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Figure1: Retargeting from and to a dark display. Left: Image as seen on a Zqui#ak luminance display. Center: Original image. Right:
Bright image compensated for a 2 cd/mlisplay. When the original image is seen through a neutral density filterciag luminance 100
times (2.0 D), it will match the appearance of the left image. When the righgens seen through the same filter thus simulating a dark
display, it will appear similar to the original. Note that the seemingly exaggeraharpness, color shift and brightness change are not
perceived as such at low luminance levels. The images are best serrthetpage is enlarged 8y 4th of the screen width and viewed from
about 0.5 m for a 24” monitor.

Abstract 1 Introduction

The same physical scene seen in bright sunlight and in dusky con-Color and contrast perception varies significantly across the range
ditions does not appear identical to the human eye. Similarly, im- of illumination levels. The most dramatic change in vision is ob-
ages shown on an 8000 cd/rhigh-dynamic-range (HDR) display  served when luminance drops below 3-5 ct/nvhen the retinal
and in a 50 cd/rh peak luminance cinema screen also differ sig- cone cells steadily lose their sensitivity and visual signal is influ-
nificantly in their appearance. We propose a luminance retargetingenced by the retinal rod cells. In this, so called, mesopic vision
method that alters the perceived contrast and colors of an image tOrange, we can observe a gradual loss of acuity and color vision.
match the appearance under different luminance levels. The methodrhis important characteristic of the visual system is rarely taken
relies on psychophysical models of matching contrast, models of into account when reproducing colors on electronic displays. While
rod-contribution to vision, and our own measurements. The retar- the state-of-the-art display colorimetry is almost entirely based on
geting involves finding an optimal tone-curve, spatial contrast pro- the cone-mediated vision (CIE 1931 color matching functions), a
cessing, and modellng of hue and saturation shifts. This lets us re-signiﬁcant portion of the color gamut in modern disp|ays often
liably simulate night vision in bright conditions, or compensate for lies in the luminance range below 3cc‘f'/npart|y mediated by
a bright image shown on a darker display so that it reveals details rods. This is especially relevant for mobile displays, which can
and colors that would otherwise be invisible. decrease their brightness down to 10-30 cdbhthe peak lumi-

nance to reduce power consumption. This means that in the case
CR Categories: 1.3.3 [Computer Graphics]: Picture/lmage of a 1000:1 contrast display that is dimmed, about 3/4th of the per-
Generation—Display Algorithms; 1.4.2 [Image Processing and ceived color gamut cannot be accurately reproduced using tradi-
Computer Vision]: Enhancement—Greyscale manipulation, sharp- tional cone-based colorimetry.
ening and deblurring

To simulate and compensate the changes in image appearance due
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luminance display, backlight dimming, computational display matching model and luminance retargeting method. The main ap-
plication of the method is to compensate for appearance change
Linkss ©DL ®PDF @ WeB in dimmed displays. When watching a display under low ambi-

ent illumination, it might be preferable to dim the backlight to re-
duce power consumption or avoid eye fatigue. In other situations,
it could be desirable to reduce the backlight to preserve observer’s
dark adaptation, for example in a car mounted displays at night.
The method can also perform retargeting in the opposite direction,
from dark scenes to much brighter displays, in order to reproduce
the appearance of night scenes, for example in driving simulators
or in computer games.
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The method relies on a model of color and contrast perception
across the entire range of luminance. The change of overall bright-
ness and contrast is compensated by optimizing the shape of a tone-
curve so that it provides the best compromise between retaining
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contrast and brightness while utilizing the available dynamic range they neither provide sufficient accuracy nor account for all refevan
of a display. The change in detail visibility is modelled using a effects.
novel suprathreshold contrast matching model. The change of color
appearance is accounted for by modelling rod contributions and lossDisplay backlight dimming. Many of consumer displays offer
of color saturation at low luminance levels. All these components a feature to reduce the backlight when the ambient light is dim,
provide superior appearance matching across a range of luminancemostly to lower energy consumption, but also to avoid eye fatigue
which cannot be achieved with the existing color appearance mod-due to high brightness. Some of these methods involve compen-
els and tone-mapping operators. sating for the dimmer backlight with increased transparency of the
liquid crystal (LC) panel, so that the differences between the orig-
The paper is organized as follows: after discussing related work, inal image and the image shown with dimmed backlight is mini-
we describe in SectioBithe experimental methods used throughout mal [Chang et al. 20q4 The Compensa’[ion methods may account
the derivation. The novel method is formulated in Secti@nd its for both temporal aspects to reduce flicker visibilityahli et al.
applications are presented in Secttori comparison with existing 2006, and spatial aspects to reduce contours due to hard clipping
meth_ods is made in Sectidhand the limitations are discussed in  [Kerofsky and Daly 2006 None of these methods, however, com-
Section7. pensates for the contrast perception change at low light. Our algo-
rithm is directly applicable to the backlight dimming scenario.
2 Related work Display color compensation. A method for adapting display color
for low luminance conditions, which shares the same goals as our
work, can be found in the patent literatutgne and Kurtz 2012
The method transforms an image using forward and inverse color
appearance models (CIECAM97c) to retarget color appearance to
lower luminance. This approach, however, assumes that the ap-
earance model can correctly predict the changes in appearance be
een photopic and mesopic conditions for complex images. This
is not the case for most appearance models, including CIECAM97c,
as discussed in the color appearance paragraph above.

