to

increase contrast in binocular displays.

2 RELATED WORK

The proposed method is a post-processing technique that can be

combined with any existing tone mapping or applied directly to

monoscopic or stereoscopic images. Because it shares goals and

techniques of tone mapping, we irst briely review tone-mapping

methods. Then we discuss previous methods that rely on binocular

fusion.

2.1 Tone Mapping and Contrast Enhancement

Tone mapping is an image-processing operation performed to con-

vert an image from a scene-referred color space into a display-

referred color space. Tone mapping spans a range of techniques

that can vary in their goals. Some techniques simulate speciic phe-

nomena of the visual system (glare, night vision). Others attempt to

achieve the best subjective quality (color grading, enhancement) or

possibly faithful reproduction of image appearance [Eilertsen et al.

2017]. Because scene-referred colours often exceed the dynamic

range of the target display, a common goal of all tone-mapping

methods is the reduction of dynamic range.

One of the most common techniques used in tone mapping is a

global tone curve: a monotonic function that maps input color/lumi-

nance values to the displayed color/luminance values. Such a curve

can be ixed and, for example, can mimic the response of a photo-

graphic ilm [Reinhard et al. 2002], or can adapt to image content

[Ward-Larson et al. 1997] and a display [Mantiuk et al. 2008]. A tone

curve is typically designed to enhance contrast in visually relevant

parts of the scene and compress or clip contrast in less relevant

parts, which are dark or noisy [Eilertsen et al. 2015], or contain

bright highlights or light sources that cannot be easily reproduced

on a display.

To revert the loss of small contrast details caused by compressive

tone curves, many tone-mapping techniques involve local contrast

enhancement. Such enhancement could be achieved by unsharp

masking combined with edge-stopping ilters [Durand and Dorsey

2002; Eilertsen et al. 2015], which can avoid ringing or halo arti-

facts. Stronger enhancement could be achieved by operating in the

gradient domain [Farbman et al. 2008]. This, however, requires com-

putationally expensive optimization. Contrast at multiple scales can

be more eiciently edited using local Laplacian pyramids [Paris et al.

2011]. The main drawback of all these enhancement techniques is

that they introduce a substantial computational overhead, which

is unacceptable in real-time applications. Our technique replaces

computationally expensive local contrast enhancement with ixed

tone curves, which have negligible computational cost.

2.2 Exploiting the Binocular Domain

Binocular fusion was exploited before in a number of tone-mapping

methods for binocular displays [Yang et al. 2012; Zhang et al. 2019,

2018]. We will refer to these methods as BTMO (Binocular Tone

Mapping Operators). The goal of these techniques is to produce two

tone-mapped images that are maximally diferent, yet comfortable

to fuse. This is achieved by adjusting the parameters of an existing

[Yang et al. 2012] or newly proposed tone-mapping operator [Zhang

et al. 2018] in an optimization loop. The loss function is designed to

maximize the diference between left- and right-eye images, leading

to "richer" fused images. To ensure acceptable levels of rivalry, a

binocular viewing comfort predictor is used to reject image pairs

that are deemed too rivalrous. Neural networks can also be lever-

aged to generate tone-mapped images without assumptions about

monocular tone-operators. In concurrent work, Deep binocular tone

mapping [Zhang et al. 2019] employs CNNs to generate an end-to-

end binocular tone mapping operator that outputs the desired LDR

pair from an HDR image. Similar to previous BTMO techniques, the

loss function is designed to optimize the visual content distribution

to maximize the perception of local detail and global contrast, while

maintaining visual comfort. Real-time computation can be achieved

with a GPU acceleration.

In contrast to BTMO techniques, our method explicitly enhances

contrast based on psychophysical models and indings, rather than

making images diferent. In Section 7, we demonstrate that this leads

to much more consistent and predictable enhancement. Instead of

a complex viewing comfort predictor, which combines multiple

heuristics, we ind a simple yet efective rivalry indicator based

on new experimental indings. Our technique does not restrict the

choice of tone-mapping operator and can be used with stereoscopic

content. But most importantly, our technique has negligible compu-

tational cost compared to the BTMO methods, and thus can process
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an image pair in milliseconds rather than seconds without relying

on GPUs.

3 BACKGROUND

We irst provide deinitions of physical quantities and their percep-

tual correlates central to understanding the principles of human

vision that govern the perceptual phenomena we exploit. Then, we

discuss the models and relations that explain the fusion of dichoptic

stimuli.

3.1 Physical quantities and their perceptual correlates

One of the fundamental indings in psychophysics are those about

non-linear and complex relations between the physical stimuli, and

the perceptual sensations they elicit. Our method relies on match-

ing perceived rather than physical quantities, so it is important to

explain such relationships.

The photometric measure of the luminous intensity per unit area

of light, measured in cd/m2 (nits) is luminance. The diference in

luminance that makes an object or its representation on a display dis-

tinguishable from its surroundings is contrast. Contrast is typically

expressed using Michelson’s formula (refer to Figure 5), but there

are alternative formulas: Weber, logarithmic, and energy-based RMS

contrast. The relationship between physical contrast and perceived

contrast magnitude can be explained by a power function with an

exponent ranging from 0.45ś0.55 [Cannon 1985]. The contrast be-

tween the maximum and minimum luminance that can be produced

on an electronic display is its dynamic range. Although it is typi-

cally reported as a contrast ratio Lmax /Lmin , a more perceptually

uniform measure of dynamic range is given by the diference of

log-luminance, log10(Lmax ) − log10(Lmin ).

