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ABSTRACT

Defocus imaging techniques, involving the capture and reconstruction of purposely out-of-focus images, have
recently become feasible due to advances in deconvolution methods. This paper evaluates the feasibility of
defocus imaging as a means of increasing the effective dynamic range of conventional image sensors. Blurring
operations spread the energy of each pixel over the surrounding neighborhood; bright regions transfer energy to
nearby dark regions, reducing dynamic range. However, there is a trade-off between image quality and dynamic
range inherent in all conventional sensors.

The approach involves optically blurring the captured image by turning the lens out of focus, modifying that
blurred image with a filter inserted into the optical path, then recovering the desired image by deconvolution.
We analyze the properties of the setup to determine whether any combination can produce a dynamic range
reduction with acceptable image quality. Our analysis considers both properties of the filter to measure local
contrast reduction, as well as the distribution of image intensity at different scales as a measure of global contrast
reduction. Our results show that while combining state-of-the-art aperture filters and deconvolution methods
can reduce the dynamic range of the defocused image, providing higher image quality than previous methods,
rarely does the loss in image fidelity justify the improvements in dynamic range.
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1. INTRODUCTION

The fact that the range of luminances found in the real world greatly exceeds the capabilities of imaging sensors
is a fundamental problem encountered during the acquisition of digital images. Real world scenes contain values
brighter and darker than the range that can be captured at any one time by conventional image sensors, and as
a result, over-exposed and under-exposed pixels commonly occur in photographs. Conventional image sensors
cannot match the dynamic range of the scene, and can only capture a subset of the luminances present. Although
specialized high dynamic range image sensors can capture the range of luminances found in most real world scenes,
they suffer from lower signal-to-noise ratios (SNR) or slower read-out speeds.1

Photographers have contended with this problem since the advent of photography, and the most common
solution is the concept of exposure to control the amount of light that falls on the sensor. While controlling
the amount of light reaching the sensor by adjusting the aperture and the exposure time, photographers are
able to select which subset of the scene luminances they wish to capture without undesirably over- or under-
exposing the image. However, adjusting the exposure does not improve the limited dynamic range that can be
acquired. The subset of luminances that can be accurately captured can be thought of as a slice through the
entire range of luminances found in the scene. Adjusting the exposure can move the slice up and down the range
of scene luminances, and pixels with luminances above the top of the slice are recorded as white, while pixels
with luminances below the bottom of the slice are recorded as black. A correctly chosen exposure can minimize
the number of over- and under-exposed pixels, resulting in a properly exposed image, but it is the dynamic range
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of the sensor that controls the width of the slice. The fact remains that if the dynamic range of the scene exceeds
that of the sensor, some pixels will not be recorded accurately.

Most existing techniques capture multiple slices of the luminance range and combine them into a single
image representing a wider slice, and all of these methods require some tradeoff to extend the width of the slice.
Multi-exposure high dynamic range reconstruction2, 3 takes a sequence of slices distributed in time, trading off
temporal resolution for a larger dynamic range. Similarly, placing an array of different neutral density filters
onto the sensor4 can trade spatial resolution for a wider slice of the dynamic range. The best option is to develop
new sensor technology1, 5, 6 that is directly capable of capturing a wider slice of the dynamic range, but these
sensors are still a ways off from commercial availability and currently suffer from resolution and quality issues.

2. RELATED WORK

We now detail the research related to increasing the effective contrast an imaging sensor can capture by blurring
the image it records. This method borrows from two existing fields of work: coded aperture imaging and
deconvolution.

2.1 Coded aperture

Coded aperture imaging first appeared in the context of astronomical x-ray and gamma ray imaging as a solution
to constraints in feasible optical systems for those telescopes. Compared to visible light, the high energy photons
simply pass through media without refracting, making conventional lenses useless. At first, the standard practice
was to use a pinhole aperture to produce a sharp resulting image. However, this approach blocks the majority
of the energy from the source and has a very poor signal-to-noise ratio (SNR).

