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Figure 1: Processing steps of our spatial adaptation model. First, optical glare is simulated to produce a retinal image. Then, the local
luminance adaptation map is computed using our novel adaptation model. The plots below show the luminance profile for the pixels marked
with the dashed-orange line. Note that the eye cannot adapt to small highlights as shown by the flattened blue curve in the “adaptation
luminance” plot. As one of the applications, the adaptation map can be used to estimate the smallest visible contrast in complex images
(detection map) and therefore represents a visibility tolerance for each pixel.

Abstract

The visual system constantly adapts to different luminance levels
when viewing natural scenes. The state of visual adaptation is the
key parameter in many visual models. While the time-course of
such adaptation is well understood, there is little known about the
spatial pooling that drives the adaptation signal. In this work we
propose a new empirical model of local adaptation, that predicts
how the adaptation signal is integrated in the retina. The model is
based on psychophysical measurements on a high dynamic range
(HDR) display. We employ a novel approach to model discovery,
in which the experimental stimuli are optimized to find the most
predictive model. The model can be used to predict the steady
state of adaptation, but also conservative estimates of the visibility
(detection) thresholds in complex images. We demonstrate the utility
of the model in several applications, such as perceptual error bounds
for physically based rendering, determining the backlight resolution
for HDR displays, measuring the maximum visible dynamic range
in natural scenes, simulation of afterimages, and gaze-dependent
tone mapping.
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1 Introduction

Luminance adaptation is a fundamental mechanism of the visual
system, that enables us to see in drastically varying illumination
conditions. The mechanism is so crucial that most visual models
must be provided with the actual value of adapting luminance to
produce correct predictions. Examples of such models are contrast
sensitivity functions (CSFs), appearance models (e.g., CIECAM02),
and many perception-inspired tone mapping operators [Ferwerda
et al. 1996; Pattanaik et al. 2000; Irawan et al. 2005].

In classical psychophysical experiments the state of adaptation is
controlled by displaying stimuli on a uniform adapting field. Whilst
such a simplified stimulus is effective in enabling the isolation and
discounting of adaptation effects, it does not reflect the complex
spatial light distribution of real-world scenes or images shown on
high contrast (HDR) displays. In such complex scenes the state
of adaptation is generally unknown. This obviously hinders the
application of visual models to complex images and necessitates ad
hoc assumptions about the adaptation state.

There are a number of elaborate cone and retina adaptation models
[Finkelstein et al. 1990; Wilson 1997; van Hateren 2005] that are
based on neurological and psychophysical measurements of the
retina. Such models have been adapted, often in simplified form,
in graphics for tone mapping [Pattanaik et al. 2000; Irawan et al.
2005; van Hateren 2006] or for simulating afterimages [Ritschel
and Eisemann 2012; Jacobs et al. 2015]. These models, however,
capture mostly temporal aspects of adaptation and are not capable of
predicting how the state of adaptation varies when the gaze moves
from one part of the scene to another. In contrast to the previous
work, we study the effect of spatial pooling on adaptation, assuming
that the adaptation mechanism is in a steady state. There is little work
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on the nature of spatial pooling on local adaptation. Even though
some models account for pooling in horizontal and amacrine cells
[Wilson 1997], they make assumptions about the spatial interactions
of the cells and they have not been validated against psychophysical
data.

In this work we propose a novel model of local adaptation, based
on new psychophysical measurements on a high dynamic range
(HDR) display that was specifically designed for this purpose. The
best-fitting model is found by exhaustive search of the space of
possible models and then by cross-validation on an independent
dataset that was generated to maximally differentiate between the
models. The local adaptation model leads to a simple and efficient
predictor of the smallest noticeable differences in images. We show
the application of our local adaptation model and detection threshold
predictor on several examples, including deriving error bounds for
physically based rendering, determining the backlight resolution for
HDR displays, measuring the maximum visible dynamic range in
complex natural scenes, simulating afterimages, and gaze-dependent
tone mapping.

To derive our model of local adaptation, we make several assump-
tions. Our goal is to build an empirical model capable of explaining
our psychophysical data, rather than trying to model the underlying
biological mechanisms. To simplify our task, the adaptation state
is predicted only for the central part of the fovea. The adaptation
pools are likely to be larger for parafoveal vision, where the signal
is pooled from a number of photoreceptors. Then, we assume that
the eye is fixated on a target and it reaches a steady adaptation state.
We do not model time-course of adaptation as there is a number
of existing models, which can be combined with ours. Finally, we
consider mostly photopic luminance in the range from 1 cd/m2 to
5000 cd/m2.

The main contributions of this work are:

• novel measurements of the spatial extent of local adaptation
on a high-resolution HDR display;

• a new efficient method for selecting the optimal model from
an exhaustive set of potential complex non-linear models;

• a novel model of local adaptation that explains how the extent
of local adaptation varies with absolute luminance levels;

• a simple and efficient predictor of detection thresholds, pro-
viding conservative error bounds on distortions in complex
images.

2 Related Work

Sites of adaptation in the eye and the retina The visual sys-
tem operates in an environment where light intensity can vary enor-
mously. The 109 change in illuminant between night and day is
striking, but the visual system must also cope with changes up to
10,000 fold between the dark shadows and bright highlights of a
single scene. The output of the retina is about 100 fold less than this,
and the effectiveness of our visual system in daylight conditions
relies upon pre-retinal processes, as well as adaptive mechanisms
within photoreceptors and post-receptor mechanisms. The pupil
contracts to increases in illumination, which helps to reduce retinal
luminance by a moderate factor of 8 (often much less). Further, the
light entering the eye is scattered in the optics (cornea and lens) and
on the retina causing glare [Vos and van den Berg 1999; IJspeert
et al. 1993; Deeley et al. 1991]. Glare has an important effect on
adaptation as it serves to elevate the luminance of dark parts of a
scene relative to its bright neighborhoods.

Retinal light adaptation amplifies weak sensory signals and prevents
strong signals from saturating neural responses. In cone-mediated

pathways, adaptation at lower light levels occurs beyond the photore-
ceptors at the point where cone bipolar cells synapse on to ganglion
cells. At higher light levels, where the benefits of spatial pooling
are less evident, adaptation shifts to the cones themselves [Dunn
et al. 2007]. Adaptation in the rod-mediated (scotopic) pathway
occurs mainly through postreceptoral mechanisms, perhaps at the
level of bipolar cells [Dunn and Rieke 2008]. These factors, along
with consideration of the differences in the distribution of rods and
cones across the retina, yield a picture of the spatial extent of light
adaptation in different lighting conditions. In the central part of the
fovea each cone is wired to an individual midget bipolar cell and
one foveal midget ganglion cell for each bipolar cell [Ahmad et al.
2003], whereas the spatial adaptation pool for rods in the human
retina can be 10 minutes of arc in diameter [Hess et al. 1990, p. 82].