Thecolor appearance community has recognized a number of ap-
pearance phenomena that are affected by absolute luminance lev
els [Fairchild 2005 ch.6]. The Hunt effect causes perceived col-
orfulness to increase with increasing surround and adapting lumi-
nance. The Helmholtz-Kohlrausch effect causes more saturated
colors to appear brighter. The Stevens effect causes the range o
perceived brightness levels to increase with higher adapting lumi-
nance. Bartleson and Brenemak9$7 measured and modelled

a similar effect of luminance and contrast, but for complex im-
ages and for varying levels of background luminance. They found
the contrast of images to decrease with lower luminance. This is 3 Experimental methods
consistent with a common practice of reproducing images with a
higher contrast (power exponent approx. 1.5) when projecting im-
ages in dark rooms, or the reproduction of television images (power

exponent 1.25), which are typically watched in dim surroundings match between luminance levels. It is important to note that we
[Fairchild 2005 p.125]. did not assume correctness of the visual models from the literature,

Both Stevens and Hunt effects are included in the CIECAMO2 color Which were measured for simple stimuli. Instead, we tested them
appearance modeMoroney et al. 200R If such an appearance with complex images across a range of conditions. We found that
model could accurately predict perceptual correlates, it could po- & haploscopic matching method, where each eye is adapted to a
tentially be used to retarget content for different luminance levels. different luminance level, gave the most consistent and repeatable
However, the existing appearance models suffer from several limi- esults and therefore was used in all our experiments.

tations: they predict color appearance only for photopic conditions,

that is luminance levels above about 3 c&/mey predict appear- ~ 'mages _were shown on a colorimetrically calibrated 24
ance for uniform color patches rather than complex images; and 1920<1200 LCD display (NEC PA241W) and viewed in a dark

they do not consider the influence of spatial contrast on appearance M- The display was driven with 10 bits per color channel and

which, as we show later, is a crucial factor that is influenced by the USed the native extended color gamut. A piece of black cardboard
absolute luminance levels. There have been attempts to extend ap'/as used to separate the display screen into two halves, so that each
pearance models to complex imag&signg et al. 2007Reinhard eye could see only one half of the screen. The viewing distance was
et al. 2012, but these methods were not intended to predict appear- réstricted to 85cm and the pixel angular resolution was 56 pixels
ance at low luminance levels and were mostly intended for tone- PEr degree. Observers wore modified welding goggles, in which
mapping of high dynamic range images. In particular, the iCAM06 W€ rem(_)ved the protective filter f_or one eye and introduced a pho-
appearance modeK[iang et al. 200Fdoes not reproduce the ap- tographic neutral density (ND) filter (Kodak Wratten 96 1D and

pearance of night sceneBtit and Mantiuk 2013 Nevertheless, 2D) for the o_ther eye. The choice of_ the eye to cover with the filter
we evaluate the method of Reinhard et 8013 in Sections. was randomized between the sessions. Such a setup ensured that

both eyes were adapted separately to different luminance levels and
Tone-mapping of high-dynamic-range images often involves re- the visual glare did not affect the “darker” eye.
producing the appearance of a scene under particular viewing con- . _
ditions on a display offering a limited contrast and luminance range. The observers were asked to adjust the parameters or make judge-
Pattanaik et al.J99§ proposed one of the most comprehensive vi- Ments so that the displayed image shown to the “dark” eye was
sual models, combining spatial vision, light and dark adaptation and @s close as possible to the reference image shown to the “bright”
appearance modeling. The model can simulate the appearance of &Y€ (the method-of-adjustment). Each parameter adjustment ses-
night scene on a regular display. Thompson et200f] proposed a sion was completed by at least three expert observers for 10 images
method simulating neural noise and the loss of acuity, which could from the Kodak datababend the results were averaged. The ob-
be observed in low light conditions. Kirk et al2¢11] proposed a servers were excluded from the comparison experiment described
tone-mapping focused on color perception at low light conditions. in Section6.1
A tone-mapping operator that optimizes a tone-curve for the target
display and contrast reproduction was proposedaritiuk et al. lKodak  True  Color Image  Suite, available  at
2009. We evaluate these methods in Sectiand demonstrate that ~ htt p: //r 0k. us/ gr aphi cs/ kodak/

The derivation of our algorithm was driven, calibrated and tested
with strict experimental procedures to ensure a good appearance
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Lpmean is the mean value of a sine wave. The Michelson contrast
varies between 0 and 1. When calculating image contrast in a mul-
tiscale representation, such as the Laplacian pyramid, it is more
convenient to use the logarithmic contrast:

1 Lmaz‘
G= 5 log, (m) : (2

Display-
referred
image

Source display
characteristic

Target
image

The logarithmic contrast can be interpreted as the modulation of the
sine wave in the logarithmic domain. We will uétand M sym-
bols in the rest of the paper to distinguish between both measures.
8 s The following equations convert from one contrast to another:
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) o ) ) o old detection contrast. Although the CSF captures an essential char-
Figure 3: Contrast Sensitivity Function (CSF) and its variation  acteristic of the visual system, it does not explain the perception of
with luminance (left) and spatial frequency (right). The functionis contrast in complex images. This is because the CSF predicts vis-
based on the model fronMantiuk et al. 2011 The frequency is  ibility of very small, almost invisible contrast, presented on a uni-

given in cycles per degree (cpd). form background, which is atypical for most complex scenes. The
variations in contrast perception are much smaller for contrast suf-
4 Algorithm and visual models ficiently above the detection threshold. This was shown by George-

son and Sullivan19795, who measured the magnitude of contrast

To model complex interaction between the absolute luminance level of one frequency that matches the magnitude of contrast of another
and image appearance, we analyze the problem with respect to thredrequency. They found that the lines of matching contrast across

different aspects of an image: global contrast (tone curve), local Spatial frequencies range from a strongly bent curve for low con-
contrast (detail) and color. trast, which closely corresponds to the CSF, to an almost flat line