The first improvement over the pinhole aperture was the random aperture arrays proposed by Dicke.7 Instead
of a single pinhole, they used a two-dimensional array of randomly positioned pinholes, resulting in numerous
shifted copies of the image overlaid on top of each other, which they attempted to correct with a decoding step.
This process significantly improved the SNR of the imaging system, increasing the amount of light captured by
the number of pinholes in the array, but did so at the cost of the resolving power. It is impossible to completely
undo the cumulative effects of the random array, and there was always some residual blur. This method was
improved upon by structured patterns such as URA8 and MURA.9 These patterns retain the multiple aperture
holes of the random array but are constructed in such a way that the placement of the holes has a unique and
complete means of decoding the signal. This design permits the complete restoration of the original image, and
the patterned array effectively acts as a single pinhole with the SNR of multiple apertures.

More recently, the principles of coded aperture imaging have been employed in visible light photography.
Levin et al.10 and Veeraraghavan et al.11 both make use aperture filters to accurately determine the amount of
blur in order to refocus an image. Similarly, Raskar et al.12 apply the same principle to the temporal domain,
using a patterned opening and closing of the shutter across a single exposure in order to decode motion blur.

2.2 Deconvolution

The coded aperture design in visible light optical systems differs from that of systems for x-ray astronomy.
Several of the underlying assumptions the optical setup no longer hold, and simple methods of restoring the
original image cannot be used. Instead, deconvolution is used to reverse the effects of the blur introduced by the
camera optics. In deconvolution, it is assumed that some desired image has been distorted (blurred) by some
known function, and the goal is to recover that original image. Mathematically this is represented as:

f = f0 ⊗ k + η, (1)

where the recorded image f is the result of the original image f0 convolved by some pointspread function (PSF)
k with additive noise η. Numerous solutions have been proposed over the years, from frequency-space methods
such as Wiener filtering13 to iterative methods such as Richardson-Lucy deconvolution14, 15 and expectation-
maximization.



It is exceedingly difficult to recover the original image at good quality. The system of equations does not have
an exact solution due to the presence of noise and image information is suppressed by the frequency response
of the filter. Additionally, the system is ill-posed, resulting in an infinite number of possible solutions. Results
often include ringing around edges, amplified noise and other artifacts. In the case of coded aperture imaging,
the PSF k is known and specifically chosen to aid in conditioning the deconvolution. While this design reduces
the size of the solution space, it is still no easy task, and additional measures are required to guide the process
towards the correct solution.

New methods have incorporated natural image statistics into deconvolution algorithms to better recover
the original image. The power spectra of images of real world scenes all roughly follow the same distribution.
Individual images exhibit variation, but the overall trend carries strongly across all natural images. A number
of recent papers have utilized deconvolution algorithms incorporating these assumptions to better recover the
original image. Fergus et al.16 used deconvolution to remove motion blur from single photographs, while Levin
et al.10 used a combination of coded aperture and enhanced deconvolution to recover depth and refocus images.
More recently, Bando et al.,17 using work based on Figueiredo and Nowak18 and Bioucas-Dias,19 presented a
means of recovering the original image from defocus blur without a coded aperture.

Recent work by Zhou and Nayar20 analyzed which coded aperture patterns are best suited for deconvolution
of defocus blur. This body of work provides a basis for how we can take an optically blurred image of reduced
dynamic range, condition its frequency distribution with an apertured, then use deconvolution theory paired
with natural image statistics to try and recover the original image.

3. OVERVIEW

The majority of the existing methods attempt to expand the dynamic range of the sensor to match a fixed range
of real scene luminances incident upon the sensor. We investigate the opposite, reducing the dynamic range of
the scene to better fit in the limited range of the sensor.

The method we investigate attempts this reduction in a two-part, combined optical and software approach.
First, we optically blur the image to reduce the dynamic range of the scene incident on sensor. Then we restore
the original image detail and dynamic range in software. Blurring is a convolution operation, where the energy
that would fall on a single photosite of the sensor is spread over a local neighborhood, and reciprocally, that
photosite receives some amount of energy from its neighborhood. This exchange reduces the difference between
the pixel and its neighbors, thus producing an image with less local contrast.

The underlying assumption of this approach is that the most extreme luminance values are sufficiently
spatially distributed such that the local contrast reduction from convolution will reduce the number of pixels
outside the sensor’s dynamic range. A good candidate for this method would be small point sources, such as
streetlights at night, while a bad candidate would be large bright areas, such as daytime sky viewed through a
windows.