Psychophysics of luminance adaptation Light and dark adap-
tation have been extensively studied using psychophysical methods
— for a review, refer to [Barlow 1972]. In a study with similar
goals to ours, Westheimer [1967] investigated the size effect of a
disk-shaped patch on the increment threshold for a small, briefly
flashing stimulus that is placed in the disk center. He demonstrated
that illumination of retinal regions in the immediate neighborhood
of the stimulus acts to raise the adaptation level, and different in-
tensity surround beyond the disk boundary acts to lower it. This
effect stabilizes beyond the disk diameter over 0.25◦ [Westheimer
1967, Figure 3]. Our experiments are inspired by this work, but
we consider much more complex backgrounds and both increments
and decrements. In follow-up work [McKee and Westheimer 1970]
similar considerations have been performed for chromatic channels
in the stabilized fovea.

Ad hoc local adaptation models Many tone mapping operators
and color and image appearance models assume that the eye is
adapted to a “global” luminance level regardless of the gaze position
[Ward 1994; Ferwerda et al. 1996; Fairchild 1998]. Such a global
adaptation state is computed as an arithmetic or geometric average
luminance to partially account for the non-linear response of the
HVS to light [Ward 1994; Reinhard et al. 2002]. To find a local
adaptation state, Chiu et al. [1993] and Jobson et al. [1997] compute
low-pass filtered images. However, the spatial support of such filters
is chosen ad hoc. When such adaptation maps are used for tone
mapping, they may result in halo artifacts. Edge-stopping filters
limit such spatial processing to the regions with homogeneous pixel
intensity, which greatly reduces the halo artifacts, but also ignores
glare due to bright pixels in the proximity of high-contrast edges.
The spatial support of such filters is typically fixed [Ledda et al.
2004; Kuang et al. 2007] (e.g., to 2% of the image size) or adaptively
expanded as a function of the local variability in pixel intensities
[Reinhard et al. 2002].

Based on the work of Moon and Spencer [1945], Larson et al. [1997]
propose a foveal adaptation with a spatial extent of 1◦ (visual de-
gree), computed as the arithmetic mean of luminance values within
that extent. They build a histogram of the logarithm of such foveal
adaptation values for all image pixels, and through its integration
they derive a halo-free tone mapping curve that is local to a particu-
lar adaptation level, but does not account for spatial configurations
of pixel intensities as in local tone mapping. The foveal adaptation
by Larson et al. has been adopted in many follow-up works [Pat-
tanaik et al. 2000; Irawan et al. 2005; Pajak et al. 2010], while in
color appearance models for HDR images [Kim et al. 2009] even
larger regions of 10◦ have been considered. In contrast to those,
Pattanaik et al. consider one-fifth of the white-point luminance (as
originally proposed in [Hunt 1995]), which they determine using the
paper-white reflectance patch in the Macbeth ColorChecker chart.
Tumblin et al. [1999] interactively select the local adaptation region
around the fixation point so that an S-shaped global tone mapping
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curve produces well-exposed images. Also, per-pixel adaptation
is assumed in tone mapping [Schlick 1995] and in detecting per-
ceivable differences between images [Mantiuk et al. 2011], which
is overly conservative and overestimates sensitivity to contrast de-
tails. Reinhard and Devlin [2005] found that a linear combination of
per-pixel and global adaptation leads to high-quality tone mapped
images.

The existing approaches to local adaptation in tone mapping, color
appearance, and image quality evaluation are clearly ad hoc, even if
they do refer to perceptual findings. For example, the Naka–Rushton
response was originally derived as a function of adaptation state for
single receptors [Naka and Rushton 1966; Valeton 1983], but its
variants are commonly used for larger adaptation areas, sometimes
the entire image, without any in-depth justification [Tumblin et al.
1999; Pattanaik et al. 2000; Irawan et al. 2005; Ledda et al. 2004;
Reinhard et al. 2002; Kim et al. 2009; Reinhard and Devlin 2005].
In this work, we propose a perceptually grounded model of local
adaptation that accounts for the spatial configuration of HDR pix-
els, and we show that its use can be beneficial in many different
applications (Section 7).

Impact of surround on lightness perception Although light-
ness perception is not the focus of this work, the stimuli and methods
used in lightness experiments share many similarities to our experi-
ments. Radonjic et al. [2011] investigate the luminance-to-lightness
mapping for a test patch surrounded by Mondrian-like checkerboard
stimuli, and postulate that the Naka–Rushton-like model [Naka and
Rushton 1966; Valeton 1983] might explain the collected data but
do not provide any specific model parameters as a function of the
surround configuration. Allred et al. [2012] extend this work by
considering the influence of two rings of such Mondrian patches.
They found that a darker surround ring makes the test patch brighter,
further surround influences brightness less, and consistently lower
(or higher) luminance in the surround affects the test patch lightness
stronger. They also observe rotational symmetry, i.e., for a given
set of surrounding patches with different luminance, their particular
layout does not influence the test patch lightness. Our luminance
adaptation experiments employ similar stimuli (Experiments 5 and
6), but aim at measuring the influence of surround on the detection
thresholds rather than lightness.

3 Experiment 1: Probe-on-Flash

We start the discovery of the new local adaptation model with a
probe-on-flash experiment, which will introduce our experiment set-
up and demonstrate how maladaptation affects visual performance.
In Section 4 we use the results of this experiment to motivate a
simple detection model. The model contains an unknown spatial
adaptation component, which we discover by first collecting data
in a series of experiments (Section 5) and then fitting an exhaustive
set of candidate models (Section 6). The best performing models
are then validated and discussed. For brevity, the experiments are
only briefly described and discussed. Refer to the supplementary
materials for more details on the experiments and the discussion of
the results.

A classical Probe-on-Flash psychophysical paradigm offers a method
for measuring visual system performance when the eye is adapted to
different luminance than the luminance of the background [Geisler
1978; Hood et al. 1979; Craik 1938]. We use this paradigm to
investigate how the mismatch between background and adaptation
luminance affects the visual performance across luminance levels.