3.2 Perception in Dichoptic Presentation

In a binocular display, dichoptic presentation is the presentation of

diferent images to the two eyes and dioptic is the presentation of

identical images to the two eyes. If the dichoptically viewed images

are synthesized/photographed from two ofset viewpoints at a dis-

tance approximately equal to the human interpupillary distance,

they contain image disparities that elicit the illusion of depth by

exploiting binocular vision. This is a stereoscopic image pair and

always requires dichoptic presentation. Dioptic presentation cannot

ellicit the illusion of depth from disparities Ð as images for left and

right eye are identical Ð and thus can only show monoscopic im-

ages. To avoid confusion, we will refer to images without dichoptic

enhancement as standard in the manuscript, regardless of whether

these are monoscopic or stereoscopic images.

When the dichoptic stimuli are too dissimilar to be fused into one

stable percept, the viewer experiences binocular rivalry. Binocular

rivalry refers to a state of competition between the eyes, with one

eye inhibiting the perception of the image in the other eye causing

alternation between perceived images [Blake 1989]. Rivalry is caused

primarily by geometric diferences in the two eyes’ images. A special

case is luster, which occurs when luminance or contrast diferences

exist in corresponding image areas. It creates a shiny appearance in

such areas.
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Fig. 2. For each level of standard (dioptic) contrast (c = 0.1 .. 0.5), the color
lines show the combination of the let and right eye contrast (dichoptic
contrast) that produces the match. The color lines represent the standard
and the axis the test conditions in the contrast matching experiment. The
lines are ploted according to the contrast matching model from Equation 2
and assuming β = 3. The black-dashed line represents standard contrast.
The grey-dashed lines illustrate the range of contrast combinations that
result in an unstable percept and rivalry. The color dashed lines illustrate the
same relation but according to the late summation model (Equation 3), and
the doted colour lines show the relation in terms of logarithmic contrast
(Equation 4).

Fusion of luminance. When a uniform patch of luminance Ll is

shown to the left eye, and a patch of luminance Lr to the right

eye, the fused patch can be matched to the luminance that is the

(weighted) average of those:

Lfused = a Ll + (1 − a)Lr , (1)

where Lfused is the matching luminance (presented to both eyes)

and a compensates for the dominant eye [Levelt 1965] (a≈0.5).

Fusion of contrast. Legge and Rubin [1981] investigated perceived

contrast when two stimuli of the same spatial coniguration but

diferent contrasts are presented to the two eyes. Two stimuli were

presented: The standard in which the same contrast is presented to

the two eyes and the test in which a diferent contrast is presented

to each eye. The subject adjusted the contrast of the test in one

eye to create the same perceived contrast for the standard and test.

They found that a generalized mean best describes their data. If we

present contrast cL to the left eye and contrast cR to the right eye,

the magnitude of the perceived, matched standard/dioptic contrast
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cm is:

cm =
©­«
c
β
L
+ c

β
R

2

ª®¬
1
β

. (2)

β tends to be close to 3. It is the same across spatial frequencies and

increases slightly with contrast. The matching contrast obtained

by the above formula is illustrated as color curves in Figure 2. The

curves show that the fused contrast is dominated by the eye with the

stronger contrast, in a manner that is close to the winner-take-all

strategy.

Kingdom and Libenson [2015] further show that the contrast

fusion can be explained by the late summation model in which the

signals from both eyes contribute to the response, R, of a contrast

transducer function:

R(cL , cR ) =
c
p
L
+ c

p
R

z + c
q
L
+ c

q
R

, (3)

where z, p, and q are the parameters controlling the shape of the

contrast transducer [Legge and Foley 1980]. Curves of matching

contrast resulting from the late summation model are shown as

dashed color curves in Figure 2. Because bothmodels are comparable

in the range where inter-ocular contrast diferences are small (and

the rivalry is low), we will rely on the simpler form in Equation 2

in the further analysis.

3.3 Partial overlap HMDs

Binocular human vision is achieved via two monocular visual ields

of around 160◦ of horizontal visual angle each; their total horizontal

ield of view is approximately 200◦. The combined FoV consists of

three regions: an overlapping 120◦ central binocular region where

stereopsis is achieved and two lankingmonocular regions of approx.

40◦ each [Palmer 1999].

Older HMDs employed a full overlap design, in which both eyes

saw the same part of the scene. This resulted in smaller ield-of-

views as the optical design was limited by the human binocular

region. Modern commercial HMDs have a partial overlap design,

mimicking the human visual system. This allows for physically

smaller displays while both increasing the FoV and thus immersion,

and supporting wider aspect ratios [Fuchs 2017]. In such HMDs,

binocular overlap refers to the visible overlapping portion between

the two eyes (see Fig. 3) in the headset and describes how much

of the virtual scene can be seen by both eyes, which is crucial for

depth perception. In partial overlap binocular displays only a central

region of the scene is shown to both eyes, and areas to either side are

seen by only one eye. This often creates interocular diferences in

the monocular regions [Patterson et al. 2007] which often induce a

perceptual efect known as luning which is the subjective darkening

in the monocular regions or, for other users, it is experienced as a

visual fragmentation of the ield-of-view into three distinct regions

(left, middle, right) [Klymenko et al. 1994]. In modern headsets this

can be alleviated by post-processing the binocularly overlapping

regions.