We analyze, both in terms of possible dynamic range reduction and resulting image quality, the properties of
the optical-digital system composed of a blurred image obtained by an aperture filter inserted into the optical path
then restored by a deconvolution method. The results are quantified to determine whether any combination can
produce a meaningful reduction of dynamic range required to capture by a sensor while maintaining acceptable
image quality.

4. PHYSICAL SETUP

While the optical system in a camera lens is complex, the entire collection of lenses can be approximated as a
pair of thick lenses with the aperture in between them. This pair of lenses focuses a bundle of rays coming from
points in the scene to points on the sensor, while the size and shape of the aperture controls which rays in the
bundle reach the sensor.

The optical system focuses the image by directing all the rays in a bundle that originate from a point on
the focal plane in the scene to converge to the same point on the imaging sensor. If a point lies in front of or
behind the focal plane, the bundle of rays do not converge to a point on the sensor. Instead, the sensor plane



will intersect the cone of light exiting the rear lens element, resulting in a circular pattern projected on the
sensor. The amount of defocus determines the radius of the blur circle, and points further from the focal plane
are proportionally further from focusing on the sensor and are more blurred since they intersect a bigger slice of
the cone.

Figure 1. Placement of aperture filter in optical setup.

As shown in Figure 1, the aperture sits in the middle of the imaginary pair of optical elements we treat as
the lens. Light rays pass directly through it. The circular blur pattern normally observed in out-of-focus images
results from the circle shape of the aperture in a normal lens. With a different aperture shape, if a point is out
of focus, the sensor still intersects with the cone of out of focus rays, but the aperture shape has blocked some
rays traveling through it and the shape of the blur matches that pattern of the aperture.

5. CODED APERTURE

As mentioned in the previous section, defocus blur convolves the image of the scene by aperture shape. Thus, the
Fourier transform of the captured image has the frequency characteristics correlated with the Fourier transform
of the aperture shape. The goal of inserting an aperture filter into the optical system is to produce a blur pattern
that has good frequency preservation properties.

Convolution is equivalent to multiplying the Fourier transform of the scene image by the aperture optical
transfer function (OTF), the frequency space representation of the aperture shape. Therefore, in a noise-free
case, deconvolution can be viewed as dividing the Fourier transform of the scene image by the aperture OTF.
Zeros and very small values in Fourier transform of the filter result in division by zero and excessive error in the
deconvolved image; these values are responsible for many of the artifacts observed.

The question of “what constitutes a good coded aperture pattern?” involves a number of criteria. We take
this inquiry to specifically consider the aperture pattern that yields the highest quality reconstruction of the
original image with the least number of artifacts. As mentioned above, the zeros in the frequency response of
the filter prevent information from the scene being captured by the camera.

The ideal coded aperture pattern has a frequency spectrum with as few near-zero values as possible, with
the locations of the existing near-zero values located as far away from the low frequency bins and each other as
possible. Additionally, that property must hold for a number of different scales of the filter, as points at different
depths in the scene will be blurred by different amounts.

There are several practical issues beyond these theoretical considerations. Sufficiently small holes in the
aperture pattern will cause the light passing through them to diffract, causing ringing artifacts in the captured
image. Another desired property is that the aperture pattern transmits as much light as possible. Given these
considerations, we will now analyze several coded aperture patterns (shown in Figure 2) and discuss their relative
merits:



Standard Gaussian Veeraraghavan Zhou Levin

Figure 2. Aperture filters evaluated.

Standard (circular) aperture: The circular aperture found in conventional lenses corresponds to a first-order
Bessel function in frequency space. The Bessel function resembles a dampened cos function, with near-zero values
around the numerous zero-crossings of the function. This function causes very poor results with conventional
deconvolution algorithms but can be made to yield acceptable results with a better deconvolution algorithm
utilizing natural image statistics. However, as far as coded aperture patterns go, the standard aperture is very
poor, and the only advantage is that it has the highest light transmission of any pattern.

Circular Gaussian: The Gaussian function has two compelling reasons for its use: value of the function never
reaches zero and the Fourier transform of a Gaussian function is another Gaussian. However, there are two
equally significant caveats. First, while the Gaussian doesn’t ever reach zero, it quickly reaches the noise floor of
the camera. For the Fourier transform of a Gaussian function to be sufficiently broadband, the aperture pattern
is nearly a pinhole. Second, while the Gaussian function has infinite extent, the actual filter shape would be a
truncated Gaussian, the Gaussian multiplied by a box filter. The result would have the same zero-crossing issues
as the standard aperture.