Apparatus To achieve the high brightness and local contrast level
required for the measurements, we built a custom high dynamic
range display with a projector backlight (Figure 2) using a similar

Figure 2: The schematics and a photograph of the HDR display
used in the experiments.

design as in [Seetzen et al. 2004] but with a number of improve-
ments. A 9.7” Apple iPad “retina” LCD panel with a resolution
of 2048×1536 served as a front modulator. It ensured that the an-
gular resolution surpassed the maximum resolvable resolution of
the eye (in excess of 240 pixels per visual degree for the viewing
distance of 1.32 m). The backlight was produced by a 3500 lm
Acer P1267 DLP projector with a resolution of 1024×768, from
which the color wheel was removed to increase brightness. To max-
imize display efficiency, the light coming from the projector was
directed towards the observer using a Fresnel lens. The projector
was focused on the LCD panel to maximize backlight resolution.
However, a diffuser with a custom adjusted spacer was introduced to
eliminate diffraction and Moiré patterns coming from the matrices
of pixels in the DLP and LCD. The contrast of each of these two
components was approximately 1000:1; their combined contrast
was measured to be in excess of 750 000:1 and the maximum lumi-
nance was above 5000 cd/m2. For conditions involving luminances
below 0.5 cd/m2 the display luminance was boosted by a factor
of 100 and observers wore ND 2.0 glasses (1% transmittance) to
compensate. The display was calibrated for accurate absolute lumi-
nance reproduction using custom software and a JETI Specbos 1211
spectroradiometer. A custom display algorithm was implemented
using OpenGL and GLSL to enable real-time display of arbitrary
images.

Stimuli This experiment is meant to induce a state of as strong
a maladaptation as possible. To achieve this goal, the observers
adapted to a uniform adaptation field of luminance Lf most of the
time. A detection target was only briefly flashed for 200 ms in a
probe-on-flash experiment (Figure 3 right) similar to [Westheimer
1967]. Such a short presentation time and relatively small detection
target prevent the eye from adapting to the pedestal luminance Lp.
However, since the neural adaptation mechanism can respond in less
than 50 ms, we cannot guarantee that the observers remained fully
adapted to the uniform field Lf during the flash.

The detection target (Figure 3 top-right) was a horizontal or vertical
step edge modulated by a Gaussian envelope and shown on a pedestal
of 0.2◦ diameter with luminance Lp. The polarity of the edge (the
order of the dark and bright side) was randomized between trials.
The advantage of an edge over other detection targets is that it can
be made very small and, unlike Gabor patches, an edge consists of
similar frequency spectra as edges in natural images.

Procedure Observers were asked to look at the center of the
screen, where the detection target would appear, during the whole
experiment to maintain adaptation. A faint fixation circle of 0.2◦

diameter appeared briefly before the onset of the edge. The 2-
alternative forced-choice (2AFC) task of the observer was to deter-
mine whether the edge (detection target) was oriented horizontally
or vertically. The detection threshold was found using the QUEST
procedure [Watson and Pelli 1983]. At least 40 QUEST trials per
observer were used to determine each threshold. Before proceeding
to the next stimulus, the observer adapt for 1 to 3 min, depending
on whether bright- or dark-adaptation was required. Each thresh-
old was measured for at least 5 observers and averaged. Observers
were 20–40 years old and had normal or corrected-to-normal visual
acuity.
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Figure 3: The results (left) of the controlled maladaptation exper-
iment, the stimulus (top-right) and its presentation (bottom-right).
The experiment results (solid lines) are plotted as a function of vary-
ing adaptation luminance La ≈ Lf , and one of three fixed levels of
pedestal luminance Lp. Error bars represent the within-observer
standard error of the mean (SEM). The black line is the tvi func-
tion (plotted as logarithmic contrast). The dashed lines show the
threshold elevation predicted by the Naka–Rushton photoreceptor
response model.

Results The results of the experiment are shown in Figure 3 (left).
The threshold curves (solid lines) for each pedestal luminance Lp
have their minimum at the fully adapted state (Lp = Lf ). The
predictions of the classical Naka–Rushton [1966] model, which
will be discussed in Section 4, are applied directly to the incoming
luminance field (dashed lines). One salient difference is that our
measurements form asymmetric curves, while the Naka–Rushton
model predicts symmetric elevation of the thresholds. In the next
section, we discuss how this asymmetry can be explained by glare.

4 Detection Model

To explain the results from our probe-on-flash experiment, we design
a simple detection model. The detection model will be the basis for
finding the model of local adaptation.

The three parabolas in Figure 3 for three pedestal levels (Lp) are
shifted vertically to each other. This shift is caused by the loss of
sensitivity of photoreceptors at low luminance levels. Since the
trough of each parabola represents detection on a uniform field (no
flash), it should be possible to predict that case with an ordinary
sensitivity model, such as a contrast sensitivity function (CSF). A
CSF predicts sensitivity S, which is the inverse of the detection
contrast ∆L/L; hence:

S =
L

∆L
= CSF (ρ, L) ⇒ ∆L =

L

CSF (ρ, L)
= tvi(L)

(1)
where ρ is spatial frequency and L is the luminance of the uniform
background. For simplicity, we fix the spatial frequency ρ to the
frequency of the largest amplitude in our stimulus (5.5 cpd) so that
we can define the threshold-versus-intensity (tvi ) curve as a function
of luminance. Such a function is plotted a black line in Figure 3.
Note that for better presentation, the figure plots logarithmic contrast
G 1 instead of luminance increments. The curve represents the
smallest detectable difference in luminance when the eye is fully
adapted to the luminance level L. We use the CSF from [Mantiuk
et al. 2011].

The CSF predicts the detection threshold for the case when the
stimulus is presented on a uniform field of certain luminance L.
However, our patterns (Figure 3 top-right) are mostly non-uniform
so there is no easy way to find L. In some literature L is said to be

1Logarithmic contrast is the log difference between two luminance levels:
G = log10(L + ∆L) − log10(L).
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Figure 4: Prediction of detection thresholds (dashed-lines) from
Figure 3 using the model combining tvi and glare (left); and mal-
adaptation in addition to those two components (right).
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Figure 5: Left: Naka–Rushton photoreceptor response model. The
slope of the curve is inversely proportional to the detection thresh-
olds. Right: Threshold elevation due to maladaptation for flash
luminance L (x-axis) and fixed adaptation luminance (La = 1), as
predicted by the Naka–Rushton model (Equation 6).

adaptation luminance. However, the results in Figure 3 demonstrate
that it cannot be the case. Take for example the left-most blue point
in Figure 3, where the observer adapted to La = 0.005 cd/m2 and
was presented with a detection target with the pedestal of Lp =
0.5 cd/m2. If the adaptation luminance (close to 0.005 cd/m2) was
to predict the threshold, the measurement should be on or above the
black tvi line. However, it is well below the line, as if the detection
threshold would be influenced more by the pedestal luminance Lp
than by the adapting field luminance Lf .