200o

160o 160o
75o

100o
50o

120o

75o

Fig. 3. Arcs denote angles for viewing in the real world: each eye sees a
field of view of about 160◦. This results to a 200◦ combined horizontal field
of view, 120◦ of which are overlapping and thus binocular processing or
stereopsis is possible. Two-headed arrows denote angles in a modern VR
headset: each eye sees a horizontal FoV of about 75◦, leading to a 100◦

combined FoV, only 50◦ of which are overlapping and available for binocular
processing or stereopsis.

4 DICHOPTIC CONTRAST ENHANCEMENT

In this section we explain how the contrast of images seen binocu-

larly can be enhanced beyond what can be reproduced on a typical

display signiicantly improving image quality and realism in VR

headsets and stereo displays. Our method was inspired by the ob-

servation of Legge and Rubin that the fused contrast is dominated

by the image of higher contrast (Equation 2). We take advantage of

stereoscopic displays, which can present a diferent image to each

eye and therefore ofer a separate dynamic range budget for the

left and right eye. This lets us selectively use lower or higher tone

curve slopes to improve image contrast. When binocularly fused,

the images convey more ine detail in the shadows and highlights

compared to standard tone-mapped images.

4.1 Tone curves and contrast enhancement

We deine a tone curve as a function mapping the logarithmic lu-

minance (base-10 logarithm) of the input image to the physical

logarithmic luminance of the display device, as shown in Figure 4.

Representing luminance in the logarithmic domain makes it more

perceptually uniform (see Sec 2.4 in [Mantiuk et al. 2015]) but also

has the property that the slope of the tone curve in the log-log

domain modulates contrast of the corresponding tonal range. Alter-

ing the slope corresponds to multiplying log-luminance values: i.e.,

raising linear luminance values to a power (commonly known as

gamma).

A well-selected tone curve can achieve high contrast in any rel-

evant tonal range while mapping all pixel values to the available

dynamic range. Assigning a steeper slope in one part of the tone

curve boosts contrast in that range, however, a larger proportion of

the output dynamic range budget is spent, necessitating contrast

compression in another part of the input range. The output log-

luminance is restricted by the peak luminance of the display (dmax )

and its black level (dmin ).
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Fig. 4. An example tone curve mapping input image log luminance to
output image log luminance. The slope of the tone curve corresponds to the
reduction or increase in contrast in the given tonal range of an image.

To ensure that we can rely on the contrast fusion rule when

manipulating tone curves, we need to address the discrepancy in

contrast units. The contrast fusion rule in Equation 2 is deined in

terms of Michelson contrast, which we denote as c . The slope of

the tone curve directly alters logarithmic contrast, which we denote

as д. Logarithmic contrast is deined as a half of the logarithm of

the luminance ratio, as illustrated in Figure 5. Logarithmic contrast

is not equivalent to Michelson contrast. However, for small and

medium contrasts (c < 0.5) that dominate natural or computer-

generated imagery, both contrast measures are linearly related, as

shown in Figure 5. Thus, the contrast fusion can be expressed in

terms of logarithmic contrast:

дm =
©­«
д
β
L
+ д

β
R

2

ª®¬
1
β

. (4)

The new contrast matching formula, plotted as dotted lines in Fig-

ure 2, predicts contrast match that lies between the predictions of

Equations 2 and 3.

4.2 Interleaved dichoptic tone curves

Let us consider howwe can design a tone curve that wouldmaximize

contrast enhancement within the given budget of the dynamic range.

A simple approach would be to create two tone curves, like those in

Figure 6, consisting of two piece-wise linear segments. For a given

tone curve segment, the slope in one eye can be increased while

reduced in the other without exceeding the dynamic range budget.

If the base tone curve (black dashed line in Figure 6) has the slope

sb , we set the slope for one eye to sl and the slope for the other eye

to sh = 2 sb − sl so that sl + sh = 2 sb . We will use indices l and

h to denote low and high slope (rather than left and right eye) as

the slopes will be assigned interchangeably to each eye for each

segment of the tone curve. From Equation 2, we can ind that the

gain in fused contrast for the original contrast д is:

Γ =
1

д sb

(
(д sl )

β
+ (д sh )

β

2

) 1
β

=

1

sb

©­«
s
β

l
+ s

β

h

2

ª®¬
1
β

. (5)

Fig. 5. The relation between logarithmic and Michelson contrast.

Fig. 6. When a separate tone curve is used for each eye (dichoptic presen-
tation) the slope of one of the curves can be up to twice as high as that for
a standard dioptic presentation. The perceived contrast for the dichopic im-
ages will be 10%ś50% higher (see Figure 7). However, such strong separation
of the tone curves will result in an image that is very uncomfortable to view.

The gain as the function of the slope on the left and right eye

is plotted in Figure 7. The curves clearly show that the gain in

perceived contrast is greatest when the slope is maximized in one

eye and minimized in another. However, such a large luminance

and contrast diference could result in strong binocular rivalry.