o ] ] o for suprathreshold contrast. Georgeson and Sullivan coined the ex-
As shown in Figure2, input to our algorithm is either a scene-  pression “contrast constancy” for the notion of the invariability of
referred image (a high dynamic range image, represented in ab-syprathreshold contrast across viewing conditions.
solute units), or a display referred-image, for example in the SRGB
color space. In the latter case, the image needs to be transformed here is ample evidence that contrast constancy holds across the
from gamma-corrected pixel values into absolute linear RGB values frequency range both for narrow-band patterns, such as sineswav
using a display model, such as a gamma-offset-gain (GOG) model [Barten 1999and for broadband patterns, such as bandpass-noise
[Berns 1996 The GOG model should account for the effect of [Brady and Field 1995 Brady and Field 199 reported that
ambient light on the black level, similarly as done by Mantiuk etal. contrast matches are almost perfect once the contrast is above the
[Zooa Next, in theg|0ba| contrast retargetingtep the luminance detection threshold without any gradual transition between near-
channel of the image is modified by a global tone curve, which min- threshold and suprathreshold vision. This, however, cannot be said
imizes perceived contrast distortions when the image is shown onabout the contrast matches across the luminance range, where sig-
the target display. Only lower frequencies are extracted from that nificant .deV|at|ons from contrast constancy can be observed even
luminance imagegixtract base-bandtep) and the remaining spa-  for relatively large contrast magnituddsilikowski 197§. There-
tial frequencies are retargeted separately for each frequencyoband fore, we need to assume that the contrast constancy mechanism be-
the Laplacian pyramid. The color changes caused by the influencehaves differently in the frequency and luminance domains.
of the rod vision are estimated based on the input and output abso'KuIikowski
lute luminance levels and the new linear RGB values are calculated
in the color retargetingstep. Finally, the retargeted result of our
algorithm needs to be transformed to pixel values using an inverse
display model, or alternatively, into the sRGB color space. The
following sections discuss each of these steps in detail.

[1974 observed that, over a wide range of parame-
ters, two contrast magnitudes match in their appearance when their
supra-threshold contrast matches. That implies that the physical
contrastM minus the detection thresholtl; must be equal for
matching contrast:

4.1 Contrast retargeting M —M; =M — M, “)
Before discussing contrast matching models, let us introduce two Where M and M are Michelson contrasts seen at different lumi-
measures of contrast that we will use in this section. The Michelson nance. The detection threshald, is predicted by the CSF func-
contrast is defined as: tion:
oo AL 1
M = Lma.’c — Lmin _ AL (1) t L SCSF(p, La) ’
Lmaz + Lmin Lmean ' . - .
wherep is the spatial frequency in cycles per degree ands the
whereL,a. andL,,:, are the maximum and minimum luminance adaptation luminance in cd/m In our considerations we rely on
values of a sine wave, or alternativelyL is the modulation and the CSF from Mantiuk et al.2017. Also, similarly as in Mantiuk
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Figure 4: The lines of matching contrast magnitude as a function
of luminance. The lines join the contrast values that should appear
the same according to the model.
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Figure 5. Two piece-wise linear tone-curves. The green (lower)
curve expands contrast in bright tones and compresses contrast in
dark tones. Because the middle tones are pushed towards lowe
luminance levels, their perceived contrast is reduced. The opposite
is achieved with the red (top) tone-curve. The slgmkescribes the
change of physical contrast.

et al. 201], we assume that an observer can locally adapt to the lu-
minance of a pixelL, = L), which approximates the performance
of the fast neural mechanism of adaptatidris the absolute sensi-
tivity factor, which is necessary to adjust the absolute thresholds for
a particular experimental scenario. Using our experimental param-
eter adjustment setup (described in Sec8prnwve determined that

S = 8.6 produces good matches. The peak sensitivity at 100cd/m
for this S-value isM; = 0.4%, which is consistent with most CSF
measurementBfarten 1999

Although Kulikowski’'s model was defined in terms of Michelson
contrast, it is convenient to formulate matching contrast in terms of
the logarithmic contrast:

G — Gy =G — G, where Gy =G(M,). (6)

Note that Eq6 is not equivalent to Egl due to a non-linear relation
between the contrast measures. However, as shown in FHgure
matching contrast lines are almost identical for both models, except
for very high contrast and low luminance. Because data does not
exist for such high contrast levels, neither model can be said to be
right or wrong. We will use the logarithmic contrast in our model

because it does not suffer from singularities at high contrast.

Figure 4 also reveals an important characteristic of this contrast
matching model. Lines of matching contrast are more curved for
low contrast, which means that low contrast is more affected by
luminance than high contrast. This is contrary to another popu-
lar model of suprathreshold contrast: contrast transdiRatdnaik

et al. 1998 Mantiuk et al. 2008 The transducer predicts a much
larger increase of physical contrast, regardless of the contrast mag
nitude. Such prediction is inconsistent with the experimental data.

Despite its simplicity, the model proposed by Kulikowski accu-
rately predicts experimental data. In Fig@ireve collected contrast

r.

matching data from several sources and compared them with the
model predictions. Kulikowski’s model compares favorably to al-
ternative models of perceived contrast, such as contrast tramsduce
models of brightness perception, JND luminance scaling, which all
formed the lines very far from the data points (not included in the
plot for better clarity). The model also encompasses our everyday
experience of seeing in low light. The objects do not appear more
blurry at night, as predicted by the multiplicative sensitivity loss in
the aforementioned models. Instead their silhouettes are sharp but
their textures lose low contrast details.

4.1.1 Global contrast

A tone curve is a powerful tool for reshaping image appearance. lIts
shape alters both physical and perceived image contrast, where the
latter is affected by absolute luminance. To illustrate this, let us as-
sume that any tone-curve can be approximated by a piece-wise lin-
ear function, such as the green (lower) curve shown in Figuté

we use the slope = 1.75 to expand contrast in brighter tones, we
boost both perceived and physical contrast for these tones. But this
also forces us to compress darker tones=(0.25) as the dynamic
range of the output device is limited to the rangg.{., dimaz)-
Moreover, even though the physical contrast of the middle tones
remains the samey(= 1), the perceived contrast of these tones is
lowered as they are pushed towards lower luminance. Therefore,
in order to boost perceived image contrast, it is necessary to use an
opposite tone-curve, such as one shown in red (top) in Figule

this section, we demonstrate how to find a tone-curve that results
in optimum perceived contrast given the limitations of the output
device.