Based on the above observations, we propose that the tvi is not a
function of adaptation luminance, but instead the tvi is a function
of retinal luminance2. The retinal luminance is the measure of light
reaching the retina and it accounts for the light that is scattered in
the optics and on the retina (glare). To compute retinal luminance
LO , we need to convolve the incoming luminance image I with a
point spread function (PSF) due to the glare effect, which in this
paper we call the glare spread function (GSF) O:

LO = I ∗O. (2)

Figure 4 (left) shows the prediction of the combined effect of glare
and tvi : ∆L = tvi(LO), using the GSF from CIE Recommendation
135/1-6 [Vos and van den Berg 1999]. The right part of each curve
matches the measurements better, demonstrating that the model of
glare can explain the elevated threshold when a dark detection target
is placed on bright surround. But it cannot explain the opposite
situation, when Lf < Lp. To account for that case, we need a model
of maladaptation.

Maladaptation There is much evidence suggesting that the re-
sponse of the receptoral mechanism can be explained by the Naka–

2We do not consider here retinal illuminance in trolands as both CSF and
tvi functions account for the effect of pupil size.
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Figure 6: The diagram of the detection model. The dashed-green
area marks the unknown components that are discovered in Sec-
tion 6.

Rushton equation [Valeton 1983; Naka and Rushton 1966]:

R = k
Ln

Ln + σ(La)n
, (3)

where L is the flash luminance, n is a constant between 0.7 and 1,
and k is a scaling constant. σ(La) is a semi-saturation which con-
trols the translation of the response curve along the log-luminance
axis as shown in Figure 5 (left). Electro-physiological readings
of single receptors in the rhesus monkeys indicate that the semi-
saturation constant is higher than background luminance at lower
luminance levels and is approximately equal to background lumi-
nance at higher luminance levels [Valeton 1983]. Although these
measurements are often cited in the graphics literature [Irawan et al.
2005; Pattanaik et al. 2000], they apply only to single cones and
ignore any spatial and postreceptoral effects. Our psychophysical
data depicted in Figure 3 reveals a very different characteristic: the
response is strongest and the thresholds smallest when the eye is
fully adapted to the background luminance. To position the Naka–
Rushton curve to match this observation, the half-saturation constant
must be equal to adaptation luminance: σ(La) = La.

The photoreceptor has the strongest response when the detection
thresholds are the smallest, therefore the change in response (deriva-
tive of R) is inversely proportional to the detection threshold ∆L:

dR

dL
∝ 1

∆L
. (4)

After differentiating Equation 3 and introducing into Equation 4, we
get:

∆L(L,La) ∝ (Ln + Lna)2

nLn−1 Lna
. (5)

For modeling purposes we are interested in the elevation of detection
contrast (∆L/L) rather than absolute increments (∆L). Further-
more, threshold elevation should be relative to the point of complete
adaptation: L = La. Such threshold elevation due to maladaptation
is given by:

Te(L,La) =
∆L(L,La)La
∆L(La, La)L

=
(Ln + Lna)2

4Ln Lna
(6)

and is shown in Figure 5 (right) for several values of the parameter
n. Similar principles were used by Irawan et al. [2005] to derive a
tvi function that accounts for adaptation (TVIA). The difference is
that their approach required numerical computation while we derive
an analytic solution.

Figure 4 (right) shows the predictions when the threshold elevation
model (Equation 6) is introduced into our detection model, so that:

∆Ldet(L,La) = tvi(LO)Te(LO, La), (7)

where LO is the retinal image from Equation 2. The complete
detection model is illustrated in Figure 6. The model predicts reason-
ably well our simple experiment in which the adaptation luminance

La is controlled and thus approximately known (ignoring partial
adaptation to the flash). However, in complex images La is usu-
ally unknown. In the following sections we address the problem of
computing La for arbitrary complex images.

5 Local adaptation experiments

To find a model of local adaptation we conduct a series of experi-
ments, each measuring a different aspect of the adaptation field. The
experimental procedure was similar to Experiment 1, however, the
pedestals remained visible the whole time and only the detection
target (the same edge or a Gabor patch) was briefly displayed for
200 ms.

5.1 Experiment 2: Frequency selectivity

Some sources postulate that local luminance adaptation is pooled
within a receptive field of a visual channel, which is tuned to a band
of spatial frequencies [Shapley and Enroth-Cugell 1984]. If this
is the case, the eye should adapt to differently sized pools of local
adaptation when detecting targets of different spatial frequencies. To
test this hypothesis, we investigate the detection of Gabor patches of
two frequencies (2 and 8 cpd) on a Gaussian pedestal of varying size
of the fixed maximum luminance of 500 cd/m2. The background
was a uniform field of 5 cd/m2. An example stimulus and the
measured thresholds are shown in Figure 7.

If the adaptation mechanism was tuned to different spatial frequen-
cies depending on the detected target, we would expect to see vastly
different shapes of the two curves. But given only subtle differences,
we have no evidence for spatial selectivity of the adaptation mecha-
nism. This result also supports the choice of an edge as a detection
target for the following experiments, as it is not restricted to a single
frequency and is a more representative stimulus for complex scenes.
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Figure 7: Experiment 1 stimulus (right) and results (left). The
spatial pooling of the adaptation mechanism appears to be similar
for Gabor targets of different spatial frequencies.

5.2 Experiment 3: Extent

To measure the extent of the visual area that influences the adaptation
luminance, edge targets were displayed on a disk-shaped pedestal
of 2500 or 50 cd/m2 of a variable diameter, on a background of
5 cd/m2. Figure 8 shows that the detection threshold, and hence
the adaptation luminance, levels off around a diameter of 0.5◦ of
visual angle, which is smaller than the 1◦+ extent used in most ad
hoc models but larger than the extent of about 0.1◦ proposed by
Wilson [1997] based purely on retinal physiology. Similar leveling
off around a diameter over 0.25◦ was found by Westheimer [1967],
but he considered a much smaller flashing stimulus of 0.017◦that
was presented every second for 10 ms. The results indicate that the
size of the adapting pattern has a significant effect on the state of
adaptation.
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Figure 8: The detection thresholds for targets on pedestals of differ-
ent diameters levels off around 0.5◦ of visual angle. The horizontal
dashed lines indicate the detection threshold for a pedestal that
covers the entire screen (from Experiment 1).

5.3 Experiment 4: Long-range effects

The disk pedestal in Experiment 3 can capture the extent of the pool-
ing, but as the central part of the pedestal dominates the adaptation
state, the measurements are not sensitive to the weak influence of
luminance further away from the fixation point. To measure such
likely, long-range effects, a 0.2◦ diameter pedestal of 2500 cd/m2

was surrounded by a concentric ring of the same luminance and
varying inner and outer diameters on a background of 5 cd/m2.
Three different groups of rings were tested: a) rings with a fixed
area; b) rings with a fixed outer diameter; and c) rings of which the
area increased with the inner diameter to compensate for the weaker
effect of more distant regions. Refer to the supplementary materials
for the exact specification of the stimuli.