To reduce the luminance diference and thus the potential cause

of rivalry, we want the left- and right-eye tone curves to be more

similar to each other. This can be achieved with an interleaved tone

curve with a higher number of piece-wise linear segments, such as

the one in Figure 8. It should be noted that increasing the number of

segments does not afect the slopes of the curves in the left and right
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Fig. 7. The gain in contrast due to fusing let and right eye images which
are processed by the tone curves with the slopes sl and sh (x-axis). As the
tone curve slope is reduced on the let eye (sl ), it is increased on the right
eye (sh ). Such a change in slope does not reduce the dynamic range budget
allocated to both eyes, but it boosts fused contrast.
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Fig. 8. Binocular tone curves may introduce less rivalry if they are con-
structed so that resulting luminance values in each eye are possibly similar.
The interleaved low- and high-slope segments could be used to produce
such curves. Inset (a) shows the notation we use. We denote the lower slope
as sl = l/∆in and the higher slope as sh = h/∆in . We also denote the
number of linear segments in the tone curve as N . For example, the segment
that spans ∆in is what we mean by one segment. Inset (b) shows smoothing
using Bezier curves. The black circles denote the control points.

eyes and therefore does not afect contrast enhancement. However,

the number of segments restricts the highest contrast that can be

manipulated by the tone curve: if the contrast between two pixels

is large enough to span two segments of the tone curve (i.e. be

larger than ∆in ), it is not going to be enhanced (or reduced) as

intended. Finding the right number of segments and their slopes

is a challenging problem and we address this problem in a series

of experiments in Section 5. But irst, we explain why we need to

ensure smoothness of the tone curves.

Fig. 9. LCD display with a stereoscope used in the experiments.

4.3 Smooth tone curves

In preliminary experiments, we observed that the piece-wise linear

interleaved tone curves may result in banding artifacts when an

image contains large areas with smooth gradients. These are caused

by the C1 discontinuities in our tone curves, which translate to

similar discontinuities in the resulting image. The visual system

is very sensitive to such discontinuities, which are interpreted as

spurious contours [Kingdom and Moulden 1988]. This problem

can be easily addressed by replacing the small intervals containing

discontinuities in the piece-wise linear curve with a cubic Bezier

curve. We set the size of the interval to be 0.1 loд10 units. The

three control points of this Bezier curve are the two end points on

the interval and the slope-transition point, as shown in 8-(b). This

ensures that our tone curves areC1 continuous in the entire domain.

5 EXPERIMENT 1: THE PREDICTOR OF RIVALRY

The interleaved dichoptic tone curves are controlled by two pa-

rameters: the number of segments and the slope of the interleaved

tone curves. To determine the optimal choice of these parameters

that would produce the strongest enhancement and acceptable level

of rivalry, we conducted a perceptual experiment. The experiment

was intended to test two hypotheses, each proposing a diferent

indicator of binocular rivalry:

Hypothesis 1. If rivalry is induced by the luminance diference

between the left and right eyes, a good predictor would be the

maximum log-luminance diference, or h− l using the notation from

Figure 8. Note that h − l = (sh − sl )∆in .

Hypothesis 2. Rivalry may also be caused by the contrast difer-

ence between the left and right eyes. A good predictor in this case

would be the ratio of contrasts presented to the two eyes sl /sh = l/h.

Apparatus and Participants. The experiment was performed on a

24-inch NEC PA241W colorimetrically calibrated display with an

attached stereoscope in a dark room (Figure 9). The optical path to

the display was 36cm (2.77D). Eight volunteers participated (mean

age 27.3, SD 4.2 years). Before the experiment, each participant
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read and signed the consent form. We also demonstrated to each

participant what rivalrous and non-rivalrous stimuli look like.

Stimuli and Procedure. We selected 16 HDR images, which were

tone mapped based on the smooth inter-leaved tone curves with

N equal segments as explained in Section 4. The end-points of the

tone curve were set to be at the 1st and 99th percentiles of image

luminance. The dynamic range of the target display was 2.7 log-10

units (500:1 contrast).

The participants were asked to adjust the deviation d (shown in

Figure 8) from the straight tone curve so that "the image looks sharp

and comfortable to view" (exact wording on the brieing form). The

critical values of d were measured using the method-of-adjustment

procedure with three repetitions per image. Then, the two proposed

predictors were computed accordingly as:

h − l = 2d (6)

l

h
=

∆out − d

∆out + d
(7)

The experiment consisted of six sessions. The same HDR images

were used in all of them. Four of the sessions had N = 2, 4, 10, and

20 interleaved segments spanning the entire dynamic range of the

display, 2.7 log-10 units. The two remaining sessions had N = 10

segments spanning half of the display’s dynamic range, 1.35 log-

10 units, so that one session spanned the darker half and one the

brighter half of the dynamic range. Example of images rendered with

diferent number of segments and slopes are shown in Figure 10.

The order of sessions and images was randomized.

5.1 Results

The plots for the two proposed predictors and for eight participants

are shown in Figure 11. It is evident that the ratio of contrast l/h is a

much more consistent predictor than the log-luminance diference

across diferent test conditions (number of segments, output display

dynamic range). This was further tested in a leave-one-out cross-

validation, where we used the 7 out of 8 of the measured images

to calculate a ixed value of the predictor, which was then used to

predict the sl values of the remaining images. The procedure was

repeated eight times. The prediction error was computed as RMSE

between the true and predicted sl and is shown in Table 1. The

results suggest that the ratio of contrast l/h is indeed the better

predictor for sl .