Our task is to find a tone-curv€ that maps input luminance to
output luminance so that the distortions in perceived contrast are
minimized. We find such a curve for a representative conttast
and a spatial frequency. For simplicity, the tone curvd’() is
defined in the log luminance space

1 =T7(), where I=logi(Y) @)

so that the resulting physical contrast can be expressed as:

(8)

The above equation relies on the fact that the slope of a tone-curve
in the log domain corresponds to the contrast change. The prob-
lem of finding the optimum tone-curve can be expressed as the op-
timization, where the squared difference of both sides of the Ku-
likowski's model (Eqg.6) is minimized. Formally, this can be ex-
pressed as:

lmax
ar

aw@—@m—mﬂ+aﬁw>+

arg min
(1)

min

+7(1—T@)*dl (9)
subject to: % >0, (10)
T(lm'm,) Z d'miny T(lmaz) S dmam~ (11)

G+(1) is the threshold contrast for log-luminant€Eq. 5). The
second term of the objective function is the difference between the
source [) and target log luminancel()) and is weighted with a
small constantr = 0.0001. The term is necessary to push the
tone-curve towards either bright or dark tones when the dynamic
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Figure 6: Contrast matching data from several sources (continuous lines). Biffarolors denote different pairs of test and reference
luminance (in cd//M) as listed in the legends. In general, a higher physical contrast is meatiiower luminance (y-axis) to match the
appearance of contrast at higher luminance (x-axis). The predistidiulikowski's model, where available, are plotted as dashed lines with
their color indicating the same pair of test and reference luminance as thieash matching results.

range of the target image is lower than the dynamic range of a dis- : : : : : :
play. The first constraint (EdLO) ensures that the tone-curve is
monotonic and increasing. The two remaining constraints 1EQ.
ensure that the tone-curve does not exceed the minimum and max-
imum luminance of the target displayin, dmaz). NOte that the
dynamic range and black level of the display are the parameters of
our method. Therefore, it is possible to adjust results for displays
of varying contrast and seen under varying ambient illumination.
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The optional saliency functiof(l) is the most beneficial for high o1k - i
dynamic range images, which may contain small areas that greatly from 100to 1 ca/m*
expand the dynamic range but do not form a salient part of an im- from 100 t0 0.1 cd/m
e ; 0.01 from 100 to 100 cd/m? 3
age. In such a case, it is preferred to choose a tone curve that will ) ol
foremost match the appearance of the areas that form a significant rom 100 to 1000 cd/m P
0.001F — from 1 to 100 cd/m ~ 4

part of the image. This is achieved by assigning weights to differ- . . . 2 ; ;
ent luminance levels during optimization. In the simplest case, the 0.001 0.01
function is a histogram of the input image. However, this would as-

sign high weights to large, uniform areas so it is beneficial to further ) ) )
weigh the histogram by a measure of contrast. The disadvantageFigure7: The tone-curves for luminance retargeting that results in
of using the saliency function is that the tone curve changes de- Minimum perceived contrast distortion (refer to Secloh1). The
pending on image content. Even with some form of temporal filter- dashed lines represent linear mapping (gamma=1).

ing, this can lead to temporal color inconsistencieiertsen et al.
2013. Therefore, for video processing and the display-referred sce-
narios, we set all saliency weights to 1.

1,
Y. [cd/m?]
n

very different from a typical gamma=1.5 curve used for “darkiico
ditions. There is also little change in the shape of the tone-curve
when retargeting from 100 to 1000 cdinas the sensitivity (CSF)
does not change much above 100 ctl/Mhe images produced by
tone-curves that were optimized for different retargeting scenarios
can be found in the top row of Figuge

The above optimization problem can be efficiently solved numeri-
cally after converting a tone curve into a discrete piecewise linear
function. The quadratic terms of the objective function let us ex-
press the problem as quadratic programming with inequality con-
straints. Because the threshold functi@n introduces nonlinear-

ity, the quadratic problem needs to be solved iteratively, where the
threshold function is approximated with its first order Taylor expan-
sion in each iteration. Because there are very few optimized vari-
ables (usually about 20-30), the solver is efficient . If no saliency
function is used, the solution can be precomputed per pair of source
(Lmin, lmaz) @and destinationdy,in, dmaz) luminance ranges. For
simplicity, we solve this problem for a single representative spatial
frequencyp = 2 cpd, which approximately corresponds to the peak
sensitivity of the visual system for a range of luminance levels (re-
fer to Figure3-right), and for a representative contrd@st= 0.4.
These values were found to produce the best matching results using® well selected tone curve can hugely improve the appearance of
our experimental setup (Secti8h the retargeted image, however, it offers very coarse control over

the contrast, limited to the selection of regions of similar lumi-
Several tone-curves computed for different source and targeét lum nance. Two other parameters of the contrast matching model, spa-
nance levels are shown in Figure Note that, when retargeting tial frequency and contrast magnitude, must be addressed on a local
from 100 to 1 cd/m, the tone-curve becomes less steep (garmi)a level. To achieve local contrast control, we decompose an image
for bright tones and more steep for dark tones. This behaviour is into frequency-selective bands using the Laplacian pyramid (refer

Note that, as shown in Figur the tone curve is applied to the
full resolution luminance image in thglobal contrast retargeting
step, followed by the extraction of a baseband. It may appear to
be more efficient to apply the tone curve to the baseband extracted
in thelaplacian pyramid decompositistep. This, however, leads

to strong halo artefacts when a nonlinear tone curve is applied to
blurred edges in a base-band image.