Figure 9 shows that the long-range effect of rings of 6◦ diameter
or more is negligible compared to no ring at all. The short-range
effects are clearly dominant.
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Figure 9: The detection thresholds for targets surrounded by a ring
with different inner diameters. The horizontal dashed black line and
gray band indicate the detection threshold and SEM for a pedestal
without a ring (from Experiment 3). Example stimuli from each
curve are zoomed out to demonstrate the long-range extent of the
adaptation. The small dot in the center of each stimulus is the 0.2◦

diameter pedestal with the target edge.

5.4 Experiment 5: Non-linear pooling

The two previous experiments measured pooling as a function of
distance from the fixation point. However, they cannot explain what
kind of non-linearity is involved: pooling might occur in linear
(luminance) space, in logarithmic space, or in any other non-linear
space. To determine this non-linearity, the stimulus was flanked by
a concentric half or full ring of 1◦ outer diameter. The luminance
of this ring varied from 0.5 to 5000 cd/m2. The half ring was cut
diagonally to reduce any possible interference with the vertical or
horizontal detection target. The background was fixed at 0.5 cd/m2.

One salient feature of the results shown in Figure 10 is that the
effect of adaptation is asymmetric for lower and higher luminance
of the half-ring. This is further evidence of the strong effect of glare.
However, the exact form of the non-linearity is difficult to determine
without considering other elements of the adaptation model.
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Figure 10: The detection thresholds for targets flanked by a half
or full ring with different luminances. The pedestal luminance is
indicated with a vertical dashed line.

5.5 Experiment 6: Orientation and contrast masking

The sharp contrast edge between the pedestal and background not
only elevates adaptation luminance, but it also creates a strong mask-
ing signal. Contrast masking mostly affects the detection of signals
of similar spatial frequency and orientation. To vary the amount of
contrast masking, we created stimuli that had edges aligned with the
detection target, or slanted 45◦ to the target. As shown in Figure 11
we used two pedestal patterns in two orientations. The bright squares
are 2500 cd/m2, the dark squares in the checkerboards are 1 cd/m2,
and the background is 5 cd/m2. The squares of the checkerboards
have side length 0.2◦. This experiment was also meant to confirm
the radially symmetric characteristic of the pooling we assumed in
all other experiments.

We would expect the effect of masking to be much stronger when
the edge of the pedestal is aligned with the detected edge. However,
the results in Figure 11 indicate little difference between the two
orientations of the pedestal. This shows no evidence to support
the hypothesis that the elevated thresholds are caused by contrast
masking. The results are also consistent with radially symmetric
pooling (refer also to similar results in the context of lightness
perception [Allred et al. 2012] as discussed in Section 2).
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Figure 11: The detection thresholds for targets embedded in squares
or checkerboards with different orientations and luminances.

5.6 Experiment 7: Mondrian and complex images

To enrich the dataset with more real-life adaptation patterns, we also
measured detection thresholds for more complex scenarios in which
we did not try to isolate any effects.

The first set of images contained a Mondrian-style pattern of square
patches of side length 2◦ with exponentially distributed luminances
from 0.25 to 5000 cd/m2, roughly corresponding to a uniform dis-
tribution of perceived brightness. The detection target was placed at
9 different positions on a central patch of 2500 cd/m2, numbered
in Figure 12.

The second set consisted of 4 natural images from the HDR Photo-
graphic Survey [Fairchild 2008] in which the detection target was
positioned to maximize maladaptation. The images and the experi-
ment results are shown in Figure 13.
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Figure 12: The detection thresholds for targets placed at different
positions on the central patch in a Mondrian-style pattern as shown
on the right.
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Figure 13: The detection thresholds for targets placed in various
natural images.

6 Local adaptation model

The detection model introduced in Section 4 should in principle pre-
dict the results of our spatial adaptation experiments from Section 5.
The missing element, however, is the computation of the adaptation
luminance La, shown in green in Figure 6. In this section we use
our experimental data to find a model capable of predicting La.

Visual models are either built upon known physiological constraints
or simply designed in an ad hoc manner (Section 2). The former
approach often leads to models of excessive complexity, which
may fail to generalize. The latter approach may result in a simpler
model, but it cannot ensure that the choice of model is adequate and
optimal. Here we take a different approach and search a large space
of candidate models, each composed of a combination of likely
components.

The input signal to the adaptation mechanism must be retinal lumi-
nance and hence the first stage of our model is the optics of the eye
modeled as a glare spread function (GSF, in the spatial domain) or
an optical transfer function (OTF, in the Fourier domain). We started
with 8 candidate models from the literature, shown in Figure 14,
and selected three that were the most distinct: the GSF from CIE
Recommendation 135/1-6 [Vos and van den Berg 1999], the OTF by
Deeley et al. [1991] and the OTF by IJspeert et al. [1993]. We also
included a custom parametric OTF, which was a linear combination
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Figure 14: Comparison of the optical transfer functions (OTFs,
left) and the corresponding glare spread functions (GSFs, right)
considered in the model.
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Figure 15: Local adaptation model and the explored combina-
tions of its components. OTF – optical transfer function; NL –
non-linearity; Pooling – spatial summation (Gaussian convolution);
NL−1 – inverse non-linearity. The open arrows indicate alternative
model components. This local adaptation model details the green
area of the detection model in Figure 6.

Table 1: Ranking of the models after fitting to the data from Experi-
ments 2–7. The “◦” symbol denotes function composition. ncust is a
custom non-linearity. g is a Gaussian convolution. p... is an OTF.
The df column is the number of degrees of freedom (free parameters).

# Model df χ2
red

1 (exp ◦ g ◦ log +n−1
cust ◦ g ◦ncust) ◦ pIJspeert 7 1.26

2 (n−1
cust ◦ g ◦ncust + n−1

cust ◦ g ◦ncust) ◦ pDeeley 11 1.33
3 (g + n−1

cust ◦ g ◦ncust) ◦ pcust 11 1.35
4 (pow−1 ◦ g ◦ pow + n−1

cust ◦ g ◦ncust) ◦ pDeeley 8 1.45
5 (exp ◦ g ◦ log +n−1

cust ◦ g ◦ncust) ◦ pCIE 7 1.46
6 (n−1

cust ◦ g ◦ncust + n−1
cust ◦ g ◦ncust) ◦ pCIE 11 1.48

7 (g + n−1
cust ◦ g ◦ncust) ◦ pIJspeert 7 1.51

8 (pow−1 ◦ g ◦ pow + n−1
cust ◦ g ◦ncust) ◦ pcust 12 1.53

9 (n−1
cust ◦ g ◦ncust + n−1

cust ◦ g ◦ncust) ◦ pcust 15 1.55
10 (n−1

cust ◦ g ◦ncust + n−1
cust ◦ g ◦ncust) ◦ pIJspeert 11 1.55

of four exponential functions, similar to the OTF of IJspeert et al.
[1993]. The parameters of that OTF were free parameters of the
model. Pupil diameter affects the shape of the OTF, especially at
higher frequencies. Accordingly, we added pupil size changes to
our modeling, but we did not observe any improvement due to pupil
changes in our model predictions.