Discussion. The results demonstrate that the magnitude of rivalry

is determined by the contrast diference between the eyes (Hypoth-

esis 2) rather than by the luminance diference (Hypothesis 1). This

inding conirms the importance of contrast in visual processing

[Kingdom and Libenson 2015]. There is ample evidence suggesting

that low-level visual mechanisFms attempt to preserve contrast but

they do not encode information about absolute luminance. For ex-

ample, Weber’s law states that we are sensitive to ratios (contrast)

rather than absolute levels. Contrast constancy preserves the ap-

pearance of supra-threshold contrast across spatial frequency and

to some extent across luminance range [Georgeson and Sullivan

1975; Kulikowski 1976]. Furthermore, light-/dark-adaptation is at-

tributed in large extend to the retina (photoreceptors and bipolar

cells) [Dunn and Rieke 2008] and can be controlled individually per

Table 1. Each row represents the prediction errors (RMSE) for each partici-
pant using the corresponding predictors.

Participant Log-luminance diference Ratio of contrast

1 0.4182 0.0870

2 0.3793 0.0971

3 0.2880 0.0795

4 0.2062 0.0576

5 0.3811 0.0895

6 0.5217 0.1541

7 0.2824 0.0892

8 0.3148 0.0981

eye. This means that a per-eye luminance diference can be partially

compensated by the adaptation mechanism. Therefore, it is not sur-

prising that conlicting contrast signals evoke more rivalry than

conlicting luminance signals. This inding also shows that some

degree of rivalry is unavoidable as we need to introduce contrast

diferences for contrast enhancement. However, many observers

reported that they can adapt to a moderate level of rivalry a few

seconds after switching from standard to dichoptic presentation.

It should be also noted that the ratio of contrast l/h as a predictor

of rivalry is independent of image content. As shown in Figure 11, we

cannot observe a pattern for images that would be consistent across

the participants. The diferences in the means between observers are

also small given the within-observer variance. Therefore, the high

variance is likely to be due to the measurement noise, rather than

systematic efects. To further validate it, we also conducted a similar

experiment for sinusoidal gratings instead of complex images to

better isolate the efect of contrast, luminance, and spatial frequency.

We did not ind a signiicant efect of any of these factors. We

include the details of this experiment in the supplemental material

(Experiment 1a).

5.2 Rivalry due to luminance diference

Although the contrast seems to be the dominant factor in dichoptic

rivalry, we cannot fully discount the efect of luminance. If we did

so, we would need to assume that two images of the same contrast

but very diferent luminance are always comfortable to fuse. To

determine maximum luminance diference that can be regarded as

acceptable, we conducted one additional experiment (Experiment 1b)

using the same protocol as in Experiment 1 and described in de-

tail in the supplementary material. The results indicated that most

observers can tolerate the luminance diference (h − l) up to 0.66

log-10 units (50th percentile). We will use this result to determine

the best number of segments in Section 6.1.

6 IMPLEMENTATION

Experiment 1 demonstrated that binocular rivalry is mostly induced

by the contrast diference between the eyes. The variance in the

perceived rivalry between the images is relatively small, therefore,

we can make our enhancement method independent of image con-

tent. Our interleaved tone curves can be precomputed, and applied

to an image after tone mapping (but before display coding). This is
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N=2    l/h=0.63    h-l=0.6 N=2    l/h=0.63    h-l=0.6 

N=2    l/h=0.33    h-l=0.36 N=2    l/h=0.33    h-l=0.36 

N=20    l/h=0.33    h-l=0.136 N=20    l/h=0.33    h-l=0.136 

Fig. 10. Examples of DiCE-enhancedmonoscopic images from Experiment 1,
with diferent strength of enhancement (the enhancement is stronger at a
low l/h ratio), and diferent number of segments of interleaved tone curves
(N ). The images are suitable for cross-fusion.

a signiicant advantage of our DiCE method, letting us use it with

any existing tone-mapping operator, or directly with SDR images.

Figure 12 shows the diagram of a tone-mapping pipeline with

DiCE. First, any existing tone-mapping operator can be used to

reduce the dynamic range of an HDR frame and generate a display-

referred frame. Alternatively, a SDR frame, decoded into a linear

RGB space, can be used as input to our method. We then separate

a luminance channel from CIE u ′v ′ chromacities and apply the

interleaved tone curves to the luminance channel alone. The color

is added back using an inverse color transformation. Finally, the

colors are display encoded and stored in a raster bufer. Depending

on the target display, they can be encoded into the sRGB space

for SDR displays, or one of the color spaces from the ITU BT.2100

recommendation for HDR displays.

6.1 Selecting interleaved tone-curve parameters

Our experimental results indicate that l/h determines both con-

trast enhancement and the magnitude of rivalry. The l/h is also

independent of the number of segments. Given that, we opt for the

smallest number of segments for two reasons: a) wider segments let

us enhance a broader range of spatial frequencies (as discussed in

Section 4.2); and b) there is a smaller chance for banding artifacts in

the region where the tone curve switches from low to high slope (as

discussed in Section 4.3). However, small number of segments in-

creases the maximum luminance diference, which could be another

Fig. 11. The two proposed predictors of binocular rivalry (columns) collected
from Experiment 1, for eight participants (rows). The colors denote diferent
number of segments N and diferent output display dynamic range (d* and
b* indicate half of the display’s dynamic range, with d* representing the
darker half and b* representing the brighter half). The error bars represent
the expected value of the standard deviation for the given set of conditions.
It is evident that the ratio of contrast l/h is distributed more uniformly
than the log-luminance diference.
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Linear