4.1.2 Local contrast



Band-tmited contrast RMS contrast with the standard deviatiom. The Gaussian window needs to get

| smaller for higher frequencies to account for finer scale. This is
ﬁ $ achieved by making it equal to half of the size of a single cycle at a

| foageed particular frequency:

Log intensity

o o = 0.5 Fowd (14)
P
o A where R,,q is the angular display resolution in pixels per visual

degree ang is the spatial frequency in cycles per degreés given
| e in pixels assuming a non-decimated Laplacian pyramid, where all
B ,& Modified band A levels have the same resolution. The frequemcgn be computed

1\l \ .
| | as:
|

Pixel position Pixel position

p=2""YV R4, (15)

wherek = 1,.., N is the level of the pyramid ankl = 1 denotes

Figure 8: An edge (black line, top) is enhanced with our local the finest level.

contrast retargeting method using either band-limited contrast (left)
or RMS contrast (right). The plots labeléd. show the band-pass  Gjven the local contrast estimate, we perform contrast retargeting

or RMS contrast (blue) and the signal (red) in the bandafter as a local enhancement of the Laplacian pyramid:
retargeting. Band-limited contrast underestimates the contrast of

the edge and leads to excessive enhancement. RMS contrast can ~
capture the contrast of an edge across the bands and does not cause Pr(z,y) = Pe(z,y) - me(z,y)
over-enhancement.

(16)

wherePy, corresponds to the source image pyramid lével 1..N,

. - . andmy, is a contrast modification explained below. We sel&ct

to Figure). The pyramid is computed for the log of luminance val- ¢, yhat the coarsest band (except the base band) has the peak fre-
ues so that the band-pass levels contain logarithmic contrast Value%uency less or equal to 2 cpd. The low-pass base band Iy + 1)

(Eq.2). is discarded. The resulting image is reconstructed by summing all

While spatial frequency is readily provided by the multi-scale de- modified levels of the pyramidK}. (, ) including the base band,
composition, estimating contrast magnitudeequires more care.  which comes from the global contrast retargeting step (refer to Fig-
Contrast in complex images is typically estimated from the band- yre2). The contrast modification can be expressed as:

pass contrast representatid®efi 199Q, which can be extracted
from a Laplacian pyramid. However, there are two problems with ~
this approach: a) Contrast is arguably best defined in terms of mi(z,y) = ck(,y) — G(M:) + G(My)
edges. Detecting edges, however, requires integration of informa- cr(z,y)

tion across several scales (frequency bandéfkin 1984]. There- ) ) ]
fore, the perceived contrast is not formed by a single frequency Wherec (z, y) is the contrast (Eql3) at the pixel location(z, y)
band, but by integration of information from all frequency bands. andk-thlevel of the pyramid. The functiof¥() is contrast measure

b) Sharp edge contrast features are decomposed into smaller bandsonyersions, given in E@. M, and)M, are the detection thresholds
pass contrast components at several levels of the pyramid. Thesggy the input and retargeted images (B). In order to find these
bandpass components are smaller than the total edge contrast anghresholds from the CSF, we use the peak frequency corresponding

will be over-enhanced during retargeting to lower luminance level o the given band (Edl4) and pixel luminance of the sourc&)
leading to errors in appearance mapping. This is visually illustrated

in Figure8.

; 17

and retargeted() images. The latter is provided by the retargeted
base-band image.

We need a measure of contrast that integrates information from all ) ]

frequencies, yet is localized and captures the contrast of a particu-The result of the local contrast retargeting step isolated from other
lar frequency band. A measure of contrast that is commonly used components of the algorithm can be seen in the second row of Fig-

for noise and broad-band patterns is the root-mean-square (RMS)Ure 9. .Note that the cont_rast .is altergd seleqtively depending on jts
contrast; magnitude. Such behaviour is consistent with the way we perceive

contrast at different luminance levels.

AY () Y(x) -V
CRMS:\// (%) dw:\// <mT) de, 4.2 Color retargeting
(12)

whereY and AY are the image luminance and increment at the Reduced luminance affects not only luminance contrast but also
positionz, Y is the mean value, and the integral is computed over color. This is manifested by loss of color saturation, mostly caused
the entire image. The RMS contrast, however, gives a single value by reduced response of the cones, and the shift of hue towards more
per stimulus and is not very useful for complex images. There- bluish colors, known as Purkinje shift. The latter effect is due to the
fore, we need to localize this measure by restricting it to a local fact that rods and cones share the same neural pathways to transmit
Gaussian window. In order to relate the computed contrast measuretheir signal to the visual cortexCio et al. 200B In the photopic

to the logarithmic contrast, we operate on the log-luminance im- luminance range the information from the cones is the dominant
agel = log(Y") rather than luminance itself. Hence, the localized signal, whereas in the scotopic range rods become dominant. In

broadband contrast can be calculated as: mesopic range, when both types of photoreceptor cells are active,
the signal from the rods is combined with the signal from the cones
c(z,y) = \/(ga « Uz, y) — (90 * D (z,y)]°) (z,y),  (13) in the early stages of visual processing. The variable contribution of

the rod signal to the neural channel of each cone changes the ratio
wherex is the convolution operator ang, is the Gaussian kernel  between the responses, resulting in the hue shift.
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Figure 9: Results produced by different components of our algorithm. The topfowmbers indicate source and target peak luminance
of a display. Note that the results for retargeting to a dark display on the 16fi>10 and 100—1) are meant to be seen at much lower
luminance levels though a neutral-density filter as shown next to the lab&lponMuch of the apparent artefacts, such as haloing and

over-sharpening, disappear when seen through an ND filter.
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Figure 10: Spectral emission of the tested displays. The left plot

also shows Smith & Pokorny cone fundamentals (dashed lines), and

the right plots shows the CIE scotopic luminous efficiency function
(dashed black).