Spatial pooling may take different forms but we restricted our search
to the convolution with a mixture of Gaussian functions. However,
we allowed each term of the Gaussian mixture to be optionally pre-
ceded by one of several non-linearities: logarithmic (a common
approximation of the receptor response), a power function with an
exponent as a free parameter, or a custom non-linearity designed
as a monotonic, C1-continuous function created from a cubic inter-
polation of four nodes, where the position of each node was a free
parameter. Each non-linearity was paired with its inverse applied af-
ter Gaussian convolution. The schematic diagram of possible model
combinations is shown in Figure 15.

Given all unique combinations of model components, we generated
56 candidate local adaptation models and fitted each separately to
the results of Section 5. We used a genetic optimization algorithm
[Vidal et al. 2012] with a constrained range of plausible parameter
values, which we extended to support parallel computation of the
fitness function with the help of the Message Passing Interface (MPI).
To fit all 56 models with up to 15 free parameters each in reasonable
time we used an HPC cluster.

The results of our fitting procedure are shown in Table 1. The
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Figure 16: Ten stimuli optimized to maximize differences between
the best performing models.

goodness-of-fit is reported as the reduced χ2 statistic:

χ2
red =

1

N − d− 1

N∑
i=1

(oi −mi)
2

σ2
, (8)

where N is the number of fitted stimuli, d is the number of degrees
of freedom (free parameters), oi is the measurement and mi is the
model prediction. σ is the standard error, which is due to both within-
and between-observer variations. A value of χ2

red close to 1 indicates
that the model error is close to the variance in the measurements and
provides a good fit. Values below 1 could indicate over-fitting. Note
that χ2 statistics penalizes models with large number of parameters
(d).

The results show that there are several models with comparable χ2
red

value. The best-fitting models, however, are relatively complex with
many degrees of freedom and we have no guarantee that they do not
over-fit our data.

6.1 Experiment 8: Model-driven stimuli

To discriminate between similarly performing models and to avoid
the risk of over-fitting, we generated yet another set of 10 stimuli
for the experiment. The novelty here was that each stimulus was
automatically generated by an optimization process to maximize
the difference in predicted detection thresholds between models.
This maximizes the likelihood that the newly collected data will
discover the most generalizable model that is robust to a wide range
of possible stimuli.

The automatically generated stimuli were concentric patterns of
6◦ diameter, shown in Figure 16. The profile of each pattern was
generated as a cubic interpolation between 10 nodes distributed
according to the square of the radius (more nodes near the center).
The luminance values for the nodes were the parameters of the
optimization, which could vary from 0.1 cd/m2 to 5000 cd/m2. To
find a stimulus S that results in the largest difference in prediction
of two models #i and #j, we solved the following optimization
problem:

argmax
S

[Mi(S)−Mj(S)]2 (9)

whereMi andMj are the predicted detection thresholds (Equation 7)
for the first and second models for stimulus S. We found S for
all pairs of the 20 best performing models and then selected 10
(shown in Figure 16) that resulted in the largest value of the objective
function.

The detection thresholds were measured using the same experimental
procedure as in Section 5. The recomputed goodness-of-fit errors,
this time including the newly generated stimuli, are listed in Table 2.
The first and third best performing models from Table 1 were not

Table 2: Ranking of the models after cross-validation with the
model-driven dataset. The #1 column is the model rank in Table 1.

# #1 Model df χ2
red

1 2 (n−1
cust ◦ g ◦ncust + n−1

cust ◦ g ◦ncust) ◦ pDeeley 11 1.36
2 4 (pow−1 ◦ g ◦pow + n−1

cust ◦ g ◦ncust) ◦ pDeeley 8 1.54
3 12 (exp ◦ g ◦ log +pow−1 ◦ g ◦ pow) ◦ pDeeley 4 1.63
4 14 (pow−1 ◦ g ◦pow + pow−1 ◦ g ◦pow) ◦ pDeeley 5 1.68
5 24 n−1

cust ◦ g ◦ncust ◦ pDeeley 5 1.72
6 25 (g + exp ◦ g ◦ log) ◦ pDeeley 3 1.75
7 29 exp ◦ g ◦ log ◦ pDeeley 1 1.8
8 31 pow−1 ◦ g ◦pow ◦ pDeeley 2 1.83
9 32 exp ◦ g ◦ log ◦ pcust 5 1.93

10 41 (g + pow−1 ◦ g ◦pow) ◦ pcust 8 1.94
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Figure 17: The two non-linear functions used in model #1. The
dashed red lines are the fits of the sigmoidal functions (Equation 11).
The parameters of those fits are listed in the plot.

robust to the new cross-validation stimuli and dropped out of the top
10. Instead, a number of simpler models moved up in the ranking,
and the difference between the best performing models after this
procedure is still relatively small. Clearly, this approach is much
more effective than a random or arbitrary selection of additional
stimuli.

The approach serves as a cross-validation for our model fits, but
also as a way to introduce some elements of sparse sensing into
psychophysical measurements. In contrast to most sparse sensing
methods, here we are working with strongly non-linear models and
cannot find the linear basis that could be easily measured. However,
we can find the inputs that maximize the chance of differentiating
between alternative models.

6.2 Best model

The best performing model #1 from Table 2 can be formally ex-
pressed as:

La = αn−1
1 (n1(LO)∗gσ1) + (1− α)n−1

2 (n2(LO)∗gσ2) (10)

where α = 0.654, ∗ is the convolution operator and the parameters
for the Gaussian kernels g are σ1 = 0.428◦ and σ2 = 0.0824◦. n1

and n2 are custom non-linearities plotted in Figure 17. For ease of
use, we approximate these non-linearities with sigmoidal functions:

n(LO) = a
LcO

b+ LdO
, (11)

with the parameters a–d listed in Figure 17. LO is the retinal lumi-
nance given by the convolution with the Deeley et al. [1991] OTF
with assumed pupil diameter 4 mm. The detail on the OTF can be
found in the supplementary materials.