Gamma-
corrected

SDR frame HDR frame

Display
decoding

Tone-mapping

Display-encoded frame

Display encoding

(sRGB/BT2100)

Lu'v' ››› RGB

RGB ››› Lu'v'

Interleaved
tone-curves

u'v'L

DiCE

Fig. 12. DiCE as part of a tone-mapping pipeline. The dynamic range of
HDR input frames (in linear RGB color space) can be reduced with any
tone mapping operator. Alternatively a standard SDR frame can be used.
The luminance is separated from two color-opponent channels. The per-eye
interleaved tone curves are applied to the luminance channel, separately
for each eye and then color is added back. Finally, the pixel values are
display-encoded into SDR (sRGB) or HDR (rec.2100) display-referred space.
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Fig. 13. The shape of the dichoptic tone-curves at diferent l/h ratios. The
ratios were selected to represent 1st, 25th, 50th, 75th and 99th percentile of
the data (across all images and observers) from Experiment 1.

cause of rivalry, as discussed in Section 5.2. Therefore, in Figure 14

we plot the maximum luminance diference (h − l ) as a function of

the display dynamic range and the number of segments (Experiment

1b, in supplementary). The plots show that N = 2 is the right choice

for most SDR displays up to 2.8 log-10 units of the dynamic range,

including OLED displays used in HTC Vive and Oculus Rift. The

number of segments, however, may need to be increased to 4 for

high-contrast HDR displays.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Display dynamic range (in log-10 units)
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N=8
N=10

Rivalry threshold

Fig. 14. The maximum log-10-luminance diference (h − l ) for a given
display dynamic range (x-axis) and the number of segments (N , colors).
The plots are drawn assuming l/h = 0.63 (50th percentile). The dashed
line represents the rivalry threshold (50th percentile) for log-luminance
diference (Experiment 1b, in supplementary). The plot shows that for most
SDR displays (dynamic range <2.8 log-10 units), we do not need more than
2 segments.

Slope selection for the interleaved tone curves creates a trade-of

between contrast enhancement and binocular rivalry. Figure 5 shows

that contrast enhancement is maximised for small ratios l/h, but, as

found in the rivalry experiment, such small ratios increase binocular

rivalry. Therefore, the ratio l/h should be set as a parameter, adjusted

per user, ranging from about 0.5ś0.75. The family of interleaved

tone curves for the range of l/h ratios and two segments is shown

in Figure 13.

6.2 DiCE for Partial Overlap HMDs

For partial overlap HMDs (most commercial headsets) we cannot

apply the interleaved tone curves to the entire FoV. If the monocular

lanking regions (magenta and blue lobes in Fig. 3) are processed by

the interleaved DiCE curves, they remain unfused and show spuri-

ous contrast modulation. This is magniied with head motion in VR,

which causes contrast appearance to change in the lanked regions.

To avoid this problem, we employ a piece-wise linear blending func-

tion that ensures a gradual transition between the dichoptically

tone-mapped area of the image that is viewed binocularly, to the

monocularly tone mapped lanking lobes. The binocular overlap

area depends on the ixed headset optical setup and the eye relief,

i.e., the distance of the eye from the lens, which itself depends both

on how deep-set the eyes are in the face and how pronounced the

brow is.

7 EVALUATION

We compare our method with the standard presentation and BTMO

technique on a stereoscope in Experiment 2, and then evaluate in

VR rendering in Experiment 3.

7.1 Experiment 2: Validation with Stereo Display

In this experiment we compare our technique with the standard

presentation (no dichoptic enhancement) and previous work (BTMO,

[Zhang et al. 2018]) on a stereo display.
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DICE

Mckees pubMckees pubStandard / Dioptic Standard / Dioptic

Standard / Dioptic Poker ScenePoker Scene

DiCEDiCE

Standard / Dioptic

BTMO BTMO

Fig. 15. Example of two images used in Experiment 2 in a format suitable
for cross-fusion.

Apparatus and Participants. We used the same display and stereo-

scope as in the irst experiment. 16 volunteers participated (5 female,

mean age 26.8, SD 4.3 years).

Stimuli. 17 monoscopic images and 2 stereoscopic image were

processed with our DiCE technique and the BTMO technique from

[Zhang et al. 2018]. The images were kindly processed for us by

the authors of the BTMO paper. It should be noted that both tech-

niques serve a diferent purpose: BTMO is a tone-mapping operator

that requires an HDR image as input. Our DiCE technique expects

as input an image that has been already tone-mapped. Therefore,

to reduce diferences between the methods due to diferent tone-

mapping operators, we used one of the images generated by BTMO

as the standard/dioptic condition (no enhancement) and also as

the input to our technique. When selecting an image, we chose

the one from the pair (left- and right-eye image) which contained

fewer under- or over-exposed pixels. We used l/h ratio of 0.63 for all

DiCE-enhanced images, which was the median from Experiment 1.

We selected median rather than a higher percentile as we noted

that the participants are more conservative when they are asked to

self-report the rivalry threshold and can tolerate higher rivalry over

time, when they get used to it. Two images used in the experiment

are shown in Figure 15. The remaining images can be found in the

supplementary materials.