Veeraraghavan et al.11 started with a MURA code, then improved it with an optimization function. They
employed gradient decent to select the binary pattern that best fits the difference in configuration between
conventional cameras and x-ray telescopes. Modelling such differences as the linear convolution that occurs in
the optical systems of conventional cameras, they iteratively searched for the binary pattern that maximized the
minimum value of the filter’s frequency response.

Zhou and Nayar20 improve upon the work of Veeraraghavan et al.11 and formulate a definition of the quality
of the aperture filter based directly on the quality of the deconvolved image as opposed to the properties of the
filter power spectrum alone. They assume that the camera will be used to capture natural images, and they make
use of the 1/f relation of frequencies in natural images to further enhance their filter choice. Additionally, they
note that the amount of noise present in the captured image significantly affects the quality of the deconvolution,
and they use a genetic algorithm to search for the optimal coded aperture for a series of different noise levels.
Both this paper and Veeraraghavan et al.11 assume that the radius of the blur is determined by another method.

Levin et al.10 conducted similar work but optimized a filter for a different set of criteria. In their work,
they wanted to accurately determine the amount of defocus present at every pixel and use that to recover the
depth. Opposed to the work of Veeraraghavan et al.11 and Zhou and Nayar,20 who either directly or indirectly
optimized filter patterns with a minimal number of near-zero values, Levin et al.10 constructed a filter such that
there was the maximum possible difference in the position of the zero-crossing in the frequency spectrum for
different filter radii. This allowed them accurately recover the amount of blur at every pixel by looking at the
missing information, which they were able to fill in with their deconvolution algorithm.



6. DECONVOLUTION

Deconvolution is used to restore the blurred image recorded by the sensor to its original sharpness and dynamic
range. As discussed in Section 2.2, more recent deconvolution routines based on natural image statistics have
made significant progress towards restoring the sharpness of blurred images.

While the use of a coded aperture filter improves the spatial frequency properties of the captured image, the
fact remains that the deconvolution problem is extremely ill-posed. The blurred image could be the result of any
one of an infinite number of images that produce the same result when convolved by the chosen filter. However,
none of those images will be exactly the same as the perfect (not blurred) photograph of a real world scene.

Real world scenes all share some very specific properties that can be used to guide the result of the de-
convolution towards a physically-plausible result. Specifically, natural images tend to consist of large areas of
nearly-constant values with sharp divisions between them. Described in a more formal way, the derivatives of
natural images have a heavy-tailed distribution with a narrower peak and longer tail than a Gaussian function.
This distribution implies that most pixels have values close to zero, but some small number of pixels, especially
those lying next to edges, have significantly larger values.

Both Bando and Nishita17 and Levin et al.10 have presented deconvolution algorithms that make use of these
natural image statistics. They solve a system of equations that includes a weighting term that corresponds to
the prior assumption of a natural-image distribution. Bando and Nishita17 modify the WaveGSM19 algorithm to
operate in gradient space and perform expectation maximization on the resulting non-linear system of equations
using the second-order stationary iterative method. Levin et al.10 approach the problem as finding the maximum
likelihood explanation, employing iteratively reweighted least-squares to solve for the non-linear sparse prior term.

7. EVALUATION

Our goal is to determine whether any combination of aperture filter and deconvolution algorithm can produce
a meaningful increase in effective dynamic range while maintaining acceptable image quality. Specifically, we
compare filters by Veeraraghavan et al.,11 Zhou and Nayer,20 and Levin et al.10 in addition to the Gaussian and
standard aperture. We evaluate deconvolution methods by Bando and Nishita17 and Levin et al.10 in addition
to classical Wiener filtering13 and Richardson-Lucy14, 15 methods.

In our evaluation, we measure the reduction in contrast between the blurred image and the original image as
opposed to the expansion in contrast between the result of the deconvolution and the blurred image. Errors in
images produced by deconvolution often appear as ringing artifacts around contrast edges, artificially increasing
the contrast in those regions. This approach avoids mistaking those artifacts with meaningful increases in
dynamic range. The quality of the deconvolution algorithm is still determined as the difference between the
original image and the reconstructed image.