6.3 Discussion

Our model fitting procedure brings several interesting insights. First,
the top of the ranking is dominated by models that employ the OTF
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Figure 18: Response of the three selected models from Table 2 to
stimuli containing a 0.2◦ disk at luminance ranging from 1 cd/m2

(black) to 10 000 cd/m2 (magenta). The σ-values are the standard
deviations of Gaussian convolution used by the models (in visual
degrees).

of Deeley et al. [1991]. Second, all well-performing models involve
pooling in a non-linear domain. The simplest model #7 pools the
values in the logarithmic domain, while the best performing model
#1 employs two custom non-linear functions. Finally, fairly complex
models are required to substantially reduce the χ2

red value. Despite
its 11 free parameters, model #1 is robust to the cross-validation
dataset.

The differences between the models are best visible in Figure 18, in
which we plot the response of three selected models to a disk-shaped
stimulus of 0.4◦ diameter and of varying luminance. Note that the
shape of the response varies depending on the luminance of the
disk, indicating the non-linear character of the models. Even though
the overall shape of the response is similar, there are substantial
differences, especially at lower luminance levels, where the support
of the response gets substantially wider for model #1. This is in line
with recent findings showing that the site of adaptation shifts from
receptors (with small spatial extent) to postreceptoral mechanisms
(with larger extent) as light levels are reduced [Dunn et al. 2007].
Model #7 is the easiest to compare with ad hoc adaptation models
because of its simplicity: Gaussian blurring in the log-domain. The
spatial extent of such blurring (σ =0.131◦) is clearly much smaller
than 1◦+ assumed in most ad hoc models. This demonstrates that of
the two extreme ad hoc options for the spatial extent of adaptation,
adaptation to a single pixel may be a better approximation than
adaptation to a heavily blurred image.

7 Applications

In this section we demonstrate how our local adaptation and detec-
tion models can be used in practice.

7.1 Error bounds for physically based rendering

Stochastic ray tracing methods tend to suffer from pixel noise for low
sample counts. Adaptive sampling techniques increase the number
of samples in a pixel until a convergence criterion is met. Typically
that criterion is that the expected range of the true pixel value falls
within the tolerance limits of the human visual system based on the
current estimated pixel value. These tolerance limits are usually a
constant Weber fraction, assuming photopic luminance.

Adaptive sampling techniques based on more principled percep-
tual criteria have been proposed [Ferwerda et al. 1997; Bolin and
Meyer 1998; Ramasubramanian et al. 1999] but are rarely used in
practice because of their implementation complexity and compu-
tational overhead. If such perceptual models account for contrast
masking, they require high spatial frequency information, which is

(a) Ours, 469.7 spp avg. (b) Non-adaptive, 470 spp. (c) Weber, 623.5 spp avg.

Figure 19: (a) Basic path tracing with adaptive sampling using our
detection model as a convergence threshold. Unconverged pixels
are marked in red in the inset sample density map. When shown
on an HDR display, glare (simulated in the bottom row) will cover
most of the noise around bright light sources and highlights. Local
adaptation (not simulated) will hide any remaining noise. (b) Equal-
time comparison with non-adaptive sampling. (c) Typical adaptive
sampling with a constant Weber fraction criterion.

unavailable until a large number of samples is collected. In contrast
to those methods, our visual model can work with noisy images
generated after computing just a few samples per pixel. This is
because the model is in fact a cascade of low-pass filters, which will
eliminate high frequency noise in an incomplete solution. Moreover,
our model does not require an expensive multi-scale decomposition
and its computational complexity is much lower. Our predictions,
however, are more conservative as we do not account for contrast
masking.

As a proof of concept we extended the adaptive sampling implemen-
tation of the Mitsuba renderer [Jakob 2014] with our simple visual
model:

1: render the image with n initial samples per pixel
2: evaluate detection model to obtain ∆Ldet thresholds per pixel
3: for all pixels do
4: while confidence interval > ∆Ldet
5: and sample count < N do
6: render n more samples

The only difference compared to a typical adaptive sampling algo-
rithm is that thresholds are obtained by evaluating our detection
model instead of using a Weber fraction. Thresholds need to be
computed only once, so the computational overhead is negligible.
Figure 19 shows an image rendered with our adaptive sampling
criterion with n = 64 initial samples per pixel and N = 2048 spp
maximum. Our model predicted convergence after 469.7 samples
per pixel (spp) on average. The method using a constant Weber
fraction equal to the peak sensitivity of our model, was overly con-
servative and required 623.5 spp on average. The Weber criterion
wasted samples in areas near bright light sources and highlights that
would be covered by glare, and in dark areas where the human visual
system can tolerate more noise. Non-adaptive sampling with a fixed
number of samples per pixel resulted in much more visible noise for
the same number of samples as our method.
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Figure 20: The visibility of distortions on an HDR display caused
by limited backlight resolution. The desired signal is a white square
of 5000 cd/m2 on a background of 0.05 cd/m2. The plot shows
a luminance profile of such a square as desired (solid blue line)
and the one that is actually displayed due to limited resolution
of the backlight (dashed magenta line). The backlight blur has a
Gaussian profile with standard deviation 1◦ (the result depends on
the viewing distance). The visibility bounds predicted by our model
(blue) indicate that the display distortions are invisible when the
square has a width of 2◦ (top) but they become visible when the
square size is reduced to 0.5◦ (bottom).

7.2 Optimal HDR display backlight resolution

Most available HDR displays achieve very high contrast by com-
bining two light modulators, such as an LCD and a projector, or an
LCD and an array of LEDs [Seetzen et al. 2004]. The projector or
LED backlight modulator usually has a lower resolution because
of physical constraints (e.g., limited number of LEDs), but also to
reduce the effect of parallax due to both images being produced at
slightly different depths. The result of such reduced resolution of
one modulator is reduced local contrast. The problem is visually
illustrated in Figure 20, in which we predict3 when the distortions
due to the backlight resolution will become visible. Seetzen et al.
[2004] conducted a similar analysis, however their bounds were
based on the glare amount alone, without considering local adapta-
tion or luminance-dependent elevation of the detection thresholds.
Our model can give more accurate predictions of display distortions.

7.3 Visible vs. physical dynamic range

Real-world scenes can potentially span an extremely high physical
dynamic range. However, the simultaneously visible dynamic range
is much more limited, mostly due to glare [McCann and Rizzi 2007],
but also due to local spatial adaptation. Since both of these effects
depend on the light distribution in the scene, the maximum simul-
taneously visible dynamic range is scene-dependent and therefore
it is impossible to define it with a single number. However, since
our model can predict both glare and local adaptation, it can also
determine the maximum visible dynamic range for any given scene.

3Using model #3 from Table 2 to avoid extrapolating the custom non-
linearity ncust, used in higher-ranked models, below the minimum experi-
mental luminance level of 0.1 cd/m2.
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Figure 21: Comparison of physical and visible dynamic range for
(top) a few selected scenes and for (bottom) a collection of 76 images
from the Southampton-York Natural Scenes (SYNS) dataset.