Our goal is to find the resulting Iine;{iNR G JNB]’ color values with
a hue shift given input linear valué® G B]’ and the target lumi-

nanceY . We start by modelling the response of the photoreceptor,
which is the product of spectral distribution of light reaching the

retina,L(\), and spectral sensitivity of each type of photoreceptor:
L-, M-, S-cones and rods;p (\):

[rermin

where )\ is the wavelength and indeR corresponds to the type
of photoreceptor: L, M, S, or R. We use the normalized Smith &
Pokorny cone fundamentalSipnith and Pokorny 1975or the L-,

M- and S-cone sensitivities and CIE 1951 scotopic luminous effi-
ciency function for rods. Usually, the incoming light is described as
the product of three or more spectral basis functidibsand their
coefficients f):

Ep(C) (18)

LX) = ZHZ-(A) pi- (19)

Without losing generality, we can simplify the model and assume
that the coefficientg, .3 correspond to linear RGB color values. In

Figure1l0we show the spectral primari€kfor several displays that
we measured. Itis then possible to find a maivix for converting
the linear RGB values into photoreceptor responses:

EM =Mg |G|, (20)
s B
Er
where the coefficients of the matriXz are given by:
mp,; = / IL(A\) op(A) dA. (21)
A

Cao et al. Cao et al. 200Bobserved that the rod signal shares
the pathway with L-, M-, and S-cone signals and its influence is
additive and depends on the luminance of the signal. The combined
responses of each cone channel with the rod input)/ and S,

can be expressed as:

L 1 0 0 k(Y) gﬁi 5;4

M =10 10 k)| |g' =M(Y)| g,

S 0.0 1 k() |5 o
(22)

where k1 (Y') and k2 (Y") are the functions modeling rod input
strength to thel, M (k1) and S (k2) channels at luminanc¥.
These functions are obtained by linearly interpolating between the
values measured irCiao et al. 200B which are listed in the table
below.

Y[cd/im*] [ 10 [ 0.62 | 0.10
k1 0 [0.0173 | 0.173
ko 0 [ 0.0101 | 0.357

The signal is then processed further down the visual cortex and
combined into opponent color space. However, since the transfor-
mation into the opponent color space is linear, we can match the



Saturation correction s(Y)
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01 1 , 10 100 Figure 12: Image compensated for viewing on a 10 ctl/foeak
Luminance [ed/m’] luminance display, individually for younger and older observers.
Enlarge to see the difference.

Figure 11: Matching saturation factor with changing mean lumi-
nance of an image. The black line is the fitted curve @&). Error
bars denote standard errors. 4.3 Timings

It takes approximately 5 seconds to process a single HD-resolution
~ T ) . frame on an Intel Core i7 2.80GHz CPU using single-threaded Mat-
Y andY” will appear similar if their relative cone response values |ab code. This excludes the time of input/output operations and the

colors at this early stage. We assume that two colors at luminance

are equal: N time to calculate the tone curve, since it only has to be done once
I L for each pair of displays and can be precomputed. Since most of
1 |~] 1 the time is spent performing independent per-pixel operations, the
M| =] = (23) e ; :
s| Y ~| v algorithm is well suited for parallel processing.
S

Note that, while itis impossible to directly match LMS channelsbe- 2 Applications
cause of vastly different responses to a bright and dark display, the ] ] o ]
relative cone responses can be easily matched. After introducingPark display. The primary application of our method is to com-

Eq.20and22into Eq.23, we can find the retargeted color values Pensate the appearance changes seen when images are shown on
from: much darker displays. Figuteand9 show examples of compen-

sated images with higher overall brightness, boosted local contrast

R N R and increased color saturation. Such compensation is in particular
~| Y ~ 1 attractive for mobile devices that can reduce their backlight illu-

g - ?(MC(Y) Mg)™ Mc(Y) M g ) (@4 mination when used in dark environment thereby reducing power
B consumption. We found that the peak luminance of a 1000:1 dis-

play can be reduced to as little as 1 cd/nfrurther brightness re-

Matching cone contrast lets us correct for the hue shift but it does duction results in excessive loss of color vision, which cannot be
not account for the loss of color saturation caused by decreasingcompensated. It is important to note that the compensation can take
sensitivity of the cones as well as changes introduced by the tone-advantage of new display technologies, such as OLED, which offer
curve Mantiuk et al. 200R We experimented with the complete ~ much expanded color gamut and contrast. Such extra gamut can re-
model of [Cao et al. 200B which introduces non-linear gains into  produce the highly saturated colors and contrast that can be found
opponent responses, but the results were unsatisfactory. The probin compensated images.

lem was that their model was generating colors that much exceeded . . .
the gamut of the target display. Instead, we found a simple satura—A(‘:lt’l"’ld""'m'Ve compensation. Because our method relies on a
tion correction to work very well. After experimenting with satura- 1'0d€l of contrast sensitivity, it can be easily extended to account
tion correction in CIE Lab, CIE Luv color spaces and a luminance- for the differences in acuity and sensitivity between young and el-

: ; derly observers. In Figur#2 we show image compensation for a
preserving methodMlantiuk et al. 2009 we found that the best . : . .
results are produced by the common tone-mapping color correctiond'mmed 10 cd/rf peak Iumlnanc_e dlsp_lay tailored for _20-year old
and 80-year old observers. Typically little compensation is needed

formula: ~y 2D for 20-year old, but details and brightness must be boosted for the
B (IN%) s(Y) ;7 (25) older observer.
Y Reproduction of night scenes. Our method can also retarget im-

whereR is the red trichromatic value. The same formula is applied @9€s of night scenes to reproduce their appearance on much brighter
to green and blue color channels. The matching saturation function diSPlays. Figured shows examples of retargeting for a test scene
s(Y') was found in a matching experiment with a reference image 2nd Figurel3 (center) shows an example for a scene-referred HDR
shown at 200 cd/fusing the setup described in Sectidn The image. Please note that the loss of acuity in the cathedral image is

results of the experiment are shown in Figieand the best fitted ~ ViSible only in darker image parts, as expected. Although a num-
curve is given by: ber of tone-mapping operators and appearance models are meant to

predict such appearance change, none of the existing methods can
s(Y)=Y/(Y +k3), (26) accurately predict the full range of effects, as discussed in the next
section.