Procedure. We used a full-design pairwise comparison experiment

in which all unique combinations of conditions are compared: DiCE

vs. standard/dioptic, BTMO vs. standard/dioptic and DiCE vs. BTMO.

The participants were asked two questions regarding each image

pair that they saw: "which image has a higher contrast?" and "which

image looks better?" The participants could switch between one and

the other image in the pair using the arrow keys and they conirmed

the image of higher contrast with the "space" key and the image

they preferred with the "enter" key. Each pair was compared three

times by each observer. The order of image pairs was randomized.

Data analysis. The results of the pairwise comparison experi-

ments were scaled using publicly available software1 under Thur-

stone Model V assumptions in just-objectionable diferences (JODs),

which quantify the relative quality diferences between the tech-

niques. A diference of 1 JOD means that 75% of the population can

spot a diference between two conditions. The details of the scaling

procedure can be found in [Perez-Ortiz and Mantiuk 2017]. Since

JOD values are relative, the bioptic (baseline) condition was ixed at

0 JOD for easier interpretation.

Results. Results in Figure 16-a show that our DiCE method pro-

duces images of higher perceived contrast compared to their stan-

dard/dioptic counterparts, demonstrating that the contrast fusion

model is efective in complex images. The BTMO results are mixed,

sometimes producing images of higher, but sometimes also of lower

contrast compared to the standard/dioptic condition and DiCE. It is

diicult to compare DiCE and BTMO techniques in terms of con-

trast enhancement, as each technique can produce images of even

higher contrast if the binocular rivalry metric is relaxed. This, how-

ever, will result in images that are uncomfortable to view. The main

strengths of DiCE over BTMO is that the enhancement is consistent

across the images, demonstrating that the direct manipulation of

contrast in DiCE ofers better control over resulting images than

the optimization used in the BTMO method.

The preference results, shown in Figure 16-b, are less conclusive

as large subjective variations made most diferences statistically

insigniicant. For the DiCE method, we could measure the prefer-

ence diference only for the 2 out of 19 images. These diferences

could still be accidental as the test does not correct for multiple

1pwcmp Ð https://github.com/mantiuk/pwcmp
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comparisons. For 8 out of 10 comparisons that are statistically sig-

niicant, the BTMO method produced less preferred results than

standard (dioptic) presentation and only in two cases the prefer-

ence was higher. This is in contrast to indings from [Zhang et al.

2018], where the authors showed a strong preference for BTMO

over standard presentation. We can only speculate that the efect

could be due to the training of the participants; in our experiments,

the participants with more exposure to dichoptic images also in-

dicated stronger preference for them. This could be compared to

the experience of wearing new glasses, when it takes some time to

get fully comfortable and used to the new correction. This result

could be also explained by the broad meaning of the "preference"

criterion, which could combine many factors, such as comfort, fa-

miliarity, visual quality, wow-efect, etc. The results suggest that

single-dimensional "preference" may not be the best measure for

the dichoptic contrast enhancement techniques.

Figure 15 shows an example of two images produced by each

method: the one for which BTMO produces a higher contrast image

(Poker scene) and the one for which DiCE produces a higher contrast

image (McKees Pub).

All

Fig. 16. The results of the validation experiment, comparing perceived
contrast (a) and preference (b). The results are reported for each scene
and for the aggregated results across all the scenes. The bars indicate the
quality improvement relative to the standard presentation (no dichoptic
enhancement) in JOD units (the higher the beter). +1 JOD in that scale
means that 75% of observers select the given condition over the standard
presentation. The negative values mean that the standard condition is
selected more oten. The grayed bars indicate that we have no statistical
evidence that a given condition is diferent (with respect to contrast or
preference) from the standard presentation. The statistical test does not
include the correction for multiple comparisons.

7.2 Experiment 3: Validation with VR

Experiment 2 was performed in a stereoscope, which provides high

resolution and image quality, but it is less suitable for testing real-

time rendering. Therefore, in the inal experiment, we compare

DiCE with standard presentation in VR environments. This exper-

iment is also more relevant for the application of our method in

real-time rendering. Note that we could not include BTMO in this

experiment as that method is unsuitable for real-time rendering of

3D environments with 6DoF free viewing.

Apparatus and Participants. The VR environments were presented

on an HTC Vive VR headset. Ten volunteers participated (2 female,

mean age 25.8, SD 3.2 years).

Stimuli and Procedure. The stimuli consisted of 3 VR scenes shown

in Figure 17, each seen from three diferent view points. The partic-

ipants could freely look around the scenes while seated on a swivel

chair. To switch between DiCE and standard presentation, the partic-

ipants pressed the trigger on the Vive controller. We used l/h ratio

of 0.55 for the DiCE method for similar reasons as in Experiment 2:

to avoid overly conservative threshold adjustment and to make the

method more diferent from the standard presentation. For each

stimuli, they were asked three questions: "which scene appears to

be higher in contrast?", "which scene appears to have more depth?"

and "in which scene the materials and textures look more realistic?"

(exact wording on the brieing form). The questions were motivated

by our own observation that DiCE-enhanced images have diferent

quality and appear more three-dimensional. We did not ask about

their preference as the question did not give conclusive answers

in Experiment 2. Before the experiment, each participant read and

signed the brieing and consent forms. As the part of a training

session, each participant was presented with three pairs of images

with examples of low/high contrast, three-dimensional/lat shading,

and natural/unnatural looking textures. We show the images for

this training session in the supplementary materials. None of the

participants reported symptoms of VR sickness after 10-15 minute

session (no formal questionnaire was used).