To determine a dynamic range of any sensor, it is necessary to select
the minimum signal-to-noise ratio (SNR) level that is considered as
“usable”. This is a typical assumption when measuring the dynamic
range of digital cameras. In the case of the visual system, the
signal is physical luminance and the noise is the amount of contrast
that remains undetectable. For our experiments, we selected the
SNR to be at least 4:1, and therefore we require the predicted3

∆detL/L ≤ 0.25. To determine the maximum visible dynamic
range in a scene, we find the maximum and minimum luminance of
all the pixels that meet this criterion.

As an example, we process a set of high quality HDR images from
publicly available databases. First, we simulated viewing 8 stan-
dard images on a 40” HDR display of unrestricted brightness and
dynamic range, from the viewing distance of 3 image heights (rec-
ommended for an HD resolution). When reporting physical dynamic
range, we ignore the optical glare of the camera that took the images
because it is usually much lower than the glare of the eye. Both
physical and visible dynamic range is shown in Figure 21 (top). The
graphs indicate the largest loss of visibility occurs in darker scene
regions due to glare, but there is also a significant loss of visibility in
brighter parts due to local adaptation. For some scenes, the physical
and the visible dynamic range are almost identical, but for other
scenes the visible dynamic range is just half of the physical range.

The bottom plot in Figure 21 shows the second experiment in which
we measured the distribution of dynamic range in natural scenes us-
ing the Southampton-York Natural Scenes (SYNS) database [Adams
et al. 2015]. The 19 source images were 360◦ panoramas captured
with a SpheroCam HDR camera, from which we extracted a total of
76 wide-angle views with approximately 180◦ × 90◦ field of view
and computed the dynamic range. The histogram shows that simul-
taneously visible dynamic range in this sample of natural scenes
varies between 5 and 14 stops with the peak at 10 stops.

7.4 Simulation of afterimages

Our model can easily be combined with a set of temporal filters to
predict the time-course of adaptation. Because we can predict the
adaptation per each spatial location, we can simulate the afterimage
patterns seen when a luminance pattern changes abruptly over time.
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t = 0 s t = 1 s t = 2 s t = 3 s t = ∞

Figure 22: Simulation of afterimages of traffic lights. The red light
leaves a greenish afterimage, and the amber light leaves a bluish
afterimage. Both afterimages last for a long time while the green
light is active.

In contrast to previous work [Ritschel and Eisemann 2012; Jacobs
et al. 2015], we can accurately predict the blurriness instead of pre-
senting sharp or arbitrarily blurred afterimages. As examples, we
reproduce the traffic lights example from [Ritschel and Eisemann
2012] and simulate the appearance of an afterimage illusion in Fig-
ure 23. The hue and color saturation in our simulation is computed
according to Jacobs et al. [2015]

7.5 Gaze-dependent tone mapping

When viewing natural scenes our gaze moves between areas of differ-
ent brightness. This causes the visual system to constantly re-adapt
to different luminance levels. When viewing images on a regular
(LDR) display, the adaptation changes to a lesser degree as the lumi-
nance range reproduced on the display is much smaller. However,
if real-time information about gaze position is available from an
eye-tracker, the real-world adaptation process can be simulated on a
regular display [Mantiuk and Markowski 2013].

We reproduced a gaze-dependent tone mapping system similar to the
one presented in [Mantiuk and Markowski 2013]. Given an HDR
image as input, our model predicts the spatial map of adaptation
luminance levels that the eye would arrive at in the real-world scene.
The effective state of adaptation follows the temporal process mod-
eled as an exponential decay function from [Durand and Dorsey
2000]. The effective adaptation state was then used to tone map
the image using the Naka–Rushton photoreceptor response, similar
to [Reinhard and Devlin 2005]. Figure 24 shows two animation
frames from a video capturing the session in which an observer
scanned an image using gaze-dependent tone mapping. The frames
demonstrate how the entire image changed in perceived brightness
after the gaze moved from dark to bright image parts, delivering a
better impression of the high dynamic range that could be found in
the actual scene.

8 Limitations

Our experiments were limited to achromatic luminance adaptation,
but our model can be generalized to color images, as demonstrated
in the applications, by assuming that the pooling processes have
the same spatial characteristics for all photoreceptors. This is a
reasonable assumption for pooling caused by eye movements, chem-
ical diffusion, and laterally interconnecting retinal neurons. Our
experiments were limited by the luminance range of our display
system, but the maximum luminance of 5000 cd/m2 exceeds most
commercially available HDR displays. The lower end of the display
luminance range limits our model to photopic stimuli, which cover
most practical application scenarios. We would like to extend the
measurement to the mesopic range as a future work. The nature of
our stimuli with a constant diameter pedestal makes it impossible to

model the effect of strong luminance variations less than 0.1◦ from
the fixation point.

Our model does not consider the Stiles-Crawford effect [Stiles and
Crawford 1933; Gutierrez et al. 2005] and pupil contractions, which
might contribute to optical blurring at low luminance levels. How-
ever, we found that an OTF with a variable pupil did not improve
the accuracy of our model predictions, as discussed in Section 6.
There is also no need to model the loss of retinal luminance due to
pupil contractions. This is because the tvi used in our model already
incorporates the effect of pupil size and it is a function of luminance,
in cd/m2, rather than retinal illuminance, in trolands.

In this work we do not consider contrast adaptation effects [Greenlee
and Heitger 1988], which lead to increasing contrast detection thresh-
olds resulting from prolonged inspection of high contrast patterns of
similar spatial frequencies and orientations. Since we assume that
the eye is fixated on a target and reaches steady adaptation, we do
not model such time-dependent effects that involve gaze direction
changes and account for local characteristics of attended image re-
gions. We have not found an effect of masking in our Experiment
6 but other stimuli should be considered to confirm our findings,
which we relegate as future work.

9 Conclusions

We have presented a quantitative model of local adaptation. The
model was trained on empirical data from many different types of
stimuli with varying luminance patterns of over 6◦ of visual angle,
covering the entire foveal field of view. Out of an exhaustive set of
plausible candidate models, the best fitting models were selected and
cross-validated with an additional set of maximally discriminating
stimuli. This procedure ensures that the model not only explains the
training data but is also predictive for any new input. The model is
conceptually simple to implement and computationally inexpensive
to evaluate, requiring only 3 moderate-sized convolution filters:
the OTF filter in the linear luminance domain and two Gaussian
pooling filters in different non-linear domains. Our model of the
spatial characteristics of local adaptation can easily be combined
with existing temporal models, as demonstrated in the simulation
of afterimages, to predict the time-course of local adaptation. We
have used our model in a wide range of application scenarios for
predicting the technical limitations and requirements of HDR image
synthesis, compression, tone mapping, and display.
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