The structure of the image has an impact on the effectiveness of the algorithm. If the size of a bright or
dark image feature exceeds the given filter diameter, there will be no reduction in dynamic range since energy is
only exchanged between pixels within the local neighborhood. Concerning dynamic range reduction, our analysis
considers both properties of the filter used as a measure of local contrast reduction as well as the distribution of
intensity values in the image at different scales as a measure of global contrast reduction.

Our primary interest was validating the proof of concept, and we conduct our evaluation using synthetic
results instead of real optical systems. This approach introduces less complexity in quantifying the performance
of the method while still determining if the upper bound of the performance is of sufficient quality.

We present two of the images we used to evaluate the performance in this proposal, Atrium Morning and
Atrium Night, shown in Figure 7. This pair was chosen to demonstrate how the performance of the system
depends on the spatial distribution of luminance values in the image. While Atrium Night has a larger dynamic
range than that of Atrium Morning, its extreme values are located in small bright light sources in contrast to
the broad skylights in Atrium Morning.

Table 1 shows the radii of filters used in the evaluation and the change in dynamic range of the image as a
result of being blurred by a standard aperture disk filter of different radii. The night image results in a larger
reduction in dynamic range since the point light sources distribute energy over neighborhoods of significantly



Atrium Morning Atrium Night
Figure 3. Sample images used in evaluation.

dimmer values. The tables and plots included in this section all reference the differences in dynamic range in
terms of the photographic concept of exposure value (EV) stops. In photography, a change of 1 stop or 1 EV
represents a unit change on the log2 scale, where 1 EV = log2(L1) − log2(L2).

We evaluated the quality of the images reconstructed by the deconvolution algorithms in terms of peak signal-
to-noise ratio (PSNR).21 Typical values for the PSNR in lossy image and video compression are between 30 and
50 dB, where higher is better.21, 22 However, the images used in this evaluation have a larger dynamic range
than that of conventional 8-bit images. From evaluating the quality of the results we have chosen 35 dB to be
the lower bound on acceptable image quality for deconvolved images. These images have visible artifacts, but
all of the features are still clearly visible. Similarly, we have chosen a dynamic range reduction of 2 stops to be
the minimum acceptable reduction in dynamic range.

Our evaluation proceeded as follows. First, each image was convolved by each of the aperture filters at a
number of different radii. The minimum and maximum values of the original image and the blurred image were

Radius Atrium Morning Atrium Night

min max reduction min max reduction
Original 0.00 11.0 0.00 12.0

1 0.00 10.8 0.200 0.452 12.0 0.452
2 0.00 10.6 0.424 0.622 12.0 0.622
3 0.00 10.3 0.716 1.163 11.8 1.34
4 0.02 10.0 1.00 1.436 11.4 1.99
5 0.08 9.94 1.14 1.589 11.4 2.23
6 0.15 9.92 1.24 1.731 11.2 2.51
8 0.31 9.83 1.48 1.890 10.8 3.13
9 0.40 9.79 1.61 1.950 10.5 3.41

11 0.66 9.71 1.94 2.08 10.3 3.74
13 0.86 9.67 2.19 2.18 10.1 4.13
16 1.04 9.59 2.45 2.26 9.61 4.65

Table 1. Amount of reduction in dynamic range as a function of radius of a standard aperture (disk) filter in pixels.
The minimum and maximum values are the result of convolving the original image with a disc filter of the specified size,
showing how much of the dynamic range reduction was from reducing the intensity of highlight regions versus increasing
the intensity of shadow regions. All units are in terms of powers of two, referred to as exposure value (EV) stops.



Figure 4. Comparison of all four deconvolution algorithms on the Atrium test scenes without any noise added. All results
were computed using the aperture filter proposed by Zhou and Nayar.20 Values above and to the right of the green bars
pass our acceptance criteria.

Figure 5. Comparison of all aperture filters on the Atrium test scenes without any noise added. All results were computed
using the deconvolution algorithm proposed by Levin et al.10 Values above and to the right of the green bars pass our
acceptance criteria.

compared to compute the amount of dynamic range reduction for that size filter. Next, different amounts of
Gaussian noise were added to simulate the random nature of the image acquisition process for different sensor
sizes. Then, all of the combinations of filter, radius and noise were deconvolved by each of the deconvolution
algorithms. Finally, all results were compared to the original image to compute the PSNR. Figures 4 and 5
summarize our results across the combinations of aperture filter and deconvolution method for images without
any noise added, while Figures 6 and 7 summarize our results for images with Gaussian noise σ = 1 added.