hereks i | t00.108. . . .
whereks Is equal to). 108 Creativerendering of night scenes. The actual appearance change

The result of color retargeting isolated from other components of due to low luminance is often subtle and much smaller than pre-
the algorithm can be seen in the third row of FigQreNote that dicted by many visual models. To achieve more dramatic effect in
the hue changes due to Purkinje shift and loss of saturation at low entertainment applications, where perceptual accuracy is not cru-
luminance. cial, it is often desirable to alter the appearance above the level



Exaggerated visualization of night vision

Figure13: Bestexposure from a scene-referred HDR image (left) compared witthtufaimulation of night vision (center) and exaggerated
rendering for a more dramatic effect (right). Compare the differencelervisibility of details and color.

predicted by the visual model. This is shown in the right image very low luminance{—100 cd/n? case) are too subtle, confirming
of Figure 13, where we adjusted parameters to show an excessive that the model is in fact limited to the photopic vision.

change of image appearance.
g ge app Display adaptive tone-mapping [Mantiuk et al. 2008is a tone-

Simulation of age-related vision loss. Similarly as it is possible to mapping operator that accounts for the dynamic range and absolute
target dark-display compensation for an age-group, it is also pos-luminance of the target display. The operator utilizes a tone-curve
sible to account for the age when reproducing night scenes. In optimization similar to retargeting global contrast in our algorithm,
Figure 14 we visualize a scene from a driving simulator, as seen though based on the transducer function. The operator is limited
by a 20- and 80-year-old observers. To complete simulation, we to global (spatially invariant) tone-curve, which cannot account for
included in this application the age-dependent model of disability frequency-dependent and color effects. We used the original imple-
glare based on the CIE recommendatidq and van den Berg mentation from thefstools/pfstmsoftware.

1999. Similarly as CIECAMO02, the algorithm correctly predicts the loss
Video. When content-independent approach is usgd)( = 1 of contrast with luminance (second row in Figut). However,

in Eqg. 9), our method does not contain any temporarily inconsis- it overpredicts the effect due to the transducer function. The colors
tent components and video can be processed frame-by-frame. Athat are too dark to be reproduced are clipped to black in thes100
content-dependent approach requires temporal tone-curve filtering scenario. The algorithm cannot retarget night scenes as it does not
such as the one proposed Mdntiuk et al. 200 Examples of take into account the luminance of the input image.

retargeted video clips can be found in the supplementary mate”als'Multi-scaJe model of adaptation, spatial vision and color ap-

. . pear ance [Pattanaik et al. 1998s one of the most comprehensive
6 Comparison with other methods models of the visual system, accounting for a large range of ap-
pearance phenomena. We reimplemented the algorithm with the
In this section we compare our proposed method with several alter- help of partial code fragments published by the authors. The best
native techniques. results were achieved when the low-pass band of the target image

. . was multiplied by a constant factor, which is the treatment recom-
CIECAMO2 is the state-of-the-art color appearance model, which ,anqed by the authors for low-dynamic range images.

accounts for a number of luminance-dependent effects, such as

Hunt and Stevens effects (refer to Sect®nTo retargetimages, we  The results shown in Figurg6 demonstrate that the method pre-
process them through forward and then inverse CIECAMO2 trans- dicts an extensive set of visual phenomena: loss of acuity, Purkinje
forms. However, we vary the viewing-conditions-dependent param- color shift, loss of color saturation and contrast. However, it also
eters between the transforms. Depending on the source and targetlear that the magnitude of all these effects is not correctly pre-
luminance levels, the viewing conditions vary betwekamk, dim dicted: the contrast and the acuity loss due to luminance is exces-
andaverage We also altered the luminance of the adapted white sive, the color cast due to Punkinje shift is too subtle. The result for
point to correspond to a drop in luminance levels, but we did not 100—1 reveal another limitation, shared with most forward-inverse
notice this parameter to have a significant effect on the results. visual models: the resulting colors often exceed the available dy-

. . ) namic range, resulting in a non-reproducible image.
As shown in the top row of Figurg6, CIECAMO2 predicts the loss

of perceived contrast and color saturation at low light and compen- Calibrated image appearance reproduction model [Reinhard
sates for it by boosting overall image contrast at the cost of reducing et al. 2012 combines the goals of tone-mappings and color appear-
brightness100—1 cd/n? scenario). As we show later, such images ance to reproduce images on a range of display devices. We used
offer an inferior appearance match. The appearance changés due the implementation provided by the authors and varied the input im-



Original (SRGB) As seen by 20 year old As seen by 80 year old

Figure 14: Simulation of night vision for 20 and 80 year old observers. The simulasnraes compensated refraction and the age-related
vision loss due to reduced retinal illuminance (senile miosis and crystallireedgimg), disability glare, and neural sensitivity loss. Notice
the loss of fine details (when enlarged on a screen), such as the casdioeimber, in the image on the right. The driving simulator rendering
is the courtesy of LEPSIS (part of IFSTTAR).

moves image detail. The loss of acuity results in the loss of small
contrast details while larger contrast is mostly unaffected. All these
changes result inimages that correspond to the actual image appear-
ance when seen in our experimental set up, described in S&ction