Results. The results of Experiment 3 are presented in Figure 18 as

percentages of participants who voted for DiCE when asked each

of the three questions. It shows that our DiCE method produces

higher contrast perception than standard presentation for all VR

environments. The results also conirmed that the observers could

see more depth with the DiCE enhancement. The efect can have a

number of explanations. Ichihara et al.[2007] showed that increased

contrast can give an impression of depth. Binocular luster may be

causing lustrous features to pop out [Wolfe and Franzel 1988], giving

the impression of false depth. Another possible explanation is that

artiicial disparity stemming from the diferent monocular images

(luminance dichopticities) could give rise to a depth sensation [Wolfe

1986]. The results for realistic looking textures were less conclusive

with only one environment, with the simplest textures and lowest

complexity, showing moderate preference for DiCE.

8 DISCUSSION

The results of Experiment 2 and 3 conirmed that our DiCE tech-

nique can efectively enhance contrast not only for simpliied stimuli,
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Fig. 17. Three VR scenes in Experiment 3: Road, Rock, Woods (from let to right).

Fig. 18. The percentages of votes for DiCE when compared to the standard
presentation. The results are reported for each VR environment and for the
aggregated results across all the environments. The error bars denote the
confidence intervals.

used in psychophysical models, but also for complex images. Ex-

periment 3 delivered a more surprising inding, indicating that our

technique can also improve impression of depth in images. This ques-

tion emerged when we were inspecting the results of our method

and noticed that they look diferent from typical monoscopic images

because of an apparent impression of depth, even if such depth is

false. We also noticed that materials change their appearance when

processed with our technique. Glossy objects appear more shiny,

giving them more realistic appearance. As we did not capture these

efects in a formal experiment, we can only direct the readers to

the supplementary materials to inspect the large collection of pro-

cessed images. Full understanding of appearance changes caused

by dichoptic presentation would require further research.

Contrary to previous BTMO techniques [Yang et al. 2012; Zhang

et al. 2018] that venture to make images look diferent to the eyes but

may or may not result in contrast enhancement, our method always

enhances contrast in a principled manner. BTMO methods require

very expensive optimization; for the 800×600 image the authors

report 22.24 seconds per single iteration for the 2012 technique and

2.36 seconds for the 2018 technique. Our technique is given almost

for free as most rendering pipelines include a tone curve, which can

be customized per eye using our interleaved tone curves. Binocular

rivalry can be controlled without the need for complex predictors,

by simply changing a single parameter. We test our technique on

both monoscopic and stereoscopic images, the latter being more

relevant to the intended application.

One aspect of the binocular fusion that our method does not di-

rectly address is the ocular dominance of the user. The visual system

has a preference for one of the eyes, especially in the presence of

strong rivalry. Since our method attempts to reduce rivalry, ocu-

lar dominance is less relevant than image contrast. Legge & Rubin

[1981] and Kingdom & Libenson [2015] showed that the eye receiv-

ing the higher contrast image dictates whether it contributes more

to the fused image and the efect of eye dominance is not clearly

visible in their data. However, we noted in our experiments that

swapping images between the eyes results in changes in contrast

perception. Our initial experiment on this issue (Experiment 4 in

the supplementary) does not show conclusive results, but indicates

that there may be an efect of eye dominance or other factors for

some individuals, and thus that the fused contrast may not always

be exactly as expected.

The main limitation of our technique is the inherent trade-of be-

tween contrast enhancement and binocular rivalry. Stronger levels

of enhancement result in more rivalry, which is perfectly accept-

able for some observers but not for others. This was evidenced in

the preference results of Experiment 2, where the answers were

mixed even though most observers reported seeing higher contrast.

Clearly, more factors than perceived contrast contributed to the

preference judgments. We suspect that the nature of the dichoptic

enhancement requires some period of "wearing-in", similarly to get-

ting used to a new pair of glasses. We did not observe any symptoms

of VR sickness but such symptoms can be only revealed in a longer,

purpose-designed experiment that has a control condition.

9 CONCLUSION

We propose a contrast enhancement technique for stereoscopic pre-

sentation, which is derived in a principled manner from a contrast

fusion model. The main challenge of our approach is striking the

right balance between contrast enhancement and visual discomfort

caused by binocular rivalry. To address this challenge, we conducted

a psychophysical experiment to test how content, observer, and tone

curve parameters can inluence binocular rivalry stemming from

the dichoptic presentation. We found that the ratio of tone curve

slopes can predict binocular rivalry letting us easily control the

shape of the dichoptic tone curves. We validate the efectiveness

of our technique in the evaluation study, in which we compare our

technique with standard/dioptic presentation and previous tech-

niques, for both monoscopic and stereoscopic images. We observed

marked visual improvement in each case, particularly an unforeseen

improvement in perceived depth. In addition, glossy objects show

increased shininess and are thus perceived as more realistic. The

technique has very low computational cost and only requires apply-

ing a separate tone curve for each eye. The single parameter of the
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curve generation may be needed to be adjusted per observer but it is

content independent so it does not require any analysis of the input

images content, which is a costly operation in real-time rendering.

As tone mapping is usually a part of the rendering pipeline, our

technique can be easily combined with existing VR/AR rendering

at almost no cost.
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