The deconvolution algorithm by Levin et al.10 was able to produce acceptable results for images with small
bright areas, such as Atrium Night, when paired with one of the filters by Levin et al.,10 Veeraraghavan et al.,11

or Zhou and Nayar.20 However, it was only able to do so at noise levels below those found in existing cameras.

Additionally, the Levin et al.10 method performed worse than Richardson-Lucy for images with a few bright
points like Atrium Night at realistic noise levels. While it is able to reconstruct very fine details, the method of
Levin et al.10 tends to introduce high frequency ringing. The amount of ringing associated with a given feature is
insignificant relative to its overall magnitude, but if that feature is bright enough, the ringing will destroy detail



Figure 6. Comparison of all four deconvolution algorithms on the Atrium test scenes with additive Gaussian noise of
σ = 1. All results were computed using the aperture filter proposed by Zhou and Nayar.20 Values above and to the right
of the green bars pass our acceptance criteria.

Figure 7. Comparison of all aperture filters on the Atrium test scenes with additive Gaussian noise of σ = 1. All results
were computed using the deconvolution algorithm proposed by Levin et al.10 Values above and to the right of the green
bars pass our acceptance criteria.

in the dark regions of the image. Increasing the smoothing parameter of the algorithm might have produced less
noise in the dark regions but would not have recovered any additional detail.

The deconvolution algorithm by Bando and Nishita17 performed worse than expected, given its success on
conventional 8-bit images. This could be caused by the selection of its normalization parameters, which we have
not been able to optimize for the given images. However, in all tests on conventional (8-bit) images, it performed
at best equal with that of Levin et al.,10 and we are confident that it could not do significantly better here.

The filters by Levin et al.,10 Veeraraghavan et al.11 and Zhou and Nayar20 outperformed the other filters for
images with low noise levels. As the amount of noise increased, the difference between the capability of all the
different filters decreased, and eventually all the filters had the same performance as the conventional aperture.
This confirms the observation of Zhou and Nayar20 that the optimized aperture filters they designed became
simpler and more like the conventional aperture as the noise level increased.

Overall, the results show that no current combination of aperture filter and deconvolution algorithm can
deliver an acceptable combination of dynamic range reduction and image quality for images with large bright



areas like Atrium Morning at any noise level, while the desired performance was only possible for images with
small bright areas with unrealistically low amounts of noise. Additionally, the quality of the final result depended
more on the deconvolution method than on the choice of aperture filter for realistic noise levels.

8. CONCLUSIONS

None of the possible combinations of aperture filter and deconvolution algorithm were able to consistently reduce
the dynamic range of the captured image without excessively degrading image quality. Techniques worked for
specific scenes under very controlled conditions, but without advances to either aperture filtering or image
reconstruction, it is not applicable to general circumstances.

The efficiency of this defocus imaging approach is scene-dependent. The method is good for small over-exposed
regions that are just above the maximum photosite capacity of a sensor but performs worse on large overposed
areas or in recovering exceedingly bright regions. The more complex deconvolution algorithms performed better
than traditional methods but at significant computational cost. These algorithms took on the order of several
minutes to produce results for megapixel images. The marginal improvement in dynamic range at acceptable
image quality does not justify the amount of computation required by the method.

We could also consider different means of evaluating image quality. High PSNR is rarely the goal of decon-
volution. Images may look acceptable, or even better, if they are sharper despite the fact that the PSNR score
would be lower than a different version. We could obtain a more accurate estimate of the image quality using
different metrics or subjective user preference means of evaluation.

In terms of future work, there are avenues to consider for both improving the aperture filter and the deconvo-
lution algorithm. The aperture filters proposed have not considered maximizing transmission and have not been
optimized for this particular application. It would be interesting to see if a different filter could be developed
to improve results. Similarly, deconvolution algorithms are not well-tuned for high dynamic range images. The
human visual system is sensitive to relative change and can detect small changes in dark regions. However,
deconvolution algorithms are linear and minimize absolute error without accounting for how salient that error is
to the final observer. An interesting line of research would be attempting to devise a deconvolution algorithm
that gives preference to relative error and correctly weights the importance of dark regions.
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