6.1 Experimental comparison

To objectively confirm that the proposed method offers a better ap-
pearance match, we ran a pairwise comparison experiment. From
the methods discussed in the previous section, we selected only
those that produced acceptable results in a particular retargeting
scenario. We included a “gamma” function with the exponents 1.5,
as this is common practice for dark viewing conditiofaifchild

2005 p.125]. We also included the original unprocessed images
as a control condition. The experimental setup was identical as the
age luminance and display adaptation according to the source andone described in Sectiod, except that one portion of the screen
target luminance levels. The algorithm produces pleasing results contained two images, which were the result of two alternative re-
over a wide variety of high dynamic range images. However, as targeting methods. The observers were asked to choose the image
shown in the #* row of Figure16 there is little change in image  that most closely matched the appearance of the image shown to
appearance regardless of the retargeting scenario. This sugests thdlhe other eye when a 2.0D filter was worn on one eye or the other,
the model does not account for luminance-dependent effects in thedepending on the scenario. 17iveobservers, who did not take
non-photopic luminance range. part in the parameter adjustment experiments, compared the meth-
ods for 8 scenes using the full pairwise design.

Figure 15: Comparison of our method with perceptual tone-
mapping for low light conditionsKirk and O'Brien 2011 The
image courtesy of Kirk and O'Brien. Enlarge to see the difference
in detail visibility.

Perceptual mal-adaptation model [Irawan et al. 200pis a tone-

mapping operator that is capable of simulating loss of visibility ex- Results. In order to estimate what portion of the population selects
perienced under changing illumination conditions. As shown in one method as better than the other, the results were scaled in JND
the fifth row in Figurel6, the method can predict reduced contrast units using a similar method as iBilertsen et al. 20113 The scaled

and brightness for dark scenes. However, it does not contain spatialresults in Figure 7 show that our method was selected as providing
processing that could simulate loss of acuity, nor does it account for a significantly better appearance match in almost all cases. Only in
hue and saturation changes. The operator does not produce usabl&vo cases, which were a portrait imagémanin the 2002 sce-

results when compensating for a dark display (20d0scenario). nario andFlower image in the 2200 scenario, our method was
. . o . o comparable to the second best, though the ranking is not statisti-
Tone-mapping for low-light conditions [Kirk and O’Brien 2011 cally significant. Surprisingly, very few of the existing methods

employs the same model of Cao et a00g as our method to  provided reproduction better than the original unprocessed image.
simulate Purkinje shift. However, since the method assumes full Eyen a contrast-enhancing gamma 1.5 seems to do more harm than
adaptation to scotopic conditions across an image, it applies thegood when retargeting for a dark display. Note, that we did not in-
same processing also to bright areas, which are seen by the phoglude the methods that did not work or failed in either retargeting
topic vision. The resultis a bluish haze across the image shown in gcenario, such as a Display adaptive TMO in the2D0 case and

Fig. 15-center. Our method applies the hue shift selectively, only pal-adaptation in the 2002 case. These results clearly indicate

in the dark regions, producing images that more closely resemble that, unlike the existing algorithms, our method can produce con-

the perception of night scenes. The method of Kirk et al. also does sjstently good results for two very different retargeting scenarios.
not simulate acuity loss, loss of cone sensitivity and the change of

erceived contrast. .
P 7 Limitations

Our method is the most comprehensive model of luminance ef-

fects on vision from all the presented methods. It takes a very dif- Since our method relies on the contrast sensitivity function, it is
ferent strategy to global contrast retargeting and finds a tone-curveas accurate as the CSF predictions. This limitation is shared with
that obeys the constraints of the target display dynamic range, somost perceptual methods based on threshold models. Individual
that the resulting image does not suffer from excessive clipping of observers differ in their contrast sensitivity, similarly as they differ
pixel values. The color cast due to Purkinje shift is visible, but only in their visual acuity. If ones sensitivity differs from an average
at low luminance levels. The local contrast modification does not observer’s sensitivity predicted by the CSF, the method may either
simply sharpen or blur an image, but selectively reintroduces or re- under-compensate or over-compensate the image. If the source im-
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Figure 16: The results of different methods (rows) when retargeting from one lunoénkevel to another (columns). Columns labels are the
same as in Figur®. The original image is shown in the left-bottom corner instead of tile— 10 result for our method, which can be found
in Figure 9. More results for a larger number of images can be found in the suppkamnyematerials.

age is noisy, the latter case can result in visible amplification of tone-mapping operators claim to predict image appearance changes
that noise. To prevent this, it may be desirable to adjust the CSF with luminance, we demonstrated that none of the existing models
(parametelS in Eq. 6) for more conservative predictions. accounts for all relevant effects and can produce acceptable results
for a range of luminance retargeting scenarios. While typical im-
age appearance models usually involve a pair of forward and inverse
rceptual models, which differ in the selection of viewing condi-
ns, we take a very different approach with an optimized tone-

Compensation for a very dark display may not produce an exact
appearance match because the compensated colors are outside t
available gamut. This problem can be partly addressed by usingti0
wide-color gamut displays and better gamut-mapping methods. We ., ye ‘\ne bring from the field of vision science a simple but pow-

found that retargeting in the other direction, to simulate night Vi- g, spra-threshold contrast matching model, which has not been
sion, tended to provide more accurate results, as the image color,qeq jn image and video applications before. The existing model
gamut is shrunk and all colors are reproduceable. of rod contribution to cone vision is used to predict Purkinje shift,
Our model does not account for contrast and colorfulness ckange @nd combined with our new measurements to predict also color sat-
above 200 cd/m which are predicted by Stevens and Hunt effects. uration loss. Each component and the entire method is tested in
We attempted to measure these effects on an experimental HDReXperimental conditions to ensure a good appearance match.

display using luminance levels up to 2000 cd/but we did not
find any measureable appearance changes. Acknowledgements
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perception across the luminance range, images need to be compen-
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